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Introduction

This manuscript is intended to obtain the diploma of “Habilitation a Diriger des Recherches',
issued by the Institut Polytechnique de Paris, in the “Informatique, Données, et IA" discipline. It
describes research activities pursued after obtaining a Doctoral thesis in Mathematical Morphology,
in June 2012. These activities essentially relate to mathematical morphology approaches for
image analysis, multivariate analysis for anomaly detection and machine learning methods, from
a theoretical and methodological point of view, but also in the context of applications, for remote

sensing, astronomy, material science among others.

0.1 Context

My research career began at the end of my master’s degree with the participation in various
projects at the University of Puerto Rico, continuing with my Ph.D. thesis in the Center for
Mathematical Morphology at Mines Paris - PSL, which I defended in June 2012. Followed by one
year as postdoctoral researcher at the Fraunhofer-Institut fiir Techno-und Wirtschaftsmathematik
- ITWM in Kaiserslautern, Germany, and 13 months as a postdoctoral fellow at the Department
of Mathematics in the University of Singapore. In both cases, my responsibilities include
participation in industrial projects that allowed theoretical contributions to be confronted with
real problems. The second part of my research experience (which continues until now) begins
upon my return to France in October 2014, as a three years tenure track followed by a permanent
research position at the Center for Mathematical Morphology of Mines Paris - PSL Research
University. This context, rich in both academic developments and industrial collaborations,
has motivated me to apply my skills in a wide range of applications including astronomy,
remote sensing, biology, radar technology and material science among others. Additionally, the
daily interaction with other researchers, master’s and doctoral thesis students, has enriched my
knowledge and understanding of various aspects of image processing, multivariate statistics, and
machine learning. This document attempts to collect the results obtained in the last ten years of

research.

0.2 Structure

The topics presented here mainly study the interaction between mathematical morphology,
discrete mathematics, multivariate statistics and machine learning. The first chapter studies the

extension of mathematical morphology for multivariate images by means of lattice theory and



machine learning. The second chapter is devoted to adaptive structuring elements in general and
includes as a practical example the study of a morphological salt and pepper noise reduction
method via conditional morphology. Chapter three includes some contributions of hierarchical
analysis of images. Chapter four presents some links between mathematical morphology and
machine learning. Chapter five presents the problem of anomaly detection from a statistical
point of view, and some extension using machine learning methods. Chapter six is a compendium
of applications. The appendices include an exhaustive list of teaching experiences, list of

collaborators, publications and industrial projects.

0.3 A personal point of view about Research

In this Habilitation o diriger des recherches (HDR) includes most of the results of my last
eleven years of interaction with a magnificent group of scientists including colleagues, former
Ph.D. and master’s students. The readers should note that the my works can be considered as
application-inspired, since most of the contributions are motivated by a real need that has been
explored during industrial and academical collaborations. Additionally, I would like to include

some statement to summarise what I think about the Research. I consider that
e "Science is not a business" and as education should be a human right, science should be
common for all.

« a dependence on single numbers to quantify scientists contribution and make administrative
decisions is a bad habit, and it may force people to somehow enhance their quality indexes

(as for instance the h-index) instead of focusing on their more legitimate activity.
e Research is a collective adventure, and by sharing ideas, new solutions emerges.

e while results contained in this work have been mainly the effort of this HDR’s author, it

could not have been concluded without the collaboration of the corresponding co-authors.



Mathematical Morphology on Vector Images

An approximate answer to the right problem is worth a good deal

more than an exact answer to an approximate problem.

John Tukey

1.1 Introduction

From the creation of the first photograph in 1826, to the invention of the first devices able to
produce a digital image in the 70th’s, a long time passed. Nowadays, images are everywhere,
and it has been estimated that more than 1.2 trillion digital photos have been taken worldwide
in 20172, Automatic analysis of large set of image is the main focus of many digital technology
companies. The development of tools that allow the processing of digital images is the main
focus of this manuscript. We start this chapter with the presentation of the notation and the

interest for a professional image analyst® of having a description by a lattice of a digital image.

1.1.1 Notations

In this document, an image is defined as a function f which associates a vector information to
each pixel, we use the notation f: ) — V, where  is the support of pixel values, usually Z2
or Z3 for digital images, and V denotes the vector space of spectral information. For instance,
for 2D colour images, 2 = Z? and V = R?, i.e. each pixel x = (i,7), f(x) is a triplet of values
[X1,%2,x3]. An illustration of the used notation is given in Figure 1.1.

Additionally, we write F(2,V) for the set of functions 2 — V. For grey scale images,
f,g € F(2,R) is naturally endowed with a partial order relation < defined by setting f < g for
two functions f and g, if and only if for every pixel z € Q we have f(z) < g(z). For any two
functions f,g € F(Q,RU{—00,00}), we write fVg and f Ag for the join and the meet, i.e.,
Ve e Q (fVg)(r) =max(f(x),g(z)), and, Vo € Q (fAg)(x) = min(f(z),g(x))

L View from the Window at Le Gras is a heliographic image and the oldest surviving camera photograph
according to (259)

2The estimation has been taking from https://www.infotrends.com/

3The term professional image analyst is used in this document to refer to the person who needs to use imaging
methods in practice for a given application.
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Figure 1.1 Mathematical notation for a 2D multivariate image, f: 2 — V. The matrix of
dimension n; X ng X p containing the vector information on n :=nj; X ny pixels in dimension p of
f is denoted by Xg.

Depending on the application, one may be interested in enriching the information in an image,
going beyond colour information. This is what multispectral sensors do. They collect information
at different values of wavelength ranges across the electromagnetic spectrum, including additional
information the human eye fails to capture given that its receptors operate only in the visible
light spectrum.

A variety of representations can be used to characterise the spectral information contained in

an image, for instance:

e Probability density models. It is the classical assumption of the statistical modelling for a
multivariate image. The classical assumption is a Multivariate Gaussian Distribution, i.e.,
the probability of a spectrum to be at certain region of the space follows N (p,X) for some

mean vector p and covariance matrix 3.

e Linear mixing models: In such a way that each pixel in a scene may be decomposed into a
sum of finite number of constituent endmembers, which represent the purest pixels in the
scene. The abundances (weights in the sum) are subject to non-negativity constraint and,

in some cases, sum-to-one constraint.

e Manifold models: The idea of capturing the complex geometry in the spectral representation
of an image is the core of a (non-Euclidean) manifold representation (212). Manifold learning
methods are becoming a standard to embedding data onto their new transformed spaces.
For instance, on the p— 1 hypersphere by normalising by the norm per pixel, or in supervised
projections on the sphere as in (153). Another manifold structure in a local-graph. It is
denoted by the graph G = (£,V), where £ = X is the set of vertices and V = [v;;] € R" x R"
the edge weight matrix. The graph is constructed in an unsupervised manner, with a
goal of automatically determining the neighborhood structure as well as the corresponding
connection weight for each datum. Examples of this type of representation are k-graph,
e-graph and ¢'-graph (299). Clustering, dimensionality reduction, image segmentation and

analysis can be performed in this representation space.

e Complete lattice model: A total ordering definition for a cloud of points. The relation

x <y have to be know for all pair of pixels x and y of the multivariate image. That is the



(c) Linear mixing models (positiv-
ity and additivity constrains) per-
(b) Probability density models mit spectra only in the convex hull
provide the probability spectrum of the spectral space. X = ATE,
(a) Original spectral information, to be at certain region of the space. where 0 < A is the abundance ma-
denoted by X. X ~N(p,X). trix and E are the endmembers.

(d) Manifold models, for instance,

representations on the sphere, al-(e) Graph models provides a struc-(f) In the complete lattice rep-
low a representation invariant to ture representation invariant to resentation, the set of pixels are
intensity changes (norm). x; — small perturbations in the spec- analysed through a total order re-
xi/||xi|], for all i =1...n. tral space. X — (V, E). lation. X — L.

Figure 1.2 Scheme of different representation for the spectral information of a multivariate
image. This thesis deals with spectral representation based on complete lattice representation as

in (f).
main goal in Chapter one. Mathematical morphology requires this kind of representation
to ensure the appropriate application of lattice based transformations.
Fig. 1.2 shows a scheme of the some representations for the spectral information of a given
multivariate image.
1.1.2 Mathematical morphology

Mathematical morphology is an approach created in the 1960s by George Matheron and Jean
Serra, which offers a theory for nonlinear image analysis. Mathematical morphology has been

used by many professional image analysts due to its sound theoretical basis and the fact that the


https://en.wikipedia.org/wiki/Georges_Matheron
https://en.wikipedia.org/wiki/Jean_Serra
https://en.wikipedia.org/wiki/Jean_Serra

operators have a natural geometric interpretation, which facilitates the design and interpretation
of automatic methods. Mathematical morphology (197; 246; 251), is part of the image analysis
techniques that consider images as a topographical surface(48).

Mathematical morphology, developed originally for sets, can be applied to numerical functions

either by means of umbras, or directly via the complete lattice approach.

1.1.3 Mathematical morphology on complete lattices

In this HDR, two family of mathematical morphological transformations are considered: 1)
connection based morphology and 2) adjunction based morphology. The first strategy deals with
simplification of a given image in the partition space induced by its connected components (227;
237; 246). The second perspective analyses an image by composition of two basic transformations,
dilation and erosion, which form a Galois connection (108). Another approach studying the
links between mathematical morphology and Partial Differential Equations (PDEs) (102; 162) is
not considered in this manuscript. Other representation of morphological operators in max-plus
algebras studied in (35) are neither considered in this document.

In this section we provide the theoretical background of mathematical morphology in its
formulation based on complete lattices. For a more detailed exposition, we refer to Chapter two
by J. Serra and C. Ronse in (197).

Definition 1.1. A set £ with a binary relation < that satisfies the following properties:

1. reflexivity: z <z
2. anti-symmetry: xr <yandy<z=z=y

3. transitivity: x <yand y<z=zx<z

for all x,y,z € L, is called a partially ordered set (poset) by the partial order <. The order
becomes total when: Va,y € L, <y or y <z L is totally ordered by the relation <.

Definition 1.2. A poset (£,<) is called a lattice is each two-element {r,s} subset in £ has a

least upper bound join (rVs) and a greatest lower bound meet (rAs) .

Note that the previous definitions makes A and V binary operations monotone with respect
to the given order <. Additionally, by induction argument every non-empty finite subset in £
has a join and a meet. The lattice £ is complete if all non-empty subsets finite or not of £ has a
join and a meet.

A minimum (or least) L € L' is an element which is less than or equal to any other element
of £/, that is, r € L' = 1 <r. We denote the minimum of £ by L. Equivalently, a mazimum
(largest) T in L' is the greatest element of £, that is, r € £’ = r < T. We denote the maximum
of Lby T.

Definition 1.3 (Dilation/Erosion). A mapping v : L1 — Lo of a complete lattice £; into a
complete lattice Lo is said to be a dilation if (Ve ;7;) =V e ¥(r;) for all families (r;);es of
elements in £;. A mapping is said to be an erosion if ¥(A;c;7;) = \je ¥ (r;) for all families

(rj)jes of elements in L.



The important relationship between dilation and erosion is that they are dual concepts from
the lattice point of view. Heijmans and Ronse (108) showed that for any complete lattice £, we
always have a dual isomorphism between the complete lattice of dilation on £ and the complete
lattice of erosions on £. This dual isomorphism is called by (247) (Chapter 1) the morphological
duality. In fact it is linked to the concept of Galois connections in lattice theory, as we will see

at the end of this section.

Definition 1.4 (Adjunction). Let § € F(L1,L2) and € € F(L2,L1) be two mappings and (L1, <
), (L2,<2) two complete lattices. Then we say that (¢,d) is an adjunction if for every r € L1,s € Lo,
we have

i(r) <gs <= r<je(s) (1.1)

In an adjunction (e,6), € is called the upper adjoint and § the lower adjoint.
Proposition 1.5. If (¢,9) is an adjunction, then 6 is a dilation and € is an erosion.

Definition 1.6 (Galois connection). Let £1 and L2 be lattices and let a: L1 — Lo and f: Lo — L4
satisfy the following conditions.

1. For r,s € Ly, if r < s, then a(s) < a(r);

2. For r,s € Lo, if r < s, then S(s) < f(r);

3. For r € Ly, Ba(r) <r;

4

. Forre Ly, af(r) <r.
Then (o, ) is a Galois connection between L1 and Ls.

Proposition 1.7. Let the lattices L1 and Lo, maps o : L1 — Lo and B : Lo — L1 a Galois
connection. Then the following condition holds for all r € L1 and s € Lo:

s<ga(r) < r<;B(s). (1.2)

Clearly an adjunction in £ is a Galois connection between the dual (£1,>1) and (L2,>2)
(indeed, compare definition 1.4 and proposition 1.7).

At this point, we can see that definition of erosion/dilation on a image requires a complete
lattice structure, i.e., a total ordering* among the pixels to be analysed.

Accordingly, the extension of mathematical morphology to vector spaces, for instance,
colour/multi/hyper /ultraspectral images, is neither direct nor trivial because the pixels in
the images are vectors. We refer keen readers to (8; 14) for a comprehensive review of vector

valued mathematical morphology.

1.1.4 Preorder by h-function

Let S be a nonempty set and assume that £ is a complete lattice. Let h: S — L be a surjective

mapping in F(S,L£). Define an equivalence relation =, on S as follows: r =j s < h(r) =

4Theoretically, a partial ordering is enough but to make easier the presentation we analyse the case of total
ordering.



h(s) Vr,s€S. As it was defined in (97), we refer by <j the h-ordering given by the following
relation in &
Vr,se S, 1r<ps< h(r)<h(s)

Note that <j preserves reflexivity (r <j r) and transitivity (r1 <p re and ro <, 73 =11 <jp 13).
Even so, <j is not a partial ordering because r <3, s and s <j r implies only that r =5 s but not
r = s. Note that h-ordering is a preorder in S.

An operator ¢ : S — S is h-increasing if r <j s implies that ¢(r) <p, ¥(s). Additionally, since
h is surjective, an equivalence class is defined by S[r] = {s € S|h(s) =r}, where r € L. The Axiom
of Choice (97) implies that there exist mappings h* : £L — § such that hh* (r) =r, for r € L.
Unless h is injective, there exist more than one such A~ mappings: h is called the semi-inverse
of h. Note that h* h is not the identity mapping in general (but A h = id). However, we
have that for any h-increasing 1) : S — S the result ¥h* h =} 1 and hence hiph*h = hi). Let us
introduce 1; the operator associated to 1 in the lattice £. A mapping ¢ : S — S is h-increasing
if and only if there exists an increasing mapping @Z : L — L such that Jh = ht. The mapping J

is uniquely determined by % and can be computed from
= hyph*

We can now define the h-erosion and h-dilation. Let €,§ : S — S be two mappings with the

property
iz)<pyer<pe(ly), Yr,yes

then the pair (¢,9) is called an h-adjunction. Moreover, let (£,0) be h-increasing mappings on S,
and let ¢ =" 2, § =" 5. Then (e,8) is an h-adjunction on & if and only if (£,) is an adjunction
on the lattice £. Therefore a mapping ¢ (resp. €) on S is called h-dilation (resp. h-erosion) if 5
(resp. €) is a dilation (resp. erosion) on L. h-adjunctions inherit a large number of properties

from ordinary adjunctions between complete lattices. Assume that (¢,9) is an h-adjunction then
v =de <pid <p p=£6.

Hence, v is h-anti-extensive and ¢ is h-extensive. The operator v on § is called h-opening if the
operator 7 on £ determined by v —" 7 is an opening. The operator 7 is also h-increasing and

satisfies 4y =p v (h-idempotency). The h-closing is similarly defined.

1.1.5 Morphological analysis on the h-function

For multiband imagery, as colour, multispectal, hyperspectral or ultraspectral images, pixel values
are vectors defined in V := RP, for an integer p > 1 the dimension of the vector space of the image.
Consequently the main challenge to build complete lattice structures is to define a mapping
h:RP — L, where £ can be the lattice of the extended real line (R, <) using R = R{J{—o00,+0c0}
and < as the “less than or equal to" operation.

From the previous section we have the ingredients to define morphological colour (V = R3)

and multispectral (V = R?) erosion and dilation. We limit here our developments to the flat



operators, i.e., the structuring elements are planar shapes. The non-planar structuring functions
are defined by weighting values on their support (246). Let us assume that we have an adaptive’
mapping h: R? — R. The h-erosion egg p,(f) and h-dilation g p,(f) of an image f at pixel z €
by the structuring element SE C  are the two mappings F(Q,V) — F(£2,V) defined respectively
by

h(esgn(f)(x)) = ese (h(f)) (), (1.3)

and

h (Osen(F)(x)) = dse (h(F)) (2), (1.4)

where egg (f) and dgg (f) are the standard numerical flat erosion and dilation of image f € F(£2, £):
ese (F) () = {£(y) : £(y) = \[f(2)], 2 € SE,. } (15)
ose (£) () = {£() - £(y) = \/ [1(2)] = € SE,. } (1.6)

with SE, being the structuring element centred at point = and SE is the reflected structuring
element. If the inverse mapping h~! is defined, the h-erosion and dilation can be explicitly

written as:
esen(f)(z) = " (ese (R(F))) (2),

and

Osg,n(F) () = h™" (0ss (h(£))) (2).

Of course, the inverse h~! only exists if h is injective. In practice, we can impose the invertibility
of h by considering a lexicographic ordering for equivalence class L[x]|. In fact, this solution
involves a structure of total ordering which allows to compute directly the h-erosion and dilation

without using the inverse mapping, i.e.,

esen(f)(z) = {f(y) £(y) = \If(2)]. 2z € SEz}, (1.7)
h

and

Ose,n (F) () = {f(y) f(y) =\ [f(2)] 2z € SAE:):}’ (1.8)
h

where A,; and \/; are respectively the infimum and supremum according to the ordering <.
Starting from the h-adjunction (esg 4 (f),dsg,n(f)), all the morphological filters such as the opening

and closing have their h-counterpart, e.g., the h opening and closing are defined as

Yseh(f) = 0sen(esen(f)),  @sen(f) = esen(dsen(f)) (1.9)

5Adaptive in the sense that the mapping depend on the information contained in a multivariate image f. The
correct notation should be h(+;f). However, in order to make easier the understanding of the section we use h for
adaptive mapping.




Green Red

(a) Original colour image denoted by f (b) Scatterplot of the three-channel image Xg

Figure 1.3 Spectral representation of a colour image in the RGB space. A spatial position x in
the image f contains three coordinates in the RGB-space represented by x.

Similarly, any other mathematical morphology operator based on adjunction operators can
be also extended to multivariate images. For instance, geodesic operators as opening by

reconstruction(251), levelings (176), additive morphological decompositions (278) and so on.

1.2 Pre-ordering a vector space

Let X¢ be the set of vector values of a given image f, which can be viewed as a cloud of points
in V=RP. Fig. 1.3 shows an example of colour image f, and its spectral representation as
points Xyg. In general, pixel values in multispectral images are vectors defined in RP. From
previous section, for a given multivariate image f : 2 — RP, the challenge to build complete
lattice structures is to define a mapping h: R? — L, to obtain a mapping 2 — £, where L is a
lattice.

Many authors have already worked on this idea (8; 14; 19; 277). We present three families of

mappings h for a given x € R? in the following subsections.

1.2.1 Unsupervised ordering

That can be obtained by using the more representative projection in a statistical dimensional
reduction technique, for example a linear approach as PCA (132) or some non-linear projections
approach (149). To illustrate, we consider the first projection to induce the ordering, i.e.,
X1 < X9 <= hpea(x) < hpea(x2), where hpcy is the first eigenvector of the centred covariance
matrix Xg. The intuition behind this approach is simple and clear: pixels are ordered according
to their representation in the projection with greatest variance. An example is illustrated in Fig.
1.4(b). In this example, we can see that the induced minimum and maximum have no practical

interpretation.



1.2.2 Distance based ordering

Let us focus on the case of h-ordering based on distances. This approach is motivated by the
intuition that order computation should be adaptive to prior information given by application

interests.

Referenced ordering

As a starting point for distance based ordering, we consider (8) defining a function hggg(-,t) that
computes the similarity for a given pixel x to a colour reference t by measuring its spectral
distance, i.e., X1 <pper X2 < K(x1,t) < K(x2,t), where K: R? x R — R is a kernel-induced
distance(190). The original formulation in (8) uses the case of Euclidean distance in the colour
space as kernel-induced distance®. Thus, the ordering based on a reference spectrum exhibits
a lattice where the minimum has been fixed. However, that maximum is associated with the
“farthest" vector but that does not have a simple interpretation. To illustrate the result of
this approach, we generalise the definition of a referenced order for a training set 1" as follows,
X1 <ppge X2 < min; ||x; — t;|| > min, ||x2 — t;|| for all t; € T. The geometric interpretation
is that hger(x;7T) is basically the distance in Lo, of x to the convex hull of vectors in T' (if
x is not in the convex hull). Thus, is not so difficult to see that hger can be expressed as
heer(x;T') = Zgl LK (t;,x) where 02 # 0 only for argmin, ||x —t;||. Fig. 1.4(e) shows the
referenced mapping for the colour image in Fig. 1.4(a). The training set are the pixel in the
red region of Fig 1.4(d). Note that hrgr “detects" the girl but at the same time the border of

the swimming-pool. Associated morphological adjunction and gradient are illustrated in Fig,.
1.5(g-1).

Supervised ordering

A more general formulation for distance based ordering has been introduced in (277). It defines
a h-supervised ordering for every vector x € RP based on the subsets B = {bl,...,b|B‘} and
F={f1,....,fjp}, as a h-ordering that satisfies the following conditions: h(b)= L then b € B,
and h(f) =T then f € F. Note that L, T are the smallest and largest element in the lattice L.
Such an h-supervised ordering is denoted by hgsyper(-; B, F).

The main motivation of defining this supervised ordering schema is to obtain maximum
and minimum in the lattice £ interpretable with respect to sets B and F. It is important to
remind that max and min are the basic words in the construction of all mathematical morphology
operators. At this point, the problem is how to define an adequate supervised ordering for a
given vector space RP and two pixel sets B,F. The approach introduced by (277) involves the
computation of standard support vector machine (SVM) to solve a supervised classification
problem to define the function hgypgr(x;B,F). An amusing geometrical interpretation is based
on results from (28), in where the ordering induced by hsypgr, corresponds to the signed distance

to the separating plane between the convex hull associated to F and the one containing the B.

SIn this case the sense of the inequality change, i.e., x; hee X2 = ||x1 —t|]2 > ||x2 — t]|2.



(a) colour image: f (b) hpca (c) hanom

(d) B and F sets (e) hrer (f) hsuper

Figure 1.4 Comparison of different h-mappings considered in this section for a given colour
image. Referenced h-mapping requires prior information given by an one class training set 7', in
this example T'=F. Supervised h-mappings requires prior information given by the sets B and
F. Anomaly based ordering is intrinsically adapted to the image.

From (64), the solution of the classification case of SVM can be expressed as follows:

B |F|

hsuper (x; B, F) = ZOkK(bk,x)—l—ZﬁjK(fj,x) (1.10)
k=1 j=1

where 0% are computed simultaneous as a quadratic programming optimisation problem (64).
For all the examples, given in this section we have used a Gaussian Kernel, with the Euclidean
distance between colour or spectra, i.e., K(x;,%;) = exp(—c||x; — x;||?), where the constant c is
obtained by cross-validation on the training set (64). Results of this supervised ordering are
illustrated in Fig. 1.4(f). The hgypgr matches our intuition of what should be maximum and
what should be minimum in the image according to the couple {B,F} in 1.4(d). The supervised
adjunction is shown in Fig. 1.5(j-k). Note that the supervised gradient in Fig.1.5(1) is better
defined on the contour of the girl in comparison to unsupervised and referenced orders. A second
example is presented for the RGB image in Fig. 1.3 considering the training sets in Fig. 1.6(a).
Note that the supervised lattice in Fig. 1.6(c), is a mapping from the spectral information to a
linear ordering (from top-left corner to bottom right corner). One advantage of the definition of
h-ordering on vector space is that it can be applied directly to multispectral or even hyperspectral

images.



(a) IsE hpe, (F) (b) esg,hpey (F) (c) Gradient by hpca
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)
{/
{

(3) IsE, hsypes () (k) esk hgppen () (1) Gradient by hsyper

Figure 1.5 Comparison of colour dilation, erosion and associated gradient using different h-
orderings. Gradients have been normalised from zero to one to make easier the visual comparison.

1.2.3 Ordering based on anomalies

Distance based ordering approaches discussed above are valid if the pair set (B,F) is available.
Obviously, one cannot realistically believe that for every application the exact spectral information
about the background of the image is available. Thus, if one gives up this paradigm, no other
option different to unsupervised ordering remains. Therefore, in order to take advantage of the
physical structure of an image, it was introduced in (279) an ordering based on "anomalies"

with respect to a background associated with a majority of points. It is called depth ordering



(a) Background/foreground train- l
ing set (b) hsuper(+;B,F) (c) Learned Order from (b).

o~

(d) 6SE7hSUPER (f) (e) ESE, hsuper (f) (f) Gradient by hSUPER in (b)

Figure 1.6 Background pixels are in blue, and foreground ones in red. ¢) The minimum in the
supervised ordering is placed at the top left corner and the maximum at the bottom right corner.
Morphological operators are computed by using a square of side three pixels as SE.

and is maximal in the “center" of the spectral representation of a image f and it produces a
vector ordering “centre-outward" to the outliers in the vector space RP. In this paradigm, the
assumption of existence of an intrinsic background/foreground representation is required, i.e.,
given a vector image f: 2 — RP, Xy has can be decomposed as X¢ = {Xp(¢), Xp(r)} such that
Xp) N Xp(r) = () and card{XB(f)} > card{XF(f)}. Roughly speaking, the assumption means:
(1) the image has two main components: the background and the foreground; (2) There are more
pixels in the background than in the foreground. Several examples of these kinds of functionals
have been analysed in (276). However, we limited ourselves to the statistical projection depth

case presented in (279) and defined by

lu”x —MED(u” X¢)|
hawou(x; f) = sup
lul=1  MAD(uTXf)

(1.11)

where MED denoted the univariate median and MAD the median absolute deviation, i.e., the median
of the differences with respect to the median. Note that the superscript 7 denotes matrix
transposition. Let us now point out some aspects of 1.11 in order to better characterise it. First,
it is a anomaly based ordering, due to the fact that if X¢ ~ N (u,X) a Gaussian distribution with
mean vector g and covariance matrix 3 then Agyou(x;)? o< (x — p)' S 71 (x — u), the Mahalanobis
distance (see 5 to details). Secondly, 1.11 is invariant to affine transformations in the vector space
RP. Third, unfortunately, the exact computation of 1.11 is computationally intensive except when
the number of pixels n is very small. However, we can compute a stochastic approximation by

using a large number of random projections u and computing the maximum for a given x (279).



To summarise the above, the statistical projection depth function in 1.11 induces an anomaly
based ordering for images with background/foreground representation. That is an ordering based
on a data-adapted function and in such a way that the interpretation of supremum and infimum
operations is known a priori, because max values can be associated with “outlier” pixels in the
high-dimensional space and min are “central” pixels in RP space. A simple example is illustrated
in Fig. 1.4(c) where 1.11 “detects" the girl thanks to the fact that her spectral information is

unusual in comparison to the one from the swimming pool.

1.2.4 Implementation

Once a h-ordering has been defined, it becomes easy in practice to implement morphological
transformations on multidimensional images such as colour or multispectral ones. Actually, we
can use a scalar to code each pixel on the image, and the standard morphological transformations
for greyscale images can be used directly. The result is deciphered by mapping back the total
ordering in to the vector space. An effective implementation using a look-up table has been
presented in (263). A pseudo-code for a multivariate erosion is shown in (281). The index image
and the sorted vector look-up table constructed above are used to generate an ordered table. At
this point, any morphological transformation can be performed on the lattice image, which can
be considered as a greyscale image. The output of the morphological transformation is converted
back to the original vector space by replacing each pixel by its corresponding vector using a

look-up table.

1.3 The False colours Problem Versus the Irregularity Issue

One problem on vector-valued mathematical morphology is the creation of “false colours” or,
more generally, false values (249). An operator ¢ : RP — R? introduces false values whenever
there are values in 9 (f) which do not belong to the original image f. The abnormal false values
can be a problem in some applications such as when dealing with remote sensing images (249).

A total order, such as the lexicographical order and a reduced ordering combined with a
look-up table, circumvents the problem of false values (249). Using a total order, the supremum
and the infimum of a finite set are elements of the set, i.e.,they coincide with the maximum and
minimum operations, respectively. On the downside, a total order can be irregular in a metric
space. According to Chevallier and Angulo, the irregularities follow because the topology induced
by a total order may not reproduce the topology of a metric space (57). Specifically, let the
value set V be a totally ordered set as well as a metric space, with metric d:V xV — [0,400).
(57) showed that there exist u,v,w € V such that u < v <w but d(u,w) < d(u,v) under mild
conditions with respect to the connectivity of V. In words, although u is closer to w than to v,
the inequalities u < v < w suggest w is farther from w than v. Since the morphological operators
are defined using the extrema operators, they do not take the metric of V into account.

A visual interpretation of the irregularity is shown in Figure 1.7, which is very similar to
an example provided in (57). Figure 1.7a) shows an image with three RGB colours, namely
u = (0,0,0), v=(0,0,1), and w = (1/255,0,0). The toy image f is obtained by replacing pure

black values u by w with probability 0.3 from an image of size 32 x 64 with two stripes of colours



(a) Toy Image f. (b) Dilated Image 64 (f) (c) Dilated Image 63 (f)
f has two types of dark pixels.  (Lexicographical RGB) (Marginal)

Figure 1.7 Illustrative example of the irregularity issue. Image with three colours and its
corresponding dilation by a cross structuring element using the RGB lexicographical and marginal
orderings.

blue and black. The dilations 64 (f) and 63L(f) by a cross structuring element SE obtained using
the lexicographical RGB and the marginal ordering schemes are also depicted in Figure 1.7.
Visually, u and w are black colours while v is a pure blue. Using the Euclidean distance, we obtain
d(u,v) =1 and d(u,w) = 0.005. These distances agree with our colour perception. However,
using the lexicographical ordering, we obtain uw <y v <; w. As a consequence, the following
happens when we compute the dilation 64 (f) = gz, using the lexicographical ordering: the blue
v advances over the black w but it is overlaid by the black w, resulting in the irregularities
shown in Figure 1.7b). In contrast, the dilated image depicted in Figure 1.7¢) obtained using the
marginal ordering does not present any visual irregularity.

Although we know that the irregularity results from a divergence between the topologies
induced by the metric and the total order, no consensual measure agrees with our visual perception.
A measure for the irregularity can help to choose an appropriate ordering scheme for vector-valued
mathematical morphology. The following section proposes a measure of irregularity using the

Wasserstein metric.

1.3.1 The Wasserstein Metric and the generalised Sum of Pixel-wise Dis-
tances

In this subsection, we present a measure for the irregularity, referred to as the global irreqularity
index. Although we are interested in measuring the irregularity implied by a total ordering, we
will not assume V is totally ordered. Indeed, the proposed irregularity measure is well defined
whenever the () is finite and V is a metric space. For simplicity, however, the value set V
corresponds to the RGB colour space equipped with the Euclidean distance in the following
examples and computational experiments.

The global irregularity index is given by the relative gap between the Wasserstein metric and
a generalised sum of pixel-wise distances.

Given an input image f € F(Q,V), let g =1 (f) denote the output of the image operator. The
generalised sum of pixel-wise distances of f and g is an operator Dy, : F (2, V) x F(Q,V) — [0, +00)
given by

1

Po

Dy(f,g) = | >_d”((f)(x).8(x) | (1.12)

€N



with a parameter pg > 1. The generalised sum of pixel-wise distances is one of the simplest
measures that considers the metric d and the pixel locations. However, D, is usually not properly
scaled, possibly because its dimension is the same as the metric d. For example, the images
shown in Figure 1.7 yield the values D;(f,gr) = 34.12 and D;(f,gy) = 66.05. Note that the
inequality D1 (f,gr) < D1(f,gnr) holds true although gy, is more irregular than gy;. Hence, the
generalised sum of pixel-wise distances is not an appropriate measure for the irregularity.

Let us now review the Wasserstein metric, also known as the Earth mover’s distance or
the Kantorovich-Rubinstein distance in some contexts (230; 289). The Wasserstein metric is
formulated as a transport problem and can measure distances between probability distributions
(289).

The objective of a transport problem is to minimise the cost to deliver items from n; factories
to mg shops (213). In our context, the transport problem minimises the cost to transform the
input image f into the output image g. The cost is defined using the metric on the value set V.
Precisely, let V(f) = {v1,...,vp, } and V(g) ={u1,...,un,} be the sets of colour values of f and
g, respectively. Also, let

fi=Card({z: (f)(z) =v;}) and g;=Card({z:g(x)=1u,}), (1.13)

denote respectively the number of pixels of value v; in the image f and the number of occurrences
of the value u; in g, for ¢ =1,...,n7 and j =1,...,n2. Given pg > 1, the cost to transform a

value v; of f into a value u; of g is defined by
Cij = dpo(’l)i,uj‘), Vi = 1,...,77,1, Vj = 1,...,77,2. (1.14)

The Wasserstein metric, denoted by W, : F(,V) x F(Q,V) — [0,00) for pg > 1, is given by

1

ni n2 Po
Wi, (f,8) = (ZZQ#@) ,  po=1, (1.15)

i=1j=1

where x;; solves the linear programming problem

ny ng
minimise chijxij
i=1j=1
n2
subject to inj =fi, Vi=1,...,nq,
j=1 (1.16)
n1
mezg]? ijlv"-an%
i=1
xijZO, Vizl,...,nl,ijl,...,ng.

The Wasserstein metric is the pg-th root of the minimal cost to transform f into g. In the
transport problem (1.16), the variable z;; represents the (optimal) number of pixels with value
v; of f transformed to pixels with value u; of g. Moreover, the solution of (1.16), which can be
arranged in a matrix X € R™*"2 is an optimal transport plan. An optimal transport plan is

a cyclically monotone plan in the sense that the cost >, ;'21 cijr;j cannot be improved by



changing the number of pixels with value v; transformed to pixels with value u; (289). For
the images shown in Figure 1.7, we obtain W, (f,gr) = 6.18 and W, (f,gnr) = 65.94. Note that
the inequality Wi (f,gr) < Wi (f,gar) holds despite g, being more irregular than gys. Like the
generalised sum of pixel-wise distances, the Wasserstein metric is not appropriate for measuring

the irregularity.

1.3.2 The Global Irregularity Index

Although both the generalised sum of pixel-wise distances and the Wasserstein metric are, per
se, not appropriate to evaluate the irregularity, we advocate that they can be combined to yield
a useful measure.

First of all, note that the generalised sum of pixel-wise distances satisfies

1

ni n2 Pg
Dy, (f,g) = (chijyij) , po=>1, (1.17)

i=1j=1
where
yi; = Card ({x : (f)(z) = v; and g(z) = uj,x € Q}), (1.18)
foralli=1,...,n1 and j =1,...,n2. Moreover, it is not hard to see that y;; > 0 and the identities
ng ni
Y ovig=fi and Y i =g;, (1.19)
j=1 i=1

where f; and g; are given by (1.13), hold for all i =1,...,n1 and j =1,...,nyo. Therefore, the
generalised sum of pixel-wise distances also measures the cost of transforming f into g. Because
W), is the minimal cost, the inequality W), (f,g) < D), (f,g) holds for any f and g = (f). The
y;;’s given by (1.18), which can be arranged in a matrix ¥ € R™*"2 is called the operator’s plan.
The operator’s plan is probably not an optimal transport plan. Indeed, one usually can reduce
the cost >0, ;Lil ¢ij¥ij by rerouting the number of pixels with value v; in f transformed to
pixels with value u; in g. In some sense, the difference D), (f,g) — Wy, (f,g) measures the cycles
in the operator’s plan that can be reduced.

In order to reduce the impact of the metric d on the value set V and the impact on the
choice of the parameter pg > 1, we propose to measure the irregularity using the mapping
o9+ F(Q,V) x F(Q,V) — [0,1] given by the relative gap between Dy, and W,. Precisely, given
images f,g € F(Q,V), we define the global irregularity index by means of the equation

Dy, (f,8) — Wik (f,8)
g _ Po\*t> Po
¢pg (f)g) - ng (f7g) )

and @9 (f,g) = 0 if Dy, (f,g) = 0. Note that the larger the gap between W, (f,g) and Dy, (f,g),

the larger the global irregularity index. Equivalently, we have

if Dy (f,g) #0, (1.20)

07 ipoD(f’g) = 07

9 (f g)= 1.21
pu( 2 1— M, otherwise. ( )
DPU (fvg)



The irregularity index is symmetric and bounded, that is, ®,,(f,g) = ®p,(g,f) and 0 <
¢, (f,g) < 1. Moreover, because D, and W, have the same units and similar magnitudes,
Y (f,g) is a dimensionless quantity. The more irregular is g = ¥ (f ), the larger the value of
(A (f,g) is expected to be. For example, the irregularity index of the dilated images g, and gas
shown in Figure 1.7b) and 1.7¢) are ®{(f,gr) = 81.9% and ®Y(f,gys) = 0.17%, respectively. The
following examples explores further the global irregularity index using toy images.

As example, some computational experiments with tiny colour images are provided. Precisely,
the global irregularity index ®{ of morphological operators applied on one hundred colour images
from the CIFARI10 dataset is computed. The measures have been computed using erosion,
dilation, opening, and closing by a 3 x 3 square structuring element. Specifically, we have
computed twenty-five dilations, erosions, openings, and closings on different images from the
CIFARI10 dataset. Three approaches based on total orderings are considered. The first is the RGB
lexicographical order in which the colours are ranked sequentially according to the red, green,
and blue channels. The other two approaches are based on reduced orderings (281). Specifically,
we considered the supervised reduced ordering based on an SVM with radial basis function kernel
(277). The SVM is trained to distinguish the central object on an image from the rest. The
last approach uses an unsupervised reduced ordering based on the random projection depth,
which aims to discriminate between background and foreground pixels (279). For comparison,
two approaches based on partial orderings are also included. Namely, the marginal approach and
the approach based on Loewner order (44). Because these two approaches are not based on total
orders, their output images are not expected to be very irregular.

Figure 1.8 depicts some original images, the outcome of a morphological operator, and the
corresponding global irregularity index. The images in the first column correspond to the original
colour images. The following columns present the output of morphological operators defined
using the marginal, Loewner, lexicographical RGB, supervised SVM-based, and projection depth
approaches, respectively. We provide the global irregularity index below the images produced by
the morphological operators. As expected, the marginal and the Loewner approaches yielded
global irregularity indexes smaller than the lexicographical, SVM-based, and projection depth
approaches. The supervised SVM-based approach yielded the most irregular dilated image. The
irregularity index of 5.38% produced by projection depth’s dilation of the cat image is an outlier
of the global irregularity index produced by this unsupervised morphological approach. Indeed,
the median of the global irregularity index produced by the morphological operators based on
the projection depth is 45.22%. The eroded image depicted in the last column of Figure 1.8
is a typical outcome of the projection depth approach. The median of the irregularity indexes
produced by the marginal, Loewner, lexicographical, and the SVM-based approaches are 2.56%,
2.81%, 6%, and 22.98%, respectively. The truck image’s openings and the car image’s closings
provide typical examples of the global irregularity index produced by the marginal, Loewner,
and lexicographical approaches. The opening of the car image produced by the projection depth
approach yielded the largest global irregularity index of this experiment.
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Figure 1.8 Illustrative examples of the global irregularity index ®¢ computed for several tiny
colour images using different morphological operators.

1.4 Perspectives

Considering the works presented in this chapter, one can imagine the continuation of the idea of

order learning in different aspects:

1. How to learn an order function from an database of images?

2. Is it possible to learn order function in the deep learning paradigm? What would be the
correct loss functions in this context? How to create a ground-truth of order functions?
3. Can classical convolution neural networks be interpreted as models that learn h-order in a

multivariate sense?
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