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Chapter 1 Introduction

The idea of authentication appeared centuries ago in Ali Baba and the Forty Thieves, the famous folk tale of the Middle Eastern. In this story, Ali Baba used the phrase Open, Sesame as a password to open the door of a magical cave.

Nowadays, with the advancement of information technology, internet and electronic commerce, authentication has become increasingly important. More specically, there are numerous hackers, viruses and many other malicious adversaries who have posed a major threat to online trading. For example, the cost of global payment card fraud grew by 19% last year to reach $14 billion [START_REF]The us sees more money lost to credit card fraud than the rest of the world combined[END_REF] . Therefore authentication technology is essentially needed in e-commerce to protect business transactions from eavesdroppers who can steal and modify the information in the transactions.

Authentication also plays an important role in restricting the access to a system.

In particular, the access control system allows the entrance only to people knowing a password, owning a ID card or having determined physical or behavioral characteristics like faces, ngerprints, voice, irises, etc. More remarkably, authentication has drawn attentions to counterfeits ghting. Because it is easier for adversaries today to make more accurate counterfeits at low-cost with the support of advent new technologies, they no longer restrict their activities to luxury goods but increasingly invest in physical products such as making illegal copied passports, banknotes, diplomas and drugs, etc. This not only has a negative impact on society and the global economy but also poses a major threat to public health and safety. For example, counterfeit pharmaceutical products have been known to cause serious illness, injury or even death. It is estimated that there are as high as 700,000 deaths globally each year [1]. The problem of authentication of physicals objects consequently is rst and foremost a concern for everyone, especially for the manufacturers who produce the genuine products. In the next paragraphs we will give more details about what the authentication is and how it can be used in practice.

Authentication is the act of conrming the truth of an attribute of a single piece Chapter 1 of data (datum) or entity [START_REF]Counterfeit consumer goods[END_REF]. In contrast with identication which refers to the act of stating or indicating a person or thing's identity, authentication is the process of actually verifying the validity of at least one form of identication. Authentication is applied in many dierent elds.

For example, authentication applying in biometric based on something we are which is the measurement of biological or behavioral characteristics such as ngerprints, voice, irises, etc [START_REF] Anil K Jain | Biometrics: personal identication in networked society[END_REF]. These biometric characteristics are unique to each person and cannot easily be lost or stolen as physical tokens. However, the biometric system can never be exactly the same for each time extracting. Therefore it is rst necessary to capture the biometric data of a user and store it as a template of that biometric. When a user attempts to authenticate, his biometric data is captured and processed again and then compared with his stored template. If his sample is similar enough to the template then he is positively authenticated. Traditionally, the accuracy of a biometric system is measured by two statistics, namely False Rejection Rate and False Acceptance Rate [START_REF] Frans | Authentication based on secret-key generation[END_REF]. The former is the probability that an authorized individual is rejected by a biometric system and the latter is probability that an unauthorized individual is accepted by a biometric system. These performance measures can be used in other authentication systems.

Authentication is also applied to digital image security. There are two main techniques which have proposed to authenticate images such as labeling approaches [START_REF] Lin | A robust image authentication method distinguishing jpeg compression from malicious manipulation[END_REF] and watermarking approach [START_REF] Anthony Ts Ho | Image content authentication using pinned sine transform[END_REF]. In the former approaches, the authentication data are recorded in a separate le while in the latter, the authentication data is embedded into the image. It can be said that for image authentication, the objective is not to protect the image from being copied but to authenticate the image and assure the integrity of it.

Authentication for physical products is employed widely to distinguish genuine products from counterfeit ones. Authentication of physical products is generally done by using the stochastic structure of either the materials that composes the product or of a printed package associated to it. For instance, in [START_REF] Haist | Optical detection of random features for high security applications[END_REF], the authors use the optical detection based on the random feature of the object combine with digital signatures based on public key codes in order to protect banknotes against counterfeiting. More specically, the ber of banknotes is recorded and attached with a digital signature using the public key authentication. It is then encrypted into code image which is printed onto the banknotes and stored as the reference for the verication procedure. It is noted that the technique of digital signature based on asymmetric codes can guarantee that only an authorized person is able to produce the protected banknotes while everyone can verify them. To verify the banknotes, we take the image of the ber then decode it and compare it to the stored reference. If the dierence between them is over a certain threshold, it is declared as a counterfeit. However, such a system is practically heavy to deploy since each product needs to be linked to its high denition capture stored in a database. Figure 1.1: Protection and verication of banknote [START_REF] Haist | Optical detection of random features for high security applications[END_REF].

Another solution to do authentication is to rely on the degradation induced by the interaction between the product and a physical process such as printing, marking, embossing, carving ... Because of both the defaults of the physical process and the stochastic nature of the matter, this interaction can be considered as a Physically Unclonable Function (PUF) [START_REF] Suh | Physical unclonable functions for device authentication and secret key generation[END_REF] that cannot be reproduced by the forger and can consequently be used to perform authentication. The PUF was rst studied by Pappu [START_REF] Pappu | Physical oneway functions[END_REF] as a function mapping a set of challenges to a set of responses by an intractably complex physical system. It is noted that a PUF is similar to a one way function but it not really a function as most PUFs are noisy i.e. one challenge may result in several responses when it is embodied in dierent times. Properties of PUF is (a) easy to make but (b) hard to make a copy even using the same physical device and (c) unique for each physical object. Taking advantages of these properties, the authors in [START_REF] Suh | Physical unclonable functions for device authentication and secret key generation[END_REF] use integrated circuits (ICs) as authentication devices to protect condential information by exploiting PUF design. More specically, the authors use PUF to generate directly a unique secret key from physical characteristics of ICs to achieve a low-cost authentication without using cryptographic.

We study in this dissertation the authentication for physical products by using graphical codes (GC) inserted on the package of products. Our authentication system Chapter 1 is based on the fact that a printing process at very high resolution can be seen as a stochastic process due to the nature of dierent elements such as the paper bers, the ink heterogeneity, or the dot addressability of the printer. The randomness of a paper is showed in Fig. 1. [START_REF]The us sees more money lost to credit card fraud than the rest of the world combined[END_REF]. It turns out that the surface of a sheet of paper is not perfectly at but is quite rough. In fact, it is like a surface of wood bers which is highly random and dicult to reproduce. This authentication system has been proposed by Picard et al. [START_REF] Picard | Towards fraud-proof id documents using multiple data hiding technologies and biometrics[END_REF] [START_REF] Picard | Improved techniques for detecting, analyzing, and using visible authentication patterns, july 28 2005[END_REF] and uses 2D pseudo random binary codes that are printed at the native resolution of the printer (2400 dpi on a standard oset printer or 812 dpi on digital HP Indigo printer). It can be said that the authentication based printing process shares the similarity with a PUF in the irreversibility property i.e. the opponent is not able to reproduce the original codes. The major dierence is that this system is easier to deploy since the authentication process needs only a scan of the graphical code under scrutiny and the seed used to generate the original one and there is no need to store pairs of challenges and responses as for the PUF regime. The principle of the studied system can be depicted in Fig. 1.3.

• A secret message can either be mapped directly into a binary graphical code (GC) (step 1a) or being encoded, with some probably stochastic function, before this mapping (step 1b). In both cases, the resulting graphical code is printed on packages, thus we investigate in this dissertation two settings, namely non-channel coding based authentication and channel coding based authentication.

• Once printed on a package to be authenticated, the degraded code (greyscale) will be scanned (step 3) then processed (step 4) by an opponent (the forger). It should be mentioned that at this stage the processing is necessary because the industrial printers can only print dots, e.g. binary versions of the scanned code.

• The opponent produces a printed copy of the original code to manufacture his forgery (step 5).

Chapter 1 1.1. Security measure in authentication

• The receiver compares the scanned version (step 8a) (and potentially post-processed version (step 8b)) of the original code with the scanned version (step 7a) (and potentially post-processed version (step 7b)) of the copied code in order to perform authentication.

Security measure in authentication

Similar to secure transmission, there are two dierent ways to measure the security of authentication, namely computational security and information-theoretic security.

Systems relying on computational security are based on two assumptions:

• there are certain mathematical problems which are too dicult to solve,

• the opponent has limited computational power.

On the other hand, information-theoretic security does not depend on any assumption.

When the system is information-theoretic secure, it disregards the computational power of the opponent.

In this dissertation, the problem of authentication using graphical codes is treated from the information theoretic security point of view. We consider a scenario where opponent can know everything except for the secret key or message and has unlimited computational power. He has to suer a degraded channel with respect to the main channel. This degradedness is a stringent constraint to perform authentication. We measure essentially the security by two quantities: the probability of false alarm P F A and the probability of non-detection P N D . However, it should be noted that these two quantities do not guarantee perfect secrecy even they could be made very small. Perfect secrecy is dened in Shannon's paper [START_REF] Shannon | Communication theory of secrecy systems*[END_REF]. More precisely, a system is said to achieve perfect secrecy if the mutual information I (M ; Y ) = 0, where M represents the authentication message and Y represents what the opponent observes. However, the probability of false alarm and non detection are made arbitrarily small but they can hardly equal zero.

Estampille

The work presented in this dissertation is part of a project called Estampille. Estampille is supported by research national agency ANR under project number ANR-10-CORD-0019.

The goal of this project is to ght against forged printed documents and counterfeited goods. To this end, the project proposes to insert Graphical Codes (GC) as a 1.2. Estampille Figure 1.3: Principle of authentication using graphical codes (GC).

Figure 1.4: An ordinary piece of paper viewed under a microscope [START_REF] James Dr Buchanan | Fingerprinting documents and packaging[END_REF]. physical identier on the document or the package of the good because GC have some the following advantages:

• Using GC enables to include integrity check of the printed document. Integrity check is possible by embedding a robust hash inside the graphical code which is not altered under some modications such as small rotations, compression, scaling etc, and is sensitive to illegal operation like tampering.

• Using GC enables to perform authentication since a counterfeit of the original print will undergo a scan and print process that will yield to an additional noise. This noise will be evaluated and detected thanks to the analysis of the GC.

• GC has a wide range of applications. It can be used by custom services, by brand protection departments, on the assembly line, security authorities, etc.

• Using GC is easy to deploy on potentially several thousands of products.

An simulated GC is shown in Figure 1.5.

Figure 1.5: An simulated Graphical Codes in computer

The Estampille project has to address the problem of:

• (1) studying the physical process involved such as the stochastic behavior of the printing process, the roles of dierent parameters i.e. the type of printer, the resolution, the ink and the paper when a GC is printed,

• (2) using information theory approach for authentication,

• (3) building robust hashes to enable integrity check,

• (4) using technical solutions to bring forensics that can be used by a law court.

The Estampille project was formed as a joint project between six partners, i. • ATT is an industrial company working on authentication, protection against counterfeit and products tracking. In Estampille, ATT provides technical expertise in 2D graphical code authentication.

• LAGIS is a scientic laboratory in Ecole Centrale de Lille working on automatic systems, computer engineering and signal processing. LAGIS provides the expertise about authentication and stochastic modeling of printing processes.

• GIPSA is a joint laboratory between CNRS and university of Grenoble working on theoretical and applied research on signals and systems. GIPSA provides expertise about security analysis and integrity control.

• LGP2 is a laboratory in university of Grenoble working on intelligent processes, materials chemistry, solid mechanics, mechanics of materials and printing processes.

LGP2 provides expertise about description and analysis of printing processes at the microscopic level.

• LATA is an industrial company working on printing technologies. LATA provides expertise and data from various printing processes.

• CERDI belongs to university Paris 11, and works on the juridical aspects of the information technologies. CERDI provides legal basis for the use of graphical code.

Chapter 1 1.3. Dissertation structure

Dissertation structure

This dissertation aims at answering the second direction of the Estampille project.

We approach an authentication system on a 2D GC from information theoretic point of view. The authentication model is studied using two settings, namely non-channel coding based authentication and channel coding based authentication. The probabilities of false alarm and non-detection which measures the security of the authentication system are analyzed in avor of information theory in those two settings. This dissertation is organized as follows.

-In Chapter 2, we introduces fundamental concepts of information-theoretic security, then we give a brief overview of several prior works related to this dissertation and we set the notation used in subsequent chapters.

-In Chapter 3, we consider a basic authentication model in which an authentication message is uncoded and shared secretly with the legitimate receiver via a main channel while it can be forged by the adversary via his own channel. The authentication performances are thus directly impacted by the discrimination between the two channels. Specically, we use the NeymanPearson hypothesis test to perform the authentication and then to compute the probability of rejecting an authentic message and the probability of non-detecting an illegal copy. This is computed by using either Gaussian approximation or arguments relying on the Sanov's theorem.

-In chapter 4, we present the practical results for these two types of error probabilities by employing Monte-Carlo simulations. Regarding to the results of Monte-Carlo simulations, it is revealed that asymptotic expression relying on Sanov's theorem is accurate while Gaussian approximation is poor for small values of two types of error. More remarkably, importance sampling methods are studied and employed to practically estimate very small values of the non detection probability suggesting an optimized tilted distribution as a proposal. Moreover, by considering the expressions of the two types of error probabilities, we propose an optimization authentication performance in the case of using generalized Gaussian distribution as a model of the print and scan channel.

-Chapter 5 treats the authentication problem by using the channel deterministic codes. Without knowing whether the observed message comes from the legitimate or from the opponent, the legitimate receiver uses a decoding rule matching with the distribution law of the main channel and mismatching with the opponent channel. We establish the existence of the code with a rate between the capacity of main channel and the capacity of the opponent channel, which achieves arbitrarily small probabilities of false alarm and non-detection at the same time. We also propose a practical coding scheme using parallel concatenated codes with turbo decoding. The EXIT chart is analyzed to choose the channels' parameters so that the authentication performance is optimized.

-Finally, Chapter 6 summarizes our conclusions and outline some future research. In this chapter, we rst set the notations which will be used throughout this dissertation. In the next section, we presents fundamentals in information theory needed to study our authentication system. More specically, we recall rst the basic measures of information, then we introduce the method of types, a powerful tool in information theory and statistics which plays an important role in many proofs and later developments.

Next, we present the important results on channel coding and mismatched decoding.

In the nal section, we highlight several works on authentication and biometrics that are closely related to this dissertation.

Notations

In the rest of this dissertation, we designate sets by calligraphic font e.g. X and random variables (RV) ranging over these sets by the same italic capitals e.g. X. The cardinality of the set X is denoted by |X |. The sequence of n variables (X 1 , X 2 , ...., X n ) is denoted X n or bold capital X. We use x n and x interchangeably to denote a sequence (x 1 , x 2 , ..., x n ) ∈ X n . X ∼ P X (x) indicates that X is governed by the distribution law P X (x). The set of all probability distributions on an alphabet X is denoted by P (X ).

Fundamentals in Information Theory and Statistics 2.2.1 Basic denitions of information measures

First we recall some basic denitions on the information measures of random variables which will be used in the subsequent chapters. These denitions are restricted in the sense of discrete random variables i.e. random variables distributed over a nite alphabet. For more general discussion we refer the readers to the book by Gallager [START_REF] Robert | Information theory and reliable communication[END_REF],

Cover and Thomas [START_REF] Thomas | Elements of information theory 2nd edition[END_REF], Csisar and Korner [START_REF] Csiszar | Information theory: Coding theorems for discrete memoryless channels[END_REF].

We describe a random variable X over a discrete alphabet X by its probability mass function P X (x) = Pr {X = x}, which is the probability that X takes on value x ∈ X . Denition 2.1. (Shannon Entropy). The Shannon entropy of a discrete random variable X taking values in a nite alphabet X with a probability mass function P X (x) is dened by

H (X) = - x∈X P X (x) log P X (x) . (2.1)
We use the convention that 0 log 0 = 0. The logarithms in 2.1 can be taken to any base but the most common base are 2 and e. For the base 2 logarithm, the Shannon entropy is measured in bits and for the base e logarithm, it is measured in nats. In this dissertation, the logarithms are taken to base e. Intuitively, the Shannon entropy H (X) is a quantity measuring the uncertainty of the random variable X. In the rest of this dissertation, we call Shannon entropy just as entropy.

Similarly, we can make an extension of the denition to the pair of random variables (X, Y ) as follows Denition 2.2. (Joint Entropy). The joint entropy of a pair of discrete random variables (X, Y ) taking values in nite alphabets X and Y with a joint probability mass function P XY (x, y) is dened as

H (X, Y ) = - x∈X y∈Y P XY (x, y) log P XY (x, y). (2.2)
We have known that the entropy of a single random variable X measures the uncertainty about X. One might ask, how much the uncertainty of X is if we are fortunate to have an additional information about Y . Intuitively, this uncertainty will be reduced if Y reveals some information about X. Now we will introduce the conditional entropy as follows.

Denition 2.3. (Conditional Entropy). The conditional entropy of a pair of discrete random variables (X, Y ) taking values in a nite alphabets X and Y with a joint probability mass function P XY (x, y) and a conditional probability mass function

P X|Y (x | y) is dened as H (X | Y ) = y∈Y P Y (y) H (X | Y = y) , = - x∈X y∈Y P XY (x, y) log P X|Y (x | y) . (2.3)
where H (X | Y = y) is the entropy of X conditioned to the knowledge of the outcome Y = y.

The conditional entropy H (X | Y ) measures then the remaining uncertainty on X conditioned to the averaged over all observable outcomes in Y. In a condential communication system, if we suppose that X is a secret message and Y is a public message, the conditional entropy H (X | Y ) is then a relevant measure of the secrecy of the system. It is called the equivocation with respect to an eavesdropper (the opponent) who observes Y because it measures the average ambiguity of the observed signal. The system will achieve perfect secrecy if this equivocation is maximum, i.e. H (X | Y ) = H (X). It implies, in other words, that the public message Y and the secret message X are statistically independent.

We can also ask how much one random variable contains information about another.

Here we turn to the mutual information, one important concept in information theory, leading also to higher skills in the state of the art of coding in communication.

Denition 2.4. (Mutual information). The mutual information between two discrete random variables X and Y is dened as

I (X; Y ) = - x∈X y∈Y P XY (x, y) log P XY (x, y) P X (x) P Y (y)
.

(

The mutual information I (X; Y ) is a symmetric function and is a measure of the amount of information that X contains about Y and vice versa. In a communication system, mutual information can be understood as the average information ow through a channel. The mutual information I (X; Y ) can be expressed as the dierence between H (X) and H (X | Y ):

I (X; Y ) = H(X) -H(X | Y ).
(2.5)

As commented earlier, the conditional entropy is the remaining uncertainty on X given the knowledge of Y, and consequently mutual information is the reduction in the uncertainty of X due to the knowledge of Y . In a condential communication system, where again X is a secret message and Y a public one, I (X; Y ) is referred as an information about the secret leaking to an eavesdropper. The perfect secrecy is the achieved when the information leakage I (X;

Y ) = 0, i.e. H (X | Y ) = H (X).
Mutual information is a special case of a more general quantity called relative entropy, which is a measure of the distance between two probability distributions.

Denition 2.5. (Relative Entropy). The relative entropy or Kullback Leibler divergence between two probability mass functions P X (x) and Q X (x) is dened as

D (P Q) = x∈X P (x) log P (x) Q (x) .
In the above denition, we use the convention that 0 log 0 Q = 0 and P log P 0 = ∞.

The relative entropy D (P Q) is always non-negative and is zero if and only if P = Q.

It is important to note that the Kullback Leibler is not a true metric. In particular, it is not symmetric and the triangle inequality does not hold. The Kullback Leibler is also called as the discrimination between two distributions as in Blahut's book [START_REF] Blahut | Principles and practice of information theory[END_REF].

Denition 2.6. (Conditional Relative Entropy). The conditional relative entropy or conditional information divergence [START_REF] Csiszar | Information theory: Coding theorems for discrete memoryless channels[END_REF] D (V W | P ) is the average of the relative entropy between the rows of stochastic matrices V and W given an input of distribution P . More precisely,

D (V W | P ) = x P (x) D (V (. | x) W (. | x) | P (x)) , = x P (x) y V (y | x) log V (y | x) W (y | x) .
Now we will introduce a series of useful properties of information-theoretic quantities which will be used in the next sections. The proofs of these properties are easily found in the book of Thomas and Cover [START_REF] Thomas | Elements of information theory 2nd edition[END_REF], Gallager [START_REF] Robert | Information theory and reliable communication[END_REF], and Csiszar and Korner [START_REF] Csiszar | Information theory: Coding theorems for discrete memoryless channels[END_REF].

1. H (X) ≥ 0.

(Conditioning reduces entropy

) H (X | Y ) ≤ H (X). 3. I (X; Y ) ≥ 0. 4. I (X; Y ) = H (X) -H (X | Y ) .
5. (Data processing inequality.) If X → Y → Z is a Markov chain, i.e. P (x, y, z) = P (x) P (y | x) P (z | y) then I (X; Y ) ≥ I (X; Z).

6. D (P Q) is convex in the pair (P, Q), i.e. if (P 1 , Q 1 ) and (P 2 , Q 2 ) are two pairs of probability mass function, then for all 0 ≤ λ ≤ 1:

D (λP 1 + (1 -λ) P 2 λQ + (1 -λ) Q 2 ) ≤ λD (P 1 Q 1 ) + (1 -λ) D (P 2 Q 2 ) . (2.6)

The method of types and Sanov's theorem

In this subsection we give an overview of the method of types which is a powerful tool helping to extract precisely the exponential decay of the probability of rare events, and eases proofs related to channel coding. In our context, this method will be useful to compute accurately the probability of rejecting an authentic code and the probability of non-detecting an illegal copy in either channel coding based authentication system or authentication without channel coding. . Throughout this dissertation, P (X ) denotes the space of all probability measures on the alphabet X . Here P (X ) is identied with the probability simplex in R |X | , i.e., the set of all |X |-dimensional real vectors with non-negative components that sum to 1. Therefore, the topology on P (X ) is inherited as the subspace topology from the ordinary topology on R |X | . Denition 2.7. (Type.) The type Px n of a sequence x n = (x 1 , ..., x n ) ∈ X n is its empirical distribution. More specically, Px n = Px n (a 1 ) , ..., Px n a |X | is an element of the set P (X ) and

Px n (a) = n (a | x n ) n = 1 n n i = 1 1 {x i =a} for all a ∈ X .
where n (a | x n ) is the number of times the symbol a occurs in the sequence x n ∈ X n .

The set of all possible types on X n is denoted by P n (X ). It is therefore obvious that P n (X ) ⊂ P (X ).

Lemma 2.8. [START_REF] Thomas | Elements of information theory 2nd edition[END_REF] (Type counting.)

|P n (X )| ≤ (n + 1) |X | . (2.7)
Proof. Note that there are |X | components in the vector that species a type Px n . Moreover, every component of the type Px n takes values in the set 0 n , 1 n , ..., n n whose cardinality is n + 1. Therefore, there are at most (n + 1) |X | choices for a type.

Denition 2.9. For a given empirical distribution P ∈ P n (X ), the type class T X n ( P )

is the set of all sequences x n in X n having type P :

T X n P = x n ∈ X n : Px n = P . (2.8)
Note that a type class consists of all permutations of a given vector in this set.

Similarly for type of one sequence, we have the denitions of joint type and conditional type as follows.

Denition 2.10. (Joint type.) The joint type of two sequences x n = (x 1 , ..., x n ) ∈ X n and y n = (y 1 , ..., y n ) ∈ Y n is dened as

Px n y n (a, b) = n (a, b | x n , y n ) n = 1 n n i = 1 1 {x i =a,y i =b} for all (a, b) ∈ X × Y.
(2.9)

where n (a, b | x n , y n ) is the number of times each pair (a, b) occurs in the pair of sequences

(x n , y n ) ∈ X n × Y n .
The set of all possible types on X n × Y n is denoted by P n (X × Y). For a given P ∈ P n (X × Y), the type class T X n Y n ( P ) is the set of all sequences in X n × Y n having type P : (2.11) Remark 2.12. Note that every a ∈ X must occur in the sequence x n to ensure Px n (a) = 0 for every a.

T X n Y n P = (x n , y n ) ∈ X n × Y n : Px n y n = P .
Given a sequence x n and a stochastic matrix V : X → Y, we denote by T Y n |x n (V ) the conditional type class, i.e. the set of all sequences y n in Y n such that y n has conditional type V given x n ,

T Y n |x n (V ) = y n ∈ Y n : Vy n |x n = V .
(2.12) Given x n , we denote P n (Y | X | x n ) the set of all possible conditional type V such that for some y n ∈ Y n , we have Px n y n (a, b) = Px n (a) Vy n |x n (b|a).

A series of properties related to types are of great interest, but for the sake of concision we will not develop all of them. However, to give the reader some avor of the power of this method, let us consider a multinomial distribution where X 1 , X 2 , ..., X n are drawn i.i.d. according to distribution Q (x). The probability Q n (x n ) of a sequence x n is known exactly but its numerical computation may be subject to underow on computers. One can naturally resolve this inconvenience by taking the logarithm or equivalently using the type of the sequence Px n and compute

Q n (x n ) = e -n(H( Px n )+D( Px n Q))
(see Theorem 11.1.2, [START_REF] Thomas | Elements of information theory 2nd edition[END_REF]). On the other hand, computing the cardinality of a given type P is a simple combinatorial problem but numerical computation for large n is time consuming or subject to severe overow. The method of types give an estimate to this size with simple exponential upper and lower bounds, and for large n we may write that 1 n log T X n P → H( P ) (see Theorem 11.1.3,[START_REF] Thomas | Elements of information theory 2nd edition[END_REF]).

For more general discussion about the method of types, we refer the readers to the book of Csiszar and Körner [START_REF] Csiszar | Information theory: Coding theorems for discrete memoryless channels[END_REF], Thomas and Cover [START_REF] Thomas | Elements of information theory 2nd edition[END_REF] and Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF]. Now since the sequence X 1 , ..., X n is a random vector we denote PX n the random element associated to it, and taking values in the set P n (X ):

PX n (a) = n (a | X n ) n = 1 n n i = 1 1 {X i =a} for all a ∈ X . (2.13)
Consequently, given a distribution P ∈ P (X ), we dene the so-called random relative entropy D PX n P which is a random element taking values in the following set D Px n P : Px n ∈ P n (X )

Similarly, we dene PX n Y n as the random element associated to the random vectors X n = (X 1 , ..., X n ) and Y n = (Y 1 , ..., Y n ) and taking values in the set P n (X × Y):

PX n Y n (a, b) = n (a, b | X n , Y n ) n = 1 n n i = 1 1 {X i =a,Y i =b} for all (a, b) ∈ X × Y. (2.14)
And we nally dene VY n |x n as the random element associated to the random vector Y n = (Y 1 , ..., Y n ) given the sequence x n and taking values stochastic matrices in the set

P n (Y | X | x n ): VY n |x n (b|a) = Px n Y n (a, b)
Px n (a) for all (a, b) ∈ X × Y.

(2.15)

In many applications related to Statistics like the hypothesis testing problem, the statistics (the functions) will depend on the number of times each value a ∈ X appears in the observed sequence rather on this particular sequence [START_REF] Blahut | Principles and practice of information theory[END_REF]. A decision region relative to some given constraints can then be dened as the set of types verifying this constraint. In addition, in the channel coding problem it is worth dening a typical set which will concentrate the most probable events in order to analyze the performance of an ensemble of codes. For these reasons, we will focus now on expressing the probability that a random empirical distribution as being dened in (2.13 to 2.15) belongs to a given region or a subset in P (X ).

Let X 1 , X 2 , ..., X n be drawn i.i.d. according to Q (x). By the weak law of large numbers we know that the empirical distribution PX n (x) converges to the true distribution Q (x) in probability for all x ∈ X , (Theorem 11.2.1, [START_REF] Thomas | Elements of information theory 2nd edition[END_REF]). Let E ⊆ P (X ) be a subset of the set of probability mass function on X . Consequently, if Q ∈ E the probability that the type PX n belongs to E, which is denoted Q n PX n ∈ E , will converge to 1. Lemma 2.13. [START_REF] Dembo | Large deviations techniques and applications[END_REF] . Let X 1 , X 2 , ..., X n be a sequence drawn i.i.d. according to Q (x).

The probability that the random empirical distribution PX n associated to it equals a type P ∈ P n (X ) is bounded as follows:

1

(n + 1) |X | e -nD( P Q) ≤ Q n PX n = P ≤ e -nD( P Q) .
(2.16)

The probability Q n PX n = P is also recognized as the probability of a type class

T ( P ), i.e. Q n PX n = P = Q n T ( P ) .
Proof. see [START_REF] Csiszar | Information theory: Coding theorems for discrete memoryless channels[END_REF] or [START_REF] Thomas | Elements of information theory 2nd edition[END_REF] or [START_REF] Dembo | Large deviations techniques and applications[END_REF].

Lemma 2.14. [START_REF] Dembo | Large deviations techniques and applications[END_REF] For any probability vector P ∈ P (X ),

d T V (P, P n (X )) = inf P ∈Pn(X ) d T V P, P ≤ |X | n , (2.17) 
where d T V P, P = a∈X P (a) -P (a) is the total variational distance between two distribution P and P .

Proof. see [START_REF] Dembo | Large deviations techniques and applications[END_REF].

Theorem 2.15. (Sanov's theorem). Let X 1 , X 2, ..., X n be i.i.d. ∼ Q (x). Let E ⊆ P (X ) be a set of probability distributions. Then

-inf P ∈ • E D (P Q) ≤ lim inf n→∞ 1 n log Q n PX n ∈ E ≤ lim sup n→∞ 1 n log Q n PX n ∈ E ≤ -inf P ∈E D (P Q) (2.18)
where • E is the interior of E.

In addition, if the set E is a subset of the closure of its interior, i.e. E ⊆

• E then the lower bound and upper bound are identical, i.e.

-inf

P ∈ • E D (P Q) = -inf P ∈E D (P Q) .
(2.19)

Therefore, the limit of

1 n log Q n PX n ∈ E exists and lim n→∞ 1 n log Q n PX n ∈ E = -D (P * Q) ,
or we can write

Q n PX n ∈ E . = e -nD(P * Q) .
(2.20)

where

D (P * Q) = inf P ∈E D (P Q) (2.21) P * = arg min P ∈ • E D (P Q) , (2.22) 
and saying two sequences a (n

) . = b (n), we means that lim n→∞ 1 n log a (n) b (n) = 0. (2.23) 
The proof of Sanov's theorem is presented in the appendix 2.6.1.

It might be a little hard to imagine how the set E looks like when saying it is a subset of the closure of its interior, i.e. E ⊆

•

E.

The following proposition gives a case of set E which is more familiar for non-mathematicians. Proposition 2. [START_REF] Chen | Generalization of gartner-ellis theorem[END_REF]. If E ⊆ P (X ) is a convex set of non-empty interior then E satises the property that E is a subset of the closure of its interior, i.e. E ⊆ • E. It turns out that the Sanov's theorem is still true when E is a convex set of non-empty interior.

In chapter 3, we apply Sanov's theorem for convex sets whose interior is non-empty.

The proof of this proposition is given in the appendix 2.6.2.

Fundamentals in channel coding theory 2.3.1 Channel coding

As mentioned in the introduction of this dissertation, the authentication model is analyzed using two settings, namely non-channel coding based authentication and channel coding based authentication. Chapter 4 treats the authentication problem by using the channel codes. Therefore, it is necessary to recall the literature on channel coding.

In his remarkable paper in 1948 [START_REF] Elwood | A mathematical theory of communication[END_REF], Claude E. Shannon established a conceptual basis for the problem of transmission of information. In his section dealing with transmission in discrete channels with noise, he advanced the necessity of encoding to achieve as small a frequency of errors as desired. The communication system illustrated in Shannon states that an encoder and a decoder can be designed to achieve a negligible probability of error as long as the transmitted information per channel use R is less than a quantity specifying the channel, the so-called channel capacity C. More specically, the probability of error can be made arbitrarily small for any R < C (achievability part), and conversely, the probability of error is bounded away from zero for any R > C (converse part).

In this dissertation we focus on a discrete memoryless channel without feedback i.e. the input symbols do not depend on the past output symbols, which is dened as follow. Denition 2.17. (Discrete Memoryless Channel). A discrete memoryless channel (DMC) denoted (X , W (y|x) , Y) is a system consisting of a nite input alphabet X , nite output alphabet Y and a probability transition matrix W (y | x) in which each output y ∈ Y is related to the corresponding input x ∈ X according to W (y | x). For a memoryless channel, the transition function between an input and and output sequence

x n = (x 1 , x 2 , ..., x n ) ∈ X n and y n = (y 1 , y 2 , ..., y n ) ∈ Y n is given by: 

W n (y n | x n ) = n i=1 W (y i | x i ) .
C (W ) = max P X (x) I (X; Y ) .
where the maximum is taken over all possible input distributions P X (x).

Denition 2.19. (Channel Codes

). A (M n , n) channel code C n for a DMC (X , W (y | x) , Y) consists of • a message set M n = {1, 2, ..., | M n |},
• an encoding function ϕ : M n → X n , which maps a message m to a codeword x n with n channel symbols,

• a decoding function ψ : Y n → M ∪ {?}, which maps a channel output y n to a message m ∈ M n or an error ?. • The block error probability for a particular code C n is dened as

P e B (C n ) = Pr M = M | C n (2.25)
Throughout this dissertation, we assume that all messages are equaly probable. Therefore the block error probability for the code C n is alternatively expressed as follows When the message number m is represented as a binary vector m of length K n = log 2 |M n | information bits and we can dene the probability of bit error as the average of the probability that a bit m k of m is dierent from its binary estimation mk , Proof. Please refer to chapter 7 in [START_REF] Thomas | Elements of information theory 2nd edition[END_REF] .

P e B (C n ) = 1 |M n | |Mn| m=1 Pr M = M | M = m, C n .
P e b = 1 K K k=1 Pr { mk = m k } . ( 2 
The proof of the direct part of the theorem (the existence of a code) is obtained with a random coding argument, thus calculating rst the average probability of word error (2.27) over the ensemble of codebooks. This average probability of error is upper bounded by an exponentially vanishing term. One can argue then that since the average block error probability over the ensemble of codebooks can be arbitrary small, there exists at least one codebook such that the block error probability goes to zero. The error exponent specifying the rate at which the probability of error decays, depends on the decoding rule used to achieve the proof, namely the joint typical set decoding [START_REF] Thomas | Elements of information theory 2nd edition[END_REF] or maximum likelihood decoding [START_REF] Robert | Information theory and reliable communication[END_REF].

These decoding rules require the perfect knowledge of the channel. However, it should be noted that in our authentication problem, the legitimate receiver does not know whether the graphical code comes from the legitimate transmitter or the adversary. It is therefore natural for him to choose a decoding rule matched with the distribution law of the main channel. This implies that his decoder will be mismatched with respect to the opponent channel. We will present then in the next subsection a brief discussion about transmission in a channel with a mismatched decoder, and state a new version of the channel coding theorem for this scenario.

Mismatched decoding

Consider a memoryless channel with a transition law W (y | x) mapping the input alphabet X to the output alphabet Y. We study here the case where the decoder uses maximum likelihood decoding based on the additive metric log V (y | x) where V (y | x) is dierent from the distribution law of the channel W (y | x). Note that V (y | x) is non-negative for all x ∈ X , y ∈ Y but it is not necessary that y∈Y V (y | x) = 1 for every

x ∈ X . A rate R is called achievable for a DMC W (y | x) and a mismatched decoding metric V if for every > 0, there exists n large enough and a sequence of e nR , n codes such that the probability of error (2.26) when decoding with metric V is less than . The mismatched capacity of a DMC W with a mismatched decoding metric V , denoted as C M , is dened as the highest achievable rate in the above denition.

The idea of decoding without the knowledge of the channel was rst studied by Stiglitz. In [START_REF] Stiglitz | Coding for a class of unknown channels[END_REF], he dealt with the memoryless non stationary channel whose transition distribution is dierent for each channel use and chosen from a given set of transition distributions. In other words, the channel distribution varies from use to use and the receiver has no knowledge of which channel is selected. Later, Hui and Csiszar independently studied mismatched decoding for memoryless stationary channel. In [START_REF] Yu | Fundamental issues of multiple accessing[END_REF], Hui used the random coding argument with the constraint that the empirical distribution of each codeword is close to a given distribution P X (x). He obtained a single letter expression for a lower bound on the mismatched capacity as the average block error probability (2.27) vanishes for large n. On the other hand, Csiszar and Körner [21] used graph decomposition technique to get the same lower bound, denoted C LM , on mismatched capacity C M .

Balakirsky in [START_REF] Vladimir | A converse coding theorem for mismatched decoding at the output of binary-input memoryless channels[END_REF] succeeded in proving a converse coding theorem for mismatched decoding over binary input DMC channels, and proved that C LM in this case is indeed the mismatched capacity C M . The general converse coding theorem of mismatched decoding for arbitrary nite input alphabet is still an unsolved problem. Merhav et al.

[51] established a converse with the random coding argument (averaging the probability of error over the ensemble of codebooks). They showed that C LM is also an upper bound for the highest rate where the average error probability goes to zero.

So far, all results stated above are obtained with a deterministic coding strategy, i.e for a given codebook one codeword is assigned to one message. Merhav et al. [START_REF] Merhav | On information rates for mismatched decoders[END_REF] showed some forms of randomized encoding strategy capable of achieving rates higher than C LM . By randomized encoding strategy we mean that, for a given codebook one codeword is chosen randomly from a given subset assigned to one message. For the latter example the achievability is expressed in terms of block error probability.

It is worth noting then that for transmission in a channel with a mismatched decoder, C LM depends on the decoding metric, the strategy of encoding. i.e. deterministic or randomized encoding, and on the achievability criterion, i.e. block error probability or average error probability over the ensemble of codebooks. In this dissertation, unless specied, C LM associates with deterministic encoding, maximum likelihood decoding and averaged block error probability (2.27).

In the sequel, we recall the theorem characterizing the lower bound C LM of the mismatched capacity. We refer the readers to [START_REF] Lapidoth | Mismatched decoding and the multiple-access channel[END_REF], [START_REF] Yu | Fundamental issues of multiple accessing[END_REF] for relevant references. Theorem 2.24. [START_REF] Lapidoth | Mismatched decoding and the multiple-access channel[END_REF] The mismatched capacity, C M (W, V ), of a DMC {X , W (z | x) , Z} in the presence of decoding mismatched according to the metric d (x, z) = log V (z | x) is lower bounded by C LM (W, V ), which is given by

C LM (W, V ) = max P X I LM (P X ) , (2.29)
where

I LM (P X , W, V ) = min f ∈F (P X ,W,V ) I f (X; Z) , (2.30) 
and the minimum is over all f (x, z) ∈ F (P X , W, V ) that satisfy

F (P X , W, V ) =          f (x, z) ∈ P (X × Z) : x∈X f (x, z) = P Z (z) , for all z ∈ Z z∈Z f (x, z) = P X (x) , for all x ∈ X x∈X z∈Z f (x, z) log V (z | x) ≥ -D          (2.31)
where

P X (x) = z∈Z P XZ (x, z) = z∈Z P (x) W (z | x) P Z (z) = x∈X P XZ (x, z) = x∈X P (x) W (z | x) -D = x∈X z∈Z P (x) W (z | x) log V (z | x) Remark 2.25. When the the decoding metric d (x, z) = log V (z | x),i.e. it mismatched with the channel W (z | x), it is easy to check that C LM (W, V ) ≤ C (W ). If the decoding metric d (x, z) = log W (z | x),
i.e. it matches with the channel W (z | x) then the decoding rule coincides with maximum-likelihood decoding and C LM (W, W ) = C (W ), the capacity of the channel W.

Related works on authentication

The idea of using information-theoretic security to analyze performance in authentication has been studied extensively. Without intending to be exhaustive, we will present the most signicant works that may have directly or indirectly oriented many choices Chapter 2 2.4. Related works on authentication in this research. We focus on two major models concerned in authentication: message authentication, biometric systems and ngerprinting.

Message authentication

Message authentication is concerned in a secure communication system where the receiver of a message needs a sucient amount of evidence to accept it as truly sent by the legitimate transmitter. It is then obvious that the need of authentication arises because of the presence of an opponent who sends fraudulent messages hoping that they will be accepted as valid by the receiver. Information theoretic analysis of message authentication models assume that the opponent has unlimited computing power. As for condential communication, authentication can be achieved by encrypting the message where the sender and the receiver share secretly a key K. There are two types of attacks that may be launched by the opponent, namely impersonation and substitution attacks. In the impersonation attack the adversary introduces a fraudulent message to the receiver before the transmitter sends anything. In a substitution attack the adversary intercept the encrypted message sent by the transmitter and replace it by a fraudulent one. These attacks are considered successful if the receiver accepts the fraudulent message as valid.

In [START_REF] Simmons | Authentication theory/coding theory[END_REF], Simmons provides information-theoretic lower bounds on the opponent's success probability in a noiseless communication system. Later, considering authentication as an hypothesis testing problem, Maurer [START_REF] Ueli | Authentication theory and hypothesis testing[END_REF] proposed a generalized treatment for multiple messages M 1 , ..., M n authentication model. In case of single message authentication (n = 1), the opponent's success probabilities P I (for an impersonation attack), and P S (for a substitution attack), are lower bounded as follows:

P I ≥ 2 -I(K;f (M,K)) and P S ≥ 2 -H(K|f (M,K)) .
where M is the message and f is a cryptographic encoding function. In the impersonation attack the opponent sends his fraudulent message without observing the channel.

Consequently the test will measure the degree of dependency between the key K and the received message. The cyphered message C = f (M, K) sent by a legitimate source should then contains a sucient amount of information about the key K in order to convince the authenticator that the transmitted message is valid. If not, the received message will be denied. Of course C should not leak all information about the key in this case because it will allow the adversary to guess K and to launch a substitution attack with a high probability of success. This tradeo between P I and P S can easily be observed in the exponent terms as I(K; f (M, K)) should be large to reduce P I , which unfortunately decreases H(K | f (M, K)). If the opponent can optimize his chance of success, i.e. by choosing between a substitution attack at time n or an impersonation attack at any time 1 ≤ i ≤ n , Maurer [START_REF] Ueli | Authentication theory and hypothesis testing[END_REF] provides a lower bound on the opponent's success probability:

max (P I 1 , P I 2 , ..., P In , P Sn ) ≥ 2 -H(K)/(n+1) .

Note that all these bounds suppose that the legitimate receiver never rejects a valid message. In case of one message authentication (n = 1), the key is then split in two parts where half of it is used to protect against impersonation attack and the second half is designed to protect against substitution attack.

Authentication using noisy channels

Unlike the model described above, channels in our authentication model are noisy channels. The receiver may then observe noisy versions of either a valid graphical code or a fraudulent one. The opponent's success probability will decrease as discrimination of the two noisy versions is increased. In chapter 3, we will express it then with a more general form since the error exponent involves the relative entropy rather than the mutual information. Moreover we will consider cases when the legitimate receiver can reject authentic codes.

In [START_REF] Lai | Authentication over noisy channels. Information Theory[END_REF], L. Lai et al. studied the same message authentication model but over noisy channels. By exploiting an authentication counterpart of Wyner's wiretap channel [START_REF] Aaron | The wire-tap channel[END_REF],

the authors showed that noise is not detrimental to authentication, but rather make the opponent's success probability smaller. More specically, they aimed at designing a codebook in such a way that the distribution law of the key conditioned to the opponent's output is very close to uniform. This similarity is measured in term of total variational distance between the posterior distribution of the key and its prior one.

Consequently, when observing a fraudulent message, the receiver will not be able to select accurately the exact key among all others as the uncertainty about it is maximal.

With high probability the chosen key will not match to his database, and the access will be denied. Using a randomized coding strategy borrowed from the work of Csiszar [START_REF] Csiszár | Almost independence and secrecy capacity[END_REF] about a coloring function almost uniformly distributed when applied on a large space of events, and almost independent of another random variable, they conclude that there exists constants c > 0 and β > 0 so that:

2 -H(K) ≤ max {P I , P S } ≤ 2 -H(K) + c exp (-nβ) .
It means that all the key can be used to protect against substitution and impersonation attacks simultaneously. The authors also gave similar bounds on cheating probability in the case of sending multiple messages.

Discussion

In the model in [START_REF] Lai | Authentication over noisy channels. Information Theory[END_REF], the opponent channel is a degraded version of the legitimate channel, where the characterization degraded follows the partial ordering of channels described in [START_REF] Kiirner | General broadcast channels with degraded message sets[END_REF]. This is sucient to prove the existence of an encoder and a decoder achieving secret and reliable transmission by using the wiretap model. In contrast, the opponent in our authentication model has a direct access to the printed graphical code in the same way as the legitimate receiver does. Thus the two channels 1 are statistically similar and the wiretap channel model is not relevant if we consider the opponent as an eavesdropper. To deal with the wiretap channel model, one must give articially the role of the eavesdropper to the legitimate receiver as he should not be able to extract any information about the original message after observing a fraudulent graphical code.

However, the bounds on cheating probability in [START_REF] Lai | Authentication over noisy channels. Information Theory[END_REF] must be reconsidered because the decoder at the receiver stage is matched to the main channel and not to the channel involving the counterfeit process.

Biometric authentication

Another important eld in the research of information theoretic authentication are biometric systems. Biometric systems are devoted to verify and authenticate user's identity using its biologic traits such as ngerprints or iris scanning. Biometric characteristics have the attractive advantage that they refer to an unique identier. There are traditionally two phases in a biometric system: the enrollment and the authentication. In the enrollment phase, the biometric data of a user are extracted and saved as a biometric templates. Later, when an access is required, a fresh measurement of the same user's characteristic is observed, processed and compared to the reference template. If the observed sample is suciently similar to the database then the result is positively authenticated. One evident drawback of the system is that the measurements of a same biometric trait are dierent due to uncontrolled variability. Another important issue is the problem of secrecy and hence privacy, which arises if biometric data are stored in a clear form. The uniqueness of a biometric information leads paradoxically to an additional weakness. Once a database compromised, a biometric information cannot be revoked and it results in a partially stolen identity [START_REF] Ignatenko | Secret-key rates and privacy leakage in biometric systems[END_REF]. Biometric systems should then consider robustness along with secure storage to preserve privacy.

There has been an increasing interest in research to fulll all these requirements for biometric systems.

Fuzzy extractors and secure sketch [START_REF] Dodis | Fuzzy extractors: How to generate strong keys from biometrics and other noisy data[END_REF] are among the most rigorously analyzed approaches. Fuzzy extractor consists in extracting a secret key out from the biometric information along with a helper data during the enrollment phase. The secret key or a hash function of it may be stored in a central server, while the helper data is public.

The role of the latter is to assist the reconstruction of the key from a noisy measurement when authentication is required.

In the enrollment phase of a secure sketch, a procedure having input data w will output a sketch s. In the authentication phase, if an observed noisy data w is close to w it will be possible to recover w with the help of s. The sketch is secure because it does not reveal any information about w, but while the key generated out by the fuzzy extractor needs to be as uniform as possible, the secure sketch doesn't address uniformity. Fuzzy 1 In chapter 3 we will give another denition to the opponent channel which will include the counterfeiter processing and printing. commitment scheme introduced by Juels and Wattenberg [START_REF] Juels | A fuzzy commitment scheme[END_REF] is one of the earlier approach of secure sketch. It is based on error-correcting codes and considers biometric data in the binary space with the hamming distance measure. Using results from the wiretap channel theory, initially devoted to condential communication, Cohen and Zemor [START_REF] Cohen | Generalized coset schemes for the wire-tap channel: Application to biometrics[END_REF] implemented a fuzzy commitment scheme using a randomized strategy of coding with coset codes, to provide together secrecy and robustness (correctness property). Further implementations of secure sketch are applied on quantized real valued biometric templates in [START_REF] Li | Secure sketch for biometric templates[END_REF] where the authors study how the sketch aects the authentication performance and the probability that an adversary guesses the biometric data after observing the sketch.

In an enlightening framework on biometric systems with an information-theoretic point of view, Ignatenko and Willems [START_REF] Ignatenko | Biometric systems: Privacy and secrecy aspects[END_REF] reconsidered the problem of security emphasizing on the privacy and secrecy aspects. Using a setup similar to the fuzzy extractor where a secret key is extracted out from biometric data, they present rather their biometric system as an instance of the secret sharing concept introduced by Maurer [START_REF] Ueli | Secret key agreement by public discussion from common information. Information Theory[END_REF] and later by Ahlswede and Csiszár [START_REF] Ahlswede | Common randomness in information theory and cryptography. part i: secret sharing[END_REF]. They adapted the source-type model in [START_REF] Ahlswede | Common randomness in information theory and cryptography. part i: secret sharing[END_REF] where two terminals or sources X and Y communicate information over a noiseless public channel. Each source generates at the end of this exchange secret keys S and Ŝ respectively as functions of all exchanged information and source outputs. When S = Ŝ the two terminals deem to share a common secret key.

In the presented biometric system, only one message is exchanged and corresponds to the helper M , and the biometric data X n at the enrollment and Y n at the authentication phase are the source outputs. We say then that X and Y share a common secret key.

Because the helper is public, it should not contain any information about the key to preserve secrecy and should leak a negligible amount of information about the source to prevent privacy theft. Moreover, the secret-key rate 1 n log |S| (where |S| is the size of the key's set) should be large enough to minimize the probability that it would be guessed by an unauthorized user. The authors also present other settings, particularly the setting where the secret key is generated independently from the biometric data (called setting with chosen key). Their results are stated in a theorem for each setting delimiting an achievable region of the pair (secret-key rate, privacy leakage). For instance, for the chosen key setting, achievability of a pair (R, L) is obtained if an encoder/decoder exists such that for any δ > 0 we have:

Pr{S = Ŝ} ≤ δ 1 n log |S| ≥ R -δ 1 n I(M ; S) ≤ δ 1 n I(M ; X n ) ≤ L + δ
The rst inequality insures the property of correctness (the two terminals share a common secret), the second one insures that it is possible to generate a secret-key with a rate greater than the number R , the third inequality insures negligible secrecy leakage and nally the last one upper-bounds the privacy leakage by the number L. The maximal possible secret-key rate is the mutual information I(X; Y ), which is also a result from [START_REF] Ahlswede | Common randomness in information theory and cryptography. part i: secret sharing[END_REF]. The authors proposed recently practical implementations for the chosen key setting, based on key-binding using BCH and convolutional codes [START_REF] Ignatenko | Privacy-leakage codes for biometric authentication systems[END_REF]. They also studied in [START_REF] Frans | Authentication based on secret-key generation[END_REF] upper-bounds on the false acceptance exponent terms in a scheme based on secret-key extraction. The computation of this exponent is based on the assumption that the biometric imposter sequence and the biometric sequence of an authorized individual have the same marginal distribution, but these two biometrics are independent.

Discussion

The problem of verifying if data extracted out from an observed measurement matches a locally stored secret message, arises naturally in our authentication scheme. The legitimate receiver will be deceived if he can recover the secret-message stored in his database from the observed measurement which comes from a counterfeiter. The probability that this event happens is enforced with the fact that the adversary launch a kind of informed attack as he can observe the printed and scanned code Y n . Consequently, an available helper along with Y n will be detrimental to our model. We conclude that the helper, if it exists, must be communicated in a secure channel. In addition, the fraudulent code obtained from the informed attack and the original code are depended random sequences, unlike the case of an impostor and the legitimate user in biometric system. False acceptance exponent will then be related to relative entropy rather than mutual information.

Authentication using ngerprinting

In [START_REF] Beekhof | Content authentication and identication under informed attacks[END_REF], the authors analyzed an authentication model based on binary content ngerprint when an informed attack is launched. Informed attackers may indeed benet from some leakage about the stored authentic ngerprints. In order to detect any counterfeit, the authors propose to test the similarity between the binary ngerprint obtained from the measurement of an item with a given claimed label and the corresponding authentic binary ngerprint stored in the database. The hamming distance between these two binary sequences is a sucient statistic for this hypothesis testing. It is then compared to a threshold to infer a decision. The hamming distance has a binomial distribution and the authors use results from large deviation to upper-bound the probability of false rejection and the probability of false acceptance. Since there is always a trade-o between these two types of error, they optimize the authentication performance by nding the threshold that minimize the maximum value between them. This optimization is preferable to the Neyman-Pearson criterion only for strict technical and commercial requirements aiming at small values of both types of error.

Authentication using graphical codes

Combating counterfeit of commercial products or documents using printed graphical code authentication (see the work of Picard [START_REF] Picard | Towards fraud-proof id documents using multiple data hiding technologies and biometrics[END_REF], [START_REF] Picard | Improved techniques for detecting, analyzing, and using visible authentication patterns, july 28 2005[END_REF]) shares many similarities with the setting in [START_REF] Beekhof | Content authentication and identication under informed attacks[END_REF].

While in [START_REF] Beekhof | Content authentication and identication under informed attacks[END_REF], the authors test the possible matching of binary sequences, this dissertation considers performance's analysis for an arbitrary discrete space of measurements in case of an informed counterfeiter. Bounds and accurate asymptotic expressions are then provided using the method of type and large deviation principle. As mentioned previously, a trade-o is necessary between the false rejection error and the false acceptance error and we just do with the Neyman-Pearson criterion. The use of channel encoder aims at breaking partially this trade-o by separating the objectives over each channel, namely the legitimate channel and the opponent channel. First, the channel coding theorem will sustain the idea of a possible arbitrarily small probability of false alarm (false rejection). Second, the converse of the mismatch decoding theorem will insure a very low probability of miss detection (false acceptance). However, in the case that channel coding is employed, secrecy leakage may be very large as the opponent may retrieve the message due to the structure of codes. Therefore, it is essential to provide some additional encryption function to conceal the secret message from the opponent.

We will consider perfect secrecy (zero secrecy leakage) provided by an one-time-pad function.

Conclusions

In this chapter, we have presented the fundamentals in information theory which are needed in this dissertation such as basic information measures, the method of type and channel coding theorem for matched and mismatched decoding. We have also presented the Sanov's theorem which plays a very important role for our study in this dissertation.

Its proof is given in details in the appendix 2.6. We have also introduced some related works using information-theoretic tools to analyze performance of authentication, for instance message authentication, biometric systems and ngerprinting.

Chapter 2 2.6. Appendix

Appendix

Proof of Sanov's theorem

First, we will show the upper bound of (2.18), lim sup

n→∞ 1 n log Q n PX n ∈ E ≤ -inf P ∈E D (P Q) (2.32)
We have:

Q n PX n ∈ E = P ∈E∩Pn(X ) Q n PX n = P , (a) 
≤ P ∈E∩Pn(X ) e -nD(P Q) , ≤ P ∈E∩Pn(X ) sup P ∈E∩Pn(X ) e -nD(P Q) , = P ∈E∩Pn(X ) e -n inf P ∈E∩Pn(X ) D(P Q) , ≤ P ∈E∩Pn(X ) e -n inf P ∈E D(P Q) , = |E ∩ P n (X )| e -n inf P ∈E D(P Q) , (b) 
≤ (n + 1) |X | e -n inf P ∈E D(P Q) .

(2.33)

where (a) comes from Lemma 2.13 and (b) comes from Lemma 2.8. Taking logarithm and limsup on both sides of (2.33), we have: -inf

lim sup n→∞ 1 n log Q n PX n ∈ E ≤ lim sup n→∞ 1 n log (n + 1) |X | + lim sup n→∞ {-inf P ∈E D (P Q)} , (c) = lim n→∞ 1 n log (n + 1) |X | -lim inf n→∞ {inf P ∈E D (P Q)} , = -inf P ∈E D (P Q) .
P ∈ • E D (P Q) ≤ lim inf n→∞ 1 n log Q n PX n ∈ E .
(2.35)

Again we have:

Q n PX n ∈ E = P ∈E∩Pn(X ) Q n PX n = P (a) ≥ P ∈E∩Pn(X ) (n + 1) -|X | e -nD(P Q) ≥ (n + 1) -|X | sup P ∈E∩Pn(X ) e -nD(P Q) = (n + 1) -|X | e -n inf P ∈E∩Pn(X ) D(P Q) . (2.36)
where (a) comes from Lemma 2.13. Therefore,

lim inf n→∞ 1 n log Q n PX n ∈ E ≥ lim inf n→∞ -inf P ∈E∩Pn(X ) D (P Q) , = -lim sup n→∞ inf P ∈E∩Pn(X ) D (P Q) .
(2.37)

We need now to show that for any P ∈

• E, the right hand side of (2.37) is greater than D (P Q).

Fix then an arbitrary point P ∈ • E ⊆ P (X ). By the denition of an interior point, there exists δ > 0, small enough and an open ball centered on P with radius δ such that:

B δ = P ∈ P (X ) : d T V P, P < δ ⊂ E.
The crucial point here is that as n becomes larger the open ball B δ contains also elements of P n (X ) . Indeed, by using Lemma 2.14 we know that P n (X ) approximates uniformly well the set P (X ) in the sense of total variational distance. One can then nd a sequence Pn ∈ P n (X ) such that: (2.39) As Pn ∈ E ∩ P n (X ), we have: -lim

lim n→∞ d T V P, Pn = inf P n∈Pn(X ) d T V P, P n ≤ |X | n .
inf P ∈E∩Pn(X ) D P Q ≤ D Pn Q .
sup n→∞ inf P ∈E∩Pn(X ) D P Q ≥ -lim n→∞ D Pn Q , = = -D (P Q) . (2.42) 
The last equality comes from (2.39) and is true for any P ∈

• E. Thus:

-lim sup

n→∞ inf P ∈E∩Pn(X ) D P Q ≥ sup P ∈ • E -D (P Q) = -inf P ∈ • E D (P Q) . (2.43)
So the lower bound of (2.18) is proved. Now we show that if the set E is a subset of the closure of its interior, i.e. E ⊆

• E then the lower bound and the upper bound are identical, i.e.

inf

P ∈ • E D (P Q) = inf P ∈E D (P Q) .
If the set E is a subset of the closure of its interior, then the resulting set ordering

• E ⊆ E ⊆ • E,
we infer the following one: (2.45)

inf P ∈ • E D (P Q) ≥ inf P ∈E D (P Q) ≥ inf P ∈ • E D (P Q) .
The proof of the lemma will be deferred to the end of this subsection. As a direct consequence of this lemma, one can easily establish the equality after taking S =

• E and f (P ) = D (P Q): inf P ∈ • E D (P Q) = inf P ∈E D (P Q) = inf P ∈ • E D (P Q) .
This means that the lower and upper bounds are identical:

-inf P ∈ • E D (P Q) = lim inf n→∞ 1 n log Q n PX n ∈ E = lim sup n→∞ 1 n log Q n PX n ∈ E = -inf P ∈E D (P Q) .
(2.46)

In other words, limit of 

1 n log Q n PX n ∈ E exists and lim n→∞ 1 n log Q n PX n ∈ E = -inf P ∈E D (P Q) .
lim n→∞ 1 n log Q n PX n ∈ E = -D (P * Q) . (2.48) 
where 

P * = arg min P ∈ • E D (P Q) .

Proof of Proposition 2.16

In this subsection, we will show that if E is a convex set whose interior is non-empty

then E ⊆ • E.
Assume that e ∈ E, we will show that e ∈ • E.

•

If e ∈ • E then e ∈ • E as desired.
• If e ∈ ∂E, the boundary of E, we will show that there exists a sequence {e t } t∈(0,1] ⊆ E for all t ∈ (0, 1). Because e • ∈ • E, then by denition of the interior point, there exists an r > 0 such that the ball B (e • , r) ⊂ E. Let C δ be the set of all lines connecting point e to all points e ∈ B (e • , r). This set C δ can be understood as a cone if our set E is in R 3 . Particularly,

C δ = e t = te + (1 -t) e : t ∈ (0, 1) , e ∈ B (e • , r) (2.52) We have then C δ ⊆ E because of the convexity of E. Therefore • C δ ⊆ • E.
Moreover, e t ∈ • C δ for all t ∈ (0, 1). Indeed, there exits a ball B (e t , rt /2)

⊂ • C δ , see Figure 2.2. Therefore, e t ∈ • C δ ⊆ • E for all t ∈ (0, 1). In addition, e t → e as t → 0. So e ∈ • E as desired.

Chapitre 3 Authentication Without channel coding -Theoretical analysis

As stated in the rst chapter, a secret message can either be mapped directly into a binary graphical code (GC) or being encoded with some probably stochastic function before this mapping. In both cases, the resulting graphical code is printed on packages and therefore two settings will be investigated for authentication in this dissertation, namely without and with channel encoding.

In the current chapter, we consider the setup in which a binary GC is printed on a package of a product without being encoded before. First, we describe the authentication setup and give a mathematical representation of the model. We then present two possible strategies that could be exploited by the receiver. The simplest one is naturally to convert the scanned and observed gray level code to a binary version in order to perform authentication, and the second one in contrast, is to process directly the observed gray level code. It is shown that the latter strategy oers better performance for authentication when Neyman-Pearson test is employed. These performances are given in terms of asymptotic expressions of the probability of false alarm and the probability of non-detection, based upon Sanov's theorem. For the sake of comparison, these two types of error probabilities are also computed using Gaussian approximation using CLT (the Central Limit Theorem).

Authentication problem formulation

Setup

Our authentication model without channel coding is summarized as follows. A secret message is generated uniformly randomly, then one-to-one mapped to a binary GC before being printed on the package of a product. Since the secret message is mapped using a one-to-one function to create the GC, our study will focus directly on the GC, thus considered as an authentication sequence x n chosen at random from the message set X n , and shared secretly with the legitimate receiver. Throughout this dissertation, we assume that the authentication sequence is discrete, independent and identically distributed (i.i.d.). Once marked on a package, the printed code can be scanned directly by the legitimate receiver to test the authenticity of the product. It (the printed code) may also be scanned by an opponent who produces then a new printed copy that will mark the package of his forgery.

For the sake of simplicity, we combine devices like the printer and the scanner as one, which is depicted as Printer & Scanner in Figure 3.1. It is assumed also that the opponent uses the same quality of scanner as the legitimate receiver does. Therefore it can be considered that the grey level versions of the GC observed by the legitimate receiver and the one observed by the opponent have the same distribution law governing a random sequence Y n .

The authentication model can then be set as follows: an authentication sequence

x n is published as a noisy random version Y n taking values in the set of points O n . The legitimate receiver observes the outcome y n , while the opponent processes his own observation of Y n to print a fake code on a package of his counterfeit product. The scanned version of the latter is z n taking values in the set of points O n . The receiver observes then a sequence o n which can either be the scanned version of the original printed code y n or the scanned version of the fake code z n , and using his knowledge about the secret message, he establishes a statistical test in order to decide whether the observed sequence is genuine or not.

The authentication model may then be viewed as a secret communication problem involving two channels X → (Y, Z). We dene the main channel as the channel between the legitimate parts (source and receiver), and the opponent channel as the channel between the legitimate source and the receiver but passing through the counterfeiter channel (see Figure 3.1). The two channels X → (Y, Z) are considered being discrete and memoryless with conditional probability distribution P Y Z|X (y, z | x). The marginal channels P Y |X and P Z||X constitute the transition probability matrices of the main channel and the opponent channel respectively.

It is noted that the authentication sequence x n is generated using a secure pseudorandom number generator (PRNG) having a suciently large key space to prevent brute-force attacks. The seed of the PRNG can be practically transmitted using both a secure lossless communication channel and via a key distribution system so that the receiver can generate x n from the seed. The security of such a system is beyond the scope of this dissertation.

In the sequel, we aim at expressing the marginal distributions P Y |X and P Z|X .

Channel modeling

As mentioned previously, the device combining the principal physical elements, i.e. print and scan devices, is a stochastic process so we can model it by a stochastic The marginal distribution of the main channel P Y |X is equivalent to one print and scan process, and consequently we have:

P Y |X = T m . (3.1)
On the other hand, P Z|X depends on the opponent processing as he has to retrieve the original sequence before reprinting it (Figure 3.1). As mentioned above, this processing is necessary to the opponent because the industrial printers can only print dots, e.g. binary versions of the scanned code. Before publishing his fraudulent sequence z n , the opponent undergoes then inevitable errors in the estimated binary sequence xn of the original code.

These errors are evaluated with probabilities P e,1 when he confuses an original white dot (X = 1) with a black dot ( X = 0) and P e,0 when an original black dot (X = 0) is decoded as a white dot ( X = 1). Recalling that the gray level sequence observed by the opponent is governed by the same distribution law of that of the main channel P Y |X , the opponent's decoding error probabilities P e,1 = P X|X ( X = 0 | X = 1) and P e,0 = P X|X ( X = 1 | X = 0) are equal to:

P e,1 = o∈D c 1 P Y |X (o | X = 1), (3.2) P e,0 = o∈D 1 P Y |X (o | X = 0). (3.3)
where D 1 and D c 1 are optimal decision regions for decoding white and black respectively, obtained after using classical maximum likelihood decoding at the output of P Y |X :

D 1 = o ∈ O : P Y |X (o | X = 1) > P Y |X (o | X = 0) . (3.4)
We express now entries of P Z|X as marginals as follow:

P Z|X (o | x) = x=0,1 P XZ|X (x, o | x). (3.5)
As we can see in Figure 3.1, X → X → Z forms a Markov chain with the relation

P XZ|X (x, o | x) = P X|X (x | x)T c (o | x)
, where T c is the transition matrix of the counterfeit physical device. Entries of the marginal channel matrix P Z|X are then:

P Z|X (o | x) = x=0,1 P X|X (x | x)T c (o | x). (3.6)
Finally, we have

P Z|X (o | X = 0) = (1 -P e,0 )T c (o | X = 0) +P e,0 T c (o | X = 1), (3.7) P Z|X (o | X = 1) = (1 -P e,1 )T c (o | X = 1) +P e,1 T c (o | X = 0). (3.8)

Receiver's strategies

Two strategies are possible for the receiver.

Binary thresholding:

As a rst strategy, the legitimate receiver rst decodes the observed sequence o n using a maximum likelihood criterion based on the knowledge of the main channel marginal distribution P Y |X . He then restores a binary version xn of the original message x n using the decision region dened by (3.4) and naturally undergoes errors.

• When O n = y n , let Pye,1 be the error probability when confusing an original white dot (X = 1) with a black dot ( X = 0) and Pye,0 when confusing an original black dot (X = 0) with a white dot ( X = 1). As noted before, the receiver uses a maximum likelihood criterion based on the main channel marginal distribution P Y |X . Therefore, these error probabilities are exactly the same as (3.2) and (3.3).

Particularly,

Pye,0 = P e,0 , Pye,1 = P e,1 .

(3.9)

Let us notice that in this case, the channel X → X can be modeled as a Binary Input Binary Output channel (BIBO) with transition probability matrix P X|X :

  P X|X X = 0 | X = 0 P X|X X = 1 | X = 0 P X|X X = 0 | X = 1 P X|X X = 1 | X = 1   =
1 -P e,0 P e,0 P e,1

1 -P e,1 .

(3.10)

• When O n = z n , let Pze,1 be the error probability when confusing an original white dot (X = 1) with a black dot ( X = 0) and Pze,0 when confusing an original black dot (X = 0) with a white dot ( X = 1). The receiver is xed and is optimized with respect to the marginal distribution P Y |X . Thus, making uses of (3.7) and (3.8), we express Pze,1 and Pze,0 as follows:

Pze,1 =

o∈D c 1 P Z|X (o | X = 1), (3.11) 
Pze,1 =

o∈D c 1 (1 -P e,1 )T c (o | X = 1) + P e,1 T c (o | X = 0).
By setting

P e,1 = o∈D c 1 T c (o | X = 1), P e,0 = o∈D 1 T c (o | X = 0), (3.12) 
we have

Pze,1 = (1 -P e,1 )P e,1 + P e,1 (1 -P e,0 ).

(3.13)
The same development yields:

Pze,0 = (1 -P e,0 )P e,0 + P e,0 (1 -P e,1 ).

(

For this rst strategy, the channel X → X can be modeled as two BIBO channels, where the marginal transition probability matrix of the main BIBO channel is given by (3.10), and the marginal transition probability matrix of the opponent channel is given by the following cascaded BIBOs:

  P X|X X = 0 | X = 0 P X|X X = 1 | X = 0 P X|X X = 0 | X = 1 P X|X X = 1 | X = 1   = 1 -Pze,0 Pze,0 Pze,1 1 -Pze,1 = 1 -P e,0 P e,0 P e,1
1 -P e,1 × 1 -P e,0 P e,0 P e,1

1 -P e,1 .

(3.15)

As we will see in the next section, the test that the receiver will perform to decide whether the observed decoded sequence xn comes from the legitimate source or not is tantamount to counting the number of errors.

Authentication based on gray level observations:

In the second strategy, the receiver performs his test directly on the received sequence

o n (gray level version) without any given decoding. We will see in the next section that this strategy performs better than the previous one for authentication.

Authentication using hypothesis testing

For a given input sequence (x 1 , . 

L (o n | x n ) = log P n (o n | x n , H 1 ) P n (o n | x n , H 0 ) ≥ γ, (3.16) 
where γ is a threshold verifying the constraint α n ≤ α * . In the next two subsections, the expressions of the log-likelihood ratio corresponding to the two possible strategies of the receiver will be given in detail.

Authentication via binary thresholding

In the rst strategy, the nal observed data is xn and the original sequence x n is a side information containing two types of data ("0" and "1"). The conditional distribution laws of each random component ( Xi | x i ) are identical given type x. . Let N 0 = {i : 

x i = 0} and N 1 = {i : x i = 1} with n 0 = |N 0 | and n 1 = |N 1 |.
P n (x n | x n , H j ) = n i=1 P (x i | x i , H j ) = i∈N 0 P (x i | X i = 0, H j ) × i∈N 1 P (x i | X i = 1, H j ).
• Under hypothesis H 0 the channel X → X has a transition matrix given by (3.10):

P n (x n | x, H 0 ) = (P e,0
) n e,0 (1 -P e,0 ) n 0 -n e,0 × (P e,1 ) n e,1 (1 -P e,1 ) n 1 -n e,1 ,

where n e,0 and n e,1 are the number of errors (x i = x i ) when black is decoded into white and when white is decoded into black respectively.

• Under hypothesis H 1 , the channel X → X has a transition matrix given by (3.15)

and we have:

P n (x n | x n , H 1 ) = ( Pze,0 ) n e,0 (1 -Pze,0 ) n 0 -n e,0 × ( Pze,1 ) n e,1 (1 -Pze,1 ) n 1 -n e,1 .
Applying now the Neyman-Pearson criterion, the log-likelihood ratio in (3. [START_REF] Chen | Generalization of gartner-ellis theorem[END_REF]) is rewritten as:

L 1 (x n | x n ) = log P n (x n | x n , H 1 ) P n (x n | x n , H 0 ) H1 ≷ H0 γ, (3.17) L 1 (x n | x n ) = n e,0 log Pze,0 (1 -P e,0 )
P e,0 (1 -Pze,0 ) + n e,1 log Pze,1 (1 -P e,0 ) P e,0 (1 -Pze,1 )

H1 ≷ H0 λ 1 . (3.18) 
where λ 1 = γ -n e,0 log 1-Pze,0 1-P e,0

-n e,1 log 1-Pze,1

1-P e,1
and L 1 stands for the log-likelihood ratio in the rst strategy using binary thresholding.

It is remarkable that this expression of the test has the practical advantage to only count the number of errors in order to perform authentication. On can observe this more easily when channels are symmetric, as we will have Pze,0 = Pze,1 and P e,0 = P e,1 .

The test will resume in:

n e,0 + n e,1 H1 ≷ H0 η (3.19)
The simplicity of this test eases its implementation but at a cost of a loss of optimality.

In the next subsection, we discuss the non thresholding strategy which oers better authentication performance.

Authentication via gray level observation

In the second strategy, the observed data is o n . Here again, the conditional distributions of each random component 

(O i | x i ), 1 ≤ i ≤ n,
L 2 (o n | x n ) = log P n (o n | x n , H 1 ) P n (o n | x n , H 0 ) H1 ≷ H0 λ 2 , (3.20) 
Using 3.7 and 3.8 we have:

L 2 (o n | x n ) = i∈N 0 log P Z|X (o i | X i = 0) P Y |X (o i | X i = 0) + i∈N 1 log P Z|X (o i | X i = 1) P Y |X (o i | X i = 1) H1 ≷ H0 λ 2 , (3.21) = i∈N 0 log (1 -P e,1 ) T c (o i | Xi = 0) T m (o i | X i = 0) + P e,1 T c (o i | Xi = 1) T m (o i | X i = 0) + + i∈N 1 log (1 -P e,0 ) T c (o i | Xi = 1) T m (o i | X i = 1) + P e,0 T c (o i | Xi = 0) T m (o i | X i = 1) H1 ≷ H0 λ 2 . (3.22)
It is noted that the expressions of the transition matrices modeling the physical processes T m and T c are required in order to perform the optimal test. Knowing the distribution of the counterfeit channel may be doable as we may know several counterfeit products somehow and then use it to estimate the model printer of the opponent.

Reliable performance evaluation

In the previous section we have expressed the Neyman-Pearson test for the two proposed strategies resumed by (3.18) and (3.22). These tests may then be practically performed on the observed sequence in order to make a decision about its authenticity. We aim now at expressing the error probabilities of type I and II for each of the two possible strategies described previously. Let m = 1, 2 be the index denoting the strategy, a straightforward calculation gives

α (m) = l>λm P Lm (l | H 0 ), (3.23) 
β (m) = l<λm P Lm (l | H 1 ). (3.24) 
where P Lm (l | H j ) is the distribution of the log-likelihood ratio L m under hypothesis H j .

The Gaussian approximation

As the length n of the sequence is generally large, we can use the central limit theorem to study the distributions P Lm , m = 1, 2.

• For the binary thresholding strategy, n e,1 and n e,0 in (3.18) are binomial random variables with parameters depending on the source of the observed sequence. Let n x stand for the number of data of type x (0 or 1) in the original code and Q e,x the cross over probabilities emerging from type x in the BIBO channels (Q e,x = P e,x in (3.10)) or (Q e,x = Pze,x in (3.15)). When n is large enough, the distribution of the random variable nex-nxQe,x √ nxQe,x(1-Qe,x) can be approximated to the standard normal distribution according to the central limit theorem in his historical form stated by the De Moivre-Laplace theorem. We have then:

n e,x ∼ N (n x Q e,x , n x Q e,x (1 -Q e,x
)).

(3.25)

Combining with (3.18), L 1 is then a weighted sum of Gaussian random variables and one can obviously deduce the parameters of the normal approximation describing the log-likelihood L 1 .

• For the second strategy, i.e. when the receiver tests directly the observed gray level sequence, the log-likelihood L 2 in (3.22) may be expressed as two sums of i.i.d. and becomes:

L 2 (o n | x n ) = i∈N 1 (o i | 1) + i∈N 0 (o i | 0) H1 ≷ λ 2 H0 , (3.26) 
= L 1 2 (o n ) + L 0 2 (o n ).
where (o | x) is a function : O × X →R having some distribution with mean and variance equal to:

m x|j = E[ (O | x) | H j ] = o∈O (o | x)P O|X (o | x, H j ), (3.27) 
and

var[ (O | x) | H j ] = o∈O ( (o | x) -m x ) 2 P O|X (o | x, H j ), (3.28) 
here P O|X = P Y |X (respectively P O|X = P Z|X ) for j = 0 (respectively 1). The central limit theorem is invoked again to state that the distribution of

L x 2 (o n )-Nxmx √ Nxvar[ (O|x)|H j ]
can be approximated to the standard normal distribution and thus L 2 to a Gaussian distribution whose parameters can easily be derived from (3.27) and (3.28) to compute type I and type II error probabilities.

Asymptotic expression

In the previous subsection, we have proposed Gaussian approximation to compute both probability of false alarm α (m) and probability of non-detection β (m). It is unfortunate that the Gaussian approximation provides inaccurate error probabilities when the threshold λ m in (3.23) and (3.24) is far from the mean of the random variable L m .

Sanov's theorem which is indeed the large deviation principle [START_REF] Dembo | Large deviations techniques and applications[END_REF] is preferred in this context as very small error probabilities of type I and II may be desired. We aim now at computing asymptotically the error probabilities of type I and II. As the following arguments are the same for both strategies discussed above, we thus focus on computing these errors for the second strategy and drop the subscribe m which stands for the strategy for the sake of simplicity. As mentioned above, for the rst strategy, when the channels are symmetric, the test will be resumed as (3.19) and we just simply count the number of errors to perform authentication. If one use the following arguments, he can have similar asymptotic bounds on the two probabilities of error which were discussed in the work of Beekhof et al. [START_REF] Beekhof | Content authentication and identication under informed attacks[END_REF].

We recall that the log-likelihood test is

L (O n | x n ) = log P n (O n | x n , H 1 ) P n (O n | x n , H 0 ) H1 ≷ H0 λ, (3.29) 
and the two types of error probabilities are

α n = Pr (L (O n | x n ) ≥ λ | H 0 ) , (3.30) 
β n = Pr (L (O n | x n ) ≤ λ | H 1 ) . (3.31)
It is of our interest to approximate α n and β n by using arguments based on Sanov's theorem. Recalling from chapter 2 the denition of a type of an outcome of random sequence, the log-likelihood ratio L can be alternatively written as follows: 

L (O n | x n ) = n i=1 log P Z|X (O i |x i ) P Y |X (O i |x i ) = a∈X o∈O n (o, a | O n , x n ) log P Z|X (o|a) P Y |X (o|a) = a∈X o∈O n PO n x n (o,
D Po n x n P Y |X Px n : Po n x n ∈ P n (O × X ) .
Then the log-likelihood test (3.29) becomes

D PO n x n P Y |X Px n -D PO n x n P Z|X Px n H1 ≷ H0 λ n .
(3.32)

Denote by E x n ,H 1 the region on which the hypothesis H 1 is accepted when the transmitted message is x n ,

E x n ,H 1 = P O|X Px n ∈ P (O × X ) : D P O|X Px n P Y |X Px n -D P O|X Px n P Z|X Px n ≥ λ n , (3.33) 
where P (O × X ) is the set of all joint distributions.

The test (3.32) partitions the probability simplex into two regions E x n ,H 1 and E c

x n ,H 1 .

When Po n x n , the empirical distribution of the observed sequence (o n , x n ) belongs to the set E x n ,H 1 , we decide that the hypothesis H 1 is true, i.e. Po n x n is governed by the distribution P Z|X Px n . Similarly, when Po n x n belongs to the set E c

x n ,H 1 , we decide that the hypothesis H 0 is true, i.e. Po n x n is governed by the distribution P Y |X Px n . This means that P Y |X Px n and P Z|X Px n respectively belong to dierent sets E c

x n ,H 1 and E x n ,H 1 . Now Sanov's theorem will help us to compute the error probabilities of type I and II of the test (3.32). The probability of type I in (3.30) can then be alternatively expressed as follows

α n = Pr (L (O n | x n ) ≥ λ | H 0 ) = Pr PO n x n ∈ E x n ,H 1 | H 0 . (3.34)
Now it is easy to check that E x n ,H 1 is a close convex subset of the probability simplex 

P (O × X ) so that E x n ,H 1 ⊆ • E x n ,
D P P Y |X Px n . Let E x n ,H 1 = P O|X ∈ P (O | X ) : D P O|X P Y |X | Px n -D P O|X P Z|X | Px n ≥ λ n , (3.36) 
where P (O | X ) is the set of all stochastic matrices P O|X : X → O.

Then it is easy to check that (3.35) can be rewritten as follows

α n . = exp -nD P * 0 P Y |X | Px n , (3.37) 
where

P * 0 = arg min P ∈E x n ,H 1 D P P Y |X | Px n . (3.38)
Similarly, we have

β n . = exp -nD P * 1 P Z|X | Px n , (3.39) 
where P * 1 is the distribution such that P * 1 = arg min

P ∈E c
x n ,H 1

D P P Z|X | Px n .
(3.40)

The following proposition provides the expression of P * 0 and P * 1 which are actually the same. In order to derive these expressions, we will solve a convex optimization problem with inequality constraints (3.33). However, thanks to specic constraints in the studied case, we show that the problem achieves minimum on the boundary. In the following, we give a proof with complimentary details which are omitted in the proof of Cover and Thomas [START_REF] Thomas | Elements of information theory 2nd edition[END_REF] Proposition F (P, s, η) = f (P ) + sg (P ) + ηh (P ) .

( 

g (P * ) ≤ 0 ; h (P * ) = 0 s * ≥ 0 s * g (P * ) = 0 ∂F ∂P (P * , s * , η * ) = 0
We now show that the problem (3.44) achieves minimum on the boundary, i.e. g (P * ) = 0. In order to do so, we will show that s * > 0 by rst assuming that s * = 0, and then pointing out the contradiction. Because P * satises the KKT conditions then we have:

∂F (P * (o | x) , s * , η * ) ∂P (o | x) =0 ∂f (P * (o | x)) ∂P (o | x) + s * ∂g (P * (o | x)) ∂P (o | x) + η * ∂h (P * (o | x)) ∂P (o | x) = 0
Assuming that s * = 0 it comes:

∂f (P * (o | x)) ∂P (o | x) + η * ∂h (P * (o | x)) ∂P (o | x) = 0 log P * (o | x) P Y |X (o | x) + 1 + η * = 0 (3.47)
Solving the last equation (3.47) and using the fact that o∈O Solving this set of equations we get the minimum of the problem (3.44) as follows:

P (o | x) = 1 for all x ∈ X , we nd that P * (o | x) = P Y |X (o | x) .
P * 0 = P * s (o | a) = P 1-s Y |X (o | a) P s Z|X (o | a) o P 1-s Y |X (o | a) P s Z|X (o | a) . (3.51)
for all o ∈ O, a ∈ X and s is chosen so that:

D P * s P Y |X | Px n -D P * s P Z|X | Px n = λ n .
(3.52)

We recall that, according to the Neyman-Pearson criterion, λ is chosen to satisfy a predened level test α ≤ α * . Similarly, we also have

P * 1 = P 1-s Z|X (o | a) P s Y |X (o | a) o P 1-s Z|X (o | a) P s Y |X (o | a)
.

(3.53)

Let t = 1 -s , we have:

P * 1 = P * t (o | a) = P 1-t Y |X (o | a) P t Z|X (o | a) o P 1-t Y |X (o | a) P t Z|X (o | a)
. It should be noted that when s → 1, P * s → P Z|X and as s → 0, P * s → P Y |X . Moreover, from (3.52) the threshold λ may be expressed in term of s . Thus from these two previous remarks, λ may be tuned between

-nD P Y |X P Z|X | Px n nD P Z|X P Y |X | Px n
so that the problem of hypothesis testing is meaningful. Figure 3.2 illustrates the geometry of P * s in the space P (O | X ). Summarizing the results, for P * s of the form as in (3.51) it is therefore:

α n . = exp -nD P * s P Y |X | Px n , (3.55) β n . = exp -nD P * s P Z|X | Px n .
So far we have provided asymptotic expressions of the probabilities of type I and II errors for n suciently large. In the next subsection we establish tighter expressions for nite n which naturally coincide with (3.55) for n going to innity. 

Renement of asymptotic expressions

The renement suggested here is possible principally because the log-likelihood ratio

L (O n | x n ) used as a test statistic in (3.29) is a sum of n i.i.d. random variables l (O i | x i ) = log P Z|X (O i |x i ) P Y |X (O i |x i ) . When O | x is governed by P Y |X the semi-invariant moment generating function of the random variable l (O | x) is: µ l (s; x, H 0 ) = log E P Y |X e sl(O|x) = log E P Y |X P s Z|X (O | x) P s Y |X (O | x)
.

(3.56)

Then µ L (s; x n , H 0 ) can be expressed in terms of µ l (s; a, H 0 ), with a ∈ X as follows:

µ L (s; x n , H 0 ) = log E P n Y |X e sL(O n |x n ) , = log n i=1 E P Y |X e sl(O i |x i ) , = n i=1 log E P Y |X e sl(O i |x i ) , = b∈O,a∈X n (b, a | o n , x n ) log E P Y |X e sl(O|a) , = b∈O,a∈X n (b, a | o n , x n ) µ l (s; a, H 0 ) , = a∈X µ l (s; a, H 0 ) b∈O n (b, a | o n , x n ) .
and nally:

µ L (s; x n , H 0 ) = a∈X µ l (s; a, H 0 ) n(a | x n ).
When the threshold is very far from the expected value of L (O n | x n ) , i.e.:

λ E P L [L (O n | x n )]
the probability of the tail Pr (L ( 

O n | x n ) ≥ λ | H 0 ) is
P * s (o | x) = P Y |X (o | x) exp [sl (o | x)] o ∈O P Y |X (o | x) exp [sl (o | x)] , = P Y |X (o | x) exp [sl (o | x) -µ l (s; x, H 0 )] .
The tilted distribution P * n s (o n | x n ) will be of following form: 

P * n s (o n | x n ) = n i=1 P * s (o i | x i ) , = b∈O a∈X [P * s (b | x)] n(b,a|o n ,x n ) , = b∈O a∈X P Y |X (b | x) exp [sl (b | x) -µ l (s; a, H 0 )] n(b,a|o n ,x n ) , = P n Y |X (o n | x n ) exp b∈O,a∈X n (b, a | o n , x n ) [sl (b | x) -µ l (s; a, H 0 )] , = P n Y |X (o n | x n ) exp      sL (o n | x n ) - a∈X µ l (s; a, H 0 )n(a | x n )      , = P n Y |X (o n | x n ) exp {sL (o n | x n ) -µ L (s; x n , H 0 )} .
P Y |X (o | x) exp [sl -µ l (s; x, H 0 )] , = exp [sl -µ l (s; x, H 0 )] o∈O:l(o|x)=l P Y |X (o | x) ,
= exp [sl -µ l (s; x, H 0 )] P (l).

In the same way, the resulting tilted distribution of the sum L (O n | x n ) is then:

Ps (L) = o n ∈O n :L(o n |x n )=L P * n s (o n | x n ) , = o n ∈O n :L(o n |x n )=L P n Y |X (o n | x n ) exp {sL -µ L (s; x n , H 0 )} , = exp {sL -µ L (s; x n , H 0 )} o n ∈O n :L(o n |x n )=L P n Y |X (o n | x n ) , = exp {sL -µ L (s;
x n , H 0 )} P (L).

(3.57) Proposition 3.2. We derive now some properties related to the random variable L s governed by the tilted distribution Ps .

1. The expected value of L s according to Ps

is such that E PS [L s ] = dµ L (s; x n ,H 0 ) ds = µ L (s; x n , H 0 ).
2. The value of s verifying (3.52) insure also that µ L (s; x n , H 0 ) = λ, where λ is the threshold of the test.

3. As a consequence of the two previous properties, the expected value of L s coincide with the threshold λ.

4. Finally the variance of L s can be easily expressed as the second derivative of the moment generating function:

var [L s ] = dµ 2 L (s; x n , H 0 ) ds 2 = µ L (s; x n , H 0 ) (3.58)
The probability of type I can now be computed as follows:

Pr (L (O n | x n ) ≥ λ | H 0 ) = L≥λ P (L), = L≥λ Ps (L) exp {-sL + µ L (s; x n , H 0 )} , = exp {µ L (s; x n , H 0 )} L≥λ Ps (L) exp {-sL} , = exp {µ L (s; x n , H 0 ) -sµ L (s; x n , H 0 )} × L≥λ Ps (L) exp {-sL + sµ L (s; x n , H 0 )} , = exp {µ L (s; x n , H 0 ) -sλ} × L≥λ Ps (L) exp {-s(L -λ)} , (a) 
= exp -nD

P * s P Y |X | Px n (3.59) 

×

L≥λ

Ps (L) exp {-s(L -λ)} .

(a) comes from the fact that the two exponent terms are equivalent (see appendix 3.6.2

for the proof ):

-nD P * s P Y |X | Px n = (µ L (s; x n , H 0 ) -sλ) . (3.60) 
Since s ≥ 0 and the sum in (3.59) holds for L ≥ λ, the exponential term in this sum is ≤ 1 and consequently

L≥λ P (L) exp {-s(L -λ)} ≤ 1.
Hence one can express an information theoretic form of the Cherno bound:

Pr (L (O n | x n ) ≥ λ | H 0 ) ≤ exp -nD P * s P Y |X | Px n . (3.61)
We turn to show that the probability of type I Pr (L (O n | x n ) ≥ λ | H 0 ) may be improved for moderate values of n with an appropriate approximation of the factor:

L≥λ

Ps (L) exp {-s(L -λ)} .

(3.62)

Recalling property 3 in Proposition 3.2, the expected value of L s coincide with the threshold λ. Applying the law of large number, outcomes of L s are near λ with high probability, and the problem of large deviations changes to small deviations for L s near its mean. The sum in (3.59) is then more signicant within a small fraction of the standard deviation of L s . Using arguments from [START_REF] Robert | Information theory and reliable communication[END_REF] Appendix 5A, it is suggested to apply an appropriate version of the central limit theorem over this small deviations where the separation ∆ L between adjacent values of L s becomes smaller and smaller as n gets larger. As a rst approximation let Ps (L) ≈ q s (L)∆ L (n). As ∆ L (n) goes to zero when n is increased, we may approximate the sum (3.62) by integrating it by parts.

Taking the normalized version of the random variable L s we have then:

L≥λ Ps (L) exp {-s(L -λ)} ≈ s µ L (s; x n , H 0 ) × ∞ ¡ 0 [G(L s ) -G(0)] exp(-s µ L (s; x n , H 0 ) L s )dL s (3.63)
where µ L (s;

x n , H 0 ) = var(L s ) from property 4 of Proposition 3.2, L s = Ls-λ √ µ L (s; x n ,H 0 )
and G(L s ) is the cumulative distribution of L s :

G(L s ) = w≤L s

Ps (w)

It remains now choosing a simple approximation for G(L s )-G(0) in regard to the central limit theorem where lim G(u) = Φ(u) as n becomes larger, Φ(u) being the distribution function of the standard normal random variable. Because of small deviations near the mean, a rst order of Taylor expansion may be sucient here and we have:

G(L s ) -G(0) ≈ L s √ 2π (3.64) 
Plugging this approximation into (3.63) and completing integration, the error of type I may then be approximated by:

Pr (L (O n | x n ) ≥ λ | H 0 ) ≈ 1 s 2πµ L (s; x n , H 0 ) × exp -nD P * s P Y |X | Px n .
(3.65)

Authentication with or without thresholding

In this setup and without loss of generality, we consider a Gaussian model for the physical devices T m and T c with variances σ 2 Figure 3.3 compares the Receiver Operating Characteristic (ROC) curves associated with the two dierent strategies. These error probabilities are computed using the results given in (3.65). We can notice that the gap between the two strategies is important. This is not surprising since the binary thresholding removes information about the gray level observation, yet this has a practical impact because one practitioner can be tempted to count the number of errors as an authentication score, as given in (3.18), for its easy implementation. An information theoretical analysis presented in appendix 3.6.1 shows that for a given level α n , i.e. a given false alarm, the non-detection error exponent in case of gray level observation is greater than the corresponding exponent in case of thresholding. This result is in line with the remark of Blahut in [START_REF] Blahut | Principles and practice of information theory[END_REF] where in page 108 he writes that information is increased if a measurement is made more precise [...] (i.e. with a renement of the set of measurement outcomes).
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Conclusions

In this chapter, we have presented a framework to analyze the performance of authentication without using channel coding. We have introduced two possible strategies for the receiver, namely binary thresholding and gray level observation. We have then used the optimal Neyman-Pearson test to perform authentication of the system. Particularly, we have computed the two types of error probabilities, false alarm and non-detection by using Gaussian approximation. More interestingly, we have also computed asymptoti-cally these two types of error probabilities when they are small thanks to the Sanov's theorem. Relying on these asymptotic expressions, we have concluded that the gray level observation strategy oers a better performance for authentication than the former one. In the next chapter, we show how to practically compute these two types of error probabilities. Assume that α n = α n we will show that: where a ∈ X and D 1 is dened in (3.4) which is

D 1 = o ∈ O : P Y |X (o | X = 1) > P Y |X (o | X = 0) .
Taking advantages of the distribution P * , we will show that 

P XZ |X (ã|1) , = Px n (0) f (0) + Px n (1) f (1) .
We will show that f (0) ≥ 0 and similarly f (1) ≥ 0. We develop f (0) as follows: 

≥ In this subsection we will show that

o∈D 1 P * (o | 0) 1 - P Z|X (o | 0) P * (1 | 0) P * (o | 0) P XZ |X (1 | 0) + o∈D c 1 P * (o | 0) 1 - P Z|X (o | 0) P * (0 | 0) P * (o | 0) P XZ |X (0 | 0) , = o∈D 1 P * (o | 0) - P Z|X (o | 0) P * (1 | 0) P XZ |X (1 | 0) + o∈D c 1 P * (o | 0) - P Z|X (o | 0) P * (0 | 0) P XZ |X (0 | 0) , (b) = o∈D 1    P * (o | 0) - P Z|X (o | 0) o∈D 1 P * (o | 0) o∈D 1 P Z|X (o | 0)    + o∈D c 1    P * (o | 0) - P Z|X (o | 0) o∈D c 1 P * (o | 0)
exp [µ L (s; x n , H 0 ) -sλ] = exp -nD P * s P Y |X | Px n , (3.83) 
where P * s is given in terms of parameter s ≥ 0 as:

P * s (o | a) = P 1-s Y |X (o | a) P s Z|X (o | a) o P 1-s Y |X (o | a) P s Z|X (o | a)
, ∀o ∈ O, a ∈ X . (3.87)

KKT optimality conditions

We consider the following optimization problem

minimize f (x) subject to g (x) ≤ 0 h (x) = 0 x ∈ D ⊆ R m .
(3.88)

The Lagrangian F : R m × R × R → R associated with the problem (3.88) is dened as follows:

F (x, s, η) = f (x) + sg (x) + ηh (x) .

(3.89) Let x * be the optimal point of (3.88), then the KKT conditions say that there exists a unique s * and η * such that

g (x * ) ≤ 0 h (x * ) = 0 s * ≥ 0 s * g (x * ) = 0 ∂F ∂x (x * , s * , η * ) = 0.
If the problem 3.88 is convex i.e. f and g are convex and h is ane, then KKT conditions are necessary and sucient to nd a minimum. For more general discussion, we refer the readers to the book of Stephen Boyd [START_REF] Boyd | Convex optimization[END_REF].

Chapitre 4 Authentication Without channel coding -Practical results

In the previous chapter, we have showed the expressions of the false alarm and nondetection probabilities by using either the Gaussian approximation or the asymptotic expressions based on the Sanov theorem. In this chapter, we present the practical results for these two types of error probabilities. Numerical simulations using Monte-Carlo estimates of the error probabilities show the good accuracy of the asymptotic expression while Gaussian approximation is poor. More remarkably, importance sampling methods are studied and employed to practically estimate very small values of the non detection probability suggesting an optimized tilted distribution as a proposal.

Moreover, by considering the expressions of the two types of error probabilities, we propose to optimize the authentication performance when using generalized Gaussian distributions as a model of the print and scan channel.

Numerical computation of α and β via importance sampling

This section addresses the problem of estimating numerically type I and II error probabilities, i.e. α n and β n . Monte Carlo (MC) simulation methods [START_REF] Michael | Monte carlo methods[END_REF] give accurate solutions since these probabilities can be expressed as expectations of a function of a random variable governed by a probability distribution. We have: 

α n = o n ∈H 1 P n (o n | x n , H 0 ) = o n ∈O n P n (o n | x n , H 0 ) φ (o n | x n ; H 1 ) , ( 4 
α n = E P n Y |X [φ (O n | x n ; H 1 )] , (4.2) 
β n = E P n Z|X [φ (O n | x n ; H 0 )] . ( 4 
αn = 1 N trials N trials i=1 φ (o n ) i | x n ; H 1 , where (o n ) i is generated from P n Y |X , (4.4 
)

βn = 1 N trials N trials i=1 φ (o n ) i | x n ; H 0 , where (o n ) i is generated from P n Z|X . (4.5) 
The MC estimator is unbiased ( αn → α n and βn → β n almost surely when N trials → ∞) and the rate of convergence is N -1 /2 trials . Recalling that for a zero mean and unit variance 

where σ αn (resp. σ βn ) is the standard deviation of φ ing the number of trials needed is N trials > 10 3 /α (or N trials > 10 3 /β) when the desired condence interval at 0.95 is constrained to be about the tenth of the expected value of α n and β n . When we need to evaluate numerically very small values of α n and β n to draw the curve β (α n ), the required number of trials fails to be realistic.

(o n ) i | x n ; H 1 (resp. φ (o n ) i | x n ; H 0 ). As φ (o n ) i | x n ; H 1 and φ (o n ) i | x n ;
We propose here to use the importance sampling methods [START_REF] Michael | Monte carlo methods[END_REF] 

α n = E P n Y |X [φ (O n | x n ; H 1 )] = E P n Y |X φ (O n | x n ; H 1 ) Q n Y |X Q n Y |X , (4.8) 
β n = E P n Z|X [φ (O n | x n ; H 0 )] = E P n Z|X φ (O n | x n ; H 0 ) Q n Z|X Q n Z|X . (4.9) 
One can alternatively express type I and type II error probabilities as

α n = E Q n Y |X φ (O n | x n ; H 1 ) P n Y |X Q n Y |X , (4.10) 
β n = E Q n Z|X φ (O n | x n ; H 0 ) P n Z|X Q n Z|X . (4.11) 
MC simulations with importance sampling methods give the two following estimates:

αn = 1 N trials N trials i=1 φ (o n ) i | x n ; H 1 ×   P n Y |X (o n ) i | x n Q n Y |X (o n ) i | x n   , (4.12 
)

each (o) i is generated from Q Y |X , βn = 1 N trials N trials i=1 φ (o n ) i | x n ; H 0 ×   P n Z|X (o n ) i | x n Q n Z|X (o n ) i | x n   , (4.13) each (o) i is generated from Q Z|X .
The problem of importance sampling is to choose an adequate proposal function Q O|X such that the variance of the estimated probabilities in (4.12) and (4.13) are very small. The number of trials will be considerably reduced and accurate estimations of very low values of α n and β n is then possible.

Let

Q Z|X (o | x) = Q Y |X (o | x) = P * s (o | x) , (4.14) 
where P * s is the distribution such that P * s = arg min

P o n |x n ∈E x n ,H 1 D P o n |x n P Y |X | Px n , (4.15) E x n ,H 1 = P O|X ∈ P (O | X ) : D P O|X P Y |X | Px n -D P O|X P Z|X | Px n ≥ λ n .
With the aforementioned choice of the proposal functions Q Y |X and Q Z|X , we now show that when the importance sampling is employed, the variances of the estimators αn and βn are lower than that of estimators αn and βn using the classical MC sampling. More- over, we prove that when n, the length of the code, is suciently large, the variances of αn and βn converge to 0 in probability even though N trials is not very large.

Proposition 4.1. Let Q Y |X be dened as in (4.14). Then var (α n ) ≤ var (α n ).

Proof. First, we will compute var (α n ). Recall that

αn = 1 N trials N trials i=1 φ (o n ) i | x n ; H 1 , where (o n ) i is generated from P Y |X . (4.16) Then var (α n ) = 1 N 2 trials N trials i=1 var φ (O n ) i | x n ; H 1 = 1 N trials var [φ (O n | x n ; H 1 )] = 1 N trials E P n Y |X [φ 2 (O n | x n ; H 1 )] -E P n Y |X [φ (O n | x n ; H 1 )] 2 = 1 N trials (α n -α 2 n ) . (4.17) Now we compute var (α n ) var (α n ) = var 1 N trials N trials i=1 φ (O n ) i | x n ; H 1 × P n Y |X ((O n ) i |x n ) Q n Y |X ((O n ) i |x n ) = 1 N 2 trials N trials i=1 var φ (O n ) i | x n ; H 1 × P n Y |X ((O n ) i |x n ) Q n Y |X ((O n ) i |x n ) = 1 N trials var φ (O n | x n ; H 1 ) × P n Y |X (O n |x n ) Q n Y |X (O n |x n ) (4.18) var (α n ) = 1 N trials    E Q n Y |X   φ 2 (O n | x n ; H 1 ) × P n Y |X (O n | x n ) Q n Y |X (O n | x n ) 2   -E Q n Y |X φ (O n | x n ; H 1 ) × P n Y |X (O n | x n ) Q n Y |X (O n | x n ) 2    = 1 N trials E P n Y |X φ 2 (O n | x n ; H 1 ) × P n Y |X (O n | x n ) Q n Y |X (O n | x n ) -E P n Y |X φ (O n | x n ; H 1 ) 2 (a) = 1 N trials E P n Y |X φ (O n | x n ; H 1 ) × P n Y |X (O n | x n ) Q n Y |X (O n | x n ) -α 2 n , where (a) is from the fact that α n = E P n Y |X φ (O n | x n ; H 1 ) and φ (O n | x n ; H 1 ) = φ 2 (O n | x n ; H 1 ). Now we will develop E P n Y |X φ (O n | x n ; H 1 ) × P n Y |X (O n |x n ) Q n Y |X (O n |x n )
.

We have

P n Y |X (O n |x n ) Q n Y |X (O n |x n ) = n i=1 P Y |X (O i |x i ) Q Y |X (O i |x i ) = a∈X o∈O P Y |X (o|a) Q Y |X (o|a) n(a,o|x n ,O n ) = exp n a∈X o∈O n(a,o|x n ,O n ) n log P Y |X (o|a) Q Y |X (o|a) = exp n a∈X o∈O PO n x n (o, a) log PO n |x n (o|a) Q Y |X (o|a) P Y |X (o|a) PO n |x n (o|a) (4.19) = exp n a∈X o∈O Px n (a) PO n |x n (o | a) log PO n |x n (o|a) Q Y |X (o|a) P Y |X (o|a) PO n |x n (o|a) = exp n a∈X o∈O Px n (a) PO n |x n (o | a) log PO n |x n (o|a) Q Y |X (o|a) -log PO n |x n (o|a) P Y |X (o|a) = exp n D PO n |x n Q Y |X | Px n -D PO n |x n P Y |X | Px n . (4.20) Plugging (4.20) into E P n Y |X φ (O n | x n ; H 1 ) × P n Y |X (O n |x n ) Q n Y |X (O n |x n )
, we have 

E P n Y |X φ (O n | x n ; H 1 ) × P n Y |X (O n |x n ) Q n Y |X (O n |x n ) = E P n Y |X φ (O n | x n ; H 1 ) × exp n D PO n |x n Q Y |X | Px n -D PO n |x n P Y |X | Px n = o n ∈O n P n Y |X (o n | x n ) φ (o n | x n ; H 1 ) exp n D Po n |x n Q Y |X | Px n -D Po n |x n P Y |X | Px n = o n ∈H 1 P n Y |X (o n | x n ) exp n D Po n |x n Q Y |X | Px n -D Po n |x n P Y |X | Px n .
E P n Y |X φ (O n | x n ; H 1 ) × P n Y |X (O n |x n ) Q n Y |X (O n |x n ) = o n ∈H 1 P n Y |X (o n | x n ) exp n D Po n |x n P * s | Px n -D Po n |x n P Y |X | Px n . ( 4 
E P n Y |X φ (O n | x n ; H 1 ) × P n Y |X (O n |x n ) Q n Y |X (O n |x n ) ≤ o n ∈H 1 P n Y |X (o n | x n ) exp -nD P * s P Y |X | Px n ≤ o n ∈H 1 P n Y |X (o n | x n ) = α n . (4.24)
The last inequality is easy to see because the relative entropy is non negative so 

var (α n ) ≤ 1 N trials α n -α 2 n = var (α n ) . (4.25)
Now we turn to prove that var (α n ) converges to zero in probability when n is large enough.

From (4.18) and (4.24), var (α n ) can be expressed as follows: (4.28)

var (α n ) ≤ 1 N trials o n ∈H 1 P n Y |X (o n | x n ) exp -nD P * s P Y |X | Px n -α 2 n = 1 N trials exp -nD P * s P Y |X | Px n o n ∈H 1 P n Y |X (o n | x n ) -α 2 n = 1 N trials exp -nD P * s P Y |X | Px n α n -α 2 n = 1 N trials α n exp -nD P * s P Y |X | Px n -α n .
Thus, for every > 0, there exists n such that for all n > n , we have:

-D * s -≤ 1 n log α n ≤ -D * s .
Equivalently, for all n > n , we have:

exp [-n (D * s + )] ≤ α n ≤ exp [-nD * s ] . (4.29) Or 0 ≤ exp (-nD * s ) -α n ≤ exp (-nD * s ) -exp [-n (D * s + )] . (4.30)
Choose small enough such that the LHS and the RHS of (4.30) both go to zero when n is suciently large. It follows that exp (-nD * s ) -α n goes to 0 as n → ∞. Combining this fact and (4.26), we have var (α n ) → 0 as n → ∞. Using the same arguments we also have var βn → 0. It is worth noting that using the conditional limit theorem (cf. Theorem 11.6.2, [START_REF] Thomas | Elements of information theory 2nd edition[END_REF]) one can directly compute (4.22) for n → ∞. More precisely, conditioned to Po n |x n ∈ E x n ,H 1 , applying the conditional limit theorem we have 

E P n Y |X φ (O n | x n ; H 1 ) × P n Y |X (O n |x n ) Q n Y |X (O n |x n ) ≈ o n ∈H 1 P n Y |X (o n | x n ) exp n -D P * s P Y |X | Px n , = α 2 n and the result var(α n ) = α 2 n -α 2 n = 0 is followed immediately.
The numerical results using importance sampling to estimate probability of false alarm and probability of non-detection will be given in the next section. m 0 = m(0) and σ 0 for black dots and m 1 = m(1) and σ 1 for white dots. It is noted that other print and scan models that take into account the gamma transfer function or additive noise with input dependent variance can be found in [START_REF] Lin | Distortion modeling and invariant extraction for digital image print-and-scan process[END_REF], but the general methodology of this dissertation is not dependent on the model and can still be applied. X n Y n Xn Z n 

Comparison between the Gaussian approximation, the asymptotic expression and the MC simulations

In order to assess the accuracy of the computations of α and β we can use either the Gaussian approximation given by (3.23) and (3.24), or the asymptotic expression given by (3.41) and (3.42) or the classical MC simulation given by (4.4) and (4.5) or the MC simulations using importance sampling given by (4.12) and (4.13). It illustrates the gap between the estimation of α and β using the Gaussian approximation and the asymptotic expression or the MC simulations using importance sampling. The MC simulations using importance sampling again conrm the fact that the derived Sanov bounds are tight, and the dierence between the results obtained with the Gaussian approximation are very important especially for close to uniform channels. We can also notice that for the same channel power, the authentication performances are better for b = 6 then for b = 2 and b = 1. More interestingly, we can see that the MC simulations using importance sampling can give results for very small probabilities of false alarm and non-detection (α is up to 10 -80 and β is up to 10 -40 ) while the classical MC simulations give the results for much larger value of α and β (α is up to 10 -16 and β is up to 10 -4 ). 

Optimization of the print and scan channel

In this subsection, by considering the print and scan models as the Generalized Gaussian distribution 4.33, we are able to maximize the authentication performances for two dierent security scenarios. The rst one considers the opponent as passive and assume that his print-and-scan channel is the same as the legitimate channel. The second scenario devises a minimax game where an active opponent tries to maximize the probability of non-detection by choosing appropriate parameters on his channel. This authentication problem can be seen as a game where the main goal of the receiver, for a given false alarm probability α, is to nd a channel that minimizes the probability of miss detection β.

Practically the channel can be chosen by using a given quality of paper, an ink of appropriate density or by adopting an given resolution. For example if the legitimate source wants to decrease the noise variance, he can choose to use oversampling to replicate the dots, on the contrary if the legitimate source wants to increase the noise variance, he can use a paper of lesser quality. It is important to recall that because the opponent will have to print a binary version of its observation, and because a printing device at this very high resolution can only print binary images, the opponent will in any case have to print with decoding errors after estimation X.

We analyze two scenarios described as follows

• The legitimate source and the opponent have identical printing devices (by devices we mean printer, ink, paper, scanner), practically this means that they use exactly the same printing setup. In this case the legitimate source will try to look for the channel C such that for a given α, the legitimate party will have a probability of miss detection β * such that: In this case, the opponent is dened to be passive.

β * = min C β(α).
• The opponent can modify its printing channel C o (here we assume that he can change the variance of its noise), practically it means that he can modify one or several parameters of the printing setup. The opponent then tries to maximize the probability of false detection by choosing the adequate printing channel, and the legitimate sources will adopt the printing channel C l which will minimize the probability of false detection. We end up with what is called a min-max game in game theory, where the optimal β * is the solution of:

β * = min C l max Co β(α). (4.36)
In this case the opponent is active since he tries to adapt his strategy in order to degrade the authentication performance.

Because the expressions of β(α) is not simple and has to be computed using the asymptotic expressions (3.37) and (3.42), we cannot solve this problem analytically and we have to use numerical calculus instead.

For the Generalized Gaussian model, we assume that the means m (0) and m (1) and the modes M (0) and M (1) are respectively constant for all the players in the dierent channels (which implies that the scanning process has the same calibration for the two types of images). We assume also that variances of black and whites dots are equal at each channel and denote them σ 2 m and σ 2 o for main and opponent respectively.

Passive opponent

Here the opponent undergoes a channel identical to the main channel, the only parameter of the optimization problem (4.35) is consequently σ m . 

Active opponent

In this scenario, the opponent can tune his variance σ 2 o to confuse the receiver with the higher β. 

Discussion

When facing a passive opponent, it is not surprising to notice that in each case β is important whenever σ m is very small, i.e. when the print and scan noise is negligible hence the estimation of the original code by the opponent is easy; or very large; i.e.

when the print and scan noise is so important that the original and forgery become equally noisy. The legitimate source will consequently avoid channel generating noise of very small or very large variance.

The active scenario oers a saddle point satisfying (4.36). This means that even if the adversary owns ideally perfect print and scan devices (σ o → 0, o n = x n ), it is not to his advantage to use it since the authentication is still ecient due to the decoding errors he will create by generating the binary code Xn .

Another general remark to notice is that the optimal parameters of the active scenario are very close to the ones of the passive scenario, which means that the adversary has little room to maneuver when choosing his best attack (see Figures 4.4 and nearly no room when the noise is close to uniform (b = 6).

It is also important to notice that for distributions of same variance, dense distributions yields to better authentication performance than sparse distributions for both scenarios (see Figures 4.4 and 4.5 (b)). This is due to the fact that a distribution close to uniform tends to create a bigger overlap between the two decision regions than a sparse distribution that will generate codes mainly lying in the original one.

Conclusions

In this chapter, we have presented some practical results for the authentication system without using channel coding. We have numerically estimated the false alarm and nondetection probabilities by using Gaussian approximation, asymptotic expressions and MC simulations. By comparing the results of using MC simulations and the theoretical approximation presented in the previous chapter, we can conclude that the results using asymptotic expressions based Sanov's theorem are more accurate than the ones based on the Gaussian approximation. More interestingly, our analysis shows that the MC simulations using the importance sampling are able to estimate very small values of the two types of error probabilities.

We have also showed that it is possible to optimize the authentication performance when we know the model of the print and scan channel. The results have revealed that for the Generalized distributions the game can be tractable, and that it is in the interest of the legitimate source to adopt a channel which is close to the uniform distribution.

It should be noted that this optimization is possible due to not only the knowledge of the print and scan model but also the consideration of the accurate computations of the false alarm and non-detection probabilities. In the next chapter, we also investigate the behavior of these two types of error probabilities but in the avor of channel coding.

Chapitre 5

Authentication performance using deterministic codes

Introduction

In the previous chapter, we have considered the setup in which a secret message is mapped into a binary GC without being encoded before, and then the GC is printed on a package of a product. We have expressed the Neyman-Pearson test to check whether the observed sequence comes from the legitimate source or from the opponent, given that the legitimate receiver has the knowledge of the secret.

In the current chapter, we study the setup where the secret message is encoded with a deterministic channel encoder before being mapped to a GC which is then printed on packages of products. Dierent from the approach presented in the previous chapter, which performs authentication by primarily testing the likelihood ratio between the main and opponent channels distributions as a basic discriminating measure, this chapter is mainly based on channel coding theorems to analyze the authentication problem.

It is well-known that for a rate R less than the capacity of a given channel, there exists a code with a small decoding error probability P e (cf. (2.23)). This argument motivates rstly the use of coding regarding to the main channel in order to enhance the correctness property, which means reducing the probability of false alarm to an arbitrary small value. On the other hand, it is worth reminding that the receiver does not know whether the observed message comes from the legitimate source or from the opponent. He then simply uses one metric for its decoding rule which will, more naturally, be matched to the distribution law of the main channel. In consequence, when the observed sequence comes from the counterfeiter, the decoding rule will be mismatched with respect to the opponent channel. One version of the converse coding theorem for mismatched decoder (cf. Theorem 1, [START_REF] Merhav | On information rates for mismatched decoders[END_REF]), states that for codes with mismatched decoders, a rate R greater than the corresponding mismatched capacity 90 Chapter 5

Setup

C LM 1 implies that the average over the ensemble of codebook of correct decoding probability is asymptotically vanishing. Then a rate R code greater than C LM exits with very small probability of non detection.

This second argument motivates the use of channel encoder with an appropriate rate in order to insure the desired security in the context of authentication, namely reducing to an arbitrary small value the probability of accepting a fake. Unfortunately the problem of the existence of one code verifying simultaneously the results of the two aforementioned theorems, i.e. achieving small type I and type II error probabilities at the same time remains unsolved.

Hence, for the existence purpose we have relaxed the condition R > C LM to rates greater than the true capacity of the opponent channel, this way the strong converse of the coding theorem can be applied. Under these conditions we establish the existence of codes achieving simultaneously the desired authentication performance, i.e. arbitrary small type I and type II error probabilities, which is not possible in uncoded case because of the unavoidable tradeo imposed by hypothesis testing.

In this chapter, we rst formulate the problem of our authentication model by using deterministic codes. We then show the existence of an encoder-decoder for which the probability of non detection is small for a given negligible probability of false alarm.

We next discuss how to compute the lower bound on mismatched capacity, C LM , which plays an important role for the development of this chapter. We nally conclude the chapter by proposing a practical coding scheme using parallel concatenated codes with turbo decoding.

Setup

The formulation of the problem is depicted in Figure 5.1. A secret message m chosen uniformly at random from the message set M = 1, ..., 2 k and shared with the legitimate receiver is encoded into a codeword x (m) belonging to the set of possible codewords or codebook C = x (1) , x (2) , ..., x (|M|) ⊆ X n . The encoding function is said to be deterministic in the sense that only one codeword is associated to a given message m. Because of the presence of this encoder, the noisy sequence at the output of the main channel may be decoded with very small amount of errors with an appropriate choice of the encoder and decoder parameters. This is true for the legitimate receiver as an evidence, but it is also unfortunately true for the counterfeiter who observes the same output statistic. Indeed, the gray level versions of the GC observed by the legitimate receiver and the one observed by the opponent have the same distribution law. Recalling the Kerckhos's principle (everything about the system is known except the secret message) the counterfeiter could be then able to decode Y n and to extract the secret message with a negligible rate of errors. He then could possibly imitate the printed code 1 In the random coding sense the lower bound of the mismatched capacity C LM is indeed the mismatched capacity C M . about the authenticity of the tested product. It is in the interest of the authentication designer to nd a scheme in such a way that the probability that the decoded message m = m is close to zero and that the probability that the decoded message m = m is as small as possible.

Authentication performances are evaluated in terms of probability of false alarm α m and probability of non-detection β m , for a given message m. The probability of false alarm is the probability that a legitimate message is rejected by the receiver. More precisely, α m = Pr { m = m} .

(5.4)

We denote by α the average probability of false alarm over the message set and recall that all messages are equally probable, then

α = 1 |M| |M| m=1 α m .
(5.5) It turns out that α m is exactly the error probability on the main channel when sending the message m and α is the average block error probability on the main channel of a particular code (cf. (2.26) and (5.9)).

The probability of non detection is the probability that a forged message is accepted by the receiver. More precisely, (5.7) Similarly, β is exactly the correct decoding probability on the opponent channel (cf. 5.10). This probability is also recognized as the success probability of the opponent P S 2 . In the rest of this dissertation, the probability of non-detection and success probabil- ity are used interchangeably. The probability of non detection is equivalent to 1-P e opp , where P e opp is the error probability on the opponent channel and will be dened in the next section.

β m = Pr { m = m} .
In the sequel, we show that there exists a code with rate between the capacity of the main and the opponent channel such that the probability of false alarm α m and probability of non-detection β m can be made arbitrarily small simultaneously.

Because we are mainly concerned with coding improvement on authentication, we will simplify the studied model and subsequent notations by extracting a paradigm (see Figure 5.2) that resumes the principal elements involved in our development. We then 2 P S is the probability that the opponent's forgery code is accepted as authentic. tackle the problem by considering that the succession of encrypting and decrypting functions forms an identity function and does not aect the noise of the memoryless channel. In the simplied model the subscript related to the key will be omitted, and the involved variables are the message m, its coded sequence x (m) , the main and the opponent channels and the decoder.

Channel coding and authentication performance

As mentioned in the previous section, the probabilities of false alarm and non-detection are two typical measures of performances for authentication, and we demonstrate in this section how channel coding can enhance these quantities. More specically, we will establish the existence of codes, without constructing them explicitly, which make the probability of false alarm α m and the probability of non-detection β m arbitrarily small simultaneously.

Recalling that the receiver has no idea whether the observed sequence o comes from the legitimate or from the opponent, and that his decoding rule matches with the main channel {X , V (y | x) , Y} but mismatches with the opponent channel {X , W (z | x) , Z}, we dene the decoding function for a given (M n , n) code C n as follows:

ψ V : O n → M n ψ V (o, C n ) = arg max j∈Mn n i=1 V o i | x (j) i . (5.8)
Consequently, the probability of error on the main and the opponent channels are as follow:

• The block error probability on the main channel is:

P e (n) V (V, C n ) = Pr M = M | C n (5.9)
• The block error probability on the opponent channel is:

P e (n) V (W, C n ) = Pr M = M | C n (5.10)
In the following, we recall the achievability part of the channel coding theorem which plays a crucial role in this chapter. This theorem concerns the behavior of (5.9), and thus authentication performance in the main channel.

Theorem 5.1. (Channel coding theorem: Achievability part) For a DMC {X , V (y | x) , Y}, all rates below capacity C (V ) are achievable. Specically, for every rate R < C (V ), there exists a sequence of e nR , n codes C n such that P e

(n) V (V, C n ) → 0.
We now study the converse of the channel coding theorem for mismatched decoding in order to upper bound the authentication performance in the opponent channel (5.10). However, as mentioned in subsection 2.3.2, the strong converse for a general channel remains unsolved. Balakirsky [START_REF] Vladimir | A converse coding theorem for mismatched decoding at the output of binary-input memoryless channels[END_REF] showed a weak converse theorem of mismatched decoding in a DMC with binary inputs. More precisely, for any code such that R > C LM (W, V ) 3 , there exists a positive δ such that P e

(n) V (W, C n ) > δ.
It should be emphasized that this weak converse theorem is true for any code. Since theorem 5.1 shows the existence of codes achieving arbitrary small error probability, one can then conclude that there exists a code C n whose rate

C LM (W, V ) ≤ R ≤ C (V ) such that P e (n) V (V, C n ) → 0 and P e (n) V (W, C n ) > δ.
In the authentication context, it then can be stated that there exists a code such that the probability of false alarm α is negligible and the probability of non-detection β is bounded away from zero. Unfortunately this is not meaningful for authentication purpose where we want both error probabilities to be as small as possible.

However, if we shrink the region of rates R, i.e.

C (W ) ≤ R ≤ C (V ) instead of C LM (W, V ) ≤ R ≤ C (V )
we are able to achieve the negligible probability of false alarm and non-detection simultaneously. In order to get this result, we need to use the strong converse of the channel coding theorem of Wolfowitz (1957). Theorem 5.2. (Strong converse theorem) [START_REF] Robert | Information theory and reliable communication[END_REF] For an arbitrary DMC {X , W (z | x) , Z} of capacity C (W ) and any e nR , n code C n with R > C (W ),

P e B (C n ) ≥ 1 - 4A n (R -C (W )) 2 -exp -n (R -C (W )) 2 , (5.11) 
where A is a nite positive constant depending on the channel but not on n or e nR and P e B (C n ) is the block error probability with respect to the code C n (c.f (2.26)). (n)

V (W, C n ) ≥ 1 - 4A n (R -C (W )) 2 -exp -n (R -C (W ))
2 ,

(5.12) 3 The lower bound C LM on mismatched capacity coincides in this case with C LM .

where P e

(n)

V (W, C n ) is the probability of error decoding when the decoding metric d (x, z) = log V (z | x) is used. The decoding regions in the proof of [START_REF] Robert | Information theory and reliable communication[END_REF] are specied for a mismatched decoding rule as follows:

Z m = z : V (z | x m ) ≥ V (z | x m ) for all m = m , (5.13) 
where m ∈ {1, ..., | M n |} .

We can get a tighter bound for P e

V (W, C n ) by using Cherno bound rather than the Chebyshev inequality. Then P e

(n) V (W, C n ) is lower bounded as follows: P e (n) V (W, C n ) ≥ 1 -2 exp [-nγ (R)] , (5.14) 
where

γ (R) = min R -C (W ) 2 , max s>0 s C (W ) + R -C (W ) 2 -log g (s) > 0, (5.15) g (s) = z W (z | x) exp    s log W (z | x) x P X (x ) W (z | x )    . (5.16) 
As mentioned above, the success probability P S of the opponent is equal to 1-P e

V (W, C n ). Hence, P S is upper bounded as follows

P S ≤ 2 exp [-nγ (R)] .
(5.17)

The following proposition shows that we can nd an authentication code whose rate is between the capacity of the main channel and the opponent channel, and such that we can achieve jointly negligible probabilities of false alarm and non-detection. Proposition 5.4. Given a system of channel {X , V (y

| x) , W (z | x) , Y, Z} , a rate R ∈ [C (W ) , C (V )] , for all > 0 , there exists a sequence (M n , n) code C n a such that α m (C n ) → 0 β m (C n ) → 0, for all m ∈ M n .
Proof. To prove this proposition, we employ the achievability part of channel coding theorem and its strong converse. As R < C (V ), then by theorem 5.1, we know that there exists a sequence of e nR , n codes C n such that P e

(n) V (V, C n ) → 0. Since P e (n) V (V, C n ) = α (C n ) the
probability of false alarm, we can say that for any > 0, there exists n such that for all n > n , the e nR , n code C n makes α

(C n ) < . Recall that α (C n ) = 1 |M n | |Mn| m=1 α m (C n ) < .
(5.18) Therefore it follows that at least half of the messages m and their associated codewords x n (m) must have a probability of false alarm α m less than 2 , otherwise (5.18) would be violated. Choosing the codebook C * n which consists of these codewords x n (m) , we then have α

m (C * n ) < 2 . It should be noted that code C * n have |M * n | codewords and |M * n | = |Mn| /2, R * = log |Mn| /2 n = R -log 2 n .
(

On the other hand, as R > C (W ) , by the strong converse theorem 5.3 (c.f 5.14) we have:

P e (n) V (W ) (C * n ) ≥ 1 -2 exp [-nγ (R)] , where γ (R) is dened in (5.15).
In addition, we have P e

(n) V (W, C * n ) = 1 -β (C * n ) . (5.20) 
Hence we obtain

β (C * n ) ≤ 2 exp [-nγ (R)] . (5.21) 
Moreover, 2 exp [-nγ (R)] → 0 as n gets larger. In other words, for every > 0, there exists n > 0 such that for all n > n we have β

(C * n ) ≤ . Recall that β (C * n ) = 1 |M * n | |M * n | m=1 β m (C * n ) . (5.22) 
It follows that at least half of the messages m and their associated codewords x n (m) must have a probability of false alarm β m less than 2 , otherwise (5.22) would be violated. Choosing the codebook C * * n which consists of these codewords x n (m) , we then have

β m (C * * n ) < 2 . The code C * * n have |M * * n | codewords and |M * * n | = |Mn| /4, R * = log |Mn| /4 n = R -log 4 n . (5.23) 
It should be noted that R * approaches R as n gets larger. Thus we can draw the conclusion that there exists a sequence of e nR , n codes C n such that

α m (C n ) → 0, β m (C n ) → 0.
We have proved that when C (W ) ≤ R ≤ C (V ), it is entirely possible to nd codes so that we can achieve arbitrary small probabilities of false alarm and non-detection at the same time, which is extremely meaningful for authentication. For the rates

C LM (W, V ) ≤ R ≤ C (V )
, it is denitely possible to nd a code C n that makes the probability of false alarm arbitrarily small but how about the probability of non-detection?

As mentioned above, if we employ the weak converse theorem of mismatched decoding proved by Balakirsky [START_REF] Vladimir | A converse coding theorem for mismatched decoding at the output of binary-input memoryless channels[END_REF] and the achievability part of channel coding theorem, we can nd a code making the probability of false alarm arbitrarily small but the probability of non-detection is said to be bounded away from a positive number whose behavior is not specied and thus may be innocuous. Merhav et al. [START_REF] Merhav | On information rates for mismatched decoders[END_REF] proposed a converse to the mismatched decoding theorem in the sense of random coding. This means that the average probability of decoding error over the ensemble of codes approaches one with increasing n. Therefore it is possible to nd a code C n that makes the probability of non-detection negligible.

However, from code C n , making the probability of false alarm arbitrary small and from code C n , making the probability of non-detection arbitrary small, it would also be desirable to extract a common code verifying the two error probabilities simultaneously small. Unfortunately, this is still an unsolved problem and we will deal with it in the future work.

In the sequel, we recall the converse of the channel coding theorem with mismatched decoding stated in a random coding sense [START_REF] Merhav | On information rates for mismatched decoders[END_REF]. In order to understand the random coding technique we rst remind the denition of a random code ensemble [START_REF] Robert | Information theory and reliable communication[END_REF].

A random code ensemble of length n and rate R with an input distribution P X consists of all codebooks C n = x 1 , ..., x |M| with |M| = e nR codewords of length n in which each symbol of each codeword is chosen independently and randomly according to the distribution P X . Thus in this ensemble codes, the probability of a particular code C n is

Pr (C n ) = |M| P n X m=1 (x m ) .
(5.24)

Each particular code C n has its own probability of error decoding with respect to a given decoding rule. Random coding is a method used to prove that the decoding error probability over the ensemble of codes is small. Therefore, there are at least one code whose error decoding probability is as small as the average one. Theorem 5.5. Given a channel {X , W (z | x) , Z} and a mismatched decoding metric d V (x, z) = log V (z | x). Assume that there exists a channel f that satises the constraints of (2.31) with a strict inequality in the last constraint. Then for any random code ensemble of length n and rate R with the input distribution P

X , if rate R > C LM (W, V ) then P e B (W, V ) ≥ 1 -exp -e n(R-Copp(W )) - - b∈Z e -nD(P Z (b)+ P Z (b)) + e -nD(P Z (b)-P Z (b)) -exp [-nD (P * XZ P X W )] .
(5. [START_REF] Divsalar | Turbo codes for deep-space communications[END_REF] where

P Z (z) = x∈X P X (x) W (z | x) , P * XZ = arg min PXZ ∈Em D PXZ P X W ,
and E m is dened in (5.71).

Proof. See appendix 5.7.3.

Remark 5.6. Using similar arguments to those of Proposition 5.4, one can establish the existence of a sequence of codes C n such that P e

(n) V W, C n ≥ 1 -exp -e n(R-Copp(W )) - - b∈Z e -nD(P Z (b)+ P Z (b)) + e -nD(P Z (b)-P Z (b)) -exp [-nD (P * XZ P X W )] . (5.26) 
Discussion In Figure 5.3, we plot the success probability of the opponent without channel coding and the upper bound on the success probability (cf. (5.17) and (5.12))

when using channel coding, with respect to the standard deviation of the counterfeit channel for a given small probability of false alarm log α = -70.

From the gure we can see that when the standard deviation of the counterfeit/opponent device model T c (3.6) is such that σ o > 25, channel coding gives better authentication performance than without channel coding. This can be explained due to Proposition 5.4. When σ o is small so is the gap between the two capacities C (W ) and C (V ) . This fact makes the decoding error probability on the main channel to converge to 1 slowly, i.e. the probability of non detection is still rather important for moderate n. However, the probability of success without channel coding is still very small as explained in the discussion 4.2.3. Then it might be better to not use channel coding in this case. In the next section , we present how to compute the lower bound of mismatched capacity C LM which facilitates plotting some curves in practical coding scheme.

Computation of lower bound mismatched capacity C LM

In this section, we discuss the computation of the lower bound C LM on mismatched capacity. We apply an equivalent strategy as the Arimoto-Blahut algorithm, i.e. alternating maximization procedures as it can be observed from equations (5.37). Recalling theorem 2.24, we know indeed that the mismatched capacity is lower bounded by:

C LM = max P X (x) I LM (P X (x)) , (5.27) 
where

I LM (P X (x)) = min f ∈F (P X ,W,V ) I f (X; Z) .
(5.28) and the minimum is over all F (P X , W, V ) dened in (2.31). First we focus on minimizing I f (X; Z) on the region f (x, z) ∈ F (P X , W, V ). This problem can be transformed to a non-linear optimization problem with equalities and inequalities constraints as follows minimize

F (f ) = x∈X z∈Z f (x, z) log f (x,z) P X (x)P Z (z) , subject to h z (f ) = 0, for all z ∈ Z h x (f ) = 0, for all x ∈ X h (f ) = 0, g (f ) ≤ 0, f ∈ F (P X , W, V ) ⊆ [0, 1] |X |×|Z| .
(5.29)

where

h z (f ) = x∈X f (x, z) -P Z (z) h x (f ) = z∈Z f (x, z) -P X (x) h (f ) = x∈X z∈Z f (x, z) -1 g (f ) = - x∈X z∈Z f (x, z) log V (z | x) -D.
(5.30)

The Lagrangian associated with the problem (5.29) is

L (f, λ, ν) = F (f ) + λg (f ) + x∈X ν x h x (f ) + z∈Z ν z h z (f ) + νh (f ) , (5.31) 
where ν = (ν x , ν z , ν) ∈ R 3 , λ ≥ 0.

The Lagrange dual function is

ϕ (λ, ν) = min f ∈F (P X ,W,V )
L (f, λ, ν) .

(5.32)

It is easy to check that (5.29) is a convex optimization problem i.e. F (f ) and g (f ) are convex and h x (f ) , h z (f ) , h (f ) are ane. Moreover, it satises the Slater's conditions (cf. appendix 5.7.6). Thus (5.29) holds the strong duality. In other words, I LM (P X (x))

can be alternatively written as follows I LM (P X (x)) = max λ≥0,νx∈R ϕ (λ, ν) .

(5.33)

Proposition 5.7. The Lagrangian L (f, λ, ν) achieves the minimum when

f (x, z) = P X (x) P Z (z) exp (λ log V (z | x) -ν x )
x ∈X P X (x ) exp (λ log V (z | x ) -ν x ) , (5.34) and the minimum of

L (f, λ, ν) is ϕ (λ, ν) = (x,z)∈X ×Z P X (x) W (z | x) log exp (λ log V (z | x) -ν x ) x ∈X P X (x ) exp (λ log V (z | x ) -ν x )
. (5.35) Proof. see appendix 5.7.1.

From Proposition 5.7, we have

I LM (P X (x)) = max λ≥0,νx∈R (x,z)∈X ×Z P X (x) W (z | x) log exp (λ log V (z | x) -ν x )
x ∈X P X (x ) exp (λ log V (z | x ) -ν x ) .

(5.36)

From (5.27) and (5.36) we have

C LM = max P X (x) max λ≥0,νx∈R (x,z)∈X ×Z P X (x) W (z | x) log exp (λ log V (z | x) -ν x )
x ∈X P X (x ) exp (λ log V (z | x ) -ν x ) .

(5.37)

Now we will use the alternating optimization algorithm (see chapter 10, [START_REF] Yeung | A rst course in information theory[END_REF]) to compute C LM as follows:

• Maximizing the objective ϕ (λ, ν) over P X (x) ∈ P (X ) for a given (λ, ν x ), we can compute the maximizing P X (see 5.7.2) using ,z) .

P X (x) = z W (z | x) log h (x, z) z W (z | x) h (x
(5.38)

• Maximizing the objective ϕ (λ, ν) over (λ, ν x ) with λ ≥ 0 for a xed P X whose form is in (5.38). In order to do so, we use the augmented Lagrange method to solve the constraints optimization (see [START_REF] Jorge | Numerical optimization[END_REF]). 

Practical coding using Parallel Concatenated Codes

In the previous section we establish the existence of codes which can yield arbitrarily small authentication errors as long as the transmission rate is between the two channel capacities. However it is not specied how to practically construct or design such codes.

In the research eld on channel coding it was suggested in the two last decades new coding schemes or enhanced decoding algorithms for older codes, approaching successfully Shannon limit rather for rates not greater than 1 bit/channel use. Among these codes the most popular ones are concatenated codes, low density parity check codes or polar codes. We suggest here the use of concatenated codes to possibly improve the authentication performance. This choice is a way to analyze the use of deterministic codes in authentication based on printed GC, and does not intend to be restrictive about the nature of the encoder.

We study more specically a concatenation of several codes separated by interleavers referred as Turbo codes by their inventors Berrou, Glavieux and Thitimajshima in [START_REF] Glavieux | Near shannon limit error correcting coding and decoding: Turbo-codes[END_REF].

Due to the presence of the interleaver and with a good design of constituent codes, concatenated codes achieve surprising performance near Shannon limit. Concatenated codes are used in many applications such as 3G mobile communications and deep space communications. We will focus here on parallel concatenation of convolutional codes which is the structure proposed in [START_REF] Glavieux | Near shannon limit error correcting coding and decoding: Turbo-codes[END_REF]. The Interleaver An interleaver is used between the two constituent convolutional encoders to provide randomness to the input sequence. The most common used interleaver is pseudo-random interleaver which rearranges bits of the input sequence in a random manner. More importantly, the interleaver is used to increase the weights of the output sequences.

B. The Turbo Decoder

The ensemble performance of concatenated codes interconnected with interleavers has been investigated widely (see [START_REF] Benedetto | Unveiling turbo codes: Some results on parallel concatenated coding schemes[END_REF], [START_REF] Battail | A conceptual framework for understanding turbo codes. Selected Areas in Communications[END_REF] and [START_REF] Sason | Improved upper bounds on the ml decoding error probability of parallel and serial concatenated turbo codes via their ensemble distance spectrum[END_REF]) shedding light on their surprising performance. The main result is stated as upper bounds of the word and bit error probabilities by averaging over all random interleavers of a given length, and using maximum likelihood decoding. However, the problem of implementing an optimal decoder arises because of the complexity generated by the inherent concatenation structure. It was suggested using sub-optimal decoder where each constituent code is decoded separately in a cascaded structure. In other words the output of one decoder feeds the input of the next one with a soft (real) quantity called innovation about bit u t for all t. It was therefore important to design decoders with soft outputs. This idea was addressed earlier for serially concatenated codes [START_REF] Lodge | The decoding of multidimensional codes using separable map lters[END_REF]. Each decoder takes advantage from the preceding one and is always able to compute real metrics related to its decoding rule.

In order to limit the number of decoders in the cascaded structure, the authors in [START_REF] Glavieux | Near shannon limit error correcting coding and decoding: Turbo-codes[END_REF] suggested to use only two constituent codes and then to feed-back the rst decoder with the output of the second decoder with a recursive loop. This is why the code is referred to as a Turbo code. The decoding is then an iterative procedure where the innovation the constituent decoders have to exchange via interleavers and deinterleavers is an extrinsic information. The need of extrinsic information is essential to favor the convergence of the iterative decoding. An ecient extrinsic information on bit u t must be independent of the extrinsic information on any u l , l = t. Furthermore the extrinsic information must be independent of any direct observation coming from previous decoder or channel output concerning [START_REF] Pothier | Codes Composites Construits À Partir de Graphes Et de Leur Décodage Itératif[END_REF]. The presence of very large pseudorandom interleaver enables these properties to be relevant in practice. How to compute the extrinsic information depends on the criterion of the decoders. The most commonly used criterion guiding the decision is the maximum of the marginal a posteriori :

Λ(u t ) = P (u t = 0 | o n ) P (u t = 1 | o n ) ût=1 ≶ ût=0
1.

(5.39)

In their original paper, Berrou and al. [START_REF] Glavieux | Near shannon limit error correcting coding and decoding: Turbo-codes[END_REF] proposed a modied version of the BCJR algorithm 4 [START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate (corresp.). Information Theory[END_REF] in order to compute the extrinsic information along with the marginal a posteriori, the latter being useful to make a decision at the nal iteration. The Turbo decoder is depicted in Figure 5.7.

In our authentication model the secret message m is then the binary sequence u = (u 1 , u 2 , ..., u K ) at the input of a PCCC, and the coded is sequence x = (x s , x p 1 , x p 2 ) of length n = 3K. One can puncture this sequence by deleting one parity check bit alternatively from each constituent code such that n = 2K. We propose then two possible coding rates, R = 1/3 or R = 1/2. The decoding metric is adapted to the main channel so that the extrinsic information for bit u t computed at decoder stage a and using innovations from decoder b (where a, b ∈ {1, 2}) is:

Ext (a) (u t = u) = 1 Φ x:x s t =u K i=1 i =t V (y s i | x s i )Ext (b) (u i ) n i=K+1 V (y p a,i | x p a,i ),
where Φ is a normalizing factor. It turns out that the extrinsic information takes place as an novelty updating the a priori information π(u t ). We will see in the next section how this extrinsic information can help us to study practically the convergence of the iterative decoder and thus guide our choice about the parameters of specic channel models.

Channel optimization for authentication purpose

Starting ideas w.r.t. the channel capacity:

As stated above, a code with rate C (W ) ≤ R ≤ C (V ) exists such that one can achieve arbitrary small false alarm and small non detection probabilities. The larger is the dierence between these capacities the more exible is the choice of R. On the other hand, one may choose the channel's parameters such that the corresponding capacities surround a given xed rate. Naturally, the opponent will try to push the capacity of his channel to be maximal, hopping that its value will exceed the coding rate. If this happens the receiver cannot detect any forgery. In Figure 5.9 we report the capacities of the main and the opponent channels with the following setup:

• we consider the truncated Gaussian channel for the main and a mixture of two Gaussian for the opponent channel.

• we let the main channel's variance σ 2 m vary and consider two values of the variance of the opponent print and scan devices. The two channels exhibit the same gray level spread around black and around white.

In Figure 5.8 we present the capacity of the main channel w.r.t its standard deviation.

Is represented also the lower bound on the mismatched capacity of the opponent when the decoding metric is the distribution of the main channel. The standard deviation of the print and scan devices of the opponent is null, i.e. the print and scan is considered as perfect in this case, or a moderate black and white spread. Figure 5.9 compares the lower bound on mismatched capacity of the opponent channel and the true capacity, for the same set of parameters.

From these gures we notice that the best attack the opponent may launch when using channel coding is to set a perfect printer, thus reducing the gap between the two capacities. We remind that for uncoded case, this setting was not on his advantage where he rather has to imitate the printer of the main channel to maximize his chance of cheating.

Another point we can notice for this channel model, is that the lower bound on mismatch capacity is very close to the true one. In consequence the lower limiting rate for the existence of a code achieving very small type I and type II errors can be set to C (W ). Finally, the interval [C (W ) , C (V )] including a 1/3 coding rate, is obtained when the main channel's standard deviation takes values within [START_REF] Ueli | Authentication theory and hypothesis testing[END_REF][START_REF] Sason | Improved upper bounds on the ml decoding error probability of parallel and serial concatenated turbo codes via their ensemble distance spectrum[END_REF] where the lower limit corresponds to the most signicant attack of the opponent. For rate 1/2 this interval reduces to [START_REF] Jorge | Numerical optimization[END_REF][START_REF] Lodge | The decoding of multidimensional codes using separable map lters[END_REF].

Numerical optimization using EXtrinsic Information Transfer chart (EXIT):

We analyze the EXIT chart tool to study practically the behavior of the iterative decoder for dierent parameters of the channel. We aim then at selecting the parameters that allow us the best authentication performances.

The EXIT chart tool informs us essentially about the possible convergence (or nonconvergence) of the iterative decoder. Using this tool, one can also estimate the minimal number of iterations needed to achieve this convergence. In our authentication setup, it is desired that the decoder converges when the observed sequence comes from the main channel. On the opposite side, one wishes that it fails to converge when the observed sequence comes from the opponent.

The EXIT chart tool was rst introduced by S. Ten Brink [START_REF] Brink | Iterative decoding trajectories of parallel concatenated codes[END_REF]- [START_REF] Brink | Convergence behavior of iteratively decoded parallel concatenated codes[END_REF]. It is a function relating a specic measure of the extrinsic information at the input and the one obtained at the output of each constituent decoder. Since the extrinsic information is a probability distribution, the author measures the mutual information between this distribution and the a priori of the source. In consequence, this chart will describe how a decoder behaves when small or higher amount of reliable information feeds its input.

Since in the iterative decoding of PCCC, constituent decoders feed each other with extrinsic information, the EXIT chart tool will help to visualize the decoding trajectory at each step of the iterative process. The author insists however that this tool is not a rigorous proof of stability and convergence of turbo decoders. His study is also based on two assumptions namely:

• the extrinsic information on bit u t is not inuenced (independence property) by channel observation of the systematic output at time t neither by the innovation about this bit coming from the previous decoder.

• the probability density function of the L-value given u t = u (dened as log Ext(ut=1) Ext(ut=0) )

approaches the Gaussian distribution with the increasing number of iterations.

The rst assumption is important in our analysis and is practically satised with large interleaver. The second one may be omitted when the binary input DMC channel is symmetric and the sequence of L-values L t 1 ≤ t ≤ K is ergodic [START_REF] Hagenauer | The exit chart-introduction to extrinsic information transfer in iterative processing[END_REF]. Recalling the denition of the mutual information we have (in bits/symbol):

I(L; U ) = u=0,1 +∞ 1 2 ¢ -∞ p( | u) log 2 2p( | u) p( | 0) + p( | 1)
d .

( the EXIT for the opponent channel, the trajectory stops and is conned in a small region where the two decoder characteristics intersect. The decoder fails to converge.

Figure 5.11 extends the results for code rate 1/2. Similarly to the previous setting, the lower capacity is obtained for a standard deviation of about 40. The trajectory of the iterative decoder in the main channel shows its convergence, while in the opponent channel it stops at the intersection of the two charts.

Authentication performances

Arbitrary small block error probability is generally hard to achieve practically. We aim however at this phase of our work, to give rst results in order to evaluate numerically authentication performances in this setup. To do this, we will employ the bit error probability at the output of the iterative decoder given that the marginal a posteriori criterion described above optimizes the decision rule over each symbol or bit. In future research we will explore other coding strategy and/or decoding rule in order to ll the gap with the theoretical results stated above. We design now the PCCC and channel parameters to the optimized settings presented in the previous subsection and corresponding to the worst case attack launched by the opponent. Precisely, we model his print and scan devices as impulses around gray levels µ 0 and µ 1 for black and white respectively. The standard deviation of the main channel is set to 50 when rate 1/3 code is used and to 38 for a 1/2 code rate. The length of the output codeword is set to n = 2000 and we compare the authentication performances to the uncoded conguration with the same GC length proposed in Chap 3. The constituent decoders' metrics are xed to the transition distribution of the main channel, and according to the trajectories of the EXIT, we take the minimal number of iterations to favor the convergence in the main channel.

In authentication with channel coding, the receiver infers a decision about authenticity by comparing the decoded message to the one in his database. As we are dealing with bit error probability and binary secret message sequence it turns out that this test may be carried on by comparing the Hamming distance d H (m, m) between the decoded binary message and the one in the database to a given threshold λ. Obviously when this threshold is set to 0, the block error probability becomes the measure used to evaluate the authentication performances.

Dealing with counting the number of errors (the aforementioned Hamming distance) makes it easier to tune one of the two types of authentication error probabilities to a predened value and minimizes the other regarding to the Neyman-Pearson optimal test. Type I and II error probabilities can be upper bounded using the union bound involving the transfer function of the constituent convolutional codes, namely the IR-WEF (Input-Redundancy Weight Enumerating Function) [START_REF] Benedetto | Unveiling turbo codes: Some results on parallel concatenated coding schemes[END_REF]- [START_REF] Divsalar | Turbo codes for deep-space communications[END_REF]. The probability of false alarm may be bounded as follows: (5.44)

For small probability of false alarm the threshold is set far from the mean of the distribution of error events with Hamming distance d H (m, m) obtained in the main channel. For large K, coecients A w,d approaches a binomial [START_REF] Pollara | Transfer function bounds on the performance of turbo codesl[END_REF].

The probability of non detection may be bounded by: (5.45)

The probability of an error event with very small value of the Hamming distance d H (m, m) at the output of the opponent channel with a mismatched decoder is negligible because R > C(W ). The rate of bit errors in each message approaches 0.5 with high probability, so that predominant coecients A w,d in the sum (5.45) are near binomial [START_REF] Pollara | Transfer function bounds on the performance of turbo codesl[END_REF].

Type I and II error probabilities can then be derived directly from P e b,V (V ) and P e b,V (W ) (2.28), where we add letters V and W to distinguish the corresponding channel and decoding metric. We then apply the Sanov theorem on binomial distributions with parameters P e b,V (V ) and K for the false alarm and P e b,V (W ) and K for the probability of non detection. Then α and β can be upper bounded as follows:

α . = exp -KD λ K P e b,V (V ) , β . = exp -KD λ K P e b,V (W ) , (5.46) 
where it is easy to check that both P * in (3.38) and 3.40 are equal λ K . The results are given in Figure 5.12. It is shown that a setup including a channel encoder gives better authentication performance with a good choice of the coding rate.

5.7 Appendix 5.7.1 Proof of Proposition 5.7

L (f, λ, ν) = x∈X z∈Z f (x, z) log f (x,z) P X (x)P Z (z) + -λ x∈X z∈Z f (x, z) log V (z | x) -λD + x∈X ν x z∈Z f (x, z) -P X (x) + + z∈Z ν z x∈X f (x, z) -P Z (z) + ν x∈X z∈Z f (x, z) -1 .
(5.47)

Dierentiating L (f, λ, ν) with respect to f (x, z)and setting to 0, we have

log f (x,z) P X (x)P Z (z) + 1 + ν x + ν z + ν -λ log V (z | x) = 0, (5.48) 
for all x ∈ X , z ∈ Z.

Solving this set of equations we get

f (x, z) = P X (x) P Z (z) exp (λ log V (z | x) -ν x -ν z ) c. (5.49) 
Using the assumption that x∈X f (x, z) = P Z (z), we have

P Z (z) = x∈X P X (x) P Z (z) exp (λ log V (z | x) -ν x -ν z ) c. Thus c = e νz x∈X P X (x) exp (λ log V (z | x) -ν x ) . (5.50) Hence f (x, z) is of form f (x, z) = P X (x) P Z (z) exp (λ log V (z | x) -ν x ) x ∈X P X (x ) exp (λ log V (z | x ) -ν x ) . 
(5.51)

Plugging f (x, z) into (5.47) we have the minimum value of L (f, λ, ν) as follows

L min = x∈X z∈Z f (x, z) log f (x,z) P X (x)P Z (z) + ν x + ν z + ν -λ log V (z | x) + -λD - x∈X ν x P X (x) - z∈Z ν z P Z (z) -ν = - x∈X z∈Z f (x, z) + λ x∈X z∈Z P (x) W (z | x) log V (z | x) + - x∈X z∈Z f (x, z) ν x - z∈Z x∈X f (x, z) ν z - x∈X z∈Z f (x, z) ν = - x,z f (x, z) (1 + ν x + ν z + ν) + λ x∈X z∈Z P XZ (x, z) log V (z | x) = - x,z f (x, z) λ log V (z | x) -log f (x,z) P X (x)P Z (z) + λ x∈X z∈Z f (x, z) log V (z | x) = x,z f (x, z) log f (x,z) P X (x)P Z (z) = x,z P X (x) W (z | x) log exp (λ log V (z | x) -ν x )
x ∈X P X (x ) exp (λ log V (z | x ) -ν x ) .

(5.52) 5.7.2 Maximizing ϕ (λ, ν) over P (x) for a given (λ, ν x )

Taking the derivative of ϕ (λ, ν) w.r.t. P X (x) we have

∂ϕ(λ,ν) ∂P X (x) = z W (z | x) log exp (λ log V (z | x) -ν x ) - - z W (z | x) log x ∈X P X x exp λ log V z | x -ν x - -P X (x) z W (z | x) exp(λ log V (z|x)-νx) x ∈X P X x exp λ log V z|x -ν x Chapter 6 
Conclusions and perspectives

Conclusions

In this dissertation we have studied the problem of authentication using graphical codes from an information-theoretic security point of view. Particularly, the core of this dissertation focuses on minimizing both the probability of false alarm and the probability of non-detection.

In the chapter 3 and 4, we have developed and analyzed the framework of authentication without channel coding. Tackling the problem using hypothesis testing, we have invoked the optimal Neyman-Pearson test to perform authentication and two types of error probability have been computed by using either Gaussian approximation or arguments relying on Sanov's theorem. It should be mentioned that in this analysis the knowledge about the opponent channel is required, and this can be obtained by estimating the parameters of the opponent channel based on the observation of GCs coming from the opponent. We have also introduced two possible strategies for the receiver which are binary thresholding and gray level observation. Using asymptotic results of probabilities type I and II, we have showed that the gray level observation strategy gives a better authentication performance than binary thresholding.

The numerical estimation of the probabilities of false alarm and non-detection have been obtained by specic Monte-Carlo simulations and these results have conrmed that the error probabilities using asymptotic expressions based Sanov's theorem are accurate comparing to the Gaussian approximation. We have also proved that it is entirely possible to estimate very small values of the two types of error probabilities by employing MC simulation using the importance sampling. It has been presented in chapter 4 that we are also able to optimize the authentication performance provided that the knowledge about the model of the print and scan channel is available.

Chapter 5 analyzed the authentication problem by the use of channel coding. In this setting, a secret message is encoded into a codeword by a deterministic encoder before mapping to the GC with the presence of the secret key which is only known by the receiver. As the receiver does not know whether the observed sequence comes from the legitimate source or from the opponent, we propose to use only one decoding rule matching with the main channel and mismatching with the opponent channel, and consequently to use the theory of mismatch decoding for authentication purposes. We have demonstrated that the enhancement of authentication performance is possible by choosing a code with rate between the mismatch capacity of the opponent channel and that of the main channel. In particular, by choosing such a code, we can achieve simultaneously as small as possible probabilities of false alarm and non-detection. However, we have only established the existence of such codes but not specied how to construct them. We have also discussed the extension of achievable rates of such codes. More precisely, if the rate is between the mismatched capacity of the opponent and the capacity of the main channel it is then possible to show the existence of a code making the probability of false alarm arbitrarily small and the existence of a code making the probability of non detection negligible. Unfortunately whether these two codes are identical or not is still an open problem. We have also presented curves plotting the success probability in the uncoded scheme and the upper bound of success probability in the case using channel coding. These results again conrm the theoretical advantages of using channel coding. The last part of chapter 5 proposed a practical scheme using parallel concatenated codes with turbo decoding. By employing a specic concatenation of several codes separated by interleavers referred as turbo codes, we have analyzed the channel optimization for authentication. The investigation of the EXIT chart has played an important role in choosing channels' parameters so that the best authentication is achieved.

Perspectives

The following points are some of the directions where our work could be extended.

In the chapter 3, we primarily employed the likelihood ratio test between the main and opponent channels distributions as a basic discriminating measure to perform authentication and the knowledge about the distribution of the opponent channel is consequently necessary. An interesting direction to consider is that how to do hypothesis testing without knowing the distribution of the opponent channel. Research on hypothesis testing in which the hypothesis H 1 is unknown has been studied extensively [START_REF] Zeitouni | When is the generalized likelihood ratio test optimal? Information Theory[END_REF],

[27], [START_REF] Dembo | Large deviations techniques and applications[END_REF]. In [START_REF] Zeitouni | When is the generalized likelihood ratio test optimal? Information Theory[END_REF], O. Zeitouni et al. discussed when the generalized likelihood ratio test is optimal. The behavior of two types of errors when they are very small is also studied [START_REF] Dembo | Large deviations techniques and applications[END_REF].

In this dissertation we concentrated on the i.i.d. sequences. It is interesting to investigate what we can do when the data is just independent but not identically distributed.

One promising solution is that we may use Gartner-Ellis's theorem [START_REF] Chen | Generalization of gartner-ellis theorem[END_REF] instead of Sanov to estimate asymptotically the two types of error when they are in large deviation. In Gartner-Ellis, one might say that we are able to relax the condition on independence and perhaps identical distribution too, in a controlled way [START_REF]Large deviation and sanov's theorem[END_REF].

It is also essential to study if our work can be applicable for other applications such as Steganalysis [START_REF] Cogranne | A local adaptive model of natural images for almost optimal detection of hidden data[END_REF] and Forensics [START_REF] Hai Thai | Statistical detection of data hidden in least signicant bits of clipped images[END_REF]. In particular, one might use Sanov's theorem to asymptotically estimate the very small values of probabilities of false alarm and non-detection when doing hypothesis testing.

As noted in the chapter 5, the region of rate R is relaxed in the interval [C (W ) , C (V )] so that we can establish the existence of codes such that the two types of error can be made arbitrarily small at the same time. Therefore, a question that still remains is whether one can show the existence of codes with rate in the larger interval, greater than the mismatched capacity of the opponent and less than the capacity of the main channel, so that the two types of error probability are negligible. One might probably establish these desired codes by deleting the worse codewords or concatenating the two codes which makes the false alarm small and which makes the probability of non-detection small on the opponent channel.

A very promising problem relating to using channel coding in authentication performance is to employ the stochastic coding strategies. More precisely, we use a randomized encoder in which the transmitted codeword is chosen randomly in a set of codewords representing for the same authentication message. This randomness plays a crucial role in confusing the opponent. Research on the wiretap codes has been studied extensively [START_REF] Csiszár | Almost independence and secrecy capacity[END_REF], [START_REF] Aaron | The wire-tap channel[END_REF], [START_REF] Vincent | Information spectrum approach to strong converse theorems for degraded wiretap channels[END_REF], [START_REF] Laneman | Strong secrecy from channel resolvability[END_REF]. Remarkably, in [START_REF] Laneman | Strong secrecy from channel resolvability[END_REF], Bloch and Laneman study the channel-resolvability-based constructions, which associate to each message a subcode that operates just above the resolvability of the eavesdropper's channel. It is showed that the channel resolvability enables to achieve strong secrecy. In this dissertation, we often circumvented the problem of designing codes achieving authentication performance. It might be possible to construct such codes thanks to many works related to code designs achieving strong secrecy such as polar codes [START_REF] Mahdavifar | Achieving the secrecy capacity of wiretap channels using polar codes[END_REF], [START_REF] Andersson | Nested polar codes for wiretap and relay channels[END_REF], [START_REF] Sasoglu | A new polar coding scheme for strong security on wiretap channels[END_REF], LDPC codes [START_REF] Thangaraj | Applications of ldpc codes to the wiretap channel[END_REF], [START_REF] Subramanian | Strong and weak secrecy in wiretap channels[END_REF], [START_REF] Subramanian | Strong secrecy on the binary erasure wiretap channel using large-girth ldpc codes[END_REF] • comment la calculer pratiquement ?

• quel est l'apport d'une observation en niveau de gris par rapport à une observation binaire ?

• quel est l'impact du canal d'impression ? Lorsqu'il s'agira d'utiliser le codage canal déterministe, nous traiterons les problèmes suivants :

• quel modèle de codage canal est associé à notre problème d'authentication ?

• comment mesurer la probabilité de non détection pour une probabilité de fausse alarme très faible ?

• dans quels cas pouvons-nous montrer que l'utilisation de codes déterministes permettra d'améliorer les performances d'authentication ?

• comment pratiquement implémenter de tels codes, et quels performances obtienton en pratique ?

• lors de l'utilisation de codes concaténés, comment les construire de manière à obtenir de bonnes performances en authentication ? L'utilisation du bruit comme moyen d'authentication a été étudiée par Lai et al.

[41] en appliquant la théorie des canaux sur écoute à l'authentication [START_REF] Aaron | The wire-tap channel[END_REF]. En utilisant une stratégie de codage aléatoire, les auteurs montrent que dans ce cas-ci la probabilité de succès de l'adversaire est encadrée par l'entropie de la clé utilisée pour chirer le message à authentier. Notons toutefois que l'authentication par codes graphiques ne peut pas directement utiliser la théorie des canaux sur écoute puisque l'adversaire n'a dans notre cas pas accès à une version plus dégradée que le receveur légitime. 
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 1 Fig. 1.2 shows an ink dot viewed under microscope.
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 12 Figure 1.2: Left: Ink dot in uncoated paper printed in Laser printer (600dpi). Right: Ink dot in coated paper printed in Laser printer (600dpi).
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 210 Denition 2.11. (Conditional type.) The conditional type of y n given x n is a stochastic matrix whose elements are dened as Vy n |x n (b|a) = Px n y n (a, b) Px n (a) for all (a, b) ∈ X × Y.

Figure 2 .

 2 Figure 2.1 will then be composed by a source of messages taking values in some nite alphabet, encoded into some sequence of channel symbols, which then produces the output sequence of the channel via a probabilistic mapping. The decoder attempts to convert the output sequence back to the transmitted message.

Figure 2 .

 2 Figure 2.1: A communication system [19].

(2. 24 )

 24 Denition 2.18. (Information Channel Capacity).The information channel capacity of a DMC (X , W (y | x) , Y) is dened as

( 2 . 26 )•

 226 The average block error probability over all possible random codebooks P e B = Cn P e B (C n ) Pr {C n } .

(2. 34 )

 34 (c) comes from the fact that lim sup n→∞ (-x n ) = -lim inf n→∞ x n . So the upper bound is followed. Now we turn to prove the lower bound of (2.18),

(2. 38 )

 38 Take now N δ such that |X | n < δ for all n > N δ , thus lim n→∞ d T V P, Pn ≤ |X | n < δ and consequently Pn ∈ B δ . Hence there exists a sequence Pn ∈ E∩P n (X ) such that Pn → P Chapter 2 2.6. Appendix as n → ∞ in the sense of d T V . Because of the continuity of the relative entropy we have: lim n→∞ D Pn Q = D (P Q) .

(2. 41 )

 41 Moreover, because of the existence of the limit (2.39) then we have lim sup n→∞ D Pn Q = lim n→∞ D Pn Q , and:

(2. 44 )

 44 Now Lemma 2.26 hereafter relates the rst and the last terms in the ordered sequence(2.44).Lemma 2.26. For any open subset S ⊆ P (X ) we have the following equality:

(2. 47 )

 47 Moreover, D (P Q)is continuous on the compact set • E, thus it achieves minimum. So we can rewrite (2.47) as follows

(2. 49 )

 49 Proof of Lemma (2.26): Let a = inf P ∈S f (P ) and b = inf P ∈S f (P ) . Therefore from the property of inmum, there exists sequences {P n } ∞ n=1 and P n

(2. 51 )

 51 Then we have f P n ≥ a because P n ∈ S. Thus b = lim n→∞ f P n ≥ a. But a ≥ b because S ⊆ S. So a = b.
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 22 Figure 2.2: Geometry of C δ .

Figure 3 .

 3 Figure 3.1: Non-channel coding based authentication model.

  a) log P Z|X (o|a) P Y |X (o|a) = a∈X o∈O n PO n |x n (o | a) Px n (a) log P Z|X (o|a) Px n (a) P Y |X (o|a) Px n (a) = a∈X o∈O n PO n x n (o, a) log Po n |x n (o|a) Px n (a) P Y |X (o|a) Px n (a) --a∈X o∈O n PO n x n (o, a) log Po n |x n (o|a) Px n (a)P Z|X (o|a) Px n (a) = n D PO n x n P Y |X Px n -D PO n x n P Z|X Px n ,It should be noted that D PO n x n P Y |X Px n is also a random element taking values in the following set:

P

  3.1. The probabilities of type I and type II are asymptotically expressed as follows α n . = exp -nD P * s P Y |X | Px n , Z|X | Px n , (3.42)where P * s is given in terms of parameter 1 ≥ s ≥ 0 asP * s (o | a) = P 1-s Y |X (o | a) P s Z|X (o | a) o P 1-s Y |X (o | a) P s Z|X (o | a) ,(3.43) and s is chosen so that D P * s P Y |X | Px n -D P * s P Z|X | Px n = λ n . Proof. Instead of solving the problem min P ∈E x n ,H 1 D P P Y |X | Px n , we consider the fol- lowing optimization problem minimize f (P ) , subject to g (P ) ≤ 0 h (P ) = 0 P ∈ P (O|X ) ⊆ R |X |×|O| , (3.44) where f (P ) = D P P Y |X | Px n g (P ) = -D P P Y |X | Px n + D P P Z|X | Px n + λ n h (P ) = a∈X o∈O Px n (a) P (o | a) -1.

(3. 45 )

 45 The Lagrangian F : R |X |×|O| × R × R → R associated with the problem (3.44) is dened as follows:

( 3 . 49 )

 349 (O|X ) ⊆ R |X |×|O| (3.48) We develop now the Lagrangian as follows: F (P, s, η) = f (P ) + sg (P ) + ηh (P ) = a∈X Px n (a) o∈O P (o | a) log P (o|a) P Y |X (o|x) --s a∈X o∈O P (o | a) Px n (a) log P Z|X (o|a) P Y |X (o|a) Px n (a) P (o | a) -1 Dierentiating F with respect to P (o | a) and setting to 0, we have log P (o | a) P Y |X (o | a) + 1 -s log P Z|X (o | a) P Y |X (o | a) + η = 0, (3.50) for all o ∈ O, a ∈ X .

(3. 54 )

 54 Because P * t (o | a) and P * s (o | a) satisfy both (3.52) and that the solution is unique, we have P * 0 = P * 1 = P * s , where 0 ≤ s ≤ 1.
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 32 Figure 3.2: Geometry of P * s

  Thus, P * n s (o n | x n ) has an equivalent form to P * s (o | x). Now we turn to the tilted distribution associated to the likelihood test L (O n | x n ), sum of n i.i.d random variables l (O i | x i ) . Let Ps (l) be the resulting tilted distribution of the log-likelihood ratio l(o | x) obtained at the output of the tilted channel. It can be expressed with respect to the original distribution P (l) as: Ps (l) = o∈O:l(o|x)=l P * s (o | x) , = o∈O:l(o|x)=l

Figure 3 . 3 :

 33 Figure 3.3: ROC curves for the two dierent strategies (N trials = 2000, σ = 52). α is the probability of rejecting an authentic code and β is the probability of non-detecting an illegal copy.

D 1 P

 1 P * P XZ |X | Px n ≤ D P * P Z|X | Px n .(3.75) To prove (3.75), we need to dene the following distribution P * (1 | a) = o∈D 1 P * (o | a) , P * (0 | a) = o∈D c * (o | a) .

o∈OP* 1 P 1 P 1 P 1 Po∈D c 1 P 1 Pc 1 P

 1111111 (o | 0) log P * (o|0) P Z|X (o|0) -ã=0,1 P * (ã | 0) log P * (ã|0) P XZ |X (ã|0) = o∈D * (o | 0) log P * (o|0) P Z|X (o|0) + o∈D c * (o | 0) log P * (o|0) P Z|X (o|0) -P * (0 | 0) log P * (0|0) P XZ |X (0|0) -P * (1 | 0) log P * (1|0) P XZ |X (1|0) , = o∈D * (o | 0) log P * (o|0) P Z|X (o|0) + o∈D c * (o | 0) log P * (o|0) P Z|X (o|0) -* (o | 0) log P * (0|0) P XZ |X (0|0) -o∈D 1 P * (o | 0) log P * (1|0) P XZ |X (1|0) * (o | 0) log P * (o|0)P XZ |X (1|0) P Z|X (o|0)P * (1|0) + o∈D * (o | 0) log P * (o|0)P XZ |X (0|0) P Z|X (o|0)P * (0|0),

P 1 P

 1 comes from the fact that log x ≥ 1 -1 x (b) comes from the fact that P XZ |X (1 | 0) = o∈D 1 Z|X (o | 0) and P XZ |X (0 | 0) = o∈D c Z|X (o | 0) and (3.76).Similarly we have f (1) ≥ 0. Therefore it follows thatD P * P Z|X | Px n -D P * P XZ |X | Px n ≥ 0.With the same arguments we also haveD P * P Y |X | Px n ≥ D P * P XY |X | Px n .(3.80) Moreover, as we assume that α n = α n , then D P * P Y |X | Px n = D P * P XY |X | Px n . P XY |X | Px n ≥ D P * P XY |X | Px n . (3.82) Because D P * P XY |X | Px n is the minimum of D P P XY |X | Px n over E x n ,H 1 , then we can say P * belongs to the set E c x n ,H 1 . In other words, (3.78) follows. Finally, for a xed false alarm, comparing the non-detection error exponent of the gray level observation strategy and the binary thresholding strategy we have: D P * P Z|X | Px n ≥ D P * P XZ |X | Px n . . 3.6.2 The proof of 3.60

( 3 .

 3 84) and s is chosen so that D P * s P Y |X | Px n -D P * s P Z|X | Px n = λ n . Proof. We have: P * s (o | a) = P Y |X (o | a) exp [sl (o | a) -µ l (s; a, H 0 )] .

  | a) P Y |X (o | a) = sl (o | a) -µ l (s; a, H 0 ) .

( 3 .

 3 86) where l (o | a) = log P Z|X (o|a) P Y |X (o|a) and µ l (s; a, H 0 ) = log E P Y |X e sl(O|x) .Then the RHS of (3.83) is developed as follows exp -n o∈O,a∈X Px n (a) P * s (o | a) log P * s (o|a)P Y |X (o|a) = exp -n o∈O,a∈X Px n (a) P Y |X (o | a) exp [sl (o | a) -µ l (s; a, H 0 )] × × (sl (o | a) -µ l (s; a, H 0 ))] = exp n o∈O,a∈X Px n (a) P Y |X (o | a) µ l (s; a, H 0 ) exp -n o∈O,a∈X Px n (a) P Y |X (o | a) × × exp (sl (o | a) -µ l (s; a, H 0 )) sl (o | a)] = exp o∈O,a∈X n Po n ,x n (o, a) µ l (s; a, H 0 ) exp -n o∈O,a∈X Px n (a) P * s (o | a) sl (o | a) = exp o∈O,a∈X n (o, a | o n , x n ) µ l (s; a, H 0 ) exp -sn o∈O,a∈XPx n (a) P * s (o | a) log P Z|X (o|a) P Y |X (o|a) = exp [µ L (s; x n , H 0 )] exp -sn D P * s P Y |X | Px n -D P * s P Z|X | Px n = exp [µ L (s; x n , H 0 )] exp -sn λ n = exp [µ L (s; x n , H 0 ) -sλ] .

2 n and β 2

 22 H 0 are Bernoulli random variables with parameters α and β, respectively, their variances are easily deduced, e.g. σ 2 αn = α n -α αn = β n -β 2 n . When α n and β n are very small, i.e. σ 2 αn = α n or β 2 αn = β n , accurate estimations are then dicult to achieve with realistic number of trails. Roughly speak-

(4. 21 )

 21 Plugging Q Y |X (o | x) = P * s (o | x)as in (4.14) into (4.21), we have

(4. 26 )

 26 To make it simple, letD * s = D P * s P Y |X | Px n .We have already established the asymptotic behavior of α n from (3.37), then:

(4. 27 )

 27 In addition from the Cherno bound (3.61) we establish that1 n log α n ≤ -D * s .

0 D

 0 of relative entropy, we have D( Po n |x n P * s | Px n ) n→∞ → Po n |x n P Y |X | Px n n→∞ → D P * s P Y |X | Px n (4.32) Plugging (4.32) into (4.22) we obtain:

4. 2

 2 Practical performance analysis 4.2.1 Experimental setup Without loss of generality, we use in our analysis a generalized Gaussian distribution to model the physical device, i.e. the association of a printer with a scanner, used by the legitimate source T m (o | x) and by the counterfeiter T c (o | x). The probability density function of generalized Gaussian distribution is of following form p(o | x) = b 2aΓ(1/b) e -(|o-m(x)|/a) b , (4.33) where m(x) is the mean and the parameter a can be computed from the variance σ 2 = var[O]: a = σΓ(1/b)/Γ(3/b).

(4. 34 )

 34 The parameter b is used to control the sparsity of the the distribution, for example when b = 1 the distribution is Laplacian, b = 2 the distribution is Gaussian, and b → +∞ the distribution is uniform. The resulting distribution is rst discretised then truncated to provide values within [0, . . . , 255] to model a scanning process. Each channel is parametrized in this case by four parameters, two per each type of dots,

Figure 4 .

 4 Figure 4.1 illustrates the dierent eects of the generalized Gaussian distributions on the main and the opponent channels of same mean and variance and b = 1 (Laplacian distribution), b = 2 (Gaussian distribution) and b = 6, i.e. close to a uniform distribution.

Figure 4 .

 4 Figure 4.1: Generalized Gaussian distribution for b = 1 (rst row), b = 2 (second row) and b = 6 (third row). Main and opponent channels are identical with m 0 = 50, m 1 = 150, σ 0 = 40, σ 1 = 40 .

Figure 4 .

 4 Figure 4.2 presents the curves of α and β with respect to the threshold λ of the test (3.29). It illustrates the gap between the estimation of α and β using the Gaussian approximation and the asymptotic expression. The classical MC simulations conrm the fact that the asymptotic expressions based on Sanov's theorem are tight.

Figure 4 . 2 :

 42 Figure 4.2: Comparison between the Gaussian approximation, the asymptotic expression and Monte-Carlo simulations (10 6 trials) for the second strategy, N = 2000, σ = 50.

Figure 4 .

 4 Figure 4.3 shows the ROC curves for generalized Gaussian distributions and b = {1, 2, 6}. It illustrates the gap between the estimation of α and β using the Gaussian
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Figure 4 . 3 :

 43 Figure 4.3: Comparison between the Gaussian approximation, the asymptotic expression and Monte-Carlo simulations for b = 1 b = 2 and b = 6. Main and opponent channels are identical, m 0 = 50, m 1 = 150, σ 0 = 40, σ 1 = 40 .

Figure 4 .

 4 4 presents the evolution of β w.r.t. σ m for α = 10 -6 with respectively m 0 = 50, m 1 = 150 for the Gaussian channel distribution.For each channel conguration, we can nd an optimal conguration, this conguration oers a smaller probability of error for b = 6 than for b = 2 or b = 1.

Figure 4 . 4 :

 44 Figure 4.4: Evolution of the probability of non detection w.r.t the standard deviation of the channel (α = 10 -6 ) for the Generalized Gaussian distribution.

Figure 4 . 5 .

 45 a shows the evolutions of β w.r.t σ o for dierent σ m when a Generalized Gaussian channel is assumed. We can see that in each case it's in the opponent interest to optimize his channel.

Figures 4 . 5 .

 45 Figures 4.5.b shows the evolution of the best opponent strategy max σo β w.r.t σ m . By comparing it with Figure 4.4, we can see that the opponent's probability of non detection can be multiplied by one or several orders of magnitude for the Generalized Gaussian distribution (×10 6 for b = 1, ×10 5 for b = 2) but stays the same when the distribution is close to uniform (b = 6).

Figure 4 . 5 :

 45 Figure 4.5: Evolution of opponent strategy β for the Generalized Gaussian distribution for b = 2 (a), and the best opponent strategy max(β) w.r.t the standard deviation of the channel (α = 10 -6 ) for the Generalized Gaussian distribution (b) and the for the Lognormal distribution (c).
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 56 Likewise we denote by β the average probability of non-detection and

Figure 5 . 1 :

 51 Figure 5.1: Channel coding based authentication model.

Figure 5 . 2 :

 52 Figure 5.2: Channel model.

Remark 5 . 3 .

 53 It is worth noting that the right-hand side of (5.11) is independent of the decoding rule. It means that the strong converse theorem is still true for mismatched decoding. More precisely, for an arbitrary DMC {X , W (z | x) , Z} of capacity C (W ) and any e nR , n code C n with R > C (W ), P e

Figure 5 . 3 :

 53 Figure 5.3: log α = -70,σ main = 50.

Figure 5 .

 5 Figure 5.4 plots the lower bound on the mismatched capacity of the opponent channel. The main channel is governed by a Gaussian distributions whose means are µ m0 = 50 or µ m1 = 150 for black and white dots respectively and the same standard deviation σ m = σ m0 = σ m1 varying from 10 to 90, ∈ [10, 90]. The opponent channel is a degraded version of the main channel (5.3) and practically the resulting model is a mixture of Gaussian with the same means as the main channel and standard deviations set to σ o = 30 for both black and white components.
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 54 Figure 5.4: Lower bound on mismatched capacity.
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 56 Figure 5.6: The recursive systematic encoder (RSC).
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 57 Figure 5.7: Turbo Decoder.
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 58 Figure 5.8: Capacity of the main C (V ) and the lower bound on mismatched capacity of the opponent channel C LM (W ) .
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 59 Figure 5.9: Capacity of the main and the opponent channel C (V ) , C (W ) and the lower bound on mismatched capacity of the opponent channel C LM (W ) .

. 40 )

 40 For a symmetric and memoryless binary input channel modeling the print and scan devices, the distribution of the L | u is also symmetric: p( | 0) = p(-| 1).

(5. 41 )Figure 5 .

 415 Figure 5.10: R=1/3 σ m = 48, σ o = 0.

Figure 5 .

 5 Figure 5.11: R=1/2 σ m = 38, σ o = 0.

  Pr {error event with Hamming distance d } .

  Pr {error event with Hamming distance d } .
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 71 Figure 7.1: Principe de l'authentication basée sur des Codes Graphiques (CG).

7. 2 . 2

 22 Fondements pratiques L'authentication de personnes par moyens biométriques montrent des similarités avec l'authentication de messages mais aussi des diérences. Les systèmes biométriques dièrent de l'authentication de messages car ils se décomposent en deux étapes : l'enrôlement (acquisition et protection de la caractéristique biométrique de référence) et l'authentication (comparaison entre la caractéristique test et la caractéristique enrôlée). Comme les systèmes d'authentication de message, elle doit faire face à un canal bruité (ici provenant de l'acquisition), mais aussi assurer que la caractéristique enrôlée reste privée et ne permette pas de retrouver la biométrie de référence. Il y a encore une fois un compromis à trouver entre robustesse et condentialité des données biométriques. Les extracteur ous (fuzzy extractors en anglais) permettent de satisfaire ces deux contraintes via l'extraction d'une clé et une donnée auxiliaire lors de l'enrôlement. La clé sera stockée sur le serveur et la donnée auxiliaire restera publique et aidera à faire face au bruit lors de l'étape d'authentication. Ce concept est étendu par Ignatenko et Willems [35] qui le rapproche du principe de partage de clé introduit par Maurer[49]. Ici la caractéristique enrôlée et la caractéristique légitime à authentier partagent une clé commune et le message échangé représente la donnée auxiliaire. Ce message doit être généré de façon à minimiser la fuite d'information sur la clé et sur la biométrie de référence. L'authentication de contenus physiques a été étudiée par Beekhof et al. [10], elle repose ici sur l'utilisation d'empreintes numériques binaires (pouvant s'apparenter à des CG) et étudie le cas ou un adversaire à une connaissance partielle du code original. En utilisant un test d'hypothèse, les auteurs montrent qu'il est possible de trouver un seuil minimisant le maximum de la probabilité de non-détection et de la probabilité de fausse-alarme. Enn, le cadre pratique de cette thèse prend source dans les travaux de Picard et al. [53],[54] qui présentent le principe de base d'authentication par CG. Ces travaux proposent d'utiliser le taux d'erreur binaire entre le CG original et le CG soumis comme score permettant l'authentication. Comme nous le verrons dans la section (7.3), cette stratégie n'est pas optimale.

7. 3 Figure 7 . 2 :

 372 Figure 7.2: Authentication en utilisant des codes graphiques.

7. 3 . 1 2 )

 312 Principes du système d'authenticationDans un premier temps, nous sommes partis de l'hypothèse que le receveur a en sa connaissance :• d'une part le modèle statistique d'impression-acquisition des codes imprimés originauxP Y N |X N v N x N où X Nest le vecteur aléatoire représentant le code original et Y N le vecteur aléatoire représentant le code original imprimé, • d'autre part le modèle statistique d'impression-acquisition des codes contrefaits P Z N |X N v N x N où Z N est le vecteur aléatoire représentant le code contrefait. Ces deux hypothèses se traduisent pratiquement par le fait que si les codes sont imprimés dans des conditions constantes (même papier, même encre, même imprimante, ...) à la fois chez l'imprimeur légitime et le contrefacteur, il sera possible d'estimer précisément les modèles d'impression-acquisition. Nous supposons que ces deux modèles d'impression-acquisition sont i.i.d., et notre méthodologie peut s'appliquer pour différentes distributions comme par exemples des modèles Gaussien ou Lognormaux. Le modèle du contrefacteur pour une valeur de code x donnée est calculé à partir d'un mélange de deux distributions, l'une pour l'impression-acquisition d'un point noir, l'autre pour l'impression-acquisition d'une zone restée blanche et les paramètres de ce mélange sont déterminés à partir de l'erreur commise par le contrefacteur lors de la binarisation du code original. Soit H 0 l'hypothèse traduisant le fait que l'observation du code reçu o n est un code original et soit H 1 l'hypothèse traduisant le fait que l'observation du code reçu o n est un code contrefait. Dans ces conditions, le receveur peut utiliser la stratégie de Neyman-Pearson qui consiste à calculer le rapport de vraisemblance :L = log P Z n |X n (o n | x n , H 1 ) P Y n |X n (o n | x n , H 0 ) , (7.1) et à décider H 0 ou H 1 en comparant ce rapport à un seuil λ garantissant une probabilité de non détection minimale pour une probabilité de fausse alarme inférieure à un niveau α : Nous avons dans un premier temps comparé deux types d'observations, le premier suppose que le receveur binarise le code observé avant de calculer son test d'hypothèse, alors que le second type suppose que c'est l'image scannée en niveau de gris qui est directement utilisée comme observation o n . Nous avons montré que la stratégie consistant à utiliser un code binaire n'est pas optimale dans le sens où pour une probabilité de fausse alarme donnée, la probabilité de non-détection d'un code contrefait est plus importante qu'avec l'utilisation d'un code scanné en niveau de gris. En utilisant des mesures informationnelles, nous pouvons montrer (voir appendice (3.6.1)) que la divergence entre les deux canaux est plus importante sans binarisation des observations. Il est à noter cependant que d'un point de vue pratique la stratégie de binarisation peut comporter plusieurs avantages puisqu'elle ne nécessite pas la connaissance du canal d'impression du contrefacteur et qu'elle se traduit par un comptage du nombre d'erreurs entre le code observé et le code original.
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 73 Figure 7.3: Comparaison des courbes ROC avec et sans binarisation. Ici l'utilisation directe de codes scannés en niveau de gris permet d'obtenir des performances en authentication bien supérieures. Modèle Gaussien, N = 2.10 3 , σ b = σ w = 52.

7. 3 . 2

 32 Calcul précis des probabilités d'erreurLa probabilité de fausse alarme α, c'est à dire la probabilité de détecter un code original comme faux, s'exprime comme :α = Pr (L ≥ λ | H 0 ) .

(7. 3 )( 7 . 5 )Figure 7 . 4 :

 37574 Figure 7.4: Représentation géométrique des distributions P Y /X , P Z/X et P * s .

7. 3 . 3

 33 Simulations par échantillonnage d'importanceAn d'analyser la précision des expressions (7.4) et(7.6), nous avons développé une méthode de Monte-Carlo basée sur l'échantillonnage d'importance. Pour ce faire, nous avons utilisé une loi de proposition égale à la densité P * et nous avons montré que nous obtenions ainsi un estimateur non-biaisé dont la variance était inférieure à celle obtenue par l'estimateur de Monte-Carlo, tout en tendant asymptotiquement vers 0.7.3.4 Résultats obtenusLa gure 7.5 présente une comparaison entre les courbes ROC obtenues via l'expression asymptotique et via l'approximation Gaussienne et ce pour diérents paramètres de la distribution Gaussienne généralisée. Nous pouvons constater que dans certains cas, notamment pour des distributions approchant la loi uniforme, que cette diérence est conséquente. La précision de l'expression asymptotique est également corroborée par des simulations de Monté-Carlo qui utilisent un échantillonnage d'importance. La connaissance précise des probabilités d'erreurs nous a également permis d'optimiser les canaux d'impression acquisition. Nous avons analysé deux scénarios pratiques : 1. A partir d'un modèle d'impression-acquisition donné, nous cherchons dans un premier temps à trouver les paramètres du modèle qui permettront de minimiser la probabilité de non-détection β du système d'authentication. Cette optimisation revient en pratique à sélectionner le type d'imprimante, d'encre, et de papier qui permettront d'obtenir les meilleurs performances. Dans ce cas ci, nous faisons l'hypothèse que l'adversaire est passif et qu'il se contentera d'utiliser le même système d'impression-acquisition que l'imprimeur légitime.
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Figure 7 . 5 :

 75 Figure 7.5: Comparaison entre l'approximation Gaussienne, l'expression asymptotique et les simulations de Monte-Carlo via échantillonage d'importance dans le cas de distributions Gaussienne généralisées b = 1, b = 2 and b = 6. Les canaux d'impressionacquisition pour l'imprimeur légitime et le contrefacteur sont identiques, µ b = 50, µ w = 150, σ b = 40, σ w = 40.

2 .

 2 Le deuxième scénario correspond à un scénario de sécurité à proprement dit puisqu'ici nous prenons en compte un adversaire cherchant à modier son modèle d'impression-acquisition an de détériorer les performances du système d'authentication. L'objectif ici est d'envisager une attaque au pire des cas en cherchant le modèle d'impression-acquisition de l'imprimeur légitime qui permettra d'obtenir les meilleurs performances de détection une fois que l'adversaire aura sélectionné son modèle le plus néfaste. Dans ce scénario l'adversaire est actif puisqu'il est capable de modier son canal d'impression-acquisition et nous partons du principe que le receveur connait le canal du contrefacteur. Le premier problème peut être formalisé par la recherche au sein d'une famille paramétrique donnée de canaux d'impression-acquisition C, les paramètres du canal minimisant la probabilité de non détection β, nous cherchons donc la probabilité β * telle que : β * = min C β(α).

(7. 7 )

 7 Dans le second cas, l'optimisation consiste à résoudre un jeu min max pour deux familles de canaux, l'un appelé C l pour l'imprimeur légitime, l'autre appelé C o pour le contrefacteur. Dans le cas où le receveur connait le canal du contrefacteur, nous cherchons donc la probabilité β * telle que :

( 7 . 8 )

 78 La gure 7.6 présente un exemple de résultats obtenus dans le scénario qui considère un contrefacteur actif. Nous voyons que pour chacun de ces exemples (ce n'est cependant pas vrai dans tous les cas), la stratégie optimale pour l'imprimeur certiée est d'éviter un procédé d'impression-acquisition peu bruité qui favoriserai une estimation facile du code original par le contrefacteur, mais d'éviter également un procédé trop dégradé pour lequel le bruit important empêcherait la distinction entre code originaux et codes contrefaits. Ces résultats montrent également l'intérêt d'utiliser un canal proche de la loi uniforme, c'est à dire paramètre b grand qui amène un β faible, par rapport à un canal proche d'une loi parcimonieuse, c'est à dire unb faible qui amène un β grand.

  β * ≈ 10 -14 b = 2, β * ≈ 10 -27 b = 6, β * ≈ 10 -73

Figure 7 . 6 :

 76 Figure 7.6: Evolution de la meilleure stratégie du contrefacteur max σo β en fonction de l'écart type σ m d'une distribution Gaussienne généralisée pour diérents paramètres b de cette distribution. µ b = 50, µ w = 150, α = 10 -6 .

Figure 7 . 7 :

 77 Figure 7.7: Décodeur inadapté et authentication.

Figure 7 . 8 :

 78 Figure 7.8: Modèle d'authentication basé sur le codage canal.

  

  

  

  

  Lemma 2.13) bounds the probability that the random element PX n equals a particular distribution in P n (X ), and the second one (Lemma 2.14) says that when n is large enough, the set P n (X ) approximates uniformly and arbitrarily well (in the sense of variational distance) any set in P (X ) (seeLemma 2.14).

	On the 2.2. Fundamentals in Information Theory and Statistics ∈ E then Q n other hand, if Q / PX Chapter 2 rst one (

n ∈ E → 0 exponentially fast . Sanov's theorem gives an accurate rate of the exponential decrease of the probability Q n PX n ∈ E .

Before stating the theorem, we will need to introduce two important lemmas. The

  The set of codewords {ϕ (m) :m ∈ M n } is called the codebook of C n .With a slight abuse of notation, we denote the codebook itself by C n as well. Unless specied, messages are represented by a random variable M uniformly distributed in M n . Denition 2.20. (Rate). A rate R of a channel code (M n , n) is dened as

	R =	log |M n | n	nats per channel use.
	Now we dene the block (or word) error probability and the average block error
	probability as follows.		

  To simplify the notation, we will write e nR , n codes to mean e nR , n in the rest of , there exists a sequence of e nR , n codes {C n } n≥1 such that P e B (C n ) → 0. Conversely, any sequence of e nR , n codes {C n } n≥1 with P e B (C n ) → 0 must satisfy R ≤ C.

	Denition 2.21. (Achievable Rate). A rate R is called achievable for a DMC (X , W (y | x) , Y)
	if there exists a sequence of	e nR , n codes {C n } n≥1 such that
		lim n→∞ P e B (C n ) = 0.
	the dissertation.	
	Denition 2.22. (Operational Channel Capacity). The operational channel capacity
	of a DMC can be dened as the supremum of all achievable rates. In other words, it is
	the highest rate R at which information can be sent with arbitrarily low probability of
	error.	
	The channel coding theorem stated hereafter establishes that the information chan-
	nel capacity is equal to the operational channel capacity. So from now on, unless speci-
	ed, we use the terminology channel capacity to refer to both information capacity and
	operational capacity.	
	Theorem 2.23. [19](Channel coding theorem). All rates below the channel capacity are
	achievable. Specically, for every rate R < C
		.28)

  .., x n ), we consider here testing whether an observed sequence (o 1 , ..., o n | x 1 , ..., x n ) is generated from a given distribution P Y |X or if it comes from an alternative hypothesis associated to distribution P Z|X , where o i belongs to a discrete nite set O. Practically, we are interested in performing authentication after observing a sequence of n samples (o i |x i ), attesting whereas this sequence comes from a legitimate source or from a counterfeiter. The receiver establishes then a decision based on a predened test statistic, and assigns one of the two hypothesis H 0 or H 1 corresponding respectively to each of the aforementioned cases. According to this test, the space O n will be partitioned into two regions H 0 and H 1 . Accepting hypothesis H 0 while it is actually a fake (the observed n-samples sequence belongs to H 0 while H 1 is true) leads to an error of type II having probability β n . Rejecting hypothesis H 0 while actually the observed sequence comes from the legitimate source (the observed

n-samples sequence belongs to H 1 while H 0 is true) leads to an error of type I with probability α n . It is desirable to nd a test with a minimal probability β n for a xed or prescribed probability of type I. An optimal decision rule will be given by the Neyman-Pearson criterion. The eponymous theorem states that under the constraint α n ≤ α * , β n is minimized if only if the following log-likelihood test infers the choice of H 1 :

  are the same for a given type x.

The Neyman Pearson test is expressed as:

  It turns out that P Y |X is a minimum of the problem(3.44). It means that P Y |X ∈ E x n ,H 1 which is contrary to the aforementioned fact that P Y |X and P Z|X respectively belong to dierent sets E cx n ,H 1 and E x n ,H 1 . Hence, the problem (3.44) has its minimum on the boundary of the inequality constraint. In consequence we just need to consider the following problem:

  very small thereby being dicult to compute. Using a tilted distribution P s for L is a very useful and pertinent tool to evaluate tails of probabilities. However this must be done with the good choice of the parameter s, more specically s is chosen such that E P Ls [L (O n | x n )] is equal to the threshold λ. Let us rstly tilt the distribution of the channel and secondly extract the corresponding tilted distribution for L. We will naturally choose the distribution in (3.51) as a tilted channel distribution, with the parameter s chosen such that (3.52) is satised. Recalling that l (o | x) = log

P Z|X (o|x) P Y |X (o|x)

we rewrite P * s as:

  Let us x the false alarm probability for the two strategies and compare the two nondetection error exponents. In the gray level observation strategy, the nal observation is o n ∈ O n which can be either y n coming from the legitimate transmitter or z n forged by the opponent, while in the binary thresholding strategy, the nal observation is xn ∈ X n thereby being either xn y from the legitimate transmitter or xn PO n x n P Y |X Px n -D PO n x n P Z|X Px n O|X P Y |X | Px n -D P O|X P Z|X | Px n ≥

	Chapter 3				.6. Appendix 3.6. Appendix
	3.6 Appendix Then we have the probability of false alarm and non-detection of this strategy are
	asymptotically estimated as follows		
	3.6.1 Information-theoretic comparison between hypothesis test-ing with and without thresholding α n . = exp -nD P (3.71)
	and			
	β n	. = exp -nD P (3.72)
	where			
			z from the opponent.
	• The grey level observation strategy D P * P XY |X | Px n = min P ∈E x n ,H 1	D P P XY |X | Px n ,	(3.73)
	The hypothesis test (3.32) is recalled as		
	D H1 ≷ H0	λ n	.
					(3.66)
	and			
	β n			
					λ n	.
	• The binary thresholding strategy		
	Similarly, the test is			
			H1 ≷ H0	λ n	.	(3.70)

Similar to arguments in subsection 3.3.2 we have the probability of false alarm and non-detection of this strategy are asymptotically estimated as follows α n . = exp -nD P * P Y |X | Px n , . = exp -nD P * P Z|X | Px n , (3.67) where D P * P Y |X | Px n = min P ∈E x n ,H 1 D P P Y |X | Px n , (3.68) D P * P Z|X | Px n = min P ∈E c x n ,H 1 D P P Z|X | Px n , (3.69) and E x n ,H 1 the region on which the hypothesis H 1 is accepted when the transmitted message is x n , E x n ,H 1 = P O|X ∈ P (O | X ) : D P D P Xn x n P XY |X Px n -D P Xn x n P XZ |X Px n * P XY |X | Px n , * P XZ |X | Px n , D P * P XZ |X | Px n = min P ∈E c x n ,H 1 D P P XZ |X | Px n , (3.74) and E x n ,H 1 the region on which the hypothesis H 1 is accepted when the transmitted message is x n , E x n ,H 1 = P X|X : D P X|X P XY |X | Px n -D P X|X P XZ |X | Px n ≥ λ n .

  With the distribution P * dened in (3.76), we have D P * P Z|X | Px n ≥ D P * P XZ |X | Px n .

	Chapter 3			3.6. Appendix
	Lemma 3.3. (3.79)
	Proof. We have				
	D P = Px n (0)	o∈O	P * (o | 0) log P * (o|0) P Z|X (o|0) -	ã=0,1 P * (ã | 0) log P * (ã|0) P XZ |X (ã|0)	+
	+ Px n (1)			P	
			ã=0,1	
					(3.77)
					(3.78)
			67		

D P * P Z|X | Px n ≥ D P * P XZ |X | Px n , and D P * P XZ |X | Px n ≥ D P * P XZ |X | Px n . * P Z|X | Px n -D P * P XZ |X | Px n , o∈O P * (o | 1) log P * (o|1) P Z|X (o|1) -* (ã | 1) log P * (ã|1)

  .1) where φ (o n | x n ; H 1 ) = 1 whenever o n ∈ H 1 and zero if not. The probability of type I error is then expressed as the expectation of φ (o n | x n ; H 1 ) under distribu-

tion P n (o n | x n , H 0 ). In the same way, type II error probability β is the expectation of φ (o n | x n ; H 0 ) under distribution P n (o n | x n , H 1 ). In the sequel, we denote

P n (o n | x n , H 0 ) = P n Y |X (o n | x n ) and P n (o n | x n , H 1 ) = P n Z|X (o n | x n

) and we have:

  .3) MC methods make use of the law of large number to infer an estimation for α n and β n by computing numerically an empirical mean for φ (o n | x n ; H 0 ) and φ (o n | x n ; H 1 ) respectively. Clearly, the computer runs N trials , each one generating an i.i.d. vector o n , where samples (o n ) i are driven from distributions P n Y |X or P n

	Z|X respectively, which
	gives the following estimates:

  etc.[START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate (corresp.). Information Theory[END_REF].1. Introduction nale du point dépendent de la disposition des bres de papiers, de la précision de l'imprimante (qui grave les points sur une plaque métallique), mais aussi des particules qui composent l'encre. Une fois imprimé le code est donc dégradé de

	manière irréversible (il est théoriquement impossible d'estimer précisément le code
	original à partir du code imprimé), c'est cette priorité qui sera utilisée an de
	vérier l'authenticité d'un CG.	
	3. Si un contrefacteur souhaite copier le document ou l'emballage sur lequel se trouve
	le CG, il devra dans un premier temps le scanner (voir étape 3 sur la gure). Il
	s'agit également d'un processus aléatoire (ajout d'un bruit provenant du capteur
	utilisé lors de l'acquisition).	
	4. Dans un second temps il devra également le binariser puisqu'une imprimante n'est
	capable d'imprimer qu'une information binaire à haute résolution (voir étape 4 de
	la gure). Comme dans l'étape 1, cette information code la présence ou l'absence
	d'un point. De part le caractère aléatoire du processus d'impression acquisition,
	le code binarisé sera en pratique diérent du code original.	
	5 nous envisagerons l'utilisation d'une version binaire du code observé (étapes 6a
	et 7a de la gure) ou l'utilisation de sa version en niveaux de gris (étapes 6b et
	7b de la gure).	
	7.1.2 Problèmes étudiés	
	Cette thèse distingue deux scénarios : dans le premier le message binaire pseudo-
	aléatoire servant à l'authentication constitue directement le CG, dans le second ce
	message est codé par l'utilisation de systèmes de codage canal.	
	Lorsqu'il s'agira des CG non-codés, nous répondrons aux questions suivantes :
	• sous l'hypothèse que les modèles statistiques des canaux impression/acquisition
	de l'imprimeur légitime et du contrefacteur sont connus, comment obtenir un test
	optimal permettant de garantir une probabilité de fausse alarme	1 donnée tout en
	minimisant la probabilité de non détection 2 ?	
	• comment calculer théoriquement cette probabilité de non détection, de surcroit
	lorsqu'elle est très faible ?	

5. Le contrefacteur génère son faux CG en imprimant le code binaire estimé (étape 5 de la gure). 6. Le receveur observe un CG imprimé et scanné et doit décider s'il provient d'un code original ou d'un code contrefait. Pour cela il utilise le code graphique original (généré à partir de la clé secrète) et le code observé pour construire un test d'hypothèse permettant d'accepter ou de rejeter le code observé. Dans le chapitre 1 c.a.d. la probabilité de juger un code original comme étant falsié. 2 c.a.d. la probabilité de juger un code falsié comme étant original.

  Notre problème peut se rapprocher du problème d'authentication de messages proposé par Simmons[START_REF] Simmons | Authentication theory/coding theory[END_REF] puis repris par Maurer[START_REF] Ueli | Authentication theory and hypothesis testing[END_REF], et qui consiste à authentier un message crypté transmis sur un canal non bruité. Dans ce contexte, le schéma d'authentication doit faire un compromis entre deux types d'attaques : une attaque par substitution pour laquelle l'adversaire cherchera à inférer la clé secrète et substituer un message observé par le sien, et une attaque où l'adversaire cherchera à tromper le receveur et à prendre la place de l'émetteur en envoyant un message quelconque .

	distributions appartenant à la région et la distribution sous-jacente qui intervient.
	Dans le cas où le CG est généré à partir d'un système de codage canal, le receveur
	de notre schéma d'authentication fait face à un problème de décodage inadapté (mis-
	matched decoding en anglais). En eet le message qu'il cherche à décoder peut soit
	venir d'un CG original (décodage complet), soit d'un CG falsié (décodage inadapté).
	Dans ce deuxième scénario, la quantité d'information transmissible sans erreurs dans ce
	canal peut être maximisée par la capacité inadaptée (mismatched capacity en anglais)
	étudiée par Lapidoth [42] et présentée dans le théorème (2.31).
	7.2 Fondements théoriques et pratiques
	7.2.1 Fondements théoriques	
	Cette thèse utilise des éléments propres à la théorie de l'information et à la théorie du
	codage.	
	Le calcul précis des probabilités de fausse alarme et de non-détection repose sur la
	méthode des types et le théorème de Sanov.	
	La méthode des types [19] permet d'encadrer la probabilité Q n	PX n = P qu'un
	type P (aussi appelé histogramme en traitement du signal) soit observé en fonction de
	la divergence D P Q entre le type et sa distribution sous-jacente Q (voir Lemme
	(2.13)).	
	Le théorème de Sanov est un résultat important lié à l'utilisation des types : il
	permet de calculer la limite, lorsque la taille de la séquence servant à construire le
	type tend vers l'inni, de la probabilité Q n	PX n ∈ E , c'est à dire la probabilité qu'un
		P ∈E	D (P Q)) entre les

type appartienne a une région convexe E de l'espace des distributions (voir Théorème (2.15)). Cette fois-ci c'est la borne inférieure de la divergence ( inf

The BCJR algorithm is in turn a version of the Forward-Bakward algorithm designed to estimate the state of a hidden Markov source
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Chapter 5 5.2. Setup of the original packages with high degree of similarities such that the receiver cannot detect a number of forged products. In order to avoid this information leakage about the secret message we then need to provide an additional level of security by encrypting codeword x (m) with a secret key K known secretly by the legitimate receiver. The GC is then the graphical mapping of the encrypted codeword x (m) K . In all of this work we make the hypothesis that this key insures perfect secrecy, specically that the published version Y n does not convey any information about either the key or the secret message:

(5.1)

If we consider that the message is related to the characteristics of the product or to some identity number, one may dene quantities in (5.1) and (5.2) as identity leakage (which is similar to privacy leakage in biometry) and secrecy leakage respectively. Note that we can choose an encryption method such as the one-time pad [START_REF] Shannon | Communication theory of secrecy systems*[END_REF] for which the main and the opponent channels will both corrupt the original code X n samplewise. After this small digression, we continue this chapter by describing the set up in order to study how the coded version of the secret message can be decoded by a receiver who is the unique owner of the key to decrypt x (m) K .

Once encrypted, the GC is then printed and scanned to be processed by the legitimate receiver and by the potential opponent. These physical operations are modeled by the fact that the encrypted word x (m) K is published through the main channel V (y | x) and the corresponding scanned digital code is y. The distribution of the main channel V (y | x) is thus equivalent to one print and scan process, and V (y | x) = T m (y | x) as presented in subsection 3.1.2. It should be noted that x (m) K also takes values in X n . The opponent observes y, without being able to decode it, but processes it to create his own GC which will be printed on his forged product or document, hoping that the corresponding scanned sequence z will be accepted by the legitimate receiver. The opponent channel is denoted by W (z | x) and is a physically degraded channel of V (y | x). More specically,

where U T (z|y) is another DMC with nite input alphabet Y, nite output alphabet Z.

The receiver may then get one of the two possible sequences y and z. Using his knowledge of the key, he applies a decoding function ψ V,K (•) and get either m = ψ V,K (y, C) or m = ψ V ,K (z, C) respectively. He checks then the correspondence between the output of his decoder and the secret message in his database to infer a decision

Preliminaries

A. The Parallel Concatenated Convolutional Code (PCCC)

A PCCC is shown in Figure 5.5. The proposed code consists of two binary rate 1 /2 constituent convolutional encoders separated by an interleaver. These two convolutional encoders are two recursive systematic encoders (RSC), as illustrated on Figure 5.6.

The input sequence is then sent through the channel along with the coded sequences.

The input information sequence u = (u 1 , u 2 , ..., u K ) enters the rst encoder and then is permuted by the interleaver before entering the second encoder. The rst RSC encoder outputs the systematic sequence x s = (x s 1 , x s 2 , ..., x s K ) = u, and the parity check sequence x p 1 = x p 1,1 , x p 1,2 , ..., x p 1,K while the second RSC encoder discards its systematic sequence and only outputs the parity check sequence x p 2 = x p 2,1 , x p 2,2 , ..., x p 2,K because its systematic output is just a scrambled version of the rst one. It can be summarized that when the input sequence u = (u 1 , u 2 , ..., u K ) is fed into the encoder, the output sequence is x = (x s , x p 1 , x p 2 ). It means that for each input bit u t , the outputs are x t = x s t , x p 1,t , x p 2,t , where t ∈ [1...K]. The RSC encoder The RSC encoder is practically implemented with ν registers set in a pipeline structure with a feedback loop that enables to use one or many of the registers output. It is represented by two generator vectors G R = [g R0 , g R1 , .., g Rν ] and G F = [g F 0 , g F 1 , .., g F ν ] where element g Ri , 1 ≤ i ≤ ν indicates if the output of register i is used again in the input, element g F i , 1 ≤ i ≤ ν indicates if this register output is

The symmetry property insures also consistency of the L-value [START_REF] Richardson | Modern coding theory[END_REF], i.e.:

p( | 1) = exp ( ) p(-| 1).

(5.43)

Plugging this into (5.40) the mutual information becomes:

[log 2 (1 + exp(-))] .

One can estimate I(L; U ) over the ergodic K-sequence of computed t = log Ext(ut=1) Ext(ut=0) values for a given constituent decoder by taking the sample mean:

where (2u t -1) is a correction factor to account in the K-sequence of t for distributions of L | u = 0. Now let I in = I(L in ; U ) and I out = I(L out ; U ), be the mutual information computed at the input and at the output of a given decoder respectively. Precisely, L in is the log-ratio of the two probabilities forming the new a priori distribution, and L out is the log-ratio of the two extrinsic information (Ext(1) and Ext(0)) computed by the decoder. Because of the feed-back loop, it turns out that at the second decoding stage I out becomes I in . The EXIT chart draws then simultaneously on the same graph the two non explicit functions:

The x-axis of the chart reports the mutual information I in,1 at the input of the rst decoder, and the y-axis reports the mutual information at its output I out,1 . The chart I out,1 = f 1 (I in,1 ) draws then the response of the rst decoder for each amount of information feeding it. The second chart I out,2 = f -1 2 (I in,2 ) draws actually the response of the second decoder when I in,2 = I out,1 obtained from the rst decoder and reported on the y-axis feeds it. Its output I out,2 becomes the new I in,1 and is reported on the x-axis.

For practical results we consider again the truncated Gaussian channel for the main and a mixture of two Gaussian distributions for the opponent channel. The parameters of these distributions are set as above and we focus on the worse case attack, i.e. when the opponent print and scan devices are modeled by impulses around µ 0 and µ 1 . The length of the code is set to n = 2000.

Let us here insist on the fact that a perfect print and scan model at the opponent end doesn't mean an opponent channel without noise. We recall indeed that the opponent processes rst an observed gray level version of a genuine GC in order to estimate a binary one and prints it on the package of his counterfeit product. The opponent channel in this case is a binary-input binary-output channel with crossover probabilities 

Conclusions

In this chapter, we have presented a framework for analyzing the performance of authentication using channel coding. Our analysis has shown that it is possible to enhance authentication performance by choosing a code whose rate is between the capacity of the opponent channel and that of the main channel. Such a code is capable of making the probability of false alarm and probability of non-detection arbitrarily small at the same time which is an ideal achievement in authentication context. We have also compared the success probability of the opponent without channel code and the upper bound of success probability with channel coding. These curves support the possibility of using channel coding to improve authentication performance. We have also discussed the achievable rate regions of such codes. More precisely, we have showed that for rates between the mismatched capacity of the opponent and the capacity of the main channel, it is possible to nd a code achieving small probability of false alarm and a code achieving small probability of non-detection. However, showing that these two codes are identical or extracting a common code from such codes is left for future research.

The lower bound of mismatched capacity C LM of a DMC can be computed using alternating optimization and the computation of C LM plays a signicant role to design practical codes.

We have nally proposed a practical coding scheme using parallel concatenated codes with turbo decoding. We have analyzed the EXIT chart tool which facilitates the choice of channels parameters in order to optimize authentication performance when the Turbo codes is employed.

Thus the maximizing P X (x) is of following form

(5.53) 5.7.3 Proof of the converse of the channel coding theorem with mismatched decoder 5.5

The proof of this converse theorem is given in [START_REF] Merhav | On information rates for mismatched decoders[END_REF]. In this subsection, we present some complements which were unproved in [START_REF] Merhav | On information rates for mismatched decoders[END_REF] . Take a random code ensemble of length n and rate R with the input distribution P X , we will show that

(5.54)

Let |M n | = e nR codewords of codebook C n be chosen randomly and independently codeword by codeword and symbol by symbol according to distribution P X = {P (x) , x ∈ X }.

Moreover, the empirical distribution of each codeword is constrained to be in the set

T n (P ),

(5.55)

Given a channel {X , W n (z | x) , Z} and a mismatched decoding metric d V (x, z) = log V (z | x), consider a codebook of e nR codewords where each codeword is generated at random according to the probability distribution P (x) and independently of all other codewords. Furthermore, the empirical distribution of each codeword is constrained to be in the set T n (P ),

(5.56)

The output sequence z n should be in the set

where

The average over the ensemble of code is P e

(n)

where the last inequality is due to the symmetry of the random code construction.

Consider the threshold decoder which nd all m such that x n m ,

where δ > 0,

(

The error decoding probability when sending message m P e

(n)

(5.59)

As in [START_REF] Merhav | On information rates for mismatched decoders[END_REF], for small enough , we have the upper bound for the rst term of 5.59 :

≤ exp -e n(R-C LM (W,V )) .

The last two terms of (5.59), Pr {Z n ∈ T c (P Z ) | m} and Pr (X

will vanish as n → ∞ by the weak law of large numbers.

Firstly, we will nd the upper bound for the term Pr {Z n ∈ T c (P Z ) | m} .

It is demonstrated in the subsection 5.7.4 that for every b ∈ Z such that P Z (b)+ < 1 and P Z (b) -> 0,

) + e -nD(P Z (b)-P Z (b)) , (5.60) where

Thus,

≤ b∈Z e -nD(P Z (b)+ P Z (b)) + e -nD(P Z (b)-P Z (b)) .

(5.61) Now we will nd the upper bound for the last term Pr (X n (m)

Using Sanov's theorem, we prove the following result in the subsection 5.7.5.

For n large enough we have

where

and E m is dened in (5.71).

In conclusion, for n suciently large we have, We will show that for every b ∈ Z, such that P

Using Cherno bound, for all ν > 0 ,we have

= (1 -P Z (b)) + P Z (b) e ν /n n e -ν( +P Z (b)) .

Therefore,

(

The right hand side of 5.65 achieves the minimum value when

(5.66)

e -nD(P Z (b)+ P Z (b)) .

( (5.68) Therefore,

) + e -nD(P Z (b)-P Z (b)) . (5.69) 5.7.5 Proof of (5.62) (5.73)

The Lagrange dual problem

For the sake of completeness, we briey present some basic knowledge about optimization which we used in this dissertation. For more general discussion, we refer readers to the book of Stephen Boyd [START_REF] Boyd | Convex optimization[END_REF].

Primal problem P

where f : R m → R and g : R m → R and h : R m → R.

The problem 5.74 is call the primal problem.

We dene the Lagrangian F : R m × R × R → R associated with the problem 5.74 as follows:

F (x, u, v) = f (x) + ug (x) + vh (x) . f : R m → R and g : R m → R be convex and h : R m → R be ane. Suppose that the Slater's condition is satised. It means that there exists an x ∈ D such that g ( x) < 0 and h ( x) = 0 and 0 ∈ int h (D), where h(D) = {h (x) :