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Introduction

This manuscript is intended to obtain the diploma of "Habilitation à Diriger des Recherches", issued by the Institut Polytechnique de Paris, in the "Informatique, Données, et IA" discipline. It describes research activities pursued after obtaining a Doctoral thesis in Mathematical Morphology, in June 2012. These activities essentially relate to mathematical morphology approaches for image analysis, multivariate analysis for anomaly detection and machine learning methods, from a theoretical and methodological point of view, but also in the context of applications, for remote sensing, astronomy, material science among others.

Context

My research career began at the end of my master's degree with the participation in various projects at the University of Puerto Rico, continuing with my Ph.D. thesis in the Center for Mathematical Morphology at Mines Paris -PSL, which I defended in June 2012. Followed by one year as postdoctoral researcher at the Fraunhofer-Institut für Techno-und Wirtschaftsmathematik -ITWM in Kaiserslautern, Germany, and 13 months as a postdoctoral fellow at the Department of Mathematics in the University of Singapore. In both cases, my responsibilities include participation in industrial projects that allowed theoretical contributions to be confronted with real problems. The second part of my research experience (which continues until now) begins upon my return to France in October 2014, as a three years tenure track followed by a permanent research position at the Center for Mathematical Morphology of Mines Paris -PSL Research University. This context, rich in both academic developments and industrial collaborations, has motivated me to apply my skills in a wide range of applications including astronomy, remote sensing, biology, radar technology and material science among others. Additionally, the daily interaction with other researchers, master's and doctoral thesis students, has enriched my knowledge and understanding of various aspects of image processing, multivariate statistics, and machine learning. This document attempts to collect the results obtained in the last ten years of research.

Structure

The topics presented here mainly study the interaction between mathematical morphology, discrete mathematics, multivariate statistics and machine learning. The first chapter studies the extension of mathematical morphology for multivariate images by means of lattice theory and machine learning. The second chapter is devoted to adaptive structuring elements in general and includes as a practical example the study of a morphological salt and pepper noise reduction method via conditional morphology. Chapter three includes some contributions of hierarchical analysis of images. Chapter four presents some links between mathematical morphology and machine learning. Chapter five presents the problem of anomaly detection from a statistical point of view, and some extension using machine learning methods. Chapter six is a compendium of applications. The appendices include an exhaustive list of teaching experiences, list of collaborators, publications and industrial projects.

A personal point of view about Research

In this Habilitation à diriger des recherches (HDR) includes most of the results of my last eleven years of interaction with a magnificent group of scientists including colleagues, former Ph.D. and master's students. The readers should note that the my works can be considered as application-inspired, since most of the contributions are motivated by a real need that has been explored during industrial and academical collaborations. Additionally, I would like to include some statement to summarise what I think about the Research. I consider that

• "Science is not a business" and as education should be a human right, science should be common for all.

• a dependence on single numbers to quantify scientists contribution and make administrative decisions is a bad habit, and it may force people to somehow enhance their quality indexes (as for instance the h-index) instead of focusing on their more legitimate activity.

• Research is a collective adventure, and by sharing ideas, new solutions emerges.

• while results contained in this work have been mainly the e ort of this HDR's author, it could not have been concluded without the collaboration of the corresponding co-authors.

Introduction

From the creation of the first photograph in 1826 1 , to the invention of the first devices able to produce a digital image in the 70th's, a long time passed. Nowadays, images are everywhere, and it has been estimated that more than 1.2 trillion digital photos have been taken worldwide in 2017 2 . Automatic analysis of large set of image is the main focus of many digital technology companies. The development of tools that allow the processing of digital images is the main focus of this manuscript. We start this chapter with the presentation of the notation and the interest for a professional image analyst 3 of having a description by a lattice of a digital image.

Notations

In this document, an image is defined as a function f which associates a vector information to each pixel, we use the notation f : ae V, where is the support of pixel values, usually Z 2 or Z 3 for digital images, and V denotes the vector space of spectral information. For instance, for 2D colour images, = Z 2 and V = R 3 , i.e. each pixel x = (i, j), f (x) is a triplet of values [x 1 , x 2 , x 3 ]. An illustration of the used notation is given in Figure 1.1. Additionally, we write F( , V) for the set of functions ae V. For grey scale images, f , g oe F( , R) is naturally endowed with a partial order relation AE defined by setting f AE g for two functions f and g, if and only if for every pixel x oe we have f (x) AE g(x). For any two functions f , g oe F( , R fi {≠OE, OE}), we write f ' g and f • g for the join and the meet, i.e., 'x oe (f ' g)(x) = max(f (x), g(x)), and, 'x oe (f • g)(x) = min(f (x), g(x)) 1 View from the Window at Le Gras is a heliographic image and the oldest surviving camera photograph according to (259) 2 The estimation has been taking from https://www.infotrends.com/ 3 The term professional image analyst is used in this document to refer to the person who needs to use imaging methods in practice for a given application.

Vector Space:

V = R p Discrete Support: ™ Z 2 f (x) = x = [x 1 , . . . , x p ]
x = (i, j) oe p (dimension space) Depending on the application, one may be interested in enriching the information in an image, going beyond colour information. This is what multispectral sensors do. They collect information at di erent values of wavelength ranges across the electromagnetic spectrum, including additional information the human eye fails to capture given that its receptors operate only in the visible light spectrum.

A variety of representations can be used to characterise the spectral information contained in an image, for instance:

• Probability density models. It is the classical assumption of the statistical modelling for a multivariate image. The classical assumption is a Multivariate Gaussian Distribution, i.e., the probability of a spectrum to be at certain region of the space follows N (µ, ) for some mean vector µ and covariance matrix .

• Linear mixing models: In such a way that each pixel in a scene may be decomposed into a sum of finite number of constituent endmembers, which represent the purest pixels in the scene. The abundances (weights in the sum) are subject to non-negativity constraint and, in some cases, sum-to-one constraint.

• Manifold models: The idea of capturing the complex geometry in the spectral representation of an image is the core of a (non-Euclidean) manifold representation [START_REF] Peyré | Manifold models for signals and images[END_REF]. Manifold learning methods are becoming a standard to embedding data onto their new transformed spaces. For instance, on the p≠1 hypersphere by normalising by the norm per pixel, or in supervised projections on the sphere as in [START_REF] Lunga | Unsupervised classification of hyperspectral images on spherical manifolds[END_REF]. Another manifold structure in a local-graph. It is denoted by the graph G = (E, V), where E = X is the set of vertices and V = [v ij ] oe R n ◊ R n the edge weight matrix. The graph is constructed in an unsupervised manner, with a goal of automatically determining the neighborhood structure as well as the corresponding connection weight for each datum. Examples of this type of representation are k-graph, '-graph and ¸1-graph [START_REF] Wright | Sparse Representation for Computer Vision and Pattern Recognition[END_REF]. Clustering, dimensionality reduction, image segmentation and analysis can be performed in this representation space.

• Complete lattice model: A total ordering definition for a cloud of points. The relation

x AE y have to be know for all pair of pixels x and y of the multivariate image. That is the (a) Original spectral information, denoted by X.

(b) Probability density models provide the probability spectrum to be at certain region of the space. X ≥ N (µ, ).

(c) Linear mixing models (positivity and additivity constrains) permit spectra only in the convex hull of the spectral space. X = A T E, where 0 AE A is the abundance matrix and E are the endmembers.

(d) Manifold models, for instance, representations on the sphere, allow a representation invariant to intensity changes (norm). x i ae x i /||x i ||, for all i = 1...n.

(e) Graph models provides a structure representation invariant to small perturbations in the spectral space. X ae (V, E).

(f) In the complete lattice representation, the set of pixels are analysed through a total order relation. X ae L. main goal in Chapter one. Mathematical morphology requires this kind of representation to ensure the appropriate application of lattice based transformations.

Fig. 1.2 shows a scheme of the some representations for the spectral information of a given multivariate image.

Mathematical morphology

Mathematical morphology is an approach created in the 1960s by George Matheron and Jean Serra, which o ers a theory for nonlinear image analysis. Mathematical morphology has been used by many professional image analysts due to its sound theoretical basis and the fact that the operators have a natural geometric interpretation, which facilitates the design and interpretation of automatic methods. Mathematical morphology (197; 246; 251), is part of the image analysis techniques that consider images as a topographical surface [START_REF] Caselles | Geometric description of images as topographic maps[END_REF]. Mathematical morphology, developed originally for sets, can be applied to numerical functions either by means of umbras, or directly via the complete lattice approach.

Mathematical morphology on complete lattices

In this HDR, two family of mathematical morphological transformations are considered: 1) connection based morphology and 2) adjunction based morphology. The first strategy deals with simplification of a given image in the partition space induced by its connected components (227; 237; 246). The second perspective analyses an image by composition of two basic transformations, dilation and erosion, which form a Galois connection [START_REF] Heijmans | The algebraic basis of mathematical morphology I. dilations and erosions[END_REF]. Another approach studying the links between mathematical morphology and Partial Di erential Equations (PDEs) (102; 162) is not considered in this manuscript. Other representation of morphological operators in max-plus algebras studied in [START_REF]Morphological adjunctions represented by matrices in max-plus algebra for signal and image processing[END_REF] are neither considered in this document.

In this section we provide the theoretical background of mathematical morphology in its formulation based on complete lattices. For a more detailed exposition, we refer to Chapter two by J. Serra and C. Ronse in [START_REF] Najman | Mathematical morphology: from theory to applications[END_REF]. Definition 1.1. A set L with a binary relation AE that satisfies the following properties:

1. reflexivity: x AE x 2. anti-symmetry: x AE y and y AE x ∆ x = y 3. transitivity: x AE y and y AE z ∆ x AE z for all x, y, z oe L, is called a partially ordered set (poset) by the partial order AE. The order becomes total when: 'x, y oe L, x AE y or y AE x L is totally ordered by the relation AE.

Definition 1.2. A poset (L, AE) is called a lattice is each two-element {r, s} subset in L has a least upper bound join (r ' s) and a greatest lower bound meet (r • s) .

Note that the previous definitions makes • and ' binary operations monotone with respect to the given order AE. Additionally, by induction argument every non-empty finite subset in L has a join and a meet. The lattice L is complete if all non-empty subsets finite or not of L has a join and a meet.

A minimum (or least) ‹ oe L Õ is an element which is less than or equal to any other element of L Õ , that is, r oe L Õ ∆ ‹ AE r. We denote the minimum of L by ‹. Equivalently, a maximum (largest) € in L Õ is the greatest element of L Õ , that is, r oe L Õ ∆ r AE €. We denote the maximum of L by €.

Definition 1.3 (Dilation/Erosion

). A mapping  : L 1 ae L 2 of a complete lattice L 1 into a complete lattice L 2 is said to be a dilation if Â(

x joeJ r j ) =
x joeJ Â(r j ) for all families (r j ) joeJ of elements in L 1 . A mapping is said to be an erosion if Â( w joeJ r j ) = w joeJ Â(r j ) for all families (r j ) joeJ of elements in L 1 .

The important relationship between dilation and erosion is that they are dual concepts from the lattice point of view. Heijmans and Ronse [START_REF] Heijmans | The algebraic basis of mathematical morphology I. dilations and erosions[END_REF] showed that for any complete lattice L, we always have a dual isomorphism between the complete lattice of dilation on L and the complete lattice of erosions on L. This dual isomorphism is called by (247) (Chapter 1) the morphological duality. In fact it is linked to the concept of Galois connections in lattice theory, as we will see at the end of this section. Definition 1.4 (Adjunction). Let " oe F(L 1 , L 2 ) and Á oe F(L 2 , L 1 ) be two mappings and (L 1 , AE 1 ), (L 2 , AE 2 ) two complete lattices. Then we say that (Á, ") is an adjunction if for every r oe L 1 , s oe L 2 , we have

"(r) AE 2 s ≈∆ r AE 1 Á(s) (1.1)
In an adjunction (Á, "), Á is called the upper adjoint and " the lower adjoint.

Proposition 1.5. If (Á, ") is an adjunction, then " is a dilation and Á is an erosion.

Definition 1.6 (Galois connection).

Let L 1 and L 2 be lattices and let -: L 1 ae L 2 and -: L 2 ae L 1 satisfy the following conditions. Then (-, -) is a Galois connection between L 1 and L 2 .

Proposition 1.7. Let the lattices L 1 and L 2 , maps -: L 1 ae L 2 and -: L 2 ae L 1 a Galois connection. Then the following condition holds for all r oe L 1 and s oe L 2 :

s AE 2 -(r) ≈∆ r AE 1 -(s). (1.2)
Clearly an adjunction in L is a Galois connection between the dual (L 1 , Ø 1 ) and (L 2 , Ø 2 ) (indeed, compare definition 1.4 and proposition 1.7).

At this point, we can see that definition of erosion/dilation on a image requires a complete lattice structure, i.e., a total ordering 4 among the pixels to be analysed.

Accordingly, the extension of mathematical morphology to vector spaces, for instance, colour/multi/hyper/ultraspectral images, is neither direct nor trivial because the pixels in the images are vectors. We refer keen readers to (8; 14) for a comprehensive review of vector valued mathematical morphology.

Preorder by h-function

Let S be a nonempty set and assume that L is a complete lattice. Let h : S ae L be a surjective mapping in F(S, L). Define an equivalence relation = h on S as follows: r = h s … h(r) = h(s) 'r, s oe S. As it was defined in [START_REF] Goutsias | Morphological operators for image sequences[END_REF], we refer by AE h the h-ordering given by the following relation in S 'r, s oe S, r AE h s … h(r) AE h(s)

Note that AE h preserves reflexivity (r AE h r) and transitivity (r 1 AE h r 2 and r 2 AE h r 3 ∆ r 1 AE h r 3 ). Even so, AE h is not a partial ordering because r AE h s and s AE h r implies only that r = h s but not r = s. Note that h-ordering is a preorder in S.

An operator  : S ae S is h-increasing if r AE h s implies that Â(r) AE h Â(s). Additionally, since h is surjective, an equivalence class is defined by S[r] = {s oe S|h(s) = r}, where r oe L. The Axiom of Choice [START_REF] Goutsias | Morphological operators for image sequences[END_REF] implies that there exist mappings h Ω : L ae S such that hh Ω (r) = r, for r oe L.

Unless h is injective, there exist more than one such h Ω mappings: h Ω is called the semi-inverse of h. Note that h Ω h is not the identity mapping in general (but h Ω h = h id). However, we have that for any h-increasing  : S ae S the result Âh Ω h = h  and hence hÂh Ω h = hÂ. Let us introduce   the operator associated to  in the lattice L. A mapping  : S ae S is h-increasing if and only if there exists an increasing mapping   : L ae L such that  Âh = hÂ. The mapping   is uniquely determined by  and can be computed from

  = hÂh Ω
We can now define the h-erosion and h-dilation. Let Á, " : S ae S be two mappings with the property "(x) AE h y … x AE h Á(y), 'x, y oe S then the pair (Á, ") is called an h-adjunction. Moreover, let (Á, ") be h-increasing mappings on S, and let Á ae h  Á, " ae h  ". Then (Á, ") is an h-adjunction on S if and only if ( Á,  ") is an adjunction on the lattice L. Therefore a mapping " (resp. Á) on S is called h-dilation (resp. h-erosion) if  " (resp.  Á) is a dilation (resp. erosion) on L. h-adjunctions inherit a large number of properties from ordinary adjunctions between complete lattices. Assume that (Á, ") is an h-adjunction then

" = "Á AE h id AE h Ï = Á".
Hence, " is h-anti-extensive and " is h-extensive. The operator " on S is called h-opening if the operator  " on L determined by " ae h  " is an opening. The operator " is also h-increasing and satisfies "" = h " (h-idempotency). The h-closing is similarly defined. operators, i.e., the structuring elements are planar shapes. The non-planar structuring functions are defined by weighting values on their support [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]. Let us assume that we have an adaptive 5mapping h : R p ae R. The h-erosion Á SE,h (f ) and h-dilation " SE,h (f ) of an image f at pixel x oe by the structuring element SE µ are the two mappings F( , V) ae F( , V) defined respectively by

h (Á SE,h (f )(x)) = Á SE (h(f )) (x), (1.3) 
and

h (" SE,h (f )(x)) = " SE (h(f )) (x), (1.4) 
where Á SE (f ) and " SE (f ) are the standard numerical flat erosion and dilation of image f oe F( , L):

Á SE (f ) (x) = Ó f (y) : f (y) = fi [f (z)] , z oe SE x Ô (1.5) " SE (f ) (x) = Ó f (y) : f (y) = fl [I(z)] , z oe ŜE x Ô (1.6)
with SE x being the structuring element centred at point x and ŜE is the reflected structuring element. If the inverse mapping h ≠1 is defined, the h-erosion and dilation can be explicitly written as:

Á SE,h (f )(x) = h ≠1 (Á SE (h(f ))) (x),
and

" SE,h (f )(x) = h ≠1 (" SE (h(f ))) (x).
Of course, the inverse h ≠1 only exists if h is injective. In practice, we can impose the invertibility of h by considering a lexicographic ordering for equivalence class L[x]. In fact, this solution involves a structure of total ordering which allows to compute directly the h-erosion and dilation without using the inverse mapping, i.e.,

Á SE,h (f )(x) = I f (y) : f (y) = fi h [f (z)] , z oe SE x J , (1.7) 
and

" SE,h (f )(x) = I f (y) : f (y) = fl h [f (z)] , z oe ŜE x J , (1.8) 
where w h and

x h are respectively the infimum and supremum according to the ordering AE h . Starting from the h-adjunction (Á SE,h (f ), " SE,h (f )), all the morphological filters such as the opening and closing have their h-counterpart, e.g., the h opening and closing are defined as

" SE,h (f ) = " SE,h (Á SE,h (f )), Ï SE,h (f ) = Á SE,h (" SE,h (f ))
(1.9) Similarly, any other mathematical morphology operator based on adjunction operators can be also extended to multivariate images. For instance, geodesic operators as opening by reconstruction [START_REF] Soille | Morphological Image Analysis[END_REF], levelings [START_REF] Levelings | ISMM '98: Proceedings of the fourth international symposium on Mathematical morphology and its applications to image and signal processing[END_REF], additive morphological decompositions ( 278) and so on.

Pre-ordering a vector space

Let X f be the set of vector values of a given image f , which can be viewed as a cloud of points in V = R p . Fig. 1.3 shows an example of colour image f , and its spectral representation as points X f . In general, pixel values in multispectral images are vectors defined in R p . From previous section, for a given multivariate image f : ae R p , the challenge to build complete lattice structures is to define a mapping h : R p ae L, to obtain a mapping ae L, where L is a lattice.

Many authors have already worked on this idea (8; 14; 19; 277). We present three families of mappings h for a given x oe R p in the following subsections.

Unsupervised ordering

That can be obtained by using the more representative projection in a statistical dimensional reduction technique, for example a linear approach as PCA [START_REF] Jolliffe | Principal Component Analysis[END_REF] or some non-linear projections approach [START_REF] Lezoray | Learning complete lattices for manifold mathematical morphology[END_REF]. To illustrate, we consider the first projection to induce the ordering, i.e.,

x 1 AE x 2 ≈∆ h PCA (x) AE h PCA (x 2 )
, where h PCA is the first eigenvector of the centred covariance matrix X f . The intuition behind this approach is simple and clear: pixels are ordered according to their representation in the projection with greatest variance. An example is illustrated in Fig. 1.4(b). In this example, we can see that the induced minimum and maximum have no practical interpretation.

Distance based ordering

Let us focus on the case of h-ordering based on distances. This approach is motivated by the intuition that order computation should be adaptive to prior information given by application interests.

Referenced ordering

As a starting point for distance based ordering, we consider (8) defining a function h REF (•, t) that computes the similarity for a given pixel x to a colour reference t by measuring its spectral distance, i.e., x 1 AE hREF x 2 ≈∆ K(x 1 , t) AE K(x 2 , t), where K : R p ◊ R p ae R + is a kernel-induced distance [START_REF] Muller | An introduction to kernel-based learning algorithms[END_REF]. The original formulation in (8) uses the case of Euclidean distance in the colour space as kernel-induced distance 6 . Thus, the ordering based on a reference spectrum exhibits a lattice where the minimum has been fixed. However, that maximum is associated with the "farthest" vector but that does not have a simple interpretation. To illustrate the result of this approach, we generalise the definition of a referenced order for a training set T as follows,

x 1 AE hREF x 2 ≈∆ min i ||x 1 ≠ t i || Ø min i ||x 2 ≠ t i ||
for all t i oe T . The geometric interpretation is that h REF (x; T ) is basically the distance in L OE of x to the convex hull of vectors in T (if x is not in the convex hull). Thus, is not so di cult to see that h REF can be expressed as 

h REF (x; T ) = q |T | i=1 ◊ i x K(t i , x) where ◊ i x " = 0 only for arg min i ||x ≠ t i ||.

Supervised ordering

A more general formulation for distance based ordering has been introduced in [START_REF]Supervised ordering in R n : Application to morphological processing of hyperspectral images[END_REF]. It defines a h-supervised ordering for every vector x oe R p based on the subsets B = {b 1 , . . . , b |B| } and F = {f 1 , . . . , f |F| }, as a h-ordering that satisfies the following conditions: h(b) = ‹ then b oe B, and h(f ) = € then f oe F. Note that ‹, € are the smallest and largest element in the lattice L. Such an h-supervised ordering is denoted by h SUPER (•; B, F).

The main motivation of defining this supervised ordering schema is to obtain maximum and minimum in the lattice L interpretable with respect to sets B and F. It is important to remind that max and min are the basic words in the construction of all mathematical morphology operators. At this point, the problem is how to define an adequate supervised ordering for a given vector space R p and two pixel sets B, F. The approach introduced by (277) involves the computation of standard support vector machine (SVM) to solve a supervised classification problem to define the function h SUPER (x; B, F). An amusing geometrical interpretation is based on results from [START_REF] Bennett | Duality and geometry in svm classifiers[END_REF], in where the ordering induced by h SUPER , corresponds to the signed distance to the separating plane between the convex hull associated to F and the one containing the B. From [START_REF] Cristianini | An Introduction to support vector machines and other kernel based learning methods[END_REF], the solution of the classification case of SVM can be expressed as follows:

h SUPER (x; B, F) = |B| ÿ k=1 ◊ k K(b k , x) + |F| ÿ j=1 ◊ j K(f j , x) (1.10)
where ◊ k are computed simultaneous as a quadratic programming optimisation problem [START_REF] Cristianini | An Introduction to support vector machines and other kernel based learning methods[END_REF]. For all the examples, given in this section we have used a Gaussian Kernel, with the Euclidean distance between colour or spectra, i.e., K(x i , Note that the supervised lattice in Fig. 1.6(c), is a mapping from the spectral information to a linear ordering (from top-left corner to bottom right corner). One advantage of the definition of h-ordering on vector space is that it can be applied directly to multispectral or even hyperspectral images.

x j ) = exp(≠c||x i ≠ x j || 2 ),
(a) " SE,h PCA (f ) 

(b) Á SE,h PCA (f ) (c) Gradient by h PCA (d) " SE,h ANOM (f ) (e) Á SE,h ANOM (f ) (f) Gradient by h ANOM (g) " SE,h REF (f ) (h) Á SE,h REF (f ) (i) Gradient by h REF (j) " SE,h SUPER (f ) (k) Á SE,h SUPER (f ) (l) Gradient by h SUPER

Ordering based on anomalies

Distance based ordering approaches discussed above are valid if the pair set (B, F) is available. Obviously, one cannot realistically believe that for every application the exact spectral information about the background of the image is available. Thus, if one gives up this paradigm, no other option di erent to unsupervised ordering remains. Therefore, in order to take advantage of the physical structure of an image, it was introduced in (279) an ordering based on "anomalies" with respect to a background associated with a majority of points. It is called depth ordering and is maximal in the "center" of the spectral representation of a image f and it produces a vector ordering "centre-outward" to the outliers in the vector space R p . In this paradigm, the assumption of existence of an intrinsic background/foreground representation is required, i.e., given a vector image f : ae R p , X f has can be decomposed as

X f = {X B(f ) , X F(f ) } such that X B(f ) fl X F(f ) = ÿ and card{X B(f ) } > card{X F(f ) }.
Roughly speaking, the assumption means:

(1) the image has two main components: the background and the foreground; (2) There are more pixels in the background than in the foreground. Several examples of these kinds of functionals have been analysed in [START_REF] Velasco-Forero | Mathematical morphology for vector images using statistical depth[END_REF]. However, we limited ourselves to the statistical projection depth case presented in (279) and defined by

h ANOM (x; f ) = sup ||u||=1 |u T x ≠ MED(u T X f )| MAD(u T X f ) (1.11)
where MED denoted the univariate median and MAD the median absolute deviation, i.e., the median of the di erences with respect to the median. Note that the superscript T denotes matrix transposition. Let us now point out some aspects of 1.11 in order to better characterise it. First, it is a anomaly based ordering, due to the fact that if X f ≥ N (µ, ) a Gaussian distribution with mean vector µ and covariance matrix then h ANOM (x; f ) 2 Ã (x ≠ µ) T ≠1 (x ≠ µ), the Mahalanobis distance (see 5 to details). Secondly, 1.11 is invariant to a ne transformations in the vector space R p . Third, unfortunately, the exact computation of 1.11 is computationally intensive except when the number of pixels n is very small. However, we can compute a stochastic approximation by using a large number of random projections u and computing the maximum for a given x (279).

To summarise the above, the statistical projection depth function in 1.11 induces an anomaly based ordering for images with background/foreground representation. That is an ordering based on a data-adapted function and in such a way that the interpretation of supremum and infimum operations is known a priori, because max values can be associated with "outlier" pixels in the high-dimensional space and min are "central" pixels in R p space. A simple example is illustrated in Fig. 1.4(c) where 1.11 "detects" the girl thanks to the fact that her spectral information is unusual in comparison to the one from the swimming pool.

Implementation

Once a h-ordering has been defined, it becomes easy in practice to implement morphological transformations on multidimensional images such as colour or multispectral ones. Actually, we can use a scalar to code each pixel on the image, and the standard morphological transformations for greyscale images can be used directly. The result is deciphered by mapping back the total ordering in to the vector space. An e ective implementation using a look-up table has been presented in [START_REF] Talbot | Complete ordering and multivariate mathematical morphology[END_REF]. A pseudo-code for a multivariate erosion is shown in [START_REF]Vector Ordering and Multispectral Morphological Image Processing[END_REF]. The index image and the sorted vector look-up table constructed above are used to generate an ordered table. At this point, any morphological transformation can be performed on the lattice image, which can be considered as a greyscale image. The output of the morphological transformation is converted back to the original vector space by replacing each pixel by its corresponding vector using a look-up table.

The False colours Problem Versus the Irregularity Issue

One problem on vector-valued mathematical morphology is the creation of "false colours" or, more generally, false values (249). An operator  : R p ae R p introduces false values whenever there are values in Â(f ) which do not belong to the original image f . The abnormal false values can be a problem in some applications such as when dealing with remote sensing images (249). A total order, such as the lexicographical order and a reduced ordering combined with a look-up table, circumvents the problem of false values (249). Using a total order, the supremum and the infimum of a finite set are elements of the set, i.e.,they coincide with the maximum and minimum operations, respectively. On the downside, a total order can be irregular in a metric space. According to Chevallier and Angulo, the irregularities follow because the topology induced by a total order may not reproduce the topology of a metric space [START_REF] Chevallier | The Irregularity Issue of Total Orders on Metric Spaces and Its Consequences for Mathematical Morphology[END_REF]. Specifically, let the value set V be a totally ordered set as well as a metric space, with metric d : V ◊ V ae [0, +OE). [START_REF] Chevallier | The Irregularity Issue of Total Orders on Metric Spaces and Its Consequences for Mathematical Morphology[END_REF] showed that there exist u, v, w oe V such that u AE v AE w but d(u, w) < d(u, v) under mild conditions with respect to the connectivity of V. In words, although u is closer to w than to v, the inequalities u AE v AE w suggest w is farther from u than v. Since the morphological operators are defined using the extrema operators, they do not take the metric of V into account.

A visual interpretation of the irregularity is shown in Figure 1.7, which is very similar to an example provided in [START_REF] Chevallier | The Irregularity Issue of Total Orders on Metric Spaces and Its Consequences for Mathematical Morphology[END_REF]. Figure 1.7a) shows an image with three RGB colours, namely u = (0, 0, 0), v = (0, 0, 1), and w = (1/255, 0, 0). The toy image f is obtained by replacing pure black values u by w with probability 0.3 from an image of size 32 ◊ 64 with two stripes of colours blue and black. The dilations " L SE (f ) and " M SE (f ) by a cross structuring element SE obtained using the lexicographical RGB and the marginal ordering schemes are also depicted in Figure 1.7. Visually, u and w are black colours while v is a pure blue. Using the Euclidean distance, we obtain d(u, v) = 1 and d(u, w) = 0.005. These distances agree with our colour perception. However, using the lexicographical ordering, we obtain u AE L v AE L w. As a consequence, the following happens when we compute the dilation " L SE (f ) = g L using the lexicographical ordering: the blue v advances over the black u but it is overlaid by the black w, resulting in the irregularities shown in Figure 1.7b). In contrast, the dilated image depicted in Figure 1.7c) obtained using the marginal ordering does not present any visual irregularity.

Although we know that the irregularity results from a divergence between the topologies induced by the metric and the total order, no consensual measure agrees with our visual perception. A measure for the irregularity can help to choose an appropriate ordering scheme for vector-valued mathematical morphology. The following section proposes a measure of irregularity using the Wasserstein metric.

The Wasserstein Metric and the generalised Sum of Pixel-wise Distances

In this subsection, we present a measure for the irregularity, referred to as the global irregularity index. Although we are interested in measuring the irregularity implied by a total ordering, we will not assume V is totally ordered. Indeed, the proposed irregularity measure is well defined whenever the is finite and V is a metric space. For simplicity, however, the value set V corresponds to the RGB colour space equipped with the Euclidean distance in the following examples and computational experiments.

The global irregularity index is given by the relative gap between the Wasserstein metric and a generalised sum of pixel-wise distances.

Given an input image f oe F( , V), let g = Â(f ) denote the output of the image operator. The generalised sum of pixel-wise distances of f and g is an operator D pO : F( , V)◊F( , V) ae [0, +OE) given by

D pO (f , g) = Q a ÿ xoe d pO ! (f )(x), g(x) " R b 1 p O , ( 1.12) 
with a parameter p O Ø 1. The generalised sum of pixel-wise distances is one of the simplest measures that considers the metric d and the pixel locations. However, D pO is usually not properly scaled, possibly because its dimension is the same as the metric d. For example, the images shown in Figure 1.7 yield the values D 1 (f , g L ) = 34.12 and D 1 (f , g M ) = 66.05. Note that the inequality D 1 (f , g L ) < D 1 (f , g M ) holds true although g L is more irregular than g M . Hence, the generalised sum of pixel-wise distances is not an appropriate measure for the irregularity.

Let us now review the Wasserstein metric, also known as the Earth mover's distance or the Kantorovich-Rubinstein distance in some contexts (230; 289). The Wasserstein metric is formulated as a transport problem and can measure distances between probability distributions [START_REF] Villani | Optimal Transport[END_REF].

The objective of a transport problem is to minimise the cost to deliver items from n 1 factories to n 2 shops [START_REF] Peyré | Computational optimal transport[END_REF]. In our context, the transport problem minimises the cost to transform the input image f into the output image g. The cost is defined using the metric on the value set V. Precisely, let V (f ) = {v 1 , . . . , v n 1 } and V (g) = {u 1 , . . . , u n 2 } be the sets of colour values of f and g, respectively. Also, let

f i = Card({x : (f )(x) = v i }) and g j = Card({x : g(x) = u j }), (1.13) 
denote respectively the number of pixels of value v i in the image f and the number of occurrences of the value u j in g, for i = 1, . . . , n 1 and j = 1, . . . , n 2 . Given p O Ø 1, the cost to transform a value v i of f into a value u j of g is defined by

c ij = d pO (v i , u j ), 'i = 1, . . . , n 1 , 'j = 1, . . . , n 2 . (1.14)
The Wasserstein metric, denoted by

W pO : F( , V) ◊ F( , V) ae [0, OE) for p O Ø 1, is given by W pO (f , g) = Q a n 1 ÿ i=1 n 2 ÿ j=1 c ij x ij R b 1 p O , p O Ø 1, (1.15) 
where x ij solves the linear programming problem

Y _ _ _ _ _ _ _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ _ _ _ _ _ _ [ minimise n 1 ÿ i=1 n 2 ÿ j=1 c ij x ij subject to n 2 ÿ j=1 x ij = f i , 'i = 1, . . . , n 1 , n 1 ÿ i=1 x ij = g j , 'j = 1, . . . , n 2 , x ij Ø 0, 'i = 1, . . . , n 1 , 'j = 1, . . . , n 2 .
(1.16)

The Wasserstein metric is the p O -th root of the minimal cost to transform f into g. In the transport problem (1.16), the variable x ij represents the (optimal) number of pixels with value v i of f transformed to pixels with value u j of g. Moreover, the solution of (1.16), which can be arranged in a matrix X oe R n 1 ◊n 2 , is an optimal transport plan. An optimal transport plan is a cyclically monotone plan in the sense that the cost

q n 1 i=1 q n 2 j=1 c ij x ij cannot be improved by
changing the number of pixels with value v i transformed to pixels with value u j [START_REF] Villani | Optimal Transport[END_REF]. For the images shown in Figure 1.7, we obtain W 1 (f , g L ) = 6.18 and W 1 (f , g M ) = 65.94. Note that the inequality W 1 (f , g L ) < W 1 (f , g M ) holds despite g L being more irregular than g M . Like the generalised sum of pixel-wise distances, the Wasserstein metric is not appropriate for measuring the irregularity.

The Global Irregularity Index

Although both the generalised sum of pixel-wise distances and the Wasserstein metric are, per se, not appropriate to evaluate the irregularity, we advocate that they can be combined to yield a useful measure. First of all, note that the generalised sum of pixel-wise distances satisfies

D pO (f , g) = Q a n 1 ÿ i=1 n 2 ÿ j=1 c ij y ij R b 1 p O , p O Ø 1, (1.17) 
where

y ij = Card ({x : (f )(x) = v i and g(x) = u j , x oe }) , (1.18) 
for all i = 1, . . . , n 1 and j = 1, . . . , n 2 . Moreover, it is not hard to see that y ij Ø 0 and the identities

n 2 ÿ j=1 y ij = f i and n 1 ÿ i=1 y ij = g j , (1.19) 
where f i and g j are given by (1.13), hold for all i = 1, . . . , n 1 and j = 1, . . . , n 2 . Therefore, the generalised sum of pixel-wise distances also measures the cost of transforming f into g. Because W pO is the minimal cost, the inequality W pO (f , g) AE D pO (f , g) holds for any f and g = Â(f ). The y ij 's given by (1.18), which can be arranged in a matrix Y oe R n 1 ◊n 2 , is called the operator's plan. The operator's plan is probably not an optimal transport plan. Indeed, one usually can reduce the cost

q n 1 i=1 q n 2
j=1 c ij y ij by rerouting the number of pixels with value v i in f transformed to pixels with value u j in g. In some sense, the di erence D pO (f , g) ≠ W pO (f , g) measures the cycles in the operator's plan that can be reduced.

In order to reduce the impact of the metric d on the value set V and the impact on the choice of the parameter p O Ø 1, we propose to measure the irregularity using the mapping

g pO : F( , V) ◊ F( , V) ae [0, 1]
given by the relative gap between D pO and W pO . Precisely, given images f , g oe F( , V), we define the global irregularity index by means of the equation

g pO (f , g) = D pO (f , g) ≠ W pO (f , g) D pO (f , g) , if D pO (f , g) " = 0, (1.20) 
and g pO (f , g) = 0 if D pO (f , g) = 0. Note that the larger the gap between W pO (f , g) and D pO (f , g), the larger the global irregularity index. Equivalently, we have

g pO (f , g) = Y _ ] _ [ 0, if D pO (f , g) = 0, 1 ≠ W pO (f , g) D pO (f , g) , otherwise.
(1.21)

The irregularity index is symmetric and bounded, that is, pO (f , g) = pO (g, f ) and 0 AE pO (f , g) AE 1. Moreover, because D pO and W pO have the same units and similar magnitudes, g pO (f , g) is a dimensionless quantity. The more irregular is g = Â(f ), the larger the value of g pO (f , g) is expected to be. For example, the irregularity index of the dilated images g L and g M shown in Figure 1.7b) and 1.7c) are g 1 (f , g L ) = 81.9% and g 1 (f , g M ) = 0.17%, respectively. The following examples explores further the global irregularity index using toy images.

As example, some computational experiments with tiny colour images are provided. Precisely, the global irregularity index g 1 of morphological operators applied on one hundred colour images from the CIFAR10 dataset is computed. The measures have been computed using erosion, dilation, opening, and closing by a 3 ◊ 3 square structuring element. Specifically, we have computed twenty-five dilations, erosions, openings, and closings on di erent images from the CIFAR10 dataset. Three approaches based on total orderings are considered. The first is the RGB lexicographical order in which the colours are ranked sequentially according to the red, green, and blue channels. The other two approaches are based on reduced orderings [START_REF]Vector Ordering and Multispectral Morphological Image Processing[END_REF]. Specifically, we considered the supervised reduced ordering based on an SVM with radial basis function kernel [START_REF]Supervised ordering in R n : Application to morphological processing of hyperspectral images[END_REF]. The SVM is trained to distinguish the central object on an image from the rest. The last approach uses an unsupervised reduced ordering based on the random projection depth, which aims to discriminate between background and foreground pixels (279). For comparison, two approaches based on partial orderings are also included. Namely, the marginal approach and the approach based on Loewner order [START_REF] Burgeth | An approach to color-morphology based on Einstein addition and Loewner order[END_REF]. Because these two approaches are not based on total orders, their output images are not expected to be very irregular.

Figure 1.8 depicts some original images, the outcome of a morphological operator, and the corresponding global irregularity index. The images in the first column correspond to the original colour images. The following columns present the output of morphological operators defined using the marginal, Loewner, lexicographical RGB, supervised SVM-based, and projection depth approaches, respectively. We provide the global irregularity index below the images produced by the morphological operators. As expected, the marginal and the Loewner approaches yielded global irregularity indexes smaller than the lexicographical, SVM-based, and projection depth approaches. The supervised SVM-based approach yielded the most irregular dilated image. The irregularity index of 5.38% produced by projection depth's dilation of the cat image is an outlier of the global irregularity index produced by this unsupervised morphological approach. Indeed, the median of the global irregularity index produced by the morphological operators based on the projection depth is 45.22%. The eroded image depicted in the last column of Figure 1 

Perspectives

Considering the works presented in this chapter, one can imagine the continuation of the idea of order learning in di erent aspects:

1. How to learn an order function from an database of images? 2. Is it possible to learn order function in the deep learning paradigm? What would be the correct loss functions in this context? How to create a ground-truth of order functions? The important thing in science is not so much to obtain new facts as to discover new ways of thinking about them.

William Lawrence Bragg

Introduction

In Chapter one the modelling of a multivariate image based as a lattice is presented. That leads to the problem of morphological treatment of images to determine an order function for vector data. In this chapter, most well-known morphological operators are reviewed. Additionally, adaptive structuring elements are introduced and an application of salt and pepper denoising is illustrated used conditional morphology. One can define a continuous image f on [0,

n 1 ] ◊ [0, n 2 ] by 'x oe , f (x) = Y ] [ f (x ≠ ( 1 2 , 1 2 )) if x ≠ ( 1 2 , 1 2 ) oe ‹ otherwise (2.1)
where ‹ represent the minimum possible value of any image. Then by considering the dilation of f by a closed unit square S = [≠1/2, 1/2] 2 , f c = sup yoeS f (x + y), one can obtain a continuous representation of the digital image that is upper semicontinuous and contrast invariant [START_REF] Caselles | Geometric description of images as topographic maps[END_REF]. In the sequel, by a convenient abuse of notation, we will use f to refer f c .

Inf/Sup convolutions

We study here functions f : ae R, where R it allowed to be extended-real-valued, i.e., to take values in R = [≠OE, OE]. Accordingly, the set of all such functions is denoted by F( , R). Definition 2.1. In mathematical morphology [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF], the dilation (sup-convolution) " SE (f ) of f is given by:

'x oe , " SE (f )(x) := sup yoe {f (y) + SE(x ≠ y)} = sup woe {f (x ≠ w) + SE(w)} , ( 2.2) 
where SE oe F( , R) is the structuring function which determines the e ect of the operator. Here the inf-addition rule OE ≠ OE = OE is to be used in case of conflicting infinities. sup (f ) and inf (f ) refer to the supremum (least upper bound) and infimum (greatest lower bound) of f .

The erosion (246) Á SE (f ), known as inf-convolution in convex analysis [START_REF]Inf-convolution, sous-additivité, convexité des fonctions numériques[END_REF], is the adjoint operator to 2.2, and it is defined as

'x oe , Á SE (f )(x) := ≠" ŜE (≠(f )(x) = inf yoe {f (y) ≠ SE(y ≠ x)} = inf woe {f (x + w) ≠ SE(w)} , (2.3)
where the transposed structuring function is 

ŜE(x) = SE(≠x). Remark 2.2. 'f , g oe F( , R)
(f )(x) AE g(x) ≈∆ (f )(x) AE Á SE (g)(x), called adjunction (96). 3. An operator  is called increasing if (f )(x) Ø g(x) ∆ Â(f )(x) Ø Â(g)(x) 'x. The dilation (2.
2) and erosion (2.3) are increasing for all SE.

4. An operator  is called extensive Proof.

(resp. antiextensive) if Â(f )(x) Ø (f )(x) (resp. Â(f )(x) AE (f )(x)), 'x.
(1) and ( 2) are classical results from [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]. As explained in [START_REF] Heijmans | The algebraic basis of mathematical morphology I. dilations and erosions[END_REF] and (163), the adjunction is related to a well-known concept in group and lattice theory, the Galois connection. (3) and ( 6) are easy to prove directly from the definition of the operators. It has been also proved in the original paper of inf-convolution (Proposition 6.d) in [START_REF]Inf-convolution, sous-additivité, convexité des fonctions numériques[END_REF]. ( 4 3) and ( 4) is easy to prove (5).

) 'f , " SE (x) Ø (f )(x) ∆ 'f, sup (f (x ≠ w) + SE(w) ≠ f (x)) (x) Ø 0 ∆ SE(0) Ø 0. Now, sup(f (x ≠ w) + SE(w)) Ø (f )(x) + SE(0), if SE(0) Ø 0 ∆ sup(f (x ≠ w) + SE(w)) Ø f (x). From (
Usually in practice the function f is a countable set of points, then max and min are used instead of supremum and infimum. 

" SE (f ) (resp. Ï SE (f )), and it is defined by " SE (f ) := Á SE (" SE (f )) (resp. Ï SE (f ) := " SE (Á SE (f ))) Remark 2.4. 'f , g oe F( , R)
1. Opening and closing are duals, Ï(f ) = ≠"(≠f ) 2. Opening and closing are idempotents, Ï(Ï(f )) = Ï(f ) and "("(f )) = "(f ) 3. Opening is anti-extensive and closing is extensive, f AE Ï(f ) and "(f ) AE f

Geodesic Morphological Operations

In this section, we firstly provide an overview of fixed-point geodesic morphological operations which achieve reconstructions from a marker function under a constraining second image called mask. Then, we explain how these operations can be included as layers in a neural network, so that backpropagation can be performed. Finally, we present the main property of the Jacobian, that allows both a geometric interpretation and a strong robustness through noise. The main ingredient of geodesic transformations is the geodesic dilation. Let us consider numerical functions f , g oe F( , R), the set of functions mapping from space of points to R, the set of di erent possible values of the image. Definition 2.5. Let f , g be such that f AE g, f is called the marker and g the mask [START_REF] Soille | Morphological Image Analysis[END_REF]. The geodesic dilation of size one of f with respect to g is denoted by "

(1) g (f ) and is defined as the point-wise minimum between g and the elementary dilation in a given spatial space (a.k.a. structuring element SE), " 1 := " SE of the marker image, i.e., 'x oe , " (1) (f , g)(x) := "

(1)

g (f )(x) := " (1) (f )(x) • g(x) (2.4)
where • denotes the minimum coordinate-wise operation.

Definition 2.6. The reconstruction by dilation [START_REF] Soille | Morphological Image Analysis[END_REF] of a mask g from a marker f is defined as the geodesic dilation of f with respect to g iterated until stability and is denoted by REC " g (f ):

'x oe , REC " (f , g)(x) := REC " g (f )(x) := lim kae+OE " (k) g (f (x)) = lim kae+OE " (1) g ¶ . . . " (1) g ¸˚˙k times (f (x)) (2.5)
where k is such that "

(k) g (f (x)) = " (k+1) g (f (x)).
The reconstruction by dilation extracts the domes or peaks of the mask which are marked by the marker. This is illustrated in Fig. 2.1(a). Definition 2.7. The h-maxima transform provides a filter to select signal maxima using a contrast criterion [START_REF] Soille | Morphological Image Analysis[END_REF],

'x oe , HMAX h (f )(x) = REC " f (f (x) ≠ h) (2.6)
where h oe R is a parameter.

HMAX h transform cuts local maxima overall the image given a parameter h. Finally, a common way to detect peaks [START_REF] Soille | Morphological Image Analysis[END_REF], is the regional maxima transformation. Definition 2.8. The regional maxima transformation for f is defined by 

'x oe , RMAX(f )(x) = f (x) ≠ REC " f (f (x) ≠ '), ( 2 

Toggle mapping

The toggle contrast mapping is based on the idea of using a dilation process near a local maximum and an erosion process around a local minimum. The decision whether a pixel belongs to the influence zone of a maximum or a minimum is made on the basis of the morphological Laplacian defined in [START_REF] Van Vliet | A nonlinear Laplace operator as edge detector in noisy images[END_REF] as the di erence between the gradients by dilation " and erosion Á (220):

'x oe , SE (f )(x) = " SE (f ) ≠ Á SE (f )(x),
where

" SE (f )(x) = (" SE (f ) (x) ≠ f (x)) and Á SE (f )(x) = (f (x) ≠ Á SE (f ) (x)
). If the Laplacian is negative, then the pixel is considered to be in the influence zone of a maximum, while it is regarded to belong to the influence zone of a minimum if the Laplacian is positive. With this framework, we adopt the three-state toggle contrast mapping proposed in [START_REF] Schavemaker | Image sharpening by morphological filtering[END_REF] and based on the erosion, dilation, and identity transformations: Definition 2.9. [START_REF] Schavemaker | Image sharpening by morphological filtering[END_REF] Given an image f the toggle contrast mapping is defined as follows:

'x oe , • SE (f )(x) = Y _ _ _ ] _ _ _ [ Á SE (f ) (x) if SE (f )(x) > 0, " SE (f ) (x) if SE (f )(x) < 0, f (x)
otherwise.

(2.8)

Note that the original shock filter proposed of Kramer & Bruckner (139) corresponds to a two-state toggle contrast mapping where the identity transformation is not considered and the strict inequality < in (2.8) is replaced by AE, see also [START_REF] Meyer | Contrasts and activity lattice[END_REF]. The three-state toggle contrast mapping is more robust than the two-state one because it is self-dual and preserve the original signal in a single-slope signal, i.e., signals such that 'x : Á SE (f (x)) = " SE (f (x)). The original method of Kramer and Bruckner was formulated in a fully discrete way. The term shock filtering was introduced later by Osher and Rudin [START_REF] Osher | Shocks and other nonlinear filtering applied to image processing[END_REF]. Shock filtering constitutes an example of a PDE that is di cult to analyse in the continuous setting, while for a 1-D space discretisation it has been shown in [START_REF] Welk | Theoretical foundations for spatially discrete 1-d shock filtering[END_REF] that this process is well-posed and satisfies a maximum-minimum principle. An analytic solution of the corresponding dynamical system was even found [START_REF] Welk | Theoretical foundations for spatially discrete 1-d shock filtering[END_REF]. Di erent modifications have been proposed in order to improve the performance of shock filters. Alvarez and Mazorra (4) replaced the Laplacian as edge detector by K ‡ ú (f ), where K ‡ is a Gaussian with standard deviation ‡, f is the gradient of f , and ú denotes convolution.

By iterating toggle contrast mappings, a sharp discontinuity (shock) at the borderline between two influence zones is produced. Within each zone, a constant segment is created. Iterations are usually performed until idempotence1 , i.e.,

'x oe , • OE SE (f )(x) = lim iaeOE • i SE (f )(x) (2.9)
where

• i SE (f ) = • SE (• i≠1 SE (f )), • 0 SE (f )(x) = f (x) and • SE (f )(x)
is given by (2.8). The iterations of toggle contrast converge to a fixed point [START_REF] Kramer | Iterations of a non-linear transformation for enhancement of digital images[END_REF] reached after a finite number of iterations. In (111) are defined self-dual operators based on the morphological centre and, more generally, self-dual filters. Basically, it states that every increasing, self-dual operator can be modified in such a way that when iterated on any given image, it leads to a pixel-wise monotone sequence (i.e., strictly increasing or decreasing in each pixel). This implies a convergence to a limit operator, thus avoiding oscillation problems which typically hold for non-convergent filters such as median filtering. The convergence is obtained when all the pixels are fixed points, as shown in Fig. 2.2. To illustrate the evolution until convergence, Figs. 2.2(a-b) show the first and second iteration of (2.9) in a bi-dimensional representation of image value gradient by erosion and dilation. When convergence is reached, Fig. 2.2(c), all the pixels are fixed points according to the criterion (2.8). Note the presence of pixels in the line Á SE (f )(x) = " SE (f )(x) revealing that some pixels have identical values for their gradients by erosion and dilation. Shock filters following (2.9) have two main drawbacks. First, they su er from the halo e ect (90; 181) due to the tie case in the definition. In addition, they require a large number of iterations to converge. For example, in the case of the Cameraman image, 96 iterations were needed to reach the stable result shown in Fig. 2.2(f). These two drawback motived us to define the conditional toggle mapping introduced in section 2.6.

Type of Structuring Elements

Flat Structuring Element

The most commonly studied framework for dilation/erosion of functions is based on flat structuring functions, where structuring elements are viewed as shapes. More precisely, given the structuring element B ™ , its associated structuring function is

'x oe , B(x) = I 0 if x oe B, ≠OE if x oe B c .
(2.10) Hence, the flat dilation " B (f ) and flat erosion Á B (f ) can be computed respectively by the moving local maxima and minima filters with a neighbourhood induced by B. The shape of B is often a disk of radius ◊, denoted by B ◊ .

(a) Á SE (f ) vs " SE (f ) (b) Á SE (• SE (f )) vs " SE (• SE (f )) (c) Á SE (• OE SE (f )) vs " SE (• OE SE (f )) (d) f (e) • SE (f ) (f) • OE SE (f )
'x oe , B ◊ (x) = I 0 if ÎxÎ AE ◊, ≠OE if ÎxÎ > ◊.
(2.11)

Quadratic Structuring Element

From the theory of morphological scale-spaces, the most useful non-flat structuring functions are those which depend on a scale parameter (109; 244). The only separable and rotationally invariant structuring functions is the called quadratic structuring function [START_REF] Van Den | Quadratic structuring functions in mathematical morphology[END_REF]:

'x oe , q ◊ (x) = ≠ ÎxÎ 2 2◊ , ( 2.12) 
such that the corresponding dilation and erosion are equal to the Lax-Oleinik operators or viscosity solutions of the standard Hamilton-Jacobi PDE, also known as morphological PDE: u t (t, x) û Îu x (t, x)Î 2 = 0, (t, x) oe (0, +OE) ◊ ; u(0, x) = (f )(x), x oe . The morphological PDE was proposed and analysed using 2D boundary propagation in [START_REF] Van Den Boomgaard | The morphological structure of images: The di erential equations of morphological scale-space[END_REF] and further analysed using the morphological slope transform in [START_REF] Heijmans | Lattice calculus of the morphological slope transform[END_REF].

Remark 2.10. The erosion by a quadratic structuring function with parameter ◊ oe R + is defined by

Á q ◊ (f )(x) := inf yoe {f (y) ≠ q ◊ (y ≠ x)} = inf zoe {f (z ≠ x) ≠ q ◊ (z)} = inf zoe I f (z ≠ x) + ÎzÎ 2 2◊ J . (2.13)
The erosion of a function f by a quadratic structuring function with parameter ◊ is known as the Moreau envelope or Moreau-Yosida approximation (189; 205; 222), which o ers many benefits specially for optimisation purposes [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]. Additionally, 2.13 induces an additive scale-space (107; 124)" Á q ◊ 1 (Á q ◊ 2 (f )) = Á q ◊ 1 +◊ 2 (f ) and they form a (S 1/2 , +) scale-spaces that can be regarded as morphological counterparts to the Gaussian scale-space [START_REF] Van Den Boomgaard | The morphological structure of images: The di erential equations of morphological scale-space[END_REF]. It also plays a canonical role in the definition of dilation and erosion on Riemannian manifolds [START_REF]Riemannian mathematical morphology[END_REF] and their behaviour with respect to the maxima/minima is well understood [START_REF] Jackway | Scale-space properties of the multiscale morphological dilation-erosion[END_REF]. Besides their feature extraction properties, morphological dilation and erosion using quadratic structuring functions are a powerful tool for Lipschitz regularisation. For the nonconvex case, the Lasry-Lions double envelope is defined as the composition of two di erent Moreau envelopes, or using the morphological vocabulary, the composition of an erosion followed by a dilation with quadratic structuring functions. For all 0 < c < 1 and 0 < ⁄, the so-called Lasry-Lions regularisers ( 130) are defined as

" c ⁄ (f )(x) := " q c⁄ (Á q ⁄ (f )) (x), Ï c ⁄ (f )(x) := Á q c⁄ (" q ⁄ (f )) (x),
such that if f is bounded, the functions " c ⁄ and Ï ⁄ c are bounded and one has the ordering properties for the following envelopes:

• if ⁄ 1 Ø ⁄ 2 > 0, for any 0 < c < 1 then " c ⁄ 1 (f )(x) AE " c ⁄ 2 (f )(x) AE f AE Ï c ⁄ 2 (f )(x) AE Ï c ⁄ 1 (f )(x); • if 0 < c 2 < c 1 < 1, for any ⁄ > 0 then " c 2 ⁄ (f )(x) AE " c 1 ⁄ (f )(x) AE f AE Ï c 1 ⁄ (f )(x) AE Ï c 2 ⁄ (f )(x).
For any bounded function f , Lasry-Lions regularisers provide a function with a Lipschitz continuous gradient, i.e.,

|Ò" c ⁄ (f )(x) ≠ Ò" c ⁄ (f )(y)| AE M ⁄,c Îx ≠ yÎ, |ÒÏ c ⁄ (f )(x) ≠ ÒÏ c ⁄ (f )(y)| AE M ⁄,c Îx ≠ yÎ.
where the Lipschitz constant is

M ⁄,c = max ! (c⁄) ≠1 , ((1 ≠ c)⁄) ≠1 " . If f is bounded and Lipschitz continuous, one has Lip(" c ⁄ (f )) AE Lip(f ) and Lip(Ï c ⁄ (f )) AE Lip(f ), with Lip(g) = sup ; |g(x) ≠ g(y)| Îx ≠ yÎ ; x, y oe R p , x " = y < .
For more details on the properties of Lasry-Lions regularisers in the context of mathematical morphology, see (10).

Remark 2.11. The following statements are interesting about the composition of quadratic morphological operators (52; 222). Let 0 < µ < ⁄,

1. Á q ⁄ (" q ⁄ (f )) = Á q ⁄ (f ); 2. " qµ (Á q ⁄≠µ (f )) = Á q ⁄≠µ (" q ⁄ (f )); 3. " q ⁄≠c⁄ Ï c ⁄ (f ) = Ï c ⁄ (f ).

Adaptive mathematical morphology

The formulation contained in the previous subsection is translation invariant in the space and in the intensity, i.e., the same processing is considered for each pixel x in the image f . Several ways have been analysed to define local characteristics of the image in order to locally design the SE at each point of the product space (x ◊ t) oe ◊ R p . There are di erent ways to define a hierarchy of approaches proposed on adaptive morphology. We use the scheme introduced by Roerdink ( 223). According to the adaptivity considered by the construction of the structuring element, we have two main types:

1. Location-adaptive structuring elements (variability on ( 12)): The structuring element SE(x), depends on the location x in the image. It does not depend on the input image f (x). One of the earliest applications that required the use of variable size SEs is the tra c control camera system [START_REF] Beucher | Tra c spatial measurements using video image processing[END_REF]. This application inspired [START_REF] Beucher | Tra c spatial measurements using video image processing[END_REF] to consider the perspective e ect in the morphological analysis. Vehicles at the bottom of the image are closer and they appear larger than those higher in the camera. Thus, the SE should follow a law of perspective, for instance, vary linearly with its vertical position in the image. Another example is the term "locally adaptable" used in [START_REF] Cuisenaire | Locally adaptable mathematical morphology using distance transformations[END_REF], for SEs as a disk where the radius depends on the position of the image.

2. Input-adaptive structuring elements (variability on R p (12)): The shape of the SE(x) at x depends on the local features of an image f . We denote this kind of structuring element by SE f (x). Examples of this type of adaptive are morphological amoebas [START_REF] Lerallut | Image filtering using morphological amoebas[END_REF], intrinsic structuring elements [START_REF] Debayle | Spatially adaptive morphological image filtering using intrinsic structuring elements[END_REF], region growing structuring element [START_REF] Morard | Region growing structuring elements and new operators based on their shape[END_REF], nonlocal structuring elements (280), geodesic neighbourhood (99), bilateral inspired structuring elements (9) and adaptive anisotropic structuring element [START_REF] Blusseau | Adaptive anisotropic morphological filtering based on co-circularity of local orientations[END_REF].

The question one can ask is what kind of structuring elements are valid in the sense that adjunction properties are preserved. The following theorem has been presented in (280): Definition 2.12. A morphological weight system W f : ◊ ae R + on f is a weight function such for all x, y oe , Theorem 2.13. If W f a morphological weight system on f then

1. W f (x, x) = 0 'x oe , 2. W f (x, y) = W f (y, x) 'x, y oe , 3. ≠OE AE W f (x, y) AE 0 'x, y oe .
" W f (g 1 ) AE g 2 ≈∆ g 1 AE Á W f (g 2 ), for all f , g 1 , g 2 oe F(L, L)
Finally, an extension when the is a Riemannian manifold (13) is the following:

Definition 2.14. Let M a complete Riemannian manifold 1 and d M : M ◊ M ae R + , (x, y) ' ae d M (x, y), is the geodesic distance on M, for any image f : M ae R, R = R fi {≠OE, +OE}, so f oe F(M, R
) and for ◊ > 0 we define for every x oe M the canonic Riemannian dilation of f of scale parameter ◊ as

" ◊ (f )(x) = sup yoeM ; f (y) ≠ 1 2◊ d M (x, y) 2 < (2.14)
and the canonic Riemannian erosion of f of parameter ◊ as

Á ◊ (f )(x) = inf yoeM ; f (y) + 1 2◊ d M (x, y) 2 < (2.15)
An example for colored surfaces is illustrated in 2.3.

A final example of adaptive morphology is included in the next section. In this case, the adaptability is induced by a mask image, called conditional morphology. The case of salt-andpepper denoising is illustrated by means of a conditional shock filter.

Conditional Mathematical Morphology

In this section, the conditional toggle mapping is defined. That is the toggle mapping operator defined in (2.8) using an adaptive structuring element that varies in according to a mask. This term is used as reference of the role played by the mask and should not be confused with the one in conditional geodesic dilation, where a conditional dilation is defined (in the binary case) as the intersection of the mask image with a dilation of the marker image, see for instance (247, Sec. 4.4). Let m be the characteristic function of a mask, i.e., m oe F( , {0, 1}) maps each pixel x oe into {0, 1}. Our approach is based on a neighbourhood associated with a structuring element SE and to the mask m, denoted by N and defined as follows:

'x oe , N (SE,m) (x) = {y oe SE(x) and m(y) = 1}.
That allows us to define the conditional version of the dilation as the following morphological mapping F( , L) ae F( , L).

Definition 2.15. The conditional dilation of an image f with respect to m is defined by

'x oe , " SE (f , m) (x) = Y _ _ ] _ _ [ x yoeN (SE,m) (x) f (y) if x / oe m and N (SE,m) (x) " = ÿ, f (x) otherwise. 
(2.16)

and similarly for the erosion, Definition 2.16. The conditional erosion of an image f with respect to a binary mask m is defined by the following expression:

'x oe , Á SE (f , m) (x) = Y _ _ ] _ _ [ w yoeN ( ŜE,m) (x) f (y) if x / oe m and N ( ŜE,m) (x) " = ÿ, f (x) otherwise. 
(2.17)

A similar idea of conditional morphology was presented in [START_REF] Jochems | Morphologie Mathématique Appliquée au Contrôle Industriel de Pièces Coulées[END_REF] in the case of binary images. Expression 2.16 and 2.17 are equivalent to the ones introduced in (131) for binary images but di ers in greyscale images due to the "otherwise" case. The motivation of this idea is that pixels in the mask are considered as sources in the morphological operation, and they are invariants (see Fig. 2.4 for an illustrative example).

We can now note that the pair (Á SE (•, m) , " SE (•, m)) is not an adjunction 1.4as it is illustrated in Fig. 2.5.

However, we can calculate the algebraic adjunction of the conditional dilation. It is important because it produces a link in a unique way between morphological operators and idempotent filtering, achieved by composition of dilation/erosion (opening/closing). Additionally, it guarantees that the composition reduces the information content. This kind of analysis has been carried out in morphological operators applied to images [START_REF] Heijmans | The algebraic basis of mathematical morphology I. dilations and erosions[END_REF], graphs [START_REF] Heijmans | Graph morphology[END_REF], pyramids [START_REF] Keshet | Adjunctions in pyramids, curve evolution and scale-spaces[END_REF], and curve evolution [START_REF] Keshet | Adjunctions in pyramids, curve evolution and scale-spaces[END_REF].

Proposition 2.17. Let ÁSE (f , m) be defined by: 

'x oe , ÁSE (f , m)(x) = Y _ _ ] _ _ [ w yoeN ( ŜE,m c ) (x) f (y) if x oe m, and N ŜEflm c (x) " = ÿ, f (x) otherwise, ( 2 
" SE (f , m) AE g ≈∆ f AE ÁSE (g, m)
for all f , g oe F( , L). Following the suggestion by Jos Roerdink (224) a simple proof is obtained based on the observation that the conditional dilation in equation 2.16 can be rewritten as a 

" = m, " SE (Á SE (f , m) , m) = Á SE (" SE (f , m) , m) but not equal to f , so (Á SE (•, m) ," SE (•, m))
is not an adjunction 1.4. In the example, SE is a square of three pixels (8-connectivity).

space-adaptive dilation, i.e.,

'x oe , " SE(•,m) (f )(x) = fi yoeN (x) f (y),
where the spatial-varying structuring element N (x) is defined as (using the set notation for the mask m):

'x oe , N(x) = Y ] [ SE(x) fl m if x / oe m and SE(x) fl m " = ÿ, {x} otherwise.
Then the space-varying adjoint erosion [START_REF] Roerdink | Adaptivity and group invariance in mathematical morphology[END_REF], written ÁSE(,m) , is defined as

'x oe , ÁSE(•,m) (x) = fi yoe Ň (x) f (y)
where Ň (x) is the reflected structuring element defined by y oe Ň (x) ≈∆ x oe N (y). Accordingly, it can be seen that

'x oe , Ň (x) = Y ] [ ŜE(x) fl m c if x / oe m c and ŜE(x) fl m c " = ÿ, {x} otherwise.
which corresponds to the neighbourhood in 2.18.

The adjoint operator only changes pixels on the mask m as it is illustrated in Fig. 2.6 for the same example of Fig. 2.4. However, in the practical applications considered in this paper the adjoint operator ÁSE (•, •) does not have any interest. Finally, we present a list of properties for the conditional morphological operators defined in 2.16 and 2.17. Let Á SE (•, •), " SE (•, •) be the pair of conditional operators. Let define the composition of conditional operation as follows,

" SE (f , m) = Á SE (" SE (f , m) , m) and " SE (f , m) = " SE (Á SE (f , m) , m), Accordingly, the (a) Á SE (f , m) (b) ÁSE (f , m) Figure 2.6 (Á SE (f , m)," SE (f , m)) is an adjunction whereas (Á SE (f , m) ," SE (f , m)) is not. ÁSE (f , m)
only operates on the mask m in contrast with Á SE (f , m) that performs outside of m.

following properties hold:

(a) Á SE (f , m) = Á SE (Á SE (f , m) , m) , (idempotence); (b) " SE (f , m) = " SE (" SE (f , m) , m) , (idempotence); (c) w i i=1 Á SE (f i , m) = Á SE 1 w i i=1 f i , m 2 , (distributivity); (d) x i i=1 " SE (f i , m) = " SE 1 x i i=1 f i , m 2 , (distributivity); (e) f AE g ∆ Á SE (f , m) AE Á SE (g, m) , (increasingness); (f ) f AE g ∆ " SE (f , m) AE " SE (g, m) , (increasingness); (g) " SE (•, •) and Á SE (•, •) are morphological filters; (h) " SE (f , m) = " SE (f , m) ; (i) " SE (f , m) = Á SE (f , m) ; (j) Á SE (f , m) AE " SE (f , m) ; (k) Á SE (f , m) = t max ≠ (" SE (t max ≠ f , m)), (duality).
where, t max = max(f ). Note that properties (a) and (b) are unusual, but they illustrate the mask e ect included in m. Additionally, note the fact that " SE (•, •) (resp. Á SE (•, •)) is not extensive (resp. anti-extensive), even if the SE contains the origin. The demonstration of these properties is straightforward from the definition of conditional operators and therefore omitted. As discussed before, we keep the definition Á SE (•, •) for the definition of the conditional toggle criterion and define the conditional Laplacian as follows:

" SE (f , m) = (" SE (f , m) ≠ f ) ≠ (f ≠ Á SE (f , m)).
Definition 2.18. The conditional toggle criterion based on m is defined as follows:

'x oe , • SE (f , m) = Y _ _ _ ] _ _ _ [ Á SE (f , m) if " SE (f , m) > 0, " SE (f , m) if " SE (f , m) < 0, f otherwise. (2.19)
The motivation behind definition 2.19 is that the mask m plays the role of a seed indicator, where the pixel values spread through the image f according to the toggling criterion. Similarly to non-conditional toggle mapping, conditional toggle mapping should be applied iteratively. In this point, m has to spread their values through the image. Thus, we define a mapping •SE (•, •) from and onto the pair image f and the mask m by taking 2.19 on f and a dilation on m, i.e.,

•SE is a mapping F( , L) ◊ F( , {0, 1}) ae (F( , L), F( , {0, 1})) such that •SE (f , m) = (• SE (f , m), " SE (m)).
(2.20)

Accordingly, the next iteration can be calculated as follows:

• 2 SE (f , m) = •SE (• SE (f , m)) = •SE (• SE (f , m), " SE (m)) = (• SE (• SE (f , m), " SE (m)), " SE (" SE (m))) = (• SE (• SE (f , m)), " 2 SE (m))
Finally, the conditional toggle mapping is defined by iteration until convergence • OE SE as follows.

Definition 2.19. The conditional toggle mapping based on m is defined by

'x oe , • OE SE (f , m) = lim iaeOE • m SE (f , m), (2.21) 
where

• i SE (f , m) = • SE (• i≠1 SE (f , m), " i SE (m)) and • 0 SE (f , m) = (f , m).
We can also prove that the convergence of the conditional toggle mapping depends on the mask m.

Proposition 2.20. If i D Ø max(D SE (m)) then • i D SE (f , m) converges to • OE SE , where D SE (m)
is the distance transform of the binary image m associated with connectivity induced by the structuring element SE containing the origin.

Proof. Let m : Z 2 ae [0, 1] be a binary image. The distance transform (DT) is the transformation that generates a map D whose value in each pixel x is the smallest distance from this pixel to m, i.e., 'x oe

, D SE (m)(x) = min{i oe N | x oe " i SE (m)}. (2.22)
It is important to note that SE in 2.22 must contain the origin, otherwise the standard dilation " SE (m) is not extensive and cannot be used to define a distance transformation

D SE . Let i Ø i D = max(D SE (m)) so we have " i+1 SE (m) = " i SE (m) = 1, where 1 is the indicator image of Z 2 . Accordingly, by definition of conditional morphology, Á SE (f , 1) = " SE (f , 1) = • SE (f , 1) = f . Therefore, • i SE (f , m) = • i SE (f , 1) = • i+1 SE (f , 1) = • i+1 SE (f , m).
Proposition 2.20 means that expression 2.21 converges in no more iterations than i D = max(D SE (m)), where D SE (m) is the distance transform of m with connectivity induced by the structuring element SE. That point is important because the non-conditional toggle mapping requires a large number of iterations until convergence.

Salt & pepper noise reduction An advantage of the conditional toggle mapping in 2.21, is that its convergence and mathematical properties are valid for any definition of the binary image m. To illustrate this benefit, we introduce a mask definition for impulse noise removal applications. Ideally m should have zero values on pixels that are not corrupted by the impulse noise. We propose a simple noise detector as follows,

'x oe , m N (x) = Y ] [ 1 if min( Á SE (x), " SE (x)) > 0 0 otherwise. (2.23)
However, we note that other impulse detectors have been proposed in (122; 262; 300; 304) (see also the review ( 152)) and can be used for m N . Images contaminated with salt-and-pepper noise in range from 20% to 95%, with increment steps of 5% are considered. In the case of colour images, a channel-independent salt-and-pepper noise was simulated according to the following rule [START_REF] Boncelet | Image noise models[END_REF]: the value of pixels was replaced by 0 with probability ›/2 and replaced by 1 with probability ›/2 with › oe [0, 1]. A quantitative comparison of salt-and-pepper denoising methods has been presented in [START_REF] Velasco-Forero | Conditional toggle mappings: principles and applications[END_REF] 

Perspectives

Methods based on adaptivity morphology allow the use of morphological operators in di erent types of structures (not only in images). A research topic that should be explored is the simultaneous learning of the adaptive neighbourhood for morphological operator in the sense of Chapter 4. For the particular case of conditional morphology, one can learn a mask of uncontaminated pixels, on which the conditional dilation can be applied 2 . An aspect that has not been presented in this document is the multiscale morphological decompositions that can serve to give a multilevel structure to characterise objet of the image. This is the subject of the recent work [START_REF] Sangalli | Scale equivariant neural networks with morphological scale-spaces[END_REF], where morphological based multiscale decompositions have been used for scale equivariant neural network.

Related Publications We are like islands in the sea, separate on the surface but connected in the deep.

William James

Introduction

A professional image analyst can be interested in finding objects in an image with a condition that depends on the local gradient of the image, for example an upper bound on the maximum value of the di erence between the pixels of the found object, and/or an upper limit to the size of the object, and/or objects that have a circular shape. In mathematical morphology there are multiple structures that fully describe the image, such as: Tree-of-Shapes (184), Max-Tree (235), Minimum Spanning Forest [START_REF] Meyer | Minimum spanning forests for morphological segmentation[END_REF], among others, where the object extraction procedure becomes a filter step from the component of the structure. This section starts with the definition of necessary elements for the definition of minimum spanning tree based hierarchies, and then presents some contributions in a modern approach including: a) A simplification for combining MST hierarchies with di erent geometrical conditions, b) A greedy algorithm for finding an optimal MST hierarchy c) An approach for Streaming a MST hierarchies d) An end-to-end learning process for MST-hierarchies by deep metric learning.

Notations

The notion of dissimilarity based connective segmentation, widely described in the literature (180; 193; 195; 247; 248; 252; 253), is recalled in the following subsection. Let f : ae V be a image and G = (V, E) an undirected simple finite graph with vertex set V matching the image pixels and edge set E consisting of unordered pairs of vertices indicating the adjacency relations between the image pixels. A path between two pixels x and y in G is a sequence of m > 1 pixels Èx = x 1 , . . . , x m = yÍ such that any two successive pixels of the sequence are adjacent: {x i , x i+1 } oe E for 1 AE i < m. The image f assigns to each element of V (that is, the pixels), a vector of values.

The partition of a graph G = (V, E) into connected components relies on a function associating a weight to its edges. This function can be viewed as a measure of the degree of dissimilarity between adjacent vertices. For gray level images, the most common dissimilarity is the absolute di erence. A dissimilarity measure involving a larger neighbourhood to prevent chaining through transitions while favouring it within homogeneous regions is presented in [START_REF]Preventing chaining through transitions while favouring it within homogeneous regions[END_REF]. Definition 3.1. A partition P of the set V is a set of nonempty disjoint subsets of V whose union is equal to V.

Definition 3.2.

A hierarchy, H is a chain of nested partitions H = {P 0 , P 1 , . . . , P n |'j, k, 0 AE j AE k AE n ∆ P j ı P k }, with P n = V, the single-region partition, and P 0 the finest partition on V Definition 3.3 (Tree and Forest). A tree is a connected graph G, that does not contain any cycle. A graph FOREST that contains no cycles is called forest. Each connected sub-graph of the forest is a tree.

Definition 3.4 (Spanning Tree). Let G = (V, E) be a connected graph. A subgraph T REE = (V Õ , E Õ ) ™ G is a spanning tree for G if T REE is a tree and V Õ = V.
More generally, a spanning forest T REE for a graph G is a forest that spans all the nodes of the graph G, and such that each tree T REE ™ FOREST in the forest is a spanning tree for a connected component in G.

Definition 3.5 (Minimum Spanning Tree

). Let G = (V, E, W) be a connected weighted graph. A Minimum Spanning Tree (MST) of a G, hereafter called MST (G), is a subgraph T REE = (V Õ , E Õ , W) such that: i) T REE is a tree ii) T REE spans all the vertices of G, i.e. V = V Õ
iii) the sum of its weights q eoeE Õ W(e) is minimum among all the possible spanning trees.

In this document, we consider dissimilarity measures obtained through a dissimilarity function defined for any pair of value vectors. Definition 3.6 (( 101)). Let V = R p be the space of image value vectors. A dissimilarity function indexed by the intensity values of the image f is defined as any function

diss from R p ◊ R p ae R + 0 such that diss(f (x), f (y)) = diss(f (y), f (x))
, where x, y are two pixels of the image. This latter property is imposed by the symmetry property of dissimilarity measures.

The most natural dissimilarity functions are obtained by considering the norm of the di erence of the input value vectors. Another common choice for multispectral images is the spectral angular distance [START_REF] Kruse | The spectral image processing system (SIPS)-Interactive visualization and analysis of imaging spectrometer data[END_REF].

Given a dissimilarity function diss, the weight of an edge {x, y} of the adjacency graph underlying an image f is denoted by W diss : W diss ({x, y}) = diss(f (x), f (y)). Given a dissimilarity threshold ⁄, two distinct pixels x and y of an image f are diss ⁄ -connected if there exists a path going from x to y such that the weight W diss between any two successive pixels of this path does not exceed the value of the dissimilarity threshold level ⁄. In addition, to ensure the reflexivity property of an equivalence relation, a pixel is always said to be diss ⁄ -connected to itself. Definition 3.7 (( 101)). Let an image f be represented by a graph G, where the edge weights are given by a dissimilarity function diss(f (x), f (y)) = W diss (x, y), (x, y) oe E. The connected component diss ⁄ -CC(x) of a pixel x is the set of pixels which are diss ⁄ -connected to this pixel:

diss ⁄ -CC(x) = {x} fi {y | ÷Èx = x 1 , . . . , x m = yÍ, diss(f (x i ), f (x i+1 )) AE ⁄, ' 1 AE i < m}. (3.1)
The diss ⁄ -connectivity being an equivalence relation, it induces a unique partition of the image f support into maximal connected regions being the diss ⁄ -connected components [START_REF]Constrained connectivity for hierarchical image partitioning and simplification[END_REF]. This approach for segmentation was put forward implicitly in [START_REF] Nagao | Region extraction and shape analysis in aerial photographs[END_REF] for the segmentation of multispectral images using the ¸1 norm (see also [START_REF] Baraldi | Single linkage region growing algorithms based on the vector degree of match[END_REF]). For grey level images, the ¸p norm boils down to the absolute di erence. The corresponding connected components are called quasi-flat zones [START_REF] Meyer | Morphological scale-space representation with levelings[END_REF] or lambda-flat zones [START_REF] Zanoguera | On the implementation of non-separable vector levelings[END_REF] in mathematical morphology. Because the dissimilarity value between adjacent pixels of a connected component can be arbitrarily large, the terminology --connected components was suggested in (252; 253). Rather than using the notion of equivalence relation and path-based connectivity, Serra (247) proposes a more general approach to image segmentation based on the lattice theory and that does not require the definition of paths. With this theory, the existence of a maximum partition is secured if and only if the homogeneous classes form a connection based on the so-called connective criterion. The resulting segmentation was called a connection in (247) and lately referred to as a connective segmentation (226; 228). The Boolean connective criterion underlying the diss ⁄ -connectivity is detailed in (101; 202).

A fundamental property of the diss ⁄ -connected components of a pixel is that they form an ordered sequence (hierarchy) when increasing the dissimilarity threshold value ⁄ (252):

diss ⁄ 1 -CC(p) ™ diss ⁄ 2 -CC(p), '⁄ 1 AE ⁄ 2 . (3.2)
This hierarchy is at the root of the greedy algorithm by Kruskal (141) for solving the minimum spanning tree problem and at the very basis of the dendrogram representation of the single linkage clustering [START_REF] Gower | Minimum spanning trees and single linkage cluster analysis[END_REF]. Cutting all edges of the MST (G) having a valuation superior to a threshold ⁄ leads to a minimum spanning forest (MSF) FOREST (G, ⁄), i.e., to a partition of the graph. Note that the obtained partition is the same that one would have obtained by cutting edges superior to ⁄ directly on G [START_REF] Benton | Learning invariances in neural networks[END_REF]. Since working on the MST (G) is less costly and provides identical results regarding graph-based segmentation, we work only with the MST (G) in the remainder of this document. So cutting edges by decreasing valuations gives an indexed hierarchy of partitions (H, ), with H a hierarchy of partitions, and : H ae R + being a stratification index that corresponds to the ultrametric distance defining the hierarchy and verifying (P) < (P Õ ) for two nested partitions P µ P Õ . This process is otherwise called single-linkage hierarchical clustering [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF]. In that case, the internal nodes of H correspond to clusters of pixels at various levels of granularity. This increasing map allows us to value each contour according to the level of the hierarchy for which it disappears: this is the saliency of the contour (corresponding to the ultrametric distance between the two regions it separates), and we consider that the higher the saliency, the stronger the contour. For a given hierarchy, the image in which each contour takes as value its saliency is called Ultrametric Contour Map (UCM) [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] or saliency map [START_REF] Cousty | Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps[END_REF].

We refer to a hierarchy built on a graph with edge weights expressing local contrast as to a trivial hierarchy. Whatever the intended use of hierarchical representations, for example the extraction of a segmentation out of a hierarchy (103; 137), the trivial hierarchy is usually not the more adapted one to work with in order to obtain the best results. It is thus interesting to look for more informative dissimilarities adapted to the content of images, so that the simplest methods are su cient to obtain the desired results, for example computing interesting partitions. As these hierarchies are defined as ultrametric distances on a set of nodes, we can either aim at learning these ultrametrics [START_REF] Wolf | Learned watershed: end-to-end learning of seeded segmentation[END_REF] or at designing them in order for them to capture certain types of information. Several morphological hierarchical techniques exist to do the latter.

A variety of morphological hierarchies

Morphological hierarchies are representations capturing information across scales with an emphasis put on shape and size features. We hereby remind the reader of some of them known as watershed hierarchies, while insisting on the fact that approaches and methods proposed throughout the rest of this section can be used with any type of hierarchy.

Seminal works on morphological hierarchies include the dynamics hierarchy exhibiting contrasted regions (100) (and corresponding to the trivial hierarchy), or the area-based and volumebased watershed hierarchies [START_REF] Vachier | Extinction value: a new measurement of persistence[END_REF] extending the dynamics hierarchy by taking into account sizes of regions as well. The waterfall hierarchy, first described in the context of a topographic surface flooding [START_REF] Beucher | Segmentation d'images et morphologie mathématique[END_REF], has then been extended on graphs [START_REF]The waterfall hierarchy on weighted graphs[END_REF]. The waterfall hierarchy highlights the nested structure of the catchment basins of a topographic surface. By flooding each catchment basin of a topographic surface up to the level of its lowest pass point, a new simpler topographic surface is produced, whose catchment basins result from the merging of catchment basins of the initial surface. The stochastic watershed (SWS), introduced in (11) on a simulation basis and extended with a graph-based approach in [START_REF]Stochastic watershed hierarchies[END_REF], is a versatile tool to construct hierarchies. The seminal idea is to operate multiple times marker-based segmentation with random markers and valuate each edge of the image by its frequency of appearance in the resulting segmentations. The output of the SWS algorithm is a hierarchy highlighting specific types of regions at di erent scales. It is very versatile as the type of markers spread, as long as the probabilistic law governing markers distribution, can be adapted for various tasks (80).

Sequential combinations of hierarchies through chaining

We have studied in [START_REF]Combinatorial space of watershed hierarchies for image characterization[END_REF] combination by chaining of morphological hierarchies. More specifically, from a given input image f , a minimum spanning tree is computed MST (G(f )) and operation of this tree can provide a large variability of hierarchies. We should note that we have limited ourself to a particular subset of hierarchies sharing the same edges than MST (G(f )). However, new evaluation on edges can be performed by following rule inspired in classical morphological hierarchies. The new evaluation can be computed during the fusion of components, for instance via the union-find data structure in the Kruskal algorithm on the MST [START_REF] Najman | Playing with kruskal: algorithms for morphological trees in edge-weighted graphs[END_REF]. A pretty e cient Hierarchy Name Formula Area Absorption

Area x • Area y Stochastic Area Absorption ◊ x,y = 1 ≠ (1 ≠ Areax•Areay S ) K Stochastic Area Watershed ◊ x,y = 1 ≠ (1 ≠ Areax S ) K ≠ (1 ≠ Areay S ) K + (1 ≠ Areax≠Areay S ) K Table 3.
1 Three examples of computation formula from area based morphological hierarchies.K oe R + is a parameter called the number of random markers [START_REF]Combinatorial space of watershed hierarchies for image characterization[END_REF]. Area x denoted the size of ultrametric ball and S a reference of the total area, usually equal to the number of pixels in the image.

implementation of di erent morphological hierarchies is available in [START_REF] Perret | Higra: Hierarchical graph analysis[END_REF]. As example, the formula for some area-based hierarchies are given in Table 3.1 [START_REF]Combinatorial space of watershed hierarchies for image characterization[END_REF]. For an edge (x, y) the new evaluation depends on the area of their correspondent ultrametric ball. In the Stochastic Area Watershed, this evaluation is weighted according to the probability of having at least one over K random markers in ultrametric ball [START_REF]Combinatorial space of watershed hierarchies for image characterization[END_REF]. In this way, one can include a priori information, about the shape of the objects that are desired to be highlighted in a hierarchy, since instead of punctual processes, one can have horizontal, vertical lines, or another information about the area or the volume of the region determined by the ultrametric ball.

Gromov-Hausdor distance as feature

In the following experiment, we consider a classification problem on a set of simulated images from di erent dead leaves process (126; 170), namely five classes with 100 images each with di erent primary grains: circles, crosses, flowers, horizontal and vertical lines. In a dead leaves model, two dimensional textured surfaces (which are called "leaves" or "primary grains") are sampled from a shape and size distribution and then placed on the image plane at random positions, occluding one another to produce an image. It is well-known that such a model creates images which share many properties with natural images such as scale invariance and other statistical properties [START_REF] Pitkow | Exact feature probabilities in images with occlusion[END_REF]. For each of these images, we compute the following hierarchies: trivial, area-based SWS hierarchies with structuring elements of various sizes and forms (cross, circle, diagonals, horizontal and vertical lines), as long as logical combinations "AND" and "OR" of these SWS hierarchies. Then we generate as features the called inter-hierarchy distance matrices in [START_REF]Combinatorial space of watershed hierarchies for image characterization[END_REF], which is the Gromov-Hausdor distance between hierarchies sharing the MST ( i.e.

d GH (H 1 , H 2 ) := max (x,y)oeV | max(Path H 1 (x, y)) ≠ max(Path H 2 (x, y))| (3.3)
where Path H (x, y) denote the values of the weights in the path from x to y in H . We can then use (3.3) as features in a linear support vector machines (SVM) to classify images of each class. We notice that the system can learn with very few examples how to discriminate properly these five classes. For comparison, we conduct the same experiment using a Convolutional Neural Network (CNN) with a two-layers architecture1 without image augmentation for a fair comparison. In Fig. 3.1(f)(g) are represented for both experiments the evolutions of the average F-score with respect to the percentage of images used in the training set. In the first experiment (using the distance matrices as features), we notice that using only 5% of them (so 25 images out of 500) already leads to a 85% F-score over the remaining images, and that this figure quickly goes up. In the CNN experiment, the number of required training images to get to the same results is significantly larger (¥ 225). It is thus as if, on the contrary to CNN that have a black-box behaviour, our approach shows what is often referred to as an "aha moment" 2 , i.e. a moment of sudden realisation and comprehension [START_REF] Yan | How intelligent are convolutional neural networks?[END_REF]. This translates a form of understanding of the content of the image, which is corroborated by the study of the importance of which specific interhierarchy distances were the more useful to discriminate between two types of classes. For example, discriminating between horizontal and vertical lines will mainly be due to d GH (H surf ≠V ertSE , H surf ≠HorizSE ), while discriminating between crosses and circles will mainly be due to d GH (H surf ≠CrossSE , H surf ≠HexSE ). A visualisation of the quality of the features space thus generated can be found in Fig. 3.2(a), where we project the features in a space of two dimensions using the t-SNE algorithm [START_REF] Maaten | Visualizing data using t-SNE[END_REF]. Furthermore, using the variable selection method ¸1-SVM (308), we can isolate the more discriminative distances for two specific classes to separate. For example, the t-SNE visualisation in Fig. 3.2(a) shows us that discriminating between the classes "Flowers" and "Horizontal Lines" is not straightforward. The more discriminative variable between these two classes is the distance between H surf ≠V ertSE and 2 Aha! moment also known as eureka moment or eureka e ect refers to the common human experience of suddenly understanding a previously incomprehensible problem or concept. Insight or Epiphany is a psychological term that attempts to describe the process in problem solving when a previously unsolvable puzzle becomes suddenly clear and obvious H AN D(surf ≠V ertSE,surf≠HexSE) : this is a geometrical interpretation of the image content, as they respectively capture straight lines and lines with a protuberance (i.e. flowers). Projecting the distances features onto the subspace of the two more discriminative variables properly separates these two classes, as can be seen in Fig. 3.2(b).

Looking for a good horizontal cut

Let us suppose we have at our disposal a score(f , (H, ⁄)) 3 to judge the quality of a segmentation (H, ⁄) obtained for an image f . Note that (H, ⁄) is the partition obtained after setting the value of the indexed hierarchy (H, ) to ⁄ (corresponding to a horizontal cut of the hierarchy 

|T | ÿ i=1 score(f i , (H, ⁄)). (3.5)
We call this learned hierarchy the model hierarchy.

To sum up, we follow a two-steps procedure, given a segmentation score and a set of homogeneous images :

1. For each image, we extract a wide variety of structured contours information using morphological hierarchies.

2. We select the best hierarchical segmentation and cut level among all possible ones using a greedy feedforward search.

To test the pertinence of this learned model, we compare its result, on each image of the test set, with the oracle model computed for this image.

One can say we have e ectively found a good model hierarchy for the set of images if the di erence between the scores obtained for the model (3.5) and the oracle (3.4) is on average low on the test subset. 

Streaming of Hierarchies based on MST

In many applications, one can access partial information of the scene of interest. Which can update as the sensor, usually a satellite, travels through the area of interest. Usually the segmentation algorithms require to see the whole scene in order to determine the results. In the case of the morphological hierarchy, one can ask, if it is possible to have the hierarchy of interest with partial information, and furthermore, what are the elements that can be determined as stable, in the sense that they will not change with the appearance of new objects.

Let us introduce the streaming image problem. Consider the simple case of an image f decomposed in two blocks b 1 , b 2 and sent one after another. Let b 1 be the first block arriving. Suppose that we compute its MST. The question is, how to compute the MST for the whole image, f = b 1 fi b 2 , when b 2 arrives and exploit the information extracted from b 1 ?

In [START_REF] Gigli | On minimum spanning tree streaming for hierarchical segmentation[END_REF], we introduce the formulation for stream a hierarchy on images. Let f t be an image streaming over time. Without loss of generality, assume that new pixels come from one side of the image, for example the right side of the image. If b t is the new block at time t, for t = 0, . . . , T , we have

f t = f t≠1 fi b t . The last column of f t≠1 is also the first column of b t .
The first graph, is indeed made by edges that we call unstable. Mostly because we could eliminate some of them in the next step t + 1. The second graph is made by edges that we call stable, since they will belong to all MSTs from now on. This is important for two reasons. 1) At each step, the memory footprint is reduced by discarding edges that are no longer necessary to compute further MSTs. 2) The stable edges can be used for further tasks, as we will see below. In Figure 3.4, we report an example that shows the evolution of the stable + unstable decomposition of minimum spanning trees through the time. In green, we represent the forest FOREST t over time, while in red the graph E Gt .

In [START_REF] Gigli | On minimum spanning tree streaming for hierarchical segmentation[END_REF], we exploited the stable + unstable decomposition of our methods to implement a streaming version of ⁄-quasi-flat zones [START_REF] Najman | Playing with kruskal: algorithms for morphological trees in edge-weighted graphs[END_REF] [START_REF] Zanoguera | On the implementation of non-separable vector levelings[END_REF], watershed-cuts [START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF] and constrained connectivity (252) for large images. An example of streaming ⁄-quasi-flat zones is given in Fig. 3.5

End-to-End Similarity Learning and Hierarchical Clustering

Let X = {x 1 , . . . , x n } a set of points obtained as realisation of the k random variables. Moreover, [START_REF] Gigli | End-to-End similarity learning and hierarchical clustering for unfixed size datasets[END_REF] assume to be in a semi-supervised setting. Without loss of generality, we expect to know the associated labels of the first l points in X. Each label takes value in [k] = {1, . . . , k}, and indicates from which distribution the point has been sampled. In our work, we aim to obtain at the same time a good similarity function diss : V ◊ V ae R + that permits us to discriminate the points according to the distribution they have been drawn and an optimal hierarchical clustering for each set X. Our idea to achieve this goal is to combine the continuous optimisation framework proposed by Chami [START_REF] Chami | From trees to continuous embeddings and back: Hyperbolic hierarchical clustering[END_REF] along with deep metric learning to learn the similarities between points. Hence, we look for a function diss ◊ : where the first term is a continuous version of Dasgupta's cost function [START_REF] Chami | From trees to continuous embeddings and back: Hyperbolic hierarchical clustering[END_REF]. Let Z = {z 1 , . . . , z n } µ B p be an embedding of a tree T REE with n leaves, they define their cost function as:

V ◊ V ae R + such that min ◊,ZoeZ C HYPHC (Z, diss ◊ , • ) + loss triplet (diss ◊ ; -). (3.6) (a) t = 0 (b) t = 1 (c) t = 2
C HYPHC (Z; ◊, • ) = ÿ ijk (◊ ij + ◊ ik + ◊ jk ≠ ◊ HYPHC,ijk (Z; ◊, • )) + ÿ ij ◊ ij , ( 3.7) 
where

◊ HYPHC,ijk (Z; ◊, • ) = (◊ ij , ◊ ik , ◊ jk ) • ‡ • (d o (z i ' z j ), d o (z i ' z k ), d o (z j ' z k )) € , and ‡ • (•) is the scaled softmax function ‡ • (◊) i = e ◊ i /• / q j e ◊ j /
• . We recall that ◊ ij are the pair-wise similarities, which in (49) are assumed to be known, but in this work are learned. The distance between two points in the Poincaré ball 4x, y oe B p is given by The second term of (3.6) is the sum over the set T of triplets:

d B (x, y) = cosh ≠1 A 1 + 2 Îx ≠ yÎ 2 2 (1 ≠ ÎxÎ 2 2 )(1 ≠ ÎyÎ 2 2 ) B . ( 3 
loss triplet (diss ◊ ; -) = ÿ (a i ,p i ,n i )oeT max(diss ◊ (a i , p i ) ≠ diss ◊ (a i , n i ) + -, 0), (3.9) 
where a i is the anchor input, p i is the positive input of the same class as a i , n i is the negative input of a di erent class from a i and -> 0 is the margin between positive and negative values. One advantage of our formalism is that it allows us to use deep learning approach, i.e., backpropagation and gradient descend optimisation to optimise the model's parameters. As explained before, we aim to learn a similarity function and at the same time find an optimal embedding for a family of point sets into the hyperbolic space which implicitly encodes a hierarchical structure. To achieve this, our idea is to model the function " ◊ using a neural network whose parameters we fit to optimise the loss function defined in (3.6). Our implementation consists of a neural network NN ◊ that carries out a mapping NN ◊ : V ae R 2 . The function diss ◊ is thus written as:

diss ◊ (x, y) = cos(\(NN ◊ (x), NN ◊ (y))), (3.10) 
We use the cosine similarity for two reasons. The first comes from the intuition that points belonging to the same cluster will be forced to have small angles between them. As a consequence, they will be merged earlier in the hierarchy. The second reason regards the optimisation process.

Since the hyperbolic metric is conformal to the Euclidean metric, the cosine similarity allows us to use the Riemannian 5 Adam optimiser [START_REF] Bécigneul | Riemannian adaptive optimization methods[END_REF] in (3.6). Once computed the similarities, the points are all normalised at the same length to embed them into the Hyperbolic space. The normalisation length is also a trainable parameter of the model. Accordingly, we have selected two architectures. The first is a Multi-Layer-Perceptron (MLP) composed of four hidden layers, and the second is a model composed of three layers of Dynamic Graph Edge Convolution (DGCNN) [START_REF] Wang | Dynamic graph cnn for learning on point clouds[END_REF]. From top to bottom, each row is a case with an increasing level of noise. In the first column input points, while in the second column we illustrate hidden features. Points are coloured according to ground truth. The third column illustrates hidden features after projection to Poincaré Disk. The fourth column shows predicted labels, while the fifth column shows associated dendrograms.

Perspectives

This chapter has presented some of the work related to morphological hierarchical segmentation. There are still many open questions on this subject:

• It is possible to train networks to produce morphological hierarchical segmentation, this has been the subject of recent articles such as (49; 59), but the application to real problems is far from being validated.

• What kind of invariances should be sought in hierarchical methods? For example, is it possible to have hierarchical methods invariant to rotations or changes in scale?

• Is it possible to perform hierarchy streaming with low resolution images and then fine tune the accuracy if necessary by increasing the resolution?

• Additionally, how can one determine the best hierarchy in a video sequence with a predictive logic, that is, being able to predict the hierarchy in a frame that has not been seen yet?

Mathematical Morphology

Opportunity and risk come in pairs Bangambiki Habyarimana

Introduction

Deep learning has shown strong predictive accuracy in a wide range of applications. In particular, it has achieved and, in some cases, surpassed human-level performance on many cognitive tasks, for example, supervised classification, object detection and recognition, semantic and instance segmentation. This success can be attributed in part to the ability of a neural network (NN) to construct an arbitrary function by means of the composition of simple functions. Remarkably, the essence of deep learning is built from two simple algorithmic intuitions: first, the notion of feature learning, and second, learning by local gradient-descent, typically implemented as backpropagation. Another part of its success is due to its easy adaptation to di erent contexts, i.e., adjusting the base operators (convolution, pooling, etc.) to di erent domains, such as graphs, texts, surfaces and so on. Nowadays, state-of-the-art deep learning algorithms use convolution as their fundamental operation, in the so-called convolutional neural network (CNNs). Convolution has a long and proud history in signal/image processing, e.g. extracting low-level features like edges, noise filtering, frequency orientation filtering via Gabor among others. The CNN learns more and more features progressively in depth from the features learned in previous layers. However, [START_REF] Geirhos | Brendel, Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness[END_REF] shows that CNNs are strongly biased toward recognition of texture over form, which shows fundamentally di erent classification strategies in comparison to human beings. Recently, [START_REF] Hermann | The origins and prevalence of texture bias in convolutional neural networks[END_REF] indicates that this bias can be reduced by an adequate image augmentation technique.

In the following subsection, an extremely short introduction of Convolutional NNs (CNNs) is presented.

Convolutional Neural Networks

The simplest form of a deep1 neural network is the called multilayer architecture, which is a stack by composition of modules, each module implements a function Z L = F L (◊ L , Z L≠1 ), where Z L is a vector representing the output of module, ◊ L is the vector of learnable parameters in the module, and Z L≠1 is the module input vector (as well as the output of the previous module) and L is the number of layers in the neural networks. The input of the first module Z 0 is an input pattern, the output of the whole system is the one of the last module which denoted Z l , where l is the number of layers. In gradient-based learning methods, given a objective function or loss function, loss(•, •) ae R + measuring the discrepancy between the output of the system Z k l and D k the "correct" or desired output for the k-th input pattern. One is interested on minimising the average discrepancy over a set of input/output pairs called the training set,

{(Z 0 0 , D 0 ), (Z 1 0 , D 1 ), . . . , (Z n 0 , D n )},
where n is the number of samples in the training set. The network is initialised with randomly chosen weights ◊ 0 . The gradient of the error function with respect to each parameter is computed and gradient descent is used to update the weights in each layer, i.e., for the i-th iteration,

◊ i+1 = ◊ i ≠ ÷ ˆloss(◊) ˆ◊i
where ÷ is a learning rate, and the computation of ˆloss (◊) ˆ◊i , is performed by backpropagation algorithm through the layers [START_REF] Rojas | The backpropagation algorithm[END_REF]. Additionally, for structured data like images, convolutional neural networks are nowadays the recommended solution. In CNNs, the same operator is computed in each pixel of the image. This mechanism is called weight sharing, and it has several advantages such as it can reduce the model complexity and make the network easier to train [START_REF] Nowlan | Simplifying neural networks by soft weight-sharing[END_REF]. Additionally, the weight sharing makes the network translation invariant and allows overfitting to be reduced, and it can be used in prediction on images of di erent sizes. For keen readers, some reference can be recommended (94; 144; 221) 

Morphological Inspired Activation functions and Poolings

Introduction

The basic component in the NN introduced in previous subsection is the linear perceptron which is a linear combination of weights with biases followed by a nonlinear function called activation function, i.e., F (X) = ‡(◊ T X + ◊ b ), where ‡ oe F(R, R) is the activation function, and ◊, ◊ b are parameter to learn. The most famous activation function is the Rectified Linear Unit (ReLU) proposed by [START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF], which is simply defined as ReLU(x) = max(x, 0). A clear benefit of ReLU is that both the function itself and its derivatives are easy to implement and computationally inexpensive.

However, ReLU has a potential loss during optimisation because the gradient is zero when the unit is not active. This could lead to cases where there is a gradient-based optimisation algorithm that will not adjust the weights of a unit that was never initially activated. An approach purely computational motivated to alleviate potential problems caused by the hard zero activation of ReLU, proposed a leaky ReLU activation [START_REF] Maas | Rectifier nonlinearities improve neural network acoustic models[END_REF]: LeakyReLU(x) = max(x, .01x). A simple generalisation is the Parametric ReLU proposed by [START_REF] He | Delving deep into rectifiers: Surpassing humanlevel performance on imagenet classification[END_REF], defined as PReLU -(x) = max(x, -x), whereoe R is a learnable parameter. In general, the use of piecewise-linear functions as activation function has been initially motivated by neurobiological observations; for instance, the inhibiting e ect of the activity of a visual-receptor unit on the activity of the neighbouring units can be modelled by a line with two segments [START_REF] Hartline | Inhibitory interaction of receptor units in the eye of limulus[END_REF]. On the other hand, for the particular case of structured data as images, a translation invariant DNN called Deep Convolutional Neural Networks (DCNN) is the most used architecture. In the conventional DCNN framework interspersed convolutional layers and pooling layers to summarise information in a hierarchical structure. The common choice is the pooling by a maximum operator called max-pooling, which is particularly well suited to the separation of features that are very sparse [START_REF] Boureau | A theoretical analysis of feature pooling in visual recognition[END_REF].

Morphological operators have been used in the context of DCNNs following the paradigm of replacing lineal convolutions by non-linear morphological filters (115; 123; 185; 219; 287), or hybrid variants between linear and morphological layers (116; 211; 261; 271). The contribution of this subsection is more in the sense of [START_REF] Franchi | Deep morphological networks[END_REF] where the authors show favourable results in quantitative performance for some applications when seeing the max-pooling operator as a dilation layer. However, we go further to study both nonlinear activation and max-pooling operators in the context of morphological representation theory of nonlinear operators. 161)). Consider an upper semi-continuous operator  acting on an upper semicontinuous2 function f . Let Bas(Â) = {g i } ioeI be its basis and Bas( Â) = {h j } joeJ the basis of the dual operator. If  is a translation invariant and increasing operator then it can be represented as

Â(f )(x) = sup ioeI (f °gi )(x) = sup ioeI inf yoeR n {f (x + y) ≠ g i (y)} (4.1) = inf joeJ (f ü ȟj )(x) = inf joeJ sup yoeR n Ó f (x ≠ y) + ȟj (y) Ô (4.2)
The converse is true. Given a collection of functions B = {g i } ioeI such that all elements of it are minimal in (B, AE), the operator (f ) = sup ioeI {f °gi } is a translation invariant increasing operator whose basis is equal to B.

The extension to translation invariant non necessarily increasing mappings was presented by Bannon and Barrera in [START_REF] Banon | Minimal representations for translation-invariant set mappings by mathematical morphology[END_REF], which involves a supremum of an operator involving an erosion and an anti-dilation.

The previous theorem characterises increasing operator. However, to consider activation functions, we take advantage of the following results from ( 234)

Definition 4.3 ((234)). Let f oe F(R n ae R) and f 1 , . . . , f m oe F(R n ae R) be continuous functions. If I(x) = {i|f i (x) = (f )(x)
} is nonempty at every point x oe R n , then f is called a continuous selection of the functions f 1 , . . . , f m . We denote by CS(f 1 , . . . , f m ) the set of all continuous selections of f 1 , . . . , f m . The set I(x) is called the active index set of f at the point x. where the index sets M i ™ {1, . . . , M} are such that M i ™ M j if and only if i = j.

At this point, one can be interested in knowing if any continuous selection of a ne functions admits a max-min representation, and under which conditions the corresponding normal forms are unique. 

Morpho : R n ae R n Õ either by composition [fi ¶ ‡(f )](x) or [ ‡ ¶ fi(f )](x) as follows: Morpho 1 (f ) = fi 1AEjAEM Y ] [ " MaxPool R,b j Q a fl 1AEiAEN (-j i f + -j i ) R b Z \ , (4.5) Morpho 2 (f ) = fi 1AEiAEN Y ] [ fl 1AEjAEM 1 -j i " MaxPool R,b i (f ) + -j i 2 Z \ , ( 4.6) 
where

Y _ _ ] _ _ [ " MaxPool R,b j (f )(x) = " b j (f )(R • x), with " b j (f )(x) = (f ü b j )(x) =
x yoeW {f (x ≠ y) + b j (y)} In the context of an end-to-end learning DCNN, the parametersj ,j and structuring functions b j are learnt by backpropagation [START_REF] Velasco-Forero | Learnable empirical mode decomposition based on mathematical morphology[END_REF]. The learnable structuring functions b j play the same role as the kernel in the convolutions. Note that one can have R = 1, the pooling does not involve downsampling.

Firstly, to illustrate the kind of activation functions that our proposition can learn, we use the MNIST dataset as a ten class supervised classification problem and an architecture composed of two convolutional layers and dense layer for reducing to the number of classes. The activation functions that we optimise by stochastic gradient descent have as general form min(max(-0 x + -0 , -1 x + -1 , -2 ), -3 ), which corresponds to (4.5) and (4.6) where R = 1, i.e. without pooling. We have initialised all the activations to be equal to max(min(ReLU(x), 6), ≠6) as it is illustrated in Fig. 4.1(left). The accuracy of this network without any training is 14%. Surprisingly when one optimises3 only the parameters of activation functions the network accuracy increases to the acceptable performance of 92.38% and a large variability of activations are found Fig. 4.1(center). This is a way to assess the expressive power 4 of the parameter of the activation as it has been proposed in [START_REF] Frankle | Training batchnorm and only batchnorm: On the expressive power of random features in CNNs[END_REF]. Additionally, an adequate separation among classes is noted by visualising the projection to two-dimensional space of the last layer via the t-SNE (155) algorithm. A much better accuracy(98, 58%) and inter-class separation is obtained by optimising all the parameters of the network Fig. 4.1(right).

Secondly, we compare the performance of (4.5) and (4.6) following the common practice and train all the models using a training set and report the standard top-one error rate on a testing set. We use as architecture a classical two-layer CNN (without bias for (4.5) and (4.6)) with 128 filters of size (3 ◊ 3) per layer, and a final dense layer with dropout. After each convolution the di erent propositions are used to both produce a nonlinear mapping and reduce spatial dimension via pooling stride of two. For comparison, we include the case of a simple a testing set is reported in Table 4.1 for CIFAR10, CIFAR100 and Fashion-MNIST databases. Additionally, (4.6) performs better than (4.5), and it improves the accuracy in comparison with our baseline in all the considered databases.

Max-plus Operator as a Morphological Unit

Introduction

In traditional literature on machine learning and neural networks, a perceptron ( 229) is defined as a linear computational unit, possibly followed by a non-linear activation function. Among all popular choices of activation functions, such as logistic function, hyperbolic tangent function and rectified linear unit (ReLU) function [START_REF] Glorot | Deep sparse rectifier neural networks[END_REF], this last generally achieves better performance due to its simple formulation and non-saturating property. Instead of multiplication and addition, the morphological perceptron employs addition and maximum, which results in a non-linear computational unit. A simplified version (51) of the initial formulation (67; 219) is defined as follows.

Definition 4.9. (Morphological Perceptron). Given an input vector x oe R n max (with R max = R fi {≠OE}), a weight vector ◊ oe R n max , and a bias b oe R max , the morphological perceptron computes its activation as:

f (x) = max Y ] [ b, fl ioe{1,...,n} {x i + ◊ i } Z \ (4.7)
where x i (resp. ◊ i ) denotes the i-th component of x (resp. ◊).

This model may also be referred to as (max, +) perceptron since it relies on the (max, +) semiring with underlying set R max . It is a dilation (1.3) on the complete lattice

! (R fi {±OE}) n , AE n "
with AE n the Pareto ordering.

Max-plus Block

Based on the formulation of the morphological perceptron, we define the Max-plus block as a standalone module that combines a fully-connected layer (or convolutional layer) with a Max-plus layer [START_REF] Charisopoulos | Morphological perceptrons: geometry and training algorithms[END_REF]. Let us denote the input vector of the fully-connected layer 5 , the input and output vectors of the Max-plus layer respectively by x, y and z, whose components are indexed by i oe {1, ..., I}, j oe {1, ..., J} and k oe {1, ..., K}, respectively. The corresponding weight matrices are denoted by w f oe R I◊J max and ◊ m oe R J◊K max . Then the operation performed in this Max-plus block is:

y j = q ioe{1,...,I} x i • ◊ f ij z k = x joe{1,...,J} Ó y j + ◊ m jk Ô (4.8)
Note that the bias vector of the fully-connected layer (convolutional layer) is removed in our formulation, since its e ect overlaps with that of the weight matrix ◊ m . In addition, the bias vector of the Max-plus layer is shown to be ine ective in practice and is therefore not used here.

Universal Function Approximator Property

The result presented here is very similar to the approximation theorem on Maxout networks6 (95), based on Wang's work [START_REF] Wang | General constructive representations for continuous piecewise-linear functions[END_REF]. As shown in [START_REF] Goodfellow | Maxout networks[END_REF], Maxout networks with enough a ne components in each Maxout unit are universal function approximators. Recall that a model is called a universal function approximator if it can approximate arbitrarily well any continuous function provided enough capacity. Similarly, provided that the input vector (or input feature maps) y oe R J max of the Max-plus layer may have arbitrarily many a ne components (or a ne feature maps), we show that a Max-plus model with just two output units in its Max-plus block can approximate arbitrarily well any continuous function of the input vector (or input feature maps) x oe R I of the block on a compact domain.

Theorem 4.10. (305) ( Universal function approximator) A Max-plus model with two output units in its Max-plus block can approximate arbitrarily well any continuous function of the input of the block on a compact domain.

Filter selection property for model pruning have been explored in [START_REF] Zhang | Max-plus operators applied to filter selection and model pruning in neural networks[END_REF].

Learning a Morphological Empirical Mode

Empirical Mode Decomposition (EMD)

EMD is an algorithm introduced by Huang et al. [START_REF] Huang | The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF] for analysing linear and non-stationary time series. It is a way to decompose a signal in order to obtain instantaneous frequency data. In this original version of the EMD is an iterative process which decomposes real signals f into simpler signals (modes), (f )(x) = q M i=1 j (x), where each mono-component signal should be written in the form (x) = r(x) cos(◊x), where the amplitude and phase are both physically and mathematically meaningful [START_REF] Sharpley | Analysis of the intrinsic mode functions[END_REF]. Unlike some other common transforms like the Fourier transform for example, the EMD was built as an algorithm and lacks theoretical background. The problem of EMD to represent a signal as a sum of amplitude modulation (AM) and frequency modulation (FM) components at multiple scales was first proposed in [START_REF] Maragos | Energy separation in signal modulations with application to speech analysis[END_REF] where the problem of finding the AM-FM components and their envelopes was solved using multiscale Gabor filters and nonlinear Teager-Kaiser Energy Operators via an Energy Separation Algorithm (ESA). In the original EMD, there is no parametric family of filters used to estimate the envelopes.

An alternative characterisation of the EMD computation was introduced by Diop et al. in (70; 71) according to the definition of local mean, i.e., the sifting process is fully determined by the sequence (h k ) koeN defined by :

I h k+1 = h n ≠ (h k ) = (Id ≠ ) h k h 0 = f (4.9)
where (h k ) = ĥk + ȟk 2 , and ĥk (resp. ȟk ) denotes a continuous interpolation of the maxima (resp. minima) of h k .

The main motivation of this section is to define EMD learnable in the sense of neural networks approaches. Note that last property in remark 2.2 together with the extensivity/antiextensivity (i.e., upper/lower envelopes) imply that the pair of operators (Á SE , " SE ) are candidate functions for ( ĥ, ȟ) in 4.9. Accordingly, we proposed a simple generalisation by considering non-flat structuring functions.

Definition 4.11. The Morphological Empirical Mode (MEM) is defined as

'x oe , Á,",SE (f ) = " SE (f )(x) + Á SE (f )(x) 2 (4.10)
This operator can be formulated in any dimension (from 1D to nD signals) and avoid using an interpolation method which is the bottleneck of the original definition of EMD. The (4.10) with a flat structuring element, i.e., (Á B ⁄ , " B ⁄ ) has been proposed in [START_REF] Diop | A PDE model for 2D intrinsic mode functions[END_REF]. Definition 4.12. The Flat Morphological Empirical Mode (71) is defined as

'x oe , Á,",B ⁄ (f )(x) := " B ⁄ (f )(x) + Á B ⁄ (f )(x) 2 (4.11)
The operator 4.11 was proposed to generate an EMD based on solving a morphological PDE (71). Remark 4.13. Note that using 4.11 twice, the first residual 4.9 is

2(f ≠ ⁄ (f )) = (f ≠ " B ⁄ (f )) + (f ≠ Á B ⁄ (f )) = 2f ≠ " B ⁄ (f ) ≠ Á B ⁄ (f )
. This expression, up to a minus sign, corresponds just to the so-called morphological Laplace operator [START_REF] Van Vliet | A nonlinear Laplace operator as edge detector in noisy images[END_REF], and therefore provides an interpretation of the EMD as an iterated second-order derivative decomposition of the function f . One of the main advantages of EMD is that it can be considered as a parameter-free decomposition [START_REF] Stallone | New insights and best practices for the successful use of empirical mode decomposition, iterative filtering and derived algorithms[END_REF] and, for this reason, the inclusion of the structuring function and the parametercan be seen as inconvenient. However, in the following, we consider EMD in the context of learning from data [START_REF] Looney | A machine learning enhanced empirical mode decomposition[END_REF], where one would be interested in using EMD decomposition as a preprocessing of an input signal before using machine learning or deep learning methods (24; 129; 215). Including any new layer, like EMD, requires therefore the computation of the corresponding gradient of the layer with respect to the parameters to be learnt.

Varying the Envelope

In this subsection, we explore several possibilities for ȟ, ĥ. Additionally, one should note that the structuring elements SEs can be learned during the training stage.

Opening/Closing MEM

The theory of morphological filtering is based on the opening " SE (f )(x) and closing Ï SE (f )(x) operators, obtained respectively by the composition product of erosion-dilation and dilationerosion, i.e., " SE (f )(x) = " SE (Á SE (f )) (x) and Ï SE (f )(x) = Á SE (" SE (f )) (x). Opening (resp. closing) is increasing, idempotent and anti-extensive (resp. extensive), independently of the properties of the structuring function. The opening can be seen as the supremum of the invariant parts of f under-swept by SE and it can be again rewritten as a maximal lower envelope of structuring functions (resp. minimal upper envelope of negative symmetric structuring functions). We highlight that the quadratic envelope also called as proximal hull [START_REF] Carlsson | On convex envelopes and regularization of non-convex functionals without moving global minima[END_REF] is an opening with a quadratic structuring function, i.e., a quadratic erosion followed by a quadratic dilation. Definition 4.14. The opening/closing morphological empirical mode (OCMEM) is defined as a MEM where the pair ( ĥ, ȟ) corresponds to (" SE , Ï SE ), i.e.,

'x oe , ",Ï,SE (f )(x) = " SE (f )(x) + Ï SE (f )(x) 2 . (4.12)
For the case of flat disks B ⁄ , the operator 4.12 was called a morphological locally monotonic (LOMO) filter in [START_REF] Bosworth | The morphological lomo filter for multiscale image processing[END_REF]. A signal is monotonic over an interval if it is either non-increasing or non-decreasing over that interval. A 1D signal is locally monotonic of degree n (LOMO-n) if and only if the signal is monotonic within every interval of length n. In the general case, a LOMO filter of f is defined as the fixed point of iterating ",Ï,B ⁄ (f ), which is simultaneously idempotent to both the opening and closing by a flat disk as structuring function. Two examples of 4.12 for both flat and quadratic structuring function for the 1D signal with noise are shown in 4.3.

Lasry-Lions MEM

Definition 4.15. The Lasry-Lions morphological empirical mode (LLMEM) is defined as a MEM where the pair ( ĥ, ȟ) corresponds to

(" c ⁄ , Ï c ⁄ ), i.e., ",Ï,c,⁄ (f ) := " c ⁄ (f ) + Ï c ⁄ (f ) 2 . (4.13)
An example of 4.13 for a 1D signal is shown in 4.3(c).

Definition 4.16. Letbe a real value with 0 AE -AE 1, the --MEM based on the pair ( ȟ, ĥ) is defined as:

ȟ, ĥ(f ) = -ĥ(f ) + (1 ≠ -) ȟ(f ). In this context, an important fact to consider are the invariances of the operator 4.14.

Remark 4.17. For any SE oe F( , R), '0 AE -AE 1, and all the pairs ( ȟ, ĥ) previously considered, the operator 4.14 is increasing, invariant to translation, and the sifting process f ≠ - ȟ, ĥ(f ) is invariant to additive intensity shifts, i.e., 'c oe R and 'f oe F( , R),

((f )(x) + c) ≠ - ȟ, ĥ((f )(x) + c) = (f )(x) ≠ - ȟ, ĥ((f )(x)).

Derivatives of Morphological EMD in discrete domains

Derivative of dilation and erosion

Our approach involves dilation and erosion operators as defined in 2.2 and 2.3. However, in the discrete domain as it is the case of discrete images, the sup operator is computed via max. Consequently, for dilation operator 2.2, is computed by " ◊ (x) = max ◊ {f (x ≠ y) + SE ◊ (y)}.

To understand how to compute the derivative of " ◊ (x) with respect to ◊, we rewrite " ◊ (x) = max yoeSE ◊ u(y). The max operator has no gradient with respect to non-maximum values, since changing them slightly does not a ect the output. In general for rank operators, their derivative is zero in every coordinate, except for that of the value attending the desired rank (198; 210). Accordingly, the derivative with respect to a parameter in the additive structuring function is given by

ˆ"◊ (x) ˆ◊ = ˆ"◊ (x) ˆu(y) ˆu(y) ˆ◊ = Y ] [ ˆSE ◊ (y) ˆ◊ if y oe arg max x " ◊ (x) 0 otherwise (4.15)
where the operator arg max x (f )(x) := {x | 'y : f (y) AE (f )(x)}. In other words, arg max is the set of points x, for which (f )(x) attains the largest value of the function. Note that we do not regard maximum as being attained at any x when (f )(x) = OE, nor do we regard the minimum as being attained at any x when (f )(x) = ≠OE. Similarly for the erosion, Á ◊ (x) = min y [f (x + y) ≠ SE ◊ (y)] = there is only gradient with respect to minimum values. As example, for the dilation by quadratic structuring element 2.12, one has

ˆq◊ (z) ˆ◊ = (2◊ 2 ) ≠1 ÎzÎ 2 =∆ ˆ"◊ (x) ˆ◊ = Y ] [ ÎyÎ 2 2◊ 2 if y oe arg max x " ◊ (x) 0 otherwise

Experimental results

We will focus in the case of supervised classification of high-dimensional 1D signals in hyperspectral images. The architecture chosen as baseline is the one recommended in [START_REF] Paoletti | Deep learning classifiers for hyperspectral imaging: A review[END_REF] and illustrated in 4.5. More specifically, the network is composed of convolution layers, RELU, max-pooling. Each stage consists of twenty convolution layers with a kernel size of 24 channels followed by ReLU activation, and a dense layer with batch normalisation. We explore the use of proposed EMDs as preprocessing layers, that means instead of learning the classification task from the original spectral signals, we will use the residual of a single step of the decomposition by MEMD. The parameters of the MEMD are learned in a gradient-based learning method. As it is common in supervised classification problems, we have used categorical cross-entropy as loss function. Additionally, for quantitative comparisons, we have reported best, mean and standard deviation after ten repetitions on both Indian Pines HSI (4.2) and Pavia University HSI (4.4). In general, the following results can be highlighted:

• Learning the parameter in the --MEM 4.14 improves the performance. This can be observed in 4.2) and Pavia University HSI (4.4) by comparing the performance of models trained with -= 0.5 and models where this parameter is learned.

• Quadratic MEMDs perform significantly worse than non-flat ones. However, we would like to highlight that the number of parameters is less in the first case.

• In the considered HSI supervised classification problems, the best of the proposed approaches have a performance equivalent to our baseline, which is the state-of-the-art for the considered problems (Table . 4.5). However, we remark that the inclusion of morphological EMDs induces an invariant to additive intensity shifts in the classification model. To illustrate this fact, we have trained a classical model Fig. 4.5 with and without a random data augmentation by using an additive shift as transformation. That is the usual approach to include some invariance in deep learning models. This gives an improvement in the invariance measure in Fig. 4.4. We highlight that by 4.17 all the MEMD based models are invariant to additive shifts, which is illustrated in Fig. 4.4.

Geodesic Operations for DCNNs

In this section, we study morphological reconstruction in (2.5) as layer in Deep CNNs [START_REF] Velasco-Forero | Fixed point layers for geodesic morphological operations[END_REF]. We show they can be implemented as part of DCNN architectures, and how the backpropagation can be achieved during the neural network optimisation. To make easier the presentation of our results, we consider SE a flat structuring element and we considered functions having length n. However, for grey-scale images in 2D or 3D the implementation is equivalent by considering the connectivity induced by the SEs, and n the total number of pixels. 

Interpretation of Jacobian matrix

One should note, that the morphological reconstruction in (2.5) has not parameter to learn. Accordingly, we study what is its e ect in the backpropagation by means of it Jacobian. For a multivariate vector-valued function • : R n ' ae R n , the Jacobian is a n ◊ n matrix denoted by Jac • , containing all first order partial derivatives of the transformation • . The row i of the Jacobian corresponds to the gradient of the i-th component of the output vector. It tells how the variation of each input variable a ects the variation of the i-th component of the output of • . We are interested in giving an interpretation for the Jacobian of reconstruction operation (2.5), because this is the fundamental element to understand the evolution process in gradientbased learning methods (92; 145). The geodesic reconstruction (2.5) is the composition of two operations, so below we describe the Jacobian of each of them. Firstly, for the minimum-wise operation,

Jac f •g ((f )(x)) = Y ] [ 1 in (i, i) if f (x i ) AE g(x i ) 0 otherwise. (4.17)
Secondly, for the elementary dilation,

Jac "SE ((f )(x)) = Y ] [ 1 in (i, j) for x j = arg max " SE (f (x i )) 0 otherwise. (4.18)
In (4.17), the Jacobian in not null is pixels satisfying the condition less or equal than. In (4.18), the Jacobian indicates from which pixel comes the maximum values that the dilation has locally. We should note that in implementation by auto-di erentiation in DL modules as Tensorflow or Pytorch, the Jacobian in (4.17) and (4.18) will have values di erent from zero only for the first element equal to the • or arg max instead of the complete equivalence class. That is the same as local pooling by maximum are implemented nowadays. By using the chaining rule for the 

Jac " (1) (f ,g) (f (x)) = Jac f •g (" SE ((f )(x)))Jac "SE ((f )(x)) = Y _ _ _ ] _ _ _ [ 1 in (i, j) if x j = arg max " SE (f (x i ))
and " SE (f (x i )) AE g(x i ) 0 otherwise. (4.19) To compute the Jacobian of (2.5), one should consider operation in convergence, that is, when it is idempotent. Firstly, the Jacobian with respect to the marker f has zero value, in values that come from dilation, creating flat areas that can be associated with a local maximum in f . Specifically using the concept of basin of attraction 7 , the Jacobian of (2.5) with respect to f is determined by

Jac REC " (f ,g) ((f )(x)) = Y _ _ _ ] _ _ _ [ 1 in (i, i) if f (x i ) = REC " (f , g)(x i ) 1 in (i, j) if x j oe BA x i (" (1) g (f )) 0 otherwise, (4.20) 7
The basin of attraction of a fixed point x-for f , denoted by BAx and equivalent with respect to the mask g is

-(f ), is the interval [a, b] if for all x 0 oe [a, b] ∆ lim kae+OE (f ¶ f ¶ ••• ¶ f ) ¸˚˙k times (x 0 ) = f (k) (x 0 ) = f (x-), where k is such that f (k) (x) = f (k+1) (x) for all x oe .
Jac REC " (f ,g) (g(x)) = Y _ _ _ ] _ _ _ [ 1 in (i, i) if g(x i ) = REC " (f , g)(x i ) 1 in (i, j) if x j oe BA x i (" (1) 
g (f )) 0 otherwise. (4.21)
We highlight that the basin of attraction in both (4.20) and (4.21) are flat zones, i.e., x j oe

BA x i (" (1) 
g (f )) ∆ REC " (f , g)(x j ) = REC " (f , g)(x i ).
For the marker, (4.20), these flat zones are related to some local maxima in f , and in (4.21) are related to some local minima of g. In other words, the flow of the gradient in the reconstruction layer depends on the membership of the basin of attraction, that is, for x j from which x i comes the value of the reconstruction, and if this value come from f or g. Additionally, the number of ones in the i-th row, correspond to the cardinality of the basin of attraction of x i . An illustrative example is given in Fig. 4.6. Thus, if one uses the geodesic reconstruction in a DL architecture, the backpropagation of the gradient pass through some maximum of f and some minimum of g, and the gradient value will be proportional to the cardinality of the basin of attraction. As a final observation, the number of zero values in Jac REC " g (f ) ((f )(x)) + Jac REC " g (f ) (g(x)) is equal to n. Similarly, for the h-maxima transform (2.6), where both marker and mask depend on f , the Jacobian indicates the position x i from where each x j has taken the value in convergence, i.e., Jac

HMAX h (f ) ((f )(x)) = 1 in (i, j) if x j oe BA x i (" (1) 
f ≠h (f )), and 0 otherwise. 

Experimental section

This subsection seeks to illustrate the benefits of using reconstruction operators in the context of CNNs. One can think that the geometrical understanding of the e ect that the reconstruction layer has allows the design of architectures that are better adapted to specific problems. In this way two examples are presented: 1. The use of the reconstruction operator REC (2.5) in the case of networks that learn attributes about objects 2. The use of HMAX (2.6) and RMAX (2.7) to train a denoising layer which is robust to di erent levels and types of noise.

Learning geometrical attributes on simple objects

In this experiment, CNNs are trained in order to learn geometric attributes on images composed of simple geometric objects as it is shown in Fig 4 .7. Each example is a random image with no overlap objects with size distributed as a uniform distribution between [3,[START_REF] Bartlett | Classification with a reject option using a hinge loss[END_REF]. As example, we consider the following geometrical attributes: Area, Perimeter, Area of Bounding-Box and Eccentricity8 . Two models are trained 9 with the same number of parameters, but with the di erence that a reconstruction of the last layer with the input image is used as prediction for the model denoted as CNN REC . This has some benefits: 1) The result of the prediction is homogeneous within each of the objects due to the reconstruction process (Fig. 4.7) 2) According to the analysis of the Jacobian matrix, only the local maxima of the prediction will have an e ect during learning, which should simplify the task. Note that each simple object forms a basin of attraction with size equal to the area of the object. Consequently, CNN REC homogenises the results of the CNN inside each object, reducing drastically the validation loss in Fig. 4.8

Denoising (Only one noise level and only one database)

Let us consider an image perturbed by additive positive random noise. This noise implies the creation of local maximum over the image. These peaks contain strong information about the noise distribution. The HMAX transform in (2.6) gives more importance in the gradient to fixed points, thus using information about noise itself. This allows you to learn the noise directly from the peaks. Accordingly, our experiments aim to show that it is possible to train a CNN to learn the parameter h following the noise strength. At the test stage, we analyse the capacity of generalisation for a wide range of dataset and noise levels. Our proposed model has two components (Fig. 4.9): 1) a reconstruction block, which for an input image f estimates a value of h with a CNN and computes the HMAX h (f ) transformation on an input image; 2) A classification block, using training a CNN using as input the HMAX h (f ).

At first impression one might think that it is enough to train the network in the supervised case, that is, using categorical cross entropy. However, you should train a large range of noise levels. To avoid this issue, we train on only one noise level and only one database (as an example, we have used the MNIST database). In all the following experiments, the ADAM optimiser has been used during 50 epochs, with an initial learning rate of 0.001 and reducing it by a factor of 0.1 after ten epochs without improving on the validation loss. Models and code are available in the authors repository 10 . In the training stage of the reconstruction block (Fig. 4.9), we propose to minimise the following loss function,

loss(f , f ) = ||f ≠ f || 2 2 + -||RMAX(f )f ≠ RMAX( f ) f || 2 2 denoting f = HMAX h (f ).
The first term is an attached to data, the second one looks for local large maxima to be preserved after HMAX transformation andis a hyperparameter to trade-o the e ect of each term (-= 0.75 in our experiments). The pertinence of our proposition can be observed in Figure 4.12 when we have used the reconstruction block trained only in MNIST to estimate the value of h on di erent image databases at di erent noise levels (which have not been shown in the training phase). The estimated value of h follows the noise level, in pretty di erent datasets including CIFAR10, 91IMAGES(302) and BSD300 [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF]. We highlight that for colour images the reported h is the average of the estimation channelwise. For a quantitative comparison, we illustrated the impact of the HMAX layer in a classification network, and show that it can provide a better robustness through noise than a classic CNN classification network. For results shown in Fig. 4.10, reconstruction block has been pretrained on MNIST, and only the classification block is updated by a categorical cross-entropy loss function. In Fig. 4.10, we have also included a training with data augmentation by the type of noise with ‡ between 0 and 0.2 for fair comparison. In most of the explored scenarios, the proposed model is more robust than classical and data augmentation approaches. We have included a training with augmentation by additive random Gaussian noise at µ = 0 and ‡ between 0 and 0.2 for fair comparison.

Sparse NMF representation and Mathematical Morphology

Mathematical morphology is strongly related to the problem of data representation. Applying a morphological filter can be seen as a test on how well the analysed element is represented by the set of invariants of the filter. For example, applying an opening by a structuring element SE tells how well a shape can be represented by the supremum of translations of SE. The morphological skeleton (165; 251) is a typical example of description of shapes by a family of building blocks, classically homothetic spheres. It provides a disjunctive decomposition where components -for example, the spheres -can only contribute positively as they are combined by supremum. A natural question is the optimality of this additive decomposition according to a given criterion, for example its sparsity -the number of components needed to represent an object. Finding a sparse disjunctive (or part-based) representation has at least two important features: first, it allows saving resources such as memory and computation time in the processing of the represented object; secondly, it provides a better understanding of this object, as it reveals its most elementary components, hence operating a dimensionality reduction that can alleviate the issue of model over-fitting. Such representations are also believed to be the ones at stake in human object recognition [START_REF] Tanaka | Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly di erent stimulus selectivities[END_REF].

Similarly, the question of finding a sparse disjunctive representation of a whole database is also of great interest and will be the main focus of the present section. More precisely, we will approximate such a representation by a non-negative, sparse linear combination of non-negative components, and we will call additive this representation. Given a large set of images, our concern is then to find a smaller set of non-negative image components, called dictionary, such that any image of the database can be expressed as an additive combination of the dictionary components. As we will review in the next section, this question lies at the crossroad of two broader topics known as sparse coding and dictionary learning [START_REF] Mairal | Sparse modeling for image and vision processing[END_REF].

Besides a better understanding of the data structure, this section approach is also more specifically linked to mathematical morphology applications [START_REF] Blusseau | Approximating morphological operators with part-based representations learned by asymmetric auto-encoders[END_REF]. The main goal is to be able to apply morphological operators to massive sets of images by applying them only to the reduced set of dictionary images. This is especially relevant in the analysis of remote sensing hyperspectral images where di erent kinds of morphological decomposition are widely used. For reasons that will be explained later, sparsity and non-negativity are sound requirements to achieve this goal. What is more, whereas the representation process can be learned o ine on a training dataset, we need to compute the decomposition of any new sample online. Hence, we take advantage of the recent advances in deep, sparse and non-negative auto-encoders to design a new framework able to learn part-based representations of an image database, compatible with morphological processing.

Introduction

Consider a family of M images (binary or greyscale) f (1) , f (2) , . . . , f (M ) of n pixels each, aggregated into a M ◊ n data matrix X = (x (1) , x (2) , . . . , x (M ) ) T (the i th row of X is the transpose of x (i) , which is the image f (i) seen as a vector). Given a feature dimension k oe N ú and two numbers s L and s A oe [0, 1], a sparse NMF 11 of X with dimension k, as defined in [START_REF] Hoyer | Non-negative matrix factorization with sparseness constraints[END_REF], is any solution (L, A) of the problem

min ||X ≠ LA|| 2 2 s.t. Y _ _ ] _ _ [ L oe R M ◊k , A oe R k◊M L Ø 0, A Ø 0 ‡(L :,j ) = s L , ‡(A j,: ) = s A , 1 AE j AE k (4.22)
where the second constraint means that both L and A have non-negative coe cients, and the third constraint imposes the degree of sparsity of the columns of L and lines of A respectively, with ‡ the function defined by

'v oe R p , ‡(v) = Ô p ≠ ||v|| 1 /||v|| 2 Ô p ≠ 1 . (4.23)
Note that ‡ takes values in [0, 1]. The value ‡(v) = 1 characterises vectors v having a unique non-zero coe cient, therefore the sparsest ones, and ‡(v) = 0 the vectors whose coe cients all have the same absolute value. Hoyer [START_REF] Hoyer | Non-negative matrix factorization with sparseness constraints[END_REF] designed an algorithm to find at least a local minimiser for the problem (4.22), and it was shown that under fairly general conditions (and provided the ¸2 norms of L and A are fixed) the solution is unique [START_REF] Theis | First results on uniqueness of sparse non-negative matrix factorization[END_REF].

In representation learning, each row L (i) of L is called the encoding or latent features of the input image x (i) , and A holds in its rows a set of k images called the dictionary. In the following, we will refer to the images a j = A j,: of the dictionary as atom images or atoms. As stated by 4.22, the atoms are combined to approximate each image x (i) := x i,: of the dataset by an estimate f (i) , which writes as follows:

'i oe {1, ..., M}, f (i) = L i,: A = L (i) A = k ÿ j=1 l i,j a j , (4.24) 
where l i,j is the coe cient at row i and column j in matrix L By choosing the sparse NMF representation, the (282) aim at approximating a morphological operator " on the data x by applying it to the atom images A only, before projecting back into the input image space. That is, they want "(x (i) ) ¥ (x (i) ), with (x (i) ) defined by

(x (i) ) := k ÿ j=1 l i,j "(a j ), (4.25) 
where the l i,j and a j are the same as in 4.24. The operator in 4.25 is called a part-based approximation to ". To understand why non-negativity and sparsity help this approximation to be a good one, we can point out a few key arguments. First, sparsity favours the support of with the supremum. This is why we introduce the following hypothesis that characterises the disjunction of supports (i.e., the regions where the image is non-zero) of the l j a j . Let H 1 denote the hypothesis:

H 1 : "For any 1 AE i AE k, 1 AE j AE k, i " = j, " SE (l i a i )
w " SE (l j a j ) = 0" where 0 denotes an image equal to zero everywhere (i.e. with empty support), and more generally, for an integer n, H n : "For any and" n SE is the identity for n = 0. Note that, since " SE is extensive, H n implies any H p with p AE n. In particular, any H n implies H 0 , which simply states the disjunction of the supports of any two images l i a i and l j a j , i " = j. We can now state the following result: Proposition 4.18. If H 1 holds for the representation f = q k j=1 l j a j , then:

1 AE i AE k, 1 AE j AE k, i " = j, " n SE (l i a i ) w " n SE (l j a j ) = 0", where " n SE = " SE ¶ ••• ¶ " SE = " nSE , denoting by nSE the n-terms Minkowski sum SE ü SE ü ••• ü SE for n > 0,
" ú SE (f ) = " SE ( f ), Á ú SE (f ) = Á SE ( f ), " ú SE (f ) = " SE ! Á SE ( f ) " = " SE ( f ). (4.28) 
If additionally H 2 holds, then we also have:

Ï ú SE (f ) = Á SE ! " SE ( f ) " = Ï SE ( f ). (4.29) 
A proof of this result is detailed in [START_REF] Blusseau | Approximating morphological operators with part-based representations learned by asymmetric auto-encoders[END_REF]. Proposition 4.18 implies that under the H n hypothesis the error ||" SE (f ) ≠ SE (f )|| 2 between the actual transformed image and its part-based approximation only depends on the quality of the reconstruction, that is to say on the error

||f ≠ f || 2 . Indeed, if f = f then " ú SE (f ) = " SE (f ), Á ú SE (f ) = Á SE (f )
and so on. Obviously, the more constrained the representation, the smaller the class of images that can be accurately represented. The non-negativity and sparsity constraints are therefore likely to increase the representation error ||f ≠ f || 2 . Hence, unless the data can be perfectly represented by non-negative combinations of atoms complying with a hypothesis H n , a trade-o needs to be found to achieve a good approximation of morphological operators. This is the target of the asymmetric auto-encoder presented in [START_REF] Blusseau | Approximating morphological operators with part-based representations learned by asymmetric auto-encoders[END_REF].

We shall now generalise Proposition 4.18 by applying it to the representation that we note f (n≠1) = q k j=1 l j " (n≠1)SE (a j ). Notice that H 1 holds for f (n≠1) if and only if H n holds for f . This yields the following corollary. Remark 4.19. If H n holds for the representation f = q k j=1 l j a j , then for any integer p AE n:

" ú pSE (f ) = " pSE ( f ), Á ú pSE (f ) = Á pSE ( f ), " ú pSE (f ) = " pSE ! Á pSE ( f ) " = " pSE ( f ),
and for any integer p AE n ≠ 1

Ï ú pSE (f ) = Á pSE ! " pSE ( f ) " = Ï pSE ( f ).
Quantitative results from [START_REF] Blusseau | Approximating morphological operators with part-based representations learned by asymmetric auto-encoders[END_REF] are given in Table 4.6 and in Fig. 4.14 for the Fashion MNIST database. • Non-Negative Sparse Mathematical Morphology, J. Angulo and S. Velasco-Forero, Advances in Imaging and Electron Physics 202, 1-37, 2017.

• Part-based approximations for morphological operators using asymmetric autoencoders, Bastien Ponchon, Santiago Velasco-Forero, Samy Blusseau, Jesus Angulo, and Isabelle Bloch, ISMM 2019.

• Approximating morphological operators with part-based representations learned by asymmetric auto-encoders, S. Blusseau, B. Pochon, S. Velasco-Forero, J. Angulo and I. Bloch, Mathematical Morphology-Theory and Applications, 2020

• Learnable Empirical Mode Decomposition based on Mathematical Morphology, Velasco-Forero, S., Pagès, R., and Angulo, J., SIAM Journal on Imaging Sciences, 15(1), 23-44, (2022).

• MorphoActivation: Generalizing ReLU activation function by mathematical morphology, Velasco-Forero, S., and Angulo, J. DGMM, (2022).

• Fixed Point Layers for Geodesic Morphological Operations, Velasco-Forero, S., Rhim, A., and Angulo, J., British Machine Vision Conference, (2022).

Other contributions

• On power Jaccard losses for semantic segmentation, D. Duque-Arias et al, VISAPP 2021. In this work, a new generalised loss function is proposed called power Jaccard to perform semantic segmentation tasks. It is compared with classical loss functions in di erent scenarios, including grey level and colour image segmentation, as well as 3D point cloud segmentation. The results show improved performance, stability and convergence. We made available the code with our proposal with a demonstrative example. A fully convolutional neural network has a receptive field of limited size and therefore cannot exploit global information, such as topological information. A solution is proposed in this paper to solve this problem, based on pre-processing with a geodesic operator. It is applied to the segmentation of histological images of pigmented reconstructed epidermis acquired via Whole Slide Imaging.

• Classification of hyperspectral images by tensor modelling and additive morphological decomposition, S. Velasco-Forero and J. Angulo, vol. 46, num. 2, Feb. 2013, Pattern Recognition. Pixel-wise classification in high-dimensional multivariate images is investigated. The proposed method deals with the joint use of spectral and spatial information provided in hyperspectral images. Additive morphological decomposition (AMD) based on morphological operators is proposed. AMD defines a scale-space decomposition for multivariate images without any loss of information. AMD is modelled as a tensor structure and tensor principal components analysis is compared as a dimensional reduction algorithm versus classic approach. Experimental comparison shows that the proposed algorithm can provide better performance for pixel classification of hyperspectral image than many other well-known techniques.

Perspectives

Despite having excellent results in quantitative performance measurements, the main drawback of classical deep learning methods is that they are trained as black boxes, where neither imposing a priori problem knowledge nor understanding the decision rule are straightforward. In the following some aspects where mathematical morphology based models could be interesting for Deep Learning models.

Interpretability

One argument against convolution is that its filter does not lend itself to an interpretable 12 form. The filter weights do not indicate the absolute intensities/levels in the shape. Instead, it means a relative importance. Recently, research in deep network interpretation as for instance guided backpropagation (3; 245) made it possible to visualise what CNNs might be looking at. However, these algorithms are not guarantees, they do not report which features are more important, not what exact shape, texture, colour, or other characteristics led a machine to make the decision they did. Another approach are the attention-like mechanisms introduced in the 90's as multiplicatives modules [START_REF] Durbin | Product units: A computationally powerful and biologically plausible extension to backpropagation networks[END_REF], it motivated by the idea that networks should devote more focus to the small, but important, parts of the data (199; 297). Unlike convolution, morphology-based operations are more interpretable, in the sense that for a given layer, the flat morphological filters are easier to interpret than the convolutional ones. Morphological operators allow the characterisation of objects in the image with respect to the shape/size relationship, providing an absolute measure of fitness against the measure relative by convolution, which facilitates the interpretability of the structuring elements.

However, in general, as soon as the complexity of the model increases, the interpretation becomes more di cult. In deep models, usually one should use pooling to downsampling spatial domain, which is one of the key points in classical multiresolution analysis (106; 158).

Especially in shallow models, morphological models should give geometric rules that allow to characterise the important elements in the images. From this point of view, the morphological methods should be used at the moment of decision making, combining with classical linear convolutions in the feature extraction layers.

Invariance

A professional image analyst would like to include some geometrical knowledge during the training of CNNs. Especially when analysing images, one would like to have results that are invariant to shifts, symmetries, rotations, or scale changes [START_REF]Group invariant scattering[END_REF]. This makes sense since the characteristics of the object do not change [START_REF] Worrall | Deep scale-spaces: Equivariance over scale[END_REF]. However, it is easy to see that due to the definition of the elementary operations that are being used in the classic deep learning models, this property is not satisfied. A mathematical approach is to define a group of transformation and defining layers whose results are invariant to the action of the group. Recently, a wide variety of articles have been presented in this regard including invariances to rotation and changes in the scale of objects (29; 43). The problem of defining morphological operators invariant to a group of transformation have been studied in (223; 241; 254). Finally, we should note that the morphological hierarchies based on local gradient are by definition invariant to shift in the contrast [START_REF] Monasse | Fast computation of a contrast-invariant image representation[END_REF]. Accordingly, invariant descriptors to groups such as additive and multiplicative can be easily constructed by means of range operators, and in their convolutions version by morphological operators. Some recent works on CNNs using Gaussian derivatives to produce equivariant layers and/or train with less examples look promising specially for industrial applications (206)(239)(240).

Shape/Size priors for segmentation models

In segmentation models, especially in images, one may be interested in including a priori knowledge about the objects of interest, for example constraints on size order relationships or other geometric attributes. Some of these possibilities are listed below, including some important references.

1. Structure-driven priors: This is a generalisation of classical marker based segmentation models (42; 236). The approach is to use semi-supervised formulation to include marker information in the loss function, i.e., from a pair of image, seeds (f ,seeds) [START_REF] Marin | Beyond gradient descent for regularized segmentation losses[END_REF] to goal is to segment an instance per marker. Some examples for medical applications can be found in (127) (216)

2. Knowledge-driven priors (e.g., anatomy): Actually in many applications one is interested in including information about the allowed size of objects to segmentation, order relationships (for instance, one segmented object must be larger than another, less eccentric than another), connectivity (for instance, two segments must be connected) and/or topology (for instance, segmented objects must not contain hulls.). One can characterise the prior-information for deep learning models in four types:

(a) Constraints: Defining the limits of plausible segmentation according to a variable (for instance size), and or partially labeled data. (128; 134; 135; 217; 307). Note that regularising the loss function including shape constraint is pretty direct, but the model does not take into account this term in the same way during the optimisation process.

(b) Shape Models: Most of the methods are hybrid solutions involving active contour or statistical shape models. A state-of-the art for medical applications can be found in [START_REF] Bohlender | A survey on shape-constraint deep learning for medical image segmentation[END_REF] (c) Morphological constraints: Many of the geometric constraints can be described by means of mathematical morphological operators, which can be included in deep learning models in di erent ways:

i. Preprocessing: For instance, including morphological reconstruction to consider nonlocal information in DL models. [START_REF] Decencière | Dealing with topological information within a fully convolutional neural network[END_REF] ii. Morphological filters: The use of morphological transformation as layers in Deep Learning models to give an interpretation from the size/shape relationship of learned kernels. [START_REF] Velasco-Forero | Learnable empirical mode decomposition based on mathematical morphology[END_REF]. Most of the morphological filtering can be used in a DL network to certify the result of the procedure morpholayers.

iii. As a regulariser: One can consider to study to regularise the results of a DL model by considering morphological based loss functions [START_REF] Bai | Deep watershed transform for instance segmentation[END_REF].

(d) Topological regularisation: According to the application, one may be interested in obtaining segmentation that preserves connectivity criteria. In (59; 88) the use ultrametric is used in gradient based method to penalise the results of hierarchical clustering (one can see hierarchical segmentation as a particular case of hierarchical clustering). Additionally, (209) presents a loss function that "motivates" the connection of the objects in the image. Another way to include topological information in the loss function is to use Persistent Homology (61) [START_REF] Hu | Topology-preserving deep image segmentation[END_REF]. Note: That the inclusion of terms in the cost function does not guarantee that the constraint is satisfied. An important connection between morphological and persistence-based methods has recently been presented in (41; 60)
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well. The second definition is more in the statistical sense, where one fits a model on normal data, and expects anomalies to be objects with low probability according to the model. The following section briefly describes the RX-detector before reviewing some covariance matrix estimation methods in the literature.

The RX-detector

AD may be considered as a binary hypothesis testing problem at every pixel as follows:

H 0 : x ≥ f x|H 0 (x), (5.1) 
H 1 : x ≥ f x|H 1 (x),
where f x|H i (•) denotes the probability density function (PDF) conditioned on the hypothesis i, i.e., H 0 when the target is absent (background), and H 1 when the target is present. Usually, For H 0 , the background distribution f x|H 0 (x) is assumed to be a multivariate Gaussian model (MGM) due to theoretical simplicity. The distribution in the presence of the target can be assumed to have a multivariate uniform PDF [START_REF] Theiler | By definition undefined: Adventures in anomaly (and anomalous change) detection[END_REF]. The well-known RX anomaly detector (Reed and Xiaoli Yu ( 218)) was based on these two assumptions, its test statistics is as follows:

p 2 log(2fi) ≠ 1 2 log | | ≠ 1 2 (x ≠ µ) T ≠1 (x ≠ µ) H 0 ? H 1 • 0 , ∆ AD RX (x, • 1 ) := (x ≠ µ) T ≠1 (x ≠ µ) H 1 ? H 0 • 1 , (5.2) 
where | | is the determinant of matrix , and • 0 and • 1 are thresholds, above which H 0 is rejected in favour of H 1 . In other words, the RX-detector is a threshold test on the Mahalanobis distance [START_REF] Mahalanobis | On the generalized distance in statistics[END_REF]. Thresholding the likelihood ratio provides the hypothesis test that satisfies various optimality criteria including: maximum probability of detection for the given probability of false alarm, minimum expected cost, and minimisation of maximal expected cost [START_REF] Manolakis | Hyperspectral image processing for automatic target detection applications[END_REF]. However, in most of the cases, is unknown and needs to be estimated. It is well-known (7) that given n independent samples, X n◊p = {x 1 , x 2 , . . . , x n oe R p } from a p-variate Gaussian distribution with known mean µ oe R p , the sample covariance matrix (SCM) defined by

' = 1 n n ÿ i=1 (x i ≠ µ)(x i ≠ µ) T , ( 5.3) 
is the maximum likelihood estimator (MLE) of . The sample covariance matrix (SCM) is the maximum likelihood estimator, but it tends to overfit the data when n does not greatly exceed p. However, in the presence of multiple clusters, this estimation fails to characterise the background correctly. For these reasons, a variety of regularisation schemes have been proposed (55; 56), as well as several robust estimation approaches (1; 30; 85; 117; 171; 260; 267; 269; 296).

The RX-detector in High Dimensional Space

To help better understand the implication of high dimensionality in the RX-detector, we develop an alternative expression for (5.2) based on the Singular Value Decomposition (SVD) of the covariance matrix , as follows:

AD RX (x, • 1 ) = (x ≠ µ) T U ≠1 ≠1 U(x ≠ µ) H 1 ? H 0 • 1 ,
where = U U ≠1 with a diagonal matrix and U an orthogonal matrix. The eigenvalues {⁄ i } p i=1 in correspond to the variances along the individual eigenvectors and sum up to the total variance of the original data. Let the diagonal matrix

= { ii } p i=1 = {1/ Ô ⁄ i } p i=1 , then 2 = ≠1 .
Additionally, since U is a rotation matrix, i.e., U ≠1 = U T , we can rewrite the RX-detector as follows:

=(x ≠ µ) T U U T (x ≠ µ) H 1 ? H 0 • 1 =|| U T (x ≠ µ)|| 2 2 H 1 ? H 0 • 1 . ( 5.4) 
As we can see from this decomposition, the RX-detector in 5.2 is equivalent to the weighted Euclidean norm by the eigenvalues along the principal components. Note that as ⁄ i ae 0, the detector AD RX (x, • 1 ) ae OE, 'x, resulting in an unreasonable bias towards preferring H 1 to H 0 . This fact is well-known in the literature as bad conditioning, i.e., the condition number 2 of cond( ) ae OE. Before looking at the possible solutions to the ill-conditioning issue, we would like to have a more detailed analysis of the eigenvalue distribution of covariance matrices in the theory of random matrices (6; 75; 166).

Robust Estimation in Non-Gaussian Assumptions

Presence of outliers can distort both mean and covariance estimates in computing Mahalanobis distance. In the following, we describe two types of robust estimators for covariance matrix.

M-estimators

In a Gaussian distribution, the SCM ' in (5.3) is the MLE of . This can be extended to a larger family of distributions. Elliptical distributions is a broad family of probability distributions that generalise the multivariate Gaussian distribution and inherit some of its properties (7; 82). The pdimension random vector X has a multivariate elliptical distribution, written as X ≥ E p (µ, , Â), if its characteristic function can be expressed as, Â X = exp(it T µ)Â

1 1 2 t T t 2
for some vector µ, positive-definite matrix , and for some function Â, which is called the characteristic generator. From X ≥ E p (µ, , Â), it does not generally follow that X has a density f X (x), but, if it exists, 2 The condition number of a real matrix is the ratio of the largest singular value to the smallest singular value. A well-conditioned matrix means its inverse can be computed with good accuracy.

it has the following form:

f X (x; µ, , g d ) = c p  | | g p 5 1 2 (x ≠ µ) T ≠1 (x ≠ µ) 6 (5.5)
where c p is the normalization constant and g p is some non-negative function with ( p 2 ≠ 1)-moment finite. In many applications, including AD, one needs to find a robust estimator for data sets sampled from distributions with heavy tails or outliers. A commonly used robust estimator of covariance is the Maronna's M estimator [START_REF] Maronna | Robust M -estimators of multivariate location and scatter[END_REF], which is defined as the solution of the equation

' M = 1 n n ÿ i=1 u((x i ≠ µ) T ' ≠1 (x i ≠ µ))((x i ≠ µ)(x i ≠ µ) T , ( 5.6) 
where the function u : (0, OE) ae [0, OE) determines a whole family of di erent estimators. In particular, a special case u(x) = p x is shown to be the most robust estimator of the covariance matrix of an elliptical distribution with form (5.5), in the sense of minimising the maximum asymptotic variance. This is the called Tyler's method [START_REF] Tyler | A distribution-free M -estimator of multivariate scatter[END_REF] which is given by

' Tyler = p n n ÿ i=1 (x i ≠ µ)(x i ≠ µ) T (x i ≠ µ) T ' ≠1 Tyler (x i ≠ µ) . ( 5.7) 
(269) established the conditions for the existence of a solution of the fixed point equation (5.7). Additionally, [START_REF] Tyler | A distribution-free M -estimator of multivariate scatter[END_REF] shows that the estimator is unique up to a positive scaling factor, i.e., that solves (5.7) if and only if c solves (5.7) for some positive scalar c > 0. Another interpretation to (5.7) can be found by considering normalised samples defined as {s i = x i ≠µ ||x i ≠µ|| } n i=1 . Then, the PDF of s takes the form [START_REF] Frahm | Generalized elliptical distributions: theory and applications[END_REF]:

f S (s) = ( p 2 ) 2fi p 2 det( ) ≠ 1 2 (s T ≠1 s) ≠p 2 ,
and the MLE of can by obtained by minimizing the negative log-likelihood function:

L( ) = p 2 n ÿ i=1 log(s T i ≠1 s i ) + n 2 log det( ). (5.8) 
If the optimal estimator ' > 0 of (5.8) exist, it needs to satisfy the equation (5.7) [START_REF] Frahm | Generalized elliptical distributions: theory and applications[END_REF]. When n > p, Tyler proposed the following iterative algorithm based on {s i }:

 k+1 = p n n ÿ i=1 s i s T i s T i ' ≠1 k s i , ' k+1 =  k tr(  k )
.

(5.9)

It can be shown [START_REF] Tyler | A distribution-free M -estimator of multivariate scatter[END_REF] that the iteration process in (5.9) converges and does not depend on the initial setting of ' 0 . Accordingly, the initial ' 0 is usually set to be the identity matrix of size p. We have denoted the iteration limit ' OE = ' Tyler . Note that the normalisation by the trace in the right side of (5.9) is not mandatory but it is often used in Tyler based estimation to make easier the comparison and analysis of its spectral properties without any decrement in the detection performance.

Multivariate t-distribution Model

Firstly, we evoke a practical advice to perform AD in real-life HS images from [START_REF] Chang | Anomaly detection and classification for hyperspectral imagery[END_REF]. They have indicated that the quality of the AD can be improved by means of considering the correlation matrix R instead of the covariance matrix , also known as the R-RX-detector [START_REF] Davidson | On the use of covariance and correlation matrices in hyperspectral detection[END_REF]. However, notice that writing the j-th coordinate of the vector z as z (j) = x (j) ≠µ (j) Ô ‡ (jj)

, we have z = (z 1 , . . . , z p ) = ‡ ≠1/2 (x ≠ µ), where ‡ = diag( Ô ‡ 1 , . . . , ‡ p ). Now, Z = [z 1 , . . . , z n ] is zero-mean, and cov(Z) = ‡ ≠1/2 ‡ ≠1/2 = R, the correlation matrix of X. Thus, the correlation matrix of X is the covariance matrix of Z, i.e. the standardisation ensuring that all the variable in Z are on the same scale. Additionally, note that (66) gives a characterization of the performance of the R-RXdetection. They conclude that the performance of R-RX depends not only on the dimensionality p and the deviation from the anomaly to the background mean but also on the squared magnitude of the background mean. That is an unfavourable point in the case that µ needs to be estimated. At this point, we are interested in characterising the MLE solution of the correlation matrix R by means of t-distribution. A p-dimensional random vector x is said to have the p-variate t≠distribution with degrees of freedom v, mean vector µ, and correlation matrix R (and with denoting the corresponding covariance matrix) if its joint PDF is given by:

f X (x; µ, , v) = ( v+p 2 )|R| ≠1/2 (fiv) p 2 ( v 2 ) Ë 1 + 1 v (x ≠ µ) T R ≠1 (x ≠ µ) È v+p 2 ,
where the degree of freedom parameter v is also referred to as the shape parameter, because the peakedness of (5.10) may be diminished or increased by varying v. Note that if p = 1, µ = 0, and R = 1, then (5.10) is the PDF of the univariate Student's t distribution with degrees of freedom v. The limiting form of (5.10) as v ae OE is the joint PDF on the p-variate normal distribution with mean vector µ and covariance matrix . Hence, (5.10) can be viewed as a generalization of the multivariate normal distribution. The particular case of (5.10) for µ = 0 and R = I p is a normal density with zero means and covariance matrix vI p in the scale parameter v. However, the MLE does not have closed form and it should be found through expectation-maximization algorithm (EM) (186) [START_REF] Liu | ML estimation of the t distribution using EM and its extensions, ECM and ECME[END_REF]. The EM algorithm takes the form of iterative updates, using the current estimates of µ and R to generate the weights. The iterations take the form:

' µ k+1 = q n i=1 w i k x i q n i=1 w i k , and (5.10) 
' R k+1 = 1 n n ÿ i=1 (w i k (x i ≠ ' µ k+1 )(x i ≠ ' µ (k+1) ) T ), (5.11) 
where

w i k+1 = v+p v+(x i ≠' µ k ) T R ≠1 k (x i ≠' µ k ) .
For more details of this algorithm, interested readers may refer to [START_REF] Liu | ML estimation of the t distribution using EM and its extensions, ECM and ECME[END_REF], and [START_REF] Nadarajah | Estimation methods for the multivariate t distribution[END_REF] for faster implementations. In our case, of known zero mean, this approach becomes:

' R k+1 = v + p n n ÿ i=1 x i x T i v + x T i ' R ≠1 k x i (5.12)
For the case of unknown v, [START_REF] Lange | Robust statistical modeling using the t distribution[END_REF] showed how to use EM to find the joint MLEs of all parameters (µ, R, v). However, our preliminary work [START_REF] Velasco-Forero | A comparative analysis of covariance matrix estimation in anomaly detection[END_REF] shows that the estimation of v does not give any improvement in AD task. Therefore, we limited ourselves to the case of t-distribution with known value of degrees of freedom v.

Estimators in High Dimensional Space

The SCM ' in (5.3), o ers the advantages of easy computation and being an unbiased estimator, i.e., its expected value is equal to the covariance matrix. However, as illustrated in Section 5.2.1, in high dimensions the eigenvalues of the SCM are poor estimates for the true eigenvalues. The sample eigenvalues spread over the positive real numbers. That is, the smallest eigenvalues will tend to zero, while the largest tend toward infinity (76; 146). Accordingly, SCM is unsatisfactory for large covariance matrix estimation problems.

Shrinkage Estimator

To overcome this drawback, it is common to regularize the estimator ' with a highly structured estimator T via a linear combination -' + (1 ≠ -)T, whereoe [0, 1]. This technique is called regularization or shrinkage, since ' is "shrunk" towards the structured estimator. The shrinkage helps to condition the estimator and avoid the problems of ill-conditioning in (5.4). The notion of shrinkage is based on the intuition that a linear combination of an over-fit sample covariance with some under-fit approximation will lead to an intermediate approximation that is "justright" [START_REF] Theiler | Sparse matrix transform for hyperspectral image processing[END_REF]. A desired property of shrinkage is to maintain eigenvectors of the original estimator while conditioning on the eigenvalues. This is called rotationally-invariant estimators [START_REF] Stein | Estimation of a covariance matrix[END_REF]. Typically, T is set to flI, where I is the identity matrix for some fl > 0 and fl is set by fl = q p i=1 ‡ ii /p. In this case, the same shrinkage intensity is applied to all sample eigenvalue, regardless of their position. To illustrate the eigenvalues behaviour after shrinkage, let us consider the case of linear shrinkage intensity equal to 1/4, 1/2 and 3/4. Fig. 5.1 illustrates this case. As it was shown in [START_REF]A well-conditioned estimator for large-dimensional covariance matrices[END_REF], in the case of -= 1/2, every sample eigenvalue is moved half-way towards the grand mean of all sample eigenvalues. Similarly, for -= 1/4 eigenvalues are moved a quarter towards the mean of all sample eigenvalues. An alternative is the non-rotationally invariant shrinkage method, proposed by Ho beck and Landgrebe [START_REF] Hoffbeck | Covariance matrix estimation and classification with limited training data[END_REF], uses the diagonal matrix D = diag( ' ) which agrees with the SCM the diagonal entries, but shrinks the o -diagonal entries toward zero:

' - diag = (1 ≠ -) ' + -diag( ' ) (5.13)
However, in the experiments, we use a normalised version of (5.13), considering the dimension of the data, i.e.

' - Stein = (1 ≠ -) ' + -Id( ' ) (5.14)
where Id( ) = tr( ' )I p . This is sometimes called ridge regularization.

Regularized Tyler-estimator

Similarly, shrinkage can be applied to other estimators such as the robust estimator in (5.9). The idea was proposed in (2; 55; 294). Wiesel [START_REF] Wiesel | Unified framework to regularized covariance estimation in scaled gaussian models[END_REF] gives the fixed point condition to compute a robust and well-conditioned estimator of by

˜ k+1 = p n(1 + -) n ÿ i=1 (x i ≠ µ)(x i ≠ µ) T (x i ≠ µ) T ˜ ≠1 k (x i ≠ µ) + - 1 + - pT tr( ' ≠1 k T) ' k+1 := ˜ k+1 tr( ˜ k+1 ) . (5.15)
This estimator is a trade-o between the intrinsic robustness from M-estimators in (5.9) and the well-conditioning of shrinkage based estimators in section 5.4. The existence and uniqueness of this approach has been shown in [START_REF] Sun | Regularized Tyler's scatter estimator: Existence, uniqueness, and algorithms[END_REF]. Nevertheless, the optimal value of shrinkage parameter in (5.15) is still an open question.

Geodesic Interpolation in Riemannian Manifold

The shrinkage methods discussed so far involve the linear interpolation between two matrices, namely, a covariance matrix estimator and a target matrix. It can be extended to other types of interpolations, i.e. other space of representation for ' and T di erent to the Euclidean space. A well-known approach is the Riemannian manifold of covariance matrices, i.e. the space of symmetric matrices with positive eigenvalues [START_REF] Pennec | Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements[END_REF]. In general, Riemannian manifold are analytical manifolds endowed with a distance measure which allows the measurement of similarity or dissimilarity (closeness or distance) of points. In this representation, the distance, called geodesic distance, is the minimum length of the curvature path that connects two points [START_REF] Chen | Visual tracking with generative template model based on Riemannian manifold of covariances[END_REF], and it can be computed by Dist Geo (A, B) := Ò tr(log 2 (A ≠1/2 BA ≠1/2 )).

(5.16)

This nonlinear interpolation, here called a geodesic path from A to B at time t, is defined by Geo t (A, B) := A 1/2 exp(tM)A 1/2 , where M = log(A ≠1/2 BA ≠1/2 ) and exp and log are matrix exponential and logarithmic functions respectively. A complete analysis of (5.16) and the geodesic path via its representation as ellipsoids have been presented in [START_REF] Ben-David | Geodesic paths for time-dependent covariance matrices in a Riemannian manifold[END_REF]. Additionally, [START_REF] Ben-David | Geodesic paths for time-dependent covariance matrices in a Riemannian manifold[END_REF] shows that the volume of the geodesic interpolation is smaller than linear interpolation and thus it can increase detection performance in HSI detection problems. Thus, we have included a Geodesic Stein estimation with the same intuition behind equation (5.14) as follows,

' - Geo-Stein = Geo -( ' , Id( ' )), (5.17) 
whereoe [0, 1] determines the trade-o between the original estimation ' and the wellconditioning Id( ' ). 

Constrained MLE

As we have shown in Section 5.2.1, even when n > p, the eigenstructure tends to be systematically distorted unless p/n is extremely small, resulting in ill-conditioned estimators for . Recently, several works have proposed regularising the SCM by explicitly imposing a constraint on the condition number. [START_REF] Won | Condition-number-regularized covariance estimation[END_REF] proposes to solve the following constrained MLE problem: maximize L( ) subject to cond( ) AE Ÿ (5.18) where L( ) stands for the log-likelihood function in the Gaussian distributions. This problem is hard to solve in general. However, [START_REF] Won | Condition-number-regularized covariance estimation[END_REF] proves that in the case of rotationally-invariant estimators, (5.18) reduces to an unconstrained univariate optimisation problem. Furthermore, the solution of (5.18) is a nonlinear function of the sample eigenvalues given by:

' ⁄ i = Y _ _ _ ] _ _ _ [ ÷, ⁄ i ( ' ) AE ÷ ⁄ i ( ' ), ÷ < ⁄ i ( ' ) < ÷Ÿ Ÿ÷, ⁄ i ( ' ) Ø ÷Ÿ (5.19)
for some ÷ depending on Ÿ and ⁄( ' ). We refer this methodology as Condition Number-Constrained (CCN) estimation.

Covariance Estimate Regularized by Nuclear Norms

Instead of constrain the MLE problem in (5.18), [START_REF] Chi | Stable estimation of a covariance matrix guided by nuclear norm penalties[END_REF] propose to penalise the MLE as follows,

maximize L( ) + ⁄ 2 [-|| || ú + (1 ≠ -)|| ≠1 || ú ] (5.20)
where the nuclear norm of a matrix , is denoted by || || ú , is the sum of the eigenvalues of , ⁄ is a positive strength constant, andoe (0, 1) is a mixture constant. We refer this approach by the acronym CERNN (Covariance Estimate Regularised by Nuclear Norms).

Ben-David and Davidson correction

Given zero-mean 3 data with normal probability density x ≥ N (0, ), its sampled covariance matrix ' = 1 n≠1 q n i=1 x i x T i follows a central Wishart distribution with n degrees of freedom. The study of covariance estimators in Wishart distribution where the sample size (n) is small in comparison to the dimension (p) is also an active research topic (25; 174; 191). Firstly, Efron and Morris proposed a rotationally-invariant estimator of by replacing the sampled eigenvalues with an improved estimation [START_REF]Multivariate empirical bayes and estimation of covariance matrices[END_REF]. Their approach is supported by the observation that for any Wishart matrix, the sampled eigenvalues tend to be more spread out than population eigenvalues, in consequence, smaller sampled eigenvalues are underestimated and large sampled eigenvalues are overestimated [START_REF] Ben-David | Eigenvalue estimation of hyperspectral wishart covariance matrices from limited number of samples[END_REF]. Accordingly, they find the best estimator of inverse of the covariance matrix of the form a ' ≠1 + bI/tr( ' ) which is achieved by: They firstly estimate the apparent multiplicity p i of the i-th sample eigenvalue as 2 . One can interpret the concept of "apparent multiplicity" as the number of distinct eigenvalues that are "close" together and thus represent nearly the same eigenvalue [START_REF] Ben-David | Eigenvalue estimation of hyperspectral wishart covariance matrices from limited number of samples[END_REF]. Secondly, BD-correction a ects the i-th sample eigenvalue via its apparent multiplicity p i as Mode (i) = (1+p i /n) (1≠p i /n) 2 and as

p i = q p j=1 card[a(j) AE b(i) AE b(j)], where a(i) = ' (i)(1 ≠ Ô c) 2 and b(i) = ' (i)(1 + Ô c)
Energy (i) = Y ] [ q t i=1 ' (i)/ q t i=1 ( ' (i) Mode (i)) q p i=t+1 ' (i)/ q p i=t+1 ( ' (i) Mode (i))
(5.23)

3 Or µ known, in which case, one might subtract µ from the data.

for a value t oe [1, min(n, p)] indicating the transition between large and small eigenvalues. Finally, reader can see [START_REF] Ben-David | Eigenvalue estimation of hyperspectral wishart covariance matrices from limited number of samples[END_REF] for an optimal selection of t. A comparison of correction in the eigenvalues by CCN, CERNN, the linear shrinkage in (5.14), the geodesic Stein in (5.17) and the BD-correction is illustrated in Fig. 5.1 for three values of regulation parameter. We can see that CCN truncates extreme sample eigenvalues and leaves the moderate ones unchanged. Compared to the linear estimator, both (5.18) and (5.20) pull the larger eigenvalues down more aggressively and pull the smaller eigenvalues up less aggressively.

Sparse Matrix Transform

Recently, (45; 267) introduced the sparse matrix transform (SMT). The idea behind is the estimation of the SVD from a series of Givens rotations, i.e.,

' SMT = V k V T k , where V k = G 1 G 2 • • • G k is a product of k Givens rotation defined by G = I + Ë(i, j, Ë) where Ë(a, b, Ë) = Y _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ [ cos(Ë) ≠ 1, if r = s = a or r = s = b sin(Ë), if r = a and s = b ≠ sin(Ë), if r = b and s = a 0, otherwise
where each step i oe {1, . . . , k} of the SMT is designed to find the single Givens rotation that minimise diag(V T i ' V i ) the most. The details of this transformation are given in (45; 46). The number of rotations k is a parameter and it can be estimated from heuristic Wishart estimator as in [START_REF] Theiler | Sparse matrix transform for hyperspectral image processing[END_REF]. However, in the numerical experiments, this method of estimating k tended to over-estimate. As such, SMT is compared with k as function of p in our experiments. 

q n i=1 (x i ≠ µ)(x i ≠ µ) T Stein Shrinkage (146) ' - Stein (1 ≠ -) ' + -Id( ' ) Tyler (269) ' Tyler ' j+1 = p n q n i=1 (xi≠µ)(x≠µ) T (xi≠µ) T ' ≠1 j (xi≠µ)
Tyler Shrinkage (56)

' - Tyler ˜ k+1 = 1 1+- p n q n i=1 xx T x T i ˜ ≠1 k xi + - 1+- pT tr(' ≠1 k T)
Sparse Matrix Transform (SMT) ( 267) Finally, as comparison in [START_REF] Velasco-Forero | Comparative analysis of covariance matrix estimation for anomaly detection in hyperspectral images[END_REF], RX-detector in (5.2) by using a large number of covariance matrix estimation is reported in 5.2 

' SMT G 1 G 2 •••G k (G 1 G 2 •••G k ) T t distribution(143) ' t ' j+1 = 1 n q n i=1 (v+p)(xi≠µ)(xi≠µ) T v+(xi≠µ) T ' ≠1 j (xi≠µ) Geodesic Stein ' - Geo-Stein Geo -( ' ,

Approaches based on Machine and Deep Learning

Introduction

Instead of making assumptions about the nature of the data distribution, in machine learning, optimisation problems are built based on geometric intuitions. For the case of anomaly detection, the classic machine learning methods learn feature representation of normality. In this chapter only a second family of detectors based on the method of one-class SVM. For readers interested in a state of the art of anomaly detection methods should consult (203; 231).

One-class SVM

In [START_REF] Ben-David | Learning distributions by their density levels: A paradigm for learning without a teacher[END_REF] a mathematical model for learning the high-density areas of an unknown distribution from random points drawn according to this distribution is proposed. Theoretical bounds on the error were obtained for finite n and are independent of the underlying distribution. This is the based formalism for one-class SVM (265) (OCSVM), who aims at finding a minimum radius hypersphere to surround the majority of the data, allowing a small fraction of "outliers" to fall outside. In order to control this number a penalty for outliers must be incorporated into the objective function of the OCSVM learning model.

min R,c,' R 2 + ⁄ n ÿ i=i ' i (5.24)
subject to :

||x i ≠ c|| 2 AE R 2 + ' 'i = 1, . . . , n ' i Ø 0 'i = 1, . . . , n
where ⁄ is penalty parameter, the slack variables ' create a soft-margin and the parameter c is the center of the hypersphere. The minimisation problem is solved by the introduction of Lagrange multipliers and the norm in the first constraint can consider kernel functions (265).

Deep support vector data description

The objective of Deep Support vector data description (SVDD) is to learn a neural network that minimises the volume of a data-enclosing hypersphere [START_REF] Ruff | Deep one-class classification[END_REF]. It uses a neural network to project the supposedly normal training samples in a latent space so that all samples are within a normality hypersphere. The hypersphere is made as small as possible thanks to a suitable training loss, corresponding to

min ◊ C 1 n n ÿ 1 || (x i ; ◊) ≠ c|| 2 + ⁄ 2 L ÿ i=1 ||◊ L || 2 F D (5.25)
where c is the normality hypersphere center, determined by the mean latent coordinates of an initial forward pass of the training data. represents the encoding neural network, ◊ its weights, x i the sample being projected, l a layer index. A common regularisation is performed on the network weights using the Frobenius norm, and is balanced through ⁄ with the main training objective.

For a given test point x, we can naturally define an anomaly score by the distance of the point to the center of the hypersphere, i.e.

AD DSVDD (x, • 2 ) = || (x; ◊ ú ) ≠ c|| 2 H 1 ? H 0 • 2 (5.26)
where ◊ ú are the network parameters of a trained model

Approximation by random projection depth

In this subsection, we analyse the case of anomaly detection when the projected subspace is unidimensional, i.e., K = 1 and the projection matrix is in this case a ¸1 norm vector u. We show that if the unidimensional detection is performed a number of times r, we can obtain a performance equivalent to RX-detection when r tends to infinity. Additionally, it allows to include a robust estimation and local anomaly detection on a RX-fashion without any covariance matrix estimation, i.e., we introduce the detector:

D PD (x, • 3 ) := sup ||u||=1 (u T x ≠ µ(u T X)) 2 ‡ 2 (u T X) H 1 ? H 0 • 3 (5.27)
where µ(u T X) and ‡ 2 (u T X) denotes the mean and variance in the projection of the data X in u. Note that u T X is a scalars vector, and (µ, ‡ 2 ) can be substituted by robust estimators of first and second order statistic, for instance,

D D (x, • 4 ) := sup ||u||=1 (u T x ≠ MED(u T X)) 2 MAD 2 (u T X) H 1 ? H 0 • 4 (5.28)
where (MED,MAD) are the median and the median absolute deviation. These robust estimators are included to avoid "masking and swamping e ect" in the detector. The absolute value of the square root of expression (5.28) was introduced by D. Donoho (72) as a multivariate measure of outlyingness.

Equivalence of Random Projections and RX Anomaly Detector

In this section, the equivalence of the proposed detectors (5. 

T Q = QQ T = I p }
The following necessary and su cient condition hold [START_REF] Fang | Symmetric multivariate and related distributions[END_REF]. A random p-dimensional vector x is spherically distributed if and only if Ï x (Q T t) = Ï x (t) = "(t T t) where Ï x (t) is its characteristic function and "(•) is a scalar function. Examples on this family of distributions include the Standard Normal, t, Cauchy, Bessel, Kotz type distribution among others. A complete list including the characteristic functions is due to D.R. Jensen in Table 2.1 of (138). Definition 5.2. The p-dimensional random vector x is elliptically distributed with parameter µ p◊1 and a scale parameter V p◊p , written as x ≥ E p (µ, V, "), if its characteristic function can be expressed as:

Ï x (t) = exp(it T µ)" 1 t T Vt 2 (5.29)
for some vector µ, positive-definite matrix V, and for some function Ï, which is called the characteristic generator.

For x ≥ E p (µ, , Ï), it does not generally follow that x has a density f X (x), but, if it exists, it has the following form:

f (x) = c p  | | g p Ë (x ≠ µ) T ≠1 (x ≠ µ) È (5.30)
where c p is the normalisation constant and g p is some nonnegative function with ( p 2 ≠ 1)-moments finite. g p is called density generator [START_REF] Fang | Symmetric multivariate and related distributions[END_REF]. In this case we shall use the notation E p (µ, , g p ) instead of E p (µ, , Â). We now state the proposition for the case of standardised random projections.

Proposition 5.3. Let X (p◊n) be a i.i.d. random sample of size n, where x i ≥ E p (µ, , g p ), then: x the cumulative distribution that is continuous and positive on its support then

D PD (x) = (x ≠ µ) T ≠1 (x ≠ µ) ( 5 
MAD(x) ‡(x) = ≠1 x (3/4) (5.32)
Finally, we provide the corresponding proposition for the case of projection depth function in elliptically symmetric random variables. Proposition 5.5. Let X be a i.i.d. random sample of size n, where x i ≥ E p (µ X , X , g p ), then:

c gp D D (x) = (x ≠ µ) T ≠1 (x ≠ µ) (5.33)
with c gp = ( ≠1 (3/4)) 2 .

From RPO to deep RPO

Whereas deep SVDD uses an Euclidean distance to the normality hypersphere center in the latent space, the present work evaluates the distance to various location estimators provided by a diversity of untrainable random projections. The outlyingness of (5.27) replaces the distance to a single hypersphere center to quantify abnormality in the latent space. The deep SVDD training objective of (5.25) therefore changes into:

min ◊ C 1 n n ÿ i=1 max uoeS p≠1 |u T (x i ; ◊) ≠ µ(u T (x i ; ◊))| ‡(u T ( (x i ; ◊))) + ⁄ 2 L ÿ l=1 ||◊ l || 2 F D (5.34)
which (µ, ‡) a pair of estimators of the first and second moment of the data on the projection space.

A second Deep SVDD derivative considered here is Deep RPO [START_REF] Bauw | Deep random projection outlyingness for unsupervised anomaly detection[END_REF], which replaces the latent Euclidean distance to the normality centroid with a RPs-based outlyingness measure adapted in the latent space, leading to the following loss:

min ◊ C 1 n n ÿ i=1 A mean uoeS p≠1 |u T (x i ; ◊) ≠ MED(u T (X; ◊))| MAD(u T (X; ◊)) B + ⁄ 2 L ÿ l=1 ||◊ l || 2 F D (5.35) 
This training loss uses the outlyingness defined by random projections after the neural network encoding, with a max estimator transformed into a mean as suggested in [START_REF] Bauw | Deep random projection outlyingness for unsupervised anomaly detection[END_REF] for better integration with the deep learning setup. The mean estimator computes a mean over the set of RPs available to compute the latent outlyingness, while the 1 n computes a mean over the batch samples. The use of a mean instead of a max removes the convergence to the square root of the Mahalanobis distance-inferred ellipsoid already mentioned in the RPO definition for a large set of RPs. The loss nonetheless still combines 1D outlyingness measures individually centred by their median and normalised by their median absolute deviation, but with no ellipsoid-like score distribution guarantee in the input space once integrated. No square was applied to the first loss term, in accordance with (72).

Multisphere case

An extension is Deep multi-sphere SVDD (MSVDD) (87) initialises numerous latent normality hyperspheres using k-means and progressively discards the irrelevant centroids during training. The relevance of latent hyperspheres is determined thanks to the cardinality of the latent cluster they encompass. The deep MSVDD training loss is:

min ◊,R C 1 K K ÿ k=1 R 2 k + 1 ‹n n ÿ i=1 max(0, || (x i ; ◊) ≠ c j(i) || 2 ≠ R 2 j(i) ) + ⁄ 2 L ÿ l=1 ||◊ l || 2 F D (5.36)
The first term minimises the volume of hyperspheres of radius R k , while the second is controlled by ‹ oe [0, 1] and penalises points lying outside of their assigned hypersphere, training samples being assigned to the nearest hypersphere denoted by c j(i) .

Semisupervised case

SAD is achieved through outlier exposure (113; 233), which adds supervision to the training of the model thanks to the availability of few and non representative labeled anomalies. To take into account anomalies during training, Deep SAD (233) repels the outliers from the normality centroid by replacing the minimisation of the distance to the centroid with the minimisation of its inverse in the training loss. With m labeled anomalies x in a batch the Deep SVDD loss thus becomes, with a training objective balancing parameter ÷:

min ◊ C 1 n + m n ÿ i=1 || (x i ; ◊) ≠ c|| 2 + ÷ n + m m ÿ j=1 (|| (Â x j ; ◊) ≠ c|| 2 ) ≠1 + ⁄ 2 L ÿ l=1 ||◊ l || 2 F D (5.37)
Labeled anomalies in the training set need to be distinguished from potential unlabelled anomalies that are considered to be normal samples, which confuse the AD by contaminating the training set instead of providing supervision. This adaptation can be repeated for both Deep RPO and Deep MSVDD, although for Deep MSVDD the multiplicity of normality centres calls for an additional consideration on how to choose from which centroid the labeled anomalies should be repelled as long as several centroids are kept active. The experiments implementing Deep MSVDD adapted to SAD with an additional loss term for labeled anomalies were inconclusive, such an adaptation will therefore not be part of the presented results. The additional loss term either minimised the latent distance between anomalies and dedicated centroids, or maximised the latent distance between anomalies and normality centroids. Once adapted to SAD, the Deep RPO loss becomes, similarly to the transformation that led to Eq. 5.37:

min ◊ C 1 n + m n ÿ i=1 A mean uoeS p≠1 |u T (x i ; ◊) ≠ MED(u T (X; ◊))| MAD(u T (X; ◊)) B + ÷ n + m m ÿ j=1 A mean uoeS p≠1 |u T (Ê x j ; ◊) ≠ MED(u T (X; ◊))| MAD(u T (X; ◊)) B ≠1 + ⁄ 2 L ÿ l=1 ||◊ l || 2 F D (5.38)
Arbitrary sets of outliers could not be completely gathered around a reference point since they are not necessarily concentrated in a common mode (233; 258). However, this does not forbid the concentration of identified modes among labeled anomalies close to dedicated centroids to provide additional supervision during training, a case which is part of the experiments presented. The possibly arbitrary distribution of normal and anomalous centroids and the relative distance between the centroids adds a way to use prior information regarding the proximity between the training samples. Such a setup can seem close to classification with rejection (20; 113), since the concentration of data points around dedicated normal and anomalous centroids can be interpreted as classification while the data points attached to no centroid and thus supposedly repelled from all centroids by the trained network constitutes a rejection. This parallel with classification with rejection is not necessarily relevant since the availability of labeled anomalies to train AD methods is usually very limited if not nonexistent. In contrast, supervised classification of identified data modes would imply rich, representative and relatively balanced datasets for each latent mode. The limited availability of labeled anomalies applies to actual anomalies and not to artificial anomalies provided by the transformation of existing training samples i.e. through self-supervision. With proper transformations self-supervision can produce as many labeled anomalies for training as there are normal samples, or even more if each normal sample is transformed multiple times. However this does not overcome the lack of representativeness of labeled anomalies. This is also made di cult since the choice of transformations requires expert knowledge.

The reunion of normal latent representations achieved through the deep one-class classification methods mentioned is analogous to the alignment principle put forward in [START_REF] Wang | Understanding contrastive representation learning through alignment and uniformity on the hypersphere[END_REF], which also argued for a latent uniformity. Whereas the alignment principle compels similar samples to be assigned similar representations, the uniformity principle demands the preservation of maximal information. One way to achieve that according to [START_REF] Wang | Understanding contrastive representation learning through alignment and uniformity on the hypersphere[END_REF] is to push all features away from each other on the unit hypersphere to intuitively facilitate a uniform distribution. The extension of the Deep SVDD loss to encourage a form of latent uniformity using the pairwise distance between normal samples during training was investigated without ever improving the baselines. The experiments conducted to evaluate the contribution of a pairwise distance of normal samples latent representations loss term revolved around the following training loss format, where the term tasked with enforcing latent uniformity is weighted usingand was expected to be judiciously balanced with the overall latent concentration:

min ◊ S U 1 n n ÿ i | (x i ; ◊) ≠ c| 2 + - n n ÿ i" =j 1 |x i ≠ x j | 2 2 ≠1 + ⁄ 2 L ÿ l=1 ||◊ l || 2 F T V (5.39)
The failure to make a loss term enforce a form of latent uniformity could signal the necessity of associating such a constraint with latent representations confined to a relevant manifold.

As example, unsupervised AD results, for which the training is only supervised by normal training samples, are presented in Table 5.3 for low-resolution radar micro-doppler signature in [START_REF]Near out-of-distribution detection for low-resolution radar micro-doppler signatures[END_REF]. These results indicate the superiority of deep learning for the OOD task considered, while demonstrating the substantial contribution of geometry-aware dimensionality reduction through the use of tPCA for non-deep AD. RPO is kept in Table 5.3 even though it does not achieve 

Perspectives

• Anomaly Detection and Continual Learning: Most of the industrial anomaly data are presented in an assembly line. Accordingly the anomaly detection model should overcome the catastrophic forgetting phenomenon, considering for instance decision from multiple detectors.

• Anomaly detection can be seen as an AutoML problem, since one want to produce methods that are able to work well for di erent types of data distribution. In this context, is it important to define statistics (determine the optimal ones) that allow to establish when an anomaly detection algorithm is well adapted to a problematic data?

• Invariance and interpretation of the decision is fundamental in AD for industrial problems. Methods indicating why an object is determined to be abnormal and the confidence that can be placed in this decision will be explored in the near future.

• The methods for the detection of multimodal anomalies in the case of contaminated bases must be studied to approach the industrial needs of today.

• Covariance matrix estimations for AD will be explored in the context of robust deep learning methods.

A picture may be worth a thousand words, a formula is worth a thousand pictures

Edsger Dijkstra

Much of the motivation to seek solutions from a theoretical point of view comes from the need to solve real problems. This section contains a non-exhaustive list of some of the applications considered during my research. The abstracts of the contributions grouped by theme have been included in this chapter. Recent works on image co-segmentation aim to segment common objects among image sets. These methods can co-segment simple images well, but their performance may degrade significantly on more cluttered images. In order to co-segment both simple and complex images well, this paper proposes a novel paradigm to rank images and to propagate the segmentation results from the simple images to more and more complex ones. In the experiments, the proposed paradigm demonstrates its e ectiveness in segmenting large image sets with a wide variety in object appearance, sizes, orientations, poses, and multiple objects in one image. It outperforms the current state-of-the-art algorithms significantly, especially in di cult images. Numerous ongoing and future large area surveys (e.g. DES, EUCLID, LSST, WFIRST), will increase by several orders of magnitude the volume of data that can be exploited for galaxy morphology studies. The full potential of these surveys can only be unlocked with the development of automated, fast and reliable analysis methods. In this paper, we present DeepLeGATo, a new method for two-dimensional photometric galaxy profile modelling, based on convolutional neural networks. Our code is trained and validated on analytic profiles (HST/CANDELS F160W filter) and it is able to retrieve the full set of parameters of one-component Sérsic models: total magnitude, e ective radius, Sérsic index, axis ratio. We show detailed comparisons between our code and GALFIT. On simulated data, our method is more accurate than GALFIT and 3000 times faster on GPU (50 times when running on the same CPU). On real data, DeepLeGATo trained on simulations behaves similarly to GALFIT on isolated galaxies. With a fast domain adaptation step made with the 0.1 ≠ 0.8 per cent the size of the training set, our code is easily capable to reproduce the results obtained with GALFIT even on crowded regions. DeepLeGATo does not require any human intervention beyond the training step, rendering it much more automated than traditional profiling methods. The development of this method for more complex models (two-component galaxies, variable PSF, dense sky regions) could constitute a fundamental tool in the era of big data in astronomy. Large-scale imaging surveys will increase the number of galaxy-scale strong lensing candidates by maybe three orders of magnitudes beyond the number known today. Finding these rare objects will require picking them out of at least tens of millions of images, and deriving scientific results from them will require quantifying the e ciency and bias of any search method. To achieve these objectives automated methods must be developed. Because gravitational lenses are rare objects, reducing false positives will be particularly important. We present a description and results of an open gravitational lens finding challenge. Participants were asked to classify 100 000 candidate objects as to whether they were gravitational lenses or not with the goal of developing better automated methods for finding lenses in large data sets. A variety of methods were used including visual inspection, arc and ring finders, support vector machines (SVM) and convolutional neural networks (CNN). We find that many of the methods will be easily fast enough to analyse the anticipated data flow. In test data, several methods are able to identify upwards of half the lenses after applying some thresholds on the lens characteristics such as lensed image brightness, size or contrast with the lens galaxy without making a single false-positive identification. This is significantly better than direct inspection by humans was able to do. Having multi-band, ground based data is found to be better for this purpose than single-band space based data with lower noise and higher resolution, suggesting that multi-colour data is crucial. Multi-band space based data will be superior to ground based data. The most di cult challenge for a lens finder is di erentiating between rare, irregular and ring-like face-on galaxies and true gravitational lenses. The degree to which the e ciency and biases of lens finders can be quantified largely depends on the realism of the simulated data on which the finders are trained.

Image processing problems:

Counting Models

1. On-the-go grapevine yield estimation using image analysis and Boolean model, B. Millan, S. Velasco-Forero, A. Aquino and J. Tardaguila, Journal of Sensors, vol. 2018, 14 pages, Dec 2018. This paper describes a new methodology for noninvasive, objective, and automated assessment of yield in vineyards using image analysis and Boolean model. Image analysis, as an inexpensive and noninvasive procedure, has been studied for this purpose, but the e ect of occlusions from the cluster or other organs of the vine has an impact that diminishes the quality of the results. To reduce the influence of the occlusions in the estimation, the number of berries was assessed using the Boolean model. To evaluate the methodology, three di erent datasets were studied: cluster images, manually acquired vine images, and vine images captured on-the-go using a quad. The proposed algorithm estimated the number of berries in cluster images with a root mean square error of 20 and a coe cient of determination (R 2 ) of 0.80. Vine images manually taken were evaluated, providing 310 grams of mean error and R 2 = 0.81. Finally, images captured using a quad equipped with artificial light and automatic camera triggering were also analysed. The estimation obtained applying the Boolean model had 610 grams of mean error per segment (three vines) and R 2 = .78. The reliability against occlusions and segmentation errors of the Boolean model makes it ideal for vineyard yield estimation. Its application greatly improved the results when compared to a simpler estimator based on the relationship between cluster area and weight. Pixel-wise classification in high-dimensional multivariate images is investigated. The proposed method deals with the joint use of spectral and spatial information provided in hyperspectral images. Additive morphological decomposition (AMD) based on morphological operators is proposed. AMD defines a scale-space decomposition for multivariate images without any loss of information. AMD is modelled as a tensor structure and tensor principal components analysis is compared as dimensional reduction algorithm versus classic approach. Experimental comparison shows that the proposed algorithm can provide better performance for the pixel classification of hyperspectral image than many other well-known techniques Retrieval on Textured 3D Models, whose goal is to evaluate the performance of retrieval algorithms when models vary either by geometric shape or texture, or both. The collection to search in is made of 240 textured mesh models, divided into 10 classes. Each model has been used in turn as a query against the remaining part of the database. For a given query, the goal was to retrieve the most similar objects. The track saw six participants and the submission of eleven runs. This paper reports the results of the SHREC'14 track: Retrieval and classification on textured 3D models, whose goal is to evaluate the performance of retrieval algorithms when models vary either by geometric shape or texture, or both. The collection to search in is made of 572 textured mesh models, having a two-level classification based on geometry and texture. Together with the dataset, a training set of 96 models was provided. The track saw eight participants and the submission of 22 runs, to either the retrieval or the classification contest, or both. The evaluation results show a promising scenario about textured 3D retrieval methods, and reveal interesting insights in dealing with texture information in the CIELab rather than in the RGB colour space This paper presents a comparative study of six methods for the retrieval and classification of textured 3D models, which have been selected as representative of the state of the art. To better analyse and control how methods deal with specific classes of geometric and texture deformations, we built a collection of 572 synthetic textured mesh models, in which each class includes multiple texture and geometric modifications of a small set of null models. Results show a challenging, yet lively, scenario and also reveal interesting insights in how to deal with texture information according to di erent approaches, possibly working in the CIELab as well as in modifications of the RGB colour space. In this paper we report the results of the SHREC 2016 contest on "Retrieval of human subjects from depth sensor data". The proposed task was created in order to verify the possibility of retrieving models of query human subjects from single shots of depth sensors, using shape information only. Depth acquisition of di erent subjects were realised under di erent illumination conditions, using di erent clothes and in three di erent poses. The resulting point clouds of the partial body shape acquisitions were segmented and coupled with the skeleton provided by the OpenNI software and provided to the participants together with derived triangulated meshes. No colour information was provided. Retrieval scores of the di erent methods proposed were estimated on the submitted dissimilarity matrices and the influence of the di erent acquisition conditions on the algorithms were also analysed. Results obtained by the participants and by the baseline methods demonstrated that the proposed task is, as expected, quite di cult, especially due the partiality of the shape information and the poor accuracy of the estimated skeleton, but give useful insights on potential strategies that can be applied in similar retrieval procedures and derived practical applications This paper presents the results of the SHREC'17 contest on retrieval of surfaces with similar relief patterns. The proposed task was created in order to verify the possibility of retrieving surface patches with a relief pattern similar to an example from a database of small surface elements. This task, related to many real world applications, requires an e ective characterisation of local "texture" information not depending on patch size and bending. Retrieval performances of the proposed methods reveal that the problem is not quite easy to solve and, even if some of the proposed methods demonstrate promising results, further research is surely needed to find e ective relief pattern characterisation techniques for practical applications. This paper presents the results of the SHREC'18 track: Retrieval of grey patterns depicted on 3D models. The task proposed in the contest challenges the possibility of retrieving surfaces with the same texture pattern of a given query model. This task, which can be seen as a simplified version of many real world applications, requires a characterisation of the surfaces based on local features, rather than considering the surface size and/or bending.

Hyperspectral

All runs submitted to this track are based on feature vectors. The retrieval performances of the runs submitted for evaluation reveal that texture pattern retrieval is a challenging issue. Indeed, a good balance between the size of the pattern and the dimension of the region around a vertex used to locally analyse the colour evolution is crucial for pattern description. This paper presents the methods that have participated in the SHREC'20 contest on retrieval of surface patches with similar geometric reliefs and the analysis of their performance over the benchmark created for this challenge. The goal of the context is to verify the possibility of retrieving 3D models only based on the reliefs that are present on their surface and to compare methods that are suitable for this task. This problem is related to many real world applications, such as the classification of cultural heritage goods or the analysis of di erent materials. To address this challenge, it is necessary to characterise the local "geometric pattern" information, possibly forgetting model size and bending. Seven groups participated in this contest and twenty runs were submitted for evaluation. The performances of the methods reveal that good results are achieved with a number of techniques that use di erent approaches. In this paper, we present the results of the SHREC'17 Track: Point-Cloud Shape Retrieval of Non-Rigid Toys. The aim of this track is to create a fair benchmark to evaluate the performance of methods on the non-rigid point-cloud shape retrieval problem. The database used in this task contains 100 3D point-cloud models which are classified into 10 di erent categories. All point clouds were generated by scanning each one of the models in their final poses using a 3D scanner, i.e., all models have been articulated before scanned. The retrieval performance is evaluated using seven commonly-used statistics (PR-plot, NN, FT, ST, E-measure, DCG, mAP). In total, there are eight groups and 31 submissions taking part in this contest. The evaluation results shown by this work suggest that researchers are in the right direction towards shape descriptors which can capture the main characteristics of 3D models, however, more tests still need to be made, since this is the first time we compare non-rigid signatures for point-cloud shape retrieval. and SphericalView (SV) representations of the point cloud. We introduce the usage of the local normal vector with the LIDAR's spherical coordinates as an input channel to existing LoDNN architectures. We demonstrate that this local normal feature in conjunction with classical features not only improves performance for binary road segmentation on full resolution point clouds, but it also reduces the negative impact on the accuracy when subsampling dense point clouds as compared to the usage of classical features alone. We assess our method with several experiments on two datasets: KITTI Road-segmentation benchmark and the recently released Semantic KITTI dataset.

3D Point Cloud/LIDAR

4. Dartboard based ground detection on 3D point cloud, L. Gigli et al, ISPRS2022 3D laser scanners acquire 3D point clouds of real environments. The process consists in sampling the scene with laser beams rotating around an axis. By construction, the point density decreases with the distance to the scanner. This density heterogeneity is a major issue, in particular for mobile systems in the context of autonomous driving, as usually a single scan is processed simultaneously (instead of mapping applications that can integrate several scans, reducing the density heterogeneity). We propose a dartboard grid with cell size increasing radially in order to adapt the grid size to the point density. The e ectiveness of this strategy is demonstrated by means of a ground detection task, a fundamental step in many workflows of analysis of 3D point clouds. In addition, manual annotation of the classes using the semantic tags of CARLA was performed on the real data, allowing the testing of transfer methods from the synthetic to the real data. The objective of this dataset is to provide a challenging dataset to evaluate and improve methods on di cult vision tasks for the 3D mapping of outdoor environments: semantic segmentation, instance segmentation, and scene completion. For each task, we describe the evaluation protocol as well as the experiments carried out to establish a baseline.

Figure 1 . 1

 11 Figure 1.1 Mathematical notation for a 2D multivariate image, f : ae V. The matrix of dimension n 1 ◊ n 2 ◊ p containing the vector information on n := n 1 ◊ n 2 pixels in dimension p of f is denoted by X f .

Figure 1 . 2

 12 Figure 1.2 Scheme of di erent representation for the spectral information of a multivariate image. This thesis deals with spectral representation based on complete lattice representation as in (f).

1 . 2 . 3 . 4 .

 1234 For r, s oe L 1 , if r AE s, then -(s) AE -(r); For r, s oe L 2 , if r AE s, then -(s) AE -(r); For r oe L 1 , --(r) AE r; For r oe L 2 , --(r) AE r.

( a )Figure 1 . 3

 a13 Figure 1.3 Spectral representation of a colour image in the RGB space. A spatial position x in the image f contains three coordinates in the RGB-space represented by x.

Fig. 1 .

 1 4(e) shows the referenced mapping for the colour image in Fig. 1.4(a). The training set are the pixel in the red region of Fig 1.4(d). Note that h REF "detects" the girl but at the same time the border of the swimming-pool. Associated morphological adjunction and gradient are illustrated in Fig. 1.5(g-i).

( a )Figure 1 . 4

 a14 Figure 1.4 Comparison of di erent h-mappings considered in this section for a given colour image. Referenced h-mapping requires prior information given by an one class training set T , in this example T = F. Supervised h-mappings requires prior information given by the sets B and F. Anomaly based ordering is intrinsically adapted to the image.

  where the constant c is obtained by cross-validation on the training set (64). Results of this supervised ordering are illustrated in Fig. 1.4(f). The h SUPER matches our intuition of what should be maximum and what should be minimum in the image according to the couple {B, F} in 1.4(d). The supervised adjunction is shown in Fig. 1.5(j-k). Note that the supervised gradient in Fig.1.5(l) is better defined on the contour of the girl in comparison to unsupervised and referenced orders. A second example is presented for the RGB image in Fig. 1.3 considering the training sets in Fig. 1.6(a).

Figure 1 . 5

 15 Figure 1.5 Comparison of colour dilation, erosion and associated gradient using di erent horderings. Gradients have been normalised from zero to one to make easier the visual comparison.

( a )Figure 1 . 6

 a16 Figure 1.6 Background pixels are in blue, and foreground ones in red. c) The minimum in the supervised ordering is placed at the top left corner and the maximum at the bottom right corner. Morphological operators are computed by using a square of side three pixels as SE.

( a )Figure 1 . 7

 a17 Figure 1.7 Illustrative example of the irregularity issue. Image with three colours and its corresponding dilation by a cross structuring element using the RGB lexicographical and marginal orderings.

Figure 1 . 8

 18 Figure 1.8 Illustrative examples of the global irregularity index g 1 computed for several tiny colour images using di erent morphological operators.

Definition 2 . 3 .

 23 The opening (resp. closing) of f by the structuring function SE is denoted by

. 7 )' = 1

 71 in the case of discrete values for f . Some examples of (2.6) and (2.7) are shown in Fig. 2.1(b) and (c).

( a )

 a REC " (f , g) (b) HMAX h (f ) (c) RMAX(f ).

Figure 2 . 1

 21 Figure 2.1 Examples of di erent geodesic morphological operators in a mask g from a marker f . The illustrated example in (c) uses ' = 1, but in practical implementation it should be a small number.

Figure 2 . 2

 22 Figure 2.2 (a)-(c) Bi-dimensional representation of the evolution in the classical shock filter (2.8) for the Cameraman grey-scale image shown in (d). (e) One iteration of the shock filter in (2.8) (f) Image obtained after iterating (2.8) until stability.

Figure 2 . 3

 23 Figure 2.3 Example a) Original evaluated graph b) Example of Structuring element considering the geodesic distance approximated in the graph (a) with a center in the point of the noise. c) Riemannian Dilation (2.14) d) Riemannian Erosion (2.15) e) Riemannian Closing and f) Riemannian Opening. The operators are applied marginally.

Figure 2 . 4

 24 Figure 2.4 Conditional vs standard operators. f is a greyscale image of 175 ◊ 245 pixels (a), SE is a square of side 25. Pixels of the mask are displayed in green (c). Note that objects in the mask are neither dilated nor eroded for the conditional operators.

. 18 )

 18 then the pair (Á SE (f , m), " SE (f , m)) is an adjunction. Proof. For every SE oe and a given m oe F( , {0, 1}), the pair (Á SE (•, m), " SE (•, m)) defines an adjunction on F( , L) [Proposition 4.33, (110)]. In other words

Figure 2 . 5

 25 Figure 2.5 Example showing that the pair conditional operators are not an adjunction in algebraic sense. If k " = m, " SE (Á SE (f , m) , m) = Á SE (" SE (f , m) , m) but not equal to f , so (Á SE (•, m) ," SE (•, m)) is not an adjunction 1.4. In the example, SE is a square of three pixels (8-connectivity).

Figure 2 . 7 3 .

 273 Figure 2.7 Example of noise removal by proposed method. Images contaminated by salt-andpepper noise. (a)-(d) Noisy images (40%.) (e)-(h) Results restored by using the conditional toggle mapping. (i)-(l) Noisy images (80%.). (m)-(p) Image restored by the conditional toggle mapping.

Figure 2 . 8

 28 Figure 2.8 Example of noise removal by proposed method.(a)-(c) Experiment (50%). (d)-(f) Experiment (70%). (g)-(i) Experiments (95%.). First column shows images contaminated by marginal salt-and-pepper noise, second column includes mask image by using Eq. (2.23) and third column displays the result of the conditional toggle mapping.

Figure 3 . 1

 31 Figure 3.1 (a)-(e) False-colour representation of simulated images by dead leaves model with di erent primary grains. Linear SVM on proposed features. CNN 1 on proposed features (f)-(g) Accuracy vs the number of images in the training set for 25 repetitions.

Figure 3 . 2

 32 Figure 3.2 (a) t-SNE .We notice that the classes "Flowers" and "Horizontal Lines" are not well separated (b) ¸1-SVM. These two distances between hierarchies provide a geometrical understanding of the images content. Projecting along these features does indeed separate these classes e ciently. (c) The same can be done for example for the classes "Flowers" and "Vertical Lines"

( a )Figure 3 . 3

 a33 Figure 3.3 Results on some examples of Intrinsic Images in the Wild, for a WHDR score.(b),(e),(h) are images from the testing set, (c),(f),(i) the model segmentations and (d),(g),(j) the oracle segmentations.

Figure 3 . 4

 34 Figure3.4 An example of stable + unstable decomposition of minimum spanning tree. The green graph is the forest FOREST t that contains only stable edges, while the red graph is E G t that contains only unstable edges. (b-c) Pixels without edges are stable, so is possible to store that part of the graph and do not need to consider in following intervals.

. 8 )

 8 It is thus straightforward to prove that the distance of a point to the origin isd o (x) := d(o, x) = 2 tanh ≠1 (ÎxÎ 2 ).

(a) t = 0 (b) t = 1 (c) t = 2 Figure 3 . 5

 01235 Figure 3.5 An example of one level of ⁄-quasi-flat zones in streaming, with ⁄ = 10 for image in Fig. 3.4. Black pixels in Figures (a) and (b) are those that do not have a stable label in that iteration.

-Figure 3 . 6 E

 36 Figure3.6 E ect of noise on predictions in the circles database. The model used for prediction is an MLP trained without noise. From top to bottom, each row is a case with an increasing level of noise. In the first column input points, while in the second column we illustrate hidden features. Points are coloured according to ground truth. The third column illustrates hidden features after projection to Poincaré Disk. The fourth column shows predicted labels, while the fifth column shows associated dendrograms.

Remark 4 . 1 .

 41 ReLU activation function and max-pooling are dilation operators on the lattice of functions.Theorem 4.2 ((

Definition 4 . 4 (

 44 Max-Min normal forms). Max-Min type functions may be transformed to the following two normal forms:

Theorem 4 . 5 .

 45 [START_REF] Bartels | Continuous selections of linear functions and nonsmooth critical point theory[END_REF] Let f oe F(R n , R) be a max-min-type continuous selection of a ne functionsa T 1 x + -1 , .. . , a T m x +m . If the vectors a 1 , . . . , a m are a ne independent, then both normal forms of f are unique. Remark 4.6. Let f oe CS(a T 1 + -1 , . . . , a T m +m ). Then f can be expressed as a max-min type selection. Remark 4.7. Any continuous selection of linear functions is representable as the di erence of two convex continuous selections of linear functions. Experimental Section Definition 4.8. (283) defines the MorphoActivation layers, by considering the activation functions and Pooling Morphological Operator, as one transformation as follows. f ' ae

Figure 4 . 1

 41 Figure 4.1 First Row: Left: Random initialisation with (14%) of accuracy on the test set, We use a simplified version of proposed activation min(max(-0 x+-0 ,-1 x+-1 ,-2 ),-3 ), with initialisation max(min(ReLU(x), 6), ≠6) Center: Training only activations (92.38%), Right: Training Full Network (98,58%). Second Row: t-SNE visualisation of last layer is the 10-classes MNIST prediction for a CNN.

Figure 4 . 2

 42 Figure 4.2 The blue points corresponds to the observed signal, a) Flat dilation/erosion based MEM 4.11 with a disk of ⁄ = 5, b) Quadratic dilation/erosion based MEM with ⁄ = 3.

Figure 4 . 3 ≠

 43 Figure 4.3 a) Flat OCMEM with a disk of ⁄ = 5, b) Quadratic OCMEM with ⁄ = 3 and c) Lasry-Lions MEM with ⁄ = 3 and c = .9

Figure 4 . 4

 44 Figure 4.4 Analysis of invariance against additive shift for the training sample of Indian Pines. Norm of the Di erence in the predictions with and without additive shift, i.e., ||pred(x) ≠ pred(x + c)|| 2 2 for di erent values of c is given for three models: a) MEMD by (Á, "), b) baseline model, c) baseline model with a data augmentation by random additive constant. We highlight that by 4.17 all the MEMD based models are invariant to additive shifts.

Figure 4 . 5

 45 Figure 4.5 Baseline architecture[START_REF] Paoletti | Deep learning classifiers for hyperspectral imaging: A review[END_REF] vs Baseline architecture applied to EMD. The baseline uses a 20 convolutions 2D with a kernel size of (24, 1) followed by a max-pooling reduction of size (5, 1) and a RELU activation. For the case presented in the experimental section the same baseline architecture is used. In (b) is the same baseline architecture adapted for ten empirical modes.

Figure 4 . 6

 46 Figure 4.6 Basins of attraction with cardinality greater that one. BA x a , BA x b and BA x c contribute to the Jacobian with respect to the mask f in (4.20) and are associated to local maxima of f . The BA x d contributes to the Jacobian with respect to the marker g (4.21), and is associated to a local minimum of g.

Figure 4 .

 4 Figure 4.7 a) Example of a random image containing geometrical shapes as Circles, Squares, Triangles and Rectangles. b) Bounding box Area c) Eccentricity d) Area e) Perimeter. f) Example of prediction for the attribute perimeter e) for a CNN in f) and the proposed CNN REC in g). Both trained models in f) and g) have the same number of parameters. CNN REC homogenises the results of the CNN inside each object, reducing drastically the validation loss in Fig. 4.8

Figure 4 . 8

 48 Figure 4.8 Several repetitions of the training protocol by varying the random initialisation. Dotted lines correspond to traditional CNN, and plain lines to CNN REC , i.e, with a reconstruction as the last layer. Note that CNN and CNN REC models have the same number of parameters. In the explored scenarios, the inclusion of the geodesic reconstruction helps to converge to a model with lower loss on the validation set.

Figure 4 . 9

 49 Figure 4.9 Left: CNN ≠ CNN model for denoising. The first block is trained to learn how to denoise an input image. The second is trained for classification. Right: Proposed model is composed of two blocks. Reconstruction block: it is composed of a CNN which computes from an input f a single real value h. The output is HMAX h (f ). Classification block: A block of supervised classification. In both models, the second block is trained for classification without updating the denoising block.

Figure 4 . 10

 410 Figure 4.10 Classification accuracy of classical and proposed model for MNIST and Fashion MNIST with additive Gaussian and Uniform noise with µ = 0 and ‡ oe {0., 0.05, ••• , 1}. The original images have been normalised from zero to one. Examples of images with di erent levels of noise are shown in Fig. 4.11. The reconstruction block (Fig.4.9) has been trained only on MNIST with additive noise distributed as an absolute value zero-mean Gaussian with ‡ = 0.1. We have included a training with augmentation by additive random Gaussian noise at µ = 0 and

Figure 4 . 11

 411 Figure 4.11 Example of images with level of noise between zero to ones where it has been used in Fig. 4.10. First row is a random uniform noise. Second row is a random Gaussian noise. Note that even with high noise levels the digit is perceived.

Figure 4 . 12

 412 Figure 4.12 The figure shows the predicted h values for same type of noise on dataset MNIST, Fashion MNIST, CIFAR10, 91IMAGES(302) and BSD300 (169) for ‡ oe {0, 0.1,..., 0.9}. The proposed reconstruction block network succeed in predict the noise strength for several datasets despite having been trained only at the level ‡ = .2 and only on MNIST database.

Figure 4 .

 4 Figure 4.14 16 of the 100 atom images of the four compared representations of Fashion-MNIST dataset.

•

  A New colour Augmentation Method for Deep Learning Segmentation of Histological Images, Y. Xiao et al, ISBI 2019. This paper addresses the problem of labeled data insu ciency in neural network training for semantic segmentation of colour-stained histological images acquired via Whole Slide Imaging. It proposes an e cient image augmentation method to alleviate the demand for a large amount of labeled data and improve the network's generalisation capacity. Typical image augmentation in bioimaging involves geometric transformation. Here, we propose a new image augmentation technique by combining the structure of one image with the colour appearance of another image to construct augmented images on-the-fly for each training iteration. We show that it improves performance in the segmentation of histological images of human skin, and also o ers better results when combined with geometric transformation • Dealing with Topological Information within a Fully Convolutional Neural Network, E. Decencière et al., ACIVS 2018.

75 Figure 5 . 1

 7551 Figure5.1 CCN truncates extreme sample eigenvalues and leaves the moderate ones unchanged and CERNN gives the contrary e ect. Linear and geodesic shrinkages moves eigenvalues towards the grand mean of all sample eigenvalues. However, the e ect of geodesic shrinkage is more attenuated for extreme eigenvectors than in linear case. The e ect of BD-correction depends on the eigenvalues sets defined by t.

'

  Efron-Morris = A (n ≠ p ≠ 1) ' ≠1 + p(p + 1) ≠ 2 tr( mentioning that other estimations have been developed following the idea behind Wishart modelling and assuming a simple model for the eigenvalue structure in the covariance matrix (usually two phases model). Recently, Ben-David and Davidson (25) have introduced a new approach for covariance estimation in HSI, called here BD-correction. From the SVD of ' = U ' U T , they proposed a rotationally-invariant estimator by correcting the eigenvalues by means of two diagonal matrices, ' BD = U BD U T , with BD = ' Mode Energy . (5.22)
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 3154 Proposition If x has a univariate symmetric probability density function f x , we denote

1 .

 1 Objects co-segmentation: Propagated from simpler images, M. Chen, S. Velasco-Forero, I. Tsang and T.J. Cham, IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1682-1686, 2015.

Figure 6 . 1 1 .

 611 Figure 6.1 Examples of co-segmentation results by method in[START_REF] Chen | Compressing neural networks with the hashing trick[END_REF] 

2 .

 2 The strong gravitational lens finding challenge, R. Benton Metcalf et al., Astronomy and Astrophysics, volume 625, 22 pages, May. 2019

(a)Figure 6 . 2

 62 Figure 6.2 Comparison of colour Lines / Geodesic based colour lines proposed in (73). This model is another example of modelling spectral information that can be compared in the context of Fig. 1.2

1 .

 1 Classification of hyperspectral images by tensor modeling and additive morphological decomposition, S. Velasco-Forero and J. Angulo, vol. 46, 2013, Pattern Recognition.

Figure 6 . 3

 63 Figure 6.3 Example of grape segmentation obtained by the method proposed in (182).

6. 2 3D Shapes 1 .

 21 SHREC'13 Track: Retrieval on textured 3D models, A. Cerri et al., Eurographics Workshop on 3D Object Retrieval, pp. 73-80, 2013.

3 .

 3 Retrieval and classification methods for textured 3D models: A comparative study, S.Biasotti, M. Aono, A. Ben Hamza, V. Garro, A. Giachetti, D. Giorgi, A. Godil, C. Li, C. Sanada, M. Spagnuolo, A. Tatsuma and S. Velasco-Forero, 1-25, August, 2015, The Visual Computer Journal.

4 .

 4 SHREC'16 Retrieval of Human Subjects from Depth Sensor Data, A. Giachetti et al., Eurographics Workshop on 3D Object Retrieval, 2016.

5 .

 5 SHREC'17 Track: Retrieval of surfaces with similar relief patterns, S Biasotti, et al., 10th Eurographics Workshop on 3D Object Retrieval, 2017.

8 .

 8 SHREC'20 track: Retrieval of digital surfaces with similar geometric reliefs, E. Moscoso Thompson et al., Computers and Graphics, pp. 199-218, 2020

Figure 6 . 4

 64 Figure 6.4 Example of a point of view of data from a Light Detection and Ranging scanner with it respective ground truth.(142).

2 . 3 .

 23 SHREC 2020 Track: 3D Point Cloud Semantic Segmentation for Street Scenes, T. Ku et al, Computer and Graphics, pp.[START_REF]Riemannian mathematical morphology[END_REF][START_REF] Aptoula | A comparative study on multivariate mathematical morphology[END_REF][START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF][START_REF] Bai | Deep watershed transform for instance segmentation[END_REF][START_REF] Banon | Minimal representations for translation-invariant set mappings by mathematical morphology[END_REF][START_REF] Baraldi | Single linkage region growing algorithms based on the vector degree of match[END_REF][START_REF] Barnett | The ordering of multivariate data (with discussion)[END_REF][START_REF] Bartlett | Classification with a reject option using a hinge loss[END_REF][START_REF] Bauw | Deep random projection outlyingness for unsupervised anomaly detection[END_REF][START_REF]Near out-of-distribution detection for low-resolution radar micro-doppler signatures[END_REF][START_REF] Bécigneul | Riemannian adaptive optimization methods[END_REF][START_REF] Bedi | Empirical mode decomposition based deep learning for electricity demand forecasting[END_REF] 2020 Scene understanding of large-scale 3D point clouds of an outer space is still a challenging task. Compared with simulated 3D point clouds, the raw data from LiDAR scanners consist of tremendous points returned from all possible reflective objects and they are usually non-uniformly distributed. Therefore, its cost-e ective to develop a solution for learning from raw large-scale 3D point clouds. In this track, we provide large-scale 3D point clouds of street scenes for the semantic segmentation task. The data set consists of 80 samples with 60 for training and 20 for testing. Each sample with over two million points represents a street scene and includes a couple of objects. There are five meaningful classes: building, car, ground, pole and vegetation. We aim at localising and segmenting semantic objects from these large-scale 3D point clouds. Four groups contributed their results with di erent methods. The results show that learning-based methods are the trend and one of them achieves the best performance on both Overall Accuracy and mean Intersection over Union. Next to the learning-based methods, the combination of hand-crafted detectors are also reliable and rank second among comparison algorithms. Road segmentation on low resolution LIDAR point clouds for autonomous vehicles, L. Gigli et al, ISPRS2020 Point cloud datasets for perception tasks in the context of autonomous driving often rely on high resolution 64-layer Light Detection and Ranging scanners. They are expensive to deploy on real-world autonomous driving sensor architectures which usually employ 16/32 layer LIDARs. We evaluate the e ect of subsampling image based representations of dense point clouds on the accuracy of the road segmentation task. In our experiments the low resolution 16/32 layer LIDAR point clouds are simulated by subsampling the original 64 layer data, for subsequent transformation into a feature map in the Bird-Eye-View (BEV)

5 .

 5 Paris-CARLA-3D: A real and synthetic outdoor point cloud dataset for challenging tasks in 3D mapping, J.E. Deschaud et al., Remote Sensing, 2021 Paris-CARLA-3D is a dataset of several dense colored point clouds of outdoor environments built by a mobile LiDAR and camera system. The data are composed of two sets with synthetic data from the open source CARLA simulator (700 million points) and real data acquired in the city of Paris (60 million points), hence the name Paris-CARLA-3D. One of the advantages of this dataset is to have simulated the same LiDAR and camera platform in the open source CARLA simulator as the one used to produce the real data.

  

ordering in R p : Application to morphological processing of hyper- spectral images

  

	3. Can classical convolution neural networks be interpreted as models that learn h-order in a
	multivariate sense?
	Related Publications
	1. Supervised , S. Velasco-Forero and J. Angulo, vol. 20, num. 11, Oct. 2011, IEEE
	Transactions on Image Processing.
	2.

Random projection depth for multivariate mathematical morphology,

  

	S. Velasco-
	Forero and J. Angulo, vol. 6, num. 7, Oct. 2012, IEEE Journal of Selected Topics in Signal
	Processing.

  Let us consider a set of homogeneous images, that we subdivide into training and testing subsets, and a set of indexed hierarchies H (possibly composition of hierarchies as in 3.2.1). During the training phase, we are interested in finding the hierarchy H and cut level ⁄ that minimise the score on average over the whole set, i.e.,

	(H ú	, ⁄ ú ) := arg min
		(H,⁄oe )oeH

). We would like to find the best hierarchy and the best cut level ⁄ according to the score evaluated on a training set of images. Let us consider a training set T = {f 1 , . . . , f |T | } and a set of indexed hierarchies H = {(H 1 , 1 ), (H 2 , 2 ), . . . , (H |H| , |H| )}. For any image, there is a best hierarchy and cut level that minimises the score, that we call oracle: (H oracle (f ), ⁄ oracle (f )) := arg min (HoeH,⁄oe ) score(f , (H, ⁄)). (3.4)

  ReLU activation followed by a MaxPool with stride two. The di erence in top-one error rate on

		Fashion MNIST	CIFAR10	CIFAR100
	MaxPool(ReLU)	93.11	78.04		47.57
	MorphoActivation in (4.5) N=2 N=3 N=4 N=2 N=3 N=4 N=2 N=3 N=4
	M=2	-0.06 -0.05 -0.1 -0.42 0.02 -0.02 0.44	0.7	0.4
	M=3	-0.14 -0.14 -0.06 -0.57 -0.4 -0.35 0.56 0.49 0.61
	M=4	-0.02 -0.08 -0.01 0.05 -0.62 -0.5	0.41 0.35 0.73
	MorphoActivation in (4.6) N=2 N=3 N=4 N=2 N=3 N=4 N=2 N=3 N=4
	M=2	0.04 -0.16 -0.12 1.84 2.02 1.49 3.31	3.5	3.45
	M=3	0.08 -0.09 0.12 2.39 1.96 1.82 3.48 3.55 3.86
	M=4	-0.02 0.09 -0.03 2.49 2.25 2.13 3.47 3.73 3.58

Table 4 . 1

 41 Relative di erence with respect to our baseline (ReLU followed by a MaxPool). Architecture used is a CNN with two layers. ADAM optimiser with an early stopping with patience of ten iterations. Only Random Horizontal Flip has been used as image augmentation technique for CIFARs. The results are the average over three repetitions of the experiments.

Table 4 . 2

 42 Experiment on hyperspectral Indian Pines Disjoint classification problem. Each experiment has been repeated ten times varying the initialisation of base architecture. Twenty filters of MEMD in a single level of simplification. The training was performed without any data augmentation technique. The constraint SE(0) Ø 0 is used to assure the order relation among envelopes (See Theorem 2.2) .909 ± 0.876 96.924 95.273 ± 1.336 True 82.424 81.299 ± 0.983 96.941 95.674 ± 0.927 composition of functions, the Jacobian the geodesic dilation in (2.4) is

				Overall Val. Acc.	Overall Training Acc.
	Type Baseline	Operator -	--	Best 85.035	µ ± ‡ 83.929±0.654 93.443 Best	µ ± ‡ 91.413±1.696
	NonFlat Quadratic (", Ï) (", Ï) (Á, ") (Á, " SE(0) Ø 0 .5 .5 True .5 True 85.311 84.052 ± 1.227 95.922 94.015 ± 2.717 95.495±1.184 84.080 83.239 ± 0.512 97.012 84.420 83.490 ± 0.656 97.223 96.012 ± 0.847 83.252 82.764 ± 0.576 97.451 95.226 ± 2.065 83.379 82.870 ± 0.261 96.889 95.621 ± 1.043 True 85.247 83.821 ± 0.787 96.168 94.874 ± 1.120 .5 79.495 78.024 ± 0.754 96.080 93.580 ± 2.625 True 80.959 77.971 ± 1.563 97.645 95.043 ± 1.565 (Á, ") .5 81.363 79.798 ± 1.006 96.484 94.964± 1.111 True 81.596 80.847 ± 0.537 97.223 95.066± 1.191 Lasry-Lions .5 81.384 79

Table 4 . 3

 43 Experiment on hyperspectral Pavia University for a disjoint training sample. Nine di erent classes. Each experiment has been repeated ten times varying the initialisation of base architecture. Twenty filters of MEMD in a single level of simplification. The training was performed without any data augmentation technique. The constraint SE(0) Ø 0 is used to assure the order relation among envelopes (See Theorem 2.2)

	Overall Val. Acc.	Overall Training Acc.

Table 4 . 4

 44 Experiment on hyperspectral Pavia University for a disjoint training sample. Nine di erent classes. Each experiment has been repeated ten times varying the initialisation of base architecture. Twenty filters of MEMD in a single level of simplification. The training was performed without any data augmentation technique. The constraint SE(0) Ø 0 is used to assure the order relation among envelopes (See 2.2)

	Overall Val. Acc.	Overall Training Acc.

Table 4 .
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	Method	Indian Pines Pavia University
	Random Forest	65.79	69.64
	Multinomial Logistic regression	83.81	72.23
	Support Vector Machines	85.08	77.80
	MLP	83.81	81.96
	CNN1D	85.03	85.47
	-Á," + CNN1D	85.31	85.48

5 

Comparison (in terms of OA) between di erent HSI classification models trained on spatial-disjoint samples. The performance for first four models are included for comparison from

[START_REF] Paoletti | Deep learning classifiers for hyperspectral imaging: A review[END_REF]

.

Table 4 . 6

 46 Comparison of the reconstruction error, sparsity of encoding and part-based approximation error to dilation produced by the sparse-NMF, the NNSAE, the NCAE and the AsymAE, for both MNIST and Fashion-MNIST datasets.

	Model	Reconstruction Sparsity Part-based approximation
		error	of code	error to dilation
			MNIST	
	Sparse-NMF	0.011	0.66	0.012
	NNSAE	0.015	0.31	0.028
	NCAE	0.010	0.35	0.18
	AsymAE	0.007	0.54	0.069
		Fashion MNIST	
	Sparse-NMF	0.011	0.65	0.022
	NNSAE	0.029	0.22	0.058
	NCAE	0.017	0.60	0.030
	AsymAE	0.010	0.52	0.066
	Related Publications			

• Max-plus operators applied to filter selection and model pruning in neural networks, Y. Zhang, S. Blusseau, S. Velasco-Forero, I. Bloch, J. Angulo, ISMM 2019.

Table 5 . 1

 51 Covariance matrix estimators considered in this section

	Name	Notation	Formula
	SCM	'	1 n

Table 5 . 2

 52 Top-3 performances in di erent analysed scenarios in[START_REF] Velasco-Forero | Comparative analysis of covariance matrix estimation for anomaly detection in hyperspectral images[END_REF] 

	Distribution Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Cauchy Cauchy Cauchy Cauchy Cauchy Cauchy Dirichlet Dirichlet	Contamination No 1% 10% No 1% 10% No 1% 10% No 1% 10% No 10%	c = p n 0.2 0.2 0.2 0.9 0.9 0.9 0.2 0.2 0.2 0.9 0.9 0.9 0.2 0.2	Top three performances BD ' ' -Efron-Morris Geo-Stein ' ' t ' --Tyler ' t ' --Tyler ' ' -' -SMT Stein Tyler ' ' -' -SMT Stein Tyler ' -' -' -Tyler Stein Geo-Stein ' -Tyler ' -' t Geo-Stein ' -Tyler ' -' CERNN Geo-Stein ' -Tyler ' ' -t Geo-Stein ' -Geo-Stein ' -' CERNN Tyler ' -Tyler ' -' CERNN Geo-Stein ' -Tyler ' -' CCN Geo-Stein ' SMT ' ' -BD Tyler ' CCN --
	Dirichlet Dirichlet	No 10%	0.9 0.9	' '	SMT CCN	' -BD	' -Tyler -

  [START_REF] Ben-David | Learning distributions by their density levels: A paradigm for learning without a teacher[END_REF]) and (5.28) is proved for the family of Elliptically Symmetric Distributions (ESD)[START_REF] Fang | Symmetric multivariate and related distributions[END_REF].

Definition 5.1. A random p-dimensional vector x is spherically distributed if x and Q T x have the same distribution for O p◊p oe O(p), the set of all orthogonal matrices of dimension p defined as O(p) = {Q oe M(p) : Q

Table 5 . 3

 53 Unsupervised AD experiments results (average test AUCs in % ± StdDevs over ten seeds). These machine learning methods are trained on fully normal training sets, without labeled anomalies for SAD or self-supervision transformations. The four last methods are our deep AD baselines, trained on normalised spectral representations only. Deep MSVDD "mean best" indicates the neural network was trained using a simpler loss, analogous to the Deep SVDD loss, where only the distance to the best latent normality centroid is minimised. PCA and tPCA indicate that the AD model is trained after an initial dimensionality reduction, which is either PCA or tangent PCA. it is the shallow equivalent of Deep RPO, one of the highlighted deep AD methods, deprived of the neural network encoder and with a max estimator instead of a mean, as was previously justified. Deep MSVDD does not lead to the best performances, and is as e ective as Deep SVDD and Deep RPO, which could have seemed surprising at least when normality is made of two target classes. Indeed, since Deep MSVDD has the possibility to use several disjointed hyperspheres to capture the latent normality distribution, one could expect it to better model more complex, e.g. multimodal, normality.

	AD method (input format)	Mean test AUC (1 mode) Mean test AUC (2 modes)
	OC-SVM (SP-PCA) OC-SVM (SPD-PCA) OC-SVM (SPD-tPCA) IF (SP-PCA) IF (SPD-PCA) IF (SPD-tPCA) LOF (SP-PCA) LOF (SPD-PCA) LOF (SPD-tPCA) RPO (SP-PCA) RPO (SPD-PCA) RPO (SPD-tPCA) Deep SVDD (SP) Deep MSVDD (SP) Deep MSVDD "mean best" (SP) Deep RPO (SP)	49.16 ± 26.69 64.68 ± 9.10 57.59 ± 3.91 50.96 ± 17.37 52.36 ± 22.47 66.91 ± 9.65 56.80 ± 2.38 66.44 ± 21.37 78.38 ± 8.86 49.61 ± 6.89 51.08 ± 19.66 33.97 ± 7.36 83.03 ± 6.83 82.27 ± 9.67 82.29 ± 7.20 83.60 ± 5.35	45.48 ± 27.53 58.23 ± 15.12 55.33 ± 9.48 48.50 ± 18.76 47.50 ± 20.32 61.23 ± 12.65 61.55 ± 10.29 65.83 ± 19.52 73.56 ± 10.09 50.43 ± 7.13 54.95 ± 17.58 38.08 ± 14.58 78.29 ± 6.68 78.30 ± 8.28 78.02 ± 6.80 78.13 ± 6.02
	useful discrimination because		

2. SHREC-14 Track: Retrieval and classification on Textured 3D Models,

  S. Biasotti et al., Eurographics Workshop on 3D Object Retrieval, 2014.

18 track: Retrieval of gray patterns depicted on 3D models

  Biasotti, et al., 11th Eurographics Workshop on 3D Object Retrieval, 2018. This track of the SHREC 2018 originally aimed at recognizing relief patterns over a set of triangle meshes from laser scan acquisitions of archaeological fragments. This track approaches a lively and very challenging problem that remains open after the end of the track. In this report we discuss the challenges to face to successfully address geometric pattern recognition over surfaces; how the existing techniques can go further in this direction, what is currently missing and what is necessary to be further developed. , E. Moscoso Thompson et al, 11th Eurographics Workshop on 3D Object Retrieval, 2018.

6. SHREC'18 track: Recognition of geometric patterns over 3D models, S.

7. SHREC'

17 Track: Point-Cloud Shape Retrieval of Non-Rigid Toys

  , FA Limberger, et al., 10th Eurographics Workshop on 3D Object Retrieval, 2017.

1. SHREC'

Theoretically, a partial ordering is enough but to make easier the presentation we analyse the case of total ordering.

Adaptive in the sense that the mapping depend on the information contained in a multivariate image f . The correct notation should be h(•; f ). However, in order to make easier the understanding of the section we use h for adaptive mapping.

In this case the sense of the inequality change, i.e.,x 1 AE hREF x 2 ≈∆ ||x 1 ≠ t|| 2 Ø ||x 2 ≠ t|| 2 .

An operator  : ae R p is idempotent if 'x oe , Â

(x) = Â(Â(x)) = Â(x).

A Riemannian manifold M is complete if starting at any point p oe M, all geodesics are defined for all t oe R.

Morphological Semigroups and Scale-Spaces on Ultrametric Spaces, J. Angulo and S. Velasco-Forero, ISMM 2017

(12 Conv2D + 12 Conv2D + MaxPooling2D(3 ◊ 3) + Dropout(0.3) ) +(24 Conv2D + 

Conv2D + MaxPooling(3 ◊ 3)+ Dropout(.5) ) + Dense(NumClasses) + SoftMax. Categorical cross-entropy as loss function and adaptive gradient (Adagrad) as optimiser.

A description of the score function used in the experiments is given in[START_REF] Fehri | Automatic selection of stochastic watershed hierarchies[END_REF] 

The Poincaré ball is the Riemannian manifold M = (B, dp), where B p = {y oe R p : ||y|| < 1} is the open p-dimensional unit ball. The distance function on M is defined as(3.8) 

The update in epoch k is ◊ k+1 = Ret ◊ t (≠÷grad(M, ◊ t )), where grad(M, ◊) denotes the Riemannian gradient with respect to ◊, Ret denotes a retraction from the tangent space of ◊ onto M, and ÷ > 0 is the learning rate.

The term deep is use when the number of layers, L, is larger than three.

A function f : R n ae R is upper semi-continuous (u.s.c) (resp. lower semi-continuous (l.s.c.)) if and only if, for each x oe R n and t oe R, f (x) < t (resp. (f )(x) > t) implies that f (y) < t (resp. f (y) < t) for all in some neighborhood of x. Similarly, f is u.s.c. (resp. l.s.c.) if and only if all its level sets are closed (resp. open) subsets of R n . A function is continuous i is both u.s.c and l.s.c.

We use ADAM optimiser with a categorical entropy as loss function, a batch size of 256 images and a learning rate of 0.001.

This formulation can be easily generalised to the case of convolutional layers.

Note that the classical universal approximation theorems for neural networks (see for example[START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF]) do not hold for networks containing max-plus units.

Eccentricity of the ellipse that has the same second-moments as the object. The eccentricity is the ratio of the focal distance (distance between focal points) over the major axis length. The value is in the interval [0, 1). When it is 0, the ellipse becomes a circle.

The mean squared error is used as loss function, Adam optimiser, learning rate of 0.001, learning rate schedule by a factor of 0.1 with a patience of five epochs, and an early stopping with patience of ten epochs.

Interpretability in the sense of (183): "Interpretability is the degree to which a human can understand the cause of a decision".

In case one has some examples of anomalies, we will use the term semisupervised
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the weighted atom images to have little pairwise overlap. Secondly, a sum of images with disjoint supports is equal to their (pixel-wise) supremum. Finally, dilations commute with the supremum and, under certain conditions that are favoured by sparsity, this also holds for the erosions. This will be developed in more details in Section 4.6.2. For now, Figure 4.13 illustrates the part-based approximation " ú SE of the dilation " SE by a structuring element SE, expressed as:

l i,j " SE (a j ). (4.26)

Morphological operators on non-negative linear combinations

In this section we precise the intuitions about the part-based approximation of morphological operators. Let L be the complete lattice of images with n pixels and with values in [0, +OE] ordered by the Pareto ordering (f AE g i for any q, 1 AE q AE M , f q AE g q ). Consider a flat, extensive dilation " SE on L and its adjoint anti-extensive erosion Á SE , SE being a flat structuring element.

Let f be an image approximated by the non-negative combination f = q k j=1 l j a j of k atom images a 1 , . . . , a k . Following 4.25, we define the part based approximations of the four operators " SE , Á SE ,

We focus on establishing whether these expressions approximate well their exact counterparts

It is likely to be so as soon as

, which is to say as soon as the four operators commute with the non-negative linear application A = [a 1 , . . . , a k ] ' ae Al := q k j=1 l j a j . As sketched earlier, sums can be identified to suprema if the involved images have disjoint supports, and this also favours the commutation of the erosion

Contributions in Anomaly Detection

C'est avec la logique que nous prouvons et avec l'intuition que nous trouvons.

Henri Poincaré

Introduction

The job of the professional image analyst is to find things in images. Often the analyst knows in advance what kinds of things to look for: peoples, airplanes, industrial facilities, cars, and so on. But sometimes the analyst is faced with the more open task of finding "unusual" things, without knowing in advance what these unusual things will be.

When the object of interest are known, one can employ supervised learning. But a pretty di erent problem arise when the examples of the target class are unavailable, or simply when the target class are unknown objects. The analyst should choice "normal" images and use them from training. This is the anomaly detection problem: a unsupervised learning problem in which the learning from data proceeds without any example 1 of the target of interest.

Many AD methods have been proposed, and a few literature reviews or tutorials have been thoroughly done (38; 50; 172; 173; 242; 257). Recently, the tutorial by [START_REF] Matteoli | An overview of background modeling for detection of targets and anomalies in hyperspectral remotely sensed imagery[END_REF] gives a good overview of di erent AD methods in the literature. In this manuscript, we analyse the AD in the context of optimal statistical detection, where the covariance matrix of the background is required to be estimated. Additionally, the extension in the context of deep learning is motivated and introduced.

In the dictionary, the definition of anomaly is given by:

1. something di erent, abnormal, peculiar, or not easily classified : something anomalous.

deviation from the common rule.

The first definition motivates many approaches using compression techniques, autoencoders, among others as anomalies detector (5; 306). Where one has a normal information encoding/decoding system, and one hopes that the anomalies are the objects that cannot be decoded 

A.4 Professional Service

B.2.3 Post-doctoral researchers

• 2016: Diego TUCCILLO, postdoc in a collaborative project with E. DECENCIÈRE (Mines Paris) and M. HUERTAS-COMPANY (Paris Observatory).

• 2017: Samy BLUSSEAU, postdoctoral researcher in CMM/Telecom ParisTech collaborative project with J. ANGULO (Mines Paris), I. BLOCH (Telecom Paristech).

• 2022: Yuriy SINCHUK, postdoctoral researcher in a collaborative project with S. BLUSSEAU and Safran Aircraft Engines.

B.3 Industrial Collaborations

• 2017-2022: L'Oréal, Industrial project on the use of deep learning methods and mathematical morphology for histology image analysis.

• 2018-2022: Thales. Industrial/academic collaboration with the support of the DGA for the use of AI methods in radar technology.

• 2019-2022: Safran Aircraft Engines: Industrial collaboration for the development of useful methods for the analysis of tomography of materials.

• 2022: The Cross Product: Development of hierarchical segmentation methods for point clouds.

B.4 Past projects

• COMSYS (2015-2016): Estimation de matrices de COvariance et Matrices de densité pour des SYStèmes complexes (CARNOT MINES)

• M3S (2015-2016) Molecular detection with Multimodal microscopy scanner. M3S relies on a previous proof of concept and aims at retrieving specific fingerprints for simplifying Chronic Lymphocyte Leukaemia (CLL) as well as Malaria diagnosis and prognosis.

• REPLICA: (2019-2021) aims to complement existing simulation platforms with new bricks in order to bridge the gap expected in autonomous vehicle testing.