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Abstract xi

Mathematical models of tumour-immune interactions: discrete and contin-
uum approaches

Abstract

The past decade’s technological advances have led to the development of immunotherapies, which dif-
fer from conventional anti-cancer therapies by targeting tumour-immune interactions to enhance the
effectiveness of the anti-tumour immune response. However, these interactions are based on complex
mechanisms that make it difficult to design treatments to effectively boost the immune response. For
this reason, mathematical models are useful tools for reproducing and predicting the spatio-temporal
dynamics of interactions between tumour cells and immune cells, in order to test the potential of new
therapeutic techniques in a flexible and affordable way. In this thesis, we develop discrete and contin-
uum models to describe the spatio-temporal dynamics of the interactions between a solid tumour and
cytotoxic T cells, with the goal to investigate the biological settings which allow for the clearance or the
escape of the tumour. The discrete models developed in this work track the dynamics of single cells, thus
permitting the representation of single cell-scale mechanisms, and are sufficiently detailed and specific
to qualitatively investigate and reproduce empirical observations. The continuum models considered are
not formulated on the basis of phenomenological arguments, which can hinder a precise mathematical
description of crucial biological and biophysical aspects, but they are formally derived from the discrete
models through suitable asymptotic methods. The results of computational simulations of the discrete
models show that there is an excellent quantitative agreement between them and numerical solutions
of the corresponding continuum models, and further clarify the conditions for successful and unsuccess-
ful immune surveillance. Ultimately, the mathematical models presented in this thesis may provide a
framework to help biologists and clinicians gain a better understanding of the mechanisms that are re-
sponsible for immune escape, and they may be promising tools in the exploration of therapeutic strategies
to improve the effectiveness of the overall anti-tumour immune response.

Keywords: tumour-immune interactions, immunotherapy, discrete models, continuum models, numer-
ical simulations

Résumé

Au cours de la dernière décennie, les progrès technologiques ont permis la conception d’immunothéra-
pies qui, contrairement aux thérapies anticancéreuses classiques, ciblent les interactions entre cellules
tumorales et cellules immunitaires, dans le but de renforcer l’efficacité de la réponse immunitaire. Ce-
pendant, ces interactions reposent sur des mécanismes complexes, ce qui rend difficile la conception de
traitements efficaces. Par conséquent, les modèles mathématiques sont des outils utiles pour reproduire
la dynamique spatio-temporelle des interactions entre les cellules tumorales et les cellules immunitaires,
afin de tester le potentiel de nouvelles techniques thérapeutiques de manière flexible et non coûteuse.
Dans cette thèse, nous développons des modèles discrets et continus pour décrire la dynamique spatio-
temporelle des interactions entre une tumeur solide et les cellules T cytotoxiques, dans le but d’étudier
les paramètres biologiques qui permettent l’élimination, ou bien l’échappement, de la tumeur. Les mo-
dèles discrets développés dans ce travail décrivent la dynamique de chaque cellule, permettant ainsi la
représentation de mécanismes à l’échelle cellulaire. De plus, ils sont suffisamment détaillés et spécifiques
pour reproduire qualitativement les résultats d’études expérimentales. Quant aux modèles continus, ils
ne sont pas formulés sur la base d’arguments phénoménologiques, qui peuvent limiter une description
mathématique précise d’aspects biologiques et biophysiques cruciaux, mais ils sont dérivés formellement
des modèles discrets par le biais de méthodes asymptotiques appropriées. Les résultats des simulations
numériques des modèles discrets montrent qu’il existe un excellent accord quantitatif entre eux et les
solutions des modèles continus correspondants, et clarifient les conditions de réussite, ou bien d’échec, de
la surveillance immunitaire. Enfin, les modèles mathématiques présentés dans cette thèse peuvent fournir
un cadre pour aider les biologistes et les cliniciens à mieux comprendre les mécanismes par lesquels les
tumeurs échappent au système immunitaire, et peuvent être des outils prometteurs pour explorer des
stratégies thérapeutiques conçues pour améliorer l’efficacité de la réponse immunitaire anti-tumorale.

Mots clés : interactions tumeur-système immunitaire, immunothérapie, modèles discrets, modèles
continus, simulations numériques
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Biological glossary

antigen Any substance that causes the body to make an immune response against that sub-
stance. Antigens include toxins, chemicals, bacteria, viruses, or other substances that come
from outside the body. Body tissues and cells, including tumour cells, also have antigens
on them that can trigger an immune response. 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18,
20, 21, 22, 24, 25

antigen presenting cell (APC) Heterogeneous group of immune cells that mediates the cel-
lular immune response by processing and presenting antigens for recognition by certain
lymphocytes such as T cells. Classical APCs include dendritic cells and macrophages 4, 5,
7

chemoattractant A chemical (chemotactic) agent that induces an organism or a cell to migrate
towards it. In the context of tumours, the chemoattractant can represent a mixture of small
soluble proteins called chemokines (e.g. CCL3, CCL5, CCL20, and CXCL10). During the
anti-tumour immune response, cytotoxic T lymphocytes migrate via chemotaxis towards
the tumour, in the directions of stronger gradients of the chemokines produced by both
tumour and immune cells. 6, 16, 19, 25

cytokine A type of protein produced by certain immune and non-immune cells which has an
effect on the immune system. Some cytokines, the pro-inflammatory cytokines, stimulate
the immune system, helping the body fight tumours, infections, and other diseases. Other
cytokines, the anti-inflammatory cytokines, slow down the immune system, inhibiting its
function. Examples of cytokines are interleukins, such as IL-2 and IL-10, interferons, such
as INF−γ, and growth factors. 4, 5, 8, 9, 12, 13, 14, 17, 18

cytotoxic A substance, a cell, a drug that kills cells, including tumour cells. Cytotoxic agents
may stop tumour cells from dividing and growing and may cause tumours to shrink in size.
For example: cytotoxic T lymphocyte, cytotoxic chemotherapy. 1, 5, 6, 22

cytotoxic T lymphocyte (CTL) A type of cells of the adaptive immune system that has the
capacity to directly kill other cells. It plays a major role in host defense against tumour
cells 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25

dendritic cell A special type of immune cell that boosts immune responses by showing antigens
on its surface to other cells of the adaptive immune system. A dendritic cell is a type of
phagocyte and also an antigen-presenting cell (APC). 4, 5, 7, 8, 20

immune checkpoint A type of protein produced by some types of immune system cells, such
as cytotoxic T lymphocytes, and some tumour cells, which helps prevent immune responses

xix
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from being too strong. During tumour development, immune checkpoints can keep T cells
from killing tumour cells. Examples of checkpoint proteins found on T cells or tumour cells
include PD-1/PD-L1 and CTLA-4/B7-1/B7-2. 8, 11

immune checkpoint inhibitor A type of drug that blocks proteins called immune checkpoints.
When these checkpoints are blocked, T cells can kill tumour cells more efficiently. Examples
of immune checkpoint inhibitors include anti-PD-L1 or anti-PD-1 (which block the binding
of PD-L1 to PD-1) and anti-CTLA-4 antibody (which block the binding of CTLA-4 to
B7-1/B7-2) 2, 8, 11, 13

immunogenic Relating to or denoting substances able to produce an immune response. For
example: immunogenic tumours, immunogenic antigens. 12, 18, 20, 25

intra-tumour heterogeneity (ITH) It refers to distinct tumour cell populations (with differ-
ent molecular and phenotypical profiles) within the same tumour specimen. It differs from
inter-tumour heterogeneity, which refers to the differences found between similar tumours
in different patients. 8, 10, 25

macrophage A type of cell of the innate immune response that surrounds and kills microorgan-
isms, removes dead cells, and stimulates the action of other immune system cells, acting
as antigen-presenting cell (APC). Some macrophages have a tumour-promoting phenotype,
and can drive pathological phenomena including tumour cell proliferation, tumour angio-
genesis, invasion and metastasis, immunosuppression, and drug resistance. 4, 7

major histocompatibility complex (MHC) A group of genes that codes for proteins found
on the surface of cells that helps the immune system recognize foreign substances. During
an immune response, it allows T lymphocytes to detect antigen presenting cells that have
ingested infectious microorganisms and display peptide fragments on their surface. 5, 7, 8,
9, 10

natural killer cell (NK cell) A type of cell of the innate immune system that has granules
(small particles) with enzymes that can kill tumour cells or cells infected by a virus. 4, 21

solid tumour An abnormal mass of tissue that usually does not contain cysts or liquid areas.
Solid tumours may be benign (not cancer), or malignant (cancer). Different types of solid
tumours are named for the type of cells that form them. Examples of solid tumours are
sarcomas, carcinomas, and lymphomas. Leukemias (cancers of the blood) generally do not
form solid tumours. 4, 11, 12, 20, 25

T cell receptor (TCR) A group of proteins found on T cells. TCRs bind to certain antigens
found on abnormal cells, tumour cells, cells from other organisms. This interaction causes
the T cells to attack these cells and helps the body fight infection, tumour cells, or other
diseases. 5, 6, 9, 16, 24

telomere The ends of a chromosome. Each time a cell divides, telomeres lose a small amount
of DNA and become shorter. Over time, the chromosomes become damaged and the cells
die. However, tumour cells express high levels of telomeraze, an enzyme preventing the
shortening of the telomere, allowing for a longer or infinite survival of cells. 3, 4



Biological glossary xxi

tumour microenvironment (TME) The normal cells, immune cells, molecules, and blood
vessels that surround, feed and interact with tumour cells. A tumour can change its
microenvironment, and the microenvironment can affect how a tumour grows and spreads.
6, 7, 8, 9, 13, 17
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Mathematical glossary

hybrid discrete-continuum model A modelling approach which combines individual-based
modelling techniques (usually to describe individuals) with ordinary or partial differential
equations (usually to describe continuum fields). 14, 15, 17, 20

individual-based model A discrete and stochastic modelling approach which attempts to de-
scribe how individuals behave and interact over time by specifying rules for each individual.
These rules depend on the probability of events occurring. 10, 14, 16, 17, 20, 22, 24, 25

integro-differential equation (IDE) mathematical equation that involves one or more inde-
pendent variables, an unknown function and both derivatives (with respect to one variable)
and integrals of the function. A partial integro-differential equation is an equation for a
function of two or more variables which appear as arguments both of integral and of partial
differential operators. 15, 16, 18, 23

ordinary differential equation (ODE) mathematical equation that involves one indepen-
dent variables, usually time, an unknown function (dependent on this variable), and partial
derivatives of the unknown function with respect to the independent variable. 15, 17, 18,
20, 21, 23

partial differential equation (PDE) mathematical equation that involves two or more in-
dependent variables, usually time and space, an unknown function (dependent on those
variables), and partial derivatives of the unknown function with respect to the indepen-
dent variables. 15, 16, 17, 19, 20, 21, 22, 23
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Chapter 1

Introduction

1.1 Motivation

Cancer can be described as a disease in which some abnormal or damaged cells of the body grow
uncontrollably and spread to other parts of the body1. The first, possibly disputable, evidence of
this disease was found in the fossil records of a human ancestor as old as 1.7 million years [162],
and that of a dinosaur, dated back more than 75 million years ago [201]. Cancer was a quite rare
disease in ancient human societies, but today in France it is the first cause of death in men and
the second in women2. There are two probable reasons for that: (1) the harmful environmental
and lifestyle factors that trigger its emergence, and (2) the increase in life expectancy, since the
risk of developing a tumour increases with age. Today, cancer results in approximately ten million
annual deaths, only taking into account official data [159]. Despite technological developments
and major advances in cancer research, it is clear that this disease is still enduring.

It seems that the best choice of treatment that humans used for centuries, was the surgical
removal of malignant tumours, and even nowadays it frequently remains the best treatment
option. However, it was already known to ancient Romans and Greeks that surgery could only
be successful for superficial tumours, and that in many cases it could even worsen the conditions
of the patient [50]. The first major breakthrough happened at the turn of the 19th and 20th
centuries with the discovery of X-rays and the introduction of radiotherapy treatments, which use
high doses of radiation to kill tumour cells and shrink tumours. In fact, at high doses, radiation
therapy is able to kill tumour cells or slow their growth by damaging their DNA. In the 1940s, the
introduction of chemotherapy to treat tumours proved to be another considerable breakthrough
in oncology. Chemotherapy uses one or more cytotoxic anti-cancer drugs (chemotherapeutic
agents), which inhibit cell mitosis (i.e. division) or induce DNA damage. Surgery, radiotherapy
and chemotherapy are still the most widespread modalities in tumour treatment. However, the
side effects of these traditional treatment approaches can be severe. They include: sustained
damage to healthy cells, nausea, fertility issues, hair loss and psychological issues.

More recently, the focus of cancer therapy research has turned to developing targeted and
more personalised treatments. The development of some of these new treatment approaches
relies on the fact that the immune system plays a primary and critical role in the prevention
and eradication of tumours. In fact, tumour cells express antigens on their surface which allow
them not only to be identifiable by cells of the immune system but also enable an effective
immune response to be triggered. This finding implies that clinically observable, and often

1 https://www.cancer.gov
2 https://www.santepubliquefrance.fr
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2 CHAPTER 1. Introduction

aggressive, tumours are those that have escaped control of the immune system. In this context,
designing immunomodulatory treatments to enhance or restore anti-tumour immune responses
may be beneficial in the treatment of multiple types of tumours. The development of these
new therapeutic approaches is based on understanding the key mechanisms, or hallmarks, that
enable the tumour to avoid immune destruction. There can be multiple mechanisms that lead
to the suppression of the immune response; moreover, these immunosuppressive mechanisms
can vary between patients. Consequently, immunotherapy techniques have been, and continue
to be, developed by targeting the key mechanisms that are responsible for immune escape,
to offer a more personalised form of cancer treatment. These techniques can be active, i.e.
specifically targeting tumour cells, like cancer vaccines that contain specific antigens, or passive,
i.e. enhancing the ability of the immune system to attack tumour cells, like immune checkpoint
inhibitors, whose authors were awarded the Nobel Prize in Medicine in 2018. However, many
of the biological phenomena that foster the escape of tumour cells from the action of immune
cells and the failure of immunotherapy treatments are still not fully understood to this day. And
the causes of this lack of understanding are diverse. One reason is the complex nature of the
interactions between tumour cells and immune cells, which involve various molecules, proteins,
receptors and cells that promote or inhibit the immune action. Moreover, the development and
testing of new therapy techniques can be an expensive and time-consuming process, and often
associated with ethical difficulties, as the result of changes in clinical protocols may reduce the
overall treatment efficacy.

One option to tackle these problems is to develop mathematical models capable of describing
and synthesising these complex phenomena in order to carry out numerical experiments (known
as in silico). The added value of mathematical modelling and computer simulations are their
reproducibility and flexibility. On the one hand, their reproducibility makes it possible to repli-
cate various experiment in shorter periods of time than those required for clinical trials. On the
other hand, their flexibility allows to add various biological phenomena as desired, in order to
describe increasingly complex mechanisms or to vary unknown parameters. This last quality will
allow us, in this thesis, to describe different mechanisms involved in tumour-immune interactions
and to analyse the duality of the anti-tumour immune response, as well as the role of treatment
strategies based on immunotherapy. Mathematical models represent a simplification of reality
and, therefore, do not allow to draw absolutely accurate conclusions on the underlying biological
dynamics. However, their study allows to assess the value of certain biological parameters, as
well as the reliability of certain hypotheses.

The inherent complexity, not only of the interactions between tumour cells and the immune
system, but also in the mathematical modelling of this phenomenon, requires a clear definition
of the underlying biological framework. Thus, in this chapter, a first part will be devoted to the
description of the biological context. After a brief introduction on tumour development, we will
describe the mechanisms governing the interactions between malignant tumour cells and cells
of the immune system. We will then introduce some mechanisms leading the tumour cells to
evade the immune response, and provide a short review of some current immunotherapies. In the
second part, we will give an overview of the existing mathematical models in the literature used to
describe tumour-immune interactions, and discuss how they can be adapted to include the effects
of immunotherapies. Finally, a third part will be devoted to a summary of the contributions of
the thesis.
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1.2 Biological overview of the immune response to tumours

In this section, we introduce the key biological mechanisms involved in the immune response to
solid tumours. As previously said, the interactions between tumour cells and cells of the immune
system constitute a very complex system, which involves cells and molecules of different types.
Therefore, some of the concepts described in the following sections may represent a simplification
of the real mechanisms underlying the immune response to tumours. These simplifications are
directly related to the assumptions that have led to the development of our mathematical models.

The first part briefly describes the general mechanisms that must be overcome in order for
a normal cell to develop into a tumour cell. In the second part, we present an overview of the
immune system, focussing on different types of cells which take part in the immune response in
tumour development.

While being aware of the fact that a variety of different cells and molecules take part in
the anti-tumour immune response, in this thesis we are mainly interested on a particular
type of immune cells: cytotoxic T lymphocytes (CTLs). Such cells are the major anti-
tumour effector cells and represent the immune cells that are most commonly stimulated by
immunotherapies.

Additionally, we describe some of the key biological and immunological mechanisms involved
in the recognition of tumour cells, such as the expression of tumour antigens, and how the immune
system is activated to fight tumour cells. In the third part, we present some of the properties of
tumour cells which allow them to evade the immune response. We will conclude the section by
considering some immunotherapy techniques which have been developed to target these aspects.

1.2.1 Tumour development

Normal cells grow and divide, but have many mechanisms that control their growth. They only
grow when stimulated by growth factors. If they are damaged, a molecular brake stops them
from dividing until they are repaired. If they cannot be repaired, they commit programmed cell
death (apoptosis) [64]. Moreover, thanks to a specific enzyme, the telomerase, which shortens
their telomeres at the end of the chromosomes at each cell division, normal cells can only divide a
limited number of times [115]. Cells are part of a tissue structure, and remain where they belong.
Each of these mechanisms is controlled by several proteins, which ensure the proper functioning
of all our cells [64].

All these mechanisms must be overcome in order for a normal cell to develop into a tumour
cell. A critical protein must malfunction in each of those mechanisms. These proteins become
non-functional when they acquire somatic mutations (mutations that are not inherited but occur
after conception). This occurs in a series of steps, which in [94] have been referred to as ‘hallmarks
of cancer’. These include the ability of tumour cells to: sustain or enhance replication and growth
(cell proliferation), avoid growth suppressors, avoid or suppress the immune response, be able
to divide/replicate indefinitely, recruit immune cells to cause inflammation, invade another area
of the body (formation of metastasis), create new blood vessels (angiogenesis), mutate, resist
apoptosis (cell death) and alter their metabolic processes to avoid the need for oxygen.

Through cell division, the altered cells cluster together to form a growing tumour. In the early
stages of tumorigenesis, tumour cells stay close to the original site where they have formed [94].
However, once the tumour has developed and is large enough, it can begin to create a blood
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supply through angiogenesis. This allows single cells to leave the initial site and travel to other
sites of the body, through the blood stream, which can ultimately lead to the formation of
metastasis [62]. Furthermore, most tumour cells express high levels of telomerase, an enzyme
preventing the shortening of the telomeres and allowing for a longer or infinite division, and thus
survival, of cells [115].

In this thesis, we focus on solid tumours in the early stages of development (i.e. small
pre-angiogenic tumours) and, in particular, on the ability of tumours to evade immune
destruction.

In the following sections we will briefly describe the mechanisms governing immune surveil-
lance and some mechanisms used by tumour cells to escape the control of the immune system.

1.2.2 Tumour immunology

The immune system is the body’s natural defence mechanism against any foreign attack. Through
the immune response, the body is able to attack these foreign and harmful materials and destroy
them. It has also become evident that the immune system plays a role in the protection from
harmful substances within the body, including tumour cells. This makes the immune system a
very important mechanism for controlling and treating tumours. However, both the functioning
of the immune system and the growth of tumours involve highly complex processes, making the
interactions between tumour cells and immune cells an elaborate system that is not yet fully
understood by either experimentalists or theoreticians [142].

In the case of the human immune system, there are two different types of barriers, namely,
the innate and adaptive immune systems. Both of them have their own individual methods and
abilities to help our bodies stay healthy, and interact with one another to kill harmful invaders,
including tumour cells.

Innate immune system and tumour antigen presentation Briefly, the innate immune
system is the first line of defence against pathogens and malignant cells and its role is to recognize
and respond to them in a generic way. It recruits specific immune cells at the site of infection,
provides an immediate defense mechanism through the initiation of inflammation, removes for-
eign substances, and activates the adaptive immune response [37]. Innate immune cells include
different types of cells. In the context of tumours, the two most important one are the natural
killer cells (NK cells) and the professional phagocytes.

NK cells are part of a class of white blood cells called lymphocytes. When NK cells receive
signals from other immune cells, they secrete proteins called cytokines, which in turn signal other
immune cells to come and help defend an infected area. Also, NK cells can destroy tumour cells
without requiring activation by other cells via cell lysis (i.e. disintegration) which results in cell
debris within the microenvironment [143].

The professional phagocytes consist of different types of cells, whose role is to engulf and
remove invaders through a process called “phagocytosis”. Moreover, particular types of profes-
sional phagocytes, the dendritic cells and the macrophages, play an important role in the initial
steps of the immune response to tumours. Whilst undergoing phagocytosis, dendritic cells and
macrophages secrete pro-inflammatory cytokines, such as the tumour necrosis factor (TNF),
which can kill tumour cells, as well as activate other immune cells [191]. Secondly, dendritic
cells and macrophages can act as antigen presenting cells (APCs) [37]. When the defences are
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put under pressure and APCs have engulfed an invader, they present specific proteins, called
antigens, on their surface [151]. In immunology, an antigen can represent a protein, a molecule
or any substance that causes the body to make an immune response against that substance. In
the context of tumours, such antigens are usually composed of fragments of proteins belonging
to tumour cells, reflecting changes or mutations that the latter have undergone during cancer
formation. Once collected, the APCs can process the antigens and load them on their cell surface
through major histocompatibility complex (MHC) molecules, allowing them to be recognised by
the adaptive immune system [22, 21].

Activation of the adaptive immune system While the innate immune response is a general
defence reaction, the adaptive immune response is highly specific to the particular pathogen that
induced it, and it provides long-lasting protection. The adaptive immune system requires more
time to develop an effective response. However, it recognizes and remembers specific pathogens,
and, therefore, its efficacy increases each time the same pathogen is encountered [191]. In the
case of an anti-tumour immune response, the most important adaptive immune cell types are
the T lymphocytes, the specific functions of which will be described later in this paragraph.

Adaptive immune cells must be activated to produce an effective anti-tumour immune re-
sponse. The activation of the adaptive immune response requires the expression of antigens on
the surface of tumour cells, and their presentation on the surface of APCs by MHC molecules.
Once the APCs have processed the antigens, they move to the lymph nodes to present them to
adaptive immune cells, specifically to naive T lymphocytes (or T cells). Naive T lymphocytes,
which can be distinguished in naive CD4+ and naive CD8+ lymphocytes, are immature T cells
that have differentiated and been released by the thymus, but have not yet encountered their
corresponding antigens and are not activated. These cells are endowed with particular receptors,
the T cell receptor (TCR), on the surface of their membrane, which allow them to recognise spe-
cific antigens, activate, and initiate an antigen-specific immune response [45, 151]. The activation
process relies on co-stimulatory (e.g CD28) and co-inhibitory (e.g CTLA-4, PD-1) proteins [143].
Depending on such complementary proteins and the antigen-MHC complex, subsequently, naive
T lymphocytes can mature into distinct groups. The most important groups of T lymphocytes
participating in the anti-tumour immune response include: the helper CD4+ T lymphocytes, the
cytotoxic CD8+ T lymphocytes, and the regulatory T lymphocytes. The first group promotes
the activation of a larger number of APCs and CD8+ T cells by secreting a variety of pro-
inflammatory cytokines, like interleukin 2 (IL-2) and interferon gamma (INF−γ), and displaying
a variety of co-stimulatory proteins on their surface. The cytotoxic CD8+ T lymphocytes are the
main players of the anti-tumour immune response, as they are able to directly eliminate tumour
cells causing their apoptosis. The third type, the regulatory T lymphocytes, suppresses other
cells of the immune system, preventing them from attacking normal tissue [191].

Particular proteins, the CD8 glycoproteins, on the surface of naive CD8+ T cells enhance
the interaction with the B7 receptor expressed by dendritic cells and results in the maturation
of CD8+ T lymphocytes, also known as CTLs [191].

In the hypothesis that lead to the development of our models, we also take into account the
fact that the level of presentation of the antigens to the MHC may play a critical role in the
effectiveness of the anti-tumour immune response [45, 151]. By ‘level of antigen presentation’ we
refer to different mechanisms that may affect the recognition of antigens by APCs, the activation
of CTLs, and the efficacy of immune action. On the one hand, if the level of presentation of the
antigens is too low, APCs will hardly recognize them, and CTLs will be poorly activated [80].
In addition, we assume that a low or incorrect presentation of antigens on the surface of tumour
cells may result in potential difficulties for CTLs to bind to them, thus decreasing the efficacy of
their immune action. On the other hand, if the level of antigen presentation is sufficiently high,
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CTLs will be well activated and may eventually mount a more efficient immune response.

Immune action After their activation, CTLs proliferate and migrate to the tumour site
through blood vessels. Once in the tumour microenvironment (TME), the presence of small
soluble proteins called chemokines (e.g. CCL3, CCL5, CCL20, and CXCL10) produced by both
tumour cells and immune cells, will help the movement and infiltration of CTLs into the tumour
(see [20, 68, 230]). This particular form of movement is governed by the ability of cells that
are sensitive to an attractive chemical signal (e.g. the chemokines) to move in the directions
of stronger gradients of it. Throughout this thesis we will refer to this form of movement as
chemotaxis, while the chemical signal will be referred to as chemoattractant.

Following the influx of CTLs in the TME and their infiltration inside the tumour, the CTLs
recognise tumour cells through the interaction of their TCR with an antigen-MHC complex on
the surface of the tumour cell. Note that CTLs only produce one type of TCR, which recognises
and binds specifically to a certain antigen (i.e. the cognate antigen) [45], and possibly other
antigens within a certain affinity range [144, 224]. This enables CTLs to exert an antigen-
specific cytotoxic activity against tumour cells, whose efficacy may depend on the affinity range
of TCRs and the level of antigen presentation. Upon recognition of the cognate antigen, CTLs
can trigger tumour cell death by direct interaction with tumour cells, releasing cytotoxic factors
(i.e. granzyme B, INF−γ) [117], causing their apoptosis. The apoptosis of tumour cells results
in the release of additional antigens, which enhance the immune action.

In general, in the final step of immune response, CTLs must undergo apoptosis to prevent
any damage to normal cells. The apoptosis of CTLs prevents the risk of autoimmune diseases
occurring and the formation of a memory population which allow for a faster response if the
same antigen is recognised in the future [119].

Overall, many experimental studies have concluded that the immune system is able to fight
tumour cells and remove early stage tumours by a loop called the cancer-immunity cycle [39]
(see Figure 1.1). However, through antigenic changes and other evolutionary mechanisms this
cycle is subject to various obstacles, and tumour cells can adapt to evade the immune response
through a process known as immunoediting.

In this thesis, we focus on the interaction dynamics occurring between tumour cells and
CTLs. We use different properties of these cell types, e.g. the level of presentation of
tumour antigens, the affinity between tumour antigens and TCRs and the movement of
CTLs, to develop the mathematical models described in Chapters 2-5.

1.2.3 Immunoediting

Despite the important role played by the immune system in eliminating tumour cells, it is clear
that, most of the time, the cancer-immunity cycle does not perform optimally in cancer patients.
This is because, as tumour cells grow, they inhibit the protective functions of the immune system
and use some mechanisms that promote tumour development.

In [60], Dunn and collaborators proposed a new theory to describe the three different stages of
the immune response to tumours: elimination, equilibrium and escape. These stages have been
named the “three Es of cancer immunoediting”. Elimination refers to the inflammatory response
of the immune system to tumour cells and subsequent tumour eradication. If the tumour mass
is able to evade immune eradication in the elimination stage, it enters the equilibrium stage.
Here, the tumour is kept at roughly the same size and is prevented from inducing an angiogenic
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Figure 1.1: The cancer-immunity cycle. The cancer-immunity cycle is a 7-step framework
used to describe how the immune system recognizes and eliminates tumour cells. In step-1,
the transformation of normal cells to tumour cells causes the release of antigens. The antigens
are then captured by antigen presenting cells (APCs), such as macrophages and dendritic cells,
which process the antigens and load them on major histocompatibility complex (MHC). APCs
move to the lymph nodes and present the antigens to naive T cells (step-2). This prepares and
activates cytotoxic T lymphocytes (CTLs) and their response against tumour-specific antigens
(step-3). The activated CTLs migrate to the tumour microenvironment (TME) (step-4) and
infiltrate (step-5) the tumour. Within the tumour, the CTLs recognize and bind to tumour
cells expressing the cognate antigens (step-6) and subsequently eliminate the target tumour
cells (step-7). Killing the tumour cells releases additional antigens and begins the cycle again.
Adapted from [39].
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response. The last “E” of immunoediting is escape. Whilst in the equilibrium stage, interactions
between tumour cells and immune cells can produce two possible outcomes: tumour elimination
or tumour escape. In the first, the tumour is eliminated by the immune system, making this
outcome equivalent to the elimination stage. The second outcome is when the tumour cells
have managed to, through different factors, escape the immune action. The interaction between
immune cells and tumour cells over a long period of time neutralises immune attack, leading the
tumour to grow uncontrollably.

In the following paragraphs, we highlight some of the key evasion mechanisms which may lead
tumour cells to avoid immune destruction, which are also schematically illustrated in Figure 1.2.
Then, a new classification of tumours, based on the immune context, rather than on the tumour
anatomical extent, is discussed.

Immune checkpoints Immune checkpoints are regulators of the immune system. In general,
these pathways are crucial for self-tolerance, which prevents the immune system from attacking
cells indiscriminately. However, in the context of cancers, some tumour cells can evade immune
response by upregulating these immune checkpoint targets [49, 210].

For example, tumours may evade immune responses using negative feedback mechanisms
to prevent apoptosis and downregulate the immune response either before or after its activa-
tion [49, 210]. These include immunosuppressive cytokines such as IL-10 and tumour growth
factor (TGF)-β, inhibitory cell types such as regulatory T lymphocytes (Treg) or Myeloid-derived
suppressor cells (MDCSs) and inhibitory receptors such as PD-1 and CTLA-4 (cf. Figure 1.2(B)).
For example, the interaction between the CTLA-4 (cytotoxic T lymphocyte-associated antigen
4) protein with the activating receptor B7 expressed by dendritic cells may prevent CTL ac-
tivation in secondary lymphoid organs, therefore limiting the number of activated CTLs and
their efficiency at eliminating tumour cells. Similarly, after the arrival of CTLs in the TME,
increased expression of PD-L1 (programmed death ligand 1) allows tumour cells to bind to the
PD-1 (programmed death 1) receptor on CTLs, causing immune cell death or inhibition (cf.
Figure 1.2(C)).

Alternatively, tumour cells can evade cell-cell recognition by immune cells through manipu-
lating the binding process. The binding between the MHC molecule and the tumour antigen is
the first step in antigen recognition. However, tumour cells can cause downregulation of MHC
molecules, preventing presentation of the antigen (cf. left and central panel of Figure 1.2(D)).
This may limit the activation of CTLs and their ability to recognise tumour cells, ultimately
resulting in tumour escape [77, 76, 126].

With the aim of targeting the immune resistant mechanisms of tumour cells, immune check-
point inhibitors have been developed as a method of treatment to allow for a stronger immune
response.

Presence of sub-populations of tumour cells expressing sub-clonal antigens As tu-
mours grow, they acquire mutations that can aid in immune resistance and immune evasion. In
particular, these mutations may create neoantigens, potentially preventing CTLs from recognis-
ing them. There are many possible reasons for this, such as loss of antigen expression, creation
of antigen variants not recognized by CTLs, etc. It has recently been reported that many of
these neoantigens arise from sub-clonal branching mutations and could potentially increase intra-
tumour heterogeneity (ITH) [149, 150, 180]. ITH describes the existence of distinct tumour cell
populations with specific genetic, epigenetic and phenotypic features within the same tumour. It
has recently been found to affect the effectiveness of the anti-tumour immune response in several
tumour types, such as lung adenocarcinomas [180], breast cancer [149] and melanoma [150].
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Figure 1.2: Overview of immune response to tumours (panel (A)) vs. immune evasion
mechanisms by tumours in the context of CTLs (panel (B)-(C)-(D)). (A) Cytotoxic
T lymphocytes (CTLs) are the preferred immune cells which play a role in the immune response
against tumour cells. CTLs are able to eliminate malignant tumour cells upon the recognition by
T cell receptor (TCR) of specific tumour antigens presented on the surface of major histocom-
patibility complex (MHC) molecules. (B) Regulatory T lymphocytes (Tregs) suppress the T cell
responses to tumours. Myeloid-derived suppressor cells (MDCSs) accumulate in the TME and
suppress anti-tumour T cell responses. Also, the release of immunosuppressive cytokines (for ex-
ample IL-10) lead to suppression of the anti-tumour immune response. (C) T cell responses are
inhibited by the involvement of inhibitory receptors and their corresponding ligands. An example
of these inhibitory receptors are the PD-1 receptor on the surface of CTLs and its PD-L1 ligand
on the surface of tumour cells. (D) The prevention of antigen expression or presentation by
tumour cells leads to lack of tumour recognition by CTLs. Furthermore, MHC class I molecules
can be downregulated on tumour cells, decreasing the ability of CTLs to recognize tumour cells.
Finally, the expression of sub-clonal antigens decreases the effectiveness of immune response as
they are associated with a reduced level of antigen presentation [80]. Adapted from [168].
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Tumours with high ITH are characterised by clonal antigens (presented by all tumour cells),
and sub-clonal antigens (presented only by sub-populations of tumour cells) [150]. Moreover,
such sub-clonal antigens may be associated with a reduced level of antigen presentation by the
MHC molecules, decreasing or preventing presentation of the antigen. This may limit the ability
of CTLs to activate or recognise tumour cells, possibly leading to tumour survival [80] (cf. right
panel of Figure 1.2(D)). In contrast, more homogeneous tumours (i.e. tumours with low ITH)
express few clonal antigens in all tumour cells and appear to trigger a more efficient immune
response across a wide range of tumour types [65, 150]. Furthermore, CTLs activated against
clonal antigens are more commonly found at the tumour site than CTLs reactive to sub-clonal
antigens [150]. These findings suggest that ITH may strongly affect the effectiveness of the
anti-tumour immune response.

In Chapter 3, we present a spatial stochastic individual-based model of tumour-immune
interaction dynamics that can be used to explore the effect of ITH on immune surveillance.
The model makes it possible to dissect the specific impact of two expressions of ITH on anti-
tumour immune response. Through computational simulations of our model, the effect of
ITH is investigated at different levels, in order to assess its impact on anti-tumour immunity
in a controlled manner.

Immune contexture and Immunoscore The tumour site is a complex and continuously
evolving entity, which include immune cells, signalling molecules and extracellular matrix. In
particular, it has been observed that type, density and location of immune cells within the tumour
site correlate with prognosis in different types of cancer [70]. As a result, the immune contexture,
which is determined by the type, density, immune functional orientation and localization of
immune cells within a tumour, can yield information that is relevant to prognosis and prediction
of a treatment response [10, 25]. ‘Contexture’ refers to the act of assembling parts into a whole,
as an arrangement of interconnected parts.

Derived from the immune contexture, a simple and powerful immune-classification has been
termed as the ‘Immunoscore’ and is now used as a prognostic marker in cancer patients [10,
70, 72, 71]. The Immunoscore provides a score that increases with the density of CD8+ and
CD3+ T cells both in the centre and at the margin of the tumour. In this vein, a new immune-
based, rather than a cancer-based, classification of tumours based on the Immunoscore has
been proposed in [72], where the authors have classified tumours in four categories. The "hot"
category is characterized by tumours infiltrated with a large number of CTLs in the centre of it
and, therefore, have a high Immunoscore. Such tumours present dysfunctions in the last steps
of the cancer-immunity cycle (see Figure 1.1). In particular, infiltrated CTLs are exhausted
or dysfunctional and express a number of inhibitory receptors, most notably CTLA-4 and PD-
1 [70]. The category "altered-immunosuppressed" denotes tumours with a small amount of
infiltrated CTLs. Here, the lack of adequate innate immune response constitutes a limiting factor
restraining the development of an effective, adaptive anti-tumour response, therefore originating
an immunosuppressed tumour. Tumours in the "altered-excluded" category are characterized by
two different regions: their margin is infiltrated by activated CTLs while the centre is not. One
reason for T cell exclusion is the lack of T cell-recruiting signals, such as chemokines directing
T cell trafficking, or the presence of physical barriers. Tumours in this two categories have an
intermediate Immunoscore. Moreover, such tumours present dysfunctions in the intermediate
steps of the cancer-immunity cycle. Finally, "cold" tumours have a low Immunoscore and are
often correlated to a poor response to immunotherapies since CTLs are absent both within the
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centre of the tumour and at its margin. Such tumours completely lack a pre-existing immune
response.

In Chapter 4, we develop an hybrid discrete-continuum modelling approach to explore the
role of T cell infiltration in the immune response against solid tumours. Abstracting from
the ‘immunoscore’ based classification of tumours developed by Galon and collaborators [72],
we classify different tumour scenarios depending on the spatial distribution of CTLs within
the tumour. Moreover, we investigate the impact of CTL infiltration on the response of
tumour cells to different types of anti-cancer immunotherapy.
Also, in Chapter 5, we develop a stochastic individual-based model to investigate the effects
of physiological stress on immune infiltration. Moreover, we develop an ‘infiltration score’
to quantitatively evaluate immune cell infiltration into the tumour. The results of numer-
ical simulations of this model are able to qualitatively reproduce the experimental results
presented in [99].

Given the extremely large amount of data showing the prognostic and predictive power of
specific immune components (such as degree of immune infiltration, presence of immune suppres-
sive cells or T cell checkpoint, low expression of antigens), it is important to assess individual
immune determinants and/or a combination of immune determinants. This would allow for a
more accurate patient assessment that would guide the design of effective tumour therapies [70].

1.2.4 Immunotherapy

Traditional treatments for tumours include chemotherapy and radiotherapy, which aim at at-
tacking all rapidly-dividing cells within the body, effectively targeting fast-growing tumour cells.
These types of treatments have proven to be beneficial in many cases and are widely used to
treat most types of tumours. However, these treatments can potentially have severe side effects.
For example, the damage caused to healthy cells as well as tumour cells can result in further
illness or even fatalities [31].

Targeted therapies, like immunotherapy, may be able to reduce the damage to normal cells.
Generally, the goal of immunotherapies is to initiate or reinitiate a self-sustaining cancer-immunity
cycle (see Figure 1.3), enabling it to restore or amplify immune response, but not so much as
to generate unrestrained autoimmune inflammatory responses. Tumour immunotherapies must
therefore be carefully configured to overcome the negative feedback mechanisms that block the
proper functioning of the cancer-immunity cycle.

Monoclonal antibodies Monoclonal antibodies are antibodies designed to bind to specific
proteins. The aim of therapies based on these antibodies is to block immune checkpoints [49,
102, 181, 208]. For this reason, they are also called immune checkpoint inhibitors. As previously
mentioned, overexpression of the checkpoint proteins CTLA-4 and PD-1 by CTLs, as well as
overexpression of PD-L1 ligands by tumour cells, is a major factor in suppressing the anti-
tumour immune response. In particular, CTLs that have been in contact with tumour cells
possessing PD-L1 ligands are inhibited and become exhausted, i.e. tolerant to the presence of
the tumour. Therefore, treatments (such as nivolumab, pembrolizumab, and lambrolizumab)
that block PD-1 and PD-L1 interactions are able to restore the effector activity of exhausted
CTLs. Similarly, monoclonal antibodies capable of blocking interactions between the checkpoint
proteins CTLA-4 and B7 are able to restore the mechanism of T cell activation in secondary



12 CHAPTER 1. Introduction

Figure 1.3: Immune-resistant mechanisms of the cancer-immunity cycle and im-
munotherapy strategies to counteract immune inhibition. Solid tumours can be classified
in three main categories based on their immunoscore: cold tumours, altered tumours and hot
tumours. Each category is associated with specific underlying biological mechanisms that may
prevent the host immune response from eradicating the tumour. Cold tumours are the result of
immunological ignorance, the induction of tolerance or a lack of appropriate T-cell priming or
activation. Altered tumours may reflect a specific chemokine state, the presence of particular
vascular factors or barriers, or sub-optimal stimulation of CTLs. Hot tumours can demonstrate
infiltration by a number of subtypes of immune cells, including immune-inhibitory regulatory
T lymphocytes and myeloid-derived suppressor cells. CTLs may also demonstrate a dysfunc-
tional state such as exhaustion. Tumour cells in hot tumours can also express inhibitory signals
(e.g. PD1), suppressive cytokines, and other pathways that de-sensitize them to anti-tumour
immunity. Each immune-resistant mechanism (middle circle) is placed in the step of the cancer-
immunity cycle (innermost circle) in which its mainly acts. For example, low immunogenic (i.e.
able to produce an immune response) antigens or loss of antigen presentation are highly important
for T cell activation. Current anti-tumour immunotherapy approaches (outermost circle) have
been targeting and harnessing various mechanisms along this tumour-immunity circle. Adapted
from [70].

lymph nodes. Various monoclonal antibodies have been designed, for example ipilimumab, which
can bind to the CTLA-4 protein and prevent CTLA-4/B7 binding. In clinical trials, therapies
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employing these monoclonal antibodies have exhibited durable responses and improved survival
of patients across a range of cancers including advanced melanoma [222], Non-small cell lung
cancer (NSCLC) [96] and renal cancer [156], and have thus been granted regulatory approval
from the Food and Drug Administration [210] and the European Medicines Agency [91] for
those indications.

Adoptive T cell therapy The effectiveness of monoclonal antibody therapies relies on the
fact that the immune system already produces sufficient tumour antigen-specific CTLs. However,
in many tumours the amount of these CTLs is very limited. Two immunotherapy strategies can
address this problem: adoptive cell transfer and modified cell transfer therapies [66]. Adoptive
cell transfer consists in taking tumour-infiltrating CTLs from the patient that are specific to the
tumour antigens and then culturing them in the presence of particular cytokines (such as IL-2)
to induce their proliferation. Once the required number of CTLs has been reached, the cultured
cells are then re-injected into the patient. The use of the patient’s own CTLs allows this therapy
to become more adaptable and personalised for each patient.

However, in some more severe cases, it is very difficult to isolate cells specific to the tumour
antigens. Additionally, by targeting common antigens there is a risk of attacking healthy cells,
leading to severe side effects [92]. Therefore, modified cell transfer therapy involves genetically
modifying the patient’s CTLs so that they can better recognise the tumour antigens. One of the
best known treatment based on modified cell transfer therapy today is the one based on CAR-T
cells [216]. Chimeric antigen receptors (CARs, also known as chimeric T cell receptors or artificial
T cell receptors) are receptor proteins that have been engineered to give CTLs the new ability to
target a specific antigen. The receptors are chimeric because they combine both antigen-binding
and T cell activating functions into a single receptor. There have been extensive experiments
and clinical trials based on CAR-T cell therapies with successful initial results; however, very
few have been approved as viable options for tumour treatment. This is caused by the potential
risk of CAR-T cells attacking non-tumour cells that express the target antigen [92].

Combinatorial immune parameters Despite the clinical success of immune checkpoint
blockade and adoptive CAR T-cell therapy, these approaches have shown substantial benefit
to only some of the patients, while the rest have not responded due to immune evasion [170].
For example, in cold tumours, the lack of CTLs in the TME can lead to a failure of immune
checkpoint inhibitor therapies, such as the anti-PD-1/PD-L1 therapy. Also, the mutations that
create new sub-clonal antigens or an immunosuppressed TME can inhibit or limit the effects of
adoptive T cell therapy [16].

As previously said, the analysis of the main immune determinants shaping tumour devel-
opment, as well as the Immunoscore and immune contexture parameters, are useful prognostic
(associated with survival) and predictive (associated with response to treatment) tools that
should be used to guide the choice of the most effective therapeutic strategy. In this sense, it
is reasonable to assume that the colder the tumour is, the more approaches are needed [70].
For example, hot tumours, which display a high degree of T cell infiltration [70], are associated
with increased response to anti-PD-1 or anti-PD-L1 monotherapy (cf. Figure 1.3). In altered
tumours, the combination of therapeutic epigenetic modulation directed to increase the level
of chemokines for T cell trafficking and infiltration, with anti-PD-L1 treatment, has shown to
slower tumour progression in preclinical models [158]. Finally, cold tumours, characterized by
low Immunoscore, are the most challenging to eradicate and are invariably associated with poor
prognosis. A proposed approach to overcome the lack of a pre-existing immune response is to
combine a priming therapy that enhances T cell responses (such as chemotherapy or radiother-
apy) with the removal of co-inhibitory signals (e.g. immune checkpoint inhibitors) and/or the
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supply of co-stimulatory signals [70]. For example, in [73] the authors found that the combination
of chemotherapy, which increases the release of tumour-associated antigens and stimulates the
activation of CTLs, with anti-PD1 treatment, had clinical benefits in NSCLC.

Given the pivotal role of CTLs against cancer, it is clear that the identification of key features,
immune-related, at the moment of diagnosis is needed to build a solid classification strategy
supporting subsequent therapy.

The mathematical model developed in Chapter 4 is used to explore potential causes for the
emergence of cold, altered-immunosuppressed, altered-excluded and hot tumour scenarios.
Then, it is used to investigate how the effects of combination immunotherapies, namely anti-
PD-1 therapy, anti-PD1-CTLA4 dual therapy and chemotherapy combined with anti-PD1
therapy, may vary the success of the immune response against tumour cells in the different
categories of tumour scenarios.

1.3 Review of modelling strategies

In this section, we discuss the literature on mathematical models that have been developed to
describe the interactions between a nascent tumour and the immune system.

In this thesis, we will develop discrete and continuum models to describe the spatio-temporal
dynamics of the interactions between a solid tumour and cytotoxic T cells. Therefore, we be-
gin this section with a discussion on the different methods of mathematical modelling used to
describe tumour-immune interactions, which include discrete individual-based models, deter-
ministic homogeneous and spatial models, and combinations of the two approaches, i.e. hybrid
discrete-continuum models. Then we discuss some of the key models, from the literature, that
have been developed previously to describe tumour development and its interaction with the
immune system.

1.3.1 Methods of mathematical modelling

Mathematical models for tumour-immune interactions have become increasingly popular over
the past few decades and are used as a tool to aid in the understanding of the mechanisms of
tumour escape. Incorporating in these models the effects of therapeutic strategies that boost
anti-tumour immune response can help biologists and clinicians to predict the success of cancer
treatment protocols, including immunotherapy protocols.

Cellular processes in the tumour environment exhibits multiscale properties and the inter-
actions between tumour cells and immune cells can occur across various spatial and temporal
scales. Generally, there are three spatial scales potentially considered in modelling: the molecular
scale (i.e. nm − µm), the microscopic scale (i.e. µm − mm), and the macroscopic scale (i.e.
mm−cm) [51]. The molecular scale is used to model intracellular processes, such as cell signaling
mechanisms (in the context of tumours: cytokines, chemokines, etc.). The microscopic scale is
used to model extracellular processes, representing for example the interactions between tumour
and immune cells. Models at the macroscopic scale focus on the dynamics of the total tumour
behaviour occurring at the tissue level including morphology, shape, extent of vascularization,
and invasion. Note that these scales are sometimes referred to, respectively, as microscopic,
mesoscopic and macroscopic [145]. Since many biological mechanisms in the immune response
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to tumours involve processes spanning different spatio-temporal scales, in the past twenty years
new multiscale models have been proposed, where these multiscale properties of tumour-immune
interactions can be effectively incorporated [145].

Furthermore, the mathematical modelling of tumour-immune interactions can involve tech-
niques that are discrete, continuum, or hybrid, i.e., the integration of both. Discrete models
usually rely on an explicit representation of individual cells in space and time, tracking and
updating their internal states according to a predefined set of biological and biophysical rules.
Therefore, they are often referred to as individual-based models. They can be stochastic and
are particularly suited to describe processes occurring at the microscopic scale and over short
timescales (minutes-hours). They involve the representation of populations of low cell num-
bers (usually < O(105)), which makes it possible to represent stochasticity and heterogeneity of
the dynamics observed in small-scale phenomena. However, their computational cost increases
rapidly with the number of cells modelled and they are usually less amenable to mathematical
analysis. On the other hand, continuum models are, generally, deterministic and less computa-
tionally expensive than discrete models, allowing for the investigation of larger cell population
sizes, where the small scale stochastic effects can be neglected. For this reason continuum models
are particularly popular for tissue level dynamics over longer timescales (days-years). They give a
macroscopic description of the system under study, as the terms in the model equations provide a
mean-field representation of the underlying cellular dynamics. However, they cannot easily cap-
ture the emergence of population-level phenomena that are induced by stochastic fluctuations
in single-cell biophysical properties, which are relevant in the regime of low cellular densities.
By using hybrid discrete-continuum models , we can integrate the strengths of both continuum
and discrete descriptions. Usually, in hybrid models a multiscale description of the system un-
der study is given, where individual cells are treated discretely, but extracellular factors, such
as chemical signals, are often modeled as continuous quantities. Hybrid models, similarly to
individual-based models, may still be computationally expensive and less amenable to analytical
investigations.

Various mathematical methods are used to model tumour-immune interactions including
deterministic continuum model formulated in terms of differential equations, stochastic discrete
individual-based models and combinations of these. The choice of the modelling approach should
depends on the biological phenomena under investigation, the way one would represent the
system (discrete or continuous), the spatial and time scale, as well as the kind of information
(from hypothesis-driven to data-driven) one has.

In this thesis, we develop discrete individual-based and hybrid discrete-continuum mod-
elling techniques to describe tumour-immune interactions in Chapters 2-5. Moreover, in
Chapters 2 and 4 we will formally derive the deterministic continuum limit of these models.

Deterministic continuum models The specific interactions between tumour cells and im-
mune cells have mostly been modelled using three classical deterministic continuum techniques:
Ordinary, Integro and Partial Differential Equation systems.

A system of ordinary differential equations (ODEs) considers the change of continuous vari-
ables over either time or space. In the the tumour-immune setting, systems of ODEs are often
used to investigate the importance of certain underlying dynamics, for example cell-cell interac-
tions, whereas spatial interactions are neglected. Integro-differential equations (IDEs) are similar
to ODEs, but also involve integrals of the unknown variables.

On the other hand, a system of partial differential equations (PDEs) considers the change of
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continuous variables which depend on both space and time. In the the tumour-immune setting,
systems of PDEs can model cellular and chemical concentration at given times, allowing for the
inclusion of a wider range of biological aspects, such as cell movement or chemical diffusion.

In the same way that space provides a structural variable to account for cell movement, other
structural variables can be included in PDE systems. Such structure variables can represent the
size of the cells, and, therefore, allow to model the mitosis of the cells (i.e. when one mother cell
divides into two daughter cells), or internal traits (i.e. phenotypes), characteristic of a relevant
diversity in a cell population. In the context of tumours, such internal trait can represent the
antigenic expression of tumour cells or their sensitivity to a drug under study. Therefore, it
can be used, for example, to study the evolution of cell traits with time under the effect of
environmental pressures, e.g. due to the interaction with the immune system or the introduction
of anti-cancer drugs.

The continuum model presented in Chapter 2 describes the coevolutionary dynamics be-
tween tumour cells and CTLs in a well-mixed system (i.e. spatial interactions are not
incorporated into the model). It is structured by a variable representing a parameterisation
of the antigen expression profiles for tumour cells and a parameterisation of the target anti-
gens of T-cell receptors (TCRs) for CTLs. The model comprises a non-local PDE for the
phenotype distribution of tumour cells coupled with an IDE for the phenotype distribution
of CTLs.
The continuum model presented in Chapter 4 describes spatial interactions between tumour
cells and CTLs and explicitly takes into account the chemotactic movement of CTLs towards
the tumour. This model comprises an IDE for the density of tumour cells coupled with a
PDE for the density of CTLs and a PDE for the concentration of a chemoattractant.

Stochastic discrete individual-based models Among other types of techniques that de-
scribe the interactions of tumour cells and its local environment there are stochastic and discrete
individual- (or agent-) based models. These models can be subdivided into two different categories
based on their geometry: on lattice and off lattice. In on lattice models, cells are distributed in a
grid system modelling physical space, whereas in off lattice models cells are not confined by grid
restriction allowing the representation of complex cell shapes. Individual-based models attempt
to describe how cells behave and interact over time by specifying rules for the behaviour of each
individual cell (individual-based), helping to address the role of diversity in cell populations and
also within each individual cell. These rules are formulated in terms of the probability of events
occurring and allow for the observation of any patterns in the dynamics of the biological system.
Specifically, cellular automata models are a type of on lattice individual-based models where,
usually, only one cell can occupy each grid position through volume exclusion. The movement of
cells and interactions with other cells within the system then depend on the rules of the model
and the cells occupying the grids in the cell’s neighbourhood.

An extension to the cellular automata model has been created in the form of a Cellular Potts
model [89]. Here, the model is comprised of pixels with each cell, or cellular compartment,
made up of several connecting pixels. Therefore, cells are no longer modelled as single points,
but as spatial objects whose size and shape can be altered. The simulation progresses through
a series of Monte Carlo Steps (MCS), which attempt to minimise the overall effective energy
within the system. At each MCS, attempts are made to transform neighbouring pixels at the
boundary of each cell to increase its volume. If the transformation, known as a “flip”, reduces
the overall effective energy then the pixel in question will be changed. The use of this type of
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model allows to include many biological aspects, such as cell adhesion, cell growth and mitosis,
cell movement, etc, where each individual element of the system can be modelled actively using
numerous different rules. This type of model has been successfully transformed into user friendly
software. CompuCell3D is one of them [107], which is a very useful tool when modelling tumour-
immune interaction dynamics.

For the computational implementation of the individual-based models developed in Chap-
ter 3 and Chapter 5 we use a Cellular Potts approach, and simulations were developed and
run using the software CompuCell3D. However, in order to have a deeper understanding and
control over the dynamic produced, for the models presented in Chapter 2 and Chapter 4,
we develop our own computational codes.

Apart from CompuCell3D, several major computational frameworks are available for studying
3D multicellular systems, such as Chaste [155], CellSys [100] or PhisyCell [85].

Hybrid discrete-continuum models Since many biological systems involve processes span-
ning different spatiotemporal scales, in recent years, it has become common to combine discrete
and continuum approaches to develop hybrid discrete-continuum models. Such models combine
individual-based models or cellular automata with ODEs or PDEs in order to provide a more
in-depth description of the biological system under study. In hybrid discrete-continuum models
for tumour-immune interactions, tumour cells and immune cells are usually treated as discrete
entities which interact with other chemical continuum fields, representing for example the con-
centration of chemokines, cytokines or oxygen in the TME. Hybrid discrete-continuous models
provide an appropriate method to study tumour-immune interactions; however, they present
some limitations, related for example to the possibly low number of cells and to the usually large
number of parameters, the values of at least some of which are difficult or impossible to estimate
from experimental data.

1.3.2 Mathematical modelling of tumour-immune dynamics

There have been many attempts over the years to model the interaction of the immune system and
a growing tumour to try and help clinicians and experimentalists carry out their studies. These
include deterministic continuum models, in the form of ODEs and PDEs, stochastic discrete
models and hybrid discrete-continuum models. In this section, we will briefly discuss some of
the key models, from the literature, that have been developed previously to describe the immune
response to tumours. In particular, the models presented henceforth use discrete or continuum
approaches to describe the interactions between tumour cells and immune cells, and in particular
CTLs.

Deterministic nonspatial models The first models developed to describe tumour-immune
interactions were nonspatial models formulated in terms of ordinary differential equations (ODEs)
or integro-differential equations (IDEs). Based on the prey-predator nature of the interactions
between tumour cells and immune cells, such models describe the tumour as prey, whose predators
are cells of the immune system (in particular, CTLs).

One of the first two-species model which focus on tumour-immune interactions is presented in
the pivotal work of Kuznetsov and collaborators in [123], where the authors developed a system of
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two ODEs to describe the interactions between CTLs and an immunogenic (i.e. able to produce
an immune response) tumour. The Kuznetsov model is given as

dc

dt
= S +

αccn

ζc + n
− γcnc− µcc c ≡ c(t) : CTLs

dn

dt
= αnn(1− µnn)− γncn n ≡ n(t) : tumour cells

(1.1)

where functions c and n denote, respectively, the densities of effector cells (i.e. CTLs) and
tumour cells. CTLs enter the system with constant influx S, are recruited at rate αcn

ζc+n , are
killed or inactivated at a rate proportional to the density of tumour cells, with constant of
proportionality γc, and die at rate µc due to natural death. Tumour cells grow at a logistic rate
αn(1 − µnn) with carrying capacity 1/µn, and are killed at a rate proportional to the density
of CTLs, with constant of proportionality γn. The model is used to describe the kinetics of
growth and regression of the B-lymphoma BCL1 in the spleen of mice. By comparing the model
with experimental data, numerical estimates of parameters describing processes that cannot be
measured in vivo are derived. Through numerical simulations of this model, the established
behaviour of “sneaking through”, in which larger tumours are eliminated but smaller ones remain
and grow, is observed. Moreover, the analytical and numerical results of the model show the
presence of stable limit cycles, meaning that the immune system and the tumour coexist and
undergo oscillations. For tumours with low antigenicity (which is linked to the value of γc) these
cycles may be relatively long, with the tumours kept under control in a dormant state for most
of the time.

From this particular model, a general framework has been derived, defined in [48]. For
particular choice of its terms, this general model has been used in the literature to describe
different observed tumour-immune interaction dynamics [67, 123, 192, 195]. In particular, this
general framework is very helpful for elucidating basic and generic mechanisms that can induce
observed behaviours, such as tumour regression and evasion, as well as tumour dormancy, a
mechanism for which a small tumour continues to exist but is maintained at a restricted size by
the immune system.

From these generic two equation models, many models have been developed by including one
or more components representing specific aspects of the tumour-immune environment interactions
such as: the interactions with normal tissue cells [51], or with cytokines (e.g., IL-2, IFN-γ) and
chemokines [118].

In nonspatial models, the expression and recognition of tumour antigens is usually modelled
by variation of the rates of activation and proliferation of CTLs and of killing of tumour cells [12,
18, 69]. More recently, these processes have been explicitly modelled by nonspatial models
formulated in terms of either ODEs [1, 15, 34, 120, 136] or IDEs [54, 52, 132].

A good review of nonspatial models that study interactions between immune and tumour
cells can be found in [61].

Deterministic spatial models While deterministic nonspatial models are a good basis for
modelling research, key dynamics of tumour-immune interactions can be confirmed or expanded
in a wider range of biological aspects through the inclusion of spatial phenomena, e.g. random
motility or chemotaxis, of the cells. This can be obtained by extending ODEs models into
deterministic spatial models using partial differential equations [14, 148, 147, 200].

In particular, following the work of Kuznetsov and collaborators [123], in [148], Matzavinos
and collaborators used a Fisher-Kolmogorov type model to describe the logistic growth of a
tumour coupled with a chemotaxis model to describe the movement of CTLs into the tumour
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microenvironment and an equation describing the dynamics of tumour cell-CTLs complexes. The
Matzavinos model is given as

dc

dt
= βc∆xc− χc∇x(c∇xϕ) + Sh(x) +

αcr

ζc + n
c ≡ c(x, t) : CTLs

dϕ

dt
= βϕ∆xϕ+ αϕr − κϕϕ ϕ ≡ ϕ(x, t) : chemoattractant

dn

dt
= βn∆xn+ ϕnn(1− µnn)− γncn+ αnr n ≡ n(x, t) : tumour cells

dr

dt
= γrcn− µrr r ≡ r(x, t) : tumour cell-CTLs complexes

(1.2)
Compared to model (1.1), the spatial structure included in this model allows one to describe the
random motion of tumour cells and CTLs, as well as the chemotactic motion of CTLs towards
the tumour. In particular, ϕ is the concentration of a specific substance, i.e. chemoattractant,
along the gradient of which CTLs move with characteristic motility χc. Tumour cells and CTLs
move via undirected, random movement with diffusion coefficients βn and βc. Chemoattrac-
tant production is proportional to tumour cell–CTLs complex (denoted by the letter r). Once
produced, the chemoattractant is assumed to diffuse throughout the domain with diffusion co-
efficient βϕ and to decay with linear decay kinetics at rate κϕ. Moreover, the parameter S
represents the inflow of CTLs into the tissue (non-enhanced by the presence of tumour cells).
The function h(x) models the blood vessels through which new CTLs can enter the domain. The
other parameters represent the local kinetics between tumour cells, CTLs and tumour cell-CTLs
complexes. Numerical simulations of the model show that eventually the tumour cells develop
very small-amplitude oscillations about a ‘dormant’ state, indicating that the CTLs have suc-
cessfully managed to keep the tumour under control. Moreover, they demonstrate the existence
of cell distributions that are quasi-stationary in time and heterogeneous in space. A linear sta-
bility analysis of the underlying spatially homogeneous ODE kinetics coupled with a numerical
investigation of the ODE system reveals the existence of a stable limit cycle. This is verified
further by the authors undertaking a bifurcation analysis. These results allow to explain the
complex heterogeneous spatio-temporal dynamics observed in the PDE system, and reveal the
key parameter regimen in which the onset of tumour dormancy may occur.

In Chapter 4, we develop a spatial hybrid discrete-continuum modelling framework for the
interaction dynamics between tumour cells and CTLs. We formally derive the deterministic
continuum limit of this model. In the obtained deterministic continuum model, the motility
of CTLs is described by modified forms of the terms of random motion and chemotactic
motion of CTLs used in system (1.2). These modified forms of motility allow us to take
into account volume-filling effects [167], which take into account possible reduction in cell
motility at high cell densities.

Apart from purely spatial models, many others PDE models investigate the dynamics of the
immune response to tumours, using other structured variables than space. For example, in [14],
the authors have developed a system of PDEs structured in space and size to describe the early
interactions between tumour cells and CTLs. In this model, the displacement of CTLs is gov-
erned by chemotaxis, according to signals emitted by the tumour. Numerical simulations of the
model reveal the importance of space-structuration: space heterogeneities of the sources of naive
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immune cells, that provide, once activated, the CTLs that eliminate the tumour, dramatically
influence the immune response efficiency. In particular, it is shown that replacing the homo-
geneous distribution of immune cells by a few spots makes the immune response less efficient.
Instead of the control of the tumour, that would be kept at a fixed mass, the authors observe
that there is a periodic succession of rapid growth and remission phases.

Discrete models By using discrete models, such as individual-based models and cellular au-
tomata models, a wider spectrum of biological phenomena can be translated into mathematical
terms and described, such as cell-cell interactions, intracellular behaviour and individual cell
properties. These models can be posed on a spatial domain (e.g. a grid), and a set of rules
can be given to each cell with certain probabilities to achieve a detailed description of the in-
teractions of tumour cells and the local tumour environment [43, 113, 140, 139]. For example,
in [139] the authors used an individual-based approach to study the interactions between CTLs,
dendritic cells and tumour cells. In their model, each tumour cell is characterised by an antigen
profile which can change over time due to either epimutations or mutations. In this model, the
immune response against tumour cells is initiated by the dendritic cells that recognise the tu-
mour antigens and present them to the CTLs. Consequently, CTLs become activated against the
tumour cells expressing such antigens. Moreover, in the modelling strategies developed in [139],
the differences in movement between inactive and active immune cells are explicitly taken into
account. The results obtained indicate that antigenic heterogeneity within a tumour determines
the efficacy of immune action and highlight the complex interplay between spatial interactions
and adaptive mechanisms that underpins the immune response against solid tumours.

CompuCell3D [107] is a very useful tool when modelling tumour-immune interactions. It
allows the user to easily model an idealistic tumour environment where individual cells interact
with one another. For example, in Tough PhD Thesis [205], two Cellular Potts models have
been developed and implemented within CompuCell3D to try and explore the dynamics between
CTLs and tumour cells. The first model is based on the ODE and PDE models presented
in [123, 148, 147, 200]; however, the extension of these works into a Cellular Potts model allows
the inclusion of more precise biological aspects (such as cell adhesion, cell growth and mitosis,
motility, competition for space, etc). Numerical simulations of the model are used to portray
the three Es of immunoediting described in Section 1.2.3: elimination, equilibrium and escape.
The model begins with a central tumour mass, which is attacked by CTLs. Tumour cells are
allowed to divide when they reach a certain size, determined by how much oxygen is available
to them. This creates different tumoural zones, whereby the tumour mass forms a proliferating
rim, quiescent zone and necrotic core. CTLs are constantly supplied to the domain and can
eliminate tumour cells at a certain success rate. As this success rate is varied, the three Es of
immunoediting are realised. The second individual-based model try again to detect the three Es
of immunoediting; however, this time considering two types of immune cells, c1 and c2, and two
types of tumour cells, n1 and n2. Tumour cells n1 are only attacked by immune cells c1, whereas
tumour cells n2 are killed by both c1 and c2. These hypothesis try to investigate the idea that
a tumour, when in interaction with a host immune system, can become less efficient. The idea
stems from the hypothesis of immunoediting. As tumour cells are of mixed type, it is thought
that the immune system actively kills cells that are more immunogenic, allowing cells that are
less immunogenic to proliferate. Hence, the tumour evades “immune destruction”. The model
also investigate the impact of the “Warburg Effect”, i.e. the ability of tumour cells to use aerobic
glycolysis to generate the energy needed for cellular processes, on tumour growth [213].

Hybrid discrete-continuum models Hybrid discrete-continuum models are also used to a
great extent to study the immune response to tumours. In particular, the interaction between
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tumour cells and immune cells has been modelled using a combination between PDE and cellular
automata models. In particular, in [142] the authors use PDEs to describe the evolution of pro-
tumour nutrients within the tumour microenvironement and describe tumour cell, CTL and NK
cell movement and interactions through the cellular automata approach. Using this framework,
they explore the role of nutrients, cell-cell adhesion and immune cell infiltration capabilities on a
growing tumour. The results of numerical simulations of the model demonstrate different types
of tumour growth depending on key model parameters related to the tumour–immune system
interactions. In the absence of the immune system, the model is able to reproduce tumours of
both compact-circular and papillary (branchy) morphologies. Introducing the immune system
to the model leads to various results, which display either stable or unstable oscillatory tumour
growth, tumour elimination, or the infiltration of CTLs into the growing tumour.

1.3.3 Mathematical modelling of immunotherapies

Most of the works on modelling anti-tumour immunotherapy are based on systems of ODEs
and are focused mainly on the last steps of cancer-immunity cycle, i.e., interaction of tumour
cells with CTLs, death of tumour cells and inactivation of CTLs [18, 118, 163, 186]. The works
in this direction are often based on the general prey-predator model presented in [48], where
the number or properties of competing immune cells change due to therapy [12, 121, 69, 67,
192]. The general outcomes of this type of models is that the immune system can effectively
eradicate small tumours, whereas large enough tumours are able to escape immune surveillance.
From a mathematical point of view, this corresponds to the presence of an unstable manifold,
that separates the basins of attraction of two stable points, which correspond to the scenarios
of immune clearance or immune escape. Under such mathematical formulation, an important
question is how it can be possible, with the help of a therapeutic intervention, to move the
initial state of the system, located in a immune escape area, to the immune clearance one. Such
problems are in general formulated as optimal control problems and are solved analytically [32,
101].

Additionally, key markers for therapies to target, such as tumour antigens, can also be dis-
covered through ODE models [15, 136]. The account for the heterogeneity of antigens and the
evolution of their expression profile has also been realized through IDEs. Such approach are
implemented for example in the work [132], which develops a prey-predator model in which gen-
eral T cell and target cell populations are structured by their respective target-antigenic and
antigenic expression. The model is given as:

dc

dt
= [1 + Tc1(t)]αcc−

µc

1 + Tc2(t)
ρc(t)c

+ [1 + Tc3(t)]βcc

∫ 1

0

g(x, y; γ, θ)ndy c ≡ c(x, t) : CTLs

dn

dt
= [αn − µnρn(t)]n− βnn

∫ 1

0

g(y, x; γ, θ)cdx n ≡ n(y, t) : Target cells

(1.3)

In system (1.3), variables x ∈ [0, 1] and y ∈ [0, 1] model the target-antigenic expressions of CTLs
and the antigenic expressions of target cells. It is supposed that: (i) target cells proliferate at rate
αn and die due to competition for limited space and resources with constant of proportionality
µn; (ii) CTLs undergo antigen-independent proliferation at rate αc; and (iii) CTL numbers are
kept under control through homeostatic regulation mechanisms with constant of proportionality
µc. Functions ρc(t) and ρn(t) respectively represent the total number of CTLs and target cells.
Moreover, interactions between antigen-specific CTLs and their targets result in antigen-driven
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T-cell expansion at rate βc as well as selective action against target cells at rate βn. Furthermore,
up to three hypothetical classes of immunotherapies are presented, that are respectively designed
to enhance antigen-independent proliferation (Tc1-agents), interfere with homeostasis to promote
self-renewal of antigen-specific CTLs (Tc2-agents), and stimulate antigen-driven expansion (Tc3-
agents).

First, the model is able to reproduce the three phases of the immune response orchestrated
by CTLs: expansion, contraction and memory. Then, the model is devoted to the search for
methods to counteract the dynamics of “chase and escape”, which can develop under heteroge-
neous time-varying expression of antigens. The results of numerical simulations show that the
three hypothetical classes of immunotherapies under study can reduce the likelihood of immune
evasion. Moreover, they suggest that therapeutic protocols relying on the simultaneous delivery
of sufficiently high concentrations of Tc1-agents and Tc2-agents are the most effective of the ther-
apeutic protocols considered here. This implies that the success of an immunotherapy protocol
correlates strongly with its ability to shorten the duration of the contraction phase and stabilize
as many CTLs as possible inside the long-lived memory reservoir.

In Chapter 2, we develop an individual-based model for the coevolutionary dynamics be-
tween tumour cells and CTLs. We show that a generalised version of the mathematical
model (1.3) can be formally obtained as the deterministic continuum limit of such stochastic
discrete model. In addition to the biological phenomena incorporated into the model (1.3),
the continuum model obtained takes also into account the effect of changes in antigen ex-
pression profiles of tumour cells and more general forms of competitive feedback mechanisms
regulating the growth of the numbers of tumour cells and CTLs.

Moreover, PDE models have been used, for example, to describe tumour growth in the pres-
ence of cytotoxic drugs, i.e. drugs that directly kill tumour cells, and cytostatic drugs, which
instead slow down the velocity of the cell division cycle [42, 41, 134, 194]. Many other discrete
individual-based models and hybrid discrete-continuum models have also been utilized to pre-
dict the success of immunotherapy techniques [113, 175], such as PD-L1 inhibition therapies [87],
antibody treatment [169] and cancer vaccines [116].

1.3.4 Mathematical models in clinical oncology

Mathematical modelling of tumour-immune interactions has great potential. For example, it
can help to reveal non-obvious or non-intuitive mechanisms which may lead to immune escape
and allows new treatment strategies to be proposed and tested in an affordable way. Also, the
study of such models can help to suggest optimization of anti-cancer therapies already introduced
into clinical practice. However, compared with traditional, widely empirical methods of cancer
research, methods based on mathematical modelling of tumour-immune interactions have not led
to significant success in clinical oncology. There are many reasons for this, such as finding the
right balance between the reductionalism of mathematical models and the level of complexity
prevailing in the clinical environment. The interactions between tumour and immune cells can be
mathematically reproduced with models of different types and complexity. Developing more and
more detailed models can be a tempting activity, however, it is usually associated with certain
difficulties. For example, models of increasing complexity are associated with the problem of
incomplete calibration. On the other hand, due to the difficulty in estimating parameter values,
many models consider simple systems of equations and instead identify potential parameter
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spaces of interest. However, mathematical modelling has already led to several predictions,
validated using retrospective data [43, 187, 174, 214], preclinical successes [7, 125] as well as
initiated clinical trials [63, 228].

Despite a present great interest in modelling for immunotherapy, most of the relevant math-
ematical models are of purely theoretical interest. What greatly complicates their development
is the fact that immunotherapy itself often lacks a precise understanding of when it works, when
it does not, and when it worsens the clinical scene. However, there is a small number of works in
which biological experiments have been feed into the model, which can help to predict the next
step for new experiments, and can then be tested [179, 215].

Inspired by experimental observations in co-culture between breast cancer spheroids and
activated immune cells, which reproduce in vivo behaviours as described in [99], in Chapter 5
we explore a simple setting to study the effect of psychological stress on immune infiltration.
To study the effect of stress on immune infiltration, we use a simplified version of the
mathematical model developed in Chapter 3, which has been calibrated to reproduce in
silico the results presented in [99].

1.3.5 Formal derivation of continuum models

In their nature, deterministic continuum models are amenable not only to numerical simulations
but also to analytical approaches, which enable a complete exploration of the model parameter
space. This allows a precise identification of the validity domain of the results obtained and
ensures higher robustness and precision of the conclusions to be drawn. This in turn provides
a more in-depth theoretical understanding of the underlying cellular dynamics. The analysis
and numerical simulation of deterministic continuum models for tumour-immune interactions,
which may help identifying the determinants of tumour development, progression and response
to therapy, pose a series of mathematical challenges. Overcoming these challenges may require
the use of a wide range of methods and techniques from different research areas of mathematics.
In fact, the study of the qualitative and quantitative properties of the solutions of ODEs and
PDEs, motivated by the need to address open questions in cancer research, has stimulated the
extension of existing mathematical tools as well as the development of novel analytical techniques
and numerical methods [157, 171, 172].

Ideally, instead of defining such continuum models for tumour-immune interactions on the
basis of population- and tissue-scale phenomenological assumptions, one wants to derive them
from first principles, that is, as the deterministic continuum limits of stochastic discrete models
that track the dynamics of single cells [9, 212]. This is to ensure that the terms comprised in
the model equations provide a faithful representation of the underlying cellular dynamics. In
fact, although being computationally intensive to simulate for large cell numbers and, for most
of them, inaccessible to analytical techniques, single-cell-based models allow the representation
of fine details of cell-scale mechanisms and capture stochastic intercellular variability in spatial
and evolutionary trajectories [130]. These aspects, which cannot be directly incorporated into
deterministic continuum models, become especially important in scenarios where cell numbers
and densities are low (e.g. in the early stages of tumour development or when tumour size
is severely reduced after therapy), due to the stronger impact that single-cell processes and
demographic stochasticity have on cellular dynamics.

For this reason, the derivation of continuum models formulated in terms of PDEs or IDEs
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from underlying individual-based models has attracted the attention of a considerable number
of mathematicians and physicists. Examples in this active field of research, whereby a range of
asymptotic techniques, probabilistic methods and limiting procedures are used to systematically
derive continuum models from their stochastic discrete counterparts, can be found, for instance,
in [28, 35, 40, 110, 133].

1.4 Contributions of the thesis

As mentioned in Section 1.2, a strong connection may exist between tumour progression and
immune dysfunction that, however, remains to be fully explained. Mathematical modelling
and numerical simulations may help us to describe different mechanisms involved in tumour-
immune interactions, as well as to analyse possible ways in which tumour cells may escape
immune surveillance. This in turn may provide possible different frameworks to help biologists
and clinicians design immunotherapy strategies which significantly improve the effectiveness of
the overall anti-tumour immune response. In this thesis, we develop discrete and continuum
models to describe the spatio-temporal dynamics of the interactions between a solid tumour and
cytotoxic T cells, with the goal to investigate the biological settings which allow for the clearance
or the escape of the tumour.

This thesis is organized in four chapters. Each chapter focusses on a different mechanism
involved in tumour-immune interactions and is composed of three main sections: the first one
briefly resumes relevant biological background to inform the reader on the empirical evidence
motivating the model assumptions; the second one is dedicated to the presentation of the mathe-
matical framework together with analytical and numerical results; the final section is dedicated to
the discussion of the model and research perspectives, both in terms of applicability to empirical
systems and mathematical tractability. As shown in Section 1.3, in the literature many models of
tumour-immune interactions exist. However, the mathematical models developed in this thesis,
include a new or more precise representation of some mechanisms involved in tumour-immune
interactions.

Throughout the different chapters of the thesis, the contributions at the mathematical and
biological level are diverse.

Chapter 2 - Modelling the coevolutionary dynamics between cytotoxic T lympho-
cytes and tumour cells In Chapter 2, we develop an individual-based model for the coevolu-
tionary dynamics between CTLs and tumour cells in a well-mixed system (i.e. spatial interactions
are not incorporated into the model). In this model, the phenotypic state of each cell is modelled
by a discrete variable, which represents a parameterisation of the antigen expression profiles for
tumour cells and a parameterisation of the target antigens of T-cell receptors (TCRs) for CTLs.
We formally derive the deterministic continuum limit of this stochastic discrete model, which
comprises a non-local partial differential equation for the phenotype distribution of tumour cells
coupled with an integro-differential equation for the phenotype distribution of CTLs. We find
the biologically relevant homogeneous steady-state solutions of the continuum model equations,
and study their linear stability, in order to identify possible conditions on the model parame-
ters leading to different outcomes of immune competition and to the emergence of patterns of
phenotypic coevolution between tumour cells and CTLs. The results presented in this chapter
support the idea that TCR-tumour antigen binding affinity may be a good intervention target
for immunotherapy and offer a theoretical basis for the development of anti-cancer therapy, such
as adoptive T cell therapy, aiming at engineering TCRs in order to shape their affinity for cancer
targets.
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For the sake of simplicity, in this first model we ignore spatial interactions between tumour
cells and CTLs. Moreover, we consider a unique tumour cell population, characterized by the
same antigen expression profile. However, solid tumours can be heterogeneous, characterized by
different sub-populations of tumour cells expressing different antigens. Moreover, such antigens
can be presented at different levels. These aspects, as well as spatial interactions between tumour
cells and CTLs, may affect the efficacy of immune action and the outcomes of immune response,
making it an interesting problem to investigate on its own. Therefore, these aspects are further
included in the mathematical model presented in Chapter 3.

Chapter 3 - Modelling the impact of intra-tumour heterogeneity on immune response
In Chapter 3, we extend the individual-based model developed in Chapter 2 further to explicitly
include a spatial structure and tumour antigen expression and presentation. This allows us to
investigate the impact of intra-tumour heterogeneity (ITH) on the immune response to tumours.
Therefore, in Chapter 3, we develop a new spatially individual-based model of the interaction
dynamics between tumour cells and CTLs which makes it possible to dissect the specific impact
of two expressions of ITH on anti-tumour immune response. Such expressions of ITH are (i) the
number of sub-populations of cancer cells expressing different antigens and (ii) the percentage
of immunogenic cells (i.e. tumour cells that are effectively targeted by immune cells). The
originality of this model lies in the characterisation of antigen presentation levels by tumour
cells, which drive, by the means of a chemoattractant, the influx of CTLs in the tumour micro-
environment and their movement towards tumour cells. In our model, the effectiveness of the
anti-tumour immune response is directly linked to the level of presentation of tumour antigens.
The set-up of numerical simulations of the model is defined so as to mimic scenarios considered in
previous experimental studies reported in the literature [80, 223]. First, the results of numerical
simulations of this model indicate that the presence of a larger number of sub-populations of
tumour cells that express different antigens is associated with a reduced ability of CTLs to
mount an effective anti-tumour immune response. Secondly, the presence of a larger percentage
of tumour cells that are not effectively targeted by CTLs may reduce the effectiveness of anti-
tumour immunity.

One potential limitation of individual-based models is their lack of amenability to mathe-
matical analysis and their huge computational cost. To overcome this, we aimed to derive the
continuum counterparts of the individual-based model introduced in this chapter. However, due
to the complexity of the biological mechanisms included, in Chapter 4 we first consider a simpler
biological situation.

Chapter 4 - Modelling the role of T cell infiltration in the immune response In Chap-
ter 4, we present a spatial hybrid discrete-continuum modelling framework for the interaction
dynamics between tumour cells and CTLs. Building on the modelling strategies developed in
the previous chapter, in this framework, a stochastic individual-based model for cell dynamics is
coupled with a reaction-diffusion equation for the evolution of a chemoattractant, which dictates
the movement of CTLs towards the tumour. In order to take into account possible alterations in
the infiltration capabilities of CTLs within the tumour, we let the probability of CTL movement
be modulated by a decaying function of the densities of tumour cells and CTLs. We formally
derive the deterministic continuum limit of this model, which comprises an integro-differential
equation for the density of tumour cells coupled with a partial differential equation for the den-
sity of CTLs. We report on computational results of the hybrid model, and show that there is an
excellent agreement between them and numerical results of the corresponding continuum model.
The results presented in this chapter shed light on the mechanisms that underlie the emergence
of different levels of infiltration of CTLs into the tumour and elucidate how CTL infiltration
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shapes anti-tumour immune response. Moreover, exploiting the computational efficiency of the
continuum model, we carry out extensive numerical simulations to investigate the impact of CTL
infiltration on the response of tumour cells to different types of anti-cancer immunotherapy.

The different models of tumour-immune interactions developed in Chapters 2, 3 and 4 attempt
to describe or explore different mechanisms of the anti-tumour immune response. The different
models have been parametrised using parameter values drawn from the extant literature wherever
possible and aim to reproduce or investigate observed behaviours. However, at this stage, they
have not been calibrated to any particular type of data. Hence, they cannot be employed to
generate predictions that can directly be used in the clinic. In Chapter 5, we address this, by
proposing a simplified version of the mathematical model presented in Chapter 3, and calibrating
it to qualitatively reproduce experimental observations.

Chapter 5 - Modelling the effect of psychological stress on immune infiltration In
Chapter 5, we develop, in collaboration with biologists, a simple individual-based model to study
the effect of physiological stress on immune infiltration. The development of this model is mo-
tivated by in vitro experimental observations in co-culture between breast cancer spheroids and
activated immune cells, which study the effect of the glucocorticoid stress hormone, cortisol, on
immune infiltration [99]. In this in vitro study, it is found that cortisol decreases the levels of
the pro-inflammatory cytokine IFN-γ and increases the levels of the anti-inflammatory cytokine
IL-10. Therefore, in our model, we suppose that the effect of stress on the anti-tumour immune
response is directly linked to the change of levels of these two cytokines in the tumour microen-
vironment. Using a method similar to the one employed in [99], we define a score to quantify
the effects of stress on immune infiltration in a controlled manner. The results of numerical
simulations of this model are able to qualitatively reproduce the results of in vitro experiments
presented in [99], and demonstrate the importance of including the effect of different factors
when exploring the impact of physiological stress on immune infiltration into tumours.

Chapter 6 - Potential future directions In Chapter 6, we present a global conclusion of
the thesis and we comment possible research perspectives.
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Chapter 2

Discrete and continuum models for
the coevolutionary dynamics
between cytotoxic T lymphocytes
and tumour cells

2.1 Motivation

In this chapter, we present an individual-based model for the coevolutionary dynamics between
cytotoxic T lymphocytes (CTLs) and tumour cells. In this model, every cell is viewed as an
individual agent whose phenotypic state is modelled by a discrete variable. For tumour cells
this variable represents a parameterisation of the antigen expression profiles, while for CTLs it
represents a parameterisation of the target antigens of T-cell receptors (TCRs).

In general, individual-based models are useful for observing emergent dynamics from inter-
actions between single cells. However, they can be computationally time consuming and do not
allow for analysis to be completed on the model. Considering the continuum counterpart of
stochastic discrete individual-based models may allow for mathematical analysis. Therefore, we
formally derive the deterministic continuum limit of this individual-based model, which comprises
a non-local partial differential equation for the phenotype distribution of tumour cells coupled
with an integro-differential equation for the phenotype distribution of CTLs. The biologically
relevant homogeneous steady-state solutions of the continuum model equations are found. The
linear-stability analysis of these steady-state solutions is then carried out in order to identify
possible conditions on the model parameters that may lead to different outcomes of immune
competition and to the emergence of patterns of phenotypic coevolution between tumour cells
and CTLs.

We report on computational results of the individual-based model, and show that there is
a good agreement between them and analytical and numerical results of the continuum model.
These results shed light on the way in which different parameters affect the coevolutionary dy-
namics between tumour cells and CTLs. Moreover, they support the idea that TCR-tumour
antigen binding affinity may be a good intervention target for immunotherapy and offer a theo-
retical basis for the development of anti-cancer therapy, such as adoptive T cell therapy, aiming
at engineering TCRs so as to shape their affinity for cancer targets.

29
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The models described in this chapter and the results shown have been published in Luis
Almeida, Chloe Audebert, E. L. and Tommaso Lorenzi, Discrete and continuum models for the
coevolutionary dynamics between CD8+ cytotoxic T lymphocytes and tumour cells, Mathematical
biology and medicine, 2022.

2.2 Background

2.2.1 Biological background
As explained in Section 1.2, cytotoxic T lymphocytes (CTLs) play a key role in the immune
response against cancer. CTLs carry a specific receptor on their surface, the T-cell receptor
(TCR), which can recognise and bind to non-self antigens expressed by tumour cells [151]. Each
TCR recognises and binds specifically to a certain antigen (i.e. the cognate antigen) [45], and
possibly other antigens within a certain affinity range [144, 224]. This enables CTLs to exert
an antigen-specific cytotoxic activity against tumour cells, whose efficacy may depend on the
affinity range of TCRs and the strength of TCR-tumour antigen binding (i.e. TCR-tumour
antigen binding affinity) [112, 197].

The presence of tumour cells expressing non-self antigens triggers the clonal expansion of
CTLs with matching TCRs. Thereupon, CTL numbers are kept under control by self-regulation
mechanisms [78, 154, 196, 227, 207], which play a key role in the prevention of autoimmunity.

Furthermore, epigenetic and genetic processes inducing stochastic and heritable changes in
the antigen expression profiles of tumour cells foster dynamical intercellular variability in the
expression levels of tumour antigens [29, 188, 209]. Due to limitations posed by self-regulation
mechanisms upon the numbers of CTLs targeted against different antigens at the same tumour
site, such a form of intratumour heterogeneity creates the substrate for adaptation of tumour
cells to the antigen-specific cytotoxic activity of CTLs and triggers adaptive changes in the
repertoire of CTLs. This results in coevolutionary dynamics whereby CTLs dynamically sculpt
the antigenic distribution of tumour cells, and tumour cells concurrently reshape the repertoire
of CTLs [173].

The observation that the numbers of CD8+ and CD3+ T lymphocytes at the tumour site
correlate with prognosis in different types of cancer led to the development of the ‘immunoscore’
as a prognostic marker in cancer patients [10, 72, 71, 70]. The immunoscore provides a score
that increases with the density of CD8+ and CD3+ T lymphocytes both in the centre and at
the periphery of the tumour. A possible tumour classification based on the immunoscore has
been proposed in [72], where tumours with a high immunoscore are classified as ‘hot tumours’,
tumours with an intermediate immunoscore are classified as ‘altered tumours’, and tumours with
a low immunoscore are classified as ‘cold tumours’.

2.2.2 The mathematical model
In this vein, in this chapter, we develop an individual-based model for the coevolutionary dy-
namics between tumour cells and CTLs in a well-mixed system (i.e. spatial interactions are not
incorporated into the model). Every cell is viewed as an individual agent whose phenotypic state
is modelled by a discrete variable, which represents a parameterisation of the antigen expression
profiles for tumour cells and a parameterisation of the target antigens of the TCRs for CTLs.

The model takes into account the effects of the following biological processes: proliferation
and death of tumour cells and CTLs; heritable, spontaneous phenotypic changes of tumour cells
resulting in variation of antigenic expression; antigen-driven expansion of CTLs (i.e. in situ clonal
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expansion following antigen recognition); death of tumour cells due to antigen-specific cytotoxic
activity of CTLs. These processes are incorporated into the model through a set of rules that
correspond to a discrete-time branching random walk on the space of phenotypic states [40, 104].

We show that a generalised version of the mathematical model of immune competition pre-
sented in [132] can be formally obtained as the deterministic continuum limit of the individual-
based model presented here. This continuum model comprises a non-local partial differential
equation (PDE) for the phenotype distribution of tumour cells coupled with an integro-differential
equation (IDE) for the phenotype distribution of CTLs, and shares some similarities with non-
local predator-prey models such as those considered in [53, 81, 185, 202]. In addition to the
biological phenomena incorporated into the model considered in [132], the deterministic contin-
uum counterpart of the individual-based model developed here takes also into account the effect
of changes in antigen expression profiles of tumour cells and more general forms of competitive
feedback mechanisms regulating the growth of the numbers of tumour cells and CTLs.

The biologically relevant homogeneous steady-state solutions of the continuum model equa-
tions are found. Then, their linear stability analysis is studied in order to identify possible
conditions on the model parameters leading to different outcomes of immune competition and
to the formation of patterns of phenotypic coevolution between tumour cells and CTLs. We
report on computational results of the individual-based model, and show that there is an ex-
cellent agreement between them and analytical and numerical results of the continuum model.
Moreover, we explore possible scenarios in which differences between the outcomes of the discrete
and continuum models may emerge. The results obtained disentangle the role of different cell
parameters in the coevolutionary dynamics between tumour cells and CTLs.

2.2.3 Structure of the chapter
In Section 2.3, the individual-based model is introduced. In Section 2.4, the deterministic con-
tinuum counterpart of this model is presented (a formal derivation is provided in Appendix B.1).
In Section 2.5, the homogeneous steady-state solutions of the continuum model equations are
identified and their linear stability is investigated. In Section 2.6, computational results of the
individual-based model are discussed and integrated with numerical solutions of the continuum
model. In Section 2.7, key biological implications of the main findings of this study are sum-
marised and directions for future research are outlined.

2.3 The individual-based model

We model the coevolutionary dynamics between a population of tumour cells and a population
of CTLs in a well-mixed system. The population of tumour cells is labelled by the letter n, while
the population of CTLs is labelled by the letter c. Building on the modelling approach developed
in [52, 54, 132], at any time t ∈ [0, tf ] ⊂ R+, the phenotypic state of every tumour cell is modelled
by a variable x ∈ I, where I := [−L,L] ⊂ R is the closure of the set I := (−L,L) ⊂ R with
L > 0, and the phenotypic state of every CTL is modelled by a variable y ∈ I. We make the
following modelling assumptions.

Assumption 1. The variable x represents a parameterisation of the antigen expression profiles
of tumour cells, while the variable y represents a parameterisation of the target antigens of the
TCRs (see Figure 2.1). As a result, CTLs in the phenotypic state y will be primarily capable of
recognising tumour cells in the phenotypic state x = y.

Assumption 2. Tumour cells will have higher antigenic similarity if their phenotypic states
are modelled by closer value of x. Hence, depending on the range of TCR affinity, CTLs in the
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phenotypic state y = x may also be capable of recognising tumour cells in phenotypic states
which are sufficiently close to x.

Assumption 3. Tumour cells in similar phenotypic states (i.e. phenotypic states that are
modelled by sufficiently close values of x) will occupy similar niches and, therefore, a form of
intra-population competition (i.e. clonal competition) will occur between them. Moreover, self-
regulation mechanisms act on CTLs in similar phenotypic states (i.e. phenotypic states that are
modelled by sufficiently close values of y). Hence, a form of intra-population competition will
occur between these cells as well.

Tumour cells CD8	T cells

Antigenic	expression TCR	expression

-L Lv-L u L

CTLs

-L Lx -L Ly

Figure 2.1: Schematic illustration of the phenotypic expression of tumour cells and
CTLs. On the left: the value of the antigen expression profile of each tumour cell (variable x)
is represented by the colour of the antigens on its surface. Likewise, on the right, the value of
the target antigens of the TCRs that characterizes each CTL (i.e. variable y) is represented by
the colour of the TCRs on its surface.

Building upon the ideas presented in [13, 40, 194], we model each cell as an agent that
occupies a position on a lattice, which represents the space of phenotypic states. We discretise
the time variable and the phenotypic states, respectively, as

tk = kτ ∈ [0, tf ], xi = iχ ∈ I and yj = jχ ∈ I, k ∈ N0, i, j ∈ Z,

where τ ∈ R+
∗ and χ ∈ R+

∗ are the time- and phenotype-step, respectively. We introduce the
dependent variables Nk

i ∈ N0 and Ck
j ∈ N0 to represent, respectively, the number of tumour cells

on lattice site i (i.e. in the phenotypic state xi) and the number of CTLs on lattice site j (i.e.
in the phenotypic state yj) at time-step k. The population density functions of tumour cells and
CTLs (i.e. the phenotype distributions of the two cell populations) are defined, respectively, as

nki ≡ n(xi, tk) :=
Nk

i

χ
and ckj ≡ c(yj , tk) :=

Ck
j

χ
, (2.1)

while the total numbers of tumour cells and CTLs (i.e. the sizes of the phenotype distributions
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of the two cell populations) are defined, respectively, as

ρkn ≡ ρn(tk) :=
∑
i

Nk
i and ρkc ≡ ρc(tk) :=

∑
j

Ck
j . (2.2)

In the mathematical framework of our model, the function

Ih ≡ I(tk) :=
ρc(tk)

ρn(tk)
(2.3)

provides a possible simplified measure of the immune score at the kth time-step in the well-mixed
system considered here. In particular, abstracting from the immune-score based classification of
tumours recalled in Section 2.2, throughout the chapter we will refer to situations in which the
average value of I, i.e. the quantity

I =
τ

tf

∑
h

Ih, (2.4)

is smaller than 1 or at least about one order of magnitude larger than 1 as ‘cold tumour-like
scenarios’ and ‘hot tumour-like scenarios’, respectively, whereas the remaining situations will be
classified as ‘altered tumour-like scenarios’.

Remark 1. A more precise definition of the immunoscore, based on the spatial distribution of
CTLs within the tumour and not just by their number, will be given in Chapter 4.

As mentioned earlier, we focus on a biological scenario whereby: (i) cells in the two popula-
tions divide and die due to intra-population competition (i.e. clonal competition amongst tumour
cells and self-regulation of CTLs); (ii) tumour cells undergo heritable, spontaneous phenotypic
changes which result in variation of antigen expression profiles; (iii) CTLs undergo antigen-driven
expansion (i.e. in situ clonal expansion following antigen recognition); (iv) tumour cells die due
to the antigen-specific cytotoxic activity of CTLs. These biological phenomena are incorporated
into the model via the modelling strategies described in the following subsections, which are also
schematised in Figure 2.2.

2.3.1 Mathematical modelling of cell division and death due to intra-
population competition

We assume that a dividing cell is replaced by two identical cells that inherit the phenotypic state
of the parent cell (i.e. the progenies are placed on the same lattice site as their parent), while a
dying cell is removed from the population.

At every time-step k, we allow tumour cells and CTLs to undergo cell division at rates αn > 0
and αc > 0, respectively. Moreover, on the basis of Assumption 3, at every time-step k, we allow
tumour cells in the phenotypic state xi and CTLs in the phenotypic state yj to die due to
intra-population competition at rates µnK

k
ni

and µcK
k
cj , respectively, where µn, µc > 0 and

Kk
ni

≡ Kn(xi, tk) :=
∑
h

g(xi, xh; θn)N
k
h , Kk

cj ≡ Kc(yj , tk) :=
∑
h

g(yj , yh; θc)C
k
h . (2.5)
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Figure 2.2: Schematic representation of the algorithmic rules governing the coevolu-
tionary dynamics between tumour cells and CTLs in the stochastic individual-based
model. Panel a.: for a tumour cell in the phenotypic state xi we let αn model the rate of cell
division, µnK

k
ni

the rate of cell death due to intra-population competition, with the quantity
Kk

ni
defined via (2.5)-(2.7). Moreover, tumour cells can die due to antigen-specific cytotoxic

activity of CTLs at rate ζnγJk
ni

, with Jk
ni

defined via (2.6)-(2.8). Therefore, during the time
interval of length τ ≪ 1, between the time step k and the time step k + 1 we let a tumour cell
in a phenotypic state xi divide with probability ταn or die with probability τ(µnK

k
ni

+ ζnγJ
k
ni
)

or remain quiescent with probability 1 − τ(αn + µnK
k
ni

+ ζnγJ
k
ni
). Panel b.: for a CTL in the

phenotypic state yj we let αc model the rate of cell division and µcK
k
cj the rate of cell death due

to intra-population competition, with the quantity Kk
cj defined via (2.5)-(2.7). Moreover, CTLs

can undergo antigen-driven expansion at rate ζcγJk
cj , with Jk

cj defined via (2.6)-(2.8). Therefore,
between the time step k and the time step k+1 we let a CTL in a phenotypic state yj divide with
probability τ(αc + ζcγJ

k
cj ) or die with probability τµcK

k
cj or remain quiescent with probability

1 − τ(αc + ζcγJ
k
cj + µcK

k
cj ). Panel c.: a tumour cell in the phenotypic state xi that undergoes

a phenotypic change can either enter into the phenotypic state xi−1 with probability λn

2 , enter
into the phenotypic state xi+1 with probability λn

2 or remain in its current phenotypic state with
probability 1− λn.

The function g is defined as follows

g(x, y; ξ) :=


1

|Lξ(x)|
if |y − x| ⩽ ξ

0 if |y − x| > ξ,
for (x, y; ξ) ∈ I × I × (0, |I|], (2.6)

where |I| denotes the size of the interval I (i.e. |I| = 2L) and |Lξ(x)| denotes the size of the
interval

Lξ(x) := {y ∈ I : |y − x| ⩽ ξ}, (x; ξ) ∈ I × (0, |I|]. (2.7)
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The quantity Kk
ni

defined via (2.5)-(2.7) represents the number of tumour cells whose phenotypic
states are modelled by values of the variable xh at a distance smaller than or equal to θn from xi,
rescaled to |Lθn(xi)|. Similarly, the quantity Kk

cj defined via (2.5)-(2.7) represents the number of
CTLs whose phenotypic states are modelled by values of the variable yh at a distance smaller than
or equal to θc from yj , rescaled to |Lθc(yj)|. Hence, the inverse of the parameter 0 < θn ⩽ |I|
(i.e. 1/θn) provides a measure of the level of selectivity of clonal competition amongst tumour
cells and the inverse of the parameter 0 < θc ⩽ |I| (i.e. 1/θc) provides a measure of the level
of selectivity of self-regulation mechanisms acting on CTLs (i.e. the smaller θn and θc, then the
higher the corresponding levels of selectivity). Furthermore, the parameters µn and µc represent
the rates of death of tumour cells and CTLs due to these forms of intra-population competition.

2.3.2 Mathematical modelling of phenotypic changes in tumour cells

We account for spontaneous, heritable phenotypic changes which result in variation of antigen
expression profiles by allowing tumour cells to update their phenotypic states according to a
random walk. More precisely, between the time-steps k and k + 1, every tumour cell enters
a new phenotypic state, with probability 0 < λn < 1, or remains in its current phenotypic
state, with probability 1 − λn. When a tumour cell in the phenotypic state xi undergoes a
phenotypic change, it enters into either the phenotypic state xi−1 or the phenotypic state xi+1

with probability λn/2. This models the fact that phenotypic changes occur randomly due to
non-genetic instability, rather than being induced by selective pressures [103]. No-flux boundary
conditions are implemented by aborting any attempted phenotypic variation of a tumour cell if
it requires moving into a phenotypic state outside the interval I.

2.3.3 Mathematical modelling of tumour-immune competition

Similarly to cell division, we assume that a CTL undergoing antigen-driven expansion is replaced
by two identical cells that inherit the phenotypic state of the parent cell. Moreover, similarly to
cell death due to intra-population competition, we assume that a tumour cell dying due to the
antigen-specific cytotoxic activity of CTLs is removed from the population.

On the basis of Assumptions 1 and 2, at every time-step k we allow CTLs in the phenotypic
state yj to undergo antigen-driven expansion at rate ζc γ Jk

cj , while tumour cells in the pheno-
typic state xi will die due to antigen-specific cytotoxic activity of CTLs at rate ζn γ Jk

ni
. Here,

ζn, ζc, γ > 0 and

Jk
cj ≡ Jc(yj , tk) :=

∑
i

g(yj , xi; η)N
k
i , Jk

ni
≡ Jn(xi, tk) :=

∑
j

g(xi, yj ; η)C
k
j , (2.8)

where the function g is defined via (2.6) and (2.7). The quantity Jk
cj defined via (2.6)-(2.8)

represents the number of tumour cells whose phenotypic states are modelled by values of the
variable xi at a distance smaller than or equal to η from yj , rescaled to |Lη(yj)|. Similarly,
the quantity Jk

Ci
defined via (2.6)-(2.8) represents the number of CTLs in phenotypic states

which are modelled by values of the variable yj at a distance smaller than or equal to η from xi,
rescaled to |Lη(xi)|. Hence, the parameter 0 < η ⩽ |I| provides a measure of the affinity range
of TCRs. Furthermore, the parameter γ provides a measure of the TCR-tumour antigen binding
affinity (i.e. the strength of TCR-tumour antigen binding), while the parameter ζc represents the
rate at which a CTL undergoing antigen-driven expansion divides (i.e. the rate of cell division
corresponding to in situ clonal expansion), and the parameter ζn represents the rate at which a
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tumour cell can die due to the antigen-specific cytotoxic activity of a CTL.

2.3.4 Computational implementation of the individual-based model
Numerical simulations of the individual-based model are performed in Matlab. At each time-
step, we follow the procedures described hereafter to simulate phenotypic variation, cell division
and death of tumour cells, and cell division and death of CTLs. All random numbers mentioned
below are real numbers drawn from the standard uniform distribution on the interval (0, 1) using
the built-in function rand.

Computational implementation of spontaneous, heritable phenotypic changes of tu-
mour cells For each tumour cell, a random number, r1, is generated and used to determine
whether the cell undergoes a phenotypic change (i.e. 0 < r1 < λn) or not (i.e. λn ⩽ r1 < 1).
If the cell undergoes a phenotypic change, then a second random number, r2, is generated. If
0 < r2 < 1/2, then the cell moves into the phenotypic state to the left of its current state (i.e.
a cell in the phenotypic state xi will move into the phenotypic state xi−1 = xi − χ), whereas if
1/2 ⩽ r2 < 1 then the cell moves into the phenotypic state to the right of its current state (i.e.
a cell in the phenotypic state xi will move into the phenotypic state xi+1 = xi + χ). No-flux
boundary conditions are implemented by aborting attempted phenotypic changes that would
move a cell into a phenotypic state outside the interval I.

Computational implementation of cell division and death of tumour cells and CTLs
For each population, the number of cells in each phenotypic state is counted. The quantities Kn

and Kc are computed via (2.5) and the quantities Jn and Jc are computed via (2.8), and the
following definitions are used to calculate the probabilities of cell division, death and quiescence
(i.e. no division nor death) for every phenotypic state of cells in the two populations, respectively,

Pb
n := τ αn, Pd

n := τ
(
µnK

k
ni

+ ζn γ J
k
ni

)
, Pq

n := 1−
(
Pb
n + Pd

n

)
(2.9)

and
Pb
c := τ

(
αc + ζc γ J

k
cj

)
, Pd

c := τ µcK
k
cj , Pq

c := 1−
(
Pb
c + Pd

c

)
. (2.10)

Notice that we are implicitly assuming that the time-step τ is sufficiently small that 0 < Pk
n < 1

and 0 < Pk
c < 1 for all h ∈ {b, d, q}. For each cell, a random number, r3, is generated and

the cells’ fate is determined by comparing this number with the probabilities of division, death
and quiescence corresponding to the phenotypic state of the cell. In more detail, for a cell in
population C: if 0 < r3 < Pd

n then the cell is considered dead and is removed from the population;
if Pd

n ⩽ r3 < Pd
n + Pb

n then the cell undergoes division and an identical daughter cell is created;
whereas if Pd

n + Pb
n ⩽ r3 < 1 then the cell remains quiescent (i.e. does not divide nor die).

Similarly, for a cell in population T : if 0 < r3 < Pd
c then the cell is considered dead and is

removed from the population; if Pd
c ⩽ r3 < Pd

c + Pb
c then the cell undergoes division and an

identical daughter cell is created; whereas if Pd
c + Pb

c ⩽ r3 < 1 then the cell remains quiescent.

2.4 Corresponding deterministic continuum model

In the case where cell dynamics are governed by the rules described in Sections 2.3.1-2.3.3,
between time-steps k and k + 1 a tumour cell in the phenotypic state xi may divide, die or
remain quiescent (i.e. not divide nor die) with probabilities defined via (2.9), while a CTL in
the phenotypic state yj may divide, die or remain quiescent with probabilities defined via (2.10).
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Hence, recalling that between time-steps k and k + 1 a tumour cell in the phenotypic state
xi may also enter into either of the phenotypic states xi−1 and xi+1 with probabilities λn/2,
the principle of mass balance gives the following system of coupled difference equations for the
population densities nki and ckj :

nk+1
i =

(
2Pb

n + Pq
n

) [λn
2

(
nki+1 + nki−1

)
+ (1− λn)n

k
i

]
, (xi, tk) ∈ I × (0, tf ],

ck+1
j =

(
2Pb

c + Pq
c

)
ckj , (yj , tk) ∈ I × (0, tf ].

(2.11)

The difference equation (2.11)1 for nki is subject to no-flux boundary conditions due to the fact
that, as mentioned in Section 2.3.2, any attempted phenotypic variation of a tumour cell is
aborted if it requires moving into a phenotypic state outside the interval I.

Starting from the system of coupled difference equations (2.11), letting the time-step τ → 0
and the phenotype-step χ→ 0 in such a way that

λn
χ2

2τ
→ βn with 0 < βn <∞, (2.12)

where the parameter βn is the rate of spontaneous, heritable phenotypic changes of tumour cells,
using the method employed in [13, 40, 194], it is possible to formally show (see Appendix B.1)
that the deterministic continuum counterpart of the stochastic discrete model comprises the
following PDE-IDE system for the cell population density functions n(x, t) and c(y, t)

∂tn− βn ∂
2
xxn =

[
αn − µnKn(x, t)− ζn γ Jn(x, t)

]
n, (x, t) ∈ I × (0, tf ],

∂tc =
[
αc − µcKc(y, t) + ζc γ Jc(y, t)

]
c, (y, t) ∈ I × (0, tf ],

Jn(x, t) :=

∫
I
g(x, y; η) c(y, t) dy, Kn(x, t) :=

∫
I
g(x, z; θn)n(z, t) dz,

Jc(y, t) :=

∫
I
g(y, x; η)n(x, t)dx, Kc(y, t) :=

∫
I
g(y, z; θc) c(z, t) dz,

(2.13)

with I = (−L,L). Here, the function g is defined via (2.6) and (2.7), and the non-local
PDE (2.13)1 for n is subject to the following no-flux boundary conditions

∂xn(−L, t) = 0 and ∂xn(L, t) = 0 for all t ∈ (0, tf ]. (2.14)

2.5 Steady-state and linear-stability analyses of the contin-
uum model equations

In this section, we first identify the biologically relevant homogeneous steady-state solutions of
the continuum model equations. Then, we carry out linear-stability analysis to: (i) determine
conditions that may lead to the eradication of tumour cells by CTLs or to the coexistence between
the two cell populations, and (ii) identify sufficient conditions for the emergence of patterns of
phenotypic coevolution between tumour cells and CTLs.
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2.5.1 Biologically relevant steady-state solutions

A biologically relevant steady-state solution of the PDE-IDE system (2.13) subject to the bound-
ary conditions (2.14) is given by a pair of real, non-negative functions n∗(x) and c∗(y) that satisfy
the following system of differential equations

−βn ∂2xxn∗ =
[
αn − µnK

∗
n(x)− ζn γ J

∗
n(x)

]
n∗, x ∈ I,[

αc − µcK
∗
c (y) + ζc γ J

∗
c (y)

]
c∗ = 0, y ∈ I,

(2.15)

with I = (−L,L), subject to the boundary conditions

∂xn
∗(−L) = 0 and ∂xn

∗(L) = 0. (2.16)

In the system (2.15),

J∗
n(x) :=

∫
I
g(x, y; η) c∗(y) dy, K∗

n(x) :=

∫
I
g(x, z; θn)n

∗(z) dz (2.17)

and
J∗
c (y) :=

∫
I
g(y, x; η)n∗(x) dx, K∗

c (y) :=

∫
I
g(y, z; θc) c

∗(z) dz. (2.18)

The components of homogeneous steady-state solutions satisfy the following system of equations
[
αn − µnK

∗
n(x)− ζn γ J

∗
n(x)

]
n∗ = 0, x ∈ I,[

αc − µcK
∗
c (y) + ζc γ J

∗
c (y)

]
c∗ = 0, y ∈ I

(2.19)

and are of the form

n∗(x) =
ρ∗n
|I|

∀x ∈ I and c∗(y) =
ρ∗c
|I|

∀y ∈ I, (2.20)

where ρ∗n ⩾ 0 and ρ∗n ⩾ 0 satisfy the following system of algebraic equations
(
αn |I| − µn ρ

∗
n − γn ρ

∗
c

)
ρ∗n = 0,(

αc |I| − µc ρ
∗
c + γc ρ

∗
n

)
ρ∗c = 0,

with γn := ζn γ and γc := ζc γ. (2.21)

The system of algebraic equations (2.21) is obtained by first integrating the PDE (2.13)1 over
I and imposing the boundary conditions (2.14), then integrating the IDE (2.13)2 over I, next
substituting ansatz (2.20) into the resulting equations and equating to zero their right-hand sides,
and finally using the fact that, when the function g is defined via (2.6) and (2.7),∫

I
g(x, y; ξ) dy = 1, ∀(x; ξ) ∈ I × (0, |I|]. (2.22)

In particular, since we are studying tumour-immune competition, we are interested in solutions of
the system of equations (2.21) whose ρ∗c component is strictly positive. There exist two solutions
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of this type, that is, the semitrivial solution

(ρ∗n1, ρ
∗
c1) =

(
0,

|I|αc

µc

)
, (2.23)

and, provided that the following condition on the model parameters is met

γ <
µc

αc

αn

ζn
, (2.24)

the nontrivial solution

(ρ∗n2, ρ
∗
c2) =

(
|I| (αnµc − αcγn)

γcγn + µnµc
, |I| (αcµn + αnγc)

γcγn + µnµc

)
. (2.25)

The semitrivial steady-state solution given by (2.20) and (2.23) corresponds to biological scenarios
whereby tumour cells are eradicated by CTLs, while the nontrivial steady-state solution given
by (2.20) and (2.25) corresponds to situations where coexistence between tumour cells and CTLs
occurs. Notice that condition (2.24) indicates that lower TCR-tumour antigen binding affinity
(i.e. smaller values of γ) make it more likely that tumour cells survive the cytotoxic action of
CTLs, thus promoting coexistence between the two cell populations.

2.5.2 Linear-stability analysis

Linearising the PDE-IDE system (2.13), subject to the boundary conditions (2.14), about a
steady-state of components n∗(x) and c∗(y), and using the conditions given by equations (2.15),
we obtain the following PDE-IDE system for the perturbations ñn(x, t) and ñT (y, t)
∂tñ− βn ∂

2
xxñ = [αn − µnK

∗
n(x)− γnJ

∗
n(x)] ñ−

[
µn K̃n(x, t) + γn J̃n(x, t)

]
n∗, (x, t) ∈ I × (0, tf ],

∂tc̃ = [αc − µcK
∗
c (y) + γcJ

∗
c (y)] c̃−

[
µc K̃c(y, t)− γc J̃c(y, t)

]
c∗, (y, t) ∈ I × (0, tf ],

(2.26)
subject to the boundary conditions

∂xñ(−L, t) = 0 and ∂xñ(L, t) = 0 for all t ∈ (0, tf ]. (2.27)

In the system (2.26), J∗
n(x) and K∗

n(x) are defined via (2.17), J∗
c (y) and K∗

c (y) are defined
via (2.18), and

J̃n(x, t) :=

∫
I
g(x, y; η) c̃(y, t) dy, K̃n(x, t) :=

∫
I
g(x, z; θn) ñ(z, t) dz, (2.28)

J̃c(y, t) :=

∫
I
g(y, x; η) ñ(x, t) dx, K̃c(y, t) :=

∫
I
g(y, z; θc) c̃(z, t) dz. (2.29)

Due to (2.19), if the steady-state solution (n∗, c∗) is given by (2.20) and (2.23) then the PDE-IDE
system (2.26) reduces to

∂tñ− βn ∂
2
xxñ =

[
αn − γnJ

∗
n(x)

]
ñ, (x, t) ∈ I × (0, tf ],

∂tc̃ = −
[
µc K̃c(y, t)− γc J̃c(y, t)

]ρ∗c1
|I|

, (y, t) ∈ I × (0, tf ],
(2.30)
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whereas if condition (2.24) is met and the steady-state solution (n∗, c∗) is given by (2.20)
and (2.25) then the PDE-IDE system (2.26) reduces to

∂tñ− βn ∂
2
xxñ = −

[
µn K̃n(x, t) + γn J̃n(x, t)

]ρ∗n2
|I|

, (x, t) ∈ I × (0, tf ],

∂tc̃ = −
[
µc K̃c(y, t)− γc J̃c(y, t)

]ρ∗c2
|I|

, (y, t) ∈ I × (0, tf ].

(2.31)

Conditions for eradication of tumour cells by CTLs or coexistence between the two
cell populations

In order to determine conditions on the model parameters that may lead to the eradication of
tumour cells by CTLs or to the coexistence between the two cell populations, we study the
stability of the steady-state solutions given by (2.20) and (2.23) or (2.25) to perturbations of the
form

ñ(x, t) = ϵn e
λt ∀x ∈ I and c̃(y, t) = ϵc e

λt ∀y ∈ I with ϵn, ϵc ∈ R∗, λ ∈ C. (2.32)

Substituting the ansatz (2.32) into the PDE-IDE system (2.30) and using property (2.22)
along with the expression (2.23) of ρ∗c1 gives the following system of algebraic equations

λϵn =
(
αn − γn

αc

µc

)
ϵn,

λϵc = −
(
µc ϵc − γc ϵn

) αc

µc
,

(2.33)

which can be written in matrix form asαn − γn
αc

µc
− λ 0

γc
αc

µc
−αc − λ

[
ϵn
ϵc

]
=

[
0
0

]
.

For a non-trivial solution of system (2.33) to exist, the determinant of the above matrix must be
zero. This leads to the following quadratic equation for λ

λ2 −Bλ+ C = 0

with
B := αn − γn

αc

µc
− αc and C := αc

(
γn
αc

µc
− αn

)
.

Hence, the semitrivial steady-state solution given by (2.20) and (2.23) is locally asymptotically
stable if the reverse of condition (2.24) holds, that is if

γ >
µc

αc

αn

ζn
, (2.34)

since in this case B < 0 and C > 0 (i.e. Re(λ) < 0). On the other hand, performing similar
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calculations on the PDE-IDE system (2.31) gives the the following system of algebraic equations
λϵn = −

(
µn ϵn + γn ϵc

) (αnµc − αcγn)

γcγn + µnµc
,

λϵc = −
(
µc ϵc − γc ϵn

) (αcµn + αnγc)

γcγn + µnµc
,

(2.35)

which can be written in matrix form as−µn
(αnµc − αcγn)

γcγn + µnµc
− λ −γn

(αnµc − αcγn)

γcγn + µnµc

γc
(αcµn + αnγc)

γcγn + µnµc
−µc

(αcµn + αnγc)

γcγn + µnµc
− λ

[
ϵn
ϵc

]
=

[
0
0

]
.

For a non-trivial solution of system (2.35) to exist, the determinant of the above matrix must be
zero. This leads to the following quadratic equation for λ

λ2 −Bλ+ C = 0

with
B := −

[
µn

(αnµc − αcγn)

γcγn + µnµc
+ µc

(αcµn + αnγc)

γcγn + µnµc

]
and

C :=
(αnµc − αcγn)(αcµn + αnγc)

(γcγn + µnµc)2
[µnµc + γnγc] .

Hence, if condition (2.24) is met, then the nontrivial steady-state solution given by (2.20)
and (2.25) is locally asymptotically stable, since in this case B < 0 and C > 0 (i.e. Re(λ) < 0).

Conditions for the emergence of patterns of phenotypic coevolution between tumour
cells and CTLs

In order to identify sufficient conditions for the emergence of patterns of phenotypic coevolution
between tumour cells and CTLs, we study the stability of the nontrivial steady-state solution
given by (2.20) and (2.25) to perturbations of the form

ñ(x, t) = ϵn e
λt φh(x) and c̃(y, t) = ϵc e

λt φh(y) with ϵn, ϵc ∈ R∗, λ ∈ C. (2.36)

Here, {φh}h⩾1 are the eigenfunctions of the Laplace operator on I with homogeneous Neumann
boundary conditions indexed by the wavenumber h, that is,

φh(x) = cos (hx) with h =
mπ

|I|
, m ∈ N, x ∈ I. (2.37)

Substituting the ansatz given by (2.36) and (2.37) into the PDE-IDE system (2.31), using
the fact that∫

I
g(x, y; ξ)φh(y) dy =

sin(hξ)

h
Ψ(x; ξ)φh(x) with Ψ(x; ξ) :=

2

|Lξ(x)|



42 CHAPTER 2. Discrete and continuum models for tumour-immune interactions

for all x ∈ I and ξ ∈ (0, |I|], we obtain the following infinite system of algebraic equations
λ ϵn = −h2 βn ϵn −

(
µn

sin(hθn)

h
Ψ(x; θn) ϵn + γn

sin(hη)

h
Ψ(x; η) ϵc

) ρ∗n2
|I|

,

λ ϵc = −
(
µc

sin(hθc)

h
Ψ(x; θc) ϵc − γc

sin(hη)

h
Ψ(x; η) ϵn

) ρ∗c2
|I|

,

(2.38)

which can be written in matrix form as−h
2 βn − µn

sin(hθn)

h
Ψ(x; θn)

ρ∗n2
|I|

− λ −γn
sin(hη)

h
Ψ(x; η)

ρ∗n2
|I|

γc
sin(hη)

h
Ψ(x; η)

ρ∗c2
|I|

−µc
sin(hθc)

h
Ψ(x; θc)

ρ∗c2
|I|

− λ

[
ϵn
ϵc

]
=

[
0
0

]
.

For each x ∈ I, for a non-trivial solution of the system of algebraic equations (2.38) to exist
the determinant of the above matrix must be zero. For each x ∈ I, this leads to the following
quadratic equation for λ

λ2 −Bλ+ C = 0

where

B ≡ B(h, x) := −h2 βn − µn
sin(hθn)

h

ρ∗n2
|I|

Ψ(x; θn)− µc
sin(hθc)

h

ρ∗c2
|I|

Ψ(x; θc) (2.39)

and

C ≡ C(h, x) : = h2 βn µc
sin(hθc)

h

ρ∗c2
|I|

Ψ(x; θc)+

+
ρ∗n2 ρ

∗
c2

|I|2

[
γnγc

(
sin(hη)

h
Ψ(x; η)

)2

+ µnµc
sin(hθn)

h

sin(hθc)

h
Ψ(x; θn)Ψ(x; θc)

]
.

A sufficient condition for the nontrivial steady-state solution given by (2.20) and (2.25) to be
driven unstable by perturbations of the form (2.36) (i.e. for patterns of phenotypic coevolution
between tumour cells and CTLs to be formed) is that B > 0 and/or C < 0 so that Re(λ) > 0
for all x ∈ I. In particular, in the case where

θn = θc = θ, θ ∈ (0, |I|], (2.40)

since k is defined via (2.37), for the condition B(h, x) > 0 to hold for all x ∈ I it suffices that

βn <
1

|I|
min
hθ

{
− sin(hθ)

h

(
ρ∗n2µn + ρ∗c2µc

h2

)}
min
x∈I

Ψ(x; θ),

where H :=

{
h =

mπ

|I|
, m ∈ N : sin(hθ) < 0

}
. Since, under definition (2.7),

min
x∈I

Ψ(x; θ) =
2

max
x∈I

|Lθ(x)|
=

1

θ
,
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the above condition on βn reduces to

βn <
1

|I|
min
hθ

{
− sin(hθ)

hθ

(
ρ∗n2µn + ρ∗c2µc

h2

)}
. (2.41)

2.6 Numerical simulations

In this section, we report on computational results of the individual-based model along with
numerical solutions of the corresponding continuum model given by the PDE-IDE system (2.13)
and subject to the boundary conditions (2.14). Simulations are integrated with the results of
steady-state and linear-stability analyses of the continuum model equations presented in Sec-
tion 2.5. In particular, we investigate the way in which the outcomes of the models are affected
by key parameters whose impact on the coevolutionary dynamics between tumour cells and
CTLs is of particular biological interest. Such key parameters are: the TCR-tumour antigen
binding affinity, γ, the level of selectivity of self-regulation mechanisms acting on CTLs, 1/θc,
the level of selectivity of clonal competition amongst tumour cells, 1/θn, and the affinity range
of TCRs, η. Moreover, we explore the existence of scenarios in which differences between the
outcomes produced by the two models can emerge due to effects which reduce the quality of the
approximation of the individual-based model provided by the continuum model.

2.6.1 Set-up of numerical simulations

Without loss of generality we choose L = 1, so that I = [−1, 1] and |I| = 2, and consider a
discretisation of the interval [−1, 1] consisting of 1500 points (i.e. the phenotype-step is χ ≈
0.0013). Furthermore, we use the time-step τ = 0.05 and, unless otherwise specified, we choose
the final time tf = 30 days.

Building on the results of steady-state and linear-stability analyses of the continuum model
equations presented in Section 2.5, we carry out simulations using the following initial condition
for the individual-based model

n0(xi) := 104(1 + a cos(Axi)), c0(yj) := 104(2 + a cos(Ayj)), a ⩾ 0, A > 0. (2.42)

In Appendix B.2, we provide a detailed description of the methods employed to numerically
solve the PDE-IDE system (2.13) complemented with the boundary conditions (2.14) and the
continuum analogue of the initial condition (2.42), i.e. the initial condition

n0(x) := 104(1 + a cos(Ax)), c0(y) := 104(2 + a cos(Ay)), a ⩾ 0, A > 0. (2.43)

Unless otherwise specified, we use the parameter values listed in Table 2.1. Here, the values of
the parameters αn, αc, ζn and ζc are consistent with previous measurement and estimation studies
on the dynamics of tumour cells and CTLs [43, 176, 123, 184]. The values of the parameters
µn and µc and the range of values of the parameters θn and θc are chosen so as to ensure that
the equilibrium sizes and phenotype distributions of the two cell populations in isolation are
biologically relevant. The range of values of the parameter η is consistent with experimental
estimations of the precursor frequency of CTLs [19], while the values of the parameter γ are
consistent with those used in [198, 199]. The value of the parameter λn is taken from [194] and
corresponds to values of βn that are consistent with experimental data reported in [56, 59].
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Table 2.1: Parameter values used in numerical simulations and their sources
Biological meaning Value Source

αn Rate of tumour cell proliferation 1.5/day [43]
αc Rate of antigen-independent CTL proliferation 5 ×10−2/day [176]
µn Rate of death of tumour cells due to clonal competition 1.5 ×10−6µl/day ad hoc
µc Rate of death of CTLs due to self-regulation mechanisms 5 ×10−6µl/day ad hoc
ζn Killing rate of tumour cells by CTLs 5 ×10−6µl/day [123]
ζc Rate of replication of CTLs following recognition 3 ×10−5µl/day [184]
η Affinity range of TCRs [0.1, 2] [19]
θn Level of selectivity of clonal competition amongst tumour cells [0.1, 2] ad hoc
θc Level of selectivity of self-regulation mechanisms of CTLs [0.1, 2] ad hoc
γ TCR-tumour antigen binding affinity [0.1, 3.5] [198, 199]
λn Probability of phenotypic variation of tumour cells 0.01 [194]

2.6.2 Main results

Eradication of tumour cells When γ is high enough so that condition (2.34) is satisfied (i.e.
condition (2.24) does not hold), after initial growth, the total number of tumour cells decreases
steadily over time until the tumour cell population is completely eradicated (cf. Figure 2.3a).
This is due to the fact that, in response to a rapid growth in the size of the tumour cell population,
the high TCR-tumour antigen binding affinity allows the population of CTLs to embark on rapid
expansion in size that continues until CTLs have reached the critical mass required to push
the population of tumour cells towards extinction. The expansion of the CTL population is
followed by the transition to a contraction phase, which is characterised by a decline of the total
number of CTLs to a level corresponding to the maintenance of a form of immunological memory.
Moreover, the plots in Figure 2.3a demonstrate that there is a good agreement between numerical
simulations of the individual-based and continuum models and, coherently with the analytical
results presented in Section 2.5.2, the total numbers of tumour cells and CTLs converge to the
steady-state values given by (2.23).

Hot tumour-like scenarios When γ satisfies condition (2.24) but is still sufficiently high,
the total number of CTLs attains a value large enough to keep the total number of tumour cells
steadily low. After initial growth, the total number of tumour cells decreases over time until it
stabilises itself around a relatively small value (cf. Figure 2.3b). As a result, the average value
of the immune score I defined via (2.3) and (2.4) is one order of magnitude larger than 1 (i.e. for
the parameter values considered here I ≈ 12.7). In the framework of our model, this corresponds
to the emergence of hot tumour-like scenarios.

Altered tumour-like scenarios For intermediate values of γ that satisfy condition (2.24),
after initial growth, a certain number of tumour cells and a slightly larger number of CTLs stably
coexist (cf. Figure 2.3c). In this case, the average value of the immune score I defined via (2.3)
and (2.4) is just slightly larger than 1 (i.e. for the parameter values considered here I ≈ 1.6). In
the framework of our model, this corresponds to the emergence of altered tumour-like scenarios.

Cold tumour-like scenarios For sufficiently small values of γ that satisfy condition (2.24),
in the early stage of cell dynamics the total number of tumour cells overtakes the total number
of CTLs, and keeps expanding until saturation (cf. Figure 2.3d). Accordingly, the average value
of the immune score I defined via (2.3) and (2.4) is smaller than 1 (i.e. for the parameter values
considered here I ≈ 0.7), which corresponds to the emergence of cold tumour-like scenarios in
the framework of our model.
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b.

Figure 2.3: Eradication of tumour cells and emergence of hot tumour-like, altered
tumour-like and cold tumour-like scenarios. Panel a. displays the plots of the time
evolution of the total number of tumour cells (ρn) and CTLs (ρc) of the individual-based model
(solid, coloured lines) and the continuum model (dashed, black lines) when γ is high enough
that condition (2.34) is satisfied (i.e. condition (2.24) does not hold). Here, αc = 0.5/day and
all the other parameters are as in Table 2.1 with γ = 3.5, η = 1.8 and θn = θc = 1.8. The
grey dotted lines highlight the steady-state values of ρn and ρc given by (2.23). Panels b.-d.
display similar plots for sufficiently large, intermediate and sufficiently small values of γ that
satisfy condition (2.24) – i.e. γ = 2 (panel b.), γ = 0.3 (panel c.) and γ = 0.12 (panel d.). All
the other parameters are as in Table 2.1 with η = 1.8 and θn = θc = 1.8. The grey dotted lines
highlight the steady-state values of ρn and ρn given by (2.25). Initial conditions (2.42) and (2.43)
with a = 0 were used to carry out numerical simulations. Analogous results hold when a > 0
in (2.42) and (2.43) (cf. Figure B.1 in Appendix B.3). The results from the individual-based
model correspond to the average over two realisations of the underlying random walk and the
related variance is displayed by the coloured areas surrounding the curves.

Robustness of numerical results The plots in Figure 2.3 demonstrate that there is an excel-
lent quantitative agreement between the results of numerical simulations of the individual-based
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model and numerical solutions of the corresponding continuum model. Moreover, consistently
with the results of linear stability analysis of the continuum model presented in Section 2.5.2,
these numerical results show that the total numbers of tumour cells and CTLs converge either
to the steady-state values given by (2.23) (cf. Figure 2.3a), or the steady-state values given
by (2.25) (cf. Figure 2.3b-d), depending on the fact that the choices of the model parameters
are such that condition (2.34) or condition (2.24) holds, respectively. When convergence to the
steady state (ρ∗n2, ρ

∗
c2) given by (2.25) occurs, in the long run, the value of the average immune

score I defined via (2.4) reflects the value of the ratio ρ∗c2/ρ∗n2. Therefore, in the framework of
our tumour classification based on the average immune score I (see page 5), if condition (2.24) is
met: cold tumour-like scenarios and hot tumour-like scenarios will emerge when the values of the
model parameters are such that the ratio ρ∗T2/ρ

∗
C2 is smaller than 1 or at least about one order of

magnitude larger than 1, respectively, whereas altered tumour-like scenarios will emerge in the
remaining cases. This has been confirmed by the results of additional numerical simulations (re-
sults not shown). Hence, independently of the specific values of the model parameters, provided
that assumption (2.24) is satisfied, cell dynamics qualitatively similar to those of Figure 2.3, and
corresponding to hot, altered or cold tumour scenarios, will be observed depending on the value
of the ratio ρ∗c2/ρ∗n2. This testifies to the robustness of the numerical results presented here.

Patterns of phenotypic coevolution between tumour cells and CTLs: impact of the
parameters θn and θc Figure 2.4 displays the plots of the phenotype distributions of tumour
cells (top panel) and CTLs (central panel) at the end of numerical simulations (i.e. close to
numerical equilibrium) alongside the plots of the corresponding time evolution of the total cell
numbers (bottom panel). In agreement with the analytical results presented in Section 2.5.2,
when condition (2.24) is satisfied and conditions (2.40) and (2.41) are met as well, patterns of
phenotypic coevolution between tumour cells and CTLs may emerge. Moreover, the top and
central panels of Figure 2.4 show that, coherently with the shape of the function B(h) defined
via (2.39) (cf. the plots in Figure 2.5), smaller values of θn and θc correlate with the formation
of more peaks in the phenotype distributions of the two cell populations. The plots in Figure 2.4
also demonstrate that there is a good agreement between numerical simulations of the individual-
based and continuum models.

Sample temporal dynamics of such patterns are summarised by the plots in Figure 2.6, which
show that clonal expansion leads to a rapid proliferation of CTLs that are targeted to the antigens
mostly expressed by tumour cells, whereas self-regulation mechanisms induce formerly stimulated
CTLs to decay. In turn, the antigen-specific cytotoxic action of CTLs causes the selection of
those tumour cells that are able to escape immune recognition. As a result, immune competition
induces the formation of multiple peaks in the phenotype distribution of tumour cells. This
concurrently shapes the phenotype distribution of CTLs with a time shift corresponding to the
time required for the CTLs to adapt to the antigenic distribution of tumour cells. The plots in
Figure 2.6 demonstrate that there is again a good agreement between numerical simulations of
the individual-based and continuum models.

Patterns of phenotypic coevolution between tumour cells and CTLs: impact of the
parameter η The results of numerical simulations summarised by the plots in Figure 2.7 ex-
tend the analytical results presented in Section 2.5.2 by showing that, when condition (2.24) is
satisfied and η is sufficiently small, smaller values of η may induce the formation of patterns
of phenotypic coevolution between tumour cells and CTLs whereby less regular multi-peaked
phenotype distributions of the two cell populations emerge (cf. top and central panels of Fig-
ure 2.7). The temporal dynamics of such patterns are qualitatively similar to those presented
in Figure 2.6 (results not shown). Moreover, numerical simulations indicate that smaller val-
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Figure 2.4: Patterns of phenotypic coevolution between tumour cells and CTLs: im-
pact of the parameters θn and θc. Top panels display the plots of the population density
function of tumour cells (n) and central panels display the plots of the population density function
of CTLs (c) of the individual-based model (solid, coloured lines) and continuum model (dashed,
black lines) at the end of numerical simulations (i.e. at t = 30) when conditions (2.24) and (2.41)
are satisfied and progressively smaller values of θn and θc are considered – i.e. θn = θc = 0.5
(panels a.), θn = θc = 0.3 (panels b.) and θn = θc = 0.2 (panels c.). All the other parameters are
as in Table 2.1 with γ = 1.5 and η = 0.7. Bottom panels display the corresponding plots of the
time evolution of the total number of tumour cells (ρn) and CTLs (ρc). Initial conditions (2.42)
and (2.43) with a = 1 and A = 5 were used to carry out numerical simulations. Analogous
results were obtained when using different values of the parameter A (results not shown). The
results from the individual-based model correspond to the average over two realisations of the
underlying random walk and the related variance is displayed by the coloured areas surrounding
the curves.
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Figure 2.5: Plots of B(h, x) for different values of θn and θc. Plots of the function B(h)
defined via (2.39) for the parameter values used in Figure 2.4 – i.e. θn = θc = 0.5 (left panel),
θn = θc = 0.3 (central panel) and θn = θc = 0.2 (right panel).
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Figure 2.6: Sample temporal dynamics of patterns of phenotypic coevolution between
tumour cells and CTLs. Top panels display the plots of the population density function of
tumour cells (n) and bottom panels display the plots of the population density function of CTLs
(c) of the individual-based model (solid, coloured lines) and continuum model (dashed, black
lines) at five successive time instants – i.e. t = 0.4 (panels a.), t = 4 (panels b.), t = 10 (panels
c.), t = 16 (panels d.), t = 30 (panels e.) – in the case where condition (2.24) is satisfied.
Here, θn = θc = 0.3, γ = 1.5 and η = 0.7, and all the other parameters are as in Table 2.1.
Initial conditions (2.42) and (2.43) with a = 1 and A = 5 were used to carry out numerical
simulations. Analogous results were obtained when using different values of the parameter A
(results not shown). The results from the individual-based model correspond to the average
over two realisations of the underlying random walk and the related variance is displayed by the
coloured areas surrounding the curves.

ues of η correlate with the emergence of oscillations in the total numbers of tumour cells and
CTLs, that is, CTLs undergo a succession of expansion and contraction phases that result in
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an alternate decay and growth of tumour cells (cf. bottom panel in Figure 2.7c). The plots
in Figure 2.7 demonstrate that there is a good agreement between numerical simulations of the
individual-based and continuum models.

x x x

y y y

Figure 2.7: Patterns of phenotypic coevolution between tumour cells and CTLs: im-
pact of the parameter η. Top panels display the plots of the population density function of
tumour cells (n) and bottom panels display the plots of the population density function of CTLs
(c) of the individual-based model (solid, coloured lines) and continuum model (dashed, black
lines) at the end of numerical simulations (i.e. at t = 30) when condition (2.24) is satisfied and
progressively smaller values of η are considered – i.e. η = 1 (panels a.), η = 0.6 (panels b.) and
η = 0.2 (panels c.). All the other parameters are as in Table 2.1 with γ = 1 and θn = θc = 0.7.
Bottom panels display the corresponding plots of the time evolution of the total number of tu-
mour cells (ρn) and CTLs (ρc). Initial conditions (2.42) and (2.43) with a = 1 and A = 5 were
used to carry out numerical simulations. Analogous results were obtained when using different
values of the parameter A (results not shown). The results from the individual-based model
correspond to the average over five realisations of the underlying random walk and the related
variance is displayed by the coloured areas surrounding the curves.

Possible discrepancies between individual-based and continuum models The results
that have been presented so far indicate that there is a good agreement between the results
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of computational simulations of the individual-based model and the numerical solutions of the
corresponding continuum model. However, we expect possible differences between the outcomes
of the two models to emerge in the presence of lower tumour cell numbers, which may lead
to more pronounced demographic stochasticity, and less regular multi-peaked cell phenotype
distributions, which may cause a reduction in the quality of the approximations employed in
the formal derivation of the deterministic continuum model from the individual-based model. In
order to investigate this, we carried out numerical simulations of the two models for choices of
parameter values such that condition (2.24) holds, evolution towards relatively small tumour cell
numbers occurs, and less regular cell phenotype distributions with multiple peaks emerge. The
results obtained are summarised by the plots in Figure 2.8, which show that the individual-based
model predicts eradication of the tumour cell population, whereas the continuum model predicts
coexistence between tumour cells and CTLs.

a.

b.

c.

x

y

Figure 2.8: Possible discrepancies between individual-based and continuum models.
Panel a. displays the plot of the time evolution of the total number of tumour cells (ρn) and
CTLs (ρc) of the individual-based model (solid, coloured lines) and the continuum model (dashed,
black lines) when condition (2.24) holds, evolution towards relatively small tumour cell numbers
occurs, and the parameter η is sufficiently small so that less regular multi-peaked cell phenotype
distributions emerge – i.e. αc = 0.5/day, µc = 2 × 10−6µl/day, γ = 1.1, η = 0.1, and all the
other parameters as in Table 2.1 with θn = θc = 1.8. The plots in panels b. and c. display the
corresponding population density functions of tumour cells (n) and CTLs (c) of the individual-
based model (solid, coloured lines) and of the continuum model (dashed, black lines) at the end of
simulations (i.e. at t = tf = 100). Initial conditions (2.42) and (2.43) with a = 1 and A = 5 were
used to carry out numerical simulations. Analogous results were obtained when using different
values of the parameter A (results not shown). The results from the individual-based model
correspond to the average over five realisations of the underlying random walk and the related
variance is displayed by the coloured areas surrounding the curves.
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2.7 Discussion, conclusions and research perspectives

Discussion and conclusions We developed an individual-based model for the coevolutionary
dynamics between tumour cells and CD8+ cytotoxic T lymphocytes that takes into account the
selectivity of antigen-specific immunity. We formally derived the deterministic continuum coun-
terpart of such an individual-based model, and we integrated the results of numerical simulations
of the two models with the results of steady-state and linear-stability analyses of the continuum
model equations.

The results presented in this study shed light on the way in which different parameters
shape the coevolutionary dynamics between tumour cells and CD8+ cytotoxic T lymphocytes.
In particular, we demonstrated that, ceteris paribus, higher values of the TCR-tumour antigen
binding affinity (i.e. the parameter γ in the model) promote the eradication of tumour cells by
CTLs, while lower values facilitate the coexistence between tumour cells and CTLs. Specifically,
progressively reducing the TCR-tumour antigen binding affinity brings about the emergence of:
hot tumour-like scenarios, which are characterised by a large number of in situ CTLs and a low
number of tumour cells, and thus represent a more fertile ground for anticancer therapeutic inter-
vention; altered tumour-like scenarios, which reflect the intrinsic ability of the immune system to
effectively mount a CTL-mediated immune response and the ability of tumour cells to partially
escape such a response; cold tumour-like scenarios, which are characterised by an insufficient
number of in situ CTLs and are invariably associated with poor prognosis [70]. This classifica-
tion of tumours is also supported by experimental works showing that in situ immune reaction
might be the strongest parameter influencing clinical outcome, regardless of the local tumour ex-
tension and its spread to lymph nodes [164, 72, 71]. Moreover, our findings support the idea that
TCR-tumour antigen binding affinity may be a good intervention target for immunotherapy that
aims to turn cold or altered tumours into hot ones by enhancing CTL response. In this regard,
our findings are in agreement with the conclusions of previous experimental articles indicating
that a strong binding affinity of T cells to tumour antigens may play a key role in the overall
immune response to the disease [83].In particular, in altered tumours, increasing antigenicity, via
the removal of co-inhibitory signals and/or the supply of co-stimulatory signals [71, 220], may
enhance in situ CTLs activity, and has proven to be effective in the treatment of advanced-stage
melanoma [222], renal cell carcinoma [156] and non-small cell lung cancer [98]. In cold tumours,
a proposed approach to overcome the lack of a pre-existing immune response consists in com-
bining a priming therapy that boosts CTL responses with the removal of co-inhibitory signals
through approaches such as immune checkpoint [70]. The therapeutic success achieved by com-
bining immune checkpoint therapy with chemotherapy in metastatic NSCLC has demonstrated
the potential strength of this dual approach [74].

Moreover, the results presented here indicate that the affinity range of TCRs (i.e. the param-
eter η in the model), the selectivity of clonal competition amongst tumour cells (i.e. the inverse
of the parameter θC in the model) and the selectivity of self-regulation mechanisms acting on
CD8+ cytotoxic T lymphocytes (i.e. the inverse of the parameter θT in the model) play a piv-
otal role in the formation of patterns of phenotypic coevolution, which create the substrate for
the emergence of less regular cell phenotype distributions with multiple peaks. Such patterns
are underpinned by some form of immunoediting whereby the population of CTLs evolves and
continuously adapts its receptor repertoire in order to recognise and effectively eliminate tumour
cells and, in turn, the antigen-specific selective pressure exerted by CTLs leads to the selection of
those tumour clones that are able to evade immune recognition [60]. The adaptability of tumour
cells and CTLs and the selective pressure they mutually exert on each other during cancer de-
velopment are emerging as crucial factors in determining cancer evolutionary trajectories. This
has been shown in the context of chronic lymphocytic leukemia [177] and other cancer types,
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as reviewed in [82]. Our results offer also a theoretical basis for the development of anti-cancer
therapy aiming at engineering TCRs so as to shape their affinity for cancer targets [23, 47, 129,
229] and adaptive therapy aiming at altering intratumour clonal competition [79, 218], in order to
control the coevolutionary dynamics between tumour cells and CD8+ cytotoxic T lymphocytes.
In this respect, one of the best known treatment based on engineering specific TCRs is based
on CAR-T cells [216], which confer CTLs the ability to target specific antigens. It has been
demonstrated that this therapeutic strategy has several potential advantages over conventional
therapies, including specificity, rapidity, high success rate and long-lasting effects [111, 86].

The good agreement between the results of numerical simulations of the individual-based
and continuum models, along with the quantitative information given by (2.23) and (2.25) and
the precise conditions given by (2.34) and (2.41), testifies to the robustness of the biological
insight gained in this work. We also showed that possible differences between cell dynamics
produced by the individual-based and continuum models can emerge under parameter settings
that correspond to less regular cell phenotype distributions and more pronounced demographic
stochasticity. In fact, these cause a reduction in the quality of the approximations employed
in the formal derivation of the deterministic continuum model from the individual-based model
(cf. Appendix B.1). This demonstrates the importance of integrating individual-based and
continuum approaches when considering mathematical models for tumour-immune competition.

Research perspectives From a mathematical point of view, we plan to carry out a systematic
investigation of the conditions on the affinity range of TCRs that may lead to the emergence
of oscillations in cell numbers observed in the numerical simulations presented in this work.
Moreover, from a modelling point of view, our individual-based modelling framework for the
coevolutionary dynamics between tumour cells and CD8+ cytotoxic T lymphocytes, along with
the formal derivation of the corresponding continuum model, can be developed further in several
ways. For instance, a myriad of immunosuppressive strategies, the so-called immune checkpoints,
help tumour cells acquiring features that enable them to evade immune detection, which may
ultimately induce the exhaustion of CTLs in the tumour micro-environment, which impairs
the immune response. The modelling approach presented here does not capture this aspect.
However, exhaustion mechanisms could be incorporated into the individual-based model by, for
example, allowing CTLs to enter a suppressed state (i.e. CTLs would become exhausted and
thus would no longer able to eliminate tumour cells). In the continuum model, this would
result in the presence of an additional loss term in the IDE (2.13)2 along with a third equation
for the dynamics of exhausted CTLs. Another track to follow to further enrich our model
would be to include a spatial structure, for instance by embedding the tumour cells in the
geometry of a solid tumour, and to take explicitly into account the effect of both spatial and
antigen-specific interactions between tumour cells and CTLs, as similarly done in [113, 140, 139].
Including a spatial structure would make it possible, inter alia, to introduce a more precise
definition of the immune score that incorporates the level of CTL infiltration. Furthermore, at
this stage, the mathematical representation of the phenotypic state of tumour cells and CTLs
employed in our modelling framework is rather abstract. This might make it difficult to carry out
precise quantitative comparisons between the results of numerical simulations and experimental
data. This limitation could be overcome by employing a mathematical representation of tumour
antigens and TCRs similar to the one that we proposed in [127], whereby a discrete set of tumour
antigens that can be recognised by a unique repertoire of TCRs is considered. Finally, it would
be interesting to incorporate explicitly into the model the effects of immunotherapeutic agents
or other therapeutic agents. These are all lines of research that we will be pursuing in the future.



Chapter 3

A mathematical model to study the
impact of intra-tumour
heterogeneity on anti-tumour T cell
immune response

3.1 Motivation

In the previous chapter we have developed a discrete model, and formally derived its continuum
counterparts, of tumour-immune competition to describe the interactions between cytotoxic T
lymphocytes (CTLs) and tumour cells. In the model, we considered that tumour cells and CTLs
were structured by a variable representing a parameterisation of the antigen expression profiles
and a parameterisation of the target antigens of T-cell receptors.

For the sake of simplicity, in this first work we did not consider spatial aspects of tumour-
immune interaction dynamics. Moreover, we considered that the tumour cell population was
characterized by the same antigen expression profile, which could eventually be recognized by
every CTL. However, solid tumours can be characterized by different antigen profiles and differ-
ent levels of antigen presentation by the major histocompatibility complex 1 (MHC-I), possibly
preventing their recognition by CTLs. These aspects, as well as spatial dynamics between tu-
mour cells and CTLs (such as cell spatial growth and movement, spatial heterogeneity within
the tumour), can affect the efficacy of immune action and the outcomes of immune response. In
particular, intra-tumour heterogeneity (ITH) has a strong impact on the efficacy of the immune
response against solid tumours. The number of sub-populations of cancer cells expressing dif-
ferent antigens and the percentage of immunogenic cells (i.e. tumour cells that are effectively
targeted by immune cells) in a tumour are both expressions of ITH.

In this chapter, we aim to capture these two expressions of ITH using mathematical modelling
techniques. As mentioned in Section 1.3.1, stochastic discrete models, such as individual-based
models, are appropriate modelling approaches for addressing the role of diversity in cell popula-
tions and also within each individual cell. Therefore, we develop a spatially explicit stochastic
individual-based model of the interaction dynamics between tumour cells and CTLs, which makes
it possible to dissect out the specific impact of these two expressions of ITH on anti-tumour im-
mune response.

53
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The originality of this model lies in the characterisation of antigen presentation levels by tu-
mour cells, which drive the influx of CTLs in the tumour micro-environment and their movement
towards tumour cells. As explained in 1.2.2, by ‘level of antigen presentation’ we refer to different
mechanisms that may affect the recognition of antigens by antigen presenting cells, the activation
of CTLs, and the efficacy of immune action. The characterization of antigen presentation levels
allows us to include different level of immunogenicity in the tumour and to consider two differ-
ent subtypes of tumour cells, that is: immunogenic cells (i.e. tumour cells that are effectively
targeted by CTLs) and non-immunogenic cells (i.e. tumour cells that are poorly targeted by
CTLs). In our model, the effectiveness of the anti-tumour immune response is directly linked to
the level of presentation of tumour antigens.

The set-up of numerical simulations of the model is defined so as to mimic scenarios considered
in previous experimental studies. Moreover, the ability of the model to qualitatively reproduce
experimental observations of successful and unsuccessful immune surveillance is demonstrated.
First, the results of numerical simulations of this model indicate that the presence of a larger
number of sub-populations of tumour cells that express different antigens is associated with a
reduced ability of CTLs to mount an effective anti-tumour immune response. Secondly, the
presence of a larger percentage of tumour cells that are not effectively targeted by CTLs may
reduce the effectiveness of anti-tumour immunity. Ultimately, the mathematical model presented
in this chapter may provide a framework to help biologists and clinicians to better understand
the mechanisms that are responsible for the emergence of different outcomes of immunotherapy.

This study is a joint work in collaboration with:

• Shensi Shen, Institute of Thoracic Oncology, West China Hospital, Sichuan University,
Chengdu, China.

The model described in this chapter and the results shown have been published in E. L., Tom-
maso Lorenzi, Shensi Shen, Luis Almeida, Chloe Audebert, A mathematical model to study the
impact of intra-tumour heterogeneity on anti-tumour CD8+ T cell immune response, Journal of
Theoretical Biology, 2022.

3.2 Background

3.2.1 Biological background
Cytotoxic T lymphocytes (CTLs) are capable of detecting and eliminating tumour cells by recog-
nising cancer-associated antigens expressed by tumour cells. The effectiveness of the immune
response depends on the level of presentation of such antigens by the major histocompatibility
complex 1 (MHC-I) [45, 151]. In particular, CTLs express T cell receptors (TCRs) and, once
activated, they migrate via chemotaxis in response to concentration gradients of chemical signals
towards the tumour cells expressing the matching antigens [153]. The influx and movement of
CTLs are dictated by the spatial distribution of tumour antigens and by the level of chemokines
in the tumour micro-environment [20]. Upon intratumoural infiltration, CTLs can trigger tu-
mour cell death by direct interaction with tumour cells, releasing cytotoxic factors (i.e. granzime
B, interferon gamma) [117].

Oncogenic mutation-driven cancers harbor neoantigens that can be recognized by CTL recep-
tors [93]. A high mutational burden and neoantigen load in tumours have been associated with
an enhanced response to immunotherapy [36, 84, 97, 182, 190, 211]. However, it has recently been
reported that many of these neoantigens arise from sub-clonal branching mutations and could
potentially increase intratumour heterogeneity (ITH) [149, 150, 180]. These tumours are charac-
terised by clonal antigens (presented by all tumour cells), and sub-clonal antigens (presented only
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by sub-populations of tumour cells). Moreover, such sub-clonal antigens may be associated with
decreased level of antigen presentation by the MHC-I, leading to a weaker antigen-specific CTL
response [80]. In contrast, more homogeneous tumours express few clonal antigens in all tumour
cells and appear to have a better response to immunotherapy across a wide range of tumour
types [65, 150]. Furthermore, CTLs activated against clonal antigens are more commonly found
at the tumour site than CTLs reactive to sub-clonal antigens [150]. These findings suggest that
ITH may strongly affect the effectiveness of the anti-tumour immune response.

3.2.2 The mathematical model

In light of these considerations, we present a spatial stochastic individual-based model of tumour-
immune interaction dynamics that can be used to explore the effect of ITH on immune surveil-
lance. There is a variety of individual-based model approaches (e.g., cellular automata, Cellular
Potts models, hybrid discrete/continuous models). In our study, we used a Cellular Potts model
and the CompuCell3D open-source simulation environment [107]. The originality of this model
lies in the characterisation of antigen presentation levels by tumour cells, which drive the influx
of CTLs in the tumour micro-environment and their movement towards tumour cells. In our
model, the effectiveness of the anti-tumour immune response is directly linked to the level of
presentation of tumour antigens. In addition, the model takes into account biological phenom-
ena that are driven by stochastic aspects of the interaction dynamics between tumour cells and
CTLs.

The effect of ITH on immune surveillance is investigated at two different levels through
computational simulations of this model. First, we explore the outcomes of the immune response
considering different number of sub-populations of cancer cells constituting the tumour. Then, we
asses the efficiency of the immune response by varying the immunogenicity of tumour cells. We
study the impact of these two characteristics on tumour progression independently and together,
assessing their influence on anti-tumour immunity in a controlled manner.

3.2.3 Structure of the chapter

The chapter is organised as follows. In Section 3.3, we present the individual-based model
and the mathematical description of each biological process included in the model. Section 3.4
summarises the set-up of computational simulations and presents some preliminary results of
computational simulations. Full details of model implementation and model parametrisation
are provided in Appendix A and Appendix C.1, respectively. In Section 2.6.2 we present the
main computational results and we discuss them in view of previous biological works. Finally,
Section 3.6 concludes the chapter and provides a brief overview of possible research perspectives.

3.3 Model and methods

We consider two cell types in our model: tumour cells, characterised by an antigen profile and a
level of antigen presentation, and antigen-specific CTLs. To describe the interactions occurring
between the two cell types we use an on-lattice individual-based model posed on a 2D spatial
domain partitioned into square elements of side ∆x. In our model, this domain biologically
represents the tumour micro-environment. At each time step of length ∆t, the states of the cells
are updated according to the probabilistic and deterministic rules described below.

In the remainder of this section, we first present the modelling framework in a general set-
ting, along with the underlying biological hypotheses and assumptions. Then, we detail how
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each biological mechanism is mathematically described. A detailed description of the computa-
tional implementation of the model, which relies on a Cellular Potts approach, can be found in
Appendix A.

3.3.1 Modelling framework

To include different level of immunogenicity in the tumour, two different subtypes of tumour
cells are considered: immunogenic cells (i.e. tumour cells that are effectively targeted by CTLs)
and non-immunogenic cells (i.e. tumour cells that are poorly targeted by CTLs). On the one
hand, we define immunogenic cells as cells expressing one or more clonal antigens, considered as
immunodominant, and presented at a normal level by the MHC-I. On the other hand, we assume
that non-immunogenic cells have experienced, through mutations, a deterioration of their level
of antigen presentation, and have acquired new antigens. These new antigens are presented only
by a subset of tumour cells, and will be denoted as sub-clonal antigens [150]. Therefore, we
define non-immunogenic cells as cells expressing clonal and sub-clonal antigens, both presented
at a low level by the MHC-I. The system is initially composed of tumour cells only, which grow
and proliferate through mitosis. Tumour cells secrete different chemoattractants that trigger
the influx of specific CTLs into the domain. When they arrive in the domain, CTLs move via
chemotaxis towards tumour cells expressing the matching antigens and, upon contact, try to
eliminate them.

The modelling strategies used to reproduce these dynamics are described in detail in the
following subsections, and are also schematically illustrated with an example in Figure 3.1 and
Figure 3.2.

Dynamics of tumour cells

Antigen expression We let NT (t) denote the number of tumour cells in the system at time
t = h∆t, with h ∈ N0, and we label each cell by an index n = 1, . . . , NT (t). We let each tumour
cell express one or more antigens, and we characterise the antigen profile of the tumour by means
of a vector

A = (a1, . . . , af ), a1, . . . , af ∈ N, (3.1)

where ai denotes an antigen and f is the total number of antigens expressed by the tumour [see
Figure 3.1(a)]. Using phylogenetic tree representations [see Figure 3.1(b)-(c)], we define each
antigen ai ∈ A, i = 1, . . . , f , of the tumour as clonal if it belongs to the trunk of the phylogenetic
tree, or sub-clonal if it belongs to one of the branches of the phylogenetic tree. We let AC and
ASC denote the sets of clonal and the sub-clonal antigens, whereby:

AC , ASC ⊂ A, AC ∪ASC = A and AC ∩ASC = ∅. (3.2)

Then, based on the phylogenetic tree representation, we divide the tumour in f different sub-
populations of tumour cells labelled by the last antigen ai ∈ A acquired [see Figure 3.1(d)].
Following this notation, in this model, cells in the same sub-population express the same set
of antigens [see Figure 3.1(a, b, d)]. Moreover, if ai ∈ AC , cells in the sub-population labelled
by the antigen ai express only clonal antigens, whereas if ai ∈ ASC , cells in the sub-population
labelled by the antigen ai express both clonal and sub-clonal antigens. Therefore, we define cells
in sub-populations labelled by a clonal antigen ai ∈ AC as immunogenic cells, whereas cells in
sub-populations labelled by a sub-clonal antigen ai ∈ ASC are defined as non-immunogenic cells.
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Antigen presentation by MHC-I We incorporate antigen presentation into our model by
letting each tumour cell present its antigens at a certain level. There can be high variability
in each antigen’s presentation between patients with the same type of tumour and even within
tumour cell samples from the same patient [8, 150]. Therefore, for the nth tumour cell, we
characterise the level of presentation of each one of its antigens ai ∈ A by the normalized
variable

lnai
∈ [0, 1] (3.3)

whereby the value lnai
= 0 corresponds to a tumour cell that lost the expression of the antigen

ai, while lnai
= 1 corresponds to a tumour cell presenting the antigen ai at the highest level.

To capture the idea that immunogenic cells present their antigens at a higher level than
non-immunogenic cells, we introduce the discrete sets

LI = {mI , . . . ,MI} ⊂ [0, 1] and LNI = {mNI , . . . ,MNI} ⊂ [0, 1], with MNI < MI . (3.4)

They characterise the range of different values that can be taken by the variable lnai
[see Fig-

ure 3.1(d)]. In particular, if the nth tumour cell is an immunogenic cell, it presents each antigen
ai at a normal level lnai

∈ LI , whereas if the nth tumour cell is a non-immunogenic cell, all of its
antigens ai are presented at a low level lnai

∈ LNI .

Tumour cell growth and division At each time-step, we let tumour cells grow at a random
rate drawn from a uniform distribution; the parameters of the bounds of the uniform distribution
are chosen to match the mean duration of a tumour cell cycle length. Mitosis occurs when a
tumour cell grows to a critical size and then divides along a randomly orientated axis. Upon
division at the time t, the nth tumour cell is replaced by two cells [see Figure 3.1(e)], one labelled
by the parent index n and the other one labelled by the index NT (t) + 1. The daughter cell will
inherit most of the properties of the parent cell, including the antigens expressed by the parent
cell, so the fact that the cell is immunogenic or not [see Figure 3.1(e)]. For each antigen ai
expressed by the daughter cell, a random level of antigen presentation l

NT (t)+1
ai will be chosen.

This level of antigen presentation can then be different from the one of the parent cell. Another
property not inherited by the daughter cell is the intrinsic lifespan of the cell, which is randomly
drawn from a uniform distribution. In this model, we do not take into account the appearance
of new antigens due to the occurrence of mutations.

Tumour cell death If a tumour cell exhausts its lifespan (which is drawn when the cell is
created), it dies (i.e. it undergoes apoptosis) at the end of the time-step and it is removed from
the domain. A tumour cell can also die due to intra-tumour competition, with a rate proportional
to the total number of tumour cells, or because of the cytotoxic action of CTLs. More details
about tumour cell death due to the cytotoxic action of CTLs will be given in Section 3.3.1.

Secretion of chemoattractants We let tumour cells at the border of the tumour (the region
where cytokines and immune cells are more abundant [20]) secrete different chemoattractants for
each expressed antigen ai ∈ A. The secretion of a chemoattractant by a tumour cell expressing
antigen ai is proportional to the level of presentation of such antigen ai. Therefore, we model
the chemoattractant secretion rate snai

by the nth tumour cell expressing antigen ai using the
following definition:

snai
:= C1 l

n
ai
, (3.5)

where C1 ∈ R+ is a scaling factor of units [mol]
[time] [space] , where [mol], [time] and [space] denote

respectively the number of chemoattractant molecules and the units of time and of the size of a
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Figure 3.1: Schematic representation of the modelling assumptions for tumour cells.
(a) Purple circles represent tumour cells. In this example, the antigen profile of the tumour
is characterised by 4 different antigens, each one represented by a specific color and shape.
(b) Phylogenetic tree illustrating the mutations leading to the different antigens expressed by
tumour cells. The clonal and sub-clonal antigens are represented as the phylogenetic tree trunk
and branches, respectively. (c) In this example, 4 antigens are expressed by the tumour, each
one characterised by a different color and shape. Based on the phylogenetic tree (b), we denote
a1 and a2 as clonal antigens, whereas a3 and a4 are denoted as sub-clonal antigens. (d) The
tumour is divided in 4 sub-populations of tumour cells, labelled by the last antigen acquired by
each cell. Here, the color of each antigen represents its level of antigen presentation. Cells in the
sub-populations labelled by the antigens a1 and a2 express only clonal antigens and are defined
as immunogenic cells. They present their antigens at a normal level, with values chosen from the
discrete set LI = {mI , . . . ,MI}. Cells in the sub-populations labelled by the antigens a3 and a4
express clonal and sub-clonal antigens and are defined as non-immunogenic cells. They present all
their antigens at a low level, with values chosen from the discrete set LNI = {mNI , . . . ,MNI}. (e)
A tumour cell divides when it reaches a certain target volume. An immunogenic (respectively
non-immunogenic) cell divide in two immunogenic (respectively non-immunogenic) cells. The
daughter cell has the same antigens of the parent cell, but with a new random level of antigen
presentation.
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grid site, and lnai
is the level of presentation of antigen ai by the nth tumour cell.

The total amount of chemoattractant secreted by tumour cells expressing antigen ai induces
the arrival of CTLs specific to antigen ai into the domain. More details about the mathematical
modelling of the different chemoattractant dynamics will be discussed in Section 3.3.1.

Dynamics of CTLs

Influx of CTLs Following [87], to model the tumour vessels that allow the arrival of CTLs in
the tumour micro-environment, we generate a set of points in the domain. In order not to rely on
a detailed angioarchitecture, we generate 5 entry points, equidistant from each other and from
the centre of the domain. At each time step, a CTL specific to antigen ai ∈ A can be supplied
to the domain from one of the 5 entry points, provided that the entry point is not occupied by
other cells. The probability 0 < p(t) ⩽ 1 of influx of a CTL specific to antigen ai into the domain
is proportional to the total amount Stot

ai
(t) of chemoattractant associated to antigen ai secreted

at time t. Therefore, we define p(t) as

p(t) := C2 S
tot
ai

(t),

with C2 ∈ R+ a scaling factor of units [time]
[mol] .

Since the secretion of chemoattractants by tumour cells is proportional to the level of antigen
presentation (see Eq. (3.5)), the total amount of chemoattractants secreted by non-immunogenic
cells is lower than the total amount of chemoattractants secreted by immunogenic cells. There-
fore, the influx of CTLs targeted to sub-clonal antigens, which are expressed only by non-
immunogenic cells, is lower than the influx of CTLs targeted to clonal antigens.

TCR expression and CTL death We denote by NC(t) the number of CTLs in the system
at time t, and we label each of them by an index m = 1, ..., NC(t). Every CTL has a unique
TCR [see Figure 3.2(a)], and we suppose that each TCR is specific to a unique tumour antigen
[see Figure 3.2(b)]. When the mth CTL with a TCR targeted against antigen ai ∈ A arrives into
the domain it undergoes chemotactic movement towards tumour cells expressing the matching
antigen ai.

CTL division occurs mostly in the lymph nodes [55] and cells then move to the tumour site.
CTLs can also proliferate at the tumour site but this is not the main site of proliferation. We
thus neglect the effects of CTL proliferation at the tumour site and consider only the effects of
proliferation outside the spatial domain of the model, leading to a varying influx of CTLs. A
CTL undergoes apoptosis when it reaches the end of its intrinsic lifespan, which is drawn from
a uniform distribution upon its arrival in the domain.

Elimination of tumour cells by CTLs Upon contact, CTLs can interact only with tumour
cells expressing the matching antigen [see Figure 3.2(c)], and can induce their death, on the
condition that the matching antigen is presented at a sufficiently high level. If a CTL is in
contact with more than one tumour cell expressing the matching antigen, it will try to eliminate
the one presenting the antigen at the highest level. In particular, when the mth CTL interacts
with the nth tumour cell expressing the matching antigen ai, we let the tumour cell be removed
from the system, provided that

µ lnai
> (1− r). (3.6)

Here µ is a random variable drawn from the standard uniform distribution, lnai
is the level of

presentation of antigen ai by the nth tumour cell and 0 < r ⩽ 1 is the intrinsic TCR-recognition
probability, which we suppose to be equal for every CTL. If the tumour cell satisfies the conditions
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Figure 3.2: Schematic representation of the modelling assumptions for CTLs and
their interaction with tumour cells. (a) Red circles represent CTLs, which express a unique
TCR. (b) TCR are represented with different shapes and colors. Each TCR is able to recognize a
particular tumour antigen. In the model, the number of TCRs is equal to the number of expressed
tumour antigens. (c) Purple circles represent tumour cells. CTLs can eliminate tumour cells,
upon contact, under certain conditions. A tumour cell is eliminated if it presents the antigen
matching the CTL receptor at a sufficiently high level. In this example, a tumour cell expressing
antigen a1 and a2 cannot be eliminated by a CTL with TCR matching antigen a4. On the other
hand, the same tumour cell may be eliminated by a CTL expressing the TCR matching antigen
a2, under a condition on the level la2

of presentation of such antigen a2. The parameter r is the
intrinsic TCR-recognition probability and µ is a random variable drawn from a standard uniform
distribution.

to be eliminated, it undergoes apoptosis. The parameter r determines the range of tumour cells
the CTL population can interact with: large values of r represent a CTL population able to
eliminate tumour cells presenting their antigens at a low level, whereas low values of r model the
scenario where the CTLs can only eliminate tumour cells presenting their antigens at a high level.
Tumour cell elimination by CTLs takes approximately 6 hours to be completed in vitro [30] and
in vivo [24]. Accordingly, we require that an elimination event keeps a CTL engaged for 6 hours
and only after this time the CTL can eliminate again [113]. If the condition (3.6) is not satisfied,
the CTL is not engaged and can try, in the next time step, to eliminate again a tumour cell.

Chemoattractant field

As mentioned earlier, we let the nth tumour cell at the border of the tumour secrete a different
chemoattractant for each antigen ai that it expresses. Denoting by ϕai

the concentration of the
chemoattractant secreted by tumour cells expressing antigen ai, we let the dynamic of ϕai be
described by the following reaction-diffusion equation:

∂ϕai

∂t
= D∆ϕai

− γϕai
+

∑
n∈NBT (t)

snai
, ai ∈ A. (3.7)

In Eq. (3.7), D is the diffusion constant and γ is the rate of natural decay; these two parameters
are assumed to have the same value for each chemoattractant. On the other hand, we recall that
the secretion rate snai

is specific to the nth tumour cell, because it is proportional to the level of
presentation of antigen ai by the tumour cell (see Eq. (3.5)). NBT (t) denotes the set of tumour
cells in contact with the surrounding medium at time t.
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We add to Eq. (3.7) zero-flux boundary conditions and an initial concentration ϕinita which
is set to be zero everywhere in the domain but at the border of the tumour.

3.4 Numerical simulations and preliminary results

3.4.1 Set-up of simulations
For numerical simulations of our individual-based model, we use a Cellular Potts approach on a
2D spatial grid with a total of 400×400 lattice sites. Simulations were developed and run using the
software CompuCell3D [107] on a standard workstation (Intel i7 Processor, 4 cores, 16 GB RAM,
macOS 11.2.2), with one time-step chosen to be ∆t = 1 min. The computational implementation
of Cellular Potts models is described in Appendix A, while full details of the model parametri-
sation are provided in Appendix C.1. Files to run a simulation example with Compucell3D soft-
ware [107] are available at: https://plmlab.math.cnrs.fr/audebert/cc3dmodeltumourcd8.

At the initial time point of the simulation, a certain number of tumour cells are already
present in the domain, while CTLs arrive only when the simulation starts. At the beginning
of simulations there is a total of 400 tumour cells, tightly packed in a circular configuration
positioned at the centre of the domain, reproducing the geometry of a solid tumour.

All quantities we present in this section and in Section 3.5 are obtained by averaging over
the results of 10 simulations, with parameter values kept constant and equal to those listed in
Table C.1 and Table C.2. Unless otherwise explicitly stated, we carry out numerical simulations
for 28800 time-steps, corresponding to 20 days.

The next two subsections describe two preliminary computational results of our model which
will be used to guide the simulations leading to the main results presented in Section 3.5.

3.4.2 Baseline scenario: tumour development in the absence of CTLs
We first establish a baseline scenario where tumour cells grow, divide and die via the modelling
rules described in Section 3.3.1, in the absence of CTLs. For this case, we carry out numerical
simulations for 36000 time-steps, corresponding to 25 days. Figure 3.3 shows the growth over
time of the number of tumour cells. The growth of the tumour cell number is of logistic type,
as expected by the rules that govern tumour cell death. Logistic growth has been used by a
number of authors to model the temporal evolution of the size of solid tumours [58, 118, 123].
The carrying capacity, i.e. the saturation value reached by the number of tumour cells due to
intra-population competition, is numerically estimated to be of about 1100 cells.

In the following subsections, we explore the immune response to tumours characterised by
different degrees of ITH. Each simulation is carried out by keeping all parameter values fixed
(and equal to this baseline scenario) and changing only the initial compositions of the different
tumours.

3.4.3 Tumours with larger number of sub-populations of cancer cells
lead to lower immune response efficacy

In a recent in vivo study in mice, the volume of UVB irradiated tumours after 20 days is
found to be linked to the number of sub-populations of cancer cells constituting each inoculated
tumour [223]. In our next simulations, we attempt to verify that our model reproduces such
phenomenon, exploring the outcomes of immune response to 7 different tumours characterised by
an increasing number of sub-populations of tumour cells. At this preliminary stage, we simplify
our model. We consider that each tumour consists of the same type of cells, and we do not

https://plmlab.math.cnrs.fr/audebert/cc3dmodeltumourcd8
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Figure 3.3: Baseline scenario: tumour development in the absence of CTLs. Time
evolution of the tumour cell number in the absence of CTLs. The shaded area indicates +/−
standard deviation between 10 simulations. The black dotted line highlights a numerical estima-
tion of the tumour cell carrying capacity.

differentiate between immunogenic and non-immunogenic cells. In particular, here we let each
sub-population of tumour cells be characterised by cells expressing a single antigen. This antigen
is presented at a random level, chosen uniformly from the discrete set L =

{
1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6 , 1

}
. In

this way, tumour cells that express the same antigen belong to the same sub-population.
The plots in Figure 3.4(a)-(g) display the time evolution of the tumour cell number of 7

tumours that comprise 1 to 7 different sub-populations of cancer cells. Plot in Figure 3.4(h)
displays the corresponding number of tumour cells and CTLs remaining at the end of simulations
(after 20 days) for the 7 tumours. For tumours constituted of 1 or 2 sub-populations of cancer
cells, none or very few tumour cells remain after 20 days [see Figure 3.4(a)-(b)]. When 3 sub-
populations of cancer cells constitute the tumour, the number of tumour cells over time tends to
stay constant and slightly above its initial value [see Figure 3.4(c)]. Finally, for tumours initially
constituted of more than 3 sub-populations, the number of tumour cells after 20 days is more
than twice the initial value. In addition, the final number of tumour cells increases as we increase
the number of sub-populations of cancer cells constituting the tumour from 1 to 6. For tumours
with 6 and 7 sub-populations, the final number of tumour cells is similar and is about 1000 cells
[see Figure 3.4(f)-(g)]. These results support the idea that the anti-tumour immune action is
efficient only when the tumour is constituted of 1 or 2 sub-populations of tumour cells. Moreover,
up to a certain point, the increase of the number of sub-populations of tumour cells results in
a weaker immune response. Finally, increasing the number of sub-populations of tumour cells
beyond 6 does not appear to change the effect of the immune response. Comparing the dynamics
of the two last tumours (with 6 and 7 sub-populations of tumour cells) to the baseline scenario
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of Section 3.4.2, we see that the immune response is almost inefficient, as it is not able to really
limit the growth of the two tumours.

Our computational results are in agreement with experimental results presented in [223]. In
this study, the induction of UVB-derived tumour, which lead to an increase in the number of
sub-populations of cancer cells, results in aggressive tumours with reduced anti-tumour immune
activity. However, when different single-cell-clone derived tumours (characterised by a unique
sub-population of tumour cells) are considered, the immune system is able to effectively eradicate
them.

Figure 3.4(h) also shows that, when the tumour is constituted of more than 3 sub-populations
of tumour cells, the total number of CTLs at the end of simulations remain almost constant in
the different tumours (around 200 cells). A consequence of this is that the average size of each
specific CTL sub-population decreases as we consider tumours with increased number of sub-
populations of tumour cells. This leads to a less efficient anti-tumour immune response. As
highlighted in [223], these computational results also suggest that increasing the number of sub-
populations of tumour cells reduce the exposition of each antigen to the “front-line”, thus making
more difficult for immune cells to detect them. The resulting outcome is a reduced influx of
specific CTLs in the tumour micro-environment and a weaker anti-tumour immune response.

3.4.4 Initial composition of two tumours inspired by biological studies

In the previous subsections we investigated simple cases of tumour growth with and without
the action of the immune system. We will now explore further the effect of ITH on immune
surveillance considering two tumours inspired by biological studies, in order to effectively capture
more layers of biological complexity. For the two tumours we consider different initial antigenic
compositions, corresponding to different degrees of ITH. In particular, following the experiments
presented in [223], we dissect out two characteristics of ITH: the number of sub-populations of
cancer cells constituting a tumour and the percentage of immunogenic and non-immunogenic
cells within it. With our model, we wish to investigate the effect of these two expressions of ITH
on tumour aggressiveness independently and together, evaluating their influence on anti-tumour
immunity in a controlled manner. To this end, first we generate two tumours with different
number of sub-populations of cancer cells. Following the experiments presented in [223] and
the results of Section 3.4.3, we consider, respectively, tumours with 3 and 7 sub-populations of
cancer cells. For simplicity, we denote the first tumour as tumour-3a and the second one as
tumour-7a. The antigenic composition of the two tumours and their corresponding phylogenetic
tree representation are inspired by experiments presented in [223]. More details about the two
tumours are given in the next paragraphs. Next, for each tumour we consider different initial
percentages of immunogenic and non-immunogenic cells. When different sub-populations of
immunogenic (or non-immunogenic) cells are considered, the total percentage of immunogenic
(or non-immunogenic) cells is equally distributed in each sub-population. This enables us to
decouple antigen heterogeneity and antigen immunogenicity, and study their influence on tumour
aggressiveness in a causal, systematic manner.

Tumour-3a The first tumour we consider expresses three different antigens, one of which is
clonal and the other two are sub-clonal (see Figure 3.5(a)). With the notation introduced in
Section 3.3.1, we denote respectively by

A = {4, 5, 7}, AC = {5} and ASC = {4, 7} (3.8)

the antigen profile of the tumour, the clonal antigens and the sub-clonal antigens.
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Figure 3.4: Tumours with larger number of sub-populations of cancer cells lead to
lower immune response efficacy. Plots in panel (a)-(g) display the time evolution of the
tumour cell number for tumours characterised by increasing numbers of sub-populations. Shaded
areas indicate +/− standard deviation between 10 simulations. Plot in panel (h) displays the
corresponding number of tumour cells (in red) and CTLs (in green) remaining after 20 days
(28800 time-steps) for the different initial tumour compositions. The cell numbers presented
here were obtained as the average over 10 simulations and the error bars display the related
standard deviation.

Based on the phylogenetic tree representation of Figure 3.5(a), we divide tumour-3a in 3
sub-populations of tumour cells labelled by the last antigen acquired by each cell. Cells in
the sub-population labelled by antigen 5 carry only this antigen, while cells in sub-populations
labelled by antigens 4 and 7 express, respectively, antigens 5 and 4 or antigens 5 and 7.

As cells in the sub-population labelled by antigen 5 are immunogenic, their level of antigen
presentation by the MHC-I is assumed to be normal and randomly chosen from the discrete set
LI , which is defined as

LI =

{
1

6
,
2

6
,
3

6
,
4

6
,
5

6
, 1

}
. (3.9)

On the other hand, as cells in sub-populations labelled by antigens 4 and 7 are non-immunogenic,
their level of antigen presentation by the MHC-I is deteriorated and, therefore, randomly chosen
from the discrete set LNI , which is defined as

LNI =

{
5

100
,
10

100
,
15

100
,
20

100
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100
,
30

100

}
. (3.10)
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Figure 3.5: Phylogenetic tree representations of the antigens considered for the two
tumours. (a) Tumour-3a expresses three antigens. Antigen 5 is the only clonal antigen (in
yellow) and antigens 4 and 7 are two sub-clonal antigens (in orange). As a results, tumour-3a
is composed of 3 sub-populations of tumour cells. (b) Tumour-7a expresses seven antigens.
Antigens 1 and 5 are clonal antigens (in yellow) and antigens 4, 6, 7, 8 and 10 are sub-clonal
antigens (in orange). Hence, tumour-7a is composed of 7 sub-populations of tumour cells. The
phylogenetic tree representations of the two tumours are inspired by experiments presented
in [223].

Tumour-7a The second tumour expresses seven different antigens, two of which are clonal and
five are sub-clonal (see Figure 3.5(b)). We denote respectively by

A = {1, 4, 5, 6, 7, 8, 10}, AC = {1, 5} and ASC = {4, 6, 7, 8, 10} (3.11)

the antigen profile of the tumour, the clonal antigens and the sub-clonal antigens.

Based on the phylogenetic tree representation of Figure 3.5(b), we divide tumour-7a in 7
sub-populations of tumour cells. Cells in sub-populations labelled by antigens 1 and 5 are
immunogenic, and present their antigens at a level randomly chosen from set LI , which is defined
in (3.9). On the other hand, cells in sub-populations labelled by antigens 4, 6, 7, 8 and 10 are
non-immunogenic, and present all their antigens at a lower level randomly chosen from set LNI ,
which is defined in (3.10).

In the next Section, we investigate the effects of CTL response to different tumours charac-
terised by different levels of ITH. The obtained dynamics are compared with the baseline scenario.
In the next simulations, we consider different compositions of the initial tumour, while the other
parameters are kept constant to the values listed in Table C.1 and Table C.2. The values of
the parameters are chosen so as to qualitatively reproduce essential aspects of the experimental
results obtained in [223].
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3.5 Main results

3.5.1 Large number of sub-populations of cancer cells constituting a
tumour reduces the effectiveness of the immune response

To investigate how the immune response is affected by different degrees of heterogeneity, we start
by comparing two situations in which the initial tumours are characterised by different number
of sub-populations of tumour cells. We consider as initial conditions tumour-3a, with 3 different
sub-populations of tumour cells, and tumour-7a, with 7 different sub-populations of tumour
cells, defined as in Section 3.4.4. For each tumour, we consider the same initial percentage of
immunogenic and non-immunogenic cells, corresponding to 75% of immunogenic cells and 25%
of non-immunogenic cells. Note that these two tumours are different from those considered in
the results presented in Section 3.4.3. In fact, in tumour-3a and tumour-7a cells can express
clonal and sub-clonal antigens and, therefore, be either of immunogenic or non-immunogenic
type. On the other hand, in the results presented in Section 3.4.3, each tumour cell presents a
unique antigen, which is shared by all the cells in the same sub-population of tumour cells. The
situation considered here provides a more faithful representation of biological complexity, as a
tumour cell can express more than one antigen presented at different levels.

Figure 3.6(a)-(c) show the time evolution of the total number of tumour cells, along with the
corresponding time evolution of immunogenic and non-immunogenic cell number. Figures 3.6(d)-
(f) also display the spatial cell distributions observed at different times of two simulations. As
shown by Figure 3.6(a), the two tumours have similar dynamics from the beginning of simulations
until day 10, with an initial increase of the cell number followed by a steep decrease. After day
10, in tumour-3a, the number of tumour cells continues to decrease until it reaches a low, almost
constant level. Figure 3.6(b)-(c), along with the corresponding panel of Figure 3.6(f), show
that, at the end of simulations, all the immunogenic cells are eliminated by the CTLs, and only
few non-immunogenic cells remain in the system. On the other hand, for tumour-7a, after day 10
the tumour cell number increases steadily over time. This dynamic leads to a final tumour size
similar to the initial one. Moreover, as shown by Figure 3.6(b), the number of immunogenic cells
tends to decrease over time, whereas the number of non-immunogenic cells, after being initially
kept under control by immune cells, increases steeply (cf. Figure 3.6(c)). The related panels of
Figure 3.6(d)-(f) show the progressive colonisation of the tumour by non-immunogenic cells.

Due to the relatively large standard deviation observed in the tumour-7a results, we run 100
realisations of this simulation (see Figure C.1 in C.2), in order to check the robustness of our
results. Comparing Figures 3.6 and C.1, we observe a qualitative similar behaviour (i.e. similar
mean and standard deviation), confirming the reliability of the tumour-7a results presented in
Figure 3.6. As shown by Figure 3.6, we observe a larger variability in the simulation of tumour-7a
than in the one of tumour-3a. This variability is probably due to the larger number of antigens
that are present in tumour-7a. This result indicates that the number of antigens can be an
important source of variability in the model.

Comparing these results with the baseline scenario of Section 3.4.2, for both tumours we
clearly see the effects of the action of immune cells on tumour growth, which is no longer simply
logistic and saturating to carrying capacity. However, the effectiveness of the immune response
depends on the tumour considered. For tumour-3a, the immune response is efficient and almost
eliminates all tumour cells. On the other hand, for tumour-7a, the higher heterogeneity leads to a
less effective immune response and the tumour eventually grows again. These results suggest that,
even if characterised by equal percentages of immunogenic and non-immunogenic cells, tumours
with a larger number of sub-populations of tumour cells, which express a wider spectrum of
antigens, are more aggressive. This was already suggested by the results presented in Section
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Figure 3.6: The number of sub-populations constituting a tumour impacts on the
effectiveness of the immune response. Plots in panels (a)-(c) display the time evolution of
the total tumour cell number, and the corresponding evolution of the number of immunogenic
cells and non-immunogenic cells for tumour-3a (in red) and tumour-7a (in blue). Shaded areas
indicate +/− standard deviation between 10 simulations. For these simulations, an equal initial
percentage of 75% of immunogenic cells and 25% of non-immunogenic cells was considered. Insets
in panels (d)-(f) display an example of the spatial distribution of cells for tumour-3a (first row)
and tumour-7a (second row) at different times of the simulation. Purple cells are immunogenic
cells, green cells are non-immunogenic cells and red cells are CTLs.

3.4.3. Moreover, even with all tumour cells presenting clonal antigens (it was not the case in
Section 3.4.3) the CTLs are not able to control the growth of the tumour. This again indicates
that the number of sub-populations and antigens in a tumour have an impact on the effectiveness
of the immune response.

The outcomes of our model indicate that in tumour-3a the presence of a low number of anti-
gens leads to a better immune detection, enhancing the ability of the immune system to eliminate
the tumour. In both tumours the immune system rapidly targets and eliminates immunogenic
cells, giving a competitive advantage to non-immunogenic cells. In fact, we initially observe
a reduction in the number of tumour cells. However, in tumour-7a, as more sub-populations
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of tumour cells are present, non-immunogenic cells have a better chance of escaping immune
surveillance. The outcome is a weaker anti-tumour immune response. Overall, our results are
in agreement with the recent hypothesis presented in [223] that, because of increased antigenic
variability, the relative expression of each antigen is weaker in tumours composed of a larger
number of sub-populations of tumour cells. In particular, clonal antigens undergo “dilution”
within the tumour, and, therefore, the chance for CTLs to identify immunogenic cells is reduced.
This leads to a diminished ability of CTLs to mount a sufficient cytotoxic response.

3.5.2 Different initial percentages of immunogenic and non-immunogenic
cells can cause variations in anti-tumour immune response

The results discussed in the previous subsection illustrate how the effectiveness of the immune
response can decreases in tumours with larger number of sub-populations of tumour cells. We
investigate the effects of ITH further, focusing on the role of the percentage of immunogenic and
non-immunogenic cells. We fix the number of sub-populations of tumour cells considering only
tumour-3a, and vary the initial percentage of immunogenic and non-immunogenic cells.

The plot in Figure 3.7 displays the number of tumour cells remaining at the end of simulations
(after 20 days), for different initial percentages of immunogenic and non-immunogenic cells. For
low percentages of non-immunogenic cells (⩽ 25%), none or very few tumour cells survive after
20 days. On the contrary, for tumours initially composed of more than 50% of non-immunogenic
cells, the number of tumour cells after 20 days is larger than the initial one. In addition, the
final number of cells increases as we increase the initial percentage of non-immunogenic cells.
These results suggest that the anti-tumour immune action is efficient only when the percentage
of non-immunogenic cells is low compared to the percentage of immunogenic cells. Moreover,
the larger the percentage of non-immunogenic cells, the weaker the immune response is.

Compared to the baseline scenario of Section 3.4.2, we see the effects of the immune system
on tumour growth. In fact, for each scenario the number of cells at the end of simulations is
lower than the tumour carrying capacity shown in Figure 3.3. However, for larger percentages of
non-immunogenic cells, the immune response is not efficient enough to reduce the initial tumour
size.

Taken together, our results qualitatively reproduce key findings of experiments performed in
in vivo syngeneic mice tumour models [80]. The results presented in [80] indicate that a non-
effective immune response may occur when the percentage of immunogenic cells in the tumour is
low. Our computational results provide an explanation for such emergent behaviour. Since sub-
clonal antigens are presented at a low level by the MHC-I, non-immunogenic cells trigger a poor
CTL response. Thus, tumours characterised by a major percentage of non-immunogenic cells
result in a weaker overall immune response. Furthermore, the experimental results presented
in [80] put forward the idea that the threshold percentage of immunogenic cells that is required
to trigger an antigen-specific CTL response may vary depending on the antigens. In order to
address this point, such a feature could be implemented in the model, for example by considering
antigen presentation levels or chemotactic responses specific to each antigen.

The role of the immunogenic cell percentage within the tumour is further analysed as we
observe a gap between the results obtained considering 25% and 50% of non-immunogenic cells
(see Figure 3.7). This is investigated by performing simulations considering percentages of non-
immunogenic cells between these two values. Figure 3.8 displays the time evolution of the number
of tumour cells for 10 different realisations of the same simulation, considering the same initial
condition with 33% of non-immunogenic cells and 67% of immunogenic cells. In this case, we
carried out numerical simulations for 38800 time-steps (corresponding to 27 days).

Under this choice of the initial condition, we observe a large variability in the tumour-immune
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Figure 3.7: Different initial percentages of immunogenic and non-immunogenic cells
can cause variations in the immune response to tumour cells. Plot displaying the number
of tumour cells remaining after 20 days (28800 time-steps) for different initial percentages of
immunogenic and non-immunogenic cells. For these simulations, only tumour-3a was considered.
The tumour cell numbers presented here were obtained as the average over 10 simulations and the
error bars display the related standard deviation. The black dotted line highlights the number
of tumour cell at the initial time of the simulations.

cell dynamics, which does not lead to a clear emergent behaviour. In particular, Figure 3.8(a)
shows that, in some simulations, the number of tumour cells decreases over time and only few
cells remain at the end of the simulations. In other cases, after an initial phase between day 0
and day 10 where CTLs keep under control the growth of the tumour, the number of tumour cells
eventually increases and the resulting final number of tumour cells is larger than the initial one.
This is also illustrated by Figure 3.8(b), which displays a sample of the spatial cell distributions at
different time of two simulations. In particular, here we show that, starting from the same initial
condition, we obtain two different outcomes: in one case immune clearance occurs and tumour
cells are almost entirely eliminated by the immune system; in the other case tumour cells escape
immune surveillance. When immune escape occurs, in the example proposed in Figure 3.8(b)
at day 14, immunogenic cells are surrounded by non-immunogenic cells, which hamper immune
detection. This leads to a decreased influx of CTLs in the tumour micro-environment and results
in a weaker immune response.

These results suggest that the stochasticity which is present in cell dynamics may affect the
outcomes of immune action. These results may partially explain the outcomes of earlier experi-
mental research [38, 116], which found that responses of patients with similar tumours can vary
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Figure 3.8: Stochasticity in cell dynamics may affect the outcomes of immune action.
Plot in panel (a) displays the time evolution of the tumour cell number for an initial percentage
of 33% of non-immunogenic cells and 67% of immunogenic cells for 10 runs of simulations. Each
line corresponds to a unique realisation of our model. For these simulations, only tumour-3a was
considered. The insets in panel (b) show an example of the observed spatial distributions of cells
corresponding to different times of two simulations.

considerably. In this regard, the use of mathematical models for identification and understanding
of immune escape mechanisms in individual tumour could help advancing personalized tumour
treatment.

3.5.3 Both the number of sub-populations of cancer cells constituting a
tumour and the percentage of immunogenic and non-immunogenic
cells affect the effectiveness of the immune response

So far, we have investigated with our model the effects of ITH on immune response by vary-
ing independently the number of sub-populations of cancer cells constituting a tumour and
the percentage of immunogenic and non-immunogenic cells. Now, we study their combined ef-
fect in mediating tumour growth. We consider as initial conditions tumour-3a and tumour-7a,
characterised by different numbers of sub-populations of tumour cells, and for different initial
percentages of immunogenic and non-immunogenic cells.

Figure 3.9 displays the time evolution of the total number of cells for different initial tu-
mour compositions, and compares the number of immunogenic and non-immunogenic cells at
the end of simulations with respect to the initial one. As shown by Figure 3.9(a1), the immune
system is able to completely eradicate the tumour only when it is initially composed of 100%
of immunogenic cells, independently of the number of sub-populations of tumour cells. When
the initial tumour is made of 25% of non-immunogenic cells, Figure 3.9(b1) show that the two
tumours have different dynamics. In particular, as already observed in the results presented in
Section 3.5.1, the number of cells in tumour-3a decreases over time until the end of the simula-
tions, while the number of cells in tumour-7a, after an initial decrease, steadily increases until
the end of the simulations. Finally, when tumours are initially composed of more than 50% of
non-immunogenic cells, similarly to the baseline scenario of Section 3.4.2, they follow a logistic
growth, except for an initial decrease shown by Figure 3.9(c1). For both tumours, the tumour
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cell number eventually saturates at a certain value (see Figure 3.9(c1)-(e1)). In these cases,
the saturation value of the number of tumour cells is larger than the initial tumour cell num-
ber. Moreover, the saturation value attained increases as we increase the level of heterogeneity
of the tumour (respectively, the number of sub-populations of tumour cells and the percentage
of non-immunogenic cells). Such results indicate that in these cases CTLs are present in the
tumour micro-environment but do not produce an effective immune response. Persistent antigen
presentation has been proven to cause continuous TCR stimulation that could directly induce
CTL dysfunction and exhaustion [226, 231]. The model presented in this work does not include
this aspect, but it could be easily extended to do so.

The outcomes of our model recapitulate the main results of in in vivo clonal mixing exper-
iments in mice models presented in [223], who studied the combined effect of these two char-
acteristics of ITH in mediating tumour growth and eradication. Wolf and collaborators have
demonstrated that tumours with increased number of clones and large genetic diversity are more
aggressive. In our model, the number of clones can be linked to the number of sub-populations
of tumour cells, while genetic diversity may be linked to the immunogenicity of the tumour.
Moreover, our findings are in agreement with an experimental work indicating that patients
whose tumours are highly heterogeneous have increased levels of relapse after an initial response
to immunotherapy and worse survival expectations than patients with more homogeneous tu-
mours [150].

We next analyse the evolution over time of immunogenic and non-immunogenic cells. When
tumours are initially composed of 25% of non-immunogenic cells, Figure 3.9(b2) shows that the
two tumours evolve in different ways. While the number of non-immunogenic cells is considerably
reduced in tumour-3a, the final number of non-immunogenic cells increases up to four times its
initial number in tumour-7a. On the other hand, when tumours are initially composed of more
than 50% of non-immunogenic cells, independently of the tumour considered, we observe a similar
trend in the evolution of immunogenic and non-immunogenic cells (see Figure 3.9(c2)-(e2)). In
particular, for both tumour types, the number of immunogenic cells tends to remain stable or
decreases slightly. On the other hand, the number of non-immunogenic cells increases and grows
to up to twice its initial value.

These results suggest that, beyond a certain non-immunogenic cell percentage threshold,
the immune system becomes inefficient in both tumour types independently of the number of
sub-populations of tumour cells. Moreover, they suggest that the selective pressure of the im-
mune response can lead to more aggressive tumours, characterised by larger percentages of non-
immunogenic cells. In this regard, our results follow the same behaviour of previous experimental
works demonstrating that, under cancer therapeutics (e.g. chemotherapy or radiotherapy), the
population of tumour cells is exposed to the selective stress induced by the treatment [90, 106,
206]. Therefore, more resistanCTLs acquire a competitive advantage over more sensitive cells
and induce a weaker response to treatment in the long run. The resulting outcome is a more
aggressive tumour, which may ultimately grow again [161].

3.6 Discussion, conclusions and research perspectives

3.6.1 Discussion and conclusions
The number of sub-populations of cancer cells constituting a tumour and the percentage of
immunogenic and non-immunogenic cells within it are two major components of ITH, and play
a key role in the immune response against solid tumours. Mathematical models make possible
to asses the influence of these two components of ITH on anti-tumour immunity in a controlled
manner.
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Figure 3.9: Both the number of sub-populations of cancer cells constituting a tumour
and the percentage of non-immunogenic cells affect the effectiveness of the immune
response. Plots in panel (a1)-(e1) display the time evolution of the tumour cell number for
tumour-3a (in red) and tumour-7a (in blue). In both tumours, from (a1) to (e1) the initial
percentage of non-immunogenic cells is increased. Shaded areas indicate +/− standard deviation
between 10 simulations. Plots in panel (a2)-(e2) display the corresponding average number of
immunogenic and non-immunogenic cells at the end of simulations with respect to the initial
one. The error lines represent the standard deviation between 10 simulations.

In this chapter, we have presented a spatially explicit stochastic individual-based model of
the interaction dynamics between CTLs and tumour cells, and we have investigated how ITH
affects the anti-tumour immune response.

Our numerical results show that the number of sub-populations of cancer cells constituting
a tumour can have a crucial impact upon the outcome of the immune response (cf. Figures 3.4
and 3.6). In the scenario of tumours characterised by a low number of sub-populations of cancer
cells, immune clearance can occur. Conversely, tumours composed of a larger number of sub-
populations of cancer cells may be able to escape immune recognition and ultimately grow again.
Our results suggest that increasing the number of sub-populations of cancer cells reduces the
exposition of each antigen to the “front-line”, thus making more difficult for the immune cells to
detect them (cf. Figure 3.4). Moreover, when tumours expressing clonal and sub-clonal antigens
are considered, our results demonstrate that, in more heterogeneous tumours, tumour cells could
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have a better chance of escaping immune surveillance. This outcome may be explained by the fact
that clonal antigens undergo “dilution” within the tumour relative to other antigens, diminishing
the ability of CTLs to mount a sufficient cytotoxic response (cf. Figure 3.6).

The outcomes of our model support the idea that varying the initial percentage of immuno-
genic and non-immunogenic cells leads to variations on the effectiveness of the immune response
and results in distinct scenarios, from immune clearance of the tumour to immune escape (cf.
Figure 3.7). We have also observed that for certain intermediate percentages of immunogenic
and non-immunogenic cells, stochasticity in cell dynamics plays an important role, and can lead
both scenarios close to tumour eradication and to scenarios where a large number of tumour cells
persists over time (cf. Figure 3.8).

We have also studied the effects of ITH on anti-tumour immune response by varying both the
number of sub-populations of cancer cells and the initial percentage of immunogenic and non-
immunogenic cells (cf. Figure 3.9). For equal percentage of immunogenic and non-immunogenic
cells, tumours with increased number of sub-populations of cancer cells are more aggressive
than tumours with lower number of sub-populations of cancer cells. However, beyond a certain
threshold value of the percentage of non-immunogenic cells, the immune system becomes ineffi-
cient against both types of tumours, independently of the number of sub-populations of cancer
cells. In addition, we found that increasing initial percentages of non-immunogenic cells always
led to a less effective CTL response. When the tumours are not eradicated, the final percentage of
non-immunogenic cells is larger than the initial one. This suggests that the immune system may
act as a bottleneck which selects and eliminates immunogenic cells, thus allowing the tumours
to escape immune regulation.

In summary, our findings demonstrate the importance of ITH as a possible predictor of the
outcome of immune action. Our results support the idea that patients with tumours bearing
few clonal antigens are expected to be more likely to exhibit a durable benefit from immune
response than patients with heterogeneous tumours characterised by many different sub-clonal
antigens [150]. On the other hand, our results disbelieve the fact that highly heterogeneous
tumours, characterised by the expression of many different antigens, can enhance the efficacy
of immune response. In fact, our results indicate that excessive antigen heterogeneity may,
conversely, actively impair anti-tumour CTL immune response. This is also supported by a
recent clinical work which found that excessive mutagenesis, directed to enhance the tumour
mutational burden, may decrease the efficacy of immunotherapy [223].

3.6.2 Research perspectives

The current version of our model can be developed further in several ways. We could incorporate
extended aspects of the tumour micro-environment, such as the expression of immunosuppressive
factors (e.g. PD1 or CTLA4), which affect the effectiveness of anti-tumour immune response. In
fact, these inhibitory factors induce the exhaustion of CTLs in the tumour micro-environment
impairing the immune response [109, 219]. The inclusion of CTL exhaustion caused by inhibitory
factors could give further explanations for other mechanisms of immune escape. The exhaustion
mechanism could be included in the model by, for example, altering the value of the parameter
governing the efficiency of the CTL population in eliminating tumour cells.

The spatial dimension and the flexibility of our model would also allow for the study of the
spatial distribution of CTLs within the tumour and the role of immune infiltration on the tumour
dynamics [70]. Moreover, by posing the model on a 3D domain, a deeper understanding of the
spatial dynamics of tumour-immune interactions could be achieved.

All results we have reported on were obtained by averaging over the results of 10 realisa-
tions, in order to present in a synthetic way the outcomes of our model which includes inherent
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stochastic variations. When the standard deviation between these 10 realisations was relatively
small, we presented the results of these realisations along with the mean and the standard devi-
ation. This is the case of the results displayed in Figures 3.3, 3.4, 3.7, 3.9 and part of Figure 3.6.
When the standard deviation was relatively large, we presented the results of each realisation
individually (cf. Figure 3.8). This allowed us to investigate the different emerging behaviours
of our stochastic model. Moreover, in order to check the robustness of the results, for one simu-
lation that had a relatively large standard deviation (tumour-7a in Figure 3.6), we reported on
the results of 100 realisations of this simulation (cf. Figure C.1). We observed that the overall
dynamics of the 100-realisation case were qualitatively similar to those of the 10-realisation case.
Consistency analysis would be another option to establish the number of replicate runs needed
to obtain a desired level of numerical robustness. This could be performed using, for example,
the tool presented in [4].

We managed to estimate some parameters of the model (see Table (C.1) and Table (C.2))
from the literature and define them on the basis on precise biological assumptions. However,
there are some parameters (e.g r, C1, C2 and the parameters related to the chemoattractants)
whose values were simply chosen with an exploratory aim and to qualitatively reproduce essential
aspects of the experimental results obtained in [223]. In order to minimise the impact of this
limitation on the conclusions of our study, we carried out simulations by keeping all parameter
values fixed and changing only the initial composition of the tumours, and then comparing the
simulation results so obtained.

Finally, from a modelling point of view, although more tailored to capture fine details of the
dynamics of single cells, individual-based models are not amenable to analytical studies, which
may support a more in-depth theoretical understanding of the application problems under study.
For this reason, in future work we plan to derive a continuum model from a simplified version
of our individual-based model by using mean filed methods similar to those employed in [13, 40,
166].

In its present form, our modelling framework qualitatively reproduces scenarios of success-
ful and unsuccessful immune surveillance reported in experimental studies [80, 150] and [223].
However, at this stage, the model has not been calibrated using any particular type of data.
Hence, it cannot be employed to generate predictions that can directly be used in the clinic. By
fitting its parameters to a specific type of clinical data, our model could, in principle, be used to
assess different levels of ITH as potential biomarkers for comparing and predicting outcomes in
tumour immunotherapy treatments. Integrating the model with tumour biopsies from patients
could offer insight into potential outcomes of treatments. Finally, our model may be a promising
tool to explore therapeutic strategies designed to decrease tumour heterogeneity and improve
the overall anti-tumour immune response.



Chapter 4

A hybrid discrete-continuum
modelling approach to explore the
impact of T cell infiltration on
anti-tumour immune response

4.1 Motivation

Individual-based models track the dynamics of single cells, thus permitting the representation of
single cell-scale mechanisms, and account for possible stochastic fluctuations in single-cell bio-
physical properties. However, they can be computationally time consuming and do not allow for
analysis to be completed on the model. Considering the continuum counterpart of our stochastic
discrete individual-based model developed in Chapter 3 would allow us to carry out numeri-
cal simulations that require computational times smaller than those required by the numerical
exploration of the individual-based model.

In the mathematical model developed in Chapter 3, cells grow, die and interact, and we
characterized antigen presentation levels by tumour cells, which drive the influx of CTLs in the
tumour micro-environment and their movement toward tumour cells. In our study, we used a
Cellular Potts model and the CompuCell3D open-source simulation environment. Due to the
complexity of the modelling approach used in the previous chapter, the derivation of a continuum
version of this model would be potentially challenging. The derivation of a continuum description
from Cellular Potts model has been studied in [2, 3, 137]. These works of increasing complexity
studied, both in 1D and 2D, the continuous limit of Cellular Potts models describing the motion
of an homogeneous cell population in a medium and in the presence of an external field with
contact cell-cell interactions. Moreover, in [137] the finite size of cells in the Cellular Potts
model was taken into account, using exclusion volume principle (meaning that two cells can not
occupy the same volume). However, these models did not consider many of the biological aspects
included in the modelling framework developed in Chapter 3, such as cell growth and mitosis,
cell death, interactions between cells of different types, etc. Therefore, these methods may not
be applicable for deriving the continuum counterpart of our stochastic discrete individual-based
model developed in Chapter 3.

Therefore, in this chapter we start by considering a simpler model of tumour-immune inter-
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actions. In this work, we present a spatial hybrid discrete-continuum modelling framework for
the interaction dynamics between tumour cells and CTLs. Building on the modelling strategies
developed in the previous chapter, in this framework, a stochastic individual-based model for the
dynamics of tumour cells and CTLs is coupled with a balance equation for the concentration of
a chemoattractant, which dictates the movement of CTLs towards the tumour. In order to take
into account possible alterations in the infiltration capabilities of CTLs within the tumour, we
let the probability of CTL movement be modulated by a decaying function of the densities of
tumour cells and CTLs

We formally derive the deterministic continuum counterpart of this model, which is given by
a coupled system that comprises an integro-differential equation for the density of tumour cells,
a partial differential equation for the density of CTLs, and a partial differential equation for the
concentration of chemokines.

We report on computational results of the hybrid model and show that there is an excellent
quantitative agreement between them and numerical solutions of the corresponding continuum
model. These results shed light on the mechanisms that underlie the emergence of different levels
of infiltration of CTLs into the tumour and elucidate how CTL infiltration shapes anti-tumour
immune response. Moreover, exploiting the computational efficiency of the continuum model, we
carry out extensive numerical simulations to investigate the impact of CTL infiltration on the
response of tumour cells to different types of anti-cancer immunotherapy.

The model described in this chapter and the results shown have been published in Luis
Almeida, Chloe Audebert, E. L. and Tommaso Lorenzi, A hybrid discrete-continuum modelling
approach to explore the impact of T-cell infiltration on anti-tumour immune response, Bulletin
of mathematical biology, 2022.

4.2 Background

4.2.1 Biological background

Experimental and clinical evidence indicates that the immune system plays a critical role in
the prevention and eradication of tumours, by detecting immunogenic tumour cells through
mutational or abnormally expressed genes and mounting an adaptive immune response [45].
In an efficient immune response, cytotoxic T lymphocytes (CTLs), are activated in secondary
lymphoid organs draining the tumour site. Then, these CTLs migrate to the tumour micro-
environment (TME) in an attempt to eliminate the tumour [20, 153].

However, a myriad of immunosuppressive strategies, the so-called immune checkpoints, help
tumour cells acquiring features that allow them to evade immune detection, which may ultimately
result in tumour escape. One important route towards this escape is created as tumour cells
hijack the regulatory pathways of the immune system to suppress its functionality [178]. The
programmed cell death protein-1 (PD1) and its ligand PD-L1 are amongst these inhibitory
pathways [95, 105]. Under protracted immune stress, PD-L1 expression can be induced on tumour
cells, leading to CTL exhaustion and resistance to anti-tumour immune action in many cancers,
such as melanoma [193, 221] and non-small cell lung cancer (NSCLC) [150]. Moreover, the
engagement of various oncogenic pathways results in the expression of cytokines and chemokines
that mediate the exclusion of CTLs from the TME [114] or, alternatively, the repression of factors
that facilitate CTL trafficking and infiltration into the tumour [193]. In this context, the design of
immune checkpoint therapies which target regulatory pathways in CTLs to enhance anti-tumour
immune responses may be beneficial to the treatment of multiple types of cancer [95, 114, 181].
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The observation that type, density and location of immune cells within the tumour may be
associated with prognosis in different types of cancer led to the development of the ‘immunoscore’
as a prognostic marker in cancer patients [10, 70, 72, 71]. The immunoscore provides a score that
increases with the density of CD8+ and CD3+ CTLs both in the centre and at the margin of the
tumour. In this vein, a new immune-based, rather than a cancer-based, classification of tumours
that relies on the immunoscore has been proposed in [72], where the authors have classified
tumours in four categories. The “hot" category comprises tumours which are highly infiltrated
by CTLs and thus have a high immunoscore. The category “altered-immunosuppressed" is for
tumours with a small amount of infiltrated CTLs. Tumours in the “altered-excluded" category
are characterised by two different regions: their margin is T cell-infiltrated while the centre is
not. Tumours in these two categories have an intermediate immunoscore. Finally, “cold" tumours
have a low immunoscore and are often associated with a poor response to immunotherapies, since
CTLs are absent both in the centre of the tumour and at its margin.

4.2.2 The mathematical model
In this chapter, we develop a spatial hybrid discrete-continuum model for the interaction dy-
namics between tumour cells and CTLs. In this framework, a stochastic individual-based model
tracking the dynamics of single tumour cells and CTLs is coupled with a balance equation for
the concentration of chemokines (e.g. CXCL9/10) which are secreted by tumour cells and drive
the chemotactic movement of CTLs towards the tumour [70, 88].

In this model, cell dynamics are governed by a set of rules that result in a discrete-time
branching random walk on a regular lattice [104]. Using methods similar to those we have
previously employed in [6, 26, 138], we formally derive the deterministic continuum counterpart
of the hybrid model, which is given by a coupled system that comprises an IDE for the density
of tumour cells, a PDE for the density of CTLs, and a PDE for the concentration of chemokines.
We report on computational results of the hybrid model and show that there is an excellent
quantitative agreement between them and numerical solutions of the corresponding continuum
model. These results shed light on the mechanisms that underlie the emergence of different levels
of infiltration of CTLs into the tumour and elucidate how CTL infiltration shapes anti-tumour
immune response. Moreover, exploiting the computational efficiency of the continuum model, we
carry out extensive numerical simulations to investigate the impact of CTL infiltration on the
response of tumour cells to different types of anti-cancer immunotherapy.

4.2.3 Structure of the chapter
The chapter is organised as follows. In Section 4.3, the hybrid discrete-continuum model is
introduced. In Section 4.4, the deterministic continuum counterpart of this model is presented
(a formal derivation is provided in Appendix D.1). In Section 4.5, computational results of the
hybrid model are discussed and integrated with numerical solutions of the continuum model.
In Section 4.6, biological implications of the main findings of this study are summarised and
directions for future research are outlined.

4.3 Hybrid discrete-continuum model

In our model, each cell is seen as an agent that occupies a position on a lattice, while the
concentration of chemokines, to which we will refer as “chemoattractant” in the remainder of the
chapter, is described by a discrete, non-negative function. Each tumour cell can proliferate or
die at certain rates. In the vein of [14, 127, 139], here we focus on tumours in the early stages
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of development (i.e. small pre-angiogenic tumours) and, therefore, we neglect the effects of the
movement of tumour-cell. As similarly done in [14], we let the chemoattractant be secreted
by tumour cells and undergo both natural decay and linear diffusion. CTLs enter the spatial
domain where the tumour is located through blood vessels at a rate that is proportional to
the total amount of chemoattractant. Upon entering the domain, CTLs undergo undirected,
random movement and chemotactic movement towards regions of higher concentration of the
chemoattractant (i.e. cells migrate towards the tumour), and exert a cytotoxic action against
tumour cells.

For ease of presentation, we let the cells and the chemoattractant be distributed across a d-
dimensional domain Ω, with d = 1 or d = 2. In particular, we consider the case where the spatial
domain is represented by the set Ω := [0, ℓ]d, with ℓ ∈ R∗

+, where R∗
+ is the set of positive real

numbers not including zero. The position of the cells and the molecules of chemoattractant at
time t ∈ R+ is modelled by the variable x ∈ [0, ℓ] when d = 1 and by the vector x = (x, y) ∈ [0, ℓ]2

when d = 2.
We discretise the time variable t as tk = kτ with k ∈ N0 and the space variables x and y as

xi = iχ and yj = jχ, with (i, j) ∈ [0,N ]2 ⊂ N2
0, where τ ∈ R∗

+ and χ ∈ R∗
+ are the time- and

space-step, respectively, and N := 1 + ⌈ ℓ
χ⌉ , where ⌈·⌉ denotes the ceiling function. Here, N0 is

the set of natural numbers including zero. Throughout this section we use the notation i ≡ i
and xi ≡ xi when d = 1, and i ≡ (i, j) and xi ≡ (xi, yj) when d = 2.

We denote by nki the density of tumour cells, which is defined as the number of tumour cells
at position xi and at time tk, Nk

i ∈ N0, divided by the size of a lattice site, that is

nki ≡ n(xi, tk) :=
Nk

i

χd
. (4.1)

Furthermore, we denote by cki the density of CTLs, which is defined as the number of CTLs
at position xi and at time tk, Ck

i ∈ N0, divided by the size of a lattice site, that is

cki ≡ c(xi, tk) :=
Ck

i

χd
. (4.2)

Finally, the concentration of chemoattractant on the lattice site i and at time-step k is
modelled by the discrete, non-negative function ϕki ≡ ϕ(xi, tk).

In the mathematical framework of our model, the quantity

Ik ≡ I(tk) :=
|Ωc|

|Ωtum|
IΩc(tk) +

|Ωm|
|Ωtum|

IΩm(tk) (4.3)

provides a possible simplified measure of the immunoscore I at time tk. In (4.3), IΩc ∈ N0 is
the number of CTLs within the set Ωc ⊂ Ω defined as the ‘centre of the tumour’, IΩm ∈ N0

is the number of CTLs within the set Ωm ⊂ Ω defined as the ‘margin of the tumour’, and
Ωtum = Ωc ∪ Ωm is the whole region occupied by the tumour. Here, |(·)| is the measure of the
set (·). Given the initial distribution of tumour cells, we define (cf. Fig 4.1)

Ωc := {xi ∈ Ω : ∥xi − xcm∥d < R} and IΩc(tk) :=
∑
i

cki χ
d 1Ωc(xi) (4.4)

while
Ωm := Ωtum \ Ωc and IΩm(tk) :=

∑
i

cki χ
d 1Ωm

(xi). (4.5)



4.3. Hybrid discrete-continuum model 79

Cold tumour scenario

Altered-immunosuppressed
tumour scenario

Altered-excluded tumour 
scenario

Hot tumour scenario

Ω": margin of the tumour

Ω#: centre of the tumour

immunoscore

Low High

Tumour cell

T cellCTL

Figure 4.1: Schematics describing the classification of cold, altered-excluded, altered-
immunosuppressed and hot tumour scenarios based on the immunoscore. In the
mathematical framework of our model we classify different tumour scenarios depending on the
value of the immunoscore at the end of numerical simulations, i.e. the quantity defined via
(4.7). The immunoscore is here defined as a weighted sum of the number of CTLs in the
centre of the tumour and the number of CTLs in the margin of the tumour. In more detail,
following [70], scenarios for which the value of the immunoscore is low will be classified as ‘cold
tumour scenarios’; scenarios with an intermediate value of the immunoscore will be classified as
‘altered tumour scenarios’, which will then be further classified as ‘altered-immunosuppressed
tumour scenarios’ or ‘altered-excluded tumour scenarios’ based on the distribution of CTLs in
the centre and at the margin of the tumour; finally, scenarios characterised by a high value of
the immunoscore will be classified as ‘hot tumour scenarios’.

Here, xcm ∈ Ω is the initial centre of mass of the tumour, which is computed as

xcm =
1

ρ0n

∑
i

n0i χ
dxi, (4.6)

where ρ0n is the initial number of tumour cells. Moreover, 1Ωm and 1Ωc are the indicator functions
of the sets Ωm and Ωc, respectively. Note that, in the definition of sets Ωc and Ωm, we are
supposing that the radius R is fixed and, therefore, the two sets do not change over time. This
is coherent with the fact that, as mentioned earlier, tumour-cell movement is neglected.
Abstracting from the ‘immunoscore’-based classification of tumours recalled in Section 4.2.1,

throughout the chapter we will classify different tumour scenarios depending on the value of I
at the end of numerical simulations, i.e. the quantity

If ≡ I(tf ) =
|Ωc|

|Ωtum|
IΩc(tf ) +

|Ωm|
|Ωtum|

IΩm(tf ). (4.7)
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Figure 4.2: Schematics summarising the mechanisms and processes included in the
hybrid discrete-continuum model. The governing rules for the dynamics of tumour cells
are here represented by green solid arrows, the rules for the dynamics of CTLs are represented
by blue solid arrows, and the processed underlying the dynamics of the chemoattractant are
represented by grey solid arrows. At each time-step tk, tumour cells divide at rate αn, die due
to intra-tumour competition at rate µnρ

k
n or die due to the cytotoxic action of CTLs at rate

ζnK
k
i . The quantities ρkn and Kk

i are, respectively, defined via (4.9) and (4.11). Tumour cells
also secrete the chemoattractant at rate αϕ. The chemoattractant diffuses through the domain
at rate βϕ and decays at rate κϕ. CTLs enter the domain at position xi at rate αcr

k
i , with rki

defined via (4.17). CTLs change their position through a combination of undirected, random
movement and chemotactic movement in response to the chemoattractant secreted by tumour
cells, while tumour cell movement is neglected. Finally, CTLs die due to homeostatic regulation
mechanisms at rate µcρ

k
c , with ρkc defined via (4.20).

In particular, scenarios for which the value of If is low will be classified as ‘cold tumour scenar-
ios’; scenarios with an intermediate value of If will be classified as ‘altered tumour scenarios’,
which will then be further classified as ‘altered-immunosuppressed tumour scenarios’ or ‘altered-
excluded tumour scenarios’ based on the distribution of CTLs at the centre and margin of the
tumour; finally, scenarios characterised by a high value of If will be classified as ‘hot tumour
scenarios’. This tumour classification is illustrated by the schematics presented in Fig. 4.1.

The strategies used to model the dynamics of the cells and the chemoattractant when d = 1
are described in detail in the following subsections, and are also schematically illustrated in
Fig. 4.2. Analogous strategies are used in the case where d = 2.
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4.3.1 Dynamics of tumour cells

We consider a scenario where tumour cells proliferate (i.e. undergo cell division) and die due to
intra-tumour competition as well as to the cytotoxic action of CTLs. We assume that a dividing
tumour cell is replaced by two identical cells that are placed on the same lattice site as their
parent, while a dying cell is removed from the system.

Tumour cell proliferation and death induced by intra-tumour competition

At every time-step k, we allow tumour cells to undergo cell division with probability

ταn > 0, (4.8)

where αn ∈ R∗
+ represents the rate of tumour cell proliferation.

In order to capture the effect of cell death induced by intra-tumour competition, we let tumour
cells die at a rate proportional to their number, which is defined as

ρkn ≡ ρn(tk) :=
∑
i

nki χ, (4.9)

with constant of proportionality µn ∈ R∗
+. Hence, between the time-step k and the time-step

k + 1, we let a tumour cell die due to intra-tumour competition with probability

τ µnρ
k
n ⩾ 0. (4.10)

Notice that we are implicitly assuming that the time-step τ is sufficiently small that the quantities
defined via (4.8) and (4.10) are between 0 and 1.

Cytotoxic action of CTLs against tumour cells

When CTLs are sufficiently close to a tumour cell, they release cytotoxic substances which
eventually lead to the death of the tumour cell [20]. Therefore, building on the modelling
strategies proposed in [14], we let a tumour cell die due to the cytotoxic action of CTLs at a
rate proportional to the number of CTLs in a sufficiently close neighbourhood of the tumour
cell. This mimics the fact that CTLs can interact with a tumour cell up to a certain distance,
and that beyond such a distance the tumour cell can no longer be induced to death. Hence, we
introduce Kk

i ∈ N0 which models, at each time-step tk, the number of CTLs that can exert a
cytotoxic action against a tumour cell at position xi. In particular, we define Kk

i as

Kk
i ≡ K(xi, tk) :=

∑
p

η(xi, xp; θ)c
k
p χ. (4.11)

The function η is defined as follow

η(x, z; θ) :=

{
1 if |x− z| ⩽ θ

0 if |x− z| > θ
for (x, z; θ) ∈ Ω× Ω× (0, |Ω|], (4.12)

where |Ω| denotes the size of the set Ω (i.e. |Ω|= ℓ if Ω := [0, ℓ]). The quantity Kk
i defined via

(4.11) and (4.12) represents the number of CTLs at positions xp at a distance smaller than or
equal to θ from xi. The parameter 0 < θ ⩽ |Ω| regulates the maximum radius of interaction
between a tumour cell at position xi and the CTLs in its neighbourhood. Therefore, we define
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the probability of death of tumour cells at position xi and time tk due to the cytotoxic action of
CTLs as

τζnK
k
i ⩾ 0. (4.13)

The parameter ζn ∈ R∗
+ is linked to the level of efficiency of CTLs at eliminating tumour cells:

lower values of ζn correspond to scenarios in which this cytotoxic action of CTLs is less effective,
due for example to a higher expression of PD1/PD-L1 inhibitory receptors on the surface of
CTLs/tumour cells [95, 105].

Remark 2. Note that (4.8), (4.10) and (4.13) implicitly require the time-step τ to be sufficiently
small that ταn + τ

(
µnρ

k
n + ζnK

k
i

)
is less than or equal to 1.

4.3.2 Dynamics of the chemoattractant

We denote by ϕki the concentration of chemoattractant at position xi and at time tk. The
dynamic of ϕki is governed by the following discrete balance equation

ϕk+1
i = ϕki + τβϕ(Lϕk)i + ταϕn

k
i − τκϕϕ

k
i , (i, k) ∈ [1,N − 1]× N, (4.14)

subject to discrete zero-flux boundary conditions, i.e.

ϕk0 = ϕk1 and ϕkN = ϕkN−1, k ∈ N. (4.15)

In the balance equation (4.14), L is the second-order central difference operator on the lattice
{xi}i, i.e.

(Lϕk)i =
1

χ2

(
ϕki+1 + ϕki−1 − 2ϕki

)
(4.16)

Moreover, the parameter βϕ ∈ R∗
+ is the diffusion coefficient of the chemoattractant and κϕ ∈ R∗

+

is the rate at which the chemoattractant undergoes natural decay. Finally, the parameter αϕ ∈ R∗
+

represents the per capita production rate of the chemoattractant by tumour cells. The balance
equation (4.14) is simply a standard discretisation of a reaction-diffusion equation of the type
that is commonly used to describe the dynamics of molecular species, see for example [141].
Moreover, we will assume that

0 < ϕki ⩽ ϕmax ∀ (i, k) ∈ [0,N ]× N0

for some maximal concentrations ϕmax ∈ R∗
+ (see comments below definition (4.25)).

4.3.3 Dynamics of CTLs

Following [87], we consider a scenario where CTLs are recruited from different sources corre-
sponding to blood vessels that are located in the tissue surrounding the tumour. CTLs can
change their position according to a combination of undirected, random movement and chemo-
tactic movement, which are seen as independent processes. Finally, CTLs can die at a certain
rate due to homeostatic regulation mechanisms, and dying cells are removed from the system.
This results in the following rules for the dynamics of CTLs.

Inflow and death of T cells

We let ω ⊂ Ω be the set of points in the tissue surrounding the tumour that are occupied by
blood vessels, through which new T cells can enter the domain. Since we do not consider the
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formation of new blood vessels, we assume that ω is given and does not change in time. We
denote by rki the term controlling the inflow of T cells from blood vessels, which is defined as

rki ≡ r(xi, tk) := ϕktot1ω(xi), (4.17)

where 1ω is the indicator function of the set ω and ϕktot is the total amount of chemoattractant
at time tk, that is,

ϕktot ≡ ϕtot(tk) :=
∑
i

ϕki χ. (4.18)

We then let the influx rate of T cells from blood vessels at position xi and time tk be proportional
to rki with constant of proportionality αc ∈ R∗

+. Hence, between the time-step k and the time-step
k + 1, we let a density of T cells equal to

ταcr
k
i ⩾ 0 (4.19)

enter a blood vessel at position xi. Finally, we let T cells die due to homeostatic regulation
mechanisms. In analogy with the case of tumour cells, we suppose the rate of death of T cells
to be proportional to the number of T cells

ρkc ≡ ρc(tk) :=
∑
i

cki χ, (4.20)

with constant of proportionality µc ∈ R∗
+. Therefore, between the time-step k and the time-step

k + 1, we let a T cell die with probability

τµcρ
k
c ⩾ 0. (4.21)

Remark 3. Note that (4.21) implicitly requires the time-step τ to be sufficiently small that the
corresponding quantity is less than or equal to 1.

Chemotactic movement of CTLs

We now turn to modelling the chemotactic movement of CTLs (i.e. the movement of CTLs up the
gradient of the chemoattractant ϕki ). Building on [26], chemotactic movement is here modelled
as a biased random walk whereby the movement probabilities depend on the difference between
the concentration of chemoattractant at the site occupied by a CTL and the concentration of
chemoattractant at the neighbouring sites. To take into account possible reduction in cell motility
at high cell densities [165, 189, 225], we incorporate into the model volume-filling effects [167],
whereby CTL movement is allowed only to site locations xi where the total cell density wk

i :=
nki + cki is smaller than a threshold value wmax ∈ R∗

+, which corresponds to a cell tight-packing
state. Therefore, we modulate the movement probabilities of CTLs by a monotonically decreasing
function of the total cell density at the neighbouring sites. Specifically, as similarly done in [217],
we define this function as

ψ(wk
i ) :=

 1− wk
i

wmax
, 0 ⩽ wk

i ⩽ wmax,

0, otherwise.
(4.22)

Hence, for a CTL on the lattice site xi and at time step tk, we define:

1. the probability of moving to the lattice site xi−1 (i.e. the probability of moving left) via
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chemotaxis as

qkLi := ν ψ(wk
i−1)

(ϕki−1 − ϕki
2ϕmax

)
+

for i ∈ [1,N ] and qkL0 = 0 (4.23)

where (·)+ denotes the positive part of (·);

2. the probability of moving to the lattice site xi+1 (i.e. the probability of moving right) via
chemotaxis as

qkRi := ν ψ(wk
i+1)

(ϕki+1 − ϕki
2ϕmax

)
+

for i ∈ [0,N − 1] and qkRN = 0; (4.24)

3. and the probability of not undergoing chemotactic movement as

1− qkLi − qkRi for i ∈ [0,N ]. (4.25)

Here, the parameter ν ∈ R+, with 0 ⩽ ν ⩽ 1, is directly proportional to the chemotactic
sensitivity of CTLs. Moreover, the parameter ϕmax > 0 is directly proportional to the maximal
value that can be attained by the concentration of chemoattractant. In particular, on the basis
of the considerations drawn in [26], we define ϕmax as

ϕmax := max
(
max

i
ϕ0i , Awmax

)
,

where wmax is given by (4.22) and A > 0 is a scaling factor that ensures unit consistency. Dividing
by ϕmax ensures that the values of the quotients in (4.23)-(4.25) are all between 0 and 1.

Undirected, random movement of CTLs

To model the effect of undirected, random movement, we allow CTLs to update their position
according to a random walk with movement probability λ ∈ R∗

+, where 0 < λ ⩽ 1. In particular,
we assume that a CTL on the lattice site xi can move via undirected, random movement into

either the lattice site xi−1 or the lattice site xi+1 with probability
λ

2
. As similarly done in the

case of chemotactic movement, in order to capture a possible reduction in CTL motility at higher
cell densities [165, 189, 225], we modulate the movement probability by a decreasing function of
the density of tumour cells and CTLs at the neighbouring sites. In particular, for a CTL on the
lattice site i and at the time-step k, recalling the notation wk

i := nki + c
k
i for the total cell density

and definition (4.22) of the modulating function ψ(wk
i ), we define:

1. the probability of moving to the lattice site i− 1 via undirected, random movement as

T k
Li :=

λ

2
ψ(wk

i−1) for i ∈ [1,N ] and T k
L0 = 0; (4.26)

2. the probability of moving to the lattice site i+ 1 via undirected, random movement as

T k
Ri :=

λ

2
ψ(wk

i+1) for i ∈ [0,N − 1] and T k
RN = 0; (4.27)

3. and the probability of not undergoing undirected, random movement as

1− T k
Li − T k

Ri for i ∈ [0,N ]. (4.28)
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4.4 Corresponding continuum model

Letting the time-step τ → 0 and the space-step χ→ 0 in such a way that

λχ2

2d τ
→ βc ∈ R+

∗ and
νχ2

2dϕmax τ
→ γc ∈ R+

∗ , (4.29)

using the formal method employed in [6, 26, 138], it is possible to formally show (see Ap-
pendix D.1) that the deterministic continuum counterpart of the hybrid model described in
Section 4.3 comprises the following coupled IDE-PDE-PDE system for the density of tumour
cells n(x, t), the density of CTLs c(x, t) and the chemoattractant concentration ϕ(x, t)

∂tn = αnn− µnρn(t)n− ζnK(x, t)n

∂tc−∇ ·
[
βcψ(w)∇c− γcψ(w)c∇ϕ− βccψ

′(w)∇w
]
= −µcρc(t)c+ αcr(x, t)

∂tϕ− βϕ∆ϕ = αϕn− κϕϕ

w(x, t) := n(x, t) + c(x, t),

(4.30)

where the IDE (4.30)1 is posed on Ω × R∗
+, while the PDEs (4.30)2 and (4.30)3 are posed on

Ω\∂Ω×R∗
+ and are subject to zero-flux boundary conditions on ∂Ω. The IDE-PDE-PDE system

(4.30) is complemented with the following definitions

K(x, t) :=

∫
Ω

η(x,x′; θ)c(x′, t) dx′, r(x, t) := ϕtot(t)1ω(x)

ρn(t) :=

∫
Ω

n(x, t) dx, ρc(t) :=

∫
Ω

c(x, t) dx, ϕtot(t) :=

∫
Ω

ϕ(x, t) dx.

In system (4.30), βc ∈ R∗
+ defined via (4.29) is the diffusion coefficient (i.e. the motility) of CTLs,

while γc ∈ R+ defined via (4.29) is the chemotactic sensitivity of CTLs to the chemoattractant.

4.5 Numerical simulations

In this section, we report on computational results of the hybrid discrete-continuum model along
with numerical solutions of the corresponding continuum model given by the IDE-PDE-PDE
system (4.30). First, we establish a baseline scenario in which the level of efficiency of CTLs
at eliminating tumour cells (i.e. the parameter ζn) is sufficiently high so as to lead to tumour
eradication. Then, we reduce the level of CTL efficiency in order to avoid tumour eradication,
and we explore the mechanisms that underlie the emergence of different levels of infiltration of
CTLs into the tumour, which correspond to cold, altered-immunosuppressed, altered-excluded
and hot tumour scenarios. In particular, we carry out sensitivity analysis to two parameters that
we expect to play a key role in determining the spatial distribution of CTLs: the secretion rate of
chemoattractant by tumour cells (i.e. the parameter αϕ) and the threshold value of the total cell
density above which CTL movement is impaired (i.e. the parameter wmax in definition (4.22)).
Finally, we investigate the impact of CTL infiltration on the response of tumour cells to different
types of anti-cancer immunotherapy.
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Figure 4.3: Initial conditions. Plots of the density of tumour cells n(x, y, t) (panel (a)), the
density of CTLs c(x, y, t) (panel (b)), and the chemoattractant concentration ϕ(x, y, t) (panel
(c)) at the initial time of the simulations (i.e. at t = 0) for the continuum model. Analogous
initial conditions are used for the hybrid model.

4.5.1 Set-up of numerical simulations

The hybrid and continuum models are parameterised using parameter values retrieved from
the literature, wherever possible. The full list of parameter values and related references are
provided in Table 4.1. For the numerical simulations we report on, we use the 2D spatial
domain Ω := [0, 1]2. Under the parameter choice of Table 4.1, this is equivalent to considering a
square region of a 2D cross-section of a tumour tissue of area 1 cm2. Furthermore, to carry out
numerical simulations of the hybrid model, we use the space-step χ = 0.016 cm and the time-step
τ = 1× 10−4 days. Finally, unless otherwise specified, we choose the final time tf = 15 days. All
simulations are performed in Matlab [146].

Initial conditions and blood vessel distribution Fig. 4.3 displays the initial conditions
chosen to carry out numerical simulations. In particular, for the hybrid model we have

n0ij = 800 exp[−200(iχ− x∗11)
2 − 200(jχ− y∗11)

2], (4.31)

c0ij = 60

4∑
p=1

exp[−300(iχ− x∗2p)
2 − 300(jχ− y∗2p)

2], (4.32)

and
ϕ0ij = 90 exp[−200(iχ− x∗11)

2 − 200(jχ− y∗11)
2], (4.33)

with (x∗11, y
∗
11) = (0.5, 0.5), (x∗21, y

∗
21) = (0.26, 0.74), (x∗22, y

∗
22) = (0.26, 0.26), (x∗23, y

∗
23) =

(0.74, 0.74) and (x∗24, y
∗
24) = (0.74, 0.26). The points where CTLs are initially concentrated are

the points where blood vessels are assumed to be located, that is, the set ω in (4.17) is defined
as

ω := {(x∗21, y∗21), (x∗22, y∗22), (x∗23, y∗23), (x∗24, y∗24)} .

Similarly, for the continuum model we have

n(x, y, 0) = 800 exp[−200(x− x∗11)
2 − 200(y − y∗11)

2], (4.34)

c(x, y, 0) = 60

4∑
p=1

exp[−300(x− x∗2p)
2 − 300(y − y∗2p)

2], (4.35)
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and
ϕ(x, y, 0) = 90 exp[−200(x− x∗11)

2 − 200(y − y∗11)
2]. (4.36)

A description of the algorithmic rules that underlie computational simulations of the hybrid
model is provided in Appendix D.2.1, while the methods employed to numerically solve the IDE-
PDE-PDE system (4.30), subject to suitable initial conditions and no-flux boundary conditions,
are detailed in Appendix D.2.2.

Given the initial conditions of the two models, we compute the coordinates of the centre of
mass of the tumour (x∗cm, y

∗
cm) = (0.5, 0.5), and we define the set Ωc (i.e. the ‘centre of the

tumour’) via definition (4.4) as

Ωc :=

{
xi ≡ (xi, yj) ∈ [0, 1]2 :

√
(xi − x∗cm)2 + (yj − y∗cm)2 < 0.144

}
.

The set Ωc corresponds to approximately 65% of the region initially occupied by the tumour
and, therefore, the set Ωm = Ω \ Ωc (i.e. the ‘margin of the tumour’) comprises the remaining
35% of the tumour region.

Parameter values Unless otherwise specified, we use the parameter values listed in Table 4.1.
Here, the value of the parameter αn is consistent with previous measurement and estimation
studies on the dynamics of tumour cells [43], where the authors calculated the estimated prolif-
eration rate of a tumour cell using the average duplication time of melanoma cells. The values
of the diffusion coefficient βϕ and decay rate κϕ of the chemoattractant correspond to those used
in [44, 148]. Moreover, the range of values of the secretion rate αϕ is consistent with those used
in [14]. To explore a wide range of biological situations corresponding to different degrees of
immune infiltration, we use an arbitrary range of values for the parameter wmax. Finally, the
values of the parameters λ and ν correspond to values of βc and γc that are consistent with those
reported in [148] and [14], respectively. Given the values of the parameters βc and γc chosen to
carry out numerical simulations of the continuum model, the following definitions are used for
the hybrid model

λ := βc
4τ

χ2
and ν := γc

4ϕmaxτ

χ2

so that conditions (4.29) are met.

4.5.2 Baseline scenario corresponding to tumour eradication
As mentioned earlier, we first establish a baseline scenario where the parameter ζn is high enough
so that CTLs are able to eradicate the tumour. The plots in Fig. 4.4 and Fig. 4.5 summarise the
results of simulations of the hybrid and continuum models obtained under this scenario.

After initial growth, the number of tumour cells decreases steadily over time until tumour
cells are completely eliminated (cf. Fig. 4.4). The chemoattractant produced by tumour cells
triggers the inflow of CTLs through blood vessels and the movement of CTLs towards the tumour
(cf. Fig. 4.5). Since the value of ζn is sufficiently large, once CTLs are close enough to tumour
cells they start eliminating them until eradication (cf. Fig. 4.5). When the number of tumour
cells decreases, the total amount of chemoattractant decays as well, thus triggering a reduction
in the inflow of CTLs, which initiates a decrease in the number of CTLs (cf. Fig. 4.4).

Both Fig. 4.4 and Fig. 4.5 indicate that there is an excellent quantitative agreement between
numerical solutions of the continuum model (4.30) and the results of numerical simulations of
the hybrid model.
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Table 4.1: Model parameters and related values used in numerical simulations.
Phenotype Description Value & Units Reference

Domain Space-step in the x and y direc-
tion

χ = 0.016 cm

Time-step τ = 10−4 (days)

Final time tf = 15 (days)

Tumour cells Cell density at position x n(x, t) ⩾ 0 (cells/cm2)

Initial number ρn(0) = 45228 (cells)

Proliferation rate αn = 1.5 (1/day) [43]

Rate of death due to competition
between tumour cells

µn = 1.25× 10−5 (1/day/cell)

Level of efficiency of CTLs ζn ∈ [0.001, 1] (1/day/cell)

Radius of interaction between tu-
mour cells and CTLs

θ = 3× 0.016 (cm)

CTLs Cell density at position x c(x, t) ⩾ 0 (cells/cm2)

Initial number ρc(0) = 8960 (cells)

inflow rate αc = 6 (cell/cm2/day/mol)

Chemotactic sensitivity (hybrid
model)

ν = γc
4ϕmaxτ

χ2

Chemotactic coefficient (contin-
uum model)

γc = 10 (cm2/day/mol) [14]

Random movement prob. (hy-
brid model)

λ = βc
4τ
χ2

Diffusion coefficient (continuum
model)

βc = 1× 10−3 (cm2/day) [148]

Total cell density above which
CTL movement is impaired

wmax = [0.74 × 105, 8.88 × 105]
(cells/cm2)

Rate of death due to competition
between CTLs

µc = 6× 10−6 (1/day/cell)

Chemoattr. Concentration at position x ϕ(x, t) ⩾ 0 (mol/cm2)

Total amount ϕtot(t) ⩾ 0 (mol)

Diffusion coefficient βϕ = 10−1 (cm2/day) [148]

Secretion rate αϕ ∈ [0.001, 1.5](mol/cell/day) [14]

Decay rate κϕ = 2 (1/day) [44]

Maximal concentration ϕmax = Awmax, with A = 1
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Figure 4.4: Baseline scenario: evolution of the numbers of tumour cells and CTLs,
and the total amount of chemoattractant. Plots of the time evolution of the number of
tumour cells ρn(t), the number of CTLs ρc(t), and the total amount of chemoattractant ϕtot(t)
(in the inset) of the hybrid model (solid, coloured lines) and the continuum model (dotted, black
lines) for a choice of parameters that results in the eradication of the tumour. Here, ζn = 0.004
and all the other parameters are as in Table 4.1 with αϕ = 1.5 and wmax = 2.96 × 105. The
results from the hybrid model correspond to the average over three simulations and the related
variance is displayed by the coloured areas surrounding the curves.

4.5.3 Emergence of hot, altered and cold tumour scenarios

We now consider a lower value of the parameter ζn in order to explore biological scenarios
in which the cytotoxic action of CTLs is less effective, for example due to high expression of
PD1/PD-L1 inhibitory receptors on the surface of CTLs/tumour cells. As mentioned earlier,
we wish to investigate how the spatial distribution of CTLs within the tumour varies depending
on the value of the parameters αϕ and wmax. Therefore, we perform numerical simulations
holding all parameters constant but considering different combinations of αϕ and wmax. For
each pair of values considered, we stored the resulting dynamics of the densities of tumour cells
and CTLs along with the dynamics of the corresponding cell numbers, and the final value of
the immunoscore computed via (4.7). The results obtained are summarised by the heat maps in
Fig. 4.6 and the plots in Figs. 4.7-4.11.

Low immunoscore and emergence of cold tumour scenarios As shown by the blue
regions on the left side of the two heat maps of Fig. 4.6, for sufficiently small values of αϕ,
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Figure 4.5: Baseline scenario: evolution of the spatial distributions of cells over time.
Panels (a)-(d)-(g) display the plots of the density of tumour cells n(x, y, t) and panels (b)-(e)-
(h) display the plots of the density of CTLs c(x, y, t) of the continuum model at three successive
time instants – i.e. t = 1, t = 4, and t = 15. The pink dashed lines highlight the 1D cross-
section corresponding to y = 0.5. Panels (c)-(f)-(i) display the corresponding side on view
plot of the densities of tumour cells n(x, y, t) and CTLs c(x, y, t) of the hybrid model (solid,
coloured lines) and continuum model (dotted, black lines) (i.e. at y = 0.5 and t = 1, t = 4,
and t = 15). Here, ζn = 0.004 and all the other parameters are as in Table 4.1 with αϕ = 1.5
and wmax = 2.96× 105. The results from the hybrid model correspond to the average over three
simulations and the related variance is displayed by the coloured areas surrounding the curves.

the immunoscore is relatively low independently of the value of wmax. This is due to the small
concentration of chemoattractant present in the domain, which poses limitations to the inflow and
movement of CTLs towards the tumour. Hence, in the framework of our model, this parameter
range corresponds to the emergence of cold tumour scenarios.

Sample dynamics of the numbers and densities of tumour cells and CTLs for the values of
αϕ and wmax corresponding to the dotted pink square 1 in Fig. 4.6 are displayed in the plots in
Fig. 4.7(a) and Fig. 4.8. As shown by Fig. 4.7(a), for sufficiently small values of αϕ, the total
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Figure 4.6: Immunoscore. The heat map in panel (a) displays the value of the immunoscore
computed via (4.7) at the end of numerical simulations of the hybrid model for different combi-
nations of αϕ and wmax. For each given value of αϕ and wmax, the values of the other parameters
are as in Table 4.1, with ζn = 0.00012. This heat map matches with the corresponding heat
map obtained for the continuum model, which is displayed in panel (b). Sample dynamics of
the numbers and densities of tumour cells and CTLs for the values of parameters αϕ and wmax

corresponding to the dotted pink squares 1-4 are displayed in the plots of Fig. 4.7 and Figs. 4.8-
4.11, respectively.

amount of chemoattractant in the domain is too small to trigger a sufficiently high inflow of
CTLs that can compensate for the loss caused by CTL death. As a result, the number of CTLs
decreases over time. Moreover, there is a shallow gradient of the chemoattractant, which results
in a slow movement of CTLs towards the tumour. Therefore, as shown by Fig. 4.8(b)-(c), at
the end of simulations, the density of CTLs around the tumour is almost zero and CTLs are still
very much concentrated in the proximity of the blood vessels (i.e. their entry points).

Intermediate immunoscore and emergence of altered tumour scenarios The light
blue regions of the heat maps of Fig. 4.6 indicate that there are two possible parameter ranges
giving rise to an intermediate immunoscore. The first one corresponds to intermediate values of
αϕ along with intermediate to large values of wmax, while the second one corresponds to larger
values of αϕ along with small values of wmax. In the framework of our model, altered tumour
scenarios emergence under these two parameter ranges.

Sample dynamics of the numbers and densities of tumour cells and CTLs for the values of αϕ

and wmax corresponding to the dotted pink squares 2 and 3 in Fig. 4.6 are displayed in the plots
in Fig. 4.7(b)-(c), Fig. 4.9 and Fig. 4.10. The results of Fig. 4.7(b)-(c) show that increasing
the value of αϕ leads to a progressive increase in the total amount of chemoattractant. This
in turn increases the inflow of CTLs and facilitates their movement towards the tumour. The
spatial distribution of CTLs within the tumour varies depending on the value of wmax. Fig. 4.9
shows that smaller values of wmax lead to an accumulation of CTLs at the margin of the tumour,
which corresponds to an altered-excluded tumour scenario. On the other hand, larger values of
wmax promote the infiltration of CTLs into the tumour and lead to an altered-immunosuppressed
tumour scenario (see Fig. 4.10).
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Figure 4.7: Sample dynamics of the numbers of tumour cells and CTLs in hot, altered-
immunosuppressed, altered-excluded and cold tumour scenarios. Time evolution of the
number of tumour cells ρn(t), the number of CTLs ρc(t), and the total amount of chemoattractant
ϕtot(t) (in the insets) of the hybrid model (solid, coloured lines) and the continuum model
(dotted, black lines) for values of αϕ and wmax corresponding to the dotted pink squares 1-4 of
Fig. 4.6. Sufficiently low values of αϕ lead to the emergence of cold tumour scenarios (panel (a));
intermediate values of αϕ and sufficiently high values of wmax lead to the emergence of altered-
immunosuppressed tumour scenarios (panel (b)); intermediate values of αϕ and sufficiently small
values of wmax lead to the emergence of altered-excluded tumour scenarios (panel (c)); and
sufficiently high values of αϕ and wmax lead to the emergence of hot tumour scenarios (panel
(d)). To obtain these results, we used the values of the parameters αϕ and wmax corresponding
to the dotted pink squares 1 (panel (a)), 3 (panel (b)), 2 (panel (c)), and 4 (panel (d)) of
Fig. 4.6. All the other parameters are as in Table 4.1, with ζn = 0.00012. The results from
the hybrid model correspond to the average over three simulations and the related variance is
displayed by the coloured areas surrounding the curves.

High immunoscore and emergence of hot tumour scenarios Finally, as shown by the
red regions on the bottom-right side of Fig. 4.6, for large values of αϕ and wmax, the value of the
immunoscore is relatively high. In the framework of our model, this parameter range corresponds
to the emergence of hot tumour scenarios.
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Figure 4.8: Sample spatial distributions of cells in cold tumour scenarios. Panels (a)
and (b) display, respectively, the densities of tumour cells n(x, y, t) and CTLs c(x, y, t) of the
continuum model at the end of numerical simulations (i.e. at t = 15) for a choice of parameters
that results in the emergence of a cold tumour scenario (cf. dotted pink square 1 in Fig. 4.6).
The pink dashed line highlights the 1D cross-section corresponding to y = 0.5. Panel (c) displays
the corresponding side on view plot of the densities of tumour cells n(x, y, t) and CTLs c(x, y, t)
of the hybrid model (solid, coloured lines) and continuum model (dotted, black lines) (i.e. at
y = 0.5 and t = 15). Here, ζn = 0.00012, αϕ = 0.0015, wmax = 2.96 × 105, and all the other
parameters are as in Table 4.1. The results from the hybrid model correspond to the average
over three simulations and the related variance is displayed by the coloured areas surrounding
the curves.

Sample dynamics of the numbers and densities of tumour cells and CTLs for the values of
αϕ and wmax corresponding to the dotted pink square 4 in Fig. 4.6 are displayed in the plots
in Fig. 4.7(d) and Fig. 4.11. When αϕ is high enough, the larger amount of chemoattractant
promotes the inflow of a larger number of CTLs (see Fig. 4.7(d)). Moreover, Fig. 4.11 shows that,
similarly to the altered-immunosuppressed tumour scenario, larger values of wmax facilitate the
infiltration of CTLs into the tumour. As the number of infiltrated CTLs is larger, the immune
action is more efficient than in the previous scenarios, and leads to a slightly decreased number
of tumour cells.

Remark 4. Although the specific colours of the regions of the heat maps in Fig. 4.6 can vary
according to the values of the other parameters of the model, the behaviours of the spatial
distributions of CTLs and tumour cells in the case of hot, altered-immunosuppressed, altered-
excluded and cold tumour scenarios remain qualitatively similar to those shown in Figs. 4.8-4.11.
Moreover, the heat maps in Fig. 4.6, as well as the plots in Fig. 4.7 and Figs. 4.8(c)-4.11(c)
demonstrate that there is an excellent agreement between numerical simulations of the hybrid
and continuum models. This testifies to the robustness of the computational results presented
here and the biological insight that they provide.

4.5.4 Immunotheraphy effects

The results presented in the previous subsection summarise how scenarios corresponding to
different levels of CTL infiltration into the tumour can emerge under different combinations of the
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Figure 4.9: Sample spatial distributions of cells in altered-excluded tumour scenarios.
Panels (a) and (b) display, respectively, the densities of tumour cells n(x, y, t) and CTLs c(x, y, t)
of the continuum model at the end of numerical simulations (i.e. at t = 15) for a choice of
parameters that results in the emergence of a altered-excluded tumour scenario (cf. dotted pink
square 2 in Fig. 4.6). The pink dashed line highlights the 1D cross-section corresponding to
y = 0.5. Panel (c) displays the corresponding side on view plot of the densities of tumour
cells n(x, y, t) and CTLs c(x, y, t) of the hybrid model (solid, coloured lines) and continuum
model (dotted, black lines) (i.e. at y = 0.5 and t = 15). Here, ζn = 0.00012, αϕ = 0.15,
wmax = 2.22× 105, and all the other parameters are as in Table 4.1. The results from the hybrid
model correspond to the average over three simulations and the related variance is displayed by
the coloured areas surrounding the curves.

values of the parameters αϕ and wmax. We now investigate possible outcomes of immunotheraphy
in these different scenarios.

In order to do this, we consider the same parameter settings used for the numerical simulations
of Fig. 4.6, but now we allow the level of efficiency of CTLs at eliminating tumour cells to be
higher (i.e. we increase the value of ζn). This corresponds to a biological scenario in which the
tumour is treated with anti-PD1 monotherapy, which restores immune efficacy [204]. We also
investigate the effects of coupling anti-PD1 therapy with two other therapies. First we explore
the effects of anti-PD1 therapy in combination with another immune checkpoint therapy, i.e. the
anti CTLA-4 therapy [211]. To do so, we perform numerical simulations defining all parameters
as in the case of the anti-PD1 therapy but increasing the rate of inflow of CTLs through blood
vessels (i.e. the value of the parameter αc). Then, we explore the effects of combining anti-
PD1 therapy with chemotherapy, which inhibits tumour cell division, inflames the TME with
tumour antigens, and boosts the activation of CTLs [70]. To do so, we perform numerical
simulations defining all parameters as in the scenario of the anti-PD1 therapy but decreasing the
proliferation rate of tumour cells (i.e. the value of the parameter αn) and increasing the rate of
inflow of CTLs through blood vessels (i.e. the value of the parameter αc). The results obtained
are displayed in Fig. 4.12, which shows a comparison between the numbers of tumour cells at
the end of numerical simulation in the scenario “without treatment” (i.e. with the parameter
values considered in Section 4.5.3) and the three aforementioned scenarios in which the effects
of different therapeutic protocols are considered.

Exploiting the excellent agreement between the results of numerical simulations of the hybrid
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Figure 4.10: Sample spatial distributions of cells in altered-immunosuppressed tumour
scenarios. Panels (a) and (b) display, respectively, the densities of tumour cells n(x, y, t) and
CTLs c(x, y, t) of the continuum model at the end of numerical simulations (i.e. at t = 15)
for a choice of parameters that results in the emergence of a altered-immunosuppressed tumour
scenario (cf. dotted pink square 3 in Fig. 4.6). The pink dashed line highlights the 1D cross-
section corresponding to y = 0.5. Panel (c) displays the corresponding side on view plot of the
densities of tumour cells n(x, y, t) and CTLs c(x, y, t) of the hybrid model (solid, coloured lines)
and continuum model (dotted, black lines) (i.e. at y = 0.5 and t = 15). Here, ζn = 0.00012,
αϕ = 0.15, wmax = 8.88×105, and all the other parameters are as in Table 4.1. The results from
the hybrid model correspond to the average over three simulations and the related variance is
displayed by the coloured areas surrounding the curves.

and continuum models presented in the previous subsections, here we carry out the numerical
simulations of the continuum model only, since they require computational times much smaller
than those required by the numerical exploration of the corresponding hybrid model. Moreover,
to obtain these results, we carried out numerical simulations only for 10 days, i.e. tf = 10.

Anti-PD1 monotherapy Fig. 4.12(b) displays the number of tumour cells at the end of
numerical simulations of the continuum model for parameter settings corresponding to anti-PD1
monotherapy (i.e. when only the value of ζn in increased). Comparing these results with those
displayed in Fig. 4.12(a), we see that, in general, for the same values of parameters αϕ and
wmax, increasing the value of ζn leads to a decrease in the numbers of tumour cells at the end of
simulations. However, when the value of αϕ is too small (i.e. in cold tumour scenarios) or when
the value of wmax is too small (i.e. in altered-excluded tumour scenarios), increasing ζn has no
benefit on the action of CTLs against tumour cells. Finally, when the values of αϕ and wmax are
sufficiently large (i.e. in hot tumour scenarios) anti-PD1 monotherapy is more effective.

Anti-PD1-CTLA4 dual therapy Fig. 4.12(c) displays the number of tumour cells at the
end of numerical simulations of the continuum model for parameter settings corresponding to
anti-PD1-CTLA4 dual therapy (i.e. when both the value of ζn and the value of αc are increased).
Comparing these results with those displayed in Fig. 4.12(b), we see that increasing the value
of αc along with the value of ζn improves immune efficacy only when the values of αϕ and wmax

are large enough (i.e. in hot tumour scenarios). Moreover, for intermediate values of αϕ (i.e.
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Figure 4.11: Sample spatial distributions of cells in hot tumour scenarios. Panels (a)
and (b) display, respectively, the density of tumour cells n(x, y, t) and CTLs c(x, y, t) of the
continuum model at the end of numerical simulations (i.e. at t = 15) for a choice of parameters
that results in the emergence of a hot tumour scenario (cf. dotted pink square 4 in Fig. 4.6). The
pink dashed line highlights the 1D cross-section corresponding to y = 0.5. Panel (c) displays
the corresponding side on view plot of the densities of tumour cells n(x, y, t) and CTLs c(x, y, t)
of the hybrid model (solid, coloured lines) and continuum model (dotted, black lines) (i.e. at
y = 0.5 and t = 15). Here, ζn = 0.00012, αϕ = 1.5, wmax = 8.88 × 105, and all the other
parameters are as in Table 4.1. The results from the hybrid model correspond to the average
over three simulations and the related variance is displayed by the coloured areas surrounding
the curves.

in altered-immunosuppressed tumour scenarios), increasing the value of αc slightly decreases the
number of tumour cells at the end of simulations. Finally, when the values of αϕ or wmax are
too small, increasing αc has no benefit on the action of CTLs against tumour cells.

Chemotherapy combined with anti-PD1 therapy Fig. 4.12(d) displays the number of
tumour cells at the end of numerical simulations of the continuum model for parameter settings
corresponding to chemotherapy in combination with anti-PD1 therapy (i.e. when the value of
αn is decreased and the values of ζn and αc are increased). Compared to the other heat maps of
Fig. 4.12, these results show that the number of tumour cells decreases even for small values of
αϕ or wmax. Moreover, when the values of αϕ or wmax are small (i.e. in cold and altered-excluded
tumour scenarios), the numbers of tumour cells at the end of simulations are similar. On the
other hand, from intermediate to large values of αϕ and wmax, the numbers of tumour cells at
the end of simulation decrease as the values of these two parameters increase. As expected, the
larger the values of αϕ and wmax (i.e. the “hotter" the tumour scenario considered), the more
effective the combined action of chemotherapy and anti-PD1 therapy.

4.6 Discussion, conclusions and research perspectives

4.6.1 Discussion and conclusions

In this chapter, we have developed a hybrid discrete-continuum modelling framework for the
interactions between tumour cells and cytotoxic T lymphocytes, which explicitly takes into ac-
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Figure 4.12: Immunotherapy effects. Comparison between the numbers of tumour cells ρn(t)
at the end of simulations (i.e. at t = 10) of the continuum model for different values of αϕ

and wmax without therapy (panel (a)) and when the effects of different immunotherapies are
incorporated by considering different values of the parameters ζn, αc and αn (panel (b)-(d). In
panel (a), ζn = 0.00012 and the values of the other parameters are as in Table 4.1. In panel (b),
ζn = 0.001 and the values of the other parameters are as in Table 4.1. In panel (c), ζn = 0.001,
αc = 12 and the values of the other parameters are as in Table 4.1. In panel (d), ζn = 0.001,
αc = 12, αn = 0.75 and the values of the other parameters are as in Table 4.1.

count the spatial dynamics leading to infiltration of CTLs into the tumour. We used a discrete
mass-balance equation for the evolution of a chemoattractant, which drives the movement of
CTLs towards the tumour, while cell dynamics were described by stochastic individual-based
models. From our hybrid model, a continuum model comprising a PDE for the CTL density, an
IDE for the tumour cell density and a PDE for the concentration of chemoattractant has been
formally derived. Through comparison of both models we found that the results of computa-
tional simulations of the hybrid model faithfully mirror the qualitative properties of the solutions
to the corresponding continuum model. The results of computational simulations of the hybrid
model, which are in excellent agreement with numerical solutions of the continuum model, shed
light on the way in which different parameters affect the spatial distribution of CTLs within the
tumour and allow us to assess the impact of CTL infiltration on the immune response against
tumours.
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The results that we have presented demonstrate that the level of efficiency of CTLs at elimi-
nating tumour cells (i.e. the parameter ζn) plays a key role in tumour-immune competition. In
fact, when the value of ζn is large enough, our results indicate that tumour eradication can occur,
while lower values of ζn may result in tumour cell survival. This is consistent with experimental
and clinical data which point to a key role of immune check-points in immunosuppressing CTL
responses. In fact, the presence of immunosuppressive components in the TME, such as PD-1
and/or PD-L1 inhibitory receptors, decreases the efficiency of CTLs at eliminating tumour cells,
and can ultimately result in tumour escape [102, 208].

Moreover, our numerical results indicate that when tumour eradication does not occur (i.e.
when the value of ζn is sufficiently small), the secretion rate of the chemoattractant by tumour
cells (i.e. the parameter αϕ) and the threshold value of the total cell density above which CTL
movement is impaired (i.e. the parameter wmax) have a strong impact on the level of infiltration
of CTLs into the tumour, and different combinations of the values of these parameters bring
about the emergence of four immune-based tumour scenarios. Hot tumour scenarios emerge for
high values of αϕ and wmax, and are characterised by a large number of CTLs in the centre of
the tumour. By displaying a high degree of CTL infiltration, these tumours provide a fertile
ground for immune checkpoint therapies. Altered tumour scenarios emerge for intermediate
values of αϕ, and reflect the intrinsic ability of the immune system to effectively mount a CTL
-mediated immune response and the ability of tumour cells to partially escape such a response.
This can either be due to an insufficient number of infiltrated CTLs (the immunosuppressed
tumour scenarios, which emerge for intermediate to large values of wmax) or to the presence of
physical barriers that hinder CTL infiltration (the excluded tumour scenarios, which emerge for
small values of wmax). Finally, cold tumour scenarios emerge for sufficiently small values of αϕ

and wmax. These tumours are characterised by an insufficient number of CTLs both in the centre
of the tumour and at its margin, and are invariably associated with poor prognosis.

We also explored how the outcomes of different immunotherapy protocols can vary in these
four immune-based tumour scenarios. In particular, our results suggest that increasing the level
of efficiency of CTLs (i.e. the value of the parameter ζn), which is associated to the effects
of anti-PD1 monotherapy, is not sufficient for treating all types of tumour scenarios, and it is
particularly ineffective in altered-excluded and cold tumour scenarios. This finding is coherent
with experimental observations indicating that anti-PD1 monotherapy is effective only in the
context of hot or altered-immunosuppressed tumours, as a certain number of CTLs is already
infiltrated into the tumour [70].

Moreover, the results of our model indicate that, in these two categories of tumours, increas-
ing both the level of efficiency of CTLs and their rate of inflow (i.e. the value of the parameters
ζn and αc), which are associated with the combined effects of anti-PD1 and anti-CTLA4 therapy,
may lead to a better therapeutic outcome. This conclusion is also supported by experimental
work showing that anti-PD1-CTLA4 dual therapy may be successful in treating advanced-stage
melanoma [222], renal-cell carcinoma [156] and non-small-cell lung cancer (NSCLC) [98], result-
ing in regulatory approval. However, our results suggest that prognosis in altered-excluded and
cold tumour scenarios may not benefit from the combined effects of these two immune check-
point inhibitors. Nevertheless, our results indicate that therapeutic strategies promoting the
infiltration of CTLs could turn altered-excluded tumours into altered-immunosuppressed or hot
tumours, helping to decrease the resistance of tumours to the combination of anti-PD1 and
anti-CTLA4 therapy. This finding is coherent with experimental observations suggesting that a
synergistic effect can be achieved by combining anti-angiogenic therapies, which act on vascular
abnormalities facilitating CTL infiltration, with immune checkpoint therapies [203].

Finally, the outputs of our model suggest that increasing both the level of efficiency of CTLs
and their rate of inflow (i.e. the values of the parameters ζn and αc) and decreasing the pro-
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liferation rate of tumour cells (i.e. the parameter αn), which may represent the combination of
anti-PD1 therapy with chemotherapy, a stronger immune response may be induced. In fact, a
proposed approach to overcome the lack of a pre-existing immune response consists in combining
a priming therapy that enhances CTL responses (such as chemotherapy) with the removal of co-
inhibitory signals (through approaches such as immune checkpoint therapies) [70]. For example,
the success of the combination of anti-PD-1 therapy with chemotherapy in metastatic NSCLC
has demonstrated the strength of this dual approach [73].

4.6.2 Research perspectives
We conclude with an outlook on possible extensions of the present work. While here we focused
on the role of the secretion rate of the chemoattractant by tumour cells and the threshold value
of the total cell density above which T cell movement is impaired, it would be interesting to
investigate how other model parameters (e.g. the chemotactic sensitivity of T cells) may affect
the level of infiltration of T cells into the tumour. Carrying out a more extensive exploration
of the model parameter space would ultimately allow more robust biological conclusions to be
drawn.

Moreover, our hybrid modelling framework for the spatial dynamics of tumour cells and
cytotoxic T cells, along with the formal derivation of the corresponding continuum model, can
be developed further in several ways. For instance, a key factor of the immune response is that T
cells express a unique repertoire of T cell receptors (TCRs) [45], and are capable of detecting and
eliminating tumour cells by recognising specific cancer-associated antigens. The model presented
here does not include this aspect, but it could easily be extended to do so by introducing, for
instance, a variable representing the antigens expressed by tumour cells and the TCR expressed
by T cells. This would make it possible to take explicitly into account the effects of both spatial
and antigen-specific interactions between tumour cells and T cells, as similarly done in [113, 127,
140, 139], and then study the effects of antigen presentation or intra-tumour heterogeneity on
immune surveillance.

Only a simplified representation of the action of different types of immunotherapy was consid-
ered in this work, but it would be important to carry out a more detailed study of the impact of
T-cell infiltration on the dynamics of tumour cells under different immunotherapeutic protocols.
In particular, by using optimal control methods for the continuum model, we could investigate
the best delivery schedule of therapeutic agents (i.e. the best delivery times and dosages) that
make it possible to minimise the number of tumour cells at the end of the treatment and achieve
the best therapeutic outcomes [108]. These are all lines of research that we will be pursuing in
the near future.
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Chapter 5

Integrating the model with data: a
discrete model to investigate the
effect of psychological stress on
immune infiltration

5.1 Motivation

In the previous chapters, we have developed discrete and continuum models of tumour-immune
interactions that attempt to describe different aspects of the anti-tumour immune response. The
different models have been parametrised using parameter values obtained from published works
wherever possible and aim to investigate, or qualitatively reproduce, observed cell behaviours.
However, at this stage, these models have not been calibrated using any particular type of data.
Hence, they cannot be employed to generate predictions that can directly be used in the clinic.

Motivated by experimental observations in co-culture between breast cancer spheroids and
activated immune cells, which reproduce in vivo behaviours as described in [99], in this chapter
we explore a simple setting to study the effect of psychological stress on immune infiltration.
In comparison to the models developed in the previous chapters, the mathematical framework
presented here is developed in collaboration with the biologists who designed and conducted the
in vitro experiment presented in [99]. Compared to in vivo studies, which are performed on a
whole living organism, in vitro experiments are performed in a controlled environment, allowing
for a more detailed analysis and examination of biological effects. For this reason, mathematical
models can more easily be calibrated on in vitro studies, in order to reproduce the specific in
vitro experiment.

To study the effects of stress on immune infiltration, we use a mathematical model based
on a simplified version of the one developed in Chapter 3, and we calibrate it to qualitatively
reproduce, in silico, the experimental results obtained in [99]. In this experimental study, the
authors found that the introduction of cortisol in the co-culture resulted in a decrease in immune
cell infiltration into cancer spheroids, a decrease in the levels of the pro-inflammatory cytokine
IFN-γ and an increase in the levels of the anti-inflammatory cytokine IL-10. In our model,
we assume that stress replaces the role of cortisol in the experiment, and investigate which
mechanisms are most likely to be affected by stress and impact immune infiltration. Using a

101
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method similar to the one employed in [99], we define a score to quantify the effects of stress on
immune infiltration in a controlled manner. The results of numerical simulations of this model
are able to qualitatively reproduce the results of in vitro experiments presented in [99], and
demonstrate the importance of including the effect of different factors when exploring the role
played by psychological stress on immune infiltration.

This study is a joint work in collaboration with:

• Melanie S. Flint, School of Pharmacy and Biomolecular sciences, University of Brighton,
Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton, BN2, 4GJ, UK,

• Chandrasekhar Venkataraman, School of Mathematical and Physical Sciences, University
of Sussex, Department of Mathematics, Falmer, Brighton, BN1 9QH, UK,

both authors of [99].
This chapter contains preliminary results from an ongoing work.

5.2 Background

5.2.1 Biological background

The ability of psychological stress to induce immune suppression is widely recognised, but the
mechanisms underlying the effects of stress on the adaptive immune system during tumour
progression are not completely understood.

There has been increasing interest in detailing the mechanistic role that psychological stress
may play in the context of initiation, progression, metastasis and recurrence of cancer. In par-
ticular, it has been reported that stress positively influences carcinogenesis through mechanisms
that promote proliferation, angiogenesis and metastasis, as well as mechanisms that protect tu-
mour cells from apoptosis [124, 160]. In addition to the direct effect on tumour cell biology,
the negative role played by stress on the immune system has also been documented. Using a
pre-clinical mouse model, in [27] the authors showed that stress has a negative impact on T cell
numbers and activation, as evidenced by a decrease in CD8+ and CD3+CD69+ T cells. The
administration of beta-blockers made it possible to reverse the negative effect of stress on the
adaptive immune system and slowed down tumour progression.

In the study that motivated our work [99], the authors developed a co-culture in vitro model
to test the effects of the stress hormone cortisol, with a particular emphasis in exploring its role on
immune cell infiltration. Prior to testing the effect of cortisol on the in vitro co-culture model, the
authors verified that this model was able to reproduce the outcomes of a 66CL4 syngeneic in vivo
mouse model. Using two independent image analysis algorithms, they successfully quantified the
effects of cortisol on immune infiltration, which was interpreted as the number of immune cells
within the tumour spheroid boundary. The results from the in vitro co-culture model, as well
as the in vivo experiments, showed that cortisol decreases immune infiltration. In this respect,
the outcomes obtained in [99] recapitulate the conclusions of [27], which also report that stress
negatively affects immune infiltration into tumours.

The mixture of cytokines that is produced in the tumour microenvironment has an impor-
tant role in tumour progression [57]. Pro-inflammatory cytokines that are released in response
to infection can inhibit tumour development and progression. Alternatively, tumour cells can
produce anti-inflammatory cytokines that promote growth, attenuate apoptosis and facilitate
invasion and metastasis. In stressed conditions, the production of pro- and anti-inflammatory
cytokines can be altered. For example, in [27], the authors found that stress increased the levels
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of inhibitory cytokines, such as the pro-tumourigenic chemokine CXCL10 and granzyme B, con-
tributing to suppression of anti-tumour immune response. In [99], the results from the analysis
of IFN-γ and IL-10 demonstrated that stress decreased the levels of IFN-γ and increased the
levels of IL-10. IFN-γ is a pro-inflammatory cytokine that stimulates immune response, such as
T cell trafficking in the tumour-microenvironment and infiltration [33, 183], whereas IL-10 is an
anti-inflammatory cytokine that inhibits immune response, such as T cell proliferation [5, 46].

From a biological and medical perspective, it is difficult to investigate the connection between
stress, immune infiltration and the underlying molecular and cellular processes. The challenge is
to integrate theoretical and empirical knowledge to better understand the mechanisms and factors
that contribute to failure of the anti-tumour immune response. In this context, mathematical
models provide useful tools towards identifying dependencies between different phenomena and
how these may affect the efficacy of the immune response.

5.2.2 The mathematical model

In light of these considerations, and motivated by the results presented in [99], in this chapter we
develop a spatial stochastic individual-based model of the interaction dynamics between tumour
cells and cytotoxic T lymphocytes (CTLs), to explore the role played by psychological stress in
immune infiltration. In particular, our goal is to investigate which mechanisms are most likely
to be influenced by psychological stress and impact immune infiltration. The individual-based
model considered here is based on a modified and simplified version of the Cellular Potts model
developed in Chapter 3. In the in vitro experiment only one tumour cell line is used. Therefore,
compared to the model presented in Chapter 3, here we are not interested in intra-tumour
heterogeneity, and we do not incorporate antigen expression in the model.

In [99], the authors found that cortisol decreased the levels of the pro-inflammatory cytokine
IFN-γ and increased the levels of the anti-inflammatory cytokine IL-10. Therefore, to explore
which mechanisms are influenced by psychological stress, in our model we take into account the
effects that these two cytokines may have on immune response. On the one hand, the effect
of INF-γ is taken into account by letting tumour cells at the border of the tumour (the region
where cytokines and immune cells are more abundant in the tumour-microenvironment) secrete
a chemoattractant, which drives the movement of CTLs towards the tumour. Moreover, we let
INF-γ also affect the capability of CTLs to infiltrate through tumour cells. On the other hand,
the effect of IL-10 is taken into account by modulating the growth rate of CTLs, which directly
affects their proliferation rate.

In this work, we explore different scenarios. We suppose that in normal conditions the levels
of IFN-γ are high, the levels of IL-10 are low, and CTLs are able to infiltrate into the tumour.
In stressed conditions however, we suppose that the levels of IFN-γ decrease, the levels of IL-10
increase, and CTL infiltration is reduced. By varying the secretion rate of the chemoattractant,
the capability of CTL to infiltrate through tumour cells and the growth rate of CTLs, we study
the impact of stress on immune infiltration. Finally, using a method similar to the one employed
in [99], we define a score to quantify the effects of stress on immune infiltration in a controlled
manner.

5.2.3 Structure of the chapter

The chapter is organised as follows. In Section 5.3, we describe the in vitro experiments and
the main experimental observations that motivated our modelling assumption. The model devel-
oped in collaboration with the biologists is described in Section 5.4. The set-up of computational
simulations is summarised in Section 5.5, where some preliminary results of computational sim-
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Figure 5.1: Morphology, seeding density and viability of spheroids. Panel (a) displays
the visual stages of spheroid generation using ultra-low attachment plates of the murine triple
negative breast cancer 66CL4 cell line, from 0 to 96 h. Panel (b) displays representative phase
contrast microscope images of spheroids seeded from different number of cells ranging from 200
to 2000 over 4 days after full spheroid generation and growth. The highest level of uniformity in
shape (roundness) and size was observed in the spheroids seeded from 1000 cells/well.
Figure is taken from [99], under Creative Commons licence http://creativecommons.org/
licenses/by/4.0/.

ulations are also presented. Full details of model implementation and model parametrisation
are provided in Appendix A and Appendix E, respectively. In Section 5.6, we present the main
computational results and we discuss them in view of the biological results obtained in [99].
Finally, we conclude the chapter and provide some research perspectives in Section 5.7.

5.3 Description of the experiments

To address the question of the role played by stress in T cell infiltration, we took advantage of a
recently developed 3D co-culture in vitro model between cancer spheroids and activated immune
cells (splenocytes). This model explored the effect of the gluco-corticoid stress hormone, cortisol
on 66CL4 co-culture between cancer spheroids and activated immune cells. We now describe the
different steps that have been followed to develop the co-culture model and the main experimental
observations that motivated the development of our mathematical model.

From day -7 to day 0: growth of the spheroids In order to establish the co-culture,
tumour spheroids from a murine triple negative 66CL4 breast cancer cell line were generated
using ultra low attachment round bottom flasks. It took 4 days for the spheroids to fully form
[see Figure 5.1(a)]. Then, spheroids were grown for 7 days (i.e. from day -7 to day 0), during
which their area and roundness increased over time. At day 0, both cell lines were seeded at
different densities. The seeding density with the largest area and roundness, and with the least
variation over 4 days, was chosen [see Figure 5.1(b)]. This was done to allow the changes in the
spheroids to be attributed to the infiltration of immune cells and not to the spheroids themselves.

Day 0: introduction of splenocytes At day 0, immune cells (splenocytes), containing ac-
tivated T cells, were co-cultured with 66CL4 spheroids. At the initial time of the co-culture

http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.
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there were 5 times as many T cells as tumour cells at time -7. Spheroids and splenocytes were
later co-cultured, imaged daily using confocal microscopy, and split into 7 groups. Group-1
contained spheroids only and group-2 comprised spheroids and splenocytes. The other 5 groups
were treated daily with corticosterone (cortisol). Group-3 contained spheroids, splenocytes and
cortisol. Groups-4-5-6 contained spheroids, splenocytes and 3 different glucocorticoid receptor
antagonists. Group-7 contained spheroids and cortisol. Spheroids from each group were treated
daily for 4 days (i.e. from day 0 to day 4), and the media was saved for further analysis.

Implementation of two independent trafficking indexes to measure infiltration levels
To test whether cortisol decreased immune infiltration in the co-culture model, the co-culture of
each group was imaged daily for 4 days (i.e. from day 0 to day 4) using confocal microscopy.
Two trafficking indexes were developed by the authors and applied every day to quantify immune
infiltration levels. Both approaches sought to measure immune cell infiltration into the spheroid,
which was interpreted as the number of immune cells into the tumour spheroid boundary.

The first trafficking index, which the authors refer to as segmentation-based trafficking index
(TIS), relies on a two-step approach. In the first step, the tumour boundary is identified using
image segmentation techniques. Alongside this, in the second step, connected regions of high red
channel intensity (which correspond to the presence of immune cells) are segmented. The TIS
is a dimensionless number computed as the sum over each pixel that is in both the segmented
regions (i.e. in regions with both tumour and immune cells) of the red channel intensity divided
by the green channel intensity (which characterize the presence of only tumour cells). The TIS
is the largest in pixels within the tumour (and segmented immune cell regions) at which the red
channel intensity is high, and the green channel intensity is low, respectively. In fact, these pixels
unambiguously correspond to immune cells within the tumour, indicating successful trafficking.

The second alternative independent algorithm to measure trafficking, which the authors refer
to as K-means classification-based trafficking index (TIC), does not involve segmentation, and
is based on a k-means classifier. The assumption underlying the classification is that the red
and green levels of a pixel in a given image characterise the cell type that occupies the region,
respectively immune and tumour cells. The TIC is also a two-step approach in which first a ma-
chine learning algorithm is used to classify each pixel in the image into different groups obtaining
four classes, background, tumour cell, immune cell or colour saturated. The identification of the
colour saturated class allows for the exclusion of pixels that cannot be quantified appropriately,
since the colour saturation hinders any comparison between the red and green levels. The TIC
is then based on the number of pixels classified as immune cells that are completely surrounded
by pixels classified as tumour cells. The resulting statistics yields a number in the interval [0, 1].

From day 0 to day 4: investigation of the effects of cortisol on immune infiltration
For 4 days (i.e. from day 0 to day 4), the co-culture in each group was imaged, and the TIS and
TIC trafficking indexes described above were applied on the images.

The authors found that, compared to the group with untreated spheroids and splenocytes only
(i.e. group-2), the introduction of cortisol significantly decreased immune cell infiltration in the
spheroids in group-3 [see Figure 5.2(a)-(d)]. Moreover, the 3 glucocorticoid receptor antagonists,
respectively introduced in groups-4-5-6, reversed the effects of cortisol and significantly increased
immune infiltration in spheroids compared to the group of cells treated with cortisol (i.e. group-3
- results not shown). The results also showed that cortisol did not affect spheroid area and did
not alter their roundness [see Figure 5.2(e)-(f)]. Finally, the authors measured the concentration
of two cytokines in the co-culture media, namely: the pro-inflammatory cytokine INF-γ and the
anti-inflammatory cytokine IL-10. They found that cortisol significantly decreased the levels of
INF-γ and significantly increased the levels of IL-10 [see Figure 5.2(g)-(h)].
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Figure 5.2: Cortisol decreases immune cell infiltration into 66CL4 spheroids. Panels
(a)-(b) display representative confocal images of the co-culture for the groups of spheroids +
activated immune cells (panel (a)) and spheroids + activated immune cells + cortisol (panel
(b)). Green represents spheroids and red represents splenocytes. The scale bar represents 250
µm. Histograms in panels (c)-(d) display the value of immune infiltration measured using
the segmentation-based algorithm (TIS) and the k-means classification-based method (TIC) for
the groups of spheroids + activated immune cells (left hand-side histogram) and spheroids +
activated immune cells + cortisol (right hand-side histogram). Histograms in panels (c)-(d)
display the 66CL4 spheroid area and roundness for the two groups. Cortisol does not affect
66CL4 spheroid area and roundness. Histograms in panels (g)-(h) display the levels of INF-γ
and IL-10 in the co-culture media for the two groups. Cortisol significantly decreases the levels
of INF-γ and increases the levels of IL-10.
Figure is taken from [99], under Creative Commons licence http://creativecommons.org/
licenses/by/4.0/.

5.4 Modelling framework

Building upon our previous model developed in Chapter 3, to reproduce the in vitro results of
the co-culture between cancer spheroids and activated splenocytes, we consider two cell types:
tumour cells and cytotoxic T lymphocytes (CTLs). We use a Cellular Potts approach and the
CompuCell3D open-source [107] simulation environment to describe the interactions between
these two cell types.

The choice of a Cellular Potts model is of particular interest in this context, since interactions

http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.
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between neighboring cells in Cellular Potts models have an effective energy, which characterises
the strength of cell-cell adhesion [107] (see Appendix A for a detailed description of the im-
plementation of Cellular Potts models). Therefore, in our model, the effective energy between
cells can directly affect the capability of CTLs to infiltrate through tumour cells. In particular,
small values of the energy at the interface between tumour cells and CTLs correspond to a high
adhesivity between the two cells types and, therefore, lead to scenarios in which CTLs display a
high capability to infiltrate through tumour cells. On the other hand, large values of the energy
at the interface between tumour cells and CTLs correspond to a low adhesivity between the
two cells types and, therefore, lead to scenarios in which CTLs will tend to accumulate at the
margin of the tumour, without infiltrating it. From here on, we use the term “tumour cell-CTL
adhesion strength” (TC-CTL adhesion strength) to refer to the parameter associated with the
energy at the interface between tumour cells and CTLs and regulating CTL infiltration. With
this notation, we will assume that high values of the TC-CTL adhesion strength facilitate the
infiltration of CTLs through tumour cells, while low values of this parameter lead the CTLs to
accumulate at the margin of the tumour, without infiltrating it.

Our model is posed on a 2D spatial domain partitioned into square elements of side ∆x. In
our modelling framework, this domain biologically represents the media in which the co-culture
is analysed. At each time step of length ∆t, the states of the cells are updated according to the
probabilistic and deterministic rules described below.

From day -7 to day 0: growth of tumour cells We let NT (t) denote the number of
tumour cells in the system at time t = h∆t, with h ∈ N0, and we label each cell by an index
n = 1, . . . , NT (t). Motivated by the experiments described in Section 5.3, at the initial time
point of the simulation (corresponding to day -7 of the experiments described in Section 5.3), a
certain number of tumour cells is already present in the domain. Tumour cells are tightly packed
in a circular configuration positioned at the centre of the domain, reproducing a 2D cross-section
of the geometry of the spheroids.

At each time-step, we let tumour cells grow at a certain rate drawn from a uniform distri-
bution; the parameters of the bounds of the uniform distribution are chosen to match the mean
duration of the spheroids cycle length. Mitosis occurs when a tumour cell grows to a critical
size and then divides. We refer the reader to Chapter 3 for a detailed description of cell division
modelling strategy.

A tumour cell can die due to intra-tumour competition, at a rate proportional to the total
number of tumour cells. This modelling rule allows us to obtain a logistic growth in the number
of tumour cells.

Day 0: introduction of CTLs We denote by NC(t) the number of CTLs in the system at
time t, and we label each of them by an index m = 1, ..., NC(t). At day 0 of our simulations,
a certain number of CTLs is randomly distributed across the spatial domain. To match the
experiments, the number of CTLs introduced in the domain at day 0 corresponds to 5 times the
number of tumour cells introduced at day -7. Once in the domain, we let CTLs grow, divide by
mitosis and die due to intra-population competition with rules similar to those used for tumour
cells. If a CTL exhausts its lifespan (which is drawn when the cell is created), it dies (i.e. it
undergoes apoptosis) at the end of the time-step and it is removed from the domain.

Tumour cells at the border of the tumour secrete a chemoattractant (which models the
effects of INF-γ) that triggers the movement of CTLs towards tumour cells. Denoting by ϕ
the concentration of the chemoattractant secreted by tumour cells, we let the dynamic of ϕ be
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described by the following reaction-diffusion equation:

∂ϕ

∂t
= D∆ϕ− γϕ+ α

∑
n∈NTB(t)

δn∈NTB(t). (5.1)

In Eq. (5.1), D is the diffusion rate of the chemoattractant, γ is the rate of natural decay and
α is the secretion rate. Moreover, δn∈NTB(t) = 1 if n ∈ NTB(t), and δn∈NTB(t) = 0 otherwise,
where NTB(t) denotes the set of tumour cells contact with the surrounding medium at time t.
This function allows to take into account the fact that only the tumour cells at the border of the
tumour secrete the chemoattractant.

Once in the domain, CTLs move up the gradient of the chemoattractant in direction of tumour
cells. The chemotaxis of CTLs towards the tumour is modulated by a parameter λchem, which
determines the strength and direction of chemotaxis (see Appendix A for a detailed description
of the implementation of Cellular Potts models).

Implementation of our algorithm to measure infiltration levels In a similar way as the
authors of [99] developed two trafficking indexes to measure the level of infiltration of splenocytes
into the spheroids, in our work we define an ‘infiltration score’. This score allows us to quantify
the level of CTL infiltration into the tumour and is defined in a numerically equivalent way of
the TIC algorithm developed in [99]. In fact, we define the infiltration score as the number of
CTLs surrounded by tumour cells, divided by the number of tumour cells and CTLs surrounded
by tumour cells, and can be written as

I(t) :=

NT (t)∑
n=1

NC(t)∑
m=1

δm∈NCS(t)

δm∈NCS(t) + δn∈NTS(t)
. (5.2)

In Eq. (5.2), functions δm∈NCS(t) and δn∈NTS(t) are defined in a similar way of function δn∈NTB(t)

in Eq. (5.1). Here, these functions allow to respectively count the number of CTLs in set NCS(t),
and the number of tumour cells in set NTS(t), where NCS(t) and NTS(t) respectively denote the
sets of CTLs and tumour cells surrounded by tumour cells at time t. This computation gives a
number in the interval [0, 1].

From day 0 to day 4: investigation of the effects of stress on immune infiltration
Between day 0 and day 4, CTLs grow and divide, move via chemotaxis towards the tumour and
infiltrate it.

Accordingly to the experiments, CTLs are activated against the tumour cells. Therefore, we
suppose that upon contact, CTLs can induce tumour cell death with a certain probability. We
refer to this probability as the “immune success rate”. If the tumour cell satisfies the conditions
to be eliminated, it undergoes apoptosis. Building on the same modelling framework developed
in Chapter 3, we require that an elimination event keeps a CTL engaged for 6 hours and only
after this time the CTL can eliminate again.

Figure 5.3 describes the strategies adopted in our model to study the effects of stress on
immune infiltration and qualitatively reproduce the experimental results obtained in [99]. In
this study, to test whether stress decreased infiltration levels in the co-culture model, cortisol
was added to the co-culture and the outcomes were compared to those obtained for the group of
spheroids and activated splenocytes only. Cortisol significantly decreased the levels of INF-γ in
the co-culture media and significantly increased the levels of IL-10 (cf. step (1) of Figure 5.3).
In our model, we explore the way in which immune infiltration is affected by three parameters
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which can be associated to the effects of cortisol in the co-culture. Such parameters are: the
secretion rate of the chemoattractant, the TC-CTL adhesion strength and the growth rate of
CTLs. The first two parameters are associated to the role played by INF-γ in the co-culture
model, while the last one is associated to the role played by IL-10 (cf. step (2) of Figure 5.3).
Varying these parameters affects both the number of CTLs at the end of the simulation, as well
as their movement towards and within the tumour. In this work, we explore different scenarios.
We suppose that in normal conditions (i.e. in our control scenario) the levels of IFN-γ are high,
the levels of IL-10 are low, and CTLs are able to infiltrate into the tumour. In stressed conditions
however, we suppose that the levels of IFN-γ decrease, the levels of IL-10 increase, and CTL
infiltration is reduced. By considering a range of values of the three aforementioned parameters,
we study their impact on tumour-immune dynamics independently and together, assessing their
influence on immune infiltration in a controlled manner (cf. step (3) of Figure 5.3).

5.5 Numerical simulations and preliminary results

5.5.1 Set-up of simulations
For numerical simulations of our individual-based model, we use a Cellular Potts approach on a
2D spatial grid with a total of 400× 400 lattice sites. Simulations were developed and run using
the software CompuCell3D [107] on a standard workstation (Intel i7 Processor, 4 cores, 16 GB
RAM, macOS 11.2.2). The computational implementation of Cellular Potts models is described
in Appendix A, while full details of the model parametrisation are provided in Appendix E.

At the initial time point of the simulation (i.e. at day -7 of the experiments), a small number
of tumour cells is placed in the domain. Tumour cells proliferate for 7 days (i.e. from day -7 to
day 0) and CTLs are introduced in the domain at day 0.

All quantities we present in this section and in Section 5.6 are obtained by averaging over the
results of 5 simulations, with parameter values equal to those listed in Table E.1 and Table E.2.
First we let tumour cells grow in absence of CTLs for 11 days, carrying out numerical simulation
for 33000 time-steps. Then we introduce CTLs, and we let them interact with tumour cells for
4 days, carrying out numerical simulation for 1200 time-steps.

In the next two subsections, two preliminary computational results of our model are presented,
which will be used to guide the simulations leading to the main results presented in Section 5.6.

5.5.2 Tumour development in the absence of CTLs
We first establish a preliminary scenario where tumour cells grow, divide and die via the mod-
elling rules described in Section 5.4, in the absence of CTLs. For this case, we carry out numerical
simulations for 33000 time-steps, corresponding to 11 days (i.e. from day -7 to day 4 of the exper-
iments). Figure 5.4(a) shows the growth over time of the number of tumour cells. Figure 5.4(b)
also displays an example of the spatial cell distribution observed at different times of one sim-
ulation. As shown by Figure 5.4(a), the number of tumour cells increases from day -7 to day
0. At day 0, the number of tumour cells reaches its carrying capacity, i.e. the saturation value
attained due to intra-population competition. Therefore, from day 0 to day 4, the number of
tumour cells remains stable around the value of carrying capacity. These results qualitatively
reproduce the growth of the spheroids obtained in the experiments described in Section 5.3.

In the following subsection, we establish a control scenario in which CTLs are introduced
into the domain and interact with tumour cells in non-stressed conditions. These simulations
are performed by keeping the values of the parameters related to tumour cells fixed (and equal
to this preliminary scenario) and by setting the initial number of tumour cells at its carrying
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Figure 5.3: Modelling strategies. Step (1): in [99], to test whether stress decreased infiltration
levels in the co-culture model, they compared the outcomes obtained between the group of
spheroids and splenocytes only and the one of spheroids, splenocytes and cortisol. Cortisol
significantly decreased the levels of INF-γ and significantly increased the levels of IL-10. IFN-γ
is a pro-inflammatory cytokine that stimulates immune response, such as T cell trafficking in the
tumour-microenvironment and infiltration, whereas IL-10 is an anti-inflammatory cytokine that
inhibits immune response, such as T cell proliferation. Step (2): in our model, we explore the way
in which immune infiltration is affected by three parameters which can be associated to the effects
of cortisol in the co-culture. Such parameters are: the secretion rate of the chemoattractant,
the TC-CTL adhesion strength and the growth rate of CTLs. The first two parameters are
associated to the role played by INF-γ in the co-culture model, while the last one is associated
to the role played by IL-10. Step (3): in this work, we explore different scenarios. We suppose
that in normal conditions (i.e. in our control scenario) the levels of IFN-γ are high, the levels of
IL-10 are low, and CTLs are able to infiltrate into the tumour. In stressed conditions however,
we suppose that the levels of IFN-γ decrease, the levels of IL-10 increase, and CTL infiltration
is reduced. By considering a range of values of the three aforementioned parameters, we study
their impact on tumour-immune dynamics independently and together, assessing their influence
on immune infiltration in a controlled manner.

capacity. The number of CTLs introduced in the domain at day 0 corresponds to 5 times the
number of tumour cells introduced at day -7, and the values of the parameters related to CTLs
are chosen so as to qualitatively reproduce the experimental results obtained by [99].

5.5.3 Control scenario: immune infiltration in non-stressed conditions

In the experimental results obtained by [99], in absence of cortisol, splenocytes are able to
infiltrate the spheroids. Moreover, the levels of INF-γ measured in the co-culture are high,
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Figure 5.4: Tumour development in the absence of CTLs. Panel (a) displays the time
evolution of the tumour cell number in the absence of CTLs. The shaded area indicates +/−
standard deviation between 5 simulations. Insets in panel (b) display an example of the spatial
distribution of tumour cells at different times of the simulation.

while the levels of IL-10 are low. In our next simulations, we attempt to verify that our model
reproduces such phenomenon, exploring the infiltration of CTLs into the tumour over 4 days.
For these simulations we assume that the levels of INF-γ are high and, therefore, we let tumour
cells secrete the chemoattractant at a high rate. Moreover, we assume that CTLs display a high
capability to infiltrate through tumour cells and, therefore, we consider a high value for the
TC-CTL adhesion strength. Finally, we assume that the levels of IL-10 are low and, therefore,
we let CTLs grow at their normal rate. For now, we simplify our model. We consider that when
CTLs are in contact with tumour cells, they are not able to eliminate tumour cells (i.e. the
immune success rate is equal to 0). We will consider that CTLs induce tumour cell death with
an immune success rate greater than 0 in Section 5.6.3. These assumptions establish our control
scenario.

Insets in Figure 5.5(a) display an example of the spatial distribution of tumour cells and CTLs
at different times of the simulation for a choice of parameters that results in the infiltration of
CTLs into the tumour. Plots in Figure 5.5(b)-(c) respectively display the corresponding average
value of the infiltration score, computed via (5.2), and the time evolution of the numbers of
tumour cells and CTLs. As shown by Figure 5.5(a), as soon as CTLs are introduced in the
domain, they rapidly move towards the tumour and infiltrate it. Figure 5.5(b) shows that the
infiltration score increases over time, but its value tends to saturate between day 3 and day 4.
Moreover, the mean value of the infiltration score obtained at day 4 of our simulations is similar
to the mean value of the TIC algorithm obtained in [99], when cortisol was not introduced in the
co-culture (cf. Figure 5.2(d)). Finally, as shown by Figure 5.5(c), and as expected by the rules
that govern tumour cell and CTL growth and death, over time the number of tumour cells tends
to stay constant around the value of carrying capacity, while the number of CTLs increases until
it reaches a saturation value. This result demonstrates that the changes in the tumour surface
must be attributed to the infiltration of CTLs into the tumour and not to the growth of the
tumour.
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Figure 5.5: Control scenario: immune infiltration in non-stressed conditions. Insets in
panel (a) display an example of the spatial distribution of tumour cells and CTLs at different
times of the simulation for a choice of parameters that results in the infiltration of CTLs into
the tumour. Plot in panel (b) displays the corresponding average value of the infiltration score,
computed via (5.2), at different times of the simulation. The error lines represent the standard
deviation between 5 simulations. Plot in panel (c) displays the corresponding time evolution
of the numbers of tumour cells and CTLs. The shaded area indicates +/− standard deviation
between 5 simulations.

5.5.4 Investigation of the effects of stress on immune infiltration

In the two previous subsections we investigated preliminary scenarios of tumour development
and tumour-immune interaction in absence of stress. We will now explore the effects of stress
on immune infiltration. In particular, following the experimental results presented in [99], we
study the impact that two cytokines may have on immune infiltration, that is: INF-γ and IL-10.
In [99], the authors demonstrated that, under stress, the levels of INF-γ in the co-culture media
decreased, while the levels of IL-10 increased. With our model, we wish to investigate the effect
of these two cytokines on tumour-immune dynamics independently and together, evaluating their
influence on immune infiltration in a controlled manner. To this end, first we investigate the
effects of stress by decreasing the secretion rate of the chemoattractant, which may be associated
with a decrease in the levels of INF-γ in the experiments. To consider a wide range of biological
situations corresponding to different degrees of immune infiltration, for each scenario considered
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we also explore different values of the TC-CTL adhesion strength. Next, for each scenario
considered, we decrease the growth rate of CTLs. This parameter slows down the proliferation
rate of CTLs and, therefore, may be associated with increased levels of IL-10 in the experiments.

In the next section, we investigate the effects of stress on immune infiltration. The obtained
dynamics are compared to the control scenario. In the next simulations, we vary the values of
the secretion rate of the chemoattractant, the TC-CTL adhesion strength, and the growth rate
of CTLs, while the other parameters are kept constant to the values listed in Table E.1 and
Table E.2. The values of the parameters are chosen so as to qualitatively reproduce essential as-
pects of the experimental results obtained by [99]. For each scenario, we compute the infiltration
score via (5.2), and compare it with the infiltration score obtained in the control scenario.

5.6 Main results

5.6.1 Decreasing the secretion rate of the chemoattractant and the
TC-CTL adhesion strength reduces the infiltration of CTLs into
the tumour

To investigate how immune infiltration is affected by the levels of INF-γ in the domain, we start
by comparing our control scenario with different scenarios in which the secretion rate of the
chemoattractant is progressively decreased. For each scenario considered, we also vary the value
of the TC-CTL adhesion strength.

Figure 5.6(a) displays the average value of the infiltration score at different times of the
simulation, for different combined values of the secretion rate of the chemoattractant and the
TC-CTL adhesion strength. In particular, Figure 5.6(a) shows that both parameters affect the
infiltration of CTLs into the tumour, as the infiltration score decreases as soon as the TC-CTL
adhesion strength or the secretion rate of the chemoattractant decrease. In addition, when the
TC-CTL adhesion strength is sufficiently high, decreasing the secretion rate of the chemoat-
tractant considerably reduces the infiltration score. On the other hand, when low values of the
TC-CTL adhesion strength are considered, decreasing the secretion rate of the chemoattractant
does not have an impact on the infiltration score, as its value is already small. These results
suggest that the secretion rate of the chemoattractant has an impact on T cell infiltration only
when CTLs display a sufficiently high capability to infiltrate through tumour cells. On the other
hand, if CTLs have a low capability to infiltrate through tumour cells, independently on the
dynamics of the chemoattractant, they will not be able infiltrate into the tumour.

We next analyse the spatial cell distributions observed at the end of simulations (i.e. at day
4 of the experiments). Figure 5.6(c)-(d) show an example of the final spatial distributions
of tumour cells and CTLs for two decreasing values of the TC-CTL adhesion strength, whereas
Figure 5.6(e)-(f) show similar plots for two decreasing values of the secretion rate of the chemoat-
tractant. These plots are compared to the one displayed in Figure 5.6(b), which shows the final
spatial distributions of tumour cells and CTLs obtained in the control scenario. In particular,
Figure 5.6(b)-(d) show that decreasing the TC-CTL adhesion strength leads to a scenario in
which CTLs accumulate around the tumour, because the secretion rate of the chemoattractant
is high, but they do not infiltrate into it. On the other hand, Figure 5.6(b)-(e)-(f) show that
decreasing the secretion rate of the chemoattractant leads to a scenario in which CTLs away
from the tumour are not sensitive to the gradient of the chemoattractant and, therefore, do not
move towards the tumour.

Taken together, our results qualitatively reproduce key findings of the experimental results
presented in [99]. The results presented in [99] indicate that cortisol decreased the levels of
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Figure 5.6: Decreasing the secretion rate of the chemoattractant and the TC-CTL
adhesion strength reduce the infiltration of CTLs into the tumour. Plot in panel (a)
displays the average value of the infiltration score, computed via (5.2), for different combined val-
ues of the secretion rate of the chemoattractant and the TC-CTL adhesion strength, at different
times of the simulation. The error lines represent the standard deviation between 5 simulations.
Inset in panel (b) displays an example of the spatial distribution of tumour cells and CTLs at the
end of numerical simulations for the parameter values considered in the control scenario. Insets
in panels (c)-(d) display similar plots for 2 decreasing values of the TC-CTL adhesion strength.
Insets in panels (e)-(f) display similar plots for 2 decreasing values of the secretion rate of the
chemoattractant.

INF-γ and decreased immune infiltration. Our computational results provide an explanation
for such emergent behaviour. Since INF-γ may affect both T cell movement and infiltration,
decreasing the levels of INF-γ inhibit CTL ability to migrate towards the tumour and their
ability to infiltration into it.
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5.6.2 Decreasing the growth rate of CTLs decreases the number of
infiltrated CTLs

The results discussed in the previous subsection illustrate how the infiltration of CTLs into the
tumour is affected by the levels of INF-γ in the domain. We further investigate the effects of
stress, exploring the role played by IL-10 on immune infiltration. Therefore, for these simulations,
we consider the same parameter values used in the previous subsection, and decrease the value
of the growth rate of CTLs.

Figures 5.7(a)-(b) compare the infiltration score obtained when the effects of IL-10 are not
considered (i.e. we consider a normal value for the growth rate of CTLs), with those obtained
when the effects of IL-10 are considered (i.e. the value of the growth rate of CTLs is decreased).
Figures 5.7(c)-(d) also compare the number of tumour cells and CTLs at the end of numerical
simulations (i.e. at day 4 of the experiments) for the two scenarios considered. Comparing
the results of Figure 5.7(a) with those displayed in Figure 5.7(b), we see that, similarly to the
results of the previous paragraph, decreasing the growth rate of CTLs decreases the infiltration
score only when the TC-CTL adhesion strength is high. Moreover, for intermediate values of the
TC-CTL adhesion strength, decreasing the growth rate of CTLs slightly decreases the infiltration
score. Finally, when the TC-CTL adhesion strength is low, decreasing the growth rate of CTLs
does not have an impact on the infiltration score, as its value is already small. As shown by
Figures 5.7(c)-(d), decreasing the growth rate of CTLs leads to a decreased number of CTLs
at the end of simulations. However, as CTLs are not able to eliminate tumour cells, the final
number of tumour cells remains similar in the two scenarios.

The outcomes of our model indicate that increasing the levels of IL-10 may inhibit the pro-
liferation rate of CTLs, which in turn diminish the number of CTLs in the domain. When the
levels of INF-γ are high and CTLs display a high capability to infiltrate trough tumour cells,
we observe a reduction in the number of infiltrated CTLs (i.e. value of the infiltration score
decreases). On the other hand, if the levels of INF-γ are low and CTLs have a low capability
to infiltrate through tumour cells, increasing the levels of IL-10 does not affect the infiltration
score, as the number of infiltrated CTLs is already low. Therefore, our computational results
suggest that IL-10 decreases immune infiltration only when the levels of INF-γ are high and
CTLs display a high capability to infiltrate trough tumour cells.

5.6.3 Increasing the immune success rate has an impact on the infil-
tration score only when the TC-CTL adhesion strength is high

So far, we have investigated with our model the effects of stress on immune infiltration in a
framework in which CTLs are not able to eliminate tumour cells (i.e. the value of the immune
success rate is equal to 0). Now, we investigate tumour-immune dynamics and the effects of
stress on immune infiltration in the scenario in which CTLs can eliminate tumour cells with a
small probability (i.e. the value of the immune success rate is slightly greater then 0).

Figures 5.8(a)-(b) compare the infiltration score obtained with the parameter values con-
sidered in Section 5.6.1, with the infiltration score obtained when the same parameter values
are considered and CTLs can eliminate tumour cells with a small probability (i.e. we only in-
crease the value of the immune success rate). Figures 5.8(c)-(d) show a comparison between
the number of tumour cells and CTLs at the end of simulations (corresponding to day 4 of the
experiments) for the two scenarios considered. Comparing the results of Figure 5.8(a) with those
displayed in Figure 5.8(b), we see that, when the TC-CTL adhesion strength is high, increasing
the value of the immune success rate decreases the infiltration score. This is probably due to the
fact that, when CTLs can infiltrate through tumour cells, they are more likely to come into con-
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Figure 5.7: Decreasing the growth rate of CTLs decreases the number of infiltrated
CTLs. Plots in panels (a)-(b) display the average value of the infiltration score, computed via
(5.2), for different combined values of the secretion rate of the chemoattractant and the TC-CTL
adhesion strength, and at different times of the simulation. In panel (a) CTLs grow at their
normal rate, while their growth rate is decreased in panel (b). The error lines represent the
standard deviation between 5 simulations. Plots in panels (c)-(d) display the corresponding
number of tumour cells and CTLs at the end of simulations (corresponding to day 4 of the
experiments).

tact with tumour cells, increasing the chance of CTLs to eliminate them. Dead tumour cell are
cleared from the domain. This in turn diminishes the number of CTLs surrounded by tumour
cells, decreasing also the infiltration score. However, when the TC-CTL adhesion strength is
low, increasing the value of the immune success rate does not have an impact on the infiltration
score. In fact, in this scenario CTLs accumulate around the tumour, decreasing their probability
to come into contact with tumour cells. This decreases their likelihood of eliminate tumour cells.
Analogous considerations hold for the case in which also lower rates of the growth rate of CTLs
are considered (results not shown).

As shown by Figures 5.8(c)-(d), increasing the value of the immune success rate leads to a
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Figure 5.8: Increasing the immune success rate has an impact on the infiltration score
only when the TC-CTL adhesion strength is high. Plot in panel (a) displays the average
value of the infiltration score, computed via (5.2), for different combined values of the secretion
rate of the chemoattractant and the TC-CTL adhesion strength, and at different times of the
simulation. The error lines represent the standard deviation between 5 simulations. Inset in
panel (b) displays an example of the spatial distribution of tumour cells and CTLs at the end of
numerical simulations for the parameter values considered in our control scenario. Plots in panels
(c)-(d) display the corresponding number of tumour cells and CTLs at the end of simulations
(corresponding to day 4 of the experiments).

slightly decreased number of tumour cells at the end of simulations only when sufficiently high
values of the TC-CTL adhesion strength and the secretion rate of chemoattractant are considered.
On the other hand, for intermediate and low values of these two parameters, increasing the value
of the immune success rate does not have an impact on the final number of tumour cells. Finally,
independently from the value of the two parameters, the number of CTLs at the end of simulations
remains similar in both scenarios.
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5.7 Discussion, conclusions and research perspectives

5.7.1 Discussion and conclusions

In this chapter, we have presented a spatially explicit stochastic individual-based model of the
interaction dynamics between CTLs and tumour cells to study the effects of physiological stress on
immune infiltration. Building on the in-vitro experiments presented in [99], we have investigated,
in silico, the way in which two cytokines, namely INF-γ and IL-10 can impact on the infiltration
of CTLs into the tumour. We explored different scenarios: first we supposed that, in normal
conditions, the levels of IFN-γ were high, the levels of IL-10 were low and CTLs had a high
capability to infiltrate through tumour cells. Then we supposed that, in stressed conditions,
the levels of IFN-γ decreased, the levels of IL-10 increased and CTLs had a lower capability to
infiltrate through tumour cells. By varying the secretion rate of the chemoattractant, the growth
rate of CTLs and the TC-CTL adhesion strength, we studied the impact of stress on immune
infiltration. Building an infiltration score on the basis of the TIC algorithm developed in [99],
we quantified the effects of stress on immune infiltration in a controlled manner.

First, our numerical results are able to qualitatively reproduce the growth of the spheroids
prior the introduction of activated immune cells (cf. Figure 5.4). The growth of the number of
tumour cells is of logistic type, so that when CTLs are introduced, changes in the tumour surface
can be attributed to the infiltration of CTLs. Then, we have established our control scenario.
In the experimental results obtained by [99], in absence of cortisol, splenocytes were able to
infiltrate the spheroids. Our numerical results indicate that when the values of the secretion rate
of the chemoattractant, the TC-CTL adhesion strength and the growth rate of CTLs are high,
CTLs are able to infiltrate into the tumour (cf. Figure 5.5).

We then have investigated the effects of stress on immune infiltration. First, the outcomes
of our model support the idea that decreasing the secretion rate of the chemoattractant and the
TC-CTL adhesion strength, which are associated to a decrease in the levels of INF-γ, reduces the
infiltration of CTLs into the tumour (cf. Figure 5.6). Our results also suggest that the secretion
rate of the chemoattractant is more likely to have an impact on T cell infiltration when CTLs
display a sufficiently high capability to infiltrate through tumour cells. We have also studied
the effects of stress on immune infiltration by decreasing the growth rate of CTLs, which is
associated to an increase in the levels of IL-10 (cf. Figure 5.7). Decreasing the growth rate of
CTLs decreases the number of CTLs in the domain. This significantly decreases the infiltration
score only when the TC-CTL adhesion strength is high. Conversely, when the TC-CTL adhesion
strength is low, decreasing the growth rate of CTLs does not have an impact on the infiltration
score, as its value is already small. Finally, we have investigated the outcomes of our model by
letting CTLs eliminate tumour cells with a small probability (i.e. we increase the value of the
immune success rate) (cf. Figure 5.8). In the scenario in which CTLs are able to infiltrate into
the tumour, increasing the value of the immune success rate decreases the infiltration score, as
tumour cells in contact with CTLs are eliminated. This in turn leads to a slightly decreased
number of tumour cells at the end of simulations. However, when the CTL infiltration level is
low, increasing the value of the immune success rate does not have an impact on the infiltration
score, nor does it decrease the final number of tumour cells.

In summary, our findings demonstrate the importance of including the effect of different
factors when exploring the role of stress on immune infiltration. Our results support the idea
that a high infiltration score can be obtained only when the secretion rate of the chemoattractant
and the TC-CTL adhesion strength are high, provided that the growth of CTLs is not inhibited.
On the other hand, our results suggest that decreasing the value of these parameters can decrease
immune infiltration in different ways. For example, our results indicate that the parameter
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having the strongest impact on immune infiltration is the TC-CTL adhesion strength, which is
associated with the capability of CTLs to infiltrate through tumour cells. When the TC-CTL
adhesion strength is low, independently of the value of the secretion rate of the chemoattractant
and the growth rate of CTLs, we obtain a low infiltration score. On the other hand, when the
TC-CTL adhesion strength is high, varying the value of the other two parameters has a greater
impact on immune infiltration, and leads to a different scenarios with different infiltration scores.

5.7.2 Research perspectives
In the future, better quantitative comparison with experiments will allow for systematic choice
of parameters and validation of the mechanisms we propose here. From a biological point of
view, a natural sequel of this work consists in studying the effects of therapeutic strategies which
counteract the effects of stress. In fact, in [99], the authors found that the administration of
glucocorticoid receptor antagonists reversed the effects of cortisol and significantly increased the
immune infiltration in 66CL4 spheroids compared to those cells treated with cortisol. Finally,
the effects of changing the spatial domain from 2D to 3D would need to be considered. It is
probable that the change of dimension would alter the time it takes to run simulations of our
mathematical model. However, in this way, a more realistic scenario, closer to the 3D co-culture
model, could be explored.
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Chapter 6

Conclusion and perspectives

The past decade’s technological advances have led to the development of immunotherapies, which
differ from conventional anti-cancer therapies by targeting tumour-immune cell interactions in or-
der to enhance the effectiveness of the anti-tumour immune response. However, these interactions
are based on complex mechanisms that make it difficult to design treatments to effectively boost
the immune response. For this reason, mathematical models are useful tools for reproducing and
predicting the spatio-temporal dynamics of interactions between tumour cells and immune cells,
in order to test the potential of new therapeutic techniques in a flexible and affordable way.

Throughout this thesis, a series of mathematical models have been proposed to study different
mechanisms involved in tumour-immune interactions, with the goal of investigating the biological
settings which allow for the clearance or the escape of the tumour.

We began this thesis by describing the key biological processes and mechanisms governing
the interactions between malignant tumour cells and immune cells, focussing on the role of one
particular type of immune cells: the cytotoxic T lymphocytes (CTLs). CTLs are the main actors
of the anti-tumour immune response, as they can actively target and destroy tumour cells. Along
with a description of the immune response to tumours, we described processes that allow tumour
cells to evade the immune response and some immunotherapy techniques developed and used to
restore an effective immune action.

Mathematical models for tumour-immune interactions have become increasingly popular over
the past few decades and are used as a tool to aid in the understanding of the mechanisms of
tumour escape. We provided a short review of the existing mathematical models of tumour-
immune interactions and their applications, with a focus on discrete stochastic individual-based
models, deterministic continuum models and hybrid discrete-continuum models.

Following this background chapter, we provided the main body of this work. This thesis
was organized in four chapters. Each chapter focussed on a mathematical model considering a
specific aspect involved in the interactions between tumour cells and CTLs. In particular, these
models have been developed to investigate:
(1) the coevolutionary dynamics between CTLs and tumour cells in a well mixed system;
(2) the impact of intra-tumour heterogeneity (ITH) on anti-tumour CTL immune response;
(3) the role of CTL infiltration on anti-tumour immune response;
(4) the effect of psychological stress on immune infiltration.

To investigate these problems, different methods of mathematical modelling have been de-
veloped, which allowed to include different layers of biological complexity and different aspects
of tumour-immune interactions. In particular, the mathematical models proposed in this thesis
were formulated as:
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(A) discrete stochastic individual-based models, which relied on an explicit representation of
individual cells in space and time, tracking and updating their internal states according to a
predefined set of biological and biophysical rules. The development of these models allowed to
represent stochasticity and heterogeneity in the interaction dynamics between tumour cells and
CTLs;
(B) deterministic continuum models, which were not formulated on the basis of phenomenological
arguments, which can hinder a precise mathematical description of crucial biological and biophys-
ical aspects, but have been formally derived from the discrete models through suitable asymptotic
methods. The continuum models were formulated as systems of nonlinear and nonlocal IDEs and
PDEs, and provided a mean-field representation of the underlying cellular dynamics. Through
linear stability analysis, we identified possible conditions on the model parameters leading to
different dynamics of one continuum model, gaining a more in-depth theoretical understanding
of the system under consideration.

Numerical simulations, relying on parameter values drawn from the extant literature, have
been employed for in silico investigations of the underlying biological aspect, to qualitatively test
the model assumptions against empirical observations. When the continuum model was derived
from the discrete model, an excellent quantitative agreement between numerical simulations of
the two models was obtained. Moreover:
(A) we developed our own computational code to carry out computational simulations of two
discrete individual-based models, in order to have a deeper understanding and control over the
dynamic produced. For the computational implementation of the two other individual-based
models, instead, we took advantage of the Cellular Potts modelling approach, and simulations
were run using the CompuCell3D open-source simulation environment. This software demon-
strated to be a very useful tool when modelling tumour-immune interaction dynamics, due to
the easy inclusion of precise biological aspects (such as cell adhesion, cell growth and mitosis,
motility, competition for space, etc);
(B) appropriate numerical schemes were used for the numerical simulations of the continuum
models, which prevented the emergence of spurious oscillations. Moreover, the computational
efficiency of the continuum model with respect to its discrete counterpart has been exploited, to
carry out extensive numerical simulations to investigate particular hypothesis.

In agreement with biological studies, the results obtained have shed light on:
(1) the way in which different parameters shape the coevolutionary dynamics between tumour
cells and CTLs and induce the formation of patterns of phenotypic coevolution;
(2) the specific impact of different expressions of ITH on immune surveillance, highlighting the
importance of ITH as a possible predictor of the outcome of immune action;
(3) the mechanisms that underlie the emergence of different levels of infiltration of CTLs into
the tumour, and their impact on the response to different types of anti-cancer immunotherapy;
(4) the way in which a simple mathematical model can qualitatively reproduce an in vitro
experiment, and demonstrate the importance of including the effect of different factors when
exploring the impact of physiological stress on immune infiltration into tumours.

Each chapter of this thesis was ended with a specific discussion of the model and research
perspectives. Below we discuss global potential future directions and perspectives.

Optimisation of anti-tumour treatments An important objective in oncology is the im-
provement of anti-tumour therapies and their combinations, with the goal of increasing the
overall treatment efficacy. One option to achieve this goal is optimization of the schedule of drug
administration or performing other medical actions. A key advantage of mathematical models is
that they can be amenable to an analysis of their control (optimization and optimal control). Let
us note that optimization and optimal control methods can be applied mainly to deterministic,
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both ODE and PDE models, having in mind that therapeutic optimization may resort to these
methods. Optimization of an anti-tumour treatment usually implies determining what should
be the best schedule, i.e. dose distribution and timing, for a treatment that affects both tumour
cells and healthy (usually fast renewing) cells. Of course, from the point of view of clinical use,
the goal is to achieve the best therapeutic results with the fewest possible side effects to healthy
cells.

Optimal control theory is applied in a huge number of studies of different natures and has
also become popular in mathematical oncology (see [122] for a review on examples of therapeutic
problems in oncology and how they have been addressed theoretically).

In Chapter 4 we investigated the effects of immunotherapeutic protocols only when they were
delivered at the initial time of simulations and treatment effect was constant in time. Therefore,
it would be interesting to include in our models the effects of different types of therapies and
to apply optimal control methods. This would allow to determine the best delivery schedule of
different therapeutic agents that would achieve the best therapeutic outcome, minimising the
number of tumour cells at the end of the treatment with the least possible side effects to healthy
cells.

Data availability and model vadility One of the goals of mathematical modelling in oncol-
ogy is to provide personalized predictions by taking into account patient-specific data. In clinical
practice, cancer patients undergo several examinations such as blood sample analysis, clinical
imaging (e.g. CT, MRI), biopsy sampling, etc. However, such clinical data are provided for very
limited time-points. There are different reasons for that, e.g. the fact that data collection is
restricted to the clinical presentation of the patient, the cost, the availability of the equipments,
the side effects of the exams, etc. Moreover, the mechanistic connection between these data is
elusive, and the way to connect all these variables in a single model can be complex. Therefore,
many of these data sets are left out from the model development process. Moreover, even hav-
ing all the required mechanistic knowledge to develop an appropriate model, this latter would
involve a huge number of parameters, making the model untractable mathematically. In combi-
nation with the lack of clinical data with sufficient temporal resolution and specificity, the goal
of personalized model calibration would have been a ‘mission impossible’. Under this constraint,
delivering personalized predictions becomes a difficult task.

However, the obsession for data fitting should not be the main driver for model development.
One should keep in mind that the purpose of a model is to answer a specific question and that
its domain of applicability and validity is always restricted. It is important to point out that
the complexity of cancer makes it impossible to accurately model all aspects which allow it to
escape immune surveillance. In this thesis, we aimed at showing that mathematical models are an
excellent tool to describe underlying dynamics of tumour-immune interaction, and may elucidate
some important biological actions that govern it. The models developed in the different chapters
proved very useful in giving some insights into different mechanisms that allow the tumour to
escape immune surveillance, as well as into some therapeutic aspects, to understand why and
how therapeutic combinations can lead to the clearance or the escape of the tumour.

In 1976, George Box, a British statistician, wrote the famous line, “All models are wrong,
some are useful.” His point was that we should focus more on whether something can be applied
to everyday life in a useful manner rather than debating endlessly if an answer is correct in all
cases. Therefore, regardless of being right or wrong, mathematical models for tumour-immune
interactions can be very useful, and can open up new avenues and stimulate new experimental
or theoretical researches.



124 CHAPTER 6. Conclusion and perspectives

The importance of interdisciplinary research In this thesis, we have developed different
models of tumour-immune interactions which try to better understand some mechanisms that
are responsible for immune escape. During the development of the different models, fruitful
discussions with biologists and immunologists helped us to construct reasonable modelling as-
sumptions, and to test them on interesting biological problems. The different models may provide
possible insight to design immunotherapy strategies which effectively improve the effectiveness
of the overall anti-tumour immune response. However, it is of paramount importance that more
experimental clinical data is used when developing and implementing these models to try and
enrich and validate the results.

More effort should be made to try to find a common language between mathematicians and
medical workers, as well as to find the right balance between the rigor of mathematical models
and the level of uncertainty prevailing in the clinical environment. Collaborations between biolo-
gists, clinicians and mathematicians can ensure that models are more in-depth and can increase
the success of research on the development of new cancer therapies. Nevertheless, confronted
with the undoubtable successes met in the last 50 years in clinical oncology, encountering more
and more limitations as new treatments emerge, oncologists together with evolutionary biologists,
immunologists, physicists and mathematicians, have begun to lower barriers between their disci-
plines. This trend of interdisciplinary research has recently reached even up to philosophers [17]
who have thus emerged as a community of “philosophers of cancer”.

Interdisciplinary work has become more common in cancer research, and mathematical mod-
elling has already led to several predictions, as well as to the discovery of some important
biological actions that govern tumour dynamics, with a hope to develop better treatments to
extend the host’s life, or to eradicate the cancer completely.



Appendix A

Cellular Potts models and
Compucell3D

The individual-based models developed in Chapter 3 and Chapter 5 have been numerically solved
using the multicellular modelling environment CompuCell3D [107]. This software is an open
source solver, which uses a Cellular Potts model [89] (also known as CPM, or Glazier-Graner-
Hogeweg model). The system is written in the programming language C++, but allows users to
create new models in a user-friendly manner in the XML and Python languages. The software
runs on Windows, Mac and Linux platforms without change of model specification.

CompuCell3D models have a range of different uses within mathematical biology, allowing
rapid and compact specification of cells, diffusing fields and biochemical networks, all of this in
two or three dimensions.

A.1 Lattice configuration

Each Cellular Potts model is made up of generalized objects, a description of their behaviours
and appropriate initial conditions. The objects in each model are comprised of regular lattice
sites, called pixels in 2D and voxels in 3D. The most fundamental object is a generalized cell,
which may represent a biological cell, a subcellular compartment, a cluster of cells, or a piece of
non-cellular material or surrounding medium [107]. Each generalized cell has an associated list
of attributes, e.g. cell type, surface area and volume. The index of the cell occupying cell-lattice
site i is uniquely defined as σ(i) and the type of the cell is referred to as τ(σ(i)). Here, i is a
vector of integer occupying pixel i. Either increasing or decreasing the number of pixels a cell
contains can change its volume and surface. For example, in the model we developed in Chapter
3, to characterise the different sub-populations of cancer cells, we define as many types of tumour
cells as sub-populations of cancer cells. Moreover, CTLs have as many types as TCRs considered
for the simulation, which corresponds also to the number of antigens considered.

Interaction descriptions and dynamics between cells are modelled by means of the system’s
effective energy. This determines many characteristics such as cell size, shape, motility, adhesion
strength and the reaction to gradients of chemotactic fields. The effective energy define a way
to produce a desired set of biological and physiological cell behaviors and does not represent the
physical energy of the cells. The user defines the parameters for the effective energy for each cell
type and these parameters determine the characteristics of each cell. During a simulation, each
cell will attempt to extend its boundaries, through a series of index-copy attempts, known as
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"flip", in order to minimise the effective energy. If the index-copy attempt is successful the cell
will increase in volume by a lattice site and the neighbouring cell will decrease in volume. The
success of the index copy attempt is dependent upon a Boltzmann acceptance function which
takes into account the change in energy. Once all of the boundary pixels in the simulation have
performed an index-copy attempt, a Monte Carlo Step (MCS) has been completed.

In addition to generalized cells, CompuCell3D can also adequately model nutrients, chemical
gradients or the extra cellular matrix by using a field component. Fields evolve due to secre-
tion, absorption, diffusion, reaction and decay according to appropriate PDEs. Generalised-cell
behaviors are affected by extracellular chemical fields and subcellular networks (e.g. changes in
cell target volume due to chemical absorption, chemotaxis in response to a field gradient or cell
differentiation based on the internal state of a genetic network). Auxiliary ODE equations are
used to describe cell interactions with fields, such as absorption, and secretion, and state changes
within the cells, such as mitosis and cell death. Figure A.1 shows how a lattice configuration
evolves to minimize the total energy of the system.

A.2 Effective energy

The effective energy is the basis for operation of all Cellular Potts Models, including Compu-
Cell3D, because it determines the behavior of the interactions between generalized cells. The
energy is described in two ways: boundary energy or constraints. The most important boundary
energy components of the effective energy equations governs the adhesion of cells. Adhesion is
defined by the boundary energy J(τ(σi), τ(σj)), which describe the contact energy per unit area
between the two cells (σi, σj) of types (τ(σi), τ(σj)). This is calculated by the sum over all
neighbouring pixels i and j that form the boundary between two cells:

Hboundary =
∑

i,j neighbours

J(τ(σi), τ(σj))(1− δ(σi, σj)) (A.1)

The delta function restricts the boundary energy contribution to cell-cell interfaces. J(τ(σi), τ(σj))
is defined as a matrix indexed by the cell types. Higher boundary energies between cells result
in greater repulsion between cells and lower boundary energies imply a greater adhesion between
cells.

As said before, the second way of using the effective energy in a model is by means of
constraints on cell behaviour. Constraints are written in a general elastic form and are represented
by:

Hconstrain = λ(value− target value)2 (A.2)

As we can see, if value = target value, the constraint is satisfied and, therefore, the energy is
zero. This condition is known as the equilibrium condition. Since CompuCell3D tries to minimise
the effective energy in a simulation the constraint will be driven to the equilibrium condition.
However, as the nature of the simulations is stochastic, the condition does not always have to be
met and it is possible that two or more constraints conflict with each other so that they are only
able to be partially met, resulting in random fluctuations. Parameter λ, a positive real number
known as the spring constraint, determines how far the value can deviate from the target. Large
values of λ will result in a larger effective energy change, essentially preventing a index-copy
attempt, whereas small values allow for greater deviation from the equilibrium condition.

The most common employment of constraint energies for biological cells in CompuCell3D is
to restrict the size of a cell to a given target value. This is done through two constraints: the
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Figure A.1: Cellular Potts Model lattice configuration and effective energy. Schematic
representation of evolution of a lattice configuration of a Cellular Potts Model. In this example,
10 different cells uniquely identified by their index σ are grouped in three different types τ(σ))
(green - type 1, purple - type 2, yellow - type 3), and occupy multiple pixels, which define their
volume v(σ). The medium is represented by the black pixels. The biological characteristics of
each cell are contained in each pixel belonging to the cell and are expressed as constraints in the
effective energy that encodes the dynamics of the systems. The lattice evolves by changes in the
identity of each pixel that minimize the energy of the system. In this example 15 "flips" have
been accepted. Adapted from [11].

volume and the surface area. The volume constraint energy for each cell σ is defined as:

Hvol =
∑
σ

[
λvol(σ)(v(σ)− Vt(σ))

2
]

(A.3)

where λvol(σ) is the inverse compressibility of the cell, v(σ) is the number of pixels in the cell
and Vt(σ) is the cell’s target volume in pixels. The volume constraint define P = −2λvol(v(σ)−
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Vt(σ)) as the pressure inside the cell. When v < Vt the cell has positive internal pressure,
which encourages it to expand, and when v > Vt the cell has negative internal pressure, which
encourages it to shrink. The amplitudes of fluctuations of the cell’s volume about is target
volume are controlled by the value of parameter λvol(σ).

In similar fashion the surface area constraint is given by:

Hsurf =
∑
σ

[
λsurf (σ)(s(σ)− St(σ))

2
]

(A.4)

where s(σ) is the surface area of the cell σ, St(σ) is the cell’s target surface area and λsurf (σ) is
its inverse membrane compressibility. By combining together the boundary energy in Equation
(A.1) and volume constraints in Equation (A.3), the basic GGH effective energy is modelled by:

H =
∑
i,j

J(τ(σi), τ(σj))(1− δ(σi, σj)) +
∑
σ

[
λvol(σ)(v(σ)− Vt(σ))

2
]

(A.5)

A.3 A Monte Carlo Step

Time is measured in CompuCell3D simulations by Monte Carlo Steps (MCS), which indicate
when every pixel on the lattice has made an index-copy attempt to a neighbouring pixel. To
begin an index-copy attempt, the algorithm randomly selects a lattice site to be a target pixel i,
and a neighbouring lattice site to be a source pixel i′. An attempt will then be made to switch
the target pixel to the same generalised cell as the source pixel, thereby increasing the volume of
the source cell and decreasing the volume of the target cell. If the source and target pixels belong
to the same cell (i.e. σ(i) = σ(i′)), they do not need to attempt a flip and thus the effective
energy will not be calculated.

If different generalized cells occupy these pixels, the algorithm sets σ(i) = σ(i′)) with proba-
bility P (σ(i)) → σ(i′), given by the Boltzmann acceptance function [152]:

P (σ(i)) → σ(i′) =

{
1 : ∆H ≤ 0

exp
∆H
Tm : ∆H > 0

(A.6)

where ∆H is the change in effective energy if the copy occurs and Tm determines the amplitude
of cell membrane fluctuations and the effective cell random motility. For an index-copy attempt,
this probability means that if the change in effective energy is less than or equal to zero then
the attempt will be successful. On the other hand, if the resulting change in effective energy is
greater than zero the attempt may still be successful with the probability exp

∆H
Tm . For biological

simulations, the parameters ∆H and Tm allow for a conversion between the number of MCS
and experimental time. The conversion depends on the average values of ∆H

Tm
. In practice, in

simulations, high values of the ratio ∆H
Tm

results in rigid, barely- or non-motile cells and little cell
rearrangement. For low ∆H

Tm
, large fluctuations allow a high degree of cell random motility and

rearrangement.

A.4 Subcellular dynamics and chemotaxis

In addition to generalized cells, Compucell3D simulations may contain other objects such as
chemical fields and subcellular networks as well as auxiliary equations to describe events at the
cellular level like cell growth, division and rule-based differentiation. These chemical fields and
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subcellular networks evolve due to secretion, absorption, diffusion, reaction and decay according
to appropriate PDEs and affect generalized-cell behaviors by modifying the effective energy.

A cellular behaviour easy to simulate with Compucell3D is chemotaxis, defined as the cell
motion induced by a presence of a chemical. In a simulation, chemotaxis is obtained biasing a
cell’s motion up or down a field gradient by changing the calculated effective-energy change used
in the acceptance function. For a field ϕ(i):

∆Hchem = −λchem(ϕ(i)− ϕ(i′)) (A.7)

where ϕ(i) is the chemical field at the index-copy target pixel i, ϕ(i′) the field at the index-copy
source pixel i′, and λchem the strength and direction of chemotaxis. If λchem > 0 and ϕ(i) > ϕ(i′),
then ∆Hchem is negative, increasing the probability of accepting the index copy. The net effect
is that the cell moves up the field gradient with a velocity ∼ λchem∇ϕ. If λchem < 0 is negative,
the opposite occurs, and the cell will move down the field gradient.

The change in concentration of the chemical field ϕ is obtained by solving a reaction-diffusion
equation of the following general form:

∂ϕ

∂t
= D∇2ϕ− γϕ+ S (A.8)

where D, γ and S denote the diffusion constant, decay constant and secretion rates of the field,
respectively. These three parameters may vary with position and cell-lattice configuration, and
thus be a function of cell σ and pixel i.
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Appendix B

Appendix for Chapter 2

B.1 Formal derivation of the continuum model

Using a method analogous to that employed in [13, 40, 194], we show that the PDE-IDE sys-
tem (2.13) can be formally derived as the appropriate continuum limit of the individual-based
model presented in Chapter 2.

Substituting definitions (2.9) of Pb
n and Pq

n into the difference equation (2.11)1 for nki and
definitions (2.10) of Pb

c and Pq
c into the difference equation (2.11)2 for ckj yields

nk+1
i =

[
1 + τ αn − τ

(
µnK

k
ni

+ ζn γ J
k
ni

)] [λn
2

(
nki+1 + nki−1

)
+ (1− λn)n

k
i

]
,

ck+1
j =

[
1 + τ

(
αc + ζc γ J

k
ni

)
− τ µcK

k
cj

]
ckj ,

(B.1)

where nki ≡ n(xi, tk) with (xi, tk) ∈ I × (0, tf ] and ckj ≡ c(yj , tk) with (yj , tk) ∈ I × (0, tf ]. Using
the fact that the following relations hold for τ and χ sufficiently small

tk ≈ t, tk+1 ≈ t+ τ, xi ≈ x, xi±1 ≈ x± χ, yj ≈ y,

nki ≈ n(x, t), nk+1
i ≈ n(x, t+ τ), nk

i±1 ≈ n(x± χ, t), ρkn ≈ ρn(t) :=

∫
I
n(x, t) dx,

Jk
ni

≈ Jn(x, t) :=

∫
I
g(x, y; η) c(y, t) dy, Kk

ni
≈ Kn(x, t) :=

∫
I
g(x, z; θn)n(z, t) dz,

ckj ≈ c(y, t), ck+1
j ≈ c(y, t+ τ), ρkc ≈ ρc(t) :=

∫
I
c(y, t) dy,

Jk
cj ≈ Jc(y, t) :=

∫
I
g(y, x; η)n(x, t) dx, Kk

cj ≈ Kc(y, t) :=

∫
I
g(y, z; θc) c(z, t) dz,

where the function g is defined via (2.6), the system of equations (B.1) can be formally rewritten

131



132 APPENDIX B. Appendix for Chapter 2

in the approximate form

n(x, t+ τ) =
[
1 + τ Rn(Kn(x, t), Jn(x, t))

]
×

×
[
λn
2

(n(x+ χ, t) + n(x− χ, t)) + (1− λn)n(x, t)

]
,

c(y, t+ τ) =
[
1 + τ Rc(Kc(y, t), Jc(y, t))

]
c(y, t),

(B.2)

where x ∈ I, y ∈ I and t ∈ (0, tf ]. Here,

Rn(Kn, Jn) := αn −
(
µnKn + ζn γ Jn

)
, Rc(Kc, Jc) :=

(
αc + ζc γ Jc

)
− µcKc. (B.3)

If the function n(x, t) is twice continuously differentiable with respect to the variable x, for χ
sufficiently small we can use the Taylor expansions

n(x± χ, t) = n(x, t)± χ∂xn(x, t) +
χ2

2
∂2xxn(x, t) + h.o.t. . (B.4)

Substituting the Taylor expansions (B.4) into equation (B.2)1 for n(x, t+τ), after a little algebra
we find

n(x, t+ τ)− n(x, t)

τ
− λnχ

2

2τ
∂2xxn(x, t) = Rn(Kn(x, t), Jn(x, t))n(x, t)+

+
λnχ

2

2
Rn(Kn(x, t), Jn(x, t)) ∂

2
xxn(x, t) + h.o.t. ,

c(y, t+ τ)− c(y, t)

τ
= Rc(Kc(y, t), Jc(y, t)) c(y, t).

If, in addition, the functions n(x, t) and c(y, t) are continuously differentiable with respect to the
variable t, letting τ → 0 and χ → 0 in such a way that condition (2.12) is met, from the latter
system of equations we formally obtain

∂tn(x, t)− βn∂
2
xxn(x, t) = Rn(Kn, Jn)n(x, t), (x, t) ∈ I × (0, tf ],

∂tc(y, t) = Rc(Kc, Jc) c(y, t), (y, t) ∈ I × (0, tf ].

Substituting definitions (B.3) of Rn(Kn, Jn) and Rc(Kc, Jc) into the above system of equations
gives the PDE-IDE system (2.13). Finally, the no-flux boundary conditions (2.14) follow from
the fact that the attempted phenotypic variation of a tumour cell is aborted if it requires moving
into a phenotypic state that does not belong to the interval I.

B.2 Details of numerical simulations of the continuum model

To construct numerical solutions of the PDE-IDE system (2.13) subject both to the no-flux
boundary conditions (2.14) and to the initial condition (2.43), we use a uniform discretisation
of step ∆x = 0.0013 of the interval I = [−L,L] as the computational domain of the independent
variables x and y, and a uniform discretisation of step ∆t = 0.05 of the time interval (0, tf ].
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We construct numerical solutions of the non-local PDE (2.13)1 for n using a time-splitting
approach, which is based on the idea of decomposing the original problem into simpler subprob-
lems that are then sequentially solved at each time-step using an explicit Euler method with step
∆t. This leads to the following time-dicretisation of the PDE-IDE system (2.13) subject to the
Neumann boundary conditions (2.14):

nk+
1
2 (x) = nk(x) + ∆tRn(K

k
n(x), J

k
n(x))n

k(x), x ∈ [−L,L],

nk+1(x) = nk+
1
2 (x) + ∆t βn ∂

2
xxn

k+ 1
2 (x), x ∈ (−L,L),

∂xn
k+1(x) = 0, x ∈ {−L,L}

ck+1(y) = ck(y) + ∆tRc(K
k
c (y), J

k
c (y)) c

k(y), y ∈ [−L,L],

(B.5)

where
Rn(K

k
n, J

k
n) := αn − µnK

k
n − ζnγJ

k
n , Rc(K

k
c , J

k
c ) := αc − µcK

k
c − ζcγJ

k
c .

The system of equations (B.5) is numerically solved using a three-point finite difference explicit
scheme for the diffusion term [128] and an implicit-explicit finite difference scheme for the re-
maining terms [131, 135], which leads to the following system of equations

n
k+ 1

2
i = nki

1 + ∆tRn(K
k
ni
, Jk

ni
)+

1 + ∆tRn(Kk
ni
, Jk

ni
)−
, xi ∈ [−L,L],

nk+1
i = n

k+ 1
2

i + βn∆t
n
k+ 1

2
i+1 − 2n

k+ 1
2

i + n
k+ 1

2
i−1

∆x2
, xi ∈ (−L,L),

nk+1
i = nk+1

i−1 , xi ∈ {−L,L},

ck+1
j = ckj

1 + ∆tRc(K
k
cj , J

k
cj )+

1 + ∆tRc(Kk
cj , J

k
cj )−

, yj ∈ [−L,L].

Here, Rn(·, ·)+ and Rc(·, ·)+ are the positive parts of Rn(·, ·) and Rc(·, ·), while Rn(·, ·)− and
Rc(·, ·)− are the negative parts of Rn(·, ·) and Rc(·, ·). Moreover,

Kk
ni

=
∑
h

g(xi, xh; θn)n
k
h ∆x, Kk

cj =
∑
h

g(yj , yh; θc) c
k
h ∆x

and
Jk
ni

=
∑
j

g(xi, yj ; η) c
k
j ∆x, Jk

cj =
∑
i

g(yj , xi; η)n
k
i ∆x.

Given the values of the parameter τ , χ and λn of the individual-based model, the value of the
parameter βn is defined so that condition (2.12) is met. The other parameter values are chosen
to be coherent with those used to carry out numerical simulations of the individual-based model,
which are specified in the main body of Chapter 2.
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B.3 Supplementary figures

Figure B.1: Eradication of tumour cells and emergence of hot tumour-like, altered
tumour-like and cold tumour-like scenarios: the case where a > 0. Panel a. displays
the plots of the time evolution of the total number of tumour cells (ρn) and CTLs (ρc) of
the individual-based model (solid, coloured lines) and the continuum model (dashed, black lines)
when γ is high enough that condition (2.34) is satisfied (i.e. condition (2.24) does not hold). Here,
αc = 0.5 and all the other parameters are as in Table 2.1 with γ = 3.5, η = 1.8 and θn = θc = 1.8.
Panels b.-d. display similar plots for sufficiently large, intermediate and sufficiently small values
of γ that satisfy condition (2.24) – i.e. γ = 2 (panel b.), γ = 0.3 (panel c.) and γ = 0.12
(panel d.). All the other parameters are as in Table 2.1 with η = 1.8 and θn = θc = 1.8.
Initial conditions (2.42) and (2.43) with a = 1 and A = 5 were used to carry out numerical
simulations. Analogous results were obtained when using different values of the parameter A
(results not shown). The results from the individual-based model correspond to the average
over two realisations of the underlying random walk and the related variance is displayed by the
coloured areas surrounding the curves.
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Appendix for Chapter 3

C.1 Model parameters

The individual-based model developed in Chapter 3 is parametrised using parameter values
obtained from published biological data wherever possible. We use a 2D squared spatial domain
with 400 × 400 lattice sites (pixels). We assume that a pixel of the domain corresponds to 3 ×
3 µm2. As the CTL diameter is estimated to be between 10 µm and 12 µm [75, 87], the initial
size of a CTL is 4 × 4 pixels. A tumour cell diameter is estimated to be about 20 µm [43],
therefore we assume that each newly divided tumour cell is made of 5 × 5 pixels. In addition,
the maximum CTL migration speed measured in the simulation is around 10 pixels/100 MCS.
Therefore, using the CTL migration measurements in vivo (2−25 µm/min, see [153]), we choose
1 MCS ∼ 1 minute as a time scale. The parameters for the Cellular Potts model are listed in
Table C.1, while all the other parameters with their related references are listed in Table C.2.

We now provide a discussion on how some of the parameters of the Cellular Potts model were
chosen. Interactions between neighboring pixels in the Cellular Potts model have an effective
energy, J (as it appears in Equation (A.5)), which characterises the strength of cell-cell adhesion
(see Table C.1). A larger J means that more energy is associated with the interface between
two cells, which is less energetically favourable, corresponding to weaker adhesivity. It can be
observed that JCT and JTT are lower than JCC . We make the assumption that tumour cells stay
in contact to compactly create the tumour mass and that when a CTL enters in contact with a
tumour cell then strongly binds to it. When they migrate in the domain to search for tumour
cells, CTLs are not in contact with each other.

Files to run a simulation example with Compucell3D software are available at: https://
plmlab.math.cnrs.fr/audebert/cc3dmodeltumourcd8.

C.2 Supplementary figures
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Figure C.1: The overall dynamics between 100 realisations of the same simulation are
qualitatively similar to those between 10 realisations. Plots in panels (a)-(c) display the
time evolution of the total tumour cell number, and the corresponding evolution of the number
of immunogenic cells and non-immunogenic cells for tumour-7a. Shaded areas indicate +/−
standard deviation between 100 simulations. For these simulations, the same initial conditions
used for tumour-7a in Figure 3.6 were used. The parameter values are kept constant and equal
to those listed in Table C.1 and Table C.2.

Table C.1: Parameter values used to implement the Cellular Potts model. Energies, temperature
and constrains are dimensionless parameters.

Phenotype Symbol Description Value Reference
Domain ∆x,∆y Domain spacing in the x or y direction 1 Pixel = 3×3 µm2

∆t Time-step 1 MCS = 1 min
tf Final time 20 (days)

CC3D JMT Contact energy tumour cells-medium 50
JMC Contact energy CTLs-medium 50
JCT Contact energy CTLs-tumour cells 20
JTT Contact energy tumour cells-tumour

cells
110

JCC Contact energy CTLs-CTLs 1000
dT Tumour cell diameter 20-40 (µm) [87]
dC CTL diameter 12 (µm) [75]
λarea Tumour cell and CTL area constrain 10
λper Tumour cell and CTL perimeter con-

strain
10

Tm Fluctuation amplitude parameter 10
λchem Strength and direction of chemotaxis 50
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Table C.2: Parameter values used in numerical simulations.
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Appendix for Chapter 4

D.1 Formal derivation of the continuum model

Building on the methods employed in [26], we carry out a formal derivation of the deterministic
continuum model given by the IDE-PDE-PDE system (4.30) for d = 1. Similar methods can be
used in the case where d = 2.

D.1.1 Formal derivation of the IDE for the density of tumour cells
n(x, t)

In the case where tumour cell dynamics are governed by the rules described in Sections 4.3.1
and 4.3.1, considering (i, k) ∈ [0,N ]× N0, between time-steps k and k + 1 the principle of mass
balance gives the following difference equation for the tumour cell density nki :

nk+1
i =

[
2 ταn + 1− τ(αn + ζnK

k
i + µnρ

k
n

]
nki . (D.1)

Using the fact that the following relations hold for τ and χ sufficiently small

tk ≈ t, tk+1 ≈ t+ τ, xi ≈ x, xi±1 ≈ x± χ, (D.2)

nki ≈ n(x, t), nk+1
i ≈ n(x, t+ τ), cki ≈ c(x, t), (D.3)

ρkn ≈ ρn(t) :=

∫
Ω

n(x, t) dx, Kk
i ≈ K(x, t) :=

∫
Ω

η(x, x′; θ)c(x′, t) dx′, (D.4)

where the function η is defined via (4.12), equation (D.1) can be formally rewritten in the
approximate form

n(x, t+ τ)− n(x, t) = τ (αn − ζnK(x, t)− µnρn(t))n(x, t). (D.5)

If, in addiction, the function n(x, t) is continuously differentiable with respect to the variable t,
starting from equation (D.5), and letting the time-step τ → 0, one formally obtains the following
IDE for the tumour cell density n(x, t):

∂tn(x, t) = αnn(x, t)− µnρn(t)n(x, t)− ζnK(x, t)n(x, t) (x, t) ∈ Ω× R∗
+.

139
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D.1.2 Formal derivation of the PDE for the density of CTLs c(x, t)

The formal derivation of the PDE for the density of CTLs c(x, t) is built on the methods employed
in [26]. In the case where T cell dynamics are governed by the rules described in Section 4.3.3,
considering (i, k) ∈ [1,N − 1]×N0, between time-steps k and k+1 the principle of mass balance
gives the following difference equation for the CTLdensity cki :

ck+1
i = cki (1− τ µcρ

k
c ) + τ αcr

k
i

+
λ

2
ψ(wk

i )
(
cki+1 + cki−1

)
− λ

2

(
ψ(wk

i−1) + ψ(wk
i+1)

)
cki

+
ν

2ϕmax
ψ(wk

i )
[(
ϕki − ϕki−1

)
+
cki−1

]
+

ν

2ϕmax
ψ(wk

i )
[(
ϕki − ϕki+1)

)
+
cki+1

]
− ν

2ϕmax
ψ(wk

i+1)
[(
ϕki+1 − ϕki

)
+
cki

]
− ν

2ϕmax
ψ(wk

i−1)
[(
ϕki−1 − ϕki

)
+
cki

]
.

(D.6)

Using the fact that relations (D.2)-(D.4) and the following relations

cki ≈ c(x, t), cki±1 ≈ c(x± χ), ρkc ≈ ρc(t) :=

∫
Ω

c(x, t) dx,

ϕki ≈ ϕ(x, t), ϕk+1
i ≈ ϕ(x, t+ τ), ϕki±1 ≈ ϕ(x± χ),

wk
i ≈ w(x, t), with w(x, t) := n(x, t) + c(x, t), wk

i±1 ≈ w(x± χ),

rki ≈ r(x, t) := ϕtot(t)1ω(x), with ϕtot(t) :=
∫
Ω

ϕ(x, t) dx

hold for τ and χ sufficiently small, equation (D.6) can be formally rewritten in the approximate
form

c(x, t+ τ) = c(x, t)(1− τ µcρc(t)) + τ αcr(x, t)

+
λ

2
ψ(w(x, t))

(
c(x+ χ, t) + c(x− χ, t)

)
− λ

2

(
ψ(w(x− χ, t)) + ψ(w(x+ χ, t))

)
c(x, t)

+
ν

2ϕmax
ψ(w(x, t))

[(
ϕ(x, t)− ϕ(x− χ, t)

)
+
c(x− χ, t)

]
+

ν

2ϕmax
ψ(w(x, t))

[(
ϕ(x, t)− ϕ(x+ χ, t)

)
+
c(x+ χ, t)

]
− ν

2ϕmax
ψ(w(x+ χ, t))

[(
ϕ(x+ χ, t)− ϕ(x, t)

)
+
c(x, t)

]
− ν

2ϕmax
ψ(w(x− χ, t))

[(
ϕ(x− χ, t)− ϕ(x, t)

)
+
c(x, t)

]
.

If the function ψ(w(x, t)) is twice continuously differentiable and the functions c(x, t) and
ϕ(x, t) are twice continuously differentiable with respect to the variable x, for χ sufficiently small
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we can use their Taylor expansions

ψ(w(x± χ, t)) = ψ ± χ∂xψ +
χ2

2
∂xxψ +O(χ3),

where

ψ ≡ ψ(w), ∂xψ = ψ′(w)∂xw, ∂xxψ = ψ′′(w)
(
∂xw

)2

+ ψ′(w)∂xxw

and

c(x± χ, t) = c± χ∂xc+
χ2

2
∂xxc+O(χ3), ϕ(x± χ, t) = ϕ± χ∂xϕ+

χ2

2
∂xxc+O(χ3).

Therefore, after a little algebra we obtain

ψ
(
c(x+ χ, t) + c(x− χ, t)

)
−
(
ψ(w(x− χ, t)) + ψ(w(x+ χ, t))

)
c = χ2(∂xxcψ − c∂xxψ)

(
ϕ(x, t)− ϕ(x− χ, t)

)
+
c(x− χ, t) =

(
χ∂xϕ(x, t)−

χ2

2
∂xxϕ(x, t)

)
+
[c(x, t)− χ∂xc(x, t)],(

ϕ(x, t)− ϕ(x+ χ, t)
)
+
c(x+ χ, t) =

(
− χ∂xϕ(x, t)−

χ2

2
∂xxϕ(x, t)

)
+
[c(x, t) + χ∂xc(x, t)],(

ϕ(x− χ, t)− ϕ(x, t)
)
+
c(x, t) =

(
− χ∂xϕ(x, t) +

χ2

2
∂xxϕ(x, t)

)
+
c(x, t)

and (
ϕ(x+ χ, t)− ϕ(x, t)

)
+
c(x, t) =

(
χ∂xϕ(x, t) +

χ2

2
∂xxϕ(x, t)

)
+
c(x, t)

We compute

∂xxcψ(w)− c∂xxψ(w) = ∂x

[
ψ(w)∂xc

]
− ∂x

[
cψ′(w)∂xw

]
= ∂x

[
(ψ(w)− cψ′(w))∂xc− cψ′(w))∂xn

]
,

(D.7)

and using the elementary property (a)+ − (−a)+ = a for a ∈ R we also obtain

−ψc
((
∂xxϕ

)
+
−
(
− ∂xxϕ

)
+

)
− ψ∂xc

((
∂xϕ

)
+
−

(
− ∂xϕ

)
+

)
+ ∂xψc

((
− ∂xϕ

)
+
−

(
∂xϕ

)
+

)
= −∂x

[
ψc∂xϕ

]
.

(D.8)

Substituting the computation into Equation (D.6), letting τ → 0 and χ→ 0 in such a way that

λ

2

χ2

τ
→ βc ∈ R+

∗ and
ν

2ϕmax

χ2

τ
→ γc ∈ R+

∗ ,

after a little algebra, considering (x, t) ∈ Ω \ ∂Ω× R∗
+, we find

∂tc− ∂x

[
βcψ(w)∂xc− γcψ(w)c∂xϕ− βccψ

′(w)∂xw
]
= −µcρc(t)c+ αcr

where ψ is given by (4.22) and w := n+ c.
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Moreover, zero-flux boundary conditions easily follow from the fact that T-cell moves that require
moving out of the spatial domain are not allowed.

D.1.3 Formal derivation of the balance equation for the concentration
of chemoattractant ϕ(x, t)

In the case where the chemoattractant dynamics are governed by the rules described in Sec-
tion 4.3.2, using the same methods employed in [26], considering (i, k) ∈ [1,N − 1] × N0 and
assuming that relations (D.2)-(D.4) and relations (D.1.2)-(D.1.2) hold for τ, χ sufficiently small,
the difference Equation (4.14) can be formally rewritten in the approximate form

ϕ(x, t+ τ)− ϕ(x, t)

τ
= βϕ

ϕ(x− χ, t) + ϕ(x+ χ, t)− 2ϕ(x, t)

χ2
+ αϕn(x, t)− κϕϕ(x, t) (D.9)

If the function ϕ is continuously differentiable with respect to the variable t and twice differen-
tiable with respect to the variable x, letting τ, χ→ 0 in the above equation gives

∂tϕ(x, t)− βϕ∂xxϕ(x, t) = αϕn(x, t)− κϕϕ(x, t) (D.10)

which is the balance equation for the chemoattractant concentration ϕ posed on Ω × R∗
+. We

complement Equation (D.10) with zero flux boundary conditions.

D.2 Details of numerical simulations

The numerical simulations of our hybrid and continuum models are carried out on a two-
dimensional domain and are performed in Matlab.

D.2.1 Details of numerical simulations of the hybrid model

The flowchart in Fig. D.1 illustrates the general computational procedure to carry out simulations
of the hybrid model in a one-dimensional setting, while the flowchart in Fig. D.2 provides further
details of the computational procedure to simulate cell dynamics in a one-dimensional setting.
Analogous strategies are used in a two-dimensional setting. All random numbers mentioned in
Fig. D.2 are real numbers drawn from the standard uniform distribution on the interval (0, 1),
which in our case are obtained using the built-in Matlab function rand.

As summarised by Fig. D.2, at each time-step τ , each CTLundergoes a three-phase process:
Phase A) undirected, random movement according to the probabilities defined via (4.26) and
(4.27); Phase B) chemotaxis according to the probabilities defined via (4.23) and (4.24); Phase
C) inflow and death according to the probabilities defined via equations (4.17) and (4.21). We
let then each tumour cell proliferate with the probability defined via (4.8), die due to intra-
tumour competition with the probability defined via (4.10), or die due to immune action with
the probability defined via (4.13). Finally, the tumour cell density at every lattice site is computed
via (4.1) and inserted into (4.14) in order to update the concentration of the chemoattractant.

In a two-dimensional setting, the positions of the single CTLs are updated following a pro-
cedure analogous to that explained in Fig. D.1 and Fig. D.2, with the only difference being
that the CTLs are allowed to move up and down as well. Moreover, the concentration of the
chemoattractant is updated through the two-dimensional analogue of (4.14), where the operator
L is defined as the finite-difference Laplacian on a two-dimensional regular lattice of step χ and
the tumour and T cell densities are respectively computed via (4.1) and (4.2).
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Start
First time-step: k=0

Initial time: t=	0
Initial position of jth cell: &'(

Initial number of tumour cells: )*(	
Initial number of T cells: )+(	

1) Update chemoattractant concentration

2) Update each T cell

2.A Undirected movement

2.B Chemotactic movement

2.C Cell fate

3) Update each tumour cell 3.A Cell fate

4) Update chemoattractant concentration

End of kth time-step

k=k+1, t= kΔ1

Is t > T?

Yes

End

No

Time-step k:
Position of jth cell: &'2

Number of tumour cells: )*2	
Number of T cells: )+2	

&'2 ↝  &'245/7

&'245/7 ↝  &'245

)+2 ↝ )+245	

)*2 ↝ )*245	

Initial position of the hth cell :	%&'

Position 	of	thehth 	 cell 	%&/

No

!"# !"
# $%/'

!"# $%!"
# $%/'CTL

CTLs:

CTLs

Figure D.1: Flowchart illustrating the computational procedure to simulate the hybrid model in
a one-dimensional setting. A detailed summary of steps 2) and 3) is provided by the flowchart
in Fig. D.2. A similar procedure is used in a two-dimensional setting.
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Figure D.2: Flowchart illustrating the detailed computational procedure followed to update the
positions of every CTL, as well as the fate of each tumour cell and CTL in 1D. Analogous
strategies are then used in a two-dimensional domain.
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D.2.2 Details of numerical simulations of the continuum model

To construct numerical solutions of the IDE-PDE-PDE system (4.30), we use a uniform dis-
cretisation consisting of N2 = 3721 points of the square Ω := [0, 1]2 as the computational
domain of the independent variable x ≡ (x, y) (i.e. (xi, yj) = (i∆x, j∆x) with ∆x = 0.016 and
i, j = 0, . . . , N) Moreover, we choose the time step ∆t = 1 × 10−4, and we perform numerical
simulations for 15× 104 time-steps (i.e. the final time of simulations is tf = 15).
The method for constructing numerical solutions of the IDE-PDE-PDE system (4.30) is based
on a finite difference scheme whereby the discretised dependent variables are

nki,j := n(xi, yj , tk), cki,j := c(xi, yj , tk) and ϕki,j := ϕ(xi, yj , tk).

We solve numerically the IDE (4.30)1 for n and the PDE (4.30)3 for ϕ using the following schemes

nk+1
i,j − nki,j

∆t
=

(
αn − µnρ

k
n − ζnK

k
i,j

)
nki,j i, j = 0, . . . , N,

and
ϕk+1
i,j − ϕki,j

∆t
=βϕ

ϕki−1,j + ϕki+1,j − 2ϕki,j
(∆x)2

+ βϕ
ϕki,j−1 + ϕki,j+1 − 2ϕki,j

(∆x)2

+ αϕn
k
i,j − κϕϕ

k
i,j , i, j = 1, . . . , N − 1,

and impose zero-flux boundary conditions for ϕ by letting

ϕk+1
0,j = ϕk+1

1,j and ϕk+1
N,j = ϕk+1

N−1,j , j = 0, . . . , N

ϕk+1
i,0 = ϕk+1

i,1 and ϕk+1
i,N = ϕk+1

i,N−1, i = 0, . . . , N

Moreover, we solve numerically the PDE (4.30)2 for c using the following explicit scheme, which
is the same as the one used in [26],

ck+1
i,j − cki,j

∆t
−
F k
i+ 1

2 ,j
+ F k

i− 1
2 ,j

∆x
−
F k
i,j+ 1

2

+ F k
i,j− 1

2

∆x
= r(ϕki,j)− µcρ

k
c c

k
i,j

for i, j = 0, . . . , N , where

F k
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bki+ 1
2 ,j

:= γc
ϕki+1,j − ϕki,j

∆x
, bk,+

i+ 1
2 ,j

= max
(
0, bki+ 1

2 ,j

)
, bk,−

i+ 1
2 ,j

= max
(
0,−bki+ 1

2 ,j

)
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The discrete fluxes F k

i− 1
2 ,j

for i = 1, . . . , N, j = 0, . . . , N and F k
i,j− 1

2

for i = 0, . . . , N, j = 1, . . . , N

are defined in an analogous way, and we impose zero-flux boundary conditions by using the
definitions

F k
0− 1

2 ,j
:= 0 and F k

N+ 1
2 ,j

:= 0, for j = 0, . . . , N,

F k
i,0− 1

2
:= 0 and F k
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Appendix E

Appendix for Chapter 5

The individual-based model developed in Chapter 5 is based on a simplified version of the math-
ematical model developed in Chapter 3, which has been calibrated to qualitatively reproduce the
experimental results presented in [99]. We refer the reader to Appendix C.1 for a description of
the parameterisation of the original model. We describe here the way in which additional com-
ponents of the model were calibrated using the parameter values reported in tables E.1 and E.2,
to reproduce the qualitative behaviour of the experimental results presented in [99].

The value of the rate of death due to competition between tumour cells is chosen so that the
number of tumour cells reaches its carrying capacity after 7 days of proliferation. The number
of CTLs introduced in the domain at day 0 corresponds to 5 times the number of tumour cells
introduced at day -7. The value of the rate of death due to competition between CTLs is chosen
so that the value of our infiltration score computed at the end of simulations in the control
scenario is similar to the value of the TIC algorithm obtained at day 4 in [99] when cortisol was
not introduced in the co-culture.

The ratio between the energy at the interface between tumour cells and CTLs and the energy
at the interface between tumour cells (i.e. the values of parameters JCT and JTT in Equation
(A.5)) allow us to consider a wide range of biological scenarios corresponding to different degrees
of immune infiltration. In particular, if the value of JCT is lower than the one JTT then CTLs
infiltrate through tumour cells, whereas if the value of JCT is larger than the one of JTT then
CTLs accumulate at the margin of the tumour, without infiltrating it. Therefore, to obtain
different degrees of immune infiltration, we fix the value of JTT and we vary the value of JCT . In
the control scenario we suppose that CTLs have a high capability of infiltrate through tumour
cells. Therefore we suppose that JCT is lower than JTT . In stressed conditions however, we
suppose that CTLs have a lower capability to infiltrate through tumour cells. Therefore, we
increase the value of JCT to a value equal to or greater than the one chosen for JTT .

E.1 Model parameters

147
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Table E.1: Parameter values used to implement the Cellular Potts model. Energies, temperature
and constrains are dimensionless parameters.

Phenotype Symbol Description Value Reference
Domain ∆x,∆y Domain spacing in the x or y direction 1 Pixel = 3×3 µm2

∆t Time-step 1 MCS = 2.1 min
tf Final time 4 (days)

CC3D JMT Contact energy tumour cells-medium 50
JMC Contact energy CTLs-medium 50
JCT Contact energy CTLs-tumour cells 5 or 50 or 95
JTT Contact energy tumour cells-tumour

cells
50

JCC Contact energy CTLs-CTLs 1000
dT Tumour cell diameter 20-40 (µm) [87]
dC CTL diameter 12 (µm) [75]
λarea Tumour cell and CTL area constrain 10
λper Tumour cell and CTL perimeter con-

strain
10

Tm Fluctuation amplitude parameter 10
λchem Strength and direction of chemotaxis 50

Table E.2: Parameter values used in numerical simulations.
Phenotype Description Value Reference
Tumour Initial number NT (0) = 36

Index identifier n = 1, . . . , NT (t)
Lifespan U[3,7] (days) [87]
Growth rate U[0.015,0.019] (pixel/MCS) [99]
Mean cycle time 12 (hours) [99]
Rate of death due to competi-
tion between tumour cells

4.6× 10−6 (1/MCS) estimated

CTLs Initial number NC(0) = 150
Index identifier m = 1, . . . , NC(t)
Growth rate U[0.0038,0.0042] (pixel/MCS) [99]
Mean cycle time 6-8 (hours) [87]
Rate of death due to competi-
tion between CTLs

1.2× 10−5 (1/MCS) estimated

Lifespan U[2.5,3.5] (days) [87]
Engagement time 6 (hours) [43]
Killing probability 0 or 0.00005

Chemoattr. Concentration ϕ ⩾ 0 (mol/pixel)
Diffusion D = 7× 2× 10−5 (pixel2/MCS)
Secretion α = 30 or 10 or 3 (mol/MCS/pixel)
Decay γ = 7× 10−4 (1/MCS)
Initial concentration ϕinit = 0.5(280 −√

(x− 200)2 + (y − 200)2)
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Mathematical models of tumour-immune interactions: discrete and contin-
uum approaches

Abstract

The past decade’s technological advances have led to the development of immunotherapies, which dif-
fer from conventional anti-cancer therapies by targeting tumour-immune interactions to enhance the
effectiveness of the anti-tumour immune response. However, these interactions are based on complex
mechanisms that make it difficult to design treatments to effectively boost the immune response. For
this reason, mathematical models are useful tools for reproducing and predicting the spatio-temporal
dynamics of interactions between tumour cells and immune cells, in order to test the potential of new
therapeutic techniques in a flexible and affordable way. In this thesis, we develop discrete and contin-
uum models to describe the spatio-temporal dynamics of the interactions between a solid tumour and
cytotoxic T cells, with the goal to investigate the biological settings which allow for the clearance or the
escape of the tumour. The discrete models developed in this work track the dynamics of single cells, thus
permitting the representation of single cell-scale mechanisms, and are sufficiently detailed and specific
to qualitatively investigate and reproduce empirical observations. The continuum models considered are
not formulated on the basis of phenomenological arguments, which can hinder a precise mathematical
description of crucial biological and biophysical aspects, but they are formally derived from the discrete
models through suitable asymptotic methods. The results of computational simulations of the discrete
models show that there is an excellent quantitative agreement between them and numerical solutions
of the corresponding continuum models, and further clarify the conditions for successful and unsuccess-
ful immune surveillance. Ultimately, the mathematical models presented in this thesis may provide a
framework to help biologists and clinicians gain a better understanding of the mechanisms that are re-
sponsible for immune escape, and they may be promising tools in the exploration of therapeutic strategies
to improve the effectiveness of the overall anti-tumour immune response.

Keywords: tumour-immune interactions, immunotherapy, discrete models, continuum models, numer-
ical simulations

Résumé

Au cours de la dernière décennie, les progrès technologiques ont permis la conception d’immunothéra-
pies qui, contrairement aux thérapies anticancéreuses classiques, ciblent les interactions entre cellules
tumorales et cellules immunitaires, dans le but de renforcer l’efficacité de la réponse immunitaire. Ce-
pendant, ces interactions reposent sur des mécanismes complexes, ce qui rend difficile la conception de
traitements efficaces. Par conséquent, les modèles mathématiques sont des outils utiles pour reproduire
la dynamique spatio-temporelle des interactions entre les cellules tumorales et les cellules immunitaires,
afin de tester le potentiel de nouvelles techniques thérapeutiques de manière flexible et non coûteuse.
Dans cette thèse, nous développons des modèles discrets et continus pour décrire la dynamique spatio-
temporelle des interactions entre une tumeur solide et les cellules T cytotoxiques, dans le but d’étudier
les paramètres biologiques qui permettent l’élimination, ou bien l’échappement, de la tumeur. Les mo-
dèles discrets développés dans ce travail décrivent la dynamique de chaque cellule, permettant ainsi la
représentation de mécanismes à l’échelle cellulaire. De plus, ils sont suffisamment détaillés et spécifiques
pour reproduire qualitativement les résultats d’études expérimentales. Quant aux modèles continus, ils
ne sont pas formulés sur la base d’arguments phénoménologiques, qui peuvent limiter une description
mathématique précise d’aspects biologiques et biophysiques cruciaux, mais ils sont dérivés formellement
des modèles discrets par le biais de méthodes asymptotiques appropriées. Les résultats des simulations
numériques des modèles discrets montrent qu’il existe un excellent accord quantitatif entre eux et les
solutions des modèles continus correspondants, et clarifient les conditions de réussite, ou bien d’échec, de
la surveillance immunitaire. Enfin, les modèles mathématiques présentés dans cette thèse peuvent fournir
un cadre pour aider les biologistes et les cliniciens à mieux comprendre les mécanismes par lesquels les
tumeurs échappent au système immunitaire, et peuvent être des outils prometteurs pour explorer des
stratégies thérapeutiques conçues pour améliorer l’efficacité de la réponse immunitaire anti-tumorale.

Mots clés : interactions tumeur-système immunitaire, immunothérapie, modèles discrets, modèles
continus, simulations numériques

Laboratoire Jacques-Louis Lions
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