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My sincere apology goes to those whom I didn't mention personally one by one. Résumé L'estimation récursive multivariée est le point central de cette thèse. Notre objectif fondamental est de construire des estimateurs des fonctionnelles multivariées en utilisant des méthodes d'approximations stochastiques. Dans la section d'ouverture, nous fournissons une introduction générale du sujet de l'estimation non-paramétrique et de l'algorithme original d'approximation stochastique récursive. Pour le premier chapitre, nous introduisons un estimateur récursif multivarié pour la fonction de répartition. Nous étudions les propriétés asymptotiques de cet estimateur généralisé et nous le comparons avec l'estimateur multivarié non récursif de Nadaraya. Il s'avère qu'avec un choix adéquat de la taille des pas et un choix approprié de la fenêtre, l'erreur quadratique moyenne MSE (Mean Squared Error en anglais) de l'estimateur multivarié avec plugin comme méthode de sélection de la fenêtre est plus petite que celle des deux autres estimateurs, à savoir l'estimateur multivarié récursif avec sélection par validation croisée et l'estimateur non récursif de Nadaraya. Le deuxième chapitre traite le problème de l'estimation non paramétrique d'une fonction de répartition cumulative conditionnelle π : (y|x) -→ P [Y y|X = x] . En utilisant la même approche récursive, nous proposons un estimateur récursif multivarié déni par un algorithme d'approximation stochastique. Nous étudions les inférences statistiques de notre estimateur et les comparons avec celles de l'estimateur non récursif de Nadaraya-Watson. Étant donné l'idée d'estimation conditionnelle, et pour le troisième chapitre, nous construisons un estimateur semi-récursif généralisé de type noyau de la fonction de régression r ϕ : x -→ E[ϕ(Y )|X = x], pour une fonction mesurable choisie ϕ et x ∈ R d . An d'examiner ces propriétés asymptotiques, nous calculons d'abord le biais et la variance de notre estimateur proposé qui dépendent fortement du choix de trois paramètres qui sont les pas et la fenêtre. De plus, nous sommes intéressés par l'étude de la convergence forte de notre estimateur. Il s'avère que pour l'estimation par intervalles de conance, l'estimateur proposé est meilleur que celui de l'estimateur de Nadaraya Watson. En ce qui concerne le quatrième chapitre, nous tentons d'explorer les processus cognitif et les représentations mentales mobilisées lorsqu'un être humain se prépare à écrire un mot selon l'idée développée dans [START_REF] Perret | Spelling and Writing Words: Theoretical and Methodological Advances[END_REF]. Dans cette perspective, nous proposons une estimation non paramétrique à noyau récursif d'une régression multivariée avec données manquantes pour décrire la production de mots d'écriture. Nous étudions les propriétés asymptotiques de notre estimateur récursif et ses performances par rapport à l'estimateur non récursif. L'estimateur proposé est ensuite appliqué aux données comportementales pour classer certains participants dans des groupes. Cette classication peut être un début pour comprendre les variations de comportement écrites. La dernière section est consacré à la partie conclusion ainsi qu'à quelques perspectives de future recherches.

2.11 Qualitative comparison between the recursive estimator and the non-recursive one for the dataset Model 1 with x = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 2.12 Qualitative comparison between the recursive estimator and the non-recursive one for the dataset Model 2 with x = (0, 0, 0, 0, 0). . . . . . . . . . . . . . . . . . . . . 2.13 Qualitative comparison between the recursive estimator and the non-recursive one for the COVID-19 epidemic dataset Model 1 with x = 17. . . . . . . . . . . . . . . . . . . . . 2.14 Qualitative comparison between the recursive estimator and the non-recursive one for the COVID-19 dataset Model 2 with x = (2, 0, 17). . . . . . . . . . . . . . . . . . . . . . 1.3 Quantitative comparison between Nadaraya's distribution estimator and the proposed distribution estimator with stepsize (γ n ) = ([2/3 + 0.05]n -1 ) through a plug-in method as well as a cross-validation one in the bidimensional case. . . . . 1.4 Quantitative comparison between the I 1 , I 2 , V F , M W ISE and P SE of Nadaraya's distribution estimator as well as the proposed distribution estimator with stepsize (γ n ) = ([2/3+0.05]n -1 ) via lh data of the package datasets and through a plug-in method. . ) through a plug-in method for Model 1. . . 2.2 Quantitative comparison between the recursive estimator and the non-recursive one with stepsizes (γ n ) = (n -1 ) through a plug-in method for Model 2. . . . . . . 2.3 Quantitative comparison between the recursive estimator and the non-recursive one with stepsizes (γ n ) = (n -1 ) through a plug-in method for Model 3. . . . . . 2.4 Quantitative comparison between the recursive estimator and the non-recursive one with stepsizes (γ n ) = (n -1 ) through a plug-in method for Model 4. . . . . . . De nos jours, les données sont partout. Elles sont à la disposition de tous. Les données ellesmêmes ne sont que des faits et des chires qui doivent être explorés pour obtenir des informations signicatives. L'analyse des données est donc cruciale. Il s'agit du processus d'application de techniques statistiques et logiques pour visualiser, réduire, décrire et évaluer les données en informations utiles qui fournissent un meilleur contexte pour les données. L'analyse des données joue un rôle-clé dans la recherche d'informations signicatives qui aideront les entreprises à prendre de meilleures décisions sur la base des résultats. La science des données est tout aussi importante que l'analyse des données. La science des données correspond à un domaine combinant de multiples méthodes de méthodologie scientique, des processus, des algorithmes et des outils pour extraire des informations, en particulier d'énormes ensembles de données pour obtenir des informations sur des données structurées et non structurées. Diérents termes liés à l'extraction, au nettoyage, à l'analyse et à l'interprétation des données sont souvent utilisés de manière interchangeable dans la science des données. L'analyse des données consiste à examiner divers facteurs ou variables pour déterminer leur impact sur certaines situations et résultats. Cela nous aide à comprendre pourquoi certains résultats se produisent, ce qui nous permet de faire des prévisions et de prendre des décisions éclairées pour l'avenir. Lorsque nous élaborons des données impliquant plus de deux variables, nous utilisons l'analyse multivariée qui n'est pas une méthode spécique, mais qui englobe plutôt l'ensemble des techniques statistiques utilisées pour analyser plus de deux variables à la fois. Ces approches nous permettent d'obtenir une vision plus approfondie des données en relation avec des scénarios spéciques de l'entreprise ou du monde réel. En fait, si vous êtes un analyste ou un scientique des données ambitieux, l'analyse multivariée est un concept intrinsèque à aborder. Cette technique sera le point central de cette thèse.

Introduction à la théorie d'estimation

La statistique d'estimation, ou simplement l'estimation, correspond à un cadre d'analyse des données qui repose sur une combinaison de taille d'eet, d'intervalles de conance, de planication de précision pour analyser les données et interpréter les résultats. Elle se distingue du test de signication de l'hypothèse nulle (TSN) qui est moins informatif. En statistiques, un estimateur est une fonction permettant d'estimer un paramètre inconnu lié à une distribution de probabilité. Il peut être investi pour déterminer certaines caractéristiques d'une population totale à partir des données observées. Par exemple, dans une enquête, la moyenne de l'échantillon est l'estimateur le plus couramment utilisée de la moyenne de la population. L'approche de l'estimation est l'une des branches les plus remarquables de la statistique, qui s'intéresse aux propriétés des estimateurs exprimées en terme de convergence, de biais et d'ecacité. De nombreuses approches peuvent être élaborées an de proposer des estimateurs de qualités multiples pour une même quantité et sur une même base de données.

xiii xiv Par ailleurs, la théorie de l'estimation peut être divisée en deux composantes principales, l'estimation paramétrique et l'estimation non paramétrique. La statistique paramétrique, qui remonte à Fisher en 1920, représente le cadre classique de la statistique. Le modèle statistique est caractérisé par un nombre ni de paramètres. On prend M = {P θ : θ ∈ R p } comme modèle statistique typique qui décrit la distribution des variables aléatoires observées. Cependant, la statistique non paramétrique étudie des problèmes statistiques où la paramétrisation n'est pas xe, mais où il existe diérents choix de paramètres an de trouver ceux qui entraînent les procédures les plus ecaces. En fait, la loi est entièrement inconnue. Pour cette raison, nous avons recours à l'estimation des fonctionnelles décrivant le modèle. Nous nous intéressons essentiellement à la question de l'estimation non-paramétrique d'une fonction de répartition F , d'une densité f et d'une fonction de régression r.

Par conséquent, an de résoudre un nombre de problèmes statistiques, il sut d'avoir une estimation convenable.

Estimation non paramétrique L'estimation non paramétrique joue un rôle important dans l'exploration d'une innité de phénomènes de nature aléatoire. Elle se trouve au c÷ur de la modélisation de problèmes réels relevant de multiples domaines scientiques, à savoir les sciences de l'environnement, la sismologie et la psychologie, l'imagerie médicale et les neurosciences.

Un large éventail de méthodes d'estimation non paramétrique de la densité a été élaboré, comme l'estimateur par histogramme, l'estimateur simple et l'estimateur par noyau. L'estimateur de l'histogramme, introduit par John Graunt (1662), est une fonction en escalier, et donc discontinue, ce qui constitue une lacune pour l'estimation d'une densité. Pour surmonter ce problème, la fonction indicatrice est remplacée par une fonction réelle, appelée estimateur à noyau. En eet, alors qu'un histogramme compte le nombre de points de données dans des intervalles assez arbitraires, l'estimation de la densité par noyau est une fonction dénie comme la somme d'une fonction noyau sur chaque point de données. Par conséquent, l'estimation de la densité du noyau est une question essentielle de lissage des données qui permet de faire des inférences sur la population à partir d'un échantillon ni de données. La technique d'estimation par noyau constitue le point central du paragraphe suivant et de l'ensemble de l'ouvrage.

Estimation par noyau

En statistique, l'estimation par noyau désigne un processus non paramétrique d'estimation d'une fonction de probabilité inconnue d'une variable aléatoire à l'aide d'une fonction noyau. Fondamentalement, on suppose que le noyau présente généralement les propriétés suivantes :

i) R K(x)dx = 1. ii) R K 2 (x)dx < +∞. iii) R xK(x)dx = 0. iv) R x 2 K(x)dx < +∞.
Représentation de quelques noyaux classiques.

Nous pouvons distinguer trois estimateurs de noyaux. Nous observons l'estimateur de Parzen-Rosenblatt pour la densité de probabilité, l'estimateur de Nadaraya pour la fonction de répartition et l'estimateur de Nadaraya-Watson pour la fonction de régression. Soient (X, Y ) ∈ R × R et (X 1 , Y 1 ), . . . , (X n , Y n ) des vecteurs aléatoires indépendants identiquement distribués comme (X, Y ) de densité jointe g(x, y) et soient f et F la densité de probabilité et la fonction de répartition de X, qui sont inconnues.

L'estimateur de densité à noyau : [START_REF] Rosenblatt | Remarks on Some Nonparametric Estimates of a Density Function[END_REF] et [START_REF] Parzen | On Estimation of a Probability Density Function and Mode[END_REF] L'estimateur de densité à noyau étudié par Murray [START_REF] Rosenblatt | Remarks on Some Nonparametric Estimates of a Density Function[END_REF] et Emanuel [START_REF] Parzen | On Estimation of a Probability Density Function and Mode[END_REF] et appelé estimateur de Parzen-Rosenblatt est indiqué par

f n (x) = 1 nh n n k=1 K x -X k h n ,
où, K désigne le noyau et (h n ) représente le paramètre de lissage (la fenêtre) qui est une suite de nombres réels positifs qui tendent vers zéro.

L'estimateur de la fonction de répartition à noyau : [START_REF] Nadaraya | Some New Estimates for Distribution Functions[END_REF] L'estimateur de la fonction de répartition à noyau élaboré par [START_REF] Nadaraya | Some New Estimates for Distribution Functions[END_REF] et appelé estimateur de Nadaraya s'exprime comme suit

F n (x) = 1 n n k=1 K x -X k h n , avec K(z) = z -∞ K(u)du.
xvi L'estimateur de régression à noyau : Nadaraya-Watson (1964) L'estimateur de régression à noyau identié par [START_REF] Nadaraya | Some New Estimates for Distribution Functions[END_REF] et [START_REF] Watson | Smooth regression analysis[END_REF] et appelé estimateur de Nadaraya-Watson est noté par

r n (x) =        a n (x) f n (x) si f n (x) = 0 0 sinon , avec a n (x) = 1 nh n n k=1 Y k K x -X k h n .
Pour la construction adéquate de ces estimateurs, deux choix pertinents doivent être faits : la fonction noyau K et le paramètre de lissage h n . Comme le noyau est peu sensible à la forme de l'estimateur, le choix de la fonction noyau n'est pas critique et a moins d'importance que celui de la fenêtre. Bien que l'étude théorique asymptotique permette d'obtenir la fenêtre optimale, le fait de ne pas connaître la fonction de densité rend son interprétation en pratique assez dicile. De ce point de vue, le lissage par noyau en statistique non paramétrique nécessite le choix d'un paramètre de fenêtre qui est crucial pour la performance eective des estimateurs. Une fenêtre appropriée peut aider à obtenir une fonction estimée proche de la vraie. Cependant, une fenêtre mal choisie peut sérieusement déformer les véritables caractéristiques sous-jacentes de la fonctionnelle. En fait, une petite fenêtre entraîne un sous-lissage et une grande fenêtre entraîne un sur-lissage. Ainsi, un choix judicieux de la fenêtre est fortement recommandé.

Sélection du paramètre de lissage: An de déterminer le choix optimal du paramètre de lissage, il faut trouver le paramètre qui minimise le risque. Les critères les plus utilisés pour le choix de h n sont l'Erreur quadratique moyenne M SE (Mean Squared Error), lErreur quadratique moyenne intégrée M ISE (Mean Integrated Squared Error) et l'Erreur quadratique moyenne intégrée et pondéréee M W ISE (Mean Weighted Integrated Squared Error). Les M W ISE et M ISE correspondent au choix du paramètre de lissage constant et le M SE se réfère au paramètre de lissage variable. Tout au long de la thèse, la valeur optimale de la fenêtre h n est obtenue en minimisant la M W ISE asymptotique. Bien que l'étude théorique asymptotique permette d'obtenir la fenêtre optimale, le fait de ne pas connaître la fonction de densité rend son interprétation en pratique assez dicile. De ce point de vue, le lissage par noyau dans les statistiques non paramétriques nécessite le choix d'un paramètre de fenêtre qui est crucial pour la performance eective des estimateurs. Une fenêtre appropriée peut aider à obtenir une fonction estimée proche de la vraie fonction cible. Cependant, une fenêtre mal choisie peut sérieusement déformer les véritables caractéristiques sous-jacentes de la fonctionnelle. Ainsi, un choix judicieux de la fenêtre est fortement recommandé. Il existe une myriade de méthodes de sélection de la fenêtre basées sur les données recensées dans la littérature, que l'on peut diviser en trois grandes catégories : les techniques de validation croisée, les méthodes du plug-in de deuxième génération et l'approche bootstrap. La méthode de sélection par validation croisée introduite par [START_REF] Sarda | Smoothing parameter selection for smooth distribution functions[END_REF] est une technique de ré-échantillonnage qui consiste à minimiser un estimateur approprié de l'erreur quadratique moyenne. Cependant, cette méthode présente certains inconvénients, comme l'a souligné [START_REF] Altman | Bandwidth Selection for Kernel Distribution Function Estimation[END_REF] qui a développé une autre méthode ecace, une estimation plug-in qui minimise une estimation de l'erreur quadratique intégrée pondérée moyenne, en utilisant la fonction de densité comme fonction de poids. Une autre méthode est le bootstrap sauvage, introduit dans [START_REF] Hardle | Bootstrap Simultaneous Error Bars for Nonparametric Regression[END_REF] qui consiste à ré-échantillonner à partir des résidus estimés. La méthode plug-in et la méthode bootstrap sont toutes deux indiscernables et il a été largement xvii prouvé qu'elles se comportent de manière similaire. Une comparaison détaillée des trois techniques pratiques de sélection de la fenêtre est présentée dans [START_REF] Delaigle | Practical bandwidth selection in deconvolution kernel density estimation[END_REF]. Tout au long de la thèse, les approches non-paramétriques qui nous intéressent reposent sur la Méthode d'Approximation Stochastique notée SAM. Cette dernière est étudiée dans ce qui suit.

Méthode d'approximation stochastique

Au cours de la dernière décennie, les ux de données sont devenus un domaine de recherche de plus en plus important. Certains des ux de données les plus courants incluent les données de paquets Internet, l'activité de Twitter, le l d'actualité de Facebook, les transactions par carte de crédit et, plus récemment, les données relatives à l'épidémie COVID-19. Les algorithmes stochastiques ont été couramment utilisés dans de nombreuses applications de recherche, à savoir l'identication de systèmes, le contrôle adaptatif, les systèmes de transmission et la détection de changements séquentiels. Dans ces situations, les données arrivent régulièrement de sorte qu'il est impossible de les stocker dans une base de données traditionnelle. Dans un tel contexte, il est très intéressant de construire un estimateur récursif qui n'a pas besoin de stocker toutes les données en mémoire et qui peut être facilement mis à jour pour gérer les données en ligne. Le mérite fondamental des estimateurs récursifs réside dans le fait que l'estimation peut être mise à jour à chaque nouvelle observation. Par conséquent, au lieu de ré-exécuter les données à chaque fois, il est possible de réécrire notre estimateur considéré comme une combinaison de deux (ou plus) estimateurs, où chaque estimateur est basé sur des ensembles de données distincts, ce qui peut être très intéressant pour maintenir le coût de calcul raisonnablement bas. Il est à noter que tous les calculs et simulations ont été eectués à l'aide du logiciel statistique R.

Cadre historique

Les algorithmes d'approximation stochastiques sont des versions stochastiques d'algorithmes déterministes comme l'algorithme de Newton ou l'algorithme du gradient. Nous nous intéressons au problème suivant : trouver le zéro x * d'une fonction à valeur réelle S. Nous supposons avoir une valeur très approximative x 0 de cette racine. L'idée naturelle de l'algorithme de Newton est de remplacer la courbe représentative de la fonction S par sa tangente au point x n . L'abscisse x n+1 du point d'intersection de cette tangente avec l'axe des x est alors donnée pour n ≥ 1 par

x n+1 = x n - S(x n ) S (x n ) .
Lorsque la dérivée de S n'est pas facilement calculable, nous pouvons considérer une version déterministe de l'algorithme de Robbins-Monro qui consiste à remplacer le calcul de la dérivée par une suite positive décroissante tendant vers 0 de pas (γ n ). Sous réserve que S ait de bonnes propriétés de régularité, la suite dénie par

x n+1 = x n -γ n S(x n )
converge vers le zéro de la fonction S, noté x * , pour toute valeur initiale x 0 . Dans de nombreuses situations, la fonction dont le zéro est recherché n'est connue que pour une perturbation proche du zéro. La recherche des zéros par des méthodes d'optimisation déterministes devient alors plus périlleuse et donc nous avons recours à des algorithmes stochastiques comme celui introduit par [START_REF] Robbins | A Stochastic Approximation Method[END_REF]. Les estimateurs récursifs que nous proposons ont été construits à partir de SAM. En eet, l'incorporation d'algorithmes d'approximation stochastique dans le contexte de la statistique non-paramétrique remonte aux papiers de [START_REF] Robbins | A Stochastic Approximation Method[END_REF] et [START_REF] Kiefer | Stochastic Estimation of the Maximum of a Regression Function[END_REF] pour un cadre unidimensionnel.

xviii L'algorithme stochastique général, consacré essentiellement à l'approximation du mode d'une fonction de régression, a pour forme :

θ n = θ n-1 + γ n Φ (θ n-1 , W n ) + γ 2 n µ n (θ n-1 , W n ) , (1) où : 
. (γ n ) est une suite positive de nombres réels qui tend vers zéro, Par la suite, [START_REF] Blum | Multidimensional stochastic approximation methods[END_REF] a fourni une version multidimensionnelle de cet algorithme. Ces travaux de recherche ont été étendus dans plusieurs directions. En nous inspirant des plus importants, nous pouvons présenter l'algorithme suivant, analysé par [START_REF] Kushner | Stochastic approximation methods for constrained and unconstrained systems[END_REF], [START_REF] Ruppert | Almost Sure Approximations to the RobbinsMonro and KieferWolfowitz Processes with Dependent Noise[END_REF].

θ n = θ n-1 + γ n (φ(θ n-1 ) -W n + β n ), (2) 
où (β n ) désigne une suite de variables aléatoires convergeant vers 0 presque sûrement et φ désigne une fonction mesurable inconnue. Ils ont démontré que (2) coïncide avec l'algorithme (1) et inclut les processus d'approximation stochastique de [START_REF] Robbins | A Stochastic Approximation Method[END_REF] et [START_REF] Kiefer | Stochastic Estimation of the Maximum of a Regression Function[END_REF], qui permettent la recherche du zéro θ * de la fonction φ.

Certaines modications de base ont été incorporées par [START_REF] Nadaraya | Some New Estimates for Distribution Functions[END_REF], [START_REF] Polyak | Optimal orders of accuracy for search algorithms of stochastic optimization[END_REF], [START_REF] Dippon | Accelerated randomized stochastic optimization[END_REF]Renz (1997) et Dippon (2003). Plus tard, [START_REF] Duo | of Applications of Mathematics[END_REF] a corroboré que, sous des conditions standard sur la fonction φ et sur la suite (γ n ), (θ n ) tend vers θ * presque sûrement. An de construire un algorithme d'approximation stochastique, [START_REF] Révész | Robbins-Monro procedure in a Hilbert space and its application in the theory of learning processes[END_REF] a introduit une application de la procédure de Robbins-Monro et Mokaddem and Pelletier (2007b) ont développé l'application de la procédure Robbins-Monro-Blum. De plus, un algorithme d'estimation d'une fonction de régression a été élaboré par [START_REF] Révész | How to Apply the Method of Stochastic Approximation in the Non parametric Estimation of a Regression Function[END_REF] et a ensuite été utilisé par [START_REF] Tsybakov | Recurrent Estimation of the Mode of a Multidimensional Distribution[END_REF] pour approximer le mode d'une densité de probabilité. , [START_REF] Slaoui | Application des méthodes d'approximations stochastiques à l'estimation de la densité et de la régression[END_REF] a signalé un estimateur lisse de la fonction de densité dans un cas unidimensionnel en utilisant la méthode d'approximation stochastique. Ensuite, dans l'article de Mokkadem et al. (2009a), le cas multidimensionnel a été étudié an d'estimer une densité de probabilité multivariée en utilisant l'estimation par intervalles de conance. De plus, Slaoui (2014b) a réutilisé des méthodes d'approximation stochastique pour améliorer les qualités de l'estimateur de la fonction de répartition. Le principe de déviation large et modérée de cet estimateur a été prouvé dans Slaoui (2019). L'estimateur classique de régression récursive a été abordé dans Mokaddem et al. (2009b) pour un cadre univarié et une extension multivariée de cet estimateur a été réalisée par Mokaddem and Pelletier(2016). Par la suite, Slaoui (2016) a établi le cas semi-récursif et a introduit un nouvel estimateur qui est la fraction d'une régression récursive par une fonction de densité récursive. De plus, Slaoui (2017) a adopté la technique de probabilité du score de propension et a construit un estimateur de la fonction de densité sous données manquantes. Récemment, un estimateur de la densité conditionnelle a été proposé dans [START_REF] Slaoui | Adaptive recursive kernel conditional density estimators under censoring data[END_REF]. L'objectif fondamental de ce chapitre est d'utiliser des algorithmes d'approximation stochastique pour dénir des estimateurs d'une densité de probabilité en un point donné.

L'objectif principal de ce chapitre est d'utiliser des algorithmes d'approximation stochastique pour dénir des estimateurs d'une densité de probabilité en un point donné. Rappelons que les algorithmes d'approximation stochastique utilisés pour la recherche du zéro d'une fonction inconnue φ : y -→ S(x) -y sont construits comme suit.

xix (i) On xe S 0 (x) ∈ R arbitrairement. (ii) Pour tout n ≥ 1, la suite (S n ) est dénie récursivement par S n (x) = S n-1 (x) + γ n T n (x), où • (T n ) est une suite de fonctions T n : R → R dénie par T n (x) = φ(S n-1 ) -W n + β n . (3) 
En d'autres termes, T n (x) est une observation de la fonction φ au point S n-1 (x).

• (γ n ) est une suite de nombres réels positifs qui va jusqu'à zéro telle que

γ n = +∞ et γ 2 n < +∞. (4) 
Il convient de noter que, sous la condition E [W n |F n-1 ] = 0 (où F n-1 représente la σ-algèbre des événements se produisant au temps n -1), nous avons

E[T n (x)] = φ(S n-1 ) + β n = S(x) -S n-1 (x) + β n . (5) 
Estimation multivariée récursive:

Les statistiques multivariées sont axées sur l'exploration des relations entre les variables et leur adéquation au problème en question, ce qui implique plusieurs types d'analyses univariées et multivariées. Fondamentalement, cette dernière repose sur une procédure statistique comprenant les mesures et observations simultanées de données incluant plus d'un facteur de variables indépendantes qui ont un impact sur la variabilité des variables dépendantes. Par conséquent, le principal mérite de l'analyse multivariée réside dans le fait que, comme elle prend en compte plus d'une variable de résultat où diverses quantités diérentes présentent un intérêt pour la même analyse, les conclusions obtenues sont plus précises et authentiques par rapport à la situation réelle. De plus, l'analyse multivariée récursive serait une procédure révolutionnaire pour résoudre de nombreux sujets non paramétriques reposant sur des ensembles de données complexes.

L'objectif principal de cette thèse est de proposer une large classe d'estimateurs récursifs à noyau de diérentes fonctionnelles multivariées basés sur la méthode d'approximation stochastique. Tout d'abord, nous introduisons l'estimateur récursif de la densité de probabilité multivariée noté f n et déni dans Mokkadem et al. (2009a).

Soit X ∈ R d , d ≥ 1 et soient X 1 , .
. . , X n des vecteurs aléatoires indépendants, identiquement distribués dans R d , et soient f et F la densité de probabilité et la fonction de distribution de X.

L'estimateur récursif multivarié de la densité:

Pour construire un algorithme stochastique, qui approxime la fonction f en un point donné x, nous devons dénir un algorithme de recherche du zéro de la fonction

φ : y -→ f (x) -y.
Nous procédons donc de la manière suivante :

(i) On xe f 0 (x) ∈ R. (ii) Pour tout n ≥ 1, on pose f n (x) = f n-1 (x) + γ n T n (x),
xx où T n (x) est une observation de la fonction φ au point f n-1 (x) vériant ( 17) et (γ n ) est une suite positive satisfaisant (18). Pour identier T n (x), nous adoptons l'approche de [START_REF] Révész | How to Apply the Method of Stochastic Approximation in the Non parametric Estimation of a Regression Function[END_REF] et de [START_REF] Tsybakov | Recurrent Estimation of the Mode of a Multidimensional Distribution[END_REF], et insérons un noyau multivarié K (une fonction satisfaisant

R d K(t)dt = 1), et une fenêtre (h n )
(une suite de nombres réels positifs qui vont jusqu'à zéro). Par conséquent, sous certaines conditions de régularité sur la fonction de densité de X,

on a E h -d n K x -X n h n = f (x) + ε n (x), où ε n (x) devient nul lorsque n va à l'inni. Puis suivant (19), on pose T n (x) = h -d n K x -X n h n -f n-1 (x).
L'algorithme d'approximation stochastique que nous intégrons pour estimer récursivement la densité f au vecteur x peut donc être exprimé comme suit

f n (x) = (1 -γ n )f n-1 (x) + γ n h -d n K x -X n h n . ( 6 
)
Une forme générale utilisant la récurrence, et sous la condition que f 0 (x) = 0, a été proposée par [START_REF] Slaoui | Application des méthodes d'approximations stochastiques à l'estimation de la densité et de la régression[END_REF] dans une version univariée et Mokkadem et al. (2009a) pour une version multivariée. Par conséquent, l'estimateur récursif de la densité est donné par

f n (x) = Π n n k=1 Π -1 k γ k h -d k K x -X k h k avec Π n = n j=1 (1 -γ j ). (7) 
Remarque 0. 

f n (x) = 1 n i=1 u i n k=1 u k h -d k K x -X k h k . (8) 
Nous pouvons mentionner quelques choix particuliers de (u n ). Plus tard, Amiri (2010) a exposé l'estimateur récursif de densité à noyau donné par le choix

(u n ) = h d(1-l) n
, l ∈ [0, 1], qui englobe les trois exemples ci-dessous.

(E 1 ) Le choix l = 1, c'est-à-dire (u n ) = 1, qui correspond au cas (γ n ) = 1 n , produit
l'estimateur proposé par [START_REF] Wolverton | Asymptotically optimal discriminant functions for pattern classication[END_REF].

(E 2 ) Le choix l = 1/2, c'est-à-dire (u n ) = (h d/2
n ) produit l'estimateur considéré par [START_REF] Wegman | Remarks on some recursive estimators of a probability density[END_REF]. [START_REF] Deheuvels | Sur l'estimation séquentielle de la densité[END_REF][START_REF] Duo | of Applications of Mathematics[END_REF].

(E 3 ) Le choix l = 0, c'est-à-dire (u n ) = (h d n ) donne l'estimateur considéré par
Comme premier résultat de recherche, nous présentons dans ce qui suit notre estimateur de fonction de répartition multivariée. xxi L'estimateur récursif multivariée de la fonction de répartition:

Pour construire un algorithme stochastique qui approche la fonction F d'un vecteur donné x, nous dénissons un algorithme de recherche de la fonction zéro φ : y -→ F (x) -y et nous xons :

(i) F 0 (x) ∈ [0, 1] (ii) pour tout n ≥ 1, F n (x) = F n-1 (x) + γ n T n (x),
An de dénir T n (x), nous adoptons l'approche de [START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF] et nous introduisons un noyau multivarié modié

K : R d -→ [0, 1] , x -→ d i=1 (-∞,x i ) K(t)dt. En xant T n (x) = K x -X n h n -F n-1 (x)
, l'algorithme d'approximation stochastique que nous considérons pour estimer récursivement la fonction de distribution F au vecteur x peut être indiqué comme suit

F n (x) = Π n n k=1 Π -1 k γ k K x -X k h k . ( 9 
)
Pour notre deuxième sujet, reposant sur l'estimation de la fonction de distribution, nous présenterons notre version conditionnelle multivariée notée CCDF , l'estimateur récursif de la fonction de distribution cumulative conditionnelle multivariée.

L'estimateur récursif de la fonction de distribution cumulative conditionnelle multivariée:

Soit (X, Y ) un vecteur aléatoire à valeurs dans R d × R q , q ≥ 1, avec densité jointe f (X,Y ) et soit f X la densité de probabilité marginale de X. De plus, soit (X 1 , Y 1 ), . . . , (X n , Y n ) des vecteurs aléatoires indépendants identiquement distribués suivant (X, Y ) . L'algorithme d'approximation stochastique qui est consacré à l'estimation récursive de la fonction

a : (x, y) -→ R q 1 {u y} f (X,Y ) (x, u)du
à un couple de vecteurs (x, y) peut être énoncé comme suit :

a n (x, y) = Π n n k=1 Π -1 k γ k χ k (y)h -d k K x -X k h k , (10) 
où χ est une fonction indicatrice multivariée identiée par χ k : R q -→ R, ; y -→ 1 {Y k y} .

Nous nous concentrons sur le problème de l'estimation de la CCDF de Y étant donné X = x, fournie par

π : R q × R d -→ R (y|x) -→ P[Y y|X = x] = a(x, y) f X (x) ,
Un estimateur récursif de π a été identié dans [START_REF] Slama | Multivariate distribution function estimation using stochastic approximation method[END_REF] et spécié par

π n (y|x) =    a n (x, y) f n (x) si f n (x) = 0 0 sinon . ( 11 
)
Dans une autre vision de l'estimation conditionnelle, nous étudions la régression multivariée dans un cas de type noyau.

xxii L'estimateur récursif de la régression multivariée de type noyau:

Soit (X, Y ) un vecteur aléatoire à valeurs dans R d ×R avec densité jointe g(x, y) et soit f la densité de probabilité de X. De plus, soit (X 1 , Y 1 ), . . . , (X n , Y n ) des vecteurs aléatoires indépendants identiquement distribués suivant (X, Y ). L'algorithme d'approximation stochastique, qui estime récursivement la fonction de régression

a ϕ : x -→ r ϕ (x)f (x) = R ϕ(y)g(x, y)dy
à un vecteur donné x, pour une fonction mesurable ϕ et x ∈ R d , peut être noté comme suit :

a ϕ n (x) = Q n n k=1 Q -1 k β k ϕ(Y k )h -d k K x -X k h k avec Q n = n j=1 (1 -β j ),
où (β n ) est une suite positive de nombres réels décroissant vers zéro satisfaisant (18). Tout au long de ce travail, nous considérons l'estimateur général multivarié de type noyau pour la fonction de régression r :

x -→ E[ϕ(Y )|X = x] au niveau du vecteur x r ϕ n (x) =        a ϕ n (x) f n (x) si f n (x) = 0 0 sinon .
Exemples particuliers sur l'estimation de la régression multivariée: Supposons que nous ayons une fonction mesurable ϕ : R → R, on distingue les exemples particuliers suivants.

1. Pour ϕ(y) := I(y) = y, nous avons la fonction de régression classique

r I (x) = E[Y |X = x].
Un estimateur récursif de r I a été traité dans Slaoui (2015).

2. Pour ϕ(y) := I(y) = y m , m ∈ N, on a les moments conditionnels

r I (x) = E[Y m |X = x].
3. Pour ϕ(y) := χ t (y) = 1 {y t} , ; t ∈ R, nous avons la fonction de distribution cumulative conditionnelle

r χt (y) = π(t|x) = P[Y t|X = x].
Un estimateur récursif de r χt a été identié dans [START_REF] Slama | Multivariate distribution function estimation using stochastic approximation method[END_REF].

En suivant l'esprit de l'estimation par régression, nous construisons une classe particulière d'estimateurs pour les régressions sous données manquantes. Cette dernière est donnée par l'approche du score de propension.

Application : estimation récursive d'une fonction de régression multivariée avec données manquantes :

Soit (X, T ) un vecteur aléatoire à valeurs dans R d × R avec une densité jointe h(x, t) et soit f la densité de probabilité de X. De plus, soit (X 1 , T 1 ), . . . , (X n , T n ) des vecteurs aléatoires indépendants identiquement distribués suivant (X, T ). En supposant que T 1 , . . . , T n sont sujets à des données manquantes, les variables aléatoires observées sont alors Y i et δ i , où

δ i = 1 {T i est observé} et Y i = T i × δ i , pour touti ∈ {1, . . . , n}.
En conséquence, lorsque certains T i sont manquants, nous introduisons le score de propension, une probabilité élaborée par [START_REF] Rosenbaum | The central role of the propensity score in observational studies for causal eects[END_REF] et dénie comme suit

ψ i := P[δ i = 1|T i ], pour touti ∈ {1, . . . , n}.
Notre tâche principal dans ce chapitre est de proposer un estimateur récursif permettant d'estimer récursivement la fonction de régression p (x) = E [T |X = x] sous censure des données. Notre objectif réside alors dans la construction d'un algorithme stochastique, qui approche la fonction de régression

m : x -→ E[T |X = x]f (x) = R th(x, t)dt
à un vecteur donné x. L'algorithme d'approximation stochastique que nous considérons pour estimer récursivement la fonction de régression m à un vecteur x peut être exprimé comme suit

m n (x) = Q n n k=1 Q -1 k β k Y k ψ -1 k h -d k K x -X k h k . ( 12 
)
Un estimateur récursif de p a été proposé dans [START_REF] Slama | Multivariate distribution function estimation using stochastic approximation method[END_REF]. Ce dernier est identié par

p n (x) =    m n (x) f n (x) si f n (x) = 0 0 sinon , ( 13 
) où m n (x) = Q n n k=1 Q -1 k β k Y k ψ -1 k h -d k K x -X k h k . (14) 
A ce niveau de l'analyse, nous pouvons armer que le point central de cette thèse réside dans l'extension des approches existantes au cas multidimensionnel, ce qui est une tâche épineuse, que ce soit d'un point de vue théorique ou pratique, an d'obtenir des compétences de programmation appropriées pour l'exécution d'algorithmes de simulation ainsi que pour l'analyse d'ensembles de données réelles. Dans cette optique, nous avons tenté d'élargir les domaines de recherche non seulement en construisant des estimateurs récursifs fonctionnels mais aussi en automatisant le choix de la fenêtre où nous avons utilisé les trois méthodes les plus ecaces de sélection de la fenêtre, à savoir la méthode plug-in, la validation croisée et la procédure bootstrap.

La première section est investi comme une partie introductive. En eet, les techniques d'estimation non paramétrique multivariée ont été élaborées. Ainsi, nous avons mis en avant la fameuse estimation par la méthode des noyaux qui est un outil de base pour l'approche d'estimation récursive basée sur des méthodes d'approximation stochastique.

Cette thèse est composée de quatre chapitres principaux qui s'organisent comme suit.

Dans le premier chapitre, qui est une extension de mon projet de master, nous essayons de nous appuyer sur le travail de Slaoui (2014b) et de l'étendre au cas des données multivariées. Nous examinons les propriétés asymptotiques de cet estimateur généralisé et nous les comparons à celles de l'estimateur non récursif de la distribution multivariée de Nadaraya. Il s'avère que, avec un choix adéquat du pas (γ n ) et un choix approprié de la fenêtre (h n ), en investissant l'une des deux méthodes de sélection de la fenêtre, la procédure de validation croisée ainsi que la méthode du plug-in de deuxième génération, le M SE des estimateurs généralisés peut être plus petit que celui de l'estimateur de Nadaraya. Nous corroborons nos résultats théoriques par des études de simulation et en considérant quelques ensembles de données réelles telles qu'une application médicale unidimensionnelle des données de l'hormone lutéinisante dans des échantillons de sang féminin, une application bidimensionnelle des données des tremblements de terre xxiv se produisant dans le nord-ouest de la péninsule ibérique nwip ainsi qu'une application multidimensionnelle des données de l'iris de Fisher ou d'Anderson.

Dans le même esprit que l'estimation d'une fonction de répartition multivariée mais dans un cadre conditionnel et en utilisant une approche récursive, notre deuxième chapitre aborde l'estimation non paramétrique d'une fonction de répartition cumulative conditionnelle (CCDF). En utilisant une approche récursive, nous présentons un estimateur récursif multivarié déni par un algorithme d'approximation stochastique. Notre objectif principal est d'étudier l'inférence statistique de notre estimateur et de la comparer à celle de l'estimateur non récursif de Nadaraya-Watson. Dans cette perspective, nous dérivons d'abord les propriétés asymptotiques de l'estimateur proposé qui dépendent fortement du choix de deux paramètres, le pas (γ n ) ainsi que la fenêtre (h n ). La méthode plug-in de deuxième génération implique le choix optimal de la fenêtre et

Introduction

Statistical Analysis

Nowadays, data are everywhere. They are available to everybody. Data themselves are just facts and gures that need to be explored to get meaningful information. Therefore, data analysis is crucial. It stands for the process of applying statistical and logical techniques to visualize, reduce, describe and assess data into useful information that provides a better context for the data. Data analysis plays a key role in nding meaningful information which will help business take better decision basis the output. Along with Data analysis, Data science is equally signicant. Data science corresponds to an area combining multiple methods of scientic methodology, processes, algorithms, and tools to extract information from, particularly huge datasets for insights on structured and unstructured data. A dierent range of terms related to mining, cleaning, analyzing, and interpreting data are often used interchangeably in data science. Data analytics is concerned with examining various factors or variables to trace how they might impact certain situations and outcomes. This helps us understand why certain outcomes occur, which in turn allows us to make informed predictions and decisions for the future. When elaborating data involving more than two variables, we shall use multivariate analysis which isn't just one specic method, it rather encompasses whole statistical techniques that are used to analyze more than two variables at once. These approaches allow us to gain a deeper insight of data in relation to specic business or real-world scenarios. As a matter of fact, if one is an ambitious data analyst or data scientist, multivariate analysis is an intrinsic concept to address. This technique would be the central focus of this thesis.

Introduction to estimation principle

Estimation statistics, or simply estimation corresponds to a data analysis framework that rests upon a combination of eect sizes, condence intervals, precision planning to analyze data and interpret results. It diers from null hypothesis signicance testing (NHST) which is less informative. In statistics, an estimator is a function for estimating an unknown parameter related to a probability distribution. It can be invested to determine certain characteristics of a total population from observed data. For instance, in a survey, the sample mean is the most commonly used estimator of the population mean. Estimation approach is one of the most outstanding branches of statistics, concerned with the properties of estimators expressed in terms of their convergence, bias and eciency. Numerous approaches can be elaborated in order to set forward estimators of multiple qualities for the same quantity and on the same database. Furthermore, estimation theory can be divided into two main components, parametric and nonparametric estimation. Parametric statistics, which dates back to Fisher in 1920, stands for the classical framework of statistics. The statistical model is characterized by a nite number of parameters. We take M = {P θ : θ ∈ R p } as a typical statistical model that describes the distribution of observed random variables.

However, non-parametric statistics investigates statistical problems where the parametrization is not xed, but there are various choices of parameters in order to nd those entailing to the most ecient procedures. In fact, the law is entirely unknown. For this reason, we resort to the estimation of the functionals describing the model. We are basically interested in the issue of the non-parametric estimation of a distribution function F , a density f and a regression function r. Therefore, in order to settle a number of statistical problems, it is sucient to have a suitable estimate.

Non-parametric estimation

Non-parametric estimation plays a signicant role in exploring a myriad of phenomena with a random nature. It lies at the heart of modeling topic in real problems pertaining to multiple scientic areas, namely environmental sciences, seismology and psychology, medical imaging and neuroscience.

A wide range of methods for non parametric density estimation were elaborated, such as the Histogram estimator, the simple estimator and the kernel estimator. The histogram estimator, introduced by John Graunt (1662), is a stepped function, and therefore discontinuous, which is a deciency for estimating a density. To overcome this issue, the indicator function is replaced by a real one, called the kernel estimator. Indeed, while a histogram counts the number of data points in quite arbitrary intervals, a kernel density estimate is a function dened as the sum of a kernel function on every data point. Therefore, Kernel density estimation is a critical data smoothing concern that allows inferences to be enacted about the population from a nite sample of data. The kernel estimation technique stands for the central focus of the following paragraph and the whole research work.

Kernel estimation

In statistics, kernel estimation refers to a non-parametric process of estimating an unknown probability functional of a random variable using a kernel function. Basically, it is assumed that the kernel function typically exhibits the following properties:

i) R K(x)dx = 1. ii) R K 2 (x)dx < +∞. iii) R xK(x)dx = 0. iv) R x 2 K(x)dx < +∞.
Examples 0.2. The most commonly used kernels are: We can distinguish three kernel estimators. We observe the Parzen-Rosenblatt estimator for the probability density, the Nadaraya estimator for the distribution function and the Nadaraya-Watson estimator for the regression function.

Let (X, Y ) be a random vector with values in R × R with a joint density function g(x, y) and let f and F denote the probability density and the distribution function of X which are unknown. Moreover, let (X 1 , Y 1 ), . . . , (X n , Y n ) be independent random vectors identically distributed as (X, Y ).

The kernel density estimator: [START_REF] Rosenblatt | Remarks on Some Nonparametric Estimates of a Density Function[END_REF] and [START_REF] Parzen | On Estimation of a Probability Density Function and Mode[END_REF] The kernel density estimator of the density function f investigated by Murray [START_REF] Rosenblatt | Remarks on Some Nonparametric Estimates of a Density Function[END_REF] and Emanuel [START_REF] Parzen | On Estimation of a Probability Density Function and Mode[END_REF] and called the Parzen-Rosenblatt's estimator is indicated by

f n (x) = 1 nh n n k=1 K x -X k h n ,
where K refers to the kernel function and (h n ) denotes the smoothing parameter (the bandwidth), a positive deterministic sequence tending to zero.

The kernel distribution function estimator: [START_REF] Nadaraya | Some New Estimates for Distribution Functions[END_REF] The kernel distribution function estimator of the distribution function F elaborated by [START_REF] Nadaraya | Some New Estimates for Distribution Functions[END_REF] and called Nadaraya's estimator is expressed by

F n (x) = 1 n n k=1 K x -X k h n , with K(z) = z -∞ K(u)du.
The kernel regression estimator: Nadaraya-Watson (1964) The kernel regression estimator of the regression function r :

x → E[Y |X = x] identied by [START_REF] Nadaraya | Some New Estimates for Distribution Functions[END_REF] and [START_REF] Watson | Smooth regression analysis[END_REF] and called Nadaraya-Watson's estimator is denoted by

r n (x) =    a n (x) f n (x) if f n (x) = 0 0 otherwise , with a n (x) = 1 nh n n k=1 Y k K x -X k h n .
For the adequate construction of these estimators, two pertinent choices shall be made: the kernel function K and the smoothing parameter h n . Since the kernel is barely sensitive to the shape of the estimator, the choice of the kernel function is not critical and of less importance than that of the bandwidth. Although theoretical asymptotic study yields the optimal bandwidth, not knowing the density function makes it quite dicult to interpret it in practice. From this perspective, kernel smoothing in non-parametric statistics requires the choice of a bandwidth parameter which is crucial for the eective performance of the estimators. An appropriate bandwidth can help obtain an estimated functional close to the true one. However, a poorly chosen bandwidth can seriously distort the true underlying characteristics of the functional. In fact, a small bandwidth leads to undersmoothing and a large bandwidth leads to oversmoothing. Thus, judicious choice of bandwidth should be highly recommended.

Bandwidth selection:

In order to determine the optimal choice of the smoothing parameter, one should nd the parameter that minimises the risk. The most widely used criteria for the choice of h n are the M SE (Mean Squared Error), M ISE (Mean Integrated Squared Error) and the M W ISE (Mean Weighted Integrated Squared Error). The M W ISE and M ISE correspond to the choice of the constant smoothing parameter and the M SE refers to the variable smoothing parameter. Throughout the whole thesis work, the optimal value of the bandwidth h n is obtained through minimizing the asymptotic M W ISE. There are a myriad of data-driven bandwidth selection methods recorded in literature which can be divided into three broad classes: cross-validation techniques, second generation plug-in methods, and the bootstrap approach. The cross-validation selection method introduced by Sarda (1993) stands for a resampling technique that consists of minimising a suitable estimator of the mean squared error. Yet, this method has certain short comings as highlighted by [START_REF] Altman | Bandwidth Selection for Kernel Distribution Function Estimation[END_REF] who developed another ecient method, a plug-in estimate which minimizes an estimate of the mean weighted integrated squared error, using the density function as a weight function. An alternative method is the wild bootstrap, introduced in [START_REF] Hardle | Bootstrap Simultaneous Error Bars for Nonparametric Regression[END_REF] which lies in resampling from the estimated residuals. Both, the plug-in method and the bootstrap one are indistinguishable and it has been widely proven that they behave similarly. A detailed comparison of the three practical bandwidth selection techniques is exhibited in [START_REF] Delaigle | Practical bandwidth selection in deconvolution kernel density estimation[END_REF].

Throughout the entire thesis, the non-parametric approaches we are concerned with rest upon the Stochastic Approximation Method denoted SAM. The latter is investigated in what follows.

Stochastic approximation method

Over the past decade, data streams have become an increasingly important area of research. Some of the most common data streams include Internet packet data, Twitter activity, Facebook newsfeed, credit card transactions and more recently COVID-19 epidemic data. Stochastic algorithms have been commonly used in many research applications, namely system identication, adaptive control, transmission systems and sequential change detection. Recursivity can be crucial when one seeks to infer these kind of phenomena that evolve over time and that require constant updating of the estimates made. In such situations, the data arrives regularly so that it is impossible to store it in a traditional database. In such a context, it is very interesting to build a recursive estimator that does not need to store all the data in memory and that can be easily updated to handle the online data. Suppose we have a big number of data, we need to store a lot of data in order to recalculate them and then the time of execution would be enormous, since adding a new observation means that non-recursive estimators have to be completely recalculated. For reasons of time calculation optimization and the nature of the data studied, we have chosen to study recursive estimators which can be updated with each new observation added to the database. Therefore, instead of re-running the data each time, it is possible to rewrite our considered estimator as a combination of two (or more) estimators, where each estimator is based on separate datasets, which can be very interesting to keep the computational cost reasonably low. Moreover, recursive estimators can be preferable to non-recursive versions because of their lower asymptotic variance.

It is noteworthy that all computation and simulation have been done using the R statistical software.

Historical framework

Stochastic approximation algorithms correspond to stochastic versions of deterministic algorithms like Newton's algorithm or the gradient algorithm. We are basically interested in the following problem: nding the zero x * of a real-valued function S. We suppose to have a very approximate value x 0 of this root. The natural idea of Newton's algorithm is to replace the representative curve of the function S by its tangent at the point x n . The abscissa x n+1 of the intersection point of this tangent with the x-axis is then provided for n ≥ 1 by

x n+1 = x n - S(x n ) S (x n ) .
When the derivative of S is not easily computable, one can consider a deterministic version of the Robbins-Monro algorithm consisting of replacing the computation of the derivative with a decreasing positive sequence tending to 0 of steps (γ n ). Provided that S has good regularity properties, the sequence expressed by

x n+1 = x n -γ n S(x n )
converges to the zero of the function S, denoted x * , for any initial value x 0 . In many situations the function whose zero is sought is known only at a perturbation close to zero. The search for zeros by deterministic optimization methods therefore becomes more perilous and one needs to resort to stochastic algorithms like the one introduced by [START_REF] Robbins | A Stochastic Approximation Method[END_REF].

The recursive estimators that we propose were constructed based on dint of SAM. Indeed, incorporating stochastic approximation algorithms in the context of non-parametric statistics dates back to the papers [START_REF] Robbins | A Stochastic Approximation Method[END_REF] and [START_REF] Kiefer | Stochastic Estimation of the Maximum of a Regression Function[END_REF] for a unidimensional framework. The general stochastic algorithm, devoted essentially to the approximation of the mode of a regression function, has the form:

θ n = θ n-1 + γ n Φ (θ n-1 , W n ) + γ 2 n µ n (θ n-1 , W n ) , (15) where : 
. (γ n ) is a positive sequence of real numbers decreasing towards zero.

. (θ n ) is the sequence to be updated recursively, . (W n ) is a sequence of random variables representing the online observations, . Φ (θ, W ) is the function which essentially determines how the parameter is updated according to a new observation, . µ n (θ n-1 , W n ) denes a small perturbation on the algorithm.

Subsequently, [START_REF] Blum | Multidimensional stochastic approximation methods[END_REF] provided a multidimensional version of this algorithm. These research works have been extended in several directions. Inspired by the most prominent ones, we can introduce the following algorithm analyzed by [START_REF] Kushner | Stochastic approximation methods for constrained and unconstrained systems[END_REF], [START_REF] Ruppert | Almost Sure Approximations to the RobbinsMonro and KieferWolfowitz Processes with Dependent Noise[END_REF].

θ n = θ n-1 + γ n (φ(θ n-1 ) -W n + β n ), (16) 
where (β n ) refers to a random variable converging to 0 almost surely and φ denotes an unknown measurable function. They demonstrated that ( 16) coincides with the (15) algorithm and includes the stochastic approximation processes of [START_REF] Robbins | A Stochastic Approximation Method[END_REF] and [START_REF] Kiefer | Stochastic Estimation of the Maximum of a Regression Function[END_REF], which allow the search for the zero θ * of the φ function. Some basic modications were incorporated by [START_REF] Nadaraya | Some New Estimates for Distribution Functions[END_REF], [START_REF] Polyak | Optimal orders of accuracy for search algorithms of stochastic optimization[END_REF], [START_REF] Dippon | Weighted means in stochastic approximation of minima[END_REF] and [START_REF] Dippon | Accelerated randomized stochastic optimization[END_REF]. Later, [START_REF] Duo | of Applications of Mathematics[END_REF] corroborated that, under standard conditions on the function φ and on the sequence (γ n ), (θ n ) tends to θ * almost surely.

In order to build up a stochastic approximation algorithm, [START_REF] Révész | Robbins-Monro procedure in a Hilbert space and its application in the theory of learning processes[END_REF] introduced an application of the Robbins-Monro procedure and Mokaddem and Pelletier (2007b) developed the application of the Robbins-Monro-Blum procedure. In addition, an algorithm for estimating a regression function was elaborated by [START_REF] Révész | How to Apply the Method of Stochastic Approximation in the Non parametric Estimation of a Regression Function[END_REF] and was afterwards used by [START_REF] Tsybakov | Recurrent Estimation of the Mode of a Multidimensional Distribution[END_REF] to approximate the mode of a probability density. Latterly, [START_REF] Slaoui | Application des méthodes d'approximations stochastiques à l'estimation de la densité et de la régression[END_REF] reported a smooth estimator of the density function in a unidimensional case using the SAM. Next, in the paper of Mokkadem et al. (2009a), the multidimensional case was investigated in order to estimate a multivariate probability density using the estimation by condence intervals. Additionally, [START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF] [START_REF] Slaoui | Adaptive recursive kernel conditional density estimators under censoring data[END_REF].

The basic target of this chapter is to use stochastic approximation algorithms to dene estimators of a probability density at a given point.

Let us recall that stochastic approximation algorithms used for the search of the zero of an unknown function φ : y -→ S(x) -y are built up as follows.

(i) We set S 0 (x) ∈ R arbitrarily.

(ii) For all n ≥ 1, the sequence (S n ) is recursively dened by

S n (x) = S n-1 (x) + γ n T n (x),
where

• (T n ) is a sequence of functions T n : R → R dened by T n (x) = φ(S n-1 ) -W n + β n . (17) 
In other words, T n (x) is an observation of the function φ at the point S n-1 (x).

• (γ n ) is a sequence of positive real numbers that goes to zero such that

γ n = +∞ and γ 2 n < +∞. (18) 
It's noteworthy that, under the condition E [W n |F n-1 ] = 0 (where F n-1 stands for the σ-algebra of the events occurring at the time n -1), we have

E[T n (x)] = φ(S n-1 ) + β n = S(x) -S n-1 (x) + β n . ( 19 
)
Recursive multivariate estimation:

Multivariate statistics centers around exploring the relationships between variables and their goodness of t to the problem in question involving several types of univariate and multivariate analyses. Basically, the latter relies upon statistical procedure comprising the simultaneous measurements and observations of data including more than one factor of independent variables that impact the variability of dependent variables. Therefore, the major merit of multivariate analysis lies in the fact that as it takes into account more than one outcome variable where various dierent quantities are of interest to the same analysis, the obtained conclusions are more accurate and authentic to the real-life situation. Further more, recursive multivariate analysis would be a revolutionary procedure in terms of xing many non-parametric topics relying on complex sets of data.

The major objective of this thesis is to set forward a large class of recursive kernel estimators of dierent multivariate functionals based on the stochastic approximation method.

First of all, we introduce the recursive multivariate probability density estimator noted f n which is dened in Mokkadem et al. (2009a). Let X ∈ R d , d ≥ 1 and let X 1 , . . . , X n be independent, identically distributed R d -valued random vectors, and let f and F denote the probability density and the distribution function of X.

The multivariate recursive density estimator:

To construct a stochastic algorithm, which approximates the function f at a given point x, we need to dene an algorithm of search of the zero of the function

φ : y -→ f (x) -y.
We thus proceed in the following way :

(i) We set f 0 (x) ∈ R. (ii) For all n ≥ 1, we set f n (x) = f n-1 (x) + γ n T n (x),
where T n (x) is an observation of the function φ at the point f n-1 (x) verifying ( 17) and (γ n ) is a positive sequence satisfying (18). To identify T n (x), we adopt the approach of [START_REF] Révész | How to Apply the Method of Stochastic Approximation in the Non parametric Estimation of a Regression Function[END_REF] and of [START_REF] Tsybakov | Recurrent Estimation of the Mode of a Multidimensional Distribution[END_REF], and insert a multivariate kernel K (a function satisfying

R d K(t)dt = 1)
, and a bandwidth (h n ) (a sequence of positive real numbers that goes to zero). Therefore, under some regularity conditions on the density function of X, we have E h

-d n K x -X n h n = f (x) + ε n (x)
, where ε n (x) goes to zero as n goes to innity. Then following (19), we set

T n (x) = h -d n K x -X n h n -f n-1 (x).
The stochastic approximation algorithm we integrate to recursively estimate the density f at the vector x can thus be expressed as

f n (x) = (1 -γ n )f n-1 (x) + γ n h -d n K x -X n h n . (20) 
A general form using recurrence, and under the condition that f 0 (x) = 0, was proposed by [START_REF] Slaoui | Application des méthodes d'approximations stochastiques à l'estimation de la densité et de la régression[END_REF] in a univariate version and Mokkadem et al. (2009a) for a multivariate one. Therefore, the recursive density estimator is given by

f n (x) = Π n n k=1 Π -1 k γ k h -d k K x -X k h k with Π n = n j=1 (1 -γ j ). (21) 
Remark 0.3. The relation ( 21) denes a whole class of recursive kernel estimators of a probability density. It's noteworthy that this class includes the following subclass introduced in Hall and Patil (1994). Given (u n ) a nonincreasing positive sequence such that u n = +∞ and when the stepsize 21) is then expressed as

(γ n ) is chosen equal to u n ( n i=1 u i ) -1 , the f n estimator (
f n (x) = 1 n i=1 u i n k=1 u k h -d k K x -X k h k . ( 22 
)
Later Amiri (2010) exhibited the recursive kernel density estimator given by the choice

(u n ) = h d(1-l) n
, l ∈ [0, 1], which englobes the three examples below.

(E 1 ) The choice l = 1, i.e (u n ) = 1, which corresponds to the case (γ n ) = 1 n , produces the estimator proposed by [START_REF] Wolverton | Asymptotically optimal discriminant functions for pattern classication[END_REF].

(E 2 ) The choice l = 1/2, i.e (u n ) = (h d/2
n ) yields the estimator considered by [START_REF] Wegman | Remarks on some recursive estimators of a probability density[END_REF].

(E 3 ) The choice l = 0, i.e (u n ) = (h d n )
gives the estimator considered by [START_REF] Deheuvels | Sur l'estimation séquentielle de la densité[END_REF][START_REF] Duo | of Applications of Mathematics[END_REF].

As a rst research result, we introduce in the following our proposed multivariate distribution function estimator.

The multivariate recursive distribution function estimator:

To build up a stochastic algorithm which approaches the function F to a given vector x, we dene an algorithm of search of the zero function φ : y -→ F (x) -y and we set:

(i) F 0 (x) ∈ [0, 1] (ii) for all n ≥ 1, F n (x) = F n-1 (x) + γ n T n (x),
In order to dene T n (x), we adopt the approach of Slaoui (2014b) and we introduce a modied multivariate kernel

K : R d -→ [0, 1] , x -→ d i=1 (-∞,x i ) K(t)dt. By setting T n (x) = K x -X n h n -F n-1 (x)
, the stochastic approximation algorithm that we consider to estimate recursively the distribution function F at the vector x can be indicated as follows

F n (x) = Π n n k=1 Π -1 k γ k K x -X k h k . ( 23 
)
For our second topic, resting upon the distribution function estimation, we shall present our multivariate conditional version denoted CCDF , the multivariate recursive conditional cumulative distribution function estimator.

The multivariate recursive conditional cumulative distribution function estimator:

Let (X, Y ) be a random vector with values in R d × R q with a joint density function f (X,Y ) and let f X denote the marginal probability density of X. Moreover, let (X 1 , Y 1 ), . . . , (X n , Y n ) be independent random vectors identically distributed as (X, Y ).

The stochastic approximation algorithm that is devoted to estimate recursively the function

a : (x, y) -→ R q 1 {u y} f (X,Y ) (x, u)du
at a couple of vectors (x, y) can be stated as follows

a n (x, y) = Π n n k=1 Π -1 k γ k χ k (y)h -d k K x -X k h k , ( 24 
)
where χ is a multivariate indicator function identied by χ k : R q -→ R, y -→ 1 {Y k y} .

Our central focus is upon the problem of estimating the CCDF of Y given X = x provided by

π : R q × R d -→ R (y|x) -→ P[Y y|X = x] = a(x, y) f X (x) ,
A recursive estimator of π was identied in Slama et al. ( 2021) and specied by

π n (y|x) =    a n (x, y) f n (x) if f n (x) = 0 0 otherwise . ( 25 
)
In an other vision of conditional estimation, we investigate the multivariate regression in a kerneltype case.

The multivariate recursive kernel-type regression estimator:

Let (X, Y ) be a random vector with values in R d × R with a joint density function g(x, y) and let f denote the probability density of X. Moreover, let (X 1 , Y 1 ), . . . , (X n , Y n ) be independent random vectors identically distributed as (X, Y ). The stochastic approximation algorithm, which estimates recursively the regression function

a ϕ : x -→ r ϕ (x)f (x) = R ϕ ( 
y)g(x, y)dy at a given vector x, for a chosen measurable function ϕ and x ∈ R d , can be denoted as follows

a ϕ n (x) = Q n n k=1 Q -1 k β k ϕ(Y k )h -d k K x -X k h k with Q n = n j=1 (1 -β j ),
where (β n ) is a positive sequence of real numbers decreasing towards zero satisfying (18). Throughout this work, we consider the general multivariate kernel-type estimator for the regression function

r ϕ : x -→ E[ϕ(Y )|X = x] at the vector x r ϕ n (x) =    a ϕ n (x) f n (x) if f n (x) = 0 0 if f n (x) = 0 . ( 26 
)
Particular regression estimation cases: Suppose we have a measurable function ϕ : R → R, we distinguish the following particular examples.

1. For ϕ(y) := I(y) = y, we have the classical regression function

r I (x) = E[Y |X = x].
A recursive estimator of r I was reported in Slaoui (2015).

2. For ϕ(y) := I(y) = y m , m ∈ N, we have the conditional moments

r I (x) = E[Y m |X = x].
3. For ϕ(y) := χ t (y) = 1 {y t} , t ∈ R, we have the conditional cumulative distribution function

r χt (y) = π(t|x) = P[Y t|X = x].
A recursive estimator of r χt was identied in [START_REF] Slama | Multivariate distribution function estimation using stochastic approximation method[END_REF].

Following the spirit of regression estimation, we construct a particular class of estimators for regressions under missing data. This latter is given by the propensity score approach.

Application: recursive estimation of multivariate regression function under missing data:

Let (X, T ) be a random vector with values in R d ×R with a joint density function h(x, t) and let f denote the probability density of X. Moreover, let (X 1 , T 1 ), . . . , (X n , T n ) be independent random vectors identically distributed as (X, T ). Assuming that T 1 , . . . , T n are subjects to missing data, the observed random variables are then Y i and δ i , where

δ i = 1 {T i is observed} and Y i = T i × δ i , for all i ∈ {1, . . . , n}.
Accordingly, when some T i are missing, we introduce the propensity score, a probability elaborated by [START_REF] Rosenbaum | The central role of the propensity score in observational studies for causal eects[END_REF] and dened as followed

ψ i := P[δ i = 1|T i ],
for all i ∈ {1, . . . , n}.

Our basic purpose in this chapter is to propose a recursive estimator to estimate recursively the regression function p (x) = E [T |X = x] under censoring data. Our aim then resides in building up a stochastic algorithm, which approaches the regression function m :

x -→ E[T |X = x]f (x) = R th(x, t
)dt at a given vector x. The stochastic approximation algorithm that we consider to estimate recursively the regression function m at a vector x can be expressed as follows

m n (x) = Q n n k=1 Q -1 k β k Y k ψ -1 k h -d k K x -X k h k . (27) 
A recursive estimator of p was recorded in Slama et al. ( 2021) and identied by

p n (x) =    m n (x) f n (x) if f n (x) = 0 0 if f n (x) = 0 , (28) 

Thesis contributions

At this stage of analysis, we would assert that the central focus in this thesis resides in extending existing approaches to the multidimensional case, which is a thorny task, either from a theoretical or a practical point of view, in order to achieve tting programming skills for running simulation algorithms as well as real datasets analysis. From this perspective, we attempted to broaden the research areas by not only building functional recursive estimators but also by automating the choice of the bandwidth where we used the three most eective methods of bandwidth selection, namely the plug-in method, the cross validation and the bootstrap procedure.

This section was invested as an introductory part. Indeed, the techniques for multivariate nonparametric estimation were elaborated. Therefore, we set forward the famous kernel method estimate which is a basic tool for the recursive estimation approach based on SAM.

This thesis is composed of four main chapters which are laid out as follows.

In the rst chapter, being an extension to my master project, we attempt to build upon the work of [START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF] and extend it to the case of multivariate data. We examine the asymptotic properties of this generalized estimator and we compare them with those of the non-recursive Nadaraya's multivariate distribution estimator. It turns out that, with an adequate choice of the stepsize (γ n ) and an appropriate choice of the bandwidth (h n ), investing one of both methods of bandwidth selection, the cross-validation procedure as well as the second generation plug-in method, the M SE of the generalized estimators can be smaller than the one of Nadaraya's estimator. We corroborate our theoretical results through simulation studies and by considering some real datasets such that a medical unidimensional application of the luteinizing hormone in female blood samples data, a bidimensional application of the earthquakes occurring in the Northwest of the Iberian Peninsula nwip data as well as a multidimensional application of Fisher's or Anderson's iris data.

Proceeding with the same spirit in terms of estimating a multivariate distribution function but in a conditional framework, our second chapter tackles non-parametric estimation of a conditional cumulative distribution function (CCDF). Using a recursive approach, we set forward a multivariate recursive estimator dened by stochastic approximation algorithm. Our basic objective is to investigate the statistical inference of our estimator and compare it with that of non-recursive Nadaraya-Watson's estimator. From this perspective, we rst derive the asymptotic properties of the proposed estimator which highly depend on the choice of two parameters, the stepsize (γ n ) as well as the bandwidth (h n ). The second generation plug-in method entails the optimal choice of the bandwidth and therefore maintains an appropriate selection of the stepsize parameter.

Basically, we demonstrate that, under some conditions, the M SE of the proposed estimator can be smaller than the one of Nadaraya Watson's estimator. We corroborate our theoretical results through simulation studies and two real dataset applications, namely the Insurance Company Benchmark (COIL 2000) dataset as well as the French Hospital Data of COVID-19 epidemic.

As far as the third chapter is concerned, given the idea of conditional estimation and considering a general concept, we elaborate an extension of the semi-recursive kernel-type regression function estimator. We investigate the asymptotic properties of this estimator and compare them with non-recursive Nadaraya Watson regression estimator ones. From this perspective, we rst calculate the bias and the variance of the proposed estimator which strongly depend on the choice of three parameters, namely the stepsizes (β n ) and (γ n ) as well as the bandwidth (h n ) chosen using one of the best methods of bandwidth selection, the bootstrap approach combined with the plug-in method. A convenient choice of those parameters yields that, under some conditions, the M SE of the proposed estimator can be smaller than that of Nadaraya Watson's estimator. We conrm our theoretical results through simulation studies and by considering two real dataset applications, namely the French Hospital Data of COVID-19 epidemic as well as the Plasmodium Falciparum Parasite Load (PL).

Last but not least, in terms of the fourth chapter, our central objective is to explore cognitive processes and mental representations mobilized when a human being prepares to write a word according to the idea developed in [START_REF] Perret | Spelling and Writing Words: Theoretical and Methodological Advances[END_REF]. For this purpose, we foreground a non-parametric multivariate recursive kernel regression estimator under missing data using the propensity score approach so as to characterize writing word production. We examine the asymptotic properties of the proposed recursive estimator and compare them to the well known Nadaraya-Watson's regression estimator. We calculate the bias and the variance of the proposed estimator which depend on the choice of some parameters such as the stepsize and the bandwidth. We handle some data-driven procedures to select these parameters. Thus, we demonstrate that, under some optimal choices of these parameters, the M SE of the proposed estimator can be smaller than the one obtained by using Nadaraya Watson's regression estimator. The developed estimator is then applied to the behavioral data so as to classify some participants in groups. This classication may stand for a departure point to tackle written behavior variations.

Eventually, the closing section wraps up the conclusion, provides outstanding concluding remarks and oers new perspectives for future research works.

Chapter 1

Multivariate distribution function estimation using stochastic approximation method

Introduction

The estimation of a distribution function stands for an intrinsic tool in the study of multiple random phenomena. In fact, it's at the heart of modeling questions in real problems of such scientic elds, such as environmental sciences, seismology and particularly in biology, medical imaging and neuroscience. Numerous methods were set forward and explored in order to elaborate an eective estimator compared to the empirical distribution function. Our basic method applied in this study will be the non-parametric adaptive kernel density estimator for recursive multivariate distribution function estimation.

Inspired by the most prominent expansions, Slaoui (2014b) reused stochastic approximation methods to set forward an univariate recursive estimator of the distribution function. Thereafter, he provided a special stepsize and an adequate plug-in bandwidth selection to achieve a better estimation compared to Nadaraya's unidimensional data estimation. The large and moderate deviation principle of this estimator was proven in Slaoui (2019). The central objective of this chapter lies in extending this latter estimator to a multidimensional case. We demonstrated that, under some suitable conditions, essentially on the stepsize and on the bandwidth, the generalized estimators are closer to the true distribution function compared to the non-recursive Nadaraya's multidimensional distribution estimator.

Presentation of the method

Let X, X 1 , . . . , X n be independent, identically distributed R d -valued random vectors, d ≥ 1, and let f and F denote the probability density and the distribution function of X.

To build up a stochastic algorithm which approaches the function F to a given vector x ∈ R d , we dene an algorithm of search of the zero function φ : y -→ F (x) -y and we set:

(i) F 0 (x) ∈ [0, 1] (ii) for all n ≥ 1, F n (x) = F n-1 (x) + γ n T n (x),
where (γ n ) is a positive sequence of real numbers decreasing towards zero satisfying (18) and T n (x) is an observation of the function φ at the point F n-1 (x) verifying ( 17).

In order to dene T n (x), we rst introduce a modied multivariate kernel

K : R d -→ [0, 1] , x -→ d i=1 (-∞,x i ) K(t)dt. By setting T n (x) = K x -X n h n -F n-1 (x)
, the stochastic approximation algorithm that we consider to estimate recursively the distribution function F at the vector x can be expressed as follows :

F n (x) = (1 -γ n )F n-1 (x) + γ n K x -X n h n . (1.1)
Throughout this chapter, we consider that F 0 (x) = 0. Then, our estimator (4.1) can be rewritten

F n (x) = Π n n k=1 Π -1 k γ k K x -X k h k , with Π n = n j=1 (1 -γ j ). (1.2)
Our major aim in this part is to explore the asymptotic properties of our generalized recursive kernel estimator of a distribution in the case of multivariate data and subsequently conrm its performances. We are basically interested also in comparing our generalized estimator to the generalized non-recursive multivariate distribution estimator of Nadaraya F n indicated by: .3) For this reason, we attempt rst to calculate the bias and the variance of the generalized estimator F n which largely depends on the choice of two parameters, namely the stepsize (γ n ) and the bandwidth (h n ). Moreover, we introduce the asymptotic properties of multivariate Nadaraya's estimator F n . It turns out that, by using an adequate choice of the stepsize of the proposed algorithm, the Mean Weighted Integrated Squared Error of the generalized estimators is smaller than the one of Nadaraya's estimator. Furthermore, we depict that with an appropriate choice of the bandwidth (h n ), using one of two data-driven bandwidth selections; the cross-validation procedure as well as the second generation plug-in method, the M SE of the generalized estimators can be smaller than the one of Nadaraya's multidimensional estimator. Likewise, we conrm that in our context the plug-in method can be more ecient than the cross-validation. We corroborate these theoretical results with some simulations as well as real datasets. We consider as a rst application, a real dataset in a unidimensional case, the lh (Luteinizing Hormone in Blood Samples data) available on the datasets package for a biological concept. As a bivariate example, we consider the nwip data available on the kerdiest package for a seismology concept. Moreover, for a multidimensional application, we consider the iris data available on the datasets package for an environmental sciences concept.

F n (x) = 1 n n i=1 K x -X i h n . ( 1 
First of all, let us recall the following denition of the class of regularly varying sequences.

Denition 1.1. Let (v n ) n≥1 be a nonrandom positive sequence and γ ∈ R. We state that

(v n ) n≥1 ∈ GS(γ) if lim n→+∞ n 1 - v n-1 v n = γ.
This dénition was introduced by [START_REF] Galambos | Regularly Varying Sequences[END_REF] to characterize regularly varying sequences and by Mokaddem and Pelletier (2007a) in the context of stochastic approximation algorithms. Note that the acronym GS stands for (Galambos and Seneta). Typical sequences in GS(γ) are, for b ∈ R, n γ , n γ (log n) b , n γ (log log n) b , and so on.

At this stage of analysis, it is worth mentioning that the following assumptions will be useful for the whole thesis investigation.

(A 1 ) K : R d -→ R + is a continuous bounded function satisfying: R d K(u)du = 1 , ∀j ∈ {1, . . . , d}, R u j K(u)du j = 0 and R d u 2 j K(u)du < +∞. (A 2 ) (i) (γ n ) n≥1 ∈ GS(-α), with α ∈ 1 2 , 1 . (ii) (h n ) n≥1 ∈ GS(-a), with a ∈ (0, 1). (iii) lim n→+∞ nγ n ∈ min{2a, a+α 2 }, +∞ .
Discussion of the assumptions:

All these assumptions are standard and are generally assumed within the context of non-parametric estimation. Classical assumption (A 1 ) provides regularity conditions on the kernel density estimator introduced by Rosenblat ( 1956) and [START_REF] Parzen | On Estimation of a Probability Density Function and Mode[END_REF]. It is widely used in the non-parametric framework for the functional estimation. Assumption (A 2 ) on the stepsize and the bandwidth was used in the recursive framework for the estimation of the density function in Mokkadem et al. (2009a), Slaoui (2014a) and for the distribution function estimation in [START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF]. Furthermore, it is notable that the assumption (A 2 )(iii) regarding the limit of (nγ n ) as n goes to innity is quite common within the context of stochastic approximation algorithms. More specically, the limit ξ := lim

n→+∞ (nγ n ) -1 is implied to be nite.
In what follows, we introduce two lemmas that will be widely invested throughout the theoretical studies of our recursive estimators. The proof of the rst lemma was provided in Mokkadem et al. (2009a).

Lemma 1.2. Let (v n ) n≥1 ∈ GS(v * ), v * ∈ R, (γ n ) n≥1 ∈ GS(-α) and let m > 0 such that m -v * ξ > 0. Therefore, lim n→+∞ v n Π m n n k=1 Π -m k γ k v k = 1 m -v * ξ .
Moreover, for any positive sequence

(α n ) n≥1 such that lim n→+∞ α n = 0 and all C ∈ R, lim n→+∞ v n Π m n n k=1 Π -m k γ k v k α k + C = 0.
The second lemma is a direct consequence of the denition 1.1 and is exhibited so as to help the reader simplify the assessment of proofs details. Lemma 1.3. Let 

(a n ) n≥1 ∈ GS(a) and (b n ) n≥1 ∈ GS(b), a, b ∈ R. Hence, a k n b z n n≥1 ∈ GS(ka -zb), with k, z ∈ R.
In particular, we get (a -1 n ) n≥1 ∈ GS(-a).

Notations and assumptions

For our theoretical main results, we need the following assumptions:

(A 3 ) (i) F : R d -→ [0, 1] is twice continuously dierentiable.
(ii) For all i, j ∈ {1, . . . , d}, F (iv) For all i ∈ {1, . . . , d}, there exists f i : R -→ R + bounded and integrable functions such that

f (x 1 , . . . , x d ) ≤ d i=1 f i (x i ).

Main results

Our rst result rests upon the following propositions highlighting respectively the bias and the variance of F n . For the following, we note For all i, j ∈ {1, . . . , d}, µ j (K) :=

R d z 2 j K(z)dz, φ j (K) := 2 d R d z j K(z)K(z)dz. 1.2.1
Bias and variance of F n Proposition 1.4. Under the assumptions (A 1 ) -(A 3 ), we obtain

1. If a ∈ 0, α 3 , then E[F n (x)] -F (x) = h 2 n 2(1 -2aξ) d j=1 µ j (K)F (2) jj (x) + o h 2 n . (1.4) If a ∈ α 3 , 1 , then E[F n (x)] -F (x) = o γ n h n . (1.5) 2. If a ∈ 0, α 4 , then V ar[F n (x)] = o h 4 n . (1.6) If a ∈ α 4 , α 3 , then V ar[F n (x)] = γ n 2 -αξ F (x)(1 -F (x)) + o (γ n ) . (1.7) If a ∈ α 3 , 1 , then V ar[F n (x)] = γ n 2 -αξ F (x)(1 -F (x)) - γ n h n 2 -(a + α)ξ d i=1 φ i (K)F (1) i (x) + o (γ n h n ) . (1.8)
The bias and the variance of the estimator F n dened by the stochastic approximation algorithm (1.2) then largely depend on the choice of the stepsize (γ n ).

At this level, let us display the following theorem which provides the weak pointwise convergence rate of the generalized recursive estimator F n . It is noteworthy that 

1.2.2

Weak pointwise convergence rate of F n Theorem 1.5. Under the assumptions (A 1 ) -(A 3 ), we have:

1. If there exists c ≥ 0 such that γ -1 n h 4 n -→ n→+∞ c, then γ -1 n (F n (x) -F (x)) D -→ n→+∞ N √ c 2(1 -2aξ) d j=1 µ j (K)F (2) jj (x) , 1 2 -αξ F (x) (1 -F (x)) . 2. If γ -1 n h 4 n -→ n→+∞ +∞, then 1 h 2 n (F n (x) -F (x)) P -→ n→+∞ 1 2(1 -2aξ) d j=1 µ j (K)F (2) jj (x).

Optimal choice of the stepsizes

In order to measure the asymptotic quality of the recursive estimator F n , we need to use the Mean Weighted Integrated Squared Error (M W ISE).

1.3.1 Asymptotic expressions of M W ISE[F n ]
The M W ISE of the estimator F n is determined by

M W ISE[F n ] = R d (E[F n (x)] -F (x)) 2 f (x)dx + R d V ar[F n (x)]f (x)dx.
(1.9)

We rst note,

J 1 := R d d i=1 F (1) i (x)φ i (K)f (x)dx, J 2 := R d   d j=1 µ j (K)F (2) jj (x)   2 f (x)dx, V F := R d F (x)(1 -F (x))f (x)dx.
Proposition 1.6. Under the assumptions (A 1 ) -(A 3 ), we have

M W ISE[F n ] =                        J 2 4(1-2aξ) 2 h 4 n + o(h 4 n ) if a ∈ 0, α 4 V F 2-αξ γ n + J 2 4(1-2aξ) 2 h 4 n + o(h 4 n ) if a ∈ [ α 4 , α 3 ) V F 2-αξ γ n - J 1 2-(α+a)ξ γ n h n + J 2 4(1-2aξ) 2 h 4 n + o(h 4 n ) if a = α 3 V F 2-αξ γ n - J 1 2-(α+a)ξ γ n h n + o(γ n h n ) if a ∈ α 3 , 1 .
Proof. By distinguishing the dierent possible cases according to the expressions of the Bias and Variance, one can prove this proposition and nd the required result.

The following corollary ensures that, for a special choice of the stepsize (γ n ) = γ 0 n -1 , the optimal value for the bandwidth (h n ) depends on γ 0 and as a matter of fact the corresponding M W ISE depends also on γ 0 .

Corollary 1.7. Let assumptions (A 1 ) -(A 3 ) hold. To minimize the M W ISE of F n , we need to choose the stepsize (γ n ) in GS(-1) such that lim n→+∞ nγ n = γ 0 , and the bandwidth (h n ) needs to be equal to

2 -1 3 γ 0 - 2 3 1 3 J 1 J 2 1 3 n -1 3
.

(1.10) Therefore, the corresponding M W ISE is specied by

M W ISE[F n ] = γ 2 0 2γ 0 -1 n -1 V F - 3 4 1 2 4/3 γ 2 0 (γ 0 -2/3) 2/3 J 4 3 1 J -1 3 2 n -4 3 + o n -4 3
.

(1.11)

The following corollary follows immediately from theorem 1.5 and exhibits the asymptotic normality of F n .

Corollary 1.8. Under the assumptions (A 1 ) -(A 3 ), we have:

If there exists s ≥ 0 such that γ -1 n h 3 n -→ n→+∞ s, so that γ -1 n h 4 n -→ n→+∞ 0, then γ -1 n (F n (x) -F (x)) D -→ n→+∞ N 0 , 1 2 -αξ F (x) (1 -F (x)) .
Now, let us examine the asymptotic properties of the generalized Nadaraya's non-recursive distribution estimator F n .

Asymptotic properties of F n

The main properties of the generalized non-recursive estimator F n are identied in the following proposition. (see [START_REF] Nadaraya | Some New Estimates for Distribution Functions[END_REF], [START_REF] Reiss | Non parametric Estimation of Smooth Distribution Function[END_REF] and [START_REF] Hill | Kernel Estimation of a Distribution Function[END_REF] for further details in the univariate case.) Proposition 1.9. Let assumptions (A 1 ) and (A 3 ) hold. Hence, the asymptotic properties of Nadaraya's estimator are displayed as follows

The bias of F n :

E[ F n (x)] -F (x) = h 2 n 2 d j=1 µ j (K)F (2) jj (x) + o h 2 n .
The variance of F n :

V ar[ F n (x)] = 1 n F (x)(1 -F (x)) - h n n d i=1 F (1) i (x)φ i (K) + o h n n -1 .
The asymptotic normality of

F n : If we have nh 4 n -→ n→+∞ 0, then √ n( F n (x) -F (x)) D -→ n→+∞ N 0 , F (x) (1 -F (x)) .
It follows from this proposition that

M W ISE[ F n ] = h 4 n 4 J 2 + o h 4 n + 1 n V F - h n n J 1 + o h 4 n .
Corollary 1.10. Let assumptions (A 1 ) and (A 3 ) hold. To minimize the M W ISE of F n , the bandwidth (h n ) must be equal to

J 1 J 2 1 3 n -1 3
.

(1.12)

Thus, the corresponding M W ISE is expressed in terms of

M W ISE[ F n ] = n -1 V F - 3 4 J 4 3 1 J -1 3 2 n -4 3 + o n -4 3
.

(1.13) Remark 1.11. In practice, the Robbins-Monro algorithm is very sensitive to parameters like the starting point or the calibration of the step sequence (γ n ). The optimal speed of the algorithm is reached for a step of the form γ n = cn -α but the choice of the constants c and α is extremely signicant and determining it in practice proves to be very tricky.

The following theorem establishes that, for a special choice of the stepsize (γ n ), the proposed recursive distribution estimator F n can dominate the generalized non-recursive Nadaraya's estimator F n in terms of the MWISE. Theorem 1.12. Under assumptions (A 1 ) -(A 3 ), and assuming that (γ n ) = (γ 0 n -1 ) with γ 0 = 2 3 + ε where ε > 0 (very close to zero), we consider the generalized estimators (1.2) with the bandwidth

(h n ) = 2 -1 3 γ 0 - 2 3 1 3 J 1 J 2 1 3 n -1 3
and the generalized Nadaraya's estimator (1.3) with the bandwidth

(h n ) = J 1 J 2 1 3 n -1 3 . For n ∈ n Lower ε , n Upper ε
, where

n Lower ε = 3 3 2 10 J 4 1 J 1 2 V F 3 ( 1 3 + 2ε) 3 ε 2 ,
and

n Upper ε = 3 3 2 10 J 4 1 J 2 V 3 F ( 1 3 + 2ε) 3 2 3 + ε -2 2 3 ε 1 3 3 2 3 + ε + 2 2 3 ε 1 3 3 (ε -1 3 ) 6 ε 2 ,
we have

M W ISE[F n ] < M W ISE[ F n ].
Remark 1.13. Note that since the optimal M W ISE formulas (1.11) and (1.13) must be positive, we need to opt for n such that n > n Lower ε . In addition, in order to get a smaller M W ISE of the proposed recursive estimator compared to non-recursive estimator, we need to choose n < n Upper ε ; for supplementary details one can consult the proof given in [START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF] in the case of unidimensionnel case, see also [START_REF] Jmaei | Recursive distribution estimators dened by stochastic approximation method using Bernstein polynomials[END_REF] in the case of using the Bernstein polynomials rather than kernels. We can determine for each selected law and for a xed sample size n the upper and the lower bounds of the interval, in which the proposed recursive estimator can be better than the generalized classic Nadaraya's estimator.

Bandwidth selection

Kernel smoothing in non-parametric statistics requires the choice of a bandwidth parameter. This choice is critical and can substantially reduce precision. An appropriate bandwidth can help obtain an estimated distribution function close to the true distribution function. However, a poorly selected bandwidth can seriously distort the true underlying characteristics of the distribution function. Thus, wise choice of bandwidth is highly recommended. There are a myriad of methods for bandwidth selection. As far as our research is concerned, we are mainly interested in two of them, namely the cross-validation procedure and the second generation plug-in approach. The cross-validation selection method was proposed by [START_REF] Sarda | Smoothing parameter selection for smooth distribution functions[END_REF], but this method has deciencies as revealed by [START_REF] Altman | Bandwidth Selection for Kernel Distribution Function Estimation[END_REF] who elaborated another ecient method, a plug-in approach which minimizes the estimate of the M W ISE, using the density function as a weight function. First of all, for the sake of simplicity, the kernel K is considered as a product of univariate kernels K satisfying

K = ⊗ d 1 K and R K(x)dx = 1. (1.14)
Hence, we introduce a function K dened by

K (x) = x -∞ K(t)dt such that K = ⊗ d 1 K .
Beside, it is noteworthy that using the fact that X is a an n × d matrix, we will adopt the following notation in the whole thesis

X ki := X k,i
, the entry in the k-th row and i-th column of the matrix X.

Hence, we infer that

F n (x) = Π n n k=1 Π -1 k γ k K x -X k h k = Π n n k=1 Π -1 k γ k d i=1 K x i -X ki h k and F n (x) = 1 n n k=1 K x -X k h n = 1 n n k=1 d i=1 K x i -X ki h n .
Let us start by introducing the rst bandwidth selection method.

Cross-Validation

The cross-validation procedure corresponds to a method of selecting the smoothing parameter.

It's noteworthy that (see [START_REF] Sarda | Smoothing parameter selection for smooth distribution functions[END_REF]):

CV (h) = 1 n n i=1 (F e -F -i ) 2 ,
with F e is the empirical distribution function and F -i is the leave-one-out version of the considered estimator. Thus, an estimator of the cross-validation criterion based on the generalized recursive estimator is identied by

CV (h) = 1 n n i=1   Fe -Π n-1 n k=1 i =k Π -1 k γ k d t=1 K X it -X kt h k    2 ,
and the considered cross-validation bandwidth selection adapted to our generalized recursive estimator is indicated by

h opt = arg min h∈H CV (h).
Likewise, an estimator of the cross-validation criterium based on the generalized Nadaraya's estimator is determined by

CV (h) = 1 n n i=1   Fe - 1 n -1 n k=1 i =k d t=1 K X it -X kt h n    2 ,
and the considered cross-validation bandwidth selection adapted to the generalized Nadaraya's estimator is dened by

h opt = arg min h∈H CV (h).
In the next subsection, we tackle the second considered bandwidth selection method, which is called the second generation plug-in approach.

Plug-in method

In statistics, the plug-in principle stands for approximating a functional of a given population distribution by the same functional at the empirical distribution. Plug-in bandwidth selectors are a major class of bandwidth selectors which are derived from the M W ISE expansion. Since the M W ISE depends on the unknown quantities J 1 and J 2 , we suggest constructing asymptotic unbiased estimators of J 1 and J 2 .

Here, we notice J 1 = φ(K)I 1 and J 2 = µ 2 (K)I 2 , where

µ(K) = R z 2 K(z)dz, φ(K) = 2 R zK(z)K (z)dz, I 1 = R d d i=1 F (1) i (x)f (x)dx and I 2 = R d   d j=1 F (2) jj (x)   2 f (x)dx.
In order to estimate the optimal bandwidth (1.10), we need to estimate I 1 and I 2 , by using the Plug-in estimate approach of [START_REF] Altman | Bandwidth Selection for Kernel Distribution Function Estimation[END_REF]. From this perspective, we introduce (b n ) n≥1 ∈ GS(-δ), δ ∈ (0, 1) . In practice, we set

b n = n -δ min s, Q 3 -Q 1 1.349 , (1.15) 
with s being the sample standard deviation, and Q 1 , Q 3 denoting the rst and third quartiles of the sample X, respectively. Moreover, we assume that K b stands for a kernel and b n is the associated bandwidth selected to be equal to (1.15) such that δ = 2 5 , K 3 . For additional details concerning our choice for the parameter δ, we recommend the reader to consult the work of Slaoui (2014a) for recursive kernel density estimation and Slaoui (2014b) for the distribution function estimation. In order to clarify this notion for the reader, we develop in the next subsection the proposed bandwidth selection based on the generalized recursive distribution estimator.

Recursive estimator F n :

To estimate the optimal bandwidth (1.10), we need to estimate I 1 and I 2 .

Estimation of I 1 :

I 1 = Π n n n i,k=1 i =k Π -1 k γ k b -1 k    d t=1 K b X it -X kt b k d l=1 l =t K b X il -X kl b k    .
Estimation of I 2 :

I 2 = Π 2 n n n i,j,k=1 i =j =k Π -1 j Π -1 k γ j γ k b -2 j b -2 k    d t=1 K (1) b X it -X jt b j d l=1 l =t K b X il -X jl b j    ×    d t=1 K (1) b X it -X kt b k d l=1 l =t K b X il -X kl b k    ,
At this stage, we obtain

J 1 = φ(K) I 1 and J 2 = µ 2 (K) I 2 .
As a matter of fact, our considered plug-in bandwidth selection procedure to estimate (1.10) is specied by

  2 -1 3 γ 0 - 2 3 1 3 J 1 J 2 1 3 n -1 3   , (1.16) 
Estimation of V F :

Furthermore, in order to compute the M W ISE of F n , we need to estimate V F as follows

V F = Π n n n i,k=1 i =k Π -1 k γ k d l=1 K b X il -X kl b k - Π 2 n n n i,j,k=1 i =j =k Π -1 j Π -1 k γ j γ k d l=1 K b X il -X jl b j × d l=1 K b X il -X kl b k . Therefore, the plug-in estimator of M W ISE[F n ] is provided by M W ISE[F n ] = γ 2 0 2γ 0 -1 n -1 V F - 3 4 1 2 4/3 γ 2 0 (γ 0 -2/3) 2/3 J 4 3 1 J -1 3 2 n -4 3 + o n -4 3
.

(1.17)

In the next subsection, we handle the generalized Nadaraya's distribution estimator in order to be able to compare our generalized recursive distribution estimator to the non-recursive one.

Non-recursive estimator F n :

To estimate the optimal bandwidth (1.12), we need to estimate I 1 and I 2 .

Estimation of I 1 :

I 1 = 1 n(n -1)b n n i,k=1 i =k    d t=1 K b X it -X kt b n d l=1 l =t K b X il -X kl b n    ,
Estimation of I 2 :

I 2 = 1 n 3 b 4 n n i,j,k=1 i =j =k    d t=1 K (1) b X it -X jt b n d l=1 l =t K b X il -X jl b n    ×    d t=1 K (1) b X it -X kt b n d l=1 l =t K b X il -X kl b n    ,
At this stage, we obtain

J 1 = φ(K) I 1 and J 2 = µ 2 (K) I 2 .
Hence, the considered plug-in bandwidth selection estimator of (1.12) is denoted by

  J 1 J 2 1 3 n -1 3   , (1.18) Estimation of V F :
Furthermore, in order to compute the associated M W ISE of F n using the previous plug-in bandwidth estimator of (1.18), we need to estimate V F as follows

V F = 1 n(n -1) n i,k=1 i =k d l=1 K b X il -X kl b n - 1 n(n -1) 2 n i,j,k=1 i =j =k d l=1 K b X il -X jl b n × d l=1 K b X il -X kl b n .
Thus, the associated plug-in estimator of M W ISE[ F n ] is expressed by

M W ISE[ F n ] = n -1 V F - 3 4 J 4 3 1 J -1 3 2 n -4 3 + o n -4 3 . (1.19)
The equations incorporated in (1.17) and (1.19) will be very useful in the next section at the level of comparing the performance of both estimators in terms of estimation error.

Numerical applications

The target underlying our numerical studies lies in comparing the performance of our generalized recursive estimator (1.2) with that of Nadaraya (1.3).

Simulation studies

When applying our generalized recursive estimator F n , we need to choose three quantities:

• The function K, we use the Epanechnikov kernel.

• The stepsize (γ n ) = (γ 0 n -1 ), where γ 0 = 2/3 + ε.

• The bandwidth (h n ) is chosen to be equal to (1.16).

When applying the non-recursive estimator F n , we need to choose two quantities:

• The function K, we use the Epanechnikov kernel.

• The bandwidth (h n ) is chosen to be equal to (1.18).

We denote by F * i the reference distribution and by F i the test distribution. Therefore, we calculate the following measures:

Mean squared error: M SE = 1 n n i=1 (F i -F * i ) 2 .
The linear correlation:

Cor = Cov(F i , F * i )σ(F i ) -1 σ(F * i ) -1 .
Here are certain properties of the used Epanechnikov kernel :

Kernel K(x) Support φ(K) µ(K) Epanechnikov 3 4 (1 -x 2 ) [-1, 1] 9 35 1 5
Table 1.1: Epanechnikov proporties.

The unidimensional case: d=1

In order to compare the considered generalized recursive estimator and the Nadaraya's generalized distribution one, we consider two sample sizes; n = 50 and 100 using N = 500 trials of sample n and the following four models:

• Model 1: The standard normal distribution N (0, 1) .

• Model 2: The normal distribution N 1 2 , 1 .

• Model 3: The mixture normal distribution

1 2 N 1 2 , 1 + 1 2 N -1 2 , 1 .
• Model 4: The mixture normal distribution 2 3 N 1 3 , 1 + 1 3 N -1 3 , 1 . 

(γ n ) = ([2/3 + 0.05]n -1
) through a plug-in method as well as a cross-validation one in the unidimensional case.

For the following, it is worthy to denote that I d stands for the identity matrix of size d.

The bidimensional case: d=2

In order to compare the generalized recursive distribution estimator with Nadaraya's distribution estimator, we consider two sample sizes, n = 50 and 100 using N = 500 trials of sample n and four models:

• Model 1: The standard normal distribution N 0 0 , I 2 .

• Model 2: The normal distribution N 1/2 1/2 , I 2 .

• Model 3: The mixture normal distribution 

1 2 N 1/2 1/2 , I 2 + 1 2 N -1/2 -1/2 , I 2 . • Model 4: The mixture normal distribution 2 3 N 1/3 1/3 , I 2 + 1 3 N -1/3 -1/3 , I 2 .
(γ n ) = ([2/3 + 0.05]n -1
) through a plug-in method as well as a cross-validation one in the bidimensional case.

From Tables 1.2 and 1.3, we conclude that:

1 -The MSE of the generalized recursive estimator with stepsize (γ n ) = ([2/3 + 0.05]n -1 ) through a plug-in method is smaller than that of the generalized Nadaraya's estimator with the second generation considered plug-in method as well as the generalized recursive estimator and the generalized Nadaraya's estimator with the cross-validation approach.

2 -The M SE decreases as the simple size increases.

3 -The Cor increases as the sample size increases.

Real Datasets

In this section, we exhibit three real data applications. The rst one is in an unidimensional case, the second one is in a bidimensional case while the third one is in a multidimensional case. For all of the considered cases, we report the values of the plug-in I 1 , I 2 , V F and M W ISE using the generalized Nadaraya's estimator as well as the generalized recursive estimator using a specic choice of the stepsize. Moreover, we calculate the error dened by

P SE = 1 n n i=1 (F i -F e i ) 2 ,
where F e i is the empirical distribution function and F i is the test distribution function.

An unidimensional application

At this level, we use lh data which appears in the R package datasets. These data are a sort of a regular time series giving the luteinizing hormone in blood samples at 10 mins intervals from a human female. Totally, we got 48 samples.

I 1 I 2 V F M W ISE P SE Nadaraya's estimator
0.42214350 0.64455170 0.16382990 0.00265951 0.00048493 Recursive estimator 0.45531620 0.33022020 0.16532920 0.00251792 0.00043248 Table 1.4: Quantitative comparison between the I 1 , I 2 , V F , M W ISE and P SE of Nadaraya's distribution estimator as well as the proposed distribution estimator with stepsize (γ n ) = ([2/3 + 0.05]n -1 ) via lh data of the package datasets and through a plug-in method. 

A bidimensional application

Within this framework, we use the nwip data which appears in the R package kerdiest. This data set corresponds to the earthquakes occurring in the Northwest of the Iberian Peninsula, from 25/November/1924 to 31/July/2010. The area is limited by the coordinates 41 N 44 N and 6 W 10 W, involving the autonomic region of Galicia (Spain) and northern Portugal. The data catalog was obtained from the National Geographic Institute (IGN) of Spain. These data are available online at the web page http://www.ign.es. Within this data frame, we have 3491 observations on 10 variables, corresponding to the earthquake epicenters and time of occurrence. Within this application, we are interested in two variables, namely the longitude in degrees as well as the magnitude in Richter Scale. For the latter, we consider the date with the magnitude values > 3.1, to end up with a sample of 326 observations. 1.5: Quantitative comparison between the I 1 , I 2 , V F , M W ISE and P SE of Nadaraya's distribution estimator as well as the proposed distribution estimator with stepsize (γ n ) = ([2/3 + 0.05]n -1 ) via nwip data of the package kerdiest and through a plug-in method. Figure 1.14: The recursive estimator.

I 1 I 2 V F M W ISE P SE Nadaraya'

A multidimensional application

In this application, we use the iris data which appears in the R package datasets. This famous (Fisher's or Anderson's) iris data set provides the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 owers from each of 3 species of iris. These species are Iris setosa, versicolor, and virginica. As far as this application is concerned, we consider data with the petal width values < 2 to end up with a sample of 121 observations. Therefore, the following results are obtained. 

I 1 I 2 V F M
(γ n ) = ([2/3 + 0.05]n -1
) via iris data of the package datasets and through a plug-in method.

Conclusion

In this research work, we set forward a smooth estimator of the multivariate distribution function. We rst studied the asymptotic properties of the generalized estimator. We computed the bias as well as the variance in order to demonstrate that our estimator asymptotically follows a normal distribution. Afterwards, we compared our generalized recursive estimator to non-recursive Nadaraya's multivariate distribution estimator using two bandwidth selection approaches, namely the cross-validation method as well as the plug-in technique. In the simulation studies, and for all the cases, the generalized recursive estimator (1.2) with stepsize (γ n ) = [2/3 + 0.05]n -1 ensures a better performance in terms of estimation error compared to the generalized non-recursive Nadaraya's estimator.

To sum up, the use of the generalized recursive distribution estimators enables us to obtain better results compared to the non-recursive estimator. With an appropriate choice of the bandwidth, we can demonstrate that our generalized recursive estimator is closer to the true distribution function than the generalized non-recursive Nadaraya's estimator.

Proofs

Throughout this section, devoted to the proofs of our main results, we use the following notation:

Z n (x) = K x -X n h n . (1.20) Proof of Proposition 1.4. Let x be in R d .
In the general framework, using the relation (1.1) and without assuming that F 0 (x) = 0, we have:

F n (x) -F (x) = (1 -γ n )F n-1 (x) + γ n Z n (x) -F (x) = (1 -γ n )[F n-1 (x) -F (x)] + γ n [Z n (x) -F (x)].
By a simple recurrence, we obtain

F n (x) -F (x) = n i=1 (1 -γ i )[F 0 (x) -F (x)] + n-1 k=1 n i=k+1 (1 -γ i )γ k (Z k (x) -F (x)) + γ n (Z n (x) -F (x)) = Π n n k=1 Π -1 k γ k (Z k (x) -F (x)) + Π n [F 0 (x) -F (x)].
Thus,

E[F n (x)] -F (x) = Π n n k=1 Π -1 k γ k (E[Z k (x)] -F (x)) + Π n [F 0 (x) -F (x)].
(1.21)

1. Bias of F n :

Our intrinsic goal at this level is to calculate the quantity:

E[Z k (x)] = R d K x -y h k f (y)dy.
Notably, under the conditions in (A 1 ), we assume that

f (y) = ∂ d F ∂y 1 . . . ∂y d (y), y = (y 1 , . . . , y d ).
Correspondingly, under (A 1 ) and (1.14), we infer that

K(y) = ∂ d K ∂y 1 . . . ∂y d (y) = ∂ d K ∂y d . . . ∂y 1 (y).
At this level, we aim to apply the following result, an extension of the integration by parts formula.

Under the assumptions (A 1 ), (A 3 ) and (1.14), we infer that

R d K x -y h k f (y)dy = R d K x -y h k ∂ d F ∂y 1 . . . ∂y d (y)dy = (-1) d R d -1 h k d ∂ d K ∂y 1 . . . ∂y d x -y h k F (y)dy = R d h -d k K x -y h k F (y)dy.
Hence, a change of variables ensures

E[Z k (x)] = R d K(z)F (x -zh k )dz, z = (z 1 , . . . , z d ).
Moreover, using (A 3 ) and by applying the well known Taylor's development with integral remainder formula for F , we obtain

F (x -zh k ) = F (x) - d i=1 F (1) i (x)z i h k + 1 0 (1 -t) d i,j=1 F (2) ij (x -tzh k )z i z j h 2 k dt.
Then, it will be obvious that

E[Z k (x)] -F (x) = R d K(z) [F (x -zh k ) -F (x)] dz.
Hence,

E[Z k (x)] -F (x) = R d K(z)   - d i=1 F (1) i (x)z i h k + 1 0 (1 -t) d i,j=1 F (2) ij (x -tzh k )z i z j h 2 k dt   dz = -h k d i=1 F (1) 
i (x)

R d K(z)z i dz + h 2 k 2 d i,j=1 F (2) ij (x) R d K(z)z i z j dz + R d K(z) 1 0 (1 -t) d i,j=1 F (2) ij (x -tzh k ) -F (2) ij (x) z i z j h 2 k dtdz = h 2 k 2 d j=1 µ j (K)F (2) jj (x) + h 2 k η k (x),
where

µ j (K) = R d z 2 j K(z)dz and η k (x) = d i,j=1 R d 1 0 (1-t) F (2) ij (x -tzh k ) -F (2) ij (x) z i z j K(z)dtdz.
Therefore, thanks to the relation (1.21), we have

E[F n (x)] -F (x) = Π n n k=1 Π -1 k γ k   h 2 k 2 d j=1 µ j (K)F (2) jj (x) + h 2 k η k (x)   + Π n [F 0 (x) -F (x)] = 1 2 d j=1 µ j (K)F (2) jj (x)Π n n k=1 Π -1 k γ k h 2 k + Π n n k=1 Π -1 k γ k h 2 k η k (x) + Π n [F 0 (x) -F (x)] = S 1,n (x) + S 2,n (x) + Π n [F 0 (x) -F (x)]
where,

S 1,n (x) = 1 2 d j=1 µ j (K)F (2) jj (x)Π n n k=1 Π -1 k γ k h 2 k and S 2,n (x) = Π n n k=1 Π -1 k γ k h 2 k η k (x).
Here, we distinguish two cases:

1. For the case a α/3, we have lim

n→+∞ nγ n > min a + α 2 , 2a = 2a.
Asymptotic behaviour of S 1,n (x):

Here we opt to verify the conditions of lemma 1.2. We have

(v n ) := h -2 n ∈ GS(2a) and m = 1, since ξ -1 > 2a, then 1 -2aξ > 0. The application of lemma 1.2 ensures that lim n→+∞ h -2 n Π n n k=1 Π -1 k γ k h 2 k = 1 1 -2aξ .
Hence,

S 1,n (x) = h 2 n 2(1 -2aξ) d j=1 µ j (K)F (2) jj (x) + o h 2 n .
Asymptotic behaviour of S 2,n (x):

Owing to the fact that F

(2) ij is bounded and continuous at x for all i, j ∈ {1, . . . , d}, Lebesgue's convergence theorem ensures that lim k→+∞ η k (x) = 0, which ensures that, η k (x) = o (1) .

Therefore, the second part of lemma 1.2 ensures that

lim n→+∞ h -2 n Π n n k=1 Π -1 k γ k h 2 k η k = 0.
Thus,

S 2,n (x) = o h 2 n .
As a matter of fact, we infer that,

E[F n (x)] -F (x) = h 2 n 2(1 -2aξ) d j=1 µ j (K)F (2) jj (x) + o h 2 n .
2. For the case a > α/3, we have

h 2 n = o √ γ n h n . Consequently, we obtain E[F n (x)] -F (x) = 1 2 d j=1 µ j (K)F (2) jj (x)Π n n k=1 Π -1 k γ k h 2 k + Π n n k=1 Π -1 k γ k h 2 k o(1) + Π n [F 0 (x) -F (x)] = 1 2 d j=1 µ j (K)F (2) jj (x)Π n n k=1 Π -1 k γ k o γ k h k + Π n n k=1 Π -1 k γ k o γ k h k + O (Π n ) = o γ n h n .
As a result, we get

E[F n (x)] -F (x) = o γ n h n .
Variance of F n :

In view of the independence of X i 's, for i = 1, . . . , n, we deduce that

V ar[F n (x)] = V ar[Π n n k=1 Π -1 k γ k Z k (x)] = Π 2 n n k=1 Π -2 k γ 2 k V ar[Z k (x)] = Π 2 n n k=1 Π -2 k γ 2 k E[Z 2 k (x)] -E[Z k (x)] 2 .
Hence, following (1.14) and owing to the fact that

2 d R d K(z)K(z)dz = 1, we infer that K 2 (y 1 , . . . , y d ) = d i=1 K 2 (y i ) and ∂ d ∂y 1 . . . ∂y d (K 2 (y)) = ∂ d ∂y d . . . ∂y 1 (K 2 (y)) = 2 d K(y)K(y).
Then, we get

E[Z 2 k (x)] = R d K 2 x -y h k f (y)dy = R d 2 d K x -y h k K x -y h k h -d k F (y)dy = 2 d R d K(z)K(z)F (x -zh k )dz.
From the application of taylor's theorem with integral remainder, we obtain

F (x -zh k ) = F (x) - 1 0 d i=1 F (1) i (x -tzh k )z i h k dt.
Consequently, we nd

E[Z 2 k (x)] = 2 d R d K(z)K(z) F (x) - 1 0 d i=1 F (1) i (x -tzh k )z i h k dt dz = F (x) -h k d i=1 φ i (K)F (1) i (x) -ν k (x), with φ i (K) = 2 d R d z i K(z)K(z)dz and ν k (x) = 2 d d i=1 R d 1 0 K(z)K(z) F (1) i (x -tzh k ) -F (1) i (x) z i h k dtdz.
Moreover, we have

E[Z k (x)] = F (x) + ν k (x),
where

ν k (x) = R d K(z) [F (x -zh k ) -F (x)] dz.
Then, combining the previous results we state

V ar[F n (x)] = Π 2 n n k=1 Π -2 k γ 2 k E[Z 2 k (x)] -E[Z k (x)] 2 = Π 2 n n k=1 Π -2 k γ 2 k F (x) -h k d i=1 φ i (K)F (1) i (x) -ν k (x) -(F (x) + ν k (x)) 2 = [F (x)(1 -F (x))]Π 2 n n k=1 Π -2 k γ 2 k - d i=1 φ i (K)F (1) i (x)Π 2 n n k=1 Π -2 k γ 2 k h k -Π 2 n n k=1 Π -2 k γ 2 k [ν k (x) + ν k (x) 2 + 2F (x) ν k (x)]. Likewise, V ar[F n (x)] = S 3,n (x) + S 4,n (x) -S 5,n (x). (1.22) S 3,n (x) = [F (x)(1 -F (x))]Π 2 n n k=1 Π -2 k γ 2 k , S 4,n (x) = d i=1 φ i (K)F (1) i (x)Π 2 n n k=1 Π -2 k γ 2 k h k and S 5,n (x) = Π 2 n n k=1 Π -2 k γ 2 k [ν k (x) + ν k (x) 2 + 2F (x) ν k (x)].
1. For the case where a ∈ α 3 , 1 , we have lim

n→+∞ nγ n > min a + α 2 , 2a = a + α 2 .
Asymptotic behavior of S 3,n (x):

The application of lemma 1.2 ensures that

lim n→+∞ 1 γ n Π 2 n n k=1 Π -2 k γ 2 k = 1 2 -αξ .
Consequently, we get

S 3,n (x) = Π 2 n n k=1 Π -2 k γ 2 k [F (x)(1 -F (x))] = F (x)(1 -F (x)) γ n 2 -αξ + o (γ n ) .
Asymptotic behavior of S 4,n (x):

Now, since (γ n h -1 n ) n≥1 ∈ GS(a + α), the application of lemma 1.2 ensures that lim n→+∞ 1 γ n h n Π 2 n n k=1 Π -2 k γ k γ k h k = 1 2 -(a + α)ξ .
Therefore, we get

S 4,n (x) = γ n h n 2 -(a + α)ξ d i=1 φ i (K)F (1) i (x) + o (γ n h n ) .

Asymptotic behaviour of S 5,n (x):

Owing to the fact that F and F 

(x) + ν k (x) 2 + 2F (x) ν k (x) = 0.
The application of lemma 1.2 ensures that

S 5,n (x) = Π 2 n n k=1 Π -2 k γ 2 k [ν k (x) + ν k (x) 2 + 2F (x) ν k (x)] = o (γ n ) .
Therefore,

V ar[F n (x)] = γ n 2 -αξ F (x)(1 -F (x)) - γ n h n 2 -(a + α)ξ d i=1 φ i (K)F (1) i (x) + o (γ n h n ) .
2. In the case where a ∈ [ α 4 , α 3 ), we have

γ n h n = o(h 4 n ) thus γ n h -3 n -→ n→+∞ 0.
Then, by applying the second part of lemma 1.2 along with the fact that

α k = o(h 4 k ) -→ n→+∞ 0, it follows that Π 2 n n k=1 Π -2 k γ k o(h 4 k ) = o(1).
Hence,

V ar[F n (x)] = γ n 2 -αξ F (x)(1 -F (x)) + o (γ n ) -Π 2 n n k=1 Π -2 k γ k o(h 4 k ) + o(γ n ) = γ n 2 -αξ F (x)(1 -F (x)) + o (γ n ) .
3. For the case where a ∈ 0, α 4 , we have

γ n = o(h 4 n ) thus γ n h -4 n -→ n→+∞ 0. The application of lemma 1.2 ensures that V ar[F n (x)] = [F (x)(1 -F (x))]Π 2 n n k=1 Π -2 k γ k o h 4 k - d i=1 φ i (K)F (1) i (x)Π 2 n n k=1 Π -2 k γ k o h 4 k + o (γ n ) = Π 2 n n k=1 Π -2 k γ k o h 4 k + o (γ n ) = o h 4 n .
Now, let's recall the precise statement of Lyapunov's theorem, which shall be invested in the next proof.

Theorem 1.14. Let (X n ) be a sequence of independent random variables, centered all with a nite moment of order 2 + p, p > 0. We note,

u 2 n = V ar n i=1 X i > 0.
Under the following Lyapunov condition,

lim n→+∞ 1 u 2+p n n i=1 E |X i | 2+p = 0, we obtain 1 u n n i=1 X i D -→ n→+∞ N (0, 1).
Proof of Theorem 1.5. First, by the relation (1.1), we have

F n (x) = (1 -γ n )F n-1 (x) + γ n Z n (x),
It follows that

F n (x) -E[F n (x)] = (1 -γ n ) (F n-1 (x) -E[F n-1 (x)]) + γ n (Z n (x) -E[Z n (x)]) .
Using a simple recurrence, we obtain

F n (x) -E[F n (x)] = n i=1 (1 -γ i )(F 0 (x) -E[F 0 (x)]) + n k=1 n j=k+1 (1 -γ j )γ k (Z k (x) -E[Z k (x)]) = Π n n k=1 Π -1 k γ k (Z k (x) -E[Z k (x)]).
Thus,

F n (x) -E[F n (x)] = Π n n k=1 Y k (x),
where,

Y k (x) = Π -1 k γ k (Z k (x) -E[Z k (x)]). (1.23)
Now, in order to apply Lyapunov's theorem for Y k (x), we mention that E[Y k (x)] = 0 and we state

υ 2 n = n k=1 V ar[Y k (x)] = n k=1 Π -2 k γ 2 k V ar[Z k (x)] = n k=1 Π -2 k γ 2 k E[Z 2 k (x)] -E[Z k (x)] 2 = n k=1 Π -2 k γ 2 k F (x) + ν k (x) -F 2 (x) -νk (x) 2 -2F (x)ν k (x) ,
where

ν k (x) = 2 d R d K(z)K(z) [F (x -zh k ) -F (x)] dz and ν k (x) = R d K(z) [F (x -zh k ) -F (x)] dz.
It is obvious that

lim k→+∞ ν k (x) = 0 and lim k→+∞ ν k (x) = 0. Thus, lim k→+∞ ν k (x) -ν k (x) 2 -2F (x) ν k (x) = 0.
Hence, we get

υ 2 n = n k=1 Π -2 k γ 2 k [F (x)(1 -F (x)) + o (1)].
The application of lemma 1.2 ensures that

υ 2 n = γ n Π 2 n 1 2 -αξ F (x)(1 -F (x)) + o (1)
.

Additionally, using (1.23) we have

E |Y k (x)| 2+p = E |Π -1 k γ k (Z k (x) -E[Z k (x)])| 2+p = Π -2-p k γ 2+p k E |Z k (x) -E[Z k (x)]| 2+p .
Thus, we get

E |Y k (x)| 2+p ≤ 2Π -2-p k γ 2+p k E |Z k (x)| 2+p . = O Π -2-p k γ 2+p k E |Z k (x)| 2+p .
Moreover, since we have Z k (x) ≤ 1, which gives,

∀p > 0, E[|Z k (x)| 2+p ] = O (1) ,
we infer that

n k=1 E[|Y k (x)| 2+p ] = O n k=1 Π -2-p k γ 2+p k E |Z k (x)| 2+p = O n k=1 Π -2-p k γ 2+p k .
Here we suppose that a ≥ α/4. Departing from the fact that lim n→+∞ (nγ n ) > α/2, which implies that there exists p > 0 such that

ξ -1 = lim n→+∞ nγ n > 1 + p 2 + p α.
Thus (2 + p) -(1 + p)αξ > 0 and the application of lemma 1.2 yields

n k=1 E[|Y k (x)| 2+p ] = O γ 1+p n Π 2+p n .
Thus,

1 υ 2+p n n k=1 E[|Y k (x)| 2+p ] = O γ p 2 n = o (1)
.

Furthermore, since we have

lim n→+∞ 1 υ 2+p n n k=1 E |Y k (x) -E[Y k (x)]| 2+p = lim n→+∞ 1 υ 2+p n n k=1 E[|Y k (x)| 2+p ] = 0.
Then, the application of the Lyapunov's theorem ensures that

γ -1 n (F n (x) -E[F n (x)]) D -→ n→+∞ N 0 , 1 2 -αξ F (x)(1 -F (x)) . (1.24)
In what follows, we distinguish the two cases displayed below:

First case: a > α/3:

We have

E[F n (x)] -F (x) = o γ n h n .
By replacing the latter in (1.24), we obtain

γ -1 n (F n (x) -F (x)) D -→ n→+∞ N 0 , 1 2 -αξ F (x)(1 -F (x)) .
Second case: α/4 ≤ a ≤ α/3:

We have

E[F n (x)] -F (x) = 1 2(1 -2aξ) h 2 n d j=1 µ j (K)F (2) jj (x) + o h 2 n .
As γ

-1 2 n h 2 n -→ n→+∞ c 1 2
, we obtain

γ -1 n (F n (x) -F (x)) D -→ n→+∞ N   c 1 2 2(1 -2aξ) d j=1 µ j (K)F (2) jj (x) , 1 2 -αξ F (x)(1 -F (x))   .
The case where a < α/4 implies the convergence in probability in the second part of the theorem. By applying the BienayméChebyshev inequality, we get

P F n (x) -F (x) h 2 n -E F n (x) -F (x) h 2 n ≥ ≤ V ar[F n (x)] h 4 n 2
.

Since we have γ

-1 n h 4 n -→ n→+∞ +∞, then V ar[F n (x)] h 4 n 2 -→ n→+∞ 0.
Hence, we deduce that

1 h 2 n (F n (x) -F (x)) P -→ n→+∞ 1 2(1 -2aξ) d j=1 µ j (K)F (2) jj (x).
Proof of Theorem 1.12. Following similar steps as Slaoui (2014b), and by using (1.11) and (1.13), we obtain

M W ISE[F n ] -M W ISE[ F n ] = n -1 V F (2γ 0 -1)(γ 0 -2 3 ) 2 3 (γ 0 -1) 2 γ 0 - 2 3 2 3 -2 -4 3 3 4 (2γ 0 -1) γ 2 0 -2 4 3 γ 0 - 2 3 2 3 V -1 F J 4 3 1 J -1 3 2 n -1 3 + o n -1 3 .
Which is no other than

n <    2 -4 3 3 4 (2γ 0 -1) γ 2 0 -2 4 3 γ 0 -2 3 2 3 V -1 F J 4 3 1 J -1 3 2 (γ 0 -1) 2 (γ 0 -2 3 ) 2 3    3 .
The fact that γ 0 = 2 3 + ε ensures that

n < 3 3 2 10 J 4 1 J 2 V 3 F ( 1 3 + 2ε) 3 2 3 + ε -2 2 3 ε 1 3 3 2 3 + ε + 2 2 3 ε 1 3 3 (ε -1 3 ) 6 ε 2 .
Thus, the result of the theorem is derived by taking into account the last inequality.

Chapter 2

Statistical inferences for multivariate conditional cumulative distribution function estimation by stochastic approximation method

Introduction

Assume that we observe independent identically distributed vectors We shall also assume that the bivariate random variable (X, Y ) (resp. the random variable X) has a density function f (X,Y ) (resp. f X ) with respect to the Lebesgue measure. Recall that for all real y and x such that f X (x) = 0, the CCDF of Y given X = x is expressed by

(X 1 , Y 1 ), . . . , (X n , Y n ) of a bivariate random variable (X, Y ) ∈ R × R
π(y|x) = R 1 {u y} f (X,Y ) (x, u)du f X (x) .
In a variety of non-parametric statistical problems, the estimation of a CCDF is a key aspect of inference. Remember that the CCDF has the merit of characterizing the conditional law of the considered bivariate random variables. Notably, the CCDF is often useful in reliability or survival analysis. More specically, the conditional survival function S (y, x) dened by, for all real y and x, S (y, x) := 1 -π(y|x) is of extreme interest, either by itself, or by its independence with the conditional hazard function H (y, x) indicated by, for all real y and x, H (y, x) := f (y, x) S (y, x) where f (y, x) denotes the conditional density of Y given X = x. Furthermore, conditional quantiles can also be deduced from the CCDF π by (pseudo)-inversion given x of the function y → π(y|x) and the same procedure may be applied to the estimator of CCDF to nd conditional quantile estimators.

Several non-parametric estimators have been elaborated to estimate the CCDF. Many of them rely initially on estimating the R 1 {u y} f (X,Y )(x,u) du. The conditional cumulative distribution function was rst extensively explored by [START_REF] Stute | Conditional Empirical Processes Ann[END_REF] using a nearest-neighbor-type conditional empirical process. Subsequently, [START_REF] Hall | Methods for estimating a conditional distribution function[END_REF], motivated by the problem of setting prediction intervals in time series analysis, developed a new non-parametric method for CCDF estimation resting on an adjusted form of NadarayaWatson estimator. Afterwards, [START_REF] Ferrigno | Certainty bands for the conditional cumulative distribution function and applications[END_REF] established uniform asymptotic certainty bands for the CCDF using the same strategy. For a general non-parametric regression model, [START_REF] Kiwitt | Estimating the conditional error distribution in nonparametric regression[END_REF] set up two estimators using a kernel approch, where the distribution of the error given the covariate is modeled by a CCDF provided by P ( ≤ y|X = x). On a given compact set, Brunel et al. [START_REF] Slaoui | Adaptive recursive kernel conditional density estimators under censoring data[END_REF]. Over the past decade, data streams have become an increasingly important area of research. Some of the most common data streams include Internet packet data, Twitter activity, Facebook newsfeed, credit card transactions and more recently COVID-19 epidemic data. In these situations, the data arrives regularly so that it is impossible to store it in a traditional database. In such a context, it is very interesting to build a recursive multivariate conditional cumulative distribution estimator that does not need to store all the data in memory and that can be easily updated to handle the online data. The basic target of this chapter is to provide a non-parametric strategy to recursively estimate the CCDF.

2.1.1

Presentation of the method Let (X, Y ) be a random vector with values in R d × R q , q ≥ 1, with a joint density function f (X,Y ) and let f X denote the marginal probability density of X given by f X (x) = R q f (X,Y ) (x, u)du. Moreover, let (X 1 , Y 1 ), . . . , (X n , Y n ) be independent random vectors identically distributed as (X, Y ). In this work, our central focus is upon the problem of estimating the CCDF of Y given X = x provided by

π : R q × R d -→ R (y|x) -→ P[Y y|X = x] = a(x, y) f X (x) , where a(x, y) = R q 1 {u y} f (X,Y ) (x, u)du and f X (x) = R q f (X,Y ) (x, u)du.
The recursive estimator was constructed based on dint of stochastic approximation method. Since, Slaoui (2014b) reused stochastic approximation methods to enhance the qualities of the univariate distribution function estimator and the previous chapter elaborated the multivariate one and following the same recursive approach, we intend to establish a multivariate conditional cumulative distribution function estimator. To build up a stochastic algorithm, which approaches the function a at a given couple of vectors (x, y), we dene an algorithm of search of the zero function φ : z -→ a(x, y) -z and we set:

(i) a 0 (x, y) ∈ R (ii) for all n ≥ 1, a n (x, y) = a n-1 (x, y) + γ n U n (x, y),
where U n (x, y) corresponds to an observation of the function φ at the point a n-1 (x, y).

In the following, we set a multivariate indicator function denoted χ and identied by

χ k : R q -→ R, y -→ 1 {Y k y} . By considering U n (x, y) = χ n (y) h -d n K
x -X n h n -a n-1 (x, y), the stochastic approximation algorithm that is devoted to estimate recursively the function a at a couple of vectors (x, y) can be stated as follows :

a n (x, y) = (1 -γ n )a n-1 (x, y) + γ n χ n (y) h -d n K x -X n h n . (2.1)
Throughout this section, we consider that a 0 (x, y) = 0. Therefore, by recurrence, we get

a n (x, y) = Π n n k=1 Π -1 k γ k χ k (y)h -d k K x -X k h k . (2.2)
Within this framework, we recall the recursive multivariate probability density estimator of the density function noted f n and dened in Mokkadem et al. (2009a). It was constructed with the same tools of stochastic approximation algorithm and under the condition that f 0 (x) = 0, we have:

f n (x) = Π n n k=1 Π -1 k γ k h -d k K x -X k h k . (2.3) 
Therefore, we introduce our recursive estimator π n specied by

π n (y|x) =    a n (x, y) f n (x) if f n (x) = 0 0 otherwise . (2.4)
Our main purpose is to examine the asymptotic properties of the proposed multivariate estimator of the CCDF and to corroborate its performances. Moreover, we set forward the non-recursive estimator of the function a given by

a n (x, y) = 1 nh d n n k=1 χ k (y) K x -X k h n
and the non-recursive estimator of the multivariate density function f dened by

f n (x) = 1 nh d n n k=1 K x -X k h n . (2.5)
Hence, we shall compare our estimator to the generalized kernel CCDF estimator of Nadaraya-Watson Nadaraya (1964) and [START_REF] Watson | Smooth regression analysis[END_REF] π n expressed by

π n (y|x) =    a n (x, y) f n (x) if f n (x) = 0 0 otherwise . (2.6) 2.

Notations and assumptions

For this section and under (A 1 ) and (A 2 ) given in 1.1.1, we provide the following notations and assumptions which will be intensively used for our theoretical main results.

(A 4 ) (i) The functions f X and a are bounded and twice dierentiable.

(ii) For all i, j ∈ {1, . . . , d}, f

(2)

X ij := ∂ 2 f X ∂x i ∂x j and a (2) ij := ∂ 2 a ∂x i ∂x j
are bounded and continuous at x.

First of all, we need to recall the following proposition which introduces the bias and the variance of f n . The proof of this result was depicted in Mokkadem et al. (2009a).

2.1.3

Bias and variance of f n Proposition 2.1. Under assumptions (A 1 ), (A 2 ) and (A 4 ), we obtain

1. If a ∈ 0, α d+4 , then E[f n (x)] -f X (x) = 1 2(1 -2aξ)   d j=1 µ j (K)f X (2) jj (x)   h 2 n + o h 2 n . (2.7) If a ∈ α d+4 , 1 , then E[f n (x)] -f X (x) = o γ n h -d n . (2.8) 2. If a ∈ 0, α d+4 , then V ar[f n (x)] = o h 4 n . (2.9) If a ∈ α d+4 , 1 , then V ar[f n (x)] = 1 2 -(α -ad)ξ f X (x)R(K) γ n h d n + o γ n h -d n .
(2.10)

Main results

In order to explore the asymptotic properties of our estimator π n , we need rst to introduce the following proposition which provides the bias and the variance of a n .

2.2.1

Bias and variance of a n Proposition 2.2. Under assumptions (A 1 ), (A 2 ) and (A 4 ), we obtain

1. If a ∈ 0, α d+4 , then E[a n (x, y)] -a(x, y) = 1 2(1 -2aξ)   d j=1 µ j (K)a (2) jj (x, y)   h 2 n + o h 2 n . (2.11) If a ∈ α d+4 , 1 , then E[a n (x, y)] -a(x, y) = o γ n h -d n . (2.12) 2. If a ∈ 0, α d+4 , then V ar[a n (x, y)] = o h 4 n . (2.13) If a ∈ α d+4 , 1 , then V ar[a n (x, y)] = 1 2 -(α -ad)ξ a(x, y)R(K) γ n h d n + o γ n h -d n .
(2.14)

In the following theorem, we introduce our main result which provides the bias and the variance of our CCDF multivariate estimator π n . The following notations are highly useful as they are invested throughout the whole chapter.

For all i, j ∈ {1, . . . , d}, π

i (y, .) :=

∂π ∂x i (y, .) π (2) ij (y, .) := ∂ 2 π ∂x i ∂x j (y, .), a (1) 
i (., y) := ∂a ∂x i (., y), f

X i (.) := ∂f X ∂x i (.).

2.2.2

Bias and variance of π n Theorem 2.3. Let assumptions (A 1 ), (A 2 ) and (A 4 ) hold and note R(K) :=

R d K 2 (z) dz, we obtain 1. If a ∈ 0, α d+4 , then E[π n (y|x)] -π(y|x) = 1 2(1 -2aξ) 1 f X (x) d j=1 µ j (K) π (2) jj (y|x)f X (x) + 2π (1) j (y|x)f (1) X j (x) h 2 n +o h 2 n . (2.15) If a ∈ α d+4 , 1 , then E[π n (y|x)] -π(y|x) = o γ n h -d n . (2.16) 2. If a ∈ 0, α d+4 , then V ar[π n (y|x)] = o h 4 n . (2.17) If a ∈ α d+4 , 1 , then V ar[π n (y|x)] = R(K) 2 -(α -ad)ξ π(y|x)(1 -π(y|x)) f X (x) γ n h d n + o γ n h d n .
(2.18)

In the sequel, let us present the following theorem which identies the asymptotic normality of our recursive estimator π n .

2.2.3

Weak pointwise convergence rate of π n Theorem 2.4. Let assumptions (A 1 ), (A 2 ) and (A 4 ) hold.

1. If there exists a non-negative real c such that γ

-1 n h d+4 n -→ n→+∞ c, then γ -1 n h d n (π n (y|x) -π(y|x)) D -→ n→+∞ N √ c M (x, y) , σ 2 (x, y) . (2.19) with M (x, y) = 1 2(1 -2aξ) 1 f X (x) d j=1 µ j (K) π (2) jj (y|x)f X (x) + 2π (1) j (y|x)f (1) X j (x) and σ 2 (x, y) = R(K) 2 -(α -ad)ξ π(y|x)(1 -π(y|x)) f X (x) . 2. If γ -1 n h d+4 n -→ n→+∞ +∞, then 1 h 2 n (π n (y|x) -π(y|x)) P -→ n→+∞ M (x, y).

Optimal choice of the stepsizes

In order to assess the asymptotic quality of the CCDF recursive estimator π n , we set up the Mean Weighted Integrated Squared Error (M W ISE). We rst introduce the M W ISE expression:

M W ISE[π n ] = R d+q (E[π n (y|x)] -π(y|x)) 2 + V ar[π n (y|x)] f X 2 (x)f X,Y (x, y)dxdy. (2.20) 2.3.1 Asymptotic expressions of M W ISE[π n ]
First of all, let us set the following notations

I 1 := R d+q   d j=1 µ j (K) π (2) jj (y|x)f X (x) + 2π (1) 
j (y|x)f

(1)

X j (x)   2 f X,Y (x, y)dxdy
and

I 2 := R d+q π(y|x) (1 -π(y|x)) f X (x)f X,Y (x, y)dxdy.
Proposition 2.5. The M W ISE of the estimator π n is maintained as follows.

If a ∈ 0, α d+4 , then

M W ISE[π n ] = 1 4 I 1 (1 -2aξ) 2 h 4 n + o(h 4 n ).
If a = α d+4 , then

M W ISE[π n ] = I 2 2 -(α -ad)ξ R(K)γ n h -d n + 1 4 I 1 (1 -2aξ) 2 h 4 n + o(h 4 n ).
If a ∈ α d+4 , 1 , then

M W ISE[π n ] = I 2 2 -(α -ad)ξ R(K)γ n h -d n + o γ n h -d n .
The following corollary ensures that the bandwidth which minimizes the M W ISE of π n depends on the choice of the stepsize (γ n ). As a matter of fact, the corresponding M W ISE depends also on (γ n ).

Corollary 2.6. Let assumptions (A 1 ), (A 2 ) and (A 4 ) hold. To minimize the M W ISE of π n , the bandwidth (h n ) must be equal to

  d (1 -2aξ) 2 2 -(α -ad)ξ I 2 I 1 R(K) 1 d+4 γ 1 d+4 n   .
Hence, the corresponding M W ISE is determined by

M W ISE[π n ] = d + 4 4d d d+4 I 1 (1 -2aξ) 2 d d+4 I 2 2 -(α -ad)ξ 4 d+4 R(K) 4 d+4 γ 4 d+4 n + o γ 4 d+4 n .
The following corollary holds in the special case where (γ n ) is chosen as

(γ n ) = (γ 0 n -1 ) in order to minimize the M W ISE[π n ].
Corollary 2.7. Let assumptions (A 1 ), (A 2 ) and (A 4 ) hold. To minimize the M W ISE of π n , we need to opt for the stepsize (γ n ) in GS(-1) such that lim n→+∞ nγ n = γ 0 . Then the bandwidth

(h n ) must be equal to d (γ 0 (d + 4) -2) 2(d + 4) I 2 I 1 R(K) 1 d+4 n -1 d+4 .
Consequently, the corresponding M W ISE is identied by

M W ISE[π n ] = (d + 4) 3d+8 d+4 4 d + 6 d+4 d d d+4 γ 2 0 (γ 0 (d + 4) -2) -(2d+4) d+4 I d d+4 1 I 4 d+4 2 R(K) 4 d+4 n -4 d+4 + o n -4 d+4 .
In order to get the optimal choice of (γ n ), we deduce that the minimum of M W ISE[π n ] is achieved at γ 0 = 1. Hence, we introduce the following corollary.

Corollary 2.8. Let assumptions (A 1 ), (A 2 ) and (A 4 ) hold. To minimize the M W ISE of π n , we must select the stepsize (γ n ) in GS(-1) such that lim n→+∞ nγ n = 1. Therefore, the optimal bandwidth (h n ) must equal

d(d + 2) 2(d + 4) I 2 I 1 R(K) 1 d+4 n -1 d+4 .
(2.21)

As a result, the corresponding M W ISE is expressed by

M W ISE[π n ] = (d + 4) 3d+8 d+4 4 d+6 d+4 d d d+4 (d + 2) 2d+4 d+4 I d d+4 1 I 4 d+4 2 R(K) 4 d+4 n -4 d+4 + o n -4 d+4 .
Remark 2.9. Note that, for the particular case where the stepsize (γ n ) is in GS(-1) such that lim n→+∞ nγ n = 1 and the bandwidth (h n ) is chosen such that lim n→+∞ nh d+4 n = 0 (which corresponds to undersmoothing), the asymptotic normality of our proposed estimator is indicated as follows

nh d n (π n (y|x) -π(y|x)) D -→ n→+∞ N 0 , d + 4 2(d + 2) R(K) π(y|x)(1 -π(y|x)) f X (x) . ( 2 

.22)

The statistical inference of the CCDF multivariate non-recursive estimator π n is addressed in our next section.

The following results can be handled in nearly the same way as π n . The unique dierence lies in the fact that it pertains to a non-recursive case. (See [START_REF] Hall | Methods for estimating a conditional distribution function[END_REF] for more details of the univariate case.)

Asymptotic properties of π n

In order to tackle the asymptotic properties of our estimator π n , we need rst to introduce the following proposition which provides the bias and the variance of π n .

2.4.1

Bias and variance of π n Proposition 2.10. Let assumptions (A 1 ) and (A 4 ) hold. Then the bias and variance of Nadaraya-

Watson's estimator are displayed as follows.

1. The bias of π n :

E[ π n (y|x)]-π(y|x) = 1 2f X (x)   d j=1 µ j (K) π (2) jj (y|x)f X (x) + 2π (1) j (y|x)f X (1) j (x)   h 2 n +o h 2 n .
2. The variance of π n :

V ar[ π n (x)] = R(K) π(y|x)(1 -π(y|x)) f X (x) 1 nh d n + o 1 nh d n .
The following proposition yields the distribution convergence rate of the non-recursive estimator. 

nh d n ( π n (y|x) -π(y|x)) D -→ n→+∞ N 0 , R(K) π(y|x)(1 -π(y|x)) f X (x) .
(2.23) Remark 2.12. It is obvious to infer from the expressions (2.22) and (2.23) that our CCDF proposed estimator is better than non-recursive one in terms of variance.

In the next subsection, we exhibit the expression of the Mean Weighted Integrated Squared Error of Nadaraya-Watson's estimator. Corollary 2.13. The M W ISE expression of the non-recursive CCDF estimator is given by

M W ISE[ π n ] = 1 4 I 1 h 4 n + I 2 R(K) 1 nh d n + o h 4 n + 1 nh d n .
Proposition 2.14. Let assumptions (A 1 ) and (A 4 ) hold. To minimize the M W ISE of π n , the bandwidth (h n ) must be equal to

d I 2 I 1 R(K) 1 d+4 n -1 d+4 .
(2.24)

Hence, the corresponding M W ISE is determined by

M W ISE[ π n ] = d + 4 4d d d+4 I 4 d+4 2 I d d+4 1 R(K) 4 d+4 n -4 d+4 + o n -4 d+4 .

Bandwidth selection

Although theoretical asymptotic study yields the optimal bandwidth, the fact that we do not know the density function makes it hard to interpret it in practice. Hence, kernel smoothing in non-parametric statistics requires the choice of a bandwidth parameter. This choice is crucial to obtain a good rate of consistency of the kernel estimators. It has a signicant inuence on the size of the bias. One has to nd an appropriate bandwidth that produces an estimator which has a good balance between the bias and the variance of the estimator of the function a(•, •) as well as f (•). It is worth noticing that the bandwidth selection methods reported in the literature can be divided into three broad classes: the cross-validation techniques, the plug-in ideas and the bootstrap procedure. In this investigation, we are basically interested in the plug-in method. [START_REF] Altman | Bandwidth Selection for Kernel Distribution Function Estimation[END_REF] developed an ecient method of bandwidth selection, which minimizes an estimate of the mean weighted integrated squared error, using the density function as a weight function. For this reason, we followed the work of Slaoui (2014a).

Plug-in bandwidth selection:

As a result to the plug-in procedure, based on the expression of the M W ISE, we estimate the unknown quantities I 1 and I 2 by elaborating asymptotic unbiased estimators. Basically, we recall (b n ) ∈ GS(-δ), as introduced in 1.15. In the following and for the sake of simplicity, the kernel K we shall use is considered as a product of univariate kernels given in (1.14). Moreover, we assume that K b stands for a kernel with bandwidth b n such that δ = 2 5 , and K

(2) b corresponds to the second derivative of a kernel K b with the associated bandwidth b n such that δ = 3 14 . Note that our choice of the parameter δ is based on the work of Slaoui (2014a). In addition, we note:

I 1 = µ 2 (K) (J 1 -2J 2 + J 3 ) ,
where

J 1 = R d+q   d j=1 a (2) jj (x, y)   2 f X,Y (x, y)dxdy, J 3 = R d+q   d j=1 f X (2) jj (x)   2 π 2 (y|x)f X,Y (x, y)dxdy, J 2 = R d+q   d j=1 a (2) jj (x, y)     d j=1 f X (2) jj (x)   π(y|x)f X,Y (x, y)dxdy, µ(K) = R z 2 K(z)dz.

Recursive estimator π n :

To estimate the optimal bandwidth (2.25), we need to estimate I 1 and I 2 . Here we can write

a n (x, y) = Π n n k=1 Π -1 k γ k h -d k χ k (y) K x -X k h k = Π n n k=1 Π -1 k γ k h -d k d i=1 K x -X ki h k χ ki (y)
and

f n (x) = Π n n k=1 Π -1 k γ k h -d k K x -X k h k = Π n n k=1 Π -1 k γ k h -d k d i=1 K x i -X ki h k . J 1 = Π 2 n n n i,j,k=1 i =j =k Π -1 j Π -1 k γ j γ k b -(d+2) j b -(d+2) k    d v=1 K (2) b X iv -X jv b j d l=1 l =v K b X il -X jl b j    ×    d v=1 K (2) b X iv -X kv b k d l=1 l =v K b X il -X kl b k    q s=1 χ js (Y is )χ ks (Y is ), J 2 = Π 2 n n n i,j,k,u=1 i =j =k =u Π -1 j Π -1 k γ j γ k b -(d+2) j b -(d+2) k    d v=1 K (2) b X iv -X jv b j d l=1 l =v K b X il -X jl b j    ×    d v=1 K (2) b X iv -X kv b k d l=1 l =v K b X il -X kl b k    q s=1 χ us (Y is )χ js (Y is ), J 3 = Π 2 n n n i,j,k,u,m=1 i =j =k =u =m Π -1 j Π -1 k γ j γ k b -(d+2) j b -(d+2) k    d v=1 K (2) b X iv -X jv b j d l=1 l =v K b X il -X jl b j    ×    d v=1 K (2) b X iv -X kv b k d l=1 l =v K b X il -X kl b k    q s=1 χ us (Y is )χ ms (Y is ),
At this stage, we obtain

I 1 = µ 2 (K) J 1 -2 J 2 + J 3 .
Estimation of I 2 :

I 2 = Π n n n i,k,u=1 i =k =u Π -1 k γ k b -1 k d l=1 K b X il -X kl b k q s=1 χ us (Y is ) (1 -χ ks (Y is )) ,
As a result, the plug-in estimator of (2.25) is determined by

(h n ) =   d(d + 2) 2(d + 4) 1 d+4 I 2 I 1 1 d+4 R(K) 1 d+4 n -1 d+4   , (2.25) 
Eventually, an estimator of M W ISE[π n ] is specied by

M W ISE[π n ] = (d + 4) 3d+8 d+4 4 d+6 d+4 d d d+4 (d + 2) d+6 d+4 I 1 d d+4 I 2 4 d+4 R(K) 1 d+4 n -4 d+4 + o n -4 d+4 .

Non-Recursive estimator π n :

To estimate the optimal bandwidth (2.24), we need to estimate I 1 and I 2 .Therefore, we can state

a n (x, y) = 1 nh d n n k=1 χ k (y) K x -X k h n = 1 nh d n n k=1 d i=1 K x -X ki h k χ ki (y)
and

f n (x) = 1 nh d n n k=1 K x -X k h n = 1 nh d n n k=1 d i=1 K x i -X ki h k .
Estimation of I 1 :

J 1 = 1 n 3 b 6 n n i,j,k=1 i =j =k    d v=1 K (2) b X iv -X jv b n d l=1 l =v K b X il -X jl b n    ×    d v=1 K (2) b X iv -X kv b n d l=1 l =v K b X il -X kl b n    q s=1 χ js (Y is )χ ks (Y is ), J 2 = 1 n 3 b 6 n n i,j,k,u=1 i =j =k =u    d v=1 K (2) b X iv -X jv b n d l=1 l =v K b X il -X jl b n    ×    d v=1 K (2) b X iv -X kv b n d l=1 l =v K b X il -X kl b n    q s=1 χ us (Y is )χ js (Y is ), J 3 = 1 n 4 b 6 n n i,j,k,u,m=1 i =j =k =u =m    d v=1 K (2) b X iv -X jv b n d l=1 l =v K b X il -X jl b n    ×    d v=1 K (2) b X iv -X kv b n d l=1 l =v K b X il -X kl b n    q s=1 χ us (Y is )χ ms (Y is ),
Then, we obtain

I 1 = µ 2 (K) J 1 -2 J 2 + J 3 .
Estimation of I 2 :

I 2 = 1 n 2 b n n i,k,u=1 i =k =u d l=1 K b X il -X kl b n q s=1 χ us (Y is ) (1 -χ ks (Y is )) ,
As a result, the plug-in estimator of (2.24) is denoted by

(h n ) =   I 2 I 1 1 d+4 R(K) 1 d+4 n -1 d+4   , (2.26) 
Finally, a non-recursive estimator of M W ISE[π n ] is provided by

M W ISE[ π n ] = 5 4 I 2 4 d+4 I 1 1 d+4 R(K) 1 d+4 n -4 d+4 + o n -4 d+4 .
The major aim of our next section lies in comparing the performance of our recursive estimator (2.4) with that of non-recursive Nadaraya-Watson one (2.6).

Numerical applications

Let's start our numerical studies with some simulations with dierent dimensions Models.

Simulation studies

In order to compare the proposed recursive estimator with the Nadaraya-Watson non-recursive one, we consider three sample sizes: n=100, 200 and 500, a xed number of simulations: N=500 and four distribution models:

• Model 1: (X, Y ) ∈ R × R: Y = 2 sin(πX) +
, where X follows the binomial distribution B (2, 1/3) and follows the normal distribution N (0, 1) .

• Model 2: (X, Y ) ∈ R 2 × R: Y = exp(-X/2) +
, where X follows the poisson distribution P (1/2) and follows the normal distribution N (0, 1/2) .

• Model 3:

(X, Y ) ∈ R 3 × R 2 : Y = AX + with A = 1 1 1 1 - 2 
1 , X = 0 × 1 Z<=0.5 + 1 Z>0.5 where Z follows the uniform distribution U

0 0 0 , 1 1 1
and follows the normal distribution N (0, 1/2) .

• Model 4: (X, Y ) ∈ R 10 × R 10 : Y = exp(X) + , with X = Z where Z follows the 10-dimensional normal distribution N (0 10 , I 10 ) and follows the normal distribution N (0, 1) .

We denote by π * i the reference CCDF and by π i the test CCDF. Then, we calculate the following two measures:

• Mean squared error: M SE = 1 n n i=1 (π i -π * i ) 2 .
• The linear correlation:

Cor = Cov(π i , π * i ) σ(π i )σ(π * i )
.

In what follows, we portray the dierent steps of the simulation algorithm in the multivariate case.

Simulation Algorithm

Algorithm 1 K is the Gaussian kernel, d the dimension size, n the simple size, N p the number of observations and N the number of iterations.

Input: K, d, n, N p and N .

1: A random initialization of Π (0) (resp. Π (0) .)

2: for l = 1, . . . , N do 3:

A random sample vectors X 1 , . . . , X d and Y of length n.

4:

A choice value for the recursive bandwidth vectors h 1 , . . . , h n . (resp. the non-recursive bandwidth values h n ) using the plug-in approach given in (2.25) (resp. (2.26)).

5:

The choice of the stepsize (γ n ) = n -1 .

6:

We x x 1 , . . . , x d and consider an arbitrary sampling vector T of y of length N p .

7:

π l (y|x) = n k=1 kγ k 1 {Y k y} h -d k d i=1 K x i -X k i h k n k=1 kγ k h -d k d i=1 K x i -X k i h k for the multivariate recursive CCDF esti- mator. (resp. π l (y|x) = n k=1 1 {Y k y} d i=1 K x i -X k i h k n k=1 d i=1 K x i -X k i h k
for the multivariate non-recursive CCDF estimator).

Π (l) = π l (T |x). (resp. Π (l) = π l (T |x).) 8: end for 9: π = N -1 N l=1 Π (l) (resp. π = N -1 N l=1 Π (l) .)
output: The vectors π and π.

x 2.3: Quantitative comparison between the recursive estimator and the non-recursive one with stepsizes (γ n ) = (n -1 ) through a plug-in method for Model 3.

x = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

(γ n ) = (n -1
) through a plug-in method for Model 4.

1. The MSE of the proposed recursive estimator with stepsize (γ n ) = (n -1 ) through a plug-in method is smaller than that of Nadaraya-Watson's non-recursive estimator.

2. The estimators get closer to the true CCDF function as sample size increases, i.e., the M SE decreases as the simple size increases and therefore the Cor increases as the sample size increases. As far as our application is concerned, we shall consider the following two models:

• Model 1: X corresponds to the sociodemographic data attribute number 16 and Y stands for the whole 5822 observations of customer records.

• Model 2: X corresponds to the sociodemographic 5-dimensional data attributes number 6,8,11,12 and 13 and Y stands for the whole 5822 observations of customer records. x=0 x=1 Figure 2.12: Qualitative comparison between the recursive estimator and the nonrecursive one for the dataset Model 2 with x = (0, 0, 0, 0, 0).

Application 2: French Hospital Data of COVID19

The French Hospital data of the COVID-19 epidemic are extracted from https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/.

The Santé publique France's mission is to improve and protect the health of populations. During the health crisis linked to the COVID-19 epidemic, Santé publique France has taken in charge monitoring and understanding the dynamics of the epidemic, anticipating the dierent scenarios and implementing actions to prevent and limit the transmission of this virus on the national territory.

Description of the dataset

This dataset provides information on the hospital situation regarding the COVID-19 epidemic.

We have opted for the rst proposed le: Hospital data related to the COVID-19 epidemic by department (dep), sex of the patient (sex), number of hospitalized patients (hosp), number of persons currently in intensive care or resuscitation (rea), number of persons currently in follow-up and rehabilitation care (SSR) or long-term care units (USLD), number of persons currently in conventional hospitalization (HospConv), number of persons currently hospitalized in another type of service (autres), cumulative number of persons returning home (rad) or cumulative number of dead persons (dc).

The data have been daily updated. For the current application, we considered the data of 28/07/2021, with a total of 150894 observations. For simplicity reason, we have chosen to just study the department of 'Vienne' database. Therefore, for our application, we served of a dataframe of 1494 observations and 6 variables. Hence, we shall consider the following three models:

• Model 1: X = dc and Y = hosp.

• Model 2: X1 = sex, X2 = rea, X3 = dc and Y = hosp.

• Model 3: 

X1 = sex, X2 = rea, X3 = dc, Y 1 =
(γ n ) = (n -1
) through a plug-in method for the COVID-19 epidemic dataset case. 

Data interpretation:

Referring to Tables 2.5, 2.6 and Figures 2.11, 2.12, 2.13 and 2.14 , we conclude that:

1. For all considered Models, the proposed recursive estimator with stepsize (γ n ) = (n -1 ) through a plug-in method outperformed the non-recursive one in terms of estimation error M SE and Cor.

2. The proposed recursive estimator is closer to the true CCDF function, compared with Nadaraya-Watson's non-recursive estimator.

Concerning the COVID-19 epidemic Model 1, we can infer that, for a xed number of deaths x = 17, the proportion of hospitalized cases less then 20 is 50% and the proportion of hospitalized cases less then 50 is 85%. Moreover, 99% of the population have a number of hospitalized cases less than 100.

Likewise, the COVID-19 epidemic Model 2 yielded the same results as model 1. Indeed, we recorded for the women gender a xed value of sex x 1 = 2, a xed number of REA persons x 2 = 0 and deaths x 3 = 17.

Conclusion

In this work, we elaborated a multivariate recursive CCDF estimator. We tackled the asymptotic properties of the proposed estimator by providing the bias as well as the variance in order to demonstrate that our estimator asymptotically follows a normal distribution. Subsequently, we revealed that the use of our recursive estimator with an appropriate choice of the bandwidth and the stepsize enables us to get closer to the true conditional cumulative distribution function rather than non-recursive one.

Proofs

Throughout this section, devoted to the proofs of our main results, it is noteworthy that

• For all x ∈ R d , y ∈ R q , Z n (x, y) := h -d n χ n (y) K x -X n h n and W n (x) := h -d n K x -X n h n .
Proof of Proposition 2.2.

Our proof starts with the observation that, based on the expression (2.1) without assuming a 0 (x, y) = 0 and with recurrence on n, we get

a n (x, y) -a(x, y) = (1 -γ n )a n-1 (x, y) + γ n Z n (x, y) -a(x, y) = (1 -γ n )[a n-1 (x, y) -a(x, y)] + γ n [Z n (x, y) -a(x, y)] = n i=1 (1 -γ i )[a 0 (x, y) -a(x, y)] + n-1 k=1 n i=k+1 (1 -γ i )γ k (Z k (x, y) -a(x, y)) + γ n (Z n (x, y) -a(x, y)).
Grounded on the fact that,

Π n = n i=1 (1 -γ i ) and n i=k+1 (1 -γ i ) = Π n Π -1 k , we deduce ∀ x ∈ R d , y ∈ R q , a n (x, y) -a(x, y) = Π n n k=1 Π -1 k γ k (Z k (x, y) -a(x, y)) + Π n [a 0 (x, y) -a(x, y)].
Therefore,

E[a n (x, y)] -a(x, y) = Π n n k=1 Π -1 k γ k (E[Z k (x, y)] -a(x, y)) + Π n [a 0 (x, y) -a(x, y)].
In order to determine the bias of a n , we need to simply focus on the quantity E[Z k (x, y)]-a(x, y).

Relying upon the assumption (A 1 ) and (A 4 ), it follows that

E[Z k (x, y)] = R d+q h -d k K x -t h k χ k (y)f (X,Y ) (t, u)dtdu = R d h -d k K x -t h k E[χ k (y)|X = t]f X (t)dt = R d h -d k K x -t h k π(y|t)f X (t)dt = R d h -d k K x -t h k a(t, y)dt = R d K (z) a(x -zh k , y)dz.
Moreover, Taylor's expansion with integral remainder ensures that

E[Z k (x, y)] -a(x, y) = R d K(z) [a(x -zh k , y) -a(x, y)] dz = R d K(z)   d i=1 ∂a ∂x i (x, y)z i h k + 1 0 (1 -t) d i,j=1 ∂ 2 a ∂x i ∂x j (x -tzh k , y)z i z j h 2 k dt   dz = h k d i=1 a (1) 
i (x, y)

R d K(z)z i dz + h 2 k d i,j=1 R d 1 0 (1 -t) a (2) ij (x -tzh k , y)z i z j K(z)dtdz.
Referring to the assumption (A 1 ),

R d K(z)z i dz = 0 and µ i (K) = R d z 2 i K(z)dz, it can be inferred that E[Z k (x, y)] -a(x, y) = h 2 k 2 d j=1 µ j (K)a (2) jj (x, y) + h 2 k η k (x),
where, η k (x) :

= d i,j=1 R d 1 0 (1 -t) a (2) ij (x -tzh k , y) -a (2) ij (x, y) z i z j K(z)dtdz.
Since we have a

(2) ij which is bounded and continuous at x for all i, j ∈ {1, . . . , d}, we obtain lim k→+∞ η k (x) = 0, which ensures that, η k (x) = o (1) .

Hence,

E[a n (x, y)] -a(x, y) = Π n n k=1 Π -1 k γ k (E[Z k (x, y)] -a(x, y)) + Π n [a 0 (x, y) -a(x, y)] = Π n n k=1 Π -1 k γ k   h 2 k 2 d j=1 µ j (K)a (2) jj (x, y) + h 2 k η k (x)   + Π n [a 0 (x, y) -a(x, y)] = 1 2 d j=1 µ j (K)a (2) jj (x, y)Π n n k=1 Π -1 k γ k h 2 k + Π n n k=1 Π -1 k γ k h 2 k η k (x) + Π n [a 0 (x, y) -a(x, y)].
• For the case a α/(d + 4), we have lim n→+∞ (nγ n ) > 2a and then 1 -2aξ > 0. The application of lemma 1.2 enables us to write

E[a n (x, y)] -a(x, y) = 1 2 d j=1 µ j (K)a (2) jj (x, y)Π n n k=1 Π -1 k γ k h 2 k + Π n n k=1 Π -1 k γ k o h 2 k + o (Π n ) = 1 2(1 -2aξ)   d j=1 µ j (K)a (2) jj (x, y)   h 2 n + o h 2 n + o (1) + o (Π n ) .
We thus obtain the following desired result

E[a n (x, y)] -a(x, y) = 1 2(1 -2aξ)   d j=1 µ j (K)a (2) jj (x, y)   h 2 n + o h 2 n .
• For the case a > α/(d + 4), we have lim

n→+∞ (nγ n ) > α-ad 2 which yields that h 2 n = o γ n h -d n .
Then, the use of lemma 1.2 leads to

E[a n (x, y)] -a(x, y) = 1 2 d j=1 µ j (K)a (2) jj (x, y)Π n n k=1 Π -1 k γ k o γ k h -d k + Π n n k=1 Π -1 k γ k o γ k h -d k + o (Π n ) =o γ n h -d n .
Therefore, the claimed result (2.12) is established.

For the variance, and owing to the independence of X i , for i = 1, . . . , n, it's obvious that

V ar[a n (x, y)] = V ar[Π n n k=1 Π -1 k γ k Z k (x, y)] = Π 2 n n k=1 Π -2 k γ 2 k V ar[Z k (x, y)] = Π 2 n n k=1 Π -2 k γ 2 k E[Z 2 k (x, y)] -E[Z k (x, y)] 2 . E[Z 2 k (x, y)] -E[Z k (x, y)] 2 = R d h -2d k K 2 x -t h k E[χ k (y) 2 |X = t]f X (t)dy - R d h -d k K x -t h k π(y|t)f X (t)dt 2 = R d h -d k K 2 (z) a(x -zh k , y)dz - R d K (z) a(x -zh k , y)dz 2 .
As matter of fact, the Taylor's expansions theorem ensures that

V ar[a n (x, y)] = Π 2 n n k=1 Π -2 k γ 2 k h -d k a(x, y) R d K 2 (z) dz + ν k (x) -h d k η k (x) ,
where,

ν k (x) = R d K 2 (z) [a(x -zh k , y) -a(x, y)]dz and η k (x) = R d K (z) a(x -zh k , y)dz 2 .
• For the case a < α/(d + 4), we have lim

n→+∞ (nγ n ) > 2a which provides that γ n h -d n = o h 4 n . By applying lemma 1.2, we infer that V ar[a n (x, y)] = Π 2 n n k=1 Π -2 k γ 2 k h -d k [a(x, y)R(K) + o (1)] = Π 2 n n k=1 Π -2 k γ k o h 4 k .
Hence, we obtain the result

V ar[a n (x, y)] = o h 4 n . • For the case a α/(d + 4), we have lim n→+∞ (nγ n ) > α-ad 2 and then 2 -(α -ad)ξ > 0. Since we have lim k→+∞ ν k (x) = 0 and lim k→+∞ h k η k (x) = 0, then the application of lemma 1.2 ensures that V ar[a n (x, y)] = Π 2 n n k=1 Π -2 k γ 2 k h -d k a(x, y)R(K) + ν k (x) -h d k η k (x) = Π 2 n n k=1 Π -2 k γ 2 k h -d k [a(x, y)R(K) + o (1)] = 1 2 -(α -ad)ξ γ n h d n [a(x, y)R(K) + o (1)].
Thus, this leads to the result displayed in (2.14).

Proof of Theorem 2.3. Our proof rests upon the following decomposition, for f n = 0, n ≥ 0

π n (y|x) -π(y|x) = A n (x, y) f X (x) f n (x) , (2.27) with A n (x, y) = 1 f X (x) (a n (x, y) -a(x, y)) - π(y|x) f X (x) (f n (x) -f X (x)) .
It follows from (2.27) that the asymptotic behavior of π n (y|x) -π(y|x) can be deduced from the one of A n (x, y).

1. Bias of π n : Here, we can state

E[A n (x, y)] = 1 f X (x) (E[a n (x, y)] -a(x, y)) - π(y|x) f X (x) (E[f n (x)] -f X (x)) .
Now, using the rst bias part of proposition 2.1 and proposition 2.2 and considering the fact that a(x, y) = π(y|x)f X (x), then by combining the assertions (2.7), (2.8), (2.11) and ( 2.12); we obtain the relations (2.15) and (2.16).

2.

Variance of π n : In order to conrm this statement, we have

V ar[A n (x, y)] = 1 (f X (x)) 2 V ar[a n (x, y)] + (π(y|x)) 2 (f X (x)) 2 V ar[f n (x)] -2 π(y|x) (f X (x)) 2 Cov(a n (x, y), f n (x)).
(2.28)

Given that the X k 's are independent, then for all i = 1, . . . , n, k = 1, . . . , n and i = k, we have

Cov(Z k (x, y), W i (x)) = 0. Using lemma 1.2, classical computations entail Cov(a n (x, y), f n (x)) = R(K) 2 -(α -ad)ξ π(y|x)f X (x) γ n h d n + o γ n h d n .
(2.29)

In fact, we have

Cov(a n (x, y), f n (x)) = Cov Π n n k=1 Π -1 k γ k Z k (x, y), Π n n i=1 Π -1 i γ i W i (x) = Π 2 n n k=1 Π -2 k γ 2 k Cov (Z k (x, y), W k (x)) = Π 2 n n k=1 Π -2 k γ 2 k (E [Z k (x, y) W k (x)] -E [Z k (x, y)] E [W k (x)]) .
Hence, the use of Taylor's expansion with integral remainder ensures that

E [Z k (x, y) W k (x)] = E χ k (y) h -2d k K 2 x -X k h k = R(K)π(y|x)f X (x)h -d k + o h -d k , E [Z k (x, y)] = E χ k (y) h -d k K x -X k h k = π(y|x)f X (x) + o (1) ,
and

E [W k (x)] = E h -d k K x -X k h k = f X (x) + o (1) .
Thus, by applying lemma 1.2, we can assert

Cov(a n (x, y), f n (x)) = Π 2 n n k=1 Π -2 k γ 2 k R(K)π(y|x)f X (x)h -d k -π(y|x)f 2 X (x) + o h -d k + o(1) = Π 2 n n k=1 Π -2 k γ 2 k h -d k R(K)π(y|x)f X (x) + o (1) = R(K) 2 -(α -ad)ξ π(y|x)f X (x) γ n h d n + o γ n h d n .
Consequently, relations (2.17) and ( 2.18) follow from the combination of assertions (2.9), (2.10), (2.13), (2.14) and (2.29).

For the case a ≥ α/(d + 4), we deduce with (2.28) that

V ar[π n (y|x)] = R(K) 2 -(α -ad)ξ π(y|x)(1 -π(y|x)) f X (x) γ n h d n + o γ n h d n .
Proceeding with the same reasoning applied for the case a < α/(d + 4), we obtain the desired result (2.17).

Proof of Theorem 2.4. We can write, for all n ≥ 0,

x ∈ R d , y ∈ R q , A n (x, y) -E[A n (x, y)] = 1 f X (x) [a n (x, y) -E[a n (x, y)]] - π(y|x) f X (x) [f n (x) -E[f n (x)]] = 1 f X (x) Π n n k=1 Π -1 k γ k (T k (x, y) -E[T k (x, y)]) ,
where

T k (x, y) = Z k (x, y) -π(y|x)W k (x).
Here and subsequently, it is worth noting

S k (x, y) := Π -1 k γ k (T k (x, y) -E[T k (x, y)]) .
Hence, we state .30) This proof falls naturally into the application of Lyapunov's theorem 1.14 for S k (x, y).

A n (x, y) -E[A n (x, y)] = 1 f X (x) Π n n k=1 S k (x, y). ( 2 
On the one hand, we can write

u 2 n := n k=1 V ar[S k (x, y)] = n k=1 Π -2 k γ 2 k V ar[T k (x, y)] = n k=1 Π -2 k γ 2 k V ar [Z k (x, y) -π(y|x)W k (x)] = n k=1 Π -2 k γ 2 k V ar [Z k (x, y)] + π(y|x) 2 V ar [W k (x)] -2π(y|x) Cov (Z k (x, y), W k (x)). [ Moreover, we have V ar [Z k (x, y)] = h -d k R(K) π(y|x)f X (x) + o(1) , V ar [W k (x)] = h -d k R(K) f X (x) + o(1) , and 
Cov (Z k (x, y), W k (x)) = h -d k R(K) π(y|x)f X (x) + o(1) .
Therefore, by applying lemma 1.2, it can be deduced that

u 2 n = n k=1 Π -2 k γ 2 k h -d k R(K)f X (x)π(y|x) (1 -π(y|x)) + o(1) = f X (x) 2 Π 2 n γ n h d n [σ 2 (x, y) + o (1)].
(2.31)

On the other hand, we have

E[Z 2+p k (x, y)] = h -d(1+p) k π(y|x)f X (x) R d K 2+p (z) dz + o(1)
and

E[W 2+p k (x, y)] = h -d(1+p) k f X (x) R d K 2+p (z) dz + o(1)
.

Then, we can write

E[|T k (x, y)| 2+p ] = O 1 h d(1+p) k , ∀p > 0.
Therefore,

E |S k (x, y)| 2+p = Π -(2+p) k γ 2+p k E |T k (x, y) -E[T k (x, y)]| 2+p = Π -(2+p) k γ 2+p k E |T k (x, y) + o(1)| 2+p .
Hence,

E |S k (x, y)| 2+p = O Π -(2+p) k γ 2+p k E |T k (x, y)| 2+p . This yields, n k=1 E[|S k (x, y)| 2+p ] = O n k=1 Π -(2+p) k γ 2+p k E |T k (x, y)| 2+p = O n k=1 Π -(2+p) k γ 2+p k 1 h d(1+p) k
.

For the application of lemma 1.2, let us assume that there exists a positive real p such that

lim n→+∞ (nγ n ) > 1 + p 2 + p (α -ad).
Then, we obtain

n k=1 E[|S k (x, y)| 2+p ] = O γ 1+p n Π 2+p n h d(1+p) n
.

It follows that 1

u 2+p n n k=1 E[|S k (x, y)| 2+p ] = O γ 1+p n u 2+p n Π 2+p n h d(1+p) n .
As a sequel, with the assertion (2.31), we can write

1 u 2+p n n k=1 E[|S k (x, y)| 2+p ] = O γ n h d n p/2 = o (1)
.

Moreover, since we have

lim n→+∞ 1 u 2+p n n k=1 E |S k (x, y) -E[S k (x, y)]| 2+p = lim n→+∞ 1 u 2+p n n k=1 E[|S k (x, y)| 2+p ] = 0,
then, by applying Lyapunov theorem 1.14, we get

1 u n n k=1 (S k (x, y) -E[S k (x, y)]) D -→ n→+∞ N (0 , 1) .
This implies

1 u n n k=1 S k (x, y) D -→ n→+∞ N (0 , 1) .
Additionally, the relations (2.27) and ( 2.30) ensure that

1 u n Π n f X (x) (π n (y|x) -E[π n (y|x)]) D -→ n→+∞ N (0 , 1) . (2.32) Given that u 2 n = f X (x) 2 Π 2 n γ n h d n [σ 2 (x, y) + o (1)],
and by replacing u n with its value in relation ( 2.32), we deduce that In fact, we rst note

γ -1 n h d n (π n (y|x) -E[π n (y|x)]) D -→ n→+∞ N 0 , σ 2 (x, y) . ( 2 
C 1 = 1 4 I 1 (1 -2aξ) 2 , C 2 = I 2 2 -(α -ad)ξ R(K). M W ISE[π n ] =        C 1 h 4 n + o(h 4 n ) if a ∈ 0, α d+4 C 2 γ n h -d n + C 1 h 4 n + o(h 4 n ) if a = α d+4 C 2 γ n h -d n + o γ n h -d n if a ∈ α d+4 , 1 . Set α ∈]1/2, 1]. If a < α d+4 , C 1 h 4 n ∈ GS(-4a) with -4α d+4 < -4a. If a = α d+4 , C 2 γ n h -d n + C 1 h 4 n ∈ GS(-4α d+4 ) with -4α d+4 = -4a. If a > α d+4 , C 2 γ n h -d n ∈ GS(-α + ad) with -4α d+4 < -α + ad.
It follows that, for a given α, to minimize the M W ISE[π n ], we select the smallest quantity which is -4α d+4 = -4a. Therefore, the parameter a must be chosen equal to α d+4 .

Chapter 3

The stochastic approximation method for semi-recursive multivariate kernel-type regression estimation

Introduction

Let (X, Y ) be a random vector with values in R d × R with a joint density function g(x, y) and let f denote the probability density of X. Moreover, let (X 1 , Y 1 ), . . . , (X n , Y n ) be independent random vectors identically distributed as (X, Y ). For a chosen measurable function ϕ and x ∈ R d the regression function, whenever it exists, is dened by

r ϕ (x) = E[ϕ(Y )|X = x] = 1 f (x) R ϕ(y)g(x, y)dy.
Regression analysis stands for the study of how a response variable depends on one or more predictors. In fact, it's a reliable method of identifying which variables have impact on a topic of interest. The process of performing a regression allows us to condently determine which factors matter most, which factors can be ignored, and how these factors inuence each other. Regression problems can be usefully solved using nonparametric regression methods, which correspond to a category of regression analysis where the predictor does not take a predetermined form but is constructed according to information derived from the data. From this perspective, we have multiple methods of nonparametric estimation, such as Gaussian process regression (Kriging), kernel regression and regression trees. An estimator of the r ϕ regression was rst developed by [START_REF] Roussas | Nonparametric regression estimation under mixing conditions[END_REF] and improved by [START_REF] Einmahl | An empirical process approach to the uniform consistency of kernel-type function estimators[END_REF] to determine exact rates of uniform strong consistency of kernel-type function estimators. Later, [START_REF] Deheuvels | General asymptotic condence bands based on kerneltype function estimators[END_REF] established uniform and non-uniform asymptotic simultaneous condence bands for functionals of the distribution based on kerneltype estimators. The classical recursive regression estimator was addressed in Mokaddem et al. ( 2009b) for univariate framework and a multivariate extension of this estimator was carried out by Mokaddem and Pelletier(2016). Subsequently, [START_REF] Slaoui | Optimal bandwidth selection for semi-recursive kernel regression estimators[END_REF] established the semi-recursive case and introduced a new estimator which is the fraction of a recursive regression by a recursive density function. As far as this research is concerned, our basic objective is to extend this estimator for kernel-type estimation with large choice of parameters and properties in a multivariate case. Note that, recently, Bouzebda and Slaoui (2020) explored general kernel type estimators for censored data dened by the stochastic approximation algorithm.

Presentation of the method

Let us start with the presentation of our stochastic approximation method. The stochastic approximation algorithm, which estimates recursively the regression function

a ϕ : x -→ r ϕ (x)f (x) = R
ϕ(y)g(x, y)dy at a given vector x, can be expressed as follows :

a ϕ n (x) = (1 -β n )a ϕ n-1 (x) + β n ϕ(Y n ) h -d n K x -X n h n ,
where (β n ) is a positive sequences of real numbers decreasing towards zero verifying ( 18).

Here, we consider that a 0 (x) = 0, then by a recurrence, we get

a ϕ n (x) = Q n n k=1 Q -1 k β k ϕ(Y k )h -d k K x -X k h k , Q n = n j=1 (1 -β j ).
Through this chapter, we consider the general multivariate kernel-type estimator for the regression function r :

x -→ E[ϕ(Y )|X = x] at the vector x r ϕ n (x) =    a ϕ n (x) f n (x) if f n (x) = 0 0 otherwise , (3.1) 
with f n stands for the recursive density estimator given in (2.3). Our rst aim is to examine the asymptotic properties of our proposed semi-recursive estimator of a multivariate regression function. Then, we prove its performance. By introducing the non-recursive estimator of a ϕ given by

a ϕn (x) = 1 nh d n n k=1 ϕ(Y k )K x -X k h n ,
we shall compare our estimator to the generalized non-recursive kernel regression estimator of Nadaraya-Watson Nadaraya (1964) and [START_REF] Watson | Smooth regression analysis[END_REF] r ϕn indicated by

r ϕn (x) =    a ϕn (x) f n (x) if f n (x) = 0 0 otherwise , (3.2) 
where f n was given in (2.5).

Particular cases:

1. For ϕ(y) := I(y) = y, we have the classical regression function

r I (x) = E[Y |X = x].
A recursive estimator of r I was reported in Slaoui (2015).

2. For ϕ(y) := I(y) = y m , m ∈ N, we have the conditional moments

r I (x) = E[Y m |X = x].
3. For ϕ(y) := χ t (y) = 1 {y t} , t ∈ R, we have the conditional cumulative distribution function

r χt (y) = π(t|x) = P[Y t|X = x].
A recursive estimator of r χt was identied in Slama et al. (2021).

Notations and assumptions

For this section and under (A 1 ) and (A 2 ) given in 1.1.1, we provide the following notations and assumptions which will be intensively used for our theoretical main results.

(A 5 ) (i) (β n ) n≥1 ∈ GS(-β), with β ∈ 1 2 , 1 . (ii) (h n ) n≥1 ∈ GS(-a), with a ∈ (0, 1). (iii) lim n→+∞ nβ n ∈ min{2a, β-ad 2 }, +∞ . (A 6 ) (i)
The functions f and a ϕ are bounded and twice dierentiable.

(ii) For all i, j ∈ {1, . . . , d}, f

ij := ∂ 2 f ∂x i ∂x j (2) 
and a

(2)

ϕ ij := ∂ 2 a ϕ ∂x i ∂x j
are bounded and continuous at x.

(iii) For all p > 0, s -→ R |ϕ(t)| 2+p g(s, t)dt is a bounded function.
(iv) The function s -→ R ϕ(t) 2 g(s, t)dt is bounded and continuous at s = x.

Discussion of the assumptions:

It is to be noted that the assumption (A 5 )(iii) with regard to the limit of (nβ n ) as n goes to innity is quite common within the context of stochastic approximation algorithms. More specically, the limit ξ β := lim n→+∞ (nβ n ) -1 is implied to be nite. Moreover, throughout the rest of this thesis manuscript, we shall use an other notation for lim n→+∞

(nγ n ) -1 denoted ξ α .
Furthermore, it is noteworthy that the assumptions given in (A 6 ) are fullled under the following conditions:

-For every t ∈ R, the function g(., t) is twice continuously dierentiable in R d .

-The functions s -→ -For p > 0, s -→ R |ϕ(t)| 2+p g(s, t)dt is a bounded function.

-For all i, j ∈ {1, . . . , d},

R ∂g ∂s i (x, t) dt < +∞ and R |ϕ(t)| ∂g ∂s i (x, t) dt < +∞.
-For all i, j ∈ {1, . . . , d}, s

-→ R ∂ 2 g ∂s i ∂s j (s, t)dt and s -→ R ϕ(t) ∂ 2 g ∂s i ∂s j (s, t)dt are bounded functions continuous at s = x.
Those conditions on the density of the couple (X, Y ) were applied in the non-recursive framework for the estimation of the regression function [START_REF] Nadaraya | Some New Estimates for Distribution Functions[END_REF], [START_REF] Watson | Smooth regression analysis[END_REF] and in the recursive framework Mokaddem et al. (2009b[START_REF] Slaoui | Plug-in bandwidth selector for recursive kernel regression estimators dened by stochastic approximation method[END_REF]. Throughout this chapter, the following notations are used :

ξ α,β = ξ β ξ -1 α := lim n→+∞ (γ n β -1 n ) and ξ β,α = (ξ α,β ) -1 := lim n→+∞ (β n γ -1 n ).

Main results

In order to investigate the asymptotic properties of our estimator r ϕ n , we need to rst introduce the following proposition which provide the bias and the variance of a ϕ n .

If

a ∈ 0, β d+4 , then V ar[a ϕ n (x)] = o h 4 n . (3.5) If a ∈ β d+4 , 1 , then V ar[a ϕ n (x)] = β n h d n E[ϕ(Y ) 2 |X = x] 2 -(β -ad)ξ β f (x)R(K) + o β n h -d n . (3.6) 3.2.2
Bias and variance of r ϕ n

Our main result rests on the following theorem, which yields the bias and the variance of r ϕ n .

Theorem 3.2. Under the assumptions (A 1 ), (A 2 ), (A 5 ) and (A 6 ), we obtain

1. If a ∈ 0, min(β,α) d+4
, then

E[r ϕ n (x)] -r ϕ (x) = h 2 n f (x)      d j=1 µ j (K)a (2) 
ϕ jj (x) 2(1 -2aξ β ) - r ϕ (x) d j=1 µ j (K)f (2) jj (x) 2(1 -2aξ α )      + o h 2 n . (3.7) If a ∈ min(β,α) d+4 , 1 , then E[r ϕ n (x)] -r ϕ (x) = o β n h -d n 1 {β≤α} + o γ n h -d n 1 {α<β} . (3.8) 2. If a ∈ 0, min(β,α) d+4 , then V ar[r ϕ n (x)] = o h 4 n . (3.9) If a ∈ min(β,α) d+4 , 1 , then V ar[r ϕ n (x)] = β n h d n R(K) f (x) E[ϕ(Y ) 2 |X = x] 2 -(β -ad)ξ β (3.10) -r 2 ϕ (x) 2 1 -(β -ad -ξ -1 β )ξ α - ξ α,β 2 -(α -ad)ξ α + o β n h d n 1 {β α} + γ n h d n R(K) f (x) E[ϕ(Y ) 2 |X = x]ξ β,α 2 -(β -ad)ξ β -r 2 ϕ (x) 2 1 -(α -ad -ξ -1 α )ξ β - 1 2 -(α -ad)ξ α + o γ n h d n 1 {α<β} .
Therefore, the bias and the variance of the estimator r ϕ n dened by the stochastic approximation algorithm (3.1) depend heavily on the choice of the stepsizes (β n ) and (γ n ).

Remark 3.3. Notice that, for the case where (γ n ) = (β n ) and then α = β, the expression (3.10) will be written as follows

V ar[r ϕ n (x)] = β n h d n R(K) f (x) V ar[ϕ(Y )|X = x] 2 -(β -ad)ξ β + o β n h -d n .
The asymptotic normality of the generalized semi-recursive estimator r ϕ n is indicated by the following theorem.

3.2.3

Weak pointwise convergence rate of r ϕ n Theorem 3.4. Under the assumptions (A 1 ), (A 2 ), (A 5 ) and (A 6 ), we obtain:

1. For the case β ≤ α:

(a) If there exists c ≥ 0 such that β -1 n h d+4 n -→ n→+∞ c, then β -1 n h d n r ϕ n (x) -r ϕ (x) D -→ n→+∞ N √ cM β (x) , Σ β (x) , (3.11) 
with

M β (x) = 1 2f (x)      d j=1 µ j (K)a (2) ϕ jj (x) (1 -2aξ β ) - r ϕ (x) d j=1 µ j (K)f (2) jj (x) 
(1 -2aξ α )      (3.12) 
and

Σ β (x) = R(K) f (x) E[ϕ(Y ) 2 |X = x] 2 -(β -ad)ξ β (3.13) -r 2 ϕ (x) 2 1 -(β -ad -ξ -1 β )ξ α - ξ α,β 2 -(α -ad)ξ α . (b) If β -1 n h d+4 n -→ n→+∞ +∞, then 1 h 2 n r ϕ n (x) -r ϕ (x) P -→ n→+∞ M β (x).
2. For the case β > α:

(a) If there exists c ≥ 0 such that γ -1 n h d+4 n -→ n→+∞ c, then γ -1 n h d n r ϕ n (x) -r ϕ (x) D -→ n→+∞ N √ cM γ (x) , Σ γ (x) , (3.14) 
with

M γ (x) = 1 2f (x)      d j=1 µ j (K)a (2) ϕ jj (x) (1 -2aξ β ) - r ϕ (x) d j=1 µ j (K)f (2) jj (x) (1 -2aξ α )      (3.15)
and

Σ γ (x) = R(K) f (x) E[ϕ(Y ) 2 |X = x]ξ β,α 2 -(α -ad)ξ α (3.16) -r 2 ϕ (x) 2 1 -(α -ad -ξ -1 α )ξ β - 1 2 -(α -ad)ξ α . (b) If γ -1 n h d+4 n -→ n→+∞ +∞, then 1 h 2 n r ϕ n (x) -r ϕ (x) P -→ n→+∞ M γ (x).
The following theorem demonstrates the strong pointwise convergence rate of our estimator r ϕ n .

3.2.4

Strong pointwise convergence rate of r ϕ n Theorem 3.5. Under the assumptions (A 1 ), (A 2 ), (A 5 ) and (A 6 ), we get:

1. For the case β ≤ α:

(a) If there exists b ≥ 0 such that β -1 n h d+4 n ln n i=1 β i -→ n→+∞ b
, then with probability one, the sequence

     β -1 n h d n 2 ln n i=1 β i r ϕ n (x) -r ϕ (x)     
is relatively compact and its limit set is the interval

b 2 M β (x) -Σ β (x) , b 2 M β (x) + Σ β (x) . (b) If β -1 n h d+4 n ln n i=1 β i -→ n→+∞ +∞,
then, with probability one,

lim n→+∞ 1 h 2 n r ϕ n (x) -r ϕ (x) = M β (x).
2. For the case β > α:

(a) If there exists b ≥ 0 such that γ -1 n h d+4 n ln n i=1 γ i -→ n→+∞ b
, then with probability one, the sequence

     γ -1 n h d n 2 ln n i=1 γ i r ϕ n (x) -r ϕ (x)     
is relatively compact and its limit set is the interval

b 2 M γ (x) -Σ γ (x) , b 2 M γ (x) + Σ γ (x) . (b) If γ -1 n h d+4 n ln n i=1 γ i -→ n→+∞ +∞,
then, with probability one,

lim n→+∞ 1 h 2 n r ϕ n (x) -r ϕ (x) = M γ (x).
In what follows, we clarify the choices of the stepsizes (β n ) as well as (γ n ) and the bandwidth (h n ) based on the M W ISE of the recursive estimator minimization, and then enact a comparison with Nadaraya Watson's estimator.

Optimal choice of the stepsizes

In order to measure the optimal choice of the couple of stepsizes (β n , γ n ), we need to minimize the Mean Weighted Integrated Squared Error (M W ISE) of the semi-recursive estimator r ϕ n .

For the sequel, we will need the following notations. We rst note,

I 1 = R d   d j=1 µ j (K)a (2) ϕ jj (x)   2 f (x)dx, I 4 = R d E[ϕ(Y ) 2 |X = x]f 2 (x)dx, I 2 = R d   d j=1 µ j (K)a (2) ϕ jj (x)     d j=1 µ j (K)f (2) jj (x) 
  r ϕ (x)f (x)dx,

I 3 = R d   d j=1 µ j (K)f (2) jj (x)   2 r 2 ϕ (x)f (x)dx, I 5 = R d r 2 ϕ (x)f 2 (x)dx. 3.3.1 Asymptotic expressions of M W ISE[r ϕ n ]
The M W ISE of the estimator r ϕ n is determined by the following expression

M W ISE[r ϕ n ] = R d E[r ϕ n (x)] -r ϕ (x) 2 f 3 (x)dx + R d V ar[r ϕ n (x)]f 3 (x)dx.
Proposition 3.6. We rst note,

C 1 = I 1 (1 -2aξ β ) 2 - 2I 2 (1 -2aξ β )(1 -2aξ α ) + I 3 (1 -2aξ α ) 2 , C 2 = I 4 2 -(β -ad)ξ β , C 3 = I 4 ξ β,α 2 -(β -ad)ξ β , C 4 = I 5 2 1 -(β -ad -ξ -1 β )ξ α - ξ α,β 2 -(α -ad)ξ α , C 5 = I 5 2 1 -(α -ad -ξ -1 α )ξ β - 1 2 -(α -ad)ξ α .
1. For the case β ≤ α:

M W ISE[r ϕ n ] =          1 4 C 1 h 4 n + o(h 4 n ) if a ∈ 0, β d+4 (C 2 -C 4 )R(K)β n h -d n + 1 4 C 1 h 4 n + o(h 4 n ) if a = β d+4 (C 2 -C 4 )R(K)β n h -d n + o β n h -d n if a ∈ β d+4 , 1 . 
2. For the case β > α:

M W ISE[r ϕ n ] =          1 4 C 1 h 4 n + o(h 4 n ) if a ∈ 0, α d+4 (C 3 -C 5 )R(K)γ n h -d n + 1 4 C 1 h 4 n + o(h 4 n ) if a = α d+4 (C 3 -C 5 )R(K)γ n h -d n + o γ n h -d n if a ∈ α d+4 , 1
.

The following corollary ensures that the bandwidth which minimizes the M W ISE of r ϕ n depends on the choice of the stepsizes (β n ) and (γ n ) and then the corresponding M W ISE depends in turn on (β n ) and (γ n ).

Corollary 3.7. Let assumptions (A 1 ), (A 2 ), (A 5 ) and (A 6 ) hold. To minimize the M W ISE of r ϕ n , the bandwidth (h n ) needs to be equal to the following expressions.

1. For the case β ≤ α:

h n = d 1 d+4 C 2 -C 4 C 1 1 d+4 R(K) 1 d+4 β 1 d+4 n .
Hence, the corresponding M W ISE is specied by

M W ISE[r ϕ n ] = (d + 4) 4d d d+4 C d d+4 1 (C 2 -C 4 ) 4 d+4 R(K) 4 d+4 β 4 d+4 n + o β 4 d+4 n .
2. For the case α < β :

h n = d 1 d+4 C 3 -C 5 C 1 1 d+4 R(K) 1 d+4 γ 1 d+4 n .
Thus, the corresponding M W ISE is expressed by

M W ISE[r ϕ n ] = (d + 4) 4d d d+4 C d d+4 1 (C 3 -C 5 ) 4 d+4 R(K) 4 d+4 γ 4 d+4 n + o γ 4 d+4 n .
The following corollary is provided in the special cases, where (β n ) is chosen as

(β n ) = (β 0 n -1 ) in order to minimize the M W ISE[a ϕ n ] and (γ n ) is chosen as (γ n ) = (γ 0 n -1 ) in order to minimize the M W ISE[f n ].
Proposition 3.8. Let assumptions (A 1 ), (A 2 ), (A 5 ) and (A 6 ) hold. It is worth noting,

Θ 1 = β 0 I 4 (d + 4)β 0 -2 - 2γ 0 I 5 (d + 4)( γ 0 +β 0 2 ) -2 + β -1 0 γ 2 0 I 5 (d + 4)γ 0 -2 , Θ 2 = γ 0 I 5 (d + 4)γ 0 -2 - 2β 0 I 5 (d + 4)( γ 0 +β 0 2 ) -2 , Θ 3 = β 2 0 I 1 ((d + 4)β 0 -2) 2 - 2β 0 γ 0 I 2 ((d + 4)β 0 -2)((d + 4)γ 0 -2) + γ 2 0 I 3 ((d + 4)γ 0 -2) 2 .
To minimize the M W ISE of r ϕ n , we need to choose the stepsize (γ n ) in GS(-1) such that lim n→+∞ nγ n = γ 0 and the stepsize (β n ) in GS(-1) such that lim n→+∞ nβ n = β 0 . As a matter of fact, 1. For the case β ≤ α:

The bandwidth (h n ) needs to be equal to

β 1 d+4 0 d 2(d + 4) 1 d+4 R(K) 1 d+4 n -1 d+4 Θ 1 Θ 3 1 d+4 .
Consequently, the corresponding M W ISE is determined by

M W ISE[r ϕ n ] = (d + 4) 3d+8 d+4 4 d + 6 d+4 d d d+4 β 4 d+4 0 Θ 4 d+4 1 Θ d d+4 3 R(K) 4 d+4 n -4 d+4 + o n -4 d+4 .
2. For the case α < β :

The bandwidth (h n ) needs to be equal to

γ 1 d+4 0 d 2(d + 4) 1 d+4 R(K) 1 d+4 n -1 d+4 Θ 2 Θ 3 1 d+4 .
Therefore, the corresponding M W ISE is specied by (1,1). From this perspective, the optimal bandwidth (h n ) must be equal to

M W ISE[r ϕ n ] = (d + 4) 3d+8 d+4 4 d + 6 d+4 d d d+4 γ 4 d+4 0 Θ 4 d+4 2 Θ d d+4 3 R(K) 1 d+4 n -4 d+4 + o n -4 d+4 . Additionally, the minimum of M W ISE[r ϕ n ] is achieved at (β 0 , γ 0 ) =
d(d + 2) 2(d + 4) 1 d+4 I 4 -I 5 I 1 -2I 2 + I 3 1 d+4 R(K) 1 d+4 n -1 d+4
.

(3.17) Thus, the corresponding M W ISE is indicated by

M W ISE[r ϕ n ] = (d + 4) 3d+8 d+4 4 d+6 d+4 d d d+4 (d + 2) d+6 d+4 (I 1 -2I 2 + I 3 ) d d+4 (I 4 -I 5 ) 4 d+4 R(K) 4 d+4 n -4 d+4 + o n -4 d+4
.

Remark 3.9. Note that for the particular case where the stepsize

(β n ) is in GS(-1) such that lim n→+∞ nβ n = 1, (γ n ) is in GS(-1) such that lim n→+∞ nγ n = 1 and the bandwidth (h n ) is chosen such that lim n→+∞ nh d+4 n
= 0 (which corresponds to undersmoothing), the asymptotic normality of the proposed estimator is represented as follows

nh d n r ϕ n (x) -r ϕ (x) D -→ n→+∞ N 0 , 1 a + d R(K) V ar[ϕ(Y )|X = x] f (x) .

Asymptotic properties of r ϕ n

The main properties of the generalized non-recursive regression function estimator r ϕn are displayed in the following proposition.

Proposition 3.10. Let assumptions (A 1 ) and (A 6 ) hold. Then, the asymptotic properties of Nadaraya-Watson's estimator are denoted as follows.

The bias of r ϕn :

E[ r ϕn (x)] -r ϕ (x) = 1 2f (x) h 2 n   d j=1 µ j (K)a ϕ (2) jj (x) -r ϕ (x) d j=1 µ j (K)f (2) jj (x)   + o h 2 n .
The variance of r ϕn :

V ar[ r ϕn (x)] = 1 nh d n 1 f (x) V ar[ϕ(Y )|X = x]R(K) + o 1 nh d n .
The M W ISE of r ϕn :

M W ISE[ r ϕn ] = 1 4 (I 1 -2I 2 + I 3 ) h 4 n + 1 nh d n (I 4 -I 5 ) R(K) + o h 4 n + 1 nh d n .
To minimize the M W ISE of r ϕn , the bandwidth (h n ) must be equal to

d 1 d+4 I 4 -I 5 I 1 -2I 2 + I 3 1 d+4 R(K) 1 d+4 n -1 d+4 . (3.18)
Therefore, the corresponding M W ISE is expressed by

M W ISE[ r ϕn ] = (d + 4) 4d d d+4 (I 4 -I 5 ) 4 d+4 (I 1 -2I 2 + I 3 ) d d+4 R(K) 1 d+4 n -4 d+4 + o n -4 d+4 .
The asymptotic normality of r ϕn : Suppose that nh d+4 n -→ n→+∞ 0. Thus,

nh d n ( r ϕn (x) -r ϕ (x)) D -→ n→+∞ N 0 , R(K) V ar[ϕ(Y )|X = x] f (x) .
The weak pointwise convergence rate of r ϕn :

If nh d+4 n -→ n→+∞ +∞, then 1 h 2 n ( r ϕn (x) -r ϕ (x)) P -→ n→+∞ 0.

Bandwidth selection

Kernel smoothing in non-parametric statistics requires the choice of a bandwidth parameter. There are numerous methods for bandwidth selection, namely the cross-validation method, the bootstrap procedure and the second generation plug-in approach.

First of all, we adopt (1.14) and the kernel K we shall use is considered as a product of univariate kernels. Hence, we have

r ϕ n (x) = Q n n k=1 Q -1 k β k ϕ(Y k ) h -d k d i=1 K x i -X ki h k Π n n k=1 Π -1 k γ k h -d k d i=1 K x i -X ki h k and r ϕn (x) = nh d n -1 n k=1 ϕ(Y k ) d i=1 K x i -X ki h n (nh d n ) -1 n k=1 d i=1 K x i -X ki h n .
Let us start by introducing our bandwidth selection methods.

Plug-in method

In statistics, [START_REF] Altman | Bandwidth Selection for Kernel Distribution Function Estimation[END_REF] set forward an ecient method of bandwidth selection, a plug-in estimate which minimizes an estimate of the mean weighted integrated squared error, using the density function as a weight function. Since the M W ISE depends on the unknown quantities I j , j = 1, . . . , 5, we attempt to construct an asymptotic unbiased estimator of those quantities.

For this purpose, we let µ(K) = R z 2 K(z)dz and

I i = µ 2 (K)I i , i = 1, 2, 3,
where

I 1 = R d   d j=1 a (2) ϕ jj (x)   2 f (x)dx. I 2 = R d   d j=1 a (2) ϕ jj (x)     d j=1 f (2) jj (x)   r ϕ (x)f (x)dx. I 3 = R d   d j=1 f (2) jj (x)   2 r ϕ (x)f (x)dx.
At this stage of analysis, in order to estimate the optimal bandwidth (3.17), we need to estimate I j , j = 1, . . . , 5. For this purpose, we recall that K b is a kernel and b n is the associated bandwidth, such that δ = 2/5, and K

b is the second derivative of a kernel K b with the associated bandwidth b n such that δ = 3/14.

Semi-Recursive estimator r ϕ n :

To estimate the optimal bandwidth (3.17), we need to estimate I j , j = 1, . . . , 5.

Estimation of I 1 , I 2 and I 3 : Here, the plug-in estimate gives

I 1 = Q 2 n n n i,j,k=1 i =j =k Q -1 j Q -1 k β j β k b -(d+2) j b -(d+2) k   d t=1 K (2) b X it -X jt b j d l=1 l =t K b X il -X jl b j   ×   d t=1 K (2) b X it -X kt b k d l=1 l =t K b X il -X kl b k   ϕ(Y j )ϕ(Y k ), I 2 = Q n Π n n n i,j,k=1 i =j =k Q -1 j Π -1 k β j γ k b -(d+2) j b -(d+2) k   d t=1 K (2) b X it -X jt b j d l=1 l =t K b X il -X jl b j   ×   d t=1 K (2) b X it -X kt b k d l=1 l =t K b X il -X kl b k   ϕ(Y j )ϕ(Y i ), I 3 = Π 2 n n n i,j,k,m=1 i =j =k =m Π -1 j Π -1 k γ j γ k b -(d+2) j b -(d+2) k   d t=1 K (2) b X it -X jt b j d l=1 l =t K b X il -X jl b j   ×   d t=1 K (2) b X it -X kt b k d l=1 l =t K b X il -X kl b k   ϕ(Y i )ϕ(Y m ),
Therefore, we obtain

I i = µ 2 (K) I i , i = 1 . . . 3.
Estimation of I 4 and I 5 :

I 4 = Π n n n i,k=1 i =k Π -1 k γ k b -d k d l=1 K b X il -X kl b k ϕ(Y i ) 2
and

I 5 = Q n n n i,k=1 i =k Q -1 k β k b -d k d l=1 K b X il -X kl b k ϕ(Y i )ϕ(Y k ),
As a result, the plug-in estimator of (3.17) is denoted in terms of :

h n =   d(d + 2) 2(d + 4) 1 d+4 I 4 -I 5 I 1 -2 I 2 + I 3 1 d+4 R(K) 1 d+4 n -1 d+4   , (3.19) 
Finally, an estimator of M W ISE[r ϕ n ] is expressed as

M W ISE[r ϕ n ] = (d + 4) 3d+8 d+4 4 d+6 d+4 d d d+4 (d + 2) d+6 d+4 I 1 -2 I 2 + I 3 d d+4 I 4 -I 5 4 d+4 R(K) 1 d+4 n -4 d+4 +o n -4 d+4
.

Non-Recursive estimator r ϕn :

To estimate the optimal bandwidth (3.18), we need to estimate I j , j = 1, . . . , 5.

Estimation of I 1 , I 2 and I 3 : For the non-recursive case, the plug-in estimate yields

I 1 = 1 n 3 b 2(d+2) n n i,j,k=1 i =j =k   d t=1 K (2) b X it -X jt b n d l=1 l =t K b X il -X jl b n   ×   d t=1 K (2) b X it -X kt b n d l=1 l =t K b X il -X kl b n   ϕ(Y j )ϕ(Y k ), I 2 = 1 n 3 b 2(d+2) n n i,j,k=1 i =j =k   d t=1 K (2) b X it -X jt b n d l=1 l =t K b X il -X jl b n   ×   d t=1 K (2) b X it -X kt b n d l=1 l =t K b X il -X kl b n   ϕ(Y j )ϕ(Y i ), I 3 = 1 n 4 b 2(d+2) n n i,j,k,m=1 i =j =k =m   d t=1 K (2) b X it -X jt b n d l=1 l =t K b X il -X jl b n   ×   d t=1 K (2) b X it -X kt b n d l=1 l =t K b X il -X kl b n   ϕ(Y i )ϕ(Y m ),
Therefore, we obtain

I i = µ 2 (K) I i , i = 1 . . . 3.
Estimation of I 4 and I 5 :

I 4 = 1 n 2 b d n n i,k=1 i =k d l=1 K b X il -X kl b n ϕ(Y i ) 2
and

I 5 = 1 n 2 b d n n i,k=1 i =k d l=1 K b X il -X kl b n ϕ(Y i )ϕ(Y k ),
As a consequence, the plug-in estimator of (3.18) is indicated by

h n =   I 4 -I 5 I 1 -2 I 2 + I 3 1 d+4 R(K) 1 d+4 n -1 d+4   , (3.20) 
Finally, a non-recursive estimator of M W ISE[r ϕ n ] is determined by

M W ISE[ r ϕn ] = 5 4 I 4 -I 5 4 d+4 I 1 -2 I 2 + I 3 1 d+4 R(K) 1 d+4 n -4 d+4 + o n -4 d+4 .

Wild Bootstrap approach

The basic idea of the wild bootstrap introduced in [START_REF] Hardle | Bootstrap Simultaneous Error Bars for Nonparametric Regression[END_REF] lies in resampling from the estimated residuals

ε i = ϕ(Y i ) -r n (X i )
instead of resampling from the pairs (Y i , X i ) n i=1 and then investing the obtained data to construct an estimator whose distribution will approximate the distribution of the original estimator. Notice that each bootstrapped residual ε i is drawn from a two-point distribution, such that

E(ε * i ) = 0, E(ε * i 2 ) = ε2 i and E(ε * i 3 ) = ε3 i .
Such distribution is expressed by

G * i = 5 + √ 5 10 δ εi (1- √ 5) 2 + 5 - √ 5 10 δ εi (1+ √ 5) 2 .
Our adapted procedure for bandwidth selection to estimate the operator r ϕ recursively relies on three steps:

1. Giving the bootstrapped residuals ε * i drawn from the distribution G * i .

Resampling new observations ϕ(Y *

i ) = r n (X i , g) + ε * i such that g should be oversmoothed (g needs to be larger than h).

Computing the kernel regression estimator r *

n (X i , h), based on the bootstrapped data (X i , Y * i ) n i=1 . The bootstrapped bandwidth h * is then indicated by:

h * = argmin h∈H 1 N B N B i=1 (r * n (X i , h) -r n (X i , g)) 2 , (3.21)
where H is a xed set of bandwidths and N B is the number of replications.

In order to ameliorate the performance of the bootstrap procedure over the plug-in method, we set H =]h n -, h n + [, where h n is the plug-in bandwidth and is quite close to zero.

Condence intervals

Now, let φ denote the distribution function of the standard normal distribution, and let t λ/2 be such that φ t λ 2 = 1 -λ 2 with λ ∈ (0, 1). We set

I rn = r n (x) -t λ 2 Λ, r n (x) + t λ 2 Λ , with Λ = C f (r n ) [C σ (r n )σ 2 n (x) -C r (r n )r 2 n (x)], σ 2 n (x) = 1 n n i=1 (ϕ(Y i ) -r n (X i )) 2
and

rn case C f (rn) Cσ(rn) Cr(rn) rϕ n α > β βnR(K) h d n fn(x) 1 2 -(β -ad)ξ β 2 1 -(β -ad -ξ -1 β )ξα - ξ α,β 2 -(α -ad)ξα - 1 2 -(β -ad)ξ β rϕ n α < β γnR(K) h d n fn(x) ξ β,α 2 -(β -ad)ξ β 2 1 -(α -ad -ξ -1 α )ξ β - 1 2 -(α -ad)ξα - ξ β,α 2 -(β -ad)ξ β rϕ n γn = βn = 1 n R(K) nh d n fn(x) 1 1 + ad 0 rϕ n 1 n R(K) nh d n fn(x) 1 0
In fact, since we have (3.28), the Condence Intervals for means with unknown standard deviation approach ensure

P -t λ 2 < β -1 n h d n r n (x) -E[r n (x)] Σ β,n (x) < t λ 2 = 1 -λ, with Σ β,n (x) = R(K) f n (x) σ 2 n (x) 2 -(β -ad)ξ β -r 2 n (x) 2 1 -(β -ad -ξ -1 β )ξ α - ξ α,β 2 -(α -ad)ξ α - 1 2 -(β -ad)ξ β
is an estimator of (3.16). Therefore, a condence interval for the coverage error is given by

I rn = r n (x) -t λ 2 Σ β,n (x) β -1 n h d n , r n (x) + t λ 2 Σ β,n (x) β -1 n h d n .

Numerical applications

The main target of this section is to perform a simulation study comparing the performance of our semi-recursive estimator (3.1) to that of from condence interval point of view. Throughout this section, we consider the regression model dened as

ϕ(Y ) = r ϕ (X) + ε,
where X follows the multivariate normal distribution N (0 d , σI d ) and ε follows the normal distribution N (0, σ ε ) , with σ and σ ε are two positive constants.

Simulation studies

We shall start by specifying our kernel function K choice which is not carried out at random but according to several criteria. The Gaussian kernel has as an expression

K(x) = 1 √ 2π exp -x 2 2
, for all x ∈ R.

Moreover, we shall consider the case where λ = 0.05 which yield t λ 2 = 1.96.

When applying our estimator r ϕ n , we must choose two quantities :

• The stepsizes (β n , γ n ) = β 0 n -1 , γ 0 n -1
, where β 0 = 1 and γ 0 = 1.

• The bandwidth (h n ) which is chosen to be equal to (3.19) for plug-in recursive estimator (resp. (3.21) for bootstrapped recursive one).

For this special case, we set

I n =      r ϕ n (x) -1.96 R(K) n i=1 ϕ(Y i ) -r ϕ n (X i ) 2 (1 + ad)n 2 h d n f n (x) , r ϕ n (x) + 1.96 R(K) n i=1 ϕ(Y i ) -r ϕ n (X i ) 2 (1 + ad)n 2 h d n f n (x)     
.

When applying our estimator r ϕn , we have to opt for the following quantity:

• The bandwidth (h n ) which is chosen to be equal to (3.20) for plug-in non-recursive estimator (resp. (3.21) for bootstrapped non-recursive one).

For this special case, we set

I n =      r ϕn (x) -1.96 R(K) n i=1 (ϕ(Y i ) -r ϕn (X i )) 2 n 2 h d n f n (x)
, r ϕn (x) + 1.96

R(K) n i=1 (ϕ(Y i ) -r ϕn (X i )) 2 n 2 h d n f n (x)     
.

In what follows, we denote by r * i the reference regression, by r i the test regression and by L i the average length of the test condence interval, then we compute the following measures:

• Mean squared error: M SE = 1 n n i=1 (r i -r * i ) 2 .
• The linear correlation:

Cor = Cov(r i , r * i )σ(r i ) -1 σ(r * i ) -1 .
• Mean amplitude of the condence interval:

M AIC = 1 N p N p i=1 L i .
Aiming to compare the proposed semi-recursive estimator to the non-recursive Nadaraya-Watson one, we consider four sample sizes: n = 50, 100, 200 and 500, a xed number of simulations : N=500 and three models:

• Model 1: X follows the normal distribution N (0, 5) and r ϕ (x) = 1 1 + exp (-x) .

• Model 2: X follows the standard normal distribution N (0, 1) and r ϕ (x) = cos(x).

• Model 3: X follows the standard bivariate normal distribution N 0 0 , 1 0 0 1 and r ϕ (x 1 , x 2 ) = exp(-x 2 1 ) + sin(x 2 ). 

) = (n -1 , n -1
) through a plug-in method and a bootstrap one in the unidimensional case. The Santé publique France's mission is devoted to improve and protect the health of population. During the health crisis related to the COVID-19 epidemic, Santé publique France has been in charge of monitoring and understanding the dynamics of the epidemic, anticipating the dierent scenarios and implementing actions so as to prevent and limit the spread of this virus on the national territory.

Description of the dataset

This dataset provides information on the hospital situation regarding the COVID-19 epidemic.

We The data are daily updated. For the current application, we have selected the data of 28/07/2021, with a total of 150894 observations. For simplicity reasons, we opted for focusing just on the department of 'Paris' database.

As a matter of fact, our application rests upon a dataframe of 1494 observations and 6 variables.

The following two models are considered :

• Model 1: X = rea, Y = hosp and ϕ : y -→ y.

• Model 2: X 1 = rea, X 2 = dc, Y = hosp and ϕ : y -→ y. 

) = (n -1 , n -1
) through plug-in method and the bootstrap one. 

Conclusion

This chapter reports an extension of the semi-recursive regression function estimator. Initially, we tackled the asymptotic properties of the proposed estimator in order to demonstrate that our estimator asymptotically follows a normal distribution. The proposed estimator was compared to the non-recursive multivariate Nadaraya Watson regression estimator. Basically, we revealed that using a specic bandwidth selection, the plug-in approach as well as the bootstrap procedure, and particular stepsizes couple (γ n , β n ) = n -1 , n -1 ; the proposed estimator (3.1) often provides better results compared to the non-recursive Nadaraya Watson's one in terms of estimation error.

The simulation studies and real datasets illustrate our ndings. Even if the bootstrap approach outperforms the plug-in method, it's not quite accurate to assert that one method is better than the other. They are indistinguishable and it has been widely proven that they behave similarly. We recommend the reader to consult [START_REF] Delaigle | Practical bandwidth selection in deconvolution kernel density estimation[END_REF] for a detailed comparison of practical bandwidth selection procedures. In conclusion, the use of our recursive estimator, with an appropriate choice of the bandwidth, enables us to get closer to the true regression function rather than non-recursive one.

Proofs

Throughout this section, we will need the following notations:

Z n (x) = h -d n ϕ(Y n )K x -X n h n and W n (x) = h -d n K x -X n h n , for all x ∈ R d .
Proof of Proposition 3.1. This proof is mainly based on the same concept as the second chapter, by assuming a := a ϕ .

To this extent, we just briey outline the proof. We have

a ϕ n (x) -a ϕ (x) = Q n n k=1 Q -1 k β k (Z k (x) -a ϕ (x)) + Q n [a 0 (x) -a ϕ (x)].
Hence,

E[a ϕ n (x)] -a ϕ (x) = Q n n k=1 Q -1 k β k (E[Z k (x)] -a ϕ (x)) + Q n [a 0 (x) -a ϕ (x)].
Bias of a ϕ n : Resting upon the assumptions (A 1 ) and (A 6 ) and by applying Taylor's development formula for a ϕ , we deduce that

E[Z k (x)] -a ϕ (x) = R d+1 h -d k K x -y h k ϕ(t) g(y, t)dydt - R d K (y) a ϕ (x)dy = R d h -d k K x -y h k E[ϕ(Y )|X = y]f (y)dy - R d K (y) a ϕ (x)dy = R d K (z) [a ϕ (x -zh k ) -a ϕ (x)] dz = R d K(z)   d i=1 ∂a ϕ ∂x i (x)z i h k + 1 0 (1 -t) d i,j=1 ∂ 2 a ϕ ∂x i ∂x j (x -tzh k )z i z j h 2 k dt   dz = h 2 k 2 d j=1 µ j (K)a ϕ (2) jj (x) + h 2 k η k (x),
where

η k (x) = d i,j=1 R d 1 0 (1 -t) a ϕ (2) ij (x -tzh k ) -a ϕ (2) ij (x) z i z j K(z)dtdz. We thus get E[a ϕ n (x)] -a ϕ (x) = 1 2 d j=1 µ j (K)a ϕ (2) jj (x)Q n n k=1 Q -1 k β k h 2 k + Q n n k=1 Q -1 k β k h 2 k η k (x) + Q n [a 0 (x) -a ϕ (x)]. Since a ϕ (2) 
ij is bounded and continuous at x, we deduce that lim k→+∞ η k (x) = 0.

For the case a β/(d+ 4), we have lim +∞ (nβ n ) > 2a and then 1-2aξ β > 0. Hence, the application of lemma 1.2 provides

E[a ϕ n (x)] -a ϕ (x) = 1 2 d j=1 µ j (K)a ϕ (2) jj (x)Q n n k=1 Q -1 k β k h 2 k + Q n n k=1 Q -1 k β k o h 2 k + O (Q n ) = h 2 n 2(1 -2aξ β ) d j=1 µ j (K)a ϕ (2) jj (x) + o h 2 n + o (1) + O (Q n ) .
Thus the result can be written as

E[a ϕ n (x)] -a ϕ (x) = h 2 n 2(1 -2aξ β ) d j=1 µ j (K)a ϕ (2) jj (x) + o h 2 n .
For the case a > β/(d + 4), we have lim

+∞ (nβ n ) > β-a 2 , which ensures that h 2 n = o β n h -d n .
Therefore, the application of lemma 1.2 entails

E[a ϕ n (x)] -a ϕ (x) = 1 2 d j=1 µ j (K)a ϕ (2) jj (x)Q n n k=1 Q -1 k β k o β k h -d k + Q n n k=1 Q -1 k β k o β k h -d k + O (Q n ) = o β n h -d n .
Variance of a ϕ n : For the variance, we infer that

V ar[a ϕ n (x)] = V ar Q n n k=1 Q -1 k β k Z k (x) = Q 2 n n k=1 Q -2 k β 2 k E[Z 2 k (x)] -E[Z k (x)] 2 .
We have

E[Z 2 k (x)] = R d h -2d k E[ϕ(Y ) 2 |X = y]K 2 x -y h k f (y)dy = R d h -d k K 2 (z) E[ϕ(Y ) 2 |X = x -zh k ]f (x -zh k )dz = h -d k E[ϕ(Y ) 2 |X = x]f (x) R d K 2 (z) dz + ν k (x) , with ν k (x) = R d K 2 (z) E[ϕ(Y ) 2 |X = x -zh k ]f (x -zh k ) -E[ϕ(Y ) 2 |X = x]f (x) dz.
Thus,

V ar[a ϕ n (x)] = Q 2 n n k=1 Q -2 k β 2 k h -d k E[ϕ(Y ) 2 |X = x]f (x) R d K 2 (z) dz + ν k (x) -h d k κ k (x) , where κ k (x) = R d K (z) a ϕ (x -zh k )dz 2 .
Resting upon (A 6 ), we have that the function s 

-→ E[ϕ(Y ) 2 |X = s]f (s) = R ϕ(y) 2 g(s,
V ar[a ϕ n (x)] = Q 2 n n k=1 Q -2 k β 2 k h -d k E[ϕ(Y ) 2 |X = x]f (x)R(K) + ν k (x) -h d k κ k (x) = Q 2 n n k=1 Q -2 k β 2 k h -d k E[ϕ(Y ) 2 |X = x]f (x)R(K) + o (1) = E[ϕ(Y ) 2 |X = x] 2 -(α -ad)ξ β β n h n [f (x)R(K) + o (1)].
Thus, the result is indicated in terms of

V ar[a ϕ n (x)] = E[ϕ(Y ) 2 |X = x] 2 -(α -a)ξ β β n h n f (x)R(K) + o β n h n .
For the case a < β/(d + 4), we have lim

+∞ (nβ n ) > 2a, which ensures that β n h -d n = o h 4 n . By applying lemma 1.2, we obtain V ar[a ϕ n (x)] = Q 2 n n k=1 Q -2 k β 2 k h -d k E[ϕ(Y ) 2 |X = x]f (x)R(K) + o (1) = Q 2 n n k=1 Q -2 k β k o h 4 k = o h 4 n .
Proof of Theorem 3.2. This proof is based on the following observation

r ϕ n (x) -r ϕ (x) = D n (x) f (x) f n (x) , f n = 0 (3.22) with D n (x) = 1 f (x) a ϕ n (x) -a ϕ (x) - r ϕ (x) f (x) (f n (x) -f (x)) .
The only remaining point concerns the asymptotic behaviour of r ϕ n (x) -r ϕ (x), which can be deduced from that of D n (x). Hence, we can state

E[D n (x)] = 1 f (x) E[a ϕ n (x)] -a ϕ (x) - r ϕ (x) f (x) (E[f n (x)] -f (x)) .
Combining the bias of a ϕ n (x) ((3.3) and (3.4)) as well as that of f n (x) ((2.7) and (2.8) ) yields the desired results (3.7) and (3.8).

For the variance, we get

V ar[D n (x)] = 1 (f (x)) 2 V ar[a ϕ n (x)] - (r ϕ (x)) 2 (f (x)) 2 V ar[f n (x)] -2 r ϕ (x) (f (x)) 2 Cov(a ϕ n (x), f n (x)).
1. For the case β ≤ α:

Since X k 's are independent, then for all i = k, Cov(Z k (x), W i (x)) = 0 and by applying lemma 1.2, classical computations entail

Cov(a ϕ n (x), f n (x)) = r ϕ (x)f (x)R(K)β n h -d n 1 1 -(β -ad -ξ -1 β )ξ α + o (1) . (3.23)
In fact, we have

Cov(a ϕ n (x), f n (x)) = Cov Q n n k=1 Q -1 k β k ϕ(Y k ) h -d k K x -X k h k , Π n n i=1 Π -1 i γ i h -d i K x -X i h i = Q n n k=1 Q -1 k β k Π n n i=1 Π -1 i γ i Cov ϕ(Y k ) h -d k K x -X k h k , h -d i K x -X i h i = Q n Π n n k=1 Π -1 k Q -1 k γ k β k Cov ϕ(Y k ) h -d k K x -X k h k , h -d k K x -X k h k = Q n Π n n k=1 Π -1 k Q -1 k γ k β k E ϕ(Y k ) h -2d k K 2 x -X k h k -E ϕ(Y k ) h -d k K x -X k h k E h -d k K x -X k h k = Q n Π n n k=1 Π -1 k Q -1 k γ k β k E[ϕ(Y )|X = x]f (x)R(K)h -d k + o h -d k -E[ϕ(Y )|X = x]f 2 (x) + o(1) = Q n Π n n k=1 Π -1 k Q -1 k γ k β k h -d k r ϕ (x)f (x)R(K) + o (1) = β n h -d n 1 -(β -ad -ξ -1 β )ξ α r ϕ (x)f (x)R(K) + o β n h -d n .
Here, we consider the case β ≤ α. Since we have

V ar [Z k (x)] = h -d k E[ϕ(Y ) 2 |X = x]f (x)R(K) + o(1) , V ar [W k (x)] = h -d k f (x)R(K) + o(1) , Cov (Z k (x), W k (x)) = h -d k r ϕ (x)f (x)R(K) + o(1) ,
then, the application of lemma 1.2 ensures that

υ 2 n = n k=1 Q -2 k β 2 k h -d k E[ϕ(Y ) 2 |X = x]f (x)R(K) + o(1) + r ϕ (x) 2 Q -2 n Π 2 n n k=1 Π -2 k γ 2 k h -d k f (x)R(K) + o(1) -2r ϕ (x)Q -1 n Π n n k=1 Q -1 k β k Π -1 k γ k h -d k r ϕ (x)f (x)R(K) + o(1) = β n h d n f (x) 2 Q 2 n [Σ β (x) + o (1)].
On the other side, we have

∀p > 0, E[|T k (x)| 2+p ] = O 1 h d(1+p) k .
Therefore,

E |S k (x)| 2+p = Q -2-p k β 2+p k E |T k (x) -E[T k (x)]| 2+p ≤ 2Q -2-p k β 2+p k E |T k (x)| 2+p .
Hence,

E |S k (x)| 2+p = O Q -2-p k β 2+p k 1 h d(1+p) k . (3.26) As a consequence, n k=1 E[|S k (x)| 2+p ] = O n k=1 Q -2-p k β 2+p k 1 h d(1+p) k
.

In what follows, let us suppose that a ≥ β/(d + 4) and assume that there is p > 0, such that

lim n→+∞ (nβ n ) > 1 + p 2 + p (β -ad).
The application of lemma 1.2 yields

n k=1 E[|S k (x)| 2+p ] = O β 1+p n Q 2+p n h d(1+p) k .
Hence, 1

υ 2+p n n k=1 E[|S k (x)| 2+p ] = O β 1+p n υ 2+p n Q 2+p n h d(1+p) n
.

Thus, we deduce 1

υ 2+p n n k=1 E[|S k (x)| 2+p ] = O β n h d n p/2
= o (1) .

In addition, since we have

lim n→+∞ 1 υ 2+p n n k=1 E |S k (x) -E[S k (x)]| 2+p = lim n→+∞ 1 υ 2+p n n k=1 E[|S k (x)| 2+p ] = 0,
therefore, by applying the Lyapunov theorem, we get

1 υ 2 n n k=1 (S k (x) -E[S k (x)]) D -→ n→+∞ N (0 , 1) , which implies 1 υ n n k=1 S k (x) D -→ n→+∞ N (0 , 1) .
Moreover, (3.22) and (3.25) ensure that

f (x)Q -1 n υ -1 n r ϕ n (x) -E[r ϕ n (x)] D -→ n→+∞ N (0 , 1) . (3.27) Given that υ 2 n = β n h d n f (x) 2 Q 2 n [Σ β (x) + o (1)],
where Σ β (x) is dened in (3.12) and by replacing υ n with its value in (3.27), we conclude that

β -1 n h d n r ϕ n (x) -E[r ϕ n (x)] D -→ n→+∞ N (0 , Σ β (x)) . (3.28)
The convergence in (3.11) then follows from the application of Lyapounov's Theorem and the combination between (3.7), (3.8) and (3.28). The case a < β/(d + 4) is fullled in the convergence in probability. By applying the Bien-ayméChebyshev inequality, we get

P r ϕ n (x) -r ϕ (x) h 2 n -E r ϕ n (x) -r ϕ (x) h 2 n ≥ ≤ V ar[r ϕ n (x)] h 4 n 2
.

Since we have β -1 n h d+4 n -→ n→+∞ +∞, then we deduce that

1 h 2 n r ϕ n (x) -r ϕ (x) P -→ n→+∞ M β (x), with M β (x) is provided in (3.12).
For the next proof of the strong convergence rate, we rst need to introduce a real LIL version of the Mokaddem and Pelletier (2007b) theorem 1.

Let (X n ) n≥1 be a sequence of independent random real variables with E[X n ] = 0. Set

ζ n = n k=1 X k and B n = n k=1 E[X 2 k ].
We suppose that we have the following assumptions

(AS 1 ) (i) E[|X n | 3 ] < +∞. (ii) 1 n (n) n k=1 E[|B -1/2 n X k | 3 ] ≤ 1 ln(B n ) .
(AS 2 ) (i) There exists a positive quantity Γ such that lim n→+∞

H 2 n B n = Γ. (ii) lim n→+∞ H -2 n = +∞ and lim n→+∞ H 2 n H 2 n-1 = 1.
Note that the assumption (AS 1 )(ii) is the condition which (together with the Lyapunov condition) ensures that ζ n satises the central limit theorem

H n ζ n D -→ n→+∞ N (0 , Γ) .
Theorem 3.11. Laws of the iterated logarithm (LIL) for ζ n , under assumptions (AS 1 ) and

(AS 2 ), ensure that, with probability one, the sequence

  H n ζ n (x) 2 ln ln(H -2 n )  
is relatively compact and its limit set is the interval

[-Γ, Γ] .
Proof of Theorem 3.5.

For this proof, we state

ζ n (x) := n k=1 S k (x) = f (x)Q -1 n (D n (x) -E[D n (x)]) ,
where S k is given in (3.24).

Here, we consider the case β ≤ α. We suppose that a ≥ β d+4 and set β 0 = h 0 = 1 and H

2 n = Q 2 n β -1 n h d n , then we get ln(H -2 n ) = ln Q -2 n + ln(β n h -d n ) = -2 ln (Q n ) + ln n k=1 β -1 k-1 h d k-1 β -1 k h d k = -2 n k=1 ln (1 -β k ) + n k=1 ln 1 - β -ad k + o 1 k = -2 n k=1 (-β k + o(β k )) + n k=1 (-(β -ad)β k ξ + o(β k )) = n k=1 (2β k -(β -ad) β k ξ + o(β k )) .
Hence, using the notation 

s n = n k=1 β k , we can write ln(H -2 n ) = (2 -(β -ad)ξ) s n + o (s n ) . ( 3 
H -2 n = 1. Moreover, we have n k=1 V ar[S k (x)] = β n h d n f (x) 2 Q 2 n [Σ β (x)+o (1)],
where Σ β (x) is dened in (3.16).

From this perspective, it's obvious that

lim n→+∞ H 2 n n k=1 V ar[S k (x)] = f (x) 2 Σ β (x).
Considering the particular case of p = 1 in (3.26), we have

E |S k (x)| 3 = O Q -3 k β 3 k h -2d
k and then we deduce that

1 n √ n n k=1 E |H n S k (x)| 3 = O H 3 n n √ n n k=1 Q -3 k β 3 k h -2d k = O H 3 n n √ n n k=1 Q -3 k β k o [β k h -d k ] 3 2 = O H 3 n n √ n Q -3 n o [β n h -d n ] 3 2 = o H 3 n n √ n Q -3 n [β n h -d n ] 3 2 = o 1 n √ n = o [ln(H -2 n )] -1 .
The application of Theorem (3.11) then ensures that, with probability one, the sequence

  H n ζ n (x) 2 ln ln(H -2 n )   =   β -1 n h d n f (x) (D n (x) -E[D n (x)]) 2 ln ln(H -2 n )  
is relatively compact and its limit set is the interval

-f (x) Σ β (x), f (x) Σ β (x) .
On account of (3.29), we have lim 

  β -1 n h d n r ϕ n (x) -E[r ϕ n (x)] √ 2 ln s n  
is relatively compact and its limit set is the interval

-Σ β (x), Σ β (x) .
The combination between (3.7) and (3.8) then entails

  β -1 n h d n 2 ln (s n ) r ϕ n (x) -r ϕ (x)
  is relatively compact and its limit set is the interval

b 2 M β (x) -Σ β (x) , b 2 M β (x) + Σ β (x) ,
where M β (x) is dened in (3.12) and Σ β (x) is provided in (3.16).

Now we suppose that

a < β d+4 . Set H -2 n = Q -2 n h 4 n (ln ln(Q -2 n h 4 n ) -1 ), then we get ln(Q -2 n h 4 n ) = ln Q -2 n + ln(h 4 n ) = -2 ln (Q n ) + ln n k=1 h -4 k-1 h -4 k = -2 n k=1 ln (1 -β k ) + n k=1 ln 1 - 4a k + o 1 k = -2 n k=1 (-β k + o(β k )) + n k=1 (-4aβ k ξ + o(β k )) .
Hence, using the notation

s n = n k=1 β k , we can write ln(H -2 n ) = (2 -4aξ) s n + o (s n ) . (3.30) Since 2 -4aξ > 0 and s ∞ diverges, then we deduce that lim n→+∞ H -2 n = +∞ and lim n→+∞ H -2 n-1 H -2 n = 1.
Moreover, we have

H 2 n n k=1 V ar[S k (x)] = O Q 2 n h -4 n ln ln(Q -2 n h 4 n ) β n h d n Q 2 n = o(1).
Considering the particular case of p = 1 in (3.26), we have

E |S k (x)| 3 = O Q -3 k β 3 k h -2d
k and then we deduce that

1 n √ n n k=1 E |H n S k (x)| 3 = O H 3 n n √ n n k=1 Q -3 k β 3 k h -2d k = O H 3 n n √ n n k=1 Q -3 k β k o h 6 k = o H 3 n n √ n Q -3 n h 6 n = o [ln(H -2 n )] -1 .
The application of Theorem (3.11) then ensures that, with probability one, the sequence

  H n ζ n (x) 2 ln ln(H -2 n )   =   h -2 n ln ln(Q -2 n h 4 n )f (x) (D n (x) -E[D n (x)]) 2 ln ln(H -2 n )  
is relatively compact and its limit set is 0. On account of (3.29), we have lim

n→+∞ ln ln(H -2 n ) ln ln(Q -2 n h 4 n ) = 1
, and referring to (3.22) and (3.25), we deduce that

lim n→+∞ h -2 n r ϕ n (x) -E[r ϕ n (x)] = 0.
The combination between (3.7) and (3.8) then entails

lim n→+∞ h -2 n r ϕ n (x) -r ϕ (x) = M β (x).,
where M β (x) is dened in (3.12).

Chapter 4

Non-parametric multivariate kernel regression estimation to describe cognitive processes and mental representations

Introduction

Research on the handwritten word production aims to describe the cognitive processes and mental representations mobilized when a human being prepares to hand-write a word from an idea (see [START_REF] Perret | Spelling and Writing Words: Theoretical and Methodological Advances[END_REF]). The most frequently used method to explore this issue relies on relating a behavioral variable, reaction time and a set of factors aiming at predicting dierent cognitive treatments (e.g., [START_REF] Bonin | The determinants of spoken and written picture naming latencies[END_REF], [START_REF] Perret | Why are written naming latencies (not) longer than spoken naming? Reading and Writing An Interdisciplinary[END_REF]). It is possible to imagine some variations in the cognitive treatments performed by participants. This could result in variations in the relationship between the behavioral variables and the explanatory factors.

The intrinsic target lies in being able to group participants with similar degrees of variation.

In order to achieve our purpose, we resort to regression analysis, which corresponds to the study of how a response variable depends on one or more predictors. In fact, it is a reliable method for identifying which variables have impact on a topic of interest. The process of performing a regression allows us to condently determine which factors matter most, which factors can be ignored, and how these factors inuence each other. Regression problems can be usefully summarized using non-parametric regression methods which represent a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. Since we ignore the behavior of our data, and we don't have the normality (see [START_REF] Mcgill | Stochastic latency mechanisms[END_REF], [START_REF] Mccormack | The positive skew observed in reaction time distributions[END_REF] and Luce( 1986)), we resorted to non-parametric approach. In this task, we shall focus on Kernel regression which is a nonparametric technique in statistics to estimate the conditional expectation of a random variable. The main objective is to nd a non-linear relation between a pair of random variables X and T . In addition to the non-parametric fact, we rely on the recursive approach of estimation using stochastic approximation method. The missing data question is a former problem in psychology, which can contaminate the results and disrupt them. In order to settle the missing data problem, multiple 'naive' methods have been incorporated to solve this problem, such as the replacement of the missing value by the mean/median or complete outliers detection and treatment (see [START_REF] Cousineau | Outliers detection and treatment: a review[END_REF]). Afterword, Slaoui (2017) used the propensity score probability technique and constructed an estimator of the density function under missing data. Our central focus resides in building up a multivariate kernel regression estimator under missing data.

Presentation of the method

Let (X, T ) be a random vector with values in R d ×R with a joint density function h(x, t) and let f denote the probability density of X. Moreover, let (X 1 , T 1 ), . . . , (X n , T n ) be independent random vectors identically distributed as (X, T ). Assuming that T 1 , . . . , T n are subjects to missing data, the observed random variables are then Y i and δ i , where

δ i = 1 {T i is observed} and Y i = T i × δ i , for all i ∈ {1, . . . , n}.
Accordingly, when some T i are missing, we introduce the propensity score, a probability elaborated by [START_REF] Rosenbaum | The central role of the propensity score in observational studies for causal eects[END_REF] and dened as followed

ψ i := P[δ i = 1|T i ],
for all i ∈ {1, . . . , n} and ψ = lim n→+∞ ψ n .

In the remainder, Y is considered as the response variable of interest and X its associated regressor vector variable.

Our basic purpose in this chapter is to propose a recursive estimator to estimate recursively the regression function p (x) = E [T |X = x] under censoring data.

Our aim then resides in building up a stochastic algorithm, which approaches the regression function

m : x -→ E[T |X = x]f (x) = R t h(x, t)dt
at a given vector x. For this reason, we dene an algorithm of search of the zero function φ : y -→ m (x) -y. We therefore proceed as follows, we x m 0 (x) ∈ R, and then we set for all n ≥ 1,

m n (x) = m n-1 (x) + β n U n (x)
, where U n (x) is an observation of the function φ at the point m n-1 (x). By choosing

U n (x) = Y n ψ -1 n h -d n K x -X n h n -m n-1 (x),
the stochastic approximation algorithm that we consider to estimate recursively the regression function m at a vector x can be expressed by :

m n (x) = (1 -β n )m n-1 (x) + β n Y n ψ -1 n h -d n K x -X n h n . ( 4.1) 
Throughout this section, we consider that m 0 (x) = 0. It follows that

m n (x) = Q n n k=1 Q -1 k β k Y k ψ -1 k h -d k K x -X k h k . (4.2)
In this chapter, we consider the following recursive estimator of the regression function p at the vector x

p n (x) =    m n (x) f n (x) if f n (x) = 0 0 otherwise , ( 4.3) 
with f n stands for the recursive density estimator given in (2.3).

We explore the asymptotic properties of our proposed multivariate recursive kernel regression estimator. Afterwards, by introducing the non-recursive estimator of m given by

m n (x) = 1 nh d n n k=1 Y k ψ -1 k K x -X k h n ,
we compare our proposed estimator to the multivariate non-recursive generalized Nadaraya-Watson's regression estimator indicated by

p n (x) =    m n (x) f n (x) if f n (x) = 0 0 otherwise , (4.4) 
with f n stands for the non-recursive density estimator given in (2.5).

Notations and assumptions

For this section and under (A 1 ) given in 1.1.1 and (A 5 ) provided in 3.1.2, the assumptions upon which we shall rely in this chapter are the following.

Assumptions:

(A 7 ) (i)
The functions f and m are bounded and twice dierentiable.

(ii) For all i, j ∈ {1, . . . , d}, f 

Main results

In order to investigate the asymptotic properties of our estimator p n , we rst need to introduce the following two propositions which yield the bias and the variance of m n .

4.2.1

Bias and variance of m n Proposition 4.1. Let assumptions (A1), (A 5 ) and (A 7 ) hold. Hence, we obtain

1. If a ∈ 0, β d+4 , then E[m n (x)] -m (x) = h 2 n 2(1 -2aξ β ) d j=1 µ j (K)m (2) jj (x) + o h 2 n . (4.5) If a ∈ β d+4 , 1 , then E[m n (x)] -m (x) = o β n h -d n . (4.6) 2. If a ∈ 0, β d+4 , then V ar[m n (x)] = o h 4 n . (4.7) If a ∈ β d+4 , 1 , then V ar[m n (x)] = β n h d n ψ -1 n E[T 2 |X = x] 2 -(β -ad)ξ β f (x)R(K) + o β n h -d n . ( 4 

.8)

Our main result rests upon the following theorem, which provides us the bias and the variance of p n . The M W ISE of the estimator p n is determined by,

M W ISE[p n ] = R d (E[p n (x)] -p(x)) 2 f 3 (x)dx + R d V ar[p n (x)]f 3 (x)dx. (4.14)
In the sequel, we will need the folowing notations

I 1 = R d   d j=1 µ j (K)m (2) jj (x)   2 f (x)dx, I 2 = R d   d j=1 µ j (K)m (2) jj (x)     d j=1 µ j (K)f (2) jj (x)   p(x)f (x)dx, I 3 = R d   d j=1 µ j (K)f (2) jj (x)   2 p 2 (x)f (x)dx, I 4 = R d E[T 2 |X = x]f 2 (x)dx, I 5 = R d p 2 (x)f 2 (x)dx.
Proposition 4.4. For simplicity, we rst set

C 1 = I 1 -2I 2 + I 3 (1 -2aξ β ) 2 and C 2 = I 4 -ψI 5 2 -(β -ad)ξ β .
It follows that

M W ISE[p n ] =          1 4 C 1 h 4 n + o(h 4 n ) if a ∈ 0, β d+4 C 2 R(K)β n h -d n ψ -1 n + 1 4 C 1 h 4 n + o(h 4 n ) if a = β d+4 C 2 R(K)β n h -d n ψ -1 n + o β n h -d n if a ∈ β d+4 , 1 
.

The corollary below ensures that the bandwidth which minimizes the M W ISE of p n depends on the choice of the stepsizes (β n ) and then the corresponding M W ISE depends in turn on (β n ).

Corollary 4.5. Let assumptions (A1), (A 5 ) and (A 7 ) hold. To minimize the M W ISE of p n , the bandwidth (h n ) must be equal to

d 1 d+4 C 2 C 1 1 d+4 R(K) 1 d+4 β 1 d+4 n ψ -1 d+4 n .
Then, the corresponding M W ISE is estimated in terms of

M W ISE[p n ] = (d + 4) 4d d d+4 C d d+4 1 C 4 d+4 2 R(K) 4 d+4 β 4 d+4 n ψ -4 d+4 n + o β 4 d+4 n .
The following corollary is presented in the special case, where (β n ) is chosen as (β n ) = (β 0 n -1 ). We can check easily that the optimal choice of β 0 is obtained by getting β 0 equal to 1.

Corollary 4.6. Let assumptions (A1), (A 5 ) and (A 7 ) hold. To minimize the M W ISE of p n , we must choose the stepsize (β n ) in GS(-1) such that lim n→+∞ nβ n = 1. Consequently, the optimal bandwidth (h n ) must be equal to

d(d + 2) 2(d + 4) 1 d+4 I 4 -ψI 5 I 1 -2I 2 + I 3 1 d+4 R(K) 1 d+4 n -1 d+4 ψ -1 d+4 n . (4.15)
Thus, the corresponding M W ISE is provided by

M W ISE[p n ] = (d + 4) 3d+8 d+4 4 d+6 d+4 d d d+4 (d + 2) d+6 d+4 (I 1 -2I 2 + I 3 ) d d+4 (I 4 -ψI 5 ) 4 d+4 R(K) 4 d+4 n -4 d+4 ψ -4 d+4 n + o n -4 d+4 ψ -4 d+4 n .
where

I 1 = R d   d j=1 m (2) jj (x)   2 f (x)dx, I 2 = R d   d j=1 m (2) jj (x)     d j=1 f (2) jj (x)   p(x)f (x)dx, I 3 = R d   d j=1 f (2) jj (x)   2 p 2 (x)f (x)dx.
At this stage of analysis, in order to estimate the optimal bandwidth (4.15), we need to estimate I j , j = 1, . . . , 5. For this purpose, we assume that K b is a kernel and b n is the associated bandwidth, such that δ = 2/5, and K

(2) b

is the second derivative of a kernel K b with the associated bandwidth b n such that δ = 3/14.

Multivariate recursive kernel regression estimator under missing data p n :

Here, we can state

m n (x) = Q n n k=1 Q -1 k β k h -d k Y k ψ -1 k K x -X k h k = Q n n k=1 Q -1 k β k Y k ψ -1 k h -d k d i=1 K x i -X ki h k and f n (x) = Q n n k=1 Q -1 k β k h -d k K x -X k h k = Q n n k=1 Q -1 k β k h -d k d i=1 K x i -X ki h k .
Estimation of I 1 , I 2 and I 3 :

We consider the following kernel estimators to estimate respectively I 1 , I 2 and I 3 :

I 1 = Q 2 n n n i,j,k=1 i =j =k Q -1 j Q -1 k β j β k b -(d+2) j b -(d+2) k    d t=1 K (2) b X it -X jt b j d l=1 l =t K b X il -X jl b j    ×    d t=1 K (2) b X it -X kt b k d l=1 l =t K b X il -X kl b k    Y j ψ -1 j Y k ψ -1 k , I 2 = Q 2 n n n i,j,k=1 i =j =k Q -1 j Q -1 k β j β k b -(d+2) j b -(d+2) k    d t=1 K (2) b X it -X jt b j d l=1 l =t K b X il -X jl b j    ×    d t=1 K (2) b X it -X kt b k d l=1 l =t K b X il -X kl b k    Y j ψ -1 j Y i ψ -1 i , I 3 = Q 2 n n n i,j,k,m=1 i =j =k =m Q -1 j Q -1 k β j β k b -(d+2) j b -(d+2) k    d t=1 K (2) b X it -X jt b j d l=1 l =t K b X il -X jl b j    ×    d t=1 K (2) b X it -X kt b k d l=1 l =t K b X il -X kl b k    Y i ψ -1 i Y m ψ -1 m ,
Therefore, we obtain

I i = µ 2 (K) I i , i = 1 . . . 3.
Estimation of I 4 and I 5 :

We consider the following kernel estimators to estimate respectively I 4 and I 5 :

I 4 = Π n n n i,k=1 i =k Π -1 k γ k b -d k d l=1 K b X il -X kl b k Y 2 i ψ -2 i ,
and

I 5 = Q n n n i,k=1 i =k Q -1 k β k b -d k d l=1 K b X il -X kl b k Y i ψ -1 i Y k ψ -1 k .
It follows that, the plug-in bandwidth selection estimator of (4.15) is expressed by

(h n ) =   d(d + 2) 2(d + 4) 1 d+4 I 4 -ψ I 5 I 1 -2 I 2 + I 3 1 d+4 R(K) 1 d+4 n -1 d+4 ψ -1 d+4 n   , (4.17) 
Then, the plug-in estimator of M W ISE[p n ] is equal to

M W ISE[p n ] = (d + 4) 3d+8 d+4 4 d+6 d+4 d d d+4 (d + 2) d+6 d+4 I 1 -2 I 2 + I 3 d d+4 I 4 -ψ I 5 4 d+4 R(K) 1 d+4 n -4 d+4 ψ -4 d+4 n +o n -4 d+4 ψ -4 d+4 n .
Multivariate non-recursive kernel regression estimator under missing data p n :

Here, we can state

m n (x) = 1 nh d n n k=1 Y k ψ -1 k K x -X k h n = 1 nh d n n k=1 Y k ψ -1 k d i=1 K x i -X ki h k and f n (x) = 1 nh d n n k=1 K x -X k h n = 1 nh d n n k=1 d i=1 K x i -X ki h k .
In order to estimate the optimal bandwidth (4.16), we need to estimate I j , j = 1 . . . 5.

Estimation of I 1 , I 2 and I 3 :

We consider the following kernel estimators to estimate respectively I 1 , I 2 and I 3 :

I 1 = 1 n 3 b 2(d+2) n n i,j,k=1 i =j =k   d t=1 K (2) b X it -X jt b n d l=1 l =t K b X il -X jl b n   ×   d t=1 K (2) b X it -X kt b n d l=1 l =t K b X il -X kl b n   Y j ψ -1 j Y k ψ -1 k , I 2 = 1 n 3 b 2(d+2) n n i,j,k=1 i =j =k   d t=1 K (2) b X it -X jt b n d l=1 l =t K b X il -X jl b n   ×   d t=1 K (2) b X it -X kt b n d l=1 l =t K b X il -X kl b n   Y j ψ -1 j Y i ψ -1 i , I 3 = 1 n 4 b 2(d+2) n n i,j,k,m=1 i =j =k =m   d t=1 K (2) b X it -X jt b n d l=1 l =t K b X il -X jl b n   ×   d t=1 K (2) b X it -X kt b n d l=1 l =t K b X il -X kl b n   Y i ψ -1 i Y m ψ -1 m ,
Therefore, we obtain

I i = µ 2 (K) I i , i = 1 . . . 3.
Estimation of I 4 and I 5 :

We consider the following kernel estimators to estimate respectively I 4 and I 5 :

I 4 = 1 n 2 b d n n i,k=1 i =k d l=1 K b X il -X kl b n Y 2 i ψ -2 i ,
and

I 5 = 1 n 2 b d n n i,k=1 i =k d l=1 K b X il -X kl b n Y i ψ -1 i Y k ψ -1 k ,
Hence, the plug-in bandwidth selection estimator of (4.16) is indicated by

(h n ) =   d 1 d+4 I 4 -ψ I 5 I 1 -2 I 2 + I 3 1 d+4 R(K) 1 d+4 n -1 d+4 ψ -1 d+4 n   , (4.18) 
It follows that, the plug-in non-recursive estimator of M W ISE[p n ] is equal to

M W ISE[ p n ] = (d + 4) 4d d d+4 5 4 I 4 -ψ I 5 4 d+4 I 1 -2 I 2 + I 3 1 d+4 R(K) 1 d+4 n -4 d+4 ψ -4 d+4 n +o n -4 d+4 ψ -4 d+4 n .

Application to the handwritten word production

Research on the handwritten word production aims to describe the cognitive processes and mental representations mobilized when a human being prepares to handwrite a word from an idea of [START_REF] Perret | Spelling and Writing Words: Theoretical and Methodological Advances[END_REF]. One of the most widely used tasks to experimentally explore these issues is object naming. Participants have to produce words corresponding to the names of a set of drawings in handwriting as quickly as possible. It is generally accepted that the handwritten objects naming involves four levels of processing [START_REF] Perret | Which variables should be controlled for to investigate picture naming in adults? A Bayesian meta-analysis[END_REF]. First, a perceptual analysis of the visual input is performed, which results in activation of stored structural knowledge about the object. A second processing level corresponds to the retrieval of semantic/conceptual information. The lexical selection level makes orthographic word form information available. Eventually, the motoric programming level allows the access to motoric codes corresponding to each produced letter. These theoretical propositions concerning the cognitive processes and representations involved in the handwritten object naming stem from studies aiming at nding predictors of reaction times (RTs hereafter), i.e., the time between the presentation of the image and the rst graphic movement (e.g., [START_REF] Bonin | The determinants of spoken and written picture naming latencies[END_REF]; [START_REF] Perret | Why are written naming latencies (not) longer than spoken naming? Reading and Writing An Interdisciplinary[END_REF]).

Four factors have been reported to signicantly inuence RTs, each of which allows indexing a specic processing level.

Image Agreement (IA) captures the similarity between structural representations stored in memory and the visual characteristics of an object's drawing. This factor has extensive inuence in terms of the perceptual analysis. The IA is measured on a Like rt scale, generally in ve points, from '1 -weakly similar' to '5 -strongly similar'. A negative linear relationship is observed between this variable and the RTs (see [START_REF] Bonin | The determinants of spoken and written picture naming latencies[END_REF]; [START_REF] Perret | Why are written naming latencies (not) longer than spoken naming? Reading and Writing An Interdisciplinary[END_REF]).

Image variability (Ivar or Image ability) is designed to index the 'richness' of semantic representations. Like AI, it is rated on a 5-point scale, from 1 = few images to 5 = many images.

A negative linear relationship is reported between handwritten RTs and Ivar (see [START_REF] Bonin | The determinants of spoken and written picture naming latencies[END_REF]; [START_REF] Perret | Why are written naming latencies (not) longer than spoken naming? Reading and Writing An Interdisciplinary[END_REF]).

Name agreement (NA) refers to the degrees of agreement on the use of a specic label for an image, measured using an entropy measure (h-index). A positive linear relationship is reported between RTs and the h-index (see [START_REF] Bonin | The determinants of spoken and written picture naming latencies[END_REF]; [START_REF] Perret | Why are written naming latencies (not) longer than spoken naming? Reading and Writing An Interdisciplinary[END_REF]). NA indexes the inuence of the number of correct alternative names existing for an image (e.g., couch => sofa). Latencies would be more or less impacted by the time needed to manage the competition between the higher or lower number of alternatives during lexical access.

Finally, the inuence of age-limited learning (Age of Acquisition, AoA) has been systematically emphasized in studies on the predictors of handwritten RTs (see [START_REF] Bonin | The determinants of spoken and written picture naming latencies[END_REF]; Perret and Laganaro ( 2013)). AoA is usually measured using a Like rt scale (from 1 = learned at 0-3 years to 5 = learned at age +12, with 3-year bands in between), with a population of young adults who are asked to estimate the age at which they learned the proposed word. A positive linear relationship is observed between the RTs and the rated values of AoA (see [START_REF] Bonin | The determinants of spoken and written picture naming latencies[END_REF]; [START_REF] Perret | Why are written naming latencies (not) longer than spoken naming? Reading and Writing An Interdisciplinary[END_REF]). Experimental work [START_REF] Perret | Exploring the multiple-level hypothesis of AoA eects in spoken and written picture naming using a topographic ERP analysis[END_REF] suggests that this variable inuences the orthographic wordform encoding processes.

Problematic:

The major target of this work is to classify the participants in groups of clusters. From this perspective, we rst have to predict the regression function, i.e the relation between the variable T = RT s and the four covariates X 1 = H, X 2 = IA, X 3 = Ivar and X 4 = AoA. Since the response variable RT s is subject of missing data, we should introduce a correction variable Y := CRT s dened as followed:

Y i = T i × 1 {T i is observed} .
Here Algorithm 2 X 1 , . . . , X 4 are the covariates such that X 1 = H, X 2 = IA, X 3 = Ivar and X 4 = AoA, Y is the response variable with Y = CRT s, K is the Gaussian kernel, n the number of items and N p is the number of participants.

Input: Y , X 1 , . . . , X 4 , K, n and N p. Let us underline that in order to classify participants in groups, we shall use the M SE as a reference vector. Thus, we resort to the k-means method to specify the maximum number of needed clusters. 

( Y i -Y i ) 2 .
for the non-recursive estimation). Result Analysis:

Departing form gure 4.2 and table 4.1, we deduce that the proposed recursive estimator outperforms the non-recursive one in terms of mean relative error estimation. Meanwhile, gures 4.1 and 4.3 indicate that it is advisable to consider three clusters. As far as written production behavior is concerned, this implies that the classication procedure suggests three clusters to measure the distance of each participant from the reference. In other words, three forms of variation can be observed when participants have to write the label of a drawing. Further exploration of the available characteristics of the participants suggests that such anthropological factors as the age and gender do not account for the result of clustering. Descriptive analysis of executive function task data suggests that there are dierences between the three groups of participants. This indicates that the variations would be interpreted in part by the participants' cognitive processing ability and by dierences in the mobilization of participants' executive functions. Studies based upon procedures for tting reaction time distributions with ex-Gaussian-type probability density distributions (convolution of a normal and exponential law) have corroborated the role of these executive functions in simple tasks (e.g., [START_REF] Schmiedek | Individual dierences in components of reaction time distributions and their relations to working memory and intelligence[END_REF]; Unsworth et al. ( 2010)). Our analyses yield that this result can be extended to more complex activities such as written production. Eventually, this work conrms the signicance of the use of non-parametric regressions for modeling behavior in experimental psychology area.

Conclusion

In this research work, we elaborated a multivariate recursive regression estimator under missing data. We rst investigated the asymptotic properties of the proposed estimator by providing the bias as well as the variance in order to demonstrate that our estimator asymptotically follows a normal distribution. Subsequently, we compared our recursive estimator with the non-recursive multivariate Nadaraya-Watson's regression estimator using the plug-in bandwidth selection approach. In our application of real dataset, and for all the cases, the proposed estimator (4.3) with stepsize (β n ) = n -1 yielded smaller M SE and M RE compared to the non-recursive Nadaraya Watson's estimator. As part of the application, it was possible to estimate the response variable RTs (Reaction Times) according to the other covariates through classifying the participants into clusters of membership according to their approximation to the real value of RTs. To conclude, the use of the multivariate recursive kernel regression estimator under missing data enabled us to obtain better results compared to the multivariate non-recursive kernel regression estimator under missing data. With an appropriate choice of the bandwidth, we depicted that our proposed estimator is closer to the true regression function than the non-recursive one.

Proofs

Throughout this section, we use the following notations:

Z n (x) = h -d n Y n ψ -1 n K x -X n h n and W n (x) = h -d n K
x -X n h n , for all x ∈ R d .

Proof of Proposition 4.1.

We have It follows that,

E[m n (x)] -m (x) = Q n n k=1 Q -1 k β k (E[Z k (x)] -m (x)) + Q n [m 0 (x) -m (x)]. (4.19)
Moreover, we have

E[Z k (x)] = h -d k ψ -1 k E Y k K x -X k h k = h -d k ψ -1 k E T k 1 {T k =Y k } K x -X k h k = h -d k ψ -1 k E[1 {T k =Y k } ] R d E[T |X = y]K x -y h k f (y)dy = h -d k R d K x -y h k m (y) dy.
Since we have

R d K(z)dz = 1, we infer that E[Z k (x)] -m (x) = R d h -d k K x -y h k m (y) dy - R d K (y) m (x) dy = R d K (z) [m (x -zh k ) -m (x)] dz.
A Taylor expansion of m around x ensures that

E[Z k (x)] -m (x) = R d K(z) [m(x -zh k ) -m (x)] dz = R d K(z)   d i=1 ∂m ∂x i (x)z i h k + 1 0 (1 -t) d i,j=1 ∂ 2 m ∂x i ∂x j (x -tzh k )z i z j h 2 k dt   dz = h k d i=1 ∂m ∂x i (x) R d K(z)z i dz + h 2 k d i,j=1 R d 1 0 (1 -t) ∂ 2 m ∂x i ∂x j (x -tzh k )z i z j K(z)dtdz = h 2 k 2 d j=1 µ j (K)m (2) jj (x) + h 2 k η k (x).
where

η k (x) = d i,j=1 R d 1 0 (1 -t) m (2) ij (x -tzh k ) -m (2) 
ij (x) z i z j K(z)dtdz.

Owing to the fact that m (2)

jj (x)Q n n k=1 Q -1 k β k h 2 k + Q n n k=1 Q -1 k β k h 2 k η k (x) + Q n [m 0 (x) -m (x)].
For the case a ≤ β/(d + 4), we have lim n→+∞ (nβ n ) > 2a and then 1 -2aξ β > 0. The application of lemma 1.2 ensures that (2)

E[m n (x)] -m (x) = 1 2 d j=1 µ j (K)m (2) jj (x)Q n n k=1 Q -1 k β k h 2 k + Q n n k=1 Q -1 k β k o h 2 k + O (Q n ) = h 2 n 2(1 -2aξ β ) d j=1 µ j (K)m
jj (x)Q n n k=1 Q -1 k β k o β k h -d k + Q n n k=1 Q -1 k β k o β k h -d k = o β n h -d n .
As a matter of fact, the result can be expressed as

E[m n (x)] -m (x) = o β n h -d n .
Let us now compute the variance of m n (x). We state

V ar[m n (x)] = V ar[Q n n k=1 Q -1 k β k Z k (x)] = Q 2 n n k=1 Q -2 k β 2 k V ar[Z k (x)] = Q 2 n n k=1 Q -2 k β 2 k E[Z 2 k (x)] -E[Z k (x)] 2 .
Moreover, we have

E[Z 2 k (x)] = R d h -2d k ψ -2 k E[T 2 |X = y]ψ k K 2 x -y h k f (y)dy = R d h -d k ψ -1 k K 2 (z) E[T 2 |X = x -zh k ]f (x -zh k )dz.
Hence, the Taylor's expansion for the function x -→ E[T 2 |X = x]f (x) = R y 2 h(x, y)dy ensures that

E[Z 2 k (x)] = h -d k ψ -1 k E[T 2 |X = x]f (x) R d K 2 (z) dz + ν k (x) .
Thus,

V ar[m n (x)] = Q 2 n n k=1 Q -2 k β 2 k E[T 2 |X = x] R d h -d k ψ -1 k K 2 (z) f (x -zh k )dz - R d K (z) m (x -zh k ) dz 2 = Q 2 n n k=1 Q -2 k β 2 k h -d k ψ -1 k E[T 2 |X = x]f (x) R d K 2 (z) dz + ν k (x) -h d k ψ k η k (x) ,
where ν k (x) = 

Q -2 k β 2 k h -d k ψ -1 k E[T 2 |X = x]f (x)R(K) + ν k (x) -h d k η k (x) = Q 2 n n k=1 Q -2 k β 2 k h -d k ψ -1 k E[T 2 |X = x]f (x)R(K) + o (1) = E[T 2 |X = x] 2 -(α -ad)ξ β β n h n ψ -1 n [f (x)R(K) + o (1)].
Therefore, the result is provided by

V ar[m n (x)] = E[T 2 |X = x] 2 -(α -a)ξ β β n h n ψ -1 n f (x)R(K) + o β n h n .
For the case a < β/(d + 4), we have lim n→+∞ (nβ n ) > 2a which yields β n h -d n = o h 4 n . Then, the application of lemma 1.2 ensures that

V ar[m n (x)] = Q 2 n n k=1 Q -2 k β 2 k h -d k ψ -1 k E[T 2 |X = x]f (x)R(K) + o (1) = Q 2 n n k=1 Q -2 k β k o h 4 k = o h 4 n .
Proof of Theorem 4.2.

For this proof, let us note that for f n (x) = 0, we have

p n (x) -p(x) = A n (x) f (x) f n (x) , (4.20) 
with

A n (x) = 1 f (x) (m n (x) -m (x)) - p(x) f (x) (f n (x) -f (x)) . (4.21)
It follows from (4.20) that the asymptotic behavior of p n (x) -p(x) can be deduced from the one of A n (x). Hence, we can state

E[A n (x)] = 1 f (x) (E[m n (x)] -m (x)) - p(x) f (x) (E[f n (x)] -f (x)) .
Since we already have the bias of m n (x) as well as that of f n (x), and considering the fact that m (x) = p(x)f (x), then we just need to combine the results (4.5), (4.6), (2.7) and (2.8) in order to obtain (4.9) and (4.10). Now, we have

V ar[A n (x)] = 1 (f (x)) 2 V ar[m n (x)] - (p(x)) 2 (f (x)) 2 V ar[f n (x)] -2 p(x) (f (x)) 2 Cov(m n (x), f n (x)).
Let us now compute the covariance between m n (x) and f n (x). Indeed, we have

Cov(m n (x), f n (x)) = Cov Q n n k=1 Q -1 k β k Y k ψ -1 k h -d k K x -X k h k , Q n n i=1 Q -1 i β i h -d i K x -X i h i = Q n n k=1 Q -1 k β k Q n n i=1 Q -1 i β i Cov Y k ψ -1 k h -d k K x -X k h k , h -d i K x -X i h i = Q 2 n n k=1 Q -2 k β 2 k Cov Y k ψ -1 k h -d k K x -X k h k , h -d k K x -X k h k = Q 2 n n k=1 Q -2 k β 2 k E Y k ψ -1 k h -2d k K 2 x -X k h k -E Y k ψ -1 k h -d k K x -X k h k E h -d k K x -X k h k = Q 2 n n k=1 Q -2 k β 2 k E[T |X = x]f (x)R(K)h -d k -E[T |X = x]f 2 (x) + o h -d k = Q 2 n n k=1 Q -2 k β 2 k h -d k (p(x)f (x)R(K) + o (1)) = β n h -d n 2 -(β -ad)ξ β p(x)f (x)R(K) + o β n h -d n . (4.22) 
Consequently, (4.11) and ( 4.12) follow from the combination of (4.7), (4.8), (2.9), (2.10) and (4.22). For the case a ≥ β/(d + 4), we can deduce Proof of Theorem 4.3.

We have

A n (x) -E[A n (x)] = 1 f (x) [m n (x) -E[m n (x)]] - p(x) f (x) [f n -E[f n ]] = 1 f (x) Q n n k=1 (L k (x) -E[L k (x)]) , with L k (x) = Q -1 k β k (Z k (x) -p(x)W k (x)
) . In this proof, we note

S k (x) = L k (x) -E[L k (x)].
On the one hand, it's obvious that Moreover, we have

V ar [Z k (x)] = h -d k ψ -1 k E[T 2 |X = x]f (x)R(K) + o(1) . V ar [W k (x)] = h -d k f (x)R(K) + o(1) . cov (Z k (x), W k (x)) = h -d k p(x)f (x)R(K) + o(1) .
Hence, by applying lemma 1.2 , it can be inferred that

υ 2 n = n k=1 Q -2 k β 2 k h -d k ψ -1 k E[T 2 |X = x]f (x)R(K) + o(1) +p(x) 2 n k=1 Q -2 k β 2 k h -d k f (x)R(K) + o(1) -2p(x) n k=1 Q -2 k β 2 k h -d k p(x)f (x)R(K) + o(1) = β n h d n ψ -1 n f (x) 2 Q 2 n [Σ + o (1)
]. (4.24)

In addition, we have

∀p > 0, E[|L k (x)| 2+p ] = O 1 h d(1+p) k .
Therefore,

E |S k (x)| 2+p = E |L k (x) -E[L k (x)]| 2+p ≤ 2Q -2-p k β 2+p k E |L k (x)| 2+p .
Hence,

E |S k (x)| 2+p = O Q -2-p k β 2+p k E |L k (x)| 2+p . We then deduce that n k=1 E[|S k (x)| 2+p ] = O n k=1 Q -2-p k β 2+p k E |L k (x)| 2+p = O n k=1 Q -2-p k β 2+p k h -d(1+p) k .
In the following, let us assume that there is p > 0, such that Hence, the application of Lyapounov's Theorem coupled with the combination of (4.9), (4.10) and (4.26) ensures the convergence in (4.13).

Conclusion and perspectives

In this research work, we elaborated a multivariate recursive functional estimators. The basic merit of recursive estimators resides in the fact that one can update the estimation with each additional new observation. Therefore, instead of re-running the data each time, it is possible to rewrite our considered estimator as a combination of two (or more) estimators, where each estimator is based on separate dataset, which can be very interesting to keep the computational cost reasonably low. For this purpose, we investigated the stochastic approximation method in order to set forward four basic recursive estimators, namely the multivariate distribution function estimator, the multivariate conditional cumulative distribution function estimator, the multivariate kernel-type regression estimator and the propensity score regression estimator. We rst tackled the asymptotic properties of each proposed estimator by providing the bias as well as the variance in order to demonstrate that our estimator asymptotically follows a normal distribution. Subsequently, we revealed that, using a specic bandwidth selection, namely the crossvalidation method, the plug-in procedure as well as the bootstrap technique, and a particular choice of the stepsize; for all the cases, each proposed recursive estimator yielded better results compared to the corresponding non-recursive one in terms of estimation error. The simulation studies and real datasets illustrate our ndings. Following our numerical applications, we can demonstrate that our multivariate functional recursive estimators are closer to the true functional than the multivariate non-recursive ones.

At this stage of reection, it would be appropriate to assert that the present thesis would be worthwhile in terms of opening up further promising directions of investigation and for providing valuable perspectives for future researches. First of all, we shall state some ongoing research works in progress following the same spirit of multivariate functional estimation in order to construct some new classes of recursive estimators. Then, an estimator of the hazard function is expressed by

H n (y|x) = f n (y|x) S n (y|x) , with f n (y|x) = Π n n k=1 Π -1 k γ k h -2d k K 1 y -X k h k K x -X k h k Π n n k=1 Π -1 k γ k h -d k K x -X k h k , and 
S n (y|x) = 1 -π n (y|x) = Π n n k=1 Π -1 k γ k (1 -χ k (y)) h -d k K x -X k h k Π n n k=1 Π -1 k γ k h -d k K
x -X k h k .

The conditional variance

An estimator of the conditional variance V ar (Y |X) is determined by

σ 2 n (x) = σ 2 ϕn (x) := Π n n k=1 Π -1 k γ k ϕ(Y k ) -r ϕ n (x) 2 h -d k K x -X k h k Π n n k=1 Π -1 k γ k h -d k K x -X k h k .
It is noteworthy that the empirical estimator of the conditional variance is specied by

σ 2 n (x) = 1 n n i=1 (ϕ(Y i ) -r n (X i )) 2 .
An other perspective approach concerning the estimation of stochastic process is given in the following.

Distribution function under Markov Renewal Process

A Markov Renewal Process (MRP) (J n , S n ) n≥0 is a random process that generalizes the notion of Markov jump processes, where (J n ) n≥0 is a Markov chain and the process (S n ) n≥0 are the jump times. Here, we may consider the distribution function associated with the sojourn time in state i before going to state j, F ij (x) = P(X n+1 ≤ x|J n = i, J n+1 = j), where, for n ≥ 0, J 0 , J 1 , . . . , J n are the consecutive states to be visited by the (MRP) and (X n ) n≥0 dened by X 0 = S 0 = 0 and X n = S n -S n-1 for n ≥ 1, are the sojourn times in these states. Then, an estimator of Jumps process with two conditions is identied by F n (x, y, t) = a n (x, y, t) f n (x, y) with a n (x, y, t) = Π n n k=1

Π -1 k γ k χ k (y)h -2d k K y -X k h k K x -X k h k .
and

f n (x, y) = Π n n k=1 Π -1 k γ k h -2d k K x -X k h k K y -X k h k .
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 1 Figure 1: Representation of some classical kernels.

  all k ∈ {1, . . . , d}, ∂ d-k+1 F ∂y k . . . ∂y d exists and are continuous.

  in distribution, N corresponds to the Gaussian distribution and P -→ n→+∞ stands for the convergence in probability.

  b denotes the rst derivative of a kernel K b with the associated bandwidth b n such that δ = 3 10 and K b corresponds to the distribution function of a kernel K b with the associated bandwidth b n such that δ = 1
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 11 Figure 1.1: Qualitative comparison between Nadaraya's distribution estimator and the generalized recursive estimator for Model 1 with n=50 and (γ n ) = (2/3 + 0.05)n -1 .
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 12 Figure 1.2: Qualitative comparison between Nadaraya's distribution estimator with the generalized recursive estimator using Model 1, n=100 and (γ n ) = (2/3 + 0.05)n -1 .
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 13 Figure 1.3: Qualitative comparison between Nadaraya's distribution estimator with the generalized recursive estimator using Model 4, n=50 and (γ n ) = (2/3 + 0.05)n -1 .
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 14 Figure 1.4: Qualitative comparison between Nadaraya's distribution estimator with the generalized recursive estimator using Model 4, n=100 and (γ n ) = (2/3 + 0.05)n -1 .
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 1 Figure 1.5: The reference distribution function F s using Model 1.
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 1 Figure 1.6: The reference distribution function F s using Model 3.
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 1 Figure 1.7: Nadaraya's estimator F using Model 1 with n=50.
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 1 Figure 1.8: Nadaraya's estimator F using Model 3 with n=50.
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 1 Figure 1.9: The recursive estimator F n using Model 1 with n=50.
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 1 Figure 1.10: The recursive estimator F n using Model 3 with n=50.
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 1 Figure 1.11: Qualitative comparison between Nadaraya's distribution estimator and the proposed distribution estimator with stepsize (γ n ) = ([2/3 + 0.05]n -1 ) via lh data of the package datasets and through a plug-in method.
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 1 Figure 1.12: The empirical distribution function.
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 1 Figure 1.13: Nadaraya's estimator.Figure1.14: The recursive estimator.

  continuous at x for all i ∈ {1, . . . , d}, we have lim k→+∞ ν k (x) = 0 and lim k→+∞ ν k (x) = 0. Thus, lim k→+∞ ν k

  with common cumulative distribution function π(x, y) where one is interested in modeling the functional dependence of the observation Y on the covariable X by the conditional cumulative distribution function (CCDF) of Y given X = x, denoted by, for all real y and x, π(y|x) := P [Y y|X = x] .

  (2010) constructed a minimax estimator of the CCDF. Thereafter,[START_REF] Veraverbeke | Preadjusted non-parametric estimation of a conditional distribution function[END_REF] built up a new estimator of CCDF investing a method of pre-adjusting the original observations non-parametrically. Recently,[START_REF] Bouanani | Local linear conditional cumulative distribution function with mixing data[END_REF] introduced a new method to settle CCDF estimation problem based on local polynomial technique. Many functional estimations are grounded on estimating the CCDF see e.g[START_REF] Laksaci | Conditional cumulative distribution estimation and its applications[END_REF],[START_REF] Laksaci | Note on the functional linear estimate of conditional cumulative distribution function[END_REF] and[START_REF] Almanjahie | kNN local linear estimation of the conditional cumulative distribution function: Dependent functional data case[END_REF]. The CCDF is involved in a wide range of applications, for instance, in medicine see[START_REF] Gannoun | Reference curves based on nonparametric quantile regression[END_REF], econometrics see[START_REF] Li | Optimal bandwidth selection for nonparametric conditional distribution and quantile functions[END_REF] or machine learning domain see the recent work of[START_REF] Chilinski | Neural likelihoods via cumulative distribution function[END_REF]. In a broader context, extensive state of art works including various non-parametric approaches tackled the conditional estimation. We can state for example[START_REF] Yu | Local linear quantile regression[END_REF],[START_REF] Fan | Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems[END_REF],Berlinet et al. (1998b),Berlinet et al. (1998a), Honda (2000b),Honda (2000a) and Plancade (2013). For recent references see Benziadi et al. (2016), Choudhury et al. (2018), Al-Awadhi et al. (2019a) , Chikr-Elmezouar et al. (2019b) and
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 21 Figure 2.1: The reference CCDF for Model 1 for one simple simulation.
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 23 Figure 2.3: The non-recursive CCDF estimator for Model 1 for one simple simulation.
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 24 Figure 2.4: Qualitative comparison between the recursive estimator and the non-recursive one for Model 1 with n = 200, N = 500 and x = 0.
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 25 Figure 2.5: Qualitative comparison between the recursive estimator and the non-recursive one for Model 1 with n = 500, N = 500 and x = 0.
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 26 Figure 2.6: Qualitative comparison between the recursive estimator and the non-recursive one for Model 2 with n = 100, N = 500 and x = (0, 0).
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 27 Figure 2.7: Qualitative comparison between the recursive estimator and the non-recursive one for Model 2 with n = 500, N = 500 and x = (0, 0).
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 2 Figure 2.8: The reference CCDF for Model 3 for one simple simulation with n = 500 and x = (1, 1, 1).
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 29 Figure 2.9: The recursive CCDF estimator for Model 3 for one simple simulation with n = 500 and x = (1, 1, 1).
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 2 Figure 2.10: The non-recursive CCDF estimator for Model 3 for one simple simulation with n = 500 and x = (1, 1, 1).
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 2 Figure 2.11: Qualitative comparison between the recursive estimator and the nonrecursive one for the dataset Model 1 with x = 1.
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 2 Figure 2.13: Qualitative comparison between the recursive estimator and the non-recursive one for the COVID-19 epidemic dataset Model 1 with x = 17.
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 2 Figure 2.14: Qualitative comparison between the recursive estimator and the non-recursive one for the COVID-19 dataset Model 2 with x = (2, 0, 17).

  g(s, t)dt and s -→ R ϕ(t) 2 g(s, t)dt are bounded and continuous at s = x.
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 31 Figure 3.1: Qualitative comparison between the Nadaraya-Watson estimator and the recursive estimator for Model 1 with n=50 and σ ε = 0.01.
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 32 Figure 3.2: Qualitative comparison between the Nadaraya-Watson estimator and the recursive estimator for Model 1 with n=500 and σ ε = 0.01.
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 33 Figure 3.3: Qualitative comparison between the Nadaraya-Watson estimator and the recursive estimator for Model 2 with n=100 and σ ε = 0.1.
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 34 Figure 3.4: Qualitative comparison between the Nadaraya-Watson estimator and the recursive estimator for Model 2 with n=200 and σ ε = 0.1.

Figure 3 .

 3 Figure 3.5: The reference regression function for Model 3 for one simple simulation with n = 500.
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 36 Figure 3.6: The recursive regresion estimator for Model 3 for one simple simulation with n = 500.
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 3 Figure 3.7: The non-recursive regression estimator for Model 3 for one simple simulation with n = 500.
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 3 Figure 3.8: Box-plot of the relative error estimation of the four considered estimators for the bivariate COVID-19 application Model 1.
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 3 Figure 3.9: Box-plot of the relative error estimation of the four considered estimators for the bivariate COVID-19 application Model 1.
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 3 Figure 3.10: Box-plot of the relative error estimation of the four considered estimators for the bivariate COVID-19 application Model 2.
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 3 Figure 3.12: Box-plot of the relative error estimation of the four considered estimators for the multivariate PL application Model 3.
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 3 Figure 3.13: Box-plot of the relative error estimation of the four considered estimators for the multivariate PL application Model 3.
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 3 Figure 3.14: Box-plot of the relative error estimation of the four considered estimators for the multivariate PL application Model 4.
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 3 Figure 3.15: Box-plot of the relative error estimation of the four considered estimators for the multivariate PL application Model 4.
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 22 y)dy is bounded and continuous at s = x which ensures that lim k→+∞ ν k (x) = 0. For the case a β/(d + 4), we have lim +∞ (nβ n ) > β-ad (β -ad)ξ β > 0. Since we have h k κ k (x) = o(1) and ν k (x) = o(1), then the application of lemma 1.2 yields

= 1 ,

 1 and referring to(3.22) and (3.25), we deduce that
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 31 Asymptotic expressions of M W ISE of p n
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 12 A choice value for the recursive bandwidth vectors h 1 , . . . , h n . (resp. the non-recursive bandwidth values h n ) using the plug-in approach provided in (4.15) (resp.(4.18)). The choice of the stepsize (β n ) = n -1 (then, (Q n ) = n -1 ). 3: An arbitrary sampling vectors x 1 , . . . , x 4 . 4: The estimation of ψ is carried out according to the algorithm proposed in[START_REF] Slaoui | Recursive kernel density estimators under missing data[END_REF] 5: for l = 1, . . . , for output: Y 1 , . . . , Y N p and Y 1 , . . . , Y N p .
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 41 Figure 4.1: Participants' behavior representations, the regression between the reactions time variable Y = CRT s and each covariate (X 1 = H, X 2 = IA, X 3 = Ivar and X 4 = AoA) with the entire database (a total of 137 participants).
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 421 Figure 4.2: Box-plot of the relative error estimation of both considered estimators, the recursive one on the left and the non-recursive one on the right.
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  Y i -Y i ) 2 .for the recursive estimation (resp. M SET l = 1 n n i=1

  classication of the remote distance through kmeans package in R.output: The classication list using both considered estimators.
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 43 Figure 4.3: The elbow method of selecting the optimal number of clusters (k = 3) for K-means clustering on the M SE vector.
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 11 m n (x) -m (x) = (1 -β n )m n-1 (x) + β n Z n (x) -m (x) = (1 -β n )[m n-1 (x) -m (x)] + β n [Z n (x) -m (xβ i )[m 0 (x) -m (x)] + β i )β k (Z k (x) -m (x)) + β n (Z n (x) -m (x)) k β k (Z k (x) -m (x)) + Q n [m 0 (x) -m (x)].

( 2 )

 2 ij is bounded and continuous at x for all i, j ∈ {1, . . . , d}, we thus getE[m n (x)] -m (x) = Q n n k=1 Q -1 k β k (E[Z k (x)] -m (x)) + Q n [m 0 (x) -m (x)]

  For the case a > β/(d+4), we have limn→+∞ (nβ n ) > β-a 2 , which yields h 2 n = o β n h -d n

K 2 2 For 2 and then 1 -

 2221 (z) [E[T 2 |X = x -zh k ]f (x -zh k ) -E[T 2 |X = x]f (x)]dz and η k (x) = R d K (z) m (x -zh k ) dz the case a β/(d + 4), we have lim n→+∞ (nβ n ) > β-ad 2aξ β > 0. Since we have lim k→+∞ ν k (x) = 0 and lim k→+∞ h k η k (x) = 0, then the application of lemma 1.2 ensures that V ar[m n (x)] = Q 2 n n k=1

2 - 2 -

 22 (β -ad)ξ β p(x)f (x)R(K) + o β n h -d (β -ad)ξ β R(K) f (x) E[T 2 |X = x] -ψp(x) 2 + o β n h -d n .

  p n (x) -E[p n (x)] = 1 f (x) Q n n k=1 S k (x). (4.23)On the other hand, we attempt to apply Lyapunov's theorem 1.14 for S k (x). For this reason, we consider[Z k (x)] + p(x) 2 V ar [W k (x)] -2p(x)cov (Z k (x), W k (x)) .

E

  |S k (x) -E[S k (x)]| 2+p = lim k (x)| 2+p ] = 0,by applying the Lyapunov theorem, we get combination of (4.24) and (4.25) ensures thatβ -1 n h d n ψ n (p n (x) -E[p n (x)])

  The conditional hazard functionThe conditional hazard function H(y|x) is dened by, for all real y and x,H(y|x) := f (y|x) S(y|x)where f (y|x) denotes the conditional density of Y given X = x.S(y|x) denotes the conditional survival function dened by, for all real y and x, S(y|x) := 1 -π(y|x).

  

  

  . (θ n ) est la suite à mettre à jour récursivement, . (W n ) est une suite de variables aléatoires représentant les observations en ligne, . Φ (θ, W ) est la fonction qui détermine essentiellement comment le paramètre est mis à jour en fonction d'une nouvelle observation, . µ n (θ n-1 , W n ) dénit une petite perturbation sur l'algorithme.
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3: Quantitative comparison between Nadaraya's distribution estimator and the proposed distribution estimator with stepsize

Table

  

	s estimator	0.44454490	0.09554306	0.16091480	0.00037498	0.00170011
	Recursive estimator	0.33153120 0.01013669 0.16707990 0.00035297 0.00089828
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 1 6: Quantitative comparison between the I 1 , I 2 , V F , M W ISE and P SE of Nadaraya's distribution estimator as well as the proposed distribution estimator with stepsize
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 2 1: Quantitative comparison between Nadaraya-Watson estimator and the proposed estimator with stepsizes (γ n ) = (n -1 ) through a plug-in method for Model 1.
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 2 2: Quantitative comparison between the recursive estimator and the non-recursive one with stepsizes (γ n ) = (n -1 ) through a plug-in method for Model 2.

	x = (0, 0, 0)	x = (1, 1, 1)

Table
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	Model	M SE/Cor	n	Nadaraya's estimator	Recursive estimator
	Model 4	M SE Cor	100 200 500 100 200 500	0.012132600 0.012042460 0.009422018 0.985115900 0.982886350 0.984891065	0.008651937 0.007971624 0.006973041 0.989107240 0.987784007 0.987888565

4: 

Quantitative comparison between the recursive estimator and the non-recursive one with stepsizes

  In this section, our focal point is to examine two real datasets Models, namely the Insurance Company Benchmark(COIL 2000) dataset as well as the French Hospital Data of COVID-19. about customers consists of 86 variables and includes product usage data and sociodemographic data derived from zip area codes. The data are supplied by the Dutch data mining company Sentient Machine Research and rest on a real world business problem. The training set involves over 5000 descriptions of customers, including the information of whether or not they have a caravan insurance policy. A test set includes 4000 customers whom only the organizers know if they have a caravan insurance policy. This corresponds to a Dataset to train and validate prediction models and build up a description (5822 customer records). Each record consists of 86 attributes, incorporating sociodemographic data (attribute 1-43) and product ownership (attributes 44-86). The sociodemographic data are derived from zip codes. All customers living in areas with the same zip code have the same sociodemographic attributes.

	2.6.3	Real Datasets:
	Application 1: The Insurance Company Benchmark (COIL 2000) dataset
	The (COIL 2000) dataset is found in data.world website
	https://data.world/uci/insurance-company-benchmark-coil-2000).

Information

Table 2 .

 2 5: Quantitative comparison between Nadaraya-Watson estimator and the proposed estimator with stepsizes (γ n ) = (n -1 ) through a plug-in method for the Insurance Company Benchmark (COIL 2000) dataset case.

		Nadaraya's estimator	Recursive estimator	Nadaraya's estimator	Recursive estimator
	Model 1 M SE Cor	0.006979541 0.987112335	0.004748803 0.990653245	0.001999743 0.995770041	0.001390595 0.996574025
		x=(0,0,0,0,0)	x=(1,1,1,2,2)
		Nadaraya's estimator	Recursive estimator	Nadaraya's estimator	Recursive estimator
	Model 2 M SE Cor	0.000708417 0.996664739	0.0005969373 0.9979940979	0.00414241 0.97540614	0.003705582 0.976614363

Table 2 .

 2 hosp and Y 2 = rad.

		x=119	x=17
		Nadaraya's estimator	Recursive estimator	Nadaraya's estimator	Recursive estimator
	Model 1 M SE Cor	0.02538461 0.86514927	0.01900265 0.88894736	0.008079359 0.781752320	0.007509241 0.789593904

6: Quantitative comparison between Nadaraya-Watson estimator and the proposed estimator with stepsizes

Table 3 . 1 :

 31 Quantitative comparison between Nadaraya-Watson estimator and the proposed estimator with stepsizes (β n , γ n

  French Hospital data of the COVID-19 epidemic are found in https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/.

	3.7.2	Real Datasets
	Application 1: French Hospital Data of COVID19

The

  have chosen the rst proposed le: Hospital data related to the COVID-19 epidemic by department (dep) and sex (sex) of the patient: number of hospitalized patients (hosp), number of persons currently in intensive care or resuscitation (rea), number of persons currently in follow-up and rehabilitation care (SSR) or long-term care units (USLD), number of persons currently in conventional hospitalization (HospConv), number of persons currently hospitalized in another type of service (autres) or cumulative number of persons having returned home (rad), cumulative number of persons who died (dc).

Table 3 .

 3 2: Quantitative comparison between Nadaraya-Watson estimator and the proposed one with stepsizes (β n , γ n

		Plug-in	Bootstrap
	Model	Nadaraya's estimator	Recursive estimator	Nadaraya's estimator	Recursive estimator
	Model 1	3.648179	3.647376	3.648197	3.647362
	Model 2	2.852123	2.514630	2.852662	2.514177

  .29) Since 2-(β-ad)ξ > 0 and s ∞ diverges, then we deduce that lim

	n→+∞	H -2 n = +∞ and lim n→+∞	H -2 n-1

  , we have N p individual estimators of each participant Y 1 , . . . , Y N p ( Y 1 , . . . , Y N p ) and a general estimator Y g ( Y g ) which estimates the whole database of N p participants. It's worth noting that, for each participant/covariate behavior test, we invested a dierent method for bandwidth selection, namely the plug-in univariate selection for multivariate data. This implies that, instead of opting for a single value of bandwidth h n , we considered a vector h n1 , . . . , h nd , an individual choice of bandwidth for each covariate. Then, for the recursive case, we have a matrix of bandwidths:We denote by p * i the reference regression vector and by p i the test regression. Thus, we calculate the two following measures:

	H =	  	h 11 . . . h 1d . . . . . . . . .	   .
				h n1 . . . h nd
	The Mean Squared Error: M SE =		1 n	n i=1 (p i -p * i ) 2 .
	The Mean Relative Error: M RE =	1 n	n i=1	p i -p * i p *

i

.

  Algorithm 3 Participants classication algorithm: Y is the response variable with Y = CRTs, Y 1 , . . . , Y N p are the predicted multivariate recursive kernel regression estimators and Y 1 , . . . , Y N p are the predicted multivariate non-recursive kernel regression estimators. Input: Y , Y 1 , . . . , Y N p and Y 1 , . . . , Y N p . 1: Start with writing Y in a matrix form participant per participant.

maintient donc une sélection appropriée du paramètre pas. Fondamentalement, nous démontrons que, sous certaines conditions, le M SE de l'estimateur proposé peut être plus petit que celui de l'estimateurde Nadaraya Watson. Nous corroborons nos résultats théoriques par des études de simulation et deux applications de jeux de données réelles, à savoir le jeu de données de référence des compagnies d'assurance(COIL 2000) ainsi que les données hospitalières françaises de l'épidémie COVID-19.En ce qui concerne le troisième chapitre, étant donné l'idée de l'estimation conditionnelle et en considérant un concept général, nous élaborons une extension de l'estimateur semi-récursif de la fonction de régression de type noyau. Nous étudions les propriétés asymptotiques de cet estimateur et nous les comparons à celles de l'estimateur de régression non récursif de Nadaraya Watson. Dans cette perspective, nous calculons d'abord le biais et la variance de l'estimateur proposé qui dépendent fortement du choix de trois paramètres, à savoir les pas (β n ) et (γ n ) ainsi que la fenêtre (h n ) choisie en utilisant l'une des meilleures méthodes de sélection de fenêtre, l'approche bootstrap combinée avec la méthode plug-in. Un choix judicieux de ces paramètres permet de constater que, sous certaines conditions, l'M SE de l'estimateur proposé peut être inférieur à celui de l'estimateur de Nadaraya Watson. Nous conrmons nos résultats théoriques par des études de simulation et en considérant deux applications de jeux de données réelles, à savoir les données hospitalières françaises de l'épidémie COVID-19 ainsi que la charge parasitaire de Plasmodium Falciparum (PL).Enn, en ce qui concerne le quatrième chapitre, notre objectif central est d'explorer les processus cognitifs et les représentations mentales mobilisés lorsqu'un être humain se prépare à écrire un mot selon l'idée développée dans[START_REF] Perret | Spelling and Writing Words: Theoretical and Methodological Advances[END_REF]. Pour ce faire, nous mettons en avant un estimateur multivarié non paramétrique de régression récursive à noyau sous données manquantes utilisant l'approche du score de propension an de caractériser la production de mots écrits. Nous examinons les propriétés asymptotiques de l'estimateur récursif proposé et les comparons à l'estimateur de régression bien connu de Nadaraya-Watson. Nous calculons le biais et la variance de l'estimateur proposé qui dépendent du choix de certains paramètres tels que le pas et la fenêtre. Nous utilisons des procédures basées sur les données pour sélectionner ces paramètres. Ainsi, nous démontrons que, sous certains choix optimaux de ces paramètres, le M SE de l'estimateur proposé peut être plus petit que celui obtenu en utilisant l'estimateur de régression de Nadaraya Watson. L'estimateur développé est ensuite appliqué aux données comportementales an de classer certains participants en groupes. Cette classication peut constituer un point de départ pour aborder les variations de comportement écrites. Enn, la dernière section résume la conclusion, fournit des remarques nales et ore de nouvelles perspectives pour les futur travaux de recherche.
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3.2.1

Bias and variance of a ϕ n Proposition 3.1. Under the assumptions (A 1 ), (A 2 ), (A 5 ) and (A 6 ), we obtain 1. If a ∈ 0, β d+4 , then

µ j (K)a (2) ϕ jj (x) + o h 2 n . (3.3) If a ∈ β d+4 , 1 , then malariae : The presence of co-infection with P. malariae, a factor with two levels (infected: 1 or not infected: 0).

sex : A factor with two levels (a boy: 0 or a girl: 1).

age : Age of the child in years between 2 and 19.

season : A factor with two levels (July-October and October-March).

Therefore, for our selection we have a dataframe of 500 observations and 3 variables. The following two models are considered :

• Model 3: X 1 = sex, X 2 = age, Y = PL and ϕ : y -→ log(y + 1).

• Model 4: X 1 = age, X 2 = malariae, X 3 = season, Y = PL and ϕ : y -→ log(y + 1). 

) through plug-in method and the bootstrap one.

Consequently, (3.9) and (3.10) follow from the combination of the variance of a ϕ n (x) ((3.5) and (3.6)), as well as from that of f n (x) ((2.9) and (2.10)) and the covariance expression (3.23).

It is noteworthy that, for the case a ≥ β/(d + 4), we deduce

2. For the case α < β:

Similarly to the rst case, and taking the stepsize (γ n ) as a reference, we infer the result.

Proof of Theorem 3.4. We have

Hence, we can write

Now, we are trying to apply Lyapunov's theorem 1.14 for S k (x). For this reason, we assume 

(4.12)

The bias and the variance of the estimator p n dened by the stochastic approximation algorithm (4.3) then heavily depend on the choice of the stepsizes (β n ).

Now, let us state the following theorem which yields the asymptotic normality of the proposed multivariate recursive regression estimator under missing data p n denoted in (4.3).

4.2.3

Asymptotic normality of p n Theorem 4.3. Let assumptions (A1), (A 5 ) and (A 7 ) hold. We therefore have

If there exists c ≥ 0 such that

with

and

Optimal choice of the stepsizes

In order to measure the asymptotic performance of the proposed recursive kernel regression estimator under missing data p n and to be able to use a data-driven bandwidth selection procedure, through proposing an asymptotic unbiased estimators of the unknown quantities, we consider the Mean Weighted Integrated Squared Error (M W ISE), where the weight function is selected to be equal to f 3 (x). This choice was motivated by the fact that we can propose an asymptotic unbiased kernel estimator for the unknown quantities, which will appear in the M W ISE as reported previously in [START_REF] Slaoui | Optimal bandwidth selection for semi-recursive kernel regression estimators[END_REF], and which shall be detailed later.

Asymptotic properties of p n

The main properties of the generalized non-recursive regression function estimator p n are displayed in the following proposition.

Proposition 4.7. Let assumptions (A 1 ) and (A 7 ) hold. Therefore, the bias and variance of Nadaraya-Watson's regression estimator are equal to:

It is inferred that

Corollary 4.8. Let assumptions (A 1 ) and (A 7 ) hold. To minimize the M W ISE of p n , the bandwidth (h n ) must be equal to

Then, the corresponding M W ISE is specied by

It is obvious that, the use of such bandwidth (4.16), is not possible when we use real data. From this perspective, the next section is devoted to build up a data-driven bandwidth procedure, which will be helpful in practice.

Bandwidth selection

Within the framework of non-parametric kernel estimation, the choice of the smoothing parameter is crucial for the eective performance of the estimators. There are a myriad of data-driven bandwidth selection methods recorded in literature which can be divided into three broad classes: cross-validation techniques, plug-in methods, and the bootstrap approach. A detailed comparison of the three techniques is exhibited in [START_REF] Delaigle | Practical bandwidth selection in deconvolution kernel density estimation[END_REF]. In this chapter, based on the previous work conducted by Slaoui (2014a), [START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF], [START_REF] Slaoui | Optimal bandwidth selection for semi-recursive kernel regression estimators[END_REF] for unidimensional data, we propose a second generation Plug-in bandwidth data-driven procedures in the multivariate data for regression estimation. A widely used criterion stands for selecting a bandwidth that minimizes the estimate of the mean squared error, using the density function as a weight function. [START_REF] Altman | Bandwidth Selection for Kernel Distribution Function Estimation[END_REF] proposed an ecient method of bandwidth selection, a plug-in estimate. Since the M W ISE depends on unknown quantities I j , j = 1 . . . 5, we suggest elaborating an asymptotic unbiased estimator of those quantities. For this purpose, we adopt the relation (1.14) and let µ(K) = R z 2 K(z)dz and I j = µ 2 (K)I j , j = 1, 2, 3,