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Abstract:
In this document, I present various contributions to hidden Markov models on graphs and
more generally, to the statistical analysis of graphical data, with a particular focus on tree
graphs. In a part following an introduction, three main types of problems in tree analysis are
exposed: hidden Markov tree models to predict tree shapes and perform vertex segmentation,
edit distances to perform clustering at whole-tree scale and multiple change-point detection on
trees. Then some more detailed focus is given to multivariate count modelling, which is one of
the main problem to be solved in hidden Markov tree estimation. This is addressed using the
theory of probabilistic graphical models. A presentation of three specific contributions to hidden
Markov chain modelling follows: quantifying state uncertainty, optimal timeout modelling and
latent chain coupling. Lastly, an overview of different approaches applied to several plant
growth modelling problems is exposed, preceding some conclusions and general perspectives.
Keywords:
Hidden Markov models, Probabilistic graphical models, Statistical analysis of tree-structured
data, Applications to plant structure analysis.

Résumé :
Dans ce rapport, je présente diverses contributions aux modèles de Markov cachés sur graphes et
plus généralement, à l’analyse statistique de données graphiques, avec une attention privilégiée
portée aux arborescences. Après l’introduction, trois types de problèmes principaux en analyse
d’arborescences sont exposés: les arbres de Markov cachés pour prédire des formes arborescentes
et les segmenter à l’échelle des sommets, les distances d’édition pour en réaliser la classification
non-supervisée à l’échelle d’arborescences entières et la détection de ruptures multiples sur
arborescences. Une présentation plus détaillée est ensuite donnée des modèles pour comptages
multivariés, qui est l’un des verrous méthodologiques essentiels à lever pour l’estimation d’arbres
de Markov cachés. Le problème est abordé sous l’angle des modèles probabilistes graphiques.
S’ensuit une présentation de trois contributions spécifiques à la modélisation par chaînes de
Markov cachées: la quantification de l’incertitude sur les états, la modélisation du délai de mise
en veille optimal et le couplage de chaînes latentes. L’avant-dernière partie présente différentes
méthodes adaptées à divers problèmes de modélisation de la croissance et de la structure des
plantes; elle est suivie de conclusions et perspectives générales.
Mots clés :
Modèles de Markov cachés, Modèles probabilistes graphiques, Analyse statistique d’arbores-
cences, Applications à l’analyse de la structure des plantes.
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List of acronyms

Scientific terms
AMP alternative Markov property (on chain graphs)

Andersson / Madigan / Perlman
AS annual shoot
BBI biennial bearing index
BIC Bayesian information criterion
BLUP best linear unbiased predictor
BNP Bayesian non-parametric
BSE bovine spongiform encephalopathy
CIC-HMT conditionally independent children - hidden Markov tree
DAG directed acyclic graph
DWT discrete wavelet transform
EEG electroencephalogram
EM expectation maximisation
GHMM graphical hidden Markov model
GLM generalised linear model
GLMM generalised linear mixed model
GU growth unit
GS Granny Smith
HMC hidden Markov chain
HMM hidden Markov model
HMOT hidden Markov out-tree
HMT hidden Markov tree
HSMC hidden semi-Markov chain
ICL integrated classification likelihood
LAD leaf area density
LASSO least absolute shrinkage and selection operator
LDA linear discriminant analysis
LMM linear mixed model
LWF Lauritzen / Wermuth / Frydenberg

(particular Markov property on chain graphs)
MANOVA multivariate analysis of variance
MAP maximum a posteriori
MCMC Monte-Carlo Markov chain
MDP Markov decision process
MLE maximum likelihood estimation (or estimator)
MODWT maximum overlap discrete wavelet transform
MRF Markov random field
NN neural network
P / NP polynomial / nondeterministic polynomial

(classes of computational problems in computational complexity theory)
PC (A) principal component (analysis)
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PDAG partially directed acyclic graph
PGM probabilistic graphical model
POMDP partially observed Markov decision process
QTL quantitative trait locus
SAM shoot apical meristem
SCA space colonization algorithm
STK Starkrimson
UG undirected graph
VBEM variational Bayesian expectation maximisation
VOMC variable-order Markov chain
WS water-stressed
WW well-watered

Names of institutions
ACI Action concertée incitative (former call of ANR)
AGAP1, AMAP2 Laboratories in plant science, Montpellier
ANR French national research agency
CIRAD3 French agricultural research and international cooperation organization
Inria4 National institute for research in digital science and technology
LJK Laboratoire Jean Kuntzmann in Grenoble (applied mathematics)

1https://umr-agap.cirad.fr/
2http://amap.cirad.fr/
3https://www.cirad.fr/
4https://www.inria.fr/
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1. Introduction

In this document, several contributions to the analysis of tree-structured data are presented.
Some extensions to the more general case of graphical data or oppositely, specific developments
dedicated to sequence analysis are addressed. We mainly focus on statistical modelling prob-
lems, although these are occasionally complemented by other approaches issued from discrete
optimization and combinatorics.
In the early 2000s, the existing methods for the statistical analysis of tree-structured data

were rather rare. One possible reason for this is that such type of data were often long and costly
to acquire. Remarkable exceptions could be found, in the one hand, in document analysis and
categorisation and in the other hand, in wavelet analysis. In the former field, trees represent
document organisation at several scales: columns, divided into text zones vs. images and then,
paragraph at a finer scale. In such contexts, tree sizes are rather low and trees may have
arbitrary shapes. In the latter, trees are induced by the wavelet decompositions of signals or
images. Tree sizes are comparable with signal lengths and thus, are usually quite larger than in
the case of documents. Wavelet trees have deterministic shapes (binary or quad trees). In both
contexts however, trees share specific features. Vertices have external (i.e., non-topological)
quantitative or qualitative properties, meaning that these are no deterministic functions of tree
shape itself. Trees are so-called piecewise homogeneous, referring to the existence of underlying
zones within which the statistical properties of vertices are comparable, whereas they change
abruptly between zones. The second feature is dependencies, which in the end stochastically
determines zone extents. To incorporate both features, hidden Markov models (HMMs) were
proposed to either segment trees or predict their vertex properties (Crouse et al., 1998; Diligenti
et al., 2001).
In contrast, in phylogenetics or cell division analysis, trees could be far more variable, but

they were mostly unobserved, except for the leaves. In phylogenetics, building the tree is the
main aim of models, whereas in the case of cell populations, this is inference of the tree growth
dynamics. Quite a number of sophisticated methods emerged, mainly derived from branching
processes (Haccou et al., 2005), but they were mostly dedicated to assess the effect of different
covariates, competition or interactions between species or types of cells, or to validate assump-
tions on the times between tree splittings. However, they did not aim directly at modelling
tree shapes.
In some specific fields of science, however, statistical modelling of tree shapes, their variabil-

ity or dependencies with respect to covariates was of uttermost importance. Among these fields
were dendritic tree analysis (Polavaram, 2014) and plant growth modelling. In the latter field,
considerable effort was dedicated to the acquisition of trees with their topologies and local fea-
tures, but there was a lack of appropriate statistical models to answer some biological questions
which, presumably, could find their answers in the collected data if adequately analysed. The
requirements of the models firstly consisted, as in the examples in document categorisation and
wavelet analysis, in accounting for piecewise homogeneity and local dependencies. This was
not exactly sufficient, since there were also global dependencies and various other sources of
variability in the structure and the features: environment and genotype mainly, together with
their interactions.
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In collaboration with different laboratories and teams (AMAP, AGAP, Inria Virtual Plants
and Mosaic), we developed dedicated models to address the challenge of statistical analysis
of tree structures. Our strategy and thinking were inspired by the methods developed in the
context of analysis frameworks for biological sequences, particularly genomic data. Indeed, this
field shared common problems with tree analysis: comparison of graphs relying on distances,
clustering or segmentation of structured and dependent data (either at tree scale with such
distances or at vertex scale with generative models), change-point detection, classification,
pattern identification (either rare or frequent patterns), and assessing the effect of covariates.
Each problem was addressed using specific methods, respectively efficient computation of edit
distances, spectral clustering, mixture and hidden Markov models, greedy heuristics, neural
networks, variable-order Markov models and Generalized Linear Mixed Models (GLMMs).
A first family of HMMs on trees, referred to as hidden Makov trees (HMTs), was studied from

the viewpoint of estimation and model selection (Crouse et al., 1998; Durand et al., 2004 and
2005). One shortcoming of the model was that children states were assumed as independent
given their parent state. This prevented, in particular, potential order of children to be taken
into account by the model. This is why new models were introduced to enable modellers to test
and compare different assumptions on the order of children (total, partial or no order). These
models also offered new possibilities for specifying various kinds of dependencies, in coherence
with orderings. In the case of unordered children, we showed an equivalence between invariance
by permutation of ordered models and modelling multivariate count distributions. At the core
of such models was the specification of parametric families of distributions for multivariate
count data, representing the number of children vertices in each state given their parent state.
For the sake of parsimony and versatility, conditional independence relationships between count
vector components had to be identified. Statistical estimation of graphs and parameters, as
well as model selection, were at the core of P. Fernique’s PhD, co-supervised with Y. Guédon.
In this work, three kinds of conditional independence assumptions were considered, relying on
graphical Markov properties: directed, undirected and partially directed. We also addressed
alternative local dependency assumptions between children vertices in Markov trees, depending
on arcs being directed towards the root vertex, with some marginal independence assumptions
between states (Markov in-trees), or being directed towards leaves, in absence of marginal
independence properties (Markov out-trees).
HMMs proved useful for clustering (or segmentation of) vertices within a tree; however, they

were not directly usable for clustering whole trees, considered as statistical units. To solve
this problem, approaches based on distance matrices between trees were more adequate in the
case where the variability to be accounted for was not only in external vertex features, but
also in tree topology. Spectral clustering was a possibility, which however raised the issue of
selecting the number of clusters. Indeed, criteria based on Euclidean distances in the space
of spectral representation would not take into account the true topology of tree spaces. We
thus developed clustering methods based on cluster representatives. As in iterative K-means or
centroid-based clustering algorithms (Taillard, 2003), the principle was to represent a cluster
by the closest tree, on average, to the trees in that cluster. In K-means, the closest point for
squared Euclidean distances has a closed-form expression while in centroid-based clustering, the
representative has to be chosen within the sample. However in the case of trees, there was no
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known efficient algorithm to compute the closest tree representative, which has to be searched
among every tree in the space. Not only are its height and size not bounded by those of the
sample but even more limiting, each distance computation between a candidate representative
and the sample points has time-complexity more than the product of tree sizes times the sum
of their maximal degrees. It was conjectured that finding the optimal solution was an NP-Hard
problem, so we focused on restricting the search space while keeping it dense, in some sense,
using the notion of self-nested tree (Azaïs et al., 2018).
In applications where vertex-scale external features are available, information brought by the

structure alone is generally not sufficient. Incorporating external features directly, using dis-
tances in some feature space, raises the question of variable normalization with respect to the
cost of elementary edit operations. As an alternative, HMMs can be used as denoising tools to
summarize features using a small number of states. These may be ordered in our applications,
which facilitates the definition of distances. However, replacing features by hidden states re-
quires some high level of confidence in their restoration. More generally, assessing uncertainty
in the state process is some useful diagnostic tool, which helps modellers to understand how
models affect states to vertices and eventually, what interpretation can be associated to states.
The first methodological contribution we proposed to hidden Markov chain (HMC) and HMT
analysis was a complementary set of diagnostic tools to assess uncertainty on hidden state pro-
cesses. Firstly, algorithms were introduced to compute joint state entropy given observations,
while providing its additive decomposition along the structure. This aimed at quantifying the
local contribution of data to global uncertainty. Secondly, restoration algorithms for state pro-
cess exploration were extended from HMC to HMT models. These mainly aimed at providing
alternative restorations to the Maximum A Posteriori (MAP) yielded by the Viterbi algorithm
(Durand and Guédon, 2016).
In the domain of sequential decision, indirectly observed Markovian processes were intro-

duced about the same period as HMCs. These were referred to as Partially Observed Markov
Decision Processes (POMDPs); see Åström (1965). We applied HMCs for sequential decision
in the problem of optimal timeout identification. This arises in situations where a device has
sleep modes with low levels of consumption and a service mode with a high level of consump-
tion. Using the device turns it into service mode, which induces some additional consumption.
Determining whether it should be put to one of the sleep modes requires some modelling of
future requests. In collaboration with S. Girard and L. Donini, my first co-supervised PhD
student, we proposed a solution under the simple assumption of renewal processes. We then
extended it to the case of HMCs (Durand et al., 2013a). Eventually some perspectives were
explored, mainly as extensions to timeouts for multiple printers with possible job redirections.
Our latest contribution to HMC modelling is related to B. Olivier’s PhD thesis. It focuses

on (semi-)Markov chains indirectly observed through multiple heterogeneous, asynchronous
channels. More specifically, each channel has its own observation time step, and they may have
random delays regarding regime switching as represented by underlying Markov chains. This
led to original models for coupled hidden semi-Markov chains. Their main application was joint
analysis of eye movements and electroencephalograms (EEGs); see Olivier et al. (2017).
A particular focus was given to various problems in plant structure modelling, involving

different scales (from cells and tissues to orchads) and structures (sequences, trees and other
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graphs). Among the most significant contributions was the definition of a global framework
to model plant architecture at tree scale, accounting for ontogenetic, genetic, environmental
and individual effects and their interactions, with some applications to quantification and pre-
diction of flowering regularity, patchiness and resistance to water stress. We also contributed
to research projects motivated by more cognitive and fundamental goals, on various species
(Symphonia globulifera, Acacia mangium, Arabidopsis thaliana, rose, beech, mango and apple
trees, Aleppo pines).
This manuscript is structured as follows: in Section 2, our methodological contributions to

tree-structured data analysis are detailed, focusing on both probabilistic and combinatorial
approaches. In Section 3, some more detailed focus is given to multivariate count modelling,
based on probabilistic graphical models. In Section 4, our three main contributions to HMC
modelling are depicted. Each of these three sections is organized according to the same canvas:
generic statement of the problem, our contributions and perspectives. In Section 5, an overview
of different approaches applied to several plant growth modelling problems is exposed. Section 6
is dedicated to the presentation of software associated with HMC and HMT analysis. Our
conclusions and general perspectives are proposed in Section 7. The appendix contains a
resume and list of publications.
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2. Tree analysis

Our work related to tree analysis was motivated by the development of a series of models
and approaches to address the following problems in tree-structured data: comparison of tree
graphs, computation of distances, clustering or segmentation (either at tree scale with such
distances or at vertex scale with generative models), change-point detection, classification,
pattern identification (either rare or frequent patterns) and assessing the effect of covariates on
tree shapes. This motivation came from the need of practitioners issued from different fields
of application: signal processing, document categorisation, neuroanatomy, genomics, botany
and agronomy. We believed that most methods developed in the context of genomic sequence
analysis could be transposed to trees. These were all generic data analysis problems, in the sense
where they could be formulated into an abstract, mathematical way that made their solutions
more easily transposable from one field of application to another. We could not address all these
problems, but we focused on most of them: segmentation, distance computation, clustering and
generative modelling.
In what follows, it is assumed that observations are rooted trees T , which are directed graphs

(V(T ),A(T )), where V(T ) refers to the set of vertices and A(T ) to the set of arcs. We simply
notations as (V ,A) when the reference tree T is clearly defined by the context. Let also
r(T ) = r denote the root vertex. Depending on the context:

• External variables Xv may be observed for each v ∈ V(T ). In this case, (Xv)v∈A is
denoted by X.

• T can be seen as an increasing sequence of trees with depths n ∈ {0, 1, . . .} (tree process).

• If no external variable is observed, tree shapes can be modelled by implicitly considering
Xv as the number of children of v.

• The set of vertex children of every parent may be ordered, unordered or partially ordered.

2.1. Hidden Markov tree models

Generic statement of the problem

It is assumed here that (Xv)v∈A are dependent random variables that have the same distri-
butions within unknown random zones (which are connected components of T ), and different
distributions from a zone to another contiguous zone. Equivalently, there exists some underlying
state variables S = (Sv)v∈A such that given S = s, [su = sv ⇒ p(Xu|Su = su) = p(Xv|Sv = sv)],
where p denotes a probability distribution if Xv is discrete and a probability density function
(pdf) is Xv is discrete. The problem is twofold: infer the value of S (tree segmentation) and
the conditional distributions p(Xv|Sv = k) for every possible value of k. Tree segmentation
yields some clustering at vertex scale that takes into account dependencies between the vertices
of X.
Let pa(v) denote the parent of v. The family of HMT models introduced by Crouse et al.

(1998) makes the additional following assumptions:
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Figure 1: Independence graph of HMT models with conditionally independent children. Hidden
categorical variables are in squares. Observed variables of arbitrary nature are in
circles.

• T is deterministic.

• The set of possible values for each Sv is finite and denoted here by {1, . . . , K}.

• Variables (Xv)v∈A are independent given S.

• Let ch(v) denote the set of children of v and Xch(v) denote (Xu)u∈ch(v). Then Xch(v) are
independent random variables given Sv.

• S is an homogeneous, first-order Markov tree on T , meaning that for every vertex v,
Sv is independent from the other non-descendent state vertices given Spa(v) and that
P (Sv|Spa(v)) does not depend on v.

As consequences from the assumptions above, firstly (S,X) is a directed probabilistic graphical
model in the sense of Koller and Friedman (2009), whose joint distributions factorizes as

p(S = s,X = x) = p(Sr(T ) = sr(T ))
∏

v 6=r(T )

p(Sv = sv|Spa(v) = spa(v))
∏
v∈V

p(Xv = xv|Sv = sv).

Its independence graph is depicted in Figure 1.
Secondly, p(X) is invariant by permutations of the children of every vertex v, so this model

implicitly assumes unordered children. Note that this distribution writes

p(X = x) =
∑
s

p(Sr(T ) = sr(T ))
∏

v 6=r(T )

p(Sv = sv|Spa(v) = spa(v))
∏
v∈V

p(Xv = xv|Sv = sv)

 .
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Figure 2: Independence graph of HMT models with conditionally dependent children. Hidden
categorical variables are in squares. Observed variables of arbitrary nature are in
circles.

Assuming that p(Xv = xv|Sv = k) does not depend on s and belongs to a parametric family
(pθ)θ∈Θ, the model has canonical parametrization (π,A, θ1, . . . , θK) where πk = p(Sr(T ) = k),
Ajk = p(Sv = k|Spa(v) = j) and pθk(x) = p(Xv = x|Sv = k).
All inference methods can easily be extended to forests (i.e., sets of trees), assuming that

their trees are independent replications of the same HMT model.

Contributions

Maximum likelihood parameter estimation can be addressed with the EM algorithm of Crouse
et al. (1998). Their E step relies on two recursions: an upward recursion that computes state
probabilities given increasing observed subtrees, starting from tree leaves and a downward
recursion that computes state probabilities given all observations x, starting from tree root.
Their algorithm was subject to numeric instabilities since they relied on joint probabilities. Its
complexity was in O(nK2) with respect to tree size n = card(V). In Durand et al. (2004), we
proposed a smoothing algorithm solving this issue, with an additional downward recursion with
complexity still in O(nK2). We also solved the restoration problem with a Viterbi algorithm,
which computes

arg max
s
p(S = s|X = x).

Other algorithms dedicated to state inference and developed in this context are presented in
Section 4.1.
We then relaxed the assumption of conditionally independent children states given parent

state. This yielded two families of HMT models described in Durand et al. (2005): Markov
in-trees and out-trees. Markov in-trees are probabilistic graphical models directed from leaf
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Figure 3: Independence graph of Markov out-tree models.

vertices towards root, while Markov out-trees are directed from root vertex towards leaves
(not requiring conditional independence assumptions on children states). These models also
have associated Viterbi and EM algorithms with explicit E steps. Their time-complexity is
polynomial with respect to tree size and exponential with respect to the maximal number of
children. The upward and downward recursions are given in P. Fernique’s PhD thesis (2004a).
Let L(T ) denote the set of leaves of T . Markov out-trees are defined by the following

factorization of p(S):

p(S = s) = p(Sr(T ) = sr(T ))
∏

v/∈L(T )

p(Sch(v) = Sch(v)|Sv = sv)

while Markov in-trees are defined by factorization

p(S = s) =
∏

v∈L(T )

p(Sv = sv)
∏

v/∈L(T )

p(Sv = sv|Sch(v) = Sch(v)).

Markov out-tree models are partially directed probabilistic graphical models, to be under-
stood both in the sense of AMP and LWF properties (Andersson et al., 2001); a more formal
description is provided in Section 3. The independence graph of S is depicted in Figure 3. Ran-
dom variables in X are assumed to be independent given S, as in every other model considered
in this section.
Markov in-tree models are directed probabilistic graphical models. The independence graph

of S is depicted in Figure 4. It specificity is marginal independence properties of leaf state
vertices. More generally, any set of disjoint subtrees starting from the leaves are independent.
Whereas each of these probabilities can be associated to a model parameter in the case where

both K and the maximal number of children are small, in the other cases building parsimonious
models requires using regression or parametric multivariate distributions as building blocks of
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Figure 4: Independence graph of Markov in-tree models.

the model. To handle this case and to account for three possible assumptions on children
ordering, the following models were proposed and implemented. Associated hidden models
can be defined straightforwardly, since conditional independence assumption of X given S
implies that

p(S = s,X = x) = p(S = s)
∏
v∈V

p(Xv = xv|Sv = sv).

Markov out-trees: unordered case. In the case of unordered children, we showed equivalence
between an assumption of invariance under any permutation of children in p(Sch(v) = Sch(v)|
Sv = sv) and modelling that distribution using multivariate count distributions p(N v =

nv|Sv = sv), denoting N v = (N
(1)
v , . . . , N

(K)
v ) and

N (k)
v =

∑
u∈ch(v)

I1{Su=k}

the number of children of v in state k. If parametric families of distributions p(N v|Sv = k) are
chosen separately for each value of k, then the problem is equivalent to defining multivariate
count distributions, which is addressed in more details in Section 3.

Markov out-trees: ordered case. In the case of ordered children, for any vertex v, let nv
denote its number of children and (Sv,1, . . . , Sv,nv) its children states. Parsimonious modelling
of p(Sch(v) = Sch(v)|Sv = k) relies on an assumption of compatible families of distributions,
meaning that if nu = c and nv = c+ 1, then

p(Su,1 = su,1, . . . , Su,c = su,c|Spa(u) = j) =
∑
k

p(Sv,1 = sv,1, . . . , Sv,c = sv,c, sv,c+1 = k|Spa(v) = j).
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Without loss of generality, p(Su,1 = su,1, . . . , Su,c = su,c|Spa(u) = j) can be assumed a higher-
order Markov chain, taking as order the maximal number of children in T minus one. In
practice, models of reasonable parsimony can be obtained using variable-order Markov models,
whose memory trees are selected by information criteria (see Csiszár and Talata, 2006).

Markov out-trees: partially ordered case. Our attention focused to the case where a fixed
number o of children of v are totally ordered: denoting by (v, w) the w-th child of v, then
(v, 1) > . . . > (v, o) and the other children are mutually unordered, but they all are less than
(v, o). This framework is mainly motivated by plant growth modelling, see Section 5. In this
case, both previous strategies (higher-order Markov chains and multivariate count models) can
be combined and yield:

p(Sch(v) = Sch(v)|Sv = k) =

p(N (1)
v,o = n(1)

v,o, . . . , N
(K)
v,o = n(K)

v,o |Sv = k, Sv,1 = sv,1, . . . , Sv,o = sv,o)

×p(Sv,1 = sv,1, . . . , Sv,o = sv,o|Sv = k),

where
N

(j)
v,` =

∑
u∈ch(v)
u<o

I1{Su=j}.

Given parent state, ordered children states are then modelled by variable-order Markov models
(corresponding to p(Sv,1, . . . , Sv,o|Sv)) and unordered children states are modelled with multi-
variate count distributions given ordered children states (corresponding to p(N (1)

v,o , . . . , N
(K)
v,o |Sv,

Sv,1, . . . , Sv,o)).

Markov in-trees: unordered case. In the case of unordered children, modelling p(Sv|Sch(v))
is equivalent to modelling p(Sv|N v). Parsimonious models can be obtained by using multiple
regressions for discrete random variables based on GLMs (e.g., Poisson or their extensions to
zero-inflated or overdispersed data).

Markov in-trees: ordered and partially ordered cases. In the case of ordered (resp. par-
tially ordered) children, modelling p(Sv|Sv,1, . . . , Sv,nv) (resp. p(Sv|Sv,1, . . . , Sv,o, N

(1)
v,o , . . . , N

(K)
v,o ))

could be turned more difficult than in previous cases by the fact that the number of children
may be variable in practice, although we did not encounter this case in applications. This
would correspond to regression models with variable numbers of covariates.

Extension to random structures. If variability in the structure itself has to be accounted
for, the numbers of children (Nv)v∈V now become random variables, and trees can be seen as
processes where at each time step, children are added randomly to the leaves of the tree at
current step. Under Markovian-like assumptions (given the first a ancestor states of u, Nu

is independent from every non-descendent (Sv, Nv)), the trees are those underlying branching
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processes. This family of models is referred to as generative Markov trees. Their sample
space are whole tree graphs with associated states, whereas multitype branching processes are
sequences of multivariate counts that consider the total number of leaves within each state
(because the precise vertex genealogy is unknown).
Now, if the states are observed, the joint probability writes

p(S = s,N = n) = p(Sr(T ) = sr(T ))

×p(Nr(T ) = nr(T )|Sr(T ) = sr(T ))
∏

v/∈L(T )

p(Nv = nv,Sch(v) = Sch(v)|Sv = sv)

in the case of generative Markov out-trees. Without loss of generality, p(Nv = nv,Sch(v) = Sch(v)|
Sv = sv) factorizes as p(Sch(v) = Sch(v)|Sv = sv, Nv = nv)p(Nv = nv|Sv = sv) and previously-
described models can be used for p(Sch(v) = Sch(v)|Sv = sv, Nv = nv).
Particular attention must be given to censoring of observed leaf vertices, distinguishing cases

where they were actually extinguished during the process from cases where measurements
ceased, which induces censoring.
Extensions of this model to generative hidden Markov-out trees are straightforward. Note

that as a particular case of these models is the one defined by the marginal p(N = n) in (1).
This corresponds to generative Markov-out trees with unobserved states (only the total number
of children of each vertex is observed) and can be handled with our EM algorithm, provided
the model is identifiable on {pθk(Nv = nv|Sv = k)}1≤k≤K .
Generative Markov in-trees are related to coalescent processes (Lambert and Popovic, 2013)

and not further considered in this manuscript.

Perspectives in model selection

In practical applications, tree-structured data generally come with ordered children, since this
is more convenient for data coding and storage. However, it is sometimes known, or only conjec-
tured, that order is not relevant regarding dependencies in statistical models. As perspectives,
consistent methods for validating this assumptions should be developed in frameworks such as
generative Markov tree models, including the hidden case. These could rely on either cross-
validation using random permutations of children, or information criteria such as BIC (Kass
and Wasserman, 1995).
More generally, model selection issues arise not only to choose or validate models among

families with different ordering assumptions, but also within each of these families: choice
of the number of hidden states, of some particular parametric assumption on the transition
probabilities from parent to children (Markov out-trees) or from children to parent (Markov
in-trees), choice of the order of the model in the case of higher- or variable-order models. Such
issues have been addressed in Markovian models for sequences, but not for trees.

2.2. Edit distances

Defining distances on trees offers possibilities of applying distance-based clustering of whole
trees, or clustering of subtrees of a given single tree. HMT-based approaches perform cluster-
ing at vertex scale by considering changes in the (conditional) distribution of local features.
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Figure 5: Sequence of optimal edit operation and mapping between two trees T1 and T2. It
is assumed when editing the children of vertex b that changing a vertex label has a
lower cost than deleting this vertex and adding a new one with the correct label, since
the distance has to satisfy the triangle inequality. The mapping between T1 and T2

is represented by pairs of vertices with the same letter (one being capitalized if some
label change occurred). Crossed vertices have no image by the mapping.

Extending these models to clustering of whole trees would require using mixtures of HMT mod-
els. These would be computationally challenging to estimate, would involve a large numbers
of parameters and large quantities of data for estimation, but above all, clustering would be
based on changes in the dynamics of branching processes instead on sheer tree shapes.
As an alternative, we used edit distances between trees, firstly to quantify tree asynchronism.

Tree edit distance are based on a set of edit operations of tree graphs associated with costs
(mainly: inserting and deleting vertices, or changing their features). The distance between trees
is the minimal cost among all sequences of edit operations transforming one tree into the other
(Zhang, 1995). Computing the optimal sequence also provides a mapping between both trees,
distinguishing between vertices that have some homologous vertex in the other tree from the
inserted or deleted vertices. This is illustrated in Figure 5. The rate of vertices mapped with
exactly the same homologous state is some quantification of tree synchronism. This reveals
especially useful in combination with HMT models when features are continuous multivariate,
since segmentation acts as both normalization and denoising step. An illustration is presented
in Subsection 5.2.1.
Then, we investigated edit distances for distance-based clustering, combining spectral and

centroid-based approaches using self-nestedness properties of trees.

2.2.1. Modelling approximate tree self-nestedness

Generic statement of the problem. Modelling self-nestedness for unordered trees was ad-
dressed by Godin and Ferraro (2010) in the framework of lossy data compression. Unordered
trees T can be represented by edge-labelled DAGs R(T ) whose vertices are equivalence classes
of their complete subtrees (i.e., subtrees with every descendant of their roots), and where the
labels are the numbers of occurrences of each subtree. Self-nested trees T can be defined by
either of the four properties:
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• T is a single leaf or all the subtrees of T rooted at the children of the root vertex are
self-nested and one of them contains the others as subtrees;

• all the complete subtrees of T with identical height are isomorphic;

• any two complete subtrees of T are either isomorphic or such that one is a subtree of
the other;

• R(T ) is a linear DAG (i.e., it contains at least one path that goes through all its vertices).

As a consequence from the last characterisation, the DAG representation of self-nested trees
is sparse.
Self-nestedness is a concept justified, in the context of plant structure modelling, by the

fact that plants are build from elementary processes repeating themselves (see Section 5).
However, repetitions are not perfect and are randomly perturbed by numerous physiological and
environmental factors. Moreover, adding or deleting one vertex to a self-nested tree generally
turns its DAG as non-linear. As a consequence, large trees obtained by natural processes are
most often far from being self-nested. In such cases, lossy compression could be achieved,
in principle, by approximating any tree by its closest self-nested tree, but computing this
approximation is conjectured to be some NP-hard problem.

Contributions. Our approach consisted in replacing the fixed edge labels by independent
random variables, which led to stochastic trees that are special cases of generative Markov out-
trees with bounded depth (states of extinction). In collaboration with R. Azaïs and C. Godin,
we transposed the first three characterisations of self-nested trees to the case of stochastic tree
processes. These involve the definition of subtree distributions given their context (i.e., the rest
of the tree), and rely on invariance of these distributions over the tree (instead of isomorphism).
We showed that stochastic processes with linear DAGs satisfy those three characterisation (but
found no reciprocal property). We also showed that first-order Markov out-trees are the only
tree process satisfying independence of subtree distributions with respect to their context.
These results were completed by a combinatorial and topological study of the space of self-

nested trees. This allowed in particular the control of distances from arbitrary to self-nested
trees and thus guarantees quality of approximations. Then we provided algorithms to perform
accelerated computations on DAGs and on self-nested trees, particularly computation of edit
distances. Eventually, we developed several heuristics for computing the nearest self-nested
tree, either using simulated annealing (post-doctoral work of R. Azaïs) or by recursively re-
placing subtrees by their centroid among self-nested trees, starting from the leaves (see Azaïs
et al., 2018). Another improvement was proposed, which consists in locally pruning some of
the centroids that replace subtrees. We provided errors bounds and compared errors with the
reference algorithm by Godin and Ferraro (2010) on simulated data.

Perspectives.
Optimal lossy compression and problem complexity.
The main issues remaining to be addressed in lossy compression of unordered trees are, on the
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one hand, the study of optimality of our algorithms, in the case were the distance between
trees and their lossy representations are constrained not to exceed given bounds. Moreover,
these approach is still unrelated to information theory (see next paragraph) and the optimal
representation of the DAGs themselves was not addressed yet. On the other hand, the problem
on determining whether complexity of finding nearest self-nested trees is in P or NP is currently
still under investigation by the Mosaic team.
Lossless optimal compression of unordered trees.

Our work mainly focused on lossy compression, but optimal lossless compression is still an
open question. Some algorithms have been proposed for ordered tree-structured data (Chen
and Reif, 1996; Itokawa et al., 2009). However, one the one hand, the desired properties of
tree compression algorithms have been poorly formalized. In the other hand, these algorithms
are dedicated to ordered trees and obviously embed more information than necessary for the
compression of unordered trees. Moreover, Chen and Reif (1996) claim that their algorithm
belongs to the family of Lempel-Ziv compression algorithms. However the dictionary built
while traversing the tree must be transmitted, which contradicts the Lempel-Ziv principle of
online reconstruction of the dictionary while uncompressing the tree (Ziv and Lempel, 1978).
A lossless compression algorithm was proposed by Choi and Szpankowski (2012) to compress

Erdös-Rényi graphs up to graph isomorphic mappings, but such distributional assumption is
too restrictive to include tree graphs issued from real-data applications.
Thus, the issues of computing entropy bounds for Markov out-trees, designing associated

optimal arithmetic and Lempel-Ziv encoders remain to be addressed. Building Lempel-Ziv en-
coders would offer new perspectives for quantifying the algorithmic complexity of tree families,
induced semi-distances and associated clustering methods, following the framework introduced
by Revolle et al. (2017).

2.2.2. Tree clustering

Generic statement of the problem
Subsection 2.1 addresses clustering at vertex scale for tree-structured data. Some applications
rather require clustering at tree scale, i.e. considering trees as statistical units. We investigated
this problem from the angle of spectral clustering.
An introduction to spectral clustering is provided by von Luxburg (2007); in summary, its

principle is to build some similarity matrix between trees from the distance matrix (using edit
distances, as introduced at the beginning of this section). The similarity between pairs of trees
is seen as edge weights in an undirected graph whose vertices are the trees. Clusters are ob-
tained by obtaining so-called graph cuts (equivalently connected components) that minimise
the sum of inter-component weights. This is achieved by computing the normalized Laplacian
of the similarity matrix and computing its eigen elements. This yields an Euclidean represen-
tation of the points to be clustered, which can be used to performed clustering, now in some
Euclidean space (referred to as space of spectral representation) using standard approaches
(mixture models for example).
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Contributions
As in most clustering methods, the issue of selecting the number of clusters requires some par-
ticular treatment. Criteria based on Euclidean distances in the space of spectral representation
would not take into account the true topology of tree spaces. We thus developed clustering
methods based on cluster representatives. As in iterative K-means or centroid-based clustering
algorithms (Taillard, 2003), the principle was to represent a cluster by the closest tree, on aver-
age, to the trees in that cluster. In K-means, the closest point for squared Euclidean distances
has a closed-form expression while in centroid-based clustering, the representative has to be
chosen within the sample. However in the case of trees, there was no known efficient algorithm
to compute the closest tree representative, which has to be searched among every tree in the
space, as mentioned in Subsection 2.2.1. Not only are its height and size not bounded by those
of the sample but even more limiting, each distance computation between a candidate repre-
sentative and the sample points has time-complexity more than the product of tree sizes times
the sum of their maximal degrees. Since finding the exact solution of the minimisation problem
seemed out of reach, we focused on restricting the search space while keeping it dense, in some
sense, using self-nested trees as cluster representatives in the selection step.
We used prediction strength (Tibshirani and Walther, 2005) to select the number of clusters,

since this method is very general and independent of the specific algorithm used for clustering.
It only requires some clustering of any cloud of points, and the ability to use that clustering
to predict the cluster of out-of-sample points. It is based on the stability of clusters under
cross-validation procedures.
Our first results on simulated trees showed that the approach is robust to high mean intra-

cluster over inter-cluster distances.

Perspectives
Our approach is quite general and could be applied to other type of data: sequences or more
general types of graph. Its main rationale is to use spectral clustering (thus, Euclidean dis-
tances) to actually achieve the clustering, but to use distances in the original data space to
perform model selection. The main difficulty is to define an appropriate representation of the
cluster. Typically, one point of the original space (which may not be in the sample) is chosen.
Finding the point minimising the mean within-cluster distance is the main issue. Then the
prediction function required by prediction strength is the closest representative to test points.
Moreover in numerous applications, the question of interest is multiscale clustering of trees. In

a given tree, we want to seek subtrees that share structural similarities at several nested scales,
so that clusters at vertex scale could be further clustered at a some coarser, unknown scale, and
so on until we reach whole tree scale. An example of application is provided in Subsection 5.2.5.
A possible approach to address the problem are variational graph autoencoders (Kipf and
Welling, 2016), since the principle of autoencoders is to encode structures at nested scales
through dimension reduction by reducing the number of neurons per layer in multilayer neural
networks. Another approach would be to duplicate the tree graph several times and connect
tree layers by edges in a Bayesian model with priors on edges, and perform model selection by
learning the edge posteriors with MCMC or variational approximations.
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2.3. Multiple change-point detection

Generic statement of the problem

Subsection 2.1 addresses segmentation at vertex scale for tree-structured data using hidden
Markov models. This approach is especially useful whenever vertex features may have the
same distribution within separated connected components, if separation is due to other con-
nected components within which vertex features have different distributions. In other words,
HMMs are motivated by the possibility to return to previously-visited states and to predict
future observations.
If such features are not required and if it is sufficient to find a partition of the tree, such that

within each connected component, vertices have the same distribution, then multiple change-
point detection approaches may be sufficient. They do not rely on dependencies assumptions
between variables inX. On the contrary, they assume that all variables are independent. These
are identically distributed if and only if they belong to the same component.
In the case of sequential data of length n, exact algorithms in O(n2) exist for likelihood

maximisation. Moreover, consistency of penalized contrast functions to estimate the number
of change points have been established (Lavielle, 2005). However, the problem of multiple
change-point detection in tree-structured data remained unaddressed.

Contributions

Firstly, we addressed change-point detection in trees with a fixed, known number K of change
points. Finding the change points is equivalent to finding a partition Π of V(T ). For any π ∈ Π
and v ∈ π, let pπ(Xv) denote the distribution of Xv. This distribution is assumed to belong to
some parametric family (pθ)θ∈Θ, where the parameter is denoted by θπ. From the independence
assumption, and since by definition all vertices in π have distribution pπ, the log-likelihood
function writes

L(X,Π, θΠ) =
∑
π∈Π

∑
v∈Π

log pθπ(xv)

where (θΠ) = (θπ)π∈Π. There was no known algorithm with quadratic time-complexity to determine

arg max
Π,θΠ
L(X,Π, θΠ). (1)

Even more, the only known possibility is to enumerate the S(n,K + 1) elements of Π with
cardinal number K + 1 (S(n, k) denoting Stirling numbers of the second kind).
We proposed some greedy, iterative heuristic to maximise the log-likelihood function. Given

a current proposal Π̃, the principle is to consider in turn for every π ∈ Π̃ all partitions of π into
two sets (Fernique et al., 2015 and 2016a). The number of change-points K was selected using
slope heuristics adapted from the sequential framework (Baudry et al., 2012). The approach
was used to detect patches in mango trees and the estimated partitions were compared to a
priori known partitions obtained from biological considerations (Fernique et al., 2016a).
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Perspectives

Firstly, the exact complexity of the combinatorial problem (1) has to be determined. Secondly,
the theoretical properties of slope heuristics have to be investigated under the assumption of
tree-structured data, provided we have an oracle exact algorithm to solve (1). Lastly, the
greedy algorithm is likely to be improved, maybe by solving a sequence of time-series multiple
change-point detection problems. It should also be compared with the approach by Thepaut
and Rigaill (2019).
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3. Multivariate counts and graphical models

As highlighted in Section 4, generative statistical modelling of trees using Markov out-trees re-
quires statistical models for multivariate counts, which correspond to p(N (1)

v , . . . , N
(K)
v |Sv = k)

in this framework (recalling that this denotes the joint distribution of the number of chil-
dren in each state given their parent state). Models may be chosen in distinct families for
each value of k, which makes the problem equivalent to defining discrete multivariate distri-
butions p(N ) = p(N (1), . . . , N (K)). Thus, the problem can be formulated in a general way,
independently of using those distributions in Markovian models for trees or in other appli-
cations. Indeed, multivariate counts are often encountered in health, biological, medical and
social applications – in fact any domain where a categorical (state) variable is recorded in
several individuals, whenever the joint state distribution is invariant under permutations of
these individuals.
Defining appropriate families of distributions is a crucial point, not only for the sake of

accurate prediction, but also because dependencies between states is often of interest for in-
terpretation of interactions between individuals. For example if some inventory is made of the
species of living organisms within a given place, N (k) representing the number of individuals
with species k, dependencies are likely to be interpreted in terms of competitions, trophic rela-
tionships or symbiosis. This section focuses on both dependencies and definition of parametric
families of distributions, which are two closely related aspects.

Generic statement of the problem

The aim of this work was: I) to infer conditional independence relationships between the K
count variables; II) to build parsimonious parametric models consistent with these relationships;
III) to characterise and test the effects of covariates on the distribution of N , particularly on
the dependencies between its components.
The second objective is motivated by some impossibility or lack of efficiency to define such

models by exhaustive enumeration of p(N = n), corresponding to saturated models, given that:

(i) The support of some p(N (k)) may be unbounded;

(ii) Even if the support of every p(N (k)) is upper-bounded byM , then defining p(N ) without
any particular assumptions requires up to MK − 1 independent parameters, which is
more that the sample sizes and the values of M and K would allow in a vast majority
of applications.

Context (ii) typically corresponds to cases where multivariate histograms have many cells, most
of which are empty.

Contributions

To achieve these goals, we proposed an approach based on graphical probabilistic models (Koller
and Friedman, 2009) to represent the conditional independence relationships in N and on para-
metric distributions to ensure model parsimony. Three kinds of graphs are usually considered:
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either undirected (UG), directed acyclic (DAG), or partially directed acyclic (PDAG) graphs.
Models and methods for graph identification were proposed in UGs and DAGs, but the case of
parametric models for PDAGs has been considered less often in the literature. Using undirected
models lacks of versatility, since marginal independence relationships cannot be represented if
variables are conditionally dependent. If directed models are used, pairwise cyclic independence
relationships cannot be represented either. To raise such limitations, we developed mixed ap-
proaches based on PDAGs.
The main issue in probabilistic graphical models (PGMs) is graph identification, essentially

because it involves combinatorial searches among the set of possible graphs. This can be cir-
cumvented using Lasso techniques, but these are limited to multivariate Gaussian distributions
or distributions only known up to some intractable scaling factor, which turns model selection
within different families especially difficult (Friedman et al., 2008; Yang et al., 2012 ). Our
contexts of application, on the contrary, are rather characterised by zero-inflated, right-skewed
marginal distributions.
In the context of P. Fernique’s PhD thesis (2014b), we introduced a family of parametric

PDAG models, such that covariates can be introduced easily and in a flexible manner. The
class of considered PDAGs is such that the joint distribution factorises as

P (N = n) =
∏
c∈C

P (N c = nc|Npa(c) = npa(c)), (2)

where C denotes the set of undirected subgraphs (so-called chain components) and pa(c) the
parent chain components of c (which can be the empty set).
Each source vertex of the graph is associated with some univariate distribution chosen in

parametric families and their mixtures. Each non-singleton source component of the graph is
associated with some multivariate distribution chosen among diverse extensions of the multi-
nomial family, the multivariate Poisson distribution (Karlis, 2003) and their mixtures. Each
component of the graph with at least one parent is associated with the corresponding fami-
lies of univariate and multivariate regression models defined hereinbefore in the case of source
components. As a consequence, each factor in (2) is modelled by a parametric distribution or
a regression model. An example of parametric PDAG is provided in Figure6. The parameters
are estimated by maximum likelihood and the family with maximal BIC value is selected for
each factor, which in the ends uniquely defines a joint distribution.
Graph search is achieved by a stepwise approach, issued from unification of previous algo-

rithms presented in Koller and Friedman (2009) for DAGs: Hill climbing, greedy search, first
ascent and simulated annealing. The search was improved by taking into account the para-
metric distribution assumptions, which led to caching overlapping graphs at each step. An
adaptation to PDAGs of graph search algorithms for DAGs was developed, by defining new op-
erators: edge addition and deletion on the one hand, directed edge reversal at chain component
scale (instead of vertex scale) on the other hand. Two operators specific to PDAGs were added:
chain component addition and deletion. On the one hand, a parent vertex can be added to its
child chain component, or a child vertex can be added to one of its parent chain component,
which results into deletion of one chain component in both cases. On the other hand, a vertex
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Figure 6: An example of parametric PDAG. The chain components are the graph undirected
parts: {N1}, {N2, N3}, {N4, . . . , N7}, {N8, N9} and {N10}. Source chain components
(here, {N1} and {N2, N3}) are modelled by univariate or multivariate distributions
(here a negative binomial NB and multivariate PoissonMP , resp.). The other chain
components are modelled by univariate or multivariate regressions (here a multino-
mial regression MR, multivariate Poisson regression MPR and negative binomial
regression NBR).

from a chain component c can be set to be a parent or a child of c, which results into addition
of one chain component.
Since our model is essentially defined by chaining regression models in PDAGs, some set

of covariates Y can be easily incorporated in the model. This is achieved by substituting
P (N = n|Y = y) for P (N = n) in (2), and P (N c = nc|Npa(c) = npa(c),Y = y) for
P (N c = nc|Npa(c) = npa(c)). In the graph search step, some covariates in the set Y may be
discarded in practice leading to P (N c = nc|Npa(c) = npa(c),Y c = yc), in a differentiated way
with respect to the different chain components c.
Comparisons between the different proposed algorithms were performed on simulated datasets

to: (i) Assess gain in speed induced by caching; (ii) Compare the graphs obtained under
parametric and nonparametric distributions assumptions; (iii) Compare different strategies for
graph initialisation. Strategies based on several random graphs were compared to those based
on a fast estimation of an UG, assumed to be the moral graph and obtained using the approach
by Friedman et al. (2008).
In some specific applications, mixtures of parametric PDAGs models were found more ade-

quate that PDAGs with mixture of parametric distributions as chain components, see Section 5.

Perspectives

The family of PGMs we introduced was computationally efficient from an estimation point of
view and offered some improvements regarding generality, in the sense that previous state-of-
the-art graphical models were particular cases of it. However, it failed to represent arbitrary
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dependencies. This was due to the difficulty to define tractable parametric families of UGs
for multivariate counts with arbitrary graphs. Indeed, we used parametric families as building
block of PGMs, which dependency graphs were mostly either entirely connected or disconnected
(Fernique et al., 2016b). Thus, our work would highly benefit from relaxing such constraints,
using for example axiomatic definitions of the required families, which somehow would be
discrete equivalent of Gaussian distributions.
Moreover, consistency of our graph estimation procedure would need to be investigated from

a theoretical point of view. Although originally, our modelling framework for PDAGs was mo-
tivated to applications in multivariate count modelling, in the end very few aspects are specific
to discrete variables and the extension to multivariate Gaussian PDAGs is straightforward. We
believe that combining approaches for UGs (Friedman et al., 2008) and DAGs (Chickering,
2002; Verma and Pearl, 1992) are promising leads for this task.
Multiple applications for multivariate count models are also to be expected, particularly in

ecology as mentioned in Section 7, but also in the analysis and modelling of human activities.
In Durand and Fernique (2013c), we addressed inference of dependencies from the number of
activities of various types (walk, school, work, leisure, cycling, driving, bus, etc.) performed
jointly by the different members of families within a day, with particular focus on transportation.
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4. Hidden Markov chains

Some methodological contributions motivated by sequence analysis with HMCs are developed
here. The first one is a general set of diagnostic tools to assess uncertainty on hidden state
processes and to provide alternative restorations to the Maximum A Posteriori (MAP) sequence
yielded by the Viterbi algorithm. It was extended to non-sequential data (i.e., graphical HMMs).
The second contribution, associated with L. Donini’s PhD thesis, is related to the sequential
decision problem in optimal timeout identification. The third contribution is the topic of
B. Olivier’s PhD thesis. It aims at modelling coupled heterogeneous sequences with regime
switches subject to delays.

4.1. Quantifying uncertainty on state processes

Generic statement of the problem

Using similar notations as in Section 2, we consider some HMC model X = (Xt)t≥0 with state
process S = (St)t≥0 and with given parameter λ (usually estimated from data). Since λ is
fixed, it will generally be omitted in probabilistic notations.
The state inference problem consists in estimating values of S from λ and a finite sequence

of observations x = (xt)1≤t≤n, also denoted by xn1 . This is particularly crucial in numerous
applications where the unobserved states are expected to have some meaningful interpretation.
In such cases, the state sequence has to be restored: Firstly, to validate the expected interpreta-
tion with respect to observations; secondly, to validate assumptions underlying the model itself
and lastly, because restored state values may be required as inputs of further post-processing
steps. For example, validation of the choice for the family of emission distributions is generally
achieved by visualising and comparing histograms with conditional pdfs given the states. The
use of restored states for post-processing is typically required in prediction, segmentation or
denoising (Ephraim and Mehrav, 2002).
State restoration is usually achieved by optimizing the MAP criterion,

ŝ = arg max
s
P (S = s|X = x) (3)

solved by the Viterbi algorithm.
Using the restored state sequence in the above-mentioned frameworks relies on the assump-

tion that uncertainty on the state process given observations should be reasonably low. Quan-
tification of local state uncertainty given an observed sequence has been addressed by either
enumeration of a fixed number L of best solutions to problem (3), or by state profiles, which are
state sequences summarised in a K × n array, K being the number of states (Guédon, 2007).
These profiles are obtained by computing

max
(su)u6=t

P (S1 = s1, . . . , St−1 = st−1, St = j, St+1 = st+1, . . . , Sn = sn|X = x) (4)

and drawing curves of such probabilities indexed by t (one curve per value of j). Such methods
may highlight potential relevant (i.e., significantly probable) local alternatives to the MAP-
optimal ŝt. As a complement, smoothed probabilities P (St = j|X = x) are sometimes considered.
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However, these approaches do not allow for global uncertainty quantification on the whole
state sequence. Hernando et al. (2005) proposed an algorithm to compute the entropy H(S|
X = x).

Contributions

The approach by Hernando et al. (2005) provides a well-formalized solution to global uncer-
tainty quantification, since this relies on entropy and the information theory. However, it suffers
from two shortcomings. Firstly, this is insufficient for detailed state interpretation: knowledge
on how global uncertainty is distributed along the sequence is also of primary importance.
Secondly, their algorithm is specific to sequences and cannot be generalized to other types of
probabilistic graphical models.
We defined a general class of graphical hidden Markov models (GHMMs) and provided a

result of additive decomposition of the global entropy with respect to local contributions that
applies to this whole class of models (Durand and Guédon, 2016). GHMMs are defined by a
DAG G = (V ,A), observed variables X being indexed by V , i.e., X = (Xv)v∈V and by hidden
state variables S also indexed by V , such that G is a perfect map for P (S) and the observed
variables are conditionally independent given S. This family contains hidden Markov chain
(HMC) and tree (HMT) models. Then the decomposition of entropy writes as:

H(S|X = x) =
∑
v∈V

H(Sv|Spa(v),X = x),

where pa(v) denotes the parent of vertex v, for any subset U of V , XU denotes the family of
random variables (Xu)u∈U and by convention, P (Sv|SU) = P (Sv) if U = ∅.
Every term of that sum is associated with one vertex in V . Hence, these entropies can be

interpreted as local contributions to global uncertainty. Since these profiles are unidimensional,
they can be drawn whatever the graphical structure G, contrarily to smoothed probabilities,
which are multivariate and thus difficult to visualise on graphs. An illustration of some entropy
profile on trees is provided in Figure 7.
We provided algorithms with polynomial complexity in the case of HMC models and HMOT

models with independent children to compute the elements of the decomposition. It was shown
using synthetic and real-case data that the obtained local entropy profiles are relevant for
state uncertainty diagnosis and state interpretation. These algorithms are complementary with
approaches that either enumerate the L most likely state restorations or solve problem (4).
Algorithms to derive the solutions of these problems for HMOT models were also derived.
It was shown that usual smoothed probability profiles are not relevant for quantifying global

state uncertainty, due to their inherent marginalization property.

Perspectives

Non-factorisable models. We obtained explicit results in computing and decomposing en-
tropies H(S|X = x) for a class of models such that P (S = s|X = x) has some factorization
property. This is not the case any longer for more complex models, as hidden Markov ran-
dom fields, in which local contributions may not be identified and H(S|X = x) may not be
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Figure 7: An example of entropy profile for HMTs. Vertices with lowest contributions to joint
entropy are represented in dark blue (value: 0.0). Those with highest contributions
are represented in red (value: 0.91).
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computed with polynomial complexity. For such models, approximations would have to be
performed using combinations of variational and mean-field methods.

Impact of parameter estimation. The above study considers the model parameters as cer-
tain. When dealing with real data sets, parameters λ are usually estimated by maximum
likelihood or with Bayesian approaches. In both cases, uncertainty on the value of λ would
have to be accounted for in state uncertainty; either using confidence intervals in frequentist
frameworks, or by integration on λ in Bayesian frameworks, using equation

H(S|X = x) = H(S|λ,X = x) +H(λ|X = x)−H(λ|S,X = x)

combined with Monte-Carlo methods sampling under the posterior p(λ|X = x).

4.2. Optimal timeout modelling

Generic statement of the problem

This work was in collaboration with XRCE, the Xerox Research Center in Europe. This
collaboration led to the co-supervision of Laurent Donini’s industrial PhD project (with S.
Girard, V. Ciriza and G. Bouchard). We addressed the optimal choice of the waiting period
(or timeout) that a device should respect before entering some sleep mode, so as to optimize
a trade-off between power consumption and user impact. The optimal timeout was inferred
by appropriate statistical modelling of the times between user requests. Several models were
considered among the class of point processes, among which HMC-based models.
Devices have several modes associated with different power consumptions. When solicited

by users, devices have to enter the so-called operating mode, which has highest consumption.
Once the task completed, devices might be put into a mode with lower consumption after
some timeout. However, switching between modes implies extra consumption. If the time Xi

to the next request i were known in advance, the optimal timeout τ would be deterministic
and explicitly obtained by comparing Xi to some characteristic ∆ of the material, defined as
the sum of mode switching costs over the difference of consumptions between modes. In the
considered context, Xi was random and unknown at the end of the task, so the decision had to
be taken by minimising future consumption.
Several approaches were considered in the literature to address this problem, including su-

pervised machined learning algorithm. A detailed state of the art is provided in Durand et
al. (2013a).

Contributions

To take precisely into account possible time-dependencies in the request process, we formulated
the problem as a Markov decision process (MDP; Sutton and Barto, 2018) where the state space
is the set of device modes and the decision space, the set of possible timeout values. Several
criteria may be considered to represent future consumption.
In our work, we chose to minimise consumption between current and next request given times

of past requests, which correspond to a reinforcement learning problem with horizon 1. We
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showed that in this case, the problem has some explicit solution. Depending on whether the
hazard rate zi for the distribution of Xi|X i−1

1 is an increasing function, a decreasing function
or considering other cases, the solution is either 0, +∞, or satisfies equation zi(τ) = 1/∆.
As a consequence of this property, the quality of the strategy is essentially determined by

that of the prediction of Xi|X i−1
1 . We considered two classes of models for the request sequence:

renewal processes, were the (Xi)i≥0 are assumed to be independent and HMC models, which
account for possible heterogeneity and abrupt changes in the conditional distribution Xi.
Under the independence assumption, three parametric families of distributions were investi-

gated for Xi: Weibull, Gamma and Pareto. Optimal values for ∆ were derived in each case.
Under the HMC assumption, three strategies to predict Xi given X i−1

1 were considered and
compared numerically on simulated and real data. As an alternative to HMC models, changes
of distribution for Xi were accounted for by reestimating parameters of a renewal process using
the set of past observations contained in a sliding window.
The considered data set was composed by sequences of print job submissions on different

printers. In this framework, hidden states may be correspond, for example, to variable activity
rates, such as business hours vs. night periods. The printer modes are the following.

• Print mode: The device activates its marking engine, print path and controller and com-
pletes any print requests. Power consumption is typically the highest in this mode.

• Idle mode: The device is ready to print immediately and therefore a certain power con-
sumption is required to maintain the device in a state of readiness.

• Sleep (or standby, or power-save) modes: The device is not ready to print immediately,
which induces a delay between the user request and the actual beginning of the print job.
Depending on the printer, one or several such modes are available.

On the real data sets, the approaches based on renewal processes performed significantly
better than state-of-the-art approaches (so-called c-competitive) on test sets used in cross-
validation. The use of sliding windows did not significantly increase the performance. The HMC
performance what comparable to that of the c-competitive approach. This may be due to the
fact that heterogeneity did not impact a large proportion of requests in that specific framework.
The problem of minimising energy consumption was extended to accounting for user impact

in our criterion. Indeed, in practice mode transitions of device are not instantaneous and cause
some delay to availability. Such inconvenience can be incorporated into the model by adding
some constant penalty δ to each occurrence of switching to the operating mode. We showed
that the previous theoretical results remained valid, up to some redefinition of ∆.

Perspectives

In this study, we proposed a statistical cost-based analysis to determine optimal timeout period
for devices. The theoretical formulation of power consumption in terms of a print process can
be considered as a stepping stone for more complex models (e.g., incorporating covariates) that
would allow the model to progressively gain completeness in the consideration of other several
cost factors, as for example device ageing due to increased transitions from power saving mode
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due to a more dynamic power saving policy. We also established the foundations to develop in
the future a power saving strategy capable of performing accurate prediction of power saving
entry as described above, but also of optimal power saving exit.
A further extension of this work is the challenging issue of optimal redirection of print jobs

and power saving policy within a network of devices managed by a server. Given a user request,
this consists in determining on which device the task has to be processed, and after what delay
each device has to be turned into sleep mode, so as to minimize the global consumption.
Modelling this problem should take into account constraints due to user impact, which are
partially related to network connectivity. This could be handled in the framework of MDPs,
where the spaces for states and actions now would be the space product on each device.
Finally, our approach dealt separately with model identification (parameter estimation from

trajectories of user requests) and computation of optimal timeout periods (in a framework with
fixed parameters). As an alternative, a unified model for handling both model identification
and decision taking would be provided by the Bayesian Partially-Observed Markov Decision
Processes (POMDPs) in Poupart and Vlassis (2008). Here the non-observed part of the MDP
would consist in, firstly, the unknown parameters, considered as stochastic in a Bayesian frame-
work, and secondly, potential unknown states as in the HMC models. The benefit of Bayesian
POMDPs to our application would come from taking into account simultaneously the different
sources of uncertainty: device and user states, value of parameter and reward (which is the
opposite of expected consumption).

4.3. Coupling of hidden semi-Markov models

Generic statement of the problem

This work was motivated by the joint analysis of eye-movement signals and multi-channel elec-
troencephalograms (EEGs). Both signals were acquired concomitantly on participants during
reading tasks aiming at deciding as fast as possible whether some text is or not related to a
given target topic.
In this framework, the following process features may be assumed:

• Both processes are sampled at different time scales, possibly at random times;

• Both are subject to regime switches;

• Switches of one of the processes are driven by those of the other one with random delays.

These assumptions were originally justified by our specific context, but they are applicable in
other contexts, particularly in videos containing sequences of changing human activities, or
monitoring persons, places or devices with several types of sensors, etc.
In our framework, the regimes are hypothesised to reflect short-term (i.e., within-trial) read-

ing strategies. They consist in reading portions of texts more or less carefully, depending on
their expected relevance to carry out the task. Information gathered through eye movements
is then integrated, resorting to different zones of the brain and at different characteristic fre-
quencies, depending on the strategy and particularly, on the degree of maturity regarding the

33



decision. It is thus expected that changes in strategy inferred from eye movements should be
followed by specific signatures in EEGs, with some delay. Some feedback loop is also expected,
since decision processes potentially perceptible at EEG level also lead to changes in strategy,
i.e., in eye-movement dynamics, although this has been ignored in a first step. Sampling is
performed at a fixed rate (1,000 Hz), while eye movements are sampled at fixation/saccade
(and thus, random) rate. Fixations are gaze immobilisations (allowing collection of visual in-
formation), as opposed to saccades, which are brief movements of the eyes separating fixations
and allowing other parts of the text to be subsequently fixed.
Coupled hidden Markov models were proposed to jointly model heterogeneous signals, par-

ticularly for EEGs. Obermaier et al. (2001) developed an approach based on standard HMC
embedded into Simulink models; Rezek et al. (2002) considered discrete and continuous signals
with fixed lags in a Bayesian framework. Zhong and Ghosh (2002) developed coupled HMC
models with weights representing intensities of coupling. These models have been used in su-
pervised classification contexts, e.g. to discriminate distinct tasks by building a coupled HMM
for each of them. Thus, these were not designed for signal segmentation. In particular, each
channel had its own segmentation, which did not allow modellers to temporally segment the
whole process in a coherent manner. Moreover, non-Markovian latent processes and variable
sampling rates were not taken into account.

Contributions

This work was achieved in the context of B. Olivier’s PhD thesis, co-supervised with A. Guérin-
Dugué. In a first step, eye-movement sequences only were taken into account and modelled with
hidden semi-Markov chains (HSMCs). The approach was inspired by the work by Simola et al.
(2008), using different protocols, types of sequences and models, though. Information criteria
were used to select the number of states and to compare HSMC with HMC models. The former
showed better performance in prediction and highlighted four interpretable phases in terms of
information acquisition phases (or strategies): normal reading, fast reading, careful reading and
decision making. Special attention was given to the choice of input variables and their coding;
the impact of this choice on the robustness of segmentation (based on our work in section 4.1)
was assessed and some categorical coding was chosen (fast forward and 1-step-forward reading,
refixating, 1-step-backward and fast-backward reading).
The relevance and interpretation of phases were investigated using covariates; mainly, the

fixation duration, saccade amplitude and reading speed in words per minute. The latter was
compared with typical values provided by Carver (1992) associated with contrasted and recog-
nized types reading activities (e.g., skimming, normal reading, learning...). Some clustering of
subjects was performed, based on the frequencies of use of the different phases. The clusters
were interpreted in terms of reading skills, e.g., fast, slow, careful readers. During the experi-
ments, three types of texts were presented to subjects: highly (HR), moderately (MR) or not
related (UR) to the topic. A subcategory HR+ of HR was defined as HR texts containing words
from the target topic. The effect of the type of text on the phases was assessed.
The following analysis was performed to explain which semantic contents could cause phase

switching. It was expected that some specific words particularly close (in HR texts) or incon-
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gruent (in UR texts) to the target topic, from a semantic point of view, could lead to switch
from current phase. These are referred to as trigger words. To quantify proximity between
the target topic and words of the text, we used two existing metrics, latent semantic analysis
(LSA; Dumais, 2004) and FastText (Bojanowski et al., 2017). We also proposed a new metric
combining the other two. The common principle is to embed words into some Euclidean space,
using singular value decompositions in the first approach and artificial neural networks in the
second one. The similarity between words is then defined by the cosine similarity of their rep-
resentations in that vector space. This can be extended to sets of words (e.g., sentences) by
summing the associated vectors. Depending on the type of text, trigger words were defined
as follows:

• in HR texts, the two words that have the highest cosines with the topic (positive in
principle);

• in UR texts, the two words that have the lowest cosines with the topic (negative in
principle);

• in MR texts, the two words that have the highest and lowest cosines with the topic.

This is justified in MR texts by the variability of the semantic proximity to the target topic:
some were rather close and some others, rather far from that topic.
As mentioned in subsection 4.1, state values and transitions are subject to uncertainty that

depends on the data and model parameter. To assess the effect of trigger words on transitions,
we inferred the states using MAP restoration and measured the number of fixations between
times of transition and the closest trigger words. It was expected that, on the one hand,
transitions occurred closer to trigger words than to other words chosen at random uniformly in
the text and in the other hand, that their distance should be greater for MR than for UR and
HR texts, and greater for HR than for HR+ texts.
The three metrics were compared as for their performance with respect to trigger word

identification. The fastText representation proved more effective that the other two to detect
trigger words.
Linear regression models were used to explain transition frequencies by the distance (in

number of fixations) to the closest trigger word. Strongly negative slope coefficients were
expected to highlight transitions occurring more frequently around trigger words.
The results are presented in Figure 8. In each plot, x-axes represent the distance (in number

of fixations) between a transition word and the closest trigger word. Y-axes represent rela-
tive frequencies of transitions for a given distance. Three phases are considered for outgoing
transitions (meaning that we are leaving the considered phase).
The effect of proximity to trigger words was particularly noticeable for transitions occurring

from normal reading phases in HR+ texts, speed reading and information search in UR texts,
which suggests that beginning by normal reading would be more efficient to achieve the task in
HR+ texts while beginning in speed reading and information search would be more relevant in
UR texts. MR slope coefficients were almost 0, pointing out that either phase transitions are
not triggered by any keywords in MR texts, or that the concept of trigger words might not even
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Figure 8: Frequencies of the distance between transition word to trigger word in number of
fixations.

be well-defined nor relevant for some of these texts. UR texts were characterized by the most
negative slopes in information search and speed reading phases and also a strongly negative
slope in normal reading, showing a strong effect of incongruent words to trigger phase switches.
Moreover, these texts also had the shortest times and numbers of fixations before decisions,
showing that decisions are easier for such texts. HR+ texts mostly have more strongly negative
slopes as HR texts do, showing that reading a word contained in the target topic has a stronger
effect on phase change decision than reading a word merely semantically related to the target.
This also suggests that decisions are more easily taken in HR+ than in HR texts.

In a second step, keeping the same HMSC model as before and using MAP state inference,
we focused on identifying specific signatures in EEGs signals characterizing each phase. EEGs
turned out to be too noisy for identifying phase-specific patterns. We thus used a time-frequency
decomposition called maximal overlap discrete wavelet transform (MODWT with Daubechies-8
Least Asymmetric, Persyval 2006). MODWT is a non-orthogonal wavelet transform, in contrast
to the classical discrete wavelet transform (DWT). We used MODWT because on the one hand,
they yield desirable properties for wavelet correlation estimation (Whitcher et al., 2000) and
on the other hand, absence of decimation makes mappings between timestamps and wavelet
coefficients straightforward.
EEG data were sampled at 1,000 Hz. Electrode positions are illustrated in Figure 9. Each

trial had a corresponding sequence of 10 seconds and was truncated if the trial was exceeding
this duration. Before each trial, 180 ms of acquisition was also available. We had a total of
2,390 trials.
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Figure 9: Electrode positions. The triangle represents subject’s nose.

The correspondence between wavelet scales and brain wave frequencies is shown in Table 1.
The latter have specific names (depending on their range) which are usually used in the do-
main literature.

Wavelet scale Wavelet Frequency (Hz) Brain wave Brain wave frequency (Hz)
1 256-512
2 128-256
3 64-128 high-γ 32-100Hz4 32-64 low-γ
5 16-32 β 12.5-30
6 8-16 α 8-12
7 4-8 θ 4-7

Table 1: Wavelet scales, their equivalence in the frequency domain, and their corresponding
brain waves.

Sparse anatomical representations of brain functional connectivity using graphs were obtained
from inter-channel correlations using confidence intervals provided by Whitcher et al. (2000).
Some threshold R was used for representing correlations and its choice based on Achard et al.
(2006). The network construction methodology is summarized in Figure 10 for a given wavelet
scale and a given reading strategy.
The specificity of our task lay on the decomposition of trials into phases. The aim of the

study was to highlight differences of functional brain connectivity from a phase to another. To
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Figure 10: Network construction methodology: Correlation matrix, adjacency matrix contain-
ing significant correlations and corresponding anatomical graph for a given scale
and a given reading strategy. Electrode positions in the anatomical graph are as in
Figure 9.

this end, we computed the wavelet coefficients of each channel for each trial and segmented the
wavelet coefficients with respect to phase changes. We then computed cross-correlations for all
trials, for a given a phase, before aggregating the correlations per trial with a weighted average,
weights corresponding to phase lengths.
As main outputs of this analysis, EEG activity was assessed as most salient in α and θ bands.

More significant connexions were identified in the normal reading and slow confirmation phases
than in information search and speed reading, the former being characterized by lower speeds
and expectedly deeper sentential integration and memorization.
In a third contribution, we proposed to couple eye movements and EEGs into a single model

with interpretable hidden states. Our model relies on the assumption that eye movements
allow acquisition of visual information, which is then turned into semantic information and
processed in different locations of the brain with an additional time delay. As rationale, since
phase changes are characterized by differences in both eye-movement dynamics and channel
correlations, coupled models should lead to improvements in phase-change time-localisation.
The approach applies to any multivariate process with regime switches and variable sampling

rates, where switches in part of the variables drive switches for the other variables, up to
some delay.
For the sake of concision, the high-rate sampling processes will be referred to as EEGs while

the low-rate sampling processes will be referred to as eye movements (sampled at fixation rate).
These processes are defined by the following observed quantities:

• t ∈ {1, ..., τ}, the EEG temporal index in milliseconds;

• Nt, the number of fixations from 1 to t (hence Nτ standing for the total number of
fixations), with N1 = 1;
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• TNt , the beginning of the Nt-th fixation; and similarly Tj, the beginning of the j-th
fixation;

• Dj = Tj − Tj−1, T0 = 1, the time between the j-th and the j − 1-th fixation (i.e., the
duration of the j − 1-th fixation and associated outgoing saccade);

the notation being borrowed from the counting process terminology. Here, the potential stochas-
tic behaviour of Nt is not accounted for.
The model is defined by some latent state process (S

(1)
t )t≥1 sampled at a fixation rate and an

associated output process (O
(1)
t )t≥1, meaning that both processes have constant values between

times Tj to Tj+1 − 1. Therefore we have, for example,

P (S
(1)
Tj
, ..., S

(1)
Tj+1−1) = P (S

(1)
Tj

)1{S(1)
Tj

= ... = S
(1)
Tj+1−1}

and the distribution of (S
(1)
t )t≥1 is deduced from that of (S

(1)
Tj

)j≥1.
EEG state and output processes are denoted by (S

(2)
t )t≥1 and (O

(2)
t )t≥1, respectively. To

couple O(2)
1:τ with S

(1)
1:τ , which have different sampling rates, we define auxiliary random variables

εj representing lags (or delays):
S

(2)
t = S

(1)
TNt−εNt

, (5)

where t ∈ Jε1, τK and εj represents the lag at time Tj. In practice, Nt is naturally upper-
bounded by τ , the maximal sequence length, but for complexity purposes ε can be both lower-
and upper-bounded, say εNt ∈ J0,LK. Note that if L = 0, then there is no lag and the model
simply is an HSMM with multiple output processes with variable sampling rates.
Usual assumptions rule the joint process (S

(1)
t , S

(2)
t , O

(1)
t , O

(2)
t )t≥1, particularly: (S

(1)
Tj

)j≥1 is
an HSMC, O(1)

Tj
given S

(1)
Tj

= k is independent from every other random variable and has
distribution pθk , O

(2)
t given S(2)

t = k is independent from every other random variable and has
distribution pλk .
For the joint distribution to be fully specified, additional assumptions are required regarding

(εj)j≥1. The most realistic assumptions are the following:

• ∃e ∈ R, ∀j ≥ 1 εj = e, where e is a deterministic parameter to be estimated (con-
stant lag);

• ∃(e1, . . . , eK) ∈ RK , ∀j ≥ 1 εj = e
S

(1)
Nt

, where (e1, . . . , eK) are deterministic parameters to

be estimated (deterministic, state-specific lags);

• (εj)j≥1 are i.i.d. random variables with distribution pρ where ρ is a deterministic param-
eter to be estimated (random, state-independent lags);

• (εj)j≥1 given (S
(1)
Tj

)j≥1 are independent random variables with distributions pρ
S

(1)
Tj

where

(ρ1, . . . , ρK) are deterministic parameters to be estimated (random, state-specific lags);
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• (εj)j≥1 given (S
(1)
Tj

)j≥1 are (semi-)Markov switching Markov chains with conditional tran-
sition probabilities P (εj = f |εj−1 = e, S

(1)
Tj−1

= k), to be estimated.

As an intermediate case, a (semi-)Markov chain assumption can be considered (with marginal
independence on (S

(1)
t )t≥1). A further layer of hidden states can be introduced to model channel-

specific delays. The generative procedure associated with these coupled HSMC models is de-
picted in Figure 11.

Figure 11: Coupled HSMC models: generative process. The first state S(1)
1 = k1 is selected

using an initial probability πk1 . Then, given k1, a sojourn duration R1 is drawn with
probability pk1(r1), which means S(1)

t stays in state k1 for 1 ≤ t ≤ TR1+1 − 1. The
low-rate observations (O

(1)
1 , . . . , O

(1)
TR1−1

) are sampled from emission distribution pθk1
.

The first sampled eye-movement observation O(1)
1 is associated with lag ε1, intended

to map the EEG to the eye-movement sampling processes. Its distribution possibly
depends on state k1. The EEG sampling process from O

(2)
ε1 to O(2)

T1+ε1
, corresponding

to the eye-movement observation O(1)
1 , is then sampled at each high-rate time step

from pλk1
, where T1 is the beginning time of the second fixation. After that, still

given ST1 = k1, the successive EEG outputs O(2)
T1+ε1+1:T2+ε2

are drawn, as well as the
associated lag ε2, whose distribution may depend on the previous lag ε1 and state k1.
At t = TR1+1 the duration in state k1 expires and S(1) transits to a new state k2 6= k1

using the transition matrix with a probability Ak1,k2 . A duration R2 is sampled for
state k2 with a probability pk2(r2) and the sampling process goes on again, until the
end of the sequence.

An EM algorithm was derived for maximum likelihood parameter estimation in the general
framework of semi-Markov-switching Markov delays. A specific forward-backward algorithm
was developed, with complexity in O(τL2K2D), where D is an upper bound on the support of
the state duration distributions (taking D = τ if the support is infinite). A MAP restoration
algorithm for the states was also developed.
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It is however expected that even if in theory, maximum likelihood estimation (MLE) was
consistent, in practice a huge discrepancy between the available amount of information from
both sources of information (EEG and eye movements) could lead to virtually ignore the latter
in EM. This is not desirable since our preliminary analyses show that the robustness of the eye-
movement process (categorical process) with regard to model misspecification may be higher
that than of the EEG process (assumed as conditionally multivariate Gaussian). This is why
we developed an alternative EM algorithm taking benefit from the fact that (S

(1)
t , O

(1)
t )t≥1

marginally is an HSMC and will lead to consistent estimation of the hidden process and low-rate
emission distribution, provided that sequence length tends to infinity. Then the lag parameters
and high-rate emission distributions could be estimated with the other parameters considered
as fixed.

Perspectives

These algorithms have not been implemented yet, so the first perspective will be to apply our
coupled model on the joint EEG and eye-movement data set. This will have to be compared
to a plain multivariate HSMC model. Selection will be also necessary to decide between the
multiple distributional assumptions regarding delays. Our a priori assumption that coupling
should reduce state uncertainty (quantified by joint state entropy, see Section 4.1) will have to
be checked.
An expected limitation of the model is its incapacity to account for other sources of vari-

ability in eye movements and EEGs, mainly: individual and text effects. Our first results
highlighted that individual variability in EEGs is especially high and may bias estimation of
channel correlations. Such variability could be accounted for by incorporating random effects
in emission distributions of HSMC models, replacing Gaussian distributions by linear mixed
models (LMMs) and categorical distributions by generalized LMMs (GLMMs), as an extension
of the works by Chaubert et al. (2010) and Peyhardi et al. (2017).
From a storage point of view, we have 10 seconds of acquisition of a 32 multichannel-EEG

sampled at 1, 000 Hz on 7 wavelet scales for 15 subjects, 3 text types and 60 texts. Considering
that this information is stored on a double of 8 bytes size, the storage requirement is approxi-
mately 45Gb. The standard EM algorithm requires all the data to be simultaneously in RAM;
however such an amount may not be available on standard computers. This would lead us to
turn our attention to online learning methods, which optimize the likelihood function by taking
one data point or one sequence at a time. Bietti et al. (2015) proposed an online algorithm for
HSMCs proceeding with one data point at a time, which makes it slower as necessary in our
context. This issued might be solved with mini-batch versions of EM, extending to HSMCs
the work by Nguyen et al. (2019) for mini-batch learning in mixture models with emission
distributions chosen within the exponential family.
Regarding estimation of the brain functional connectivity, this has been achieved in two

steps: firstly, by MLE of model parameters and MAP restoration and then, graph estimation
using the restored states. This may cause some bias in graph estimation, since uncertainty on
the states is not accounted for. As an alternative, estimation and selection of the structures
of the covariance matrices may be performed simultaneously using penalization techniques,
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with LASSO-like penalties, transferring the principles from Devijver (2017) in the context of
mixtures of sparse regression models to (dependent) mixtures of Gaussian graphical models.
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5. Plant structure modelling

A significant part of my research activity has been dedicated to applications of the models and
methods presented in the previous sections to botanical and agronomical questions related to
plant architecture (specification of spatio-temporal plant shape development).
We first present a comprehensive conceptual framework for the statistical analysis of plant

architecture and then present some specific models and applications. The results presented
here were mainly obtained through collaborations with the AMAP5 and AGAP laboratories in
Montpellier and particularly in AGAP, with teams AFEF6 and Inria Virtual Plants7.

5.1. Generic statement of the problem

For many years, plant architecture has been viewed as the result of repetitions of elementary
units and patterns (Barthélémy and Caraglio, 2007) occurring through elongation and branch-
ing processes. These units may be considered at different levels of organisation: metamers
(portions of stems separated by zones of insertion of leaves associated with its apical set of
leaves and axillary buds), growth units (successions of metamers grown in a same cycle), an-
nual shoots (successions of growth units grown in a same year), axes (successions of shoots)
and branching systems. Here, succession is to be understood as opposed to branching, the
latter resulting from development of lateral buds with respect to some reference axis. Specific
patterns of growth and branching are likely to occur at several scales, which are not necessarily
known in advance.
Until the beginning of the 2, 000s, most approaches to describe plant architecture were qual-

itative and often based on a priori criteria, for example branching order or direction of axes
(vertical, horizontal). Data were mostly acquired manually and thus, with either limited num-
ber of individuals, years of growth or spatio-temporal resolution. However on the one hand,
some species turn out to be difficult to characterize that way and, on the other hand, there
has been some need to progress towards quantitative methods, particularly in the perspective
of plant breeding. At the same time, automatic data acquisition with laser scanners and phe-
notyping platforms began to emerge. The main issue regarding plant architecture was then to
resume plant shape and development through a limited number of quantitative parameters.
Concomitantly, breeders and researchers in plant breeding realized that common strategies,

based on quantifying heritability of global traits related to production (e.g., fruit quantity,
precocity of production), had strong limitations. Optimising these traits did not seem to
require any detailed analysis of growth and branching processes, which were considered as
black box components of the problem. However, flowering and indirectly, fruit production are
strongly connected to vegetative growth and branching. Thus, it appeared that going further
into breeding of domestic plants would require more detailed modelling, quantification and

5https://amap.cirad.fr
6https://umr-agap.cirad.fr/recherche/equipes-scientifiques2/architecture-et-fonctionnement-des-especes-
fruitieres/contexte-et-enjeux

7https://team.inria.fr/virtualplants/fr/
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understanding of those interactions and eventually, of how plants gather and use resources to
grow, branch and produce fruits (or wood, since similar questions may arise in forestry).
Some approaches were developed on the basis of deterministic models, such as GreenLab (de

Reffye et al., 2003), in which integration of various sources of structural variability was not
straightforward. In contrast, we developed some battery of data-driven methods for plant ar-
chitecture analysis aiming at integrating into a single decomposition model several components
of structural variability; particularly:

1. Ontogeny. This component is essentially a common pattern within species. Its main archi-
tectural effect results into stationary growth phases separated by transitory or rest phases.

2. Semi-local environment. This component has a similar effect on all individuals of a same
genotype at a given place.

3. Genetic. This component is common to all individuals with a same genotype, regardless
of their potentially different global or semi-local environments over time.

4. Individual component. This component has an effect on all shoots within a given indi-
vidual and is related to its specific (local) environment, which is a priori different for
each individual.

From a quantitative point of view, some of these effects may be partially assessed explicitly by
numerical or categorical variables. In the other cases, they have to be accounted for statisti-
cally, by specific latent variables. Interactions between several of these effects should also be
considered in models.
In relation to ontogenic effects, plant components have often been reported to express gra-

dients, e.g., more vigorous entities at the basis of annual shoots or axes for some species, or at
the apex for other species. The differences between entity characteristics with respect to their
positions reflect different stages of differentiation in the meristems (undifferentiated plant tis-
sues from which new cells are formed, often at the tip a root or a stem within a bud), which are
ordered in time and correspond to the notion of physiological age. Typically, the nature of the
botanical entities and that of their successors tends to be equivalent while on the other hand,
branching tends to induce marked qualitative changes between the bearing and borne entities.

5.2. Contributions

A generic class of models based on the notion of physiological age of meristems was proposed for
tree structure and growth analysis. This is presented in subsection 5.2.1. Some extensions were
developed to solve application-specific issues and are presented in the following subsections.

5.2.1. State-space models for tree structure analysis

To model ontogenic effects, we assumed that the physiological age of meristems could be assessed
indirectly, i.e., deduced from measured biological characteristics of the plant entities. As a
rationale, meristems with a same physiological age have a similar potential for development. We
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aimed at characterising these changes by diverse quantitative or qualitative variables attached
to each entity, such as the number of metamers, length, presence/absence of flowering, etc.
Assuming some finite number of classes for physiological age and local dependencies owing
to connected entities being produced directly or indirectly by a same meristem, we proposed
HMT models (see Section 2.1) to infer physiological age from measurements. The aim was to
reveal some embedded structures that were not directly apparent in the data, some regularity,
patterns or levels of organisation, for instance tree-structured zones. This has been in some
sense an extension to tree-structured plant data of models developed by Guédon et al. (2001),
mainly based on Markovian models and extensions (hidden semi-Markov, hidden variable-order
Markov chains).
A first model (Durand et al., 2005) assumed a deterministic structure and conditional in-

dependence of children states given parent state (CIC-HMT). It was applied for illustrative
purposes to model the structure of bush willows and apple trees. As expected, the model
offered some quantitative synthesis of the main ontogenic aspects of tree architecture and on
given individuals, a visual representation on how physiological age was spatially- and in some
cases, temporally-distributed in the tree. This somehow provided some denoising of the ob-
served variables, since their variability could be summarized through one class representing the
whole distribution. State restoration could also be used to refine (i.e., reestimate) transition
probabilities according to the kind of entity connexion (succession vs. branching).
This is illustrated in Figure 12 on apple trees considered at growth unit (GU) scale. The

observed variables are the number of metamers and presence vs. absence of flowers (assumed to
be independent given the state variable). Parametric distributions were fitted to both variables,
leading us to identify four states using BIC. The states are associated to three contrasted
distributions for the number of metamers. Their means thus allowed us to rename three sets
of states as L(ong), M(edium) and Short. The last state was reinterpreted using the flowering
variable, which led to S(hort vegetative) and F(lowering) states (Flowering is always short).
The transition diagram associated with the transition matrix summarizes the state dynamics
within trees, which roughly highlights a left-right structure: state L is mainly located at the
basis of the trunk and main branches, state M at the tip of the trunk and the main branches,
states S and F define a quasi-absorbing cycle corresponding to lateral twigs. This is confirmed
by the restoration (depicted here on part of the tree only for the sake of readability). Distinction
between transition by succession vs. branching is indicated with < and +, respectively.

We also applied CIC-HMT models to analyse the structure of Aleppo pines (Durand and
Guédon, 2016) and to quantify architectural plasticity of Beech trees and Symphonia Globulif-
era (Durand et al., 2007). In the case of Symphonia Globulifera, individuals highlighted marked
synchronism of growth and branching between branching systems along the trunk. We were
able to quantify such synchronism by computing edit distances between sibling branches issued
from the trunk, using the labelling provided by estimated CIC-HMT. Two variants were consid-
ered: rates of strong or weak synchronism, defined as the percentage of GUs mapped between
two branches respectively without any or with state changes, as illustrated in Figure 13. In
tree matching problems with multivariate vertex features, results are often sensitive to metric
calibration giving unbalanced weights to insertions/deletions and the different vertex variables.
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Figure 12: CIC-HMTs: an application to apple trees. Left part: transition diagram between the
four states: Long (green), Medium (red), Short vegetative (dark blue) and Flowering
(light blue). Edge labels < and + refer to transition by succession and branching,
respectively. Middle part: estimated emission distributions and counts for each
state. Right part: state restoration on (part of) an individual.

Our approach illustrates the added-value of HMT models in tree matching applications: state
restoration acts as both a normalization and smoothing method, in which partially ordered
states induce a natural metric and represent a summary of attributes, embedding them into a
one-dimensional discrete space.
As useful as CIC-HMT models were to solve biological questions, they suffered from the

following limitations: 1) only external variables associated to vertices could be represented
(as opposed to random tree topology); 2) no potential order nor distinction between different
types of children could be accounted for and 3) no direct interaction between children could be
modelled. This was quite a serious limitation to address biological questions of importance such
as synchronism of growth and competition (between branching systems for resources, between
flowering and vegetative growth, etc.)
This is why we developed various extensions of the CIC-HMTmodels presented in Section 2.1.

These models essentially incorporated two new aspects: random number of children and depen-
dencies between children states given their parent state. Both were addressed within a single
framework, which is multivariate count models p(N (1)

v , . . . , N
(K)
v |Sv = k). This represents the

joint distribution for the number of children (N
(k)
v )1≤k≤K respectively in states 1, . . . , K given

the parent state Sv = k at vertex v, assuming K possible states and homogeneity (meaning that
this distribution does not depend on s). The associated model selection issues are presented in
Section 3. Given the combinatorial aspects underlying the selection of graphical dependencies,
this aspect can hardly be handled simultaneously with inference of hidden states, whose dis-
tribution must satisfy constraints defined by the graph. We thus decided to proceed into three
steps: 1) selection of the number of states K and state restoration using a plain CIC-HMT
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Figure 13: Mapping between GUs of two branching systems in Symphonia Globulifera. A map-
ping between two branching systems within the red ellipse is considered. Vertices
mapped without state modification are represented with solid edges; those mapped
with some state change are represented with dotted edges. Vertices that are not
mapped are hatched.
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State Length Flowering
0 Long Vegetative
1 Long Flowering
2 Medium Vegetative
3 Medium Flowering
4 Short Vegetative
5 Short Flowering

Table 2: State coding and associated features

model; 2) selection of the graphical model G based on the restored states and 3) reestima-
tion of the whole model with now fixed K and G, accounting for the conditional independence
constraints induced by G.
We illustrate this methodology through the structural analysis of two apple tree cultivars:

Fuji and Braeburn (results issued from Fernique et al., 2014b). Fuji is known to be alternate
bearing (i.e., to tend to produce numerous flowers every two years and few flowers the other
years), while Braeburn is regular. The trees are considered at annual shoot (AS) scale and
modelled with unordered hidden Markov out-trees (HMOT). The states are defined as in the
example in Figure 12 but since the scale of analysis is coarser, long and medium shoots may
be flowering (in that case, long / medium AS are composed by a long / medium vegetative
GU followed by a short flowering GU). The states are denoted as in Table 2 (even states are
vegetative, odd states are flowering and states are sorted by decreasing order of vigour).
The aim of HMOT models is on the one hand, to infer dependencies between parents and

children states and on the other hand, to explain how local patterns of parent / children states
exclusions or competition can be translated into global bearing behaviours (bearing habits) at
tree scale. Cultivars can then be compared in terms of such probabilistic patterns of exclusions.
For each cultivar and each parent state value k, a parametric graphical (partially directed and
acyclic, PDAG) model was estimated for p(N (1)

v , . . . , N
(K)
v |Sv = k).

The estimated PDAGs corresponding to parent state 3 (Medium flowering) are represented
in Figure 14. Each vertex k corresponds to variable N (k). The PDAG for Breaburn and Fuji are
compared. The Breaburn PDAG highlights independence for groups of variables; in particular
there is not any negative dependencies between flowering and vegetative states. Some positive
correlation between N (4) and N (5) suggests that some medium flowering shoots have numerous
short children, both vegetative and flowering, while some other have a low number of short chil-
dren. Similar conclusion are reached for long and medium vegetative children. In contrast, the
Fuji PDAG highlights negative correlations between the number of long vegetative shoots and
the number of shoots in every other state but long flowering, thus showing some exclusion and
alternation pattern, which is characteristic of this cultivar. The connexion between alternate
bearing habits and exclusion is further discussed in Subsection 5.2.2. A more detailed case of
use of graphical models in HMOTs is provided in Subsection 5.2.3.
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Figure 14: Selected graphical models for parent state 3 (medium flowering) for the Braeburn
(left hand) and the Fuji cultivars (right hand). Edges associated with negative (resp.
positive) covariances are in red (resp. black). Vertices correspond to the number
N (k) of children in state k given the parent is in state 3.

Perspectives. In Subsection 2.1, we mentioned how partial ordering of children vertices could
be accounted for in models. In the context of plant structure models, this would allow the
particular role of successor child, as opposed to lateral children, to be fully taken into account.
The approach is based on combinations of graphical models with some separate modelling of
the successor and lateral children, obtained through conditioning on successor and parent states
p(N

(1)
v,+, . . . , N

(K)
v,+ |Sv, Sv,<) where Sv,< is the state of the successor child and N (j)

v,+ the number of
lateral children in state j. This would allow us, for example, to account for apical dominance
or inhibition / activation of lateral flowering subsequently to apical flowering. However these
models have not been implemented yet. An increased model complexity would require more
data, but we expect that in future years, development of automated plant acquisition with
detailed topological information (i.e., with identified AS, GU or metamers) could make such
data collections accessible.
In what follows, we demonstrate how to incorporate random effects to model genetic and

individual sources of structural variability in the case of sequences of phenological events. As
an extension, such effects could be incorporated in PDAGs, which is discussed more thoroughly
in what follows. In the same vein, some approaches developed hereafter rely on variable-order
Markov chains (VOMCs), which are models for time series. The principle could be transposed
to Markov tree models, where variable numbers of ancestors would be considered to model
current generation distribution, depending on the values of the closest ancestors.

5.2.2. Characterisation of regularity in flowering

Irregular flowering over years is commonly observed in fruit trees. In the context of plant
breeding, selection processes are slow since breeders have to wait for the trees to be sufficiently
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mature to produce; in particular, this is the case to assess flowering regularity. Moreover,
alternation patterns are masked during the first years of maturity by an ontogenetic trend,
consisting in a general increase of the yearly numbers of flowers. We aimed at providing indices
accounting for this trend (assumed as linear in what follows), achieving early prediction of
bearing habits and identifying genetic determinism underlying alternation.
A first study assumed some exhaustive tree phenotyping, in which yearly total counts of

flowers were available. Such data collections were unstructured, in the sense that no topological
information was recorded. The performance degradation of our approach was assessed by
replacing exhaustive phenotyping with sampling a reduced number of axes and replacing total
flower counts by those obtained on this sample only. A second study focused on improving
the previous one using sequential information brought by phenotyping axes. A third study did
not consider plant breeding any more but focused on assessing the effect of water stress on
flowering. The three studies were performed on apple trees and from a statistical point of view,
mainly involved linear and generalized linear mixed models in higher-order or variable-order
Markov chains.

Full unstructured phenotyping. The methods and results described here are issued from
Durand et al. (2013b). A segregating population was obtained from a cross between ’Starkrim-
son’ (STK) and ’Granny Smith’ (GS) apple tree cultivars. This was used to study the bearing
habits of genotypes. Two tree replicates (or just one in rare cases) were available for each
genotype. The STKxGS progeny was composed of 123 genotypes.
Flowering recurrence was measured at two different scales: whole tree and AS. At the whole

tree scale, the total number of inflorescences was observed during six consecutive years, from
their second to their seventh year after grafting. At AS scale, the succession of vegetative
vs. floral AS were observed over the same consecutive years along different axes. The data
consisted in 4 to 36, 1 to 6 year-long sequences of vegetative vs. floral AS per replicate.
A two-step modelling was used to quantify biennial bearing at whole tree scale. To dissociate

increase in the number of inflorescences per tree from biennial bearing, a trend model based
on a linear mixed model was applied firstly. Irregular bearing was quantified afterwards using
the deviations around the trend (model residuals) and combining two approaches: (i) a new
index was proposed to quantify the amplitude of residuals, taking account of their order; and
(ii) an auto-regressive model was estimated to characterise the dependencies between successive
residuals and distinguish biennial patterns specifically from other irregular patterns, using an
autocorrelation parameter. Then, clusters of genotypes that have similar patterns of annual
yields were identified using both descriptors jointly.
To quantify biennial bearing using only a limited number of AS sequences, the descriptors

presented hereabove were computed using the same procedure, except that the annual amount
of inflorescences in the sequences was used instead of the annual amount of inflorescences at
whole tree scale.
Linear mixed models were considered for the trend. These were of the form

Yg,r,t = β + βg + ζg,r + (α + αg + ξg,r)t+ εg,r,t
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where Yg,r,t is the number of flowers of tree replicate r of genotype g at year t, β, βg, ζg,r, α, αg, ξg,r
are unknown parameters and εg,r,t is a random residual assumed Gaussian with zero mean. Dif-
ferent models were compared, assuming the unknown parameters as either fixed or independent
random effects (except for α and β, treated as fixed). These linear models only accounted for
the trend and not alternation, rather seen as structured patterns of deviation around the trend.
We thus considered the following model for residuals:

εg,r,t = (γ + γg + γg,r)εg,r,t−1 + ug,r,t

where as above, γ is a fixed parameter, γg, γg,r are treated either as fixed or independent ran-
dom effects and the ug,r,t are assumed as independent, zero-mean, unknown variance Gaussian
random variables.
The fixed parameters were estimated by maximum likelihood and using these estimates, point

estimates of random effects were obtained using posterior expectations. Negative values of γg
can be interpreted as alternate bearing genotypes g, since their yearly numbers of flowers tend
to alternate around the trend. Regular genotypes tend to have their γg values close to zero.
However, γg does not account for the intensity of alternation relative to the total number of
flowers. This is why we introduced another index, inspired by the Biennial Bearing Index (BBI)
of Hoblyn et al. (1936) but now applied to εg,r,t and normalized by the total number of flowers:

BBI_res_normg = Bg =

∑
r

∑Tg,r
t=2 |ε̂g,r,t − ε̂g,r,t−1|/

∑
r(Tg,r − 1)∑

r

∑Tg,r
t=1 Yg,r,t/

∑
r Tg,r

where Tg,r is the number of measurements for replicate r of genotype g.
Genotypes were clustered using Gaussian mixture models in the plane (Bg, γg) characterizing

each genotype (Figure 15). Cluster 1 can be interpreted as regular bearing genotypes, cluster 2
as biennial bearing genotypes and cluster 3, as irregular bearing genotypes. The fuzzy notion
of bearing habits was redefined as cluster values of genotypes.
The model was validated by out-of-sample prediction, using the number of flowers yielded

during the first years to predict the last year using prediction intervals at level 0.95. The
frequency of actual number of flowers being within the prediction interval was 0.74, showing
underestimation of the variance. This caused some 17% error in cluster prediction.
Our Bg and γg indices were computed using sequences collected on axes and using yearly

numbers of flowers on those axes in lieu of total numbers of flowers at whole tree scale. A
binary random variable (flowering vs. vegetative) could now be associated to each event along
the sample axes, so we used its sample entropy to quantify the synchronicity of flowering for
every axes in a given year and averaged it out over years to obtain a third index at genotype
scale. These were used to predict the bearing genotype, yielding some 40% classification error
(to be compared to that of the best random classifier independent on predictors, i.e. 56%).
Ideally, breeders would not need to wait for the trees to reach maturity before assessing their

values for breeding. They may use predictions obtained from their genotypes. Moreover, it is of
interest for researchers to understand or at least, make assumptions on functional determinants
for alternation in flowering. In that perspective, our descriptors were used for QTL detection
(portion of DNA whose variation is correlated with that of descriptors). Four QTLs were
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Figure 15: Clustering obtained using a three-component mixture of Gaussian distributions of
Bg (x-axis) and γg (y-axis).

identified for BBI_res_norm and some variant thereof. No significant QTL was detected for
γg computed at whole tree scale nor for entropy.
Both genomic regions associated with BBI_res_norm and its variant corroborated zones that

were previously identified in a previous study by Guitton et al. (2012). The QTLs co-located
with QTLs for inflorescence yield of a given year and fruit yield QTLs for the year before in
Guitton et al. (2012). One of these seemed to be linked to the antagonist relationship of
fruit production of the current year and inflorescence development for the year after that was
reported by Banghert (2009).
Further QTLs were revealed on γg computed from subsamples on axes. These were located

on zones that were not previously associated to flowering or bearing traits in this progeny, even
though QTLs were detected in the same regions for branching and internode length respectively
(Segura et al., 2009).

Phenotyping axes. The previous study mainly aimed at providing reference indices, bearing
habits and QLTs based on a limited set of progenies and on exhaustive phenotyping of yearly
numbers of flowers. It also considered simplified phenotyping on a sample of axes but did not
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fully account for the data structure, since we merely used the yearly numbers of flowers on those
axes as if these were total numbers of flowers at whole tree scale. We assumed that the analysis
of entire sequences of successive AS, combined to flowering synchronicity in each year, would
provide new insights on genotype behaviours and yield more accurate predictions. We also
extended the previous investigations by performing a multi-family QTL detection to enlarge
the genetic basis of biennial bearing variation in apple trees. Thus, sequences of vegetative vs.
floral annual shoots (AS) were observed along axes in trees now belonging to five related apple
full-sib families located in two sites (Montpellier and Angers in France). The data consisted in
1 to 162, 1 to 7 year-long sequences per replicate. The methods and results presented here are
issued from Durand et al. (2017).
Sequences were analyzed using VOMCs initially introduced in this context by Costes and

Guédon (2012). In such stochastic processes, the random variable at time t depends on a
variable number of past values, depending on these values. Applying a memory selection
procedure by Csiszár and Talata (2006), a fixed-order Markov chain with order 2 was chosen.
However, as highlighted by our previous study, alternation is partly due to genetic effects.
Moreover, it can be assumed that environment has some effect, in potential interaction with
memory m. Its impact is mainly characterized by synchronous fluctuations in the numbers of
flowers for all trees at a given year t for a given site π. To model these interactions in sequences
of binary observations, approaches based on GLMMs (Molenberghs and Verbeke, 2006) seemed
relevant. Our model was thus a second-order Markov chain with transition kernels defined as
logistic regression with mixed effects.
Denoting by Fg,r,π,t,` = 1 (resp. 0), the presence (resp. absence) of flower for replication r of

genotype g at site π, year t, and location (or AS) ` in the axis, the following Markovian GLMM
was considered as a transition kernel:

log
P (Fg,r,π,t,` = 1)

P (Fg,r,π,t,`) = 0
= λ+ ρπ + µm + Φt + θg,m + ηg,t + ζg,r

where λ is a fixed intercept, ρπ is the fixed effect of site π, µm is the fixed effect of memory m,
Φt is the fixed effect of year t, treated as a qualitative variable, variables θg,m are independent
random interactions between genotype g and memorym with common variance τ 2

θ , variables ηg,t
are independent random interactions between genotype g and year t with common variance τ 2

η .
Lastly, variables ζg,r are independent replication-specific random effects with common variance
τ 2
ζ . All random effects were assumed to be mutually independent and Gaussian. Parameter
estimation was by restricted maximum likelihood. For a better interpretation of the model
and in order to obtain new indices, the value of random effects θg,m were estimated by their
conditional means (Best Linear Unbiased Predictors, BLUPs). These were used to discriminate
genotypes on their low vs. high probability of AS bearing flowers at year t given they had
memory m. Similarly the BLUPs of ηg,t were used to discriminate genotypes on their low vs.
high probabilities of bearing flowers at year t. The GLMM was also used to remove site and
environment effects from the flowering probabilities and plug those into the computation of
flowering entropies.
Such entropy values and the θg,m indices were added to the axis-based Bg and γg introduced

in our previous study (Durand et al., 2013b) to check the assumption that taking into account
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dependencies through indices should lead to better predictions of bearing habits. The reference
family, for which bearing habits were assumed as known, was STKxGS. However, some indices
could not be defined for some genotypes; for example, if memory 11 did not occur in any axis
of genotype g, θg,11 would not be defined, resulting into missing predictors. Moreover, some
predictors were highly correlated and redundant. To handle both issues of predictor absence and
redundancy, a principal component (PC) analysis for partially missing data was used, using
the methodology and R package by Josse and Husson (2012). Classification was performed
using neural networks (NNs). Such models were also used to predict Bg and γg at whole tree
scale. The NN parameters were estimated by least squares minimization. Since the optimal
numbers of PCs to be used in classification and regression may be different, they were both
chosen independently by out-of-sample validation.
Classification of bearing habits yielded a 35% (cross-validated) error rate using our new

indices, to be compared with 40% obtained in the previous study. Although limited, the im-
provement of the error rate was significant at level 0.7% on 50 random test samples. Concerning
regression, the (cross-validated) correlation between true and predicted Bg (resp. γg) at whole
tree scale was 0.72 (resp. 0.64) when using our new indices, against 0.71 (resp. 0.60) when
using just Bg, γg and entropy at axis scale. Thus, adding information from Markovian GLMMs
did not significantly improve the prediction of the tree-scale indices.
Our new indices were used for QTL detection and QTLs were detected for all indices except

for θg,10 and most ηg,t indices. Those with strongest evidence were associated with BBI-like
but not with the new θg,m indices. Genotype estimation at QTLs was performed, bringing
two types of information: Firstly, the allelic classes of parents allowed families in which QTLs
segregated to be identified; Secondly, this allowed parents and founders bearing favourable,
variable-specific alleles, to be highlighted.
Despite the lack of major QTL associated with our θg,m indices, their analysis brought new

insight on the respective roles of synchronicity and alternation at axis scale in whole-tree scale
alternation. The regular genotypes (lowest values of BBI_res_norm) exhibited AS with flow-
ering probabilities above average at year t after flowering at year t−1 (as emphasized by higher
θg,01 and θg,11 associated with memories 01 and 11). The positive correlation of entropy with
γg and its negative correlation with Bg showed that the genotypes with highest synchronism
(lowest values of entropy) were mostly biennial bearers (highest values of Bg and lowest values
of γg). This suggested that biennial bearing at tree scale results (at least in the considered
populations) from the conjunction of two phenomena: synchronism in flowering between AS in
a given year and biennial alternation at AS scale between consecutive years. On the contrary,
regularity at tree scale results from either asynchronous locally alternating flowering or regular
flowering at AS scale. By contrast, trees with low values of Bg, medium or high γg values and
high entropy values at the tree scale (regular bearing by total absence of structure in flowering)
could not be observed in the studied populations. Irregular genotypes exhibited intermediate
values for every descriptor, suggesting that such genotypes are characterized by partial biennial
alternation along axes or strong biennial alternation with partial synchronism.
Our indices led to practical recommendations for breeders; particularly, selecting genotypes

with regular desynchronized axes could be an appropriate strategy for avoiding poor fruit set

54



while reducing thinning or manipulations costs. Moreover, three descriptors should be combined
to ensure regular bearing behaviour, i.e., Bg, γg and entropy.

Effect of water stress. The previous study on alternation in flowering consisted, from a
statistical point of view, in modelling the fates of successive buds over years and in identifying
the effect of past fates, year, location and genotype on flowering probabilities using Markovian
models with GLMM transition kernels. The study summarized hereafter, issued from Yang et
al. (2016), takes profit from a similar approach to model the effect of water stress on apple tree
architecture and flowering.
Water deprivation generates a number of physiological and morphological responses in plants,

depending on the intensity and duration of stress, plant species and development stage. In
perennial plants, water stress may affect plant development through cumulative effects that
modify plant functions, architecture and production over years. Fruit trees are usually irrigated
and their growth and production heavily depend on water availability and irrigation in many
countries. Nevertheless, the shortage of water has become a critical problem in fruit tree
orchards, especially in arid and semi-arid regions. In such situations, lower irrigation supplies
decrease mean apple fruit mass.
Due to the regulation of shoot growth, branching and flowering year after year in perennial

plants, the effect of water deprivation should be considered in the long term, taking into account
subsequent modifications of plant architecture. The latter is determined by the fates of the
terminal and axillary buds that can give rise, in the particular case of apple, to reproductive
or vegetative GUs of different lengths, as seen in Subsection 5.2.1. In this study the impact of
long term (7 years) water deficit on the fate of terminal and axillary buds was investigated in
relation to flowering occurrence and production patterns (biennial vs. regular) in the “Granny
Smith” cultivar.
Our study aimed at analyzing the effect of water stress over years, at different scales of plant

organization (whole tree, branch, axis and GU) on apple trees. Our hypothesis was that long-
term water stress would modify the composition of shoot types (vegetative vs. reproductive,
long vs. short GUs) within a branch, with potential repercussions at whole-tree scale on fruit
production patterns (regularity vs. irregularity). The following questions were addressed:
(1) Can a decrease in primary growth (GU length) be observed in response to water stress?
(2) Are the inter-annual transitions between GUs modified by water stress? (3) Does water
stress modify the floral GU frequency and production patterns at whole-tree scale?
Plant material consisted in sixteen “Granny Smith” trees organized in several rows with well-

watered (WW) trees alternated with rows of trees submitted to restricted soil water supply
(WS). There were originally eight trees per treatment but in each each group, two trees were
damaged or died. For each tree, all the branches that arose from the first and second annual GUs
of the trunk except those that were broken during the experiment were selected and analysed
(from one to five branches per tree eventually). Sequences of labelled GUs were recorded, using
the following labels: L(ong), M(edium), S(hort) vegetative GUs, F(loral) and D(ead) GUs,
meaning they were dry and did not produce any new GU in terminal position until the end of
the experiment. The data set contained 17 and 20 branches, 3525 and 3464 GUs for WW and
WS trees, respectively.
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Figure 16: Transition frequencies between GU types under WW (black numbers) and WS (grey
numbers) treatments. Transition frequencies were estimated from first (L, M, S for
long, medium and short GU and F0 for the initial flowering) and second order
memories (LF, MF, and SF for long-floral, medium-floral and short-floral). State D
corresponds to the growth cessation of branches. Transition frequencies lower than
0.05 are not represented. Circles and arrows represented by dashed lines correspond
to transitions and memories that can be observed only once in GU sequences after
an initial inflorescence, whereas continuous lines and circles correspond to memories
and transitions that can occur several times.

The GU sequences along axes were analysed using VOMCs. The maximal order, as deter-
mined by BIC in merging WW and WS trees, was two and the ML estimated transition matrix
is depicted by the diagram in Figure 16.
Then the effect of water stress was incorporated into the model, using multinomial GLMs to

represent transition probabilities:

log
P (Tt,m,w,` = c)

P (Tt,m,w,` = S)
= λc + µm,c + ϕw,c + θm,w,c

where Tt,m,w,` is the label of GU at location ` in tree t, with memory m and treatment w, c is
either L, M, F or D, λc is an intercept, µm,c is the effect of memory m on transitions to label c,
ϕw,c is the effect of water treatment w and θm,w,c is the effect of interaction between memory
m and water treatment w. The model parameters were estimated by maximum likelihood.
Five models were built: model 1 took into account the effect of memory only, model 2

took into account the water treatment effect only, model 3 included both effects and model
4 included both effects plus their interactions. The significance of the different effects (water
conditions, memory and interactions) was assessed using a chi-squared likelihood ratio test. To
assess whether the chosen significant level of the tests was sufficiently small, considering that
the four models could all be incorrect and that the number of data was large, the models were
also compared using BIC (Kass and Raftery, 1995 ). The 5th model was obtained by adding a
random “tree” effect to the best of the four previous models.
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To assess the effect of water stress on the number of axillary, short and medium GUs, together
with the probability of GU death and fruit production, LMMs and GLMMs with either binomial
or Poisson distributions were estimated. Test were performed on their parameters, considering
branches as replicates, trees as a random effects, treatments and years as fixed effects. The
significance of fixed effects was then assessed using χ2 tests. Significance of random tree effects
was assessed by computing confidence intervals for the variance parameters at level 95%.
As main results of this study, branches exhibited two distinct development phases, one from

the 2nd to the 4th year of tree growth, characterized by the occurrence of long GUs and the be-
ginning of flower production, and one starting in the 5th year, including patterns of alternation
between vegetative and reproductive GUs. Both development phases were observed indepen-
dently of the soil water status, which confirmed the stability of ontogenetic characteristics of
plants even if they were subjected to environmental stress.
Water stress led to some significant decrease of the total number of GUs, some increase of

the proportion of short GUs and of the transition probabilities towards small and dead GUs.
This suggested an acceleration of ontogenetic gradients, as observed under stressful conditions
on other species (e.g., walnut and almond). This could in turn be beneficial to floral induction.
However, the decrease in the length of vegetative GUs and the lower number of GUs led to a
reduction in tree vigour under water stress, as highlighted also by some decrease in the trunk
cross-sectional area.
An increase in the proportion of flowering GUs was observed under water deficit, as shown

directly by modelling the proportion of floral inflorescences along axes and indirectly, by the
VOMC highlighting higher transition probabilities towards floral GUs under water stress (as
depicted in Figure 16).
Regarding alternation, higher fruit numbers were observed under WS in the years following

“off” years, thus reducing biennial bearing patterns. Individual fruit weight was reduced under
water deficit conditions.

Conclusion and perspectives. We developed a methodology aiming at decomposing the
effect of main growth components in tree architecture, summarized here through sequences of
elementary tree units, by plugging GLMMs into Markovian models. The considered components
were: ontogeny, environment (e.g., year, site, water stress).
This is illustrated here in applications related to apple trees: quantifying alternation in

flowering or the effect of water stress on architecture. Our approach could be directly used on
any species for which retrospective phenotyping of flowering is possible at AS scale. This is the
case for species with terminal flowering such as pear, walnut, avocado, mango, litchi, etc. in
which flowering events can be easily identified. For such species, the methodology proposed,
including prediction of flowering behaviour at tree scale from a posteriori observations and
computation of indices, would be transposable. For other species, alternation indices could be
computed based on counting the total number of inflorescences measured on several successive
years. Even though more time-demanding than retrospective observations, such counts may be
facilitated and automatized by new technologies based on imagery.
Our results also suggest that flowering synchronicity at whole tree level could not be asso-

ciated with regularity, probably because it would lead to over-cropping and major drawbacks
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in an agronomic context. Knowing if flowering desynchronization has been selected during the
apple domestication remains an open question.
The obtained results on bearing habits offer new perspectives to decipher the putative role

of fruits and carbon economy on the inhibition of floral induction. Indeed, both hormonal and
trophic hypotheses were proposed to explain this phenomenon. According to the hormonal
hypothesis, floral induction is inhibited by gibberellin signalling coming from seeds, while ac-
cording to the trophic hypothesis, this is limited by carbon availability. In the one hand, our
models could be used to classify genotypes before investigating their physiological behaviours.
On the other hand, the water stress study highlighted that higher fruit numbers were observed
under WS than under WW in the years following “on” years, reducing the biennial bearing
pattern. One hypothesis to explain this observation is related to the decrease in vegetative
growth under WS, which could reflect non trophic mechanisms, but rather hormonal signalling
or changes in cell hydraulic proprieties under moderate stress. In turn, this reduced vegeta-
tive growth could have favoured plant growth processes such as floral induction and fruit set,
possibly through a higher assimilate availability.
The studies also provide information that could be relevant in simulation models. For in-

stance, variable-order Markov chains with parameters that depend on environmental conditions
could be integrated into functional-structural plant models (in particular MappleT regarding
apple trees – see Costes et al., 2008). Such improvements could be an interesting way to further
analyse the impact of modifications in GU successions and branching at shoot scale on biennial
bearing, under contrasted environmental conditions. This could open new perspectives for in
silico investigations of agronomical scenarios.
From a methodological point of view, the main perspective is to extend analyses performed on

axes with Markovian models for sequences, to whole plants using Markovian models for trees.
This is partly illustrated in the next subsection and would rely on multivariate regression
models for count data in the exponential family, as discussed in Section 3. The added value of
handling directly tree-structured data would be to characterize more precisely the respective
roles in axillary production (quantities, fates and dependencies, including fates of apical shoots)
of different components: ontogeny, growth conditions and genotype. In particular, this would
open new perspectives in determining the origin of synchronism / asynchronism in flowering
when considering different axes of a same individual.
Moreover, Markovian dependencies were not fully taken into account in our statistical anal-

ysis. Due to the factorization property of the likelihood function, point parameter estimates,
likelihood values and information criteria were obtained consistently with 2nd-order mixed tran-
sition kernels assumptions, using the standard “lme4” library of the R software. However,
confidence intervals and p-values are provided in this library under an independence assump-
tion. As a consequence, further theoretical developments are required to account for Markovian
dependencies in this framework, as an extension of the work by Islam et al. (2009).

5.2.3. Modelling phenology and patchiness

Several species in temperate and tropical zones are characterized by strong phenological asyn-
chronisms between and within trees, entailing patchiness. The latter is defined as growth
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development organized in clumps of either vegetative or reproductive shoots within the canopy.
For example, some parts of the canopy may develop vegetative shoots, while other parts remain
in rest or produce shoots bearing flowers (referred to as reproductive shoots). Alternation in
flowering at whole-tree or axis scales, as investigated in Section 5.2.2, can be seen as other
particular cases of patchiness.
Such flushes of growth, either asynchronous or heterogeneous regarding natures of produced

shoots, entail various agronomic problems. These are mainly: (1) Repeated use of pesticides
to protect recurrent sensitive phenological stages from pests; (2) Excessively extended periods
of fruit maturity, leading to difficulties in organizing harvesting.
Our objective here was to define a statistical methodology to identify and quantify such patch-

iness patterns. The identification of architectural patterns in trees was in a first step addressed
through modelling local dependency properties (e.g., HMT models, see Subsection 5.2.1). It
is questionable here whether local dependencies are sufficient or not to model patchiness pat-
terns. The latter may indeed require to infer a priori unknown scales of aggregation of similar
botanical entities, which is not directly achieved in HMT models. Considering the issue of
identifying structural patterns within sequences of botanical events, two families of statisti-
cal models emerged: HSMC and multiple change-point models. In the following study, we
proposed firstly, to extend multiple change-point models to tree-structured data in order to
identify patches at various scales in trees and secondly, to complement the approach with HMT
analysis.
From an agronomic point of view, quantification of patchiness was used in cultivar compar-

ison and as a perspective, could be integrated into varietal selection procedures or technical
arrangement studies.
Regarding patch identification using multiple change-point models, the methodology pre-

sented here is mainly issued from Fernique et al. (2016b). The greedy algorithm presented
in Subsection 2.3 was applied to the data set, after some shoot labelling. Its output was
a partitioning of trees into subtrees constrained to have their adjacent subtrees significantly
different from each other in terms of shoot label distributions. However on the one hand, dis-
tributions associated with non-adjacent subtrees (even those issued from different trees) may
be similar. On the other hand, patches may be composed by shoots with different labels. We
therefore proposed a two-stage tree-quotienting/subtree-clustering algorithm incorporated some
post-processing to change-point detection based on mixture models in order to identify similar
subtrees. In such mixtures, latent states were constrained to be the same within a quotient
obtained by change-point detection. The number of patch types was selected using BIC.
Although the patches obtained by this approach were inferred from trees considered at the

finest scale, they could actually occur at some more integrated scales. We thus chose to as-
sign each patch to the closest available biological scale described in the data (e.g. metamer,
GU, scaffold, tree). Since patches did not necessarily match any of these quotients defined
a priori, a method to determine the minimum distance between quotients obtained from the
tree-quotienting/subtree-clustering algorithm and scales of interest was necessary.
Hence, in order to determine the scale of a patch, we proceeded as follows:

• For each patch and scale of interest (defining partitions), vertices were assigned binary
labels in accordance with their membership or not to the elements of the partitions.
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Figure 17: Mango tree growth cycles. Three phases were considered in mango tree growth
cycles: vegetative ( green), flowering (yellow) and fruiting phases (magenta)

• Distances between the binary partition induced by the patch and each binary partition
induced by quotients at a biological scale were computed using the Rand index.

• Patches were assigned to the scale that minimizes that distance.

Finally, to take account of the temporal dimension of patchiness, directed acyclic graphs
(DAGs) were built to summarize the succession of patches over time for a given observed tree.

Application to mango tree. This approach was applied to patchiness quantification in mango
trees. Seven cultivars were considered: Cogshall, José, Kensington Pride, Irwin, Kent, Nam Doc
Mai and Tommy Atkins. For each of them, five mango trees were described at GU scale. Since
tree patchiness is a spatio-temporal phenomenon, its analysis requires the choice of a temporal
resolution in order to observe the production of growth cycles over a given period. Due to this
choice, the temporal component of patchiness is thus partly subjective. Nevertheless, due to
the extended growth cycle in mango trees, three periods of marked interest emerge:

• The early flush period (E). This corresponds to the period when the vegetative phase of
a growth cycle overlaps the flowering phase of the previous cycle.

• The intermediate flush period (I). This corresponds to the period when the vegetative
phase of a growth cycle overlaps the fruiting phase of the previous cycle.

• The late flush period (L). This corresponds to the period when the vegetative phase of a
growth cycle does not overlap the previous or the next cycle.

The definition of the three flushes is illustrated in Figure 17.
Patchiness was thus investigated at the flush temporal resolution, with the mango tree ma-

terial being observed during seven successive flushes at most. In this way, this spatio-temporal
phenomenon was decomposed into several spatial analyses at fixed times, which had to be re-
combined a posteriori. At each time step, only the tree fringe issued from GU growth, flowering
or quiescence since previous time step was considered. GUs in that fringe were labelled either
as V(egetative), (R)eproductive or Q(uiescent).
This is illustrated in Figure 18, where the same mango tree is observed at the end of:
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• The intermediate flush of the first growth cycle, denoted as I1 (Figure 18a). The canopy
is then composed of a reproductive patch containing GUs bearing fruits and a quiescent
patch containing GUs that burst during a previous flush.

• The late flush of the first growth cycle, denoted L1 (Figure 18b). The canopy is then
composed of a quiescent patch and a vegetative patch containing GUs that burst during
current flush.

• The early flush of the second growth cycle, denoted E2 (Figure 18c). The canopy is then
composed of a single quiescent patch.

Once patches have been identified, observing their succession in time directly on trees is not
convenient. We proposed instead space-time representations using DAGs. In such DAGs, each
vertex corresponds to some patch at a given flush (corresponding to its position on the x-axis).
Each directed edge linking two vertices has a temporal meaning, accounting for splitting or
merging patches in the next flush. DAGs also encode patch compositions in terms of V, R and
Q labels (as determined by the mixture model) and characteristic scales of patches (see details
hereafter). This is illustrated in Figure 19, where the succession of patches within sketched
mango trees in Figure 18a-c is represented. Vertex colours represent patch type shapes and
scales. At Flush E1, since no information was available for identifying patches, the DAG was
initialized with an unlabelled single patch at tree scale. Then at Flush I1, two patches (one
reproductive and one quiescent) were identified. At Flush L1, the reproductive patch split into
two patches (one vegetative and one quiescent), whereas the quiescent patch at Flush I1 turned
into a vegetative one. At flush E2, the three patches merged into a single quiescent patch.
Patch compositions are represented in Figure 20. Most of them were nearly pure. This

highlighted the relevance of our clustering stage.
The mixture model led to identifying 5 clusters, corresponding either to dominance or rarity of

some label within the patch. State proportions highlighted a slight excess of patches containing
vegetative GUs, but all types of patches were clearly present. This excess of vegetative patches
is biologically justified, since the observed mango trees were young and therefore not at their
permanent regime of production, in which more flowering GUs would be expected.
To compare cultivars in terms of patchiness, the DAGs associated to each plant were sum-

marized using the following properties: number of DAG vertices, proportions of flushes, scales
and clusters, average in- and out-degrees, together with ratio of edge number to maximal edge
number. Then some Linear Discriminant Analysis (LDA) was performed, using cultivars as
classes. Since the number of variables was large regarding the number of individuals per cul-
tivar, a sparse version by Clemmensen et al. (2011) was preferred, with model selection based
on cross-validation. The projections of cultivars in the first plane are represented in Figure 21.
Cultivar positions in the first LDA plane highlighted contrasted patterns between some cul-

tivars in terms of patchiness. Differences were then interpreted in terms of phenology and
particularly, of alternation in flowering. For example, Irwin is known to be a regular bearer
whereas José is an alternate bearer. Our results showed that this was mainly related to their
relative patch sizes: Irwin had larger patches than José.
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Figure 18: Schematic representation of a mango tree canopy at different flushes and its quo-
tienting. (a) The canopy observed after the intermediate flush of the first growth
cycle contains fruits in the left part and GUs that burst in a previous flush in the
right part. (b) The canopy observed after the late flush of the first growth cycle
contains GUs that burst during a previous cycle in the left part and new GUs in the
right part. (c) The canopy observed after the early flush of the second growth cycle
only contains GUs that burst during a previous flush. (d) (resp. (e) and (f)) Tree-
indexed data that represents the sketched mango tree (a) (resp. (b) and (c)). Black
vertices represent roots of homogeneous subtrees found using multiple change-points
models. White vertices represent unlabelled vertices associated with past flushes.
Red vertices represent GUs bearing fruits during the flush. Green vertices represent
vegetative GUs that burst during the flush. Blue vertices represent terminal GUs
that burst in a previous flush. An intermediate scale is represented by dashed dark
lines grouping GUs belonging to the same quotient.
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Figure 19: Directed acyclic graph (DAG) representation of patch successions over time for the
sketched mango trees in Figure 18. Vertices represent patches and are located on
the x-axis according to their flush. Since all temporal edges point from left to right,
edge direction is not represented to simplify the drawing. The white vertex is the
unlabelled root vertex. Red (resp. green and blue) vertices represent reproductive
(resp. vegetative and quiescent) patches. Large vertices correspond to tree, medium
to scaffold and small to growth cycle scales.

F 
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Figure 20: Results of the tree quotienting step: Ternary plot of the subtrees obtained by the
multiple change-point model. Each subtree is denoted by a circle. Subtrees at the
left-bottom corner are pure quiescent, those at the right-bottom corner are pure
vegetative and those at the top corner are pure reproductive. Therefore, the nearer
trees are to corners of the triangle, the purer they are. By contrast, patches close
to edges have a very low proportion of the label represented at the opposite cor-
ner. Background colours are RGB representations associated to the proportions of
each label (red for reproductive, green for vegetative and blue for quiescent). This
gradient emphasizes patch compositions.
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Figure 21: Representation of mango tree individuals in the first LDA plane, using cultivars
as classes.

Another approach for assessing synchronism in growth. From a statistical point of view,
our tree-quotienting/subtree-clustering approach presented above is based on an assumption of
independence and patch-wise homogeneity between shoot labels. The independence assumption
does not seem realistic a priori, since for example fruiting usually has an inhibitory effect on
fruiting the year after along the same axis. If all terminal shoots produced both vegetative and
reproductive shoots in the same proportions and synchronously, i.e. at the same burst dates,
all branching systems would grow synchronously and would have the same quantitative and
qualitative distributions of shoot properties (in terms of quiescence, vegetative and reproduc-
tive growth), referred to as fate in what follows. This is not compliant with measurements,
highlighting patchiness patterns. The latter thus result from mutual exclusions, at the local
scale of children shoots of a given mother shoot, between some of their burst dates and / or
some of their fates. Such exclusions are observed, for example, when two different children
shoot fates cannot occur from a same parent shoot with some given fate. Our model confirmed
and quantified such dependencies, which not only exist between child and parent shoots but
also between children shoots in the case of mango trees. These dependencies were already
suggested in Dambreville et al. (2013a) through regression models.
As a complement to change-point detection, we thus developed a Markov-out-tree-based

approach aiming at explaining patchiness trough local dependencies inducing synchronism and
alternation phenomena. It is fully explained in Dambreville et al. (2013b). From a phenological
point of view, the question is the ability of local synchronism and exclusion patterns to account
or not for global patchiness patterns occurring at more integrated scales (whole tree or scaffold).
We focused especially on differences on fates and burst dates between children GUs issued

from a same parent GU to define the model state-space. The latter was defined as the space
product of fates, dates within growth cycle (flushes) and delays, from which non-existent com-
binations were removed. Let recall the possible flushes: E(arly), I(ntermediate ) and L(ate).
The considered fates were V(egetative ), (T)erminal flowering and L(ateral flowering). The
delays were either I(mmediate), meaning that current GU was grown in the same flush as its
parent, or (D)elayed. Time U was a particular case of unknown date of burst for old GUs that
were grown before the beginning of measurements. Thirteen states were defined for GUs as
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follows: U-V, IE-V, IL-V, DE-V, DI-V, DL-V, U-F, II-T, IL-T, DI-T, DL-T, II-L and DI-L,
using some Delay-Flush-Fate order to name states (e.g., IL-V means Immediate Late Vegeta-
tive). Thus using the methodology described in Section 3, thirteen PGMs were identified, each
one associated with a given parent state.
To illustrate an example of results and conclusions that can be drawn from estimated PGMs,

we develop the case of state II-L as a parent GU (see Figure 22).

• No transition occurred from parent state II-L to children states U-V, U-F, II-V, II-T, IL-
V, IL-T, DE-V, nor II-L. This was expected for states U-V and U-F, which by definition
always preceded other GUs.

• The edges originating from source vertices DL-V and DL-T and pointing toward non-
source vertex DI-V with associated negative regression parameters expressed mutual ex-
clusion between DI-V on the one hand, and {DL-V, DL-T} on the other hand. The same
mutual exclusion behaviour occurred between states DL-V and DI-L. This highlights that
immediate GUs from flush I with lateral inflorescences (state II-L) cannot have children
GUs, the year after, successively at flushes I and then L. Hence state II-L, as a local
context regarding parent GUs, is favourable to synchronism. However, this also suggests
that on the one hand, children GU fates may be heterogeneous (simultaneous occurrence
of V and T children). If these children, in turn, tend to propagate their fates to their own
children, this could lead to patches from the viewpoint of fates. On the other hand, DI-T,
DL-T and DL-V may coexist, highlighting absence of strict exclusion pattern regarding
GU production at both I and L flushes.

These results showed the ability of Markov out-tree (MOT) models to identify in which
contexts a given parent GU can or cannot have children GUs at different flushes or in different
fates. This can be interpreted as the mechanism entailing patchiness at GU scale, combined
with propagation processes favouring its emergence at coarser scales. This local point of view
on asynchronism can be turned into a more integrated view by prediction, using our model,
of the total number of descendant GUs at each flush and each fate at different scales (e.g.,
scaffold, whole tree). It is in this spirit that the model was included into a simulation scheme
by Boudon et al. (2017).

Perspectives. In summary, we designed two complementary methods to quantify and char-
acterize patchiness. Their outputs can be used to compare cultivars and as a perspective, could
be integrated into varietal selection procedures or technical arrangement studies. The segmen-
tation heuristic does not require particular assumptions concerning observation distributions.
This approach could therefore be used for detecting patchiness resulting from the observation
of numerous variables of different types. It could also be applied to other temperate or tropical
plant species.
Particularly, a next step in the mango tree setting would be to analyse absolute patch sizes,

which are related to amounts of carbon reserves and to distances between GUs. It is thus likely
that the absolute patch size would summarize accurately cultivar fruiting patterns and their
agronomic behaviours.
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Figure 22: PGM associated with parent state II-L. Vertices of the PGM correspond to the
random numbers of children GUs in each state. Grey children states correspond
to absence of children in those states (deterministic). White vertices (sources) and
parameters correspond to univariate distributions (P : Poisson, B: Binomial, NB:
Negative Binomial, except for vertex DL-T associated with a mixture of B and P
with weights 0.5). Red vertices (sinks) correspond to univariate regression models.
Regression parameters associated to variable i in PGM are denoted by βi.

This approach also offers new perspectives for testing causal assumptions on patchiness, as
for example the effect of fruit numbers in patches on the nature of subsequent patches, or more
generally the effects of phenological or environmental factors on patch development.
One remaining question is related to sufficiency of local dependencies to account for patchiness

patterns occurring at more integrated scales. To address this issue, we plan to simulate plant
growth under our MOT and some null model (e.g., MOT with independent children states)
and compare the empirical distribution of patchiness indices with the values obtained from the
data set. An additional perspective of improvement would be to resort to new segmentation
methods on trees developed by Thepaut and Rigaill (2019).

5.2.4. Reconstruction from laser scanner

In this section, the different data sets subject to statistical analysis were essentially collected
in more or less handcrafted ways, involving in particular expert knowledge on how to segment
plants into elementary components. For example in apple trees, identifying growth units or
annual shoots requires some ability in grasping characteristic scars in axes, which can be sep-
arated from one another by less than 4 mm. In every case, acquiring tree topologies required
some human intervention to record each entity into a data base.
A significant improvement towards automation in data acquisition has been offered by laser

scanners. Their outputs are unstructured clouds of points, from which topology and geometry
of plants have to be reconstructed. Except in controlled environments (particularly, orchards)
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in which data acquisition is achieved during a defoliation period, additional steps have to be
performed: segmentation of individuals, discrimination between wood and leaves.
The work by Preuksakarn et al. (2010) described hereafter focused on reconstruction in iso-

lated, defoliated plants. This already is a complex problem due to occlusions and low point
densities, hence difficulties in reconstructing small branches, which often are attached to in-
appropriate parts of the plan structure. The aim of our work was to improve robustness of
state-of-the-art algorithms with respect to occlusions and coarse sampling of small branches
by incorporating some statistical modelling in the analysis. At the time of publication, plant
reconstruction was mainly addressed through so-called procedural methods, which relied on iter-
atively simulating plant growth from a given starting point, considering as attractors the points
that were not included in the structure yet, at current iteration. The approach suffered from
the following shortcoming: this involved a high number of parameters for which no efficient
calibration method was available. One possible alternative was sketching, which is a manual
rough outline of the shape guiding reconstruction by constraining subtrees to be delimited by
given spatial zones; however, the reconstruction error remained high.
Later, some methods based on graph reconstruction were proposed. The addition and re-

moval of edges was based on distance criteria. A skeleton was then built from the centres of
segments determined from the graph, using either a K-means algorithm or bounds of distances
to root vertex. However, heuristics used to handle occlusions and low point densities lacked of
robustness, yielding high error rates.
Moreover, both kind of approaches lacked of principled quantitative assessment, due to insuf-

ficient methodology and benchmark data sets. The authors’ contributions were mainly twofold:
on the one hand, to improve robustness of the Space Colonization Algorithm (SCA; Runions
et al., 2007) with respect to occlusions and low point densities using automatic adaptation of
parameters to local point densities, together with statistical models to determine the number
of branches issued from a current axis in a given zone (my personal contribution here). On
the other hand, a benchmark data set was collected and various approaches were assessed and
compared, based on edit distance computations between tree skeletons.
The main steps towards robustification of SCA were to infer plant topology using a local

neighbourhood graph L, obtained by connecting each point to its k closest points. Edges
were weighted by distances between vertices. Since this could result into several disconnected
components, a reconnection procedure was used, based on recursive search of the smallest edges
needed to reconnect parts. Then to take tree topology into account, the distance between points
was redefined as the length of the shortest path in L.
At each iteration of SCA, the neighbourhood the tips of current tree axes was considered.

Assuming that points were sampled from the tree surface, local axis orientations around ver-
tices were extracted using principal component analysis (PCA) on their neighbours. Normed
eigenvectors associated with the first PC, corresponding to main tangential orientation at each
point, were computed (Figure 23), oriented with respect to some fixed reference and represented
in polar coordinates (Figure 24).
Clustering of these polar orientation values using bivariate Gaussian mixture models provided

possible local directions for tree axes. The crucial point was to identify the number of axes
contained in a current set of points, corresponding to the number of clusters. This was selected

67



Figure 23: First eigenvectors of PCA associated to each point of a given volume, used in plant
reconstruction.

Figure 24: Polar representation of first PCA eigenvectors associated to the points in Figure 23
with the different clusters represented with colours.
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Figure 25: Polar representation of first PCA eigenvectors associated to the points in Figure 23
in the (θ, φ) plane (azimuth and elevation) with the different clusters represented
by colours.

using the Integrated Classification Likelihood (ICL) of Biernacki et al. (2001). Using the
selected number of clusters, the mixture parameters were estimated with the EM algorithm and
the points were clustered into the (θ, φ) plane (azimuth and elevation, see Figure 25). Then
the clustered points were mapped towards the original 3D representation, thus associating each
point to a tree axis, each of them corresponding to a cluster (Figure 26). Their directions
were then used to constraint SCA to use them as candidates for further directions of space
colonization.

Perspectives. The presented approach is not related to any tree-scale statistical growth and
structure model addressed in this section. However, we can expect that incorporating knowl-
edge from already segmented trees by statistical modelling could improve tree reconstruction.
Thus, a novel and integrated approach could rely on hierarchical Bayesian models incorporat-
ing different levels of latent variables: species or clusters of structurally similar individuals,
trees (to achieve tree segmentation), axes (as vertices from a tree graph) modelled as HMOTs
and points distributed as geometric 3D random variables determined by axes (e.g., uniform
distributions on cylinders aligned on axes with Gaussian noise).
Such complex models would have to be inferred using approximations. Since on the one

hand, inference in each of the building block (in other words, at each underlying scale) of the
model is rather well understood and on the other hand, each scale includes latent states whose
numbers have to be selected, VBEM-based approximations seem particularly relevant (see also
Section 7).

5.2.5. Other contributions

In this subsection, diverse, somewhat minor contributions related to plant science are summarized.
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Figure 26: Mapping of the clustering obtained in the (θ, φ) plane (Figure 25) to the original
3D space.

Architecture of rose bush. In relation to M. Garbez’ industrial PhD thesis, we studied
the architecture of rose bushes. The main goal of the study was in a first step, to obtain a
quantitative characterization of rose bush architecture, including its phenotypic plasticity in
response to growth conditions. In a second step, we aimed at relating such characteristics to
plant visual appearance, with the commercial purpose of improving product quality in crops.
As bushes, rose trees usually do not have hierarchical structures and growth strategies at whole
plant scale; for example the considered cultivars do not necessarily show any trunk. They
rather grow branched systems from the plant basis, yielding somewhat equivalent structures,
referred to as reiterated complexes. These can be characterized by their degree of similarity
with some ideal branched system containing all structural and qualitative properties of shoots
potentially expressed at whole tree scale. One a priori assumption was the existence of statis-
tical dependencies between consumer preferences on the one hand and the quantity and degree
of reiterated complexes on the other hand – which we initially wanted to test. To enhance
tree phenotypical variability, plants were cultivated under a shading gradient in three distinct
environments: natural conditions, under 55 and 75% shading net. Firstly, CIC-HMT were esti-
mated on the plant material, composed by 20 Rosa hybrida “Radrazz” in each light condition.
The objective was to identify clusters of axes, which defined an exhaustive catalogue (given
available growth conditions) of axes used to qualify and eventually, to compare branched sys-
tems and identify degrees of reiteration. A typical segmentation of a rose bush illustrating the
segmentation into axes with contrasted quantitative and structural properties is illustrated in
Figure 27. The considered variables for axes were length, diameter, number of GUs, flowering
status, number of children axes and stiffness coefficient. The transition diagram is represented
in Figure 28. The model suggested that reiterated complexes typically have their first axes in
state 1 (represented in red).
The results published in Garbez et al. (2018) are related to quantitative characterization of

architectural development of rose bushes over time and prediction of sensory attributes, rep-
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Figure 27: Segmentation of rose bush (no shading) using a CIC-HMT model. Colours represent
restored states.

Figure 28: Transition diagram of the CIC-HMT model on rose bush (no shading). Arcs with
probabilities less than 0.1 are omitted.
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resenting multiple visual traits of the plants. They did not include identification of reiterated
complexes with CIC-HMT models. Strong correlations were found between them and archi-
tectural variables, extracted from phytomer- to plant-scale data. Acceptable to very satisfying
predictions were obtained with ordinary least squares regression and variable transformations
to encompass non-linear relationships.
The proposed approach thus seemed a promising way to gain a better insight into the archi-

tecture of shrub plants, together with their visual appearance. It opened new avenues to target
processes of interest in order to optimize growth conditions or select the most fitting genotypes
across breeding programs, with respect to contrasted consumer preferences.
As a perspective, reiterated complexes could be identified by combining the states obtained

with CIC-HMT models and comparisons with edit distances (as developed in Subsection 2.2).
The CIC-HMT could incorporate covariates representing levels of shading; moreover, their
effect on plant architecture could be assessed, particularly on the quantity and degree of re-
iterated complexes. This approach of identifying reiterated complexes with similar structural
properties and local attributes is somehow specific to the problem. Thus, more generic meth-
ods for multiscale clustering of tree structures would have to be developed (see perspectives in
Subsection 2.2.2).

Cell divisions. In shoot apical meristems (SAMs), organogenesis results from divisions and
differentiation of cells whose identities are not predetermined, thus allowing different organs
(leaves, flowers, stems, etc.) to be produced by a same meristem. While embryonic organs begin
to form, their cells progressively get definite identities, which may be transferred to their descen-
dants through divisions. Recent advances in imagery allowed researchers to acquire temporal
sequences of 3D meristem scans with coarse time steps. Between acquisitions new divisions oc-
cur, so that specific methods were developed in the Inria Virtual Plants team to segment cells,
estimate their geometric properties and reconstruct lineages by inferring unobserved divisions.
One acquisition is represented in Figure 29. The meristem was manually segmented in this
figure, delimiting several primordia with different stages of development (green: early stage,
red: later stage), the central dome (orange), the central zone (cyan) composed by pluripotent
cells and boundary cells (dark blue). A more detailed description of the spatial structure of
SAMs is provided by Fletcher (2002).
The aim of our study, as a part of P. Fernique’s PhD thesis (2014a), was to infer underlying

cell identities (during early stages of flower development) through clustering. As a complement,
its purpose was to highlight interactions between division rates and cell identities.
The relationships between an initial set of cells and their descendants can be represented as a

forest. The data set was modelled using unordered hidden Markov out-trees, where latent states
correspond to cell identities. Since the number of children was one or two and the number of
possible states K remained low, saturated (so-called non-parametric) models were considered
for the generation distributions p(N v|Sv = k), Sv denoting the latent state for cell v and N v

the state vector for its descendants issued from divisions between two time steps.
The observed geometrical properties X included in the model were cell volume, epidermal

surface, external surface, principal and secondary curvatures. These were assumed to be inde-
pendent given their identity (hidden state S) and modelled as univariate, Gaussian-(curvatures)
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Figure 29: Spatial regions of floral meristems. The most developed sepals correspond to red
cells; the latest ones to green cells. Orange cells correspond to the central dome and
light blue ones to the central zone. Boundary cells are in dark blue.

or Gamma-distributed (other variables). The number of states was selected using BIC, yielding
here a four-state model. HMOT models with conditionally dependent (M1) vs. independent
(M0) children states were also compared using BIC. Both estimated models had rather close
numbers of non-zero parameters: 22 for M1 against 18 for MO. BIC was higher for M1

(−18164) than for M0 (−18668), indicating a clear benefit of taking into account children
state dependencies in cell divisions.
Cell epidermal surface, internal surface, curvatures and (especially) volume were assessed to

be structuring variables in this model, since the estimated observation distributions for the
different states were well separated for this five characteristics (see Figure 30).
These observation distributions allowed us to partly characterize the four states:

States 0 and 3 correspond to large cells and are mostly differentiated by their curvatures (both
negative for state 0 and positive for state 3), state 0 corresponding to the largest cells.

State 1 corresponds to small cells with both curvatures almost of the same norm and mostly
negative, this being typical characteristics of saddle forms.

State 2 is in-between considering size, but with clearly positive curvatures, corresponding to
the dome area.

Using the Viterbi restoration algorithm (Figure 31), spatial regions that emerged from cell
identity labelling were interpreted using meristem morphology: central dome and zone were
assigned to state 2, sepal primordia were composed by states 0 and 3, while boundary zone was
assigned to state 1.
State 2 is the main state of the first time point and presents a high spatio-temporal coherence

from 0h to 69h. Despite an early stage of meristem differentiation at 0h, few cells are already
assigned to putative sepals. At subsequent time points, the multiplication of sepal and dome
cells with the apparition of boundary cells, delimiting the frontier between sepals and the dome
zone, is observed. The apparition of boundary cells is unobtrusive until 44h but significant as
the continuous border is clearly identified starting from 56h.
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External surface

Figure 30: Histogram (given restored states), emission distributions and mixtures (bright red)
for each observed variable. State 0 is in dark blue, state 1 in light blue, state 2
in yellow and state 3 in dark red. Surfaces and volumes are modeled by Gamma
distributions and curvatures by Gaussian distribution. Combining state separations
induced by surfaces and volume in the one hand and curvatures in the other hand
indicates that these characteristics are sufficient for state discrimination.
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Figure 31: Viterbi hidden state restoration for Hidden Markov Out-Tree (HMOT) models on
cell divisions. Images, from left to right, were taken at 0h, 26h, 44h, 56h and 69h after
the beginning of the experiment. Segmentation is obtained by spatial projection of
the four states obtained using for the HMOT estimated from cell epidermis surface,
internal surface, volume, curvatures and inertia as variables. State 0 is in dark blue,
state 1 in light blue, state 2 in yellow and state 3 in dark red. Primordia are mostly
identified by considering state 0 and 3, the dome by state 2 and boundary cells by
state 1.

State interpretation can be completed by the analysis of the estimated generation distribu-
tions denoting as Γs (n0, n1, n2, n3) for s ∈ {0, 1, 2, 3} (probability of a parent cell in state s
having jointly nk children cells in state k):

Γ0 (0, 0, 0, 2) = 0.07, Γ1 (0, 0, 0, 1) = 0.13,

Γ0 (1, 0, 0, 0) = 0.29, Γ1 (0, 1, 0, 0) = 0.45,

Γ0 (1, 0, 0, 1) = 0.42, Γ1 (0, 2, 0, 0) = 0.35.

Γ0 (2, 0, 0, 0) = 0.20.

Γ3 (0, 0, 0, 1) = 0.14,

Γ2 (0, 0, 0, 1) = 0.13, Γ3 (0, 0, 0, 2) = 0.09,

Γ2 (0, 0, 0, 2) = 0.10, Γ3 (0, 0, 1, 1) = 0.11,

Γ2 (0, 0, 1, 0) = 0.18, Γ3 (0, 1, 0, 1) = 0.35,

Γ2 (0, 0, 1, 1) = 0.28, Γ3 (0, 2, 0, 0) = 0.17,

Γ2 (0, 0, 2, 0) = 0.31. Γ3 (1, 0, 0, 0) = 0.05.

The reproduction and emergence of cell identities underlined by generation distributions are
consistent with biological beliefs. State 3 is a hub for transitions from state 2 at 0h to other
states at times greater than 44h. This is the state with highest division rate. Cells in state 3
cannot stay in that state until the next time step: they either divide or switch to state 0, which
corresponds to differentiation from early cells to late ones in primordia. Divisions of state-3 cells
may mainly yield one cell in the same state and a second cell in state 1 or 2. Transitions from
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state 3 to state 1 correspond to emergence of boundary cells induced by primordia formation,
which may be more the consequence of their differentiation than an active phenomenon.
Despite these first conclusions, biological interpretations drawn from the outputs of the

HMOT model were limited by the number of available successive time points and data quality.
Indeed, time intervals between successive images were large, resulting into some divisions not
being observed. Such missing divisions were interpolated but this resulted into the presence of
a large number of predicted cells without observed characteristics (almost 50%). In addition,
the number of time points (five here) also limited detailed investigation of cell division patterns.
Now new protocols would be available, allowing researchers to acquire more time points (up to
15), with reduced time intervals between successive acquisitions and raw images of better qual-
ity. This would help us to obtain more accurate segmentations and thus, measurements of cell
characteristics. There is also a systematic bias in algorithms in estimating cell characteristics.
This is in particular true for curvatures computed with some non-adaptive procedure, which
could be replaced by the adaptive algorithm by Tong and Tang (2005).

Geometry of meristems of Acacia mangium. This study issued from Hatt et al. (2012)
focused on comparing morphological and histocytological characteristics of Acacia mangium
SAMs with respect to growth conditions (natural vs. in vitro) and to heteroblasty (change in
form between juvenile and mature individuals). The main biologic conclusions are SAMs in
natural environment being much bigger and containing more cells with larger vacuolated area
for mature than juvenile type. In vitro, where reversions from mature to juvenile morphological
traits do occur unpredictably, heteroblasty was less obvious in SAM examined characteristics.
In vitro SAMs corresponding to the juvenile and mature types showed similarities with outdoor
juvenile SAMs, but could be distinguished from these latter by a much larger vacuome, which
might be induced by culture conditions.
From a methodological point of view, the considered morphological SAM characteristics were

height H, diameter D and a shape index S characterizing the bulged aspect of the dome based
on fitting the following superellipse equation with SAM points:(

2x

D

)S
+
( y
H

)S
= 1.

Our contribution was on the one hand, to assess shape heterogeneity within given growth
conditions by fitting mixture models to the triplets xi = (Di, Hi, Si) for each SAM i. A BIC-
based model selection procedure gave rise to a partition of SAMs into two clusters, primarily
determined by H and secondarily by S. None of these two clusters could be clearly associated
with a specific SAM origin, despite cluster 1 containing mostly mature SAMs and having higher
H values than SAMs from cluster 2.
On the other hand, as an alternative to multivariate mean comparisons based on multivariate

Gaussian assumptions (MANOVA; Tabachnick and Fidell, 2007), original permutation tests
(Good, 2005) were developed for assessing the effect of the treatments on the triplet components
simultaneously. These are based on the ratio of inertia defined as follows: Let N be the number
of individuals and Nk the number of individuals with a given class k, where classes are defined
as the space product of 2× 2 conditions. Let mk be the mean vector for individuals with class
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k and m the mean vector for all individuals (regardless of class). Our statistic was defined as
δ = ICI/TI, where

ICI =
1

N

∑
k

Nk‖mk −m‖2

is the inter-class inertia (representing the dispersion between mean vectors induced by different
SAM classes) and

TI =
1

N

∑
i

‖xi −m‖2

is the total inertia, representing the total dispersion between all individuals.
The ratio of inertia is a generalization of the test statistic of ANOVA, used in both factorial

discriminant analysis and multivariate analysis of variance (MANOVA), to quantify the class
separation in multivariate settings. Values of δ far from 0 indicate a good separation between
classes.
Randomized tests were implemented as follows:

1. Compute the value δref of δ for the true dataset (individuals with non-random classes).

2. Assign random classes to individuals, such that the number of individuals of each class is
preserved (assignment does not depend on the xi’s ).

3. Compute the ratio of inertia δ using the classes obtained at step 2.

Random permutations of the individuals were used for assigning random classes to individ-
uals in adequate proportions. Steps 2 and 3 were repeated nr times (with nr = 5, 000). The
proportion P of values δref < δ was computed and interpreted as usual p-values in hypothe-
sis testing.
As a perspective, the power of this test under different sample sizes and distributional assump-

tions (including the comparison with MANOVA) would have to be investigated, particularly
through simulation studies.

77



6. Software contributions

The methods presented in the previous sections were included into mainly two pieces of software
dedicated to hidden Markov models and statistical analysis of plant structures.

6.1. Chainxem: a Matlab library for HMC/HMT analysis

Chainxem is a Matlab library dedicated to inference in HMC and HMT models. Originally I
developed the library during my PhD thesis as an extension of the ancestor of Mixmod8, to
relax an independence assumption in mixture models and consider time or tree dependencies.
During L. Donini’s PhD thesis (Subsection 4.2), the library was extended by the Xerox

company to include connexions with timeout optimization and reinforcement learning models.
Then extensions to categorical and multivariate observations were motivated by new research

work on eye-movement analysis, as a precursory implementation of the models developed later
in B. Olivier’s PhD thesis.
The library now contains about 10,000 lines of code. It is available at http://mistis.

inrialpes.fr/people/jbdurand/software.html#chainxem_en.

6.2. Tree Statistic: statistical models on trees for plant structure
analysis

Tree Statistic is a python module dedicated to the statistical analysis of plant structure data.
This is a part of the Structure Analysis9 component of the OpenAlea10 project. OpenAlea is an
open source platform aiming at connecting different models from the plant research community.
It includes modules to analyse and model plant architecture, growth and functioning. The
principle is to provide some software architecture to compile libraries developed with different
programming languages and to make them available in python, through wrappers if they are
not native python libraries.
Tree Statistic is an extension of the Sequence Analysis module, dedicated to the analysis of bi-

ological sequences. It mainly contains Markov-switching models, including hidden semi-Markov
or variable-order Markov models (including Generalized Linear Mixed Models as emission dis-
tributions) and multiple change-point detection. It is more specifically oriented towards discrete
observations (nominal-, ordinal-, integer-valued) but also includes some continuous observation
distributions. The module was used and extended during B. Olivier’s PhD thesis, in relation
with hidden Semi-Markov models (see Subsection 4.3). The core of the library is composed by
C++ classes with python wrappers implemented through Boost.Python.
Tree Statistic relies on the same base classes (histograms, discrete and continuous distri-

butions) and aims at providing statistical models for the analysis of tree-structured data. It
provides data structures and (hidden) Markov models on trees, as presented in Sections 2 and 5.
As explained in these sections, general dependency assumptions within trees rely on modelling

8http://www.mixmod.org/?lang=en
9https://github.com/openalea/StructureAnalysis

10https://github.com/openalea
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multivariate count data and identifying probabilistic graphical models, also included as com-
ponents of the library. Since my post-doctoral fellowship at CIRAD/AMAP, I have been the
maintainer and main developer of the library. During his PhD studies, P. Fernique contributed
significantly by adding graphical models and parametric multivariate count distributions. The
library now contains about 50,000 lines of code, among which 75% is C++, 15% is native
python and the remainder is Boost.Python. The library is interfaced with other Structure
Analysis components: sequence analysis, multiscale tree graphs (Godin and Caraglio, 1998)
and PlantGL. The latter is a graphical toolkit for the creation, simulation and analysis of 3D
virtual plants and was used to produce the 3D figures of this manuscript (e.g., Figures 23 and
27 in Section 5). We plan to unify data structures with the Tree Matching library dedicated
to computation of edit distances and mappings between tree graphs (see Subsection 2.2) and
make them a coherent “Tree Analysis” component of Structure Analysis.
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7. Conclusion and perspectives

As a conclusion, our main contribution is the specification, implementation and development of
numerical methods for hidden Markov models on sequences and tree structures, particularly for
the analysis of plant growth and architecture. This led us to develop new tools and selection
methods in graphical probabilistic and multivariate count modelling. Motivated by specific
contexts of applications, new families of hidden Markov chains were also proposed: coupling
HMCs with decisions processes and optimization in the context of optimal timeout modelling,
coupling HSMCs in the case of heterogeneous, asynchronous signals with application to joint
EEG and eye-movement analysis. These models try to address generic questions and to go
beyond the original motivation justifying their development. Plant structure analysis was, in a
first step, mainly driven by cognitive motivations: can we characterize plant structures through
quantitative models? How well do they predict tree shapes, their variability and the effect of
environmental or other factors? Our hidden Markov tree models provided partial answers to
the question: They often had to be complemented by other approaches, such as edit distance
computation, tree matching, supervised and unsupervised machine learning at different scales,
whenever thorough model integration seemed hardly possible. In such contexts, workflows of
treatments were applied, often not accounting for the uncertainty or variability underlying the
models at previous steps of the analysis.
We originally analysed data sets that were rather sparse and collected manually. However

some years later, the automatic collection of data allowed plant researchers to access bigger
collections of structured measurements, the structure often being accessible only indirectly.
Thus, a need for reconstruction methods emerged and we participated (modestly) to this new
challenge. As a corollary, measurements of structured data on whole progenies were accessible.
This raised the question of accounting for new sources of variability (now genetic) with their
potential interactions with ontogeny and environment. Then, how to assess their impact on
complex structures (tree graph, multiscale tree or more general graphs)? We addressed the
problem by incorporating mixed effects in models acting at local scales, with the assumption
that global properties would essentially emerge from local interactions included in the models.
Although perspectives are provided separately in each subsection of the manuscript, we would

like to present ongoing work and more global future research avenues. Some research partners
focused on ecological questions, now considering larger spatial scales. Instead of isolated in-
dividuals or forest / orchad plots, tropical forests are the object of interest, with the aim of
monitoring their evolution, particularly in relation with global warming, from the points of view
of composition, leaf area density and production (covering both storage and exchange with at-
mosphere). Data acquisition is achieved by satellite imaging, terrestrial and aerial LiDAR. In
such environments, data are characterized by much more sources of heterogeneity, primarily
related to devices, climate conditions at various time scales – particularly both the day of mea-
surement (rain, wind) and at coarser time scales, thus impacting tree growth globally – soil
and forest composition or other semi-local environmental features, stage of plant development,
repeated measurements on a same vs. different individuals and interception of laser beams by
leaves vs. wood. From a statistical point of view, these sources may be viewed as many latent
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Figure 32: Total cow population (left-hand part) and BSE (right-hand part) counts in the
different districts. Levels of grey correspond to intervals whose bounds are indicated
in legends, e.g. white corresponds to 0 to 4576 cows.

variables subject to some hierarchy through spatial and time scales, from plant elementary
components to forests.
From a statistical point of view, new topics were recently investigated in my research team,

particularly regarding hidden Markov random fields (HMRFs) and Bayesian non-parametric
(BNP) analysis. Contributions from both fields joined when considering image segmentation.
HMRFs are a popular approach (Kato and Zerubia, 2012) but suffer from the high complexity
of model selection, which determines the unknown number of segments. HMRFs are state-
space models where categorical latent state variables take their values in {1, . . . , K}, K being
an unknown number of states. In classical settings, different models have to be estimated
separately for each considered value of K. Then these models have to be compared using
statistical criteria. One possibility to avoid successive estimation and assessment of each model
is offered by reversible jump MCMC methods (Kato, 2008), in which the very high dimension
of parameter and latent variable space can make convergence critically slow. Chatzis and
Tsechpenakis (2010) and later, Lü et al. (2019) proposed a Bayesian non-parametric prior
on the MRF, thus allowing a priori unbounded values of K. Inference was addressed by a
variational Bayesian EM (VBEM) algorithm, which is less CPU-demanding than MCMC. The
emission distributions were Gaussian. During F. Dama’s masters internship, we developed an
extension to discrete observation processes (modelled in a first step as Poisson) and are now
considering further extensions to zero-inflated or over- and underdispersed data. Firstly, we
applied this model to disease mapping in cases of bovine spongiform encephalopathy (BSE)
in France. The data set is depicted in Figure 32. The associated segmentation and estimated
emission parameters are represented in Figure 33.
We now believe that forest monitoring and reconstruction from LiDAR data could be ad-

dressed in a principled way using an integrated Bayesian framework. The global model would
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Figure 33: BSE case ratio (left-hand part) and BNP-MRF segmentation with MAP (right-
hand part). For BSE case ratio, colours correspond to intervals whose bounds are
indicated in legend, e.g. white corresponds to 0 to 6.4 cases per 105 cows.

include a hierarchy of latent variables and model blocks associated with the different scales
of representation (plant elementary components, axes, individuals, species or ecological clus-
ters, homogeneous forest plots, whole forest), including available covariates. For example, the
model block associated with homogeneous forest plots could be a BNP-MRF with multivariate
count distributions (e.g., multinomial distributions if homogeneous plots are defined by similar
species proportions, or graphical discrete models as in Section 3 if changes in dependencies and
total numbers of trees are considered as discriminant). To make the approach feasible from
the viewpoint of computing time and memory, the data set could be processed in partially
redundant slices, accounting for conditional independence relationships: given the cluster value
representing homogeneous growth conditions, individuals are assumed to be independent, etc.
However, since observations are essentially one cloud of points, slices would have to be overlap-
ping to ensure that each individual is fully contained within at least a slice. Once individuals
are segmented, points are not relevant any more at coarser scales and can be freed in memory.
In a different but related context, we aim at estimating leaf area densities (LADs) from

similar measurements, except that they consists in the number of hits of laser beams with
leaves, together with segment lengths between hits (or cases of non-interception), referred to
as free path lengths, instead of 3D points.
Let (θ,Φ) be respectively the elevation and azimuth components of the beam incidence di-

rection. On the one hand and under classical assumptions, LAD is related to an attenuation
coefficient k(θ,Φ), a clumping factor Ω and a ratio G(θ,Φ) of foliage area projected in direction
(θ,Φ) to actual area by the following equation:

k(θ,Φ) = G(θ,Φ).Ω.LAD.
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On the other hand, k(θ,Φ) is related to the observed free path lengths (li)1≤i≤n by the likelihood
function

L(θ,Φ) =
n∏
i=1

k(θ,Φ)Sihie−k(θ,Φ)Sili

where Si is the incoming beam section and hi is a binary variable indicating absence of hits.
Using both equations, LAD estimation is achieved by estimating Ω, specifying a model for

G(θ,Φ) with a normalization ensuring identification of LAD, and estimating its parameters by
likelihood maximization. Moreover, G is determined by the leaf angle distribution p(θL,j,ΦL,j)
at leaf j, which in the end is the main focus of statistical modelling. State-of-the-art models
assume independence of θL and ΦL, uniformly distributed ΦL and i.i.d. θL,j (see Pisek et
al., 2013 and Pimont et al., 2018). However, it is expected that within tree crowns, (θL,j)j
are spatially clustered into aggregated patches. This is why we aim at taking into account
spatial aggregation and dependencies by incorporating the distribution of θL within a BNP-
MRF model operating at voxel scale, thus representing spatial dependencies of leaf orientation
between contiguous voxels.
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his fundings for future PhD studies. His work, although focused on applications in plant
growth modelling, was actually quite broad in terms of statistical models since it addressed the
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Grenoble) on eye-movement experiments. We focused on scanpath modelling using HMC mod-
els (using our Matlab library Chainxem) and since HMCs revealed themselves unable to provide
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of the OpenAlea11 project). However, these were not appropriate for joint modelling of eye
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researchers from four laboratories in Grenoble shared common interests and needs for stochas-
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to make periodic reports on project advances. Oculo-Nimbus provided funding for B. Olivier’s
PhD thesis and other post-doctoral or PhD fellowships involving the other axes only. This also
funded a workshop on eye-movement analysis we organized in Grenoble in 2018.
While I was supervising J. Peyhardi’s master thesis in Montpellier, E. Costes (AGAP labo-

ratory, Montpellier) proposed that together with C. Trottier and Y. Guédon we took part to
a project on joint modelling of growth and alternation in flowering in apple trees. In 2010, E.
11https://github.com/openalea
12https://persyval-lab.org/fr/sites/oculo-nimbus
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Costes imagined an extension of this work, focusing on a reduction of the phenotyping work-
load required to assess yearly numbers of flowers. We co-supervised Y. Holtz’s master thesis
on that topic and the combination of these new methods and results led to a publication in
the Journal of Experimental Botany (Durand et al., 2013a). Now we could extend measure-
ments to new families of apple trees and take benefit from both increased sample sizes, genetic
diversity and links between families to enhance statistical detection of QTLs; this was at the
core of A. Allard’s PhD thesis and led to a publication in Frontiers in Plant Science (Durand
et al., 2017). These studies demonstrated the existence of genetic determinisms in alternation,
supporting the assumption of hormonal control on floral induction involving developing fruits.
But the role of nutritional competition between reproductive and vegetative growth should also
be considered. From 2015 to 2019, I took part to a French-German ANR research project called
AlternApp, Genetic mechanisms underlying alternate cropping in apple (Malus x domestica)13,
which focused on examining these two assumptions by genetic and genomics approaches. I
was in charge of applying and extending our statistical methodology to new data sets and
phenotyping protocols.

Teaching

When I became appointed as a teaching assistant at Ensimag in 2004, I was in charge of
creating a new 36H course in statistical learning. I was totally free to decide the contents and
chose to teach neural networks, probabilistic graphical models, mixture and hidden Markov
models, computational statistics for Bayesian models and model selection. These topics had
the advantages of being useful for engineers and to belong to research fields. The course
contained about one half practical work. This course received the best ratings by the students
among all the courses I ever gave; unfortunately the contents of the 3-years training program of
engineers changed the year after and since this course could not fit in the schedules any more,
it was discarded. I also succeeded some colleagues in introductory courses in statistics and
multivariate analysis. I contributed to other courses in probability, proposed and supervised
some student projects.
From 2006 to 2008 I coordinated “Information and Communication Technologies in Educa-

tion” at Ensimag, together with F. Hetroy in computer science. This globally consists in ped-
agogic and technology watch, especially but not exclusively in new technologies for education.
We particularly focused on problem- and project-based learning and went in Louvain-La-Neuve
for a week to follow a training program. Then I applied these principles in my course in multi-
variate statistics and promoted the method at Ensimag. I also trained colleagues in statistics to
multivariate analysis using the R software and headed two projects. The first one is an online
French-English dictionary of mathematical concepts with their pronunciations (including audio
recordings). The second one is a platform to organize student projects satisfying hierarchical
constraints in nested groups, including forming teams, scheduling defences and gathering de-
liverables. The latter project was funded by a competitive university call; I thus wrote the
project including its specification and hired a technician to develop the platform.

13https://umr-agap.cirad.fr/recherche/projets-de-recherche/alternap
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In 2004, O. Gaudoin and I decided to propose training sessions in the continuing education
department of the university (35H per year). We thus built industry-oriented training programs
in data analysis, or introductory courses in statistics and probability. This lasted about three
years, until the global load of the teachers became too heavy regarding conventional training
and we had no time to ensure the sessions any longer.
From 2006 to 2009 I was in charge of coordinating 5-weeks full-time projects in probability,

statistics and finance for teams of second-year students (call to projects, manage student teams,
enforce rules and schedules, gather reports, organise and attend defences).
From 2014 to 2019, I was the head of the teaching staff in probability, statistics and finance

at Ensimag. This mainly consists in checking the consistency of courses and training programs,
the application of reforms decided by our university, committee of accreditation or ministry,
compute the total teaching load of the staff, check the repartition between teachers and ensure
that our topics remain visible and promoted in the various training pathways of the school. I
had also to watch evolutions in educational programs at bachelor level, so that our pre-requisites
and refresher courses remained adequate.
In 2014, Grenoble INP Ensimag and Grenoble Ecole de Management offered a new training

program dedicated to big data 14and I was in charge of defining its contents in machine learning.
In 2014 and 2015, I was a trainer in training sessions in Python for higher school preparatory

teachers (introduction to scientific libraries).
Around 2013-2014, the number of research master’s students in applied mathematics had

fallen low, partly due to lack of possibilities for our Ensimag students to join the programs.
I contributed in conceiving new programs in data science (now accessible to Ensimag stu-
dents too). These were shared by two universities and two departments, Applied Mathematics
(MSIAM15) and Computer Science. From 2015 to 2019, I was the head of the Statistics and
Data Science track (with the help of O. Gaudoin in 2015). This occupation was particularly
time-demanding. The co-accreditation by two universities and departments was a source for
numerous administrative complications. The number of students increased regularly, from 12
in 2015 to 50 in 2019. This position involved assessment of application files, information and
selection of students regarding fellowships, collecting and validating students’ choices for op-
tional courses, maintaining multiple university webpages, organizing committees to improve the
training program, creating partnerships with other universities (particularly MIPT Moscow).
Some shared courses had more than 100 students. Part of the courses were shared with other
master programs (signal processing, operation research). The complexity was such that I spent
more than 300 hours per year just in organization, with sometime deficient support of adminis-
trative staff (actually no support at all during several months). The heads of the shared tracks
and master program agreed on the relevance of sharing more courses: modelling activities,
data competitions, but there was some lack of volunteering teachers so I had to get personally
involved and in the end, was in charge of four different courses in the master, which added to
the Ensimag courses. In 2019, we were the first French program to obtain an ECMI (Euro-
pean Consortium for Mathematics in Industry16) accreditation. We published the principles

14https://ensimag.grenoble-inp.fr/fr/formation/big-data-analyse-management-et-valorisation-responsable
15http://msiam.imag.fr/
16https://ecmiindmath.org/
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of a training program in data science in the journal Statistique et Enseignement (Amini et
al., 2016) and published the scientific contents in a book: Data Science. Cours and exercices.
Eyrolles (éd.), 2018.
Since 2016, I have been in charge of a training project on data competitions. The aim is to

organise and promote competitions in data analysis as training activities at the scale of the
joint universities in Grenoble. The project includes a platform dedicated to hosting and running
data competitions and a multimodal classroom to favour team working. The classroom includes
clusters of tables, plugs and screens with mobile chairs and shelves, with shareable large screens.
The project was presented in conferences (Durand 2017, 2019), one of which was in Grenoble;
I was part of the organising committee.
The teaching load regularly increased from 2004 (192H) to 2018 (242H), with a pike in 2016

(263H), not mentioning unrewarded hours.

Other responsibilities

From 2011 to 2017, I was in charge of organising the seminars in Applied Probability and
Statistics at LJK. This is the weekly seminar of our department.
From 2008 to 2013, I was the Health and Safety Manager at LJK. During the first year,

this mainly consisted in transmitting information regarding occasional intrusions and damages
caused to the building. However after one year the task was much more demanding since the
university required the list of every room in the building with an inventory of each possible risk
(in a very broad sense: having one’s feet tangled in wire, the use of chained multi sockets or
keeping stacks of paper, etc.).

Organizing committees at workshops and conferences

• Grenoble Workshop on Models and Analysis of Eye Movements, Université de Grenoble,
June 6–8 2018.

• CFIES’2017 (Colloque Francophone International sur l’Enseignement de la Statistique),
Université de Grenoble, September 6–8 2017.

• Workshop of AIGM network (Algorithmic Issues for inference in Graphical Models): 2011
session in Montpellier and 2015 session in Grenoble.

Selection committee for assistant professor positions

• 2018: Grenoble INP / Ensimag (position n. 0664, sections 26-27 Applied Mathematics
and Computer Science)



Reviewing activity for the following journals:

• Statistics and Computing

• Behavior Research Methods

• PLOS Computational Biology (invited editor)

• Journal of Mathematical Biology

• Signal Processing Letters

• International Journal of Wavelets, Multiresolution and Information Processing

• IEEE Transactions on Signal Processing

• IEEE Transactions on Image Processing

• Transactions on Reliability

• International Journal of Computational Materials Science and Engineering



B. List of publications1

Foreword related to authors’ order in publications.
Publications in Applied Mathematics usually sort authors by decreasing importance of contri-
butions, or by alphabetical order in case of equal contributions.
Publications in Plant Science frequently place as last authors PhD supervisors or team leaders,
even if their contribution is quite significant.

Preprint

• P. Fernique, J. Peyhardi and J.-B. Durand. Multinomial distributions for the parametric
modeling of multivariate count data. https://hal.inria.fr/hal-01286171

Book chapter

• M. Clausel and J.-B. Durand. Modèles Génératifs. In Data Science. Cours and exercices.
Eyrolles (éd.), p. 125-156, 2018.

Peer-reviewed international journals

• M. Garbez, R. Symoneaux, É. Belin, Y. Caraglio, Y. Chéné, N. Dones, J.-B. Durand, G.
Hunault, D. Relion, M. Sigogne, D. Rousseau and G. Galopin. Ornamental plants ar-
chitectural characteristics in relation to visual sensory attributes: a new approach on the
rose bush for objective evaluation of the visual quality. European Journal of Horticultural
Science 83(3):187–201, 2018.

• J.-B. Durand, A. Allard, B. Guitton, E. Van de Weg, M. Bink and E. Costes. Predict-
ing Flowering Behavior and Exploring Its Genetic Determinism in an Apple Multi-family
Population Based on Statistical Indices and Simplified Phenotyping. Frontiers in Plant
Science 8:858-872, 2017.

• W. Yang, B. Pallas, J.-B. Durand, S. Martinez, M. Han and E. Costes. The impact
of long-term water stress on tree architecture and production is related to changes in
transitions between vegetative and reproductive growth in the “Granny Smith” apple
cultivar. Tree Physiology, 36(11):1369-1381, 2016.

1Electronic version of documents available at http://mistis.inrialpes.fr/people/jbdurand/
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• J.-B. Durand and Y. Guédon. Localizing the latent structure canonical uncertainty: en-
tropy profiles for hidden Markov models. Statistics and Computing, 26(1):549-567, 2016.

• J.-B. Durand, B. Guitton, J. Peyhardi, Y. Holtz, Y. Guédon, C. Trottier and E. Costes.
New insights for estimating the genetic value of segregating apple progenies for irregu-
lar bearing during the first years of tree production. Journal of Experimental Botany,
64:5099-5113, 2013(a).

• J.-B. Durand, S. Girard, V. Ciriza and L. Donini. Optimization of power consumption
and device availability based on point process modelling of the request sequence. Journal
of the Royal Statistical Society Series C, 62(2):151–162, 2013(b).

• C. Hatt, F. Mankessi, J.-B. Durand, F. Boudon, F. Montes, M. Lartaud, J.-L. Verdeil
and O. Monteeuis. Characteristics of Acacia mangium shoot apical meristems in natu-
ral and in vitro conditions in relation to heteroblasty. Trees - Structure and Function,
26(3):1031–1044, 2012.

• J.-B. Durand, Y. Guédon, Y. Caraglio and E. Costes. Analysis of the Plant Architecture
via Tree-structured Statistical Models: the Hidden Markov Tree Models. New Phytolo-
gist, 166(3): 813–825, 2005.

• J.-B. Durand and O. Gaudoin. Software reliability modelling and prediction with hidden
Markov chains. Statistical Modelling - An International Journal, 5(1):75-93, 2005.

• G. Celeux and J.-B. Durand. Selecting Hidden Markov Model State Number with Cross-
Validated Likelihood. Computational Statistics, 23(4):541–564, 2008.

• J.-B. Durand, P. Gonçalvès and Y. Guédon. Computational Methods for Hidden Markov
Tree Models – An Application to Wavelet Trees. IEEE Transactions on Signal Process-
ing, 52(9):2551–2560, 2004a.



Peer-reviewed journals with national audience

• M.-R. Amini, J.-B. Durand, O. Gaudoin, E. Gaussier and A. Iouditski. Data Science :
une formation internationale de niveau Master en science des données. Statistique and
Enseignement, Société Française de Statistique, 7(1):95-102, 2016.

• J.-B. Durand, L. Bozzi, G. Celeux and C. Derquenne. Analyse de courbes de con-
sommation électrique par chaînes de Markov cachées. Revue de Statistique Appliquée,
LII(4):71–91, 2004b.

Peered-reviewed international conferences

• R. Azaïs, J.-B. Durand and C. Godin. Approximation of trees by self-nested trees. In
Proceedings of the 21st Meeting on Algorithm Engineering and Experiments (ALENEX
2019), 7-8 January 2019, pp.39-53. San Diego (USA).

• B. Olivier, J.-B. Durand, A. Guérin-Dugué and M. Clausel. Eye-tracking data analy-
sis using hidden semi-Markovian models to identify and characterize reading strategies.
In Proceedings of the 19th European Conference on Eye Movements (ECEM2017), 20-24
August 2017. Wuppertal (Germany).

• J.-B. Durand, A. Allard, B. Guitton, E. Van de Weg, M. Bink and E. Costes. Genetic
determinism of flowering regularity over years in an apple multi-family population. In In-
ternational Symposium on Flowering, Fruit Set and Alternate Bearing, 19-23 June 2017.
Palerme (Italy).

• B. Pallas, J. Ngao, J.-B. Durand, S. Martinez, S. Bluy, J.-J. Kelner and E. Costes. The
Analysis of the Impact of Carbon Source-sink Relationships on Flowering Patterns Re-
veals That Apple Tree Growth and Functioning are Determined by Mechanisms Occurring
at the Tree and Shoot Scales. In Acta Horticulturae, Proceedings of the XI International
Symposium on Integrating Canopy, Rootstock and Environmental Physiology in Orchard
Systems, 28 August-2 September 2016. Bologna (Italy).

• P. Fernique, A. Dambreville, J.-B. Durand, C. Pradal, P.-É. Lauri, F. Normand and Y.
Guédon. Characterization of mango tree patchiness using a tree-segmentation/clustering
approach. In Proceedings of the International Conference on Functional-Structural Plant
Growth Modeling, Simulation, Visualization and Applications (FSPMA2016), 7-11 Novem-
ber 2016. Qingdao (China).



• R. Azaïs, J.-B. Durand and C. Godin. Lossy compression of unordered rooted trees. In
Data Compression Conference DCC2016, 29 March-1st April 2016. Cliff Lodge, Snow-
bird, Utah (USA).

• J.-B. Durand and Y. Guédon. Quantifying and localizing state uncertainty in hidden
Markov models using conditional entropy profiles. In Compstat2014, 19-22 August 2014.
Geneva (Switzerland).

• P. Fernique, J.-B. Durand and Y. Guédon. Estimation of Discrete Partially Directed
Acyclic Graphical Models in Multitype Branching Processes. In Compstat2014, 19-22
August 2014. Geneva (Switzerland).

• A. Dambreville, P. Fernique, C. Pradal, P.-É. Lauri, F. Normand, Y. Guédon and J.-B.
Durand. Deciphering mango tree asynchronisms using Markov tree and probabilistic
graphical models. In Proceedings of the Seventh International Workshop on Functional-
Structural Plant Models (FSPM2013), 9-14 June 2013(c). Saariselkä (Finland).

• J.-B. Durand, B. Guitton, J. Peyhardi, Y. Holtz, Y. Guédon, C. Trottier and E. Costes.
Estimating the genetic value of F1 apple progenies for irregular bearing during first years
of production. In Proceedings of the Seventh International Workshop on Functional-
Structural Plant Models (FSPM2013), 9-14 June 2013(d). Saariselkä (Finland).

• C. Preuksakarn, F. Boudon, P. Ferraro, J.-B. Durand, E. Nikinmaa and C. Godin. Re-
constructing Plant Architecture from 3D Laser scanner data. In Proceedings of the Sixth
International Workshop on Functional-Structural Plant Models (FSPM10), 12-17 Septem-
ber 2010. University of California, Davis (USA).

• J.-B. Durand, Y. Caraglio, P. Heuret and E. Nicolini. Segmentation-based approaches
for characterising plant architecture and assessing its plasticity at different scales. In
Proceedings of the Fifth International Workshop on Functional-Structural Plant Models
(FSPM07), 4-9 November 2007. Napier (New-Zealand).

• P. Heuret, J.-B. Durand, E. Nicolini, S. Coste and Y. Caraglio. Exploring morphogenet-
ical gradients plasticity using hidden Markov tree models in young individuals of the
tropical specie Symphonia globulifera (Clusiaceae). In Proceedings of the Fifth Interna-
tional Workshop on Functional-Structural Plant Models (FSPM07), 4-9 November 2007.
Napier (New-Zealand).



• S. Dufour-Kowalski, C. Pradal, N. Dones, P. Barbier de Reuille, F. Boudon, J. Chopard,
D. DaSilva, J.B Durand, F. Theveny, P. Ferraro, C. Fournier, Y. Guedon, C. Smith, S.
Stoma, C. Godin and H. Sinoquet. OpenAlea: An open-software plateform for the in-
tegration of heterogenous FSPM components In Proceedings of the Fifth International
Workshop on Functional-Structural Plant Models (FSPM07), 4-9 November 2007. Napier
(New-Zealand).

• C. Pradal, F. Boudon, N. Dones, J.-B. Durand, P. Barbier De Reuille, C. Fournier, H.
Sinoquet and C. Godin. OpenAlea - A platform for plant modelling, analysis and simu-
lation. In Europython conference, 3-6 juillet 2006. Geneva (Switzerland).

• J.-B. Durand, Y. Guédon, Y. Caraglio and E. Costes. Analysis of the Plant Architecture
via Tree-structured Statistical Models: the Hidden Markov Trees In Proceedings of the
Fourth International Workshop on Functional-Structural Plant Models (FSPM04), édité
by Godin et al., UMR AMAP publisher, 7-11 June 2004, p. 61-64. Montpellier (France).

• J.-B. Durand and O. Gaudoin. Software reliability modelling and assessment with hidden
Markov chains In 4th International Conference on Mathematical Methods in Reliabil-
ity, World Scientific Publishing publisher, Series on Quality, Reliability and Engineering
Statistics, June 2004. Santa-Fe (USA).

• G. Celeux and J.-B. Durand. Choosing the order of a hidden Markov chain through
cross-validated likelihood. In Compstat2002, 24-28 August 2002. Berlin (Germany).

• J. Martin and J.-B. Durand. Automatic Handwriting Gestures Recognition using Hidden
Markov Models. In Proceedings of the Fourth IEEE International Conference on Face
and Gesture Recognition (FG2000), IEEE Press, New Jersey, Piscataway, 28-30 March
2000, pp. 403–409. Grenoble (France).

• K. Schwerdt, J.L. Crowley and J.-B. Durand. Robustification of detection and tracking
of faces. In Joint TMR Workshop on Computer Vision and Mobile Robotics, September
1998, pp. 155–161. Santorini (Greece).

9 Communications at “Journées de statistique”17 (not detailed)

17French-speaking conference



Other communications

• J.-B. Durand. Compétitions d’analyse des données à l’Université Grenoble Alpes: moti-
vations, organisation et retours d’expérience. In Colloque Francophone International
sur l’Enseignement de la Statistique (CFIES2019), 25-27 September 2019. Strasbourg
(France).

• J.-B. Durand. Challenges d’analyse de données : une formation par la pratique transver-
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• J.-B. Durand, A. Guérin-Dugué and B. Lemaire. Analysis of eye movements and EEGs
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• J.-B. Durand. Statistical models of sequences and trees in OpenAlea. In First Ope-
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