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Résumé en français

Cette thèse traite de l’étude des performances des réseaux cellulaires dynamiques aléatoires en
liaison descendante. La principale question posée dans ce manuscrit est la caractérisation de la
région de stabilité d’un réseau aléatoire lorsqu’un modèle de trafic est intégré à la description
de la géométrie du réseau. Nous commençons par caractériser la région de stabilité d’un réseau
aléatoire, c’est-à-dire l’ensemble des intensités de trafic à partir desquelles les files d’attente
des stations de base divergent. À partir de la notion de probabilité de couverture dynamique,
nous prenons en compte l’interaction entre les états des files d’attentes dans le réseau à l’aide
d’une modélisation par chaîne de Markov discrète des files d’attente, où le taux de service
de l’utilisateur typique dépend de la probabilité de couverture dynamique. Les cas des files
d’attente à taille finie et infinie sont traités. La région de stabilité indique à partir de quelle
intensité de trafic au moins une file d’attente dans le réseau diverge. On souhaite également
avoir une description plus fine du phénomène en répondant à la question "quelle est la
proportion de files d’attente instables dans le réseau?". Dans ce cas, on a recours à la notion
de ε-stabilité qui décrit l’ensemble des intensités de trafic pour lesquelles une file d’attente
prise au hasard a une probabilité de diverger inférieure à ε. Enfin, la caractérisation des
régions de stabilité en considérant l’allocation des ressource est très difficile à obtenir, à cause
de la dépendance entre la géométrie et la dynamique du réseau et la stratégie d’allocation.
Afin de s’affranchir de ce problème, nous proposons d’étudier la région de stabilité à l’aide
d’algorithme d’apprentissage par renforcement. La dynamicité du réseau considérée dans
cette thèse se prête parfaitement à la description par un processus décisionnel markovien
pour lequel des stratégies d’apprentissage par renforcement peuvent être proposées. Nous
étudions donc la région de stabilité lorsque la station de base typique peut choisir d’émettre
ou de rester silencieuse selon l’état du réseau observé.

Chapitre 1 : introduction

Ce chapitre présente les motivations de la thèse et le contexte des études des réseaux cellulaires
dynamiques en liaison descendante. Nous donnons ensuite la structure du manuscrit ainsi
que les contribution de la thèse. Le chapitre se termine par la liste des publications relative à
ces travaux.
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Chapitre 2 : préliminaires mathématiques

Les outils mathématiques utilisés dans cette thèse vont de la géométrie stochastique à l’ap-
prentissage par renforcement en passant par la théorie des files d’attente. Ce chapitre a pour
objectif d’introduire les principes et les principaux résultats qui seront utilisés par la suite
dans ces trois domaines.

Au niveau de la géométrie stochastique, ce chapitre illustre deux des théorèmes les plus
importants de la littérature sur les processus ponctuels de Poisson (PPP) : les théorèmes
de Slivnyak et de Campbell. Le théorème de Slivnyak établit qu’une statistique d’un PPP
conditionnée sur un point est la même que la statistique du PPP entier. Ce théorème permet
de se restreindre au calcul de la statistique du rapport signal à bruit plus interférence à l’origine,
et dire que cela est représentatif du reste du réseau. D’autre part, le théorème de Campbell est
utilisé pour calculer la valeur moyenne d’une somme de fonctions évaluées à l’emplacement
du point de traitement.

La dynamique des files d’attente est modélisée à l’aide de processus markovien qui sont
introduits dans ce chapitre. Les outils d’analyse de la distribution stationnaire d’une chaîne
de Markov de type naissance et mort sont introduits. Ils seront utilisés pour calculer les
probabilités des états de la file d’attente dans les chapitres 4 et 5.

Enfin, l’apprentissage par renforcement est introduit comme une solution à un problème
de décision séquentiel, dès lors que l’interaction de l’agent avec son environnement est
modélisée par un processus décisionnel markovien [3]. L’intérêt de cette approche est qu’elle
permet de trouver une politique de transmission optimale, dans un environnement incertain
sans modèle physique explicite de la communication pour effectuer l’allocation des ressources,
mais seulement par le biais d’essais et d’erreurs de la part de l’agent. À la fin de ce chapitre, nous
donnons les principes fondamentaux de l’apprentissage par renforcement avec l’équation de
Bellman, ainsi que deux algorithmes classiques d’implémentation : Q-learning et SARSA. Ces
algorithmes seront ensuite appliqués pour étudier des stratégies de transmission associées à
un problème d’optimisation.

Chapitre 3 : état de l’art

L’utilisation de la géométrie stochastique pour l’analyse des performances des réseaux aléa-
toires a fait son apparition il y a deux décennies avec l’émergence des réseaux ad-hoc mobiles.
À partir de 2011, ce domaine a reçu un intérêt croissant très important de la part de la commu-
nauté scientifique, grâce à des résultats analytiques relativement simples, issus de l’étude des
réseaux de points de Poisson. Depuis, les contributions théoriques et applicatives (celles qui
considèrent des modèles de réseaux de plus en plus complexes) n’ont cessé de se développer.
La plupart des résultats de la littérature supposent que les emplacements des stations de
base sont les points d’un PPP homogène et fonctionnant à pleine charge. Cette hypothèse de
modélisation est faite en raison de la simplicité mathématique de la formulation et cela permet
d’obtenir une borne pessimiste de la probabilité de couverture dans les réseaux cellulaires.

Dans ce chapitre, on introduit d’abord les résultats sur la probabilité de couverture [4],
et la notion de méta-distribution dans un réseau cellulaire [5]. La méta-distribution est la
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FIGURE 1 – Performances en cas de pleine charge.

probabilité qu’un noeud choisi aléatoirement dans le réseau soit couvert, ou de manière
équivalente, étant donné une réalisation du PPP, la proportion de noeuds couverts dans le
réseau. La figure 1a représente la probabilité de couverture d’un réseau à pleine charge avec et
sans bruit, resimulée à partir de [4]. La figure 1b est la méta-distribution du SINR dans un PPP,
simulée à partir de [5]. Cependant, et comme nous l’avons mentionné, le cas de pleine charge
peut être justifié pour les macro-cellules aux heures de pointe mais s’avère inexacte sur un
système réel soumis à des variations temporelles du trafic.

Dans la deuxième partie de ce chapitre, nous présentons le modèle spatio-temporel, ainsi
que les avantages et les faiblesses de la littérature traitant de ce modèle. Les travaux existants
sur les modèles dynamiques spatio-temporels peuvent être divisés en deux catégories. La
première catégorie est celle des modèles avec mobilité, cf. [6, 7, 8]. La deuxième catégorie est
celle des réseaux de Poisson statiques, où l’emplacement des émetteurs et des récepteurs est
fixe pendant toute une époque temporelle, cf. [9, 10, 11]. Dans ce travail, nous avons étudié les
réseaux de Poisson statiques.

Pour simplifier l’analyse, certains travaux [11, 10] supposent que l’évolution des files
d’attente est indépendante et identiquement distribuée entre toutes les stations de base. Ce-
pendant, dans les systèmes pratiques, les états des files d’attente sont corrélés temporellement
et spatialement entre les émetteurs. La nouveauté de notre travail réside dans la prise en
compte de la corrélation entre les interférences créées par toutes les stations de bases et l’état
des files d’attente au niveau des transmetteurs au cours du temps. Les travaux en [12, 13]
se sont intéressés à l’interaction entre la dynamicité des files d’attente et la topologie du
réseau. Cependant, les analyses de performance sont axées sur la probabilité de couverture.
Les questions de stabilité du système ne sont pas abordées, ce qui est l’objet de notre travail. Il
manque encore une description analytique simple pour étudier les performances de réseaux
dynamiques à grande échelle en tenant compte des corrélations spatio-temporelles. La figure 2
illustre une réalisation d’un processus ponctuel de Poisson homogène, où chaque émetteur
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FIGURE 2 – Réalisation d’un processus de Poisson homogène avec évolution de la file d’attente
dans chaque émetteur.

est équipé d’un buffer pour stocker les paquets.
Nous terminons ce chapitre en revenant sur les applications de l’apprentissage par ren-

forcement dans le domaine des communications numériques. Ces dernières années, l’ap-
prentissage par renforcement a été appliqué à des systèmes point à point afin de minimiser
l’énergie consommée sous contrainte de délai, par exemple [14, 15], ou à des réseaux cel-
lulaires réguliers pour gérer la question de la planification des connexions des utilisateurs,
e.g. [16, 17]. Au cours des deux dernières années, un petit nombre de travaux ont combiné
des outils de géométrie stochastique et d’apprentissage par renforcement pour étudier les
problèmes d’allocation des ressources pour les réseaux aléatoires, par exemple [18, 19], ou
pour les problèmes d’association d’utilisateurs, par exemple [20]. Cependant, aucun travail
jusqu’à présent n’a encore combiné le RA avec des réseaux dynamiques aléatoires pour éva-
luer la performance moyenne, ce qui est la principale direction que nous présentons dans le
chapitre 6. Cependant, aucun travail jusqu’à présent n’a encore combiné l’apprentissage par
renforcement avec la géométrie stochastique dans un réseau dynamique pour l’évaluation
de la performance moyenne de la RA, ce qui est la principale direction que nous présentons
dans le chapitre 6.A la fin de ce chapitre, nous listons les difficultés possibles pour exploiter
ensemble la SG et la RL pour étudier les réseaux cellulaires dynamiques.

Chapitre 4 : analyse de couverture des réseaux cellulaires dynamiques
en liaison descendante

La probabilité de couverture dynamique et la région de stabilité des réseaux cellulaires dy-
namiques sont traitées dans ce chapitre en considérant des files d’attente de taille infinie et
finie. L’évolution des files d’attente est modélisé par un processus de Markov à temps discret
pour capturer l’interaction entre la probabilité de couverture et l’évolution de l’état des files
d’attente. En régime stable, c’est-à-dire lorsque les files d’attente ne divergent pas, la probabi-
lité de couverture suit une équation du point fixe. Nous dérivons également le délai d’attente
moyen ainsi que la probabilité de perte de paquets lorsque la taille des files d’attente est finie.

La figure 3 illustre la probabilité de couverture et l’attente moyenne lorsque la taille des
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files d’attente est infinie. La figure 3a donne la probabilité de couverture, en régime stable,
en fonction du seuil de couverture, pour deux densités de réseau différentes, i.e. λ= 0.05 et
λ = 0.2, ainsi que les bornes supérieure et inférieure de la probabilité de couverture. Dans
cette figure, on compare également les résultats analytiques avec ceux de la simulation où l’on
peut remarquer une parfaite adéquation, validant les modèles théoriques proposés. On peut
observer que la probabilité de couverture se rapproche de la limite supérieure lorsque le seuil
θ est faible, alors qu’elle se rapproche de la limite inférieure lorsque θ est élevé. Cela vient du
fait que la probabilité de succès de transmission est inversement proportionnelle à la valeur
de θ. De plus, la région entre les limites supérieure et inférieure diminue lorsque la densité λ
des stations de bases diminue. En effet, le niveau d’interférence d’un utilisateur type diminue
lorsque la densité des stations de base diminue, de sorte que la limite supérieure est proche
de la limite inférieure. La figure 3b trace le délai moyen dans la file d’attente en fonction du
seuil de couverture pour différents taux d’arrivée de paquets. Comme le montre la figure, le
délai moyen croît exponentiellement avec le seuil de couverture, et tend vers l’infinie lorsque
le seuil approche une valeur critique délimitant la région de stabilité du réseau.

La figure 4 illustre les performances lorsque la taille de la file d’attente est bornée. L’impact
des différents taux d’arrivée de paquets et de la taille de la file d’attente sur la probabilité de
couverture, ainsi que sur la probabilité de perte de paquets, est illustré. On constate que la
taille de la file d’attente a peu d’influence sur la probabilité de couverture : en effet, si le réseau
est stable le nombre de paquets stockés dans la file d’attente reste faible. D’autre part, lorsque
le seuil de couverture augmente et pour un certain taux d’arrivée des paquets, les nouveaux
paquets entrant sont écartés à cause de la saturation de la file d’attente. Enfin, les simulations
de Monte-Carlo et l’analyse théorique montrent un très bon accord.
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FIGURE 4 – Probabilités de couverture et de perte de paquets avec une file d’attente finie.

Chapitre 5 : Analyse de la région ε-stable

Dans ce chapitre, on considère un réseau dynamique où chaque station de base à une file
d’attente infinie. Nous nous intéressons à la notion de région ε-stable, qui est définie comme
l’ensemble des taux d’arrivées tels que la proportion de files d’attente instables est inférieure
à ε.

Tout d’abord, nous dérivons des expressions analytiques les bornes supérieure et infé-
rieure. Ensuite, nous dérivons une approximation précise du taux d’arrivée critique, i.e. le
taux d’arrivée à partir duquel la probabilité de divergence d’une file d’attente dépasse ε, en
négligeant le régime transitoire dans le calcul de la probabilité de coupure. En particulier, le
modèle de chaîne de Markov discrète du chapitre 4 est utilisé pour gérer l’interaction entre la
probabilité de succès de la transmission et l’évolution de la file d’attente, afin d’obtenir une
approximation précise du taux d’arrivée critique.

La figure 5 représente les bornes et l’approximation de la région ε-stable. Les résultats
numériques révèlent que l’approximation proposée est plus informative que les bornes, qui
sont relativement lâches. En outre, l’écart entre les bornes supérieure et inférieure est faible
lorsque le seuil de couverture est petit. Les résultats révèlent également qu’un léger change-
ment dans le taux d’arrivée peut grandement affecter la fraction de files d’attente instables
dans le réseau. Les résultats montrent également que, dans certaines configurations de réseau,
de petites modifications du taux d’arrivée peuvent affecter considérablement le pourcentage
de files d’attente instables dans le réseau. Par exemple, lorsque le seuil de SIR θ =−5dB, le taux
maximal d’arrivée des paquets autorisé est de 0.7 si 20 % des files d’attente sont autorisées à
être instables ; lorsque toutes les files d’attente doivent être stables, le taux maximal d’arrivée
des paquets autorisé est de 0.

24



RÉSUMÉ EN FRANÇAIS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

upper bound (ana)

lower bound (ana)

upper bound (sim)

lower bound (sim)

 = 10 dB

 = -5 dB

(a) Bornes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

upper bound

lower bound

Approximation

simulation

 =-5 dB

 =0 dB

(b) Approximation.

FIGURE 5 – Limites et approximation de la région ε-stable.

Chapitre 6 : Politiques basées sur l’apprentissage par renforcement
dans les réseaux cellulaires dynamiques

Dans ce chapitre, nous proposons des politiques de transmission tenant compte de l’infor-
mation sur l’état du canal, de l’état des files d’attente et de l’interférence globale dans les
réseaux cellulaires dynamiques en liaison descendante. L’objectif est de trouver la politique de
transmission afin minimiser les coûts de transmission tout en limitant le coût d’attente dans
le buffer. Le problème est formulé à l’aide d’un processus de décision de Markov à horizon
infini et est résolu en ligne par apprentissage par renforcement. Nous analysons d’abord la
probabilité de stabilité de la politique gloutonne, i.e. le transmetteur émet dès qu’un paquet
est présent dans la file d’attente, qui sert de politique de référence pour étudier celles obtenues
par apprentissage. La politique gloutonne fournit une limite supérieure de la probabilité de
stabilité par rapport à la politique basée sur l’apprentissage par renforcement. Nous montrons
qu’il existe un compromis entre la probabilité de stabilité et les coûts de transmission qui
dépend de l’intensité du trafic. Les résultats numériques révèlent que les politiques basées sur
l’apprentissage maintiennent la même région de stabilité par rapport à l’algorithme glouton,
mais avec un coût de transmission inférieur.

La figure 6 montre la probabilité de stabilité p̃s en fonction de ξ sur ∆ f et q , où ∆ f est la
probabilité de succès de transmission avec un SIR croissant dans différents intervalles et q
est la probabilité d’activité d’une station de base interférente choisie au hasard. On constate
que la probabilité de stabilité p̃s diminue lorsque ξ augmente. De même, étant donné ξ dans
la figure 6a, on peut observer que p̃s est décalé vers une valeur plus élevée lorsque ∆ f = 0.3
par rapport à ∆ f = 0.5. Cela signifie qu’une plus grande probabilité de succès de transmission
assure une meilleure probabilité de stabilité. En outre, comme dans la figure 6b, plus l’activité
de la station de base interférente est faible, plus la probabilité de stabilité est élevée. Cela vient
du fait qu’un q plus grand entraîne un niveau de brouillage plus élevé, ce qui diminue le SIR
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au niveau de l’utilisateur type et réduit encore la probabilité de stabilité.
La figure 7 compare le coût total et la probabilité de stabilité des politiques en fonction

de l’intensité du trafic. Pour la même configuration de réseau, la politique basée sur l’ap-
prentissage est capable de maintenir la même région de stabilité à un coût de transmission
inférieure à la politique gloutonne. Il n’y a pas de différence significative de performance entre
les algorithmes Q-learning et SARSA qui convergent tous les deux vers la politique optimale.
Nous observons qu’il existe un compromis entre la probabilité de stabilité et le coût total des
politiques basées sur l’apprentissage. En effet, à mesure que l’intensité du trafic augmente, la
probabilité de stabilité diminue et l’agent a tendance à être plus actif dans l’envoi de paquets,
ce qui augmente d’autant le coût de transmission. Les politiques basées sur l’apprentissage par
renforcement permettent à l’agent d’ajuster de manière flexible la politique de transmission
en fonction de l’intensité du trafic et de la configuration du réseau, tandis que la politique
gourmande n’est sensible qu’aux états de la mémoire tampon.
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FIGURE 6 – Probabilité de stabilité avec la politique gloutonne.

Chapitre 7 : conclusions et travaux futurs

Ce chapitre conclut le travail et présente des extensions potentielles des travaux réalises dans
cette thèse. Par exemple :

• Le chapitre 6 se focalise sur la présence d’un seul agent dans le réseau, tandis que
les autres fonctionnent toujours avec une politique gloutonne, ce qui ne rend pas le
problème symétrique. L’extension à l’apprentissage par renforcement multi-agent est
une étape nécessaire pour analyser les performances du réseau avec cette stratégie. Ce-
pendant, l’extension est non-triviale car des problèmes d’instabilité peuvent apparaître
lorsqu’on envisage un apprentissage distribué décentralisé. La formulation théorique
d’un apprentissage multi-agents et les conditions de convergence restent à explorer.
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FIGURE 7 – Performance politique basée sur l’AR.

• Les travaux actuels portent sur les réseaux statiques, ce qui signifie que les émetteurs et
les récepteurs ne changent pas de position pendant la transmission. Dans une prochaine
étape, la mobilité pourrait être introduite ce qui posent la question de la modélisation
des flux de charge à travers les cellules.
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Chapter 1

Introduction

The massive connectivity of mobile devices, the demand for high data rates, and spectrum
limitations have imposed complicated interference situations on modern wireless systems.
In order to specify the quality of service of devices in large-scale wireless networks, coverage
probability is undoubtedly an important metric. To provide a unified mathematical framework
to characterize the coverage probability, stochastic geometry has been widely used in various
wireless systems, e.g., the device-to-device networks [21], the broadcast networks [22], and
the heterogeneous networks [23, 24], etc.

On the other hand, with the development of the multi-media and the evolution of mobile
applications, a large amount of data from different sources are transmitted simultaneously
in the same communication system. In these systems, the impact of the data traffic on the
network services is no longer negligible. The conventional approaches of network performance
analysis [4, 25, 26] heavily rely on the full buffer assumption, i.e., each base station has a
backlog of packets and is always transmitting. The performance of dynamic cellular networks,
while taking into account that interactive queues to be characterized, is the focus of this thesis.

This thesis is focused on characterizing the coverage probability and the ε-stable region
for downlink cellular networks with traffic-aware. However, we also revisit the performance
analysis of a fully-loaded downlink cellular network as part of the literature review. The initial
work starts with constructing tractable mathematical models to describe the coverage proba-
bility, queue delay, and packet loss probability, considering different application scenarios
with infinite and finite buffers. Subsequently, the ε-stable region is studied, which is the set of
arrival rates such that the proportion of unstable queues is not more significant than ε. Finally,
transmission strategies are studied by introducing the Markov decision process and solving it
online using reinforcement learning.

1.1 Background and motivation

Stochastic geometry successfully provided a unified mathematical framework to model dif-
ferent types of large-scale wireless networks by characterizing the statistics of the signal to
interference plus noise ratio (SINR) of a randomly chosen user [27]. Stochastic geometry
captures the spatial randomness of the wireless systems and can take into account fading,
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shadowing, and power control [27, 4, 5]. In the last decade, stochastic geometry has been
combined with more complex network models taking into account frequency reuse, multiple
antennas, multiple-tiers, or load-aware protocols, to cite a few.[28, 29, 12].

On the other hand, real systems are subjected to temporal traffic variations and sources
generate packets according to some stochastic processes [28]. The full-load hypothesis, which
assumes that each cell uses the same frequency band and is always transmitting, is not enough
to address the performance of practical systems because a transmitter in a cell is active only if
there are packets in its queue. Therefore, load-awareness is essential for practical performance
assessment. However, the interaction between queues, i.e., the state of one queue depends on
the state of the others, makes the problem mathematically rather involved [30].

A first attempt combining stochastic geometry and queuing theory has been granted in [7]
by considering a double-stochastic network, i.e., the users appear randomly in space and time
when they have a packet to transmit. However, the interaction between the queues at different
BSs are ignored. The works in [12, 13, 31, 32] pushed further the analysis of the interaction
between the queue dynamics and the topology of the network. A traffic-aware spatio-temporal
model for IoT devices supported by cellular uplink connectivity has been developed in [12].
The scalability and stability of the network, i.e., its ability to support a large number of devices
while the queues are not diverging, have been studied. Similarly, [33] assumed that the traffic
is generated at random spatial regions, rather than modeling the flow at each independent
user. In [13], a novel spatio-temporal mathematical framework is provided to analyze the
preamble transmission success probability of a cellular IoT network, where the number of
accumulated packets in the queues is approximated by a Poisson distribution. However, the
theoretical findings are not validated by simulations.

We develop a comprehensive approach to handle the interaction between the coverage
probability and the queueing state evolution using discrete time Markov chain (DTMC). A
simple model is considered, but contrarily to the state of the art [29, 8, 34], closed-form
expressions are given that make the bridge between the coverage probability and the fraction of
active base stations (BS) under conditional stable state. We also characterize the explicit upper
and lower bounds on the dynamic coverage probability. Besides, to the best of our knowledge,
all the works mentioned before studied the coverage probability with infinite queue lengths.
However, the packet loss probability is also an important performance measure needed for
the design of telecommunication networks. The quantity of interest is the probability of a
new packet is dropped when the buffer has a finite size [35, 36]. Subsequently, we proposed a
tractable mathematical model to analyze the coverage probability and packet loss probability
considering the buffer restriction. Particularly, we derive the closed-form expression of the
coverage probability that depends on the activity probability of a randomly chosen BS which
is related to the buffer length. We also characterize the packet loss probability of a randomly
chosen BS when the network convergence, i.e., DTMC works at stationary regime.

On the other hand, the primal consideration in queueing systems is about stability. For a
point-to-point system with random arrival and departure processes, the stable region requires
that the service rate be larger than the arrival rate. However, traffic conditions are more
complicated in a large-scale network with multiple queues since the service rate depends
on the state of all transmitters in the network. Then, sufficient and necessary conditions for
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system stability have been introduced and studied in [29], and meta-stability in [8], where
the network appears stable for possibly a long time and then suddenly exhibits instability.
Remarkably, the stochastic geometry and queuing theory have been merged to give sufficient
and necessary conditions for the stability of interacting queues [29]. However, this work
has considered a peer-to-peer network with constant link distances. On the other hand, the
stability and meta-stability of uplink random access network considering the data traffic have
been studied in [8]. The analysis in this work was based on a double-stochastic networks, i.e.,
space-time Poisson call arrivals. However, a single cell network is considered in this work,
thereby ignoring the interaction between the queues at different BSs.

We characterize the ε-stable region in a large scale dynamic downlink cellular network,
with multi-cells and random link distances, contrarily to [29]. Moreover, the ε-stable region
provides fine-grained information on the network stability and answers question such that
"what is the set of arrival rates such that the proportion of unstable queues in the network is
below ε, if the required signal-to-interference ratio (SIR) is θ?". The characterization of the
ε-stable region relies on the use of meta-distribution [5]. We provide closed-form expressions
for upper and lower bounds considering modified systems and Markov inequalities. Besides,
we propose an alternative definition of the ε-stable region and derive a tight approximation of
the critical arrival rate accordingly.

Our original works mentioned previous are based on simple transmission schemes, thus
the key performance metrics, such as coverage, delay, and ε-stable region can be characterized
as exact and tractable expressions. Decoupling the SIR analysis and the statuses of the queues
at all BSs is difficult when we consider adaptive transmission policies. The difficulty of the
performance analysis lies in the fact that the SIR relies on the statuses of the queues at all BSs,
and on the other hand the SIR at the users also affects the statuses of the queues.

Reinforcement learning is one of the most important research directions of machine
learning, which has significantly impacted the development of artificial intelligence over the
last 20 years. RL is a learning process in which an agent can periodically make decisions,
observe the results, and then automatically adjust its strategy to achieve the optimal policy
[37, 38]. However, since the nature of the problems studied with SG or RL is so fundamentally
different, it is rare to find common ground where the strength of these tools can be jointly
leveraged. In the end of this manuscript, we investigate the transmission policies considering
the channel state information and queue states and interference in dynamic downlink cellular
networks. The problem is formulated with a countable state, infinite horizon, discounted cost
Markov decision process (MDP) with infinite buffer assumption, and solving it online using
RL. The goal is to minimize the transmission costs possible while limiting the delay cost in the
buffer of typical BS. In the end, we compare the performance with greedy algorithm.

1.2 Structure of the thesis and contributions

The manuscript is organized as follows:

• Chapter 2. We review the important definitions, properties, lemmas, theorems, etc. from
stochastic geometry, queuing theory as well as reinforcement learning that are used
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later in subsequent chapters.

• Chapter 3. We first review the coverage probability and meta-distribution of downlink
cellular networks with base stations operating at full capacity. We then present the
spatio-temporal model with traffic awareness and the advantages and disadvantages
of the literature dealing with this problem. We conclude the chapter by returning to
the application of reinforcement learning in digital communications and listing the
difficulties that can be encountered when combining SG and RL to study dynamic
cellular networks.

• Chapter 4. We develop a comprehensive approach to deal with the interaction between
coverage probability and traffic evolution using discrete-time Markov chains. Contrary
to the state of the art, we give closed expressions for the stable coverage probability and
build bridges to the probability of being active at an arbitrary interfering base station.
In addition, we describe upper and lower bounds on the dynamic coverage probability.
When the base stations are equipped with infinite buffer, we calculate the average
queue delay. The numerical results show that when the network is stable, the average
delay stabilizes at a small value, and when the network is unstable, the average delay
plummets to infinity. In the end, when base stations are equipped with finite buffer, we
characterize the effect of buffer length on the coverage and packet loss probability.

• Chapter 5. We study the stability region of packet arrival rates in dynamic downlink cel-
lular networks, where each base station has an infinite buffer. We introduce the ε-stable
region concept and derive the corresponding upper and lower bounds. Furthermore,
we propose an alternative definition of the ε stability and derive the approximation of
the critical arrival rate accordingly. In particular, the DTMC model in the chapter 4 is
used to deal with the interaction between transmission success probability and queue
evolution to obtain an approximation of the critical arrival rate.

• Chapter 6. We consider the problem of reinforcement learning-based transmission poli-
cies considering channel state information, queueing state, and dynamically aggregated
interference in large-scale networks with multiple cells and random link distances. The
goal is to minimize the transmission cost while limiting the waiting cost in the buffer.
First, we give closed-form expressions for the stable probability based on different poli-
cies, and the results show that the greedy policy provides an upper bound on the stable
probability than the RL-based transmission policy. Second, there is a tradeoff between
the stable probability and the transmission cost. However, numerical results show that
the RL-based strategy can achieve the same stable probability but lower transmission
cost than the greedy algorithm.

• Chapter 7. This chapter provides the conclusions and future perspective of our works.
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Chapter 2

Mathematical Background

2.1 Stochastic geometry

Cellular networks are based on the concept of replacing a single cell with high power BS by
several cells with low power BSs for higher system capacity [39]. Performance of cellular
networks depends largely on the location of BSs and users. Stochastic geometry (SG) is a field
of applied probability that aims at providing tractable mathematical models and appropriate
statistical methods to study and analyze random phenomena on the plane R2 or in larger
dimension [40]. Besides, SG enables to study the behaviours of wireless networks averaged
over random spatial realization. Our work includes the modelling the network nodes by
Poisson point process (PPP) leveraging the tools from stochastic geometry, particularly the
point process theory. We review important definitions, properties and theorems related to
Poisson point process from [25, 41], which we will used in the subsequent chapters.

2.1.1 Poisson point process

A Poisson point process is a random collection of points and plays a fundamental role in the
description of the network geometry. A Poisson point process can be defined as follows.

Definition 2.1 ([41]). A point process with intensity measureΛ is a Poisson point process (PPP)
if for every compact B ∈Rd ,Φ(B) has a Poisson distribution with meanΛ(B), that is

P (Φ(B) = k) = e−Λ(B)Λ(B)k

k !
(2.1)

IfΛ admits a density λ, the Poisson distribution can be expressed as

P(Φ(B) = k) = exp

(
−

∫
B
λ(x)d x

)
· (

∫
B λ(x)d x)k

k !
(2.2)

A consequence of this definition is the independence property: If B1,B2, · · · ,Bn are disjoint
compact sets, thenΦ(B1),Φ(B2), · · · ,Φ(Bn) are independent.

Due to its analytical tractability and analytical flexibility, PPP has been the "model of
choice" in many researches in the last decades [27]. In the following, we will discuss key
proprieties underlying such tractability.
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Property 2.1 (Superposition). The superposition of two independent PPPΦ1 with density λ1

andΦ2 with density λ2, is another PPP with density λ1 +λ2.

Property 2.2 (Independent thinning). Independent selection of points in a PPP with probability
p results in another PPP with density pλ. This is known as independent thinning.

Property 2.3 (Stationary PPP). A PPPΦ is stationary if its distribution is translation invariant,
i.e., ifΛ(B) =λ|B | for all B. A stationary PPP can also be called uniform or homogeneous.

When PPP is stationary, the statistical characteristics seen from a homogeneous PPP are
independent of the observation location. In other words, the interference characterized on an
arbitrary test point is equivalent to the interference characterized at any other location in R2

including the points inΦ.
In Poisson networks, the probability densities of the distances from a point to its nth

nearest neighbor are given in a simple form [42]. We focus on a ball b(o,r ) of radius r centered
at the origin o.

Property 2.4 (Distances). The distribution of the distance from origin to the nth nearest node is

Gn(r ) = 1−P(Φ(b(o,r )) < n)

= 1−exp(λcd r d )
n−1∑
k=0

(λcd r d )k

k !
(2.3)

where cd = |b(o,r )| = πd/2

Γ(d/2+1) is the volume of the unit ball in d dimensions, andΦ(b(o,r )) is
the number of points within the ball b(o,r ). When taking the derivation, the probability density
is the generalized gamma distribution

gn(r ) = exp(−λcd r d )
d(λcd r d )n

rΓ(n)
(2.4)

when n = 1,d = 2, (2.4) reduces to Rayleigh distribution with mean 1
2
p
λ

.

The main observation to obtain (2.3) is that the nth-nearest node is at at distance larger
than r if there are at most n −1 nodes in b(o,r ). The distribution of the interpoint distances
is important in the performance evaluation of wireless networks. For example, when user
terminals and BSs follow two independent PPP, and each user connect to its nearest BS, the
probability density function (PDF) of the distance from user to its serving BS can by easily
obtained by Property 2.4 when n = 1.

2.1.2 Slivnyak-Mecke theorem

Slivnyak’s theorem states that for a Poisson point processΦ, since all points are independent
of each other, conditioning on a point at x does not change the distribution of the rest of the
process.
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Theorem 1 (Palm distribution). The reduced Palm distribution equals the distribution of the
PPP itself and can be written as

P!x ≡P (2.5)

where P is the distribution of the PPP, and P!x is the reduced Palm probability, defined as the
distribution of the PPP assuming a point at x ∈Rd .

It is often desirable to make statistical statements about a randomly selected (or "typical")
point in a point process. However, we cannot simply pick a point uniformly from an infinite
number of points, and if we define a rule on how to pick such a point, we introduce biasing
because the rule will have to depend on the point’s surroundings. To solve this issue, we
usually define the point process to have a point at a specific location, i.e., the Palm distribution
[41].

2.1.3 Functions of point process

The mean of sum and product of functions evaluated at points of a point process have a wide
range of applications in wireless communications, and they are described in the following.

Theorem 2 (Campbell’s theorem [25]). For a PPPΦwith intensity measureΛ and a measurable
function f :Rd →R+, the expectation of the sum of f is

E

[ ∑
x∈Φ

f (x,Φ)

]
=

∫
Rd
E
[

f (x,Φ∪x)
]
Λ(d x) (2.6)

and

E

[ ∑
x∈Φ

f (x,Φ\x)

]
=

∫
Rd
E
[

f (x,Φ)
]
Λ(d x) (2.7)

The first form is obtained because conditioning on a point at x is the same as adding
that point, and the second (reduced) form follows from (2.5) because P!x ≡P. Note that the
expectation on the left side of the equation cannot be placed inside the summation, since the
summation is random and is a function ofΦ.

The expected product over a point process is called Probability generating functional
(PGFL), named equivalently the Laplace functional, defined as follows.

Definition 2.2 (PGFL). For a measurable function f (x) :Rd → [0,1] such that 1− f has bounded
support, the PGFL G[ f ] of the point processΦ is defined as

G[ f ], E

[ ∏
x∈Φ

f (x)

]
(2.8)

Theorem 3 (PGFL of PPP [25]). For a PPP Φ with intensity measure Λ and a measurable
function f :Rd → [0,1], the PGFL of the PPP is

G[ f ] = E
[

exp

(
−

∫
Rd

(1− f (x)Λ(d x))

)]
(2.9)

37



CHAPTER 2. MATHEMATICAL BACKGROUND

PGFL is often used in the evaluation of Laplace transform of
∑

x∈Φ f (x), which can be
expressed as

E

[
exp(−s

∑
x∈Φ

f (x))

]
= E

[ ∏
x∈Φ

exp(−s f (x))

]
= exp

(
−

∫
Rd

(
1−e−s f (x)Λ(d x)

))
(2.10)

Since the signal-to-interference ratios are determined by relative distances, it is sometimes
convenient to work directly with the point process of relative distances, introduced in [43].
For the stationary PPP, the distance relative to the nearest point and the PGFL function are
tractable also and given next.

Theorem 4 (PGFL of relative distance process (RDP) [43]). For a stationary point processΦ, let
x0 = argmin{x ∈Φ : ‖x‖} be the point closest to the origin. The relative distance process (RDP) is
defined as

R ,
{

x ∈Φ\{x0} :
‖x0‖
‖x‖ ∈ (0,1]

}
. (2.11)

WhenΦ is a PPP, the PGFL of the RDP is

GR[ f ] = 1

1+2
∫ ∞

0 (1− f (x))x−3d x
, (2.12)

for functions f : [0,1] → [0,1] such that the integral in the denominator of (2.12) is finite.

In the next chapters, Campbell’s theorem and PGFL theorem are widely applied to calculate
the expectation of interference functional with the form E[e−sI ], where I is the interference
power.

2.1.4 Moment measures

Definition 2.3 (Moment measures). The nth moment measure of a point processΦ is defined
as the expected product of the number of points falling in regions B1,B2, · · · ,Bn ∈B, where B is
the Borel σ-algebra.

µ(n) (B1 ×B2 ×·· ·×Bn), E [Φ(B1)Φ(B2) · · ·Φ(Bn)] (2.13)

The nth moment measure can also be viewed as the intensity measure of the product
point processΦ(n) =Φ×·· ·Φ︸ ︷︷ ︸

n times

. The element ofΦ(n) are the n-tuples (x1, x2, · · · , xn) ∈Rnd , where

xk ∈Φ is a point of a point process.
For n = 1, the moments measure reduce to the intensity measure. For n = 2, and B1 = B2 =

B , we have µ(2)(B 2) = E[Φ(B)2], and thus

var(Φ(B)) =µ(2)(B 2)−Λ(B)2 (2.14)

In Chapter 5 and Chapter 6, the moment measures are generally used to calculate the meta
distribution, the ε-stable region, which will be defined later.
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2.2 Queuing theory

The real systems are subjected to temporal traffic variations and sources generate packets
according to some stochastic processes [28]. Markov process is a special stochastic process
in which the state of the system in the future is independent of the past history of the system
but dependent only on the present. In our work, we model the traffic by discrete Markov
process and later modelling the traffic and the strategies by discrete Markov decision process.
This section provides the definitions and basic tools related to Discrete-Time Markov chains
(DTMC), and the matrix-analytical method for Markov chains used in next chapters, which are
reproduced mostly from [35] unless otherwise mentioned.

2.2.1 Discrete-time Markov chains

Definition 2.4. Consider a discrete time stochastic process X0, X1, · · · with discrete (i.e. finite or
countable) state space, Ic = {i0, i1, i2, · · · }. If

P{X t+1 = it+1|X t = it , X t−1 = it−1, · · · , X0 = i0} =P{X t+1 = it+1|X t = it } (2.15)

holds for any time t, and states it+1, it , it−1, · · · , i0, then X t is said to be a discrete-time Markov
chain. If further we have

P{X t+m+1 = j |X t+m = i } =P{X t+1 = j |X t = i }, ∀(i , j ) ∈I 2,∀m ≥ 0, (2.16)

then the Markov chain is time-homogeneous or stationary.

Generally we say

pi , j =P{X t+1 = j |X t = i }, (2.17)

and the basic properties of the elements of the transition probability of a Markov chain are

0 ≤ pi , j ≤ 1, ∀(i , j ) ∈I 2 (2.18)∑
j∈I

pi j = 1. (2.19)

DTMC has many useful proprieties that make it tractable.

Property 2.5 (Irreducible Chain). A Markov chain in which every state can be reached from
every other state is called an irreducible Markov chain.

Property 2.6 (Absorbing Chain). A Markov chain is said to be an absorbing chain if at least for
one of its states i , P{X t+1 = i |X t = i } = pi ,i = 1.

Property 2.7 (Recurrent Markov Chain). A Markov chain is said to be recurrent if all the states
of the chain are recurrent. A state i is positive recurrent (or non-null persistent) if the expected
return time is finite, i.e., E[inf{t > 1 : X t = i }] <∞.

Property 2.8 (Ergodic Markov Chain). An irreducible Markov chain is said to be ergodic if all
its states are aperiodic and positive recurrent.
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2.2.2 Matrix-analytical method for DTMC

In the queueing theory, Kendall’s notation is the standard system used to describe and classify
a queueing node [44]. The queueing models use three factors written A/S/c. Specifically, A
denotes the distribution of inter-arrival time, S gives service time distribution (time between
service start and completion), c is the number of service channels opens at the node. Some
common notations of arrival process and the service time distribution is shown in Table 2.1
and Table 2.2.

Symbol Name Description
M Markovian or memo-

ries
Exponential inter-arrival time [45]

M X Batch Markov A generalization Markovian arrival process by allowing
dependent inter-arrival time, correlated batch sizes [46]

D Degenerate distribu-
tion

A deterministic or fixed inter-arrival time [47]

Geo Geometric distribution Geometric inter-arrival time [48, 49]
PH Phase-type distribu-

tion
Phase-type distribution constructed by a convolution or
mixture of exponential distributions [12, 50]

G (GI) General distribution General independent arrival process [51]

Table 2.1 – The arrival process.

Symbol Name Description
M Markovian Exponential service time [45]
D Degenerate distribu-

tion
A deterministic or fixed service time [52]

G (GI) General distribution Independent service time [53]
MMPP Markov modulated

Poisson process
Exponential service time distributions, where the rate
parameter is controlled by a Markov chain [54]

Table 2.2 – The service time distribution.

The matrix-analytical method (MAM) is a technique to compute the stationary probability
distribution of a Markov chain which has a repeating structure (after some point) and a state
space which grows unboundedly in no more than one dimension [35]. The matrix-analytical
method is most suited to three classes of Markov chains: i) those with the GI/M/1 structure
[55] ii) those with the M/G/1 structure [35], iii) and those with the Quasi-Birth-and-Death
(QBD) structure which actually embodies the combined properties of both the GI/M/1 and
M/G/1 structures. Since the QBD DTMC is widely used in the following chapters, we mainly
characterize this structure.
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The transition matrix P of QBD DTMC has the following structure [35]:

P =


B C
E A1 A0

A2 A1 A0

A2 A1 A0
. . .

. . .
. . .

 (2.20)

where B ∈R, C ∈R1×n , E ∈Rn×1, A0 ∈Rn×n , A1 ∈Rn×n and A2 ∈Rn×n are sub-stochastic metrix
that capture the transitions between queue levels. Specifically, the sub-matrix A0 capture
the event where a new task arrives; A1 capture the event the number of tasks in the queue
unchanged; A2 capture a service completion occurs and no new task arrive, which decreases
the number of tasks in the queue by one. Boundary vectors B, C, and E captures the transition
from idle-to-idle, idle to level and from level to idle, respectively.

If P is irreducible and positive recurrent then the stationary distribution is given by the
solution

xP = x, xe = 1 (2.21)

where x = [x0,x1, · · · ,xi , · · · ] is the row vector that contains the steady-state probabilities and e
represents a vector of suitable dimension with all values equal to 1.

The calculation of stationary distribution with QBD structure often requires the introduc-
tion of two important matrices, i.e., R and G, which are given as

R = A0 +RA1 +R2A2 (2.22)

and

G = A2 +A1G+A0G2 (2.23)

R and G are the minimal non-negative solutions of (2.22) and (2.23), respectively. Further, a
relationship between R and G are

R = A0(I−A1 −A0G)−1 (2.24)

G = (I−A1 −RA2)−1A2 (2.25)

Noted that R can be computed using cyclic reduction method, invariant subspace method or
logarithmic reduction method, which are detailed in [35]. Once R is obtained, x0 and x1 and
therefore iteratively all the xi can be solved according to

xi+1 = xi R, i ≥ 1 (2.26)

and (
x0 x1

)(B C
E A1 +RA0

)
= (

0 0
)

(2.27)

In the following chapters, the traffic at each BS is usually modeled by the QBD DTMC, and
matrix-analytical method is used to calculate the stationary distribution of the Markov chain.
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2.3 Reinforcement learning

Reinforcement learning is a subclass of machine learning approach that learns online to
maximize a long-term reward without any priori information. The methodology is to discover
which actions yield the most valuable reward by trying them. Five main elements identify
an RL system: the agent that can perceive the environment states and can take actions that
affect the state; the environment in which the agent lives and interacts; the policy, which is a
mapping from states to actions; and a reward signal that quantifies the quality of the actions.
Fig. 2.1 diagrams the agent–environment interaction.

Figure 2.1 – The agent–environment interaction in reinforcement learning [1].

Definition 2.5 (Reinforcement learning [1]). At each time t , the agent receives some representa-
tion of environment state S(t ) ∈S and a numerical reward R(t ) ∈R, where S and R are the
state space and reward space, respectively. On that basis the agent selects an action A(t) ∈A

to collect a new reward R(t +1) at state S(t +1) at time t +1, where A is the action space. The
objective is to develop the RL policy π: S →A that maximizes the long term return in state S.

RL are typically modeled using an Markov decision process (MDP) framework. The MDP
provides a formal model to design and analyze RL problems as well as a rigorous way to design
algorithms that can perform optimal decision making in sequential scenarios. We introduce
the MDP first.

2.3.1 Markov decision process

An MDP is made of four components: a set of states, a set of actions, a transition kernel, i.e.,
the stochastic law of states transition given an action and a reward. Given any state and action
s and a, the probability of each possible pair of next state and reward, s′, r is denoted as [37]

p(s′,r |s, a),P
[
S(t +1) = s′,R(t +1) = r |S(t ) = s, A(t ) = a

]
(2.28)

the expected value for state-action pairs is

r (s, a), E[R(t +1)|S(t ) = s, A(t ) = a] = ∑
(s′,r )∈S ×R

r p(s′,r |s, a) (2.29)
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the state-transition probabilities is

p(s′|s, a),P
[
S(t +1) = s′|S(t ) = s, A(t ) = a

]= ∑
r∈R

p(s′,r |s, a) (2.30)

and the expected rewards for state-action-next-state triples is

r (s, a, s′), E
[
R(t +1)|A(t ) = a,S(t +1) = s′,S(t ) = s

]= ∑
r∈R r p(s′,r |s, a)

p(s′|s, a)
(2.31)

A policy defines how the agent behaves in a given state and specifies the best sequence
of actions to get the maximum reward on the long run. The policy maps states to actions, i.e.
π : S →A . The policy can be deterministic or stochastic. A deterministic policy is a single or a
set of deterministic actions when an agent encounters state S(t ). A stochastic policy is defined
as a conditional probability measure of A(t) given S(t) , i.e., PA(t )|S(t )(a|s), which is usually
simply denoted as π(a|s).

A state-value function, vπ(s), is a measure of the overall expected return assuming that the
agent is in state s and follows a policy π. An action-value function, qπ(s, a), also called Q-Value
(where Q is abbreviation from the word Quality), is a measure of the overall expected return
assuming that the agent is in state s, takes an action a, and follows a policy π.

Definition 2.6 (State-value function). The state-value function is the expected return starting
from s, and thereafter following policy π

vπ(s) = Eπ
[ ∞∑

t=0
ηt R(t +1)|S(0) = s

]
(2.32)

where η< 1 is the discount factor emphasizing more immediate rewards, Eπ[·] denotes the
expected value of a random variable given that the agent follows policy π.

Definition 2.7 (Action-value function). The action-value function is the expected return start-
ing from s, taking the action a, and thereafter following policy π

qπ(s, a) = Eπ
[ ∞∑

t=0
ηt R(t +1)|S(0) = s, A(0) = a

]
(2.33)

A remarkable property of the value function is that it follows a recursive relation that is
widely known as the Bellman equation [56, 37].

2.3.2 Bellman equation for a single agent

For any policy π and any state, one can prove the following consistency condition holds
between the value of s and the value of its possible successor states [37]

vπ(s) = ∑
a∈A

π(a|s)
∑

(s′,r )∈S ×R

p(s′,r |s, a)[r +ηvπ(s′)] (2.34)

The expression in (2.34) has to be seen as the expectation of the random variable R(t +
1)+ηvπ(S(t +1)) over the joint distribution PA(t )|S(t )PS(t+1)R(t+1)|S(t )A(t ). The Bellman equation
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links the state-value function at the current state with the next state-value function averaged
over all possible states and rewards knowing the current state and the policy π.

Similarly, the action-value function can be expressed as

qπ(s, a) = ∑
(s′,r )∈S ×R

p(s′,r |s, a)[r +ηvπ(s′)] (2.35)

The relationship between vπ(s) and qπ(s, a) is

vπ(s) = ∑
a∈A

π(a|s)qπ(s, a) (2.36)

The optimal state-value and action-state value functions are obtained by maximizing vπ(s)
and qπ(s, a) over the policies, that is [37]

v∗(s) = max
π∈Ψ

vπ(s), ∀s ∈S , (2.37)

and

q∗(s, a) = max
π∈Ψ

qπ(s, a),∀s ∈S , a ∈A , (2.38)

whereΨ is the set of all stationary polices, i.e., policies that do not evolve with time.
Moreover, (2.37) can be written w.r.t. (2.38) as v∗(s) = maxa∈A q∗(s, a), the optimal state

value function also obeys to the Bellman recursion [37]

v∗(s) = max
a

∑
(s′,r )∈S ×R

p(s′,r |s, a)
[
r + v∗(s′)

]
(2.39)

Besides, by substituting v∗(s′) in (2.39) with the maximum over the actions of q∗(s′, a′), we
can obtain the optimal bellman equation of action-state value function:

q∗(s, a) = ∑
(s′,r )∈S ×R

p(s′,r |s, a)

[
r +ηmax

a′∈A
q∗(s′, a′)

]
(2.40)

A policy π is defined to be better than or equal to a policy π′ if its expected return is greater
than or equal to that of π′ for all states. In other words, π ≥ π′ if and only if vπ(s) ≥ vπ′(s)
for all s ∈ S . The optimal strategy is labeled as π∗, which is corresponding to the optimal
action-value function q∗(·).

2.3.3 Q-learning and SARSA algorithm

Reinforcement learning enables an agent to learn timely in a trial-and-error manner as time
goes by t = 1,2, · · · without the need for external supervision [1]. There are two main ap-
proaches of temporal difference learning, namely, off-policy and on-policy, that differ among
themselves in the way in which the action-value in (2.40) is updated. A popular off-policy
approach is Q-learning [57], and a popular on-policy approach is the current State, current
Reward, next State and next Action (SARSA) [58]. In chapter 6, both Q-learning and SARSA are
used to investigate the optimal strategy, we introduce as following.
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The basic idea of Q-learning algorithm is to build a new estimate from an old estimate,
which is updated by an incremental difference between a target and the old estimate. This can
be formalized as follows:

qt (S(t ), A(t ))︸ ︷︷ ︸
new estimate

← qt (S(t ), A(t ))︸ ︷︷ ︸
old estimate

+αt

Tt+1︸︷︷︸
target

−qt (S(t ), A(t ))︸ ︷︷ ︸
old estimate

 , (2.41)

where 0 <αt < 1 is the learning rate. The learning rate tells us how much we want to explore
something new and how much we want to exploit the current choice. Higher learning rate αt

increases responsive to the difference between the target and old estimate. The learning rate
should satisfy the following conditions:

∑∞
t=0αt =∞ and

∑∞
t=0α

2
t <∞. Note that α can also be

taken as a constant less than one, and hence not satisfying the conditions above. However in
practice, learning tasks occur over a finite time horizon hence the conditions are satisfied.

In the Q-learning algorithm, the target in (2.41) is equal to:

Tt+1 = R(t +1)+ηmax
a′∈A

qt (S(t +1), a′), (2.42)

which is the algorithmic from of the Bellman equation in (2.40). When the algorithm has
converged, Tt+1 should be equal to qt (S(t ), A(t )), nullifying the difference term in (2.41).

To choose an action in an arbitrary state, either exploitation or exploration methods can
be used. Exploitation selects the best-known (greedy) action that maximizes the Q-values as
follows:

a∗ = argmax
a∈A

qt (S(t ), a) (2.43)

Exploration selects a random action so that its Q-value can be updated in order to discover
better actions in a dynamic and stochastic operating environment as time progresses.

To balance between exploitation and exploration, the ε-greedy policy is a widely used
technique. It consists in randomly choosing an action with probability ε and the action that
maximize the current action-value at time t with probability 1−ε. ε can be kept constant or
may vary during the learning in order to explore more at the beginning. Mathematically, the
ε-greedy policy can be expressed as

a∗ =
{

argmaxa∈A qt (S(t ), a) with probability 1−ε
a ∈A with probability ε

(2.44)

Above all, Algorithm 1 shows the classical Q-learning algorithm embedded in the agent.

Algorithm 1 Classical Q-learning algorithm

(1) begin procedure
(2) Observe current state S(t )
(3) Select action A(t ) using (2.43) or ε-greedy policy in (2.44)
(4) Receive immediate reward R(t +1)
(5) Update Q-value qt (S(t ), A(t )) using (2.41)
(6) end procedure
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In SARSA, the updating the Q-value depends on the agent’s current state S(t ), the action
A(t) chosen by the agent, the reward R(t) received by the agent for choosing this action,
the state S(t + 1) entered by the agent after taking this action, and finally the next action
A(t+1) chosen by the agent in the new state S(t +1). Thus one iteration of SARSA is a quintet
(S(t ), A(t ),R(t ),S(t +1), A(t +1)). Q-learning updates the estimate of the best action-value
function based on the maximum reward of available actions, while SARSA learns the Q-value
associated with the adoption of a policy, it follows a rule, e.g., ε-policy. In Fig. 2.2, we illustrate
the updating rules.

Figure 2.2 – The difference between Q-learning and SARSA.

Besides, there are also some classical RL algorithms, such as policy-based algorithm (e.g.,
Policy Gradient), Actor-Critic, Proximal policy optimizations. Some advantages and limitations
of the most common RL algorithms are listed below in Table 2.3.

ML Approach Advantages Limitations

Q-learning

(i) Learn directly the optimal policy
(ii) Less computation cost (iii) Rel-
atively fast (iv) Efficient for offline
learning

(i) Use of biased samples (ii) High
per-sample variance (iii) Computa-
tionally expensive

SARSA (i) Fast (ii) Efficient for online learn-
ing datasets

(i) Learns a near-optimal policy
while exploring (ii) Not very efficient
for offline learning

Policy Gradient
(i) Capable of finding best stochastic
policy (ii) Effective for high dimen-
sionallity datasets

(i) Slow convergence (ii) High vari-
ance

Actor Critic
(i) Reduces variance with respect to
pure policy methods (ii) More sam-
ple efficient than other RL methods
(iii) Guaranteed convergence

(i) Must be stochastic

Table 2.3 – Advantages and limitations of RL methods [2].
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2.4 Conclusion

In this chapter, after describing a brief history of stochastic geometry and its application to
analyze network performance, we presented general definitions and notations of the spatial
point processes that will be used in this thesis. We outlined the Poisson point process and its
properties. Then, we presented the discrete time Markov chain as well as Matrix analytical
method to solve the stationary distribution of DTMC, which will be used to model the traffic
in the subsequent chapters. In the end, we introduced the reinforcement learning model as
well as the classical algorithms. In the next chapter, we present a state of art of approaches
that deal with the performance analysis in PPP networks. In particular, we review the recent
techniques that have been proposed to model the spatio-temporal cellular networks.
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Chapter 3

State of the art

3.1 Stochastic geometry modeling

Stochastic geometry has become a necessary theoretical tool for analyzing and characterizing
large-scale wireless systems in the last decades [42]. The key idea, in the application of the SG
to wireless network analysis, is to model the locations of BSs and user equipments (UEs) as a
realization of a class of point processes. Instead of deterministic locations of BSs and users
on a regular grid with a small number of user and BSs, the stochastic geometry gives general
analytical models that catch the randomness all cellular network’s realizations. Hence, general
analysis for cellular networks should be based on the probabilistic spatial distribution of BSs
rather than on deterministic networks realization. We are interested in the performance of a
randomly selected user or the average performance of all users.

3.1.1 PPP cellular networks model

The cellular networks were mostly assumed to be spatially deployed according to an idealized
hexagonal grid. In the regular hexagonal networks, the analysis can be achieved for a fixed user
with a small number of interfering BSs [59, 60, 61]. However, hexagonal networks are highly
idealized and may be inaccurate for the heterogeneous and ad hoc deployments, where the
cell dimension varying considerably due to differences in the transmission power, the tower
height, and the user density [27].

Motivated by its tractability, attempts to promote SG to model cellular networks can be
traced back to the late 90’s [62]. The studies presented in [4, 63] revealed that cellular networks
deviate from the idealized hexagonal grid structure and follow an irregular topology. Instead
of assuming the deterministic positions for BSs on a regular grid, the locations are modeled
randomly, that take into account the changes of point positions in each realization. The results
show that the coverage probability experienced by a typical user in a real network is upper
bounded by the coverage probability of an ideal hexagonal grid network and lower bounded
by the coverage of random networks [4].

We illustrate an example of PPP cellular networks in Fig. 3.1. The locations of the BSs are
modeled as a homogeneous PPP of density λ. The cell boundaries are shown by black lines
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Figure 3.1 – A realization of an homogeneous Poisson process observed in a finite window.

and form a Voronoi tessellation. The UEs can be scattered according to some independent
homogeneous point process with a different density, and they communicate with the nearest
BS while all other BS act as interferers. Each user is associated with the nearest BS. These BS
and UE models will be used in Chapter 4, 5, and 6.

It is worth noting that practical cellular network deployments are likely to exhibit some in-
teractions among the locations of the BSs, which include spatial inhibition [64], i.e., repulsion,
and spatial aggregation [65], i.e., clustering. Some point processes, like cluster, hard-core, Cox,
and Gibbs processes can be used to study these characteristics in cellular networks [42, 64, 65].
However, the non-PPP model increases the complexity of analysis and have less tractability
compared with PPP models. Especially, when SG is merged with more complex communica-
tion models, for example, the load awareness model, the analysis may intractable. Thus in this
thesis, we still use PPP to model the locations of BSs.

3.1.2 Propagation model

When a signal is transmitted with the power Ptx, the received power Prx at a distance r from
the transmitter is given by [42]

Prx = Ptx ×Gtx ×Grx ×H ×L(r ) (3.1)

Note the in (3.1), H and L(r ) are dimensionless and characterize the propagation channel.
The quantities Gtx and Grx are the gains of the transmit and receive antennas, respectively, and
normalized as 1 in the following chapters.
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The random variable H is the fading channel gain. The fading is described by the prob-
ability distribution of the amplitude of the equivalent baseband complex waveform that is
actually transmitted over the wireless channel [42]. If the link is subject to the Rayleigh fading,
then the distribution of H is the square of a Rayleigh-distributed random variable, and it is
therefore exponential. Without loss of generality, the expected value of H can be set to unity,
thus its probability density function is

fH (x) = exp(−x), x > 0 (3.2)

L(r ) is called the path loss, where r is the transmitter-receiver distance. A widely used
model has the form

L(r ) = r−α (3.3)

where α is called the path loss exponent, with value is normally in the range from 2 to 4,
where 2 is for the propagation in free-space and 4 is for relatively lossy environments. In some
environments, such as buildings, stadiums and other indoor environments, the path loss
exponent can reach values in the range of 4 to 6 [42].

Assume that the serving BS is denoted as b0, the interfering BSs are modeled as a PPP
Φ. The distance from the serving BS and the interfering BSs are denoted r0 and {r1,r2, · · · },
respectively. All BSs are identical distributed and transmit with the same power P , the fading
coefficients from the BS to the user are i.i.d. random variables (Hi )i≥1. Then the interference
power at the receiver is given by

I = ∑
i∈Φ/b0

PHi L(ri ) (3.4)

Besides, the user equipment always has a certain level of additive and constant noise
power, which is denoted by σ2. The SIR and SINR are defined by

SIR = PH0L(r0)

I
, SINR = PH0L(r0)

σ2 + I
(3.5)

The distributions of the SIR or SINR drive the performance analysis of cellular networks. In
the next section, we introduced the most important performance metrics which we widely
used in the next chapters: the coverage probability and the meta distribution.

3.1.3 Coverage probability and meta distribution

The coverage probability evaluates the probability of the successful communication, which
occurs if the SINR is larger than a threshold. The meta distribution aims to evaluate fine-
grained information on the distribution of the SINR, which aims at capturing variability of
SINR at particular points on an area.

Definition 3.1 (Coverage probability [4]). The coverage probability Pc is defined as the proba-
bility that the typical user can reach a SINR threshold θ ∈R+

Pc (θ) =P(SINR > θ) (3.6)
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Pc can also be interpreted as the transmit success probability, and conditioned on Φ, it
becomes

Pc (θ) = EΦ [P(SINR > θ|Φ)] (3.7)

Definition 3.2 (Meta distribution [66]). The meta distribution of the SINR is a two-parameter
distribution function

F̄ (θ,u),P (P(SINR > θ|Φ) > u) , θ ∈R+, u ∈ [0,1]. (3.8)

We have F̄ (0,u) = 1 for u < 1, limθ→∞ F̄ (θ,u) = 0 for u > 0, F̄ (θ,1) = 0, and F̄ (θ,0) = 1. Due
to the ergodicity of the point process, F̄ (θ,u) can be interpreted as the fraction of links in
each realization that achieve an SINR of θ with probability at least u. Note that F̄ (θ,u) is the
complementary cumulative distribution function (CCDF) of the transmit success probability
for a given θ.

The relationship between coverage probability in (3.6) and meta distribution is

Pc (θ) =
∫ 1

0
F̄ (θ,u)du = lim

u→1

∫ u

0
F̄ (θ, x)d x (3.9)

Example 3.1 ([4]). The coverage probability has an elegant form when the link to the serving
BS at distance r0 has Rayleigh fading. Note that the probability density function (PDF) of r0 is
fr0 (x) = 2πλxe−λπx2

(seen in (2.4)), the coverage probability can be derived as follows.

Pc (θ) =P(SINR > θ) =
∫ ∞

0
P

(
H0 > θ

PL(r0)

(
σ2 + I

))
fr0 (x)d x (3.10)

=
∫ ∞

0
exp

(
− θ

PL(r0)
σ2

)
EI

[
exp

(
− θ

PL(r0)
I

)]
fr0 (x)d x (3.11)

For any random variable X , its Laplace transform is

LX (s) = Eexp(−sX ), s ≥ 0 (3.12)

Note that from (3.11), the coverage probability is given in terms of the Laplace transform of the
interference power I . Let s = θ

PL(r0) ,

LI (s) = Ex,Hi

[
exp

(
−s

∑
i∈Φ\b0

Hi L(ri )

)]
(a)= exp

(
−2πλ

∫ ∞

r0

(
1−EH

[
exp(−sHL(v))

])
vd v

)
. (3.13)

where (a) follows from i) the i.i.d. distribution of interference channel Hi and its independence
from the point processΦ; and ii) the PGFL of the PPP.

If the interference links also experience Rayleigh fading, (3.13) can be further expressed as

LI (s) = exp

(
−2πλ

∫ ∞

r0

(
1−

∫ ∞

0

[
exp(−shL(v))exp(−h)dh

])
vd v

)
(3.14)

= exp

(
−2πλ

∫ ∞

r0

(
1− 1

1+ sL(r0)

)
vd v

)
(3.15)
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Then the coverage probability has the following expression

Pc (θ) =
∫ ∞

0
exp

(
− θ

PL(r0)
σ2

)
LI

(
θ

PL(r0)
) fr0 (x)

)
d x (3.16)

=πλ
∫ ∞

0
e−πλv(1+ρ(θ,α))−θσ2vα/2

d v (3.17)

where ρ(θ,α) = θα/2
∫ ∞
θ2/α

1
1+uα/2 du.
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Figure 3.2 – The coverage probability Pc (θ) versus θ, with α= 4, and λ= 0.25.

Fig. 3.2 plots the coverage probability in (3.17) where the desired and interference links both
experience Rayleigh fading. To illustrate the impact of the noise, we consider σ2 = 1 dB and
σ2 = 0 dB. We see the coverage probability decreases when θ and the noise σ2 increase.

Example 3.2 ([66]). A classical form of the meta distribution can be obtained when the link to
the serving BS at distance r0 is Rayleigh distributed. We neglect the noise at the user equipments,
so that the SINR is replaced by the SIR for purpose of analysis. We start by defining the conditional
SIR distribution given the BS point process

Ps(θ),P(SIR > θ|Φ) (3.18)

The quantity of interest is the meta distribution of the SIR, which is the distribution of Ps :

F̄ (θ,u),P (Ps(θ) > u) , θ ∈R+, u ∈ [0,1] (3.19)

While a directed calculation of the CCDF of (3.18) seems infeasible, we shall see that the moment
of Ps(θ) can be expressed in closed-form, which allows the derivation of an exact analytical
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expression. Assuming that the transmit power P is normalized, the bth moment of the Ps(θ) is
given by [41, Lemma 6.3.3]:

Mb = EΦ
[
P

(
H0 > θ

PL(r0)
I

)b
]
=

{
1+2

∫ 1

0

[
1− 1

(1+θrα)b

]
r−3dr

}−1

(3.20)

Using the Gil-Pelaze inversion theorem, and assigning b in (3.20) as b = i w. we obtain an exact
integral expression for the meta distribution

F̄ (θ,u) = 1

2
− 1

π

∫ ∞

0

1

w
Im

{
u−i w Mi w

}
d w (3.21)

= 1

2
− 1

π

∫ ∞

0

1

w
Im

 u−i w

1+2
∫ 1

0

[
1− 1

(1+θrα)b

]
r−3dr

d w, i =p−1. (3.22)
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Figure 3.3 – Meta distribution F̄ (θ,u) with θ ∈ [−10,−5,0,5] dB, with α= 4, and λ= 0.25.

Fig. 3.3 plots the meta distribution F̄ (θ,u) in (3.22) with respect to u and for four values of
θ, and when the desired link and interference links experience Rayleigh fading. Fig. 3.3 shows
that 60% of links achieve an SIR of −5 dB with 80% of reliability. Moreover, if u is fixed, the
value of F̄ (θ,u) increases as θ decreases.

3.1.4 Some advanced research approaches

The previous section detailed the coverage probability and meta-distribution of a simple
model based on a single layer, where all BSs have the same parameters and are operating at a
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full load, referring to the fundamental works [4, 5]. However, in reality, the network designer
needs to make model assumptions based on specific scenarios, such as multiple antenna
setups, the effect of irregular distribution of BSs, the choice of serving BSs, and the effect of
load, etc. These complex models naturally affect the expression of the SINR distribution. In
recent years, a large amount of research has been devoted to studying scenarios closer to
real-world network deployments, and we summarize some of them below.

Location model or node type (transmitter, receiver) The spatial distribution of the net-
works nodes can be categorized into three types: independent [4, 67], repulsive [68, 69, 70],
and clustered [71, 72, 73]. Additionally, a point process can be a mix of the above three types. A
snapshots of the aforementioned clusters and repulsive point processes are given in Fig. 3.4.

-500 0 500
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500

(a) Doubly Poisson cluster process

-500 0 500

-500

0

500

(b) Matern hard-core process of type II

Figure 3.4 – Snapshots of cluster and repulsive point processes over a circle with radius of 500
m.

Various cell association strategies The most common strategy is the nearest-neighbor cell
association, where the users are associated to the closet BS [4, 74, 75]. Furthermore, consid-
ering system models incorporating various propagation, the association policy can be the
smallest path loss cell association [76, 77]. Also, in some environments, the interferers may be
closer to the typical user than the serving BS. The user is served by the BS that provides the
best SINR instantaneously, namely the maximum-SINR association policy [78, 79, 75].

Downlink-uplink analysis In downlink wireless networks, the analysis generally focuses on
the received SINR at the level of the typical UE served by one or more BSs [4, 78, 24]. However,
with the growing interest in symmetric traffic applications, the uplink performance analysis
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is becoming increasingly crucial [80, 81, 82]. The main difference from the downlink model
is that power controls are widely used in uplink cellular networks, where each user adjusts
its transmission power to partially/locally invert the effect of the path loss [80, 81]. On the
other hand, the dependency in the location of concurrent uplink users needs to be considered
[83]. The paradigm of decoupled uplink-downlink access are investigated in [84, 85], where
different association policies are considered for uplink and downlink. The typical user will not
necessarily access to the same BS in both directions.

Propagation models Wireless communications are typically impaired by various effects. For
example, there are fluctuations in the received signal power due to shadows, multiple copies
of the same transmitted signal received by the receiver due to multiple propagation paths, and
transmission loss problems due to the distance from the receiver to the transmitter. The study
of the shadowing can be found in [79, 86, 22] and representative examples of the impact of the
path loss functions in [87, 88, 89]. The detailed survey can be founded in [90, 91].

3.1.5 Summary

Section 3.1 has introduced how the Poisson point process facilitates the performance modeling
and the analysis of large-scale wireless networks. However, most of the literature relies heavily
on the assumption that BSs transmit concurrently all the time, which translated to a fully load
(or full buffer) scenario, resulting in pessimistic estimates of the coverage and the average rate.
Although, this might be justified for macrocells in peak traffic hours, this is not applicable
for the real system who is subjected to temporal traffic variations. In the next section, we
investigate the spatio-temporal modeling which can capture the various traffic loads.

3.2 Spatio-temporal modeling

In this section, we introduce the spatio-temporal model that we will use in the next sections
and examine the advantages and weaknesses of the literature dealing with this problem. In
particular, the spatial domain of dynamic systems is captured by appropriate PP modeling of
the nodes, while temporal variations are captured by temporal arrival and service processes.
Besides, we introduce the concept of ε-stable regions, which will be studied in the next
chapters.

3.2.1 SINR model with traffic-aware

A generalized model of dynamic SINR in the cellular networks can be defined as below [92].
Considering the typical user located at origin o, the interference of the typical user at time
instant t is

I (t ) = ∑
i∈Φ\b0

βi ,t Hi ,t L(ri ), (3.23)
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and the SINR of the typical user is

SINR(t ) = H0,t L(r0)

σ2 + I (t )
, (3.24)

where L(·) is the path loss function defined in (3.3). The BSs locations are modeled by a PPP
Φ of density λ: b0 is the serving BS under a given association strategy, H0,t and Hi ,t are the
fading coefficients of the serving BS and interfering BS i at time slot t , respectively, σ2 is the
noise power, and βi ,t is the state indicator of the transmitter located at x which equals 1 or 0
when the transmitter is on or off, respectively.

Queue model We considered a time-slotted network through the manuscript. Each time slot
has an equal and small time interval duration τ. We assume that each transmitter holds an
independent buffer to restore the backlogged packets. The transmission during the time is
asynchronous: the new packets actually arrive at time slot t , but they are first considered in
the time slot (t +1). The queue at a transmitter is modeled as

B(t +1) = [B(t )−R(t )]++X (t ) (3.25)

where R(t) ∈ {0,1} is the service process, only one packet can be transmitted per time slot,
X (t ) ∈N is the arrival process, B(t ) is the length of the queue at the beginning of the time slot
t . The operator [v]+ stands max(0, v).

The buffer status B(t ) at each transmitter depends on the packet arrival and service pro-
cesses. B(t ) impacts the activation of the transmitters since the transmitter can only transmit
when the buffer is not empty, i.e., B(t ) > 0. In turn, B(t ) impacts the mutual interference I (t ).
The buffer statuses of the transmitters are interdependent, leading to interacting queues.

Service process The service process depends on the dynamic SINR (3.24). One can assume
that when the SINR is larger than a given threshold θ, the transmission succeeds, otherwise
the transmission fails. Then, the transmit success probability at time slot t can be defined as

pt =P(SINR(t ) > θ) (3.26)

The queues are spatially coupled since the mutual interference I (t ) directly affects the SINR(t ),
the transmit success probability and the service processes of the queues. On the other hand,
the queues are temporally coupled since the current buffer status B(t) is affected by the
previous service process R(t). Due to the random nature of channel fading and aggregate
interference, the service process is dynamic.

Example 3.3. An example of the correlation between the queues at two transmitters is depicted
in Fig. 3.5. Transmitter T1, which serves receiver R1, has a longer transmission link and a shorter
interference link than transmitter T2, which serves receiver R2. Conversely, the channel disparity
between the two communication links results in different packet service rates. Compared to T2,
T1 suffers from more path loss and interference. Correspondingly, given a similar traffic load, T1
tends to vacate its queue more slowly and thus remains active more frequently than T2. On the
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Figure 3.5 – Illustration of the interacting queues.

other hand, the queue lengths of T1 and T2 determine the activation of T1 and T2. In particular,
if both transmitters are busy, their transmissions will cause mutual interference, which slows
down the departure process. If one of the transmitters has an empty queue, the other receiver’s
interference is null and hence enjoys a favorable condition. Due to the interacting queues,
transmissions in a large-scale system inherently experience spatial and temporal correlation.

3.2.2 Spatio-temporal modeling approach

The previous efforts have typically considered one aspect of the traffic: (1) Abstraction based
on queueing theory, which evaluates scheduling algorithms and ignores the interaction be-
tween the traffic and the SINR statistics, and hence with networks geometry [93, 94, 95]; (2)
Abstraction based on stochastic geometry, which usually does not consider the temporal arrival
process of the traffic and focuses on the throughout in full buffered networks, i.e., each link
always has a packet to sent [4, 80, 68]. This last assumption provide a pessimistic view of
the aggregate interference as well as some other performance metrics. Moreover, no insights
regarding the packet delays can be obtained since the queueing dynamics are ignored.

Existing works on spatio-temporal dynamic models, based on queuing theory and stochas-
tic geometry, can be divided into two categories. The first category is the simultaneous
spatio-temporal arrival models of traffic, also called high mobility networks [6, 7, 8]. The
second category is the static Poisson networks, where the location of the receiver is fixed
during the time evolution [9, 75, 10].

In high mobility networks, the traffic is usually presented by a three-dimensional PPP,
where the location of the nodes is modeled by a two-dimensional PPP and the traffic arrivals
are modeled by a one-dimensional PPP [6, 7, 8]. These studies characterize the total traffic in
each cell. For example, the authors in [6] analyze the stability of high mobility networks. The
work in [7] models users as homogeneous spatio-temporal PPPs, and then the traffic arriving
at each BS is described by the amount of data available to all users, within the coverage of the
relevant BS. The nodes location in the subsequent time slots are considered independent from
the location in the current time slot. The work in [8] models the traffic in an uplink single-cell
network where the traffic arrives to the cell as a Poisson process. Such models of high mobility
networks have two main drawbacks. First, since users are not explicitly characterized in these
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models, many network operations, such as user scheduling per cell and traffic offloading
between cells, are not well captured. Second, the measures of each individual user, such as
throughput and latency, are not well defined.

Compared with high-mobility networks, the static Poisson networks, where the locations
of transmitters and receivers are fixed during the time evolution, are challenging to analyze,
because the inherent correlations of the interference and signal levels persist among different
time slots, due to the static locations of the nodes [9]. A simple way to remove the correlations
of the interference is to consider that the interferers are activated independently at each time
slot. Thus, the interfering BSs is a randomly thinned PPP from the original PPP, according
to a thinning factor [11, 10]. The coverage probability and the delay of the typical UE for
heterogeneous cellular networks are analyzed in [11] and [10]. The effects of the thinning
factor on the performance metrics of interest are also studied. However, these works ignore
the interaction between the queues of different BSs.

The works in [12, 13] pushed further the analysis of the interaction between the dynamicity
of the queues and the topology of the network. A traffic-aware spatio-temporal model for
IoT devices supported by cellular uplink connectivity has been developed in [12]. A quite
complete transmission scheme, i.e., back-off and transmission power, has been proposed
using Markov chains whose evolution depends on the queue state of the devices. Thanks to
this model, authors studied the tradeoff between the scalability of the network, i.e., supporting
as much as possible a high number of devices, and its stability, i.e., the queues are not diverging.
However, the performance analysis in this work is based on the first moment measure, i.e.,
the coverage probability: the variability of the SINR is not captured at particular points in
the area (which will be studied in our works). In [13], a novel spatio-temporal mathematical
framework is provided to analyze the preamble transmission success probability of a cellular
IoT network, where the number of accumulated packets in the queues is approximated by
a Poisson distribution. The relationship between transmit success probability in each time
slot and the length of the remaining blocked packets is described by an iterative algorithm.
However, the theoretical findings of this article can be verified when the number of time slots
is relatively low, and this approximation will have a deviation over time. Fig. 3.6 shows the CDF
of the number of accumulated packets obtained by simulation and Poisson approximation
in [13, Theorem 2], for the 1st, the 3rd, the 5th and the 15th time slot. It can be observed that
after 3 time slots, the assumption that the number of accumulated packets follow a Poisson
law becomes less accurate.

Chapter 4 is devoted to develop a comprehensive approach to handle the interaction be-
tween the coverage probability and the queueing state evolution, using discrete time Markov
chain. A simple model is considered, but contrarily to the state of the art, closed-form ex-
pressions are given that make the bridge between the coverage probability and the fraction
of active base stations under conditional stable state. Besides, to the best of our knowledge,
all the works mentioned before studied the coverage probability with infinite queue lengths.
However, the packet loss probability is also an important performance measure needed for
the design of telecommunication networks. The quantity of interest is the probability of a new
packet is dropped when the buffer has a finite size. We also develop a tractable mathematical
model to analyze the coverage probability and packet loss probability in a downlink cellular

59



CHAPTER 3. STATE OF THE ART

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of Packets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty

Time slot 15, ana.

Time slot 15, sim.

Time slot 10, ana.

Time slot 10, sim.

Time slot  5, ana.

Time slot  5, ana.

Time slot  3, ana.

Time slot  3, sim.

Time slot  1,ana.

Time slot  1, sim.

Time slot= 1

                 3

                 5

                10

                15

Figure 3.6 – CDFs of the number of accumulated packets between Poisson, analytical and
simulation.

network considering the buffer restriction.
It is worth mentioning that there are also some performance metrics which have been

studied for spatio-temporal modeling. For example, the SINR gain is used to quantify the im-
pact of the target model relative to the reference model on the SINR distribution [96]. The joint
success probability is defined as the probability that k correlated time transmissions succeed.
The joint success probability can refer to temporal, spatial, or spatio-temporal transmission
events [97, 98, 99]. The interference correlation coefficient evaluates the correlation degree of
interference at two locations or time slots [100].

3.2.3 ε-stable region approach

A review of the literature shows that the spatio-temporal traffic modeling has been particularly
exploited to evaluate important metrics of interest: the ε-stable region [29]. Unlike the stable
region, that is based on the first moment measure, the ε-stable region relies on the moment
generating function of the SINR. The ε-stable region refers to the set of arrival rates such that
the proportion of unstable queues in the network is below ε. The characterization of the
ε-stable region relies on the use of meta-distribution defined in (3.8).

Definition 3.3 (ε-stable region [29]). Let ξ be the arrival rate of the traffic. For any ε ∈ [0,1], the
ε-stability region Sε is defined as

Sε =
{
ξ ∈R+ :P

[
lim

T→∞
1

T

T∑
t=1

P(SINR(t ) > θ|Φ) ≤ ξ
]
≤ ε

}
(3.27)
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P

[
lim

T→∞
1
T

T∑
t=1

P(SINR(t ) > θ|Φ) ≤ ξ
]

is the probability that the queue at the typical transmit-

ter is unstable. This probability is obtained by averaging over the point process. The ε-stable
region is the set of arrival rates such that the proportion of unstable queues in the network is
not larger than ε.

We define ξc as ξc = supSε. Deriving the ε-stable region Sε is equivalent to obtaining the
critical arrival rate ξc . The network is ε-stable if and only if the arrival rate is lower than the
maximal one, i.e., ξ≤ ξc .

Example 3.4. Let us consider a simple system with only the typical user, i.e., there is no other
users in the network. The success probability of the typical transmitter is ps , P(SNR > θ) =
P(

h0r−α
0

σ2 > θ). We assume that h0 ∼ exp(1) is the small-scale Rayleigh fading. By averaging over
h0, the success probability of the typical transmitter is exp(−σ2θrα0 ).

Loynes’ theorem [101] mentioned that for a point-to-point system with random arrival and
departure processes, the stable region requires that the service rate be larger than the arrival rate.
If the distance of the desired link r0 is fixed, the stability condition follows

ξ≤ ξ0 , exp(−σ2θrα0 ) (3.28)

If r0 is random and follows the probability density function fr0 (x) = 2πλr e−λπr 2
, the stable

region has the following expression

Sε =
{
ξ ∈R+ :P

[
exp(−σ2θrα0 ) < ξ]≤ ε}

=
{
ξ ∈R+ :

∫ ∞(
lnξ
σ2θ

) 1
α

2πλr e−λπr 2
dr ≤ ε

}
(3.29)

=
{
ξ ∈R+ : exp

(
−λπ

(
lnξ

σ2θ

) 2
α

)
≤ ε

}
(3.30)

Fig 3.7 plot the the critical arrival rate ξc in (3.30) where the small-scale fading is Rayleigh
and the PDF of the distance from the receiver to the transmitter follows fr0 (x) = 2πλr e−λπr 2

.
The critical arrival rate, such that the probability of the queue is unstable, is below 40% is
ξc = 0.5 packet/slot when σ2 = 0.5, and ξc = 0.25 packet/slot when σ2 = 1.

Example 3.4 provided a noise-limited case where only the typical link is considered and the
interference is ignored. However, the traffic conditions are more complicated in a large-scale
network with multiple queues, since the service rate depends on the state of all the transmitters
in the network. Then, sufficient and necessary conditions for system stability have been
introduced and studied in [29], and meta-stability in [8], where the network appears stable
for possibly a long time and then suddenly exhibits instability. Remarkably, the stochastic
geometry and queueing theory have been merged to give sufficient and necessary conditions
for the stability of interacting queues [29]. However, this work has considered a peer-to-peer
network with constant link distances. And, the bounds are not very tight especially under
some network configurations. On the other hand, the stability and meta-stability of uplink
random access networks considering the data traffic have been studied in [8]. The analysis in
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Figure 3.7 – The ε-stable region of the typical link, without interference.

this work was based on double-stochastic networks, i.e., space-time Poisson call arrivals. A
single cell network has been considered in this work, thereby ignoring the interaction between
queues of different BSs.

In Chapter 5, we provided the closed-form of the upper and lower bounds of ε-stable
region in the case of random link distances. Besides, we provide an approximate definition
of the ε-stable region and derive the closed-form accordingly. In particular, the interaction
between transmit success probability and queueing state evolution is handled thanks to a
discrete time Markov chain (DTMC). The result reveals that the proposed approximation is
tighter than the bounds and easy to evaluate.

3.2.4 Summary

The introduction of queueing theory in a stochastic geometry approach allows to assess
important network performance measures such as the average delay or stability. The analysis
remains however challenging due to the complex interaction between the packet arrival rate
process and the service rate depending on the coverage probability that in turn depends on the
interference in the networks and all the queue states of transmitters. To ensure tractability of
the results, a simple transmission strategy where all BSs are active and transmitting when the
buffer is not empty is discussed in Chapter 4 and 5. However, even considering such a simple
transmission strategy, complex mathematical techniques are widely used to obtain closed-
form performance metrics. For example, the PGFL theorem are widely applied to calculated
the expectation of interference. The moment measures are generally used to calculate the
meta distribution and ε-stable region.
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On the other hand, in the dynamic downlink cellular networks, a question naturally arises
whether BSs can make the best decision based on the dynamic network environment, e.g., to
give the maximum stable region at the minimum transmitting cost with respect to the channel
condition? However, it is non-trivial to derive closed-form strategies and the stable region as
well accordingly. In order to pursue adaptive transmission strategies according to dynamic
environment, we applied the Reinforcement learning in the Chapter 6.

3.3 RL applied in traffic-aware systems

While stochastic geometry provides a powerful model-driven approach that aims at evaluating
performance metrics based on the conventional probabilistic models [42], the reinforcement
learning is a class of learning processes in which an agent can periodically make decisions,
observe the results, and then automatically adjust its strategy to achieve the optimal policy
[102]. A RL model can be abstracted as agents interacting with their environment, performing
actions and learning through the trial-and-error method, to achieve long-term goals. It can be
efficiently applied to a wireless communication system when: i) The mathematical modeling
of the environment is too complex to be implemented in an agent; ii) An accurate mapping
between the network features and its performance is needed by the agent; iii) The desired
outcome of the learning can be described as a scalar reward.

We start with an example of how RL can be applied in a point-to-point communication
system to handle the temporal traffic. The model is abstracted from [14, 15]. Then, the
approaches related to the application of the RL in the wireless network, especially in cellular
networks, are summarized. In Chapter 6, the SG and RL are jointly used to tackle the dynamic
cellular network, allowing to obtain the optimistic transmission strategy which can maximize
the long-term returns accordingly.

3.3.1 An example of traffic management using RL

Let us consider a point to point communication system over a block fading channel. The
channel gain is assumed to be constant on a slot of time duration ∆t and changes from one
slot to another one according to the distribution PH(t+1)|H(t )(h′|h), with H ∈ H and where
H is assumed to be a finite countable set. At each time slot, a certain number of packets
is generated by the transmitter and stored in a buffer, waiting for their transmission. The
transmitter aims at sending the packets at lowest power consumption with an average delay
cost constraint.

At each time slot t , X (t) ∈X new packets are generated and stored in the buffer before
being transmitted. {X (t )} are i.i.d. random variables with Bernoulli distribution with intensity
ξ, the arrival rate. R(t) packets are successfully transmitted and removed from the buffer
with some success probability fs(h). This success probability increases with a better channel
state. When a packet is not received successfully, the packet is kept in the buffer for a later
retransmission via automatic repeat request (ARQ) control. The buffer state B(t) ∈ B =
{0,1, · · · ,Bmax} represents the number of packets stored in the queue at time t and Bmax is
the maximal buffer size. The state evolution can be described by a Markov chain as in (3.25).
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According, the state space can be defined as the space containing the channel state, the buffer
state, and the new packet arrival state, i.e., S =H ×B×X .

At each time slot, the transmitter has to decide whether to transmit a packet, unless the
buffer is empty. The action space is then described as A = {0,1}, where 0 stands for not
transmitting, and 1 for transmitting a packet.

One may be interested to transmit packets with the minimal transmission cost while
limiting the waiting time in the buffer. In that case, the long-term return can be expressed
w.r.t. two cost functions, i.e., the transmit cost and the waiting time cost functions [14], c and
w . The non-negative waiting time cost, which is applicable when the buffer is not empty, i.e.,
when B(t) > 0, is w(·) : A → R+. The non-negative transmission cost depend on the action
and the current channel state H(t ) by the transmission cost function c(·, ·) : A ×H →R+.

Policy The transmission scheduling policy consists in mapping the system state to an action
at each time slot t . Hence a desired policy should solve an optimization problem. From the
cost functions defined previously, the expected discounted power and waiting time costs,
given an initial state s0 , S(0), are defined as:

Cπ(s0) = Eπ
[ ∞∑

t=0
ηt c(A(t ),S(t ))|S(0) = s0

]
(3.31)

Wπ(s0) = Eπ
[ ∞∑

t=0
ηt w(A(t ),S(t ))|S(0) = s0

]
(3.32)

with η ∈ [0,1] the discounting coefficient. The expectation is taken over the distribution of
the policy and the dynamic of the underlying MDP. The problem to find the minimal power
consumption while limiting the waiting time cost can be formally described as [14]

min
π∈Φ

Cπ(s0) s.t .Wπ(s0) ≤ δ∀s0 ∈S . (3.33)

Note that minimizing the waiting time cost under a total power budget, as studied in [15],
leads to an equivalent strategy. The problem relies to a constrained optimisation problem
with unknown dynamics. One can combine the power and waiting time cost function c and
w in (3.31) and (3.32) in a dual Lagrangian expression such that l (a, s;λ) = c(a, s)+λw(a, s).
One can apply the Q-learning algorithm detailed in Section 2.3.3 by replacing R in (2.42) by
the Lagrangian cost to obtain the optimal policy.

Experiments We illustrate the performance of Algorithm 1 via numerical example in a video
transmission application, as in [14]. We assume that i) the time is divided into slots of size
0.5ms, so that at each time slot exactly one packet can be transmitted, ii) the block fading
channel is modeled by a three-state Markov chain, i.e., H = {h1,h2,h3} with the transmission
probability matrix

Ac =
0.85 0.15 0

0.15 0.7 0.15
0 0.15 0.85

 (3.34)
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The success probability fs(h) are given by fs(1,h0) = 0.3, fs(1,h1) = 0.5, and fs(1,h3) = 0.95.
We assume that the user has a buffer of size B = 50, and the average arrival rate is ξ = 0.25.
Let the transmission cost be c(h0, a) = 1.7a, c(h1, a) = 1.7a and c(h2, a) = 0.2a for all a ∈ A ,
and w(1) = 0, w(0) = 0.6. Fig 3.8 illustrates the average performance, i.e., (3.33) with Lagrange
factor λ= 2, of ε-greedy methods mentioned in (2.44). The greedy method, i.e., ε= 0, performs
significantly worse in the long run because it often gets stuck performing locally optimal
actions. The ε-greedy method eventually performs better because it continues to explore, and
to improve the chance of recognizing the optimal action. The ε= 1/t method finds the optimal
action earlier, and eventually performed as ε= 0.1 method on both performance measures.
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Figure 3.8 – The Lagrangian cost estimated by Q-learning algorithm (Algorithm 1) under
different ε-greedy factors.

Two extensions of this point-to-point example are as below: i) The above Markov decision
process can be generalized from the binary action space to the general case of a finite action
space, i.e., A = {a0, a1, · · · , aM }, hence the multi-power consumption levels can be considered
rather than simply turn on and off the transmitter [103]; ii) An alternative definition of waiting
cost can be w(a, s) =β1{b(t+1) > Bmax}+(b(t )− r (t ))+, where the first term represents the cost
to be in overflow with β constant, the second term is the holding cost, i.e., the cost for keeping
b − r in the buffer if the transmission is successful. Hence the buffer waiting cost depends
on the buffer state [15]; iii) Q-learning does not assume any knowledge of the dynamics of
the underlying MDP and therefore slows down the convergence time. On the other hand, the
exploration time component is the basis of Q-learning, and when there are a large number of
state and action combinations, the convergence time can be too long. However, in wireless
communication, some dynamics may not be completely unknown. The authors in [104, 15]
use the concept of post-decision states to base the actions taken on states that consider only
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known dynamics.

3.3.2 Approach that combines RL and SG

Reinforcement learning tracks optimistic policies for wireless networks in uncertain and
stochastic environments by providing a Markov decision process framework [105, 3]. In the last
decade, the reinforcement learning has been combined with various complex network models
taking into account dynamic spectrum access, user association, caching and offloading, to
cite a few [106, 107, 108]. However, since the nature of the problems studied with stochastic
and reinforcement learning are so fundamentally different, it is rare to find common ground
where the strength of these tools can be jointly leveraged. On one hand, the RL is a learning
process in which an agent can periodically make decisions, observe the results, and then
automatically adjust its strategy to achieve the optimal policy [37, 38]. On the other hand, the
basic premise of the SG is to provide a unified mathematical framework to model large-scale
random networks. The key performance metrics, such as interference, coverage, and rate, can
be characterized as exact and tractable expressions [27, 4].

In chapter 6, we concretely demonstrate that these two mathematical tools can be jointly
applied to a class of problems. The spatial locations determine how the BSs interfere, and the
temporal traffic dynamic affects the queue evolution and thus forms an MDP. The agent tries
to achieve a goal despite uncertainty about its environment. Different from the traditional
reinforcement learning application systems, the main difficulties to leverage the SG and RL
together are listed below:

• The traditional RL algorithms are applied in discrete state and action spaces. Most of the
researches studying traffic load consider the SINR or the SNR as a finite countable set of
values [14, 15]. However, the SINR modeled by the SG are continuous random variables,
which will lead to continuous state spaces and action spaces. To overcome this problem,
we discretized the SINR in the subsequent model construction in Chapter 6.

• The dimensionality problem usually arises in large-scale networks. Since the Q-learning
does not assume any knowledge about the dynamic of the underlying MDP, the explo-
ration time part, which is fundamental in Q-learning, slows down the convergence time
due to the large number of combination of states and actions. To solve the computa-
tionally expensive problem with the large action space, multi-agent deep RL method
is proposed in [16, 106]. Instead of using a table for updating the action-state value
function, as in classical Q-learning algorithm in Section 2.3.3, one may use deep rein-
forcement learning searching for approximating the action-state values with a suitable
function qθ : S × A →Rwith the vector parameter θ. On the other hand, the authors in
[104, 15] use the concept of the post-decision states, introducing an a priori knowledge
about the environment’s dynamics to develop more efficient learning algorithms.

• Last but not least, the fact that UEs and BSs are generated according to some stochastic
processes will lead to a random dimension of state spaces. To overcome this problem,
we first fixed the point processes to obtain the optimistic strategies and performance
associated with a PPP realization since we considered a static Poisson network. Then,
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we take the expectation over the point processes to obtain the system-level average
performance.

The references that are most closely related to this part of our works are [14, 15]. In [14],
the problem is subject to an average delay constraint for a point-to-point communication
system. Specifically, the optimization problem is to minimize an average transmission cost
devising the transmission scheduling policies according to the channel states. In [15], the
energy-efficient point-to-point transmission of delay-sensitive data over a fading channel is
studied. The authors formulate the stochastic optimization problem as an MDP and solve it
online using reinforcement learning. However, both studies consider point-to-point problems,
thus the interference from other transmitters are not taken into account.

On the other side, the RL has been applied to cellular networks to solve resource allocation
or rate adaptation problem, e.g., [16, 17]. In [16], a distributed optimization method based
on a multi-agent RL is developed to solve user association and resource allocation. In [17],
the RL is applied for inter-cell power control and rate adaptation in the downlink of a radio
access network. However, the performance analysis in these researches are based on a regular
cellular network. That means, only a small finite number of interfering BSs are considered,
without considering the effect of the random distribution of aggregated interference.

In the last two years, a few works have considered joint stochastic geometry as well as
reinforcement learning tools to solve the problem of resource allocation or user association
in stochastic networks. In [18], the authors consider a model for a NOMA-based downlink
Fog-RAN to meet the requirements of high spectral efficiency and huge device connectivity.
Stochastic geometry is used to capture the impact of the random distribution of users. From
the user perspective, two types of user association are available: Fog-computing-based access
points and remote radio heads. RL techniques are used to develop user association algorithms
to maximize the total spectral efficiency in the network.

In [20], the authors present a multi-operator (OP) sharing problem for small cell network
deployments, with a focus on the user scheduling problem. The optimal problem is to max-
imize the social welfare of the network, i.e., how to share resources to the small cells in the
network to maximize the overall weighted sum rate. However, the analysis is based on a
single time slot of the overall system, thus the traffic is unaware in this system. Similarly, [19]
considered the resource allocation problem to maximize the D2D users total throughput while
keep the interference to the cellular user under limits. In addition, the paper [38] investigates
how to deploy unmanned aerial vehicles (UAVs) in three-dimensional space to maximize
network utility. In this work, the UAV is modeled using a binary Poisson process, and the RL
algorithm is used to solve the deployment problem. However, the works mentioned above
concentrated the user allocation problem or resource allocation problems, none of them
consider a stochastic network with traffic-aware.

In Chapter 4 and 5, mathematical frameworks based on the SG and queueing theory are
provided to analyze the coverage probability as well as the ε-stable region. In order to keep
mathematically tractability, these works are based on a basic communication strategy where
BS keeps transmitting when the buffer is not empty. Since the optimal transmission scheduling
problem is naturally an MDP due to the uncertainty in the packet service process and the
Markov property of the queue evolution, we advance a new approach to analyzing the system
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with the adaptive transmission by applying reinforcement learning in Chapter 6. In particular,
the optimal transmission scheduling problem is formulated as a constrained Markov decision
process (CMDP), where the constraint is the waiting cost. The numerical results show that
the RL-based policy can hold the same stable region as a greedy algorithm but with a lower
transmitting cost.

3.4 Conclusion

This chapter first describes how Poisson point processes facilitate the modeling and analysis of
large-scale wireless networks. We introduce the propagation model, including the small-scale
fading and the large-scale fading. Based on this, we discuss two important metrics, namely
the coverage probability and the meta-distribution. The introduction of queueing theory in a
stochastic geometry approach allows assessing important network performance measures,
such as the average delay or the stability. However, the analysis remains challenging due to the
complex interaction between the packet arrival rate and the service rate, depending on the
coverage probability, which in turn depends on the interference and on all the queue states.
As we proposed in Section 3.2.2, the existing literature either ignores the interaction between
the queues or analyzes it by approximation. A tractable mathematical framework to analyze
the transient and stationary metrics is still lacking, which will be studied in Chapter 4. In
Chapter 5, we will fully characterized the ε-stable region.

On the other hand, a question naturally arises in the traffic-aware networks whether
BSs can make the best decision based on the dynamic network environment, e.g., to give
the maximum stable region at the minimum transmitting cost, depending on the channel
condition. However, it is non-trivial to derive closed-form strategies, and the stable region
accordingly. In Chapter 6, we propose a reinforcement learning framework to compute the
optimal transmission policy. We formulate a constrained optimization problem to minimize
the long-term transmission cost with delay constraints. The problem is then a constrained
Markov decision process due to the dynamic evolution of the queue. Based on reinforcement
learning and stochastic geometry tools, we analyze the stable region of the network based on
different transmission schemes and show that there is a tradeoff between the stable probability
and the transmission cost depending on the traffic intensity.
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Chapter 4

Coverage Analysis in Dynamic
Downlink Cellular Networks

4.1 Introduction

Stochastic geometry is an effective theoretical tool to model the locations of base stations
and user equipments by considering a real deployment, as realizations of a class of random
point processes, as discussed in Section 3.1. However, the majority of the existing literature
heavily relies on the assumption that each transmitter’s buffer is never empty, which does not
characterize a random traffic [4, 68].

To analyze the impact of the traffic in large-scale networks, we introduced the SINR
model with traffic-aware in Section 3.2.1. As discussed, the main difficulty in random traffic
characterization comes from the correlation between the buffer states of different transmitters,
that leads to interacting queues. In recent years, some works have considered wireless systems
with spatio-temporal models, as detailed in Section 3.2.2. However, the exciting literature
either ignores the interaction between the queues, e.g., [78, 10], or studies the network stability
by providing untight bounds [9]. Moreover, existing literature usually does not take into
account the buffer size. A tractable mathematical framework is still lacking to characterize the
SINR distribution and meta distribution in large-scale networks with traffic-aware.

In this chapter, we study the coverage analysis of dynamic downlink cellular networks,
considering two application scenarios: infinite buffer size and finite buffer size 1. We propose
tractable mathematical models to analyze the coverage probability while considering queue
dynamics. We use different DTMC (introduced in Section 2.2) to handle the interaction
between the coverage probability and the queueing state evolution, for different application
scenarios. A simple model is considered, but contrarily to the state of the art, closed-form
expressions are given that link the coverage probability to the fraction of active BSs, under the
conditional stable state. Besides, we analyze the average queue delay in the infinite buffer
case, and the packet loss probability in the finite buffer case.

1These works led to publications [C1], [C2], see § 1.3.
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4.2 Network model and assumptions

We consider the system model given in Section 3.1.1. The BSs are spatially distributed in R2,
following an homogeneous PPPΦ= {xi }i∈N with intensity λ. The UEs density is assumed to be
high enough such that each BS has at least one user associated to it. Besides, each UE is served
by its nearest BS. In the network, all BSs are assumed to transmit with constant normalized
power in the same bandwidth.

We adopt the block fading propagation model introduced in Section 3.1.2. The channel
between any pair of transmitter and receiver is assumed to be i.i.d. and quasi-static, i.e., the
channel is constant in one transmission time slot and varies independently between the time
slots. Specifically, the small-scale fading is modeled by the Rayleigh distribution, and the
large-scale fading follows the power law in (3.3).

The time is divided into very short equal intervals where only one packet arrives or leaves
from the BS queue at a time. We assume that the packet size is fixed and that it takes exactly one
time slot to be transmitted. Each BS maintains an independent buffer to store the generated
packets. The packet arrival process at each transmitter is assumed to be a Bernoulli process
with intensity ξ ∈ [0,1] at each time slot. Contrarily to the arrival process, the departure
process cannot be fixed a priori. It is characterized according to the time-dependent SINR
distribution, as shown in Section 3.2.1. If the received SINR exceeds the threshold θ, the packet
is transmitted successfully and removed from the queue. Otherwise, the transmission fails,
and the packet remains in the queue waiting for retransmission in the next time slot, until it
is successfully received. There is no limit to the number of possible retransmissions in this
manuscript. However, in practice, the number of needed retransmissions remains low when
the system is stable as we will see later. The buffer length at each BS can be infinite and finite,
that will be dealt with in Section 4.4 and 4.5, respectively.

The realization of the point processΦ is conditioned on a full activity of the BS at position
x0. Then, the relevant probability measure is the reduced Palm probability, denoted as Px0 .
Furthermore, we defineΦt to be the set of BSs that are transmitting in the time slot t ∈N.

4.2.1 SINR model

The received SINR at time slot t experienced by the typical UE is

γt =
Hx0,t ‖x0‖−α

σ2 + ∑
x∈Φ\x0

Hx,t ‖x‖−α1(x ∈Φt )
(4.1)

where Hx0,t and Hx,t are the exponential channel gains between the typical UE and its desired
BS located at x0, and with the interfering BS located at x at time slot t , respectively. α is the
path loss exponent, and σ2 denotes the power of additive white Gaussian noise. 1(·) is the
indicator function, which is equal to 1 or 0 when the transmitter is on or off, respectively.

Moreover, we note qt as

qt =P1(x∈Φt )(1(x ∈Φt ) = 1) (4.2)

which can be seen as i) the fraction of active interfering BS at time slot t ; ii) the probability
that a randomly chosen BS is active at time slot t .
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4.3 Dynamic coverage probability

Considering that the typical UE receives data at time slot t , i.e., its associated BS in x0 is always
active, the dynamic coverage probability is defined as [9]

pt ,Px0 [γt > θ], θ ∈R+ (4.3)

Theorem 4.1. The dynamic coverage probability has the following expression

pt = 2πλ
∫ ∞

0
e−σ

2θrαe−πλr 2(1+qtρ(α,θ))r dr (4.4)

where ρ(α,θ) = ∫ ∞
1 [1+u

α
2 θ−1]−1du.

Proof. See Appendix A.1.

Theorem 4.1 quantifies how the coverage probability behaves at a given time slot and
depends on the traffic. It illustrates that the queues states affect the coverage via the parameter
qt . As qt depends on the time t , the coverage probability is time depending. As qt decreases,
there are fewer active interferers in the network, and therefore, the total interference decreases,
and pt increases. The description of qt depends on the specific queueing model, i.e., the finite
or infinite buffer size. In the particular case of the interference-limited network, Theorem 4.1
takes the following form.

Corollary 4.1. In an interference-limited network, i.e. σ2 → 0, we have

pt =
[

1+
∫ ∞

1

qt

1+u
α
2 θ−1

du

]−1

(4.5)

and for a path loss exponent α= 4, we have

pt =
[

1+qt

p
θ tan−1(

p
θ)

]−1
(4.6)

At the end of this section, we introduce the concept of network stability. The network is
called stable if the number of active transmitters converges to a limit regardless of the network
initial condition [8].

Definition 4.1. Let {Φt }t=0,1,··· be the series of the point process along the time. Moreover, let
{pt }t=0,1,··· be the stable coverage probability of the network {Φt } at time t . Under the conditions
where the limits of such series exist, stable coverage probability is

p = lim
t→∞pt , (4.7)

and q =P1(x∈Φ̃)(1(x ∈ Φ̃) = 1), where Φ̃ is the limit of the PPP series which represents the point
process where the activity of base stations does not evolve with time.
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Lemma 4.1. Considering lim
t→∞qt = q, and let ρ(α,θ) = ∫ ∞

1 [1+u
α
2 θ−1]−1du, the stable coverage

probability is a function of q and can be expressed as following

p = 2πλ
∫ ∞

0
e−σ

2θrαe−πλr 2(1+qρ(α,θ))r dr (4.8)

Proof. Considering lim
t→∞qt = q , we have

p = lim
t→∞2πλ

∫ ∞

0
exp

(−σ2θrα
)

exp
(−πλr 2 (

1+qtρ(α,θ)
))

r dr

a= 2πλ
∫ ∞

0
exp

(−σ2θrα
)

exp
(
−πλr 2

(
1+ lim

t→∞qtρ(α,θ)
))

r dr

= 2πλ
∫ ∞

0
exp

(−σ2θrα
)

exp
(−πλr 2 (

1+qρ(α,θ)
))

r dr (4.9)

where (a) follows the fact that pt is non-negative and continuous. Let A(r ) = e−σ
2θrα , and

g = A(r )e−πλr 2
, we have

∣∣A(r )e−πλ(1+qtρ(α,θ))
∣∣≤ g , ∀θ ∈R+, t ∈N. Since g is integrable, by the

dominant convergence theorem [109], the result follows.

4.4 Coverage analysis with infinite buffer

In this section, we analyze the coverage probability and queue delay in downlink cellular
networks when the buffer at each BS has infinite size. Particularly, we develop a comprehensive
approach to handle the interaction between the coverage probability and the queueing state
evolution, thanks to a DTMC. We also denote the explicit upper and lower bounds on the
dynamic coverage probability. At the end, we characterize the queue delay of a randomly
chosen BS when the DTMC works at the stationary regime.

4.4.1 Stable coverage probability

Theorem 5. Under the prescribed system assumption, the stable coverage probability with
infinite buffer size is given by

p(θ,ξ) = 2πλ
∫ ∞

0
e−σ

2θrαe−xλr 2(1+qρ(α,θ))r dr (4.10)

and the active probability of a randomly chosen BS is

q =
{
ξ/p, if p > ξ,

1, if p ≤ ξ.
(4.11)

Proof. We consider the scenario where the arrived packets at each BS are stored in a buffer,
with an infinite size, until their successful transmission. The number of packets in the queue
of a randomly chosen BS is modeled as a birth and death process that can be represented with
the DTMC with infinite states, given in Fig. 4.1.
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0 1 2 3 · · ·ξ̄

ptξ+ p̄t ξ̄ ptξ+ p̄t ξ̄ ptξ+ p̄t ξ̄

ξ p̄tξ p̄tξ p̄tξ

pt ξ̄pt ξ̄pt ξ̄pt ξ̄

Figure 4.1 – DTMC model of typical BS with infinite buffer length.

In Fig. 4.1, ā = 1−a with a ∈ {
pt ,ξ

}
, where pt is the successful transmission rate and ξ the

arrival rate of the packets. Each state is the number of packets in the queue at a given time slot.
The state 0 represents the empty buffer event. When the buffer is in this state, the transmitter
remains silent. The number of packets in the queue can be characterized by the stationary
distribution of the DTMC in Fig. 4.1. The transition probability matrix is

P =


ξ̄ ξ 0 0 0 · · ·

pξ̄ p̄ξ̄+pξ p̄ξ 0 0 · · ·
0 pξ̄ p̄ξ̄+pξ p̄ξ 0 · · ·
0 0 pξ̄ p̄ξ̄+pξ p̄ξ · · ·
...

...
...

...
...

. . .

 (4.12)

For a stationary Markov chains, we have [35]

xP = x , xeT = 1 (4.13)

where x = [x0, x1, x2, · · · , xi , · · · ] is the row vector that contains the stable-state probabilities,
in which xi denotes the probability of being in the state with i packets. i.e., xi = P[X = i ],
and eT is a column vector of ones with the proper length, i.e., infinite length. After algebraic
manipulation, the final expression when DTMC works at stable state is (see Appendix A.2)

x0 = p −ξ
p

,∀ p > ξ (4.14)

xi = R i x0

p̄
, where R = ξp̄

ξ̄p
, ∀ i ∈ [1,+∞) (4.15)

Since x0 is the probability of having an empty buffer and therefore causing the BS to be inactive,
the activity probability of the typical BS is

q = 1−x0 = ξ

p
,∀ p > ξ (4.16)

If p ≤ ξ, then all states are transient and BS are always active, i.e. q = 1.By substituting (4.4)
and (4.14)-(4.16), we obtain the result.

According to (4.10) and (4.11), the interdependence between q and p shows the relation-
ship between the queue and the stochastic geometry in the analysis. According to the relative
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values of p and ξ, a randomly chosen BS has a probability of ξ/p to be active if its arrival rate
is less than the departure rate, and it is always active in the opposite case. The computation
of the probability q is performed dynamically with Algorithm 2. It is important to note that,
when p ≤ ξ, q = 1 and all the buffer lengths grow up to infinity, the DTMC are not stable. The
stable coverage probability (4.10) can however be defined but at the cost of infinite queue
lengths or dropped packets.

Algorithm 2 Iterative algorithm for computation of p and q of Theorem 5.

Initialize q1 ∈ (ξ,1), q0 = 0, i = 0, ε¿ 1
while |qi+1 −qi | ≥ ε do

i ← i +1, q ← qi , p ← p(θ,ξ) (4.10)
if p > ξ then

qi+1 ← ξ/p
else

qi+1 ← 1
break

end if
end while
Return q ← qi+1 and p ← p(θ,ξ)

4.4.2 Upper and lower bounds

Simulation results will show that this stability behaves between two extreme cases that are
summarized in the next lemma.

Lemma 4.2. Considering the depicted downlink cellular network, the coverage probability can
be bounded as follows

pl ≤ p ≤ pu (4.17)

where

pu = 2πλ
∫ ∞

0
exp(−σ2θrα)e−πλr 2(1+ξρ(α,θ))r dr (4.18)

and

pl = 2πλ
∫ ∞

0
exp(−σ2θrα)e−πλr 2(1+ρ(α,θ))r dr (4.19)

Proof. A favorable system is considered for the upper bound [29], if the transmission of a
packet fails, this packet is dropped instead of being re-transmitted. The interfering transmitter
is then active with probability ξ, i.e., the packet arrival rate in the system, or we can say that the
fraction of the active interfering transmitters remains constant in time. Substituting qt in (4.4)
by its minimum value qt = ξ , the upper bound is obtained. In the lower bound case, the
highest interference situation is obtained when all BSs are always active [29]. This corresponds
to qt = 1, which also gives the lowest value of the function in (4.4).
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It is worth to mention that the lower bound (4.19) is the coverage probability given in [4],
and the upper bound (4.18) is the coverage probability given in [4] with a BS density thinned
by a factor ξ. With Theorem 5, the stability condition in Lemma 4.2 is ensured at a cost of
infinite buffer lengths if pl ≤ ξ. Moreover, the bounds in Lemma 4.2 reduce to a simpler form,
when the network is considered as interference-limited.

Corollary 4.2. In an interference-limited network, i.e. σ2 → 0,

pu = [
1+ξρ(α,θ)

]−1 (4.20)

pl =
[
1+ρ(α,θ)

]−1 (4.21)

4.4.3 Queue delay analysis

The queue delay measures the delay between the time when a packet arrives at the queue and
the time when it starts to be served, i.e., when it is transmitted.

Definition 4.2 (Queue delay [35]). Considering a first in first out (FIFO) system, let W be the
queue delay, i.e., the number of time slots for a randomly chosen packet spent in the queue

before being transmitted. The average queue delay is given as E[W ] =
∞∑

w=1
wP(W = w).

Lemma 4.3. Considering the FIFO system, with the service rate p and the arrival rate ξ, the
average queue delay has the following expression

E[W ] = ξ(1−ξ)

p(p −ξ)
, ∀p > ξ (4.22)

Proof. The result can be obtained from the FIFO system analysis in [35], and we detail the
proof in the following. Let W be the queue delay, then

P(W = 0) = p −ξ
p

,∀ p > ξ (4.23)

P(W = w) =
w∑

i=1
xi

(
i −1

w −1

)
p i (1−p)w−i , ∀w ≥ 1, p > ξ (4.24)

where xi is given in (4.15), which is the probability of having i packets in the queue when the
DTMC in Fig, 4.1 converges. The arguments of (4.24) are as follows: if we have i packets in the
queue, an arriving packet will wait w time slots if in the first i −1 time slots exactly i −1 packets
are completed and the service completion of the i th packet occurs at time slot w . Thus the
summation over i from 1 to w . Considering the service rate as in (4.10), ∀w ≥ 1, p > ξ, we have

P(W = w) =
w∑

i=1
R i x0

p̄

(
i −1

w −1

)
p i (1−p)w−i (4.25)

= p −ξ
p

(1−p)w−1 ξ

1−ξ
(

1

1−ξ
)w−1

(4.26)

= ξ(p −ξ)

p
(1−ξ)−w (1−p)w−1 (4.27)
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The mean queue delay is then

E(W ) =
∞∑

w=0
wP(W = w) = ξ(1−ξ)

p(p −ξ)
(4.28)

that ends the proof.

4.4.4 Numerical results

In this section, we evaluate the performance of dynamic downlink cellular networks under
different traffic intensity. BS positions are generated using a PPP with density λ= 0.25. Each
UE is associated to its nearest BS. The packets arrive to each BS according to the Bernoulli
process with parameter ξ and the service is then geometric with the parameter pt at each time
slot. For each network realization, the queues are let to evolve up to the convergence, i.e., the
number of active transmitters does not evolve with time, then a new network realization is
drawn and the process repeats.

Fig. 4.2 plots the coverage probability expressed in Theorem 4.1 w.r.t. the threshold θ.
Moreover, two initialization states are considered: the full load case, i.e. the lower-bound in
Lemma 4.2, and the light traffic initialization case, i.e. the upper-bound in Lemma 4.2. The
time evolution of the coverage probability when the number of time slots increases is illustrated
thanks to the arrows in Fig. 4.2. Whatever the initialization state is, the coverage probability
converges to the stable coverage probability, corresponding to the stable distribution of the
DTMC when p ≥ ξ.
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Figure 4.2 – Comparison of dynamic coverage probability with two initialization, ξ= 0.3,σ2 = 0,
λ= 0.25 and α= 4.
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Fig. 4.3 compares the analytical results in Theorem 5 with the Monte Carlo simulations
under two network densities, λ = 0.05 and λ = 0.2. The average arrival rate is set to ξ = 0.3
and σ2 = 0.1. The results corroborate the good match between simulations and analytical
expressions. Moreover, we observe that the region between upper and lower bounds reduces
when λ decreases. Indeed, as the density becomes lower, the interference level at the typical
user decreases also and hence the upper bound is close to the lower bound.
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Figure 4.3 – Comparison of Monte Carlo simulation and analytically iterative algorithm of
coverage probability at stable state.

Fig. 4.4 show the average queue delay for different packet arrival rates. As shown in the
figure, when the network is stable, the average queue delay remains only a few time slots. Once
the network is unstable, the average queue delay grows to infinity. In addition, to ensure the
stability of the queue, i.e., the average queue length does not grow to infinity, the critical SINR
threshold should decrease as the traffic intensity increases. For example, when ξ= 0.8, the
network remains stable at θ <−10 dB, while when ξ= 0.3, θ < 4 is required to ensure a stable
queue.

4.5 Coverage analysis with finite buffer

In this section, we proposed a tractable mathematical model to analyze the coverage prob-
ability and packet loss probability in the downlink cellular networks, considering a buffer
restriction. Particularly, we derive the closed-form expression of the coverage probability that
depends on the activity probability of a randomly chosen BS which is related to the buffer
length. We also characterize the packet loss probability of a randomly chosen BS when the
network becomes stable, i.e., the DTMC works at a stationary regime.
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Figure 4.4 – Average queue delay E[W ] versus θ, α= 4, λ= 0.25, ξ ∈ {0.8,0.5,0.3} packet/slot.

Theorem 6. The stable coverage probability with a finite buffer restriction B is given by the
fixed-point equation

p(θ,ξ,B) = 2πλ
∫ ∞

0
e−σ

2θrαe
−πλr 2

(
1+ (RB+2−R)ρ(α,θ)

RB+2−R+(R−1)p̄(θ,ξ,B)

)
r dr

where p̄(θ,ξ,B) = 1−p(θ,ξ,B), and R = ξp̄(θ,ξ,B)
ξ̄p(θ,ξ,B)

.

Proof. We consider the scenario where the arrived packets at each BS are stored in a buffer
with finite size, until their successful transmission. When a packet arrives and the buffer is
full, this new arrival packet is dropped. The buffer length restriction B are the same for all BS
and it is the maximal number of packets the buffer can contained. The number of packets
in the queues of a randomly chosen BS is modeled as a birth and death process that can be
represented with the DTMC in Fig. 4.5 with B +2 states.

0 1 · · · B B +1ξ̄

ptξ+ p̄t ξ̄ ptξ+ p̄t ξ̄ ptξ+ p̄t ξ̄

ξ+ p̄t ξ̄

ξ p̄tξ p̄tξ p̄tξ

pt ξ̄pt ξ̄pt ξ̄pt ξ̄

Figure 4.5 – DTMC model of the typical BS with a finite buffer length.
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In Fig. 4.5, the state 0 represents the empty buffer event. When the buffer is in this state,
the transmitter remains silent. When the queue is in the state B , it means that the buffer is
full and hence any new arriving packet is dropped, i.e., the state B +1 is reached. The number
of packets in the queue can be characterized by the stationary distribution of the previous
DTMC. The transition probability matrix of size (B +2)× (B +2) is given by (4.12) in the finite
case, i.e.,

P=



ξ̄ ξ 0 0 · · · 0
pξ̄ p̄ξ̄+pξ p̄ξ 0 · · · 0
0 pξ̄ p̄ξ̄+pξ p̄ξ · · · 0
...

...
...

...
. . .

...
0 0 0 pξ̄ p̄ξ̄+pξ p̄ξ
0 0 0 0 pξ̄ p̄ξ̄+ξ


(4.29)

With x = [x0, x1, x2, · · · , xB , xB+1], the solution of (4.13) is
x0 = x0ξ̄+x1ξ̄p

x1 = x0ξ+x1(ξ̄p̄ +pξ)+x2ξ̄p

xi = xi−1ξp̄ +xi (ξ̄p̄ +pξ)+xi+1ξ̄p, 2 ≤ i ≤ B

xB+1 = xBξp̄ +xB+1(p̄ +pξ)

(4.30)

Then

xi = x0

p̄

(
ξp̄

ξ̄p

)i

, 1 ≤ i ≤ B (4.31)

xB+1 =
(
ξp̄

ξ̄p

)B ξ

ξ̄p
x0 (4.32)

After normalization, we obtain

x0 =
[

1+ξRB (ξ̄p)−1 + (p̄)−1
B∑

i=1
R i

]−1

(4.33)

Combining (4.33) and (4.7), and the condition that q = 1−x0, we have

q = 1−
[

1+ξRB (ξ̄p)−1 +
B∑

i=1
R i (p̄)−1

]−1

(4.34)

p = 2πλ
∫ ∞

0
e−σ

2θrαe−πλr 2(1+qρ(α,θ))r dr (4.35)

where ρ(α,θ) = ∫ ∞
1 [1+u

α
2 θ−1]−1du, and R = ξp̄

ξ̄p
. According to (4.34) and (4.35), the interde-

pendence between q and p shows the relationship between the queue and the stochastic
geometry in the analysis.
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Corollary 4.3. In an interference-limited network, i.e., σ2 → 0, we have

p(θ,ξ,B) =
[

1+Υ
∫ ∞

1

1

1+u
α
2 θ−1

du

]−1

(4.36)

whereΥ= 1+ (1−RB+2)−1(1−R)
−1

(1−p(θ,ξ,B)). When the path loss exponentα= 4, the stable
coverage probability can be further simplified to

p(θ,ξ,B) =
[

1+Υ
p
θ(
π

2
−arctan

p
θ)

]−1
(4.37)

For the sake of simplicity, we use p instead of p(θ,ξ,B) in the rest of this section. The fix
point equation expressed in Theorem 6 can be iteratively solved using Algorithm 3.

Algorithm 3 Iterative algorithm to compute p of Theorem 6.

Initialize q1 ∈ (ξ,1), q0 = 0, i = 0, ε¿ 1
while |qi+1 −qi | ≥ ε do

i ← i +1, q ← qi , p ← p in (4.35)
if |qi+1 −qi | ≥ ε then

qi+1 ← q in (4.34)
break

end if
end while
Return q ← qi+1 and p

4.5.1 Packet loss probability

The packet loss probability is the probability that a new packet is dropped when it meets the
maximum queue length situation. This probability is given by the following lemma.

Lemma 4.4. The packet loss probability at a randomly chosen BS with finite buffer length
restriction B is given by

ploss =
RB+2 −RB+1

(R −1)p̄ +RB+2 −R
(4.38)

where p is the stable coverage probability given by Theorem 6 and R = ξp̄
ξ̄p

.

Proof. ploss is the probability to be in the state B+1 and is obtained using (4.32) and (4.33).

4.5.2 Numerical results

Fig. 4.6 compares the analytical result in Theorem 6 evaluated with Algorithm 3, with the
Monte-Carlo simulations under different arrival rate ξ and buffer restriction B . The analytical
results are shown with solid lines and simulations with marks. The results corroborate the
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Figure 4.6 – Coverage probability at a stable state with different buffer restrictions B and arrival
rates ξ.

good match between simulations and analytical expressions. We observe that the full load
assumption is pessimistic w.r.t. the coverage probability. When the buffer length is kept
constant as B = 5, we observe that the higher arrival rate leads to a lower stable coverage
probability on a large range of coverage threshold θ. Indeed, when ξ increases, the queues
are more solicited, then the BSs often have a packet to transmit, and hence they generate
interference and the coverage probability at typical UE decreases.

A more surprising result is that the coverage probability is inversely related to the buffer
size, i.e., increasing the buffer size B decreases the coverage probability. For example, fixing the
arrival rate as ξ= 0.3, we observed that when B changes from 1 to 5, the coverage probability
slightly degrades in the threshold range [2,14]dB. This is because a BS with a large B drops
fewer packets at a given arrival rate than a BS with a small buffer size. Therefore, when
B = 5, the activity probability of a randomly chosen BS is more significant, which implies an
increase in interference and a decrease in coverage probability. However, the constrained
queue size implies a large packet loss since the randomly selected queue has a high probability
of becoming full when B is low.

Fig. 4.7 plots the coverage probability and the packet loss probability in Lemma 4.4 for
different arrival rates ξ and the queue lengths B . When fixing the queue length B = 5, we
observe that the coverage probability improves when the arrival rate decreases, i.e., from
ξ= 0.3 to ξ= 0.1. It comes from the fact that a lower arrival rate leads to fewer packets in the
queue, which reduces the BSs’ active duration and decreases the interference to the typical UE.
Moreover, since fewer packets are generated, the packet loss probability is correspondingly
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Figure 4.7 – Packet loss probability and coverage probability at stable state, λ = 0.25, σ2 =
−10 dB, α= 4.

reduced for a given SINR threshold. When fixing the arrival rate at ξ= 0.3, we observe that the
packet loss decreases significantly when B increases for a low to a medium range of values θ.

4.6 Conclusion

This chapter proposed tractable mathematical models to analyze the coverage probability
in a dynamic traffic randomly deployed downlink cellular network. The queue evolution at
each transmitter has been handled with a DTMC and a Bernoulli distribution for the packet
arrival. The interaction between the coverage probability and the queue state evolution has
been captured in closed-form. The explicit bounds on the dynamic coverage probability, the
queue delay performances and the packet loss probability have been analysed.
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Chapter 5

Analysis of ε-stable Region

5.1 Introduction

In this chapter, we use the system model of Chapter 4 with infinite buffer size assumption.
Unlike the analysis in Section 4.4, where the SINR analysis provided limited information about
the performance seen by a specific user, in this chapter, on the other hand, we characterize
the ε-stable region in a large-scale dynamic downlink cellular network, with multi-cells and
random link distances. We provide closed-form expression of the upper and lower bounds
of ε-stable region by considering the modified systems and Markov inequality. Moreover,
we propose an alternative definition of the ε-stable region and derive accordingly a tight
approximation of the critical arrival rate that is unavailable in literature. In particular, the
DTMC model in Section 4.4 is used to handle the interaction between the transmit success
probability and the queue state evolution, to obtain the tight approximation of the critical
arrival rate, contrary to the bounds provided in literature where the interaction between
queues is not considered. Our result reveals that the proposed approximation is tighter than
the bounds 1.

5.2 Transmit success probability

In this chapter, we ignore the noise at the UE and consider an interference-limited system for
the sake of simplicity (the noise-limited system has been discussed in Example 3.4). Therefore,
the SINR in (4.1) is replaced by the SIR. To obtain more fine-grained information, we start
by defining the transmit success probability of the typical user at the time t , which is the
conditional SIR distribution given the BS point process at the time slot t .

By applying the Slivnyak’s theorem, it is sufficient to focus on the SIR of a typical UE at
the origin rather than considering each UE in the PPP. The transmit success probability at the

1These works led to publications [C3], see § 1.3.
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typical UE is

µt ,Px0
(
SIRt > θ|Φ

)=P
 Hx0,t ‖x0‖−α∑

x∈Φ\x0

Hx,t ‖x‖−α1(x ∈Φt )
> θ

∣∣∣Φ
 (5.1)

Lemma 5.1. The transmit success probability experienced by the typical UE at time t is

µt =
∏

x∈Φ\x0

(
qt

1+θ‖x0‖α ‖x‖−α +1−qt

)
(5.2)

Proof. The steps of this proof are similar to the steps in Appendix A.1.

In Section 4.4, we analyse the first moment of µt , i.e., E[µt ]. It can be seen as the average
of the coverage probabilities of all the UEs in the network due to the ergodic setting. These
metrics provide limited information. For example, given the packet arrival rate as ξ= 0.4, if
the stable coverage probability p = 0.5 (that is, the SINR at typical UE exceeding the threshold
θ when the time goes to infinity, i.e., p= lim

t→∞E[µt ]), the network is said to be stable since p > ξ.

However, it could be that half of the users which has a stable coverage probability of 0.8 and
another half of users that have a stable coverage probability of 0.2. The other extreme case
is that all the users have a stable coverage probability of 0.5. Clearly, the user experience will
be quite different in the two cases, but the stable coverage probability p does not capture the
difference.

Before we analyze the distribution of µt and further ε-stable region, we address two issues:
i) due to the random packet arrival and retransmission of failed deliveries, the active state
1(x ∈Φt ) at each transmitter varies over time, and ii) there may exist common interfering BSs
seen by the same UE from one time slot to another, which introduce temporal correlation
inside the queues. It is non-trivial to obtain the closed-form of ε-stable region defined in (3.27)
since the transmit success probability (5.1) is time-dependent.

5.3 Bounds of ε-stable region

5.3.1 Lower bounds

To derive the lower bound, we consider the full load system where all the BSs keep transmitting
all the time. The full load system leads to the highest interference level, and the lowest transmit
success probability in (5.1), i.e., qt = 1, ∀t ∈N . By deriving the ε-stable region for the full load
system, we get the lower bounds for the original system to be ε-stable. Noted that ξl

c is defined
as ξl

c ≤ ξc .

Lemma 5.2. The bth moment of the transmit success probability in full load system is given by

Mb = 1

2F1(b,− 2
α ;1− 2

α ,−θ)
. (5.3)
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Proof. Given the BS processΦ, the transmit success probability is

µl = E{Hx0 },{Hx }

P
 Hx0 ‖x0‖−α∑

x∈Φ\x0

Hx ‖x‖−α ≥ θ
∣∣∣Φ


 (5.4)

= ∏
x∈Φ\x0

(
1

1+θ‖x0‖α ‖x‖−α
)

(5.5)

The bth moment follows

Mb = E
[ ∏

x∈Φ\x0

(
1

1+θ‖x0‖α ‖x‖−α
)b

]
(5.6)

Instead of calculating this expectation in two steps as usual (first condition on ‖x0‖ then take
the expectation with respect to it), we use the PGFL of the RDP from (2.12). Since (5.5) depends
on the BS locations only through the relative distances, we can directly apply the PGFL of the
RDP and can obtain (5.3).

Mb =
[

1+
∫ ∞

1

[
1−

(
1

1+θv− α
2

)b
]

d v

]−1

(5.7)

which can be expressed as (5.3), the further detail see in Appendix A.3.

Using the Gil-Pelaez inversion theorem, we obtain an exact integral expression for the
critical arrival rate ξl

c for the full load case.

Theorem 5.1. Considering the depicted downlink cellular network, the critical arrival rate ξc

can be bounded as follows

ξc ≥ ξl
c = sup

ξ ∈ [0,1] :
1

2
− 1

π
×

∫ ∞

0

1

w
Im


ξ−i w

1+∫ ∞
1

[
1−

(
1+θv− α

2

)−b
]

d v

d w≤ε

 (5.8)

Proof. Seen in Appendix A.4.

Remark 5.1. When the path loss exponent α= 4, the lower bound of the critical arrival rate can
be simplified as

ξl
c = sup

{
ξ ∈ [0,1] :

1

2
−

∫ ∞

0

1

πw
Im

{
ξ−i w

2F1(b,−1

2
;

1

2
,−θ)

}
d w≤ε

}
(5.9)

The following lemma gives a lower bound of ε-stable region by using Markov inequality, as
in [5]. This bound is weaker compared with Theorem 5.1 but easier to evaluate.
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Lemma 5.3. Considering the depicted downlink cellular network, the critical arrival rate ξc

can be bounded as follows

ξc ≥ ξ̃l
c = max

n∈N+

[
(1−ε)

[
1+

∫ ∞

1

[
1−

(
1+θv− α

2

)−n]
d v

]]− 1
n

(5.10)

When the path loss exponent α= 4, ξ̃l
c can be further simplified to

ξ̃l
c = max

n∈N+

[
(1−ε)

[
2F1(−1

2
,−n;

1

2
;−θ)

]]− 1
n

(5.11)

Proof. See Appendix A.5.

The proof indicates that ξ̃l
c is a weaker bound than the one given by Theorem 5.1, because

ξc ≥ ξl
c > ξ̃l

c .

Remark 5.2. When ε→ 0, the critical arrival rate approaches to 0; when ε→ 1, the critical
arrival rate approaches to 1:

lim
ε→0

ξl
c = 0, lim

ε→1
ξl

c = 1, ∀θ ≥ 0 (5.12)

5.3.2 Upper bounds

In order to derive upper bounds for the ε-stable region, we consider a favorable system, as
described in Lemma 4.2. The upper bound strategy is: If the transmission of a packet fails, this
packet is dropped instead of being re-transmitted. The interfering BS just serves the packet at
each time slot and then it is active with probability ξ. Thus, the interference at typical UE is
always lower than the original system at each time slot. By deriving the ε-stable region for the
favorable system, we get the upper bounds ξu

c for the original system to be ε-stable, such as
ξc ≤ ξu

c .

Theorem 5.2. Considering the depicted downlink cellular network, the critical arrival rate ξc

can be bounded as follows

ξc ≤ ξu
c = sup

ξ ∈ [0,1] :
1

2
− 1

π
×

∫ ∞

0

1

w
Im


ξ−i w

1+∫ ∞
1

[
1−

(
1− ξθ

θ+vα/2

)i w
]

d v

d w≤ε

 (5.13)

Proof. In this favorable system, we have 1(x ∈ Φt ) = ξ, ∀t ∈ N, ∀x ∈ R2. This corresponds
to qt = ξ, which leads to the lowest interference and the lowest transmit success probability
in (5.1). The detailed proof is in Appendix A.6.
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5.4. APPROXIMATION

Corollary 5.1. Given a slotted system with transmitters distributed as a PPP and per-link with
random distance, for all n > 0, a upper bound of ξc is ξc < ξu

c < ξ̃u
c , where ξ̃u

c is the solution of
the fixed-point equation

ξ̃u
c = ε 1

n

[
1+

∫ ∞

1

[
1−

(
1− ξ̃u

c θ

θ+v
α
2

)−n]
d v

] 1
n

, ∀n ∈N+ (5.14)

Proof. Seen in Appendix A.7.

Remark 5.3. When the SIR receiving threshold θ → 0, for all ε ≥ 0, the critical arrival rate
approaches to 1. This indicates that the lower bound and upper bound are tight for small θ.

Proof. In the original system, where the queues interact with each other, when θ → 0, a
transmission is almost surely successful if it is scheduled. Therefore, the serving processes
of the packets at different transmitters can be approximated as independent, and the critical
arrival rates below 1 are intuitively reasonable. On the other side, a transmission is almost
surely failed when θ→∞. Therefore, the critical arrival rate of a ε-stable network tends to 0. A
detailed proof is approved in Appendix A.8.

5.4 Approximation

In the previous section, we derived various bounds of the ε−stable region. However, these
bounds are tight in some network configurations, e.g., at small SIR threshold θ value. In
contrast, they may be loose in other network configurations, as we will show later in the
numerical results. Since describing the distribution of ε-stable region is not easy, as we
mentioned in Section 5.2, we consider a modified ε-stable region definition in this section.
This definition is motivated by Fig. 4.2, where two different initialization states were considered
to get the stable coverage probability. Under this definition, we ignore the transient values
of the initial period of µt and describe the ε-stable region only when time goes to infinity.
Compared to (3.27), the new region is simpler to handle and yields some tractable expressions.

Definition 5.1. A modified definition of the ε-stable region, instead of (3.27), is given by

Sε =
{
ξ ∈ [0,1] :P

{
lim

t→∞µt ≤ ξ
}
≤ ε

}
(5.15)

We define µ as µ= limt→∞µt . Following the same argument as the one in Lemma 4.7, µ
has the following expression

µ= ∏
x∈Φ\x0

(
q

1+θ‖x0‖α ‖x‖−α +1−q

)
(5.16)

As we discussed in § 4.4, a randomly chosen BS has a probability ξ/µ to be active if its arrival
rate is less than the departure rate, and it is always active in the opposite case. That is

q =
{
ξ/µ, if µ> ξ,

1, if µ≤ ξ.
(5.17)
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It is important to note when µ< ξ, then q = 1 and all the queue lengths and average queue
delays grow up to infinity, corresponding to an unstable network. In the following, we present
the approximation of ε-stable region in downlink cellular networks.

Theorem 5.3. Considering the dynamic downlink cellular network introduced above and the
definition in (5.15), the approximated critical arrival rate of ε-stable region can be characterized
as follows

ξ̃c = sup

ξ ∈ [0,1] :
1

2
− 1

π
×

∫ ∞

0

1

w
Im


ξ−i w

1+∫ ∞
1

[
1−

(
1− E[q]θ

θ+vα/2

)i w
]

d v

d w ≤ ε

 (5.18)

where

E[q] =
{

ξ
1−θξρ(θ,α) , if 1

1+θρ(θ,α) > ξ
1, if 1

1+θρ(θ,α) ≤ ξ

and ρ(α,θ) = ∫ ∞
1 [θ+u

α
2 ]−1du.

Proof. See Appendix A.9.

The expression in (5.18) quantifies how the key features of a dynamic network, i.e., inter-
ference, SIR threshold and packet arrival rate, affect the distribution of the ε-stable region.
Several remarks regarding Theorem 5.3 are in order.

Remark 5.4. The upper and lower bound of the critical arrival rate in Theorem 5.1 and Theo-
rem 5.2 corresponds to E[q] = ξ and E[q] = 1 in Theorem 5.3, respectively.

Remark 5.5. When the SIR threshold θ→ 0, for all ε≥ 0, the critical arrival rate approaches to
1. Letting θ→ 0, Theorem 5.3 becomes

lim
θ→0

ξ̃c = sup

{
ξ ∈ [0,1] :

1

2
− 1

π

∫ ∞

0

1

w
Im

{
ξ−i w

}
d w≤ε

}
= sup

{
ξ ∈ [0,1] :

1

2
+ 1

π
× π

2
sgn(lnξ) ≤ε

}
= 1 (5.19)

since sgn(lnξ) =−1,∀ ξ ∈ (0,1). Similar conclusion can be drawn for the upper bound ξu
c and

lower bound ξl
c .

Remark 5.5 illuminates that a transmission attempt is almost surely successful when θ→ 0,
thus the admissible critical arrival rate approaches 1.
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5.5. NUMERICAL RESULTS

5.5 Numerical results

In this paragraph, we validate the accuracy of our analysis through simulations, and explore
the impact of the traffic condition on the network performance, from several aspects. Unless
otherwise mentioned, the following parameters are used throughout this paragraph: the
path loss exponent is α = 4, the BS density is λ = 0.25, and the packet arrival rate is ξ ∈
[0,1] packet/slot.

Three simulation scenarios are considered:

(i) The original system described in section 4.2. For each network realization, the queues
are let to evolve up to the convergence, i.e., when the number of active transmitters
stabilizes and does not evolve with time. Then a new network realization is drawn again
and the process repeats;

(ii) The full load case, where all BSs keep transmitting all the time, leading to the lower
bound ξl

c described in Theorem 5.1;

(iii) The favorable system, where a randomly chosen BS is active with probability ξ, leading
to the upper bound ξu

c described in Theorem 5.2.
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Figure 5.1 – Upper and lower bounds of the ε-stable region.

Fig. 5.1 compares the analytical results with the Monte Carlo simulations under two
different SIR thresholds, θ = 0 dB and θ = 5 dB. The network is ε-stable if and only if the
average arrival rate ξ≤ ξc at each BS. The figure shows a good match between simulations and
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Figure 5.2 – The approximation and bounds of the ε-stable region, θ ∈ {−5,0} dB.

analytical expressions. Moreover, we observe that the region between upper and lower bounds
reduces when ε increases, the bounds converge to 1 when ε= 1, as expected. Moreover, the
lower and upper bounds decrease when θ increases. Indeed, as θ increases, a transmission
has a higher chance to fail when scheduled. Hence, the possible arrival rates, i.e., those for
which the network is stable, decrease.

Fig. 5.2 focuses on the upper and lower bounds, i.e., ξu
c and ξl

c respectively, as well as the
critical arrival rate ξ̃c derived in Theorem 5.3. The critical arrival rate obtained by simulation
is based on Definition 3.27 and it is compared to the expression in Theorem 5.3 which is based
on (5.15). We can observe that the critical rate lies between our upper and lower bounds, and
Theorem 5.3 reveals to be a good approximation of the true critical rate, as confirmed by the
simulations. This observation implies that the transient phase present in Definition 3.27, but
not in (5.15), has a negligible effect on the critical arrival rate. Moreover, it is observed that the
critical arrival rate ξ̃c is close to the upper bound ξu

c when θ is relatively small, i.e., θ =−5 dB.
This is because decreasing θ will increase the opportunity of a successful transmission. Thus
the active probability of the typical BS in the real case is much closer to the active probability
in the favorable system.

5.6 Conclusion

This chapter has proposed a complete characterization of the ε-stable region in a dynamic
downlink cellular network. We derived the closed-form expression of the critical arrival rate,
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5.6. CONCLUSION

the rate at which the proportion of unstable queues are under a certain threshold. The upper
and lower bounds of the ε-stable region have also been derived. These results allow to quickly
evaluate the proportion of queues, in average, that are in outage when the network deployment
is modeled with a PPP and when the network traffic is modeled with a DTMC. In the next
chapter, we consider the problem of reinforcement learning-based transmission policies
considering the channel state information, queueing state and packet arrival state in dynamic
downlink cellular networks.
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Chapter 6

RL based Transmission Policies in
Dynamic Cellular Networks

6.1 Introduction

The characterization of the stable regions by considering the resource allocation is non-
trivial to obtain, because of the dependence between the geometry and the dynamics of the
networks and the allocation strategy. However, the dynamic nature of the network considered
in this thesis leads itself perfectly to description by a Markovian decision process for which
reinforcement learning strategies can be proposed.

In this chapter, we provide transmission policies considering the channel state information,
the queue states, and the aggregate interference in dynamic downlink cellular networks. Large
scale networks with multi-cells and random link distances are considered. We studied a
constrained optimization problem to minimize the long-term transmission cost with delay
constraints. The problem is formulated with an infinite horizon Markov decision process,
and solving it online using reinforcement learning. First,We proposed algorithms based on
Q-learning and SARSA to train the formulated RL model. Then, we analyze the stable region of
both greedy policy and RL-based policy. The greedy policy provides an upper bound of stable
probability compared with the RL-based policy. We show that there exists a trade-off between
the stable probability and the transmitting costs which depends on the traffic intensity. The
numerical results reveal that the RL-based policies hold the same stable region compared to
the greedy policy however with a lower transmission cost 1.

6.2 RL problem formulation

In this chapter, we come back to the system model introduced in Section 4.2 with infinite
buffer assumption. We consider a more flexible transmission policy based on reinforcement
learning for the BS located in 0-cell, while the other BSs works with greedy policy, i.e., keep
transmitting when buffer is not empty.

1Part of results is submitted to publication [C4], see § 1.3.
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As discussed in Section 2.3, RL is based on the interaction of an agent with an unknown
environment. The decision is made through a process of trial and error. In each state s ∈S ,
the agent selects an action from the set of possible actions A . The choice of an action is
dictated by the policy defined by the distribution π(a|s), which is updated using a learning
process. The interactions between the agent and the environment continue until the agent
has learned the policy that maximizes its cumulative reward over the long term [1].

6.2.1 Formulation as a constrained Markov decision process

In this section, we formulate the wireless transmission management problem as a constrained
Markov decision process (MDP). We defined the state space, the action space as well as the
policy.

State space The state S(t) ∈S at the time slot t is defined by the vector [Sc (t),Sb(t),Sy (t)],
where

• Sb ∈B = {0,1} indicates whether the buffer is empty or not;

• Sy ∈Y ={0,1} is 1 if a new packet arrives in the buffer and 0 otherwise, where P(Sy = 1) =
ξ, ∀t ∈N;

• Sc ∈C represents the state of the channel where Sc = i , if γt ∈ [θi ,θi+1), i ∈ [1, M ]. Noted
that θ0 = 0 and θM+1 =+∞.

Note that the state space S =B×Y ×C .

Action space At each time slot, the BS in the 0-cell has to decided whether to transmit a
packet or not, unless the buffer is empty, in which case it remains silent. The action space
is A = {0,1}, where 0 stands for not transmitting, and 1 for transmitting. If a packet is trans-
mitted, i.e., A(t ) = 1, the packet is removed from the buffer if it is well received, with a certain
probability fs(1,Sc (t )), which characterizes the quality of the communication:

fs : A ×C → [0,1] (6.1)

where fs(·, ·) is increasing in the SIR state, i.e., a better SIR level leads to a higher success
probability, and fs(0,Sc (t )) = 0,

fs(1,Sc (t )) =


0, if γt < θ1

fm , if θm < γt < θm+1,m ∈ [1, M −1]

fM , if γt > θM

(6.2)

We are interested to transmit packets with the minimal transmission cost while limiting
the waiting time in the buffer. In that case, the agent’s objective function is modeled by two
cost functions, i.e., the transmit cost and the delay cost functions:
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1. The transmission cost is a non-increasing function with the SIR, i.e., it does not cost
more to transmit in good conditions rather than in bad ones. Let f (·, ·) : A ×C →R+ be
a non-increasing function that depends on the action and channel states such that

C (A(t ),S(t ))=
{

f (A(t ),Sc (t )) , if A(t ) = 1

0, if A(t ) = 0
(6.3)

2. The non-negative delay cost, which is applicable when the buffer is not empty, i.e., when
B(t ) > 0, W (·, ·) : A ×S →R+

W (A(t ),S(t )) =
{

0, if A(t ) = 1, or A(t ) = 0 and Sb(t ) = 0

w, if A(t ) = 0 and Sb(t ) > 0
(6.4)

Policy The transmission scheduling policy is a map between the system states and the
actions. It may be deterministic or be defined in the sense of distributions. Based on the cost
functions defined in (6.3) and (6.4), we define two long-term costs, knowing an initial state
S(0) = s and a realization of the networkΦ as

Cπ(s) = Eπ
[ ∞∑

t=0
ηtC (A(t ),S(t ))

∣∣∣S(0) = s,Φ

]
(6.5)

Wπ(s) = Eπ
[ ∞∑

t=0
ηt W (A(t ),S(t ))

∣∣∣S(0) = s,Φ

]
(6.6)

where the expectation is taken over the distribution of the policy and the dynamic of the
underlying MDP, and η ∈ (0,1) is the discounting factor. As η approaches 1, the agent cares
more about future rewards than the lower value of η. As η approaches 0, it means that the
policy emphasized the short-term gain. We choose to use the discounted criterion because it
ensure the existence of a stationary policy straightforwardly [110, 15].

The RL problem consists in finding the policy πwhich minimizes the average transmission
cost under the delay cost constraint, i.e.,

min
π∈Ψ

Cπ(s) s.t. Wπ(s) ≤ δ, ∀s ∈S (6.7)

Formally, we denote the collection of probability distribution on subsets of A , then the
policy is a map function

u : B×Y ×C →P (A ) (6.8)

For an infinite horizon MDP, the only case of interest is the existence of an optimal stationary
policy. A general policy is defined by a single decision rule u = ut (·, ·, ·), ∀t = 1,2, · · · , and a
stationary policy is defined by π= (ut (·, ·, ·) = u(·, ·, ·)), which means invariant in time. Besides,
we denote the set of all policies by U , and the set of stationary policies byΨ.
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6.2.2 The Lagrangian approach

Considering the structure of the constrained optimal transmission policy, we reformulate
the constrained MDP as a parameterized unconstrained MDP using the Lagrange multiplier
approach. For each Lagrangian multiplier λ, the instantaneous Lagrangian cost, L :N×S →
L ⊂R, at time t is defined as

L(t ,λ) =C (A(t ),S(t ))+λW (A(t ),S(t )) (6.9)

From [111], solving the constrained MDP problem is equivalent to solve the unconstrained
MDP and its Lagrangian dual problem. We present this in the following:

Theorem 6.1. The optimal value of the constrained MDP can be formulated as

Lπ∗(s,λ∗) = min
π∈Ψ

max
λ≥0

(Lπ(s,λ)−λδ) = max
λ≥0

min
π∈Ψ

(Lπ(s,λ)−λδ) (6.10)

where

Lπ(s,λ) = Eπ
[ ∞∑

t=0
ηt L(t ,λ)

∣∣∣S(0) = s,Φ

]
=Cπ(s)+λWπ(s) (6.11)

and a policy π∗ is optimal for the constrained MDP if and only if

Lπ∗(s,λ∗) = max
λ≥0

(Lπ∗(s,λ)−λδ) (6.12)

Proof. The detailed proof can be found in [111, Chapter 3]. Noted that the discounted cost
is this book is defined with the normalization constant (1−η). However the techniques are
the same for both cases, and one could retrieve one from the other by multiplying or dividing
the immediate cost by this factor, as η 6= 1. The main idea of the proof comes from three
aspect: (i) the constrained optimal problem is equivalent to solving a non-constrained sup-inf
problem; (ii) the inf and the sup can be interchanged under suitable conditions by invoking
a saddle point theorem: the inf in the inf-sup problem is in fact achieved by some policy
which is optimal for constrained optimal problem; (iii) under the Slater conditions, the sup-inf
is also obtained as max-min, this comes from the fact that the objective function and the
inequality constrained function are convex with respect to the stationary policy π and the set
of stationary policies is a closed convex polytope.

The dual problem, i.e., the max-min problem, is more familiar, since it involves first
minimization with respect to the policies, and only then maximizing with respect toλ. For each
fixed λ we are faced with a standard non-constrained problem of a controlled Markov chain,
and we can therefore obtain the minimization through well-known dynamic programming
techniques. For a fixed λ, the rightmost minimization in (6.10) is equivalent to solving the
following dynamic programming equation:

Lπ∗(s,λ) = min
a∈A

∑
(s′,l )∈S ×L

p(s′, l |s, a)
[
L(0,λ)+Lπ∗(s′,λ)

]
(6.13)
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where Lπ∗(s,λ) : S →R is the optimal state-value function given λ andΦ.
Similarly, the state-action function qπ(s,λ) is the expected long-term cost starting from

the state s, taking the action a, and following policy π, which can be expressed as:

qπ(s,λ) = Eπ
[ ∞∑

t=0
ηt L(t ,λ)

∣∣∣S(0) = s, A(0) = a,Φ

]
(6.14)

Lemma 6.1. GivenΦ and λ, the optimal policy π∗
λ

can be obtained by

π∗
λ = argmin

a∈A
q∗
λ(s, a),∀s ∈S (6.15)

where q∗
λ

(s, a) satisfying

q∗
λ(s, a) = ∑

s′∈S

∑
l∈L

p(s′, l |s, a)

[
l +min

a′ q∗
λ(s′, a′)

]
(6.16)

Proof. The proof is based on the Bellman equation introduced in Section 2.3.2 and detailed in
Appendix A.10.

In practice, the transition probabilities, i.e., p(s′, l |s, a), are unknown a priori. Conse-
quently, π∗ and q∗

λ
(s, a) cannot be computed using value iteration, instead, they must be

learned online based on experience. In the next, we consider two classical RL learning meth-
ods to obtain the optimal q∗

λ
(s, a) in (6.16).

6.3 Learning the optimal policy

6.3.1 Q-learning and SARSA

As we introduced in section 2.3.3, Q-learning and SARSA are two iterative algorithms which
make it possible to converge towards the optimal stationary policy for unconstrained MDP, in
the sense of the cost function defined above. To do this, the value of the state-action function
is updated from an incremental difference between the objective and the previous estimate of
the state-action function, that is:

qt+1(S(t +1), A(t +1))︸ ︷︷ ︸
new estimate

← qt (S(t ), A(t ))︸ ︷︷ ︸
old estimate

+αt

Tt+1︸︷︷︸
target

−qt (S(t ), A(t ))︸ ︷︷ ︸
old estimate

 (6.17)

where αt is the step-size which should satisfying
∑∞

t=0(αt )2 <∞ to ensure convergence [37].
In practice, it can be taken as a constant far less than one, e.g., α= 0.01 in [14], α= 0.00025
in [112]. On the other hand, Tt+1 is the objective value of the algorithm and takes a slightly
different form depending on whether we consider Q-learning or SARSA.
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Q-learning In this case, the target value has the form:

Tt+1 = L(t +1,λ)+ηmin
a′∈A

qt (S(t +1), a′), (6.18)

To balance exploitation and exploration, the ε-greedy policy is used to select the action at each
instant. That is, for ε ∈ [0,1]

a∗ =
{

argmina∈A q(S(t ), a), with probability 1−εt ,

a ∈A , with probability εt .
(6.19)

where εt can be kept constant or may vary during the learning in order to explore more at the
beginning, i.e., εt ≈ 1, and exploit more after a while, e.g., εt = 1

t+1 [56].

SARSA SARSA differs from the Q-learning by the target definition in (6.18). In SARSA, we use

Tt+1 = L(t +1,λ)+ηqt (S(t +1), A(t +1)) (6.20)

Unlike Q-learning, the behaviour and target policies, are both ε-greedy, i.e. the next
action to take observing the state S(t +1) is the action a′ which maximizes qt (S(t +1), a′) with
probability 1−ε, and a random action with probability ε.

In Algorithm 4, we show the Q-learning and SARSA algorithm embedded in the agent to
obtain q∗

λ
(s, a), where the M episodes correspond to the M realizations of theΦ process.

Algorithm 4 Q-learning (SARSA) algorithm to obtain q∗
λ

(s, a).

Initialization arrival rate ξ, BS density λb ;
for episode = 1,2, · · · , M do

(1) Initialize λ, qλ(s, a) = 0,∀ s ∈S , a ∈A

(2) Initialize S(0) = s
for t = 1,2, · · · do

(a) Choosing actions a for s by ε-greedy (2.44)
(b) Take action a, observe immediate Lagrangian cost l
(c) Realization of channel distribution for all BSs, observe dynamic SIR
(d) observe new state s′ = (s′c , s′y , s′b)
(e) Choose a’ for s’: mina′∈A qt (S(t +1), a′) for Q-learning, or ε-greedy for SARSA;
(f) update qλ(s, a) by (6.18) for Q-learning or (6.20) for SARSA;

end for
end for

6.3.2 Optimal Lagrange multiplier

The optimal value of the Lagrange multiplier λ can be learned online using stochastic sub-
gradients, as in [15, 104, 14]. Let λ∗ be the optimal Lagrange multiplier, then it satisfies

λ∗ = argmax
λ≥0

min
π∈Ψ

(Lπ(s,λ)−λδ) (6.21)

98



6.4. STABLE PROBABILITY ANALYSIS

Let πλ be the optimal transmission policy corresponding to the Lagrange multiplier λ, and

note that W (πλ) = Eπ
[∑∞

t=0η
t W (A(t ),S(t ))

∣∣∣S(0) = s,Φ
]

, λ∗ can be estimated iteratively as

λk+1 =λk +βk (W (πλk )− (1−η)δ) (6.22)

where (1−η)δ terms converts the discounted delay constraint δ to an average delay constraint,
βk is a time-varying learning rate. To ensure the sequence of Lagrange multipliers (λ1,λ2, · · · )
convergence to λ∗, βk should satisfy the following conditions [113]:

βk ≥ 0,
∞∑

k=0
βk =∞, and

∞∑
k=0

(βk )2 <∞ (6.23)

In our case, we choose βk = 1
k , which satisfied the convergence condition. At each update

of λ, we train the stationary strategy with dynamic programming based on the current λ
and obtain W (πλ) accordingly. From the dynamic programming point of view, λ is constant
during minimization the long-term cost with respect to the policies. From the point of view of
updating λ, W (πλk ) converges to the optimal value corresponding to the current value of λ.
Thus, we can obtain a sequence of update policies and λ values. An algorithm is provided to
optimize λ seen in Alg. 5. Note that λ∗ depends on the geometry of the network, in particular,
the position of the user w.r.t its BS.

Algorithm 5 Iteration algorithm for computation of λ∗.

Initialize λ1 > ε, λ0 = 0, k = 0, ε¿ 1
while |λk+1 −λk | ≥ ε do

k +1 ← k
W (πλk ) = Eπk

[∑∞
t=0η

t (W (A(t ),S(t ))|S(0) = s,Φ
]

λk+1 ←λk + 1
k (W (πλk )− (1−η)δ)

end while
Return λ∗ ←λk+1 and W (π∗

λ
)

6.4 Stable probability analysis

In this section, we investigate the stable probability for greedy policy and RL-based policies,
which is defined as

ps =PΦ
[

lim
T→∞

1

T

T∑
t=0

E
[

fs(Sc (t ), A(t ))
∣∣∣S(0) = s,Φ

]
> ξ

]
(6.24)

where the expectation is taken over the MDP dynamic according to a certain policy and the
channel fading of desired links and interfering links, and ps is obtained by averaging over the
point process. The stable probability is the CCDF of the average transmit success probability
for given θ and a given arrival rate ξ.
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6.4.1 Greedy policy

This policy will be the baseline policy to which RL performance will be compared to. In the
greedy algorithm, the BS is always active. We note this deterministic strategy as π̃. Given the
realization of PPP, the average transmit success probability of greedy policy is

rΦ(π̃) = lim
T→∞

1

T

T∑
t=0

E
[

fs(1,Sc (t ))|S(0) = s,Φ
]

(6.25)

Correspondingly, the stable probability p̃s is

p̃s =P [rΦ(π̃) > ξ] (6.26)

It is worth noting that in Chapter 5, we also calculated the stable probabilities for greedy
policy. The difference is that, in the previous chapter, the transmission is successful or not
depend on if the SIR exceed a given threshold; in this chapter, we divide the SIR into multi-
ple regions where each region has a corresponding transmit success probability in order to
adaptive reinforcement learning algorithm.

Special case M=2 We first discuss a special case M = 2 and fm − fm−1 =∆f , where the SIR
region is divided into three regions with increasing equal transmit success probability. To
obtain the stable probability in (6.26), we give the moments of the average transmit success
probability in (6.25), i.e. Mb , E[(rΦ(π̃))b] as following.

Theorem 6.2 (Moments). When M = 2, fm − fm−1 = ∆f , the bth moments of the average
transmit success probability for greedy policy is

Mb =∆f b
∞∑

k=0

(
b

k

)[
1+

∫ ∞

1

[
1−

(
1− qθ1

θ1 + v
α
2

)k (
1− qθ2

θ2 + v
α
2

)b−k
]

d v

]−1

, b ∈N (6.27)

Proof. Seen in Appendix A.11.

Using the Gil-Pelaze inversion theorem, we obtain an exact integral expression of stable
probability for greedy policy from the purely imaginary moments Mi w .

Theorem 6.3 (Stable probability). When M = 2, fm − fm−1 = ∆f , the stable probability for
greedy policy is

p̃s = 1

2
+ 1

π

∫ ∞

0

1

w
Im

{
u−i wψX (w)

}
d w (6.28)

where ψX (w) =∆f i w ∑∞
k=0

(i w
k

)[
1+∫ ∞

1

[
1−

(
1− qθ1

θ1+v
α
2

)i w−k (
1− qθ2

θ2+v
α
2

)k
]

d v

]−1

.

Proof. Let X , log(rΦ(π̃)). The characteristic function of X is

ψX (w), E[e i w X ] = E[(rΦ(π̃))i w ] = Mi w , w ∈R (6.29)

Then by the Gil-Pelaze theorem, (6.28) is obtained.
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Figure 6.1 – The exact expression.

Figure 6.1 validates Theorem 6.1, based on two settings: q = 0.5 and q = 1, which means
a randomly chosen interfering BS is active with probability 0.5 and 1, respectively. In the
simulation, we truncated w into region [0,50], thus there is a small difference between the
simulation and analysis in Figure 6.1. One drawback of theorem is that it is not easy to evaluate,
and it will take a long time to converge. This is because the binomial equation

(i w
k

)
is subject

to oscillatory convergence, which converges more slowly as w increases.
On the other hand, since rΦ(π̃) is supported on [0,1], the beta distribution can be used to

approximate the meta distribution of rΦ(π̃), thanks to [66]. Simulation results show that the
approximation of the beta distribution is much simpler, and matches the simulation exactly
(as shown later). The beta distribution is defined as follows:

Definition 6.1. The probability density function (pdf) of a beta distributed random variable X
with mean µ is [114]

fX (x) = x
µ(β−1)−1

1−µ (1−x)β−1

B(µβ/(1−µ),β)
, (6.30)

where B(·, ·) is the β-function, with B(x, y) = ∫ 1
0 t x−1(1− t )y−1d t, and var[X ] = µ(1−µ)2

β+1−µ .

In our case, the mean and variance of rΦ(π̃) can be obtained according to the first moment
and the second moment in (6.27), that is

E[rΦ(π̃)] = M1 (6.31)

Var[rΦ(π̃)] = M2 −M 2
1 (6.32)
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Then the beta distribution of rΦ(π̃) can be obtained according to Definition 6.1, the stable
probability is then approximated as

p̃s =P [rΦ(π̃) > ξ] ≈
∫ ∞

ξ
frΦ(π̃)(x)d x (6.33)

Fig. 6.2a and 6.2b plots the stable probability p̃s vs. ξ labelled on ∆ f and q , respectively
when M = 2. The analysis is based on Theorem 6.2 and Beta approximation. The stable
probability p̃s is decreasing with ξ increases. For example, given the fixed ξ in Fig. 6.2a, it can
be observed that p̃s is shifted to higher value when ∆ f = 0.5 compared with ∆ f = 0.3. This
implies that the higher transmit success probability the larger stable probability. Besides, the
active probability of interferers largely affects the stable region since a larger q results in a
higher interference level and reduces the SIR and further reduces the size of the stable region.
As we show in Fig. 6.2b, the lower the interfering base station activity, the higher the stable
probability.
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Figure 6.2 – p̃s when M = 2.

General case M>2 We now consider the general case where SIR is divided into M > 2 regions.
The moment generation function of transmit success probability can be obtained by using
multinomial series.

Theorem 6.4. When M ∈N+, fm − fm−1 =∆fm , the moment of the transmit success probability
for greedy policy is

Mb = ∑
n1,n2,··· ,nM≥0

n1+n2+···+nM=b

b!

n1!n2! · · ·nM !

M∏
m=1

∆f nm
m

[
1+2

∫ 1

0

[
1−

M∏
m=1

(
1− qθm

θm + v−α

)nm
]

v−3d v

]−1

(6.34)
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Proof. Seen in Appendix A.12.

Corollary 6.1. When M ∈N+, fm − fm−1 =∆f , the moment of the transmit success probability
for greedy policy is

Mb =∆f b
∑

n1,n2,··· ,nM≥0
n1+n2+···+nM=b

b!

n1!n2! · · ·nM !

[
1+2

∫ 1

0

[
1−

M∏
k=1

(
1− qθk

θk + v−α

)nk
]

v−3d v

]−1

,∀b ∈N

(6.35)

Similarly, the mean and variance of rΦ(π̃) can be obtained by µ= M1 and Var = M2 −M 2
1 .

The stable probability is then approximated using beta distribution mentioned in (6.30) and
(6.33).

Fig. 6.3 plots the stable probability ps when M > 2. We compared a range of SIR threshold
and a range of corresponding transmit success probability fs . It can be observed the simu-
lations validates the proposed Beta approximation. The number of active interferers plays a
significant role on the performance of stable probability.
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Figure 6.3 – ps when M > 2.

6.4.2 RL-based policies

In this section, we investigate the stable probability of RL-based policies. GivenΦ and policy
π, the transmit success probability of stationary policy π is

rΦ(π) = lim
T→∞

1

T
Eπ,Hx,t ,Hx0,t

[
T∑

t=0
fs(A(t ),Sc (t ))|S(0) = s,Φ

]
(6.36)
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and let ξ be the arrival rate, the stable probability ps of RL-based policy is ps =P [rΦ(π) > ξ],
with respect to (6.24).

Remark 6.1. The greedy policy provides an upper bound of the stable probability of Q-learning
based policy.

Proof. Combing (6.36), (6.24), (6.25) and (6.26), we have

ps =P
[

lim
T→∞

1

T
E

[
T∑

t=0
fs(A(t ),Sc (t ))|S(0) = s,Φ

]
> ξ

]
(6.37)

≤P
[

lim
T→∞

E

[
1

T

T∑
t=1

fs(1,Sc (t ))|S(0) = s,Φ

]
> ξ

]
= p̃s (6.38)

and the proof is complete.

Remark 6.1 implies that greedy policy will always provide better stable regions than RL-
based policies. However, we find that by optimizing the Lagrange parameter λ, the RL-based
policy can eventually maintain the same stable probability as the greedy policy at a lower
transmission cost.

In the next, we characterize the bth moments of the transmit success probability consider-
ing the stationary policy π obtained by an RL-based algorithm.

Lemma 6.2. Given the stationary policy π and the PPP realization Φ, the average transmit
success probability is

rΦ(π) =
M∑

m=1
bm

∏
x∈Φ\x0

(
q

1+θm ‖x0‖α ‖x‖−α+1−q

)
(6.39)

where bm = fmπ(1|sm
c ,Φ)− fm−1π(1|sm−1

c ,Φ).

Proof. Seen in Appendix A.13.

Theorem 6.5. Given the stationary policy π, the bth moment of transmit success probability is

Mb = ∑
n1,n2,··· ,nM≥0

n1+n2+···+nM=b

b!

n1!n2! · · ·nM !

[
1+

∫ ∞

1

[
1−

M∏
m=1

EΦ[bnm
m ]

(
1− qθm

θm + v
α
2

)nm
]

d v

]−1

(6.40)

Proof. Seen in Appendix A.14.

Lemma 6.3. The average transmit success probability is the first-moment in (6.40), and has the
following expression

E[rΦ] = ∑
n1,n2,··· ,nM≥0

n1+n2+···+nM=1

[
1+

∫ ∞

1

[
1−

M∏
m=1

EΦ[bnm
m ]

(
1− qθm

θm + v
α
2

)nm
]

d v

]−1

(6.41)

where EΦ[bnm
m ] =∑nm

i=0(−1)nm−i f i
m f nm−i

m−1 EΦ
[
π(1|sm

c ,Φ)i
]
EΦ

[
π(1|sm−1

c ,Φ)nm−i
]
.
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6.5 Numerical results

6.5.1 Simulation setup

Consider a PPP of density λ= 0.25 stations/km2 on a area of 900 km2. The transmit power is
normalized to 1 for each base station and the path loss exponent is α= 4. For each realization
of the network, the state-action function of the typical agent is updated using a table for Q-
learning and SARSA algorithms until convergence, i.e. when , ∀o > 0

∣∣qt+1(s, a)−qt (s, a)
∣∣≤ o,

∀ (s, a) ∈ S ×A . Then a new network realization is drawn and the process repeats. The
simulation is repeated 5000 times.

Assume that the time is divided into slots with very small sizes such that, at each time slot,
at most one packet can be transmitted or can arrive. The packets arrival process is modeled
by the Bernoulli distribution with intensity ξ. At each time slot, the agent decides to transmit
a packet or not, i.e., A = 0 or 1 respectively. In the simulation setup, we assume that SIR
is divided in 3-regions delimited by two threshold, i.e., θ1 = −1.47 dB, θ2 = 5.07 dB. When
SIR < θ1, the transmission failed; when θ1 < SIR < θ2, a packet is transmitted successfully
with probability f1 = 0.5; when SIR > θ2, a packet is transmitted successfully with probability
f2 = 1. There exists a transmission cost during the transmission that depends on the SIR
level. The transmission cost C (A(t ),S(t )) decreases with the SIR increase. In this chapter, the
non-increasing function defined in (6.3) is arbitrary chosen as: f (a, s1) = 1.7a, f (a, s2) = 0.8a
and f (a, s3) = 0.2a for all a ∈A , as in [14]. The choice of the cost function does not impact the
behavior of algorithms, but only the absolute values. At a given time slot, if the base station
does not transmit anything while the buffer is not empty, there is a delay cost defined in (6.4)
w = 0.6a.

Parameters for RL training We consider the temporal learning approach to obtain the opti-
mal q∗(s, a), Q-learning and SARSA in Algorithm 4. Besides, we use the stochastic sub-gradient
method to obtain the optimal value of the Lagrange multiplier λ as in Algorithm 5. We choose
a discount factor of η= 0.95 in the optimization objective (η closer to 1 yields better perfor-
mance after convergence, but lead to slower convergence). The packet arrival rate ξ is settled
in a range ξ ∈ [0,1]packet/slot. The learning rate (or the step-size parameter) αt is settled as
0.01 at each time slot, and the ε-greedy algorithm parameter is εt = 1/t . Table 6.1 summarizes
the parameters used in our MATLAB-based simulator.

6.5.2 Learning algorithm comparison

In Fig. 6.4, we compare the long-term total cost and delay cost defined in (6.7) of different
policies. In each realization, the optimal policy is trained based on the framework in Section 6.2.
It can be observed that RL-based algorithms largely reduces the long-term cost, especially
when the traffic intensity ξ is low. Both Q-learning and SARSA can adjust the transmission
policy according to the traffic intensity while greedy policy is insensitive since it remains all
the time.

Fig. 6.5 compares the total cost and stable probability of the policies as a function of traffic
intensity. For the same network configuration, the RL-based policy is able to maintain the same
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Parameter Value
BS density 0.25 BS/km2

User density 5 UE/km2

Channel coefficient Hx,t ∼ exp(1)
Path loss exponent α= 4
Discounting factor η= 0.95

Learning step αt = 0.01
BS actions {on,off}

SIR state threshold {−1.47,5.07} dB
transmission cost {1.7a,0.8a,0.2a}

delay cost 0.6(1- a)
Packet arrival rate ξ ∈ [0,1] packet/slot

Transmit success probability fs = {0,0.5,1}
Exploration factor ε= 1/t

Training length 20000 slots

Table 6.1 – Simulation parameters.
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Figure 6.4 – The comparison of cost of different policies.
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stability region at a lower transmission cost than the greedy policy. There is no significant
difference in performance between Q-learning and SARSA algorithms that both converge
to the optimal policy. We observe that there is a tradeoff between the stable probability
and the total cost of the RL-based policies. Indeed, as the traffic intensity increases, the
stable probability decreases and the agent tends to be more active by sending packets, which
increases the transmission cost accordingly. RL-based policies allow agents to flexibly adjust
the transmission policy according to traffic intensity and network configuration, while the
greedy policy is only sensitive to buffer states.
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Figure 6.5 – The tradeoff between the stable probability and total cost.

Further, we analysis the policy obtained by Q-learning algorithm in average over the point
process. For each PPP network, the optimal transmission policy can be obtained thanks to Q-
learning and SARSA. In Fig. 6.6, we investigated the policy followed by the agent, averaged over
all network realizations. The actions of the agent are either to transmit or remain silent while
accounting one of the 12 states of the environment. The policy is completely described by
the activity probability, which is defined as π̄s = EΦ [π(A =1|s,rΦ(s,π)>ξ)], i.e., the probability
the agent be active in a state where the buffer does not diverge. We observe that the agent
is more active when the SIR is good and the buffer is not empty. For example, in the state
[s3

c , sb =1, sy =1], which corresponding to SIR > θ2, with non-empty buffer and a new arrived
packet, the activity probability is 98.7%, because the success probability is high in this state.
In the state [s1

c , sb =0, sy =0], the agent’s activity probability nears to 0. The agent has a 66.7%
probability of being active when it encounters a moderate level of SIR, while in the greedy
policy, the agent is always active in this state.
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Figure 6.6 – Activity probability based on Q-learning.

6.6 Conclusion

In this chapter, we propose a reinforcement learning framework to compute the optimal
transmission policy for BSs located in cell-0. We formulate a constrained optimization problem
to minimize the long-term transmission cost with delay constraints. The problem is naturally
a constrained Markov decision process due to the dynamic evolution of the queue.

First, we used the Lagrangian approach to transform the constrained MDP into an un-
constrained MDP problem, which can be solved using dynamic programming. To obtain the
optimal transmission policy, we considered two classical reinforcement learning algorithms,
namely Q-learning and SARSA. Second, we analyze the probability of stability of greedy and
RL-based transmission policies under this system, i.e., the probability that the average firing
success rate is greater than the average packet arrival rate. By using stochastic geometry
tools and applying Bellman’s equations, we gave intrinsic insights into the performance of the
RL-based transmission strategy. Finally, we validated the theoretical analysis through Monte
Carlo simulations, and analyzed the performance of different transmission strategies. The
simulation results show that the proposed RL-based transmission strategy is able to guarantee
the same stability threshold at a lower transmission cost compared to the traditional greedy
strategy.
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Chapter 7

Conclusion and future works

7.1 Conclusion

This thesis deals with the study of downlink performance of dynamic stochastic cellular
networks. The main issue addressed in this manuscript is the characterization of the stability
region of the stochastic network when the traffic model is combined with the geometric
description of the network. We first describe the stable coverage probability of the stochastic
network, i.e., the coverage probability dissipated by the base station queue. Using the concept
of dynamic coverage probability, we consider the interaction between queueing states in the
network using a discrete Markov chain model of queues, where the service rate of typical users
depends on the dynamic coverage probability. We explore the cases of finite and infinite queue
sizes, respectively.

We also want to have a more detailed description of this phenomenon by answering
the question "What is the proportion of unstable queues in the network?" In this case, we
use the notion of ε-stable, which describes the set of traffic strengths in which a randomly
selected queue has a divergence probability below ε. Finally, characterizing the stability region
by considering the resource allocation is very difficult due to the dependence between the
geometry and dynamics of the network and the allocation policy. To overcome this problem,
we propose to use reinforcement learning algorithms to study stable probability. The dynamics
of the network considered in this thesis is perfectly suited to be described by a Markovian
decision process for which reinforcement learning strategies can be proposed. Thus, we
study the performance when a typical base station can choose to transmit or remain silent
depending on the observed network state.

In Chapter 2, we provided the mathematical tools from stochastic geometry and queueing
theory which were later used in this thesis. For example, the PGFL function and Campbell’s
theorem are introduced to characterize the aggregate interference in the cellular network with
irregular locations. The Slivnyak’s theorem ensures that in a stable PPP network, evaluating
the SINR of a device at the origin is sufficient to characterize the average performance of a
large network. The Kendall’s notation and matrix-analytical methods for discrete-time Markov
chains are introduced to model the traffic conditions and queues evolution. Besides, we
introduced the Markov decision process and classical reinforcement learning algorithms,
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which were be further applied to investigate the transmission strategies issue.

In Chapter 3, we conducted a brief survey on spatio-temporal research approaches in
large-scale networks from literature. Considering the random arrival of the packets, a recent
line of research has introduced a spatio-temporal model to analyze the coverage probability
from a joint spatial-temporal aspect [9, 10, 11]. To simplify the analysis, these works assume
that the queueing evolution is independent and identically distributed among all the BSs.
which is commonly known as mean field approximation.

However, in practical systems, multiple BSs sharing the same spectrum inevitably interfere
with each other due to the broadcasting nature of wireless channels. As such, the queueing
statues of the BSs are correlated in both time and space domains among all the BSs. The spatial
distance and channel gain related interference affect the transmission success probability and
the states of the interacting queues. Conversely, the buffer states in the previous time slot also
affects the activation of the interfering BSs and the interference of the devices. In view of this,
the interactions among the queues are dependent on both the spatial and temporal factors.
The novelty of our work lies in taking into account the correlation between the interference
created by all the base stations and the state of the queues at the level of the transmitters
over time. Work in [12, 13] focused on the interaction between queue dynamics and network
topology. However, performance analyzes focus on the coverage probability. System stability
issues from the queue perspective are not well addressed, which is the focus of our work.

In Chapter 4, we characterized the SINR performance in dynamic cellular networks for
different scenarios, i.e. finite buffer and infinite buffer. By leveraging proprieties from queueing
theory, we analyzed the dynamic coverage probability, the stable coverage probability, the
delay performance as well as the packet loss probabilities at the typical UE, and verified then
with Monte Carlo simulations. In particular, the stable coverage probability of a typical user
is inversely proportional to the traffic intensity, i.e. the higher intensity of the packet arrive,
the lower the stable coverage. The influence of the packet buffer length to the coverage and
packet loss probability is explicitly derived. We show in particular that small buffer length
leads to a better coverage probability but also to a larger packet loss probability, advocating
for a tradeoff between these two metrics.

One issue is that even with the same traffic arrival intensity at each BS, the spatial in-
teraction of the queues may result in very different queue lengths after a sufficiently long
period. Specifically, users located at the cell edge usually get a worse SINR than users located
at the center, and thus have a lower transmission success probability and it leads to a long
queue because of the retransmission scheme. In addition, the aggregated interference level is
different at different BSs. For BSs that always experience high interference levels, the service
rate slows down, resulting in longer queue lengths. Therefore, the coverage probability based
on the average performance of the SINR is not sufficient to characterize the network. Thus
we studied a more refined metric known as ε-stable region in Chapter 5. This concept is
introduced in [29] allows us to answer the question: "What is the set of arrival rates at the
desired SINR such that the proportion of unstable queues in the network is lower than ε?".

In Chapter 5, we provide closed-form expression of the upper and lower bounds of ε-stable
region. Moreover, we propose an alternative definition of the ε-stable region and derived
accordingly a tight approximation of the critical arrival rate that was unavailable in literature.
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The results demonstrated that the packet critical arrival rate is close to the upper bound
when the SINR threshold θ is relatively small, and is close to the lower bound when the SINR
threshold θ is relatively large. This is because decreasing θ will increase the opportunity of
a successful transmission, thus the active probability of the typical BS is much closer to the
active probability in the favorable system. If θ increases, the success probability decreases, the
BS holds a long-queue and tends to have a long period of time operating in the active state,
which incurs a high interference to the nearby BSs and consequently decreases its successful
transmission probability, which leads to the ε-stable region being closer to the one of full load
system.

In a dynamic communication network, transmission strategies must be adapted according
to the state of the network to satisfy an optimality criterion. However, it can be very difficult
to analytically derive the optimal transmission strategy when the system becomes complex.
In recent years, reinforcement learning has come back to the forefront in its application to
network radio resource management, when the agent’s interaction with its environment is
modeled by a Markov decision process (MDP) [3]. The interest of this approach is that it
allows to find an optimal transmission policy in an uncertain environment without an explicit
physical model of the communication to perform the resource allocation, but only through
trial and error on the part of the agent. In the field of digital communications, AR has been
applied to point-to-point systems in order to minimize the energy consumed under delay
constraints, e.g., [14, 15], to IoT networks for spectrum management and energy harvesting,
e.g.,[115], as well as to the problem of caching in cellular networks using deep RL. However,
no work has yet combined reinforcement learning with stochastic geometry in a dynamic
network for the evaluation of average RL performance.

In Chapter 6, we deployed RL algorithms to explore transmission strategies for typical BS
located at the origin. For simplicity, the powers of all inter-cell interfering BSs are normalized
and active with constant probability p in each slot. Meanwhile, in this chapter we refer to [14]
to consider a more realistic model, that is, the transmission success probability depends on the
state of SINR, and the ARQ protocol is allowed to retransmit packets. We consider two temporal
learning algorithms, namely Q-learning and SARSA, to learn the optimal transmission policy
to adapt the specific network configurations (BS density, relative location of users to BS, packet
arrival intensity, etc.) The experimental results show that while ensuring the same stable
probability, the reinforcement learning-based algorithm can greatly reduce the transmission
cost compared to greedy algorithm, especially when the packet arrival rate is low. Besides, the
stable probability is given in closed-from both in greedy algorithm and RL-based algorithm
and validated by simulations.

7.2 Future works

This work opens the direction of reinforcement learning in large-scale cellular networks, in
which numerous topics warrant further investigation.

• The chapter 6 focuses on the presence of only one agent in the network, while the
others still operate with a greedy policy, which does not make the problem symmetric.
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The extension to multi-agent reinforcement learning is a necessary step to analyze the
performance of the network with this strategy. However, the extension is non-trivial
because instability problems may appear when considering decentralized distributed
learning. The theoretical formulation of multi-agent learning and the conditions of
convergence remain to be explored.

• Current work focuses on static networks, which means that transmitters and receivers do
not change position during transmission. In a next step, mobility could be introduced,
which raises the question of modeling charge flows through cells.

• In this work, we consider the FIFO scheduling of packet transmission. In the next work,
the effect of different packet transmission scheduling, such as random scheduling and
rotating scheduling, can be studied. Meanwhile, most of the current articles based on
spatio-temporal models assume that the packet arrival process is based on Bernoulli’s
distribution. In practice, the traffic varies dramatically from time to time, with traffic
arrivals tending to saturation during peak periods and troughs during low periods. The
next work can consider more complex spatio-temporal models to approximate the real
situation.
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Appendix A

Proofs

A.1 Proof of Theorem 4.1

Given the typical UE received data at time slot t , its dynamic coverage probability is written as
(to lighten the notation we remove the index t from the channel coefficients)

pt =Px0 (γt ≥ θ)

=Px0

 Hx0,t ‖x0‖−α
σ2 + ∑

x∈Φ\x0

Hx,t ‖x‖−α1(x ∈Φt )
≥ θ


(a)=

∫ ∞

0
2πλr0e−πλr 2

0 exp(−σ2θrα0 )×Px0

 Hx0,t ‖x0‖−α
σ2 + ∑

x∈Φ\x0

Hx,t ‖x‖−α1(x ∈Φt )
≥ θ

∣∣∣‖x0‖ =r0

dr0

=
∫ ∞

0
2πλr0e−πλr 2

0 e−σ
2θrα0 LI (θrα0 )dr0 (A.1)

where the Laplace transform (LT) of a random variable X in s is denoted as LX (s), and (a)
follows the distribution of r0 as fr0 (r ) = e−πλr 2

2πλr .

The LT LI (s) in (A.1), with s = θ‖x0‖α = θrα0 , has the form

LI (s) = E{Hx },Φ

[ ∏
x∈Φ\x0

exp
(−sHx ‖x‖−α1(x ∈Φt )

)∣∣∣r0

]
(a)= EΦ

[ ∏
x∈Φ\x0

EHx

[
exp

(−sHx ‖x‖−α1(x ∈Φt )
)]∣∣∣r0

]
(b)= EΦ

[ ∏
x∈Φ\x0

(
E1(x∈Φt )[1(x ∈Φt ) = 1]

1+ s ‖x‖−α×1
+ E1(x∈Φt )[1(x ∈Φt ) = 0]

1+ s ‖x‖−α×0

)∣∣∣∣r0

]
(c)= EΦ

[ ∏
x∈Φ\x0

(
qt

1+ s ‖x‖−α +1−qt

)∣∣∣r0

]
(A.2)
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where (a) follows from the i.i.d. hypothesis of Hx and further independence from the point
processΦ, (b) follows from the law of total expectation and using independence activity of BS
[12, Assumption 2], and (c) follows from (4.2).

According to the PGFL of PPP and with r = ‖x‖, we have

LI (θrα0 ) = exp

(
−2πλ

∫ ∞

r0

(
1−

(
qt

1+θrα0 r−α +1−qt

))
r dr

)
(a)= exp

(
−πλr 2

0

∫ ∞

1

qt

1+u
α
2 θ−1

du

)
(A.3)

where (a) is obtained by the change of variable u = ( r
r0

)2.
Combing (A.1), the dynamic coverage probability has the expression

pt (θ,ξ) = 2πλ
∫ ∞

0
e−σ

2θrαe−πλr 2(1+qtρ(α,θ))r dr

where ρ(α,θ) = ∫ ∞
1 [1+u

α
2 θ−1]−1du.

A.2 Proof of Eq. 4.15

The solution of (4.13) is the solution of

ξ̄x0 + ξ̄px1 = x0

ξx0 + (ξ̄p̄ +ξp)x1 + ξ̄px2 = x1

ξp̄x1 + (ξ̄p̄ +ξp)x2 + ξ̄px3 = x2

ξp̄x2 + (ξ̄p̄ +ξp)x3 + ξ̄px4 = x3
...

(A.4)

Following the matrix-analytical method introduced in Section 2.2.2, the solution of (A.4) is

xi = R i x0

p̄
, where R = ξp̄

ξ̄p
, ∀ i ∈ [1,+∞) (A.5)

By the law of total probability we should have
∑∞

i=0 xi = 1, it comes

x0 + x0

p̄

∞∑
i=1

R i (a)= x0

(
1+ 1

p̄
× R

1+R

)
= 1 (A.6)

where (a) comes from geometric series on the condition R < 1, i.e. p > ξ. After straightforward
algebraic manipulation, the final expression of x0 is

x0 = p −ξ
p

,∀ p > ξ (A.7)

When R > 1, the geometric series
∑∞

i=1 R i diverges and the solution of (A.6) is x0 = 0.
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A.3 Proof of Lemma 5.2

The bth moment of the transmit success probability in full load is[
1+

∫ ∞

1

[
1−

(
1

1+θv− α
2

)b
]

d v

]−1

= 1+2
∫ 1

0

[
1−

(
1

1+θrα

)b
]

r−3dr (A.8)

(a)= 1+ 2

α

∫ 1

0

[
1− 1

(1+θu)b

]
u− 2

α
−1du (A.9)

(b)= 1−
[

1− 1

(1+θu)b

]
(u− 2

α )
∣∣∣1

0︸ ︷︷ ︸
A

+
∫ 1

0
u− 2

α d

[
1− 1

(1+θu)b

]

(A.10)

= 1− A+θb
∫ 1

0
u− 2

α (1+θu)−b−1du (A.11)

where (a) comes from changing variable rα = u, and (b) comes from the partial integration.
When u = 1, we have A = 1− (1+θ)−b , when u = 0, A will lead to a indeterminate form.

However, by applying Taylor approximation, we have

(1+θu)−b = 1−bθu +O (θ2u2) (A.12)

⇒
[

1− 1

(1+θu)b

]
(u− 2

α ) ≈ bθu1− 2
α (A.13)

Since α is the pass loss exponent satisfies α≥ 2, lead to 1− 2
α ≥ 0, lead to u1− 2

α |u=0 → 0, lead to
A|u=0 = 0. Recalling (A.11), we have

1− A+θb
∫ 1

0
u− 2

α (1+θu)−b−1du = (1+θ)−b +θb
∫ 1

0
u− 2

α (1+θu)−b−1du (A.14)

= 2F1(b,− 2

α
;1− 2

α
;−θ) (A.15)

A.4 Proof of Theorem 5.1

Let Yl , ln(µl ), the characteristic function of Yl is

ϕYl (w), E[e i wYl ] = E[µi w
l ] = Mi w , w ∈R, i =p−1 (A.16)

Using the Gil-Pelaez theorem, and assigning b in (5.2) as b = i w , we obtain an exact integral
expression for the CCDF of Yl

P(Yl < lnu) = 1

2
− 1

π

∫ ∞

0

Im[e−i w lnuϕYl (i w)]

w
d w

= 1

2
− 1

π

∫ ∞

0

Im[u−i wϕYl (i w)]

w
d w (A.17)
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Then the probability of µl is lower than the average arrival rate ξ follows

PΦ{µl < ξ} = 1

2
− 1

π

∫ ∞

0

1

w
Im


ξ−i w

1+∫ ∞
1

[
1−

(
1+θv− α

2

)−i w
]

d v

d w (A.18)

The corresponding lower bound of ε-stability region is

S l
ε = {

ξ ∈R+ :P
[
µl ≤ ξ

]≤ ε} (A.19)

=
ξ ∈R+ :

1

2
− 1

π

∫ ∞

0

1

w
× Im

 ξ−i w

1+∫ ∞
1

[
1−(

1+θv−α/2
)−i w

]
d v

d w ≤ ε
 (A.20)

A.5 Proof of Lemma 5.3

By applying the Markov inequality [116], the probability of µl lower than ξ satisfied

P{µl < ξ} = 1−P{µl ≥ ξ}, (A.21)

and P{µl ≥ ξ} < EΦ[µn
l ]

ξn = ξ−nEΦ[µn
l ] (A.22)

Combining the expression of µl in (5.5), EΦ[µn
l ] follows

EΦ[µn
l ] =EΦ

[ ∏
x∈Φ\x0

(
1

1+θ‖x0‖α ‖x‖−α
)n

]
(a)=

[
1+

∫ ∞

1

[
1−

(
1+θv− α

2

)−n]
d v

]−1

(A.23)

where (a) can be directly obtained from (5.5) and (5.6) by assigning b as b = n.
Combining (A.21) and (A.23), we have

P{µl < ξ} ≥ 1−ξ−n
[

1+
∫ ∞

1

[
1−

(
1+θv− α

2

)−n]
d v

]−1

(A.24)

Let Sl = {ξ ∈ [0,1] : P[µl < ξ] ≤ ε}, indicating the ε-stable region for the full load system. We
have

Sl ⊂
⋃

n∈N+

{
ξ ∈ [0,1] : 1−ξ−n

[
1+

∫ ∞

1

[
1−

(
1+θv− α

2

)−n]
d v

]−1

< ε
}

(A.25)

Taken the supremum of both sides of (A.25) results in

supS ≥ max
n∈N+

[
(1−ε)

[
1+

∫ ∞

1

[
1−

(
1+θv− α

2

)−n]
d v

]]− 1
n

(A.26)
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A.6 Proof of Theorem 5.2

A favorable system is considered for the upper bound. If the transmission of a packet fails,
this packet is dropped instead of being re-transmitted. The interfering transmitter is then
active with probability ξ, which is P(1(x ∈Φt ))=ξ. Let µu be the transmit success probability
at typical BS conditioned onΦ in the favorable system, it follows

µu =E
[

exp

(
−θ‖x0‖α

∑
x∈Φb \x0

Hx1(x ∈Φt )‖x‖−α
)∣∣∣Φ]

= ∏
x∈Φ\x0

(
ξ

1+θ‖x0‖α ‖x‖−α +1−ξ
)

(A.27)

We define Yu as Yu , ln(µu), and follow the similar steps as Lemma 5.2, the bth moment
generation function of Yu is

M u
b =

[
1+

∫ ∞

1

[
1−

(
1− ξθ

θ+ v
α
2

)b
]

d v

]−1

(A.28)

According to the Gil-Pelaez Theorem, the probability of µu is lower than the average arrival
rate ξ is

P{µu < ξ} = 1

2
− 1

π

∫ ∞

0

1

w
×


ξ−i w

1+∫ ∞
1

[
1−

(
1− ξθ

θ+vα/2

)i w
]

d v

d w (A.29)

The corresponding upper bound of ε-stable region is

S u
ε = {

ξ ∈R+ :P
[
µΦn ≤ ξ]≤ ε}

=

ξ ∈R+ :
1

2
− 1

π

∫ ∞

0

1

w
× Im


ξ−i w

1+∫ ∞
1

[
1−

(
1− ξθ

θ+vα/2

)i w
]

d v

d w ≤ ε

 (A.30)

Therefore, we get the result in Theorem 5.2.

A.7 Proof of Corollary 5.1

The cumulative distribution function of P(µu) is

P{µu < ξ} =P{µn
u < ξn} =P{e−n ln(µu ) > e−n lnξ} (A.31)

By applying the Markov inequality, we obtain

P{µu < ξ} < 1

e−n lnξ
E
[

e−n ln(µu )
]

=ξn
[

1+
∫ ∞

1

[
1−

(
1− ξθ

θ+ v
α
2

)−n]
d v

]−1

(A.32)
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Since the above inequality holds for all n ∈N+, we have

Sε ⊃
⋃

n∈N+

{
ξ∈R+ : ξn

[
1+

∫ ∞

1

[
1−

(
1− ξθ

θ+v
α
2

)−n]
d v

]−1

≤ ε
}

(A.33)

Taken the supremum of both sides of (A.33) results in ξc < ξu
c < ξ̃u

c , where ξ̃u
c is the solution of

the fixed-point equation

(ξ̃u
c )n = ε 1

n

[
1+

∫ ∞

1

[
1−

(
1− ξ̃u

c θ

θ+v
α
2

)−n]
d v

] 1
n

, ∀n ∈N+ (A.34)

A.8 Proof of Remark 5.3

We separately prove the upper and lower bound of the critical arrival rate approach to 0 when
θ→ 0. Remark 5.3 is then obtained according to the squeeze theorem [117].

For the lower bound of critical arrival rate

ξl
c = sup

ξ ∈R+ :
1

2
− 1

π

∫ ∞

0

1

w
× Im

 ξ−i w

1+∫ ∞
1

[
1−(

1+θv−α/2
)−i w

]
d v

d w ≤ ε


(a)= sup

ξ ∈R
+ :

1

2
− 1

π
×
∫ ∞

0

1

w
Im


cos( 1

2 wlog(ξ2))− i∗ sin( 1
2 wlog(ξ2))

1+∫ π
2

arctan( 1p
θ

)

[
1−

(
θ tan2 x

θ tan2 x+θ
)iw

]
d
p
θ tanx

dw≤ε

 (A.35)

where (a) follows from variable changing v =p
θ tan x. We see

lim
θ→0

∫ π
2

arctan( 1p
θ

)

[
1− (tan x sin2x)s]d

p
θ tan x (A.36)

= lim
θ→0

p
θ

∫ π
2

arctan( 1p
θ

)
d tan x −2

∫ π
2

arctan( 1p
θ

)
sin2s x coss−2 xd x (A.37)

= lim
θ→0

p
θ

∫ π
2

π
2

d tan x −2
∫ π

2

π
2

sin2s x coss−2 xd x (A.38)

= 0 (A.39)
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further lead to

lim
θ→0

ξl
c = sup

{
ξ ∈R+ :

1

2
− 1

π

∫ ∞

0

1

w
Im

{
ξ−i w

1+∫ ∞
1

[
1−1i w

]
d v

}
d w≤ ε

}
= sup

{
ξ ∈R+ :

1

2
− 1

π
×

∫ ∞

0

1

w
Im

{
ξ−i w

}
d w ≤ε

}
= sup

{
ξ ∈R+ :

1

2
+ 1

π
× π

2
sgn(ln(ξ)) ≤ε

}
= sup

{
ξ ∈R+ :

1

2
+ 1

π
× π

2
(−1) ≤ ε

}
(A.40)

(a)= sup
{
ξ ∈R+ : 0 ≤ε}

= 1 (A.41)

where (a) comes from sgn(ln(ξ)) = −1,∀ξ ∈ [0,1]. This lead to the critical arrival rates are
intuitively reasonable for any ε.

Similarly, the upper bound of critical arrival rate has the expression

lim
θ→0

ξu
c = sup{ξ ∈ [0,1] : 0 ≤ε} = 1 (A.42)

According to the squeeze theorem, we obtain the results in Remark 5.3.

A.9 Proof of Theorem 5.3

Based on Lemma 5.1, the transmit success probability has the expression

µ= ∏
x∈Φ\x0

(
q

1+θ‖x0‖α ‖x‖−α +1−q

)
(A.43)

Defining Y , lnµ, the moment generating function of Y is

E
[
exp(sY )

]
= EΦ

[ ∏
x∈Φ\x0

(
q

1+θ‖x0‖α ‖x‖−α +1−q

)s
]

(a)= EΦ

[
exp

(
−λ

∫ ∞

‖x0‖

[
1−

(
q

1+θ‖x0‖α‖x‖−α+1−q

)s]
d‖x‖

)]
(b)=

∫ ∞

0
2πλr exp(−λπr 2)×exp

(
−2πλ×

∫ ∞

r

[
1−

(
q

1+θ‖x0‖α ‖x‖−α+1−q

)s]
xd x

)
dr

(c)=
∫ ∞

0
2πλr e−λπr 2

exp

(
−λπr 2

∫ ∞

1

[
1−

(
q

1+θv− α
2

)s]
d v

)
dr

=
[

1+
∫ ∞

1

[
1−

(
1− qθ

θ+ v
α
2

)s]
d v

]−1

(A.44)

where (a) follows from the probability generation functional of the PPP; (b) is obtained by using
the PDF of ‖x0‖, which is f||x0||(r ) = 2πλr eπλr 2

dr , and the approximation that the correlation
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between active BSs is ignored when DTMC has converged [12]; (c) is obtained using the change
of variable v

1
2 = ‖x‖

‖x0‖ .
Aforesaid (5.17), EΦ[q] = ξ/EΦ[µ],∀ EΦ[µ] > ξ. And it can be noticed that EΦ[µ] is the

particular case when s = 1 in (A.44). After straightforward algebraic manipulations, we have

E[q] =
{

ξ
1−θξρ(θ,α) , if 1

1+θρ(θ,α) > ξ
1, if 1

1+θρ(θ,α) ≤ ξ
(A.45)

where ρ(α,θ) = ∫ ∞
1 [θ+u

α
2 ]−1du.

The CDF of Y , denoted by FY (u) =P[Y ≤ u], follows from the Gil-Pelaez’s Theorem as

FY (u) =P(Y < ln(u))

= 1

2
− 1

π

∫ ∞

0

1

w
Im


u−i w

1+∫ ∞
1

[
1−

(
1− kθ

θ+vα/2

)i w
]
d v

d w

and the proof is complete.

A.10 Proof of Lemma 6.1

Given λ, the state-value function for a policy π given s andΦ can be expressed as

Lπ(s,λ) = Eπ
[ ∞∑

t=0
ηt L(t ,λ)|S(0) = s,Φ

]
(A.46)

= Eπ
[

L(0,λ)+η
∞∑

t=1
ηt−1L(t ,λ)

∣∣∣s,Φ

]
(A.47)

= Eπ
[

L(0,λ)+ηLπ(s′,λ)
∣∣∣ S(0) = s,Φ

]
(A.48)

=∑
a
π(a|s)

∑
s′∈S

∑
l∈L

p(s′, l |s, a)
[
L(0,λ)+Lπ(s′,λ)

]
(A.49)

where π(a|s) =P(A = a|S = s). Similarly, the action-value function qπ(s, a) : S ×A →R, which
satisfies

qλ(s, a) = Eπ
[ ∞∑

t=0
ηt L(t ,λ)|S(0) = s, A(0) = a,Φ

]
= ∑

s′∈S

∑
l∈L

p(s, l |s′, a)
[
L(0,λ)+Lπ(s′,λ)

]
(A.50)

The relationship between state values and Q-values is

Lπ(s,λ) =∑
a
π(a|s)qλ(s, a) (A.51)
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The goal of solving unconstrained MDP is to find an optimal policy to obtain a minimum cost.
An optimal policy, can be defined from the perspective of state-value function, as

L∗
π(s,λ) = min

π
Lπ(s,λ), s ∈S (A.52)

And for the optimal Q-values, we have

q∗
λ(s, a) = min

a
q(s, a), s ∈S , a ∈A (A.53)

Substituting (A.51) to (A.53), the optimal state value equation in (A.49) can be reformulated as

L∗
π(s,λ) = min

a
q∗
λ(s, a) (A.54)

where the fact that
∑

a π(a|s)q∗
λ

(s, a) ≥ mina q∗
λ

(s, a) was applied to obtain (A.54). Note that
the optimal state value equation is a minimization over the action space instead of the strategy
space. By combing (A.49) and (A.53) and (A.54), we have the following dynamic programming:

L∗
π(s,λ) = min

a

∑
s′∈S

∑
l∈L

p(s′, l |s, a)
[
l +L∗

π(s′,λ)
]

(A.55)

q∗
λ(s, a) = ∑

s′∈S

∑
l∈L

p(s′, l |s, a)

[
l +min

a′ q∗
λ(s′, a′)

]
(A.56)

A.11 Proof of Theorem 6.2

For greedy policy, the average transmit success probability is

rΦ(π̃) = lim
T→∞

1

T
E

[
T∑

t=0
fs(Sc (t ))|S(0) = s,Φ

]
(A.57)

= E[
fs(Sc )|S(0) = s,Φ

]
(A.58)

=
M−1∑
m=1

fmP(θm < γ< θm+1|Φ)+ fMP(γ> θM |Φ) (A.59)

(a)=
M∑

m=1
( fm − fm−1)P(γ> θm |Φ) (A.60)

(b)=
M∑

m=1
( fm − fm−1)

∏
x∈Φ\x0

(
q

1+θm ‖x0‖α ‖x‖−α+1−q

)
(A.61)

where in (a) we set f0 = 0, fM+1 = 1 for convenience, (b) follows the similar to the steps in (A.2)
in Appendix A.1.

Then the moment generation function of Mb has the expression

Mb == EΦ
(

M∑
m=1

( fm − fm−1)P(γ≥ θm |Φ)

)b
 (A.62)

= EΦ
(

M∑
m=1

( fm − fm−1)
∏

x∈Φ\x0

(
q

1+θm ‖x0‖α ‖x‖−α+1−q

))b
 (A.63)

There are two ways to derive (A.63), which lead to the same expression. We detailed separately.
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Method 1 Since (A.63) depends on the BS locations only through the relative distance, we
can apply the PGFL of the RDP defined in (2.12) and directly obtain

Mb =∆ f b
b∑

k=0

(
b

k

)[
1+2

∫ 1

0

[
1−

(
1− qθ1

θ1 +u−α

)k (
1− qθ2

θ2 +u−α

)b−k
]

u−3du

]−1

,∀b ∈N

(A.64)

Method 2 We assume fm − fm−1 =∆ f , M = 2 thus

Mb = EΦ
(

2∑
m=1

∆ f P(γ≥ θm |Φ)

)b
 (A.65)

=∆ f bEΦ


 ∏

x∈Φ\x0

(
q

1+θ1 ‖x0‖α ‖x‖−α+1−q

)
︸ ︷︷ ︸

f (θ1,x)

+ ∏
x∈Φ\x0

(
q

1+θ2 ‖x0‖α ‖x‖−α+1−q

)
︸ ︷︷ ︸

f (θ2,x)


b


(A.66)

(a)= ∆ f bEΦ

[
b∑

k=0

(
b

k

) ∏
x∈Φ\x0

f (θ2, x)k
∏

x∈Φ\x0

f (θ1, x)b−k

]
(A.67)

=∆ f b
b∑

k=0

(
b

k

)
EΦ

[ ∏
x∈Φ\x0

f (θ2, x)k f (θ1, x)b−k

]
(A.68)

=∆ f b
b∑

k=0

(
b

k

)∫ ∞

0
2πλbr exp(−λbπr 2)×exp

(
−2πλb

∫ ∞

r

[
1− f (θ2, x)k f (θ1, x)b−k

]
xd x

)
︸ ︷︷ ︸

g (θ1,θ2)

dr

(A.69)

where (a) comes from the proposition A.1 and the fact that∏
x∈Φ\x0

f (θ2, x)∏
x∈Φ\x0

f (θ1, x)
= ∏

x∈Φ\x0

f (θ2, x)

f (θ1, x)
= ∏

x∈Φ\x0

q
1+θ2‖x0‖α‖x‖−α+1−q

q
1+θ1‖x0‖α‖x‖−α+1−q

< 1 (A.70)

Note that (A.67) is to ensure b can be replaced by a complex number, which is a necessary step
if using Gil-Pelaez Theorem. By changing variable ‖x‖

‖x0‖ = v
1
2 , we can substitute g (θ1,θ2) as

g (θ1,θ2) = exp

(
−πλbr 2

∫ ∞

1

[
1−

(
1− qθ1

θ1 + v
α
2

)k (
1− qθ2

θ2 + v
α
2

)b−k
]

d v

)
(A.71)

Thus (A.69) equals to

Mb =∆ f b
b∑

k=0

(
b

k

)[
1+

∫ ∞

1

[
1−

(
1− qθ1

θ1 + v
α
2

)k (
1− qθ2

θ2 + v
α
2

)b−k
]

d v

]−1

(A.72)

Note that (A.64) can be translated to (A.72) by changing variable u = v− 1
2 , and the proof is

complete.
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Proposition A.1. If s ∈C is an arbitrary complex number and is an arbitrary complex number
and |x| < 1, then

(1+x)b =
∞∑

k=0

(
b

k

)
xk ,∀b ∈C, |x| < 1 (A.73)

Whether (A.73) converges depends on the value of the complex numbers b and x. More precisely:

• If |x| < 1, the series converges absolutely for any complex number b;

• If |x| = 1, the series converges absolutely if and only if either Re(b) > 0 or b = 0;

• If |x| > 1, the series diverges, unless b is a non-negative integer (in which case the series is
a finite sum).

For general expression (x + y)b ,∀s ∈C , we have (x + y)b =∑∞
k=0

(b
k

)
xk yb−k , If |x| < |y |.

A.12 Proof of Theorem 6.4

The multinomial theorem illustrated that for any positive integer k and any non-negative
integer b, the following equation is satisfied

(a1 +a2 +·· ·+ak )b = ∑
n1,n2,··· ,nk≥0

n1+n2+···+nk=b

b!

n1!n2! · · ·nk !
an1

1 an2
2 · · ·ank

k (A.74)

Given b ∈N, the moment generating function of rφ(π̃) is

Mb = EΦ
(

M∑
m=1

∆fmP(γ≥ θm |Φ)

)b
 (A.75)

= EΦ


 M∑

m=1
∆fm

∏
x∈Φ\x0

(
q

1+θm ‖x0‖α ‖x‖−α+1−q

)
︸ ︷︷ ︸

f (θm ,x)


b
 (A.76)

= EΦ

 ∑
n1,n2,··· ,nM≥0

n1+n2+···+nM=b

b!

n1!n2! · · ·nM !

(
∆f1

∏
x∈Φ\x0

f (θ1, x)

)n1

· · ·
(
∆fM

∏
x∈Φ\x0

f (θM , x)

)nM


(A.77)

= EΦ

 ∑
n1,n2,··· ,nM≥0

n1+n2+···+nM=b

b!

n1!n2! · · ·nM !

M∏
m=1

∆f nm
m × ∏

x∈Φ\x0

( f (θm , x))nm

 (A.78)

(a)= ∑
n1,n2,··· ,nM≥0

n1+n2+···+nM=b

b!

n1!n2! · · ·nM !

M∏
m=1

∆f nm
m

[
1+

∫ ∞

1

[
1−

M∏
m=1

(
1− qθm

θm + v
α
2

)nm
]

d v

]−1

(A.79)

where (a) comes from the PGFL of the PPP, similar and executive steps are given in (A.44).
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A.13 Proof of Lemma 6.2

Given the stationary policy π obtained by RL and the PPP realizationΦ, the average transmit
success probability is

rΦ(π) = lim
T→∞

1

T
E

[
T∑

t=0
fs(A(t ),Sc (t ))

∣∣∣S(0) = s,Φ

]
(A.80)

= ∑
a∈A

∑
Sc∈C

fs(A,Sc )P
(
Sc =sc

∣∣∣S(0) = s,Φ
)
P

(
A = a

∣∣∣Sc = sc ,S(0) = s,Φ
)

(A.81)

(a)= ∑
a∈A

∑
Sc∈C

fs(A,Sc )P
(
Sc =sc

∣∣∣Φ)
P

(
A = a

∣∣∣Sc = sc ,Φ
)

(A.82)

= ∑
Sc∈C

[
fs(A=1,Sc )P

(
sc

∣∣∣Φ)
P

(
A=1

∣∣∣Sc =sc ,Φ
)
+ fs(A=0,Sc )P

(
sc

∣∣∣Φ)
P

(
A=0

∣∣∣Sc =sc ,Φ
)]

(A.83)

(b)= ∑
Sc∈C

fs(A=1,Sc )P
(
sc

∣∣∣Φ)
P

(
A=1

∣∣∣Sc =sc ,Φ
)

(A.84)

(c)=
M−1∑
m=1

fs(1, sm
c )π

(
1
∣∣∣sm

c ,Φ
)[
P(γ> θm)−P

(
γ> θm−1

∣∣∣Φ)]
+ fs(1, sM

c )π(1
∣∣∣sM

c ,Φ)P
(
γ> θM

∣∣∣Φ)
(A.85)

(d)=
M∑

m=1

[
fmπ(1|sm

c ,Φ)− fm−1π(1|sm−1
c ,Φ))

]
P

(
γ> θm

∣∣∣Φ)
(A.86)

e=
M∑

m=1

[
fmπ(1|sm

c ,Φ)− fm−1π(1|sm−1
c ,Φ))

] ∏
x∈Φ\x0

(
q

1+θm ‖x0‖α ‖x‖−α+1−q

)
(A.87)

where (a) comes from the rΦ(π) only depends on current channel state sc without depending
on initialization state S(0) under stationary policy π; (b) comes from the fact fs(A = 0,Sc ) =
0,∀Sc ∈ C ; (c) from the definition π(a|s) : P(A = a|S = s); (d) we set f0 = 0, fM+1 = 1 for
convenience; (e) follows the similar to the steps in (A.2) in Appendix A.1.

A.14 Proof of Theorem 6.5

The bth moments of Mb , E[(rΦ(π))b] has the expression

Mb = EΦ
(

M∑
m=1

[
fmπ(1|sm

c ,Φ)− fm−1π(1|sm−1
c ,Φ)

]
P(γ≥ θm |Φ)

)b
 , b ∈N (A.88)

= EΦ


 M∑

m=1
bm

∏
x∈Φ\x0

(
q

1+θm ‖x0‖α ‖x‖−α+1−q

)
︸ ︷︷ ︸

f (θm ,x)


b
 (A.89)

where bm := fmπ(1|sm
c ,Φ)− fm−1π(1|sm−1

c ,Φ).
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Based on multinomial series definition, (A.89) can be expressed as

Mb = EΦ

 ∑
n1,n2,··· ,nM≥0

n1+n2+···+nM=b

b!

n1!n2! · · ·nM !

(
b1

∏
x∈Φ\x0

f (θ1, x)

)n1

· · ·
(

bM
∏

x∈Φ\x0

f (θm , x)

)nM

 (A.90)

= ∑
n1,n2,··· ,nM≥0

n1+n2+···+nM=b

b!

n1!n2! · · ·nM !
EΦ

[(
b1

∏
x∈Φ\x0

f (θ1, x)

)n1

· · ·
(

bΦM
∏

x∈Φ\x0

f (θM , x)

)nM
]

(A.91)

= ∑
n1,n2,··· ,nM≥0
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where
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(a)=
∫ ∞

0
2πλb exp(−λbπr 2)exp

(
−2πλb

∫ ∞

r

[
1−

M∏
m=1

bnm
m

(
q

1+θm xα0 x−α +1−q

)nm
]

xd x

)
dr

(A.94)

(b)=
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d v
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(A.95)

where (a) follows the distribution of ‖x0‖ as f‖x0‖(r ) = e−πλr 2
2πλr and PGFL of PPP.

Further, EΦ[bnm
m ] represents the nmth moments of bm , where nm ∈ N+ and satisfying

nm ≤ M , bm = fmπ(1|sm
c ,Φ)− fm−1π(1|sm−1

c ,Φ).

EΦ[bnm
m ] = EΦ

[[
fmπ(1|sm
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]nm
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where EΦ
[
π(1|sm

c ,Φ)i
]

is the i th moment of policy averaged overΦ, and EΦ
[
π(1|sm−1

c ,Φ)nm−i
]

can be further interpreted as

EΦ

[
π(1|sm−1

c ,Φ)nm−i
]
=

∫
N
π(1|sm

c ,Φ)nm−iP(dϕ) (A.99)

where ϕ= {x1, x2, · · · } is viewed as a locally finite countable subset of R2, N is the set of all ϕ,
and a point processΦ is a random choice of one of the ϕ in N . P(dϕ) satisfied

∫
N P(dϕ) = 1,

which can be seen as the probability of number of points in little displace of ϕ.
Substituting (A.95), (A.98) to (A.92), we completed the proof.
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Particularly, when nm = 1, we have

EΦ[bm] = EΦ
[

fmπ(1|sm
c ,Φ)− fm−1π(1|sm−1

c ,Φ)
]

(A.100)

= fmEΦ
[
π(1|sm

c ,Φ)
]− fm−1EΦ

[
π(1|sm−1

c ,Φ)
]

(A.101)

where EΦ
[
π(1|sm

c ,Φ)
]

can be interpreted as the proportion of policy choose active at a prede-
fined state average overΦ.
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Titre :  Analyse des performances de la liaison descendante des réseaux cellulaires dyna-
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Résumé : Cette thèse caractérise de la région 
de stabilité d'un réseau aléatoire lorsqu'un mo-
dèle de trafic est intégré à la description de la 
géométrie du réseau. Premièrement, nous ca-
ractérisons la probabilité de couverture stable du 
réseau. À partir de la notion de probabilité de 
couverture dynamique, l'interaction entre les 
états des files d'attentes dans le réseau est prise 
en compte à l'aide d'une modélisation par 
chaîne de Markov discrète des files d'attente. 
Les cas des files d'attente à taille finie et infinie 
sont traités.  La région de stabilité indique à 
partir de quelle intensité de trafic au moins une 
file d'attente dans le réseau diverge. Une 
description plus fine du phénomène est faite en 
répondant à la question “quelle est la proportion 

 
de files d'attente instables dans le réseau ?". 
Dans ce cas, la notion de epsilon-stabilité est 
exploitée, elle décrit l'ensemble des intensités 
de trafic pour lesquelles une file d'attente prise 
au hasard a une probabilité de diverger 
inférieure à epsilon. Enfin, la dépendance entre 
la géométrie, la dynamique du réseau et la 
stratégie d'allocation rend la caractérisation des 
regions de stabilité avec l'allocation de 
ressources très difficile. Le caractère 
dynamique du réseau est descrit par un 
processus décisionnel markovien utilisant 
l'apprentissage par renforcement. La région de 
stabilité est donc étudiée lorsque la station de 
base typique peut choisir d'émettre ou de rester 
silencieuse selon l'état du réseau observé.   

 

Title :  Performance Analysis of Dynamic Downlink Cellular Networks  

Keywords :  stochastic geometry, queuing theory, reinforcement learning, coverage probability, 
stability region, transmission policies 

Abstract : The main question posed in this 
thesis is the characterization of the stability 
region of a random network when a traffic model 
is integrated into the description of the network 
geometry. First, we characterized the stable 
coverage probability of a random network. Start-
ing from the notion of dynamic coverage proba-
bility, the interaction between the queue states 
in the network is taken into account using a 
discrete Markov chain modeling of the queues, 
where the typical user's service rate depends on 
the dynamic coverage probability. The cases of 
buffer with finite and infinite size are both taken 
into account. The stability region indicates from 
which traffic intensity at least one queue in the 
network diverges. A more refined description of 
the phenomenon is made by answering the 
question, "what is the proportion of unstable  

 
 

queues in the network?". In this case, the notion 
of epsilon-stability is exploited, which describes 
the set of traffic intensities for which a queue 
taken at random has a probability of diverging 
less than epsilon. Finally, the characterization of 
the stable regions by considering the resource 
allocation is very difficult to obtain, because of 
the dependence between the geometry and the 
dynamic of the network and the allocation 
strategy. However, the dynamic nature of the 
network considered in this thesis lends itself 
perfectly to description by a Markovian decision 
process for which reinforcement learning 
strategies can be proposed. The region of 
stability is therefore investigated where the 
typical base station can choose to transmit or 
remain silent depending on the observed 
network state. 
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