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Résumé

Le sujet principale de cette thèse est l’étude des processus de diffusions singuliers et en
particulier des diffusions collantes.

Introduites par Feller dans les années 50, les diffusions collantes sont apparues
comme un cas particulier de conditions de bord dans la description analytique des
diffusions générales. Leurs trajectoires passent un temps positif sur des points de
l’espace d’états leur donnant l’apparence d’y coller. Quand de tels points se trouvent
sur des bords atteignables de l’espace d’états on parle de réflexion collante.

La première contribution est l’approximation du temps local des diffusions d’Itô
collantes. Nous définissons ce type de processus et prouvons leur description trajecto-
rielle. On prouve la convergence d’une classe de fonctionnelles haute-fréquence de la
trajectoire du mouvement Brownien collant vers son temps local en 0. On étend avec
des arguments trajectoriels aux diffusions d’Itô collantes. On définit un estimateur de
la stickiness basé sur l’approximation du temps local, puis on prouve sa consistance.
On donne des résultats numériques dans le cas du mouvement Brownien collant.

La deuxième contribution de cette thèse est l’approximation de tout processus
de diffusion par des marches aléatoires à valeurs dans des grilles dont les moments
correspondent avec ceux du vrai processus. On appelle ces processus d’approximation
Space-Time Markov Chain Approximation ou STMCA car ce sont des chaînes de Markov
en espace-temps. Une particularité de ce type d’approximation est qu’on on arrive
à répliquer des dynamiques collantes de façon assez naturelle. On montre que avec
un choix adapté de la grille on a une vitesse de convergence optimale en loi de cette
approximation quand le pas de la grille tend vers 0. On appelle ce procédé grid tuning.
On donne des résultats numériques ou on illustre la convergence en loi des processus
d’approximation et la flexibilité de l’algorithme sur le problème d’approximation du
temps local.



Abstract

The main object of this thesis is the study of singular diffusion processes with a
focus on sticky diffusions.

Sticky diffusions were first introduced by Feller in the fifties as a case of boundary
condition that can arise in the analytic description of a diffusion. Their paths spend
positive amount of time at points of the state-space, giving them the appearance to
“stick” on these points. When such points are located at an attainable boundary of the
state-space of the process, we call it sticky reflection.

The first contribution of this thesis is to provide a suitable approximation of the
local time of a sticky Itô diffusion, with statistical applications in view. We define
the notion of sticky Itô diffusion and prove their path-wise descriptions. We prove
that the local time of the sticky Brownian motion can be approximated by a class of
high-frequency path functionals. We use the path-wise characterization to extend the
result to non-explosive Itô diffusions. We prove the consistency of a stickiness estimator
based on the local time approximation. We give numerical results on the stickiness
estimation of a sticky Brownian motion.

The second contribution of this thesis is an approximation in law of any one-
dimensional diffusion by a grid-valued conditional moment-matching random walk.
The convergence occurs as the maximal grid step goes to 0. We call this type of
approximation Space-Time Markov Chain Approximation or STMCA. We also show
how one can achieve optimal convergence rate by suitable choices of grids. We call
grid tuning the process of computing such a grid. One can use STMCAs to set up
approximation schemes for any one-dimensional diffusion process. We give various
illustrated approximations examples of diffusions even in the presence of sticky behavior,
discontinuous or degenerate coefficients.

MSC2020: Primary 60F17, 60J60, 60J55; Secondary 60J10

Keywords: Sticky Brownian motion, sticky boundary, Itô diffusion, local time approx-
imation, parametric estimation, generalized diffusion, Markov chain approximation.
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Introduction (Français)

1 Contexte

La découverte des processus de diffusion a été motivée par des observations de Brown [19]
et d’Einstein [29] sur le mouvement de particules microscopiques en suspend dans un
fluide. Le mouvement de ces particules est régi par leurs collisions avec les molécules
du fluide qui engendre un comportement aléatoire. De plus, ces collisions sont si
nombreuses et chaotiques qu’elles induisent un phénomène d’absence de mémoire
appelé la propriété de Markov: sachant une suite d’observations de la particule à
des temps différents, la dernière observation contient toute l’information prédictive
sur la trajectoire future de la particule. C’est-à-dire que savoir seulement la dernière
observation ou des observations passées additionnelles ne change pas nos prédictions
sur la trajectoire future.

Le preuve de l’existence de tels objets a été donnée par Wiener [91] qui a donné
le premier exemple de diffusion, le mouvement Brownien. Ce processus, qui a un
comportement trajectoriel homogène en espace et en temps, joue un rôle central dans la
théorie des processus de diffusion. Feller [33] a par la suite donné une catégorisation des
comportements trajectoriels de bord des diffusions en fonction des conditions latérales
dans le générateur infinitésimal. Ces résultats on permis de définir le mouvement
Brownien sur le semi-espace R+. Aussi, ils ont permit la description analytique des
diffusions unidimensionnelles [34, 35, 36, 37]. Ceci a été réalisé en décrivant les diffusions
par leurs actions sur l’espace des fonctions continues bornées. Actions qui peuvent
être vues comme des opérations linéaires et qui, par la propriété de Markov, forment
un semi-groupe. Par la théorie de Hille-Yosida des opérateurs linéaires, tout tel semi-
groupe est engendré par un opérateur linéaire L appelé le générateur infinitésimal.
Feller a aussi démontré la factorisation du générateur infinitésimal L = Dm Ds ou m est
une mesure positive localement bornée et s une fonction continue et croissante. Pour
une synthèse de ces résultats, voir [41].

Le motivation initiale de Feller était de voir comment des conditions de bords sur
le générateur infinitésimal impactent les propriétés trajectorielles d’une diffusion près
du bord [33]. Dans sa tentative de les catégoriser, il a découvert que des conditions
latérales de la forme

ρ

2f
′′(0) = f ′(0+) − f ′(0), ρ

2f
′′(0) = f ′(0+), (1)

correspondent à un comportement collant (ou sticky) en 0. La première condition
de (1) correspond à un point traversant sticky pour la diffusion et la deuxième à une
réflexion sticky. Il a aussi montré que ceci correspond à un atome dans la mesure m de
la factorisation L = Dm Ds du générateur infinitésimal [35].
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Il s’avère qu’il n’existe pas de formulation en équation différentielle stochastique
classique (EDS) pour les diffusions sticky. Il est montré cependant dans qu’il existe
une description trajectorielle des diffusions sticky [83]. En particulier, dans [30] il est
montré que le mouvement Brownien collant X de stickiness ρ résout le système

dXt = 1Xt ̸=0 dBt,

1Xt=0 dt = dL0
t (X)

ou B est un mouvement Brownien standard.
Après leur introduction, les diffusions sticky sont restés largement dans l’oubli dans

la littérature probabiliste. En parallèle, les solutions d’EDS ont gagné beaucoup en
popularité. Ceci a été en partie dû à l’apparition au modèle de Black-Scholes [13] conçu
pour pricer et hedger (couvrir) des produits dérivés financiers. Ceci a aussi causé une
ambiguïté autour du terme de diffusion. Certains auteurs utilisent le terme diffusion
d’Itô pour décrire les solutions d’EDS homogènes en temps [77] et diffusion générale ou
généralisée pour les processus Markov fort continus [53, 80].

Depuis peu, on est témoin d’un regain d’interet particulier dans les diffusions
singulières et sticky. Il s’avère que ces processus répliquent des dynamiques observées
dans la nature. On y trouve des applications en biologie, médecine, finance, en
mécaniques classique et quantique. Dans [42, 44], le mouvement de particules près
d’une membrane ou une barrière sticky est étudié. Dans [20], des conditions de bord
sticky sont utilisés pour modéliser la concentration d’un pathogène dans un organisme
quand celle-ci est est proche de 0. L’explication de ce phénomène est qu’il est difficile
pour un pathogène de déclencher une infection si sa concentration est faible. Dans [76],
un modèle d’Ornstein-Uhlenbeck avec réfection sticky en 0 est proposé pour modéliser
la dynamique des taux d’intérêts proche de 0. Dans [24], les auteurs utilisent un
mouvement Brownien sticky pour décrire le mouvement de particules à proximité d’une
source d’émission. Dans [75, 85, 12, 43, 50, 60, 60], des modèles à diffusions sticky
sont proposés pour répliquer la dynamique de particules dans des colloïdes, les grosses
particules dans un liquide ont tendances à coller entre-elles quand elles entrent en
contact.

A part ces applications, les diffusions sticky ont un intérêt théorique. Leur étude
échappe aux outils classiques utilisés pour étudier les EDS classique. De plus, elles
peuvent être utilisés pour créer de nouveaux objets probabilistes, comme les couplages
sticky [28].

Pour une présentation plus détaillée des diffusions sticky, voir [78]. Voir aussi [15],
pour une aperçu plus large de leurs applications.

2 Contributions

Dans cette thèse, ont adresse plusieurs sujets concernant les diffusions sticky: approxi-
mation du temps local, estimation du paramètre de stickiness et simulation numérique.

Le premier sujet qu’on adresse est l’approximation du temps local. Dans [55],
l’auteur utilise des fonctionnelles trajectioriels haute-fréquence pour approximer le
temps local de diffusions d’Itô solutions de

dXt = µ(Xt) dt+ σ(Xt) dBt, (2)
4



ou B est un mouvement Brownien standard et (µ, σ) deux fonctions réelles qui garan-
tissent l’existence de solution forte de (2). Cependant, ce résultat puissant ne peut
pas s’appliquer à des diffusions sticky. La présence d’un atome dans la mesure de
vitesse résulte en une explosion de la statistique. De plus, il est impossible de réduire
le problème au mouvement Brownien standard, comme dans [55] pour les diffusions
d’Itô classiques.

Dans le Chapitre 4, on prouve que si X est une diffusion d’Itô sticky en 0, g
une fonction intégrable qui s’annule sur un voisinage de 0 et α ∈ (0, 1/2), alors la
fonctionnelle

nα

n

[nt]∑
i=1

g(nαX i−1
n

). (3)

converge en probabilité au temps local de X en 0. On remarque qu’à un niveau sticky,
le temps local est proportionnel au temps d’occupation et leur relation est régie par le
paramètre de stickiness. On démontre que le temps d’occupation peut être approché
de façon consistante par la statistique

1
n

[nt]∑
i=1

1X i−1
n

. (4)

On combine ces deux résultat pour mettre en place le premier (à notre connaissance)
estimateur consistent du paramètre de stickiness qui consiste simplement à diviser la
statistique (4) par la statistique (3).

Pour démontrer les résultats sur l’approximation du temps local nous utilisons une
description trajectorielle des diffusions d’Itô sticky. Dans le Chapitre 3, on considère le
système

dXt = µ(Xt)1Xt ̸=0 dt+ σ(Xt)1Xt ̸=0 dBt, (5)

1Xt=0 dt = ρ

2 dL0
t (X), (6)

où B est un mouvement Brownien standard. On démontre que le système admet
une solution unique en loi qui est une diffusion d’Itô sticky. On démontre aussi le
résultat “contraposé”: que tout diffusion d’Itô sticky est solution d’un système de la
forme (5)-(6). On fini par prouver des version sticky du théorème de Girsanov et du
lemme d’Itô. Des résultats similaires sont formulés dans [83] dans lequel la stickyness
est présentée comme un “spatial delay”.

Le deuxième sujet qu’on aborde est celui de la simulation de ces processus. Le
schéma numérique le plus populaire pour la simulation de diffusions est le schéma
d’Euler. Il s’avère que se schéma est mal défini pour les diffusions sticky. Pour remédier
à ça, plusieurs schémas ont été proposés: Dans [4], l’auteur montre que le mouvement
Brownien sticky est limite de marches aléatoires symétriques qui sont forcées en 0
à chaque passage pour un temps prédéfini. Ceci nous donne une méthode directe
pour simuler ce processus. Dans [76, 73, 39, 60], les auteurs utilisent des Chaînes
de Markov à temps continu (CTMC) pour simuler des processus qui résolvent une
EDS et ont une barrière sticky. Une grille est défini sur l’espace d’état de la diffusion
X. Le processus d’approximation est alors une CTMC à valeur dans g et dont les
intensités de transition sont calculées en utilisant une discrétisation du générateur
infinitésimal de X sur g. Dans [74], une approximation CTMC est considérée pour des
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diffusions, solutions d’EDS multi-dimensionnelles qui sont réfléchi de façon sticky sur
des hyperplans linéaires. Dans [7, 9], les auteurs définissent un schéma numérique basé
sur une équation de différence fini ou la taille du pas dépends du comportement moyen
local de la mesure de vitesse. Ils peuvent de cette façon simuler des diffusions à échelle
naturelle avec des points sticky qui se situent à l’intérieur de l’espace d’états.

Dans le Chapitre 5, on étend le schéma numérique défini dans [31] pour simuler
tout processus de diffusion général, ainsi que ceux avec des points sticky, skew ou
des conditions de bord. De plus, si on sait implémenter l’algorithme pour une dif-
fusion non-sticky, il est direct de considérer des points sticky. On démontre que les
quantités nécessaires pour l’implémentation de l’algorithme sont solution de problèmes
paraboliques et admettent des représentations en intégrales définies. On peut utiliser
ces représentations pour calculer ou approximer ces quantités numériquement. On
prouve aussi que, si la grille est “adaptée” au processus qu’on veut approximer, alors la
vitesse de convergence est optimale quand on fait tendre le pas de la grille vers 0. Cette
optimalité est validée par le principe d’invariance de Donsker [26]. Dans le Chapitre 6,
on donne un exemple d’application pour le problème de l’approximation du temps local
du Chapitre 4. On observe que:

• les trajectoires sont approchées en distance de p-Wasserstein pour la norme
L∞([0, T ]),

• on peut choisir la grille sur laquelle le processus d’approximation prends ces
valeurs.

Grace à ces deux faits, on peut choisir des grilles ayant une précision importante à
proximité du point de stickiness pour augmenter la qualité des estimateur du temps local
et de stickiness. Ce principe est illustré dans le Chapitre 6 sur un problème de benchmark
de l’estimateur de stickiness. Ceci peut aussi être appliqué pour l’approximation du
temps local de diffusions d’Itô non-sticky de [55].

Ces travaux ont donné lieu à deux articles [5, 6].

3 Organisation de cette thèse

La thèse est structurée de la façon suivante:
Chapitre 1: On donne la description analytique des diffusions unidimensionnelles

ainsi que quelques résultats sur les martingales. On donne des caractérisations de la
loi d’une diffusion: semi-groupe, résolvante, générateur infinitésimal, fonction échelle
& mesure de vitesse. On présente aussi plusieurs résultats fondamentaux comme: la
formule de Dynkin, le problème de martingale ou le théorème de Dubins-Schwarz.
Les deux derniers résultats nous donne un lien structurel entre les diffusions et les
martingales.

Chapitre 2: Ce chapitre est dédié aux diffusions singulières. On donne quels type
de comportement trajectoire une diffusion peut avoir et on montre comment on peut
les déduire à partir de la description analytique. On définit le mouvement Brownien
collant (sticky Bronwnian motion) et on démontre certaines de ses propriétés. On
montre les équations forward et backward satisfaites par le noyau de transition de la
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diffusions. On résout ses équations pour calculer le noyau de transition du mouvement
Brownien sticky.

Chapitre 3: Ce chapitre est dédié aux EDS sticky. On défini cette classe de processus
et démontre leur description trajectorielle qui généralise les résultats de [30] et [76].
On utilise cette description pour démontrer des variantes sticky de quelques résultats
classique du calcul stochastique: lemme d’Itô, théorème de Girsanov.

Chapitre 4: On montre qu’on peut approcher le temps local d’une diffusion sticky,
à son point de stickiness, par des fonctionnelles d’observations trajectorielles haute-
fréquence de la forme (3). On donne des conditions nécessaires pour que la convergence
ait lieu, puis on utilise ces résultats pour définir un estimateur consistent du paramètre
de stickiness.

Chapitre 5: On prouve que l’algorithme établi dans [31], peut être utilisé pour la
simulation de tout processus de diffusion unidimensionnel. En particulier, des marches
aléatoires à valeurs dans des grilles, dont les probabilités et temps conditionnels de
transition sont les mêmes en espérance que ceux de la diffusion X, converge en loi vers
X quand la taille de la cellule maximale de la grille tends vers 0. On prouve qu’on peut
borner les distances de Wasserstein de tout ordre p ≥ 1 entre ces processus par une
métrique de grilles qui dépends à la fois de la fonction échelle et de la mesure de vitesse
de X. Il est donc possible d’adapter la grille pour atteindre des ordres de convergences
optimaux.

Chapitre 6: Ce chapitre est dédié aux simulations numériques. On applique
l’algorithme sur des diffusions qui ont différentes propriétés puis on compare les
histogrammes des simulations avec les vraies densités de transitions. Quand nécessaire,
nous utilisons des approximations numériques des probabilités et temps moyens de
transition et on remarque que l’algorithme est toujours pertinent pour des grilles
adaptées. On montre aussi les propriétés de l’approximation de temps local établie au
Chapitre 4. Finalement, on montre que pour ce genre de problème, dans le contexte de
simulations Monte Carlo, par un choix adapté de la grille, on peut contrôler le nombre
de données observées par la statistique. Par conséquent, on peut atteindre des ordres
de convergence supérieurs.

7



8



Introduction (English)

1 Context

The discovery of diffusion processes was motivated by observations, made by Brown [18]
and Einstein [29], on the motion of suspended microscopic particles in a fluid. The
motion of these particles is entirely induced by collisions with the fluid molecules and
is hence random in nature. These collisions are so numerous and chaotic they create
an absence of memory phenomena called Markov property: Given knowledge of the
current position of the particle, past observations yield no additional predictive value
for future positions.

It was Wiener [91] who proved the existence of such objects and exhibited the first
example of diffusion, the Brownian motion. This process which has a homogeneous
path-wise behavior in both space and time, plays a central role in the theory of diffusion
processes. Then, Feller [33] categorized the boundary path-wise features of a diffusion
in accordance with the lateral conditions in the infinitesimal generator. These results
allowed in particular to define the Brownian motion defined on a semi-plane. Also, they
resulted in the analytic description of one-dimensional diffusions [34, 35, 36, 37]. This
was achieved by describing diffusions as actions on the space of continuous bounded
functions Cb. These actions can be seen as linear operators and from the Markov
property, form a semi-group. From the Hille-Yosida theory for linear operators, it
turns out that each such semi-group is induced by an operator L called infinitesimal
generator. Feller also proved the factorization of the infinitesimal generator L = Dm Ds,
where m is a locally bounded positive measure and s a continuous increasing function.
For a review of these results, see [41].

Feller’s initial motivation was to see how boundary conditions of the infinitesimal
generator affect the path-wise behavior of the underlying process near the boundary [33].
In his attempt to categorize them, he discovered that the lateral conditions of the form

ρ

2f
′′(0) = f ′(0+) − f ′(0), ρ

2f
′′(0) = f ′(0+),

correspond to stickiness and sticky reflection at 0 respectively. He also showed [35] that
one can factorize the infinitesimal generators of a diffusion X as L = Dm Ds, where m
and s are the speed measure and scale function of X (see Proposition 1.2.20). Thus, a
sticky point for X corresponds to an atom in its speed measure m.

It turns out that there exists no classical SDE formulation for sticky diffusions. It
is though showed independently in [11, 30] that there is a path-wise description for the
sticky Brownian motion. In particular, the sticky Brownian motion X of stickiness ρ
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solves the system

dXt = 1Xt ̸=0 dBt,

1Xt=0 dt = dL0
t (X)

where B is a standard Brownian motion.

After their introduction, sticky diffusions were largely left unnoticed in the prob-
abilistic literature. Moreover, stochastic differential equations or SDEs gained in
popularity. This was partially due to the introduction of the Black-Scholes model [13]
for pricing and hedging financial derivatives. As a result, an ambiguity was induced
around the term diffusion. Some authors use terms like Itô diffusion [77] to express
time-homogeneous SDE solutions and general or generalized diffusions for continuous
strong Markov processes [53, 80].

Recently, we are witnessing a regain of interest in sticky processes. It turns out
that they can accurately replicate dynamics found in nature. Applications range from
biology, finance to quantum and classical mechanics. In [42, 44], the motion of molecules
near a cell membrane or sticky wall is studied. In [20], sticky boundary conditions are
used to model the concentration of a pathogen in an organism at near-zero levels. The
cause of this is that it is hard for low quantities of pathogen to instigate an infection.
In [76], an Ornstein-Uhlenbeck process with sticky reflection at 0 is used to describe the
dynamics of interest rates near 0. In [24], the authors use a sticky Brownian motion to
describe the motion of particles near a point-source of emission. In [75, 85, 12, 43, 50,
60, 60], sticky diffusions are proposed to replicate particle dynamic in colloids, coarse
particles in a liquids that tend to “stick” with each-other upon contact.

Besides their applications, sticky diffusions have inherent theoretical interest. Their
study escape the classical frameworks established for classical SDEs. Moreover, they
are used to create new probabilistic objects like sticky couplings [28].

A more in depth presentation of the origins of sticky diffusions can be found in [78].
Also, in [15], a good overview of the applications of sticky diffusions is given.

2 Contributions

In this thesis, we address several subjects regarding sticky diffusions: local time
approximation, estimation of the stickiness parameter and their numerical simulation.

The first subject we address is the approximation of the local time of a sticky
diffusion at a sticky threshold. In [55], the author uses high-frequency path functionals
(3) to approximate the local time of non-explosive homogeneous SDE solutions. While
this result is powerful in its own, it cannot take into account sticky points. Indeed, the
presence of a sticky points in the speed measure of the diffusion would result in an
explosion of the statistic (3).

In Chapter 4, we prove that if X is an SDE with a sticky point at 0, if one forces
the test function g to be 0 in an open interval around 0, (3) converges to the local time
of X at 0. We then combine this result with an approximation of the occupation time
at 0 to set up the first (to our knowing) consistent stickiness parameter estimator.
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In order to prove these results, we use a path-wise description of sticky Itô diffusions.
In Chapter 3, we consider the system

dXt = µ(Xt)1Xt ̸=0 dt+ σ(Xt)1Xt ̸=0 dBt, (1)

1Xt=0 dt = ρ

2 dL0
t (X), (2)

where B is a standard Brownian motion. We show that uniqueness in law holds for the
solution of the system (1)-(2), which is one of a sticky Itô diffusion. We also show the
“inverse” result: that all sticky Itô diffusions admit a path-wise description of the form
(1)-(2). We end this chapter by proving sticky versions of the Girsanov theorem and
Itô’s lemma. Similar results are proven in [83], where the stickiness is called “spatial
delay”.

The second subject we address is the numerical simulation of one-dimensional
diffusions. The most popular numerical scheme to simulate diffusion processes is the
Euler scheme. It turns out though that this scheme is not well defined for sticky
diffusions. In order to address this issue, several numerical schemes were proposed for
their approximation: In [4], the author showed that the sticky Brownian motion is the
limit of symmetrical random walks that freeze a pre-defined amount of time every time
they hit 0. This gives us a straightforward way to simulate this process. In [76, 73, 39,
60], the authors use continuous time Markov chains CTMC to simulate homogeneous
SDE solutions with a reflective sticky boundary at 0. A grid g is defined over the
state-space of the diffusion X. The approximation process is then the g-valued CTMC
with jump intensities computed using a discretization of the infinitesimal generator of
X over g. In [74], a CTMC approximation is considered for multi-dimensional SDE
diffusions that exhibit sticky reflection on a hyperplane. In [7, 9], the authors define a
numerical scheme via a finite difference equation where the step magnitude depends on
the mean local behavior of the speed measure. This way, they can simulate diffusions
on natural scale with non-boundary sticky points.

In Chapter 5, we extend the numerical scheme defined in [31] to simulate any
generalized diffusion process, including sticky ones. Moreover, if one can implement
it for a non-sticky version of the diffusion, considering additional sticky points is
straightforward. We prove that the involved quantities in the algorithm can be either
computed by solving parabolic problems, computing definite integrals or approximate
the latter numerically. We also prove that, if the grid is “adapted” to the process
we want to approximate, we achieve optimal convergence rate for the approximation
process. This optimality is validated by the Donsker invariance principle [26]. In
Chapter 6, we give an application for the local time approximation of Chapter 4. We
observe that:

• the paths of the approximation are L∞([0, T ])-close in the p-Wasserstein distance,

• we can choose the grid that is the state-space of the approximation process.

Thus, we can choose grids with increasing precision around points of stickiness to get
better estimations of the local time and the stickiness. This is illustrated in Chapter 6
for the benchmarking problem of the stickiness parameter estimator. This principle
can also be applied for the non-sticky local time approximation of [55].

These works gave birth to the papers [5, 6].
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3 Organization of the dissertation

The thesis is organized as follows:
In Chapter 1, we give elements of the analytical theory of diffusion processes along

with several results on martingales. We give different characterizations of diffusions:
semi-group, resolvent family, infinitesimal generator, scale function & speed measure.
We then exhibit several results like Dynkin’s formula, the martingale problem and
the Dubins-Schwarz theorem. The two latter results give us a structural link between
diffusions and martingales.

Chapter 2 is dedicated to singular diffusions. We give various path-wise behaviors
a diffusion may exhibit and show has they translate into their analytical description.
We define the sticky Brownian motion and prove several of its properties. We show
that the transition kernel solves the forward and backward equations. We solve there
equations for the sticky Brownian motion and compute its probability transition kernel.

Chapter 3 is dedicated to sticky SDEs, processes that behave like classical SDE
away from a point of stickiness. We define this class of processes analytically and prove
that they always admit a path-wise description, like the ones derived in [30] and [76] for
the sticky Brownian motion and the Ornstein-Uhlenbeck process with sticky reflection.
We derive explicit results for these processes that rely on their path-wise formulation,
similar to the ones we have for classical SDEs (Itô’s lemma, Girsanov theorem).

In Chapter 4, we prove that one can approximate the local time of a sticky SDE, at
its point of stickiness, by high-frequency path functionals of the form:

nα

n

[nt]∑
i=1

g(nαX i−1
n

). (3)

We give necessary conditions for the convergence to occur and use this result to set up
a consistent estimator of the stickiness parameter.

In Chapter 5, we prove that the algorithm, established in [31], can be applied for
the simulation of any generalized diffusion process. In particular, grid-valued random
walks whose transition probabilities and conditional transition times match the ones of
a diffusion X, converge in law to X as the maximum cell size of the grid converges to
0. We prove that we can bound any p-Wasserstein distance between these processes by
a grid metric that depends on both the speed measure and scale function of X. It is
thus possible to adapt the grids to X in order to achieve optimal convergence rates.

Chapter 6 is dedicated to numerical experiments. We exhibit the properties of
Algorithm 1 by simulating approximations of diffusions that exhibit different features
and compare simulated valued with the theoretical densities. When necessary, we
use numerical approximations of the quantities driving the approximation process
and see that the Algorithm 1 is still relevant. Last, we exhibit the properties of the
local time approximation and stickiness parameter estimator established in Chapter
4. We also show that in the context of a Monte Carlo simulation, using the STMCA
approximations developed in Chapter 5 by suitable choice of the grid one can control
the amount of data observed by the statistic (4.1). We can thus achieve higher orders
of convergence.
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Chapter 1

An introduction to the analytic
theory of diffusion processes

This chapter is a synthesis of known results found in [17, 27, 49, 53, 59, 71, 82].
Chapter outline: In this section, we introduce the notion of diffusion process and

give analytic characterization of their law. In particular we define the scale function &
speed measure characterization. Many results proved in this thesis rely on the latter.
We then introduce the notion of probability transition kernel along with some elements
on its computation, namely the Kolmogorov backward and forward equations. Last,
we introduce the most elementary diffusion process, the Brownian motion.

1.1 First notions

1.1.1 Markov property

The main object of this thesis is the study of several aspects of singular diffusion
processes. We focus in particular on the simulation and local time approximation of
sticky sticky diffusions.

Diffusion processes are processes that have continuous sample paths and satisfy the
strong Markov property. This property can be expressed as follows.

Definition 1.1.1. Let X be an adapted process with state-space I defined on a
family of filtered probability spaces

(
Ω, (F t)t≥0,F ,Px

)
x∈I

such that for every x ∈ I,
Px(X0 = x) = 1. Let (θt)t≥0 be a family of shift operators for X. The process X is
said to satisfy the strong Markov property iff for any measurable function f , stopping
time τ and s > 0:

E
(
f(Xτ+s)| F τ

)
1τ<∞ = EXτ

(
f(Xs ◦ θτ )

)
1τ<∞. (1.1)

A process that satisfies the strong Markov property is called a strong Markov process.
If (1.1) holds for all deterministic τ ≥ 0, then we say X satisfies the weak Markov
property and we call it Markov process.

In Definition 1.1.1:
13



• The state-space I of a process X is all the possible values taken by X.

• The family (F t)t≥0 is a filtration on (Ω,F ,Px), i.e. a family indexed by time
such that for any s < t, F s ⊂ F t ⊂ F . A filtration expresses and expresses the
observable events of the universe Ω up to time t > 0.

• An (F t)t≥0-adapted or adapted process is a process X such that {Xs ∈ A} ∈ F t

for all t ≥ s ≥ 0.

• A family of operators (θt)t≥0 on Ω is called shift operators for X iff Xt(θsω) =
Xt+s(ω).

We now introduce the notion of diffusion.

Definition 1.1.2 (see [59], p. 376). A diffusion on I ⊂ R is a strong Markov process
with state-space I and continuous sample paths.

The dynamic of a diffusion is time-homogeneous and depends only on the position
in space. They be seen as the motion of charged particle in space subjected to the
action of a potential. Sticky diffusions are diffusion processes that spend a positive
amount of time at certain point(s) of their state space (see Sections 2.1.3,2.2).

1.1.2 Law and semi-group of a diffusion

For any X locally compact space with countable basis, let

• C(X ) be the space of continuous real-valued functions defined on I,

• Cb(X ) the subspace of bounded functions of C(X ),

• C0(X ) the subspace of functions of C(X ) that vanish at infinity, i.e. |f(x)| −→ 0
as ∥x∥ −→ ∞,

• ∥.∥∞ the norm defined for every measurable function f by

∥f∥∞ = sup
x∈X

|f(x)|.

We equip the spaces C(X ), Cb(X ), C0(X ) with the norm ∥.∥∞ and when there is no
ambiguity ∥.∥ = ∥.∥∞. These functional spaces can be used to quantify the notion of
law of a process with state-space I = X .

The law of a diffusion is the full random behavior of the process. One way to
quantify this behavior is via test functions. We say that two random variables Z1 and
Z2 have the same law iff for all f ∈ Cb,

E
(
f(Z1)

)
= E

(
f(Z2)

)
.

Similarly, we say that two processes X and Y with state-space I ⊂ Rd have the same
law iff for all x ∈ I and measurable F : Cb(R+, I) → R,

Ex

(
F (Xt; t ≥ 0)

)
= Ex

(
F (Yt; t ≥ 0)

)
.
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So an equality in law between processes (resp. random variables) means that their
action on measurable path-functionals (resp. bounded continuous functions) is the
same. In the case of continuous processes (like diffusions) or càdlàg ones, it is possible
to factorize this action in time. Let (Pt)t≥0 be the family of operators defined for every
measurable bounded f , x ∈ I and t ≥ 0 by

Ptf(x) = Ex

(
f(Xt)

)
. (1.2)

It is possible to ditch the notion of shift operator and re-express the Markov property
in terms of (Pt)t≥0 as follows.
Definition 1.1.3. Let X and (Ω, (F t)t≥0,Px)x∈I be as in Definition 1.1.1 and (Pt)t≥0 be
the family of operators defined in (1.2). Then, X satisfies the strong Markov property
iff

E
(
f(Xτ+s)| F τ

)
1τ<∞ = Psf(Xτ )1τ<∞ (1.3)

for all f ∈ Cb(I), stopping times τ and s ≥ 0.

If X is a Markov process and (Pt)t≥0 the family of operators defined in (1.2), from
(1.3),

PtPsf(x) = Ex

(
Psf(Xt)

)
= Ex

(
EXt

(
f(Xs+t)

))
= Ex

(
E
(
f(Xs+t)

∣∣∣F t

))
= Ps+tf(x).

Thus, the Markov property induces a semi-group structure on (Pt)t≥0. As such, we call
(Pt)t≥0 the semi-group of X.
Proposition 1.1.4. The law of a diffusion process is characterized by its semi-group.

Proof. Let X be a diffusion process and (Pt)t≥0 its semi-group. From Kolmogorov’s
extension theorem [87, p.196], it suffices to show that for any ordered finite set of times
0 < t1 < t2 < · · · < tn < ∞, the law of (Xt1 , . . . , Xtn) is uniquely determined by (Pt)t≥0.
Equivalently, it suffices to show that for any n ∈ N, 0 < t1 < t2 < · · · < tn < ∞
and bounded measurable application F : In → R, E

(
F (Xt1 , . . . , Xtn)

)
is uniquely

determined by x and (Pt)t≥0. From the functional version of the monotone class
theorem [80, p.3], by considering the π-system of indicator functions on I, it suffices to
show it for all measurable functions F : In → R of the form

F (x1, . . . , xn) = f1(x1)f2(x2) . . . fn(xn),

where f1, . . . , fn : I → R are bounded measurable functions. From (1.3),

Ex

(
f1(Xt1) . . . fn(Xtn)

)
= Ex

(
f1(Xt1) . . . fn−1(Xtn−1) E

(
fn(Xtn)

∣∣∣F tn−1

))
= Ex

(
f1(Xt1) . . . fn−1(Xtn−1)Ptn−tn−1fn(Xtn−1)

)
and recursively

Ex

(
f1(Xt1) . . . fn(Xtn)

)
= Pt1

(
f1Pt2−t1

(
f2 . . . Ptn−tn−1fn

)
. . .
)
(x),

which depends only on (Pt)t≥0 and x ∈ I. Thus, the law of (Xt1 , . . . , Xtn) under Px

depends only on (Pt)t≥0.
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Using the same arguments as the proof on Proposition 1.2.14, one can prove the
following stronger version of the strong Markov property:

Theorem 1.1.5. Let X be a strong Markov process defined on a family of probability
spaces

(
Ω, (F t)t≥0,Px

)
x∈I

with state space I such that for every x ∈ I, Px(X0 = x) = 1.
Then for any stopping time τ and measurable functional F : M(R+, I) → R, where
M(R+, I) is the space of measurable functions from R+ to I,

• F ((Xt+τ )t≥0)1τ<∞ is F∞-measurable.

• For any x ∈ I, Ex

(
1τ<∞F ((Xt+τ )t≥0)

∣∣∣F τ

)
= EXτ

(
F ((Xt)t≥0)

)
1τ<∞.

1.2 Analytic characterization

In the previous section we characterized the law of a diffusion process with its semi-
group. It turns out that this is not a very convenient characterization as it cannot be
written down explicitly. Moreover, it is hard to infer the path-wise properties of the
diffusion by looking at its semi-group.

In this section we give two equivalent characterization of the law of a diffusion:
the resolvent family and the infinitesimal generator. The link between them is the
Hille-Yosida theorem.

1.2.1 Hille-Yosida theory

The Hille-Yosida theory is a series of results that establish links between classes of
linear operators over Banach spaces. It was initially developed to assess the existence
and uniqueness of a solution of

d
dtu(t, x) = Axu(t, x)

by looking at the properties of a dissipative operator Ax. It was then applied with
great success to the study of diffusion processes by Feller [33].

Let (H, ∥.∥) be a Banach space and L(H) the space of bounded linear operators
from H to H. We define the following families of operators over H:

Definition 1.2.1. A family (Pt)t≥0 ⊂ L(H) is called a strongly continuous contracting
semi-group over H iff:

1. for any s, t ≥ 0 and v ∈ H: PtPsv = Pt+sv,

2. for every t > 0 and v ∈ H: ∥Ptv∥ ≤ ∥v∥,

3. for every v ∈ H: ∥Ptv − v∥ −→ 0 as t −→ 0.

A strongly continuous contracting semi-group over (C0(X ,R), ∥.∥∞), with X a locally
compact separable space, is called a Feller semi-group. Usually X ⊂ Rd, but this is
not always the case (see [45, 65]).
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Definition 1.2.2. A family (Rλ)λ>0 ⊂ L(H) is called a strongly continuous contracting
resolvent family iff

1. for every λ, µ > 0: Rλ −Rµ =
(
µ− λ

)
RλRµ,

2. for every λ > 0 and v ∈ H: ∥λRλv∥ ≤ ∥v∥,

3. for every v ∈ H: ∥λRλv − v∥ −→ 0 as λ −→ ∞.

Definition 1.2.3. An operator L : dom(L) → H, with dom(L) ⊂ H is called:

1. dissipative iff for every λ > 0 and v ∈ dom(L): ∥λv − L v∥ ≥ ∥λv∥,

2. closed iff for every (vn)n∈N ⊂ dom(L) and v, w ∈ H such that vn −→ v and
L vn −→ w, then v ∈ dom(L) and L v = w.

To each strongly continuous contracting semi-group (Pt)t≥0 one can associate a
resolvent family and an operator on H as follows.

Proposition 1.2.4. Let (Pt)t≥0 be a strongly continuous contracting semi-group over a
Banach space H. The family of operators (Rλ)λ>0 defined for every v ∈ H and λ > 0 by

Rλv =
∫ ∞

0
e−λtPtv dt

is a strongly continuous contracting resolvent family over H. We call it the resolvent
of (Pt)t≥0.

Definition 1.2.5. Let (Pt)t≥0 be a strongly continuous contracting semi-group over a
Banach space H. The infinitesimal generator of (Pt)t≥0 is the operator L defined for
every v ∈ dom(L) by

L v = lim
t→0

1
t

(
Ptv − v

)
, where dom(L) :=

{
v ∈ H : L v ∈ H

}
. (1.12)

Theorem 1.2.6 (Hille-Yosida, see [32], Chapter XIII, §9 and §10). Let H be a Banach
space. Then,

• For each strongly continuous contracting semi-group (Pt)t≥0, there exist a unique
strongly continuous contracting resolvent (Rλ)λ>0 and a closed dissipative operator
L with dense domain such that: (Rλ)λ>0 and L are respectively the resolvent and
infinitesimal generator of (Pt)t≥0.

• Every strongly continuous contracting resolvent (Rλ)λ>0 over H is the resolvent
of a strongly continuous contracting semi-group (Pt)t≥0 over H.

• Every closed dissipative operator L over H with dense domain is the infinitesimal
generator of a strongly continuous contracting semi-group (Pt)t≥0 over H.

Moreover, for every λ > 0,

R−1
λ = (λ Id − L) and dom(L) = Rλ(H) ⊂ Rλ(H) = H .
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The following result also holds.

Proposition 1.2.7 (Chapman-Kolmogorov equations). Let (Pt)t≥0 be a strongly contin-
uous contracting semi-group over a Banach space H and L be its infinitesimal generator.
Then, for any v ∈ dom(L) and t ≥ 0,

• the application [s −→ Psv] is strongly differentiable in H and d
dt
Ptv = LPtv =

Pt L v,

• Ptv − v =
∫ t

0 LPsv ds =
∫ t

0 Ps L v ds,

• Pt

(
dom(L)

)
⊂ dom(L) and Pt L = LPt on dom(L).

Proof. The proof is the same as the one of Proposition 1.2 of [80, Chapter VII; §1].

1.2.2 Adaptation to regular diffusions

We now prove that the results of the previous sections can be adapted to regular
diffusions with state-space I an interval of R.

Definition 1.2.8 (Definition 45.2 of [82]). A diffusion process X with state-space I an
interval of R is called regular iff for all x ∈ Int(I) and y ∈ I,

Px(τy < ∞) > 0,

where τy = inf{t ≥ 0 : Xt = y}.

To apply the Hille-Yosida theorem to diffusions, we need the semi-group to be
strongly continuous and contracting over a proper ambient space. The semi-group
(Pt)t≥0 of a regular diffusion with state-space I, an interval of R, is not always internal
on C0(I), (see [82, §50]), and not always strongly continuous on Cb(I) (see Proposition
A.1.1). To guarantee these properties, we first consider regular Feller diffusions. Feller
diffusions are diffusions whose semi-group is a Feller semi-group (see Definition 1.2.1).

Theorem 1.2.9 (Theorem 20.13 of [59]). Let X be a regular diffusion, with state-space
I an interval of R. Let I be the extension of I by any potential entrance boundaries of I
(see Section 2.1.2). Then, X can be extended to a continuous Feller process on I.

Corollary 1.2.10. A regular diffusion with no entrance boundaries is a Feller diffusion.

The aforementioned result allow us to extend the following results from regular
Feller diffusions to regular diffusions. For the rest of this section, we will will suppose
X to be a regular diffusion with state-space I an interval of R and (Pt)t≥0 the family
of operators defined for every f ∈ Cb(I) by (1.2).

Definition 1.2.11 (see [80], p. 89). Let Y be a diffusion process with state-space I an
interval of R. We call resolvent of Y , the family of operators (Rλ)λ>0 defined for any
λ > 0 and f ∈ Cb(I) by

Rλf(x) =
∫ ∞

0
Ex

(
f(Ys)

)
e−λs ds.
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Definition 1.2.12. Let Y be a diffusion process with state-space I an interval of R.
We call infinitesimal generator of Y , the operator L defined for any f ∈ dom(L) and
x ∈ I by

L f(x) = lim
t→0

1
t

(
Ex(f(Yt)) − f(x)

)
, (1.16)

where
dom(L) =

{
f ∈ Cb(I) : L f ∈ Cb(I)

}
. (1.17)

Now let X be a regular Feller diffusion. The following are all corollaries of the
Hille-Yosida theorem:

Corollary 1.2.13 (of Theorem 1.2.6). Let (Rλ)λ>0,L be respectively the resolvent and
infinitesimal generator of X. Then,

• (Rλ)λ>0 is a strongly continuous contracting resolvent family over C0(I),

• L is a closed dissipative operator on Rλ

(
C0(I)

)
,

• Rλ

(
C0(I)

)
is dense in C0(I).

Corollary 1.2.14 (of Proposition 1.1.4 and Theorem 1.2.6). Let (Pt)t≥0, (Rλ)λ>0 and
L be respectively the semi-group, resolvent and infinitesimal generator of X. The law
of X is characterized either by (Pt)t≥0, (Rλ)λ>0 or L.

Corollary 1.2.15 (of Theorem 1.2.6). Let X and Y be two regular diffusions with state-
space I an interval of R and respective (semi-group, resolvent, infinitesimal generator)
triplets ((PX

t )t≥0, (RX)λ,LX), ((P Y
t )t≥0, (RY )λ,LY ). If either of the following holds:

• (PX
t )t≥0 = (P Y

t )t≥0,

• (RX)λ = (RY )λ,

• LX = LY ,

then, ((PX
t )t≥0, (RX)λ,LX) = ((P Y

t )t≥0, (RY )λ,LY ) and X, Y have the same law.

1.2.3 Speed measure & scale function

We now give an additional characterization of diffusions, the scale function & speed
measure pair. This characterization yields a very convenient factorization of the
infinitesimal generator of a diffusion. Moreover, it allows to also factorize the space
and time behavior of a diffusion:

• the scale function mainly captures the propensity of the process to move in a
particular direction,

• the speed measure expresses the speed at which the process moves.
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In Section 1.4, we see that several results are expressed through these objects.

Let X be a regular diffusion process, taking values in an interval I ⊂ R and
defined on a family of probability spaces (Ω, (F t)t≥0,Px)x∈I such that for every x ∈ I,
Px(X0 = x) = 1. Let also for any a, b ∈ I,

τa = inf
{
t ≥ 0 : Xt = a

}
and τab = τa ∧ τb.

Proposition 1.2.16. There exists a continuous, increasing function s such that for
any a < x < b ∈ I:

Px(τb < τa) = s(x) − s(a)
s(b) − s(a) , (1.18)

where τa = inf{t > 0 : Xt = a}. The function s is unique modulo an affine transforma-
tion and is called scale function of X. A diffusion whose scale function s is the identity
function s = [x −→ x] is said to be on natural scale.

Proof. See [80, p. 301-302].

Proposition 1.2.17. There exists a unique strictly positive1 locally finite2 measure m
over int(I) such that for every x, a, b ∈ I with a < x < b:

Ex(τab) =
∫

(a,b)
G(a,b)(x, y)m(dy), (1.19)

where τab = min{τa, τb} and [(a, b, x, y) −→ G(a,b)(x, y)] is the function defined for any
a, b, x, y ∈ I with a < b by

Ga,b(x, y) =



(
s(x) − s(a)

)(
s(b) − s(y)

)
s(b) − s(a) , for a < x ≤ y < b,(

s(y) − s(a)
)(
s(b) − s(x)

)
s(b) − s(a) , for a < y < x < b.

(1.20)

The measure m is called speed measure of X.

Proof. See [80, p. 304-305].

Proposition 1.2.18 (Green formula). For every measurable function f : I → R and
x, a, b ∈ I with a < x < b,

Ex

( ∫ τab

0
f(Xs) ds

)
=
∫ b

a
G(a,b)(x, y)f(y)m(dy). (1.21)

Proof. See [80, p.305].
1A measure m over I an interval of R is said to be strictly position iff for any (a, b) ⊂ I, m((a, b)) > 0.
2A measure m on a topological space X is said to be locally finite iff for any compact subset K of

X , m(K) < ∞.
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Proposition 1.2.19 (martingale problem). Let L be the infinitesimal generator of X.
Then, for any f ∈ dom(L), the process M(f) defined for every t ≥ 0 by

Mt(f) = f(Xt) − f(X0) −
∫ t

0
L f(Xu) du, (1.22)

is a martingale.

Proof. For any s ≤ t, from the Markov property and (1.13),

E
(
Mt(f)

∣∣∣F s

)
= Ms(f) + E

(
f(Xt) − f(Xs) +

∫ t

s
L f(Xu) du

∣∣∣F s

)
= Ms(f) + Pt−sf(Xs) − f(Xs) +

∫ t

s
LPu−sf(Xs) du = Ms(f).

Thus, M(f) is a martingale.

Proposition 1.2.20. Let L, s and m be respectively the infinitesimal generator, the
scale function and the speed measure of X. Then,

• for every f ∈ dom(L) and x ∈ Int(I),

L f(x) = Dm Ds f(x), (1.23)

• dom(L) ⊂
{
f ∈ Cb(I) : Dm Ds f ∈ Cb(Int(I))

}
,

• if I is an open interval of R, dom(L) =
{
f ∈ Cb(I) : Dm Ds f ∈ Cb(Int(I))

}
,

where

Ds g(x) = lim
h→0;h>0

g(x+ h) − g(x)
s(x+ h) − s(x) and Dm g(x) = lim

h→0;h>0

g(x+ h) − g(x)
m([x, x+ h)) .

(1.26)

Proof. For f ∈ dom(L), let M(f) be the process defined for every t ≥ 0 by

Mt(f) = f(Xt) − f(X0) −
∫ t

0
L f(Xs) ds, (1.27)

where ∥Mt(f)∥ ≤ 2∥f∥ + t∥ L f∥. Since X is regular for any x, a, b ∈ Int(I) such that
a < x < b, Ex(τab) < ∞ and

Ex

(
Mτab

(f)
)

= f(b)s(x) − s(a)
s(b) − s(a) + f(a)s(b) − s(x)

s(b) − s(a) − f(x) − Ex

( ∫ τab

0
L f(Xs) ds

)
From the martingale stopping theorem, (Mt∧τab

(f))t≥0 is a martingale that vanishes at
0. Thus, from (1.21),

f(b)
(
s(x) − s(a)

)
+ f(a)

(
s(b) − s(x)

)
−
(
s(b) − s(a)

)
f(x)

=
(
s(b) − s(a)

) ∫ b

a
L f(y)Ga,b(x, y)m(dy)

=
∫ b

a

((
s(x)−s(a)

)(
s(b)−s(y)

)
1x≤y +

(
s(y)−s(a)

)(
s(b)−s(x)

)
1x>y

)
L f(y)m(dy).
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Derivating with respect to s,

f(b) − f(a)
s(b) − s(a) − Ds f(x) =

∫ b

a

(
s(b) − s(y)

)
1x≤y −

(
s(y) − s(a)

)
1x>y

s(b) − s(a) L f(y)m(dy)

=
∫ x

a

s(y) − s(a)
s(b) − s(a) L f(y)m(dy) +

∫ b

x

s(b) − s(y)
s(b) − s(a) L f(y)m(dy)

Derivating with respect to m,

Dm Ds f(x) = s(y) − s(a)
s(b) − s(a) L f(x) + s(b) − s(y)

s(b) − s(a) L f(x) = L f(x),

proving (1.23). This also proves that

dom(L) ⊂ dom(Dm Ds) =
{
g ∈ Cb(Int(I)) : Dm Ds g ∈ Cb(Int(I))

}
.

If I is an open interval of R,

dom(L) ⊂ dom(Dm Ds) =
{
g ∈ Cb(Int(I)) : Dm Ds g ∈ Cb(I)

}
.

Since X has only natural boundaries and L is a closed operator (see Theorem 1.2.6),

dom(Dm Ds) ⊂ dom(L),

which finishes the proof.

From Proposition 1.2.20, we observe that if we are given the speed measure, the
scale function and the boundary conditions of the infinitesimal generator of a one
dimensional diffusion process X with state-space an interval of R, we have a full
description of that law of X. This characterization turns out to be very convenient for
singular diffusions. When we introduce new diffusions, we do it through s and m (see
Section 2.2, Chapter 3 and Section 6.1).

The fact that we also need to have the conditions at the boundary of the infinitesimal
generator can be seen in [14, p. 118-122]. There, Brownian motions with boundary
behaviors are defined and they share the same scale function and speed measure.

Corollary 1.2.21. The pair scale function and speed measure (s,m) characterizes the
law of a diffusion process with state-space I an open interval of R.

Proof. Direct from Corollary 1.2.14, (1.23) and (1.24).

Proposition 1.2.22. Let s and m be the scale function and speed measure of X.
Then, the process s(X) = (s(Xt))t≥0 is on natural scale, has speed measure m′(dy) =
m
(

ds−1(y)
)

and state-space the interval s(I) of R.

Proof. Let (s0,m0) be the scale function and speed measure of s(X). Moreover, for
every ζ ∈ I and ζ ′ ∈ s(I),

τζ = inf{t > 0;Xt = ζ}, τab = τa ∧ τb, (1.28)
τ ′

ζ′ = inf{t > 0; s(Xt) = ζ ′}, τ ′
ab = τ ′

a ∧ τ ′
b.
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Thus, for any ζ ∈ I, τ ′
s(ζ) = τζ . From (1.18), for any a, x, b ∈ I such that a < x < b:

Px

(
τ ′

b < τ ′
a

)
= Ps−1(x)

(
τs−1(b) < τs−1(a)

)
= x− a

b− a
,

thus s0(x) is necessarily an affine function. From (1.19) and (1.28), if a, x, b ∈ I such
that a < x < b:

Es(x)(τ ′
s(a)s(b)) = Ex(τab) =

∫ b

a

(
s(x) ∧ s(y) − s(a)

)(
s(b) − s(x) ∨ s(y)

)
s(b) − s(a) m(dy)

=
∫ s(b)

s(a)

(
s(x) ∧ ζ − s(a)

)(
s(b) − s(x) ∨ ζ

)
s(b) − s(a) m

(
ds−1(ζ)

)
.

From (1.19), for every x ∈ s(I), s0(x) = x and m0(dx) = m
(

ds−1(x)
)
.

Proposition 1.2.23 (Dynkin operator). Let X be a diffusion process with state-space
I an interval of R and infinitesimal generator L. For any x ∈ I and h > 0, let
τx = inf{t > 0 : Xt = x} and τx(h) = τx−h ∧ τx+h. Then, if f ∈ dom(L), for any x ∈ I,

L f(x) = lim
h→0

Ex

(
f(Xτx(h))

)
− f(x)

Ex(τx(h)) . (1.29)

Proof. Let h small enough such that (x − h, x + h) ⊂ I and M(g) the martingale
defined for any g ∈ dom(L) in (1.27). As f ∈ dom(L), the process (Mt∧τx(h)(f))t≥0 is a
martingale. Also, since X is regular, from (1.21),

Ex

(
f(Xτx(h))

)
− f(x) = Ex

( ∫ τx(h)

0
L f(Xs)

)
=
∫ x+h

x−h
Gx−h,x+h(x, y) L f(y)m(dy).

From (1.19), and the intermediate value theorem,

Ex

(
f(Xτx(h))

)
− f(x)

Ex(τx(h)) =
∫ x+h

x−h Gx−h,x+h(x, y) L f(y)m(dy)∫ x+h
x−h Gx−h,x+h(x, y)m(dy)

As f ∈ dom(L), L f ∈ Cb(I), if δh(x) = sup
{
| L f(y)−L f(x)|; |y−x| < h

}
, δh(x) −→ 0

as h −→ 0. Thus,

∣∣∣∣Ex

(
f(Xτx(h))

)
− f(x)

Ex(τx(h)) − L f(x)
∣∣∣∣ =

∫ x+h
x−h Gx−h,x+h(x, y)

∣∣∣L f(y) − L f(x)
∣∣∣m(dy)∫ x+h

x−h Gx−h,x+h(x, y)m(dy)

≤
∫ x+h

x−h Gx−h,x+h(x, y)δx(h)m(dy)∫ x+h
x−h Gx−h,x+h(x, y)m(dy)

= δx(h) −→ 0

as h −→ 0, which is (1.29).

1.3 Probability transition kernel

In the previous sections we defined diffusion processes by means of functional analysis,
via actions they induce on the space of bounded continuous functions. While this
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point of view is convenient from an analytical perspective, the notion of probability
transition kernel is much more relevant from a statistical perspective. Indeed, it is the
transition kernel that expresses the statistical properties of the process via its marginal
laws. In this section, we prove the existence of this object and give the first elements
of its computation in a fully generalized setting. We also see the role played by the
resolvent kernel in proving these results.

1.3.1 Definitions

Proposition 1.3.1. Let X be a diffusion process with speed measure m, semi-group
(Pt)t≥0 and state-space I, an interval of R. There exists a function

[
(t, x, y) −→

p(t, x, y)
]

: R+ × I2 → R+ such that for any f ∈ L2, t ≥ 0 and x ∈ I,

Ptf(x) =
∫
I
f(y)p(t, x, y)m( dy). (1.30)

Moreover, p satisfies the following properties:

• continuity in all arguments (t, x, y),

• symmetry in space, i.e. for all x, y ∈ I and t > 0, p(t, x, y) = p(t, y, x),

• convolution, i.e. p(t+ s, x, y) =
∫
I p(t, x, ζ)p(s, ζ, y)m(dζ).

The relation (1.33) is also called Chapman-Kolmogorov equation.

Proof. See [53, p.149].

Definition 1.3.2. The function
[
(t, x, y) −→ p(t, x, y)

]
is called probability transition

kernel of X.

Definition 1.3.3. Let X be a diffusion process with probability transition kernel[
(t, x, y) −→ p(t, x, y)

]
. The function

[
(λ, x, y) −→ r(λ, x, y)

]
defined for every

(λ, x, y) ∈ (0,∞) × I2 by

r(λ, x, y) =
∫ ∞

0
p(t, x, y)e−λt dt (1.34)

is called resolvent kernel of X. From Proposition 1.3.1 and (1.34), the resolvent kernel
is continuous.

Let (Rλ)λ>0 be the resolvent family, (Pt)t≥0 the semi-group,
[
(t, x, y) −→ p(t, x, y)

]
the probability transition kernel and

[
(λ, x, y) −→ r(λ, x, y)

]
the resolvent kernel of a

diffusion X. From the positive Fubini theorem,

Rλf(x) =
∫ ∞

0
Ptf(x)e−λt dt =

∫ ∞

0

∫
I
f(y)p(t, x, y)m(dy)e−λt dt

=
∫
I
f(y)

∫ ∞

0
p(t, x, y)e−λt dtm(dy) =

∫
I
f(y)r(λ, x, y)m(dy),

for any measurable f : I → R , λ > 0 and x ∈ I. This justifies the usage of the term
resolvent kernel for the function

[
(λ, x, y) −→ r(λ, x, y)

]
.
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1.3.2 Backward & forward equations

Let X be a diffusion process with state-space I, an interval of R and infinitesimal
generator L. Also, let L∗ be the adjoint operator of L in L2(I) in the sense that

⟨Lu, v⟩L2 = ⟨u,L∗ v⟩L2 ,

for any u ∈ dom(L) and v ∈ dom(L∗). This makes sense since dom(L) ⊂ Cb(I) ⊂ L2(I).
The partial differential equations(

∂t − L
)
u(t, x) = 0

and (
∂t − L∗

)
u(t, x) = 0

are respectively called the backward and forward equations. The reason why is made
explicit by the following theorem, which is also a common point of entry for obtaining
analytic expressions (when possible) of probability transition kernels (see [14, 24, 25,
67]).

Proposition 1.3.4. Let X be a diffusion process with state-space I an interval of R with
infinitesimal generator L. Then, the probability transition kernel [t, x, y −→ p(t, x, y)]
of X solves (

∂t − Lx

)
p(t, x, y) = 0, (1.35)(

∂t − L∗
y

)
p(t, x, y) = 0, (1.36)

p(t, x, y) −→ δx(dy) weakly as t −→ 0, (1.37)
p(t, x, y) −→ δy(dx) weakly as t −→ 0, (1.38)

for all (t, x, y) ∈ R+ × I2.

Lemma 1.3.5. The resolvent kernel
[
(λ, x, y) −→ r(λ, x, y)

]
of a diffusion X with

state-space I solves

(λ− Lx)r(λ, x, y) = 0, (1.39)
(λ− L∗

y)r(λ, x, y) = 0, (1.40)

for any (λ, x, y) ∈ (0,∞) × I2, where L∗ is the adjoint operator of L in L2(I).

Proof. Let f ∈ dom(L) and u(t, x) = Ptf(x). From (1.13), for any t ≥ 0,
[
x −→

u(t, x)
]

∈ dom(L) and
∂tu(t, x) = Lx u(t, x),

where the subscript in Lx is used to denote the scope of the operator L. Thus, by
definition of the probability transition kernel p of X,∫

I

(
∂t − Lx

)
p(t, x, y)f(y)m(dy) = 0.

Since dom(L) is dense in Cb which is itself dense in L2 and since m is a strictly positive
measure, (

∂t − Lx

)
p(t, x, y) = 0, (1.41)
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for all (t, x) ∈ R+ × I, m(dy)-almost everywhere. From the continuity of [(t, x, y) −→
p(t, x, y)] (1.41) holds also for all (t, x, y) ∈ R+ × I2. For any λ > 0, by multiplying by
e−λt and integrating with respect to t on R+,

(λ− Lx)r(λ, x, y) = 0,

which is (1.39). Multiplying (1.39) with f(y)r(λ, y, x) and integrating over I with
respect to m(dx),

0 =
∫
I
r(λ, y, x)(λ− Lx)r(λ, x, y)m(dx)

= λ
∫
I
r(λ, y, x)r(λ, x, y)m(dx) −

∫
I
r(λ, y, x) Lx r(λ, x, y)m(dx)

= λ
∫
I
r(λ, y, x)r(λ, x, y)m(dx) −

∫
I
r(λ, x, y) L∗

x r(λ, y, x)m(dx)

=
∫
I

(
λr(λ, y, x) − L∗

x r(λ, y, x)
)
r(λ, x, y)m(dx). (1.42)

Multiplying (1.42) with a measurable function f(y) and integrating over I with respect
to m(dy), ∫

I

∫
I

(
λr(λ, y, x) − L∗

x r(λ, y, x)
)
f(y)r(λ, x, y)m(dy)m(dx) = 0.

Since X is regular, m(dy) is strictly positive measures and p(t, x, y) > 0 for all
(t, x, y) ∈ (0,∞) × Int(I) × Int(I). Also, from (1.34), r(λ, x, y) > 0 for all (t, x, y) ∈
(0,∞) × Int(I) × Int(I). Thus,

λr(λ, y, x) − L∗
x r(λ, y, x) = 0

for all t ∈ R+ × I, m(dy)m(dx)-almost everywhere and from the continuity of [(λ, x, t) −→
r(λ, x, y)] for all (t, x, y) ∈ R+ × I2.

Proof of Proposition 1.3.4. Equation (1.35) was proven in the proof of Proposition
1.3.5. Equation (1.36) is proven applying the inverse Laplace transform to (1.40). The
strong continuity of the diffusion’s semi-group (Pt)t≥0 implies the weak continuity at
zero, which are (1.37) and (1.38).

1.4 Additional useful results

1.4.1 Diffusions and martingales

Diffusion processes and martingales/semi-martingales are two distinct classes of pro-
cesses that are central to the theory of continuous processes. We observe that there is
no inclusive relation between these classes:

• the Brownian motion is a martingale and a diffusion process (see Section 1.5),

• the process X = (
√

|Bt|)t≥0, with B the standard Brownian motion, is a diffusion
but not a semi-martingale (see [92]),
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• strong solutions of non-homogeneous stochastic differential equations (see Section
2.1.1) are semi-martingales but not diffusions,

• the fractional Brownian motion with Hurst coefficient H ̸= 1/2 (see [80, p. 38])
is neither a semi-martingale, nor a diffusion (see [81]).

While this is the case there these processes are linked. The object of this section is to
exhibit some of these links.

Lemma 1.4.1. Let X be a diffusion process, L its infinitesimal generator and v0 the
function defined for every x, a, b ∈ I by v0(x) = Px(τb < τa). Then v0 ∈ dom(L) and
for any a, b ∈ I, it solves: 

Lu = 0, x ∈ (a, b),
u(a) = 0,
u(b) = 1.

(1.43)

Proof. From (1.18), (1.23) and since m is a positive measure (see Proposition 1.2.17),
for any x ∈ I,

L v0(x) = Dm Ds
s(x) − s(a)
s(b) − s(a) = Dm

1
s(b) − s(a) = 0

as m is a strictly positive measure. The functions v0 and L v0 = 0 are both in Cb(I).
Thus,

v0 ∈ dom(L) and L v0 = 0. (1.44)
Moreover,

v0(b) = Pb(τb < τa) = Pb(0 < τa) = 1. (1.45)
v0(a) = Pa(τb < τa) = Pb(τb < 0) = 0. (1.46)

From (1.44), (1.45) and (1.46), v0 solves (1.43).

Proposition 1.4.2. A diffusion process on natural scale is a local martingale.

Proof. Let X be a diffusion process with state-space I, speed measure m and scale
function s the identity function, i.e. s(x) = x for any x ∈ I. In (1.44) we observed
that s ∈ dom(L) but only for the process stopped at the boundary Xτab = (Xt∧τab

)t≥0.
In general, s /∈ Cb(I) and consequently s /∈ dom(L). This is the case for processes on
natural scale with unbounded state-space, i.e. I = R. Let τ−n,n = inf

{
t ≥ 0;Xt /∈

(−n, n)
}
, Xτ−n,n be the stopped process Xτ−n,n = (Xt∧τ−n,n)t≥0 and M(s) the process

defined in (1.22). From Proposition 1.2.19, the process M τ−n,n(s) = (Mt∧τ−n,n(s))t≥0 is
a martingale. From (5.19), L s = 0 and

M
τ−n,n

t (s) = s(Xτ−n,n

t ) − s(Xτ−n,n

0 ) −
∫ t

0
L s(Xτ−n,n

r ) dr = X
τ−n,n

t −X
τ−n,n

0

Thus, Xτ−n,n = (M τ−n,n

t (s) +X
τ−n,n

0 )t≥0 is also a martingale and the result is proven.
Since τ−n,n is increasing τ−n,n −→ ∞ almost surely as n −→ ∞, the result is proven.

From Propositions 1.2.22 and 1.4.2, we have the following:

Corollary 1.4.3. If X is a diffusion process with scale function s. Then, the process
s(X) = (s(Xt))t≥0 is a local martingale.
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1.4.2 Diffusions as time changed Brownian motions

Theorem 1.4.4. Let X be a diffusion on natural scale with state-space I an interval
of R and speed measure m defined on a family of probability spaces P = (Ω,F ,Px)x∈I
such that for every x ∈ I, Px(X0 = x) = 1. Then, there exists a Brownian motion B,
defined on an extension of P, such that Px(B0 = x) and for every t ≥ 0,

Xt = Bγ(t),

where γ(t) is the right inverse of A(t) = 1
2
∫
R L

y
t (B)m( dy).

Proof. See [82, p.278-279].

Corollary 1.4.5 (Remark (ii) of [82], p. 277). Let m be a locally finite strictly positive
measure on R and B a standard Brownian motion defined on a family of probability
space (Px)x∈R = (Ω,F ,Px)x∈R such that for every x ∈ R, Px(B0 = x) = 1. Let also
Ly(B) be the time-continuous version of the local time of B at y, A the time-change
defined for every t ≥ 0 by

A(t) = 1
2

∫
R
Ly

t (B)m( dy)

and γ the right-inverse of A. Then, the process X = (Bγ(t))t≥0 is a diffusion process on
natural scale with speed measure m and for every x ∈ R, Px

(
X0 = x

)
= 1.

Corollary 1.4.6. Let X◦ be a diffusion on natural scale with state-space I and speed
measure m◦. Then, if κ is a finite measure on I, the process X defined through s and
m, where

s(x) = x, m(dx) = m◦(dx) + κ(dx),

is a martingale with state-space I.

Proof. This is a direct consequence of Proposition 1.4.2, Theorem 1.4.4 and Corollary
1.4.5.

1.5 The standard Brownian motion

The most elementary continuous process is the Brownian motion. It also lies at the
intersection of the most studied classes of processes: Lévy processes, martingales,
diffusions. The Brownian motion can be defined as the process B = (Bt)t≥0 with

• B0 = 0,

• [t −→ Bt] is almost surely continuous,

• for any t ≥ s, Bt −Bs is independent of F s,

• for any t ≥ s, Bt −Bs ∼ N (0, t− s).
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We observe that since a Gaussian random variable can take any value in R, the
state-space of B is R.

For sake of convenience and consistency with the previous sections, we lift the
property (1.47). Instead, we consider a Brownian motion defined on a family of
probability space (Ω, (F)t≥0,Px)x∈R any process such that (1.48)-(1.50) hold and that

Px

(
B0 = x

)
= 1.

From (1.49) and (1.50), for any measurable function f : R → R,

E
(
f(Bt)

∣∣∣F s

)
= E

(
f(Bt −Bs +Bs)

∣∣∣F s

)
= E

(
f(

√
t− sZ +Bs)

∣∣∣F s

)
,

where Z ∼ N (0, 1) is independent of F s. Since Z is independent of F s and Bs is
F s-measurable and from (1.50),

E
(
f(Bt)

∣∣∣F s

)
= E

(
f(

√
t− sZ +Bs)

∣∣∣F s

)
= EBs

(
f(

√
t− sZ)

)
= EBs

(
f(Bt)

)
(1.51)

which is the Markov property. From (1.48), and since B is a strong Markov process, B
is also a diffusion.

1.5.1 Analytical characterization

From (1.50) and (1.51),

Ptf(x) =
∫
R
f(y) 1√

2πt
e−(x−y)2/2 dy.

Thus, from [53, p. 149], the probability transition kernel [(t, x, y) −→ p(t, x, y)]
and the speed measure m of the standard Brownian motion are defined for every
(t, x, y) ∈ R+ ×R2 by

p(t, x, y) = 1
2
√

2πt
e−(x−y)2/2, m(dy) = 2 dy.

We observe that for every (t, y) ∈ R+ × I, the function [x −→ p(t, x, y)] ∈ C2
b (R) and

solves (
∂t − 1

2∂xx

)
p(t, x, y) = 0.

Thus, from (1.35) and (1.17),

L = 1
2 D2

x, dom(L) =
{
f ∈ Cb : L f ∈ Cb

}
and the scale function s of X is the identity function, i.e. s = [x −→ x].
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Chapter 2

Singular diffusions and the sticky
Brownian motion

This chapter is a synthesis of known results found in [14, 21, 30, 52, 80].
Chapter Outline: In Section 2.1, we present all possible pathwise-features a

one-dimensional diffusion can exhibit, categorize them accordingly and see how these
features translate into the analytical characterization. In Section 2.2, we introduce
the sticky Brownian motion, prove some of its properties and compute its probability
transition kernel.

2.1 Diffusion process zoology

2.1.1 Stochastic differential equations and Itô diffusions

We call stochastic differential equation or SDE any expression of the form

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt, (2.1)

where µ, σ : R+ ×R 7→ R and W is a standard Brownian motion. The stochastic
differential equation (2.1) can also be alternatively formulated in the integral form

Xt = X0 +
∫ t

0
µ(t,Xs) ds+

∫ t

0
σ(t,Xs) dWs. (2.2)

When µ and σ have no time-dependence the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt (2.3)

is called time-homogeneous.

Definition 2.1.1 (solution, Definition 1.2 of [80], Chapter IX, §1). A solution of
the SDE (2.1) is a pair (X,B) of adapted processes defined on a probability space
(Ω, (F t)t≥0,P) such that B is a (F t)t≥0-standard Brownian motion and (2.2) holds.

Not unlike ordinary differential equations, questions of existence and uniqueness of
a solution to (2.1) arise.
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Definition 2.1.2 (path-wise uniqueness, Definition 1.3-(1) of [80], Chapter IX, §1).
The SDE (2.2) is said to have path-wise uniqueness if for two pairs (X,W ), (X ′,W ′),
defined on the same probability space, that solve it with W = W ′ and X0 = X ′

0 almost
surely, then X = X ′ almost surely.

A necessary condition for path-wise uniqueness in a one-dimensional setting is given
by the following theorem.

Theorem 2.1.3 (Yamada-Watanabe). Let µ, σ be two measurable real-valued functions
such that

• there exists a function ρ : R+ 7→ R+ such that∫
0+

du
ρ2(u) = ∞

and for all x, y ∈ R, |σ(x) − σ(y)| ≤ ρ(|x− y|),

• b is Lipschitz continuous.

Then, path-wise uniqueness holds for (2.1).

For other versions of this result see [80, Chapter IX, Section §3]. In [10] an example
of an SDE where no path-wise uniqueness holds for its solution.

Definition 2.1.4 (uniqueness in law, Definition 1.3-(2) of [80], Chapter IX, §1). There
is uniqueness in law for the SDE (2.2) if for any two of its solutions (X,W ), (X ′,W ′)
(not necessarily defined on the same probability space) with Law(X0) = Law(X ′

0), the
processes X and X ′ have the same law.

Proposition 2.1.5 (Proposition 1.4 of [80], Chapter IX, §1). There is uniqueness in
law for an SDE if for every x ∈ R and any two of its solutions (X,W ), (X ′,W ′) such
that X0 = X ′

0 = x, then X and X ′ have the same law.

To define the notion of strong solution, we introduce the natural filtration of a
process. The natural filtration of a process X is the smallest filtration (FX

t )t≥0 to
which X is adapted.

Definition 2.1.6 (strong solution, Definition 1.5 of [80], Chapter IX, §1). A solution
of an SDE is called strong solution iff X is adapted to (FW

t )t≥0, where (FW
t )t≥0 is the

natural filtration of W . A solution of an SDE that is not strong will is called weak
solution.

Proposition 2.1.7 (Corollary 3.23 of [62], Chapter 5). Let (X,W ) be a weak solution
of (2.1) defined on a probability space (Ω, (F t)t≥0,Px). Then, if path-wise uniqueness
hold for (2.1). X is a strong solution of (2.1).

The notion of strong solution be defined alternatively (see [80, Chapter IX; §1]) as:

Proposition 2.1.8 (Yamada-Watanabe). Let (X,W ) be a solution of (2.2). Then, it is
a strong solution of (2.2) iff there exists a measurable function F : C(R+,R) → C(R+,R)
such that

X = F (W ).
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The difference between these two notions of strong and weak solution is subtle. A
strong solution is uniquely determined by the driving Brownian motion W . This is not
the case for a weak solution.

For necessary conditions for the existence, path-wise uniqueness, uniqueness in law
of solutions and the notions of a strong/weak solution along with relevant examples
see [21] and [80, Chapter IX; §2, §3].
Proposition 2.1.9. A process that solves (2.3) is a diffusion process. We call such
processes Itô diffusions.

Proof. Let X be a process that solves (2.3). The path-wise continuity of X is direct
from the expression (2.3). For any f ∈ Cb, t > 0 and stopping time τ ,

Ex

(
f(Xτ+t)| F τ

)
= Ex

(
f
(
X0 +

∫ τ

0
µ(Xs) ds+

∫ τ

0
σ(Xs) dWs

)∣∣∣∣F τ

)
= EXτ

(
f
(
Xτ +

∫ τ+t

τ
µ(Xs) ds+

∫ τ+t

τ
σ(Xs) dWs

))
. (2.4)

Also,

EXτ

(
f(Xt ◦ θτ )

)
= EXτ

(
f
(
X0 ◦ θτ +

∫ t

0
µ(Xs ◦ θτ ) ds+

∫ t

0
σ(Xs ◦ θτ ) d(Ws ◦ θτ )

))
= EXτ

(
f
(
Xτ +

∫ τ+t

τ
µ(Xs) ds+

∫ τ+t

τ
σ(Xs) dWs

))
. (2.5)

From (2.4) and (2.5), the process X satisfies the strong Markov property (1.1).

We now prove the analytical characterization of Itô diffusions.
Proposition 2.1.10. Let X be the diffusion process that solves (2.3) and L its in-
finitesimal generator. Then,

L f = µf ′ + 1
2σ

2f ′′ (2.6)

for every f ∈ dom(L), where dom(L) =
{
f ∈ Cb(I) : L f ∈ Cb(I)

}
. Moreover, if

µ, σ ∈ C(I), dom(L) = C2
b (I).

Proof. From Itô’s lemma, for any f ∈ C2(I),

f(Xt) = f(X0) +
∫ t

0
f ′(Xs) dXs + 1

2

∫ t

0
f ′′(Xs) d⟨X⟩s

= f(X0) +
∫ t

0

(
f ′(Xs)µ(Xs) + 1

2f
′′(Xs)σ2(Xs)

)
ds

+ 1
2

∫ t

0
f ′(Xs)σ(Xs) dWs.

From (1.16),

L f(x) = lim
t→0

1
t

(
Ex

[
f(Xt)

]
− f(x)

)
= lim

t→0

1
t

Ex

[ ∫ t

0

(
f ′(Xs)µ(Xs) + 1

2f
′′(Xs)σ2(Xs)

)
ds
]

= Ex

[
lim
t→0

1
t

∫ t

0

(
f ′(Xs)µ(Xs) + 1

2f
′′(Xs)σ2(Xs)

)
ds
]
. (2.7)
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From the intermediate value theorem, Px-almost surely

1
t

∫ t

0

(
f ′(Xs)µ(Xs) + 1

2f
′′(Xs)σ2(Xs)

)
ds −→ f ′(x)µ(x) + 1

2f
′′(x)σ2(x), (2.8)

as t −→ 0. From (2.7) and (2.8), (2.6) is proven.

Proposition 2.1.11. Let (µ, σ) be such that

dXt = µ(Xt) dt+ σ(Xt) dWt

has a unique weak solution X with state-space I an interval of R and scale function &
speed measure (s,m). Then, for every x ∈ I,

s(x) =
∫ x

a
e

−
∫ y

a

2µ(u)
σ2(u)

du dy and m(dx) = 1
s′(x)

2
σ2(x) dx. (2.9)

Proof. From (1.43) and (2.6), s solves

s′′ + 2 µ
σ2 s

′ = 0

and consequently
s′(x) = c0e

−
∫ x

a

2µ(u)
σ2(u)

du
, (2.10)

where c0 ∈ R. From (1.23) and (2.6), for any f ∈ dom(L),

Dm Ds f = µf ′ + 1
2σ

2f ′′. (2.11)

From (1.26) and (2.10),

Ds f(x) = f ′(x)/s′(x) = c−1
0 e

∫ x

a

2µ(u)
σ2(u)

du
f ′(x)

Let m(dx) ≪ dx and m′ be the Radon-Nikodym derivative m′ = dm
dx

. From (1.26),
Dm = m′ Dx. Thus,

Dm Ds f(x) = m′(x) Dx
f ′(x)
s′(x) = m′(x)

(
2µ(x)
σ2(x)

f ′(x)
s′(x) + f ′′(x)

s′(x)

)
(2.12)

From (2.11) and (2.12),
m′(x) = 2

σ2(x)
1

s′(x)
which proves (2.9).

2.1.2 Boundary classification

The paths of a diffusion process may exhibit various features in the vicinity of a
boundary point of its state-space. We refer to these features as boundary behavior of a
diffusion. It turns out the boundary behavior of a diffusion can be classified as follows
(see Section 5.11 of Itô’s book [52]):
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Figure 2.1: Simulated trajectory of a reflected Brownian motion using Algorithm 1.

Proposition 2.1.12 (see [63]). Let X be a diffusion process with state-space I, an
interval of R. A boundary point of I can either be of the following types:

• Regular boundary: the process can both enter and leave from a regular boundary
(reflection,sticky reflection, absorption),

• Exit boundary: the process can reach the boundary from an interior point but
cannot reach an interior point from the boundary (explosion, absorption),

• Entrance boundary: the process can reach an interior point from the boundary
but cannot reach the boundary from an interior point (repulsion),

• Natural boundary: the process cannot reach the boundary from an interior point
and an interior point cannot be reached from the boundary.

One can check the boundary behavior of a diffusion process by looking at the
behavior of its speed measure in the vicinity of the boundary. This can be done as
follows:

Proposition 2.1.13 (see Section 5.11 of [52]). Let X be a diffusion process defined
through (s,m) with state-space I, an interval of R+, and 0 be a boundary point of I.
For c > 0, let

I =
∫ ∫

0<y<x<c
m(dx) dy, II =

∫ ∫
0<y<x<c

m(dy) dx.

Then,
• 0 is a regular boundary iff I < ∞ and II < ∞,
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• 0 is an exit boundary iff I < ∞ and II = ∞,
• 0 is an entrance boundary iff I = ∞ and II < ∞.
• 0 is a natural boundary iff I = ∞ and II = ∞.

2.1.3 Singular diffusions

From (2.9), we observe that the scale function and speed measure of any Itô diffusion
satisfy

s ∈ C1(I) and m(dx) ≪ dx. (2.13)
These processes are called absolutely continuous. Diffusion processes that do not
satisfy (2.13) are called singular diffusions. Diffusion processes that do not satisfy (2.13)
at a single point ζ ∈ I of their state-space are said to have a point-wise singularity.
These singularities correspond to specific path-wise features and can be categorized as
follows.

Definition 2.1.14. Let X be a diffusion process with state-space I an interval of R
and scale function s. The process X is said to have a skew point at ζ ∈ Int(I) iff
s′(ζ−) ̸= s′(ζ+), where s′ is the right-derivative of s.

Definition 2.1.15. A diffusion X with state-space I and speed measure m is said to
have a sticky point at ζ ∈ I iff m({ζ}) > 0. The quantity m({ζ}) is called stickiness of
X at ζ.

Proposition 2.1.16. Let X be a diffusion process with state-space I such that 0 ∈ Int(I).
Then, X has a skew point at 0 iff

lim
h→0

(
P0(τ−h < τh) − P0(τh < τ−h)

)
̸= 0. (2.14)

Proof. From (1.18),

P0(τ−h < τh) = s(h) − s(0)
s(h) − s(−h) −→ s′(0+)

s′(0+) + s′(0−)

and
P0(τ−h < τh) = s(0) − s(−h)

s(h) − s(−h) −→ s′(0−)
s′(0+) + s′(0−)

as h −→ 0. Thus, (2.14) holds iff s′(0−) ̸= s′(0+), which concludes the proof.

Proposition 2.1.17. Let X be a diffusion process with state-space I such that 0 ∈ I.
Then, X has a sticky point at 0 iff it spends a positive amount of time at 0 on the event
{τ0 < ∞}.

Proof. Let s be the scale function and m the speed measure of X. Let also X be
defined on a family of probability spaces (Ω, (F t)t≥0,Px)x∈I such that for every x ∈ I,
P(X0 = x) = 1. From Proposition 1.2.22 and Theorem 1.4.4, there exists a Brownian
motion B defined on an extension of the probability space such that s(X) = Bγ(t),
where γ is the right-inverse of

A(t) =
∫
I
Ly

t (B)m′(dy)
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Figure 2.2: Simulated trajectory of a sticky Brownian motion of parameter ρ = 1 using
Algorithm 1.

and m′(dx) = m(ds−1(x)). Let ρ = m({0}) > 0 be the stickiness at 0 of X, m◦ the
locally finite strictly positive measure defined by m◦ = m − m({0})δ0 and γ◦ the
right-inverse of

A◦(t) =
∫
I
Ly

t (B)m′
◦(dy).

From Proposition 1.2.22 and Corollary 1.4.5, the process X◦ = (s−1(Bγ◦(t)))t≥0 is a
diffusion process with scale function s and speed measure m◦. Also,

A(t) = A◦(t) + ρ

2L
0
t (B)

and
A(t) = Aρ ◦ A◦(t),

where Aρ(t) = t + ρ
2L

0
γ◦(t)(B) = t + ρ

2L
0
t (X◦). Thus, X = (X◦

γρ(t))t≥0, where γρ is the
right-inverse of Aρ, and from Theorem A.2.2 and Lemma A.2.4,∫ t

0
1Xs=0 ds =

∫ t

0
1X◦

γρ(s)=0 ds =
∫ γρ(t)

0
1X◦

γρ(s)=0 dAρ(s)

=
∫ γρ(t)

0
1X◦

γρ(s)=0 ds+ ρ

2

∫ γρ(t)

0
1X◦

γρ(s)=0 dL0
s(X◦) = ρ

2L
0
γρ(t)(X◦) = L0

t (X)

which proves the result.

We now give several examples of singular diffusions. When we want to introduce a
new path-wise feature, it is common practice to first study the most elementary object
having it. Among diffusion processes, the most elementary is the standard Brownian
motion. We define the skew and sticky Brownian motions, which are respectively the
most elementary skew and sticky diffusion processes.
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Example 2.1.18 (Skew Brownian motion, see [47]). The skew Brownian motion of
parameter β ∈ (0, 1) is the diffusion process defined through s and m, where

s(x) =
x/β x > 0
x/(1 − β) x ≤ 0

, m(dx) =
2βx x > 0

2(1 − β)x x ≤ 0
,

for every x ∈ R. We observe that

s′(0+) − s′(0−) = (1 − 2β)/β(1 − β).

Thus s ∈ C1(R) iff β = 1/2. The cases β = 1/2 and β ∈ {0, 1} correspond to the
standard and reflected Brownian motion respectively.

Example 2.1.19 (Sticky Brownian motion, see [33, 53]). The sticky Brownian motion
is the diffusion process defined through s and m, where

s(x) = x, m(dx) = 2 dx+ ρδ0(dx),

for every x ∈ R. We observe that m({0}) = ρ > 0, which is the stickiness of the process
at 0. Section 2.2 is dedicated to this process. The cases ρ = 0 and ρ = ∞ correspond
to the standard Brownian motion and the Brownian motion absorbed at 0 (see Section
2.2.4).

The following example illustrates that it is possible to have a point that is both
sticky and skew for a diffusion process.

Example 2.1.20 (Sticky-skew Brownian motion, see [88]). The sticky-skew Brownian
motion is the diffusion process defined through s and m, where

s(x) =
x/β x > 0
x/(1 − β) x ≤ 0

, m(dx) = ρδ0(dx) +
2βx x > 0

2(1 − β)x x ≤ 0
,

for every x ∈ R. We observe that the process is both sticky and skew at 0.

A process X such that there exists a countable subset N of I such that

1I \ Nm(dx) ≪ 1I \ N dx and s ∈ C1(I \ N ) ∩ C1(I)

is called a diffusion with point-wise singularities. Then, each x ∈ Int(I) ∩ N is either a
skew and/or a sticky point of X.

The following example illustrates that there are processes that belong to none of
the aforementioned categories:

Example 2.1.21 (Brownian motion slowed on the Cantor set, see [7]). Let,

• C1/3 be the Cantor set (see [84, p. 8, 38])

C1/3 =
{ ∞∑

n=1

xn

3n
: xi ∈ {0, 2},∀i ∈ N

}
,
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• fC1/3 the Cantor-Lebesgue function (see [84]-p.38,126), i.e. a continuous increasing
function, with zero-derivative on R \C1/3 such that

fC1/3(0) = 0, fC1/3(1) = 1,

• mC1/3 the measure defined by extension on B(R) such that for any x < y,

mC1/3

(
(x, y)

)
= fC1/3(y) − fC1/3(x),

• X the diffusion process on natural scale with speed measure

m(dx) = 2 dx+mC1/3(dx).

We observe that X is a singular diffusion process with no point-wise singularities.

2.2 The sticky Brownian motion

2.2.1 Definition

The sticky Brownian motion is the diffusion process that behaves like a standard
Brownian motion away from 0 which is a sticky point for the process. We can define it
through s and m as follows.

Definition 2.2.1. The sticky Brownian motion is the diffusion process with state-space
R defined through s and m, where, for every x ∈ R:

s(x) = x and m(dx) = 2 dx+ ρδ0(dx). (2.15)

Proposition 2.2.2. The infinitesimal generator of the sticky Brownian motion of
stickiness ρ > 0 is:

L =1
2

d2

dx2 ,

dom(L) =
{
f ∈ Cb(R) : f ∈ C2(R∗);

1
ρ

(f(0+) − f(0−)) = 1
2f

′′(0−) = 1
2f

′′(0+)
}
.

Proof. It is a particular case of Proposition 3.1.3 of Chapter 3.

Proposition 2.2.3. Let X be a sticky Brownian motion of stickiness ρ > 0. Then, X
solves

dXt = 1Xt ̸=0 dBt,

1Xt=0 dt = ρ

2 dL0
t (X),

where B is a standard Brownian motion.

Proof. It is a particular case of Proposition 3.2.3 of Chapter 3.
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Proposition 2.2.4. Let X be a sticky Brownian motion of stickiness ρ > 0 defined
on a probability space (Ω, (F t)t≥0,Px) such that Px(X0 = x) = 1. Then, there exists a
Brownian motion W such that Px(W0 = x) = 1 and for every t ≥ 0,

Xt = Wγ(t) and γ−1(t) = t+ ρ

2L
0
t (X), (2.16)

where γ−1 is the right-inverse of γ. Since almost surely γ−1 is strictly increasing and
continuous, so is γ and thus γ−1 is the proper inverse of γ.

Proof. It is a particular case of Theorem 1.4.4.

2.2.2 Properties

Proposition 2.2.5. Let X be a sticky Brownian motion of stickiness ρ > 0 and
τ0 = inf{s > 0 : Xs = 0} the hitting time of 0 by X. Then, on the event {τ0 < t}, the
random set Ot = {s < t : Xs = 0} is almost surely Cantor-like, i.e. totally disconnected
and of positive Lebesgue measure.

Proof. Let t1, t2 ∈ Ot such that t1 < t2 and γ the random time-change defined in (2.16).
From Corollary 2.2.4, γ(t1) < γ(t2) and Wγ(t1) = Wγ(t2) = 0.

The Brownian motion is almost surely not constant on any interval, there exists a
γ(t1) < ζ < γ(t2) such that:

Wζ = 0 and Xγ−1(ζ) = 0,

where t1 < γ−1(ζ) < t2. Thus Ot is totally disconnected. The fact that the process
spends a positive amount is a particular case of Proposition 2.1.17.

Proposition 2.2.6. Let
{
(Ω,F , {F t}t≥0,Pρ

x);x ∈ R, ρ ≥ 0
}

be a family of filtered
probability spaces and Xρ = (Xρ

t )t≥0 a process defined on (Ω,F , {F t}t≥0) such that
under Pρ

x it is the sticky Brownian motion of stickiness parameter ρ and Pρ
x(Xρ

0 = x).
Then,

LawPρ
x

(
Xρ

ct, L
0
ct(Xρ); t ≥ 0

)
= LawPρ/

√
c

x

(√
cX

ρ/
√

c
t ,

√
cL0

t (Xρ/
√

c); t ≥ 0
)
, (2.17)

where L0
t (Xρ) and L0

t (Xρ/
√

c) are the local times of Xρ and Xρ/
√

c respectively.

We prove this result by expressing the sticky Brownian motion as a time-changed
Brownian motion. A simpler proof is given in the Appendix that makes use of the joint
density of the process with its local time (see Lemma A.3.1).

Proof of Proposition 2.2.6. Let Xρ be a process defined on Pρ
x = (Ω,F , {F t}t≥0,Pρ

x)
such that under Pρ

x it is a sticky Brownian motion of stickiness ρ. From Theorem 1.4.4,
there exists a Brownian motion B defined on an extension of Pρ

x such that for every
t ≥ 0,

Xρ
t = Bγ(t)
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where γ(t) is the right inverse of A(t) = 1
2
∫
R L

y
t (B)m( dy). Moreover from (A.4),

Pρ
x-almost surely, for every t ≥ 0,

L0
t (Xρ) = L0

γ(t)(B). (2.18)

From Proposition 1.10 of [80, Chapter I], for every c > 0, the process B′ defined as,

B′
t = Bct/

√
c, (2.19)

is a standard Brownian motion. Moreover, Pρ
x-almost surely,

L0
ct(B) = Px-lim

ϵ→0

1
2ϵ

∫ ct

0
1|Bs|<ϵ ds = Px-lim

ϵ→0

c

2ϵ

∫ t

0
1|Bcs|<ϵ ds

= Px-lim
ϵ→0

c

2ϵ

∫ t

0
1|B′

s|<ϵ/
√

c ds =
√
cL0

t (B′). (2.20)

Let Aρ(t) = t+ ρ
2L

0
t (B) and A′

ρ(t) = t+ ρ
2L

0
t (B′) with γρ(t) and γ′

ρ(t) be their respective
right inverses. From (2.20), Pρ

x-almost surely,

Aρ(ct) = ct+ ρ

2L
y
ct(B) = ct+

√
c
ρ

2L
y
t (B′) = c

(
t+ ρ

2
√
c
Ly

t (B′)
)

= cA′
ρ/

√
c(t),

γρ(ct) = inf
{
s > 0 : Aρ(s) > ct

}
= inf

{
s > 0 : A′

ρ/
√

c(s/c) > t
}

= cγ′
ρ/

√
c(t). (2.21)

From (2.19) and (2.21), Pρ
x-almost surely,

Bγρ(ct) =
√
cB′

γ′
ρ/

√
c
(t).

Let Xρ/
√

c be the process such that

X
ρ/

√
c

t = B′
γ′

ρ/
√

c
(t), (2.22)

which is a martingale from the martingale stopping theorem. As such its local time
L0(Xρ/

√
c) is a well defined object. From (A.4), Px-almost surely, for every t ≥ 0,

L0
t (Xρ/

√
c) = L0

γ′
ρ/

√
c
(t)(B′). (2.23)

We observe that for a measure mρ( dy) = 2 dy + ρδ0( dy),

Aρ(t) =
∫
R
Ly

t (B)mρ( dy) and A′
ρ(t) =

∫
R
Ly

t (B′)mρ( dy).

Thus, from (2.22) and Corollary 1.4.5,
√
cX

ρ/
√

c
t = Xρ

ct is a sticky Brownian motion of
stickiness parameter ρ/

√
c and whose local time process L0(Xρ/

√
c), from (2.18), (2.20)

and (2.23), satisfies Pρ
x-almost-surely

L0
t (Xρ/

√
c) = L0

t (Xρ)/
√
c,

for every t ≥ 0. Thus, setting Pρ/
√

c
x = Pρ

x
√

c, (A.5) is proven.

Corollary 2.2.7. Let Xρ = (Xρ
t )t≥0 be the sticky Brownian motion of stickiness

parameter ρ > 0 and (P ρ
t )t≥0 its semi-group. Then, for every measurable function

h : R 7→ R,
P ρ

√
n

t h(x
√
n) = Ex

(
h(

√
nXρ

t
n

)
)
. (2.24)
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2.2.3 Probability transition kernel computation

Proposition 2.2.8. The probability transition kernel of the sticky Brownian motion of
stickiness ρ with respect to m is the function p : R+ ×R2 7→ R+ defined for every t > 0
and x, y ∈ R by

pρ(t, x, y) = u1(t, x, y) − u2(t, x, y) + vρ(t, x, y), (2.25)

where 
u1(t, x, y) = 1

2
√

2πt
e−(x−y)2/2t,

u2(t, x, y) = 1
2
√

2πt
e−(|x|+|y|)2/2t,

vρ(t, x, y) = 1
ρ
e4(|x|+|y|)/ρ+8t/ρ2 erfc

(
|x|+|y|√

2t
+ 2

√
2t

ρ

)
.

(2.26)

Lemma 2.2.9. The resolvent kernel r(λ, x, y) of the sticky Brownian motion solves(
λ− Lx

)
r(λ, x, y) = 0, (2.27)

r(λ, 0−, y) = r(λ, 0+, y), (2.28)
r(λ, y−, y) = r(λ, y+, y), (2.29)

1
ρ

(
∂xr(λ, 0+, y) − ∂xr(λ, 0−, y)

)
= 1

2∂xxr(λ, 0, y), (2.30)

where Lx = 1
2 D2

x and ∂xu(x, y) = limh→0
1
h

(
u(x + h, y) − u(x, y)

)
. Moreover, for all

x ∈ R,

lim
|y|→∞

r(λ, x, y) = 0. (2.31)

Proof. From Lemma 1.3.5, the resolvent kernel solves (2.27)-(2.30). From (1.30),∫
I
p(t, x, y)

(
2 dy + ρδ0(dy)

)
= 1.

Thus, ∫
I
r(λ, x, y)

(
2 dy + ρδ0(dy)

)
=
∫ ∞

0
e−λt dt = 1

λ
,

which proves (2.31).

Lemma 2.2.10 (Theorem 6.1 of [35]). For each λ > 0 the differential equation

λu(λ, x) − Lx u(λ, x) = 0 (2.32)

has two convex solutions, one increasing ψλ from 0 to ∞, one decreasing ϕλ from ∞ to
0 such that ψλ(0) = ϕλ(0) = 1. The pair (ϕλ, ψλ) is called minimal pair or minimal
solutions.

Example 2.2.11. If L = 1
2 D2

x, then, for any λ > 0, the minimal solutions of (2.32) are

ϕλ(x) = e−
√

2λx, ψλ(x) = e
√

λx.
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Lemma 2.2.12. The Green function g(λ, x, y) of Problem (2.27)-(2.31) solves (2.27)-
(2.31) along with

∂xg(λ, y−, y) − ∂xg(λ, y+, y) = 2 (2.33)
and is

g(λ, x, y) = Aλe
−

√
2λ(|y|+|x|) +Bλe

−
√

2λ|y−x|, (2.34)
where

Aλ = −
(

1 + 2
√

2
ρ
√
λ

)−1 1√
2λ
, Bλ = 1√

2λ
.

Proof. Let (ϕλ, ψλ) be the minimal pair solving (2.32). Let also g(λ, x, y) be a function
of the form

g(λ, x, y) =
[
ϕλ(x)
ψλ(x)

] [
a b
c d

] [
ϕλ(y)
ψλ(y)

]t

,

where At is the transpose of the matrix A, supposed C2 on every of the sets

D1 = {0 < x < y}, D3 = {y < x < 0}, D5 = {x < 0 < y},
D2 = {0 < y < x}, D4 = {x < y < 0}, D6 = {y < 0 < x},

delimited by {x = y}, {x = 0} and {y = 0}, where R2 = ⋃6
i=1 Di. Thus, there exists

constants {(ai, bi, ci, di)}i such that

g(λ, x, y) =
[
ϕλ(x)
ψλ(x)

] [
ai bi

ci di

] [
ϕλ(y)
ψλ(y)

]t

for any (x, y) ∈ Di and i ∈ {1, 2, . . . , 6}. From (2.31),

c1 = d1 = 0,
b2 = d2 = 0,

a3 = b3 = 0,
a4 = c4 = 0,
a5 = c5 = d5 = 0,
a6 = b6 = d6 = 0

and

g(λ, x, y) =



ϕλ(y)
(
a1ϕλ(x) + b1ψλ(x)

)
, 0 < x < y,

ϕλ(x)
(
a2ϕλ(y) + c2ψλ(y)

)
, 0 < y < x,

ψλ(y)
(
c3ϕλ(x) + d3ψλ(x)

)
, y < x < 0,

ψλ(x)
(
b4ϕλ(y) + d4ψλ(y)

)
, x < y < 0,

b5ϕλ(y)ψλ(x), x < 0 < y,

c6ϕλ(x)ψλ(y), y < 0 < x,

(2.35)

∂xg(λ, x, y) =
√

2λ



ϕλ(y)
(

− a1ϕλ(x) + b1ψλ(x)
)
, 0 < x < y,

−ϕλ(x)
(
a2ϕλ(y) + c2ψλ(y)

)
, 0 < y < x,

ψλ(y)
(

− c3ϕλ(x) + d3ψλ(x)
)
, y < x < 0,

ψλ(x)
(
b4ϕλ(y) + d4ψλ(y)

)
, x < y < 0,

b5ϕλ(y)ψλ(x), x < 0 < y,

−c6ϕλ(x)ψλ(y), y < 0 < x,
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∂xxg(λ, x, y)g(λ, x, y) = 2λg(λ, x, y).

From (2.28),
b5 = a1 + b1, c6 = c3 + d3. (2.36)

From (2.29),
a1 = a2, b1 = c2,

c3 = b4, d3 = d4.
(2.37)

From (2.33),
b1 + c2 =

√
2/λ, b4 + c3 =

√
2/λ. (2.38)

From (2.37) and (2.38),
b1 = c2 = c3 = b4 = 1/

√
2λ. (2.39)

From (2.30),
b1 − a1 − b5 = ρ

√
λ/2b5, c3 − c6 − d3 = ρ

√
λ/2c6, (2.40)

From, (2.37), (2.39) and (2.40),

b1 = −a1

(
1 + 2

√
2

ρ
√
λ

)

and
a1 = a2 = d3 = d4 = −

(
1 + 2

√
2

ρ
√
λ

)−1 1√
2λ
. (2.41)

From (2.35), (2.36), (2.39) and (2.41),

g(λ, x, y) =
Aλe

−
√

2λ(|y|+|x|) +Bλe
−

√
2λ|y−x|, xy ≥ 0,(

Aλ +Bλ

)
e−

√
2λ(|x|+|y|), xy < 0,

Observing that |x− y| = |x| + |y| for xy ≤ 0 yields (2.34).

Lemma 2.2.13 (see [1], p.1026). Let L̂λ be the inverse Laplace transform with respect
to the variable λ. Then, the following Laplace inversion formulas hold,

L̂λ

(
e−k

√
λ

√
λ

)
= e−k2/4t

√
πt

,

L̂λ

(
e−k

√
λ

µ+
√
λ

)
= e−k2/4t

√
πt

− µeµk+µ2t erfc
(
µ

√
t+ k

2
√
t

)
.

Proof of Theorem 2.26. From Lemma 2.2.9, the resolvent kernel [(λ, x, y) 7→ r(λ, x, y)]
of the sticky Brownian motion is (2.34). From (1.34), if [(t, x, y) 7→ p(t, x, y)] and
[(λ, x, y) 7→ r(λ, x, y)] are respectively the probability transition and resolvent kernels
of a diffusion, then,

p(t, x, y) = L̂λr(λ, x, y),

where L̂λ is the inverse Laplace transform. From Lemma 2.2.13,

L̂λ

( 1√
2λ
e−

√
2λ(|y−x|)

)
= 1√

2πt
e−|x−y|2/2
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and

L̂λ

(
− 1

4/ρ+
√

2λ
e−

√
2λ(|y|+|x|)

)
= − 1√

2
L̂λ

( 1
4/ρ+

√
λ
e−

√
2λ(|y|+|x|)

)

= − 1√
2πt

e−(|x|+|y|)2/2t − 1√
2

4
ρ
e4(|y|+|x|)/ρ+8t/ρ2 erfc

( |y| + |x|√
2t

+ 4
√
t

ρ

)
.

Thus, if pρ(t, x, y) and g(λ, x, y) are the functions defined in (4.10) and (2.34) respec-
tively,

L̂λ

(
g(λ, x, y)

)
= p(t, x, y),

which proves (4.10).

Corollary 2.2.14. The probability transition kernel of the Brownian motion sticky
at ℓ ∈ R of stickiness ρ with respect to m(dx) = 2 dx + ρδℓ(dx) is the function
p : R+ ×R2 7→ R+ defined for every t > 0 and x, y ∈ R by

pℓ
ρ(t, x, y) = u1(t, x, y) − u2(t, x− ℓ, y − ℓ) + vρ(t, x− ℓ, y − ℓ),

where 
u1(t, x, y) = 1

2
√

2πt
e−(x−y)2/2t,

u2(t, x, y) = 1
2
√

2πt
e−(|x|+|y|)2/2t,

vρ(t, x, y) = 1
ρ
e4(|x|+|y|)/ρ+8t/ρ2 erfc

(
|x|+|y|√

2t
+ 2

√
2t

ρ

)
.

2.2.4 Asymptotics

Proposition 2.2.15. Let Xρ be the sticky Brownian motion of parameter ρ > 0, B
the standard Brownian motion and B∗ the Brownian motion absorbed at 0. Then,

Law(Xρ) −→ Law(B) as ρ −→ 0,
Law(Xρ) −→ Law(B∗) as ρ −→ ∞.

Proof. From (4.10), the probability transition kernel of the sticky Brownian motion
Xρ is defined for every (t, x, y) ∈ R+ ×R2 by

pρ(t, x, y) = u1(t, x, y) − u2(t, x, y) + vρ(t, x, y), (2.42)

where u1, u2 and vρ are defined in (2.26). We observe that

lim
ρ→∞

vρ(t, x, y) = lim
ρ→∞

1
ρ
e4(|x|+|y|)/ρ+8t/ρ2 erfc

( |x| + |y|√
2t

+ 2
√

2t
ρ

)
= 0. (2.43)
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Also, from L’Hôpital’s rule,

lim
ρ→0

vρ(t, x, y) = lim
ρ→0

1
ρ
e4(|x|+|y|)/ρ+8t/ρ2 erfc

( |x| + |y|√
2t

+ 2
√

2t
ρ

)

= lim
ρ→0

1
ρ

erfc
(

|x|+|y|√
2t

+ 2
√

2t
ρ

)
e−4(|x|+|y|)/ρ−8t/ρ2 = lim

ρ→0

1
ρ

2√
π

2
√

2t
ρ2 exp

[
−
(

|x|+|y|√
2t

+ 2
√

2t
ρ

)2]
(

4(|x| + |y|)/ρ2 + 16t/ρ3
)
e−4(|x|+|y|)/ρ−8t/ρ2

= lim
ρ→0

1√
π

4
√

2t(
4ρ(|x| + |y|) + 16t

) exp
(

− (|x| + |y|)2

2t

)

= 1
2
√

2πt
exp

(
− (|x| + |y|)2

2t

)
. (2.44)

From (2.42), (2.43) and (2.44),

lim
ρ→∞

pρ(t, x, y) = u1(t, x, y) − u2(t, x, y),

lim
ρ→0

pρ(t, x, y) = u1(t, x, y),

where (see [14, p.121]) u1(t, x, y) and u1(t, x, y) − u2(t, x, y) are respectively the proba-
bility transition kernels of the standard and absorbed at 0 Brownian motions. From
Corollary 1.2.15 and Proposition 1.3.1, the result is proven.
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Chapter 3

Sticky Itô diffusions

The content of this chapter is a part of the article [5].
Chapter Outline: In Section 3.1, we define the notions of sticky stochastic

differential equation and sticky Itô diffusion through s and m. In Section 3.2, we prove
that any sticky Itô diffusion solves a system of the form (3.8)-(3.9) we call path-wise
representation. We also prove that this path-wise representation characterizes the law
of these processes. In Section 3.3, we prove path-wise results on sticky SDEs, namely
the sticky versions of Itô’s lemma and Girsanov’s theorem. These results are used in
Chapter 4 to prove the local time approximation for sticky Itô diffusions.

For an alternative proof of these results, see [83]. Also, path-wise characterizations
are proven in [30] and [76] for the sticky Brownian motion and Ornstein-Uhlenbeck
process with sticky reflection respectively.

3.1 Definition

We call sticky Itô diffusions any process that have have a point of stickiness and a
dynamic described by a classical stochastic differential equation away from that point.

In Section 1.2.3, we introduced the notions of scale function and speed measure
and proved they characterize the law of a diffusion. This characterization has the
advantage to be local in nature. As such, this characterization is very convenient for
sticky diffusions and especially sticky Itô diffusion.

From (2.9) and Definition 2.1.15, we define this class of processes as follows.

Definition 3.1.1. A time-homogeneous sticky SDE solution or sticky Itô diffusion is a
diffusion process of state-space I, an interval of R, defined through s and m, where s
and m have the form

s(x) =
∫ x

a
e

−
∫ y

a

2µ(u)
σ2(u)

du dy, m(dx) = 1
s′(x)

2
σ2(x) dx+ ρδ0(dx), (3.1)

for every x ∈ I with µ and σ being two real-valued measurable functions. For sake of
convenience and in order to keep explicit the dependence on (µ, σ, ρ), we will denote
with (µ, σ, ρ)-sticky SDE solution the diffusion process described by (3.1).
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We admit the following conditions on µ and σ which prevents explosive, skew and
oscillating phenomena. Moreover, (3.3) allows the use of the plain Girsanov theorem.
Condition 3.1.2. Let B a standard Brownian motion defined on a probability space
(Ω, (F t)t≥0,Px). We consider the following SDE:

dXt = µ(Xt) dt+ σ(Xt) dBt, (3.2)
where

• (µ, σ) are taken so that (3.2) has a unique non-explosive strong solution,

• if X be the solution of (3.2) such that P(X0 = x) = 1, for θ = (σ′(Xt) − µ(Xt)
σ(Xt))t≥0

and every x ∈ I,

Ex

[
exp

( ∫ t

0
θs dBs − 1

2

∫ t

0
θ2

s ds
)]

= 1, (3.3)

• σ ∈ C1(I).
Proposition 3.1.3. The infinitesimal generator of the (µ, σ, ρ)-sticky SDE is

L f = µf ′ + 1
2σ

2f ′′, (3.4)

for every f ∈ dom(L), where

dom(L) =
{
f ∈ Cb(I) : f ∈ C2

b (I \{0});

L f(0−) = L f(0+) = 1
ρ

(
f ′(0+) − f ′(0−)

)}
.

(3.5)

Proof. From (1.23), for any f ∈ dom(L)
Dm Ds f = L f.

From (5.42), for any x ∈ Int(I),

Ds f(x) = lim
h→0

f(x+ h) − f(x)
s(x+ h) − s(x) = (f ′/s′)(x).

For x ̸= 0,

Dm Ds f(x) = d
m(dx)(f ′/s′)(x)

= 1
2s

′(x)σ2(x)
(
f ′′(x)/s′(x) − s′′(x)f ′(x)/(s′(x))2

)
= µ(x)f ′(x) + 1

2σ
2(x)f ′′(x). (3.6)

For x = 0,

Dm Ds f(0) = lim
h→0

Ds f(h) − Ds f(0)
m
(
(0, h]

)
= lim

h→0

Ds f(h) − Ds f(0)∫ h
0 2/(s′(ζ)σ2(ζ)) dζ + ρ

= 1
ρ

(
Ds f(0+) − Ds f(0−)

)
.

= 1
ρ

1
s′(0)

(
f ′(0+) − f ′(0−)

)
= 1
ρ

(
f ′(0+) − f ′(0−)

)
, (3.7)

where the last equality results from the definition of the scale function (see Proposi-
tion 1.2.16). From (1.12), (3.6) and (3.7), we have proven (3.4) and (3.5).
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3.2 Path-wise characterization

Theorem 3.2.1. We consider the following system

dXt = µ(Xt)1Xt ̸=0 dt+ σ(Xt)1Xt ̸=0 dBt, (3.8)

1Xt=0 dt = ρ

2 dL0
t (X), (3.9)

where B is a standard Brownian motion, L0(X) is the local time process of X at 0 and
(µ, σ) are a pair of real-valued functions over I that satisfy Condition (3.1.2). Then,
the system (3.8)-(3.9) has a jointly unique weak solution.

Proof. Let (Ω, (F)t≥0,Px) be a probability space, B1 a Brownian motion defined on
(Ω, (F)t≥0,Px) and Y be the strong solution of

dYt = µ(Yt) dt+ σ(Yt) dB1
t , (3.10)

such that
Px(Y0 = 0) = 1. (3.11)

Let A and its right-inverse γ be the continuous and strictly increasing time-transforms
defined for every t ≥ 0 by

A(t) = t+ ρ

2L
0
t (Y ), γ(t) = inf

{
s > 0 : A(s) > t

}
.

Let X and B be the processes defined for every t ≥ 0 by

Xt = Yγ(t), (3.12)

Bt = B1
γ(t) +

∫ t

0
1Xs=0 dB0

s , (3.13)

where B0 is a Brownian motion independent of B1. From (A.3), for every t ≥ 0,

B1
γ(t) =

∫ γ(t)

0
1Ys ̸=0 dB1

s =
∫ t

0
1Xs ̸=0 dB1

γ(s)

and

γ(t) = ⟨B1
γ(·)⟩t =

∫ γ(t)

0
1Ys ̸=0 ds

=
∫ γ(t)

0
1Ys ̸=0

(
ds+ ρ

2 dL0
s(Y )

)
=
∫ γ(t)

0
1Ys ̸=0 dA(s) =

∫ t

0
1Xs ̸=0 ds. (3.14)

Thus,

⟨B⟩t =
〈
B1

γ(·) +
∫ ·

0
1Xs=0 dB0

s

〉
t

=
∫ t

0
1Xs ̸=0 ds+

∫ t

0
1Xs=0 ds = t. (3.15)
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From Lévy’s characterization (see [62, Chapter 3; Theorem 3.16]), B is a standard
Brownian motion. From (A.3),

Xt = Yγ(t) =
∫ γ(t)

0
dYs =

∫ γ(t)

0
1Ys ̸=0 dYs

=
∫ γ(t)

0
1Ys ̸=0µ(Ys) ds+

∫ γ(t)

0
1Ys ̸=0σ(Ys) dB1

s

=
∫ γ(t)

0
1Ys ̸=0µ(Ys)

(
ds+ ρ

2 dL0
s(Y )

)
+
∫ γ(t)

0
1Ys ̸=0σ(Ys) dB1

s

=
∫ γ(t)

0
1Ys ̸=0µ(Ys) dA(s) +

∫ γ(t)

0
1Ys ̸=0σ(Ys) dB1

s

=
∫ t

0
1Xs ̸=0µ(Xs) ds+

∫ t

0
1Xs ̸=0σ(Xs) dB1

γ(s)

=
∫ t

0
1Xs ̸=0µ(Xs) ds+

∫ t

0
1Xs ̸=0σ(Xs)

{
dB1

γ(s) + 1Xs=0 dB0
s

}
=
∫ t

0
1Xs ̸=0µ(Xs) ds+

∫ t

0
1Xs ̸=0σ(Xs) dBs. (3.16)

Moreover,

∫ t

0
1Xs=0 ds =

∫ t

0
1Yγ(s)=0 dA

(
γ(s)

)
=
∫ γ(t)

0
1Ys=0 dA(s)

=
∫ γ(t)

0
1Ys=0

(
ds+ ρ

2 dL0
s(Y )

)
= ρ

2

∫ γ(t)

0
1Ys=0 dL0

s(Y ) = ρ

2L
0
γ(t)(Y ) = ρ

2L
0
t (X).

(3.17)

From (3.11) and (3.12), Px(X0 = x) = 1. From (3.16) and (3.17), the pair (Xt, Bt)t≥0
solves (3.8)-(3.9), proving the existence of a solution.

For the uniqueness, we reset all notations. Let (Ω, (F t)t≥0,Px) be a probability space,
(X̃t, B̃t)t≥0 a solution of (3.8)-(3.9) such that Px(X0 = x) = 1 and Ã being the right-
inverse of γ̃ which is the time-transform defined for every t ≥ 0 by

γ̃(t) =
∫ t

0
1

X̃s ̸=0 ds. (3.18)

Let Ỹ be the process defined for every t ≥ 0 by

Ỹt = X̃
Ã(t). (3.19)

From the definition of Ỹ , Px(Y0 = x) = 1. From (3.9), if L0(X̃) and L0(Ỹ ) are the
local times at 0 of X̃ and Ỹ respectively,

t = γ̃
(
Ã(t)

)
=
∫ Ã(t)

0
1

X̃s ̸=0 ds = Ã(t) −
∫ Ã(t)

0
1

X̃s=0 ds

= Ã(t) − ρ

2L
0
Ã(t)(X̃) = Ã(t) − ρ

2L
0
t (Ỹ ). (3.20)

The time-transform Ã is continuous and strictly increasing, thus γ̃ is its proper inverse.
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From (3.8),

Ỹt = X̃
Ã(t) = X̃0 +

∫ Ã(t)

0
µ(X̃s)1X̃s ̸=0 ds+

∫ Ã(t)

0
σ(X̃s)1X̃s ̸=0 dB̃s

= X̃0 +
∫ Ã(t)

0
µ(X̃s) dγ̃(s) +

∫ Ã(t)

0
σ(X̃s)1X̃s ̸=0 dBs

= X̃0 +
∫ t

0
µ(Ỹs) ds+

∫ Ã(t)

0
σ(X̃s)1X̃s ̸=0 dB̃s.

Let B̃1
t =

∫ Ã(t)
0 1

X̃s ̸=0 dB̃s where,

⟨B̃1⟩t =
∫ Ã(t)

0
1

X̃s ̸=0 ds = γ̃(Ã(t)) = t.

Thus, from Levy’s characterization B̃1 is a standard Brownian motion and as dB̃1
t =

1
Ỹs ̸=0 dB̃

Ã(t),

Ỹt = X̃0 +
∫ t

0
µ(Ỹs) ds+

∫ t

0
σ(Ỹs)1Ỹs ̸=0 dB̃

Ã(s) = X̃0 +
∫ t

0
µ(Ỹs) ds+

∫ t

0
σ(Ỹs) dB̃1

s .

Let (Y, B̃1) be the solution of (3.10) such that Px(Y0 = x) = 1, γ the right-inverse of
A(t) = t+ ρ

2L
0
t (Y ) and X the process such that Xt = Yγ(t) for every t ≥ 0. From (3.14)

and (3.18)
γ(t) = γ̃(t) and A(t) = Ã(t), (3.21)

for every t ≥ 0. From (3.19) and (3.21) and as P(X0 = Y0 = Ỹ0 = x) = 1, almost surely

Yγ(t) = Xt = Ỹγ̃(t), (3.22)

for every t ≥ 0. Hence X is uniquely determined by (B1
t , L

0
t (Y ))t≥0 and (3.8)-(3.9) has

a unique solution.

Proposition 3.2.2. If (X,B) is the joint solution of (3.8)-(3.9), then X is the (ρ, µ, σ)-
sticky SDE solution.

Proof. Let X be the solution of (3.8)-(3.9) and γ the time transform

γ(t) =
∫ t

0
1Xs ̸=0 ds.

Moreover, let A be the right-inverse of γ and Y the process such that for every t ≥ 0,

Yt = XA(t). (3.23)

From (3.10), (3.18), (3.21) and (3.22), the process Y solves (3.10). From Proposition 2.6
of [80, Chapter VII] and of [14, p.17], Y is the diffusion process defined through s and
m where

s′(x) = e
−
∫ x

a

2µ(u)
σ2(u)

du
, m(dx) = 1

s′(x)
2

σ2(x) dx. (3.24)

Then, s(Y ) = (s(Yt))t≥0 is a diffusion process on natural scale with speed measure
ms(Y )( dx) = mY (s−1( dx)). From Theorem 1.4.4, there exists a Brownian motion W
such that,

s(Yt) = Wγs(Y )(t), for every t ≥ 0, (3.25)
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where γs(Y )(t) is the right-inverse of As(Y )(t) =
∫
R L

y
t (W )ms(Y )( dy). From (3.23) and

(3.25),
s(Xt) = Wγs(Y )(γ(t)), for every t ≥ 0.

From (3.20), the right-inverse of γs(Y )(γ(t)) is

A(As(Y )(t)) = As(Y )(t) + ρ

2L
0
As(Y )(t)(Y ) = As(Y )(t) + ρ

2L
0
t (W ) = 1

2

∫
R
Ly

t (W )ν( dy),

where ν( dx) = ms(Y )( dx) + ρδ0( dx). Thus, from Corollary 1.4.5, (s(Xt))t≥0 is a
diffusion process on natural scale of speed measure m(s−1( dx)) + ρδ0( dx). As s is
continuous and invertible, X is a diffusion process with scale function sX and speed
measure mX where

sX(x) = s(x), mX( dx) = m( dx) + ρδ0( dx) (3.26)

or a (ρ, µ, σ)-sticky SDE solution.

Proposition 3.2.3. Let X be a (ρ, µ, σ)−sticky SDE defined on a probability space
(Ω, {F t}t≥0,Px). Then, there exists a Brownian motion W such that under Px,

Xt = x+
∫ t

0
µ(Xs)1Xs ̸=0 ds+

∫ t

0
σ(Xs)1Xs ̸=0 dWs, (3.27)∫ t

0
1Xs=0 ds = ρ

2L
0
t (X). (3.28)

Proof. Let A be the right-inverse of γ = [t 7→
∫ t

0 1Xs ̸=0 ds] and Y the process such that,

Yt = XA(t),

for every t ≥ 0. Let (sX ,mX) and (sY ,mY ) be the scale function and speed measure
pairs of X and Y respectively. From (3.24) and (3.26),

sY = sX , mY = mX − ρδ0. (3.29)

From (5.42) and (3.29),

s′
Y (x) = e

−
∫ x

a

2µ(u)
σ2(u)

du
, mY (dx) = 1

s′(x)
2

σ2(x) dx.

Thus, from Theorem 3.12 of [80, Chapter VII], the infinitesimal generator LY of Y is

LY f(x) = µ(x)f ′(x) + 1
2σ

2(x)f ′′(x),

for every x ∈ I and f ∈ dom(LY ) where dom(LY ) = C2(I). From Theorem 2.7 of [80,
Chapter VII], there exists a Brownian motion W 1 on an extension of (Ω, {F t}t≥0,Px)
such that Y almost surely solves,

dYt = µ(Yt) dt+ σ(Yt) dW 1
t ,

for every t ≥ 0. Let W be the process such that

Wt = W 1
γ(t) +

∫ t

0
1Xs=0 dW 0

s .

From (3.13) and (3.15) and Lévy’s characterization, W is a standard Brownian motion.
From (3.10), (3.18), (3.21) and (3.22), (X,W ) jointly solve (3.27)-(3.28).
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Corollary 3.2.4. A sticky SDE solution is a semi-martingale.

Proof. Let X be a (µ, σ, ρ)-sticky Itô diffusion. From Proposition 3.2.3, the process
X solves (3.27)-(3.28). The relation (3.27) is an explicit Doob-Meyer representation
of X.

3.3 Path-wise results

Proposition 3.3.1 (Sticky Girsanov). Let (Ω, (F)t≥0,P) be a probability space and X
the process that solves

dXt = µ(Xt)1Xt ̸=0 dt+ σ(Xt)1Xt ̸=0 dBt, (3.30)

1Xt=0 dt = ρ

2 dL0
t (X), (3.31)

where B is a P-Brownian motion. Let θ be a processes such that P(
∫ T

0 θs ds < ∞) = 1,
E(θ) the process such that

Et(θ) = exp
( ∫ t

0
θs dBs − 1

2

∫ t

0
θ2

s ds
)

for every t ≥ 0 and Q the probability measure such that dQ = Et(θ) dP. Then, if EP is
the expectancy under P and EP

(
E t(θ)

)
= 1, the process X solves

dX̃t =
(
µ(X̃t) + θtσ(X̃t)

)
1

X̃t ̸=0 dt+ σ(X̃t)1X̃t ̸=0 dB̃t, (3.32)

1
X̃t=0 dt = ρ

2 dL0
t (X̃), (3.33)

where B̃t = Bt −
∫ t

0 θs ds is a standard Brownian motion under Q.

Proof. Let X be the the solution of (3.30)-(3.31), γ the time-change γ(t) =
∫ t

0 1Xs ̸=0 ds
for every t ≥ 0, A its right-inverse and Y = (XA(t))t≥0. Let B̃ be the process defined
by B̃t = Bt −

∫ t
0 θs ds for every t ≥ 0. Then, from Theorem 6.3 of [70], B̃ is a standard

Brownian motion under Q and the probability measures P and Q are equivalent. By
substitution,

dXt =
(
µ(Xt) + θtσ(Xt)

)
1Xt ̸=0 dt+ σ(Xt)1Xt ̸=0 dB̃t.

Moreover, since: the local time L0
t (X) and the quadratic variation ⟨X⟩t are defined as

limits in probability, P ∼ Q and

⟨X⟩t =
∫ t

0
1Xt ̸=0 dt = t−

∫ t

0
1Xt=0 dt

Thus, (3.31) holds also under Q and X solves (3.32)-(3.33).

Proposition 3.3.2 (Sticky Itô formula). Let X be a process defined on a probability
space (Ω, (F t)t≥0,Px) such that Px(X0 = x) = 1 and

dXt = µ(Xt)1Xt ̸=0 dt+ σ(Xt)1Xt ̸=0 dBt,

1Xt=0 dt = ρ

2 dL0
t (X), (3.34)
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where B is a (Ω, (F t)t≥0,Px)-standard Brownian motion. Then, for every real valued
C2 function f such that f(0) = 0 and f ′(0) ̸= 0, the process f(X) = (f(Xt))t≥0 is
solution of

df(Xt) =
(
f ′(Xt)µ(Xt)

1
2f

′′(Xt)σ2(Xt)
)
1Xt ̸=0 dt+ f ′(Xt)σ(Xt)1Xt ̸=0 dBt,(3.35)

1f(Xt)=0 dt = f ′(0)ρ2 dL0
t (f(X)) (3.36)

and Px

(
f(X0) = f(x)

)
= 1.

Proof. The process X is a semi-martingale as,

Xt = X0 +
∫ t

0
µ(Xs)1Xs ̸=0 ds+

∫ t

0
σ(Xs)1Xs ̸=0 dBs,

where
∫ t

0 µ(Xs)1Xs ̸=0 ds is a process of bounded variation and
∫ t

0 σ(Xs)1Xs ̸=0 dBs is a
local martingale. Thus, we may apply the standard Itô formula for f ∈ C2(R),

df(Xt) = f ′(Xt) dXt + 1
2f

′′(Xt) d⟨X⟩t =

=
(
f ′(Xt)µ(Xt) + 1

2f
′′(Xt)σ2(Xt)

)
1Xt ̸=0 dt+ f ′(Xt)σ(Xt)1Xt ̸=0 dBt,

thus proving (3.35). Lemma A.2.3 and (3.34) yield (3.36), thus the result is proven.
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Chapter 4

Local time approximation
of sticky diffusions

In this chapter we present the theoretical results of [5]. Numerical illustrations are
given in Chapter 6.

4.1 Introduction and main results

The last decades we have seen the appearance of local time approximations and
their applications in statistical estimation problems. In [55], it is proven that the
high-frequency statistic of an Itô diffusion X

nα

n

[nt]∑
i=1

g(nαX i−1
n

− ℓ) (4.1)

for a given point ℓ, converges as n −→ ∞ uniformly in time, in probability to λ(g)Lℓ
t(X).

Since then, similar results were proven in the case of the skew and the oscillating
Brownian motions [68, 72] and the fractional Brownian motion [79, 57]. These gave
rise to the usage of local time statistics [67, 68, 69], i.e. statistics based on these
approximations. In this chapter we prove that under some assumptions on the test-
function g, the same results holds for Itô diffusions with a sticky point at 0. Then,
we use this result to define a local time statistic which we prove to be a consistent
estimator of the stickiness parameter.

Introduced by Feller in [33], one-dimensional sticky diffusions are continuous pro-
cesses that satisfy the strong Markov property and spend positive amount of time at
some points of their state-space I. These points, called sticky points, can be located
either in the interior or at an attainable boundary the boundary of I (sticky reflec-
tion). A diffusion has a sticky point at 0 iff its speed measure m has an atom at 0,
i.e. m({0}) > 0. The mass of that atom ρ = m({0}) is called stickiness parameter, it
expresses how much time the process spends at 0 and there are no references known to
us for its estimation. The infinitesimal generator of these processes are also known to
have Wencel boundary conditions at the points of stickiness.

Sticky processes have been recently used to model phenomena in finance, biology,
quantum and classical mechanics. In particular, they can be used to describe the
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behavior of interest rates around 0 [76, 58], the behavior of molecules near a mem-
brane [44], the concentration of pathogens in a healthy individual [20], the dynamics
of mesoscale particles upon contact in colloids [86, 61] and the motion of quantum
particles when they reach a source of emission [24]. From a theoretical standpoint, they
are used to create new types of probabilistic couplings [28] and appear as the limit of
storage processes [48]. Many papers have appeared recently that address the numerical
challenges of simulating sticky diffusions [4, 8, 73, 16, 6].

In this chapter, we prove a local time approximation result for a class of sticky
processes called sticky Itô diffusions. These processes solve a homogeneous SDE away
from a countable and isolated set of points in the state-space where they exhibit
stickiness. For simplicity, we suppose that there is one unique sticky point located at
0 ∈ I. Thus, the dynamic of the process is fully described by the drift and diffusivity
functions µ, σ that describe the SDE the process solves away from 0, and the stickiness
parameter ρ > 0 at 0 (see Chapter 3). To abbreviate, we call this process the (ρ, µ, σ)-
SID. The most elementary sticky Itô diffusion is the (ρ, 0, 1)-SID called the sticky
Brownian motion (see [30]). It is the process that has a Brownian dynamic away from 0
and a sticky point at 0.

We will further suppose that the functions µ and σ : I 7→ R that govern the dynamic
of the underlying SDE satisfy the following condition:

Condition 4.1.1. Let B a standard Brownian motion defined on a probability space
(Ω, (F t)t≥0,Px). We consider the following SDE:

dXt = µ(Xt) dt+ σ(Xt) dBt, (4.2)

where

• (µ, σ) are taken so that (4.2) has a unique non-explosive strong solution,

• if X be the solution of (4.2) such that P(X0 = x) = 1, then, for θ = (σ′(Xt) −
µ(Xt)
σ(Xt))t≥0 and every x ∈ I,

Ex

[
exp

( ∫ t

0
θs dBs − 1

2

∫ t

0
θ2

s ds
)]

= 1,

• σ ∈ C1(I).

A sticky Itô diffusion is a semimartingale (see Corollary 3.2.4). As such, if X is a
sticky Itô diffusion defined on a probability space (Ω, (F t)t≥0,P), its local time at ℓ
can either be defined (see [80, Chapter VI, §1])

• as the continuous, strictly-increasing process Lℓ(X) such that for every t ≥ 0,

|Xt − ℓ| − |X0 − ℓ| =
∫ t

0
sgn(Xs − ℓ)dXs + Lℓ

t(X),

where sgn(x) = 1x≥0 − 1x<0,

• for every t ≥ 0, as the limit in probability

Lℓ
t(X) = P-lim

ϵ→0

1
ϵ

∫ t

0
10≤Xs−ℓ<ϵ d⟨X⟩s, (4.3)
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• if the functions (µ, σ) satisfy Condition 3.1.2, for every t ≥ 0, as the limit in
probability

Lℓ
t(X) = P-lim

ϵ→0

1
2ϵ

∫ t

0
1|Xs−ℓ|<ϵ d⟨X⟩s. (4.4)

The object of this paper is to prove necessary conditions for the statistic (4.1) to
converge to the local time of a sticky Itô diffusions. The convergence occurs locally
uniformly in time, in probability.
Definition 4.1.2. A sequence of processes Xn is said to converge locally uniformly in
time, in P-probability to a process X iff

sup
s≤t

{
|Xn

s −Xs|
}

−−−→
n→∞

0,

in P-probability, for every t ≥ 0

In particular, we prove the following results:
Theorem 4.1.3. Let Xρ be a (ρ, µ, σ)-SID defined on a probability space (Ω, (F t)t≥0,Px)
such that Px(X0 = x) = 1 for any x in the state-space I of X and (µ, σ) satisfy
Condition 3.1.2. Let be g : R 7→ R be a bounded Lebesgue-integrable function which
vanishes on an open interval around 0 and T : R 7→ R a continuously differentiable
function such that for an ϵ > 0:

T (0) = 0, T ′(0) = 1, ϵ ≤ T ′(x) ≤ 1/ϵ,
∣∣∣T ′′(x)

∣∣∣ ≤ 1/ϵ, (4.5)

for every x ∈ R. For every such function T , let gn[T ] be the sequence of functions such
that:

gn[T ](x) = g
(
nαT (n−αx)

)
, (4.6)

for every x and n. Then, for every α ∈ (0, 1/2),

nα

n

[nt]∑
i=1

gn[T ](nαXρ
i−1

n

) −−−→
n→∞

λ(g)
σ(0)L

0
t (Xρ). (4.7)

locally uniformly in time, in Px-probability.

We now apply our result to give a consistent estimator of the stickiness parameter.
Numerical illustrations are given in Section 6.2.
Corollary 4.1.4 (of Theorem 4.1.3 and Lemma 4.3.1). In the same setting as The-
orem 4.1.3, if g is a bounded integrable function which vanishes on an open interval
around 0, T that satisfies (4.5), gn[T ] defined in (4.6) and α ∈ (0, 1/2), then,

ρ̂n(X) := 2λ(g)
σ(0)

1
nα

∑[nt]
i=1 1X i−1

n

=0∑[nt]
i=1 gn[T ](nαX i−1

n
)

(4.8)

is a consistent estimator of ρ as n −→ ∞.
Remark. In particular both results hold if we take T the identity function and thus
replace gn[T ] with g. For example, these holds for the function g = [x 7→ 11<|x|<2].

The first two results gives us the convergence properties of the statistic at and
away from the threshold of stickiness. The last result results in a consistent stickiness
estimator, which is the first attempt to estimate the stickiness parameter of a diffusion.
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4.2 The case of the sticky Brownian motion

This section is dedicated to the proof of the following result:

Theorem 4.2.1. Theorem 4.1.3 holds for the sticky Brownian motion.

As the proof of Theorem 4.2.1 is rather tedious, we have isolated parts of it in
Lemmas 4.2.3, 4.2.4 and 4.2.5.

4.2.1 Preliminary results

Lemma 4.2.2 (semi-group bound). Let (P ρ
t )t≥0 be the semi-group of the sticky Brow-

nian motion of parameter ρ > 0. There exists a constant K > 0 that does not depend
on ρ such that for every real-valued function h(x) such that h(0) = 0,

|P ρ
t h(x)| ≤ K

λ(|h|)√
t
, (4.9)

for every t > 0, where λ(g) =
∫
R g(x) dx.

Proof. Let pρ(t, x, y) be the probability transition kernel of the sticky Brownian motion
of parameter ρ > 0 with respect to its speed measure m(dy) = 2 dy + ρ

2δ0(dy). From
[14, p. 108],

pρ(t, x, y) = u1(t, x, y) − u2(t, x, y) + vρ(t, x, y), (4.10)
for every x, y ∈ R and t > 0, where


u1(t, x, y) = 1√

2πt
e−(x−y)2/2t,

u2(t, x, y) = 1√
2πt
e−(|x|+|y|)2/2t,

vρ(t, x, y) = 2
ρ
e4(|x|+|y|)/ρ+8t/ρ2 erfc

(
|x|+|y|√

2t
+ 2

√
2t

ρ

)
.

We observe that for x, y ∈ R and t ≥ 0: exp(−(|x| + |y|)2/2t) < exp(−(x− y)2/2t) and

u1(t, x, y) − u2(t, x, y) ≤ 1
2
√

2πt
e−(x−y)2/2t. (4.11)

The Mills ratio of a Gaussian random variable (see [46, p. 98]) yields erfc(x) ∼ e−x2
/x.

Thus, there exists a constant KMills > 0 such that

vρ(t, x, y) ≤ KMills
2
√

2t
ρ(|x| + |y|) + 8te

−(|x|+|y|)2/2t ≤ KMills
1

2
√

2t
e−(x−y)2/2t. (4.12)

From (4.11) and (4.12), for K = 1 +KMills
√
π/2,

pρ(t, x, y) ≤ K
1√
2πt

e−(x−y)2/2t (4.13)

and
|Pth(x)| ≤

∫
R

|h(y)|pρ(t, x, y) dy ≤ K
∫
R

|h(y)| 1√
2πt

e−(x−y)2/2t dy.

Observing e−(x−y)2/2t ≤ 1 yields (4.9).
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Lemma 4.2.3. Let Xρ be the sticky Brownian motion of stickiness ρ > 0 and g be an
integrable function such that g(0) = 0. Then, there exists a constant K > 0 such that
for every x ∈ R, t > 0 and n ∈ N:

Ex

(
sup
s≤t

∣∣∣un

n

[ns]∑
i=1

g
(
unX

ρ
i−1

n

)∣∣∣) ≤ K
(
un

n
|g(unx)| + λ(|g|)

√
t
)
. (4.14)

Proof. We observe that

Ex

(
sup
s≤t

∣∣∣un

n

[ns]∑
i=1

g
(
unX

ρ
i−1

n

)∣∣∣) ≤ Ex

(
un

n

[nt]∑
i=1

∣∣∣g(unX
ρ
i−1

n

)∣∣∣)

= un

n
|g(unx)| + un

n

[nt]∑
i=2

Ex

(∣∣∣g(unX
ρ
i−1

n

)
∣∣∣). (4.15)

Then, if hn(x) = g(unx/
√
n),

[nt]∑
i=1

hn

(√
nXρ

i−1
n

)
=

[nt]∑
i=1

g
(
unX

ρ
i−1

n

)
, λ(|hn|) =

√
n

un

λ(|g|), hn(0) = 0. (4.16)

From (4.15) and (4.16),

Ex

(
sup
s≤t

∣∣∣un

n

[ns]∑
i=1

g
(
unX

ρ
i−1

n

)∣∣∣) ≤ un

n
|g(unx)| + un

n

[nt]∑
i=2

Ex

(∣∣∣hn(
√
nXρ

i−1
n

)
∣∣∣). (4.17)

As hn(0) = 0, from (2.24) and (4.9),

Ex

(∣∣∣hn(
√
nXρ

i−1
n

)
∣∣∣) = P ρ

√
n

i−1 |hn(x
√
n)| ≤ K

λ(|hn|)√
i− 1

. (4.18)

From (4.16), (4.18) and as ∑[nt]
i=1

1√
i

≤ 2
√
nt,

[nt]∑
i=2

Ex

(∣∣∣hn(
√
nXρ

i−1
n

)
∣∣∣) ≤ 2Kλ(|hn|)

√
nt = 2K n

un

λ(|g|)
√
t. (4.19)

From (4.17) and (4.19), we get (4.14).

4.2.2 Proof in the sticky Brownian case

Lemma 4.2.4. Let X be a sticky Brownian motion with local time La(X). Moreover,
let g and T be two real-valued functions such that g is bounded and integrable and T
satisfies (4.5). Then, for any t ≥ 0,∫

R
gn(x)Lx/nα

[nt]/n(X) dx −−−→
n→∞

λ(g)L0
t (X), (4.20)

where gn is given by (4.6).
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Proof. From Trotter’s theorem [89], the local time of the standard Brownian motion
Lx(B) admits a version that is (t, x)-jointly continuous. As the time-change γ also
admits a continuous version, from (A.4), the local time of X Lx(X) admits a version
that is (t, x)-jointly continuous. Thus,

|Lx/nα

[nt]/n(X) − L0
t (X)| −−−→

n→∞
0, (4.21)

for every t ≥ 0 and x ∈ R. Moreover, there exists a positive random variable U such
that

|Lx/nα

[nt]/n(X) − L0
t (X)| ≤ U, (4.22)

for every x and n. Thus, as g is bounded,
∣∣∣∣ ∫

R
gn(x)

(
L

x/nα

[nt]/n(X) − L0
t (X)

)
dx
∣∣∣∣

≤ ∥g∥∞

∫
|x|≤q

∣∣∣Lx/nα

[nt]/n(X) − L0
t (X)

∣∣∣ dx+ U
∫

|x|>q
|gn(x)| dx. (4.23)

From (4.21), (4.22) and Lebesgue convergence theorem,∫
|x|≤q

∣∣∣Lx/nα

[nt]/n(X) − L0
t (X)

∣∣∣ −−−→
n→∞

0. (4.24)

With a change of variables,
∫

|x|>q
|gn(x)| dx =

∫
|x|>q

|g(nαT (x/nα))| dx

=
∫ ∞

unT (q/un)
g(y) 1

T ′(y/un) dy +
∫ unT (−q/un)

−∞
g(y) 1

T ′(y/un) dy (4.25)

From (4.5) and (4.25),

lim sup
n

∫
|x|>q

|gn(x)| dx ≤ 1
ϵ

( ∫ ∞

q
g(y) dy +

∫ −q

−∞
g(y) dy

)

which since g is integrable converges to 0 as q → ∞. From (4.23), (4.24) and (4.25),∣∣∣∣ ∫
R
gn(x)

(
L

x/nα

[nt]/n(X) − L0
t (X)

)
dx
∣∣∣∣ −−−→

n→∞
0. (4.26)

Using again the same change of variables as in (4.25),
∫
R
gn(x) dx =

∫
R
g
(
nαT (x/nα)

)
dx =

∫
R
g(x) 1

T ′
(
T−1(x/nα)

) dx. (4.27)

Thus, as g is integrable and T ′(x) ≥ ϵ for every x ∈ R, from Lebesgue convergence
theorem, ∫

R
gn(x) dx −−−→

n→∞

∫
R
g(x) dx. (4.28)

Equations (4.26) and (4.28) yield (4.20).
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Lemma 4.2.5. Let Tn be the functional define for each real-valued function h and
x ∈ R by

Tn[h](x) =
∫ 1

0
(P nαρ

n2αs/nh(x) − h(x)) ds,

where (P nαρ
t )t≥0 is the semi-group of the sticky Brownian motion of stickiness parameter

nαρ. Then, for every bounded integrable Lipschitz function k such that k vanishes on
an open interval around 0,

λ(|Tn[kn]|) −−−→
n→∞

0, (4.29)

where kn(x) = k(nαT (x/nα)).

Proof. From Jensen’s inequality,

λ(|Tn[kn]|) ≤
∫ 1

0

∫
R

∣∣∣P nαρ
n2αs/nkn(x) − kn(x)

∣∣∣ dx ds. (4.30)

From (4.13),

∣∣∣P nαρ
n2αs/nkn(x) − kn(x)

∣∣∣ ≤
∫
R

|kn(y) − kn(x)|pnαρ(n2αs/n, x, y)m(dy)

=
∫
R

|kn(y) − kn(x)|pnαρ(n2αs/n, x, y) dy + nαρ

2 |kn(x)|pnαρ(n2αs/n, x, 0)

≤ K
[ ∫

R
|kn(y) − kn(x)| 1

nα
√

2πs/n
e−(x−y)2n/2sn2α dy + |kn(x)|

√
nρ

2
√

2πs
e−x2n/2sn2α

]
,

where 1
nα

√
2πs/n

e−(x−y)2n/2sn2α is the probability density function of a Gaussian N
(
x, n2αs/n

)
.

Thus from positive Fubini,

∫
R

∣∣∣P nαρ
n2αs/nkn(x) − kn(x)

∣∣∣ dx ≤ K

[
E
[ ∫

R

∣∣∣kn(x+ nα
√
s/nZ) − kn(x)

∣∣∣ dx]

+
∫
R

|kn(x)|
√
nρ

2
√

2πs
e−x2n/2sn2α dx

]
, (4.31)

where Z ∼ N (0, 1) under Px. For the first additive term of right-hand side of (4.31),
with the same argument as (4.27),∫

R
kn(x) dx ≤ 1

ϵ

∫
R
k(x) dx.

Thus, for every ω ∈ Ω,∫
R

∣∣∣kn(x+nα
√
s/nZ)−kn(x)

∣∣∣ dx ≤
∫
R

∣∣∣kn(x+nα
√
s/nZ)

∣∣∣ dx+
∫
R

∣∣∣kn(x)
∣∣∣ dx ≤ 2

ϵ
λ(|k|).
(4.32)

Moreover since T ∈ C1 and k is Lipschitz, Px-almost surely,
∣∣∣kn(x+ nα

√
s/nZ) − kn(x)

∣∣∣ =
∣∣∣k(nαT (x/nα +

√
s/nZ)) − k(nαT (x/nα))

∣∣∣
≤
∣∣∣k(nαT (x/nα) +

√
s/nZ∥T ′∥∞) − k(nαT (x/nα))

∣∣∣ ≤ |k|Lip

√
s/nZ∥T ′∥∞, (4.33)
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which converges to 0 as n → ∞. From (4.32), (4.33) and Lebesgue convergence theorem,

E
[ ∫

R

∣∣∣kn(x+ nα
√
s/nZ) − kn(x)

∣∣∣ dx] −−−→
n→∞

0. (4.34)

For the second additive term of right-hand side of (4.31): let δ > 0 be a positive real
number such that k(x) = 0 for every x ≥ 0 such that x /∈ (δ, 1/δ). From (4.5), T is
strictly increasing, thus,

δ ≤ unT (x/un) ≤ 1/δ,

is equivalent to
unT

−1(δ/un) ≤ x ≤ unT
−1(1/unδ).

From (4.5),

lim inf
n

unT
−1(δ/un) ≥ δϵ,

lim sup
n

unT
−1(1/unδ) ≤ 1/δϵ.

Thus, there exists n0 ∈ N such that for every n ≥ n0, supp kn ⊂ (ϵδ/2, 2/ϵδ). Thus,
since k is bounded,

∫
R

|kn(x)|
√
nρ

2
√

2πs
e−x2n/2sn2α dx ≤ 2∥k∥∞

∫ 2/ϵδ

ϵδ/2

√
nρ

2
√

2πs
e−x2n/2sn2α dx

≤ ρ∥k∥∞√
2πs

2
ϵδ

√
ne−n1−2α(ϵδ)2/8s, (4.35)

which converges to 0 as n → ∞. From (4.30), (4.31), (4.34) and (4.35), the convergence
(4.29) is proven.

Proof (of Theorem 4.2.1). Let X be the sticky Brownian motion of parameter ρ > 0,
(P ρ

t )t≥0 its semi-group and Lx(X) its local time at x. From the occupation times
formula and the characterization of ⟨Xρ⟩t in [30],

∫ t

0
f(Xs)1Xs ̸=0 ds =

∫
R
f(y)Ly

t (X) dy.

Thus, if f(0) = 0, ∫ t

0
f(Xs) ds =

∫
R
f(y)Ly

t (X) dy. (4.36)

By applying consecutive change of variables and from (4.36),

∫
R
gn(x)Lx/nα

[nt]/n(X) dx = nα
∫
R
gn(nαx)Lx

[nt]/n(X) dx

= nα
∫ [nt]/n

0
gn(nαXs) ds = nα

n

∫ [nt]

0
gn(nαXs/n) ds.
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Thus,

nα

n

[nt]∑
i=1

gn(nαX i−1
n

) = nα

n

[nt]∑
i=1

gn(nαX i−1
n

) − nα

n

∫ [nt]

0
gn(nαXs/n) ds+

∫
R
gn(x)Lx/nα

[nt]/n(X) dx

=
[nt]∑
i=1

nα

n

∫ 1

0

(
gn(nαX i−1

n
) − gn(nαX i−1

n
+ s

n
)
)

ds

+ nα

n

∫ nt−[nt]

0

(
gn(nαX [nt]

n

) − gn(nαX [nt]
n

+ s
n

)
)

ds

+
∫
R
gn(x)Lx/nα

[nt]/n(X) dx.
(4.37)

For the second additive term at the right hand side of (4.37),

∣∣∣∣nα

n

∫ nt−[nt]

0

(
gn(nαX [nt]

n

) − gn(nαX [nt]
n

+ s
n

)
)

ds
∣∣∣∣

≤ nα

n

∫ nt−[nt]

0

∣∣∣gn(nαX [nt]
n

) − gn(nαX [nt]
n

+ s
n

)
∣∣∣ ds ≤ 2∥g∥∞

nα

n
, (4.38)

which converges to 0 as n → ∞.
For the first additive term at the right hand side of (4.37), let

An
t :=

[nt]∑
i=1

nα

n

∫ 1

0

(
gn(nαX i−1

n
+ s

n
) − gn(nαX i−1

n
)
)

ds,

Bn
t :=

[nt]∑
i=1

nα

n

∫ 1

0
Ex

(
gn(nαX i−1

n
+ s

n
) − gn(nαX i−1

n
)
∣∣∣∣F i−1

n

)
ds.

As the cross terms have expectancy 0, from Minkowski’s inequality,

Ex

(
|An

t −Bn
t |2
)

≤ 2n
2α

n2

[nt]∑
i=1

Ex

( ∫ 1

0

(
gn(nαX i−1

n
+ s

n
)−gn(nαX i−1

n
)
)

ds
)2

≤ 4∥g∥∞
n2α

n

[nt]
n
,

(4.39)
which converges to 0 as n → ∞. Thus, An

t − Bn
t converges to 0 in L2(Px) and

consequently in L1(Px). As such, proving that An
t −−−→

n→∞
0 in L1(Px) is equivalent to

proving that Bn
t −−−→

n→∞
0 in L1(Px). To prove the latter, we define for each real-valued

function h the functional,

Tn[h](x) =
∫ 1

0
(P nαρ

n2αs/nh(x) − h(x)) ds.

From (A.5),

Bn
t = nα

n

[nt]∑
i=1

Tn[gn](nαX i−1
n

).

From (4.14), there exists a constant K ′ > 0 that does not depend on n or ρ such that

Ex

(
|Bn

t |
)

≤ K ′
(un

n
|Tn[gn](unx)| +

√
tλ(|Tn[gn]|)

)
.
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From Jensen and (4.6), for every x ∈ R, t > 0 and ρ > 0,

|P ρ
t gn(x)| ≤ ∥g∥∞,

By taking K ′′ = K ′(2∥g∥∞ ∨ 1),

Ex

(
|Bn

t |
)

≤ K ′′
(nα

n
+

√
tλ(|Tn[gn]|)

)
. (4.40)

Thus, as 0 < α < 1/2, it remains to prove that λ(|Tn[gn]|) → 0. For this we use a
Lipschitz approximation of g. In particular, as g is bounded and in L1(dx), for each p
it is possible to find a Lipschitz function kp such that, kp(0) = 0 and λ(|g − kp|) < 1/p.
Let kn

p (x) = kp(nαT (x/nα)), from (4.5),

λ(|gn − kn
p |) < 1/pϵ. (4.41)

Let pρ(t, x, y) be the sticky Brownian motion transition kernel given in (4.10). As
pρ(t, x, y) = pρ(t, y, x) for every x, y ∈ R,

λ(|P ρ
t gn − P ρ

t k
n
p |) ≤

∫
R

∫
R

∣∣∣gn(y) − kn
p (y)

∣∣∣pρ(t, x, y) dy dx =∫
R

∣∣∣gn(y) − kn
p (y)

∣∣∣ ∫
R
pρ(t, x, y) dx dy =

∫
R

∣∣∣gn(y) − kn
p (y)

∣∣∣ ∫
R
pρ(t, y, x) dx dy

≤
∫
R

∣∣∣gn(y) − kn
p (y)

∣∣∣ dy = λ(|gn − kn
p |). (4.42)

From (4.41) and (4.42),

λ(|Tn[gn]|) ≤ 2
pϵ

+ λ(|Tn[kn
p ]|).

Thus, from (4.29),
λ(|Tn[gn]|) −−−→

n→∞
0. (4.43)

From (4.39), (4.40) and (4.43),

An
t =

[nt]∑
i=1

nα

n

∫ 1

0

(
gn(nαX i−1

n
+ s

n
) − gn(nαX i−1

n
)
)

ds Px−−−→
n→∞

0. (4.44)

From (4.20), (4.37), (4.38) and (4.44), for every t ≥ 0,

nα

n

[nt]∑
i=1

gn(nαX i−1
n

) Px−−−→
n→∞

λ(g)L0
t (X).

If g is a positive function the processes nα

n

∑[nt]
i=1 gn(nαX i−1

n
) are non-decreasing with Px-

almost surely, a continuous limit. Thus, from Lemma A.2.6, the convergence is locally
uniform in time, in probability. For an arbitrary g satisfying the conditions of Theo-
rem 4.2.1, let g = g+ − g−, where g+(x) = max{g(x), 0} and g+(x) = max{−g(x), 0}.
Then as g+ and g− are both positive function and thus,

nα

n

[nt]∑
i=1

g+
n (nαX i−1

n
) −−−→

n→∞
λ(g+)L0

t (X), nα

n

[nt]∑
i=1

g−
n (nαX i−1

n
) −−−→

n→∞
λ(g−)L0

t (X),

locally uniformly in time, in Px-probability. Using the triangle inequality for the
absolute value and the L∞(0, t)-norm, the locally uniform convergence of (4.7) in
Px-probability for X a sticky Brownian motion is proven.
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4.3 Proofs of the main results

4.3.1 Proof of Theorem 4.1.3

The proof works by extending Theorem 4.2.1 using the path-wise tools developed in
Chapter 3.

Proof (of Theorem 4.1.3). We suppose there exists a δ > 0 such that

δ ≤ σ(x) ≤ 1/δ,
∣∣∣σ′(x)

∣∣∣ ≤ 1/δ, (4.45)

for every x ∈ I. From Proposition 3.2.3, there exists a Brownian motion B such
that (X,B) jointly solves

dXt = µ(Xt)1Xt ̸=0 dt+ σ(Xt)1Xt ̸=0 dBt,

1Xt=0 dt = ρ

2 dL0
t (X).

Let Qx be the probability measure such that dQx = Et(θ) dPx where

Et(θ) = exp
( ∫ t

0
θs dBs − 1

2

∫ t

0
θ2

s ds
)
,

θt = σ′(Xt) − µ(Xt)
σ(Xt)

.

From Lemma 3.3.1, (X, B̃) jointly solve

dXt = 1
2σ(Xt)σ′(Xt)1Xt ̸=0 dt+ σ(Xt)1Xt ̸=0 dB̃t,

1Xt=0 dt = ρ

2 dL0
t (X),

where B̃ = Bt −
∫ t

0 θs ds is a standard Brownian motion under Qx. Let S be the function
defined for every x ∈ R by

S(x) =
∫ x

0

1
σ(y) dy.

We observe that S is strictly increasing and S(0) = 0. Thus, from (3.35)-(3.36), the
process X ′ = (S(Xt))t≥0 solves

dX ′
t = 1

σ(Xt)
dXt − 1

2
σ′(Xt)
σ2(Xt)

d⟨X⟩t = 1X′
t ̸=0 dB̃t, (4.46)

1X′
t=0 dt = ρ

2σ(0) dL0
t (X ′). (4.47)

From Proposition 3.2.2, X ′ is a sticky Brownian motion of parameter ρ > 0. Let U
and T0 be the functions defined for every x ∈ R by

U(x) = S−1(x)/σ(0), T0(x) = T
(
U(x)

)
. (4.48)

Then,

T ′
0(x) = T ′

(
S−1(x)
σ(0)

)
σ(x)
σ(0) , T ′′

0 (x) = T ′′
(
S−1(x)
σ(0)

)
σ2(x)
σ2(0) + T ′

(
S−1(x)
σ(0)

)
σ′(x)
σ(0) .

(4.49)
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From (4.5), (4.45) and (4.49), for every x ∈ R,

T0(0) = T (0) = 0,
T ′

0(0) = T ′(0) = 1,
ϵδ/σ(0) ≤ T ′

0(x) ≤ 1/ϵδσ(0),∣∣∣T ′′
0 (x)

∣∣∣ ≤ ∥T ′′∥∞∥σ∥2
∞/σ

2(0) + ∥T ′∥∞∥σ′∥∞/σ(0) ≤ 1
ϵδσ(0)

( 1
δσ(0) + 1

)
.

Thus, T0 satisfies (4.5) for ϵT0 = ϵδ
(
σ(0) ∧ 1/σ(0)

)
and from Theorem 4.2.1 and

(4.46)-(4.47),
nα

n

[nt]∑
i=1

gn[T0]
(
nαX ′

i−1
n

)
−−−→
n→∞

λ(g)L0
t (X ′),

locally, uniformly in time, in Qx-probability, where gn[T0](x) = g(nαT0(x/nα)). From
(4.48) and since

gn[T0](nαx) = g(nαT0(x)) = g(nαT (U(x))) = gn[T ](U(nαx))

we get
nα

n

[nt]∑
i=1

gn[T ](nαX i−1
n

) −−−→
n→∞

λ(g)L0
t (X ′), (4.50)

locally, uniformly in time, in Qx-probability. From (4.3), the local time is defined as a
limit in probability. Thus, from (4.50) and as Px ∼ Qx,

nα

n

[nt]∑
i=1

gn[T ](nαX i−1
n

) −−−→
n→∞

λ(g)L0
t (X ′),

locally, uniformly in time, in Px-probability. From Lemma A.2.3, L0
t (X)/σ(0) is

a version of L0
t (X ′). Thus, since we supposed (4.45), (4.7) is proven in the case

of bounded σ, 1/σ and σ′ and from section 2-5 of [55], the proof is extended to
any σ ∈ C1.

4.3.2 Proof of Corollary 4.1.4

From (3.9), the occupation/local time ratio is the stickiness parameter. Thus having an
estimation of the two aforementioned quantities that does not require the knowledge of ρ
allow us to use the ratio as a consistent estimator. We first show that the occupation
times can be consistently approximated by Riemann sums. Then, we use it along with
Theorem 4.1.3 to prove Corollary 4.1.4.

Lemma 4.3.1. Let X be a semi-martingale and A0(X) be its occupation time of 0
defined for every t ≥ 0 by

A0
t (X) =

∫ t

0
1Xs=0 ds.

Then,
1
n

[nt]∑
i=1

1X i−1
n

=0 −−−→
n→∞

A0
t (X), (4.51)

locally uniformly in time, in probability.
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Proof. As both t 7→ 1
n

∑[nt]
i=1 1X i−1

n

=0 and A0(X) are increasing processes, with the same
argument as in the proof of Theorem 4.2.1, it suffices to prove the convergence in
probability for each t > 0. If δ > 0 and ϵ > 0 are two positive numbers,

Px

(∣∣∣ 1
n

[nt]∑
i=1

1X i−1
n

=0 − A0
t (X)

∣∣∣ > δ
)

= Px

(∣∣∣ 1
n

[nt]∑
i=1

1|X i−1
n

|<ϵ − 1
n

[nt]∑
i=1

10<|X i−1
n

|<ϵ − A0
t (X)

∣∣∣ > δ
)

≤ Px

(∣∣∣ 1
n

[nt]∑
i=1

1|X i−1
n

|<ϵ − A0
t (X)

∣∣∣+ ∣∣∣ 1
n

[nt]∑
i=1

10<|X i−1
n

|<ϵ

∣∣∣ > δ
)

≤ Px

(∣∣∣ 1
n

[nt]∑
i=1

10<|X i−1
n

|<ϵ

∣∣∣ > δ

2

)
+ Px

(∣∣∣ 1
n

[nt]∑
i=1

1|X i−1
n

|<ϵ − A0
t (X)

∣∣∣ > δ

2

)
. (4.52)

From (4.9) for h(x) = 10<|x|<ϵ and as ∑[nt]
i=1

1√
i

≤ 2
√
nt,

Ex

( 1
n

[nt]∑
i=1

10<|X i−1
n

|<ϵ

)
= 1
n

[nt]∑
i=1

Ex

(
h(X i−1

n
)
)

≤ 1
n

2ϵK
√
n

[nt]∑
i=1

1√
i

≤ 4ϵK
√
t

Thus, from Markov’s inequality,

Px

(∣∣∣ 1
n

[nt]∑
i=1

10<|X i−1
n

|<ϵ

∣∣∣ > δ

2

)
≤ 8ϵK

√
t

δ
. (4.53)

We consider the following functions:

ϕ(x) = (2 − |x|)11≤|x|<2 + 1|x|<1,

ψ(x) = 2(1 − |x|)10.5≤|x|<1 + 1|x|<0.5.

The functions ϕ and ψ are both continuous and bounded with compact support and

ψ(x) ≤ 1|x|<1 ≤ ϕ(x).

The composed function ϕ(Xt) and ψ(Xt) are both a.s. continuous functions of t, hence
a.s. Riemann integrable. Thus,

1
n

[nt]∑
i=1

ϕ(1
ϵ
X i−1

n
) −−−→

n→∞

∫ t

0
ϕ(1
ϵ
Xs) ds

1
n

[nt]∑
i=1

ψ(1
ϵ
X i−1

n
) −−−→

n→∞

∫ t

0
ψ(1
ϵ
Xs) ds

From Lebesgue convergence theorem both
∫ t

0 ϕ(1
ϵ
Xs) ds and

∫ t
0 ψ(1

ϵ
Xs) ds converge to

A0
t (X) as ϵ → 0. Thus for each δ > 0 there exists an ϵ > 0 such that

Px-lim sup
n

1
n

[nt]∑
i=1

1|X i−1
n

|<ϵ ≤ A0
t (X) + δ,

Px-lim inf
n

1
n

[nt]∑
i=1

1|X i−1
n

|<ϵ ≥ A0
t (X) + δ.
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Thus, for each δ > 0 there exists an ϵ0 > 0 such that

Px

(∣∣∣ 1
n

[nt]∑
i=1

1|X i−1
n

|<ϵ − A0
t (X)

∣∣∣ > δ

2

)
−−−→
n→∞

0. (4.54)

From (4.52), (4.53) and (4.54), for each ϵ′ > 0 by choosing ϵ′ = ϵδ in (4.53) , there
exists a δ > 0 such that

0 ≤ lim sup
n

Px

(∣∣∣ 1
n

[nt]∑
i=1

1X i−1
n

=0 − A0
t (X)

∣∣∣ > δ
)

≤ 4ϵK
√
t.

Thus, 1
n

∑[nt]
i=1 1X i−1

n

=0 converges in probability to A0
t (X). From (3.9), A0

t (X) admits
almost surely a continuous version. Thus, from Lemma A.2.6, (4.51) is proven.

Proof (of Corollary 4.1.4). We consider that we are on the event L = {L0
t (X) > 0}.

By integrating (3.9) we observe that

A0
t (X) = ρ

2L
0
t (X). (4.55)

Thus,
L = {L0

t (X) > 0} = {A0
t (X) > 0}.

From (4.7) and (4.51),

(1/n)∑[nt]
i=1 1X i−1

n

=0

(nα/n)∑[nt]
i=1 gn[T ](nαX i−1

n
)

Px−−−→
n→∞

A0
t (X)

(λ(g)/σ(0))L0
t (X) . (4.56)

On the event L, both terms in the ratio on the right-hand side of (4.56) are strictly
positive. As such, the ratio is a well-defined real-valued random variable. Thus, from
(4.55) we get (4.8) on L.
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Chapter 5

General diffusion processes
as the limit of time-space Markov

chains

In this chapter, we present the theoretical results of [6]. Numerical illustrations are
given in Chapter 6.

5.1 Introduction

In the diffusion process literature, the most well-studied and straightforward way to
approximate diffusion processes is the Euler scheme. While such approximations works
well for non-degenerate stochastic differential equations, this is not the case for more
general diffusion processes [51]. The Euler scheme is also not well-defined for processes
that exhibit sticky features, skew behavior [40] or slowly reflecting boundaries.

Several works aim at overcoming the shortcomings of the Euler scheme and allow us
to approximate the law of more general diffusion processes. In [4], the author proposes
to approximate the sticky Brownian motion with a simple random walk that stops for a
fixed amount of time when it hits 0. In [76] and [73], Continuous Time Markov Chains
are used to approximate slowly reflected SDE solutions, where the jumping intensities
are computed using approximated discretizations of the infinitesimal generator of the
diffusion. Another work where such processes are defined is [39], where the authors use
a Continuous Time Markov Chain to identify events in genomics evolution. In [7, 9],
the authors develop a numerical scheme to approximate diffusions on natural scale as
long as a mild non-explosion condition is satisfied. They use symmetric random walks
with fixed-time step whose magnitude depends on the average local behavior of the
target process speed measure. Choosing the step-size this way allows the approximation
process to replicate non-boundary sticky features.

In this paper, we prove the convergence in law of grid-valued random walks to any
one-dimensional general diffusion process at an asymptotically optimal rate. General
diffusion processes are regular one-dimensional strong Markov processes with contin-
uous trajectories, see for instance [80, Chapter 7.3] where they are defined as linear
continuous Markov processes. This convergence result allows us to set up approximation
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schemes that, while make it straightforward to take into account for sticky points, can
also be applied to any diffusion process that satisfy a mild non-explosion condition.
This includes processes with boundary conditions like absorption, reflection or slow-
reflection as well as the skew diffusions such as the Skew Brownian motion [66] and its
generalizations. The values taken by the random walk correspond to values taken by
the target process at random times, allowing us to classify it as an embeddable scheme
along with [7] and [31]. We prove that for a grid adapted to the speed measure of the
diffusion process, the laws of the random walks converges at any rate strictly inferior
to (1/2) ∧ (2/p) in terms of the maximum cell size for all p-Wasserstein distances. This
convergence rate is optimal for p ≤ 4 according the Donsker invariance principle, as
this is the rate simple randoms walk converges to the standard Brownian motion [26].

Besides the asymptotic optimal convergence rate, the usage of such an approximation
process yield several advantages. Firstly, the static character of the grid makes involved
quantities good candidates for numerical approximation (see Sections 5.6 and 6.1).
Moreover, this scheme makes it straightforward to take into account potential sticky
points of the diffusion. Finally, its universality is further validated by the fact that the
Donsker invariance principle and [26, 4, 31] are all special cases of it.

Outline. In Section 5.2, we present the approximation scheme along with its
properties. In Section 5.3, we give analytical characterizations of the quantities
that determine the law of the random walk defined by the algorithm, allowing us to
implement it. Section 5.4 is dedicated to proving the convergence of embedding times.
In Section 5.5, we prove the main convergence result in terms of the maximum cell size
of the grid. The case of solution of an SDE is studied in Section 5.6.

5.2 The Space-Time Markov Chain Approximation
and its properties

5.2.1 The approximation scheme

In this section we define the approximation process for a one-dimensional diffusion
process on natural scale3 with state space I, an open interval of R. The general case is
obtained by a change of scale, as detailed in Section 5.2.2.

The possible values taken by the approximation process are given as input of the
scheme and must form a covering grid of I. We introduce incrementally this notion as
follows, which we illustrate by Figure 5.1. Let I be an interval of R.

• A grid over I is a countable subset of I with no accumulation points within I.

• A cell c of a grid g is an open interval with endpoints in g with a single element
of g in its interior, i.e.,

card
(
g ∩ c

)
= 1.

We denote with C(g) the set of all cells of the grid g.
3Which means that s(x) = x.
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• We call x ∈ I the center of the cell c ∈ C(g) iff

c ∩ g = {x}.

• Finally, a covering grid of I is a grid g such that I = ⋃
c∈C(g) c.

−5 −4 −3 −2 −1 0 1 2 3 4 5

Figure 5.1: The covering grid g = Z of (−∞,∞) along with some of its cells C(g).

Examples of covering grids of (0,∞) and (−∞,∞) are {1/n;n ∈ N} and Z respec-
tively.

For any covering grid g of I and diffusion process X with state-space I, defined
through (s,m), let |g|, |g|X be the grid metrics:

|g| = sup
c∈C(g)

|c|, |g|X = sup
c∈C(g)

{s(c)m(c)}, (5.1)

where |c| = (b− a) and s(c) = s(b) − s(a) with a and b being the endpoints of c. The
convergence results will be expressed in the latter metric.

Let X be a diffusion process on natural scale with state-space I and speed measure
m. Let X be defined on the family of filtered probability spaces (Ω,F , (Ft)t≥0, (Px)x∈I),
where Px is the law of X such that, for any x ∈ I, Px{X0 = x} = 1. For any covering
grid g of I, we define the process X̃g = (X̃g

t )t≥0 as the asymmetric random walk with:
• state-space g,
• initial distribution equal to the distribution of X the first time it touches the

grid,
• the same transition probabilities as X over g,
• conditional transition times that match the conditional expected transition times

of X over g.
Thus, under Px, if a and b are respectively the closest lower and upper elements to

x of g,

X̃g
0 =

a, with probability Px(τb < τa),
b, with probability Px(τa < τb) = 1 − Px(τb < τa),

(5.2)

where τa := inf{t > 0 : Xt = a}. For the rest of the trajectory, we define τab := τa ∧ τb

and (T g(n))n≥0 as the consecutive jumping times of (X̃g
t )t≥0. Then, for all k ∈ N0 and

a < x < b adjacent points of g,

P
(
X̃g

T g(k+1) = b
∣∣∣X̃g

T g(k) = x
)

= Px(τb < τa), (5.3)
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Figure 5.2: Approximations of the standard Brownian motion, Euler vs STMCA for
various grid sizes h = 1.0, h = 0.5, h = 0.1.

and

T g(k + 1) − T g(k) =
Ex(τab|τb < τa), on {X̃g

T g(k+1) = b} ∩ {X̃g
T g(k) = x},

Ex(τab|τa < τb), on {X̃g
T g(k+1) = a} ∩ {X̃g

T g(k) = x}.
(5.4)

As proved in Section 5.3, the quantities that appear on the right hand side of (5.3)
and (5.4) are explicit functionals of the speed measure m.

Let cx be the cell of the grid g containing x, i.e., cx ∈ C(g) and x = cx ∩ g.
From (5.3), (5.4) and Bayes’ rule, if cx = (a, b), both P

(
X̃g

T g(k+1) = b
∣∣∣X̃g

T g(k) = x
)

and
T g(k + 1) − T g(k) only depend on x. Thus, if we know the quantities

p+[x, (a, b)] = Px(τb < τa), T+[x, (a, b)] = Ex

[
τab

∣∣∣τb < τa

]
,

p−[x, (a, b)] = Px(τa < τb), T−[x, (a, b)] = Ex

[
τab

∣∣∣τa < τb

]
,

(5.5)

for any adjacent a < x < b in g, we can simulate the random walk using Algorithm 1.
We discuss in Section 5.3 on how to compute the quantities in (5.5). Practical examples
are given in Sections 5.6 and 6.1.
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This algorithm has been first introduced in [31] in the situation of SDE solutions
with measurable coefficients, where the speed measure of the process satisfies

c dx ≤ m(dx) ≤ C dx. (5.6)

Our main contribution is that we allow non-elliptic speed measures with vanishing
and unbounded density (as in e.g. the Bessel process case, see Section 6.1.6), speed
measures with singular part (as in e.g. the sticky Brownian motion, see Sections 6.1.2),
scale functions not in C1 (as in e.g. the skew Brownian motion and skew Bessel process,
see Section 6.1.3 and 6.1.6) and non-trivial boundary behaviors (see Section 6.1.5). The
probabilistic arguments we use to prove our results allow for greater flexibility, while
the proofs of [31] are based on elliptic PDE theory. This allows us to handle degenerate
diffusions and to perform grid tuning and achieve higher orders of convergence (see
Section 5.2.3).

Remark. We observe that the process X̃g is not a one-dimensional Markov chain. It is
though a Markov chain in space and time since the joint law of the next position of X̃g

on the grid and the next transition time are both determined by the current position on
the grid. Hence the terms: space-time Markov chains and Space Time Markov Chain
Approximation (STMCA).

Remark. In the case of sticky diffusions, where the speed measure m has the form
m(dx) = mc(dx) + ρδ0(dx), the transition probabilities and transition times (5.5) can
be directly inferred from the ones of the diffusion without the sticky term. Indeed,
Proposition 5.3.2 yields

Ex

[
τab1τb<τa

]
=
∫

(a,b)
Ga,b(x, ζ)v0(ζ)mc(dζ) + ρGa,b(x, 0)v0(0),

where v0(x) = Px(τb < τa).

For the convergence, we make the further assumption that the diffusion process (Xt)t≥0
satisfies the following non-explosion condition: there exists a k1 > 0 such that the
speed measure of the diffusion process satisfies

m(dx) ≥ k1
1

1 + x2 dx, (5.7)

for all x ∈ I. Practically, this means that the process does not move faster than a
log-normal process for large values of Xt. We may now express the convergence result
in terms of the step-size of the grid in terms of p-Wasserstein distances. In the following
result, the p-Wasserstein distance Wp between two laws µ and ν of processes with
càdlàg4 paths is defined as

Wp

[
µ, ν

]
= inf

(ζ,ξ)∼Γ(µ,ν)

∥∥∥∥∥ζ − ξ∥∞

∥∥∥∥
Lp
,

where by Γ(µ, ν) we denote the collection of all measures with marginals µ and ν.
4This stands for “continue à droite avec une limite à gauche”, that is right-continuous with left-limit.
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Algorithm 1 Space-Time Markov Chain Approximation (STMCA) Algorithm
Input: x initial value, T time horizon, g = {xj}j∈J grid on I
Output: (X̂[k])k consecutive values taken by the approximation process, (t̂[k])k

consecutive transition times

Initialization:
t̂[0] = 0, n = 0
j = arg mini∈J{|xi − x|}
U ∼ Bernoulli

(
p+[x, (xj, xj+1)]

)
if U == 1 then

j = j + 1
end if
X̂[0] = xj

Main loop:
while t̂[n] < T do

U ∼ Bernoulli
(
p+[xj, (xj−1, xj+1)]

)
if U == 1 then

j = j + 1
t̂[n+ 1] = t̂[n] + T+[xj, (xj−1, xj+1)]

else
j = j − 1
t̂[n+ 1] = t̂[n] + T−[xj, (xj−1, xj+1)]

end if
X̂[n+ 1] = xj

n = n+ 1
end while

Theorem 5.2.1. Let X be a diffusion process with state-space I an interval of R, on
natural scale, whose speed measure satisfies Condition (5.7) for some constant k1 > 0.
Let g be a covering grid of I. Then, for all p ≥ 1, δ ∈ (0, 1

4 ∧ 1
p
), T > 0 and x ∈ I there

exists a constant C > 0 such that

Wp

[
Law

(
(X̃g

t )t∈[0,T ]
)
,Law

(
(Xt)t∈[0,T ]

)]
≤ C|g|δX , (5.8)

where |g|X = supc∈C(g){|c|m(c)}.

Remark. In the case where m(dx) ≥ k1 dx, the constant5 C > 0 in Theorem 5.2.1
does not depend on the starting point of the diffusion.

Remark. If X is a diffusion process on natural scale such that (5.6) holds, the bound
in (5.8) can be replaced by C|g|2δ.

The convergence of the Wasserstein distances implies the convergence in law [90,
p. 109].

Corollary 5.2.2. For all T > 0, the processes (X̃g
t )t∈[0,T ] converges in law to (Xt)t∈[0,T ]

in the Skorokhod space D([0, T ], I) as |g|X −→ 0.
5This results in the bound of Theorem 5.2.1 not depending on the starting point of the diffusion.
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In Section 5.2.5, we observe that, by suitable choice of the probability space, the
values taken by the approximation process correspond to values taken by X. We call
this class of approximation schemes embeddable schemes (other embeddable schemes
are the ones developed in [7, 31]). Proving the convergence of an embeddable scheme
usually involves: embedding the approximation process in the trajectory of the target
diffusion process and controlling the embedding times, controlling the speed at which
the process moves.

5.2.2 Convergence rate for the general case

The convergence results established in the previous section are proven in the case of a
diffusion process on natural scale. In this section, we show how more general results
can be inferred. Let X be a diffusion process with state-space I an open interval of R,
scale function s and speed measure m. We assume that

• s belongs to the Sobolev space W 1,1(I), so from Theorem 8.2 of [17], as s is
continuous,

s(x) − s(y) =
∫ x

y
s′(t) dt,

for all y, x in I.

• there exists a k1 > 0 such that for all x ∈ I,

m(dx) ≥ k1
s′(x)

1 +
(
s(x)

)2 dx, (5.9)

• the inverse of s is α-Hölder continuous, i.e., there exists a constant C > 0 such
that for all x ̸= y ∈ I,

|s−1(x̄) − s−1(ȳ)|
|x̄− ȳ|α

≤ C. (5.10)

Given a grid g, we consider the random walk X̃g
t defined by Algorithm 1, where the

transition probabilities and transition times in (5.5) can be computed using the formulas
derived in Section 5.3. We obtain the following corollary of Theorem 5.2.1.

Corollary 5.2.3. Let X be a diffusion process with scale function and speed measure
satisfying the above conditions. Let also g be a covering grid over the state-space I of
X. Then, for all p ≥ 1, δ ∈ (0, 1

4 ∧ 1
p
), T > 0 and x ∈ I there exists positive constants

C1, and C2 such that

Wp

[
Law

(
(X̃g

t )t∈[0,T )
)
,Law

(
(Xt)t∈[0,T )

)]
≤ C1|g|δX ,

where |g|X is defined in (5.1).

Proof. We define the proxy process Y = (s(Xt))t≥0 which has state-space s(I), scale
function sY (x) = x and speed measure mY (dx) = m ◦ s−1(dx). From condition (5.9)
and a change of variables, we get that (Yt)t≥0 satisfies condition (5.7) for the same
constant k1. We also define Ỹ s(g)

t evolving according to Algorithm 1, with covering
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grid s(g) = {s(x);x ∈ g}. It can be defined on the canonical space of X so that
s(X̃g

t ) = Ỹ
s(g)

t almost surely. Thus, Condition (5.10) implies that

|Xt − X̃g
t | ≤ C|Yt − Ỹ

s(g)
t |α.

Along with the fact that

|g|Y = sup
c∈C(g)

{|s(c)|mY (s(c))},

Theorem 5.2.1 implies Corollary 5.2.3.

5.2.3 Grid tuning

We observe that for all ϵ > 0, in the case of a Brownian motion, Theorem 5.2.1 yields a
convergence rate of O(|g| 1

2 −ϵ) as |g| −→ 0, which is optimal from Donsker’s invariance
principle [26]. We would like to have this result for all diffusion processes, but the
following example illustrates that this is not the case. We then show how we can
remediate to this by using a custom grid and extrapolate this method to the general
case via Corollary 5.2.5.

Example 5.2.4. Let X be the diffusion process with state-space R, defined through s
and m with

s(x) = x, m(dx) = 2 dx+ ρδ0(dx).
This process is called the sticky Brownian motion and is the “most elementary” sticky
diffusion process. As such, it spends a positive amount of time at 0 and the Euler
scheme is known to not be well defined for these processes. We observe that, for any
covering grid g of R and c ∈ C(g) with c ̸= c0 and c0 ∈ C(g) being the cell containing
0,

2|c|2 = m(c)|c| ≤ sup
c∈C(g)

m(c)|c|,

ρ|c0| + 2|c0|2 = m(c0)|c0| ≤ sup
c∈C(g)

m(c)|c|. (5.11)

From (5.11), for a uniform grid of step size h,

2hρ < |g|X .

Thus, for any ϵ > 0, the convergence rate given by Theorem 5.2.1 is O(h 1
4 −ϵ) as |g| −→ 0.

This means that there are functionals of the trajectory for which the convergence rate
is much slower for this process in comparison with a standard Brownian motion. In
order to remediate to this, we propose a preliminary step to the approximation scheme
that involves finding a grid that is adapted to the speed measure of the process. In
the case of the Brownian motion with a sticky point at 0, such a grid can be defined
as one that has uniform non-adjacent cells to 0 of size h and with the cell of center 0
being (−h2/2ρ, h2/2ρ), i.e.

g =
{ ⋃

k∈Z+

{
− h2

2ρ − k
h

2
}}

∪
{
0
}

∪
{ ⋃

k∈Z+

{h2

2ρ + k
h

2
}}
. (5.12)
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As the approximation process is a random walk, for every k steps it makes, it spends
O(

√
k) steps in the cell containing 0 (see [22]). Thus, running the algorithm on either

grid yields the same algorithmic complexity, whilte the convergence rate is improved to
O(h 1

2 −ϵ) for the adapted grid. Numerical examples are given in Section 6.1.2.

The general case is covered by the following Corollary:

Corollary 5.2.5. Let X be a diffusion process and X̃g the approximation process
defined by Algorithm 1. Then, if g is a grid such that

|g|X ≤ C|g|2, (5.13)

we can bound the p-Wasserstein distance between the laws of (X̃g
t )t∈[0,T ) and (Xt)t∈[0,T )

in Theorem 5.2.1 by |g|2δ instead of |g|δX . Thus, for all ϵ > 0, the law of the random
walk converges in any p-Wasserstein distance at the rate O(|g|(

1
2 ∧ 2

p
)−ϵ) instead of

O(|g|(
1
4 ∧ 1

p
)−ϵ) as |g| −→ 0.

We now show how one can create grids such that (5.13) holds in the case of
homogeneous SDEs. Considering sticky and/or skew points is straightforward.

• For a process whose speed measure satisfies (5.6) and (5.9) with one or more
skew points, no grid modification is required,

• For a process whose speed measure satisfies (5.6) and (5.9) and has a sticky point
at 0 of stickiness ρ > 0, one needs to consider the points {−h2/ρ, 0, h2/ρ} to have
a tuned grid,

• The case of a reflection at a boundary is treated in Section 5.2.4.

Let (µ, σ) be a pair of functions satisfying the following condition:

Condition 5.2.6. The functions are measurable R 7→ R mappings and the SDE

dXt = µ(Xt) dt+ σ(Xt) dBt, (5.14)

has a unique weak solution, where B is a standard Brownian motion.

Let X be the diffusion that solves (5.14), I its state-space, s its scale function and
m its speed measure given by [14, p. 17]

s′(x) = e
−
∫ y

a

2µ(ζ)
σ2(ζ)

dζ
, and m(dx) = 1

s′(x)
2

σ2(x) dx,

with s′ being the right-derivative of s. Then, if g = {xj}j∈J is a covering grid such that
for a constant C > 0 and every j ∈ J∣∣∣∣(s(xj+1) − s(xj−1)

) ∫ xj+1

xj−1

2
s′(ζ)σ2(ζ) dζ

∣∣∣∣ ∧ (xj+1 − xj−1)2 ≤ Ch2,

it satisfies (5.13) and |g| = Ch. Thus, from Corollary 5.2.5, for any ϵ > 0 using such
grids give us a convergence rate of O(|g| 1

2 −ϵ) in Theorem 5.2.1.
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Generating such grids numerically can be done choosing a starting point x0 and
adding points xj to the grid iteratively as follows: given xj−1, let xj be chosen such
that: ∣∣∣∣(s(y) − s(xj−1)

) ∫ y

xj−1

2
s′(ζ)σ2(ζ) dζ

∣∣∣∣ ≤ h2/2. (5.15)

Then the next element of the grid is defined as

xj =
x

(0)
j if x(0)

j − xj−1 ≤ h,

xj−1 + h if x(0)
j − xj−1 > h.

(5.16)

The problem (5.15) can be solved numerically using a fixed point algorithm. Examples
of STMCA simulations using tuned grids computed solving (5.15)-(5.16) are given in
Figures 6.2 and 6.3.

5.2.4 The case of diffusions with boundary conditions

When presenting the results and the structure of the scheme, we considered only
processes where I is an open set, thus considering diffusion with unreachable boundaries.
Our results also adapt to the situation where either ℓ and/or r are reachable, and in
this case some adjustments are needed, depending on the nature of finite boundaries
and on the condition at regular boundaries. In order to keep the presentation simple,
we assume that the process is on natural scale and that I = [0,+∞) (the adaptation
to I = (ℓ, r] or I = [ℓ, r] or I = [ℓ, r) with ℓ ∈ R ∪ {−∞} and r ∈ R ∪ {+∞} is
straightforward).

It is well known (see for instance Section 5.11 of Itô’s book [52]) that the finite
boundary 0 can be of four types. Setting, for some fixed c > 0,

I =
∫ ∫

0<y<x<c
m(dx) dy, II =

∫ ∫
0<y<x<c

m(dy) dx,

then

• 0 is an exit boundary if I < ∞ and II = ∞,
• 0 is a regular boundary if I < ∞ and II < ∞,
• 0 is a natural boundary if I = ∞ and II = ∞,
• 0 is an entrance boundary if I = ∞ and II < ∞.

The entrance type been excluded for a finite boundary of a diffusion process on natural
scale, and the natural type been considered in the settings of Theorem 5.2.1, this leaves
us with two possible types for the boundary 0: exit or regular. If 0 is an exit boundary,
then the diffusion process X is absorbed at the boundary 0. If 0 is a regular boundary,
then the diffusion process can either be absorbed or reflected at 0. In these cases,
the convergence result of Theorem 5.2.1 can be extended by considering a grid g on I
containing 0 and by adapting the dynamics of X̃g as follows. The dynamic of X̃g is
the same as in Algorithm 1, up to the time when it reaches 0, then:

• if 0 is an absorbing boundary (exit or regular), then the result can be immediately
extended by stopping X̃g when it reaches 0;
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0 1 2 3 4 5 6 7

Figure 5.3: The covering grid g = Z+ of [0,∞) along with its first cells C(g).

• if 0 is a reflecting regular boundary, then the process X̃g jumps from 0 to b :=
min g \{0} with probability 1 and after a time

∫
[0,b)(b− ζ)m(dζ). We emphasize that

in this configuration, 0 may be a sticky boundary (i.e., with m(0) ∈ (0,+∞)).

In both cases of reflection and absorption at 0, the boundary is attainable. Thus,
0 must be a point of any covering grid of I = [0,∞). This leads to the following
adaptation of the notion of grid cells. The cells C(g) of such grid g are the open
intervals for the induced topology of R on I with endpoint in g. For example g0 = Z+
is a covering grid of [0,∞) and C(g0) = {[0, 1), (n− 1, n+ 1)n∈N}.

The proof of the convergence in these situations is omitted here, since it is a
straightforward adaptation of the proof of Theorem 5.2.1, using in particular the fact
that, in the case of a reflecting boundary,

E0
[
τb

]
=
∫

[0,b)
(b− ζ)m(dζ).

The case of killing boundaries, and in general of a process with non-zero killing measure,
leads to additional non-trivial difficulties. Devising an algorithm and a similar result
as Theorem 5.2.1 for such processes remains an active area of research.

5.2.5 Markovian embedding

The consecutive values of the process (X̃t)t≥0 defined through (5.2)-(5.4) form a Markov
chain with, by construction, the same transition probabilities as (Xt)t≥0 on g. We
define the embedding times of (Xt)t≥0 in g as,τ

g
0 = 0,
τg

k = inf
{
t > τg

k−1 : Xt ∈ g \ {Xτg
k−1

}
}
, ∀k ≥ 1.

(5.17)

As both X̃T g(n) and Xτg
n

are both Markov chains with the same transition probabilities
with X̃0 forced to be equal in law to Xτg

1
(see Section 5.2.1), the following equality in

law holds,
Law(X̃T g(n);n ≥ 0) = Law(Xτg

n
;n ≥ 1).

We define Kg(t) as the inverse of T g(n), i.e.,

Kg(t) = inf
{
n ∈ N :

n∑
k=1

E
[
τg

k − τg
k−1

∣∣∣Xτg
k−1
, Xτg

k

]
> t

}
. (5.18)

Thus, we get the following Proposition.
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Proposition 5.2.7. Let (Xt)t≥0 be a diffusion process, g a grid defined over its state
space I and X̃g

t be the approximation process defined in (5.3) and (5.4). Then, if (τg
n )n≥0

are the embedding times of (Xt)t≥0 in g, the following equality in law holds,

Law
(
X̃t; t ≥ 0

)
= Law

(
Xτg

Kg(t)
; t ≥ 0

)
,

where Kg(t) is the random index defined in (5.18).

5.3 Moment characterization of conditional exit
times

The law of the approximation process defined in the previous section was shown to be
determined by the transition probabilities Px(τb < τa) and conditional transition times
Ex(τab|τb < τa). In this section we show that quantities of the form vk(x) = Ex(τ k

ab1τb<τa)
yield an integral formulation with respect to the speed measure of the diffusion and
involving the scale function (we do not assume that the diffusion is on natural scale in
the present section). We also show that this results in them being solutions to Dirichlet
problems where the differential operator is the infinitesimal generator L of the diffusion.
This allows us to simulate such processes via Algorithm 1 and thus to approximate the
law of the target diffusion process (Xt)t≥0.
In terms of Algorithm 1, we need to compute for three adjacent points a, x, b of the
grid the quantities

v0(x) = Px(τb < τa), v1(x) = Ex(τab1τb<τa) and v1(x) = Ex(τab1τa<τb
).

The quantities of (5.5) are then

p+[x, (a, b)] = v0(x), T+[x, (a, b)] = v1(x)
v0(x) ,

p−[x, (a, b)] = 1 − v0(x), T−[x, (a, b)] = v1(x)
1 − v0(x) .

Proposition 5.3.1. The function v0(x) = Px(τb < τa) is solution to the problem with
Dirichlet boundary conditions 

Lu = 0, x ∈ (a, b),
u(a) = 0,
u(b) = 1,

(5.19)

where L is the infinitesimal generator of (Xt)t≥0, which also implies that v0 ∈ dom(L).

Proof. Let x ∈ (a, b), from the definition of the scale function and the factorization of
the infinitesimal generator L = Dm Ds

L v0 = Dm Ds
s(·) − s(a)
s(b) − s(a) = Dm

1
s(b) − s(a) .
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which equals 0 as m(dx) is a positive measure. As v0 and L v0 = 0 are both functions
in C0

b , we deduce that v0 ∈ dom(L) and L v0 = 0. Under Pb, the stopping time τb equal
0 a.s. and the process has a.s. continuous trajectories, hence τa > 0 a.s., i.e.,

v0(b) = Pb(τb < τa) = Pb(0 < τa) = 1.

This, along with the symmetrical argument, allow us to retrieve the boundary conditions
of (5.19).

Proposition 5.3.2. For every k ∈ N, let vk be the function defined for every x ∈ (a, b)
by vk(x) = Ex(τ k

ab1τb<τa). Then,

vk(x) = k
∫

(a,b)
Ga,b(x, ζ)vk−1(ζ)m(dζ). (5.20)

Proof. Since
∫ τab

0 (τab − t)k−1 dt = τ k
ab/k,

vk(x) = k Ex

[
1τb<τa

∫ τab

0
(τab − t)k−1 dt

]
= k Ex

[
1τb<τa

∫ ∞

0
1t≤τab

(τab − t)k−1 dt
]
.

From the Markov property, by conditioning on Ft and as 1t≤τab
is Ft-measurable,

vk(x) = k Ex

[∫ ∞

0
1t≤τab

E
[
1τb<τa(τab − t)k−1

∣∣∣Ft

]
dt
]

= k Ex

[∫ τab

0
EXt

[
1τb<τaτ

k−1
ab

]
dt
]
.

The equality (5.20) results by applying directly Green’s formula.

Proposition 5.3.3. The function vk(x) = Ex(τ k
ab1τb<τa) is solution to the problem with

Dirichlet boundary conditions
Lu = −kvk−1, x ∈ (a, b),
u(a) = 0,
u(b) = 0.

Lemma 5.3.4. Let g(x) =
∫

(a,b) Ga,b(x, y)f(y)m(dy), where f ∈ C0
b (a, b) and Ga,b(x, y)

is the Green function defined in (1.20). Then g ∈ dom(L) and

L g(x) = −f(x), ∀x ∈ (a, b).

Proof. Let x ∈ (a, b). Using the Dm Ds factorization of L and the dominated convergence
theorem we get

L g(x)

= Dm Ds

∫
(a,b)

[
1y<x

(s(y) − s(a))(s(b) − s(x))
s(b) − s(a) +1y≥x

(s(x) − s(a))(s(b) − s(y))
s(b) − s(a)

]
f(y)m(dy)

= − Dm

∫
(a,x)

v0(y)f(y)m(dy) + Dm

∫
[x,b)

(1 − v0(y))f(y)m(dy)

= −v0(x)f(x) − (1 − v0(x))f(x) = −f(x).

The continuity of g is a consequence of Lebesgue’s convergence theorem for integrals.
Moreover as Ga,b(x, y) is bounded by s(b) − s(a), m(dx) is locally finite and f is
bounded, g is also bounded. So, we deduce that f ∈ dom(L) and that on (a, b) we have
L g = −f .
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Proof of Proposition 5.3.3. From Proposition 5.3.2,

vk(x) =
∫

(a,b)
Ga,b(x, y)kvk−1(y)m(dy).

As v0 ∈ C0
b (a, b), from Lemma 5.3.4 we deduce iteratively that vk ∈ C0

b (a, b) for all
k ∈ N and that L vk = −kvk−1 on (a, b). For the boundary conditions, we observe that
τab = τa ∧ τb = 0 a.s. under Pa, so for k ≥ 1

vk(a) = Ea(τ k
ab1τb<τa) ≤ Ea(τ k

ab) = 0.

With the same argument we show that vk(b) ≤ 0 and as they are obviously positive
quantities vk(a) = vk(b) = 0.

5.4 Convergence of the embedding times

In order to prove the convergence of the process (X̃g
t )t≥0 we need to control quantities

of the form Ex

[
supt≤T |t− τg

Kg(T )|p
]
, where τg

k are the embedding times of the process
X in the grid g. In this section, we show the existence of such bounds in terms of the
metric

|g|X = sup
c∈C(g)

{s(c)m(c)}

defined in (5.1). If there exists a constant K > 0 such that m(c) ≤ K for all c ∈ C(g),
then, |c|m(c) ≤ K|c| and |g|X ≤ K|g|. Thus, we can bound the quantities of interest in
terms of |g| instead of |g|X . But, in doing so, we do not track correctly the convergence
rates of the approximation process. For example, for the standard Brownian motion,
|g|B = |g|2. Moreover, as shown in Section 5.2.3, such bounds give us a direct way
to adapt the grid to the speed measure in order to accelerate the convergence of the
scheme.

5.4.1 Bounds on the conditional moments of the exit times

Lemma 5.4.1. Let vk(x) = Ex(τ k
ab1τb<τa), then for all k ∈ N∥∥∥∥ vk

vk−1

∥∥∥∥
∞

≤ k|g|X . (5.21)

Proof. We first observe that

Ga,b(x, y)v0(y)
v0(x) =


(y−a)(b−x)

(b−a)
y−a
x−a

, x > y,
(x−a)(b−y)

(b−a)
y−a
x−a

, x ≤ y.

As for x > y the ratio y−a
x−a

< 1,

Ga,b(x, y)v0(y)
v0(x) ≤


(y−a)(b−x)

(b−a) , x > y,
(y−a)(b−y)

(b−a) , x ≤ y,
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which is bounded by (b− a) in both cases as x, y ∈ (a, b). Thus,∫ b

a
Ga,b(x, y)v0(y)m(dy) = v0(x)

∫ b

a
Ga,b(x, y)v0(y)

v0(x)m(dy) ≤ v0(x)(b− a)m((a, b)).

(5.22)
From Proposition 5.3.2, vk(x) = k

∫
(a,b) Ga,b(x, y)vk−1(y)m(dy) and

vk(x) = k!
∫

(a,b)
Ga,b(x, xk)

∫
(a,b)

Ga,b(xk, xk−1)· · ·
∫

(a,b)
Ga,b(x2, x1)v0(x1)m(dx1) . . .m(dxk).

(5.23)
From (5.22) and (5.23),

vk(x) ≤ k(b− a)m((a, b))vk−1(x).

Since (b− a)m((a, b)) ≤ |g|X , we get the desired result on vk/vk−1.

Corollary 5.4.2. Let k ∈ N. Then, we have the following bound for vk(x) =
Ex(τ k

ab1τb<τa),
∥vk∥∞ ≤ k!|g|kX .

Lemma 5.4.3. Let X be a diffusion process with state space I an interval of R, m the
speed measure of X, a, x, b ∈ I such that a < x < b, cx = (a, b), |cx|X = m(cx)|b− a|
and λ > 0 such that λ|cx|X ∈ (0, 1). Then,

Ex(eλτab) ≤ exp
(

λ

1 − λ|cx|X
Ex(τab)

)
. (5.24)

Proof. Developing the exponential series,

Ex(eλτab) = 1 +
∞∑

N=1

λN

N ! Ex(τN
ab) = 1 + Ex(τab)

∞∑
N=1

λN

N !
Ex(τN

ab)
Ex(τab)

.

From Corollary 5.4.2, we can bound the ratio of expected values by (N − 1)!|cx|N−1
X .

As λ|cx|X ∈ (0, 1),

Ex(eλτab) ≤ 1 + Ex(τab)
∞∑

N=1

λ

N
(λ|cx|X)N−1 ≤ 1 + Ex(τab)

λ

1 − λ|cx|X
.

Thus, we only need to apply the inequality 1 + x ≤ ex to get (5.24).

Lemma 5.4.4. Let t,M > 0 and λ > 0 such that λ|g|X ∈ (0, 1). Then,

Px(τg
Kg(t) > M) ≤ e−λMe

λ
t+|g|X

1−λ|g|X . (5.25)

Proof. From Markov’s inequality,

Px(τg
Kg(t) > M) ≤ e−λM Ex

[
e

λτg
Kg(t)

]
= e−λM Ex

[
eλ
∑Kg(t)

k=1 (τk−τk−1)
]
.

Conditioning on the σ-algebra B generated by the trajectory of Xt on the grid g, i.e.,
B = σ{Xτk

; k ∈ N0}, and as Kg(t) is B-measurable,

Ex

[
eλ
∑Kg(t)

k=1 (τk−τk−1)
]

= Ex

[Kg(t)∏
k=1

E
[
eλ(τk−τk−1)

∣∣∣∣B]]. (5.26)
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From the definition of |g|X , λ|c|X ≤ λ|g|X ∈ (0, 1) for each cell c of the grid g. Thus,
applying Lemma 5.4.3 on each term of the product in (5.26),

Px(τg
Kg(t) > M) ≤ e−λM Ex

[
exp

(
λ

1 − λ|g|X

Kg(t)∑
k=1

E(τk − τk−1|B)
)]

(5.27)

From (5.18),

t <
Kg(t)∑
k=1

E(τk − τk−1|B) ≤ t+ E(τKg(t)+1 − τKg(t)|B)

Thus, from (5.21),
Kg(t)∑
k=1

E(τk − τk−1|B) ≤ t+ ∥v1/v0∥∞ ≤ t+ |g|X , (5.28)

From (5.27) and (5.28), we get (5.25).

5.4.2 Convergence of the embedding times

For this section, let X be a diffusion process with state-space I an interval of R, g a
covering grid of I, τg

k the embedding times of X in g as defined in (5.17) and Kg(t) as
defined in (5.18).
Lemma 5.4.5. For any T > 0,

Kg(T )∑
k=1

Var
(
τg

k − τg
k−1

∣∣∣Xτg
k−1
, Xτg

k

)
≤ 2|g|X

(
T + |g|X

)
,

where |.|X is defined in (5.1).

Proof. For all x ∈ g, let cx be the cell of g containing x. Then,
Kg(T )∑

k=1
Var

(
τg

k − τg
k−1

∣∣∣Xτg
k−1
, Xτg

k

)

=
Kg(T )∑

k=1
E
[
(τg

k − τg
k−1)2

∣∣∣∣Xτg
k−1
, Xτg

k

]
−
(

E
[
τg

k − τg
k−1

∣∣∣∣Xτg
k−1
, Xτg

k

])2

≤ sup
k≤Kg(t)


E
[
(τg

k − τg
k−1)2

∣∣∣∣Xτg
k−1
, Xτg

k

]
E
[
τg

k − τg
k−1

∣∣∣∣Xτg
k−1
, Xτg

k

]


Kg(T )∑
k=1

E
[
(τg

k − τg
k−1)

∣∣∣∣Xτg
k−1
, Xτg

k

]
.

So from Lemma 5.4.1 and the definition of Kg(t),

Kg(T )∑
k=1

Var
(
τg

k − τg
k−1

∣∣∣Xτg
k−1
, Xτg

k

)

≤
∥∥∥∥v2

v1

∥∥∥∥
∞

Kg(T )∑
k=1

E
[
(τg

k − τg
k−1)

∣∣∣∣Xτg
k−1
, Xτg

k

]

≤
∥∥∥∥v2

v1

∥∥∥∥
∞

(
T +

∥∥∥∥v1

v0

∥∥∥∥
∞

)
≤ 2|g|X(T + |g|X),

which is the desired inequality.
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Proposition 5.4.6. Let (Ft)t≥0 be the canonical filtration of X. Let also An = Fτg
n
,

B = σ
(
(Xτg

k
)k∈N0

)
and ∆τg

k = τg
k − τg

k−1. If we define the augmented filtration Gn =
An ∨ B, then the process

Mn =
n∑

k=1
∆τg

k − E
[
∆τg

k

∣∣∣Xτg
k−1
, Xτg

k

]
,

is a Gn-martingale.

Proof. For m ≤ n,

E
[
Mn

∣∣∣Gm

]
= E

[
Mn

∣∣∣Am,B
]

= E
[ m∑

k=1
∆τg

k − E
[
∆τg

k

∣∣∣Xτg
k−1
, Xτg

k

]
+

n∑
k=m+1

∆τg
k − E

[
∆τg

k

∣∣∣Xτg
k−1
, Xτg

k

]∣∣∣∣Am,B
]
.

From Lemma A.4.1 and as τg
k is Ak measurable,

E
[
Mn

∣∣∣Gm

]
= Mm +

n∑
k=m+1

EX
τ

g
m

[
∆τg

k − E
[
∆τg

k

∣∣∣Xτg
k−1
, Xτg

k

]∣∣∣∣B] = Mm.

This proves the result.

Theorem 5.4.7. For any T > 0,

E
[

sup
t∈[0,T ]

|τg
Kg(t) − t|2

]
≤ 2|g|X

(
4
(
T + |g|X

)
+ 1

)
, (5.29)

where |.|X is defined in (5.1).

Proof. The convexity inequality (a+ b)p ≤ 2p−1(ap + bp) yields for p = 2

E
[

sup
t∈[0,T ]

|τg
Kg(t) − t|2

]
≤ 2 E

[
sup

t∈[0,T ]

∣∣∣∣τg
Kg(t) −

Kg(t)∑
k=1

E
[
∆τg

k

∣∣∣Xτg
k−1
, Xτg

k

]∣∣∣∣2]

+ 2 E
[

sup
t∈[0,T ]

∣∣∣∣Kg(t)∑
k=1

E
[
∆τg

k

∣∣∣Xτg
k−1
, Xτg

k

]
− t

∣∣∣∣2]. (5.30)

From Proposition 5.4.6, the term ∑n
k=1 ∆τg

k − E
[
∆τg

k

∣∣∣Xτg
k−1
, Xτg

k

]
is a Gn-martingale,

where Gn = Fτg
n

∨ B and B = σ
(
(Xτg

k
)k∈N0

)
. Thus, from Doob’s Lp inequality,

E
[

sup
t∈[0,T ]

|MKg(t)|2
]

= E
[

sup
k≤Kg(T )

|Mk|2
]

≤ 2 E
[
|MKg(T )|2

]
.

By conditioning on B, from Lemma A.4.1,

E
[

sup
t∈[0,T ]

∣∣∣∣Kg(t)∑
k=1

∆τg
k − E

[
∆τg

k

∣∣∣Xτg
k−1
, Xτg

k

]∣∣∣∣2]

≤ 2 E
[(Kg(T )∑

k=1
∆τg

k − E
[
∆τg

k

∣∣∣Xτg
k−1
, Xτg

k

])2]

= 2 E
[Kg(T )∑

k=1
Var

(
∆τg

k

∣∣∣Xτg
k−1
, Xτg

k

)]
,
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which from Lemma 5.4.5 is bounded by 4|g|X
(
T + |g|X

)
. For the second term on the

right hand side of (5.30), from (5.18) and since Kg(t) ≥ 1 for any t > 0,

Kg(t)∑
k=1

E
[
τg

k − τg
k−1

∣∣∣Xτg
k−1
, Xτg

k

]
− t ≤ E

[
τg

Kg(t) − τg
Kg(t)−1

∣∣∣Xτg
Kg(t)−1

, Xτg
Kg(t)

]
≤
∥∥∥∥v1

v0

∥∥∥∥
∞

≤ |g|X .

So having bounded both additive parts of the right hand side of (5.30), we get (5.29).

5.5 Convergence rate of the Markov chain

5.5.1 Moment bounds

In this section we prove that Theorem 3.1 of [9] holds also for reflected processes and
for a sharper constant. This result, combined with the bound (5.29) is used to prove
the convergence of the approximation process in Section 5.5.2.
Lemma 5.5.1. Let X be a diffusion process on natural scale with state-space R and a
speed measure mX that satisfies Condition (5.7). Then, for all p ≥ 2, there exist two
constants C, C ′ > 0 such that

Ex

[
sup

t∈[0,T ]
|Xt − x|p

]
≤ C ′ [1 + |x|p]eCT , (5.31)

where k1 is a constant such that Condition (5.7) is satisfied, C ≤ 8p(p − 1)/k1 and
C ′ > 0 is a constant that depends only on p.

Proof. Let Z be the diffusion process on natural scale with speed measure,

mZ(dx) = 1|x|<1
k1

2 dx+ 1|x|≥1
k1

2x2 dx.

We note that k1
2x2 ≤ k1

1+x2 for all x ≥ 1. The dynamic of Z can be shown to be

dZt =


2√
k1

dBt, for |Zt| < 1,
2√
k1
Zt dBt, for |Zt| ≥ 1,

where B is a standard Brownian motion. We also assume that Px(Z0 = x) = 1. As X
and Z are on natural scale, they can be expressed as time-changed Brownian motion [82,
Theorem 47.1, p. 277], i.e., for every t ≥ 0, Xt = BγX(t) and Zt = WγZ(t), where B and
W are two standard Brownian motions with Px(B0 = x) = Px(W0 = x) = 1, respective
local times Lx(B), Lx(W ) and with γX(t), γZ(t) being the respective right-inverses6 of

AX(t) = 1
2

∫
I
Lx

t (B)mX(dx) and AZ(t) = 1
2

∫
I
Lx

t (W )mZ(dx).

6The right-inverse of a function f is given by,

f−1(x) = inf{ζ ≥ 0 : f(ζ) > x}.
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Using the same underlying Brownian motion in these definitions, we have AZ(t) ≤ AX(t),
and hence γX(t) ≤ γZ(t). Thus,

Ex

[
sup

t∈[0,T ]
|Xt − x|p

]
= Ex

[
sup

t∈[0,γX(T )]
|Bt − x|p

]
≤ Ex

[
sup

t∈[0,γZ(T )]
|Bt − x|p

]
= Ex

[
sup

t∈[0,T ]
|Zt − x|p

]
.

Thus, from Doob’s Lp and convexity inequalities,

Ex

[
sup

t∈[0,T ]
|Xt − x|p

]
≤ 2p−1p

p− 1

(
Ex

[
|ZT |p

]
+ |x|p

)
. (5.32)

Using Itô’s formula, followed by a classical localization argument, Fatou’s Lemma along
with the standard dominated convergence theorem, one obtains that for all q > 2/3,

Ex

[
(|Zt| − 1)3q

1|Zt|≥1 + 1
]

≤ (|x| − 1)3q
1|x|≥1 + 1 +

∫ t

0

3q
2 (3q − 1) Ex

[
(|Zs| − 1)3q−2

1|Zs|≥1
4Z2

s

k1

]
ds.

Using the inequality |x− 1|3q−2x2 ≤ 4|x− 1|3q + 4 for all x ≥ 1,

Ex

[
(|Zt| − 1)3q

1|Zt|≥1 + 1
]

≤ (|x| − 1)3q
1|x|≥1 + 1 +

∫ t

0

24q
k1

(3q − 1) Ex

[
(|Zs| − 1)3q

1|Zs|≥1 + 1
]

ds.

Using Gronwall’s Lemma, we deduce that, for all t ≥ 0,

Ex

[
(|Zt| − 1)3q

1|Zt|≥1 + 1
]

≤ [(|x| − 1)3q
1|x|≥1 + 1]e24q(3q−1)t/k1 .

Let C ′
q > 0 be a constant such that (|x| − 1)3q

1|x|≥1 + 1 ≥ C ′
q|x|3q for all x ∈ R. Thus,

Ex

[
|Zt|3q

]
≤ C ′

q [(|x| − 1)3q
1|x|≥1 + 1]e24q(3q−1)t/k1 , ∀t ≥ 0.

Hence, for all7 p > 2, we have

Ex

[
|Zt|p

]
≤ C ′

p/3 [1 + |x|p]e8p(p−1)t/k1 , ∀t ≥ 0. (5.33)

Replacing (5.33) in (5.32), we get the bound (5.31) for C ′ = p
p−12p−1(C ′

p/3 + 1) and
C = 8p(p− 1)/k1.

Proposition 5.5.2. Let X be a diffusion process with state-space I an interval of R,
on natural scale and with a speed measure mX that satisfies Condition (5.7). Then, for
each T > 0 and γ ∈ (0, 1

2), there exists a constant C > 0 such that∥∥∥∥ sup
s ̸=t≤T

|Xt −Xs|
|t− s|γ

∥∥∥∥
Lp(Px)

≤ C(1 + |x|). (5.34)

The result also holds in the presence of a reflecting boundary ζ ∈ I.
7The extension to p = 2 is straightforward.
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Proof. For the non-reflecting case, the proof works using the same arguments as in the
proof of Theorem 3.1 in [9].

For the reflecting case: Let X be a diffusion process on natural scale, with speed
measure m satisfying (5.9) for a constant k1 > 0 and a reflecting boundary at ζ ∈ I.
We observe that

X = |X◦ − ζ| + ζ (5.35)
in law, where X◦ is the non-reflecting diffusion on natural scale with speed measure

mX◦(dx) = 1x≥ζm(dx) + 1x<ζm(2ζ − dx)
which also satisfies (5.9) for the same constant k1. From (5.35) and the triangle
inequality,

|Xt −Xs|
|t− s|γ

=

∣∣∣|X◦
t − ζ| − |X◦

s − ζ|
∣∣∣

|t− s|γ
≤ |X◦

t −X◦
s |

|t− s|γ
. (5.36)

The diffusion process X◦ is non-reflecting and its speed measure mX◦ satisfies (5.9).
Thus, (5.34) holds for X◦ for a constant C > 0 and from (5.36),∥∥∥∥ sup

s ̸=t≤T

|Xt −Xs|
|t− s|γ

∥∥∥∥
Lp(Px)

≤
∥∥∥∥ sup

s ̸=t≤T

|X◦
t −X◦

s |
|t− s|γ

∥∥∥∥
Lp(Px)

≤ C(1 + |x|).

5.5.2 Proof of the convergence rate for a process on natural
scale

Proof of Theorem 5.2.1. From Proposition 5.2.7,

Wp

[
Law

(
(X̃g

t )t∈[0,T ]
)
,Law

(
(Xt)t∈[0,T ]

)]
= inf

{∥∥∥∥∥ζ − ξ∥
∥∥∥∥

Lp
; ζ ∼ Law

(
(X̃g

t )t∈[0,T ]
)
, ξ ∼ Law

(
(Xt)t∈[0,T ]

)}
≤
∥∥∥∥ sup

t∈[0,T ]
|Xτg

Kg(t)
−Xt|

∥∥∥∥
Lp(Px)

.

Let M > T . From Minkowski inequality,∥∥∥∥ sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|
∥∥∥∥

Lp(Px)
≤
∥∥∥∥1τg

Kg(T )≤M sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|
∥∥∥∥

Lp(Px)

+
∥∥∥∥1τg

Kg(T )>M sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|
∥∥∥∥

Lp(Px)
(5.37)

For the first additive term of (5.37), for any γ > 0, by multiplying and dividing by
|τg

Kg(t) − t|γ,∥∥∥∥1τg
Kg(T )≤M sup

t∈[0,T ]
|Xτg

Kg(t)
−Xt|

∥∥∥∥
Lp(Px)

=
∥∥∥∥1τg

Kg(T )≤M sup
t∈[0,T ]

{ |Xτg
Kg(t)

−Xt|
|τg

Kg(t) − t|γ
|τg

Kg(t) − t|γ
}∥∥∥∥

Lp(Px)

≤
∥∥∥∥∥1τg

Kg(T )≤M sup
t∈[0,T ]

{ |Xτg
Kg(t)

−Xt|
|τg

Kg(t) − t|γ

}
sup

t∈[0,T ]
|τg

Kg(t) − t|γ
∥∥∥∥∥

Lp(Px)
.
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As τg
Kg(t) is increasing with respect to t,

∥∥∥∥1τg
Kg(T )≤M sup

t∈[0,T ]
|Xτg

Kg(t)
−Xt|

∥∥∥∥
Lp(Px)

≤
∥∥∥∥∥ sup

s̸=t≤M

{
|Xs −Xt|
|s− t|γ

}
sup

t∈[0,T ]
|τg

Kg(t) − t|γ
∥∥∥∥∥

Lp(Px)

=
(

Ex

[
sup

s ̸=t≤M

{
|Xs −Xt|
|s− t|γ

}
sup

t∈[0,T ]
|τg

Kg(t) − t|γ
]p)1/p

.

From Hölder’s inequality for q ≥ 1 and q/(q − 1) conjugates exponents and (5.34), for
every γ ∈ (0, 1

2), there exists a constant C1 = C1(M,γ, p(q − 1)/q, x) > 0 such that
∥∥∥∥1τg

Kg(T )≤M sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|
∥∥∥∥

Lp(Px)

≤
(

Ex

[
sup

s ̸=t≤M

|Xs −Xt|
|s− t|γ

]p(q−1)/q)q/p(q−1)(
Ex

[
sup

t∈[0,T ]
|τg

Kg(t) − t|γ
]pq)1/pq

≤ C
q/p(q−1)
1

(
Ex

[
sup

t∈[0,T ]
|τg

Kg(t) − t|γpq
])1/pq

.

Choosing q = 2/γp, from (5.29), for any γ ∈ (0, 1
2 ∧ 2

p
)∥∥∥∥1τg

Kg(T )≤M sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|
∥∥∥∥

Lp(Px)
≤ C

1/p(1−γp)
1

(
2|g|X (4T + |g|X)

)γ/2
. (5.38)

For the second additive term of (5.37),

Ex

[
1τg

Kg(T )>M sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|p
]

=
∞∑

m=M

Ex

[
1τg

Kg(T )∈[m,m+1) sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|p
]
.

(5.39)
For each term of the sum in (5.39), from Hölder’s inequality,

Ex

[
1τg

Kg(T )∈[m,m+1) sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|p
]

≤
[

Px(τg
Kg(T ) > m)

]1/q′[
Ex

[
1τg

Kg(T )∈[m,m+1) sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|p
]]q′/(q′−1)

≤
[

Px(τg
Kg(T ) > m)

]1/q′[
Ex

[
1τg

Kg(T )<m+1 sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|p
]]q′/(q′−1)

.

As each m in the sum in (5.39) satisfies m+ 1 > M > T , from Minkowski’s inequality,

Ex

[
1τg

Kg(T )<m+1 sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|p
]

≤ Ex

[
1τg

Kg(T )<m+12p−1 sup
t∈[0,T ]

{
|Xτg

Kg(t)
− x|p + |Xt − x|p

}]
≤ 2p Ex

[
sup

t∈[0,m+1]
|Xt − x|p

]
,
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which from Lemma 5.5.1 is bounded by C2 [1 + |x|p]eC3(m+1), where C2 and C3 are
positive constants depending on p. This, along with Lemma 5.4.4 and Hölder’s inequality
gives us for λ > 0 chosen such that α = λ|g|X < 1,

Ex

[
1τg

Kg(T )∈[m,m+1) sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|p
]

≤
[
C2 [1+|x|pq′ ]eC3(m+1)

]1/q′[
e−λme

λ
T +|g|X
1−λ|g|X

](q′−1)/q′

where C2(pq′) ≤ 2pq′(pq′ − 1)/c and C2(pq′) > 0 a positive constant depending only on

pq′. Thus, setting C4(pq′) :=
[
C2(pq′) [1 + |x|pq′ ]

]1/q′

eC3/q′
> 0,

Ex

[
1τg

Kg(T )∈[m,m+1) sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|p
]

≤ C4 exp
{ 1
q′

[
C3m+ (q′ − 1)

(
λ
T + |g|X
1 − λ|g|X

− λm
)]}

= C4 exp
{ 1
q′

[
C3m+ (q′ − 1) α

|g|X

(
T + |g|X

1 − α
−m

)]}
= C5 exp

{ 1
q′

[
C3m+ (q′ − 1) α

|g|X

(
T

1 − α
−m

)]}
,

where C5 := C4 exp( q′−1
q′

α
1−α

). If we choose q′ > 1 such that8 A := C3 −(q′ −1)α/|g|X <
0,

∞∑
m=M

Ex

[
1τg

Kg(T )∈[m,m+1) sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|p
]

≤ C5 exp
{ (q′ − 1)αT

(1 − α)|g|X

} ∞∑
m=M

(eA)m = C5 exp
{ (q′ − 1)αT

(1 − α)|g|X

}
eAM

1 − eA

= C5 exp
{ (q′ − 1)αT

(1 − α)|g|X

}exp
{(
C3 − (q′−1)α

|g|X

)
M
}

1 − exp
{
C3 − (q′−1)α

|g|X

} .

If M is chosen such that M > T/(1 − α), then
∞∑

m=M

Ex

[
1τg

Kg(T )∈[m,m+1) sup
t∈[0,T ]

|Xτg
Kg(t)

−Xt|p
]

≤ C5e
C3M

1 − eA
exp

{(q′ − 1)α
|g|X

(
T

1 − α
−M

)}
,

(5.40)
where the bound is O(e−1/|g|X ), and can be rewritten as C(1)e−C(2)/|g|X . From (5.37),
(5.38) and (5.40),∥∥∥∥ sup

t∈[0,T ]
|Xτg

Kg(t)
−Xt|

∥∥∥∥
Lp(Px)

≤ C
1/p(1−γp)
1

(
2|g|X

(
4T + |g|X

))γ/2
+ C(1)e−C(2)/|g|X .

As |g|γX and e−1/|g|X are both O(|g|γ/2
X ), there exists a constant C > 0, such that,∥∥∥∥ sup

t∈[0,T ]
|Xτg

Kg(t)
−Xt|

∥∥∥∥
Lp(Px)

≤ C|g|γ/2
X ,

which is (5.8).
8We remark that if this is satisfied for a grid g, then it is satisfied for all grids g′ such that

|g′|X ≤ |g|X .
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5.6 Computations for the classical SDE case and
beyond

In order to implement Algorithm 1 for simulating paths of a diffusion X, one needs two
things. First, a grid g adapted to the scale function and speed measure of X. Second,
good approximations of the transition probabilities and conditional transition times
of X over g. The first point was covered in Section 5.2.3.

In this section, we show how to compute the quantities (5.5) in the pure SDE case.
The extension to SDE solutions with point-wise singularities is straightforward. This
allows us via Algorithm 1 to simulate all such processes.

Let (µ, σ) two real-valued functions that satisfy Condition 5.2.6 and X be the
diffusion that solves

dXt = µ(Xt) dt+ σ(Xt) dBt,

where B is a standard Brownian motion. Let also I be the state-space of X. A
straightforward computation using Itô’s formula gives us the infinitesimal generator
of X,

(L, dom(L)) =
L f(x) = µ(x)f ′(x) + 1

2σ
2(x)f ′′(x), ∀f ∈ dom(L),

dom(L) =
(
f ∈ Cb(I) : L f ∈ C(I)

)
.

(5.41)

In particular, if µ and σ are continuous, then, dom(L) = C2(I). From Proposition 5.3.1
and (5.41) we can infer that,

s′(x) = e
−
∫ y

a

2µ(ζ)
σ2(ζ)

dζ and m(dx) = 1
s′(x)

2
σ2(x) dx. (5.42)

Thus, from Proposition 5.3.1,

v0(x) =
∫ x

a e
−
∫ y

a

2µ(ζ)
σ2(ζ)

dζ dy∫ b
a e

−
∫ y

a

2µ(ζ)
σ2(ζ)

dζ dy
. (5.43)

From (5.20) and (5.42),

v1(x) =
∫ b

a
Ga,b(x, ζ)v0(ζ)

1
s′(x)

2
σ2(x) dζ,

v1(x) =
∫ b

a
Ga,b(x, ζ)

(
1 − v0(ζ)

) 1
s′(x)

2
σ2(x) dζ.

(5.44)

The scale functions and the speed measures are defined up to a multiplicative constant:
for α ∈ R and λ > 0, the pairs (s,m) and (α+ λs, λ−1m) are associated to the same
diffusion. In particular, as we are only concerned with points x ∈ [a, b], we could use v0
for the scale function. The speed measure shall be adapted accordingly. For x, ζ ∈ [a, b],
the Green function in (1.20) takes the simpler form,

Ga,b(x, ζ) = v0(x ∧ ζ)
(
1 − v0(x ∨ ζ)

)
.
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Thus, expressions (5.44) become

v1(x) =
∫ b

a
v0(x ∧ ζ)

(
1 − v0(x ∨ ζ)

)v0(ζ)
v′

0(ζ)
2

σ2(ζ) dζ,

v1(x) =
∫ b

a
v0(x ∧ ζ)

(
1 − v0(x ∨ ζ)

)1 − v0(ζ)
v′

0(ζ)
2

σ2(ζ) dζ.
(5.45)

The quantities (5.43) and (5.44) or (5.45) can be computed analytically as we do for
the Ornstein-Uhlenbeck process in Section 6.1.4 or approximated numerically as for
the Cox-Ingersoll-Ross process in Section 6.1.4.
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Chapter 6

Numerical experiments

Chapter outline: In this chapter we aim to test numerically the theoretical results
established in this thesis, namely the STMCA approximation of one-dimensional
diffusions of Chapter 5, the local time approximation and the stickiness parameter
estimation of Chapter 4. In Section 6.1, we give numerical STMCA approximation
examples of diffusions that exhibit various path-wise features. In Section 6.2, we assess
numerically the stickiness parameter estimation and the local time approximation. We
also see how the flexibility of grid choice in Algorithm 1 make it suitable for simulations
regarding the local time approximation.

6.1 Approximation in distribution

6.1.1 Standard Brownian motion:

The standard Brownian motion can be defined as the diffusion process with scale
function and speed measure

s(x) = x and m(dx) = 2 dx.

Let vk(x) := Ex[τ k
ab1τb<τa ] and vk(x) := Ex[τ k

ab1τa<τb
] for all k ∈ N0, where cx = (a, b).

Then, from the definition of the scale function,

v0(x) = x− a

b− a
.

From Proposition 5.3.2,

vBM
1 (x) = (x− a)(b− x)

(2
3

(x− a)2

(b− a)2 + b− x

b− a
− 2

3
(b− x)2

(b− a)2

)
,

vBM
1 (x) = (x− a)(b− x)

(2
3

(b− x)2

(b− a)2 + x− a

b− a
− 2

3
(x− a)2

(b− a)2

)
,

where by BM we mean these quantities are associated with the Brownian motion. Thus
from (5.5), we have all the necessary quantities we need to implement the algorithm.
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Figure 6.1: (a): histogram of simulated values at T = 1 of a sticky Brownian motion of
parameter ρ = 0.7 with initial value x0 = 0 using Algorithm 1 with the tuned grid

(5.12) of size-criteria h = 0.01.
(b): histogram of simulated values at T = 1 of a skew Brownian motion of parameter
β = 0.9 with initial value x0 = 0 using Algorithm 1 with a uniform grid of step-size

h = 0.01.
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Figure 6.2: Histogram of simulated values at T = 1 of a CIR process of (θ, µ, σ) =
(5, 5, 1) with initial value x0 = 1 using Algorithm 1 with:
(a): a uniform grid of step-size h = 0.01 and (250, 200)-step Riemann approximation of
(v0, v1) (simulation time: 44.5 sec).
(b): a tuned grid of size-criteria h = 0.01 computed solving numerically (5.15)-(5.16)
with Newton’s method and (250, 200)-step Riemann approximation of (v0, v1) (simula-
tion time: 46.5 sec).
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Figure 6.3: Histogram of simulated values at T = 1 of the CIR process of (θ, µ, σ) =
(1, 2, 1) with initial value x0 = 5 using Algorithm 1 with:
(a): a uniform grid of step-size h = 0.015 and (100, 100)-step Riemann approximation
of (v0, v1) (simulation time: 10.8 sec).
(b): a tuned grid of size-criteria h = 0.015 computed solving numerically (5.15)-
(5.16) with Newton’s method and (100, 100)-step Riemann approximation of (v0, v1)
(simulation time: 12.8 sec).
(c): Same as Figure 6.3a but with a (250, 200)-step Riemann approximation of (v0, v1)
(simulation time: 11.5 sec).
(d): Same as Figure 6.3b but with a (250, 200)-step Riemann approximation of (v0, v1)
(simulation time: 12.2 sec).
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Figure 6.4: Histograms of
(a): simulated values at T = 1 of the Skew Bessel process of parameters (δ, β) = (1.2, 0.8)
with initial value x0 = 0 using Algorithm 1. The quantities (6.1) were approximated
using 100-step Riemann approximations.
(b): histogram of simulated values at T = 1 of the Reflected Bessel process of parameter
δ = 1.1 with initial value x0 = 5 using Algorithm 1 with a uniform grid of step-size
h = 0.01.
(c): histogram of simulated values at T = 1 of the Bessel process of parameter δ = 1.8
with initial value x0 = 5 using Algorithm 1 with a uniform grid of step-size h = 0.01.
The quantities (6.1) were approximated using 100-step Riemann approximations.
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6.1.2 Sticky Brownian motion:

The Brownian motion with a sticky point at 0 where the stickiness parameter is ρ > 0
can be defined as the diffusion process with scale function and speed measure

s(x) = x and m(dx) = 2 dx+ ρδ0(dx).

From the definition of the scale function,

v0(x) = x− a

b− a
.

From Proposition 5.3.2 we may deduce the following expressions for the conditional
exit times of cx = (a, b),

v1(x) = vBM
1 (x) + ρ10∈(a,b)G(a,b)(x, 0)v0(0),

v1(x) = vBM
1 (x) + ρ10∈(a,b)G(a,b)(x, 0)

(
1 − v0(0)

)
,

where vBM
1 (x) and vBM

1 (x) are the analogous quantities for the standard Brownian
motion.

6.1.3 Skew Brownian motion:

The skew Brownian motion at 0 with parameter β ∈ (0, 1) can be defined as the
diffusion process with scale function and speed measure

s(x) =


x

β
, x ≥ 0,
x

1 − β
, x ≤ 0

and m(dx) =
2β dx, x > 0,

2(1 − β) dx, x < 0.

From the definition of the scale function,

v0(x) = s(x) − s(a)
s(b) − s(a) .

As the β and (1−β) terms between the speed measure and the scale function compensate
themselves in the expressions giving vk in Proposition 5.3.2,

v1(x) = vBM
1 (x) and v1(x) = vBM

1 (x).

6.1.4 Ornstein-Uhlenbeck process:

Let Xt be an Ornstein-Uhlenbeck with mean reversion force θ > 0, long-term mean µ
and diffusion parameter σ > 0, i.e.

dXt = θ(µ−Xt) dt+ σ dBt,
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where Bt is a standard Brownian motion. We will see that v0 can be expressed in terms
of the Gaussian imaginary error function as s(x) = erfi

(√
θ

σ2 (µ− x)
)
,

v0(x) =
∫ x

a e
−
∫ y

a

2µ(ζ)
σ2(ζ)

dζ dy∫ b
a e

−
∫ y

a

2µ(ζ)
σ2(ζ)

dζ dy
=

erfi
(√

θ
σ2 (µ− x)

)
− erfi

(√
θ

σ2 (µ− a)
)

erfi
(√

θ
σ2 (µ− b)

)
− erfi

(√
θ

σ2 (µ− a)
) ,

where erfi(x) = 2
π

∫ x
0 e

t2 dt = 2
π
ex2
D+(x), with D+(x) being Dawson function9. Thus,

for an Ornstein-Uhlenbeck process (5.44) becomes,

v1(x) =
∫ b

a
v0(x ∧ ζ)

(
1 − v0(x ∨ ζ)

)
v0(ζ)c exp

(
θ(ζ − µ)2

σ2

) 2
σ2 dx,

v̄1(x) =
∫ b

a
v0(x ∧ ζ)

(
1 − v0(x ∨ ζ)

)(
1 − v0(ζ)

)
c exp

(
θ(ζ − µ)2

σ2

) 2
σ2 dx,

where c = erfi
(√

θ
σ2 (µ− b)

)
− erfi

(√
θ

σ2 (µ− a)
)
.

6.1.5 Cox-Ingersoll-Ross process:

The Cox-Ingersoll-Ross process or CIR process [23], introduced first by W. Feller [38],
is the diffusion that solves the SDE

dXt = θ(µ−Xt) dt+ σ
√
Xt dBt,

where Bt is a standard Brownian motion. The parameter θ > 0 expresses its mean
reversion speed, µ its long term speed and σ > 0 is its diffusivity parameter. The
parameter θ > 0 expresses its mean reversion speed, µ its long term speed and σ > 0 is
its diffusivity parameter. This equation has a diffusion coefficients that degenerates at
0. It however remains non-negative given X0 ≥ 0 and almost surely never hit 0 when
2θµ > σ2. A large body of work have been devoted to the simulation of the CIR and
related process, see e.g. [2].

From (5.43) and (5.45),

v0(x) =
∫ x

a y
− 2θµ

σ2 e
2θ
σ2 y dy∫ b

a y
− 2θµ

σ2 e
2θ
σ2 y dy

and

v1(x) =
∫ b

a
v0(x ∧ ζ)

(
1 − v0(x ∨ ζ)

)v0(ζ)
v′

0(ζ)
2
σ2ζ

dζ,

v1(x) =
∫ b

a
v0(x ∧ ζ)

(
1 − v0(x ∨ ζ)

)1 − v0(ζ)
v′

0(ζ)
2
σ2ζ

dζ.

As the scale function yield no satisfactory closed formula, we perform a numerical
approximation of both v0 and the couple (v1, v1).

These functions may be computed numerically. One may choose a suitable grid
when the process is close to 0 and it is noteworthy that the process may not cross 0, a
problem which arise when using Euler type schemes.

9We use the latter representation in our numerical results.
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6.1.6 Skew and reflected Bessel process:

The Skew-Bessel process (see [3]) of dimension δ ∈ (0, 2) and skew β ∈ (0, 1) is the
diffusion process with the following scale function and speed measure,

s(x) =


1
β

x2−δ

2 − δ
, x > 0,

− 1
1 − β

|x|2−δ

2 − δ
, x ≤ 0,

m(dx) =
2βxδ−1 dx, x > 0,

2(1 − β)|x|δ−1 dx, x ≤ 0.

This yield the following expressions for the quantities we need to compute in order to
implement the algorithm,

v0(x) = s(x) − s(a)
s(b) − s(a) ,

v1(x) =
∫ b

a
Ga,b(x, ζ)v0(ζ)2|ζ|δ−1 dζ,

v1(x) =
∫ b

a
Ga,b(x, ζ)

(
1 − v0(ζ)

)
2|ζ|δ−1 dζ,

(6.1)

where Ga,b(x, ζ) is defined in (1.20). The probability transition kernels plotted in Figure
6.3 are computed in [3].

6.2 Local time approximation

In this section we present the results of numerical simulations regarding the local time
approximation developed in Chapter 4. With numerical experiments, we assess the
asymptotic properties of the local time approximation (4.7). Also, with an example we
illustrate the flexibility of Space-Time Markov Chain Approximations generated via
Algorithm 1. One feature of such approximation processes is that they are defined on
a given grid. With a suitable choice of grid it is possible to achieve higher orders of
convergence of localized path-sensitive functionals like (4.7).

We simulate trajectories of an approximation process of the sticky Brownian motion
of parameter ρ. Then, we compare the stickiness parameter estimations (4.8) with the
true value of ρ. For the numerical simulations we use the Space-time Markov chain
approximation or STMCA Algorithm [6]. This algorithm uses grid-valued random
walks to approximate the law of any one-dimensional generalized diffusion process. The
STMCA Algorithm is particularly adapted to our problematic as:

• It is well suited for the simulation of sticky singular one-dimensional diffusions.

• By suitable choice of the grid, we can control the amount of path-observations
of X observed through the test function g in (4.7). In particular, for grids that
satisfy the condition in Corollary 2.5 of [6], the convergence speed of the STMCA
algorithm is optimal. Thus, if one increases the precision of such a grid g around 0,
we approximate accurately X with g-valued STMCA random walks and feed more
path-observations to the statistic (4.7) without paying a too heavy computational
cost.
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The statistic: Let X be a sticky Brownian motion of parameter ρ and g the function
defined for every x ∈ R by g(x) = 11<|x|<5/8. For every α ∈ (0, 1) and n ∈ N, we define
the following path-wise statistics of X:

T (1)
n,α(X) := nα

n

[nt]∑
i=1

g(nαXρ
i−1

n

), (6.2)

T (2)
n,α(X) := 2

n

∑[nt]
i=1 1X i−1

n

=0

T
(1)
n,α(X)

. (6.3)

From (4.7), for any α ∈ (0, 1/2), the statistics (6.2) and (6.3) converge to L0
t (X) and ρ

respectively in probability. We use (6.3) as proxy to assess the properties of the local
time approximation.

The grids: For every h > 0, let g0 and g1 be two grids defined by:

g0(h) = {0} ∪
{

± (h2/ρ+ kh); k ∈ N
}
, g1(h) =

{
± xk(h); k ≥ 0

}
,

where {xj(h)}j≥0 is defined recursively by

x0 = 0, xj = xj−1 +
(
h2

ρ

1
xj−1 + 1 + h

(
1 − 1

xj−1 + 1

))
1xj−1<1 + h1xj−1≥1.

We observe that
|g1| = |g0| and |g1|X = |g0|X .

From Theorem 5.2.1, the asymptotic convergence of the STMCA is O(h1/2) for both
grids.

α n ρ̂MC Ŝ2
MC σ̂MC âcc rej/NMC

0.3 100000 1.33451 0.740592 0.860577 0.125709 0/2000
0.4 100000 1.06132 0.142955 0.378094 0.0460073 0/2000
0.5 100000 1.3148 0.162762 0.403438 0.0116839 0/2000
0.55 100000 2000/2000
0.6 100000 2000/2000
0.65 100000 2000/2000

Table 6.1: Stickiness parameter estimations using the grid g0 for h = 0.01. The missing
values in the table corresponds to cases where the statistic (6.3) is observed to be 0.
Computation time (single-core): 4 seconds.

Within each of the following tables we use the same simulated STMCA trajectories
of the sticky Brownian motion of parameter ρ = 1:

Simulation metrics: The integer NMC will be the Monte Carlo simulation size. For
every j ≤ NMC we simulate the path of an approximation process Xj

t . To assess the
quality of each Monte Carlo estimation we use the following metrics:
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Figure 6.5: Stickiness parameter estimations histograms using (6.3) with n = 100000
and α = 0.3. (true value ρ = 1)

•
(
ρ̂MC, Ŝ

2
MC, σ̂MC

)
: Monte Carlo estimation, variance and standard deviation of

the estimated stickiness parameters,

• âcc: average number of path-values observed by g, i.e

âcc = 1
NMC

NMC∑
j=1

1
n

n∑
i=1

1g(Xj
(i−1)/n

) ̸=0,

• rej: percentage of trajectories where the local time estimation equals 0, i.e

rej = #
{
j ≤ NMC : n

α

n

[nt]∑
i=1

g(nαXj
i−1

n

) = 0
}
.

6.2.1 Observations, conclusion

From the numerical experiments (Tables 6.1-6.5), we observe the following:

• As long as n is high enough, the higher the value of α ∈ (0, 1), the lower the
estimated variance and the better the approximation of the local time,

• Also, the higher the α, the more the trajectory of Xρ is inflated and the less
things are observed through g. Thus, having a finite set of path-wise observations
of Xρ, one must find an α ∈ (0, 1) large enough to trigger the asymptotic regime
of (4.1) and low enough so we do not dump too much path-wise observations.
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Figure 6.6: Stickiness parameter estimations histograms using (6.3) with n = 100000
and α = 0.55. (true value ρ = 1)

• In Table 6.5 we see that for a fixed c > 0, every (n, α) such that log n = c/α
yield the same Monte Carlo variance. This relation can be guessed from (4.4)
and (4.1),

• The convergence (4.7) seems to hold for α ∈ [1/2, 1), values not covered by
Theorem 4.1.3. We thus conjecture the following:

Algorithm 1 gives us the flexibility to remediate to the latter by using grids of
higher precision around the point of stickiness and thus achieving higher orders of
convergence for (6.2) without significant increase in the numerical complexity.

We observe that the usage of grid g1 yields far superior results than g0. Using
g1 we have an abundance of simulated path-wise observations close to the point of
stickiness. The statistic (6.2) remains thus relevant for large values of α and we can
achieve higher orders of convergence.

Conjecture 6.2.1. Theorem 4.1.3 holds for any α ∈ (0, 1) and the rate of convergence
of both (4.8) and (4.7) are increasing in terms of α.
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α n ρ̂MC Ŝ2
MC σ̂MC âcc rej/NMC

0.3 100000 1.25282 0.629184 0.793211 0.127209 0/2000
0.4 100000 1.06863 0.18705 0.432493 0.0437251 0/2000
0.5 100000 1.02367 0.0721315 0.268573 0.0140703 0/2000
0.55 100000 1.01813 0.0672543 0.259334 0.00796982 0/2000
0.6 100000 1.01266 0.031502 0.177488 0.00448427 0/2000
0.65 100000 1.01594 0.0268068 0.163728 0.00251455 2/2000

Table 6.2: Stickiness parameter estimations using the grid g1 for h = 0.01. Computation
time (single-core): 67 seconds.

α n ρ̂MC Ŝ2
MC σ̂MC âcc rej/NMC

0.6 20000 1.04379 0.14514 0.380973 0.0121671 0/1000
0.6 40000 1.02967 0.03178 0.178288 0.0079693 0/1000
0.6 100000 1.00135 0.01592 0.126199 0.0046799 0/1000
0.6 300000 1.00638 0.00850 0.092235 0.0023960 0/1000

Table 6.3: Simulation results for fixed α and different values of n.

α n ρ̂MC Ŝ2
MC σ̂MC âcc rej/NMC

0.3 100000 1.28303 0.66712 0.81677 0.126344 0/2000
0.4 100000 1.12398 0.38812 0.62299 0.043843 0/2000
0.5 100000 1.04014 0.09153 0.30253 0.014309 0/2000
0.6 100000 1.01083∗ 0.04976∗ 0.22307∗ 0.004598∗ 1/2000
0.7 100000 1.06961∗ 0.14296∗ 0.37810∗ 0.001367∗ 13/2000
0.8 100000 1.01483∗ 0.12386∗ 0.35194∗ 0.000467∗ 23/2000

Table 6.4: Simulation results for fixed n and different values of α. Estimation with an
asterisk were performed removing the trajectories with T (1)

n (X) = 0.

α n ρ̂MC Ŝ2
MC σ̂MC âcc rej/NMC

0.55536 20000 1.04813 0.094319 0.307115 0.0190297 0/1000
0.519033 40000 1.04893 0.095243 0.308616 0.0190053 0/1000
0.477724 100000 1.04946 0.100884 0.317623 0.0190204 0/1000
0.436109 300000 1.04931 0.096736 0.311024 0.0190139 0/1000

Table 6.5: Simulation results for (n, α) satisfying log n = 5.5/α.
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Appendix A

A.1 Strong continuity of diffusion semi-groups on
Cb(I): a counter-example

Proposition A.1.1. Let (Pt)t≥0 be the semi-group of the standard Brownian motion
B, defined for every measurable bounded f , x ∈ R and t ≥ 0 by

Ptf(x) = Ex

(
f(Bt)

)
.

Then, (Pt)t≥0 is not strongly continuous on Cb(R).

Proof. Let ϕn be the sequence of functions defined for every n ∈ N and x ∈ R by

ϕn(x) =
(
1 − n|x|

)
1|x|<1/n.

Let also f and g be the functions defined for every x ∈ R by

f(x) =
∑
n∈N

ϕn(x− n2)

and
g(x) = 1|x−n2|<1/n + 1|x−n2|>∆n

,

where ∆n = n2 − (n− 1)2 − 1/n = 2n− 1 − 1/n. We observe that for all n ∈ N,

f(n2) = 1. (A.1)

Also, if Z ∼ N (0, 1),

Ptf(n2) = En2

(
f(

√
tZ)

)
≤ E

(
g(n2 +

√
tZ)

)
= P

(
Z ∈

(
− 1
n

√
t
,

1
n

√
t

))
+ P

(
|Z| ≥ ∆n/

√
t
)
.

Thus, for all t ≥ 0 and ϵ > 0, there exists n0 ∈ N large enough such that for all n ≥ n0,

Ptf(n2) < ϵ. (A.2)

From (A.1) and (A.2), for all t ≥ 0,

sup
x∈R

|Ptf(x) − f(x)| ≥ 1

and thus (Pt)t≥0 is not strongly continuous over Cb(R).
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A.2 Semimartingale results

A.2.1 Change of variables in a stochastic integral

Definition A.2.1. • An (F t)t≥0-time change is any almost surely increasing, right-
continuous family of (F t)t≥0-stopping times (Tt)t≥0 such that T0 = 0.

• A process M is said to be in synchronization with T iff M is constant on [Ts−, Ts].

• Given an (F t)t≥0-semi-martingale M , let L(M, (F t)t≥0) be the class of (F t)t≥0-
progressively measurable, predictable càdlag processes H for which the inte-
gral

∫ t
0 Hs dMs can be constructed.

Theorem A.2.2 (Theorem 3.1 of [64], Proposition 10.21 of [54]). Let (Ω,F , (F t)t≥0,P)
be a filtered probability space, M an (F t)t≥0-semimartingale in synchronization with
an (F t)t≥0-time change T . If H ∈ L(Z, (F t)t≥0), then (HTt−)t≥0 ∈ L(Z ◦ T, (FTt)t≥0).
Also, ∫ Tt

0
Hs dMs =

∫ t

0
HTs− dMTs , (A.3)

for every t ≥ 0.

A.2.2 Local time scaling

Lemma A.2.3 (Exercise 1.23 of [80]-Chapter VI). Let X be a continuous semi-
martingale and f a strictly increasing difference of two convex functions. If f(X) =
(f(Xt))t≥0, then for every a ∈ I and t ≥ 0,

L
f(a)
t (f(X)) = f ′(a)La

t (X)

almost surely, where f ′ is the right-derivative of f .

Lemma A.2.4 (Exercise 1.27 of [80]-Chapter VI). Let X be a semi-martingale with
state-space I, T a time change and Y is the time changed process such that Yt = XT (t)
for every t ≥ 0. Then for every a ∈ I and t ≥ 0,

La
t (Y ) = La

T (t)(X) (A.4)

almost surely.

A.2.3 Stochastic Dini’s theorem

Definition A.2.5. A sequence of processes Xn is said to converge locally uniformly in
time, in P-probability to a process X iff

sup
s≤t

{
|Xn

s −Xs|
}

−−−→
n→∞

0,

in P-probability, for every t ≥ 0
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Lemma A.2.6 ((2.2.16) of [56]). Let {Xn}n∈N be a sequence of increasing processes
and X an almost surely continuous bounded process. If {Xn}n∈N and X are defined on
the probability space (Ω, (F)t≥0,P) and

Xn
t −−−→

n→∞
Xt

in probability, for every t ∈ D with D a dense subset of R+. Then, the convergence is
locally uniform in time, in probability.

A.3 Joint scaling of the sticky Brownian motion

Lemma A.3.1. Let
{

(Ω,F , (F t)t≥0,Pρ
x);x ∈ R, ρ ≥ 0

}
be a family of filtered probability

spaces and Xρ = (Xρ
t )t≥0 a process defined on (Ω,F , (F t)t≥0) such that under Pρ

x it is
the sticky Brownian motion of stickiness parameter ρ and Pρ

x(Xρ
0 = x) = 1. Then,

LawPρ
x

(
Xρ

ct, L
0
ct(Xρ), A+

ct(Xρ); t ≥ 0
)

= LawPρ/
√

c
x

(√
cX

ρ/
√

c
t ,

√
cL0

t (Xρ/
√

c), cA+
t (Xρ/

√
c); t ≥ 0

)
, (A.5)

where Pρ
x(Xρ/

√
c

0 =
√
cx) = 1 and (L0(Xρ), A+(Xρ)) and (L0(Xρ/

√
c), A+(Xρ/

√
c)) are

the local times, occupation times10 of R+ pairs of Xρ and Xρ/
√

c respectively.

Proof. From [88], the joint density of (Xρ
t , L

0
t (Xρ), A+

ct(Xρ)) is defined for every
(t, x, y, l, o) ∈ R+ ×R2 ×[0, 2

ρ
] × [0, t] by

Px(Xρ
t ∈ dy, L0

t (Xρ) ∈ dℓ, A+
ct(Xρ) ∈ do)

= qρ(t, x, y, l, o) dy dl do = h
(
o− ρℓ,

ℓ

2 + x
)
h
(
t− o,

ℓ

2 − y
)

dy dl do,

where h(t, x) is the function defined for every t ≥ 0 and x ∈ R by

h(t, x) = |x|√
2πt3/2

e−x2/2t.

We observe that
h(ct, x) = c−1h(t, x/

√
c).

Thus,

qρ(ct, x, y, l, o) = h
(
o− ρℓ,

ℓ

2 + x
)
h
(
ct− o,

ℓ

2 − y
)

= h
(
c
(
o

c
− ρℓ

c

)
,
ℓ

2 + x
)
h
(
c
(
t− o

c

)
,
ℓ

2 − y
)

= c−2h
(
o

c
− ρℓ

c
,
ℓ

2
√
c

+ x√
c

)
h
(
t− o

c
,
ℓ

2
√
c

− y√
c

)
= c−2qρ/

√
c

(
t,
x√
c
,
y√
c
,
l√
c
,
o

c

)
10The occupation time by X of a measurable set B ∈ B(R) is the process AB(X) defined for every

t ≥ 0 by

AB
t (X) =

∫ t

0
1Xs∈B ds.
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and

qρ(ct, x, y, l, o) dy dℓ do = qρ/
√

c

(
t,
x√
c
,
y√
c
,
l√
c
,
o

c

)
d
(
y√
c

)
d
(
ℓ√
c

)(
do
c

)
,

which finishes the proof.

A.4 Conditioning on the embedded path of a diffu-
sion

Let X be a diffusion process with state-space I an interval of R defined on a family of
probability spaces P = (Ω, (F t)t≥0,Px)x∈I such that for every x ∈ I, Px(X0 = x) = 1.
Let also g be a covering grid of I. We define the embedding times of (Xt)t≥0 in g as,τ

g
0 = 0,
τg

k = inf
{
t > τg

k−1 : Xt ∈ g \ {Xτg
k−1

}
}
, ∀k ≥ 1.

(A.6)

Lemma A.4.1. Let X be a diffusion process with state-space I an interval of R defined
on a family of probability spaces P = (Ω, (F t)t≥0,Px)x∈I such that for every x ∈ I,
Px(X0 = x) = 1. Let also g be a covering grid of I, {τj}j∈Z+ the sequence of embedding
times of X in g defined in (A.6) and B the sigma-algebra defined by B = σ{Xτj

; j ∈ N0}.
Then, for any measurable path-functional F : C0(R+, I) 7→ R and j ≥ 1 and x ∈ I,

Ex

(
F ((Xτj−1,τj

t )t≥0)
∣∣∣B ) = Ex

(
F ((Xτj−1,τj

t )t≥0)
∣∣∣Xτj−1 , Xτj

)
,

where Xτj−1,τj is the process defined for every t ≥ 0 by Xτj−1,τj

t = X(τj−1+t)∧τj
.

Proof. Let us fix x1, x2, . . . be a sequence of points in the grid. Let us define

Q(x;x1, x2, . . . ) := Px

(
Xτ1 = x1, Xτ2 = x2, . . .

)
By the strong Markov property,

Px

(
Xτi+1 = xi+1, Xτi+2 = xi+2, . . .

∣∣∣∣Fτi

)
= PXτi

(
Xτ1 = xi+1, , Xτi+2 = xi+2

)
= Q(Xτi

;xi+1, xi+2, . . . ).

Using the strong Markov property twice, first by conditioning first with respect to
Fτj+1 and then with respect to Fτj

,

Ex

(
1Xτ1 =x1,...,Xτj =xj

F ((Xτj−1,τj

t )t≥0)1Xτj =xj ,Xτj+1=xj+1,...

)
= Ex

(
1Xτ1 =x1,...,Xτj =xj

F ((Xτj−1,τj

t )t≥0)1Xτj =xj
Q(Xτj

)
)

= Ex

(
1Xτ1 =x1,...,Xτj−1 =xj−1(Xτj−1,τj

t )t≥0

)
Q(xj) = Ex

(
1Xτ1 =x1,...,Xτj =xj−1

)
R(xj−1, xj)Q(xj)
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with R(x, y) := Px

(
F ((X0,τ1

t )t≥0)1Xτ1 =y

)
. Therefore, using the definition of the

conditional expectation,

Ex

(
F ((Xτj−1,τj

t )t≥0)
∣∣∣∣Xτ1 = x1, Xτ2 = x2, . . .

)
= R(xj−1, xj)

Pxj−1

(
Xτ1 = xj

) = Exj−1

(
F ((X0,τ1

t )t≥0

∣∣∣∣Xτ1 = xj

)
.

This is sufficient to prove the result.
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