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Chapter 1

Introduction

1.1 Drug development

Drug development is a very long and complex research process carried out under
strong surveillance of health authorities, for example the Food and Drug Adminis-
tration (FDA) in the United States of America and the European Medicines Agency
(EMA) in the European Union. The aim of drug development is to validate that the
new drug is safe and effective before entering the marketing phase. According to the
FDA [4], drug development follows five successive steps as illustrated in Figure 1.1.

Figure 1.1 – Drug development divided in five successive steps.

Step 1: Discovery Thousands of molecules are screened to detect if there ex-
ist any promising ones that are worth being investigated in further steps of the
research process. First information on the mechanism of action, dosage, mode of
administration or interaction with other drugs is gathered.

Step 2: Preclinical research The new drug is assessed for activity, toxicity
and pharmacology during in-vitro (tube, cells culture), in-vivo studies (in animals
such as rodents, non-human primates etc.) or in silico using computer simulations.
Depending on the results obtained, the new drug can continue the development
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CHAPTER 1. INTRODUCTION

process in humans. Data collected during this phase can help design the subsequent
studies.

Step 3: Clinical research During this step, lasting about 7 to 10 years, the new
drug is administered to humans during clinical trials that are usually divided in 3
phases.

Phase I trials are the first stage of human experimentation and aim at evaluating
the safety of the drug in a small number of subjects (less than 100). They are either
carried out on healthy volunteers (for most therapeutic areas) or on patients due to
the harmfulness of some drugs (in oncology for example).

Phase II trials evaluate the efficacy of the drug on one or multiple doses. They
are carried out on up to several hundreds of patients with the targeted disease.
Phase I/II trials are also conducted to combine the safety and efficacy assessment
in a single study.

Finally, phase III trials (or confirmatory trials) are performed on hundreds to
several thousands of patients to demonstrate the efficacy of the new drug compared
to the standard of care according to prespecified hypotheses. Seamless phase II/III
trials can also be performed in order to combine the phase II and phase III in the
same trial [143].

Step 4: Review of health authorities After the phase III trial, if the new drug
shows evidence of tolerance and efficacy for the disease of interest, the pharmaceuti-
cal company can file an application to market the drug. Then, the health authorities
examine all the results obtained to decide if the drug should be approved. If the
drug receives the market authorization, it can then be distributed to the public.

Step 5: Post market safety monitoring After obtaining the approval, phase
IV studies are carried out on thousands of patients to study the drug in “real life”
conditions. One of the objectives of these studies is to detect rare or long term
toxicities that have not been observed during the clinical trials.

The work of this thesis focused on phase I trials in oncology that will be further
developed in the following section.
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1.2. PHASE I TRIALS IN ONCOLOGY

1.2 Phase I trials in oncology

Phase I trials in oncology are the first stage in human experimentation of the drug.
They are performed on a small number of patients who have usually been heavily
treated and for whom standard therapies have failed. These trials aim to evaluate
the toxicity profile of a new drug or of a combination of drugs in order to define a
tolerable dose [118]. They also aim at describing the pharmacokinetic and pharma-
codynamic profiles of the drug (details will be given in section 1.5). During phase
I/II trials, the objective is also to demonstrate the anti-tumor activity, namely the
efficacy, of the drug.

Anti-cancer therapies are usually given in multiple treatment cycles, where a
cycle is defined by the National Cancer Institute (NCI) as “a period of treatment
followed by a period of rest (no treatment) that is repeated in a regular schedule” [12].
The first cycle begins at the first administration of the drug, and the duration of the
cycle is specified in the trial protocol. For example, in Figure 1.2, a cycle is defined
as three weeks of therapy.

Figure 1.2 – Three examples of dose regimens during three cycles of treatment,
where a cycle corresponds to three weeks of therapy. The arrows represent drug
administrations, their heights are proportional to the amount of administered drug.

During a cycle, the drug is given once or repeatedly according to the treatment
schedule defined by the NCI as “a step-by-step plan of the treatment that a patient
is going to receive. A treatment schedule includes the type of treatment that will be
given (such as chemotherapy or radiation therapy), how it will be given (such as by
mouth or by infusion into a vein), and how often it will be given (such as once a day
or once a week). It also includes the amount of time between courses of treatment
and the total length of time of treatment” [13]. For example, in Figure 1.2, the drug
is given once per cycle in example 1, twice per cycle in example 2 (on days 1 and 8
of each cycle) and six times per cycle in example 3 (twice per week).

In a cycle, the same dose can be given repeatedly but the dose can also vary be-
tween the administrations, according to the trial protocol. In Figure 1.2, the same
dose is administered in examples 1 and 2. However, in example 3, the dose is slowly
increased during the first two weeks of cycle 1, and the highest dose achieved is then
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CHAPTER 1. INTRODUCTION

repeated from the last week of cycle 1 until the end of therapy. Treatment regimen
is defined by the NCI as “a treatment plan that specifies the dosage, the schedule,
and the duration of treatment” [11]. Throughout this thesis, we will consider the
term dose regimen that we define as the combination of the schedule of administra-
tion and the dose, that can vary during the administrations of the drug. Moreover,
the protocol of the trial usually also describes the plan to modify the dose given in
subsequent cycles according to the patient’s history, in particular in case of adverse
events. For example, the dose can be reduced in subsequent cycles if the patient
experiences too severe toxicity.

Toxicity is measured by the occurrence of adverse events defined by the NCI
as “an unexpected medical problem that happens during treatment with a drug or
other therapy” [9]. The NCI Common Terminology Criteria for Adverse Events
(CTCAE) [8] provides a standardized classification of adverse events related to anti-
cancer therapy according to their severity in five severity grades, from grade 1, which
is a mild adverse event, to grade 5, which is death. Examples of this classification
for two specific adverse events, hepatic hemorrhage and cytokine release syndrome,
are provided in Table 1.1.

Hepatic hemorrhage:
A disorder characterized by
bleeding from the liver

Cytokine release syndrome:
A disorder characterized by
fever, tachypnea, headache,
tachycardia, hypotension, rash,
and/or hypoxia caused by the
release of cytokines

Grade 1:
Mild

Mild symptoms; intervention
not indicated

Fever with or without constitu-
tional symptoms

Grade 2:
Moderate

Moderate symptoms; interven-
tion indicated

Hypotension responding to flu-
ids; hypoxia responding to
<40% O2

Grade 3:
Severe

Transfusion indicated; invasive
intervention indicated; hospital-
ization

Hypotension managed with one
pressor; hypoxia requiring ≥
40% O2

Grade 4:
Life-
Threatening

Life-threatening consequences;
urgent intervention indicated

Life-threatening consequences;
urgent intervention indicated

Grade 5:
Death Death Death

Table 1.1 – Toxicity grades according to CTCAE categorization for two specific
adverse events.

For each patient, the type, severity grade and duration of each adverse event
occurring during the therapy are collected. In phase I trials, all adverse events oc-
curring during a prespecified observational window (usually during the first cycle)
are summarized in a single binary outcome, defined as the dose-limiting toxicity
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1.2. PHASE I TRIALS IN ONCOLOGY

(DLT), which denotes the presence or absence of severe adverse events (that should
be avoided). The exact definition of DLT varies according to the type of therapy
and is explicitly provided in the protocol of the trial. For example, a DLT can be
defined as the occurrence of an adverse event of grade 3 or more as well as an adverse
event of grade 2 having a long duration during the first cycle of therapy.

The main objective of phase I trials is to determine the maximum tolerated
dose (MTD) which can be defined as the dose having an estimated probability of
DLT (during cycle 1) the closest to a predefined target toxicity level (for example,
0.30) [118]. The MTD is usually defined from an initial panel of dose-levels. The
rationale for finding the MTD is linked to the assumption, on cytotoxic agents, that
the probabilities of toxicity and efficacy monotonically increase with the dose, as
illustrated in Figure 1.3 [84]. Therefore, a dose with a DLT probability close to
the target should exhibit a higher chance of anti-tumor activity compared to a dose
having a very low risk of DLT and toxicity may be viewed as a surrogate endpoint
for efficacy [40]. A trade-off between toxicity and efficacy is then researched as the
MTD exhibits the highest probability of efficacy among the doses with an accept-
able probability of toxicity. For example, in Figure 1.3, dose-level 4 is the estimated
MTD, in the panel of six dose-levels, having a probability of toxicity of 0.30 and a
probability of efficacy of almost 0.60. The recommended dose for further evaluation,
the so called recommended phase II dose (RP2D), is then defined as either the MTD
or one of the doses below the MTD [83].

Target toxicity
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Figure 1.3 – Example of dose-toxicity and dose-efficacy curves.

Specific dose-finding designs have been developed for phase I trials in order to
determine the MTD under ethical concerns.
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1.3 Dose-finding designs in phase I

Phase I designs in oncology have been developed to find the MTD under ethical
concerns [84, 42]. Firstly, they should include a small number of patients (who
usually are patients for whom standard therapies have failed). Secondly, they should
avoid to expose patients to high toxicity and should therefore minimize the number
of patients receiving doses that are too toxic. Finally, phase I trials in oncology also
have a therapeutic aim for the patients included, and therefore dose-finding designs
should also minimize the number of patients receiving ineffective doses.

In the example shown in Figure 1.3, dose-levels 1 and 2 are safe but ineffective
(probability of efficacy lower than 0.20) while dose-levels 5 and 6 exhibit a high
probability of efficacy but are too toxic (probability of toxicity higher than 0.40).
In this example, the dose-finding design should maximize the number of patients
treated around dose-level 4. In this context, randomizing the patients among the
panel of doses is not acceptable as many patients would receive either ineffective of
too toxic doses.

To deal with these ethical requirements, sequential dose-escalation procedures
have been proposed where patients are sequentially enrolled in the trial by cohorts
of small sample size (for example of size 3). The first cohort of patients is usually
treated at the lowest dose, and successive cohorts are progressively treated at higher
doses until the MTD is found. The doses given in the successive cohorts are de-
termined with either an algorithm based approach or a model based approach from
the data observed on all previous cohorts. The design should be defined so that
dose-escalation does not occur too quickly, to avoid too toxic doses, and not too
slowly, to avoid ineffective doses. Standard dose-finding designs will be detailed in
Chapter 2.

According to the 2021 report on clinical development success rates between 2011
and 2020, oncology had the third lowest probability of success in comparison with
14 other indications. The probability of success was 5.3% in oncology versus 9.3%
in the other indications, where the highest probability of success was in hematol-
ogy trials (23.9%) [18]. To further understand this low probability of success, the
report compared the probability of success of every clinical transition of oncology
trials versus non-oncology trials, these probabilities are represented in Figure 1.4.
Oncology had a lower success rate in comparison to the 14 non-oncology therapeutic
areas in almost every clinical transition, except for submission to approval with 92%
compared to 90.2%. Oncology had the lowest probability of success in phase III with
a value of 47.7% while this probability was equal to 61.3% for other indications.

This high failure rate in oncology was not necessarily due to the development of
ineffective drugs, but could also be related to a poor identification of the right dose
(or dose regimen) in early phase trials. Therefore, the choice of the RP2D in phase I
is crucial for success in further stages of the trials and the development of innovative
dose-finding designs are a key to reliably estimate the most promising dose (or dose
regimen) to be studied in phase II and III.

Usual dose-finding designs have been developed to determine the MTD (and the
RP2D) after one cycle of therapy, under a specific schedule and route of adminis-
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Figure 1.4 – Probability of success in oncology compared to other therapeutic areas
from 2011 to 2020 [18].

tration, for example an intravenous infusion every two weeks. However, varying the
schedule of administration in addition to the dose (defined as the per-administration
dose or the cumulative dose over the cycle) or considering alternative dose regimens
(with intra-patient dose-escalation for example) could improve treatment safety,
while preserving future efficacy. In this context, the use of pharmacokinetic and
pharmacodynamic information in addition to standard dose-finding methods could
improve the choice of the RP2D and the success rate of the drug in further stages
of the development.
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CHAPTER 1. INTRODUCTION

1.4 Pharmaco-kinetics/dynamics in phase I

Clinical pharmacology is based on the fact that the intensity of many pharmaco-
logical effects is linked to the amount of drug in the body [53]. Pharmacokinetics
(PK) studies the relationship between the dose administered and the concentration
of drug over time, while pharmacodynamics (PD) studies the relationship between
the concentration of drug and the biochemical or physiologic effect. To simplify, PK
studies “what the body does to the drug” while PD studies “what the drug does to the
body”. Pharmacokinetic/pharmacodynamic (PK/PD) modeling therefore describes
the relationship between the dose regimen and the effects observed as illustrated in
Figure 1.5.
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Figure 1.5 – Pharmacokinetic and pharmacodynamic modeling, inspired by [53].

Drug concentration is measured from regular blood samples after drug admin-
istration, and PK aims at studying the evolution of drug concentration over time.
The PD marker is also assessed regularly when PD analyses are performed. The
timings of PK/PD criteria assessments are prespecified in the trial protocol.

PK/PD modeling can be performed at different stages of the clinical development
to evaluate the dose-exposure-response relationship. According to the FDA guidance
for industry, PK modeling can be performed to predict the drug exposure associated
with doses or dosing regimens that have not yet been investigated in previous clinical
trials [156]. In particular, “a population PK analysis can be used to predict PK
changes resulting from the inclusion of a loading dose, changing the dose, or altering
the dosing frequency of a dosing regimen for later trials in the drug development
program.”
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PK/PD modeling can firstly be performed in preclinical trials which provide
first information on toxicity and activity in various species. This first modeling can
support the choice of the initial safe dose to be tested in phase I trials, the dose range,
the schedule of administration and the optimal outcomes samplings required for
PK/PD estimation [61]. Traditionally, the starting dose was defined from preclinical
trials as one tenth of the lethal dose in 10% of rodents, or one sixth of the highest
non-severely toxic dose in nonrodents (for example in non-human primates) [71].
However, for high-risk medicinal products, the EMA recommends to determine the
minimal anticipated biological effect level from PK/PD modeling using all in vitro
and in vivo information and considering the inter species differences [49, 28].

In phase I trials, characterizing the PK profile of the drug is usually defined as a
secondary objective while the PD profile is an exploratory objective. PK modeling
can support the choice of the recommended dose or dose regimen for phase II trials
based on a targeted exposure to the drug and can also evaluate the effect of varying
the treatment schedule. However, in a survey performed by Comets and Zohar [46],
PK results were often described separately from the dose-finding results and few
attempts were made to link them together.

In phase I trials, toxicity information could therefore be combined to PK/PD
information, into a unified modeling approach, to support the choice of the dose or
dose regimen for further stages of the drug development.
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Chapter 2

State of the art

2.1 Pharmaco-kinetic/dynamic modeling

As mentioned in the introduction, pharmacokinetics/pharmacodynamics (PK/PD)
refers to the relationship between the dose regimen administered and the effects
observed.

2.1.1 Pharmacokinetic analysis

PK studies the relationship between the dose administered and the concentration of
drug in the body over time, and relies on physiological concepts.

2.1.1.1 Physiological concepts: the ADME process

PK is based on the course of the drug in the body over time. Indeed, the drug needs
to cross restrictive barriers defined by the absorption, distribution, metabolism and
excretion process (ADME) [36].

• Absorption: The absorption denotes the transfer of the drug from the site of
administration into the bloodstream. Depending on the route of administra-
tion (intravenous, intramuscular injection, oral ingestion, etc.), the drug needs
multiple steps before reaching the bloodstream. Therefore, only a fraction of
the initial dose administered successfully arrives in the bloodstream, which is
defined by the bioavailability factor. In case of an intravenous injection, the
bioavailability factor is 1 as the dose is directly injected into the bloodstream.
However, if the drug is taken orally, the bioavailability is reduced mainly due
to the digestive system.

• Distribution: The distribution denotes the transfer of the drug from the
bloodstream to the effective sites. The volume of distribution (V) is a fictive
volume in which the drug would be distributed to obtain the observed concen-
trations (this value can be higher than the total volume of the organism).

• Metabolism: The metabolism denotes the chemical reactions that convert
the drug into compounds that are more easily eliminated. For first-order
kinetics, the amount of drug metabolized per unit of time is proportional to
drug concentration.
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• Excretion: The excretion denotes how the drug is eliminated from the body
essentially through the kidneys. The excretion is defined by the clearance
parameter (Cl), analogous to the creatinine clearance [128], defined as the
volume of plasma that is completely cleared of the drug in a unit of time. The
half-life (t1/2) denotes the time interval when drug concentration is reduced to
half of its value.

PK aims to analyze the evolution of drug concentration over time. Drug con-
centrations are obtained from regular samplings of the blood. The PK of a drug
can be described by some measures of exposure such as the area under the curve
(AUC), the maximum concentration achieved (Cmax), the time to reach the maxi-
mum concentration (tmax) or the half-life of the drug (t1/2) as defined above. These
PK values are represented in the left part of Figure 2.1.
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Figure 2.1 – Illustration of PK where the left part of the figure represents PK
concepts and the right part illustrates PK samplings. In the right part, the points
illustrate the samplings, the plain line represents the concentration curve obtained
from simply linking the samplings and the dashed line represents the model fitted.

2.1.1.2 Compartmental versus non compartmental analysis

The non-compartmental analysis consists in estimating directly the dose concentra-
tion curve from the observed concentrations obtained from the blood samples, as
illustrated in the right part of Figure 2.1. Most PK parameters can then directly
be obtained (Cmax, tmax) and the AUC can be estimated using the trapezoidal rule.
This analysis requires no assumption on the ADME process but needs a lot of con-
centration measures to have a precise dose concentration curve over time. However,
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this approach cannot study the PK of the drug when varying the amount of the
drug administered or the schedule of administration.

The compartmental analysis describes the relationship between the drug con-
centration and time with an explicit mathematical model through assumptions on
the ADME process. The organism is simplified as a system of theoretical compart-
ments, where a compartment is defined as a kinetically homogeneous region of the
body [110]. The simplest model only contains one compartment, the central com-
partment, while more complex models include one or two peripheral compartment(s)
linked to the central one. One and two compartment(s) models with a linear elim-
ination process are illustrated in Figure 2.2. The model should be precise enough
to describe the evolution of drug concentration over time but should remain simple
enough to have a reasonable number of parameters to estimate (that may have a
biological interpretation) and to avoid overfitting.

V

k

(a)

V V2

k

k12

k21

(b)

Figure 2.2 – One (a) and two (b) compartment(s) models. V (V2) is the volume
of distribution of the central (second) compartment, k is the elimination rate con-
stant, and k12 (k21) is the distribution rate constant from compartment 1 (2) to
compartment 2 (1).

With a compartmental model, drug concentration can be mathematically de-
fined. For a one compartment model with linear elimination, let the clearance of
elimination be defined as Cl = kV , where k is the elimination rate constant and V
is the volume of distribution. After a single administration of dose D at time tD,
drug concentration depends on the route of administration as provided below.

For an intravenous bolus administration, drug concentration is defined as follows:

C(t) =
D

V
exp (−k (t− tD)) (2.1)

For an intravenous infusion of duration Tinf , drug concentration is defined as
follows:

C(t) =





D

Tinf

1

kV
(1− exp (−k (t− tD))) if t ≤ Tinf

D

Tinf

1

kV
(1− exp (−kTinf)) exp (−k (t− tD − Tinf)) if t > Tinf

(2.2)

For an oral administration, let ka be the absorption rate constant and drug
concentration is defined as follows:

C(t) =
D

V

ka
ka − k

(exp (−k (t− tD))− exp (−ka (t− tD))) (2.3)

The effect of the route of administration on the drug concentration is illustrated
in the left part of Figure 2.3.
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Figure 2.3 – Drug concentration after a single administration for various PK models.
In the left part of the figure, the impact of the route of administration is illustrated,
while the difference between a 1-compartment and a 2-compartment model is shown
in the right part. The figures were generated with k = 0.05 h−1, V = 10 L, D = 100
mg, Tinf = 10 h, ka = 0.25 h−1, k12 = k21 = 0.1 h−1.

These models can also include an effect compartment to delay the response to
the drug.

After n bolus of doses {D1, . . . , Dn} administered at times {tD1 , . . . , tDn}, drug
concentration is defined as follows:

C(t) =
n∑

i=1

1{t>tDi
}
Di

V
exp (−k (t− tDi

)) (2.4)

Similar equations for the other routes of administration can be developed [25].

The assumption of linear elimination implies that the AUC of the drug is not
affected by different schedules of administration, if the same total dose is adminis-
tered [128]. For example, the total AUC after a single administration of 100 mg is
the same as after two administrations of 50 mg administered 24 or 72 hours apart,
as illustrated in Figure 2.4.

Mathematical expressions for the concentration with additional compartments
or under a different assumption for the elimination can also be obtained [25].
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Figure 2.4 – Drug concentration after multiple administrations using a one compart-
ment model with linear elimination. The total AUC is the same for the three dose
regimens. The figure was generated using k = 0.05 h−1 and V = 10 L.

2.1.2 Pharmacodynamic analysis

PD aims to evaluate the relationship between drug concentration and the biochemi-
cal or physiologic effect, defined either as a continuous or discrete outcome. We will
focus on a continuous PD outcome, for example the response of a PD biomarker
related to toxicity or efficacy.

Direct response models assume that drug concentration is directly linked with
the PD response. The sigmoid Emax model can be expressed as follows:

E(t) = E0 + Emax
C(t)γ

C(t)γ + ECγ
50

, (2.5)

where E0 is the baseline effect prior to drug administration, Emax is the maxi-
mum effect, EC50 is the drug concentration to reach half of the maximum effect and
γ is the Hill coefficient that allows flexibility in the sigmoid curve. The simple Emax
model is obtained assuming E0 = 0 and γ = 1. Extensions of this model include the
inhibition model or the addition of an effect compartment to delay the PD response.

Indirect response models assume that drug concentration does not directly affect
the PD response but impacts either the production (kin parameter) or the elimina-
tion (kout parameter) of the PD response by stimulation or inhibition, as represented
in Figure 2.5 [135].

The four basic indirect response models are defined as follows:
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E
koutkin

+ − + −

Figure 2.5 – Indirect response models where kin (kout) is the constant for production
(elimination) of the effect. Drug concentration can stimulate (+) or inhibit (−) the
production or elimination of the response.

• Stimulation of kin

dE(t)

dt
= kin

(
1 +

SmaxC(t)

SC50 + C(t)

)
− koutE(t) (2.6)

• Inhibition of kin

dE(t)

dt
= kin

(
1− ImaxC(t)

IC50 + C(t)

)
− koutE(t) (2.7)

• Stimulation of kout

dE(t)

dt
= kin − kout

(
1 +

SmaxC(t)

SC50 + C(t)

)
E(t) (2.8)

• Inhibition of kout

dE(t)

dt
= kin − kout

(
1− ImaxC(t)

IC50 + C(t)

)
E(t) (2.9)

Smax > 0 is the maximum stimulation factor to affect kin or kout, SC50 is the drug
concentration that produces half of the maximum stimulation, 0 < Imax ≤ 1 is the
maximum inhibition factor to affect kin or kout and IC50 is the drug concentration
that produces half of the maximum inhibition.

Similarly to the direct response model, these indirect response models have been
extended, for example to model a tolerance or rebound phenomena by defining a
precursor [134]. Some PD responses are illustrated in Figure 2.6.

Other mechanistic models based on ordinary differential equations can be de-
veloped to describe various biomarkers or tumor size kinetics for example [122].
Although mechanistic PK/PD models are based on biological knowledge, they at-
tempt to remain relatively parsimonious and might miss some signals [29]. Quanti-
tative and systems pharmacology can be seen as an extension of PK/PD modeling
as it integrates knowledge from various disciplines (classic pharmacology, chemical
biology, structural biology, applied mathematics, medicine) in order to understand
precisely how drugs modulate cellular networks in space and time and how they
impact human pathophysiology [141]. In this manuscript, we will focus on PK/PD
models.

16



2.1. PK/PD MODELING

0

2

4

6

8

0 12 24 36 48
Time (hours)

P
D

 r
es

po
ns

e

Emax model
Indirect model:
Stimulation of kin
Indirect model:
Inhibition of kout

Figure 2.6 – PD response after a single administration. The figure was generated
with E0 = 0, Emax = 10, EC50 = 5 mg/L, γ = 5, kin = 0.75 h−1, kout = 0.2 h−1,
Smax = 1, SC50 = 5 mg/L, IC50 = 5 mg/L, Imax = 1. Drug concentration was
obtained with a 1-compartment oral model where k = 0.05 h−1, V = 10 L, D = 100
mg, ka = 0.25 h−1.

2.1.3 Population pharmaco-kinetic/dynamic modeling

Multiple observations of drug concentration and PD response are obtained for each
patient over time (longitudinal data). Sampling times are specified in the trial pro-
tocol but may vary among individuals due to patients’ follow-up. PK and PD data
are characterized by an important inter-patient variability due to intrinsic (genetic
polymorphisms, renal or liver impairment) and extrinsic (food consumption, con-
comitant medication) factors, and measurement errors [156].

Individual PK/PD estimation can be performed on each patient data. It requires
a lot a data for each patient and does not attempt to share information between
patients. Non compartmental analysis can be performed to estimate PK/PD pa-
rameters without assumption on the underlying model, or models defined above can
be fitted using non linear regression models. In the right part of Figure 2.1, the
plain line represents non-compartmental analysis and the dashed line represents in-
dividual fitting.

Population PK/PD modeling was proposed to aggregate all individual data in
one unified model. The objective is to estimate the population PK/PD profile
(defined as the profile of a standard patient) and the individual PK/PD profiles
accounting for inter and intra variability. The population modeling approach, rec-
ommended by both the FDA and the EMA in specific guidances [156, 47], requires
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less individual data and can be used for predictions and simulations, for example
predictions of drug exposures following alternative dose regimens. However, pop-
ulation approaches are more computationally intensive due to the use of nonlinear
mixed effect models.

Let N be the number of patients in the trial. Let yi = (yi1, . . . , yini
) be the

measurements of patient i ∈ {1, . . . , n} having ni observations. Observation yij
measured at time tij is assumed to follow the model defined below:

yi,j = f (θi,xij) + g (θi,xi,j , ξ) εij, εij ∼ N (0, 1) . (2.10)

The structural model, f , is a non linear function that represents the biological
process generating the PK/PD data. f can be explicitly defined (1 compartment
PK model for example) or be the solution of a differential equation (indirect re-
sponse model for example). θi represents the individual parameters of patient i
and xi,j represents the descriptive variables (sampling time and the dose for the 1
compartment bolus model, concentration for the Emax model, etc.).

For example, for a single bolus administration, f (θi,xij) =
D

Vi
exp (−ki (tij − tD))

where θi = (Vi, ki) and xi,j = (D, tij, tD).

To model the inter-patient variability, the individual parameters can be expressed
as follows: θi = µ exp (ηi), where ηi ∼ N (0,Ω). µ is the vector of fixed effects and
represents the effect of a standard patient and Ω is the variance covariance matrix
of the random effects. More complex inter-individual models can be developed to
account for potential covariates.

Finally, g represents the error model, where ξ are its parameters. Three error
models are commonly used as defined below:

g (θi,xi,j , ξ) =





a, ξ = a (1)
bf (θi,xij)

c , ξ = (b, c) (2)
a+ bf (θi,xij)

c , ξ = (a, b, c) (3)
(2.11)

where (1) corresponds to the constant error model, (2) corresponds to the pro-
portional error model and (3) corresponds to the combined error model.

The notations were inspired from [45] and [5].

Parameters can be estimated by maximum likelihood. However, in case of non-
linear mixed effects models, the likelihood does not have an analytical expression.
Linearization of the likelihood has first been proposed [136] and parameters could
be estimated with standard maximization algorithms (Newton-Raphson for exam-
ple). But these methods only approximated the likelihood. Alternative methods
that compute the “exact” likelihood using intensive calculation have then been de-
veloped such as the stochastic approximation expectation maximization (SAEM)
algorithm [52] that is implemented in Monolix software [7]. More details can be
found in Appendix B.

PK population modeling is illustrated in Figure 2.7 where the population re-
sponse and the individual responses for each patient can be estimated from the
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Figure 2.7 – Population PK modeling: population and individual profiles fitted from
the individual sampled data represented by the dots.

Therefore, population PK/PD modeling aims to characterize the entire dose-
exposure-response relationship through pharmacology principles in order to support
the selection of the optimal dose regimen for the clinical development [142].
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2.2 Dose-finding designs in oncology

As mentioned in the introduction, the objective of phase I trials is to determine
the MTD. Many sequential dose-escalation designs have been proposed in the lit-
erature for various contexts, either considering a single administration or multiple
administrations of the same or varying doses, and some designs have been proposed
to extend the binary toxicity outcome, to include efficacy data or to consider the
combination of two or more agents.

2.2.1 Single administration

2.2.1.1 Standard designs evaluating a binary toxicity outcome

Standard dose-finding designs have been developed to determine the MTD of the
drug after a single administration (in the first cycle) using a binary toxicity outcome,
that is the DLT. In the literature, these designs have been divided in three main
classes that are the algorithm based designs, the model based designs and the model
assisted designs.

2.2.1.1.1 Algorithm based designs Algorithm-based designs, also known as
up & down designs, are simple dose-escalation designs that do not require any as-
sumption on the dose-toxicity curve [100]. Dose allocation is based on algorithmic
rules built on the number of observed DLTs.

The most widely known algorithm based design is the 3+3 design [144], that is
illustrated in Figure 2.8.

3 patients at dose-level i

0/3 DLT 1/3 DLT >1/3 DLTs

Add 3 more patients

1/6 DLT >1/6 DLTs

Escalate to dose-level i+1 Dose-level i-1 is the MTD

Figure 2.8 – 3+3 design.

The trial begins at the lowest dose-level and dose-escalation is performed step
by step. Three patients are included at the current dose-level. If none of the three
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patients experience a DLT, dose-escalation is performed and three new patients are
treated at the next higher dose-level. If at least two patients experience a DLT,
the trial is stopped and the previous dose-level is recommended for the MTD. If
only one patient experiences a DLT, three additional patients are treated with this
current dose-level and if at least one of these new patients experiences a DLT, the
trial is stopped; otherwise, dose-escalation is performed.

The main advantage of this design is its simplicity of implementation, but this
simple design has been widely criticized. Indeed, the target of DLT probability is
not specified and de-escalation is not possible, therefore a maximum of six patients
are treated at each dose-level. Moreover, the design only uses the data from the
most recent cohort (or the two most recent cohorts if one DLT is observed) to guide
dose-escalation and therefore ignores the data from previous patients [42]. It has
been shown that the 3+3 design has a lower performance in selecting the correct
MTD compared to more complex designs [73] and has a tendency to recommend
doses below the MTD.

Other algorithm based designs have been proposed to achieve better performance.
Extensions of the 3+3 design, the so-called A+B designs [42], have been proposed to
allow more flexibility in the cohort sizes and the number of DLTs to perform dose-
escalation. These designs can also accommodate dose de-escalation to allow patients
to be treated at lower doses in case of excessive toxicity. Other designs, defined as
the group up-and-down designs, have been developed to target a prespecified target
of toxicity [65, 75]. A review of various algorithm based designs is proposed in Liu
et al. [100].

2.2.1.1.2 Model based designs Model based dose-escalation designs, where a
parametric model is assumed for the dose-toxicity relationship, have been proposed
to tackle the issues of simple algorithm based approaches. Most approaches have
been developed in the Bayesian paradigm which is introduced in Appendix A.

The continual reassessment method (CRM) [119] has been developed to analyze
all the information gathered at each step of the dose-escalation design with the aim
of reducing the number of patients allocated to too toxic doses and increasing the
number of patients treated at efficacious doses [62].

The general idea of the CRM is to fit a dose-toxicity model to the data in order
to treat the patients with the dose most likely to have a probability of DLT close
to the target. At the beginning of the trial, an initial dose-toxicity relationship is
assumed. After each cohort of patients treated, the dose-toxicity model is updated
with the entire data collected, and the next cohort of patients is treated with the
estimated MTD that is the dose with the probability of toxicity closest to the target.
The trial is stopped when the total number of patients is included.

The sequential process of the CRM is illustrated in Figure 2.9.

Let (d1, . . . , dK) denote the K dose-levels being investigated in the trial. Let
xi ∈ {d1, . . . , dK} be the dose-level allocated to patient i ∈ {1, . . . , n} and let yi ∈
{0, 1} be his/her toxicity response. Let F (xi,θ) be the dose-toxicity model, that
is a monotonic increasing function of the dose xi and where θ ∈ Θ is the vector
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Figure 2.9 – Continual reassessment method (CRM) using a 1-parameter logistic
model: the dose-toxicity curve is updated with the data of patients treated with the
most recent estimated MTD (dose-level 2) and the MTD is updated (dose-level 3).

of parameters to estimate. After l patients are included, let Xl = (x1, . . . , xl) and
Yl = (y1, . . . , yl) be the data collected. The likelihood is defined as follows:

L (θ;Xl,Yl) =
l∏

i=1

F (xi,θ)yi (1− F (xi,θ))1−yi (2.12)

Let g be the prior distribution of θ. The posterior distribution of θ is defined as
follows:

f (θ|Xl,Yl) =
L (θ;Xl,Yl) g (θ)∫

Θ

L (θ;Xl,Yl) g (θ) dθ
(2.13)

The posterior toxicity probability of each dose-level k can be estimated from the

posterior mean of the parameters, defined as θ̂ =

∫

Θ

θf (θ|Xl,Yl) dθ, as follows

π̂k = F
(
dk, θ̂

)
. The posterior toxicity probability can also be estimated as the pos-

terior mean of the toxicity probability as follows π̂k =

∫

Θ

F (dk,θ) f (θ|Xl,Yl) dθ.

The dose recommended for the next cohort of patients is estimated as dk? where
k? = min

k∈{1,...,K}
= |π̂k − δT |, where δT is the target probability of toxicity.

Various dose-toxicity models have been proposed, the main ones are defined
below:
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• Hyperbolic tangent model, where θ = a: F (xi, θ) =

(
tanh (xi) + 1

2

)a
, a > 0

• Power model, where θ = a: F (xi, θ) = x
exp (a)
i

• 1-parameter logistic model, where θ = b: F (xi, θ) =
exp (a0 + exp (b)xi)

1 + exp (a0 + exp (b)xi)
,

a0 is fixed

• 2-parameter logistic model, where θ = (a, b): F (xi,θ) =
exp (a+ exp (b)xi)

1 + exp (a+ exp (b)xi)

The dose-levels (d1, . . . , dK) can be the real doses administered (for example
1 mg/kg) or can be obtained from the initial guesses of the toxicity probabilities
(π0

1, . . . , π
0
K), defined as the skeleton. In details, dk = F−1 (π0

k,θ0), where θ0 is the
prior guess of the parameters value, for example the mean of the prior distribu-
tion [42]. For example, if θ follows a normal distribution centered in 0, we have

dk = π0
k for the power model and dk = log

(
π0
k

1− π0
k

)
− a0 for the 1-parameter logis-

tic model. Lee and Cheung [89] proposed a method to define the initial guesses of
toxicity probabilities to optimize the operating characteristics of the CRM when no
prior information is available.

Various prior distributions can be considered, where a standard choice for the
power model is a ∼ N (0, 1.34) and for the 1-parameter logistic model with a = 3
is b ∼ N (0, 1.34) [40]. Morita et al. [109] provided a definition of the prior effective
sample size (ESS) in order to quantify the amount of information of the prior. A
simple approximation of the prior ESS can be computed by matching the mean and
variance of the toxicity probabilities computed from the prior distribution to those
of a beta distribution [175].

Several extensions of the CRM, named modified CRM, have been proposed in
the literature among which, the start of dose-escalation at the lowest dose, escala-
tion to up to one dose-level, various cohort sizes or the inclusion of stopping rules
other than the total sample size [42]. To avoid the number of patients receiving
too toxic doses, the escalation with overdose control (EWOC) design has been de-
veloped [21] that assigns the dose having the posterior probability of exceeding
the MTD equals a prespecified value (the feasibility bound). Neuenschwander et
al. [116] have proposed a two-parameter model to have a more realistic representa-
tion of the dose-toxicity model. They also highlighted the limits of recommending
the dose having the posterior toxicity probability closest to the target and instead
divided the toxicity probability in four intervals (under-dosing, targeted toxicity,
excessive toxicity and unacceptable toxicity) and proposed to recommend the MTD
having the highest probability of toxicity in the targeted interval while controlling
the probability of under and over dosing. Cheung and Chappell [41] have developed
the time-to-event CRM (TITE-CRM) to include late onset toxicities while shorten-
ing trial duration. Indeed, in the TITE-CRM, the inclusion of a new cohort can be
performed while previous patients may not be completely followed by considering a
weighted dose-response model where the weight is a function of the time to event
of the patient. Extensions of the TITE-CRM using a survival working model have
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also been proposed [20].

Many authors have showed that model-based approaches exhibit better operat-
ing characteristics than traditional algorithm based approaches in terms of MTD
selection and optimal dose allocation [73, 131, 84]. However these designs are more
complex than algorithm-based designs and require computations after each cohort
of patients to select the next dose to be administered. To allow the CRM to be more
transparent to clinicians, Yap et al. [170] introduced the dose transition pathways
that project the recommended doses for initial cohorts of patients in order for the
clinicians to visualize the CRM decisions and provide feedback to further calibrate
the design.

2.2.1.1.3 Model assisted designs Model-assisted designs have been developed
to combine the simplicity of algorithm-based designs with the performance of model-
based designs [169]. Dose escalation rules can be prespecified at the beginning of the
trial similarly to algorithm based designs as illustrated in Figure 2.10, but theses
rules are computed from a statistical model [174]. However, contrary to model
based designs, model assisted designs usually model only local data (data observed
at each dose-level) with a binomial model without assuming a parametric model for
the dose-toxicity relationship [182].

Figure 2.10 – Decision rules for a model-assisted design (mTPI software downloaded
from MD Anderson Cancer Center [6]).

Ji et al. [78] have proposed the mTPI method (calibration free extension of
TPI [77]) where the partition [0, 1] is divided in three intervals: low toxicity, accept-
able toxicity (equivalence interval) and high toxicity. Decision rules to de-escalate,
stay at the current dose or escalate are based on the unit probability mass of each
interval (probability of the interval divided by the length of the interval calculated
with a beta-binomial model) and additional safety rules. The mTPI-2 method [70]
was introduced to correct undesirable decisions by defining multiple intervals of the
same size. Yan et al. [169] have developed the keyboard design that has a better over-
dose control compared to the mTPI where equal width dosing intervals are defined
(keys), and the decision is based on the strongest key having the highest posterior
probability. Zhou et al. [182] showed that mTPI-2 and keyboard are equivalent,
but mTPI-2 is less transparent due to the problem of Ockham’s razor. Liu and
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Yuan [101] have proposed the Bayesian optimal interval design (BOIN) where deci-
sions are made by comparing the observed toxicity rate with the interval boundaries
that depend on the dose-level and the number of patients treated.

It has been shown that these model-assisted designs outperformed the 3+3 design
and comparable results were found with model based approaches [182].

2.2.1.2 Designs evaluating an extension of the toxicity outcome

The designs presented in Section 2.2.1.1 have been developed for a binary toxicity
endpoint, that is the DLT. However, these designs do not account for moderate
toxicities (for example, adverse events of grade 2), and do not differentiate between
two types of adverse events considered as a DLT (for example a grade 3 and a grade
4 adverse event or a grade 3 neuropathy and a grade 3 fatigue).

Wang et al. [161] extended the 3+3 design and the CRM to differentiate adverse
events of grade 3 and grade 4. Yuan et al. [178] developed the quasi-CRM, an exten-
sion of the CRM for multiple toxicity grades by defined the equivalent toxicity score.
Meter et al. [108] and Dousseau et al. [54] considered proportional odds models to
include moderate toxicities in the estimation.

Bekele and Thall [23] assumed that various types of DLT might not be equally
important and introduced a continuous variable, the total toxicity burden, that
summarizes all toxicity events experienced by the patients using weights of the
toxicity types and grades elicited by clinicians as illustrated in Table 2.1.

Type of toxicity Grade Severity weight

Myelosuppression without fever 3 1.0
4 1.5

Myelosuppression with fever 3 5.0
4 6.0

Dermatitis 3 2.5
4 6.0

Liver
2 2.0
3 3.0
4 6.0

Nausea/vomiting 3 1.5
4 2.0

Fatigue 3 0.5
4 1.0

Table 2.1 – Toxicities and severity weights defined by Bekele and Thall [23].

Chen et al. [39] extended the equivalent toxicity score of Yuan et al. [178]
to include multiple toxicities that can be correlated and various grades. Lee et
al. [87] introduced the toxicity burden score, a weighted sum of grades and types
of toxicities. Lee et al. [88] extended the CRM for a continuous or ordinal toxicity
outcome (toxicity grades, total toxicity burden or toxicity burden score) to define
the MTD under multiple toxicity constrains. Ezzalfani et al. [57] introduced the
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total toxicity profile, and proposed to apply the quasi-CRM on the normalized total
toxicity profile. Muenz et al. [111] proposed to model the total number of DLT and
moderate toxicities. Lin [93] extended the BOIN designs to account for multiple
toxicity grades and types using multiple toxicity constrains.

2.2.1.3 Designs evaluating efficacy in addition to toxicity

Phase I trials in oncology traditionally focus on toxicity that is considered as a surro-
gate endpoint for efficacy [42, 50] while phase II trials investigate efficacy. However,
for some molecules, efficacy can reach a plateau at non toxic doses or can exhibit
sufficient efficacy below the MTD [42]. Therefore, dose-finding designs that investi-
gate both toxicity and efficacy have been proposed in phase I/II trials.

Ivanova [74] proposed to include efficacy data in the algorithmic rules. Many de-
velopments have been proposed for model-based approaches including efficacy data.
Some authors considered a trinary outcome, no response (no toxicity and no effi-
cacy), success (efficacy and no toxicity), and toxicity modeled by a proportional odds
model or a continuation ratio model [151, 181]. Many authors developed bivariate
models where toxicity and efficacy are explicitly modeled and the joint probability of
toxicity and efficacy is expressed from the marginal distributions and an association
parameter [113, 30, 148, 55, 171, 177].

In particular, Thall and Cook [148] and Dragalin and Federov [55] considered
bivariate binary models and modeled the joint probability of efficacy and toxicity
using an Archimedean copula [115] that has an explicit distribution defined from
the marginal distributions of each variable and an association parameter. Let πT =
P (YT = 1) and πE = P (YE = 1) denote the probability of toxicity and efficacy,
respectively. An Archimedean copula is defined as follows:

Cα (πT , πE) = Φ−1
α (Φα (πT ) + Φα (πE)) , (2.14)

where Φα is a continuous, strictly decreasing and convex function and Φ−1
α is its

inverse.
For example, the Farlie–Gumbel–Morgenstern distribution is defined as follows:

Cα (πT , πE) = πTπE + πT (1− πT ) πE (1− πE)
exp (α)− 1

exp (α) + 1
, (2.15)

where α > 0 for positive association and α ∈ [−1, 0[ for negative association, and
the Clayton distribution is defined as

Cα (πT , πE) =
(
max

(
π−αT + π−αE − 1, 0

))−1/α
, (2.16)

where α > 0 for positive association and α ∈ [−1, 0[ for negative association.
The bivariate binary model is defined in terms of the four possible outcomes as

follows [124]:




π11 = P (YT = 1, YE = 1) = Cα (πT , πE)
π01 = P (YT = 0, YE = 1) = πE − Cα (πT , πE)
π10 = P (YT = 1, YE = 0) = πT − Cα (πT , πE)
π00 = P (YT = 0, YE = 0) = 1− πT − πE + Cα (πT , πE)

(2.17)
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However, Cunanan and Koopmeiners [51] showed that a simple model that as-
sumes independence between the probability of toxicity and efficacy can perform as
well as a copula model in the context of binary variables in phase I/II trials because
the parameter of the copula model is difficult to be estimated. Koopmeiners and
Modiano [79] proposed to jointly model the time to toxicity and the time to death
with a copula model.

Bekele and Shen [114] considered a continuous biomarker outcome for efficacy
and a probit model for toxicity with a latent variable. They modeled the joint dis-
tribution with a bivariate normal distribution where the covariance parameter could
model the association between the biomarker and toxicity.

Finally, some authors modeled the probability of efficacy conditionally on no
toxicity [117, 168, 183, 32]. Extensions of model-assisted designs with efficacy have
also been developed [91, 96, 146, 97].

2.2.1.4 Designs evaluating drug combinations

The dose-finding designs presented above assume that a single agent is being evalu-
ated. Administering a combination of two (or more) agents, that have already been
investigated in previous trials, can increase potential anti-tumor activity due to a
synergistic effect in terms of efficacy. However, a synergistic effect in terms of toxi-
city can also be observed. Therefore, dose-finding combination trials are performed
to find the maximum tolerated drug combination. Contrary to single agent trials,
a complete order in terms of toxicity cannot be assumed, as illustrated in Figure
2.11. Toxicity probability is assumed to increase when increasing the dose of one
agent, while keeping the second agent fixed. However, some combinations cannot
be initially ordered, for example in Figure 2.11, we do not know at the beginning of
the trial if drug combination d12 is more toxic than drug combination d21.

d1 d2 d3
Agent 1

d1

d2

A
ge
nt

2

d11 d21 d31

d12 d22 d32

? ?

Figure 2.11 – Partial order in the combination of two agents.

The simplest design for drug combination trials is to define a series of subtrials
where one agent is varied for each trial [76] to ignore the partial order, but this
design requires a large sample size. Conaway et al. [48] proposed a non parametric
design where the treatment is randomly selected in case of multiple choices. Fan
et al. [58] developed an algorithm-based design with isotonic regressions where two
tied treatments can be tested simultaneously.
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Yuan and Yin [176] divided the 2 dimensional trial in groups of subtrials and
conducted the subtrials sequentially with a CRM where the information from each
subtrial is used to shrink the information for remaining subtrials, it was extended
by Zhang and Yuan [180]. Wages et al. [159] developed the partial order CRM
(POCRM) where a subset of possible orderings is prespecified for the combina-
tions [158] and a CRM is run on each complete ordering. The next combination
is recommended for the order having the highest posterior probability. Braun and
Jia [31] developed a generalized version of the CRM for combination trials where
the intercept of the logistic model is a parameter specific to the second agent.

Other authors explicitly modeled the probability of toxicity of the drug combina-
tion with the dose of each agent [149, 162, 104, 22, 37, 130]. Yin and Yuan [172, 173]
modeled the probability of toxicity of the combination from the probability of tox-
icity of each agent using a copula model similarly to toxicity and efficacy models
introduced in Section 2.2.1.3. A comparison of some algorithm based and model
based dose-finding designs for combination trials can be found in [129].

Extensions of model-assisted designs for drug combinations have also been pro-
posed [95, 103, 120].

2.2.2 Multiple administrations

The dose-finding designs presented in Section 2.2.1 have been developed to find
the MTD after a single administration of the drug (or combination), although anti-
cancer therapies are usually administered in multiple cycles. Some designs have been
developed to account for multiple administrations in order to optimize the schedule
of administration or evaluate the sequence of the same or varying doses.

2.2.2.1 Dose-schedule finding as a two-dimensional problem

Dose-schedule finding can be seen as a two-dimensional problem, similarly to the
combination of two agents, where the dose is the first dimension and the schedule is
the second. However, while the probability of toxicity is assumed to increase with
each agent for combinations, the probability of toxicity might not be ordered with
the schedule.

For example, let’s consider two cases where three per-administration dose and
two schedules are under evaluation.

For Case 1, the two evaluated schedules are defined as:

• Schedule A: Administration on days 1-3 of a 21 days cycle

• Schedule B: Administration on days 1-6 of a 21 days cycle

For Case 2, the two evaluated schedules are defined as:

• Schedule A: Administration on days 1-3 and 8-10 of a 21 days cycle

• Schedule B: Administration on days 1-6 of a 21 days cycle
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For Case 1, schedule B is assumed to be more toxic than schedule A, therefore
we have the same orderings than for combination trials as illustrated in the left of
Figure 2.12. However, for Case 2, schedules A and B cannot be initially ordered as
illustrated in the right of Figure 2.12.

Case 1

d1 d2 d3
Dose

A

B

Sc
he
du

le

d1A d2A d3A

d1B d2B d3B

? ?

Case 2

d1 d2 d3
Dose

A

B

Sc
he
du

le

d1A d2A d3A

d1B d2B d3B

? ? ?? ?

Figure 2.12 – Partial order in dose-schedule finding as a two-dimension problem.

A simple approach consists in evaluating the MTD for each schedule, however
this approach requires a large sample size when multiple schedules are investigated.

Some authors have developed dose-schedule finding designs in this two-dimensional
framework, assuming the schedules can be ordered. The design proposed by Yuan
and Yin [176], presented in Section 2.2.1.4, also applied to dose-schedule finding
when the schedules can be ordered. Li et al. [92] developed a dose-schedule finding
design using both efficacy and toxicity using a global cross ratio model and proposed
a Bayesian isotonic transformation to preserve the partial ordering. Quintana et al.
[126] proposed a Bayesian design to find the optimal dose and schedule combination
evaluating toxicity and efficacy in multiple disease subtypes with logistic models in
the context of two doses and two ordered schedules under study.

Other authors have considered the case where the schedules cannot be initially
ordered. Thall et al. [150] developed a 2-stage design to optimize the dose and
schedule based on the joint utility of the times to toxicity and response where in
stage 1, patients are randomized among schedules. Wages et al. [160] also relaxed
the assumption of complete ordered schedules and extended the POCRM (developed
for combination trials) for dose-schedule finding where various subsets of complete
orderings are prespecified. Guo et al. [69] proposed a dose-schedule finding design
for non ordered schedules based on a trinary outcome to account for toxicity and
efficacy using a Bayesian dynamic model. They developed a multistage design where
patients are randomized among schedules for the first step. Lin et al. [94] proposed
a Bayesian hierarchical model to optimize the dose-schedule combination using util-
ities to quantify the trade-off between efficacy and toxicity.

These designs consider the schedules as qualitative and therefore do not include
the actual timing of drug administrations in the modeling. Moreover, they assume
that the same dose is administered repeatedly.
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2.2.2.2 Modeling the time to DLT after multiple administrations

Another definition of schedule has emerged in the literature as the duration of treat-
ment where the objective is to find the optimal number of courses of therapy ac-
counting for cumulative effect of repeated administrations.

Braun et al. [33] extended the TITE-CRM where the schedule is considered as
the “dose” in order to determine the maximum tolerated cumulative dose. However,
this method does not account for incomplete schedules and the contribution of over-
lapping “doses” to DLT was unclear. These findings motivated the modeling of how
toxicity is related to each administration during treatment.

Braun and Yuan [35] proposed to model the time to toxicity considering each
administration of a same dose to determine the maximum tolerated schedule, where
the schedule denotes the number of courses of therapy. They defined the total
hazard of toxicity of a patient at study time t as the sum of hazards related to each
administration as follows:

λ (t|θ, s) =
m∑

l=1

h (t− sl|θ) , (2.18)

where s is the schedule (until t) defined as the sequence of m administrations at
times s = (s1, . . . , sm) and θ is the vector of the model parameters.

They defined the survival function as follows:

S (t|θ, s) = P (Y > t|θ, s) = exp

(
−

m∑

l=1

H (t− sl|θ)

)
(2.19)

They proposed a 3-parameter triangular function, θ = (θ1, θ2, θ3), for the single
hazard function, illustrated in Figure 2.13, where the hazard increases and reaches
its maximum θ2 at time θ1 and then decreases to 0 at time θ3 as follows:

h (u|θ) =





θ2
u

θ1

, 0 ≤ u ≤ θ1

θ2
θ3 − u
θ3 − θ1

, 0 < u ≤ θ3

0, u > θ3 or u < 0

(2.20)

Braun et al. [34] extended this previous work to determine a maximum toler-
ated dose and schedule to allow the per-administration dose to vary in addition to
the schedule. They reparameterized the triangular function and defined one single
hazard per dose dj as follows:

h (u|θj) =





2aj
bj + cj

u

bj
, 0 ≤ u ≤ bj

2aj
bj + cj

bj + cj − u
cj

, bj < u ≤ bj + cj

0, u > bj + cj or u < 0

(2.21)

where a1 < a2 < . . . < aj for the cumulative hazard toxicity to increase with the
dose.

30



2.2. DOSE-FINDING DESIGNS IN ONCOLOGY

θ1

θ2

θ30.00

0.03

0.06

0.09

0.12

0 5 10 15 20
Time (days)

H
az

ar
d 

of
 to

xi
ci

ty
Triangular function

0.00

0.03

0.06

0.09

0.12

0 5 10 15 20
Time (days)

H
az

ar
d 

of
 to

xi
ci

ty

Weibull density

Figure 2.13 – Triangular and Weibull hazard functions.

Liu and Braun [99] proposed a parametric non-mixture cure model to identify the
maximum tolerated schedule with a fixed per-administration dose. Cured patients
are defined as patients who do not experience DLT and the authors defined the
hazard of each administration as being proportional to a 2-parameter Weibull density
function, illustrated in Figure 2.13, and defined as follows:

f (t|φ) = exp (−γ)αtα−1 exp (−tα exp (−γ)) (2.22)

The survival function is defined as follows:

S (t|β,φ, s) = P (Y > t|β,φ, s) = exp

(
−θ (m|β)

m∑

l=1

F (t− sl|φ) /m

)
, (2.23)

where log (θ (m|β)) = β0 + β1 log (m), β1 > 0, for the cumulative probability of
DLT to increase with the number of administrations.

Zhang and Braun [179] extended the previous work to optimize the dose in
addition to the schedule both between and within patients. They also considered
a Weibull density but defined a dose dependent cure rate parameter. The survival
function is defined as follows:

S (t|β,φ, s,d) = P (Y > t|β,φ, s,d) = exp

(
−

m∑

l=1

θlF (t− sl|φ)

)
, (2.24)

where log (θl) = β0 + exp (β1) dl.

These approaches account for cumulative effects of multiple administrations in
the hazard function but assumes uncorrelation between the administrations. How-
ever, for some molecules, the effect of some administrations can be associated with
the previous ones.

31



CHAPTER 2. STATE OF THE ART

2.2.2.3 Evaluating the sequence of administrations

Other authors evaluated multiple administrations of the drug as a sequence of the
same or varying doses.

Simon et al. [139] investigated the cumulative effect of multiple courses of treat-
ment on the risk of DLT and developed the accelerated titration designs. They are
algorithm-based designs developed to shortens trial duration, treat fewer patients
at sub therapeutic doses and integrate cumulative toxicities, that can allow intrap-
atient dose-escalation.

Some authors evaluated the effect of a same dose being given in multiple cycles.
Huang and Kuan [72] extended the TITE-CRM for multiple cycles of treatment
using an adaptive weight function to include cycle information.

Dousseau et al. [54] proposed a mixed-effect proportional odds model to account
for the longitudinal measurements of toxicity in multiple cycles. They assumed that
the same dose was given in subsequent cycles and determined the RP2D from the
estimated probabilities of DLT per cycle. They also proposed to detect a time trend
at the end of the trial. Paoletti et al. [121] showed that using the information on
multiple cycles increases the accuracy to determine the MTD.

Ezzalfani et al. [56] extended the design developed by Bekele and Shen [114] to
model the repeated toxicity and biomarker data for two cycles of treatment. They
used linear models considering a latent variable for toxicity and recommended the
dose based on the probability of DLT at each cycle and the efficacy probability.

Altzerinakou and Paoletti [19] proposed to jointly model a continuous biomarker
and time-to-DLT data for multiple cycles of the same dose using a shared random
effect. Dose recommendation was based on efficacious doses that do not exceed a
target cumulative probability of DLT over the treatment cycles.

Fernandes et al. [59] proposed to model the conditional probability of toxicity on
any cycle given that no toxicity was observed in the previous cycles. Their Markov
model is able to recommend a dose for future cycles, allowing intrapatient dose
escalation and deescalation, and to recommend an entire sequence of doses at the
end of the trial. They defined the conditional probability of toxicity at cycle k, given
no toxicity was observed before, as follows:

pcond
i,k = P (Yi,k = 1|Yi,k−1 = 0, . . . , Yi,1 = 0) (2.25)

They proposed to model this probability of toxicity with the current dose ad-
ministered, di,k, the maximum dose administered in the previous cycle, dmax

i,k−1 =

maxj∈{1,...,k−1} (di,j), and the cumulative dose, Di,k−1 =
k−1∑

j=1

di,j where Di,1 = 0, as

follows:

log
(
1− pcond

i,k

)
= −α

(
di,k − ρdmax

i,k−1

)
1{di,k>ρdmax

i,k−1} − βDi,kdi,k (2.26)

In the previous equation, ρ reflects the memory of non toxic previous doses,
meaning that if a patient does not experience toxicity at a given dose, then he/she
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might have a lower risk of toxicity at a higher dose. β reflects the potential cumu-
lative toxicities that are the remaining damage caused by previous doses.

Ursino et al. [154] defined the cumulative probability of toxicity after a sequence
of doses (di,1, . . . , di,k) defined as

pcum
i,k = P (∃ l ∈ {1, . . . , k} Yi,l = 1) (2.27)

They proposed to model this cumulative probability of toxicity with the first dose

administered and the cumulative dose, defined as Di,k =
k∑

l=2

di,k where Di,1 = 0, as

follows:

pcum
i,k =

exp

(
α + exp (β) log

(
di,1
d?

)
+ exp (γ) log

(
Di,k

D?
+ 1

))

1 + exp

(
α + exp (β) log

(
di,1
d?

)
+ exp (γ) log

(
Di,k

D?
+ 1

)) (2.28)

Lee et al. [86] developed a within and between patients adaptive design to dy-
namically optimize the dose of two cycles of therapy, similarly to dynamic treatment
regimes [112]. They proposed a Bayesian hierarchical model for binary toxicity and
efficacy where decisions are based on per-cycle utilities. Lyu et al. [102] developed
a simple Bayesian dose-cycle adaptive design to identify the maximum tolerated
sequence that allows intrapatient modifications. Decisions are based on a beta bi-
nomial model and they developed a dose continuation rule to decide if the patients
should receive another cycle of therapy and a dose allocation rule to select the dose,
similarly to the mTPI-2 design. They proposed a method based on the isotonic
transformation of the estimated probability of toxicity per cycle for each sequence
to determine the maximum tolerated sequence.

Many dose-finding designs have been developed in various contexts including the
evaluation of multiple administrations of the drug where the objective is to optimize
the schedule of administration, the timing or the dose of each administration. Some
designs account for the cumulative effect of multiple administrations, mainly by the
cumulative dose or by summing the hazard related to each administration. However,
the effect of more complex scheme of administration could be related to principles
of pharmacology.

33



CHAPTER 2. STATE OF THE ART

2.3 Dose-finding designs incorporating pharmacoki-
netics

Characterizing the PK profile of the drug is usually a secondary endpoint in phase
I trials and can support the recommendation of the RP2D, while PD is usually
an exploratory endpoint for efficacy. For example, PK studies evaluating different
dosing schedules can help to determine the optimal route or dosing frequency [49].
However, in a survey conducted by Comets and Zohar [46], the PK study was usually
described separately from the main findings of phase I trials in oncology. They also
suggested to attempt to relate PK with the main results of the trial, such as toxicity.
In the literature, some dose-finding designs that include PK have been developed.

2.3.1 Single administration

When designing a dose-finding trial, the starting dose can be defined from toxic
doses observed in preclinical trials. However, Collins et al.[44, 43] argued that the
comparison between species based on the dose may be inaccurate and may lead to
a high number of dose-escalation steps. They proposed the algorithm-based phar-
macologically guided dose escalation design where dose-escalation is guided by the
measured AUC with the objective to reach a prespecified value, obtained from pre-
clinical trials. Mao and Cheung [105] developed an individualized dosing algorithm
to treat patients according to a prespecified biomarker or pharmacokinetic value.

Piantadosi and Liu [125] proposed to add the AUC as a covariate in the toxicity
model. Patterson et al. [123] and Whitehead et al. [166, 167] proposed to model
the AUC with the dose for phase I trials of healthy volunteers. Ursino et al. [155]
extended these approaches to propose various dose-finding designs including PK:

• PKCOV (modification of Piantadosi and Liu [125]): The AUC is included
as a covariate in the toxicity model. Dose-escalation is based on the target
probability of toxicity.

• PKLIM (modification of Patterson et al. [123] and Whitehead et al. [166]): The
AUC is modeled with the dose using a hierarchical model. Dose-escalation is
based on a threshold on the AUC.

• PKCRM (combination of PKLIM and CRM): Dose-escalation is based on the
lowest dose recommended by PKLIM and CRM.

• PKLOGIT (inspired by Whitehead et al. [167]): The AUC is modeled with
the dose using a hierarchical model and the probability of toxicity is modeled
with the AUC using a logit model. Dose-escalation is based on the target
probability of toxicity. The approach is detailed below.

• PKPOP: Variation of PKLOGIT where the probability of toxicity is modeled
with the mean AUC predicted by the hierarchical model.

• PKTOX: Modification of PKLOGIT with a probit model for the probability
of toxicity.
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For PKLOGIT, they assumed linear kinetics meaning that the AUC is pro-
portional to the dose. They proposed to model the AUC to include inter-patient
variability as follows:




AUCi|β, ν ∼ N (β0 + β1 log (di) , ν

2)
β|ν ∼ N (m, ν2D2)
ν ∼ Beta (a, b)

(2.29)

where D2 is a diagonal matrix and m, D2, a, b are elicited values.
They modeled the probability of toxicity as follows:

P (Yi = 1|AUCi,θ) =
exp (−θ0 + θ1AUCi)

1 + exp (−θ0 + θ1AUCi)
(2.30)

The next dose was then chosen as the one having the probability of toxicity
closest to the target, where the probability of toxicity was defined as follows:

P
(
Y = 1|d, θ̂, β̂, ν̂

)
=

∫

R

exp
(
−θ̂0 + θ̂1z

)

1 + exp
(
−θ̂0 + θ̂1z

)g(z|d, β̂1, β̂2, ν̂)dz, (2.31)

where

g(z|d, β̂1, β̂2, ν̂) =
1

ν̂
√

2π
exp


−1

2



z −

(
β̂0 + β̂1 log (d)

)

ν̂






2

(2.32)

They compared these methods with the CRM and found that the methods that
model both the dose-AUC and AUC-toxicity relationships (PKTOX and PKLOGIT)
can provide a more precise estimation of the entire dose-toxicity curve without dam-
aging the determination of the MTD.

Taketa et al. [145] proposed a modified version of PKLOGIT based on a stan-
dardized adjustment of the AUC.

2.3.2 Multiple administrations

Legedza and Ibrahim [90] developed a dose-response model based on PK principles
to account for cumulative toxicities due to multiple dose administrations. They
proposed to model the probability of toxicity with the total amount of drug in the
bloodstream, that includes the current and the previous doses and accounts for
the process of elimination of the drug that is linked with the clearance parameter
(assuming an underlying 1 compartment bolus model). However, the elimination
parameter could not be estimated with binary data and they proposed to elicit this
parameter from an expert. They also proposed to account for the interpatient vari-
ability by adding a random effect.

Günhan et al. [67] developed a Bayesian time-to-event pharmacokinetic (TITE-
PK) model to determine the maximum tolerated dose-schedule combination using
PK. They defined the hazard of DLT as a function proportional to an exposure
measure of the drug as follows:

h (t) = βE (t) (2.33)
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Drug exposure was related to drug concentration, however as measures of drug
concentration are usually not directly available, they considered PK as a latent vari-
able. They assumed a 1-compartment model and considered the drug concentration
in the effect compartment to delay the effect from drug administration.

Let a same dose d be administered at a dosing frequency f , with a volume of
distribution of 1 for simplicity, let k be the elimination parameter and let ke be
the equilibrium rate constant between the central and effect compartment. The
concentration in the effect compartment was defined as follows:

Ce (t|d, f) = d

inf∑

i=0

1{t≥ i
f }

ke
ke − k

(
exp

(
−k
(
t− i

f

))

− exp

(
−ke

(
t− i

f

)))
, (2.34)

where k and ke were assumed to be known at the beginning of the trial, from
preclinical studies for example.

The exposure measure was obtained from a reference dose-schedule combination
(d?, f ?) at the end of cycle 1 (t?) as follows:

E (t|d, f) =
Ce (t|d, f)∫ t?

0

Ce (t|d?, f ?) dt

(2.35)

The probability of DLT at the end of cycle 1 was then defined as follows:

P (T ≤ t?|d, f) = 1− exp (−βAUCE (t?)) , (2.36)

were AUCE (t?) =

∫ t?

0

E (t|d, f) dt.

Dose-escalation was based on an adapted EWOC criterion on the probability of
DLT at the end of cycle 1 as follows:

P (P (T ≤ t?|d, f) > 0.33) < a, (2.37)

where a is the feasibility bound and among the combinations that fulfill this crite-
rion, the combination with the lowest AUCE (t?) was chosen.

TITE-PK was shown to have good performance in finding a suitable dose-
schedule combination compared to POCRM using PK to combine the information
from different treatment schedules. Günhan et al. [68] adapted the TITE-PK model
in trials where the schedules are investigated sequentially for the information on the
different schedules to be directly considered through the PK principles. However,
TITE-PK assumes that the probability of DLT at the end of cycle 1 is proportional
to the measure of exposure. In the context of linear kinetics, this means that the
probability of DLT at the end of cycle 1 is also proportional to the dose.

Few dose-finding designs including PK have been proposed in the literature and
they usually rely on a simplified PK model. The main difficulty from including a
complete PK (or PK/PD) model in the sequential dose-allocation design is that
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PK/PD samples are usually not directly available, and first PK/PD model are usu-
ally developed after several patients have been treated. However, relating PK or
PK/PD to toxicity and characterizing the entire dose-exposure response could im-
prove the choice of the dose or dose regimen for future phases of the clinical devel-
opment and could account for complex assumptions on the probability of toxicity,
such as violation of the monotonicity assumption.
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Chapter 3

Objectives of the thesis

3.1 Motivating trial

This thesis was motivated by a phase I/II first in human dose-escalation trial of
SAR440234 in patients with relapsed or refractory acute myeloid leukemia, high
risk myelodysplastic syndrome, or B cell acute lymphoblastic leukemia (ClinicalTri-
als.gov Identifier NCT03594955 [14]).

SAR440234 is a novel anti-CD123/CD3 bispecific T cell engager (BiTE) antibody
that binds to both CD3 expressed on T cells and CD123 expressed on tumor cells, as
shown in Figure 3.1. It activates and redirects cytotoxic T cells to CD123 expressing
tumor cells leading to enhanced cytotoxic T cells mediated elimination of CD123-
expressing tumor cells [15].

Figure 3.1 – Schematic representation of SAR440234, inspired by [106]

Cytokine release syndrome (CRS), a systemic inflammatory response, is one of
the most frequent adverse events observed in T cell-engaging immunotherapies, that
include BiTE [137].

Different symptoms can be associated with various severity of CRS, many of
them mimic infections (fever for example) [85]. The NCI CTCAE [8] provides the
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classification of CRS in the five toxicity grades, as shown in Table 1.1 in Chapter 1.
However, Lee et al. [85] proposed a revised grading system that has been widely
adopted and is defined in Table 3.1.

Grade 1 Symptoms are not life threatening and require symptomatic treatment
only, eg, fever, nausea, fatigue, headache, myalgias, malaise

Grade 2

Symptoms require and respond to moderate intervention
Oxygen requirement <40% or
Hypotension responsive to fluids or low dose of one vasopressor or
Grade 2 organ toxicity

Grade 3

Symptoms require and respond to aggressive intervention
Oxygen requirement ≥40% or
Hypotension requiring high dose or multiple vasopressors or
Grade 3 organ toxicity or grade 4 transaminitis

Grade 4
Life-threatening symptoms
Requirement for ventilator support or
Grade 4 organ toxicity (excluding transaminitis)

Grade 5 Death

Table 3.1 – Revised CRS grading from Lee et al. [85].

Cytotoxic T cell activation leads to the massive release of inflammatory cy-
tokines [85] as shown in Figure 3.1. According to the NCI, cytokine is a “type of
protein that is made by certain immune and non-immune cells and has an effect
on the immune system” [10]. Interleukins (IL) and interferons (IFN) are examples
of cytokines. Teachey et al. [147] found that the peak levels of many cytokines,
such as IL-6, IL-10, and INF-γ, were associated with severe CRS. For Shimabukuro-
Vornhagen et al. [137], IL-6 seems to have a key role in CRS.

Giving repeated doses of the drug can reduce the risk of CRS due to the mitiga-
tion of the peak of cytokine [38]. Priming dose strategies, where initial lower doses
are administered followed by higher maintenance doses, have already been proposed
to reduce the risk of severe CRS [38, 140, 153, 152, 157, 1].

The motivating trial is therefore designed with a fixed intra-patient dose-escalation
scheme, where a dose regimen can be defined as a sequence of increasing doses, the
lead-in doses, administered until the steady-state dose, which is then given repeat-
edly. An example of dose regimens with intra-patient dose-escalation is provided in
Table 3.2.

Day 1 Day 5 Day 9 Day 13 Day 17 Day 21 Day 25
S1 1 5 10 10 10 10 10
S2 1 5 10 20 20 20 20
S3 5 10 20 40 40 40 40
S4 5 10 20 60 60 60 60
S5 10 20 60 100 100 100 100
S6 10 20 60 120 120 120 120

Table 3.2 – Example of a panel of dose regimens with intra-patient dose-escalation
(doses in µg/kg).
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In this example, each dose regimen is composed of seven drug administrations (on
days 1, 5, 9, 13, 17, 21 and 25) of increasing lead-in doses until the repeated steady-
state dose. For instance, for dose regimen S4, the first three drug administrations
are the increasing lead-in doses, and the final four administrations are the repeated
administrations of the steady-state dose (60 µg/kg). In this example, we assume a
complete order of the DLT probabilities meaning that S1 is the less toxic dose regi-
men and S6 is the most toxic one due to a more aggressive lead-in doses scheme and
a higher value of the steady-state dose when increasing the level of the dose regimen.

In addition to CRS, other toxicities can occur and the association between CRS
and other toxicities has been investigated in the literature. Few works investigat-
ing Chimeric antigen receptor T cell therapies, another type of T cell-engaging
immunotherapies, showed that CRS and neurotoxicity might be correlated. Wang
and Han [163] argued that, while the exact mechanism generating neurotoxicity
is not completely understood, CRS and neurotoxicity should not be considered
as completely unrelated. Santomasso et al. [132] found a significant correlation
of neurotoxicity with the presence and severity of CRS. According to Siegler and
Kenderian [138], immune effector cell-associated neurotoxicity syndrome often ac-
companies and correlates with CRS, but it has also been occasionally reported to
occur independently from CRS.

Further, other toxicities were found to be correlated to CRS, as hematologic
toxicities [60]. Finally, Wei et al [165] stated that CRS can be affected by many
factors including tumor burden, individual immune status or IL-6 levels and severe
CRS can lead to multiple organ dysfunctions. In the following, we name DLTo the
DLT different from the CRS, that can for example include neurotoxicities.

The primary outcome of the trial is the incidence of DLT defined using the
NCI CTCAE for DLTo and the consensus guidelines for the CRS defined by Lee et
al. [14, 85]. The primary objective of the trial is to find the MTD of the drug and
the RP2D for the expansion part of the trial [14]. The 3+3 design, described in
Section 2.2.1.1, was chosen for the dose-escalation design [27].

However, standard dose-escalation designs, such as the 3+3 or the CRM, ignore
the intra-patient dose-escalation information and consider each dose regimen as a
single “dose-level”. Table 3.3 illustrates an example of the 3+3 design applied on
dose regimens with fixed intra-patient dose-escalation.

Day 1 Day 5 Day 9 Day 13 Day 17 Day 21 Day 25 DLT/Patients
S1 1 5 10 10 10 10 10 0/3
S2 1 5 10 20 20 20 20 0/3
S3 5 10 20? 40 40 40 40 1/6
S4 5? 10 20? 60 60 60? 60 3/6
S5 10 20 60 100 100 100 100 0/0
S6 10 20 60 120 120 120 120 0/0

Table 3.3 – Example of a 3+3 design applied on the panel of dose regimens defined
with intra-patient dose-escalation. The star represents the occurrence of a DLT.

In this example, no DLT occurs when administering dose regimens S1 and S2.
One DLT occurs when including 3 patients at dose regimen S3, but no additional
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DLT is observed when including 3 additional patients, so dose-escalation can con-
tinue. One DLT occurs when including 3 patients at dose regimen S4, and two
additional DLTs are observed when including 3 additional patients. The trial is
therefore stopped, and the 3+3 design recommends dose regimen S3 as the MTD.
However, when looking at the timing of DLT occurrences, two of three DLTs ob-
served at dose regimen S4 occur during the lead-in doses (administrations on days
1 and 9), and S3 and S4 share the same lead-in doses. Therefore, one can wonder
if S3 is safe enough to be recommended as the MTD.

Of note, a CRM would also reduce the dose regimen to a single dose-level since
the method relies on a working model defined from the initial guesses of the DLT
probabilities. A modified CRM could rely on a numeric dose and the dose regimen
could then be simplified considering only the final dose planned (the steady state
dose of the dose regimen).

The cytokine response can be seen as a PD endpoint. However, as the moti-
vating trial was still ongoing at the time of my thesis, the PK/PD models for drug
concentration and the cytokine response were not yet developed.

PK/PD models for drug concentration and cytokine response have been pub-
lished for blinatumomab, a BiTE that binds to both CD3 expressed on T cells and
CD19 expressed on B cells [2].

Zhu et al. [184] selected a one compartment linear model for the concentration of
blinatumomab administered in continuous IV. They also found that the cytokines
values increased quickly with the dose after the infusion of blinatumomab during
the first week of therapy, among which IL-10, IL-6, and IFN-γ.

Chen et al. [38] developed a PD model for the cytokine response of blinatumomab
from a phase I trial in patients with relapsed non-Hodgkin lymphoma. To model
cytokine mitigation with multiple administrations, they assumed that cytokine pro-
duction was stimulated by the release, RL, but inhibited by the negative feedback,
IH, as illustrated in Figure 3.2.

Cytokine R kdeg
RL+

IH−

Figure 3.2 – Cytokine model from Chen et al. [38].

For our work, we considered the following PD model where the release RL is
linked with drug concentration C and the negative feedback IH is linked with the
AUC of the PD response, AUCR,

dR(t)

dt
=

EmaxC(t)H

ECH
50 + C(t)H


1− ImaxAUCR(t)

IC50

KN-1 + AUCR(t)


− kdegR(t), (3.1)

where Emax is the maximum cytokine release rate, EC50 is drug concentration
to achieve 50% of maximum cytokine release rate, H is the Hill coefficient, Imax is
the maximum inhibition, IC50 is the cumulative cytokine exposure to achieve 50%
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of the maximum inhibition, K is the priming factor and N is the number of doses.
Values used for the PK/PD parameters can be found in Appendix B.1.

These PK/PD models are able to describe the reduction of the peak of cytokine
with intra-patient dose-escalation as illustrated in Figure 3.3.
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Figure 3.3 – Example of a panel of dose regimens defined with intra-patient dose-
escalation (doses in µg/kg).

In Figure 3.3, the population PK/PD profiles after a first dose regimen, defined
with intra-patient dose-escalation, and a second dose regimen, when the same dose
(the previous steady-state dose) is given repeatedly, are shown. The PK profiles of
the two dose regimens are identical from the 4th administration. However, the peak
of cytokine of the first dose regimen, defined with constant dosing, that is observed
after the first administration is much higher than the peak of cytokine of the second
dose regimen, defined with intra-patient dose-escalation.
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3.2 Objectives and outline of the manuscript

The objective of this work was to develop a modeling approach in order to estimate
the maximum tolerated dose regimen (MTD-regimen), defined as the dose regimen
having the DLT probability the closest to the target toxicity probability. We devel-
oped this approach in the context of the motivating trial, that is, accounting for the
intra-patient dose-escalation scheme implemented to decrease the risk of the main
type of DLT expected, CRS, that is assumed to be linked to a PD-endpoint. We
therefore proposed to model this PD-related toxicity separately from other DLTs,
named DLTo, as illustrated in Figure 3.4.

Figure 3.4 – Modeling proposal.

We developed a Bayesian approach, to be applied at the end of the dose-escalation
stage of the trial conducted with standard designs, that is divided in three steps:

1. To model the probability of the PD-related toxicity (CRS related to the peak
of cytokine in the context of the motivating trial) affected by the intra-patient
dose-escalation scheme, we proposed to explicitly model the relationship be-
tween the dose regimen and the continuous PD response and the relationship
between the PD endpoint and the PD-related toxicity.

2. We then modeled the relationship between the dose regimen and the proba-
bility of DLTo when no prior assumption can be raised on the link with a PD
outcome.

3. We finally proposed various approaches to model the joint probability of DLT,
defined as a bivariate binary outcome, assuming that the PD-related toxicity
and DLTo can be associated.

All analyses have been performed in R [127] using Stan [16] for Bayesian infer-
ence and Monolix [7] for non linear mixed effects models.

The remainder of this thesis manuscript is organized as follows. In Chapter 4,
we develop the PD-related toxicity (CRS in the context of the motivating trial)
modeling incorporating PK/PD models (step 1 in Figure 3.4), assuming that only
this type of DLT can occur, which resulted in a publication in Biometrics [64]. In
Chapter 5, we develop the modeling of DLTo with multiple administrations (step 2
in Figure 3.4), in addition to the PD-related outcome, and the different approaches
to model the joint distribution of DLT (step 3 in Figure 3.4) which resulted in a
publication in Statistics in Medicine [?]. Finally, in Chapter 6 we conclude and
discuss the work and propose various perspectives.
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Chapter 4

Bayesian dose regimen assessment in
early phase oncology incorporating
pharmacokinetics and
pharmacodynamics

In this chapter, we develop the modeling of the relationship between the dose regimen
and a PD-related toxicity that resulted in a publication in Biometrics [64]. The
paper is summarized in Section 4.1 and the complete paper is provided in Section
4.2.
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4.1 Summary

Context Standard dose-escalation methods have been developed to find the MTD
after the first cycle of therapy accounting for a single administration of treatment.
However, patients are usually treated for multiple cycles of therapy and some trials
evaluate various schedules of administration in addition to the dose to improve
treatment safety while maintaining future potential efficacy.

In the motivating trial, introduced in Section 3.1, intra-patient dose-escalation
was implemented to reduce the risk of CRS that is assumed to be linked to a PD
endpoint, the peak of cytokine.

The objective of this work was therefore to model the probability of a PD-related
toxicity (CRS in the context of the motivating trial) accounting for the complex
assumption that states that the multiple administrations that compose the dose
regimen decrease the risk of toxicity. Various approaches have been proposed to
model repeated administrations in phase I trials as developed in Section 2.2.2 but
they do not account for complex toxicity assumptions. One proposal could be to
model the probability of each administration with a complex correlation structure
between the multiple drug administrations in order to account for this assumption
on toxicity. However, this approach can result in a complex modeling approach for
early phase trials that have a small sample size. We instead proposed to model the
probability of this PD-related toxicity by incorporating PK/PD modeling to account
for the complex correlation between multiple administrations. We developed this
approach, the DRtox, to be applied at the end of the dose-escalation stage of the
trial to determine the MTD-regimen, when all data (especially PK/PD data) was
collected.

Method We developed the DRtox approach that describes the relationship be-
tween the dose regimen and the probability of the PD-related toxicity by modeling
the relationship between the dose regimen and the continuous PD response and the
relationship between the PD endpoint and the binary toxicity.

Firstly, the continuous PD response was modeled using nonlinear mixed effects
models.

Secondly, the probability of toxicity was modeled with the PD endpoint and
we proposed two Bayesian approaches: a Bayesian logistic model (Logistic-DRtox)
where the probability of toxicity of the dose regimen was modeled with the global PD
endpoint and a Bayesian hierarchical model (Hierarchical-DRtox) where the proba-
bility of toxicity after each administration was modeled with the local PD endpoint
observed after each administration. We proposed to elicit the prior distributions
from the initial guesses of the probabilities of toxicity of each dose regimen. We
measured the amount of information provided by the prior distributions using the
prior effective sample size (ESS).

Finally, to estimate the probability of toxicity of each dose regimen, we had to
integrate the PD endpoint toxicity model on all possible values of the PD endpoint
for each dose regimen in order to account for the interindividual variability. We
proposed to estimate the posterior probability of toxicity by a Monte Carlo ap-
proach and defined the MTD-regimen as the dose regimen having the estimated
mean probability of toxicity the closest to the target probability of toxicity.

46



4.1. SUMMARY

Results We evaluated the performance of the Logistic-DRtox and Hierarchical-
DRtox on a extensive simulation study based on the motivating trial, considering
CRS for the PD-related toxicity and the peak of cytokine for the PD endpoint. For
the simulations, we used the PK/PD models developed for blinatumomab. As our
methods were developed to be applied at the end of the dose-escalation stage of the
trial, we compared the results obtained after two standard dose-escalation methods,
the 3+3 and a modified CRM. We simulated CRS when the cytokine response of a
patient exceeded a threshold taking into account the inter patient variability.

We observed that our methods had a higher percentage of selecting the correct
dose regimen than the standard dose-escalation methods. We also observed that
the dose-escalation method implemented had an impact on the results, especially
we observed poorest results after a 3+3 design due to the fact that the 3+3 has a
tendency to include a small sample size with more patients allocated to sub-optimal
dose regimens.

We also evaluated the estimation of the probability of toxicity and observed
that, while the CRM and our two proposed methods had a good estimation of the
probability of toxicity around the MTD-regimen, both proposed methods had a
better estimation of the entire dose-toxicity curve due to the inclusion of PK/PD
modeling. Moreover, as our methods modeled the relationship between the entire
dose regimen and the probability of toxicity, they could predict the probability of
toxicity of untested dose regimens, for example in case the initial panel of dose
regimens missed the true MTD-regimen.

Conclusion We proposed an innovative approach to model the relationship be-
tween the dose regimen and a PD-related toxicity by incorporating complete PK/PD
modeling. However, our modeling proposal has to be applied at the end of the dose-
escalation stage of the trial and requires strong assumption on the PK/PD mecha-
nism generating the toxicity. Moreover, this approach should be performed in close
collaboration with pharmacometricians. In this approach, we assumed that the PD-
related toxicity was the only type of DLT that could occur, therefore an extension
of this modeling proposal was required to account for other toxicities, that are not
related to a PD endpoint. This extension is shown in Chapter 5.
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4.2 Publication

The supporting information of this paper is provided in Appendix C.
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Abstract
Phase I dose-finding trials in oncology seek to find the maximum tolerated
dose of a drug under a specific schedule. Evaluating drug schedules aims at
improving treatment safety while maintaining efficacy. However, while we can
reasonably assume that toxicity increases with the dose for cytotoxic drugs,
the relationship between toxicity and multiple schedules remains elusive. We
proposed a Bayesian dose regimen assessment method (DRtox) using pharma-
cokinetics/pharmacodynamics (PK/PD) to estimate the maximum tolerated
dose regimen (MTD-regimen) at the end of the dose-escalation stage of a trial.
We modeled the binary toxicity via a PD endpoint and estimated the dose reg-
imen toxicity relationship through the integration of a dose regimen PD model
and a PD toxicity model. For the first model, we considered nonlinear mixed-
effects models, and for the second one, we proposed the following two Bayesian
approaches: a logistic model and a hierarchical model. In an extensive simula-
tion study, the DRtox outperformed traditional designs in terms of proportion of
correctly selecting the MTD-regimen. Moreover, the inclusion of PK/PD infor-
mation helped provide more precise estimates for the entire dose regimen toxicity
curve; therefore the DRtox may recommend alternative untested regimens for
expansion cohorts. The DRtox was developed to be applied at the end of the dose-
escalation stage of an ongoing trial for patients with relapsed or refractory acute
myeloid leukemia (NCT03594955) once all toxicity and PK/PD data are collected.

K E Y W O R D S
Bayesian inference, dose regimen, early phase oncology, hierarchical model, pharmacokinet-
ics/pharmacodynamics, toxicity

1 INTRODUCTION

Phase I dose-finding clinical trials in oncology seek to
find the maximum tolerated dose (MTD) to obtain reli-
able information regarding the safety profile of a drug or
a combination of drugs, pharmacokinetics, and the mech-

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.

anism of action (Crowley et al., 2005; Chevret, 2006). In
this phase, the endpoint is defined as the dose-limiting
toxicity, which is mainly based on the National Cancer
Institute (NCI) Common Toxicity Criteria for Adverse
Events (CTCAE, 2017). Usually, standard algorithm-based
or model-based dose-escalation methods (Storer, 1989;
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O’Quigley et al., 1990) aim to find the MTD while con-
sidering the entire cycle dosing as a single administra-
tion. Most methods assume that toxicity increases with the
dose; however, the estimation of the relationship between
toxicity and multiple doses over a cycle remains elusive as
we can observe nonlinear dose-response profiles (Schmoor
and Schumacher, 1992; Bullock et al., 2017; Musuamba
et al., 2017). We assume that considering the complete cycle
dosage could improve treatment safety while maintaining
future potential efficacy.

To account for dosage repetition over the treat-
ment cycle, some authors have considered either the
dose-schedule or the dose regimen relationship. The NCI
defines “schedule” as “A step-by-step plan of the treatment
that a patient is going to receive. A treatment schedule
includes the type of treatment that will be given (such as
chemotherapy or radiation therapy), how it will be given
(such as by mouth or by infusion into a vein), and how
often it will be given (such as once a day or once a week).
It also includes the amount of time between courses
of treatment and the total length of time of treatment”
(https://www.cancer.gov/publications/dictionaries/
cancer-terms/def/treatment-schedule). Moreover, the
NCI defines “regimen” as “A treatment plan that specifies
the dosage, the schedule, and the duration of treatment”
(https://www.cancer.gov/publications/dictionaries/
cancer-terms/def/regimen). Following these definitions,
we considered the dose regimen relationship, as it includes
the dosage, the repetition scheme, and the duration.

For some molecules, it has been observed that, in the
same patient, starting a dose regimen with a lower lead-in
dose and increasing the dose step-by-step before reaching
the steady-state dose can reduce the occurrence of acute
toxicities (Chen et al., 2019). However, a dose regimen start-
ing with higher lead-in doses can increase the efficacy.

Dose-finding trials can aim to study different dose regi-
mens with the same or different total cumulative dose to
determinate the most appropriate regimen supported by
pharmacokinetics/pharmacodynamics (PK/PD) profiles.
Several methodological papers have attempted to address
the issue of prospective dose and schedule finding meth-
ods. Braun et al. (2005), Braun et al. (2007), Liu and Braun
(2009), and Zhang and Braun (2013) proposed consider-
ing the time-to-toxicity rather than the usual binary out-
come to optimize dose and schedule, as the timing of
administration. Wages et al. (2014) proposed considering
dose-schedule finding as a two-dimensional problem and
extended the partial-order continual reassessment method
developed for combination trials. Other authors, such as Li
et al. (2008), Thall et al. (2013), and Guo et al. (2016), pro-
posed dose-schedule-finding methods that jointly model
toxicity and efficacy outcomes. Lyu et al. (2018) proposed
a hybrid design that is partially algorithm-based and par-

tially model-based for sequences of doses over multiple
cycles when few doses are under study.

Only a few methods consider PK/PD data in the prospec-
tive dose-allocation design. Ursino et al. (2017) compared
multiple methods that enable the use of PK measures in
sequential Bayesian adaptive dose-finding designs, includ-
ing a dose-AUC-toxicity model combining two models to
recommend the dose. Günhan et al. (2020) proposed a
Bayesian time-to-event pharmacokinetic adaptive model
for multiple regimens using PK latent profiles to measure
drug exposure. Our aim is to extend these propositions
by modeling the dose regimen toxicity relationship using
PK/PD.

2 MOTIVATION

This work was motivated by the ongoing first-in-human
dose-escalation study of SAR440234 (https://www.cancer.
gov/publications/dictionaries/cancer-drug/def/798327)
administered as a single agent to patients with
relapsed or refractory acute myeloid leukemia, high-
risk myelodysplastic syndrome, or B-cell acute lym-
phoblastic leukemia (NCT03594955 https://clinicaltrials.
gov/ct2/show/NCT03594955). SAR440234 is a novel
bispecific T-cell engager antibody that activates and
redirects cytotoxic T lymphocytes (CTLs) to enhance the
CTL-mediated elimination of CD123-expressing tumor
cells. CTL activation induces the release of inflamma-
tory cytokines, which can potentially cause cytokine
release syndrome (CRS). CRS is a systemic inflamma-
tory response and among the most commonly observed
toxicities of T-cell engaging bispecific antibodies, such
as blinatumomab, which is a bispecific anti-CD19/CD3
antibody (Shimabukuro-Vornhagen et al., 2018). Several
cytokines, such as IL6, IL10, and INF𝛾, are consistently
found to be elevated in serum from patients with CRS.
The association between the peak of cytokine and CRS
has been evaluated by Teachey et al. (2016). It has been
shown that repeating the dosing of the drug can decrease
CRS, particularly when the first administration is divided
into several steps progressively (Chen et al., 2019). There-
fore, intrapatient dose-escalation with a dose regimen
consisting of lower initial doses followed by a higher
maintenance dose was implemented in this study to
reduce the occurrence of CRS (Boissel et al., 2018).

The aim of the trial was to find the MTD of SAR440234
using the 3+3 design as the dose-escalation design. How-
ever, the 3+3 design and more general dose-finding designs
ignore part of the dose regimen information: these designs
were not developed to account for multiple dose adminis-
trations in the model. Therefore, they map the entire dose
regimen administered to the patient in a single dose-level,
that is, a single value. This mapping is defined prior to
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F I G U R E 1 Trial scheme: the DRtox
method is applied at the end of the
dose-escalation stage of a phase I trial

the trial onset and depends on the design chosen. This
approach is inefficient for achieving the trial goal.

In this paper, we propose to model the binary toxicity
endpoint (CRS) and the continuous PD response (cytokine
profile) at the end of the trial, once all data have been
collected, to characterize the dose regimen toxicity rela-
tionship. This dose regimen assessment method (DRtox)
allows the determination of the maximum tolerated dose
regimen (MTD-regimen), as illustrated in Figure 1.

3 MODEL

Let  = {𝑑1, … , 𝑑𝐿} be the set of doses that can be adminis-
tered to patients, where 𝑑𝑙 < 𝑑𝑙+1. Let  = {𝑺𝟏, … , 𝑺𝑲} ⊂ 𝕊
be the panel of dose regimens to be studied in the trial. The
dose regimen 𝑺𝒌 ∈  , where 𝑘 ∈ {1, … , 𝐾}, is defined as
the sequence of 𝐽 doses, 𝑺𝒌 = (𝑑𝑘,1, 𝑑𝑘,2, … , 𝑑𝑘,𝐽), admin-
istered at times 𝒕 = (𝑡1, 𝑡2, … , 𝑡𝐽), where 𝑑𝑘,𝑗 ∈  for 𝑗 ∈{1, … , 𝐽}. To simplify the notations, we assumed that all
dose regimens have the same number of drug administra-
tions at the same times, but this assumption can be relaxed.
Let 𝑺𝒌,𝒋 be the subregimen of 𝑺𝒌 until the 𝑗th adminis-
tration, 𝑺𝒌,𝒋 = (𝑑𝑘,1, 𝑑𝑘,2, … , 𝑑𝑘,𝑗), for 𝑗 < 𝐽. Let 𝑛 ∈ ℕ be
the number of patients included in the trial. Let 𝑌𝑖,𝑗 be the
binary toxicity response of patient 𝑖 observed exactly after
the 𝑗th administration, and let𝑌𝑖 be his/her global toxicity
response at the end of the administrations.

Let 𝒔𝒊 = (𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝐽) ∈  be the dose regi-
men planned for the 𝑖th patient. We assume that the
drug administration is stopped if toxicity occurs; thus
let 𝑗𝑖 denote the last administration of patient 𝑖. We
denote the actual regimen received by patient 𝑖 as𝒔𝒊 = (𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝑗𝑖 ) ⊂ 𝒔𝒊, where 𝒔𝒊 = 𝒔𝒊 if no toxicity is
observed. Let 𝒔𝒊,𝒋 be the subregimen until 𝑗 of 𝒔𝒊, where𝑗 ≤ 𝑗𝑖 .

The aim is to estimate the MTD-regimen at the end of
the trial, which is defined as the dose regimen with the
toxicity probability closest to the target toxicity rate 𝛿𝑇 ,
that is, the MTD-regimen is the regimen 𝑺𝒌⋆ , where 𝑘⋆ =argmin𝑘 |𝑝𝑇(𝑺𝒌) − 𝛿𝑇| and 𝑝𝑇(𝑺𝒌) is the toxicity probabil-
ity of 𝑺𝒌.

We assume that a PD endpoint extracted from the con-
tinuous PD profile of a biomarker related to toxicity plays
an intermediate role in the dose regimen toxicity relation-
ship. We propose the DRtox approach in which the first

model is built for the dose regimen and the PD endpoint,
and the second model is built for the PD endpoint and
the toxicity response. Therefore, integrating both models
links the dose regimen to the toxicity response to find the
MTD-regimen. In the following section, the structure of
the PK/PD models is described, two approaches between
the PD endpoint and toxicity response are proposed, as
well as a practical method for their integration.

3.1 Dose regimen PD response model

Let 𝐶(𝑡) be the continuous drug concentration and 𝐸(𝑡) be
the continuous PD response related to toxicity measured at
time 𝑡. We assume that𝐶(𝑡) and 𝐸(𝑡) can be modeled using
nonlinear mixed-effects models as follows:

⎧
⎪⎨⎪⎩

𝐶(𝑡) = 𝑓(1)(𝜽(𝟏)𝒊 , 𝑡) + 𝑔(1)(𝜽(𝟏)𝒊 , 𝑡, 𝝃𝟏)𝜖(1),𝐸(𝑡) = 𝑓(2)(𝜽(𝟐)𝒊 , 𝑡) + 𝑔(2)(𝜽(𝟐)𝒊 , 𝑡, 𝝃𝟐)𝜖(2), (1)

where 𝑓(1) and 𝑓(2) represent the structural models, which
are usually solutions of differential equations based on
biological knowledge. 𝜽𝒊 = (𝜽(𝟏)𝒊 , 𝜽(𝟐)𝒊 ) represents the 𝑖th
patient’s specific parameter vector, where usually, 𝜽𝒊 =𝝁𝑒𝜼𝒊 , with 𝝁 denoting the fixed effects vector, and 𝜼𝒊 denot-
ing the random effects vector defined as 𝜼𝒊 ∼ (𝟎,𝛀),
with 𝛀 denoting the variance–covariance matrix.𝑔(1) and 𝑔(2) represent the error models, which depend
on the additional parameters 𝝃𝟏 and 𝝃𝟐, and 𝜖(1) and 𝜖(2) are
standard Gaussian variables. The usual error models are
the constant model where 𝑔(𝑙)(𝜽(𝒍)𝒊 , 𝑡, 𝜉𝑙 = 𝑎) = 𝑎, the pro-
portional model where 𝑔(𝑙)(𝜽(𝒍)𝒊 , 𝑡, 𝜉𝑙 = 𝑏) = 𝑏𝑓(𝑙)(𝜽(𝒍)𝒊 , 𝑡)
and combinations of the constant and proportional
models.

3.2 PD endpoint toxicity model𝑟(𝜽𝒊, 𝒔𝒊,𝒋) is defined as the function derived from the PK/PD
models that returns the value of the PD endpoint (such as
the peak of a biomarker) exactly after the administration
of the dose regimen 𝒔𝒊,𝒋 with individual PK/PD parameters𝜽𝒊. Let𝑹(𝜽𝒊, 𝒔𝒊,𝒋) = (𝑟(𝜽𝒊, 𝑠𝑖,1), … , 𝑟(𝜽𝒊, 𝒔𝒊,𝒋)) be the function
derived from the PK/PD models that returns the vector of
all PD endpoints (such as all biomarker peaks) observed
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after the administration of the regimen 𝒔𝒊,𝒋 with individ-
ual PK/PD parameters 𝜽𝒊. For patient 𝑖, we can simplify
the notations considering 𝑟𝑖,𝑗 = 𝑟(𝜽𝒊, 𝒔𝒊,𝒋),𝑹𝒊,𝒋 = 𝑹(𝜽𝒊, 𝒔𝒊,𝒋)
and the vector of all PD endpoints 𝑹𝒊 = 𝑹𝒊,𝒋𝒊 .

Then, let 𝑟𝑀𝑖 = max𝑙∈{1,…,𝑗𝑖}(𝑟𝑖,𝑙) be the summary PD end-

point (such as the highest peak) observed in patient 𝑖,
which we assume is related to toxicity.

To define the prior distributions, let (𝑟𝑀1 , 𝑟𝑀2 , … 𝑟𝑀𝐾 )
denote the reference values of the summary end-
point of all dose regimens of the trial (𝑺𝟏, … , 𝑺𝒌);
for example, we can consider population values𝑟𝑀𝑘 = max{𝑟(𝝁, 𝑺𝒌,𝟏), … , 𝑟(𝝁, 𝑺𝒌)} with 𝝁 as the PK/PD
vector of fixed effects.

In the following section, two statistical models establish-
ing the relationship between the PD endpoint and the tox-
icity response are shown.

3.2.1 Logistic-DRtox

We propose a Bayesian logistic model to link the global
binary toxicity response of patient 𝑖 receiving 𝒔𝒊 to his sum-
mary PD endpoint related to toxicity as follows:

logit{ℙ(𝑌𝑖 = 1)} = 𝛽0 + 𝛽1 log ⎛⎜⎜⎝ 𝑟𝑀𝑖𝑟𝑀𝑘𝑇
⎞
⎟⎟⎠
, (2)

where 𝛽1 > 0 to have the toxicity probability that increases
with the value of the summary PD endpoint. We nor-
malize the PD endpoint for prior elicitation using 𝑟𝑀𝑘𝑇 ,
which is the reference value of dose regimen 𝑺𝒌𝑻 , which
we initially guess to have a toxicity probability of 𝛿𝑇 . In
this model, we do not consider the longitudinal values of
the biomarker as we assume that toxicity is not due to
the cumulative effect of the biomarker profile. However,
previous drug administrations are considered in the con-
struction of the biomarker through the PK/PD model. Let𝜋1{(𝛽0, 𝛽1), 𝑟𝑀𝑖 } = logit−1{𝛽0 + 𝛽1 log( 𝑟𝑀𝑖𝑟𝑀𝑘𝑇

)}
.

Regarding prior distributions, we consider a normal
distribution for the intercept, 𝛽0 ∼ (𝛽0, 𝜎2𝛽0) and a
gamma distribution for the slope to ensure positivity,𝛽1 ∼ 𝛾(𝛼1, 𝛼1𝛽1 ), where 𝛼1 is the shape parameter, 𝛽0 =𝔼[𝛽0], and 𝛽1 = 𝔼[𝛽1]. By construction, we have 𝛽0 =
logit(𝛿𝑇), obtained via Equation (2) with 𝑟𝑀𝑖 = 𝑟𝑀𝑘𝑇 . Then,
let (𝑝1, … , 𝑝𝐾) be the initial guesses of the toxicity prob-
abilities of regimens (𝑺𝟏, … , 𝑺𝑲), where 𝑝𝑘𝑇 = 𝛿𝑇 . We can
determine 𝛽1 using either only one regimen, which differs
from the reference regimen 𝑺𝒌𝑻 , as 𝜋1{(𝛽0, 𝛽1), 𝑟𝑀𝑘 } = 𝑝𝑘,
with 𝑘 ∈ {1, … , 𝐾} and 𝑘 ≠ 𝑘𝑇 , or multiple regimens, such

as the neighbors of the reference regimen, as follows:

𝛽1 = argmin𝛽1
𝑘𝑇+1∑
𝑘=𝑘𝑇−1

[𝑝𝑘 − 𝜋1{(𝛽0, 𝛽1), 𝑟𝑀𝑘 }]2. (3)

3.2.2 Hierarchical-DRtox

In this approach, we assume that patients experience
toxicity if their PD response exceeds an unknown thresh-
old specific to each patient. To consider interindividual
variability in toxicity, we introduce a patient-specific con-
tinuous latent variable, 𝑍𝑖 , which represents the toxicity
threshold of the PD response. In contrast to the previous
approach, we model toxicity after each administration
using a modification of the hierarchical probit model
(Berry et al., 2010) as follows:

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑌𝑖,𝑗 =
⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 if 𝑍𝑖 > log ⎛⎜⎜⎝ 𝑟𝑖,𝑗𝑟𝑀𝑘50
⎞
⎟⎟⎠

1 if 𝑍𝑖 ≤ log ⎛⎜⎜⎝ 𝑟𝑖,𝑗𝑟𝑀𝑘50
⎞⎟⎟⎠𝑍𝑖 ∼ (𝜇𝑧, 𝜏2𝑧),

(4)

where 𝑟𝑀𝑘50 is the reference value at the dose regimen𝑺𝒌𝟓𝟎 , which we initially guess to have a toxicity proba-
bility of 0.5. By adding the random effect, this Bayesian
hierarchical model shares common features with the pro-
bit model, where 𝜏2𝑧 represents the between-subject vari-
ance and controls the extent of the borrowing across all
patients.

If we consider a new patient 𝑖 with a vector of biomarker
endpoints 𝑹𝒊, we can predict his probability of toxic-

ity by ℙ(𝑌𝑖 = 1) = 𝐹𝑧{log( 𝑟𝑀𝑖𝑟𝑀𝑘50
)}

, where 𝐹𝑧 is the

cumulative distribution function of  (𝜇𝑧, 𝜏2𝑧). The details
of the formula are shown in Web Appendix A. Let𝜋2{(𝜇𝑧, 𝜏2𝑧), 𝑟𝑀𝑖 } = 𝐹𝑧{log( 𝑟𝑀𝑖𝑟𝑀𝑘50

)}
.

Regarding the prior distributions, we consider 𝜇𝑧 ∼ (0, 𝜎2𝜇𝑧 ) and 𝜏𝑧 ∼ half-Cauchy(0, 𝜎2𝜏𝑧 ). Regarding the
half-Cauchy distribution, we followed the recommenda-
tions by Gelman (2006), as we assumed that 𝜏𝑧 could
be near 0. Web Appendix G shows how this model can
be implemented.

3.3 Dose regimen toxicity model

The posterior toxicity probability of dose regimen 𝑺𝒌 is
estimated by integrating the PD endpoint toxicity model



GERARD et al. 5

on all possible values of the PD endpoint. As this inte-
gral cannot usually be solved analytically, the poste-
rior toxicity probability of regimen 𝑺𝒌 is estimated via
the drawing of a hypothetical set of 𝑀 patients with
M-vector (𝑝𝑇(𝑺𝒌)(1), … , 𝑝𝑇(𝑺𝒌)(𝑀)) as posterior toxicity
probabilities. Then, the posterior toxicity probability of
regimen 𝑺𝒌 is estimated as the posterior mean 𝑝𝑇(𝑺𝒌) =1𝑀 ∑𝑀𝑚=1 𝑝𝑇(𝑺𝒌)(𝑚). This sample of the posterior toxicity
probability requires the following three major steps:

(1) Model fitting:
(a) First, the PK/PD models are fitted to obtain

estimates of the population parameters com-
prising the fixed effects, 𝝁, and the random
effects variance–covariance matrix, 𝛀̂, under the
Frequentist paradigm. The patients’ individual
PK/PD parameters, (𝜽𝟏, … , 𝜽𝒏), are also estimated.

(b) Based on the estimated PK/PD parameters, the PD
biomarkers are predicted for each patient:
• For the logistic-DRtox: the global biomarker

peaks (𝑟̂𝑀1 , … , 𝑟̂𝑀𝑛 ) are predicted for each
patient as 𝑟̂𝑀𝑖 = max{𝑟(𝜽𝒊, 𝒔𝒊,𝟏), … , 𝑟(𝜽𝒊, 𝒔𝒊)}
for 𝑖 ∈ {1, … , 𝑛}. The vector of toxic-
ity responses and biomarker responses,((𝑌1, … , 𝑌𝑛), (𝑟̂𝑀1 , … , 𝑟̂𝑀𝑛 )), constitutes the
data of the trial.

• For the hierarchical-DRtox: the biomarker
peaks vectors (𝑹𝟏, … , 𝑹𝒏) are predicted for each
patient as 𝑹𝒊 = 𝑹(𝜽𝒊, 𝒔𝒊) for 𝑖 ∈ {1, … , 𝑛}. The
vector of toxicity responses and biomarker
responses, ((𝑌1,1, … , 𝑌𝑛,𝑗𝑛 ), (𝑹𝟏, … , 𝑹𝒏)), consti-
tutes the data of the trial.

(c) A vector of the parameters of the PD endpoint tox-
icity model of size 𝑚iter is sampled from their pos-
terior distribution:
• For the logistic-DRtox, ((𝛽(1)0 , 𝛽(1)1 ), … , (𝛽(𝑚iter)0 ,𝛽(𝑚iter)1 )) is sampled.
• For the hierarchical-DRtox, ((𝜇(1)𝑧 , 𝜏(1)𝑧 ), … ,(𝜇(𝑚iter)𝑧 , 𝜏(𝑚iter)𝑧 )) is sampled.

(2) Prediction of new patients for the sampling distribution
of the PD endpoint:
(a) The individual PK/PD parameters of 𝑚predict sim-

ulated patients, (𝜽(𝟏), … , 𝜽(𝒎𝐩𝐫𝐞𝐝𝐢𝐜𝐭 )), are sampled
from 𝝁 and 𝛀̂ as 𝜽(𝒎𝒑) = 𝝁𝑒𝜼(𝒎𝒑) , with 𝜼(𝒎𝒑) ∼ (𝟎, 𝛀̂) for 𝑚𝑝 ∈ {1, … ,𝑚predict}.

(b) The maximum biomarker endpoint of each simu-
lated patient receiving regimen 𝑺𝒌 is obtained as𝑟𝑀(𝑚𝑝) = max(𝑟(𝜽(𝒎𝒑), 𝑺𝒌,𝟏), … , 𝑟(𝜽(𝒎𝒑), 𝑺𝒌)) for𝑚𝑝 ∈ {1, … ,𝑚predict}.

(3) Estimation of the posterior distribution of the probability
of toxicity:

(a) The 𝑚th iteration, 𝑚 = (𝑚𝑖,𝑚𝑝) ∈ {1, … ,𝑀},
where 𝑀 = 𝑚iter ∗ 𝑚predict, of the posterior prob-
ability of toxicity of dose regimen 𝑺𝒌, 𝑝𝑇(𝑺𝒌)(𝑚), is
obtained depending on the method chosen:∙ For the logistic-DRtox, 𝑝𝑇(𝑺𝒌)(𝑚) =𝜋1 {(𝛽(𝑚𝑖)0 , 𝛽(𝑚𝑖)1 ) , 𝑟𝑀(𝑚𝑝)}.∙ For the hierarchical-DRtox, 𝑝𝑇(𝑺𝒌)(𝑚) =𝜋2 {(𝜇(𝑚𝑖)𝑧 , 𝜏(𝑚𝑖)𝑧 ) , 𝑟𝑀(𝑚𝑝)}.

The DRtox approach allows us to estimate the toxicity
probability of the panel of dose regimens  and predict the
toxicity probability of each new regimen defined from the
set of doses .

4 SIMULATION STUDY

4.1 Simulation settings

The performance of the DRtox was evaluated through a
simulation study. We assumed that toxicity was related to
a PD endpoint (the peak of cytokine in the context of our
motivating example). Therefore, to simulate toxicity, we
first needed to simulate the PK/PD profiles and simulate
toxicity from the PD profile.

Regarding the PK/PD models, we were inspired by
published models on blinatumomab, which is another bis-
pecific T-cell engager that binds to CD3 on T-cells and to
CD19 on tumor cells. Regarding the PK model, we consid-
ered a 1-compartment infusion model (Zhu et al., 2016) in
which the parameters are the volume of distribution V and
the clearance of elimination Cl and assumed 4 h of infu-
sion. The model is defined in Web Appendix B. Regarding
the PD aspect, the objective was to model cytokine mit-
igation in the case of intrapatient dose-escalation. We
simplified the model developed by Chen et al. (2019),
which assumes that cytokine production is stimulated by
the drug concentration but inhibited by cytokine exposure
through the AUC. We defined the PD model as follows:

d𝐸(𝑡)d𝑡 = 𝐸max𝐶(𝑡)𝐻𝐸𝐶50𝐻 + 𝐶(𝑡)𝐻
⎧
⎪⎨⎪⎩
1 − 𝐼max𝐴𝑈𝐶𝐸(𝑡)𝐼𝐶50𝐾𝐽−1 + 𝐴𝑈𝐶𝐸(𝑡)

⎫
⎪⎬⎪⎭−𝑘deg𝐸(𝑡), (5)

where 𝐸(𝑡) and 𝐶(𝑡) are the cytokine and drug concen-
tration at time t, respectively, 𝐴𝑈𝐶𝐸(𝑡) is the cumula-
tive cytokine exposure, and the parameters are defined
in Table 1. Additional information concerning the PK/PD
models is provided in Web Appendix B.

In both the PK and PD models, we considered a propor-
tional error model with 𝑏 = 0.1. The values of the PK/PD
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TA B L E 1 Definition and values of the PK/PD parameters used for the simulation study. Parameter estimates represent the fixed effects,
and coefficients of variation (CV) are the square root of the diagonal of the variance–covariance matrix. They are inspired by the parameters
estimated on blinatumomab (Zhu et al., 2016; Chen et al., 2019), with a modification of Imax to observe cytokine mitigation after several
administrations

Parameter Estimate (% CV) Unit Description

PK model
Cl 1.36 (41.9) L/h Clearance
V 3.4 (0) L Volume of distribution
Emax 3.59 ⋅ 105 (14) pg/mL/h Maximum cytokine release rate
EC50 1 ⋅ 104 (0) ng/mL Drug exposure for half-maximum cytokine release rate
H 0.92 (3) Hill coefficient for cytokine release

PD model Imax 0.995 (0) Maximum inhibition of cytokine release
IC50 1.82 ⋅ 104 (12) pg/mL⋅h Cytokine exposure for half-maximum cytokine inhibition
kdeg 0.18 (13) h−1 Degradation rate for cytokine
K 2.83 (36) Priming factor for cytokine release

parameters used for the simulations were inspired by the
estimated parameters of blinatumomab (Zhu et al., 2016;
Chen et al., 2019) and are displayed in Table 1.

To simplify and accelerate the PK/PD estimation during
the simulations, we followed the traditional PK/PD mod-
eling strategy for small sample size data by fixing some
parameters. We considered the parameters EC50, Imax , and
IC50 fixed and no random effects on V and H. In this work,
we decided to simplify a previously validated PK/PD model
that mimics the behavior we expect in our motivating trial:
our aim was to show the performance of a global modeling
approach including PK/PD estimation in a phase I toxicity
model and not to propose a PK/PD model for the drug.

We used as the PD endpoint 𝑟𝑖,𝑗 the peak of cytokine
observed for patient 𝑖 after the 𝑗th administration, and
for 𝑟𝑀𝑖 the highest peak of cytokine observed for patient 𝑖.
Using the PK/PD models presented above and the param-
eters shown in Table 1, we were able to model the miti-
gation of cytokine release on repeating dosing, which was
reflected by the decrease in the cytokine peak with repeat-
ing dosing. Hence, we were able to model that slowly
increasing the dose reduces the cytokine peak compared to
directly giving the steady-state dose. For example, we com-
pared the concentration and cytokine profiles of patients 𝑖
and 𝑖′ who received regimens 𝒔𝒊 = (1, 5, 10, 25, 25, 25, 25)𝜇g/kg and 𝒔𝒊′ = (25, 25, 25, 25, 25, 25, 25) 𝜇g/kg adminis-
tered on days 1, 5, 9, 13, 17, 21, and 25 (Figure 2). From
the fourth administration, the concentration profiles of
patients 𝑖 and 𝑖′ are the same, but in the cytokine profile,
the maximum peak of cytokine of patient 𝑖′ is much higher
than that of patient 𝑖, 𝑟𝑀𝑖′ = 𝑟𝑖′,1 > 𝑟𝑀𝑖 = 𝑟𝑖,4.

To simulate toxicity from the cytokine profile, we
defined a threshold 𝜏𝑇 on the cytokine response and
assumed that toxicity occurred if this threshold was
exceeded (Ursino et al., 2017). To introduce between-
subject variability, we defined a log-normally distributed

measure of subject sensitivity, 𝛼𝑖 for patient 𝑖, where 𝛼𝑖 =
e𝜂𝛼𝑖 and 𝜂𝛼𝑖 ∼ (0, 𝜔2𝛼). We assumed that patient 𝑖 experi-
enced toxicity at the 𝑗th administration,𝑌𝑖,𝑗 = 1, if 𝛼𝑖𝑟𝑖,𝑗 ≥𝜏𝑇 .

To compute the toxicity probability of regimen 𝑺𝒌, we
used the Monte-Carlo method by simulating 𝑁 = 10, 000
cytokine profiles under 𝑺𝒌 and computing

𝑝𝑇(𝑺𝒌) = 1𝑁 𝑁∑
𝑖=1
[1 − Φ{ log(𝜏𝑇) − log

(𝑟𝑀𝑖 )𝜔𝛼 }], (6)

whereΦ is the cumulative distribution function of the stan-
dard normal distribution.

We present the results of three toxicity scenarios by vary-
ing the dose regimens and the value of the threshold 𝜏𝑇 to
explore different positions of the MTD-regimen (with𝜔𝛼 =0.25). Additional scenarios are presented in Web Appendix
F. In each scenario, we considered six dose regimens, and
each dose regimen included seven dose administrations
on days 1, 5, 9, 13, 17, 21, and 25. The dose regimens cho-
sen for each scenario and the dose regimen toxicity curves
are displayed in Figure 3. Values of the dose regimens can
be found in Web Appendix C. In Scenarios 1–3, the MTD-
regimen is situated at dose regimens 𝑺𝟒, 𝑺𝟐, and 𝑺𝟒, respec-
tively. Scenarios 1 and 2 are inspired from the motivating
trial in which the dose regimens reach the steady-state
dose at approximately the same time, and have increasing
steady-state doses. However, Scenario 3 represents a case
in which the objective is to reach the steady-state dose,
40 𝜇g/kg, as fast as possible to increase potential efficacy
under toxicity constraints. The dose regimen toxicity rela-
tionship is similar to that in Scenario 1 but with less differ-
ence between the MTD-regimen and its neighbors.

For each scenario, 1000 trials were simulated, and 𝛿𝑇 =0.3 was considered the toxicity target. Because we applied
our methods once all patients from the trial were included,
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F I G U R E 2 Concentration (up) and cytokine (down) profiles of two patients, one receiving a dose regimen with intrapatient escalation in
solid line and the other receiving a dose regimen without intrapatient escalation in dashed line, administered on days 1, 5, 9, 13, 17, 21, and 25.
Horizontal lines represent the maximum peak of cytokine observed after each dose regimen

we evaluated the impact of two traditional dose-escalation
designs, that is, the 3+3 design and a modified contin-
ual reassessment method (CRM) initially proposed by
O’Quigley et al. (1990). A flow diagram of the rules of the
3+3 design is provided in Web Appendix D. For the mod-
ified CRM, we considered a 2-parameter logistic regres-
sion model with cohorts of a size of 3 and a total sam-
ple size of 30 patients (Cheung, 2011). Dose skipping was
not allowed, and early stopping rules were not imple-
mented. We based the skeleton of the CRM, that is, the
prior guesses of the toxicity probabilities, on Scenario 1,
that is, (0.06, 0.12, 0.20, 0.30, 0.40, 0.50). This skeleton was
used in all simulations and scenarios.

When defining the prior distributions for our proposed
models, we calibrated the model prior distributions based
on the initial guesses of the toxicity probabilities (we used
the same initial guesses for the CRM). To quantify the
information provided by the prior distribution, we com-
puted the approximate effective sample size (ESS), which
was defined as the equivalent sample size embedded in
the prior distribution of the model parameters (Yuan et al.,
2017). In practice, we approximated the ESS by matching
the mean and variance of the toxicity probabilities com-
puted from the prior distributions to those of a beta dis-
tribution. Then, the ESS was computed as the sum of the
parameters of the beta distribution (Morita et al., 2008).
More details of the ESS computation are shown in Web
Appendix E. In our settings, for the logistic-DRtox, we con-
sidered 𝑘𝑇 = 4, 𝜎𝛽0 = 2, and 𝛼 = 5, leading to an approxi-

mate mean ESS of 1.6. For the hierarchical DRtox, we con-
sidered 𝑘50 = 6, 𝜎𝜇 = 1, and 𝜎𝜏 = 1, leading to an approxi-
mate mean ESS of 1.8.

All simulations were performed in the R environment
(R Core Team, 2018), using Monolix software (Lixoft SAS,
2019) for the PK/PD estimation and Stan (Stan Develop-
ment Team, 2019) for the Bayesian analysis.

4.2 Simulation results

4.2.1 Proportions of correct selection

We first evaluated the performance of the DRtox accord-
ing to the proportions of correct selection (PCS) based
on the proportions that each regimen is selected as the
MTD-regimen over the trials. We evaluated the impact of
the dose regimens and the position of the MTD-regimen
in three toxicity scenarios, and the impact of the dose-
escalation design, that is, either the 3+3 design or the
CRM. The PCS results of the three main scenarios and the
mean sample size of each dose regimen across the trials
due to the chosen dose-escalation design are displayed in
Table 2. The PCS of additional scenarios are displayed in
Web Appendix F. As a practical rule, we could only recom-
mend as the MTD-regimen a dose regimen that was admin-
istered during the dose-escalation phase of the trial.

In all scenarios, the PCS of the logistic-DRtox and
the hierarchical-DRtox are very similar. Both methods
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F I G U R E 3 The first three subplots represent the panel of dose regimens from 𝑺𝟏 in spaced dashed line to 𝑺𝟔 in solid line, for the three
main scenarios, where the type of points is specific to each scenario. In the last subplot in the lower right corner, the dose regimen toxicity
relationship is represented for each scenario, where the MTD-regimen is the dose regimen having the toxicity probability the closest to the
target 𝛿𝑇 , plotted in dashed line

outperform the dose-escalation design implemented in
most scenarios. After implementing the 3+3 design, our
methods correctly select the MTD-regimen in more than
10% more trials compared to the dose-allocation design.
After implementing the CRM design, both methods cor-
rectly select the MTD-regimen in approximately 10% more
trials compared to the CRM.

The results of Scenarios 1, 3, and 6 (presented in Web
Appendix F) illustrate the effect of the variation in the
dose regimen scheme with a similar dose regimen toxicity
relationship. Compared to Scenario 1, the PCS of the
logistic-DRtox and hierarchical-DRtox are decreased
by approximately 10% in Scenario 3, while there is not
much difference in the results between Scenarios 1 and 6.
Therefore, the loss of performance in Scenario 3 is caused
not only by the variation in the dose regimen scheme but
also by the difference in the dose regimen toxicity relation-
ship, as in Scenario 3 there is less difference in the toxicity
probabilities between the MTD-regimen and its neighbors.

However, the performance of the DRtox is heavily
impacted by the dose-escalation design implemented; after

implementing the CRM design, the DRtox correctly selects
the MTD-regimen in more than 50% of the trials, but
its PCS can decrease by 20% when applied after the 3+3
design. This loss of performance is due to the small sample
size after implementing the 3+3 design and the higher pro-
portion of patients allocated to suboptimal dose regimens.

Additional results on robustness (with various prior dis-
tributions and variability to simulate toxicity) are given in
Web Appendix F.

4.2.2 Estimation of the toxicity probabilities

We also evaluated the performance of the DRtox based on
the precision of the estimation of the toxicity probabilities
of all dose regimens. We represented the distribution of
the estimated toxicity probabilities, defined as the mean
of the posterior distribution, over 1000 trials. The results
of Scenario 3 obtained after implementing the CRM are
presented in the lower part of Figure 4. The results of the
other scenarios are displayed in Web Appendix F.
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TA B L E 2 Proportions that each dose regimen is being selected as the MTD-regimen over the 1000 trials in the three toxicity scenarios
and the two dose-allocation designs, either the 3+3 design or the CRM. For each scenario, the PCS on the true MTD-regimen are represented
in bold. For each dose-allocation design, the mean sample size of each dose regimen is displayed𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔

Scenario 1 0.08 0.11 0.15 0.3 0.44 0.52

3+3

Mean sample size 3.6 3.5 3.5 3 1.6 0.4
Logistic-DRtox 8.6 5.9 19 42.2 19.6 4.7
Hierarchical-DRtox 7.5 7.6 19.1 43.8 18.6 3.4
3+3 13.9 16.1 32.2 27.6 8.6 1.6

CRM

Mean sample size 4.2 3.7 5.6 8.8 5.6 2.1
Logistic-DRtox 0 1.2 15.5 64.6 15.5 3.2
Hierarchical-DRtox 0 0.8 12.8 64.3 19.4 2.7
Logistic CRM 0 1.4 15.1 50.4 27.1 6

Scenario 2 0.15 0.3 0.44 0.52 0.69 0.83

3+3

Mean sample size 4 3.6 1.8 0.5 0.1 0
Logistic-DRtox 27.2 42.5 24.7 5.2 0.4 0
Hierarchical-DRtox 29.3 41.2 24.3 4.8 0.4 0
3+3 57.3 31 9.8 1.7 0.2 0

CRM

Mean sample size 8.7 11.1 7.5 2.3 0.3 0
Logistic-DRtox 14.8 65.9 17.4 1.7 0.2 0
Hierarchical-DRtox 12.3 66.2 18.9 2.6 0 0
Logistic CRM 12.5 56 26.7 4.7 0.1 0

Scenario 3 0.07 0.11 0.2 0.3 0.42 0.56

3+3

Mean sample size 3.6 3.6 3.7 2.7 1.4 0.4
Logistic-DRtox 7.8 6.4 25.2 34.1 21.6 4.9
Hierarchical-DRtox 5.9 7.9 27.3 35.8 20.6 2.5
3+3 13.1 24.4 29.5 24 7.7 1.3

CRM

Mean sample size 4 4 6.4 8 5.2 2.3
Logistic-DRtox 0.1 1.4 19.6 52 25.1 1.8
Hierarchical-DRtox 0.1 0.8 17.7 54.4 25.9 1.1
Logistic CRM 0.1 2.3 20.3 44.5 26.4 6.4

In all scenarios, the toxicity probability of the MTD-
regimen is well estimated by the DRtox and the CRM.
Both the hierarchical-DRtox and the logistic-DRtox seem
to be better in estimating the toxicity probability at all
dose regimens, even those far from the MTD-regimen.
This phenomenon could be due to the additional PK/PD
information and the correct understanding of the toxicity
mechanism. Using the CRM, the entire dose regimen
toxicity curve is well estimated when the skeleton is close
to the truth, as shown in Scenario 1 (Web Appendix F).
However, in most cases, the toxicity estimation is precise
around the MTD-regimen, but not reliable for the other
dose regimens. Regarding the dose regimens far from the
MTD-regimen, the hierarchical-DRtox seems to estimate
the toxicity probability with less bias but more variance
than the logistic-DRtox. In Web Appendix F, the distribu-
tion of the root mean square error (RMSE) of all methods
is plotted; the RMSE is computed on all dose regimens or

on the MTD-regimen and its neighbors. Near the MTD-
regimen, the estimation of the logistic-DRtox is better than
that of the hierarchical-DRtox; both models are better
than the CRM. However, in the scenarios in which the
MTD-regimen is at extreme positions of the dose regimens
panel (Scenarios 2 and 4 in Web Appendix F), the entire
dose regimen toxicity relationship is better estimated with
the hierarchical-DRtox than the logistic-DRtox.

4.2.3 Recommendation of a more suitable
untested dose regimen

Finally, one of the strengths of the DRtox is that it mod-
els the entire relationship between the dose regimen and
toxicity and can predict the toxicity probability of any new
dose regimen. Notably, in this work, we assumed that the
administration times were fixed to simplify the notations
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F I G U R E 4 Violin plots of the estimated
toxicity probabilities in an additional scenario
in which the dose regimen panel missed the
true MTD-regimen and in Scenario 3 on 1000
trials implemented with the CRM including 30
patients. The predicted toxicity probability of a
new regimen 𝑺new is framed in dotted line.
Horizontal lines on the density estimates
represent the median and first and third
quantiles of the distributions and the plus sign
represents the mean. The dashed line
represents the toxicity target and the solid line
represents the true toxicity probabilities

but regimens with different times of drug administra-
tion can also be considered. Therefore, at the end of
the dose-escalation stage of the trial, the DRtox can
recommend dose regimens that were not tested in the
trial to be investigated in expansion studies. For exam-
ple, let us imagine a scenario in which the panel of
dose regimens missed the true MTD-regimen, as illus-
trated in the upper plot of Figure 4, where regimen 𝑺𝟑 =(5, 10, 25, 50, 50, 50, 50) 𝜇g/kg is underdosing and regimen𝑺𝟒 = (10, 25, 50, 100, 150, 150, 150) 𝜇g/kg is overdosing.

The upper plot of Figure 4 illustrates the gap between
the estimated toxicity probabilities of regimens 𝑺𝟑 and 𝑺𝟒,
suggesting that an alternative regimen could be found to
have a toxicity probability closer to the target. At the end of
the dose-escalation stage of the trial, the DRtox can predict
the toxicity probability of any new regimen, such as regi-
men 𝑺𝐧𝐞𝐰 = (10, 25, 50, 100, 100, 100, 100) 𝜇g/kg, whereas

the CRM is unable to perform predictions as the model is
built on a skeleton based on the panel of dose regimens.
In the upper plot of Figure 4, we can observe that both
the hierarchical-DRtox and the logistic-DRtox predict that
new regimen 𝑺𝐧𝐞𝐰 has a toxicity probability closer to the
target; therefore we can propose to evaluate the new regi-
men in expansion cohorts.

Another practical case is illustrated in Scenario 3 in
which the objective was to administer the steady-state
dose of 40 𝜇g/kg as soon as possible. As shown in the
lower plot of Figure 4, the estimated MTD-regimen
is 𝑺𝟒 = (10, 20, 40, 40, 40, 40, 40) 𝜇g/kg, and the next
regimen of the panel, 𝑺𝟓 = (20, 40, 40, 40, 40, 40, 40),
is estimated to be too toxic. Nevertheless, one might
wonder whether another regimen with an acceptable
toxicity could be found in which the steady-state dose is
administered from the second administration. The DRtox
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predicts the toxicity probability of new regimen 𝑺𝐧𝐞𝐰 =(10, 40, 40, 40, 40, 40, 40) to be approximately 0.3 as shown
in the lower plot of Figure 4, and this new regimen can
be compared in terms of efficacy to the estimated MTD-
regimen 𝑺𝟒 in subsequent stages of the trial. Therefore, at
the end of the trial, the DRtox can evaluate alternative regi-
mens that were not included in the panel for future studies.

5 DISCUSSION

In this work, we developed the DRtox approach to model
the relationship between the dose regimen and toxicity by
modeling a PD endpoint. We estimated the toxicity related
to the PD endpoint in the context of an ongoing phase
I trial in which the assumption of a monotonic increase
in the dose regimen toxicity relationship did not hold.
We found that when the process generating toxicity was
reasonably understood and approximated, adding PK/PD
information increased the PCS. This method allowed for
a better estimation of the dose regimen toxicity curves, as
this type of modeling enabled the sharing of more infor-
mation across regimens. Moreover, the DRtox was able to
evaluate additional regimens for expansion cohorts that
were not present in the dose regimen panel but may have
a predicted toxicity probability closer to the target. In prac-
tice, our methods should be applied at the end of the dose-
escalation phase of the motivating trial once all PK/PD
and toxicity data are collected. Our model can address
missing data as follows: (1) Regarding missing doses in
the dose regimen and associated cytokine profiles, as we
are using nonlinear PK/PD modeling, our method would
take into account whether a patient misses one or more
planned doses as the model considers the actual regimen
received and not the planned regimen. (2) Regarding miss-
ing cytokine data, which is expected to be rare in this trial
as the cytokine is carefully monitored by frequent sam-
pling to detect its peak, individual cytokine peaks could be
predicted from the population PK/PD model. However, it
would be more common for PK/PD data to be below the
limit of quantification, but these data are considered by the
PK/PD model as censored data rather than missing data.
(3) During the enrollment, and due to the sequential fea-
ture of the dose-allocation design, patients with missing or
with nonevaluable toxicity outcome are replaced. In this
case, during the enrollment, new patients are treated at the
same dose-levels to account for the design requirements.

In the simulation study, we assumed that the dose reg-
imens were ordered, but the DRtox can be applied when
only partial ordering is known. As the DRtox is applied at
the end of the trial, the choice of the dose-escalation design
may have a significant impact on the results. The perfor-
mance achieved using a model-based design, such as the

CRM with 30 patients, is better than that achieved using
an algorithm-based design, such as the 3+3 design, which
has the main disadvantage of treating most patients at sub-
therapeutic doses and having a small total sample size that
cannot be fixed before the trial.

Regarding the logistic-DRtox, since drug administration
is stopped in the case of toxicity, the performance can
be impacted by incomplete observations of the PD end-
point, even though it seemed to lightly impact our simu-
lation study. In the case toxicities occur at the beginning of
the administrations, resulting in a high number of incom-
plete PD observations, we propose the use of the predicted
PD given by the PK/PD model under the complete regi-
men planned.

The hierarchical-DRtox added a constraint, that is, toxic-
ity must occur at the maximum of the PD response. Errors
in the PK/PD estimation may lead to an undefined hier-
archical model. In our simulation study, we observed this
latter issue in less than 2% of the trials. In the real world,
this issue could indicate that the proposed PK/PD model
is incorrect, and that another model should be considered.
However, in our simulation study, we decided to run other
simulated datasets for all methods to replace the 2% of the
trials having the issue defined above. One way to relax this
constraint is to allow the patients’ toxicity threshold to vary
among administrations by adding a second latent variable,
which could lead to complex models that are challenging
to estimate.

In this work, we assumed that all dose regimens have the
same repetition scheme and duration. However, the DRtox
can address regimens with different schemes, administra-
tion modes, etc. The first part of the DRtox relies on PK/PD
modeling, so an incorrect PK/PD model may have a nega-
tive impact on the full method. However, as usual in the
PK/PD field, the aim of the modeling is to have a good
fit/prediction of the patients’ PK/PD profiles even with
simplified models. Therefore, an approximated PK/PD
model could still be applied without DRtox performance
loss if the PD endpoint is well fitted.

In conclusion, we proposed a general approach for mod-
eling toxicity through a PK/PD endpoint. In this work,
we considered a specific PD endpoint in the context of an
actual ongoing clinical trial, but various endpoints (such as
the AUC or a combination of several toxicity biomarkers)
could be used depending on the type of toxicity considered.
Moreover, we developed the DRtox under the assumption
that toxicity was linked to the maximum value of the PD
biomarker, but other assumptions could be raised, such
as assuming a cumulative effect. The usual dose-finding
designs were developed to determine the MTD in the first
cycle of treatment after a single administration. However,
with the increase in the number of targeted molecules,
immuno-oncology therapies, and combinations with
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alternative dose regimens, standard dose-allocation
designs fail to identify the dose regimen recommended for
future studies. Incorporating PK/PD exposure data in early
phase toxicity modeling through stronger collaboration
between biostatisticians and pharmacometricians may
lead to a better understanding of the entire dose regimen
toxicity relationship and provide alternative dosage recom-
mendation for the next phases of the clinical development.
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Chapter 5

Bayesian modeling of a bivariate
toxicity outcome for early phase
oncology trials evaluating dose
regimens

In this chapter, we describe the modeling of the relationship between the dose regi-
men and a bivariate toxicity outcome that resulted in a publication in Statistics in
Medicine [?]. A summary is given in Section 5.1 and the complete paper is provided
in Section 5.2.
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CHAPTER 5. BAYESIAN MODELING OF A BIVARIATE TOXICITY FOR
DOSE REGIMENS

5.1 Summary

Context In Chapter 4, we proposed the DRtox approach that models the proba-
bility of a PD-related toxicity (CRS) by incorporating PK/PD models in order to
describe the reduction of the risk of this toxicity with intra-patient dose-escalation.
This method was developed assuming that this PD-related toxicity was the only
DLT that could occur. However, other DLTs, that we name DLTo, could be ob-
served and should be considered when recommending the MTD-regimen. Unlike
the first type of toxicity, the PK/PD process generating the DLTo might be un-
known and no prior assumption could be raised to relate DLTo with multiple drug
administrations. Moreover, the PD-related toxicity and DLTo might be associated,
for example, CRS can be associated with neurotoxicities as highlighted in Section
3.1. The objective was therefore to extend the DRtox approach to include the mod-
eling of DLTo in order to determine the MTD-regimen accounting for all toxicity
types.

Method We proposed to model the DLT as a bivariate binary outcome, to dis-
tinguish the PD-related outcome from the DLTo, with multiple administrations of
varying doses. Our modeling strategy can be divided in three steps.

In the first step, the PD-related outcome was modeled by incorporating PK/PD
models using the logistic DRtox approach (as developed in Chapter 4).

In the second step, we proposed to model the cumulative probability of DLTo,
using either a marginal or a conditional formulation, and defined the cumulative
dose to account for the multiple drug administrations. We chose to model the
cumulative probability of DLTo instead of the conditional probability of DLTo at
each administration because the latter was expected to be very small as we had to
deal with two different types of DLT. We only considered the cumulative dose as a
predictor for the model to remain as simple as possible due to the context of small
sample size.

Finally, we proposed to model the DLT as a bivariate binary outcome and de-
veloped three joint approaches. The first approach, DRtox_indep, assumed inde-
pendence between the two types of DLT and estimated the probability of DLT from
the marginal probabilities of CRS and DLTo. The second approach, DRtox_copula,
explicitly modeled the correlation between the two toxicities using a copula model,
similarly to toxicity/efficacy modeling or combination trials as developed in Sec-
tions 2.2.1.3 and 2.2.1.4. DRtox_copula modeled the probability of DLT from the
marginal probabilities of each type of DLT and an additional parameter. The third
approach, DRtox_cond, accounted for the association between toxicities without
explicitly modeling it. Indeed, this approach modeled the joint probability of DLT
from the marginal probability of the PD-related toxicity and the conditional proba-
bility of DLTo given no CRS has occurred. This conditional modeling was motivated
by the assumptions on the motivating trial that CRS tend to occur at the beginning
of the administrations so CRS might prevent future DLTo to occur (due to the re-
maining administrations planned) as drug administration is stopped in case a DLT
occurs.

The prior distributions were elicited from the initial guesses of the probabilities
of DLT, assuming that the PD-related toxicity and DLTo were independent and had
equal probabilities. The amount of information provided by the prior distributions
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was measured by the prior ESS.

Results We evaluated the performance of the three joint approaches on a exten-
sive simulation study. We applied our methods at the end of the dose-escalation
stage of the trial designed with a modified CRM. We considered multiple scenar-
ios that evaluated multiple positions of the true MTD-regimen, the proportion of
each type of DLT and the association between the two types of DLT. We observed
good performance in selecting the correct MTD-regimen. We also observed that
DRtox_copula and DRtox_cond had a higher proportion of correct selection (PCS)
than DRtox_indep when increasing the association between the two types of DLT
with no loss of performance in case of true independence. Finally, our three joint
approaches preserved the DRtox ability of predicting the probability of DLT of
untested dose regimens.

Conclusion We proposed to model the probability of DLT with the dose regi-
men by distinguishing a PD-related toxicity from other DLTs, named DLTo. This
bivariate modeling allowed to account for a complex assumption on multiple ad-
ministrations for the PD-related toxicity, while no such assumption could be raised
for DLTo. The three joint approaches exhibited good performance on a simulation
study.

Our work has some limitations. We considered a simple model on the DLTo due
to the context of two types of toxicity and small sample size. We also observed
that the parameter of the copula was difficult to be estimated even in case of high
association so the simple independent model or the conditional model might be
preferred. We also observed that DRtox_indep and DRtox_copula had a tendency
to underestimate the marginal probability of DLTo due to the fact that DLTo might
not be observed in case of CRS, which motivated the DRtox_cond approach. Finally,
our modeling strategy requires multiple steps of modeling so it should be applied
when enough data is gathered but it can help support the choice of the dose regimen
for the future development of the molecule using additional information collected in
early phase trials.
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5.2 Publication

The supporting information of this paper is provided in Appendix D.
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Most phase I trials in oncology aim to find the maximum tolerated dose (MTD)
based on the occurrence of dose limiting toxicities (DLT). Evaluating the sched-
ule of administration in addition to the dose may improve drug tolerance.
Moreover, for some molecules, a bivariate toxicity endpoint may be more appro-
priate than a single endpoint. However, standard dose-finding designs do not
account for multiple dose regimens and bivariate toxicity endpoint within the
same design. In this context, following a phase I motivating trial, we proposed
modeling the first type of DLT, cytokine release syndrome, with the entire dose
regimen using pharmacokinetics and pharmacodynamics (PK/PD), whereas the
other DLT (DLTo) was modeled with the cumulative dose. We developed three
approaches to model the joint distribution of DLT, defining it as a bivariate
binary outcome from the two toxicity types, under various assumptions about
the correlation between toxicities: an independent model, a copula model and
a conditional model. Our Bayesian approaches were developed to be applied
at the end of the dose-allocation stage of the trial, once all data, including
PK/PD measurements, were available. The approaches were evaluated through
an extensive simulation study that showed that they can improve the perfor-
mance of selecting the true MTD-regimen compared to the recommendation of
the dose-allocation method implemented. Our joint approaches can also predict
the DLT probabilities of new dose regimens that were not tested in the study and
could be investigated in further stages of the trial.

K E Y W O R D S
Bayesian joint modeling, bivariate toxicity, cumulative probability of toxicity, dose regimen, early
phase oncology, pharmacokinetics/pharmacodynamics

1 INTRODUCTION
Most phase I dose-finding trials in oncology aim to determine the maximum tolerated dose (MTD), which is defined as the
highest dose that does not exceed a predefined probability of dose-limiting toxicity (DLT), in a prespecified observational
window. The DLT is a binary outcome defined to summarize the patient’s toxicity profile and is usually derived from
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toxicity classification in severity grades according to the National Cancer Institute (NCI) Common Toxicity Criteria for
Adverse Events.1For instance, a DLT may be defined as the occurrence of a grade 3 or higher toxicity observed in at
least one organ. Algorithm-based designs, such as the 3+3,2 or model-based designs, such as the continual reassessment
method (CRM),3 are the most common adaptive approaches for recommending the MTD based on the occurrence of DLT.
Evaluating the schedule of administration, in addition to the dose, is increasingly being investigated during this phase
to improve drug tolerance. For example, lead-in dose step-up dosing is common in immunotherapy trials.4-8 However,
traditional designs reduce the entire dose regimen, defined by the NCI as “a treatment plan that specifies the dosage, the
schedule, and the duration of treatment”9, to a single value.

While a binary toxicity outcome is convenient in the context of small sample size, various types of DLT might not be
identified as equally important.10 Several authors have proposed to define a continuous toxicity score to differentiate the
types of toxicity10-12 and to define multiple toxicity constraints on the toxicity types and grades to define the MTD.13-16

Several methods have been developed to consider more complex schedules of administration. Dose-finding designs
have been proposed to evaluate the dose-schedule combination in a two-dimensional framework.17,18 The toxicity out-
come can also be modeled in a longitudinal setting where a dose regimen composed of multiple administrations of the
same or various doses is evaluated. Legedza and Ibrahim19 proposed modeling the repeated treatment administrations
using the total amount of drug in the body based on pharmacokinetic principles. Other methods account for the cumu-
lative effect of the dose regimens using a time to toxicity outcome and by modeling the total hazard of toxicity for the
dose regimen as the sum of the hazard of each administration.20-23 Another possibility, proposed by Fernandes et al,24 is
to estimate the conditional probability of toxicity at each administration given that no toxicity was observed in the previ-
ous administrations. Ursino et al25 developed a model for the cumulative probability of toxicity by accounting for the first
dose administered and the cumulative dose. Finally, to model the cumulative effect of multiple administrations, other
authors have included pharmacokinetic and pharmacodynamic (PK/PD) modeling in the dose regimen recommendation.
Günhan et al26 considered latent PK profiles to measure drug exposure in a Bayesian adaptive model, and Gerard et al
proposed complete PK/PD modeling to assess the relationship between the dose regimen and a specific toxicity outcome.

Motivating trial

This work is based on an ongoing first-in-human dose-escalation trial of SAR44023427 administered as a single agent to
patients with relapsed or refractory acute myeloid leukemia, high-risk myelodysplastic syndrome or B-cell acute lym-
phoblastic leukemia (NCT0359495528). SAR440234 is a novel bispecific T-cell engager antibody that activates and redirects
cytotoxic T lymphocytes (CTLs) to enhance the CTL-mediated elimination of CD123-expressing tumor cells. Due to this
mechanism of action, the main toxicity expected in this trial is the cytokine release syndrome (CRS), which is a sys-
temic inflammatory response that has been associated with the peak of cytokine, considered as a pharmacodynamic
endpoint.29,30 Since repeated administrations of the drug can reduce the risk of CRS,31 dose regimens with a fixed intrapa-
tient dose-escalation scheme are evaluated in this trial as already proposed for other similar molecules.4-8 Namely, before
administrating repeatedly the steady-state dose, defined as the maximum dose the regimen should reach, patients are
treated with lower initial increasing doses, defined as the lead-in doses. This administration scheme attempts to decrease
the peak of cytokine observed when the steady-state dose is administered directly. The objective of the trial is to find the
MTD of SAR440234, and a standard dose-escalation procedure is implemented (3+3 design), in which each dose regimen
is associated with a single dose-level.32

Objective

To obtain a better estimate of the maximum tolerated dose regimen (MTD-regimen), defined as the dose regimen having
the probability of DLT closest to the toxicity target, at the end of the trial, a Bayesian dose regimen assessment method
(DRtox) was firstly developed.33 The DRtox proposed to model the binary CRS incorporating pharmacokinetic and phar-
macodynamic (PK/PD) modeling. Since the development of the DRtox, the investigators have gained knowledge about
the potential occurrences of other important dose-limiting toxicities (DLTo) that should be considered when recommend-
ing the MTD-regimen. Unlike the CRS, the PK/PD process generating the DLTo might be unknown.34 Moreover, the CRS
can be associated with several types of other toxicities.35-38 Thus, a new modeling approach that accounts for the poten-
tial interactions between the CRS and the DLTo and the multiple dose administrations was required. Since the CRS and
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DLTo are clinically different and can be distinguished, we propose to model the DLT as a bivariate binary endpoint with
the dose regimen, preserving the PK/PD approach for the CRS and adding a cumulative modeling approach for the DLTo.

The objective of this paper is to model the probability of DLT as a bivariate binary endpoint (CRS and DLTo) in the
context of multiple dose administrations in order to determine the MTD-regimen while preserving the modeling of the
CRS with PK/PD. As PK/PD measures are usually analyzed by batch and may therefore not be available in real time after
each cohort is treated, a complete sequential dose-allocation approach incorporating PK/PD can be difficult to perform
in practice. We then develop our modeling strategy to be performed at the end of the trial, that is, once all data have been
collected.

2 MODEL

Let  = {d1, ..., dL} be the set of doses that can be administered to patients and let 𝓢 = {S1, ...,SK} ⊂ S be the panel
of K dose regimens to be studied in the trial. The dose regimen Sk ∈  is defined as a sequence of J doses, Sk =
(dk,1, dk,2, ..., dk,J), administered at times t = (t1, t2, ..., tJ), where dk,j ∈ , j ∈ {1, ..., J} and k ∈ {1, ...,K}. Let n ∈ N be the
number of patients included in the trial. Let Y (1)

i,j be the binary CRS response and Y (2)
i,j be the binary DLTo response (another

DLT, different from the CRS) of patient i observed exactly after the jth administration. As we assume that both a CRS
and a DLTo can occur during the same administration, the binary DLT response Yi,j is defined as Yi,j = max

(
Y (1)

i,j ,Y (2)
i,j

)
.

Let Yi, Y (1)
i , and Y (2)

i be the global DLT, CRS, and DLTo responses of patient i at the end of the dose regimen, respec-
tively. Let s̃i = (di,1, di,2, ..., di,J) ∈ 𝓢 be the dose regimen planned for the ith patient. As we assume that the administration
of the drug is stopped if a DLT occurs (either a CRS or a DLTo), let ji be the final administration of patient i. Let
si = (di,1, di,2, ..., di,ji) ⊂ s̃i be the actual dose regimen received by patient i; this implies that si = s̃i if no DLT occurs. The
aim is to estimate the MTD-regimen at the end of the trial, and this is defined as the dose regimen with the probability of
DLT closest to the target toxicity rate 𝛿T . To define the prior distributions, let (𝜋1, ..., 𝜋K) be the initial guesses of the DLT
probabilities of dose regimens (S1, ...,SK), where a selected probability, 𝜋kT , is equal to the target 𝛿T .

The proposed modeling strategy is divided into three steps, as shown in Figure 1. In the first step, the CRS is modeled
via PK/PD outcomes using the DRtox approach.33 In the second step, the DLTo, using either a marginal or conditional
definition, is modeled via the cumulative dose to account for the multiple dose administrations. Finally, in the third step,
the DLT is modeled as a bivariate binary endpoint using both previous models under three approaches: the DRtox_indep
assumes independence between the two types of toxicity, the DRtox_copula models the correlation between them via a

F I G U R E 1 Illustration of the proposed modeling process of the bivariate toxicity endpoint at the end of the dose-escalation phase of
the trial
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copula model and the DRtox_cond accounts for the potential correlation between them via a conditional modeling. In the
following sections, the three steps are detailed.

2.1 CRS modeling

As the CRS is assumed to be linked to the peak of cytokine, considered a PD endpoint, we propose to model the binary
CRS using the logistic-DRtox approach33 that incorporates PK/PD modeling. The logistic-DRtox approach is performed
in three steps:

1. The continuous concentration response (PK) and cytokine response (PD) are linked to the dose regimen using non-
linear mixed effects models. The peak of cytokine rM

i is predicted for each patient i according to the received dose
regimen si.

2. The predicted peak of cytokine is used to model the binary CRS via the following Bayesian model:

logit
(
P
(

Y (1)
i = 1

))
= 𝛽0,1 + 𝛽1,1 log

(
rM

i

rM
kT

)
(1)

where 𝛽1,1 > 0 is required for the probability of CRS to increase with the peak of cytokine. We normalize the peak of
cytokine for prior elicitation using rM

kT
, which is the population value of the peak of cytokine of dose regimen SkT that

we initially guess to have a DLT probability of 𝛿T .
3. The posterior marginal CRS probability p(1)

k of dose regimen Sk is estimated by a Monte-Carlo method to integrate both
the PK/PD estimated variability and the posterior distributions resulting from the Bayesian logistic model. A point
estimate is obtained by the posterior mean.

Regarding prior distributions, we consider a normal distribution for the intercept, 𝛽0,1 ∼  (
𝛽0,1, 𝜎2

𝛽0,1

)
, and a gamma

distribution for the slope to ensure positivity, 𝛽1,1 ∼ 𝛾
(
𝛼1,

𝛼1

𝛽1,1

)
, where 𝛼1 is the shape parameter, 𝛽0,1 = E[𝛽0,1] and 𝛽1,1 =

E[𝛽1,1]. The values of 𝛽0,1 and 𝛽1,1 are elicited from the prior guesses of the probability of CRS. Additional details on prior
elicitation can be found in Appendix A.

2.2 DLTo modeling

To perform the joint DLT modeling, we model either the marginal probability of DLTo (a DLT other than a CRS) or the
conditional probability of DLTo given that no CRS has occurred. Both approaches are based on the cumulative probability
of DLTo.

2.2.1 Marginal DLTo modeling

Contrary to the CRS, we do not assume that the DLTo is linked to a PD endpoint. To account for the multiple dose adminis-
trations that constitute the dose regimen, we model the cumulative probability of DLTo

25 for patient i at administration j,
and this is defined as:

p(2)cum

i,j = P
(
∃! l ∈ {1, ..., j} Y (2)

i,l = 1
)
=

j∑
l=1

P
(

Y (2)
i,1 = 0,Y (2)

i,2 = 0, ...,Y (2)
i,l−1 = 0,Y (2)

i,l = 1
)
. (2)

The likelihood is computed as ∏n
i=1

(
p(2)cum

i,ji
− p(2)cum

i,ji−1

)y(2)i
(

1 − p(2)cum

i,ji

)1−y(2)i from the following probabilities of experienc-
ing a DLTo and not experiencing a DLTo at administration j:

⎧⎪⎨⎪⎩

P
(

Y (2)
i,1 = 0,Y (2)

i,2 = 0, ...,Y (2)
i,j−1 = 0,Y (2)

i,j = 1
)
= p(2)cum

i,j − p(2)cum

i,j−1

P
(

Y (2)
i,1 = 0,Y (2)

i,2 = 0, ...,Y (2)
i,j−1 = 0,Y (2)

i,j = 0
)
= 1 − p(2)cum

i,j .
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Since we model two types of toxicity but with a standard joint target toxicity, we have to deal with very small marginal prob-
abilities of toxicity. Therefore, we propose to adapt the model proposed by Ursino et al25 for intrapatient dose-escalation.
As DLTo is only one type of the bivariate DLT, the number of observed DLTo is relatively small; thus we propose to reduce
the number of parameters to two as follows:

logit
(

p(2)cum

i,j

)
= 𝛽0,2 + exp

(
𝛽1,2

)
log

(
1

DkT

j∑
l=1

di,l

)
(3)

where DkT =
∑J

l=1dkT ,l is the cumulative dose of the reference dose regimen, which we assume has a DLT
probability of 𝛿T . The posterior marginal probability of DLTo of dose regimen Sk is then defined as p(2)

k =

logit−1
(
𝛽0,2 + exp

(
𝛽1,2

)
log

(
1

DkT

∑j
l=1di,l

))
. A point estimate is obtained by the mean of the posterior toxicity distribu-

tion.
Regarding prior distributions, we consider a normal distribution for the intercept 𝛽0,2 ∼  (

𝛽0,2, 𝜎2
𝛽0,2

)
and the slope

𝛽1,2 ∼  (
𝛽1,2, 𝜎2

𝛽1,2

)
, 𝛽0,2 = E

[
𝛽0,2

]
and 𝛽1,2 = E

[
𝛽1,2

]
. Values of 𝛽0,2 and 𝛽1,2 are elicited from the prior guesses of the

probability of DLTo. Additional details on prior elicitation can be found in Appendix A.

2.2.2 Conditional DLTo modeling

The conditional DLTo model is very similar to the marginal DLTo model. We define the conditional cumulative probability
of DLTo, given that no CRS has occurred, as follows:

p(2)cum

i,j⋆ = P
(
∃! l ∈ {1, ..., j} Y (2)

i,l = 1|||Y
(1)
i = 0

)
. (4)

The conditional cumulative model is applied on a subset of the population, that is, on the patients who
do not experience a CRS. The likelihood is computed similarly to that of the marginal DLTo model as
∏n

i=1,Y (1)
i =0

(
p(2)cum

i,ji⋆
− p(2)cum

i,ji−1⋆

)y(2)i
(

1 − p(2)cum

i,ji⋆

)1−y(2)i .
We consider the same model as the one proposed in Section 2.2.1, and it is defined as:

logit
(

p(2)cum

i,j⋆

)
= 𝛽0,2⋆ + exp

(
𝛽1,2⋆

)
log

(∑j
l=1di,l

DkT

)
. (5)

The posterior conditional probability of DLTo given that no CRS has occurred of dose regimen Sk is then defined

as p(2)
k⋆ = logit−1

(
𝛽0,2⋆ + exp

(
𝛽1,2⋆

)
log

(∑J
l=1dk,l

DkT

))
. A point estimate is obtained by the mean of the posterior toxicity

distribution.
We consider the same prior distributions as those of the marginal model described in Section 2.2.1.

2.3 Joint DLT modeling

The final step is to model the probability of DLT from the joint probability of CRS and DLTo. The probability of DLT of
dose regimen Sk is defined as:

pk = P
(

Y = 1|||Sk
)
= 1 − P

(
Y = 0|||Sk

)
= 1 − P

(
Y (1) = 0,Y (2) = 0|||Sk

)
. (6)

Different assumptions can be used when modeling the joint probability of CRS and DLTo. The easiest assumption
is to consider that both toxicities are independent (conditionally on the dose regimen). However, we can also assume a
correlation between the two toxicities;35-38 for example, a patient experiencing one kind of toxicity may be more sensi-
tive to the drug than others and therefore be at higher risk of experiencing other toxicities. We propose three approaches



6 GERARD et al.

to compute the probability of DLT starting from the probabilities of CRS and DLTo using a marginal or conditional
formulation.

2.3.1 Independent model: DRtox_indep

The first assumption that can be raised is that Y (1) and Y (2) are independent (conditionally on the dose regimen Sk). In
this case, the posterior distribution of DLT can be directly expressed from the posterior marginal probabilities of CRS and
DLTo defined in Sections 2.1 and 2.2.1 as follows:

pk = 1 − P
(

Y (1) = 0|||Sk
)

P
(

Y (2) = 0|||Sk
)
= 1 −

(
1 − p(1)

k

)(
1 − p(2)

k

)
. (7)

The probability of DLT pk is then estimated as the mean of the posterior distribution.

2.3.2 Copula model: DRtox_copula

When dependence between both toxicities is assumed, the joint probability of DLT can be modeled via a copula distribu-
tion defined from the marginal distribution of each toxicity. In this case, the modeling process is performed in two steps.
First, marginal models are developed for the CRS and the DLTo, as shown in Sections 2.1 and 2.2.1. Then, the copula
model is fitted on all patients from the resulting point estimates of the marginal probabilities of each toxicity of all dose
regimens estimated from the two previous models.

We consider the popular class of Archimedeans copulas39 that have already been used in phase I trials when mod-
eling both toxicity and efficacy40-42 or in combination trials of two agents.43,44 The Archimedean copula has an explicit
distribution defined from the marginal distributions of each variable and an association parameter as follows:

C𝛼

(
p(1)

k , p(2)
k

)
= Φ−1

𝛼

(
Φ𝛼

(
p(1)

k

)
+ Φ𝛼

(
p(2)

k

))
, (8)

where Φ𝛼 is a continuous, strictly decreasing and convex function and Φ−1
𝛼 is its inverse.

Let ki be the level of the dose regimen administered to patient i. As we assume that both toxicities can be distinguished,
we can define the binary bivariate model in terms of the four possible outcomes as follows45:

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

p11
i = P

(
Y (1)

i = 1,Y (2)
i = 1

)
= C𝛼

(
p(1)

ki
, p(2)

ki

)

p01
i = P

(
Y (1)

i = 0,Y (2)
i = 1

)
= p(2)

ki
− C𝛼

(
p(1)

ki
, p(2)

ki

)

p10
i = P

(
Y (1)

i = 1,Y (2)
i = 0

)
= p(1)

ki
− C𝛼

(
p(1)

ki
, p(2)

ki

)

p00
i = P

(
Y (1)

i = 0,Y (2)
i = 0

)
= 1 − p(1)

ki
− p(2)

ki
+ C𝛼

(
p(1)

ki
, p(2)

ki

)
(9)

The log-likelihood is then computed as:

n∑
i=1

y(1)i y(2)i log
(

p11
i
)
+ y(1)i

(
1 − y(2)i

)
log

(
p10

i
)
+
(

1 − y(1)i

)
y(2)i log

(
p01

i
)
+
(

1 − y(1)i

)(
1 − y(2)i

)
log

(
p00

i
)
. (10)

The toxicity probability of dose regimen Sk is then defined as pk = p(1)
k + p(1)

k − C𝛼

(
p(1)

k , p(2)
k

)
. We consider the

Clayton distribution, which is defined as C𝛼

(
p(1)

k , p(2)
k

)
=
(

max
(

p(1)
k

−𝛾
+ p(2)

k
−𝛾

− 1, 0
))−1∕𝛾

, where 𝛾 is the associa-
tion parameter. We assume a positive association between both toxicities and therefore consider a gamma distri-
bution for the prior on 𝛾 . Another popular choice for the copula distribution is the Farlie-Gumbel-Morgenstern
distribution (Web Appendix B.3 of Data S1). The probability of DLT pk is estimated as the mean of the posterior
distribution.
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2.3.3 Conditional model: DRtox_cond

In this approach, we assume an association between both toxicities and express the joint distribution of DLT using a
conditional formulation. As we assume that the CRS has a tendency to occur at the beginning of the dose regimen while
the DLTo occurs at the end, we express the posterior distribution of DLT from the posterior marginal probability of CRS
(Section 2.1) and the posterior conditional probability of DLTo (Section 2.2.2) given that no CRS has occurred, as follows:

pk = 1 − P
(

Y (1) = 0|||Sk
)

P
(

Y (2) = 0|||Y
(1) = 0,Sk

)
= 1 −

(
1 − p(1)

k

)(
1 − p(2)

k⋆

)
. (11)

The probability of DLT pk is then estimated as the mean of the posterior distribution.

3 SIMULATION STUDY

3.1 Simulation settings

We defined two sets of dose regimens based on the motivating trial, Set A and Set B, as shown in Table 1. Each set included
six dose regimens, where each dose regimen was defined with intra-patient dose-escalation. Each dose regimen was
defined as a sequence of seven doses administered at days (t1 = 1, t2 = 5, t3 = 9, t4 = 13, t5 = 17, t6 = 21, t7 = 25) where
the dose was increased during the first four administrations to reach the steady-state dose, that was repeated for the last
three administrations. In both sets, we assumed that the six dose regimens were completely ordered in terms of toxicity
as the doses administered in the dose regimens were increased when increasing the level of the dose regimen. Set A and
Set B shared common dose regimens (S1, S5 and S6), but Set B included an accelerated component since the middle dose
regimens (from S2 to S4) reached higher steady-state doses more quickly than in Set A. Simulations under another set of
dose regimens (Set C) that differs from the motivating trial are available in the supporting information (Web Appendix C
of Data S1). The dose regimen escalation in Set C was slower than in Set A and Set B because the higher the steady-state
dose is, the slower it is reached.

Both toxicities, CRS and DLTo, were simulated under different assumptions. The CRS was simulated from the cytokine
PD profile as proposed by Gerard et al.33 The PK/PD models used for CRS simulation were inspired by the published
models on blinatumomab, which is another bispecific T-cell engager that binds to CD3 on T-cells and to CD19 on tumor
cells.31,46 To simulate the CRS from the cytokine profile, we defined a threshold 𝜏T for the cytokine response and assumed

T A B L E 1 Dose regimens defined in Set A and Set B used in the simulation study (in
μg/kg) where each dose regimen Sk is defined as the sequence of seven doses administered
at days (t1=1, t2=5, t3=9, t4=13; t5=17, t6=21, t7=25)

t1 t2 t3 t4 t5 t6 t7

Set A S1 1 5 10 20 20 20 20

S2 1 5 10 25 25 25 25

S3 1 5 10 30 30 30 30

S4 1 5 10 45 45 45 45

S5 5 10 25 75 75 75 75

S6 10 25 50 100 100 100 100

Set B S1 1 5 10 20 20 20 20

S2 1 5 10 30 30 30 30

S3 1 5 10 40 40 40 40

S4 1 5 10 50 50 50 50

S5 5 10 25 75 75 75 75

S6 10 25 50 100 100 100 100
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that a CRS occurred if this threshold was exceeded, that is, Y (1)
i,j = 1 if 𝛼iri,j ≥ 𝜏T , where 𝛼i is a log-normally distributed

measure of subject sensitivity. The true probability of CRS, p(1)
T (Sk), of each dose regimen Sk was computed using a

Monte-Carlo method. Additional details on the PK/PD simulation and estimation can be found in Appendix B.1.
To create an association between the CRS and the DLTo, we simulated the DLTo conditionally on the CRS status.

For example, if a patient experiences a CRS, s/he may be more sensitive to the drug and, consequently, would have a
higher probability of DLTo than a patient without CRS. We therefore simulated the DLTo from the conditional probability
of DLTo at each administration (1) given that no DLTo had occurred in the previous administrations and (2) given that
the patient would experience a CRS at some point. This conditional probability was inspired by the model proposed by
Fernandes et al to account for the current and previous drug administrations as follows:

logit
(
P
(

Y (2)
i,j = 1|||

(
Y (2)

i,j−1 = 0, ...,Y (2)
i,1 = 0

)
;Y (1)

i = 1
))

= a + b log
(

di,j
)
+ c log

(
Di,j−1 + 1

)
, (12)

where di,j represents the dose given to patient i during the jth administration and Di,j =
∑j

l=1di,j is the cumu-
lative dose using the convention Di,0 = 0. Let 𝜃 = (a, b, c) be the simulation parameters and f𝜃

(
dj,Dj−1

)
=

logit−1 (a + b log
(

dj
)
+ c log

(
Dj−1 + 1

))
be the simulation model.

The conditional probability of DLTo for patient i given that s/he would not experience CRS was defined from the
previous model as follows:

P
(

Y (2)
i, j = 1|||

(
Y (2)

i, j−1 = 0, ...,Y (2)
i, 1 = 0

)
;Y (1)

i = 0
)
= 1

𝜆
P
(

Y (2)
i, j = 1|||

(
Y (2)

i, j−1 = 0, ...,Y (2)
i, 1 = 0

)
;Y (1)

i = 1
)

= 1
𝜆

f𝜃
(

di, j,Di, j−1
)
, (13)

where 𝜆 represents the risk ratio of experiencing a DLTo during administration j (given that no DLTo was experienced
before) for patients who would experience a CRS vs patients with no CRS. A value of 𝜆 = 1 denotes independence between
the CRS and the DLTo, 𝜆 > 1 represents positive association and 𝜆 < 1 represents negative association.

The marginal probability of DLTo was computed from the previous conditional probabilities and from the marginal
probability of CRS as follows:

p(2)
T (Sk) = 1 −

J∏
j=1

(
1 − f𝜃

(
dk, j,Dk, j−1

))
p(1)

T (Sk) −
J∏

j=1

(
1 − 1

𝜆
f𝜃
(

dk, j,Dk, j−1
))(

1 − p(1)
T (Sk)

)
. (14)

Finally, the joint probability of DLT of dose regimen Sk was computed as follows:

pT(Sk) = 1 −
J∏

j=1

(
1 − 1

𝜆
f𝜃
(

dk, j,Dk, j−1
))(

1 − p(1)
T (Sk)

)
. (15)

Details of the mathematical development are provided in Appendix B.2.
We studied six main dose regimen toxicity scenarios, which are represented in Figure 2. Each toxicity scenario was

defined by the marginal probabilities of DLT, CRS, and DLTo and the conditional probabilities of DLTo given CRS and
DLTo given no CRS. The target probability of DLT was defined as 𝛿T = 0.30. Scenarios 1 to 5 were built on Set A of dose
regimens while Scenario 6 was built on Set B. The six toxicity scenarios studied various distributions of the probabilities
of DLT, CRS, and DLTo and various associations between the CRS and the DLTo. The latter association was measured
for each scenario as the average risk ratio over the set of dose regimens of experiencing a DLTo for patients who would
experience a CRS versus those who would not experience a CRS. In Scenario 1, the true MTD-regimen was S4, which had
similar probabilities of CRS and DLTo. The CRS and DLTo were positively correlated with an average risk ratio of 1.85,
meaning that, on average, a patient experiencing a CRS has 1.85 times greater risk of also experiencing a DLTo than that
of a patient not experiencing a CRS. In Scenario 2, the association between the CRS and the DLTo was increased to an
average risk ratio of 5.91. In Scenarios 3 and 4, the true MTD-regimen remained S4, but the proportion of each type of
toxicity varied with a higher probability of DLTo and CRS in Scenarios 3 and 5, respectively. Finally, the MTD-regimen
changed to dose regimens S6 and S2 for Scenarios 5 and 6, respectively. Additional scenarios are available in the supporting
information (Web Appendix A.3 of Data S1).
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F I G U R E 2 Definitions of the six toxicity scenarios in terms of the probabilities of dose limiting toxicity (DLT), cytokine release
syndrome (CRS), and other DLT (DLTo). For each scenario, the marginal probabilities of DLT, CRS, and DLTo of each dose regimen are
represented as solid lines, while the conditional probabilities of DLTo given CRS and no CRS are represented as dotted lines. The target
probability of DLT is represented by a dashed horizontal line

For each scenario, we first simulated 1000 trials with a modified CRM3 using a two-parameter logistic regression model
based on a skeleton for the dose-allocation rule. The skeleton, that reduced the dose regimen into a single dose level, was
defined from the initial guesses of the probabilities of DLT that were set to (0.06, 0.12, 0.20, 0.30, 0.40, 0.50), leading to
kT = 4 for the dose regimen of reference. The CRM sequentially included 30 patients with cohorts of size 3 and recom-
mended a MTD-regimen (simplified to a dose-level) at the end of the dose-escalation stage. We then computed our joint
modeling approaches at the end of each simulated trial using all available information to recommend the MTD-regimen.

Regarding the prior distributions, we evaluated the amount of information provided by the prior through the effective
sample size (ESS) which represents the number of “hypothetical patients” used to define the prior distribution.47 For
the CRS model, we considered 𝜎𝛽0,1 = 2 and 𝛼 = 5, for the DLTo model, we considered 𝜎𝛽0,2 = 2 and 𝜎𝛽1,2 = 1, and for the
Clayton copula, we considered 𝛾 ∼ 𝛾 (1, 1) leading to an approximated ESS of 2. Details on prior elicitation are provided
in Appendix A and results with various ESS are provided in Web Appendix B.1 of Data S1.

All simulations were performed in the R environment48 using Monolix software49 for PK/PD estimation and Stan50

for Bayesian analysis.
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3.2 Simulation results

We evaluated the performance of each of our three proposed joint approaches using the proportion of correct selection
(PCS), the estimation of the dose-toxicity curve and the ability of the methods to predict the toxicity probability of new
dose regimens.

3.2.1 PCS of the MTD-regimen

We compared the results of the DRtox_indep, DRtox_copula, and DRtox_cond with those of the logistic CRM. The perfor-
mance of each method was evaluated with respect to the PCS, which is defined as the proportion over the 1000 trials for
which the correct MTD-regimen was selected. The proportions of selecting each dose regimen in all scenarios are shown
in Table 2. The results of additional scenarios can be found in Web Appendix A.3 of Data S1.

In Scenarios 1 to 4, where the true MTD-regimen is S4, the DRtox_indep, DRtox_copula, and DRtox_cond outperform
the CRM by 10% in terms of the PCS. All three joint methods achieve very similar results and are robust to an unbal-
anced distribution of the probabilities of CRS and DLTo, as illustrated in Scenarios 3 and 4. In Scenario 2, defined with a
higher association between the CRS and the DLTo, the DRtox_copula and DRtox_cond seem to perform better than the
DRtox_indep as they account for the dependence between both toxicities. Indeed, in this scenario, more patients experi-
ence both toxicities (CRS and DLTo) and therefore the DRtox_indep overestimates the probability of DLT. In Scenarios
1 to 4, the DRtox_copula has a higher proportion of trials in which the overdosing regimen S5 is recommended as the
MTD-regimen than the DRtox_indep and DRtox_cond, but this proportion is lower than or similar to that of the CRM.

In Scenario 5, where the true MTD-regimen is S6, the CRM has higher PCS than those of the DRtox_indep and
DRtox_cond but similar results to those of the DRtox_copula. In this scenario the MTD-regimen is the last dose regimen of
the panel; therefore fewer DLT, particularly fewer DLTo, are observed. Indeed, on average, 5 DLT with 1.9 DLTo occur per
trial in Scenario 5, vs 7.7 DLT and 3.8 DLTo in Scenario 1. In this scenario, the higher performance of the DRtox_copula
and the CRM can be explained by their tendency to recommend higher dose regimens which was observed in Scenarios
1 to 4.

Scenario 6 was built on Set B which included an accelerated part for the first dose regimens to rapidly reach high
steady-state doses. In this scenario, where S2 is the true MTD-regimen, all three joint models yield similar results and still
outperform the CRM.

All three joint models still perform better than the CRM in cases of independence or negative association between the
CRS and the DLTo (Web Appendix A.3 of Data S1).

We evaluated the influence of the prior distribution by comparing the results obtained with a prior ESS of 0.2, 2,
and 7, the results can be found in Web Appendix B.1 of Data S1. Increasing the prior ESS leads to better results when
the prior guesses of DLT probabilities are close to the truth (Scenarios 1-4 where S4 is the true MTD-regimen), but also
when the initial guesses of DLT probabilities underestimate the true DLT probabilities (Scenario 6 where S2 is the true
MTD-regimen). However, increasing the prior ESS leads to poorer results when the initial guesses of DLT probabilities
overestimate the true DLT probabilities (Scenario 5 where S6 is the true MTD-regimen). We also evaluated the impact of
considering a gamma distribution for the DLTo model and a log-normal distribution for the CRS model, and observed
only a limited impact (Web Appendix B.2 of Data S1). We also evaluated the effect of a noninformative distribution on the
DRtox_copula parameter, that is, 𝛾(0.1, 0.1). In this case, the results of the DRtox_copula are similar to the DRtox_indep
(Web Appendix B.3 of Data S1). We also evaluated our methods after an empiric CRM and observed only limited impact
on our proposed methods (Web Appendix B.4 of Data S1). Finally, we studied our methods on another set of dose regimens
that is very different from the motivating trial to vary the timing of toxicity occurrences (Web Appendix C of Data S1). In
this new set, our three joint models and the CRM have similar PCS so our three joint models do not improve the PCS but
they can predict the probabilities of DLT of new dose regimens, and this will be developed in Section 3.2.3.

3.2.2 Estimation of the toxicity curves

Gerard et al33 showed that when only CRS occur, the DRtox leads to a better estimation of the entire dose regimen CRS
relationship than the CRM. When enabling the occurrence of DLTo, the probability of CRS is still well estimated with the
DRtox. The joint probability of DLT is also well estimated around the MTD-regimen for all three joint approaches and
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T A B L E 2 Proportions of selecting each dose regimen Sk as the MTD-regimen over the 1000 trials in the six main toxicity scenarios.
For each scenario, the marginal probabilities of dose limiting toxicity (DLT), cytokine release syndrome (CRS), and other DLT (DLTo) are
defined, and the association between the CRS and DLTo is represented by the average risk ratio (RR). Results are presented for the three
joint approaches (DRtox_indep, DRtox_copula, and DRtox_cond) and the continual reassessment method (CRM). The proportions of
correct selection (PCS) of the MTD-regimen are represented in bold

Scenario Set RR Method S1 S2 S3 S4 S5 S6

1 A 1.85 pT 0.10 0.14 0.18 0.30 0.45 0.60

p(1)
T 0.05 0.07 0.1 0.18 0.22 0.30

p(2)
T 0.06 0.08 0.1 0.17 0.34 0.50

DRtox_indep 0 4 24 55 16 2

DRtox_copula 0 2 20 55 20 3

DRtox_cond 0 3 25 55 16 2

Logistic CRM 0 4 22 46 22 5

2 A 5.91 pT 0.10 0.13 0.18 0.30 0.42 0.53

p(1)
T 0.07 0.10 0.13 0.22 0.28 0.36

p(2)
T 0.04 0.07 0.10 0.21 0.39 0.52

DRtox_indep 0 4 27 48 16 3

DRtox_copula 0 3 17 52 24 5

DRtox_cond 0 3 23 52 18 4

Logistic CRM 0 4 18 42 26 10

3 A 1.81 pT 0.11 0.15 0.18 0.30 0.45 0.59

p(1)
T 0.03 0.05 0.07 0.13 0.16 0.23

p(2)
T 0.08 0.11 0.13 0.22 0.39 0.54

DRtox_indep 1 3 22 57 15 2

DRtox_copula 1 2 16 58 20 2

DRtox_cond 1 3 22 58 15 2

Logistic CRM 1 5 22 48 19 5

4 A 1.90 pT 0.09 0.13 0.17 0.30 0.44 0.59

p(1)
T 0.07 0.10 0.13 0.23 0.29 0.37

p(2)
T 0.03 0.04 0.06 0.12 0.27 0.43

DRtox_indep 0 3 24 56 14 2

DRtox_copula 0 2 19 56 20 4

DRtox_cond 0 3 24 55 15 2

Logistic CRM 0 4 20 46 23 7

5 A 1.97 pT 0.03 0.04 0.05 0.11 0.17 0.30

p(1)
T 0.02 0.03 0.05 0.09 0.11 0.17

p(2)
T 0.00 0.01 0.01 0.02 0.08 0.18

DRtox_indep 0 0 0 4 29 67

DRtox_copula 0 0 0 3 20 77

DRtox_cond 0 0 0 4 29 67

Logistic CRM 0 0 0 2 21 77

(Continues)
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T A B L E 2 (Continued)

Scenario Set RR Method S1 S2 S3 S4 S5 S6

6 B 1.70 pT 0.16 0.30 0.43 0.55 0.73 0.86

p(1)
T 0.09 0.17 0.25 0.33 0.38 0.48

p(2)
T 0.08 0.18 0.29 0.41 0.67 0.84

DRtox_indep 20 64 15 1 0 0

DRtox_copula 14 63 21 2 0 0

DRtox_cond 19 65 15 1 0 0

Logistic CRM 17 56 24 3 0 0

the CRM. Both the DRtox_indep and DRtox_copula estimate the marginal probability of DLTo, while the DRtox_cond
estimates the conditional probability of DLTo given that no CRS has occurred. The latter conditional probability is well
estimated by the DRtox_cond, while the marginal probability is underestimated by the DRtox_indep and DRtox_copula
(and estimated to be similar to the previous conditional probability) in all six main scenarios. Indeed, estimating the
marginal probability of DLTo requires estimating the conditional probability of DLTo given CRS. The latter probability
can only be estimated when both toxicities occur at the same time as drug administration is stopped when a DLT (either
a CRS or DLTo) occurs. However, CRS tend to occur at the beginning of the dose regimen, mainly at the first and fourth
administrations, while most DLTo occur starting from the fourth administration. Thus, both toxicities rarely occur at
the same time, and CRS occurrence may prevent future DLTo from occurring. This topic will be further developed in
the discussion. Figures that illustrate the estimation of the different toxicity probabilities can be found in the supporting
information (Web Appendix A.2 of Data S1).

3.2.3 Prediction of new dose regimens

Our three proposed joint approaches and the CRM are able to recommend the MTD-regimen in the panel of the trial.
However, alternative dose regimens may increase the efficacy of the drug while maintaining an acceptable probabil-
ity of toxicity. For example, dose regimens where a lower steady-state dose is administered sooner or where a higher
steady-state dose is administered later could be of interest. As the DRtox_indep, DRtox_copula, and DRtox_cond model
the relationship between the entire dose regimen and the probability of DLT, they can predict the probability of DLT of
new dose regimens that were not administered in the trial. For example, in Scenario 1, S4 = (1, 5, 10, 45, 45, 45, 45) μg/kg
is selected for the MTD-regimen in more than 50% of trials where the steady-state dose of 45 μg/kg is administered start-
ing from the fourth administration. We are able to predict the probabilities of two new dose regimens. For dose regimen
Snew1 = (5, 10, 30, 30, 30, 30, 30) μg/kg, having a true DLT probability of 0.27, the steady-state dose is decreased to 30 μg/kg
but is administered earlier, from t3. For dose regimen Snew2 = (1, 5, 10, 30, 60, 60, 60) μg/kg, having a true DLT probabil-
ity of 0.31, the steady-state dose is increased to 60 μg/kg but is administered later, from t5. The estimated probabilities of
DLT of the six initial dose regimens of the trial and the predicted probabilities of DLT of Snew1 and Snew2 are displayed in
Figure 3. All approaches yield good estimations of the DLT probability of S4, but only the DRtox_indep, DRtox_copula, and
DRtox_cond can predict the DLT probabilities of Snew1 and Snew2 that are close to the target. The three joint approaches
can therefore help the clinical team find alternative dose regimens that can be investigated for efficacy in further stages
of the trial, for example, in an expansion cohort.

The DRtox_indep, DRtox_copula, and DRtox_cond have similar precision in predicting new dose regimens with DLT
probabilities close to the target in case of various associations between the CRS and the DLTo (Web Appendix A.3 of
Data S1).

3.3 Example from a single simulated trial

We illustrate our proposed methods on one hypothetical trial inspired by the motivating example. The trial was simu-
lated under Scenario 2 with the settings specified in Section 3.1: it was conducted using a modified logistic CRM where
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patients were included by cohorts of size 3 until a maximum of 30 patients included. The toxicity target was 0.30. The
inclusion process and the timing of occurrence of each type of toxicity are represented in Figure 4. During the trial,
8 DLT were observed, with 4 CRS and 6 DLTo. For example, at cohort 5, three patients were included at dose regi-
men S4 = (1, 5, 10, 50, 50, 50, 50) μg/kg administered at days (t1 = 1, t2 = 5, t3 = 9, t4 = 13, t5 = 17, t6 = 21, t7 = 25). One
of the three patient experienced a DLT, which was both a CRS and a DLTo at administration t4. As drug administra-
tion is stopped when a DLT occurs, this patient only received the dose regimen composed of the four initial doses:
(1, 5, 10, 50) μg/kg. The CRM estimated (0.11, 0.15, 0.22, 0.30, 0.39, 0.47) for the posterior mean probabilities of DLT
of S1 to S6, therefore S4 was estimated as the MTD-regimen. We can apply our proposed methods at the end of
the trial.
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CRS model

1. The PK/PD models (Appendix B.1) are fitted to the sampled individual concentrations and cytokine responses. Popu-
lation and individual PK/PD parameters as well as the individual maximum peak of cytokine are estimated (see Web
Appendix A.1 of Data S1 for the fitted cytokine response on one patient).

2. The CRS model is then fitted, the estimated posterior means of 𝛽0,1 and 𝛽1,1 are −2.40 and 2.78, respectively.
3. The peak of cytokine at each dose regimen is simulated for 600 hypothetical patients from the population PK/PD

parameters. The peak of cytokine can also be predicted for dose regimens that were not tested in the trial.
4. The posterior probabilities of CRS are estimated. The marginal probabilities of CRS are estimated by the mean of the

posterior distributions: (0.05,0.07,0.09,0.17,0.22,0.28) for S1 to S6.

DLTo model

1. The cumulative marginal (and conditional given no CRS) probabilities of DLTo are modeled with the cumulative dose
received. The estimated posterior means of 𝛽0,2

(
𝛽0,2⋆

)
and 𝛽1,2

(
𝛽1,2⋆

)
are −1.39 (−1.88) and 0.05 (0.31), respectively.

2. The marginal posterior probabilities of DLTo (and conditional posterior probabilities of DLTo given no CRS) are esti-
mated. The marginal probabilities of DLTo (and the conditional probabilities of DLTo given no CRS) are estimated
by the mean of the posterior distributions: (0.11 (0.06), 0.13 (0.08), 0.15 (0.09), 0.21 (0.15), 0.33 (0.28), 0.41 (0.39))
for S1 to S6.

DLT model

1. DRtox_indep: The posterior DLT probabilities are estimated from the marginal posterior probabilities of CRS and
DLTo. The marginal probabilities of DLT are estimated by the mean of the posterior distributions: (0.15, 0.19, 0.23,
0.34, 0.48, 0.58) for S1 to S6.

2. DRtox_copula: The DLT probabilities are modeled from the mean estimates of the marginal probabilities of CRS
and DLTo with the Clayton copula. The marginal probabilities of DLT are estimated by the mean of the posterior
distributions: (0.13, 0.17, 0.20, 0.30, 0.43, 0.52) for S1 to S6.

3. DRtox_cond: The posterior DLT probabilities are estimated from the marginal posterior probabilities of CRS and the
conditional posterior probabilities of DLTo given no CRS. The marginal probabilities of DLT are estimated by the mean
of the posterior distributions: (0.11, 0.14, 0.18, 0.29, 0.44, 0.56) for S1 to S6.

A figure of the posterior distributions can be found in Web Appendix A.1 of Data S1. The CRM and our three
approaches lead to the same MTD-regimen recommendation, that is S4. As two patients experienced both a CRS and a
DLTo, the DRtox_indep overestimates the probability of DLT of S4 while the DRtox_copula and DRtox_cond correctly
estimate it because they account for the correlation between both toxicities. Moreover, as our methods model the rela-
tionship between the entire dose regimen and the probability of DLT, they can predict the probability of DLT of additional
dose regimens that were not administered in the trial. For example, we can define the following additional dose regimen
(5, 10, 30, 30, 30, 30, 30) μg/kg than may have a clinical relevance because it reaches a lower value of the steady-state dose
but earlier than S4. The DRtox_indep, DRtox_copula, and DRtox_cond predict 0.29, 0.26, and 0.24 for the probability of
DLT of this new dose regimen, respectively. Therefore, at the end of the trial, our proposed methods support the rec-
ommendation of the CRM, and are able to propose an alternative dose regimen that could be evaluated in an expansion
cohort.

4 DISCUSSION

The aim of this work was to model the probability of DLT defined from the occurrence of two types of toxicity (CRS and
DLTo) in multiple dose administrations, that is, when dose regimens were administered, assuming that the CRS and the
DLTo might be associated. We developed a modeling approach for the DLTo in addition to the existing DRtox approach that
provides the CRS modeling with PK/PD. We proposed three approaches to model the joint distribution of DLT using the
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independence assumption (DRtox_indep), a copula model (DRtox_copula), and a conditional formulation (DRtox_cond).
Through an extensive simulation study, the three joint approaches were able to recommend the MTD-regimen in a set of
dose regimens and to predict the DLT probability of new dose regimens that could be investigated in later stages of the
trial. These methods were developed to be used when the dose allocation process is finished and once all data are gathered,
especially once PK/PD measurements have already been analyzed using a population PK/PD approach. However, our
methods should not be applied if the trial is stopped very early in the inclusion process and when not enough data is
gathered to guaranty a feasible and/or reliable estimation of the parameters.

In most cases, the PCS of the three proposed methods were higher than that of the CRM. When the interaction between
the DLTo and CRS was increased, the DRtox_copula and DRtox_cond gave better results as these two approaches account
for the association between toxicities. When the MTD-regimen was the last dose regimen of the set and therefore few
DLT were expected, the CRM had better performance than our proposed methods. In this case, as very few DLTo were
observed, distinguishing between the different dose regimens was challenging for the cumulative DLTo model built on
the cumulative dose. A simpler model that does not account for repeated doses could be fit on the DLTo to increase the
PCS, but with such a model, prediction of new dose regimens would no longer be possible (Web Appendix A.4 of Data S1).

In addition to the potential gain in PCS compared to standard dose-escalation methods, one important feature of our
proposed methods is that they were able to propose alternative dose regimens that could have a better clinical benefit than
the existing dose regimens, in terms of efficacy for example. Indeed, our joint approaches model the relationship between
the entire dose regimen and the probability of DLT and can therefore predict the DLT probability of new dose regimens.
This prediction was accurate in our simulation settings, but is dependent on the number of patients included and the
number of DLTs observed, as well as on the confidence in the PK/PD estimates. These potential new dose regimens need
to be discussed by the trial stakeholders to determine the most suitable ones to be included in the expansion cohorts.

One limitation of the DRtox_indep and DRtox_copula was that the marginal probability of DLTo seemed to be under-
estimated (Web Appendix A.2 of Data S1). Indeed, from our motivating trial, CRS were expected to be observed at the
beginning of the dose regimens, while DLTo occurred at the end. Once a CRS was observed, the administration of the
drug was stopped, so there was no possibility left to observe any DLTo that might have occurred later in the planned drug
administrations. This issue is different from censoring or competitive risks because the DLTo could be observed at the
same time as the CRS. However, as drug administration was stopped, the patient did not receive the remaining adminis-
trations of the entire dose regimen that may have caused a DLTo. The DRtox_cond accounted for this issue as it modeled
the conditional probability of DLTo given that no CRS had occurred. A second limitation was associated with the use of
copula models. Cunanan and Koopmeiners51 showed that in the context of phase I/II trials, using a copula model instead
of an independent model does not improve the performance in terms of correct dose selection, even in cases with highly
correlated outcomes. They suggested adding a strong prior information on the correlation parameter of the copula mod-
els. In our case, we used an informative prior (𝛾(1, 1)) and observed that when using a noninformative prior (𝛾(0.1, 0.1)),
the performance of the model could be decreased. We also observed that the DRtox_copula was more likely to recommend
overdosing regimens than the DRtox_indep and DRtox_cond. Finally, as our modeling strategy requires multiple steps of
modeling, it should only be considered when enough data is gathered. It should also be performed in close collaboration
with pharmacometricians to be more confident about PK/PD models and estimates.

In conclusion, in this work we proposed to model a bivariate binary toxicity outcome in the context of an intrapatient
dose-escalation early phase trial in oncology. We accounted for all types of DLT while allowing the explicit modeling of
the main type of toxicity expected (CRS) with PK/PD. Some dose-finding methods have been proposed that include PK
measures.26,52 However, as PK/PD measures are analyzed by batch (and therefore are not available in real time) and the
PK/PD models are developed after several cohorts of patients, a full sequential dose-allocation approach can be difficult to
perform in practice. Our approaches were developed to be computed at the end of the trial, so using all trial information,
including toxicities and PK/PD measures, is most practical. We have shown that even if the early phase trial is designed
with a standard dose-allocation method, modeling PK/PD and multiple dose administrations at the end of the trial can
allow the study stakeholders to make decisions about future development using all available information within a single
modeling process.
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APPENDIX A. PRIOR ELICITATION

The elicitation of prior distributions is based on the initial guesses of the probabilities of DLT(𝜋1, ..., 𝜋K) of dose regimens
(S1, ..., SK). SkT is the dose regimen of reference, where𝜋kT = 𝛿T . We initially assume that the probabilities of CRS and DLTo

are independent and equal, meaning that 𝜋k = 1 −
(

1 − 𝜋(1)
k

)(
1 − 𝜋(2)

k

)
= 1 −

(
1 − 𝜋(1)

k

)2
= 1 −

(
1 − 𝜋(2)

k

)2
, where 𝜋(1)

k

and 𝜋(2)
k are the initial guesses of the probabilities of CRS and DLTo, respectively. Therefore 𝜋(1)

k = 𝜋(2)
k = 1 −

√
1 − 𝜋k.
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For the CRS model, we consider 𝛽0,1 ∼  (𝛽0,1, 𝜎2
𝛽0,1

) and 𝛽1,1 ∼ 𝛾(𝛼1,
𝛼1

𝛽1,1
), where 𝛽0,1 = E[𝛽0,1] and 𝛽1,1 = E[𝛽1,1]. By

construction, we have 𝛽0,1 = logit
(

1 −
√

1 − 𝛿T

)
with rM

i = rM
kT

. We can determine 𝛽1,1 using either only one dose regimen
(differing from the reference dose regimen SkT ), as follows:

logit−1

(
𝛽0,1 + 𝛽1,1 log

(
rM

k

rM
kT

))
= 𝜋(1)

k , (A1)

where k ∈ {1, ...,K} and k ≠ kT , or multiple dose regimens, such as the neighbors of the reference dose regimen, as
follows:

𝛽1,1 = arg min
𝛽1,1

kT+1∑
k=kT−1

(
𝜋(1)

k − logit−1

(
𝛽0,1 + 𝛽1,1 log

(
rM

k

rM
kT

)))2

. (A2)

For the DLTo model, we consider 𝛽0,2 ∼  (𝛽0,2, 𝜎2
𝛽0,2

) and 𝛽1,2 ∼  (𝛽1,2, 𝜎2
𝛽1,2

), where 𝛽0,2 = E[𝛽0,2] and 𝛽1,2 = E[𝛽1,2]. By

construction, we have 𝛽0,2 = logit
(

1 −
√

1 − 𝛿T

)
with ∑J

l=1di,l = DkT . We can determine 𝛽1,2 using either only one dose
regimen (differing from the reference dose regimen SkT ), as follows:

logit−1

(
𝛽0,2 + exp

(
𝛽1,2

)
log

(
1

DkT

J∑
l=1

dk,l

))
= 𝜋(2)

k , (A3)

where k ∈ {1, ...,K} and k ≠ kT , or multiple dose regimens, such as the neighbors of the reference dose regimen, as
follows:

𝛽1,2 = arg min
𝛽1,2

kT+1∑
k=kT−1

(
𝜋(2)

k − logit−1

(
𝛽0,2 + exp

(
𝛽1,2

)
log

(
1

DkT

J∑
l=1

dk,l

)))2

. (A4)

APPENDIX B. SIMULATION STUDY

B.1 PK/PD models
The PK/PD models were inspired by published models on blinatumomab. For the PK, we considered a 1-compartment
infusion model,46 where the drug concentration was defined as follows:

C(t) =
J∑

j=1
1{t−tj>Tinfj}

dk,j

Tinfj

1
kV

(
1 − e−kTinfj

)
e−k

(
t−tj−Tinfj

)
+ 1{t−tj≤Tinfj & t−tj≥0}

dk,j

Tinfj

1
kV {1 − e−k(t−tj)}, (B1)

where Tinfj is the duration of the infusion of the jth administration, V is the distribution volume, Cl is the clearance of
elimination, and k is the micro-constant defined as k = Cl

V . We assumed that the delay between successive doses was
greater than the infusion duration, meaning that tj+1 − tj > Tinfj for j ∈ {1, ..., J − 1}.

For the PD, the objective was to model cytokine mitigation when intrapatient dose-escalation was implemented.
We simplified the model developed by Chen et al,31 which assumes that cytokine production is stimulated by the drug
concentration but inhibited by cytokine exposure through the AUC. We defined the cytokine response as follows:

dE (t)
dt = EmaxC(t)H

ECH
50 + C(t)H

{
1 − ImaxAUCE (t)

IC50
KJ−1 + AUCE (t)

}
− kdegE (t) (B2)

where AUCE (t) is the cumulative cytokine exposure.
For both the PK and PD models, we considered a proportional error model with a value of 0.1. The values of the PK/PD

parameters used for the simulations were inspired by the estimated parameters of blinatumomab31,46 and are displayed in
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T A B L E B1 Definition and value of the pharmacokinetics and pharmacodynamics (PK/PD) parameters used for the simulation
study. Parameter estimate represents the fixed effect, and the coefficient of variation (CV) is the square root of the diagonal of the
variance-covariance matrix. These values are inspired by the parameters estimated on blinatumomab,31,46 with a modification of Imax
to observe cytokine mitigation after several administrations

Parameter Estimate (% CV) Unit Description

PK model Cl 1.36 (41.9) L/h Clearance of elimination

V 3.4 (0) L Volume of distribution

PD model Emax 3.59 . 105 (14) pg/mL/h Maximum cytokine release rate

EC50 1.104 (0) ng/mL Drug exposure for half-maximum release

H 0.92 (3) Hill coefficient for cytokine release

Imax 0.995 (0) Maximum inhibition of cytokine release

IC50 1.82 ⋅ 104 (12) pg/mL⋅h Cytokine exposure for half-maximum inhibition

kdeg 0.18 (13) h−1 Degradation rate for cytokine

K 2.83 (36) Priming factor for cytokine release

Table B1. For the estimation, we considered the parameters EC50, Imax and IC50 fixed and no random effects on V and H.
Estimation was performed with Monolix software (Lixoft SAS., 2019).

B.2 Computation of toxicity probabilities
The true marginal probability of DLT was computed as follows:
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The true marginal probability of CRS was computed by simulations using a Monte-Carlo method. The marginal
probability of DLTo was computed as follows:
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Chapter 6

Conclusion and discussion

In this thesis, we developed a Bayesian modeling approach, to be applied at the end
of the dose-escalation stage of a phase I trial in oncology, to determine the maxi-
mum tolerated dose regimen (MTD-regimen) accounting for a complex assumption
on the probability of toxicity after multiple administrations of the drug that can be
related to a pharmacokinetic/pharmacodynamic (PK/PD) endpoint. This work was
motivated by a first-in-human dose-escalation trial, implemented with a standard de-
sign, where complex dose regimens, defined with a fixed intra-patient dose-escalation
scheme, have been implemented to decrease the risk of cytokine release syndrome
(CRS) due to the mitigation of the peak of cytokine. Although CRS was expected
to be the main type of DLT, other potential DLT, named DLTo, could also occur
but initial assumptions on the effect of complex dose regimens on the probability of
DLTo could not be raised.

The first part of the thesis focused on modeling the relationship between the
dose regimen and the PD-related toxicity (CRS in the context of the motivating
trial related to the peak of cytokine) by incorporating complete PK/PD modeling.
We developed a dose regimen assessment (DRtox) approach that models the rela-
tionship between the dose regimen and the PK/PD endpoint and the relationship
between the PK/PD endpoint and the probability of toxicity (Bayesian logistic or
hierarchical model) and estimates the posterior probability of toxicity using a Monte
Carlo method to include the interpatient PK/PD variability.

The second part of the thesis aimed at including the modeling of DLTo while
preserving the DRtox approach on the PD related toxicity in order to recommend
the MTD-regimen accounting for all types of DLT. As no initial assumption could
be raised on the effect of multiple drug administrations on the probability of DLTo

contrary to first type of toxicity, we modeled the cumulative probability of DLTo

with the cumulative dose administered. We defined a DLT from the occurrence
of at least a PD-related toxicity or DLTo and developed three joint approaches to
model the probability of DLT under various assumptions on the correlation between
the PD-related toxicity and DLTo: an independent model (DRtox_indep), a copula
model (DRtox_copula) and a conditional model (DRtox_cond).

During extensive simulation studies, in both cases (modeling only the PD-related
toxicity or including the modeling of DLTo), our modeling approaches showed good
performance in selecting the correct MTD-regimen in comparison with the standard
dose-finding design implemented. Moreover, as our approaches modeled the rela-
tionship between the entire dose regimen and the probability of toxicity, they were
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able to predict the probability of toxicity of dose regimens that were not evaluated
in the trial but could be clinically relevant in terms of future efficacy for example.
Our proposed modeling approaches can therefore support the choice of the MTD-
regimen for future stages of the development using additional information gathered
in early phase trials and could be applied on future clinical trials that evaluate
complex dose regimens. We can nevertheless identify some limitations and provide
several perspectives to extend our work.

The first limit of our modeling approaches is that they should be applied at the
end of the dose-escalation stage of the trial, that is, when all data is collected, due
to the incorporation of PK/PD modeling in the DRtox. Indeed, PK/PD data are
usually analyzed by batch and might therefore not be available after each cohort of
treated patients. Moreover, the PK/PD models need to be developed and reliable,
so multiple cohorts of patients are required in order to fit reliably the model. The
global approach that includes the modeling of DLTo also requires to have enough
data collected as the method is composed of at least two steps of modeling (three
for DRtox_copula) including non-linear mixed effect models for PK/PD.

In our simulation studies, we assumed that the initial panel of dose regimens
evaluated was ordered in terms of the probabilities of toxicity due to the fact that,
when increasing the level of the dose regimen, a more aggressive intra-patient dose-
escalation scheme or a higher steady state dose was defined. This complete ordering
justified the implementation of standard dose-escalation designs, such as the 3+3
or the CRM, that rely on the monotonicity assumption. Although our approaches
do not require the ordering of the dose regimens to be guaranteed, the risk of the
PD-related toxicity is assumed to increase with the PK/PD endpoint while the risk
of DLTo is assumed to increase with the cumulative dose.

In our simulation study, we observed that the performance of the DRtox was
impacted by the dose-escalation design chosen to conduct the trial and we there-
fore recommend to use more complex dose-escalation designs, such as the CRM,
instead of the algorithm based 3+3 design, to have a better distribution of patients
on the various dose-levels. As a perspective, we could evaluate multiple existing
dose-escalation designs in the context of intra-patient dose-escalation or propose a
simplified version of our approaches, that does not consider all assumptions, to pro-
vide better recommendations to conduct future trials while keeping our proposed
approaches to be applied at the end of the trial. Moreover, we could fine-tune the
characteristics of the DRtox to find, for example, the necessary number of patients
and PD-related toxicities in order to apply our methods during the dose-escalation
stage, however these characteristics would most likely depend on the PK/PD models
considered.

The DRtox approach requires strong assumptions on the PK/PD mechanism
generating the PD-related toxicity. Both the logistic (logistic DRtox) and the hi-
erarchical (hierarchical DRtox) approaches were developed with only one predictor,
which is the peak of one cytokine in the context of the motivating trial. However,
this PD-related toxicity could be related to multiple, possibly correlated, variables,
for example multiple cytokines in the context of the trial (IL-6, INF-γ). Extensions
to multi-parameters models could be considered, but, as early phase trials include
a small number of patients, it may be difficult to include multiple variables in the
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model. An initial step of variable selection could then be required to identify the
best PK/PD endpoint. Another idea could be to define the predictor from multiple
PK/PD variables.

In our example, we focused on one PD endpoint that is the peak of cytokine.
However, in this thesis, we proposed a global modeling framework in order to incor-
porate PK/PD modeling. This means that our modeling approach could consider
various PK/PD endpoints, for example the AUC, assuming that the PK/PD re-
sponses can be well estimated in the trial (based on the fact that PK/PD models
rely on biological knowledge). Moreover, we developed this modeling approach to
find an acceptable dose regimen for all patients, but our methods could be extended
for personalized dosing from the estimated individual PK/PD profiles.

In our simulation studies, we considered the same PK/PD models for simulation
and estimation (even if in this step some parameters were fixed) as we assumed
that even mispecified PK/PD models should be able to predict correctly the PD
endpoint of interest. We were inspired by the PK/PD models developed on blinatu-
momab [184, 38], but additional simulations should be performed when the PK/PD
models on the motivating trial become available. Overall, our method should be
performed in close collaboration with pharmacometricians and further work could
evaluate the impact of PK/PD model mispecifications.

Both versions of the DRtox had different assumptions. The logistic DRtox mod-
eled the total risk of toxicity with the global PD-endpoint (maximum peak of cy-
tokine in the context of the motivating trial) while the hierarchical DRtox modeled
the risk of toxicity after each administration with the PD-endpoint observed after
the administration (local peak of cytokine), it therefore assumed that toxicity oc-
curred without delay. The hierarchical model was therefore not flexible if toxicity
did not occur at the maximum peak but at a lower one. However, this situation
was against our modeling assumptions which should be verified when data start to
be available, but the logistic model could then be preferred to avoid too strict as-
sumptions. In our simulation study, we simulated the CRS after an administration
if the local peak of cytokine exceeded a threshold including inter patients variability
but an alternative procedure of simulation could also be considered, for example
defining the probability of toxicity for each peak of cytokine. In practice, modeling
assumptions should be verified when first data become available.

Finally, in our work, the PK/PD modeling part and the toxicity modeling part
were performed in two stages. PK/PD was modeled with standard frequentist
approaches while toxicity was modeled using a Bayesian approach that includes
PK/PD estimates. Our modeling proposal could therefore be applied in practice by
dividing the modeling tasks between pharmacometricians and biostatisticians. An
extension of this work could be to perform the PK/PD modeling in the Bayesian
paradigm, and performing both modeling stages in a single step could be investi-
gated.

In the second part of the thesis, we considered a simple model for the DLTo as it
was only one type of the possible DLTs. To account for the multiple administrations
of varying doses of the dose regimen, we chose to model the cumulative probability
of DLTo with the cumulative dose administered. However, this simple model did
not account for the timing of the administrations and the per-administration dose.
In particular, this model could not differentiate dose regimens having the same
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cumulative dose, for example S1 =(5, 10, 15) µg/kg and S2 = (10,10,10) µg/kg. An
extension of this model could be to consider a PK endpoint as a predictor instead
of the cumulative dose. This extension could then account for patient’s sensitivity
to the drug and could then illustrate the potential correlation between the CRS and
DLTo. However, in case the AUC is considered, the dose regimens S1 and S2 defined
earlier would also lead to the same cumulative AUC (if linear kinetics is assumed),
but other endpoints could differentiate the dose regimens, for example the Cmax.

When evaluating the results of the joint approaches, we observed that the DR-
tox_indep and DRtox_copula underestimated the marginal probability of DLTo,
but with a correct estimation of the probabilities of CRS and DLT. We observed
this issue in our simulations because we assumed that CRS tend to occur at the be-
ginning of the dose regimens (during the increasing lead-in dose) while DLTo occur
mostly at the end. Therefore, if a CRS occurred, the patient could not receive the
remaining planned doses that may cause a DLTo. We therefore mostly observed the
DLTo conditionally on the fact that the patient did not experience a CRS, unless
both toxicities occurred after the same drug administration. This finding motivated
us to develop the DRtox_cond approach where we modeled the conditional proba-
bility of DLTo. This issue was different from competitive risks as the CRS did not
prevent DLTo to occur but prevented the patient to receive the remaining admin-
istrations that may cause a DLTo. The opposite could also occur if a DLTo was
observed first, but it was not accounted for by the DRtox_cond approach.

To account for the potential association between toxicities in the joint DLT
modeling, we proposed a copula and a conditional model. An alternative modeling
approach could be to model the joint distribution of DLT using shared random ef-
fects [19].

In all methods, we recommended the MTD-regimen based on the point estimates
of the probabilities of toxicity. Our methods can be easily extended to consider
the entire posterior distributions and recommend the MTD-regimen based on the
probabilities of under dosing, target interval, overdosing and unacceptable toxicity,
similarly to Neuenschwander et al.[116]. However, this interval approach cannot
be performed for the DRtox_copula as the copula model is fitted on the posterior
means of the probabilities of CRS and DLTo.

In our simulation studies, we assumed no dropout meaning that patients only
received part of the dose regimen in case of DLT even though our methods account
for the actual dose regimen administered, even an incomplete one. In practice,
patients who leave the study prematurely after few drug administrations without
experiencing a DLT may be considered as non DLT-evaluable.

In our work, we considered longitudinal toxicity endpoints, but an alternative
modeling proposal could be to model time-to-event outcomes. A first idea could
be to extend the work of Zhang and Braun [179] who developed a cure rate model,
where the cure parameter is dose-dependent. Their model could be considered for the
DLTo assuming that the times to DLTo after each administration are independent.
To account for the complex toxicity assumption on the PD-related toxicity, the cure
rate parameter could be modeled with the PD endpoint, similarly to the DRtox
approach.

Another possibility could be to extend the work of Günhan et al. [67], where
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the hazard of DLTo could be modeled with drug concentration meaning that the
probability of DLTo would be modeled with the AUC of drug concentration. A
similar approach could be proposed for the PD-related toxicity where the hazard of
toxicity could be modeled with the PD response. However, this would mean that
the probability of the PD related outcome is related to the AUC of the PD response,
while in the motivating trial, the probability of CRS is assumed to be related to the
peak of cytokine.

Finally, time to DLTo and time to the PD-related toxicity could be modeled with
Cox models with time varying outcomes. For the DLTo, it could be modeled with
the dose at each administration and for the PD-related outcome, a time dependent
variable could be defined from the PD response.

In a future work, we could evaluate these time to event approaches in the con-
text of small sample size and compare them with the methods proposed in this thesis.

In this work, we focused on modeling toxicity in early phase trials in oncology,
but our approaches could be extended to other phases of the clinical trials. For ex-
ample, if a PD endpoint can be related to efficacy, our approaches could be extended
to phase II trials. Our approaches could also be considered for pediatric trials while
incorporating prior information from adult trials.

In this thesis, incorporating PK/PD allowed us to account for a complex toxicity
assumption and to evaluate various dose regimens. Our modeling proposal should
be performed in close collaboration between statisticians and pharmacometricians
to be applied successfully. As a more global perspective, we wish to foster more col-
laboration between statisticians and pharmacometricians during all stages of drug
development, instead of considering both analyzes as complementary [81]. Indeed,
incorporating PK/PD data and models more regularly in standard analyzes could
improve the efficiency of drug development by considering all available biological
knowledge [80, 66, 107]. We also believe that statisticians and pharmacometricians
could benefit from an increased interaction and learning from each other [133].
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Abstract

Title: Bayesian toxicity modeling for dose regimen assessment in early phase on-
cology trials incorporating pharmacokinetics and pharmacodynamics

Abstract: Phase I trials in oncology aim to evaluate the toxicity of a new drug
and allow to gather information on the mechanism of action of the molecule through
pharmacokinetic and pharmacodynamic (PK/PD) studies. They aim to determine
the maximum tolerated dose (MTD) defined as the highest dose that does not ex-
ceed a predefined probability of dose-limiting toxicity (DLT) [42, 118]. DLT is a
binary toxicity defined from the occurrence of severe adverse events. Sequential
dose-escalation designs have been developed to determine the MTD after the first
cycle of therapy, as the 3+3 [144] or the continual reassessment method (CRM) [119].
Evaluating dose regimens, defined as the combination of the schedule of adminis-
tration and the dose, can reduce the risk of toxicity while preserving future efficacy.
Some designs have been developed to evaluate the schedule of administration in
addition to the dose, but they do not account for a complex assumption on toxicity
mechanism [150, 160, 179]. In a phase I trial (NCT03594955 [14]), complex dose
regimens, defined by multiple administrations of increasing doses until a fixed dose,
have been implemented to reduce the risk of the main toxicity expected, the cytokine
release syndrome (CRS). A standard dose-escalation design was conducted but it
does not account for the information on the multiple administrations that compose
the dose regimens. The aim of this thesis is to develop an approach, to be applied
at the end of the trial, in order to determine the maximum tolerated dose regimen
(MTD-regimen) in the context of the motivating trial.

The first part of the thesis is based on the motivating trial, where the reduc-
tion of the risk of CRS is assumed to be related to the mitigation of the peak of
cytokine, considered as a PD endpoint [147, 38]. We propose a Bayesian approach
incorporating PK/PD models in order to model the complex assumption between
the probability of a PD-related toxicity and the dose regimen [64]. This method
links the dose regimen and the PD profile using nonlinear mixed effects models and
then the PD endpoint and the probability of toxicity using either a logistic or a
hierarchical model. We observed good performance in selecting the MTD-regimen
in a simulation study and the method is able to predict the probability of toxicity
of dose regimens that were not tested in the trial.

The previous work focused on modeling the PD-related toxicity, however other
potential DLT (DLTo) should be included in the method to recommend the MTD-
regimen. We propose to extend the previous method to include the modeling of
DLTo without PK/PD assumptions on the effect of the dose regimen [?]. We define
the DLT as a bivariate binary endpoint to model the DLTo while preserving the
modeling of the first toxicity with PK/PD. We model the relationship between the
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cumulative probability of DLTo and the cumulative dose administered and develop
three approaches to model the joint probability of DLT from previous models to
account for potential association between toxicities: an independent model, a copula
model and a conditional model. Our approaches can improve the performance of
selection of the MTD-regimen in most simulated scenarios compared to the dose-
escalation method implemented and can predict the DLT probability of new dose
regimens that were not tested in the trial.

To conclude, our modeling proposal, to be applied at the end of the dose-
escalation stage of the trial, can recommend the MTD-regimen and propose alterna-
tive dose regimens for expansion cohorts using additional information from PK/PD
and various toxicity types.

Keywords: Dose regimens, pharmacokinetics and pharmacodynamics, Bayesian
inference, early phase trials in oncology, bivariate toxicity.
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Résumé

Titre : Modélisation Bayésienne de la toxicité pour l’évaluation de régimes de
doses en essais de phase précoce en oncologie intégrant l’analyse pharmacocinétique
et pharmacodynamique

Résumé : Les essais de phase I en oncologie cherchent à évaluer la toxicité du nou-
veau médicament et permettent d’affiner l’information sur le mécanisme d’action de
la molécule, notamment par des études pharmacocinétiques et pharmacodynamiques
(PK/PD). Leur objectif est de déterminer la dose maximale tolérée (MTD) définie
comme la dose la plus élevée qui ne dépasse pas une certaine probabilité de tox-
icité dose-limitante (DLT) [42, 118]. La DLT est une toxicité binaire définie par
l’occurrence d’effets indésirables graves. Des designs séquentiels d’escalade de dose
ont été développés pour déterminer la MTD après un cycle de traitement, comme
le 3+3 [144] ou la méthode de réévaluation continue (CRM) [119]. L’évaluation de
régimes de doses, définis comme la combinaison du plan d’administration (fréquence
et mode) et de la dose, peut permettre de réduire le risque de toxicité tout en main-
tenant une efficacité future. Certains designs ont été développés pour évaluer le plan
d’administration en plus de la dose, mais ils ne permettent pas de considérer une hy-
pothèse complexe sur la toxicité. Dans un essai de phase I (NCT03594955 [14]), des
régimes de doses complexes, définis par une escalade de dose intra-patient, ont été
mis en place afin de réduire le risque de la toxicité majeure attendue : le syndrome
de libération des cytokines (cytokine release syndrome, CRS). Un design classique
d’escalade de dose a été mis en place, mais il ne prend pas en compte l’information
sur les régimes de doses. L’objectif de cette thèse est de développer une méthode,
à appliquer à la fin de l’essai, afin de déterminer le régime de dose maximal toléré
(MTD-régime).

La première partie de la thèse se place dans le contexte de l’essai lors duquel la
réduction du risque de CRS est supposée être liée à la réduction du pic de cytokine,
qui peut être considéré comme un critère PD [147, 38]. Nous proposons une méth-
ode Bayésienne intégrant de la modélisation PK/PD afin de modéliser l’hypothèse
complexe entre la probabilité d’une toxicité reliée à la PD (CRS) et le régime de
doses [64]. Cette méthode modélise la relation entre le régime de doses et le profil
PD à l’aide de modèles non linéaires à effets mixtes puis la relation entre le critère
PD et la probabilité de toxicité à l’aide d’un modèle logistique ou hiérarchique. De
bonnes performances de sélection du MTD-régime ont été observées sur une étude
de simulations et la méthode est capable de prédire la probabilité de toxicité de
régimes de doses qui n’ont pas été testés au cours de l’essai.

Lors du travail précédent, seule la toxicité majeure attendue est modélisée, or
d’autres DLT potentielles (DLTo) devraient également être prises en compte dans la
recommandation du MTD-régime. Nous proposons d’étendre la méthode précédente
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pour inclure la modélisation des DLTo, sans hypothèse PK/PD sur le lien avec le
régime de doses [?]. Nous définissons la DLT comme une variable bivariée binaire
afin de modéliser la DLTo en conservant la modélisation du premier type de toxicité
avec de la PK/PD. Nous modélisons la probabilité cumulée de DLTo avec la dose
cumulée administrée et développons trois approches pour modéliser la probabilité
jointe de DLT à partir des modèles précédents pour prendre en compte une éventuelle
association entre les toxicités : un modèle indépendant, un modèle de copule et
un modèle conditionnel. Nos approches permettent d’améliorer les performances de
sélection du MTD-régime dans la plupart des scénarios de simulation par rapport à la
méthode d’escalade de dose implémentée et peuvent également prédire la probabilité
de DLT de nouveaux régimes de doses qui n’ont pas été testés au cours de l’étude.

En conclusion, notre approche de modélisation, à appliquer à la fin de la phase
d’escalade de dose de l’essai, permet de recommander le MTD-régime et de pro-
poser des régimes de doses alternatifs pour des cohortes d’expansion en utilisant de
l’information additionnelle provenant de la PK/PD et de différents types de toxicité.

Mots clefs : Régimes de doses, modélisation pharmacocinétique et pharmacody-
namique, inférence Bayésienne, essais de phase précoce en oncologie, toxicité bivar-
iée.
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Titre : Modélisation Bayésienne de la toxicité pour l’évaluation de régimes de
doses en essais de phase précoce en oncologie intégrant l’analyse pharmacocinétique
et pharmacodynamique

Contexte et objectifs de la thèse Les essais de phase I constituent la première
étape du développement du médicament chez l’humain et ont lieu après les essais
pré-cliniques, qui sont généralement effectués chez l’animal. L’objectif de ces essais
est d’évaluer la tolérance du médicament et de déterminer la dose pour les futures
phases du développement. Ces essais sont majoritairement effectués sur des volon-
taires sains, sauf pour certaines pathologies comme l’oncologie où la population est
généralement composée de patients ayant reçu plusieurs lignes de traitements qui
ont échoué.

Lors des essais de phase I en oncologie, les patients sont généralement traités
lors de plusieurs cycles de traitement. Au cours d’un cycle, la dose ou le plan
d’administration, constitué du mode d’administration (par exemple voie orale ou
intraveineuse) et de la fréquence (par exemple une ou deux fois toutes les trois
semaines), peuvent varier en cas de trop forte toxicité par exemple. La toxicité est
mesurée par l’occurrence d’effets indésirables qui sont classés en différents grades
selon leur sévérité, du grade 1 qui définit des toxicités mineures jusqu’au grade 5
qui est le décès [8]. Dans ces essais, tous les effets indésirables qui ont lieu au cours
d’une fenêtre temporelle définie sont résumés en définissant une variable de toxicité
binaire, la toxicité dose-limitante (DLT), qui définit des effets indésirables graves.
La DLT est explicitement définie dans le protocole de chaque essai, elle peut par
exemple être définie dès l’occurrence d’un effet indésirable de grade 3.

L’objectif des essais de phase I en oncologie est de trouver la dose maximale
tolérée (MTD) définie comme la dose la plus élevée ayant une probabilité de DLT
acceptable qui est en général la dose ayant la probabilité de DLT la plus proche
d’une cible (par exemple 0.30) au cours du premier cycle de traitement [118]. Cette
recherche de la MTD se base sur l’hypothèse des agents cytotoxiques qui suppose que
la probabilité de toxicité et la probabilité d’efficacité augmentent de façon monotone
avec la dose, ce qui signifie que la MTD a la probabilité d’efficacité la plus élevée
parmi les doses avec une probabilité de toxicité acceptable comme représenté sur la
Figure 6.1 [84]. Ces essais ont également pour objectif d’obtenir plus d’information
sur le mécanisme d’action de la molécule, notamment par des analyses pharma-
cocinétiques (PK), qui étudient la relation entre la dose administrée et l’évolution de
la concentration du médicament dans le corps avec le temps, et des analyses pharma-
codynamiques (PD), qui étudient la relation entre la concentration du médicament
et l’effet biochimique ou physiologique.

Les essais de phase I en oncologie sont soumis à de nombreuses contraintes
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Figure 6.1 – Exemple de courbes de toxicité et d’efficacité

éthiques qui sont notamment d’inclure un petit nombre de patients, d’éviter d’attribuer
des doses trop toxiques mais également d’éviter d’attribuer des doses trop faibles
qui sont supposées être inefficaces dans la mesure où ces essais ont également un
but thérapeutique pour les patients inclus [42]. Dans ce cadre, la randomisation
des patients est donc inacceptable et des designs séquentiels d’escalade de dose ont
été développés où les patients sont inclus par cohortes de petite taille et la dose
attribuée à chaque cohorte dépend de la réponse observées sur les cohortes précé-
dentes. Ces designs sont généralement classés en trois types, ceux basés sur un
algorithme (comme le 3+3 [144]), ceux basés sur un modèle (comme la méthode par
réévaluation continue, CRM [119]) et ceux assistés par un modèle qui combinent la
simplicité des designs algorithmiques avec la performance des designs basés sur un
modèle [182].

Ces designs classiques ont été développés dans le contexte où le médicament est
administré lors d’une seule administration, or, varier le régime de doses, défini par
la combinaison du plan d’administration et de la dose, peut permettre d’améliorer
la tolérance du produit tout en préservant une future efficacité. Certains designs
ont été développés afin d’évaluer le plan d’administration en plus de la dose, mais
ils ne permettent pas de prendre en compte une relation complexe entre la toxic-
ité et le régime de doses qui peut être expliquée par le mécanisme d’action de la
molécule [150, 160, 179]. Bien que les analyses PK/PD sont généralement des ob-
jectifs secondaires lors des essais de phase I en oncologie et peuvent évaluer l’effet
de différents régimes de doses, peu de designs ont été développés pour incorporer
ces données dans la détermination de la MTD [46, 155, 67].

Dans un essai de phase I en cours (NCT03594955 [14]) qui étudie un nouvel
anticorps bispécifique engageant les lymphocytes T [15], la toxicité majeure attendue
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est le syndrome de libération des cytokines (CRS) [137]. La CRS est supposée être
liée au pic de cytokine [147], qui peut être considéré comme un marqueur PD, et il
a été montré qu’administrer de façon répétée le produit peut permettre de diminuer
le pic de cytokine [38]. D’autres toxicités (DLTo) peuvent également avoir lieu, sans
hypothèse a priori sur la relation avec le régime de doses via un marqueur PK/PD,
et peuvent avoir une association avec la CRS [163, 132, 138, 60, 165]. Une escalade
de dose intra-patient, fixée au début de l’essai, a donc été mise en place afin de
diminuer le risque de CRS, où les patients reçoivent un régime de doses défini par
une séquence de doses croissantes suivie par des administrations répétées de la dose
finale reçue. Puisque les différents régimes de doses sont spécifiés avant le début de
l’essai et sont supposés être ordonnés en terme de probabilité de toxicité, un design
3+3 a été choisi pour guider l’escalade de doses [27]. Or le 3+3, comme les designs
classiques d’escalade de dose, ne permet pas de prendre en compte l’information des
administrations multiples de différentes doses qui constituent le régime de doses.
De plus, les designs développés pour optimiser le plan d’administration en plus de
la dose ne prennent pas en compte des hypothèses complexes sur la probabilité de
toxicité comme c’est le cas pour la CRS avec les administrations multiples.

L’objectif de ce travail de thèse est donc de développer une méthode afin de
recommander le régime de dose maximal toléré (MTD-régime) qui permet de pren-
dre une compte une hypothèse complexe sur la toxicité via un marqueur PD (la
réduction du risque de CRS due à la mitigation du pic de cytokine dans le contexte
de l’essai). Ce travail s’est effectué en deux parties. La première partie de la thèse
s’est concentrée sur la modélisation d’une toxicité reliée à un marqueur PD (la CRS
dans le contexte de l’essai) qui a une relation complexe avec le régime de doses, qui
incorpore de la modélisation PK/PD. La deuxième partie du travail s’est intéressée
à l’inclusion des DLTo dans la recommandation du MTD-régime, en conservant la
modélisation incluant de la PK/PD, et en supposant une éventuelle association en-
tre les deux types de toxicité. L’ensemble de la modélisation est représenté sur la
Figure 6.2.

Figure 6.2 – Proposition de modélisation

Modélisation Bayésienne d’une toxicité avec le régime de doses qui in-
corpore de la modélisation PK/PD en essais de phase précoce en on-
cologie [64] Dans cette première partie, l’objectif est de modéliser une relation
complexe entre une toxicité et le régime de doses en incorporant de la modélisation
PK/PD. Ce travail s’inspire de l’essai donné en exemple lors duquel l’escalade de
dose intra-patient permet de diminuer le risque de CRS par la mitigation du pic de
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cytokine, considéré comme un marqueur PD. Nous proposons de modéliser la rela-
tion entre le régime de doses et la probabilité de toxicité en modélisant la relation
entre le régime de doses et le profil PD, puis la relation entre le marqueur PD et la
probabilité de toxicité.

Nous modélisons la relation entre le régime de doses et le profil PD à l’aide
de modèles non linéaires à effets mixtes. Le modèle PK modélise la relation entre
le régime de doses et la concentration de médicament et le modèle PD modélise la
relation entre la concentration et le profil PD (la réponse en cytokine dans le contexte
de l’essai). Ces modèles permettent d’incorporer de la connaissance biologique et
d’inclure de la variabilité entre les patients, qui est supposée être élevée dans ce
type de données. Dans le contexte de l’essai, ces modèles permettent de modéliser la
mitigation du pic de cytokine avec l’escalade de dose intra-patient comme représenté
sur la Figure 6.3.
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Figure 6.3 – Effet de l’escalade de dose intra-patient sur la réponse PK/PD

Pour modéliser la relation entre le marqueur PD et la probabilité de toxicité,
nous proposons deux approches Bayésiennes : un modèle logistique et un modèle
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hiérarchique. Dans ces deux modèles, nous incluons une valeur de population pour
le marqueur PD ce qui nous permet de définir les distributions a priori à partir
des probabilités de toxicité de chaque régime de doses que l’on imagine au début
de l’essai. Nous mesurons l’information apportée par la distribution a priori avec
l’effective sample size (ESS) [109, 175] qui représente le nombre fictif de patients
apportés par cette distribution.

Enfin, pour estimer la probabilité de toxicité de chaque régime de doses en in-
cluant la variabilité inter-individuelle sur la PK/PD, nous proposons une méthode
de Monte-Carlo. Nous définissons alors le MTD-régime comme le régime de doses
ayant la probabilité de toxicité la plus proche de la cible.

Comme notre méthode nécessite que les données PK/PD soient collectées et
que les modèles PK/PD soient développés et fiables, nous avons développé notre
approche pour qu’elle soit appliquée à la fin de la phase d’escalade de dose de
l’essai, ce qui nécessite donc de définir un design afin de guider l’escalade de dose.

Nous avons évalué les performances de notre méthode sur une étude de sim-
ulation, où les modèles PK/PD sont inspirés du blinatumomab, qui est un autre
anticorps bispécifique engageant les lymphocytes T [2, 184, 38]. Nous avons défini
plusieurs scénarios de simulation afin de varier la position du vrai MTD-régime, le
design d’escalade de dose implémenté (3+3 ou CRM modifiée) et le type de régimes
de doses étudiés. Nous avons observé de bonnes performances de sélection du vrai
MTD-régime par rapport au design d’escalade de dose implémenté. Nous avons
également observé de moins bons résultats après un 3+3 qu’une CRM modifiée ce
qui indique que le design d’escalade de dose implémenté a un impact sur les per-
formances de notre méthode et nous recommandons un design plus complexe que le
3+3 afin d’avoir une meilleure qualité de données. De plus, vu que notre méthode
modélise la relation entre le régime de doses administré et la probabilité de toxi-
cité, elle peut prédire la probabilité de toxicité de nouveaux régimes de doses qui
n’ont pas été évalués au cours de l’essai. Notre méthode peut donc permettre de
proposer différents régimes de doses à la fin de l’essai, qui peuvent être évalués sur
des cohortes d’expansion afin de comparer leur efficacité par exemple.

En conclusion, nous avons proposé une approche performante pour recommander
le MTD-régime qui incorpore de la modélisation PK/PD afin de prendre en compte
une hypothèse complexe sur la relation entre une toxicité et le régime de doses. La
première limite de notre approche est qu’elle doit être appliquée à la fin de l’étape
d’escalade de dose, pour que les données PK/PD soient collectées et les modèles
PK/PD soient développés, et donc le design d’escalade de dose implémenté peut
impacter les résultats. Notre méthode nécessite également de fortes hypothèses sur
le mécanisme générant la toxicité, mais elle peut être étendue à d’autres critères
PK/PD.

Modélisation Bayésienne d’une toxicité bivariée avec le régime de doses
en essais de phase précoce en oncologie [?] Dans le travail précédent, nous
avons proposé une méthode pour recommander le MTD-régime qui modélise un
certain type de toxicité ayant une relation complexe avec le régime de doses en
incorporant de la modélisation PK/PD. Or d’autres toxicités, appelées DLTo, peu-
vent également avoir lieu et doivent être prises en compte dans la recommandation
du MTD-régime. Étant donné que le mécanisme d’action générant les DLTo n’est
pas connu contrairement au premier type de toxicité et n’est pas a priori lié à un
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critère PK/PD, nous proposons de modéliser la DLT, Y , comme une variable bivar-
iée binaire définie par Y = max

(
Y (1), Y (2)

)
où Y (1) est le premier type de toxicité

supposée être reliée au critère PD, et Y (2) est la DLTo. Y (1) est modélisée avec de
la PK/PD comme présenté dans le premier travail. Pour Y (2), comme le mécanisme
générant la toxicité n’est pas connu, nous proposons de modéliser la probabilité cu-
mulée de toxicité avec la dose cumulée administrée afin de prendre en compte les
administrations multiples [154]. Comme pour le premier travail, nous définissons les
distributions a priori à partir des probabilités de DLT de chaque régime de doses que
l’on imagine au début de l’essai, en supposant que Y (1) et Y (2) sont indépendantes
avec des probabilités de toxicité égales. Nous mesurons l’information apportée par
la distribution a priori avec l’ESS. Enfin, nous proposons trois méthodes jointes pour
modéliser la probabilité de DLT, en supposant que les deux types de toxicité, Y (1) et
Y (2), peuvent être associés. Nous proposons d’abord un modèle indépendant en sup-
posant que les deux types de toxicité sont indépendants. Nous proposons ensuite
un modèle de copule qui permet de modéliser la probabilité de DLT à partir des
probabilités marginales de chaque type de toxicité et d’un paramètre d’association.
Finalement, puisque nous supposons que les deux types de toxicité n’ont pas lieu
au même moment au cours de l’administration, c’est-à-dire que la toxicité liée au
critère PD a tendance à avoir lieu au début des administrations alors que les DLTo

ont lieu à la fin du régime de doses, nous proposons de modéliser la probabilité de Y
à partir de la probabilité marginale de Y (1) et de la probabilité conditionnelle de Y (2)

sachant que l’on n’a pas observé Y (1). Cette méthode permet de prendre en compte
l’association entre les deux types de toxicité, sans la modéliser explicitement.

Nous avons évalué les performances de nos trois approches jointes sur une étude
de simulation où les modèles PK/PD sont inspirés du blinatumomab. Pour simuler
les DLTo, nous définissons les probabilités de DLTo à chaque administration condi-
tionnellement au fait qu’il n’y a pas eu de DLTo lors des administrations précédentes
et conditionnellement au fait que le premier type de toxicité a lieu ou non afin de
définir l’association entre les deux types de toxicité. Nous mesurons cette associa-
tion entre les deux types de toxicité par le risque relatif qui représente la probabilité
d’observer une DLTo sachant que le premier type de toxicité aura lieu. Nous avons
défini plusieurs scénarios de simulation afin d’évaluer l’effet de la position du vrai
MTD-régime, l’association entre les deux types de toxicité et la proportion de chaque
type de toxicité et nous appliquons nos méthodes jointes à la fin de l’essai simulé
sous une CRM modifiée. Nos méthodes jointes ont de meilleures performances de
sélection du vrai MTD-régime par rapport à la CRM dans la majorité des scénar-
ios. En cas de faible association entre les deux types de toxicité, les trois méthodes
jointes ont des résultats similaires. Or, quand l’association augmente, le modèle de
copule et le modèle conditionnel semblent avoir de meilleurs résultats que le modèle
indépendant puisque qu’ils prennent en compte l’association entre les deux types de
toxicité. Nous avons également observé que le modèle indépendant et le modèle de
copule ont tendance à sous estimer la probabilité marginale de DLTo. En effet, vu
que l’on suppose que les toxicités liées à la réponse PD ont plutôt tendance à avoir
lieu au début du régime de doses et que l’administration du médicament est arrêtée
si une DLT a lieu, on n’observe les DLTo que lorsque les toxicités reliées à la PD
n’ont pas lieu, sauf dans le cas où les deux toxicités arrivent après la même admin-
istration. Enfin, nos trois méthodes jointes modélisent la relation entre le régime
de doses et la probabilité de DLT et peuvent donc prédire la probabilité de DLT
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de régimes de doses qui n’ont pas été testés au cours de l’essai, mais qui pourraient
avoir une pertinence clinique, au niveau de l’efficacité par exemple.

En conclusion, nous avons proposé une approche qui permet de modéliser ex-
plicitement une toxicité d’intérêt ayant une relation complexe avec le régime de
doses par de la modélisation PK/PD tout en prenant en comptes d’autres toxicités
qui peuvent avoir lieu et être associées au premier type de toxicité. Au niveau des
limites, notre approche a été développée pour être appliquée à la fin de la phase
d’escalade de dose de l’essai par rapport à la disponibilité des données PK/PD mais
également car elle nécessite d’avoir assez de données collectées pour effectuer les
différentes étapes de modélisation. Nous avons également observé que le paramètre
du modèle de copule était difficile à estimer, même en cas de forte association entre
les deux types de toxicité. Enfin, nous avons considéré un modèle simple sur les
DLTo car il est possible qu’un faible nombre de ce type de toxicité soit observé et
peu d’hypothèses sont disponibles contrairement au premier type de toxicité.

Perspectives La modélisation du premier type de toxicité s’est concentrée sur
un critère PD (le pic de cytokine dans le contexte de l’essai donné en exemple),
mais notre approche de modélisation peut être étendue à d’autres critères. Une
extension de ce travail pourrait être de modéliser la DLTo avec un critère PK (par
exemple l’AUC) ce qui permettrait d’intégrer directement la sensibilité du patient
au médicament. Dans notre travail, la recommandation du MTD-régime est basée
sur l’estimation de la probabilité de toxicité, or une extension de ce travail serait de
baser cette recommandation sur des intervalles de toxicité afin de prendre en compte
toute l’information sur la distribution a posteriori. Enfin, une dernière extension de
ce travail pourrait être de considérer des données de temps à l’événement à la place
de données longitudinales.
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Appendix A

Bayesian inference

A.1 Bayesian paradigm

Bayesian and frequentist approaches have different philosophies. In the Bayesian
approach, all unknowns have probability distributions while in the frequentist ap-
proach, the probability is only defined for the data. In particular, for Bayesians,
parameters are random unobserved variables while for frequentists, parameters are
fixed unknowns quantities [24].

Let y be the observed data and θ the parameter. Bayesian inference is based on
the property of conditional distributions, known as Bayes’ rule [63]:

p (θ, y) = p (θ|y) p (y) = p (y|θ) p (θ) (A.1)

Equation A.1 leads to

p (θ|y) =
p (y|θ) p (θ)

p (y)
(A.2)

• p (y|θ) can be seen as a function of θ with y fixed which is then is the likelihood
of observations defined with a probability model

• p (θ) is the prior distribution that summarizes all information on the parameter
before observing the data

• p (y) =

∫

Θ

p (y|θ) p (θ) dθ is the marginal distribution of data

• p (θ|y) is the posterior distribution that updates the information on the pa-
rameters after collecting the data

For example, let’s assume that we aim to estimate the probability of response of
a binary endpoint in a cohort, and observe y = 5 patients who respond in a cohort of
10 patients. We can model the number of responses in the cohort using a binomial
model and calculate the likelihood represented in Figure A.1. For the prior, we can
choose a beta distribution and define the parameters based on the amount of initial
knowledge. Figure A.1 illustrates three choices of prior information, from the least
informative one in the left part to the most informative one in the right part. In
case of a non informative prior (left part), the posterior distribution is very close
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to the likelihood. In case of a quite informative prior (middle part), the posterior
distribution is influenced by both the prior and the likelihood. In case of a very
informative prior, the posterior is mostly influenced by the prior distribution.
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Figure A.1 – Illustration of Bayes’ rule with the beta-binomial model for various
prior distributions. The dashed vertical line represents the maximum likelihood
estimator.

The choice of the prior distribution is therefore crucial in Bayesian inference and
should be carefully selected as it can have a strong impact on the inference. In
the context of clinical trials, the prior distribution can be defined from clinicians’
opinion or from previous data, for example from previous trials of the same molecule
in the same or a different population or from trials of a similar molecule.

Bayesian inference is mainly based on the posterior distribution from which sev-
eral point estimates can be defined as the mean or maximum a posteriori and the
credible interval can be defined but the entire posterior distribution can also be used
for the inference.
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A.2 Computation of the posterior distribution

The main challenge for Bayesian methods is the computation of the posterior dis-
tribution. In simple cases, the posterior distribution can be computed in a closed
from. A convenient case is conjugacy meaning that the posterior distribution follows
the same parametric form as the prior distribution (for example the beta-binomial
model). However, for more complex models, Markov chain Monte Carlo (MCMC)
algorithms have been developed to sample from the posterior distributions. The
idea of MCMC is to simulate a Markov Chain whose stationary distribution is the
posterior distribution. In practice, at each iteration t of the algorithm, parame-
ter θ(t) is sampled from the previous sampled value θ(t−1), and for a large number
of iterations, the distribution of the current sampled values should be close to the
stationary distribution. Multiple MCMC algorithms have been developed [63].

Gibbs sampler: This algorithm assumes that samples can be generated from each
of their conditional distributions. Let θ = (θ1, . . . , θK).

For each iteration t:

• Draw θ
(t)
1 from p

(
θ1|θ(t−1)

2 , θ
(t−1)
3 , . . . , θ

(t−1)
K , y

)

• Draw θ
(t)
2 from p

(
θ2|θ(t)

1 , θ
(t−1)
3 , . . . , θ

(t−1)
K , y

)

. . .

• Draw θ
(t)
K from p

(
θK |θ(t)

1 , θ
(t)
2 , . . . , θ

(t)
K−1, y

)

This algorithm can be used for conditionally conjugates models.

Metropolis-Hastings algorithm: This rejection algorithm can be used when
we cannot sample directly from conditional distributions and is based on a proposal
distribution g.

For each iteration t:

• Draw θ? from a proposal distribution g
(
θ?|θ(t−1)

)

• Calculate r =
p (θ?|y) g

(
θ(t−1)|θ?

)

p (θ(t−1)|y) g (θ?|θ(t−1))

• Set θt =

{
θ? with probability min (1, r)
θt−1 otherwise

The Metropolis-Hastings algorithm can be implemented when p is specified up
to a constant. This feature is particularly useful in Bayesian inference where the
posterior distribution is proportional to the product of the likelihood and the prior,
p (θ|y) ∝ p (y|θ) p (θ). The Gibbs sampler and the Metropolis-Hastings algorithm
can be combined in case we can directly sample from some conditional distributions,
and not from others.
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Hamiltonian Monte Carlo: The idea of Hamiltonian Monte Carlo comes from
physics and the algorithm aims to explore more efficiently the target distribution
using information on its geometry by defining the gradient of the target distribution
and auxiliary momentum parameters [26]. This algorithm is implemented in stan
software [16]. Betancourt [26] explains the concept of Hamiltonian Monte Carlo and
proposes an analogy in physics where a planet represents the mode of the target
distribution, the planet’s gravitational field represents the gradient of the target
density and the space around the planet where we want an object (as a satellite) to
orbit represents the set to explore. To avoid the satellite to crash in the planet or the
satellite to be lost in space, we have to add enough, but not too much, momentum
for the satellite to orbit.

Let p (θ) be the distribution to sample (is our case, this corresponds to the
posterior distribution p (θ|y)). Let ρ be the auxiliary momentum variables that
usually follow a multivariate normal distribution ρ ∼ N (0,M).

The joint distribution p (ρ, θ) = p (ρ|θ) p (θ) defines a Hamiltonian as follows:

H (ρ, θ) = T (ρ|θ) + V (θ) (A.3)

where T (ρ|θ) = − log (p (ρ|θ)) is the kinetic energy and V (θ) = − log (p (θ)) is
the potential energy.

For each iteration t:

• Draw ρ from its distribution N (0,M) and set θ = θ(t−1)

• Solve the Hamiltonian system





dθ

dt
= +

∂H

∂ρ
= +

∂T

∂ρ
dρ

dt
= −∂H

∂θ
= −∂V

∂θ

, assuming that the

momentum density is independent from the target density. This system can
be numerically solved by L leapfrog steps where ε is a small time interval:

• ρ← ρ− ε

2

∂V

∂θ

• θ ← θ + εM−1ρ

• ρ← ρ− ε

2

∂V

∂θ

• Metropolis acceptance step for the state at the end of the leapfrog algorithm
(ρ?, θ?). Calculate r = exp

(
H
(
ρ(t−1), θ(t−1)

)
−H (ρ?, θ?)

)
.

Set θ(t) =

{
θ? with probability min (1, r)

θ(t−1) otherwise

ParametersM , ε and L can be tuned in stan, in particular the number of leapfrog
steps can be dynamically adapted with the no-U-turn sampling algorithm.
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PK/PD models and estimation

B.1 Details on the PK/PD models

Blinatumomab is a BiTE that binds to both CD3 expressed on T cells and CD19
expressed on B cells [2]. It was initially approved by the FDA for the treatment
of Philadelphia chromosome-negative relapsed or refractory acute lymphoblastic
leukemia, was granted accelerated approval in B-cell precursor acute lymphoblastic
leukemia [3].

Zhu et al. [184] performed a population PK analysis with nonlinear mixed effects
models using the data from 4 studies of blinatumomab administered in continuous
IV in various indications with doses ranging from 0.5 to 90 µg/m2/day or 9 to 28
µg/day. They selected a one compartment linear model where parameters were
lognormally distributed. Estimated parameters are defined in Table B.1, where the
clearance parameter was defined from one subpopulation as they found a bimodal
distribution for the clearance parameter. They also found that the cytokines values
increased quickly with the dose after the infusion of blinatumomab during the first
week of therapy, among which IL-10, IL-6, and IFN-γ.

Chen et al. [38] developed a PD model for the cytokine response of blinatumomab
from a phase I trial in patients with relapsed non-Hodgkin lymphoma. Cytokine
profiles were available after either a step dose of 5 to 15 µg/m2/day or a single dose
of 60 µg/ m2/day. To model cytokine mitigation with multiple administrations, they
assumed that cytokine production was stimulated by the release, RL, but inhibited
by the negative feedback, IH, as illustrated in Figure B.1.

Cytokine R kdeg
RL+

IH−

Figure B.1 – Cytokine model.

The cytokine model is defined as follows:

dR(t)

dt
= RL (1− IH)− kdegR(t), (B.1)
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where R is the cytokine response, RL is the release, IH is the negative feedback
and kdeg is the first order degradation rate.

The cytokine release is stimulated by the synapse modeled as follows:

RL(t) =
EmaxSyn(t)H

ECH
50 + Syn(t)H

, (B.2)

where Syn is the synapse concentration, Emax is the maximum cytokine release
rate, EC50 is the synapse concentration to achieve 50% of maximum cytokine release
rate and H is the Hill coefficient.

For blinatumomab, synapse concentration is impacted by tumor cell kinetics as
follows:

Syn(t) = C(t) ∗ Tutot(t), (B.3)

where C is drug concentration and

dTutot(t)

dt
= −kkillTutot(t) (B.4)

To simplify the PD model in our work, we assumed that synapse concentration
is mainly based on drug concentration, as for solid tumors, meaning that

Syn(t) = C(t) (B.5)

Finally, cytokine production is inhibited by the negative feedback parameter
defined from the AUC of the cytokine response, AUCR as follows:

IH(t) =
ImaxAUCR(t)

IC50

KN-1 + AUCR(t)

, (B.6)

where Imax is the maximum inhibition, IC50 is the cumulative cytokine exposure
to achieve 50% of the maximum inhibition, K is the priming factor and N is the
number of doses. Chen et al. [38] focused on the first two doses, meaning that N=2.

For our simulations, we therefore considered the following PD model for the
cytokine response:

dR(t)

dt
=

EmaxC(t)H

ECH
50 + C(t)H


1− ImaxAUCR(t)

IC50

KN-1 + AUCR(t)


− kdegR(t) (B.7)

The PK parameters estimated by Zhu et al. [184] and the PD parameters esti-
mated by Chen et al. [38] are displayed in Table B.1.
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Parameter Estimated Value for Unit Description
value [184, 38] simulations

(%CV) (%CV)
P
K

m
od

el

Cl L/h1.36 1.36 Clearance
(41.9) (41.9) of elimination

V L3.40 3.40 Volume of
(0) (0) distribution

P
D

m
od

el

Emax pg/mL/h3.59 . 103 3.59 . 105 Maximum cytokine
(14) (14) release rate

EC50 ng/mL

Drug exposure
1.00 . 104 1.00 . 104 for half-maximum

(0) (0) cytokine
release rate

H 9.20 . 10−1 9.20 . 10−1 Hill coefficient for
(3) (3) cytokine release

Imax
1 0.995 Maximum inhibition
(0) (0) of cytokine release

IC50 pg/mL/h

Cytokine exposure
1.82×102 1.82×104 for half-maximum

(12) (12) cytokine inhibition

kdeg h−11.80 . 10−1 1.80 . 10−1 Degradation rate
(13) (13) for cytokine

K 2.83 2.83 Priming factor
(36) (36) for cytokine release

Table B.1 – Estimated PK/PD parameters for blinatumomab [184, 38] and PK/PD
parameters used for the simulations.

We considered some modifications of the PD parameters for our simulation stud-
ies, as shown in Table B.1, to mimic our assumptions on the motivating trial. To
define the changes, we can show the PK/PD profiles obtained for the dose regimens
given in Section 3.1 and displayed in Table B.2.

125



APPENDIX B. PK/PD MODELS AND ESTIMATION

Day 1 Day 5 Day 9 Day 13 Day 17 Day 21 Day 25
S1 1 5 10 10 10 10 10
S2 1 5 10 20 20 20 20
S3 5 10 20 40 40 40 40
S4 5 10 20 60 60 60 60
S5 10 20 60 100 100 100 100
S6 10 20 60 120 120 120 120

Table B.2 – Example of a panel of dose regimens defined with intra-patient dose-
escalation (doses in µg/kg).

Population PK profiles obtained after the first 5 administrations of these dose
regimens (assuming 4 hours of infusion) with the parameters estimated by Zhu et
al. [184] are shown in Figure B.2.
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Figure B.2 – Concentration profiles from Zhu et al. [184].

The cytokine profiles using the model defined in Equation B.7 after the first 5
administrations of these dose regimens with the parameters estimated by Chen et
al. [38], are shown in Figure B.3. With these parameters, the peak of cytokine occurs
during the first administration. To allow more flexibility in the timing of occurrence
of the peak of cytokine, we modified the value of the Imax parameter and we increased
the values of Emax and IC50 to increase the scale of the cytokine response. With
these new parameters, the population cytokine profiles are illustrated in Figure B.4.
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Figure B.3 – Cytokine profiles from the model defined in Equation B.7 using the
initial parameters from Chen et al. [38].
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Figure B.4 – Cytokine profiles from the model defined in Equation B.7 using the
modified parameters.
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B.2 Estimation of population parameters for non-
linear mixed effects models

In this part, a general overview of estimation methods for nonlinear mixed effects
models is provided, based on [17, 45].

In the context of nonlinear mixed effects models, we consider the model intro-
duced in Section 2.1.3 defined as follows:

yi,j = f (θi,xij) + g (θi,xi,j , ξ) εij, εij ∼ N (0, 1) , (B.8)

where f and g are nonlinear functions, and θi are the patient’s individual param-
eters defined from the individual random effects ηi. Let Ψ denote the population
parameters that can be estimated by maximum likelihood, where the likelihood is
defined as follows:

L (Ψ;y) =
n∏

i=1

∫
p (yi|ηi,Ψ) p (ηi,Ψ) dηi (B.9)

As this likelihood does not have an analytical expression, first approaches pro-
posed to estimate the likelihood, for example using its first order approximation
(FO or FOCE) [136, 98]. With these approximations, the maximum likelihood esti-
mate can be obtained with a standard algorithm, for example the Newton-Raphson
iterative algorithm. But the main drawback of these methods are the approxima-
tion of the likelihood. Furthermore, the Newton-Raphson can converge to a local
minimum/maximum.

The Expectation-Maximization (EM) algorithm is an alternative iterative method
to estimate the maximum likelihood, which was developed for partially observed
data. In the case of nonlinear mixed effects models, the individual random effects
ηi can be considered as missing data. Each iteration k of the EM algorithm updates
the estimation from Ψk−1 to Ψk and is divided in two steps:

• Expectation (E): Evaluation of the conditional expected value of the log
likelihood since the individual random effects are not observed

Q (Ψ|y,Ψk) = E [log (L (Ψ;y,η)) |y,Ψk] (B.10)

• Maximization (M): Ψk+1 defined by maximizing previous quantity

Ψk+1 = arg max
Ψ

(Q (Ψ|y,Ψk)) (B.11)

However, with nonlinear mixed effects models, the quantity defined in step (E)
cannot be computed in a closed form, but can be approximated. For example, in
the Monte Carlo EM algorithm [164], the Q function in step (E) is approximated by
Monte Carlo simulations. The Stochastic Approximation EM (SAEM) [52] replaces
the (E) step by two steps at each iteration k:

• Simulation (S) : The random effects for all individuals (η(k)) are simulated
from the conditional distribution p (η|y,Ψk−1). An MCMC algorithm can be
used when η(k) cannot be simulated exactly under the conditional distribu-
tion [82].
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• Stochastic approximation (SA) :

Q (Ψ|y,Ψk) = Q (Ψ|y,Ψk−1) + γk

(
log

(
L
(
Ψ;y,η(k)

))

−Q (Ψ|y,Ψk−1)

)
(B.12)

where γ is a positive decreasing sequence

The SAEM algorithm therefore calculates the maximum likelihood estimate with-
out computing the likelihood, which can be calculated at the end of the algorithm.
SAEM was shown to be efficient and is implemented in monolix software [7].
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Supporting information for Bayesian dose-regimen assessment in
early phase oncology incorporating pharmacokinetics and

pharmacodynamics by Emma Gerard, Sarah Zohar, Hoai-Thu Thai,
Christelle Lorenzato, Marie-Karelle Riviere and Moreno Ursino

Web Appendix A: Toxicity probability for the hierarchical-DRtox

The prediction of the toxicity probability of a new patient having rMi as summary PD endpoint for
the hierarchical-DRtox can be obtained as:

P (Yi = 1) = 1− P (Yi = 0)
= 1− P (Yi,1 = 0, ..., Yi,ji = 0)

= 1− P

{
Zi > log

(
ri,1

rMk50

)
, ..., Zi > log

(
ri,j

rMk50

)}

= 1− P

{
Zi > log

(
rMi
rMk50

)}

= Fz

{
log

(
rMi
rMk50

)}

(1)

Web Appendix B: Definition of the PK/PD models

For the PK model, we considered a one-compartment infusion model. Let T (j)
inf be the duration of the

infusion of the jth administration. We assumed that the delay between successive doses was greater
than infusion duration, meaning that tj+1− tj > Tinfj for j ∈ {1, ..., J − 1}. Let V be the distribution

volume, Cl the clearance of elimination and k the micro-constant defined as k =
Cl

V
. The concentration

is then computed as:

C(t) =

J∑

j=1

1{t−tj>Tinfj
}
dk,j
Tinfj

1

kV

(
1− e−kTinfj

)
e
−k

(
t−tj−Tinfj

)
+

1{t−tj≤Tinfj
& t−tj≥0}

dk,j
Tinfj

1

kV

{
1− e−k(t−tj)

}
(2)

For the PD model developed by Chen et al. (2019), the cytokine profile is the result of cytokine
release (RL), inhibition effect on cytokine release (IH) and first order degradation (kdeg):

dE (t)

dt
= RL (1− IH)− kdegE (t) (3)

They modeled that cytokine is released due to the synapse created by the binding of the drug to
both T-cells and tumor cells as

RL =
EmaxSyn (t)

H

EC50
H + C (t)H

(4)

1



where Syn (t) is the synapse concentration. To simplify, we assumed that Syn (t) = C(t) mean-
ing that only longer treatment will impact tumor burden as for solid tumors. Emax represents the
maximum cytokine release rate and EC50 represents the synapse (or drug for our simplification) to
achieve 50% of maximum cytokine release rate. The Hill coefficient H represents the slope of the
exposure-response relationship.

Finally they modeled the inhibition effect as

IH =
ImaxAUCE (t)
IC50

KJ−1 +AUCE (t)
(5)

where AUCE (t) =

∫ t

x=0
E (x) dx, Imax is the maximum inhibition, IC50 is the cumulative cytokine

exposure to achieve 50% of the maximum inhibition, K is the priming factor upon repeating dosing
and J is the number of doses of the regimens.

Web Appendix C: Definition of the dose-regimens

Table 1: Panel of dose-regimens from S1 to S6 for the three main scenarios (in mcg/kg).

Day 1 Day 5 Day 9 Day 13 Day 17 Day 21 Day 25

Scenario 1

S1 1 5 10 10 10 10 10
S2 1 5 10 20 20 20 20
S3 1 5 10 25 25 25 25
S4 5 10 25 50 50 50 50
S5 10 25 50 75 75 75 75
S6 10 25 50 100 100 100 100

Scenario 2

S1 1 5 10 25 25 25 25
S2 5 10 25 50 50 50 50
S3 10 25 50 75 75 75 75
S4 10 25 50 100 100 100 100
S5 10 25 50 100 150 150 150
S6 25 50 100 150 200 200 200

Scenario 3

S1 1 5 10 20 30 40 40
S2 1 5 10 20 40 40 40
S3 5 10 20 40 40 40 40
S4 10 20 40 40 40 40 40
S5 20 40 40 40 40 40 40
S6 40 40 40 40 40 40 40
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Web Appendix D: Flowchart of the 3+3 escalation scheme

3 patients at dose-level i

?? ?

0/3 DLT

?

1/3 DLT

?

>1/3 DLTs

?

Add 3 more patients

? ?

1/6 DLT >1/6 DLTs

Escalate to dose-level i+1 Dose-level i-1 is the MTD

Figure 1: Flowchart of the 3+3 escalation scheme inspired from Chevret et al. (2006), the 3+3 design
is a special case of the A+B design with A=B=3 and C=D=E=1.

Web Appendix E: Prior effective sample size approximation

Prior effective sample size (ESS) is a value to quantify the information provided by a prior defined as
the sample size of a previous trial where the posterior obtained is the prior distribution (Yuan, Nguyen,
and Thall, 2017). Morita, Thall, and Müller (2008) have argued that a beta(a, b) distribution has ef-
fective sample size a+ b. They proposed a definition for prior ESS of a parametric prior distribution,
and compared it to a simple method (the crude method). The idea of the crude method is to define one
or more probabilities, and match the prior mean and variance with those of a beta(a, b) to obtain the
prior ESS. We will develop the crude method to approximate prior ESS for the logistic-DRtox model
and the hierarchical-DRtox.

Let
((
β
(1)
0 , β

(1)
1

)
, ...,

(
β
(N)
0 , β

(N)
1

))
and

((
µ
(1)
z , τ

(1)
z

)
, ...,

(
µ
(N)
z , τ

(N)
z

))
be N -samples, where N is

large, from the prior distributions for the logistic-DRtox and the hierarchical-DRtox. Let p(n)1,k and p(n)2,k ,
for n ∈ {1, ..., N} and k ∈ {1, ...,K}, be the probabilities for the nth component of the prior vector
and dose-regimen Sk defined as:





p
(n)
1,k = π1

{(
β
(n)
0 , β

(n)
1

)
, rMk

}

p
(n)
2,k = π2

{(
µ(n), τ (n)

)
, rMk

}

Let µ1,k and σ21,k be the mean and variance of
(
p
(1)
1,k, ..., p

(N)
1,k

)
and µ2,k and σ22,k be the mean and

3



variance of
(
p
(1)
2,k, ..., p

(N)
2,k

)
.

The prior effective sample size for Sk can be approximated as:




ESS1,k =
µ1,k (1− µ1,k)

σ21,k
− 1

ESS2,k =
µ2,k (1− µ2,k)

σ22,k
− 1

The global prior ESS over all dose-regimens of a scenario can be approximated as:




ESS1 =
1

K

K∑

k=1

ESS1,k

ESS2 =
1

K

K∑

k=1

ESS2,k

Values given in the simulation settings correspond to mean global ESS over the 6 scenarios.

Web Appendix F: Additional results

In this part we displayed additional simulation results obtained on the scenarios presented in the
manuscript, results obtained on additional scenarios and results obtained with a stronger prior and
those obtained when increasing the variability in toxicity.

To evaluate the impact of the prior distributions, we compared the main results with those obtained
with a stronger prior distribution measured with an approximate ESS of 9, which is high for a trial
including 30 patients. As the prior distributions are based on Scenario 1, stronger prior information
increased the performance in the scenarios in which the dose-regimen toxicity relationship is similar to
that in Scenario 1 (Scenarios 1, 3, 5 and 6), but the performance was decreased in Scenario 4. Therefore,
defining prior distributions using reliable data from previous studies can increase the performance, but
attention should be paid to the quality and quantity of the information used to avoid decreasing the
performance.

We also observed that our methods were robust to an increase in the variability in toxicity by
increasing ωα from 0.25 to 0.5 while maintaining the PK/PD variability unchanged.

All these results are displayed in the following sections

4



Web Appendix F.1: Additional results on the main scenarios (ωα = 0.25)
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Web Figure 2: Violin plots of the estimated toxicity probabilities for an additional scenario where the
dose-regimen panel missed the true MTD-regimen and scenario 3 on 1000 trials implemented with the
3+3. The predicted toxicity probability on a new regimen Snew is framed in dotted line. Horizontal
lines on the density estimates represent the median and first and third quantiles of the distributions
and the plus sign represents the mean. The dashed line represents the toxicity target and the solid
line represents the true toxicity probabilities.
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Web Figure 3: Violin plots of the estimated toxicity probabilities for scenarios 1 and 2 on 1000 trials
implemented with the CRM including 30 patients. Horizontal lines on the density estimates represent
the median and first and third quantiles of the distributions and the plus sign represents the mean. The
dashed line represents the toxicity target and the solid line represents the true toxicity probabilities.
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Web Figure 4: Violin plots of the estimated toxicity probabilities for scenarios 1 and 2 on 1000 trials
implemented with the 3+3. Horizontal lines on the density estimates represent the median and first and
third quantiles of the distributions and the plus sign represents the mean. The dashed line represents
the toxicity target and the solid line represents the true toxicity probabilities.
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Web Figure 5: Boxplots of the RMSE of estimated toxicity probabilities on all the dose-regimens of
the panel and on the MTD-regimen and its neighbors from the panel for scenarios 1, 2 and 3 on 1000
trials implemented with the CRM including 30 patients. The plus sign represents the mean and error
bars represent the first and ninth deciles.
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Web Figure 6: Boxplots of the RMSE of estimated toxicity probabilities on all the dose-regimens of
the panel and on the MTD-regimen and its neighbors from the panel for scenarios 1, 2 and 3 on 1000
trials implemented with the 3+3. The plus sign represents the mean and error bars represent the first
and ninth deciles.
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Web Appendix F.2: Additional scenarios (ωα = 0.25)
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Web Figure 7: The first 3 subplots represent the panel of dose-regimens for 3 additional scenarios from
S1 in spaced dashed line to S6 in solid line, where the type of points is specific to each scenario. In the
lower right corner, the dose-regimen toxicity relationship is represented for each scenario, where the
MTD-regimen is the dose-regimen having the toxicity probability the closest to the target δT plotted
in dashed line.
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Web Table 2: Proportions that each dose-regimen is being selected as the MTD-regimen over the 1000
trials for the 3 additional toxicity scenarios and the 2 dose allocation designs, either the 3+3 design
or the CRM. For each scenario, the PCS on the true MTD-regimen are represented in bold. For each
dose allocation design, the mean sample size at each dose-regimen is displayed.

S1 S2 S3 S4 S5 S6

Scenario 4 0.01 0.02 0.05 0.09 0.17 0.3

3+3

Mean sample size 3.1 3.1 3.4 3.6 3.5 3
Logistic-DRtox 0.3 0.6 2 9.9 21.9 65.3
Hierarchical-DRtox 0.1 0.8 2 9.3 23.8 64
3+3 0.9 2 9.3 17.5 33.9 36.4

CRM

Mean sample size 3.1 3 3.1 3.6 5.4 11.8
Logistic-DRtox 0 0 0 0.8 21.2 78
Hierarchical-DRtox 0 0 0 0.4 19.9 79.7
Logistic CRM 0 0 0 1.1 19.2 79.7

Scenario 5 0.04 0.08 0.15 0.26 0.32 0.43

3+3

Mean sample size 3.4 3.6 3.6 3.1 2 0.9
Logistic-DRtox 3.5 5.5 21.1 30.2 23 16.7
Hierarchical-DRtox 2.7 6.2 19.6 33.3 24 14.2
3+3 8.4 17.2 29.2 24.1 15.4 5.7

CRM

Mean sample size 3.5 3.5 5.2 7 5.9 4.8
Logistic-DRtox 0 0.2 11.6 34.7 30.2 23.3
Hierarchical-DRtox 0 0.2 9.2 37.3 34 19.3
Logistic CRM 0 0.6 9.7 28 34.4 27.3

Scenario 6 0.01 0.1 0.17 0.3 0.42 0.51

3+3

Mean sample size 3.1 3.7 3.8 3.2 1.7 0.4
Logistic-DRtox 0.1 8.2 23.7 43 20.4 4.6
Hierarchical-DRtox 0 8.8 25.6 47.4 16 2.2
3+3 7.5 19.5 33.6 28.6 8.8 2

CRM

Mean sample size 3.1 3.5 5.7 8.9 6.1 2.7
Logistic-DRtox 0 0.4 18.5 63.6 15.6 1.9
Hierarchical-DRtox 0 0.4 17.6 67.8 13.5 0.7
Logistic CRM 0 0.9 13.9 47.2 29.4 8.6
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Web Figure 8: Violin plots of the estimated toxicity probabilities for the 3 additional scenarios on 1000
trials implemented with the CRM including 30 patients. Horizontal lines on the density estimates
represent the median and
first and third quantiles of the distributions and the plus sign represents the mean. The dashed line
represents the toxicity target and the solid line represents the true toxicity probabilities.
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Web Figure 9: Violin plots of the estimated toxicity probabilities for the 3 additional scenarios on 1000
trials implemented with the 3+3. Horizontal lines on the density estimates represent the median and
first and third quantiles of the distributions and the plus sign represents the mean. The dashed line
represents the toxicity target and the solid line represents the true toxicity probabilities.
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Web Figure 10: Boxplots of the RMSE of estimated toxicity probabilities on all the dose-regimens of
the panel and on the MTD-regimen and its neighbors from the panel for the 3 additional scenarios on
1000 trials implemented with the CRM including 30 patients. The plus sign represents the mean and
error bars represent the first and ninth deciles.
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Web Figure 11: Boxplots of the RMSE of estimated toxicity probabilities on all the dose-regimens of
the panel and on the MTD-regimen and its neighbors from the panel for the 3 additional scenarios on
1000 trials implemented with the 3+3. The plus sign represents the mean and error bars represent the
first and ninth deciles.
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Web Appendix F.3: Results with ESS=9 (ωα = 0.25)

Web Table 3: Proportions that each dose-regimen is being selected as the MTD-regimen, with an
ESS close to 9, over the 1000 trials for all toxicity scenarios implemented with the CRM including 30
patients. For each scenario, the PCS on the true MTD-regimen are represented in bold. For each dose
allocation design, the mean sample size at each dose-regimen is displayed.

S1 S2 S3 S4 S5 S6

Scenario 1 0.08 0.11 0.15 0.3 0.44 0.52

CRM

Mean sample size 4.2 3.7 5.6 8.8 5.6 2.1
Logistic-DRtox, ESS9 0 1.2 16.9 70 10.4 1.5
Hierarchical-DRtox, ESS9 0 0.7 12.5 74.4 11.5 0.9
Logistic CRM 0 1.4 15.1 50.4 27.1 6

Scenario 2 0.15 0.3 0.44 0.52 0.69 0.83

CRM

Mean sample size 8.7 11.1 7.5 2.3 0.3 0
Logistic-DRtox, ESS9 9.6 70.7 18.3 1.4 0 0
Hierarchical-DRtox, ESS9 4.1 65.4 27.4 3.1 0 0
Logistic CRM 12.5 56 26.7 4.7 0.1 0

Scenario 3 0.07 0.11 0.2 0.3 0.42 0.56

CRM

Mean sample size 4 4 6.4 8 5.2 2.3
Logistic-DRtox, ESS9 0.2 0.9 20 57.2 20.8 0.9
Hierarchical-DRtox, ESS9 0.1 0.4 9.5 66 23.8 0.2
Logistic CRM 0.1 2.3 20.3 44.5 26.4 6.4

Scenario 4 0.01 0.02 0.05 0.09 0.17 0.3

CRM

Mean sample size 3.1 3 3.1 3.6 5.4 11.8
Logistic-DRtox, ESS9 0 0 0 2.9 41.4 55.7
Hierarchical-DRtox, ESS9 0 0 0 0.6 56.9 42.5
Logistic CRM 0 0 0 1.1 19.2 79.7

Scenario 5 0.04 0.08 0.15 0.26 0.32 0.43

CRM

Mean sample size 3.5 3.5 5.2 7 5.9 4.8
Logistic-DRtox, ESS9 0 0.2 14.1 40.4 30.9 14.4
Hierarchical-DRtox, ESS9 0 0.2 10.3 55.4 28.9 5.2
Logistic CRM 0 0.6 9.7 28 34.4 27.3

Scenario 6 0.01 0.1 0.17 0.3 0.42 0.51

CRM

Mean sample size 3.1 3.5 5.7 8.9 6.1 2.7
Logistic-DRtox, ESS9 0 0.2 17.8 67.7 13.1 1.2
Hierarchical-DRtox, ESS9 0 0 9.5 83.7 6.7 0.1
Logistic CRM 0 0.9 13.9 47.2 29.4 8.6
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Web Figure 12: Violin plots of the estimated toxicity probabilities for scenarios 1, 2 and 3, with an
ESS close to 9, on 1000 trials implemented with the CRM including 30 patients. The predicted toxicity
probability on a new regimen Snew is framed in dotted line. Horizontal lines on the density estimates
represent the median and first and third quantiles of the distributions and the plus sign represents the
mean. The dashed line represents the toxicity target and the solid line represents the true toxicity
probabilities. 17
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Web Figure 13: Violin plots of the estimated toxicity probabilities for scenarios 4, 5 and 6, with an ESS
close to 9, on 1000 trials implemented with the CRM including 30 patients. Horizontal lines on the
density estimates represent the median and first and third quantiles of the distributions and the plus
sign represents the mean. The dashed line represents the toxicity target and the solid line represents
the true toxicity probabilities.
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Web Figure 14: Boxplots of the RMSE of estimated toxicity probabilities on all the dose-regimens of
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Web Figure 15: Boxplots of the RMSE of estimated toxicity probabilities on all the dose-regimens of
the panel and on the MTD-regimen and its neighbors from the panel for scenarios 4, 5 and 6 on 1000
trials implemented with the CRM including 30 patients. The plus sign represents the mean and error
bars represent the first and ninth deciles.
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Web Appendix F.4: Results with ωα = 0.5
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Web Figure 16: Evolution of the relationship between the peak of biomarker and toxicity for ωα varying
from 0 to 0.5.
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Web Table 4: Proportions that each dose-regimen is being selected as the MTD-regimen over the 1000
trials for 3 additional toxicity scenarios defined with ωα = 0.5 and the 2 dose allocation designs, either
the 3+3 design or the CRM. For each scenario, the PCS on the true MTD-regimen are represented in
bold. For each dose allocation design, the mean sample size at each dose-regimen is displayed.

S1 S2 S3 S4 S5 S6

Scenario 1 bis 0.09 0.11 0.16 0.3 0.43 0.49

3+3

Mean sample size 3.7 3.6 3.4 2.9 1.5 0.4
Logistic-DRtox 10.5 8 19.2 37 18.6 6.7
Hierarchical-DRtox 9.4 8.9 21.1 36.9 18.3 5.4
3+3 16.9 16.8 31.4 24.4 8.2 2.3

CRM

Mean sample size 4.3 3.9 6 8.4 5.1 2.4
Logistic-DRtox 0.2 1.7 18.3 56.5 16.9 6.4
Hierarchical-DRtox 0.2 1 16.3 58.4 19.8 4.3
Logistic CRM 0.3 1.5 16.6 48.5 23.9 9.2

Scenario 2 bis 0.16 0.3 0.43 0.49 0.6 0.73

3+3

Mean sample size 4 3.6 1.8 0.4 0.1 0
Logistic-DRtox 29.8 40.4 23.7 5.2 0.9 0
Hierarchical-DRtox 33.8 37.9 22.7 4.5 1.1 0
3+3 58.4 31.3 7.9 2.4 0 0

CRM

Mean sample size 9.3 10.7 7.1 2.5 0.5 0.1
Logistic-DRtox 18 60.5 18 2.9 0.6 0
Hierarchical-DRtox 15.2 61.1 19.7 3.5 0.5 0
Logistic CRM 15.9 50.3 27.2 5.4 1.2 0

Scenario 3 bis 0.09 0.13 0.2 0.3 0.41 0.54

3+3

Mean sample size 3.7 3.7 3.3 2.4 1.4 0.4
Logistic-DRtox 11.1 10.4 24.9 28.4 20.3 4.9
Hierarchical-DRtox 8.6 13 26 29.3 19.9 3.2
3+3 20.2 24.3 24.1 22.8 7.9 0.7

CRM

Mean sample size 4.6 4.3 6.7 7.6 4.7 2
Logistic-DRtox 0.6 2.8 19.3 49.3 24.5 3.5
Hierarchical-DRtox 0.4 2.8 18.6 49.9 25.5 2.8
Logistic CRM 0.4 4.2 20.9 44.6 22.9 7
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Web Table 5: Proportions that each dose-regimen is being selected as the MTD-regimen over the 1000
trials for 3 additional toxicity scenarios defined with ωα = 0.5 and the 2 dose allocation designs, either
the 3+3 design or the CRM. For each scenario, the PCS on the true MTD-regimen are represented in
bold. For each dose allocation design, the mean sample size at each dose-regimen is displayed.

S1 S2 S3 S4 S5 S6

Scenario 4 bis 0.02 0.03 0.05 0.1 0.17 0.3

3+3

Mean sample size 3.2 3.2 3.4 3.6 3.6 3
Logistic-DRtox 0.4 0.6 2.3 9.7 22.2 64.8
Hierarchical-DRtox 0.2 0.8 2.2 10.1 24.8 61.9
3+3 1 2.1 9.5 17.2 33.9 36.3

CRM

Mean sample size 3.2 3 3.1 3.6 5.4 11.6
Logistic-DRtox 0 0 0 1.1 21.7 77.2
Hierarchical-DRtox 0 0 0 0.9 24.4 74.7
Logistic CRM 0 0 0 1.6 19.6 78.8

Scenario 5 bis 0.05 0.09 0.15 0.26 0.32 0.41

3+3

Mean sample size 3.4 3.6 3.6 3.1 2 0.9
Logistic-DRtox 3.9 6.6 21.7 28 20.9 18.9
Hierarchical-DRtox 3 7.9 21.3 30 21.7 16.1
3+3 9.9 17.5 27.2 23.1 15.5 6.8

CRM

Mean sample size 3.6 3.5 5.2 7 5.9 4.9
Logistic-DRtox 0 0.6 11.6 35.2 27.9 24.7
Hierarchical-DRtox 0 0.3 10.5 36.7 29.7 22.8
Logistic CRM 0 0.8 8.5 30 34.5 26.2

Scenario 6 bis 0.01 0.11 0.18 0.3 0.42 0.5

3+3

Mean sample size 3.1 3.8 3.7 2.9 1.7 0.4
Logistic-DRtox 0.1 10.5 26.4 38.7 19.1 5.2
Hierarchical-DRtox 0.1 11.6 28.4 40.8 16 3.1
3+3 9.6 21.7 30.4 27.6 9 1.7

CRM

Mean sample size 3.2 3.5 6 8.8 5.7 2.7
Logistic-DRtox 0 0.6 20.1 57.7 17.8 3.8
Hierarchical-DRtox 0 0.9 19.4 61.6 16.1 2
Logistic CRM 0 1 15.1 47 26.9 10

Web Appendix G: Computation of the hierarchical-DRtox

The Bayesian hierarchical model is defined as:




Yi,j =





0 if Zi > log

(
ri,j

rMk50

)

1 if Zi ≤ log

(
ri,j

rMk50

)

Zi ∼ N (µz, τ
2
z )

Therefore, the conditional distribution of Zi is a truncated normal distribution with

Zi ∈
]
max
j

{
log

(
ri,j

rMk50

)∣∣∣∣∣Yi,j = 0

}
,min

j

{
log

(
ri,j

rMk50

)∣∣∣∣∣Yi,j = 1

}]

In fact, under our assumptions, we only have 3 cases:

• Case 1: Patient i never experiences toxicity (Yi = 0), therefore

Zi > max
j≤ji

{
log

(
ri,j

rMk50

)∣∣∣∣∣Yi,j = 0

}
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• Case 2: Patient i experiences toxicity at the first administration (Yi,1 = 1), therefore

Zi ≤ log

(
ri,1

rMk50

)

• Case 3: Patient i experiences toxicity after the first administration (Yi,0 = 1 & Yi = 1), therefore





Zi > maxj<ji

{
log

(
ri,j

rMk50

)∣∣∣∣∣Yi,j = 0

}

Zi ≤ log

(
ri,ji
rMk50

)

To compute the model in Stan, let Z(raw)
i be an unconstrained variable from which we will derive

Zi. We also need to introduce the bounds, let blowi and buppi be respectively the lower and upper bound
for Zi, they are calculated from the data.

We can then compute Zi for each case:

• Case 1: Patient i never experiences toxicity (Yi = 0), therefore




blowi = maxj≤ji

{
log

(
ri,j

rMk50

)}

buppi = +∞

In this case, we only have Zi > blowi , therefore

Zi = blowi + eZ
(raw)
i

• Case 2: Patient i experiences toxicity at the first administration (Yi,1 = 1), therefore




blowi = −∞

buppi = log

(
ri,1

rMk50

)

In this case, we only have Zi < buppi , therefore

Zi = buppi − eZ
(raw)
i

• Case 3: Patient i experiences toxicity after the first administration (Yi,0 = 1 & Yi = 1), therefore





blowi = maxj<ji

{
log

(
ri,j

rMk50

)∣∣∣∣∣Yi,j = 0

}

buppi = log

(
ri,ji
rMk50

)

In this case, we have Zi > blowi & Zi < buppi , therefore

Zi = blowi +
(
buppi − blowi

)
logit−1

(
Z

(raw)
i

)
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Therefore, to compute the Bayesian Hierarchical model, a change of the variable Z(raw)
i is used.

In Stan, according to the reference manual, the change of variables can be applied in the sampling
statement. To adjust for the curvature, the log probability accumulator is incremented with the
log absolute derivative of the transform. If we note Z(raw)

i = f (Zi), we have to increment the log
probability accumulator with

log

{∣∣∣∣∣
d

dZ
(raw)
i

f−1
(
Z

(raw)
i

)∣∣∣∣∣

}

Therefore, for each case we have to increment the log probability accumulator with:

• Case 1: Patient i never experiences toxicity (Yi = 0)

log

{∣∣∣∣∣
d

dZ
(raw)
i

f−1
(
Z

(raw)
i

)∣∣∣∣∣

}
= log

{∣∣∣∣∣
d

dZ
(raw)
i

(
blowi + eZ

(raw)
i

)∣∣∣∣∣

}

= Z
(raw)
i

• Case 2: Patient i experiences toxicity at the first administration (Yi,1 = 1)

log

{∣∣∣∣∣
d

dZ
(raw)
i

f−1
(
Z

(raw)
i

)∣∣∣∣∣

}
= log

{∣∣∣∣∣
d

dZ
(raw)
i

(
buppi − eZ

(raw)
i

)∣∣∣∣∣

}

= Z
(raw)
i

• Case 3: Patient i experiences toxicity after the first administration (Yi,0 = 1 & Yi = 1)

log

{∣∣∣∣∣
d

dZ
(raw)
i

f−1
(
Z

(raw)
i

)∣∣∣∣∣

}
= log

[∣∣∣∣∣
d

dZ
(raw)
i

{
blowi +

(
buppi − blowi

)
logit−1

(
Z

(raw)
i

)}∣∣∣∣∣

]

= log
[∣∣∣
{
buppi − blowi

}
logit−1

{
Z

(raw)
i

}{
1− logit−1

(
Z

(raw)
i

)}∣∣∣
]

= log
(
buppi − blowi

)
+ log

{
logit−1

(
Z

(raw)
i

)}

+ log
{
1− logit−1

(
Z

(raw)
i

)}
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Web Appendix A: Additional results

Web Appendix A.1: Example from a single simulated trial

Figure 1 shows the fit of the PD profile of patient 10 who receives dose regimen S3. For this patient,
the global peak of cytokine is reached after administration 4, its estimated value is 600.26 pg/mL.
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Figure 1: Estimated cytokine profile of patient 10 receiving S3 and having (Cl=1.99, V=3.95,
Emax=645257, EC50=10000, H=0.96, Imax=1, IC50=18200, kdeg=0.21, K=2.43) as individual PK/PD
parameters. The dots represent the sampled cytokine responses and the continuous line shows the
fitted cytokine response.

The posterior distributions of the probabilities of CRS, DLTo, DLTo|noCRS and DLT of dose
regimen S4 are represented in Figure 2.
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Figure 2: Estimated posterior distributions of CRS, DLTo and DLTo|noCRS in the upper part of the
Figure, and of DLT for the DRtox_indep and DRtox_cond in the lower part, for dose regimen S4.
The dotted vertical lines represent the posterior means.

Web Appendix A.2: Estimation of the toxicity curves

In the main paper, we presented the results of our proposed methods in terms of the proportion of
correct selection (PCS). We illustrate here the results in terms of estimation of the different probabilities
of toxicity. The estimated probabilities of DLT, CRS and DLTo for Scenarios 2, 5 and 6 are displayed
in Figures 3, 4 and 5. All three joint methods and the CRM well estimate the probability of DLT of
the MTD-regimen in all scenarios. The probability of CRS of all dose regimens is well estimated by
the three joint approaches via the logistic-DRtox. In Scenarios 2 and 6, both the DRtox_indep and
DRtox_copula under-estimate the marginal probability of DLTo as they estimate it to be similar to
the conditional probability of DLTo given no CRS. However, the DRtox_cond has a correct estimation
of the conditional probability of DLTo given no CRS of the MTD-regimen. The under-estimation of
the marginal probability of DLTo is due to the fact that the drug administration is stopped in case a
DLT occurs (either a CRS or DLTo) and that the CRS has a tendency to occur at the beginning of
the regimens while the DLTo occurs at the end. Therefore, when a patient experiences a CRS, s/he
does not receive the remaining administrations planned of the regimen that may have caused a DLTo.
The conditional probability of DLTo given that a CRS occurred can then only be estimated when a
CRS and DLTo occur at the same time, which is rare.

In Scenario 5, where the MTD-regimen is the last one of the set, the probability of DLT of the
MTD-regimen is well estimated by the three joint approaches and the CRM, but the joint approaches
over-estimate the probability of DLT of S5, which results in a loss of PCS. Both the probabilities of
CRS and DLTo of S5 are over-estimated as in this scenario very few DLT are observed, therefore our
joint approaches have difficulty in distinguishing regimens S5 and S6.
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Figure 3: Violin plots of the estimated probabilities of DLT, CRS and DLTo in Scenario 2 for 1000
simulated trials. All three joint approaches and the CRM estimate the probability of DLT in the first
part of the figure, where the dashed line represents the toxicity target and the solid line represents the
true DLT probabilities. Our three joint approches estimate the probability of CRS with the logistic
DRtox in the second part of the figure, where the solid line represents the true CRS probabilities. In the
last part of the figure, both the DRtox_indep and DRtox_copula estimate the marginal probability of
DLTo while the DRtox_cond estimates the conditional probability of DLTo given no CRS has occurred.
The solid line represents the true marginal probabilities of DLTo while the dotted line represents the
true conditional probabilities of DLTo given no CRS. In all the figure, horizontal lines on the density
estimates represent the median and first and third quantiles of the distributions, and the plus sign
represents the mean.

4



0.0

0.2

0.4

0.6

0.8

S1 S2 S3 S4 S5 S6

D
LT

 p
ro

ba
bi

lit
y

DRtox_indep
DRtox_copula
DRtox_cond
Logistic CRM

Scenario 5

0.0

0.2

0.4

S1 S2 S3 S4 S5 S6

C
R

S
 p

ro
ba

bi
lit

y

0.0

0.2

0.4

0.6

0.8

S1 S2 S3 S4 S5 S6

Dose regimens

D
LT

o 
pr

ob
ab

ili
ty

DLTo
DLTo|noCRS

Figure 4: Violin plots of the estimated probabilities of DLT, CRS and DLTo in Scenario 5 for 1000
simulated trials. All three joint approaches and the CRM estimate the probability of DLT in the first
part of the figure, where the dashed line represents the toxicity target and the solid line represents the
true DLT probabilities. Our three joint approches estimate the probability of CRS with the logistic
DRtox in the second part of the figure, where the solid line represents the true CRS probabilities. In the
last part of the figure, both the DRtox_indep and DRtox_copula estimate the marginal probability of
DLTo while the DRtox_cond estimates the conditional probability of DLTo given no CRS has occurred.
The solid line represents the true marginal probabilities of DLTo while the dotted line represents the
true conditional probabilities of DLTo given no CRS. In all the figure, horizontal lines on the density
estimates represent the median and first and third quantiles of the distributions, and the plus sign
represents the mean.
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Figure 5: Violin plots of the estimated probabilities of DLT, CRS and DLTo in Scenario 6 for 1000
simulated trials. All three joint approaches and the CRM estimate the probability of DLT in the first
part of the figure, where the dashed line represents the toxicity target and the solid line represents the
true DLT probabilities. Our three joint approches estimate the probability of CRS with the logistic
DRtox in the second part of the figure, where the solid line represents the true CRS probabilities. In the
last part of the figure, both the DRtox_indep and DRtox_copula estimate the marginal probability of
DLTo while the DRtox_cond estimates the conditional probability of DLTo given no CRS has occurred.
The solid line represents the true marginal probabilities of DLTo while the dotted line represents the
true conditional probabilities of DLTo given no CRS. In all the figure, horizontal lines on the density
estimates represent the median and first and third quantiles of the distributions, and the plus sign
represents the mean.
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Web Appendix A.3: Various associations between the CRS and the DLTo

We studied the effect of varying the association between the CRS and the DLTo, measured by the
mean risk ratio (RR), and defined three additional scenarios on Set A:

• Scenario 7: moderate positive association (RR=3.31)

• Scenario 8: independence between toxicities (RR=1)

• Scenario 9: negative association (RR=0.52)

The PCS results on these additional scenarios for our three joint approaches and the CRM are
displayed in Table 1. Our approaches still outperform the CRM, and the three approaches have similar
results except when increasing the correlation between the CRS and the DLTo: the DRtox_copula and
DRtox_cond have higher PCS as they account for the association between toxicities. We can also note
that the DRtox_copula, that assumes a positive association between toxicities, still has good results
on Scenario 9 where there is a negative association between the CRS and the DLTo.

The estimations of the DLT probabilities in case of independence (Scenario 8), small association
(Scenario 1) and high association (Scenario 2) are represented in Figure 6. The estimations on the
six dose regimens and the predictions on Snew1 and Snew2 are shown. The root-mean square error
(RMSE) of the estimated probabilities on S3, S4, S5 (neighbors) and on S4, Snew1, Snew2 (predict)
are represented in Figure 7. We can observe that all methods, DRtox_indep, DRtox_copula and
DRtox_cond, have good estimations around the MTD-regimen in case of various associations between
the CRS and the DLTo.

Table 1: Proportions of selecting each dose regimen as the MTD-regimen over the 1000 trials in three
additional toxicity scenarios with various associations between the CRS and the DLTo. For each
scenario, the marginal probabilities of DLT, CRS and DLTo are defined, and the association between
the CRS and DLTo is represented by the average risk ratio (RR). Results are presented for the 3
joint approaches (DRtox_indep, DRtox_copula and DRtox_cond) and the CRM. The proportions of
correct selection (PCS) of the MTD-regimen are represented in bold.

Scenario Set RR Method S1 S2 S3 S4 S5 S6

7 A 3.31

pT 0.10 0.14 0.18 0.30 0.44 0.57
p
(1)
T 0.06 0.08 0.11 0.19 0.24 0.32

p
(2)
T 0.05 0.07 0.10 0.19 0.37 0.53

DRtox_indep 0 4 25 54 15 3
DRtox_copula 0 1 18 56 21 4
DRtox_cond 0 3 23 55 17 3
Logistic CRM 0 4 20 46 23 7

8 A 1.00

pT 0.10 0.14 0.18 0.30 0.45 0.59
p
(1)
T 0.04 0.07 0.09 0.16 0.20 0.27

p
(2)
T 0.06 0.08 0.10 0.16 0.31 0.44

DRtox_indep 0 3 24 57 15 1
DRtox_copula 0 1 16 58 22 2
DRtox_cond 0 3 23 57 15 1
Logistic CRM 0 3 22 47 23 5

9 A 0.52

pT 0.10 0.14 0.18 0.30 0.45 0.59
p
(1)
T 0.04 0.06 0.09 0.16 0.20 0.27

p
(2)
T 0.06 0.08 0.09 0.15 0.28 0.39

DRtox_indep 0 3 21 58 16 1
DRtox_copula 0 1 15 58 23 3
DRtox_cond 0 4 22 58 16 1
Logistic CRM 0 4 20 48 23 5
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Figure 6: Violin plots of the estimated probabilities of DLT when increasing association between the
CRS and DLTo (Scenarios 8, 1 and 2) for the six dose regimens of the panel and two additional dose
regimens (Snew1 and Snew2), on 1000 trials with the three proposed joint approaches and the CRM.
The predicted DLT probabilities of the new dose regimens are framed in dotted line. Horizontal lines
on the density estimates represent the median and first and third quantiles of the distributions, and
the plus sign represents the mean. The dashed line represents the toxicity target, and the solid line
represents the true DLT probabilities
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Figure 7: Boxplots of the RMSE of the estimated DLT probabilities on S3, S4, S5 (neighbors) and
on S4, Snew1, Snew2 (predict) when increasing association between the CRS and DLTo (Scenarios 8, 1
and 2) on 1000 trials. The plus sign represents the mean and error bars represent the first and ninth
deciles.
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Web Appendix A.4: Simpler model on the DLTo

To compute the DRtox_cond approach, we modeled the DLTo with a cumulative model using the
cumulative dose to account for the dose regimen. We evaluated the effect of a simpler model on the
DLTo without taking into account the multiple administrations. We defined the conditional probability
of DLTo given that no CRS has occurred as follows:

p
(2)
i? = P

(
Y

(2)
i = 1

∣∣∣Y (1)
i = 0

)
(1)

We then defined the following model on the conditional probability of DLTo that is very similar to
the 2-parameter logistic model of the CRM:

logit
(
p
(2)
i?

)
= a+ b logit

(
π
(2)
ki

)
(2)

where π(2)ki
is the prior guess of the DLTo probability of dose regimen Ski that is planned for patient

i. We initially assume that the probabilities of CRS and DLTo are independent and equal, therefore
π
(2)
ki

= 1 −
√
1− πki . For the prior distributions, we considered a ∼ N

(
0,
√
10
)
and b ∼ γ(1, 1) to

ensure positivity.
Let DRtox_cond_simple be the joint approach built on the conditional formulation and using

the simpler model on the DLTo defined in Equation 2. The PCS of the DRtox_cond_simple and
DRtox_cond are displayed in Table 2 for the six main scenarios. The only case where the simpler
model is better is in Scenario 5 where the MTD-regimen is the last one of the set and therefore few
DLTo are observed. In this case, distinguishing the different regimens becomes challenging for the
cumulative model in the DRtox_cond.
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Table 2: Proportions of selecting each dose regimen as the MTD-regimen over the 1000 trials in the
six main toxicity scenarios. For each scenario, the marginal probabilities of DLT, CRS and DLTo are
defined, and the association between the CRS and DLTo is represented by the average risk ratio (RR).
Results are presented for the joint approach defined from the conditional formulation using either
the cumulative model (DRtox_cond) or the simpler model on the DLTo (DRtox_cond_simple). The
proportions of correct selection (PCS) of the MTD-regimen are represented in bold.

Scenario Set RR Method S1 S2 S3 S4 S5 S6

1 A 1.85

pT 0.10 0.14 0.18 0.30 0.45 0.60
p
(1)
T 0.05 0.07 0.10 0.18 0.22 0.30

p
(2)
T 0.06 0.08 0.10 0.17 0.34 0.50

DRtox_cond 0 3 25 55 16 2
DRtox_cond_simple 0 4 27 50 16 2

2 A 5.91

pT 0.10 0.13 0.18 0.30 0.42 0.53
p
(1)
T 0.07 0.10 0.13 0.22 0.28 0.36

p
(2)
T 0.04 0.07 0.10 0.21 0.39 0.52

DRtox_cond 0 3 23 52 18 4
DRtox_cond_simple 1 4 23 49 20 4

3 A 1.81

pT 0.11 0.15 0.18 0.30 0.45 0.59
p
(1)
T 0.03 0.05 0.07 0.13 0.16 0.23

p
(2)
T 0.08 0.11 0.13 0.22 0.39 0.54

DRtox_cond 1 3 22 58 15 2
DRtox_cond_simple 1 5 27 50 15 2

4 A 1.90

pT 0.09 0.13 0.17 0.30 0.44 0.59
p
(1)
T 0.07 0.10 0.13 0.23 0.29 0.37

p
(2)
T 0.03 0.04 0.06 0.12 0.27 0.43

DRtox_cond 0 3 24 55 15 2
DRtox_cond_simple 0 4 25 52 16 3

5 A 1.97

pT 0.03 0.04 0.05 0.11 0.17 0.30
p
(1)
T 0.02 0.03 0.05 0.09 0.11 0.17

p
(2)
T 0.00 0.01 0.01 0.02 0.08 0.18

DRtox_cond 0 0 0 4 29 67
DRtox_cond_simple 0 0 0 4 20 76

6 B 1.70

pT 0.16 0.30 0.43 0.55 0.73 0.86
p
(1)
T 0.09 0.17 0.25 0.33 0.38 0.48

p
(2)
T 0.08 0.18 0.29 0.41 0.67 0.84

DRtox_cond 19 65 15 1 0 0
DRtox_cond_simple 21 63 15 1 0 0
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Web Appendix B: Sensitivity analysis

Web Appendix B.1: Sensitivity to prior effective sample size

We evaluated the effect of varying the amount of information provided by the prior distributions that
we measured by approximating the effective sample size (ESS). We studied three different ESS to
evaluate the effect of almost no prior information (ESS=0.2), medium prior information (ESS=2) and
strong prior information (ESS=7).

The case of almost no prior information, ESS=0.2, was obtained with σβ0,1 = 10 α = 5 for the
CRS model and σβ0,2 = 10 and σβ1,2 = 1 for the DLTo model. The case of medium prior association,
ESS=2, was obtained with σβ0,1 = 2 α = 5 for the CRS model and σβ0,2 = 2 and σβ1,2 = 1 for the
DLTo model. The case of strong prior information, ESS=7, was obtained with σβ0,1 = 1 α = 5 for the
CRS model and σβ0,2 = 1 and σβ1,2 = 0.45 for the DLTo model.

PCS with these increasing ESS for the DRtox_indep, DRtox_copula and DRtox_cond can be found
in Table 3 for Scenarios 1, 2 and 3 and in Table 4 for Scenarios 4, 5 and 6. Increasing the prior ESS leads
to better results when the prior guesses of DLT probabilities are close to the truth (Scenarios 1-4 where
S4 is the true MTD-regimen), but also when the initial guesses of DLT probabilities underestimate
the true DLT probabilities (Scenario 6 where S2 is the true MTD-regimen). However, increasing the
prior ESS leads to poorer results when the initial guesses of DLT probabilities overestimate the true
DLT probabilities (Scenario 5 where S6 is the true MTD-regimen).
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Table 3: Proportions of selecting each dose regimen as the MTD-regimen over the 1000 trials in
Scenarios 1, 2 and 3 for increasing ESS. For each scenario, the marginal probabilities of DLT, CRS
and DLTo are defined, and the association between the CRS and DLTo is represented by the average
risk ratio (RR). Results are presented for the 3 joint approaches (DRtox_indep, DRtox_copula and
DRtox_cond) and the CRM. The proportions of correct selection (PCS) of the MTD-regimen are
represented in bold.

Scenario Set RR Method ESS S1 S2 S3 S4 S5 S6

1 A 1.85

pT 0.10 0.14 0.18 0.30 0.45 0.60
p
(1)
T 0.05 0.07 0.10 0.18 0.22 0.30

p
(2)
T 0.06 0.08 0.10 0.17 0.34 0.50

DRtox_indep
0.2 0 3 22 53 18 2
2 0 4 24 55 15 2
7 0 3 30 57 9 0

DRtox_copula
0.2 0 2 19 51 24 4
2 0 2 20 55 20 3
7 0 1 21 61 16 1

DRtox_cond
0.2 0 3 22 52 19 3
2 0 3 25 55 15 2
7 0 3 31 57 9 0

2 A 5.91

pT 0.10 0.13 0.18 0.30 0.42 0.53
p
(1)
T 0.07 0.10 0.13 0.22 0.28 0.36

p
(2)
T 0.04 0.07 0.10 0.21 0.39 0.52

DRtox_indep
0.2 1 4 23 46 20 6
2 0 4 27 48 16 3
7 0 5 31 54 9 1

DRtox_copula
0.2 0 3 15 50 24 8
2 0 3 17 52 24 5
7 0 2 20 60 15 3

DRtox_cond
0.2 1 3 20 49 22 6
2 0 3 24 52 18 4
7 0 3 30 56 9 1

3 A 1.81

pT 0.11 0.15 0.18 0.30 0.45 0.59
p
(1)
T 0.03 0.05 0.07 0.13 0.16 0.23

p
(2)
T 0.08 0.11 0.13 0.22 0.39 0.54

DRtox_indep
0.2 1 4 20 55 18 2
2 1 3 22 58 15 2
7 1 2 26 62 8 0

DRtox_copula
0.2 1 2 15 53 24 4
2 1 2 16 59 20 2
7 0 1 16 64 18 1

DRtox_cond
0.2 1 3 19 56 19 2
2 1 3 21 58 16 2
7 1 2 26 62 9 0
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Table 4: Proportions of selecting each dose regimen as the MTD-regimen over the 1000 trials in
Scenarios 4, 5 and 6 for increasing ESS. For each scenario, the marginal probabilities of DLT, CRS
and DLTo are defined, and the association between the CRS and DLTo is represented by the average
risk ratio (RR). Results are presented for the 3 joint approaches (DRtox_indep, DRtox_copula and
DRtox_cond) and the CRM. The proportions of correct selection (PCS) of the MTD-regimen are
represented in bold.

Scenario Set RR Method ESS S1 S2 S3 S4 S5 S6

4 A 1.90

pT 0.09 0.13 0.17 0.30 0.44 0.59
p
(1)
T 0.07 0.10 0.13 0.23 0.29 0.37

p
(2)
T 0.03 0.04 0.06 0.12 0.27 0.43

DRtox_indep
0.2 1 3 22 52 19 4
2 0 3 24 56 14 2
7 0 3 29 59 8 0

DRtox_copula
0.2 0 2 17 52 24 5
2 0 2 19 56 20 4
7 0 2 21 61 14 2

DRtox_cond
0.2 1 3 21 53 18 4
2 0 3 24 55 14 2
7 0 3 31 57 8 0

5 A 1.97

pT 0.03 0.04 0.05 0.11 0.17 0.30
p
(1)
T 0.02 0.03 0.05 0.09 0.11 0.17

p
(2)
T 0.00 0.01 0.01 0.02 0.08 0.18

DRtox_indep
0.2 0 0 0 3 20 78
2 0 0 0 4 29 67
7 0 0 0 10 43 47

DRtox_copula
0.2 0 0 0 2 15 83
2 0 0 0 3 20 77
7 0 0 0 5 32 63

DRtox_cond
0.2 0 0 0 3 19 78
2 0 0 0 4 29 67
7 0 0 0 10 43 47

6 B 1.70

pT 0.16 0.30 0.43 0.55 0.73 0.86
p
(1)
T 0.09 0.17 0.25 0.33 0.38 0.48

p
(2)
T 0.08 0.18 0.29 0.41 0.67 0.84

DRtox_indep
0.2 24 60 14 1 0 0
2 20 64 15 1 0 0
7 13 72 15 0 0 0

DRtox_copula
0.2 18 60 20 2 0 0
2 14 62 21 2 0 0
7 6 68 25 1 0 0

DRtox_cond
0.2 22 61 15 1 0 0
2 19 65 16 1 0 0
7 12 71 16 0 0 0
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Web Appendix B.2: Sensitivity to prior distribution

To evaluate the effect of the prior distribution on the DRtox_cond, we compared the results when
using a gamma distribution on the slope or a normal distribution on the logarithm of the slope for
both the CRS model and the DLTo model.

For the CRS model, we considered:

• Gamma prior: logit
(
P
(
Y

(1)
i = 1

))
= β0,1 + β1,1 log

(
rMi
rMkT

)
, where β1,1 ∼ γ

(
α1,

α1

β1,1

)

• Normal prior: logit
(
P
(
Y

(1)
i = 1

))
= β0,1 + exp (β1,1) log

(
rMi
rMkT

)
, where β1,1 ∼ N

(
β1,1, σ

2
β1

)

For the DLTo model, we consider:

• Gamma prior: logit
(
p
(2)cum

i,j?

)
= β0,2? + β1,2? log

(∑j
l=1 di,l
DkT

)
, where β1,2? ∼ γ

(
α1,

α1

β1,2?

)

• Normal prior: logit
(
p
(2)cum

i,j?

)
= β0,2? + exp (β1,2?) log

(∑j
l=1 di,l
DkT

)
, where β1,2? ∼ N

(
β1,2?, σ

2
β1

)

For both the CRS and DLTo models, we considered α1 = 5, σβ1 = 1. For the intercept, we
considered β0,1 ∼ N

(
β0,1, σ

2
β0

)
and β0,2? ∼ N

(
β0,2?, σ

2
β0

)
, where σβ0 = 2.

PCS results with these various prior distributions can be found in Table 5 for the DRtox_cond
approach on Scenarios 1-6. The prior distribution has little impact on the results for almost all
scenarios. In Scenario 5, where the true MTD-regimen is the last dose regimen of the panel and
therefore only few DLT are observed, choosing a gamma prior for the DLTo model can lead to better
results.
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Table 5: Proportions of selecting each dose regimen as the MTD-regimen over the 1000 trials in the
six main toxicity scenarios for various prior distributions (gamma or lognormal). For each scenario,
the marginal probabilities of DLT, CRS and DLTo are defined, and the association between the CRS
and DLTo is represented by the average risk ratio (RR). Results are presented for the DRtox_cond.
The proportions of correct selection (PCS) at the MTD-regimen are represented in bold.

Scenario Set RR Method CRS DLTo S1 S2 S3 S4 S5 S6

1 A 1.85

pT 0.10 0.14 0.18 0.30 0.45 0.60
p
(1)
T 0.05 0.07 0.10 0.18 0.22 0.30

p
(2)
T 0.06 0.08 0.10 0.17 0.34 0.50

DRtox_cond

γ γ 0 3 23 53 18 2
γ N 0 3 25 55 15 2
N γ 0 3 27 54 14 1
N N 0 3 28 55 12 1

2 A 5.91

pT 0.10 0.13 0.18 0.30 0.42 0.53
p
(1)
T 0.07 0.10 0.13 0.22 0.28 0.36

p
(2)
T 0.04 0.07 0.10 0.21 0.39 0.52

DRtox_cond

γ γ 0 3 22 51 20 4
γ N 0 3 24 52 18 4
N γ 0 4 26 54 14 2
N N 0 4 27 54 13 2

3 A 1.81

pT 0.11 0.15 0.18 0.30 0.45 0.59
p
(1)
T 0.03 0.05 0.07 0.13 0.16 0.23

p
(2)
T 0.08 0.11 0.13 0.22 0.39 0.54

DRtox_cond

γ γ 1 2 19 57 18 2
γ N 1 3 21 58 16 2
N γ 1 3 22 57 16 1
N N 1 3 23 59 13 1

4 A 1.90

pT 0.09 0.13 0.17 0.30 0.44 0.59
p
(1)
T 0.07 0.10 0.13 0.23 0.29 0.37

p
(2)
T 0.03 0.04 0.06 0.12 0.27 0.43

DRtox_cond

γ γ 1 3 24 53 17 3
γ N 0 3 24 55 14 2
N γ 0 4 26 56 12 2
N N 0 4 27 57 11 1

5 A 1.97

pT 0.03 0.04 0.05 0.11 0.17 0.30
p
(1)
T 0.02 0.03 0.05 0.09 0.11 0.17

p
(2)
T 0.00 0.01 0.01 0.02 0.08 0.18

DRtox_cond

γ γ 0 0 0 4 21 75
γ N 0 0 0 4 29 67
N γ 0 0 0 4 25 70
N N 0 0 0 5 31 64

6 B 1.70

pT 0.16 0.30 0.43 0.55 0.73 0.86
p
(1)
T 0.09 0.17 0.25 0.33 0.38 0.48

p
(2)
T 0.08 0.18 0.29 0.41 0.67 0.84

DRtox_cond

γ γ 19 64 16 1 0 0
γ N 19 65 16 1 0 0
N γ 19 66 15 1 0 0
N N 18 66 15 0 0 0

16



Web Appendix B.3: Sensitivity to the copula distribution

For the joint modeling approach based on a copula distribution, we evaluated two copula distributions
defined as follows:

• The Clayton distribution:

Cα

(
p
(1)
k , p

(2)
k

)
=
(
max

(
p
(1)
k

−γ
+ p

(2)
k

−γ
− 1, 0

))−1/γ

(3)

where γ > 0 for positive association and γ ∈ [−1, 0[ for negative association.

• The Farlie–Gumbel–Morgenstern distribution:

Cα

(
p
(1)
k , p

(2)
k

)
= p

(1)
k p

(2)
k + p

(1)
k

(
1− p(1)k

)
p
(2)
k

(
1− p(2)k

) exp (ψ)− 1

exp (ψ) + 1
(4)

where ψ = 0 for independence, ψ > 0 for positive association, ψ < 0 for negative association.
We also evaluated various prior information on each distribution and defined 4 final joint modeling

approaches based on the copula distribution as follows:

• DRtox_Clayton1: γ ∼ γ (0.1, 0.1)

• DRtox_Clayton2: γ ∼ γ (1, 1) (defined as DRtox_copula in the main paper)

• DRtox_Gumbel1: ψ ∼ N+
(
0, 32

)

• DRtox_Gumbel2: ψ ∼ N+ (0, 1)

The PCS of these four variants compared to the DRtox_indep are displayed in Table 6. All 4 copula
approaches have similar PCS, but the DRtox_Clayton1 and DRtox_Gumbel2 have results very close
to the DRtox_indep.

The histogram of the estimated parameter of the Clayton copula for Scenarios 8, 1, 2 and the
histogram of the estimated parameter of the Clayton copula for the two distributions are represented
in Figure 8. We can observe on the upper part of the figure that increasing the association between
toxicities has little impact on the estimation of the Clayton parameter. The lower part of the figure rep-
resents the estimation of the Clayton parameter when both toxicities are highly associated in Scenario
2 for two prior distributions. We can observe that the estimation of the parameter is highly impacted
by the prior distribution chosen, even when both toxicities are strongly associated. The difficulty in
estimating the copula parameter can be explained by the fact that the CRS and DLTo rarely occur at
the same time as the CRS has a tendency to occur at the beginning of the regimen while the DLTo
occurs at the end.
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Table 6: Proportions of selecting each dose regimen as the MTD-regimen over the 1000 trials in the
six main toxicity scenarios. For each scenario, the marginal probabilities of DLT, CRS and DLTo
are defined, and the association between the CRS and DLTo is represented by the average risk ratio
(RR). Results are presented for the DRtox_indep and the four variants of the DRtox_copula. The
proportions of correct selection (PCS) of the MTD-regimen are represented in bold.

Scenario Set RR Method S1 S2 S3 S4 S5 S6

1 A 1.85

pT 0.10 0.14 0.18 0.30 0.45 0.60
p
(1)
T 0.05 0.07 0.10 0.18 0.22 0.30

p
(2)
T 0.06 0.08 0.10 0.17 0.34 0.50

DRtox_indep 0 4 24 55 16 2
DRtox_Clayton1 0 3 24 55 17 2
DRtox_Clayton2 0 2 20 55 20 3
DRtox_Gumbel1 0 4 25 55 15 2
DRtox_Gumbel2 0 3 26 55 14 1

2 A 5.91

pT 0.10 0.13 0.18 0.30 0.42 0.53
p
(1)
T 0.07 0.10 0.13 0.22 0.28 0.36

p
(2)
T 0.04 0.07 0.10 0.21 0.39 0.52

DRtox_indep 0 4 27 48 16 3
DRtox_Clayton1 0 4 23 50 18 4
DRtox_Clayton2 0 3 17 52 24 5
DRtox_Gumbel1 0 4 28 48 16 3
DRtox_Gumbel2 0 4 28 49 15 4

3 A 1.81

pT 0.11 0.15 0.18 0.30 0.45 0.59
p
(1)
T 0.03 0.05 0.07 0.13 0.16 0.23

p
(2)
T 0.08 0.11 0.13 0.22 0.39 0.54

DRtox_indep 1 3 22 57 15 2
DRtox_Clayton1 1 3 21 57 17 2
DRtox_Clayton2 1 2 16 58 20 2
DRtox_Gumbel1 1 3 22 58 14 2
DRtox_Gumbel2 1 4 23 57 14 1

4 A 1.90

pT 0.09 0.13 0.17 0.30 0.44 0.59
p
(1)
T 0.07 0.10 0.13 0.23 0.29 0.37

p
(2)
T 0.03 0.04 0.06 0.12 0.27 0.43

DRtox_indep 0 3 24 56 14 2
DRtox_Clayton1 0 3 22 56 15 3
DRtox_Clayton2 0 2 19 56 20 4
DRtox_Gumbel1 0 3 25 55 14 2
DRtox_Gumbel2 0 3 25 55 14 2

5 A 1.97

pT 0.03 0.04 0.05 0.11 0.17 0.30
p
(1)
T 0.02 0.03 0.05 0.09 0.11 0.17

p
(2)
T 0.00 0.01 0.01 0.02 0.08 0.18

DRtox_indep 0 0 0 4 29 67
DRtox_Clayton1 0 0 0 4 27 69
DRtox_Clayton2 0 0 0 3 20 77
DRtox_Gumbel1 0 0 0 4 29 67
DRtox_Gumbel2 0 0 0 5 30 66

6 B 1.70

pT 0.16 0.30 0.43 0.55 0.73 0.86
p
(1)
T 0.09 0.17 0.25 0.33 0.38 0.48

p
(2)
T 0.08 0.18 0.29 0.41 0.67 0.84

DRtox_indep 20 64 15 1 0 0
DRtox_Clayton1 19 64 16 1 0 0
DRtox_Clayton2 14 63 21 2 0 0
DRtox_Gumbel1 21 64 14 1 0 0
DRtox_Gumbel2 22 64 14 0 0 0
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Figure 8: The upper part of the figure represents the histogram of the estimated of the Clayton
distribution using γ(1, 1) for the prior distribution (named as DRtox_Clayton2) for Scenarios 8, 1
and 2. The prior distribution is represented in solid line. The lower part of the figure represents the
histogram of the estimated parameter of the Clayton distribution in Scenario 2 (with a mean RR of
5.91) for the two prior distributions. Each prior distribution is represented in solid line.
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Web Appendix B.4: Sensitivity to the dose escalation design

We evaluated the results obtained when the trials were simulated under an empiric CRM. The prob-
ability of DLT at dose regimen Sk is defined as pk = π

exp(β)
k , where πk is the initial guess of DLT

probability (skeleton) and β ∼ N (0, 1.34). The skeleton is the same than the one of the logistic CRM,
that is (0.06,0.12,0.20,0.30,0.40,0.50).

The PCS of our proposed methods applied at the end of the empiric CRM can be found in Table
7. In all scenarios, except Scenario 5, the PCS of our proposed methods are higher that the one of
the empiric CRM. In Scenario 2, the performance of the empiric CRM is similar to the DRtox_indep.
The empiric CRM gives better PCS than the logistic CRM in Scenarios 1, 2 and 4, but the impact
on the performance of our proposed methods is limited. In Scenario 3 and 5, the empiric and logistic
CRM have the same PCS, but the performance of our proposed methods are higher after the logistic
CRM in Scenario 3 and higher after the empiric CRM in Scenario 5. In Scenario 6, the logistic CRM
has better PCS than the empiric CRM, with higher performance of our proposed methods.
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Table 7: Proportions of selecting each dose regimen as the MTD-regimen over the 1000 trials in
the six main toxicity scenarios after an empiric CRM. For each scenario, the marginal probabilities of
DLT, CRS and DLTo are defined, and the association between the CRS and DLTo is represented by the
average risk ratio (RR). Results are presented for the 3 joint approaches (DRtox_indep, DRtox_copula
and DRtox_cond) and the empiric CRM. The proportions of correct selection (PCS) of the MTD-
regimen are represented in bold.

Scenario Set RR Method S1 S2 S3 S4 S5 S6

1 A 1.85

pT 0.10 0.14 0.18 0.30 0.45 0.60
p
(1)
T 0.05 0.07 0.10 0.18 0.22 0.30

p
(2)
T 0.06 0.08 0.10 0.17 0.34 0.50

DRtox_indep 0 3 24 55 17 2
DRtox_copula 0 2 18 55 22 3
DRtox_cond 1 2 23 55 17 2
Empiric crm 0 4 23 50 20 2

2 A 5.91

pT 0.10 0.13 0.18 0.30 0.42 0.53
p
(1)
T 0.07 0.10 0.13 0.22 0.28 0.36

p
(2)
T 0.04 0.07 0.10 0.21 0.39 0.52

DRtox_indep 0 4 28 50 14 3
DRtox_copula 0 2 20 54 19 5
DRtox_cond 0 4 24 52 16 3
Empiric crm 0 5 22 49 20 4

3 A 1.81

pT 0.11 0.15 0.18 0.30 0.45 0.59
p
(1)
T 0.03 0.05 0.07 0.13 0.16 0.23

p
(2)
T 0.08 0.11 0.13 0.22 0.39 0.54

DRtox_indep 1 3 25 51 17 2
DRtox_copula 0 2 18 54 22 4
DRtox_cond 1 2 26 52 18 2
Empiric crm 1 5 27 48 18 2

4 A 1.90

pT 0.09 0.13 0.17 0.30 0.44 0.59
p
(1)
T 0.07 0.10 0.13 0.23 0.29 0.37

p
(2)
T 0.03 0.04 0.06 0.12 0.27 0.43

DRtox_indep 0 3 25 55 15 1
DRtox_copula 0 2 19 57 19 3
DRtox_cond 0 4 24 56 15 1
Empiric crm 0 4 23 51 20 2

5 A 1.97

pT 0.03 0.04 0.05 0.11 0.17 0.03
p
(1)
T 0.02 0.03 0.05 0.09 0.11 0.17

p
(2)
T 0.00 0.01 0.01 0.02 0.08 0.18

DRtox_indep 0 0 0 3 26 71
DRtox_copula 0 0 0 2 16 82
DRtox_cond 0 0 0 3 26 71
Empiric crm 0 0 0 2 20 77

6 B 1.70

pT 0.16 0.30 0.43 0.55 0.73 0.86
p
(1)
T 0.09 0.17 0.25 0.33 0.38 0.48

p
(2)
T 0.08 0.18 0.29 0.41 0.67 0.84

DRtox_indep 22 61 16 0 0 0
DRtox_copula 14 62 23 2 0 0
DRtox_cond 21 60 17 1 0 0
Empiric crm 18 54 26 2 0 0
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Web Appendix C: Alternative set of dose regimens

In the main six toxicity scenarios, built either on Set A or B of the dose regimens that were inspired
by the motivating trial, the CRS and DLTo rarely occur at the same time. We then defined another
set of dose regimens, Set C shown in Table 8, to increase the occurrence of both toxicities at the same
time. In Set C, dose-escalation is slower than in Set A and B because the higher the steady-state dose
is, the slower it is reached. We defined six additional toxicity scenarios on this new set that are similar
to the main scenarios.

In Scenario 10 (similar to Scenario 1), the true MTD-regimen was S4 that had a similar probability
of CRS and DLTo. The CRS and DLTo were positively correlated with a average risk ratio of 1.89. In
Scenario 11 (similar to Scenario 2), the association between the CRS and the DLTo was increased to an
average risk ratio of 6.37. In Scenarios 12 and 13 (similar to Scenarios 3 and 4), the true MTD-regimen
remained S4 but the proportion of each type of toxicity varied with a higher probability of DLTo and
CRS in Scenaris 12 and 13, respectively. Finally, the MTD-regimen changed to dose regimens S6 and
S2 for Scenarios 14 and 15 (similar to Scenarios 5 and 6), respectively. The distribution of DLT, CRS
and DLTo per administration is illustrated in Figure 9 to compare the main scenarios built on Set A
and B with the new scenarios built on Set C. For Scenarios 1, 5 and 6, most CRS occur at t1 and t4
while almost all DLTo occur from t4 as illustrated on the left part of the figure. However, for Scenarios
10, 14 and 15, both toxicities are more balanced throughout the drug administrations as illustrated on
the right part on the figure even if CRS still tend to occur at the beginning while DLTo occur at the
end.

The proportion of selection of each dose regimen in these six new scenarios is shown in Table 9. In
Scenarios 10, 11, 12 and 13, the PCS of the three joint approaches are similar to that of the CRM. All
three joint approaches have a higher proportion of trials that recommend the under-dosing regimen,
S3, as the MTD-regimen. In Scenario 14, the CRM has higher PCS that the joint approaches but it
was already observed in the main scenarios. Finally, on Scenario 15, where the true MTD-regimen is
S2, the three joint approaches outperform the CRM.

We represented in Figure 10 the estimated probabilities of DLT, CRS and DLTo for the three joint
approaches and the CRM for Scenario 10. We can observe that the marginal probability of CRS is
slightly overestimated by the DRtox, while the probability of DLTo (either the marginal probability of
the conditional probability given no CRS) is estimated with a high variance for each joint approach.
As a result, the probability of DLT at the MTD-regimen (S4) and at the previous regimen (S3) is
also slightly overestimated by the joint approaches, which explains the higher proportion of trials
that recommend S3 as the MTD-regimen. In conclusion, in this new set of dose regimens, our joint
modeling approaches do not improve the PCS compared to the CRM but they can still able to evaluate
the probability of toxicity of new regimens, as illustrated in the main paper.

Table 8: Set A and Set C dose regimens used in the simulation study (in µg/kg).

t1 t2 t3 t4 t5 t6 t7

Set A

S1 1 5 10 20 20 20 20
S2 1 5 10 25 25 25 25
S3 1 5 10 30 30 30 30
S4 1 5 10 45 45 45 45
S5 5 10 25 75 75 75 75
S6 10 25 50 100 100 100 100

Set C

S1 1 1 1 1 1 1 1
S2 1 10 10 10 10 10 10
S3 1 10 30 30 30 30 30
S4 1 10 30 60 60 60 60
S5 1 10 30 60 100 100 100
S6 1 10 30 60 100 140 140
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Figure 9: Mean number of DLT, CRS and DLTo per trial for each of the seven administrations of the
dose regimens observed in Scenarios 1, 10, 5, 14, 6, 15. Scenarios 1, 5 and 6 (Sets A and B) have
similar probabilities of toxicities than Scenarios 10, 14, and 15 (Set C), respectively.
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Table 9: Proportions of selecting each dose regimen as the MTD-regimen over the 1000 trials in the
six toxicity scenarios defined on Set C. For each scenario, the marginal probabilities of DLT, CRS
and DLTo are defined, and the association between the CRS and DLTo is represented by the average
risk ratio (RR). Results are presented for the 3 joint approaches (DRtox_indep, DRtox_copula and
DRtox_cond) and the logistic CRM. The proportions of correct selection (PCS) of the MTD-regimen
are represented in bold.

Scenario Set RR Method S1 S2 S3 S4 S5 S6

10 C 1.89

pT 0.03 0.09 0.18 0.30 0.45 0.57
p
(1)
T 0.03 0.08 0.12 0.18 0.26 0.36

p
(2)
T 0.00 0.01 0.07 0.17 0.31 0.41

DRtox_indep 0 1 37 51 9 2
DRtox_copula 0 1 26 55 16 3
DRtox_cond 0 1 36 51 9 2
Logistic CRM 0 1 19 51 23 6

11 C 6.37

pT 0.04 0.10 0.18 0.30 0.45 0.58
p
(1)
T 0.04 0.10 0.15 0.22 0.33 0.46

p
(2)
T 0.00 0.01 0.06 0.22 0.41 0.55

DRtox_indep 0 2 47 46 5 1
DRtox_copula 0 1 32 56 10 2
DRtox_cond 0 2 40 50 7 1
Logistic CRM 0 1 19 53 23 4

12 C 5.84

pT 0.02 0.09 0.18 0.30 0.42 0.52
p
(1)
T 0.02 0.08 0.12 0.17 0.25 0.34

p
(2)
T 0.00 0.02 0.11 0.27 0.41 0.51

DRtox_indep 0 2 43 42 10 3
DRtox_copula 0 1 31 48 14 6
DRtox_cond 0 1 36 48 12 4
Logistic CRM 0 0 19 45 26 10

13 C 1.94

pT 0.04 0.11 0.19 0.30 0.45 0.61
p
(1)
T 0.04 0.10 0.17 0.24 0.36 0.51

p
(2)
T 0.00 0.01 0.04 0.10 0.19 0.28

DRtox_indep 0 3 45 46 5 0
DRtox_copula 0 2 36 51 10 1
DRtox_cond 0 3 45 46 5 0
Logistic CRM 0 2 20 53 21 4

14 C 1.99

pT 0.01 0.05 0.08 0.11 0.18 0.30
p
(1)
T 0.01 0.05 0.08 0.10 0.14 0.18

p
(2)
T 0.00 0.00 0.00 0.00 0.04 0.17

DRtox_indep 0 0 0 9 32 59
DRtox_copula 0 0 0 5 25 70
DRtox_cond 0 0 0 9 32 59
Logistic CRM 0 0 0 2 20 77

15 C 1.82

pT 0.16 0.30 0.44 0.57 0.75 0.88
p
(1)
T 0.11 0.17 0.28 0.42 0.66 0.83

p
(2)
T 0.06 0.18 0.26 0.33 0.41 0.47

DRtox_indep 14 72 13 0 0 0
DRtox_copula 10 69 20 1 0 0
DRtox_cond 14 72 14 0 0 0
Logistic CRM 14 56 27 2 0 0
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Figure 10: Violin plots of the estimated probabilities of DLT, CRS and DLTo in Scenario 10 for 1000
simulated trials. All three joint approaches and the CRM estimate the probability of DLT in the first
part of the figure, where the dashed line represents the toxicity target and the solid line represents the
true DLT probabilities. Our three joint approaches estimate the probability of CRS with the logistic
DRtox in the second part of the figure, where the solid line represents the true CRS probabilities. In the
last part of the figure, both the DRtox_indep and DRtox_copula estimate the marginal probability of
DLTo while the DRtox_cond estimates the conditional probability of DLTo given no CRS has occurred.
The solid line represents the true marginal probabilities of DLTo while the dotted line represents the
true conditional probabilities of DLTo given no CRS. In all the figure, horizontal lines on the density
estimates represent the median and first and third quantiles of the distributions, and the plus sign
represents the mean.
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