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Summary

Title: Prediction of perceptual similarity based on
time-domain models of auditory perception

Objects or situations in an everyday context are unlikely to be experi-
enced twice in the same way. The more exposed an individual is to a
given object or situation, the more familiar he or she becomes with that
object or situation. While listening to a sound object, we may find that
it resembles another sound with which we are familiar. In this case we
may label both sounds as being “similar”. Similarity assessments may
indicate whether two or more sound stimuli share common perceptual
properties. Let us consider a sound quality evaluation between the ref-
erence sound A and the test sound B. The test sound B can be chosen
as being (1) a modified version of A, (2) a synthesised version of A, or
(3) a sound that is believed to be similar to A. An evaluation of the first
type (1) is useful to study which properties of sound A are perceptually
prominent. An evaluation of the second type (2) can be used to validate
a computational model that accounts for the theory that is believed to
be relevant to recreate sound A. An evaluation of the third type (3) can
lead to a measure of perceptual distance between sounds A and B. The
work in this dissertation is mainly concerned with this latter type of
evaluation.

The goal of this research work was to gain insights into human per-
formance in a similarity task. For this purpose, the similarity of a set of
sounds was first experimentally assessed. Subsequently, the same exper-
imental framework was implemented and used as input to a state-of-the-
art model of auditory perception. The hypothesis was that the similarity
assessments obtained from the auditory model are significantly correlated
with those obtained experimentally.

In this study we chose to compare sounds using the internal (sound)
representations delivered by an auditory model. The model, referred
to as perception model (PEMO), offers a unified framework that has
been successfully used to simulate a number of auditory phenomena
such as masking and modulation tasks. The advantage of using a uni-
fied framework is implicitly emphasised in Chapter 2, where recorded
and synthesised sounds of an instrument called Hummer are compared
(type 2 task) using three auditory models that deliver four psychoacous-
tic descriptors: Loudness, loudness fluctuations, fluctuation strength,
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and roughness. The model estimates are compared using the concept
of just-noticeable difference (JND), with one JND value for each of the
four psychoacoustic descriptors. If the descriptors differ by less than one
JND, the sounds are considered to be perceptually identical along the
evaluated dimensions.

In Chapter 3 a new method to assess the perceptual similarity between
sounds is introduced and validated. In the so-called instrument-in-noise
method two sounds are compared using a three-alternative forced-choice
paradigm (3-AFC). The reference sound is presented twice and the test
sound is presented once. The task of the participant is to identify in
which of the three sound intervals the test sound was played. One of
the key aspects of this method is that a background noise is added to
manipulate the difficulty of the task. This allows to assess the similarity
between two sounds as a performance task. The background noise needs
to have similar spectro-temporal properties to those of the test sounds.
For this purpose a noise generation algorithm similar to the ICRA noises
was adopted. Two sounds that are similar tolerate a low background
(ICRA) noise to correctly discriminate one from the other in contrast
to the case of two sounds that are more dissimilar, where more (ICRA)
noise needs to be added before the participant’s performance decreases.
The sound stimuli consisted of recordings of a single note from seven
historical pianos. With seven sound stimuli, 21 possible piano pairs can
be evaluated. Twenty participants were asked to compare those 21 piano
pairs using two methods: (1) the instrument-in-noise method, and (2)
the method of triadic comparisons. The discrimination thresholds from
the instrument-in-noise method were significantly correlated with the
similarity assessment obtained from the method of triadic comparisons.

In Chapter 4 the participant’s performance for the instrument-in-noise
test is simulated using the same piano sounds and experimental paradigm
as in Chapter 3 but using an “artificial listener”. The artificial listener
uses internal representations obtained with the PEMO model and de-
cides whether two representations are distinct enough to be judged as
“different”. This decision is based on the concept of optimal detector
taken from signal detection theory. Both, the peripheral stages (that
deliver the internal representations) as well as the central stage (the
artificial listener) of the PEMO model are described in detail in this
chapter. The discrimination thresholds obtained with the PEMO model
are significantly correlated with the experimental thresholds.
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In Chapter 5, the same seven piano sounds of Chapters 3 and 4 but
considering a reverberant environment (early decay time of 3.0 s) were
perceptually evaluated. Discrimination thresholds obtained from twenty
new participants were assessed and subsequently simulated using the
PEMO model. The results had a similar (significant) correlation between
experimental and simulated thresholds, as observed when comparing the
results of Chapters 3 and 4.

In Chapter 6 a binaural model that has the same peripheral stages
as the PEMO model, but using a different central processor, is used to
simulate the perceived reverberation (reverberance) of orchestra sounds
in eight different acoustic environments. The main goal of this chapter
is to show one example of application that further extends the use of the
auditory models. The reverberance estimates obtained from the binaural
model were compared with the experimental results of a multi-stimulus
comparison task. The experiment considered 8 instruments and they
were evaluated by 24 participants. The multi-stimulus comparison is an
alternative and faster way to compare sounds pairwise and it can be used
to develop perceptual scales. The experimental reverberance estimates
were significantly correlated with the simulated reverberance estimates.

The work presented in this dissertation supports the use of a unified
auditory modelling framework to simulate a perceptual similarity task
using sounds that are non-artificial. The unified framework was used to
evaluate two similar sets of sounds: single-note recordings from seven
piano sounds without (Chapters 3 and 4) and with reverberation (Chap-
ter 5). The experimental paradigm, that we named instrument-in-noise
test, can be further used to evaluate other musical instruments as far as
the sounds to be evaluated have the same duration and are tuned to the
same frequency. These aspects are relevant to appropriately generate
noises that match the spectro-temporal properties of the sounds being
tested.
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1 General introduction

1.1 Sounds as internal representations in the
auditory system

The sense of hearing provides us with the possibility to explore and in-
teract with our surrounding sound environment. Examples of this inter-
action are the ability to localise a sound object or to obtain information
about its identity. The ability to access such information by using our
hearing system is hypothesised to be possible due to the existence of in-
ternal processes of perceptual organisation (McAdams & Bigand, 1993).
The information used by these internal processes is what we call “inter-
nal representation”. Internal representations are sometimes referred to
in the literature as “mental representations”. This term indicates that
the auditory system delivers information about the sound object to the
brain. The hearing system consists of a “mechanical” part –comprising
the outer, middle, and inner ear– and a “neural” part. After the me-
chanical or peripheral auditory processing the sounds are represented
as firing patterns in the auditory nerve. The neural part comprises the
connectivity and involved functional mechanisms that transmit the in-
formation, i.e., firing patterns of the auditory nerve, through the central
nervous system to the brain (see, e.g., Kohlrausch et al., 2013).

There is consensus that the neural activity in the auditory nerve is
encoded according to a frequency-to-position conversion that occurs in
the inner ear (see, e.g., Greenwood, 1990; Robles & Ruggero, 2001).
This frequency-position mapping is known as the tonotopic organisation
of the cochlea. The mechanical part of the auditory system is therefore
simulated as a set of band-pass filters. In the study by Saremi et al.
(2016) seven of such filter banks have been reviewed and compared in
terms of their capability to reproduce relevant aspects of the cochlea.
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1 General introduction

Table 1.1: Selected list of central processors (sorted by year of publication) that are used as
back-end stage for published computational models of the auditory periphery. The column
“Nr. of Repr.” indicates the number of representations required by the “criterion” of the
central processor.

Central processor type
Nr. of

Peripheral stage based on
Repr.

A. Optimal detector (Dau et al., 1997a) 3 Dau et al. (1997a)
B. Autocorrelator-based pitch analyser

1 Meddis and Hewitt (1991)
(Meddis & O’Mard, 1997)

C. Discriminability analyser (Fritz et al., 2007) 2 Glasberg and Moore (2002)
D. Envelope analyser (Jørgensen & Dau, 2011) 1∗ Ewert and Dau (2000)
E. Room Acoustic Analyser (van Dorp, 2011) 1 Breebaart et al. (2001)
F. Envelope analyser (Mao & Carney, 2015) 1 Zilany et al. (2009)

(*)Processor D processes “individual” speech samples in noise (i.e., one test interval), but the pro-
cessor also needs to have access to the internal representation of the noise alone in order to generate
its output metric.

In contrast to the processing in the peripheral auditory system, there
is no similar consensus with respect to stages of higher-level neural pro-
cessing. This has generated diverging approaches to further process the
firing patterns of the auditory nerve and, therefore, to obtain and use
internal representations.

Computational models of auditory processing normally consist of the
stages of peripheral and central processing. The peripheral processing
stage represents the mechanical part and initial stages of neural pro-
cessing of the auditory system. The central processing stage is used
as a back-end module for the peripheral processing. A selected list of
central processors attached to published models of the auditory periph-
ery are presented in Table 1.1. A central processor accounts for: (1)
high-level neural processing of the auditory system (to a greater or to a
lesser extent), and (2) coupling of the internal representation to a cer-
tain “criterion” (decision stage) that provides concrete information about
the processed sound object. In general this latter aspect is assessed by
either comparing two or more internal representations (see, e.g., proces-
sors A and C in Table 1.1) or by converting the internal representation
into a metric believed to reflect some perceptual aspect of the processed
sound object (see, e.g., processors B, D, E, and F in Table 1.1). In
this dissertation a computational model that follows the former ratio-
nale is used. We use an updated version of the model described by Dau
et al. (1997a) with a central processor that compares different internal
representations by using the concept of optimal detector (see Chapters
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1 General introduction

C
h

a
p

te
r

1

4 and 5)1. Therefore, our work is concerned with one possible way of
comparing internal representations of different sounds. Particularly, the
comparison of internal representations is implemented as a performance
task and it is applied to the evaluation of perceptual similarity between
complex sounds.

As test stimuli, musical instrument sounds are used. This choice
is motivated by: (1) the complex nature of the sounds, (2) the fact
that musical instrument sounds have been thoroughly studied in physical
acoustics, and (3) the fact that the auditory model used in this thesis
has been primarily applied to study artificial sounds (see, e.g., Dau et
al., 1996a, 1996b; Jepsen et al., 2008) and speech (see, e.g., Holube &
Kollmeier, 1996; Hansen & Kollmeier, 2000; Jørgensen & Dau, 2011) and
less often to other types of sounds, including musical instrument sounds
(Huber & Kollmeier, 2006). Although Huber and Kollmeier applied the
auditory model to more diverse sets of sounds, their central processor
was adapted to provide a quality metric and, therefore, the goal in their
study was to assess judgements of sound quality rather than simulating
performance. In this context, the work presented in this thesis can be
seen as a possibility to extend the use of the unified framework offered
by the auditory model.

In the next section, a definition of what we understand as sound
complexity is given. This is followed by a review of the experimental
procedures used to perceptually compare sounds. A special emphasis is
given to methods that use a discrimination threshold approach. This is
because the simulations of perceptual similarity that are to be presented
in Chapters 4 and 5 are based on a similar rationale to that of previous
simulations using a discrimination threshold approach.

1.2 Musical instruments as complex sounds

According to Yost et al. (1989), three of the properties that characterise
the perception of complex sounds are: (1) Spectral complexity, (2) tem-
poral complexity, and (3) noise embedment. The spectral complexity
refers to the presence of more than one frequency component in a sound.
The temporal complexity indicates that the spectral as well as the tem-
poral characteristics vary over the duration of the sound. Finally, the
target sound object is embedded in an acoustic environment consisting

1As an extension to the same modelling scheme, an example of a central processor that transforms
the internal representations into a metric of reverberation, which is based on central processor E
(see Table 1.1), is given in Chapter 6.
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1 General introduction

of more objects. The “other objects” constitute a background noise that
affects directly or indirectly the sound object properties.

According to these definitions, the sets of sounds used throughout
this dissertation are both spectrally and temporally complex. Since all
the stimuli correspond to recorded musical instruments and they are
noise-free, the role of noise embedment will not be addressed here. Noise
embedment will be used, however, to mask the properties of given target
sounds. Those noises are of stochastic nature, but have the same spectro-
temporal characteristics as the target sounds. The generation of such
noises is described in Chapters 3 and 5.

A spectro-temporal representation of three sounds is shown in Fig-
ure 1.1. The sounds correspond to a 1000-Hz pure tone (panel A), a
recording of an instrument called Hummer, resonating in its acoustic
mode 2 (panel B), and a recording of a piano sound, note C#5 (panel
C). The Hummer corresponds to the test instrument studied in Chapter 2
and the piano (note C#5) corresponds to the test instrument studied in
Chapters 3, 4, and 5. In the top panels of the figure the respective wave-
forms (black lines) together with their Hilbert envelope (red lines) are
shown. The envelope is used as a representation of the slow response
of the human hearing system to incoming sounds. This characteristic is
sometimes referred to as “sluggishness” of the hearing system. There-
fore, a constant envelope can be interpreted as belonging to a steady
sound. Likewise, an envelope that varies in time is attributed to a sound
that is perceived as a time-varying waveform. In the bottom panels of
Figure 1.1 a short-time Fourier transform (STFT)2 analysis is shown.
Darker regions in the spectrogram represent higher signal amplitudes.
Those amplitudes range between the maximum in the signal (darkest
area) down to a floor amplitude that is 50 dB below (white area). The
red lines indicate the estimated fundamental frequency (F0) of the sig-
nals. The frequency range in each panel was chosen to facilitate the
visualisation of the relevant spectral components in the sounds.

According to our definition of complexity, the sounds in panels A,
B, and C of Figure 1.1 have an increasing complexity. The sine tone
consists of a single spectral component at a frequency of 1000 Hz and
its envelope is steady. The hummer sound has an F0 of 430 Hz, with a

2For the STFT analysis the waveforms were downsampled to an fs of 22050 Hz. The STFT
is based on successive 32768-point FFTs performed on 40-ms signal segments (zero-padding was
applied) with 75% overlap (10-ms hop size). The resulting frequency resolution of the analysis is
0.7 Hz.
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Figure 1.1: Spectro-temporal analysis for three different sounds: (Panel A) A 1000-Hz pure
tone, (Panel B) a Hummer sound, and (Panel C) a piano sound. In the top panels the
sound waveforms are shown together with their Hilbert envelope (red lines). In the bottom
panels, an STFT analysis is shown (∆f=0.7 Hz, 40-ms analysis frame, 10-ms hop-size).
Dark regions indicate higher signal amplitudes, the dynamic range corresponds to 50 dB.
The red lines indicate the F0 of the sounds. The F0s of the pure tone and piano sound are
1000 Hz and 554 Hz, respectively. The F0 of the hummer sound varies between 419 and
448 Hz.

frequency variation between 419 and 448 Hz and it has a time-varying
envelope with amplitudes between 48.9 dB (p = 5.6 mPa at t = 0.11 s)
and 72.5 dB (p = 84.3 mPa at t = 0.18 s). The piano sound has more
complex spectro-temporal characteristics. In terms of frequency (panel
C, bottom), the F0 of 554 Hz, the first two partials (around f1 = 1110 Hz
and f2 = 1660 Hz) and several (less strong) frequency components are
visible in the figure. The less-strong broadband frequency components
correspond to the so-called attack noise and they decrease rapidly in
amplitude after the note onset. Higher frequencies vanish more quickly
in comparison to the lower frequencies. As can be seen in panel C (top),
the signal has a strong onset with an amplitude that increases up to
70.5 dB (p = 67.3 mPa at 0.07 s) within 10 ms.

For the interested reader, the (complex) spectro-temporal character-
istics of 25 musical instruments can be found in Chapter 3 of the book by
Meyer (2009). In that review, selected notes of each instrument and their
development in time in a three-dimensional pattern (time-frequency-
amplitude) are shown. For the particular case of the piano, a C6 note (F0
of 1047 Hz) is described in detail. The analysis also includes a descrip-
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1 General introduction

tion of how the intensity and the style of playing (legato and staccato,
for note C3) affects the tone colour of the resulting sound. These aspects
may also be applicable (but they are not discussed in this thesis) to our
test piano recordings (note C#5), especially the description of the attack
noise given for C6 due to its proximity to the C#5 string (less than one
octave difference).

1.3 Methods for the perceptual evaluation of
musical sounds

In this section, we review the most relevant approaches used so far to
evaluate aspects of sound perception applied to musical sounds. A more
detailed description is provided for those methods that have been directly
or indirectly used in this dissertation. Other comprehensive reviews of
experimental methods used in psychophysics are given by McAdams and
Bigand (1993, Chapter 6) and by Kingdom and Prins (2016).

In line with the review given by McAdams and Bigand in the context
of classification and recognition of sound sources, the different experi-
mental tasks can be grouped in one of the following types: (1) Discrim-
ination, (2) Psychophysical rating scales, (3) Preference/similarity rat-
ings, (4) Matching, (5) Classification, and (6) Identification. For each of
these tasks one or more experimental methods can be used. Based on the
expected outcome of each method, the described tasks are either labelled
as a “performance” or as an “appearance” method. This label responds
to whether the trial responses can be evaluated as “correct/incorrect”
or not. In an appearance-based method, apparent magnitudes (that are
relative or absolute) along any specific dimension or stimulus attribute
are collected.

1.3.1 Discrimination
Category: Performance – threshold methods

In this task the participant is asked to differentiate between two or more
stimuli. The percentage of correct responses is calculated for different
levels of the independent variable. The task can be implemented as an
m-alternative forced-choice (AFC) experiment. In an m-AFC experi-
ment there are m intervals per trial and m alternatives from which the
participant has to choose one. In a 2-AFC task, the participant needs an
explicit reference to the dimension being investigated and he/she has to
be somehow familiar with it. For instance, in a 2-AFC intensity discrim-
ination task, the participant is asked: “Which of the two intervals does
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sound more intense?” (see, e.g., Rabinowitz, 1970, intensity discrimina-
tion with pure tones). In this case, it is expected that the participant is
familiar with the concept of intensity. The implementation of the task
as a 3-AFC experiment opens the possibility to not explicitly ask the
participant about the dimension being investigated. In the example of
intensity discrimination, the question may turn into “Which of the three
intervals does sound different?”.

1.3.2 Psychophysical rating scales
Category: Appearance – scaling methods

In this task the participant is asked to ascribe a number to the sensa-
tion produced by a given stimulus. The goal is to construct an interval
scale related to a specific sensation along which the set of stimuli can
be ordered from low to high. The method of magnitude estimation pro-
vides one way to construct such a scale. This method has been used
mostly to develop scales of basic auditory sensations such as loudness
(Stevens, 1955, 1956; Houtsma et al., 1987), fluctuation strength (Fastl,
1982, 1983; Garćıa, 2015), and roughness (Fastl, 1977; Kemp, 1982).
Three (existing) psychoacoustic models that have been developed based
on the scales of loudness (Chalupper & Fastl, 2002), fluctuation strength
(Garćıa, 2015; Osses et al., 2016), and roughness (Daniel & Weber, 1997)
are used in Chapter 2 to evaluate a musical instrument called hummer.

1.3.3 Preference/similarity ratings
Category: Appearance – forced-choice scaling methods

Pairwise and triadic comparisons

In this type of tasks the participant is forced to make a choice out of
a given number of m stimuli. When comparing the stimuli pairwise
(m = 2), one possible task is to indicate the preference between two
stimuli. In this case there is no explicit reference about the dimension
being investigated. In a triadic comparison (m = 3) the participant is
asked to indicate the pair of sounds that may be grouped together when
being compared. Therefore, the only instruction is to base their choice on
how similar the stimuli within a trial are. The participant’s choices are
collected into a matrix, that is referred to as preference (if m = 2) or sim-
ilarity matrix (if m = 3). A processing of the scores in the matrix should
result in an interval scale. One of the methods used to generate such a
scale is the so-called multidimensional scaling (MDS) (Kruskal, 1964a,
1964b). The MDS method provides a way to visualise the distribution
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of the test stimuli in a multidimensional (abstract) space. The interval
similarity scale is derived by assessing the distance between pairs of stim-
uli in the resulting space. In the context of auditory perception, triadic
comparisons have been used to evaluate artificial complex tones (Levelt
et al., 1966), the similarity between music genres (Novello et al., 2011),
and the similarity of violins with different vibrato amplitudes (Fritz et
al., 2010). Pairwise comparisons have also been used in the evaluation of
musical instrument tones (Grey, 1977; Grey & Gordon, 1978) and timbre
variation in monophonic and polyphonic contexts (Grey, 1978).

Multi-stimulus comparison

The method of multi-stimulus comparison (De Man & Reiss, 2013) is
an alternative to pairwise comparisons. In this task, the participant is
asked to distribute multiple sound stimuli along a single scale. In this
way, multiple stimuli are evaluated within one trial. The multi-stimulus
comparison is very similar to the “Multi-stimulus test with hidden ref-
erence and anchor” (MUSHRA) (ITU-R, 2015), but it does not require
the use of a reference nor (necessarily) anchors. An example of a multi-
stimulus comparison is given in Chapter 6.

1.3.4 Classification
Category: Appearance – scaling methods

In this task the participant is asked to group the stimuli based on “a
criterion”. The criterion is often freely defined by the participant. As
result, each category is defined by a freely-defined label and the stimuli
are distributed along this label scale. For this reason, the task is also
known as free categorisation. A free categorisation task can be inter-
preted as a way to obtain an individualised scale, because the label can
vary from participant to participant. In general, the classification re-
quires more than one label (leading eventually to more than one scale).
Since the labels (i.e., the judgement criteria) are defined by the partici-
pants, the interpretation of the resulting scale is facilitated. An example
of free categorisation is given in the perceptual evaluation of violins by
Saitis, Fritz, Scavone, Guastavino, and Dubois (2017). In their study,
30 experienced violin players were asked to rank either 8 or 10 violins
providing written responses to justify their choices. The analysis of the
written responses lead to 828 words linked to concepts of violin quality.
A subsequent analysis of semantic proximity allowed to group the words
into 8 semantic categories, which the authors linked to timbre, intensity,
and playability characteristics of the violins. The concept of “category”

Page 8



1 General introduction

C
h

a
p

te
r

1

is comparable to the concept of “dimension” of a perceptual space (that
can be obtained with MDS) with the difference that the latter one is of
an abstract nature and requires further interpretation.

1.3.5 Identification
Category: Performance

In an identification or recognition task the participant is asked to link the
test stimuli with names or labels. The identification task can be based
on open-set labels (free identification) or on close-set labels. Possible
analyses for an identification task are: (1) the assessment of identifica-
tion scores (see, e.g., Saldanha & Corso, 1964), (2) the construction of
confusion matrices (see, e.g., Steeneken, 1992, his Chapter 3), and (3)
the measurement of reaction times (see, e.g., Agus et al., 2012).

In the study by Saldanha and Corso, notes of 10 musical instruments
were recorded and presented in their original form and with 5 different
types of modification. The participants had to identify the instrument
being played based on a closed set of labels. Although the authors were
able to draw conclusions about the instruments that were easier to iden-
tify and the type of modification that lead to a better performance,
overall low scores per instrument were obtained (only three instruments
had identification scores above 50%). The authors argued that a more
elaborate analysis of the incorrect scores would have provided further
information to better explain their results. They indicated, for instance,
that in most of the wrong answers for violin sounds, the cello had been
chosen and that this information could not be observed by only using
identification scores. An analysis that can reflect this information is the
construction of a confusion matrix. Such a matrix is constructed by
counting the number of times each stimulus is chosen over the other. A
high confusion score provides evidence of shared (perceptual) stimulus
features. In this way similarity can be implicitly evaluated. This gives
the possibility to analyse confusion matrices using techniques as principal
component component analysis (PCA) and MDS.

1.4 Linking methods of perceptual evaluation with
auditory modelling frameworks

Our interest in this thesis is, as pointed out in Section 1.1, to evaluate the
similarity between sounds by comparing their internal representations
which, in turn, are derived from an auditory model (Dau et al., 1997a).
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The decision stage of the model compares the internal representations
in terms of their spectro-temporal distribution of neural activity, which
is obtained from the corresponding sound intervals, usually presented in
3-AFC trials.

In order to implement a similarity task using the same 3-AFC para-
digm, the question to the participant needs to be implicitly asked. One
way to do this would be to implement the experimental procedure as a
discrimination task (“which of the three sounds is different from the
other two?”). Considering the definitions of the previous section, such a
task corresponds to a performance task with forced choices. Other meth-
ods that may be applicable to implement our similarity task are: the
method of triadic comparisons, and an identification task. The reasons
to favour the implementation of the similarity experiment as a discrimi-
nation task over those methods are:

• The triadic comparison method is an appearance task, i.e., there
are “no wrong answers” in the similarity judgement;

• The similarity (distance) measure in the triadic comparisons de-
pends on the choice of the set of stimuli, and;

• Although the participant’s performance can be assessed in an iden-
tification task, this performance may also be influenced by the set
of stimuli (or stimulus labels) chosen for the experiment.

Judgements of similarity in a 3-AFC discrimination task would only
depend on the two sounds being compared (presented in three intervals)
and will not be influenced by the “other” sound stimuli of the dataset.
Additionally, the performance can be quantified by the percentage of
correct responses (scores), and the question “which of the three sounds
is different from the other two?” can be evaluated by the auditory model
in terms of the spectro-temporal characteristics of each sound interval,
under the assumption that similar sounds have similar spectro-temporal
characteristics. If the discrimination task is implemented using an adap-
tive procedure, the independent variable (the adjustable parameter) is
chosen to influence the difficulty of the task, and discriminability thresh-
olds can be obtained. An example of such an approach is the study on
violin sounds by Fritz et al. (2007), where the independent variable was
a gain applied to the test sound in four different frequency regions. This
lead to the estimation of four amplitude thresholds. They used an audi-
tory model –the multichannel excitation-pattern model (Moore & Sek,
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Figure 1.2: Schematic drawing of possible steps to study the properties of a sound source.
In this particular example the sound source is a musical instrument.

1992; Glasberg & Moore, 2002) (Processor C in Table 1.1)– to simulate
the amplitude thresholds of five of their participants. They succeeded to
recreate the experimental thresholds for two test notes (G3 and E5), with
a deviation of less than 1 dB. These results served to evaluate which of
three possible ways of combining information across auditory frequency
channels was adopted by their participants.

We adopt a similar approach to that used by Fritz et al. (2007). Our
auditory task is implemented as a discrimination experiment, and its re-
sults are compared with simulated thresholds using an auditory model
with the goal of understanding what type of auditory information do
participants use when comparing our test (piano) sounds. The inde-
pendent variable in our approach is a carefully chosen background noise
rather than the use of a direct modification of the (piano) waveforms.

1.5 Motivation of this thesis

When studying a musical instrument, possible approaches to investigate
its properties can be summarised using the diagram of Figure 1.2. The
approaches are classified into one of the following types: (1) Physical
modelling, (2) listening, (3) computational listening, or (4) Perceptual
modelling. In Section 1.3, a review of methods adopted in the “listen-
ing” approach has been given. Although this has not been pointed out
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so far, due to the (on average) long time required to conduct listen-
ing experiments, an alternative is to use the approach that we labelled
as “computational listening”, which represents the use of acoustic or
psychoacoustic metrics obtained from dedicated computer programs. A
very simple example of computational listening is the comparison of two
STFTs. A more elaborate example is given by the acoustic similarity
metric of Agus et al. (2012), which is based on an energy average using a
simplified internal representation of the sounds (Moore, 2003). The au-
thors used this information to explain the results of their identification
test, where shorter reaction times were found when the task considered
less similar sounds.

The “physical modelling” approach relies on the simulation of a sound
source by implementing a model for its vibration and sound radiation.
Two examples of this approach in the study of guitar and piano sounds
are given by Derveaux, Chaigne, Joly, and Becache (2003) and Chabassier,
Chaigne, and Joly (2013). In order to evaluate how well does a given
numerical model match –or how similar the simulated sounds are to–
the sound source under evaluation, a comparison with actual recordings
should be conducted. The comparison can be done by either running lis-
tening experiments (“listening”) or by applying some kind of computer
analysis (“computational listening”).

The remaining part of the diagram, i.e., the “perceptual modelling”
approach, constitutes the main goal of this thesis. This approach con-
sists of gaining insights into human performance –in our case, into “how
discriminable” two sounds are– by incorporating advanced perceptual
aspects into a computational listening approach. We compare experi-
mental thresholds with simulated (or “perceptually modelled”) thresh-
olds obtained from an auditory model. The test sounds in our task are
individual piano notes (Chapters 3 to 5). As an “acoustic event”, in-
dividual notes are considered to be one of the simplest cases to study
(McAdams & Bigand, 1993) when compared with the use of melodic
lines or a fragment of music with multiple instruments. Our efforts are
focused, however, on the complex nature of the piano sounds and on
a detailed analysis of their (multidimensional) internal representations
obtained from an auditory model. This model corresponds to an up-
dated version of the perception model (PEMO) described by Dau et al.
(1997a). As a consequence of using the PEMO model to assess simu-
lated thresholds for complex (piano) sounds, the work in this thesis can
be seen as a further extension of this unified modelling framework that
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has already been successful in simulating human performance in a range
of auditory tasks.

1.6 Outline

In Chapter 2 a selection of psychoacoustic descriptors is reviewed and
applied to a set of sounds. The descriptors correspond to the classic
psychoacoustic measures of loudness, roughness and fluctuation strength.
The descriptors are used to compare sounds of a musical instrument
called hummer. The hummer is a plastic corrugated pipe that generates
sounds when being rotated at specific speeds. In this chapter existing
recordings of the hummer (Hirschberg et al., 2013) are quantitatively
compared with a computational model of the hummer (Nakiboğlu et al.,
2012). This study case corresponds to an example of the “computational
listening” approach shown in the schema of Figure 1.2, with as result an
evaluation of the numerical model of the instrument.

In Chapter 3 an experimental method to assess the perceptual simi-
larity among sounds is presented. The experimental method corresponds
to an “instrument”-in-noise discrimination test where the noise is used
to manipulate the difficulty of the discrimination. The method of triadic
comparisons –largely used in psychology– is used as reference method.
A perceptual similarity study using recorded piano sounds of one note
played on a number of historical pianos is presented. The instrument-in-
noise method provides discrimination thresholds, expressed as signal-to-
noise ratio (SNR), that are significantly correlated with the Euclidean
distances between pianos in the perceptual space constructed from the
triadic comparisons. The listening experiments discussed in this chap-
ter are an example of the “listening” approach shown in the schema of
Figure 1.2.

In Chapter 4 the perceptual similarity among sounds is simulated us-
ing a computational model of the effective processing of the auditory
system. The sounds are “presented” to the model in exactly the same
way as in the instrument-in-noise test validated in the previous chapter.
The simulated thresholds are significantly correlated with the experimen-
tal thresholds, when only a portion (onset) of the sounds is used as input
to the model. These results suggest that the auditory cues available in
the starting part of the sounds are sufficient to reach human perfor-
mance with the model. The content of this chapter is an example of the
“perceptual modelling” approach shown in the schema of Figure 1.2.
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With the aim of broadening the use of the computational model of
Chapter 4 to a different acoustic environment, in Chapter 5 the com-
putational model is used to simulate the similarity of piano sounds in a
reverberant condition. The reverberation is applied to the same piano
sounds used in Chapters 3 and 4 by means of digital convolution. The
effect of reverberation on the piano sounds introduces a moderate change
in their relative position in the perceptual similarity space. The exper-
imental results of the instrument-in-noise test as well as the simulated
results from the computational model also account for this change.

In Chapter 6 a computational model (Processor E in Table 1.1) similar
to that of the previous chapters is used to simulate the perceived rever-
beration of different orchestra instrument sounds in 8 different acoustic
environments. The model is set-up in a binaural configuration and a
different central processor is used to generate reverberance estimates.
Experimental results for the same instrument sounds are provided. The
reverberance estimates of the model for within-instrument conditions are
correlated with the experimental results. This study case corresponds
to an example of the “computational listening” approach shown in the
schema of Figure 1.2.

In Chapter 7 the results and conclusions drawn from each chapter
are briefly summarised. We discuss the context in which the auditory
modelling approach was used, including perspectives for further research.
This discussion is centred on further improvements that could be intro-
duced to the auditory model and their possible implications in the unified
computational framework.
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2 Perceptual evaluation of instrument sounds
using classic psychoacoustic descriptors1

2.1 Introduction
One way to better understand the properties of a musical instrument is
to compare sound recordings of that instrument in controlled situations
with synthesised sounds generated with physical models that recreate
such situations. These sounds can be compared adopting a “computa-
tional listening” approach (see Figure 1.2 of the previous chapter). Since
musical sounds are received and processed by the human hearing system,
the comparison between sounds should be ideally based on perceptual
criteria.

Studies in the field of psychoacoustics have addressed the problem of
sound perception by developing (psychoacoustic) audio descriptors. As
pointed out in the previous chapter (see Section 1.3.2), this development
has been done by fitting algorithms of sound processing to experimental
data obtained primarily with artificial test stimuli using the method of
magnitude estimation (Stevens, 1955; Fastl, 1977; Zwicker, 1977; Kemp,
1982; Fastl, 1982, 1983; Daniel & Weber, 1997). These metrics have
also been used to analyse other types of sounds such as speech, music,
soundscapes, and sounds for product design (see, e.g., Terhardt, 1978;
Genuit, 1997; Widmann, 1997; Yang & Kang, 2013).

In this chapter we compare recorded and synthesised sounds of an
instrument called hummer, also known as the “voice of the dragon”.

1This chapter is largely based on:
A. Osses, R. Kim, and A. Kohlrausch (2015). “Perceptual evaluation of differences between original
and synthesised musical instrument sounds: the role of room acoustics”. Proceedings of EuroNoise.
C. Glorieux (Ed.), pp. 2561–2566. Maastricht, the Netherlands.
A. Osses, and A. Kohlrausch (2014). Perceptual evaluation of differences between original and
synthesised musical instrument sounds. Actas 9th Iberoamerican Congress on Acoustics FIA. J.
Arenas (Ed.) pp. 987–997. Valdivia, Chile.
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The comparison is done using classic psychoacoustic metrics –loudness
(loudness fluctuations), roughness, fluctuation strength– applied to hum-
mer sounds available from a previous research project (Nakiboğlu et al.,
2012; Hirschberg et al., 2013), where no quantitative evaluation of the
agreement between their synthesised and recorded sounds was reported.
Another motivation to evaluate hummer sounds is their simple nature:
the sounds contain mainly one tonal component that oscillates period-
ically in frequency and amplitude (see panel B of Figure 1.1, page 5).
Additionally, the envelope of the sounds is not perfectly regular, having
a slowly-varying pattern in time. The aim of this chapter is, therefore,
to compare available sounds of this simple musical instrument (recorded
and synthesised) using quantitative evaluation criteria based on existing
psychoacoustic metrics.

Since the evaluation criteria are based on applying the concepts of
loudness, loudness fluctuations, roughness and fluctuation strength, we
start the chapter by describing relevant aspects of these descriptors. In
addition to these descriptors, F0 estimates are used to evaluate pitch
variations in the test sounds. During the analysis, particular emphasis
is given to the sensations of fluctuation strength and roughness. These
descriptors characterise temporal fluctuations in amplitude and in fre-
quency and are found naturally in everyday sounds.

2.2 Description of the method
The evaluation between sounds is done by comparing a number of fea-
tures extracted from each of the sounds. To add a perceptual compo-
nent, a set of psychoacoustic descriptors is used to extract those sound
features. A summary of the descriptors used in this chapter is presented
in Table 2.1. Further details are described in the subsequent sections.

Descriptors 1-2: Loudness and loudness fluctuations
Loudness corresponds to the perceptual correlate of the sound pressure
level and is expressed in sone. The reference sound producing 1 sone
is a 1-kHz sine tone with an SPL of 40 dB. A level increase of 10 dB
leads roughly to a doubling of the loudness of a sound. In this chap-
ter the loudness is obtained from the dynamic loudness model (DLM)
(Chalupper & Fastl, 2002). This model provides loudness estimates as a
function of time and frequency.

In order to appropriately describe the concept of loudness fluctuations,
we need to introduce a more detailed description of the DLM model. The
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Table 2.1: Summary of the psychoacoustic descriptors used in this chapter. Further details
are given in the text. The range of values were taken from the literature. The JND values are
related to the noticeable differences of the attributes in the range of the reference value. The
JND for loudness was estimated considering an intensity-JND (∆I) of 1 dB for a 1-kHz pure
tone of 36 dB, as reported by Rabinowitz (1970). The JNDs for Roughness and Fluctuation
strength were taken from Fastl and Zwicker (2007, their Chapters 10 and 11). The maximum
values for fluctuation strength and loudness were taken from Fastl and Zwicker (2007, their
Figures 10.2a and 16.1), and for roughness from Daniel and Weber (1997, their Figure 9).

Descriptor unit range reference JND
Loudness (N) sone 0− 120 1 sone 0.07 sone (∆N= 7%)
Loudness fluctuation (LG) dB ∆LG ≈ 1 dB∗

Roughness (R) asper 0− 3.2 1 asper 0.17 asper (∆R = 17%)
Fluctuation strength (FS) vacil 0− 3 1 vacil 0.10 vacil (∆FS = 10%)
Fundamental frequency (F0) Hz fn Hz ∆F0 ≈ 0.4%

(*)In this chapter we assumed that a difference of 1 dB at each critical-band level LG as a function
of frequency can be used as an estimate of the JND for loudness fluctuations.

block diagram of the model is shown in Figure 2.1. First, the incoming
input signal is high-pass filtered (f cut-off= 50 Hz). Then, an auditory
filter bank consisting of 24 equidistant frequency bands with 1 Bark2

distance is applied. The auditory bands have centre frequencies that
range from 50 Hz (0.5 Bark) to 13500 Hz (23.5 Bark). In the “Envelope
extraction” stage, the envelope of each auditory band is extracted by
computing a short-term root-mean-square value. Main excitation pat-
terns are obtained after accounting for the transmission from free-field
through the outer and middle ears. This is obtained by applying an
amplitude weighting a0 as a function of frequency (see Fastl & Zwicker,
2007, their Figure 8.18). In the stage of “Loudness transformation” the
excitation patterns are converted into main loudness by applying a com-
pressive relation. This is followed by the (temporal) post-masking stage,
where the effects of forward masking are accounted for. This is done by
appending temporal tails onto the loudness patterns. Subsequently, an
upward spread of masking is applied to the loudness patterns as a func-
tion of frequency at each time stamp. The resulting patterns are called
specific loudness patterns. Finally, the patterns are integrated across
frequency to obtain an instantaneous loudness estimate as a function of
time. This temporal pattern is then smoothed in the “Temporal integra-
tion” stage by applying a low-pass filter (LPF) (f cut-off= 8 Hz) to obtain
the final “perceived” time-varying loudness.

2The critical-band rate z expressed in Barks corresponds to one of the frequency scales that is
inspired by the frequency representation in the auditory system. A brief overview of this scale is
given in Appendix A.
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Figure 2.1: Block diagram of the DLM model. The model is briefly described in the text.

As an estimate of the loudness fluctuation of a sound, the critical-band
levels LG are used. They correspond to a representation of the envelope
of the sound in dB as a function of frequency. In order to obtain critical
band levels LG that account for the temporal and spectral masking, the
stages of “Loudness transformation” and “Transmission factor a0” are
reversed using the low-pass filtered specific loudness patterns. This is
indicated in Figure 2.1 by the arrows in the lower part of the diagram.
The reversed stages are highlighted in the diagram. The resulting LG
levels are labelled as “Critical band level LG (+masking)” in the dia-
gram. The minimum and maximum level patterns are estimated from
the percentiles 5 and 95, respectively. Since the analysis presented in this
chapter considers only “short signals” of 1.2 s (hummer sound, acoustic
mode 2) or less, these percentiles are assessed over the entire duration of
the sounds.

Descriptor 3: Roughness
Roughness (R) is a metric that describes how “rough” a sound is and is
caused by the presence of rapid amplitude and/or frequency modulations
with modulation rates between 15 and 300 Hz. The sensation of “rough-
ness” has a bandpass characteristic with a maximum near the frequency
of 70 Hz. Roughness is expressed in asper, where a sound producing 1
asper corresponds to a 1-kHz sine tone, 100% sinusoidally amplitude-
modulated, with a modulation frequency of 70 Hz and an SPL of 60 dB
(Kemp, 1982; Daniel & Weber, 1997). The lower limit of roughness
perception is 0.07 asper and several authors agree that a relative varia-
tion of about 17% elicits a just-noticeable change in roughness (Vogel,
1975; Daniel & Weber, 1997; Fastl & Zwicker, 2007, Chapter 11). The
model described by Daniel and Weber (1997) is used in this chapter.
Particularly, we used the model outputs of main roughness and specific
roughness.

Descriptor 4: Fluctuation strength
The metric of fluctuation strength (FS) is used to describe slow ampli-
tude and/or frequency modulations with modulation rates below 20 Hz.
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The sensation of fluctuation strength has a bandpass characteristic with
a maximum around the frequency of 4 Hz. The range of modulations
below 20 Hz has been shown to be of special interest for speech intelli-
gibility (Drullman et al., 1994; Shannon et al., 1995) as well as for the
perception of rhythm, which is related to the average syllable rate at
amplitude modulations (AMs) of around 4 Hz (see, e.g., Leong et al.,
2014). Fluctuation strength is expressed in vacil, where a sound produc-
ing 1 vacil corresponds to a 1-kHz sine tone, 100% sinusoidally amplitude-
modulated, modulation frequency of 4 Hz and an SPL of 60 dB (Fastl,
1982, 1983). A relative variation of about 10% is believed to elicit a
just-noticeable change in FS (Fastl & Zwicker, 2007, their Chapter 10).
The model described by Garćıa (2015) and Osses et al. (2016) is used in
this chapter. This model has been adapted from an algorithm used to
assess roughness. The FS model is described in detail in Appendix B.

Descriptor 5: Fundamental frequency
The periodicity of a sound can be estimated by calculating the fun-
damental frequency (F0), which is expressed in Hz. F0 estimates are
used to investigate the frequency variations of a given sound. For hum-
mer sounds, these variations are related to Doppler shifts. In this con-
text, the difference between the minimum and maximum F0 estimates
(F0range = F0max−F0min) is used to evaluate the F0 range. For comparing
F0 patterns as a function of time, the absolute difference between the F0
estimates of the test sounds (recorded and simulated sounds) normalised
to the acoustic mode frequency fn is used (∆F0[%] = 100 · ‖F0rec −
F0sim‖/fn). For sinusoidally frequency-modulated sounds (fmod = 4 Hz)
varying by ±∆f around a carrier frequency fc, just-noticeable changes
in carrier frequency of 0.42% and 0.35% can be estimated for the fre-
quencies of f2 = 424.4 Hz and f4 = 851.8 Hz (Fastl & Zwicker, 2007).
These frequencies are of interest to evaluate hummer sounds because they
correspond to its measured resonance frequencies in acoustic modes 2
and 4. F0 estimates are obtained using the Praat software (Boersma,
1993; Boersma & Weenink, 2001).

2.2.1 Comparing two sounds
The comparisons are based on the use of psychoacoustic descriptors. For
each descriptor, test sounds differing by more than a minimum detectable
change (one JND), are labelled as different enough to be distinguished
from each other. The JNDs for each psychoacoustic descriptor are sum-
marised in Table 2.1.
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Figure 2.2: Schematic drawing of a hummer. The hummer has a length L of 70 cm, the
inlet (S1) has an entrance diameter Dent of 3.3 cm. The opposite end of the hummer is
identified as the outlet (S2). Note that the distances in this drawing are not to scale. Some
pictures of the hummer can be found in the study by Hirschberg et al. (2013). This figure
was adapted from Nakiboğlu et al. (2012).

2.3 Study case: Comparison between recorded
and synthesised hummer sounds

2.3.1 Principle of sound generation

The hummer is a flexible plastic corrugated pipe with both ends open.
A schematic geometry of the hummer and typical dimensions are shown
in Figure 2.2. To generate sound, the hummer has to be rotated at a
certain speed in order to excite the natural frequencies of the pipe. The
resonance frequencies fn of the system as a function of the acoustic mode
n are given by:

fn ≈ n · ceff

2L
with n = 2, 3, ... (2.1)

where ceff corresponds to the effective speed of sound in the tube and L
corresponds to the length of the pipe. The effective speed of sound is
approximately 310 m/s (Nakiboğlu et al., 2012). The resonance frequen-
cies fn are shown in Table 2.2. The theoretical frequencies fn can be
obtained using Equation 2.1. The “measured” frequencies were derived
from the sound recordings.

The rotational movement of the hummer produces a periodic variation
in distance between sound source and listener, which leads to positive
and negative frequency shifts due to the Doppler effect. This variation
is related to the rotation period of the hummer.

2.3.2 Stimuli

In this section a brief description of the existing recordings and the syn-
thesised hummer sounds is presented. More detailed information about
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Table 2.2: Resonance frequency fn and rotation period Ωn for the hummer at different
rotation speeds (modes 2 and 4) derived from both, theory (Equation 2.1) and the recordings.

Acoustic Frequency fn [Hz] ∆F0 Period
mode n Theory Measured [%] Ωn [s]

2 442.9 424.4 4.2 0.602
4 885.7 851.8 3.8 0.296

the mechanical measurement set-up used for the sound recordings is given
by Hirschberg et al. (2013). The physical model used for synthesising
the hummer sounds is described by Nakiboğlu et al. (2012).

Recorded sounds

The recordings were made using a mechanical set-up, where the hummer
was attached to a bicycle wheel with an adjustable rotation speed. The
set-up was installed in a semi-anechoic room (volume of 100 m3) that had
a non-reflecting floor. The resulting environment was nearly anechoic.
This means that the microphone M captured only contributions from the
sources S1 and S2. Figure 2.2 gives a schematic view of the position of
the hummer with respect to the microphone M . The mechanical system
on which the hummer was mounted is not shown in the figure.

The hummer was attached to the spikes of a 26” bicycle wheel. The
inlet S1 was placed close to the axis of rotation (wheel axis). The outlet
S2 was at a distance of 0.70 m from the wheel axis, approximately 0.30 m
outside the radius of the wheel. The wheel was mounted on a structure
(oriented horizontally), at a height of 2.23 m above the floor. The wheel
axis was defined to be at coordinates (0,0,2.23) m.

A microphone B&K type 4190, located at (1.58, 0, 1.68) m, was used
to record the hummer. The microphone was located, thus, at a distance
of 1.67 m from the centre of rotation. Each recording had a duration
of 20 s and was sampled at 10 kHz, with an amplitude resolution of 16
bits. The measured resonance frequencies differed by about 4% from the
approximation given by Equation 2.1, as shown in Table 2.2.

The recorded signals were re-sampled at 44.1 kHz, with an amplitude
resolution of 16 bits. The average level was adjusted according to the
reference levels of 54 and 72 dB SPL at 1.67 m from the origin of the
system for the acoustic modes 2 and 4, respectively.

The waveforms of the recorded hummer signals as used in this chapter
are shown in panel A of Figure 2.3. As a consequence of the movement

Page 21



2 Perceptual evaluation of instrument sounds using classic psychoacoustic descriptors

−0.02

0

0.02

P
re

s
s
u

re
 [

P
a

] A (left). Recorded hummer, ac. mode 2

−0.02

0

0.02

P
re

s
s
u

re
 [

P
a

] B (left). Synthesised hummer, ac. mode 2

410

420

430

440

F
re

q
u

e
n

c
y
 [

H
z
] C (left). Fundamental frequency F0

0.2 0.4 0.6 0.8 1 1.2

−2

0

2

4

6

∆
 f

/f
n
 [

%
]

D (left). ∆ F0

Time [s]

−0.2

0

0.2

P
re

s
s
u

re
 [

P
a

] A (right). Recorded hummer, ac. mode 4

−0.2

0

0.2

P
re

s
s
u

re
 [

P
a

] B (right). Synthesised hummer, ac. mode 4

820

840

860

880

F
re

q
u

e
n

c
y
 [

H
z
] C (right). Fundamental frequency F0

2.7 2.8 2.9 3 3.1 3.2 3.3

−2

0

2

4

6

∆
 f

/f
n
 [

%
]

D (right). ∆ F0

Time [s]

Figure 2.3: Hummer sounds in the acoustic mode 2 (left panels) and 4 (right panels). In
panels A and B, the recorded and synthesised waveforms are shown, respectively. In panel C,
F0 estimates obtained using the autocorrelation-based F0 extractor available in the software
Praat are shown. In panel D, the differences [%] between F0 estimates are shown relative
to f2 = 424.4 Hz (in mode 2) and f4 = 851.8 Hz (in mode 4).

of S2, the hummer sounds present a Doppler shift around their natural
frequency fn, as shown in panel C (solid blue line) of the figure.

The mechanical system produced an audible noise in the recordings
which is not present in the synthesised sounds. For this reason, in
the comparison between recorded and synthesised sounds, only those
frequency components that are around fn are considered. In acoustic
mode 2 (f2 of 424.4 Hz), the analysis considered all frequency compo-
nents between 300 Hz (2.9 Bark) and 1000 Hz (8.5 Bark). In acoustic
mode 4 (f4 of 851.8 Hz), the analysis considered all frequency compo-
nents between 650 Hz (6 Bark) and 1400 Hz (10.7 Bark).

Synthesised sounds

Considering a hummer of length L = 0.7 m, as represented in Figure 2.2,
the instrument can be modelled as two monopole sound sources. The
inlet, located near the axis of the wheel, with an entrance diameter of
Dent = 3.3 cm, was modelled as a fixed source S1, while the outlet was
modelled as a rotating source S2 with a rotation period of Ωn. Because
of the flexible nature of the hummer, an effective rotation radius R of
0.67 m was used.
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Figure 2.4: Loudness of recorded (solid) and synthesised (dashed) hummer signals in the
anechoic condition for the acoustic modes 2 (panel A) and 4 (panel B). Only the loudness
contribution of frequency components between zmin and zmax were taken into account.

The synthesised waveforms were obtained using the physical model
described by Nakiboğlu et al. (2012). The model accepts L, Dent, R,
Ωn, fn, the parametrised positions of the sound sources S1,2(t), and the
listener (microphone) location as input parameters. The measured reso-
nance frequencies fn and rotation periods Ωn presented in Table 2.2 were
used instead of their theoretical values.

The synthesised sounds were sampled at 44.1 kHz with an amplitude
resolution of 16 bits. The average level was adjusted according to the
reference levels of 54 and 72 dB SPL at 1.67 m from the origin of the
system for the acoustic modes 2 and 4, respectively. The waveforms of
the synthesised hummer signals are shown in panel B of Figure 2.3. The
shift in F0 caused by the movement of S2 is indicated by the red dashed
lines in panel C of Figure 2.3.

2.4 Results

The following results were obtained using two rotation periods of the hum-
mer signals. For recorded sounds, the most stable periods were chosen.

2.4.1 Loudness

The results for the loudness estimates as a function of time (output of
the DLM model) are shown in Figure 2.4. The minimum, median, and
maximum loudness values were assessed as the percentiles L5, L50 and
L95, respectively, and they were obtained by performing the spectral
summation and temporal integration of the specific loudness patterns
within a frequency range around the F0 of each mode. Those loudness
values are shown in Table 2.3. The loudness difference ∆L50 in acoustic
mode 2 was ‖2.0 − 1.9‖ = 0.1 sone, while the same loudness value was
obtained in mode 4: ‖5.4−5.4‖ = 0. These values differ by approximately
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Table 2.3: Summary of the specific loudness patterns in percentiles for 2 periods of rotation
of the hummer signals. Percentile 5 and 95 represent minimum and maximum values, re-
spectively. Percentile 50 is an estimate of the mean loudness value. To assess these values,
only the frequency components in the range (zmin, zmax) were taken into account.

Acoustic Frequency limit [Bark] Loudness [sones]
Mode n / Type zmin-zmax L5 L50 L95 L95 − L5

2 / recorded 2.9 - 8.5 1.3 2.0 2.5 1.1
2 / synthesised 2.9 - 8.5 1.2 1.9 2.4 1.2
4 / recorded 6.0 - 10.7 4.5 5.4 5.9 1.4
4 / synthesised 6.0 - 10.7 3.7 5.4 6.3 2.7
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Figure 2.5: Maximum critical-band levels LG,max for recorded (blue solid line) and synthe-
sised (red dashed line) hummer signals in the acoustic modes 2 (panel A) and 4 (panel B). In
the bottom panels, the differences between the recorded and synthesised signals are shown.
The black dashed-dotted lines indicate the assumed JND of 1 dB.

one JND or less. Although the reported JND for a 40-dB tone presented
in Table 2.1 is 0.07 sone, the JND for higher levels increases to 0.12 sone
at 54 dB SPL (4.6% of relative change) and to 0.30 sone at 72 dB SPL
(3.3% of relative change). If we consider a positive difference to be
attributed to higher values in the recorded signals, then in mode 2, the
minimum L5 and maximum L95 estimates have a good agreement with
a deviation ∆L5 = 1.3−1.2 = 0.1 sone and ∆L95 = 2.5−2.4 = 0.1 sone,
which is still within the range of one JND. Although in acoustic mode
4, the synthesised signal is as loud as the recorded signal (∆L50 = 0),
its maximum value is higher (∆L95 = 5.9 − 6.3 = −0.4 sone) and its
minimum is lower (∆L5 = 4.5−3.7 = 0.8 sone). The underestimation of
the minimum loudness values (∆L5 = 0.8 sone > 1 JND), is particularly
visible in panel B of Figure 2.4, where the loudness of the synthesised
sound has minimum values of nearly 3.4 sone at 2.86 and 3.16 s, while
the recorded signal has a minimum value of about 4.3 sone.
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Figure 2.6: Minimum critical-band levels LG,min for recorded (solid) and synthesised
(dashed) hummer signals in the acoustic modes 2 (panel A) and 4 (panel B). In the bottom
panels, the differences between the recorded and synthesised signals are shown. In panel A,
the differences are slightly larger than one JND, with a more pronounced difference above
7.5 Bark (853 Hz). In panel B, the LG,min levels of the synthesised signals are always below
the levels of the recorded signals, with an underestimation that reaches 4.6 dB at 6.5 Bark
(720 Hz). The assumed JND of 1 dB is indicated by the black dashed-dotted line.

2.4.2 Loudness fluctuations

The results for the critical-band levels LG are shown in Figures 2.5 and
2.6. The maximum critical-band levels LG,max as a function of frequency
can be used as an estimate of the maximum masking pattern produced by
a signal. Likewise, the minimum critical-band level LG,min can be used to
estimate minimum masking patterns. The LG,max levels of recorded and
synthesised hummer signals are shown in Figure 2.5. The levels differ
by less than 1 dB for signals in acoustic mode 2 (panel A of the figure).
For signals in mode 4 (panel B of the figure), the synthesised sound has
slightly overestimated loudness fluctuation values for frequencies below
6.7 Bark (740 Hz), producing a ∆LG,max of −1.1 dB at 6.5 Bark (720 Hz).
This means that these level differences are likely to be perceived for
frequencies below 6.7 Bark (740 Hz), where the JND is just exceeded.

The differences were larger in the minimum masking patterns, shown
in Figure 2.6. For both acoustic modes the synthesised signals had a
LG,min pattern below those of the recorded signals. In mode 2 (panel
A of the figure) the differences were equal to or lower than 1.5 dB for
frequency components between 3.0 Bark (313 Hz) and 7.7 Bark (880 Hz).
The differences were larger for the masking patterns in mode 4 (panel B
of the figure) where synthesised signals produced LG,min levels that are
lower by at least 3.7 dB. This means that for both modes, the differences
between synthesised and recorded hummer signals are likely to be per-
ceived. The differences are however more prominent in acoustic mode 4
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Figure 2.7: Roughness estimates as a function of time for recorded (solid) and synthesised
(dashed) hummer signals. The hummer signals in the acoustic mode 2 (panel A) do not
produce any sensation of roughness (R< 0.07 asper). In the acoustic mode 4 (panel B), the
recorded signal has an overall R value which is just above threshold of 0.08 asper, while the
synthesised sound has a higher sensation, with an overall R value of 0.22 asper.

(∆LG,min ≥ 3.7 dB) than in mode 2 (∆LG,min ≤ 1.5 dB for frequencies
below 7.7 Bark).

2.4.3 Roughness

The results for the R estimates as a function of time are shown in Fig-
ure 2.7. The results for the (overall) specific roughness Rspec patterns as
a function of frequency are shown in Figure 2.8. The results for the hum-
mer signals in acoustic mode 2 (panel A in Figures 2.7 and 2.8) have an R
value below the minimum audible threshold of 0.07 asper, meaning that
the signals do not elicit any roughness sensation. In mode 4 (panel B of
the figures), the recorded signal (blue solid line) has an overall R value
which is just above threshold of 0.08 asper with minimum and maximum
values of R5 = 0.04 asper (below threshold) and R95 = 0.15 asper, while
the synthesised sound (red dashed line) has a higher sensation, with
an overall R value of 0.22 asper and minimum and maximum values of
R5 = 0.08 asper and R95 = 0.31 asper. The JND value for a roughness
of 0.22 asper is 0.04 asper (17% of 0.22 asper). Hence, the synthesised
signal produces a roughness sensation that is markedly higher to that
produced by the recorded signal (Rsim−Rrec= 0.22 − 0.08 asper = 0.14
asper > 0.04 asper). Although the signals in mode 2 do not produce any
sensation of roughness and the recorded hummer sound in mode 4 is just
above the roughness threshold, all four Rspec patterns in Figure 2.8 have
a maximum value at the critical bands with centre frequencies closer to
the F0s of the respective modes. In mode 2, the maximum occurs in the
band centred at 4.0-4.5 Bark (close to f2 = 4.1 Bark = 424.4 Hz). In
mode 4, the maximum occurs in the band centred at 7.5 Bark (852.7 Hz,
close to f4 = 851.8 Hz).
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Figure 2.8: Average specific roughness patterns Rspec for recorded (solid) and synthesised
(dashed) hummer signals. All four Rspec patterns have a maximum value at the critical
bands with centre frequencies closer to the F0s of the respective modes. In acoustic mode 2
(panel A), the maximum occurs in the band centred at 4.0-4.5 Bark (417.3-473.4 Hz, close
to f2 = 424.4 Hz). In acoustic mode 4 (panel B), the maximum occurs in the band centred
at 7.5 Bark (852.7 Hz, close to f4 = 851.8 Hz).
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Figure 2.9: Specific fluctuation strength pattern FSspec for recorded (solid) and synthesised
(dashed) hummer signals. The overall FS values that can be obtained by integrating the area
under the FSspec patterns are 0.18 and 0.29 vacil for the recorded and synthesised signals in
acoustic mode 2, and 0.07 and 0.30 vacil in acoustic mode 4.

2.4.4 Fluctuation strength

The results for the patterns of specific fluctuation strength (FSspec) are
shown in Figure 2.9. For this analysis, 2-s section of recorded and syn-
thesised hummer sounds were used as input to the FS model. The anal-
ysis window of the model was set to 2 s, meaning that the algorithm
only returned one overall FS value and one pattern of specific fluctu-
ation strength FSspec. The overall FS values for recorded and synthe-
sised signals in acoustic mode 2 were 0.18 vacil and 0.29 vacil, respec-
tively. The FS values for the signals in acoustic mode 4 were 0.07 vacil
and 0.30 vacil. In both modes the synthesised hummer signals elicit a
higher sensation of fluctuation than those of the recorded signals and
they differ by more than one JND. The JNDs for the FS values of
0.29 and 0.30 vacil are about 0.03 vacil. Therefore, the differences are
FSsim−FSrec= 0.29 − 0.18 = 0.11 vacil > 0.03 vacil in mode 2, and
FSsim−FSrec= 0.30 − 0.07 = 0.23 vacil > 0.03 vacil in mode 4, i.e., in
both modes the differences in FS are larger than one JND. The FS
value of the recorded hummer signal in the acoustic mode 4 is very low
(0.07 vacil) and, therefore, it can be labelled as a non-fluctuating sound.
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2.4.5 Fundamental frequency
The results for the F0 estimation of recorded (blue line) and synthesised
sounds (red dashed line) are shown in panel C of Figure 2.3, where a
pitch estimate was found for every audio segment3). In acoustic mode 2,
the F0 estimates for the recorded signals vary between 420 and 434 Hz
(F0range = F0max − F0min = 14 Hz), while the estimates for the synthesised
signals vary between 407 and 442 Hz (F0range = 35 Hz). The F0 patterns
are periodic, following the rotation period of the hummer of about 0.6 s
(f rot = 1.7 Hz). In acoustic mode 4, the F0 estimates for the recorded
signals vary between 822 and 878 Hz (F0range = 56 Hz), while for the
synthesised signals they vary between 835 and 874 Hz (F0range = 39 Hz).
The F0 patterns in this mode have a rotation period of about 0.3 s
(f rot = 3.3 Hz). The differences between F0 estimates (normalised to
fn) are shown in panel D of Figure 2.3. In mode 2 (panel D, left), the
∆F0 ranges from −2.1% to 5.8%, with an unsigned average of 0.7%. In
mode 4 (panel D, right), the ∆F0 ranges from −2.3% to 1.5%, with an
average of 0.7%. The average differences in both modes exceed the re-
ported JNDs for variations in frequency of stationary FM tones (0.42%
and 0.35%, respectively).

2.5 Discussion
The results of the comparison between recorded and synthesised hummer
signals are summarised in Table 2.4. The synthesised hummer sounds
showed a higher similarity4 with the recorded signals in mode 2 than in
mode 4. In mode 2, differences that are unlikely to be perceived were
found for the descriptors of loudness, loudness fluctuation (LG,max), and
roughness. The descriptors of loudness fluctuation (LG,min), fluctuation
strength, and F0 indicated that perceptual differences between the syn-
thesised and recorded sounds exist5. In mode 4, differences between the
recorded and synthesised signals that are likely to be perceived were
found for the descriptors of loudness (L95 − L5), loudness fluctuation
(LG,min), roughness and fluctuation strength. The discussion presented

3Pitch estimates were obtained for 40-ms segments with a hop-size of 10 ms and F0 candidates
between 75 and 1400 Hz. The frequency contours were obtained in the Praat software using the
following command: To pitch (ac)... 0.01 75 15 no 0.01 0.45 0.01 0.35 0.14 1400.

4The term similarity is used here to refer to sounds that are not distinct enough according the
selected psychoacoustic descriptors.

5As pointed out in Table 2.4, the differences in minimum loudness fluctuation and F0 are not
much larger than the assumed JNDs. It is therefore unclear whether the use of more accurate JNDs
(assessed for hummer signals) may still have lead to perceptible differences. For instance, for F0
differences the actual JND should be larger than the assumed JND, because the hummer has a
dynamic variation (Doppler shift) while the assumed JND is valid for stationary FM tones.
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Table 2.4: Summary of the comparison between synthesised and recorded hummer signals.

Are the hummer signals “different”?
Descriptor Mode 2 Mode 4 Figure Nr.

Loudness ∆L50 No No 2.4
L95 − L5 No Yes 2.4

Loudness fluctuation ∆LG,max No Yes 2.5
∆LG,min Yes∗ Yes 2.6

Roughness ∆R No∗∗ Yes 2.7
Fluctuation strength ∆FS Yes Yes 2.9

Fundamental frequency ∆F0 Yes∗ Yes∗ 2.3

(*)The differences found for ∆LG,min patterns (in mode 2) and ∆F0 were not much larger than
the assumed JNDs. The assessment of experimental JNDs may reveal whether these differences are
actually perceptible. (**)The hummer signals in mode 2 did not elicit roughness.

next is focused on an analysis of the descriptors of roughness and FS. An
analysis based on these descriptors allows the description of sounds in
terms of their amplitude and frequency variations, which are prominent
characteristics of the hummer signals.

2.5.1 Roughness

The hummer signals in acoustic mode 2 had R estimates below its min-
imum audible threshold of 0.07 asper. This means that the amplitude
modulations (amplitude envelope) of the hummer signals have a period-
icity that is not fast enough to enter the frequency range that elicits a
sensation of roughness. This is also the case for their frequency mod-
ulations. The repetition rates of the frequency modulations follow the
frequency of rotation of the hummer, which are 1.7 Hz (for Ωn = 0.602 s)
and 3.3 Hz (for Ωn = 0.296 s) for the signals in modes 2 and 4, re-
spectively. Both rates are below 20 Hz. Hence, the audible R values
found for the signals in mode 4 should only be caused by their ampli-
tude variations. Let us focus on the synthesised hummer sound in mode
4, which presents the highest R estimates. Its waveform, which is replot-
ted in panel A of Figure 2.10 (taken from panel B of Figure 2.3), has
pronounced amplitude modulations, with a Hilbert envelope that has 8
local maxima within a period (black circle markers). These maximum
values range between 67.8 dB (0.049 Pa) at the points marked as 4 and
8, and 78.6 dB (0.170 Pa) at the points marked as 1 and 7. It can be
noted that the amplitude modulations that lead to the lower amplitude
maxima (points marked as 4 and 8 in the figure) are found when the
F0 estimates cross the nominal mode frequency. This happens when the
moving source S2 is either facing (S2 at [0.67, 0, 2.23] m) or opposing (S2

at [−0.67, 0, 2.23] m) the recording microphone. Let us now consider two
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Figure 2.10: Waveform (panel A) and roughness (panel B) for the synthesised hummer sound
in acoustic mode 4. Panels A and B are replotted from Figures 2.3 and 2.7, respectively.
The waveform is shown together with its Hilbert envelope (grey thick line). Local maxi-
mum values of the envelope of the signal are indicated by dark circle markers and they are
enumerated (1 to 8) in two periods of the hummer signal.

of the points at which Rmin and Rmax values occur, for instance, at 3.02 s
(R= 0.07 asper) and 2.80 s (R= 0.32 asper), respectively. The Rmax value
is obtained considering the waveform samples between 2.80 and 3.00 s, as
indicated by the blue rectangle in panel A of Figure 2.10. This analysis
frame contains the two lower amplitude modulations (points 4 and 8)
while the Rmin-analysis frame (3.02-3.22 s, magenta dashed rectangle in
the figure) contains only one (point 4). The presence of two lower ampli-
tude modulations within one analysis frame seems to be enough to elicit
a roughness sensation at their inherent modulation frequency around
25 Hz (duration between two consecutive minima of about 40 ms). It is
important to emphasise that the elicited overall R of 0.32 asper (0.22 as-
per for the recorded hummer) is audible, but is still located in the lower
end of the roughness scale. This means that the sensation of roughness
is perceptible but not very prominent in the hummer sounds.

2.5.2 Fluctuation strength

Differences in acoustic mode 2

As just discussed, the differences between hummer sounds can be ei-
ther attributed to amplitude or frequency modulations. For the signals
in mode 2, estimates of loudness and maximum loudness fluctuation
(∆LG,max) between recorded and synthesised sounds did not differ con-
siderably in our analysis, while there was a slight underestimation of the
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minimum loudness fluctuation observed in the synthesised signal, with
an overall ∆LG,min of −1.5 dB (0.5 dB beyond the assumed JND). If we
use loudness estimates as indicative of variations in the amplitude enve-
lope, disregarding the 0.5-dB underestimation in LG,min, the difference
in FS between hummer sounds should be caused by differences in their
frequency modulations. The synthesised sound was found to have an F0
with a larger variation (F0range) than that of the recorded sound (see
Figure 2.3, panel C, left). The F0 estimates have a periodicity related
to the rotation frequency of the hummer, in this mode of f rot = 1.7 Hz
(Ωn ≈ 0.6 s). Since this frequency lies within the range of frequencies
that are relevant for fluctuation strength, we may attribute the higher
FS of the synthesised signal to its more prominent Doppler shift (higher
F0range value) with respect to the recorded signal.

Differences in acoustic mode 4

For the signals in mode 4, the descriptors of loudness and loudness fluc-
tuations already showed an underestimation of the minimum amplitude
values. This means that at least part of the difference (FSsim−FSrec=
0.23 vacil) between FS values can be attributed to amplitude modula-
tions. The recorded and synthesised hummer sounds were found to have
F0 ranges of 56 Hz (∆f ≈ ±28 Hz) and 39 Hz (∆f ≈ ±20 Hz), respec-
tively. In an analysis presented in Appendix B, FM tones with a similar
carrier frequency (fc = 851.8 Hz), frequency deviation (∆±25 Hz), mod-
ulation frequency (fmod= 4 Hz), and no amplitude modulation (flat enve-
lope) elicited FS model estimates of 0.11 vacil or less. Since the frequency
modulations (FMs) follow a rotation frequency of f rot = 3.3 Hz (close
to fmod = 4 Hz), the analysis shown in the appendix can be used to
argue that the difference between FS estimates in mode 4 is unlikely to
be produced by differences in the frequency modulation of the hummer
sounds.

2.6 Conclusions

The methods presented in this chapter have been applied to recorded
and synthesised sounds of an instrument called hummer. The analysis
was based on five descriptors –loudness, loudness fluctuations, roughness,
fluctuation strength, fundamental frequency–, that can be interpreted as
an evaluation based on 5 dimensions. Within each of these dimensions,
the psychoacoustic estimates obtained from the recorded and synthesised
sounds were considered as similar if they differed by less than one JND
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and as perceptually different otherwise. The results showed that the
synthesised sounds are more similar to the recorded ones in acoustic
mode 2, where two of the descriptors differed by less than one JND
(loudness and roughness) and one descriptor was just above the JND
(loudness fluctuation), than in mode 4, where only one of the descriptors
met such a criterion (loudness, L50).

The evaluated sounds are periodic and harmonic and they are char-
acterised by the presence of both amplitude and frequency modulations.
Based on these properties we assumed that the selected descriptors were
appropriate to evaluate differences between recorded and synthesised
hummer sounds. Other musical instruments may have properties that
require another set of descriptors, which can increase the difficulty of
the evaluation if more descriptors are needed, requiring more knowledge
about the underlying JNDs. Some other instrument properties may be:
(1) the presence of temporal transients, and; (2) the transition in pitch
percepts from harmonic to non-harmonic segments within the sound.

In order to introduce the analysis of sounds that have temporal tran-
sients, recorded piano sounds are studied in the next chapters (Chapters
3, 4, 5). There, the perceptual similarity between sounds is approached
as an experimental (performance) task and it does not require an a priori
knowledge about the dimensions that are to be evaluated, as it was the
case in this chapter.
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3 Measuring the perceived similarity of instrument
sounds using an instrument-in-noise test

In this chapter the comparison between sounds is approached as a dis-
crimination task. This discrimination task has been adapted to assess the
perceptual similarity of two test sounds. In the previous chapter, two
sounds were “judged” as very similar if a given psychoacoustic metric
provided values that differ by less than one JND. This situation would
be comparable to a listening condition of the same two sounds with a
level difference that is below the discriminability threshold.

In contrast to the use of a specific psychoacoustic metric, the proposed
method is developed under the idea that, when comparing two sounds,
a listener will use all available sound properties –or prominent features–
rather than using a single property. The experiment is implemented as
an “instrument”-in-noise task. The two sounds being evaluated are pre-
sented with an added specific noise. By adjusting the SNR in the course
of the experiment the difficulty of the sound discrimination is manipu-
lated. Two sounds that are similar will tolerate a low level of added noise
(high SNR) to correctly discriminate one from the other in contrast to
the case of two sounds that are more dissimilar, where a higher amount
of noise (lower SNR) will be tolerated before the discriminability perfor-
mance decreases. In other words, a strong correlation between SNR and
similarity is expected. To produce this effect, however, the noises need
to have similar spectro-temporal properties to those of the test stimuli.
For that purpose the algorithm of the ICRA noises in speech has been
adapted. A description to use this algorithm in the evaluation of a set of
test stimuli is given. As study case, the instrument-in-noise test is used
to evaluate recordings of one note played on seven Viennese pianos. The
suggested method is compared to the method of triadic comparisons in
a similarity assessment task.
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3.1 Introduction

Perceptual similarity between elements is a problem approached in sev-
eral disciplines and is normally assessed experimentally. Popular experi-
mental tasks used to compare sounds are the method of triadic compar-
isons (Levelt et al., 1966; Fritz et al., 2010; Novello et al., 2011), pair-
wise comparisons (Grey, 1977; Grey & Gordon, 1978; Raake et al., 2014;
Tahvanainen et al., 2015), free verbalisation rating, and categorisation
(Dubois, 2000; Guastavino & Katz, 2004; Saitis et al., 2013). A review
of these and other methods used in auditory research in the context of
musical instruments is provided by Fritz and Dubois (2015) and also in
the introduction of this thesis (Section 1.3). For the methods of triadic
and pairwise comparisons, matrices indicating the preferences of the par-
ticipants can be constructed. To further process the data, the preference
matrices are normally converted into a mathematical space where the
elements under test can be compared to each other. Techniques as MDS
(Shepard, 1962; Kruskal, 1964b) and the use of the Bradley-Terry-Luce
(BTL) scale (Bradley, 1953; Wickelmaier & Schmid, 2004) are examples
of algorithms that allow such a comparison.

Despite all those experimental procedures to evaluate similarity, our
interest is not only on knowing which sounds are more or less similar
among each other but also on obtaining a quantifiable measure of those
distances. In this chapter we show a way to reach that objective by
conducting a listening test to discriminate two sounds using a 3-AFC
experiment in noise, where the noise allows to change the similarity of
the sounds being tested. In the next section the discrimination test or
“instrument”-in-noise test is explained, providing a detailed explanation
of the noise generation. As study case, a comparison of one note (C#5) of
seven Viennese pianos from the 19th century is given. A description of the
method of triadic comparisons is also included. The triadic comparison
test is used as reference method in the validation of the instrument-in-
noise task.

3.2 Description of the method

A method to quantify the perceptual differences between sounds is pre-
sented in this section. The sounds are compared pairwise and they are
embedded in a background noise at different SNRs. The method was de-
veloped under the rationale that two very different sounds must be easy
to discriminate while two similar sounds must represent a more difficult
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Figure 3.1: The principle of the ICRA noise generation, version A. For details in the proce-
dure, refer to steps 1 to 6 in the text.

task. The similarity between two sounds within a trial is changed by
presenting the sounds simultaneously with a specific noise. When the
test sounds are more different, more noise (lower SNR) is tolerated until
both sounds become undistinguishable. To deliver such results, however,
the noise has to be carefully generated. The noise needs to have similar
spectro-temporal properties to those of the test sounds. In the context
of speech perception, the International Collegium of Rehabilitative Au-
diology (ICRA) developed an algorithm to generate random noises with
such acoustic properties (Dreschler et al., 2001). We modified that al-
gorithm to produce a suitable weighting of the properties of a musical
instrument. The piano was chosen to exemplify the instrument-in-noise
procedure. This choice was motivated by the strongly varying temporal
properties and rich spectrum of the piano sounds.

3.2.1 Modified ICRA noise, version A
The procedure to generate the ICRA noises (version A1) introducing
a “musical-instrument weighting” is shown in Figure 3.1 and can be
summarised as follows:

1. Band-split filter: an input signal (musical instrument sound) is fed
into a Gammatone filter bank. The Gammatone filter bank consists of
31 bands with centre frequencies between 87 Hz (3 ERBN

2) and 7820 Hz
(33 ERBN), spaced at 1 ERB. The all-pole Gammatone filter bank with
complex outputs (only the real part is further processed) available in
the Auditory Modelling Toolbox (AMT) for MATLAB was used for this
purpose (Søndergaard & Majdak, 2013). The filter design and processing

1In a later stage of our research project, a second modification of the ICRA algorithm (version B)
was developed. Version B of the ICRA algorithm is described and used in Chapter 5.

2The equivalent rectangular bandwidth (ERB) rate scale corresponds to one of the frequency
scales that is inspired by the frequency representation in the auditory system. A brief overview of
this scale is given in Appendix A.
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introduced in this stage is equivalent to the “frequency analysis” stage
described by Hohmann (2002).

2. Sign randomisation: the sign of each sample of the 31 filtered sig-
nals is either reversed or kept unaltered with a probability of 50% (mul-
tiplication by 1 or −1) (Schroeder, 1968). As a consequence of this
process, the resulting waveforms have a flat spectrum while keeping the
same temporal envelope characteristics and the same band level.

3. Re-filtering per band-split filter: the resulting signal from band
i is fed into the ith band of the Gammatone filter bank. The index i
represents each of the 31 bands.

4. Add signals together: the 31 filtered signals are added together.

5. Phase randomisation: the phase of the signal is randomised fol-
lowing a uniform distribution between 0 and 2π, this is done in the
frequency domain by overlapping/adding the segments after an IFFT
with a 87.5% overlap. The resulting signal is adjusted to have the same
total RMS level as the input to the band-split filter stage.

6. Low-pass filter at 8200 Hz: an eight-order Butterworth filter with
a cut-off frequency at the upper limit of the highest critical band (f cut-off

at 8200 Hz≈ 33.5 ERBN) is applied. This filter is introduced to reduce
undesired high frequencies as a consequence of the phase randomisation.

One fundamental change in the ICRA-noise algorithm compared to
the original description by Dreschler et al. (2001) is the use of the 31-
band Gammatone filter bank instead of the original band-split filter with
cross-over frequencies at 800 and 2400 Hz, i.e., a LPF with cut-off fre-
quency at 800 Hz, a band-pass filter (BPF) between 800 and 2400 Hz
and a high-pass filter (HPF) with cut-off frequency at 2400 Hz. For
speech signals, those bands were chosen to manipulate three relevant fre-
quency regions related to the fundamental frequency and second formant
of voiced segments, and to the range of unvoiced fricatives, respectively.
The use of the Gammatone filter bank provides more freedom to fol-
low the spectral properties of the input (instrument) sounds. Another
difference is that in our implementation we omitted the band level com-
pensation (that would have come after Stage 3), which due to the large
number of auditory bands in our algorithm (31 bands), introduced an
increasing spectral tilt. The spectral tilt introduced a gradual increased
band weighting towards the high frequencies with a relative emphasis of
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Figure 3.2: (a) Waveform of the Viennese piano P1 converted to SPL, and (b) one realisation
of its resulting ICRA noise at an SNR= 0 dB. The thick black lines correspond to the Hilbert
envelope of the waveforms (LPF with cut-off at 20 Hz). (c) Spectra of the piano sound (blue)
and the ICRA noise (black thick line) averaged over the first 0.6 s of both waveforms.
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Figure 3.3: (a) Waveform of the piano P3 converted to SPL, and (b) one realisation of its
resulting ICRA noise at an SNR= 0 dB. The thick black lines correspond to the Hilbert
envelope of the waveforms. (c) Spectra of the piano sound (red) and the ICRA noise (black
thick line) averaged over the first 0.6 s of both waveforms.

10 dB at the highest auditory filter with respect to the F0-centred band.
This omission happened incidentally and we only became aware of it af-
ter the data collection. Some reflection about the spectral tilt is added
in the discussion section and it is further investigated in Chapter 5.

3.2.2 Comparing two sounds

In this section we explain how the concept of ICRA noise can be used to
compare two piano sounds. For this purpose, two recordings of the note
C#5 (nominal F0 of 554 Hz) from the pianos P1 and P3 were chosen (see
Table 3.1). Firstly, the ICRA noise for both sounds has to be generated
using the algorithm explained in the previous section. The resulting
noises from the ICRA algorithm have an average (RMS) level that is
the same as the level of the corresponding piano signals. At this level,
the noises are interpreted to be at an SNR of 0 dB. The pianos P1 and
P3 together with one realisation of their ICRA noises (N1 and N3) are
shown in Figures 3.2 and 3.3. Since the sounds are compared pairwise,
there are a number of considerations that have to be taken into account
before conducting the experiment.

Practical considerations

During the experimental procedure, the task is to distinguish between
two sounds. A three-alternative forced-choice (3-AFC) procedure is used.
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This procedure is also known as odd-ball paradigm. In this procedure,
one of the two sounds serves as “reference” and is presented in two obser-
vation intervals. The other sound serves as “test sound” and is presented
in the randomly chosen third interval.

The sounds being compared need to be of a similar duration. In the
example, both piano waveforms were set to have a duration of 1.3 s.
Additionally the piano onset (leading to the maximum sound pressure
level) was set to occur at approximately the same time stamp (t = 0.1 s).

The next consideration is to generate a “paired” ICRA noise that ac-
counts for the spectro-temporal properties of both piano sounds. The
paired noise is generated by combining the two ICRA noises (mean of
their waveforms). The resulting noise is labelled as having an SNR of
0 dB3. It is also assumed that the paired ICRA noise is efficient to grad-
ually mask the properties of the test sounds when presented together (in
the example, P1 or P3 plus the paired noise) within each trial interval
as the noise level increases (and the SNR decreases). It is important,
however, to use different realisations of the paired noise in every test
interval. This is because the use of a single fixed noise removes the
statistical variability of the masker and may introduce additional cues
during the course of the experiment (von Klitzing & Kohlrausch, 1994).
The use of a fixed noise is known as frozen noise. If additional decision
cues are available to the participant, the discrimination of the pianos
becomes easier. To avoid this problem, noises that are independently
generated but being drawn from the same statistical distribution are
used. Such type of noises are known as running noises. To generate
“running” ICRA noises, twelve realisations of each paired ICRA noise
were generated. Within each trial of the 3-AFC experiment three paired
noises are chosen, which leads to “12 choose 3” or

(
12
3

)
= 220 possible

triads of noises. If the selection of noises is randomly drawn from a
uniform distribution, it is unlikely that two participants use exactly the
same sequence of paired noises during the course of the experimental
session. In order to perform the actual comparison between the pianos
P1 and P3, the SNR of their paired ICRA noises is adapted by applying
a positive gain (decrease of the SNR, more difficult discrimination) or a
negative gain (increase of the SNR, easier discrimination), depending on
the participant’s responses.

3By averaging the two waveforms the variance of the resulting paired noise is decreased by 3 dB.

Page 38



3 Measuring the perceived similarity between sounds using an instrument-in-noise test

C
h

a
p

te
r

3

3.2.3 Adaptive procedure: Instrument-in-noise test
The instrument sounds are compared pairwise. A given pair of sounds
is presented in 3-AFC trials, where the discriminability threshold is es-
timated by adjusting the noise level. This corresponds to an adaptive
procedure (or staircase method). The participant has to indicate which
of the three intervals contains the target sound (presented once) where
the reference sound is presented twice. The adjustable parameter (noise
level) is varied following a two-down one-up rule: the noise is increased
(SNR is decreased) after 2 consecutive right answers and decreased (SNR
is increased) after 1 wrong answer. This paradigm tracks the 70.7%
discriminability threshold (Levitt, 1971). Consecutive changes of the
adaptive parameter in only one direction are “one run”. A down run
represents consecutive changes of the noise towards more difficult condi-
tions (decrease in SNR) while an up run is related to consecutive changes
towards easier conditions (increase in SNR). Changes from down to up
(correct to incorrect) or up to down (incorrect to correct), the reversals,
are the relevant noise conditions used as criterion to stop the experimen-
tal procedure. We chose to wait until 12 reversals are reached before
stopping the comparison between the test sounds. The starting point of
the paired ICRA noise is set to an SNR of 16 dB. We assume that at
this SNR the discrimination of most piano pairs is easy and that this can
help participants to get somehow accustomed to differences between the
pianos being tested. The step size at which the noise is adjusted is set to
4 dB and is reduced to 2 dB (after the 2nd reversal) and 1 dB (after the
4th reversal). After the 4th reversal the runs stay at a fixed step size of
1 dB. These runs correspond to the measuring stage. The median of the
reversals during the measuring stage (last 8 reversals) is used to estimate
the discrimination threshold.

The sounds used in this chapter differ considerably in their loudness
due to differences in the construction of the pianos from where they
were recorded, which was affected by the fast technological developments
during the 19th century. Loudness cues4 are, however, not the main
focus of this research. To avoid the use of loudness cues during the

4Three technical aspects that influence the loudness of the piano sounds are: (1) Differences in
the force with which the hammer strikes the strings. One of the reasons for these differences is the
use of different types of hammer actions, as it is the case for pianos P5 and P6 (see Table 3.1);
(2) Differences in the radiation pattern of the pianos. This is influenced by the soundboard design,
which differs from piano to piano; (3) Differences in string-soundboard coupling. This can be due to
differences in both string and soundboard impedances at their coupling point. These three aspects
do not only introduce loudness cues but also timbre (colour) cues. This means that despite the
reduction of loudness cues in the experimental design, these aspects are at least partly present in
the sounds due to their influence on timbre.
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experiment, the stimuli were loudness balanced and the presentation level
of each interval (piano + noise) was randomly varied (roved) by levels
in the range ±4 dB, drawn from a uniform distribution. Additionally,
explicit instructions were provided to the participants to not use level as
discrimination criterion. The intervals lasted 1.3 s with an interstimulus
interval of 0.2 s. During the course of the pilot experiments, an average
answer period of 6 s was obtained. Therefore, every trial was expected
to have a duration of about 11 s. The number of trials per comparison
and per subject was variable and it was estimated to have an average
of 45 trials per staircase. The evaluation of one pair of sounds takes
about 8 minutes. This means that the method requires a long testing
time to compare all the possible pair combinations within the dataset.
With a dataset of 7 sounds, the number of pairwise comparisons (with
no permutations) is

(
7
2

)
= 21, requiring almost 3 hours per participant

to test the whole dataset. A balanced subset of data is considered to
reduce the experiment duration. This is detailed later, in Section 3.3.

3.2.4 Reference procedure: Method of triadic comparisons

The method of triadic comparisons provides a way to obtain similarity
judgements between elements without the need of verbal scaling tech-
niques or actual physical measurements on the stimuli (Levelt et al.,
1966; Shepard, 1987). The method has been used to successfully rep-
resent both perceptual and cognitive information in different research
fields (see, e.g., Shepard, 1987; Burton & Nerlove, 1976). The method
of triadic comparisons is, therefore, a well accepted method to evalu-
ate similarity that has also been used in the assessment of perceptual
spaces using sound stimuli (Levelt et al., 1966; van Veen & Houtgast,
1983; Fritz et al., 2010; Novello et al., 2011). For the previous reasons we
chose this experimental procedure as a reference to validate the suggested
instrument-in-noise method.

In the method of triadic comparisons, each trial consists of three
sounds, namely, “A”, “B”, and “C”. From this triad, three pairs can
be formed: AB, AC, and BC. The task of the participant is to indicate
which of the three pairs contains the most similar sounds and which
one contains the least similar sounds. The remaining pair is labelled as
having intermediate similarity. The participant can freely listen to each
sample as many times as he or she needs. By presenting all the possible
triads within a dataset, the participant’s responses can be summarised in
a similarity matrix. With a dataset of 7 sounds, the number of possible
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triads is
(

7
3

)
= 35. Within the 35 triads, each of the 21 possible piano

pairs is judged 5 times. The average time required to judge each trial,
i.e., one triad, was 40 s meaning that a duration of about 23 minutes
was expected to evaluate the whole dataset once.

One method to further process the experimentally obtained similarity
matrix is the MDS algorithm (Shepard, 1962; Kruskal, 1964a, 1964b).
MDS is commonly used as a visualisation tool of complex data. The
similarity matrix is an n×n matrix (7×7 if n = 7 elements). In the MDS
algorithm, the similarity matrix is assigned to a lower-dimensional space
(n × q matrix), where the distance between elements is related to the
perceptual similarity between them. The Euclidean distance between two
elements in the q-dimensional space is a reference for the discrimination
threshold estimated in the instrument-in-noise test.

3.3 Study case: Similarity among 19th-century
Viennese pianos

3.3.1 Stimuli

Recordings from seven pianos are compared among each other. The pi-
anos were constructed in Vienna between 1805 and 1873. During this
historical period, the piano construction underwent major developments.
One important change during the 19th century was the increase of the
string tension at rest (by a factor of 4), with the purpose of increasing
the sound power of the piano. The soundboard, responsible for the sound
radiation to the air, increased in thickness to withstand the higher string
tensions together with the inclusion of metallic parts after 1850. The ex-
citation mechanism of the strings (the hammer) increased systematically
its mass to increase the amplitude of the hammer impact (Chaigne et
al., 2016; Chaigne, 2016). These changes affected the timbre (or colour)
of the radiated piano sounds. We believe that these seven pianos are a
representative sample of the timbre changes of the instrument.

Recordings of one note (C#5, F0 of 554 Hz) from the seven pianos were
used. One recording per piano was chosen leading to a total of 7 stimuli.
The duration of each waveform was set to 1.3 s, with the note onset
occurring at a time stamp of 0.1 s. The sounds were ramped down using
a 150-ms cosine ramp. The loudness of the sounds was adjusted to have
a maximum value of 18 sone. For that purpose the short-term loudness
from the time-varying loudness (TVL) model (Glasberg & Moore, 2002)
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Table 3.1: List of pianos used in the listening experiments. Information about the intensity
of the sounds is shown. The loudness of the sounds when presented 4 dB softer and 4 dB
harder are shown in parentheses.

Level [dB SPL] Loudness [sone]

ID / Year Manufacturer Lmax / Leq Smax / Savg

P1 / 1805∗ Gert Hecher 77.2 / 62.8 17.4 (13.7-22.0) / 6.8 (5.2-8.8)
P2 / 1819 Nannette Streicher 74.9 / 58.8 17.2 (13.5-21.8) / 5.5 (4.2-7.2)
P3 / 1828 Conrad Graf 73.7 / 55.4 17.0 (13.3-21.5) / 5.6 (4.3-7.3)
P4 / 1836 Johann B. Streicher 83.7 / 66.3 18.5 (14.4-23.5) / 7.0 (5.3-9.1)
P5 / 1851∗∗ Johann B. Streicher (English) 78.0 / 60.2 17.8 (14.1-22.4) / 6.6 (5.1-8.5)
P6 / 1851∗∗ Johann B. Streicher (Viennese) 81.7 / 67.2 17.2 (13.5-21.8) / 7.3 (5.6-9.1)
P7 / 1873 Johann B. Streicher & Sohn 81.7 / 67.2 17.4 (13.7-22.1) / 8.3 (6.3-10.7)

(*) Piano P1 is a contemporary replica of a piano built in 1805. (**) Pianos P5 and P6 differ in their
hammer action (English and Viennese, respectively).

was used. After the adjustment, the sounds had a maximum level ranging
from 73.7 to 83.7 dB SPL (see Table 3.1).

In order to compensate for pitch differences in the piano recordings,
the mean pitch of the sounds was adjusted to 554 Hz. The maximum
pitch difference was for pianos P3 and P7 which had a mean pitch of
519 Hz and no pitch adjustment was needed for the recording of Piano
P6. The pitch adjustment was performed for each piano sound in two
steps. In step one, the pitch of the sound was scaled to the desired value
by using resampling. In step 2, a time stretch technique was used to keep
the duration of the pitch-adjusted sounds constant. The time stretch was
done by using the phase vocoder algorithm (Ellis, 2002)5.

3.3.2 Apparatus

The experiments were conducted in a doubled-walled sound-proof booth.
The stimuli were presented via Sennheiser HD 265 Linear circumaural
headphones in a diotic reproduction (identical left and right channels).
The participant’s responses were collected on a computer using the soft-
ware APEX (Francart et al., 2008) and the APE Toolbox for MATLAB

(De Man & Reiss, 2014) for the instrument-in-noise and the triadic com-
parisons, respectively.

3.3.3 Participants

Twenty participants (8 females and 12 males) were recruited from the
JF Schouten subject database of the TU/e university. At the time of
testing, the participants were between 19 and 38 years old (average of
25) and they all had self-reported normal hearing. They provided their

5The phase vocoder algorithm is available at http://www.ee.columbia.edu/˜dpwe/resources/
matlab/pvoc/ (Last accessed on 18/07/2018).
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informed consent before starting the experimental session and were paid
for their contribution.

The sample size of 20 participants was assessed a priori aiming at
testing the hypothesis that the data from the instrument-in-noise are
highly correlated (effect size or Pearson correlation of at least 0.6) with
the data from the triadic comparisons, with a power of 90%. This analy-
sis was done in the software G*Power (Faul et al., 2007, 2009), requiring
17 participants to reach the desired effect size. By increasing the number
of participants to 20 the observable effect size is reduced to 0.57.

3.3.4 Experimental sessions

The experimental sessions were organised in two one-hour sessions per
participant, including breaks. For the instrument-in-noise test, each par-
ticipant was asked to evaluate 11 piano pairs. This means that the whole
dataset (21 piano pairs) is tested once every two participants, including
one common pair. For evaluating half of the dataset, a time of 1:30
hours was estimated. For the triadic comparisons a duration of 24 min-
utes was estimated. Participants were encouraged to take breaks if they
felt tired or distracted, which may have resulted in longer and less ac-
curate threshold estimations. The participants started the first session
with the evaluation of 17 randomly chosen triads. This served as a way
of familiarising the participants with the set of piano sounds. The ses-
sion continued with 5 or 6 threshold estimations (staircase procedure)
that always started at a low noise level (high SNR). Participants were
not allowed to repeat the trials and no feedback was provided about the
correctness of their responses. During the second session the participants
evaluated the remaining 18 triads, followed by 6 or 5 threshold estima-
tions, completing the total of 11 estimations. Two (or three) piano pairs
were evaluated within the same experiment at a time, i.e., trials from
2 (or 3) staircases were interleaved. This means that the participant
did not necessarily judge the same piano pair in consecutive trials. For
choosing the distribution of piano pairs throughout the test, the order of
the 21 pairs was randomised 5 times. Each randomisation was used to
assign the piano combinations of 4 participants. Two participants tested
the same piano pairs but exchanging the test and reference sounds. For
instance if the piano pair 57 (piano P7 being the reference sound) was
attributed to the one participant then the pair 75 (piano P5 being the
reference sound) was attributed to the other participant. Two partici-
pants tested the first 11 pairs of the randomisation and two participants
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Figure 3.4: Discrimination thresholds for the instrument-in-noise tests. The thresholds (red
triangles) are used as measure of similarity between the sounds and were assessed taking the
median across participants. The piano pairs are shown along the abscissa and are ordered
from higher to lower SNR thresholds. The error bars represent IQRs.
(*)The results for piano pair 47 consider 8 thresholds, with 3 estimations using the staircase procedure
and 5 using a constant-stimulus procedure. See the text for further details.

tested the remaining 10 pairs of the randomisation plus one “common
pair” (total of 11 pairs). With this distribution method and after fin-
ishing all the experimental sessions, each piano pair was tested 10 times
with each piano sound in the pair being used 5 times as reference and
5 times as test sound. For the common pairs (5 in total), two addi-
tional comparisons were available, being evaluated 12 times. With this
configuration, the whole dataset was tested 10 times including 5 pairs
that were additionally tested twice. The expected number of estimations
was therefore 220.

3.4 Results

3.4.1 Instrument-in-noise test
The discrimination thresholds of the instrument-in-noise experiment are
shown in Figure 3.4. The pooled thresholds were assessed by taking
the median of all individual threshold estimations per piano pair. No
distinction was made between permuted piano pairs (e.g., pair 23 and
pair 32 were pulled out together). The thresholds ranged from 20.75 dB
for pair 23 down to -1.75 dB for pair 26. The estimations had a large
between-subject variability with a length of the IQRs from 19.0 dB (pair
23) down to 3.25 dB (pair 57) with a median value of 8 dB. The results are
based on 179 staircase threshold estimations and 5 threshold estimations
using a constant stimulus procedure. During the data collection 210
of the 220 originally planned staircases were obtained. Ten thresholds
were not estimated: for pair 47 five staircases were not conducted being
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Figure 3.5: Example of one of the staircases that was removed from the data analysis. In this
case, the last 4 reversals (SNRs at around 2 dB) differ in more than 3 dB from the estimated
threshold (SNR at 5.5 dB), that considered the last 8 reversals (filled circle markers).

replaced by results obtained from a constant stimulus procedure at an
SNR of 20 dB, while for participant S14 five piano pairs were accidentally
skipped. For her, in session 1 and session 2 the same 6 pairs were tested.
Only her results from session 1 were used in the data analysis. The results
from session 2 were consistent and differed by no more than 2 dB with
respect to the thresholds obtained in session 1. From the 210 obtained
threshold 31 estimations were excluded.

Exclusion criteria

Thirty-one staircases were excluded from the data analysis after the data
collection. Three staircases were incomplete, having less than 12 rever-
sals. Three staircases were removed because the participants reached a
maximum SNR of 50 dB (“minimum” noise level). This value was set
in advance as floor condition. Participants reaching this point were not
able at all to discriminate the two sounds being tested. The remaining
25 thresholds were removed after a check of consistency of the staircases.
For this the standard deviation of the reversals was assessed. Thresholds
estimations where the deviation of the reversals was larger than 3 dB
were removed. The removed thresholds were checked manually to con-
firm that the staircase did indeed include inconsistencies between the
convergence point of the staircase and the estimated threshold. Such
a situation is illustrated in Figure 3.5 where one of those staircases is
shown. This staircase has a convergence point (see the last four rever-
sals) that differs from the threshold estimation by 3.5 dB.

Thresholds using a constant stimulus procedure

The evaluation of piano pair 47 (and 74) was for several participants very
difficult. As part of our hypotheses the discrimination of sounds at high
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Figure 3.6: Discrimination thresholds for the instrument-in-noise test after applying a cor-
rection to account for the participant’s variability. The thresholds (red triangles) are sorted
as in Figure 3.4. The median length of the IQRs (across pairs) is 4.5 dB.

SNRs should be easy, with scores of nearly 100%. This was not the case
for pair 47, where two staircases obtained from the first five participants
had to be excluded according to the criteria described above. The level
of the noise during the discrimination task was, on average, at levels
around or above an SNR of 20 dB. This means that at an SNR of 20 dB,
where we expected nearly perfect performance, the scores were often
lower than the target score of 70.7%. For this reason, we decided to
implement a constant stimulus experiment, where sixteen 3-AFC trials
of pair 47 (or 74) were presented at an SNR of 20 dB. The percentage
score could give an indication about how far away from that noise level
the discrimination threshold could be expected. The scores obtained for
the remaining 5 participants were 81.25, 50, 81.25, 50 and 68.75%. We
were able to test pair 47 using the constant stimulus procedure at 20 dB
with one participant of the first group (participant S06). The participant
had an estimated adaptive threshold at 23.5 dB and the score obtained
at 20 dB was 56.25%. This means that the participant’s performance
improved from 56.25% at 20 dB to 70.7% at 23.5 dB, which represents
an average score increment of 4.1%/dB. This rate can be interpreted as
the slope of the individual psychometric function for participant S06. We
assumed, however, that this slope is also valid for other participants. In
this way we converted the constant-stimulus scores of 81.25, 50, 81.25,
50, and 68.75% into the SNR thresholds of 17.5, 25.0, 17.5, 25.0 and
20.5 dB, respectively. These results were added to the raw thresholds
results from the staircases. In spite of the lack of experimental evidence
for this assumption, simulated thresholds (as in Chapter 4) showed that
for piano pair 47, the scores increased at a similar rate of 4.6% (increase
from 51.4% at 15 dB to 74.3% at 20 dB).

Between-subject variability

In order to understand the observed variability in the results of Fig-
ure 3.4, we first assessed the median of the estimated thresholds per
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participant. Since the difficulty in the judgement of the piano pairs
should be distributed across the 11 pairs evaluated per participant, the
median thresholds give an indication about how sensitive each partici-
pant was during the course of the experiments. A lower median threshold
indicates more sensitivity and, correspondingly, a higher threshold indi-
cates less sensitivity to the cues available in the piano waveforms. The
lowest and highest median SNR thresholds were found for participants
S14 (avg. SNR=−7.25 dB) and S10 (avg. SNR=18.5 dB), with a me-
dian SNR across participants of 4.0 dB. This supports the existence of
a strong difference in the participant’s sensitivity. The SNR thresholds
after a correction factor is applied are shown in Figure 3.6. The cor-
rection depends on the median participant thresholds. For instance, for
the thresholds of participants S14 and S10 a correction of +7.25 and
−18.5 dB (additive inverse values) was applied. With the correction the
median length of the IQRs decreased from 8.0 to 4.5 dB. Although sev-
eral piano pairs changed their rank order (the thresholds in Figure 3.6
are not monotonically decreasing), the rank-order correlation indicate a
strong relationship of rs(19) = 0.83, p < 0.0016, between the thresholds
before and after being corrected. This small effect is caused because
the correction moved the pairs around but only in neighbouring rela-
tive locations. Despite the fact that with the results shown in Figure
3.6 the between-subject variability is almost halved, they are not used
for any further processing in this chapter. We assume that the choice
of the median as measure of central tendency of the thresholds is ro-
bust enough to deal with the large IQRs and that the results without
correction (Figure 3.4) are representative.

3.4.2 Triadic comparison

The results of all participants were pulled out to construct the similarity
matrix shown in the upper right triangle of Table 3.2. All participants
judged the whole dataset of 35 possible triads once. Within the 35 tri-
ads the 21 pairs were judged 5 times. These numbers are relevant to
understand the range of possible scores in the similarity matrix.

Construction of the similarity matrix

The similarity matrix is a way to summarise how often each piano pair
was chosen as most similar, most dissimilar or indirectly chosen as having
an intermediate similarity, when presented in triads with the other test

6The value between brackets indicate the degrees of freedom, which is N − 2, with N being the
number of data points being compared.
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Table 3.2: The similarity matrix Sij derived from the responses of 20 participants (S01-
S20) is shown in the upper right triangle. The maximum possible score is 200. The lower
left triangle corresponds to the Euclidean distances between stimuli in the resulting four-
dimensional space. A high score in the similarity matrix should correspond to a short
Euclidean distance. The lowest and highest scores were obtained for the pairs 24 (Sij = 33)
and 23 (Sij = 190). The corresponding distances were 0.91 and 0.26, respectively. The
shortest distance was found for pair 47 (Sij = 189) with a value of 0.14.

Piano

Piano P1 P2 P3 P4 P5 P6 P7
P1 - 88 123 76 95 149 100
P2 0.75 - 190 33 79 54 45
P3 0.63 0.26 - 52 116 63 58
P4 0.78 0.91 0.86 - 119 103 189
P5 0.72 0.78 0.66 0.63 - 137 110
P6 0.51 0.86 0.83 0.69 0.56 - 121
P7 0.70 0.88 0.84 0.14 0.67 0.62 -

pianos. To score the results of each triad, 2 points were attributed to the
pair indicated as most similar, no points to the least similar pair, and 1
point to the remaining pair. Since each pair of piano sounds was tested
5 times by 20 participants, the maximum possible score of a given pair is
Smax = 200 (5×20×2). The similarity matrices in the studies by Levelt
et al. (1966) Fritz et al. (2010), Novello et al. (2011), and van Veen and
Houtgast (1983) were constructed in a similar way.

Multidimensional scaling

To further process the experimental data, the similarity matrix was first
converted into a measure of dissimilarity by using:

Dij =
√

1− Sij/Smax (3.1)

with Sij being each element of the similarity matrix, Smax = 200 be-
ing the maximum possible score (for 20 participants), and Dij being the
elements of the new dissimilarity matrix. The dissimilarity matrix was
then used as input for the classical (non-metric7) MDS algorithm avail-
able in the MATLAB Statistics toolbox. In the classical MDS algorithm
the search of the reduced space with q dimensions (with q < n = 7),
the eigenvectors (n× n matrix) and eigenvalues λi (n× 1 matrix) corre-
sponding to the dissimilarities scores Dij are calculated and then the q
eigenvectors corresponding to the largest q eigenvalues are taken. Here

7The term “non-metric” refers to the fact that the MDS algorithm takes data that are non-metric,
in our case similarity/dissimilarity data, while the resulting geometrical configuration represents a
metric solution to fit the input data (Kruskal, 1964a).
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we report two criteria to test the adequacy of a q-dimensional repre-
sentation. The first criterion corresponds to the regular goodness-of-fit
indicator in the classical MDS algorithm and is given by Equation 3.2.
A value Pq of at least 80% is considered to produce an adequate fit of
the data in the q-dimensional space (Everitt, 2005).

Pq = 100 ·
∑q

i=1 |λi|∑n
i=1 |λi|

(3.2)

The second criterion assesses a stress value St, which is obtained
from a residual sum of squares between the dissimilarities Dij and the
Euclidean distances dij of the resulting q-dimensional space (Kruskal,
1964b). This is the goodness-of-fit measure that is typically used when
applying other MDS algorithms and is given by Equation 3.3.

St = 100 ·

√√√√∑i<j (Dij − dij)2∑
i<j D

2
ij

(3.3)

For different St-values there are accepted benchmarks of the goodness
of fit: poor (St = 20%), fair (St = 10%), good (St = 5%), excellent (St = 2.5%),
and perfect (St = 0%). A perfect configuration means that the distances
dij and the dissimilarities Dij have a perfect monotone relationship.

When applying the classical MDS algorithm to the obtained dissim-
ilarity matrix, the resulting space has q = 4 dimensions, with a total
goodness of fit Pq = 99.5% and individual contributions per dimension
of 53.5, 25.6, 14.3 and 6.1%. The four dimensional space has a stress
St = 3.1% (close to “excellent”), with cumulative stresses of 21.9% for
the first two dimensions (“poor”) and 7.5% for the first three dimen-
sions (between “fair” and “good”). The Euclidean distances of the fitted
four-dimensional space are shown in the lower left triangle of Table 3.2.
For ease of visualisation, only the first two dimensions (Pq ,cum = 79.1%,
St = 21.9%) of the fitted perceptual space are shown in Figure 3.7. Al-
though this reduced representation provides a poor fit (Pq ,cum < 80%;
St > 20%), the overall distribution of the piano sounds in the four-
dimensional space is not changed. There is a change, however, in the
relative distances between points.

The Euclidean distances between pianos in the four-dimensional space
are shown in the lower left triangle of Table 3.2 and they are indicated
as filled square markers in Figure 3.8. The Euclidean distances range
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Figure 3.7: Perceptual space obtained with the classical MDS algorithm. Only the first two
(out of four) dimensions are shown. This space suggests that the piano sounds (note C#5)
can be classified into four groups: pianos 16, 23, 47, and piano P5. Although the goodness of
fit of this reduced representation is poor (Pq ,cum = 79.1%; St = 21.9%) the overall distri-
bution of the pianos in the space is not changed in the four dimensional space. The grey
bubbles give an indication of the participant’s variability: the bigger the bubble the higher
the variability across participants. Note that the axes of the MDS space are not to scale.

between 0.14 (for pair 47) and 0.91 (for pair 24) with approximately 50%
of the distances lying in the range between dij ,25 =0.63 and dij ,75 =0.83.

The results shown in Figure 3.7 suggest that the pianos (so far, lim-
ited to the note C#5) can be classified into four distinct groups: pianos
P1+P6, pianos P2+P3, pianos P4+P7 and piano P5. Although piano
P5 seems to have an intermediate similarity with all these groups, in the
four-dimensional space its distances increase systematically. The dis-
tances for all the other pianos do not differ considerably with respect to
the ones in the two-dimensional representation.

Between-subject variability

The classical MDS algorithm does not provide any indication of the vari-
ability across participants in the resulting fitted space. One solution to
this problem is provided by the individual differences scaling algorithm
(INDSCAL) (Carroll & Chang, 1970). Within INDSCAL an individual
perceptual space is assessed for every participant. Those spaces are as-
sumed to be a weighted version of the resulting perceptual space, with
different weights for different participants. With this approach it is pos-
sible to assess the stress of each stimulus per participant, which can be
used for obtaining measures of variability. Although the data were pro-
cessed using INDSCAL as implemented by de Leeuw and Mair (2009),
this algorithm was finally not used because the fitted pooled space vio-
lated the condition of monotonicity between the Dij and dij. An alter-
native approach was used that follows a similar idea to operate with the
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Figure 3.8: Euclidean distances taken from the four-dimensional perceptual space. These
distances are also shown in the lower left triangle of Table 3.2. The piano pairs are sorted in
the same way as in Figure 3.4. For a perfect consistency between these Euclidean distances
and the instrument-in-noise results, the distances should increase monotonically. This does
not happen but the correlation between distances and SNR thresholds are moderate to
high, with values of −0.47 (Pearson) and −0.64 (Spearman) (see Figure 3.9). The error
bars indicate the minimum and maximum distances between piano pairs across the 5 four-
dimensional spaces assessed with data subsets every 4 participants.

stresses. Having as reference the fitted four-dimensional space, 5 dissim-
ilarity matrices were generated pulling out the data of the participants
S01-S04, S05-S08, S09-S12, S13-S16, and S17-S20, respectively. The clas-
sical MDS algorithm was applied, obtaining 5 new coordinates for each
of the 7 test pianos. For each of the 7 pianos, the distances between these
5 coordinates and the coordinates in the pooled four-dimensional space
was obtained, storing the difference between the minimum and maxi-
mum distances. Half of that difference is used as radius of the “bubbles”
in Figure 3.7. The diameter of the bubbles has a median of 0.15, rang-
ing from 0.06 (piano P4) to 0.29 (piano P5), which can be interpreted
as piano P4 being judged more consistently across participants and pi-
ano P5 being scored more differently, leading to a higher between-subject
variability. The obtained 5 four-dimensional spaces were used to assess
the minimum and maximum distances between piano pairs and they are
shown as error bars in Figure 3.8. Those deviations range between 0.05
(pair 57) and 0.33 (pair 16), with a median length of 0.17.

3.5 Discussion

A high perceptual similarity is equivalent to a high SNR threshold and
a short Euclidean distance. If the results of both methods are con-
sistent, the SNR thresholds of Figure 3.4, that are sorted in decreas-
ing order, should correspond to monotonically increasing Euclidean dis-
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Figure 3.9: Regression between the instrument-in-noise and the triadic comparisons results.
In panel A the scatter plot between SNR thresholds and Euclidean distances is shown. The
results are significantly correlated with a Pearson rp(17) = −0.47, p = 0.04∗. In panel B,
the scatter plot of the rank order for the same data is shown. The results are significantly
correlated with a Spearman rs(19) = −0.64, p = 0.001. (*) The data of two pairs (pairs 23 and
47, panel A, square markers with thresexp> 18 dB and dij < 0.3) had to be omitted to meet the
normality assumption of the input data to the linear regression analysis (Pearson’s correlation).

tances. Therefore, a perfect consistency between methods should be
reflected by a correlation value of −1. Although the Euclidean dis-
tances shown in Figure 3.8 are not strictly monotonically increasing,
the results have a significant moderate to high (Pearson) correlation of
rp(17) = −0.47, p = 0.04, and a high rank-order (Spearman) correlation
of rs(19) = −0.64, p = 0.001. The Pearson correlation tests whether the
data are linearly related. Although this is an aspect that can be rele-
vant, it imposes the assumption of normality on the data. To fulfil that
assumption the data of two pairs (23 and 47) had to be omitted from the
regression analysis. Since our data collection was designed to test an ob-
servable effect size of −0.57 (with 20 participants, see Section 3.3.3), the
obtained rp does not provide conclusive information about the relation-
ship between SNR thresholds and Euclidean distances. For this reason,
the Spearman correlation is more relevant because it does not require
normally distributed data and it actually answers the question whether
the assessed order of the samples (least to most similar or vice versa) is
similar in both methods. In Figure 3.9, the SNR thresholds are shown
on the abscissa and the Euclidean distances on the ordinate and they
show the expected inverse relationship. The advantage of the Spearman
over the Pearson correlation is reflected by the better distribution of the
data along both the abscissa and ordinate axes in panel B of the figure.

Further inspection of the data shown in Figures 3.4 and 3.8 reveals
that the two most similar pairs are the same in both methods (pairs 23
and 47). Both methods coincide in the judgement of 3 of the 6 most
different pairs (thresholds < 0.5 dB and distances > 0.8): 26, 27, 37.
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Piano P5 has an intermediate similarity with all the other pianos, with
Euclidean distances between 0.56 (pair 56) and 0.78 (pair 15), this means
that 5 (out of 6) distances are within the IQR of the distance data
(dij,25−75 = 0.63 − 0.83). This is also supported by the results of the
instrument-in-noise test, where 5 (out of 6) thresholds lie within the
IQR (SNR25−75 = 0.2−7.7 dB). For two pairs (16 and 56), both methods
provide very different similarity measures. In both cases, the pairs are
judged as being more similar in the triadic comparisons.

Although we hypothesised that the ICRA noises follow the spectro-
temporal properties of the input piano sounds, as pointed out in Sec-
tion 3.2.1, our algorithm “version A” introduced an incidental spectral
mismatch that is gradual towards high frequencies. The effect of this
spectral tilt is investigated in Chapter 5 and is compared with an up-
dated version of the ICRA algorithm, “version B”.

3.6 Conclusion
In this chapter we have presented a method to conduct a within-instru-
ment comparison, measuring the perceptual similarity among test sounds
using an instrument-in-noise test. In this method, the noise is matched
to the spectro-temporal properties of the pair of sounds being tested.

Similarity among 19th-century Viennese pianos

As a study case, a comparison among recordings of one note (C#5)
played on Viennese pianos from the 19th century was shown. The re-
sults of the instrument-in-noise test were compared with the results of
the method of triadic comparisons, which is a method commonly used
to map a set of stimuli into a perceptual similarity space. The results
of both methods, collected from 20 participants, had a high and signif-
icant rank-order (Spearman) correlation of rs(19) = −0.64, p = 0.001.
The correlation results denote a high inverse relationship between SNR
thresholds and Euclidean distances, meaning that a higher threshold
results in a lower Euclidean distance. The results obtained from the
instrument-in-noise method are consistent with overall subjective simi-
larity judgements. Therefore, the instrument-in-noise procedure seems
to be a promising method to quantify perceptual differences between
sounds.

What is different when using the instrument-in-noise method?

It was pointed out that the instrument-in-noise method is rather time
consuming when compared to the method of triadic comparisons (about
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7 times slower), so why to choose it then? Despite the longer testing
time, one of the advantages of the instrument-in-noise method is that
it allows to measure similarity by evaluating different test conditions
(different SNRs) where the physical properties of the test sounds are af-
fected. This approach can be seen as a quantifiable way to manipulate
the similarity between test sounds. On the contrary, the triadic com-
parisons are conducted at a fixed test condition (in our case in silence,
i.e., at a very high SNR) and that leads (after data processing) to a
purely psychological space where the physical properties of the sounds
are kept constant. With this argument, the instrument-in-noise test can
give an indication not only of which samples are closer or farther apart
from each other (psychological approach), but can also provide evidence
about their acoustic properties at noise levels below (SNRs above) and
at threshold (physical approach).

Extending the use of the instrument-in-noise method

The key point of the instrument-in-noise method is the use of a noise
that is shaped in spectral and temporal properties to the test sounds.
The ICRA algorithm (Dreschler et al., 2001), used originally to generate
speech maskers, was adapted to provide a suitable solution for instrument
sounds. The described instrument-in-noise method can be used not only
in the evaluation of other piano notes but also to evaluate any other
instrument, as far as some practical aspects regarding the stimuli are
followed. For the piano sounds, some of these aspects were: to have test
stimuli with the same pitch, similar durations, a piano onset occurring
at a “synchronised” time stamp, and to balance for any cue that is not
desired to be judged (we kept the maximum loudness constant across
stimuli). Some of the cues that were available to our participants were the
envelope, attack and decay of the waveforms and their spectral content.

For the evaluation of other piano notes or other musical instruments,
the ICRA noises have to be generated again in order to match the
spectro-temporal properties of the “new” test sounds.
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4 Simulating the perceived similarity of
instrument sounds using an auditory model

In this chapter an auditory model which predicts psychoacoustic data is
applied to the problem of perceptual similarity between complex sounds.
The perceptual similarity task corresponds to the instrument-in-noise
test presented and validated in Chapter 3. The same set of loudness-
balanced piano sounds is used here.

The concept of similarity can be studied as a sensory process but, as
argued in the next section, also as a cognitive process. The auditory
model used in this chapter accounts primarily for the first aspect and
also includes a “memory” stage that can be interpreted as a cognitive
component within the model. The challenge of this chapter is the ad-
justment of the memory stage of the auditory model, i.e., the assessment
and use of the so-called template of the system, in order to extend its use
to account for the human performance in a similarity task using complex
(piano) sounds.

4.1 Introduction

In the context of acoustics, similarity assessments are used in sound
quality evaluation (see, e.g., Hansen & Kollmeier, 2000; Kates & Arehart,
2014) and in the study of specific sound types (see, e.g., Grey, 1977;
Fritz et al., 2010). The study case of Chapter 2 is another example
of this latter use. The concept of similarity is relevant because in an
everyday listening experience, (sound) objects are unlikely to be repeated
in exactly the same way (see, e.g., Shepard, 1987). Therefore, there is
some acquired familiarisation used to recall those similar (sound) objects.
For this reason, the concept of similarity has been studied as a cognitive
or top-down process, reflecting the familiarisation with the object, as
well as a perceptual or sensory process, reflecting how a given stimulus
can “match” that object. In this chapter we use an auditory model
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Figure 4.1: Block diagram of the PEMO model. Each of its stages is explained in the text.

that processes sounds primarily in a sensory fashion, but also includes a
top-down (cognitive) component.

The auditory model used in this chapter belongs to the family of
models of the “effective” processing of the auditory system. This set of
models provides a unified framework to simulate a number of auditory
phenomena such as simultaneous, backward, and forward-masking (Dau
et al., 1996a, 1996b; Jepsen et al., 2008), modulation-detection (Dau et
al., 1997a, 1997b; Jepsen et al., 2008), gap-detection (Münkner, 1993)
and speech intelligibility by estimating speech reception thresholds (Dau
et al., 1999; Ewert & Dau, 2000; Jørgensen & Dau, 2011). Unless other-
wise specified, we will refer to this family of models as “auditory models”
throughout this thesis. The specific auditory model that is used here is
referred to as PEMO and it corresponds to the model described by Dau et
al. (1997a) using the modulation filter bank set-up as described by Jepsen
et al. (2008). The block diagram of the model is shown in Figure 4.1.
We used the implementation of the PEMO model available within the
AMT toolbox for MATLAB (Søndergaard & Majdak, 2013). In the AMT
toolbox the peripheral stages of the model (stages 1-6 in Figure 4.1) are
available. The peripheral stages deliver the internal representation of
a sound. The last part of the model is an own implementation of the
central processor. The central processor is a back-end stage that further
compares two or more internal representations (obtained from two or
more sounds processed within the PEMO model) with the aim of decid-
ing whether those representations are distinct enough to be judged as
“different” by a simulated human listener.

4.2 Description of the model

The input signal is a monaural sound with waveform amplitudes between
-1 and 11. Within the model an absolute amplitude of 1 (0 dBFS) is
interpreted as a sound pressure level of 100 dB.

1The amplitude range between ±1 corresponds to amplitudes between ±32767 if the sounds are
stored with an amplitude resolution of 16 bits (216 − 1 = 65535 steps).
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Figure 4.2: Combined frequency response of the outer- and middle-ear filters.

4.2.1 Outer- and middle-ear filtering

This stage accounts for the effects of the outer and middle ear on the
incoming signal. The effects of both, the outer and middle ear, are
implemented as 512-tap finite impulse response (FIR) filters. The outer-
ear filter introduces a transfer function from headphones to the tym-
panic membrane, emphasising frequencies around 2750 Hz and atten-
uating frequencies above 6000 Hz (see Pralong & Carlile, 1996, their
Figure 1(E)). The middle-ear filter introduces a transfer function from
the tympanic membrane to the stapes. The output of this filter ap-
proximates the (peak-to-peak) velocity of the stapes in response to pure
tones, that transfers oscillations into the inner ear through the oval win-
dow. This filter is based on Lopez-Poveda and Meddis (2001, their Figure
2) and Goode, Killion, Nakamura, and Nishihara (1994, their Figure 1,
inset “Stapes (104 dB SPL)”). The combined response of the outer- and
middle-ear filters is shown in Figure 4.2 and can be roughly described as
a BPF centred at 800 Hz with slopes of 6 dB/octave below and above
that frequency. This stage was also included in the auditory model of
Jepsen et al. (2008) but not in previous versions of the PEMO model.

4.2.2 Gammatone filter bank

This set of filters corresponds to a linear approximation of a critical-band
filter bank. The Gammatone filter bank consists of 31 bands having
centre frequencies between 87 Hz (3 ERBN

2) and 7819 Hz (33 ERBN),
spaced at 1 ERB. The Gammatone filter bank is linear (it has a level-
independent tuning). The PEMO model uses only the real part of the
complex-valued all-pole implementation that is described by Hohmann
(2002). All further processing stages of the model work independently
on each auditory filter output.

2The ERB rate scale corresponds to one of the frequency scales that is inspired by the frequency
representation in the auditory system. A brief overview of this scale is given in Appendix A.
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4.2.3 Hair-cell transduction

This stage accounts for the inner hair-cell processing. It simulates the
transformation from mechanical oscillations in the basilar membrane into
receptor potentials in the inner hair cells. The signals are first half-wave
rectified and then low-pass filtered using 5 first-order infinite impulse
response (IIR) filters with a cut-off frequency of 2000 Hz. The half-wave
rectification keeps the positive part of the signal. The combined effect
of the cascade of LPFs is equivalent to applying a fifth-order IIR filter
with cut-off frequency of 770 Hz. With this LPF, the frequency compo-
nents below 770 Hz are almost unaffected, so that the phase information
is kept (a maximum attenuation of 3 dB is reached when approaching
770 Hz), frequency components between 770 Hz and 2000 Hz are grad-
ually attenuated (attenuations between 3 dB at 770 Hz down to 15 dB
at 2000 Hz), meaning that the phase information is gradually lost. For
frequency components above 2000 Hz almost all the phase information
is removed (more than 15 dB of attenuation, slope of −30 dB/octave).
This way of removing phase information is consistent with the decrease
of phase locking observed in the auditory nerve (Breebaart et al., 2001).

4.2.4 Adaptation

This stage simulates the adaptive properties of the auditory system at the
level of the auditory nerve (see, e.g., Kohlrausch et al., 1992). Adaptation
refers to changes in the gain of the system when the level of the input
signal changes. When a change in the signal level is “rapid”, the gain of
the system remains constant and the level is transformed linearly. For
slower variations, the signal level is compressed. This adaptation stage
is implemented as 5 feedback loops, each of them having a different time
constant (τ = 5, 50, 129, 253, 500 ms). In this study an overshoot limitation
is used, meaning that the output value for rapid input changes (relative
to the time constants) is limited to a maximum value of 5 times the
stationary output value for the same level. The limiter factor limit= 5
differs with respect to the usual limiter factor of 10 used in the auditory
models (Münkner, 1993; Dau et al., 1997a). Due to the relevance of
the note onset in piano sounds, the choice of this new limiter factor is a
sensitive parameter which strongly influenced the simulation results that
are shown later in this chapter. The effect of using the new limiter factor
on the resulting internal representations is described in the next section.
The interested reader is also referred to Appendix C, where an in-depth
review of the properties of the adaptation loops is given.
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Table 4.1: Empirical parameters of the modulation filter bank. The cut-off frequencies f inf

and f sup correspond to the −3 dB points of the transfer functions.

Frequency [Hz] BW Frequency [Hz] BW
Nr. mfc f inf - f sup [Hz] Q Nr. mfc f inf - f sup [Hz] Q
1 1.4 0.0 - 2.7 2.7 0.5 7 77.2 57.9 - 96.9 39.0 2.0
2 5.0 2.7 - 8.1 5.4 0.9 8 128.6 96.9 - 160.8 63.9 2.0
3 10.0 7.4 - 12.8 5.4 1.9 9 214.3 160.8 - 268.5 107.7 2.0
4 16.7 12.8 - 20.9 8.1 2.1 10 357.2 268.5 - 446.8 178.3 2.0
5 27.8 20.9 - 35.0 14.1 2.0 11 595.4 446.8 - 744.2 297.4 2.0
6 46.3 35.0 - 58.5 23.6 2.0 12 992.3 744.2 -1240.9 496.6 2.0

4.2.5 Modulation filter bank
The modulation filter bank corresponds to a linear filter bank that al-
lows the processing of the incoming signal in terms of changes in its
envelope. First, a reduction in the sensitivity to modulation frequencies
above 150 Hz is introduced (Kohlrausch et al., 2000). For this purpose a
first-order IIR filter with a cut-off frequency at 150 Hz and approximate
roll-off of 6 dB/octave is applied. The filter bank comprises a maximum
of 12 filters that have two different envelope frequency domains:

• Bands with modulation centre frequencies mfc ≤ 10 Hz (bands 1-3
in Table 4.1): the filters have a nominal bandwidth of 5 Hz (actual
BW = 5.4 Hz). The first is an LPF with a nominal cut-off frequency
of 2.5 Hz (actual mfcut-off = 2.7 Hz). The real-valued part of the filtered
signals is used, which corresponds to the band-limited output signal.
This processing keeps the modulation phase information.

• Bands with modulation centre frequencies mfc> 10 Hz (bands 4-12 in
Table 4.1): the filters have a logarithmic scaling with a constant Q factor
of 2 (Q =mfc/BW ). The absolute value of the complex output is used,
which represents an approximation to the Hilbert envelope (Hohmann,
2002). This process reduces considerably the amount of modulation
phase information but keeps the energy produced by the modulations
within the respective band. An attenuation factor of

√
2 is applied to

the resulting signals (Jepsen et al., 2008).

The modulation filters for each audio frequency band are limited to
filters having an mfc below a quarter of the audio centre frequency fc.
This is motivated by the results presented by Langner and Schreiner
(1988), where evidence is provided that the neural activity in the audi-
tory path (in the brain stem) has best modulation frequencies limited to
that frequency range (mfc < fc/4).
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4.2.6 Central processor
In this stage, the information received from the modulation filter bank
is compared with a reference representation or “sound image” that is
stored in the “memory” of the model. Inspired by the concept of an
optimal detector, borrowed from signal detection theory (see, e.g., Green
& Swets, 1966, their chapters 6 and 7), the model can be seen as an
artificial listener3 and the “memory” of the model can be seen as an
expected sound representation, learned by experience, that gives a clear
indication to the artificial listener about “what to listen for” (Green &
Swets, 1966; Dau et al., 1996a). This memory is referred to as template.

In a 3-AFC task, there are three intervals that can be compared with
the template. If the representations of each interval are labelled as Rx

with x = 1, 2, 3, the interval having the highest similarity with the tem-
plate would be always chosen by the artificial listener. One mathematical
way to express this idea is to assess the cross-correlation value (CCV)
between the representation Rx and the template Tp:

CCVx =
1

fs

N∑
n=1

Rx[n] · Tp[n] (4.1)

It is important to stress that the template Tp is a unit energy represen-
tation while the representation Rx is not. As explained in subsequent
sections, however, a difference representation ∆Rx is used in this equa-
tion instead of the direct use of the representation Rx.

Memory: Use of a template

The use of a memory template, or simply template, assumes that in the
detection of a signal (or object) among other signals (or objects), some
type of awareness about the target signal is used. This corresponds to
a top-down process and can be seen as a cognitive component in the
auditory model. This approach is also used in the field of vision where
there is evidence of brain activity in response to features of the expected
signal (see, e.g., Chelazzi et al., 1993). The template is derived or, in
other words, is “learned” by the artificial listener, at the beginning of
the experiment simulation in a condition that is assumed to be easily
detected (low-noise condition, high SNR). This condition is referred to
as a suprathreshold SNR. In the simulations, the suprathreshold SNR
was set to 21 dB. This condition is 5 dB higher in SNR (lower noise)
than the initial SNR of the experimental sessions.

3In the literature (and in this thesis), the terms “artificial listener” and “artificial observer” are
used interchangeably.
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Template in a similarity task

The derivation of the template Tp in a similarity task where two sounds
are compared is determined by: (a) the two test sounds, the target and
“reference”, and; (b) two or more realisations of a noise that can effi-
ciently mask the properties of both piano sounds. To account for the
latter aspect, ICRA noises (in this chapter using version A of the al-
gorithm, as in Chapter 3) are used in every piano presentation. For
the first aspect, the internal representations of both, the target piano
Rt(MT ) and reference piano Rr(MT ) have to be used, because their
discrimination threshold depends on how different they are from each
other. The argument (MT ) indicates that the derivation of Tp should
be done at a highly discriminable noise level, that is, at a low noise level
(high SNR). In the course of this research different ways of deriving
the template Tp using Rt(MT ) and Rr(MT ) were evaluated. Except for
the adopted approach which is described in this section, the alternative
approaches are described in Appendix E.

In the adopted approach, two templates are derived: (a) Tp,t for the
target piano sound, and (b) Tp,r for the reference piano sound. For
each of the templates, an average representation of the piano sounds
embedded in four different realisations of the ICRA noises at a highly
discriminable condition (here at an SNR of 21 dB) is obtained4. The
average representations are normalised to unit energy. In this way, the
templates satisfy (see also Equation E.3, in Appendix E):

Et =
1

fs

N∑
n=1

T 2
p,t[n] = 1

Er =
1

fs

N∑
n=1

T 2
p,r[n] = 1 (4.2)

where N corresponds to the number of samples used by the artificial
listener to make the decision. If the artificial listener uses the whole
piano waveforms, then N is defined by the total length of the sounds
(1.3 s for the anechoic pianos)5. A longer “observation” (listening) period
would mean that the listener makes use of the undershoot effect after

4The number of ICRA noise realisations (four) used to derive each average piano-plus-noise
representation was an arbitrary choice.

5In analogy to the theory of optimal detectors presented by Green and Swets (1966), we
treat the templates Tp,t and Tp,r as “expected signals” along one (temporal) dimension. In
fact, there are two other dimensions: audio and modulation frequency. Considering all tem-
plate dimensions and following the nomenclature of Equation 4.7, Equation 4.2 would turn into
Et = 1

fs

∑M
m=1

∑K
k=1

∑N
n=1 T

2
p,t mk[n] = 1.
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the piano sounds vanish. Based on our experimental design, where the
piano intervals had an interstimulus time of 0.2 s, the maximum possible
observation period is 1.5 s. The results in the subsequent sections show,
however, that an actual observation period of 0.5 s or less provides a
better fit between simulated and experimental thresholds than the use
of full piano waveforms.

Use of two templates

In the course of the simulation of a 3-AFC task the “expected signals”
or templates (Tp,t and Tp,r) have to be compared with the intervals (x =
1, 2, 3) of each trial. The expression shown in Equation 4.1 is used for
this purpose but using a difference representation ∆Rx instead of the
direct use of the representation Rx. The representation ∆Rx is obtained
as the difference between the “piano-plus-noise” representation Rx and
the representation of the corresponding paired ICRA noise RN,x at the
SNR of the ongoing trial, obtaining three ∆Rx representations6.

Due to the use of two templates, six CCV values are obtained, with
three CCV values corresponding to the comparison between each (dif-
ference) interval representation ∆Rx with the target template Tp,t and
three corresponding to the comparison with the reference template Tp,r:

CCVx,t =
1

fs

N∑
n=1

∆Rx[n] · Tp,t[n]

CCVx,r =
1

fs

N∑
n=1

∆Rx[n] · Tp,r[n] with x = 1, 2, 3 (4.3)

Based on these six CCV values, the artificial listener chooses the interval
that is more likely to contain the target sound using two criteria. If
we assume that the target interval is presented in the first observation
interval, then for a correct discrimination:

max
{

ĈCVx,t

}
= ĈCV1,t

min
{

ĈCVx,r

}
= ĈCV1,r with x = 1, 2, 3 (4.4)

6The use of difference representations ∆Rx is relevant for our decision approach due to the use
of two templates. Since the unit energy normalisation of the templates is done independently, the
noise alone representations RN,x that are used in both criteria will always have different CCVx,t

and CCVx,r values. Subtracting the noise alone representations in the CCV calculation implies that
the resulting CCVx,t and CCVx,r values correspond to the contribution of information of piano x
relative to the contribution of the noise x.
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In other words, the target template Tp,t is expected to elicit the maximum
CCV value when being correlated with the target interval. Likewise, the
reference template Tp,r elicits higher CCV values when being correlated
with the reference intervals and therefore the lowest CCV value is at-
tributed to the target interval. The hat symbol indicates that the CCV
values differ from the exact definition given in Equation 4.3. This is
caused by an internal noise, whose values are drawn from a Gaussian dis-
tribution N(µ, σ2) with mean µ = 0 and standard deviation σ = 10.1 MU
(variance of σ2). In our implementation of the internal noise, three num-
bers are added to the corresponding CCVx value:

ĈCVx,t = CCVx,t +Nx(µ, σ
2)

ĈCVx,r = CCVx,r +Nx(µ, σ
2) with x = 1, 2, 3 (4.5)

Since µ = 0, the standard deviation σ corresponds to the actual source
of internal variability in the decision process. The use of this Gaussian
noise leads to a reduction in the process performance when either the
CCVx,t values get close to each other or when the CCVx,r values do. The
standard deviation σ = 10.1 Model Units (MU) was obtained by running
an increment-discrimination task with each piano sound and tracking
the amount of noise needed to produce an average performance of 70.7%
for a difference in level of ∆L = 1 dB. This procedure is described in
Appendix D.

Compensating the misalignment between piano representations

One final aspect in the decision criterion is that the cross-correlation
between the templates and the interval representations should deliver
the highest CCV values. As described in Section 3.3.1, the piano stim-
uli are aligned to have the note onset at a time stamp of 0.1 s. This
alignment criterion seemed to be enough to perceive each of the piano
sounds aligned with the ICRA noise within each piano-plus-noise inter-
val. However, this does not always ensure a maximum CCV value during
the decision process. This is particularly sensitive when correlating ei-
ther the target piano representation with the reference template Tp,r or
the reference piano representation with the target template Tp,t. During
the simulations, the cross-correlation function is assessed for each inter-
val, with time lags between −50 ms and 50 ms (in steps of 1 ms). The
maximum of the cross-correlation function is used as the CCVx value for
the decision stage (Equation 4.5).
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4.2.7 Sources of internal and external variability
The processing of sounds in the auditory system is influenced by un-
certainties in the stimuli and by internal variability caused, e.g., by im-
perfections in memory and changes in the level of concentration (see,
e.g., Yost et al., 1989). In this thesis we differentiate between sources of
variability that are internal or external. Uncertainties in the stimuli are
related to an external source of variability, while the effects of human
memory and concentration correspond to sources of internal variability.
To (partly) account for variations in human performance due to sources
of internal variability, an internal noise is often used within computa-
tional frameworks of auditory processing. In our model implementation,
the internal noise is simulated by adding a Gaussian noise N(µ, σ2) with
mean µ = 0 and standard deviation σ = 10.1 MU (see Equation 4.5
and Appendix D). In threshold-detection tasks a typical source of ex-
ternal variability is the use of running noise. Running noise refers to
the fact that in different intervals of a trial, different realisations of simi-
larly generated noises are used. In the instrument-in-noise test a running
noise condition is approximated by using 12 different ICRA noise reali-
sations for each piano pair. Another source of external variability in the
instrument-in-noise test is the presentation level of each interval, which
is randomised (roved) by levels in the range ±4 dB.

4.3 Description of internal representations

4.3.1 General description of the representations
The internal representation of pianos P1 and P3 after the last stage
of peripheral processing of the auditory model (stage 6, modulation fil-
ter bank) is shown in Figure 4.3. The analysis is shown for one audio
frequency band (centred at fc = 11 ERBN or 520 Hz, closest band to
F0= 554 Hz). The piano sounds start at t = 0.1 s and their onsets oc-
cur shortly thereafter. The onset of the lowest modulation filter (Nr. 1,
mfc = 1.4 Hz) occurs approximately at t = 0.20 s, for filter Nr. 2 at
t = 0.15 s and for the rest of the filters between t =0.10 and t =0.11 s.
In the figure, it can also be observed that after the piano onset, the am-
plitudes in the modulation filters of P3 (Nr. 2-8) present more variations
in comparison with piano P1, especially for t = 1.0− 1.3 s.

We next describe the effect of using a stronger limiter factor in the
adaptation loop stage. For this analysis the initial part (first 0.25 s of
the waveform) of one of the piano sounds (piano P1) is further described.
This description is also valid for the other 6 piano sounds of the dataset.
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Figure 4.3: Internal representation for the recordings of piano P1 (panel (a)) and piano P3
(panel (b)). These internal representations correspond to the outputs of the peripheral stage
of the PEMO model. For clarity, the analysis of only one of the 31 audio frequency bands
(centred at fc = 520 Hz, closest band to F0= 554 Hz) is shown. This band has 8 modulation
filters with frequencies mfc between 1.4 and 128.6 Hz).

4.3.2 Stronger limiter factor

The internal representation of the first 0.25 s of the piano P1 waveform is
shown in Figure 4.4. The representation shown in panel (a) is a zoomed-
in version of the representation shown in Figure 4.3(a). Two different
configurations of the adaptation loops are used: using a limiter factor of
5 (as used in this thesis, panel (a) of Figure 4.4) and using a factor of 10
(as used in the literature, panel (b)). The representation considering the
limiter factor limit= 5 (panel (a)) has amplitudes that range between−27
and 142 MU. The amplitudes of the representation with limit= 10 (panel
(b)) range between −62.5 and 231.5 MU. In both cases the minimum
and maximum amplitudes occur in the modulation filter Nr. 2, which
is centred at mfc = 5 Hz. The difference between both representations
is shown in panel (c) of Figure 4.4. Positive and negative amplitudes
indicate that the less-compressed representation (limit= 10) has a wider
range of amplitudes than those of the representation with limit= 5. The
largest difference between the representations is found in the modulation
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Figure 4.4: Internal representation of piano P1 (initial 0.25 s) with limiter factors of 5
(panel (a)) and 10 (panel (b)) in the adaptation loops stage. The 8 modulation filters
that correspond to the audio frequency band centred at fc = 520 Hz are shown. For both
representations the minimum and maximum amplitudes are found for the modulation filter
Nr. 2 (centred at mfc of 5 Hz). The representation with limit= 5 has amplitudes that range
between −27 and 142 MU. The representation with limit= 10 has amplitudes that range
between −62.5 (not clearly visible) and 231.5 MU. In panel (c) the difference between both
representations is shown. The maximum differences for low (89.5 MU, band Nr. 2) and
high modulation bands (80.6 MU, band Nr. 6) are indicated by the red and green markers,
respectively. The minimum difference of −37.9 MU is indicated by the magenta maker.

filter Nr. 2, where the representation with limit= 10 reaches an amplitude
89.5 MU above the maximum of the representation with limit= 5.

4.3.3 Information in the internal representations
In order to introduce an information-based analysis of the three-dimen-
sional internal representations (dimensions n, m, and k), the following
expression may be used:

Im = 1/fs ·
K∑
k=1

N∑
n=1

R2
mk[n], Ik = 1/fs ·

M∑
m=1

N∑
n=1

R2
mk[n] (4.6)

This expression is similar to Equation 4.3, but the subindexes m and k
have been added to indicate that the sum, i.e., the “integration of in-
formation”, can be done by either deriving the contribution (1) Im of
M = 31 audio frequency bands across all modulation filter bands, or
(2) Ik of K = 12 modulation frequency bands across all audio frequency
bands. In this section we express the contributions Im and Ik as percent-
ages of the total information Itot available in the representation R:

Itot =
M∑
m=1

Im =
K∑
k=1

Ik = 1/fs ·
M∑
m=1

K∑
k=1

N∑
n=1

R2
mk[n] (4.7)

The results of this information-based analysis applied to the repre-
sentation of piano P1 is shown in panels (a) and (b) of Figure 4.5 for the
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Figure 4.5: Information in the internal representation of piano P1 for each (a) audio fre-
quency channel (Im/Itot), and (b) modulation frequency channel (Ik/Itot). The maroon
square markers indicate the information in the representation with limit= 5. The grey tri-
angle markers indicate the information in the representation with limit= 10. The values
per band are expressed as percentage with respect to the total information Itot. The points
along the ERB scale that correspond to F0= 554 Hz and its five first harmonics are indicated
by the green labels on the top axis.

audio (Im/Itot) and modulation frequency bands (Ik/Itot), respectively.
It can be observed that the use of a stronger limiter factor of 5 increases
the relative contribution of higher audio frequency bands, while no sub-
stantial change in the information weighting is observed across modu-
lation filters. For the representation with limit= 5, the audio frequency
bands with fc below 15 ERBN (924 Hz, containing the F0 of the piano
note) comprise only 30.9% of the information in contrast to 45.6% for the
representation with limit= 10 in the same frequency region. In terms of
modulation frequency content, which is similar for both representations,
bands 1 and 2 (mfc ≤ 5 Hz) comprise about 40% of the information and
the remaining 60% is distributed across bands 3 to 12.

4.4 Comparison between experimental and
simulated thresholds

4.4.1 Apparatus and procedure

The simulations were run using the AFC toolbox for MATLAB (Ewert,
2013). The AFC toolbox provides a framework to conduct listening ex-
periments. The toolbox includes a feature where an artificial listener can
be used during the experiments. The artificial listener uses an auditory
model with a central processor based on signal detection theory. The
PEMO model described earlier in this chapter was used.

The experiment was implemented as a 3-AFC task with the level of
the ICRA noises used as adjustable parameter. The set-up of the task
is similar to that used in the experimental sessions, which is described
in Section 3.2.3. There are, however, small deviations from that descrip-
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tion, mainly aiming at reducing the simulation time. Two sounds are
compared: the target sound (presented once) and the reference sound
(presented twice). The noise level was adjusted following a two-down
one-up rule until 8 reversals are reached (4 reversals less than in the
experimental sessions). The step sizes were set to 4 dB, 2 dB (after
the second reversal) and 1 dB (after the fourth reversal). The median
of the reversals during the measuring stage (last 4 reversals) is used to
estimate the discrimination threshold of each pair of sounds. The pre-
sentation level of the sounds was randomly varied (roved) by levels in
the range ±4 dB, drawn from a uniform distribution. The threshold
estimation was repeated 6 times for each condition.

4.4.2 Stimuli

Piano sounds

The same selection of Viennese piano recordings as in Chapter 3 was
used for the simulations. Recordings of the note C#5 (F0= 554 Hz)
from seven pianos were used. One recording per piano was chosen lead-
ing to a total of 7 stimuli. The sounds were set to have a duration of
1.3 s and they were ramped-down using a 150-ms cosine ramp. They had
a maximum loudness Smax of about 18 sone (refer to Table 3.1). The
pairwise comparison of all stimuli leads to a total of 21 possible combi-
nations. For each piano pair 6 thresholds were simulated, 3 times the
target piano was “A” and the reference piano was “B”, the remaining 3
times the target piano was “B” and the reference piano was “A”.

Piano-weighted noises

The same ICRA noises (version A7) generated for the listening experi-
ments of Chapter 3 were used in the simulations. For the comparison of
pianos “A” and “B” (or “B” and “A”) individual noises that follow the
spectro-temporal properties of each piano were combined to generate a
paired noise AB (refer to Section 3.2.2 for further details).

4.4.3 Exploratory simulations: Subset of piano sounds

At first, a subset of 9 (of the 21) available piano pairs was used for
the simulations. This selection was based on the results presented in

7In spite of the drawback in the spectral-matching properties (spectral tilt) of the ICRA-noise
algorithm version A, identified and briefly introduced in Chapter 3, the same ICRA noises are
used in this chapter. We assume that any effect of the spectral tilt on the experimental results of
Chapter 3 should also be tracked in the simulations of the current chapter. An in-depth analysis of
the spectral tilt effect is presented in Chapter 5 by means of simulations using noises with (version
A) and without spectral tilt (“new” noises version B, adopted in Chapter 5).
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Figures 3.4 and 3.8 of the previous chapter, from where 9 pairs that
are well distributed along the abscissa, i.e., the “similarity” axis, were
chosen. The selected piano pairs were: pair 12, 15, 16, 23, 26, 27, 37, 45,
and 47. The pairs 23 and 47 were taken from the most similar end of
the similarity axes. The pairs 26, 27, and 37 were taken from the least
similar end of the axes. The remaining pairs 12, 15, 16, and 45 were
taken from the intermediate similarity range.

This subset was used for (1) developing our template approach, and
(2) testing the duration of the “observation (listening) period” of the
template. This latter aspect is a consequence of the lack of success (see
the last column of Table 4.2) to simulate the discrimination thresholds
when using whole-duration piano waveforms as input to the model. The
low thresholds in that condition were attributed to a sensitive artificial
listener, who has access to more information than the human listeners.
As a way to remove available cues within the auditory model, the piano
sounds were truncated to shorter durations. This is equivalent to reduc-
ing the “observation” period tobs of the artificial listener and can be seen
as a simple way to account for a limited human-like working memory.

Under the hypothesis that participants provided a greater weighting
to the note onset, a truncation of the piano waveforms would have to
provide a higher correlation between the simulations and the experimen-
tal results. As will be shown in the results section, the simulation results
provide evidence to support this hypothesis.

4.4.4 Simulations using the whole dataset of piano sounds

The simulation of discrimination thresholds thressim for the whole dataset
of piano sounds (21 piano pairs) was run using the optimal observation
period tobs obtained from the exploratory simulations and the adopted
template approach. These thressim values were used to evaluate the per-
formance of the artificial listener with respect to the existing experimen-
tal thresholds thresexp (Chapter 3). In order to complement this eval-
uation, a comparison of thressim values with Euclidean distances from
two perceptual MDS spaces were also included: (1) from the space of
Chapter 3, and (2) from a newly generated MDS space using the PEMO
model. This newly generated MDS space is built by applying the de-
scribed template approach to triadic comparison trials using the dataset
of piano sounds.
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Simulation of triadic comparisons using the current template approach

As described in Section 3.2.4, each triadic comparison trial consisted of
three sounds that are labelled as “A”, “B”, and “C”. From this triad, out
of the three pairs that can be formed (AB, AC, BC) the participant (the
artificial listener) has to indicate which of the three pairs contains the
most similar sounds and which one contains the least similar sounds. In
this way, the remaining pair is labelled as having intermediate similarity.

To simulate this task, the whole dataset of pianos (
(

7
3

)
= 35 triads)

was used being restricted to the optimal tobs duration. No noise was used
because the experimental triadic comparisons were conducted in silence.
Within each trial, three templates TA, TB, and TC were derived by nor-
malising to unit energy the corresponding internal piano representation
RA, RB, and RC . Two CCV values per pair were assessed (AB, AC,
BC). For pair AB:

CCVAB =
1

fs

Nobs∑
n=1

RA[n] · TB[n], CCVBA =
1

fs

Nobs∑
n=1

RB[n] · TA[n]

where Nobs corresponds to the number of samples used by the artificial
listener to make the decision and is related to the optimal observation
duration tobs. The CCV values for pair AC and BC can be obtained in a

similar manner. Finally, three ĈCV values were obtained, one for each
pair: ̂CCVAB = max {CCVAB,CCVBA}+N1(µ, σ2)̂CCVAC = max {CCVAC ,CCVCA}+N2(µ, σ2)̂CCVBC = max {CCVBC ,CCVCB}+N3(µ, σ2) (4.8)

where Nx(µ, σ
2), with x = 1, 2, 3 represents a similar internal noise as

used in Equation 4.5 that correspond to three numbers drawn from a
Gaussian distribution with µ = 0 and σ = 10.1 MU. The pair having the

maximum ĈCV value was indicated by the artificial listener as the most

similar pair. The pair having the minimum ĈCV value was indicated as
the least similar pair and, therefore, the remaining pair was indicated
as having intermediate similarity. Since no external (ICRA) noise is
used in the trials, the CCV values are deterministic but the responses of
the artificial listener were not due to the internal (Gaussian) noise. To
simulate the triadic comparisons of 20 participants, the 35 triads were
evaluated 20 times by the artificial listener.
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Table 4.2: Results of the simulations using a subset of 9 piano pairs and different tobs

durations. The minimum and maximum simulated thresholds are indicated together with
their dynamic range (DR=thresmax−thresmin). The correlation values of the simulations
with the corresponding experimental data (taken from Figure 3.4) are given. The SNR
range of the experimental data is indicated in column Exp.

“Observation (listening) period” tobs [s]
Parameter Exp. 0.2 0.25 0.3 0.5 0.7 0.9 1.1 1.3 1.5
thresmax [dB] 20.75 15.0 20.5 14.25 9.25 5.0 3.25 2.5 2.0 2.75
thresmin [dB] -1.75 -0.25 -1.0 1.5 -0.5 -1.25 -1.75 -2.75 -3.0 -2.5
DR [dB] 22.5 15.25 21.5 12.75 9.75 6.25 5.0 5.25 5.0 5.25
rp(7) − 0.66* 0.71* 0.65** 0.34 0.45 0.25 0.43 -0.21 -0.18
rs(7) − 0.60** 0.78* 0.47 0.11 0.49 0.21 0.49 0.09 0.03

(*) Significant correlation, p < 0.05. (**) Correlations that approach significance, p < 0.10.

4.5 Results

Each piano pair was tested in a separate instrument-in-noise experiment.
The simulation results are compared with the corresponding experimen-
tal thresholds taken from Figure 3.4.

Experimental thresholds

The experimental thresholds of Figure 3.4 range between thresexp,max=
20.75 dB (pair 23) and thresexp,min= −1.75 dB (pair 26), having a dy-
namic range DRexp=thresexp,max−thresexp,min= 22.5 dB. Since the pairs
23 and 26 are part of the subset of 9 piano pairs, this DR is also valid
for the experimental thresholds using the subset of data.

4.5.1 Exploratory simulations
The results for the selection of 9 piano pairs are shown in Table 4.2. In
the table, information about the minimum (lowest median) and maxi-
mum (highest median) estimated thresholds is shown. Their difference
is indicated as the dynamic range (DR) in dB. The simulations that
considered 1.5-s long piano sounds (whole duration of the sounds plus
0.2 s of silence) delivered thresholds between thressim,max= 2.75 dB and
thressim,min= −2.5 dB with a DR of 5.25 dB. These thresholds are too
low with respect to the experimental data. This means that the artificial
listener has access to more information than the actual participants. As
a way to remove available cues within the auditory model, the piano
sounds were truncated to shorter durations. “Observation” durations
tobs of 0.20, 0.25, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, and 1.50 s were tested. The
effective duration of the piano sounds is 0.10 s shorter, because of the
initial silence in the waveforms. The tobs durations between 0.9 and 1.5 s
seem to have a constant DR of about 5 dB and for shorter durations,
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Figure 4.6: Discrimination thresholds using the whole dataset of piano sounds (21 piano
pairs). The median simulated thresholds thressim are indicated by the magenta circle mark-
ers. The red triangle markers correspond to the experimental thresholds thresexp (taken from
Figure 3.4). The thresholds are shown together with their IQRs. The piano pairs along the
abscissa are ordered from higher to lower SNR thresholds based on the experimental data.

the thressim,max increases down to the duration of 0.25 s, reaching a max-
imum DRsim of 20.5 dB. For the shortest tested duration of 0.20 s the
DR decreases by 6 dB. The interpretation of these results is that at the
duration of 0.25 s (that has the highest DRsim) the piano sounds are
judged by the auditory model as most distinct. Looking at the corre-
lation values, the best fit between experimental and simulated data is
found for the same observation duration of 0.25 s. For this duration,
the thresholds have a Pearson correlation rp(7) = 0.71, p = 0.038, and
a Spearman (rank-order) correlation rs(7) = 0.78, p = 0.02. This “ob-
servation” duration tobs is further used to simulate the discrimination
thresholds of the remaining 13 piano pairs.

4.5.2 Simulations using the whole dataset of piano sounds
The discrimination thresholds using the whole dataset of piano sounds
(21 piano pairs) were simulated using the first 0.25 s of waveforms (i.e.,
initial 0.15 s of the piano sounds), based on the results of the exploratory
simulations. The median thresholds thressim are indicated by the ma-
genta circle markers of Figure 4.6. The thresholds are shown together
with their IQRs. The simulations at this duration (tobs = 0.25 s) are not
only highly correlated with the experimental data but they also reach
a comparable DRsim= 21.5 dB (same DR as in the exploratory anal-
ysis). The thressim values range between thressim,max= 20.5 dB (pair
47) and thressim,min= −1 dB (pair 16). The Spearman (rank-order)
correlation between the thresholds thressim and thresexp is significant

8The value between brackets indicate the degrees of freedom, which is N − 2, with N being the
number of data points being compared.
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Figure 4.7: Regression analysis between the experimental thresexp and simulated thressim as:
(a) SNR thresholds, and (b) ordinal thresholds. The linear regression of panel (a) is related
to the Pearson correlation rp, while the regression of panel (b) to the Spearman correlation
rs. Two pairs of points were removed from the analysis to obtain an rp(17) = 0.54, p = 0.02,
due to the lack of thresexp values above 12 dB. A Spearman correlation of rs(19) = 0.63,
p < 0.001 was obtained.

with rs(19) = 0.63, p < 0.001. Although a higher Pearson correla-
tion rp(19) = 0.66, p < 0.001 was found, this value has to be interpreted
with caution due to the poor scattering of the thresexp values for SNRs
above 12 dB9. When omitting the data of the two piano pairs in that
range (pairs 23 and 47), a correlation rp(17) = 0.54, p = 0.02 is found.
The scatter plot of the data together with the corresponding regression
analyses are shown in Figure 4.7. The poor scattering of the thresexp

values can be seen in panel (a) of the figure, where there are only two
thresholds in the SNR range between 12 and 24 dB (for pairs 23 and 47).

4.5.3 Comparison of the simulations with two perceptual
MDS spaces

Euclidean distances from experimental triadic comparisons

The Euclidean distances dij exp in the four-dimensional perceptual MDS
space derived from the experimental results of the method of triadic
comparisons have been taken from Figure 3.8. The first two dimensions
of the space are replotted in panel (a) of Figure 4.8. The Euclidean
distances range between dij exp,min = 0.14 (pair 47) and dij exp,max = 0.91
(pair 24). Half of the distances lie in the range dij,25−75 = 0.63− 0.83.

Euclidean distances from simulated triadic comparisons

The results of the triadic comparisons using the artificial listener, i.e.,
using the PEMO model, are shown in Table 4.3. In the table, the upper
right triangle corresponds to the similarity matrix, which has been con-
structed in the same way as the matrix of Chapter 3. A four-dimensional

9The poor scattering of the data shown in Figure 4.7(a) is also related to the violation of the
normality assumption of both, experimental and simulated thresholds.
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Figure 4.8: Perceptual spaces obtained with MDS. Only the first two (of four) dimensions are
shown for the space constructed with a similarity matrix obtained experimentally (panel (a))
and with simulations (panel (b)). The grey bubbles give an indication of the “participant’s”
variability: the bigger the bubble the higher the variability across participants. Note that
the axes of the MDS spaces are not to scale.

Table 4.3: Similarity matrix Sij and Euclidean distances derived from the artificial listener
using the test piano sounds. The similarity matrix is shown in the upper right triangle and
the Euclidean distances between pianos in the resulting four-dimensional space are shown
in the lower left triangle. To obtain these results, each triad was evaluated 20 times. This
means that the maximum possible score is 200. The lowest score was obtained for pair 46
(Sij = 19) and highest scores were obtained for pairs 13 and 23 (both with Sij = 167). The
corresponding distances were 0.95, 0.37, and 0.38 for pairs 46, 13, and 23, respectively.

Piano

Piano P1 P2 P3 P4 P5 P6 P7
P1 - 145 167 75 130 77 83
P2 0.51 - 167 75 111 45 79
P3 0.37 0.38 - 86 162 59 61
P4 0.77 0.77 0.76 - 128 19 139
P5 0.57 0.65 0.38 0.57 - 49 102
P6 0.77 0.86 0.83 0.95 0.84 - 141
P7 0.76 0.77 0.80 0.51 0.70 0.51 -

perceptual space was obtained using the non-metric MDS algorithm
available in MATLAB. The Euclidean distances between pairs in the fitted
space are shown in the lower left triangle of Table 4.3. The obtained space
has a goodness of fit that is near to excellent (stress St = 3.6%) with
respect to the similarity matrix, and its first two dimensions (poor stress
St = 25.8%) are shown in panel (b) of Figure 4.8. The Euclidean dis-
tances dij sim have Pearson and Spearman correlations of rp(19) = 0.51
and rs(19) = 0.50 (both with p = 0.02) with respect to the distances
dij exp. To further characterise the agreement between dij exp and dij sim,
a measure of stress (see Equation 3.3) can be used. Using dij exp as ref-
erence, the obtained stress is St exp-sim = 25.2%. Additionally, the first
dimension of both MDS spaces provide a similar rank order of the piano
sounds with a Spearman correlation of rs(5) = 0.82, p = 0.03.
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Figure 4.9: Summary of correlation values between instrument-in-noise thresholds and Eu-
clidean distances. All possible combinations among thresexp, thressim, dij exp, and dij sim

are indicated in this schema.

Euclidean distances and instrument-in-noise thresholds

In Chapter 3 a correlation value of rs(19) = −0.64, p = 0.001 was re-
ported for the distances dij exp with respect to the instrument-in-noise
thresholds thresexp. The assessed correlation value between dij exp and
the simulated thresholds thres sim is a moderate value of rs(19) = −0.29,
p = 0.20. This indicates that the relationship between dij exp and thressim

is less strong than with respect to thresexp. When using the distances
dij sim as reference, the correlation values are rp(19) = −0.73 and rs(19) =
−0.75 (both with p < 0.001) with respect to thresexp and rp(19) = −0.54,
p = 0.01, and rs(19) = −0.63, p = 0.002 with respect to thressim. These
values indicate a strong relationship between dij sim and both, experi-
mental and simulated thresholds.

All correlation values reported in this section are summarised in the
schema of Figure 4.9.

4.6 Data analysis and discussion

The simulated thresholds thressim of the instrument-in-noise test are sig-
nificantly correlated with the experimental thresholds thresexp when only
the initial part of the waveforms is used. Two aspects that affected the
internal representation of the sounds leading to the obtained thressim

values are addressed in this section: (1) The weighting of information in
each (audio and modulation) frequency channel, and; (2) the concept of
“optimal detector” used in the central processor stage.
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4.6.1 Weighting of information in the internal
representations

The weighting of information for each audio and modulation frequency
band within the PEMO model is inherently introduced when using the
concept of memory template. This weighting depends on the “expected
signal” to be discriminated and the processing introduced by each stage
of the auditory model. Two aspects that may have affected the weighting
of information in our approach are discussed: (1) the stronger limitation
introduced in the adaptation loops, and (2) the processing of sounds that
have shorter durations.

Our decision stage made use of two criteria, i.e., two expected sig-
nals that lead to two templates Tp,t and Tp,r. Since the decision is based
on CCV values, where the contribution of information to the difference
representation ∆Rx is weighted using Tp,t and Tp,r, the contribution of
individual (audio and modulation) frequency bands to each CCVx value
can be assessed. Following a similar approach to that used to analyse
the piano-alone representation R of piano P1 (shown in Figure 4.5), the
weighting of information that is introduced within the auditory model
can be obtained by assessing the percentual contribution of the template-
weighted piano representations ∆Rx ·Tp (from Equation 4.3) using Equa-
tions 4.6 and 4.7. The contribution of each frequency band (Im/Itot for
audio frequencies and Ik/Itot for modulation frequencies) in the follow-
ing conditions is considered: (1) when the adaptation loops are limited
using a factor of 5 (as suggested in this thesis) and with a factor of 10
(as in the literature), and (2) considering the total duration of the piano-
plus-noise sounds (1.5 s) and when only the first 0.25 s are evaluated.
In this analysis, all 21 piano pairs were included. Since our interest is
on the weighting of information at threshold, the difference representa-
tion ∆R = R−RN is assessed at the noise level of the respective ICRA
noise indicated by the simulated thresholds. The information-weighted
values (Im/Itot and Ik/Itot) for the comparison between limiter factors
are shown in Figure 4.10. The values Im and Ik were obtained as the
median of 42 values (21 pairs with one value using Tp,t and one value
using Tp,r). The error bars indicate their IQRs. The weighting Im/Itot

shown in panel (a) shows that by using a stronger limiter factor, the
information of higher audio frequency bands receive a higher relative
weighting. For a limiter factor of 10, the weighting seems to be very
similar to the distribution of information for the piano-alone representa-
tion shown in panel (a) of Figure 4.5. The information contribution of
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Figure 4.10: Weighting of information in difference (internal) representations (∆Rx ·Tp) for
limiter factors of 5 (maroon square markers) and 10 (grey circle markers). The weighting
Im/Itot of each audio frequency channel is shown in panel (a). The weighting Ik/Itot of each
modulation frequency channel is shown in panel (b). The values per band are expressed as
percentage with respect to the total information Itot of each representation. The points along
the ERB scale that correspond to F0= 554 Hz and its five first harmonics are indicated by
the green numbers along the top axis.

each modulation filter is shown in panel (b) of Figure 4.10. The average
information contribution in the second modulation filter (mfc = 5 Hz)
is 18.6% for the representations with limit= 5, which is 2.6% below the
weighting for the same filter when the limit of 10 is used (weighting of
21.2%). The first modulation filter has a low weighting despite its higher
value of information content in the piano-alone representation. This is
expected, though, because this modulation filter tracks slow envelope
changes that do not differ considerably from piano to piano, especially
in the first 0.25 s of their representation. The modulation filters Nr.
6-9 show a slight increase in their weighting for a limit of 5 (compared
to the limit of 10), while the rest of the bands have a similar weighting
with both limiter factors. The information-weighted values for the com-
parison between signal durations are shown in Figure 4.11. The band
weightings using tobs durations of 0.25 and 1.5 s are very similar (mean
difference ∆Im/Itot of 0.00%, IQR of 0.33%) and, therefore, they seem
to be unaffected by the duration tobs of the piano sounds. To explain
the influence of tobs on the simulated thresholds, the performance of the
artificial listener is further analysed in the next section.

4.6.2 Reducing the performance of the optimal detector
The central processor of the PEMO model is inspired by the concept of
“optimal detector”. In signal detection theory, the term “optimal” refers
to the fact that the detector has the best possible performance given
specific stimulus properties. In other words, if a cue is available in the
stimulus, then the detector uses it (Green & Swets, 1966, their Chapter
6). For this reason, detectors that are optimal can be used as baselines
for human detection. The results of our exploratory simulations showed
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Figure 4.11: Weighting of information in difference (internal) representations (∆Rx · Tp)
for whole-duration sounds (grey circle markers) and considering a shorter duration tobs of
0.25 s (maroon square markers). The weighting Im/Itot of each audio frequency channel is
shown in panel (a). The weighting Ik/Itot of each modulation frequency channel is shown
in panel (b). The points along the ERB scale that correspond to F0= 554 Hz and its five
first harmonics are indicated by the green labels on the top axis.

that the participant’s performance in the instrument-in-noise experiment
is below the ideal performance, where the simulated thresholds for whole-
duration sounds covered a range of only 5 dB (see the last two columns
of Table 4.2).

One way to bring the simulated thresholds to a range closer to that
of the experimental data is the removal of “evidence” from the stimuli.
Since the “evidence” is assumed to be accumulated during the obser-
vation period, shortening the duration of the sounds should result in a
reduction of evidence and an increase in simulated thresholds.

Shortening the duration of the sounds

We systematically varied the observation period tobs of the artificial
listener by only considering the initial part of the piano (and ICRA
noises) waveforms, which was indicated by the tobs duration. The sim-
ulated thresholds for shorter tobs durations resulted in thresholds with
a higher dynamic range (thresmax−tresmin), increasing from 5.25 dB for
tobs = 1.5 s to 21.5 dB for tobs = 0.25 s.

To evaluate the influence of different tobs periods on the decision of
the artificial listener, an analysis based on CCV values is presented. For
this analysis, the optimal and the longest tobs periods of 0.25 and 1.5 s,
respectively, are used. The CCV values for the subset of 9 piano pairs
are shown at a noise level given by their corresponding thressim value. In
general, at these noise levels only one of the two decision criteria fails,
either max

{
ĈCVx,t

}
or min

{
ĈCVx,r

}
(see Equation 4.3). The criterion that

fails first is labelled as “leading criterion” and is used for further analysis.

The CCV values for the selected piano pairs obtained at the corre-
sponding discrimination threshold (thressim using tobs = 0.25 s) are shown
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Figure 4.12: CCV values for each piano pair (SNR at threshold) considering the first 0.25 s
(filled square markers) and the whole duration (open circle markers) of the internal represen-
tations. In panel (a) the CCV values for the target interval (x = 1) of the leading criterion
(CCVt or CCVr) are shown. In panel (b) the CCV values for the reference interval (valid
for x = 2 and 3) of the same criterion (CCVt or CCVr, respectively) are shown. In panel
(c) the difference between CCV values are shown.

in Figure 4.12. This means that, after adding internal noise N(0, σ2),
the CCV values obtained from representations with tobs = 0.25 s (filled
square markers) would lead the artificial listener to obtain discrimina-
tion scores of approximately 70.7%10. The CCV values obtained from
representations with tobs = 1.50 s are indicated by open circle markers.
The CCV values of the leading criterion for target and reference intervals
are shown in panels (a) and (b) of the figure, respectively. The differ-
ence between CCV values is shown in panel (c) and they range between
−7.5 (pair 16) and 16.0 (pair 47) for representations with tobs = 0.25 s
and between −4.8 (pair 16) and 82.7 (pair 47) for representations with
tobs = 1.50 s. These ∆CCV values indicate that the discriminability
of the pianos either remains approximately constant (pair 16) or in-
creases (pairs 12, 15, 23, 26, 27, 37, 45, and 47) with tobs and that
the use of shorter internal representations compresses the ∆CCV0.25 s

10For this CCV analysis no level roving was applied. This means that the discriminability at
thressim is in practice higher. This is due to, on average, the lower thresholds (i.e., better discrim-
inability) when removing the level roving, as can be seen in no-rove thresholds of Figure 4.13.
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Figure 4.13: Simulated thresholds thressim for the subset of 9 piano pairs in the follow-
ing conditions: (1) considering internal and external sources of variability (magenta circle
markers, as in Figure 4.6); (2) with internal variability but without level roving (square blue
markers); (3) without internal variability, i.e., considering only sources of external variability.

without changing significantly the relative discriminability between pi-
anos, having a rank-order correlation of rs(19) = 0.93, p < 0.001 with
respect to the ∆CCV1.50 s values. The differences ∆CCV0.25 s are, how-
ever, susceptible to the variance introduced by the internal noise. Since
each CCV value is varied by a number drawn from a normal distribu-
tion having the same standard deviation σ = 10.1 MU, the difference
∆CCV values are also normally distributed with a standard deviation
of
√
σ2 + σ2 = 14.4 MU. Eight of the 9 difference ∆CCV0.25 s values in

panel (c) of Figure 4.12 (20 of 21 if the whole dataset is considered) lie
in the variability range of the internal noise (±14.4 MU). This means
that the internal noise plays a prominent role in the discrimination per-
formance of the artificial listener. For representations with tobs = 1.5 s a
much larger variance of the internal noise would be needed for reaching
simulated thresholds in a similar SNR range. Although it is possible to
introduce a higher variability to the internal representations, this would
strongly limit the performance of the PEMO model, reducing its sensi-
tivity when predicting auditory tasks like those shown in Appendix D.

4.6.3 Removing the sources of variability

In order to quantify the influence of the sources of variability on the
obtained thresholds thressim, simulations for the subset of 9 piano pairs
(using tobs = 0.25 s) were run in the following conditions: (1) No level
roving (no–rove condition), i.e., using only the internal noise variability
and the use of running noises, and (2) No internal noise (no–int con-
dition), i.e., using only sources of external variability (level rove and
running noise). The resulting median thresholds (of 6 estimates) with
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their IQRs are indicated by the blue squares and the green triangles in
Figure 4.13, respectively. The simulated thresholds using both sources of
variability (as shown in Figure 4.6) are indicated by the magenta circle
markers (ext+int condition) and are used as baseline for this analysis.
The simulated thresholds in the no–rove condition follow the trend of
the ext+int-thresholds (correlation of rs(7) = 0.77, p = 0.02) and differ
by 3.5 dB (pair 23) or less. This is not the case for the thresholds in the
no–int condition, that are much lower than the ext+int-thresholds and
are not significantly correlated (rs(7) = 0.53, p = 0.15). This means that
the limit in performance introduced by the sources of external variability
of the instrument-in-noise task are not sufficient to explain the perfor-
mance of the artificial listener. This analysis provides evidence of the
dominant role played by the internal noise in the decision of the artificial
listener for 0.25-s long representations.

4.6.4 Comparison between simulated thresholds and
simulated perceptual distances

Although the Euclidean distances dij exp and instrument-in-noise thresh-
olds thresexp obtained in Chapter 3 have a high correlation (rp = −0.47,
rs = −0.64), and the correlation between simulated thresholds thressim

obtained in this chapter have a high correlation with thresexp (rp = 0.54,
rs = 0.63), the distances dij exp have a moderate to low correlation with
thressim (rp = −0.57, rs = −0.29). For understanding why the discrimi-
nation thresholds (in noise) of the PEMO model are not better correlated
with the experimental results of the triadic comparisons dij exp, we inte-
grated the triadic comparison task into the framework of the auditory
model. The simulated distances dij sim had a similar strength of asso-
ciation with both, the distances dij exp (rp = 0.51, rs = 0.50) and the
thresholds thressim (rp = −0.54, rs = −0.63). An interpretation of these
results can be that the artificial listener does not fully perceive the sim-
ilarity of piano sounds in silence in the way participants do. This is
evidenced by the poor stress between distances St exp-sim = 25.2%, while
the stress values between distances and their corresponding similarity
matrices are between good and excellent. The non-explained variance
of the dimensions in the simulated MDS space (with the experimental
space) seems to be responsible for the better correlation between dij sim

and thressim.
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4.7 Conclusions

In this chapter an auditory model was used to simulate the discrimina-
tion thresholds between recorded sounds of one note (C#5) played on 7
different pianos. In order to compare two internal (piano) representa-
tions, two memory templates were required to allow the artificial listener
(PEMO model) to distinguish one piano from another. The need of the
model to access the representation of the sounds being compared can be
interpreted as an approach that resembles a recognition rather than a
discrimination task. The obtained thressim values from the model were
significantly correlated with the thresexp values when only the initial part
of the waveforms was used. An optimal “observation” duration tobs of
0.25 s was found. We hypothesise however that other tobs durations will
be obtained if other (piano) notes are tested. The relevant aspect is that
a reduction in the amount of information available to the artificial lis-
tener brought the simulated and experimental data to a closer range. In
this context, the success of the simulations might be interpreted in the
following way: (1) Using longer tobs durations, the artificial listener has
access to more cues than the actual participants. This may be related to
the fact that the central processor integrates the incoming information
“optimally”; (2) the shorter the tobs duration the less information can be
integrated by the artificial listener. The performance of the artificial lis-
tener is limited by the internal noise of the auditory model and by other
sources of (external) variability that are related to the instrument-in-
noise task. These sources of external variability are the randomisation
of the presentation level of each interval (level roving) and the use of
running ICRA noises. The most dominant of the sources of variability is
the internal noise in the auditory model, especially for intervals with a
tobs of 0.25 s and SNR levels around or above the simulated thresholds.
The results presented in this chapter support the idea that the unified
framework offered by the PEMO model can be used to evaluate percep-
tual tasks using complex sounds. This can be seen as an extension of
the use of this type of models and their success relies on the adjustment
of the central processor stage included within the model, in combination
with an appropriate representation of sources of internal noise.
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5 Measuring and simulating the similarity of in-
strument sounds in a reverberant environment1

5.1 Introduction

The perceptual similarity task studied in the previous chapters is applied
here to the same set of piano sounds but after being convolved with the
impulse response of a reverberant room. Although the judgements for
the new reverberant sounds are expected to be somewhat correlated with
the results reported in Chapter 3, relative similarity changes among pi-
anos due to reverberation are expected to be tracked by the instrument-
in-noise method and by simulations using the auditory (PEMO) model
described in Chapter 4. One of the objectives of the study case presented
in this chapter is, therefore, to extend the use of the experimental and
computational frameworks presented in Chapters 3 and 4. The experi-
mental data of the instrument-in-noise method using reverberant sounds
are compared with the method of triadic comparisons and with simu-
lations of the discrimination thresholds using the PEMO model. As a
difference to the procedures of the previous chapters, a new version (ver-
sion B) of the ICRA noise algorithm has been adopted. Version B of
the algorithm corrects the spectral tilt towards high frequencies that the
algorithm version A had (see Section 3.5). For this reason, a second
objective of this chapter is to quantify the effect of using ICRA noises
with different spectral properties. The evaluation is done by comparing
simulated discrimination thresholds using the two ICRA noise versions.

5.2 Description of the method

The experimental methods and the computational framework used in
the study case presented in this chapter are very similar to those used
in Chapters 3 and 4, respectively. The set of stimuli comprises the same

1This chapter is partly based on: A. Osses, and A. Kohlrausch (2018, submitted). Auditory
modelling of the perceptual similarity between piano sounds. Acta Acust. united Ac.
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Figure 5.1: The principle of the ICRA noise generation, version B. For details in the proce-
dure, refer to steps 1 to 4 in the text.

19th-century Viennese pianos, but the sounds were auralised to account
for the acoustics of a reverberant room. The ICRA noises used to mask
the auralised piano sounds have been calculated with a modified algo-
rithm, whose resulting waveforms are more similar to the outputs of a
30-channel noise vocoder. Since the description of the experimental ses-
sions and simulations is, in general, shorter than the descriptions of the
previous chapters, the reader is referred to Chapters 3 and 4 for specific
details about the procedures.

5.2.1 Modified ICRA noise, version B
The procedure used to generate ICRA noises has some modifications
with respect to the algorithm version A (Section 3.2.1). The modified
ICRA algorithm, that has been named “version B”, is shown in the block
diagram of Figure 5.1 and can be described as follows:

1. Band-split filter: an input signal (musical instrument sound) is fed
into a Gammatone filter bank. The filter bank consists of 30 bands with
centre frequencies between 101 Hz (3.4 ERBN

2) and 7324 Hz (33.4 ERBN),
spaced at 1 ERB. This number of bands was obtained by using F0=
554 Hz (11.4 ERBN) as base frequency. The all-pole Gammatone fil-
ter bank with complex outputs (only the real part is further processed)
available in the AMT toolbox for MATLAB was used for this purpose.
The filter design and processing introduced in this stage is equivalent to
the “frequency analysis” stage described by Hohmann (2002).

2. Sign randomisation: the sign of each sample of the 30 filtered sig-
nals is either reversed or kept unaltered with a probability of 50% (mul-
tiplication by 1 or −1) (Schroeder, 1968). As a consequence of this

2The ERB rate scale corresponds to one of the frequency scales that is inspired by the frequency
representation in the auditory system. A brief overview of this scale is given in Appendix A.
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Figure 5.2: (a) Waveform of a reverberant sound of piano P1 converted to SPL, and (b) one
realisation of its resulting ICRA noise at an SNR= 0 dB. The thick black lines correspond
to the envelope of the waveforms (LPF, fcut-off = 20 Hz). (c) Spectra of the piano sound
(blue) and the ICRA noise (black thick line) averaged over the first 0.6 s of both waveforms.
The grey dashed line represents the spectrum of the ICRA noise, using the old version A.

process, the resulting waveforms have a flat spectrum while keeping the
same temporal envelope characteristics and the same band level.

3. Re-filtering per band-split filter: the resulting signal from band
i is fed into the ith band of the Gammatone filter bank. The index
i represents each of the 30 bands. As a consequence of this process,
the band levels are decreased in proportion to the number of rejected
frequency components. To compensate this effect, a gain is applied to
set the band levels back to the values as before this stage.

4. Add signals together: the 30 filtered signals are added together. A
frequency dependent delay line is used before adding the filtered signals
together. This is because the Gammatone filter bank is implemented as
a set of IIR filters and, therefore, the filter bank has frequency-dependent
group delays. The delays being compensated range from 5.6 ms (bands
centred at fc = 554 Hz or below) down to 0.57 ms (band centred at
fc = 7324 Hz). Those delays correspond to the time stamp at which each
BPF (fc ≥554 Hz) has a maximum in its envelope, when an impulse is
used as input. For the filters with fc < 554 Hz only a partial compen-
sation (of 5.6 ms) is applied. The processing introduced in this stage is
similar to the “frequency synthesis” stage described by Hohmann (2002)
but omitting the fine-structure alignment. This compensation is applied
twice (two-tap delay line) because the signals are filtered (stage 1) and
then re-filtered (stage 3).

Difference between versions A and B

The level scaling introduced in the current ICRA algorithm (version B)
ensures a resulting noise that has the same overall level per critical band
as the input signal. In version A, the level is only adjusted after the noise
has been summed up into one broadband signal. This means that both
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Figure 5.3: SNR map as a function of time (abscissa) and frequency (ordinate) for piano P1
with respect to noise N1 at an SNR= 0 dB. Noise N1 was obtained using version A (panel
(a)) and B (panel (b)) of the ICRA noise algorithm. The overall SNR between P1 and N1
averaged across time and frequency for both noises is: −12.1 dB for version A and −0.5 dB
for version B.

versions deliver noises with the same overall level as the input signal,
but in version A the band levels show a spectral tilt towards higher
frequencies. This is a consequence of the re-filtering stage, where the
band levels after the signal randomisation stage (which are not changed
with respect to the levels before this stage) are decreased in inverse
proportion to the bandwidth of the critical band. As a consequence
of this, the band levels are less attenuated for higher frequency bands
in version A3 (the relative level of the last auditory filter is emphasised
by 10 dB with respect to the band level in the auditory filter centred at
F0= 554 Hz). In panel (c) of Figure 5.2 the band levels of the ICRA
noise versions B (black solid line) and A (grey dashed line) are shown. To
further characterise the differences between versions A and B of the ICRA
algorithm, the SNR maps of Figure 5.3 have been drawn, were darker
and brighter regions indicate lower and higher SNRs, respectively. Those
maps show the SNR as a function of time and frequency between piano
P1 and two ICRA noise realisations obtained from versions A (panel
(a), as in previous chapters) and B (panel (b), as used in this chapter),
respectively. For both ICRA noises, the bands containing the F0 and
the first two harmonics have positive SNRs (bands 9, 14, 17). The levels

3At this point of the ICRA algorithm, the re-filtering stage keeps the spectrum level of the white-
noise like waveforms. If each auditory filter contains a signal with a band level BLi with a wideband
spectrum BWfull-range= fs/2 Hz, then the spectrum level of the band is SLi =BLi−10 · log10(fs/2).
After the re-filtering the signals are limited (as before Stage 2) to the bandwidth BWi of the
corresponding Gammatone filter, then BLi new=SLi + 10 · log10(BWi), with BLi new being a level
that is always lower than BLi. By construction, the attenuation introduced by the re-filtering stage
is given by Atti = 10 · log10(BWfull-range/BWi). For an fs = 44100 Hz, the values Atti for the
band centred around F0= 554 Hz (BWi ≈ 70 Hz) and in the highest auditory band fc = 7324 Hz
(BWi ≈ 700 Hz) are 25.0 and 15.0 dB, meaning that the BLi of the highest band has higher inherent
weighting (by 10 dB) over the band level in the band centred at F0. In version B Atti values are
compensated but in version A they are not.
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Figure 5.4: (a) Waveform of a reverberant sound of piano P3 converted to SPL, and (b) one
realisation of its resulting ICRA noise at an SNR= 0 dB. The thick black lines correspond
to the envelope of the waveforms. (c) Spectra of the piano sound (red) and the ICRA noise
(black thick line) averaged over the first 0.6 s of both waveforms.

of the auditory bands in between have, on average, negative SNRs, with
lower values for the map that uses the ICRA noise version A (panel (a))
with SNRs below −10 dB. Another aspect to highlight in the SNR map
that uses the ICRA noise version A is that there are high SNRs (brighter
region) between about 40 ms before P1 starts and up to about 30 ms
after its note onset (between t = 60 and 130 ms) for band 11 or below
(fc ≤ 743 Hz). The noise has levels below the signal in that range (i.e.,
SNR> 0 dB) due to the frequency-dependent delay (group delay) which
is longer for lower frequency bands. The group delay is introduced by
the ICRA noise algorithm. In the current “version B” the group delay
compensation seems to have solved that problem.

5.2.2 Comparing two sounds

Two sounds are compared by measuring the participant’s discrimination
performance using background ICRA noises in exactly the same way as
used in the previous chapters (see Section 3.2.2). To explain the com-
parison procedure, two recordings of the note C#5 from pianos P1 and
P3 are used (see Table 5.1). Since the piano sounds used in this chapter
include the effect of reverberation, the spectro-temporal properties of the
piano sounds vary from those of the waveforms used in previous chap-
ters. The generated ICRA noises follow these variations. The chosen
reverberant sounds together with one realisation of their ICRA noise (at
an SNR of 0 dB) are shown in Figures 5.2 and 5.4.

Practical considerations

During the experimental procedure, a 3-AFC discrimination task is used
to compare two sounds. The sounds being compared are set to have
the same duration of 2.0 s. This increased duration (1.3 s was used
in the previous dataset) is assumed to be long enough to convey all
the relevant cues that the reverberation may introduce onto the piano
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sounds4. The piano onset is set to occur at approximately the same time
stamp (t = 0.1 s).

In order to simultaneously account for the spectro-temporal properties
of two piano sounds (e.g., P1 and P3), a “paired” ICRA noise is generated
by averaging the waveforms of two individual ICRA noises (N1 and N3).
It is assumed that the paired ICRA noise (N13) is efficient to gradually
mask the properties of the test sounds (P1 and P3) when being compared
to each other. In the course of an experiment, twelve realisations of
a paired ICRA noise are used, where three realisations are randomly
chosen for each trial. This corresponds to an approximation to a running-
noise condition. The relative level of the paired noises is adapted in the
course of the experiment by increasing the level of the noise (decrease
of the SNR, more difficult discrimination) or decreasing the level of the
noise (increase of the SNR, easier discrimination), depending on the
participant’s performance.

5.2.3 Instrument-in-noise test
The instrument sounds are compared pairwise. A given pair of sounds
is presented in 3-AFC trials, where the discriminability threshold is es-
timated by adjusting the noise level of the corresponding paired ICRA
noise, version B. The participant has to indicate which of the intervals
contains the target sound. The adjustable parameter (noise level) is var-
ied following a two-down one-up rule. The experiment continues until
12 reversals are reached. The starting level of the paired ICRA noise is
set to an SNR of 16 dB. The step size at which the noise is adjusted is
set to 4 dB and is halved after two reversals until a step size of 1 dB
is reached. The median of the last 8 reversals is used to estimate the
discrimination threshold of each pair of sounds.

The reverberant piano sounds used in this chapter differ considerably
in their loudness. In order to avoid the use of loudness cues during
the experimental sessions, the piano sounds were first loudness balanced
(Smax set to approximately 18 sone, as shown in Table 5.1) and their pre-
sentation level within each interval (piano + noise) was randomly varied
(roved) by levels in the range ±4 dB, drawn from a uniform distribution.
The intervals had a duration of 2.0 s with an interstimulus interval of
0.2 s. A similar balanced subset of data, as used in Chapter 3, was con-
sidered for each participant with the goal of reducing the duration of the

4This may be a strong assumption given that the reverberation time (RT) of the acoustic space
studied in this chapter is longer than 2 s (as shown later in Table 5.2). The initial (practical)
motivation of this “short” stimulus duration is to limit the duration of the experimental sessions.
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experimental sessions. In this way one evaluation of the whole dataset
(21 pairs) was obtained every two participants.

5.2.4 Reference procedure: Triadic comparisons

The method of triadic comparisons was used to obtain similarity judge-
ments between stimuli. Within a trial, three sounds (A, B, C) are pre-
sented and the participant is asked to indicate which of the three pos-
sible pairs (AB, AC, BC) contains the most similar sounds and which
one contains the least similar sounds. These judgements are counted and
summarised in a similarity matrix. The results of the similarity matrix
are further processed using the MDS algorithm, where the stimuli are
mapped onto a q-dimensional space. The Euclidean distances between
stimuli within the resulting space correspond to a unidimensional mea-
sure of similarity that is used as the reference to be compared with the
discrimination thresholds of the instrument-in-noise test.

5.2.5 Instrument-in-noise test: Simulations

The simulations consider the implementation of the instrument-in-noise
test in the same way as in the actual experimental sessions, but using
only the left-ear channel of the sounds. This limitation is imposed by
the use of a monaural auditory model and it assumes that the right-ear
signal would lead to a similar performance within the auditory model.

The simulation is then implemented as an adaptive 3-AFC experi-
ment, where discriminability thresholds expressed as SNRs in dB are
estimated. Each staircase simulation is stopped after 8 reversals. This
means that the threshold estimates are based on the median value of
4 reversals at which the noise level is adapted in steps of 1 dB. This
decision was made in order to reduce the time required to run the simu-
lations. Exploratory simulations were first run using a subset of 9 piano
pairs to test different tobs durations in a similar way as done in Chap-
ter 4. The tobs duration that lead to the best fit between the simulated
thresholds and the corresponding experimental thresholds was then used
to simulate the thresholds thressim using the whole dataset of pianos (21
piano pairs). These simulations were run using ICRA noises version B,
as used in the experimental sessions. A final set of simulations was run
to estimate simulated thresholds thressim,A using ICRA noises version A.
The aim of this last set of simulations was to quantify how much the
thressim values deviate from the thresholds estimated using ICRA noises
version A (as used in Chapters 3 and 4).
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Table 5.1: List of pianos and level information of their auralised sounds as used in the
listening experiments. The loudness of the sounds when presented 4 dB softer and 4 dB
harder are shown in parentheses.

Level [dB SPL] Loudness [sone]

ID / Year Manufacturer Lmax / Leq Smax / Savg

P1 / 1805 Gert Hecher 80.0 / 67.3 17.3 (13.6-22.0) / 8.8 (6.7-11.5)
P2 / 1819 Nannette Streicher 74.4 / 59.2 16.9 (13.3-21.4) / 6.7 (5.0- 8.8)
P3 / 1828 Conrad Graf 73.1 / 55.8 17.1 (13.4-21.6) / 6.9 (5.1- 9.1)
P4 / 1836 Johann B. Streicher 78.6 / 64.7 17.1 (13.4-21.8) / 8.6 (6.5-11.2)
P5 / 1851 Johann B. Streicher (English) 77.5 / 62.9 17.0 (13.4-21.5) / 7.1 (5.5- 9.2)
P6 / 1851 Johann B. Streicher (Viennese) 81.0 / 68.1 18.0 (14.1-22.8) / 8.6 (6.5-11.2)
P7 / 1873 Johann B. Streicher & Sohn 80.9 / 69.8 17.4 (13.6-22.1) / 10.1 (7.7-13.1)

Table 5.2: Reverberation time in octave bands derived from the selected BRIR (AIR
database, Aula Carolina, distance source-receiver of 4 m, azimuth of 90o).

Frequency [Hz]
125 250 500 1000 2000 4000 500/1000

T20 [s] 9.0 6.4 3.9 3.1 2.6 1.8 3.5
EDT [s] 6.5 5.8 3.4 2.6 1.8 1.0 3.0

5.2.6 Stimuli

The same set of recordings obtained from 19th-century Viennese pianos
of the previous chapters are used in this chapter but the sounds were
digitally auralised to account for the acoustics of a room. The sounds
are, therefore, recordings of one note (C#5, F0= 554 Hz) from seven
pianos. The BRIR used for the auralisations corresponds to an exist-
ing measurement of Aula Carolina, which is a former church located in
Aachen (Germany) that has a ground area of 570 m2 and a high ceiling.
The selected BRIR corresponds to an existing measurement done at a
distance of 4 m and azimuth of 90o with respect to the sound source
and it was retrieved from the AIR database5. The estimated early decay
time (EDT) is 3.0 s at mid frequencies (see Table 5.2). After aural-
ising the piano sounds using digital convolution, the duration of each
sound was set to 2.0 s, with the note onset occurring at a time stamp
of 0.1 s. Some information about the resulting piano sounds is shown in
Table 5.1. The sounds were ramped down using a 300-ms linear ramp.
The loudness of the sounds was adjusted to have a maximum value of
approximately 18 sone. For that purpose the short-term loudness from
the TVL model (Glasberg & Moore, 2002) was used. After the adjust-
ment, the individual piano sounds had a maximum level ranging from
73.1 to 81.0 dB SPL.

5AIR database (retrieved on 17/03/2017): http://www.iks.rwth-aachen.de/en/research/tools-
downloads/databases/aachen-impulse-response-database/. Last accessed on 18/07/2018.
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5.2.7 Apparatus
The experiments were conducted in a doubled-walled sound-proof booth.
The stimuli were presented via Sennheiser HD 265 Linear circumaural
headphones in a binaural reproduction. The participant’s responses were
collected on a computer using the software APEX (Francart et al., 2008)
and the APE Toolbox for MATLAB (De Man & Reiss, 2014) for the
instrument-in-noise and the triadic comparisons, respectively. The sim-
ulations were run using the AFC toolbox (Ewert, 2013) where it is possi-
ble to enable the use of an “artificial listener”. The artificial listener uses
the PEMO model with the same central processor as used in Chapter 4.

5.2.8 Participants
Twenty participants (3 females and 17 males) were recruited from the
JF Schouten subject database of the TU/e university. At the time of
testing, the participants were between 19 and 66 years old6 (average of
26) and they all had self-reported normal hearing. They provided their
informed consent before starting the experimental session and were paid
for their contribution.

The sample size of 20 participants was assessed a priori aiming at
testing the hypothesis that the data from the instrument-in-noise are
highly correlated (effect size or Pearson correlation rp of at least 0.6)
with the data from the triadic comparisons, with a power of 90%. This
analysis was done in the software G*Power (Faul et al., 2007, 2009),
requiring 17 participants to reach the desired effect size. By increasing
the number of participants to 20 the observable effect size is reduced
to 0.57.

5.2.9 Data collection: Experimental sessions
The experimental sessions were organised in a similar way as in the ex-
periment reported in Chapter 3. There were two one-hour sessions per
participant, including breaks. For the instrument-in-noise test, every
participant tested 10 or 11 piano pairs meaning that from every two par-
ticipants one threshold estimate of the whole dataset (21 piano pairs) was
obtained. The participants started the first session with the evaluation
of 17 randomly chosen triads, followed by 5 threshold estimations (stair-
case procedure). During the second session the participants evaluated

6With the exception of one participant aged 66 years, all participants were between 19 and 26
years old at the time of testing. Their hearing thresholds were not measured but we assumed a
normal hearing condition. The participant aged 66 year, however, may have had some hearing
loss but since all his staircases met at least one of the data exclusion criteria, his data were not
further used.
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the remaining 18 triads, followed by other 5 or 6 threshold estimations,
completing the total of 10 or 11 estimations.

5.2.10 Data collection: Simulations
Exploratory simulations: Subset of piano sounds

As done in Chapter 4, first a subset of 9 out of the 21 available piano pairs
was used for the simulations. This subset was used to find the duration
of the “observation” period tobs of the artificial listener that provides
the highest correlation value between the corresponding simulated and
experimental thresholds. The durations tobs of 0.16, 0.20, 0.25, 0.3, 0.5,
0.8, 1.0, 1.4, 2.0, and 2.2 s were tested. The selection of the subset was
based on the results presented in Figure 5.5 from where 9 pairs that are
well distributed along the similarity axis (the abscissa) were chosen. The
selected piano pairs were: pair 12, 15, 24, 27, 35, 36, 45, 47, and 67. The
pairs 47, 35, and 67 were taken from the most similar end of Figure 5.5.
The pairs 24, and 27 were taken from the least similar end of the scale.
The remaining pairs 12, 15, 36, and 45 were taken from the intermediate
similarity range. Then, the simulations for the remaining 13 piano pairs
were run using the obtained tobs period. Six threshold estimates were
obtained for each piano pair per test condition.

Simulations using the whole dataset of piano sounds

The simulation of discrimination thresholds thressim for the whole dataset
of piano sounds (21 piano pairs) was run using the optimal observation
period tobs obtained from the exploratory simulations. To further eval-
uate these simulations, in addition to the comparison of thressim values
with Euclidean distances dij exp, simulations of the triadic comparisons
using the PEMO model were run. The same simulation scheme for the
triadic comparisons as described in Chapter 4 was used for this purpose.

Simulation of triadic comparisons

During a trial, three reverberant piano sounds (A, B, C) were evalu-
ated. For the evaluation their internal representations considering the
optimal tobs duration were used. No noise is used because the experi-
mental triadic comparisons were conducted in silence. One CCV value
for each of the three possible pairs (AB, AC, and BC) was obtained and,
as source of internal variability, a Gaussian noise Nx(µ, σ

2) with µ = 0

and σ = 10.1 MU7 is used to obtain ̂CCVAB, ̂CCVAC , and ̂CCVBC (see

Equation 4.8 on page 70). The pair having the maximum ĈCV value

7Refer to Appendix D (Section D.3.3) for details about the internal noise configuration.
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Figure 5.5: Discrimination thresholds for the reverberant piano sounds obtained from the
instrument-in-noise tests. The thresholds (green triangles) were assessed taking the median
across participants. The piano pairs are shown along the abscissa and are ordered from
higher to lower SNR thresholds. The error bars represent interquartile ranges.

was indicated by the artificial listener as the most similar pair. The pair

having the minimum ĈCV value is indicated as the least similar pair
and, therefore, the remaining pair was indicated as having intermediate
similarity. To simulate the triadic comparisons of 20 participants, the 35
triads were evaluated 20 times by the artificial listener.

Simulations using ICRA noises version A

The simulations using ICRA noises version A were run for the whole
dataset of pianos but using only the duration tobs with the best fit to the
experimental data. This choice allows a direct analysis of the spectral
differences between the two types of ICRA noises, given that they have
similar temporal characteristics and that the artificial listener has access
to information during the same observation period tobs.

5.3 Results

5.3.1 Instrument-in-noise test

The discrimination thresholds of the instrument-in-noise experiment are
shown in Figure 5.5. The pooled thresholds were assessed by taking the
median of all individual threshold estimates per piano pair. The thresh-
olds range between thresexp,max= 24.25 dB (pair 47) and thresexp,min=
−4.0 dB (pair 24), having a dynamic range DRexp= 28.25 dB. The esti-
mates have a large between-subject variability with a length of the IQRs
from 16.6 dB (pair 46) down to 5.0 dB (pair 24) with a median value
of 11.0 dB. The results are based on 189 staircase threshold estimates.
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Table 5.3: The similarity matrix Sij derived from the responses of 20 participants (S01-
S20) is shown in the upper right triangle. The maximum possible score is 200. The lower
left triangle corresponds to the Euclidean distances between stimuli in the resulting four-
dimensional space. A high score in the similarity matrix should correspond to a short
Euclidean distance. The lowest and highest scores were obtained for the pairs 24 (Sij = 28)
and 47 (Sij = 183). The corresponding distances were 0.93 and 0.19, respectively.

Piano

Piano P1 P2 P3 P4 P5 P6 P7
P1 - 58 78 120 89 110 126
P2 0.85 - 169 28 88 54 48
P3 0.78 0.21 - 78 115 67 67
P4 0.64 0.93 0.79 - 124 119 183
P5 0.76 0.78 0.65 0.61 - 117 118
P6 0.68 0.85 0.84 0.65 0.65 - 144
P7 0.61 0.89 0.79 0.19 0.65 0.50 -

During the data collection 210 staircases were obtained. Twenty-one of
the 210 threshold estimates were excluded.

Exclusion criteria

Twenty-one staircases were excluded from the data analysis after the
data collection. Seven staircases were removed because the participants
reached a maximum SNR of 50 dB (“minimum” noise level). This value
was set in advance as floor condition. The remaining 14 thresholds were
removed after a check of consistency of the staircases. For this the stan-
dard deviation of the reversals was assessed. Thresholds estimations
where the deviation of the reversals was larger than 4 dB were removed.
It should be noted that this criterion is less strict than the criterion used
in Chapter 3, which was based on a standard deviation of 3 dB. If this cri-
terion would have been adopted, 24 other staircases should be excluded
(total of 45 exclusions, representing 21% of the data). We decided to
keep the criterion of 4 dB to preserve more experimental data points8.

5.3.2 Triadic comparisons
Construction of the similarity matrix

The results of all participants were pulled out to construct the similarity
matrix Sij shown in the upper right triangle of Table 5.3. The matrix
was constructed attributing the same similarity counts as in Chapter 3.

Multidimensional scaling

The experimental data were further processed by first converting the sim-
ilarity scores Sij into counts of dissimilarity Dij (see Equation 3.1). The

8Although not shown here, the overall simulated thresholds do not change significantly by adopt-
ing either exclusion criterion (3 or 4 dB). The simulated thresholds thressim,3 dB and thressim,4 dB

have correlations of rp(19) = 0.97, p < 0.001 and rs(19) = 0.93, p < 0.001.
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Figure 5.6: Perceptual space obtained with the non-metric MDS algorithm. The dimensions
1 and 2 are shown in panel (a) and the dimensions 3 and 4 in panel (b). This space suggests
that the reverberant piano sounds (note C#5) can be grouped in five areas: pianos P2+P3,
P4+P7, P1, P5, and P6. Although from the representation of dimensions 1 and 2, piano P6
seems to be similar to P4 and P7, they are far apart along dimension 3 (panel (b)). The
stress for the space with dimensions 1 and 2 is poor (St = 29.2%). By adding dimension 3
the stress decreases to fair (St = 12.7%) and with dimension 4 to nearly good (St = 6.9%).
The relative distribution of the pianos in the space is not changed in the four dimensional
space. The grey bubbles in panel (a) give an indication of the participant’s variability. Note
that the axes of the MDS spaces are not to scale.

dissimilarity matrix was then used as input for the non-metric MDS al-
gorithm available in the MATLAB Statistics toolbox. An a priori number
of q = 4 dimensions was used to obtain the perceptual space.

The resulting four-dimensional space has a stress St of 6.9% (close to
“good”), with cumulative stresses of 29.2% for the first two dimensions
(“poor”) and 12.7% for the first three dimensions (close to “fair”). The
Euclidean distances of the fitted four-dimensional space are shown in the
lower left triangle of Table 5.3. The first two dimensions (St = 29.2%) of
the fitted perceptual space are shown in panel (a) of Figure 5.6. Although
this reduced representation provides a poor fit (St > 20%), with the
exception of piano P6, the overall distribution of the piano sounds in the
four-dimensional space is not changed. The relative position of piano P6
gets farther apart from the pianos 47 along dimension 3, as shown in
panel (b) of the figure, where the distance d46 is 0.64 (red dashed line)
and d67 is 0.47 (brown dot-dashed line).

The results shown in Figure 5.6 suggest that the reverberant piano
sounds can be classified into five distinct groups: pianos P2+P3, P4+P7,
P1, P5, and P6. We labelled piano P6 as having intermediate similarity
with P4 and P7 despite their overlapped position in the two-dimensional
representation of panel (a). This is due to the relative change of the
location of P6 when adding the third dimension of the space.

Page 95



5 Measuring and simulating the similarity between sounds in a reverberant environment

47 35 67 46 15 45 23 36 25 56 57 12 34 13 14 17 16 26 37 27 24

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
u

c
lid

e
a

n
 d

is
ta

n
c
e

Piano pair

Figure 5.7: Euclidean distances taken from the four-dimensional perceptual space. These
distances are also shown in the lower left triangle of Table 5.3. The piano pairs are sorted
in the same way as in Figure 5.5. The error bars indicate the minimum and maximum
distances between piano pairs across the 5 MDS spaces assessed with data subsets every 4
participants.

Table 5.4: Results of the simulations using a subset of 9 (reverberant) piano pairs and
different tobs durations. The minimum and maximum simulated thresholds are indicated
together with their dynamic range (DR=thresmax−thresmin). The correlation values of the
simulations with the corresponding experimental data (taken from Figure 5.5) are given.
The simulated thresholds of pair 47 were excluded in the assessment of rp. The SNR range
of the experimental data is indicated in column Exp.

“Observation” duration tobs [s]
Exp. 0.16 0.2 0.25 0.3 0.5 0.8 1.0 1.4 2.0 2.2

thresmax [dB] 24.25 20.75 15.5 13.5 5.25 4.5 0.75 2.75 -0.5 -2.75 -5.5
thresmin [dB] -4.0 -4.0 -5.75 -5.5 -5.5 -5.25 -6.5 -7.5 -7.0 -8.5 -9.75
DR [dB] 28.25 24.75 21.25 19.0 10.75 9.75 7.25 10.25 6.5 5.75 4.25
rp(6) – 0.73* 0.88* 0.74* 0.76* 0.60** 0.42 0.25 0.19 0.25 0.28
rs(7) – 0.63** 0.80* 0.57 0.75* 0.76* 0.36 0.19 -0.02 0.24 0.37

(*) Significant correlation, p < 0.05. (**) Correlations that approach significance, p < 0.10.

Between-subject variability

The non-metric MDS algorithm does not provide information about the
variability across participants in the resulting fitted space. To inspect
individual differences the same approach as described in Chapter 3 was
adopted. Five dissimilarity matrices were generated by pulling out the
experimental data in groups of 4 participants (S01-S04, S05-S08, S09-
S12, S13-S16, and S17-S20). The MDS algorithm was applied to obtain
5 four-dimensional spaces. For each piano sound, the Euclidean distances
between these 5 new coordinates and the coordinate in the global space
were assessed. Half of the difference between the minimum and the
maximum distance is used as radius of the corresponding “bubble” in
Figure 5.6. The diameter of the bubbles has a median of 0.14, ranging
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Figure 5.8: Discrimination thresholds using the whole dataset of reverberant piano sounds
(21 piano pairs). The median simulated thresholds thressim (for tobs = 0.20 s) are indicated
by the magenta circle markers. The green triangle markers correspond to the experimental
thresholds thresexp (taken from Figure 5.5). The thresholds are shown together with their
IQRs. The piano pairs along the abscissa are ordered from higher to lower SNR thresholds
based on the experimental data. The thresholds thresexp and thressim are significantly
correlated with rp(18) = 0.58, p < 0.01 and rs(19) = 0.61, p < 0.001.

from 0.06 (piano P3) to 0.22 (piano P5). This means that piano P3 was
more consistently judged across participants while piano P5 was scored
more variable. The obtained 5 four-dimensional spaces were also used
to assess the minimum and maximum distances between piano pairs and
they are shown as error bars in Figure 5.7. Those deviations ranged
between 0.03 (pair 26) and 0.30 (pair 16), with a median length of 0.18.

5.3.3 Instrument-in-noise test: Exploratory simulations
The simulation results of each piano pair are compared with the cor-
responding experimental thresholds taken from Figure 5.5. The results
for the selection of 9 piano pairs are shown in Table 5.4. In the table,
information about the minimum and maximum estimated thresholds is
shown. Their difference is indicated as DR in dB. As observed in the pre-
vious chapter, the simulations that used whole-duration sounds delivered
thresholds that are too low with respect to the experimental data. This
is visible in the last column of the table, where the results using 2.2-s long
piano sounds (whole duration of the sounds plus 0.2 s of silence) delivered
thresholds thressim between thresmax= −5.5 dB and thresmin= −9.75 dB,
with a DR of 4.25 dB. In order to reduce the information available to
the “artificial listener”, shorter sections of the piano sounds were fed into
the auditory model. The test “observation” durations tobs ranged from
0.16 to 2.2 s. In general, shorter tobs values lead to higher DRs. The only
exception was found for tobs = 1.0 s that had a higher DR of 10.25 dB
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Figure 5.9: Scatter plots and regression analysis between experimental and simulated thresh-
olds of the instrument-in-noise test. The linear regression of panel (a) is related to the
Pearson correlation rp, while the regression in panel (b) to the Spearman (rank-order) cor-
relation rs. The obtained correlation values were rp(18) = 0.58, p < 0.01 and rs(19) = 0.61,
p < 0.001.

in comparison to the neighbouring tobs durations. The best fit between
experimental and simulated data was found for tobs = 0.20 s. For this du-
ration, the thresholds have a Pearson correlation rp(6) = 0.88, p = 0.01,
and a Spearman (rank-order) correlation rs(7) = 0.80, p < 0.01. This
“observation” duration was further used to simulate the discrimination
thresholds of the remaining 13 piano pairs.

5.3.4 Simulations using the whole dataset of piano sounds
The discrimination thresholds using the whole dataset of piano sounds
(21 pairs) were simulated using the first 0.20 s of waveforms (i.e., initial
0.10 s of the piano sounds), based on the results of the exploratory sim-
ulations. The median thresholds thressim are indicated by the magenta
markers of Figure 5.8. The thresholds are shown together with their
IQRs. The simulations at this duration (tobs = 0.20 s) are significantly
correlated with the experimental data and a lower but comparable DRsim

of 21.25 dB is obtained (DRsim<DRexp= 28.25 dB). The thressim values
range between thressim,max= 15.5 dB (pair 47) and thressim,min= −5.75 dB
(pair 27). The Spearman (rank-order) correlation between the thresh-
olds thressim and thresexp is significant with rs(19) = 0.61, p < 0.001.
Although a higher Pearson correlation rp(19) = 0.80, p < 0.001 was
found, one piano pair (pair 47) was excluded from the regression anal-
ysis due to the poor scattering of the thresexp values for SNRs above
15 dB9. The Pearson correlation after this exclusion is rp(18) = 0.58,
p < 0.01. The scatter plot of the data together with the corresponding
regression analyses are shown in Figure 5.9.

9The poor scattering of the data shown in Figure 5.9(a) is also related to the violation of the
normality assumption of both, experimental and simulated thresholds.
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Table 5.5: Similarity matrix Sij and Euclidean distances derived from the artificial listener
using the reverberant piano sounds. The similarity matrix is shown in the upper right
triangle and the Euclidean distances between pianos in the resulting four-dimensional space
are shown in the lower left triangle. To obtain these results, each triad was evaluated 20.
This means that the maximum possible score is 200. The lowest score was obtained for pair
27 (Sij = 21) and the highest score was obtained for pairs 13 (Sij = 171) and 23 (Sij = 170).
The corresponding distances were 0.95 (pair 27) and 0.35 (pairs 13 and 23).

Piano

Piano P1 P2 P3 P4 P5 P6 P7
P1 - 124 171 80 87 132 79
P2 0.60 - 170 93 87 94 21
P3 0.35 0.35 - 98 136 110 56
P4 0.76 0.71 0.70 - 66 70 133
P5 0.74 0.74 0.55 0.81 - 77 94
P6 0.57 0.70 0.66 0.81 0.78 - 122
P7 0.77 0.95 0.83 0.55 0.71 0.60 -

Simulation of triadic comparisons

The results of the triadic comparisons using the artificial listener are
shown in Table 5.5. In the table, the upper right triangle corresponds
to the similarity matrix. A four-dimensional space was obtained using
the MDS algorithm. The Euclidean distances between pairs in the fitted
space are shown in the lower left triangle of Table 5.5. The obtained
space has an excellent goodness of fit (stress St = 2.6%) with respect to
the similarity matrix. Its first three dimensions (fair stress St = 13.2%)
are shown in Figure 5.10. The Euclidean distances dij sim have moderate
to weak correlation with rp(19) = 0.45, p = 0.04, and rs(19) = 0.13,
p = 0.58 with respect to the distances dij exp. If stress is used as a
measure of correspondence between dij exp and dij sim a value St exp-sim of
25.5% is obtained. Although this value denotes a poor correspondence,
it is comparable to the stress St exp-sim value (St exp-sim = 25.2%) found
for anechoic pianos in Chapter 4. By correlating the dimensions between
the “experimental” and “simulated” MDS spaces, the first, second, third,
and fourth dimensions have values of rs(5) = 0.96, 0.29, 0.54, and 0.36,
respectively. This means that “dimension 1” is the most similarly judged
dimension between participants and the artificial listener, followed by
the third dimension. The second and fourth dimensions are weighted
differently in both MDS spaces.

Simulations using ICRA noises, version A

The discrimination thresholds thressim,A using the whole dataset of pi-
ano sounds were simulated using the obtained tobs of 0.20 s. The median
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Figure 5.10: Perceptual space obtained from simulated triadic comparisons and with MDS.
The first three (of four) dimensions are shown. The grey bubbles give an indication of
the “participant’s” variability: the bigger the bubble the higher the variability across par-
ticipants. For ease of visualisation, the location of each piano sound is projected onto
dimensions 1-2 (bottom plane) and 2-3 (left plane). Note that the axes of this MDS space
are not to scale.

thresholds thressim,A are indicated by the red square markers of Fig-
ure 5.11. The thresholds are shown together with their IQRs. For ease
of comparison, the simulated thresholds thressim of Figure 5.8, which
used version B of the ICRA noise algorithm, are also indicated in Figure
5.11 using magenta circle markers. The thressim,A values range between
thressim,A,max= 17.0 dB (pair 47) and thressim,A,min= −2.5 dB (pair 26).
The Spearman (rank-order) correlation between thressim,A and thressim

is significant with rs(19) = 0.56, p < 0.001. When excluding one piano
pair (pair 47, for similar reasons as earlier in this chapter), a significant
Pearson correlation of rp(18) = 0.61, p < 0.01 is obtained. The scatter
plots between thressim and thressim,A are shown in Figure 5.12.

5.3.5 Euclidean distances and instrument-in-noise thresholds

The Euclidean distances obtained from the experimental triadic com-
parisons dij exp (from Figure 5.7 and also in the lower left triangle of
Table 5.3) and the experimental instrument-in-noise thresholds thresexp

(from Figure 5.8) have correlation values of rp(18) = −0.49, p = 0.03,
and rs(19) = −0.65, p = 0.001. The corresponding regression anal-
yses and scatter plots are shown in Figure 5.13. In turn, the dij exp

distances and the simulated thresholds thressim have correlation values
of rp(18) = −0.26, p = 0.27, and rs(19) = −0.49, p = 0.03. The
correlation values between Euclidean distances obtained from simulated
triadic comparisons dij sim and thresexp thresholds are rp(19) = −0.34,
p = 0.14, and rs(19) = −0.27, p = 0.23, and with thressim thresholds
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Figure 5.11: Simulated thresholds using the whole dataset of reverberant piano sounds
(tobs = 0.20 s) and different types of ICRA noise. The median simulated thresholds thressim

using ICRA noises version B are indicated by the magenta circle markers (same as in Figure
5.8). The red square markers correspond to simulated thresholds thressim,A obtained using
ICRA noises version A. The thresholds are shown together with their IQRs. The piano
pairs along the abscissa are ordered from higher to lower SNR thresholds based on thressim.
The thressim and thressim,A are significantly correlated with rp(18) = 0.61, p < 0.01 and
rs(19) = 0.59, p < 0.001.

are rp(19) = −0.23, p = 0.31, and rs(19) = −0.31, p = 0.17. Finally,
we report the correlation between dij sim distances and thres sim,A thresh-
olds obtained using ICRA noises version A. Their correlation values are
rp(19) = −0.14, p = 0.53, and rs(19) = −0.11, p = 0.65. These values
show that dij sim distances and thres sim,A thresholds are not correlated.

All correlation values reported in this chapter are summarised in the
schema of Figure 5.14.

5.4 Discussion

5.4.1 Comparison between experimental methods
A high perceptual similarity is equivalent to a high SNR threshold and
a short Euclidean distance. Scatter plots between the median thresholds
thresexp from the instrument-in-noise test (taken from Figure 5.5) and
the Euclidean distances from the triadic comparisons (taken from Fig-
ure 5.7) were shown in Figure 5.13 together with corresponding linear re-
gression analyses. The thresholds thresexp were found to be significantly
correlated with the Euclidean distances (rp(18) = −0.49, p = 0.03, and
rs(19) = −0.65, p = 0.001). The median thresholds thresexp have an
IQR of 4.7 dB (thres25−75= 1.9− 6.6 dB). The Euclidean distances have
an IQR of 0.17 (dij,25−75 = 0.63− 0.80).

Further inspection of the data shown in Figures 5.5 and 5.7 reveals
that both methods share 2 of the 3 most similar pairs (pairs 47 and
36). The methods also coincide in the judgement of 3 out of the 5
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Figure 5.12: Scatter plots and regression analysis between simulated thresholds using dif-
ferent types of ICRA noise. The linear regression of panel (a) is related to the Pearson
correlation rp, while the regression in panel (b) to the Spearman (rank-order) correlation
rs. One pair of points was removed from the analysis to obtain an rp(18) = 0.61, p < 0.01,
due to the lack of thressim values above 6 dB. A Spearman correlation of rs(19) = 0.59,
p < 0.001 is obtained.
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Figure 5.13: Scatter plots and regression analysis between the results of the instrument-in-
noise (SNR thresholds, thresexp) and triadic comparisons tests (Euclidean distances). The
linear regression of panel (a) is related to the Pearson correlation rp, while the regression
in panel (b) to the Spearman (rank-order) correlation rs. One pair of points was removed
from the analysis to obtain an rp(18) = −0.49, p = 0.03, due to the lack of thresexp values
above 15 dB. A Spearman correlation of rs(19) = −0.65, p = 0.001.

Figure 5.14: Summary of correlation values between instrument-in-noise thresholds and
Euclidean distances. All possible combinations among thresexp, thressim, dij exp, and dij exp

are indicated in this schema. The correlation values of the simulated thresholds using the
ICRA noise algorithm version A with thressim and dij sim are also indicated.
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most different pairs (thresexp< 1.9 dB and distance > 0.80): 24, 26,
27. There are, however, some pairs for which the methods provide
different similarity measures. If the IQR of the thresholds and dis-
tances are used to delimit three similarity regions: high (dij,25 ≤ 0.63,
thresexp,75≥ 6.6 dB), medium (dij, thresexp within their IQRs), and low
similarity (dij,75 ≥ 0.80, thresexp,25≤ 1.9 dB), five piano pairs are judged
differently by the two methods. These pairs are:

• Pair 15: the distance d15 = 0.76 indicate that pianos P1 and P5 are
more distinct than the threshold thresexp,15 indicates.

• Pair 36: the distance d36 = 0.84 indicate that pianos P3 and P6 are
more distinct than the threshold thresexp,36 indicates.

• Pair 12: the distance d12 = 0.85 indicate that pianos P1 and P2 are
more distinct than the threshold thresexp,12 indicates.

• Pair 23: the distance d23 = 0.21 indicate that pianos P2 and P3 are
more similar than the threshold thresexp,23 indicates.

• Pair 16: the distance d16 = 0.68 indicate that pianos P1 and P6 are
more distinct than the threshold thresexp,16 indicates.

The higher number of discrepancies in the judgement of both meth-
ods may be related to the apparent increase of difficulty of the task with
respect to the comparison between anechoic pianos of Chapter 3. Evi-
dence for this are: (1) the lower stress values of the fitted MDS space
with respect to the experimental similarity matrix St rev = 6.9% in con-
trast to St ane = 3.1% (from Chapter 3), and the poorer cumulated stress
for the first two and three dimensions (St rev = 29.2 and 12.7% compared
with St ane = 21.9 and 7.5%, respectively) (2) the larger number of ex-
cluded staircases in case the same criterion as in Chapter 3 would have
been adopted in the current chapter. Despite the discrepant judgements
and the apparent increase in the difficulty of the tasks, the rank-order
correlation between methods (rs(19) = −0.65, p = 0.001) is statistically
not different from the value obtained in Chapter 3 (rs(19) = −0.64,
p = 0.001, see panel (b) of Figure 3.9).

5.4.2 Comparison between experimental and simulated
thresholds

The simulated thresholds thressim of the instrument-in-noise method
are significantly correlated with the experimental thresholds thresexp
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Figure 5.15: Weighting of information in difference (internal) representations (∆Rx · Tp)
for whole-duration sounds (grey circle markers) and considering a shorter duration tobs of
0.20 s (maroon square markers). The weighting Im/Itot of each audio frequency channel is
shown in panel (a). The weighting Ik/Itot of each modulation frequency channel is shown
in panel (b). The values per band are expressed as percentage with respect to the total
information Itot of each representation. The points along the ERB scale that correspond to
F0= 554 Hz and its five first harmonics are indicated by the green labels on the top axis.

(rp(18) = 0.58, p < 0.01 and rs(19) = 0.61, p < 0.001) when only
the initial part of the waveforms is used. A duration tobs = 0.20 s pro-
vided the best fit between thressim and thresexp. This is in line with the
simulation results of Chapter 4, where a tobs of 0.25 s was used. Scatter
plots between the median thressim and thresexp thresholds (taken from
Figure 5.8) are shown in Figure 5.9 together with corresponding linear
regression analyses. The discussion in this subsection is based on an
analysis of the information that is integrated by the artificial listener to
produce the obtained thressim values. This analysis is, in turn, based on
the processing of information in the template-weighted piano represen-
tations (∆Rx ·T ) per audio (Im/Itot) and modulation frequency channel
(Ik/Itot) given by Equations 4.6 and 4.7, as used in the previous chap-
ter. The contribution of each frequency band (Im/Itot or Ik/Itot) was
assessed using the total duration of the piano-plus-noise sounds (2.2 s)
and using only the first 0.20 s of the waveforms. In this analysis, all
21 pairs and their corresponding ICRA noises were used. The noises
were set to the level indicated by the corresponding simulated threshold
thressim. The information-weighted values together with their IQRs are
shown in Figure 5.15. The weighting Im/Itot of each audio frequency
channel is shown in panel (a) of the figure. The weighting Ik/Itot of
each modulation frequency channel is shown in panel (b) of the figure.
The band weightings for both tobs durations are very similar overall with
mean differences ∆Im/Itot of 0.0% (IQR= 1.08%) and ∆Ik/Itot of 0.0%
(IQR= 1.64%).

For the information in the audio frequency channels Im/Itot (panel (a)
of Figure 5.15), most of the information is comprised in bands around
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the first five harmonics (15.4 < fc < 25.4 ERBN) with 80.6% of the
information for representations with tobs = 0.20 s and 74.5% for repre-
sentations with tobs = 2.20 s. At the band centred at the F0 of the piano
note (fc = 11.4 ERBN) the representations with tobs = 2.20 s provide a
slightly higher (but still low) weighting of 4.9% in comparison with the
2.7% given by the representations with tobs = 0.20 s. For both durations
the weighting of information at the F0 band is lower than the weight-
ing found for the anechoic piano sounds (see panel (a) of Figure 4.10,
maroon markers) that had a cumulative weighting of about 10% in the
bands centred at 11 and 12 ERBN .

For the information in the modulation frequency channels Ik/Itot

(panel (b) of Figure 5.15), the filters Nr. 2 and 6−9 have an individual
weighting of 10% or more, comprising 73.1% and 70.4% of the informa-
tion in the representations that use a tobs of 0.2 and 2.2 s, respectively. In
comparison with the weighting of information for anechoic piano sounds
(see panel (b) of Figure 4.10, maroon markers), the second modulation
filter (mfc = 5 Hz) has a lower value of 11.3% (tobs = 0.2 s) which is
7.3% less than the value of 18.6% in the anechoic piano representations
(tobs = 0.25 s). For higher modulation filters, especially for bands 6
(mfc = 46.3 Hz) to 9 (mfc = 214.3 Hz), the weighting of information has
become more prominent, reaching a values 17.7 and 18.8% at bands 7
(mfc = 77.2 Hz) and 8 (mfc = 128.6 Hz), respectively. These values are
about 3% higher than the values for the anechoic piano representations.
The changes in the weighted information per modulation filter may be
attributed to the reverberation applied to the piano sounds, that intro-
duces more variations or cues in the colour of the piano sounds. This
reduces the relative importance of the envelope information, which is
conveyed mainly in the first three modulation filters.

The (overall) similar weighting for the reverberant sounds using either
observation period tobs (shorter or longer duration) may lead us to the
same hypothesis of Chapter 4 about the prominent role of the internal
noise in the success of the simulated thressim values. We have confirmed
this hypothesis and, although the results are not shown here, the analysis
presented in Section 4.6.2 is also applicable for these reverberant sounds.

5.4.3 Comparison between simulated thresholds for different
ICRA noise versions

The simulated thresholds thressim of the instrument-in-noise method us-
ing ICRA noises version B are significantly correlated with the thresh-
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Figure 5.16: Difference ∆SNR between simulated thresholds thressim and thressim,A (see
Figure 5.11), that were obtained using ICRA noises version B (as in this chapter) and A,
respectively. A ∆SNR value below 0 dB indicates that the SNR threshold thressim,A is
higher than the thressim for the corresponding piano pair. The shadowed area indicates the
IQR of the ∆SNR values and the median of −3.25 dB is indicated by the horizontal (grey)
dashed line. The ∆SNR values for pairs 34 and 56 are further analysed in the text.

olds thressim,A obtained using ICRA noises version A (rp(18) = 0.61,
p < 0.01 and rs(19) = 0.56, p < 0.001). Both sets of thresholds were
obtained using representations limited to tobs = 0.2 s. The simulation re-
sults were shown in Figure 5.11 and their corresponding regression anal-
yses in Figure 5.12. The difference ∆SNR between simulated thresholds
(thressim−thressim,A) is shown in Figure 5.16. The median difference
∆SNR across all piano pairs is −3.25 dB (indicated by the horizontal
grey dashed-dotted line in the figure) with an IQR between −4.25 dB
and −0.8 dB. This means that on average, ICRA noises version A pro-
duce discrimination thresholds (thressim,A) that have a higher SNR (i.e.,
a lower noise level) than the thresholds (thressim) obtained using ICRA
noises version B. Based on the IQR of ∆SNR values (shadowed area in
Figure 5.16), we may classify the piano pairs into three groups:

1) Pairs with SNR thresholds that are above percentile 75 (thressim −
thressim,A > −0.8 dB): pairs 13, 24, 34, 35, and 45.

2) Pairs with SNR thresholds that are within the IQR (−4.25 ≤ thressim

− thressim,A ≤ −0.8 dB): pairs 12, 15, 16, 17, 23, 25, 26, 27, 36, 46,
47, and 57.

3) Pairs with SNR thresholds that are below percentile 25 (thressim −
thressim,A < −4.25 dB):pairs 14, 37, 56, and 67.

To further evaluate the ∆SNR differences we take the two piano pairs
that have the maximum and minimum ∆SNR value: pair 34 (∆SNR =
3 dB, from “Group 1”) and pair 56 (∆SNR = −8.5 dB, from “Group 3”).
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(a) Piano P4 and noise N34 (t=0−0.2 [s]), SNR = 0 dB
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(b) Piano P4 and noise N34 (t=0−0.2 [s])
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Figure 5.17: Band levels for piano P4 (blue solid line) and paired noise N34 using ICRA
noises version A (grey dashed line) and B (maroon solid line) at an SNR of 0 dB (panel (a))
and at their simulated threshold (panel(b)). In the bottom panels the difference in band
levels between ICRA noises version A and B are shown. The red and green arrows in panels
(a) and (c) indicate the frequencies 11.4 ERBN and 21.9 ERBN , respectively, where the
absolute difference in band levels is greater than 3 dB. As shown in panels (b) and (d), the
band level of the ICRA noises at 11.4 ERBN are approximately the same when the noises A
and B are plotted at their simulated thresholds thressim,A of 1.25 dB and thressim of 4.25 dB.
This is indicated by a ∆ Band level of 0 dB in panel (d), indicated by the red arrow.

For better understanding the subsequent analysis it is important to
bear in mind the effect of using either ICRA algorithm on the noise band
levels with respect to the band levels of the corresponding piano sounds.
As pointed out earlier in this chapter, the ICRA noises used to obtain
thressim (version B) and thressim,A (version A) have the same overall
level with respect to the corresponding piano sounds, but the ICRA
noises version A have a spectral tilt with increasing band levels towards
higher frequencies. This is a relative increase in level that reaches a level
difference of 10 dB in the highest auditory band with respect to the F0-
centred filter. This means for the two noises that for a given ∆SNR,
there should be one spectral band for which, after compensating for the
threshold difference, the band levels of the two noises are equal.

For the analysis of pair 34, band levels of three signals –piano P410

and paired ICRA noise N34 in versions A and B– are shown in panel
(a) of Figure 5.17. In panel (c) the difference in band levels ∆BL be-
tween the two noise versions is shown. The red and green arrows indi-
cate points in frequency where the absolute difference ‖∆BL‖ is greater
than 3 dB. Hence, those differences may have produced the non-zero

10The choice of using pianos P4 and P6 in the analyses shown in Figures 5.17 and 5.18 is based on
the fact that the leading criterion used by the artificial listener for the selected pairs 34 and 56 is,
in both cases, criterion 2 (i.e., using the template Tp,r derived from the reference piano). In these
pairs the reference pianos are P4 and P6, respectively.
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(a) Piano P6 and noise N56 (t=0−0.2 [s]), SNR = 0 dB
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(b) Piano P6 and noise N56 (t=0−0.2 [s])
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Figure 5.18: Band levels for piano P6 (blue solid line) and paired noise N56 using ICRA
noises version A (grey dashed line) and B (maroon solid line) at an SNR of 0 dB (panel (a))
and at their simulated threshold (panel(b)). In the bottom panels the difference in band
levels between ICRA noises version A and B are shown. The green and red arrows in panels
(a) and (c) indicate the frequencies 11.4 ERBN and 21.9 ERBN , respectively, where the
absolute difference in band levels is greater than 3 dB. As shown in panels (b) and (d), the
band level of the ICRA noises at 21.9 ERBN are approximately the same when the noises A
and B are plotted at their simulated thresholds thressim,A of 5 dB and thressim of −3.5 dB.

∆SNR indicated by the green dashed rectangles in Figure 5.16. To fur-
ther investigate which frequency region does actually produce the differ-
ence between thressim and thressim,A values, the band levels for the same
sounds are replotted in panel (b) of Figure 5.17, but using the SNRs at
threshold for the paired noises (thressim,A= 1.25 dB for version A and
thressim= 4.25 dB for version B). The difference indicated by the red
arrow in panel (c) where ∆BL is 3.0 dB at 11.4 ERBN (higher band
level for noise version B) seems to have been equated for the noises at
threshold shown in panel (d) that have a ∆BL of 0 dB. A similar anal-
ysis can be applied to pair 56 (piano P6, noise N56 versions A and B).
The analysis is shown in Figure 5.18. The difference ∆BL= −7.7 dB at
21.9 ERBN (higher band level for noise version A) indicated by the red
arrow in panel (c) is reduced to ∆BL= 0.78 dB ≈ 0 dB when the level of
the noises at the simulated thresholds is used (panel (d), thressim,A= 5 dB
for version A and thressim= −3.5 dB for version B).

The previous analyses provided evidence that for pair 34 (from “Group
1”) the most relevant audio frequencies used by the artificial listener
lie around 11.4 ERBN (near the F0 of the note) and for pair 56 (from
“Group 3”) around 22.9 ERBN (near the partial at f = 4·F0 = 2216 Hz).
All other piano pairs have ∆SNRs between the values for pairs 34 and
56 (see Figure 5.16). The (ICRA) noise band with equal level at the
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corresponding thresholds thressim,A and thressim will therefore be in the
spectral range between harmonics F0 and 4·F0 of the C#5 note.

If the efficiency of the two noises is to be evaluated in terms of the
amount of noise needed to mask the properties of the piano sounds, then
ICRA noises version A perform “better” because for the same overall
(broad-band) noise level the discrimination thresholds have on average
higher SNRs (lower noise level) compared to ICRA noises version B:
∆SNR = −3.25 dB (IQR between −4.25 and −0.75 dB). This “better
performance” is, however, at the expense of a gradual level mismatch
towards higher frequencies of the noises with respect to the sounds to be
masked. If the efficiency of the noises is to be evaluated in terms of how
well do the spectro-temporal properties of the noise follow the properties
of the sounds to be masked then ICRA noises version B perform better.

5.5 Conclusion

In this chapter the instrument-in-noise method of Chapters 3 and 4 has
been applied to the same dataset of pianos to which the effect of re-
verberation was added by digital convolution. Experimental thresholds
thresexp were collected using a new version of the ICRA noise algorithm
and compared with Euclidean distances obtained from experimental tri-
adic comparisons dij exp. The results of both methods had a similar
correlation compared to the values reported in Chapter 3, with a Pear-
son correlation rp(18) = −0.49, p = 0.03 and a Spearman correlation
rs(19) = −0.65, p = 0.001. Using the same simulation scheme as in
Chapter 4, estimates thressim of the instrument-in-noise method were ob-
tained using the PEMO model. In order to bring the thressim thresholds
to the range of thresexp, the observation period of the artificial listener
had to be reduced to tobs = 0.20 s. The obtained thressim values had
correlations of rp(18) = 0.58, p < 0.01, and rs(19) = 0.61, p < 0.001.

An information-based analysis of the internal representations obtained
from the PEMO model showed that the effect of a 3-s long reverberation
on our set of piano notes (C#5) increased the importance of the au-
dio frequency bands (Im/Itot) comprising the first five harmonics above
the F0 (between 15.4 and 25.4 ERBN) and decreased the importance
of the band centred at the F0 of the note with respect to the weight-
ings found for the anechoic pianos in Chapter 4. In terms of the in-
formation conveyed by the modulation filters (Ik/Itot), the filters 6 − 9
(mfc = 46.3−128.6 Hz) increased their relative weighting while the lower
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modulation filters (mfc ≤ 10 Hz) decreased their importance.

Further simulations were used to address the following aspects: (1) the
estimation of discrimination thresholds thressim,A using ICRA noises ver-
sion A, and (2) the simulation of the triadic comparison task. The es-
timated thressim,A and thressim values had correlations rp(18) = 0.61,
p < 0.01, and rs(19) = 0.56, p < 0.001. For the first aspect, an analysis
based on the difference between thresholds indicated that the decisions
of the artificial listener are importantly influenced by the information
contained in the spectral region between F0 and 4 · F0. For the second
aspect, we had a limited success with the simulation of the triadic com-
parisons, where the simulated distances dij sim had only medium to low
correlations with both experimental and simulated thresholds. An anal-
ysis of the resulting MDS spaces revealed that only their first and third
dimensions were correlated with high or moderate values rp(5) = 0.96
and r(5) = 0.54, respectively. It is important to note, however, that
the same simulation approach reached only a moderate correlation with
dij exp in Chapter 3. Moreover we found some evidence for an increase in
the task difficulty with respect to the experiments using anechoic pianos
(Chapter 3). In the instrument-in-noise method, for instance, the con-
sistency in the staircases adopting the exclusion criterion of Chapter 3
would have led to more exclusions: 38 staircases (18.1% of the data) in
contrast to the 24 staircases (11.4%) excluded using a more permissible
criterion. Additionally, the goodness of fit of the MDS space (from the
experimental sessions) had a somewhat poorer fit with respect to the col-
lected similarity matrix. This may be due to a more variable weighting
of psychological dimensions for different participants.

In summary, the experimental results presented in this chapter showed
that instrument-in-noise thresholds are similarly correlated with Eu-
clidean distances from the triadic comparisons for the perceptual simi-
larity assessment of reverberant piano sounds with respect to the results
reported in Chapter 3 for anechoic sounds. Furthermore, simulations of
the instrument-in-noise thresholds using the PEMO model had a simi-
lar degree of success with respect to the simulations of Chapter 4. We
can conclude that the results of this chapter further support the valid-
ity of the auditory modelling approach of Chapter 4 when the effect of
reverberation is applied to the dataset of sounds.
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6 Simulating the perceived reverberation in
different room acoustic environments using a
binaural auditory model1

In this chapter an alternative way to use the unified modelling frame-
work introduced in Chapter 4 is presented. Particularly, a binaural
model is used to compute estimates of perceived reverberation –known
as reverberance– for a set of musical instrument sounds that are au-
ralised using eight different acoustic environments. The binaural model
processes left and right-ear channels in a similar manner as the auditory
PEMO model used in the previous chapters, but the central processor
converts the (left- and right-ear) internal representations into a metric
of reverberance PREV. This central processor is based on the idea of
stream segregation, adopted from the field of auditory scene analysis,
rather than on the optimal detector used in previous chapters to ap-
proach the problem of perceptual similarity among sounds.

In the first part of the chapter, PREV estimates obtained from the
binaural auditory model, originally described and validated by van Dorp
(2011) and van Dorp, de Vries, and Lindau (2013), are compared with
the room acoustic parameters of reverberation time (T30) and early decay
time (EDT). For this comparison, 90-s music excerpts of an orchestra
consisting of 23 instrument sections are used. The simulation results
show that although PREV has a higher correlation with EDT than with
T30, this relationship depends on the properties of the instruments. Fur-
ther analyses show that PREV depends on the presentation level and
that for instruments with similar critical-band spectrum, PREV follows
a similar trend across acoustic conditions.

In order to obtain experimental evidence of the dependency of rever-
berance on the properties of the sounds being tested, a listening test

1This chapter is partly based on: A. Osses, A. Kohlrausch, W. Lachenmayr, and E. Mommertz
(2017). Predicting the perceived reverberation in different room acoustic environments using a
binaural model. J. Acoust. Soc. Am., 141(4), EL381-EL387. http://doi.org/10.1121/1.4979853
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is presented in the second part of this chapter. The stimuli used in
the listening test correspond to a subset of 8 musical instrument sounds
that had been used in the initial simulations. The experimental results
support the hypothesis that the sensation of reverberance is instrument-
dependent. Furthermore, these results are used to evaluate the validity
of the PREV estimates obtained from the binaural model.

6.1 Introduction

A set of binaural room impulse responses (BRIRs) is usually measured in
order to evaluate the acoustic characteristics of a room. Out of these im-
pulse responses conventional descriptors such as reverberation time (RT)
or, in this chapter, T30, EDT and clarity index (C80) are obtained. To
obtain those parameters, the guidelines established in the international
standard ISO 3382-1 (ISO, 2009) can be followed. This guarantees a
reproducibility of the measurement results. The measurements are often
performed in empty rooms. Since the acoustic descriptors do differ when
measured in empty or occupied halls (see, e.g., Beranek, 2004) the lat-
ter condition is always of interest, especially in the context of a concert
hall or an opera house. Partly motivated by this idea, van Dorp et al.
(2013) suggested the use of a time-domain binaural auditory model to
estimate room acoustic parameters. Their rationale was that sound sam-
ples recorded or simulated in a given acoustic environment convey room
acoustic cues that can be extracted by a binaural auditory model. A sim-
ilar assumption was made by Klockgether and van de Par (2014, 2016)
who used excerpts of violin, guitar, and snare drum sounds to investi-
gate the spatial attributes of listener envelopment (LEV) and apparent
source width (ASW), and the JND in the binaural cues of interaural level
difference (ILD) and interaural time difference (ITD) in three acoustic
environments.

During the development of their binaural model, van Dorp et al.
(2013) conducted four listening experiments using two sounds (speech
and cello), which were auralised using 27 BRIRs. They found that their
model estimates were highly correlated with the subjective percept of
reverberation, known as reverberance.

Motivated by the success of their model, in this chapter we present
an extension of their work by analysing a more diverse set of sounds in
acoustic conditions that are typical for rehearsal and music performance
venues. Our set of sounds consisted of 23 instruments from a 90-s ex-
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Figure 6.1: Block diagram of the binaural auditory model. The stages 1 to 7 are briefly
described in the text. A parallel processing of the left and right ear signals is followed by a
central processing stage, where both “internal representations” (Ψ′L, Ψ′R) are combined to
obtain the model estimates.

cerpt of an orchestra recording that are individually analysed using the
binaural auditory model. In order to account for the long duration of
the sound samples, a frame-based approach was followed to obtain rever-
berance estimates as a function of time. To allow this and other slight
modifications of the model, we implemented the binaural model using
the framework of the AMT toolbox for MATLAB (Søndergaard & Maj-
dak, 2013), introducing the central processor as described by van Dorp
et al. (2013).

6.2 The binaural auditory model

The binaural auditory model used in this chapter is referred to as Room
Acoustic Analyser (RAA) and is described in detail by van Dorp (2011).
The block diagram of the model is shown in Figure 6.1. The RAA
model is based on the model described by Breebaart et al. (2001) but
implementing an alternative central processor (Stage 7 in the figure).
The model is applied separately to left and right-ear signals followed by
a central processor. The monaural stages of the model are:

Stage 1. Outer- and middle-ear filtering: This stage is implemented
as a second-order bandpass IIR filter between 1000 and 4000 Hz. This
implementation corresponds to a simpler approximation to the actual
filtering introduced by outer and middle ear compared to the implemen-
tation shown in Chapter 4. The combined frequency response of the
outer and middle ear is shown in Figure 6.2.

Stage 2. Gammatone filter bank: This set of filters corresponds to an
approximation to a critical-band filter bank. The filter bank consists of
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Figure 6.2: The combined frequency response of the outer- and middle-ear filters as used
in the binaural model is indicated by the black thick line. The second-order BPF used in
the model is a simpler implementation with respect to the filters used in the PEMO model,
whose frequency response is indicated by the grey line (see also Figure 4.2).

16 bands having centre frequencies between 165 (5 ERBN
2) and 1750 Hz

(20 ERBN). The Gammatone filter bank is implemented in the same
way as described in Chapter 4.

Stages 3 and 4. Hair-cell transduction: This stage simulates the
transformation from mechanical oscillations in the basilar membrane into
receptor potentials in the inner hair cells. The signals are first half-wave
rectified and then low-pass filtered (f cut-off = 770 Hz). These stages are
implemented in the same way as described in Chapter 4.

Stage 5. Adaptation loops: This stage simulates the adaptive prop-
erties of the auditory periphery and it differs from the description given
in Chapter 4 in two parameters: (1) One of the short time constants
was replaced by a longer one (τ1 = 5 ms, τ2 = 129 ms, τ3 = 253 ms,
τ4 = 376 ms, and τ5 = 500 ms), and (2) no overshoot limitation is ap-
plied, i.e., the limiter factor for the RAA model tends to infinity (limit
→∞). This configuration was also used by Breebaart et al. (2001) and
van Dorp (2011) and in earlier versions of the monaural auditory models.

Stage 6. Modulation low-pass filter: In this stage the signal (inter-
nal) representations are smoothed by means of a single-pole LPF with
a time constant of 20 ms (f cut-off = 8 Hz). This stage is used instead of
the modulation filter bank in the PEMO model. The modulation low-
pass filter provides a similar smoothing as that introduced by the lowest
modulation filter of the PEMO model but they differ in their cut-off
frequencies.

2The ERB rate scale corresponds to one of the frequency scales that is inspired by the frequency
representation in the auditory system. A brief overview of this scale is given in Appendix A.
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6.2.1 Central processor
To couple both monaural outputs, a central processor is used (stage 7
in Figure 6.1). The incoming signals are segregated into a “foreground”
stream Ψ′dir and a “background” stream Ψ′rev. These streams are as-
sumed to be related to the direct sound coming from the sound source
and the acoustic environment in which the sound source is embedded,
respectively. Within each auditory band k, an algorithm is used to de-
tect peaks with durations longer than Tmin above the threshold Ψmin(k).
The detection is also used to detect dips longer than Tmin with values
below the threshold Ψmin,dip(k). These threshold values are proportional
to the average band level LΨ(k):

Ψmin(k) = µΨ · LΨ(k) (6.1)

Ψmin,dip(k) = µΨ,dip · LΨ(k)

To obtain the average level in the kth band LΨ(k), the absolute value
of the amplitudes Ψ′[n, k] (after stage 6 in Figure 6.1) are arithmetically
averaged in time.

As a result of the peak detection algorithm, the N -sample streams Ψ′L
(and Ψ′R) are classified into Ψ′L,dir (and Ψ′R,dir) or Ψ′L,rev (and Ψ′R,rev).
Next, left (L) and right (R) channels are combined. For the amplitudes
of the background stream:

Ψrev [n, k] =

√
(Ψ′L,rev [n, k])2 + (Ψ′R,rev [n, k])2 (6.2)

Finally, by arithmetically averaging the levels Ψrev, a total reverber-
ance level Lrev is obtained:

PREV = Lrev =
1

N ·K

N−1∑
n=0

k1∑
k=k0

Ψrev [n, k] (6.3)

where K is the total number of frequency bands being used (K = k1 −
k0 + 1). The values for the constants used in Equations 6.2 and 6.3 are
shown in Table 6.1. As indicated in Equation 6.3, the reverberant level
Lrev is used as reverberance estimate PREV and it is expressed in MU.

Although PREV is only based on the reverberance level Lrev , the av-
erage level Ldir can be similarly obtained using Equations 6.2 and 6.3:

Ldir =
1

N ·K

N−1∑
n=0

k1∑
k=k0

Ψdir [n, k] (6.4)
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Table 6.1: Parameters of the RAA model as reported by van Dorp (“Original”) and as used
in our implementation (“Our”) for estimating PREV.

Parameter Values: Our (Original) Description
k0 − k1 5-20 (5-20) Initial and final spectral band number (ERBN ) used in

the estimation (K = 16 bands)
fc [Hz] 174-1807 (168-1836) Centre frequencies of the initial and final ERB band used

in the estimation
µΨ 0.34 (7.49 · 10−3) Constant factor for peak detection

µΨ,dip −0.06 (−1.33 · 10−3) Constant factor for dip detection
|µΨ/µΨ,dip| 5.63 (5.63) Ratio between peak detection factors
Tmin [ms] 63.1 (63.1) Minimum peak/dip duration for the foreground stream

The level Ldir is used by the central processor of the model to obtain
three other room acoustics estimates which are not described in this
thesis (van Dorp, 2011; van Dorp et al., 2013).

6.2.2 Differences in the current implementation

Our implementation of the binaural model differs slightly from the orig-
inal RAA model. We did not account for the absolute threshold of hear-
ing, originally implemented as a frequency-dependent scaling before and
after stage 5 (adaptation loops). As a consequence of this, the amplitudes
of the internal representations differ (leading to different band levels LΨ)
and, therefore, different µ-factors were required to get an appropriate
segregation of the foreground and background streams. The parameters
used in our implementation are shown in Table 6.1. In order to deal
with sounds containing silent sections, only those segments where each
instrument was active were considered.

6.3 Study case: Reverberance of different
orchestra instruments

6.3.1 Rooms

Four rooms have been simulated in the software Odeon Auditorium v.13
using the suggested accuracy “engineering”. Three of the rooms were
simulated with different absorptions, producing a total number of 8
acoustic environments (i.e., 8 “rooms”). Some information about the
8 acoustic environments is given in Table 6.2. The acoustic parameters
were estimated at the location of a binaural listener arbitrarily placed
7 m in front of the stage in all cases. The room A is a medium-sized
music venue with a coupled ceiling space, simulated without (A) and
with absorption on the walls and the ceiling (Aabs). The room B is a
large-sized concert hall, simulated without (B) and with all interior walls

Page 116



6 Simulating the perceived reverberation using a binaural model

C
h

a
p

te
r

6

Table 6.2: List of rooms used in this chapter. The EDT and T30 values were obtained as an
arithmetic average of 23 estimations (obtained from the available BRIRs in each room) at
mid frequencies (500-1000 Hz). The column G* gives an indication of the sound strength
in the rooms. For ease of interpretation of the results in the subsequent sections, the rooms
are sorted by increasing EDT times.

Room / Description of the hall
Volume

Seats
EDT T30 G*

[m3] [s] [s] [dB]
Aabs / Medium-sized, coupled space (abs. 720 m2) 14000 1000 0.80 1.14 5.4
Babs / Large-sized (abs. 3700 m2) 23000 2600 0.81 1.20 0.0
A / Medium-sized, coupled space 14000 1000 0.83 1.51 7.3
Cabs1/ Rehearsal (abs. 250 m2) 2500 100 1.04 1.16 9.8
B / Large-sized 23000 2600 1.24 2.01 1.3
Cabs2/ Rehearsal (abs. 190 m2) 2500 100 1.27 1.34 10.8
D / Medium-sized 15000 1300 1.47 2.23 8.5
C / Rehearsal 2500 100 2.48 2.51 12.7

(*) The sound strength G is a measure of relative energy with respect to an impulse response
measured at a distance of 10 m. In this study, however, we first computed the integrated sound
pressure level per instrument, and then those 23 levels were arithmetically averaged in each room.
The softest averaged level was used as a 0 dB reference (room Babs). Therefore the assessed G*
values indicate how much louder a room is with respect to the reference room.

absorptive (Babs). The room C is an orchestra rehearsal space modelled
in three conditions: with 250 m2 (Cabs1) and 190 m2 (Cabs2) of absorption
and without any acoustic treatment (C). The room D corresponds to a
medium-sized concert hall (Fog & Ballinger, 2008). All rooms were set
as occupied (αω = 0.9) in the simulations, with the exception of room C
where no additional audience (only musicians) was considered.

Considering a JND in RT3 of about 0.1 s, the rooms Aabs and Babs do
not differ by more than one JND and neither they do with respect to
room A if only EDT is considered. Likewise, rooms B and Cabs2 do not
significantly differ from each other when considering the averaged EDT
values. A difference of less than one JND means that the respective
rooms cannot be distinguished based on their reverberation time.

6.3.2 Stimuli

The sounds consist of 23 anechoic recordings of orchestra instruments4

that were used as sound sources in the Odeon software to simulate a
medium-sized orchestra of 56 musicians (some recordings were used more
than once), divided into four sections:

3The JND for EDT is a relative value of 5% (ISO, 2009). For our minimum and maximum EDT
times the JND is 0.04 s and 0.13 s, respectively.

4The sounds were derived from anechoic symphony orchestra recordings (Rindel, 2015) made at
the Technical University of Denmark (DTU) and licensed to Odeon A/S. The WavePackInstall II
containing the anechoic recordings can be obtained at http://www.odeon.dk/anechoic-recordings.
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Figure 6.3: Distribution of the orchestra as used in Odeon for room D. The distances along
the abscissa are referenced to the position of the virtual listener. The listener is located
7 m in front of the stage and 8 m far away from the closest “musician”. This position is
located in the audience area already which is further extended behind the listener (it would
correspond to negative distances in this figure, not shown). The musicians are indicated
by numbers between 1 and 23∗ (see Table 6.3 for the corresponding labels). The numbers
between brackets represent the (Euclidean) distance in m from each musician to the listener.
(*) Note that the location of the first (Nr. 1-2) and second violins (Nr. 3-4) to the right and left
of the audience area (virtual listener), respectively, does not match a typical orchestra distribution.
It would be more natural to have the first violins to the left and the second violins to the right.
The distribution shown in this figure is, however, the configuration as used in the (existing) Odeon
project to which we had access to.

• Strings (40 musicians): first violin (Nr. 1, x 6), first violin retake
(Nr. 2, x 6), second violin (Nr. 3, x 5), second violin retake (Nr. 4, x 5),
viola (Nr. 5, x 8), cello (Nr. 6, x 6), double bass (Nr. 7, x 4);

• Woodwind (9 musicians): flute (Nr. 8, x 1), piccolo (Nr. 9, x 1),
oboe (Nr. 10-11, x 2), clarinet (Nr. 12-13, x 2), bassoon (Nr. 14-15, x 2)
and contrabassoon (Nr. 16, x 1);

• Brass (5 musicians): French horn (Nr. 17-19, x 3), trumpet (Nr.
20-21, x 2), and;

• Percussion (2 musicians): timpani (Nr. 22, x 1), triangle (Nr. 23,
x 1).

The instruments were distributed on the available stage area as simi-
lar as possible in each venue. A virtual listener 7 m in front of the stage
was added, leading to average listener-musician distances between 9.7 to
16.8 m (min-max distances of 7.8-18.6 m). The distribution of instru-
ments (“musicians”) on the stage area of room D is shown in Figure 6.3.

Auralisation

The auralisations were automatically generated in Odeon. For this pro-
cess, static directivity patterns were used for each instrument, obtaining
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Table 6.3: Instruments available in the orchestra. The distances to the binaural listener
(7 m in front of the stage) and the sound levels of the auralised sounds were averaged across
rooms. The levels LAeq,T (A-weighted) and LZeq,T (linear) were integrated over the duration
T and their difference is indicated as ∆Leq.

Nr./ Instrument
Distance [m] Sound levels [dB] T ∆Leq

to listener LAeq,T LAFmax LZeq,T LZFmax [s] [dB]
1-4/ Violins (Vio) 10.6 (8.0-12.9) 68.0 77.1 68.1 80.4 357 0.1
5/ Viola (Viola) 10.2 (7.8-12.4) 71.7 80.9 73.9 87.3 88 2.2
6/ Cello (Cello) 9.7 (7.8-14.8) 66.6 74.9 74.9 86.8 87 8.3
7/ Double bass (DBass) 12.4 (10.4-15.0) 65.4 73.8 84.8 97.1 77 19.4
8/ Flute (Flute) 13.4 (13.1-13.9) 79.7 88.7 78.9 90.5 45 -0.8
9/ Piccolo (Picc) 13.3 (13.0-13.8) 66.4 74.2 65.4 76.9 45 -1.0
10-11/ Oboe (Oboe) 13.8 (13.0-15.4) 74.0 81.7 73.7 85.1 107 -0.3
12-13/ Clarinet (Cla) 14.8 (14.5-15.4) 70.2 78.0 72.0 81.3 130 1.8
14-15/ Bassoon (Bsn) 14.8 (14.5-15.3) 66.8 73.5 70.3 78.8 139 3.5
16/ Contrabassoon (CBsn) 14.7 (14.2-15.9) 56.2 64.7 64.1 74.3 70 7.9
17-19/ French horn (FrHrn) 14.9 (13.6-17.3) 71.3 78.5 75.8 85.2 141 4.5
20-21/ Trumpet (Trum) 16.2 (15.6-18.5) 76.0 84.4 76.1 86.4 88 0.1
22/ Timpani (Ti) 16.5 (15.7-18.6) 70.6 78.2 84.5 95.5 38 13.9
23/ Triangle (Tri) 16.8 (16.2-18.6) 64.3 73.7 66.8 80.4 28 2.5

Table 6.4: Correlation between the PREV values and EDT and T30.

Correlation with Correlation with
Nr./ Instrument EDT T30 Nr./ Instrument EDT T30

1-4/ Vio 0.91* 0.82* 12-13/ Cla 0.92* 0.75*
5/ Viola 0.94* 0.84* 14-15/ Bsn 0.97* 0.77*
6/ Cello 0.90* 0.90* 16/ CBsn 0.20 0.55
7/ DBass 0.78* 0.57 17-19/ FrHrn 0.95* 0.73*
8/ Flute 0.51 0.39 20-21/ Trum 0.46 0.10
9/ Picc 0.47 0.37 22/ Ti 0.90* 0.86*
10-11/ Oboe 0.53 0.43 23/ Tri 0.18 -0.23

(*) Significant correlation, p < 0.05.

56 different BRIRs at the location of the listener. These BRIRs were in-
ternally used by Odeon to auralise anechoic recordings of a 90-s excerpt
of the Brahms Symphony Nr. 4, 3rd movement. The auralised strings
were mixed down per instrument obtaining 7 waveforms (first violin x 2,
second violin x 2, viola x 1, cello x 1, double bass x 1), reducing the
total number of auralised sounds from 56 to 23. Hence, Odeon returned
23 BRIRs and 23 binaural sounds. Information about the sound levels
of the resulting sounds is shown in Table 6.3.

6.3.3 Using the auditory model
The sounds corresponding to the 23 instruments listed in Table 6.3, au-
ralised in the 8 different acoustic conditions (total of 184 binaural signals)
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Figure 6.4: PREV estimates expressed in MU for the eight different acoustic environments.
For each instrument the correlation between PREV and T30 and EDT is shown. Values
marked with asterisks indicate that the corresponding PREV estimate is linearly related
with T30 and/or EDT (p<0.05).

were fed into the RAA model. Reverberance estimates (PREV expressed
in MU) were obtained for 5-s long sections and 80% overlap, leading to
a total of 86 values per sound sample. Subsequently, the estimates from
the same instruments were grouped together to finally use the median
in each group as single PREV estimate. As a consequence of this, the
sounds were reorganised in 14 groups. Within each group, 8 estimates
were obtained (one estimate per room).

6.4 Results

The results obtained from the 184 auralised instrument sounds are shown
in Figure 6.4. The overall model estimates range from a minimum value
of 4.2 MU (CBsn) to a maximum value of 22.4 MU (Ti). Although
this represents a variation of 18.2 MU, the difference between estimates
within each instrument group (∆PREV) is smaller and ranges from 1.6
(Trum) to 7.5 MU (DBass) with a median ∆PREV of 4.6 MU, indicating
that the PREV estimates are instrument dependent. When analysing the
relative PREV values, some trends can be observed: (1) Vio, Viola, Cello,
Cla, Bsn, FrHrn and Ti: the lowest PREV is attributed to room Babs,
similar estimates are obtained for A, Cabs1 and also for B, Cabs2, D and
highest PREV is obtained for room C; (2) Flute, Picc, Oboe, Trum and Tri:
the lowest and highest PREV are also attributed to the rooms Babs and C,
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Table 6.5: Pearson correlation rp between the model estimates PREV for all possible instru-
ment pairs. The matrix is symmetric along its diagonal. For instance, the highest correlation
(rp = 0.98) for violin estimates (Vio) is obtained for the comparison with the clarinet es-
timates (Cla). Likewise, the lowest correlation (rp = 0.21) is obtained for the comparison
with the contrabassoon estimates (CBsn).

Instrument
Vio Viola Cello DBass Flute Picc Oboe Cla Bsn CBsn FrHrn Trum Ti Tri

Vio - 0.94 0.92 0.94 0.57 0.78 0.78 0.98 0.96 0.21 0.94 0.72 0.89 0.34
Viola 0.94 - 0.96 0.84 0.32 0.61 0.71 0.95 0.98 0.34 0.83 0.53 0.88 0.03
Cello 0.92 0.96 - 0.83 0.21 0.53 0.60 0.95 0.97 0.23 0.79 0.45 0.91 0.03
DBass 0.94 0.84 0.83 - 0.66 0.88 0.87 0.94 0.89 -0.03 0.90 0.85 0.78 0.52
Flute 0.57 0.32 0.21 0.66 - 0.91 0.78 0.49 0.35 -0.12 0.72 0.88 0.31 0.86
Picc 0.78 0.61 0.53 0.88 0.91 - 0.95 0.76 0.62 -0.19 0.88 0.90 0.53 0.77
Oboe 0.78 0.71 0.60 0.87 0.78 0.95 - 0.79 0.69 -0.14 0.85 0.86 0.54 0.58
Cla 0.98 0.95 0.95 0.94 0.49 0.76 0.79 - 0.96 0.12 0.93 0.66 0.90 0.30
Bsn 0.96 0.98 0.97 0.89 0.35 0.62 0.69 0.96 - 0.29 0.82 0.59 0.89 0.11
CBsn 0.21 0.34 0.23 -0.03 -0.12 -0.19 -0.14 0.12 0.29 - 0.10 -0.12 0.33 -0.54
FrHrn 0.94 0.83 0.79 0.90 0.72 0.88 0.85 0.93 0.82 0.10 - 0.75 0.84 0.49
Trum 0.72 0.53 0.45 0.85 0.88 0.90 0.86 0.66 0.59 -0.12 0.75 - 0.49 0.74
Ti 0.89 0.88 0.91 0.78 0.31 0.53 0.54 0.90 0.89 0.33 0.84 0.49 - 0.08
Tri 0.34 0.03 0.03 0.52 0.86 0.77 0.58 0.30 0.11 -0.54 0.49 0.74 0.08 -

respectively (with the exception of the Flute), but the remaining rooms,
sorted by increasing estimates are D, Cabs1, B, Cabs2, A and Aabs; (3) two
other different patterns were observed for DBass and CBsn. For DBass,
room D was “judged” as the second least reverberant hall, while for
CBsn room C was the third most reverberant room and one inconsistent
within-room PREV was found (Babs had a higher estimate than B). The
instruments following the trend (1) had higher correlations with EDT
(all significant) than with T30 (6 of 7 significant correlations). None of
the instruments following trend (2) had a significant correlation with
EDT nor T30.

Another way of comparing the reverberance trends is to construct a
similarity matrix based on the correlation between the PREV estimates of
all possible instrument pairs. Such a matrix is shown in Table 6.5. This
matrix can be further processed by techniques as the MDS algorithm (al-
ready used in Chapters 3 and 5) to map each of the stimuli (14 groups of
instruments) to a graphical Cartesian representation. A two-dimensional
representation of the instruments is shown in Figure 6.5. The instru-
ments belonging to trends (1) and (2) are indicated by the black and red
square markers, respectively. The DBass and CBsn sounds, which were
identified as following different reverberance patterns, are indicated by
white markers in the figure.
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Figure 6.5: Cartesian two-dimensional representation (stress St = 22.2%) of the 14 in-
strument groups of the orchestra based on a similarity of the “reverberance trends”. This
analysis is based on the correlation matrix shown in Table 6.5. Instruments that are close
to each other provide a similar ranking in their PREV values for the eight tested acoustic
environments. Three trends were recognised (and described in the text), trend (1), trend (2),
and trend (3). They are indicated by the black, red, and white square markers, respectively.

6.5 Interim discussion

The reverberance estimates PREV obtained from the RAA model were
found to be instrument dependent. This is in agreement with the results
presented by Teret, Pastore, and Braasch (2017) for three reverberance-
matching experiments with 5 types of sounds (orchestra, broad-band
noise, click, guitar, and voice samples), where “signal type” was found
to be significant. From their set of sounds, the guitar and voice samples
were found to be the samples eliciting the lowest and highest reverber-
ance, respectively. In another study, Klockgether and van de Par (2014)
also found room acoustics estimates depending on the analysed sound
(guitar, violin or snare drum). In order to understand the differences
across instruments in our approach, the following aspects are addressed:
(a) which properties do the instruments following trends (1) and (2)
share; (b) what is the most prominent property influencing the PREV

amplitude range, and; (c) how large is the variability in the PREV range
within instruments.

6.5.1 Spectral content

Twenty-one of the 23 orchestra sounds (91.3% of the data) had a PREV

estimate following either trend (1) (14 sounds, 60.9% of the data) or (2)
(7 sounds, 30.4% data). The two remaining instruments (DBass, CBsn) had
PREV estimates following other trends (8.7% of the data). Our analysis is
therefore focused on these two trends. Since PREV depends on the stream
segregation performed in the central processor stage and, in turn, it de-
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pends on the average band level within each critical-band, the energy dis-
tribution of two representative musical instruments following trends (1)
and (2) is shown in panel (a) of Figure 6.6. The instruments following
trend (1) had a balanced spectrum with contributions between roughly 5
and 10% per band. The instruments following trend (2) had a monotonic
increasing contribution from nearly 0% (Picc) up to around 10% towards
the upper bands. Therefore, in order to characterise a room obtaining
one single estimate in the whole frequency range, it might be desirable
to use instruments following trend (1). Since the auditory filters are nar-
rower in the low frequency range a higher spectral level at low frequencies
is needed. An estimate that can give an indication of the frequency dis-
tribution is the difference between linear and A-weighted levels. The in-
struments following trend (1), with the exception of the violins, have a
∆Leq that varies between 1.8 (Cla) and 13.9 dB (Ti) (see Table 6.3)5.

6.5.2 Frame-based values
As the individual instruments have dynamic changes along their 90 s of
music (6.7 ≤ LAFmax − LAeq,T ≤ 9.4 dB, see Table 6.3), we hypothesised
that the reverberation estimate should also vary over time. The adopted
frame-based approach is useful to provide information about changes of
reverberance as a function of time. In Figure 6.6(b) the data points cor-
responding to rooms Aabs and B are shown together with bars indicating
the minimum and maximum PREV values over time. This variability is
systematic in all instruments and the average range is ±3.2 MU.

6.5.3 Level dependency
To investigate the dependency of PREV on presentation level, three of the
instrument groups (Vio, Flute, Ti) were plotted at two presentation lev-
els with a level difference of 20 dB. The obtained estimates are shown in
panel (b) of Figure 6.6. For the three instrument groups, PREV increased
when increasing the presentation level. Evidence of the reverberance de-
pendency on presentation level was given by Lee, Cabrera, and Martens
(2012), where louder test samples required bigger adjustments to match
their reverberance with respect to a fixed-gain reference sample. Within
the RAA model, the increase in the estimates seems to be further re-
lated to the instrument spectral properties, with a stronger effect for the
Flute (factor of 3) followed by the Ti (factor of 1.6) and the Violin (factor
of 1.4).

5Although the level estimation shown in Table 6.3 is valid for the auralised sounds in room D,
they are representative approximations of the level difference in the other seven acoustic conditions.
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Figure 6.6: (a) Energy distribution of average levels LΨ(k) for the cello (circles) and flute
samples (squares). The bars indicate the minimum and maximum levels across rooms. For
equal band contribution the LΨ(k) levels should follow the horizontal dashed line (6.25%).
(b) PREV estimates for Vio, Flute and Ti at two presentation levels of either 65 or 66 dB and
20 dB more intense. The markers for each room are the same as in Figure 6.4. The estimates
for rooms Aabs and B are shown together with their minimum and maximum values.

6.6 Listening experiment
So far the binaural RAA model has been used to obtain PREV estimates
for a set of recordings auralised in eight different acoustic environments.
The results show that PREV depends on the spectral content of the sound
being processed and on the presentation level. The RAA model has been
previously validated using two samples (voice and cello) in a large number
of acoustic environments, but we have no indication of the validity of the
model for the set of orchestra sounds used so far. In order to validate
our implementation of the RAA model with a selected set of sounds
and, in turn, provide evidence that not only the simulated PREV but
also experimental PREV,exp values are instrument-dependent, a listening
test designed to evaluate the perceived reverberation is presented in this
second part of the chapter.

The experiment was designed in a way that the duration of each exper-
imental session lasts no more than one hour. The aim of the experiment
was to sort the sound samples from least to most reverberant. A pref-
erence method was adopted, for which the multi-stimulus comparison
method (see Section 1.3.3) was preferred to pairwise comparisons due to
its time efficiency. However, it was necessary to reduce the number of
samples to be evaluated (8 excerpts per trial) and the duration of each
sound (10-s long excerpts instead of 90-s long). For this reason, the stim-
ulus treatment differs from what it was done in the PREV simulations of
the previous sections.

6.6.1 Stimuli
A subset of the instruments described in Section 6.3.2 was chosen. The
stimuli were chosen to be representative of the results obtained from the
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Table 6.6: Level information about the instruments of the Odeon orchestra used in the
listening experiment. The sound levels of the auralised sounds were averaged across rooms.
The levels LAeq,T (A-weighted) and LZeq,T (linear) were integrated over the entire duration
of 10 s and their difference is indicated as ∆Leq. The column “∆ Pres. level” is obtained
as the difference between the maximum value of the auralised waveforms LZFmax and the
maximum of the 90-s sounds used in the simulations (LZFmax of Table 6.3). All differences
are negative, meaning that a softer reproduction level is used in the listening experiments
in comparison with the assumed levels in the simulations of Figure 6.4.

Nr./ Instrument
Sound levels [dB] ∆Leq ∆ Pres.

LAeq,T LAFmax LZeq,T LZFmax [dB] level [dB]
1/ Vio 65.4 73.1 65.1 73.3 -0.3 -7.1
7/ DBass 62.4 69.7 80.7 88.2 18.3 -8.9
8/ Flute 69.1 78.7 68.4 77.8 -0.8 -12.7
9/ Picc 67.3 76.0 66.3 74.8 -1.1 -2.1
16/ CBsn 49.7 55.8 57.0 62.9 7.2 -11.4
17/ FrHrn 68.8 75.8 72.9 79.4 4.1 -5.8
20/ Trum 73.9 81.0 73.9 80.8 0.0 -5.6
22/ Ti 65.7 73.9 79.3 89.2 13.6 -6.3

simulations (Figure 6.4). In this way, three instruments with a reverber-
ance estimate from trend (1) were chosen: violin (Vio, Nr. 1), French
horn (FrHrn, Nr. 17), and timpani (Ti, Nr. 22); three instruments from
trend (2): flute (Flute, Nr. 8) piccolo (Picc, Nr. 9), and trumpet (Tr,
Nr. 20); and the two instruments that followed “another” trend: double
bass (DBass, Nr. 7), and contrabassoon (CBsn, Nr. 16). The subset of
instruments consisted thus of 8 instruments. Excerpts of no more than
10 s were chosen. The excerpts were taken from the first 18 bars of the
symphony, where most of the instruments play fortissimo.

Auralisation

The reverberant orchestra sounds were obtained by digital convolution of
the 8 selected anechoic recordings with the corresponding BRIR, which
were previously obtained from Odeon. The convolution was performed
in MATLAB. A fixed gain of −9 dB was applied to the resulting sounds to
prevent clipping after auralisation. The resulting waveforms had levels
that we labelled as comfortable. Therefore no further level adjustment
was applied. Information about the (average) sound levels of the au-
ralised sounds is shown in Table 6.6.

6.6.2 Apparatus

The experiments were conducted in a single-walled sound booth. The
stimuli were presented via Sennheiser HD 265 Linear circumaural head-
phones in a binaural reproduction. The participant’s responses were
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collected using the software Web Audio Evaluation (WAE) (Jillings et
al., 2016) using Google Chrome on a local computer.

6.6.3 Participants

Twenty-four participants (5 females and 19 males) were recruited from
the JF Schouten subject database of the TU/e university. At the time
of testing, the participants were between 19 and 43 years old (average of
24 years) and they all had self-reported normal hearing. They provided
their informed consent before starting the experimental session and were
paid for their contribution.

The sample size of 24 participants was assessed a priori. The experi-
ment uses a repeated measures (within-subject) design. It is of interest to
check the main effects of two factors: “musical instrument” and “room”.
The experiment considers 64 sound stimuli that can be grouped into
either 8 groups of 8 instrument measurements or 8 groups of 8 room
measurements. The first case is of more interest for us, with a null hy-
pothesis that revereberance estimates are the same for the 8 instrument
measurements. Based on the simulations shown earlier in this chapter we
expect to reject this hypothesis. Assuming a medium effect size (Cohen’s
f = 0.25), an α level (p-value) of 0.05 to support/reject the hypothesis
and a power of 90%, 24 participants are required to reach the desired
effect size (actual power of 0.96). This analysis was done in the software
G*Power (Faul et al., 2007, 2009).

6.6.4 Experimental sessions

The experimental sessions were organised in a one-hour session per par-
ticipant, including breaks. A multi-stimulus comparison method was
used, where the participant was presented with 8 stimuli that he or she
had to sort along a scale from 0 to 1 according to an increasing sensation
of reverberance. Sixteen trials (i.e., 16 scales with 8 stimuli each) were
presented to each participant, with 8 trials having stimuli of the same
instrument in different rooms (within-instrument), and 8 trials having
different instruments in the same room (within-room).

6.7 Experimental results

6.7.1 Within-instrument evaluation

The experimental results for the within-instrument evaluations are shown
in Figure 6.7. The median reverberance estimates PREV,exp vary between
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Figure 6.7: Experimental results from the listening test (within-instrument evaluation).
The median values of the reverberance estimates in 8 different acoustic environments are
indicated together with the interquartile ranges obtained from 24 data points. The eight
instruments from left to right are: Vio, DBass, Flute, Picc, CBsn, FrHrn, Trum, and Ti.
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Figure 6.8: Experimental results from the listening test (within-room evaluation). Median
values of the reverberance estimates are indicated together with the interquartile ranges
obtained from 24 data points. The estimates within each room condition correspond from
left to right to: Vio, DBass, Flute, Picc, CBsn, FrHrn, Trum, and Ti.

0.10 (Vio in room Babs) and 0.98 (DBass in room C). Since the sounds were
compared within instruments, the individual scales may not be directly
related to each other. This is because the participants’ responses only
required to be referenced to the sound samples within each trial. In
the subsequent section, these experimental results per instrument are
compared with their corresponding binaural model estimates.

6.7.2 Within-room evaluation

The experimental results for the within-room evaluations are shown in
Figure 6.8. The median reverberance estimates vary between 0.07 (CBsn
in room A) and 0.99 (Ti in room A). Using the average of the esti-
mated values as an indication of how reverberant the instruments are,
the instruments in order of increasing reverberance estimates are: CBsn
(PREV,exp= 0.20), Picc, Vio, Flute (PREV,exp= 0.37 ≈ 0.41 ≈ 0.43), FrHrn, Trum
(PREV,exp= 0.66 ≈ 0.67), DBass (PREV,exp= 0.74), and Ti (PREV,exp= 0.93).
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Figure 6.9: New simulated PREV,10 s estimates expressed in MU for the eight selected musical
instruments in the eight acoustic environments (rooms A-D). For ease of comparison, the
corresponding PREV,90 s estimates taken from Figure 6.4 are indicated by grey markers.

Table 6.7: Pearson correlation rp between experimental and simulated PREV estimates in
the within-instrument condition. Each rp value is obtained by comparing 8 pairs of data
points (6 degrees of freedom).

PREV,exp correlated with
Nr./ Instrument PREV,10 s PREV,90 s PREV,max,90 s

1/ Vio 0.92* 0.81* 0.77*
7/ DBass 0.85* 0.72* 0.91*
8/ Flute 0.80* 0.22 0.46
9/ Picc 0.90* 0.27 0.26
16/ CBsn 0.93* 0.42 0.77*
17/ FrHrn 0.85* 0.73* 0.90*
20/ Trum 0.90* 0.35 0.74*
22/ Ti 0.89* 0.62** 0.74*

(*) Significant correlation, p < 0.05. (**) Correlations that approach significance, p < 0.10.

6.8 Comparison between experimental and
simulated reverberance estimates

6.8.1 Reference data: New simulations of PREV

The presentation level of the new 10-s excerpts of the orchestra instru-
ments is below the assumed level of the simulations presented in the first
part of the chapter, as indicated in the last column (“∆ Pres. Level”)
of Table 6.6. For this reason, we decided to obtain new PREV estimates
using the same instrument excerpts as used in the experimental sessions.
The results are shown in Figure 6.9. In the remaining of this chapter,
the newly obtained estimates are labelled as PREV,10 s. In the figure,
the reverberance estimates for the 90-s sounds, labelled as PREV,90 s, are
indicated by the grey markers.
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Table 6.8: Pearson correlation rp between the experimental estimates PREV,exp for all pos-
sible instrument pairs. The matrix is symmetric along its diagonal. This table contains
mostly high correlation values in contrast to the rp values of Table 6.5 that have a wider
range and even include negative values.

Instrument
Vio DBass Flute Picc CBsn FrHrn Trum Ti

Vio - 0.86 0.74 0.78 0.89 0.89 0.95 0.86
DBass 0.86 - 0.92 0.90 0.97 0.91 0.73 0.67
Flute 0.74 0.92 - 0.92 0.92 0.84 0.59 0.41
Picc 0.78 0.90 0.92 - 0.91 0.87 0.68 0.45
CBsn 0.89 0.97 0.92 0.91 - 0.86 0.74 0.69
FrHrn 0.89 0.91 0.84 0.87 0.86 - 0.87 0.67
Trum 0.95 0.73 0.59 0.68 0.74 0.87 - 0.85
Ti 0.86 0.67 0.41 0.45 0.69 0.67 0.85 -

6.8.2 Within-instrument evaluation

The experimental reverberance estimates PREV,exp of Figure 6.7 can ei-
ther be compared with (1) PREV estimates computed from the exact 10-s
excerpts (PREV,10 s) used in the experiments, or with (2) the simulated
estimates PREV of Figure 6.4, which were obtained for the 90-s excerpts
and grouping the same instruments together. The correlation values are
shown in Table 6.7. The experimental results are significantly correlated
with the PREV,10 s values with rp(6) between 0.80 (Flute) and 0.92 (Vio).
When comparing PREV,exp with PREV,90 s, only three correlation values
(rp for Vio, DBass, FrHrn) are significant and one approaches significance
(rp for Ti). Although the rp values are expected to be lower because the
PREV,90 s estimation considered parts of the sounds that were not pre-
sented to the listeners, these estimates could be interpreted as belonging
to a more representative playing context of the instruments. Since the
selected instruments played fortissimo during the 10-s excerpts (taken
from bars 10-16 of Brahms Symphony Nr. 4, 3rd movement) the corre-
lation with the maximum reverberant estimates PREV,max,90 s (obtained
from the percentile 75 of PREV,90 s) is also included. In this case, six (of
eight) rp values are significant with values between 0.74 (Trum and Ti)
and 0.91 (DBass).

Reverberance trends

The reverberance trends that have been observed in PREV,90 s and that
may also be observed in the PREV,exp estimates of each instrument are
evaluated by first generating a similarity matrix based on a matrix of
correlation values and then using the MDS method to generate a two-
dimensional representation. The resulting matrix and Cartesian repre-
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Figure 6.10: Cartesian representation (stress St = 27.9%) of the 8 instruments of the or-
chestra used in the listening experiment. This analysis is based on the correlation matrix
shown in Table 6.8. Instruments that are close to each other provide a similar ranking in
their PREV values for the eight tested acoustic environments. The instruments are indi-
cated using labels according to the trends found for the simulated reverberance estimates:
trend (1), trend (2), and trend (3), which are indicated by the black, red, and white square
markers, respectively.

sentation are shown in Table 6.8 and Figure 6.10, respectively. This
analysis is not conclusive but it shows that the three instruments from
trend (1) (Vio, FrHrn, and Ti) are still mapped in the neighbourhood
of each other. In trend (2), Flute and Picc stay near each other but
Trum gets farther apart and gets somewhat closer to the French horn
(FrHrn) from trend (1). Supported by the simulated PREV,10 s values of
Figure 6.9, something that all three instruments of trend (2) and FrHrn
have in common is their low reverberance estimates. In trend (3), the
contrabassoon changed considerably its position with respect to the po-
sition shown in Figure 6.5. Its reverberance pattern turned similar to
that of the double bass.

We state that the current analysis is “not conclusive” because it is
based on the graphical representation shown in Figure 6.10, which has
the following limitations:

1) The space has been obtained with a lower number of stimuli (8 instead
of 14 as in Figure 6.5). This implicitly assumes that none of the 6
omitted instrument sounds would significantly affect the position of
the 8 points that have been obtained.

2) The correlation values rp in the similarity matrix of Table 6.8 are
higher than those of Table 6.5. Only three instruments (Flute, Picc,
Ti) have PREV values with at least one rp value lower than 0.50 with
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Table 6.9: Results of repeated measures one-way ANOVAs conducted for each acoustic
environment. In all the analyses it was found that the variable “instrument” influences
significantly the experimental PREV,exp values obtained in the within-room evaluations. For
each of the eight acoustic environments, 192 observations were available (8 instruments
evaluated once by 24 participants).

Room F (7, 184) p Room F (7, 184) p
A 34.82 < 0.001 C 16.91 < 0.001
Aabs 15.52 < 0.001 Cabs1 25.96 < 0.001
B 19.61 < 0.001 Cabs2 27.94 < 0.001
Babs 10.55 < 0.001 D 22.93 < 0.001

respect to the PREV values of other instruments. This is in contrast
with the rp values of Table 6.5 where all 14 instrument groups have at
least one rp value less than 0.50. This may be an indirect consequence
of the reduced number of stimuli (from 8 instruments) in the current
analysis.

6.8.3 Within-room evaluation

The within-room results shown in Figure 6.8 can be directly used to
evaluate the dependency of reverberance on the sound source type. For
room C, which is the most reverberant of the acoustic environments,
the instruments sorted from low to high scores, i.e., from least to most
reverberant are: CBsn, Picc, Flute, Vio, DBass, FrHrn, Trum, and Ti,
respectively. This “reverberance pattern” is similar in the other seven
acoustic environments, with a rank-order (Spearman) correlation that
ranges between 0.69 (rs with room B) and 0.98 (rs with room A).

The average PREV,exp estimates between 0.20 (for CBsn) and 0.93 (for
Ti) may be used as evidence for the dependency of reverberance on the
sound source (instrument) type. To provide further statistical evidence,
a repeated measures one-way ANOVA (one for each acoustic environ-
ment) was conducted to analyse the influence of the variable instrument
on PREV,exp. The results show that “instrument type” influenced signif-
icantly the reverberance scores in all rooms, as shown in Table 6.9.

6.9 Conclusions

In this chapter we have presented a new implementation of the RAA
model which was used to analyse individual instruments of an anechoic
orchestra. Those instruments (in total 23 instrument sections, duration
of 90 s) were auralised in eight different acoustic conditions having repre-
sentative reverberation times as found in music performance venues and
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rehearsal rooms (0.8-2.5 s). We provide experimental evidence for the
validity of the reverberance estimates PREV of the RAA model especially
for the case when the same instrument sound is compared in the different
acoustic environments.

The reverberance estimates (PREV) obtained from the RAA model
varied depending on the spectral content of the analysed instrument and
the presentation level. At the same time, we found a large variation of the
estimates when using a running analysis window within each individual
instrument. The simulated PREV values had a systematic relationship
with EDT and T30 that could be classified in two different trends ex-
plaining 91.3% of the simulated data. In 60.9% of the data, PREV had
a higher correlation with EDT than with T30. This trend was found in
instruments with a balanced spectrum across critical bands. We could
not provide conclusive evidence for the existence of those trends based
on the experimental results with 8 (of the 23) instruments. However,
the experimental results provided evidence for (1) the significant influ-
ence of the instrument type on the perceived reverberation, and (2) the
validity of the simulated PREV estimates using sound excerpts that had
a duration of 10 s. The simulated PREV estimates were all significantly
correlated with the experimental estimates.

Further work is needed to quantify the extent to which reverberance
actually depends on the presentation level of the test sounds. In our ex-
perimental approach, the presentation level of the instrument sounds was
not varied, accounting only for natural level differences due to different
sound strength values in each of the acoustic environments. The investi-
gation of this aspect will require further collection of experimental data.

The research presented in this chapter resulted from an exchange (sec-
ondment) project at the acoustic consultancy company Müller-BBM.
The research goals were: (1) to introduce perception-based predictions
of room acoustic indicators to real-world (room) acoustic conditions, and
(2) to evaluate to what extent such an approach correlates with listen-
ers’ experiences. The significant correlation between simulated and ex-
perimental estimates of reverberance is therefore an encouraging result
indicating that perception-based predictors are not only of academic in-
terest, but might also improve the predictions obtained in the context of
room acoustic consultancy. However, one needs to be aware that such
psychoacoustic-based approaches (see also Lee et al., 2012, 2017) repre-
sent a fundamental change of paradigm in room acoustics. According
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to established measurement guidelines (ISO, 2009), the acoustic proper-
ties of a room are considered as (level) linear and time invariant, that is,
room properties are assumed to be independent of the type of excitation,
and of the level of the exciting signals. Such a source-filter characterisa-
tion of room acoustic transmission allows to characterise rooms as linear
time-invariant (LTI) systems. The results of this chapter may be used
as evidence that the perception of room acoustic parameters (of rever-
berance, in our case) depends on the context for which the room is used
and this is contrary to the idea of an LTI system.
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The work presented in this thesis is concerned with the use of an auditory
model for the evaluation of complex sounds, particularly musical instru-
ments, with a special emphasis on the evaluation of perceptual similarity
of individual notes played on different pianos. The following instruments
have been evaluated: (1) the hummer (Chapter 2), which is a simple in-
strument with sounds that oscillate in amplitude and frequency. Existing
recordings and synthesised sounds obtained from a physical model were
compared; (2) Recordings of one note played on different pianos (Chap-
ter 3, 4, 5), and; (3) Existing recordings of an anechoic orchestra, to
which the effect of reverberation has been added by digital convolution,
generating eight acoustic environments (Chapter 6).

In Chapter 2, sounds of the hummer in its acoustic modes 2 and 4
were evaluated using a selection of psychoacoustic descriptors namely
loudness, loudness fluctuations, roughness, and fluctuation strength. An
analysis based on fundamental frequency estimates was also included.
The analyses were based on reported just-noticeable differences (JND)
for each of the 5 evaluated descriptors. The results showed that the
synthesised sounds of the hummer are more similar to the recorded ones
in acoustic mode 2 than in mode 4. In mode 2, two descriptors had
a difference of less than one JND and one descriptor was just above
the JND. In mode 4 only one descriptor had a difference of less than
one JND. An analysis based on 5 descriptors can be interpreted as an
analysis based on 5 “dimensions” that are assumed to be appropriate to
evaluate the characteristics of the test sounds.

In Chapter 3 the perceptual similarity among recordings of one note
played on different historical Viennese pianos was evaluated. Using the
concept of JND, two sounds are perceptually similar along one explicit
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“dimension” if they differ by less than one JND. In this chapter percep-
tual similarity was approached more abstractly, by asking participants
to discriminate two sounds while modifying the degree of similarity be-
tween them. The objective was to develop a method where the similarity
between sounds can not only be assessed but also manipulated by using a
specifically generated noise. The noise used to manipulate the difficulty
of the task follows the spectro-temporal properties of the sounds being
tested and is derived from a modified ICRA noise algorithm. The ex-
perimental method, that we named instrument-in-noise, was compared
with the method of triadic comparisons, which is a widely used method
to evaluate the similarity among stimuli. For similarity estimates using
7 piano sounds, the correlation between the results of both methods was
rp(17) = −0.47, p = 0.04, and rs(19) = −0.64, p < 0.001. We concluded
that the instrument-in-noise method is a promising method to evaluate
the similarity between sounds.

In Chapter 4 the instrument-in-noise method is simulated using an ex-
isting computational model of auditory processing. The auditory (PEMO)
model developed by Dau et al. (1997a) was used. The model was de-
scribed together with the choice of parameters for each of its stages.
The model uses a back-end decision stage (central processor) that pro-
cesses the outputs of the model, i.e., the internal representations of the
incoming sounds. We developed a custom implementation of the central
processor to enable the artificial listener (i.e., the model) to estimate the
amount of noise needed to correctly discriminate two piano sounds. We
used the same piano sounds and ICRA noises as in Chapter 3. The sim-
ulated and experimental thresholds had a moderate to high correlation
with rp(17) = 0.54, p = 0.02, and rs(19) = 0.63, p < 0.001.

In Chapter 5 the instrument-in-noise method was further evaluated
using the same set of piano sounds to which the reverberation of a large
room (ground area of 570 m2 and EDT of 3.0 s at mid frequencies) was
added by means of digital convolution. The instrument-in-noise method
was evaluated experimentally (similar to Chapter 3) and by running
simulations (similar to Chapter 4). The results of this chapter showed
that: (1) For the experimental data, thresholds of the instrument-in-
noise method thresexp are correlated with the results of the experimental
triadic comparisons with rp(18) = −0.49, p = 0.03, and rs(19) = −0.65,
p < 0.001; (2) For the obtained instrument-in-noise thresholds, the
experimental thresexp and simulated thressim values are correlated with
rp(18) = 0.58, p < 0.01, and rs(19) = 0.61, p < 0.001.
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In Chapter 6, an example of the auditory modelling framework ap-
plied to room acoustics is given. More specifically, a binaural auditory
(RAA) model (van Dorp, 2011) is used to study the perceived reverber-
ation (reverberance) of different instrument sounds in eight simulated
rooms. The RAA model has peripheral stages similar to the PEMO
model that are applied independently to left- and right-ear signals, and
the central processor converts individual internal representations into
a metric of reverberance PREV. Listening experiments with 8 of the
instruments were conducted to test the validity of the RAA model in
a within-instrument modality (same instrument evaluated in the eight
rooms) and in a within-room evaluation (same room for eight different
instruments). The results of the within-instrument evaluation showed
that PREV estimates are highly correlated with experimental estimates
having rp(6) values ranging between 0.80 and 0.93. The experimental re-
sults of the within-room evaluation showed that in all the environments
the instrument type (i.e., sound source type) influences significantly the
participants’ reverberance scores. The extension of the use of the uni-
fied modelling framework of Chapters 4 and 5 to this application by just
adopting a different but “suitable” central processor stage shows the
potential of using psychoacoustic modelling in auditory tasks that are
different to those for which the models have been previously validated
(see, e.g., Appendix D).

7.1 Advantages of the current auditory modelling
approach

Experience was gained on the perceptual modelling of a listening task,
namely the instrument-in-noise method, that was designed to evaluate
the similarity among sounds (Chapter 3). Our implementation of the
task can provide interesting information about the sounds being evalu-
ated. Some of these benefits are listed in this section.

The instrument-in-noise method was implemented to compare pairs
of sounds using a 3-AFC task. An auditory model was used to produce
internal representations of the three sequentially-presented test intervals
upon which the artificial listener chose one as being (most likely) differ-
ent to the other two test intervals. One of the primary advantages of
this approach is, therefore, the possibility to algorithmically evaluate
perceptual aspects of the sounds being compared.

One example of algorithmic evaluation was presented in Chapter 6.
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In that chapter an existing auditory model was used to simulate the
perceived reverberation (reverberance) elicited by a set of different in-
strument sounds. In a listening experiment presented in the second part
of the chapter we assumed that instrument sounds for which the “arti-
ficial listener” provided similar reverberance estimates were also going
to be judged as similar by human listeners. Motivated by this idea,
we chose a subset of 8 (of 23) instrument sounds for which the audi-
tory model showed a characteristic reverberance performance (different
trends). Hence, the model simulations (first part of the chapter) were
used as a way to obtain some “a priori” knowledge about human perfor-
mance, helping with the design of the listening experiment.

Another interesting aspect of the internal representations obtained
from the auditory model is that they are multidimensional. The di-
mensions of the representations are related to time, audio frequency,
and modulation frequency. Therefore the current approach provides the
possibility to perform an advanced “sound feature analysis” based on in-
formation available along either of those dimensions. Since the objective
of this thesis was to use the auditory modelling framework in a similarity
task, our “advanced analysis” of the multidimensional piano representa-
tions was used to investigate which cues along the three dimensions may
have been used by the artificial listener (and potentially also by our par-
ticipants) to judge the piano sounds, rather than looking at what physical
properties of the piano sounds lead to such representations. A comple-
mentary approach where piano sounds have been analysed in terms of
sound features is given by Chaigne, Osses, and Kohlrausch (2018). In
that study, four of the C#5-piano sounds used in Chapter 3 (P4-P7)
were evaluated together with recordings of other five notes (C2, F3, C4,
A4, G6). A comparison between the results of our information-based
analysis and their seven spectro-temporal descriptors may provide fur-
ther insights into how the physical properties of the piano are actually
related to perceptual aspects.

7.2 Limitations of the current approach

The auditory (PEMO) model has been applied to the specific case of
similarity between sounds (Chapter 4 and 5). We identified a number of
limitations of our approach that are related to (1) the choice of the audi-
tory model, (2) the way the similarity task was implemented, and (3, 4)
the way the information of the optimal detector was limited and reduced.
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7.2.1 Choice of the model

The PEMO model used in this thesis has a level-independent critical-
band filter bank (stage 2, ERB filter bank in Figure 4.1, page 56). This
is in contrast to the non-linear behaviour (compressive characteristic) of
the basilar membrane, which is more compressive towards higher frequen-
cies (see, e.g., Saremi et al., 2016, their Figure 3). Given that we found
the decision criterion of the piano discrimination with notes of the same
pitch to rely mostly on a frequency region above F0, particularly between
1000 and 3000 Hz, comprising about 4 harmonics of the note (see panel
(a) of Figure 4.10, page 77), the use of a non-linear critical-band filter
bank coupled to the auditory model would change the sensitivity of the
model to our piano samples, that would in turn affect the estimation of
simulated thresholds. Our motivation to choose the PEMO model and,
therefore, the Gammatone filter bank came from our higher degree of
success in replicating simulated data reported in the literature compared
with more recent versions of the auditory model.

The PEMO model was used as a monaural model despite the fact
that the piano sounds were presented diotically (Chapter 3) and binau-
rally (Chapter 5) to the participants. We would not expect significant
changes between monaural and diotic discrimination thresholds (see, e.g.,
Langhans & Kohlrausch, 1992) and although we did not use the right-ear
channels of the piano sounds in the simulations of Chapter 5, we would
expect that similar discrimination cues are available with respect to the
use of the left-ear channel. In order to further apply the PEMO model
to other auditory tasks it is important to evaluate the role of processing
left and right-ear signals in parallel and by coupling their internal repre-
sentations to have access to binaural cues as Breebaart et al. (2001) did.
The use of the PEMO model in such a context would allow the use of
modulation-frequency information for simulating binaural tasks.

7.2.2 Implementation of the similarity task

The similarity task was implemented as a 3-AFC discrimination experi-
ment. With this approach, the test sounds are presented sequentially
to the participants and the similarity assessment is based on the com-
parison of individual piano notes that have the same F0 and the
same duration. Due to the implementation of the task as sequentially-
presented intervals, a simple top-down approach (memory templates)
could be adopted, assuming that the participant is able to “learn” and
use this information always in the best possible way. In practice, this
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represents a situation where the participant is recursively exposed and
gets familiar with the sounds. Hence, the presentation of sounds as in-
dividual notes represents a condition where the participant can focus on
smaller sound differences compared to, e.g., melodic lines with multi-
ple notes (and/or multiple instruments) where there is less exposure to
one individual note (and/or instrument). In that case a more elaborate
top-down approach would be needed. Such an approach should use some
sort of information weighting that may be influenced by attention and/or
saliency aspects.

7.2.3 Additive internal noise
The internal noise was used to limit the artificial listener’s performance
in an intensity-discrimination task (see Appendix D). The use of such
a simple additive internal noise was found to be not accurate enough
in simulations of several AM detection tasks (Ewert & Dau, 2004). To
overcome this limitation, Wallaert, Moore, Ewert, and Lorenzi (2017)
adopted a multiplied noise as an additional source of internal variability
besides the additive internal noise and a memory noise they used to
reduce the memory capacity of the model (that can be compared with
our use of tobs).

7.2.4 Reduction of information in the optimal detector
The artificial listener was found to be too sensitive to differences in the
stimuli when considering whole-duration piano waveforms with tobs du-
rations of 1.5 and 2.2 s in Chapters 4 and 5, respectively. As a way to
reduce available cues in the model, shorter observation durations tobs

were evaluated with as result tobs values of 0.25 and 0.20 s. We did not
evaluate other forms of information reduction such as the application
of (additional) smoothing to the internal representations or the use of
a temporal weighting that could provide a higher emphasis to the in-
formation present in the first 0.20-0.25 s with respect to the rest of the
representation instead of removing the latter one completely.

7.3 Perspectives for further research

The modelling framework used in this thesis includes stages of peripheral
processing of the auditory system and provides the possibility to add a
back-end stage or central processor. To apply such an approach to a
similarity task involving piano sounds we had to (1) choose the appro-
priate parameters to be used in the peripheral processing part, and to
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(2) adjust the central processor in a way that two or more sound (in-
ternal) representations could be conveniently compared to each other to
assess how similar they are. This corresponds to a very general approach
and we believe that it can be applied to many other applications as long
as “hearing” is involved. We give next two examples of potential ap-
plications, one related to room acoustics and another related to human
echolocation. For both examples it would be desirable to use the audi-
tory model in a binaural set-up, using a suitable coupling of left and
right-ear internal representations in the central processor.

The first example of application was actually given in Chapter 6 where
a binaural model (the RAA model) was used to investigate the reverber-
ance of different sound sources in room acoustics. The particular con-
text in which that chapter was developed was a consequence of a joint
project with the acoustic consultancy company Müller-BBM. The goal
of the project was to use an existing binaural model in the evaluation of
recorded (auralised) sounds in different rooms, evaluating to what extent
reverberance estimates from the model correlate with physical measure-
ments of reverberation time using standardised procedures (ISO, 2009).
Our goal was, therefore, to evaluate how well did the (existing) RAA
model perform rather than pursuing an improvement of the simulation
power of that model. The use of this psychoacoustic-based model sug-
gests a change in paradigm in room acoustics. The ISO procedures en-
courage the characterisation of an acoustic environment independent of
the sound source and its level, which is in contrast to the approach of us-
ing the RAA model along with, e.g., the use of loudness-based reverbera-
tion estimates (Lee et al., 2012). In this context, we suggest two possible
ways to further extend the use of the binaural RAA model: (1) To inves-
tigate the dependency of reverberance on the presentation level of the
stimuli. This is motivated by the strong level dependency that we
identified in the model –also recently reported by Lee et al. (2017)– and
requires further experimental evidence; and (2) to extend the validation
of the RAA model to other room acoustics parameters, such as clarity,
listener envelopment, and apparent source width (van Dorp, 2011; van
Dorp et al., 2013) using more sound sources.

Our second example of potential application is the use of (binaural)
auditory modelling to study human echolocation. Echolocation is a per-
ceptual ability mostly used by blind people to explore a given spatial
environment. Sounds that are emitted orally (“source”) are normally
used by them to extract information about surrounding objects (in a
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“medium”) based on the spectral and spatial cues conveyed in the sounds
that are heard back (“receiver”). Experiments on human echolocation
have been mostly implemented as performance tasks (see, e.g., Dufour
et al., 2005; Guzmán, 2016; Rowan et al., 2017) which, based on the
arguments presented in the introduction of this thesis, is an auspicious
condition to be simulated by means of auditory models. Two types of
echolocation tasks are the localisation of an object and the discrimina-
tion of the size of an object (de Vos & Hornikx, 2018). Data from such
tasks analysed using an information-based approach of the underlying
internal representations as used in Chapters 4 and 5 may provide useful
insights to optimise the “sound source” by, e.g., developing artificially
generated (optimal) clicks, or to optimise the “medium” by designing
rooms that enhance the transmission of spectral and spatial cues.

7.4 General conclusion
The main goal of this thesis was to gain insights into the perceptual mod-
elling of “an” auditory task. We focused our efforts on the perceptual
similarity of a specific note (C#5) played on a set of 7 historical Vien-
nese pianos by using an auditory model. For doing this we developed a
method where the similarity between two sounds could be manipulated
by using noise, allowing to evaluate similarity as a performance task.
The method, that we named instrument-in-noise, was compared with
the method of triadic comparisons reaching moderate to high correla-
tions using the piano sounds in two acoustic conditions: “anechoic” and
reverberant (EDT of 3 s). An existing modelling approach based on a
model of the effective processing in the auditory system was used. The
simulated thresholds thressim were in both cases highly correlated with
the experimental thresholds thresexp, but they had a strong “primacy”
effect, where only the first 0.25 or 0.20 s of the internal representations
were used to produce these results. The encouraging results of our mod-
elling approach allowed us to perform information-based analyses on the
piano internal representations. We concluded that the weighting of in-
formation used by the artificial listener may be similar to that used by
human listeners. The advantages and limitations of both experimental
and modelling approach were discussed. Due to the use of the unified
auditory modelling framework offered by the adopted model, further re-
search is suggested in applications involving binaural listening, which
represents a different type of auditory task to that implemented here for
the perceptual similarity between stimuli.
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Appendices

The following appendices are included in the next pages:

A. Auditory frequency scales
This appendix contains a summary of two auditory frequency scales
that are inspired by the concept of critical-bands. The two scales
are (1) the critical-band rate z in Bark, which is used in Chapter 2,
and (2) the ERB-scale expressed in ERB numbers, which is used in
the remaining chapters.

B. Model of fluctuation strength
This appendix contains the computational model of fluctuation strength
as used in Chapter 2.

C. Adaptation loops
This appendix contains an in-depth description of the underlying
properties of the adaptation loops used in the auditory models.
Both the PEMO (Chapter 4) and RAA models (Chapter 6) include
an adaptation loop stage.

D. Calibration of the auditory model
In this appendix the procedure we followed to “calibrate” the audi-
tory (PEMO) model used in Chapters 4 and 5 is described.

E. Other approaches for the memory template
This appendix contains a description of the different template ap-
proaches that were tested in the simulations of Chapter 4. The use
of these approaches did not lead to a satisfactory explanation of the
experimental results.
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A Auditory frequency scales

This appendix contains a brief summary of two auditory frequency scales
that are inspired by the concept of critical bands. These scales are (1)
the critical-band rate z expressed in Bark, which is used in Chapter 2
and in Appendix B, and (2) the ERB scale expressed in ERB numbers
(ERBN), which is used in the remaining chapters. The purpose of this
appendix is to provide a general understanding of both scales, the range
of their values and their mapping to the frequency scale in Hz. A detailed
comparison between both scales is not provided.

It is well known that the human hearing system acts as a frequency
analyser, where different frequencies of the incoming signals stimulate
different points of the basilar membrane in the inner ear. This frequency-
to-position mapping can be approximated by the following analytical
expression (Greenwood, 1990)1:

x = 16.67 · log10

(
f

165.4
+ 1

)
(A.1)

where the frequency f is expressed in Hz and x represents the distance
in mm from the apex to the point of stimulation along the basilar mem-
brane. The basilar membrane extends from the base (near to the middle
ear) to the apex (innermost end of the cochlea), having an average length
of 35 mm. The logarithmic relationship between the frequency f and the
position x is indicated by the square red markers in Figure A.1. In the
figure, the two auditory scales are also plotted as a function of the po-
sition x, showing an approximate linear relationship. This may not be
surprising because the auditory frequency scales have been derived to “di-
vide the frequency spectrum into bands of equal effectiveness” (Zwicker
et al., 1957) and the relative width of such bands happened to be ap-
proximately constant around the point of excitation x. The auditory

1Equation A.1 can be obtained by replacing the constants A = 165.4 and k = 1 in Equation 1 of
the study by Greenwood (1990).
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Figure A.1: Frequency-to-position mapping between different frequency scales (normalised
between 0 and 1) and the corresponding point of stimulation x along the cochlea. In this fig-
ure, the positions x in mm were converted to frequency in Hz (Equation A.1). Subsequently
the critical-band rate z and the ERBN values were obtained using Equations A.2 and A.3,
respectively. Both auditory scales have a nearly linear relationship with the point x.

scales differ, however, in the way they were derived. The critical-band
rate scale z was derived by measuring the width of the “effective bands”
in a number of experiments including detection thresholds with complex
tones and narrow-band noises, amplitude and frequency modulation de-
tection, localisation performance and loudness summation (Zwicker et
al., 1957; Fastl & Zwicker, 2007, their Chapter 6). The ERB scale mea-
sures that bandwidth using a tone-in-notched-noise experiment (see, e.g.,
Patterson, 1976).

Both auditory scales are described next by providing an analytical
expression that maps f onto the corresponding auditory scale. This
appendix ends by providing a list of tabulated frequencies in Hz and
their corresponding auditory frequencies z in Bark and in ERBN .

A.1 Critical-band rate
An analytical expression to relate the frequencies z in Bark and f in Hz
is given by Equation A.2 (Zwicker & Terhardt, 1980):

z = 13 · arctan
(
0.76 · 10−4f

)
+ 3.5 · arctan

([
f

7500

]2
)

(A.2)

This expression provides a close mapping between f in Hz and the
critical-band rates z reported by Zwicker (1961). The bandwidth of each
critical-band is 1 Bark. This leads to about 24 bands in the audible
frequency range. The reader is referred to Zwicker et al. (1957) and
Zwicker (1961) for further details about the critical-band rate scale.
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Table A.1: List of frequencies in Hz and their mapping to the ERB-rate and the critical-band
rate scales. The frequencies in ERBN and Bark can be obtained using Equations A.3 and
A.2, respectively.

Frequency fc Frequency fc Frequency fc Frequency fc
Hz ERBN Bark Hz ERBN Bark Hz ERBN Bark Hz ERBN Bark
87 3.0 0.9 520 11.0 4.9 1547 19.0 11.4 3983 27.0 17.2

101 3.4 1.0 554 11.4 5.2 1628 19.4 11.7 4174 27.4 17.5
123 4.0 1.2 605 12.0 5.6 1749 20.0 12.2 4463 28.0 17.9
139 4.4 1.4 643 12.4 5.9 1839 20.4 12.6 4676 28.4 18.2
163 5.0 1.6 700 13.0 6.4 1975 21.0 13.0 4997 29.0 18.5
181 5.4 1.8 743 13.4 6.7 2075 21.4 13.3 5235 29.4 18.8
208 6.0 2.0 806 14.0 7.2 2226 22.0 13.8 5593 30.0 19.2
228 6.4 2.2 853 14.4 7.5 2338 22.4 14.1 5857 30.4 19.5
257 7.0 2.5 924 15.0 8.0 2506 23.0 14.5 6257 31.0 19.9
280 7.4 2.7 977 15.4 8.4 2630 23.4 14.8 6551 31.4 20.1
313 8.0 3.0 1056 16.0 8.9 2818 24.0 15.2 6996 32.0 20.5
338 8.4 3.3 1114 16.4 9.2 2956 24.4 15.5 7324 32.4 20.8
375 9.0 3.6 1202 17.0 9.7 3165 25.0 15.9 7819 33.0 21.1
402 9.4 3.9 1267 17.4 10.1 3319 25.4 16.2 9271 34.5 22.0
443 10.0 4.2 1365 18.0 10.6 3552 26.0 16.6 11581 36.5 23.0
474 10.4 4.5 1438 18.4 10.9 3723 26.4 16.8 15550 39.2 24.0

A.2 Equivalent rectangular bandwidth

The analytical expression that converts the frequency f in Hz to frequen-
cies expressed in ERBN is (Glasberg & Moore, 1990):

ERBN = 9.2645 · ln (1 + 0.00437 · f) (A.3)

The use of a tone-in-notched-noise experiment to derive the band-
width of a critical-band is believed to reduce off-frequency listening. This
lead to a higher number of ERB bands with respect to the Bark scale
with 39 bands up to the range reported in Table A.1. The reader is
referred to Moore and Glasberg (1983) and Glasberg and Moore (1990)
for further details about the ERB rate scale.
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B Modelling the sensation of fluctuation strength1

The sensation of fluctuation strength (FS) is elicited by slow modulations
of a sound, either in amplitude or frequency (typically < 20 Hz), and is
related to the perception of rhythm. In speech, such periodicities convey
valuable information for intelligibility (prosody). In western music, most
of the envelope periodicities are also found in that range. These are
evidences of the potential relevance of FS in the perception of speech and
music. In this appendix we present a model of fluctuation strength. Our
model was developed taking advantage of the physical similarity between
FS and the sensation of roughness. The FS model was then adjusted
and fitted to existing experimental data collected using artificial stimuli,
namely, amplitude- (AM) and frequency- (FM) modulated tones and
AM broadband noise (BBN). The test battery of sounds also consists of
samples of male and female speech and some musical instrument sounds.
This FS model has been used in Chapter 2 of this thesis.

B.1 Introduction
Temporal fluctuations in amplitude and in frequency are found natu-
rally in everyday sounds. Amplitude modulations (AM) are related to
the envelope of a waveform, while frequency modulations (FM) to its
fine structure. Envelope refers to the perceived acoustic amplitude of
a sound that is integrated by the hearing system due to its slow re-
sponse (or “sluggishness”) to high rate (sound pressure) variations of
its waveform. Two examples of everyday sounds are speech and music.
Speech was described by Rosen (1992) as temporal fluctuating patterns
with three partitions: envelope, periodicity and fine structure. The enve-
lope contributes to, among other factors, prosody (i.e., duration, speech

1This chapter is based on:
R. Garćıa. (2015)“Modelling the sensation of fluctuation strength”. M.Sc. thesis, Eindhoven Uni-
versity of Technology.
A. Osses, R. Garćıa, and A. Kohlrausch (2016). “Modelling the sensation of fluctuation strength”.
Proc. Mtgs. Acoust., 28(50005), pp. 1–8.
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rhythm) and articulation, periodicity to intonation and fine structure to
the timbre of a sound. With these concepts, it seems logical to assume
that the characterisation of speech as temporal fluctuating pattern is also
applicable to music. The link between prosody and Western music found
by Patel, Iversen, and Rosenberg (2006) supports this assumption.

Two of the well-known classical psychoacoustical metrics are related
to the perception of modulated sounds: fluctuation strength (FS) (Fastl,
1982, 1983) and roughness (Aures, 1985), for sounds modulated at slower
frequencies (<20 Hz) and more rapid modulation rates (20-300 Hz), re-
spectively. Both sensations show a bandpass characteristic with peaks
at 4 Hz for FS and 70 Hz for roughness. The range of modulations below
20 Hz has been shown to be of special interest for speech intelligibility
(Drullman et al., 1994; Shannon et al., 1995) as well as for the perception
of rhythm, which is related to the average syllable rate at AMs of around
4 Hz (Leong et al., 2014).

Fluctuation strength is an attribute related to the perception of mod-
ulation in the range that we indicated as relevant for speech intelligibility
(and potentially also for music). Roughness, however, is an attribute re-
lated to timbre (due to the higher modulation frequency range) that has
taken more attention for its accepted influence in the perception of un-
pleasantness of a sound. There are, therefore, a number of published
roughness models (e.g., Aures, 1985; Daniel & Weber, 1997; Kohlrausch
et al., 2005). There is either less information about the algorithms to
assess FS2, or there are solutions that apply for a specific type of stimuli
have been described (e.g., the FS model for AM tones and AM BBN,
Fastl, 1982; Fastl & Zwicker, 2007). In this chapter a model of FS
is presented. The similarities between FS and roughness listed above
motivated the development of our implementation based on an existing
roughness model (Daniel & Weber, 1997; Garćıa, 2015). There are, to
our knowledge, two studies where a similar approach has been adopted
(Zhou et al., 2015; Sontacchi, 1998)3. In comparison with those studies,
the database of sounds used for developing and testing our algorithm
is more diverse, including not only artificial sounds (AM and FM tones
and AM BBN) but also a few cases of male and female speech and mu-

2The following commercial software packages include implementations of an FS algorithm: Pulse
by Brüel & Kjær, ArtemiS by Head Acoustics GmbH, PAK by Müller-BBM, PAAS (Sontacchi,
1998). Technical aspects about their implementation and/or validation are not publicly available.

3The FS model by Zhou et al. has been developed in parallel to the model described in
this appendix. Their model has been integrated into the AARAE toolbox for MATLAB
http://www.densilcabrera.com/wordpress/aarae-2/ (last accessed on 18/07/2018).

Page 168

http://www.densilcabrera.com/wordpress/aarae-2/


B Modelling the sensation of fluctuation strength

A
p

p
e
n

d
ix

B

Figure B.1: Structure of our model of fluctuation strength.

sic samples, which were taken from the test battery of sounds used by
Schlittmeier, Weissgerber, Kerber, Fastl, and Hellbrück (2012).

B.2 Description of the model

The algorithm used in our model of fluctuation strength (FS) was adapted
from the roughness extraction algorithm described by Aures (1985) and
Daniel and Weber (1997). The structure of the model is shown in Figure
B.1, where the highlighted blocks represent the processing stages that
we modified in our FS model. The model assumes that the total FS is
the sum of partial contributions from N auditory filters and it is based
on the concept of modulation:

FS =
N∑
i=1

fi = CFS ·
N∑
i=1

(m∗i )
pm · |ki−2 · ki|pk · (g(zi))

pg (B.1)

where N is the number of auditory filters (here N = 47), m∗ is a gener-
alised modulation depth, k refers to the normalised cross covariance be-
tween different auditory filters and g(zi) is an additional free parameter
to introduce a weighting as a function of centre frequency. Frequencies
equal or below 13 Bark4 (1975 Hz) are unchanged and an attenuation
(gain < 1) is applied to higher frequencies. The linear gains decrease
monotonically from 1 (13 Bark or below) to 0.9, 0.7 down to 0.5, at
15.0 Bark (2730 Hz), 17.5 Bark (4174 Hz), and 23.5 Bark (13169 Hz),
respectively. The product of all the elements in Equation B.1 as a func-
tion of the critical band i defines the specific fluctuation strength fi. The
parameters CFS, pm, pk and pg are constants optimised to fit the model.
The values found for these parameters are CFS = 0.2490, pm = 1.7,
pk = 1.7 and pg = 1.7.

In general, the model provides FS estimates for successive analysis
frames. The frames have a duration of 2 s and a 90%-overlap and are

4The critical-band rate z expressed in Barks corresponds to one of the frequency scales that is
inspired by the frequency representation in the auditory system. A brief overview of this scale is
given in Appendix A.
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gated on and off with 50-ms raised-cosine ramps. Each analysis frame
is independently and successively passed through the processing blocks
described below. For this reason from hereafter we refer to all analysis
frames as the “input signal”.

B.2.1 Spectral weighting: transmission factor a0

To approximate the incoming signal to what arrives to the oval window
(beginning of the inner ear), the transmission factor a0 is applied. This
factor introduces a frequency dependent gain that accounts for the sound
transmission from free-field through the outer and middle ear. In our
model a0 was implemented as a 4096th-order FIR filter.

B.2.2 Critical-band filter bank

In the frequency domain (N-point fast Fourier transform (FFT), fre-
quency resolution ∆f = 0.5 Hz), all frequency bins with amplitudes
above the absolute hearing threshold are transformed into a triangular
excitation pattern (Terhardt, 1979). The triangular excitation pattern
produced by the frequency component f (in Hz) at a level L (in dB) has
a constant lower slope S1 of 27 dB/Bark and higher slope S2 defined by:

S2 = 24 +
230

f
− 0.2L [dB/Bark] (B.2)

The slopes S1 and S2 are defined in the frequency domain using the
critical-band rate scale. An analytical expression to relate the frequencies
z in Bark and f in Hz is given by Equation A.2 in Appendix A.

The excitation patterns are a way to determine the contribution of a
given component with frequency fk (and level Lk) to another auditory
filter, located at an “observation point” i, with a Bark distance of ∆z
Bark (keeping the same phase of the component at k). That contribution,
Lk,i, can be expressed as:

Lk,i = Lk − S2∆z = Lk − S2(zi − zk) if fk < fi

Lk,i = Lk − S1∆z = Lk − S1(zk − zi) if fk > fi (B.3)

where zi and zk are the corresponding frequencies fi and fk in the
critical-band rate scale that can be calculated using Equation A.2.

If we now consider 47 equally spaced “observation points” (with a
spacing of 0.5 Bark) related to the frequency range from 0.5 Bark (50 Hz)
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to 23.5 Bark (13169 Hz) and evaluate the individual contribution of each
computed excitation pattern, 47 output (audio) signals are obtained.
These 47 signals can be interpreted as the output of a critical-band filter
bank with centre frequencies zi = 0.5 · i Bark and bandwidth of 1 Bark.
At the end of this stage each spectrum is converted back to the time
domain using an inverse fast Fourier transform (IFFT), obtaining 47
ei(t) signals.

B.2.3 Generalised modulation depth m∗i
Each of the 47 signals ei(t) obtained from the critical-band filter bank is
used to obtain an estimate of the modulation depth m∗. The so-called
generalised modulation depth is calculated by dividing the root mean
square (RMS) value of the weighted envelopes of hBP,i(t) by their DC
values h0,i. The DC value is calculated from the full-wave rectified time
signals:

h0,i = |ei(t)| (B.4)

The weighted excitation envelopes are determined by:

hBP,i(t) = IFFT{H(fmod) · FFT(|ei(t)|)} (B.5)

The weighting function H is used because the fluctuations of the en-
velope are contained in the low part of the excitation patterns ei in the
frequency domain. The shape of the H(fmod) function was chosen to
account for the bandpass characteristic of the FS sensation (with maxi-
mum at a modulation frequency fmod of 4 Hz). The resulting H(fmod)
was implemented as an IIR filter with passband between 3.1 and 12 Hz.

The RMS of the weighted functions hBP,i is then used to obtain the
generalised modulation depths:

m∗i =
hBP,i
h0,i

(B.6)

In the original (roughness) model this ratio was limited to a maximum
value of 1. FM tones represent a case where this limitation was often
being applied, but their roughness in asper reaches larger values (3.2
asper for a 1.6-kHz tone, fmod at 80 Hz, fdev of ±800 Hz and 60 dB SPL)
than those for FS in vacil (1.4-kHz tone, fmod at 4 Hz, fdev of ±700 Hz
and 60 dB SPL). In our FS model we suggest to introduce a compression
stage to the ratio m∗i rather than a limitation. A compression ratio of
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3:1 is applied when the modulation depth estimate exceeds a threshold
of 0.7 units. This means that if m∗i is 0.15 units above the threshold,
i.e., m∗i input = 0.85 the resulting modulation depth will be 0.05 (0.15/3)
above threshold resulting in m∗i output = 0.75.

B.2.4 Normalised cross covariance

In a discrete time domain the normalised cross covariance (in short, cross
covariance) between the functions x and y, both being N samples long,
is defined by Equation B.7 (see, e.g., van de Par & Kohlrausch, 1995,
their Equation 2):

k =

∑
xy − 1

N

∑
x
∑
y√[∑

x2 − 1
N

(
∑
x)2
] [∑

y2 − 1
N

(
∑
y)2
] (B.7)

Within our computational model the cross covariance between adja-
cent critical bands is assessed to determine whether their modulations
are in or out of phase. The more in-phase the modulations are deter-
mines to what extent the specific FS can be summed up to obtain the
total FS. In this manner, the cross covariance between the channel i and
the channels one Bark below i − 2 and above i + 2 are computed. In
other words, to obtain the factor ki−2, x and y in Equation B.7 have to
be replaced by hBP,i−2 and hBP,i, respectively. Likewise, to obtain the
factor ki, x and y have to be replaced by hBP,i and hBP,i+2.

B.3 Validation of the model

In order to fit and validate the FS model presented in this appendix, a set
of stimuli with known values were chosen. Part of the set corresponded
to artificial stimuli: AM tones, FM tones, and AM BBN. The rest of
the stimuli were chosen from a set of everyday sounds. The reference
sound to which an FS of 1 vacil is ascribed is an AM sine tone centred
at fc = 1000 Hz, modulated at an fmod of 4 Hz and level of 60 dB.
A summary of the artificial stimuli used in the validation is shown in
Table B.1. For this set of stimuli, FS values obtained in perceptual
experiments are available (Fastl & Zwicker, 2007, their Chapter 11).
Additionally, a set of everyday sounds were extracted from the database
of sounds used by Schlittmeier et al. (2012). That database consists of
70 sounds, out of which 7 representative sound samples were chosen.
The selection of the samples was as follows: (a) three representative
speech samples (one male voice, one female voice, babble noise); (b)
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Table B.1: Artificial stimuli used to validate the FS model. The FS values were taken from
Fastl and Zwicker (2007, their Chapter 11).

Type Fixed parameters SPL [dB] Variable parameters (FS)
AM tone fc = 1000 Hz 60 fmod = {4.00} Hz

(reference) mindex = 1 (1.00) vacil

AM tone fc = 1000 Hz 70 fmod = {1.00, 2.00, 4.00, 8.00, 16.0, 32.0} Hz
mindex = 1 (0.39, 0.84, 1.25, 1.30, 0.36, 0.06) vacil

FM tone fc = 1500 Hz 70 fmod = {1.00, 2.00, 4.00, 8.00, 16.0, 32.0} Hz
fdev = ±700 Hz (0.85, 1.17, 2.00, 0.70, 0.27, 0.02) vacil

AM BBN BW= 16000 Hz 60 fmod = {1.00, 2.00, 4.00, 8.00, 16.0, 32.0} Hz
mindex = 1 (1.12, 1.58, 1.80, 1.57, 0.48, 0.14) vacil

Table B.2: Everyday sounds used to validate the FS model. An artificial noise (pink noise,
Track Nr. 61) was also included. The average sound pressure level (SPL) of each sound is
shown. For the changing-state speech samples and the ducks’ quaking samples the maximum
levels are also shown. The FS values were taken from Schlittmeier et al. (2012).

SPL [dB] Reported FS
Type Track Nr. / description Leq (Lmax) [vacil]

Speech 1 / Narration, female voice 56.1 (67.2) 1.11
Speech 2 / Narration, male voice 60.0 (69.4) 1.21
Speech 23 / Eight talker babble noise 63.6 (67.8) 0.38
Music 24 / Strings concert 62.1 0.21
Music 31 / Violin solo 58.2 0.56

Animal 34 / Ducks’ quaking 64.5 (73.4) 1.77
Noise* 61 / Broadband (pink) continuous noise 60.1 0.02

two music samples of soloist and ensemble playing, and (c) the sounds
having minimum and maximum FS. For that database, Schlittmeier et
al. (2012) used a commercial software to obtain their FS values. The
selected samples are summarised in Table B.2.

B.3.1 Results for artificial stimuli
The artificial stimuli were used to fit the free parameters of the model:
the constant CFS, the BPF H(fmod) and the exponents pm and pk. A
value CFS of 0.2490 was obtained. The H(fmod) filter was fitted using
1000-Hz AM tones (with 1 ≤ fmod ≤ 32 Hz). As a result two cascaded
IIR filters (4th-order LPF and 2nd-order HPF) producing a BPF between
3.1 and 12 Hz were obtained. The results of the FS model applied to
the artificial sounds of Table B.1 are shown in Figure B.2. The model
predicts qualitatively the fluctuation strength for AM tones, FM tones
and AM BBN. There is, however, an overestimation of the FS estimates
for FM tones especially for fmod > 4 Hz (middle panel of the figure).
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Figure B.2: Results obtained from the FS model for: (left panel) AM tones; (middle panel)
FM tones, and (right panel) AM BBN.
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Figure B.3: Results obtained from the FS model using the everyday sounds detailed in
Table B.2. The square markers correspond to median FS values along the sample duration.
The errorbars represent the minimum and maximum FS. A high FS value (4.2 vacil) was
found for track 34 (Ducks’ quacking, not shown in the figure).

B.3.2 Results for everyday sounds

The FS values given by the model for the everyday sounds (and pink
noise) of Table B.2 are shown in Figure B.3. For speech samples (Tracks
1 and 2) the median FS values were higher than the reference values by
0.45 and 0.58 vacil. For the eight-talker babble noise (Track 23), string
concert (Track 29) and the pink noise (Track 61), the FS estimates seem
to be in line with the reference values. For the violin solo (Track 31)
there is an underestimation of the FS estimate (difference of 0.25 vacil).
The highest FS estimate was found for the ducks’ quacking (FS of 4.2
vacil).

B.4 Discussion

B.4.1 Artificial stimuli

Within the subset of artificial stimuli there is a reasonable agreement
between the FS model and the experimental data for AM tones and
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AM BBN noises. The model provides, however, overestimated FS values
for FM tones with modulation frequencies above 4 Hz (fmod > 4 Hz),
as shown in the middle panel of Figure B.2. Although the FS values
show the expected band-pass characteristic as a function of fmod, the
maximum FS sensation is estimated to be at fmod = 8 Hz (instead of
fmod = 4 Hz as for the experimental data). This shift in the maximum
response of the band-pass characteristic is also observed in the roughness
model (see Daniel & Weber, 1997, their Figure 9), where the maximum
R estimate was found for an fmod = 80 Hz (instead of fmod = 70 Hz).
It is known that when the FM comprises more than one critical band
a higher FS sensation is elicited. With a carrier frequency of 1500 Hz
(11.2 Bark) varied by a frequency deviation ∆f = ±700 Hz more than 6
critical bands are covered (between 800 Hz or 7.1 Bark, and 2200 Hz or
13.7 Bark). To investigate the behaviour of the FS model for different
frequency deviations, including deviations of less than one critical band,
the following ∆f values are tested: ±25, ±50 Hz (within one critical
band), and ±100, ±200 Hz (more than one critical band). Sounds with
a level of 72 dB SPL and carrier frequency fc = 851.8 Hz (7.5 Bark) are
conveniently chosen to allow a direct comparison of this new set of sinu-
soidally FM modulated tones with the hummer signals in acoustic mode
4 (see Chapter 2). The FS estimates for the new set of FM tones are
shown in panel (a) of Figure B.4. For all tested frequency deviations,
the FS estimates as a function of modulation frequency show a band-
pass characteristic. The maximum FS estimates are 0.12, 0.35, 0.92,
and 1.63 vacil for the FM tones with ∆f deviations of ±25, ±50, ±100,
±200 Hz, respectively. Only for tones with ∆f of ±25 Hz the maximum
estimate is found at fmod = 4 Hz, for the rest of the ∆f values the max-
imum FS is found at fmod = 8 Hz. The patterns of specific fluctuation
strength FSspec for the tones with fmod = 4 Hz are shown in panel (b)
of the figure. As can be seen in the figure, the FS model returns FSspec

patterns with significant contributions from critical bands that are not
directly excited by the FM tones. For the FM tone with ∆f = ±200 Hz
and fmod = 4 Hz that has an FS of 1.33 vacil only 0.09 vacil are found in
“on-frequency” critical bands (frequencies in the range 851.8 ±200 Hz,
i.e., between 6 and 8.8 Bark). In this example, the total off-frequency
contribution is 1.24 vacil, with 0.26 vacil for frequencies below 6 Bark and
0.98 vacil above 9 Bark. This asymmetric contribution is, at least partly,
due to the shallower slope of the critical-band filter bank towards higher
frequencies (see Equation B.2). Although there is a lack of experimental
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Figure B.4: (a) Fluctuation strength FS values and (b) specific fluctuation strength patterns
FSspec (only for tones with fmod = 4 Hz) for sinusoidally FM tones centred at 851.8 Hz with
a level of 72 dB SPL that are modulated using frequency deviations ∆f of ±25, ±50, ±100,
±200 Hz. For this carrier frequency, the first two ∆f values produce oscillations in frequency
within one critical band (between 7 and 8 Bark). The FM tone with ∆f of ±200 Hz covers
the frequency range between 651.8 Hz (6 Bark) and 1051.8 Hz (8.8 Bark).

evidence for the FS estimates shown in panel (a) of Figure B.4, the band-
pass characteristic built from experimental FS data collected by Garćıa
from 20 participants for 70-dB FM tones, fc = 1500 Hz, ∆f = ±700 Hz,
and 0 ≤ fmod ≤ 128 Hz (similar stimuli as used in panel (b) of Fig-
ure B.2) had its maximum FS value at fmod = 8 Hz (Garćıa, 2015, his
Figure 5.5(b)).

B.4.2 Everyday sounds
Within the set of everyday sounds there is a good approximation between
FS values and the estimates in the reference paper for the eight-talker
babble noise, the string concert and the pink noise samples. Higher FS
values for the male and female voices and the ducks’ quacking sounds
and a lower value for the violin sample. For the male, female and ducks’
quacking sounds our model provides high modulation depth m∗ values,
with a median across bands of 0.81, 0.95, and 0.86, respectively. The
median cross covariance k for the same samples are 0.50, 0.20, and 0.83.
It is noteworthy that the modulation depth m∗ values in our model are
assessed with respect to the DC values h0, independent of the level of
h0. This means that the higher FS estimates in our model may be a
consequence of the high m∗ values. However, it is also important to point
out that the estimates presented in the reference paper were obtained
from another FS algorithm and, therefore, it is unclear whether those
FS values have been validated experimentally.
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B.5 Further extension of the model

For a number of cases our FS model shows a reasonable agreement
with FS estimates obtained either experimentally (Fastl, 1983; Fastl &
Zwicker, 2007) or by using commercially available software (Schlittmeier
et al., 2012, using the PAK software). With respect to the literature,
our model provides an overestimation of the FS estimates for FM tones
(panel (b) of Figure B.2), male and female speech sounds (Tracks 1,
2), and ducks’ quacking sound (Track 34 in Figure B.3). It is unclear
whether this overestimation can be confirmed with existing experimen-
tal data, especially for natural sounds. The natural sounds that have
overestimated FS values (speech and ducks’ quacking sounds) are broad-
band and have large modulation depths m∗. We recommend to evalu-
ate the dependency of fluctuation strength on stimulus level for sounds
with inherent modulations (in amplitude and/or frequency) and to check
whether the generalised modulation depth m∗, as used in our model, is
a suitable measure for the variability of those modulations.
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C Auditory modelling: Properties of the
adaptation loops

The adaptation loops are included in models of the effective processing
of the auditory system. This stage simulates the adaptive properties of
the auditory system (see, e.g., Westerman & Smith, 1984; Kohlrausch et
al., 1992). These properties refer to changes in the gain of the system as
a consequence of changes in the level of the input signal.

The adaptation loops were first described by Püschel (1988) and then
adopted by Münkner (1993) and Dau et al. (1996a) in the first versions of
the models of the effective processing. A block diagram of the adaptation
loops stage is shown in Figure C.1. In this appendix an in-depth analysis
of their inherent properties is presented.

C.1 Input signal for the characterisation of the
adaptation loops

In general the input to the adaptation loops is a signal after band-pass
filtering and inner-hair cell processing (Stages 2−4 of the PEMO model).

Figure C.1: (Left) Chain of five adaptation loops. (Right) Digital implementation of the
adaptation loop i. The labels ini indicate the input to the adaptation loop i, which in
turn represents the input for the divisor of the next element. The input and output of the
adaptation loop i are indicated by Ii and Oi. We keep however the notation of ini (which
is equal to Ii) and si (Oi[n] = ini[n]/si[n− 1]) because the structure between ini and si is
an IIR LPF which is characterised by Equation C.2, whose constants are derived from τi.
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Figure C.2: Steady-state signal used to generate the analyses presented in this section. The
signal has unit amplitude, duration of 300 ms with the signal onset at 50 ms and it includes
an up-down cosine ramp of 1 ms. The cosine ramp introduces a similar effect to the pulse
as the inner-hair cell stage of the PEMO model would do. The right panel corresponds to
the same pulse as in the left panel but zoomed in to appreciate the raised cosine ramp.

In the analyses of this appendix we only account for the inner-hair cell
processing. Therefore, the input x[n] corresponds to a digital waveform
after half-wave rectification and a low-pass filtering with a cut-off fre-
quency of 770 Hz. The input x[n] is scaled between 0 and 1.

The analyses presented in the subsequent subsections (C.2 and C.3)
are generated using the pulse signal that is shown in Figure C.2. The
pulse signal has unit amplitude (steady-state input of 100 dB SPL),
a duration of 300 ms and it is preceded and succeeded by 50 ms and
450 ms of silence, resulting in a signal 800 ms long. To facilitate the
reproducibility of the analyses, the pulse was ramped up and down with
a cosine ramp of 1 ms. The cosine ramp introduces a similar effect to
the pulse signal as the stage of inner hair-cell processing of the PEMO
model would do (Stages 3 and 4 in the diagram of Figure 4.1, page 56)1.

C.2 Adaptation and use of the RC analogy

The adaptation stage comprises a chain of 5 adaptation loops, which is
shown in Figure C.1. Each adaptation loop corresponds to a Resistor-
Capacitor (RC) circuit that acts as a low-pass filter between the node
ini and the value si, with i = 1, 2, 3, 4, 5. The output si represents
the charging state of the low-pass filter. The low-pass filters are imple-
mented as first-order IIR filters and their time constants relate to their
cut-off frequencies according to: τi = 1/(2π · f cut-off). The outputs si
for a steady-state input of amplitude 1 are shown in Figure C.3. As

1For this analysis the effect of the Stages 1 (Outer and middle ear filtering) and 2 (ERB filter
bank) of the PEMO model were omitted.
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Loop τn Initial IIR Coeff. (fs = 44100 Hz)

i [ms] state s0,i a0 a1,i b0,i · 10−3

1 5 0.0032 1 -0.99548 4.52490
2 50 0.0562 1 -0.99955 0.45341
3 129 0.2371 1 -0.99982 0.17577
4 253 0.4870 1 -0.99991 0.08962
5 500 0.6978 1 -0.99995 0.04535

Figure C.3: (Left) Charge status of the five adaptation loops when feeding the steady-state
input shown in Figure C.2. The steady signal was preceded by the inner-hair cell processing,
so the onset and the offset of the signal were slightly smoothed. (Right) Some parameters
that characterise the adaptation loops. The steady-state charge was assessed considering a
minimum instantaneous amplitude of lvlmin= 1 · 10−5 (0 dB SPL) of the input signal.

can be seen in the figure, the charge of each RC component is a value
between the initial state of charge of the RC components and 1, and the
shorter the time constant the faster the charge or discharge occur. An
uncharged RC component amplifies the incoming signal. A fully charged
RC component does not alter the amplitude of the incoming signal. This
action produces rapid fluctuations (large amplitudes) while the RC com-
ponents are being charged and slower fluctuating amplitudes when they
are already charged. For any stationary input level I, i.e., when all RC
components are charged, an output of O =

√
I is obtained after the first

adaptation loop. After N = 5 adaptation loops the output is O = 2N
√
I.

This transformation provides approximately a logarithmic transforma-
tion as shown in panels A and C of Figure C.6 (see also Dau et al.,
1996a, page 3617). As shown in the Table on the right of Figure C.3,
this gives a stationary value of 0.6978 for an input of 0 dB SPL (mini-
mum amplitude of lvlmin= 1 ·10−5). With this minimum input value each
adaptation loop has initial conditions (initial-state levels s0,i) given by:

s0,i =
1

a0

· 2i
√

lvlmin with i = 1, 2, 3, 4, 5 (C.1)

The difference equation that characterises the RC component in each
adaptation loop i (between the input ini and the output si, see Fig-
ure C.1) is given by:

a0 · si[n]− a1,i · si[n− 1] = b0,i · ini[n] (C.2)

The previous difference equation corresponds to a first-order IIR LPF.
The coefficient a0 is always unity. The coefficients a1,i and b0,i are ob-
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Figure C.4: Output of the adaptation loops for the steady-state input shown in Figure C.2.
The maximum non-normalised output of the adaptation loops reach an amplitude of 206. In
the right panel the ordinate has been zoomed in. The initial state of charge of the adaptation
loops has an amplitude of 0.6978 and goes back to this value.

tained as:

a1,i = exp

(
− 1

τi · fs

)
b0,i = 1− a1,i (C.3)

The filter parameters are shown in the Table on the right of Figure C.3
for a sampling frequency fs = 44100 Hz.

The output of the adaptation loops stage for our test pulse is shown in
Figure C.4 (thick line in magenta). The thinner lines (not fully visible)
correspond to the intermediate signals after loops 1 to 4.

C.3 Output of the adaptation stage

An appropriate scaling has to be applied to the output O[n] of the adap-
tation loops stage that is shown in Figure C.4. As can be seen in the
figure, the steady-state point of the curve is 1 (because the input pulse
has an amplitude of 1) and the steady-state point of the curve after the
signal offset corresponds to the steady-state value of the last adapta-
tion loop (value of 0.6978). These amplitudes should be mapped in a
way that a value O[n] = 1 is converted into Ψ[n] = 100 and a value
O[n] = 0.6978 is converted into Ψ[n] = 0. The expression to obtain such
a normalisation, expressed in MU, is given by:

Ψ[n] = 100 · O[n]− 0.6978

1− 0.6978
(C.4)

where O[n] is the output of the last adaptation loop.
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Figure C.5: Output of the adaptation loops for two sine tones of frequency 500 Hz (panel A)
and 4000 Hz (panel B), level of 70 dB SPL including 2.5 ms raised cosine ramps. This figure
is similar to (Breebaart et al., 2001, their Figure 2). The onset and steady-state amplitudes
are 6949 and 59 [MU] for the 500-Hz tone and 5401 and 59 [MU] for the 4000-Hz tone,
respectively.

Note that with this scaling the minimum possible value (during un-
dershoot) is scaled to −230.9 MU (if a value O[n] = 0 is used in Equation
C.4). A maximum value occurs when all the loops are at rest (initial state
of charge) and a big change in the input amplitude is introduced. In our
example with the artificial pulse signal, this generates a non-normalised
amplitude of 205.5 which corresponds to an amplitude of 67605 MU.

In the next section a characterisation of the adaptation loops response
to ramped pure tones is provided. The scaled amplitudes Ψ[n] in MU
are reported for the onset and steady-state responses of the tones as a
function of their input level.

C.4 Input-output characteristic

In this section a set of pure tones is used to characterise the behaviour of
the adaptation loops. The pure tones have centre frequencies of 500 Hz
and 4000 Hz and a level that is varied from 0 to 100 dB SPL in steps
of 10 dB. The output for two signals presented at a level of 70 dB SPL,
duration of 300 ms, including 2.5 ms raised cosine ramps are shown
in Figure C.5. For these signals the maximum amplitudes correspond to
6900 and 5400 MU for the 500-Hz and 4000-Hz tones, respectively. These
values indicate that the adaptation loops produce a strong overshoot
effect. This overshoot should be related to maximum firing rates for
similar stimuli in the auditory nerve (Münkner, 1993; Dau et al., 1997a).
In the study by Westerman and Smith (1984) similar stimuli were used to
obtain neurophysiological measures of firing-rate patterns in the auditory
nerve of the Mongolian gerbil. In their study they found that 40-dB pure
tones generated an average firing rate of 642 spikes/s during the first

Page 183



C Auditory modelling: Properties of the adaptation loops

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

110

Input level [dB]

O
ut

pu
t a

m
pl

itu
de

 Ψ
 [M

U
]

A. 500−Hz sine tones
Average steady−state response

0 10 20 30 40 50 60 70 80 90 100

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

Input level [dB]

O
ut

pu
t a

m
pl

itu
de

 Ψ
 [M

U
]

B. 500−Hz sine tones
Onset response

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

110

Input level [dB]

O
ut

pu
t a

m
pl

itu
de

 Ψ
 [M

U
]

C. 4000−Hz sine tones
Average steady−state response

0 10 20 30 40 50 60 70 80 90 100

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

Input level [dB]

O
ut

pu
t a

m
pl

itu
de

 Ψ
 [M

U
]

D. 4000−Hz sine tones
Onset response

Figure C.6: Input-output characteristic function of the adaptation loops for 500-Hz (top
panels) and 4000-Hz pure tones (bottom panels). The error bars in panel C indicate the
minimum and maximum amplitude Ψ of the averaged amplitudes. They show that the fine
structure of the 4000-Hz tone in its steady-state part (Figure C.5, panel B) has not been
completely removed by the 770-Hz LPF. The error bars are not shown for the 500-Hz tone
(panel A) but they would be very large since almost no fine structure is removed by the
LPF.

20 ms of stimulation and an average of 107 spikes/s for the last 20 ms
(driven-steady-state component). This represents a ratio of 6 between
the rapid and steady averages.

The overshoot response of the adaptation loops as described so far
reaches values of nearly 13000 MU for the 500-Hz sine tone at 100 dB SPL,
as shown in panel B of Figure C.6. That overshoot has a ratio of more
than 130 times the steady-state value of 92.1 MU.

In the next section a compression stage introduced to the output O[n]
of the adaptation loops is described. This compression was introduced
by Münkner (1993) and adopted by Dau et al. (1997a) to limit the ratio
between the onset response and the steady-state response of the adapta-
tion loops.

The steady-state responses shown in Figure C.6 were obtained by
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Figure C.7: Chain of five adaptation loops including logistic growth compressors to limit
the overshoot response of the system.

averaging amplitudes in the last 20 ms of the internal representation
of 300-ms long sine tones. The onset responses were obtained as the
maximum of those amplitudes. We used similar integration periods as
reported by Westerman and Smith (1984).

C.5 Overshoot limitation

This stage introduces a limitation to the overshoot response of the adap-
tation loops in a way that the maximum output values Ψ[n] produce
an amplitude comparable to the average firing rate at the level of the
auditory nerve. The so called overshoot limitation is implemented as a
compressor with a compression ratio that follows a logistic growth.

The following expression is used to limit the individual outputs of
each adaptation loop (non-normalised outputs):

Ac,i =

ini for ini ≤ 1
2·Ci

1+exp
[
−2
Ci
·(ini−1)

] − (Ci − 1) for ini > 1 (C.5)

This equation implements a compression to the input ini with outputAc,i.
The compressor has a threshold of 1 and a limiter threshold threslim,i, that
depends on the constant Ci. In turn, the constant Ci depends on the
initial charge of each adaptation loop. The quantity (ini−1) corresponds
to the amount of exceedance above the non-normalised amplitude of 1.
The block diagram of the adaptation loops including the compressive
stage is shown in Figure C.7.

The constant Ci is obtained by defining an arbitrary limiter threshold
threslim,i. A limiter factor limit has to be chosen. This factor is related
to the actual limiter threshold threslim,i according to Equation C.6:
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Figure C.8: Input-output characteristic for the compressors used after loops 1 (left panel)
and 5 (right panel), when a limiter factor of 10 is used. With an initial status of charge
s0,1 = 0.0032 the limiter threshold threslim,1 turns to be 10 (C1 = 9). For an initial status of
s0,5 = 0.6978 the limiter threshold threslim,5 turns to be 5.1 (C5 = 4.1).
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Figure C.9: Output of the adaptation loops for the same two sine tones used in Figure C.5
but for an overshoot limitation of 10. The onset and steady-state amplitudes are 1437 and
64 MU for the 500-Hz tone and 1432 and 64 MU for the 4000-Hz tone, respectively.

threslim,i = (1− s2
0,i) · limit

C = threslim,i − 1 (C.6)

This means that the higher the initial state of charge s0,i the lower the
limiter threshold threslim,i. The input-output characteristic function of
the compressors used after loops 1 and 5 are shown in Figure C.8 for
limit= 10. This limiter factor has been adopted in almost every version
of the auditory models where an overshoot limitation has been applied.

The effects of adopting an “overshoot limitation of 10”, i.e., of using a
limiter factor limit= 10, on the two 70-dB pure tones used in Figure C.5
are shown in Figure C.9. The onset of the signals was reduced from 6949
to 1437 MU for the 500-Hz tone and from 5401 to 1432 MU for the 4000-
Hz tone. The average steady-state response of the signals was slightly
increased from 59 to 64 MU for both tones. Particularly for the 4000-Hz
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Figure C.10: Input-output characteristic function of the adaptation loops for 500-Hz pure
tones (top panels) and 4000-Hz pure tones (bottom panels) using an overshoot limitation
with a factor of 10. The error bars in panel C indicate the minimum and maximum amplitude
Ψ of the averaged amplitudes. They show that the fine structure of the 4000-Hz tone in
its steady-state part has not been completely removed by the 770-Hz LPF. The grey lines
indicate the input-output functions when no overshoot limitation is used (as in Figure C.6).

tone, its steady-state response should remain unmodified since its am-
plitudes in the last 20 ms never go above the compression threshold of
1 (i.e., Ψ =100 MU). The slight increase in the average Ψ amplitudes is
produced, however, by the fact that a lower Ψmax introduces less com-
pression to subsequent samples in the adaptation loops as a consequence
of entering lower amplitudes to the divisor elements. This leads to a
steady-state point that is reached somehow later in time in comparison
to the situation where the adaptation loops are not limited.

The input-output characteristic functions for the steady-state and on-
set responses of the adaptation loops for limit= 10 are shown in Fig-
ure C.10. The steady-state response of the 4000-Hz tone is shown with
error bars indicating the maximum and minimum Ψ amplitudes. This
information is shown to point out that the fine structure of the 4000-Hz
tone is not fully removed by the fifth-order 770-Hz LPF as could be as-
sumed when inspecting the panel B of Figure C.9. From the right panels
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Figure C.11: Output of the adaptation loops for the same two sine tones of Figure C.5 but
for an overshoot limitation of 5. The onset and steady-stage amplitudes are 614 and 59 MU
for the 500-Hz tone and 614 and 66 MU for the 4000-Hz tone, respectively.

of Figure C.10 it can be seen that the onset responses are (1) almost not
affected for input levels up to 20 dB, (2) compressed for levels between
20 and 50 dB, and (3) limited for levels above 50 dB.

The ratio between onset and steady-state responses is shown in Fig-
ure C.13. The ratio considering the limiter factor limit= 10 is indicated
by the black lines in the figure. For tones of 50 dB or more, the ratio
ranges from a factor of about 35 down to a factor of 15. The behaviour
is similar in that level range for the tones of 500 and 4000 Hz. The
ratio stays above the intended limitation of 10 times the steady-state
level. In other words, with an overshoot limitation of 10, the adapta-
tion loops are still overestimating the signal onsets compared with the
neurophysiological findings of Westerman and Smith (1984).

For sounds with prominent onset characteristics, as it is the case for
the piano sounds used in Chapters 3, 4, and 5, an overshoot limitation
with a factor of 5 was adopted. The use of this new limiter factor limit= 5
is the key for the success of the simulations of perceptual similarity in
this thesis. The effect of such a limitation for the 500 and 4000-Hz tones
is shown in Figure C.11 and the underlying input-output characteristic
functions are shown in Figure C.12. The ratio between onset and steady
state response is indicated by the blue lines in Figure C.13. With the
overshoot limitation of 5, the ratio stays below a factor of 15 for levels
of 50 dB or more, and below 10 for levels above 65 dB (down to a factor
of 5.8). These ratios are closer to the intended overshoot limitation
described in the literature.

To conclude the revision of the properties of the adaptation loops
stage, we wanted to point out one aspect about the use of low level
input signals into the system. As can be seen in panels C and D of
Figure C.11, the 4000-Hz tones need to have a level of at least 8 dB
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Figure C.12: Input-output characteristic function of the adaptation loops for 500-Hz pure
tones (top panels) and 4000-Hz pure tones (bottom panels) using an overshoot limitation
with a factor of 5. The error bars in panel C indicate the minimum and maximum amplitude
Ψ of the averaged amplitudes. They show that the fine structure of the 4000-Hz tone in
its steady-state part has not been completely removed by the 770-Hz LPF. The grey lines
indicate the input-output functions when no overshoot limitation is used (as in Figure C.6).

SPL to generate a non-zero output. Although only instantaneous levels
below 0 dB SPL are ignored (amplitudes below 1 · 10−5), the tones are
also subjected to the fine-structure removal (use of the 770-Hz LPF).
From the input-output characteristic functions of the figure, it can be
inferred that this processing introduces an attenuation between 6 and
8 dB for frequency components of 4000 Hz.
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Figure C.13: Ratio between onset and steady responses for 500 (panel A) and 4000-Hz (panel
B) tones for an overshoot limitation with factors of either 5 or 10. As discussed in the text,
the 4000-Hz tones are more affected by the attenuation introduced by the fifth-order 770-Hz
LPF, generating null-amplitude outputs for tones with levels below 8 dB SPL.
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auditory model

In this appendix the procedure we followed to “calibrate” the auditory
(PEMO) model used in Chapters 4 and 5 is described. The calibration
consisted of finding a value for the variability σ of the internal (Gaussian)
noise in a way that the performance of the artificial listener meets a
given criterion. More specifically, every time a parameter in the auditory
model was added, removed, or modified, the variability σ of the internal
noise was adjusted (see Equation 4.5 in Chapter 4) to fulfil an intensity-
discrimination task with a 70.7% score at a predefined test intensity.

In this appendix, two different σ values were used. A standard devi-
ation σ = 3.4 MU was used to replicate simulation results of the PEMO
model for the auditory tasks reported by Jepsen et al. (2008). A value
of σ = 10.1 MU was used to limit the performance of the artificial lis-
tener to an intensity-discrimination task using piano sounds. The latter
σ value was used to obtain the simulation results shown in Chapters 4
and 5. In this appendix we do not provide a critical analysis of how
similar our simulation results using the PEMO model are with respect
to the results presented by Jepsen et al. (2008). The objective was to
replicate reported simulation results with the PEMO model as used in
this thesis. The interested reader may directly compare our results to
those presented by Jepsen et al. (2008).

D.1 Simulation procedure

All simulations reported in this appendix were run using the AFC toolbox
for MATLAB (Ewert, 2013). In this toolbox an artificial listener was
enabled to conduct the listening experiments presented in the subsequent
sections. The artificial listener processed the incoming sounds using the
auditory PEMO model. The experiments were all implemented as 3-
AFC tasks using a two-down one-up tracking rule. Both the adjustable
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Figure D.1: Block diagram of the PEMO model. Refer to Chapter 4 for a detailed description
of each of the model stages.

parameter and the suprathreshold level (used to derive the template in
the auditory model) differed from task to task and are clearly indicated
in the corresponding experimental description. Each simulated threshold
was assessed 6 times. The median and IQR of the simulated thresholds
based on those 6 estimates are reported.

D.2 Configuration of the auditory model

The block diagram of the PEMO model is shown in Figure D.1 (replot-
ted from Figure 4.1). The final set of parameters used in our model
simulations are listed in this section.

Stage 1. Outer and middle-ear: two cascaded 512-tap FIR filters
that produce the combined frequency response shown in Figure 4.2.

Stage 2. Gammatone filter bank: set of 30 or 31 frequency bands
with fc between 80 and 8000 Hz, spaced at 1 ERBN , as described by
Hohmann (2002). Only the real part of the complex-valued outputs of
the filter bank are used.

Stage 3 and 4. Half-wave rectification and LPF: the half-wave
rectification is followed by a chain of five cascaded first-order IIR filters
with fcut-off= 2000 Hz. The chain of filters produces a combined response
that has an fcut-off of 770 Hz.

Stage 5. Adaptation loops: the adaptation loops have time constants
τ = 5, 50, 129, 253, 500 ms. A limiter factor limit= 5 is used.

Stage 6. Modulation filter bank: the modulation filter bank we used
is as reported by Jepsen et al. (2008).

Stage 7. Central processor: the decisions made by the model used
all auditory channels (30 or 31 bands) with centre frequencies between
80 and 8000 Hz.
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Figure D.2: Diagram of an increment-detection experiment implemented as a 3-AFC task
where the first interval contains the target signal. In the course of an adaptive track the
pedestal signal I stays at a constant level while the level of the increment signal Ii is
adjusted using a two-down one-up rule. The increment signal is a scaled version of the
pedestal signal, meaning that we simulate a coherent (in-phase) addition of the pedestal
and increment signal. In this appendix we describe the intensity differences as JND values
in level ∆L. In this way, for a pedestal level L of 60 dB, an increment signal Li of 41.8 dB
produces a total level Lt of 61 dB (i.e., a 1-dB increment).

D.3 Intensity discrimination

The discrimination of pure tones and broad-band noise is known to have
JNDs in intensity (∆I) that are approximately a constant fraction of
their intensity I (Miller, 1947; Rabinowitz, 1970). We describe intensity
differences as JNDs ∆L in level. A diagram of the experiment imple-
mented as a 3-AFC task is shown in Figure D.2. The pedestal signal
has a level L that is kept constant. The increment signal is a scaled (in-
phase) version of the pedestal signal and it has a level Li that produces a
signal with a total level Lt = 20 · log10(10L/20 + 10Li/20). The level differ-
ence ∆L produced by the increment level Li is, therefore, ∆L = Lt −L,
expressed in dB.

D.3.1 Implementation as an adaptive procedure
For an implementation of the increment-detection task using an adaptive
procedure it is convenient to express the increment level Li as a level
relative to the pedestal (test) level L. In this way, an increment level
Li rel = −18.2 dB is a level 18.2 dB below the pedestal level L. A level
Li rel = −18.2 dB produces a level difference ∆L of 1 dB. For L = 60 dB,
a level Li rel = −18.2 dB corresponds to Li = 42.8 dB, producing a total
level Lt = 61 dB and therefore a ∆L = 1 dB.

The parameters of the adaptive procedure used for three intensity-
discrimination experiments –using pure-tones, broad-band noise, and pi-
ano sounds– were as follows:

• Fixed parameter: test (pedestal) levels L from 20 to 80 in steps of 10 dB (7
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Figure D.3: Results of the intensity-discrimination task with (a) pure tones, and (b) broad-
band noise.

conditions = 7 adaptive procedures). For the intensity discrimination with anechoic
piano sounds (as in Chapter 3) only one level L was tested for each piano (7 pianos
= 7 adaptive procedures).

• Adjustable parameter: increment level Li rel.

• Starting value: Li rel = −30 dB (∆L = 0.27 dB)

• Step size: Li rel was adjusted in steps of 4, 2, 1, and 0.5 dB, i.e., the step size was
halved every two reversals until a step size of 0.5 dB was reached.

• Number of reversals: 12. The median of the last 6 reversals (at the step size
of 0.5 dB) is used to estimate the JND in level (∆L) for the corresponding test
(pedestal) level.

• Suprathreshold level: Li rel,supra = −5 dB (∆L = 3.9 dB)

D.3.2 Evaluation of pure-tones and broad-band noise
(Obtained standard deviation of the internal noise N(0,σ2): σ=3.4 MU)

The pure tones had a centre frequency of 1000 Hz. The duration of
the tones was set to 800 ms and they included 125 ms cosine ramps.
The broad-band noises had a flat frequency response between 100 and
10000 Hz. The duration of the noises was set to 500 ms and they included
50 ms cosine ramps.

Reference data

The reference data for increment-discrimination thresholds obtained us-
ing the PEMO model can be found in (Jepsen et al., 2008, their Fig. 3)
(not shown in this appendix).
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Figure D.4: Results of the increment-detection task simulated using the seven Viennese
piano sounds. The median thresholds together with their IQRs are shown. The grey squares
indicate the threshold estimation for each staircase procedure.

Simulation results

A variability of σ = 3.4 MU for the internal noise was first obtained to
reach a discrimination threshold ∆L = 0.5 dB for the pedestal level L =
60 dB SPL using pure tones. The results for the intensity-discrimination
task were then obtained for all 7 pedestal levels for pure tones and broad-
band noises. Those results are shown in panels (a) and (b) of Figure D.3.
The obtained σ value was used to replicate 5 of the 6 auditory tasks
evaluated by Jepsen et al. (2008) using the PEMO model, which are
shown later in this appendix.

A lower or higher variability of the internal noise (given by its stan-
dard deviation σ) would lead to lower (more sensitivity of the model) or
higher JNDs in level (less sensitivity of the model), respectively. This is
particularly important for the evaluation of deterministic stimuli (e.g.,
pure tones) or when the same sound excerpt is evaluated repeatedly
(e.g., our set of piano sounds). For instance, to increase the JND from
∆L = 0.5 dB (as just reported) to ∆L = 1 dB1 for the 60-dB pure tone,
a standard deviation of σ = 6.7 MU is required.

D.3.3 Evaluation of piano sounds
(Obtained standard deviation of the internal noise N(0,σ2): σ=10.1 MU)

The same C#5-note recordings played on the Viennese pianos described
in Chapter 3 and 4 were used (see Table 3.1 in Chapter 3). The pedestal
(Leq) level of the pianos was not adjusted. The Leq values of the pianos
range from 55.4 to 67.2 dB.

Reference data

Due to the high sensitivity of the PEMO model (low ∆L value) when
evaluating the intensity-discrimination task using piano sounds and the

1A 1-dB criterion was used to calibrate the low-pass modulation model (Dau et al., 1996a, 1996b)
and the first versions of the PEMO model (Dau et al., 1997a, 1997b).
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obtained σ of 3.4 MU, we decided to decrease the sensitivity of the model
to obtain a target discrimination ∆L of 1 dB. We did not collect data
to confirm the appropriateness of this criterion. Nevertheless, due to
the complex spectro-temporal characteristics of the piano, it is possible
that not only another target JND is needed but also a different auditory
task. Another auditory task that could be used for setting a limit to the
PEMO model is a modulation-increment detection (see, e.g., Ewert &
Dau, 2004).

Simulation

The results obtained using an internal (Gaussian) noise with mean µ = 0
and standard deviation σ = 10.1 MU are shown in Figure D.4. An
average discrimination ∆L =0.86 dB across pianos was obtained. The
(median) thresholds per piano ranged from 0.73 dB (P7) to 1.15 dB (P6).

D.4 Reproduction of existing simulation data
(Using the internal noise N(0,σ2) with σ=3.4 MU)

D.4.1 Tone-in-noise experiment
The target sounds were pure tones with a centre frequency of 2000 Hz
and durations of 5, 15, 20, 35, 50, 100 and 200 ms. The sounds had 2.5 ms
raised-cosine ramps. The sounds were temporally centred in the masker.
The masker was a running Gaussian noise limited to the frequency range
between 20 and 5000 Hz. The masker had a duration of 500 ms ramped
up and down with 10 ms cosine ramps.

Adjustable parameter: level L of target (tone) sounds.

Starting value: L = 75 dB.

Number of reversals: 12 (6 reversals in the measurement phase).

Suprathreshold level: L supra = 85 dB

Reference data

The reference data for this task using the PEMO model can be found in
(Jepsen et al., 2008, their Fig. 4) (not shown in this appendix).

Simulation

The results for the tone-in-noise task using the PEMO model are shown
in panel (a) of Figure D.5.

D.4.2 Forward masking
The masker was a Gaussian noise with frequencies between 20 and 8000 Hz
with a duration of 200 ms including 2 ms raised-cosine ramps. The
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(b) Forward masking
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Figure D.5: Results of the (a) tone-in-noise experiment, and (b) the forward-masking ex-
periment at three masking levels.

masker level was set to either 40, 60 or 80 dB. The signal was a 4000-Hz
pure tone with a duration of 10 ms having a Hanning window applied
over its entire duration. The tone had a temporal separation between
the masker offset and the signal onset of either -20, -10, -5, 0, 5, 10, 20,
40, 80 or 150 ms. The separations between -20 and -5 ms correspond to
simultaneous masking conditions, while from 0 to 150 ms correspond to
forward masking conditions.

Adjustable parameter: level L of target (tone) signals.

Starting value: L supra = L masker + 10 dB.

Number of reversals: 12 (6 reversals in the measurement phase).

Suprathreshold level: L supra = L masker + 10 dB.

Reference data

The reference data for this task using the PEMO model can be found in
(Jepsen et al., 2008, their Fig. 6) (not shown in this appendix).

Simulation

The results for the tone-in-noise task using the PEMO model are shown
in panel (b) of Figure D.5.

D.4.3 Forward masking: Growth-of-masking
This experiment was set-up as a forward masking task with pure tones.
Two conditions were tested: on-frequency listening (tone and masker
were in the same band, in this case both tones had a frequency of
4000 Hz) and off-frequency listening (the tone had a frequency of 4000 Hz,
the masker had a frequency of 2000 Hz). The detection threshold for the
tone level was determined at different masker levels: 30 to 80 dB in steps
of 10 dB for the on-frequency listening condition and 60, 70, 80, 85 dB
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(c) Off−frequency

Figure D.6: Results of the growth-of-masking curves in a forward masking experiment using
(a) an on-frequency masker, and (b,c) an off-frequency masker. Due to the systematic
deviation of the thresholds in panel (b) with respect to the literature (magenta markers),
simulations obtained with the PEMO model using only one audio frequency channel (fc =
4000 Hz) and no outer and middle ear filters are shown in panel (c). The grey curves indicate
the detection thresholds for the target sounds staring right after the offset of corresponding
masker. The black curves indicate the detection thresholds for the target sounds starting
30 ms after the offset of the corresponding masker.

for the off-frequency listening condition. The signal onset occurred either
0 ms or 30 ms after the masker offset.

Adjustable parameter: level L of target signals.

Starting value: L supra = L masker + 10 dB.

Number of reversals: 12 (6 reversals in the measurement phase).

Suprathreshold level: L supra = L masker + 10 dB

Reference data

The reference data for this task using the PEMO model can be found
in (Jepsen et al., 2008, their Fig. 7). Detection thresholds for (only)
off-frequency maskers from the literature are indicated by the magenta
curves in panels (b) and (c).

Simulation

The results for the growth-of-masking experiment in a forward mask-
ing task using the PEMO model are shown in Figure D.6. The detec-
tion thresholds obtained using on-frequency and off-frequency maskers
are shown in panels (a) and (b), respectively. The thresholds shown in
panel (b) are on average 13.8 and 17.6 dB above the thresholds from
the literature (magenta markers) for the signal onsets 0 and 30 ms after
the masker offset, respectively. The simulations were re-run using the
PEMO model in a single-channel configuration and bypassing the outer
and middle ear filtering. This is the configuration of the model reported
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Figure D.7: Spectral masking patterns for four stimulus conditions: (a) tone-in-tone TT,
(b) tone-in-noise TN, (c) noise-in-tone NT, and (d) noise-in-noise NN. In panels (a) and (b)
simulated absolute thresholds for tones T and noises N are indicated by the magenta dotted
lines, respectively.

for the PEMO model data (Jepsen et al., 2008). The results of this
simulation are shown in panel (c) of Figure D.6.

D.4.4 Simultaneous masking patterns
The target and reference signals were either a tone or an 80-Hz wide run-
ning Gaussian noise with a duration of 220 ms and 10 ms raised-cosine
ramps. The signals had a centre frequency of 250, 500, 900, 1000, 1100,
2000, 3000, and 4000 Hz. The masker was always centred at 1000 Hz and
it had a level of 45 or 85 dB. There were four possible target-reference
signal combinations: (1) tone signal and tone masker (TT), (2) tone sig-
nal and noise masker (TN), (3) noise signal and tone masker (NT), and
(4) noise signal and noise masker (NN). In the TT condition the masker
had a 90o phase shift. For the other conditions random phases were used.

Adjustable parameter: level L of target signals.

Starting value: L = 75 dB.

Number of reversals: 12 (6 reversals in the measurement phase).

Suprathreshold level: L supra = L masker + 10 dB
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Reference data

The reference data for this task using the PEMO model can be found in
(Jepsen et al., 2008, their Fig. 5) (not shown in this appendix) and they
are reported as masked thresholds which are obtained as the detection
thresholds in dB SPL referenced to the absolute threshold of hearing for
the target signals.

Simulation

The results for the simultaneous-masking experiment using the PEMO
model are shown in Figure D.7. The results are shown as masked thresh-
olds in dB to allow a direct comparison with values from the literature.
First the absolute thresholds for the target signals (tones T or noise N)
centred at the test frequencies were obtained, which are indicated by
the magenta dotted lines in panels (a) and (d) for tone T and noise N
targets. The masked thresholds were obtained by subtracting those ab-
solute thresholds from the simulated detection thresholds for the four
target-reference signal combinations. The resulting curves are shown in
panels (a-d) for tone-in-tone, tone-in-noise, noise-in-tone, and noise-in-
noise conditions, respectively.
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E Auditory modelling: Other approaches to assess
the memory template

This appendix contains a description of different template approaches
that were evaluated during the development of a central processor for
the PEMO model in the context of the perceptual similarity task de-
scribed in Chapter 3 and simulated in Chapter 4. The finally adopted
template approach is described in Chapter 4. This appendix is devoted
to the description of those template approaches that did not lead to a
satisfactory explanation of the experimental results of Chapter 3. We
believe, however, that it is worthwhile to report these approaches indi-
cating the reasons we had to leave them aside.

We start by providing some theoretical background behind the idea
of memory templates in the context of an optimal detector (see Green &
Swets, 1966, their Chapters 6 and 7). This is followed by a description of
the criteria we used to choose possible template approaches. We finally
describe two of these alternative approaches and report the argument
that lead us to discard them.

E.1 Theory for the derivation of a memory
template

In a 3-AFC task approached using an artificial listener (in this disserta-
tion the PEMO model), the three trial intervals can be compared with an
“expected signal” or template Tp. If the representations of each interval
are labelled as Rx with x = 1, 2, 3, then the template is derived from the
representation that is related to the target sound (Rx,t) at a condition
that is easy to discriminate, i.e., at a condition that is above threshold
(suprathreshold condition). In a detection-in-noise experiment, such a
condition is given when the background noise is low (i.e., high SNR)
which, by convention, is indicated as Rx,t(MT ). In the course of a sim-
ulated experiment the artificial listener chooses as target interval Rx,t
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(that may be correct or not) the interval that has the highest similarity
with Tp. One mathematical way to express this idea is to assess the CCV
value between Rx and Tp. The expression to assess the CCV value in
continuous and discrete time domains is given by:

CCVx =

∫ T

0

Rx(t) · Tpdt ≈
N∑
n=1

Rx[n] · Tp[n]∆t (E.1)

In a simplified form:

CCVx =
1

fs

N∑
n=1

Rx[n] · Tp[n] (E.2)

where fs is the sampling frequency of the internal representations Rx

and Tp. The representations Rx and Tp are N -samples long. This op-
eration can be interpreted as a “template weighting” and is referred in
the literature to as template-matching. The assessment of CCV values
can in fact be performed along more dimensions of Rx and Tp as long
as the samples Rx[n] and Tp[n] in the product of Equation E.2 belong
to the same dimension. In general, the internal representations using
the PEMO model have three dimensions: time, audio frequency, and
modulation frequency.

In Equation E.2, the template Tp sums up (or subtracts) the parts
of the representation Rx that have the same (or a different) sign, em-
phasising them (or de-emphasising them) by an amount defined by the
sample-by-sample amplitudes of Tp. It is important to note that, in or-
der to introduce an adequate weighting to the representation Rx, the
template Tp should have unit energy.

The template approaches described in this appendix consider different
ways to use Equation E.2: (1) by using Rx (as shown in the equation) or
∆Rx (i.e., subtracting the noise-alone representation), and (2) by using
signed or unsigned samples in the equation.

E.1.1 Template weighting: Normalisation of the template

One property that has to be satisfied by the derived template Tp is to
have unit energy (Dau et al., 1996a):

E =

∫ T

0

T 2
p (t)dt ≈ 1

fs

N∑
n=1

T 2
p [n] = 1 (E.3)
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where the left hand expression assumes a template Tp in the continuous
time domain and the right hand expression in the discrete time domain.
The constants T and N represent the duration of the template in seconds
and in samples, respectively. The discrete representation has a time
resolution ∆t = 1/fs [s], with fs being the sampling frequency of the
model representation in Hz.

To derive a template meeting the condition imposed by Equation E.3,
a scaled representation of the target interval Rx,t(MT ) at a suprathresh-
old SNR can be obtained. In this way, the template has the form
Tp = c ·Rx,t(MT ), and the constant c can be obtained as:

c =

√
fs∑N

n=1R
2
x,t[n]

(E.4)

E.2 Criteria to be met

E.2.1 Template in a similarity task

The derivation of the template Tp in a similarity task where two (piano)
sounds are compared, as described in Section 3.2.3, must be somehow
related to: (a) the two test sounds, the target and “reference” pianos,
and; (b) two or more realisations of a noise that can efficiently mask the
properties of both piano sounds. To account for the latter aspect, noise
is always added in every piano presentation (in this thesis they are ICRA
noises). For the first aspect, the internal representations of the target
piano Rt needs to be used but the representation of the reference piano
Rr might also be needed, because the discrimination between pianos
depends on how different they are from each other.

Finally, the internal representation of the noises alone RN might
also be used in the template derivation. Despite the fact that in the
instrument-in-noise test, noise alone conditions are never presented, the
listener might be able to evaluate the similarity among intervals based
on how prominent the reference and target piano sounds are with respect
to the (ICRA) noises.

E.2.2 Maximisation of the correlation between the template
and the internal representations

It is relevant that the template Tp is maximally correlated with each of
the intervals Rx because it may be expected that human listeners try to
maximise the match between the expected signal (that we assumed to
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be “learned”) and each of the intervals that are heard. To maximise the
CCV values, different time alignments of the involved internal represen-
tations should be evaluated during either: (a) the template derivation,
or (b) the correlation between the template and target and reference in-
tervals. The relevance of this aspect relies on the fact that the template
Tp and the representations Rx are digitised signals, which are sensitive to
any eventual misalignment among them. This is in contrast to the ratio-
nale of a memory template, where the awareness of the artificial listener
about the target signal should be independent of the specific moment,
i.e., the specific time alignment, when the test sounds are heard.

E.2.3 Compatibility of the template approach

The template approach should be compatible with the auditory tasks
described in Appendix D. This is motivated by the fact that a detection-
in-noise task could also be seen as a similarity task, where a comparison is
made between the three intervals (signal-plus-noise and two noise-alone
intervals) and the template. The comparison is based on CCV values
and the artificial listener chooses as the interval containing the target
sound the interval that produces the highest CCV value, i.e., the “most
similar” interval with respect to the template.

E.2.4 Adjustment of the sensitivity of the artificial listener

The use of different template approaches may introduce changes in the
sensitivity of the artificial listener. To compensate for eventual changes in
the sensitivity of the artificial listener (i.e., the PEMO model), the vari-
ability σ of the internal noise is checked and adjusted (if needed) by re-
running the increment-detection experiment described in Section D.3.3.

E.3 Simulation procedure

All simulations were run using the AFC toolbox for MATLAB (Ewert,
2013). In this toolbox an artificial listener was enabled to conduct
the listening experiments. The artificial listener processed the (whole-
duration) sounds using the auditory PEMO model with the set of param-
eters listed in Chapter 4 using two overshoot limitation factors (limit= 10
and limit= 5) in the adaptation loop stage. The experiments were all im-
plemented as 3-AFC tasks using a two-down one-up tracking rule.

For each template approach, the experiments were always run in the
following order: (1) Increment-detection using C#5 (anechoic) piano
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sound (see Section D.3.3), (2) instrument-in-noise experiment, and (3)
forward-masking experiments (see Section D.4.2). The first experiment
was run to assess the amount of variance σ needed for the internal noise of
the central processor, the second experiment was run to evaluate the ar-
tificial listener’s performance in our instrument-in-noise task. The third
experiment was run to evaluate the compatibility of the adopted ap-
proach with the estimation of forward-masking thresholds. The forward-
masking experiment was chosen with the motivation to replicate the
threshold estimation of one of the detection-in-noise tasks reported in
Appendix D.

E.3.1 Stimuli

The same C#5-note (anechoic) recordings played on the Viennese pi-
anos described in Chapter 3 and 4 were used for the simulation of the
instrument-in-noise experiment. Only a subset of 9 piano pairs (of the 21
possible combinations) were used. The selected 9 piano pairs are well dis-
tributed along the experimentally-obtained scale of similarity and they
were also used in the exploratory simulations presented in Chapter 4.
The selected piano pairs were: pair 12, 15, 16, 23, 26, 27, 37, 45, and 47.

E.4 Approach 1: Piano-plus-noise templates

Description

In this approach one template is used. The template Tp is derived from
the representation of the interval that contains the target piano sound
(“target piano-plus-noise” interval). The approach is very similar to the
derivation of templates that has been adopted so far in the literature
(see, e.g., Dau et al., 1996b, 1997a; Jepsen et al., 2008). The target
piano-plus-noise interval (presented once) is treated as the signal-plus-
noise interval of a detection-in-noise experiment. Correspondingly the
reference piano-plus-noise intervals (presented twice) are treated as the
noise-alone intervals of the detection task.

In this approach the CCV between the template Tp and the piano-
plus-noise sounds for the intervals x = 1, 2, and 3 were obtained using
two variants:

CCVx =
1

fs

N∑
n=1

Rx[n] · Tp[n] (E.5)

and
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CCVx =
1

fs

N∑
n=1

∆Rx[n] · Tp[n] (E.6)

Criterion of the artificial listener

If interval x = 1 of the 3-AFC trial contains the target piano, then the
artificial listener makes a correct decision if:

max
{

ĈCVx,t

}
= ĈCV1,t (E.7)

The hat symbol indicates that internal (Gaussian) noise N(0,σ2) is added
to the CCVx values before the artificial listener makes a decision.

Why not use this approach

The simulated thresholds thressim ranged from −7.0 to 2.5 dB for vari-
ant 1 (Equation E.5) and from −3.5 to 5.5 dB for variant 2 (Equa-
tion E.6). These reduced ranges of threshold values contrast with the
range of experimental thresholds from thresexp,min= −1.75 dB and thresexp,

max= 20.75 dB that is reported in Chapter 3. Due to this large discrep-
ancy and because in this approach the template derivation used only the
target piano representation Rt, we decided to add explicit information
of the reference piano Rr in Approach 2.

E.5 Approach 2: Difference representation

Description

In this approach, the representation of the reference piano Rr is sub-
tracted from the representation of the target piano Rt. The difference
representation ∆R = ‖Rt − Rr‖ is further analysed. The difference
representation is used now as a quantitative distance measure between
representations. Another study where an unsigned difference between in-
ternal representations has also been used is given by Agus et al. (2012).
The expression to assess the CCV values using the difference represen-
tations has to be adjusted, because the artificial listener does not know
which interval contains the target and which of the other two intervals
contains the reference signals. The expression to obtain the CCV value
can be written as follows:

CCVxy =
1

fs

N∑
n=1

‖∆Rxy[n]‖ · ‖Tp[n]‖ (E.8)
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the subindexes x and y indicate that the representation Ry from the
interval y is subtracted from the representation Rx from the interval x
(∆Rxy = Rx −Ry).

Criterion of the artificial listener

Three CCV values are obtained using Equation E.8 using the internal
representations of intervals x = 1, 2, and 3 namely CCV12, CCV13, and
CCV23. If the template Tp has also been derived from a difference rep-
resentation between target and reference sounds, and we assume that
interval 1 contains the target sound, then ∆R12 and ∆R13 should pro-
duce a higher CCV than ∆R23. This is because ∆R23 does not account
for the representation of the target sound. One way to translate this into
a discriminability outcome is to look for the lowest CCV value (in the
example CCV23). The artificial listener then chooses the “other” interval
as the target interval (in the example interval x = 1).

Why not use this approach

The simulated thresholds thressim had a similar range of values com-
pared with those reported for the two variants of Approach 1, from −8.0
to 3.75 dB. We faced, however, an additional problem for generating
difference representations ∆Rxy namely to find out a systematic way of
ensuring maximum (and reliable) CCV values between ∆Rxy and the
template. Different “types of difference representations” need to be gen-
erated during the simulation of the similarity task, namely for (1) deriv-
ing the template, (2) deriving the difference between target and reference
representations (R12 and R13), and (3) deriving the difference between
reference representations R23. For each of those cases a different align-
ment of the internal representations can increase or decrease the obtained
CCV values.

In order to try another approach where both the target and reference
piano representations can be used by the artificial listener but, at the
same time, reducing the dependency of the model judgements on find-
ing an appropriate alignment criterion, we decided to adopt a criterion
similar to that of Approach 1 but using two templates: Tp as in Ap-
proach 1 (labelled as Tp,t) and another template derived in a similar
way from the reference piano sound (labelled as Tp,r). Such a template
was adopted and further investigated in Chapter 4.
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