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Abstract

Human motor control is a complex process ruling over a vast variety of voluntary
tasks (posture, reaching, writing, walking. . . ) while presenting persistent charac-
teristics (coordination, structure of variability, movement segmentation, speed/ac-
curacy trade-off. . . ). Several theories brought better understanding of the mech-
anisms underlying the richness of motor behavior, yet failing to provide a unified
framework for the production of human movement. Such a general computational
theory was formulated by E. Guigon and relies on three modelling principles: a
universal optimal feedback control policy, control with a receding time horizon,
and task representation by a series of via-points updated at fixed frequency. In
this thesis, we show that contrary to their appearing constraining nature, the
combination of these principles offers powerful predictions, providing insights on
the functioning of motor control and its neural bases. First, under the light of
experimental data, we propose a novel view on motor adaptation to dynamic per-
turbations, casting it at the task representation level (goal selection) rather than
at the control level (action selection). Second, we show that the receding horizon
fundamental principle extends the stationary property of optimal solutions and
allows for a simple neural representation of the universal controller: a small neural
network (a Multi Layer Perceptron with two hidden layers) trained on simulated
data accounted for multiple properties of cortical motoneurons described in the
literature. Additionally, we briefly explore within our framework the differences
between force control and position control tasks as well as co-contraction and its
temporal evolution during movements.

Keywords: Human, Motor Control, Adaptation, Neural Network, Task Rep-
resentation, Cocontraction
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Chapter 1

Introduction and context

Science is what we understand well
enough to explain to a computer
(Art is everything else we do)

Donald Knuth

What I cannot create, I do not
understand

Richard Feynman

1.1 Introduction and context

Action is the mean by which living beings interact with their environment. Diminu-
tion or loss in the capacity to produce actions ("movement disorders") are often
observed following injuries, diseases or ageing, affect the normal performance of
activities of daily living, and are a central issue in modern healthcare systems.
Progresses in the understanding of how actions are produced and in the definition
and diagnosis of pathological actions are mandatory to improve handling and re-
habilitation of movement disorders. A proper understanding of how actions are
produced faces difficult challenges. The first challenge is to properly define the
problem of motor control. The second challenge is to choose a theoretical frame-
work in which the problem and the very many observations on properties of action
can be handled. The third challenge is to address the neural bases of motor control.
One can recognize here the levels of analysis of Marr [1982].

1



2 Introduction and context

1.1.1 What is motor control?

Motor control is a complex problem with multiple levels of redundancy (task-
space, body-space, muscle-space, neural-space), nonlinearities, uncertainty, noise
and time delays [Bernstein, 1967; Glencross, 1980; Franklin and Wolpert, 2011].
Despite this complexity, living beings produce a large repertoire of actions (walk-
ing, running, flying, reaching, grasping, speaking, singing, writing, drawing, look-
ing, smiling, swimming, standing) with an apparent ease. The resulting actions are
geared towards behavioral goals rather than towards the reproduction of stereo-
typed patterns [Bernstein, 1967; Todorov and Jordan, 2002]. They are flexible in
time and space, and are effortlessly modified to take into account changes in the
body and the environment [Shadmehr and Mussa-Ivaldi, 1994; Liu and Todorov,
2007; Nashed et al., 2012]. A fundamental point is that the complexity of motor
control cannot be bypassed by considering so-called simple actions (e.g. single
joint movements): multijoint movements are not scaled-up versions of single-joint
movements due the presence of intersegmental dynamics.

1.1.2 Theoretical frameworks

Following the claims of Donald Knuth and Richard Feynman, motor control can-
not be understood outside a consistent theoretical framework. On the one hand,
reasoning on neurons, muscles, reflexes or brain circuits is clearly an inadequate
method. On the other hand, drawing conclusions from observations of movements
could give rise to speculations (e.g. power laws; Huh and Sejnowski 2015). Several
frameworks coexist: the dynamical approach [Kelso, 1995; Warren, 2006], the equi-
librium point theory [Feldman and Levin, 1995], the Passive Motion Paradigm [Mo-
han and Morasso, 2011], the Active Inference theory [Friston, 2011], the stochastic
optimal feedback control approach [Todorov and Jordan, 2002]. This is not the
place for a thorough presentation and discussion of these frameworks (for elements,
see Mohan et al. 2019; Latash 2021; Guigon 2022 and related comments). Here the
point is to insist on the necessity of reasoning on motor control within a theoretical
framework to avoid the pitfalls of purely descriptive approaches.

1.1.3 Neural bases of motor control

A valuable outcome of motor control studies is to contribute to a computational
neuroanatomy/neurology of movement [Shadmehr and Krakauer, 2008; Haar and
Donchin, 2020; Parr et al., 2021], i.e. to identify where in the nervous system and
possibly how critical operations of motor control are produced. Although we are
still far from an accurate picture of the "motor brain", undeniable progress has
been made to clarify the respective role of key structures such as the motor cortex,
the basal ganglia and the cerebellum. Further insights could be gained by building
neural network controllers [Lillicrap and Scott, 2013; Kalidindi et al., 2021].
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1.1.4 Our approach

This work is an attempt to address the three above-mentioned challenges in a uni-
fied, parameter-free theoretical framework [Guigon, 2022]. This framework which
inherits from the stochastic optimal feedback control framework of Todorov and
Jordan [2002] claims that each and every motor task is produced by one and the
same universal controller working on a specific task representation. It explains the
production of discrete, continuous, rhythmic and temporally-constrained move-
ments, and their parametric and statistical properties (scaling laws, power laws,
speed/accuracy tradeoffs). On the one hand, we thoroughly explored two main
novel issues. First, we asked whether adaptation to dynamic perturbations (force
fields) can be explained in the proposed framework, i.e. whether adaptation can
occur with changes at the task level, without changes at the control level. Sec-
ond, leveraging on recent advances in deep learning methods [LeCun et al., 2015],
we asked whether an artificial neural network can be trained to approximate the
universal controller. We answered positively to this question and we explored the
distributed representations of motor control processes in this network and com-
pared them to the properties of motor cortical neurons. On the other hand, we
only scratched the surface of two important topics: (1) the role of cocontraction;
(2) the contrast between position control and force control.

1.2 Structure of this manuscript

This thesis manuscript is composed of 3 main chapters :

• Chapitre 2 - We describe stochastic optimal control and summarise both
its capabilities and restrictions. Then, we present optimal control with se-
quential terminal constraints and receding horizon : its founding modelling
principles, its implementation particularities regarding task representation
and a few of its predictions.

• Chapitre 3 - We run an experiment of adaptation to a velocity-force field
exerted by a robotic arm. We propose a novel view of motor adaptation
through task representation, that account for some key kinematic properties
of adapted movements.

• Chapitre 4 - We show that the stationary properties of optimal control
with receding horizon simplifies the necessary computations to the point of
enabling a feasible neural implementation. We train a feedforward neural
network on data simulated by our model and generate trajectories that ac-
count for observed tuning characteristics of cortical motoneurons described
in the literature.
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2.1 Introduction

Human motor control is one of the most introspective endeavour humans can delve
into [Bernstein, 1967]. It may be summarized in a general question: How does our
brain controls our muscles in order to perform movements? From this apparently
simple question stems a large amount of fundamental questions about our very
body and mind functioning: How are we able to repeatedly perform a motor
task without doing twice the same movement? How can we resist to external
and unexpected perturbation? How do we maintain abilities while submitted to
fatigue, injuries, or aging? How are we able to switch from one motor task to
the other, or even perform several tasks at once? What is motor expertise and
how is it acquired? All these questions (and many others) are at the crossroads of
biomechanics, neurophysiology and neurosciences.

Our body is in perpetual interaction with its environment to either induce
motion or maintain a given position or posture. First and foremost, as Newton’s
fundamental laws of dynamics state, movements are direct consequences of ac-
tions - torques or forces. In our own referential, a first fundamental step is to
understand the kinematics of our own body. Not only is our skeleton composed
of 206 bones, but they mainly articulate with each other in very complex joints
involving cartilaginous contacts, ligaments, and tendons, far from the commonly
human-engineered prismatic or revolute joints. These joints are actuated by 639
muscles (acting through their tendons), themselves composed of a variety of mus-
cle fibers. These muscle fibers are innervated by alpha moto-neurons (and afferent
pathways) emerging from the spinal cord, itself connected to the brain. Even if
extremely simplified, this description already allows to glimpse the complexity of
the system at hands while trying to understand human movements.
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To face this challenge, scientists have adopted a constructivist methodology:
from behavioral observations, make assumptions on a given functionality or mech-
anism, "implement them into a model", make predictions, confront them to addi-
tional observations and iterate over the multiple facets of human movement. Two
crucial words were employed here: observation and model. Studying pathologies
allows to attribute functionalities to anatomical structures by reverse reasoning:
if several people presenting the same damaged part of the brain may not perform
a given task, it can be speculated that the part in question plays a crucial role in
this task for healthy humans (e.g. deafferentation, Parkinson’s disease..) [Shad-
mehr and Krakauer, 2008; Haar and Donchin, 2020]. Additionally, experimental
studies set up in precise conditions can bring to light meaningful properties of hu-
man movement by fine analysis of electromyograms (EMG), joint or end-effector
trajectories or any relevant body variable.

A model often takes the form of a set of equations and parameters describing
a given phenomenon and its evolution through time by its dynamics. It does not
have to be perfect for it to be useful: newtonian theory of gravity is not exact
but gives satisfying predictions for a wide range of non extreme gravitational
phenomenon. Similarly, approximations may be accepted while modelling parts
of the system that constitute the human body and the Central Nervous System
(CNS) to accommodate, for example, for computational or theoretical capacities.
Moreover, if the studied motor behavior involves only parts of the body it may be
relevant to ignore the rest of the body: for upper limbs movements, for instance,
we may consider the trunk to be an inertial reference frame and focus on modelling
the arm.

Once a model of the system of interest is chosen rises the core problematic
of human motor control: designing a schema describing how an intent leads to
a movement. Depending on the theory adopted to study motor control, such a
schema may take the form of a physical law (e.g. in the equilibrium point hypoth-
esis) or of control policy (in control theory). In its general conception, a control
policy may be seen as an algorithm producing a sequence of control signals that,
when transmitted to the muscles will produce a movement achieving a given mo-
tor task. It must be noted, though, that such a computational representation is
merely an attempt to replicate in simulations the outcome of the neurophysiologi-
cal process occurring in the brain. Moreover, although an accurate enough model
is necessary for the scientist to perform simulations, its knowledge by the CNS
is not a priori a necessary condition. For instance one can perfectly drive a car
without knowing precisely the thermochemistry of gas combustion, the mechanics
of gear transmission or the surface properties of their tires.

If a set of model and control policy fails to account for certain characteristics of
a motor behavior, two possibilities arise: either the model is at fault or the control
policy is. Should the model be changed to be more realistic or the control policy
modified it is of uttermost importance to verify that the updated model is still able
to account for previously demonstrated results. In this regard, an accumulation
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of ad-hoc models and policy have no explanatory power, as their predictions are
bounded to the specific tasks or conditions for which they were built. Throughout
the years, many theories have proposed their own control policies in attempt to
account for experimental data, but few managed to be consistent with the broad
range of motor tasks and their emerging decisive characteristics.

In this chapter, we first provide a brief description of the different body com-
ponents playing a part in motor control [Kandel et al., 2013], and discuss on how
they should be integrated in the modeling conditioning the definition of a control
policy. Then, we present the successive control framework milestones that led to
the formulation of the control theory adopted in this thesis: Optimal feedback
control with receding horizon.

2.2 Sensorimotor system

2.2.1 Central Nervous System

The central nervous system is composed of the brain and the spinal cord. The
brain itself is composed of several structures organized on a hierarchical basis. The
brain stem (medulla, pons and midbrain) is situated above the spinal cord with
cranial sensory and motor nerves. The cerebellum is connected backward to the
brain stem. The forebrain includes medial structures (thalamus) and the cerebral
hemispheres. The cortical neurons are situated on the surface of the brain (gray
matter) interconnected with short- or long-range fiber tracts (white matter). The
basal ganglia are groups of deep gray matter structures tightly interconnected and
with the cerebral cortex. The cerebral cortex is divided in lobes. The occipital
lobe includes the primary and secondary visual areas and the temporal lobe the
auditory areas. The parietal lobe includes the primary somatosensory area and
secondary integrative areas integrating vision and proprioception. The primary
motor cortex area is situated in the posterior part of the frontal lobe, close to
the parietal somatosensory area. The premotor area and supplementary motor
areas lie forward to the primary motor area. The prefrontal areas are more re-
lated to planning and cognition. The brain treats sensory information coming up
from the afferent pathways of the spinal cord (+ optical nerve) to generate motor
commands in order to perform a motor task. These inputs are in turn sent to the
efferent pathways of the spinal cords which distribute them to the muscles through
the nerves. The planification of motor control involve large cortical networks in-
cluding the parietal associative areas and multiple frontal areas [Battaglia-Mayer
and Caminiti, 2019]. The supraspinal descending command is mainly ensured by
the pyramidal tract issued from the primary motor area [Chouinard and Paus,
2006]. Motor execution also involves regulatory loops involving the cerebellum
and basal ganglia working in parallel. The cerebellar system contribute to timing
and sensorimotor coordination and learning [Manto et al., 2012]. The basal ganglia
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contribute to action selection, inhibit unwanted motor responses and is involved
in skill learning [Turner and Desmurget, 2010].

2.2.2 Spinal level

At spinal level, alpha motoneurons are prolonged by axons that innervate a set
of muscular fibers (motor unit) [Pierrot-Deseilligny and Burke, 2005]. There are
two kinds of receptors (sensors) in the muscle: i) muscle spindles include a intra-
fusal muscular fiber (organized in parallel with the main extrafusal fibers) and Ia
sensory endings (connected to large and fast afferent sensory fibers) and slower
type II fibers. Spindles are sensitive to stretch and stretch velocity of the muscle.
Intrafusal muscular fibers are excited by gamma motoneurons which regulate the
sensitivity of the spindles. Alpha-gamma coactivation during movement avoids the
silencing of Ia afferents during muscular contraction; ii) the Golgi tendon organ,
are sensors organized in series with the muscular fibers, connected with fast Ib
afferent fibers, they are sensitive to the force of the contraction. Ia and Ib affer-
ents are connected to the spinal segment of the corresponding muscle and regulate
the reflex activity of the motoneurons via segmental interneurons (e.g. reciprocal
inhibition due to Ia afferents, Ib inhibition, Renshaw inhibition). Slower fibers
(spindle type II and cutaneous afferent fibers) project to several spinal segments,
also connected via propriospinal interneurons. Spinal segmental and intersegmen-
tal reflexes and central pattern generators which contribute to the spinal control
of movement are under the control of multiple descending spinal pathways [Weiler
et al., 2021].

2.2.3 Neurons

Neurons are single cells of very peculiar form: far from the common representation
of an ellipsoidal membrane containing a nucleus surrounded by cytoplasm, neurons
have axons that can go through the whole body and measure up to 2 meters long.
When a neuron discharge, an action potential propagates along its axons until its
synapses. Here the electric potential induces the emission of a neurotransmitter
(either excitatory or inhibitory) that crosses the synaptic cleft up to the dendrite
of the connected neuron, creating a post-synaptic potential. Once the latter sur-
passes a given threshold, the second neurons in turn discharge along all its axons.
Motoneurons innervate a set of muscle fibers: extrafusal muscle fibers for alpha-
motoneurons, intrafusal muscle fibers of muscle spindles for beta-motoneurons and
intrafusal muscle fibers found within the muscle spindle for gamma-motoneurons.
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2.2.4 Joints

Joints are at the conjunction of bones. Their mechanics depend not only on the
shape of the bones involved but on the ligaments restricting their relative move-
ments and the muscles actuating it. Their kinematics may thus be rich and com-
plex. For instance, movements of the single shoulder joint often summarized by 3
degrees of freedom (DoF) ball joint (flexion/extension, abduction/adduction,axial
rotation) also includes 6 extra DoF due to clavicle and scapula (sterno-clavicular
and acromioclavicular joints) but the mobility of the scapula within the shoulder
complex is limited since the kinematic chain is closed due to the sliding of the
scapula on the thorax (scapulo-thoracic joint).

2.2.5 Muscles and tendons

A muscle is made of muscle fibers and is innervated by motoneurons. A motor unit
corresponds a motoneuron and the group of muscle fibers it innervates. Several
fiber types classifications coexist but all concord in stating that motor fiber prop-
erties range from fast to slow, weak to strong and fatiguable to fatigue-resistant
[Burke, 2011; Scott et al., 2001b]. Moreover, the size of a motoneuron is propor-
tional to the size and number of its fibers and the excitability of a motoneuron is
inversely proportional to its size [Henneman et al., 1965]. These properties give
rise to the Henneman’s size principle [Henneman et al., 1974]: motor units are
recruited according to their size - smaller, weaker motor units are recruited first.
Additionally, muscle force can be modulated by changing the motoneurons’ firing
rate. This gives two means of force modulation: an orderly change in the number
of motor-units recruited and changes in the frequency of action potentials of the
already recruited motor units

Taking a step back to a more macroscopic, empiric view, muscle force genera-
tion have been shown to follow a highly complex non-linear dynamic, depending on
excitation, muscle length and velocity, and maximum force. It was first formalized
in the form of the famous Hill equation [Hill, 1953]:

(F + a)v = b(F − F0) (2.1)

where F is the load in the muscle, v is the velocity of contraction, F0 is the
maximum isometric load generated in the muscle and a and b are constant pa-
rameters. A commonly used representation of force generation is the Hill-type
muscle, describing it as a simplified mechanical chain (see Fig. 2.1): muscle fibers
are represented as force generators acting in parallel to a damping element and a
spring-like element. Conversely, tendons transmitting muscle force to their inser-
tions exhibit a force-strain relationship subdivided in non-linear and linear phases.
Yet, they are often modeled as spring-like elements (K serial) connected in series to
the muscle fibers. Finally, the mentioned insertions are often spatially distributed
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Figure 2.1: Hill-type model of muscle and tendons. Muscle fibers are repre-
sented as force generators (F) acting in parallel to a damping element (B) and a
spring-like element (K parallel). Tendons can be modeled as spring-like elements

(K serial) connected in series to the muscle fibers.

one the bones, and present a pennation angle, making the characterization of the
lever effects on the actuated joint hard to describe analytically.

2.3 Challenging properties

2.3.1 Redundancy

Having briefly listed the principal components of the sensory-motor system, one of
its key characteristics emerges: redundancy or abundancy [Bernstein, 1967; Gera
et al., 2010; Latash, 2012]. These terms summarize the fact that there are al-
ways more variables potentially contributing to a motor tasks than the constraints
defining it.

Let us glimpse at the different levels of redundancy by considering one of the
most common tasks: reaching a point with our hand.

The position in space of the hand is described by its three Cartesian coordi-
nates x, y, and z (setting aside its orientation, that may be described by its Euler
angles). One can easily observe that there are an infinity of body joint configura-
tions corresponding to a single hand position (Fig. 2.2A): grab a door handle and
move your body. One can bend the knees, extend the elbow, elevate the shoulder,
lean forward, the many joints of the body will find ways to keeping his hand in
the same position.
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Figure 2.2: Redundancies in a motor task. A. Geometrical redundancies:
a limb composed of three segments can adopt multiple joint configurations (light
brown and light blue) to place its end effector at a given cartesian position (green
circle). B. A reaching task (from black circle to red circle) may be achieved

following several paths (blue, violet, green and orange lines).

Then, to go from a given point to another may be done through infinite num-
ber of hand paths (Fig. 2.2B), that can be followed at an infinity of paces. The
corresponding movements are the consequences of torques generated at each joint
by muscles contractions. Joints are often crossed by multiple muscles: elbow joint
is for instance actuated by three flexor muscles (biceps, brachialis, and brachiora-
dialis) and three extensor muscles (the heads of the triceps). In turn, each muscle
consists in hundreds of motor units whose generated force depends on their firing
rate.

2.3.2 Noises

Human perception and motor actions are not perfect. Both sensory feedback and
motor commands are corrupted by noises, building up from the sensors themselves
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Figure 2.3: The multiple levels of occurrence of noises in the sensori-
motor system. Reproduced from Faisal et al. [2008].

(spindles, GTO, skin streches, the eye, ...), to the transmission and data processing
[Faisal et al., 2008] (see Fig 2.3). Sensory noise degrades the observation of the
state of the system at all scales and as well as of the environment state, and motor
noise induce discrepancy between intended and effective actions. Additionally,
motor noise is signal-dependent: its variance increases with mean signal magnitude
[Harris and Wolpert, 1998].

2.3.3 Delays

Similarly to the noises plaguing its perception and actions, the sensorimotor sys-
tem has to deal with delays at both ends of the control process [Franklin and
Wolpert, 2011]: afferent sensory information is received with delays (∼100 ms)
and efferent control signals take time to be transmitted (∼ 10-40 ms) and to con-
sequently induce force increase in muscles (∼25 ms). Additionally, the exact value
of these delays depend on the sensory modality and muscles involved. Moreover,
the different existing reflexes (stretch reflex, spinal reflexes, long-loop reflexes, ...)
have their own time constants, rooting the sensorimotor system in plural pasts.
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Task-space

Null-space

Figure 2.4: Illustration of the Uncontrolled Manifold in the task
space. For a task consisting in pointing to a line (black line), the variance
across trials of the final points (grey dots) is widely spread on the null-space

(along the line) and limited in the task space (perpendicularly to the line).

2.3.4 Variability

All scales of redundancy may not be of equal importance but coupled with the
presence of noises in the sensorimotor system they give rise to an simple yet aston-
ishing property of human movement summarized by Bernstein [1967] as "repetition
without repetition". This expression underlines the fact that while repeatedly and
successfully performing a given motor task, humans will never produce twice the
same exact trajectory.

Interestingly, the variance across trials of the endpoint trajectory is of lesser
magnitude that the one affecting the evolution of the angles of engaged joint. Ad-
ditionally, skilled motor behavior is not only able to manage all available degrees
of freedom to perform a task, it actually exploits them to do so, justifying the
use of term abundance [Latash, 2012]. This phenomenon is in particular observed
in motor experts: mastering a task does not consists in reducing overall variance
across trials but rather in shaping their variability to improve task performance
[Nisky et al., 2014]. The Uncontrolled Manifold (UCM) describes how the vari-
ability inherent to irrepressible noises (in action or perception) is spread across
a null-space, on which variance does not affect performance [Scholz and Schöner,
1999] (see Fig. 2.4). This method, although giving great insights on the structure
of variability and synergies lacks an explanatory and predictive power. This was
solved by the introduction of the minimum intervention principle by Todorov and
Jordan [2002], which will be further described in section 2.5.2.3.
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2.3.5 Nonlinearity

In linear systems the addition of two inputs will result in the addition of their
corresponding individual outputs. This makes them easy to predict, and thus
to control. The human sensorimotor system, unfortunately, doesn’t fall in this
category: the kinematic and inertial dynamic of the multiple and complex joints
of the body, the relationship between muscle force and velocity, the activation of
motor units by descending commands all add up to a highly non-linear system
[Zajac and Gordon, 1989].

2.3.6 Smoothness vs. segmentation

In the laboratory or hospital service, correlates of action can be measured as time
series of data at multiple levels in neural, bodily and environmental space. Pro-
cessing and analysis of these data lead to qualitative and quantitative descriptions
from which interpretations are drawn. As an example, consider the seminal study
of Flash and Hogan [1985] on voluntary planar unconstrained movements of the
upper limb. The movements were recorded with precision potentiometers, digi-
tized at a rate of 100 Hz, and the digitized signals were low-pass filtered at 5.2
Hz. The authors observed that the movements had bell-shaped velocity profiles
that were well described as the smoothest possible profiles (in the mathematical
sense of involving minimum changes in acceleration or minimum jerk; jerk is the
derivative of acceleration). Over the years, the minimum jerk model has become
a central model in the field of motor control and robotics, and the idea of smooth-
ness, although in different flavors, has played a cardinal role in many models of
motor control [Uno et al., 1989; Harris and Wolpert, 1998; Todorov and Jordan,
2002].

Yet, as illustrated in Fig. 2.6 (reaching movement; data from van der Kooij
et al. [2015]), a different conclusion could have been drawn from the same data
depending on the actual level of “smoothing” of the data. Except the unfiltered ve-
locity profile which probably contains artifacts (Fig. 2.5, black), there is no simple
way to say which of the more irregular (less filtered) profile (red), the smoothest
(more filtered) profile (purple) or other profiles (green, blue) best represents the
“true” velocity. This trivial observation has far reaching implications all the more
so that pathological movements are often characterized by their lack of smoothness
[Cirstea and Levin, 2000; Rohrer et al., 2002].

Moreover, slower movements exhibit several velocity peaks and consequently
numerous acceleration and jerk peaks. Guigon et al. [2019] showed that slow
movements were in fact segmented : when instructed to draw a line at constant -
and limited - speed, participants produced fluctuating velocity profiles (see Fig.
2.6). Moreover, the frequency of velocity peaks - as well as acceleration and jerk
peaks - was constant, irrespective of the overall movement speed.
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Figure 2.5: Impact of filtering level on velocity profiles. Velocity pro-
files of a single trial of arm displacement from van der Kooij et al. [2015] cor-
responding to different levels of low-pass filtering: (black) unfiltered data; (red)
filtered at 20 Hz; (green) filtered at 5 Hz; (blue) filtered at 3 Hz; (purple)
filtered at 2 Hz. The dotted gray line is a minimum jerk velocity profile ad-
justed by hand to the purple profile. Filter: 4th order Butterworth. The ve-
locity profiles are reproduced in inset for legibility. van der Kooij et al. [2015]:

https://doi.org/10.5061/dryad.sm925

Figure 2.6: Segmentation of slow movement. Velocity profile for a single
back and forth slow movement. From Guigon et al. [2019].

https://doi.org/10.5061/dryad.sm925
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2.4 Modelling

The different features and properties of the human sensorimotor system converge
to a tautological statement: human motor control is an extremely complex process
to study and model. Yet, it would be vain to try to build an overarching model:
for instance, delving deep into the propagation of action potential along the axon
of a neuron or the formation of cross-bridges between actin and myosin would not
be relevant to the comprehension of motor coordination. Conversely, modelling
the hand by a linearly actuated punctual mass would not bring much insight to
the same endeavour. Moreover, the level of details of a model needs to be put in
perspective with the computational burden of corresponding simulations.

In the end, modelling the dynamics of human movement needs to find a com-
promise between oversimplification and overcomplexification. The approach fol-
lowed in this thesis consists in restricting realism to the following model of the
movement of a human hand. Our principle is to investigate to what extent com-
plex motor behavior can stem from simple and synthetic modelling concepts.

2.4.1 State and dynamics

A most general representation of the dynamics of a system described by a state
x(t) is a vectorial differential equation

ẋ(t) = f (x(t),u(t), t) , (2.2)

where u(t) is a control signal. Here, we make an assumption of stationarity upon
the dynamic:

ẋ(t) = f (x(t),u(t)) (2.3)

Qualitatively, it ensures repeatability: setting aside stochastic effects, a movement
(or simulation) starting from the same initial state and performed with a given
control sequence will induce the same state evolution regardless of the time at
which it is accomplished. This assumption incarnates the choice to not take into
account evolving phenomena such as muscle fatigue, injuries or aging.

Additionally, we make the following modelling choices:

• Geometry: the trunk is considered as the inertial frame. The arm is com-
posed of 2 segments representing the upper and fore-arm. The former is
linked to the trunk by a simple rotational joint - the shoulder - and is in
turn attached to the forearm by a joint of same type figuring the elbow.
The hand is then assimilated to the tip of the forearm. The wrist joint is
neglected for its action is mostly restricted to maintaining a given posture
and grip for the tasks considered in this work which are almost exclusively
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Figure 2.7: Simplified model of an arm. All geometrical and inertial
parameters are given in Tab. 2.1

reaching tasks. Therefore, our model, shown in Fig. 2.7, is described by the
shoulder and elbow angles:

q =

[
qsh
qel

]
(2.4)

following a dynamic of the form:

q̈ = M(q)−1 (τ u + τ e − c(q, q̇)) (2.5)

where M(q) is the inertia matrix, c(q, q̇) the vector of velocity-dependent
torques, τ u the control torque produced by actuators and τ e the torque due
to external forces applied on the arm. We define

M(q) =

[
d1 + 2d2 cos qel d3 + 2d2 cos qel
d3 + d2 cos qel d3

]
(2.6)

and

c(q, q̇) = d2

[
2q̇shq̇el + q̇2el

−q̇2sh

]
sin qel (2.7)

where mua and mfa are the link masses (upper-arm and forearm), lua and
lfa the link lengths, Ishua and Ielfa their moments of inertia expressed at their
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proximal joint, ssh and sel the distances from their center of mass to their
proximal joint, d1 = Ishua + Ielfa +mfal

2
sh, d2 = mfalshsel and d3 = Ielfa.

In this work, the external torque is either null or applied to the tip of the
forearm and is the expressed as:

τ e = τ
ϕ
e = J(q)Tf ext (2.8)

where J(q) is the Jacobian matrix of kinematics

J(q) =
[
−lua sin qsh − lfa sin (qsh + qel) −lfa sin (qsh + qel)

lua cos qsh + lfa cos (qsh + qel) lfa cos (qsh + qel

]
(2.9)

• Actuation: avoiding the insertion and dynamic complexities of muscle in-
sertions in section 2.2.5, we chose actuation to be done by torque generators
at each joint j ∈ {sh, el}. But as a muscle and its innervating motoneu-
rons can be globally modelled as a second-order low-pass filter between the
control input and the force output [van der Helm and Rozendaal, 2000], we
grant them the corresponding state

xj =

[
αj
εj

]
(2.10)

and dynamics 
α̇j =

εj − τj
ν

ε̇j =
uj − εj
ν

(2.11)

where αj muscle activation, εj muscle excitation, uj input control and ν is
a time constant. We connect actuation dynamics to inertial dynamics by
defining joint torques from actuator activations:

τj = gjαj (2.12)

We write the whole state of our system as x =


q

q̇

xsh
xel

 and the control

u =

[
ush
uel

]
in order to define its state dynamics in the form:

ẋ(t) = f (x(t),u(t)) (2.13)

The parameters used in the simulations throughout this work are given in Tab.
2.1.
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Parameter Value Unit

mua 1.4 kg
mfa 1.1 kg
lua 0.3 m
lfa 0.33 m
ssh 0.11 m
ssh 0.16 m
Ishua 0.025 kg.m2

Ishfa 0.045 kg.m2

ν 0.05 s
gsh 2 -
gel 1 -

Table 2.1: Parameters of the simulated arm

2.4.2 Observation

We consider perception to be direct:

y = Hx (2.14)

where y is the observed state and H is the observation matrix.

2.4.3 Noises

Identifying where noises occur is a challenging question in itself: the imperfect
observed position of the hand, for instance, is likely coming from of measurement
errors coming from eyesight, proprioception as well as information transmission
and treatment. A precise definition would require a thourough modelling of the
sensorimotor system, which is out of range for the moment, and out of the scope of
this thesis. Hence, we limit noise modelling to the following [Todorov and Jordan,
2002; Guigon et al., 2008]:

• we consider noises to be independent white Gaussian noise i.e. each noise
has a normal distribution with zero mean;

• we consider noises to be either additive or proportional to the considered
signal;

• noise variances are scaled across the coordinates of the state (noise over joint
angles is lower than noise over joint velocity, ...).
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2.4.4 Delays

Similarly to noises, delays appear at all stages of human motor control on diverse
timescales. We decide to focus on observation delay, which is considered to be
homogeneous across the coordinates of the state:

y(t) = Hx(t−∆), (2.15)

where ∆ is the delay.

2.4.5 Overall process

All things considered, the motor process is described by

ẋ(t) = f (x(t),u(t)) + ndyn(t)

ndyn(t) = ωx(t) + ϵx(t)⊙ x(t) + f(t) (x(t),ωu(t) + ϵu(t)⊙ u(t))
(2.16)

where ⊙ denotes the element-wise multiplication operator. The observation
process is:

y(t) = Hx(t−∆) + nobs(t−∆)

nobs(t) = ξ(t) + Hκ(t)⊙ x(t)
(2.17)

where:

• ω(t) =
[
ωx(t)

ωu(t)

]
is a (8 + 2)-dimensional zero-mean Gaussian random vector

with power spectral density matrix Ωξ(t) representing signal independent
motor noise (SINm),

• ϵ(t) =

[
ϵx(t)

ϵu(t)

]
is a (8 + 2)-dimensional zero-mean Gaussian random vec-

tor with power spectral density matrix Ωϵ(t) representing signal dependent
motor noise (SDNm),

• ξ(t) is a p-dimensional (p ∈ {4, 8}) zero-mean Gaussian random vector with
power spectral density matrix Ωω(t) representing signal independent sensory
noise (SINs),

• κ(t) is a 8-dimensional zero-mean Gaussian random vector with power spec-
tral density matrix Ωκ(t) representing signal dependent sensory noise (SPo).

It should be noted that, in this thesis, noises will only be used as statistics to
bootstrap the estimator (Kalman filter, see section 2.6.2.3 and B).
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2.5 Computational frameworks

Human motor control modeling has revolved for a long time around the dichotomy
between feedforward and feedback control. Feedforward control relies on a inverse
model of the dynamics of the system it is designed to control in order to compute
the commands necessary to reach a goal (Fig. 2.8). It allows for precise task
definition, but fails if the modeled dynamic of the system is slightly different from
the real one. On the other hand, a feedback controller builds its commands from
the difference between a given reference and the feedback it gets from the controlled
system (Fig. 2.9). A famous feedback controller in the robotic community is the
Proportional Integral Derivative (PID) controller which is praised for its robustness
- for any external perturbation of the system will be observed and incorporated in
the commands. Equilibrium point theory produced interesting results by coupling
a feedback gain to a virtual minimum jerk (optimal) trajectory, effectively using
feedforward control in a preparation phase feedback control during the execution
phase [Hogan, 1984b]. It is important to note that even if the reference trajectory
is optimal in the sense that it minimizes the integral jerk, the injected controls
(here, taking the form of torques) are not the product of an optimization process.

In the optimal control field, Linear Quadratic Gaussian (LQG) control figures
as a both stable and flexible framework, fusing feedforward and feedback control
into an optimal feedback controller, the Linear Quadratic Regulator (LQR) and

Figure 2.8: Feedforward Control: control is computed on the basis of an inverse
model of the dynamics of the system, without knowing its actual evolution.

Figure 2.9: Feedback Control: the control is built on a measured error to be
gradually decreased, without knowing the dynamics of the controlled system.
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incorporating an optimal state estimator, the Linear Quadratic Estimator, com-
monly referred to as the Kalman filter (see Fig. 2.12). The LQG proved to be a
founding brick in the edifice of optimal control: it allowed to implement complex
tasks (reaching to points or lines, velocity constraints, ...) along with compro-
mises between task completion and effort all while being exposed to observation
and motor noises.

It was the Stochastic Optimal Feedback Control (SOFC), introduced by Todorov
and Jordan [2002], that elegantly solved the apparent paradox of motor variability
(see section 2.3.4) by extending the LQG. SOFC fuses together trajectory plan-
ning and execution into a single optimization process. Moreover, in attempting
to account for the speed-accuracy trade-off ruling every precision task - the well-
known Fitts law [Fitts, 1954] - it takes into account not only observation noise but
also multiplicative noise, proportional to the control signal. Despite the major
breakthrough SOFC brought, it still presents some drawbacks. First, a specific
controller needs to be built for each and every new task. Plus, control laws com-
puted by SOFC are time invariant: an increase or decrease of task time mainly
results in a scaling of velocity (and other derivative) profiles, failing to account for
increase time after a perturbation and for movement segmentation.

In the following sections, we will see how the need for a prolongation of the
constructive approach that led to SOFC was answered to by optimal control with
sequential terminal constraints and receding horizon by edicting new principles to
tackle these issues.

2.5.1 Equilibrium point

Feedforward and feedback control can be combined inside a paradigm subdividing
motor control into two phases of motion planning and trajectory execution: a - po-
tentially optimal - feedforward trajectory is prepared and then followed, acting as
an attracting reference to both induce free movement and corrective responses to
external perturbations. Hogan [1984b] presented such a control paradigm start-
ing from the following statement: for a given dynamical system (e.g. an arm)
described by a joint state x, to any vector of muscle activations A should corre-
spond an equilibrium state - or a posture - x0. As a consequence, he postulates
that movements are planned by setting a sequence of postures constituting a tem-
poral virtual trajectory x0({A(t)}) = x0(t). Movement is then induced by a torque
defined by a gain - or angular stiffness - that drives the body along this reference
trajectory, that was generated during the planning phase (see Fig. 2.10). Using
the same notations as in Eq. 2.5 this model may be written as:

Mẋ(t) + c− τ e = K(x0(t)− x(t)) (2.18)

Note that the actuation control and dynamic to generate the wished torque is
omitted in this formulation.



24 Modelling human motor control

Figure 2.10: One dimensional trajectory generated by the equilibrium point
theory. Dashed line is the virtual trajectory and plane line is the actual trajec-

tory. Extracted from [Hogan, 1984b].

Interestingly, the virtual trajectory x0(t) followed a principle of optimality: in
order to reproduce the smoothness of actual movements, trajectories were to begin
and end with zero velocity and to minimize the following cost-function:

J =

∫ tf

t0

∥γ(t)∥dt (2.19)

where t0 and tf are the starting and end time of the movement, and γ = d3p(t)
dt3

is
the jerk: the third derivative of the position, or the rate of change of acceleration.
These so-called minimum jerk trajectories have been widely used as they are the
product of an analytically solved optimal problem but virtually any trajectory
could serve as a reference trajectory. Similarly, the concept of reference trajectory
was often called for in attempt of modeling answers to perturbations. It was even
extended to account for motor adaptation by Shadmehr and Mussa-Ivaldi [1994]
(see Chapter 3).

A major downfall of control policies based on reference trajectories is the lack
of versatility. Let us consider a motor task consisting in the reaching of a line.
In this framework, the preparation phase leads to the choice of a point and its
corresponding trajectory, minimizing a given cost-function. If unperturbed, the
simulated trajectory would match the smooth, apparently optimal actual move-
ments. In the presence of perturbations (e.g. internal noises or unexpected ex-
ternal forces), though, this control policy would persevere in getting back to the
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Figure 2.11: Perturbed reaching of a line. A. Equilibrium point - The
virtual trajectory (grey dashed line) is computed in a preparation phase as the
optimal trajectory to reach the objective line (grey line). It is composed of a
series reference points the controller tries to reach successively. Consequently,
when exposed to a perturbation the planned target (pale red) is reached regard-
less of line-defined task. B. Optimal and experimental behavior - As the task
is to reach the line, the lateral perturbation is not corrected and the controller

virtually tries to reach updated targets, sliding along the task line.

planned trajectory, while the observed (and optimal) strategy is to not correct the
deviation in the direction of the task line (see Fig. 2.11 and Todorov and Jordan
2002). We will see hereafter that only (certain forms) of optimal control account
for such strategies.

2.5.2 Optimal control

In its most general formulation [Kirk, 2004; Stengel, 1994; Bryson, 1999], an opti-
mal control problem is defined on a dynamic system of the form:

ẋ(t) = f (x(t),u(t), t) (2.20)

subjected for t ∈ [t0, tf ] to the constraints:

x(t0) = x0 (2.21)

ψ(x(tf ), tf ) = 0 (2.22)

g(x(t),u(t), t) ≤ 0 (2.23)

The aim is to find an admissible control policy u∗ that causes the defined system to
follow a state evolution x∗ admissible regarding Eq 2.21 to Eq. 2.23 and minimizing
a cost-functional J :

u∗ = argmin
u′

(J(u′, t0, tf )) (2.24)
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J(u′, t0, tf ) = ϕ(x(tf ), tf )) +

∫ tf

t0

L(x(t),u′(t), t)dt (2.25)

u′ is then called an optimal control and x∗ the corresponding optimal trajectory.

This definition describes an optimal control problem with a given initial con-
dition (x0), a free endpoint subject to an algebraic equality constraint (ψ), and
control and state trajectories subject to algebraic inequality constraints (g). The
cost functional includes an endpoint cost term (ϕ) and a trajectory cost term (L).

In the field of human motor control, the considered system will generally be
all or parts of the human body whose dynamics is composed of a passive, inertial
part (e.g. limb dynamics) as well as an actuation part (e.g. muscle activation
dynamics). A motor task is defined as the evolution of the state (x) describing
the body (or part of it) from an initial state (x0) to a terminal state answering
to a final cost objective (ϕ) and/or constraint (ψ) relative to a goal (xf ) while
respecting anatomical and physiological constraints (g) - e.g. joint amplitude or
maximum muscle force. To accomplish such a task, motor units are excited by
neural inputs (u) which evolution is considered to be optimal regarding a defines
performance index - or cost-function (J).

Note that the terms presented in this general formulation are not necessarily
present in all optimization problems: in this work, continuous constraints (g)
won’t be used and final cost objectives will only appear in LQR (section 2.5.2.1),
LQG (section 2.5.2.2) and SOFC (section 2.5.2.3).

The Euler-Lagrange equations stem from the calculus of variations [Kirk, 2004]
and set necessary analytical conditions for solutions to an optimal problem. A
derivation of these equations and a simple application are provided in Appendix
A. The Hamilton-Jacobi-Bellman (HJB) equation define a necessary and sufficient
condition for optimality when the problem has a fixed end time and doesn’t include
path constraints. It emerges from the principle of optimality: a trajectory on a
given interval [t0, tf ] is optimal if and only if it is also optimal on all sub-intervals
of the form [t, tf ]. This equation is solved backward in time, providing the core
of numerical solving of optimal problems. Multiple methods of general (direct or
indirect) non-linear programming have been developed to solve optimal problems.

The successive theories that built optimal motor control toolbox have been
guided by the necessary compromise between realism and computational capabil-
ities. Across the different frameworks, the adopted dynamic might be simplified
and the goal and cost-function definition may vary. Hereafter, we give an overview
of the funding theories that applied optimal control theory in attempt of studying
human motor control.
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2.5.2.1 Linear Quadratic Regulator

The LQR figures as an exception in the optimal control field, as it is an analyt-
ical solution to the well known Hamilton-Jacobi-Bellman (HJB) equation which
generally calls for numerical solving. For this framework to be applied, the op-
timization problem needs to be built on a linear dynamic and a quadratic cost
function. Thus, considering a system described by a state xt ∈ Rn and controled
by a signal ut ∈ Rm following a linear dynamic of the discrete form:

xt+1 = Axt + But (2.26)

we define a quadratic cost-function over timesteps t = [0 · · ·N ]:

J = xTNQNxN +
N−1∑
t=0

(
xTt Qtxt + u

T
t Rtut

)
(2.27)

where Qt and Rt are sequences of (positive definite) weighting matrices, repre-
senting respectively tracking cost and effort cost. Qualitatively, they set priorities
between the state’s and control’s components to be minimized. The optimal feed-
back controller is then a Linear Quadratic Regulator:

ut = −Ltxt (2.28)

where the feedback gains Lt are computed backward in time following the recursive
equation:

Lt =
(
Rt + BTSt+1B

)−1 BTSt+1A (2.29)

St = Qt + ASt+1 (A − BLt) (2.30)

Task representation is embedded in Qt, as explained in 2.5.2.5, corresponding to
a cost-objective similar to ϕ in section 2.5.2.

2.5.2.2 Linear Quadratic Gaussian controller

The aforementioned LQR provides an optimal control law to be applied on the
current state of a system whose dynamic is perfectly known. In reality, not only
may the dynamic be noisy but the exact state of the system might be partially
observed and this measurement plagued with noise. We thus consider the following
discrete noisy dynamic, and observation process:

xt+1 = Axt + But + ωt (2.31)

yt = Hxt + ξt (2.32)

where ωt and ξt are independent multivariate normal random variables with mean
0 and covariance matrices Ωω and Ωξ (the discrete equivalent of power spectral
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Figure 2.12: Estimation/Control architecture: in LQG (2.5.2.2), SOFC
(2.5.2.3) and iLQR (2.5.2.4), control and estimation are built to be optimal
regarding different criterion. In SOFC and iLQR, both the controller and the
estimator embed task representation, while only the controller does in LQG.

density matrices in section 2.4.3). The cost-function from Eq. 2.27 is modified:

J(u) =< xTNQNxN +
N−1∑
t=0

(
xTt Qtxt + ut

TRut
)
>ω,ξ (2.33)

where <>ω,ξ is the expectation operator over noises ω and ξ. Then the LQR needs
to be coupled with a Linear Quadratic Estimator - also known as a Kalman filter
- to compute the control upon estimated state (Fig. 2.12):

ut = −Ltx̂t (2.34)

where the estimated state is:

x̂t+1 = Ax̂t + But + Kt (yt − B (Ax̂t + But)) (2.35)

and the Kalman gain is computed forward in time following (a more complete
description of state estimation is given in Appendix B):

Kt =
(
AP tAT +Ωω

)
HT

(
H
(
AP tAT +Ωω

)
HT +Ωξ

)−1 (2.36)

P t+1 = (In − KtH)P t (2.37)

As in LQR (section 2.5.2.1), task representation is embedded in Qt, as explained
in 2.5.2.5. Note that consequently, state estimation is independent of the task at
hand.
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2.5.2.3 Stochastic optimal feedback control

SOFC is an extension of the LQG (section 2.5.2.2) embedding the mathematical
formulation of a powerful view of motor control based on the observation of motor
variability as a consequence of redundancy and noise: trajectory planning and
execution should not be viewed as two successive and separated phases but as
a unified, continuous optimization process. This view allows for the concise yet
powerful Minimum Intervention Principle [Todorov and Jordan, 2002]:

"Deviations from the average trajectory are corrected only when they interfere
with task performance."

Additionally, to account for speed-accuracy trade-off [Fitts, 1954; Harris and Wolpert,
1998], multiplicative noise was incorporated into Eq. 2.31:

xt+1 = Axt + But +
m∑
i=1

Ciutϵi,t (2.38)

where m is the number of controls (see section 2.5.2.1) and Ci are constant n×m

matrices. Those matrices were constructed in Todorov and Jordan [2002] in a way
that propagates the noise from the control of one actuator to the other. Arguably
this reproduces the fact that during effective actuation of human limb geometry
(e.g. an arm), noise in the torque generated at a given joint would be projected
onto all Cartesian coordinates, depending on the joint configuration.

The observation process is of the same type as Equation 2.32:

yt = Hxt + ξt (2.39)

ϵt =

 ϵ1,t
...
ϵm,t

 and ξt are independent multivariate normal random variables with

mean 0 and covariance matrices Ωϵ and Ωξ. Equation 2.33 was then amended to
take into account proportional noise:

J(u) =< xTNQNxN +
N−1∑
t=0

(
xTt Qtxt + ut

TRut
)
>ϵ,ξ (2.40)

where <>ϵ,ξ is the expectation operator over noises ϵi and ξ and Q embed task
definition (see 2.5.2.5). The optimal control is

ut = −Ltx̂t (2.41)

with the usual state estimation:

x̂t+1 = Ax̂t + Bût + Kt(yt − Hx̂t) (2.42)
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where Kt and Lt are recursively defined as

Kt = AΣe
tH

T
(
HΣe

tH +Ωξ
)−1 (2.43)

Σe
t+1 = (A − KtH)Σe

tH
T +

n∑
i

CiLtΣ
x̂
t L

T
t Ci (2.44)

Σx̂
t+1 = KtHΣe

tA
T + (A − BLt)Σ

x̂
t+1(A − BLt)

T (2.45)

Lt =

(
BSx

t+1B
T + R +

n∑
i=1

CT
i

(
Sx
t+1 + S

e
t+1

)
Cn

)−1

BTSx
t+1A (2.46)

Sx
t = Qt + ATSx

t+1(A − BLt) (2.47)
Se
t = ATSx

t+1BLt + (A − KtH)TSe
t+1(A − KtH) (2.48)

2.5.2.4 iLQR and iLQG

The optimal control methods presented until now only apply to linear dynamics.
However, as seen in section 2.3.5 the sensorimotor system is highly non-linear.
LQR and LQG were then extended to iLQR [Li and Todorov, 2004] and iLQG
[Todorov and Li, 2005] to handle non-linear dynamics. Briefly, these methods
linearize the system’s dynamics around a nominal trajectory on which a control
law is computed and applied to improve iteratively the nominal trajectory.

2.5.2.5 Task representation

A crucial characteristics of methods presented from section 2.5.2.1 to 2.5.2.4, all
relying on the Linear-Quadratic-Gaussian formalism, is that task definition is done
within the cost-function. More precisely, it is embedded in the matrices Qt in Eqs.
2.27, 2.33 and 2.40. Consequently, control laws in Eqs 2.29 and 2.46 are built on
this task representation. Moreover, in SOFC, as the Kalman gain depends on the
control law (in a recursive way - see section 2.43), state estimation too depends
on the task.

Additionally, Todorov and Jordan give two possible implementations for a
task:

• embedding the task’s goal coordinates in the tracking cost, i.e. Qt =

Qt(wt,xG,t)

• augment the state with the task’s goal coordinates and setting only weights

in the tracking cost i.e. the state is x̃t =


xt

T

xTG,1
...

xTG,N

 and Qt = Qt(wt)
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where wt are weights and xG,t are goals to reach (or approach) during the task.

With the first approach, two different tasks automatically imply two different
sets of Qt and two different control laws. The second is a little more versatile: a
set of Qt and its corresponding control law contain only the timing and weights
of the while the actual goals can be chosen via the augmented state x̃t.

2.5.3 Achievements of the SOFC framework

The Linear-Quadratic-Gaussian formalism laid a solid ground for the motor control
community, putting an end to the feedworward/feedback debate by introducing
a more comprehensive control/estimation architecture. LQR (section 2.5.2.1) de-
fined an optimal control law (or feedback gain) that is independent of the initial
state of the system, making these control paradigms efficient for repeating and
achieving a given task with variable initial states. It also allowed to set priorities
between subgoals and effort, even though this feature presents some drawbacks
regarding task definition (see section 2.5.4).

LQG (section 2.5.2.2) broadened optimal control to stochastic systems, intro-
ducing the Kalman gain that provides an optimal estimation of the state of the
system, built on the balance of confidence that can be put into state observation
and state propagation prediction.

SOFC (section 2.5.2.3, Todorov and Jordan 2002) introduced signal-dependent
noise in the dynamic and the minimum intervention principle. From emerges a key
feature of this theory: trajectory planning and execution are no longer sequential
but simultaneous throughout the task. A direct consequence of this principle is
a declination of the Uncontrolled Manifold [Scholz and Schöner, 1999], illustrated
in Fig. 2.4 (see also Todorov and Jordan 2002, fig. 2): when reaching for a line,
perturbations in the direction of the line are not corrected. In addition to this
spatial structure of variability, temporal organisation is also accounted for: serving
the purpose of maximizing final performance, variance is allowed to be high in the
early stages of the task (see Todorov and Jordan 2002, fig. 4). Moreover, since
corrective actions are optimal regarding the task at hand, redundancy is not only
solved in a pre-computed planned trajectory, but dynamically, spreading optimally
variance and the burden of corrections and on available actuators (see Todorov
and Jordan 2002, fig. 6), as observed for instance in bimanual pointing tasks,
examined through the UCM framework [Domkin et al., 2002].

iLQR and iLQG (section 2.5.2.4) later prolong this framework to non-linear
dynamics.

SOFC framework has since been widely employed and extended in various
studies extending but not limited to: introducing gaussian trajectory goals to
produce graffitis [Berio et al., 2017], widening its capabilities to obstacle avoidance
[Singh et al., 2018] or to deal with goals uncertainty [Haith et al., 2015].
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2.5.4 Limitations of the SOFC framework

Despite being a major breakthrough in the computational approach of human
movement, a few limitations can be opposed to the SOFC framework.

First, the task is mostly defined in the cost-function (section 2.5.2.5). Even
in the augmented state representation, in which the state objectives are not in
the weighting matrices themselves, the weights actually have to be adapted in
magnitude and timing to the task. This leads to the major downfall that a new
controller (and estimator) needs to be computed for each task encountered, and
potentially stored. The computational burden of such a process and the neural
implementation of the storage of several controller is not realistic. Furthermore,
the very setting of the weights themselves seems like a ill-defined problem to solve
beforehand: what could be the rationale deciding to favor the completion of a
velocity goal over a excitation one, or over the overall effort throughout the task?
[Müller et al., 2017]

Second, movement time is not predicted by the model but rather a parameter
defining the task (Eq. 2.33). As a consequence, the first order impact of modulat-
ing the task-time (setting apart the increased variability due to bigger controls)
will be a scaling of the control outputs and, as a result, a scaling of each derivative
of the kinematics of the generated trajectory (Fig. 2.13). Yet, in reality movements
are segmented: long duration movements (typically longer than 0.5 s) will exhibit
velocity fluctuations (Fig. 2.6). As a matter of fact, as exposed in section 2.3.6,
human movements show a very consistent frequency content (e.g. the number of
peaks per seconds) over a large variety of tasks (reaching, drawing, scribbling, ...)
through the successive derivatives of the position (velocity, acceleration and jerk).
Conversely, modulating the task distance (e.g for a reaching task) while keeping
the same time results in the same type of scaling mentioned before, giving rise to
isochrony not only for fast but for all movements [Guigon et al., 2019].

Finally, as the time remaining to accomplish a given task decreases as it is
done, a perturbation in the last moments would either result in tremendous efforts
to reach the goal afterwards or in the failing of the task. Attempts have been
made to adapt feedback gains to handle task perturbations [Liu and Todorov,
2007; Dimitriou et al., 2013] but do not tackle the issue of the computational and
storage burden expose hereabove.

The aforementioned limitations should not cast a sententious shadow upon
SOFC and its breakthrough, but they call to be handled. The next section expose
how it was achieved comprehensively in a optimal control model inheriting SOFC
capabilities and built on elementary modelling principles.
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Figure 2.13: Velocity scaling. Simulations of trajectories with the same
start and ending point with varying task time from the shortest (black) to the

longest (blue). Extracted from [Guigon et al., 2019]

2.6 Optimal control with sequential terminal con-
straints and receding horizon

SOFC came on top of tens of years of fruitful research navigating between modeling
predictions and experimental observations challenging and enriching each other.
It is the same constructive process that led Emmanuel Guigon to propose a model
[Guigon, 2022] that would build up a broader, comprehensive computational theory
on the solid ground laid down by Todorov and Jordan [2002]. In order to reconcile
optimal control with movements segmentation and overcome the aforementioned
limitations, three principles were stated.

2.6.1 Modelling principles

The principles exposed hereafter were defined in the framework of control theory
[Guigon, 2022]:

Motor control is considered as a control problem in which the behavior of a
controlled object is governed by a controller through a control policy and a set of

goals to achieve.

They are thoroughly explained in the referenced paper, but we will nonetheless
give a brief summary of their motivation and core essence.
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2.6.1.1 Universal Control policy

As exposed in 2.5.4, SOFC defines a controller upon the task it is called to achieve.
This very property is at the core of one of the arguments often made against
optimal control: the feasibility of the neural implementation of such a control
framework. Indeed, the computational burden of building the control law for a
given task makes the construction "on the fly" of a controller adapted to the task
at hand hard to conceive. On the other hand, human motor control is extremely
reactive in successively perform different tasks. Moreover, as will be exposed in
Chapter 3, we humans have the incredible ability to quickly adapt to external
perturbations never encountered before, and the even more amazing ability to
"remember" these perturbations to re-adapt even quicker in any re-exposition to
the learned perturbations. These converging arguments suggest that a tremendous
number of control policies should, in a way, be stored in the brain. Such an
assertion is not reasonable, but does not rule out optimal control in itself. We
show hereafter that it is not only feasible to build a flexible controller from a
universal control policy, but that, coupled with the two subsequent principles, it
presents a large power of prediction and a plausible neural implementation.

The universal control policy we consider is inspired from model predictive con-
trol (MPC): at each moment, a new control is computed to optimally reach a given
goal from the current estimated state. In contrast, in their original formulation
LQR (section 2.5.2.1), SOFC (section 2.5.2.3) and iLQR (section 2.5.2.4) derive
a control law for the whole fixed-time trajectory in a preparation phase which is
then applied during the execution phase to determine the current optimal control
based on the best estimation available of the current state. Yet, they can be used
in our chosen framework by computing a whole control law at each timestep and
only apply its first control.

General equations 2.20 to 2.25 need to be amended according to the MPC
framework and to account for stochasticity. The dynamics at hand becomes:

ẋ(t) = f (x(t),u(t)) + ndyn(x(t),u(t), t) (2.49)

At a time t, we seek to find an optimal control u(t) to take the system from
its current state x(t) to a state satisfying a terminal condition

ψ(x(T (t)),xG(t)) = 0 (2.50)

where xG(t) is a potentially time-varying goal, within a potentially time-varying
time frame T (t). The control u(t) is the evaluation at time t of the function u∗,
defined on [t, T (t)] which is optimal regarding a cost functional

u∗ = argmin
u′

{∫ T (t)

t

L(x(τ),u′(τ), τ)dτ

}
(2.51)
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To summarise, the optimal control at time t depends on the current state of
the system, the defined terminal condition, the predictable, deterministic part of
the dynamics, the chosen cost-function, and the time to reach the current goal:

u(t) = π (x(t),ψ,xG(t),f , T (t)) (2.52)

To define our control policy to be universal, we assume that the dynamic upon
which it is built is constant, irrespective of time and tasks, and corresponds to the
body’s own dynamic so that:

u(t) = πu (x(t),ψ,xG(t), T (t)) (2.53)

A strong implication of this choice is that the dynamic used to compute the control
cannot be adapted to any task or interaction (see section 2.8.2 and Chapter 3).

2.6.1.2 Receding horizon

One of the most challenging concept in modelling human motor control is time.
Before even trying to account for temporal characteristics of human motor behav-
ior, one faces a fundamental modelling issue: defining the beginning and the end of
a movement. In experimental setups, defining movement onset and offset is tricky:
even in studying simple motor tasks in controlled environment, absolute immobil-
ity is never observed on unconstrained limbs. To overcome this difficulty, one often
considers velocity thresholds to detect the beginning or ending of movement, but
other methods were developed [Botzer and Karniel, 2009]. Yet, this difficulty ex-
presses an intuitive observation: the human body is a system in ever-going motion,
even if of small amplitude.

Modelling does not face such embarrassment, for initial and final velocities
(and generally states) can be freely set in a controller at times - or horizon -
chosen following three paradigms:

• fixed horizon: at time t of the simulation, the control is computed to reach
the current goal xG within a decreasing time T (t) = T0 − t, where T0 is a
time fixed in advance;

• infinite horizon: at any time of the simulation, the control is computed to
reach the current goal xG within an infinite time T (t) = ∞, and the actual
task time is consequential to the optimization process [Rigoux and Guigon,
2012];

• receding horizon: at any time of the simulation, the control is computed
to reach the current goal xG within a fixed time T (t) = TH .
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A control policy with fixed horizon cannot account for the temporal flexibility
motor control naturally exhibits: the task is performed within the predefined
time T0, even when exposed to noises or external perturbations while in reality
movements are prolonged to compensate for them. A fixed horizon paradigm is
thus not satisfactory.

Furthermore, it is observed that only fast movements are smooth. Optimal
control methods exposed in Section 2.5.2 with fixed horizon are time-invariants:
setting different task times T0 leads to a simple scaling of velocities (and its subse-
quent derivatives), allowing smooth movements of any duration. Likewise, infinite
horizon generate smooth movements in all configurations.

Receding horizon is highly flexible: if perturbations drive the controlled system
away from its goal, the effective completion time will be automatically extended
without any update on the controlled policy. Moreover, while isochronous behavior
can be produced by setting up diverse fixed goals, the segmentation of movements
[Guigon et al., 2019] can also be accounted for. Finally, with this setting the control
policy becomes stationary (independent of time), contributing to the feasibility of
a neural implementation of optimal control (see Chapter 4).

Hence, receding horizon was employed, with a fixed - over time, space and
tasks - value of TH = 0.28 s, which was determined in a study of slow movements
[Guigon et al., 2019]. The universal control policy described in Eq. 2.53 becomes
stationary:

u(t) = πTHu (x(t),ψ,xG(t)) (2.54)

In the particular case of a full-state terminal constraint, it simplifies further
as:

u(t) = πTHu (x(t),xG(t)) (2.55)

This choice imposes constraints on the representation of the timing of tasks (see
2.5.2.5) but we will see in Chapter 4 that the stationarity of the control has
interesting implications regarding neural implementation.

2.6.1.3 Sequential goals

In the LQG and SOFC framework trajectories may be defined by a sequence of
goals, embedded in the cost-function (see 2.5.2.5). Two issues come out of this fea-
ture: (1) the reaching time between two successive goals is fixed in advance, with-
out any flexibility regarding the impact of potential perturbations; (2) Movements
have marked start and ending time and place, which seems a bit odd considering
that one does not think one movement after another but rather as a natural flow
of actions, continuously and seamlessly achieving motor tasks.

An alternative view is proposed: rather than seeing it as a strict succession
of motor tasks, motor control should be pictured as a perpetual reaching task
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Figure 2.14: Optimal Control with sequential terminal constraints
and receding horizon. The controller is universal and compute control toward
a goal xG that is set at a fixed frequency from a sequence of states. State is

estimated to counter motor and observation noises.

toward a current goal xG that can be updated in order to fulfill complex motor
tasks. Importantly, even complex, continuous motor tasks are to be decomposed as
a series of discrete goals to be targeted successively or overlapping. Additionally,
if the task at hand does not present temporal constraints, xG is updated at fixed
and unique frequency (1/TG, with TG = 0.13 s). This value was identified in a
study of slow movements to account for velocity fluctuations at ∼8 Hz [Guigon
et al., 2019] and, as TH , should be seen as a constant. In the same paper are
given rules on the application and most importantly definition of sequential goals:
they can be set as partial constraints on the state (e.g. only position and velocity
are set) as well as functions (to constrain end-effector in a redundant system for
instance).

Interestingly, this value coupled with the one of TH implies that a new goal
generally won’t be reached in a single time-frame of TG, allowing the representation
of continuous tasks in this framework (see section 2.6.2.1).

2.6.2 Implementation

The schematic adopted representation of human motor control is given in Fig.
2.14: in order to control the state xt of a potentially noisy controlled system, a
continuous and potentially noisy observation yt is performed, while a state esti-
mation x̂t is used as an initial state for the determination of an optimal control
ut to reach a current goal xG.
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2.6.2.1 Task representation

As previously exposed, we define the control policy to be universal. This first
principle demands all task representation to be embedded in the goals provided
to the controller. Formally, Eq. 2.50 defines them as terminal boundary con-
ditions (allowing for instance to define full state objectives as well as endpoint
cartesian objectives) but we will hereafter refer to them as goals, written xG. In
this framework:

• reaching is achieved by setting xG to xreach and maintaining it long enough
for the system to stabilize. For unperturbed movements and with the deter-
mined horizon time 0.28 s, it takes roughly 0.4 s, regardless of the objective
state (or distance) giving rise to isochrony for fast movements (Fig. 2.15A).
In order to perform slower reaching movements are done by setting interme-
diary via-points before the actual goal (Fig. 2.15B)

• posture is achieved by maintaining xG to xposture for as long as the task
goes on. With perfect control and observation, this results in trying to get
the system to a state he is already in. In the presence of noise and/or
perturbations, deviations from the objective state induce corrective actions,
potentially generating oscillations (Fig. 2.16C).

• tracking is achieved by extracting a sequence goals from the trajectory to
follow and successively feeding them to the controller as its current goal(Fig.
2.16D).

Guigon [2022] provides a more detailed and comprehensive list of task representa-
tion: drawing, scribbling, rhythmic movements, ...

Resisting static force is a task that has been thought to be handled by a
static controller, while movements were generated by a dynamic controller accord-
ing to the separation principle [Guigon et al., 2007a]. In our framework, though,
no such distinction is allowed. Appendix E proposes diverse task representation
to position control opposing static forces but also to force control. In essence, the
goal state xG needs to include an overshoot of the actual aimed position, an over-
shoot of the activation and excitation corresponding to the force or a combination
of those. Although proper study need to be ran to confront them to experimental
data, such a task representation show an interesting "trick": the goals set to the
controller may be different from the actual objective state.

2.6.2.2 Optimal computation

Section 2.6.1.1 stated a first principle that defines the element of the optimization
process: the dynamic considered is bound to be the one of the system to control
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A

B

Figure 2.15: Task representation (1/2). All figures are illustrations: y-
axis represent general state, with arbitrary unit. Dashed red lines represent
the current goal the controller is trying to reach. Plain line represent actual
trajectories. A. Reaching task with three different goals, all attained within the
same time (roughly 0.4 s), showing isochrony. B. Slower reaching task: two
intermediary via-points are successively fed to the controller before the actual
goal. Dotted lines show the trajectories followed if those via-points were pursued.

(i.e. the body or used limbs), regardless of any interaction with the environment
(see Chapter 3). The second principle (section 2.6.1.2) identified the optimization
time to be receding. Finally, task representation is defined by the third principle
as a series of state to be fed at a fixed frequency to the controller as its current
terminal objective. Two elements remain to be determined:

• cost-function: many cost-function definitions have been introduced in at-
tempt of reproducing diverse human movement characteristics, and attempts
have been made to combine them in hybrid cost-functions and evaluate their
respective contributions [Berret et al., 2011]. Arguments could be made
on the likelihood of cost-functions, but given the approximations made on
the modelling of the phenomena at hand (inertial dynamics, muscles inser-
tions and activation, ...), we postpone the endeavour of finding the best
cost-function to the point where it will appear to be a critical element in
accounting for motor control characteristics. Hence, we stick to the effort
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C

D

Figure 2.16: Task representation (2/2). All figures are illustrations: y-
axis represent general state, with arbitrary unit. Dashed red lines represent the
current goal the controller is trying to reach. Plain blue line represent actual
trajectory. C. Postural task: the controller always aims at the same state,
correcting for inner or external perturbations. D. Tracking task: via-points
(dashed red lines) are extracted from the followed trajectory (plain black line).

cost-function adopted by Todorov and Jordan [2002]:

J =

∫ t+tH

t

uTτ uτdτ (2.56)

• controller current goal: as stated in sections 2.6.1.3 and 2.6.2.1, tasks are
to be translated into series of goals, defining successively the current goal
of the controller. The general formulation expresses goals as an absolute
constraint (ψ in Equation 2.50) but they may be implemented as an objective
within the cost-function, alongside the effort:

J =

∫ t+tH

t

(uTu+ (x− xG)TQ(t)(x− xG)dτ (2.57)

with Q(t) = diag(wg) where under the condition that the weights in wg
be high enough for the controller not to make a compromise between task



2.7. The common content of motor signals 41

completion and effort. This requirement is fundamental in order to use iLQR
as an optimal solver in this framework.

2.6.2.3 State estimation

The sensorimotor system is plagued with noise (section 2.3.2) and delays (section
2.3.3) and the state of the system is known only through a noisy observation
process:

y(t) = Hx(t−∆) + nobs(x(t−∆), t) (2.58)

To incarnate the ability of human motor control to overcome this difficulty, state
estimation was introduced in the LQG (section 2.5.2.2) by the means of a Kalman
filter. In SOFC (section 2.5.2.3) and iLQR (section 2.5.2.4), the control law was
recurrently defined from the Kalman gain. Yet, it was shown that such a close
coupling between control and estimation is not necessary for the minimum inter-
vention principle to apply and structured variability to be accounted for [Guigon
et al., 2008]: a deterministic controller and a stochastic estimator perform equally
well. Thus, the control computation described in section 2.6.1.1 ought to be based
on the best estimate of the current state: x̂(t).

State estimation was performed through an extended Kalman filter - which is
the general, non-linear formulation (see Appendix B). In order to approach the
continuous nature of human movement, a discretized version of the continuous for-
mulation of the Kalman filter was adopted (although with small enough simulation
time-steps results are similar with the discrete Kalman filter):

˙̂x(t) = f (x̂(t),u(t)) + K(t) (y(t)− Hx̂(t)) (2.59)

2.7 The common content of motor signals

One way to circumvent the smoothness issue raised in section 2.3.6 is to choose a
smoothing level once and for all, and use it for any and every dataset we intend to
analyse. In this way, the data will be more or less smooth depending on the chosen
level, but there will be no opportunity to adjust the smoothness at will. Further-
more, analysis of acceleration and jerk profiles can be interesting to reveal hidden
irregularities in velocity profiles. These points are illustrated in Fig. 2.17 where
acceleration and jerk profiles for samples of tongue movement during speech (Fig.
2.17A), drawing (Fig. 2.17B,C) and displacement of the center of pressure during
posture (Fig. 2.17D) are shown. Two observations can be made. First, there is
an apparent common temporal structure for the three tasks despite differences
in task nature, displacement amplitude, acceleration and jerk (Fig. 2.17A,B,D).
Second, there is no apparent differences of temporal structure between healthy
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and pathological drawing movements (healthy elderly vs patient with Parkinson’s
disease; Fig. 2.17B,C).

The present work is cast in the framework of computational motor control
[Todorov and Jordan, 2002]. In this framework, an action is the outcome of a
control process that elaborates a signal to drive an object (e.g. a set of body
segments and a muscular system) toward a goal. A simple and widely used case
consists in a mass point (m) driven by a second-order linear muscle (time constant
ν). Its dynamics writes

ṗ(t) = v

v̇(t) =
α(t)

m

α̇(t) =
ε(t)− α(t)

ν

ε̇(t) =
u(t)− ε(t)

ν

(2.60)

where p, v, α, ε, u are position, velocity, muscle activation, muscle excitation, and
control signal, respectively, and the purpose of control is to find an appropriate
control policy u(t) to obtain some intended behavior [Harris and Wolpert, 1998;
Todorov and Jordan, 2002]. Irrespective of the exact control policy, the model
indicates that characteristics of the produced behavior (e.g. p(t)) are a by-product
of the filtering and integration of the control signal by the muscular system and the
object dynamics. According to this model, if we record a position signal during
a behavioral motor task, it is expected that its successive derivatives (velocity,
acceleration, jerk, . . . ) should become an increasingly closer approximation of
the putative control signal as the order of differentiation increases. Consider the
experimental data shown in Fig. 2.18A (a single trial of slow back-and-forth
arm movements; Guigon et al. 2019). A position signal was recorded, successive
derivatives were obtained numerically, all the signals were low-pass filtered at 10
Hz and the peak frequency (number of min+number of max/duration/2) in each
signal was calculated. Note that the peak frequency in the position signal itself
(black; Fig. 2.18A,B) is not relevant since it corresponds to task requirements (in
fact, a position signal can be transformed in a monotonic signal without changing
the frequency content of its derivatives). We observed by eye that the frequency of
fluctuations increased with the order of differentiation (from top to bottom; Fig.
2.18A). This property was found over the entire dataset together with a decrease
in the variability in peak frequency (Fig. 2.18B). This latter observation indicates
that widely different velocity profiles are produced by a comparatively restricted
set of temporal patterns of acceleration. These observations suggest, according to
the proposed computational framework, that the putative (unobservable) control
signal for this dataset should contain fluctuations in a ∼6-10 Hz range. Three
sets of synthetic signals are provided to weight this conclusion and show that it is
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Figure 2.17: Acceleration and jerk profiles for diverse motor tasks.
A. 1.5-s extract of acceleration and jerk profiles for tongue tip displacement
during speech (inset; calibration 5 mm). Data from Kuberski and Gafos [2019].
B. Same as A for a 1.5 s extract of a single spiral drawing trial (inset; calibration
5 cm). Data from a control participant from Drotár et al. [2016]. C. Same as
B for a participant with Parkinson’s disease. D. Same as A for a 1.5 s extract
of the centre of pressure trajectory during quiet stance (inset; calibration 1 cm).
Data from Apthorp et al. [2014]. All the time series are low-pass filtered at 10
Hz. Kuberski and Gafos [2019]: https://doi.org/10.5281/zenodo.2273898
/ Drotár et al. [2016]: http://bdalab.utko.feec.vutbr.cz/ / Apthorp et al.

[2014]: https://doi.org/10.6084/m9.figshare.1126648.v1

https://doi.org/10.5281/zenodo.2273898
http://bdalab.utko.feec.vutbr.cz/
https://doi.org/10.6084/m9.figshare.1126648.v1
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neither an epiphenomenon nor an artifact (Fig. 2.18C,E,G). First, a model with
fluctuations of the control signal at a unique, fixed frequency (∼8 Hz; see section
2.6 and Guigon et al. 2019) can generate synthetic signals that are consistent with
the experimental data (no fitting was attempted; Fig. 2.18C,D). The same model
with fluctuations of the control signal at variable frequencies fails to account for
the experimental observations (not shown). Second, not all signals (e.g. a purely
sinusoidal signal) display a scaling of peak frequencies (Fig. 2.18E,F). Third,
random signals (here a shuffled version of the data in Fig. 2.18 A) display the
scaling property but without a decrease in the variability in peak frequency (Fig.
2.18G,H).

To further assess the content of motor signals, we selected a dataset that con-
tains data from several independent recording systems. In Wang and Majewicz Fey
[2018], participants performed rhythmic arm movements in a Fitts’ paradigm (14
participants, 36 trials/participant). Arm position was recorded in 3D with an hap-
tic device, and IMUs collected velocity and acceleration signals. A sample trial is
shown in Fig. 2.19A and its successive derivatives in Fig. 4B. For this trial, the
peak frequency increased with the order of differentiation (Fig. 2.19B, top to bot-
tom). This property was also observed across the trials although with a substantial
variability (Fig. 2.19E, top to bottom; Fig. 2.19H, left). Note that we are not
interested in the temporal structure of the position signal itself since it mostly re-
flects task requirements. We noticed that the peak frequencies varied weakly with
the mean velocity calculated on each trial (Fig. 2.19E), although a Bayesian test
systematically rejected an absence of variation. Similar observations were made
for velocity recordings (Fig. 2.19C,F and H, center) and acceleration recordings
(Fig. 2.19D,G and H, right). Note that, in the latter case, peak frequency was
displayed as a function of mean acceleration (Fig. 2.19G). Mean peak frequency
consistently increased with the order of differentiation for the three types of signal
(Fig. 2.19H) which supports the idea that it is not merely an artifact of data
processing (numerical differentiation, filtering). Yet differences were observed, e.g.
between acceleration obtained by an accelerometer and acceleration obtained by
differentiation (Fig. 2.19H, green) which indicates that data processing can in-
troduce artifacts. The mean peak frequency covaried with the "true" frequency
content of the signals (estimated by the mean centroid frequency of the power
spectrum calculated on the unfiltered signals; Fig. 2.19H, horizontal bars) which
further confirms the suitable nature of the peak frequency measure.

To explain the variability in peak frequency, we considered two trials with
widely different kinematics: large and long velocity fluctuations (Fig. 2.20A)
vs small and short fluctuations (Fig. 2.20B). They were characterized by large
differences in velocity and acceleration peak frequencies (Fig. 2.20A,B; red and
green), but minimal difference in jerk peak frequencies (Fig. 2.20B; blue). This
means that a common temporal structure in higher derivatives can correspond
to dramatically different structures in the lower derivatives. It is unsurprising in
mathematical terms, but interesting as a strategy for motor control.
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Figure 2.18: Frequency contents of experimental and synthetic data.
A. A 5-s extract of position, velocity, acceleration and jerk profiles for one trial
of slow arm displacement. Data from Guigon et al. [2019]. B. Histogram of
mean peak frequency across the complete dataset for data in A. The symbols
give the standard deviation (right axis). C. Synthetic data generated using the
proposed model. D. Histogram for data in C. E. Synthetic sinusoidal trajectory.
F. Histogram for data in E. G. Shuffled signal from A. H. Histogram for data
in G. Guigon et al. [2019]: https://doi.org/10.6084/m9.figshare.5977894

https://doi.org/10.6084/m9.figshare.5977894
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Figure 2.19: Frequency content of data recorded with various sen-
sors (data from Wang and Majewicz Fey [2018]). A. A 5-s extract of position
recorded with an haptic device (3D coordinates: black, dark gray, light gray) for
one trial. B. Cartesian velocity, acceleration and jerk for data in A. C. One-axis
velocity signal recorded in with an IMU for the trial in A and its derivatives.
D. One-axis acceleration signal recorded in with an IMU for the trial in A and
its derivative. E. Velocity, acceleration and jerk peak frequency for the position
signal as a function of mean velocity for all the trials (only 1 over 5 trials shown).
One trial is shown in A, B. Inset: standard deviation. F. Velocity, acceleration
and jerk peak frequency for the recorded velocity signal as a function of mean
velocity for all the trials (only 1 over 5 trials shown). One trial is shown in C.
G. Acceleration and jerk peak frequency for the recorded acceleration signal as a
function of mean acceleration for all the trials (only 1 over 5 trials shown). One
trial is shown in D. H. Histogram of peak frequency for E (left), F (center),
G (right). Horizontal lines (white or colored) indicate the centroid frequency
of the power spectrum calculated on unfiltered data. Wang and Majewicz Fey

[2018]: https://doi.org/10.7910/DVN/YN89X6

https://doi.org/10.7910/DVN/YN89X6
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Figure 2.20: Data from Wang and Majewicz Fey [2018]. Two trials with dif-
ferent velocity fluctuations. The central histograms indicate the peak frequency

for the traces in A (open) and B (closed).

These observations are very general and can be reproduced on many different
datasets for different tasks (arm movement, gait, posture, . . . ) and different species
(human, monkey, rat, . . . ) [Guigon et al., 2022]. They put strong constraints on
models of motor control. In fact, most models, in particular those based on optimal
control, fail to account properly for the content of motor signals (see section 2.5.4).

2.8 Discussion

The study of human motor control has come a long way since the first crucial
observations that laid a solid ground for attempts in modelling how the CNS pro-
duces voluntary movements. Optimal control offered an efficient computing tool
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to reproduce the general apparent smoothness and gracefulness of rapid reaching
movements. It was further used to generate reference trajectories to which the
body would be bound to by the intermediary of gains both provoking motion and
ensuring stability in presence of perturbations. Yet, the limitation of correction
to deviations that impact performance (described by the uncontrolled manifold)
could not be accounted for. The LQG proposed a most pertinent structure fusing
optimal control and optimal estimation, allowing to drive linear stochastic systems
according to trajectory goals embedded in a cost function.

SOFC extended this framework by introducing signal proportional noise and
minimizing a cost function expressed as an expectation over noises, thus formu-
lating the minimum intervention principle [Todorov and Jordan, 2002]. This el-
egant solution to the redundancy problem accounted for structured variability in
both task and joint space. yet showed some limitations: (1) a strict definition
of task time prevented timing adjustments to perturbations and did not account
for movements segmentation; (2) the task definition was embedded in the control
law, making unrealistic a direct neural implementation.

Optimal control with receding horizon and sequential goals prolonged these
works proposing three modelling principles [Guigon, 2022]: (1) the control policy
is universal; (2) the time to reach a goal is constant; (3) goals are updated at a
fixed frequency. This model managed to reproduce a wide range of task (reach-
ing, writing, scribbling, rhythmic tasks, ...) and account for most properties of
human movement (scaling laws, isochrony, segmentation, power laws, speed/ac-
curacy tradeoff, structured variability). Most importantly it proposed a decisive
view of motor control that have three strong implications: (1) the CNS is in a per-
petual reaching task; (2) each and every motor task is translated into a sequence
of goals to reach with a unique, constant and universal controller; (3) at all times,
control is unequivocally defined by the current estimated state of the body and
the current goal to reach.

2.8.1 Everything is "movement"

2.8.1.1 Relationship with postural models

Sections 2.6.1 and 2.6.2 modelled the control process as a stationary computation
depending solely on the current estimated state of the system and the current goal
to reach:

u(t) = π(x̂(t),xG(t)) (2.61)

The motor action - or torques - may thus be expressed as:

τ (t) = Γ(x̂(t),xG(t)) (2.62)
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where Γ is the solution in τ of the differential system defined by Eq. 2.10. The
whole dynamic of the system may thus be written as:

Mẋ(t) + c− τ e = Γ(xG(t), x̂(t)) (2.63)

As a reminder, the model proposed by the equilibrium point theory was (Eq. 2.18)

Mẋ(t) + c− τ e = K(x0(t)− x(t)) (2.64)

Here we see a striking resemblance between a theory portraying motor control
as perpetual posture and ours, viewing it as as perpetual movements. The main
advantage of our proposed model is that it embeds control dynamics, optimality,
redundancy solving and minimum intervention principle. Hopefully this concep-
tual similarity/symmetry will contribute to reconcile the remaining divergence
between these two theories.

2.8.2 Everything is task representation

The proposed model is built upon three simple, elementary principles. The first
one states that all motor tasks are managed by a single, unique and universal con-
troller. This bold claim has already been validated on numerous tasks by Guigon
[2022] (see 2.6.2.1 for the schematic representation of some of them). In all those
tasks the human body was isolated from its surrounding environment, evolving
freely. In reality though, we are in perpetual interaction with our environment. In
certain cases, those interactions can be omitted while modelling for they are either
negligible by nature (e.g. friction in scribbling tasks) or orthogonal to the task by
experimental design (e.g planar manipulandum) making the free hypothesis valid.
But in other conditions not only are interactions non negligible but their aston-
ishing good management by the CNS is of great interest for the study of human
motor control. It is in particular the case for perturbations, which may be divided
in three categories:

• stochastic perturbations: be the nature of their cause internal (e.g. in-
ner noises - see section 2.3.2) or external (e.g. intermittent force pikes,
vibrations), their intensity and time of occurrence cannot be anticipated nor
modelled. At best can their statistics - in the form of spectral density ma-
trix - be evaluated. Optimal state estimation is a powerful approach that
exploits the perturbations’ statistics to minimise their effect on the compu-
tation of voluntary controls, but observation and action delays (see section
2.3.3) may in certain circumstances (perturbations of high frequency or in-
tensity) make descending commands insufficient to perform the motor task
at hand. Fortunately, the human body is equipped with tools allowing to
produce corrective actions without involving the brain. The first to come
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into play is of purely mechanical nature and lies in the impedance of muscle-
tendons units (see section 2.2.5). Its efficiency can be adapted by the means
of the simultaneous activation of agonist and antagonist muscles: cocontrac-
tion [Hogan, 1984a]. The second to intervene is the set of reflexes pathways
that generate automatic, peripheral commands to modify muscle activity.
Several mechanisms allow to modulate the sensitivity of those reflexes.

• continuous perturbations: interactions with our environment is often
continuous (e.g. when moving in water) and may lead to the application
of unknown forces upon our end effector, which follow their own dynamics
(e.g. the fluid dynamics). Despite these forces, motor tasks may be achieved:
at first, movements may be clumsy, but after a surprisingly short time task
performance rises up, and trajectories come close to those under unperturbed
conditions, approaching back a form of optimality. This phenomenon is
called motor adaptation, and has been mostly studied using force fields
exerted via robotic manipulanda [Shadmehr and Mussa-Ivaldi, 1994].

• tool manipulation: during the manipulation of complex objects (e.g. sur-
gical tools, active prosthesis), one is submitted to aforementioned continuous
perturbations. Yet, motor tasks are not to be achieved despite the interact-
ing object, but with the object, redefining not only the global dynamics but
the end effector.

After having been confronted to and validated on free tasks, it is thus essential
to examine how interaction tasks may be cast in our proposed framework.

Similarly to the separation principle [Guigon et al., 2007a], cocontraction is
often modelled as an additive command, injected alongside movement commands
following a reference trajectory [Gribble et al., 1998; Latash and Gottlieb, 1991]. In
our proposed model, no reference trajectory definition is allowed, but a resembling
additive command may be included. This was the object of an exploratory theo-
retical study presented in Appendix F, in which a candidate task representation
and preliminary modelling predictions are proposed.

As it is the case for the human body, continuous perturbations may be de-
scribed and predicted by a set of differential equations constituting a dynamics. It
is therefore tempting to describe motor adaptation as either the addition of force
commands countering the predicted action of the perturbation [Shadmehr and
Mussa-Ivaldi, 1994] or as the inclusion of the perturbation’s dynamics into a new
controller, built on a new global dynamic [Izawa et al., 2008]. In our framework,
the first modelling principle does not allow any modification of the controller, and
motor adaptation can only be cast in the form of task representation. In Chapter
3, we propose a novel view on motor adaptation and compare it to competing
motor adaptation theories in the light of an experimental study.

Manipulating a tool requires a minima to have knowledge of its geometry
and of the nature of its mechanical link with our body in order to define a new
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end effector. With this relatively realistic hypothesis, defining a goal for the end
effector of the tool can be translated into a goal for the linking point on the
body. But is this information enough to be able to handle any tool? Or does one
need to be able to estimate the velocity of the newly formed joint? To evaluate its
inertial properties? Or ultimately to know the proper dynamics of the tool? These
consideration could bring valuable information on how the CNS handles tools and
prosthesis and ultimately to improve control laws.

2.8.3 Stationary control

The first two modelling principles we adopted - universal control policy (section
2.6.1.1) and receding horizon (section 2.6.1.2) - make the computation of optimal
control stationary (Eq. 2.54). In the particular case of a linear representation of
the controlled system, control is even given by the product of a constant matrix and
a vector combining the current state of the system (or its best available estimation
in the case of a stochastic system) and the current goal to reach. In a more realistic
non-linear representation, stationarity holds, and control is found by applying a
non-linear, time independent function to the current state and goal.

This property paves the way for putting an end to a recurrent objection often
made to optimal control as a description of human motor control: it would see
the CNS as an intelligent controller, acting as a computer rather than a system
answering to the laws of physics. It appears from Latash [2010] that this view
stems from the sequential representation made of processes in control theory: the
controller receives information and then "decides" a control appropriate to the
task it is trying to achieve. Feldman [2015] state that motor control should be
described as a physical law which is defined by a set of equations bonding law-
constrained variables (e.g. the angle of a pendulum) to parameters that can be
divided into two subsets: invariant parameters (e.g. the gravitational constant)
and controllable parameters (e.g. the length of the pendulum). It is argued that
motor control is driven by voluntary changes of controllable parameters.

The proposed model can be perfectly cast in this view: control is in our frame-
work directly, continuously and unequivocally linked to sensory information and
the current motor task by a function with constant parameters. Control thus meets
the criteria to be defined as a law-constrained variables, the goal of the controller as
a controllable parameters, and the control law as a physical law. Universal optimal
control with receding horizon is then a perfectly valid motor control theory ac-
cording the own requirements of the community of equilibrium point theory (also
known as the lambda theory and referent control theory).

The next step to go further in the validation of our view of motor control is to
verify the feasibility of its neural implementation. Chapter 4 addresses this issue
by assessing the possibility for our optimal control law to be approximated by the
composition of elementary activation functions inside a simple neural network.
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Moreover, the activation properties of our artificial neurons are compared to those
of the primary motor cortex.
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3.1 Introduction

Motor behavior is at the same time highly stable and widely flexible [Bernstein,
1967; Glencross, 1980; Krakauer et al., 2019]. On the one hand, a large repertoire
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of skilled, efficient behaviors (e.g. speech production, handwriting, gait, . . . ) is
maintained for decades and can possibly resist to injury, aging, disease or brain
damage. On the other hand, a few movements performed in a novel sensorimotor
environment (e.g. wearing prismatic glasses, holding a visco-elastic manipulan-
dum, . . . ) or in some altered physiological state (e.g. muscular fatigue, pain, . . . )
can induce lasting changes in motor performance [Shadmehr and Mussa-Ivaldi,
1994; Martin et al., 1996; Takahashi et al., 2006; Bouffard et al., 2014]. A proper
cooperation between stability and flexibility is mandatory so that:

• ingrained skills remain sensitive to steady and persistent changes in the en-
vironment, the body and the nervous system but are not outrageously influ-
enced by temporary, incidental events;

• new skills can develop at any time upon request.

What kind of organization of skills is compatible with such a requirement?

There are two views on motor learning and skill acquisition [Krakauer et al.,
2019]. The first view holds that learning occurs at the action selection (control)
level and modifies the mapping between intended goals and actions appropriate
to achieve these goals. For instance, in the typical laboratory example of adap-
tation to a velocity-dependent force field (dynamic perturbation; Bernstein 1967;
Shadmehr and Mussa-Ivaldi 1994), learning has been described either as a com-
pensation process, i.e. a mapping is learned between states and compensatory
forces that oppose to the applied forces [Shadmehr and Mussa-Ivaldi, 1994], or
as a reoptimization process, i.e. a mapping is learned between goals and optimal
forces to achieve the goals in the presence of the applied forces [Izawa et al., 2008].
According to the second view, learning occurs at the goal selection level and mod-
ifies the mapping between intended and actual goals irrespective of how to achieve
these goals. For instance, adaptation to a visuomotor rotation of the visual dis-
play (kinematic perturbation) results from a redirection process, i.e. a remapping
between target and movement vectors [Wang and Sainburg, 2005]. Although the
latter learning process appears more flexible and frugal than the former, it is un-
clear whether it can account for adaptation to dynamic perturbations, i.e. when
new patterns of force need to be learned.

Models based on compensation or reoptimization are well formulated models
that can be used to make predictions on adaptation to dynamic perturbations
(velocity-dependent force field; Shadmehr and Mussa-Ivaldi 1994; Izawa et al.
2008). In particular, the shape of after-effect trajectories, i.e. late trajectories
in the absence of the force field after adaptation, should incorporate a "negative
image" of the forces induced by the applied force field and thus resemble to mirror-
transformed before-effect trajectories, i.e. early trajectories in the presence of the
force field before adaptation (this is exactly the case for the compensation model;
Shadmehr and Mussa-Ivaldi 1994). The shape of before-effect trajectories has
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been thoroughly documented. They are initially curved "away" from the baseline
(unperturbed) trajectory with a late ensuing correction toward the target [Shad-
mehr and Mussa-Ivaldi, 1994]. We have not found any study that quantitatively
documents the shape of after-effect trajectories. Yet qualitative observations on
published figures suggest that after-effect trajectories do not obey to the predicted
mirror organization (fig. 5 in Thoroughman and Taylor 2005; fig. 4 in Hwang et al.
2006; fig. 1 in Nozaki et al. 2006; fig. 2 in Huang and Shadmehr 2007; fig. 2 in
Darainy et al. 2009; fig. 1b in Sun et al. 2022). In fact after-effect trajecto-
ries seem to resemble "kinematic" trajectories, i.e. trajectories observed during
visuomotor rotation or target jump tasks rather than to "dynamic" trajectories
observed during force field tasks (examples of constrast between kinematic and
dynamic trajectories in fig. 3 in Diedrichsen et al. 2005; fig. 6 in Torrecillos et al.
2015). Thus they could be compatible with a redirection process as if adaptation
corresponded to aiming toward spatially remapped targets.

The goal of this study is to clarify the nature of before-effect and after-effect
trajectories during a force field adaptation task and gather evidence for or against
between compensation/reoptimization and redirection processes as a basis for mo-
tor adaptation.

3.2 Simulation methods

3.2.1 Computational modelling

We simulated displacements of a planar two-link arm whose dynamics and param-
eters were described in Chapter 2, section 2.4.1. As a reminder, the dynamics is
written :

q̈ = M(q)−1 (τ u + τ e − c(q, q̇)) (3.1)

where q =

[
qsh
qel

]
are the shoulder and elbow angles, M(q) the inertia matrix,

c(q, q̇) the vector of velocity-dependent torques, τ u the control torque produced
by actuators and τ e the torque due to external forces applied on the arm.

Displacements were perturbed by a velocity-dependent force field producing
a force proportional to vhandψ , the hand cartesian velocity projected onto the task
direction vector δψ (angle direction ψ is measured from initial hand position to
target position and 0 is rightward) and perpendicular to this direction (colinear to
δ⊥ψ , the normal vector to δψ). The force applied is thus F ψ = ϕvhandψ δ⊥ψ . Described
in the joint space, the force field is

D = R(ψ)−1

[
0 0

ϕ 0

]
R(ψ) (3.2)
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where ϕ is the force level (ϕ > 0 for a counterclockwise perturbation, ϕ < 0

for a clockwise perturbation) and R(ψ) the rotation matrix of angle ψ. The
perturbation torque is

τ e = τ
ϕ
e = J(q)TDJ(q)q̇ (3.3)

where J(q) is the Jacobian matrix defined in 2.9

In all the simulations, the initial arm configuration was [45◦, 90◦], movement
amplitude was 0.1 m, movement direction was ψ = 90◦, and force (field) level
was ϕ = 2 Ns/m. Four conditions were considered: baseline, in the absence of
the force field; before-effect, in the presence of the force field before adaptation;
adapted, in the presence of the force field after adaptation; after-effect, in the
absence of the force field after adaptation.

3.2.2 Compensation model

The compensation model is taken from Shadmehr and Mussa-Ivaldi [1994]. The
principle is the following. First we derive a desired 1-s spatial trajectory for a
0.1 m forward displacement based on a 0.5 s 0.1-m long minimum-jerk trajectory
[Flash and Hogan, 1985] followed by a 0.5-s stationary posture. Second we use
the arm inverse kinematics to obtain the desired angular trajectory q∗(t), and the
arm inverse dynamics (Eq. 3.1) to calculate the joint torques τ ∗

u(t) which produce
the desired angular trajectory. Third we obtain actual angular trajectories using

q̈ = M(q)−1 (τ ∗
u + τ e + τ c − B(q − q∗)− c(q, q̇)) (3.4)

where τ c is a compensation torque built by adaptation, and B a feedback gain
along the desired trajectory (B = 20I2 Nm/rad, where I2 is the 2×2 identity
matrix). The four conditions are: baseline, τ e = τ 0

e and τ c = 02; before-effect,
τ e = τ ϕe and τ c = 02; adapted, τ e = τ ϕe and τ c = τ−ϕ

e = −τ ϕe ; after-effect,
τ e = τ

0
e = 02 and τ c = τ−ϕ

e = −τ ϕe .

3.2.3 Reoptimization model

The reoptimization model is an extension of the model described in Izawa et al.

[2008]. The control torque τ u =

[
τ shu
τ elu

]
is derived from a control input u =[

ush

uel

]
according to Eq. 2.10.

We rewrite the dynamics (Eq. 2.16) as ẋ = F 0(x) + ndyn for the unper-
turbed dynamics or ẋ = F ϕ(x) + ndyn for the perturbed dynamics, where ndyn
is additive noise on the dynamics. We formulate an optimal feedback control
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problem for this dynamics as a search for a control policy u(t) to reach a goal
x# =

[
q#sh, q

#
el , q̇

#
sh, q̇

#
sh, α

#
sh, α

#
el , ϵ

#
sh, ϵ

#
sh

]
while minimizing the cost

JF· =

∫ t+TH

t

(
uTu+ (x− x#)TQ(t)(x− x#)

)
dt (3.5)

where

Q(t) = 08,8 for t < tH − δ

Q(t) = diag
(
[w#

q , w
#
q , w

#
q̇ , w

#
q̇ , w

#
α , w

#
α , w

#
ϵ , w

#
ϵ ]
)

for t ≥ tH − δ
(3.6)

where w#
q , w

#
q̇ , w

#
α , w

#
ϵ are cost parameters (exponent # indicates the parameter

depends on the goal), F · is either F 0 or F ϕ to indicate whether optimization
applies to the unperturbed or the perturbed dynamics, TH is the planning horizon
[Guigon, 2022], and diag[ ] indicates the diagonal matrix with listed values on the
diagonal. Note that the goal formulation as an objective here is but an artifact
from optimizatiopn computation. Weights were set with high values to ensure the
goal as a constraint, non subjected to compromises (see 2.6.1).

In Izawa et al. [2008], optimization runs on a fixed duration (0.5 s) and thus
cannot be used to simulate before-effect and after-effect conditions which require
flexible time to produce online movement corrections. Control with a planning
horizon offers an efficient solution to time flexibility as at any time and in any
changing situation due to a perturbation there always remains the duration of a
planning horizon to reach designated goals [Guigon, 2022]. The initial boundary
condition for the optimization process is given by x(t) = x̂(t), where x̂(t) is
the estimated value of x provided by an optimal state estimator using forward
modeling and delayed sensory feedback with delay ∆ [Guigon et al., 2008; Guigon,
2022]. The state estimation is given by

x̂(t) = F̂ (x̂(t)u(t)) +K(t) (y(t−∆)−Hx̂(t)) (3.7)

where F̂ is the dynamic considered for estimation which is either F 0 or F ϕ (see
below), H = [I404] is a 4× 8 observation matrix (I4 is the 4× 4 identity and 04

the 4×4 null matrix), indicating that only the position and velocity are observed,
K(t) the Kalman gain and

y(t) =Hx(t) + nobs (3.8)

where nobs is additive observation noise. The Kalman gain is given by

K(t) = A(t)P (t)HT
(
HP (t)HT +Ωω

)−1 (3.9)

where
A(t) =

∂F·

∂x
(3.10)
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and
P (t+ δ) = Ωξ + (A(t)−K(t)H)P (t)A(t)T (3.11)

where δ is the integration timestep, Ωω the covariance matrix of observation (sen-
sory) noise nobs (4-dimensional, zero-mean, Gaussian random vector) and Ωξ the
covariance matrix of dynamic (motor) noise ndyn (8-dimensional, zero-mean, Gaus-
sian random vector). We take

Ωω = σω × diag[1, 1, 10, 10] (3.12)

and
Ωξ = σξ × diag[1, 1, 10, 10, 100, 100, 1000, 1000] (3.13)

where σω and σξ are the variance of sensory and motor noise, respectively. The
state estimator is formulated to be optimal taking into account the feedback delay
as explained in Appendix B.

To control movement duration, the goal xG is updated every TG within a series
of successive intermediate goals (via-points) S = {x0,x1, · · · ,xn} with xn = x∗,
i.e.:

• x# = x0 at t = 0,

• x# = x1 at time t = TG,

• ...,

• x# = xn = x∗ at time t = nTG,

where x∗ is the final goal of the movement [Guigon et al., 2019; Guigon, 2022].
Note that movements are not bounded to end at a preset time. For anytime
t ≥ nTG, the goal to reach will remain x∗, allowing for endtime adjustments for
perturbation compensation. The four conditions are:

• baseline: τ e = τ 0
e = 0, J = JF0 , F̂ = F 0;

• before-effect: τ e = τ ϕe , J = JF0 (the trajectory is planned based on the
unperturbed dynamics but executed against a perturbation), F̂ = F 0 (the
estimator is unaware of the perturbation);

• adapted: τ e = τ ϕe , J = JFϕ
(the trajectory is planned based on the per-

turbed dynamics and executed against a perturbation), F̂ = F ϕ (the esti-
mator is tuned to the perturbed dynamics);

• after-effect: τ e = τ 0
e = 0, J = JFϕ

(the trajectory is planned based on
the perturbed dynamics but executed in the absence of the perturbation),
F̂ = F ϕ (the estimator remains tuned to the perturbed dynamics).
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Parameter Value Unit

∆ 0.12 s
δ 0.01 s
σω 1 -
σξ 1 -
TH 0.28 s
TG 0.13 s
w∗
q 10 -

w∗
q̇ 0.1 -

w∗
α 0.01 -

w∗
ϵ 0.01 -

w#
q w∗

q -
w#
q̇ w∗

q̇ -
w#
α 0 -

w#
ϵ 0 -

Table 3.1: Simulation and optimization parameters

The same series of via-points S is used in all the conditions. The fact that the esti-
mator becomes adapted to the perturbed dynamics is consistent with experimental
observations [Flanagan et al., 2003; Davidson and Wolpert, 2005].

Parameters are given in Tab. 3.1. # marks intermediate goals (x# ̸= x∗), for
which only the position is constrained. The final goal state is

x∗ = [60.7◦, 60◦, 0, 0, 0, 0, 0, 0],

i.e. the final shoulder and elbow angles corresponding to a 0.1 m forward displace-
ment, zero final velocity, activation and excitation.

3.2.4 Redirection model

The redirection model is taken from Guigon [2022] and customized to the current
formulation. The baseline and before-effect conditions are the same as for the
reoptimization model. In the adapted and after-effect conditions, the cost function
is JF0 , i.e. the controller is unaware of the perturbation, but the series of via-points
S used in the baseline and before-effect conditions is replaced by a new series of
via-points S ′ which defines adaptation.

As adaptation in this model does not rely on the knowledge of the "current"
dynamic, the estimator here remains unaware of the perturbation: F̂ = F 0.
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3.2.5 Numerical solution

The reoptimization and redirection models were simulated numerically using the
iLQR method proposed by Li and Todorov [2004].

3.3 Experiment

3.3.1 Ethics statement

The experiment was approved by Comité d’Ethique de La Recherche at Sorbonne
Université (CER-2021-112). Participants signed a consent form prior to partici-
pating in the experiment and in accordance with the ethical guidelines of Sorbonne
Université and in accordance with the Declaration of Helsinki.

3.3.2 Participants

Twenty-two volunteers (20–30 yr old, 8 female) participated in the behavioral
experiment. According to the Edinburgh Protocol of handedness [Oldfield, 1971],
18 were right-handed, 2 left-handed and 2 ambidextrous. They had no known
neurological disorders and normal or corrected to normal vision and they were
uninformed of the methodological details of the experiment.

3.3.3 Apparatus

Participants were seated on a chair and used their dominant hand (their most
comfortable hand for ambidextrous participants) to move the handle of a robotic
arm programmed to constrain the displacement of the hand in an horizontal plane
and apply force perturbations along this plane. The robot used was a Virtuose 6D1

HAPTIONTM and was chosen for its high back-drivability [Perret and Vercruysse,
2014]. Task instructions, feedback information, and visual feedback of hand dis-
placement were provided on a monitor placed vertically in front of the participant.
The flow of the task was controlled by a personal computer running Windows 7
(Microsoft Corporation, USA). The 3D position of the robot was recorded at 1000
Hz, and stored on the computer for offline processing and analysis using custom
written Matlab scripts (Mathworks, Natick, MA, USA).

1https://www.haption.com/en/products-en/virtuose-6d-en.html%7D%7D

https://www.haption.com/en/products-en/virtuose-6d-en.html%7D%7D
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Figure 3.1: Description of the experiment. A. Experimental setup. (left)
Top view. The small open circle is the start position and the large open circle
the target position. The black circle is the robot handle. The elongated open
rectangle is a top view of a monitor. (right) Front view. The start position,
target position, and visual feedback of hand position (black circle) are shown
on the monitor. The black rectangle is the robot handle. The scales are not re-
spected. B. Simulated velocity-dependent force field. A minimum-jerk velocity
profile with a 0.3 m/s peak was multiplied by a 5 N/m force field. Vertical scale:
1 cm. Horizontal scale: 1 N. C. Experimental protocol. The force field level
(null or CW) is indicated by the horizontal black (baseline block), green (adap-
tation block) or gray (before-effect and after-effect blocks) thick line segments.
The vertical line segments indicate catch trials: unexpected CW force field in
the before-effect block (red); unexpected null force field in the adaptation block
(gray) and in the after-effect block (blue). Only the colored trials (black: base-
line; red: before-effect; green: adapted; blue: after-effect) were analyzed. D.
Graphical definition of the trajectory angle. At one point along the trajectory
(open square), the trajectory angle is the angle between start position/target
position direction (dashed line) and the tangent to the trajectory (thick line).

3.3.4 Experimental procedure

The participants were asked to make forward and return arm reaching movements
with a constant moderate tempo (peak velocity between 0.25 and 0.35 m/s) (see
Chapter 3.2). The movement was performed from a start position to a target
position located 0.1 m away using visual information displayed on the monitor
(start position: 0.6-cm diameter blue circle; target position: 1-cm diameter black
circle; moving cursor: 0.3-cm diameter red dot - see Fig. 3.1A). To start a trial,
the participants placed the cursor at the start position and began to move when
ready. The peak velocity was computed on line in order to inform the participant
about his/her velocity. Once the cursor stopped inside the target circle (Cartesian
velocity < 0.01 m/s), the circle colored in blue for too slow movements (peak
velocity along task direction < 0.25 m/s), in red for too fast movements (peak
velocity along task direction > 0.35 m/s) or in green for movements of proper
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speed. There was no constraint of accuracy except to stop into the target circle.
The return movement was unconstrained except the need to stop inside the start
circle to start the next trial (velocity < 0.01 m/s).

On some trials, a velocity-dependent force field (3.1B) was applied during the
forward displacement as defined by Eq. 3.2 with ψ = π

2
and ϕ = ±10 Ns/m.

The force field was CCW (ϕ > 0) for half of the participants. The participants
performed four blocks of trials (Fig. 3.1C): block 1 (20 trials, 100% vs 0% of null
field vs force field), block 2 (200 trials, 90% vs 10%), block 3 (100 trials, 5% vs
95%), block 4 (min 150 trials, max 400 trials, 10% vs 90%). The last block involved
many trials to maximize the number of recordings of after-effect trajectories. Yet
the participants were offered the possibility to stop the experiment after 150 trials
if they felt exhausted or bored. A pause was proposed between each block. The
instructions given to the participants were the following:

"Perform forward reaching movements to the target at a proper speed as
indicated by the color code (blue, green, red) and return to the starting position at
your own pace. Make a brief pause in the target and at the starting position and

avoid rhythmic back and forth movements. Sometimes the robot may perturb
your movement. Whenever it happens, continue to obey to the task instructions."

At the start of recording, the participants were already familiar with the robot as
they performed unrelated preliminary trials of force and position measurements.
The robot was transparent and easy to manipulate.

3.3.5 Data processing and analysis

Raw data were used to obtain the planar trajectory of the hand for each trial.
A symmetry relative to the start position/target position axis was applied to the
trajectories of participants receiving a CCW perturbation. Velocity and acceler-
ation were calculated numerically from the two-sample difference of the position
and velocity signals, respectively. Position, velocity and acceleration were filtered
with a fourth-order Butterworth low-pass filter with a cutoff at 10 Hz. Valid trials
were detected by a peak velocity between 0.25 and 0.35 m/s in the forward part
of the movement. For each valid trial, the forward trajectory was extracted by
detection of movement onset and offset with a velocity threshold of 0.01 m/s and
two time-varying quantities were calculated: (1) the angle (counted positive in
the CCW direction) of the tangent to the trajectory relative to the line between
the start position and the target position; (2) the time derivative of this angle
which is closely related to the curvature of the trajectory. The valid trials were
divided into four categories: baseline (trials of block 1), before-effect (perturbed
trials of block 2), adapted (perturbed trials of block 4), after-effect (unperturbed
trials of block 4). For each category, mean trajectory, mean angle and mean angle
derivative were calculated over the trials.
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The rationale for the choice of the filter cutoff frequency is the following.
A power spectrum analysis was performed on the unfiltered timeseries using a
specific method for short-duration timeseries [de Grosbois and Tremblay, 2016].
The results are shown in Fig. C.13 for velocity, acceleration and jerk pooled
across trials and participants, separately for each category (baseline, before-effect,
adapted, after-effect). Much of the power was below 10 Hz.

A classical Student’s t-test was used to assess the sign of the trajectory angle
derivative (H0 : = 0 vs H1 : ̸= 0). A p-value < 0.05 was taken to support H1.
A p-value > 0.05 indicated that we could not reject H0. To assess the status of
H0 vs H1 in the latter case, we calculated the Bayes factor bf10 which is the ratio
between the likelihood of the data under H1 and H0 [Rouder et al., 2009]. Bayes
factors were interpreted according to the following table: 1 < bf10 < 3: anecdotal;
bf10 > 3: substantial. The Bayes factors were calculated with the Matlab toolbox
FieldTrip (https://www.fieldtriptoolbox.org/; Oostenveld et al. 2011).

3.4 Results

We designed a force field adaptation experiment with a large number of trials
and a small fraction of catch trials (unexpected addition or removal of the force
field) to obtain "pure" before-effect and after-effect trajectories uncontaminated
by ongoing learning processes [Thoroughman and Shadmehr, 2000]. Twenty two
participants were asked to make fast, planar, forward arm reaching movements
from a start position to a target position located 0.1 m away in the presence of
a null field or a perpendicular CW or CCW velocity-dependent force field (Fig.
3.1A,B). The participants performed four blocks of trials (Fig. 3.1C) and we
identified baseline, before-effect, adapted, and after-effect trajectories (see Material
and methods, section 3.2). For data analysis, all trajectories were displayed with
a CW deviation, i.e. for a CCW perturbation, a vertical symmetry was applied
to the trajectories. A trajectory was described by (1) the angle (counted positive
in the CCW direction) of its tangent relative to the hand-target direction (Fig.
3.1D); (2) the time derivative of the trajectory angle (see Material and Methods
for details - section 3.2).

3.4.1 Predictions

The compensation model makes immediate predictions on the shape of before-
effect and after-effect trajectories and corresponding velocity profiles (Fig. C.1).
These prediction will not be further considered: they are robust but lack pertinence
as the compensation model is not a general model of motor control (see Discussion
- section 3.5).

https://www.fieldtriptoolbox.org/
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Figure 3.2: Model adjustment based on data of participant P7.
A. Mean baseline (black; 17 trials) and before-effect (red; 19 trials) trajecto-
ries for P7. Scale: 2 cm. B. Mean velocity profiles of baseline and before-effect
trajectories for P7. C. Velocity (scale: 0.1 m/s), acceleration (scale: 2 m/s2)
and jerk (scale: 30 m/s3) profiles for a single baseline trial (P7). Time scale:
0.1 s. D. Simulated baseline (plain black) and before-effect (plain red) tra-
jectories compared to experimental trajectories (dashed; data from A). Squares
are via-points for the simulated trajectories. Same scale as in A. E. Simulated
velocity profiles. F. Velocity (same as black in E), acceleration and jerk pro-
files for the simulated baseline trajectory. The profiles have been truncated to
match the duration of the trial in C. Same scales as in C. G. Peak frequency
for velocity (orange), acceleration (light green) and jerk (light blue) profiles for
individual trials (small dots). Large circles correspond to the trial in C. Large
squares correspond to the simulated trial in F. Thick lines are mean values and

boxes indicate 25-75 percentiles.
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In order to build precise predictions for the reoptimization model, we pro-
ceeded in the following way. We considered one participant (P7) and analyzed
detailed characteristics of her motor behavior (Fig. 3.2). We calculated the mean
baseline and before-effect trajectories (Fig. 3.2A) and velocity profiles (Fig. 3.2B).
For each single trial (e.g. a baseline trial; Fig. 3.2C), we calculated a discrete
measure of the frequency content (peak frequency; number of minima+number of
maxima/duration/2) of velocity, acceleration and jerk traces. We plotted the peak
frequency of all trials for the two types of trial (Fig. 3.2G). These results show
that the smoothness of mean trajectories and velocity profiles (Fig. 3.2A,B) is an
artifact of averaging widely nonsmooth and variable single trials (Fig. 3.2C,G). Al-
though these observations are not surprising [Vallbo and Wessberg, 1993; Guigon
et al., 2019], they cannot be explained by models that produce temporally in-
variant smooth movements [Flash and Hogan, 1985; Harris and Wolpert, 1998;
Todorov and Jordan, 2002]. To circumvent this difficulty, we considered a model
which explains the frequency content of movements by the pursuit of intermediate
goals (via-points) updated at 8 Hz (see Material and methods, section 3.2; Guigon
et al. 2019; Guigon 2022). We searched for a series of via-points S and model pa-
rameters that account for experimental paths and velocity profiles of baseline and
before-effect trajectories (Fig. 3.2D,E; for a parametric study of the model, see
section 3.4.5). The series S contained two intermediate via-points (squares; Fig.
3.2D) at 36% and 72% of the distance to the target in the direction of the target,
and the target itself (circle; Fig. 3.2D). Note that we did not search for the "best
fit", as all single trials were different (Fig. 3.2C,G). Note also that the intensity
of the modeled force field (ϕ) was lower than that of the experimental field (see
Discussion). The amplitude and frequency contents of the resulting movement
were consistent with the experimental data (Fig. 3.2F,G).

At this stage, the proposed model is appropriate for trajectory formation and
online motor control during perturbations and further accounts for many charac-
teristics of motor behavior [Guigon, 2022]. We can now obtain proper predictions
for the reoptimization model (Fig. 3.3). The adapted trajectory was not a straight
path but an overcompensation (green; Fig. 3.3A) which is consistent with Izawa
et al. [2008]. Its velocity profile was close to the baseline velocity (green vs black;
Fig. 3.3B). The after-effect trajectory had the expected mirror organization rela-
tive to the before-effect trajectory (blue vs red; Fig. 3.3A) and a velocity profile
which resembled the before-effect profile (blue vs red; Fig. 3.3B). The mirror ef-
fect is quantitatively described in Fig. 3.3C,D. The trajectory angles had opposite
monotonic trends for before-effect and after-effect trajectories over the first ∼0.6 s
(blue vs red; Fig. 3.3C) with corresponding changes in the sign of the derivatives
(blue vs red; Fig. 3.3D). In the following, we will focus on the early part of the
trajectories (0.4 s; dotted boxes in Fig. 3.3C,D; Fig. 3.3E,F) since trajectory aver-
aging for experimental data may produce unreliable results for the late part of the
trajectory. Two quantitative observations are relevant: (1) the angle derivative
of the before-effect trajectory became positive at 0.29 s (vertical red dashed line;
Fig. 3.3F). This result is consistent with experimental data in P7 and across all



66 Adaptation to motor perturbations as a redirection of goals

the participants (Fig. C.2); (2) the angle derivative of the after-effect trajectory
became negative at 0.31 s (vertical blue dashed line; Fig. 3.3F) which means that
the derivative is negative 7.5% of the time during the first 0.4 s. For comparison
with experimental data, we will use this number rather than the time of change
in sign which might not be well defined in the data (e.g. due to multiple changes
in sign).

One the one hand, the expected positive sign of the derivative of the after-
effect trajectory angle would add support to the reoptimization model. On the
other hand, a null or negative derivative would suggest to reject the reoptimization
model.

3.4.2 Two representative participants

Results for participant P7 shown in Fig. 3.4 and 3.5 (same format as in Fig.
3.3) followed the typical pattern observed in force-field adaptation experiments
[Shadmehr and Mussa-Ivaldi, 1994; Izawa et al., 2008]: 1. The mean baseline
trajectory was straight (black; Fig. 3.4A); 2. The mean before-effect trajectory
deviated in the direction of the perturbation with a late hook-like correction (red;
Fig. 3.4A); 3. The mean adapted trajectory was straighter than the mean before-
effect trajectory but not as straight as the baseline trajectory (green; Fig. 3.4A);
4. The mean after-effect trajectory was deviated in the direction opposite to the
perturbation (blue; Fig. 3.4A); 5. The velocity profiles had a large initial peak
followed by one or more smaller peaks (Fig. 3.4B); 6. Single trial trajectories were
variable but consistent with the mean trajectory (Fig. 3.4C); 7. Lateral deviation
decayed exponentially across trials (R2 = 0.69; Fig. 3.4D).

To test the reoptimization model, we analyzed the time course of the mean
trajectory angle (Fig. 3.5E) and trajectory angle derivative (Fig. 3.5F). As ex-
pected, the mean angle of the before-effect trajectory decreased until 0.3 s and
then increased (red; Fig. 3.5E,F and inset). The mean angle of the after-effect tra-
jectory was initially approximately constant and then decreased (blue; Fig. 3.5E,F
and inset). To assess the statistical significance of this observation, we performed
a t-test on the sign of the angle derivative (H0 : = 0 vs H1 : ̸= 0; N=34 trials)
at each timestep. The corresponding p-value was > 0.05 for the first 0.1 s (Fig.
3.5G), which indicates that we cannot reject the hypothesis that the angle deriva-
tive is zero. The p-value was < 0.05 after 0.1 s (Fig. 3.5G), which mean that the
angle derivative was significantly different from zero and negative. We calculated
the Bayes factor bf10 for H1 vs H0 which indicated that the data were 1 to 5 times
more likely under H0 than under H1 when p > 0.05 (Fig. 3.5H).

A different behavior was observed for participant P5 (Fig. 3.6). The mean
before-effect and after-effect trajectories were symmetrically organized as shown
in Fig. 3.6A,C,D. A statistical analysis indicated that the angle derivative of the
after-effect trajectory was non-zero and positive between 0.1 and 0.3 s following
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Figure 3.3: Model predictions. A. Simulated adapted (green) and after-
effect (blue) trajectories corresponding to simulated baseline (black) and before-
effect (red) trajectories shown in Fig. 3.2D and reproduced here with thin lines.
Scale: 2 cm. B. Simulated velocity profiles. C. Trajectory angle for A. D. Tra-
jectory angle derivative for A. E. Zoom on trajectory angle (dotted box in C).
F. Zoom on trajectory angle derivative (dotted box in D). Vertical dashed lines

indicate the time of change in derivative sign.

movement onset (p-value < 0.05, Fig. 3.6E; bf10 > 3, Fig. 3.6F). Although
the behavior of this participant matches some predictions of the reoptimization
model, the experimental path and velocity profile of the after-effect trajectory
were different from the predicted path and velocity profile (Fig. 3.6A,B vs Fig.
3.3A,B).
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Figure 3.4: Data of participant P7 (1/2). A. Mean trajectories. Scale:
2 cm. B. Mean velocity profiles. C. Single trials (17, 19, 107, 34 trials, from
left to right). Same scale as in A. D. Changes in lateral deviation (maximum of
trajectory deviation from the start position/target position line) with training.
The data were taken from C (red and green). Fitting an exponential decay is

shown.

3.4.3 All participants

For each participant, we calculated the percentage of time over the first 0.4 s
during which the angle derivative of the after-effect trajectory was statistically
null or negative using both p-values and Bayes factors (see Fig. 3.5G,H). The
reoptimization model predicts that this percentage should be around 7.5 (Fig.
3.3F). The experimental percentage was far from the predicted percentage for
all the participants (Fig. 3.7A,B). The behavior of ten participants (blue bars;
Fig. 3.7) was similar to the behavior of P7 (see Figs. 3.5 and 3.5; Figs. C.3,
C.4 and C.5). The behavior of eight participants (dark blue bars; Fig. 3.7) was
similar to the behavior of P5 (see Fig. 3.6). The quantitative results for these
participants are shown exhaustively in Fig. C.6. It can be observed that the
behavior of these participants is rather homogeneous and differs qualitatively and
quantitatively from the predicted behavior in terms of path and velocity profile.
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Figure 3.5: Data of participant P7 (2/2). E. Mean trajectory angle over
the first 0.4 s with the 95% confidence interval. Inset: mean trajectory angle
over the first 0.8 s; the box indicates the 0-0.4 s window. Scale: 0.1 s, 60 deg.
F. Same as E for mean trajectory angle derivative. Scale: 0.1 s, 200 deg/s.
G. p-value of a test ̸= 0 vs = 0 for trajectory angle derivative in F. The dotted
line indicates 0.05. H. Bayes factor for the test ̸= 0 vs = 0. The dotted lines

delimitate regions of interpretation of Bayes factors.

The two remaining participants (light blue bars; Fig. 3.7) failed to improve their
behavior with training (Fig. C.8).

3.4.4 Redirection model

We simulated adaptation through redirection using an ad-hoc series of via-points
S’ to obtain an adapted trajectory (green; Fig. 3.8A, left) which ressembles a real
adapted trajectory (green; Fig. 3.4C). We generated small variations around these
via-points to obtain an ensemble of adapted trajectories (green; Fig. 3.8A, right).
The corresponding after-effect trajectories (blue; Fig. 3.8A) ressembled real after-
effect trajectories (blue; Fig. 3.4C). The velocity profiles, the trajectory angles and
the trajectory angle derivatives were consistent (Fig. 3.8B,C,D). As expected, we
observed an absence of mirror effect, the angle derivative of after-effect trajectories
being positive < 10% of the time in the first 0.4 s (Fig. 3.8D).
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Figure 3.6: Data of participant P5. Same organization as Fig. 3.4 and 3.5
with C, D, E, F corresponding to E, F, G, H.

3.4.5 Parametric study of the reoptimization model

The conclusions of this study are highly dependent on the predictions of the reopti-
mization model. As the model contains parameters, it is important to understand
the influence of these parameters on the proposed predictions. We explored the role
of 3 parameters: the feedback delay ∆, the noise ratio σξ/σω of motor to sensory
noise variance used in the estimator, and the muscle gain ratio between shoulder
and elbow gsh/gel. The first two parameters modulate how sensory information
participates to state estimation (see Appendix B). The third parameter calibrates
the contribution of shoulder and elbow torques to coordination. The trajectories,
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Figure 3.7: All participants. A. Percentage of time over the first 0.4 s
during which the angle derivative of the after-effect trajectory is statistically null
or negative using t-test p-values. Dashed white line is model prediction. Color
code for the participants: blue, behavior incompatible with the reoptimization
model; dark blue, behavior partially compatible with the reoptimization model;
light blue, behavior with no effect of training. B. Same as A using Bayes factor.

velocity profiles, trajectory angles and trajectory angle derivatives were consistent
across variations of these parameters (Figs. C.9, C.10, C.11). The mirror orga-
nization between before-effect and after-effect trajectories was robustly observed.
We note that the time at which the angle derivative of the before-effect trajectory
becomes negative (Fig. 3.3F) varied with the feedback delay (Fig. C.9D) and the
torque ratio (Fig. C.11D).

A set of parameters (w#
q , w

#
q̇ , w

#
α , w

#
ϵ ) specify the boundary conditions at the

via-points, i.e. whether position, velocity, activation and excitation are forced to
take specified values. The predictions were built with w#

q ̸= 0 and w#
q̇ = w#

α =

w#
ϵ = 0 (constraints only on position). The role of these parameters is illustrated in

Fig. C.12. Although they have little influence on acceleration (Fig. C.12A), they
have a clear effect on jerk, with a higher level of jerk whenever the constraints are
not exclusively on position (Fig. C.12B). Only the lower level of jerk (constraints
on position) is consistent with experimental data (Fig. 3.3C,D).
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Figure 3.8: Simulations of the redirection model. A. (left) Adapted
(green) and after-effect (blue) trajectories corresponding to a series of via-points
(squares). (right) Multiple adapted and after-effect trajectories corresponding to
variations of the series of via-points. B. Corresponding velocity profiles. C. Cor-
responding trajectory angles. D. Corresponding trajectory angle derivatives.

3.5 Discussion

Classical computational models of motor adaptation assume that learning occurs
at the action selection level [Shadmehr and Mussa-Ivaldi, 1994; Izawa et al., 2008].
We derived predictions for these models which show that after-effect trajectories
following adaptation to a velocity-dependent force field are close to a mirror of
before-effect trajectories (Figs. 3.6, C.1). Experimental data collected in twenty-
two participants did not follow these predictions (Figs. 3.4, 3.4, 3.6, 3.7, Figs. C.3,
C.4, C.5 and C.6). We discuss implications and limitations of these observations.

Hundreds of force field adaptation studies have been performed since the sem-
inal study of Shadmehr and Mussa-Ivaldi [1994], but none of them have quantita-
tively documented properties of after-effect trajectories. Although many published
figures could informally be used to gain qualitative information on before-effect
and after-effect trajectories and their differences (to mention a few: figs. 3 and
7 in Lackner and DiZio 1994; fig. 13 in Shadmehr and Mussa-Ivaldi 1994; see
Introduction for other references), they are not sufficient to draw a firm conclu-
sion. The lack of a specific interest for after-effect trajectories might be related to
the prevalent view in computational motor control that adaptation results from
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changes at the control level and properties of after-effect trajectories are a direct
by-product of these changes [Shadmehr and Mussa-Ivaldi, 1994; Izawa et al., 2008].
In this framework, an after-effect trajectory reflects a kind of compensation that
attempts to negate the forces induced by the applied force field and thus inherits
from properties of the force field. As velocity along the trajectory increases, the
compensation force increases and the after-effect trajectory curves away from the
baseline trajectory in mirror with the before-effect trajectory. Both the compen-
sation and the reoptimization models [Shadmehr and Mussa-Ivaldi, 1994; Izawa
et al., 2008] obey to this scenario (Figs. 3.3, C.1). The data collected in this study
are incompatible with these models. The expected mirror organization was com-
pletely absent in 11/22 participants, and present but far smaller than expected
in the remaining participants (Fig. 3.7). Yet, we did not average data across the
participants, provided single participant analyses (Figs. C.3, C.4, C.5, C.6), and
made the raw data available to give a chance to any possible interpretation.

At this stage, it is interesting to consider the implication of adaptation at the
action selection level. It would mean that each new adaptation requires the build-
ing of a dedicated control policy which inherits from general motor abilities (e.g.
when we hold a manipulandum in a force field task, we do not need to relearn motor
coordination from scratch), but remains insulated from general and specific skills
(e.g. it does not interfere with our ability to walk or to play the piano). The corre-
sponding motor architecture comes with a heavy computational burden to build,
maintain, update, share and exploit each learned ability in each proper context. A
solution based on the storage of multiple controllers has been proposed [Wolpert
and Kawato, 1998], but does not address the associated computational burden.
Furthermore, its proposed implementation through the huge computational power
of the cerebellum is probably incompatible with the predominant sensory nature of
cerebellar processing [Gao et al., 1996; Nixon, 2003]. Besides these computational
issues, interlimb transfer of force field adaptation [Criscimagna-Hemminger et al.,
2003; Malfait and Ostry, 2004] and adaptation by mere observation [Mattar and
Gribble, 2005] are also inconsistent with adaptation at the action selection level.

An alternative view is that adaptation to a novel motor environment relies on
changes at the goal selection level (redirection model), i.e. aiming toward appropri-
ately chosen successive spatial goals (e.g. via-points) would mimic adaptation and
after-effects in a force field (Fig. 3.8). In the proposed scenario, the "memory" of
the perturbation is not a continous mapping between state and force but a discrete
set of via-points. This scenario can be reproduced in a simulation by a three-step
target jump protocol involving two intermediate via-points and the actual target
where the via-points have been chosen by hand to obtain an adapted trajectory
which is close to the baseline trajectory (Fig. 3.8). Our data are not incompatible
with this view. Yet, they cannot be said to support it since the proposed adap-
tation mechanism remains uncompletely specified: there is no principled recipe
to select or learn to select proper via-points. Interestingly, the redirection model
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is versatile enough to account for the whole dataset. The absence of mirror ef-
fect in some participants and its presence in others can be explained by a specific
configuration of via-points (Fig. 3.8A,B).

The proposed mechanism should not be linked to the kind of explicit, cognitive
strategy that can be used to compensate for a visuomotor rotation simply by
changing the aiming direction [Mazzoni and Krakauer, 2006]. Here, the proper
choice of via-points is conceived as the outcome of a learning process. What drives
the learning process is not specified, but could possibly be cast in a cost/benefit
framework (e.g. effort vs accuracy). We have no information on the explicit or
implicit nature of the mechanism. Yet, in post-experiment interviews, we noted
that several participants believed that the after-effect deviations were due to a
force field and not to their own behavior, which suggests that they probably had
little conscious control on their behavior once adapted to the perturbation.

A possible concern is the seemingly adhoc nature of the proposed scenario.
However this scenario is derived from a consistent theoretical construct which ac-
counts for the production of fast and slow movements, the distinction between
discrete and rhythmic movements, the ubiquity of isochronous behaviors, the ex-
istence of scaling laws, power laws and speed-accuracy tradeoffs [Guigon, 2022].
Thus motor control would involve a unique, general-purpose, task-independent
action selection mechanism (controller) and each task would have its own repre-
sentation defined as a series of successive intermediate goals updated at a fixed
frequency and pursued at a fixed horizon. In this framework, a skilled movement
is not defined by the operation of a dedicated, "skilled" controller, but the use
of a dedicated, "skilled" task representation. Consider the following example. It
is probable that none of the readers of this article have the tennis skills of a top
ranked tennis player. Yet they do not mostly look clumsy in activities of daily
living, probably have their own motor skills, and should be able to sometimes
produce a magnificent backhand worthy of a good tennis player. Accordingly, the
main difference between a novice and an expert would not be found at a control
level, e.g. a difference in mastering coordination, but at the level of task represen-
tation, i.e. how successive goals are consistently set to properly elicit and guide
actions. Our view of motor adaptation can effortlessly be cast in this framework.
Interestingly, the computational burden associated with the storage of multiple
controllers is significantly alleviated with the storage of multiple task representa-
tions. Task representations are discrete sets which are much more frugal in neural
resources than continuous mappings. Furthermore, they can be scaled spatially
and shared between effectors, accounting for motor equivalence. Issues related to
the stability and flexibility of skills appear much less enigmatic when skills are
conceived as task representations rather than controllers.

The main limitation of this study is its strong reliance on computational mod-
eling. Our conclusions are based on the divergence between experimental data
and predictions of the compensation/reoptimization models. So it is fundamental
to check that the proposed predictions are both robust and realistic. As far as
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robustness is concerned, there is no difficulty with the compensation model which
is well-formulated and easy to simulate. However, this model has little general
relevance for motor control as it does not provide solutions to central problems
such as trajectory formation and coordination [Todorov and Jordan, 2002]. For
this reason, we have not pursued comparisons with this model. The reoptimization
model is based on optimal feedback control [Todorov and Jordan, 2002] and has
been updated here to account for proper online feedback control [Guigon, 2022].
It generates movements with realistic trajectories, velocity profiles, and amplitude
and frequency contents (Fig. 3.2). We have shown that its predictions are robust
to parameter changes.

An unsettled and interesting issue is related to the intensity of the applied
force field. The predictions were obtained with a 2-Ns/m force field as compared
to the 10-Ns/m field of the experiment. It should be noted that these force field are
applied to slightly different systems: in the simulations, the perturbation is a pure
force acting on the modeled hand while the experiment relied on a robot to exert
this force, injecting its own inertial effects into the effective dynamics. Though,
the used robot was chosen for its high back-drivability so that this effect, if not
negligible, would not explain the force field discrepancy between simulation and
experiment. In the model, for a given perturbation intensity, the size of the lateral
deviation of the before-effect trajectory is determined by the interplay between the
operation of the state estimator and the dynamics of the arm. Two observations
can be made. First, changes in parameters of the state estimator (feedback delay,
noise ratio) can reduce the impact of the force field. Yet even a fine tuning of
these parameters would not lead to a realistic trajectory deviation for a 10-Ns/m
field. Second, parameters of the dynamics have also an influence on the response
to perturbations. For instance, we have assessed the influence of the muscle gain
ratio (Fig. C.11). This parameter reflects the relative efficiency of shoulder and
elbow muscles but its value is not easy to set as it depends on the muscle maximum
force, its tendon properties, the physiological cross-sectional area, the innervation
ratio, the moment arm and the modulation of force production by firing rate
and recruitment in pools of motoneurons of each muscle. Furthermore we cannot
play freely with this parameter as it has a strong impact on the timing of the
movement (Fig. C.11D). Other parameters of the dynamics cannot be modified
as they pertain to intrinsic characteristics of the arm.

We propose two ideas to obtain quantitatively more realistic deviations with
respect to the intensity of the perturbation. The first idea is to use a more real-
istic dynamics for the modeled arm. For simplicity, we considered the control of
a planar two-link arm. Yet the participants were free to use all available degrees
of freedom from the trunk to the wrist. The corresponding kinematic chain would
likely offer a larger inertial resistance to perturbations. The second idea is in fact
an extension of the first one and invokes impedance to account for resistance to
perturbations, i.e. not only inertia, but also joint viscosity and stiffness, could
contribute to the resistance [Hogan, 1985; Burdet et al., 2001]. In the simulations,
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we used a long feedback delay (0.12 s) to clearly indicate that any kind of instan-
taneous, short-latency and medium-latency visco-elastic contributions of muscles
and tendons remained unmodeled. A model of these contributions is feasible for
perturbations about a static posture [Crevecoeur and Scott, 2014], but remains
elusive for perturbations during ongoing movements. Note that the very efficient
elastic feedback along the desired trajectory used in the compensation model can-
not be included in the reoptimization model or the redirection model due to the
absence of a desired trajectory.
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4.1 Introduction

If, on the one hand, we claim that we have understood, through a model, how the
human produces movements, on the other hand, it is natural to reflect upon the
way the human nervous system participates to this motor function. The better our
understanding, the more we could hope to bring a useful contribution to a compu-
tational neuroanatomy of movement, i.e. the non-trivial assignment of operations
to specific brain regions [Shadmehr and Krakauer, 2008; Haar and Donchin, 2020].
It is an attempt to sketch a neurological scheme in which elements of the model
are univocally associated to some nervous structures.

Key issues of this approach are important since they concern not only the
normal functioning of the brain but also its pathologies through “virtual lesions” of
the model. Hence motor deficits found in different pathologies (stroke, Parkinson’s
disease, cerebellar syndromes, . . . ) could be cast in a theoretical framework that
would guide rehabilitation processes (e.g. Han et al. 2008).

A link between the model and the nervous system is made possible by tech-
niques of artificial neural networks which allow virtually any mathematical func-
tion to be learned and reproduced in a distributed fashion by a set of intercon-
nected elementary processing units which resemble neurons [Yuste, 2015; Kriegesko-
rte and Golan, 2019]. Once properly trained, an artificial neural network, as any
real neural network, can be submitted to an "electrophysiological" study to de-
code the way neurons contribute to the production of the desired function and to
proceed to comparisons with experimental data [Sussillo et al., 2015; Saxena et al.,
2021]. In fact there is nothing really new in this approach [Rumelhart et al., 1986;
Zipser and Andersen, 1988] except the great renewal of these techniques due to
increased computing capacities [LeCun et al., 2015].

Our problem is thus to build a neural network which approximates the function
of our universal controller (section 2.6.1.1). In fact this is neither a new nor an
intractable problem, but it has some interesting specificities. There is quite a long
tradition of studying neural networks controllers [Nguyen and Widrow, 1989]. The
goal is in general to discover a control law by learning, either by simple error
minimization as in the truck backer-upper example [Nguyen and Widrow, 1989],
or by reinforcement learning [Levine, 2013; Lillicrap et al., 2015]. We are not
directly interested by these methods since we assume that the proper controller is
known. Our approach, based on training a deep neural network with input/output
pairs generated by the controller, is close to that of Berniker and Körding [2015]
and Sánchez-Sánchez et al. [2016]. Yet there is a main difference in the nature of
the network outputs. In the latter studies, temporal patterns of control and/or
full trajectories are spatially represented on the network output layer. What is
actually learned is not the controller itself but some patterns of control.
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Once we have built a neural network which properly approximates a motor
controller, we become involved in the century-old debate on the nature of process-
ing and representations in motor regions of the brain [Todorov, 2000; Scott, 2008;
Reimer and Hatsopoulos, 2009; Vyas et al., 2020]. Here we propose to settle the
debate by accepting the idea that any observed neural property related to motor
control is a by-product of the motor system being a motor controller.

4.2 Materials and methods

4.2.1 Neural network model

We have designed a control policy that accounts for a wide range of observations
on motor control [Guigon et al., 2019; Guigon, 2022; Moullet et al., 2022]. This
policy is a stationary, optimal feedback control policy that, under the assumption
of a full-state terminal constraint can be written (section 2.6.1.2, Eq. 2.55):

u(t) = π(x(t),xG(t)) (4.1)

where x is the current state of the body, x∗ its desired state, and u the instanta-
neous control vector that induces the state evolution of the body over one timestep
when it transits optimally between x and xG in a planning horizon. A full move-
ment can be simulated by coupling the control policy with the body dynamics

ẋ(t) = f(x(t),u(t)) (4.2)

On the one hand, the control policy is a function which is a solution of a complex,
nonlinear optimization problem. On the other, it looks like a stationary mapping
between vectors. It is easy to see that in the linear case (linear dynamics F),
the control policy is linear and can be represented by a linear mapping. In the
nonlinear case, the policy is nonlinear and could possibly be replaced by a nonlinear
mapping, e.g. a multilayer neural network which can be written

u =Nw,f (x,xG) (4.3)

where {w, f} indicates that the network is defined by weights and transfer func-
tions [Hinton, 2007; Kriegeskorte and Golan, 2019].

We built a multi layer perceptron with two hidden layers (Fig. 4.1A) for the
control of a planar two-link arm (Fig. 4.1B). The input layer contained 16 neurons,
8 for x and 8 for xG, and the output layer contained two neurons (shoulder and
elbow controls). The hidden layers had 64 and 256 neurons, respectively. The
layers were fully connected. The transfer function was a RELU function for the
hidden layers and a linear function for the output layer.
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4.2.2 Dataset and training

We trained the neural network with a dataset built in the following way. We
generated 200 0.5-s trajectories (timestep 0.001 s) starting from the same position
([40◦, 110◦]) toward twenty targets uniformly spaced on ten uniformly spaced cir-
cles (radius from 0.1 to 0.2 m) (Fig. 4.1C) with null terminal velocities, activations
and excitations. Each trajectory provided 500 input (current state, target state) /
output (controls) pairs which gives a dataset with 100000 examples. This dataset
was randomly split between a training base and a testing base (respectively 75%
and 25% of the examples) to monitor the learning process.

The network was implemented in Keras 2.5.0 with a tensorflow 1.12.0 backend.
Training was performed using MSE (Mean Square Error) as a cost function, a
batch size of 25 and the gradient descent was realized with Adam [Kingma and Ba,
2014], with a 0.0001 learning rate. Models were trained up to 60 epochs in order to
select a posteriori the optimal epoch. At each period, performance error was first
measured by two quantities: (1) the training error is the MSE calculated over the
batchs of the training set; it is the internal error used to train the network; (2) the
test error is the MSE calculated over the test set; (3) the reconstruction error is
an error based on the difference between the optimal trajectories (produced using
the actual optimal control policy) and the corresponding trajectories produced by
the network:

Re
loss =

√√√√ 8∑
i=1

500∑
t=0

∥∥∥pOi,t − pNN,ei,t

∥∥∥ (4.4)

where pi,t is the hand Cartesian position at time t for a trajectory of index i

and O and NN denote trajectories generated respectively via optimal control and
the neural network trained until epoch e. Eight 0.5 s trajectories were considered,
starting from the same position ([40◦, 110◦]) toward eight targets uniformly spaced
on a 0.15 m radius circle. Note that only the four trajectories corresponding to
the cardinal points were included in the training dataset.

4.2.3 Simulation and data analysis

To produce a movement, the neural network was coupled with our simplified model
of an arm (Fig. 4.1D). At each time, current goals (task representation) and
sensory feedback from the arm are entered in the input layer of the network.
The network produces motor commands in its output layer which are sent to the
arm which moves according to its dynamics (Eq. 2.13) and generates new perfect
sensory feedback. Note that we do not consider either noises or delays, for we wish
to emulate only the controller of the computational schema in Fig. 2.14, which
has no knowledge of any noise or delay. We thus focus here on the ability of the
neural network to produce the right output (control) from a given input.
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Figure 4.1: Neural network and training set. A. Network architecture
and transfer function. B. Schema of the arm controlled by the neural network.
C. Training set of the network. Scale: 0.1 m. D. Closed-loop architecture of

the model.

Movements of different directions, amplitudes and velocities were simulated
using Eqs. 4.2 and 4.3. EMG was defined as the excitation state. Output of
neurons in hidden layers 1 and 2 was defined as neuronal activity.

4.2.4 Parametric analysis

We simulated a DIRECTION experiment in which movement direction was varied
[Georgopoulos et al., 1982]. The directional tuning of neuronal activity and EMG
was analyzed [Georgopoulos et al., 1982]. The quantity of interest d (neuronal
activity, EMG) was regressed against target direction θ according to

d = b0 + b1 cos θ + b2 sin θ (4.5)
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which was used to defined the preferred direction θ according to

d = b0 + c1 cos (θ − θ0) (4.6)

The p-value of the regression was taken as a measure of directional tuning. As
d is a function of time, a preferred direction can be calculated at every timestep
[Sergio and Kalaska, 1998]. For a population of N neurons, we note PDi(t) the
preferred direction vector of neuron i which is the unitary vector along the pre-
ferred direction of the neuron. Distributions of preferred directions were built and
were tested for bimodality (Hartigan’s dip test; Hartigan and Hartigan 1985). A
population vector was calculated as

P (t) =
N∑
i=1

wi(t)PDi(t) (4.7)

where wi(t) = di(t)− ai, with ai = mean(di(t)) [Georgopoulos et al., 1988].

4.2.5 Dimensionality reduction

For each movement direction, the DIRECTION experiment produced a Q × N

array of neuronal activity, where Q is the number of timesteps (Q = 500 for a
0.5-s movement) and N the number of neurons (N = 64 for the first hidden layer,
N = 256 for the second hidden layer). A principal component analysis (PCA)
was applied to this array: the rows (timesteps) were observations and the columns
(neurons) were variables. The PCA transformed the array into new variables
(principal components, PCs; N vectors of size Q) and coefficients (N vectors of
size N) which can be used to reconstruct the variables by linear combinations of
the PCs (Fig. 4.2). We considered the first two PCs which account in general
for > 90% of the variance of the data, and reflect the dominant signals in the
population of neuron. The same method could be applied to EMG. Yet, as there
are only two muscles in the model, this method is no relevant here.

4.3 Results

4.3.1 Network training and performance

As expected, the training and test errors calculated at each epoch decreased during
the course of training (Fig. 4.3A).Yet, they proved not to be a proper criterion for
training convergence, for models with reasonable losses proved to generate non-
realistic trajectories (see Fig. 4.4B). The reconstruction error defined in Eq. 4.4
also decreased, but with a slower time course (Fig. 4.3B). The model trained up
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Figure 4.2: Schema of the principal component analysis. N is the
number of neurons. Q is the number of timesteps.
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Figure 4.3: Training curves. A. Training error (black) and test error (gray).
B. Reconstruction error. Vertical dashed line: epoch of minimum reconstruction

error.

to 53 epochs was chosen, corresponding to the minimum of reconstruction error
(vertical dashed line in Fig. 4.3B), and showed to satisfyingly reproduce optimal
control (see Fig. 4.4).

We simulated 15-cm, 0.5-s trajectories in eight directions (at 45◦ intervals)
from the starting position used in the training set (Fig. 4.4A, inset). The trajec-
tories were more or less straight with a bell-shaped velocity profile (Fig. 4.4A,C).
For comparison, trajectories produced by a partially trained network are shown
in Fig. 4.4B. Shoulder and elbow muscle displayed an agonist-antagonist pattern
- their EMG took positive and negative values, as would the difference between
agonist and antagonist activities (EMG ∼ EMGag−EMGant) - and their activi-
ties were tuned to movement direction (Fig. 4.4D,E). We provide a more detailed
description of the network performance in Appendix C.
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Figure 4.4: Neural network simulations. A. Trajectories toward eight
targets generated with the neural network (plane thick lines) and optimal control
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with a partially trained neural network (until epoch 17 vs 53 for trajectories in
A). C. Velocity profiles. Color code as in A. D. Shoulder EMG. E. Elbow

EMG.
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Figure 4.5: First layer analysis. A. Output of neuron 18 of the first hidden
layer for 8 movement directions. Color code as in Fig. 4.4 B. Tuning curve of
output at 0.05 s (dotted line in A). The preferred direction is indicated by the
vertical line. C. Neuron’s preferred direction every 5 ms. Color code: regression
R2. D. Same data as C in polar representation. Each point of C is represented

by the polar coordinates r, θ = (time, PD). Radial circles indicate time.

4.3.2 Directional tuning

We considered a single neuron in the first hidden layer (Fig. 4.5). Its output
varied with movement direction (Fig. 4.5A). The neuron was directionally tuned
at 0.05 s after movement onset (preferred direction PD = 164.9◦, p-value = 0.0023;
Fig. 4.5B). In fact, the neuron was directionally tuned at every timestep along
the movement and its preferred direction changed in time (Fig. 4.5C,D; see fig. 6
in Sergio et al. 2005).

In the same way, both the shoulder and elbow muscles were directionally tuned
and changed their tuning in time (Fig. 4.6; fig. 3 in Sergio and Kalaska 1998).

In the first hidden layer, all the neurons had a nonzero output at least at one
point in time for one of the 8 movements. Ninety-eight percent of the neurons
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Figure 4.6: Muscles directional tuning. A. Shoulder muscle’s preferred
direction every 5 ms. B. Same data as A in polar representation. C. Same as

A for elbow muscle. D. Same as B for elbow muscle.

were directionally tuned at least at one point in time (mean 87.2% of the time
points). The distributions of neuron’s preferred directions were calculated every
0.05 s (Fig. 4.7). The distributions were anisotropic with a main axis (in the
second quadrant) at 148.3±8.7◦ (fig. 3 in Scott et al. 2001a, fig. 4 in Suminski
et al. 2015)

In the second hidden layer, the neurons were much more sparsely active (Fig.
D.6) and much less directionally tuned (Fig. D.3). Forty percent of the neurons
had zero output for the 8 movements. Of the remaining neurons, 55% were direc-
tionally tuned at least at one point in time (mean 5.4% of the time points). As
expected, reconstruction of movement direction from neuronal activities in the first
hidden layer was biased due to the anisotropic distribution of preferred directions
(Fig. 4.8; fig. 2 in Scott et al. 2001a).



4.3. Results 87

Figure 4.7: Distribution of neuron’s preferred direction (circular histogram, 20
bins, black bars) for the first hidden layer calculated every 0.05 s (A to H). On
each plot, the upper gauge indicates time (between 0 and 0.5 s) and the lower
gauge, the percent of tuned neurons (between 0 and 100). The circle corresponds
to 15 neurons. The purple lines indicate peaks of a bimodal distribution (when
significant, Hartigan’s dip test; p-value in the lower right). The yellow lines

indicate PD of muscles (shoulder: dark; elbow: light).
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Figure 4.8: Error in the reconstruction of movement direction using the pop-
ulation vector from the first hidden layer at movement onset. The gray line
corresponds to data from Scott et al. [2001a] shifted leftward to account for the

differences in the major axis of the PD distribution.

Third we analyzed the relationship between the preferred directions of neu-
rons and the preferred directions of the muscles. We calculated the distribution of
differences between neuron’s preferred directions and shoulder and elbow muscle’s
preferred direction (Figs. 4.11, 4.12). These results are consistent with exper-
imental observations: in Griffin et al. [2015], 30% of corticomotoneuronal cells
recorded during wrist movements had a PD within 0-45◦ of their target muscle
(almost parallel) and 30% within 135-180◦ (almost opposite).

4.3.3 Relationship between neurons and EMG

We assessed the relationship between neuronal activity and EMG in three ways.
First, we calculated the mean squared correlation coefficient of neuronal activity
and EMG across movement directions for the shoulder and elbow muscles (Fig.
4.9) which is consistent with the observed low neuron-EMG similarity [Schieber
and Rivlis, 2007].

Second, we analyzed the extent to which peaks of neuronal activity were ac-
companied by peaks in EMG activity [Griffin et al., 2008]. For each neuron, we
searched for peaks of activity and calculated the percentage of movement direc-
tions in which a peak in EMG was present in the same time window. The calculus
was made for the primary peaks of neuronal activity and EMG (Fig. 4.10A,B) and
for the primary peaks of neuronal activity and any peaks of EMG (Fig. 4.10C,D).
Again we see a strong mismatch between neuronal activity and EMG [Griffin et al.,
2008].

Third we analyzed the relationship between the preferred directions of neu-
rons and the preferred directions of the muscles. We calculated the distribution of
neuron’s preferred directions relatively to shoulder and elbow muscle’s preferred
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Figure 4.9: Mean squared correlation coefficient between neuronal activity in
the first hidden layer and EMG. A. Shoulder muscle. B. Elbow muscle. Black
vertical solid line: mean R2. Gray vertical line: data from Schieber and Rivlis

[2007], solid is mean, dotted is max.

direction (Figs. 4.11, 4.12). These results are consistent with experimental obser-
vations: in Griffin et al. [2015], 30% of corticomotoneuronal cells recorded during
wrist movements had a PD within 0-45◦ of their target muscle (almost parallel)
and 30% within 135-180◦ (almost opposite).

4.3.4 Influence of arm posture

We explored the influence of initial arm posture on the primary axis of distributions
of preferred directions. We trained four neural networks with varying elbow angles
(shoulder/elbow: 30/80◦, 30/90◦, 30/100◦, 30/110◦). The training set contained
0.5-s trajectories toward twenty targets uniformly spaced on ten uniformly spaced
circles (radius from 0.05 to 0.15 m). We simulated 0.1-m, 0.5-s trajectories in eight
directions (at 45◦ intervals) from each starting position. We observed that the
preferred directions of neurons (Fig. 4.13A,C) and elbow muscle (Fig. 4.13B,C)
rotated with change in elbow angle. The rotation for neurons was in the same
direction as that the elbow muscle but with a smaller magnitude (Fig. 4.13C).
[Yanai et al., 2008; Oby et al., 2013].

4.3.5 Dimensionality reduction

We analyzed the behavior of population of neurons in the DIRECTION experiment
(Fig. 4.14A, inset) using a dimensionality reduction method (PCA; see Materials
and Methods; Russo et al. 2018). For each movement direction, we extracted the
first two principal components (PCs) from the output of the 64 neurons of the first
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Figure 4.10: Matching peaks between neuronal activity in the first hidden layer
and EMG. A. Primary peaks of neuronal activity and EMG for the shoulder
muscle. B. Same as A for the elbow muscle. C. Primary peaks of neuronal
activity and any peaks of EMG for the shoulder muscle. D. Same as C for the

elbow muscle.

hidden layer. These PCs (e.g. Fig. 4.14B, inset) correspond to two typical tempo-
ral patterns from which the output of all the neurons can be linearly reconstructed.
The first two PCs accounted for 90.5% of the variance of neuronal outputs (mean
across movement directions). The neural trajectories were in general elliptical and
rotated all in the same direction [Russo et al., 2018; Saxena et al., 2021]. Muscle
trajectories (Fig. 4.15) and neural trajectories in the second hidden layer (Fig.
D.7) were less elliptical and rotated in different directions [Russo et al., 2018; Sax-
ena et al., 2021]. For comparison, neural trajectories in the first hidden rotated
in the counterclockwise (CCW) direction for all movement directions (test with
8, 16 and 32 movement directions); neural trajectories in the second hidden layer
rotated CCW in 12%, 19% and 19% of the movement directions, for 8, 16 and 32
directions, respectively; muscle trajectories rotated CCW in 25%, 31% and 38% of
the movement directions, for 8, 16 and 32 directions, respectively. The dominant
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Figure 4.11: Distribution of the neuron’s preferred direction in the first hidden
layer relatively to shoulder muscle preferred direction every 0.05 s (A to H). 0◦

on the abscissa corresponds to the shoulder muscle’s preferred direction. On
each plot, the gauge indicates time (between 0 and 0.5 s).
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Figure 4.12: Distribution of the neuron’s preferred direction in the first hidden
layer relatively to elbow muscle preferred direction every 0.05 s (A to H). 0◦

on the abscissa corresponds to the elbow muscle’s preferred direction. On each
plot, the gauge indicates time (between 0 and 0.5 s).
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Figure 4.13: Influence of arm posture. A. Temporal evolution of the pri-
mary axis of the distribution of preferred directions for neurons in the first hidden
layer. Two initial postures: shoulder/elbow 30/80◦ (circle), 30/110◦ (square).
Missing points correspond to an absence of bimodal distribution. B. Same as A
for the elbow muscle. C. Mean change in axis orientation as a function of change
in elbow angle (80-90, 80-100, 80-110◦) for neurons (red) and elbow muscle (yel-
low) calculated over 0.1-0.3 s (vertical dashed line in A and B). Regression lines

and slopes are shown.

signals in the first hidden layer were clearly different from those in the muscles
and in the second hidden layer. The exact meaning of what is observed using
a dimensionality reduction method is unclear. The only significant issue is the
fact that the observed properties emerge from neural network processing and are
consistent with experimental observations [Russo et al., 2018; Saxena et al., 2021].
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of the DIRECTION experiment. Inset in A: movement trajectories. Inset in
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Figure 4.15: Shoulder vs elbow EMG for the movements of the DIRECTION
experiment.
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4.4 Discussion

We have shown that a neural network trained to approximate the universal con-
troller of a planar two-link arm exhibits many characteristic properties of opera-
tions in the primary motor cortex. As these properties concern both the repre-
sentational view and the dynamical view of motor cortical functions, our results
suggest that these views are not necessary and can be replaced by the view that
the motor cortex implements the proposed universal controller (see section 2.6).
Premises of this idea are present in the literature [Todorov, 2000; Guigon et al.,
2007a; Lillicrap and Scott, 2013; Kalidindi et al., 2021].

4.4.1 Disclaimer

This work is not about neural networks per se. We do not claim that we have found
the best network architecture, the best training set or the best training procedure.
We have not systematically quantified the performances of the neural network
(interpolation, extrapolation). These issues would call for a specific treatment
which is well beyond the scope of our work. Our goal was to show the feasibility
of learning a distributed representation of the universal controller of a planar two-
link arm and to carry out a comparison between the resulting neural network and
the motor cortex.

4.4.2 Distributed representation of the universal controller

The observed features of neurons are emergent properties of a neural network
trained to control a planar arm. Interestingly, similar features were observed in
networks with different architectures (sequential or recurrent networks, number of
layers, number of neurons per layer), different training sets and different training
procedures (batch size, number of epochs). This observation suggests that these
features correspond to a robust, well-defined, and invariant “neuronal” solution
to the proposed control problem. The only really surprising feature is directional
tuning. There is no specific reason why neurons should become directionally tuned
and their activity well described by a cosine function. Other features such as the
anisotropy of distributions of preferred directions and the variations in distribu-
tion axis with arm posture are less unexpected as they probably result from the
geometrical and inertial properties of the arm [Scott et al., 2001a; Lillicrap and
Scott, 2013]. The weak relationship between neuronal activity and EMG is not
unexpected as the neurons are only indirectly involved in the production of the
EMG. The presence of rotational dynamics is consistent with previous neural net-
work models trained to produce optimal trajectories [Berniker and Penny, 2019;
Kalidindi et al., 2021].
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Our network architecture with two hidden layers raises two questions. First,
why do we need two hidden layers? We have no theoretical answer to this question.
We observed that networks with a single hidden layer had poorer performance that
networks with two hidden layers even when they have more parameters (Fig. D.1,
Fig. D.5). Second, what is the specific role of each layer? Again, we have no
clearcut answer. We observed that most neurons in the first hidden layer were
active and directionally tuned (Fig. D.6A ; Fig. 4.7) while neurons in the second
hidden layer were sparsely active and weakly tuned (Fig. D.3; Fig. D.6B). We
tried to reduce the number of neurons in the second hidden layer (128 instead
of 256) but we obtained a poorer performance (Fig. D.4), which suggests that
inactive neurons were not useless.

4.4.3 Relation to previous models

The main novelty of our approach is to a train a neural network to produce a
control policy. The knowledge embedded in the network is not a set of optimal
trajectories discovered by learning [Lillicrap and Scott, 2013; Kalidindi et al., 2021],
but an approximation of a well-defined function which is the universal controller
of a planar arm. This means that the network need not be trained on the specific
set of trajectories that we want to produce, but can be trained on any kind of
training set, provided the states encountered in the training set have a sufficient
overlap with those needed to produce the desired trajectories. Another interesting
point is related to the stationary nature of the universal controller. A simple
multilayered feedforward network trained with backpropagation is sufficient to
learn the controller. There is no need of a recurrent network and backpropagation
through time to train the network [Lillicrap and Scott, 2013; Sussillo et al., 2015;
Kalidindi et al., 2021; Saxena et al., 2021]. We do not claim that our approach is
more biologically plausible but only that the burden of training recurrent networks
can be avoided. A proper dynamics can emerge from a feedforward network that
controls a dynamical system (planar arm) and receives sensory feedback [Kalidindi
et al., 2021].

4.4.4 Role of the motor cortex

Our results suggest that properties observed in the activity of motor cortical neu-
rons are a by-product of the motor cortex being a controller. This view concurs
with the conclusion of previous studies [Todorov, 2000; Guigon et al., 2007a; Lil-
licrap and Scott, 2013; Kalidindi et al., 2021]. The apparent contradictions in
the debate between the representational view and the dynamical view of motor
cortical functions [Reimer and Hatsopoulos, 2009; Shenoy et al., 2013; Schwartz,
2016] might well be settled by saying that these views are neither necessary nor
sufficient to account for processing in the motor cortex. Yet, behind this seemingly
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idle debate and the proposed conclusion that the motor cortex is a controller, there
remains several unsolved issues on the role of the motor cortex. First, we consid-
ered data from nonhuman primates which fail to acknowledge the input/output
organization of the motor cortex, i.e. the fact, properly studied in rodents, that
the motor cortex is a “multilayered” network with multiple outputs (e.g. toward
the spinal cord and the basal ganglia) [Weiler et al., 2008; Isomura et al., 2009;
Kiritani et al., 2012; Currie et al., 2020; Park et al., 2022]. It would be interesting
to combine “primate” tasks (e.g. reaching in multiple directions; Bollu et al. 2019;
Becker et al. 2020) and the precise anatomo-physiological resolution available in
rodents. It could put additional constraints on a neural network model of the mo-
tor cortex. Second, even in primates, there is no simple causal role of the motor
cortex in the production of movements [Travis and Woolsey, 1956; Carlson and
Devinsky, 2009; Murata et al., 2015]. The situation is still more complex in cats
and rodents in which dexterity is lost after motor cortex or corticospinal tract le-
sions, but most motor functions remain intact [Grillner, 1985; Kawai et al., 2015;
Serradj et al., 2021]. It is unclear how to conciliate these observations and a role
of the motor cortex as a controller. A possible bypass could be to consider that
the corticospinal tract is necessary for skilled but not unskilled behaviors [Serradj
et al., 2021].

4.4.5 Dimensionality reduction

As in many previous studies, we have used a method of dimensionality reduction
[Churchland et al., 2012; Russo et al., 2018; Saxena et al., 2021]. The basic method
is principal component analysis applied on recorded neuronal activity with neurons
as variables and time course of activity as observations. Taking the first two or
three PCs reveal dominant low-dimensional features in the neuronal population
activity. The same method can also be applied to EMG activity when multiple
muscles are simultaneously recorded. A typical observation is the difference in
low-dimensional activity between motor cortical neurons and muscles [Russo et al.,
2018; Saxena et al., 2021]. This difference was observed in a recurrent network
trained to produce observed patterns of muscular activity [Saxena et al., 2021]
and in our non-recurrent network trained to be a controller. The specificity of this
observation is unclear (but see below).

Churchland et al. [2012] developed a new reduction method (jPCA) which
specifically reveals rhythmic oscillatory tendencies in the population data. They
observed that an oscillatory pattern was present even in nonrhythmic discrete
reaching movements. Since its inceptions, this method has been used not only
to analyze experimentally recorded neuronal activities but also to disclose simi-
lar properties in artificial neural networks [Hennequin et al., 2014; Sussillo et al.,
2015; Michaels et al., 2016; Kalidindi et al., 2021]. We have also applied the jPCA
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method1 to our network and obtained the expected rotational patterns (results not
shown). Recently, Lebedev et al. [2019] showed, using Churchland’s data and sim-
ulations, that “rotational patterns occurred in neuronal populations when there
was a temporal sequence in peak firing rates exhibited by individual neurons”.
Accordingly, they casted some doubt upon the specificity and the potential ex-
planatory power of low-dimensional features of neuronal activities. We observed
a typical temporal sequence in peak firing rates in our neural network (Fig. D.6).

4.4.6 Limitations

There are several important limitations to this work. First, we have not thoroughly
explored the influence of the network architecture, the training procedure (batch
size, number of epochs) and the training set (number and nature of samples) on
the performance of the network (how efficiently it learns the control policy) and
emergent properties of neurons. Preliminary observations indicate that networks
with two hidden layers are more efficient than networks with a single hidden layer
but that the usual training loss (MSE) proved to be a poor criterion for assessing
the convergence to the optimal neural network. This might be explained by the
very nature of the training dataset and the dynamics of the modelled system.
As the trajectories composing the dataset exhibit well known bell-shaped velocity
profiles, a majority of the inputs present small velocities, while high velocity inputs
are scarce. It is then most probable that the rapid decrease of both training and
test loss in the early epochs is due to an efficient fitting of the numerous low
velocity examples. Conversely, the fitting of the few high velocity ones only slightly
decreases the loss giving the appearance of a quick convergence of the learning
process. A brute-force data generation method could be to homogeneously draw
values from maximum to minimum values of each of the 16 inputs. But not only
would this dramatically increase the size of the dataset (the combination of 10
draws of these 16 coordinates would make up to 1016 inputs), but the generated
inputs could be highly incoherent (high velocities at positions close to the starting
point, uncorrelated activation and excitation...) potentially leading to a failure of
the optimization process. The proposed reconstruction error is a more meaningful
metric for our use than the traditional mean square error loss but was used a
posteriori to assess the models performance. An improvement could be found in
using it as a training loss as well as in enriching it with velocity criterion.

Second, some interesting questions are related to role of excitation and inhi-
bition in motor cortex [Isomura et al., 2009]. To explore these questions, it could
be possible to build and train a network with neurons which are either excitatory
or inhibitory. Third, a spatial organization seems to exist in the motor cortex
in terms of functional clusters of neurons which might be due to local recurrent
circuit dynamics [Hira et al., 2013]. Although fully connected recurrent networks

1Code can be found here: https://churchland.zuckermaninstitute.columbia.edu/
content/code

https://churchland.zuckermaninstitute.columbia.edu/content/code
https://churchland.zuckermaninstitute.columbia.edu/content/code
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are probably physiologically unrealistic, local recurrent circuits exist in the brain
and could be added to a feedforward architecture. Fourth, intracortical micros-
timulations in motor cortex can elicit complex, behaviorally relevant movements
[Brown and Teskey, 2014; Graziano, 2016]. There is no counterpart of this ob-
servation in the network. Fifth, we have used pull-push linear muscles to avoid
bounds in the numerical optimization process. It should not be too difficult to use
instead pairs of agonist-antagonist nonlinear pull-only muscles. The influence of
this change on properties of the network is unknown. For instance, Suminski et al.
[2015] have shown nonlinear characteristics of muscle such as the force/length and
force/velocity relationships are important to account for the temporal evolution
of the primary axis of the distribution of preferred directions (their fig. 6 and fig.
7).

4.4.7 Future developments

The proposed neural network took direct and perfect observations of the state of
controlled arm as an input. Yet, it is well established that noises and delays plague
the CNS (sections 2.3.2 and 2.3.3). In the adopted control theory, a Kalman filter
was used to build the best possible estimation of the state of the system in spite
of those inner imperfections (sections 2.6.2.3 and B). Such a control/estimation is
supported by neuroanatomical evidence [Scott, 2004]. It would be most relevant
to extend the approach applied in this work to the estimation process. A first step
would be to assess the feasibility of its neural implementation as a neural network:
state estimation is a complex process combining observation, dynamics propaga-
tion of the estimated state and covariance prediction that would likely require
different network architecture and training method. Second should be studied
intrinsic properties of the network similarly - but not limited - to directional tun-
ing. A comparison to actual recordings of the neural activity of neuroanatomical
structures suspected to be involved in state estimation would then contribute to
clarify the neural bases of motor control. neural network model of the estimator

4.4.8 Extension

An interesting extension of this work would be to train a neural network to control
a more complex dynamics (e.g. a 7-dof arm in the 3D space; Guigon et al. [2007b]).
The network would alleviate the huge computational burden of computing online
optimal control solutions. It would open new avenues for the efficient and realistic
control of complex systems for physic-based character animation [Wang et al.,
2012] or real robots [Taïx et al., 2013].



Chapter 5

Discussion and Perspectives

In this thesis we have obtained two important results. First, adaptation to
a force field perturbation is not properly described by a model which maximizes
performance in the presence of the perturbation (chapter 3; reoptimization model;
Izawa et al. 2008). Second, a feedforward multilayered neural network can be
trained to approximate an optimal controller and the resulting distributed com-
putation is reminiscent of corresponding operations in the motor cortex (chapter
4). We have also provided preliminary results on the problem of position vs force
control, and the role of cocontraction (Appendix E, F). We have already discussed
at length these results in the respective chapters. Here we step back and assess
their far-reaching implications.

5.1 Motor control involves a universal controller

The starting point of our work is the statement that motor control is a governed
by a task-independent, universal controller dedicated to mastering body dynamics.
This means that, as we encounter a new environment with its specific dynamics,
we consider it as a perturbation and interact with it through feedback control. The
only flexibility is offered by the task representation, i.e. the way we set boundary
conditions on body states to reach intended goals. Consider the case of stick
balancing. A first solution would be to control the ensemble body+stick. In this
case, goals can be set directly on the state of the stick (e.g. its angle relative to the
vertical, its velocity, ...) and control can achieve these goals. A second solution is
to control only the body. Goals can only be set on the body, e.g. how to displace
the hand to keep the stick near the vertical. Here, the task representation is the
indirect definition of body goals from the state of the stick. We claim that the latter
solution is closer to a human strategy than the former. This claim could be tested
in a stick balancing experiment, either with a real stick [Milton et al., 2016] or in a
virtual environment [Yoshikawa et al., 2016]. As with the adaptation experiment
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(chapter 3), we would compare experimental data with model’s simulations and try
to account for specific properties of stick balancing (e.g. non-Gaussian fluctuations
in the acceleration distribution of the stick, power-law distributions of corrective
movements, ...). This would constitute another strong challenge to our claim
about a universal controller. A central argument for the universal controller is the
striking contrast between the long road of motor development (years; Thelen 1995)
and the brief timescale of adaptation processes (minutes to hours; Shadmehr and
Mussa-Ivaldi 1994). Although it is difficult to have some certainty on this issue, we
can question the fact that the brain could elaborate a full-blown new controller for
each task at hand. Interestingly, the study of de Rugy et al. [2012] which is often
taken to argue against optimal motor control models, for once, would be consistent
with our view. They showed that human participants failed to reoptimize their
muscle recruitment patterns following (virtual) changes in muscle actions. They
interpreted their results by the existence of "habitual" coordination patterns that
are unaffected by selective modifications of the peripheral apparatus. Our model
suggests that these habitual patterns are learned optimal patterns generated by
the universal controller.

5.2 Optimality and the content of action

A central claim in computational motor control is optimality [Scott, 2004; Todorov,
2004; Diedrichsen et al., 2010]. Accordingly, our movements should be optimal for
some cost function, although the exact nature of this function remains debated
[Berret et al., 2011]. Yet this view gives only an incomplete account of movement
production. In fact, most movements are unlikely to be optimal for any of the
cost functions proposed in the literature. Although strong signal filtering might
give an impression that smoothness is the very essence of movement [Flash and
Hogan, 1985], velocity and acceleration fluctuations on a fast timescale (e.g. 8
Hz) are a true feature of a large repertoire of movements [Vallbo and Wessberg,
1993; Guigon et al., 2019, 2022]. Even fast movements such as those that we have
recorded in the force field adaptation task contain such fluctuations (chapter 3,
3.2, C.13). The failure of an optimality principle for movement is no surprise: the
ubiquitous encounter of isochronous behaviors [Denier van der Gon and Thuring,
1965; Lacquaniti et al., 1983; Kodl et al., 2011] is already an argument against
optimality per se. These observations call into question the appropriateness of
optimal control models applied to the understanding of human movements. The
problem is probably benign in general but might become serious when dealing
with detailed characteristics of movement kinematics or precision. Yet it says
nothing about optimal planning and optimal energy expenditure [Aftalion and
Trélat, 2021; Brown et al., 2021]. Neural bases of motor control An ultimate goal
of motor control modeling is to improve our understanding of the neural bases
of motor control. A frequent argument against the optimal control approach is
its computational burden and the associated difficulty to imagine how a neuronal
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tissue could produce such complex operations. We have made a decisive step
towards addressing this issue: (1) a simple feedforward neural network can be
trained to produce a nonlinear optimal feedback control policy; (2) properties
of the network match those of the primate motor cortex. Although much work
remains to be done at the machine learning level (structure and size of the network,
training set, robustness, ...), these observations are very satisfactory. In fact, part
of the success is probably due to the nature of the control policy: a stationary,
parameter-free, universal control policy. Thus, it gives additional support to our
modeling hypotheses [Guigon et al., 2019; Guigon, 2022; Moullet et al., 2022].

5.3 Perspectives

This work offers two broad perspectives. The first perspective is to extend the
proposed framework to a broader range of tasks and to more complex dynam-
ics. Interesting tasks are those in which an unmodeled dynamics is present (e.g.
stick balancing; see above). We expect that these tasks can be handled properly
through an adequate choice of a task representation, without the need to integrate
the unmodeled dynamics in the controller. For instance, working with an upper
limb prosthesis controlled through compensatory body motions [Legrand et al.,
2021] has been successfully modeled in our framework (results not shown). The
second perspective is to deepen the neural bases of motor control. The proposed
computational neuroanatomy of motor control involves not only the motor cortex
but also some other parts of the cerebral cortex, the basal ganglia and the cerebel-
lum [Shadmehr and Krakauer, 2008; Haar and Donchin, 2020]. In particular, the
role of the cerebellum is within reach through a neural network trained to perform
state estimation.
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Appendix A

Optimal Control

A.1 Analytic optimization for linear problems

A.1.1 Statement of the problem

We consider a system described by a state x driven by a dynamic f on which we
have a control u :

ẋ(t) = f [x(t),u(t), t], x(t0) = x0 (A.1)

We seek to find an optimal control u(t) minimizing a cost-function over a given
time lapse, taking the form:

J = ϕ[x(tf ), tf ] +

∫ tf

t0

L[x(t),u(t), t]dt (A.2)

Under the terminal constraints:

ψ[x(tf ), tf ] = 0 (A.3)

ϕ[x(t+ tH), tH ] = 0 (A.4)

Note: as we focus on a linear problem, no inequality constraints are taken into
account here.
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A.1.2 Adjoint problem

The system dynamics may be written as the time-varying constraint, :

f [x(t),u(t), t]− ẋ(t) = 0 (A.5)

which is to be satisfied over the entire time interval [t0, tf ] and may therefore be
adjoined to the integrand of J , using the time-varying Lagrange coefficient λ(t),
as well as the terminal constraints, using ν(t):

JA = ϕ[x(tf ), tf ] + ν
T (t)ψ[x(tf ), tf ]

+

∫ tf

t0

L[x(t),u(t), t] + λT (t) (f [x(t),u(t), t]− ẋ(t)) dt
(A.6)

Defining the Hamiltonian H:

H[x(t),u(t),λ(t), t] = L[x(t),u(t), t] + λT (t)f [x(t),u(t), t] (A.7)

we write

JA = ϕ[x(tf ), tf ] + ν
T (t)ψ[x(tf ), tf ]

+

∫ tf

t0

H[x(t),u(t),λ(t), t]− λT (t)ẋ(t)dt
(A.8)

and integrating by part:

JA = ϕ[x(tf ), tf ] + ν
T (t)ψ[x(tf ), tf ] +

[
λT (t0)x(t0)− λT (tf )x(tf )

]
+

∫ tf

t0

H[x(t),u(t),λ(t), t] + λ̇
T
(t)x(t)dt

(A.9)

A.1.3 Conditions for optimality

A necessary condition for optimality is that the first-order of control variations on
the cost function be zero throughout the time interval. First variations of JA can
be expressed as:

∆JA =
{
λT∆x(∆u)

}∣∣
t=t0

+
∫ tf
t0

{
∂H
∂u

∆u+
[
∂Hx− λ̇T

]
∆x(∆u)

}
dt

+
{[

∂ϕ
∂x

+ νT ∂ψ
∂x

− λT
]
∆x(∆u)

}∣∣
t=tf

∆
= ∆JA(t0) + ∆JA(t0, tf ) + ∆JA(tf )

(A.10)
where ∆u(t), t0 ≤ t ≤ tf is an arbitrary (presumably small) function, ∆x(∆u) is
a functionnal that denotes state perturbations arising from control perturbations
and ∆tf is a change in final time. As stated, in the vicinity of the optimal tra-
jectory, the first variations on the cost function must equal zero, the four parts of
∆JA must equal zero too:
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• It can be assumed that the initial state is unaffected by the initial control,
which means ∆JA(t0) = 0 regardless of the adjoint vector.

• We wish to choose the adjoint vector time history such that ∆JA is insensi-
tive to arbitrary (nonzero) values of ∆u and ∆x(∆u) in the time interval:

λ̇
T
(t) = −∂H[x(t),u(t),λ(t), t]

∂x
, t0 ≤ t ≤ tf (A.11)

subject to the terminal conditions:

λT (tf ) =
∂ϕ[x(t), t]

∂x

∣∣∣∣
t=tf

+ νT
∂ψ[x(t), t]

∂x

∣∣∣∣
t=tf

(A.12)

• ∆JA(tf ) is zero by the previous equation.

• For ∆JA(t0, tf ), to be zero, in addition to equation (A.11), the following
must be satisfied:

∂H[x(t),u(t),λ(t), t]

∂u
= 0 (A.13)

Equations (A.11) (A.12) and (A.13) are the well-known Euler-Lagrange equa-
tions.

Denoting ∂f
∂x

and ∂f
∂u

by F and G, equations (A.11) and (A.13) become:

λ̇(t) = −F T (t)λ(t)−
[
∂L
∂x

]T
(A.14)

[
∂L
∂u

]T
+GT (t)λ(t) = 0 (A.15)

A.1.4 Application to a simple case

A.1.4.1 Dynamics

For both the sake of illustration and simplification we study a simple system
consisting in a 1D-mass m described by a state x driven by a muscle-like actuation
dynamic f on which we have a control u where:

x(t) =


x1(t)

x2(t)

x3(t)

x4(t)

 =


position

velocity

activation

excitation

 (A.16)
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ẋ(t) = f [x(t), t] =


ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

 =


x2(t)
x3(t)
m

x4(t)−x3(t)
τ

u(t)−x4(t)
τ

 (A.17)

or
ẋ(t) = f [x(t), t] = Fx(t) +Gu(t) (A.18)

with

F =


0 1 0 0

0 0 1
m

0

0 0 − 1
τ

1
τ

0 0 0 − 1
τ

 , G =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
τ

 (A.19)

A.1.4.2 Optimization problem

We seek to find a control u(t) minimizing the cost-function:

J =

∫ tf

t0

L[u(t), t]dτ (A.20)

Which means solving the problem

U
[t0,tf ]

= argmin
u

∫ tf

t0

L[x(τ),u(τ), τ ]dτ (A.21)

We define an "ecological" cost-function as the square sum of the control coordi-
nates:

L[x(τ),u(τ), τ ] = uT (τ)u(τ) (A.22)

We set the terminal constraints:

ϕ[x(tf ), tH ] = c⊙ (x(tf )− xf ) = 0 (A.23)

that can be written as: 
c1(x1(tf )− x1f )

c2(x2(tf )− x2f )

c3(x3(tf )− x3f )

c4(x4(tf )− x4f )

 =


0

0

0

0

 (A.24)

where the coefficients ci = {0, 1}, 1 denoting that the ith coordinate of the state
is constrained to the value xif and 0 denoting that it is set free to be optimized.
We hereby define ccf as the vectorised concatenation of the terminally constrained
coordinates.
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A.1.5 Solving Euler-Lagrange equations

Applying (A.12) to our case, defined in (A.22), we find:

λ(tf ) =


λ1(tf )

λ2(tf )

λ3(tf )

λ4(tf )

 =


c1ν1
c2ν2
c3ν3
c4ν4

 (A.25)

Applying (A.14) to our case, defined in (A.22), we find:

λ̇(t) = −F T (t)λ(t) (A.26)

Applying (A.15) to our case, defined in (A.22), we find:

u(t) = −G
Tλ(t)

2
= −λ4(t)

2τ
(A.27)

Wich leads to express (A.17) as:

ẋ(t) = Fx(t)− GGT

2
λ(t) (A.28)

We now merge (A.28) and (A.26):[
ẋ

λ̇

]
=

[
F −GGT

2

0 −F T

] [
x

λ

]
(A.29)

Which evaluates as:

[
ẋ

λ̇

]
=



0 1 0 0 0 0 0 0

0 0 1
m

0 0 0 0 0

0 0 − 1
τ

1
τ

0 0 0 0

0 0 0 − 1
τ

0 0 0 − 1
2τ2

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 − 1
m

1
τ

0

0 0 0 0 0 0 − 1
τ

1
τ


[
x

λ

]
(A.30)
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This differential system finds a solution that we represent as a transition matrix
Φ(t), defined by four sub-matrices:[

x(t)

λ(t)

]
= Φ(t)

[
x(t0)

λ(t0)

]
=

[
Φ11(t) Φ12(t)

Φ21(t) Φ22(t)

] [
x(t0)

λ(t0)

]
(A.31)

As we know the values of x(t0), we now wish to express λ(t0) as a function of
the initial state x0 and the constrained final state xf .

Evaluating (A.31) at t = t0, we find:

x(tf ) =
[
Φ11(tf ) Φ12(tf )

] [ x0

λ(t0)

]
= Φ11(tf )x0 + Φ12(tf )λ(t0) (A.32)

Thus:
λ(t0) = Φ−1

12 (tf ) (x(tf)− Φ11(tf )x0) (A.33)

The coordinates of x(tf ) are known to be equal to those of xf for indexes
i for which ci = 1. Conversely, we thus need to find xj(tf ) for the m indexes j
for which cj = 0. Fortunately, for each unknown xj(tf ), (A.25) gives an equation
constraining the corresponding λj(tf ).
Evaluating (A.31) at t = tf once again, we find:

λ(tf) =
[
Φ21(tf ) Φ22(tf )

] [ x0

λ(t0)

]
= Φ22(tf )λ(t0) (A.34)

Thus:
λ(t0) = Φ−1

22 (tf )λ(tf) (A.35)

Combining (A.33) and (A.35), we find:

Φ−1
12 (tf ) (x(tf )− Φ11(tf )x0) = Φ−1

22 (tf )λ(tf) (A.36)

Which, in this 1D-mass example is a 4-dimension system, with 2 ∗ m unkowns
xj(tf ) and λi(tf ) (where i are the indexes for which ci = 1 and j are the indexes
for which cj = 0). This systems can be solved in the form:

[
xj(tf )

λi(tf )

]
= Γ(tf )

[
x0

xc
f

]
(A.37)

Knowing now perfectly x(tf ), we can evaluate λ0 with (A.33) and the opti-
mization problem is solved with (A.31).
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A.2 Stationarity with receding horizon

An important feature of the optimal control derived in A.27 is that it depends
only on x0 and xcf :

u(t) = −G
Tλ(t)

2
= −G

T (Φ21(t)x0) + Φ21(t)λ0(t0))

2

= −
GT

(
Φ21(t)x0 + Φ21(t)Φ

−1
12 (tf ) (x(tf )− Φ11(tf )x0)

)
2

(A.38)

Which can be written as:

u(t) = ψ(x0,x
c
f , t, tH) (A.39)

u(t) = Ψ(t, tH)

[
x0

xc
f

]
(A.40)

And there lies the power of optimal control with receding horizon: at each time
step the control is computed with the same time limit tf = 0.28 s, and only the
initial control is used. In this situation, switching to a discrete representation of
task time (as opposed to the previous time t that refers to the optimizing time),
each control is in the linear case given by

ut = Ψ0(tH)

[
xt

xc
f

]
(A.41)

and
ut = ψ(xt,x

c
f , tH) (A.42)





Appendix B

State Estimation

B.1 State estimation and motion

Human perception is neither instantaneous nor perfect. In addition, both motor
controls effectively delivered to motor units, as well as the consequential motor
outputs may differ from those intended during the action selection process. But
regardless of those imperfections the motor control process remains robust, and
motor tasks can generally be achieved. Interestingly, perception and action im-
perfections, combined with the many redundancies characterising the human body
(as well as, in many cases, the motor task itself) give rise to what is called struc-
tured variability. This phenomenon was first described by Bernstein in his founding
study of skilled motor behavior: he observed that blacksmiths were able to repeat-
edly perform a hammering task while never repeating twice the same movement.
The randomness of the different errors affecting the motor process is tamed by the
control policy to achieve the task at hand, displaying a organisation of kinematic
properties over repetition of a given task. The very existence of skilled behavior
in spite of perception and action imperfections calls for a necessary functionality
in the motor control process: state estimation. The most used implementation
of state estimation is the Kalman filter for its capacity to take into account both
proportional and additive noises on perception and actions as well as process delay.
Although the exact nature and characteristics of perception and action imperfec-
tions is yet to be precisely determined, a handy and common description of their
probabilistic behavior is white Gaussian noise.
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B.2 The extended Kalman filter

As stated, we seek a way of building an estimation of the current state of our
system that would be more accurate than its measurements alone. Aside the
observations our body can make of itself, the only insightful information our brain
has at its disposal is a representation of the dynamic of the body it controls. An
efficient tool for fusing different measurements of a system and its ruling dynamic
is the Stratonovich–Kalman–Bucy filter (which will be referred to as the Kalman
filter, for the sake of conciseness). Although it cannot be claimed that the Kalman
is the exact state estimation process effectively neurally implemented in our brain,
it is nonetheless a concise and powerful method for simulations, accounting for the
global process of estimation.

Qualitatively, the Kalman produces an estimation of the state of system by
computing an average between the prediction of the state by the propagation
of the dynamic from the previous state and the observations of the state at its
disposal. For a noisy process, there will be a noticeable discrepancy between
measured and predicted states, coming either from a perturbation of the dynamic
of the system or from inaccurate measurements. The Kalman filter makes use of
the representation we may have of the "intensity" of the different noises affecting
our process in order to assign corresponding "weights" to available measurements
and state prediction: if the modeled dynamic is highly noisy and the observations
trustworthy, the Kalman filter will mainly rely on measurements ; conversely, if
the dynamic is well known and the sensors of poor accuracy, the Kalman filter will
produce an almost feedforward estimate.

While the Kalman is renown for its use over linear dynamics (used to solve
LQG problems - at the foundation of control theory), an extended version can be
formulated for more general non-linear dynamics:

ẋ(t) = f (x(t),u(t),w(t)) (B.1)

associated with a general observation:

y(t) = H (x(t),v(t)) (B.2)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm the control signal driving the
system and y(t) ∈ Rp the observation of the system and w(t) and v(t) represent
respectively dynamic and observation noises which are both assumed to be zero
mean multivariate Gaussian noises with covariance matrices Ωw and Ωv. These
equations may be discretized as state transition using first order forward Euler
method at time t with timestep δ:

xt+1 = f (xt,ut,wt) (B.3)

yt = H (xt,vt) (B.4)
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Where
f (xt,ut,wt) = xt + δf (xt,ut,wt) (B.5)

yt = H (xt,vt) (B.6)

As previously stated, the state estimate x̂t is built upon prediction through
the (potentially wrong) representation of the system’s dynamic and (potentially
erroneous) observation of the system, fused by the intermediate of the Kalman
filter gain Kt. Its effective calculation is done by forward iteration throughout the
whole considered process, keeping in "memory" the occurrences of noises in order
to minimize the overall error: the expected value of the square of the magnitude
of between the actual state and its estimate E

[
∥x− x̂∥2

]
. This computation can

be decomposed in 4 steps:

Predicted state estimate : x̂t+1|t = f
(
x̂t|t,ut

)
Predicted covariance estimate : Pt+1|t = AtPt|tAT

t + LtΩ
wLT

t

Innovation : ȳt = yt − H
(

ˆxt+1|t
)

Innovation covariance : St = HtPt+1|tHT
t + MtΩ

vMT
t

Near optimal Kalman gain : Kt = Pt+1|tHT
t S

−1
t

Updated state estimate : x̂t+1|t+1 = x̂t+1|t + Ktȳt
Updated covariance estimate : Pt+1|t+1 = (In − KtHt)Pt+1|t

(B.7)
with

At =
∂f

∂x
(B.8)

Bt =
∂H
∂u

(B.9)

Lt =
∂f

∂w
(B.10)

Mt =
∂H
∂v

(B.11)

In short, the state estimate can be written as:

x̂t+1 = f (x̂t,ut) + Kt (yt − H (f (x̂t,ut))) (B.12)

or
x̂t+1 = f (x̂t,ut)− KtH (f (x̂t,ut)) + Ktyt (B.13)

We can recognise here a form of interpolation„ which becomes even more obvious
assuming that the observation H is linear - i.e. H(xt) = Htxt:

x̂t+1 = (In − KtHt)f (x̂t,ut) + Ktyt (B.14)
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B.3 Discretized continuous formulation

When drawing the timestep in Eq. B.7 to infinitely small values, a continuous
Kalman gain may be defined upon continuous dynamics (Eq. B.1):

K(t) = P(t)HT [M(t)ΩvM(t)T ]−1 (B.15)

where the covariance matrix follows the Riccati Equation :

Ṗ(t) = A(t)P(t) + A(t)P(t)T + L(t)ΩwL(t)T − K(t)HP(t) (B.16)

and the estimated state propagation is governed by :

˙̂x(t) = f(x̂(t),u(t)) + K(t)[y(t)− Hx̂(t)] (B.17)

Then, a discretized version may be defined :

Kt = AtPtHT [HPtHT + MtΩ
vMT

t ]
−1 (B.18)

where the covariance matrix follows the Riccati Equation :

Pt+1 = AtPtAT
t + LtΩ

wLT
t − Kt[HPtHT + MtΩ

vMT
t ]Pt (B.19)

B.4 Delays

To take delay into account, the discrete Kalman filter has to be built around
an augmented state storing timesteps until they are processed. Given a state xt
describing our system at a given time and denoting d as the number of timesteps
between an observation and its processing, the feedback is written as:

yt = H̃x̃t + not (B.20)

where x̃t = [xt;xt−1; · · ·xt−d]T is the augmented state and H̃ = [H, · · · ,0] is the
delayed feedback process. The motor process is then expressed as

x̃t+1 = Ãx̃t + B̃ũt + ñmt (B.21)

with

Ã =

[
A 0 0

In∗d 0

]
(B.22)

B̃ = [B, · · · ,0]T (B.23)

ñmt = [nmt , · · · ,0]
T (B.24)
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The augmented estimated state is expressed as:

ˆ̃xt+1 = Ãt
ˆ̃xt + B̃ut + K̃t(yt − B̃ˆ̃xt) (B.25)

where the augmented Kalman gain K̃t is then computed following Eq. B.7 using
the augmented matrices:

Ω̃
ξ

t = Ωξ
t (B.26)

Ω̃
ω

t =

[
Ωω
t

0n∗d,n+m

]
(B.27)

Finally, with ˆ̃xt = [x̂t; x̂t−1; · · · x̂t−d]T the last component x̂t−d is used to compute
the next control command.
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Figure C.3: Participants whose behavior is incompatible with the
reoptimization model (1/3). Same format as in Fig. 3.4. For bf10, the
dotted lines correspond, from bottom to top, to substantial =, anecdotal=,

anecdotal ̸=, and substantial ̸=.
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Figure C.4: Participants whose behavior is incompatible with the
reoptimization model (2/3). Same format as in Fig. 3.4. For bf10, the
dotted lines correspond, from bottom to top, to substantial =, anecdotal=,

anecdotal ̸=, and substantial ̸=.
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Figure C.5: Participants whose behavior is incompatible with the
reoptimization model (3/3). Same format as in Fig. 3.4. For bf10, the
dotted lines correspond, from bottom to top, to substantial =, anecdotal=,

anecdotal ̸=, and substantial ̸=.
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Figure C.6: Participants whose behavior is partially compatible with
the reoptimization model (1/2). Same format as Fig. C.3
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Figure C.7: Participants whose behavior is partially compatible with
the reoptimization model (2/2). Same format as Fig. C.3
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Figure C.8: Two participants that failed to improve their behavior
with training. Same format as Fig. 3.4.
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Figure C.9: Parametric study of the model: influence of feedback
delay. A. Before-effect (red) and after-effect (blue) trajectories. Feedback
delay: 0, 0.05, 0.1, 0.15 s; light to dark color. B. Velocity profile. C. Trajectory

angle. D. Angle derivative.
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Figure C.10: Parametric study of the model: influence of noise ratio
σξ/σω (motor/sensory), used for estimation. Same format as Fig. C.9. Noise

ratio: 0.1, 1, 10, 100; light to dark color.
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Figure C.11: Parametric study of the model: influence of muscle ratio
gsho/gel (shoulder/elbow). Same format as Fig. C.9. Muscle gain ratio: 1, 2, 5,

10; light to dark color.
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Figure C.12: Parametric study of the model: influence of bound-
ary conditions. A. Mean and 25-75 percentiles of positive acceleration peaks
for baseline (black) and before-effect (red) trajectories for different boundary
conditions at via-points: p: only position; pv: position and velocity; pva: posi-
tion, velocity and activation; pvae: position, velocity, activation and excitation.

B. Same as A for jerk.
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Figure C.13: Power spectrum analysis. A. Power spectrum density (arbi-
trary unit) of velocity average across trials and participants, for baseline (black),
before-effect (red), adapted (green) and after-effect (green) trials. B. Same as

A for acceleration. C. Same as A for jerk.
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D.1 Influence of network architecture and size

We trained a number of networks with either one or two hidden layers and with
layers of various size (256, 512 and 1024 for the network with one hidden layer;
64-128, 64-192, 64-256 for the network with two hidden layers). The training, test
and reconstruction error decreased with the number of weights in the network and
were lower for two vs one hidden layer (Fig. D.1).

D.2 More on the performance of the network

We tested the network on 0.12-m, 0.17-m and 0.22-m trajectories in 32 evenly dis-
tributed directions (Fig. D.2). None of theses trajectories belongs to the training
set. Although the trajectories are not perfect, the network displays correct trends
of interpolation and extrapolation.
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Figure D.1: Influence of network architecture and size. A. Training
error as a function of the number of weights in the network. Purple: network
with one hidden layer (256, 512, 1024 neurons); orange: networks with two hid-
den layers (64/128, 64/192, 64/256 neurons). Multiple points with the same
number of weights correspond to the same network for different initial postures
(shoulder/elbow: 40/100 deg, 40/110 deg, 40/120 deg). B. Test error. C. Re-

construction error.
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Figure D.2: Performances of the main neural network (two hidden
layers - 64/268 neurons). A. 32 12-cm trajectories. Scale: 0.1 m. B. Velocity
profiles for A. C. 32 17-cm trajectories. D. Velocity profiles for C. E. 32 22-cm

trajectories. F. Velocity profiles for E.
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Figure D.3: Distribution of neuron’s preferred direction (circular histogram,
20 bins, black bars) for the second hidden layer calculated every 0.05 s (A to

H) Same format as Fig. 4.7 for the second hidden layer.
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Figure D.4: Performances of a smaller two hidden layers neural network
(64/128 neurons). Same format as Fig. D.2.
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Figure D.5: Performances of a single hidden layer neural network (1024 neu-
rons). Same format as Fig. D.2.
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A

B

Figure D.6: Temporal activation of the neural network. A. Activity
of all neurons in the first hidden layer of single movement (0.15 m, 0◦). The
neurons are sorted by time-to-peak activity. B. Same as A for the second hidden

layer.
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Appendix E

Position vs. force control

With a receding horizon motor control is defined to be a perpetual movement
towards goals. In this framework, posture is merely a movement toward a point
- or joint state - already attained. Oscillations about the target are but direct
consequences of noises: postural observations, control inputs or goal definition
may not be perfect, generating positional errors leading to corrective actions that
in turn may induce slight offsets, give rise to ever-going adjustments. It also grants
our model the ability to naturally answer to external intermittent perturbations
without requiring any adaptation of the control policy or modification of task time.
Furthermore, interesting predictions arise when considering one the most simple
interaction with our environment: constant forces.

Position control and force control tasks have been widely used to study muscle
fatigue [Enoka and Duchateau, 2008]. In several studies, participants were asked
to perform two tasks with diverse body parts (elbow [Hunter et al., 2002; Mot-
tram et al., 2005; Rudroff et al., 2007], finger [Maluf et al., 2005], ankle [Magalhaes
et al., 2019]): (1) maintain a fixed position while exposed to a constant force F
(position control) ; (2) maintain the same force level F (force control). Intuitively,
these two tasks look alike, as they require the same force production. Yet, sur-
prisingly, time to failure was shorter for position control than for force control,
consistently across all body parts and muscles involved. Explanations regarding
the neurophysiological phenomena at play may involve the recruitment of motor
units, amplitude of EMG bursts or reflexes through afferent pathways [Enoka and
Duchateau, 2008].

Yet, the candidate mechanisms contemplated remain at the peripheral level,
and a reason for such a difference may be found in the CNS at the control level.
The representation of these tasks in our framework can provide insight in this
regard.
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E.1 Position control

E.1.1 Issue with receding horizon optimal control

Let us first consider a very simple one-dimensional mass, which state is described
by

x(t) =


p(t)

v(t)

α(t)

ε(t)

 (E.1)

where p is the position of the mass, v its velocity, a the activation - or force - of
its actuator and e its excitation, and is driven by a control u through a dynamic:

ẋ(t) =


v(t)
α(t)
m

ε(t)−α(t)
ν

u(t)−ε(t)
ν

 (E.2)

where m is the mass and ν = 0.05 s is a time constant. Finally, let us define a

simple reaching task starting from state x0 =


p0
0

0

0

 to xG = xf =


pf
0

0

0

.

Fixed time optimal controlers (e.g. LQR - section 2.5.2.1 - or SOFC - section
2.5.2.3) producing symetrical bell-shape velocity profiles. Section 2.5.2.5 showed
how such a task is to be implemented in our framework, reproducing similar tra-
jectory velocity profiles [Guigon et al., 2019; Guigon, 2022], with a slight difference
in peak velocity timing and amplitude. The reason for this difference is exposed
in section 2.5.2.5: the goal of the controller xG is to be set equal to xf but time
to reach it is at all times set to TH = 0.28 s (see section 2.6.1.2). Hence, the
control signal decreases as the mass closes in on the target, and so do excitation
and activation. This means that the target xf is actually never exactly reached
but rather asymptotically approached. In reality, the remaining distance becomes
negligible after approximately 0.4 s.

Now, let us add a constant opposing force F :

ẋ(t) =


v(t)
α(t)−F
m

ε(t)−α(t)
ν

u(t)−ε(t)
ν

 (E.3)
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Figure E.1: Simulation of position control against a constant force
with a fixed time horizon. A. Time course of position. B. Time course of

control. Parameters: m = 1 kg, ν = 0.05 s.

We performed two simulations for a displacement of 0.2 m in 1 s against
a 10 N force (not integrated in the controller), using a fixed task time optimal
controller and a receding horizon controller. The fixed time controller succeeded
in reaching the target (Fig. E.1) while the receding horizon controller plateaued
to a position undershooting the target (Fig E.2B,C). Let us give an explanation
for these different behaviors.

With a fixed time controller, the time remaining to reach the current goal
decreases as the movement unfolds (see 2.6.1.2). Consequently, the controls com-
puted in the presence of an opposing force will be automatically (potentially ex-
ponentially) increased during the latest moments of the task and compensate for
the perturbation (see Fig. E.1,B), and the target is successfully reached (see Fig.
E.3A).

For optimal control with receding horizon, there is no predefined task end time
(see 2.6.1.2). Rather, task may be considered to be accomplished when the state
objective is attained (within observation margin error) or, if impossible, when
equilibrium is reached. Fig. E.2A illustrates how, in the receding horizon case, an
equilibrium is reached.

State equilibrium is defined by ẋeq = 0 which yields

xeq =


peq
0

F

F

 (E.4)

where peq is the position reached at equilibrium, illustrated by the plateau reached
in Fig. E.2. Its exact value is easier to find through simulations than calculations,
but a interesting reasoning can be made on state equilibrium, that will prove to
be useful to circumvent this undershooting issue.
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Figure E.2: Simulation of position control against a constant force
with a receding time horizon. A. Schema to explain the failure of optimal
control with a receding horizon in a position control task. The start position
is the small circle on the left. The target position is the large circle on the
right. The mass is depicted by a square and moves from the left to the right due
to two forces: a constant force (gray arrow) and a control force (black arrow).
Three successive position of the mass are shown (from top to bottom). Early
in the movement, the controlled force is large (top). Later, the controlled force
is small (middle). Then an equilibrium between the forces is reached, the mass
stops moving and undershoots the target position (bottom). B. Time course
of position corresponding to the scenario in A. The goal state is [0.2 0 0 0].
C. Time course of control for B. D. Time course of position corresponding to a
scenario in which the goal state is [0.2 0 22.3 22.3]. E. Time course of control

for D.
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A B

Figure E.3: Optimal control facing constant force with the goal of
the controller set to the actual goal. A. Optimal control with fixed end
time: the target is reached. B. Optimal control with receding horizon: target is

undershot.

It is straightforward to see from Eq. E.3 that control at equilibrium is ueq = F .
Additionally, we showed in Chapter 2 (see Eq. 2.55) that the control in a given
configuration is a function of the current state and the current goal to reach:

u(t) = π(x(t),xG(t)) (E.5)

The system will thus be at rest at xeq such that

π(xeq,xf ) = F (E.6)

A method to find the equilibrium position xeq may thus be the following:

1. compute control π(xsearch,i,xf ) with a series of state xsearch,i

xsearch,i =


psearch,i

0

F

F

 (E.7)

where psearch,i < pf .

2. draw the curve of the control as a function of psearch and interpolate to find
peq, the value satisfying Eq. E.4.

Fig. E.4 was built following this method and shows that, consistently with Fig.
E.2, the system previously defined reach a point of equilibrium peq ∼ 8.2 cm.

E.1.2 Adapted task representation for receding horizon op-
timal control

Keeping in mind that the dynamic embed in the controller may not be changed,
for our system to reach the target position pf despite the opposing force F , only
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Figure E.4: Control as a function of position. Control as a function of
position for a reaching task toward a target placed at 0.2 m with an opposing
force of 10 N (plain blue line). Equilibrium is reached when control is equal to

10 N (dashed red line), corresponding to a position peq ∼ 11.8 cm

the goal fed to the controller xG may be adjusted. The problem to solve is thus
to find a controller goal xG that satisfies:

π(xfeq,xG) = F (E.8)

with

xfeq =


pf
0

F

F

 (E.9)

Such a task representation xG can be constructed in two ways, presented hereafter.

E.1.2.1 Goal position adjustment

A first option is to displace the objective fed to the controller further away so that
the equilibrium point matches the position actually intended (see Fig. E.5A) :

xG =


pf +∆p

0

0

0

 (E.10)

As the chosen dynamics is linear, the undershoot as observed in Fig. E.4 is not
dependent of the objective position pf . This means that by setting the controller’s
goal as noted above to pf + ∆p with the "overshoot" ∆p = pf − peq allows to
compensate for a constant force. The application to the previous simulation thus
yields with an of xG = [0.318, 0, 0, 0] to compensate for the force of 10 N.
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A B

Figure E.5: Adapted task representation for receding horizon optimal
control. A. Goal position adjustment. The goal of the controller is different
from the actual goal: objective position shifted onward by ∆p. B. Goal acti-
vation/excitation adjustment. The goal of the controller is different from the

actual goal: activation and excitation are set to a non-zero, adapted value.

It should be noted, though, that this task representation would not be adapted
to redundant and/or non-linear systems, for a different end effector position implies
a different joint configuration, and different effect of applied forces. The task
representation presented hereafter is not plagued with this drawback.

E.1.2.2 Goal activation/excitation adjustment

A second possibility is to set up the controller state goal to the actual objective
position pf , but with non-null activation and excitation (see Fig. E.5B):

xG =


pf
0

αG
εG = αG

 (E.11)

Similarly to the method presented in section E.1.1, we computed multiple controls
π(xf ,xG,i) with

xG,i =


pf
0

αG,i
εG,i = αG,i

 (E.12)

where αG,i were a range of activations. Fig. E.6 shows the relationship between the
control u and the activation and excitation goals (αG,i and εG,i) with an opposing
force of 10 N. For the same position pf = 0.2 m to be the equilibrium point, control
is to be equal to 10 N, which requires αG = εG = 22.3 N .

This task representation is more versatile than the previous: in this example
dynamics goals are set as activation which is equivalent to a force, but in the
general case they would be expressed as forces generated at the end-effector, which
translates additively as joint torques (see Eq. 2.8).
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Figure E.6: Position control with goal activation/excitation adjust-
ment. Control as a function of the goal activation with a force of 10 N (plain
blue line). Equilibrium is reached when control is equal to 10 N (dashed red

line), corresponding to an activation goal of ∼22.3 N. Slope is 3.10.

E.2 Force control

In our framework, a task of pure force control can be modelled for our system (1D
mass of 1 kg) as:

xf =


∗
∗
αf

ef = αf

 (E.13)

where ∗ indicates that the coordinate is unconstrained. Similarly to the "posi-
tional" reaching task defined in E.1, we simulated an "activation" reaching task,
starting from zero activation and excitation up to 10 N for a fixed time con-
troller and a receding horizon controller. Unsurprisingly, the fixed time controller
achieved the task (Fig. E.7A) while the receding horizon controller plateaued to
an undershoot and ask representation need to be adapted for optimal control with
receding horizon (Fig. E.7A).

The problem to solve is here to find a controller goal xG that satisfies:

π(xf ,xG) = F (E.14)

with

xf =


∗
∗
F

F

 (E.15)
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A B

C

Figure E.7: Optimal control producing force. A. Optimal control with
fixed end time, setting the goal of the controller to the actual goal: the target
force of 10 N is reached. B. Optimal control with receding horizon, setting
the goal of the controller to the actual goal: the target force of 10 N is highly
undershot. C. Optimal control with receding horizon, setting the goal of the

controller to xG = [∗, ∗, 56.8, 56.8]: the target force of 10 N is reached.

The same method as in E.1.2.2 was adopted to find the activation αG defining

xG =


∗
∗
αG

εG = αG

 (E.16)

satisfying Eq. E.14. Fig. E.8 shows the relationship between the control u between
the control u and the activation and excitation goals to produce a force of 10 N,
evaluating αG = εG = 56.8 N. Note that higher values of final activation and
excitation need to be set as a goal than for position control.

E.3 Modelling predictions: comparison

To make predictions on the difference between these two tasks, noise must be taken
into account. Out of the noises listed in 2.3.2, we decided to analyse the impact
of signal dependent motor noise ϵ, updating the dynamic of Eq. E.3 to:

ẋ(t) =


v(t)
α(t)−F
m

ε(t)−α(t)
ν

u(t)(1+ϵ)−ε(t)
ν

 (E.17)
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Figure E.8: Force control with goal activation/excitation adjustment.
Control as a function of the goal activation with a force of 10 N (plain blue
line). Equilibrium is reached when control is equal to 10 N (dashed red line),

corresponding to an activation goal of ∼56.8 N. Slope is 0.18.

We simulated a position control task around a position at 0.2 m, facing a force of
10 N and with signal dependent noise of mean zero and standard deviation σϵ =

0.4. Similarly, we simulated a force control task to produce a force of 10 N, with
signal dependent noise of mean zero and standard deviation σϵ = 0.4. Both tasks
lasted 4 s. Note that no estimation was taken into account in these simulations.

Time series of each coordinate of the state involved are showed in Fig. E.9
for both tasks. Remarkably, while subjected to the same noise intensity, control
fluctuations were noticeably stronger in the position control task than in force
control task (Fig. E.9E,H). This discrepancy, even if reduced, logically impacts
excitation (Fig. E.9D,G) and activation (Fig. E.9) profiles: even if they are of
comparable amplitude, they don’t have the same frequency content. Interestingly,
for position control, velocity (Fig. E.9B) and position (Fig. E.9A) fluctuations
were limited. Even if associated with fluctuating controls, position control appears
to be more stable than force control.

An explanation could be found in the significantly different slopes of the curves
of Figs E.6 and E.8: with a smaller slope, a given noise occurrence in the control
implies a lower change in the aimed activation.

One of the observed differences between position control and force control tasks
lied in the content of EMGs. Here, simply out of the two task representations in
our framework emerged discrepancies in the frequency content of excitation, which
is commonly associated with EMG signals. Even if qualitative and very partial,
these results suggest that the observed difference between those tasks could find
an explanation in the task representation cast in our optimal control with receding
horizon framework.
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A B

C F

D G

E H

Figure E.9: Position control vs force control A. Position time series for
the position control task. B. Velocity fluctuations for the position control
task. C. Activation fluctuations for the position control task. D. Excitation
fluctuations for the position control task. E. Control fluctuations for the position
control task. F. Activation fluctuations for the force control task. G. Excitation
fluctuations for the force control task. H. Control fluctuations for the force
control task. Time series were cut before 0.5 s to put aside transient phases.





Appendix F

Cocontraction

Cocontraction - or coactivation - is defined by the simultaneous activation of
antagonist muscles acting on a given joint. Its primary shown effect was that it
increases the stiffness of the joint in question around a given posture: any pertur-
bation leading to a deviation from the desired position will induce a immediate
passive correcting force by stretching one of the tendons involved [Hogan, 1984a].
It also appears to improve movement accuracy [Gribble et al., 2003]. Moreover,
recent studies showed that cocontraction also plays a role in the short term reflex
loops, as well as in the perception of perturbation and induce active responses
[Dideriksen et al., 2015; Saliba et al., 2020; Koelewijn and van den Bogert, 2022].
Cocontraction is often measure with tonic EMG [Gribble et al., 2003], but is also
associated with joint stiffness [Gomi and Kawato, 1996], although the complex
dynamics linking muscle activity and velocity to generated forces and joint stiff-
ness calls for cautiousness in drawing conclusions. Nevertheless, cocontraction,
and more generally muscle-tendon impedance thus appears to be a key factor in
motor control and should in future developments be incorporated in the proposed
model. Although its integration in simulations was out of the scope of this work,
it is of interest to glimpse at the way it can be cast in our framework.

For the sake of simplicity, let us consider a one-dimensional mass m actuated
by a set of agonist/antagonist muscle-tendon units (Fig. F.1), described by the
state

Figure F.1: Linear mass actuated by two muscles (rectangles) and their ten-
dons (springs).
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x(t) =



p(t)

v(t)

α+(t)

ε+(t)

α−(t)

ε−(t)

 (F.1)

where p is the position of the mass, v its velocity and α# and ε# are the activation
and excitation of the muscle # ∈ {+,−} (+ is the agonist and − the antagonist),
and is driven by a control u = [u+, u−] through a dynamic:

ẋ(t) =



v(t)
f+m(t)−f−m(t)

m
ε+(t)−α+(t)

ν
u+(t)−ε+(t)

ν
ε−(t)−α−(t)

ν
u−(t)−ε−(t)

ν


(F.2)

where m is the mass and ν = 0.05 s is a time constant, and f#
m is the muscle force,

considered to be in equilibrium with tendon force f#
t

f#
m = f#

t (F.3)

where {
f#
m = a#mk

#
m(L

#
m − L0

m) if L#
m − L0

m > 0

f#
m = 0 if L#

m − L0
m < 0

(F.4){
f#
t = a#t k

#
t (L

#
t − L0

t ) if L#
t − L0

t > 0

f#
t = 0 if L#

t − L0
t < 0

(F.5)

where k#m represents muscle efficiency, k#t represent the stretching gain of the
tendons and L0

m and L0
t are muscles’ and tendons’ slack lengths.

F.1 Cocontraction during postural task

In appendix E, section E.1.2.2 presented how a linear mass can be controlled to
oppose a constant force. A postural task around a position pf with a cocontraction
level defined as Fco = min(f+

m, f
−
m) can be implemented in a similar way in setting

a goal with non-zero activations and excitations:
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xG,co =



pf
0

Fco
Fco
Fco
Fco

 (F.6)

A control uco can then be found to reach equilibrium between the two muscles,
depending on the desired position and on parameters of each muscle and tendon.
Remember, though, that due to the receding horizon, the goal’s activation and
excitation values cannot be directly derived for the cocontraction level to obtain,
but need to be regressed following the same process as described in appendix E,
section E.1.2.2 :

xG,co =



pG
0

α+
G,co

ε+G,co = α+
G,co

α−
G,co

ε−G,co = α−
G,co


(F.7)

Then, following the common mechanism of impedance, a perturbation pro-
voking a deviation from the maintained posture will immediately induce a change
in muscles and tendons lengths, and consequently in tendons strains and forces,
generating a corrective action to reduce deviation. Note that, after diverse delays,
reflexes and descending commands will come into play.

F.2 Cocontraction during movement

Cocontraction is often cast in the equilibrium point theory (section 2.5.1): a refer-
ence trajectory is defined in a preparation phase and then executed by the compu-
tation of the necessary forces or torques to follow it. One can thus simply create
cocontraction during movement by increasing the current forces by the desired
level of cocontraction (potentially taking into account the moment arms in non-
linear cases) [Latash and Gottlieb, 1991; Gribble et al., 1998]. Our framework,
though, does not allow continuous addition of commands, for task representation
is restricted to the definition of sequential goals (section 2.6.1.3.

Section 2.6.2.1 described a reaching task as a two phase process: (1) maintain
the controller’s goal xiG for long enough to reach equilibrium corresponding to an
initial state xi ; (2) at a time t0 switch and maintain the controller’s goal to a
value xfG corresponding (after convergence) to the final state xf .

We showed in section F.1 that setting a level of cocontraction around a given
position is done by defining adapted activation and excitation in both muscles.
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We may thus embed initial cocontraction in xiG and terminal cocontraction in a
goal xfG.

But the evolution of cocontraction during movement (between the t0 and equi-
librium) itself cannot be controlled, and is a direct product of the optimal control
policy and dynamics of the system. We ran two fixed horizon simulations of 0.28 s
for a reaching task from position pi = 0.1 cm to a position pf = 0.15 cm: one
without any cocontraction instruction and the other with an initial cocontraction
level Fco,i = 1 N and a final cocontraction level Fco,f = 2 N .

In both cases, target was reached (Fig. F.2A,D) and velocity profile was
slightly different from usual, with a delayed velocity peak (Fig. F.2B,F). With-
out cocontraction instructions, cocontraction still appeared at peak velocity (Fig.
F.2E), coherently with the deactivation of the agonist muscle and activation of the
antagonist muscle (Fig. F.2C) required to induce deceleration. Note that Without
cocontraction instructions, there is a slight delay between the cocontraction peak
(∼ 0.18 s) and the crossing of activations (∼ 0.22 s)F.2E) , most likely due to
muscle-tendons dynamics. Finally, with cocontraction instructions, cocontraction
still evolved in a non-monotonic fashion during movement F.2H) : starting from
the initial fixed 1 N value, it first decreased, then increased about the middle of
the movement, reaching a peak at peak velocity and plateauing at movement end.

These preliminary predictions are globally consistent with the non-monotonic
stiffness reported by Gomi and Kawato [1996] for reaching movements, even though
the modelled system here is extremely simplified, and stiffness is not entirely de-
termined by cocontraction.

Further development should consist in running the simulations with receding
horizon (which was not possible due to computational complications), adopting
more realistic arm and muscle models, possibly integrate reflexes. Moreover efforts
should be made in clearing the blurred lines subsisting in cocontraction experimen-
tal assessment through stiffness or muscle activity.
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A E

B F

C G

E H

Figure F.2: Reaching task with and without cocontraction instruc-
tions A. Position over time without cocontraction instructions. B. Velocity
over time without cocontraction instructions. C. Cocontraction over time with-
out cocontraction instructions. D. Muscle activations over time without co-
contraction instructions. E. Position over time with cocontraction instructions.
F. Velocity over time with cocontraction instructions. G. Muscle activations
over time with cocontraction instructions. H. Cocontraction over time with
cocontraction instructions. Parameters are m = 1 kg, agonist and antagonist
muscle-tendon units having the same properties L0

m = 0.07 m, L0
t = 0.05 m,

ν = 0.05 s, km = 100, kt = 500.
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