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Résumé

Les systèmes de piles à combustible offrent une solution durable à la production d’énergie
électrique dans le secteur des transports, même s’ils rencontrent encore des problèmes de
fiabilité et de durabilité. Le recours à des systèmes multi-piles à combustible (MFC) au lieu
de piles à combustible uniques est une solution prometteuse pour surmonter ces limitations
en répartissant de manière optimale la demande de puissance entre les différentes piles tout
en tenant compte de leur état de santé, au moyen d’une stratégie de gestion de l’énergie
(EMS) efficace. Dans ce travail, différentes stratégies ont été développées pour des applications
automobiles, avec l’objectif d’optimiser la durée de vie du système de piles à combustible.

Le premier défi est de développer un modèle reliant la détérioration de chaque pile avec la
puissance délivrée, de manière à être en mesure de prédire l’effet d’une allocation de charge
sur la détérioration de chaque pile, et ainsi prendre une décision post-pronostic pertinente.
Plusieurs modèles stochastiques de détérioration, allant du modèle classique de processus
Gamma à des modèles plus complexes avec des effets aléatoires, sont développés et adaptés
aux spécificités des piles à combustible. Sur la base de ces modèles, plusieurs stratégies
de décision post-pronostic pour une MFC sont proposées et, pour chacune d’entre elles, le
problème d’optimisation associé est formulé.

Tout d’abord, sous un profil de charge constant, en prenant en compte dans le processus
de décision à la fois la consommation totale de combustible et la détérioration attendue,
une stratégie de gestion de l’énergie tenant compte de la détérioration est proposée pour un
système constitué de trois piles à combustible. Le problème d’optimisation multi-objectif
associé à cette stratégie est résolu à l’aide d’un algorithme évolutionnaire, ce qui permet
d’obtenir les allocations de charge optimisées pour chacune des piles du système. La durée
de vie moyenne obtenue dans le cadre de la stratégie proposée s’avère plus longue que celle
résultant de stratégies classiques (Average Load, Daisy Chain).

De plus, sous un profil de charge dynamique aléatoire, et en prenant en compte les
phénomènes de détérioration dus à la fois au niveau et aux variations de la charge, une
stratégie de prise de décision est proposée pour un système de deux piles à combustible. La
prise de décision est réalisée à chaque événement de modification de la demande, et les allo-
cations de charge optimales sont obtenues en minimisant la fonction objectif qui est estimée
sur la base de la prévision de la détérioration future du système. Une étude de l’influence
des charges dynamiques aléatoires sur les performances de la stratégie proposée montre que
la durée de vie moyenne obtenue dans le cas d’une durée inconnue entre deux modifications
de demande est proche de celle obtenue avec une durée d’événement connue, ce qui prouve la
robustesse de la stratégie proposée. De plus, il est montré que la durée de vie moyenne du
système est augmentée par rapport au cas avec une stratégie de charge moyenne, sur plusieurs
modèles de détérioration stochastique différents.

Enfin, une étude plus exploratoire ouvre des perspectives de recherche dans le cas où le
système multi-piles est composé de trois piles, dont deux seulement fonctionnent en même
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temps. Pour optimiser la durée de vie des piles, tout en répondant à la demande de charge, le
système de gestion de l’énergie doit également optimiser le démarrage et l’arrêt des différentes
piles. En fait, l’optimisation du remplacement des piles est également nécessaire pour une
tâche d’exploitation à long terme. Par conséquent, cette étude ouvre la voie à des approches
de maintenance pour les systèmes multi-piles.

Mots clés : Piles à combustible à empilement multiple, stratégie de gestion de l’énergie,
décision post-prognostic, détérioration stochastique, profil de charge dynamique aléatoire, op-
timisation multi-objectifs



Abstract

Fuel cell systems offer a sustainable solution to electrical power generation in the transporta-
tion sector, even if they still encounter reliability and durability issues. Resorting to Multi-
stack Fuel Cell (MFC) systems instead of single fuel cells is a promising solution to overcome
these limitations by optimally distributing the power demand among the different stacks while
taking into account their state of health, by means of an efficient Energy Management Strat-
egy (EMS). In this work, different strategies have been developed for static and dynamic
application scenarios, with the objective of optimizing the fuel cell system lifetime.

The first challenge is to develop a model linking the deterioration trend of each stack with
the power delivered by the stack, so as to predict the effect of a load allocation on each stack
deterioration, and thus make a relevant post-prognostics decision. For this, several stochastic
deterioration models, from the classical Gamma process model to more complex models with
random effects are developed and tailored to the fuel cell specificities. Based on these models,
several post-prognostics decision-making strategies for an MFC are proposed and, for each of
them, the associated optimization problem is formulated.

First, under a constant load profile, taking into consideration both the expected whole fuel
consumption and the expected deterioration in the decision-making process, a deterioration-
aware energy management strategy is proposed for a three-stack fuel cell system. The multi-
objective optimization problem associated to this strategy is solved using an evolutionary
algorithm, given the optimized load allocations among stacks. The average lifetime obtained
under the proposed strategy is demonstrated to be larger than those resulting from the classical
Average Load and Daisy Chain strategies.

Furthermore, under a random dynamic load profile, taking into consideration the deteri-
oration phenomena due to both the load magnitude and the load variations, an event-based
decision-making strategy is built for a two-stack fuel cell system. The optimal load allocations
are obtained by minimizing the objective function which is estimated based on the prevision
of the future system deterioration. An investigation on the influence of the random dynamic
loads on the proposed strategy performance shows that the average lifetime obtained with un-
known event duration is close to that with known event duration, which proves the robustness
of the proposed strategy. Moreover, it is shown that the average system lifetime is increased
when compared to the case with an Average Load strategy, on several different stochastic
deterioration models.

Lastly, a more exploratory study opening research perspectives in the case where the
multi-stack system is composed of three stacks, only two of which are operating at the same
time. To optimize the lifetime of the stacks, while meeting the load demand, the EMS must
also optimize the start and stop of the different stacks. Moreover, the optimization of stack
replacement is also required for a long-term operation task. Therefore, this study opens the
way to maintenance approaches to multi-stack systems.

v



vi

Keywords: Multi-stack fuel cell, energy management strategy, post-prognostics decision,
stochastic deterioration, random dynamic load profile, multi-objective optimization
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General Introduction

Around the world, actions are taken to fight against climate warming and air pollution. Fur-
thermore, the European "Green Deal" 1 set out a climate change action plan to reduce green-
house gas emissions by at least 55 % by 2030 to achieve climate neutrality by 2050. To achieve
this goal, the wide application of renewable and clean energy is recognized as one of the key
solutions. Among solutions, PEM fuel cell which uses hydrogen and oxygen as reactant gases
and whose only product is water, is regard as a promising substitute for traditional power
sources. PEM fuel cell has a high power density (up to 65 - 72 %) and suitable work tem-
perature (-40◦C to 100 ◦C). Current PEM fuel cells have been deployed in transportation
and stationary applications. In transportation fields, the typical fuel cell applications include
Fuel Cell Electric Vehicles (FCEVs), Fuel Cuel Cell Buses (FCEBs), and Fuel Cell Trucks,
etc. FCEVs are already fabricated for market selling in Korea. In China, FCEBs are widely
used in the public transportation to help to reduce CO2 emission as well as to avoid traffic
congestion. Combine-Heat-and-Power is a typical stationary application of fuel cells. It is
mainly installed for residential usage.

Despite being widely used in various applications, the problem of fuel cell durability and
cost remains as the main obstacle to their commercialization. The durability target of fuel
cell in FCEVs is 8,000 hrs according to the U.S Department of Energy (DOE) 2. Current
max fleet average onboard system lifetime is around 4,100 hrs. Another challenge is the high
manufacturing and application cost. The DOE cost target is $30 /KW for FCEVs. However,
the current fuel cell equipment cost is nearly six times higher than the target cost.

To overcome these barriers, i.e. durability and cost, using a Multi-stack Fuel Cell (MFC)
instead of single fuel cells is a promising solution for high-power applications 3. The flexible
modular architecture offers more redundancy than a single fuel cell which is beneficial for
improving system durability and reliability. However, using MFC introduces the freedom of
allocating different loads among the stacks. Thus, an optimization of the load allocation is
needed, which can be addressed by an appropriate EMS. By designing an appropriate EMS,
the system lifetime can also be improved at the condition that it takes into account the
deterioration of the individual stacks. It is thus mandatory to build a deterioration model
that integrates the dynamic behavior of MFC according to the operation conditions, i.e. a
deterioration-aware EMS. As fuel cell performance deteriorations are difficult to model as they
are linked to complex electrochemical, mechanical, and thermal mechanisms, this thesis first
tackles the development of deterioration model adapted for energy management of MFC.

Then, the energy management problems are investigated for MFC system under two typical
application load profiles, namely, the constant and the dynamic loads. The first problem to be

1 https://www.consilium.europa.eu/en/policies/green-deal/
2 “Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.4 Fuel
Cells.” U.S. DOE Fuel Cell Technologies Office

3 Zhou, Su, et al. "Scenario-oriented stacks allocation optimization for multi-stack fuel cell systems." Applied
Energy 308 (2022): 118328.

1

https://www.consilium.europa.eu/en/policies/green-deal/


2 General Introduction

addressed investigates how improving system lifetime and reducing system fuel consumption
under constant load profiles. However, as the purpose is to develop an EMS for vehicle
applications, the previous methodology is extended to the energy management of MFC systems
under dynamic load profiles. When considering dynamic load profiles, the randomness in the
load demand levels as well as their duration need to be considered. A second addressed issue
is then proposed to build the EMS under a dynamic load profile. In the previous problems,
the start and stop of different stacks were not considered so as to simplify their operation
modes. The last problem proposes an exploratory study for including the start and stop of
different stacks.

This work has been developed within the framework of a collaboration between GIPSA-
lab 4 and LIS Laboratory 5. In order to address the above problems, this thesis is organized
into four parts, as follows:

• First, the backgrounds of fuel cells (Chapter 1) and fuel cell system EMS state-of-the-art
(Chapter 2) are introduced. The deterioration of fuel cell and durability challenges are
introduced in Chapter 1. The application of fuel cell hybrid system is introduced for
the transport and stationary applications. Fuel cell PHM basics are introduced, and
the decision-making phase is identified as one of the key research gaps in PHM studies.
Chapter 2 presents the start-of-the-art of EMSs in fuel cell hybrid systems and MFC
systems. Then the problem statement for joint deterioration and energy management
strategy is presented according to the current research gaps of fuel cell deterioration
modeling and deterioration-aware energy management.

• Then, the deterioration modeling of MFC systems is studied in Chapter 3. A load-
dependent stochastic deterioration model is developed for the studied fuel cell system.
The deterioration behavior of these proposed model is investigated by an automotive
load profile.

• After that, the EMSs are developed for the studied MFC system under the constant
and dynamic load profiles. Chapter 4 focuses on constant load profiles. The fuel cell
deterioration model considered here is the basic Gamma process model. The load allo-
cation decisions are optimized in an event-based framework. Then based on the results
of Chapter 4, Chapter 5 further studies the MFC EMS problem for dynamic load pro-
files. The load allocation decisions are optimized for dynamic loads on different types of
deterioration models, including a random-effect model.

• Lastly, the management of a three-stack operation problem including start and stop of
different stacks is studied in Chapter 6. This last chapter proposes a more exploratory
study opening research perspectives for the case where the multi-stack system is com-
posed by a part of in-service stacks and some suspended ones. To optimize the lifetime
of the stacks, while ensuring the load demand, the EMS must also optimize the start
and stop of the different stacks. In fact, the optimization of stack replacement is also

4Gipsa-lab is internationally recognized for the research achieved in Automatic Control, Signal and Images
processing, Speech and Cognition. http://www.gipsa-lab.fr/

5 LIS is a research lab (UMR) focused on the fundamental and applied activities in the fields of Computer
Science, Automation, Signal, and Image. https://www.lis-lab.fr/

http://www.gipsa-lab.fr/
https://www.lis-lab.fr/
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required for a long-term operation task. Therefore, this study opens the way to mainte-
nance approaches to multi-stack systems.

In the end, the manuscript gives a general conclusion summarizing the highlights in this thesis
and provides the perspectives for future investigation.





Chapter 1

Backgrounds on Fuel Cells

This chapter reviews the state-of-the-art of PEM fuel cells. We first introduce fuel cell ba-
sics. Owing to their advantages of high efficiency, energy density and limited impact on
environmental resources, PEM fuel cells have been deployed in various applications such as
transportation and stationary. However, the durability and cost challenges remain the main
barriers hindering their commercialization. Fuel cell deterioration studies help to understand
its deterioration mechanisms as well as to build deterioration models. Then a possible solution
to tackle fuel cell durability and cost challenge can be found out based on these deterioration
models. Fuel cell deterioration mechanisms are mainly observed experimentally and are usu-
ally not well-formulated with explicit formulas. This arises the need for fuel cell deterioration
models to reproduce its deterioration behavior. Related modeling works are presented in the
fuel cell deterioration modeling methods section.

PHM techniques are introduced as one solution to solve fuel cell durability and cost chal-
lenges. PHM is a systematic approach that can deal with system assessment, prognostics,
and decision-making support. The core PHM steps and their research states are introduced
first. Among all procedures of PHM, the decision-making aspect is vital for taking control
action to improve system lifetime yet is less studied. It is due to the fact that knowing fuel
cell deterioration for the decision procedure is challenging. The possible health indicators for
monitoring fuel cell state of health and deterioration modeling studies are introduced in the
end.
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1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.1 Proton exchange membrane fuel cell basics

A Fuel Cell (FC) is an electrochemical device that uses hydrogen and oxygen as reactant
fuel and produces electrons, protons, water, and heat. According to the types of electrolyte
membrane being used, the fuel cells can be categorized into PEM fuel cell, Phosphoric Acid
Fuel Cell (PAFC), Solid Oxide Fuel Cell (SOFC), Molten Carbonate Fuel Cell (MCFC), and
Alkaline Fuel Cell (AFC) [1]. Figure 1.1 summarizes the power generation range of main fuel
cell types. Fuel cells can provide a wide range of power, from 1 Watt to 100 MWs [2]. PEM
fuel cells can provide a wide range of power (range from 10 W to 1 MW) thanks to flexible
modularity configuration. It is widely installed in various applications.

1 W 10 W 100 W 1 KW 10 KW 100 KW 1 MW 10 MW 100 MW
DMFC

AFC
PEMFC

SOFC
PAFC
MCFC

Figure 1.1: Power application range of main types of fuel cells.

Table 1.1 summarized major types of fuel cells and their basics. Among all those fuel cells,
PEM fuel cells are currently the most promising in terms of high efficiency (up to 65 - 72%),
low operation temperature, and safe to handle. Moreover, PEM fuel cell has a high power
density and fast start-up time which makes them easy to use. For instance, SOFC operates
under a high temperature (above 500 ◦C), and the ceramic materials used as electrolyte are
difficult to handle. These pitfalls limit their further application. Thus, PEM fuel cells are
studied in this thesis. The term fuel cell refers to PEM fuel cell in this thesis if not specifically
stated.

Table 1.1: Main types of fuel cells [3].

PEMFC PAFC SOFC MCFC AFC

Electrolyte Polymer Phosphoric acid Ceramics Molten carbonate Potassium hydroxide
Primary fuel H2, reformed H2 H2, reformed H2 H2, biogas, methane H2, biogas, methane H2, cracked ammonia
Mobile ion H+ H+ O2− CO2−

3 OH−

Temperature
(◦C) -40 - 120 150 - 200 500 - 1000 600 - 700 50 - 200

Efficiency (%) up to 65 - 72 up to 45 up to 65 up to 60 up to 70
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1.1.1 Fuel cell working principle

The overall electrochemical reaction formula is summarized as:

Anode : H2 → H+ + 2e−

Cathode : 1/2O2 + 2H+ + 2e− → H2O

Overall : 1
2O2 + H2 → H2O

(1.1)

The overall reaction in the fuel cell produces only water and heat, therefore it is a totally
clean energy device.

PEM fuel cell uses polymer electrolyte membrane (Nafion, PEM) to conduct H+ protons
and separate hydrogen and oxygen reactants. The basic structure of the fuel cell electrode is
shown in Figure 1.2. Note that the fuel cell electrode is porous and flat. This is to enable
the maximum possible contact between the electrode, the electrolyte, and the reactants. The
cathode-electrolyte-anode unit is generally known as a Membrane Electrode Assembly (MEA).
Figure further 1.3 depicts the operating principle of a PEM fuel cell. The hydrogen is fed into
the anode side of a fuel cell. Then it ionizes through an oxidation reaction, releasing electrons
and H+ ions (also known as protons). At the cathode, oxygen reacts with electrons taken
from the electrode, and protons from the electrolyte, to form water. This process is called
an Oxygen Reduction Reaction (ORR). The main steps related to fuel cell operation are as
follows:

1. Reactants delivery into the fuel cell

2. Electrochemical reaction: ORR and H2 reduction.

3. Ionic conduction through the electrolyte and electronic conduction through the eternal
circuit

4. Product removal from the fuel cell

Oxygen

Hydrogen

Load

Cathode AnodeElectrolyte

Figure 1.2: MEA schematic diagram
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Anode 2H2 4H+  +  4e-

Cathode O2 + 4e- + 4H+ 2H2O

H+ ions through electrolyte

Load
e.g. electric

motor

Oxygen, usually from air

Hydrogen fuel

Figure 1.3: Electrode reactions and charge flow for an acid electrolyte fuel cell.

1.1.2 Main components of a single fuel cell stack

Since a single fuel cell can only produce a very small amount of energy (voltage below 1 V),
fuel cells are usually electrically connected in series as a stack (i.e., fuel cell stack) to provide
power. Figure 1.4 shows the basic structure of a fuel cell stack and details the structure of a
MEA. The four main components of a MEA are membrane, catalyst layers, microporous and
gas diffusion layers (Figure 1.4).

Generally, the membrane offers three functionalities: (i) it supports the anode and cathode
catalyst layers, and (ii) it acts as a separator between anode and cathode reactants (Hydrogen
and oxygen) and electrons, and (iii) it conducts protons from the anode to cathode. Thus, the
requirements for membranes are manifold and stringent. The membrane is required to have
high proton conductivity, thermal and chemical stability. On the other hand, membrane must
be impermeable to reactants gases and electrically insulating. Perflurosulfonic Acid (PFSA)
is a typically used PEM material for PEM fuel cells.

Catalyst Layers (CLs) are composed of electrocatalyst (i.e., Pt catalyst), carbon support
layer, ionomer, and void space. CLs provide the reaction site for electrochemical chemical re-
actions. Cls offer pathways for various reactant species, including a path for proton transport,
a path for gaseous reactant supply and water removal, and a path to link CL and current
collector (electron conduction). Therefore, the fabrication of CL is one of the key factors
affecting fuel cell performance and durability. A properly designed CL will enable sufficient
electrochemical reaction, thus improving the overall performance. The invention of optimized
CL ink preparation has greatly progressed the fuel cell technologies [4]. This finding brings
out an important concept for fuel cells, i.e., the triple-phase boundaries of ionomer, Pt/C,
and void space. Thanks to this structure, all reactants can access the reactions, which greatly
improves the fuel cell performance. The ionomer helps to bind together the Pt/C particles.
And it is also a conductor for protons. Imbalanced ionomer loading increases the ohmic loss
or transport loss. A small amount of ionomer reduces the proton conductivity, and a large
amount will increase the gaseous reactants’ transport resistance. Electrocatalysts directly
influence the ORR inside a fuel cell. Currently, Pt is the widely adopted choice for electro-
catalyst. This is mainly due to its high activity. Though ideal for fuel cell performance, Pt
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belongs to precious metals, and it is one of the main costs of fuel cell applications.

Gas Diffusion Layers (GDLs) together with Microporous Layers (MPLs), composed the
diffusion media of a fuel cell. GDLs are placed between a bipolar plate and the CL. The porous
structure is specially designed to transfer gaseous reactants, and water remove. Moreover,
GDL also provides a pathway for electron conduction between CL and bipolar plate. The
carbon-based material is used in the commercial GDLs and MPLs [5].

The three main components of a typical fuel cell stack are MEA, two bipolar plates,
and the sealants. Bipolar Plates (BPs) serve as mechanical support for MEA. They are also
responsible for collecting the electric current, removing produced heat and accumulated water.
The gas flow channel designed in the inner surface of BP helps to distribute the reactants to
electrodes. Sealants are used to combine single-cell in series. And finally, two endplates help
to seal together all components, forming a fuel cell stack.

H+H2

BP

O2

Load

H+

e-

H+

e-

O2

Electrons e-Electrons e-

BPPEMCL CLGDL GDL

Anode Cathode

H2O

Figure 1.4: Schematic structure diagram of a fuel cell stack and of a MEA
[6].
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1.1.3 Polarization curve

Fuel cell output voltage and output power are the two commonly used performance indicators.
Performance-related studies are at the core of fuel cell research, e.g. fuel cell durability chal-
lenges are being studied to decrease fuel cell performance decay. An useful tool to characterize
fuel cell output voltage is the polarization curve, which illustrates the cell voltage with respect
to the current density (i.e., the i-V curve). Figure 1.5 shows an example of a typical i-V curve
for a PEM fuel cell. Note that the current in the x-axis has been normalized by the area of
the fuel cell, given a current density (in a unit of A cm−2). In fuel cells, the energy conversion
process is calculated through the concept of Gibbs free energy. Gibbs free energy is defined
as the energy liberated or absorbed in a reversible process at constant pressure and constant
temperature [7]. For a chemical reaction, the change in free energy ∆G refers to the difference
between the Gibbs free energies of the reactants and products which is calculated by Gibbs
equation [7]:

∆G = ∆H − T∆S (1.2)

where ∆H is the change in enthalpy, ∆S is the change in entropy between reactants and
products. T is the absolute temperature. The electricity is generated through the change in
the Gibbs free energy (∆Gf ), namely:

∆Gf = Gf (products)−Gf (reactants) (1.3)

Theoretically, if the Gibbs free energy generated in the reaction could be directly converted
into electricity without any loss, the fuel cell would be an ideal voltage generator. This
ideal voltage is called reversible voltage, denoted as Erev (also known as thermodynamically
predicted output voltage). The reversible voltage (also known as open-circuit voltage) is the
cell voltage at an electric current of zero. According to the expression of the Gibbs free energy
(Equation (1.2)), fuel cell reversible voltage under constant pressure can be calculated as [8]:

Erev = E0 +
∆S

neF
(T − T 0) (1.4)

where E0 = +1.23 V is the reversible voltage under the standard-state conditions (room
temperature, atmospheric pressure, unit activities of all species). ne is the number of moles
of electrons transferred and F is Faraday’s constant. neF expresses the quantified transfer of
electrons, in the form of an electrical current between reacting chemical species. T 0 = 298.15

K is standard room temperature.

In practice, several irreversible losses lower the output voltage. Activation, ohmic, and
concentration losses are considered the three major irreversible losses. For low current density,
fuel cell voltage drop is dominated by activation losses (Eact). These losses are mainly caused
by charge-transfer kinetics that fix the oxygen reduction and hydrogen oxidation rate at the
electrode surface. Then, at the middle range of current density, the ohmic voltage losses
(Eohm), correspond to the internal resistance of fuel cells, that are mainly electrolyte membrane
resistance, but also catalyst layer and contact resistances at high current density, concentration
losses (Econc) become dominant. It is due to that fact that the higher the cell current density
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is, the faster the electrochemical reaction rate on the electrode surface is. But the limited mass
transport of H2 and O2, due to the relatively slow mass transfer rate, leads to concentration
losses and thus to voltage drop. Finally, the actual output voltage of a fuel cell equals to
the reversible voltage minus three polarization losses (i.e., activation loss, ohmic losses, and
concentration losses), which writes:

Ecell = Erev − Eact − Eohm − Econc (1.5)

The stack voltage (Es) is obtained by multiplying the cell voltage with the number of cells
(ncell):

Es = ncellVcell (1.6)

Current density is defined as the current per unit area and is usually expressed in terms of
A cm−2. Fuel cell output voltage is measured under a specific current. The values of current
density multiply the output voltage and number of fuel cells gives the power per unit area,
i.e., stack power density (W cm−2).

Limited by the complexities of fuel cell composition and various electrochemical reactions,
an empirical formula is chosen over the exact physical laws to calculate the output performance
of a fuel cell. The empirical formula for the activation, ohmic, and concentration losses are
introduced thereafter.

In this section, an empirical formula for the three major voltage losses (i.e. activation loss,
ohmic loss, and concentration loss) is introduced. The Butler-Volmer equation creates a link
between the reaction rate and the electrode voltage. In fuel cells, the main electrochemical
reactions are hydrogen oxidation reaction and ORR which involves multi-electron transfers.
The Butler-Volmer equation for fuel cell reaction is expressed as:

i = i0

(
exp(−αtnαFEcell

RT
)− exp(−(1− αt)nαFEcell

RT
)

)
(1.7)

where i0 is the exchange current density. αt is the transfer coefficient, nα is the apparent
electron number involved in the electrochemical reaction. Combining the mass transfer effects
at high current density, the relationship between the cell voltage and the current density can
be written as (fuel cell polarization is larger than 60 mV) [9]:

Ecell = Erev +
RT

0.001678TnαOF
log(iO2

0 ) +
RT

0.5nαHF
log(iH2

0 )

− RT

0.001678TnαOF
log(

I · Ifdc
Ifdc − I

)− RT

0.5nαHF
log(

I · Ifda
Ifda − I

)−RI
(1.8)

where iO2
0 is the exchange current density for oxygen ORR on a pure Pt surface, nαO is the

electron number which should be taken as 1 (not 2). Idc and Ida are the diffusion limiting
current density of cathode and anode, respectively. iH2

0 is the electron number of the anode
reaction. 0.001678T is used to calculate the temperature-dependent transfer coefficient for
ORR. R is the overall resistance.
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Figure 1.5: Fuel cell polarization curve with voltage losses.

A simplified empirical polarization equation is given as [10]:

Es = ncell (Erev −RI −A log(I)−m1 exp (m2I)) (1.9)

where I is fuel cell current density. The activation losses are expressed by A log(I), A is the
Tafel parameter for oxygen reduction. The concentration (mass transfer) losses are calculated
by m1 exp(m2I). m1 and m2 are transfer coefficient related parameters.

1.1.4 Electrochemical impedance spectroscopy

Electrochemical Impedance Spectroscopy (EIS) is an effective technique to study electrochem-
ical characteristics within a fuel cell. In EIS characterization, a small AC amplitude perturba-
tion is added to a constant Direct Current (DC) signal. By scanning a large frequency range,
the impedance can be plotted as a Nyquist plot (Figure 1.6). A typical PEM fuel cell EIS
curve has three key characteristics:

• Long-tale at high frequency. Inductive behavior due to the various FC connection ele-
ments and electric writes [11].

• Two semi-circles. The circles intercept the real axis at the high frequency is an ohmic
activation loss, i.e. the ohmic resistance mainly caused by ionic resistance of the mem-
brane. The diameters of two cycles are anode and cathode activation losses (related to
charge transfer phenomena) [12].

• Small arc below real axis at low frequency. Due to the inductive behavior.

Each process described above can be considered as a simple electric circuit. Fuel cell elec-
tric circuit is an abstraction of the whole reaction process and is widely used for fuel cell
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electrochemical characteristic studies. A typical electric circuit of PEM fuel cell consists of
electrolyte resistance, charge-transfer resistance (electrode/electrolyte interface), mass trans-
fer resistance, and double-layer capacitance [9] (Figure 1.7). In the proposed circuit, the
semi-circle is modeled with a parallel connection of a Constant Element Phase (CPE) and a
resistor [13]. The depression in the semi-circle is handled by adding a CPE. Two indicators
are used to describe the inductive behaviors at high and low frequencies. The components
presented in the electric circuit can be obtained by fitting measured EIS curve data to the
electric circuit model.
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Figure 1.6: Typical Nyquist plots for a fuel cell (EIS spectra).
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Figure 1.7: A general Electric equivalent circuit model (ECM) of the MEA.

1.1.5 Fuel cell hybrid system

The transportation industry is one of the main fields for deploying clean energy technologies.
This is mainly due to the fact that they are responsible for 17% of the global greenhouse emis-
sions every year [14]. The overwhelming advantages of PEM fuel cells like zero-emission, high
efficiency, and high power density make them suitable for transportation applications. The
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Battery Electrical Vehicles (BEVs) and FCEVs are both zero-emission exhaust gas compared
to traditional gasoline vehicles. However, the FCEVs provide a longer drive range, shorter
refueling time (less than 2 min), better performance under extreme weather (e.g. cold envi-
ronment), and are lightweight compared to BEVs. As a result, the FCEV market is growing
bigger rapidly worldwide. Figure 1.8 shows FCEVs and hydrogen refueling station market by
region (2020). It is seen that Korea takes a lead in deploying FCEVs. Hyundai Nexo is their
representative auto brand which contributes to a big part of FCEVs. Followed by the US,
China, and Japan as the major countries for deploying FCEVs. Hydrogen refueling station is
the main infrastructure for deploying FCEVs.

Figure 1.9 summarizes the main FCEVs types deployed in the world market. Fuel cell
passenger light-duty electrical vehicles, FCEBs, and Fuel cell heavy-duty trucks are the main
types of FCEVs being deployed. Fuel cell passenger light-duty vehicles take the major ap-
plication market thanks to the advancement of fuel cell technologies. Figure 1.9 shows that
China is dominant in deploying FCEBs, and Fuel cell trucks. FCEBs are widely used in public
transportation to help reduce air pollution as well as to avoid urban traffic congestion. Re-
cently, after the fulfillment of deploying vehicles and hydrogen stations for the 2022 Winter
Olympics, China has decided to keep progressing in the development of FCEVs and hydrogen
infrastructures. For example, the FCEB project started in Zhangjiakou is a good practice [15].
Based on the analysis of the life cycle inventory method, the economic feasibility of deploying
FCEB in the northern part of China is verified. Fuel cell trucks are also growing fast in the
FCEV market.

Figure 1.8: FCEVs and hydrogen refueling station market by region [16].

The fuel cell system installed in FCEVs includes fuel cell stacks, fuel cell cooling system,
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Figure 1.9: Fuel cell electric vehicles market by region and types [16].

high-pressure hydrogen storage tanks, electric motor, main power control unit, high-voltage
batteries/super capacitor (response to transient power surges), air and hydrogen supply sys-
tems, and other auxiliary Balance-of-Plant (BOP) components. It is noted that fuel cells are
seldom used alone due to the delay of transient response. Therefore, the fuel cells are usually
installed together with other power sources, e.g. Li-battery, photovoltaic, super capacitor, etc.
to construct a hybrid system for automotive applications. In this hybrid system, the fuel cell
is used as the main power source and the other devices are deployed as backup energy source.

In stationary applications, PEM fuel cells are mainly used by the residential, commercial,
and industrial stationary power generation sectors. The stationary applications generally con-
sider PEM fuel cells as primary power, backup power, and Combined-Heat-and-Power (CHP).
For primary power, PEM fuel cells are connected to the grid to provide electricity demand.
Usually, the electricity demand greatly varies from on- to off-peak hours. PEM fuel cells are
equipped with flexibility in output power adjustment which makes them a preferable primary
power source. Li et al. [17] reviewed the opportunities of applying fuel cells in microgrids. The
conclusion showed that fuel cells can help to improve the performance of microgrids and pro-
mote the usage of hydrogen energy. In backup power applications, PEM fuel cells are mainly
used for emergency power supply (in remote areas) e.g., for the power supply of cars, buses,
and ships and for the emergency power supply of aircraft [18]. PEM fuel cell systems inher-
ently produce both electricity and heat which makes them suitable for meeting the daily needs
of the building sector. Moreover, the PEM fuel cell guarantees high efficiency and supplies the
peak power needs during the day and energy needed during the night. Thus, it is a mature
technology for building and CHP applications. The micro-CHP system is mainly designed for
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residential usage and Europe and Japan are leading the market [2]. A residential CHP can
be used to provide electricity, space heating, and domestic water heating demands. Europe
has installed more than 4100 fuel cell units for CHP applications [2]. The European project
DEMCOPEM-2MW has installed a 2 MW PEM fuel cell power plant in Yingkou, China as the
current world’s largest PEM fuel cell power plant [19]. Japan has installed 360,000 CHP units
in 2020, around 62% of them are PEM fuel cells [20]. These applications highlight the need
for very high power demand. For example, mining trucks use several megawatts of electrical
power. Thus, the study of improving fuel cell production capacity is highly needed to achieve
the commercialization of fuel cells.

1.1.6 Fuel cell durability and cost definitions and challenges

Despite the widespread industrial application introduced above, the current MFC system still
suffers from two major challenges, namely durability, and cost. PEM fuel cell output power
decreases as the system operates, making it challenging to meet the durability target. The
U.S. DOE released several durability targets for a specific application. For example, the
DOE ultimate target durability of the fuel cell system in a FCEV is 8,000 hours [21]. The
current max fleet average onboard system lifetime was only 4,100 hours [21]. For heavy-
duty trucks, and FCEBs, the fuel cell system durability target is 25,000 hours. 40,000 hours
durability target has been set for stationary applications. Fuel cell costs mainly originate
from production material and operating costs. PEM fuel cell uses the costly platinum as an
electrocatalyst. The development of a more efficient electrocatalyst with less platinum while
maintaining high performance remains a key method to reducing fuel cell production costs.
Fuel cell operation costs include hydrogen fuel consumption costs and system maintenance
costs. Although hydrogen is the most abundant element in the universe, it is stored in water,
hydrocarbons, and other organic matter, making the hydrogen fuel difficult and costly to
produce [22]. The maintenance or replacement of the fuel cell system is also a major part of
the overall operation cost. The ultimate DOE cost target is $30/ KW for FCEVs and $600, 000

for each FCEB (2020 target) [3]. Data from several key fuel cell developers suggests that the
equipment cost is around 6 times higher than the target of $1000/ KW [23].

As a clean electrochemical power source, fuel cell takes hydrogen and oxygen as two reac-
tants and then converts their chemical energies into electricity, heat, and water. Figure 1.10
shows the main energy flow of a fuel cell. In a fuel cell, the power or power density is a key
operating parameter that reflects the production capacity of a fuel cell. The energy provided
by the fuel cell is measured by its output power over a certain period of time. Fuel cell system
efficiency is related to the energy conversion as depicted in Figure 1.10. It is defined as the
electrical energy delivered by the fuel cell system compared with the energy supplied as fuel.
A fuel cell system that operates with high efficiency will cost less fuel thus reducing system
fuel consumption. For a long-term operating task, fuel cell replacement and repair are needed
which invokes the maintenance cost. Resuming above, the cost is an important parameter to
consider, but that can be defined in several manners.

The other crucial parameter is lifetime, that has to be dramatically increased. In practice,
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Figure 1.10: Inputs and outputs energy flow of a fuel cell.

the performance (i.e. power) of a fuel cell gradually deteriorates as the operating time in-
creases. Thus, the definition of fuel cell lifetime is usually linked to its performance decay. For
example, the DOE lifetime target for fuel cells is defined as the time it takes for their power
rating to drop by more than 10% [24]. Based on the experimental data of fuel cell electrical
vehicles, Pei et al. [25] define the lifetime as the duration time from initial operation till the
output voltage drops by 10% under the rated power conditions. When fuel cell performance
decay reaches a predefined threshold, the unit is considered as reaching the End of Life (EOL).
It should be noted that fuel cell lifetime and performance decay are related to following three
key concepts [26]:

1. Reliability : Fuel cell’s ability to perform as required in a stated operating context and for
a stated period of time. It involves fuel cell failure modes that may lead to catastrophic
failure.

2. Durability : Fuel cell’s ability to resist permanent performance decay during the operation
period. Note that durability decay usually refers to fuel cell performance decrease which
is not recoverable, but not a catastrophic failure. It is related to fuel cell aging.

3. Stability Fuel cell’s ability to recover performance decay during system operation. It
is related to fuel cell operation conditions and reversible changes in its components
(materials).

Then, the overall fuel cell performance decay rate which is measured during fuel cell
continuous operation is the summation of stability and durability decay rates [26]. For fuel
cells, it is verified that when their performance decay exceeds a certain threshold, a significant
performance drop is observed. The fast decreasing in performance yields poor fuel economy
and a high probability of occurring catastrophe failure in fuel cell components. Then the fuel
cell system is considered to reach EOL.

1.2 Fuel cell deterioration

Fuel cell deterioration studies dedicate to understanding fuel cell deterioration behavior,
proposing deterioration mechanisms, and finally developing deterioration models. A proper
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deterioration model enables to reproduce fuel cell performance decay. Fuel cell deterioration
is unavoidable in practice, but the deterioration rate can be minimized based on fuel cell
deterioration models. Therefore, performing fuel cell durability test and understanding the
various mechanisms of deterioration modes is critical to the development of long-lasting and
cost-sensitive fuel cells.

1.2.1 Degradation under constant load

Some experimental deterioration studies have first been carried out for constant load profile.
The IEEE Reliability Society, FCLAB research federation (FR CNRS 3539, France), FEMTO-
ST Institute, and the Laboratory of excellence ACTION lunched a data challenge for fuel cell
performance prognostics, i.e., IEEE PHM 2014 Data Challenge [27]. Two five-cell PEM fuel
cell stacks are tested under a fuel cell test bench in FCLAB. Each cell has an active area of 100
cm2. The nominal and maximal current density of the cells are 0.7 and 1 A cm−2 respectively.
Two long-term durability tests were carried out:

• The first stack (FC stack 1) was operated in a constant load (roughly nominal operating
conditions).

• The second stack (FC stack 2) was operated under nominal load with high-frequency
current ripples.

During fuel cell operation, characterization tests, i.e., Polarization curve test and EIS
test, were performed on fuel cell stack once per week (around every 160 hours). The main
measurements results are plotted in Figures 1.11, 1.12. Figure 1.13 shows the overall stack
voltage decay curves recorded during test. Fuel cell performance degradation is reflected in
the polarization curves and EIS measurements. In polarization curves, the FC stack output
voltage is decreasing from 3.048 V to 2.864 V at Imax (i.e. maximal current density) for FC
stack 1. Similarly in FC stack 2, the output voltage drops from 2.954 V to 2.715 V.

The dynamic behavior of fuel cell stacks can be analyzed through the EIS curves. According
to the ECM as shown in the Figure 1.7, the equivalent impedance (Zeq) of the PEM fuel cell
is expressed as:

Zeq =
(Z1 + Z2) · Z3

Z1 + Z2 + Z3
+ Z4 (1.10)

The polarization resistance is calculated as:

Rpol =
(R1 +R2) ·R3

R1 +R2 +R3
+Rel (1.11)

Then the polarization resistance can be estimated based on the EIS measurements. The
results prove that the resistance is generally increase in time which enables the feasibility of
using fuel cell resistance as a degradation indicator [28].

To better understand the link between degradation mechanisms and performance decrease,
specific tests, called Accelerated Stress Test (AST) have been experimented [26], [29]. AST
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Figure 1.11: Polarization curves [27] measured for a) FC stack 1; b) FC stack 2.
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Figure 1.12: Measured EIS curves during durability test.
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Figure 1.13: FC stacks voltage decay curves.

utilizes so-called Accelerated test protocols which push fuel cells to operate under undesir-
able conditions to accelerate their performance decreasing. These undesirable conditions are
linked to key fuel cell operation parameters which include temperature, load cycling, Relative
Humidity (RH), pressure, etc. These tests able to link some model parameters to degradation
phenomena.

The idling operation is defined as the fuel cell system running without power output.
During idling, the fuel system is operating with a small current density to produce the power
for the auxiliary systems (e.g. fuel cell gas supply system, cooling system) to maintain its
normal function. A small current density makes a high cell voltage (0.85-1.0 V), which is
closed to the Open-Circuit Voltage (OCV). Pei et al. [25] performed a durability test on
automotive fuel cells to check the fuel cell performance degradation. It is reported that in
the idling operation condition, the water produced inside the fuel cell is small, causing MEA
easy to be dry. Franck-Lacaze et al. [30] studied fuel cell aging under different current density
level, i.e. 120 and 20 mA cm−2. It is reported that the nominal voltage decreasing rate under
lower current density (20 mA cm−2) is around eight times the aging rate of the higher current
conditions. The characterization analysis confirms the aging of Pt dissolution and loss of
sulfur and fluorine from the membrane.

The AST studies show that the major aging components in the fuel cell are the membrane
and catalyst layer when exposed to the open-circuit/idling operation. The high cathode poten-
tial and gas crossover are the main factors for membrane degradation. Chemical degradation
is the core mechanism of fuel cell membrane degradation under open-circuit/idling operation.
Chemical deterioration of the PFSA membrane is mainly caused by the attack of free radicals
generated during fuel cell OCV operation, e.g. hydroxyl radical (·OH) [31], hydrogen radical
(·H), and the hydroperoxyl radical (·OOH) [32]. These free radicals caused membrane thin-
ning, cracks, and pinholes [26]. In addition to the deterioration of the fuel cell membrane, the
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CL decays greatly due to the high cell voltage. The experimental studies confirmed that the
Pt catalyst in the fuel cell cathode side experiences severer deterioration [33], [34]. Zhang et
al. [34] reported a 51.9 % decay in Electrochemical Surface Area (ECSA) after 256 h OCV
test. Figure 1.14 summarized the main deterioration mechanisms of Pt catalyst under OCV
conditions. Figure 1.14(a) and Figure 1.14(b) show the growth in Pt particles caused by
Electrochemical Ostwald ripening and coalescence. Pt dissolution can be described by the
following electrochemical reactions due to high cell voltage [35], [36]:

Pt dissolution : Pt− 2e− → Pt2+

Pt oxide formulation : Pt+H2O − 2e− → PtO + 2H+

Pt oxide dissolution : PtO + 2H+ → Pt2+ +H2O

(1.12)

The precipitation of Pt2+ in the fuel cell membrane is shown in Figure 1.14(c). Figure 1.14(d)
shows Pt detachment due to the loss of carbon support. These behaviors caused the decay of
Pt catalyst thus causing fuel cell deterioration.

Figure 1.14: Deterioration mechanisms of Pt catalyst [37]: (a) Electrochemical Ostwald ripening,
(b) coalescence, (c) migration of Pt catalyst, and (d) detachment of Pt catalyst.

1.2.2 Deterioration under driving cycles

In real life, fuel cell stacks are operating in dynamical conditions. To simulate operating
profiles that are the most representative as possible of reality, some load profile driving cycles
have been proposed.

New European Driving Cycle (NEDC) is a typical light-duty vehicle driving cycle with
features periods of acceleration, deceleration and constant speed modes [38]. Figure 1.15
depicts a detailed NEDC cycle with varying driving speeds. It consists of four repetitions of
a low-speed urban cycle of 780 seconds in total, followed by a highway driving (extra-urban
driving cycle) of 400 seconds duration. An NEDC cycle is equivalent to a theoretical distance
of 11 km driven in around 20 minutes. To apply the NEDC in Figure 1.15 to FCEVs, the



22 Chapter 1.

Figure 1.15: NEDC profile [38].

speed of the driving cycle needs to be transferred into current load ratio. This is done by:∫ 1180

0
INEDCdt =

∫ 1180

0
ISquareddt (1.13)

where I is the cell current. The transferred squared cycle (see Figure 1.16) can be applied to
fuel cell test benches. Figure 1.17 is the fuel cell dynamic load cycle (FC-DLC) implemented
in the real fuel cell test bench.

Another standard driving cycle being used is the World Harmonized Light Vehicles Test
Cycles (WLTC) [40]. The WLTC stands for a harmonized driving cycle from "real world"
driving data in various regions around the world. Similar to the NEDC cycle, the WLTC
consists of urban, rural, and highway. The usual duration of one WLTC cycle is 1800 seconds.
The initial velocity profile of WLTC is shown in the Figure 1.18.

According to the above typical fuel cell driving cycles, the load operation conditions of
an automotive used fuel cell can be categorized into open-circuit/idling, dynamic load, start-
stop, and high power load conditions [25]. These operation modes are the main source of
fuel cell performance decay. Various operation modes triggered during fuel cell system oper-
ation directly caused damage to fuel cell core components. Thus causing an overall fuel cell
performance decay.

Fuel cell deterioration is closely linked to its operating parameters. The operation parame-
ters refer to fuel cell physical operation conditions, such as the temperature, RH, pressure, and
the operation mode of a fuel cell. This section dedicates to introducing fuel cell deterioration
mechanisms under typical dynamic load profiles.

Dynamic load (load variation) is another typical operation mode for PEM fuel cells. PEM
fuel cells need to adjust their output power to meet the varying power demand of vehicles.
Load varying caused a transient process with fluctuations of fuel cell output voltage, reac-
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Figure 1.16: Transferred NEDC profile [38].

tant gas stoichiometric ratio, operation temperature, pressure, etc. Thus accelerating fuel cell
deterioration. Meng et al. [42] experimentally studied the load varying effects on fuel cell de-
terioration characteristics. They conclude that gas starvation caused by the transient process
is the main cause of fuel cell deterioration. During load variation, the load can be switched in
milliseconds. However, the reactant gas is supplied by a controller and passes through a long
tube to reach the fuel cell. This caused the reactant gas starvation. Hydrogen starvation in
the anode caused carbon corrosion and catalyst layer deterioration become more severe when
operating with a larger load-varying rate. It is reported that the voltage drop due to high load
varying can reach three times that under a smaller load varying rate. Load varying causes a
thermal/humidity cycling with fuel cells which is harmful to fuel cell performance. Liu et al.
[43] studied the effect of humidity cycling on fuel cell deterioration. Microstructure changes
in fuel cell CL are observed when operating under dynamic load. The output voltage drops
around 6.56% for deteriorated fuel cell in comparison with the fresh one.

The formation of hydrogen-air interface inside a fuel cell is the main cause of fuel cell
deterioration by start-stop operation [44]. The presence of hydrogen-air interface leads to
oxidation in the fuel cell anode. This introduced a high voltage in the cathode which caused
the oxidation corrosion of the cathode carbon support layer. Consequently, fuel cell ECSA
and output power are decreased due to Pt particles detached from the catalyst surface.

High power load operation pushes fuel cells operating under undesirable conditions and
accelerated their deterioration. The experimental study reported in [45] showed that a high
load cycle operation leads to electrode flooding and the decrease of proton conductivity. Mem-
brane deterioration due to Phosphoric Acid (PA) loss is another important cause of fuel cell
deterioration in high power load conditions. Thomas et al. [46] reported that PA loss is ob-
served in a deteriorated fuel cell. Besides, the membrane resistance is increased due to PA
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Figure 1.17: NEDC profile in real fuel cell test [39].

loss. The EIS measurements verified that the PA loss is proportional to resistance increments.
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Figure 1.18: Initial velocity profile of WLTC cycle [41].

1.3 Fuel cell prognostics and health management studies

Facing the limited durability and high-cost challenges, a synthetic energy management strategy
is needed to pave the path to the commercialization of MFC technologies. The role of the
EMS is to combine the study of fuel cell deterioration mechanisms, and deterioration modeling
to produce optimized operation strategies for fuel cell systems. These operation strategies are
expected to extend fuel cell lifetime and operation cost (maintenance related). For example,
in FCEVs, the fuel cells are put together with batteries forming a network system. In such a
system, the battery used is small with limited battery power. As a result, the fuel cell has to
be operated dynamically across a wide load range. This arises the need for fuel cell operation
mode control [47]. The decision-making process (operation strategy) addressed by an EMS is
considered to be a crucial step to complete the PHM cycle. Thus, the PHM for fuel cells will
be introduced first as a general approach background. Then the works on two key studies of
fuel cell EMS are introduced, i.e. the Deterioration-aware EMS and Maintenance-based EMS.

1.3.1 Prognostics and health management

PHM is a diverse, interdisciplinary field which covers the concept of diagnostics, prognos-
tics, and condition-based monitoring [48]. PHM provides a wide range of tools for system
health assessment and reliability improvement which involves a number of subareas in differ-
ent aspects. PHM integrates various modeling computation approaches to process physical
knowledge, information and data of systems and components operation and maintenance, to
enable detecting anomalies, diagnosing degradation states and faults, predicting the evolution
of degradation to failure and estimating the Remaining Useful Lifetime (RUL) of a system
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[49]. The outcomes of RUL prediction computations can be further used to support the main-
tenance decisions for improving system operation time and reliability. It is thus a promising
approach that could be useful in various industrial applications including fuel cells. PHM ap-
proaches in fuel cell systems are mainly focused on improving their durability and operating
cost, the main related PHM tasks are presented in Figure 1.19. The main stages of PHM
include: data acquisition and processing, State of Health (SOH) estimation and diagnostic,
prognostics, and decision-making. The core tasks for each step of PHM are summarized as
follows:

• Data acquisition and processing

Data acquisition module consists of digital sensors to monitor the value of the fuel cell
system physical variables, e.g. voltage, power, temperature, pressure, etc. Data storage and
transition are also installed to provide initial monitoring information data of a fuel cell system.
These obtained data are usually noisy and with hidden features, thus proper data processing is
needed. The data processing module receives data from the sensor and processes them by using
different data processing and analysis techniques and tools, e.g. perform feature extraction
by Principle Component Analysis (PCA) and feature selection by clustering technique.

• Model analysis

Model analysis in PHM includes anomaly detection, diagnostics, and prognostics. Anomaly
detection is mainly for determining the fuel cell system operation state. Approaches like
support vector machine (SVM), and Bayesian neural networks can be applied to classify
fuel cell states, i.e. normal or abnormal, sending alarms when anomaly states are detected.
Diagnostics is a critical step based on anomaly detection to determine the health status of
the fuel cell system (SOH, reflected by fuel cell output voltage, current density distribution,
impedance spectra, etc.). Diagnostics analyze the severity levels of system degradation by
using supervised machine learning techniques such as random forest, k-Nearest Neighbors
(KNN), etc. And the final step is to predict the future degradation of fuel cell performance
and estimate its remaining useful lifetime (RUL). Several tools are being used to achieve
prognostics of fuel cells such as Long Short-term Memory (LSTM) neural networks, hidden
Markov chain Model (HMM), etc.

• Decision

Decision support refers to the management part of PHM. It uses the outputs of diagnos-
tics and prognostics for taking timely, proper maintenance and operation control decisions
for optimizing system operation in order to achieve an extended lifetime and reduced cost.
It is thus considered as a key part of conducting PHM approaches to improve system opera-
tion efficiency. The Energy Management Strategy and maintenance scheduling are two main
techniques to offer decision-support for fuel cell systems.



1.3. Fuel cell prognostics and health management studies 27

Data acquisition Data processingFuel cell system

Model analysis

Observe
Normal
Anomaly

RUL

Actual 
Predicted

Decisions

Maintenance 

EMS

Anomaly detection
Diagnostic
Prognostics

Feature selection

Feature extraction

I
II

Degradation level
III

Figure 1.19: PHM architecture.

Currently, fuel cell PHM studies mainly focused on the previous two stages to process fuel
cell diagnostics and prognostics. Fuel cell diagnostics is targeted to identify system degradation
levels, raise alarms in case of faulty operation modes, and finally analyze the main factors for
fuel cell fault operation. Li et al. [50] developed a classification fault diagnostic model based on
SVM for fuel cell systems. This diagnostic model can effectively classify the four fault degrees
based on measured fuel cell voltage signals. Since fuel cell test data contains multiple factors
which may causing fuel cell fault operation, the fuel cell diagnostic approach needs to identify
the key influence factors. Lin et al. [51] proposed an enhanced PCA algorithm to generate key
features based on history datasets. The data analysis efficiency of the diagnostic approach
is one of the key focuses on fuel cell studies. Process limited input data can provide rapid
but limited analysis accuracy. On the other hand, performing comprehensive characterization
that provides more accurate analysis will require invasive measurements.

The recent progress in the Machine Learning (ML) approach proves to be a promising
approach to overcoming the data analysis challenges. Zhou et al. [52] reviewed the main ML
techniques that are suitable for fuel cell diagnostics. Generally, ML approaches follow the
procedures of model training and diagnostic. The collected historical data are used to train
an ML-based diagnostic model. Fuel cell SOH is then diagnosed based on the trained model.
Techniques like Fisher Discrimination Analysis (FDA), Spherical-shaped Multiple-class Sup-
port Vector Machine (SSM-SVM), and PCA are efficient techniques for feature extraction. The
training of diagnostic models can be achieved by using various neural networks, e.g. LSTM,
extreme learning machine (ELM), autoencoder, etc. Gu et al. [53] performed fuel cell flooding
fault diagnostics based on a LSTM model. The analysis showed that the proposed model
can effectively diagnose fuel cell flooding, thus help optimizing fuel cell water management.
Moreover, the newly developed branch of ML, i.e. deep learning further improves the general-
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ization ability of diagnostic models on untrained samples. A stacked sparse autoencoder-based
diagnostics model was proposed by Zhang et al. [54]. Experiments verified that this model
can diagnose fuel cell faults with high accuracy rely on a few training samples. Another way
of overcoming the data analysis and computation challenges is to develop physical-based di-
agnostics tools. That is, to combining fuel cell fault diagnosis with physical models to develop
an efficient diagnosis methods. Jullian et al. [55] proposed a physical model-based diagnostic
tool by taking into account fuel cell voltage and resistance information to produce a reliable
and efficient diagnosis for fuel cells.

Prognostics deal with the prediction of fuel cell future deterioration trend and finally obtain
the RUL. Based on the SOH estimation, the prognostics phase predicts the system’s RUL.
Generally, the present prognostics approaches can be concluded as model-based, data-driven
and hybrid methods. The model-based method is based on physical models to study the
performance decreasing prediction of a fuel cell. As fuel cell deterioration physical laws are
not fully known, the current model-based approaches are proposed based on semi-empirical
formulas. Jouin et al. [56], [57] have studied fuel cell prognostics based on the Particle Filter
(PF) framework. The first model combined three empirical voltage drop model with PF to
predict fuel cell RUL. They achieved a prediction accuracy of 90 h for a 1000 h lifespan. Then
in the second model, the authors proposed a fault tree-based approach to analyze the critical
deterioration mechanisms of a fuel cell. And finally construct a prognostic model based on
the obtained deterioration model PF method.

The data-driven method overcomes the drawbacks of the physical model by building fuel
cell prognostics model purely reply on experimental data. Besides, the advanced ML-based
approaches being used usually give a relatively high prediction accuracy. Zuo et al. [58]
developed a fuel cell prognostic model based on the attention-based Recurrent Neural Network
(RNN). The prediction accuracy is validated by a dynamic fuel cell durability test dataset.
Hua et al. [59] proposed a long-term fuel cell prognostics model based on Echo State Neural
Network (ESN). However, These methods belong to black-box paradigm thus they are lacking
the interoperability in terms of the obtained prognostics models. The hybrid method offers a
compromise between the two methods by combining the advantages of the model-based and
data-driven approaches. For instance, Zhou et al. [60] proposed a moving window-based hybrid
prognostic approach. They combine an empirical polarization model and a data-driven model
based on the Nonlinear Autoregressive Neural Network (NARNN). They conclude that the
model-based approach can be used to forecast fuel cell long-term deterioration trend, where
the data-driven model can accurately predict local nonlinear characteristics of fuel cell voltage
drop. Therefore, the combination of these two methods gave an improved prediction accuracy.
The hybrid model is relatively complicated and requires a good design of the two approaches.

Compared to fuel cell diagnostics and prognostics studies, the decision aspect of PHM
methods is less studied yet vital for deploying PHM in reality. However, the RUL predicted
from prognostics remains of limited interest if it is not used to make a decision, and its
performance can be sensibly assessed only at the level of the whole processing chain, i.e. from
prediction to decision-making.

In summary, PHM deals with three main issues: SOH estimation, RUL prediction, and
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system operation decision-making [61]. Within these stages, the decision-making process is
receiving increasing attention [62]. Indeed, its development requires prior knowledge of the
SOH and the system RUL under study. In the case of fuel cells, the great complexity of fuel
cell operation makes these steps difficult to carry out. This explains why the development of
a comprehensive PHM approach for fuel cell systems is challenging.

1.3.2 Fuel cell health indicator and deterioration modeling

Deterioration modeling plays a key role in PHM. It links fuel cell system and decision-making
strategies, which enables to extend system lifetime based on available deterioration informa-
tion. This section summarizes the works of defining proper fuel cell degradation indicator and
deterioration modeling approaches. In this part, we intentionally limit the methods to those
are based on electrical parameters. In this part, we intentionally limit the methods to those
that are based on electrical parameters. The fuel cell deterioration model is used to simulate
the dynamic deterioration behavior of a fuel cell system. Based on the measured historical
data, a deterioration model allows for reproducing, diagnosing, and predicting the dynamic
behavior as well as the SOH of fuel cells.

1.3.2.1 Health indicator

A fuel cell health/deterioration indicator (HI) should carry and reflect key deterioration in-
formation of a fuel cell. Defining a proper HI is a key process for fuel cell SOH estimation
and deterioration modeling. Generally, fuel cell output voltage and power are two widely used
HIs as they are relatively easy to measure and calculate. Besides, it is assumed that their
deviation is only influenced by the fuel cell deterioration phenomenon. Chen et al. [63] de-
signed a Kalman filter to estimate the output voltage of a PEM fuel cell under real operating
conditions to access the aging state of fuel cells. The output voltage [58], [64] and power [65]
measured from fuel cell durability test are used to characterize the SOH of fuel cells.

However, for more dynamic operation scenarios (e.g. FCEV driving cycles), the output
voltage and power are influenced by varying operating parameters and deterioration factors
[66]. In these cases they are not suitable used as HI. Zhang et al. [67] investigated the deterio-
ration indicators for fuel cells. They identify the difficulties in interpreting the measurements
and distinguish various causes of fuel cell performance decay. Based on the EIS measurements,
they proposed the HI as a key aging parameter estimated from EIS data.

A fusion or extracted HI is proposed to overcome the limits of purely relying on fuel
cell voltage or power. Chen et al. [68] proposed an original fusion HI by combining fuel cell
inner resistance, stack voltage, and the stack power. This novel HI enables better tracking
and prediction of fuel cell deterioration. Dedicated to the development of more accurate and
comprehensive HIs, Liu et al. [69] proposed a multi-scale hybrid HI for fuel cells. The proposed
hybrid HI is selected based on several deterioration indexes such as ECSA, Pt particle radius,
and membrane thickness. The fusion criteria was built based on their influences on fuel cell
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deterioration. Hua et al. [66] reviewed the HI development for fuel cell HI suitable for both
static and dynamic operating conditions. The authors conclude that novel HIs like extracted
virtual stack voltage [70], average resistance [71] are suitable for dynamic operating conditions.
Moreover, they proposed two other HIs, i.e. polarization resistance and power loss to estimate
fuel cell SOH. The polarization resistance is calculated based on the EIS measurements and
power loss is calculated by:

∆P = (P − P0)/P0 (1.14)

where P is the actual power and P0 is the power at the Beginning of Life (BoL).

A proper HI needs to be defined at first in order to model fuel cell deterioration behavior
[72]. Based on the discussion of Section 1.3.2, the HI needs to be able to reflect key deteriora-
tion information of fuel cells. Besides, the HI is expected to be applicable under dynamic load
profile considering the varying operation modes of various application scenarios (for example
in FCEVs). Fuel cell resistance is closely linked to fuel cell deterioration and being used in
several studies as HI [65], [66], [71]. The EIS [69] and online estimating algorithms [73], [74]
ensure that resistance can be measured or estimated. Hence, the overall fuel cell resistance R
can be taken as a global health indicator. Fuel cell deterioration modeling is then focused on
fuel cell resistance. Combining the proposed polarization equation (Equation (1.9)), the value
of R increases with the deterioration of a fuel cell (output voltage is decreasing). Without a
further statement, the fuel cell deterioration is represented by the increment of fuel cell overall
resistance.

1.3.2.2 Fuel cell deterioration modeling approaches

Based on the model assumptions and techniques being used, the existing fuel cell deteriora-
tion modeling approaches can be categorized into physics-informed, data-driven, and hybrid
approaches.

• Physics-informed models. These models are proposed based on the physical laws of fuel
cell systems such as thermodynamics, and electrochemistry. They can be white-box
models based on exact laws of physics, or be Grey-box models based on semi-empirical
mechanisms.

• Data-driven models. These methods are recognized as black-box. Instead of building the
mechanical deterioration models for fuel cells, they learn fuel cell deterioration behavior
from the measured durability test dataset.

• Hybrid models. They can be considered as a combination of physics-informed and data-
driven models. Depending on semi-empirical laws, combing with data-driven approaches
to build fuel cell deterioration models.

Fuel cell performance deterioration is linked to complex electrochemical, mechanical, and
thermal mechanisms which are difficult to model using a white-box model. Besides, due to
the complex configuration, the measurement of some parameters (states) that are required by
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the model are challenging to measure, such as fuel cell membrane water content. The Grey-
box model overcomes these challenges by using semi-empirical models and measured data to
model fuel cell performance decay. In general, the Grey-box approaches use the measured
dataset to estimate aging parameters in semi-empirical models. Then based on the obtained
model to study fuel cell deterioration behavior. Grey-box models are widely used in fuel cell
deterioration modeling studies. Depending on fuel cell empirical polarization equations to
propose deterioration models is one of the most popular approaches thanks to the mature
basis of fuel cell polarization-related studies. Jouin et al. [57] proposed a semi-empirical
deterioration model for fuel cell prognostics. According to available fuel cell deterioration
mechanisms, several aging-related parameters such as ionic, electronic, and contact resistances
are selected from fuel cell polarization equation [75] and modeled with empirical formula.
Bressel et al. [76] reproduced fuel cell deterioration behavior based on a typical polarization
equation:

Es = n(E0 −Ri−AT log(
i

i0
)−BT log(1− i

iL
)) (1.15)

where Es is the stack voltage, i is the current density, and n is the number of cells. T is the
temperature, A is Tafel constant, and B is a concentration constant. E0 is fuel OCV for a given
temperature and pressure. R is fuel cell overall resistance (membrane, end plates, connectors,
etc.). i0 is the exchange current and iL is the limiting current. Kalman filter is applied to
identified parameters (E0, R, i0, and iL) in Equation (1.15) from measured durability test
data. It is reported that R increases by more than 50% and iL decreases 45% which is chosen
as HIs for predicting fuel cell performance decay. For the same purpose of predicting fuel cell
performance decay, Zhang et al. [77] proposed a similar deterioration model based on a fuel cell
polarization equation. To increase the accuracy of estimating fuel cell SOH evolving trends,
they proposed a novel identification method that combines fuel cell stack voltage and EIS
measurements. The obtained model is validated through real fuel cell test data with improved
prediction accuracy compared with traditional prognostics based on a single HI deterioration
model.

Different from the physics-informed modeling approach builds the model based on fuel
cell semi-empirical formula, data-driven methods purely learn a model from fuel cell dura-
bility test data. But this learned model is a black-box one compared to the semi-empirical
equation obtained from the physical-informed model. Thanks to the rapid development of
ML-based approaches, e.g. Long short-term memory (LSTM) [78], Convolution neural net-
works (CNN) [79], these data-driven approaches can ensure a high prediction accuracy. Ma
et al. [80] developed a Grid LSTM (G-LSTM) model for predicting fuel cell voltage. Based
on the experimental dataset of 1.2 KW Ballard Nexa fuel cell, 1 KW PEM fuel cell, and 25
KW PEM fuel cell, the G-LSTM model achieves a high prediction accuracy (root-mean-square
error of 0.004). Zuo et al. [58] proposed an attention-based RNN to learn the fuel cell voltage
deterioration model. They provided a long-duration dynamic load durability test dataset [39].
Note that the collection of fuel cell durability test data is costly work both in terms of money
and time. In current data-driven approaches, the limited available dataset is also a bigger
challenge. The attention-based RNN achieved a high short-term prediction accuracy (Root
Mean Square Error (RMSE) of 0.0155). However, the low long-term prediction accuracy re-
mains one of the challenges. Hua et al. [59] proposed a multiple-input ESN based deterioration
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model. In order to perform prognostics for dynamic load conditions, the authors proposed a
novel power loss rate based HI (Equation (1.14)). The experiment results showed a decreasing
accuracy for a long prediction horizon. But the proposed HI and ESN model can effectively
learn fuel cell performance decay trends compared with other approaches.

Hybrid approaches are designed to leverage the advantages of the previous two modeling
approaches to produce a fuel cell deterioration model. Jouin et al. [56] proposed a hybrid
prognostics method based on a semi-empirical model and joint PF method. PF method is
used to include non-observable deterioration states into semi-empirical models. The model’s
prediction accuracy is of 90 h for a 1000 h lifetime. Zhou et al. [81] developed a hybrid model
by using autoregressive and moving average (ARMA) and an empirical physical deterioration
model of fuel cell. The physical deterioration model is used to remove the non-stationary trend
in original fuel cell aging data. Then the ARMA model is used to process the stationary data.
And finally the nonlinear pattern is used to train the time delay neural network (TDNN)
to provide the final prediction results. It can be seen that hybrid approaches requires a
sophisticated structure design to be able to combine the advantages of two types of modeling
approaches.

1.4 Conclusion

This chapter reviewed the applications barriers and PHM studies for a single stack PEM
fuel cells. The deployment of PEM fuel cell systems are hinder by durability, cost, and
reliability challenges. Fuel cell durability test and deterioration modeling studies contribute
to understand and the modeling of fuel cell various deterioration phenomena. Key fuel cell
deterioration mechanisms are investigated based on the fuel cell durability tests under static
and dynamic load profiles. Generally, the operation of a fuel cell system subject to four
typical operation modes, i.e., the open-circuit/idling, dynamic load, start-stop, and high power
load conditions. Due to the complexity of fuel cell deterioration phenomenon, semi-empirical
polarization equation based models are widely used in fuel cell deterioration modeling studies.

PHM method is one of the most promising approaches in dealing with fuel cell durability
and cost challenges. It contains multiple functional steps from data collection to final decision-
making which contributes to enhance fuel cell lifetime. However, the literature review shows
that the decision aspect of current PHM method is relatively lacking which needs to be im-
proved which leads to the fuel cell operation problem in next chapter. Within PHM, fault
diagnosis was well studied at first, then prognostics are better handled. Now the challenge is
to deploy EMS methodology for fuel cells.



Chapter 2

Multi-stack Fuel Cell System and
Energy Management Strategy

Problem Statement

Fuel cell stacks can be used in networking systems instead of isolated situations. Among solu-
tions, multi-stack fuel cell systems, composed of multiple stacks, are promising. Indeed, these
systems can extend the functionality of a single stack and offer more redundancy, enhanced
durability, and flexible modular architecture compared with a single stack fuel cell system. To
operate, integrate and interconnect several devices in a generation system, a control system to
manage the energy is necessary. A proper energy management strategy enables the system to
supply the demand, increase the lifetime of the elements, reduce operating costs and therefore
maximize system performance, providing a technically and economically feasible option. The
aims of the different management strategies influence the behavior of the system. As most
of the works found in the scientific literature present simulated strategies for hybrid systems,
the section 2.2 introduces the different aims of EMS and reviews the EMS for hybrid fuel cell
systems. Then different MFC architectures and their advantages are introduced. Section 2.3
provides a literature review about different EMSs for multi-stack systems, including basic
EMS, deterioration-aware EMS, and maintenance-based EMS. Finally, the problem statement
that will be studied in this work is detailed, and the main contributions of the thesis are
presented.
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2.5 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1 Multi-stack fuel cell systems architecture and application
advantages

It is noticed that fuel cell applications present a growing trend for high power demands. For
instance, the growing market of FCEBs and fuel cell trucks. In these applications, a single
fuel cell stacks based hybrid system can hardly satisfy the high power demands operation
requirement. MFC integrates two or more PEM fuel cell stacks which can supply a lager
power. Moreover, the multi-stack modular architecture can be utilized to extend fuel cell
system durability. In this section, the basic architecture and various advantages of MFC
system are introduced. The EMS studies of MFC systems will be reviewed in the next section.

A multiple fuel cell stack system is not only composed of fuel cell stacks, but also of several
auxiliaries, including fluidic, electrical, and thermal systems, that have to be connected [82].
The Fluidic system is the reactant supply system that provides the hydrogen and oxygen reac-
tants to MFC. The electrical system (DC/DC, DC/AC converters) is responsible to adapt the
output voltage of all stacks to meet the operating load demand. And the thermal architecture
controls fuel cell operation temperature to produce optimal performance.

The two commonly studied configurations for connecting MFC stacks are serial and parallel
structures, that are shown in Figure 2.1. In series architecture, the system output voltage is
the summation of individual stack voltage (nstackVstack). Because fuel cells are operating with
low voltage, the series architecture can effectively increase the MFC output voltage. The
two switches (M’ and M) enable power allocation and stack isolation in case of failure [83].
Similarly, the parallel structure which constructs all stacks in parallel is also used in MFC. The
power demand can be allocated between different stacks. And the failed (or malfunctioned)
stacks can be isolated through the switches. In parallel architecture, all stacks share the same
level of output voltage and the system current density is the summation of current density
in each stack. Each fuel cell stack is connected to a DC-DC converter (used to adapt the
FC stack output voltage) in a parallel configuration. A power converter is used to enable
individual current control and adjust the power demand of each system. Cardozo et al. [84]
studied MFC system architecture for residential power generation. They compared MFC with
parallel and series architectures in terms of their influences on system aging and hydrogen
consumption. The results showed that the parallel structure is more efficient in improving
system durability and minimizing hydrogen consumption when the ratio of the deterioration
per start-stop cycle to the deterioration per hour of use is low. By contrast, series architecture
is more effective when the ratio is high. Generally, the parallel structure has higher reliability
than the series configuration.

Thanks to the modular architecture, MFC offers a number of strengths compared to the
single stack configuration. Firstly, MFC systems offer more redundancy than a single stack and
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Figure 2.1: MFC series and parallel structures [83].

thus the system reliability is improved. Another one is that the durability of MFC systems
can be increased by optimally distributing the power demand among different stacks, thus
avoiding degradation mode operation. In addition, as MFC can be manufactured in standard
size and can be easily combined to meet different power demands, this could help balance the
increased cost of modular architecture [85].

Marx et al. [86] studied the degraded mode operation of an MFC system. The results of
this study showed that the MFC system keeps functioning and is able to fulfill a driving cycle
when one stack is failed. Compared with single stack system configuration, the MFC system
can adjust its operating mode in terms of various stack sizes which offers more redundancy and
improved reliability. In fact, the multi-stack configuration can help improve fuel cell system
operation efficiency, extending system lifetime as well as saving fuel costs [82]. In [87], the
MFC system has been integrated into an energy microgrid and the simulation results of the
Model Predictive Control (MPC) controller prove the advantage of the multi-stack fuel cell
configuration. The MPC controller was built for the MFC to reduce fuel cell deterioration
and operation costs. Thanks to the modular configuration of MFC, the MPC controller
can optimally distribute the power demands into available stacks, achieving high operation
efficiency and reducing operation cost. MFC has also been used in transportation applications
scenarios to help overcome the operation cost and lifetime challenges. Becherif et al. [88]
studied the integration of MFC on a vehicle. By applying several lower power stacks instead
of one single big stack, the system lifetime is improved thanks to a flexible operation mode that
allows selecting the required stacks. The parallel structure of MFC allows replacing a stack
separately without stopping the entire system, thus increasing overall system reliability. Zhou
et al. [89] highlights the application of the MFC system in high-power demands application
scenarios. They highlighted that the MFC system is better than a single fuel cell system in
terms of system lifetime, efficiency, and hydrogen consumption.
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To sum up, the application of MFC systems is promising and studies on MFC systems are
still in their early stages. The research challenges are to design the MFC system architecture
and power distribution management to optimize system lifetime and efficiency. In this thesis,
we will focus on developing an efficient power allocation strategy to improve system lifetime.

2.2 Energy management for hybrid fuel cell systems

Energy management is a collective term for all the systematic practices to control and min-
imize both the quantity and cost of energy used in providing the requested power [90]. In
general, EMS refers to the system level control strategies for allocating the overall power de-
mand towards multiple components of a system [91]. For example, for powertrain systems, the
primary aim of the EMS is to distribute power by the components of the powertrain effectively
by selecting the optimal operation modes [92]. Consequently, this aim hide actually several
objectives, such as (i)improving fuel economy, (ii) reducing emissions, (iii) maintaining driv-
ability and (iv) enhancing lifetime of power source devices [93]. Thus, the different strategies
available in the scientific literature, listed by their objectives, are presented in this section.
The discussed strategies are classified into basic, deterioration-aware, and maintenance-based
EMSs according to their management objectives. Table 2.1 summarizes the discussed EMSs
literature for fuel cell hybrid systems.

2.2.1 Strategies in which the objective is to improve system fuel economy
or basic EMS

The primary objective of this type of strategy is to improve system fuel economy. Indeed,
to minimize system fuel consumption while ensuring the power demand is necessary because
the hydrogen fuel used by fuel cells is expensive to produce and store. This type of strategy
is also known as the Basic EMS. The concept of fuel economy evaluation in a hybrid fuel
cell/battery system has been introduced in [94]. The Energy Management Strategy consisted
in optimizing the power allocation between a fuel cell and a battery. The constraint on the
SOC of the battery was the initial and the final SOC have to be identical. An empirical
formula is adopted to estimate the fuel consumption of a fuel cell.

Ramos-Paja et al. [95] built a controller for a hybrid fuel cell/capacitor power system. By
controlling the air pump voltage and regulating the fuel cell current, it successfully forces the
fuel cell to operate following the minimum fuel consumption operating points. Kim et al. [96]
developed a pseudo-stochastic dynamic programming controller for improving fuel cell hybrid
system efficiency. Moreover, this strategy is combined with the component size optimiza-
tion to further optimize fuel cell system efficiency. Zhang et al. [97] proposed an Equivalent
Consumption Minimization Strategy (ECMS) to minimize fuel cell hybrid system fuel con-
sumption. As an instantaneous optimization technique, the ECMS decides the equivalent fuel
consumption of energy storage system through an equivalent coefficient. Then the overall fuel
cell hybrid system fuel consumption can be decided and optimized in real-time. The proposed
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EMS helped to save 3.5 % hydrogen consumption.

Fuel cell electrical efficiency is generally defined as the electric output energy divided by
the energy emitted from the electrochemical reaction. Thus, to improve fuel cell efficiency is
beneficial for improving the fuel economy. Some works have been done to improve overall fuel
cell system efficiency. König. et al. [98] developed a modular model aided system analysis to
evaluate and improve stationary fuel cell system efficiency. Kelouwani et al. [99] developed
an adaptive airflow control strategy for tracking fuel cell system maximum efficiency. The
proposed approach can improve fuel cell efficiency up to 10%. The study on fuel cell system
fuel consumption and efficiency are critical for reducing fuel cell operation cost. However,
these studies usually did not take into account fuel cell deterioration when developing the
EMS. Therefore, the basic EMSs fail to enhance fuel cell system durability which is a major
concern of fuel cell systems.

The main advantage of these strategies is the simplicity in the defined objective. In
fuel cell hybrid systems, the quantification of system fuel consumption is directly modeled
as polynomial function of operating load. Thus, the objective function in these strategies
is relatively easy to define. In many cases, the optimal solution of this strategy does not
necessarily lead to a favorable operation condition for the studied system since the other
factors like deterioration is not considered. This is this aspect that has lead to define new
strategies, presented in the next part.

2.2.2 Strategies in which the objectives are including durability improve-
ment or degradation-aware EMS

These strategies, as well as ensuring power demand at all times, take into account technical
criteria in order to ensure the proper use of fuel cell systems. The pivotal goal of these
strategies is to reduce the degradation of fuel cells during operation of the system. They are
also known as deterioration-aware or health-aware EMSs.

Recent studies emphasized the need of developing deterioration-aware EMS due to the
fact that ignoring the performance decay of a fuel cell may increase system fuel consumption.
Kandidayeni et al. [100] showed that the ignorance of health adaption increases the hydrogen
consumption by around 6.5%.

This kind of EMS receives fuel cell system deterioration information thanks to a dete-
rioration model. Thus, Kandidayeni et al. [101] reviewed the health-aware EMS in FCEVs.
They proposed a classification into three categories for dealing with health-aware EMS, i.e.,
prognostic-based, diagnostic-based, and systemic EMSs. The previous two methods were ded-
icated to enhance fuel cell system performance by utilizing various deterioration monitoring
techniques (e.g., Particle filtering [56], Kalman filter [76]). Systemic EMSs are developed from
a more holistic perspective which considers also some local controls or managements such as
thermal or water management.

Developing a deterioration-aware EMS is generally treated as an optimization problem.
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Zheng et al. [102] proposed a Pontryagin’s Minimum Principle (PMP) EMS to improve the
lifetime of a fuel cell stack in FCEVs. A trade-off between lifetime and fuel consumption
is achieved by properly formulating the cost function and the simulation results proved the
positive economic influence of the proposed approach. PMP-based strategy can instanta-
neously provide optimal power distribution decisions between power sources. Its application
efficiency is checked by Zheng et al. [103], based on the driving characteristics of buses. The
deterioration of fuel cell is estimated by the empirical formula proposed in [25], [104]. The
two-stage EMS proposed by Geng et al. [105] helps to minimize hydrogen consumption and
simultaneously protect fuel cell health. The first stage is to design a predictive controller for
predicting the optimal global battery SOC trend and local control reference. Then the sec-
ond stage constructs a tracking controller for producing feasible local control decisions with
respect to fuel cell health constraints and other physical limitations. De Pascali et al. [106]
proposed an aging-aware EMS for the hybrid vehicles based on electrochemical degradation
dynamics. An improved system life and fuel economy are achieved by incorporating the elec-
trochemical degradation dynamics into the EMS. To facilitate the development of real-time
deterioration-aware EMS, Hu et al. [107] proposed a soft-run strategy for a fuel cell/Li-battery
hybrid system. The fuel cell aging model is also based on [25], [104]. Speed prediction-based
EMS for FCEVs is presented by Zhang et al. [108]. The fuel cell economy and power train
system durability are modeled through a mathematical model and directly used to formulate
the optimization objective functions. The formulated optimization problem is solved by using
a Sequential Quadratic Programming (SQP) method.

The above-mentioned studies did not consider updating fuel cell performance in real-
time when developing the EMS. For instance the deteriorated fuel cell may influence fuel cell
system fuel consumption which need to be considered when optimizing system fuel economy.
An adaptive type deterioration-aware EMS is proposed to address this issue. Song et al.
[109] proposed an unbalanced degradation model of fuel cell at different current densities.
This is built based on the observation that fuel cell polarization curve deteriorates differently
under different current densities, and that the degradation rates at different current are thus
different. A degradation adaptive EMS is then built to deal with fuel cell durability and fuel
economy. The proposed approach can update the efficiency curve based on the degradation
model which is effective in improving fuel economy. Hahn et al. [47] presented a comprehensive
study of optimizing the efficiency and degradation rate of an automotive fuel cell system. They
derived a physically-based polarization curve model for developing the EMS. They verified
that aging of the stack leads to a drift of optimal operation parameters which highlights
the needs of deterioration-aware EMS. Yue et al. [110] proposed a health-conscious EMS
by developing a prognostics-enabled decision-making process. A fuzzy logic controller that
receives the prognostics results of fuel cell deterioration level is used by the EMS.

Deterioration-aware EMSs have been attracting a growing research interests. However, in
current EMS studies, the access to fuel cell deterioration information is still challenging for
developing an efficient deterioration-aware EMS.
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2.2.3 Strategies whose objectives include maintenance costs or maintenance-
based EMS

Maintenance studies are closely related to system reliability. Reliability is defined as the ability
of a system to perform as required in a stated operating context and for a stated period of time
[111]. The fuel cell system’s ability to supply a prefixed power demand (required by a specific
operation task) will depend on altogether the environment conditions the fuel cell is used in,
the load demand it is subjected to, and how the fuel cell is maintained. Thus, fuel cell as well
as many mechanical systems need to be maintained to preserve high operational reliability
during their useful life [111]. The definition of maintenance, according to the standard (IEV
192-06-01), is the combination of all technical and management actions during the life cycle
of an item intended to retain the item in, or restore it to, a state in which it can perform as
required [111]. To integrate the maintenance actions like fuel cell stack replacement into fuel
cell system management strategies is called the Maintenance-based EMS.

Firstly, it is noticed that the current research on PEM fuel cell reliability, maintenance
studies are relatively scare compared to the studies of energy management strategies for en-
hancing system durability. Indeed, the lack of failure dataset is a very important barrier in fuel
cell reliability studies. To overcome it, researchers have proposed a stochastic process-based
aging model. Tanrioven et al. [112] presented a methodology for modeling and calculating
the reliability of stand-alone PEM Fuel Cell Power Plant (FCPP). The components aging
in the studied system are modeled through a Weibull distribution. A fuzzy logic rule-based
system is developed as there is no publicly available data associated with FCPP failures. The
results showed that improved reliability is achieved by applying the maintenance procedure.
Mangoni et al. [113] studied the fuel cell system reliability assessment by a stochastic model.
They assumed that the output voltage decay is a gradual decreasing process in which the de-
creasing rate is accessed through the stochastic aging model (linked with Beta distribution).
It is pointed by the authors that the proposed probabilistic approach can take into account
the lack of data and the uncertainties of fuel cell design and operating conditions.

The maintenance strategy takes action to enhance the reliability of a fuel cell system.
Among various types of maintenance activities, Preventive Maintenance (PM) is one of the
most popular approaches in power systems. PM refers to the maintenance conducted at prede-
termined intervals or according to prescribed criteria to decrease the system failure probability
[111]. Maintenance scheduling (preventive maintenance) is receiving a growing attention in
recent years among a number of industrial applications. For instance in the energy systems,
PM is applied to enhance system operation reliability. Gargari et al. [114] proposed a preven-
tive maintenance scheduling strategy for a multi-energy microgrid. The validation on three
operation scenarios confirms that the proposed maintenance strategy achieved 30% reliability
improvement in average. In hydro-thermal system, a PM strategy is used to optimize hy-
dropower generation [115]. To enhance the electricity supply of remote area, a maintenance
strategy was integrated into an off-grid photovoltaic energy system to handle system power
generation as well as the environmental constraints (such as flood period variation, consumer
locations, etc.).
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Table 2.1: Summary of EMSs for fuel cell hybrid systems

Strategy types Power sources Optimization objectives Objective formulation Optimization algorithms

Basic
Fuel cell/battery [96], [97] Fuel economy Fuel by empirical polynomial

function of load
Stochastic dynamic programming [96]
ECM [97]

Fuel cell CHP system [98] Efficiency Physical-based Constrained optimization

Fuel cell/capacitor [95] Fuel economy Fuel by empirical polynomial
function of load Tracking minimum fuel point

Deterioration-aware

Fuel cell/battery [102]
[103], [107], [108]

Lifetime
fuel economy

Deterministic empirical
degradation model [25]
Fuel by empirical
polynomial function of load

PMP [102], [103]
Two-stage optimal control [105]
Multi-objective optimization [107]
SQP [108]

Battery [106] Lifetime Deterministic physical-based
degradation model

Multi-objective
Constrained nonlinear optimization

Fuel cell/battery [109] Lifetime
fuel economy

Deterministic empirical
degradation model
Fuel by empirical polynomial
function of load

Multi-objective
Constrained nonlinear optimization

Fuel cell system [47] Efficiency
Lifetime

Semi-empirical correlations for
the loss of electrical catalyst
activity

Multi-objective
Constrained nonlinear optimization

Fuel cell/battery [110] Lifetime Degradation estimated from
historical datasets Fuzzy logic controller

Maintenance-based Microgrid system [114] Resiliency of system Micro-turbine, CHP, and
energy storage costs PM strategy, sequential optimization

Hydro-power plants [115] Minimize
thermal generation System generation power Multi-objective optimization

Maintenance-based EMSs require knowledge from reliability and maintenance studies which
belongs to an interdisciplinary field. The objective of such approach is to combine EMS studies
in fuel cell systems with reliability and maintenance investigations to produce more durable
and reliable fuel cell system. Due to the intrinsic complexity of fuel cell system configura-
tion, the maintenance-based EMS are still in an exploring stage. More efforts are expected to
be done in terms of demonstrating the possibilities and advantages of applying maintenance
studies in fuel cell systems.

2.3 Energy management for multi-stack fuel cell systems

MFC systems are promising for enhancing the durability and operation efficiency if properly
managed by efficient EMSs. This section presents the state-of-the-art of MFC system EMS.
Similarly to the EMS study of hybrid fuel cell system, we first review the basic EMS in MFC
systems that is developed to improve system fuel economy. Next, the deterioration-aware type
EMS is introduced for improving MFC system durability. Followed by the maintenance-based
EMS studies. Finally, the possible research gaps are analyzed and identified based on above
EMS state-of-the-art studies. The discussed MFC EMS literature studies are summarized in
Table 2.2.

Basic EMS Similarly to the EMS studies in hybrid fuel cell systems, the basic EMS has
been the most studied in MFC literature. Bortoli et al. [116] developed an EMS for the thermal
management of the MFC system in FCEVs. Simulation results showed that the proposed EMS
can effectively control a proper operating temperature via preheating/cooling process. Several
works studied the optimization-based EMS for minimizing MFC fuel consumption. Wang et
al. [117] proposed a Forgetting Factor recursive least Square (FFRLS) algorithm based EMS
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to improve parallel-connected MFC system efficiency and reduce the fuel consumption. The
FFRLS algorithm ensures an accurate estimation of MFC system parameters which is suitable
for online power allocation. The efficiency of the proposed strategy is validated with a two 300
W PEM fuel cell stacks system. Moghadari et al. [118] built an Equivalent Fuel Consumption
Minimization (ECM) strategy for an MFC/battery hybrid system. The results showed that
the proposed ECM strategy achieved a similar consumption as the Dynamic Programming
method, although it is an online optimization strategy. Several sophisticated design of EMSs
have been proposed recently. Wang et al. [119] have developed a two-level EMS to improve
fuel cell system operation efficiency. For the considered hybrid power system (fuel cell and
battery), the first level of EMS is designed to manage the operation of MFC and the second
level on the coordination of fuel cell and battery. The overall MFC system performance is
improved through proposed strategy.

Deterioration-aware EMS To build the deterioration-aware strategy, the fuel cell dete-
rioration information is further used in the objective function of the optimization problem.
Thus, Ghaderi et al. [120] designed a two layers EMS for an MFC system-based FCEV. The
first layer is responsible for estimating system health state, i.e., fuel cell Maximum Power
(MP) and Maximum Efficiency (ME) points. Then based on this information, a second layer
is developed to build the strategy that optimizes the operation. Usually such strategy refers
to the load allocation between different power sources. This two-layer EMS can effectively
minimize system fuel consumption and power source deterioration. Based on this two-layer
EMS, Fernandez et al. [121] further proposed an adaptive state machine based approach for
improving MFC system lifetime and fuel economy. The first layer is composed of an empirical
fuel cell deterioration model and a Kalman filter which is used to estimate deterioration pa-
rameters. The empirical deterioration is modeled by the fuel cell polarization equation. The
parameters of this equation are predefined aging parameters and are dependent on fuel cell
operating time. Then the second layer make the decision on the allocation of the operating
load for each stack. The effect of the proposed strategy is verified by comparison with the
Average Load and Daisy Chain strategies.

However, in the above studies fuel cell deterioration is only modeled as a function of time
and no direct links between fuel cell deterioration and their influence factors are considered. A
few research works have recently emerged to address this issue. Herr et al. [122] proposed an
empirical deterioration model by linking fuel cell remaining useful lifetime with the operating
power. Then a post-prognostic decision strategy is proposed based on this model to improve
fuel cell lifetime. The Mix Integer Programming (MIP) is used to solve the decision-making
problem, deciding the optimal operation load for each stack. Based on a similar deterioration
modeling approach, Zhou et al. [123] extended the load allocation strategy by adding the
minimization of system fuel consumption. Moreover, a stochastic dynamic load demand profile
adapted from the World Transition Vehicles Cycle (WTVC) is used as the application scenario.
The optimal load allocations are obtained by solving a bi-level optimization problem with RUL
and efficiency as the objective functions.

Stochasticity exists both within fuel cell intrinsic deterioration phenomena and the power
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demand profile imposed on the fuel cell system. The above discussed EMSs did not include
the consideration of stochasticity. Currently, only a few works have taken into account the
existence of stochasticity when build a EMS. A Stochastic Dynamic Programming (SDP)-
based EMS is proposed by Fletcher et al. [124] to deal with the uncertain deterioration of
a fuel cell-based power system. Jiang et al. [125] build several random and realistic power
profiles based on a Markov chain model. Then proposed an SDP-based EMS to decide the
optimal load allocation for a fuel cell/super capacitor hybrid system. These approaches are
mainly using stochastic programming methods to handle random demand profile, however,
the stochasticity of fuel cell stack deterioration is not considered.

In summary, deterioration-aware EMS can help to enhance MFC system durability by
considering available deterioration information. Usually this deterioration information is ob-
tained from a deterioration model. With regard to available deterioration-aware EMSs, most
of them are focused on deterministic deterioration models instead of stochastic models. The
performance of deterministic deterioration models is limited in the sense that it cannot capture
the randomness and variability of the considered deterioration phenomena.

Maintenance-based EMS Fuel cell systems are required to be reliable enough to operate
during the expected duration. This is interpreted as the system reliability. For example,
consider using fuel cell system to power a data center. Such system requires high operation
reliability (99.99%) [126], thus the reliability and availability of the system must be analyzed
and understood ensuring a stable operation. Thus, in addition to the requirement of high
durability, reliability is also a very important topic in MFC EMS studies. This thesis refers
such strategies as maintenance-based EMS.

A few recent works related to fuel cell reliability studies in the context of a network system.
Cardoso et al. [127] studied the microgrid reliability modeling based on a stochastic linear pro-
gramming technique. The deterioration of a 1 MW molten carbon fuel cell is modeled through
a Markov Chain model. The obtained results confirm that the proposed stochastic scheduling
method provides a conservative but cost-effective operation schedule. Colombo et al. [128]
performed a reliability analysis of a multi-stack SOFC system with strict constant power
supply requirements. The system failure probability function is built based on the experimen-
tal data and physics-based deterioration model. Reliability analysis of a multi-stack SOFC
from a system engineering perspective is presented by Colombo et al. [129]. They systemat-
ically demonstrate the methodology of combining physical modeling and experimental data
to construct system failure probability which is inspiring for fuel cell-based system reliability
studies. Based on the results of reliability analysis, maintenance studies are performed to fur-
ther enhance the reliability and durability of MFC systems. Phommixay et al. [130] applied
the PM to combine with the power-sharing of different power sources to study the operation
of an MFC-based microgrid system. The optimization objective of the microgrid system is
composed of finding the lowest total operation cost while meeting the load requirements as
well as the physical constraints of power sources. The PM is implemented to prevent system
breakdown.

It is seen that a very limited works have been conducted in terms of fuel cell reliability
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Table 2.2: Summary of EMSs for MFC systems

Strategy types Power sources Optimization objectives Objective formulation Optimization algorithms

Basic MFC/battery [116], [119] Efficiency Thermal condition Rule-based control [116]
Two level optimization [119]

MFC [117], [118] Fuel economy Empirical formula FFRLS algorithm [117]
ECMS [118]

Deterioration-aware

MFC/battery [120], [121]
[123]

Lifetime
fuel economy

Deterministic physical-based
degradation model[120], [121]
Deterministic empirical
formula model [123]
Fuel by empirical polynomial
function of load

Quadratic programming [120]
Adaptive state machine [121]
constrained optimization [123]

MFC [122] Lifetime Deterministic empirical
formula model Post-prognostic MIP

Maintenance-based
Microgrid (MCFC)
system [127] System reliability Stochastic degradation

model Stochastic programming

Multi-stack
SOFC [128], [129] Reliability Degradation estimated by

experimental data Reliability analysis

MFC [130] fuel economy Maintenance cost PM

and maintenance (almost no related works on multi-stack PEM fuel cells). Moreover, the
combination of maintenance and EMS studies, i.e., maintenance-based EMS is a brand-new
field for fuel cell EMS studies. It enables to combine the reliability studies and fuel cell EMS,
thus helping enhance fuel cell system reliability and durability.

2.4 Problem statement for joint deterioration and energy man-
agement strategy

The state-of-the-art presented first the EMS for hybrid systems. However, these strategies have
to be adapted to the specificity of multi-stack systems. So far, the majority of load profiles
used to develop energy management strategies are based on deterministic load profiles, and
no stochastic dynamic load profiles has been developed. It is on this new basis that the EMS
approaches have been developed.

2.4.1 Multi-stack PEM fuel cell system

In this section, the multi-stack system that has been taken for this study is defined. The
studied multi-stack PEM fuel cell system consists of n identical parallel-connected stacks. For
the operation of this system, a query demand required by the user is denoted as system load
demand Ld. In order to allocate optimally each load, the system load demand is known at
each time. In addition, the state of deterioration of each stack has also to be known. To
achieve this, a representative HI has to be chosen. This health index has to be representative
of the stack deterioration, must be measurable, and it must be possible to deduce the stack
voltage. Based on literature, the chosen indicator is the fuel cell overall resistance (R) and the
fuel cell polarization equation (Equation (1.9)) is used to calculate the corresponding stack
voltage.

The following assumptions are made on the MFC system:
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• The fuel cell stacks are physically connected in parallel, but are in series from the
reliability point of view;

• The fuel cell stacks in the network system are identical, and the output power density of
each stack ranges from the minimal output power density Lmin to the maximum output
power density Lmax;

• The values of the fuel cell overall resistances are considered to be measurable whenever
necessary, in the sense that a monitoring system and algorithm (e.g. a Kalman filter
[76], [131]) are assumed to be available to deliver the estimated values of the resistances.

2.4.2 Challenges to be addressed for multi-stack PEM fuel cells

Several challenges are addressed in this thesis to build the management strategies for MFC
systems, beginning with a classical simple problem, and progressively making it more complex
to get closer to reality.

Especially, the studies on multi-stack systems have shown some gaps in the field of deterio-
ration modeling, such as, (i) the deterioration model must be load-dependent so that the cause
of the deterioration is related to the load demand and (ii) the individual deterioration vari-
ability of the stacks make the use of a stochastic approach relevant. Then, such a degradation
model has to be developed.

The first problem to be addressed investigates to improve overall system lifetime and reduce
system fuel consumption. This problem, depicted in Figure 2.2, is limited to the case for which
the load demand Ld is constant, and the individual fuel cell degradation rates Dfci (for stack
i = 1, ..., n) are a function of the load demand. The EMS algorithm has to provide optimized
the individual fuel cell powers (Lfci). The problem is thus focused on the management of
individual stack power production under a constant load demand.

As the purpose is to develop an EMS for vehicle applications, the previous energy man-
agement problem is extended to the energy management of MFC systems under dynamic
load profiles. Figure 2.3 summarizes the overall problem diagram of the EMS studies under
dynamic load profiles. The first problem is to study fuel cell deterioration modeling under
dynamic load scenario. Compared to the static type demand, the dynamic loads involve more
complicated operation modes like load varying. Moreover, the randomness of the dynamic
loads may exist and further influences the management of the studied system. Herein, how
to develop an effective management strategy for extending the lifetime of MFC system under
dynamic load profiles is considered. To the author’s knowledge, the energy management for
MFC system with stochastic deteriorating subjected to a dynamic (also stochastic) load profile
is brand new.

The last chapter proposes a more exploratory study opening research perspectives in the
case where the multi-stack system is composed of three stacks, only two of which are operating
at the same time. To optimize the lifetime of the stacks, while ensuring the load demand,
the EMS must also optimize the start and stop of the different stacks (see Figure 2.4). This
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Figure 2.2: Diagram of load allocation-based EMS problem under constant load profile.

start-stop operation mode must be included in the deterioration function.
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2.5 Contributions of the thesis

The main work of this thesis focuses on developing deterioration-aware EMSs for MFC systems
under different application scenarios. According to the literature review, the application of
MFC systems has been recognized as a practical solution for the growing power demand in
fuel cell applications. Multi-stack fuel cell system outperforms single-stack fuel cell systems in
terms of reliability, durability, and operation cost. However, an appropriate EMS is needed to
optimally distribute the load demand by different stacks such that the system’s durability and
efficiency can be improved. This leads to the three challenges listed in the above section 2.4.2.
Each challenge is formulated as an operation management problem under different load cycles.

This thesis contributes to the energy management studies of MFC systems in terms of
MFC deterioration modeling, EMS development under random dynamic load profiles, and the
exploration of combining maintenance scheduling and energy management strategy to pro-
duce a synthetic management strategy for MFC systems. The fuel cell deterioration modeling
problem remains an open challenge in current fuel cell research. This problem becomes more
challenging for an MFC system. A stochastic deterioration modeling for energy management
in an MFC system is studied in Chapter 3 for tackling the fuel cell deterioration modeling chal-
lenge. The following challenge is to build a deterioration-aware EMS that is on the basis of the
proposed deterioration model for enhancing system durability. The current literature showed
that the study of fuel cell management under random dynamic load demands is relatively
lacking. Thus, we then studied two EMS development problems under constant and dynamic
load profiles, respectively. The influence of the random dynamic load on EMS development is
explored in the formulated problem. And lastly, we presented a three-stack operation problem
which includes the optimization of the start and stop of the different stacks. For the appli-
cation of long-term operation tasks, the stacks in the MFC system may need to be replaced,
in this way, the maintenance approaches can be considered to enhance system reliability and
minimize stack replacement costs.

The main contributions of this thesis are the following:

1. Building an empirical deterioration rate formula-based stochastic deterioration model to
simulate the deterioration of an MFC system. This model includes the load-dependent
and stochasticity deterioration features of an MFC system which can be used to simulate
fuel cell deterioration under different operation modes, namely, load magnitude, load
varying, and start-stops (Chapter 3). Moreover, the proposed deterioration model is
used in the energy management strategy to support load allocation decisions.

2. Developing an original post-prognostics load allocation strategy for the stochastically
deteriorating MFC under static demands. The objectives of minimizing system de-
terioration and fuel consumption are formulated as a multi-objective problem. Impor-
tance weights are assigned to account for the trade-off between the considered objectives
(Chapter 4).

3. Based on the strategy developed under static loads, the MFC system management prob-
lem are further extended to a dynamic load demand. An event-based deterioration
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aware strategy is proposed while taking into account the load varying deterioration
mode and individual stack deterioration heterogeneity. The proposed strategy achieves
an improved system life comparing with the classic average load method (Chapter 5).

4. A more general operation modes is considered by allowing the start-stop action among
stacks under a stochastic dynamic load profile. For the proposed three-stack system
operation problem, a two-layer management strategy is proposed to enhance system life
by adding an extra optimization for managing fuel cell stack start-stop caused deteriora-
tion. Inspired by the studied three-stack operation problem, a maintenance scheduling
problem is formulated for enhancing the MFC system lifetime and minimizing system
maintenance costs in a more general operation scenario (Chapter 6).

These contributions are presented in detail in the following chapters.
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Chapter 3

Fuel Cell Stochastic Deterioration
Modeling for Energy Management in a

Multi-stack System

Fuel cell deterioration modeling aims to develop a proper deterioration model which enables to
reproduce fuel cell degradation processes. Besides the commonly studied operating parameters
like temperature and air pressure, fuel cell deterioration behavior is also characterized by
two main features: (i) it is load-dependent, (ii) it is stochastic and exhibits a stack-to-stack
variability. The modeling problem in this chapter is investigated keeping these two points
in mind. The load-dependent characteristics link the fuel cell deterioration to its operation
load modes, which is closely related to the EMS problem dealing with load allocation among
multiple sources. The stochastic and stack-to-stack deterioration variability are closely linked
to fuel cell system reliability which is critical for potential applications, and necessitates special
consideration in the design of EMS.

After defining the deterioration modeling problem, we then present the proposed modeling
methods. First, the overall resistance is chosen as the degradation indicator, as it carries the
key deterioration information of a fuel cell stack. Then, a stochastic non-homogeneous Gamma
process (GP) is used to model the deterioration of the fuel cell, i.e., the increase in the fuel
cell resistance. The shape parameter of the considered GP is further modeled by an empirical
function of the fuel cell operation load in order to make the resistance deterioration load-
dependent. Finally, to model the individual deterioration heterogeneity, a random effect is
added to the GP on its scale parameter, taken as a random variable following a probability
distribution (a Gamma law is chosen in this work). Resistance degradation paths can then be
simulated based on the proposed deterioration model, based on which the first hitting time
distribution of a failure threshold (or equivalently a remaining useful life distribution) can
be estimated and the reliability of the system can be analyzed. The results of this chapter
are presented in the 13th International Conference on Reliability, Maintainability, and Safety
(ICRMS), 21-24 August 2022, Hong-Kong, China (Best Conference Paper Award).
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3.1 Fuel cell deterioration modeling problem formulation

According to the discussion in Chapter 1, Section 1.3.2, fuel cell overall resistance R is chosen
as the HI which is to be modeled through a deterioration model. This section presents the
fuel cell deterioration model problem under an automotive load profile. Load dependency and
stochasticity are considered as the key deterioration features of fuel cells. The problem is
then presented as building a deterioration model by taking into account the two deterioration
features which will be further applied to build the management strategy for an MFC system.

3.1.1 Fuel cell deterioration behavior characteristics

Identifying the core deterioration features to be covered in deterioration model is a prerequisite
of fuel cell deterioration modeling. The deterioration of a PEM fuel cell strongly depends on
operating conditions. Principal among these are load, temperature, and humidity. Fuel cell
operation load is considered as the primary operating parameters which influences fuel cell
degradation. In fuel cells, the operation load depends on specific applications, usually called
the demand profile. For instance, the performance of a fuel cell may decrease much fast under
dynamic demand profile than the constant profile. As a matter of fact, various sources of ran-
domness exist in fuel cell operating process. For example, the operating environment changes
(e.g., temperature, pressure variations) of a fuel cell system will cause varying deterioration
behavior.

According to the above discussions, we conclude that fuel cell deterioration presents two
fundamental features:

• It is load-dependent. The deterioration is affected by the operation load applied to the
stack.

• It is stochastic and exhibits a stack-to-stack variability.
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Fuel cell deterioration is directly influenced by the load condition in operation. Different opera-
tion loads may create different internal conditions as well as different deterioration mechanisms
for fuel cells. Various load profiles are used as the demand for a fuel cell system (Chapter 1
Section 1.2). For instance, in FCEV application, the open-circuit/idling, load varying, start-
stop, and high power load are four typical operation modes. Each operation mode will cause
a typical deterioration on fuel cell main components. For example, the start-stop is extremely
harmful to fuel cell membrane and catalyst. Besides, the damage severity varies in different
operation modes and load levels. Pei et al. [25] concludes that the load varying cycling and
the start-stop are the main deterioration factors for automobile applications. Experimental
result shows that the start-stop cycles account for 33.3% of overall fuel cell deterioration,
and load varying cycling account for 55.6% of the overall deterioration. Thus, we conclude
that the degradation is not only driven by natural aging, but also the way the fuel cell is
operated contributes to make the deterioration rate vary, i.e., fuel cell deterioration presents
load-dependent characteristic.

Another specificity of fuel cells is their individual deterioration variability, which can be due
to stochasticity in the intrinsic fuel cell deterioration phenomena. Generally, the deterioration
heterogeneity of MFC mainly comes from two sources: i) the manufacturing procedure; ii) the
design of fuel cell systems. The stochastic differences between different cells/elements forming
the stack can exit during the manufacturing procedure. For example, the hydrophobicity of
bipolar plate surface, membrane electrical properties, and mechanical properties of seals. It
is very unlikely to make them perfectly identical for different stacks. Fuel cell stack is much
more complicated than the single fuel cell due to the stacked structure. When the reactants
pass through the single inlet to the inside cells, it is hard to make them evenly distributed.
Same problems exist for cooling and heating of a stack. These phenomena will affect fuel
cell performance which caused deterioration variability. MFC system is composed of several
stacks, thus, the deterioration heterogeneity still exists.

Chatillon et al. [132] experimentally studied the deterioration variability of a fuel cell
stack. For a stack composed of three single cells, it is found that the back cell, i.e. located
far from the inlet and outlet, tend to deteriorate faster than the other cells. Besides, the
experiment verified the pre-aged cell will deteriorate faster compared to the other normal
cells. Figure 1.13 (Chapter 1) shows a long-term fuel cell stack durability test data (output
voltage) [27]. It is observed that the voltage decreasing trend presents variations rather than a
smooth decreasing line. Another example is the different efficiency curves shift trend measured
for an MFC (Figure 3.1). The four efficiency curves which corresponding to different stacks
are shifting to different level under same operating task. Those observations prove that the
individual deterioration heterogeneity exists and need to be considered when building a fuel
cell deterioration model. Macias et al. [133] studied the stack-to-stack deterioration variability.
MFC system presents a variable performance due to deterioration characteristic, material, and
external factors. They showed that by controlling all stacks degrading at nearly same level
helped to improve system fuel economy.
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Figure 3.1: Efficiency curves of an MFC system (four stacks) [86].

3.1.2 Dynamic power load profile

FCEVs are currently one principal application for fuel cells. The driving cycle of a FCEV is
composed of various operation modes and is considered to be a challenging factor for current
fuel cells’ durability improvement. Thus, an automotive fuel cell operating load profile is used
to study fuel cell deterioration behavior.

Figure 3.2 depicts the FC-DLC used for the studied stack. The overall system operation
is to repeat this FC-DLC cycle as shown in the figure (cycle 2 is a repetition of cycle 1). The
original FC-DLC cycle is taken from [38] as discussed in Chapter 1 section 1.2.2. It is seen that
the FC-DLC driving cycle contains load maintaining, load varying, and start-stop operation
modes. The specific power loads are adapted based on the studied fuel cell stack parameters
as listed in Table 3.1.

Table 3.1: Initial electrical performances for the studied fuel cell stack.

Operating load level Min Nom Max

Current density (A cm−2) 0.04 0.7 2
Voltage for one cell (V) 0.875 0.6803 0.418
Stack power density (W cm−2) 0.175 2.381 4.181

3.1.3 First hitting time of a fuel cell

A fuel cell is said to fail when its deterioration level R(t) exceeds a fixed threshold, which is
called the failure threshold FT . In fuel cells, this threshold is usually given (defined) based on
conventional fuel cell lifetime definition. For example, if we define the EoL of a fuel cell as their
voltage decrease to 10% of the initial performance. Then an equivalent threshold in resistance
can be defined based on fuel cell polarization equation. The failure time corresponds to the
first hitting-time of level FT by R(t). Then the fuel cell lifetime denoted TR, is defined as the
time duration from the time the stack is put into use (t = 0) to the time of stack failure, and
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Figure 3.2: FC-DLC load profile for studied fuel cell stack.

is written:
TR = min

t
(R(t) > FT ) (3.1)

In summary, a dynamic load profile Ld(t), t ∈ [t0, tf ] which includes the typical operation
modes like load maintaining, load varying, are proposed for the studied fuel cell system. Un-
der such dynamic load profile, the problem deterioration modeling needs to represent different
deteriorations of various operation modes. Then, the overall system deterioration is calcu-
lated as the summation of all mode-dependent deteriorations. Another part of the modeling
problem is how to interpret the two deterioration features into a deterioration model such
that it can well reproduce fuel cell system deterioration. Finally, the first hitting time is de-
fined for determining fuel cell lifetime. The following section will present the proposed MFC
deterioration model based on the formulated problem.

3.2 Fuel cell deterioration model

3.2.1 Fuel cell stochastic deterioration modeling tool

In the thesis work, stochastic processes are used to build stochastic deterioration models for
fuel cell. More precisely, Gamma process is considered as a relevant tool for modeling fuel cell
resistance deterioration for the following reasons:

• It is suitable to model monotonic continuous increasing deterioration that accumulates
over time through many tiny increments. Fuel cell resistance deterioration follows a
similar trend. It is gradually increasing during fuel cell operation.

• Gamma distributed increments of different time duration still obeys a Gamma law which
makes Gamma process suitable for modeling various deterioration processes. (deduced
from Gamma preservation property).
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Thus, the Gamma process is used to build the stochastic deterioration model of a fuel cell.

3.2.1.1 Gamma process definition

AGamma process (GP) is a stochastic process with independent, positive increments that obey
a Gamma distribution Ga(α, β) characterized by two key parameters: its shape parameter
α and scale parameter β. Gamma processes are suitable for continuous and monotonous
deterioration modeling [134]. By definition, the increment of a Gamma process X(t) between
time t1 and t2 (t2 > t1 > 0) is given by (see Figure 3.3):

∆X(t1, t2) ∼ Ga((α(t2)− α(t1)), β) (3.2)

where ∆X(t1, t2) , X(t2) − X(t1). For a stationary Gamma process with constant scale
parameter β, i.e., α(t2) − α(t1) = α(t2 − t1), Ga(α(t2 − t1), β) represents the probability
density function of the Gamma law with shape function α(t) and scale parameter β:

fGa(x, α(t2 − t1), β) =
xα(t2−t1)−1e−x/β

βα(t2−t1)Γ(α(t2 − t1))
(3.3)

where Γ(α) =
∫ +∞

0 xα−1e−xdx is the Gamma function. Let X1, · · · , Xn be independent
Gamma distributed with respect to parameters (α1, β), · · · , (αn, β) respectively (assuming
same scale parameter). Then,

n∑
i=1

Xi ∼ Ga(

n∑
i=1

αi, β) (3.4)

Considering t3 > t2 > t1 > 0, according to Gamma preservation property (Equation (3.4)) we
can deduce that

Xt3 −Xt1 = (Xt3 −Xt2) + (Xt2 −Xt1)

is Gamma distributed with shape parameter

(α(t3)− α(t2)) + (α(t2)− α(t1)) = α(t3)− α(t1)

Thus the definition of Gamma process is coherent with the Gamma preservation property.

The mean and variance of the deterioration increment in the time interval (t1, t2) are given
by:

Mean(∆X(t1, t2)) = α(t2 − t1) · β (3.5)

Var(∆X(t1, t21)) = α(t2 − t1) · β2 (3.6)

Then, the mean deterioration increment in a time interval of length ∆t is calculated as α(∆t)β,
which is independent of when the interval begins. The variance of the process increases
with the time horizon between t1 and t2. Besides, the variance of the process can be tuned
independently of the mean.

The Gamma process is suitable to model gradual degradation monotonically accumulating
over time in a sequence of small increments [134]. For instance, Cholette et al. [135] applied
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Figure 3.3: Deterioration path of a Gamma process.

the Gamma process to build a degradation model for modeling boiler heater exchange erosion.
[136] applied stochastic process to estimate the lifetime of photovoltaic modules. The analysis
results proved that the Gamma process model presented a relatively good estimation of life-
time. A two-phase Gamma process with fixed change-point is used to model lithium battery
voltage decay. This deterioration model can be further used to estimate battery lifetime, state
of charge, etc. which contributes to energy management of lithium batteries [137]. Gamma
process is a well-formulated stochastic process that makes it convenient for mathematical anal-
ysis. Following section 3.2.1.2 will present the details of deterioration trajectories simulation.
Failure analysis, in terms of first-hitting time distribution, will be conducted based on the
simulated trajectories.

3.2.1.2 Lifetime calculation

In this section, we explore the deterioration behaviors of a homogeneous Gamma process where
the coefficient of the shape function is denoted as v, namely

α(t) = vt (3.7)

for all t ≥ 0 with v > 0.

Using Gamma processes, various deterioration behaviors can be simulated by resorting to
different v and β values. Assuming that X(t) represents the deterioration level of a component
at time t satisfying X(0) = 0 and X(t2) ≥ X(t1) with t2 > t1. The component is said to fail
when X(t) exceeds a fixed threshold, which is called failure threshold FT . The failure time
corresponds to the first-hitting time of level FT by the stochastic process X(t), and it defines
the lifetime of the component (denoted as Tx). The mean Lifetime T x can be calculated by:

T x =
FT

v · β
(3.8)
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In practice, with a known Gamma process model, T x can be estimated based on a set of
simulated lifetimes {Ti,x|i = 1, 2, . . . , Nt}. Ti,x is the lifetime acquired in the ith simulation.
Nt is the number of simulated lifetimes (based on Monte Carlo simulation). According to the
law of large numbers, the mean of the values in set {Ti,x} will approach T i,x when Nt is bigger
enough.

The lifetime distribution of X(t) (cumulative distribution function) can then be written
as [134]:

F (t) = P (Tx ≤ t) = P (X(t) > FT )

=
Ga
(
v · t,

(
FT −X0

)
· β
)

Γ(v · t)
(3.9)

where P denotes the cumulative probability. The survivor function S(t) of X(t) is defined by

S(t) = 1− F (t) = P (Tx > t)

= 1−
Ga
(
v · t,

(
FT −X0

)
· β
)

Γ(v · t)
(3.10)

The survival function is the probability that the component does not fail in time interval (0, t).
It is also called reliability function to characterize component/system reliability [111].

3.2.1.3 Numerical experiments

To illustrate the characteristics of a Gamma process, simulations with different parameters
are conducted here. The main parameters used to simulate X(t) deterioration trajectories are
listed in Table 3.2. The variance of X(t) are mainly decided by scale parameter according to
Equation (3.6). The variance of X(t) is modified by introducing a coefficient ` which writes:

v′ = v/`, β′ = β · ` (3.11)

where v′, β′ are perturbed parameters which are used as the shape and scale parameters used
in the simulations.

Table 3.2: Main parameters used in simulating X(t).

Parameters X(0) FT v β Nt

Values 0.0 100 0.02 5 2000

Figure 3.4 presents three examples of X(t) deterioration trajectories with different tuned
variance: 1) Figure 3.4(a) low variance; 2) Figure 3.4(b) medium variance; 3) Figure 3.4(c)
high variance. We computed the mean increments of all simulated trajectories (shown as blue
dotted lines) to compare with the average increments calculated by Equation (3.5) (shown as
red dots). It is seen that the two results are very close. Since we keep mean increment v′β′

as a constant though Equation (3.11), the estimated T x (average lifetime) is nearly the same
for the three cases, but the lifetime distribution is different.
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(b) ` = 0.8
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Figure 3.4: Deterioration trajectories of X(t) simulated with three levels of variance.

The lifetime distribution of parameter ` = 0.8 is investigated using the Monte Carlo simu-
lation and compared with the analytical approach as shown in Equation (3.9). The results are
presented in Figure 3.5(b). Figure 3.4(a) shows the empirical cumulative distribution function
based on the simulation results. Figure 3.4(b) shows the lifetime cumulative probability distri-
butions and survival function. It is confirmed that when the number of simulated trajectories
(i.e., N) is big enough, the results of Monte Carlo simulation are very close to the analytical
calculations.

Now that we have built the Gamma process-based deterioration modeling tools and inves-
tigated the basic deterioration behavior of a basic GP model. The next step is to build the
deterioration model based on GP.
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Figure 3.5: Lifetime distribution function and Survival function (` = 0.8).

3.2.2 Fuel cell stochastic load-dependent deterioration model

As presented in Chapter 1, it is difficult to model fuel cell deterioration with a “white-box”
approach. Therefore, this work focused on the empirical deterioration modeling approach.

Pei et al. [25] proposed an empirical fuel cell lifetime formula based on the analysis of
automotive fuel cell operation dataset, which writes:

Tf =
∆L

kp(r
′
1n1 + r

′
2n2 + r

′
3t1 + r

′
4t2)

(3.12)

where kP is a constant coefficient. ∆L is fuel cell output power decay. r′1, r
′
2, r

′
3, and r

′
4 are

the performance decay rates of load varying, start-stop, idle condition and high power load
condition, respectively. The n1, n2, t1 and t2 are load varying change cycle times, start-stop
cycle times, idle time, and high power load time per hour.

In this work, the load amplitude, load varying, and start-stop are considered to build the
load-dependent deterioration model. The fuel cell resistance deterioration model of this work
is expressed as:

∆R = ∆RL + ∆R∆L + ∆Rss (3.13)

where ∆R is the overall resistance increment with respect to the initial value as the fuel cell is
put into use. ∆RL is the contribution dependent on the load level, ∆R∆L is the load variation
contribution to the resistance increment, and ∆Rss is the resistance increment resulting from
the start-stop effect. ∆R∆L and ∆Rss are issued from literature [25]. The expression of ∆RL
is detailed below.

The deterioration due to the load amplitude is modeled as a Gamma process, which means
that the increment of the deterioration level due to the load level between time t1 and t2
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(t2 ≥ t1)can be modeled as:

∆RL(t1, t2) = RL(t2)−RL(t1) ∼ Ga(v · (t2 − t1), β) (3.14)

To link fuel cell deterioration with operating conditions, an empirical function is proposed.
To build this function, the nominal power load is considered to lead to the best-operating
conditions that deteriorate the least the fuel cells. On the contrary, operating conditions due
to lower or higher power load cause higher deterioration rates. Experimental works in [138],
[139] showed that a high power load will cause irreversible degradation in many parts of the
stack, as for example, the electrolyte or the carbon support in the catalyst layer. Similarly,
[25], [104] proved that a higher deterioration rate is occurring during fuel cell operation at
high power load demand. On the other hand, fuel cell damages are even worse when the
fuel cell operates at low power [140]. To handle these properties, a parabola deterioration
function which represents the different deterioration rates of the fuel cell with respect to
power load demand is built (Figure 3.6). As can be seen in this figure, the three typical
operating conditions are directly depicted. The minimal power, for which the deterioration
rate is the highest, the nominal power, which presents the lowest deterioration rate, and the
maximal power for which the deterioration rate is high but less than the minimal power. The
deterioration rate function, denoted as D(L), is thus expressed as a function of the operating
power density L, which writes:

D(L) = α(L)β

= A(L− Lnom)2 +B
(3.15)

where constant A is expressed by two parts with respect to the load range, i.e., A = A1,
Lmin ≤ L < Lnom, and A = A2, Lnom ≤ L < Lmax. B is also a constant term to be fitted
from experimental data. Note that for a standard GP model, the scale parameter β is set as
a constant. Lmin, Lnom, and Lmax are the operating load of minimal, nominal, and maximal
load conditions, respectively. Note that here the shape function is defined as a function of fuel
cell operation load, i.e. α(L).

Based on Equation (3.12), the resistance deterioration due to load variation (∆L) is com-
puted by:

∆R∆L = K∆L (3.16)

where the constant K=
K∆RDR,∆R

Lmax−Lmin
(Ωcm2/ Wcm−2), DR,∆R (Ωcm2 / Wcm−2) is a reference

deterioration rate by load varying adapted from Pei et al. [25], and K∆R is a constant to tune
different deterioration rate for ∆R∆L.

The resistance deterioration of each start-stop cycle is assumed to be a constant which is
adapted from an average deterioration rate [25] (Equation (3.12)):

∆Rss = R0Dss (3.17)

where R0 is the initial resistance of a fuel cell. Dss stands for resistance deterioration rate due
to start-stop.
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Figure 3.6: Dependence of fuel cell deterioration rate (overall resistance) on power load demand

3.2.3 Gamma process with random effects

According to the deterioration behavior analysis in Section 3.1.1, the deterioration in different
fuel cell stacks has a large variation due to some hidden effects. That is, fuel cell stack
deterioration is not only influenced by operating load, but also due to some random effects
which will cause deterioration variability among different stacks. And the standard GP model
is unable to fully capture such variations, i.e., individual deterioration heterogeneity. This can
be translated through the introduction of a random parameter in the GP model where each
individual corresponds to one realization of the random parameter.

On this basis, we propose a GP model with random effects for modeling MFC system
deterioration. A random effect is imposed on the GP on its scale parameter, taken itself as
a random variable following a Gamma distribution. More precisely, three different types of
random effects-based models are investigated, namely, Gamma process random-effect model,
Gamma process random mean model, and Gamma process random variance model.

Gamma process random effect model Consider the GP model (Ga(α, β)) as proposed
for modeling the fuel cell resistance increment over time t2 − t1, t2 > t1, namely ∆RL(t1, t2).
The first random effect model is expressed as:

∆RL(t1, t2) ∼ Ga(v · (t2 − t1), βs)

βs ∼ Ga(δ, φ)
(3.18)

where δ, φ are the shape and scale parameter that formulates the gamma distribution for β in
the standard GP model. The new shape parameter sampled from Ga(δ, φ) is denoted as βs.

This model is called Gamma Process Random Effect (GP-RE) model. The mean and
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variance of the GP-RE model in the time interval (t1, t2), t2 > t1 ≥ 0 is calculated as:

Mean(∆RL(t1, t2)) = v · (t2 − t1) · βs
Var(∆RL(t1, t2)) = v · (t2 − t1) · β2

s
(3.19)

Gamma process random mean model In Equation (3.19), the value of βs is sampled
from Ga(δ, φ) and varies from one stack to the other. Thus, both the values of mean and
variance in GP-RE model are changed, i.e., influenced by the random effect. However, other
possibilities of modeling random effects exist in practice. For instance, the studied MFC
system deterioration only presents a large dispersion of the deterioration rates, or only a large
variation of the variance of the deterioration observations for each stack. In this regard, the
random effect only affects the mean or the variance of the deterioration process (GP model)
which introduces the Gamma Process-Random Mean (GP-RM) and Gamma Process-Random
Variance (GP-RV) models [141].

GP-RM model is formulated by parameterizing the shape parameter of the GP model into
ν to keep a constant variance, which writes:

∆RL(t1, t2) ∼ Ga(ν, βs)

ν = v · (t2 − t1)( ββs )2, βs ∼ Ga(δ, φ)
(3.20)

The variance of the Gamma process defined in Equation (3.20) keeps as a constant v·(t2−t1)β2.

Gamma process random variance model For GP-RV model, the shape parameter is
parameterized to keep a constant mean, which writes:

∆RL(t1, t2) ∼ Ga(ν, βs)

ν = v · (t2 − t1)( ββs ), βs ∼ Ga(δ, φ)
(3.21)

The increment of the Gamma process defined in Equation (3.21) over time interval (t1, t2)

keeps as a constant v · (t2 − t1)β.

Since the random effects for all models are added through Gamma law, one basic prin-
ciple here is to keep the mean value (δφ) equal to the original scale parameter β (denoted
as β0). In the above three random-effect models, the scale parameter of standard GP fol-
lows a Gamma distribution, and it is unit-specific, such that it can capture the individual
deterioration variability.

3.3 Gamma process-based deterioration behavior investigation

The deterioration behaviors of proposed models, i.e., GP, GP-RE, GP-RM, and GP-RV models
are checked for fuel cells through numerical simulations. GP-based stochastic load dependent
models have been proposed and developed to model fuel cell deterioration. In this section, we
will use the developed models to study the fuel cell deterioration behaviors.
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Figure 3.7: Overall resistance estimated from measured polarization curves, see Figure 1.11, Chapter
1.

3.3.1 Gamma process model parameter estimation

The identification of the scale (β) and shape coefficient (v) of the Gamma process for the
deterioration modeling is based on the dataset published in IEEE PHM 2014 data challenge
[27]. The dataset provides the data acquired in two typical durability tests on two fuel cell
stacks. The resistance values were fitted based on the measured polarization curves within the
aging data. The parameters are estimated by using the non-linear least square approach to
fit the polarization equation (Chapter 1 Equation (1.9)) to all measured polarization curves.

The resistance estimations as shown in Figure 3.7 are used to estimate the shape coefficient
and the scale parameters (v and β) of the stochastic deterioration Gamma process. To that
aim, the Method of Moments (MoM) is applied [142]. From the data, the resistance and time
increments are defined as:

∆ti = ti − ti−1,

∆Ri = Ri −Ri−1
(3.22)

where i = 1, 2, · · ·Ns is the index of the data sample; Ns is the number of samples. Here the
resistance is characterized by the relative value with respect to the initial resistance value.
The time ti is also accounted from the moment when the fuel cell is put into use. That is to
say t0 = 0 and R0 = 0.

According to Cinlar et al. [142], the MoM estimated values of v and β, written v0 and β0,
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Figure 3.8: Deterioration trajectories with different ` values.

can be determined from the solution of the equations:

v0β0 =

Ns∑
i=1

∆Ri

Ns∑
i=1

∆ti

=
RNs
tNs

RNsβ0

1−

Ns∑
i=1

∆t2i[
Ns∑
i=1

∆ti

]2

 =
Ns∑
i=1

(
∆Ri − RNs

tNs
∆ti

)2

(3.23)

The estimated parameter values for FC stack 1 are: v0 = 0.1245, β0 = 4.34 × 10−4. For FC
stack 2, the results are: v0 = 0.1768, β0 = 4.36×10−4. Figure 3.9 presents the fitted resistance
increments for FC stack 1 and FC stack 2. These results verify that the GP model with the
estimated parameters can capture the increasing trend of fuel cell stack resistance. It can be
seen that the GP model mean and variance of these two parameter settings are similar. The
parameters used in this work referred to FC stack 1.
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(a) Fuel cell stack 1 (b) Fuel cell stack 2

Figure 3.9: Parameter estimation results using MoM method.

3.3.2 Main simulation parameters

The main simulation parameters of the studied fuel cell stack are listed in Table 3.3. The min-
imal, nominal, and maximal output power are set based on IEEE PHM 2014 data challenge.
The fuel cell stack life under nominal load is set as 1788 hrs based on the experimental data.
The average lifetimes (TR) under minimal and maximal loads are designed based on fuel cell
deterioration characteristics (both are set as 500 hrs) due to the lack of experimental data.
The failure threshold FT are calculated by

FT = v0,nom · β0 · TR,nom (3.24)

where v0,nom, TR,nom are the shape coefficient and lifetime values under nominal loads.

Then the average deterioration rate D(L) is computes by

D(L) = α(L)β =
FT −R0

TR,nom
(3.25)

where R0 is the initial fuel cell stack resistance which is set as 0.1803 Ω cm2. The em-
pirical deterioration rate function (Equation (3.15)) are fitted based on known data points
(Lmin, D(Lmin)), (Lnom, D(Lnom)), and (Lmax, D(Lmax)). The obtained deterioration rate
curve is shown in Figure 3.10.

The variance of the deterioration trajectories has to be neither too large, because the
lifetime would not be controllable, nor too small, because the system would not be stochastic.
This variance is tuned based on Equation (3.11). Based on the simulated trajectories (Figure
3.8), the ` = 5, 10, 20, 30 gradually increase the trajectory variance. ` = 20 is used in the
simulation. To construct the random effect model, three extra parameters need to be defined,
that is, δ, φ, and h. The δ and φ define the Gamma distribution used in the proposed random
effect models, which are computed by:

δ =
1

h
, φ = β0`h (3.26)
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Figure 3.10: Proposed load-dependent deterioration rate curves.

Table 3.3: Fuel cell stack parameters.

Load conditions
L

(W cm−2)
TR (h) v0 β0

FT

(Ωcm2)

Minimal 0.175 500 0.4454
4.34×10−4 0.2775Nominal 2.381 1788 0.1245

Maximal 4.181 500 0.4454

where h is a constant to tune the variance of used Gamma distribution, taken as 1.5 in the
simulations.

3.3.3 Fuel cell deterioration trajectory result

Figure 3.11 presents resistance deterioration trajectories during one dynamic cycle. The ac-
cumulated resistance values include the deterioration of load, load varying, and start-stop
effects. Figure 3.12 shows the simulated deterioration trajectories of the GP, GP-RE, GP-
RM, and GP-RV models. By comparing the RE models with GP model, it is observed that
the deterioration behavior is affected by different random effects.

For instance, in the GP-RM model, the resistance deterioration rates are modified for
different trajectories, obtaining relatively lower lifetimes compared with the GP model. In
GP-RE model, both the deterioration rate and variance of the trajectories are influenced by
RE. A relatively wide range of lifetimes is obtained. For GP-RV model, the deterioration
rate is not influenced by the RE, only the variance is altered. Thus, the simulated lifetimes
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Figure 3.11: Example resistance trajectory of GP model.

generally lie in a similar range as GP.

Figure 3.13 plotted the lifetime histograms of 300 runs (Monte Carlo simulations) for all
models. It is observed that the lifetimes of GP-RE and GP-RM models lie in a wider range
compared to the GP model. But in GP-RV model, the distribution is similar to GP. These
results are further confirmed in the Cumulative Distribution Function (CDF) results as shown
in Figure 3.14. The CDF curves of GP, GP-RV models are nearly overlapped, whereas the
GP-RE and GP-RM models extend the CDF curve to a wide range.

Table 3.4 summarized the statistical results of simulated lifetimes. The GP-RE model
produced the longest lifetime. The GP-RM model modified the system lifetime to a lower
value. In GP-RV, the lifetime is similar to GP. In terms of standard deviation results, the
RE-based models are relatively larger than the GP model. This work mainly focused on the
random effect-based stochastic deterioration modeling of fuel cells. The next step of work will
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Figure 3.12: Resistance deterioration trajectories of proposed four models (10 trajectories for each
model).

Table 3.4: Simulated lifetimes’ statistic results

Models TR (h) TR,med (h) stand deviation

GP 447.4 447.6 75
GP-RE 600.9 575.8 284
GP-RM 337.5 312.1 262
GP-RV 444.1 438.9 80

be focused on the statistical inference studies using the proposed deterioration models.
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Figure 3.13: Lifetime histograms of GP, GP-RE, GP-RM, and GP-RV models.

Figure 3.14: CDF functions of the four deterioration model.
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3.4 Conclusion

This chapter studied the deterioration modeling of an MFC system. The goal is to develop a
deterioration model with two typical features, that is, load-dependent, stochastic with individ-
ual stack deterioration heterogeneity. A Gamma process-based load-dependent deterioration
model is proposed for the studied fuel cell system. The shape parameter of GP model is
further modeled as a function of fuel cell operating load. An empirical function is used to
build this function, i.e., α(L). Despite being suitable for stochastic deterioration modeling of a
gradual degradation process, GP model is unable to model the deterioration variability among
different stacks. Thus, a random effect is introduced to the GP model on its scale parameter
β, taken as a random variable following a Gamma distribution. Moreover, three different
effects on the GP model studied. GP-RE model is a general random effect model in which the
influences on both the mean and variance are considered. In GP-RM, only the influence of the
deterioration rate is considered. In GP-RV, only the influence on the deterioration variance is
modeled.

An automotive-used dynamic load cycle is applied to test the deterioration behavior of
the proposed models. The lifetime statistical results are used to analyze the deterioration
characteristics of the GP, GP-RE, GP-RM, and GP-RV models. These models will be further
used in an EMS to study the optimal load allocation problem of an MFC system in the
following chapters.
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Multi-Stack Fuel Cells Energy
Management Strategy Studies under

Static Loads

In this chapter, a multi-stack fuel cell energy management strategy is developed under static
load profiles. The objective of such a strategy is to improve the overall system lifetime and to
reduce system fuel consumption. The deterioration of the studied fuel cell stack is modeled
using the classic Gamma process model presented in Chapter 3. First, the management of
a two-stack fuel cell system is investigated. From a single objective of minimizing system
deterioration to a multi-objective of minimizing system deterioration as well as improving fuel
economy, the associated optimization problems are formulated by setting different objectives,
namely, objective functions. Based on the conclusions of the above strategies, the energy
management of three-stack fuel cells is studied with the objectives of minimizing system
deterioration and fuel consumption. The obtained lifetime results are compared with two
classical management methods, i.e., Average Load and Daisy Chain strategies. The results of
this chapter are based on the work presented in the European Conference of the PHM Society -
PHME20, 1-3 July 2020, Turin, Italy (virtual) [143] and Annual Reliability and Maintainability
Symposium (RAMS), 24-27, May 2021, Orlando, United States (virtual) [144]. The last parts
of the work are published in Proceedings of the Institution of Mechanical Engineers, Part O:
Journal of Risk and Reliability [145].
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4.1 Energy management for a two-stack fuel cell system

Two energy management problems are studied for a two-stack PEM fuel cell system. The
first problem is designed to investigate the degradation behavior of a two-stack MFC system
using the proposed fuel cell deterioration model. After that, the second problem is proposed
to build the energy management strategy by considering both fuel cell system degradation
and fuel consumption. This section presents the formulation of these two problems and the
proposed decision-making strategies.

4.1.1 Objectives definition for the fuel cell system

Maximizing MFC system lifetime and minimizing system fuel consumption are the two objec-
tives studied in the proposed EMS problem. MFC system lifetime is linked to its deterioration
process, thus the first objective of maximizing system lifetime can be achieved with the as-
sistance of a fuel cell stack deterioration model. The fuel cell resistance deterioration model
used in this chapter is based on the modeling work discussed in Chapter 3. A GP model
(∆RL(t1, t2) ∼ Ga(v(t2 − t1), β)) is used to model the deterioration of fuel cell resistance
caused by load effect.

Fuel cell hydrogen consumption objective Fuel cell stack fuel consumption rate is
derived based on the fuel cell electrochemical reactions. According to Equation (1.1), the
amounts of hydrogen and oxygen consumed by the fuel cell are described as a function of
operating current. The expression of the required hydrogen consumption rate fH2 (g/s) with
respect to the stack current can be qualified by Faraday’s law [75]:

fH2 =
ncell ·MH2

z · F
· Istack · λ (4.1)

where Istack,MH2 , z are stack current in A, molar mass of hydrogen, and number of electrons
acting in the reaction, respectively. F is the Faraday’s constant with a unit of C mol−1. λ
stands for hydrogen stoichiometric ratio.

In fuel cell, the term stoichiometric can be defined as just the right amount [7]. In Equation
1.1, exactly two moles of hydrogen would be provided to react with one mole of oxygen and
produced 4F of charge. Usually, both reactants are provided at greater than the stoichiometric
rate to ensure the performance of fuel cells. Thus, if the rate of usage of hydrogen in reaction
is ẋ models per second, then the according to the defined stoichiometric ratio λ, the rate of
supply is λẋ mol s−1.

Thus, the hydrogen consumption rate is proportional to the stack current. Besides, hydro-
gen consumption is also caused by the auxiliary components in fuel cell systems, such as air
compressors, and humidifiers for example. Several experimental or simulation-based research
works proved that a quadratic polynomial equation can be applied to represent the hydrogen
consumption rate with respect to the useful power [117], [146], [147]. Based on these studies,
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Figure 4.1: Fuel cell stack hydrogen consumption rate and current density curve.

the hydrogen consumption rate of a fuel cell stack is expressed as follows:

fH2(L) = aL2 + bL+ c (4.2)

where L is the power density load of a fuel cell, a, b, c are parameters to be fitted. The overall
fuel consumption over a period of time t0 is calculated by FH2(t0):

FH2(t0) =

∫ t0

0
fH2(L(t))dt (4.3)

where L(t) is the load power at t.

Fuel cell deterioration objective Assuming that the initial resistance R0 and the failure
threshold FT are known for the studied stack, the lifetime distribution can then be written
as:

F (t) = P (TR ≤ t) = P (R(t) > FT )

=
Γ (α(L) · t, (FT −R0) · β)

Γ(α(L) · t)
(4.4)

where Γ(a, x)=
∫∞
x za−1e−z dz is the incomplete Gamma function for x ≥ 0 and a > 0. This

work applies P to denote the cumulative probability.

Since the actual deterioration of the fuel cell depends on the operating conditions, the
residual life, i.e. the difference between the expected life and the actual age, needs to be
updated regularly. This can be carried out by using the measured resistance value Robs at
time tobs, indicator of the actual deterioration level of the fuel cell. Therefore, a conditional
failure probability Pd(t) at time t after tobs can be defined as the probability for R(t) to exceed
a predefined failure threshold before time t, given an observed level Robs at tobs. Thus, based
on the previous Equation (4.4), Pd(t) is written as follows [134]:
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Pd(t) = F (t|Robs(tobs))
= P (TR ≤ t|Robs(tobs))
= P (R(t) > FT |Robs(tobs))

=
Γ (α(L) · (t− tobs), (FT −Robs(tobs))β)

Γ (α(L) · (t− tobs))

(4.5)

where TR is the first hitting-time of level FT , L is fuel cell operating power load, α(L) is
the corresponding shape parameter and Robs represents the observed resistance deterioration
value at the current time step.

The proposed post-prognostic decision-making strategy is developed to make a trade-off
between slowing the PEM fuel cell deterioration and reducing the fuel consumption. The next
part is to introduce the principle of proposed decision-making strategy.

4.1.2 Post-prognostics decision-making principle

Decision-making considering fuel cell deterioration In the first decision problem, the
developed model is used for the post-prognostics decision-making phase to decide the optimal
load split between two PEM fuel cell stacks so that the maximum system service life can
be achieved. This decision-making procedure is made periodically, at a fixed decision time
interval τ .

For each decision period, the decision probability is noted as Pd and the decision threshold
DT . As shown in Figure 4.2, a system with two PEM fuel cells has been running for t0. FC1
and FC2 are two PEM fuel cell stacks in the system. For the studied fuel cell system, the
failure occurs due to an excess of deterioration threshold, and the probability distribution law
of the failure time T for one single stack can be calculated analytically as [148]:

F (t) = P (T ≤ t
∣∣∣Robs) =

Γ(vt, (DT −Robs) · β)

Γ(vt)
(4.6)

where T is the first hitting time of the level DT by the stochastic process x(t). Robs represents
the measured resistance at the current decision step.

According to the previous discussion, the threshold used for the decision-making at each
decision step can be set as:

DT = v · β · τ +Rd,t0 (4.7)

where Rd,t0 represents the initial deterioration level at the decision time t0; The value of
Rd,t0 is set as the maximum value of stacks resistances at the decision time, namely, Rd,t0 =

max{Rt0FC1, R
t0
FC2}.

This approach is sketched in Figure 4.2: the red and black solid curves above the decision
threshold represent the predicted lifetime distribution for FC1 and FC2 that are calculated
at time t0. Pd1 is the probability that the deterioration level of FC1 exceeds the decision
threshold before (t0 + τ) hours; similarly, the decision probability of FC2 is P2. In this work,
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Figure 4.2: Principle of the post-prognostics decision-making strategy at time t0.

the decision criterion is then defined as (1 − Pd1) · (1 − Pd2), and we seek to maximize the
criterion to obtain the longest system lifetime. This is realized by searching the optimal load
split between the two stacks. The solid line below DT is the corresponding deterioration
trajectories simulated for FC1 and FC2 after the decision.

Decision-making considering fuel cell deterioration and hydrogen consumption
In the second decision problem, an extra objective (system fuel consumption) is considered
during the decision process. Then a similar sequential decision-making process is scheduled
during system operation. The conditional failure probability and fuel consumption are used
to define the mixed criterion:

Cdec(L1, L2) = max{Ω · (1− Pd1) · (1− Pd2) + (1− Ω) · ( 1

FH2,1 + FH2,2
)} (4.8)

where Pdi is the conditional failure probability for fuel cell stack i (FCi) calculated by Equa-
tions (4.5, 4.6). FH2,i is fuel consumption of FCi that calculated through the integration
of Equation (4.3). A normalization operation is applied to this criterion so that a trade-off
between system aging and fuel consumption can be achieved by defining different weights Ω.
The decision variables are operating loads of different stacks, namely, L1, L2.

4.1.3 Numerical simulations

Monte Carlo simulation is used to investigate the efficiency of the proposed strategy. The
results are compared with the classic Average Load Split strategy. The Average Load Split
strategy attributes the overall system load demand evenly among all stacks [149]. The MFC
system with two stacks is chosen in this section to study the load allocation problem.
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Table 4.1: Main simulation parameters for the proposed Gamma process deterioration model.

Load conditions
L

(A cm−2)
TR (h)

D(L) (×10−4)
(Ω cm2h−1)

FT

(Ω cm2)

Minimal 0.214 200 0.4454
0.32Nominal 0.7 2800 0.1245

Maximal 1.6 300 0.4454

4.1.3.1 Simulations considering fuel cell deterioration

Simulation settings The main simulation parameters used in this section are summarized
in Table 4.1 and the detailed calculation of related parameters refer to Chapter 3, Section
3. The initial fuel cell stack resistance R0 is set based on the polarization equation (1.9)
and the measured polarization curves taken from [27] (R0 = 0.1797 Ω cm2). The initial
fuel cell stack resistance value of the studied two stacks is set to be equal to R0, namely,
RinitFC1 = RinitFC2 = R0. Due to the lacking of enough experimental data, the average stack
lifetimes TR for the minimal, nominal, maximal conditions are decided based on fuel cell
deterioration characteristics (Chapter 3, Section 3.2.2). The scale parameter β is defined as
constant value 0.32. According to the proposed GP deterioration model, the shape parameter
α is modeled as a function of operation load (Chapter 3, Section 3.2.2).

The periodic decision time interval τ is set as 150 h. Based on Equation (4.7), the decision
threshold DT corresponding to the maximum deterioration rate D(Lmin) which is used in
this work is calculated for each decision step. The scheduled simulation horizon is set as 3900
hrs to ensure the deterioration levels reach the failure threshold (FT ) for all Monte Carlo
simulation histories such that system lifetime TR can be collected for further analysis. The
decision steps of a one-run trajectory are calculated as 26. The conditional failure probability
(Equation (4.6)) for all possible combinations of current loads of FC1 and FC2 are then
calculated at each decision step. Then the optimal operating loads are the decision variable
pair that produces the lowest failure probability Pd.

The current load demand in this section is defined as a constant value, Ld = 1.8 A cm−2.
This load demand level is set to push at least one of the stack to work at a load level larger
than Lnom. The number of Monte Carlo histories is chosen as 100 so that the convergence of
the performance indicators is guaranteed.

Performance estimation indicators In order to justify the efficiency of the proposed
decision-making strategy, the lifetime of two stacks system are calculated based on the sim-
ulated trajectories. For system lifetime observed on a single deterioration trajectory, the
simulation was denoted as one-run simulation; for system lifetime estimated on N deterio-
ration trajectories (average system lifetime and distribution), the simulation was denoted as
N -run simulation. The lifetime of one-run simulation (TR) is determined as:

TR = min{T1,R, T2,R} (4.9)
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Table 4.2: Examples of EoL results for a single simulation and for 100 simulations.

Strategies TR,med (h) TR (h)

Our strategy 3019 2909
Average Load 2662 2615

where T1,R represents the lifetime of FC1, T2,R is the lifetime of FC2.

The lifetime of the system can then be estimated by averaging the results over the N
simulations (TR):

TR =
1

N

N∑
i=1

(TRi) (4.10)

where TRi stands for the simulated lifetime of the i− th deterioration trajectory.

Main simulation results First, the lifetime histogram results (N = 100) of the proposed
load allocation strategy and the Average Load Split method are presented in Figure 4.3. For
description convenience, the simulation results obtained from the proposed load allocation
strategy are noted as results with decision and the results obtained from the Average Load
method are noted as results without decision. By comparing Figure 4.3(a) and Figure 4.3(b),
the system lifetime results with decision are mostly distributed in the range (2500, 4000) hrs,
with a median lifetime of 3018.5 hrs. The lifetimes without decision are mainly distributed in
(1500, 3000) hrs with a median lifetime (TR,med) value equal to only 2662 hrs (Table 4.2).

Then the deterioration trajectories are further discussed for checking the detailed resis-
tance deterioration behavior under two operation strategies, i.e., the proposed load allocation
strategy and the Average Load method. Figure 4.4 shows the average deterioration trajectories
estimated from the 100-run trajectories. R1,dec and R2,dec are the average resistance deterio-
ration trajectories obtained from the proposed load allocation strategy. R1,ave and R2,ave are
the trajectories obtained from the Average Load strategy. It is observed that the trajectories
of R1,dec and R2,dec tend to be more grouped together compared with the trajectory results
of R1,ave and R2,ave. Thus, the load allocation decisions tend to reduce the variance of stacks
resistance deterioration values: they are synchronized which increases the system lifetime and
a fast deterioration behavior of one stack is compensated and balanced with the deteriora-
tion of the other stack. Without the decision-making strategy, the deterioration paths remain
desynchronized and there is high risk that one of the two FC stacks fails early, hence reducing
the lifetime of the studied system. Moreover, the specific deterioration trajectories from a
set of 10 simulations are presented in Figure 4.5 that further verifies the above analysis. The
overall results in Figure 4.5 show that the trajectories that developed with decision are more
grouped together with a lower variance than those without decision.
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Figure 4.3: Histograms of the observed system lifetimes for N =100 simulations

Figure 4.4: Average deterioration trajectories results (N = 100)

4.1.3.2 Simulations considering both fuel cell deterioration and fuel consumption

Simulation settings The basic simulation parameters are summarized in Table 4.3. The
initial fuel cell stack resistance value of the studied two stacks is set to be equal to R0 (RinitFC1 =

RinitFC2 = R0). Both constant and a piece-wise constant type load profiles are studied. As
shown in Figure 4.6, the piece-wise constant type demands contain three load levels, i.e.,
Iload1 = 12.4, Iload2 = 13, Iload3 = 15 A cm−2. For the constant type demands, the demand
level is set as 13 A cm−2. Note that here the fuel cell deterioration is modeled purely by the
load effect (∆RL), thus the dynamic load profile considered here will not influence the load
allocation decisions. The influence of a dynamic load profile (e.g., the load demand change
event duration, the load demand level) will be further investigated in following chapters.

The scale parameter of the GP deterioration model (β) is set as 0.36. In the simulation
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Figure 4.5: Deterioration trajectories results (10 runs)

Table 4.3: Main simulation parameters (one stack).

Load conditions
L

(A cm−2)
TR (h)

D(L) (×10−4)
(Ω cm2h−1)

FT (Ω cm2)

Minimal 2 200 0.4454
3Nominal 8 2800 0.1245

Maximal 10 300 0.4454

process, the overall simulation length is defined as 2700 h, and the periodical decision time
step (τ) is 150 h. Here, the simulation horizon is set based on the deterioration rate and
failure threshold values to ensure the hitting of failure threshold such that fuel cell system
lifetime can be estimated with Monte Carlo simulations. The number of Monte Carlo histories
N = 100 is used so that the convergence of the estimation of the performance indicators
is guaranteed. Four different weights Ω values were used in the proposed decision-making
strategy, i.e. Ω = 0.3, 0.5, 0.7, 0.9. It is noticed that the Ω defined in Equation (4.8) stands for
the importance weight between fuel cell deterioration and fuel consumption. A larger Ω means
putting more importance on minimizing deterioration. The simulation problem studied here is
designed as a first attempt to design a management strategy that considering two objectives.
Thus, the simulation parameters are exaggerated such that a relatively large system lifetime
improvements can be observed for the proposed management strategy.

Performance estimation indicators System lifetime is defined as the first estimation
indicator to assess the efficiency of proposed decision strategy. Since the defined problem
considers both fuel cell deterioration and fuel consumption, an estimation index including the
fuel consumption is used (Ratio), which writes:

Ratio =
FH2

TR
(4.11)
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Figure 4.6: Piece-wise constant load demand.

where TR (Equation (4.9)) is simulated system lifetime and FH2 is fuel cell hydrogen consump-
tion function (Equation (4.3)).

Main simulation results The proposed load allocation strategy is compared with the
average load split method in terms of the defined indicators. Firstly, the histograms under
constant load demand are shown in Figure 4.7 and Figure 4.8. It can be seen that 68% of the
system lifetimes of average load strategy are distributed between 1200 and 1800 hours. For
the proposed load allocation strategy (Figure 4.8), 65% of the system lifetimes are distributed
between 1400 and 2800 hours for Ω = 0.3. This percentage value are increased to 86% and 97%

for Ω = 0.7 and 0.9. This shows that when increasing the value of Ω, i.e., put more weights
on minimizing fuel cell deterioration, our strategy can help to improve overall system lifetime.
Moreover, the proposed strategy achieves an improved lifetime compared to the average load
method. For our strategy, the practitioners can choose the value of Ω based on their own
interests to achieve the trade-off between fuel cell deterioration and fuel consumption.

For the fuel consumption and system life ratio indicator Ratio (see Figure 4.9), the value
of average load strategy is the lowest which equals to 40.88 g s−1. The indicator values for
Ω = 0.3, 0.5, 0.7, and 0.9 are 41.04, 41.5, 47.67, and 58.16 g s−1, respectively. When increasing
the value of Ω, the proposed strategy tends to force fuel cell operates at higher load range
which consumes more hydrogen. Thus, the Ratio of Ω = 0.9 is the highest.

Then the two indicator results are calculated and discussed for the piece-wise dynamic load
demand scenario. The system lifetime histograms of our strategy are shown in Figure 4.10.
Compared with the average load strategy (Figure 4.7 b), 81% of the system lifetimes are dis-
tributed between 1400 and 2800 hours for Ω = 0.3. For Ω = 0.5, 0.7, and 0.9, the percentages



4.1. Energy management for a two-stack fuel cell system 83

Figure 4.7: System lifetime histograms in the case of the average load split policy.

of the same lifetime range are 89%, 93%, and 98%, respectively. Therefore, for the dynamic
load demand, the proposed decision-making strategy still works well. The second indicator
Ratio shows a similar trend as in the constant loads. Ratio reaches the highest value at
Ω = 0.9 (58.62 g s−1). The similarity in the simulations results of the two types of load
demands verifies that the piece-wise constant loads studied here is equivalent to a constant
load in terms of influence on the management strategy.
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Figure 4.8: System lifetime histograms in the case of our proposed strategy (constant loads).

Figure 4.9: Ratio indicator results (constant loads).



4.1. Energy management for a two-stack fuel cell system 85

Figure 4.10: System lifetime histograms in the case of our proposed strategy (dynamic loads).
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4.2 Energy management strategy for a three-stack fuel cell sys-
tem

The previous discussed EMS issues are the first attempt to develop a load allocation strategy.
Simulation results proved that the proposed strategy can help to enhance fuel cell system
lifetime and optimize hydrogen consumption. However, several limits can be identified in the
previous two studies:

• Parameters. The key parameters (e.g. shape and scale parameters of the Gamma process
model) were chosen to clearly show the behavior of our proposed strategy, but they do
not necessarily correspond to fully realistic situations for PEM fuel cells.

• System configuration. Only two stacks are considered in the EMS problems which may
limits the generality of the proposed approach.

• Optimization method. The optimization approaches used in the previous EMS problems
are based on basic exhaustive search and more efficient optimization approaches are
needed if one seeks real-time implementation.

Therefore, an EMS problem of three-stack fuel cell system is investigated in this section
that corresponds to the problem diagram presented in Figure 2.2 (Chapter 2). The general
problem is to maintain the operation of a three-stack fuel cell system subject to a constant load
profile. The detailed energy management strategy will be presented in the following section.

4.2.1 Post-prognostic decision-making

4.2.1.1 Decision-making principle and policy structure

In order to decide and to adapt the load dynamically to the state of health of the different
stacks, a sequential decision policy is carried out. A periodic policy in which the decision is
made every time interval of τ hrs is considered. At each periodic decision time kτ (k is an
integer which denotes the decision numbers), the information on the deterioration level, i.e.
the overall resistance of each stack is assumed to be available, and the power load allocation
is made according both to the deterioration of each stack and to the overall fuel consumption
of the multi-stack system.

At each decision time kτ , based on the measured resistance level for each stack R(k)
i,obs, the

conditional probability P (k)
i,d (Li) for this stack to reach a given deterioration level threshold

DT (k) at the end of the next period, under a given load Li, is computed as (similar to
Equation (4.5)), see also Figure 4.11):
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Figure 4.11: Principle of the determination of the conditional probability distribution for the decision
threshold hitting time at each decision time

P
(k)
i,d (Li) = P

(
TDT (k) ≤ (k + 1)τ

∣∣∣R(k)
i,obs

)
= P

(
Ri(kτ) > DT (k)

∣∣∣R(k)
i,obs

)
=

Γ
(
α(Li)τ,

(
DT (k) −R(k)

i,obs

)
· β
)

Γ(α(Li)τ)

(4.12)

Note that DT in Equation (4.12) is not a failure threshold for the stack (contrary to
Equation (4.5)), but rather a decision threshold used in the decision-making procedure to
assess the future deterioration evolution of the considered stack under a given power load
Li, based on its actual deterioration level at the decision time kτ . In order to follow the
deterioration evolution of the stack, the value of this decision threshold DT is updated at
each decision time step, using the following empirical updating formula:

DT (k) = max
(
R

(k)
1,obs, R

(k)
2,obs, · · · , R

(k)
n,obs

)
+ αβτ (4.13)

with α is taken in minimal conditions:

α = α(Lmin)

Using this heuristic formula, the threshold DT is computed as the sum of the maximum of
the current deterioration values and the average deterioration increment over the next period
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(for the more degrading power load, here Lmin), which guarantees a value for DT allowing a
sensible comparison of the quantities P (k)

i,d (Li).

The decision variables for this decision-making policy are the loads allocated at each stack
L1, L2, · · · , Ln, adapted at each decision period. We now have to build the objective functions
to optimize these decision variables. Based on these deterioration measurements R(k)

i,obs and

on the estimated P (k)
i,d (Li), two objective functions, function of the decision variables Li, are

evaluated and eventually optimized:

• The first Fdet is related to the objective of controlling the deterioration by a proper
choice of the load allocation among the stacks;

• The second one FH2 corresponds to the objective of controlling the fuel consumption.

At each decision time kτ , the load allocation {Li}i=1,··· ,n is decided by the optimization
of these two objective functions that are detailed in the following subsection. The periodic
decision process is repeated until the system failure. Recall that the multi-stack system is said
to be failed as soon as one of the stacks failed (or several stacks failed at the same time). In
other words, if the greatest resistance of the system stacks exceeds the failure threshold FT ,
the whole system failed, thus, the condition of system failure is:

max(R
(k)
1,obs, R

(k)
2,obs, · · · , R

(k)
n,obs) > FT (4.14)

4.2.1.2 Multi-objective optimization formulation

At each decision time kτ , the problem is stated as a multi-objective optimization problem
which consists of the simultaneous optimization of several objective functions, subject to
several constraints that determine the feasible set of solutions. Ultimately, the goal is to find
a solution on which the decision can evolve with time, as for instance to give priority to one
objective function and after some time to give priority to another objective function.

In this work, the objective is to design a decision-making strategy to minimize the life-
cycle operation cost of the multi-stack fuel cell system, by acting on two cost key drivers,
i.e. prolonging its lifetime (or reducing its degradation) and minimizing its fuel consumption.
Two criteria are thus jointly considered - fuel consumption minimization and resistance de-
terioration minimization, and the Multi-objective Optimization (MOO) problem consists of
two conflict objective functions, namely, Fdet and FH2 . At each decision time, the two objec-
tive functions are evaluated for all the combinations of load allocation that are explored by
the optimization algorithm and that fits the power load demand (Ld). The fuel cell system
deterioration objective function Fdet is calculated so as to avoid high failure probability and
high deterioration level altogether. Additionally, as shown in a previous work [143], it is in-
teresting to maintain the deterioration trajectories grouped so as to avoid early failures. The
multi-optimization algorithm returns a set of non-dominated solutions, and the power load
allocation to be applied is chosen thanks to a weighted scalarizing function. Thus, one of the
objective functions, that is consumption or deterioration, can be favored over the other.
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Thus, the MOO problem of an n-stack fuel cell system can be formulated as:

minimize
Li

(Fdet(Li), FH2(Li))

subject to
n∑
i=1

Li ≥ Ld

Lmin ≤ Li ≤ Lmax , (i = 1, · · · , n)

(4.15)

where Ld is the system power load demand, Lmin and Lmax are fuel cell stack minimal and
maximal output power density loads.

According to Equation (4.2), the overall system fuel consumption FH2 is a function of the
considered load allocation {Li}i=1,··· ,n (i.e., the policy decision variables) and is calculated by:

FH2 =
n∑
i=1

∫
fH2 (Li) dt (4.16)

The fuel cell system deterioration objective function Fdet is formulated as a weighted sum
of two terms. The first term is a sum of the conditional probabilities Pi,d(Li), see Equa-
tion (4.12)). The weights are given by the ratio of the resistance deterioration Ri,obs on the
total resistance, which allows to put a strong weight to the stacks that have a high deteriora-
tion level, and thus avoid failure as much as possible. The second term is the variance of the
resistance deterioration levels, so as to avoid early failure of a stack that would deteriorate
much faster than the others. The fuel cell system deterioration objective function Fdet is a
function of the considered load power allocation {Li}i=1,··· ,n (i.e. the policy decision vari-
ables) and of the measured resistance levels {Ri,obs}i=1,··· ,n (i.e. the deterioration monitoring
information) and it is expressed as:

Fdet = ω1f

n∑
i=1

(Ri,obs · Pi,d(Li))
n∑
i=1

Ri,obs

+ ω2f

√√√√ 1

n− 1

n∑
i=1

(
Ri,est − R̄est

)2 (4.17)

where Ri,obs represents the measured resistance deterioration level for the fuel cell stack i,
the corresponding conditional probability is denoted as Pi,d(Li). ω1f accounts for the weight of
fuel cell failure probability, ω2f determines the weight of variance of the expected deterioration
levels of the different stacks. Ri,est is the expected deterioration at next decision time step
(k + 1)τ :

Ri,est = Ri,obs + α(Li)β · τ (4.18)

The average expected deterioration for n stacks is:

R̄est =
1

n

n∑
i=1

Ri,est (4.19)

Now that the objective functions of the defined MOO problem are defined, the next step
is to search for a resolution algorithm to solve the optimization problem.
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4.2.1.3 Multi-objective optimization algorithm

To solve the multi-objective problem defined in Equation (4.15), a traditional optimization ap-
proach, in which a single objective is optimized subject to a given set of constraints, might not
be the most appropriate choice. Instead of finding a solution that optimizes all the objectives
at the same time, a Pareto optimal set of solutions can be established, in which an improve-
ment of one objective leads to a deterioration in at least one of the others. The framework of
MOO allows handling the trade-off among several conflicting objectives, even with different
units. One of the most popular Pareto-based evolutionary multi-objective optimization algo-
rithms, a non-dominated sorting-based Multi-objective Evolution Algorithm (MOEA) called
Non-dominated Sorting Genetic Algorithm (NSGA-II), has been successfully applied to many
real-life multi-objective optimization problems [150].

Originally inspired by nature selection, the NSGA-II algorithm can be summarized by the
following steps:

(1) Generate the initial population of individuals randomly.

(2) Evaluate the fitness of each individual generated in the population.

(3) Repeat the following operations until the termination condition is satisfied.

a) Select the best-fit individuals for reproduction;
b) Create new individuals through selection, crossover, and mutation operations;
c) Reevaluate the individual fitness of new individuals, replace least-fit population

with new individuals.

As depicted in Figure 4.12, the algorithm skeleton of NSGA-II stems from classic Genetic
algorithm (GA). NSGA-II proposed a modified version of mating and survival selection. A
non-dominated sorting and crowding distance are used to determine fitness of individuals,
the individuals with better fitness should be retained after selection. Figure 4.12 actually
describes the t-th generation of NSGA-II. First, a hybrid population of parent population Pt
and offspring population Qt is formed. Then, the population of Rt is sorted according to
non-domination, with a size of 2Np. During the the selection process, the elitism is ensured.
F1 collects the solutions of best non-dominated set, emphasized as the best solution (denoted
with darker green color in the figure). Keep filling the parent population Pt+1 with sorted
best solutions until it reaches population size Np. During this process, the crowding distance
of non-dominated set F is calculated as criterion to select the best solutions for Pt+1. The
newly selected parent population Pt+1 is used to create a new population Qt+1 through se-
lection, crossover, and mutation operations. The optimization procedure is stopped when the
termination condition is satisfied.

An Achievement Scalarizing Function (ASF) based decomposition method is used to choose
the final optimal decision within the obtained Pareto Front [151]. According to the principle
of ASF, the minimum ASF values calculated from all solutions are chosen as the final optimal
decision.
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Figure 4.12: Schematic diagram of NSGA-II.

The final implementation of ASF-based decision-making is based on the pymoo library
[152]. The ASF function is defined by [153]:

ASF (f(x),Ω, ẑ∗) =
M=2
max
j=1

fj(x)− ẑj∗

Ωj
(4.20)

where j is either 1 (for Fdet) or 2 (for FH2); f(x) is the objective function values; ẑj∗ stands
for the utopia (“ideal”) point of objective j and Ωj is the assigned (by the user) weight factor
for objective j.

Figure 4.13 shows the Pareto front, i.e. a set of non-dominated solutions is obtained thanks
to the NSGA-II algorithm. The values have been normalized between 0 and 1 for two objective
functions, Fdet and FH2 . Finally, the ASF function-based decomposition approach is applied
to find the final optimal decision with respect to defined ASF weights Ω. The weights Ω are
chosen by the user, according to his preferences and priorities, so that the preferred objective
function has the smallest weight. For fuel cells, usually the main preference is to prioritize the
control of the system deterioration (i.e. a smaller Ω1), but two weights vectors representing
different preferences among the defined objectives are considered in this study. In Figure 4.13,
two different weights are shown. For Ω = (0.5, 0.5), an equal importance of Fdet and FH2 is
applied to perform decision-making process. To improve fuel cell durability, Ω = (0.2, 0.8) will
be preferred.

4.2.1.4 Post-prognostics decision-making algorithm implementation

The algorithm of the post-prognostics decision-making strategy is presented in Algorithm 1.
An internal loop estimates the power load allocation for each stack until the failure threshold
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is reached for one of the stacks. The sequential decision policy adapts the load dynamically
to the state of health of the different stacks.

Algorithm 2 shows the evaluation of multi-objective optimization objective function. All
values that are needed to calculate Fdet and FH2 are presented with their calculation equations.
Algorithm 2 is called by Algorithm 1 to solve the optimal load allocation decision.

4.2.2 Performance evaluation

Fuel cell system lifetime is defined as in Equation (4.9). For a n-stack fuel cell system, the
system lifetime for one run simulation (TR) is:

TR = min(T1,R, T2,R, · · · , Tn,R) (4.21)

where Ti,R is the end of lifetime of stack i (first hitting time of FT ).

Additionally, a second performance index with respect to fuel consumption should be
proposed. However, fuel consumption alone is not suitable, as when the system life is extended,
it automatically consumes more fuel. Therefore, a ratio representing the operating time per
unit quantity of consumed fuel is used, noted as Ratio′. Thus, the greater is the index, the
lower is fuel consumption. The mean value of the index is determined with :

Ratio′ =
1

Ratio
=

1

N

N∑
i=1

{(TR,i)/FH2,i} (4.22)

where the unit is h kg−1. Ratio is the indicator defined in Equation (4.11). Ratio′ is the
average value of this indicator over N simulation trajectories. The same calculation approach
is applied for the median system lifetime (TR,med) and Median Ratio (Ratio′med).



4.2. Energy management strategy for a three-stack fuel cell system 93

Algorithm 1: Main decision-making loop
Data: FT , DT0, τ , α, β

1 Initialization k = 0, DT = DT0;
2 repeat
3 % At each decision time kτ ;

4 Measure the resistance deterioration levels
(
R

(k)
1,obs, R

(k)
2,obs, · · · , R

(k)
n,obs

)
;

5 Solve the MOO problem through NSGA-II algorithm to return the optimal load

allocation
(
L

(k)
1 , L

(k)
2 , · · · , L(k)

n

)
;

6 % This optimization step include calls to the evaluation procedure of the objective
functions (Algorithm 2) to obtain (F (k)

det , F
(k)
H2

) for all the combinations of load
allocations that are explored by the optimization algorithm;

7 k = k + 1 ;

8 % The system is operated with
(
L

(k)
1 , L

(k)
2 , · · · , L(k)

n

)
until next decision step;

9 until max
(
R

(k)
1,obs, R

(k)
2,obs, · · · , R

(k)
n,obs

)
> FT % System failure;

4.2.3 Simulation results

4.2.3.1 Simulation settings

The parameters to calculate the objectives (FH2 and Fdet) are estimated with the 2014 data
challenge data [27]. The detailed estimation methods are presented in Chapter 3. Table 4.4
summarized the main parameters used in the simulation. The initial resistance R0 is 0.1803
Ω cm2.

The resistance deterioration rate is calculated as:

D(L) = (C × (L− 2.3811)2 + 2.727)× 10−4 (4.23)

with

C =

{
1.6364 Lmin ≤ L < Lnom
6.77 Lnom ≤ L ≤ Lmax

where D(L) represents the deterioration rate of R, L is fuel cell operating power load. Lmin,
Lnom, and Lmax are fuel cell operating power density load for minimal, nominal, and maximal
conditions.

With the above simulation parameters, the weights ω1f and ω2f introduced in Equa-
tion(4.17) are investigated based on actual simulation effects. According to the grid search-
based parameter tuning, ω1f = 12, and ω2f = 1.2 can capture fuel cell deterioration well,
enable the decision-making strategy to control the system efficiently. Therefore, these values
are used in the post-prognostics decision-making strategy.

Due to the randomness in the proposed Gamma process deterioration model, the policy
performance is assessed using Monte Carlo simulation. By the law of large numbers, the
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Algorithm 2: Evaluation of the objective functions for multi-objective optimization
Input: Measured deterioration levels {Ri,obs}i=1,··· ,n; Candidate loads per stack

{Li}i=1,··· ,n
Output: Fdet({Ri,obs}i=1,··· ,n , {Li}i=1,··· ,n), FH2({Li}i=1,··· ,n)

1 Calculate system fuel consumption objective function: FH2({Li}i=1,··· ,n) ←−
Equation (4.16);

2 Using {Ri,obs}i=1,··· ,n, calculate the expected deterioration resistances and the average
expected deterioration: Ri,est ←− Equation (4.18), R̄est ←− Equation (4.19) ;

3 Update decision threshold DT ←− Equation (4.13);
4 Using {Ri,obs}i=1,··· ,n and {Li}i=1,··· ,n, calculate the conditional probabilities

Pi,d(Li)i=1,··· ,n ←− Equation (4.12);
5 Calculate system deterioration objective function Fdet({Ri,obs}i=1,··· ,n , {Li}i=1,··· ,n)

←− Equation (4.16);
6 Return (Fdet, FH2)

Table 4.4: Key parameters for three-stack system.

Load conditions L (W cm−2) TR (h) v0 β0

Minimal 0.804 400 0.028
0.024Nominal 2.381 1000 0.011

Maximal 3.084 450 0.025

sequence of simulated average lifetimes converges to the expected value. For each value of
power load demand considered, L = 6.6 W cm−2 and L = 7.8 W cm−2, 8000 independent
simulations were performed. Based on these simulated trajectories, an accumulated average
system lifetime is calculated. The plots in Figure 4.14 show that when the number of simulation
runs is increased to 1500, the average system lifetime estimation converges. Therefore, the
following simulation results are analyzed based on 1500 independent simulation runs. Here,
the load demand is set based on the basic fuel cell stack parameters in Table 4.4. The demand
L = 6.6 W cm−2 allows three-stacks to both work with lower power than the Lnom, whereas
L = 7.8 W cm−2 force at least one of the stacks to work at a power that is larger than Lnom.

4.2.3.2 Simulation results for Ld = 7.8 W cm−2

Convergence check of NSGA-II algorithm The convergence of the NSGA-II algorithm
is analyzed for the designed parameters. A newly proposed running performance metric based
on the calculation of Inverted Generational Distance (IGD) is used to estimate the conver-
gence of the NSGA-II algorithm [152], [154]. This running metric shows the difference in the
objective space from the initial generation to the current generation. It is suitable for analyz-
ing the optimization process when the true Pareto Front is not known. This running metric
is calculated by accumulating the Non-dominated (ND) solutions from initial generation to
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Figure 4.14: Number of Monte Carlo simulation histories

generation (x):
∆fx = IGD(P̄ x(t), P̄ x(x))

=
1

|P̄ x(x)|

|P̄x(x)|∑
i=1

(
|P̄x(t)|
min
j=1
‖P̄ xi (x)− P̄ xj (t)‖)

(4.24)

where x is the accumulated current generation number (here x increment interval is set as
10); P̄ x(t) is the evolving ND set (0 ≤ t ≤ x) and P̄ x(x) is the ND set of current generation
x (normalized). This metric is computed for all past generations.

Figure 4.15 shows the running metric accumulated by a generation step of 10 during one
optimization (Ld = 7.8 W cm−2, R1,obs = 0.1903, R2,obs = 0.3103, R3,obs = 0.2403 Ω cm2).
A bigger drop in ∆f means better improvement for ND solutions. Figure 4.15(a) shows the
algorithm gradually improves for past 60 generations. From Figure 4.15(c), it can be seen that
the algorithm terminates at the 170-th generation and the Pareto fronts and final decision are
plotted in Figure 4.15(d) (the black marked point). The final decisions for weight vector
Ω = (0.2, 0.8) are (L1, L2, L3) = (2.749, 2.430, 2.621) W cm−2.

Main results Now that we have set all required simulation parameters, the next step is to
collect the simulated lifetimes from Monte Carlo simulation. Figure 4.16 presents the detailed
one-run simulation results for Ld = 7.8 W cm−2. Figure 4.16(a) shows the evolution of the
overall resistance of each stack and the power load allocation for Ω = (0.5, 0.5). At time
0 h, the overall resistances of the three stacks are initialized at R0 = 0.1803, and a first
post-prognostic decision-making is performed, giving the power load allocation (L1, L2, L3) =

(2.6, 2.6, 2.6) W cm−2 to be applied. After τ = 100 h of operation, another post-prognostics
decision is performed. It can be found out that, though the stacks are assumed to be identical
and have the same initial deterioration, their states of health vary. FC2 has the highest
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Figure 4.15: Convergence of NSGA-II algorithm.

deterioration level, followed by FC3 and FC1. The optimal power loads calculated by proposed
post-prognostics decision-making strategy are (L1, L2, L3) = (2.695, 2.539, 2.565) W cm−2.
FC1 is assigned to the highest power density to balance the system deterioration and fuel
consumption. The third post-prognostic decision is performed at 200 hours. FC3 reaches
the highest resistance value. Thanks to the decision-making control, the deterioration rate
of FC2 is much slower compared to the previous decision steps. In this case, the measured
resistance of FC2 puts a heavy weight on the objective function Fdet of Equation (4.17), so as
to avoid FC2 to deteriorate more. Thus, FC3, which had a lower deterioration at the previous
decision step, deteriorates slightly more than FC2. By doing this, the stacks that are more
deteriorated can be assigned to a power density load closer to the nominal value, and thus
their deterioration slows down. Similar results can be observed for the following decisions.
The one-run simulation terminates at 714 h when FC3 reaches FT . From the data in Figure
4.16(b), the control effects are more obviously seen. It is observed that it is not always the
same fuel cell that is the most deteriorated though the lifetime is shorter in this case. A bigger
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Figure 4.16: One-run optimal load allocation and system deterioration for Ld = 7.8 W cm−2.

weight is assigned to control fuel cell deterioration, thereby preventing the most deteriorated
fuel cell from further fast deteriorating. This result is consistent with the design of Fdet as
shown in Equation (4.17), and the ASF function.

Figure 4.17 presents histograms of the system lifetime obtained with 1500 runs, for different
load allocation strategies. The post-prognostics decision-making with no preference (Ω =

(0.5, 0.5)) and with preference for limiting the degradation (Ω = (0.2, 0.8)) are compared
with the daisy chain and the average load strategies. The histograms obtained with the post-
prognostics decision-making and the average load strategies are mostly distributed in the range
[400, 1000] h, whereas the lifetimes for the daisy chain algorithm are mainly distributed in
[300, 900] h. For the daisy chain, the poor performance can be explained by the fact that,
as two stacks operate at their nominal power density load, the third one adapts to the power
load demand and thus operates with conditions that will damage the stack. In addition, one
can see in this figure that the distribution for the daisy chain case is more grouped with a
peak at 600 h, which is not the case for the other strategies.

Figure 4.18 shows the simulated deterioration trajectories for our strategy and for the
average load split strategy with Ω = (0.2, 0.8). 50-run trajectories are plotted among the 1500
simulated trajectories. It shows that the trajectories simulated with the proposed decision-
making strategy tend to be more grouped together and with a lower variance than the one
simulated with the average load split strategy. This is the result that was expected with the
second term of Equation (4.17), that is the sum of the variance of the resistance deterioration.
This helps to avoid situations where one stack in the system deteriorates too fast leading to
the failure of the overall system. Such effect is also visible in the previous lifetime histogram.

Further results are given in Table 4.5 which summarizes statistical results for Ld = 7.8

W cm−2. In this table, it can be seen that the mean lifetime and the medium lifetime are
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Figure 4.17: Histograms (and fitted Gaussian pdf) of the system lifetime for Ld = 7.8 W cm−2,
under different load allocation strategies.

better for the proposed strategy, and it confirms that the daisy chain strategy has the worst
results. For the proposed strategy, a slight difference can be noticed between the two weights
distributions, showing that the Ω = (0.2, 0.8) allocation leads to a mean lifetime of 735 hours,
which is the highest among all simulation cases. The results for the Ratio index, whether it
be mean or median, are very close together. The Ratio of the average load split is the highest,
that is the largest operating time per quantity of consumed fuel, with both Mean and Median
ratio of 21.3603 h kg−1. Then followed by Ω = (0.5, 0.5), with Mean and Median ratio of
21.3525 h kg−1 and 21.3545 h kg−1. These results show that increasing the fuel cell lifetime
does not mean that the fuel consumption is exploding accordingly.

Simulations were also conducted for a relatively lower system demand case, Ld = 6.6 W

cm−2, to check the control effects of the proposed strategy.

Table 4.5: 1500 runs simulation statistic results for Ld = 7.8 W cm−2.

Simulations TR (h) TR,med (h)
Ratio′

(h kg−1)
Ratio′med

(h kg−1)

Daisy chain 587 588 21.2522 21.2522
Average load 704 703 21.3603 21.3603
Ω = (0.5, 0.5) 727 727 21.3525 21.3545
Ω = (0.2, 0.8) 735 731 21.3450 21.3501

4.2.3.3 Simulation results for Ld = 6.6 W cm−2

This time, a relatively lower demand is set to enable the studied fuel cell be able to work
with lower power than the nominal load (Lnom). Figure 4.19 provides the detailed one-run
results for Ld = 6.6 W cm−2. Similarly to Ld = 7.8 W cm−2, the overall resistances of the
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Figure 4.18: System resistance deterioration trajectories (50-run) for Ld = 7.8 W cm−2.

stacks are initialized to R0 at time 0 h. At that time, a post-prognosis decision is carried out,
giving the allocation of (L1, L2, L3) = (2.268, 2.271, 2.269) W cm−2. Then at τ = 100 h, a
second decision is performed. The most deteriorated fuel cell, FC2, with R = 0.2746 Ω cm2, is
assigned to a power load close to the nominal value to mitigate its deterioration. The optimal
allocation is then (L1, L2, L3) = (2.218, 2.353, 2.197) W cm−2. As shown in Figure 4.19(a),
FC2 tends to have the highest deterioration during all the operation period. The decision-
making strategy lets FC2 operates at a near nominal condition to mitigate its deterioration.
While for the stacks with a relatively lower deterioration, the decision-making strategy will
assign less desirable operating loads to satisfy the system power demand. However, it can be
seen from the deterioration path of FC2 that even though a favorable power is provided, it still
deteriorates more rapidly than others because of the randomness. Figure 4.19(b) shows the
simulation results when the priority is assigned to deterioration mitigation with Ω = (0.2, 0.8).
It is observed that from 0 to 200 h, the deterioration levels of the three stacks are closed to
each other. At 300 h, FC3 has the highest deterioration level, followed by FC1 and FC2.
However, from 300 to 600 h, the deterioration rate of FC3 is gradually decreasing and tends
to be the lowest. And the deterioration rate of FC2, initially less deteriorated, is increasing.
By comparing the results of different Ω values, it is observed that it is not always the same
fuel cell that is the most deteriorated though the lifetime is shorter with Ω = (0.2, 0.8). These
results are consistent with those that have been reported in Section 4.2.3.2.

Figure 4.20 shows the histogram of the system lifetime for different strategies both with
post-prognostics decision-making or not. This time the histogram allocation of the Daisy chain
is similar to the other ones, and the lifetimes are mostly distributed in the range (400; 1100)

h. However, the average load split strategy achieves a slightly longer lifetime than the Daisy
chain, and the proposed decision-making strategy is even better. Indeed, for Ω = (0.2, 0.8)

and Ω = (0.5, 0.5), their system lifetimes are more frequently in the range (800; 1400) h than
the Daisy chain and average load strategies.

Figure 4.21 presents 50-run deterioration trajectories for Ω = (0.2, 0.8) and average load
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Figure 4.19: One-run optimal load allocation and system deterioration for Ld = 6.6 W cm−2.

split strategies. Similar to the results reported in Figure 4.18, the deterioration trajectories
with decision-making control appear to be more grouped together than the comparison strat-
egy. The statistical results for Ld = 6.6 W cm−2 are summarized in Table 4.6. As can be seen,
a longer lifetime is achieved for simulations with the decision-making strategy. In addition,
the decision strategy that prioritize lifetime with Ω = (0.2, 0.8) obtains the highest lifetime
among the four simulation cases. The Ratio index results are similar to those in section 4.2.3.2,
with very close values. These results show that the proposed decision-making strategy can be
applied in practice to improve fuel cell system lifetime without consuming far more fuel.

Table 4.6: 1500 runs simulation statistic results for Ld = 6.6 W cm−2.

Simulations TR (h) TR,med (h)
Ratio′

(h kg−1)
Ratio′med
(h kg−1)

Daisy chain 759 760 26.3925 26.3925
Average load 774 768 26.5065 26.5065
Ω = (0.5, 0.5) 785 784 25.8183 25.8322
Ω = (0.2, 0.8) 800 804 23.7155 23.8972
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Figure 4.20: Histograms (and fitted Gaussian pdf) of the system lifetime for Ld = 6.6 W cm−2,
under different load allocation strategies.
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Figure 4.21: System resistance deterioration trajectories comparison for Ld = 6.6 W cm−2.
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4.3 Conclusion

This chapter investigated the load allocation strategy of an MFC system under constant
demand profile. A post-prognostics decision-making strategy is developed for the studied
MFC system. The system lifetime is managed through the post-decision control of distributing
system power demand among stacks. Both fuel cell deterioration and system fuel consumption
are considered in the management strategy. Fuel cell stack resistance is chosen as an HI
and its deterioration is modeled through a GP model. A deterioration objective function is
then built to access system deterioration during operation, together with fuel consumption
objective function. Then, a multi-objective optimization problem is formulated to take the
post-prognostic decisions. The simulation results are obtained and analyzed through a 1500-
run simulation on a 3-stack fuel cell system. The simulation results of our approach are
compared with the results of the daisy chain and average load to validate the control efficiency.
As fuel cell are popular in automotive applications which requires a dynamic power demand,
the EMS problem of dynamic loads will be studied in the next chapter.



Chapter 5

Multi-Stack Fuel Cells Energy
Management Strategy Studies under

Dynamic Loads

This chapter focuses on the energy management of MFC systems under dynamic load profiles.
Two typical operating management problems are proposed in terms of different load profiles.
A deterministic dynamic load profile is defined in the first problem. In this problem, the
deterioration of a fuel cell stack is modeled by a GP model. Then, the studied problem is
extended by taking into account the randomness in the dynamic load profile and stack-to-
stack deterioration variability. Two deterioration-aware EMSs are developed for the proposed
problems. This chapter is based on the work presented at the European Safety and Reliability
Conference (ESREL), 28 August - 01 September 2022, Dublin Ireland.
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Figure 5.1: Proposed EMS principle.

5.1 Multi-stack fuel cells dynamic load profile energy manage-
ment problem formulation

The MFC system consists of n parallel connected stacks (Figure 5.1). All the stacks are
identical but are providing different load power, denoted {Li}i=1,··· ,n. The global load demand
is noted Ld. As the system provides exactly the total amount of power, the contribution of
each stack can be written as a part of the global load demand:

Lfci = γiLd, where
n∑
i=1

γi = 1 (5.1)

where γi is the ratio of allocated load for fuel cell stack i. The input degrees of freedom are the
individual stack powers (Lfci). The proposed strategy is to decide the optimal load allocation
between available stacks such that an extended system lifetime can be achieved.

The external load demand dynamics are considered as a sequence of piece-wise constant
values, each value change representing an event after which the optimal load distribution has
to be calculated (Figure 5.1).

The problem addressed in this chapter can be divided into two parts. The first part of
the problem is to improve a load-dependent model of fuel cell deterioration so as to include
dynamical phenomena. Then, the second part is to build an optimal EMS for MFC system
based on the proposed deterioration model.

Both load amplitude and load variations are considered in order to build the load-dependent
deterioration model (Chapter 3, Equation (3.13)). The fuel cell resistance aging model is ex-
pressed as:

∆R = ∆RL + ∆R∆L (5.2)

where ∆R is the overall resistance increment. ∆RL is the load level contribution and ∆R∆L

is the load variation contribution to the resistance increment. Note that the deterioration
term due to load variation ∆R∆L is expressed with a quadratic form for the optimization
convenience.
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The Gamma process is used to model the stochastic deterioration of ∆RL, denoted as:

∆RL(t1, t2) = RL(t2)−RL(t1) ∼ Ga(v(t2 − t1), β) (5.3)

The model can be found in the deterioration modeling work reported in Chapter 3 Sec-
tion 3.2.3.

5.1.1 Dynamic load demand profile

The use of a MFC system is to provide a certain amount of power load over a period of time.
As presented in Chapter 1, the FC-DLC is one of the widely used dynamic load profiles for
automotive fuel cells. The FC-DLC is used to define our dynamic load profile which is further
used in testing various load allocation strategies. Both deterministic and random dynamic
load profiles are studied.

Deterministic load profile As shown in Figure 5.3, two types of dynamic loads are used
as the global demands for the studied MFC system. Figure 5.3(a) presents the deterministic
type power demands. The load profile is obtained by repeating the two load levels with a
fixed time interval between two loads as shown in the figure. The two load levels are chosen
to represent lower and higher demands applied to fuel cells.

Random load profile A discrete Markov Chain (MC) model is used to construct the
random dynamic load profile. To begin, let S denote a (finite) sequence of power demands
with c elements {x1, · · · , xc}. The set S is called the state space, and x1, · · · , xc are the state
values. Then an MC Xt (t is discrete) on S is a sequence of random variables on S that have
the Markov property, which is expressed as:

P{Xt+1 = y|Xt} = P{Xt+1 = y|Xt, Xt−1, · · · } (5.4)

where P (·) denotes the probability of the event. The future behavior of the process does not
depend on its past but only on its present state. The dynamics of an MC model are fully
determined by a set of transition probabilities:

P (x, y) = P (Xt+1 = y|Xt = x)(x, y ∈ S) (5.5)

where P (x, y) is the transition probability of going from state x to state y in one step. P (x, ·)
is the conditional distribution of Xt+1 given Xt = x. We can view the transition probability
between different states as a Markov matrix Pc where

Pi,j = P (xi, xj) 1 ≤ i, j ≤ n (5.6)

And Pc satisfies:

• each element of Pc is non-negative, and
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Simulation  
steps

Decisions

decision 1 decision 2 decision 3

Event 1 Event 2 Event 3

Figure 5.2: Schematic diagram of generating random load profile.

• each row of Pc sums to 1.

Then we can define (generate) a MC Xt as follows:

• Draw an initial state X0 from specified distribution.

• For each t = 0, 1, · · · , draw Xt+1 from the transition probability matrix P (x, y).

Assuming that the load profile of a fuel cell system Ld(t) can be described as a MC model
with Markov transition matrix Ptr and all possible states Lds. Then we can obtain a random
dynamic load profiles for MFC systems. A diagram is sketched in Figure 5.2 to demonstrate the
generation of such random load profile. At each simulation step τs (equivalent to the discrete
time step t defined in Equation (5.4)), the next state is drawn from transition probability
matrix P (x, y). In the case of a deterministic power demands, the duration of a event (τe) is
fixed, however this is not the case in random load profile. For random load profile, the load
demand level of each simulation step τs is generated through a Markov Chain model, thus the
load change event duration varies from time to time. This is demonstrated in the figure as
the event duration of Event 1 is 2τs whereas the duration of the following event equals to τs.

Figure 5.3(b) shows a realization of a random type load profile by taking:

Ptr =


0.1 0.35 0.35 0.2

0.35 0.1 0.35 0.2

0.2 0.35 0.1 0.35

0.2 0.35 0.35 0.1

 , Lds = [2.9, 4.1, 5.8, 7.0] (5.7)

where Lds defines all possible load demands. Ptr stands for the transition probability matrix.
This dynamic loads include four levels of demands which are adapted from the FC-DLC cycle.
The load percentage of 100%, 83.3%, 58.3%, and 41.7% (with respect to Lmax) are selected.
This load profile contains lower to higher power loads which is used as a typical dynamic load
profile.
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Figure 5.3: Dynamic load profiles

5.1.2 System lifetime and failure definition

For a multi-stack system, the system failure is defined as the end of the system’s ability to
supply the external global load demands. Thus, the failure of one stack does not necessar-
ily correspond to the MFC system failure, as long as the external power load demand can
be provided by the other stacks. In this chapter, the system lifetime is calculated by the
Equation (4.9) (Chapter 4).

5.2 Energy management under deterministic dynamic loads

This section focuses on the load allocation strategy of an MFC under deterministic type load
demands. The deterioration model of studied MFC system is taken from Equation (5.2). The
GP model is used to model fuel cell resistance deterioration due to load magnitude.

5.2.1 Energy management strategy

5.2.1.1 Decision-making principle

The external load demand dynamics is considered as a sequence of piece-wise constant values,
each value change corresponding to what will be called hereinafter as an “event”. The decision-
making process is event-based, i.e. the load allocation is determined at each new event. We
assume here that several future events are known in advance.

Figure 5.4 depicts the diagram of the event-based decision-making process with m future
known events. The current event E0

ind is the beginning of current decision. The decision
horizon ranges from E0

ind to Emind. τ
j
e is the time length of event j (j = 0, · · · ,m − 1). The
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Figure 5.4: Principle of the proposed decision procedure.

system is required to produce exactly the amount of external load demands, and the output
power of each stack is constrained within the fuel cell production range, i.e. from Lmin to
Lmax. The external load demand of event j is denoted as Ljd. Note that the initial load
demand which is equal to the load demand at previous event, denoted as Lini,dd .

{Rj−1
fci }i=1,··· ,n are the resistance levels of all stacks at the beginning time of event j which

is assumed to be measured. Note that the initial resistance value for the first event m = 0 is
denoted as Rini,dfci . The average deterioration levels at decision m are estimated using Equa-
tion (5.2). The future global deterioration weighted by the distance of current deterioration
to the failure threshold FT is defined as the optimization index J . With all combinations of
load allocations γiL

j
d, the optimal decision is decided by minimizing J . The calculation of J

will be derived in the following Section 5.2.1.2. In this way, the global system deterioration is
balanced among the stacks which helps to improve system lifetime.
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5.2.1.2 Objective function formulation

The objective function is formulated so as to minimize the resistance increments along the
decision-making horizon. Then the proposed dynamic optimization problem is formulated as:

minimize
{γji }i=1,··· ,n

J({γji }i=1,··· ,n) =
n∑
i=1

ωi{(∆R0
∆L,i)

2 + ∆R0
L,i +

m−1∑
j=1

(∆RjL,i + (∆Rj∆L,i)
2)}

subject to Lmin ≤ γjiL
j
d ≤ Lmax,

n∑
i=1

γji = 1

∆RjL,i = D(γjiL
j
d) · τ

j
e

∆R0
∆L,i = K|γ0

i L
0
d − γ

ini,d
i Lini,dd |

∆Rj∆L,i =
m−1∑
j=1

K|γj+1
i Lj+1

d − γjiL
j
d|, j = 1, · · · ,m− 1

(5.8)
where Ljd defines the external dynamic load demands; γji is the load allocation ratio for FCi
at decision time j, and γini,di is the initial load allocation ratio of stack i at each decision. K
is given in Equation (3.16).

The distance of the deterioration level to the preset failure threshold FT is leveraged to
formulate the weight factor ωi:

ωi =
1/(FT −Rini,dfci )
n∑
i=1

1/(FT −Rini,dfci )

(5.9)

The defined weight terms (Ωi) aim to balance the aging of all stacks, i.e., by adjusting the
value of weights to force the less deteriorated stacks to operate under less desirable conditions
so as to allow the more deteriorated stacks to work at relatively more desirable conditions.
More details on the system lifetime control effects will be further discussed in Section 5.2.2.

5.2.2 Results for Gamma process model under deterministic loads

5.2.2.1 Monte Carlo simulations settings

The studied MFC system is assumed to consists of two identical stacks (n = 2). Table 5.1
summarizes the key parameters of the stacks. The other chosen parameters are β0 = 4.4×10−4,
FT = 0.2775 Ω cm2, and R0 = 0.1803 Ω cm2.

To study the performances of the EMS, deterioration trajectories with different variances
but the same average trend are simulated. Hence, the initial shape and scale parameters (αini,
βini) of the studied Gamma process are modified by introducing a constant ` (refer to Equa-
tion (3.11), Chapter 3). Here ` = 5, 10, 20, 30 so as to gradually increases the deterioration
trajectory variance.
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Table 5.1: Fuel cell stack parameters.

Load conditions L (Wcm−2) Lifetime (h) α0

Minimal 0.8035 100 2.227
Nominal 2.3811 1788 0.125
Maximal 3.084 100 2.227

In addition, this thesis also investigates the influence of deterioration imbalance between
the stacks. This is done by assigning different initial resistance values (Rinifc1 and Rinifc2):

Rinifc1 = R0 + ∆R0, R
ini
fc2 = R0 (5.10)

The modified increment terms of ∆R0 = 0.0, 0.01, 0.02, 0.03 Ω cm2 are studied.

A two-stack fuel cell system is operated to provide a deterministic type load profile as
presented in Figure 5.3(a). To formulate the optimization objectives, one future event is being
considered (i.e. m = 1) in the objective function. The Sequential Least-squares Programming
(SLSQP) algorithm is used to solve the optimization problem. Due to the stochastic behavior
of the stack aging, modeled by a Gamma process, the system lifetime is estimated with Monte
Carlo simulations. The simulation of the system from the beginning of use till system failure
(denoted as one-run) is repeated N times (i.e., a realization of N simulation runs), obtaining N
system lifetime samples. Then the average system lifetime (TR,dec) is estimated by the average
of those lifetime samples. According to the simulations, N = 300 ensures the convergence of
TR,dec.

The results are compared with the classic average load split method, which distributes the
overall load demand evenly among stacks.

5.2.2.2 Performance indicators

Lifetime-related indicators are established to assess the performance of the proposed strategy.
Based on the two basic lifetime indexes introduced in Chapter 4, i.e., the mean system lifetime
TR and median system lifetime TR,med, this section further introduced three extra lifetime-
related indexes.

The first indicator (∆TR,pct) gives the relative improvement in lifetime compared to the
average load split strategy which is computed by:

∆TR,pct =
TR,dec − TR,ave

TR,ave
× 100% (5.11)

where TR,dec is the mean simulated lifetime over N trajectories that simulated by proposed

load allocation strategy, TR,dec =

N∑
i=1

Ti,R,dec

N . Ti,R is simulated lifetime of trajectory i. TR,ave
is the mean simulated lifetime of average load method. The second indicator T+

R,pct represents,
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in percentage terms, the number of the simulated lifetimes that are higher than those of the
average split method. Let N+ denote the number of lifetimes where the lifetime obtained by
the load allocation decision (TR,dec) is larger than the results of average split (TR). Then the
proposed indicator is written as:

T+
R,pct = N+/N × 100% (5.12)

Due to the complexity of obtained system lifetime distribution, it would be necessary to
compare obtained lifetimes with mean lifetime in average split methods (TR). This may offer
extra information in terms of the effectiveness of the proposed strategy. The third performance
indicator compares the simulated lifetimes to mean lifetime of average split method, which
writes:

T aveR,pct = N+
ave
N × 100%

T decR,pct =
N+

dec
N × 100%

(5.13)

where N+
ave stands for the number of lifetimes where the lifetime obtained by the average split

is larger than TR,ave. N+
dec denotes the number of the lifetime obtained by the load allocation

strategy that is larger than TR,ave.

5.2.2.3 Simulation results

Convergence of the SLSQP algorithm The proposed load allocation decision problem
is formulated as an nonlinear constrained optimization problem. SLSQP methods solve a
constrained nonlinear optimization problem in an iterative manner. The main optimization
parameters for SLSQP solver are the maximum number of iterations and the precision goal
for the objective function in the stopping criterion.

The SLSQP is selected as the optimization solver for solving the optimization problem
(Equation (5.8)). The convergence of SLSQP algorithm is investigated on a single step opti-
mization. In this optimization, the resistance values of two stacks are set as Rfc1 = 0.2003 Ω

cm2 and Rfc2 = 0.1803 Ω cm2. The power demand is defined as 5.2 W cm−2. The maximum
number of iterations of SLSQP solver is set as 100, and the precision goal for the objective
function is set as 1 × 10−8. This optimization solver related parameters are set to ensure a
reasonable optimization time as well as convergence. The objective function values Jobj are
plotted in Figure 5.5. It is seen that the SLSQP ensures a quick convergence after 8 evalua-
tions (final objective function values is 0.048). The optimal load allocations are Lfc1 = 2.57

W cm−2, Lfc2 = 2.63 W cm−2.

Analysis of the proposed strategy behavior on a single realization Firstly, the
decision strategy behavior is examined on a single simulated deterioration path, according to
the predefined parameter settings (Section 5.2.2.1), ` = 5,∆R0 = 0.01 Ω cm2 are chosen,
denoted as Case 1.
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Figure 5.5: Convergence check of the SLSQP algorithm.

Figure 5.6 presents the overall resistance values and the optimal allocation decisions made
for four events in Case 1. Consider event number 3, it is noticed that for the previous two deci-
sions, the FC1 is more deteriorated. And the aging trend is reversed for the last two decisions
(Figure 5.6 (a)). Combing with the optimal allocations (Figure 5.6 (b)), it is confirmed that
our strategy lets the more deteriorated stacks operate at relatively more desirable conditions
than the ones that are less deteriorated. According to the recorded deterioration, the sudden
increment of Rfc2 is due to the load effect, i.e. ∆Rfc2,L (increased 4.185×10−3 Ω cm2 from
event number 2 to event number 3 while the other increments are nearly zero) which confirms
the stochasticity in ∆RL. This stochasticity is investigated by a stochastic Gamma process
with different initial resistance and increment variance to account for individual variability in
an MFC system.

Figure 5.7 shows the overall load decisions distribution of our strategy. It can be seen
that most of the allocation decisions are distributed between 2 and 2.25 W cm−2 on the left
side and from 2.5 to 2.75 W cm−2 on the right side. Instead of assigning demands with a
fixed average split, our strategy optimally decides the load allocations conditionally to the
estimated system resistance at the decision stage.

Overall performance analysis Let now examine the results on N = 300 simulation histo-
ries. Figure 5.8 presents the lifetime histograms and corresponding fitted Gaussian Probability
Distribution Functions (PDFs) for ∆R0 = 0.01 Ω cm2 and different deterioration variances.
In all these figures, the PDF of our strategy presents a higher mean value than the average
split strategy, proving thus that an extended lifetime is achieved. Additionally, the PDFs
curves widen as the value of ` increases, i.e., as the variance of stack aging becomes larger.
According to the definition of system lifetime, a greater variance in the R trajectories will
widen the interval of the first-hitting-time of FT and thus that of the simulated lifetimes as
well. In Figures 5.8 (a), (b), and (c), it is seen that the PDF curve of our strategy is more
centered on the mean than the one of the average split method. However, in Figure 5.8 (d),
the two PDF curves are similar in terms of the PDF curve width. This is caused by the
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Figure 5.6: Case 1: four events.

growing variance in R trajectories. The calculated standard deviation results further justify
the observations. In Figure 5.8 (a), the standard deviation of our strategy is 47.52, whereas
that of the average split is 66.37. The standard deviation of our method (137.61) is slightly
bigger than the average split (133.67) in Figure 5.8 (d). In the obtained results, the histograms
results of ∆R0 = 0.0, 0.02, 0.03 (Ω cm2) show similar trends.

The two proposed lifetime-related performance indicators are computed and listed in Ta-
bles 5.2 and 5.3. In general, the ∆TR,pct results of the groups with initial increment (i.e.
∆R0 > 0) are higher than the group with identical initial resistance. This proves the effi-
ciency of the proposed strategy in dealing with imbalanced deterioration in MFC. Moreover,
in Table 5.2, the ∆TR,pct values are monotonically increasing as ` increases. In comparison, the
value of ∆TR,pct shows a fluctuation trend. These results show that the R trajectory variance
and deterioration level of all stacks have a mutual influence on the lifetime control effects.
Setting a bigger variance will vary the resistance values of all stacks. The proposed strat-
egy tries to reverse this imbalanced aging through optimized load allocations, which helps
to decrease the overall system deterioration, thus improving the lifetime. But in the cases
where ∆R0 is much bigger or the variance is too high, it will limit the control effects of the
proposed strategy. These results encourage us to study the behavior of the proposed strategy
under different variance levels and variability situations (e.g. consider the random effects in
the Gamma process).

The results of lifetimes comparison percentage T+
R,pct in Table 5.3 confirm that generally
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Table 5.2: Simulation results for ∆TR,pct.

∆R0 (Ω cm2)
∆TR,pct (%)

` = 5 ` = 10 ` = 20 ` = 30

0.0 5.8 6.3 6.7 15.1
0.01 6.5 8.9 12.8 13.9
0.02 9.6 12.4 10.3 13.7
0.03 17.6 18.7 10.7 14.8

over 60% lifetimes simulated with allocation decision are better than the average split method.
In some cases, T+

R,pct even reaches 85%.
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Figure 5.8: Lifetime histograms (and fitted Gaussian pdf) for ∆R0 = 0.01 Ω cm2.

Table 5.3: Simulation results for T+
R,pct.

∆R0 (Ω cm2)
T+
R,pct (%)

` = 5 ` = 10 ` = 20 ` = 30

0.0 66.7 63.5 59.3 67.3
0.01 66.0 66.7 62.3 66.7
0.02 74.0 69.0 61.7 64.3
0.03 85.7 75.7 61.0 61.3
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5.3 Energy management under random dynamic loads

In the above discussed problem, we have developed an EMS under a deterministic dynamic
load profile. A GP-based deterioration model is adapted to model the deterioration of the
studied MFC system. In this section, we further extend the developed EMS to a random
dynamic load scenario, and the stack-to-stack deterioration variability is included and the
random-effect models (Chapter 3) are tested. The random load profile remains the same as
depicted in Section 5.1.1.

First, the influence of the random loads on the proposed management strategy is investi-
gated. Different from the deterministic type loads, the event duration for the random loads
may vary for different events. And this event duration is considered as information that may
be known or unknown at each decision. The study of qualifying the value of known load profile
information is thus studied. Another related problem is to check the possibilities of improving
the performance of the event-based decision-making strategy. For the event-based decision-
making strategy, each load allocation decision is triggered by a load change event. Then, one
question on improving this event-based decision is: Would it be beneficial for overall system
life if a decision is scheduled before a load change event if current event duration is relatively
long? Finally, the EMS is tested for GP with three random effects-based GP models under
a random dynamic load profile. The efficiency of the proposed strategies are compared with
the classic average load split method.

5.3.1 Energy management strategy

The EMS (load allocation strategy) is developed based on an event-based decision procedure
as demonstrated in above Section 5.2.1. The main difference is that a random dynamic load
profile is used as the system power demands. The basic event-based decision-making procedure
is depicted in Figure 5.2. The load allocation decision is scheduled whenever a load change
event is detected. For instance, at decision 1, a load demand change is detected, i.e., loads
changed from Lk1

d to Lk2
d (both values are assumed to be known).

In fact, the event duration is considered as the information of a random load profile. It
can either be known (request from fuel cell operator or qualified with high-cost estimation
techniques) or be unknown at the decision stage. When the event duration is unknown, an
expected event duration (τ e) estimated from the MC model is used in the decision-making
process. Assuming we are at decision k, and we know exactly the load demand level Lkd, L

k
d ∈

Lds. Then the expected duration of current event τ e is computed by:

τ e =
∞∑
i=0

τs(i+ 1)P i(1− P )

= τs
1

1−P

(5.14)

where τs is the discrete simulation time step used in Markov Chain model. P is the probability
of staying at Lkd which is defined in Ptr.
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Table 5.4: Main fuel cell parameters used in the simulation.

Load conditions
L

(W cm−2)
TR (h) v0 β0

FT

(Ω cm2)
R0

(Ω cm2)

Minimal 0.42 200 1.114
4.4 ×10−4 0.278 0.1803Nominal 2.381 1788 0.125

Maximal 3.869 200 1.114

5.3.2 Simulation settings

Table 5.4 summaries the main parameters of the investigated MFC system. The MFC system
consists of two identical fuel cell stacks (Rinifc1=R

ini
fc2=R0). The basic Monte Carlo simulations

confirm that 600 samples can obtain a convergence on the average system lifetime. Thus, the
number of simulation trajectories Ntrj is set to 600 in the following simulations.

The random load profile as shown in Figure 5.3(b) is generated through a Markov Chain
model as defined in Equation (5.7). The simulation time step (τs) is set as a constant value
of 360 s.

5.3.3 Simulation results

5.3.3.1 Investigation on load information and decision schedule

Information on load profile First, the random load profile presented in Figure 5.3 is used
to define the overall load demands. The expected event duration is calculated based on the
MC model for all possible load levels. Based on Equation (5.14) and the MC model define in
Equation (5.7), the expected event duration for four possible load demands is all equal to 400
s. Then, a comparison study of using the expected event duration and the true event duration
in proposed strategy is performed by Monte Carlo simulations. The GP and GP-RE models
are selected to model fuel cell resistance deterioration (both the classic Gamma process model
and random-effect model are considered). According to previous simulation results, ` = 10

is chosen in the GP and GP-RE model for tuning the variance of resistance deterioration
trajectories. The lifetime results are summarized in Table 5.5. The lifetime improvement
percentage (∆TR,pct) in the table is calculated by:

∆TR,pct =
TR,exact duration − TR,expect duration

TR,expect duration
× 100% (5.15)

where TR,exact duration represents the average lifetime simulated with known event duration,
TR,expect duration is the average lifetime simulated without known exact event duration. ∆TR,pct
qualifies the value of having load profile information in terms of system lifetime improvement.
A higher ∆TR,pct represents a high value in knowing the event duration.

It is seen from the ∆TR,pct results that for both GP and GP-RE models the lifetime
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improvements are relatively small. This result shows that the proposed strategy is robust to
load profile information. Not knowing the exact event duration is not causing significant loss
of the EMS strategy performance.

Checking the influence of scheduling extra decision The next step is to explore the
possibilities of improving system lifetime results by scheduling an extra decision before the
occurrence of the next load change event. A relatively less dynamic load profile (denoted as
load cycle 2) is defined for comparing with the original load profile (Equation (5.7), load cycle
1). The new load profile is generated by:

Ptr =


0.7 0.1 0.15 0.05

0.05 0.8 0.05 0.1

0.05 0.05 0.85 0.05

0.05 0.15 0.2 0.6

 , Lds = [2.9, 4.1, 5.8, 7.0] (5.16)

Figure 5.9 shows the shape of two load cycles defined above. It is observed that the load
cycle 2 is relatively less dynamic compared with the load cycle 1. This is decided by the
transition matrix defined in the MC model. The probability of staying at current state in
Equation (5.16) is much larger than those in Equation (5.7). Therefore, load cycle 2 presents
a relatively longer event duration.

Here, the comparison strategy is formulated by adding an extra decision for previous event-
based decision strategy when the event duration τe exceeds a predefined duration threshold
τe,th, namely, τe ≥ τe,th. According to the simulation results, τe,th is taken as 10τs. If the event
duration condition is satisfied, a decision will schedule at the middle of the event duration.
Notice that here we are assuming that the event duration τe is known for current event.

The lifetime comparison results of load cycle 1 and load cycle 2 are summarized in Table 5.6,
and Table 5.7, respectively. The lifetime improvement percentage in the table is calculated
by:

∆TR,pct =
TR,extra decision − TR,no extra decision

TR,no extra decision
× 100% (5.17)

where TR,extra decision stands for the average lifetime obtained from the proposed strategy with
extra decision, and TR,no extra decision is the average lifetime obtained from the event-based
load allocation strategy where the decisions are scheduled at each load change event.

For the GP deterioration models, no obvious improvement is observed in both load cycles.
By contrast, a relatively obvious difference is observed for the random-effect model, i.e. GP-
RE. The average lifetime is improved by 3.15% when adding extra decision under load cycle
1. This value is increased to 9.46% for load cycle 2. These results verify the efficiency of
our strategy for the random-effect deterioration model. Moreover, for the load profile with
relatively long event duration, the extra decision helps to re-allocation the loads among stack
to balance overall system deterioration such that an improved system life can be obtained.
It is verified in previous Chapter 3, the GP-RE model considers the deterioration variability
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Figure 5.9: Proposed two types of dynamic load cycle.

Table 5.5: Lifetime comparison for with and without event duration information.

Models
Known event duration Expected event duration

∆TR,pct(%)
TR (h) TR,med (h) TR (h) TR,med (h)

GP 475 477 472 473 0.45
GP-RE 687 566 675 573 1.74

and their deterioration trajectories show high variability compared to the standard GP model.
Thus, an obvious improvement in average system life are observed for the GP-RE model.

5.3.3.2 System lifetime Results of different random effects-based deterioration
models

In parallel with the previous studies, this section presents the lifetime (first hitting time of
the failure threshold FT ) results of the proposed load allocation strategy on four types of
stochastic deterioration models, i.e., GP, GP-RE, GP-RM, and GP-RV (see Chapter 3). The
main purposes of this part of work are two-fold:

1. To investigate the applications of different types of stochastic deterioration models for
MFC system energy management study.

2. To evaluate the performance of our strategy under a random dynamic load profile.

Firstly, the lifetime histograms of the different deterioration models are presented. Ac-
cording to the same settings as in the deterministic load scenario, different ` values are in-
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Table 5.6: Lifetime comparison for with and without scheduling extra decision - load cycle 1 (Fig-
ure 5.9).

Models
With extra decision Without extra decision

∆TR,pct(%)
TR (h) TR,med (h) TR (h) TR,med (h)

GP 476 477 475 477 0.2
GP-RE 708 608 687 566 3.15

Table 5.7: Lifetime comparison for with and without scheduling extra decision - load cycle 2 (Fig-
ure 5.9).

Models
With extra decision Without extra decision

∆TR,pct(%)
TR (h) TR,med (h) TR (h) TR,med (h)

GP 650 651 648 647 0.35
GP-RE 1261 804 1152 742 9.46

troduced in the GP model to investigate the influence of different deterioration variances
(Equation (5.10)). Figure 5.10 shows the lifetime histograms with ` = 5. It is noted that
in all figures, the “dec” represents decision -making strategy (proposed method), and “ave”
stands for the average load split method. Setting ` = 5, 10 enables a relatively small variance
in the original GP model. By comparing the GP model results in Figures 5.10, 5.11, 5.12,
and 5.13, it is seen that the histograms are getting wider and lower. Regarding the shapes of
the different deterioration models, the GP, and GP-RV models are approximately Gaussian
(symmetrically) distributed, whereas the GP-RE and GP-RM models are not symmetrically
distributed. Another interesting phenomenon is that the histogram shapes of the random
effect models are less sensible to the value of `. The random effects dominant the distribution
of first-hitting times.

The corresponding cumulative distribution function results are plotted in Figures 5.14,
5.15, 5.16, and 5.16. The failure probability (Fx) taken from Monte Carlo analysis are shown
in these CDF curves. In Figure 5.14 GP model, it is seen that the MFC system reaches
the value F0.1 (i.e. failure probability at 0.1) at approximately 347.2 hrs for the average
load strategy. On the other hand, when the system operates with load allocation decision
(our strategy), the systems attains F0.1 at approximately 379.5 hrs, resulting in a meaningful
prolongation of system life. Similar improvements are observed for the three random-effect
models. Such improvements are also observed for the comparison results of ` = 10, 20, 30.

The five lifetime-related indicators, i.e., mean system lifetime TR, median system lifetime
TR,med, and four lifetimes comparison percentages (∆TR,pct, T+

R,pct, T
ave
R,pct, T

dec
R,pct) are computed

from the obtained simulation results. Table 5.8 summarizes the indicators results. For all
cases, the lifetimes (both the mean and median) obtained from load allocation decisions are
larger than that of the average split strategy. These results are also visible with the average
lifetime improvement indicator ∆TR,pct. The values of T+

R,pct show that generally over 60%
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Figure 5.10: Lifetime histograms results with ` = 5.

of the simulated lifetimes are higher than the average split. Moreover, the comparison of the
lifetimes of the decision strategy and the average split strategy prove that our strategy can
achieve around 20% of improvement.

By comparing the results with the GP model to the random effects models, it is observed
that the average lifetime improvement indicator ∆TR,pct is improved. These results confirm
that when considering the stack deterioration heterogeneity, the proposed load allocation
strategy can still obtains an improved system lifetime compared with the classical average
split strategy. For the random effect-based models, the statistical information of the studied
stochastic models are used in the decision-making procedure to decide the optimal load allo-
cations. In GP deterioration model, the deterioration behavior of different stacks tend to be
similar on average, and the statistical information may not contribute too much for helping
to improve fuel cell lifetime. On the contrary, the variability of individual stack deterioration
behavior is highlighted in random effects models, thus it would be useful to include the sta-
tistical information when computing the optimal load allocations. These are reflected by the
average lifetime improvement indicator ∆TR,pct where the results of the random effects models
are generally better than those of the GP models. However, the random effects increase the
variability of first hitting time and the indicators of T+

R,pct, T
ave
R,pct, and T

dec
R,pct are slightly lower

than those of the GP model. However, the global results with decision-making strategy are
better than those for the comparison strategy, i.e., average load method.
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Figure 5.11: Lifetime histograms results with ` = 10.
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Figure 5.12: Lifetime histograms results with ` = 20.
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Figure 5.13: Lifetime histograms results with ` = 30.
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Figure 5.14: CDF results with ` = 5.
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Figure 5.15: CDF results with ` = 10.
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Figure 5.16: CDF results with ` = 20.
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Figure 5.17: CDF results with ` = 30.

Table 5.8: Lifetime indicator results for ` = 5

TR (h) TR,med (h) ∆TR,pct
(%)

T+
R,pct

(%)
T aveR,pct

(%)
T decR,pct

(%)ave dec ave dec

GP 402 427 403 428 6.0 68 50.8 74.8
GP-RE 429 525 389 489 22.4 62.5 42.3 60.2
GP-RM 224 265 190 234 18.4 56.5 44.8 52.0
GP-RV 405 426 410 426 5.2 64.2 56.3 73.5

Table 5.9: Lifetime indicator results for ` = 10

TR (h) TR,med (h) ∆TR,pct
(%)

T+
R,pct

(%)
T aveR,pct

(%)
T decR,pct

(%)ave dec ave dec

GP 397 420 399 421 5.8 64.0 51.5 68.7
GP-RE 421 525 368 492 24.6 63.5 40.3 64.5
GP-RM 225 266 199 234 18.5 55.5 44.2 50.7
GP-RV 399 426 410 426 6.1 61.3 58.2 73.0
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Table 5.10: Lifetime indicator results for ` = 20

TR (h) TR,med (h) ∆TR,pct
(%)

T+
R,pct

(%)
T aveR,pct

(%)
T decR,pct

(%)ave dec ave dec

GP 387 416 387 421 7.6 59 49.5 65.3
GP-RE 424 506 378 462 19.2 60.2 42.5 57.5
GP-RM 218 272 194 242 24.8 55.7 44.3 54.3
GP-RV 386 422 400 426 9.3 64.0 57.3 74.7

Table 5.11: Lifetime indicator results for ` = 30

TR (h) TR,med (h) ∆TR,pct
(%)

T+
R,pct

(%)
T aveR,pct

(%)
T decR,pct

(%)ave dec ave dec

GP 375 406 378 411 8.1 59.8 52.0 65.2
GP-RE 446 519 406 503 16.4 56.8 43.2 56.7
GP-RM 218 252 184 215 15.7 56.8 41.3 48.5
GP-RV 385 418 396 426 8.7 60.7 56.3 67.3

5.4 Conclusion

The EMS development problem is formulated as a constrained nonlinear optimization problem.
The SLSQP algorithm is suitable to solve formulated optimization problem in terms of speed
and accuracy. The study of randomness in the dynamic loads showed that the proposed load
allocation strategy is very dependent on the load demand information. Under the event-based
decision-making, the performance of the proposed strategy can be improved by scheduling an
extra decision before a load change event, achieving 9.46% improvement in the average system
lifetime for GP-RE deterioration model. The simulation results proved that the proposed
EMSs can be used in a wider range of operation scenarios as well as different deterioration
models. Moreover, a relatively high improvements for random effects-based deterioration
models can be achieved. The average system lifetime can be improved up to 24.8%. The
EMSs studied in this chapter only consider the load and load varying deterioration factors.
The start-stop operation mode is not considered in the proposed strategy. An EMS capable
of optimizing start-stop operation in MFC systems will be developed in the following chapter.



Chapter 6

Multi-stack Fuel Cells
Maintenance-based Energy

Management Strategy Studies

In previous MFC EMS studies, we have proposed several deterioration-aware strategies to
improve fuel cell system lifetime. The efficiency of those strategies has been illustrated on a
range of deterioration models, including the GP model and the random effect models (GP-RE,
GP-RM, GP-RV). On this basis, this chapter introduces an oversized MFC EMS problem. The
operation task is to manage a three-stack system with two stacks only required to supply the
power demand. A management strategy is proposed by taking into account the optimization
of start-stop to decide the operating loads among different stacks. Eventually, this oversized
operation problem in MFC can be extended to a maintenance problem. The replacement of
deteriorated fuel cell stacks can be optimized by a maintenance scheduling policy. This is
treated as a perspective problem of this thesis.
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6.1 Three stacks operation problem formulation

6.1.1 General context

Current fuel cell technologies fail to meet the durability requirements in many practical appli-
cations. For example, in Fuel Cell Electrical Buses, the lifetime of MFC system is still below
the DOE target of 8,000 hours. Thanks to the multi-stack architecture in MFC, one possible
solution is to make use of the redundancy design in MFC, i.e., put together more stacks in the
system to reach the operation durability requirements. This redundancy design enables MFC
system to switch between different stacks according to their state of health. One practical
example is addressed in DOE Durability-adjusted fuel cell system cost program [155]. The
program proposed two types of analysis methods to estimate the durability-adjust cost of a
fuel cell system. The first approach was to estimate the number of stack replacements to meet
8,000 hours durability requirement. The second approach was to extend system operating time
through oversized stacks design. In both methods, proper durability analysis and lifetime es-
timation are required. The first approach is linked to the optimization of the maintenance
schedule and replacement schedule. The concept of oversizing is found interesting and could
be studied as a practice for reaching the DOE durability target. This oversizing is studied to
enhance the durability of the studied fuel cell system.

However, the operation of such an MFC system needs to be properly managed by an
efficient management strategy (i.e., EMS). A deterioration-aware EMS is needed to help im-
proving fuel cell system durability by optimally allocating the operation load among different
stacks. This section proposes a simplified study case for investigating such EMS via oversized
MFC system.

6.1.2 Proposed decision-making problem

The studied case of this chapter consists in managing the operation of a three-stack fuel
cell system, denoted as Mfc,3= {FC1, FC2, FC3}. The power load supplied by three stacks
FC1, FC2, and FC3 are noted as {Li}i=1,2,3. Assuming that the stacks of Mfc are identical,
each stack operates with a production capacity ranging from Lmin to Lmax (detailed fuel cell
parameters refer to Table 3.3).

A random dynamic load profile as introduced in Chapter 5 (Figure 5.3) is used to represent
the demands for the studied MFC system. The same Markov Chain model is used to define
the load cycle:

Ptr =


0.1 0.35 0.35 0.2

0.35 0.1 0.35 0.2

0.2 0.35 0.1 0.35

0.2 0.35 0.35 0.1

 (6.1)

and the four possible states are Lds = [2.9, 4.1, 5.8, 7.0].
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Figure 6.1: Proposed three stacks operation problem.

The overall three-stack fuel cell system operation problem is sketched in Figure 6.1. In this
problem, at most two fuel cell stacks are necessary to supply the required power demands.
The two operating stacks are denoted as FCop1,FCop2, and the one stopped stack is FCst.
The decision-making problem consists of two sub-problems. The first problem is to choose
two stacks to operate at each decision, which requires a switch decision. Then the second
problem is how to distribute the required power to working stacks. The proposed problem is
formulated as a sequential decision-making problem. The overall deterioration model of the
studied MFC is adopted from Chapter 3. The overall fuel cell stack resistance deterioration is
modeled as a summation of load amplitude, load varying, and start-stop caused deterioration
(Equation (3.13)).

6.2 Proposed decision-making strategy

In Chapter 5, we have built a load allocation strategy for optimizing the load allocation in
a two-stack fuel cell system. The decision-making policy is optimized through a sequential
event-based decision-making procedure. A new decision is made whenever there is a load
change event. The load allocation decision-making strategy of this chapter is constructed
based on this strategy by integrating the decision to switch on/off of fuel cell stacks.

Concerning the operation problem of this chapter (Section 6.1.2), limited by the special
operation requirement, i.e., operating two stacks simultaneously within a three-stack fuel cells,
an extra decision of choosing working stacks is required compare to the decision problems
solved in Chapter 5. Thus, we propose a two-step decision-making strategy, where the load
allocation decision and operating stacks decision are handle at each step. Then the final
operation decision is decided by the operating stack combination with the load allocation that
minimize the designed decision criterion which is linked to fuel cell system deterioration.

• Decision-making step 1: Optimizing load allocation for two operating stacks
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For a multi-stack fuel cell system with three stacks, there are three possible operation combi-
nations when all three stacks are available:

comb1 = {FCop1 = FC1,FCop2 = FC2,FCst = FC3}
comb2 = {FCop1 = FC1,FCop2 = FC3,FCst = FC2}
comb3 = {FCop1 = FC2,FCop2 = FC3,FCst = FC1}

(6.2)

Then, for each operation combination, the load allocation decision is optimized by solving the
optimization problem:

minimize
{γji }i=1,··· ,n

Jdec1({γji }i=1,··· ,n) =
n∑
i=1

ωi{(∆R0
∆L,i)

2 + ∆R0
L,i +

m−1∑
j=1

(∆RjL,i + (∆Rj∆L,i)
2)}

subject to Lmin ≤ γjiL
j
d ≤ Lmax,

n∑
i=1

γji = 1

∆RjL,i = D(γjiL
j
d) · τ

j
e

∆R0
∆L,i = K|γ0

i L
0
d − γ

ini,d
i Lini,dd |

∆Rj∆L,i =
m−1∑
j=1

K|γj+1
i Lj+1

d − γjiL
j
d|, j = 1, · · · ,m− 1

(6.3)
where τ je is the time length of event j, m is the number of events taken into account during
each decision, 0 stands for the current load change event; Ljd defines the external dynamic load
demands; γji is the load allocation ratio for FCi at decision time j, and γini,di is the initial load
allocation ratio of stack i at each decision. ωi is the corresponding weight of the overall FCi
deterioration (Rfci) (Equation (5.9)). Note that the deterioration term due to load variation
∆Rj∆L,i is expressed with a quadratic form for the optimization convenience. K is a constant
term calculated by Equation (3.16). The problem of this chapter considers an MFC with three
stacks, only two stacks are required to operate, thus, n equals to 2.

• Decision-making step 2: Optimizing (selecting) operating stacks

Then for each operation combination, estimating a second deterioration criterion Jdec2 based
on the optimized load allocation, which writes:

Jdec2(γ0
i ) =

n∑
i=1

∆R0
L,i +K|γ0

i L
0
d − γ

ini,d
i Lini,dd |+ kss∆Rss (6.4)

It is seen from Jdec2 that only the current load change event is considered when calculating
the decision criterion. Then Jdec2 estimates the weighted future overall system deterioration.
∆Rss is the resistance deterioration by each start-stop cycle. A constant hyperparameter kss
is defined to tune the weights of start-stop contribution to overall resistance deterioration.
γopt is the optimal load allocation calculated from Equation (6.3). Then the allocation ratio
for two operating stacks are γ0

1 = γopt for FCop1 and γ0
2 = 1− γopt for FCop2.

The final optimal operation combination is optimized by:

minimize
{combi}i=1,2,3

{Jdec2(combi)} (6.5)
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where Jdec2· is the second deterioration criteria as defined in Equation (6.4). The optimized
operation combination and its load allocation decision solved in decision step 1 give the final
decision of the proposed decision-making strategy.

The hyperparameter kss is related to fuel cell failure threshold (FT ):

kss =

{
k1 if 0.9FT ≤ max(Rfc1, Rfc2, Rfc3)

k2 else
(6.6)

Here k1 and k2 are two parameters for fuel cell stack at different deterioration level. When the
maximum resistance among three stacks reaches 90% of the failure threshold, the start-stop
deterioration cost term is quantified by k1. For maximum resistance level below this threshold
(0.9FT ), the start-stop deterioration cost term is quantified by k2. These weights are linked
with the optimization of switch decisions. When this weight is small, the cost of switching
on/off stacks is relatively lower, thus increasing the frequency of start-stop actions. On the
contrary, when the weight is large, the frequency of start-stop action will be decreased due to
the high cost of switching stacks. Thus, here k1, k2 satisfy k2 < k1.

Figure 6.2 depicts the proposed operation strategy for the proposed three-stack operation
problem. At the beginning of system operation, three stacks are available for operating (no
stack failure occur). Then the above two-step optimization is applied to select the two oper-
ating stacks and optimal load allocation for these two stacks. In the diagram, this two steps
optimization is represented by Jdec1 for deciding the optimal load allocations, and the switch
decision is optimized through Jdec2. When the system deteriorates to a certain level, stack
failure may happen for the studied MFC system. When only one stack fails, the remaining
two stacks keep running to provide the power demand. At this stage, there is no choice of
switching stacks, the strategy only optimizes the load allocation between these two stacks.
And finally, the system failure is triggered by the time when two stacks fail.
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Figure 6.2: Proposed three stacks operation strategy.

6.3 Simulation results

To illustrate the simulation results, both the deterministic scenario and Monte Carlo simula-
tions are conducted in this section. In deterministic scenario, both the load profile and fuel
cell resistance deterioration are deterministically decided. Two Daisy chain-based decision-
making strategy are then introduced, and their simulation results are compared with the
proposed two-layer decision-making strategy. After setting simulation parameters, the sim-
ulation results of deterministic scenario and Monte Carlo simulation (with randomness) are
presented and discussed.

6.3.1 Deterministic scenario settings

The deterministic scenario in this chapter refers to deterministic settings in terms of MFC
system load profile and fuel cell stack deterioration. A deterministic load profile is set by
draw a fixed realization of the Markov Chain model (Section 6.1.2, Equation (6.1)). Then
the deterioration of fuel cell stacks are accumulated by the mean increment of the chosen
Gamma process rather than a stochastic value. Deterministic scenario setting simplifies the
deterioration behavior studies by removing the randomness exists within the load profile as
well as fuel cell stack deterioration. Deterministic scenario simulation of the studied MFC
system deterioration with different management strategies will be discussed in the results
section (Section 6.3.4.1).
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6.3.2 Daisy Chain average load and deterioration-aware Daisy Chain av-
erage load strategies

The classic daisy and average load strategy are adapted to design two comparison operation
strategies, i.e., Daisy Chain-based Average Load Strategy, and Deterioration-aware Daisy
Chain Average Load Strategy. The decision of operating stacks and their operating loads
are two decisions to be made in these strategies.

• Daisy Chain-based Average Load (DC-ave). DC-ave strategy decides the operating
stacks based on Daisy Chain strategy, i.e., sequentially switching the operating stacks.
Then their operating loads are decided by Average Load method, namely, equally dis-
tributed the load demand by stacks.

• Deterioration-aware Daisy Chain-based Average Load (DDC-ave). DDC-ave also decides
the operating loads by using the Average Load strategy. But the operating stacks are
decided in a deterioration-aware manner rather than the totally sequential one as in
DC-ave. This deterioration-aware strategy will stops the most deteriorated stack and
replace it with the previously stopped stack. In this way, the overall system deterioration
is considered to be balanced in the sense that the more deterioration stack is prevented
from further deteriorating.

The basic procedure of these two comparison strategies is sketched in Figure 6.3. The
switching on/off decisions are conducted every tausw hrs for both strategies. τsw is also
known as the switch decision time interval. At initial time step fuel cell stack 1 (FC1) and
fuel cell stack 2 (FC2) are in operating, and fuel cell stack 3 (FC3) is stopped. According to the
deterioration levels shown in the figure, FC3 is currently most deteriorated stack. Then the
next decision is performed at time τsw. It is observed that FC1 is now the most deteriorated
stack, followed by FC2 and FCs. The pure Daisy Chain-based strategy sequentially switches
on/off stacks without considering the current deterioration levels of each stack. That is, for
decision at τsw, the DC-ave strategy switch off FC1, switch on FC3 (assuming the sequential
operating order is (FC1, FC2), (FC2, FC3), (FC3, FC1)). The ‘ave’ represents that the
average split method is applied to decide the operating load for each stack. Then at the next
decision time 2τsw, FC2 is switched off, and FC1 is switched on.

By contrast, the DDC-ave is a deterioration-aware decision-making strategy in terms of
the first decision on switching on/off stacks. For the same operation, at τsw, the DDC-ave
strategy will switch off FC1, and switching on FC3 due to FC1 is the most deterioration stack.
Then at 2τsw, considering FC1 is still the most deteriorated one, FC2 and FC3 will remain as
the two operating stacks which are different from the decision of the DC-ave strategy.
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Figure 6.3: Basic decision process of DC-ave and DDC-ave strategies.

6.3.3 Parameters and simulation settings

The dynamic random load profile and main fuel cell parameters are taken from Chapter 5
Equation (5.7) and Table 5.4. The initial resistances for three stacks are:

Rinifc1 = R0 + ∆R0, R
ini
fc2 = R0, R

ini
fc3 = R0 (6.7)

where R0 = 0.1803 Ω cm2 is the original initial value fitted from IEEE 2014 data challenge
datasets. ∆R0 = 0.01 Ω cm2 is the initial increment added to FC1 to simulate an aged stack.

The GP-RE model is chosen to model MFC system deterioration in order to take into
account stack-to-stack deterioration variability of the studied MFC (Chapter 3, Section 3.2.3).
The random dynamic load profile is generated based on the Markov Chain model as described
in Section 6.1.2, Equation (6.1). The load profile of the deterministic scenario that draw based
on the proposed Markov Chain model is shown in Figure 6.4.

Parameters for DC-ave and DDC-ave strategies The decision time interval τsw needs
to be set for the DC-ave and DDC-ave strategies. These values are investigated and optimized
under deterministic scenarios in order to compare the lifetimes of different parameter settings.
The deterministic scenarios mean that the resistance deterioration is calculated by the ex-
pected value instead of random deteriorating values, and the random dynamic load cycle is
kept the same for each simulation. Figure 6.5 shows the simulated lifetimes for a series of τsw.
The DDC-ave is used as the EMS. It is seen that the overall number of start and stop times
are decreasing with the increment of τsw. The maximum lifetime is observed at τsw = 45 h,
thus it is chosen for the following simulations.
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Figure 6.4: Simulation load demand profile (deterministic scenario)

Figure 6.5: Simulated lifetimes and start-stop times under investigated τsw

Parameters for the proposed decision-making strategy The main parameters to be
set for the proposed strategy are k1, k2 which are used to calculate the weight of start-stop
deterioration as discussed in Section 6.2. Figure 6.6 shows the simulated lifetime (under
deterministic scenario) with respect to different k1 and k2. The maximum lifetime is obtained
by parameters of k1 = 15, k2 = 88.

6.3.4 Main simulation results

6.3.4.1 Results on deterministic one-run simulation

First, the behavior of the proposed load allocation strategy is analyzed under a determinis-
tic scenario. This deterministic scenario is designed similar to the one used for optimizing
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Figure 6.6: Selecting decision parameters k1, k2.

decision time interval τsw. The dynamic load profile is generated by the MC model defined
in Equation (5.7). Figure 6.4 depicts part of the loads. This load is used as the demand for
three studied strategies, i.e., DC-ave, DDC-ave, and our strategy (the proposed management
strategy).

The constructed strategies are tested on the three stacks operation problem. Three in-
dependent simulations are performed from the beginning till system failure, obtaining three
one-run trajectories. Figures 6.7, 6.8, and 6.9 show the detailed resistance deterioration level
and load allocations information at each switching decision (here the switching decision specif-
ically refers to switch on/off different stacks). For the studied MFC system, the deterioration
variability is modeled by a GP-RE model as introduced in the parameter setting section. As a
result, each stack is assigned with (sampled from a Gamma law) a different scale parameter β
to simulate this random effects. For instance, in the trajectory results as shown in Figure 6.7,
FC3 is assigned with the biggest scale parameter βFC3 = 3.67× 10−3. This is why FC3 shows
the highest deterioration rates. The scale parameters used in the simulation of DDC-ave and
our strategies are specified in the figure captions (Figures 6.8, 6.9).

Our strategy obtained the highest lifetime for the studied system, 1731.2 h, followed by
the DDC-ave strategy 1641 h, and the DC-ave strategy procedures the lowest lifetime 1467.8
h. DC-ave is a pure sequential switching strategy for deciding the operating stacks with-
out considering stacks deterioration information. This can be observed from Figure 6.7,
the three stacks are switched on/off in a sequential order: {FC2 off, FC1, FC3 on} →
{FC1 off, FC2, FC3 on} → {FC3 off, FC1, FC2 on} · · · . By contrast, the deterioration-aware
strategies decide the switching actions by taking into account system deterioration states.
This is beneficial for balancing the deterioration levels of all stacks so that the overall system
life can be extended. It is observed that in DDC-ave and our strategy, they switch off FC1
in the first decision, then for the remaining decisions, they keep FC1 running, only switching
between FC2 and FC3. This is due to FC1 being the most deteriorated stack at the beginning
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Table 6.1: Resistance values of all stacks at the end of system life.

Stacks
Resistances (Ω cm2)

DC-ave DDC-ave Our strategy

FC1 0.25137 0.268716 0.277421
FC2 0.277488 0.27749 0.277491
FC3 0.277498 0.277498 0.2775

of life, thus it is beneficial to stop it in the first decision. In the following decisions, it will be
restarted when the switch decision criterion is satisfied.

It is observed from the results figure that the three resistance trajectories are gradually
grouped together from DC-ave strategy to DDC-ave strategy, and finally our strategy. This
is verified from the resistance values at the end of the lifetime as listed in Table 6.1. For
our strategy, the three values are very close to each other. While in DDC-ave, the FC1 is
0.268716 Ω cm2 which is lower than the value in our strategy. In DC-ave, the resistance
value of FC1 is much smaller at the end of life. Besides, the resistance of FC2 is also slightly
smaller than the other two strategies. These results prove that the proposed strategy can
effectively control the deterioration variability among different stacks which helps to balance
overall system deterioration levels, thus achieving an improved system life. Compared with
the DDC-ave strategy, the efficiency of our strategy lies in the two aspects, which correspond
to the two decisions:

• For the load allocation decisions. Our strategy decided the allocations by using the
strategy proposed in Chapter 5, which is proved to be able to extend system life.

• For the switch decisions. Our strategy is relatively more flexible by designing two weights
(k1, k2) for start-stop deterioration. While in DDC-ave, the switch decision is checked
on a fixed time interval (τsw) which produces limited control effects for extending system
life.

6.3.4.2 Monte Carlo simulation results

The system lifetime of the three strategies is now estimated with Monte Carlo simulations. The
number of simulation runs is kept the same as in Chapter 5 (N = 600). The overall simulated
lifetimes are summarized in Figure 6.10(a). The lifetime-related indicators are calculated
based on this histogram and listed in Table 6.2. For the lifetime improvement percentage
result, we have computed the values for our decision-making strategy with respect the DC-ave
and DDC-ave strategies, respectively. Then the percentage values (TDCR,pct, T

DDC
R,pct , and T

dec
R,pct)

of the Monte Carlo simulation lifetimes that are larger than the average lifetime of the DC-
ave strategy for all studied strategies, namely, the DC-ave, DDC-ave, and proposed decision-
making strategy. Among the three studied strategies, our strategy obtained the highest lifetime
(TR = 1268 h, TR,med = 1229 h). The mean and median lifetimes of the DDC-ave strategy
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Figure 6.7: Switch decisions results for DC-ave strategy (deterministic scenario, βFC1 = 1.067 ×
10−4, βFC2 = 1.039× 10−3, βFC3 = 3.67× 10−3).

Table 6.2: Overall lifetime indexes results.

∆TR,pct(%) ∆TR,pct(%)
TDCR,pct(%) TDDCR,pct (%) T decR,pct(%)

DC-ave
Our strategy

DDC-ave
Our strategy

` = 10 21.7 8.1 45 51 61

are 1127 h and 1062 h, respectively. The DC-ave strategy only obtains an average lifetime of
1042 h and a median lifetime of 957 h. Compared with the DC-ave strategy, our approach
obtains 21.7% of average lifetime improvement. In comparison to the deterioration-aware
strategy (DDC-ave), our strategy helps to improve the average system lifetime by 8.1%. 45%

of simulated lifetimes by DC-ave are larger than the average lifetime of the DC-ave strategy.
For the deterioration-aware DC-ave strategy, this percentage increased to 51%. Our strategy
further improves this value to 61 %. Thus, the proposed strategy outperforms both the basic
daisy chain-based (deterioration-unaware) and deterioration-aware strategies.

Figure 6.10(b) plots the CDF curves based on the histogram results shown in Fig-
ure 6.10(a). The CDF results confirm the above conclusion. The proposed strategy greatly
lowers the system failure probabilities in nearly all the time range shown in the figure. Thus
obtaining the optimal system life.
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Figure 6.8: Switch decisions results for DDC-ave strategy (deterministic scenario, βFC1 = 1.067 ×
10−4, βFC2 = 1.039× 10−3, βFC3 = 3.67× 10−3).

Figure 6.9: Switch decisions results for our strategy (deterministic scenario, βFC1 = 1.067 ×
10−4, βFC2 = 1.039× 10−3, βFC3 = 3.67× 10−3).
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(a) Lifetime histograms. (b) Lifetime CDF results.

Figure 6.10: Simulation results for random effects model under random load profile.
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6.4 Proposal of maintenance-based management problem

6.4.1 Motivations

From the literature review, we have seen few works on investigating the reliability and main-
tenance scheduling for fuel cell-based energy systems. Indeed, developing a reliable energy
system with lower operating costs is the goal of using these systems. For multi-stack fuel cell
systems, the actual challenges include durability, cost and reliability. In previous studies, we
have investigated the development of deterioration-aware EMS for improving MFC system
durability and fuel economy under the static and dynamic load profiles. And in the three-
stack problem proposed in this chapter, we have developed a new EMS for handling start-stop
different stacks. Based on these studies, the following step is to incorporate the maintenance
scheduling into previous deterioration-aware EMS, constructing a maintenance-based EMS for
managing the operation of studied MFC system.

Different from previous problems, the maintenance-based EMS problem proposed here
is dedicated to MFC long-term operation tasks. The maintenance scheduling strategy is
responsible for optimizing stacks replacement, together with the deterioration-aware EMS
to optimize MFC system long-term operation. In this way, the durability, reliability and
operation cost of the MFC system can be optimized through the maintenance-based EMS
thanks to the flexible modular architecture offered by MFC systems.

Therefore, we need a case study for multi-stack fuel cell systems to fulfill a long-term
operation task under the supervision of a maintenance procedure. The aging awareness and
stochasticity of the fuel cell stacks as well as the stochasticity in the dynamic loads are consid-
ered during system operation. The following problem formulation section will define a specific
study case for the described maintenance-based EMS problem.

6.4.2 Problem formulation

6.4.2.1 System configuration

Consider a multi-stack fuel cell system with n identical parallel-connected stacks, Mfc,n. Note
here that even if the stacks within the MFC system are said to be initially fabricated identi-
cally, the deterioration state of a specific stack can be different as in the previous three-stack
operation problem (Section 6.1). Each stack with a production capacity ranges from minimal
load Lmin to maximal load Lmax. And the power load of the nominal condition is noted as
Lnom.

A random dynamic type load profile generated by a MC model is used for modeling the
power demands for the studied MFC system. The system is required to produce the power as
defined in the load profile. The MC model is defined by the transition states Lds and Markov
transition matrix Ptr. An example of the defined load profile is shown in Figure 6.4.
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The overall fuel cell stack resistance deterioration is modeled as a summation of load, load
varying, and start-stop caused deterioration (Equation (3.13)). The GP-RE model is used to
model fuel cell resistance deterioration of load effect, i.e., ∆RL. As addressed in Chapter 3,
the individual stack deterioration heterogeneity is modeled by adding a random effect to the
Gamma process model. The load varying (∆R∆L) and start-stop (∆Rss) deterioration terms
are modeled through deterministic model as presented in Chapter 3.

6.4.2.2 Maintenance-based EMS problem

The defined multi-stack fuel cell system is required to supply the random dynamic power
demand for a fixed operation period (long duration e.g., 3000 hrs). The general problem is to
construct a maintenance-based EMS for maintaining the long-term operation of the defined
MFC systemMfc,n while maximizing system durability and minimizing the maintenance cost.
During the system operation, stack replacement is allowed. It is assumed that the failed stacks
in the multi-stack system can be replaced without stopping the system.

The proposed maintenance-based EMS is sketched in Figure 6.11. Two key deterioration
thresholds are required for the studied PEM fuel cell stack, i.e. the failure threshold FT and
the preventive threshold Pprev. For a specific PEM stack FCi, when its deterioration level Ri
reaches FT , the stack is said to be failed. When Ri reaches Pprev, a replacement maintenance
is performed on FCi, and Ri recovers to initial level.

Then the decisions required by the joint maintenance problem include:

• Should we replace the stack? If replaced, which level of load to apply for the new stack?

• If no replacement, which loads to apply for the original stack?

The joint decision-making flowchart is given in Figure 6.12. For the maintenance scheduling
problem, the optimal load decisions L∗i are influenced by the replacement decision. The
replacement action is conducted if Ri ≥ Pprev. The overall joint maintenance cost C is
composed of three sources: the replacement cost Crep, the waste of useful lifetime cost Crul,
and the system failure cost Cfai, which writes:

C = Crep + Crul + Cfai (6.8)

where Cfai > Crep.

The optimal load allocation decisions L∗i are decided by minimizing the overall cost C.
The objective of the joint maintenance problem is to find the optimal Pprev for minimizing
the overall maintenance cost C.
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Figure 6.12: Joint maintenance decision flowchart.

6.5 Conclusion

The flexible modular architecture within an MFC system makes them easy to scale up for
higher output power. The redundancy offered by MFC enables a flexible degradation mode
operation. To put it another way, these advantages in the MFC system also make the EMS
development relatively challenging concerning that the change in the operation requirements
may require a different EMS. In the studied three-stack operation problem, the new strategy
is designed by adding an extra decision layer for deciding the stack switching on/off actions.
The proposed strategy is verified to improve system life by 21.7% compared to the classic
DC-ave strategy. Moreover, the DC-ave strategy is improved by adding a deterioration-aware
condition, i.e., the DDC-ave strategy. The lifetime simulation results confirmed that our
strategy outperforms the DDC-ave strategy by 8.1%. Thus, in the three-stack operation
problem, an EMS that is able to balance the deterioration over all stacks through the load
allocation and stack switching decision is proven to be effective.

In fact, not only does the start and stop of the stacks need to be optimized for MFC
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operation, but the replacement of failure stacks is also needed. This study opens the way
to maintenance approaches to multi-stack systems. A perspective problem is defined to find
the optimal maintenance-based EMS for minimizing maintenance costs as well as improving
system durability and reliability.
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Main results

In this thesis, different deterioration-aware EMSs are developed for a stochastic deteriorating
MFC systems under constant and dynamic load profiles, with the objective of enhancing MFC
lifetime and efficiency. These strategies are responsible for optimally distributing the power
demand among different stacks while considering their state of health thanks to the proposed
deterioration model. A load-dependent stochastic deterioration model is built for the studied
MFC by using a Gamma process model, taken its shape parameter as an empirical function
of the fuel cell operation load according to fuel cell specificities. The above defined classic
GP model fails to fit the stack-to-stack deterioration heterogeneity which turns out to be a
critical deterioration feature within MFC systems. A random effect is added to the Gamma
process on its scale parameter, taken as a random variable following a Gamma law. Three
random-effect models, namely, the GP-RE, GP-RM, and GP-RV are specified to account for
different configurations of the parameters of the GP model, which are used to simulate the
cases where both the mean and variance are influenced by the random effects (GP-RE model),
and the random effect only affect solely the mean (GP-RM model) or variance (GP-RV model)
of the fuel cell degradation process.

In the first management strategy, the objectives of system deterioration and fuel con-
sumption are estimated based on the conditional failure probability and the empirical fuel
consumption function. In particular, the variance of stacks resistances are also added in the
deterioration objective function, replying on the observation that reducing the resistance vari-
ances of all stacks will help to synchronize the degradation trajectories, to avoid early failure
of a particular stack that would deteriorate much faster than the others. The optimal load
allocation decisions of different stacks are decided based on the Pareto Front solved by the
NSGA-II algorithm, and the ASF function-based decomposition method which use a user de-
fined importance weight for the two objectives. The Monte Carlo simulation results showed
that the proposed strategy achieves a higher average system life than those of the classic load
allocation strategies under two constant loads. In the best case, our strategy can help to
increase the system lifetime time by 25% compared with the Daisy Chain strategy.

As MFC systems are popular for vehicle applications, the energy management under the
dynamic load profiles becomes a mandatory task. The deterioration objective function is
estimated based on the prevision of the future system deterioration. A load demand change
event-based decision-making strategy is built for the dynamic load demands to decide the
optimal load allocations among stacks. A Markov Chain model is applied to generate the
random dynamic loads. An illustrative study on the influence of the randomness loads on the
proposed strategy shows that the average lifetime obtained with unknown event duration is
close to that with known event duration, which proves the robustness of the proposed strategy.
The event-based decision-making strategy is demonstrated to be improved by scheduling an
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extra decision when the event duration is relatively long which shows the interests of possible
work directions to obtain higher system life. Then, the above strategy is compared with the
Average Load strategy on the four stochastic deterioration models (i.e., GP, GP-RE, GP-RM,
and GP-RV) to justify the effectiveness of the proposed strategy. It is demonstrated that
for our strategy obtains higher average lifetime for all cases. Besides, the GP-RE model is
shown to gives the highest lifetime improvement which verifies that the proposed strategy can
efficiently balance overall system deterioration to achieve an improved durability.

A possible extension of above discussed dynamic load energy management problem, a
three-stack operation problem is proposed for optimizing system load allocation including
start-stop operation mode. A two layers EMS is developed for the studied three-stack fuel
cell system. The efficiency of the proposed strategy is verified by comparing it with the Daisy
Chain-based average load and deterioration-aware Daisy Chain-based average load strategies.
To enhance fuel cell system durability and reliability as well as minimize system maintenance
cost, a maintenance-based EMS problem is formulated as a perspective problem.

Perspectives

This thesis focused on improving MFC system lifetime through an efficient EMS. Efforts have
been made with respect to the deterioration modeling of MFC and the development of EMSs.

We have built a load-dependent stochastic deterioration model for MFC system. A random
effect is added to the original GP model to model individual stack deterioration variability. The
EMSs have been developed based on these deterioration models under constant and dynamic
load profiles. In the last problem, we proposed an oversizing problem of optimizing start-stop
operation in an MFC system which shows the possibilities of extending the current strategy
to adapt to different operation scenarios. According to these results, further improvements
are expected in terms of the deterioration model, intelligent management strategies, and EMS
objectives.

The deterioration model proposed in this work only uses the resistance as HI. As fuel cell
is a complex electrochemical device, it would be interesting to further develop a deteriora-
tion model by integrating several indicators. For instance, the Electrochemical Surface Area
(ECSA) of a fuel cell is decreasing with the deterioration of the Pt electrocatalyst which could
be used as an extra HI.

This thesis used the optimization-based approaches to produce the energy management
strategy. However, more intelligent approaches like Reinforcement Learning (RL) based en-
ergy management can be considered. RL is suitable to solve sequential decision-making prob-
lems, either in a model-based or model-free manner. Moreover, the recently developed deep
reinforcement learning techniques leverage the powerful representation advantages of neural
network, which makes RL a promising technique in various applications, including the EMS
of fuel cell systems.
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Last but not least, EMS studies can be adapted to include more objectives, e.g., maintenance-
based EMS to enhance fuel cell system lifetime and reliability as well as minimize maintenance
costs. As indicated from the proposed perspective problem, fuel cell EMS studies can be com-
bined with reliability and maintenance studies to optimize stack replacement for long-term
operation.

Future research on the topic at all levels is envisaged to further enhance the scope of the
proposal:

1. Deterioration model of MFC. Improve the health indicator, physical-based deterioration
model.

2. Energy management approaches.

3. The combination of maintenance scheduling and load allocation decision-making strategy
for optimizing system reliability and durability.
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