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Introduction

This manuscript is intended to obtain the diploma of “Habilitation à Diriger des Recherches",
issued by the Institut Polytechnique de Paris, in the “Informatique, Données, et IA" discipline. It
describes research activities pursued after obtaining a Doctoral thesis in Mathematical Morphology,
in June 2012. These activities essentially relate to mathematical morphology approaches for
image analysis, multivariate analysis for anomaly detection and machine learning methods, from
a theoretical and methodological point of view, but also in the context of applications, for remote
sensing, astronomy, material science among others.

0.1 Context

My research career began at the end of my master’s degree with the participation in various
projects at the University of Puerto Rico, continuing with my Ph.D. thesis in the Center for
Mathematical Morphology at Mines Paris - PSL, which I defended in June 2012. Followed by one
year as postdoctoral researcher at the Fraunhofer-Institut für Techno-und Wirtschaftsmathematik
- ITWM in Kaiserslautern, Germany, and 13 months as a postdoctoral fellow at the Department
of Mathematics in the University of Singapore. In both cases, my responsibilities include
participation in industrial projects that allowed theoretical contributions to be confronted with
real problems. The second part of my research experience (which continues until now) begins
upon my return to France in October 2014, as a three years tenure track followed by a permanent
research position at the Center for Mathematical Morphology of Mines Paris - PSL Research
University. This context, rich in both academic developments and industrial collaborations,
has motivated me to apply my skills in a wide range of applications including astronomy,
remote sensing, biology, radar technology and material science among others. Additionally, the
daily interaction with other researchers, master’s and doctoral thesis students, has enriched my
knowledge and understanding of various aspects of image processing, multivariate statistics, and
machine learning. This document attempts to collect the results obtained in the last ten years of
research.

0.2 Structure

The topics presented here mainly study the interaction between mathematical morphology,
discrete mathematics, multivariate statistics and machine learning. The first chapter studies the
extension of mathematical morphology for multivariate images by means of lattice theory and



machine learning. The second chapter is devoted to adaptive structuring elements in general and
includes as a practical example the study of a morphological salt and pepper noise reduction
method via conditional morphology. Chapter three includes some contributions of hierarchical
analysis of images. Chapter four presents some links between mathematical morphology and
machine learning. Chapter five presents the problem of anomaly detection from a statistical
point of view, and some extension using machine learning methods. Chapter six is a compendium
of applications. The appendices include an exhaustive list of teaching experiences, list of
collaborators, publications and industrial projects.

0.3 A personal point of view about Research

In this Habilitation à diriger des recherches (HDR) includes most of the results of my last
eleven years of interaction with a magnificent group of scientists including colleagues, former
Ph.D. and master’s students. The readers should note that the my works can be considered as
application-inspired, since most of the contributions are motivated by a real need that has been
explored during industrial and academical collaborations. Additionally, I would like to include
some statement to summarise what I think about the Research. I consider that

• "Science is not a business" and as education should be a human right, science should be
common for all.

• a dependence on single numbers to quantify scientists contribution and make administrative
decisions is a bad habit, and it may force people to somehow enhance their quality indexes
(as for instance the h-index) instead of focusing on their more legitimate activity.

• Research is a collective adventure, and by sharing ideas, new solutions emerges.

• while results contained in this work have been mainly the e�ort of this HDR’s author, it
could not have been concluded without the collaboration of the corresponding co-authors.



1 Mathematical Morphology on Vector Images

An approximate answer to the right problem is worth a good deal
more than an exact answer to an approximate problem.

John Tukey

1.1 Introduction

From the creation of the first photograph in 18261, to the invention of the first devices able to
produce a digital image in the 70th’s, a long time passed. Nowadays, images are everywhere,
and it has been estimated that more than 1.2 trillion digital photos have been taken worldwide
in 20172. Automatic analysis of large set of image is the main focus of many digital technology
companies. The development of tools that allow the processing of digital images is the main
focus of this manuscript. We start this chapter with the presentation of the notation and the
interest for a professional image analyst3 of having a description by a lattice of a digital image.

1.1.1 Notations

In this document, an image is defined as a function f which associates a vector information to
each pixel, we use the notation f : � æ V, where � is the support of pixel values, usually Z2

or Z3 for digital images, and V denotes the vector space of spectral information. For instance,
for 2D colour images, � = Z2 and V = R3, i.e. each pixel x = (i, j), f(x) is a triplet of values
[x1,x2,x3]. An illustration of the used notation is given in Figure 1.1.

Additionally, we write F(�,V) for the set of functions � æ V. For grey scale images,
f ,g œ F(�,R) is naturally endowed with a partial order relation Æ defined by setting f Æ g for
two functions f and g, if and only if for every pixel x œ � we have f(x) Æ g(x). For any two
functions f ,g œ F(�,Rfi {≠Œ,Œ}), we write f ‚ g and f · g for the join and the meet, i.e.,
’x œ � (f ‚g)(x) = max(f(x),g(x)), and, ’x œ � (f ·g)(x) = min(f(x),g(x))

1View from the Window at Le Gras is a heliographic image and the oldest surviving camera photograph
according to (259)

2The estimation has been taking from https://www.infotrends.com/
3The term professional image analyst is used in this document to refer to the person who needs to use imaging

methods in practice for a given application.



Vector Space: V =Rp

Discrete Support: � ™ Z2

f(x) = x = [x1, . . . ,xp]

x = (i, j) œ �

p (dimension space)

Figure 1.1 Mathematical notation for a 2D multivariate image, f : � æ V. The matrix of
dimension n1 ◊n2 ◊p containing the vector information on n := n1 ◊n2 pixels in dimension p of
f is denoted by Xf .

Depending on the application, one may be interested in enriching the information in an image,
going beyond colour information. This is what multispectral sensors do. They collect information
at di�erent values of wavelength ranges across the electromagnetic spectrum, including additional
information the human eye fails to capture given that its receptors operate only in the visible
light spectrum.

A variety of representations can be used to characterise the spectral information contained in
an image, for instance:

• Probability density models. It is the classical assumption of the statistical modelling for a
multivariate image. The classical assumption is a Multivariate Gaussian Distribution, i.e.,
the probability of a spectrum to be at certain region of the space follows N (µ,�) for some
mean vector µ and covariance matrix �.

• Linear mixing models: In such a way that each pixel in a scene may be decomposed into a
sum of finite number of constituent endmembers, which represent the purest pixels in the
scene. The abundances (weights in the sum) are subject to non-negativity constraint and,
in some cases, sum-to-one constraint.

• Manifold models: The idea of capturing the complex geometry in the spectral representation
of an image is the core of a (non-Euclidean) manifold representation (212). Manifold learning
methods are becoming a standard to embedding data onto their new transformed spaces.
For instance, on the p≠1 hypersphere by normalising by the norm per pixel, or in supervised
projections on the sphere as in (153). Another manifold structure in a local-graph. It is
denoted by the graph G = (E ,V), where E = X is the set of vertices and V = [vij ] œRn ◊Rn

the edge weight matrix. The graph is constructed in an unsupervised manner, with a
goal of automatically determining the neighborhood structure as well as the corresponding
connection weight for each datum. Examples of this type of representation are k-graph,
‘-graph and ¸

1-graph (299). Clustering, dimensionality reduction, image segmentation and
analysis can be performed in this representation space.

• Complete lattice model: A total ordering definition for a cloud of points. The relation
x Æ y have to be know for all pair of pixels x and y of the multivariate image. That is the



(a) Original spectral information,
denoted by X.

(b) Probability density models
provide the probability spectrum
to be at certain region of the space.
X ≥ N (µ,�).

(c) Linear mixing models (positiv-
ity and additivity constrains) per-
mit spectra only in the convex hull
of the spectral space. X = AT E,
where 0 Æ A is the abundance ma-
trix and E are the endmembers.

(d) Manifold models, for instance,
representations on the sphere, al-
low a representation invariant to
intensity changes (norm). xi æ
xi/||xi||, for all i = 1 . . .n.

(e) Graph models provides a struc-
ture representation invariant to
small perturbations in the spec-
tral space. X æ (V,E).

(f) In the complete lattice rep-
resentation, the set of pixels are
analysed through a total order re-
lation. X æ L.

Figure 1.2 Scheme of di�erent representation for the spectral information of a multivariate
image. This thesis deals with spectral representation based on complete lattice representation as
in (f).

main goal in Chapter one. Mathematical morphology requires this kind of representation
to ensure the appropriate application of lattice based transformations.

Fig. 1.2 shows a scheme of the some representations for the spectral information of a given
multivariate image.

1.1.2 Mathematical morphology

Mathematical morphology is an approach created in the 1960s by George Matheron and Jean
Serra, which o�ers a theory for nonlinear image analysis. Mathematical morphology has been
used by many professional image analysts due to its sound theoretical basis and the fact that the

https://en.wikipedia.org/wiki/Georges_Matheron
https://en.wikipedia.org/wiki/Jean_Serra
https://en.wikipedia.org/wiki/Jean_Serra


operators have a natural geometric interpretation, which facilitates the design and interpretation
of automatic methods. Mathematical morphology (197; 246; 251), is part of the image analysis
techniques that consider images as a topographical surface(48).

Mathematical morphology, developed originally for sets, can be applied to numerical functions
either by means of umbras, or directly via the complete lattice approach.

1.1.3 Mathematical morphology on complete lattices

In this HDR, two family of mathematical morphological transformations are considered: 1)
connection based morphology and 2) adjunction based morphology. The first strategy deals with
simplification of a given image in the partition space induced by its connected components (227;
237; 246). The second perspective analyses an image by composition of two basic transformations,
dilation and erosion, which form a Galois connection (108). Another approach studying the
links between mathematical morphology and Partial Di�erential Equations (PDEs) (102; 162) is
not considered in this manuscript. Other representation of morphological operators in max-plus
algebras studied in (35) are neither considered in this document.

In this section we provide the theoretical background of mathematical morphology in its
formulation based on complete lattices. For a more detailed exposition, we refer to Chapter two
by J. Serra and C. Ronse in (197).

Definition 1.1. A set L with a binary relation Æ that satisfies the following properties:

1. reflexivity: x Æ x

2. anti-symmetry: x Æ y and y Æ x ∆ x = y

3. transitivity: x Æ y and y Æ z ∆ x Æ z

for all x,y,z œ L, is called a partially ordered set (poset) by the partial order Æ. The order
becomes total when: ’x,y œ L,x Æ y or y Æ x L is totally ordered by the relation Æ.

Definition 1.2. A poset (L,Æ) is called a lattice is each two-element {r,s} subset in L has a
least upper bound join (r ‚s) and a greatest lower bound meet (r ·s) .

Note that the previous definitions makes · and ‚ binary operations monotone with respect
to the given order Æ. Additionally, by induction argument every non-empty finite subset in L
has a join and a meet. The lattice L is complete if all non-empty subsets finite or not of L has a
join and a meet.

A minimum (or least) ‹ œ LÕ is an element which is less than or equal to any other element
of LÕ, that is, r œ LÕ ∆ ‹ Æ r. We denote the minimum of L by ‹. Equivalently, a maximum
(largest) € in LÕ is the greatest element of LÕ, that is, r œ LÕ ∆ r Æ €. We denote the maximum
of L by €.

Definition 1.3 (Dilation/Erosion). A mapping Â : L1 æ L2 of a complete lattice L1 into a
complete lattice L2 is said to be a dilation if Â(

x
jœJ

rj) =
x

jœJ
Â(rj) for all families (rj)jœJ of

elements in L1. A mapping is said to be an erosion if Â(
w

jœJ
rj) =

w
jœJ

Â(rj) for all families
(rj)jœJ of elements in L1.



The important relationship between dilation and erosion is that they are dual concepts from
the lattice point of view. Heijmans and Ronse (108) showed that for any complete lattice L, we
always have a dual isomorphism between the complete lattice of dilation on L and the complete
lattice of erosions on L. This dual isomorphism is called by (247) (Chapter 1) the morphological
duality. In fact it is linked to the concept of Galois connections in lattice theory, as we will see
at the end of this section.

Definition 1.4 (Adjunction). Let ” œ F(L1,L2) and Á œ F(L2,L1) be two mappings and (L1,Æ1

),(L2,Æ2) two complete lattices. Then we say that (Á,”) is an adjunction if for every r œ L1,s œ L2,
we have

”(r) Æ2 s ≈∆ r Æ1 Á(s) (1.1)

In an adjunction (Á,”), Á is called the upper adjoint and ” the lower adjoint.

Proposition 1.5. If (Á,”) is an adjunction, then ” is a dilation and Á is an erosion.

Definition 1.6 (Galois connection). Let L1 and L2 be lattices and let – : L1 æ L2 and — : L2 æ L1

satisfy the following conditions.

1. For r,s œ L1, if r Æ s, then –(s) Æ –(r);

2. For r,s œ L2, if r Æ s, then —(s) Æ —(r);

3. For r œ L1, —–(r) Æ r;

4. For r œ L2, –—(r) Æ r.

Then (–,—) is a Galois connection between L1 and L2.

Proposition 1.7. Let the lattices L1 and L2, maps – : L1 æ L2 and — : L2 æ L1 a Galois
connection. Then the following condition holds for all r œ L1 and s œ L2:

s Æ2 –(r) ≈∆ r Æ1 —(s). (1.2)

Clearly an adjunction in L is a Galois connection between the dual (L1,Ø1) and (L2,Ø2)
(indeed, compare definition 1.4 and proposition 1.7).

At this point, we can see that definition of erosion/dilation on a image requires a complete
lattice structure, i.e., a total ordering4 among the pixels to be analysed.

Accordingly, the extension of mathematical morphology to vector spaces, for instance,
colour/multi/hyper/ultraspectral images, is neither direct nor trivial because the pixels in
the images are vectors. We refer keen readers to (8; 14) for a comprehensive review of vector
valued mathematical morphology.

1.1.4 Preorder by h-function

Let S be a nonempty set and assume that L is a complete lattice. Let h : S æ L be a surjective
mapping in F(S,L). Define an equivalence relation =h on S as follows: r =h s … h(r) =

4Theoretically, a partial ordering is enough but to make easier the presentation we analyse the case of total
ordering.



h(s) ’r,s œ S. As it was defined in (97), we refer by Æh the h-ordering given by the following
relation in S

’r,s œ S, r Æh s … h(r) Æ h(s)

Note that Æh preserves reflexivity (r Æh r) and transitivity (r1 Æh r2 and r2 Æh r3 ∆ r1 Æh r3).
Even so, Æh is not a partial ordering because r Æh s and s Æh r implies only that r =h s but not
r = s. Note that h-ordering is a preorder in S.

An operator Â : S æ S is h-increasing if r Æh s implies that Â(r) Æh Â(s). Additionally, since
h is surjective, an equivalence class is defined by S[r] = {s œ S|h(s) = r}, where r œ L. The Axiom
of Choice (97) implies that there exist mappings h

Ω : L æ S such that hh
Ω(r) = r, for r œ L.

Unless h is injective, there exist more than one such h
Ω mappings: h

Ω is called the semi-inverse
of h. Note that h

Ω
h is not the identity mapping in general (but h

Ω
h =h id). However, we

have that for any h-increasing Â : S æ S the result Âh
Ω

h =h Â and hence hÂh
Ω

h = hÂ. Let us
introduce ÂÂ the operator associated to Â in the lattice L. A mapping Â : S æ S is h-increasing
if and only if there exists an increasing mapping ÂÂ : L æ L such that ÂÂh = hÂ. The mapping ÂÂ
is uniquely determined by Â and can be computed from

ÂÂ = hÂh
Ω

We can now define the h-erosion and h-dilation. Let Á,” : S æ S be two mappings with the
property

”(x) Æh y … x Æh Á(y), ’x,y œ S

then the pair (Á,”) is called an h-adjunction. Moreover, let (Á,”) be h-increasing mappings on S,
and let Á æh ÂÁ, ” æh Â”. Then (Á,”) is an h-adjunction on S if and only if (ÂÁ, Â”) is an adjunction
on the lattice L. Therefore a mapping ” (resp. Á) on S is called h-dilation (resp. h-erosion) if Â”
(resp. ÂÁ) is a dilation (resp. erosion) on L. h-adjunctions inherit a large number of properties
from ordinary adjunctions between complete lattices. Assume that (Á,”) is an h-adjunction then

“ = ”Á Æh id Æh Ï = Á”.

Hence, “ is h-anti-extensive and „ is h-extensive. The operator “ on S is called h-opening if the
operator Â“ on L determined by “ æh Â“ is an opening. The operator “ is also h-increasing and
satisfies ““ =h “ (h-idempotency). The h-closing is similarly defined.

1.1.5 Morphological analysis on the h-function

For multiband imagery, as colour, multispectal, hyperspectral or ultraspectral images, pixel values
are vectors defined in V :=Rp, for an integer p > 1 the dimension of the vector space of the image.
Consequently the main challenge to build complete lattice structures is to define a mapping
h :Rp æ L, where L can be the lattice of the extended real line (R,Æ) using R=R

t
{≠Œ,+Œ}

and Æ as the “less than or equal to" operation.
From the previous section we have the ingredients to define morphological colour (V =R3)

and multispectral (V = Rp) erosion and dilation. We limit here our developments to the flat



operators, i.e., the structuring elements are planar shapes. The non-planar structuring functions
are defined by weighting values on their support (246). Let us assume that we have an adaptive5

mapping h :Rp æR. The h-erosion ÁSE,h(f) and h-dilation ”SE,h(f) of an image f at pixel x œ �
by the structuring element SE µ � are the two mappings F(�,V) æ F(�,V) defined respectively
by

h(ÁSE,h(f)(x)) = ÁSE (h(f))(x), (1.3)

and
h(”SE,h(f)(x)) = ”SE (h(f))(x), (1.4)

where ÁSE (f) and ”SE (f) are the standard numerical flat erosion and dilation of image f œ F(�,L):

ÁSE (f)(x) =
Ó

f(y) : f(y) =
fi

[f(z)] ,z œ SEx

Ô
(1.5)

”SE (f)(x) =
Ó

f(y) : f(y) =
fl

[I(z)] ,z œ ŜEx

Ô
(1.6)

with SEx being the structuring element centred at point x and ŜE is the reflected structuring
element. If the inverse mapping h

≠1 is defined, the h-erosion and dilation can be explicitly
written as:

ÁSE,h(f)(x) = h
≠1 (ÁSE (h(f)))(x),

and
”SE,h(f)(x) = h

≠1 (”SE (h(f)))(x).

Of course, the inverse h
≠1 only exists if h is injective. In practice, we can impose the invertibility

of h by considering a lexicographic ordering for equivalence class L[x]. In fact, this solution
involves a structure of total ordering which allows to compute directly the h-erosion and dilation
without using the inverse mapping, i.e.,

ÁSE,h(f)(x) =
I

f(y) : f(y) =
fi

h

[f(z)] ,z œ SEx

J

, (1.7)

and
”SE,h(f)(x) =

I

f(y) : f(y) =
fl

h

[f(z)] ,z œ ŜEx

J

, (1.8)

where
w

h
and

x
h

are respectively the infimum and supremum according to the ordering Æh.
Starting from the h-adjunction (ÁSE,h(f),”SE,h(f)), all the morphological filters such as the opening
and closing have their h-counterpart, e.g., the h opening and closing are defined as

“SE,h(f) = ”SE,h(ÁSE,h(f)), ÏSE,h(f) = ÁSE,h(”SE,h(f)) (1.9)
5Adaptive in the sense that the mapping depend on the information contained in a multivariate image f . The

correct notation should be h(·; f). However, in order to make easier the understanding of the section we use h for
adaptive mapping.



(a) Original colour image denoted by f (b) Scatterplot of the three-channel image Xf

Figure 1.3 Spectral representation of a colour image in the RGB space. A spatial position x in
the image f contains three coordinates in the RGB-space represented by x.

Similarly, any other mathematical morphology operator based on adjunction operators can
be also extended to multivariate images. For instance, geodesic operators as opening by
reconstruction(251), levelings (176), additive morphological decompositions (278) and so on.

1.2 Pre-ordering a vector space

Let Xf be the set of vector values of a given image f , which can be viewed as a cloud of points
in V = Rp. Fig. 1.3 shows an example of colour image f , and its spectral representation as
points Xf . In general, pixel values in multispectral images are vectors defined in Rp. From
previous section, for a given multivariate image f : � æ Rp, the challenge to build complete
lattice structures is to define a mapping h :Rp æ L, to obtain a mapping � æ L, where L is a
lattice.

Many authors have already worked on this idea (8; 14; 19; 277). We present three families of
mappings h for a given x œRp in the following subsections.

1.2.1 Unsupervised ordering

That can be obtained by using the more representative projection in a statistical dimensional
reduction technique, for example a linear approach as PCA (132) or some non-linear projections
approach (149). To illustrate, we consider the first projection to induce the ordering, i.e.,
x1 Æ x2 ≈∆ hPCA(x) Æ hPCA(x2), where hPCA is the first eigenvector of the centred covariance
matrix Xf . The intuition behind this approach is simple and clear: pixels are ordered according
to their representation in the projection with greatest variance. An example is illustrated in Fig.
1.4(b). In this example, we can see that the induced minimum and maximum have no practical
interpretation.



1.2.2 Distance based ordering

Let us focus on the case of h-ordering based on distances. This approach is motivated by the
intuition that order computation should be adaptive to prior information given by application
interests.

Referenced ordering

As a starting point for distance based ordering, we consider (8) defining a function hREF(·,t) that
computes the similarity for a given pixel x to a colour reference t by measuring its spectral
distance, i.e., x1 ÆhREF x2 ≈∆ K(x1,t) Æ K(x2,t), where K :Rp ◊Rp æR+ is a kernel-induced
distance(190). The original formulation in (8) uses the case of Euclidean distance in the colour
space as kernel-induced distance6. Thus, the ordering based on a reference spectrum exhibits
a lattice where the minimum has been fixed. However, that maximum is associated with the
“farthest" vector but that does not have a simple interpretation. To illustrate the result of
this approach, we generalise the definition of a referenced order for a training set T as follows,
x1 ÆhREF x2 ≈∆ mini ||x1 ≠ ti|| Ø mini ||x2 ≠ ti|| for all ti œ T . The geometric interpretation
is that hREF(x;T ) is basically the distance in LŒ of x to the convex hull of vectors in T (if
x is not in the convex hull). Thus, is not so di�cult to see that hREF can be expressed as
hREF(x;T ) =

q|T |

i=1
◊

i
xK(ti,x) where ◊

i
x ”= 0 only for argmini ||x ≠ ti||. Fig. 1.4(e) shows the

referenced mapping for the colour image in Fig. 1.4(a). The training set are the pixel in the
red region of Fig 1.4(d). Note that hREF “detects" the girl but at the same time the border of
the swimming-pool. Associated morphological adjunction and gradient are illustrated in Fig.
1.5(g-i).

Supervised ordering

A more general formulation for distance based ordering has been introduced in (277). It defines
a h-supervised ordering for every vector x œ Rp based on the subsets B = {b1, . . . ,b|B|} and
F = {f1, . . . , f|F|}, as a h-ordering that satisfies the following conditions: h(b) = ‹ then b œ B,
and h(f) = € then f œ F. Note that ‹,€ are the smallest and largest element in the lattice L.
Such an h-supervised ordering is denoted by hSUPER(·;B,F).

The main motivation of defining this supervised ordering schema is to obtain maximum
and minimum in the lattice L interpretable with respect to sets B and F. It is important to
remind that max and min are the basic words in the construction of all mathematical morphology
operators. At this point, the problem is how to define an adequate supervised ordering for a
given vector space Rp and two pixel sets B,F. The approach introduced by (277) involves the
computation of standard support vector machine (SVM) to solve a supervised classification
problem to define the function hSUPER(x;B,F). An amusing geometrical interpretation is based
on results from (28), in where the ordering induced by hSUPER, corresponds to the signed distance
to the separating plane between the convex hull associated to F and the one containing the B.

6In this case the sense of the inequality change, i.e., x1 ÆhREF x2 ≈∆ ||x1 ≠ t||2 Ø ||x2 ≠ t||2.



(a) colour image: f (b) hPCA (c) hANOM

(d) B and F sets (e) hREF (f) hSUPER

Figure 1.4 Comparison of di�erent h-mappings considered in this section for a given colour
image. Referenced h-mapping requires prior information given by an one class training set T , in
this example T = F. Supervised h-mappings requires prior information given by the sets B and
F. Anomaly based ordering is intrinsically adapted to the image.

From (64), the solution of the classification case of SVM can be expressed as follows:

hSUPER(x;B,F) =
|B|ÿ

k=1

◊
kK(bk,x)+

|F|ÿ

j=1

◊
jK(fj ,x) (1.10)

where ◊
k are computed simultaneous as a quadratic programming optimisation problem (64).

For all the examples, given in this section we have used a Gaussian Kernel, with the Euclidean
distance between colour or spectra, i.e., K(xi,xj) = exp(≠c||xi ≠xj ||2), where the constant c is
obtained by cross-validation on the training set (64). Results of this supervised ordering are
illustrated in Fig. 1.4(f). The hSUPER matches our intuition of what should be maximum and
what should be minimum in the image according to the couple {B,F} in 1.4(d). The supervised
adjunction is shown in Fig. 1.5(j-k). Note that the supervised gradient in Fig.1.5(l) is better
defined on the contour of the girl in comparison to unsupervised and referenced orders. A second
example is presented for the RGB image in Fig. 1.3 considering the training sets in Fig. 1.6(a).
Note that the supervised lattice in Fig. 1.6(c), is a mapping from the spectral information to a
linear ordering (from top-left corner to bottom right corner). One advantage of the definition of
h-ordering on vector space is that it can be applied directly to multispectral or even hyperspectral
images.



(a) ”SE,hPCA(f) (b) ÁSE,hPCA(f) (c) Gradient by hPCA

(d) ”SE,hANOM(f) (e) ÁSE,hANOM(f) (f) Gradient by hANOM

(g) ”SE,hREF(f) (h) ÁSE,hREF(f) (i) Gradient by hREF

(j) ”SE,hSUPER(f) (k) ÁSE,hSUPER(f) (l) Gradient by hSUPER

Figure 1.5 Comparison of colour dilation, erosion and associated gradient using di�erent h-
orderings. Gradients have been normalised from zero to one to make easier the visual comparison.

1.2.3 Ordering based on anomalies

Distance based ordering approaches discussed above are valid if the pair set (B,F) is available.
Obviously, one cannot realistically believe that for every application the exact spectral information
about the background of the image is available. Thus, if one gives up this paradigm, no other
option di�erent to unsupervised ordering remains. Therefore, in order to take advantage of the
physical structure of an image, it was introduced in (279) an ordering based on "anomalies"
with respect to a background associated with a majority of points. It is called depth ordering



(a) Background/foreground train-
ing set (b) hSUPER(·;B,F) (c) Learned Order from (b).

(d) ”SE,hSUPER(f) (e) ÁSE,hSUPER(f) (f) Gradient by hSUPER in (b)

Figure 1.6 Background pixels are in blue, and foreground ones in red. c) The minimum in the
supervised ordering is placed at the top left corner and the maximum at the bottom right corner.
Morphological operators are computed by using a square of side three pixels as SE.

and is maximal in the “center" of the spectral representation of a image f and it produces a
vector ordering “centre-outward" to the outliers in the vector space Rp. In this paradigm, the
assumption of existence of an intrinsic background/foreground representation is required, i.e.,
given a vector image f : � æRp, Xf has can be decomposed as Xf = {XB(f),XF(f)} such that
XB(f) fl XF(f) = ÿ and card{XB(f)} > card{XF(f)}. Roughly speaking, the assumption means:
(1) the image has two main components: the background and the foreground; (2) There are more
pixels in the background than in the foreground. Several examples of these kinds of functionals
have been analysed in (276). However, we limited ourselves to the statistical projection depth
case presented in (279) and defined by

hANOM(x; f) = sup
||u||=1

|uT x ≠MED(uT Xf )|
MAD(uT Xf ) (1.11)

where MED denoted the univariate median and MAD the median absolute deviation, i.e., the median
of the di�erences with respect to the median. Note that the superscript T denotes matrix
transposition. Let us now point out some aspects of 1.11 in order to better characterise it. First,
it is a anomaly based ordering, due to the fact that if Xf ≥ N (µ,�) a Gaussian distribution with
mean vector µ and covariance matrix � then hANOM(x; f)2 Ã (x≠µ)T �≠1(x≠µ), the Mahalanobis
distance (see 5 to details). Secondly, 1.11 is invariant to a�ne transformations in the vector space
Rp. Third, unfortunately, the exact computation of 1.11 is computationally intensive except when
the number of pixels n is very small. However, we can compute a stochastic approximation by
using a large number of random projections u and computing the maximum for a given x (279).



To summarise the above, the statistical projection depth function in 1.11 induces an anomaly
based ordering for images with background/foreground representation. That is an ordering based
on a data-adapted function and in such a way that the interpretation of supremum and infimum
operations is known a priori, because max values can be associated with “outlier” pixels in the
high-dimensional space and min are “central” pixels in Rp space. A simple example is illustrated
in Fig. 1.4(c) where 1.11 “detects" the girl thanks to the fact that her spectral information is
unusual in comparison to the one from the swimming pool.

1.2.4 Implementation

Once a h-ordering has been defined, it becomes easy in practice to implement morphological
transformations on multidimensional images such as colour or multispectral ones. Actually, we
can use a scalar to code each pixel on the image, and the standard morphological transformations
for greyscale images can be used directly. The result is deciphered by mapping back the total
ordering in to the vector space. An e�ective implementation using a look-up table has been
presented in (263). A pseudo-code for a multivariate erosion is shown in (281). The index image
and the sorted vector look-up table constructed above are used to generate an ordered table. At
this point, any morphological transformation can be performed on the lattice image, which can
be considered as a greyscale image. The output of the morphological transformation is converted
back to the original vector space by replacing each pixel by its corresponding vector using a
look-up table.

1.3 The False colours Problem Versus the Irregularity Issue

One problem on vector-valued mathematical morphology is the creation of “false colours” or,
more generally, false values (249). An operator Â :Rp æRp introduces false values whenever
there are values in Â(f) which do not belong to the original image f . The abnormal false values
can be a problem in some applications such as when dealing with remote sensing images (249).

A total order, such as the lexicographical order and a reduced ordering combined with a
look-up table, circumvents the problem of false values (249). Using a total order, the supremum
and the infimum of a finite set are elements of the set, i.e.,they coincide with the maximum and
minimum operations, respectively. On the downside, a total order can be irregular in a metric
space. According to Chevallier and Angulo, the irregularities follow because the topology induced
by a total order may not reproduce the topology of a metric space (57). Specifically, let the
value set V be a totally ordered set as well as a metric space, with metric d : V◊V æ [0,+Œ).
(57) showed that there exist u,v,w œ V such that u Æ v Æ w but d(u,w) < d(u,v) under mild
conditions with respect to the connectivity of V. In words, although u is closer to w than to v,
the inequalities u Æ v Æ w suggest w is farther from u than v. Since the morphological operators
are defined using the extrema operators, they do not take the metric of V into account.

A visual interpretation of the irregularity is shown in Figure 1.7, which is very similar to
an example provided in (57). Figure 1.7a) shows an image with three RGB colours, namely
u = (0,0,0), v = (0,0,1), and w = (1/255,0,0). The toy image f is obtained by replacing pure
black values u by w with probability 0.3 from an image of size 32◊64 with two stripes of colours



(a) Toy Image f .
f has two types of dark pixels.

(b) Dilated Image ”
L
SE(f)

(Lexicographical RGB)
(c) Dilated Image ”

M
SE (f)

(Marginal)

Figure 1.7 Illustrative example of the irregularity issue. Image with three colours and its
corresponding dilation by a cross structuring element using the RGB lexicographical and marginal
orderings.

blue and black. The dilations ”
L
SE(f) and ”

M
SE (f) by a cross structuring element SE obtained using

the lexicographical RGB and the marginal ordering schemes are also depicted in Figure 1.7.
Visually, u and w are black colours while v is a pure blue. Using the Euclidean distance, we obtain
d(u,v) = 1 and d(u,w) = 0.005. These distances agree with our colour perception. However,
using the lexicographical ordering, we obtain u ÆL v ÆL w. As a consequence, the following
happens when we compute the dilation ”

L
SE(f) = gL using the lexicographical ordering: the blue

v advances over the black u but it is overlaid by the black w, resulting in the irregularities
shown in Figure 1.7b). In contrast, the dilated image depicted in Figure 1.7c) obtained using the
marginal ordering does not present any visual irregularity.

Although we know that the irregularity results from a divergence between the topologies
induced by the metric and the total order, no consensual measure agrees with our visual perception.
A measure for the irregularity can help to choose an appropriate ordering scheme for vector-valued
mathematical morphology. The following section proposes a measure of irregularity using the
Wasserstein metric.

1.3.1 The Wasserstein Metric and the generalised Sum of Pixel-wise Dis-
tances

In this subsection, we present a measure for the irregularity, referred to as the global irregularity
index. Although we are interested in measuring the irregularity implied by a total ordering, we
will not assume V is totally ordered. Indeed, the proposed irregularity measure is well defined
whenever the � is finite and V is a metric space. For simplicity, however, the value set V
corresponds to the RGB colour space equipped with the Euclidean distance in the following
examples and computational experiments.

The global irregularity index is given by the relative gap between the Wasserstein metric and
a generalised sum of pixel-wise distances.

Given an input image f œ F(�,V), let g = Â(f) denote the output of the image operator. The
generalised sum of pixel-wise distances of f and g is an operator DpO : F(�,V)◊F(�,V) æ [0,+Œ)
given by

DpO(f ,g) =

Q

a
ÿ

xœ�

d
pO

!
(f)(x),g(x)

"
R

b

1
pO

, (1.12)



with a parameter pO Ø 1. The generalised sum of pixel-wise distances is one of the simplest
measures that considers the metric d and the pixel locations. However, DpO is usually not properly
scaled, possibly because its dimension is the same as the metric d. For example, the images
shown in Figure 1.7 yield the values D1(f ,gL) = 34.12 and D1(f ,gM ) = 66.05. Note that the
inequality D1(f ,gL) < D1(f ,gM ) holds true although gL is more irregular than gM . Hence, the
generalised sum of pixel-wise distances is not an appropriate measure for the irregularity.

Let us now review the Wasserstein metric, also known as the Earth mover’s distance or
the Kantorovich-Rubinstein distance in some contexts (230; 289). The Wasserstein metric is
formulated as a transport problem and can measure distances between probability distributions
(289).

The objective of a transport problem is to minimise the cost to deliver items from n1 factories
to n2 shops (213). In our context, the transport problem minimises the cost to transform the
input image f into the output image g. The cost is defined using the metric on the value set V.
Precisely, let V (f) = {v1, . . . ,vn1} and V (g) = {u1, . . . ,un2} be the sets of colour values of f and
g, respectively. Also, let

fi = Card({x : (f)(x) = vi}) and gj = Card({x : g(x) = uj}), (1.13)

denote respectively the number of pixels of value vi in the image f and the number of occurrences
of the value uj in g, for i = 1, . . . ,n1 and j = 1, . . . ,n2. Given pO Ø 1, the cost to transform a
value vi of f into a value uj of g is defined by

cij = d
pO(vi,uj), ’i = 1, . . . ,n1, ’j = 1, . . . ,n2. (1.14)

The Wasserstein metric, denoted by WpO : F(�,V)◊F(�,V) æ [0,Œ) for pO Ø 1, is given by

WpO(f ,g) =

Q

a
n1ÿ

i=1

n2ÿ

j=1

cijxij

R

b

1
pO

, pO Ø 1, (1.15)

where xij solves the linear programming problem
Y
_____________]

_____________[

minimise
n1ÿ

i=1

n2ÿ

j=1

cijxij

subject to
n2ÿ

j=1

xij = fi, ’i = 1, . . . ,n1,

n1ÿ

i=1

xij = gj , ’j = 1, . . . ,n2,

xij Ø 0, ’i = 1, . . . ,n1, ’j = 1, . . . ,n2.

(1.16)

The Wasserstein metric is the pO-th root of the minimal cost to transform f into g. In the
transport problem (1.16), the variable xij represents the (optimal) number of pixels with value
vi of f transformed to pixels with value uj of g. Moreover, the solution of (1.16), which can be
arranged in a matrix X œRn1◊n2 , is an optimal transport plan. An optimal transport plan is
a cyclically monotone plan in the sense that the cost

q
n1
i=1

q
n2
j=1

cijxij cannot be improved by



changing the number of pixels with value vi transformed to pixels with value uj (289). For
the images shown in Figure 1.7, we obtain W1(f ,gL) = 6.18 and W1(f ,gM ) = 65.94. Note that
the inequality W1(f ,gL) < W1(f ,gM ) holds despite gL being more irregular than gM . Like the
generalised sum of pixel-wise distances, the Wasserstein metric is not appropriate for measuring
the irregularity.

1.3.2 The Global Irregularity Index

Although both the generalised sum of pixel-wise distances and the Wasserstein metric are, per
se, not appropriate to evaluate the irregularity, we advocate that they can be combined to yield
a useful measure.

First of all, note that the generalised sum of pixel-wise distances satisfies

DpO(f ,g) =

Q

a
n1ÿ

i=1

n2ÿ

j=1

cijyij

R

b

1
pO

, pO Ø 1, (1.17)

where
yij = Card({x : (f)(x) = vi and g(x) = uj ,x œ �}) , (1.18)

for all i = 1, . . . ,n1 and j = 1, . . . ,n2. Moreover, it is not hard to see that yij Ø 0 and the identities

n2ÿ

j=1

yij = fi and
n1ÿ

i=1

yij = gj , (1.19)

where fi and gj are given by (1.13), hold for all i = 1, . . . ,n1 and j = 1, . . . ,n2. Therefore, the
generalised sum of pixel-wise distances also measures the cost of transforming f into g. Because
WpO is the minimal cost, the inequality WpO(f ,g) Æ DpO(f ,g) holds for any f and g = Â(f). The
yij ’s given by (1.18), which can be arranged in a matrix Y œRn1◊n2 , is called the operator’s plan.
The operator’s plan is probably not an optimal transport plan. Indeed, one usually can reduce
the cost

q
n1
i=1

q
n2
j=1

cijyij by rerouting the number of pixels with value vi in f transformed to
pixels with value uj in g. In some sense, the di�erence DpO(f ,g)≠WpO(f ,g) measures the cycles
in the operator’s plan that can be reduced.

In order to reduce the impact of the metric d on the value set V and the impact on the
choice of the parameter pO Ø 1, we propose to measure the irregularity using the mapping
�g

pO
: F(�,V)◊F(�,V) æ [0,1] given by the relative gap between DpO and WpO . Precisely, given

images f ,g œ F(�,V), we define the global irregularity index by means of the equation

�g

pO
(f ,g) = DpO(f ,g)≠WpO(f ,g)

DpO(f ,g) , if DpO(f ,g) ”= 0, (1.20)

and �g
pO

(f ,g) = 0 if DpO(f ,g) = 0. Note that the larger the gap between WpO(f ,g) and DpO(f ,g),
the larger the global irregularity index. Equivalently, we have

�g

pO
(f ,g) =

Y
_]

_[

0, if DpO(f ,g) = 0,

1≠ WpO(f ,g)
DpO(f ,g) , otherwise.

(1.21)



The irregularity index is symmetric and bounded, that is, �pO(f ,g) = �pO(g, f) and 0 Æ
�pO(f ,g) Æ 1. Moreover, because DpO and WpO have the same units and similar magnitudes,
�g

pO
(f ,g) is a dimensionless quantity. The more irregular is g = Â(f), the larger the value of

�g
pO

(f ,g) is expected to be. For example, the irregularity index of the dilated images gL and gM

shown in Figure 1.7b) and 1.7c) are �g

1
(f ,gL) = 81.9% and �g

1
(f ,gM ) = 0.17%, respectively. The

following examples explores further the global irregularity index using toy images.
As example, some computational experiments with tiny colour images are provided. Precisely,

the global irregularity index �g

1
of morphological operators applied on one hundred colour images

from the CIFAR10 dataset is computed. The measures have been computed using erosion,
dilation, opening, and closing by a 3 ◊ 3 square structuring element. Specifically, we have
computed twenty-five dilations, erosions, openings, and closings on di�erent images from the
CIFAR10 dataset. Three approaches based on total orderings are considered. The first is the RGB
lexicographical order in which the colours are ranked sequentially according to the red, green,
and blue channels. The other two approaches are based on reduced orderings (281). Specifically,
we considered the supervised reduced ordering based on an SVM with radial basis function kernel
(277). The SVM is trained to distinguish the central object on an image from the rest. The
last approach uses an unsupervised reduced ordering based on the random projection depth,
which aims to discriminate between background and foreground pixels (279). For comparison,
two approaches based on partial orderings are also included. Namely, the marginal approach and
the approach based on Loewner order (44). Because these two approaches are not based on total
orders, their output images are not expected to be very irregular.

Figure 1.8 depicts some original images, the outcome of a morphological operator, and the
corresponding global irregularity index. The images in the first column correspond to the original
colour images. The following columns present the output of morphological operators defined
using the marginal, Loewner, lexicographical RGB, supervised SVM-based, and projection depth
approaches, respectively. We provide the global irregularity index below the images produced by
the morphological operators. As expected, the marginal and the Loewner approaches yielded
global irregularity indexes smaller than the lexicographical, SVM-based, and projection depth
approaches. The supervised SVM-based approach yielded the most irregular dilated image. The
irregularity index of 5.38% produced by projection depth’s dilation of the cat image is an outlier
of the global irregularity index produced by this unsupervised morphological approach. Indeed,
the median of the global irregularity index produced by the morphological operators based on
the projection depth is 45.22%. The eroded image depicted in the last column of Figure 1.8
is a typical outcome of the projection depth approach. The median of the irregularity indexes
produced by the marginal, Loewner, lexicographical, and the SVM-based approaches are 2.56%,
2.81%, 6%, and 22.98%, respectively. The truck image’s openings and the car image’s closings
provide typical examples of the global irregularity index produced by the marginal, Loewner,
and lexicographical approaches. The opening of the car image produced by the projection depth
approach yielded the largest global irregularity index of this experiment.
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Figure 1.8 Illustrative examples of the global irregularity index �g
1 computed for several tiny

colour images using di�erent morphological operators.

1.4 Perspectives

Considering the works presented in this chapter, one can imagine the continuation of the idea of
order learning in di�erent aspects:

1. How to learn an order function from an database of images?

2. Is it possible to learn order function in the deep learning paradigm? What would be the
correct loss functions in this context? How to create a ground-truth of order functions?

3. Can classical convolution neural networks be interpreted as models that learn h-order in a
multivariate sense?
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2 Extensions of Mathematical Morphology

The important thing in science is not so much to obtain new facts
as to discover new ways of thinking about them.

William Lawrence Bragg

2.1 Introduction

In Chapter one the modelling of a multivariate image based as a lattice is presented. That leads
to the problem of morphological treatment of images to determine an order function for vector
data. In this chapter, most well-known morphological operators are reviewed. Additionally,
adaptive structuring elements are introduced and an application of salt and pepper denoising is
illustrated used conditional morphology. One can define a continuous image f̃ on [0,n1]◊ [0,n2]
by

’x œ �, f̃(x) =

Y
]

[
f(x≠ (1

2
,

1

2
)) if x≠ (1

2
,

1

2
) œ �

‹ otherwise
(2.1)

where ‹ represent the minimum possible value of any image. Then by considering the dilation
of f̃ by a closed unit square S = [≠1/2,1/2]2, fc = supyœS f̃(x+y), one can obtain a continuous
representation of the digital image that is upper semicontinuous and contrast invariant (48). In
the sequel, by a convenient abuse of notation, we will use f to refer fc.

2.2 Inf/Sup convolutions

We study here functions f : � æR, where R it allowed to be extended-real-valued, i.e., to take
values in R= [≠Œ,Œ]. Accordingly, the set of all such functions is denoted by F(�,R).

Definition 2.1. In mathematical morphology (246), the dilation (sup-convolution) ”SE(f) of f is
given by:

’x œ �, ”SE(f)(x) := sup
yœ�

{f(y)+SE(x≠y)} = sup
wœ�

{f(x≠w)+SE(w)} , (2.2)



where SE œ F(�,R) is the structuring function which determines the e�ect of the operator. Here
the inf-addition rule Œ≠Œ = Œ is to be used in case of conflicting infinities. sup(f) and inf (f)
refer to the supremum (least upper bound) and infimum (greatest lower bound) of f .

The erosion (246) ÁSE(f), known as inf-convolution in convex analysis (189), is the adjoint
operator to 2.2, and it is defined as

’x œ �, ÁSE(f)(x) := ≠”ŜE(≠(f)(x) = inf
yœ�

{f(y)≠SE(y ≠x)} = inf
wœ�

{f(x+w)≠SE(w)} , (2.3)

where the transposed structuring function is ŜE(x) = SE(≠x).

Remark 2.2. ’f ,g œ F(�,R)

1. The operators (2.2) and (2.3) are translation invariant.

2. (2.2) and (2.3) correspond to one another through the duality relation ”SE(f)(x) Æ g(x) ≈∆
(f)(x) Æ ÁSE(g)(x), called adjunction (96).

3. An operator Â is called increasing if (f)(x) Ø g(x) ∆ Â(f)(x) Ø Â(g)(x) ’x. The dilation
(2.2) and erosion (2.3) are increasing for all SE.

4. An operator Â is called extensive (resp. antiextensive) if Â(f)(x) Ø (f)(x) (resp. Â(f)(x) Æ
(f)(x)), ’x. The dilation (2.2) (resp. erosion (2.3)) is extensive (resp. antiextensive) if and
only if SE(0) Ø 0, i.e., the structuring function evaluated at the origin is non-negative.

5. ÁSE(f)(x) Æ (f)(x) Æ ”SE(f)(x) if and only if SE(0) Ø 0.

6. ”SE (resp. ÁSE) does not introduce any local maxima (resp. local minima) if SE Æ 0 and
SE(0) = 0. In this case, we say that SE is centered.

Proof. (1) and (2) are classical results from (246). As explained in (108) and (163), the adjunction
is related to a well-known concept in group and lattice theory, the Galois connection. (3)
and (6) are easy to prove directly from the definition of the operators. It has been also
proved in the original paper of inf-convolution (Proposition 6.d) in (189). (4) ’f ,”SE(x) Ø
(f)(x) ∆ ’f,sup(f(x≠w)+SE(w)≠ f(x))(x) Ø 0 ∆ SE(0) Ø 0. Now, sup(f(x ≠ w) + SE(w)) Ø
(f)(x) + SE(0), if SE(0) Ø 0 ∆ sup(f(x ≠ w) + SE(w)) Ø f(x). From (3) and (4) is easy to prove
(5).

Usually in practice the function f is a countable set of points, then max and min are used
instead of supremum and infimum.

Definition 2.3. The opening (resp. closing) of f by the structuring function SE is denoted by
“SE(f) (resp. ÏSE(f)), and it is defined by “SE(f) := ÁSE(”SE(f)) (resp. ÏSE(f) := ”SE(ÁSE(f)))

Remark 2.4. ’f ,g œ F(�,R)

1. Opening and closing are duals, Ï(f) = ≠“(≠f)

2. Opening and closing are idempotents, Ï(Ï(f)) = Ï(f) and “(“(f)) = “(f)

3. Opening is anti-extensive and closing is extensive, f Æ Ï(f) and “(f) Æ f



2.3 Geodesic Morphological Operations

In this section, we firstly provide an overview of fixed-point geodesic morphological operations
which achieve reconstructions from a marker function under a constraining second image called
mask. Then, we explain how these operations can be included as layers in a neural network, so
that backpropagation can be performed. Finally, we present the main property of the Jacobian,
that allows both a geometric interpretation and a strong robustness through noise. The main
ingredient of geodesic transformations is the geodesic dilation. Let us consider numerical functions
f ,g œ F(�,R), the set of functions mapping from space of points � to R, the set of di�erent
possible values of the image.

Definition 2.5. Let f ,g be such that f Æ g, f is called the marker and g the mask (251). The
geodesic dilation of size one of f with respect to g is denoted by ”

(1)

g (f) and is defined as the
point-wise minimum between g and the elementary dilation in a given spatial space (a.k.a.
structuring element SE), ”

1 := ”SE of the marker image, i.e.,

’x œ �, ”
(1)(f ,g)(x) := ”

(1)

g (f)(x) := ”
(1)(f)(x)·g(x) (2.4)

where · denotes the minimum coordinate-wise operation.

Definition 2.6. The reconstruction by dilation(251) of a mask g from a marker f is defined as
the geodesic dilation of f with respect to g iterated until stability and is denoted by REC

”
g(f):

’x œ �, REC
”(f ,g)(x) := REC

”

g(f)(x) := lim
kæ+Œ

”
(k)

g (f(x)) = lim
kæ+Œ

”
(1)

g ¶ . . .”
(1)

g¸ ˚˙ ˝
ktimes

(f(x)) (2.5)

where k is such that ”
(k)

g (f(x)) = ”
(k+1)

g (f(x)).

The reconstruction by dilation extracts the domes or peaks of the mask which are marked by
the marker. This is illustrated in Fig. 2.1(a).

Definition 2.7. The h-maxima transform provides a filter to select signal maxima using a
contrast criterion (251),

’x œ �, HMAXh(f)(x) = REC
”

f (f(x)≠h) (2.6)

where h œR is a parameter.

HMAXh transform cuts local maxima overall the image given a parameter h. Finally, a common
way to detect peaks (251), is the regional maxima transformation.

Definition 2.8. The regional maxima transformation for f is defined by

’x œ �, RMAX(f)(x) = f(x)≠REC
”

f (f(x)≠ ‘), (2.7)

‘ = 1 in the case of discrete values for f .

Some examples of (2.6) and (2.7) are shown in Fig. 2.1(b) and (c).



(a) REC
”(f ,g) (b) HMAXh(f) (c) RMAX(f).

Figure 2.1 Examples of di�erent geodesic morphological operators in a mask g from a marker
f . The illustrated example in (c) uses ‘ = 1, but in practical implementation it should be a small
number.

2.4 Toggle mapping

The toggle contrast mapping is based on the idea of using a dilation process near a local maximum
and an erosion process around a local minimum. The decision whether a pixel belongs to the
influence zone of a maximum or a minimum is made on the basis of the morphological Laplacian
� defined in (274) as the di�erence between the gradients by dilation �” and erosion �Á (220):

’x œ �, �SE(f)(x) = �”

SE(f)≠�Á

SE(f)(x),

where �”
SE(f)(x) = (”SE (f)(x)≠ f(x)) and �Á

SE(f)(x) = (f(x)≠ÁSE (f)(x)).
If the Laplacian is negative, then the pixel is considered to be in the influence zone of a

maximum, while it is regarded to belong to the influence zone of a minimum if the Laplacian
is positive. With this framework, we adopt the three-state toggle contrast mapping proposed
in (243) and based on the erosion, dilation, and identity transformations:

Definition 2.9. (243) Given an image f the toggle contrast mapping is defined as follows:

’x œ �, ·SE(f)(x) =

Y
___]

___[

ÁSE (f)(x) if �SE(f)(x) > 0,

”SE (f)(x) if �SE(f)(x) < 0,

f(x) otherwise.

(2.8)

Note that the original shock filter proposed of Kramer & Bruckner (139) corresponds to
a two-state toggle contrast mapping where the identity transformation is not considered and
the strict inequality < in (2.8) is replaced by Æ, see also (181). The three-state toggle contrast
mapping is more robust than the two-state one because it is self-dual and preserve the original
signal in a single-slope signal, i.e., signals such that ’x : �Á

SE(f(x)) = �”
SE(f(x)). The original

method of Kramer and Bruckner was formulated in a fully discrete way. The term shock filtering
was introduced later by Osher and Rudin (201). Shock filtering constitutes an example of a PDE
that is di�cult to analyse in the continuous setting, while for a 1-D space discretisation it has
been shown in (293) that this process is well-posed and satisfies a maximum-minimum principle.
An analytic solution of the corresponding dynamical system was even found (293). Di�erent
modifications have been proposed in order to improve the performance of shock filters. Alvarez



and Mazorra (4) replaced the Laplacian as edge detector by K‡ ú�(f), where K‡ is a Gaussian
with standard deviation ‡, �f is the gradient of f , and ú denotes convolution.

By iterating toggle contrast mappings, a sharp discontinuity (shock) at the borderline between
two influence zones is produced. Within each zone, a constant segment is created. Iterations are
usually performed until idempotence1, i.e.,

’x œ �, ·
Œ

SE (f)(x) = lim
iæŒ

·
i

SE(f)(x) (2.9)

where ·
i
SE(f) = ·SE(· i≠1

SE (f)), ·
0
SE(f)(x) = f(x) and ·SE(f)(x) is given by (2.8). The iterations of

toggle contrast converge to a fixed point (139) reached after a finite number of iterations. In (111)
are defined self-dual operators based on the morphological centre and, more generally, self-dual
filters. Basically, it states that every increasing, self-dual operator can be modified in such a
way that when iterated on any given image, it leads to a pixel-wise monotone sequence (i.e.,
strictly increasing or decreasing in each pixel). This implies a convergence to a limit operator,
thus avoiding oscillation problems which typically hold for non-convergent filters such as median
filtering. The convergence is obtained when all the pixels are fixed points, as shown in Fig. 2.2.
To illustrate the evolution until convergence, Figs. 2.2(a-b) show the first and second iteration of
(2.9) in a bi-dimensional representation of image value gradient by erosion and dilation. When
convergence is reached, Fig. 2.2(c), all the pixels are fixed points according to the criterion (2.8).
Note the presence of pixels in the line �Á

SE(f)(x) = �”
SE(f)(x) revealing that some pixels have

identical values for their gradients by erosion and dilation. Shock filters following (2.9) have
two main drawbacks. First, they su�er from the halo e�ect (90; 181) due to the tie case in the
definition. In addition, they require a large number of iterations to converge. For example, in
the case of the Cameraman image, 96 iterations were needed to reach the stable result shown in
Fig. 2.2(f). These two drawback motived us to define the conditional toggle mapping introduced
in section 2.6.

2.5 Type of Structuring Elements

2.5.1 Flat Structuring Element

The most commonly studied framework for dilation/erosion of functions is based on flat structuring
functions, where structuring elements are viewed as shapes. More precisely, given the structuring
element B ™ �, its associated structuring function is

’x œ �, B(x) =
I

0 if x œ B,

≠Œ if x œ B
c
.

(2.10)

Hence, the flat dilation ”B(f) and flat erosion ÁB(f) can be computed respectively by the moving
local maxima and minima filters with a neighbourhood induced by B. The shape of B is often a

1An operator Â : � æRp is idempotent if ’x œ �,Â2(x) = Â(Â(x)) = Â(x).



(a) �Á
SE(f) vs �”

SE(f) (b) �Á
SE(·SE(f)) vs �”

SE(·SE(f)) (c) �Á
SE(·Œ

SE (f)) vs �”
SE(·Œ

SE (f))

(d) f (e) ·SE(f) (f) ·
Œ
SE (f)

Figure 2.2 (a)–(c) Bi-dimensional representation of the evolution in the classical shock filter
(2.8) for the Cameraman grey-scale image shown in (d). (e) One iteration of the shock filter in
(2.8) (f) Image obtained after iterating (2.8) until stability.

disk of radius ◊, denoted by B◊.

’x œ �, B◊(x) =
I

0 if ÎxÎ Æ ◊,

≠Œ if ÎxÎ > ◊.
(2.11)

2.5.2 Quadratic Structuring Element

From the theory of morphological scale-spaces, the most useful non-flat structuring functions
are those which depend on a scale parameter (109; 244). The only separable and rotationally
invariant structuring functions is the called quadratic structuring function(272):

’x œ �, q◊(x) = ≠ÎxÎ2

2◊
, (2.12)

such that the corresponding dilation and erosion are equal to the Lax–Oleinik operators or
viscosity solutions of the standard Hamilton–Jacobi PDE, also known as morphological PDE:
ut(t,x)ûÎux(t,x)Î2 = 0, (t,x) œ (0,+Œ)◊�; u(0,x) = (f)(x), x œ �. The morphological PDE
was proposed and analysed using 2D boundary propagation in (273) and further analysed using
the morphological slope transform in (107).



Remark 2.10. The erosion by a quadratic structuring function with parameter ◊ œR+ is defined
by

Áq◊ (f)(x) := inf
yœ�

{f(y)≠ q◊(y ≠x)} = inf
zœ�

{f(z ≠x)≠ q◊(z)} = inf
zœ�

I

f(z ≠x)+ ÎzÎ2

2◊

J

. (2.13)

The erosion of a function f by a quadratic structuring function with parameter ◊ is known as
the Moreau envelope or Moreau-Yosida approximation (189; 205; 222), which o�ers many benefits
specially for optimisation purposes (188). Additionally, 2.13 induces an additive scale-space
(107; 124)„ Áq◊1

(Áq◊2
(f)) = Áq◊1+◊2

(f) and they form a (S1/2
,+) scale-spaces that can be regarded as

morphological counterparts to the Gaussian scale-space (273). It also plays a canonical role in the
definition of dilation and erosion on Riemannian manifolds (13) and their behaviour with respect
to the maxima/minima is well understood (125). Besides their feature extraction properties,
morphological dilation and erosion using quadratic structuring functions are a powerful tool for
Lipschitz regularisation. For the nonconvex case, the Lasry–Lions double envelope is defined as
the composition of two di�erent Moreau envelopes, or using the morphological vocabulary, the
composition of an erosion followed by a dilation with quadratic structuring functions. For all
0 < c < 1 and 0 < ⁄, the so-called Lasry–Lions regularisers (130) are defined as

“
c

⁄(f)(x) := ”qc⁄ (Áq⁄(f))(x),

Ï
c

⁄(f)(x) := Áqc⁄ (”q⁄(f))(x),

such that if f is bounded, the functions “
c

⁄
and Ï

⁄
c are bounded and one has the ordering

properties for the following envelopes:

• if ⁄1 Ø ⁄2 > 0, for any 0 < c < 1 then

“
c

⁄1(f)(x) Æ “
c

⁄2(f)(x) Æ f Æ Ï
c

⁄2(f)(x) Æ Ï
c

⁄1(f)(x);

• if 0 < c2 < c1 < 1, for any ⁄ > 0 then

“
c2
⁄

(f)(x) Æ “
c1
⁄

(f)(x) Æ f Æ Ï
c1
⁄

(f)(x) Æ Ï
c2
⁄

(f)(x).

For any bounded function f , Lasry–Lions regularisers provide a function with a Lipschitz
continuous gradient, i.e.,

|Ò“
c

⁄(f)(x)≠Ò“
c

⁄(f)(y)| Æ M⁄,cÎx≠yÎ, |ÒÏ
c

⁄(f)(x)≠ÒÏ
c

⁄(f)(y)| Æ M⁄,cÎx≠yÎ.

where the Lipschitz constant is M⁄,c = max
!
(c⁄)≠1

,((1≠ c)⁄)≠1
"
. If f is bounded and Lipschitz

continuous, one has
Lip(“c

⁄(f)) Æ Lip(f) and Lip(Ïc

⁄(f)) Æ Lip(f),

with
Lip(g) = sup

; |g(x)≠g(y)|
Îx≠yÎ ; x,y œRp

, x ”= y

<
.



For more details on the properties of Lasry–Lions regularisers in the context of mathematical
morphology, see (10).

Remark 2.11. The following statements are interesting about the composition of quadratic
morphological operators (52; 222). Let 0 < µ < ⁄,

1. Áq⁄(“q⁄(f)) = Áq⁄(f);

2. “qµ(Áq⁄≠µ(f)) = Áq⁄≠µ(“q⁄(f));

3. “q⁄≠c⁄Ï
c

⁄
(f) = Ï

c

⁄
(f).

2.5.3 Adaptive mathematical morphology

The formulation contained in the previous subsection is translation invariant in the space and
in the intensity, i.e., the same processing is considered for each pixel x in the image f . Several
ways have been analysed to define local characteristics of the image in order to locally design
the SE at each point of the product space (x◊ t) œ �◊Rp. There are di�erent ways to define a
hierarchy of approaches proposed on adaptive morphology. We use the scheme introduced by
Roerdink (223). According to the adaptivity considered by the construction of the structuring
element, we have two main types:

1. Location-adaptive structuring elements (variability on � (12)): The structuring element
SE(x), depends on the location x in the image. It does not depend on the input image
f(x). One of the earliest applications that required the use of variable size SEs is the tra�c
control camera system (32). This application inspired (32) to consider the perspective
e�ect in the morphological analysis. Vehicles at the bottom of the image are closer and
they appear larger than those higher in the camera. Thus, the SE should follow a law of
perspective, for instance, vary linearly with its vertical position in the image. Another
example is the term “locally adaptable" used in (65), for SEs as a disk where the radius
depends on the position of the image.

2. Input-adaptive structuring elements (variability on Rp (12)): The shape of the SE(x) at x

depends on the local features of an image f . We denote this kind of structuring element
by SEf (x). Examples of this type of adaptive are morphological amoebas (148), intrinsic
structuring elements (68), region growing structuring element (187), nonlocal structuring
elements (280), geodesic neighbourhood (99), bilateral inspired structuring elements (9)
and adaptive anisotropic structuring element (34).

The question one can ask is what kind of structuring elements are valid in the sense that
adjunction properties are preserved. The following theorem has been presented in (280):

Definition 2.12. A morphological weight system Wf : � ◊ � æ R+ on f is a weight function
such for all x,y œ �,

1. Wf (x,x) = 0 ’x œ �,

2. Wf (x,y) = Wf (y,x) ’x,y œ �,

3. ≠Œ Æ Wf (x,y) Æ 0 ’x,y œ �.



Figure 2.3 Example a) Original evaluated graph b) Example of Structuring element considering
the geodesic distance approximated in the graph (a) with a center in the point of the noise.
c) Riemannian Dilation (2.14) d) Riemannian Erosion (2.15) e) Riemannian Closing and f)
Riemannian Opening. The operators are applied marginally.

Theorem 2.13. If Wf a morphological weight system on f then ”Wf (g1) Æ g2 ≈∆ g1 Æ ÁWf (g2),
for all f ,g1,g2 œ F(L,L)

Finally, an extension when the � is a Riemannian manifold (13) is the following:

Definition 2.14. Let M a complete Riemannian manifold 1 and dM : M◊M æR+, (x,y) ‘æ
dM(x,y), is the geodesic distance on M, for any image f : M æ R, R = Rfi {≠Œ,+Œ}, so
f œ F(M,R) and for ◊ > 0 we define for every x œ M the canonic Riemannian dilation of f of
scale parameter ◊ as

”◊(f)(x) = sup
yœM

;
f(y)≠ 1

2◊
dM(x,y)2

<
(2.14)

and the canonic Riemannian erosion of f of parameter ◊ as

Á◊(f)(x) = inf
yœM

;
f(y)+ 1

2◊
dM(x,y)2

<
(2.15)

An example for colored surfaces is illustrated in 2.3.
1A Riemannian manifold M is complete if starting at any point p œ M, all geodesics are defined for all t œR.



A final example of adaptive morphology is included in the next section. In this case, the
adaptability is induced by a mask image, called conditional morphology. The case of salt-and-
pepper denoising is illustrated by means of a conditional shock filter.

2.6 Conditional Mathematical Morphology

In this section, the conditional toggle mapping is defined. That is the toggle mapping operator
defined in (2.8) using an adaptive structuring element that varies in � according to a mask. This
term is used as reference of the role played by the mask and should not be confused with the one
in conditional geodesic dilation, where a conditional dilation is defined (in the binary case) as
the intersection of the mask image with a dilation of the marker image, see for instance (247,
Sec. 4.4). Let m be the characteristic function of a mask, i.e., m œ F(�,{0,1}) maps each pixel
x œ � into {0,1}. Our approach is based on a neighbourhood associated with a structuring
element SE and to the mask m, denoted by N and defined as follows:

’x œ �, N(SE,m)(x) = {y œ SE(x) and m(y) = 1}.

That allows us to define the conditional version of the dilation as the following morphological
mapping F(�,L) æ F(�,L).

Definition 2.15. The conditional dilation of an image f with respect to m is defined by

’x œ �, ”SE (f ,m)(x) =

Y
__]

__[

x

yœN(SE,m)(x)

f(y) if x /œ m and N(SE,m)(x) ”= ÿ,

f(x) otherwise.
(2.16)

and similarly for the erosion,

Definition 2.16. The conditional erosion of an image f with respect to a binary mask m is
defined by the following expression:

’x œ �, ÁSE (f ,m)(x) =

Y
__]

__[

w

yœN(ŜE,m)(x)

f(y) if x /œ m and N
(ŜE,m)

(x) ”= ÿ,

f(x) otherwise.
(2.17)

A similar idea of conditional morphology was presented in (131) in the case of binary images.
Expression 2.16 and 2.17 are equivalent to the ones introduced in (131) for binary images but
di�ers in greyscale images due to the “otherwise” case. The motivation of this idea is that pixels
in the mask are considered as sources in the morphological operation, and they are invariants
(see Fig. 2.4 for an illustrative example).

We can now note that the pair (ÁSE (·,m) ,”SE (·,m)) is not an adjunction 1.4as it is illustrated
in Fig. 2.5.

However, we can calculate the algebraic adjunction of the conditional dilation. It is important
because it produces a link in a unique way between morphological operators and idempotent fil-
tering, achieved by composition of dilation/erosion (opening/closing). Additionally, it guarantees



(a) f (b) ”SE (f)

(c) m (d) ”SE (f ,m)

Figure 2.4 Conditional vs standard operators. f is a greyscale image of 175◊245 pixels (a), SE

is a square of side 25. Pixels of the mask are displayed in green (c). Note that objects in the
mask are neither dilated nor eroded for the conditional operators.

that the composition reduces the information content. This kind of analysis has been carried
out in morphological operators applied to images (108), graphs (112), pyramids (136), and curve
evolution (136).

Proposition 2.17. Let Á̃SE(f ,m) be defined by:

’x œ �, Á̃SE(f ,m)(x) =

Y
__]

__[

w

yœN(ŜE,mc)(x)

f(y) if x œ m, and NŜEflmc(x) ”= ÿ,

f(x) otherwise,
(2.18)

then the pair (Á̃SE(f ,m),”SE (f ,m)) is an adjunction.

Proof. For every SE œ � and a given m œ F(�,{0,1}), the pair (Á̃SE(·,m),”SE (·,m)) defines an
adjunction on F(�,L) [Proposition 4.33, (110)]. In other words

”SE (f ,m) Æ g ≈∆ f Æ Á̃SE(g,m)

for all f ,g œ F(�,L). Following the suggestion by Jos Roerdink (224) a simple proof is obtained
based on the observation that the conditional dilation in equation 2.16 can be rewritten as a



(a) f (b) m (c) ”SE (ÁSE (f ,m) ,m)

Figure 2.5 Example showing that the pair conditional operators are not an adjunction
in algebraic sense. If k ”= m, ”SE (ÁSE (f ,m) ,m) = ÁSE (”SE (f ,m) ,m) but not equal to f , so
(ÁSE (·,m) ,”SE (·,m)) is not an adjunction 1.4. In the example, SE is a square of three pixels
(8-connectivity).

space-adaptive dilation, i.e.,

’x œ �,”SE(·,m)(f)(x) =
fi

yœN(x)

f(y),

where the spatial-varying structuring element N(x) is defined as (using the set notation for the
mask m):

’x œ �,N(x) =

Y
]

[
SE(x)flm if x /œ m and SE(x)flm ”= ÿ,

{x} otherwise.

Then the space-varying adjoint erosion (223), written Á̃SE(,̇m), is defined as

’x œ �, Á̃SE(·,m)(x) =
fi

yœŇ(x)

f(y)

where Ň(x) is the reflected structuring element defined by y œ Ň(x) ≈∆ x œ N(y). Accordingly,
it can be seen that

’x œ �, Ň(x) =

Y
]

[
ŜE(x)flmc if x /œ mc and ŜE(x)flmc ”= ÿ,

{x} otherwise.

which corresponds to the neighbourhood in 2.18.

The adjoint operator only changes pixels on the mask m as it is illustrated in Fig. 2.6
for the same example of Fig. 2.4. However, in the practical applications considered in this
paper the adjoint operator Á̃SE(·, ·) does not have any interest. Finally, we present a list of
properties for the conditional morphological operators defined in 2.16 and 2.17. Let ÁSE (·, ·),
”SE (·, ·) be the pair of conditional operators. Let define the composition of conditional operation
as follows, „SE(f ,m) = ÁSE (”SE (f ,m) ,m) and “SE(f ,m) = ”SE (ÁSE (f ,m) ,m), Accordingly, the



(a) ÁSE (f ,m) (b) Á̃SE(f ,m)

Figure 2.6 (Á̃SE(f ,m),”SE (f ,m)) is an adjunction whereas (ÁSE (f ,m) ,”SE (f ,m)) is not. Á̃SE(f ,m)
only operates on the mask m in contrast with ÁSE (f ,m) that performs outside of m.

following properties hold:

(a) ÁSE (f ,m) = ÁSE (ÁSE (f ,m) ,m) ,(idempotence);

(b) ”SE (f ,m) = ”SE (”SE (f ,m) ,m) ,(idempotence);

(c)
w

i

i=1
ÁSE (fi,m) = ÁSE

1w
i

i=1
fi,m

2
,(distributivity);

(d)
x

i

i=1
”SE (fi,m) = ”SE

1x
i

i=1
fi,m

2
,(distributivity);

(e) f Æ g ∆ ÁSE (f ,m) Æ ÁSE (g,m) ,(increasingness);

(f) f Æ g ∆ ”SE (f ,m) Æ ”SE (g,m) ,(increasingness);

(g) ”SE (·, ·)and ÁSE (·, ·) are morphological filters;

(h) “SE(f ,m) = ”SE (f ,m) ;

(i) „SE(f ,m) = ÁSE (f ,m) ;

(j) ÁSE (f ,m) Æ ”SE (f ,m) ;

(k) ÁSE (f ,m) = tmax ≠ (”SE (tmax ≠ f ,m)),(duality).

where,tmax = max(f). Note that properties (a) and (b) are unusual, but they illustrate the mask
e�ect included in m. Additionally, note the fact that ”SE (·, ·) (resp. ÁSE (·, ·)) is not extensive
(resp. anti-extensive), even if the SE contains the origin. The demonstration of these properties is
straightforward from the definition of conditional operators and therefore omitted. As discussed
before, we keep the definition ÁSE (·, ·) for the definition of the conditional toggle criterion and
define the conditional Laplacian as follows:

”SE(f ,m) = (”SE (f ,m)≠ f)≠ (f ≠ÁSE (f ,m)).



Definition 2.18. The conditional toggle criterion based on m is defined as follows:

’x œ �, ·SE(f ,m) =

Y
___]

___[

ÁSE (f ,m) if ”SE(f ,m) > 0,

”SE (f ,m) if ”SE(f ,m) < 0,

f otherwise.

(2.19)

The motivation behind definition 2.19 is that the mask m plays the role of a seed indicator,
where the pixel values spread through the image f according to the toggling criterion. Similarly
to non-conditional toggle mapping, conditional toggle mapping should be applied iteratively. In
this point, m has to spread their values through the image. Thus, we define a mapping ·̃SE(·, ·)
from and onto the pair image f and the mask m by taking 2.19 on f and a dilation on m, i.e.,
·̃SE is a mapping F(�,L)◊F(�,{0,1}) æ (F(�,L),F(�,{0,1})) such that

·̃SE(f ,m) = (·SE(f ,m),”SE (m)). (2.20)

Accordingly, the next iteration can be calculated as follows:

·̃
2

SE(f ,m) = ·̃SE(·̃SE(f ,m))

= ·̃SE(·SE(f ,m),”SE (m))

= (·SE(·SE(f ,m),”SE(m)),”SE(”SE(m)))

= (·SE(·̃SE(f ,m)),”2

SE(m))

Finally, the conditional toggle mapping is defined by iteration until convergence ·̃
Œ
SE as follows.

Definition 2.19. The conditional toggle mapping based on m is defined by

’x œ �, ·̃
Œ

SE (f ,m) = lim
iæŒ

·̃
m

SE(f ,m), (2.21)

where ·̃
i
SE(f ,m) = ·SE(·̃ i≠1

SE (f ,m),”i
SE(m)) and ·̃

0
SE(f ,m) = (f ,m).

We can also prove that the convergence of the conditional toggle mapping depends on the
mask m.

Proposition 2.20. If i
D Ø max(DSE(m)) then ·̃

i
D

SE (f ,m) converges to ·̃
Œ
SE , where DSE(m) is the

distance transform of the binary image m associated with connectivity induced by the structuring
element SE containing the origin.

Proof. Let m : Z2 æ [0,1] be a binary image. The distance transform (DT) is the transformation
that generates a map D whose value in each pixel x is the smallest distance from this pixel to
m, i.e.,

’x œ �, DSE(m)(x) = min{i œ N | x œ ”
i

SE(m)}. (2.22)

It is important to note that SE in 2.22 must contain the origin, otherwise the standard dilation
”SE(m) is not extensive and cannot be used to define a distance transformation DSE. Let
i Ø i

D = max(DSE(m)) so we have ”
i+1

SE (m) = ”
i
SE(m) = 1, where 1 is the indicator image of



Z2. Accordingly, by definition of conditional morphology, ÁSE(f ,1) = ”SE(f ,1) = ·SE(f ,1) = f .
Therefore, ·̃

i
SE(f ,m) = ·̃

i
SE(f ,1) = ·̃

i+1

SE (f ,1) = ·̃
i+1

SE (f ,m).

Proposition 2.20 means that expression 2.21 converges in no more iterations than i
D =

max(DSE(m)), where DSE(m) is the distance transform of m with connectivity induced by the
structuring element SE. That point is important because the non-conditional toggle mapping
requires a large number of iterations until convergence.

Salt & pepper noise reduction An advantage of the conditional toggle mapping in 2.21,
is that its convergence and mathematical properties are valid for any definition of the binary
image m. To illustrate this benefit, we introduce a mask definition for impulse noise removal
applications. Ideally m should have zero values on pixels that are not corrupted by the impulse
noise. We propose a simple noise detector as follows,

’x œ �, mN (x) =

Y
]

[
1 if min(�Á

SE(x),�”
SE(x)) > 0

0 otherwise.
(2.23)

However, we note that other impulse detectors have been proposed in (122; 262; 300; 304) (see
also the review (152)) and can be used for mN . Images contaminated with salt-and-pepper noise
in range from 20% to 95%, with increment steps of 5% are considered. In the case of colour
images, a channel-independent salt-and-pepper noise was simulated according to the following
rule (37): the value of pixels was replaced by 0 with probability ›/2 and replaced by 1 with
probability ›/2 with › œ [0,1]. A quantitative comparison of salt-and-pepper denoising methods
has been presented in (284)

2.7 Perspectives

Methods based on adaptivity morphology allow the use of morphological operators in di�erent
types of structures (not only in images). A research topic that should be explored is the
simultaneous learning of the adaptive neighbourhood for morphological operator in the sense
of Chapter 4. For the particular case of conditional morphology, one can learn a mask of
uncontaminated pixels, on which the conditional dilation can be applied 2. An aspect that has
not been presented in this document is the multiscale morphological decompositions that can
serve to give a multilevel structure to characterise objet of the image. This is the subject of
the recent work (238), where morphological based multiscale decompositions have been used for
scale equivariant neural network.
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3 Connection based Mathematical Morphology

We are like islands in the sea, separate on the surface but
connected in the deep.

William James

3.1 Introduction

A professional image analyst can be interested in finding objects in an image with a condition
that depends on the local gradient of the image, for example an upper bound on the maximum
value of the di�erence between the pixels of the found object, and/or an upper limit to the size
of the object, and/or objects that have a circular shape. In mathematical morphology there
are multiple structures that fully describe the image, such as: Tree-of-Shapes (184), Max-Tree
(235), Minimum Spanning Forest (175), among others, where the object extraction procedure
becomes a filter step from the component of the structure. This section starts with the definition
of necessary elements for the definition of minimum spanning tree based hierarchies, and then
presents some contributions in a modern approach including: a) A simplification for combining
MST hierarchies with di�erent geometrical conditions, b) A greedy algorithm for finding an
optimal MST hierarchy c) An approach for Streaming a MST hierarchies d) An end-to-end
learning process for MST-hierarchies by deep metric learning.

3.1.1 Notations

The notion of dissimilarity based connective segmentation, widely described in the literature
(180; 193; 195; 247; 248; 252; 253), is recalled in the following subsection.

Let f : � æ V be a image and G = (V,E) an undirected simple finite graph with vertex set V
matching the image pixels and edge set E consisting of unordered pairs of vertices indicating
the adjacency relations between the image pixels. A path between two pixels x and y in G is a
sequence of m > 1 pixels Èx = x1, . . . ,xm = yÍ such that any two successive pixels of the sequence
are adjacent: {xi,xi+1} œ E for 1 Æ i < m. The image f assigns to each element of V (that is, the
pixels), a vector of values.



The partition of a graph G = (V,E) into connected components relies on a function associating
a weight to its edges. This function can be viewed as a measure of the degree of dissimilarity
between adjacent vertices. For gray level images, the most common dissimilarity is the absolute
di�erence. A dissimilarity measure involving a larger neighbourhood to prevent chaining through
transitions while favouring it within homogeneous regions is presented in (253).

Definition 3.1. A partition P of the set V is a set of nonempty disjoint subsets of V whose
union is equal to V.

Definition 3.2. A hierarchy, H is a chain of nested partitions H = {P0,P1, . . . ,Pn|’j,k, 0 Æ
j Æ k Æ n ∆ Pj ı Pk}, with Pn = V, the single-region partition, and P0 the finest partition on V

Definition 3.3 (Tree and Forest). A tree is a connected graph G, that does not contain any
cycle. A graph FOREST that contains no cycles is called forest. Each connected sub-graph of
the forest is a tree.

Definition 3.4 (Spanning Tree). Let G = (V,E) be a connected graph. A subgraph T REE =
(V Õ

,E Õ) ™ G is a spanning tree for G if T REE is a tree and V Õ = V. More generally, a spanning
forest T REE for a graph G is a forest that spans all the nodes of the graph G, and such that
each tree T REE ™ FOREST in the forest is a spanning tree for a connected component in G.

Definition 3.5 (Minimum Spanning Tree). Let G = (V,E ,W) be a connected weighted graph.
A Minimum Spanning Tree (MST) of a G, hereafter called MST (G), is a subgraph T REE =
(V Õ

,E Õ
,W) such that:

i) T REE is a tree

ii) T REE spans all the vertices of G, i.e. V = V Õ

iii) the sum of its weights
q

eœE Õ W(e) is minimum among all the possible spanning trees.

In this document, we consider dissimilarity measures obtained through a dissimilarity function
defined for any pair of value vectors.

Definition 3.6 ((101)). Let V =Rp be the space of image value vectors. A dissimilarity function
indexed by the intensity values of the image f is defined as any function diss from Rp ◊Rp æR+

0

such that diss(f(x), f(y)) = diss(f(y), f(x)), where x,y are two pixels of the image. This latter
property is imposed by the symmetry property of dissimilarity measures.

The most natural dissimilarity functions are obtained by considering the norm of the di�erence
of the input value vectors. Another common choice for multispectral images is the spectral
angular distance (140).

Given a dissimilarity function diss, the weight of an edge {x,y} of the adjacency graph un-
derlying an image f is denoted by Wdiss: Wdiss({x,y}) = diss(f(x), f(y)). Given a dissimilarity
threshold ⁄, two distinct pixels x and y of an image f are diss⁄-connected if there exists a path
going from x to y such that the weight Wdiss between any two successive pixels of this path does
not exceed the value of the dissimilarity threshold level ⁄. In addition, to ensure the reflexivity
property of an equivalence relation, a pixel is always said to be diss⁄-connected to itself.



Definition 3.7 ((101)). Let an image f be represented by a graph G, where the edge weights
are given by a dissimilarity function diss(f(x), f(y)) = Wdiss(x,y), (x,y) œ E . The connected
component diss⁄-CC(x) of a pixel x is the set of pixels which are diss⁄-connected to this pixel:

diss⁄-CC(x) = {x}fi{y | ÷Èx = x1, . . . ,xm = yÍ,

diss(f(xi), f(xi+1)) Æ ⁄,’1 Æ i < m}.

(3.1)

The diss⁄-connectivity being an equivalence relation, it induces a unique partition of the
image f support into maximal connected regions being the diss⁄-connected components (252).
This approach for segmentation was put forward implicitly in (193) for the segmentation of
multispectral images using the ¸

1 norm (see also (18)). For grey level images, the ¸
p norm boils

down to the absolute di�erence. The corresponding connected components are called quasi-flat
zones (179) or lambda-flat zones (303) in mathematical morphology. Because the dissimilarity
value between adjacent pixels of a connected component can be arbitrarily large, the terminology
–-connected components was suggested in (252; 253). Rather than using the notion of equivalence
relation and path-based connectivity, Serra (247) proposes a more general approach to image
segmentation based on the lattice theory and that does not require the definition of paths. With
this theory, the existence of a maximum partition is secured if and only if the homogeneous
classes form a connection based on the so-called connective criterion. The resulting segmentation
was called a connection in (247) and lately referred to as a connective segmentation (226; 228).
The Boolean connective criterion underlying the diss⁄-connectivity is detailed in (101; 202).

A fundamental property of the diss⁄-connected components of a pixel is that they form an
ordered sequence (hierarchy) when increasing the dissimilarity threshold value ⁄ (252):

diss⁄1-CC(p) ™ diss⁄2-CC(p), ’⁄1 Æ ⁄2. (3.2)

This hierarchy is at the root of the greedy algorithm by Kruskal (141) for solving the minimum
spanning tree problem and at the very basis of the dendrogram representation of the single
linkage clustering (98). Cutting all edges of the MST (G) having a valuation superior to a
threshold ⁄ leads to a minimum spanning forest (MSF) FOREST (G,⁄), i.e., to a partition of
the graph. Note that the obtained partition is the same that one would have obtained by cutting
edges superior to ⁄ directly on G [29]. Since working on the MST (G) is less costly and provides
identical results regarding graph-based segmentation, we work only with the MST (G) in the
remainder of this document. So cutting edges by decreasing valuations gives an indexed hierarchy
of partitions (H,�), with H a hierarchy of partitions, and � : H æR+ being a stratification index
that corresponds to the ultrametric distance defining the hierarchy and verifying �(P) < �(PÕ) for
two nested partitions P µ P

Õ. This process is otherwise called single-linkage hierarchical clustering
(133). In that case, the internal nodes of H correspond to clusters of pixels at various levels of
granularity.

This increasing map allows us to value each contour according to the level of the hierarchy
for which it disappears: this is the saliency of the contour (corresponding to the ultrametric
distance between the two regions it separates), and we consider that the higher the saliency, the



stronger the contour. For a given hierarchy, the image in which each contour takes as value its
saliency is called Ultrametric Contour Map (UCM)(15) or saliency map (63).

We refer to a hierarchy built on a graph with edge weights expressing local contrast as to
a trivial hierarchy. Whatever the intended use of hierarchical representations, for example the
extraction of a segmentation out of a hierarchy (103; 137), the trivial hierarchy is usually not
the more adapted one to work with in order to obtain the best results. It is thus interesting to
look for more informative dissimilarities adapted to the content of images, so that the simplest
methods are su�cient to obtain the desired results, for example computing interesting partitions.
As these hierarchies are defined as ultrametric distances on a set of nodes, we can either aim at
learning these ultrametrics (295) or at designing them in order for them to capture certain types
of information. Several morphological hierarchical techniques exist to do the latter.

3.2 A variety of morphological hierarchies

Morphological hierarchies are representations capturing information across scales with an emphasis
put on shape and size features. We hereby remind the reader of some of them known as watershed
hierarchies, while insisting on the fact that approaches and methods proposed throughout the
rest of this section can be used with any type of hierarchy.

Seminal works on morphological hierarchies include the dynamics hierarchy exhibiting con-
trasted regions (100) (and corresponding to the trivial hierarchy), or the area-based and volume-
based watershed hierarchies (270) extending the dynamics hierarchy by taking into account sizes
of regions as well. The waterfall hierarchy, first described in the context of a topographic surface
flooding (31), has then been extended on graphs (178). The waterfall hierarchy highlights the
nested structure of the catchment basins of a topographic surface. By flooding each catchment
basin of a topographic surface up to the level of its lowest pass point, a new simpler topographic
surface is produced, whose catchment basins result from the merging of catchment basins of the
initial surface. The stochastic watershed (SWS), introduced in (11) on a simulation basis and
extended with a graph-based approach in (177), is a versatile tool to construct hierarchies. The
seminal idea is to operate multiple times marker-based segmentation with random markers and
valuate each edge of the image by its frequency of appearance in the resulting segmentations.
The output of the SWS algorithm is a hierarchy highlighting specific types of regions at di�erent
scales. It is very versatile as the type of markers spread, as long as the probabilistic law governing
markers distribution, can be adapted for various tasks (80).

3.2.1 Sequential combinations of hierarchies through chaining

We have studied in (81) combination by chaining of morphological hierarchies. More specifically,
from a given input image f , a minimum spanning tree is computed MST (G(f)) and operation
of this tree can provide a large variability of hierarchies. We should note that we have limited
ourself to a particular subset of hierarchies sharing the same edges than MST (G(f)). However,
new evaluation on edges can be performed by following rule inspired in classical morphological
hierarchies. The new evaluation can be computed during the fusion of components, for instance
via the union-find data structure in the Kruskal algorithm on the MST (196). A pretty e�cient



Hierarchy Name Formula
Area Absorption Areax ·Areay

Stochastic Area Absorption ◊x,y = 1≠ (1≠ Areax·Areay

S
)K

Stochastic Area Watershed ◊x,y = 1≠ (1≠ Areax
S

)K ≠ (1≠ Areay

S
)K +(1≠ Areax≠Areay

S
)K

Table 3.1 Three examples of computation formula from area based morphological hierarchies.K œ
R+ is a parameter called the number of random markers(81). Areax denoted the size of
ultrametric ball and S a reference of the total area, usually equal to the number of pixels in the
image.

implementation of di�erent morphological hierarchies is available in (208). As example, the
formula for some area-based hierarchies are given in Table 3.1(81). For an edge (x,y) the new
evaluation depends on the area of their correspondent ultrametric ball. In the Stochastic Area
Watershed, this evaluation is weighted according to the probability of having at least one over
K random markers in ultrametric ball (81). In this way, one can include a priori information,
about the shape of the objects that are desired to be highlighted in a hierarchy, since instead of
punctual processes, one can have horizontal, vertical lines, or another information about the area
or the volume of the region determined by the ultrametric ball.

3.2.2 Gromov-Hausdor� distance as feature

In the following experiment, we consider a classification problem on a set of simulated images
from di�erent dead leaves process (126; 170), namely five classes with 100 images each with
di�erent primary grains: circles, crosses, flowers, horizontal and vertical lines. In a dead leaves
model, two dimensional textured surfaces (which are called “leaves” or “primary grains”) are
sampled from a shape and size distribution and then placed on the image plane at random
positions, occluding one another to produce an image. It is well-known that such a model creates
images which share many properties with natural images such as scale invariance and other
statistical properties (214). For each of these images, we compute the following hierarchies:
trivial, area-based SWS hierarchies with structuring elements of various sizes and forms (cross,
circle, diagonals, horizontal and vertical lines), as long as logical combinations "AND" and "OR" of
these SWS hierarchies. Then we generate as features the called inter-hierarchy distance matrices
in (81), which is the Gromov-Hausdor� distance between hierarchies sharing the MST ( i.e.

dGH(H1,H2) := max
(x,y)œV

|max(PathH1(x,y))≠max(PathH2(x,y))| (3.3)

where PathH(x,y) denote the values of the weights in the path from x to y in H .
We can then use (3.3) as features in a linear support vector machines (SVM) to classify

images of each class. We notice that the system can learn with very few examples how to
discriminate properly these five classes. For comparison, we conduct the same experiment
using a Convolutional Neural Network (CNN) with a two-layers architecture1 without image
augmentation for a fair comparison. In Fig. 3.1(f)(g) are represented for both experiments the

1 (12 Conv2D + 12 Conv2D + MaxPooling2D(3 ◊ 3) + Dropout(0.3) ) + (24 Conv2D + 24 Conv2D +
MaxPooling(3 ◊ 3)+ Dropout(.5) ) + Dense(NumClasses) + SoftMax. Categorical cross-entropy as loss function
and adaptive gradient (Adagrad) as optimiser.



(a) (b) (c) (d) (e)

(f) (g)

Figure 3.1 (a)-(e) False-colour representation of simulated images by dead leaves model with
di�erent primary grains. Linear SVM on proposed features. CNN1 on proposed features (f)-(g)
Accuracy vs the number of images in the training set for 25 repetitions.

evolutions of the average F-score with respect to the percentage of images used in the training
set. In the first experiment (using the distance matrices as features), we notice that using only
5% of them (so 25 images out of 500) already leads to a 85% F-score over the remaining images,
and that this figure quickly goes up. In the CNN experiment, the number of required training
images to get to the same results is significantly larger (¥ 225). It is thus as if, on the contrary
to CNN that have a black-box behaviour, our approach shows what is often referred to as an
“aha moment"2, i.e. a moment of sudden realisation and comprehension (301). This translates
a form of understanding of the content of the image, which is corroborated by the study of
the importance of which specific interhierarchy distances were the more useful to discriminate
between two types of classes. For example, discriminating between horizontal and vertical lines
will mainly be due to dGH(Hsurf≠V ertSE , Hsurf≠HorizSE), while discriminating between crosses
and circles will mainly be due to dGH(Hsurf≠CrossSE , Hsurf≠HexSE). A visualisation of the
quality of the features space thus generated can be found in Fig. 3.2(a), where we project the
features in a space of two dimensions using the t-SNE algorithm (155). Furthermore, using the
variable selection method ¸

1-SVM (308), we can isolate the more discriminative distances for two
specific classes to separate. For example, the t-SNE visualisation in Fig. 3.2(a) shows us that
discriminating between the classes “Flowers” and “Horizontal Lines” is not straightforward. The
more discriminative variable between these two classes is the distance between Hsurf≠V ertSE and

2Aha! moment also known as eureka moment or eureka e�ect refers to the common human experience of
suddenly understanding a previously incomprehensible problem or concept. Insight or Epiphany is a psychological
term that attempts to describe the process in problem solving when a previously unsolvable puzzle becomes
suddenly clear and obvious



(a) (b) (c)

Figure 3.2 (a) t-SNE .We notice that the classes “Flowers” and “Horizontal Lines” are not
well separated (b) ¸

1-SVM. These two distances between hierarchies provide a geometrical
understanding of the images content. Projecting along these features does indeed separate these
classes e�ciently. (c) The same can be done for example for the classes “Flowers” and “Vertical
Lines”

HAND(surf≠V ertSE,surf≠HexSE): this is a geometrical interpretation of the image content, as they
respectively capture straight lines and lines with a protuberance (i.e. flowers). Projecting the
distances features onto the subspace of the two more discriminative variables properly separates
these two classes, as can be seen in Fig. 3.2(b).

3.3 Looking for a good horizontal cut

Let us suppose we have at our disposal a score(f ,(H,⁄))3 to judge the quality of a segmentation
(H,⁄) obtained for an image f . Note that (H,⁄) is the partition obtained after setting the value
of the indexed hierarchy (H,�) to ⁄ (corresponding to a horizontal cut of the hierarchy). We
would like to find the best hierarchy and the best cut level ⁄ according to the score evaluated
on a training set of images. Let us consider a training set T = {f1, . . . , f|T |} and a set of indexed
hierarchies H = {(H1,�1),(H2,�2), . . . ,(H|H|,�|H|)}.

For any image, there is a best hierarchy and cut level that minimises the score, that we call
oracle:

(Horacle(f),⁄oracle(f)) := argmin
(HœH,⁄œ�)

score(f ,(H,⁄)). (3.4)

Let us consider a set of homogeneous images, that we subdivide into training and testing
subsets, and a set of indexed hierarchies H (possibly composition of hierarchies as in 3.2.1).
During the training phase, we are interested in finding the hierarchy H and cut level ⁄ that
minimise the score on average over the whole set, i.e.,

(Hú
,⁄

ú) := argmin
(H,⁄œ�)œH

|T |ÿ

i=1

score(fi,(H,⁄)). (3.5)

We call this learned hierarchy the model hierarchy.
To sum up, we follow a two-steps procedure, given a segmentation score and a set of

homogeneous images :
3A description of the score function used in the experiments is given in (79)



1. For each image, we extract a wide variety of structured contours information using mor-
phological hierarchies.

2. We select the best hierarchical segmentation and cut level among all possible ones using a
greedy feedforward search.

To test the pertinence of this learned model, we compare its result, on each image of the test
set, with the oracle model computed for this image.

One can say we have e�ectively found a good model hierarchy for the set of images if the
di�erence between the scores obtained for the model (3.5) and the oracle (3.4) is on average low
on the test subset.

(a) Some examples in the training set

(b) f (c) model (d) oracle

(e) f (f) model (g) oracle

(h) f (i) model (j) oracle

Figure 3.3 Results on some examples of Intrinsic Images in the Wild, for a WHDR
score.(b),(e),(h) are images from the testing set, (c),(f),(i) the model segmentations and (d),(g),(j)
the oracle segmentations.



3.4 Streaming of Hierarchies based on MST

In many applications, one can access partial information of the scene of interest. Which can
update as the sensor, usually a satellite, travels through the area of interest. Usually the
segmentation algorithms require to see the whole scene in order to determine the results. In the
case of the morphological hierarchy, one can ask, if it is possible to have the hierarchy of interest
with partial information, and furthermore, what are the elements that can be determined as
stable, in the sense that they will not change with the appearance of new objects.

Let us introduce the streaming image problem. Consider the simple case of an image f
decomposed in two blocks b1,b2 and sent one after another. Let b1 be the first block arriving.
Suppose that we compute its MST. The question is, how to compute the MST for the whole
image, f = b1 fib2, when b2 arrives and exploit the information extracted from b1?

In (89), we introduce the formulation for stream a hierarchy on images. Let ft be an image
streaming over time. Without loss of generality, assume that new pixels come from one side of the
image, for example the right side of the image. If bt is the new block at time t, for t = 0, . . . ,T ,
we have ft = ft≠1 fibt. The last column of ft≠1 is also the first column of bt.

The first graph, is indeed made by edges that we call unstable. Mostly because we could
eliminate some of them in the next step t+1. The second graph is made by edges that we call
stable, since they will belong to all MSTs from now on. This is important for two reasons. 1)
At each step, the memory footprint is reduced by discarding edges that are no longer necessary
to compute further MSTs. 2) The stable edges can be used for further tasks, as we will see
below. In Figure 3.4, we report an example that shows the evolution of the stable + unstable
decomposition of minimum spanning trees through the time. In green, we represent the forest
FOREST t over time, while in red the graph EGt .

In (89), we exploited the stable + unstable decomposition of our methods to implement a
streaming version of ⁄-quasi-flat zones (196)(303), watershed-cuts (62) and constrained connec-
tivity (252) for large images. An example of streaming ⁄-quasi-flat zones is given in Fig. 3.5

3.5 End-to-End Similarity Learning and Hierarchical Clustering

Let X = {x1, . . . ,xn} a set of points obtained as realisation of the k random variables. Moreover,
(88) assume to be in a semi-supervised setting. Without loss of generality, we expect to know the
associated labels of the first l points in X. Each label takes value in [k] = {1, . . . ,k}, and indicates
from which distribution the point has been sampled. In our work, we aim to obtain at the same
time a good similarity function diss : V◊V æR+ that permits us to discriminate the points
according to the distribution they have been drawn and an optimal hierarchical clustering for
each set X. Our idea to achieve this goal is to combine the continuous optimisation framework
proposed by Chami (49) along with deep metric learning to learn the similarities between points.
Hence, we look for a function diss◊ : V◊V æR+ such that

min
◊,ZœZ

CHYPHC(Z,diss◊,·)+losstriplet(diss◊;–). (3.6)



(a) t = 0 (b) t = 1

(c) t = 2

Figure 3.4 An example of stable + unstable decomposition of minimum spanning tree. The
green graph is the forest FOREST t that contains only stable edges, while the red graph is EGt

that contains only unstable edges. (b-c) Pixels without edges are stable, so is possible to store
that part of the graph and do not need to consider in following intervals.

where the first term is a continuous version of Dasgupta’s cost function (49). Let Z =
{z1, . . . ,zn} µ B

p be an embedding of a tree T REE with n leaves, they define their cost function
as:

CHYPHC(Z;◊,·) =
ÿ

ijk

(◊ij +◊ik +◊jk ≠◊HYPHC,ijk(Z;◊,·))+
ÿ

ij

◊ij , (3.7)

where ◊HYPHC,ijk(Z;◊,·) = (◊ij ,◊ik,◊jk) ·‡· (do(zi ‚zj),do(zi ‚zk),do(zj ‚zk))€
, and ‡· (·) is the

scaled softmax function ‡· (◊)i = e
◊i/·

/
q

j
e

◊j/· . We recall that ◊ij are the pair-wise similarities,
which in (49) are assumed to be known, but in this work are learned. The distance between two
points in the Poincaré ball4 x,y œ B

p is given by

dB(x,y) = cosh≠1

A

1+2 Îx≠yÎ2
2

(1≠ÎxÎ2
2
)(1≠ÎyÎ2

2
)

B

. (3.8)

It is thus straightforward to prove that the distance of a point to the origin is do(x) := d(o,x) =
2tanh≠1(ÎxÎ2).

4The Poincaré ball is the Riemannian manifold M = (B,dp), where Bp = {y œ Rp : ||y|| < 1} is the open
p-dimensional unit ball. The distance function on M is defined as (3.8)



(a) t = 0 (b) t = 1

(c) t = 2

Figure 3.5 An example of one level of ⁄-quasi-flat zones in streaming, with ⁄ = 10 for image in
Fig. 3.4. Black pixels in Figures (a) and (b) are those that do not have a stable label in that
iteration.

The second term of (3.6) is the sum over the set T of triplets:

losstriplet(diss◊;–) =
ÿ

(ai,pi,ni)œT

max(diss◊(ai,pi)≠diss◊(ai,ni)+–,0), (3.9)

where ai is the anchor input, pi is the positive input of the same class as ai, ni is the negative input
of a di�erent class from ai and – > 0 is the margin between positive and negative values. One
advantage of our formalism is that it allows us to use deep learning approach, i.e., backpropagation
and gradient descend optimisation to optimise the model’s parameters. As explained before, we
aim to learn a similarity function and at the same time find an optimal embedding for a family
of point sets into the hyperbolic space which implicitly encodes a hierarchical structure. To
achieve this, our idea is to model the function ”◊ using a neural network whose parameters we fit
to optimise the loss function defined in (3.6). Our implementation consists of a neural network
NN◊ that carries out a mapping NN◊ : V æR2. The function diss◊ is thus written as:

diss◊(x,y) = cos(\(NN◊(x),NN◊(y))), (3.10)

We use the cosine similarity for two reasons. The first comes from the intuition that points
belonging to the same cluster will be forced to have small angles between them. As a consequence,
they will be merged earlier in the hierarchy. The second reason regards the optimisation process.
Since the hyperbolic metric is conformal to the Euclidean metric, the cosine similarity allows



us to use the Riemannian5 Adam optimiser (23) in (3.6). Once computed the similarities, the
points are all normalised at the same length to embed them into the Hyperbolic space. The
normalisation length is also a trainable parameter of the model. Accordingly, we have selected two
architectures. The first is a Multi-Layer-Perceptron (MLP) composed of four hidden layers, and
the second is a model composed of three layers of Dynamic Graph Edge Convolution (DGCNN)
(292).
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Figure 3.6 E�ect of noise on predictions in the circles database. The model used for prediction
is an MLP trained without noise. From top to bottom, each row is a case with an increasing
level of noise. In the first column input points, while in the second column we illustrate hidden
features. Points are coloured according to ground truth. The third column illustrates hidden
features after projection to Poincaré Disk. The fourth column shows predicted labels, while the
fifth column shows associated dendrograms.

3.6 Perspectives

This chapter has presented some of the work related to morphological hierarchical segmentation.
There are still many open questions on this subject:

• It is possible to train networks to produce morphological hierarchical segmentation, this
has been the subject of recent articles such as (49; 59), but the application to real problems
is far from being validated.

• What kind of invariances should be sought in hierarchical methods? For example, is it
possible to have hierarchical methods invariant to rotations or changes in scale?

5The update in epoch k is ◊k+1 = Ret◊t (≠÷grad(M,◊t)), where grad(M,◊) denotes the Riemannian gradient
with respect to ◊, Ret denotes a retraction from the tangent space of ◊ onto M, and ÷ > 0 is the learning rate.



• Is it possible to perform hierarchy streaming with low resolution images and then fine tune
the accuracy if necessary by increasing the resolution?

• Additionally, how can one determine the best hierarchy in a video sequence with a predictive
logic, that is, being able to predict the hierarchy in a frame that has not been seen yet?
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4 Links between Deep/Machine Learning and
Mathematical Morphology

Opportunity and risk come in pairs

Bangambiki Habyarimana

4.1 Introduction

Deep learning has shown strong predictive accuracy in a wide range of applications. In particular,
it has achieved and, in some cases, surpassed human-level performance on many cognitive tasks,
for example, supervised classification, object detection and recognition, semantic and instance
segmentation. This success can be attributed in part to the ability of a neural network (NN) to
construct an arbitrary function by means of the composition of simple functions. Remarkably,
the essence of deep learning is built from two simple algorithmic intuitions: first, the notion
of feature learning, and second, learning by local gradient-descent, typically implemented as
backpropagation. Another part of its success is due to its easy adaptation to di�erent contexts,
i.e., adjusting the base operators (convolution, pooling, etc.) to di�erent domains, such as graphs,
texts, surfaces and so on.

Nowadays, state-of-the-art deep learning algorithms use convolution as their fundamental
operation, in the so-called convolutional neural network (CNNs). Convolution has a long and
proud history in signal/image processing, e.g. extracting low-level features like edges, noise
filtering, frequency orientation filtering via Gabor among others. The CNN learns more and
more features progressively in depth from the features learned in previous layers. However, (86)
shows that CNNs are strongly biased toward recognition of texture over form, which shows
fundamentally di�erent classification strategies in comparison to human beings. Recently, (114)
indicates that this bias can be reduced by an adequate image augmentation technique.

In the following subsection, an extremely short introduction of Convolutional NNs (CNNs) is
presented.



4.1.1 Convolutional Neural Networks

The simplest form of a deep1 neural network is the called multilayer architecture, which is a
stack by composition of modules, each module implements a function ZL = FL(◊L,ZL≠1), where
ZL is a vector representing the output of module, ◊L is the vector of learnable parameters in
the module, and ZL≠1 is the module input vector (as well as the output of the previous module)
and L is the number of layers in the neural networks. The input of the first module Z0 is an
input pattern, the output of the whole system is the one of the last module which denoted Zl,
where l is the number of layers. In gradient-based learning methods, given a objective function
or loss function, loss(·, ·) æR+ measuring the discrepancy between the output of the system
Z

k

l
and D

k the “correct" or desired output for the k-th input pattern. One is interested on
minimising the average discrepancy over a set of input/output pairs called the training set,
{(Z0

0
,D

0),(Z1
0
,D

1), . . . ,(Zn
0

,D
n)}, where n is the number of samples in the training set. The

network is initialised with randomly chosen weights ◊
0. The gradient of the error function with

respect to each parameter is computed and gradient descent is used to update the weights in
each layer, i.e., for the i-th iteration, ◊

i+1 = ◊
i ≠ ÷

ˆloss(◊)

ˆ◊i where ÷ is a learning rate, and the
computation of ˆloss(◊)

ˆ◊i , is performed by backpropagation algorithm through the layers (225).
Additionally, for structured data like images, convolutional neural networks are nowadays the
recommended solution. In CNNs, the same operator is computed in each pixel of the image.
This mechanism is called weight sharing, and it has several advantages such as it can reduce the
model complexity and make the network easier to train (200). Additionally, the weight sharing
makes the network translation invariant and allows overfitting to be reduced, and it can be used
in prediction on images of di�erent sizes. For keen readers, some reference can be recommended
(94; 144; 221)

4.2 Morphological Inspired Activation functions and Poolings

Introduction

The basic component in the NN introduced in previous subsection is the linear perceptron which
is a linear combination of weights with biases followed by a nonlinear function called activation
function, i.e., F (X) = ‡(◊T

X +◊b), where ‡ œ F(R,R) is the activation function, and ◊,◊b are
parameter to learn. The most famous activation function is the Rectified Linear Unit (ReLU)
proposed by (194), which is simply defined as ReLU(x) = max(x,0). A clear benefit of ReLU is that
both the function itself and its derivatives are easy to implement and computationally inexpensive.
However, ReLU has a potential loss during optimisation because the gradient is zero when the
unit is not active. This could lead to cases where there is a gradient-based optimisation algorithm
that will not adjust the weights of a unit that was never initially activated. An approach purely
computational motivated to alleviate potential problems caused by the hard zero activation
of ReLU, proposed a leaky ReLU activation (154): LeakyReLU(x) = max(x, .01x). A simple
generalisation is the Parametric ReLU proposed by (105), defined as PReLU—(x) = max(x,—x),
where — œ R is a learnable parameter. In general, the use of piecewise-linear functions as

1The term deep is use when the number of layers, L, is larger than three.



activation function has been initially motivated by neurobiological observations; for instance,
the inhibiting e�ect of the activity of a visual-receptor unit on the activity of the neighbouring
units can be modelled by a line with two segments (104). On the other hand, for the particular
case of structured data as images, a translation invariant DNN called Deep Convolutional
Neural Networks (DCNN) is the most used architecture. In the conventional DCNN framework
interspersed convolutional layers and pooling layers to summarise information in a hierarchical
structure. The common choice is the pooling by a maximum operator called max-pooling, which
is particularly well suited to the separation of features that are very sparse (40).

Morphological operators have been used in the context of DCNNs following the paradigm
of replacing lineal convolutions by non-linear morphological filters (115; 123; 185; 219; 287), or
hybrid variants between linear and morphological layers (116; 211; 261; 271). The contribution
of this subsection is more in the sense of (83) where the authors show favourable results in
quantitative performance for some applications when seeing the max-pooling operator as a
dilation layer. However, we go further to study both nonlinear activation and max-pooling
operators in the context of morphological representation theory of nonlinear operators.

Remark 4.1. ReLU activation function and max-pooling are dilation operators on the lattice of
functions.

Theorem 4.2 ((161)). Consider an upper semi-continuous operator Â acting on an upper semi-
continuous2 function f . Let Bas(Â) = {gi}iœI be its basis and Bas(Â̄) = {hj}jœJ the basis of the
dual operator. If Â is a translation invariant and increasing operator then it can be represented as

Â(f)(x) = sup
iœI

(f °gi)(x) = sup
iœI

inf
yœRn

{f(x+y)≠gi(y)} (4.1)

= inf
jœJ

(f ü ȟj)(x) = inf
jœJ

sup
yœRn

Ó
f(x≠y)+ ȟj(y)

Ô
(4.2)

The converse is true. Given a collection of functions B = {gi}iœI such that all elements of it
are minimal in (B,Æ), the operator �(f) = supiœI {f °gi} is a translation invariant increasing
operator whose basis is equal to B.

The extension to translation invariant non necessarily increasing mappings was presented by
Bannon and Barrera in (17), which involves a supremum of an operator involving an erosion and
an anti-dilation.

The previous theorem characterises increasing operator. However, to consider activation
functions, we take advantage of the following results from (234)

Definition 4.3 ((234)). Let f œ F(Rn æR) and f1, . . . , fm œ F(Rn æR) be continuous functions.
If I(x) = {i|fi(x) = (f)(x)} is nonempty at every point x œ Rn, then f is called a continuous
selection of the functions f1, . . . , fm. We denote by CS(f1, . . . , fm) the set of all continuous selections
of f1, . . . , fm. The set I(x) is called the active index set of f at the point x.

2A function f :Rn æ R̄ is upper semi-continuous (u.s.c) (resp. lower semi-continuous (l.s.c.)) if and only if, for
each x œRn and t œ R̄, f(x) < t (resp. (f)(x) > t) implies that f(y) < t (resp. f(y) < t) for all in some neighborhood
of x. Similarly, f is u.s.c. (resp. l.s.c.) if and only if all its level sets are closed (resp. open) subsets of Rn. A
function is continuous i� is both u.s.c and l.s.c.



Definition 4.4 (Max-Min normal forms). Max-Min type functions may be transformed to the
following two normal forms:

rfl

iœ1

fi

jœMi

fi(max-min normal form), (4.3)

rfi

iœ1

fl

jœMi

fi(min-max normal form), (4.4)

where the index sets Mi ™ {1, . . . ,M} are such that Mi ™ Mj if and only if i = j.

At this point, one can be interested in knowing if any continuous selection of a�ne functions
admits a max-min representation, and under which conditions the corresponding normal forms
are unique.

Theorem 4.5. (234) Let f œ F(Rn
,R) be a max-min-type continuous selection of a�ne functions

a
T
1

x+ –1, . . . ,a
T
mx+–m. If the vectors a1, . . . ,am are a�ne independent, then both normal forms

of f are unique.

Remark 4.6. Let f œ CS(aT
1

+ –1, . . . ,a
T
m + –m). Then f can be expressed as a max-min type

selection.

Remark 4.7. Any continuous selection of linear functions is representable as the di�erence of two
convex continuous selections of linear functions.

Experimental Section

Definition 4.8. (283) defines the MorphoActivation layers, by considering the activation
functions and Pooling Morphological Operator, as one transformation as follows. f ‘æ
�Morpho :Rn æRn

Õ either by composition [fi ¶‡(f)](x) or [‡ ¶fi(f)](x) as follows:

�Morpho

1
(f) =

fi

1ÆjÆM

Y
]

[”
MaxPool
R,bj

Q

a
fl

1ÆiÆN

(—j

i
f +–

j

i
)

R

b

Z
^

\ , (4.5)

�Morpho

2
(f) =

fi

1ÆiÆN

Y
]

[
fl

1ÆjÆM

1
—

j

i
”

MaxPool
R,bi

(f)+–
j

i

2
Z
^

\ , (4.6)

where Y
__]

__[

”
MaxPool
R,bj

(f)(x) = ”bj (f)(R ·x), with

”bj (f)(x) = (f ü bj)(x) =
x

yœW
{f(x≠y)+ bj(y)}

In the context of an end-to-end learning DCNN, the parameters —j , –j and structuring
functions bj are learnt by backpropagation (287). The learnable structuring functions bj play
the same role as the kernel in the convolutions. Note that one can have R = 1, the pooling does
not involve downsampling.

Firstly, to illustrate the kind of activation functions that our proposition can learn, we
use the MNIST dataset as a ten class supervised classification problem and an architecture



Figure 4.1 First Row: Left: Random initialisation with (14%) of accuracy on the test set, We use
a simplified version of proposed activation min(max(—0x+–0,—1x+–1,–2),–3), with initialisation
max(min(ReLU(x),6),≠6) Center: Training only activations (92.38%), Right: Training Full
Network (98,58%). Second Row: t-SNE visualisation of last layer is the 10-classes MNIST
prediction for a CNN.

composed of two convolutional layers and dense layer for reducing to the number of classes.
The activation functions that we optimise by stochastic gradient descent have as general form
min(max(—0x + –0,—1x + –1,–2),–3), which corresponds to (4.5) and (4.6) where R = 1, i.e.
without pooling. We have initialised all the activations to be equal to max(min(ReLU(x),6),≠6)
as it is illustrated in Fig.4.1(left). The accuracy of this network without any training is 14%.
Surprisingly when one optimises 3 only the parameters of activation functions the network
accuracy increases to the acceptable performance of 92.38% and a large variability of activations
are found Fig.4.1(center). This is a way to assess the expressive power4 of the parameter of the
activation as it has been proposed in (84). Additionally, an adequate separation among classes is
noted by visualising the projection to two-dimensional space of the last layer via the t-SNE (155)
algorithm. A much better accuracy(98,58%) and inter-class separation is obtained by optimising
all the parameters of the network Fig.4.1(right).

Secondly, we compare the performance of (4.5) and (4.6) following the common practice
and train all the models using a training set and report the standard top-one error rate on
a testing set. We use as architecture a classical two-layer CNN (without bias for (4.5) and
(4.6)) with 128 filters of size (3◊3) per layer, and a final dense layer with dropout. After each
convolution the di�erent propositions are used to both produce a nonlinear mapping and reduce
spatial dimension via pooling stride of two. For comparison, we include the case of a simple
ReLU activation followed by a MaxPool with stride two. The di�erence in top-one error rate on

3We use ADAM optimiser with a categorical entropy as loss function, a batch size of 256 images and a learning
rate of 0.001.

4The expressive power describes neural networks ability to approximate functions.



Fashion MNIST CIFAR10 CIFAR100
MaxPool(ReLU) 93.11 78.04 47.57

MorphoActivation in (4.5) N=2 N=3 N=4 N=2 N=3 N=4 N=2 N=3 N=4
M=2 -0.06 -0.05 -0.1 -0.42 0.02 -0.02 0.44 0.7 0.4
M=3 -0.14 -0.14 -0.06 -0.57 -0.4 -0.35 0.56 0.49 0.61
M=4 -0.02 -0.08 -0.01 0.05 -0.62 -0.5 0.41 0.35 0.73

MorphoActivation in (4.6) N=2 N=3 N=4 N=2 N=3 N=4 N=2 N=3 N=4
M=2 0.04 -0.16 -0.12 1.84 2.02 1.49 3.31 3.5 3.45
M=3 0.08 -0.09 0.12 2.39 1.96 1.82 3.48 3.55 3.86
M=4 -0.02 0.09 -0.03 2.49 2.25 2.13 3.47 3.73 3.58

Table 4.1 Relative di�erence with respect to our baseline (ReLU followed by a MaxPool).
Architecture used is a CNN with two layers. ADAM optimiser with an early stopping with
patience of ten iterations. Only Random Horizontal Flip has been used as image augmentation
technique for CIFARs. The results are the average over three repetitions of the experiments.

a testing set is reported in Table 4.1 for CIFAR10, CIFAR100 and Fashion-MNIST databases.
Additionally, (4.6) performs better than (4.5), and it improves the accuracy in comparison with
our baseline in all the considered databases.

4.3 Max-plus Operator as a Morphological Unit

4.3.1 Introduction

In traditional literature on machine learning and neural networks, a perceptron (229) is defined
as a linear computational unit, possibly followed by a non-linear activation function. Among all
popular choices of activation functions, such as logistic function, hyperbolic tangent function and
rectified linear unit (ReLU) function (93), this last generally achieves better performance due
to its simple formulation and non-saturating property. Instead of multiplication and addition,
the morphological perceptron employs addition and maximum, which results in a non-linear
computational unit. A simplified version (51) of the initial formulation (67; 219) is defined as
follows.

Definition 4.9. (Morphological Perceptron). Given an input vector x œRn
max (with Rmax =

Rfi {≠Œ}), a weight vector ◊ œ Rn
max, and a bias b œ Rmax, the morphological perceptron

computes its activation as:

f(x) = max

Y
]

[b,

fl

iœ{1,...,n}

{xi +◊i}

Z
^

\ (4.7)

where xi (resp. ◊i) denotes the i-th component of x (resp. ◊).

This model may also be referred to as (max,+) perceptron since it relies on the (max,+) semi-
ring with underlying set Rmax. It is a dilation (1.3) on the complete lattice

!
(Rfi{±Œ})n

,Æn

"

with Æn the Pareto ordering.



4.3.2 Max-plus Block

Based on the formulation of the morphological perceptron, we define the Max-plus block as a
standalone module that combines a fully-connected layer (or convolutional layer) with a Max-plus
layer (51). Let us denote the input vector of the fully-connected layer5, the input and output
vectors of the Max-plus layer respectively by x, y and z, whose components are indexed by
i œ {1, ..., I}, j œ {1, ...,J} and k œ {1, ...,K}, respectively. The corresponding weight matrices are
denoted by wf œRI◊J

max and ◊
m œRJ◊K

max . Then the operation performed in this Max-plus block is:

yj =
q

iœ{1,...,I}
xi ·◊f

ij

zk =
x

jœ{1,...,J}

Ó
yj +◊

m

jk

Ô (4.8)

Note that the bias vector of the fully-connected layer (convolutional layer) is removed in our
formulation, since its e�ect overlaps with that of the weight matrix ◊

m. In addition, the bias
vector of the Max-plus layer is shown to be ine�ective in practice and is therefore not used here.

4.3.3 Universal Function Approximator Property

The result presented here is very similar to the approximation theorem on Maxout networks6 (95),
based on Wang’s work (290). As shown in (95), Maxout networks with enough a�ne components
in each Maxout unit are universal function approximators. Recall that a model is called a
universal function approximator if it can approximate arbitrarily well any continuous function
provided enough capacity. Similarly, provided that the input vector (or input feature maps)
y œRJ

max of the Max-plus layer may have arbitrarily many a�ne components (or a�ne feature
maps), we show that a Max-plus model with just two output units in its Max-plus block can
approximate arbitrarily well any continuous function of the input vector (or input feature maps)
x œRI of the block on a compact domain.

Theorem 4.10. (305) (Universal function approximator) A Max-plus model with two output
units in its Max-plus block can approximate arbitrarily well any continuous function of the input
of the block on a compact domain.

Filter selection property for model pruning have been explored in (305).

4.4 Learning a Morphological Empirical Mode

4.4.1 Empirical Mode Decomposition (EMD)

EMD is an algorithm introduced by Huang et al. (121) for analysing linear and non-stationary
time series. It is a way to decompose a signal in order to obtain instantaneous frequency data.
In this original version of the EMD is an iterative process which decomposes real signals f into
simpler signals (modes), (f)(x) =

q
M

i=1
�j(x), where each mono-component signal � should be

written in the form �(x) = r(x)cos(◊x), where the amplitude and phase are both physically
5This formulation can be easily generalised to the case of convolutional layers.
6Note that the classical universal approximation theorems for neural networks (see for example (118)) do not

hold for networks containing max-plus units.



and mathematically meaningful (250). Unlike some other common transforms like the Fourier
transform for example, the EMD was built as an algorithm and lacks theoretical background.
The problem of EMD to represent a signal as a sum of amplitude modulation (AM) and frequency
modulation (FM) components at multiple scales was first proposed in (164) where the problem
of finding the AM-FM components and their envelopes was solved using multiscale Gabor filters
and nonlinear Teager-Kaiser Energy Operators via an Energy Separation Algorithm (ESA). In
the original EMD, there is no parametric family of filters used to estimate the envelopes.

An alternative characterisation of the EMD computation was introduced by Diop et al. in
(70; 71) according to the definition of local mean, i.e., the sifting process is fully determined by
the sequence (hk)kœN defined by :

I
hk+1 = hn ≠�(hk) = (Id≠�)hk

h0 = f
(4.9)

where �(hk) = ĥk+ȟk
2

, and ĥk (resp. ȟk) denotes a continuous interpolation of the maxima (resp.
minima) of hk.

The main motivation of this section is to define EMD learnable in the sense of neural networks
approaches. Note that last property in remark 2.2 together with the extensivity/antiextensivity
(i.e., upper/lower envelopes) imply that the pair of operators (ÁSE,”SE) are candidate functions for
(ĥ, ȟ) in 4.9. Accordingly, we proposed a simple generalisation by considering non-flat structuring
functions.

Definition 4.11. The Morphological Empirical Mode (MEM) is defined as

’x œ �, �Á,”,SE(f) = ”SE(f)(x)+ÁSE(f)(x)
2 (4.10)

This operator can be formulated in any dimension (from 1D to nD signals) and avoid using
an interpolation method which is the bottleneck of the original definition of EMD. The (4.10)
with a flat structuring element, i.e., (ÁB⁄ ,”B⁄) has been proposed in (71).

Definition 4.12. The Flat Morphological Empirical Mode (71) is defined as

’x œ �, �Á,”,B⁄
(f)(x) := ”B⁄(f)(x)+ÁB⁄(f)(x)

2 (4.11)

The operator 4.11 was proposed to generate an EMD based on solving a morphological PDE
(71).

Remark 4.13. Note that using 4.11 twice, the first residual 4.9 is 2(f ≠ �⁄(f)) = (f ≠ ”B⁄(f)) +
(f ≠ÁB⁄(f)) = 2f ≠ ”B⁄(f)≠ÁB⁄(f). This expression, up to a minus sign, corresponds just to the
so-called morphological Laplace operator (275), and therefore provides an interpretation of the
EMD as an iterated second-order derivative decomposition of the function f .

One of the main advantages of EMD is that it can be considered as a parameter-free
decomposition (255) and, for this reason, the inclusion of the structuring function and the
parameter – can be seen as inconvenient. However, in the following, we consider EMD in the
context of learning from data (151), where one would be interested in using EMD decomposition as



a preprocessing of an input signal before using machine learning or deep learning methods (24; 129;
215). Including any new layer, like EMD, requires therefore the computation of the corresponding
gradient of the layer with respect to the parameters to be learnt.

4.4.2 Varying the Envelope

In this subsection, we explore several possibilities for ȟ, ĥ. Additionally, one should note that the
structuring elements SEs can be learned during the training stage.

Opening/Closing MEM

The theory of morphological filtering is based on the opening “SE(f)(x) and closing ÏSE(f)(x)
operators, obtained respectively by the composition product of erosion-dilation and dilation-
erosion, i.e., “SE(f)(x) = ”SE (ÁSE(f))(x) and ÏSE(f)(x) = ÁSE (”SE(f))(x). Opening (resp. closing)
is increasing, idempotent and anti-extensive (resp. extensive), independently of the properties of
the structuring function. The opening can be seen as the supremum of the invariant parts of
f under-swept by SE and it can be again rewritten as a maximal lower envelope of structuring
functions (resp. minimal upper envelope of negative symmetric structuring functions). We
highlight that the quadratic envelope also called as proximal hull (47) is an opening with a
quadratic structuring function, i.e., a quadratic erosion followed by a quadratic dilation.

Definition 4.14. The opening/closing morphological empirical mode (OCMEM) is defined as a
MEM where the pair (ĥ, ȟ) corresponds to (“SE,ÏSE), i.e.,

’x œ �, �“,Ï,SE(f)(x) = “SE(f)(x)+ÏSE(f)(x)
2 . (4.12)

For the case of flat disks B⁄, the operator 4.12 was called a morphological locally monotonic
(LOMO) filter in (39). A signal is monotonic over an interval if it is either non-increasing or
non-decreasing over that interval. A 1D signal is locally monotonic of degree n (LOMO-n) if and
only if the signal is monotonic within every interval of length n. In the general case, a LOMO
filter of f is defined as the fixed point of iterating �“,Ï,B⁄(f), which is simultaneously idempotent
to both the opening and closing by a flat disk as structuring function. Two examples of 4.12 for
both flat and quadratic structuring function for the 1D signal with noise are shown in 4.3.

Lasry–Lions MEM

Definition 4.15. The Lasry-Lions morphological empirical mode (LLMEM) is defined as a
MEM where the pair (ĥ, ȟ) corresponds to (“c

⁄
,Ï

c

⁄
), i.e.,

�“,Ï,c,⁄(f) := “
c

⁄
(f)+Ï

c

⁄
(f)

2 . (4.13)

An example of 4.13 for a 1D signal is shown in 4.3(c).

Definition 4.16. Let – be a real value with 0 Æ – Æ 1, the –-MEM based on the pair (ȟ, ĥ) is
defined as:

�–

ȟ,ĥ
(f) = –ĥ(f)+(1≠–)ȟ(f). (4.14)
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Figure 4.2 The blue points corresponds to the observed signal, a) Flat dilation/erosion based
MEM 4.11 with a disk of ⁄ = 5, b) Quadratic dilation/erosion based MEM with ⁄ = 3.

In this context, an important fact to consider are the invariances of the operator 4.14.

Remark 4.17. For any SE œ F(�,R), ’0 Æ – Æ 1, and all the pairs (ȟ, ĥ) previously considered,
the operator 4.14 is increasing, invariant to translation, and the sifting process f ≠ �–

ȟ,ĥ
(f) is

invariant to additive intensity shifts, i.e., ’c œR and ’f œ F(�,R),

((f)(x)+ c)≠�–

ȟ,ĥ
((f)(x)+ c) = (f)(x)≠�–

ȟ,ĥ
((f)(x)).

4.4.3 Derivatives of Morphological EMD in discrete domains

Derivative of dilation and erosion

Our approach involves dilation and erosion operators as defined in 2.2 and 2.3. However, in
the discrete domain as it is the case of discrete images, the sup operator is computed via
max. Consequently, for dilation operator 2.2, is computed by ”◊(x) = max◊ {f(x≠y)+SE◊(y)}.
To understand how to compute the derivative of ”◊(x) with respect to ◊, we rewrite ”◊(x) =
maxyœSE◊ u(y). The max operator has no gradient with respect to non-maximum values, since
changing them slightly does not a�ect the output. In general for rank operators, their derivative
is zero in every coordinate, except for that of the value attending the desired rank (198; 210).
Accordingly, the derivative with respect to a parameter in the additive structuring function is
given by

ˆ”◊(x)
ˆ◊

= ˆ”◊(x)
ˆu(y)

ˆu(y)
ˆ◊

=

Y
]

[

ˆSE◊(y)

ˆ◊
if y œ argmaxx ”◊(x)

0 otherwise
(4.15)

where the operator argmaxx(f)(x) := {x |’y : f(y) Æ (f)(x)}. In other words, argmax is the set
of points x, for which (f)(x) attains the largest value of the function. Note that we do not regard
maximum as being attained at any x when (f)(x) = Œ, nor do we regard the minimum as being
attained at any x when (f)(x) = ≠Œ. Similarly for the erosion, Á◊(x) = miny[f(x+y)≠SE◊(y)] =
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Figure 4.3 a) Flat OCMEM with a disk of ⁄ = 5, b) Quadratic OCMEM with ⁄ = 3 and c)
Lasry-Lions MEM with ⁄ = 3 and c = .9

minyœSE◊ u(y)

ˆÁ◊(x)
ˆ◊

= ˆÁ◊(x)
ˆu(y)

ˆu(y)
ˆ◊

=

Y
]

[
≠ˆSE◊(y)

ˆ◊
if y œ argminx Á◊(x)

0 otherwise
(4.16)

there is only gradient with respect to minimum values. As example, for the dilation by quadratic
structuring element 2.12, one has

ˆq◊(z)
ˆ◊

= (2◊
2)≠1ÎzÎ2 =∆ ˆ”◊(x)

ˆ◊
=

Y
]

[

ÎyÎ
2

2◊2 if y œ argmaxx ”◊(x)

0 otherwise

Experimental results

We will focus in the case of supervised classification of high-dimensional 1D signals in hyperspectral
images. The architecture chosen as baseline is the one recommended in (204) and illustrated in
4.5. More specifically, the network is composed of convolution layers, RELU, max-pooling. Each
stage consists of twenty convolution layers with a kernel size of 24 channels followed by ReLU
activation, and a dense layer with batch normalisation. We explore the use of proposed EMDs
as preprocessing layers, that means instead of learning the classification task from the original
spectral signals, we will use the residual of a single step of the decomposition by MEMD. The
parameters of the MEMD are learned in a gradient-based learning method. As it is common
in supervised classification problems, we have used categorical cross-entropy as loss function.



Figure 4.4 Analysis of invariance against additive shift for the training sample of Indian Pines.
Norm of the Di�erence in the predictions with and without additive shift, i.e., ||pred(x) ≠
pred(x+ c)||22 for di�erent values of c is given for three models: a) MEMD by (Á,”), b) baseline
model, c) baseline model with a data augmentation by random additive constant. We highlight
that by 4.17 all the MEMD based models are invariant to additive shifts.

Additionally, for quantitative comparisons, we have reported best, mean and standard deviation
after ten repetitions on both Indian Pines HSI (4.2) and Pavia University HSI (4.4). In general,
the following results can be highlighted:

• Learning the parameter in the –-MEM 4.14 improves the performance. This can be
observed in 4.2) and Pavia University HSI (4.4) by comparing the performance of models
trained with – = 0.5 and models where this parameter is learned.

• Quadratic MEMDs perform significantly worse than non-flat ones. However, we would like
to highlight that the number of parameters is less in the first case.

• In the considered HSI supervised classification problems, the best of the proposed approaches
have a performance equivalent to our baseline, which is the state-of-the-art for the considered
problems (Table. 4.5). However, we remark that the inclusion of morphological EMDs
induces an invariant to additive intensity shifts in the classification model. To illustrate
this fact, we have trained a classical model Fig. 4.5 with and without a random data
augmentation by using an additive shift as transformation. That is the usual approach
to include some invariance in deep learning models. This gives an improvement in the
invariance measure in Fig. 4.4. We highlight that by 4.17 all the MEMD based models are
invariant to additive shifts, which is illustrated in Fig. 4.4.

4.5 Geodesic Operations for DCNNs

In this section, we study morphological reconstruction in (2.5) as layer in Deep CNNs (288). We
show they can be implemented as part of DCNN architectures, and how the backpropagation
can be achieved during the neural network optimisation. To make easier the presentation of our
results, we consider SE a flat structuring element and we considered functions having length n.
However, for grey-scale images in 2D or 3D the implementation is equivalent by considering the
connectivity induced by the SEs, and n the total number of pixels.



Figure 4.5 Baseline architecture (204) vs Baseline architecture applied to EMD. The baseline
uses a 20 convolutions 2D with a kernel size of (24,1) followed by a max-pooling reduction of
size (5,1) and a RELU activation. For the case presented in the experimental section the same
baseline architecture is used. In (b) is the same baseline architecture adapted for ten empirical
modes.

4.5.1 Interpretation of Jacobian matrix

One should note, that the morphological reconstruction in (2.5) has not parameter to learn.
Accordingly, we study what is its e�ect in the backpropagation by means of it Jacobian.

For a multivariate vector-valued function · :Rn ‘æRn, the Jacobian is a n◊n matrix denoted
by Jac· , containing all first order partial derivatives of the transformation · . The row i of the
Jacobian corresponds to the gradient of the i-th component of the output vector. It tells how
the variation of each input variable a�ects the variation of the i-th component of the output of
· . We are interested in giving an interpretation for the Jacobian of reconstruction operation
(2.5), because this is the fundamental element to understand the evolution process in gradient-
based learning methods (92; 145). The geodesic reconstruction (2.5) is the composition of two
operations, so below we describe the Jacobian of each of them. Firstly, for the minimum-wise
operation,

Jacf·g((f)(x)) =

Y
]

[
1 in (i, i) if f(xi) Æ g(xi)

0 otherwise.
(4.17)

Secondly, for the elementary dilation,

Jac”SE((f)(x)) =

Y
]

[
1 in (i, j) for xj = argmax”SE(f(xi))

0 otherwise.
(4.18)

In (4.17), the Jacobian in not null is pixels satisfying the condition less or equal than. In (4.18),
the Jacobian indicates from which pixel comes the maximum values that the dilation has locally.
We should note that in implementation by auto-di�erentiation in DL modules as Tensorflow or
Pytorch, the Jacobian in (4.17) and (4.18) will have values di�erent from zero only for the first
element equal to the · or argmax instead of the complete equivalence class. That is the same
as local pooling by maximum are implemented nowadays. By using the chaining rule for the



Table 4.2 Experiment on hyperspectral Indian Pines Disjoint classification problem. Each
experiment has been repeated ten times varying the initialisation of base architecture. Twenty
filters of MEMD in a single level of simplification. The training was performed without any data
augmentation technique. The constraint SE(0) Ø 0 is used to assure the order relation among
envelopes (See Theorem 2.2)

Overall Val. Acc. Overall Training Acc.
Type Operator – Best µ±‡ Best µ±‡

Baseline — — 85.035 83.929±0.654 93.443 91.413±1.696
NonFlat (“,Ï) .5 84.080 83.239 ± 0.512 97.012 95.495±1.184

True 84.420 83.490 ± 0.656 97.223 96.012 ± 0.847
(Á,”) .5 83.252 82.764 ± 0.576 97.451 95.226 ± 2.065

True 85.311 84.052 ± 1.227 95.922 94.015 ± 2.717
(Á,” SE(0) Ø 0 .5 83.379 82.870 ± 0.261 96.889 95.621 ± 1.043

True 85.247 83.821 ± 0.787 96.168 94.874 ± 1.120
Quadratic (“,Ï) .5 79.495 78.024 ± 0.754 96.080 93.580 ± 2.625

True 80.959 77.971 ± 1.563 97.645 95.043 ± 1.565
(Á,”) .5 81.363 79.798 ± 1.006 96.484 94.964± 1.111

True 81.596 80.847 ± 0.537 97.223 95.066± 1.191
Lasry-Lions .5 81.384 79.909 ± 0.876 96.924 95.273 ± 1.336

True 82.424 81.299 ± 0.983 96.941 95.674 ± 0.927

composition of functions, the Jacobian the geodesic dilation in (2.4) is

Jac
”(1)(f ,g)

(f(x)) = Jacf·g(”SE((f)(x)))Jac”SE((f)(x)) =

Y
___]

___[

1 in (i, j) if xj = argmax”SE(f(xi))

and ”SE(f(xi)) Æ g(xi)

0 otherwise.
(4.19)

To compute the Jacobian of (2.5), one should consider operation in convergence, that is, when
it is idempotent. Firstly, the Jacobian with respect to the marker f has zero value, in values
that come from dilation, creating flat areas that can be associated with a local maximum in f .
Specifically using the concept of basin of attraction 7, the Jacobian of (2.5) with respect to f is
determined by

JacREC”(f ,g)((f)(x)) =

Y
___]

___[

1 in (i, i) if f(xi) = REC
”(f ,g)(xi)

1 in (i, j) if xj œ BAxi(”
(1)

g (f))

0 otherwise,

(4.20)

7 The basin of attraction of a fixed point x– for f , denoted by BAx– (f), is the interval [a,b] if for all x0 œ [a,b] ∆
limkæ+Œ (f ¶ f ¶ · · · ¶ f)¸ ˚˙ ˝

k times

(x0) = f (k)(x0) = f(x–), where k is such that f (k)(x) = f (k+1)(x) for all x œ �.



Table 4.3 Experiment on hyperspectral Pavia University for a disjoint training sample. Nine
di�erent classes. Each experiment has been repeated ten times varying the initialisation of
base architecture. Twenty filters of MEMD in a single level of simplification. The training was
performed without any data augmentation technique. The constraint SE(0) Ø 0 is used to assure
the order relation among envelopes (See Theorem 2.2)

Overall Val. Acc. Overall Training Acc.
Type Operator – Best µ±‡ Best µ±‡

Baseline — — 85.468 83.396± 2.420 92.527 86.447 ± 8.960
NonFlat (“,Ï) .5 79.543 78.189 ± 0.726 95.715 92.219 ± 2.408

True 82.353 79.293 ± 1.767 96.353 91.525 ± 4.335
(Á”) .5 84.261 82.681 ± 0.798 93.726 88.794 ± 4.998

True 84.133 82.529 ± 1.131 93.879 89.735 ± 2.118
(Á,”), SE(0) Ø 0 .5 83.908 81.740 ± 1.295 93.216 84.575 ± 7.334

True 85.483 83.994 ± 1.238 94.389 89.617 ± 3.289
Quadratic (“,Ï) .5 74.516 70.821 ± 2.023 91.201 80.951 ± 6.432

True 73.539 69.399 ± 2.339 93.828 87.360 ± 6.443
(Á,”) .5 77.411 75.432 ± 1.193 95.052 86.470 ± 5.939

True 81.196 77.923 ± 1.700 92.476 86.593 ± 6.585
Lasry-Lions .5 77.461 76.396 ± 0.614 97.067 90.826 ± 6.223

True 80.971 78.501 ± 1.332 96.123 87.082 ± 8.221

and equivalent with respect to the mask g is

JacREC”(f ,g)(g(x)) =

Y
___]

___[

1 in (i, i) if g(xi) = REC
”(f ,g)(xi)

1 in (i, j) if xj œ BAxi(”
(1)

g (f))

0 otherwise.

(4.21)

We highlight that the basin of attraction in both (4.20) and (4.21) are flat zones, i.e., xj œ
BAxi(”

(1)

g (f)) ∆ REC
”(f ,g)(xj) = REC

”(f ,g)(xi). For the marker, (4.20), these flat zones are related
to some local maxima in f , and in (4.21) are related to some local minima of g. In other words,
the flow of the gradient in the reconstruction layer depends on the membership of the basin of
attraction, that is, for xj from which xi comes the value of the reconstruction, and if this value
come from f or g. Additionally, the number of ones in the i-th row, correspond to the cardinality
of the basin of attraction of xi. An illustrative example is given in Fig. 4.6. Thus, if one uses the
geodesic reconstruction in a DL architecture, the backpropagation of the gradient pass through
some maximum of f and some minimum of g, and the gradient value will be proportional to
the cardinality of the basin of attraction. As a final observation, the number of zero values in
JacREC”g(f)((f)(x))+JacREC”g(f)(g(x)) is equal to n. Similarly, for the h-maxima transform (2.6),
where both marker and mask depend on f , the Jacobian indicates the position xi from where each
xj has taken the value in convergence, i.e., JacHMAXh(f)((f)(x)) = 1 in (i, j) if xj œ BAxi(”

(1)

f≠h
(f)),

and 0 otherwise.



Table 4.4 Experiment on hyperspectral Pavia University for a disjoint training sample. Nine
di�erent classes. Each experiment has been repeated ten times varying the initialisation of
base architecture. Twenty filters of MEMD in a single level of simplification. The training was
performed without any data augmentation technique. The constraint SE(0) Ø 0 is used to assure
the order relation among envelopes (See 2.2)

Overall Val. Acc. Overall Training Acc.
Type Operator – Best µ±‡ Best µ±‡

Baseline — — 85.468 83.396± 2.420 92.527 86.447 ± 8.960
NonFlat (“,Ï) .5 79.543 78.189 ± 0.726 95.715 92.219 ± 2.408

True 82.353 79.293 ± 1.767 96.353 91.525 ± 4.335
(Á,”) .5 84.261 82.681 ± 0.798 93.726 88.794 ± 4.998

True 84.133 82.529 ± 1.131 93.879 89.735 ± 2.118
(Á,”), SE(0) Ø 0 .5 83.908 81.740 ± 1.295 93.216 84.575 ± 7.334

True 85.483 83.994 ± 1.238 94.389 89.617 ± 3.289
Quadratic (“,Ï) .5 74.516 70.821 ± 2.023 91.201 80.951 ± 6.432

True 73.539 69.399 ± 2.339 93.828 87.360 ± 6.443
(Á,”) .5 77.411 75.432 ± 1.193 95.052 86.470 ± 5.939

True 81.196 77.923 ± 1.700 92.476 86.593 ± 6.585
Lasry-Lions .5 77.461 76.396 ± 0.614 97.067 90.826 ± 6.223

True 80.971 78.501 ± 1.332 96.123 87.082 ± 8.221

Table 4.5 Comparison (in terms of OA) between di�erent HSI classification models trained on
spatial-disjoint samples. The performance for first four models are included for comparison from
(204).

Method Indian Pines Pavia University
Random Forest 65.79 69.64

Multinomial Logistic regression 83.81 72.23
Support Vector Machines 85.08 77.80

MLP 83.81 81.96
CNN1D 85.03 85.47

�–

Á,”
+ CNN1D 85.31 85.48

Figure 4.6 Basins of attraction with cardinality greater that one. BAxa ,BAxb and BAxc contribute
to the Jacobian with respect to the mask f in (4.20) and are associated to local maxima of f .
The BAxd contributes to the Jacobian with respect to the marker g (4.21), and is associated to a
local minimum of g.



4.5.2 Experimental section

This subsection seeks to illustrate the benefits of using reconstruction operators in the context of
CNNs. One can think that the geometrical understanding of the e�ect that the reconstruction
layer has allows the design of architectures that are better adapted to specific problems. In this
way two examples are presented: 1. The use of the reconstruction operator REC (2.5) in the case
of networks that learn attributes about objects 2. The use of HMAX (2.6) and RMAX (2.7) to train
a denoising layer which is robust to di�erent levels and types of noise.

Learning geometrical attributes on simple objects

In this experiment, CNNs are trained in order to learn geometric attributes on images composed
of simple geometric objects as it is shown in Fig 4.7. Each example is a random image with
no overlap objects with size distributed as a uniform distribution between [3,20]. As example,
we consider the following geometrical attributes: Area, Perimeter, Area of Bounding-Box and
Eccentricity8. Two models are trained9 with the same number of parameters, but with the
di�erence that a reconstruction of the last layer with the input image is used as prediction for the
model denoted as CNNREC. This has some benefits: 1) The result of the prediction is homogeneous
within each of the objects due to the reconstruction process (Fig. 4.7) 2) According to the
analysis of the Jacobian matrix, only the local maxima of the prediction will have an e�ect
during learning, which should simplify the task. Note that each simple object forms a basin of
attraction with size equal to the area of the object. Consequently, CNNREC homogenises the results
of the CNN inside each object, reducing drastically the validation loss in Fig. 4.8

Denoising (Only one noise level and only one database)

Let us consider an image perturbed by additive positive random noise. This noise implies the
creation of local maximum over the image. These peaks contain strong information about the
noise distribution. The HMAX transform in (2.6) gives more importance in the gradient to fixed
points, thus using information about noise itself. This allows you to learn the noise directly
from the peaks. Accordingly, our experiments aim to show that it is possible to train a CNN to
learn the parameter h following the noise strength. At the test stage, we analyse the capacity
of generalisation for a wide range of dataset and noise levels. Our proposed model has two
components (Fig. 4.9): 1) a reconstruction block, which for an input image f estimates a value of
h with a CNN and computes the HMAXh(f) transformation on an input image; 2) A classification
block, using training a CNN using as input the HMAXh(f).

At first impression one might think that it is enough to train the network in the supervised
case, that is, using categorical cross entropy. However, you should train a large range of noise
levels. To avoid this issue, we train on only one noise level and only one database (as an example,
we have used the MNIST database). In all the following experiments, the ADAM optimiser has

8Eccentricity of the ellipse that has the same second-moments as the object. The eccentricity is the ratio of the
focal distance (distance between focal points) over the major axis length. The value is in the interval [0, 1). When
it is 0, the ellipse becomes a circle.

9The mean squared error is used as loss function, Adam optimiser, learning rate of 0.001, learning rate schedule
by a factor of 0.1 with a patience of five epochs, and an early stopping with patience of ten epochs.



(a) Input (b) Bounding box area (c) Eccentricity (d) Area

(e) Perimeter (f) Prediction by CNN (g) Proposed CNN

Figure 4.7 a) Example of a random image containing geometrical shapes as Circles, Squares,
Triangles and Rectangles. b) Bounding box Area c) Eccentricity d) Area e) Perimeter. f)
Example of prediction for the attribute perimeter e) for a CNN in f) and the proposed CNNREC in
g). Both trained models in f) and g) have the same number of parameters. CNNREC homogenises
the results of the CNN inside each object, reducing drastically the validation loss in Fig. 4.8

been used during 50 epochs, with an initial learning rate of 0.001 and reducing it by a factor of
0.1 after ten epochs without improving on the validation loss. Models and code are available
in the authors repository10. In the training stage of the reconstruction block (Fig. 4.9), we
propose to minimise the following loss function, loss(f , f̂) = ||f ≠ f̂ ||2

2
+–||RMAX(f)f ≠RMAX(f̂)f̂ ||2

2

denoting f̂ = HMAXh(f). The first term is an attached to data, the second one looks for local large
maxima to be preserved after HMAX transformation and – is a hyperparameter to trade-o� the
e�ect of each term (– = 0.75 in our experiments). The pertinence of our proposition can be
observed in Figure 4.12 when we have used the reconstruction block trained only in MNIST to
estimate the value of h on di�erent image databases at di�erent noise levels (which have not
been shown in the training phase). The estimated value of h follows the noise level, in pretty
di�erent datasets including CIFAR10, 91IMAGES(302) and BSD300 (169). We highlight that
for colour images the reported h is the average of the estimation channelwise. For a quantitative
comparison, we illustrated the impact of the HMAX layer in a classification network, and show
that it can provide a better robustness through noise than a classic CNN classification network.
For results shown in Fig. 4.10, reconstruction block has been pretrained on MNIST, and only
the classification block is updated by a categorical cross-entropy loss function. In Fig. 4.10, we
have also included a training with data augmentation by the type of noise with ‡ between 0 and
0.2 for fair comparison. In most of the explored scenarios, the proposed model is more robust
than classical and data augmentation approaches.

10 https://github.com/Jacobiano/morpholayers

https://github.com/Jacobiano/morpholayers


Figure 4.8 Several repetitions of the training protocol by varying the random initialisation.
Dotted lines correspond to traditional CNN, and plain lines to CNNREC, i.e, with a reconstruction
as the last layer. Note that CNN and CNNREC models have the same number of parameters. In
the explored scenarios, the inclusion of the geodesic reconstruction helps to converge to a model
with lower loss on the validation set.

Figure 4.9 Left: CNN ≠ CNN model for denoising. The first block is trained to learn how to
denoise an input image. The second is trained for classification. Right: Proposed model is
composed of two blocks. Reconstruction block: it is composed of a CNN which computes from an
input f a single real value h. The output is HMAXh(f). Classification block: A block of supervised
classification. In both models, the second block is trained for classification without updating the
denoising block.
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(a) MNIST Gaussian noise
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(b) MNIST Uniform noise
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(c) FASHION MNIST Gaussian noise
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(d) FASHION MNIST Uniform noise

Figure 4.10 Classification accuracy of classical and proposed model for MNIST and Fashion
MNIST with additive Gaussian and Uniform noise with µ = 0 and ‡ œ {0.,0.05, · · · ,1}. The
original images have been normalised from zero to one. Examples of images with di�erent levels
of noise are shown in Fig. 4.11. The reconstruction block (Fig.4.9) has been trained only on
MNIST with additive noise distributed as an absolute value zero-mean Gaussian with ‡ = 0.1.
We have included a training with augmentation by additive random Gaussian noise at µ = 0 and
‡ between 0 and 0.2 for fair comparison.

4.6 Sparse NMF representation and Mathematical Morphology

Mathematical morphology is strongly related to the problem of data representation. Applying a
morphological filter can be seen as a test on how well the analysed element is represented by the
set of invariants of the filter. For example, applying an opening by a structuring element SE tells
how well a shape can be represented by the supremum of translations of SE. The morphological
skeleton (165; 251) is a typical example of description of shapes by a family of building blocks,
classically homothetic spheres. It provides a disjunctive decomposition where components - for
example, the spheres - can only contribute positively as they are combined by supremum. A
natural question is the optimality of this additive decomposition according to a given criterion, for
example its sparsity - the number of components needed to represent an object. Finding a sparse
disjunctive (or part-based) representation has at least two important features: first, it allows
saving resources such as memory and computation time in the processing of the represented
object; secondly, it provides a better understanding of this object, as it reveals its most elementary
components, hence operating a dimensionality reduction that can alleviate the issue of model



Figure 4.11 Example of images with level of noise between zero to ones where it has been used
in Fig. 4.10. First row is a random uniform noise. Second row is a random Gaussian noise. Note
that even with high noise levels the digit is perceived.

Figure 4.12 The figure shows the predicted h values for same type of noise on dataset MNIST,
Fashion MNIST, CIFAR10, 91IMAGES(302) and BSD300 (169) for ‡ œ {0,0.1, . . . ,0.9}. The
proposed reconstruction block network succeed in predict the noise strength for several datasets
despite having been trained only at the level ‡ = .2 and only on MNIST database.

over-fitting. Such representations are also believed to be the ones at stake in human object
recognition (264).

Similarly, the question of finding a sparse disjunctive representation of a whole database is
also of great interest and will be the main focus of the present section. More precisely, we will
approximate such a representation by a non-negative, sparse linear combination of non-negative
components, and we will call additive this representation. Given a large set of images, our concern
is then to find a smaller set of non-negative image components, called dictionary, such that any
image of the database can be expressed as an additive combination of the dictionary components.
As we will review in the next section, this question lies at the crossroad of two broader topics
known as sparse coding and dictionary learning (157).

Besides a better understanding of the data structure, this section approach is also more
specifically linked to mathematical morphology applications (33). The main goal is to be able to
apply morphological operators to massive sets of images by applying them only to the reduced set
of dictionary images. This is especially relevant in the analysis of remote sensing hyperspectral
images where di�erent kinds of morphological decomposition are widely used. For reasons that
will be explained later, sparsity and non-negativity are sound requirements to achieve this goal.
What is more, whereas the representation process can be learned o�ine on a training dataset,
we need to compute the decomposition of any new sample online. Hence, we take advantage of
the recent advances in deep, sparse and non-negative auto-encoders to design a new framework
able to learn part-based representations of an image database, compatible with morphological
processing.



4.6.1 Introduction

Consider a family of M images (binary or greyscale) f (1), f (2)
, . . . , f (M) of n pixels each, aggregated

into a M ◊ n data matrix X = (x(1)
,x(2)

, . . . ,x(M))T (the i
th row of X is the transpose of x(i),

which is the image f (i) seen as a vector). Given a feature dimension k œ Nú and two numbers
sL and sA œ [0,1], a sparse NMF11 of X with dimension k, as defined in (119), is any solution
(L,A) of the problem

min ||X≠LA||2
2

s.t.

Y
__]

__[

L œRM◊k
,A œRk◊M

L Ø 0, A Ø 0
‡(L:,j) = sL,‡(Aj,:) = sA, 1 Æ j Æ k

(4.22)

where the second constraint means that both L and A have non-negative coe�cients, and the
third constraint imposes the degree of sparsity of the columns of L and lines of A respectively,
with ‡ the function defined by

’v œRp
, ‡(v) =

Ô
p≠ ||v||1/||v||2Ô

p≠1 . (4.23)

Note that ‡ takes values in [0,1]. The value ‡(v) = 1 characterises vectors v having a unique
non-zero coe�cient, therefore the sparsest ones, and ‡(v) = 0 the vectors whose coe�cients
all have the same absolute value. Hoyer (119) designed an algorithm to find at least a local
minimiser for the problem (4.22), and it was shown that under fairly general conditions (and
provided the ¸

2 norms of L and A are fixed) the solution is unique (268).
In representation learning, each row L(i) of L is called the encoding or latent features of the

input image x(i), and A holds in its rows a set of k images called the dictionary. In the following,
we will refer to the images aj = Aj,: of the dictionary as atom images or atoms. As stated by
4.22, the atoms are combined to approximate each image x(i) := xi,: of the dataset by an estimate
f̂ (i), which writes as follows:

’i œ {1, ...,M}, f̂ (i) = Li,:A = L(i)A =
kÿ

j=1

li,jaj , (4.24)

where li,j is the coe�cient at row i and column j in matrix L
By choosing the sparse NMF representation, the (282) aim at approximating a morphological

operator „ on the data x by applying it to the atom images A only, before projecting back into
the input image space. That is, they want „(x(i)) ¥ �(x(i)), with �(x(i)) defined by

�(x(i)) :=
kÿ

j=1

li,j„(aj), (4.25)

where the li,j and aj are the same as in 4.24. The operator � in 4.25 is called a part-based
approximation to „. To understand why non-negativity and sparsity help this approximation
to be a good one, we can point out a few key arguments. First, sparsity favours the support of

11A complete description and analysis of the nonnegative matrix factorization (NMF) is given in (91)



Figure 4.13 Process for computing the part-based approximation to dilation, based on Equa-
tions (4.24) and (4.26).

the weighted atom images to have little pairwise overlap. Secondly, a sum of images with disjoint
supports is equal to their (pixel-wise) supremum. Finally, dilations commute with the supremum
and, under certain conditions that are favoured by sparsity, this also holds for the erosions. This
will be developed in more details in Section 4.6.2. For now, Figure 4.13 illustrates the part-based
approximation ”

ú
SE of the dilation ”SE by a structuring element SE, expressed as:

”
ú

SE(x(i)) :=
kÿ

j=1

li,j”SE(aj). (4.26)

4.6.2 Morphological operators on non-negative linear combinations

In this section we precise the intuitions about the part-based approximation of morphological
operators. Let L be the complete lattice of images with n pixels and with values in [0,+Œ]
ordered by the Pareto ordering (f Æ g i� for any q, 1 Æ q Æ M , fq Æ gq ). Consider a flat, extensive
dilation ”SE on L and its adjoint anti-extensive erosion ÁSE, SE being a flat structuring element.
Let f be an image approximated by the non-negative combination f̂ =

q
k

j=1
ljaj of k atom images

a1, . . . ,ak. Following 4.25, we define the part based approximations of the four operators ”SE, ÁSE,
“SE = ”SEÁSE and ÏSE = ÁSE”SE as:

”
ú
SE(f) :=

q
k

j=1
lj”SE(aj), Á

ú
SE(f) :=

q
k

j=1
ljÁSE(aj)

“
ú
SE(f) :=

q
k

j=1
lj“SE(aj), Ï

ú
SE(f) :=

q
k

j=1
ljÏSE(aj).

(4.27)

We focus on establishing whether these expressions approximate well their exact counterparts
”SE(f), ÁSE(f), “SE(f) and ÏSE(f), assuming f is well approximated by f̂ =

q
k

j=1
ljaj . It is

likely to be so as soon as ”
ú
SE(x) = ”SE(f̂), Á

ú
SE(x) = ÁSE(f̂), “

ú
SE(x) = “SE(f̂) and Ï

ú
SE(x) = ÏSE(f̂),

which is to say as soon as the four operators commute with the non-negative linear application
A = [a1, . . . ,ak] ‘æ Al :=

q
k

j=1
ljaj . As sketched earlier, sums can be identified to suprema if the

involved images have disjoint supports, and this also favours the commutation of the erosion



with the supremum. This is why we introduce the following hypothesis that characterises the
disjunction of supports (i.e., the regions where the image is non-zero) of the ljaj .

Let H1 denote the hypothesis:
H1: “For any 1 Æ i Æ k,1 Æ j Æ k,i ”= j, ”SE(liai)

w
”SE(ljaj) = 0”

where 0 denotes an image equal to zero everywhere (i.e. with empty support), and more generally,
for an integer n,

Hn: “For any 1 Æ i Æ k,1 Æ j Æ k,i ”= j, ”
n
SE(liai)

w
”

n
SE(ljaj) = 0”,

where ”
n
SE = ”SE ¶ · · ·¶ ”SE = ”nSE, denoting by nSE the n-terms Minkowski sum SEüSEü · · ·üSE

for n > 0, and ”
n
SE is the identity for n = 0. Note that, since ”SE is extensive, Hn implies any Hp

with p Æ n. In particular, any Hn implies H0, which simply states the disjunction of the supports
of any two images liai and ljaj , i ”= j. We can now state the following result:

Proposition 4.18. If H1 holds for the representation f̂ =
q

k

j=1
ljaj, then:

”
ú
SE(f) = ”SE(f̂), Á

ú
SE(f) = ÁSE(f̂), “

ú
SE(f) = ”SE

!
ÁSE(f̂)

"
= “SE(f̂).

(4.28)

If additionally H2 holds, then we also have:

Ï
ú

SE(f) = ÁSE
!
”SE(f̂)

"
= ÏSE(f̂). (4.29)

A proof of this result is detailed in (33).
Proposition 4.18 implies that under the Hn hypothesis the error ||„SE(f)≠�SE(f)||2 between

the actual transformed image and its part-based approximation only depends on the quality
of the reconstruction, that is to say on the error ||f ≠ f̂ ||2. Indeed, if f = f̂ then ”

ú
SE(f) = ”SE(f),

Á
ú
SE(f) = ÁSE(f) and so on. Obviously, the more constrained the representation, the smaller the

class of images that can be accurately represented. The non-negativity and sparsity constraints
are therefore likely to increase the representation error ||f ≠ f̂ ||2. Hence, unless the data can be
perfectly represented by non-negative combinations of atoms complying with a hypothesis Hn, a
trade-o� needs to be found to achieve a good approximation of morphological operators. This is
the target of the asymmetric auto-encoder presented in (33).

We shall now generalise Proposition 4.18 by applying it to the representation that we note
f̂ (n≠1) =

q
k

j=1
lj”(n≠1)SE(aj). Notice that H1 holds for f̂ (n≠1) if and only if Hn holds for f̂ . This

yields the following corollary.

Remark 4.19. If Hn holds for the representation f̂ =
q

k

j=1
ljaj , then for any integer p Æ n:

”
ú
pSE(f) = ”pSE(f̂), Á

ú
pSE(f) = ÁpSE(f̂), “

ú
pSE(f) = ”pSE

!
ÁpSE(f̂)

"
= “pSE(f̂),

and for any integer p Æ n≠1

Ï
ú

pSE(f) = ÁpSE
!
”pSE(f̂)

"
= ÏpSE(f̂).



Quantitative results from (33) are given in Table 4.6 and in Fig. 4.14 for the Fashion MNIST
database.

Table 4.6 Comparison of the reconstruction error, sparsity of encoding and part-based approxi-
mation error to dilation produced by the sparse-NMF, the NNSAE, the NCAE and the AsymAE,
for both MNIST and Fashion-MNIST datasets.

Model Reconstruction Sparsity Part-based approximation
error of code error to dilation

MNIST
Sparse-NMF 0.011 0.66 0.012

NNSAE 0.015 0.31 0.028
NCAE 0.010 0.35 0.18

AsymAE 0.007 0.54 0.069
Fashion MNIST

Sparse-NMF 0.011 0.65 0.022
NNSAE 0.029 0.22 0.058
NCAE 0.017 0.60 0.030

AsymAE 0.010 0.52 0.066
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(a) Sparse-NMF (b) NNSAE

(c) NCAE (d) AsymAE

Figure 4.14 16 of the 100 atom images of the four compared representations of Fashion-MNIST
dataset.

In this work, a new generalised loss function is proposed called power Jaccard to perform
semantic segmentation tasks. It is compared with classical loss functions in di�erent
scenarios, including grey level and colour image segmentation, as well as 3D point cloud
segmentation. The results show improved performance, stability and convergence. We
made available the code with our proposal with a demonstrative example.

• A New colour Augmentation Method for Deep Learning Segmentation of His-
tological Images, Y. Xiao et al, ISBI 2019.
This paper addresses the problem of labeled data insu�ciency in neural network training
for semantic segmentation of colour-stained histological images acquired via Whole Slide
Imaging. It proposes an e�cient image augmentation method to alleviate the demand for
a large amount of labeled data and improve the network’s generalisation capacity. Typical
image augmentation in bioimaging involves geometric transformation. Here, we propose a



new image augmentation technique by combining the structure of one image with the colour
appearance of another image to construct augmented images on-the-fly for each training
iteration. We show that it improves performance in the segmentation of histological images
of human skin, and also o�ers better results when combined with geometric transformation

• Dealing with Topological Information within a Fully Convolutional Neural Net-
work, E. Decencière et al., ACIVS 2018.
A fully convolutional neural network has a receptive field of limited size and therefore
cannot exploit global information, such as topological information. A solution is proposed
in this paper to solve this problem, based on pre-processing with a geodesic operator. It is
applied to the segmentation of histological images of pigmented reconstructed epidermis
acquired via Whole Slide Imaging.

• Classification of hyperspectral images by tensor modelling and additive mor-
phological decomposition, S. Velasco-Forero and J. Angulo, vol. 46, num. 2, Feb. 2013,
Pattern Recognition.
Pixel-wise classification in high-dimensional multivariate images is investigated. The pro-
posed method deals with the joint use of spectral and spatial information provided in
hyperspectral images. Additive morphological decomposition (AMD) based on morpho-
logical operators is proposed. AMD defines a scale-space decomposition for multivariate
images without any loss of information. AMD is modelled as a tensor structure and
tensor principal components analysis is compared as a dimensional reduction algorithm
versus classic approach. Experimental comparison shows that the proposed algorithm can
provide better performance for pixel classification of hyperspectral image than many other
well-known techniques.

4.7 Perspectives

Despite having excellent results in quantitative performance measurements, the main drawback
of classical deep learning methods is that they are trained as black boxes, where neither imposing
a priori problem knowledge nor understanding the decision rule are straightforward. In the
following some aspects where mathematical morphology based models could be interesting for
Deep Learning models.

Interpretability

One argument against convolution is that its filter does not lend itself to an interpretable12 form.
The filter weights do not indicate the absolute intensities/levels in the shape. Instead, it means a
relative importance. Recently, research in deep network interpretation as for instance guided
backpropagation (3; 245) made it possible to visualise what CNNs might be looking at. However,
these algorithms are not guarantees, they do not report which features are more important, not
what exact shape, texture, colour, or other characteristics led a machine to make the decision they

12Interpretability in the sense of (183): "Interpretability is the degree to which a human can understand the
cause of a decision".



did. Another approach are the attention-like mechanisms introduced in the 90’s as multiplicatives
modules (74), it motivated by the idea that networks should devote more focus to the small, but
important, parts of the data (199; 297).

Unlike convolution, morphology-based operations are more interpretable, in the sense that
for a given layer, the flat morphological filters are easier to interpret than the convolutional ones.
Morphological operators allow the characterisation of objects in the image with respect to the
shape/size relationship, providing an absolute measure of fitness against the measure relative by
convolution, which facilitates the interpretability of the structuring elements.

However, in general, as soon as the complexity of the model increases, the interpretation
becomes more di�cult. In deep models, usually one should use pooling to downsampling spatial
domain, which is one of the key points in classical multiresolution analysis (106; 158).

Especially in shallow models, morphological models should give geometric rules that allow to
characterise the important elements in the images. From this point of view, the morphological
methods should be used at the moment of decision making, combining with classical linear
convolutions in the feature extraction layers.

Invariance

A professional image analyst would like to include some geometrical knowledge during the training
of CNNs. Especially when analysing images, one would like to have results that are invariant to
shifts, symmetries, rotations, or scale changes (159). This makes sense since the characteristics
of the object do not change (298). However, it is easy to see that due to the definition of the
elementary operations that are being used in the classic deep learning models, this property is
not satisfied. A mathematical approach is to define a group of transformation and defining layers
whose results are invariant to the action of the group. Recently, a wide variety of articles have
been presented in this regard including invariances to rotation and changes in the scale of objects
(29; 43). The problem of defining morphological operators invariant to a group of transformation
have been studied in (223; 241; 254). Finally, we should note that the morphological hierarchies
based on local gradient are by definition invariant to shift in the contrast (184). Accordingly,
invariant descriptors to groups such as additive and multiplicative can be easily constructed by
means of range operators, and in their convolutions version by morphological operators. Some
recent works on CNNs using Gaussian derivatives to produce equivariant layers and/or train
with less examples look promising specially for industrial applications (206)(239)(240).

Shape/Size priors for segmentation models

In segmentation models, especially in images, one may be interested in including a priori
knowledge about the objects of interest, for example constraints on size order relationships or
other geometric attributes. Some of these possibilities are listed below, including some important
references.

1. Structure-driven priors: This is a generalisation of classical marker based segmentation
models (42; 236). The approach is to use semi-supervised formulation to include marker
information in the loss function, i.e., from a pair of image, seeds (f ,seeds)(167) to goal is



to segment an instance per marker. Some examples for medical applications can be found
in (127) (216)

2. Knowledge-driven priors (e.g., anatomy): Actually in many applications one is inter-
ested in including information about the allowed size of objects to segmentation, order
relationships (for instance, one segmented object must be larger than another, less eccen-
tric than another), connectivity (for instance, two segments must be connected) and/or
topology (for instance, segmented objects must not contain hulls.). One can characterise
the prior-information for deep learning models in four types:

(a) Constraints: Defining the limits of plausible segmentation according to a variable
(for instance size), and or partially labeled data. (128; 134; 135; 217; 307). Note that
regularising the loss function including shape constraint is pretty direct, but the model
does not take into account this term in the same way during the optimisation process.

(b) Shape Models: Most of the methods are hybrid solutions involving active contour or
statistical shape models. A state-of-the art for medical applications can be found in
(36)

(c) Morphological constraints: Many of the geometric constraints can be described by
means of mathematical morphological operators, which can be included in deep
learning models in di�erent ways:

i. Preprocessing: For instance, including morphological reconstruction to consider
nonlocal information in DL models. (69)

ii. Morphological filters: The use of morphological transformation as layers in Deep
Learning models to give an interpretation from the size/shape relationship of
learned kernels. (287). Most of the morphological filtering can be used in a DL
network to certify the result of the procedure morpholayers.

iii. As a regulariser: One can consider to study to regularise the results of a DL
model by considering morphological based loss functions (16).

(d) Topological regularisation: According to the application, one may be interested in
obtaining segmentation that preserves connectivity criteria. In (59; 88) the use
ultrametric is used in gradient based method to penalise the results of hierarchical
clustering (one can see hierarchical segmentation as a particular case of hierarchical
clustering). Additionally, (209) presents a loss function that “motivates" the connection
of the objects in the image. Another way to include topological information in the loss
function is to use Persistent Homology (61)(120). Note: That the inclusion of terms
in the cost function does not guarantee that the constraint is satisfied. An important
connection between morphological and persistence-based methods has recently been
presented in (41; 60)

Related Publications

• Fully Trainable Gaussian Derivative Convolutional Layer, V. Penaud-Polge, S.
Velasco-Forero and J. Angulo, ICIP, 2022.

https://people.cmm.minesparis.psl.eu/users/velasco/morpholayers/intro.html


• Di�erential invariants for SE (2)-equivariant networks, M. Sangalli, S. Blusseau,
S. Velasco-Forero and J. Angulo, ICIP, 2022.

• Moving Frame Net: SE(3)-Equivariant Network for Volumes, M. Sangalli, S.
Blusseau, S. Velasco-Forero and J. Angulo, NEURIPS, 2022.



5 Contributions in Anomaly Detection

C’est avec la logique que nous prouvons et avec l’intuition que
nous trouvons.

Henri Poincaré

5.1 Introduction

The job of the professional image analyst is to find things in images. Often the analyst knows in
advance what kinds of things to look for: peoples, airplanes, industrial facilities, cars, and so on.
But sometimes the analyst is faced with the more open task of finding "unusual" things, without
knowing in advance what these unusual things will be.

When the object of interest are known, one can employ supervised learning. But a pretty
di�erent problem arise when the examples of the target class are unavailable, or simply when the
target class are unknown objects. The analyst should choice “normal" images and use them from
training. This is the anomaly detection problem: a unsupervised learning problem in which the
learning from data proceeds without any example 1 of the target of interest.

Many AD methods have been proposed, and a few literature reviews or tutorials have been
thoroughly done (38; 50; 172; 173; 242; 257). Recently, the tutorial by (173) gives a good overview
of di�erent AD methods in the literature. In this manuscript, we analyse the AD in the context
of optimal statistical detection, where the covariance matrix of the background is required to
be estimated. Additionally, the extension in the context of deep learning is motivated and
introduced.

In the dictionary, the definition of anomaly is given by:

1. something di�erent, abnormal, peculiar, or not easily classified : something anomalous.

2. deviation from the common rule.

The first definition motivates many approaches using compression techniques, autoencoders,
among others as anomalies detector (5; 306). Where one has a normal information encod-
ing/decoding system, and one hopes that the anomalies are the objects that cannot be decoded

1In case one has some examples of anomalies, we will use the term semisupervised

https://www.merriam-webster.com/dictionary/anomaly


well. The second definition is more in the statistical sense, where one fits a model on normal
data, and expects anomalies to be objects with low probability according to the model.

The following section briefly describes the RX-detector before reviewing some covariance
matrix estimation methods in the literature.

5.2 The RX-detector

AD may be considered as a binary hypothesis testing problem at every pixel as follows:

H0 : x ≥ fx|H0(x), (5.1)

H1 : x ≥ fx|H1(x),

where fx|Hi
(·) denotes the probability density function (PDF) conditioned on the hypothesis i,

i.e., H0 when the target is absent (background), and H1 when the target is present. Usually,
For H0, the background distribution fx|H0(x) is assumed to be a multivariate Gaussian model
(MGM) due to theoretical simplicity. The distribution in the presence of the target can be
assumed to have a multivariate uniform PDF (266). The well-known RX anomaly detector (Reed
and Xiaoli Yu (218)) was based on these two assumptions, its test statistics is as follows:

p

2 log(2fi)≠ 1
2 log |�|≠ 1

2 (x ≠µ)T �≠1 (x ≠µ)
H0
?
H1

·0,

∆ ADRX(x,·1) := (x ≠µ)T �≠1(x ≠µ)
H1
?
H0

·1, (5.2)

where |�| is the determinant of matrix �, and ·0 and ·1 are thresholds, above which H0 is
rejected in favour of H1. In other words, the RX-detector is a threshold test on the Mahalanobis
distance (156). Thresholding the likelihood ratio provides the hypothesis test that satisfies various
optimality criteria including: maximum probability of detection for the given probability of false
alarm, minimum expected cost, and minimisation of maximal expected cost (160). However, in
most of the cases, � is unknown and needs to be estimated. It is well-known (7) that given n

independent samples, Xn◊p = {x1,x2, . . . ,xn œRp} from a p-variate Gaussian distribution with
known mean µ œRp, the sample covariance matrix (SCM) defined by

‚� = 1
n

nÿ

i=1

(xi ≠µ)(xi ≠µ)T
, (5.3)

is the maximum likelihood estimator (MLE) of �. The sample covariance matrix (SCM) is the
maximum likelihood estimator, but it tends to overfit the data when n does not greatly exceed p.
However, in the presence of multiple clusters, this estimation fails to characterise the background
correctly. For these reasons, a variety of regularisation schemes have been proposed (55; 56), as
well as several robust estimation approaches (1; 30; 85; 117; 171; 260; 267; 269; 296).



5.2.1 The RX-detector in High Dimensional Space

To help better understand the implication of high dimensionality in the RX-detector, we develop
an alternative expression for (5.2) based on the Singular Value Decomposition (SVD) of the
covariance matrix �, as follows:

ADRX(x,·1) = (x ≠µ)T U≠1�≠1U(x ≠µ)
H1
?
H0

·1,

where � = U�U≠1 with � a diagonal matrix and U an orthogonal matrix. The eigenvalues
{⁄i}p

i=1
in � correspond to the variances along the individual eigenvectors and sum up to the

total variance of the original data. Let the diagonal matrix � = {�ii}p

i=1
= {1/

Ô
⁄i}p

i=1
, then

�2 = �≠1. Additionally, since U is a rotation matrix, i.e., U≠1 = UT , we can rewrite the
RX-detector as follows:

=(x ≠µ)T U��UT (x ≠µ)
H1
?
H0

·1

=||�UT (x ≠µ)||22
H1
?
H0

·1. (5.4)

As we can see from this decomposition, the RX-detector in 5.2 is equivalent to the weighted
Euclidean norm by the eigenvalues along the principal components. Note that as ⁄i æ 0, the
detector ADRX(x,·1) æ Œ, ’x, resulting in an unreasonable bias towards preferring H1 to H0.
This fact is well-known in the literature as bad conditioning, i.e., the condition number 2 of
cond(�) æ Œ. Before looking at the possible solutions to the ill-conditioning issue, we would
like to have a more detailed analysis of the eigenvalue distribution of covariance matrices in the
theory of random matrices (6; 75; 166).

5.3 Robust Estimation in Non-Gaussian Assumptions

Presence of outliers can distort both mean and covariance estimates in computing Mahalanobis
distance. In the following, we describe two types of robust estimators for covariance matrix.

5.3.1 M-estimators

In a Gaussian distribution, the SCM ‚� in (5.3) is the MLE of �. This can be extended to a larger
family of distributions. Elliptical distributions is a broad family of probability distributions that
generalise the multivariate Gaussian distribution and inherit some of its properties (7; 82). The p-
dimension random vector X has a multivariate elliptical distribution, written as X ≥ Ep(µ,�,Â),
if its characteristic function can be expressed as, ÂX = exp(itT µ)Â

1
1

2
tT �t

2
for some vector µ,

positive-definite matrix �, and for some function Â, which is called the characteristic generator.
From X ≥ Ep(µ,�,Â), it does not generally follow that X has a density fX(x), but, if it exists,

2The condition number of a real matrix � is the ratio of the largest singular value to the smallest singular
value. A well-conditioned matrix means its inverse can be computed with good accuracy.



it has the following form:

fX(x;µ,�,gd) = cp
|�|

gp

51
2(x ≠µ)T �≠1(x ≠µ)

6
(5.5)

where cp is the normalization constant and gp is some non-negative function with (p

2
≠1)-moment

finite. In many applications, including AD, one needs to find a robust estimator for data sets
sampled from distributions with heavy tails or outliers. A commonly used robust estimator of
covariance is the Maronna’s M estimator (168), which is defined as the solution of the equation

‚�M = 1
n

nÿ

i=1

u((xi ≠µ)T ‚�≠1(xi ≠µ))((xi ≠µ)(xi ≠µ)T
, (5.6)

where the function u : (0,Œ) æ [0,Œ) determines a whole family of di�erent estimators. In
particular, a special case u(x) = p

x
is shown to be the most robust estimator of the covariance

matrix of an elliptical distribution with form (5.5), in the sense of minimising the maximum
asymptotic variance. This is the called Tyler’s method (269) which is given by

‚�Tyler = p

n

nÿ

i=1

(xi ≠µ)(xi ≠µ)T

(xi ≠µ)T ‚�≠1

Tyler
(xi ≠µ)

. (5.7)

(269) established the conditions for the existence of a solution of the fixed point equation (5.7).
Additionally, (269) shows that the estimator is unique up to a positive scaling factor, i.e., that
� solves (5.7) if and only if c� solves (5.7) for some positive scalar c > 0. Another interpretation
to (5.7) can be found by considering normalised samples defined as {si = xi≠µ

||xi≠µ||
}n

i=1
. Then, the

PDF of s takes the form (82):

fS(s) =
�(p

2
)

2fi
p
2

det(�)≠
1
2 (sT �≠1s)

≠p
2 ,

and the MLE of � can by obtained by minimizing the negative log-likelihood function:

L(�) = p

2

nÿ

i=1

log(sT

i �≠1si)+ n

2 logdet(�). (5.8)

If the optimal estimator ‚� > 0 of (5.8) exist, it needs to satisfy the equation (5.7) (82). When
n > p, Tyler proposed the following iterative algorithm based on {si}:

Â�k+1 = p

n

nÿ

i=1

sisT

i

sT

i
‚�≠1

k
si

, ‚�k+1 =
Â�k

tr( Â�k)
. (5.9)

It can be shown (269) that the iteration process in (5.9) converges and does not depend on the
initial setting of ‚�0. Accordingly, the initial ‚�0 is usually set to be the identity matrix of size
p. We have denoted the iteration limit ‚�Œ = ‚�Tyler. Note that the normalisation by the trace
in the right side of (5.9) is not mandatory but it is often used in Tyler based estimation to
make easier the comparison and analysis of its spectral properties without any decrement in the
detection performance.



5.3.2 Multivariate t-distribution Model

Firstly, we evoke a practical advice to perform AD in real-life HS images from (50). They have
indicated that the quality of the AD can be improved by means of considering the correlation
matrix R instead of the covariance matrix �, also known as the R-RX-detector (66). However,
notice that writing the j-th coordinate of the vector z as z(j) = x(j)≠µ(j)

Ô
‡(jj)

, we have z = (z1, . . . ,zp) =
‡≠1/2(x ≠ µ), where ‡ = diag(Ô‡1, . . . ,‡p). Now, Z = [z1, . . . ,zn] is zero-mean, and cov(Z) =
‡≠1/2�‡≠1/2 = R, the correlation matrix of X. Thus, the correlation matrix of X is the
covariance matrix of Z, i.e. the standardisation ensuring that all the variable in Z are on the
same scale. Additionally, note that (66) gives a characterization of the performance of the R-RX-
detection. They conclude that the performance of R-RX depends not only on the dimensionality
p and the deviation from the anomaly to the background mean but also on the squared magnitude
of the background mean. That is an unfavourable point in the case that µ needs to be estimated.
At this point, we are interested in characterising the MLE solution of the correlation matrix
R by means of t-distribution. A p-dimensional random vector x is said to have the p-variate
t≠distribution with degrees of freedom v, mean vector µ, and correlation matrix R (and with �
denoting the corresponding covariance matrix) if its joint PDF is given by:

fX(x;µ,�,v) =
�(v+p

2
)|R|≠1/2

(fiv)
p
2 �(v

2
)
Ë
1+ 1

v
(x ≠µ)T R≠1(x ≠µ)

È v+p
2

,

where the degree of freedom parameter v is also referred to as the shape parameter, because the
peakedness of (5.10) may be diminished or increased by varying v. Note that if p = 1,µ = 0, and
R = 1, then (5.10) is the PDF of the univariate Student’s t distribution with degrees of freedom
v. The limiting form of (5.10) as v æ Œ is the joint PDF on the p-variate normal distribution
with mean vector µ and covariance matrix �. Hence, (5.10) can be viewed as a generalization of
the multivariate normal distribution. The particular case of (5.10) for µ = 0 and R = Ip is a
normal density with zero means and covariance matrix vIp in the scale parameter v. However,
the MLE does not have closed form and it should be found through expectation-maximization
algorithm (EM) (186)(150). The EM algorithm takes the form of iterative updates, using the
current estimates of µ and R to generate the weights. The iterations take the form:

‚µk+1 =
q

n

i=1
w

i

k
xiq

n

i=1
w

i

k

, and (5.10)

‚Rk+1 = 1
n

nÿ

i=1

(wi

k(xi ≠ ‚µk+1)(xi ≠ ‚µ(k+1))T ), (5.11)

where w
i

k+1
= v+p

v+(xi≠‚µk)T R≠1
k (xi≠‚µk)

. For more details of this algorithm, interested readers may
refer to (150), and (192) for faster implementations. In our case, of known zero mean, this
approach becomes:

‚Rk+1 = v +p

n

nÿ

i=1

xixT

i

v +xT

i
‚R≠1

k
xi

(5.12)



For the case of unknown v, (143) showed how to use EM to find the joint MLEs of all parameters
(µ,R,v). However, our preliminary work (285) shows that the estimation of v does not give
any improvement in AD task. Therefore, we limited ourselves to the case of t-distribution with
known value of degrees of freedom v.

5.4 Estimators in High Dimensional Space

The SCM ‚� in (5.3), o�ers the advantages of easy computation and being an unbiased estimator,
i.e., its expected value is equal to the covariance matrix. However, as illustrated in Section 5.2.1,
in high dimensions the eigenvalues of the SCM are poor estimates for the true eigenvalues. The
sample eigenvalues spread over the positive real numbers. That is, the smallest eigenvalues will
tend to zero, while the largest tend toward infinity (76; 146). Accordingly, SCM is unsatisfactory
for large covariance matrix estimation problems.

Shrinkage Estimator

To overcome this drawback, it is common to regularize the estimator ‚� with a highly structured
estimator T via a linear combination – ‚�+(1≠–)T, where – œ [0,1]. This technique is called
regularization or shrinkage, since ‚� is “shrunk” towards the structured estimator. The shrinkage
helps to condition the estimator and avoid the problems of ill-conditioning in (5.4). The notion
of shrinkage is based on the intuition that a linear combination of an over-fit sample covariance
with some under-fit approximation will lead to an intermediate approximation that is “just-
right" (267). A desired property of shrinkage is to maintain eigenvectors of the original estimator
while conditioning on the eigenvalues. This is called rotationally-invariant estimators (256).
Typically, T is set to flI, where I is the identity matrix for some fl > 0 and fl is set by fl =

qp

i=1
‡ii/p.

In this case, the same shrinkage intensity is applied to all sample eigenvalue, regardless of their
position. To illustrate the eigenvalues behaviour after shrinkage, let us consider the case of linear
shrinkage intensity equal to 1/4, 1/2 and 3/4. Fig. 5.1 illustrates this case. As it was shown
in (147), in the case of – = 1/2, every sample eigenvalue is moved half-way towards the grand
mean of all sample eigenvalues. Similarly, for – = 1/4 eigenvalues are moved a quarter towards
the mean of all sample eigenvalues. An alternative is the non-rotationally invariant shrinkage
method, proposed by Ho�beck and Landgrebe (117), uses the diagonal matrix D = diag( ‚�)
which agrees with the SCM the diagonal entries, but shrinks the o�-diagonal entries toward zero:

‚�–

diag = (1≠–) ‚�+–diag( ‚�) (5.13)

However, in the experiments, we use a normalised version of (5.13), considering the dimension of
the data, i.e.

‚�–

Stein = (1≠–) ‚�+–Id( ‚�) (5.14)

where Id(�) = tr(‚�)I
p

. This is sometimes called ridge regularization.



Regularized Tyler-estimator

Similarly, shrinkage can be applied to other estimators such as the robust estimator in (5.9).
The idea was proposed in (2; 55; 294). Wiesel (294) gives the fixed point condition to compute a
robust and well-conditioned estimator of � by

�̃k+1 = p

n(1+–)

nÿ

i=1

(xi ≠µ)(xi ≠µ)T

(xi ≠µ)T �̃≠1

k
(xi ≠µ)

+ –

1+–

pT
tr( ‚�≠1

k
T)

‚�k+1 := �̃k+1

tr(�̃k+1)
. (5.15)

This estimator is a trade-o� between the intrinsic robustness from M-estimators in (5.9) and
the well-conditioning of shrinkage based estimators in section 5.4. The existence and uniqueness
of this approach has been shown in (260). Nevertheless, the optimal value of shrinkage parameter
– in (5.15) is still an open question.

Geodesic Interpolation in Riemannian Manifold

The shrinkage methods discussed so far involve the linear interpolation between two matrices,
namely, a covariance matrix estimator and a target matrix. It can be extended to other types
of interpolations, i.e. other space of representation for ‚� and T di�erent to the Euclidean
space. A well-known approach is the Riemannian manifold of covariance matrices, i.e. the space
of symmetric matrices with positive eigenvalues (207). In general, Riemannian manifold are
analytical manifolds endowed with a distance measure which allows the measurement of similarity
or dissimilarity (closeness or distance) of points. In this representation, the distance, called
geodesic distance, is the minimum length of the curvature path that connects two points (53),
and it can be computed by

DistGeo(A,B) :=
Ò

tr(log2(A≠1/2BA≠1/2)). (5.16)

This nonlinear interpolation, here called a geodesic path from A to B at time t, is defined by
Geot(A,B) := A1/2 exp(tM)A1/2, where M = log(A≠1/2BA≠1/2) and exp and log are matrix
exponential and logarithmic functions respectively. A complete analysis of (5.16) and the geodesic
path via its representation as ellipsoids have been presented in (26). Additionally, (26) shows
that the volume of the geodesic interpolation is smaller than linear interpolation and thus it can
increase detection performance in HSI detection problems. Thus, we have included a Geodesic
Stein estimation with the same intuition behind equation (5.14) as follows,

‚�–

Geo-Stein = Geo–( ‚�, Id( ‚�)), (5.17)

where – œ [0,1] determines the trade-o� between the original estimation ‚� and the well-
conditioning Id( ‚�).
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Figure 5.1 CCN truncates extreme sample eigenvalues and leaves the moderate ones unchanged
and CERNN gives the contrary e�ect. Linear and geodesic shrinkages moves eigenvalues towards
the grand mean of all sample eigenvalues. However, the e�ect of geodesic shrinkage is more
attenuated for extreme eigenvectors than in linear case. The e�ect of BD-correction depends on
the eigenvalues sets defined by t.

Constrained MLE

As we have shown in Section 5.2.1, even when n > p, the eigenstructure tends to be systematically
distorted unless p/n is extremely small, resulting in ill-conditioned estimators for �. Recently,
several works have proposed regularising the SCM by explicitly imposing a constraint on the
condition number. (296) proposes to solve the following constrained MLE problem:

maximize L(�) subject to cond(�) Æ Ÿ (5.18)

where L(�) stands for the log-likelihood function in the Gaussian distributions. This problem
is hard to solve in general. However, (296) proves that in the case of rotationally-invariant
estimators, (5.18) reduces to an unconstrained univariate optimisation problem. Furthermore,
the solution of (5.18) is a nonlinear function of the sample eigenvalues given by:

‚⁄i =

Y
___]

___[

÷, ⁄i( ‚�) Æ ÷

⁄i( ‚�), ÷ < ⁄i( ‚�) < ÷Ÿ

Ÿ÷, ⁄i( ‚�) Ø ÷Ÿ

(5.19)

for some ÷ depending on Ÿ and ⁄( ‚�). We refer this methodology as Condition Number-Constrained
(CCN) estimation.



Covariance Estimate Regularized by Nuclear Norms

Instead of constrain the MLE problem in (5.18), (58) propose to penalise the MLE as follows,

maximize L(�)+ ⁄

2 [–||�||ú +(1≠–)||�≠1||ú] (5.20)

where the nuclear norm of a matrix �, is denoted by ||�||ú, is the sum of the eigenvalues of �, ⁄

is a positive strength constant, and – œ (0,1) is a mixture constant. We refer this approach by
the acronym CERNN (Covariance Estimate Regularised by Nuclear Norms).

Ben-David and Davidson correction

Given zero-mean3 data with normal probability density x ≥ N (0,�), its sampled covariance
matrix ‚� = 1

n≠1

q
n

i=1
xixT

i
follows a central Wishart distribution with n degrees of freedom. The

study of covariance estimators in Wishart distribution where the sample size (n) is small in
comparison to the dimension (p) is also an active research topic (25; 174; 191). Firstly, Efron and
Morris proposed a rotationally-invariant estimator of � by replacing the sampled eigenvalues
with an improved estimation (77). Their approach is supported by the observation that for any
Wishart matrix, the sampled eigenvalues tend to be more spread out than population eigenvalues,
in consequence, smaller sampled eigenvalues are underestimated and large sampled eigenvalues
are overestimated (25). Accordingly, they find the best estimator of inverse of the covariance
matrix of the form a ‚�≠1 + bI/tr( ‚�) which is achieved by:

‚�Efron-Morris =
A

(n≠p≠1) ‚�≠1 + p(p+1)≠2
tr( ‚�)

I
B

≠1

. (5.21)

It is worth mentioning that other estimations have been developed following the idea behind
Wishart modelling and assuming a simple model for the eigenvalue structure in the covariance
matrix (usually two phases model). Recently, Ben-David and Davidson (25) have introduced a
new approach for covariance estimation in HSI, called here BD-correction. From the SVD of
‚� = U�‚�UT , they proposed a rotationally-invariant estimator by correcting the eigenvalues by
means of two diagonal matrices,

‚�BD = U�BDUT
, with �BD = �‚��Mode�Energy. (5.22)

They firstly estimate the apparent multiplicity pi of the i-th sample eigenvalue as pi =
qp

j=1
card[a(j) Æ b(i) Æ b(j)], where a(i) = �‚�(i)(1 ≠

Ô
c)2 and b(i) = �‚�(i)(1 +

Ô
c)2. One

can interpret the concept of “apparent multiplicity" as the number of distinct eigenvalues that
are “close" together and thus represent nearly the same eigenvalue (25). Secondly, BD-correction
a�ects the i-th sample eigenvalue via its apparent multiplicity pi as �Mode(i) = (1+pi/n)

(1≠pi/n)2 and as

�Energy(i) =

Y
]

[

q
t

i=1
�‚�(i)/

q
t

i=1
(�‚�(i)�Mode(i))

qp

i=t+1
�‚�(i)/

qp

i=t+1
(�‚�(i)�Mode(i))

(5.23)

3Or µ known, in which case, one might subtract µ from the data.



for a value t œ [1,min(n,p)] indicating the transition between large and small eigenvalues. Finally,
reader can see (25) for an optimal selection of t. A comparison of correction in the eigenvalues by
CCN, CERNN, the linear shrinkage in (5.14), the geodesic Stein in (5.17) and the BD-correction
is illustrated in Fig. 5.1 for three values of regulation parameter. We can see that CCN truncates
extreme sample eigenvalues and leaves the moderate ones unchanged. Compared to the linear
estimator, both (5.18) and (5.20) pull the larger eigenvalues down more aggressively and pull
the smaller eigenvalues up less aggressively.

5.4.1 Sparse Matrix Transform

Recently, (45; 267) introduced the sparse matrix transform (SMT). The idea behind is the
estimation of the SVD from a series of Givens rotations, i.e., ‚�SMT = Vk�VT

k
, where Vk =

G1G2 · · ·Gk is a product of k Givens rotation defined by G = I+Ë(i, j,Ë) where

Ë(a,b,Ë) =

Y
_______]

_______[

cos(Ë)≠1, if r = s = a or r = s = b

sin(Ë), if r = a and s = b

≠sin(Ë), if r = b and s = a

0, otherwise

where each step i œ {1, . . . ,k} of the SMT is designed to find the single Givens rotation that
minimise diag(VT

i
‚�Vi) the most. The details of this transformation are given in (45; 46). The

number of rotations k is a parameter and it can be estimated from heuristic Wishart estimator
as in (267). However, in the numerical experiments, this method of estimating k tended to
over-estimate. As such, SMT is compared with k as function of p in our experiments.

Table 5.1 Covariance matrix estimators considered in this section

Name Notation Formula
SCM ‚� 1

n

q
n

i=1
(xi ≠µ)(xi ≠µ)T

Stein Shrinkage (146) ‚�–

Stein
(1≠–) ‚�+–Id( ‚�)

Tyler (269) ‚�Tyler
‚�j+1 = p

n

q
n

i=1

(xi≠µ)(x≠µ)
T

(xi≠µ)T ‚�≠1
j (xi≠µ)

Tyler Shrinkage (56) ‚�–

Tyler
�̃k+1 = 1

1+–

p

n

q
n

i=1

xxT

xT
i �̃≠1

k xi
+ –

1+–

pT
tr(‚�≠1

k T)

Sparse Matrix Transform (SMT) (267) ‚�SMT G1G2 · · ·Gk�(G1G2 · · ·Gk)T

t distribution(143) ‚�t
‚�j+1 = 1

n

q
n

i=1

(v+p)(xi≠µ)(xi≠µ)
T

v+(xi≠µ)T ‚�≠1
j (xi≠µ)

Geodesic Stein ‚�–

Geo-Stein
Geo–( ‚�, Id( ‚�))

Constrained condition number(296) ‚�CCN (5.19)
Covariance Estimate Regularized by Nuclear Norms(58) ‚�CERNN (5.20)

Efron-Morris Correction (77) ‚�Efron-Morris (5.21)
Ben-Davidson Correction (25) ‚�BD (5.22)

Finally, as comparison in (286), RX-detector in (5.2) by using a large number of covariance
matrix estimation is reported in 5.2



Table 5.2 Top-3 performances in di�erent analysed scenarios in (286)

Distribution Contamination c = p

n
Top three performances

Gaussian No 0.2 ‚�BD
‚�Efron-Morris

‚�–

Geo-Stein

Gaussian 1% 0.2 ‚�t
‚�–

Tyler
—

Gaussian 10% 0.2 ‚�t
‚�–

Tyler
—

Gaussian No 0.9 ‚�SMT
‚�–

Stein
‚�–

Tyler

Gaussian 1% 0.9 ‚�SMT
‚�–

Stein
‚�–

Tyler

Gaussian 10% 0.9 ‚�–

Tyler
‚�–

Stein
‚�–

Geo-Stein

Cauchy No 0.2 ‚�–

Tyler
‚�–

Geo-Stein
‚�t

Cauchy 1% 0.2 ‚�–

Tyler
‚�–

Geo-Stein
‚�CERNN

Cauchy 10% 0.2 ‚�–

Tyler
‚�t

‚�–

Geo-Stein

Cauchy No 0.9 ‚�–

Geo-Stein
‚�–

Tyler
‚�CERNN

Cauchy 1% 0.9 ‚�–

Tyler
‚�–

Geo-Stein
‚�CERNN

Cauchy 10% 0.9 ‚�–

Tyler
‚�–

Geo-Stein
‚�CCN

Dirichlet No 0.2 ‚�SMT
‚�BD

‚�–

Tyler

Dirichlet 10% 0.2 ‚�CCN — —
Dirichlet No 0.9 ‚�SMT

‚�BD
‚�–

Tyler

Dirichlet 10% 0.9 ‚�CCN — —

5.5 Approaches based on Machine and Deep Learning

5.5.1 Introduction

Instead of making assumptions about the nature of the data distribution, in machine learning,
optimisation problems are built based on geometric intuitions. For the case of anomaly detection,
the classic machine learning methods learn feature representation of normality. In this chapter
only a second family of detectors based on the method of one-class SVM. For readers interested
in a state of the art of anomaly detection methods should consult (203; 231).

5.5.2 One-class SVM

In (27) a mathematical model for learning the high-density areas of an unknown distribution
from random points drawn according to this distribution is proposed. Theoretical bounds on
the error were obtained for finite n and are independent of the underlying distribution. This is
the based formalism for one-class SVM (265) (OCSVM), who aims at finding a minimum radius
hypersphere to surround the majority of the data, allowing a small fraction of “outliers” to fall
outside. In order to control this number a penalty for outliers must be incorporated into the
objective function of the OCSVM learning model.

min
R,c,‘

R
2 +⁄

nÿ

i=i

‘i (5.24)

subject to :



||xi ≠c||2 Æ R
2 + ‘ ’i = 1, . . . ,n

‘i Ø 0 ’i = 1, . . . ,n

where ⁄ is penalty parameter, the slack variables ‘ create a soft-margin and the parameter c
is the center of the hypersphere. The minimisation problem is solved by the introduction of
Lagrange multipliers and the norm in the first constraint can consider kernel functions (265).

5.5.3 Deep support vector data description

The objective of Deep Support vector data description (SVDD) is to learn a neural network
that minimises the volume of a data-enclosing hypersphere (232). It uses a neural network to
project the supposedly normal training samples in a latent space so that all samples are within
a normality hypersphere. The hypersphere is made as small as possible thanks to a suitable
training loss, corresponding to

min
◊

C
1
n

nÿ

1

||�(xi;◊)≠c||2 + ⁄

2

Lÿ

i=1

||◊L||2F

D

(5.25)

where c is the normality hypersphere center, determined by the mean latent coordinates of an
initial forward pass of the training data. � represents the encoding neural network, ◊ its weights,
xi the sample being projected, l a layer index. A common regularisation is performed on the
network weights using the Frobenius norm, and is balanced through ⁄ with the main training
objective.

For a given test point x, we can naturally define an anomaly score by the distance of the
point to the center of the hypersphere, i.e.

ADDSVDD(x,·2) = ||�(x;◊ú)≠c||2
H1
?
H0

·2 (5.26)

where ◊úare the network parameters of a trained model

5.5.4 Approximation by random projection depth

In this subsection, we analyse the case of anomaly detection when the projected subspace is
unidimensional, i.e., K = 1 and the projection matrix is in this case a ¸

1 norm vector u. We
show that if the unidimensional detection is performed a number of times r, we can obtain
a performance equivalent to RX-detection when r tends to infinity. Additionally, it allows to
include a robust estimation and local anomaly detection on a RX-fashion without any covariance
matrix estimation, i.e., we introduce the detector:

DPD(x,·3) := sup
||u||=1

(uT x ≠µ(uT X))2

‡2(uT X)
H1
?
H0

·3 (5.27)

where µ(uT X) and ‡
2(uT X) denotes the mean and variance in the projection of the data X in

u. Note that uT X is a scalars vector, and (µ, ‡
2) can be substituted by robust estimators of



first and second order statistic, for instance,

DD(x,·4) := sup
||u||=1

(uT x ≠MED(uT X))2

MAD
2(uT X)

H1
?
H0

·4 (5.28)

where (MED,MAD) are the median and the median absolute deviation. These robust estimators
are included to avoid “masking and swamping e�ect" in the detector. The absolute value of the
square root of expression (5.28) was introduced by D. Donoho (72) as a multivariate measure of
outlyingness.

Equivalence of Random Projections and RX Anomaly Detector

In this section, the equivalence of the proposed detectors (5.27) and (5.28) is proved for the
family of Elliptically Symmetric Distributions (ESD) (78).

Definition 5.1. A random p-dimensional vector x is spherically distributed if x and QT x have
the same distribution for Op◊p œ O(p), the set of all orthogonal matrices of dimension p defined
as O(p) = {Q œ M(p) : QT Q = QQT = Ip}

The following necessary and su�cient condition hold(78). A random p-dimensional vector x
is spherically distributed if and only if Ïx(QT t) = Ïx(t) = „(tT t) where Ïx(t) is its characteristic
function and „(·) is a scalar function. Examples on this family of distributions include the
Standard Normal, t, Cauchy, Bessel, Kotz type distribution among others. A complete list
including the characteristic functions is due to D.R. Jensen in Table 2.1 of (138).

Definition 5.2. The p-dimensional random vector x is elliptically distributed with parameter
µp◊1 and a scale parameter Vp◊p, written as x ≥ Ep(µ,V,„), if its characteristic function can
be expressed as:

Ïx(t) = exp(itT µ)„
1
tT Vt

2
(5.29)

for some vector µ, positive-definite matrix V, and for some function Ï, which is called the
characteristic generator.

For x ≥ Ep(µ,�,Ï), it does not generally follow that x has a density fX(x), but, if it exists,
it has the following form:

f(x) = cp
|�|

gp

Ë
(x ≠µ)T �≠1(x ≠µ)

È
(5.30)

where cp is the normalisation constant and gp is some nonnegative function with (p

2
≠1)-moments

finite. gp is called density generator (78). In this case we shall use the notation Ep(µ,�,gp)
instead of Ep(µ,�,Â). We now state the proposition for the case of standardised random
projections.

Proposition 5.3. Let X(p◊n) be a i.i.d. random sample of size n, where xi ≥ Ep(µ,�,gp), then:

DPD(x) = (x ≠µ)T �≠1(x ≠µ) (5.31)



Proposition 5.4. If x has a univariate symmetric probability density function fx, we denote
�x the cumulative distribution that is continuous and positive on its support then

MAD(x)
‡(x) = �≠1

x (3/4) (5.32)

Finally, we provide the corresponding proposition for the case of projection depth function in
elliptically symmetric random variables.

Proposition 5.5. Let X be a i.i.d. random sample of size n, where xi ≥ Ep(µX,�X,gp), then:

cgpDD(x) = (x ≠µ)T �≠1(x ≠µ) (5.33)

with cgp = (�≠1(3/4))2.

5.5.5 From RPO to deep RPO

Whereas deep SVDD uses an Euclidean distance to the normality hypersphere center in the
latent space, the present work evaluates the distance to various location estimators provided by
a diversity of untrainable random projections. The outlyingness of (5.27) replaces the distance
to a single hypersphere center to quantify abnormality in the latent space. The deep SVDD
training objective of (5.25) therefore changes into:

min
◊

C
1
n

nÿ

i=1

max
uœSp≠1

|uT �(xi;◊)≠µ(uT �(xi;◊))|
‡(uT (�(xi;◊))) + ⁄

2

Lÿ

l=1

||◊l||2F

D

(5.34)

which (µ,‡) a pair of estimators of the first and second moment of the data on the projection
space.

A second Deep SVDD derivative considered here is Deep RPO (21), which replaces the latent
Euclidean distance to the normality centroid with a RPs-based outlyingness measure adapted in
the latent space, leading to the following loss:

min
◊

C
1
n

nÿ

i=1

A

mean
uœSp≠1

|uT �(xi;◊)≠MED(uT �(X;◊))|
MAD(uT �(X;◊))

B

+ ⁄

2

Lÿ

l=1

||◊l||2F

D

(5.35)

This training loss uses the outlyingness defined by random projections after the neural
network encoding, with a max estimator transformed into a mean as suggested in (21) for better
integration with the deep learning setup. The mean estimator computes a mean over the set of
RPs available to compute the latent outlyingness, while the 1

n
computes a mean over the batch

samples. The use of a mean instead of a max removes the convergence to the square root of the
Mahalanobis distance-inferred ellipsoid already mentioned in the RPO definition for a large set
of RPs. The loss nonetheless still combines 1D outlyingness measures individually centred by
their median and normalised by their median absolute deviation, but with no ellipsoid-like score
distribution guarantee in the input space once integrated. No square was applied to the first loss
term, in accordance with (72).



5.5.6 Multisphere case

An extension is Deep multi-sphere SVDD (MSVDD) (87) initialises numerous latent normality
hyperspheres using k-means and progressively discards the irrelevant centroids during training.
The relevance of latent hyperspheres is determined thanks to the cardinality of the latent cluster
they encompass. The deep MSVDD training loss is:

min
◊,R

C
1
K

Kÿ

k=1

R
2

k + 1
‹n

nÿ

i=1

max(0, ||�(xi;◊)≠cj(i)||2 ≠R
2

j(i)
)+ ⁄

2

Lÿ

l=1

||◊l||2F

D

(5.36)

The first term minimises the volume of hyperspheres of radius Rk, while the second is
controlled by ‹ œ [0,1] and penalises points lying outside of their assigned hypersphere, training
samples being assigned to the nearest hypersphere denoted by cj(i).

5.5.7 Semisupervised case

SAD is achieved through outlier exposure (113; 233), which adds supervision to the training of
the model thanks to the availability of few and non representative labeled anomalies. To take
into account anomalies during training, Deep SAD (233) repels the outliers from the normality
centroid by replacing the minimisation of the distance to the centroid with the minimisation of
its inverse in the training loss. With m labeled anomalies x̃ in a batch the Deep SVDD loss thus
becomes, with a training objective balancing parameter ÷:

min
◊

C
1

n+m

nÿ

i=1

||�(xi;◊)≠c||2 + ÷

n+m

mÿ

j=1

(||�(Âxj ;◊)≠c||2)≠1 + ⁄

2

Lÿ

l=1

||◊l||2F

D

(5.37)

Labeled anomalies in the training set need to be distinguished from potential unlabelled
anomalies that are considered to be normal samples, which confuse the AD by contaminating
the training set instead of providing supervision. This adaptation can be repeated for both Deep
RPO and Deep MSVDD, although for Deep MSVDD the multiplicity of normality centres calls for
an additional consideration on how to choose from which centroid the labeled anomalies should
be repelled as long as several centroids are kept active. The experiments implementing Deep
MSVDD adapted to SAD with an additional loss term for labeled anomalies were inconclusive,
such an adaptation will therefore not be part of the presented results. The additional loss term
either minimised the latent distance between anomalies and dedicated centroids, or maximised
the latent distance between anomalies and normality centroids. Once adapted to SAD, the Deep
RPO loss becomes, similarly to the transformation that led to Eq. 5.37:
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Arbitrary sets of outliers could not be completely gathered around a reference point since they
are not necessarily concentrated in a common mode (233; 258). However, this does not forbid
the concentration of identified modes among labeled anomalies close to dedicated centroids to
provide additional supervision during training, a case which is part of the experiments presented.
The possibly arbitrary distribution of normal and anomalous centroids and the relative distance
between the centroids adds a way to use prior information regarding the proximity between
the training samples. Such a setup can seem close to classification with rejection (20; 113),
since the concentration of data points around dedicated normal and anomalous centroids can be
interpreted as classification while the data points attached to no centroid and thus supposedly
repelled from all centroids by the trained network constitutes a rejection. This parallel with
classification with rejection is not necessarily relevant since the availability of labeled anomalies to
train AD methods is usually very limited if not nonexistent. In contrast, supervised classification
of identified data modes would imply rich, representative and relatively balanced datasets for
each latent mode. The limited availability of labeled anomalies applies to actual anomalies
and not to artificial anomalies provided by the transformation of existing training samples i.e.
through self-supervision. With proper transformations self-supervision can produce as many
labeled anomalies for training as there are normal samples, or even more if each normal sample
is transformed multiple times. However this does not overcome the lack of representativeness of
labeled anomalies. This is also made di�cult since the choice of transformations requires expert
knowledge.

The reunion of normal latent representations achieved through the deep one-class classification
methods mentioned is analogous to the alignment principle put forward in (291), which also
argued for a latent uniformity. Whereas the alignment principle compels similar samples to be
assigned similar representations, the uniformity principle demands the preservation of maximal
information. One way to achieve that according to (291) is to push all features away from each
other on the unit hypersphere to intuitively facilitate a uniform distribution. The extension
of the Deep SVDD loss to encourage a form of latent uniformity using the pairwise distance
between normal samples during training was investigated without ever improving the baselines.
The experiments conducted to evaluate the contribution of a pairwise distance of normal samples
latent representations loss term revolved around the following training loss format, where the term
tasked with enforcing latent uniformity is weighted using — and was expected to be judiciously
balanced with the overall latent concentration:
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The failure to make a loss term enforce a form of latent uniformity could signal the necessity
of associating such a constraint with latent representations confined to a relevant manifold.

As example, unsupervised AD results, for which the training is only supervised by normal
training samples, are presented in Table 5.3 for low-resolution radar micro-doppler signature in
(22). These results indicate the superiority of deep learning for the OOD task considered, while
demonstrating the substantial contribution of geometry-aware dimensionality reduction through
the use of tPCA for non-deep AD. RPO is kept in Table 5.3 even though it does not achieve



Table 5.3 Unsupervised AD experiments results (average test AUCs in % ± StdDevs over
ten seeds). These machine learning methods are trained on fully normal training sets, without
labeled anomalies for SAD or self-supervision transformations. The four last methods are our
deep AD baselines, trained on normalised spectral representations only. Deep MSVDD "mean
best" indicates the neural network was trained using a simpler loss, analogous to the Deep SVDD
loss, where only the distance to the best latent normality centroid is minimised. PCA and tPCA
indicate that the AD model is trained after an initial dimensionality reduction, which is either
PCA or tangent PCA.

AD method (input format) Mean test AUC (1 mode) Mean test AUC (2 modes)
OC-SVM (SP-PCA) 49.16 ± 26.69 45.48 ± 27.53
OC-SVM (SPD-PCA) 64.68 ± 9.10 58.23 ± 15.12
OC-SVM (SPD-tPCA) 57.59 ± 3.91 55.33 ± 9.48
IF (SP-PCA) 50.96 ± 17.37 48.50 ± 18.76
IF (SPD-PCA) 52.36 ± 22.47 47.50 ± 20.32
IF (SPD-tPCA) 66.91 ± 9.65 61.23 ± 12.65
LOF (SP-PCA) 56.80 ± 2.38 61.55 ± 10.29
LOF (SPD-PCA) 66.44 ± 21.37 65.83 ± 19.52
LOF (SPD-tPCA) 78.38 ± 8.86 73.56 ± 10.09
RPO (SP-PCA) 49.61 ± 6.89 50.43 ± 7.13
RPO (SPD-PCA) 51.08 ± 19.66 54.95 ± 17.58
RPO (SPD-tPCA) 33.97 ± 7.36 38.08 ± 14.58
Deep SVDD (SP) 83.03 ± 6.83 78.29 ± 6.68
Deep MSVDD (SP) 82.27 ± 9.67 78.30 ± 8.28
Deep MSVDD "mean best" (SP) 82.29 ± 7.20 78.02 ± 6.80
Deep RPO (SP) 83.60 ± 5.35 78.13 ± 6.02

useful discrimination because it is the shallow equivalent of Deep RPO, one of the highlighted
deep AD methods, deprived of the neural network encoder and with a max estimator instead of
a mean, as was previously justified. Deep MSVDD does not lead to the best performances, and
is as e�ective as Deep SVDD and Deep RPO, which could have seemed surprising at least when
normality is made of two target classes. Indeed, since Deep MSVDD has the possibility to use
several disjointed hyperspheres to capture the latent normality distribution, one could expect it
to better model more complex, e.g. multimodal, normality.

5.6 Perspectives

• Anomaly Detection and Continual Learning: Most of the industrial anomaly data are
presented in an assembly line. Accordingly the anomaly detection model should overcome
the catastrophic forgetting phenomenon, considering for instance decision from multiple
detectors.

• Anomaly detection can be seen as an AutoML problem, since one want to produce methods
that are able to work well for di�erent types of data distribution. In this context, is it
important to define statistics (determine the optimal ones) that allow to establish when an
anomaly detection algorithm is well adapted to a problematic data?



• Invariance and interpretation of the decision is fundamental in AD for industrial problems.
Methods indicating why an object is determined to be abnormal and the confidence that
can be placed in this decision will be explored in the near future.

• The methods for the detection of multimodal anomalies in the case of contaminated bases
must be studied to approach the industrial needs of today.

• Covariance matrix estimations for AD will be explored in the context of robust deep
learning methods.

Related Publications

1. Robust RX Anomaly Detector without covariance matrix estimation, S.Velasco-
Forero and J. Angulo, 2012 4th Workshop on Hyperspectral Image and Signal Processing:
Evolution in Remote Sensing (WHISPERS), June, pp. 1-4, 2012.

2. Robust Anomaly Detection in Hyperspectral imaging, J. Frontera-Pons et al.,
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4604-4607,
2014

3. Comparative Analysis of Covariance Matrix Estimation for Anomaly Detection
in Hyperspectral Images, S. Velasco-Forero, M.Chen, A. Goh and S.K. Pang, Volume
9, nro. 6, Sept 2015, 1061–1073, IEEE Journal of Selected Topics in Signal Processing.

4. From unsupervised to semi-supervised anomaly detection methods for High
Resolution Range Profiles, M. Bauw et al., IEEE Radar Conference 2020.

5. Near out-of-distribution detection for low-resolution radar micro-Doppler sig-
natures, M.Bauw et al., European Conference on Machine Learning PKDD, 2022.



6 Applications

A picture may be worth a thousand words, a formula is worth a
thousand pictures

Edsger Dijkstra

Much of the motivation to seek solutions from a theoretical point of view comes from the need
to solve real problems. This section contains a non-exhaustive list of some of the applications
considered during my research. The abstracts of the contributions grouped by theme have been
included in this chapter.

6.1 Image processing problems:

1. Objects co-segmentation: Propagated from simpler images, M. Chen, S. Velasco-
Forero, I. Tsang and T.J. Cham, IEEE International Conference on Acoustics Speech and
Signal Processing (ICASSP), pp. 1682-1686, 2015.
Recent works on image co-segmentation aim to segment common objects among image sets.
These methods can co-segment simple images well, but their performance may degrade
significantly on more cluttered images. In order to co-segment both simple and complex
images well, this paper proposes a novel paradigm to rank images and to propagate the
segmentation results from the simple images to more and more complex ones. In the
experiments, the proposed paradigm demonstrates its e�ectiveness in segmenting large
image sets with a wide variety in object appearance, sizes, orientations, poses, and multiple
objects in one image. It outperforms the current state-of-the-art algorithms significantly,
especially in di�cult images.

2. A graph-based colour lines model for image analysis, D. Duque-Arias, S. Velasco-
Forero, J.-E. Deschaud, F. Goulette and B. Marcotegui, International Conference on Image
Analysis and Processing, Springer, Cham, pp. 181-191, 2019.
This paper addresses the problem of obtaining a concise description of spectral representation
for colour images. The proposed method is a graph-based formulation of the well-known
colour Lines model. It generalises the lines to piecewise lines, being able to fit more complex
structures. We illustrate the goodness of the proposed method by measuring the quality



Figure 6.1 Examples of co-segmentation results by method in (54)

of the simplified representations in images and videos. The quality of video sequences
reconstructed by means of proposed colour lines extracted from the first frame demonstrates
the robustness of our representation. Our formalism allows us to address applications such
as image segmentation, shadow correction among others.

6.1.1 Astronomy

1. Deep learning for galaxy surface brightness profile fitting, D. Tuccillo, M. Huertas-
Company, E. Decenciére, S. Velasco-Forero, H. Domínguez-Sánchez and P. Dimauro,
Monthly Notices of the Royal Astronomical Society, Dec., 2017
Numerous ongoing and future large area surveys (e.g. DES, EUCLID, LSST, WFIRST),
will increase by several orders of magnitude the volume of data that can be exploited for
galaxy morphology studies. The full potential of these surveys can only be unlocked with
the development of automated, fast and reliable analysis methods. In this paper, we present
DeepLeGATo, a new method for two-dimensional photometric galaxy profile modelling,
based on convolutional neural networks. Our code is trained and validated on analytic
profiles (HST/CANDELS F160W filter) and it is able to retrieve the full set of parameters
of one-component Sérsic models: total magnitude, e�ective radius, Sérsic index, axis ratio.
We show detailed comparisons between our code and GALFIT. On simulated data, our
method is more accurate than GALFIT and 3000 times faster on GPU (50 times when
running on the same CPU). On real data, DeepLeGATo trained on simulations behaves
similarly to GALFIT on isolated galaxies. With a fast domain adaptation step made with
the 0.1≠0.8 per cent the size of the training set, our code is easily capable to reproduce
the results obtained with GALFIT even on crowded regions. DeepLeGATo does not require
any human intervention beyond the training step, rendering it much more automated than
traditional profiling methods. The development of this method for more complex models
(two-component galaxies, variable PSF, dense sky regions) could constitute a fundamental
tool in the era of big data in astronomy.

2. The strong gravitational lens finding challenge, R. Benton Metcalf et al., Astronomy
and Astrophysics, volume 625, 22 pages, May. 2019
Large-scale imaging surveys will increase the number of galaxy-scale strong lensing candi-
dates by maybe three orders of magnitudes beyond the number known today. Finding these
rare objects will require picking them out of at least tens of millions of images, and deriving
scientific results from them will require quantifying the e�ciency and bias of any search



(a) Example image
(b) RGB (Spectral) representation of cropped
section of a)

(c) Straight colour Lines (PSNR: 21.66 dB) (d) Geodesic colour Lines (PSNR: 34.96 dB)

Figure 6.2 Comparison of colour Lines / Geodesic based colour lines proposed in (73). This
model is another example of modelling spectral information that can be compared in the context
of Fig. 1.2

method. To achieve these objectives automated methods must be developed. Because
gravitational lenses are rare objects, reducing false positives will be particularly important.
We present a description and results of an open gravitational lens finding challenge. Partici-
pants were asked to classify 100 000 candidate objects as to whether they were gravitational
lenses or not with the goal of developing better automated methods for finding lenses in
large data sets. A variety of methods were used including visual inspection, arc and ring
finders, support vector machines (SVM) and convolutional neural networks (CNN). We
find that many of the methods will be easily fast enough to analyse the anticipated data
flow. In test data, several methods are able to identify upwards of half the lenses after
applying some thresholds on the lens characteristics such as lensed image brightness, size
or contrast with the lens galaxy without making a single false-positive identification. This
is significantly better than direct inspection by humans was able to do. Having multi-band,
ground based data is found to be better for this purpose than single-band space based
data with lower noise and higher resolution, suggesting that multi-colour data is crucial.
Multi-band space based data will be superior to ground based data. The most di�cult
challenge for a lens finder is di�erentiating between rare, irregular and ring-like face-on
galaxies and true gravitational lenses. The degree to which the e�ciency and biases of lens



finders can be quantified largely depends on the realism of the simulated data on which
the finders are trained.

6.1.2 Counting Models

1. On-the-go grapevine yield estimation using image analysis and Boolean model,
B. Millan, S. Velasco-Forero, A. Aquino and J. Tardaguila, Journal of Sensors, vol. 2018,
14 pages, Dec 2018.
This paper describes a new methodology for noninvasive, objective, and automated assess-
ment of yield in vineyards using image analysis and Boolean model. Image analysis, as an
inexpensive and noninvasive procedure, has been studied for this purpose, but the e�ect
of occlusions from the cluster or other organs of the vine has an impact that diminishes
the quality of the results. To reduce the influence of the occlusions in the estimation, the
number of berries was assessed using the Boolean model. To evaluate the methodology,
three di�erent datasets were studied: cluster images, manually acquired vine images, and
vine images captured on-the-go using a quad. The proposed algorithm estimated the
number of berries in cluster images with a root mean square error of 20 and a coe�cient of
determination (R2) of 0.80. Vine images manually taken were evaluated, providing 310
grams of mean error and R

2 = 0.81. Finally, images captured using a quad equipped with
artificial light and automatic camera triggering were also analysed. The estimation obtained
applying the Boolean model had 610 grams of mean error per segment (three vines) and
R

2 = .78. The reliability against occlusions and segmentation errors of the Boolean model
makes it ideal for vineyard yield estimation. Its application greatly improved the results
when compared to a simpler estimator based on the relationship between cluster area and
weight.

6.1.3 Hyperspectral

1. Classification of hyperspectral images by tensor modeling and additive mor-
phological decomposition, S. Velasco-Forero and J. Angulo, vol. 46, 2013, Pattern
Recognition.
Pixel-wise classification in high-dimensional multivariate images is investigated. The pro-
posed method deals with the joint use of spectral and spatial information provided in
hyperspectral images. Additive morphological decomposition (AMD) based on morpho-
logical operators is proposed. AMD defines a scale-space decomposition for multivariate
images without any loss of information. AMD is modelled as a tensor structure and tensor
principal components analysis is compared as dimensional reduction algorithm versus classic
approach. Experimental comparison shows that the proposed algorithm can provide better
performance for the pixel classification of hyperspectral image than many other well-known
techniques



Figure 6.3 Example of grape segmentation obtained by the method proposed in (182).

6.2 3D Shapes

1. SHREC’13 Track: Retrieval on textured 3D models, A. Cerri et al., Eurographics
Workshop on 3D Object Retrieval, pp. 73-80, 2013.
Retrieval on Textured 3D Models, whose goal is to evaluate the performance of retrieval
algorithms when models vary either by geometric shape or texture, or both. The collection
to search in is made of 240 textured mesh models, divided into 10 classes. Each model has
been used in turn as a query against the remaining part of the database. For a given query,
the goal was to retrieve the most similar objects. The track saw six participants and the
submission of eleven runs.

2. SHREC-14 Track: Retrieval and classification on Textured 3D Models, S. Bia-
sotti et al., Eurographics Workshop on 3D Object Retrieval, 2014.
This paper reports the results of the SHREC’14 track: Retrieval and classification on
textured 3D models, whose goal is to evaluate the performance of retrieval algorithms when
models vary either by geometric shape or texture, or both. The collection to search in is
made of 572 textured mesh models, having a two-level classification based on geometry and
texture. Together with the dataset, a training set of 96 models was provided. The track saw
eight participants and the submission of 22 runs, to either the retrieval or the classification
contest, or both. The evaluation results show a promising scenario about textured 3D
retrieval methods, and reveal interesting insights in dealing with texture information in the
CIELab rather than in the RGB colour space

3. Retrieval and classification methods for textured 3D models: A comparative
study, S.Biasotti, M. Aono, A. Ben Hamza, V. Garro, A. Giachetti, D. Giorgi, A. Godil,



C. Li, C. Sanada, M. Spagnuolo, A. Tatsuma and S. Velasco-Forero, 1–25, August, 2015,
The Visual Computer Journal.
This paper presents a comparative study of six methods for the retrieval and classification
of textured 3D models, which have been selected as representative of the state of the art. To
better analyse and control how methods deal with specific classes of geometric and texture
deformations, we built a collection of 572 synthetic textured mesh models, in which each
class includes multiple texture and geometric modifications of a small set of null models.
Results show a challenging, yet lively, scenario and also reveal interesting insights in how
to deal with texture information according to di�erent approaches, possibly working in the
CIELab as well as in modifications of the RGB colour space.

4. SHREC’16 Retrieval of Human Subjects from Depth Sensor Data, A. Giachetti
et al., Eurographics Workshop on 3D Object Retrieval, 2016.
In this paper we report the results of the SHREC 2016 contest on "Retrieval of human
subjects from depth sensor data". The proposed task was created in order to verify the
possibility of retrieving models of query human subjects from single shots of depth sensors,
using shape information only. Depth acquisition of di�erent subjects were realised under
di�erent illumination conditions, using di�erent clothes and in three di�erent poses. The
resulting point clouds of the partial body shape acquisitions were segmented and coupled
with the skeleton provided by the OpenNI software and provided to the participants together
with derived triangulated meshes. No colour information was provided. Retrieval scores of
the di�erent methods proposed were estimated on the submitted dissimilarity matrices and
the influence of the di�erent acquisition conditions on the algorithms were also analysed.
Results obtained by the participants and by the baseline methods demonstrated that the
proposed task is, as expected, quite di�cult, especially due the partiality of the shape
information and the poor accuracy of the estimated skeleton, but give useful insights on
potential strategies that can be applied in similar retrieval procedures and derived practical
applications

5. SHREC’17 Track: Retrieval of surfaces with similar relief patterns, S Biasotti,
et al., 10th Eurographics Workshop on 3D Object Retrieval, 2017.
This paper presents the results of the SHREC’17 contest on retrieval of surfaces with
similar relief patterns. The proposed task was created in order to verify the possibility
of retrieving surface patches with a relief pattern similar to an example from a database
of small surface elements. This task, related to many real world applications, requires
an e�ective characterisation of local "texture" information not depending on patch size
and bending. Retrieval performances of the proposed methods reveal that the problem is
not quite easy to solve and, even if some of the proposed methods demonstrate promising
results, further research is surely needed to find e�ective relief pattern characterisation
techniques for practical applications.

6. SHREC’18 track: Recognition of geometric patterns over 3D models, S. Biasotti,
et al., 11th Eurographics Workshop on 3D Object Retrieval, 2018.
This track of the SHREC 2018 originally aimed at recognizing relief patterns over a set



of triangle meshes from laser scan acquisitions of archaeological fragments. This track
approaches a lively and very challenging problem that remains open after the end of the
track. In this report we discuss the challenges to face to successfully address geometric
pattern recognition over surfaces; how the existing techniques can go further in this direction,
what is currently missing and what is necessary to be further developed.

7. SHREC’18 track: Retrieval of gray patterns depicted on 3D models, E. Moscoso
Thompson et al, 11th Eurographics Workshop on 3D Object Retrieval, 2018.
This paper presents the results of the SHREC’18 track: Retrieval of grey patterns depicted
on 3D models. The task proposed in the contest challenges the possibility of retrieving
surfaces with the same texture pattern of a given query model. This task, which can be
seen as a simplified version of many real world applications, requires a characterisation of
the surfaces based on local features, rather than considering the surface size and/or bending.
All runs submitted to this track are based on feature vectors. The retrieval performances
of the runs submitted for evaluation reveal that texture pattern retrieval is a challenging
issue. Indeed, a good balance between the size of the pattern and the dimension of the
region around a vertex used to locally analyse the colour evolution is crucial for pattern
description.

8. SHREC’20 track: Retrieval of digital surfaces with similar geometric reliefs, E.
Moscoso Thompson et al., Computers and Graphics, pp. 199-218, 2020
This paper presents the methods that have participated in the SHREC’20 contest on retrieval
of surface patches with similar geometric reliefs and the analysis of their performance
over the benchmark created for this challenge. The goal of the context is to verify the
possibility of retrieving 3D models only based on the reliefs that are present on their
surface and to compare methods that are suitable for this task. This problem is related to
many real world applications, such as the classification of cultural heritage goods or the
analysis of di�erent materials. To address this challenge, it is necessary to characterise
the local ”geometric pattern” information, possibly forgetting model size and bending.
Seven groups participated in this contest and twenty runs were submitted for evaluation.
The performances of the methods reveal that good results are achieved with a number of
techniques that use di�erent approaches.

6.3 3D Point Cloud/LIDAR

1. SHREC’17 Track: Point-Cloud Shape Retrieval of Non-Rigid Toys, FA Lim-
berger, et al., 10th Eurographics Workshop on 3D Object Retrieval, 2017.
In this paper, we present the results of the SHREC’17 Track: Point-Cloud Shape Retrieval
of Non-Rigid Toys. The aim of this track is to create a fair benchmark to evaluate the
performance of methods on the non-rigid point-cloud shape retrieval problem. The database
used in this task contains 100 3D point-cloud models which are classified into 10 di�erent
categories. All point clouds were generated by scanning each one of the models in their
final poses using a 3D scanner, i.e., all models have been articulated before scanned. The
retrieval performance is evaluated using seven commonly-used statistics (PR-plot, NN, FT,



Figure 6.4 Example of a point of view of data from a Light Detection and Ranging scanner
with it respective ground truth.(142).

ST, E-measure, DCG, mAP). In total, there are eight groups and 31 submissions taking
part in this contest. The evaluation results shown by this work suggest that researchers are
in the right direction towards shape descriptors which can capture the main characteristics
of 3D models, however, more tests still need to be made, since this is the first time we
compare non-rigid signatures for point-cloud shape retrieval.

2. SHREC 2020 Track: 3D Point Cloud Semantic Segmentation for Street Scenes,
T. Ku et al, Computer and Graphics, pp. 13-24, 2020
Scene understanding of large-scale 3D point clouds of an outer space is still a challenging
task. Compared with simulated 3D point clouds, the raw data from LiDAR scanners consist
of tremendous points returned from all possible reflective objects and they are usually
non-uniformly distributed. Therefore, its cost-e�ective to develop a solution for learning
from raw large-scale 3D point clouds. In this track, we provide large-scale 3D point clouds
of street scenes for the semantic segmentation task. The data set consists of 80 samples
with 60 for training and 20 for testing. Each sample with over two million points represents
a street scene and includes a couple of objects. There are five meaningful classes: building,
car, ground, pole and vegetation. We aim at localising and segmenting semantic objects
from these large-scale 3D point clouds. Four groups contributed their results with di�erent
methods. The results show that learning-based methods are the trend and one of them
achieves the best performance on both Overall Accuracy and mean Intersection over Union.
Next to the learning-based methods, the combination of hand-crafted detectors are also
reliable and rank second among comparison algorithms.

3. Road segmentation on low resolution LIDAR point clouds for autonomous
vehicles, L. Gigli et al, ISPRS2020
Point cloud datasets for perception tasks in the context of autonomous driving often rely
on high resolution 64-layer Light Detection and Ranging scanners. They are expensive to
deploy on real-world autonomous driving sensor architectures which usually employ 16/32
layer LIDARs. We evaluate the e�ect of subsampling image based representations of dense
point clouds on the accuracy of the road segmentation task. In our experiments the low
resolution 16/32 layer LIDAR point clouds are simulated by subsampling the original 64
layer data, for subsequent transformation into a feature map in the Bird-Eye-View (BEV)
and SphericalView (SV) representations of the point cloud. We introduce the usage of the



local normal vector with the LIDAR’s spherical coordinates as an input channel to existing
LoDNN architectures. We demonstrate that this local normal feature in conjunction with
classical features not only improves performance for binary road segmentation on full
resolution point clouds, but it also reduces the negative impact on the accuracy when
subsampling dense point clouds as compared to the usage of classical features alone. We
assess our method with several experiments on two datasets: KITTI Road-segmentation
benchmark and the recently released Semantic KITTI dataset.

4. Dartboard based ground detection on 3D point cloud, L. Gigli et al, ISPRS2022
3D laser scanners acquire 3D point clouds of real environments. The process consists in
sampling the scene with laser beams rotating around an axis. By construction, the point
density decreases with the distance to the scanner. This density heterogeneity is a major
issue, in particular for mobile systems in the context of autonomous driving, as usually a
single scan is processed simultaneously (instead of mapping applications that can integrate
several scans, reducing the density heterogeneity). We propose a dartboard grid with cell
size increasing radially in order to adapt the grid size to the point density. The e�ectiveness
of this strategy is demonstrated by means of a ground detection task, a fundamental step
in many workflows of analysis of 3D point clouds.

5. Paris-CARLA-3D: A real and synthetic outdoor point cloud dataset for chal-
lenging tasks in 3D mapping, J.E. Deschaud et al., Remote Sensing, 2021
Paris-CARLA-3D is a dataset of several dense colored point clouds of outdoor environments
built by a mobile LiDAR and camera system. The data are composed of two sets with
synthetic data from the open source CARLA simulator (700 million points) and real data
acquired in the city of Paris (60 million points), hence the name Paris-CARLA-3D. One of
the advantages of this dataset is to have simulated the same LiDAR and camera platform
in the open source CARLA simulator as the one used to produce the real data. In addition,
manual annotation of the classes using the semantic tags of CARLA was performed on
the real data, allowing the testing of transfer methods from the synthetic to the real data.
The objective of this dataset is to provide a challenging dataset to evaluate and improve
methods on di�cult vision tasks for the 3D mapping of outdoor environments: semantic
segmentation, instance segmentation, and scene completion. For each task, we describe the
evaluation protocol as well as the experiments carried out to establish a baseline.
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and Vision, IEEE Transactions on Image Processing, IEEE Selected Topics in Signal
Processing, IEEE Transactions on Signal Processing, IEEE Signal Processing Letters,
Digital Signal Processing, Image Analysis and Stereology, Information Fussion

• Remote Sensing journals IEEE-Transactions on Geoscience and Remote Sensing IEEE-
Special Topics in Remote Sensing International Journal of Remote Sensing

• Pattern Recognition journals IEEE Transactions on Pattern Analysis and Machine
Intelligence IEEE Transactions on Neural Networks. and Learning Systems Neurocom-
puting Pattern Recognition Pattern Recognition Letters Information Sciences Applied
Mathematical Modelling

A.4.2 Participation on Ph.D. thesis jury

• Francisco José Peñaranda Gómez, Application of artificial vision algorithms to images of
microscopy and spectroscopy for the improvement of cancer diagnosis, Universitat Politècnica
de València, 2018.

• Juan Manuel Ponce Real, Computer Vision in Oliviculture. Contributions to the post-harvest
estimation of individual fruit features, early in-the-field yield prediction, and individual tree
characterisation from aerial imagery, by means of image analysis, University of Huelva,
2020



• Maria Ximena Bastidas Rodriguez, A textural deep neural network architecture for mechan-
ical failure analysis, National University of Colombia, 2020.

• José Gabriel García Pardo, Machine learning strategies for diagnostic imaging support on
histopathology and optical coherence tomography, Universitat Politécnica de València, 2022.

A.5 Publications

A.5.1 Patents

1. Method for Automatically Reconstituting the Reinforcing Architecture of a Composite
Material
WO2021116602 - 17/06/2021

2. Confidential / Submitted on 1 mars 2022 / Number of Application: FR2201789

A.5.2 Thesis

Topics in mathematical morphology for multivariate images, 14 June 2012
École nationale supérieure des mines de Paris (Mines ParisTech)
Advisor: Jesús ANGULO, Chargé de recherche, CMM, Mines ParisTech
Jury:

• Dominique JEULIN, Professeur, CMM-MS, Mines ParisTech (Président)

• Jos B.T.M. ROERDINK, Professeur, University of Groningen (Rapporteur)

• Pierre SOILLE, Directeur de recherche, Joint Research Centre of the European Commission
(Rapporteur)

• Jean SERRA, Professeur émérite, ESIEE, Université Paris-Est (Examinateur)

• Jón Atli BENEDIKTSSON, Professeur, University of Iceland (Examinateur)

• Fernand MEYER, Directeur de recherche, CMM, Mines ParisTech (Examinateur)

A.5.3 Proceedings Editor

E1: Mathematical Morphology and Its Applications to Signal and Image Processing 13th Inter-
national Symposium, ISMM 2017, Fontainebleau, France, May 15–17, 2017, Proceedings,

A.5.4 International Journal

J1: Learnable Empirical Mode Decomposition based on Mathematical Morphology, S. Velasco-
Forero, R. Pages and J. Angulo, SIAM Journal on Imaging Sciences, 15 (1), 23-44, 2022.

J2: Real-time classification of aircraft manoeuvers, S. Jouaber et al., Journal of Signal Processing
Systems, 2022.

J3: Instance segmentation of 3D woven fabric from tomography images by Deep Learning and
morphological pseudo-labeling, S. Blusseau et al, Composites Part B: Engineering, 2022.



J4: Irregularity Index for Vector-Valued Morphological Operators, M. Valle, M. Granero, S.
Francisco and S. Velasco-Forero, Journal of Mathematical Imaging and Vision, 1-17, 2022.

J5: Adaptive anisotropic morphological filtering based on co-circularity of local orientations, S.
Blusseau, S. Velasco-Forero, J.Angulo and I. Bloch. Image Processing On Line,12, 111-141,
2022.

J6: Paris-CARLA-3D: A real and synthetic outdoor point cloud dataset for challenging tasks
in 3D mapping, J-E Deschaud et al. Remote Sensing, Volume 12, 22, 4713, 2021.

J7: On minimum spanning tree streaming for hierarchical segmentation, L. Gigli, S. Velasco-
Forero and B. Marcotegui, Pattern Recognition Letters 138, 155–62, 2020.

J8: SHREC’20 Track: 3D Point Cloud Semantic Segmentation for Street Scenes, T. Ku et al.,
Computer and Graphics, Volume 93, , 13–24, December 2020.

J9: SHREC’20 track: Retrieval of digital surfaces with similar geometric reliefs, E. Moscoso-
Thompson et al., Computers and Graphics, Volume 91, 199–218, October 2020

J10: Approximating morphological operators with part-based representations learned by asym-
metric auto-encoders, S. Blusseau et al., Mathematical Morphology-Theory and Applications,
4: 64-86, 2020.

J11: Combinatorial space of watershed hierarchies for image characterization, A. Fehri, S.
Velasco-Forero and F. Meyer, Pattern Recognition Letters, Volume 129, 41–47, January
2020

J12: Prior-based Hierarchical Segmentation Highlighting Structures of Interest, A. Fehri, S.
Velasco-Forero and F. Meyer, Mathematical Morphology-Theory and Applications, Volume
3, 29–44, October 2019.

J13: The strong gravitational lens finding challenge, R.B. Metcalf et al., Astronomy and Astro-
physics, Volume 625, May 2019

J14: On-the-go grapevine yield estimation using image analysis and Boolean model, B. Millan,
S. Velasco-Forero, A. Aquino and J. Tardaquila, Journal of Sensors, 0–14, December 2018

J15: Manipulating the alpha level cannot cure significance testing, D. Trafimow et al., Frontiers
in Psychology, May 2018

J16: Deep learning for galaxy surface brightness profile fitting, D. Tuccillo, M. Huertas-Company,
E. Decenciére, S. Velasco-Forero, H. Domínguez-Sánchez and P. Dimauro, Monthly Notices
of the Royal Astronomical Society, Dec., 2017

J17: Non-Negative Sparse Mathematical Morphology, J. Angulo and S. Velasco-Forero, Advances
in Imaging and Electron Physics Volume 202, 1-37, 2017.

J18: Retrieval and classification methods for textured 3D models: A comparative study,
S.Biasotti, et al., The Visual Computer Journal, August, 1–25, 2015.

J19: Comparative Analysis of Covariance Matrix Estimation for Anomaly Detection in Hyper-
spectral Images, S. Velasco-Forero, M.Chen, A. Goh and S.K. Pang, IEEE Journal of
Selected Topics in Signal Processing, Volume 9, Nro. 6, 1061–1073, Sept 2015.



J20: Riemannian mathematical morphology, J. Angulo and S. Velasco-Forero, Pattern Recogni-
tion Letters, Volume 47, Nro. 1, 93–101, October 2014.

J21: Conditional toggle mappings: principles and applications, S. Velasco-Forero, J. Angulo and
P. Soille, Journal of Mathematical Imaging and Vision, Volume 48, Issue 3, pp. 544-565,
March 2014.

J22: Local mutual information for dissimilarity based image segmentation, L. Gueguen, S.
Velasco-Forero and P. Soille, Journal of Mathematical Imaging and Vision, Volume 48,
Issue 3, pp 625-644, March 2014.

J23: Classification of hyperspectral images by tensor modeling and additive morphological
decomposition, S. Velasco-Forero and J. Angulo, Pattern Recognition, vol. 46, num. 2, Feb.
2013,

J24: Random projection depth for multivariate mathematical morphology, S. Velasco-Forero
and J. Angulo, IEEE Journal of Selected Topics in Signal Processing, vol. 6, num. 7, Oct.
2012, .

J25: Supervised ordering in Rp: Application to morphological processing of hyperspectral images,
S. Velasco-Forero and J. Angulo, IEEE Transactions on Image Processing, vol. 20, num.
11, Oct. 2011.

J26: Structurally adaptive mathematical morphology,Image Analysis and Stereology, J. Angulo
and S. Velasco-Forero, num. 30, 101-112, 2011, .

J27: Improving hyperspectral image classification using spatial preprocessing, IEEE Geoscience
and Remote Sensing Letters, S. Velasco-Forero and V. Manian, vol.6, num. 2, pp. 297–301,
2008.

A.5.5 Chapter Books

CB1: Morphological processing of univariate Gaussian distribution valued images based on
Poincaré upper-half plane representation, J. Angulo and S. Velasco-Forero, Geometric
Theory of Information Signals and Communication Technology, pp. 331-366, 2014.

CB2: Vector Ordering and Multispectral Morphological Image Processing, J. Angulo and S.
Velasco-Forero, Advances in Low-Level Color Image Processing, Signals and Communication
Technology, pp. 223-239, 2014.

A.5.6 International conference with lecture committee

IC1: Moving Frame Net: SE(3)-Equivariant Networks for Volumes, M. Sangalli et al., Workshop
Symmetry and Geometry in Neural Representation, NIPS, 2022

IC2: Scale Equivariant U-Net, M. Sangalli et al., BMVC, 2022

IC3: Fixed Point Layers for Geodesic Morphological Operations. S. Velasco-Forero et al., BMVC,
2022

IC4: Near out-of-distribution detection for low-resolution radar micro-Doppler signatures, M.
Bauw et al, ECML, 2022



IC5: Fully Trainable Gaussian Derivative Convolutional Layer, V. Penaud-Polge et al., ICIP,
2022

IC6: Di�erential Invariants for SE(2)-Equivariant Networks, M. Sangalli et al., ICIP, 2022

IC7: MorphoActivation: Generalizing ReLU activation function by mathematical morphology, S.
Velasco-Forero and J. Angulo, DGMM, 2022

IC8: Morphological adjunctions represented by matrices in max-plus algebra for signal and
image processing, S. Blusseau et al., DGMM, 2022

IC9: DarthBoard based ground detection on 3D Point Cloud, Gigli L.,Marcotegui B., Velasco-
Forero S.,ISPRS, 2022.

IC10: ICLR 2021 Challenge for Computational Geometry and Topology: Design and Results, N.
Miolane, et al. , ICLR, 2021.

IC11: End-to-End Similarity Learning and Hierarchical Clustering for Unfixed Size Datasets.
Gigli L., Marcotegui B., Velasco-Forero S., In: Nielsen F., Barbaresco F. (eds) Geometric
Science of Information 2021. Lecture Notes in Computer Science, vol 12829. Springer,
Cham.

IC12: Scale Equivariant Neural Networks with Morphological Scale-Spaces, M. Sangalli, S
Blusseau, S Velasco-Forero, J Angulo, DGMM, 2021.

IC13: Measuring the Irregularity of Vector-valued Morphological Operators using Wasserstein
Metric, ME Valle, S Francisco, MA Granero, S Velasco-Forero, DGMM, 2021.

IC14: NNAKF: A neural network adapted Kalman filter for target tracking, S Jouaber, S Bonnabel,
S Velasco-Forero, M Pilté, IEEE International Conference on Acoustics Speech and Signal
Processing 2021.

IC15: On power Jaccard losses for semantic segmentation, D. Duque-Arias, S.Velasco-Forero, et
al., VISAPP 2021.

IC16: From unsupervised to semi-supervised anomaly detection methods for High Resolution
Range Profiles, M. Bauw, S. Velasco-Forero et al. IEEE Radar Conference 2020.

IC17: Road segmentation on low resolution lidar point clouds for autonomous vehicles, L. Gigli,
B. Marcotegui and S. Velasco-Forero ISPRS, 2020.

IC18: A graph-based color lines model for image analysis, D. Duque-Arias, S. Velasco-Forero,
J.-E. Deschaud, F. Goulette, B. Marcotegui, CIAP, 2019.

IC19: Part-based approximations for morphological operators using asymmetric auto-encoders, B.
Ponchon, S. Velasco-Forero, S. Blusseau, J. Angulo, and I. Bloch, ISMM, 2019.

IC20: Max-plus operators applied to filter selection and model pruning in neural networks, Y
Zhang, S Blusseau, S. Velasco-Forero, I. Bloch, J. Angulo, ISMM, 2019.

IC21: A New Color Augmentation Method for Deep Learning Segmentation of Histological Images,
Y. Xiao, E. Decenciére, S. Velasco-Forero et al., ISBI, 2019.

IC22: Tropical and morphological operators for signals on graphs, S. Blusseau et al., ICIP, 2018.



IC23: Dealing with Topological Information within a Fully Convolutional Neural Network, E.
Decenciere et al., ACIVS, 2018

IC24: SHREC’18 track: Recognition of geometric patterns over 3D models, 11th Eurographics
Workshop on 3D Object Retrieval, 2018.

IC25: SHREC’18 track: Retrieval of gray patterns depicted on 3D models, 11th Eurographics
Workshop on 3D Object Retrieval, 2018.

IC26: SHREC’17 Track: Point-Cloud Shape Retrieval of Non-Rigid Toys, FA Limberger, et al.,
10th Eurographics Workshop on 3D Object Retrieval, 2017.

IC27: SHREC’17 Track: Retrieval of surfaces with similar relief patterns, S Biasotti, et al., 10th
Eurographics Workshop on 3D Object Retrieval, 2017.

IC28: Morphological Semigroups and Scale-Spaces on Ultrametric Spaces, J. Angulo and S.
Velasco-Forero, ISMM, 2017

IC29: Nonlinear Operators on Graphs via Stacks, S. Velasco-Forero and J. Angulo, Geometric
Science of Information, 2016.

IC30: Automatic selection of Stochastic Watershed Hierarchies, A. Fehri, S. Velasco-Forero and
F. Meyer, EUSIPCO, 2016.

IC31: Shrec’16 Retrieval of Human Subjects from Depth Sensor Data, A. Giachetti et al.,
Eurographics Workshop on 3D Object Retrieval, 2016.

IC32: A bayesian approach to linear unmixing in the presence of highly mixed spectra. B. Figliuzzi,
et al, International Conference on Advanced Concepts for Intelligent Vision Systems, 2016.

IC33: Objects co-segmentation: Propagated from simpler images M. Chen, S. Velasco-Forero,
I. Tsang and T.J. Cham, IEEE International Conference on Acoustics Speech and Signal
Processing, 2015

IC34: Inner-Cheeger Opening and Applications S. Velasco-Forero, Mathematical Morphology and
Its Applications to Signal and Image Processing, LNCS, vol. 9082, 2015.

IC35: Robust Anomaly Detection in Hyperspectral imaging J. Frontera-Pons et al., IEEE Inter-
national Geoscience and Remote Sensing Symposium (IGARSS), 2014.

IC36: SHREC-14 Track: Retrieval and classification on Textured 3D Models, S. Biasotti et al.,
Eurographics Workshop on 3D Object Retrieval, 2014.

IC37: On nonlocal mathematical morphology S. Velasco-Forero and J. Angulo, Mathematical
Morphology and Its Applications to Signal and Image Processing, LNCS, vol. 7883, pp.
219-230, 2013.

IC38: Stochastic morphological filtering and Bellman-Maslov chains J. Angulo and S. Velasco-
Forero, Mathematical Morphology and Its Applications to Signal and Image Processing,
LNCS, vol. 7883, pp. 171-182, 2013.

IC39: Supervised morphology for tensor structure-valued images based on symmetric divergence
kernels S. Velasco-Forero and J. Angulo, in Geometric Science of Information, vol. 8085,
pp. 543-550, 2013.



IC40: SHREC’13 Track: Retrieval on textured 3D models, A. Cerri et al., Eurographics Workshop
on 3D Object Retrieval, pp. 73-80, 2013.

IC41: Edge Extraction by statistical dependence analysis: Application to multi-angular Worldview-
2 series, L. Gueguen, S. Velasco-Forero and P. Soille, IGARSS International Geoscience
and Remote Sensing Symposium, pp. 3447-3450, 2012.

IC42: Robust RX Anomaly Detector without covariance matrix estimation, S.Velasco-Forero and
J. Angulo, 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in
Remote Sensing (WHISPERS), June, pp. 1-4, 2012.

IC43: Hit-or-Miss Transform in Multivariate Images S.Velasco-Forero and J.Angulo in Advanced
Concepts for Intelligent Vision Systems, vol. 6474, 2010, pp. 452-463, LNCS, 2010.

IC44: Statistical shape modeling using morphological representations, S. Velasco-Forero and Jesús
Angulo, In : 2010 20th International Conference on Pattern Recognition. IEEE, 2010. p.
3537-3540.

IC45: Semi-supervised hyperspectral image segmentation using regionalized stochastic water-
shed. Jesús Angulo. Semi-supervised hyperspectral image segmentation using regionalized
stochastic watershed. In : Algorithms and Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery XVI. International Society for Optics and Photonics, 2010. p.
76951F

IC46: Multiscale stochastic watershed for unsupervised hyperspectral image segmentation , J.
Angulo, S. Velasco-Forero and J. Chanussot, In : 2009 IEEE international geoscience and
remote sensing symposium. IEEE, 2009. p. III-93-III-96.

IC47: Morphological image distances for hyperspectral dimensionality exploration using Kernel-
PCA and ISOMAP, S Velasco-Forero, J Angulo, J. Chanussot, In : 2009 IEEE international
geoscience and remote sensing symposium. IEEE, 2009. III-109-III-112



B Teaching Activities and Industrial Collaborations

B.1 Teaching Responsibilities

• PreCalculus, Basic Statistics, University of Puerto Rico, 2014-2017.

• Statistics in Big Data, Department of Statistics, (50h) National University of Colombia,
2018, Summer Course.

• Statistics in Big Data, Department of Mathematics, (50h) Military University of Colombia,
2019, Summer Course.

• Deep Learning for Image Analysis with E. Decencière and T. Walter, (20h) (2019, 2020,
2021,2022), MINES ParisTech.

• Deep Learning for Image Analysis with E. Decencière and T. Walter, (20h) (2021,2022),
Master 2 IASD, PSL Dauphine

• Module of Machine Learning of Geosciences (4h) (2020,2021) (C-A. Azencott), École
Normale Supérieure d’Ulm.

• Module of Mathematical Morphology (2h) (2018,2021) (B.Marcotegui), École de Mines de
Paris.

• ECSIA mini-course (2h): Mathematical Morphology meets Deep Learning with Samy
Blusseau and Mateus Sangalli, 2021



B.2 Advisor Activities
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B.2.1 Master Students

MS1: Jairo Ivan Peña (2016) from National University of Colombia.

MS2: Umang Aggarwal (2017) was an intern at Mines ParisTech/École Normale Supérieure
collaborative project between CMM and EREEP, with E. Decencière.

MS3: Sami Jouaber (2018) from MINES ParisTech was an intern in a PGMO Project in collabo-
ration with S. Bonnabel and J. Angulo.

MS4: Yang Xiao (2018) from University Paris-Sud was an intern at CMM/MINES ParisTech in
collaboration with E. Decencière (Sponsored by L’Oréal).

MS5: Mael Abgrall (2018) was an intern at CMM/MINES ParisTech in collaboration with E.
Decencière (Sponsored by L’Oréal).

MS6: Yunxiang Zhang (2018) from École Polytechnique was an intern in a IMT Project in
collaboration with I. Bloch, S. Blusseau, and J. Angulo .

MS7: Bastien Ponchon (2018) from ENS Paris-Saclay was an intern in a IMT Project in collabo-
ration with I. Bloch, S. Blusseau, and J. Angulo.

MS8: Tristan Lazard (2019) from ENS/University PSL was an intern in collaboration with S.
Blusseau, and E. Decencière (Sponsored by L’Oréal).

MS9: Zyad Haddad (2019) from ESIEE was an intern in collaboration with S. Blusseau on Deep
Learning for Material Science (Sponsored by Safran).

MS10: Romain Pagès (2020) from École Centrale de Lyon was an intern in a PGMO Project in
collaboration with J. Angulo.

MS11: Josselin Lefèvre (2021) from ESIEE was an intern in a Mines/Safran Project collaboration
with S. Blusseau.

MS12: Ayoub Rhim (2021) from École des Ponts was intern in a PGMO Project in collaboration
with J. Angulo.

MS13: Pierre Onghena (2022) from Maastricht University is intern in collaboration with The
Cross Product

https://thecrossproduct.xyz/
https://thecrossproduct.xyz/


B.2.2 Ph.D. Students

Alumni

PH1: Amin FEHRI (2016-2018) (Coadvisor with F. MEYER)
Thesis title: “Image Characterization by Morphological Hierarchical Representations”.
Jury: I. BLOCH (Telecom Paristech), H. SAHLI (Vrije Universiteit Brussel), T. GERAUD
(Epita), C. GOMILA (Technicolor)
Current Position: Research scientist at Cairn Biosciences.

PH2: Leonardo GIGLI (2018-2021) (Coadvisor with B. MARCOTEGUI)
Thesis title: “Contributions to graph-based hierarchical analysis for images and 3D point
clouds”.
Jury: A. PLAZA (University of Extremadura), P. SOILLE (JRC), S. LEFÈVRE(Université
Bretagne Sud), B. PERRET (ESIEE Paris), R. KIRAN (NavyaTech) J. ANGULO(Mines
ParisTech)
Current Position: R&D Engineer at The Cross Product.

PH3: David DUQUE (2019-2021) (Coadvisor with B. MARCOTEGUI and J-E. DESCHAUD)
Thesis title: 3D urban scene understanding by analysis of LiDAR, color and hyperspectral
data
Jury: P. MONASSE (École des Ponts, ParisTech) , P. CHECCHIN(Université Blaise Pascal)
, A. NÜCHTER(Unversity of Würzburg) , S. LEFÈVRE (Université Bretagne Sud)
Current Position: R&D Engineer at The Cross Product.

PH4: Sami JOUABER (2019-2022) (Coadvisor with S. BONNABEL)
Thesis title: Utilisation de méthodes d’intelligence artificielle pour de nouveaux défis en
poursuite radar
Jury: A. GIREMUS (Université de Bordeaux) , F. BOUCHARA( Université de Toulon) ,
F. SEPTIER (Université Bretagne Sud) , M. PILTÉ (Thales LAS)
Current Position: PostDoctoral Researcher at CEA.

Current

PH5: Martin BAUW (Coadvisor J. ANGULO) (2020-2022)

PH6: Mateus SANGALI (Coadvisors J. ANGULO and S. BLUSSEAU) (2020-2022)

PH7: Valentin PENAUD POLGE (Coadvisor J. ANGULO) (2021-2023)

PH8: João CASAGRANDE BERTOLDO (Coadvisors E. DECENCIÈRE and J. ANGULO)
(2022-2024)

PH9: Stéfan BAUDIER (Coadvisor J. ANGULO) (2022-2024)

B.2.3 Post-doctoral researchers

• 2016: Diego TUCCILLO, postdoc in a collaborative project with E. DECENCIÈRE (Mines
Paris) and M. HUERTAS-COMPANY (Paris Observatory).

https://www.cairnbio.com/
https://thecrossproduct.xyz/
https://thecrossproduct.xyz/
https://www.cea.fr/


• 2017: Samy BLUSSEAU, postdoctoral researcher in CMM/Telecom ParisTech collaborative
project with J. ANGULO (Mines Paris), I. BLOCH (Telecom Paristech).

• 2022: Yuriy SINCHUK, postdoctoral researcher in a collaborative project with S.
BLUSSEAU and Safran Aircraft Engines.

B.3 Industrial Collaborations

• 2017-2022: L’Oréal, Industrial project on the use of deep learning methods and mathematical
morphology for histology image analysis.

• 2018-2022: Thales. Industrial/academic collaboration with the support of the DGA for the
use of AI methods in radar technology.

• 2019-2022: Safran Aircraft Engines: Industrial collaboration for the development of useful
methods for the analysis of tomography of materials.

• 2022: The Cross Product: Development of hierarchical segmentation methods for point
clouds.

B.4 Past projects

• COMSYS (2015-2016): Estimation de matrices de COvariance et Matrices de densité pour
des SYStèmes complexes (CARNOT MINES)

• M3S (2015-2016) Molecular detection with Multimodal microscopy scanner. M3S relies
on a previous proof of concept and aims at retrieving specific fingerprints for simplifying
Chronic Lymphocyte Leukaemia (CLL) as well as Malaria diagnosis and prognosis.

• REPLICA: (2019-2021) aims to complement existing simulation platforms with new bricks
in order to bridge the gap expected in autonomous vehicle testing.

https://thecrossproduct.xyz/
https://replica-project.com/index.php/fr/Project-replica/

	Contents
	List of Symbols
	Introduction
	0.1 Context
	0.2 Structure
	0.3 A personal point of view about Research

	1 Mathematical Morphology on Vector Images
	1.1 Introduction
	1.1.1 Notations
	1.1.2 Mathematical morphology
	1.1.3 Mathematical morphology on complete lattices
	1.1.4 Preorder by h-function
	1.1.5 Morphological analysis on the h-function

	1.2 Pre-ordering a vector space
	1.2.1 Unsupervised ordering
	1.2.2 Distance based ordering
	1.2.3 Ordering based on anomalies
	1.2.4 Implementation

	1.3 The False colours Problem Versus the Irregularity Issue
	1.3.1 The Wasserstein Metric and the generalised Sum of Pixel-wise Distances
	1.3.2 The Global Irregularity Index

	1.4 Perspectives

	2 Extensions of Mathematical Morphology
	2.1 Introduction
	2.2 Inf/Sup convolutions
	2.3 Geodesic Morphological Operations
	2.4 Toggle mapping
	2.5 Type of Structuring Elements
	2.5.1 Flat Structuring Element
	2.5.2 Quadratic Structuring Element
	2.5.3 Adaptive mathematical morphology

	2.6 Conditional Mathematical Morphology
	2.7 Perspectives

	3 Connection based Mathematical Morphology
	3.1 Introduction
	3.1.1 Notations

	3.2 A variety of morphological hierarchies
	3.2.1 Sequential combinations of hierarchies through chaining
	3.2.2 Gromov-Hausdorff distance as feature

	3.3 Looking for a good horizontal cut
	3.4 Streaming of Hierarchies based on MST
	3.5 End-to-End Similarity Learning and Hierarchical Clustering
	3.6 Perspectives

	4 Links between Deep/Machine Learning and Mathematical Morphology
	4.1 Introduction
	4.1.1 Convolutional Neural Networks

	4.2 Morphological Inspired Activation functions and Poolings
	4.3 Max-plus Operator as a Morphological Unit
	4.3.1 Introduction
	4.3.2 Max-plus Block
	4.3.3 Universal Function Approximator Property

	4.4 Learning a Morphological Empirical Mode
	4.4.1 Empirical Mode Decomposition (EMD)
	4.4.2 Varying the Envelope
	4.4.3 Derivatives of Morphological EMD in discrete domains

	4.5 Geodesic Operations for DCNNs
	4.5.1 Interpretation of Jacobian matrix
	4.5.2 Experimental section

	4.6 Sparse NMF representation and Mathematical Morphology
	4.6.1 Introduction
	4.6.2 Morphological operators on non-negative linear combinations
	4.6.3 Other contributions

	4.7 Perspectives

	5 Contributions in Anomaly Detection
	5.1 Introduction
	5.2 The RX-detector
	5.2.1 The RX-detector in High Dimensional Space

	5.3 Robust Estimation in Non-Gaussian Assumptions
	5.3.1 M-estimators
	5.3.2 Multivariate t-distribution Model

	5.4 Estimators in High Dimensional Space
	5.4.1 Sparse Matrix Transform

	5.5 Approaches based on Machine and Deep Learning
	5.5.1 Introduction
	5.5.2 One-class SVM
	5.5.3 Deep support vector data description
	5.5.4 Approximation by random projection depth
	5.5.5 From RPO to deep RPO
	5.5.6 Multisphere case
	5.5.7 Semisupervised case

	5.6 Perspectives

	6 Applications
	6.1 Image processing problems:
	6.1.1 Astronomy
	6.1.2 Counting Models
	6.1.3 Hyperspectral

	6.2 3D Shapes 
	6.3 3D Point Cloud/LIDAR

	References
	Appendix A Curriculum Vitae
	A.1 Personal information
	A.2 Research experience
	A.3 Education
	A.4 Professional Service
	A.4.1 Reviewer
	A.4.2 Participation on Ph.D. thesis jury

	A.5 Publications
	A.5.1 Patents
	A.5.2 Thesis
	A.5.3 Proceedings Editor
	A.5.4 International Journal
	A.5.5 Chapter Books
	A.5.6 International conference with lecture committee


	Appendix B Teaching Activities and Industrial Collaborations
	B.1 Teaching Responsibilities
	B.2 Advisor Activities
	B.2.1 Master Students
	B.2.2 Ph.D. Students
	B.2.3 Post-doctoral researchers

	B.3 Industrial Collaborations
	B.4 Past projects


