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The main object of this thesis is the study of singular diffusion processes with a focus on sticky diffusions.

Sticky diffusions were first introduced by Feller in the fifties as a case of boundary condition that can arise in the analytic description of a diffusion. Their paths spend positive amount of time at points of the state-space, giving them the appearance to "stick" on these points. When such points are located at an attainable boundary of the state-space of the process, we call it sticky reflection.

The first contribution of this thesis is to provide a suitable approximation of the local time of a sticky Itô diffusion, with statistical applications in view. We define the notion of sticky Itô diffusion and prove their path-wise descriptions. We prove that the local time of the sticky Brownian motion can be approximated by a class of high-frequency path functionals. We use the path-wise characterization to extend the result to non-explosive Itô diffusions. We prove the consistency of a stickiness estimator based on the local time approximation. We give numerical results on the stickiness estimation of a sticky Brownian motion.

The second contribution of this thesis is an approximation in law of any onedimensional diffusion by a grid-valued conditional moment-matching random walk. The convergence occurs as the maximal grid step goes to 0. We call this type of approximation Space-Time Markov Chain Approximation or STMCA. We also show how one can achieve optimal convergence rate by suitable choices of grids. We call grid tuning the process of computing such a grid. One can use STMCAs to set up approximation schemes for any one-dimensional diffusion process. We give various illustrated approximations examples of diffusions even in the presence of sticky behavior, discontinuous or degenerate coefficients.

Résumé

Le sujet principale de cette thèse est l'étude des processus de diffusions singuliers et en particulier des diffusions collantes.

Introduites par Feller dans les années 50, les diffusions collantes sont apparues comme un cas particulier de conditions de bord dans la description analytique des diffusions générales. Leurs trajectoires passent un temps positif sur des points de l'espace d'états leur donnant l'apparence d'y coller. Quand de tels points se trouvent sur des bords atteignables de l'espace d'états on parle de réflexion collante.

La première contribution est l'approximation du temps local des diffusions d'Itô collantes. Nous définissons ce type de processus et prouvons leur description trajectorielle. On prouve la convergence d'une classe de fonctionnelles haute-fréquence de la trajectoire du mouvement Brownien collant vers son temps local en 0. On étend avec des arguments trajectoriels aux diffusions d'Itô collantes. On définit un estimateur de la stickiness basé sur l'approximation du temps local, puis on prouve sa consistance. On donne des résultats numériques dans le cas du mouvement Brownien collant.

La deuxième contribution de cette thèse est l'approximation de tout processus de diffusion par des marches aléatoires à valeurs dans des grilles dont les moments correspondent avec ceux du vrai processus. On appelle ces processus d'approximation Space-Time Markov Chain Approximation ou STMCA car ce sont des chaînes de Markov en espace-temps. Une particularité de ce type d'approximation est qu'on on arrive à répliquer des dynamiques collantes de façon assez naturelle. On montre que avec un choix adapté de la grille on a une vitesse de convergence optimale en loi de cette approximation quand le pas de la grille tend vers 0. On appelle ce procédé grid tuning. On donne des résultats numériques ou on illustre la convergence en loi des processus d'approximation et la flexibilité de l'algorithme sur le problème d'approximation du temps local.

Introduction (Français) 1 Contexte

La découverte des processus de diffusion a été motivée par des observations de Brown [START_REF] Harrison Brown | XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies[END_REF] et d'Einstein [START_REF] Einstein | On the Motion of Small Particles Suspended in Liquids at Rest Required by the Molecular-Kinetic Theory of Heat[END_REF] sur le mouvement de particules microscopiques en suspend dans un fluide. Le mouvement de ces particules est régi par leurs collisions avec les molécules du fluide qui engendre un comportement aléatoire. De plus, ces collisions sont si nombreuses et chaotiques qu'elles induisent un phénomène d'absence de mémoire appelé la propriété de Markov: sachant une suite d'observations de la particule à des temps différents, la dernière observation contient toute l'information prédictive sur la trajectoire future de la particule. C'est-à-dire que savoir seulement la dernière observation ou des observations passées additionnelles ne change pas nos prédictions sur la trajectoire future.

Le preuve de l'existence de tels objets a été donnée par Wiener [START_REF] Wiener | Differential-space[END_REF] qui a donné le premier exemple de diffusion, le mouvement Brownien. Ce processus, qui a un comportement trajectoriel homogène en espace et en temps, joue un rôle central dans la théorie des processus de diffusion. Feller [START_REF] Feller | The parabolic differential equations and the associated semigroups of transformation[END_REF] a par la suite donné une catégorisation des comportements trajectoriels de bord des diffusions en fonction des conditions latérales dans le générateur infinitésimal. Ces résultats on permis de définir le mouvement Brownien sur le semi-espace R + . Aussi, ils ont permit la description analytique des diffusions unidimensionnelles [START_REF] Feller | Diffusion processes in one dimension[END_REF][START_REF] Feller | Generalized second order differential operators and their lateral conditions[END_REF][START_REF] Feller | On boundaries and lateral conditions for the Kolmogorov differential equations[END_REF][START_REF] Feller | On the intrinsic form for second order differential operators[END_REF]. Ceci a été réalisé en décrivant les diffusions par leurs actions sur l'espace des fonctions continues bornées. Actions qui peuvent être vues comme des opérations linéaires et qui, par la propriété de Markov, forment un semi-groupe. Par la théorie de Hille-Yosida des opérateurs linéaires, tout tel semigroupe est engendré par un opérateur linéaire L appelé le générateur infinitésimal. Feller a aussi démontré la factorisation du générateur infinitésimal L = D m D s ou m est une mesure positive localement bornée et s une fonction continue et croissante. Pour une synthèse de ces résultats, voir [START_REF] Fukushima | Feller's Contributions to the One-Dimensional Diffusion Theory and Beyond[END_REF].

Le motivation initiale de Feller était de voir comment des conditions de bords sur le générateur infinitésimal impactent les propriétés trajectorielles d'une diffusion près du bord [START_REF] Feller | The parabolic differential equations and the associated semigroups of transformation[END_REF]. Dans sa tentative de les catégoriser, il a découvert que des conditions latérales de la forme

ρ 2 f ′′ (0) = f ′ (0+) -f ′ (0), ρ 2 f ′′ (0) = f ′ (0+), (1) 
correspondent à un comportement collant (ou sticky) en 0. La première condition de (1) correspond à un point traversant sticky pour la diffusion et la deuxième à une réflexion sticky. Il a aussi montré que ceci correspond à un atome dans la mesure m de la factorisation L = D m D s du générateur infinitésimal [START_REF] Feller | Generalized second order differential operators and their lateral conditions[END_REF].

Il s'avère qu'il n'existe pas de formulation en équation différentielle stochastique classique (EDS) pour les diffusions sticky. Il est montré cependant dans qu'il existe une description trajectorielle des diffusions sticky [START_REF] Salins | Markov processes with spatial delay: path space characterization, occupation time and properties[END_REF]. En particulier, dans [START_REF] Engelbert | Stochastic differential equations for sticky Brownian motion[END_REF] il est montré que le mouvement Brownien collant X de stickiness ρ résout le système dX t = 1 Xt̸ =0 dB t , 1 Xt=0 dt = dL 0 t (X) ou B est un mouvement Brownien standard.

Après leur introduction, les diffusions sticky sont restés largement dans l'oubli dans la littérature probabiliste. En parallèle, les solutions d'EDS ont gagné beaucoup en popularité. Ceci a été en partie dû à l'apparition au modèle de Black-Scholes [START_REF] Black | The Pricing of Options and Corporate Liabilities[END_REF] conçu pour pricer et hedger (couvrir) des produits dérivés financiers. Ceci a aussi causé une ambiguïté autour du terme de diffusion. Certains auteurs utilisent le terme diffusion d'Itô pour décrire les solutions d'EDS homogènes en temps [START_REF] Øksendal | Stochastic differential equations. An introduction with applications[END_REF] et diffusion générale ou généralisée pour les processus Markov fort continus [START_REF] Itô | Diffusion processes and their sample paths[END_REF][START_REF] Revuz | Grundlehren der Mathematischen Wissenschaften[END_REF].

Depuis peu, on est témoin d'un regain d'interet particulier dans les diffusions singulières et sticky. Il s'avère que ces processus répliquent des dynamiques observées dans la nature. On y trouve des applications en biologie, médecine, finance, en mécaniques classique et quantique. Dans [START_REF] Gandolfi | Association rates of diffusion-controlled reactions in two dimensions[END_REF][START_REF] Graham | Homogenization and propagation of chaos to a nonlinear diffusion with sticky reflection[END_REF], le mouvement de particules près d'une membrane ou une barrière sticky est étudié. Dans [START_REF] Àngel | Steady states in a structured epidemic model with Wentzell boundary condition[END_REF], des conditions de bord sticky sont utilisés pour modéliser la concentration d'un pathogène dans un organisme quand celle-ci est est proche de 0. L'explication de ce phénomène est qu'il est difficile pour un pathogène de déclencher une infection si sa concentration est faible. Dans [START_REF] Nie | Sticky reflecting Ornstein-Uhlenbeck diffusions and the Vasicek interest rate model with the sticky zero lower bound[END_REF], un modèle d'Ornstein-Uhlenbeck avec réfection sticky en 0 est proposé pour modéliser la dynamique des taux d'intérêts proche de 0. Dans [START_REF] Davies | Brownian motion with a sticky boundary and point sources in quantum mechanics[END_REF], les auteurs utilisent un mouvement Brownien sticky pour décrire le mouvement de particules à proximité d'une source d'émission. Dans [START_REF] Meng | The Free-Energy Landscape of Clusters of Attractive Hard Spheres[END_REF][START_REF] Stell | Sticky spheres and related systems[END_REF][START_REF] Baxter | Percus-Yevick Equation for Hard Spheres with Surface Adhesion[END_REF][START_REF] Gazzillo | Multicomponent adhesive hard sphere models and short-ranged attractive interactions in colloidal or micellar solutions[END_REF][START_REF] Holmes-Cerfon | A geometrical approach to computing free-energy landscapes from short-ranged potentials[END_REF][START_REF] Kallus | Free energy of singular sticky-sphere clusters[END_REF][START_REF] Kallus | Free energy of singular sticky-sphere clusters[END_REF], des modèles à diffusions sticky sont proposés pour répliquer la dynamique de particules dans des colloïdes, les grosses particules dans un liquide ont tendances à coller entre-elles quand elles entrent en contact.

A part ces applications, les diffusions sticky ont un intérêt théorique. Leur étude échappe aux outils classiques utilisés pour étudier les EDS classique. De plus, elles peuvent être utilisés pour créer de nouveaux objets probabilistes, comme les couplages sticky [START_REF] Eberle | Sticky couplings of multidimensional diffusions with different drifts[END_REF].

Pour une présentation plus détaillée des diffusions sticky, voir [START_REF] Peskir | On Boundary Behaviour of One-Dimensional Diffusions: From Brown to Feller and Beyond[END_REF]. Voir aussi [START_REF] Bou-Rabee | Sticky Brownian motion and its numerical solution[END_REF], pour une aperçu plus large de leurs applications.

Contributions

Dans cette thèse, ont adresse plusieurs sujets concernant les diffusions sticky: approximation du temps local, estimation du paramètre de stickiness et simulation numérique.

Le premier sujet qu'on adresse est l'approximation du temps local. Dans [START_REF] Jacod | Rates of convergence to the local time of a diffusion[END_REF], l'auteur utilise des fonctionnelles trajectioriels haute-fréquence pour approximer le temps local de diffusions d'Itô solutions de dX t = µ(X t ) dt + σ(X t ) dB t , [START_REF] Alfonsi | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF] ou B est un mouvement Brownien standard et (µ, σ) deux fonctions réelles qui garantissent l'existence de solution forte de [START_REF] Alfonsi | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF]. Cependant, ce résultat puissant ne peut pas s'appliquer à des diffusions sticky. La présence d'un atome dans la mesure de vitesse résulte en une explosion de la statistique. De plus, il est impossible de réduire le problème au mouvement Brownien standard, comme dans [START_REF] Jacod | Rates of convergence to the local time of a diffusion[END_REF] pour les diffusions d'Itô classiques.

Dans le Chapitre 4, on prouve que si X est une diffusion d'Itô sticky en 0, g une fonction intégrable qui s'annule sur un voisinage de 0 et α ∈ (0, 1/2), alors la fonctionnelle n α n

[nt] i=1 g(n α X i-1 n ). (3) 
converge en probabilité au temps local de X en 0. On remarque qu'à un niveau sticky, le temps local est proportionnel au temps d'occupation et leur relation est régie par le paramètre de stickiness. On démontre que le temps d'occupation peut être approché de façon consistante par la statistique

1 n [nt] i=1 1 X i-1 n . ( 4 
)
On combine ces deux résultat pour mettre en place le premier (à notre connaissance) estimateur consistent du paramètre de stickiness qui consiste simplement à diviser la statistique (4) par la statistique [START_REF] Alili | On the semi-group of a scaled skew Bessel process[END_REF].

Pour démontrer les résultats sur l'approximation du temps local nous utilisons une description trajectorielle des diffusions d'Itô sticky. Dans le Chapitre 3, on considère le système dX t = µ(X t )1 Xt̸ =0 dt + σ(X t )1 Xt̸ =0 dB t ,

(5)

1 Xt=0 dt = ρ 2 dL 0 t (X), (6) 
où B est un mouvement Brownien standard. On démontre que le système admet une solution unique en loi qui est une diffusion d'Itô sticky. On démontre aussi le résultat "contraposé": que tout diffusion d'Itô sticky est solution d'un système de la forme ( 5)- [START_REF] Anagnostakis | General diffusion processes as the limit of time-space Markov chains[END_REF]. On fini par prouver des version sticky du théorème de Girsanov et du lemme d'Itô. Des résultats similaires sont formulés dans [START_REF] Salins | Markov processes with spatial delay: path space characterization, occupation time and properties[END_REF] dans lequel la stickyness est présentée comme un "spatial delay".

Le deuxième sujet qu'on aborde est celui de la simulation de ces processus. Le schéma numérique le plus populaire pour la simulation de diffusions est le schéma d'Euler. Il s'avère que se schéma est mal défini pour les diffusions sticky. Pour remédier à ça, plusieurs schémas ont été proposés: Dans [START_REF] Amir | Sticky Brownian motion as the strong limit of a sequence of random walks[END_REF], l'auteur montre que le mouvement Brownien sticky est limite de marches aléatoires symétriques qui sont forcées en 0 à chaque passage pour un temps prédéfini. Ceci nous donne une méthode directe pour simuler ce processus. Dans [START_REF] Nie | Sticky reflecting Ornstein-Uhlenbeck diffusions and the Vasicek interest rate model with the sticky zero lower bound[END_REF][START_REF] Meier | Markov Chain Approximation of One-Dimensional Sticky Diffusions[END_REF][START_REF] Ferrer-Admetlla | An Approximate Markov Model for the Wright-Fisher Diffusion and Its Application to Time Series Data[END_REF][START_REF] Kallus | Free energy of singular sticky-sphere clusters[END_REF], les auteurs utilisent des Chaînes de Markov à temps continu (CTMC) pour simuler des processus qui résolvent une EDS et ont une barrière sticky. Une grille est défini sur l'espace d'état de la diffusion X. Le processus d'approximation est alors une CTMC à valeur dans g et dont les intensités de transition sont calculées en utilisant une discrétisation du générateur infinitésimal de X sur g. Dans [START_REF] Meier | Simulation of Multidimensional Diffusions with Sticky Boundaries via Markov Chain Approximation[END_REF], une approximation CTMC est considérée pour des diffusions, solutions d'EDS multi-dimensionnelles qui sont réfléchi de façon sticky sur des hyperplans linéaires. Dans [START_REF] Ankirchner | A functional limit theorem for coin tossing Markov chains[END_REF][START_REF] Ankirchner | Wasserstein convergence rates for coin tossing approximations of continuous Markov processes[END_REF], les auteurs définissent un schéma numérique basé sur une équation de différence fini ou la taille du pas dépends du comportement moyen local de la mesure de vitesse. Ils peuvent de cette façon simuler des diffusions à échelle naturelle avec des points sticky qui se situent à l'intérieur de l'espace d'états.

Dans le Chapitre 5, on étend le schéma numérique défini dans [START_REF] Étoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF] pour simuler tout processus de diffusion général, ainsi que ceux avec des points sticky, skew ou des conditions de bord. De plus, si on sait implémenter l'algorithme pour une diffusion non-sticky, il est direct de considérer des points sticky. On démontre que les quantités nécessaires pour l'implémentation de l'algorithme sont solution de problèmes paraboliques et admettent des représentations en intégrales définies. On peut utiliser ces représentations pour calculer ou approximer ces quantités numériquement. On prouve aussi que, si la grille est "adaptée" au processus qu'on veut approximer, alors la vitesse de convergence est optimale quand on fait tendre le pas de la grille vers 0. Cette optimalité est validée par le principe d'invariance de Donsker [START_REF] Donsker | An invariance principle for certain probability limit theorems[END_REF]. Dans le Chapitre 6, on donne un exemple d'application pour le problème de l'approximation du temps local du Chapitre 4. On observe que:

• les trajectoires sont approchées en distance de p-Wasserstein pour la norme L ∞ ([0, T ]),

• on peut choisir la grille sur laquelle le processus d'approximation prends ces valeurs.

Grace à ces deux faits, on peut choisir des grilles ayant une précision importante à proximité du point de stickiness pour augmenter la qualité des estimateur du temps local et de stickiness. Ce principe est illustré dans le Chapitre 6 sur un problème de benchmark de l'estimateur de stickiness. Ceci peut aussi être appliqué pour l'approximation du temps local de diffusions d'Itô non-sticky de [START_REF] Jacod | Rates of convergence to the local time of a diffusion[END_REF].

Ces travaux ont donné lieu à deux articles [START_REF] Anagnostakis | Functional convergence to the local time of a sticky diffusion[END_REF][START_REF] Anagnostakis | General diffusion processes as the limit of time-space Markov chains[END_REF].

Organisation de cette thèse

La thèse est structurée de la façon suivante:

Chapitre 1: On donne la description analytique des diffusions unidimensionnelles ainsi que quelques résultats sur les martingales. On donne des caractérisations de la loi d'une diffusion: semi-groupe, résolvante, générateur infinitésimal, fonction échelle & mesure de vitesse. On présente aussi plusieurs résultats fondamentaux comme: la formule de Dynkin, le problème de martingale ou le théorème de Dubins-Schwarz. Les deux derniers résultats nous donne un lien structurel entre les diffusions et les martingales.

Chapitre 2: Ce chapitre est dédié aux diffusions singulières. On donne quels type de comportement trajectoire une diffusion peut avoir et on montre comment on peut les déduire à partir de la description analytique. On définit le mouvement Brownien collant (sticky Bronwnian motion) et on démontre certaines de ses propriétés. On montre les équations forward et backward satisfaites par le noyau de transition de la diffusions. On résout ses équations pour calculer le noyau de transition du mouvement Brownien sticky. Chapitre 3: Ce chapitre est dédié aux EDS sticky. On défini cette classe de processus et démontre leur description trajectorielle qui généralise les résultats de [START_REF] Engelbert | Stochastic differential equations for sticky Brownian motion[END_REF] et [START_REF] Nie | Sticky reflecting Ornstein-Uhlenbeck diffusions and the Vasicek interest rate model with the sticky zero lower bound[END_REF]. On utilise cette description pour démontrer des variantes sticky de quelques résultats classique du calcul stochastique: lemme d'Itô, théorème de Girsanov. Chapitre 4: On montre qu'on peut approcher le temps local d'une diffusion sticky, à son point de stickiness, par des fonctionnelles d'observations trajectorielles hautefréquence de la forme [START_REF] Alili | On the semi-group of a scaled skew Bessel process[END_REF]. On donne des conditions nécessaires pour que la convergence ait lieu, puis on utilise ces résultats pour définir un estimateur consistent du paramètre de stickiness.

Chapitre 5: On prouve que l'algorithme établi dans [START_REF] Étoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF], peut être utilisé pour la simulation de tout processus de diffusion unidimensionnel. En particulier, des marches aléatoires à valeurs dans des grilles, dont les probabilités et temps conditionnels de transition sont les mêmes en espérance que ceux de la diffusion X, converge en loi vers X quand la taille de la cellule maximale de la grille tends vers 0. On prouve qu'on peut borner les distances de Wasserstein de tout ordre p ≥ 1 entre ces processus par une métrique de grilles qui dépends à la fois de la fonction échelle et de la mesure de vitesse de X. Il est donc possible d'adapter la grille pour atteindre des ordres de convergences optimaux.

Chapitre 6: Ce chapitre est dédié aux simulations numériques. On applique l'algorithme sur des diffusions qui ont différentes propriétés puis on compare les histogrammes des simulations avec les vraies densités de transitions. Quand nécessaire, nous utilisons des approximations numériques des probabilités et temps moyens de transition et on remarque que l'algorithme est toujours pertinent pour des grilles adaptées. On montre aussi les propriétés de l'approximation de temps local établie au Chapitre 4. Finalement, on montre que pour ce genre de problème, dans le contexte de simulations Monte Carlo, par un choix adapté de la grille, on peut contrôler le nombre de données observées par la statistique. Par conséquent, on peut atteindre des ordres de convergence supérieurs.

Introduction (English) 1 Context

The discovery of diffusion processes was motivated by observations, made by Brown [START_REF] Brown | A Brief Account of Microscopical Observations made in the Months of June, July, and August, 1827, on the Particles contained in the Pollen of Plants; and on the General Existence of Active Molecules in Organic and Inorganic Bodies[END_REF] and Einstein [START_REF] Einstein | On the Motion of Small Particles Suspended in Liquids at Rest Required by the Molecular-Kinetic Theory of Heat[END_REF], on the motion of suspended microscopic particles in a fluid. The motion of these particles is entirely induced by collisions with the fluid molecules and is hence random in nature. These collisions are so numerous and chaotic they create an absence of memory phenomena called Markov property: Given knowledge of the current position of the particle, past observations yield no additional predictive value for future positions.

It was Wiener [START_REF] Wiener | Differential-space[END_REF] who proved the existence of such objects and exhibited the first example of diffusion, the Brownian motion. This process which has a homogeneous path-wise behavior in both space and time, plays a central role in the theory of diffusion processes. Then, Feller [START_REF] Feller | The parabolic differential equations and the associated semigroups of transformation[END_REF] categorized the boundary path-wise features of a diffusion in accordance with the lateral conditions in the infinitesimal generator. These results allowed in particular to define the Brownian motion defined on a semi-plane. Also, they resulted in the analytic description of one-dimensional diffusions [START_REF] Feller | Diffusion processes in one dimension[END_REF][START_REF] Feller | Generalized second order differential operators and their lateral conditions[END_REF][START_REF] Feller | On boundaries and lateral conditions for the Kolmogorov differential equations[END_REF][START_REF] Feller | On the intrinsic form for second order differential operators[END_REF]. This was achieved by describing diffusions as actions on the space of continuous bounded functions C b . These actions can be seen as linear operators and from the Markov property, form a semi-group. From the Hille-Yosida theory for linear operators, it turns out that each such semi-group is induced by an operator L called infinitesimal generator. Feller also proved the factorization of the infinitesimal generator L = D m D s , where m is a locally bounded positive measure and s a continuous increasing function. For a review of these results, see [START_REF] Fukushima | Feller's Contributions to the One-Dimensional Diffusion Theory and Beyond[END_REF].

Feller's initial motivation was to see how boundary conditions of the infinitesimal generator affect the path-wise behavior of the underlying process near the boundary [START_REF] Feller | The parabolic differential equations and the associated semigroups of transformation[END_REF]. In his attempt to categorize them, he discovered that the lateral conditions of the form

ρ 2 f ′′ (0) = f ′ (0+) -f ′ (0), ρ 2 f ′′ (0) = f ′ (0+),
correspond to stickiness and sticky reflection at 0 respectively. He also showed [START_REF] Feller | Generalized second order differential operators and their lateral conditions[END_REF] that one can factorize the infinitesimal generators of a diffusion X as L = D m D s , where m and s are the speed measure and scale function of X (see Proposition 1.2.20). Thus, a sticky point for X corresponds to an atom in its speed measure m.

It turns out that there exists no classical SDE formulation for sticky diffusions. It is though showed independently in [START_REF] Bass | A stochastic differential equation with a sticky point[END_REF][START_REF] Engelbert | Stochastic differential equations for sticky Brownian motion[END_REF] that there is a path-wise description for the sticky Brownian motion. In particular, the sticky Brownian motion X of stickiness ρ solves the system

dX t = 1 Xt̸ =0 dB t , 1 Xt=0 dt = dL 0 t (X)
where B is a standard Brownian motion.

After their introduction, sticky diffusions were largely left unnoticed in the probabilistic literature. Moreover, stochastic differential equations or SDEs gained in popularity. This was partially due to the introduction of the Black-Scholes model [START_REF] Black | The Pricing of Options and Corporate Liabilities[END_REF] for pricing and hedging financial derivatives. As a result, an ambiguity was induced around the term diffusion. Some authors use terms like Itô diffusion [START_REF] Øksendal | Stochastic differential equations. An introduction with applications[END_REF] to express time-homogeneous SDE solutions and general or generalized diffusions for continuous strong Markov processes [START_REF] Itô | Diffusion processes and their sample paths[END_REF][START_REF] Revuz | Grundlehren der Mathematischen Wissenschaften[END_REF].

Recently, we are witnessing a regain of interest in sticky processes. It turns out that they can accurately replicate dynamics found in nature. Applications range from biology, finance to quantum and classical mechanics. In [START_REF] Gandolfi | Association rates of diffusion-controlled reactions in two dimensions[END_REF][START_REF] Graham | Homogenization and propagation of chaos to a nonlinear diffusion with sticky reflection[END_REF], the motion of molecules near a cell membrane or sticky wall is studied. In [START_REF] Àngel | Steady states in a structured epidemic model with Wentzell boundary condition[END_REF], sticky boundary conditions are used to model the concentration of a pathogen in an organism at near-zero levels. The cause of this is that it is hard for low quantities of pathogen to instigate an infection. In [START_REF] Nie | Sticky reflecting Ornstein-Uhlenbeck diffusions and the Vasicek interest rate model with the sticky zero lower bound[END_REF], an Ornstein-Uhlenbeck process with sticky reflection at 0 is used to describe the dynamics of interest rates near 0. In [START_REF] Davies | Brownian motion with a sticky boundary and point sources in quantum mechanics[END_REF], the authors use a sticky Brownian motion to describe the motion of particles near a point-source of emission. In [START_REF] Meng | The Free-Energy Landscape of Clusters of Attractive Hard Spheres[END_REF][START_REF] Stell | Sticky spheres and related systems[END_REF][START_REF] Baxter | Percus-Yevick Equation for Hard Spheres with Surface Adhesion[END_REF][START_REF] Gazzillo | Multicomponent adhesive hard sphere models and short-ranged attractive interactions in colloidal or micellar solutions[END_REF][START_REF] Holmes-Cerfon | A geometrical approach to computing free-energy landscapes from short-ranged potentials[END_REF][START_REF] Kallus | Free energy of singular sticky-sphere clusters[END_REF][START_REF] Kallus | Free energy of singular sticky-sphere clusters[END_REF], sticky diffusions are proposed to replicate particle dynamic in colloids, coarse particles in a liquids that tend to "stick" with each-other upon contact.

Besides their applications, sticky diffusions have inherent theoretical interest. Their study escape the classical frameworks established for classical SDEs. Moreover, they are used to create new probabilistic objects like sticky couplings [START_REF] Eberle | Sticky couplings of multidimensional diffusions with different drifts[END_REF].

A more in depth presentation of the origins of sticky diffusions can be found in [START_REF] Peskir | On Boundary Behaviour of One-Dimensional Diffusions: From Brown to Feller and Beyond[END_REF]. Also, in [START_REF] Bou-Rabee | Sticky Brownian motion and its numerical solution[END_REF], a good overview of the applications of sticky diffusions is given.

Contributions

In this thesis, we address several subjects regarding sticky diffusions: local time approximation, estimation of the stickiness parameter and their numerical simulation.

The first subject we address is the approximation of the local time of a sticky diffusion at a sticky threshold. In [START_REF] Jacod | Rates of convergence to the local time of a diffusion[END_REF], the author uses high-frequency path functionals (3) to approximate the local time of non-explosive homogeneous SDE solutions. While this result is powerful in its own, it cannot take into account sticky points. Indeed, the presence of a sticky points in the speed measure of the diffusion would result in an explosion of the statistic (3).

In Chapter 4, we prove that if X is an SDE with a sticky point at 0, if one forces the test function g to be 0 in an open interval around 0, (3) converges to the local time of X at 0. We then combine this result with an approximation of the occupation time at 0 to set up the first (to our knowing) consistent stickiness parameter estimator.

In order to prove these results, we use a path-wise description of sticky Itô diffusions. In Chapter 3, we consider the system

dX t = µ(X t )1 Xt̸ =0 dt + σ(X t )1 Xt̸ =0 dB t ,
(1)

1 Xt=0 dt = ρ 2 dL 0 t (X), (2) 
where B is a standard Brownian motion. We show that uniqueness in law holds for the solution of the system (1)-( 2), which is one of a sticky Itô diffusion. We also show the "inverse" result: that all sticky Itô diffusions admit a path-wise description of the form (1)- [START_REF] Alfonsi | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF]. We end this chapter by proving sticky versions of the Girsanov theorem and Itô's lemma. Similar results are proven in [START_REF] Salins | Markov processes with spatial delay: path space characterization, occupation time and properties[END_REF], where the stickiness is called "spatial delay".

The second subject we address is the numerical simulation of one-dimensional diffusions. The most popular numerical scheme to simulate diffusion processes is the Euler scheme. It turns out though that this scheme is not well defined for sticky diffusions. In order to address this issue, several numerical schemes were proposed for their approximation: In [START_REF] Amir | Sticky Brownian motion as the strong limit of a sequence of random walks[END_REF], the author showed that the sticky Brownian motion is the limit of symmetrical random walks that freeze a pre-defined amount of time every time they hit 0. This gives us a straightforward way to simulate this process. In [START_REF] Nie | Sticky reflecting Ornstein-Uhlenbeck diffusions and the Vasicek interest rate model with the sticky zero lower bound[END_REF][START_REF] Meier | Markov Chain Approximation of One-Dimensional Sticky Diffusions[END_REF][START_REF] Ferrer-Admetlla | An Approximate Markov Model for the Wright-Fisher Diffusion and Its Application to Time Series Data[END_REF][START_REF] Kallus | Free energy of singular sticky-sphere clusters[END_REF], the authors use continuous time Markov chains CTMC to simulate homogeneous SDE solutions with a reflective sticky boundary at 0. A grid g is defined over the state-space of the diffusion X. The approximation process is then the g-valued CTMC with jump intensities computed using a discretization of the infinitesimal generator of X over g. In [START_REF] Meier | Simulation of Multidimensional Diffusions with Sticky Boundaries via Markov Chain Approximation[END_REF], a CTMC approximation is considered for multi-dimensional SDE diffusions that exhibit sticky reflection on a hyperplane. In [START_REF] Ankirchner | A functional limit theorem for coin tossing Markov chains[END_REF][START_REF] Ankirchner | Wasserstein convergence rates for coin tossing approximations of continuous Markov processes[END_REF], the authors define a numerical scheme via a finite difference equation where the step magnitude depends on the mean local behavior of the speed measure. This way, they can simulate diffusions on natural scale with non-boundary sticky points.

In Chapter 5, we extend the numerical scheme defined in [START_REF] Étoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF] to simulate any generalized diffusion process, including sticky ones. Moreover, if one can implement it for a non-sticky version of the diffusion, considering additional sticky points is straightforward. We prove that the involved quantities in the algorithm can be either computed by solving parabolic problems, computing definite integrals or approximate the latter numerically. We also prove that, if the grid is "adapted" to the process we want to approximate, we achieve optimal convergence rate for the approximation process. This optimality is validated by the Donsker invariance principle [START_REF] Donsker | An invariance principle for certain probability limit theorems[END_REF]. In Chapter 6, we give an application for the local time approximation of Chapter 4. We observe that:

• the paths of the approximation are L ∞ ([0, T ])-close in the p-Wasserstein distance,

• we can choose the grid that is the state-space of the approximation process. Thus, we can choose grids with increasing precision around points of stickiness to get better estimations of the local time and the stickiness. This is illustrated in Chapter 6 for the benchmarking problem of the stickiness parameter estimator. This principle can also be applied for the non-sticky local time approximation of [START_REF] Jacod | Rates of convergence to the local time of a diffusion[END_REF].

These works gave birth to the papers [START_REF] Anagnostakis | Functional convergence to the local time of a sticky diffusion[END_REF][START_REF] Anagnostakis | General diffusion processes as the limit of time-space Markov chains[END_REF].

Organization of the dissertation

The thesis is organized as follows:

In Chapter 1, we give elements of the analytical theory of diffusion processes along with several results on martingales. We give different characterizations of diffusions: semi-group, resolvent family, infinitesimal generator, scale function & speed measure. We then exhibit several results like Dynkin's formula, the martingale problem and the Dubins-Schwarz theorem. The two latter results give us a structural link between diffusions and martingales.

Chapter 2 is dedicated to singular diffusions. We give various path-wise behaviors a diffusion may exhibit and show has they translate into their analytical description. We define the sticky Brownian motion and prove several of its properties. We show that the transition kernel solves the forward and backward equations. We solve there equations for the sticky Brownian motion and compute its probability transition kernel.

Chapter 3 is dedicated to sticky SDEs, processes that behave like classical SDE away from a point of stickiness. We define this class of processes analytically and prove that they always admit a path-wise description, like the ones derived in [START_REF] Engelbert | Stochastic differential equations for sticky Brownian motion[END_REF] and [START_REF] Nie | Sticky reflecting Ornstein-Uhlenbeck diffusions and the Vasicek interest rate model with the sticky zero lower bound[END_REF] for the sticky Brownian motion and the Ornstein-Uhlenbeck process with sticky reflection. We derive explicit results for these processes that rely on their path-wise formulation, similar to the ones we have for classical SDEs (Itô's lemma, Girsanov theorem).

In Chapter 4, we prove that one can approximate the local time of a sticky SDE, at its point of stickiness, by high-frequency path functionals of the form:

n α n [nt] i=1 g(n α Xi-1 n ).
(

) 3 
We give necessary conditions for the convergence to occur and use this result to set up a consistent estimator of the stickiness parameter.

In Chapter 5, we prove that the algorithm, established in [START_REF] Étoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF], can be applied for the simulation of any generalized diffusion process. In particular, grid-valued random walks whose transition probabilities and conditional transition times match the ones of a diffusion X, converge in law to X as the maximum cell size of the grid converges to 0. We prove that we can bound any p-Wasserstein distance between these processes by a grid metric that depends on both the speed measure and scale function of X. It is thus possible to adapt the grids to X in order to achieve optimal convergence rates.

Chapter 6 is dedicated to numerical experiments. We exhibit the properties of Algorithm 1 by simulating approximations of diffusions that exhibit different features and compare simulated valued with the theoretical densities. When necessary, we use numerical approximations of the quantities driving the approximation process and see that the Algorithm 1 is still relevant. Last, we exhibit the properties of the local time approximation and stickiness parameter estimator established in Chapter 4. We also show that in the context of a Monte Carlo simulation, using the STMCA approximations developed in Chapter 5 by suitable choice of the grid one can control the amount of data observed by the statistic (4.1). We can thus achieve higher orders of convergence.

Chapter 1

An introduction to the analytic theory of diffusion processes

This chapter is a synthesis of known results found in [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF][START_REF] Dynkin | Markov processes. Vols. I[END_REF][START_REF] Hille | Functional analysis and semi-groups. 3rd printing of rev[END_REF][START_REF] Itô | Diffusion processes and their sample paths[END_REF][START_REF] Kallenberg | Foundations of modern probability. Second. Probability and its Applications[END_REF][START_REF] Mandl | Analytical treatment of one-dimensional Markov processes[END_REF][START_REF] Rogers | Diffusions, Markov processes, and martingales[END_REF].

Chapter outline: In this section, we introduce the notion of diffusion process and give analytic characterization of their law. In particular we define the scale function & speed measure characterization. Many results proved in this thesis rely on the latter. We then introduce the notion of probability transition kernel along with some elements on its computation, namely the Kolmogorov backward and forward equations. Last, we introduce the most elementary diffusion process, the Brownian motion.

First notions

Markov property

The main object of this thesis is the study of several aspects of singular diffusion processes. We focus in particular on the simulation and local time approximation of sticky sticky diffusions. Diffusion processes are processes that have continuous sample paths and satisfy the strong Markov property. This property can be expressed as follows.

Definition 1.1.1. Let X be an adapted process with state-space I defined on a family of filtered probability spaces Ω, (F t ) t≥0 , F, P x x∈I such that for every x ∈ I, P x (X 0 = x) = 1. Let (θ t ) t≥0 be a family of shift operators for X. The process X is said to satisfy the strong Markov property iff for any measurable function f , stopping time τ and s > 0:

E f (X τ +s )| F τ 1 τ <∞ = E Xτ f (X s • θ τ ) 1 τ <∞ . (1.1)
A process that satisfies the strong Markov property is called a strong Markov process. If (1.1) holds for all deterministic τ ≥ 0, then we say X satisfies the weak Markov property and we call it Markov process.

In Definition 1.1.1:

• The state-space I of a process X is all the possible values taken by X.

• The family (F t ) t≥0 is a filtration on (Ω, F, P x ), i.e. a family indexed by time such that for any s < t, F s ⊂ F t ⊂ F. A filtration expresses and expresses the observable events of the universe Ω up to time t > 0.

• An (F t ) t≥0 -adapted or adapted process is a process X such that {X s ∈ A} ∈ F t for all t ≥ s ≥ 0.

• A family of operators (θ t ) t≥0 on Ω is called shift operators for X iff X t (θ s ω) = X t+s (ω).

We now introduce the notion of diffusion.

Definition 1.1.2 (see [START_REF] Kallenberg | Foundations of modern probability. Second. Probability and its Applications[END_REF], p. 376). A diffusion on I ⊂ R is a strong Markov process with state-space I and continuous sample paths.

The dynamic of a diffusion is time-homogeneous and depends only on the position in space. They be seen as the motion of charged particle in space subjected to the action of a potential. Sticky diffusions are diffusion processes that spend a positive amount of time at certain point(s) of their state space (see Sections 2.1.3,2.2).

Law and semi-group of a diffusion

For any X locally compact space with countable basis, let • C(X ) be the space of continuous real-valued functions defined on I,

• C b (X ) the subspace of bounded functions of C(X ),

• C 0 (X ) the subspace of functions of C(X ) that vanish at infinity, i.e. |f (x)| -→ 0 as ∥x∥ -→ ∞,

• ∥.∥ ∞ the norm defined for every measurable function f by

∥f ∥ ∞ = sup x∈X |f (x)|.
We equip the spaces C(X ), C b (X ), C 0 (X ) with the norm ∥.∥ ∞ and when there is no ambiguity ∥.∥ = ∥.∥ ∞ . These functional spaces can be used to quantify the notion of law of a process with state-space I = X .

The law of a diffusion is the full random behavior of the process. One way to quantify this behavior is via test functions. We say that two random variables Z 1 and Z 2 have the same law iff for all f ∈ C b ,

E f (Z 1 ) = E f (Z 2 ) .
Similarly, we say that two processes X and Y with state-space I ⊂ R d have the same law iff for all x ∈ I and measurable F :

C b (R + , I) → R, E x F (X t ; t ≥ 0) = E x F (Y t ; t ≥ 0) .
So an equality in law between processes (resp. random variables) means that their action on measurable path-functionals (resp. bounded continuous functions) is the same. In the case of continuous processes (like diffusions) or càdlàg ones, it is possible to factorize this action in time. Let (P t ) t≥0 be the family of operators defined for every measurable bounded f , x ∈ I and t ≥ 0 by

P t f (x) = E x f (X t ) . (1.2)
It is possible to ditch the notion of shift operator and re-express the Markov property in terms of (P t ) t≥0 as follows.

Definition 1.1.3. Let X and (Ω, (F t ) t≥0 , P x ) x∈I be as in Definition 1.1.1 and (P t ) t≥0 be the family of operators defined in (1.2). Then, X satisfies the strong Markov property iff

E f (X τ +s )| F τ 1 τ <∞ = P s f (X τ )1 τ <∞ (1.3)
for all f ∈ C b (I), stopping times τ and s ≥ 0.

If X is a Markov process and (P t ) t≥0 the family of operators defined in (1.2), from (1.3),

P t P s f (x) = E x P s f (X t ) = E x E Xt f (X s+t ) = E x E f (X s+t ) F t = P s+t f (x).
Thus, the Markov property induces a semi-group structure on (P t ) t≥0 . As such, we call (P t ) t≥0 the semi-group of X.

Proposition 1.1.4. The law of a diffusion process is characterized by its semi-group.

Proof. Let X be a diffusion process and (P t ) t≥0 its semi-group. From Kolmogorov's extension theorem [87, p.196], it suffices to show that for any ordered finite set of times 

0 < t 1 < t 2 < • • • < t n < ∞,
F (x 1 , . . . , x n ) = f 1 (x 1 )f 2 (x 2 ) . . . f n (x n ),
where f 1 , . . . , f n :

I → R are bounded measurable functions. From (1.3), E x f 1 (X t 1 ) . . . f n (X tn ) = E x f 1 (X t 1 ) . . . f n-1 (X t n-1 ) E f n (X tn ) F t n-1 = E x f 1 (X t 1 ) . . . f n-1 (X t n-1 )P tn-t n-1 f n (X t n-1 )
and recursively

E x f 1 (X t 1 ) . . . f n (X tn ) = P t 1 f 1 P t 2 -t 1 f 2 . . . P tn-t n-1 f n . . . (x),
which depends only on (P t ) t≥0 and x ∈ I. Thus, the law of (X t 1 , . . . , X tn ) under P x depends only on (P t ) t≥0 .

Using the same arguments as the proof on Proposition 1.2.14, one can prove the following stronger version of the strong Markov property: Theorem 1.1.5. Let X be a strong Markov process defined on a family of probability spaces Ω, (F t ) t≥0 , P x x∈I with state space I such that for every x ∈ I, P x (X 0 = x) = 1. Then for any stopping time τ and measurable functional F : M(R + , I) → R, where M(R + , I) is the space of measurable functions from R + to I,

• F ((X t+τ ) t≥0 )1 τ <∞ is F ∞ -measurable. • For any x ∈ I, E x 1 τ <∞ F ((X t+τ ) t≥0 ) F τ = E Xτ F ((X t ) t≥0 ) 1 τ <∞ .

Analytic characterization

In the previous section we characterized the law of a diffusion process with its semigroup. It turns out that this is not a very convenient characterization as it cannot be written down explicitly. Moreover, it is hard to infer the path-wise properties of the diffusion by looking at its semi-group.

In this section we give two equivalent characterization of the law of a diffusion: the resolvent family and the infinitesimal generator. The link between them is the Hille-Yosida theorem.

Hille-Yosida theory

The Hille-Yosida theory is a series of results that establish links between classes of linear operators over Banach spaces. It was initially developed to assess the existence and uniqueness of a solution of

d dt u(t, x) = A x u(t, x)
by looking at the properties of a dissipative operator A x . It was then applied with great success to the study of diffusion processes by Feller [START_REF] Feller | The parabolic differential equations and the associated semigroups of transformation[END_REF].

Let (H, ∥.∥) be a Banach space and L(H) the space of bounded linear operators from H to H. We define the following families of operators over H: Definition 1.2.1. A family (P t ) t≥0 ⊂ L(H) is called a strongly continuous contracting semi-group over H iff:

1. for any s, t ≥ 0 and v ∈ H: P t P s v = P t+s v, 2. for every t > 0 and v ∈ H: ∥P t v∥ ≤ ∥v∥, 3. for every v ∈ H: ∥P t v -v∥ -→ 0 as t -→ 0.

A strongly continuous contracting semi-group over (C 0 (X , R), ∥.∥ ∞ ), with X a locally compact separable space, is called a Feller semi-group. Usually X ⊂ R d , but this is not always the case (see [START_REF] Gregosiewicz | Sticky diffusions on graphs[END_REF][START_REF] Vadim Kostrykin | Brownian motions on metric graphs[END_REF]). 

-R µ = µ -λ R λ R µ ,
2. for every λ > 0 and v ∈ H: ∥λR λ v∥ ≤ ∥v∥, 3. for every v ∈ H: ∥λR λ v -v∥ -→ 0 as λ -→ ∞. Definition 1.2.3. An operator L : dom(L) → H, with dom(L) ⊂ H is called:

1. dissipative iff for every λ > 0 and v ∈ dom(L): ∥λv -L v∥ ≥ ∥λv∥, 2. closed iff for every (v n ) n∈N ⊂ dom(L) and v, w ∈ H such that v n -→ v and L v n -→ w, then v ∈ dom(L) and L v = w.
To each strongly continuous contracting semi-group (P t ) t≥0 one can associate a resolvent family and an operator on H as follows.

Proposition 1.2.4. Let (P t ) t≥0 be a strongly continuous contracting semi-group over a Banach space H. The family of operators (R λ ) λ>0 defined for every v ∈ H and λ > 0 by

R λ v = ∞ 0 e -λt P t v dt
is a strongly continuous contracting resolvent family over H. We call it the resolvent of (P t ) t≥0 . Definition 1.2.5. Let (P t ) t≥0 be a strongly continuous contracting semi-group over a Banach space H. The infinitesimal generator of (P t ) t≥0 is the operator L defined for every v ∈ dom(L) by

L v = lim t→0 1 t P t v -v , where dom(L) := v ∈ H : L v ∈ H . (1.12)
Theorem 1.2.6 (Hille-Yosida, see [START_REF] Feller | An introduction to probability theory and its applications[END_REF], Chapter XIII, §9 and §10). Let H be a Banach space. Then,

• For each strongly continuous contracting semi-group (P t ) t≥0 , there exist a unique strongly continuous contracting resolvent (R λ ) λ>0 and a closed dissipative operator L with dense domain such that: (R λ ) λ>0 and L are respectively the resolvent and infinitesimal generator of (P t ) t≥0 .

• Every strongly continuous contracting resolvent (R λ ) λ>0 over H is the resolvent of a strongly continuous contracting semi-group (P t ) t≥0 over H.

• Every closed dissipative operator L over H with dense domain is the infinitesimal generator of a strongly continuous contracting semi-group (P t ) t≥0 over H.

Moreover, for every λ > 0,

R -1 λ = (λ Id -L) and dom(L) = R λ (H) ⊂ R λ (H) = H .
The following result also holds.

Proposition 1.2.7 (Chapman-Kolmogorov equations). Let (P t ) t≥0 be a strongly continuous contracting semi-group over a Banach space H and L be its infinitesimal generator. Then, for any v ∈ dom(L) and t ≥ 0,

• the application [s -→ P s v] is strongly differentiable in H and

d dt P t v = L P t v = P t L v, • P t v -v = t 0 L P s v ds = t 0 P s L v ds,
• P t dom(L) ⊂ dom(L) and P t L = L P t on dom(L).

Proof. The proof is the same as the one of Proposition 1.2 of [80, Chapter VII; §1].

Adaptation to regular diffusions

We now prove that the results of the previous sections can be adapted to regular diffusions with state-space I an interval of R.

Definition 1.2.8 (Definition 45.2 of [START_REF] Rogers | Diffusions, Markov processes, and martingales[END_REF]). A diffusion process X with state-space I an interval of R is called regular iff for all x ∈ Int(I) and y ∈ I,

P x (τ y < ∞) > 0,
where τ y = inf{t ≥ 0 : X t = y}.

To apply the Hille-Yosida theorem to diffusions, we need the semi-group to be strongly continuous and contracting over a proper ambient space. The semi-group (P t ) t≥0 of a regular diffusion with state-space I, an interval of R, is not always internal on C 0 (I), (see [82, §50]), and not always strongly continuous on C b (I) (see Proposition A.1.1). To guarantee these properties, we first consider regular Feller diffusions. Feller diffusions are diffusions whose semi-group is a Feller semi-group (see Definition 1.2.1). Theorem 1.2.9 (Theorem 20.13 of [START_REF] Kallenberg | Foundations of modern probability. Second. Probability and its Applications[END_REF]). Let X be a regular diffusion, with state-space I an interval of R. Let I be the extension of I by any potential entrance boundaries of I (see Section 2.1.2). Then, X can be extended to a continuous Feller process on I.

Corollary 1.2.10. A regular diffusion with no entrance boundaries is a Feller diffusion.

The aforementioned result allow us to extend the following results from regular Feller diffusions to regular diffusions. For the rest of this section, we will will suppose X to be a regular diffusion with state-space I an interval of R and (P t ) t≥0 the family of operators defined for every f ∈ C b (I) by (1.2). Definition 1.2.11 (see [START_REF] Revuz | Grundlehren der Mathematischen Wissenschaften[END_REF], p. 89). Let Y be a diffusion process with state-space I an interval of R. We call resolvent of Y , the family of operators (R λ ) λ>0 defined for any λ > 0 and f ∈ C b (I) by

R λ f (x) = ∞ 0 E x f (Y s ) e -λs ds.
Definition 1.2.12. Let Y be a diffusion process with state-space I an interval of R. We call infinitesimal generator of Y , the operator L defined for any f ∈ dom(L) and

x ∈ I by L f (x) = lim t→0 1 t E x (f (Y t )) -f (x) , (1.16) where dom(L) = f ∈ C b (I) : L f ∈ C b (I) .
(1.17)

Now let X be a regular Feller diffusion. The following are all corollaries of the Hille-Yosida theorem: Corollary 1.2.13 (of Theorem 1.2.6). Let (R λ ) λ>0 , L be respectively the resolvent and infinitesimal generator of X. Then,

• (R λ ) λ>0 is a strongly continuous contracting resolvent family over C 0 (I), • L is a closed dissipative operator on R λ C 0 (I) , • R λ C 0 (I) is dense in C 0 (I).
Corollary 1.2.14 (of Proposition 1.1.4 and Theorem 1.2.6). Let (P t ) t≥0 , (R λ ) λ>0 and L be respectively the semi-group, resolvent and infinitesimal generator of X. The law of X is characterized either by (P t ) t≥0 , (R λ ) λ>0 or L. Corollary 1.2.15 (of Theorem 1.2.6). Let X and Y be two regular diffusions with statespace I an interval of R and respective (semi-group, resolvent, infinitesimal generator) triplets ((P X t ) t≥0 , (R X ) λ , L X ), ((

P Y t ) t≥0 , (R Y ) λ , L Y ).
If either of the following holds:

• (P X t ) t≥0 = (P Y t ) t≥0 , • (R X ) λ = (R Y ) λ , • L X = L Y , then, ((P X t ) t≥0 , (R X ) λ , L X ) = ((P Y t ) t≥0 , (R Y ) λ , L Y
) and X, Y have the same law.

Speed measure & scale function

We now give an additional characterization of diffusions, the scale function & speed measure pair. This characterization yields a very convenient factorization of the infinitesimal generator of a diffusion. Moreover, it allows to also factorize the space and time behavior of a diffusion:

• the scale function mainly captures the propensity of the process to move in a particular direction,

• the speed measure expresses the speed at which the process moves.

In Section 1.4, we see that several results are expressed through these objects.

Let X be a regular diffusion process, taking values in an interval I ⊂ R and defined on a family of probability spaces (Ω, (F t ) t≥0 , P x ) x∈I such that for every x ∈ I, P x (X 0 = x) = 1. Let also for any a, b ∈ I,

τ a = inf t ≥ 0 : X t = a and τ ab = τ a ∧ τ b .
Proposition 1.2.16. There exists a continuous, increasing function s such that for any a < x < b ∈ I:

P x (τ b < τ a ) = s(x) -s(a) s(b) -s(a) , (1.18)
where τ a = inf{t > 0 : X t = a}. The function s is unique modulo an affine transformation and is called scale function of X. A diffusion whose scale function s is the identity function s = [x -→ x] is said to be on natural scale.

Proof. See [80, p. 301-302].

Proposition 1.2.17. There exists a unique strictly positive1 locally finite2 measure m over int(I) such that for every x, a, b ∈ I with a < x < b:

E x (τ ab ) = (a,b) G (a,b) (x, y)m(dy), (1.19) 
where τ ab = min{τ a , τ b } and [(a, b, x, y) -→ G (a,b) (x, y)] is the function defined for any a, b, x, y ∈ I with a < b by

G a,b (x, y) =              s(x) -s(a) s(b) -s(y) s(b) -s(a) , for a < x ≤ y < b, s(y) -s(a) s(b) -s(x) s(b) -s(a)
, for a < y < x < b.

(1.20)

The measure m is called speed measure of X.

Proof. See [80, p. 304-305].

Proposition 1.2.18 (Green formula). For every measurable function f : I → R and x, a, b ∈ I with a < x < b, Then, for any f ∈ dom(L), the process M (f ) defined for every t ≥ 0 by

E x τ ab 0 f (X s ) ds = b a G (a,b) (x, y)f (y)m(dy). ( 1 
M t (f ) = f (X t ) -f (X 0 ) - t 0 L f (X u ) du, (1.22)
is a martingale.

Proof. For any s ≤ t, from the Markov property and (1.13),

E M t (f ) F s = M s (f ) + E f (X t ) -f (X s ) + t s L f (X u ) du F s = M s (f ) + P t-s f (X s ) -f (X s ) + t s L P u-s f (X s ) du = M s (f ).
Thus, M (f ) is a martingale.

Proposition 1.2.20. Let L, s and m be respectively the infinitesimal generator, the scale function and the speed measure of X. Then,

• for every f ∈ dom(L) and x ∈ Int(I),

L f (x) = D m D s f (x), (1.23) • dom(L) ⊂ f ∈ C b (I) : D m D s f ∈ C b (Int(I)) , • if I is an open interval of R, dom(L) = f ∈ C b (I) : D m D s f ∈ C b (Int(I)) ,
where

D s g(x) = lim h→0;h>0 g(x + h) -g(x) s(x + h) -s(x) and D m g(x) = lim h→0;h>0 g(x + h) -g(x) m([x, x + h)) .
(1.26)

Proof. For f ∈ dom(L), let M (f ) be the process defined for every t ≥ 0 by

M t (f ) = f (X t ) -f (X 0 ) - t 0 L f (X s ) ds, (1.27) 
where

∥M t (f )∥ ≤ 2∥f ∥ + t∥ L f ∥. Since X is regular for any x, a, b ∈ Int(I) such that a < x < b, E x (τ ab ) < ∞ and E x M τ ab (f ) = f (b) s(x) -s(a) s(b) -s(a) + f (a) s(b) -s(x) s(b) -s(a) -f (x) -E x τ ab 0 L f (X s ) ds
From the martingale stopping theorem, (M t∧τ ab (f )) t≥0 is a martingale that vanishes at 0. Thus, from (1.21), Derivating with respect to s,

f (b) s(x) -s(a) + f (a) s(b) -s(x) -s(b) -s(a) f (x) = s(b) -s(a)
f (b) -f (a) s(b) -s(a) -D s f (x) = b a s(b) -s(y) 1 x≤y -s(y) -s(a) 1 x>y s(b) -s(a) L f (y)m(dy) = x a s(y) -s(a) s(b) -s(a) L f (y)m(dy) + b x s(b) -s(y) s(b) -s(a) L f (y)m(dy)
Derivating with respect to m,

D m D s f (x) = s(y) -s(a) s(b) -s(a) L f (x) + s(b) -s(y) s(b) -s(a) L f (x) = L f (x),
proving (1.23). This also proves that

dom(L) ⊂ dom(D m D s ) = g ∈ C b (Int(I)) : D m D s g ∈ C b (Int(I)) . If I is an open interval of R, dom(L) ⊂ dom(D m D s ) = g ∈ C b (Int(I)) : D m D s g ∈ C b (I) .
Since X has only natural boundaries and L is a closed operator (see Theorem

1.2.6), dom(D m D s ) ⊂ dom(L),
which finishes the proof.

From Proposition 1.2.20, we observe that if we are given the speed measure, the scale function and the boundary conditions of the infinitesimal generator of a one dimensional diffusion process X with state-space an interval of R, we have a full description of that law of X. This characterization turns out to be very convenient for singular diffusions. When we introduce new diffusions, we do it through s and m (see Section 2.2, Chapter 3 and Section 6.1).

The fact that we also need to have the conditions at the boundary of the infinitesimal generator can be seen in [14, p. 118-122]. There, Brownian motions with boundary behaviors are defined and they share the same scale function and speed measure. Then, the process s(X) = (s(X t )) t≥0 is on natural scale, has speed measure m ′ (dy) = m ds -1 (y) and state-space the interval s(I) of R.

Proof. Let (s 0 , m 0 ) be the scale function and speed measure of s(X). Moreover, for every ζ ∈ I and ζ ′ ∈ s(I),

τ ζ = inf{t > 0; X t = ζ}, τ ab = τ a ∧ τ b , (1.28) τ ′ ζ ′ = inf{t > 0; s(X t ) = ζ ′ }, τ ′ ab = τ ′ a ∧ τ ′ b .
Thus, for any [START_REF] Brown | A Brief Account of Microscopical Observations made in the Months of June, July, and August, 1827, on the Particles contained in the Pollen of Plants; and on the General Existence of Active Molecules in Organic and Inorganic Bodies[END_REF], for any a, x, b ∈ I such that a < x < b:

ζ ∈ I, τ ′ s(ζ) = τ ζ . From (1.
P x τ ′ b < τ ′ a = P s -1 (x) τ s -1 (b) < τ s -1 (a) = x -a b -a , thus s 0 (x) is necessarily an affine function. From (1.19) and (1.28), if a, x, b ∈ I such that a < x < b: E s(x) (τ ′ s(a)s(b) ) = E x (τ ab ) = b a s(x) ∧ s(y) -s(a) s(b) -s(x) ∨ s(y) s(b) -s(a) m(dy) = s(b) s(a) s(x) ∧ ζ -s(a) s(b) -s(x) ∨ ζ s(b) -s(a) m ds -1 (ζ) .
From (1.19), for every x ∈ s(I), s 0 (x) = x and m 0 (dx) = m ds -1 (x) .

Proposition 1.2.23 (Dynkin operator). Let X be a diffusion process with state-space I an interval of R and infinitesimal generator L. For any x ∈ I and h > 0, let

τ x = inf{t > 0 : X t = x} and τ x (h) = τ x-h ∧ τ x+h . Then, if f ∈ dom(L), for any x ∈ I, L f (x) = lim h→0 E x f (X τx(h) ) -f (x) E x (τ x (h)) . (1.29) Proof. Let h small enough such that (x -h, x + h) ⊂ I and M (g) the martingale defined for any g ∈ dom(L) in (1.27). As f ∈ dom(L), the process (M t∧τx(h) (f )) t≥0 is a martingale. Also, since X is regular, from (1.21), E x f (X τx(h) ) -f (x) = E x τx(h) 0 L f (X s ) = x+h x-h G x-h,x+h (x, y) L f (y)m(dy).
From (1.19), and the intermediate value theorem,

E x f (X τx(h) ) -f (x) E x (τ x (h)) = x+h x-h G x-h,x+h (x, y) L f (y)m(dy) x+h x-h G x-h,x+h (x, y)m(dy) As f ∈ dom(L), L f ∈ C b (I), if δ h (x) = sup | L f (y)-L f (x)|; |y -x| < h , δ h (x) -→ 0 as h -→ 0. Thus, E x f (X τx(h) ) -f (x) E x (τ x (h)) -L f (x) = x+h x-h G x-h,x+h (x, y) L f (y) -L f (x) m(dy) x+h x-h G x-h,x+h (x, y)m(dy) ≤ x+h x-h G x-h,x+h (x, y)δ x (h)m(dy) x+h x-h G x-h,x+h (x, y)m(dy) = δ x (h) -→ 0 as h -→ 0, which is (1.29).

Probability transition kernel

In the previous sections we defined diffusion processes by means of functional analysis, via actions they induce on the space of bounded continuous functions. While this point of view is convenient from an analytical perspective, the notion of probability transition kernel is much more relevant from a statistical perspective. Indeed, it is the transition kernel that expresses the statistical properties of the process via its marginal laws. In this section, we prove the existence of this object and give the first elements of its computation in a fully generalized setting. We also see the role played by the resolvent kernel in proving these results.

Definitions

Proposition 1.3.1. Let X be a diffusion process with speed measure m, semi-group (P t ) t≥0 and state-space I, an interval of R. There exists a function (t, x, y) -→ p(t, x, y) : R + × I 2 → R + such that for any f ∈ L 2 , t ≥ 0 and x ∈ I,

P t f (x) = I f (y)p(t, x, y)m( dy). (1.30)
Moreover, p satisfies the following properties:

• continuity in all arguments (t, x, y),

• symmetry in space, i.e. for all x, y ∈ I and t > 0, p(t, x, y) = p(t, y, x),

• convolution, i.e. p(t + s, x, y)

= I p(t, x, ζ)p(s, ζ, y)m(dζ).
The 

(λ, x, y) ∈ (0, ∞) × I 2 by r(λ, x, y) = ∞ 0 p(t, x, y)e -λt dt (1.34)
is called resolvent kernel of X. From Proposition 1.3.1 and (1.34), the resolvent kernel is continuous.

Let (R λ ) λ>0 be the resolvent family, (P t ) t≥0 the semi-group, (t, x, y) -→ p(t, x, y) the probability transition kernel and (λ, x, y) -→ r(λ, x, y) the resolvent kernel of a diffusion X. From the positive Fubini theorem,

R λ f (x) = ∞ 0 P t f (x)e -λt dt = ∞ 0 I f (y)p(t, x, y)m(dy)e -λt dt = I f (y) ∞ 0 p(t, x, y)e -λt dtm(dy) = I f (y)r(λ, x, y)m(dy),
for any measurable f : I → R , λ > 0 and x ∈ I. This justifies the usage of the term resolvent kernel for the function (λ, x, y) -→ r(λ, x, y) .

Backward & forward equations

Let X be a diffusion process with state-space I, an interval of R and infinitesimal generator L. Also, let L * be the adjoint operator of L in L 2 (I) in the sense that

⟨L u, v⟩ L 2 = ⟨u, L * v⟩ L 2 ,
for any u ∈ dom(L) and v ∈ dom(L * ). This makes sense since dom(L)

⊂ C b (I) ⊂ L 2 (I).
The partial differential equations

∂ t -L u(t, x) = 0 and ∂ t -L * u(t, x) = 0
are respectively called the backward and forward equations. The reason why is made explicit by the following theorem, which is also a common point of entry for obtaining analytic expressions (when possible) of probability transition kernels (see [START_REF] Borodin | Handbook of Brownian motion-facts and formulae[END_REF][START_REF] Davies | Brownian motion with a sticky boundary and point sources in quantum mechanics[END_REF][START_REF] Dereudre | An explicit representation of the transition densities of the skew Brownian motion with drift and two semipermeable barriers[END_REF][START_REF] Lejay | Analytic expressions of the solutions of advection-diffusion problems in one dimension with discontinuous coefficients[END_REF]).

Proposition 1.3.4. Let X be a diffusion process with state-space I an interval of R with infinitesimal generator L. Then, the probability transition kernel

[t, x, y -→ p(t, x, y)] of X solves ∂ t -L x p(t, x, y) = 0, (1.35) 
∂ t -L * y p(t, x, y) = 0, (1.36) 
p(t, x, y) -→ δ x (dy) weakly as t -→ 0, (1.37) p(t, x, y) -→ δ y (dx) weakly as t -→ 0, (1.38) for all (t, x, y) ∈ R + × I 2 .

Lemma 1.3.5. The resolvent kernel (λ, x, y) -→ r(λ, x, y) of a diffusion X with state-space I solves

(λ -L x )r(λ, x, y) = 0, (1.39) (λ -L * y )r(λ, x, y) = 0, (1.40) for any (λ, x, y) ∈ (0, ∞) × I 2 , where L * is the adjoint operator of L in L 2 (I). Proof. Let f ∈ dom(L) and u(t, x) = P t f (x). From (1.13), for any t ≥ 0, x -→ u(t, x) ∈ dom(L) and ∂ t u(t, x) = L x u(t, x),
where the subscript in L x is used to denote the scope of the operator L. Thus, by definition of the probability transition kernel p of X,

I ∂ t -L x p(t, x, y)f (y)m(dy) = 0. Since dom(L) is dense in C b which is itself dense in L 2 and since m is a strictly positive measure, ∂ t -L x p(t, x, y) = 0, (1.41) 
for all (t, x) ∈ R + × I, m(dy)-almost everywhere. From the continuity of [(t, x, y) -→ p(t, x, y)] (1.41) holds also for all (t, x, y) ∈ R + × I 2 . For any λ > 0, by multiplying by e -λt and integrating with respect to t on R + , (λ -L x )r(λ, x, y) = 0, which is (1.39). Multiplying (1.39) with f (y)r(λ, y, x) and integrating over I with respect to m(dx),

0 = I r(λ, y, x)(λ -L x )r(λ, x, y)m(dx) = λ I r(λ, y, x)r(λ, x, y)m(dx) - I r(λ, y, x) L x r(λ, x, y)m(dx) = λ I r(λ, y, x)r(λ, x, y)m(dx) - I r(λ, x, y) L * x r(λ, y, x)m(dx) = I λr(λ, y, x) -L * x r(λ, y, x) r(λ, x, y)m(dx). (1.42)
Multiplying (1.42) with a measurable function f (y) and integrating over I with respect to m(dy),

I I λr(λ, y, x) -L * x r(λ, y, x) f (y)r(λ, x, y)m(dy)m(dx) = 0.
Since X is regular, m(dy) is strictly positive measures and p(t, x, y) > 0 for all (t, x, y) ∈ (0, ∞) × Int(I) × Int(I). Also, from (1.34), r(λ, x, y) > 0 for all (t, x, y) ∈ (0, ∞) × Int(I) × Int(I). Thus, λr(λ, y, x) -L * x r(λ, y, x) = 0 for all t ∈ R + × I, m(dy)m(dx)-almost everywhere and from the continuity of [(λ, x, t) -→ r(λ, x, y)] for all (t, x, y) ∈ R + × I 2 .

Proof of Proposition 1.3.4. Equation (1.35) was proven in the proof of Proposition 1.3.5. Equation (1.36) is proven applying the inverse Laplace transform to (1.40). The strong continuity of the diffusion's semi-group (P t ) t≥0 implies the weak continuity at zero, which are (1.37) and (1.38).

Additional useful results

Diffusions and martingales

Diffusion processes and martingales/semi-martingales are two distinct classes of processes that are central to the theory of continuous processes. We observe that there is no inclusive relation between these classes:

• the Brownian motion is a martingale and a diffusion process (see Section 1.5),

• the process X = ( |B t |) t≥0 , with B the standard Brownian motion, is a diffusion but not a semi-martingale (see [START_REF] Yor | Un exemple de processus qui n'est pas une semi-martingale[END_REF]),

• strong solutions of non-homogeneous stochastic differential equations (see Section 2.1.1) are semi-martingales but not diffusions,

• the fractional Brownian motion with Hurst coefficient H ̸ = 1/2 (see [80, p. 38]) is neither a semi-martingale, nor a diffusion (see [START_REF] Rogers | Arbitrage with fractional Brownian motion[END_REF]).

While this is the case there these processes are linked. The object of this section is to exhibit some of these links.

Lemma 1.4.1. Let X be a diffusion process, L its infinitesimal generator and v 0 the function defined for every x, a, b ∈ I by v 0 (x) = P x (τ b < τ a ). Then v 0 ∈ dom(L) and for any a, b ∈ I, it solves:

       L u = 0, x ∈ (a, b), u(a) = 0, u(b) = 1.
(1.43)

Proof. From (1.18), (1.23) and since m is a positive measure (see Proposition 1.2.17), for any x ∈ I,

L v 0 (x) = D m D s s(x) -s(a) s(b) -s(a) = D m 1 s(b) -s(a) = 0
as m is a strictly positive measure. The functions v 0 and L v 0 = 0 are both in C b (I). Thus,

v 0 ∈ dom(L) and L v 0 = 0. (1.44) Moreover, v 0 (b) = P b (τ b < τ a ) = P b (0 < τ a ) = 1. (1.45) v 0 (a) = P a (τ b < τ a ) = P b (τ b < 0) = 0. (1.46)
From (1.44), (1.45) and (1.46), v 0 solves (1.43).

Proposition 1.4.2. A diffusion process on natural scale is a local martingale.

Proof. Let X be a diffusion process with state-space I, speed measure m and scale function s the identity function, i.e. s(x) = x for any x ∈ I. In (1.44) we observed that s ∈ dom(L) but only for the process stopped at the boundary X τ ab = (X t∧τ ab ) t≥0 . In general, s / ∈ C b (I) and consequently s / ∈ dom(L). This is the case for processes on natural scale with unbounded state-space, i.e.

I = R. Let τ -n,n = inf t ≥ 0; X t / ∈ (-n, n) , X τ -n,n be the stopped process X τ -n,n = (X t∧τ -n,n ) t≥0 and M (s) the process defined in (1.22). From Proposition 1.2.19, the process M τ -n,n (s) = (M t∧τ -n,n (s)) t≥0 is a martingale. From (5.19), L s = 0 and M τ -n,n t (s) = s(X τ -n,n t ) -s(X τ -n,n 0 ) - t 0 L s(X τ -n,n r ) dr = X τ -n,n t -X τ -n,n 0 Thus, X τ -n,n = (M τ -n,n t (s) + X τ -n,n 0 
) t≥0 is also a martingale and the result is proven. Since τ -n,n is increasing τ -n,n -→ ∞ almost surely as n -→ ∞, the result is proven.

From Propositions 1.2.22 and 1.4.2, we have the following: Corollary 1.4.3. If X is a diffusion process with scale function s. Then, the process s(X) = (s(X t )) t≥0 is a local martingale.

Diffusions as time changed Brownian motions

Theorem 1.4.4. Let X be a diffusion on natural scale with state-space I an interval of R and speed measure m defined on a family of probability spaces P = (Ω, F, P x ) x∈I such that for every x ∈ I, P x (X 0 = x) = 1. Then, there exists a Brownian motion B, defined on an extension of P, such that P x (B 0 = x) and for every t ≥ 0,

X t = B γ(t) , where γ(t) is the right inverse of A(t) = 1 2 R L y t (B)m( dy).
Proof. See [82, p.278-279].

Corollary 1.4.5 (Remark (ii) of [START_REF] Rogers | Diffusions, Markov processes, and martingales[END_REF], p. 277). Let m be a locally finite strictly positive measure on R and B a standard Brownian motion defined on a family of probability space (P x ) x∈R = (Ω, F, P x ) x∈R such that for every x ∈ R, P x (B 0 = x) = 1. Let also L y (B) be the time-continuous version of the local time of B at y, A the time-change defined for every t ≥ 0 by

A(t) = 1 2 R L y t (B)m( dy)
and γ the right-inverse of A. Then, the process X = (B γ(t) ) t≥0 is a diffusion process on natural scale with speed measure m and for every x ∈ R, P x X 0 = x = 1.

Corollary 1.4.6. Let X • be a diffusion on natural scale with state-space I and speed measure m • . Then, if κ is a finite measure on I, the process X defined through s and m, where

s(x) = x, m(dx) = m • (dx) + κ(dx),
is a martingale with state-space I.

Proof. This is a direct consequence of Proposition 1.4.2, Theorem 1.4.4 and Corollary 1.4.5.

The standard Brownian motion

The most elementary continuous process is the Brownian motion. It also lies at the intersection of the most studied classes of processes: Lévy processes, martingales, diffusions. The Brownian motion can be defined as the process B = (B t ) t≥0 with

• B 0 = 0, • [t -→ B t ] is almost surely continuous, • for any t ≥ s, B t -B s is independent of F s , • for any t ≥ s, B t -B s ∼ N (0, t -s).
We observe that since a Gaussian random variable can take any value in R, the state-space of B is R.

For sake of convenience and consistency with the previous sections, we lift the property (1.47). Instead, we consider a Brownian motion defined on a family of probability space (Ω, (F) t≥0 , P x ) x∈R any process such that (1.48)-(1.50) hold and that

P x B 0 = x = 1.
From (1.49) and (1.50), for any measurable function f : R → R,

E f (B t ) F s = E f (B t -B s + B s ) F s = E f ( √ t -sZ + B s ) F s ,
where

Z ∼ N (0, 1) is independent of F s . Since Z is independent of F s and B s is F s -measurable and from (1.50), E f (B t ) F s = E f ( √ t -sZ + B s ) F s = E Bs f ( √ t -sZ) = E Bs f (B t ) (1.
51) which is the Markov property. From (1.48), and since B is a strong Markov process, B is also a diffusion.

Analytical characterization

From (1.50) and (1.51),

P t f (x) = R f (y) 1 √ 2πt e -(x-y) 2 /2 dy.
Thus, from [53, p. 149], the probability transition kernel [(t, x, y) -→ p(t, x, y)] and the speed measure m of the standard Brownian motion are defined for every

(t, x, y) ∈ R + × R 2 by p(t, x, y) = 1 2 √ 2πt e -(x-y) 2 /2 , m(dy) = 2 dy.
We observe that for every (t,

y) ∈ R + × I, the function [x -→ p(t, x, y)] ∈ C 2 b (R) and solves ∂ t - 1 2 ∂ xx p(t, x, y) = 0.
Thus, from (1.35) and (1.17),

L = 1 2 D 2 x , dom(L) = f ∈ C b : L f ∈ C b and the scale function s of X is the identity function, i.e. s = [x -→ x].
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Chapter 2

Singular diffusions and the sticky Brownian motion

This chapter is a synthesis of known results found in [START_REF] Borodin | Handbook of Brownian motion-facts and formulae[END_REF][START_REF] Cherny | Singular stochastic differential equations[END_REF][START_REF] Engelbert | Stochastic differential equations for sticky Brownian motion[END_REF][START_REF] Itô | Essentials of stochastic processes[END_REF][START_REF] Revuz | Grundlehren der Mathematischen Wissenschaften[END_REF].

Chapter Outline: In Section 2.1, we present all possible pathwise-features a one-dimensional diffusion can exhibit, categorize them accordingly and see how these features translate into the analytical characterization. In Section 2.2, we introduce the sticky Brownian motion, prove some of its properties and compute its probability transition kernel.

Diffusion process zoology

Stochastic differential equations and Itô diffusions

We call stochastic differential equation or SDE any expression of the form

dX t = µ(t, X t ) dt + σ(t, X t ) dW t , ( 2.1) 
where µ, σ : R + × R → R and W is a standard Brownian motion. The stochastic differential equation (2.1) can also be alternatively formulated in the integral form [START_REF] Revuz | Grundlehren der Mathematischen Wissenschaften[END_REF], Chapter IX, §1). The SDE (2.2) is said to have path-wise uniqueness if for two pairs (X, W ), (X ′ , W ′ ), defined on the same probability space, that solve it with W = W ′ and X 0 = X ′ 0 almost surely, then X = X ′ almost surely.

X t = X 0 + t 0 µ(t, X s ) ds + t 0 σ(t, X s ) dW s . ( 2 
A necessary condition for path-wise uniqueness in a one-dimensional setting is given by the following theorem.

Theorem 2.1.3 (Yamada-Watanabe). Let µ, σ be two measurable real-valued functions such that

• there exists a function ρ :

R + → R + such that 0+ du ρ 2 (u) = ∞ and for all x, y ∈ R, |σ(x) -σ(y)| ≤ ρ(|x -y|),
• b is Lipschitz continuous.

Then, path-wise uniqueness holds for (2.1).

For other versions of this result see [80, Chapter IX, Section §3]. In [START_REF] Barlow | Skew Brownian Motion And A One Dimensional Stochastic Differential Equation[END_REF] an example of an SDE where no path-wise uniqueness holds for its solution. 2) of [START_REF] Revuz | Grundlehren der Mathematischen Wissenschaften[END_REF], Chapter IX, §1). There is uniqueness in law for the SDE (2.2) if for any two of its solutions (X, W ), (X ′ , W ′ ) (not necessarily defined on the same probability space) with Law(X 0 ) = Law(X ′ 0 ), the processes X and X ′ have the same law. Proposition 2.1.5 (Proposition 1.4 of [START_REF] Revuz | Grundlehren der Mathematischen Wissenschaften[END_REF], Chapter IX, §1). There is uniqueness in law for an SDE if for every x ∈ R and any two of its solutions (X, W ), (X ′ , W ′ ) such that X 0 = X ′ 0 = x, then X and X ′ have the same law.

To define the notion of strong solution, we introduce the natural filtration of a process. The natural filtration of a process X is the smallest filtration (F X t ) t≥0 to which X is adapted. Definition 2.1.6 (strong solution, Definition 1.5 of [START_REF] Revuz | Grundlehren der Mathematischen Wissenschaften[END_REF], Chapter IX, §1). A solution of an SDE is called strong solution iff X is adapted to (F W t ) t≥0 , where (F W t ) t≥0 is the natural filtration of W . A solution of an SDE that is not strong will is called weak solution.

Proposition 2.1.7 (Corollary 3.23 of [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], Chapter 5). Let (X, W ) be a weak solution of (2.1) defined on a probability space (Ω, (F t ) t≥0 , P x ). Then, if path-wise uniqueness hold for (2.1). X is a strong solution of (2.1).

The notion of strong solution be defined alternatively (see [80, Chapter IX; §1]) as: Proposition 2.1.8 (Yamada-Watanabe). Let (X, W ) be a solution of (2.2). Then, it is a strong solution of (2.2) iff there exists a measurable function

F : C(R + , R) → C(R + , R) such that X = F (W ).
The difference between these two notions of strong and weak solution is subtle. A strong solution is uniquely determined by the driving Brownian motion W . This is not the case for a weak solution.

For necessary conditions for the existence, path-wise uniqueness, uniqueness in law of solutions and the notions of a strong/weak solution along with relevant examples see [START_REF] Cherny | Singular stochastic differential equations[END_REF] and [80, Chapter IX; §2, §3]. Proposition 2.1.9. A process that solves (2.3) is a diffusion process. We call such processes Itô diffusions.

Proof. Let X be a process that solves (2.3). The path-wise continuity of X is direct from the expression (2.3). For any f ∈ C b , t > 0 and stopping time τ ,

E x f (X τ +t )| F τ = E x f X 0 + τ 0 µ(X s ) ds + τ 0 σ(X s ) dW s F τ = E Xτ f X τ + τ +t τ µ(X s ) ds + τ +t τ σ(X s ) dW s . (2.4) Also, E Xτ f (X t • θ τ ) = E Xτ f X 0 • θ τ + t 0 µ(X s • θ τ ) ds + t 0 σ(X s • θ τ ) d(W s • θ τ ) = E Xτ f X τ + τ +t τ µ(X s ) ds + τ +t τ σ(X s ) dW s . (2.5)
From (2.4) and (2.5), the process X satisfies the strong Markov property (1.1).

We now prove the analytical characterization of Itô diffusions. Proposition 2.1.10. Let X be the diffusion process that solves (2.3) and L its infinitesimal generator. Then,

L f = µf ′ + 1 2 σ 2 f ′′ (2.6) for every f ∈ dom(L), where dom(L) = f ∈ C b (I) : L f ∈ C b (I) . Moreover, if µ, σ ∈ C(I), dom(L) = C 2 b (I).
Proof. From Itô's lemma, for any f ∈ C 2 (I),

f (X t ) = f (X 0 ) + t 0 f ′ (X s ) dX s + 1 2 t 0 f ′′ (X s ) d⟨X⟩ s = f (X 0 ) + t 0 f ′ (X s )µ(X s ) + 1 2 f ′′ (X s )σ 2 (X s ) ds + 1 2 t 0 f ′ (X s )σ(X s ) dW s . From (1.16), L f (x) = lim t→0 1 t E x f (X t ) -f (x) = lim t→0 1 t E x t 0 f ′ (X s )µ(X s ) + 1 2 f ′′ (X s )σ 2 (X s ) ds = E x lim t→0 1 t t 0 f ′ (X s )µ(X s ) + 1 2 f ′′ (X s )σ 2 (X s ) ds . (2.7)
From the intermediate value theorem, P x -almost surely 

1 t t 0 f ′ (X s )µ(X s ) + 1 2 f ′′ (X s )σ 2 (X s ) ds -→ f ′ (x)µ(x) + 1 2 f ′′ (x)σ 2 (x), (2.8 
s(x) = x a e - y a 2µ(u) σ 2 (u)
du dy and m(dx

) = 1 s ′ (x) 2 σ 2 (x)
dx.

(2.9)

Proof. From (1.43) and (2.6), s solves

s ′′ + 2 µ σ 2 s ′ = 0
and consequently

s ′ (x) = c 0 e - x a 2µ(u) σ 2 (u)
du , (

where c 0 ∈ R. From (1.23) and (2.6), for any f ∈ dom(L),

D m D s f = µf ′ + 1 2 σ 2 f ′′ . (2.11)
From (1.26) and (2.10),

D s f (x) = f ′ (x)/s ′ (x) = c -1 0 e x a 2µ(u) σ 2 (u) du f ′ (x) Let m(dx) ≪ dx and m ′ be the Radon-Nikodym derivative m ′ = dm dx . From (1.26), D m = m ′ D x . Thus, D m D s f (x) = m ′ (x) D x f ′ (x) s ′ (x) = m ′ (x) 2µ(x) σ 2 (x) f ′ (x) s ′ (x) + f ′′ (x) s ′ (x) (2.12)
From (2.11) and (2.12),

m ′ (x) = 2 σ 2 (x) 1 s ′ (x)
which proves (2.9).

Boundary classification

The paths of a diffusion process may exhibit various features in the vicinity of a boundary point of its state-space. We refer to these features as boundary behavior of a diffusion. It turns out the boundary behavior of a diffusion can be classified as follows (see Section 5.11 of Itô's book [START_REF] Itô | Essentials of stochastic processes[END_REF]): Proposition 2.1.12 (see [START_REF] Karlin | A second course in stochastic processes[END_REF]). Let X be a diffusion process with state-space I, an interval of R. A boundary point of I can either be of the following types:

• Regular boundary: the process can both enter and leave from a regular boundary (reflection,sticky reflection, absorption),

• Exit boundary: the process can reach the boundary from an interior point but cannot reach an interior point from the boundary (explosion, absorption),

• Entrance boundary: the process can reach an interior point from the boundary but cannot reach the boundary from an interior point (repulsion),

• Natural boundary: the process cannot reach the boundary from an interior point and an interior point cannot be reached from the boundary.

One can check the boundary behavior of a diffusion process by looking at the behavior of its speed measure in the vicinity of the boundary. This can be done as follows:

Proposition 2.1.13 (see Section 5.11 of [START_REF] Itô | Essentials of stochastic processes[END_REF]). Let X be a diffusion process defined through (s, m) with state-space I, an interval of R + , and 0 be a boundary point of I. For c > 0, let

I = 0<y<x<c m(dx) dy, II = 0<y<x<c m(dy) dx.
Then,

• 0 is a regular boundary iff I < ∞ and II < ∞, • 0 is an exit boundary iff I < ∞ and II = ∞, • 0 is an entrance boundary iff I = ∞ and II < ∞. • 0 is a natural boundary iff I = ∞ and II = ∞.

Singular diffusions

From (2.9), we observe that the scale function and speed measure of any Itô Then, X has a skew point at 0 iff

lim h→0 P 0 (τ -h < τ h ) -P 0 (τ h < τ -h ) ̸ = 0. (2.14)
Proof. From (1.18),

P 0 (τ -h < τ h ) = s(h) -s(0) s(h) -s(-h) -→ s ′ (0+) s ′ (0+) + s ′ (0-) and P 0 (τ -h < τ h ) = s(0) -s(-h) s(h) -s(-h) -→ s ′ (0-) s ′ (0+) + s ′ (0-) as h -→ 0. Thus, (2.14) holds iff s ′ (0-) ̸ = s ′ (0+), which concludes the proof.
Proposition 2.1.17. Let X be a diffusion process with state-space I such that 0 ∈ I. Then, X has a sticky point at 0 iff it spends a positive amount of time at 0 on the event {τ 0 < ∞}.

Proof. Let s be the scale function and m the speed measure of X. Let also X be defined on a family of probability spaces (Ω, (F t ) t≥0 , P x ) x∈I such that for every x ∈ I, P(X 0 = x) = 1. From Proposition 1.2.22 and Theorem 1.4.4, there exists a Brownian motion B defined on an extension of the probability space such that s(X) = B γ(t) , where γ is the right-inverse of 

A(t) = I L y t (B)m ′ (dy) 36
X • = (s -1 (B γ • (t)
)) t≥0 is a diffusion process with scale function s and speed measure m • . Also,

A(t) = A • (t) + ρ 2 L 0 t (B)
and

A(t) = A ρ • A • (t),
where

A ρ (t) = t + ρ 2 L 0 γ • (t) (B) = t + ρ 2 L 0 t (X • ). Thus, X = (X • γρ(t) ) t≥0
, where γ ρ is the right-inverse of A ρ , and from Theorem A.2.2 and Lemma A.2.4,

t 0 1 Xs=0 ds = t 0 1 X • γρ(s) =0 ds = γρ(t) 0 1 X • γρ(s) =0 dA ρ (s) = γρ(t) 0 1 X • γρ(s) =0 ds + ρ 2 γρ(t) 0 1 X • γρ(s) =0 dL 0 s (X • ) = ρ 2 L 0 γρ(t) (X • ) = L 0 t (X)
which proves the result.

We now give several examples of singular diffusions. When we want to introduce a new path-wise feature, it is common practice to first study the most elementary object having it. Among diffusion processes, the most elementary is the standard Brownian motion. We define the skew and sticky Brownian motions, which are respectively the most elementary skew and sticky diffusion processes.

Example 2.1.18 (Skew Brownian motion, see [START_REF] Harrison | On skew Brownian motion[END_REF]). The skew Brownian motion of parameter β ∈ (0, 1) is the diffusion process defined through s and m, where

s(x) =    x/β x > 0 x/(1 -β) x ≤ 0 , m(dx) =    2βx x > 0 2(1 -β)x x ≤ 0 ,
for every x ∈ R. We observe that

s ′ (0+) -s ′ (0-) = (1 -2β)/β(1 -β). Thus s ∈ C 1 (R) iff β = 1/2.
The cases β = 1/2 and β ∈ {0, 1} correspond to the standard and reflected Brownian motion respectively.

Example 2.1.19 (Sticky Brownian motion, see [START_REF] Feller | The parabolic differential equations and the associated semigroups of transformation[END_REF][START_REF] Itô | Diffusion processes and their sample paths[END_REF]). The sticky Brownian motion is the diffusion process defined through s and m, where

s(x) = x, m(dx) = 2 dx + ρδ 0 (dx),
for every x ∈ R. We observe that m({0}) = ρ > 0, which is the stickiness of the process at 0. Section 2.2 is dedicated to this process. The cases ρ = 0 and ρ = ∞ correspond to the standard Brownian motion and the Brownian motion absorbed at 0 (see Section 2.2.4).

The following example illustrates that it is possible to have a point that is both sticky and skew for a diffusion process.

Example 2.1.20 (Sticky-skew Brownian motion, see [START_REF] Touhami | On skew sticky Brownian motion[END_REF]). The sticky-skew Brownian motion is the diffusion process defined through s and m, where

s(x) =    x/β x > 0 x/(1 -β) x ≤ 0 , m(dx) = ρδ 0 (dx) +    2βx x > 0 2(1 -β)x x ≤ 0 ,
for every x ∈ R. We observe that the process is both sticky and skew at 0.

A process X such that there exists a countable subset N of I such that

1 I \ N m(dx) ≪ 1 I \ N dx and s ∈ C 1 (I \ N ) ∩ C 1 (I)
is called a diffusion with point-wise singularities. Then, each x ∈ Int(I) ∩ N is either a skew and/or a sticky point of X.

The following example illustrates that there are processes that belong to none of the aforementioned categories: Example 2.1.21 (Brownian motion slowed on the Cantor set, see [START_REF] Ankirchner | A functional limit theorem for coin tossing Markov chains[END_REF]). Let,

• C 1/3 be the Cantor set (see [84, p. 8, 38])

C 1/3 = ∞ n=1 x n 3 n : x i ∈ {0, 2}, ∀i ∈ N , 38
• f C 1/3 the Cantor-Lebesgue function (see [START_REF] Stein | Real analysis. Measure theory, integration, and Hilbert spaces[END_REF]-p.38,126), i.e. a continuous increasing function, with zero-derivative on R \C 1/3 such that

f C 1/3 (0) = 0, f C 1/3 (1) = 1,
• m C 1/3 the measure defined by extension on B(R) such that for any x < y,

m C 1/3 (x, y) = f C 1/3 (y) -f C 1/3 (x),
• X the diffusion process on natural scale with speed measure

m(dx) = 2 dx + m C 1/3 (dx).
We observe that X is a singular diffusion process with no point-wise singularities.

The sticky Brownian motion 2.2.1 Definition

The sticky Brownian motion is the diffusion process that behaves like a standard Brownian motion away from 0 which is a sticky point for the process. We can define it through s and m as follows. 

L = 1 2 d 2 dx 2 , dom(L) = f ∈ C b (R) : f ∈ C 2 (R * ); 1 ρ (f (0+) -f (0-)) = 1 2 f ′′ (0-) = 1 2 f ′′ (0+) .
Proof. It is a particular case of Proposition 3.1.3 of Chapter 3.

Proposition 2.2.3. Let X be a sticky Brownian motion of stickiness ρ > 0. Then, X solves

dX t = 1 Xt̸ =0 dB t , 1 Xt=0 dt = ρ 2 dL 0 t (X),
where B is a standard Brownian motion.

Proof. It is a particular case of Proposition 3.2.3 of Chapter 3.

Proposition 2.2.4. Let X be a sticky Brownian motion of stickiness ρ > 0 defined on a probability space (Ω, (F t ) t≥0 , P x ) such that P x (X 0 = x) = 1. Then, there exists a Brownian motion W such that P x (W 0 = x) = 1 and for every t ≥ 0,

X t = W γ(t) and γ -1 (t) = t + ρ 2 L 0 t (X), (2.16)
where γ -1 is the right-inverse of γ. Since almost surely γ -1 is strictly increasing and continuous, so is γ and thus γ -1 is the proper inverse of γ.

Proof. It is a particular case of Theorem 1.4.4.

Properties

Proposition 2.2.5. Let X be a sticky Brownian motion of stickiness ρ > 0 and τ 0 = inf{s > 0 : X s = 0} the hitting time of 0 by X. Then, on the event {τ 0 < t}, the random set 

O t = {s < t : X s = 0}
γ(t 1 ) = W γ(t 2 ) = 0.
The Brownian motion is almost surely not constant on any interval, there exists a γ(t 1 ) < ζ < γ(t 2 ) such that:

W ζ = 0 and X γ -1 (ζ) = 0,
where

t 1 < γ -1 (ζ) < t 2 .
Thus O t is totally disconnected. The fact that the process spends a positive amount is a particular case of Proposition 2.1.17.

Proposition 2.2.6. Let (Ω, F, {F t } t≥0 , P ρ x ); x ∈ R, ρ ≥ 0 be a family of filtered probability spaces and X ρ = (X ρ t ) t≥0 a process defined on (Ω, F, {F t } t≥0 ) such that under P ρ x it is the sticky Brownian motion of stickiness parameter ρ and P ρ x (X ρ 0 = x). Then,

Law P ρ x X ρ ct , L 0 ct (X ρ ); t ≥ 0 = Law P ρ/ √ c x √ cX ρ/ √ c t , √ cL 0 t (X ρ/ √ c ); t ≥ 0 , (2.17)
where L 0 t (X ρ ) and L 0 t (X ρ/ √ c ) are the local times of X ρ and X ρ/ √ c respectively.

We prove this result by expressing the sticky Brownian motion as a time-changed Brownian motion. A simpler proof is given in the Appendix that makes use of the joint density of the process with its local time (see Lemma A.3.1).

Proof of Proposition 2.2.6. Let X ρ be a process defined on P ρ x = (Ω, F, {F t } t≥0 , P ρ x ) such that under P ρ x it is a sticky Brownian motion of stickiness ρ. From Theorem 1.4.4, there exists a Brownian motion B defined on an extension of P ρ

x such that for every t ≥ 0,

X ρ t = B γ(t) 40
where γ(t) is the right inverse of A(t) = 1 2 R L y t (B)m( dy). Moreover from (A.4), P ρ

x -almost surely, for every t ≥ 0,

L 0 t (X ρ ) = L 0 γ(t) (B). (2.18)
From Proposition 1.10 of [80, Chapter I], for every c > 0, the process B ′ defined as,

B ′ t = B ct / √ c, ( 2.19) 
is a standard Brownian motion. Moreover, P ρ x -almost surely,

L 0 ct (B) = P x -lim ϵ→0 1 2ϵ ct 0 1 |Bs|<ϵ ds = P x -lim ϵ→0 c 2ϵ t 0 1 |Bcs|<ϵ ds = P x -lim ϵ→0 c 2ϵ t 0 1 |B ′ s |<ϵ/ √ c ds = √ cL 0 t (B ′ ). (2.20) Let A ρ (t) = t + ρ 2 L 0 t (B) and A ′ ρ (t) = t + ρ 2 L 0 t (B ′
) with γ ρ (t) and γ ′ ρ (t) be their respective right inverses. From (2.20), P ρ

x -almost surely, 

A ρ (ct) = ct + ρ 2 L y ct (B) = ct + √ c ρ 2 L y t (B ′ ) = c t + ρ 2 √ c L y t (B ′ ) = cA ′ ρ/ √ c (t), γ ρ (ct) = inf s > 0 : A ρ (s) > ct = inf s > 0 : A ′ ρ/ √ c (s/c) > t = cγ ′ ρ/ √ c (
B γρ(ct) = √ cB ′ γ ′ ρ/ √ c (t) .
Let X ρ/ √ c be the process such that

X ρ/ √ c t = B ′ γ ′ ρ/ √ c (t) , (2.22)
which is a martingale from the martingale stopping theorem. As such its local time L 0 (X ρ/ √ c ) is a well defined object. From (A.4), P x -almost surely, for every t ≥ 0,

L 0 t (X ρ/ √ c ) = L 0 γ ′ ρ/ √ c (t) (B ′ ). (2.23) 
We observe that for a measure m ρ ( dy) = 2 dy + ρδ 0 ( dy), 

A ρ (t) = R L y t (B)m ρ ( dy) and A ′ ρ (t) = R L y t (B ′ )m ρ ( dy).
L 0 t (X ρ/ √ c ) = L 0 t (X ρ )/ √ c,
for every t ≥ 0. Thus, setting P ρ/ √ c x = P ρ x √ c , (A.5) is proven. Corollary 2.2.7. Let X ρ = (X ρ t ) t≥0 be the sticky Brownian motion of stickiness parameter ρ > 0 and (P ρ t ) t≥0 its semi-group. Then, for every measurable function h : R → R,

P ρ √ n t h(x √ n) = E x h( √ nX ρ t n
) .

(2.24)

Probability transition kernel computation

Proposition 2.2.8. The probability transition kernel of the sticky Brownian motion of stickiness ρ with respect to m is the function p : R + × R 2 → R + defined for every t > 0 and x, y ∈ R by

p ρ (t, x, y) = u 1 (t, x, y) -u 2 (t, x, y) + v ρ (t, x, y), ( 2.25) 
where

         u 1 (t, x, y) = 1 2 √ 2πt e -(x-y) 2 /2t , u 2 (t, x, y) = 1 2 √ 2πt e -(|x|+|y|) 2 /2t , v ρ (t, x, y) = 1 ρ e 4(|x|+|y|)/ρ+8t/ρ 2 erfc |x|+|y| √ 2t + 2 √ 2t ρ .
(2.26)

Lemma 2.2.9. The resolvent kernel r(λ, x, y) of the sticky Brownian motion solves

λ -L x r(λ, x, y) = 0, (2.27) r(λ, 0-, y) = r(λ, 0+, y), (2.28) r(λ, y-, y) = r(λ, y+, y), (2.29) 1 ρ ∂ x r(λ, 0+, y) -∂ x r(λ, 0-, y) = 1 2 ∂ xx r(λ, 0, y), (2.30) 
where Lemma 2.2.10 (Theorem 6.1 of [START_REF] Feller | Generalized second order differential operators and their lateral conditions[END_REF]). For each λ > 0 the differential equation

L x = 1 2 D 2 x and ∂ x u(x, y) = lim h→0 1 h u(x + h, y) -u(x, y) . Moreover, for all x ∈ R,
λu(λ, x) -L x u(λ, x) = 0 (2.32)
has two convex solutions, one increasing ψ λ from 0 to ∞, one decreasing ϕ λ from ∞ to 0 such that ψ λ (0) = ϕ λ (0) = 1. The pair (ϕ λ , ψ λ ) is called minimal pair or minimal solutions.

Example 2.2.11.

If L = 1 2 D 2
x , then, for any λ > 0, the minimal solutions of (2.32) are where

ϕ λ (x) = e - √ 2λx , ψ λ (x) = e √ λx .
A λ = -1 + 2 √ 2 ρ √ λ -1 1 √ 2λ , B λ = 1 √ 2λ .
Proof. Let (ϕ λ , ψ λ ) be the minimal pair solving (2.32). Let also g(λ, x, y) be a function of the form

g(λ, x, y) = ϕ λ (x) ψ λ (x) a b c d ϕ λ (y) ψ λ (y) t ,
where A t is the transpose of the matrix A, supposed C 2 on every of the sets

D 1 = {0 < x < y}, D 3 = {y < x < 0}, D 5 = {x < 0 < y}, D 2 = {0 < y < x}, D 4 = {x < y < 0}, D 6 = {y < 0 < x},
delimited by {x = y}, {x = 0} and {y = 0}, where R 2 = 6 i=1 D i . Thus, there exists constants

{(a i , b i , c i , d i )} i such that g(λ, x, y) = ϕ λ (x) ψ λ (x) a i b i c i d i ϕ λ (y) ψ λ (y) t
for any (x, y) ∈ D i and i ∈ {1, 2, . . . , 6}. From (2.31),

c 1 = d 1 = 0, b 2 = d 2 = 0, a 3 = b 3 = 0, a 4 = c 4 = 0, a 5 = c 5 = d 5 = 0, a 6 = b 6 = d 6 = 0 and g(λ, x, y) =                            ϕ λ (y) a 1 ϕ λ (x) + b 1 ψ λ (x) , 0 < x < y, ϕ λ (x) a 2 ϕ λ (y) + c 2 ψ λ (y) , 0 < y < x, ψ λ (y) c 3 ϕ λ (x) + d 3 ψ λ (x) , y < x < 0, ψ λ (x) b 4 ϕ λ (y) + d 4 ψ λ (y) , x < y < 0, b 5 ϕ λ (y)ψ λ (x), x < 0 < y, c 6 ϕ λ (x)ψ λ (y), y < 0 < x, (2.35) ∂ x g(λ, x, y) = √ 2λ                            ϕ λ (y) -a 1 ϕ λ (x) + b 1 ψ λ (x) , 0 < x < y, -ϕ λ (x) a 2 ϕ λ (y) + c 2 ψ λ (y) , 0 < y < x, ψ λ (y) -c 3 ϕ λ (x) + d 3 ψ λ (x) , y < x < 0, ψ λ (x) b 4 ϕ λ (y) + d 4 ψ λ (y) , x < y < 0, b 5 ϕ λ (y)ψ λ (x), x < 0 < y, -c 6 ϕ λ (x)ψ λ (y), y < 0 < x, 43 ∂ xx g(λ, x, y)g(λ, x, y) = 2λg(λ, x, y). From (2.28), b 5 = a 1 + b 1 , c 6 = c 3 + d 3 . (2.36) From (2.29), a 1 = a 2 , b 1 = c 2 , c 3 = b 4 , d 3 = d 4 .
(2.37)

From (2.33), b 1 + c 2 = 2/λ, b 4 + c 3 = 2/λ. (2.38)
From (2.37) and (2.38),

b 1 = c 2 = c 3 = b 4 = 1/ √ 2λ. (2.39) From (2.30), b 1 -a 1 -b 5 = ρ λ/2b 5 , c 3 -c 6 -d 3 = ρ λ/2c 6 , (2.40) 
From, (2.37), (2.39) and (2.40),

b 1 = -a 1 1 + 2 √ 2 ρ √ λ
and Lemma 2.2.13 (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], p.1026). Let L λ be the inverse Laplace transform with respect to the variable λ. Then, the following Laplace inversion formulas hold,

a 1 = a 2 = d 3 = d 4 = -1 + 2 √ 2 ρ √ λ -1 1 √ 2λ . ( 2 
L λ e -k √ λ √ λ = e -k 2 /4t √ πt , L λ e -k √ λ µ + √ λ = e -k 2 /4t √ πt -µe µk+µ 2 t erfc µ √ t + k 2 √ t .
Proof of Theorem 2.26. From Lemma 2.2.9, the resolvent kernel [(λ, x, y) → r(λ, x, y)] of the sticky Brownian motion is (2.34). From (1.34), if [(t, x, y) → p(t, x, y)] and [(λ, x, y) → r(λ, x, y)] are respectively the probability transition and resolvent kernels of a diffusion, then, p(t, x, y) = L λ r(λ, x, y),

where L λ is the inverse Laplace transform. From Lemma 2.2.13, 

L λ 1 √ 2λ e - √ 2λ(|y-x|) = 1 √ 2πt e -|x-y| 2 /2 and L λ - 1 4/ρ + √ 2λ e - √ 2λ(|y|+|x|) = - 1 √ 2 L λ 1 4/ρ + √ λ e - √ 2λ(|y|+|x|) = - 1 √ 2πt e -(|x|+|y|)
p ℓ ρ (t, x, y) = u 1 (t, x, y) -u 2 (t, x -ℓ, y -ℓ) + v ρ (t, x -ℓ, y -ℓ),
where

         u 1 (t, x, y) = 1 2 √ 2πt e -(x-y) 2 /2t , u 2 (t, x, y) = 1 2 √ 2πt e -(|x|+|y|) 2 /2t , v ρ (t, x, y) = 1 ρ e 4(|x|+|y|)/ρ+8t/ρ 2 erfc |x|+|y| √ 2t + 2 √ 2t ρ .

Asymptotics

Proposition 2.2.15. Let X ρ be the sticky Brownian motion of parameter ρ > 0, B the standard Brownian motion and B * the Brownian motion absorbed at 0. Then,

Law(X ρ ) -→ Law(B) as ρ -→ 0, Law(X ρ ) -→ Law(B * ) as ρ -→ ∞.
Proof. From (4.10), the probability transition kernel of the sticky Brownian motion X ρ is defined for every (t, x, y Chapter 3

) ∈ R + × R 2 by p ρ (t, x, y) = u 1 (t, x, y) -u 2 (t, x, y) + v ρ (t,
erfc |x|+|y| √ 2t + 2 √ 2t ρ e -4(|x|+|y|)/ρ-8t/ρ 2 = lim ρ→0 1 ρ 2 √ π 2 √ 2t ρ 2 exp -|x|+|y| √ 2t + 2 √ 2t ρ 2 4(|x| + |y|)/ρ 2 + 16t/ρ 3 e -4(|x|+|y|)/ρ-8t/ρ 2 = lim ρ→0 1 √ π 4 √ 2t 4ρ(|x| + |y|) + 16t exp - (|x| + |y|) 2 2t = 1 2 √ 2πt exp - (|x| + |y|) 2 2t . ( 2 

Sticky Itô diffusions

The content of this chapter is a part of the article [START_REF] Anagnostakis | Functional convergence to the local time of a sticky diffusion[END_REF].

Chapter Outline: In Section 3.1, we define the notions of sticky stochastic differential equation and sticky Itô diffusion through s and m. In Section 3.2, we prove that any sticky Itô diffusion solves a system of the form (3.8)-(3.9) we call path-wise representation. We also prove that this path-wise representation characterizes the law of these processes. In Section 3.3, we prove path-wise results on sticky SDEs, namely the sticky versions of Itô's lemma and Girsanov's theorem. These results are used in Chapter 4 to prove the local time approximation for sticky Itô diffusions.

For an alternative proof of these results, see [START_REF] Salins | Markov processes with spatial delay: path space characterization, occupation time and properties[END_REF]. Also, path-wise characterizations are proven in [START_REF] Engelbert | Stochastic differential equations for sticky Brownian motion[END_REF] and [START_REF] Nie | Sticky reflecting Ornstein-Uhlenbeck diffusions and the Vasicek interest rate model with the sticky zero lower bound[END_REF] for the sticky Brownian motion and Ornstein-Uhlenbeck process with sticky reflection respectively.

Definition

We call sticky Itô diffusions any process that have have a point of stickiness and a dynamic described by a classical stochastic differential equation away from that point.

In Section 1.2.3, we introduced the notions of scale function and speed measure and proved they characterize the law of a diffusion. This characterization has the advantage to be local in nature. As such, this characterization is very convenient for sticky diffusions and especially sticky Itô diffusion.

From (2.9) and Definition 2.1.15, we define this class of processes as follows. Definition 3.1.1. A time-homogeneous sticky SDE solution or sticky Itô diffusion is a diffusion process of state-space I, an interval of R, defined through s and m, where s and m have the form

s(x) = x a e - y a 2µ(u) σ 2 (u) du dy, m(dx) = 1 s ′ (x) 2 σ 2 (x) dx + ρδ 0 (dx), (3.1) 
for every x ∈ I with µ and σ being two real-valued measurable functions. For sake of convenience and in order to keep explicit the dependence on (µ, σ, ρ), we will denote with (µ, σ, ρ)-sticky SDE solution the diffusion process described by (3.1).

We admit the following conditions on µ and σ which prevents explosive, skew and oscillating phenomena. Moreover, (3.3) allows the use of the plain Girsanov theorem. Condition 3.1.2. Let B a standard Brownian motion defined on a probability space (Ω, (F t ) t≥0 , P x ). We consider the following SDE:

dX t = µ(X t ) dt + σ(X t ) dB t , ( 3.2) 
where • (µ, σ) are taken so that (3.2) has a unique non-explosive strong solution,

• if X be the solution of (3.2) such that P(X 0 = x) = 1, for θ = (σ ′ (X t ) -µ(Xt) σ(Xt) ) t≥0 and every x ∈ I,

E x exp t 0 θ s dB s - 1 2 t 0 θ 2 s ds = 1, (3.3) 
• σ ∈ C 1 (I).

Proposition 3.1.3. The infinitesimal generator of the (µ, σ, ρ)-sticky SDE is

L f = µf ′ + 1 2 σ 2 f ′′ , (3.4)
for every f ∈ dom(L), where

dom(L) = f ∈ C b (I) : f ∈ C 2 b (I \{0}); L f (0-) = L f (0+) = 1 ρ f ′ (0+) -f ′ (0-) . ( 3.5) 
Proof. From (1.23), for any f ∈ dom(L)

D m D s f = L f.
From (5.42), for any x ∈ Int(I),

D s f (x) = lim h→0 f (x + h) -f (x) s(x + h) -s(x) = (f ′ /s ′ )(x). For x ̸ = 0, D m D s f (x) = d m(dx) (f ′ /s ′ )(x) = 1 2 s ′ (x)σ 2 (x) f ′′ (x)/s ′ (x) -s ′′ (x)f ′ (x)/(s ′ (x)) 2 = µ(x)f ′ (x) + 1 2 σ 2 (x)f ′′ (x). (3.6) For x = 0, D m D s f (0) = lim h→0 D s f (h) -D s f (0) m (0, h] = lim h→0 D s f (h) -D s f (0) h 0 2/(s ′ (ζ)σ 2 (ζ)) dζ + ρ = 1 ρ D s f (0+) -D s f (0-) . = 1 ρ 1 s ′ (0) f ′ (0+) -f ′ (0-) = 1 ρ f ′ (0+) -f ′ (0-) , (3.7)
where the last equality results from the definition of the scale function (see Proposition 1.2.16). From (1.12), (3.6) and (3.7), we have proven (3.4) and (3.5).

Path-wise characterization

Theorem 3.2.1. We consider the following system

dX t = µ(X t )1 Xt̸ =0 dt + σ(X t )1 Xt̸ =0 dB t , (3.8) 1 Xt=0 dt = ρ 2 dL 0 t (X), (3.9) 
where B is a standard Brownian motion, L 0 (X) is the local time process of X at 0 and (µ, σ) are a pair of real-valued functions over I that satisfy Condition (3.1.2). Then, the system (3.8)-(3.9) has a jointly unique weak solution.

Proof. Let (Ω, (F) t≥0 , P x ) be a probability space, B 1 a Brownian motion defined on (Ω, (F) t≥0 , P x ) and Y be the strong solution of

dY t = µ(Y t ) dt + σ(Y t ) dB 1 t , (3.10) such that P x (Y 0 = 0) = 1. (3.11) 
Let A and its right-inverse γ be the continuous and strictly increasing time-transforms defined for every t ≥ 0 by

A(t) = t + ρ 2 L 0 t (Y ), γ(t) = inf s > 0 : A(s) > t .
Let X and B be the processes defined for every t ≥ 0 by

X t = Y γ(t) , (3.12 
)

B t = B 1 γ(t) + t 0 1 Xs=0 dB 0 s , (3.13) 
where B 0 is a Brownian motion independent of B 1 . From (A.3), for every t ≥ 0,

B 1 γ(t) = γ(t) 0 1 Ys̸ =0 dB 1 s = t 0 1 Xs̸ =0 dB 1 γ(s)
and

γ(t) = ⟨B 1 γ(•) ⟩ t = γ(t) 0 1 Ys̸ =0 ds = γ(t) 0 1 Ys̸ =0 ds + ρ 2 dL 0 s (Y ) = γ(t) 0 1 Ys̸ =0 dA(s) = t 0 1 Xs̸ =0 ds. (3.14)
Thus, 

⟨B⟩ t = B 1 γ(•) + • 0 1 Xs=0 dB 0 s t = t 0 1 Xs̸ =0 ds + t 0 1 Xs=0 ds = t. ( 3 
X t = Y γ(t) = γ(t) 0 dY s = γ(t) 0 1 Ys̸ =0 dY s = γ(t) 0 1 Ys̸ =0 µ(Y s ) ds + γ(t) 0 1 Ys̸ =0 σ(Y s ) dB 1 s = γ(t) 0 1 Ys̸ =0 µ(Y s ) ds + ρ 2 dL 0 s (Y ) + γ(t) 0 1 Ys̸ =0 σ(Y s ) dB 1 s = γ(t) 0 1 Ys̸ =0 µ(Y s ) dA(s) + γ(t) 0 1 Ys̸ =0 σ(Y s ) dB 1 s = t 0 1 Xs̸ =0 µ(X s ) ds + t 0 1 Xs̸ =0 σ(X s ) dB 1 γ(s) = t 0 1 Xs̸ =0 µ(X s ) ds + t 0 1 Xs̸ =0 σ(X s ) dB 1 γ(s) + 1 Xs=0 dB 0 s = t 0 1 Xs̸ =0 µ(X s ) ds + t 0 1 Xs̸ =0 σ(X s ) dB s . (3.16) Moreover, t 0 1 Xs=0 ds = t 0 1 Y γ(s) =0 dA γ(s) = γ(t) 0 1 Ys=0 dA(s) = γ(t) 0 1 Ys=0 ds + ρ 2 dL 0 s (Y ) = ρ 2 γ(t) 0 1 Ys=0 dL 0 s (Y ) = ρ 2 L 0 γ(t) (Y ) = ρ 2 L 0 t (X). (3.17) 
From (3.11) and (3.12), P x (X 0 = x) = 1. From (3.16) and (3.17), the pair (X t , B t ) t≥0 solves (3.8)-(3.9), proving the existence of a solution.

For the uniqueness, we reset all notations. Let (Ω, (F t ) t≥0 , P x ) be a probability space, ( X t , B t ) t≥0 a solution of (3.8)-(3.9) such that P x (X 0 = x) = 1 and A being the rightinverse of γ which is the time-transform defined for every t ≥ 0 by

γ(t) = t 0 1 Xs̸ =0 ds. (3.18)
Let Y be the process defined for every t ≥ 0 by

Y t = X A(t) . (3.19)
From the definition of Y , P x (Y 0 = x) = 1. From (3.9), if L 0 ( X) and L 0 ( Y ) are the local times at 0 of X and Y respectively,

t = γ A(t) = A(t) 0 1 Xs̸ =0 ds = A(t) - A(t) 0 1 Xs=0 ds = A(t) - ρ 2 L 0 A(t) ( X) = A(t) - ρ 2 L 0 t ( Y ). (3.20)
The time-transform A is continuous and strictly increasing, thus γ is its proper inverse.

From (3.8),

Y t = X A(t) = X 0 + A(t) 0 µ( X s )1 Xs̸ =0 ds + A(t) 0 σ( X s )1 Xs̸ =0 d B s = X 0 + A(t) 0 µ( X s ) d γ(s) + A(t) 0 σ( X s )1 Xs̸ =0 dB s = X 0 + t 0 µ( Y s ) ds + A(t) 0 σ( X s )1 Xs̸ =0 d B s . Let B 1 t = A(t) 0 1 Xs̸ =0 d B s where, ⟨ B 1 ⟩ t = A(t) 0 1 Xs̸ =0 ds = γ( A(t)) = t.
Thus, from Levy's characterization B 1 is a standard Brownian motion and as d

B 1 t = 1 Ys̸ =0 d B A(t) , Y t = X 0 + t 0 µ( Y s ) ds + t 0 σ( Y s )1 Ys̸ =0 d B A(s) = X 0 + t 0 µ( Y s ) ds + t 0 σ( Y s ) d B 1 s .
Let (Y, B 1 ) be the solution of (3.10) such that P x (Y 0 = x) = 1, γ the right-inverse of 

A(t) = t + ρ 2 L 0 t (Y )
= Y 0 = Y 0 = x) = 1, almost surely Y γ(t) = X t = Y γ(t) , (3.22) 
for every t ≥ 0. Hence X is uniquely determined by (B 1 t , L 0 t (Y )) t≥0 and (3.8)-(3.9) has a unique solution. Proposition 3.2.2. If (X, B) is the joint solution of (3.8)-(3.9), then X is the (ρ, µ, σ)sticky SDE solution.

Proof. Let X be the solution of (3.8)-(3.9) and γ the time transform

γ(t) = t 0 1 Xs̸ =0 ds.
Moreover, let A be the right-inverse of γ and Y the process such that for every t ≥ 0, 

Y t = X A(t) . ( 3 
A(A s(Y ) (t)) = A s(Y ) (t) + ρ 2 L 0 A s(Y ) (t) (Y ) = A s(Y ) (t) + ρ 2 L 0 t (W ) = 1 2 R L y t (W )ν( dy),
where ν( dx) = m s(Y ) ( dx) + ρδ 0 ( dx). Thus, from Corollary 1.4.5, (s(X t )) t≥0 is a diffusion process on natural scale of speed measure m(s -1 ( dx)) + ρδ 0 ( dx). As s is continuous and invertible, X is a diffusion process with scale function s X and speed measure m X where

s X (x) = s(x), m X ( dx) = m( dx) + ρδ 0 ( dx) (3.26)
or a (ρ, µ, σ)-sticky SDE solution.

Proposition 3.2.3. Let X be a (ρ, µ, σ)-sticky SDE defined on a probability space (Ω, {F t } t≥0 , P x ). Then, there exists a Brownian motion W such that under P x ,

X t = x + t 0 µ(X s )1 Xs̸ =0 ds + t 0 σ(X s )1 Xs̸ =0 dW s , (3.27) t 0 1 Xs=0 ds = ρ 2 L 0 t (X). (3.28) 
Proof. Let A be the right-inverse of γ = [t → t 0 1 Xs̸ =0 ds] and Y the process such that,

Y t = X A(t) ,
for every t ≥ 0. Let (s X , m X ) and (s Y , m Y ) be the scale function and speed measure pairs of X and Y respectively. From (3.24) and (3.26),

s Y = s X , m Y = m X -ρδ 0 . (3.29)
From (5.42) and (3.29),

s ′ Y (x) = e - x a 2µ(u) σ 2 (u) du , m Y (dx) = 1 s ′ (x) 2 σ 2 (x) dx.
Thus, from Theorem 3.12 of [80, Chapter VII], the infinitesimal generator 

L Y of Y is L Y f (x) = µ(x)f ′ (x) + 1 2 σ 2 (x)f ′′ (x)

Path-wise results

Proposition 3.3.1 (Sticky Girsanov). Let (Ω, (F) t≥0 , P) be a probability space and X the process that solves

dX t = µ(X t )1 Xt̸ =0 dt + σ(X t )1 Xt̸ =0 dB t , (3.30) 1 Xt=0 dt = ρ 2 dL 0 t (X), (3.31)
where B is a P-Brownian motion. Let θ be a processes such that P( T 0 θ s ds < ∞) = 1, E(θ) the process such that

E t (θ) = exp t 0 θ s dB s - 1 2 t 0 θ 2 s ds
for every t ≥ 0 and Q the probability measure such that dQ = E t (θ) dP. Then, if E P is the expectancy under P and E P E t (θ) = 1, the process X solves

d X t = µ( X t ) + θ t σ( X t ) 1 Xt̸ =0 dt + σ( X t )1 Xt̸ =0 d B t , (3.32) 
1 Xt=0 dt = ρ 2 dL 0 t ( X), (3.33) where B t = B t -t 0 θ s ds is a standard Brownian motion under Q.

Proof. Let X be the the solution of (3.30)-(3.31), γ the time-change γ(t) = t 0 1 Xs̸ =0 ds for every t ≥ 0, A its right-inverse and Y = (X A(t) ) t≥0 . Let B be the process defined by B t = B t -t 0 θ s ds for every t ≥ 0. Then, from Theorem 6.3 of [START_REF] Liptser | Statistics of random processes. I. expanded[END_REF], B is a standard Brownian motion under Q and the probability measures P and Q are equivalent. By substitution,

dX t = µ(X t ) + θ t σ(X t ) 1 Xt̸ =0 dt + σ(X t )1 Xt̸ =0 d B t .
Moreover, since: the local time L 0 t (X) and the quadratic variation ⟨X⟩ t are defined as limits in probability, P ∼ Q and 

⟨X⟩ t = t 0 1 Xt̸ =0 dt = t -

Proposition 3.3.2 (Sticky Itô formula).

Let X be a process defined on a probability space (Ω, (F t ) t≥0 , P x ) such that P x (X 0 = x) = 1 and

dX t = µ(X t )1 Xt̸ =0 dt + σ(X t )1 Xt̸ =0 dB t , 1 Xt=0 dt = ρ 2 dL 0 t (X), (3.34) 
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where B is a (Ω, (F t ) t≥0 , P x )-standard Brownian motion. Then, for every real valued

C 2 function f such that f (0) = 0 and f ′ (0) ̸ = 0, the process f (X) = (f (X t )) t≥0 is solution of df (X t ) = f ′ (X t )µ(X t ) 1 2 f ′′ (X t )σ 2 (X t ) 1 Xt̸ =0 dt + f ′ (X t )σ(X t )1 Xt̸ =0 dB t , (3.35) 1 f (Xt)=0 dt = f ′ (0) ρ 2 dL 0 t (f (X)) (3.36) and P x f (X 0 ) = f (x) = 1.
Proof. The process X is a semi-martingale as,

X t = X 0 + t 0 µ(X s )1 Xs̸ =0 ds + t 0 σ(X s )1 Xs̸ =0 dB s ,
where t 0 µ(X s )1 Xs̸ =0 ds is a process of bounded variation and t 0 σ(X s )1 Xs̸ =0 dB s is a local martingale. Thus, we may apply the standard Itô formula for 

f ∈ C 2 (R), df (X t ) = f ′ (X t ) dX t + 1 2 f ′′ (X t ) d⟨X⟩ t = = f ′ (X t )µ(X t ) + 1 2 f ′′ (X t )σ 2 (X t ) 1 Xt̸ =0 dt + f ′ (X t )σ(X t )1 Xt̸ =0 dB t ,

Chapter 4

Local time approximation of sticky diffusions

In this chapter we present the theoretical results of [START_REF] Anagnostakis | Functional convergence to the local time of a sticky diffusion[END_REF]. Numerical illustrations are given in Chapter 6.

Introduction and main results

The last decades we have seen the appearance of local time approximations and their applications in statistical estimation problems. In [START_REF] Jacod | Rates of convergence to the local time of a diffusion[END_REF], it is proven that the high-frequency statistic of an Itô diffusion X

n α n [nt] i=1 g(n α X i-1 n -ℓ) (4.1)
for a given point ℓ, converges as n -→ ∞ uniformly in time, in probability to λ(g)L ℓ t (X). Since then, similar results were proven in the case of the skew and the oscillating Brownian motions [START_REF] Lejay | Is a Brownian motion skew?[END_REF][START_REF] Mazzonetto | Rates of convergence to the local time of Oscillating and Skew Brownian Motions[END_REF] and the fractional Brownian motion [START_REF] Podolskij | Comment on: Limit of Random Measures Associated with the Increments of a Brownian Semimartingale: Asymptotic behavior of local times related statistics for fractional Brownian motion[END_REF][START_REF] Jaramillo | Approximation of fractional local times: zero energy and derivatives[END_REF]. These gave rise to the usage of local time statistics [START_REF] Lejay | Analytic expressions of the solutions of advection-diffusion problems in one dimension with discontinuous coefficients[END_REF][START_REF] Lejay | Is a Brownian motion skew?[END_REF][START_REF] Lejay | Statistical estimation of the oscillating Brownian motion[END_REF], i.e. statistics based on these approximations. In this chapter we prove that under some assumptions on the testfunction g, the same results holds for Itô diffusions with a sticky point at 0. Then, we use this result to define a local time statistic which we prove to be a consistent estimator of the stickiness parameter.

Introduced by Feller in [START_REF] Feller | The parabolic differential equations and the associated semigroups of transformation[END_REF], one-dimensional sticky diffusions are continuous processes that satisfy the strong Markov property and spend positive amount of time at some points of their state-space I. These points, called sticky points, can be located either in the interior or at an attainable boundary the boundary of I (sticky reflection). A diffusion has a sticky point at 0 iff its speed measure m has an atom at 0, i.e. m({0}) > 0. The mass of that atom ρ = m({0}) is called stickiness parameter, it expresses how much time the process spends at 0 and there are no references known to us for its estimation. The infinitesimal generator of these processes are also known to have Wencel boundary conditions at the points of stickiness.

Sticky processes have been recently used to model phenomena in finance, biology, quantum and classical mechanics. In particular, they can be used to describe the behavior of interest rates around 0 [START_REF] Nie | Sticky reflecting Ornstein-Uhlenbeck diffusions and the Vasicek interest rate model with the sticky zero lower bound[END_REF][START_REF] Kabanov | A positive interest rate model with sticky barrier[END_REF], the behavior of molecules near a membrane [START_REF] Graham | Homogenization and propagation of chaos to a nonlinear diffusion with sticky reflection[END_REF], the concentration of pathogens in a healthy individual [START_REF] Àngel | Steady states in a structured epidemic model with Wentzell boundary condition[END_REF], the dynamics of mesoscale particles upon contact in colloids [START_REF] Stell | Sticky spheres and related systems[END_REF][START_REF] Kallus | Free energy of singular sticky-sphere clusters[END_REF] and the motion of quantum particles when they reach a source of emission [START_REF] Davies | Brownian motion with a sticky boundary and point sources in quantum mechanics[END_REF]. From a theoretical standpoint, they are used to create new types of probabilistic couplings [START_REF] Eberle | Sticky couplings of multidimensional diffusions with different drifts[END_REF] and appear as the limit of storage processes [START_REF] Harrison | Sticky Brownian motion as the limit of storage processes[END_REF]. Many papers have appeared recently that address the numerical challenges of simulating sticky diffusions [START_REF] Amir | Sticky Brownian motion as the strong limit of a sequence of random walks[END_REF][START_REF] Ankirchner | A functional limit theorem for irregular SDEs[END_REF][START_REF] Meier | Markov Chain Approximation of One-Dimensional Sticky Diffusions[END_REF][START_REF] Bou-Rabee | Sticky Brownian motion and its numerical solution[END_REF][START_REF] Anagnostakis | General diffusion processes as the limit of time-space Markov chains[END_REF].

In this chapter, we prove a local time approximation result for a class of sticky processes called sticky Itô diffusions. These processes solve a homogeneous SDE away from a countable and isolated set of points in the state-space where they exhibit stickiness. For simplicity, we suppose that there is one unique sticky point located at 0 ∈ I. Thus, the dynamic of the process is fully described by the drift and diffusivity functions µ, σ that describe the SDE the process solves away from 0, and the stickiness parameter ρ > 0 at 0 (see Chapter 3). To abbreviate, we call this process the (ρ, µ, σ)-SID. The most elementary sticky Itô diffusion is the (ρ, 0, 1)-SID called the sticky Brownian motion (see [START_REF] Engelbert | Stochastic differential equations for sticky Brownian motion[END_REF]). It is the process that has a Brownian dynamic away from 0 and a sticky point at 0. We will further suppose that the functions µ and σ : I → R that govern the dynamic of the underlying SDE satisfy the following condition: Condition 4.1.1. Let B a standard Brownian motion defined on a probability space (Ω, (F t ) t≥0 , P x ). We consider the following SDE:

dX t = µ(X t ) dt + σ(X t ) dB t , (4.2) 
where • (µ, σ) are taken so that (4.2) has a unique non-explosive strong solution,

• if X be the solution of (4.2) such that P(X 0 = x) = 1, then, for θ = (σ ′ (X t )µ(Xt) σ(Xt) ) t≥0 and every x ∈ I,

E x exp t 0 θ s dB s - 1 2 t 0 θ 2 s ds = 1, • σ ∈ C 1 (I).
A sticky Itô diffusion is a semimartingale (see Corollary 3.2.4). As such, if X is a sticky Itô diffusion defined on a probability space (Ω, (F t ) t≥0 , P), its local time at ℓ can either be defined (see [80, Chapter VI, §1])

• as the continuous, strictly-increasing process L ℓ (X) such that for every t ≥ 0,

|X t -ℓ| -|X 0 -ℓ| = t 0 sgn(X s -ℓ)dX s + L ℓ t (X),
where sgn(x) = 1 x≥0 -1 x<0 ,

• for every t ≥ 0, as the limit in probability

L ℓ t (X) = P-lim ϵ→0 1 ϵ t 0 1 0≤Xs-ℓ<ϵ d⟨X⟩ s , ( 4.3) 
• if the functions (µ, σ) satisfy Condition 3.1.2, for every t ≥ 0, as the limit in probability

L ℓ t (X) = P-lim ϵ→0 1 2ϵ t 0 1 |Xs-ℓ|<ϵ d⟨X⟩ s . (4.4)
The object of this paper is to prove necessary conditions for the statistic (4.1) to converge to the local time of a sticky Itô diffusions. The convergence occurs locally uniformly in time, in probability. Definition 4.1.2. A sequence of processes X n is said to converge locally uniformly in time, in P-probability to a process X iff

sup s≤t |X n s -X s | ---→ n→∞ 0,
in P-probability, for every t ≥ 0

In particular, we prove the following results:

Theorem 4.1.3. Let X ρ be a (ρ, µ, σ)-SID defined on a probability space (Ω, (F t ) t≥0 , P x ) such that P x (X 0 = x) = 1 for any x in the state-space I of X and (µ, σ) satisfy Condition 3.1.2. Let be g : R → R be a bounded Lebesgue-integrable function which vanishes on an open interval around 0 and T : R → R a continuously differentiable function such that for an ϵ > 0:

T (0) = 0, T ′ (0) = 1, ϵ ≤ T ′ (x) ≤ 1/ϵ, T ′′ (x) ≤ 1/ϵ, (4.5) 
for every x ∈ R. For every such function T , let g n [T ] be the sequence of functions such that:

g n [T ](x) = g n α T (n -α x) , (4.6)
for every x and n. Then, for every α ∈ (0, 1/2),

n α n [nt] i=1 g n [T ](n α X ρ i-1 n ) ---→ n→∞ λ(g) σ(0) L 0 t (X ρ ). (4.7)
locally uniformly in time, in P x -probability.

We now apply our result to give a consistent estimator of the stickiness parameter. Numerical illustrations are given in Section 6.2. 

1). In the same setting as Theorem 4.1.3, if g is a bounded integrable function which vanishes on an open interval

around 0, T that satisfies (4.5), g n [T ] defined in (4.6) and α ∈ (0, 1/2), then,

ρ n (X) := 2 λ(g) σ(0) 1 n α [nt] i=1 1 X i-1 n =0 [nt] i=1 g n [T ](n α X i-1 n ) (4.8)
is a consistent estimator of ρ as n -→ ∞.

Remark.

In particular both results hold if we take T the identity function and thus replace g n [T ] with g. For example, these holds for the function g

= [x → 1 1<|x|<2 ].
The first two results gives us the convergence properties of the statistic at and away from the threshold of stickiness. The last result results in a consistent stickiness estimator, which is the first attempt to estimate the stickiness parameter of a diffusion.

The case of the sticky Brownian motion

This section is dedicated to the proof of the following result: As the proof of Theorem 4.2.1 is rather tedious, we have isolated parts of it in Lemmas 4.2.3, 4.2.4 and 4.2.5.

Preliminary results

Lemma 4.2.2 (semi-group bound). Let (P ρ t ) t≥0 be the semi-group of the sticky Brownian motion of parameter ρ > 0. There exists a constant K > 0 that does not depend on ρ such that for every real-valued function h(x) such that h(0) = 0,

|P ρ t h(x)| ≤ K λ(|h|) √ t , (4.9)
for every t > 0, where λ(g) = R g(x) dx.

Proof. Let p ρ (t, x, y) be the probability transition kernel of the sticky Brownian motion of parameter ρ > 0 with respect to its speed measure m(dy) = 2 dy + ρ 2 δ 0 (dy). From [14, p. 108],

p ρ (t, x, y) = u 1 (t, x, y) -u 2 (t, x, y) + v ρ (t, x, y), ( 4.10) 
for every x, y ∈ R and t > 0, where

         u 1 (t, x, y) = 1 √ 2πt e -(x-y) 2 /2t , u 2 (t, x, y) = 1 √ 2πt e -(|x|+|y|) 2 /2t , v ρ (t, x, y) = 2 ρ e 4(|x|+|y|)/ρ+8t/ρ 2 erfc |x|+|y| √ 2t + 2 √ 2t ρ .
We observe that for x, y ∈ R and t ≥ 0: exp(-

(|x| + |y|) 2 /2t) < exp(-(x -y) 2 /2t) and u 1 (t, x, y) -u 2 (t, x, y) ≤ 1 2 √ 2πt e -(x-y) 2 /2t . (4.11)
The Mills ratio of a Gaussian random variable (see [46, p. 98]) yields erfc(x) ∼ e -x 2 /x. Thus, there exists a constant K Mills > 0 such that

v ρ (t, x, y) ≤ K Mills 2 √ 2t ρ(|x| + |y|) + 8t e -(|x|+|y|) 2 /2t ≤ K Mills 1 2 √ 2t e -(x-y) 2 /2t . (4.12)
From (4.11) and (4.12), for

K = 1 + K Mills √ π/2, p ρ (t, x, y) ≤ K 1 √ 2πt e -(x-y) 2 /2t (4.13)
and

|P t h(x)| ≤ R |h(y)|p ρ (t, x, y) dy ≤ K R |h(y)| 1 √ 2πt e -(x-y) 2 /2t dy.
Observing e -(x-y) 2 /2t ≤ 1 yields (4.9).

Lemma 4.2.3. Let X ρ be the sticky Brownian motion of stickiness ρ > 0 and g be an integrable function such that g(0) = 0. Then, there exists a constant K > 0 such that for every x ∈ R, t > 0 and n ∈ N:

E x sup s≤t u n n [ns] i=1 g u n X ρ i-1 n ≤ K u n n |g(u n x)| + λ(|g|) √ t . (4.14)
Proof. We observe that

E x sup s≤t u n n [ns] i=1 g u n X ρ i-1 n ≤ E x u n n [nt] i=1 g u n X ρ i-1 n = u n n |g(u n x)| + u n n [nt] i=2 E x g(u n X ρ i-1 n ) . (4.15) Then, if h n (x) = g(u n x/ √ n), [nt] i=1 h n √ nX ρ i-1 n = [nt] i=1 g u n X ρ i-1 n , λ(|h n |) = √ n u n λ(|g|), h n (0) = 0. (4.16)
From (4.15) and (4.16),

E x sup s≤t u n n [ns] i=1 g u n X ρ i-1 n ≤ u n n |g(u n x)| + u n n [nt] i=2 E x h n ( √ nX ρ i-1 n
) .

(4.17)

As h n (0) = 0, from (2.24) and (4.9),

E x h n ( √ nX ρ i-1 n ) = P ρ √ n i-1 |h n (x √ n)| ≤ K λ(|h n |) √ i -1 . (4.18)
From (4.16), (4.18) and as 

[nt] i=1 1 √ i ≤ 2 √ nt, [nt] i=2 E x h n ( √ nX ρ i-1 n ) ≤ 2Kλ(|h n |) √ nt = 2K n u n λ(|g|) √ t. ( 4 

Proof in the sticky Brownian case

Lemma 4.2.4. Let X be a sticky Brownian motion with local time L a (X). Moreover, let g and T be two real-valued functions such that g is bounded and integrable and T satisfies (4.5). Then, for any t ≥ 0,

R g n (x)L x/n α [nt]/n (X) dx ---→ n→∞ λ(g)L 0 t (X), (4.20)
where g n is given by (4.6). 59

Proof. From Trotter's theorem [START_REF] Trotter | A property of Brownian motion paths[END_REF], the local time of the standard Brownian motion L x (B) admits a version that is (t, x)-jointly continuous. As the time-change γ also admits a continuous version, from (A.4), the local time of X L x (X) admits a version that is (t, x)-jointly continuous. Thus,

|L x/n α [nt]/n (X) -L 0 t (X)| ---→ n→∞ 0, (4.21) 
for every t ≥ 0 and x ∈ R. Moreover, there exists a positive random variable U such that |L

x/n α [nt]/n (X) -L 0 t (X)| ≤ U, (4.22)
for every x and n. Thus, as g is bounded,

R g n (x) L x/n α [nt]/n (X) -L 0 t (X) dx ≤ ∥g∥ ∞ |x|≤q L x/n α [nt]/n (X) -L 0 t (X) dx + U |x|>q |g n (x)| dx. (4.23)
From (4.21), (4.22) and Lebesgue convergence theorem,

|x|≤q L x/n α [nt]/n (X) -L 0 t (X) ---→ n→∞ 0. (4.24)
With a change of variables,

|x|>q |g n (x)| dx = |x|>q |g(n α T (x/n α ))| dx = ∞ unT (q/un) g(y) 1 T ′ (y/u n ) dy + unT (-q/un) -∞ g(y) 1 T ′ (y/u n ) dy (4.25)
From (4.5) and (4.25), lim sup

n |x|>q |g n (x)| dx ≤ 1 ϵ ∞ q g(y) dy + -q -∞ g(y)
dy which since g is integrable converges to 0 as q → ∞. From (4.23), (4.24) and (4.25),

R g n (x) L x/n α [nt]/n (X) -L 0 t (X) dx ---→ n→∞ 0. (4.26)
Using again the same change of variables as in (4.25),

R g n (x) dx = R g n α T (x/n α ) dx = R g(x) 1 T ′ T -1 (x/n α ) dx. (4.27)
Thus, as g is integrable and T ′ (x) ≥ ϵ for every x ∈ R, from Lebesgue convergence theorem, where k n (x) = k(n α T (x/n α )).

R g n (x) dx ---→ n→∞ R g(x) dx. ( 4 
Proof. From Jensen's inequality,

λ(|T n [k n ]|) ≤ 1 0 R P n α ρ n 2α s/n k n (x) -k n (x) dx ds. (4.30)
From (4.13),

P n α ρ n 2α s/n k n (x) -k n (x) ≤ R |k n (y) -k n (x)|p n α ρ (n 2α s/n, x, y)m(dy) = R |k n (y) -k n (x)|p n α ρ (n 2α s/n, x, y) dy + n α ρ 2 |k n (x)|p n α ρ (n 2α s/n, x, 0) ≤ K R |k n (y) -k n (x)| 1 n α 2πs/n e -(x-y) 2 n/2sn 2α dy + |k n (x)| √ nρ 2 √ 2πs e -x 2 n/2sn 2α ,
where

1 n α √ 2πs/n
e -(x-y) 2 n/2sn 2α is the probability density function of a Gaussian N x, n 2α s/n .

Thus from positive Fubini,

R P n α ρ n 2α s/n k n (x) -k n (x) dx ≤ K E R k n (x + n α s/nZ) -k n (x) dx + R |k n (x)| √ nρ 2 √ 2πs e -x 2 n/2sn 2α dx , (4.31)
where Z ∼ N (0, 1) under P x . For the first additive term of right-hand side of (4.31), with the same argument as (4.27),

R k n (x) dx ≤ 1 ϵ R k(x) dx.
Thus, for every ω ∈ Ω, (4.33) which converges to 0 as n → ∞. From (4.32), (4.33) and Lebesgue convergence theorem,

R k n (x + n α s/nZ) -k n (x) dx ≤ R k n (x + n α s/nZ) dx + R k n (x) dx ≤ 2 ϵ λ(|k|). (4.32) Moreover since T ∈ C 1 and k is Lipschitz, P x -almost surely, k n (x + n α s/nZ) -k n (x) = k(n α T (x/n α + s/nZ)) -k(n α T (x/n α )) ≤ k(n α T (x/n α ) + s/nZ∥T ′ ∥ ∞ ) -k(n α T (x/n α )) ≤ |k| Lip s/nZ∥T ′ ∥ ∞ ,
E R k n (x + n α s/nZ) -k n (x) dx ---→ n→∞ 0. (4.34)
For the second additive term of right-hand side of (4.31): let δ > 0 be a positive real number such that k(x) = 0 for every x ≥ 0 such that x / ∈ (δ, 1/δ). From (4.5), T is strictly increasing, thus,

δ ≤ u n T (x/u n ) ≤ 1/δ, is equivalent to u n T -1 (δ/u n ) ≤ x ≤ u n T -1 (1/u n δ). From (4.5), lim inf n u n T -1 (δ/u n ) ≥ δϵ, lim sup n u n T -1 (1/u n δ) ≤ 1/δϵ.
Thus, there exists n 0 ∈ N such that for every n ≥ n 0 , supp k n ⊂ (ϵδ/2, 2/ϵδ). Thus, since k is bounded, Proof (of Theorem 4.2.1). Let X be the sticky Brownian motion of parameter ρ > 0, (P ρ t ) t≥0 its semi-group and L x (X) its local time at x. From the occupation times formula and the characterization of ⟨X ρ ⟩ t in [START_REF] Engelbert | Stochastic differential equations for sticky Brownian motion[END_REF],

R |k n (x)| √ nρ 2 √ 2πs e -x 2 n/2sn 2α dx ≤ 2∥k∥ ∞ 2/ϵδ ϵδ/2 √ nρ 2 √ 2πs e -x 2 n/2sn 2α dx ≤ ρ∥k∥ ∞ √ 2πs 2 ϵδ √ ne -n 1-2α (ϵδ)
t 0 f (X s )1 Xs̸ =0 ds = R f (y)L y t (X) dy. Thus, if f (0) = 0, t 0 f (X s ) ds = R f (y)L y t (X) dy. (4.36)
By applying consecutive change of variables and from (4.36),

R g n (x)L x/n α [nt]/n (X) dx = n α R g n (n α x)L x [nt]/n (X) dx = n α [nt]/n 0 g n (n α X s ) ds = n α n [nt] 0 g n (n α X s/n ) ds.
Thus,

n α n [nt] i=1 g n (n α Xi-1 n ) = n α n [nt] i=1 g n (n α X i-1 n ) - n α n [nt] 0 g n (n α X s/n ) ds + R g n (x)L x/n α [nt]/n (X) dx = [nt] i=1 n α n 1 0 g n (n α Xi-1 n ) -g n (n α X i-1 n + s n ) ds + n α n nt-[nt] 0 g n (n α X[nt] n ) -g n (n α X [nt] n + s n ) ds + R g n (x)L x/n α [nt]/n (X) dx. (4.37)
For the second additive term at the right hand side of (4.37),

n α n nt-[nt] 0 g n (n α X [nt] n ) -g n (n α X [nt] n + s n ) ds ≤ n α n nt-[nt] 0 g n (n α X[nt] n ) -g n (n α X [nt] n + s n ) ds ≤ 2∥g∥ ∞ n α n , (4.38)
which converges to 0 as n → ∞.

For the first additive term at the right hand side of (4.37), let

A n t := [nt] i=1 n α n 1 0 g n (n α X i-1 n + s n ) -g n (n α Xi-1 n ) ds, B n t := [nt] i=1 n α n 1 0 E x g n (n α X i-1 n + s n ) -g n (n α X i-1 n ) F i-1 n ds.
As the cross terms have expectancy 0, from Minkowski's inequality,

E x |A n t -B n t | 2 ≤ 2 n 2α n 2 [nt] i=1 E x 1 0 g n (n α X i-1 n + s n )-g n (n α X i-1 n ) ds 2 ≤ 4∥g∥ ∞ n 2α n [nt]
n , (4.39) which converges to 0 as n → ∞. Thus, A n t -B n t converges to 0 in L 2 (P x ) and consequently in L 1 (P x ). As such, proving that

A n t ---→ n→∞ 0 in L 1 (P x ) is equivalent to proving that B n t ---→ n→∞ 0 in L 1 (P x ).
To prove the latter, we define for each real-valued function h the functional,

T n [h](x) = 1 0 (P n α ρ n 2α s/n h(x) -h(x)) ds.
From (A.5),

B n t = n α n [nt] i=1 T n [g n ](n α Xi-1 n ).
From (4.14), there exists a constant K ′ > 0 that does not depend on n or ρ such that

E x |B n t | ≤ K ′ u n n |T n [g n ](u n x)| + √ tλ(|T n [g n ]|) .
From Jensen and (4.6), for every x ∈ R, t > 0 and ρ > 0,

|P ρ t g n (x)| ≤ ∥g∥ ∞ , By taking K ′′ = K ′ (2∥g∥ ∞ ∨ 1), E x |B n t | ≤ K ′′ n α n + √ tλ(|T n [g n ]|) . (4.40)
Thus, as 0 < α < 1/2, it remains to prove that λ(|T n [g n ]|) → 0. For this we use a Lipschitz approximation of g. In particular, as g is bounded and in L 1 (dx), for each p it is possible to find a Lipschitz function k p such that, k p (0) = 0 and λ(|g

-k p |) < 1/p. Let k n p (x) = k p (n α T (x/n α )), from (4.5), λ(|g n -k n p |) < 1/pϵ. (4.41)
Let p ρ (t, x, y) be the sticky Brownian motion transition kernel given in (4.10). As p ρ (t, x, y) = p ρ (t, y, x) for every x, y ∈ R,

λ(|P ρ t g n -P ρ t k n p |) ≤ R R g n (y) -k n p (y) p ρ (t, x, y) dy dx = R g n (y) -k n p (y) R p ρ (t, x, y) dx dy = R g n (y) -k n p (y) R p ρ (t, y, x) dx dy ≤ R g n (y) -k n p (y) dy = λ(|g n -k n p |). (4.42)
From (4.41) and (4.42), 

λ(|T n [g n ]|) ≤ 2 pϵ + λ(|T n [k n p ]|).
A n t = [nt] i=1 n α n 1 0 g n (n α X i-1 n + s n ) -g n (n α X i-1 n ) ds Px ---→ n→∞ 0. (4.44)
From (4.20), (4.37), (4.38) and (4.44), for every t ≥ 0,

n α n [nt] i=1 g n (n α X i-1 n ) Px ---→ n→∞ λ(g)L 0 t (X).
If g is a positive function the processes

n α n [nt] i=1 g n (n α Xi-1 n
) are non-decreasing with P xalmost surely, a continuous limit. Thus, from Lemma A.2.6, the convergence is locally uniform in time, in probability. For an arbitrary g satisfying the conditions of Theorem 4.2.1, let g = g + -g -, where g + (x) = max{g(x), 0} and g + (x) = max{-g(x), 0}. Then as g + and g -are both positive function and thus,

n α n [nt] i=1 g + n (n α X i-1 n ) ---→ n→∞ λ(g + )L 0 t (X), n α n [nt] i=1 g - n (n α X i-1 n ) ---→ n→∞ λ(g -)L 0 t (X),
locally uniformly in time, in P x -probability. Using the triangle inequality for the absolute value and the L ∞ (0, t)-norm, the locally uniform convergence of (4.7) in P x -probability for X a sticky Brownian motion is proven.

Proofs of the main results

Proof of Theorem 4.1.3

The proof works by extending Theorem 4.2.1 using the path-wise tools developed in Chapter 3.

Proof (of Theorem 4.1.3). We suppose there exists a δ > 0 such that

δ ≤ σ(x) ≤ 1/δ, σ ′ (x) ≤ 1/δ, (4.45) 
for every x ∈ I. From Proposition 3.2.3, there exists a Brownian motion B such that (X, B) jointly solves

dX t = µ(X t )1 Xt̸ =0 dt + σ(X t )1 Xt̸ =0 dB t , 1 Xt=0 dt = ρ 2 dL 0 t (X).
Let Q x be the probability measure such that dQ x = E t (θ) dP x where

E t (θ) = exp t 0 θ s dB s - 1 2 t 0 θ 2 s ds , θ t = σ ′ (X t ) - µ(X t ) σ(X t ) .
From Lemma 3.3.1, (X, B) jointly solve

dX t = 1 2 σ(X t )σ ′ (X t )1 Xt̸ =0 dt + σ(X t )1 Xt̸ =0 d B t , 1 Xt=0 dt = ρ 2 dL 0 t (X),
where B = B t -t 0 θ s ds is a standard Brownian motion under Q x . Let S be the function defined for every x ∈ R by

S(x) = x 0 1 σ(y) dy.
We observe that S is strictly increasing and S(0) = 0. Thus, from (3.35)-(3.36), the process

X ′ = (S(X t )) t≥0 solves dX ′ t = 1 σ(X t ) dX t - 1 2 σ ′ (X t ) σ 2 (X t ) d⟨X⟩ t = 1 X ′ t ̸ =0 d B t , (4.46) 1 X ′ t =0 dt = ρ 2σ(0) dL 0 t (X ′ ). (4.47) 
From Proposition 3.2.2, X ′ is a sticky Brownian motion of parameter ρ > 0. Let U and T 0 be the functions defined for every x ∈ R by

U (x) = S -1 (x)/σ(0), T 0 (x) = T U (x) . ( 4.48) 
Then,

T ′ 0 (x) = T ′ S -1 (x) σ(0) σ(x) σ(0) , T ′′ 0 (x) = T ′′ S -1 (x) σ(0) σ 2 (x) σ 2 (0) + T ′ S -1 (x) σ(0) σ ′ (x) σ(0) . ( 4.49) 
From (4.5), (4.45) and (4.49), for every x ∈ R,

T 0 (0) = T (0) = 0, T ′ 0 (0) = T ′ (0) = 1, ϵδ/σ(0) ≤ T ′ 0 (x) ≤ 1/ϵδσ(0), T ′′ 0 (x) ≤ ∥T ′′ ∥ ∞ ∥σ∥ 2 ∞ /σ 2 (0) + ∥T ′ ∥ ∞ ∥σ ′ ∥ ∞ /σ(0) ≤ 1 ϵδσ(0) 1 δσ(0) + 1 .
Thus, T 0 satisfies (4.5) for ϵ T 0 = ϵδ σ(0) ∧ 1/σ(0) and from Theorem 4.2.1 and (4.46)-(4.47),

n α n [nt] i=1 g n [T 0 ] n α X ′ i-1 n ---→ n→∞ λ(g)L 0 t (X ′ ),
locally, uniformly in time, in Q x -probability, where g n [T 0 ](x) = g(n α T 0 (x/n α )). From (4.48) and since

g n [T 0 ](n α x) = g(n α T 0 (x)) = g(n α T (U (x))) = g n [T ](U (n α x)) we get n α n [nt] i=1 g n [T ](n α X i-1 n ) ---→ n→∞ λ(g)L 0 t (X ′ ), (4.50) 
locally, uniformly in time, in Q x -probability. From (4.3), the local time is defined as a limit in probability. Thus, from (4.50) and as P

x ∼ Q x , n α n [nt] i=1 g n [T ](n α X i-1 n ) ---→ n→∞ λ(g)L 0 t (X ′ ),
locally, uniformly in time, in P x -probability. From Lemma A.2.3, L 0 t (X)/σ(0) is a version of L 0 t (X ′ ). Thus, since we supposed (4.45), (4.7) is proven in the case of bounded σ, 1/σ and σ ′ and from section 2-5 of [START_REF] Jacod | Rates of convergence to the local time of a diffusion[END_REF], the proof is extended to any σ ∈ C 1 .

Proof of Corollary 4.1.4

From (3.9), the occupation/local time ratio is the stickiness parameter. Thus having an estimation of the two aforementioned quantities that does not require the knowledge of ρ allow us to use the ratio as a consistent estimator. We first show that the occupation times can be consistently approximated by Riemann sums. Then, we use it along with Theorem 4.1.3 to prove Corollary 4.1.4. Lemma 4.3.1. Let X be a semi-martingale and A 0 (X) be its occupation time of 0 defined for every t ≥ 0 by

A 0 t (X) = t 0 1 Xs=0 ds.
Then,

1 n [nt] i=1 1 X i-1 n =0 ---→ n→∞ A 0 t (X), (4.51) 
locally uniformly in time, in probability.

Proof.

As both t → 1 n [nt] i=1 1 X i-1 n
=0 and A 0 (X) are increasing processes, with the same argument as in the proof of Theorem 4.2.1, it suffices to prove the convergence in probability for each t > 0. If δ > 0 and ϵ > 0 are two positive numbers,

P x 1 n [nt] i=1 1 X i-1 n =0 -A 0 t (X) > δ = P x 1 n [nt] i=1 1 |X i-1 n |<ϵ - 1 n [nt] i=1 1 0<|X i-1 n |<ϵ -A 0 t (X) > δ ≤ P x 1 n [nt] i=1 1 |X i-1 n |<ϵ -A 0 t (X) + 1 n [nt] i=1 1 0<|X i-1 n |<ϵ > δ ≤ P x 1 n [nt] i=1 1 0<|X i-1 n |<ϵ > δ 2 + P x 1 n [nt] i=1 1 |X i-1 n |<ϵ -A 0 t (X) > δ 2 . (4.52)
From (4.9) for h(x) = 1 0<|x|<ϵ and as [nt] i=1

1 √ i ≤ 2 √ nt, E x 1 n [nt] i=1 1 0<|X i-1 n |<ϵ = 1 n [nt] i=1 E x h(X i-1 n ) ≤ 1 n 2ϵK √ n [nt] i=1 1 √ i ≤ 4ϵK √ t
Thus, from Markov's inequality,

P x 1 n [nt] i=1 1 0<|X i-1 n |<ϵ > δ 2 ≤ 8ϵK √ t δ . ( 4.53) 
We consider the following functions:

ϕ(x) = (2 -|x|)1 1≤|x|<2 + 1 |x|<1 , ψ(x) = 2(1 -|x|)1 0.5≤|x|<1 + 1 |x|<0.5 .
The functions ϕ and ψ are both continuous and bounded with compact support and

ψ(x) ≤ 1 |x|<1 ≤ ϕ(x).
The composed function ϕ(X t ) and ψ(X t ) are both a.s. continuous functions of t, hence a.s. Riemann integrable. Thus,

1 n [nt] i=1 ϕ( 1 ϵ X i-1 n ) ---→ n→∞ t 0 ϕ( 1 ϵ X s ) ds 1 n [nt] i=1 ψ( 1 ϵ X i-1 n ) ---→ n→∞ t 0 ψ( 1 ϵ X s ) ds
From Lebesgue convergence theorem both t 0 ϕ( 1 ϵ X s ) ds and t 0 ψ( 1 ϵ X s ) ds converge to A 0 t (X) as ϵ → 0. Thus for each δ > 0 there exists an ϵ > 0 such that

P x -lim sup n 1 n [nt] i=1 1 |X i-1 n |<ϵ ≤ A 0 t (X) + δ, P x -lim inf n 1 n [nt] i=1 1 |X i-1 n |<ϵ ≥ A 0 t (X) + δ.
Thus, for each δ > 0 there exists an ϵ 0 > 0 such that

P x 1 n [nt] i=1 1 |X i-1 n |<ϵ -A 0 t (X) > δ 2 ---→ n→∞ 0. (4.54) 
From (4.52), (4.53) and (4.54), for each ϵ ′ > 0 by choosing ϵ ′ = ϵδ in (4.53) , there exists a δ > 0 such that 0 ≤ lim sup

n P x 1 n [nt] i=1 1 X i-1 n =0 -A 0 t (X) > δ ≤ 4ϵK √ t.
Thus,

1 n [nt] i=1 1 X i-1 n
=0 converges in probability to A 0 t (X). From (3.9), A 0 t (X) admits almost surely a continuous version. Thus, from Lemma A.2.6, (4.51) is proven.

Proof (of Corollary 4.1.4). We consider that we are on the event L = {L 0 t (X) > 0}. By integrating (3.9) we observe that

A 0 t (X) = ρ 2 L 0 t (X). (4.55) 
Thus,

L = {L 0 t (X) > 0} = {A 0 t (X) > 0}. From (4.7) and (4.51), (1/n) [nt] i=1 1 X i-1 n =0 (n α /n) [nt] i=1 g n [T ](n α X i-1 n ) Px ---→ n→∞ A 0 t (X) (λ(g)/σ(0))L 0 t (X) . ( 4.56) 
On the event L, both terms in the ratio on the right-hand side of (4.56) are strictly positive. As such, the ratio is a well-defined real-valued random variable. Thus, from (4.55) we get (4.8) on L.

• We call x ∈ I the center of the cell c ∈ C(g) iff c ∩ g = {x}.

• Finally, a covering grid of I is a grid g such that I = c∈C(g) c.
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Figure 5.1: The covering grid g = Z of (-∞, ∞) along with some of its cells C(g).

Examples of covering grids of (0, ∞) and (-∞, ∞) are {1/n; n ∈ N} and Z respectively.

For any covering grid g of I and diffusion process X with state-space I, defined through (s, m), let |g|, |g| X be the grid metrics:

|g| = sup c∈C(g) |c|, |g| X = sup c∈C(g) {s(c)m(c)}, (5.1) 
where |c| = (b -a) and s(c) = s(b) -s(a) with a and b being the endpoints of c. The convergence results will be expressed in the latter metric.

Let X be a diffusion process on natural scale with state-space I and speed measure m. Let X be defined on the family of filtered probability spaces (Ω, F, (F t ) t≥0 , (P x ) x∈I ), where P x is the law of X such that, for any x ∈ I, P x {X 0 = x} = 1. For any covering grid g of I, we define the process X g = ( X g t ) t≥0 as the asymmetric random walk with: • state-space g, • initial distribution equal to the distribution of X the first time it touches the grid, • the same transition probabilities as X over g, • conditional transition times that match the conditional expected transition times of X over g. Thus, under P x , if a and b are respectively the closest lower and upper elements to x of g,

X g 0 =    a, with probability P x (τ b < τ a ), b, with probability P x (τ a < τ b ) = 1 -P x (τ b < τ a ), (5.2) 
where τ a := inf{t > 0 : X t = a}. For the rest of the trajectory, we define τ ab := τ a ∧ τ b and (T g (n)) n≥0 as the consecutive jumping times of ( X g t ) t≥0 . Then, for all k ∈ N 0 and a < x < b adjacent points of g, and

P X g T g (k+1) = b X g T g (k) = x = P x (τ b < τ a ), (5.3) 
T g (k + 1) -T g (k) =    E x (τ ab |τ b < τ a ), on { X g T g (k+1) = b} ∩ { X g T g (k) = x}, E x (τ ab |τ a < τ b ), on { X g T g (k+1) = a} ∩ { X g T g (k) = x}.
(

As proved in Section 5.3, the quantities that appear on the right hand side of (5.3) and (5.4) are explicit functionals of the speed measure m.

Let c x be the cell of the grid g containing x, i.e., c x ∈ C(g) and x = c x ∩ g. From (5.3), (5.4) and Bayes' rule, if c x = (a, b), both P X g T g (k+1) = b X g T g (k) = x and T g (k + 1) -T g (k) only depend on x. Thus, if we know the quantities

p + [x, (a, b)] = P x (τ b < τ a ), T + [x, (a, b)] = E x τ ab τ b < τ a , p -[x, (a, b)] = P x (τ a < τ b ), T -[x, (a, b)] = E x τ ab τ a < τ b , (5.5) 
for any adjacent a < x < b in g, we can simulate the random walk using Algorithm 1. We discuss in Section 5.3 on how to compute the quantities in (5.5). Practical examples are given in Sections 5.6 and 6.1.

This algorithm has been first introduced in [START_REF] Étoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF] in the situation of SDE solutions with measurable coefficients, where the speed measure of the process satisfies c dx ≤ m(dx) ≤ C dx.

(5.6)

Our main contribution is that we allow non-elliptic speed measures with vanishing and unbounded density (as in e.g. the Bessel process case, see Section 6.1.6), speed measures with singular part (as in e.g. the sticky Brownian motion, see Sections 6.1.2), scale functions not in C 1 (as in e.g. the skew Brownian motion and skew Bessel process, see Section 6.1.3 and 6.1.6) and non-trivial boundary behaviors (see Section 6.1.5). The probabilistic arguments we use to prove our results allow for greater flexibility, while the proofs of [START_REF] Étoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF] are based on elliptic PDE theory. This allows us to handle degenerate diffusions and to perform grid tuning and achieve higher orders of convergence (see Section 5.2.3).

Remark. We observe that the process X g is not a one-dimensional Markov chain. It is though a Markov chain in space and time since the joint law of the next position of X g on the grid and the next transition time are both determined by the current position on the grid. Hence the terms: space-time Markov chains and Space Time Markov Chain Approximation (STMCA).

Remark. In the case of sticky diffusions, where the speed measure m has the form m(dx) = m c (dx) + ρδ 0 (dx), the transition probabilities and transition times (5.5) can be directly inferred from the ones of the diffusion without the sticky term. Indeed, Proposition 5.3.2 yields

E x τ ab 1 τ b <τa = (a,b) G a,b (x, ζ)v 0 (ζ)m c (dζ) + ρ G a,b (x, 0)v 0 (0),
where v 0 (x) = P x (τ b < τ a ).

For the convergence, we make the further assumption that the diffusion process (X t ) t≥0 satisfies the following non-explosion condition: there exists a k 1 > 0 such that the speed measure of the diffusion process satisfies

m(dx) ≥ k 1 1 1 + x 2 dx, (5.7) 
for all x ∈ I. Practically, this means that the process does not move faster than a log-normal process for large values of X t . We may now express the convergence result in terms of the step-size of the grid in terms of p-Wasserstein distances. In the following result, the p-Wasserstein distance W p between two laws µ and ν of processes with càdlàg4 paths is defined as

W p µ, ν = inf (ζ,ξ)∼Γ(µ,ν) ∥ζ -ξ∥ ∞ L p ,
where by Γ(µ, ν) we denote the collection of all measures with marginals µ and ν.

In Section 5.2.5, we observe that, by suitable choice of the probability space, the values taken by the approximation process correspond to values taken by X. We call this class of approximation schemes embeddable schemes (other embeddable schemes are the ones developed in [START_REF] Ankirchner | A functional limit theorem for coin tossing Markov chains[END_REF][START_REF] Étoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF]). Proving the convergence of an embeddable scheme usually involves: embedding the approximation process in the trajectory of the target diffusion process and controlling the embedding times, controlling the speed at which the process moves.

Convergence rate for the general case

The convergence results established in the previous section are proven in the case of a diffusion process on natural scale. In this section, we show how more general results can be inferred. Let X be a diffusion process with state-space I an open interval of R, scale function s and speed measure m. We assume that • s belongs to the Sobolev space W 1,1 (I), so from Theorem 8.2 of [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF], as s is continuous,

s(x) -s(y) = x y s ′ (t) dt,
for all y, x in I.

• there exists a k 1 > 0 such that for all x ∈ I,

m(dx) ≥ k 1 s ′ (x) 1 + s(x) 2 dx, (5.9) 
• the inverse of s is α-Hölder continuous, i.e., there exists a constant C > 0 such that for all x ̸ = y ∈ I,

|s -1 (x) -s -1 (ȳ)| |x -ȳ| α ≤ C. ( 5.10) 
Given a grid g, we consider the random walk X g t defined by Algorithm 1, where the transition probabilities and transition times in (5.5) can be computed using the formulas derived in Section 5.3. We obtain the following corollary of Theorem 5.2.1.

Corollary 5.2.3. Let X be a diffusion process with scale function and speed measure satisfying the above conditions. Let also g be a covering grid over the state-space I of X. Then, for all p ≥ 1, δ ∈ (0, 1 4 ∧ 1 p ), T > 0 and x ∈ I there exists positive constants C 1 , and C 2 such that

W p Law ( X g t ) t∈[0,T ) , Law (X t ) t∈[0,T ) ≤ C 1 |g| δ X ,
where |g| X is defined in (5.1).

Proof. We define the proxy process Y = (s(X t )) t≥0 which has state-space s(I), scale function s Y (x) = x and speed measure m Y (dx) = m • s -1 (dx). From condition (5.9) and a change of variables, we get that (Y t ) t≥0 satisfies condition (5.7) for the same constant k 1 . We also define Y s(g) t evolving according to Algorithm 1, with covering grid s(g) = {s(x); x ∈ g}. It can be defined on the canonical space of X so that s( X g t ) = Y s(g) t almost surely. Thus, Condition (5.10) implies that

|X t -X g t | ≤ C|Y t -Y s(g) t | α .
Along with the fact that

|g| Y = sup c∈C(g) {|s(c)|m Y (s(c))},
Theorem 5.2.1 implies Corollary 5.2.3.

Grid tuning

We observe that for all ϵ > 0, in the case of a Brownian motion, Theorem 5.2.1 yields a convergence rate of O(|g| 1 2 -ϵ ) as |g| -→ 0, which is optimal from Donsker's invariance principle [START_REF] Donsker | An invariance principle for certain probability limit theorems[END_REF]. We would like to have this result for all diffusion processes, but the following example illustrates that this is not the case. We then show how we can remediate to this by using a custom grid and extrapolate this method to the general case via Corollary 5.2.5.

Example 5.2.4. Let X be the diffusion process with state-space R, defined through s and m with s

(x) = x, m(dx) = 2 dx + ρδ 0 (dx).
This process is called the sticky Brownian motion and is the "most elementary" sticky diffusion process. As such, it spends a positive amount of time at 0 and the Euler scheme is known to not be well defined for these processes. We observe that, for any covering grid g of R and c ∈ C(g) with c ̸ = c 0 and c 0 ∈ C(g) being the cell containing 0,

2|c| 2 = m(c)|c| ≤ sup c∈C(g) m(c)|c|, ρ|c 0 | + 2|c 0 | 2 = m(c 0 )|c 0 | ≤ sup c∈C(g) m(c)|c|. ( 5.11) 
From (5.11), for a uniform grid of step size h, 2hρ < |g| X .

Thus, for any ϵ > 0, the convergence rate given by Theorem 5.2.1 is O(h 1 4 -ϵ ) as |g| -→ 0. This means that there are functionals of the trajectory for which the convergence rate is much slower for this process in comparison with a standard Brownian motion. In order to remediate to this, we propose a preliminary step to the approximation scheme that involves finding a grid that is adapted to the speed measure of the process. In the case of the Brownian motion with a sticky point at 0, such a grid can be defined as one that has uniform non-adjacent cells to 0 of size h and with the cell of center 0 being (-h 2 /2ρ, h 2 /2ρ), i.e.

g = k∈Z + - h 2 2ρ -k h 2 ∪ 0 ∪ k∈Z + h 2 2ρ + k h 2 .
(5.12)

As the approximation process is a random walk, for every k steps it makes, it spends O( √ k) steps in the cell containing 0 (see [START_REF] Chung | On the zero n 1 ±1[END_REF]). Thus, running the algorithm on either grid yields the same algorithmic complexity, whilte the convergence rate is improved to O(h The general case is covered by the following Corollary: Corollary 5.2.5. Let X be a diffusion process and X g the approximation process defined by Algorithm 1. Then, if g is a grid such that

|g| X ≤ C|g| 2 ,
(5.13)

we can bound the p-Wasserstein distance between the laws of ( X g t ) t∈[0,T ) and (X t ) t∈[0,T ) in Theorem 5.2.1 by |g| 2δ instead of |g| δ X . Thus, for all ϵ > 0, the law of the random walk converges in any p-Wasserstein distance at the rate O(|g|

( 1 2 ∧ 2 p )-ϵ ) instead of O(|g| ( 1 4 ∧ 1 p )-ϵ ) as |g| -→ 0.
We now show how one can create grids such that (5.13) holds in the case of homogeneous SDEs. Considering sticky and/or skew points is straightforward.

• For a process whose speed measure satisfies (5.6) and (5.9) with one or more skew points, no grid modification is required,

• For a process whose speed measure satisfies (5.6) and (5.9) and has a sticky point at 0 of stickiness ρ > 0, one needs to consider the points {-h 2 /ρ, 0, h 2 /ρ} to have a tuned grid,

• The case of a reflection at a boundary is treated in Section 5.2.4.

Let (µ, σ) be a pair of functions satisfying the following condition: Let X be the diffusion that solves (5.14), I its state-space, s its scale function and m its speed measure given by [14, p. 17]

s ′ (x) = e - y a 2µ(ζ) σ 2 (ζ)
dζ , and m(dx

) = 1 s ′ (x) 2 σ 2 (x) dx,
with s ′ being the right-derivative of s. Then, if g = {x j } j∈J is a covering grid such that for a constant C > 0 and every j ∈ J s(x j+1 ) -s(x j-1 )

x j+1

x j-1

2 s ′ (ζ)σ 2 (ζ) dζ ∧ (x j+1 -x j-1 ) 2 ≤ Ch 2 ,
it satisfies (5.13) and |g| = Ch. Thus, from Corollary 5.2.5, for any ϵ > 0 using such grids give us a convergence rate of O(|g| Generating such grids numerically can be done choosing a starting point x 0 and adding points x j to the grid iteratively as follows: given x j-1 , let x j be chosen such that:

s(y) -s(x j-1 ) y x j-1 2 s ′ (ζ)σ 2 (ζ) dζ ≤ h 2 /2.
(5.15)

Then the next element of the grid is defined as

x j =    x (0) j if x (0) j -x j-1 ≤ h, x j-1 + h if x (0) j -x j-1 > h.
(5.16)

The problem (5.15) can be solved numerically using a fixed point algorithm. Examples of STMCA simulations using tuned grids computed solving (5.15)-(5.16) are given in Figures 6.2 and 6.3.

The case of diffusions with boundary conditions

When presenting the results and the structure of the scheme, we considered only processes where I is an open set, thus considering diffusion with unreachable boundaries.

Our results also adapt to the situation where either ℓ and/or r are reachable, and in this case some adjustments are needed, depending on the nature of finite boundaries and on the condition at regular boundaries. In order to keep the presentation simple, we assume that the process is on natural scale and that I = [0, +∞) (the adaptation to

I = (ℓ, r] or I = [ℓ, r] or I = [ℓ, r) with ℓ ∈ R ∪ {-∞} and r ∈ R ∪ {+∞} is straightforward).
It is well known (see for instance Section 5.11 of Itô's book [START_REF] Itô | Essentials of stochastic processes[END_REF]) that the finite boundary 0 can be of four types. Setting, for some fixed c > 0,

I = 0<y<x<c m(dx) dy, II = 0<y<x<c m(dy) dx, then • 0 is an exit boundary if I < ∞ and II = ∞, • 0 is a regular boundary if I < ∞ and II < ∞, • 0 is a natural boundary if I = ∞ and II = ∞, • 0 is an entrance boundary if I = ∞ and II < ∞.
The entrance type been excluded for a finite boundary of a diffusion process on natural scale, and the natural type been considered in the settings of Theorem 5.2.1, this leaves us with two possible types for the boundary 0: exit or regular. If 0 is an exit boundary, then the diffusion process X is absorbed at the boundary 0. If 0 is a regular boundary, then the diffusion process can either be absorbed or reflected at 0. In these cases, the convergence result of Theorem 5.2.1 can be extended by considering a grid g on I containing 0 and by adapting the dynamics of X g as follows. The dynamic of X g is the same as in Algorithm 1, up to the time when it reaches 0, then:

• if 0 is an absorbing boundary (exit or regular), then the result can be immediately extended by stopping X g when it reaches 0; 0 1 2 3 4 5 6 7

Figure 5.3: The covering grid g = Z + of [0, ∞) along with its first cells C(g).

• if 0 is a reflecting regular boundary, then the process X g jumps from 0 to b := min g \{0} with probability 1 and after a time [0,b) (b -ζ) m(dζ). We emphasize that in this configuration, 0 may be a sticky boundary (i.e., with m(0) ∈ (0, +∞)).

In both cases of reflection and absorption at 0, the boundary is attainable. Thus, 0 must be a point of any covering grid of I = [0, ∞). This leads to the following adaptation of the notion of grid cells. The cells C(g) of such grid g are the open intervals for the induced topology of R on I with endpoint in g. For example g 0 = Z + is a covering grid of [0, ∞) and C(g 0 ) = {[0, 1), (n -1, n + 1) n∈N }.

The proof of the convergence in these situations is omitted here, since it is a straightforward adaptation of the proof of Theorem 5.2.1, using in particular the fact that, in the case of a reflecting boundary,

E 0 τ b = [0,b) (b -ζ) m(dζ).
The case of killing boundaries, and in general of a process with non-zero killing measure, leads to additional non-trivial difficulties. Devising an algorithm and a similar result as Theorem 5.2.1 for such processes remains an active area of research.

Markovian embedding

The consecutive values of the process ( X t ) t≥0 defined through (5.2)-(5.4) form a Markov chain with, by construction, the same transition probabilities as (X t ) t≥0 on g. We define the embedding times of (X t ) t≥0 in g as,

   τ g 0 = 0, τ g k = inf t > τ g k-1 : X t ∈ g \ {X τ g k-1 } , ∀k ≥ 1.
(5.17)

As both X T g (n) and X τ g n are both Markov chains with the same transition probabilities with X 0 forced to be equal in law to X τ g 1 (see Section 5.2.1), the following equality in law holds, Law( X T g (n) ; n ≥ 0) = Law(X τ g n ; n ≥ 1). We define K g (t) as the inverse of T g (n), i.e.,

K g (t) = inf n ∈ N : n k=1 E τ g k -τ g k-1 X τ g k-1 , X τ g k > t .
(5.18) Thus, we get the following Proposition.

Proposition 5.2.7. Let (X t ) t≥0 be a diffusion process, g a grid defined over its state space I and X g t be the approximation process defined in (5.3) and (5.4). Then, if (τ g n ) n≥0 are the embedding times of (X t ) t≥0 in g, the following equality in law holds,

Law X t ; t ≥ 0 = Law X τ g K g (t) ; t ≥ 0 ,
where K g (t) is the random index defined in (5.18).

Moment characterization of conditional exit times

The law of the approximation process defined in the previous section was shown to be determined by the transition probabilities P x (τ b < τ a ) and conditional transition times E x (τ ab |τ b < τ a ). In this section we show that quantities of the form

v k (x) = E x (τ k ab 1 τ b <τa )
yield an integral formulation with respect to the speed measure of the diffusion and involving the scale function (we do not assume that the diffusion is on natural scale in the present section). We also show that this results in them being solutions to Dirichlet problems where the differential operator is the infinitesimal generator L of the diffusion. This allows us to simulate such processes via Algorithm 1 and thus to approximate the law of the target diffusion process (X t ) t≥0 .

In terms of Algorithm 1, we need to compute for three adjacent points a, x, b of the grid the quantities v 0 (x) = P x (τ b < τ a ), v 1 (x) = E x (τ ab 1 τ b <τa ) and v 1 (x) = E x (τ ab 1 τa<τ b ).

The quantities of (5.5) are then

p + [x, (a, b)] = v 0 (x), T + [x, (a, b)] = v 1 (x) v 0 (x) , p -[x, (a, b)] = 1 -v 0 (x), T -[x, (a, b)] = v 1 (x) 1 -v 0 (x)
. 

       L u = 0, x ∈ (a, b), u(a) = 0, u(b) = 1, (5.19)
where L is the infinitesimal generator of (X t ) t≥0 , which also implies that v 0 ∈ dom(L). which equals 0 as m(dx) is a positive measure. As v 0 and L v 0 = 0 are both functions in C 0 b , we deduce that v 0 ∈ dom(L) and L v 0 = 0. Under P b , the stopping time τ b equal 0 a.s. and the process has a.s. continuous trajectories, hence τ a > 0 a.s., i.e.,

v 0 (b) = P b (τ b < τ a ) = P b (0 < τ a ) = 1.
This, along with the symmetrical argument, allow us to retrieve the boundary conditions of (5.19). 

v k (x) = E x (τ k ab 1 τ b <τa ). Then, v k (x) = k (a,b) G a,b (x, ζ)v k-1 (ζ)m(dζ).
(5.20)

Proof. Since τ ab 0 (τ ab -t) k-1 dt = τ k ab /k, v k (x) = k E x 1 τ b <τa τ ab 0 (τ ab -t) k-1 dt = k E x 1 τ b <τa ∞ 0 1 t≤τ ab (τ ab -t) k-1 dt .
From the Markov property, by conditioning on F t and as

1 t≤τ ab is F t -measurable, v k (x) = k E x ∞ 0 1 t≤τ ab E 1 τ b <τa (τ ab -t) k-1 F t dt = k E x τ ab 0 E Xt 1 τ b <τa τ k-1 ab dt .
The equality (5.20) results by applying directly Green's formula. 

(1 -v 0 (y))f (y)m(dy) = -v 0 (x)f (x) -(1 -v 0 (x))f (x) = -f (x).
The continuity of g is a consequence of Lebesgue's convergence theorem for integrals. Moreover as G a,b (x, y) is bounded by s(b) -s(a), m(dx) is locally finite and f is bounded, g is also bounded. So, we deduce that f ∈ dom(L) and that on (a, b) we have L g = -f . 

Convergence of the embedding times

In order to prove the convergence of the process ( X g t ) t≥0 we need to control quantities of the form E x sup t≤T |t -τ g K g (T ) | p , where τ g k are the embedding times of the process X in the grid g. In this section, we show the existence of such bounds in terms of the metric |g| X = sup c∈C(g) {s(c)m(c)} defined in (5.1). If there exists a constant K > 0 such that m(c) ≤ K for all c ∈ C(g), then, |c|m(c) ≤ K|c| and |g| X ≤ K|g|. Thus, we can bound the quantities of interest in terms of |g| instead of |g| X . But, in doing so, we do not track correctly the convergence rates of the approximation process. For example, for the standard Brownian motion, |g| B = |g| 2 . Moreover, as shown in Section 5.2.3, such bounds give us a direct way to adapt the grid to the speed measure in order to accelerate the convergence of the scheme.

Bounds on the conditional moments of the exit times

Lemma 5.4.1. Let v k (x) = E x (τ k ab 1 τ b <τa ), then for all k ∈ N v k v k-1 ∞ ≤ k|g| X .
(5.21)

Proof. We first observe that

G a,b (x, y) v 0 (y) v 0 (x) =    (y-a)(b-x) (b-a) y-a x-a , x > y, (x-a)(b-y) (b-a) y-a
x-a , x ≤ y.

As for x > y the ratio y-a x-a < 1,

G a,b (x, y) v 0 (y) v 0 (x) ≤    (y-a)(b-x) (b-a)
, x > y, 

v k (x) = k! (a,b) G a,b (x, x k ) (a,b) G a,b (x k , x k-1 )• • • (a,b)
G a,b (x 2 , x 1 )v 0 (x 1 )m(dx 1 ) . . . m(dx k ).

(5.23) From (5.22) and (5.23), 

v k (x) ≤ k(b -a)m((a, b))v k-1 (x).
(x) = E x (τ k ab 1 τ b <τa ), ∥v k ∥ ∞ ≤ k!|g| k X . Lemma 5.4.3.
Let X be a diffusion process with state space I an interval of R, m the speed measure of X, a, x, b ∈ I such that a < x < b, c x = (a, b), |c x | X = m(c x )|b -a| and λ > 0 such that λ|c x | X ∈ (0, 1). Then,

E x (e λτ ab ) ≤ exp λ 1 -λ|c x | X E x (τ ab ) .
(5.24)

Proof. Developing the exponential series,

E x (e λτ ab ) = 1 + ∞ N =1 λ N N ! E x (τ N ab ) = 1 + E x (τ ab ) ∞ N =1 λ N N ! E x (τ N ab ) E x (τ ab ) .
From Corollary 5.4.2, we can bound the ratio of expected values by (N -

1)!|c x | N -1 X . As λ|c x | X ∈ (0, 1), E x (e λτ ab ) ≤ 1 + E x (τ ab ) ∞ N =1 λ N (λ|c x | X ) N -1 ≤ 1 + E x (τ ab ) λ 1 -λ|c x | X .
Thus, we only need to apply the inequality 1 + x ≤ e x to get (5.24).

Lemma 5.4.4. Let t, M > 0 and λ > 0 such that λ|g| X ∈ (0, 1). Then,

P x (τ g K g (t) > M ) ≤ e -λM e λ t+|g| X
1-λ|g| X .

(5.25)

Proof. From Markov's inequality,

P x (τ g K g (t) > M ) ≤ e -λM E x e λτ g K g (t) = e -λM E x e λ K g (t) k=1 (τ k -τ k-1 ) .
Conditioning on the σ-algebra B generated by the trajectory of X t on the grid g, i.e., B = σ{X τ k ; k ∈ N 0 }, and as K g (t) is B-measurable,

E x e λ K g (t) k=1 (τ k -τ k-1 ) = E x K g (t)
k=1 E e λ(τ k -τ k-1 ) B . (5.26) From the definition of |g| X , λ|c| X ≤ λ|g| X ∈ (0, 1) for each cell c of the grid g. Thus, applying Lemma 5.4.3 on each term of the product in (5.26),

P x (τ g K g (t) > M ) ≤ e -λM E x exp λ 1 -λ|g| X K g (t) k=1 E(τ k -τ k-1 |B) (5.27) From (5.18), t < K g (t) k=1 E(τ k -τ k-1 |B) ≤ t + E(τ K g (t)+1 -τ K g (t) |B)
Thus, from (5.21),

K g (t) k=1 E(τ k -τ k-1 |B) ≤ t + ∥v 1 /v 0 ∥ ∞ ≤ t + |g| X , ( 5.28) 
From (5.27) and (5.28), we get (5.25).

Convergence of the embedding times

For this section, let X be a diffusion process with state-space I an interval of R, g a covering grid of I, τ g k the embedding times of X in g as defined in (5.17) and K g (t) as defined in (5.18). Lemma 5.4.5. For any T > 0,

K g (T ) k=1 Var τ g k -τ g k-1 X τ g k-1 , X τ g k ≤ 2|g| X T + |g| X ,
where |.| X is defined in (5.1).

Proof. For all x ∈ g, let c x be the cell of g containing x. Then,

K g (T ) k=1 Var τ g k -τ g k-1 X τ g k-1 , X τ g k = K g (T ) k=1 E (τ g k -τ g k-1 ) 2 X τ g k-1 , X τ g k -E τ g k -τ g k-1 X τ g k-1 , X τ g k 2 ≤ sup k≤K g (t)    E (τ g k -τ g k-1 ) 2 X τ g k-1 , X τ g k E τ g k -τ g k-1 X τ g k-1 , X τ g k    K g (T ) k=1 E (τ g k -τ g k-1 ) X τ g k-1 , X τ g k .
So from Lemma 5.4.1 and the definition of K g (t),

K g (T ) k=1 Var τ g k -τ g k-1 X τ g k-1 , X τ g k ≤ v 2 v 1 ∞ K g (T ) k=1 E (τ g k -τ g k-1 ) X τ g k-1 , X τ g k ≤ v 2 v 1 ∞ T + v 1 v 0 ∞ ≤ 2|g| X (T + |g| X ),
which is the desired inequality.

Proposition 5.4.6. Let (F t ) t≥0 be the canonical filtration of X. Let also

A n = F τ g n , B = σ (X τ g k ) k∈N 0 and ∆τ g k = τ g k -τ g k-1 . If we define the augmented filtration G n = A n ∨ B, then the process M n = n k=1 ∆τ g k -E ∆τ g k X τ g k-1 , X τ g k , is a G n -martingale. Proof. For m ≤ n, E M n G m = E M n A m , B = E m k=1 ∆τ g k -E ∆τ g k X τ g k-1 , X τ g k + n k=m+1 ∆τ g k -E ∆τ g k X τ g k-1 , X τ g k A m , B .
From Lemma A.4.1 and as

τ g k is A k measurable, E M n G m = M m + n k=m+1 E X τ g m ∆τ g k -E ∆τ g k X τ g k-1 , X τ g k B = M m .
This proves the result.

Theorem 5.4.7. For any T > 0,

E sup t∈[0,T ] |τ g K g (t) -t| 2 ≤ 2|g| X 4 T + |g| X + 1 , (5.29) 
where |.| X is defined in (5.1).

Proof. The convexity inequality (a + b) p ≤ 2 p-1 (a p + b p ) yields for p = 2

E sup t∈[0,T ] |τ g K g (t) -t| 2 ≤ 2 E sup t∈[0,T ] τ g K g (t) - K g (t) k=1 E ∆τ g k X τ g k-1 , X τ g k 2 + 2 E sup t∈[0,T ] K g (t) k=1 E ∆τ g k X τ g k-1 , X τ g k -t 2 . (5.30) From Proposition 5.4.6, the term n k=1 ∆τ g k -E ∆τ g k X τ g k-1 , X τ g k is a G n -martingale, where G n = F τ g n ∨ B and B = σ (X τ g k ) k∈N 0 . Thus, from Doob's L p inequality, E sup t∈[0,T ] |M K g (t) | 2 = E sup k≤K g (T ) |M k | 2 ≤ 2 E |M K g (T ) | 2 .
By conditioning on B, from Lemma A.4.1,

E sup t∈[0,T ] K g (t) k=1 ∆τ g k -E ∆τ g k X τ g k-1 , X τ g k 2 ≤ 2 E K g (T ) k=1 ∆τ g k -E ∆τ g k X τ g k-1 , X τ g k 2 = 2 E K g (T ) k=1 Var ∆τ g k X τ g k-1 , X τ g k ,
which from Lemma 5.4.5 is bounded by 4|g| X T + |g| X . For the second term on the right hand side of (5.30), from (5.18) and since K g (t) ≥ 1 for any t > 0,

K g (t) k=1 E τ g k -τ g k-1 X τ g k-1 , X τ g k -t ≤ E τ g K g (t) -τ g K g (t)-1 X τ g K g (t)-1 , X τ g K g (t) ≤ v 1 v 0 ∞ ≤ |g| X .
So having bounded both additive parts of the right hand side of (5.30), we get (5.29).

Convergence rate of the Markov chain

Moment bounds

In this section we prove that Theorem 3.1 of [START_REF] Ankirchner | Wasserstein convergence rates for coin tossing approximations of continuous Markov processes[END_REF] holds also for reflected processes and for a sharper constant. This result, combined with the bound (5.29) is used to prove the convergence of the approximation process in Section 5.5.2.

Lemma 5.5.1. Let X be a diffusion process on natural scale with state-space R and a speed measure m X that satisfies Condition (5.7). Then, for all p ≥ 2, there exist two constants C, C ′ > 0 such that

E x sup t∈[0,T ] |X t -x| p ≤ C ′ [1 + |x| p ]e CT , ( 5.31) 
where k 1 is a constant such that Condition (5.7) is satisfied, C ≤ 8p(p -1)/k 1 and C ′ > 0 is a constant that depends only on p.

Proof. Let Z be the diffusion process on natural scale with speed measure,

m Z (dx) = 1 |x|<1 k 1 2 dx + 1 |x|≥1 k 1 2x 2 dx.
We note that k 1 2x 2 ≤ k 1 1+x 2 for all x ≥ 1. The dynamic of Z can be shown to be

dZ t =          2 √ k 1 dB t , for |Z t | < 1, 2 √ k 1 Z t dB t , for |Z t | ≥ 1,
where B is a standard Brownian motion. We also assume that P x (Z 0 = x) = 1. As X and Z are on natural scale, they can be expressed as time-changed Brownian motion [82, Theorem 47.1, p. 277], i.e., for every t ≥ 0, X t = B γ X (t) and Z t = W γ Z (t) , where B and W are two standard Brownian motions with P x (B 0 = x) = P x (W 0 = x) = 1, respective local times L x (B), L x (W ) and with γ X (t), γ Z (t) being the respective right-inverses6 of

A X (t) = 1 2 I L x t (B)m X (dx) and A Z (t) = 1 2 I L x t (W )m Z (dx).
Using the same underlying Brownian motion in these definitions, we have A Z (t) ≤ A X (t), and hence γ X (t) ≤ γ Z (t). Thus,

E x sup t∈[0,T ] |X t -x| p = E x sup t∈[0,γ X (T )] |B t -x| p ≤ E x sup t∈[0,γ Z (T )] |B t -x| p = E x sup t∈[0,T ] |Z t -x| p .
Thus, from Doob's L p and convexity inequalities,

E x sup t∈[0,T ] |X t -x| p ≤ 2 p-1 p p -1 E x |Z T | p + |x| p .
(5.32) Using Itô's formula, followed by a classical localization argument, Fatou's Lemma along with the standard dominated convergence theorem, one obtains that for all q > 2/3,

E x (|Z t | -1) 3q 1 |Zt|≥1 + 1 ≤ (|x| -1) 3q 1 |x|≥1 + 1 + t 0 3q 2 (3q -1) E x (|Z s | -1) 3q-2 1 |Zs|≥1 4Z 2 s k 1 ds. Using the inequality |x -1| 3q-2 x 2 ≤ 4|x -1| 3q + 4 for all x ≥ 1, E x (|Z t | -1) 3q 1 |Zt|≥1 + 1 ≤ (|x| -1) 3q 1 |x|≥1 + 1 + t 0 24q k 1 (3q -1) E x (|Z s | -1) 3q 1 |Zs|≥1 + 1 ds.
Using Gronwall's Lemma, we deduce that, for all t ≥ 0,

E x (|Z t | -1) 3q 1 |Zt|≥1 + 1 ≤ [(|x| -1) 3q 1 |x|≥1 + 1]e 24q(3q-1)t/k 1 .
Let C ′ q > 0 be a constant such that (|x| -1) 3q 1 |x|≥1 + 1 ≥ C ′ q |x| 3q for all x ∈ R. Thus,

E x |Z t | 3q ≤ C ′ q [(|x| -1) 3q 1 |x|≥1 + 1]e 24q(3q-1)t/k 1 , ∀t ≥ 0.
Hence, for all 7 p > 2, we have Proposition 5.5.2. Let X be a diffusion process with state-space I an interval of R, on natural scale and with a speed measure m X that satisfies Condition (5.7). Then, for each T > 0 and γ ∈ (0, 1 2 ), there exists a constant C > 0 such that

E x |Z t | p ≤ C ′ p/3 [1 + |x| p ]e 8p(p-1)t/k 1 , ∀t ≥ 0. ( 5 
sup s̸ =t≤T |X t -X s | |t -s| γ L p (Px) ≤ C(1 + |x|). ( 5 

.34)

The result also holds in the presence of a reflecting boundary ζ ∈ I. 7 The extension to p = 2 is straightforward.

Proof. For the non-reflecting case, the proof works using the same arguments as in the proof of Theorem 3.1 in [START_REF] Ankirchner | Wasserstein convergence rates for coin tossing approximations of continuous Markov processes[END_REF].

For the reflecting case: Let X be a diffusion process on natural scale, with speed measure m satisfying (5.9) for a constant k 1 > 0 and a reflecting boundary at ζ ∈ I. We observe that

X = |X • -ζ| + ζ (5.35)
in law, where X • is the non-reflecting diffusion on natural scale with speed measure

m X • (dx) = 1 x≥ζ m(dx) + 1 x<ζ m(2ζ -dx)
which also satisfies (5.9) for the same constant k 1 . From (5.35) and the triangle inequality,

|X t -X s | |t -s| γ = |X • t -ζ| -|X • s -ζ| |t -s| γ ≤ |X • t -X • s | |t -s| γ .
(5.36)

The diffusion process X • is non-reflecting and its speed measure m X • satisfies (5.9). Thus, (5.34) holds for X • for a constant C > 0 and from (5.36),

sup s̸ =t≤T |X t -X s | |t -s| γ L p (Px) ≤ sup s̸ =t≤T |X • t -X • s | |t -s| γ L p (Px) ≤ C(1 + |x|).

Proof of the convergence rate for a process on natural scale

Proof of Theorem 5.2.1. From Proposition 5.2.7,

W p Law ( X g t ) t∈[0,T ] , Law (X t ) t∈[0,T ] = inf ∥ζ -ξ∥ L p ; ζ ∼ Law ( X g t ) t∈[0,T ] , ξ ∼ Law (X t ) t∈[0,T ] ≤ sup t∈[0,T ] |X τ g K g (t) -X t | L p (Px) . Let M > T . From Minkowski inequality, sup t∈[0,T ] |X τ g K g (t) -X t | L p (Px) ≤ 1 τ g K g (T ) ≤M sup t∈[0,T ] |X τ g K g (t) -X t | L p (Px) + 1 τ g K g (T ) >M sup t∈[0,T ] |X τ g K g (t) -X t | L p (Px) (5.37) 
For the first additive term of (5.37), for any γ > 0, by multiplying and dividing by

|τ g K g (t) -t| γ , 1 τ g K g (T ) ≤M sup t∈[0,T ] |X τ g K g (t) -X t | L p (Px) = 1 τ g K g (T ) ≤M sup t∈[0,T ] |X τ g K g (t) -X t | |τ g K g (t) -t| γ |τ g K g (t) -t| γ L p (Px) ≤ 1 τ g K g (T ) ≤M sup t∈[0,T ] |X τ g K g (t) -X t | |τ g K g (t) -t| γ sup t∈[0,T ] |τ g K g (t) -t| γ L p (Px)
.

As τ g K g (t) is increasing with respect to t,

1 τ g K g (T ) ≤M sup t∈[0,T ] |X τ g K g (t) -X t | L p (Px) ≤ sup s̸ =t≤M |X s -X t | |s -t| γ sup t∈[0,T ] |τ g K g (t) -t| γ L p (Px) = E x sup s̸ =t≤M |X s -X t | |s -t| γ sup t∈[0,T ] |τ g K g (t) -t| γ p 1/p
. From Hölder's inequality for q ≥ 1 and q/(q -1) conjugates exponents and (5.34), for every γ ∈ (0, 1 2 ), there exists a constant C 1 = C 1 (M, γ, p(q -1)/q, x) > 0 such that

1 τ g K g (T ) ≤M sup t∈[0,T ] |X τ g K g (t) -X t | L p (Px) ≤ E x sup s̸ =t≤M |X s -X t | |s -t| γ
p(q-1)/q q/p(q-1)

E x sup t∈[0,T ] |τ g K g (t) -t| γ pq 1/pq ≤ C q/p(q-1) 1 E x sup t∈[0,T ] |τ g K g (t) -t| γpq 1/pq .
Choosing q = 2/γp, from (5.29), for any γ ∈ (0, 1 2 ∧ 2 p )

1 τ g K g (T ) ≤M sup t∈[0,T ] |X τ g K g (t) -X t | L p (Px) ≤ C 1/p(1-γp) 1 2|g| X (4T + |g| X ) γ/2 . (5.38)
For the second additive term of (5.37),

E x 1 τ g K g (T ) >M sup t∈[0,T ] |X τ g K g (t) -X t | p = ∞ m=M E x 1 τ g K g (T ) ∈[m,m+1) sup t∈[0,T ] |X τ g K g (t) -X t | p .
(5.39) For each term of the sum in (5.39), from Hölder's inequality,

E x 1 τ g K g (T ) ∈[m,m+1) sup t∈[0,T ] |X τ g K g (t) -X t | p ≤ P x (τ g K g (T ) > m) 1/q ′ E x 1 τ g K g (T ) ∈[m,m+1) sup t∈[0,T ] |X τ g K g (t) -X t | p q ′ /(q ′ -1) ≤ P x (τ g K g (T ) > m) 1/q ′ E x 1 τ g K g (T ) <m+1 sup t∈[0,T ] |X τ g K g (t) -X t | p q ′ /(q ′ -1)
.

As each m in the sum in (5.39) satisfies m + 1 > M > T , from Minkowski's inequality, m+1) , where C 2 and C 3 are positive constants depending on p. This, along with Lemma 5.4.4 and Hölder's inequality gives us for λ > 0 chosen such that α = λ|g| X < 1,

E x 1 τ g K g (T ) <m+1 sup t∈[0,T ] |X τ g K g (t) -X t | p ≤ E x 1 τ g K g (T ) <m+1 2 p-1 sup t∈[0,T ] |X τ g K g (t) -x| p + |X t -x| p ≤ 2 p E x sup t∈[0,m+1] |X t -x| p , which from Lemma 5.5.1 is bounded by C 2 [1 + |x| p ]e C 3 (
E x 1 τ g K g (T ) ∈[m,m+1) sup t∈[0,T ] |X τ g K g (t) -X t | p ≤ C 2 [1+|x| pq ′ ]e C 3 (m+1) 1/q ′ e -λm e λ T +|g| X 1-λ|g| X (q ′ -1)/q ′
where C 2 (pq ′ ) ≤ 2pq ′ (pq ′ -1)/c and C 2 (pq ′ ) > 0 a positive constant depending only on pq ′ . Thus, setting C 4 (pq

′ ) := C 2 (pq ′ ) [1 + |x| pq ′ ] 1/q ′ e C 3 /q ′ > 0, E x 1 τ g K g (T ) ∈[m,m+1) sup t∈[0,T ] |X τ g K g (t) -X t | p ≤ C 4 exp 1 q ′ C 3 m + (q ′ -1) λ T + |g| X 1 -λ|g| X -λm = C 4 exp 1 q ′ C 3 m + (q ′ -1) α |g| X T + |g| X 1 -α -m = C 5 exp 1 q ′ C 3 m + (q ′ -1) α |g| X T 1 -α -m , where C 5 := C 4 exp( q ′ -1 q ′ α 1-α ). If we choose q ′ > 1 such that 8 A := C 3 -(q ′ -1)α/|g| X < 0, ∞ m=M E x 1 τ g K g (T ) ∈[m,m+1) sup t∈[0,T ] |X τ g K g (t) -X t | p ≤ C 5 exp (q ′ -1)αT (1 -α)|g| X ∞ m=M (e A ) m = C 5 exp (q ′ -1)αT (1 -α)|g| X e AM 1 -e A = C 5 exp (q ′ -1)αT (1 -α)|g| X exp C 3 -(q ′ -1)α |g| X M 1 -exp C 3 -(q ′ -1)α |g| X . If M is chosen such that M > T /(1 -α), then ∞ m=M E x 1 τ g K g (T ) ∈[m,m+1) sup t∈[0,T ] |X τ g K g (t) -X t | p ≤ C 5 e C 3 M 1 -e A exp (q ′ -1)α |g| X T 1 -α -M ,
(5.40) where the bound is O(e -1/|g| X ), and can be rewritten as C (1) e -C (2) /|g| X . From (5.37), (5.38) and (5.40),

sup t∈[0,T ] |X τ g K g (t) -X t | L p (Px) ≤ C 1/p(1-γp) 1 2|g| X 4T + |g| X γ/2 + C (1) e -C (2) /|g| X .
As |g| γ X and e -1/|g| X are both O(|g| γ/2 X ), there exists a constant C > 0, such that,

sup t∈[0,T ] |X τ g K g (t) -X t | L p (Px) ≤ C|g| γ/2 X ,
which is (5.8).

Computations for the classical SDE case and beyond

In order to implement Algorithm 1 for simulating paths of a diffusion X, one needs two things. First, a grid g adapted to the scale function and speed measure of X. Second, good approximations of the transition probabilities and conditional transition times of X over g. The first point was covered in Section 5.2.3.

In this section, we show how to compute the quantities (5.5) in the pure SDE case. The extension to SDE solutions with point-wise singularities is straightforward. This allows us via Algorithm 1 to simulate all such processes. Let (µ, σ) two real-valued functions that satisfy Condition 5.2.6 and X be the diffusion that solves dX

t = µ(X t ) dt + σ(X t ) dB t ,
where B is a standard Brownian motion. Let also I be the state-space of X. A straightforward computation using Itô's formula gives us the infinitesimal generator of X,

(L, dom(L)) =    L f (x) = µ(x)f ′ (x) + 1 2 σ 2 (x)f ′′ (x), ∀f ∈ dom(L), dom(L) = f ∈ C b (I) : L f ∈ C(I) .
(5.41)

In particular, if µ and σ are continuous, then, dom(L) = C 2 (I). From Proposition 5. From (5.20) and (5.42),

v 1 (x) = b a G a,b (x, ζ)v 0 (ζ) 1 s ′ (x) 2 σ 2 (x) dζ, v 1 (x) = b a G a,b (x, ζ) 1 -v 0 (ζ) 1 s ′ (x) 2 σ 2 (x)
dζ.

(5.44)

The scale functions and the speed measures are defined up to a multiplicative constant: for α ∈ R and λ > 0, the pairs (s, m) and (α + λs, λ -1 m) are associated to the same diffusion. In particular, as we are only concerned with points x ∈ [a, b], we could use v 0 for the scale function. The speed measure shall be adapted accordingly. For x, ζ ∈ [a, b], the Green function in (1.20) takes the simpler form,

G a,b (x, ζ) = v 0 (x ∧ ζ) 1 -v 0 (x ∨ ζ) .
Thus, expressions (5.44) become

v 1 (x) = b a v 0 (x ∧ ζ) 1 -v 0 (x ∨ ζ) v 0 (ζ) v ′ 0 (ζ) 2 σ 2 (ζ) dζ, v 1 (x) = b a v 0 (x ∧ ζ) 1 -v 0 (x ∨ ζ) 1 -v 0 (ζ) v ′ 0 (ζ) 2 σ 2 (ζ)
dζ.

(5.45)

The quantities (5.43) and (5.44) or (5.45) can be computed analytically as we do for the Ornstein-Uhlenbeck process in Section 6.1.4 or approximated numerically as for the Cox-Ingersoll-Ross process in Section 6.1.4. ) with Newton's method and (100, 100)-step Riemann approximation of (v 0 , v 1 ) (simulation time: 12.8 sec). (c): Same as Figure 6.3a but with a (250, 200)-step Riemann approximation of (v 0 , v 1 ) (simulation time: 11.5 sec). (d): Same as Figure 6.3b but with a (250, 200)-step Riemann approximation of (v 0 , v 1 ) (simulation time: 12.2 sec).

Sticky Brownian motion:

The Brownian motion with a sticky point at 0 where the stickiness parameter is ρ > 0 can be defined as the diffusion process with scale function and speed measure s(x) = x and m(dx) = 2 dx + ρδ 0 (dx).

From the definition of the scale function,

v 0 (x) =
x -a b -a .

From Proposition 5. 

Skew Brownian motion:

The skew Brownian motion at 0 with parameter β ∈ (0, 1) can be defined as the diffusion process with scale function and speed measure 

Ornstein-Uhlenbeck process:

Let X t be an Ornstein-Uhlenbeck with mean reversion force θ > 0, long-term mean µ and diffusion parameter σ > 0, i.e. dX t = θ(µ -X t ) dt + σ dB t , where B t is a standard Brownian motion. We will see that v 0 can be expressed in terms of the Gaussian imaginary error function as s(x) = erfi The Cox-Ingersoll-Ross process or CIR process [START_REF] Cox | A theory of the term structure of interest rates[END_REF], introduced first by W. Feller [START_REF] Feller | Two singular diffusion problems[END_REF], is the diffusion that solves the SDE

dX t = θ(µ -X t ) dt + σ X t dB t ,
where B t is a standard Brownian motion. The parameter θ > 0 expresses its mean reversion speed, µ its long term speed and σ > 0 is its diffusivity parameter. The parameter θ > 0 expresses its mean reversion speed, µ its long term speed and σ > 0 is its diffusivity parameter. This equation has a diffusion coefficients that degenerates at 0. It however remains non-negative given X 0 ≥ 0 and almost surely never hit 0 when 2θµ > σ 2 . A large body of work have been devoted to the simulation of the CIR and related process, see e.g. [START_REF] Alfonsi | On the discretization schemes for the CIR (and Bessel squared) processes[END_REF]. 

v 1 (x) = b a v 0 (x ∧ ζ) 1 -v 0 (x ∨ ζ) v 0 (ζ) v ′ 0 (ζ) 2 σ 2 ζ dζ, v 1 (x) = b a v 0 (x ∧ ζ) 1 -v 0 (x ∨ ζ) 1 -v 0 (ζ) v ′ 0 (ζ) 2 σ 2 ζ dζ.
As the scale function yield no satisfactory closed formula, we perform a numerical approximation of both v 0 and the couple (v 1 , v 1 ).

These functions may be computed numerically. One may choose a suitable grid when the process is close to 0 and it is noteworthy that the process may not cross 0, a problem which arise when using Euler type schemes.

Skew and reflected Bessel process:

The Skew-Bessel process (see [START_REF] Alili | On the semi-group of a scaled skew Bessel process[END_REF]) of dimension δ ∈ (0, 2) and skew β ∈ (0, 1) is the diffusion process with the following scale function and speed measure,

s(x) =          1 β x 2-δ 2 -δ , x > 0, - 1 1 -β |x| 2-δ 2 -δ , x ≤ 0, m(dx) =    2βx δ-1 dx, x > 0, 2(1 -β)|x| δ-1 dx, x ≤ 0.
This yield the following expressions for the quantities we need to compute in order to implement the algorithm, 

Local time approximation

In this section we present the results of numerical simulations regarding the local time approximation developed in Chapter 4. With numerical experiments, we assess the asymptotic properties of the local time approximation (4.7). Also, with an example we illustrate the flexibility of Space-Time Markov Chain Approximations generated via Algorithm 1. One feature of such approximation processes is that they are defined on a given grid. With a suitable choice of grid it is possible to achieve higher orders of convergence of localized path-sensitive functionals like (4.7).

We simulate trajectories of an approximation process of the sticky Brownian motion of parameter ρ. Then, we compare the stickiness parameter estimations (4.8) with the true value of ρ. For the numerical simulations we use the Space-time Markov chain approximation or STMCA Algorithm [START_REF] Anagnostakis | General diffusion processes as the limit of time-space Markov chains[END_REF]. This algorithm uses grid-valued random walks to approximate the law of any one-dimensional generalized diffusion process. The STMCA Algorithm is particularly adapted to our problematic as:

• It is well suited for the simulation of sticky singular one-dimensional diffusions.

• By suitable choice of the grid, we can control the amount of path-observations of X observed through the test function g in (4.7). In particular, for grids that satisfy the condition in Corollary 2.5 of [START_REF] Anagnostakis | General diffusion processes as the limit of time-space Markov chains[END_REF], the convergence speed of the STMCA algorithm is optimal. Thus, if one increases the precision of such a grid g around 0, we approximate accurately X with g-valued STMCA random walks and feed more path-observations to the statistic (4.7) without paying a too heavy computational cost.

The statistic: Let X be a sticky Brownian motion of parameter ρ and g the function defined for every x ∈ R by g(x) = 1 1<|x|<5 /8. For every α ∈ (0, 1) and n ∈ N, we define the following path-wise statistics of X:

T (1) n,α (X) :=

n α n [nt] i=1 g(n α X ρ i-1 n
), (6.2)

T (2) n,α (X) := 2 n [nt] i=1 1 X i-1 n =0 T (1)
n,α(X ) . (6.3)

From (4.7), for any α ∈ (0, 1/2), the statistics (6.2) and (6.3) converge to L 0 t (X) and ρ respectively in probability. We use (6.3) as proxy to assess the properties of the local time approximation.

The grids: For every h > 0, let g 0 and g 1 be two grids defined by: g 0 (h) = {0} ∪ ± (h 2 /ρ + kh); k ∈ N , g 1 (h) = ± x k (h); k ≥ 0 , where {x j (h)} j≥0 is defined recursively by Within each of the following tables we use the same simulated STMCA trajectories of the sticky Brownian motion of parameter ρ = 1:

x 0 = 0, x j = x j-1 + h 2 ρ 1 x j-1 + 1 + h 1 - 1 x j-1 + 1
Simulation metrics: The integer N MC will be the Monte Carlo simulation size. For every j ≤ N MC we simulate the path of an approximation process X j t . To assess the quality of each Monte Carlo estimation we use the following metrics: [START_REF] Jacod | Discretization of processes[END_REF]). Let {X n } n∈N be a sequence of increasing processes and X an almost surely continuous bounded process. If {X n } n∈N and X are defined on the probability space (Ω, (F) t≥0 , P) and X n t ---→ n→∞ X t in probability, for every t ∈ D with D a dense subset of R + . Then, the convergence is locally uniform in time, in probability.

A.3 Joint scaling of the sticky Brownian motion

Lemma A.3.1. Let (Ω, F, (F t ) t≥0 , P ρ x ); x ∈ R, ρ ≥ 0 be a family of filtered probability spaces and X ρ = (X ρ t ) t≥0 a process defined on (Ω, F, (F t ) t≥0 ) such that under P ρ x it is the sticky Brownian motion of stickiness parameter ρ and P ρ x (X ρ 0 = x) = 1. Then,

Law P ρ x X ρ ct , L 0 ct (X ρ ), A + ct (X ρ ); t ≥ 0 = Law P ρ/ √ c x √ cX ρ/ √ c t , √ cL 0 t (X ρ/ √ c
), cA + t (X ρ/ √ c ); t ≥ 0 , (A.5)

where P ρ x (X ρ/ √ c 0 = √ cx) = 1 and (L 0 (X ρ ), A + (X ρ )) and (L 0 (X ρ/ √ c ), A + (X ρ/ √ c )) are the local times, occupation times 10 of R + pairs of X ρ and X ρ/ √ c respectively.

Proof. From [START_REF] Touhami | On skew sticky Brownian motion[END_REF], the joint density of (X ρ t , L 0 t (X ρ ), A + ct (X ρ )) is defined for every (t, x, y, l, o) ∈ R + × R 2 ×[0, 

A.4 Conditioning on the embedded path of a diffusion

Let X be a diffusion process with state-space I an interval of R defined on a family of probability spaces P = (Ω, (F t ) t≥0 , P x ) x∈I such that for every x ∈ I, P x (X 0 = x) = 1. Let also g be a covering grid of I. We define the embedding times of (X t ) t≥0 in g as,

   τ g 0 = 0, τ g k = inf t > τ g k-1 : X t ∈ g \ {X τ g k-1 } , ∀k ≥ 1. (A.6)
Lemma A.4.1. Let X be a diffusion process with state-space I an interval of R defined on a family of probability spaces P = (Ω, (F t ) t≥0 , P x ) x∈I such that for every x ∈ I, P x (X 0 = x) = 1. Let also g be a covering grid of I, {τ j } j∈Z + the sequence of embedding times of X in g defined in (A.6) and B the sigma-algebra defined by B = σ{X τ j ; j ∈ N 0 }. Then, for any measurable path-functional F : C 0 (R + , I) → R and j ≥ 1 and x ∈ I, E x F ((X τ j-1 ,τ j t

) t≥0 ) B = E x F ((X τ j-1 ,τ j t

) t≥0 ) X τ j-1 , X τ j , where X τ j-1 ,τ j is the process defined for every t ≥ 0 by X τ j-1 ,τ j t = X (τ j-1 +t)∧τ j .

Proof. Let us fix x 1 , x 2 , . . . be a sequence of points in the grid. Let us define Q(x; x 1 , x 2 , . . . ) := P x X τ 1 = x 1 , X τ 2 = x 2 , . . . By the strong Markov property, P x X τ i+1 = x i+1 , X τ i+2 = x i+2 , . . .

F τ i = P Xτ i X τ 1 = x i+1 , , X τ i+2 = x i+2 = Q(X τ i ; x i+1 , x i+2 , . . . ).
Using the strong Markov property twice, first by conditioning first with respect to F τ j+1 and then with respect to F τ j , E x 1 Xτ 1 =x 1 ,...,Xτ j =x j F ((X τ j-1 ,τ j t ) t≥0 )1 Xτ j =x j ,Xτ j+1 =x j+1 ,... = E x 1 Xτ 1 =x 1 ,...,Xτ j =x j F ((X τ j-1 ,τ j t ) t≥0 )1 Xτ j =x j Q(X τ j ) = E x 1 Xτ 1 =x 1 ,...,Xτ j-1 =x j-1 (X τ j-1 ,τ j t ) t≥0 Q(x j ) = E x 1 Xτ 1 =x 1 ,...,Xτ j =x j-1 R(x j-1 , x j )Q(x j ) 108 with R(x, y) := P x F ((X 0,τ 1 t ) t≥0 )1 Xτ 1 =y . Therefore, using the definition of the conditional expectation, E x F ((X

τ j-1 ,τ j t ) t≥0 ) X τ 1 = x 1 , X τ 2 = x 2 , . . . = R(x j-1 , x j ) P x j-1 X τ 1 = x j = E x j-1 F ((X 0,τ 1 t ) t≥0 X τ 1 = x j .
This is sufficient to prove the result.

L

  f (y)G a,b (x, y)m(dy) = b a s(x)-s(a) s(b)-s(y) 1 x≤y + s(y)-s(a) s(b)-s(x) 1 x>y L f (y)m(dy).

Corollary 1 . 2 . 21 .Proposition 1 . 2 . 22 .

 12211222 The pair scale function and speed measure (s, m) characterizes the law of a diffusion process with state-space I an open interval of R.Proof. Direct from Corollary 1.2.14, (1.23) and(1.24). Let s and m be the scale function and speed measure of X.

Definition 2 . 1 . 4 (

 214 uniqueness in law, Definition 1.3-(

Frequency

  Sample path of a reflected Brownian motion

Figure 2 . 1 :

 21 Figure 2.1: Simulated trajectory of a reflected Brownian motion using Algorithm 1.

Frequency

  Sample path of a sticky Brownian motion

Figure 2 . 2 :

 22 Figure 2.2: Simulated trajectory of a sticky Brownian motion of parameter ρ = 1 using Algorithm 1.

Definition 2 . 2 . 1 .. 15 ) 2 . 2 . 2 .

 22115222 The sticky Brownian motion is the diffusion process with state-space R defined through s and m, where, for every x ∈ R:s(x) = x and m(dx) = 2 dx + ρδ 0 (dx). (2PropositionThe infinitesimal generator of the sticky Brownian motion of stickiness ρ > 0 is:

  Proof. From Lemma 1.3.5, the resolvent kernel solves (2.27)-(2.30). From (1.30), I p(t, x, y) 2 dy + ρδ 0 (dy) = 1. Thus, I r(λ, x, y) 2 dy + ρδ 0 (dy) =

  ) + B λ e - √ 2λ|y-x| , xy ≥ 0, A λ + B λ e - √ 2λ(|x|+|y|) , xy < 0, Observing that |x -y| = |x| + |y| for xy ≤ 0 yields (2.34).

t 0 1

 1 Xt=0 dt Thus, (3.31) holds also under Q and X solves (3.32)-(3.33).

Corollary 4 . 1 . 4 (

 414 of Theorem 4.1.3 and Lemma 4.3.

Theorem 4 . 2 . 1 .

 421 Theorem 4.1.3 holds for the sticky Brownian motion.

Figure 5 . 2 :

 52 Figure 5.2: Approximations of the standard Brownian motion, Euler vs STMCA for various grid sizes h = 1.0, h = 0.5, h = 0.1.

1 2

 1 -ϵ ) for the adapted grid. Numerical examples are given in Section 6.1.2.

1 2

 1 -ϵ ) in Theorem 5.2.1.

Proposition 5 . 3 . 1 .

 531 The function v 0 (x) = P x (τ b < τ a ) is solution to the problem with Dirichlet boundary conditions

Proof.

  Let x ∈ (a, b), from the definition of the scale function and the factorization of the infinitesimal generator L = D m D s L v 0 = D m D s s(•) -s(a) s(b) -s(a) = D m 1 s(b) -s(a) .

Proposition 5 . 3 . 2 .

 532 For every k ∈ N, let v k be the function defined for every x ∈ (a, b) by

Proposition 5 . 3 . 3 .LLemma 5 . 3 . 4 .

 533534 The function v k (x) = E x (τ k ab 1 τ b <τa ) is solution to the problem with Dirichlet boundary conditions u = -kv k-1 , x ∈ (a, b), u(a) = 0, u(b) = 0. Let g(x) = (a,b) G a,b (x, y)f (y)m(dy), where f ∈ C 0 b (a, b) and G a,b (x, y) is the Green function defined in (1.20). Then g ∈ dom(L) and L g(x) = -f (x), ∀x ∈ (a, b). Proof. Let x ∈ (a, b). Using the D m D s factorization of L and the dominated convergence theorem we get L g(x) = D m D s (a,b) 1 y<x (s(y) -s(a))(s(b) -s(x)) s(b) -s(a) +1 y≥x (s(x) -s(a))(s(b) -s(y)) s(b) -s(a) f (y)m(dy) = -D m (a,x) v 0 (y)f (y)m(dy) + D m [x,b)

Proof of Proposition 5 . 3 . 3 .

 533 From Proposition 5.3.2,v k (x) = (a,b) G a,b (x, y)kv k-1 (y)m(dy). As v 0 ∈ C 0 b (a, b), from Lemma 5.3.4 we deduce iteratively that v k ∈ C 0 b (a, b) for all k ∈ N and that L v k = -kv k-1 on (a, b).For the boundary conditions, we observe that τ ab = τ a ∧ τ b = 0 a.s. under P a , so for k ≥ 1v k (a) = E a (τ k ab 1 τ b <τa ) ≤ E a (τ k ab ) = 0.With the same argument we show that v k (b) ≤ 0 and as they are obviously positive quantities v k (a) = v k (b) = 0.

  (y-a)(b-y) (b-a) which is bounded by (b -a) in both cases as x, y ∈ (a, b). Thus, b a G a,b (x, y)v 0 (y)m(dy) = v 0 (x) b a G a,b (x, y) v 0 (y) v 0 (x) m(dy) ≤ v 0 (x)(b -a)m((a, b)). (5.22) From Proposition 5.3.2, v k (x) = k (a,b) G a,b (x, y)v k-1 (y)m(dy) and

Corollary 5 . 4 . 2 .

 542 Since (b -a)m((a, b)) ≤ |g| X , we get the desired result on v k /v k-1 . Let k ∈ N. Then, we have the following bound for v k

. 33 )

 33 Replacing (5.33) in (5.32), we get the bound (5.31) forC ′ = p p-1 2 p-1 (C ′ p/3 + 1) and C = 8p(p -1)/k 1 .

Figure 6 . 1 :Figure 6 . 2 :

 6162 Figure 6.1: (a): histogram of simulated values at T = 1 of a sticky Brownian motion of parameter ρ = 0.7 with initial value x 0 = 0 using Algorithm 1 with the tuned grid (5.12) of size-criteria h = 0.01. (b): histogram of simulated values at T = 1 of a skew Brownian motion of parameter β = 0.9 with initial value x 0 = 0 using Algorithm 1 with a uniform grid of step-size h = 0.01.

Figure 6 . 3 :

 63 Figure 6.3: Histogram of simulated values at T = 1 of the CIR process of (θ, µ, σ) = (1, 2, 1) with initial value x 0 = 5 using Algorithm 1 with: (a): a uniform grid of step-size h = 0.015 and (100, 100)-step Riemann approximation of (v 0 , v 1 ) (simulation time: 10.8 sec). (b): a tuned grid of size-criteria h = 0.015 computed solving numerically (5.15)-(5.16) with Newton's method and (100, 100)-step Riemann approximation of (v 0 , v 1 ) (simulation time: 12.8 sec). (c): Same as Figure6.3a but with a (250, 200)-step Riemann approximation of (v 0 , v 1 ) (simulation time: 11.5 sec). (d): Same as Figure6.3b but with a (250, 200)-step Riemann approximation of (v 0 , v 1 ) (simulation time: 12.2 sec).

3 . 2

 32 we may deduce the following expressions for the conditional exit times of c x = (a, b),v 1 (x) = v BM 1 (x) + ρ1 0∈(a,b) G (a,b) (x, 0)v 0 (0), v 1 (x) = v BM 1 (x) + ρ1 0∈(a,b) G (a,b) (x, 0) 1 -v 0 (0) ,where v BM 1 (x) and v BM 1 (x) are the analogous quantities for the standard Brownian motion.

1 (x) and v 1 (x) = v BM 1 (

 111 -β) dx, x < 0.From the definition of the scale function,v 0 (x) = s(x) -s(a) s(b) -s(a) .As the β and (1-β) terms between the speed measure and the scale function compensate themselves in the expressions giving v k in Proposition 5.3.2,v 1 (x) = v BM

θ σ 2

 2 (µ -x) ,

From ( 5 .e 2θ σ 2 y dy b a y -2θµ σ 2 e 2θ σ 2

 52 43) and (5.45), v 0 (x) = x a y -2θµ σ 2 y dy and

v 0

 0 (x) = s(x) -s(a) s(b) -s(a) , v 1 (x) = b a G a,b (x, ζ)v 0 (ζ)2|ζ| δ-1 dζ, v 1 (x) = b a G a,b (x, ζ) 1 -v 0 (ζ) 2|ζ| δ-1 dζ,(6.1)where G a,b (x, ζ) is defined in(1.20). The probability transition kernels plotted in Figure6.3 are computed in[START_REF] Alili | On the semi-group of a scaled skew Bessel process[END_REF].

Definition 1.2.2. A

  family (R λ ) λ>0 ⊂ L(H) is called a strongly continuous contracting resolvent family iff 1. for every λ, µ > 0: R λ

Proposition 1.2.19 (

  martingale problem). Let L be the infinitesimal generator of X.

	.21)
	Proof. See [80, p.305].

  These processes are called absolutely continuous. Diffusion processes that do not satisfy (2.13) are called singular diffusions. Diffusion processes that do not satisfy (2.13) at a single point ζ ∈ I of their state-space are said to have a point-wise singularity. These singularities correspond to specific path-wise features and can be categorized as follows.

				diffusion
	satisfy			
	s ∈ C 1 (I)	and	m(dx) ≪ dx.	(2.13)

Definition 2.1.14. Let X be a diffusion process with state-space I an interval of R and scale function s. The process X is said to have a skew point at ζ ∈ Int(I) iff s ′ (ζ-) ̸ = s ′ (ζ+), where s ′ is the right-derivative of s. Definition 2.1.15. A diffusion X with state-space I and speed measure m is said to have a sticky point at ζ ∈ I iff m({ζ}) > 0. The quantity m({ζ}) is called stickiness of X at ζ. Proposition 2.1.16. Let X be a diffusion process with state-space I such that 0 ∈ Int(I).

  Let X be a (µ, σ, ρ)-sticky Itô diffusion. From Proposition 3.2.3, the process X solves (3.27)-(3.28). The relation(3.27) is an explicit Doob-Meyer representation of X.

	Corollary 3.2.4. A sticky SDE solution is a semi-martingale.
	Proof.			
				x )
	such that Y almost surely solves,			
	dY t = µ(Y t ) dt + σ(Y t ) dW 1 t ,
	for every t ≥ 0. Let W be the process such that
	W t = W 1 γ(t) +	0	t	1 Xs=0 dW 0

, for every x ∈ I and f ∈ dom(L Y ) where dom(L Y ) = C 2 (I). From Theorem 2.7 of [80, Chapter VII], there exists a Brownian motion W 1 on an extension of (Ω, {F t } t≥0 , P s . From (3.13) and (3.15) and Lévy's characterization, W is a standard Brownian motion. From (3.10), (3.18), (3.21) and (3.22), (X, W ) jointly solve (3.27)-(3.28).

Condition 5.2.6.

  The functions are measurable R → R mappings and the SDE

	dX t = µ(X t ) dt + σ(X t ) dB t ,	(5.14)
	has a unique weak solution, where B is a standard Brownian motion.	

Table 6 .

 6 1 x j-1 <1 + h1 x j-1 ≥1 . observe that |g 1 | = |g 0 | and |g 1 | X = |g 0 | X .From Theorem 5.2.1, the asymptotic convergence of the STMCA is O(h 1/2 ) for both grids. 1: Stickiness parameter estimations using the grid g 0 for h = 0.01. The missing values in the table corresponds to cases where the statistic (6.3) is observed to be 0. Computation time (single-core): 4 seconds.

	We α	n	ρ MC	S 2 MC	σ MC	acc	rej/N MC
	0.3 100000 1.33451 0.740592 0.860577 0.125709	0/2000
	0.4 100000 1.06132 0.142955 0.378094 0.0460073	0/2000
	0.5 100000 1.3148 0.162762 0.403438 0.0116839	0/2000
	0.55 100000					2000/2000
	0.6 100000					2000/2000
	0.65 100000					2000/2000

Table 6 .

 6 2: Stickiness parameter estimations using the grid g 1 for h = 0.01. Computation time (single-core): 67 seconds. MC 0.6 20000 1.04379 0.14514 0.380973 0.0121671 0/1000 0.6 40000 1.02967 0.03178 0.178288 0.0079693 0/1000 0.6 100000 1.00135 0.01592 0.126199 0.0046799 0/1000 0.6 300000 1.00638 0.00850 0.092235 0.0023960 0/1000

	α n	ρ MC	S 2 MC	σ MC	acc	rej/N

Table 6 .

 6 3: Simulation results for fixed α and different values of n. 0.04976 * 0.22307 * 0.004598 * 1/2000 0.7 100000 1.06961 * 0.14296 * 0.37810 * 0.001367 * 13/2000 0.8 100000 1.01483 * 0.12386 * 0.35194 * 0.000467 * 23/2000

	α n	ρ MC	S 2 MC	σ MC	acc	rej/N MC
	0.3 100000 1.28303 0.66712 0.81677 0.126344 0/2000
	0.4 100000 1.12398 0.38812 0.62299 0.043843 0/2000
	0.5 100000 1.04014 0.09153 0.30253 0.014309 0/2000
	0.6 100000 1.01083				

* 

Table 6 .

 6 4: Simulation results for fixed n and different values of α. Estimation with an asterisk were performed removing the trajectories with T(1) n (X) = 0.

	α	n	ρ MC	S 2 MC	σ MC	acc	rej/N MC
	0.55536 20000 1.04813 0.094319 0.307115 0.0190297 0/1000
	0.519033 40000 1.04893 0.095243 0.308616 0.0190053 0/1000
	0.477724 100000 1.04946 0.100884 0.317623 0.0190204 0/1000
	0.436109 300000 1.04931 0.096736 0.311024 0.0190139 0/1000

Table 6 .

 6 5: Simulation results for (n, α) satisfying log n = 5.5/α.
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  (ct, x, y, l, o) dy dℓ do = q ρ/ √

					c t,	x √ c	,	y √ c	,	l √	c	,	o c	d	y √ c	d	ℓ √ c	d	o c	,
	which finishes the proof.															
			h(t, x) =	|x| 2πt 3/2 e -x 2 /2t . √
	We observe that			h(ct, x) = c -1 h(t, x/ √	c).
	Thus,															
	q ρ (ct, x, y, l, o) = h o -ρℓ,	ℓ 2	+ x h ct -o,	ℓ 2	-y
	= h c	o c	-	ρℓ c	,	ℓ 2	+ x h c t -	o c	,	ℓ 2	-y
	= c -2 h	o c	-	ρℓ c	,	ℓ √ 2 c	+	x √ c	h t -	o c	,	ℓ √ 2 c	-	y √ c
																	= c -2 q ρ/ √ c t,	x √ c	,	y √ c	,	l √ c	,	o c

2 ρ ] × [0, t] by P x (X ρ t ∈ dy, L 0 t (X ρ ) ∈ dℓ, A + ct (X ρ ) ∈ do) = q ρ (t, x, y, l, o) dy dl do = h o -ρℓ, ℓ 2 + x h t -o, ℓ 2 -y dy dl do,

where h(t, x) is the function defined for every t ≥ 0 and x ∈ R by

10 

The occupation time by X of a measurable set B ∈ B(R) is the process A B (X) defined for every t ≥ 0 by

A B t (X) = t 0 1 Xs∈B ds.

107 and q ρ

A measure m over I an interval of R is said to be strictly position iff for any (a, b) ⊂ I, m((a, b)) > 0.

A measure m on a topological space X is said to be locally finite iff for any compact subset K of X , m(K) < ∞.

This stands for "continue à droite avec une limite à gauche", that is right-continuous with left-limit.

This results in the bound of Theorem 5.2.1 not depending on the starting point of the diffusion.

The right-inverse of a function f is given by,f -1 (x) = inf{ζ ≥ 0 : f (ζ) > x}.

We remark that if this is satisfied for a grid g, then it is satisfied for all grids g ′ such that |g ′ | X ≤ |g| X .

We use the latter representation in our numerical results.
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General diffusion processes as the limit of time-space Markov chains

In this chapter, we present the theoretical results of [START_REF] Anagnostakis | General diffusion processes as the limit of time-space Markov chains[END_REF]. Numerical illustrations are given in Chapter 6.

Introduction

In the diffusion process literature, the most well-studied and straightforward way to approximate diffusion processes is the Euler scheme. While such approximations works well for non-degenerate stochastic differential equations, this is not the case for more general diffusion processes [START_REF] Hutzenthaler | Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF]. The Euler scheme is also not well-defined for processes that exhibit sticky features, skew behavior [START_REF] Frikha | On the weak approximation of a skew diffusion by an Euler-type scheme[END_REF] or slowly reflecting boundaries.

Several works aim at overcoming the shortcomings of the Euler scheme and allow us to approximate the law of more general diffusion processes. In [START_REF] Amir | Sticky Brownian motion as the strong limit of a sequence of random walks[END_REF], the author proposes to approximate the sticky Brownian motion with a simple random walk that stops for a fixed amount of time when it hits 0. In [START_REF] Nie | Sticky reflecting Ornstein-Uhlenbeck diffusions and the Vasicek interest rate model with the sticky zero lower bound[END_REF] and [START_REF] Meier | Markov Chain Approximation of One-Dimensional Sticky Diffusions[END_REF], Continuous Time Markov Chains are used to approximate slowly reflected SDE solutions, where the jumping intensities are computed using approximated discretizations of the infinitesimal generator of the diffusion. Another work where such processes are defined is [START_REF] Ferrer-Admetlla | An Approximate Markov Model for the Wright-Fisher Diffusion and Its Application to Time Series Data[END_REF], where the authors use a Continuous Time Markov Chain to identify events in genomics evolution. In [START_REF] Ankirchner | A functional limit theorem for coin tossing Markov chains[END_REF][START_REF] Ankirchner | Wasserstein convergence rates for coin tossing approximations of continuous Markov processes[END_REF], the authors develop a numerical scheme to approximate diffusions on natural scale as long as a mild non-explosion condition is satisfied. They use symmetric random walks with fixed-time step whose magnitude depends on the average local behavior of the target process speed measure. Choosing the step-size this way allows the approximation process to replicate non-boundary sticky features.

In this paper, we prove the convergence in law of grid-valued random walks to any one-dimensional general diffusion process at an asymptotically optimal rate. General diffusion processes are regular one-dimensional strong Markov processes with continuous trajectories, see for instance [START_REF] Revuz | Grundlehren der Mathematischen Wissenschaften[END_REF]Chapter 7.3] where they are defined as linear continuous Markov processes. This convergence result allows us to set up approximation schemes that, while make it straightforward to take into account for sticky points, can also be applied to any diffusion process that satisfy a mild non-explosion condition. This includes processes with boundary conditions like absorption, reflection or slowreflection as well as the skew diffusions such as the Skew Brownian motion [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF] and its generalizations. The values taken by the random walk correspond to values taken by the target process at random times, allowing us to classify it as an embeddable scheme along with [START_REF] Ankirchner | A functional limit theorem for coin tossing Markov chains[END_REF] and [START_REF] Étoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF]. We prove that for a grid adapted to the speed measure of the diffusion process, the laws of the random walks converges at any rate strictly inferior to (1/2) ∧ (2/p) in terms of the maximum cell size for all p-Wasserstein distances. This convergence rate is optimal for p ≤ 4 according the Donsker invariance principle, as this is the rate simple randoms walk converges to the standard Brownian motion [START_REF] Donsker | An invariance principle for certain probability limit theorems[END_REF].

Besides the asymptotic optimal convergence rate, the usage of such an approximation process yield several advantages. Firstly, the static character of the grid makes involved quantities good candidates for numerical approximation (see Sections 5.6 and 6.1). Moreover, this scheme makes it straightforward to take into account potential sticky points of the diffusion. Finally, its universality is further validated by the fact that the Donsker invariance principle and [START_REF] Donsker | An invariance principle for certain probability limit theorems[END_REF][START_REF] Amir | Sticky Brownian motion as the strong limit of a sequence of random walks[END_REF][START_REF] Étoré | A Donsker theorem to simulate one-dimensional processes with measurable coefficients[END_REF] are all special cases of it.

Outline. In Section 5.2, we present the approximation scheme along with its properties. In Section 5.3, we give analytical characterizations of the quantities that determine the law of the random walk defined by the algorithm, allowing us to implement it. Section 5.4 is dedicated to proving the convergence of embedding times. In Section 5.5, we prove the main convergence result in terms of the maximum cell size of the grid. The case of solution of an SDE is studied in Section 5.6.

The Space-Time Markov Chain Approximation

and its properties

The approximation scheme

In this section we define the approximation process for a one-dimensional diffusion process on natural scale 3 with state space I, an open interval of R. The general case is obtained by a change of scale, as detailed in Section 5.2.2.

The possible values taken by the approximation process are given as input of the scheme and must form a covering grid of I. We introduce incrementally this notion as follows, which we illustrate by Figure 5.1. Let I be an interval of R.

• A grid over I is a countable subset of I with no accumulation points within I.

• A cell c of a grid g is an open interval with endpoints in g with a single element of g in its interior, i.e., card g ∩ c = 1.

We denote with C(g) the set of all cells of the grid g.

3 Which means that s(x) = x. 

Let X be a diffusion process with state-space I an interval of R, on natural scale, whose speed measure satisfies Condition (5.7) for some constant k 1 > 0. Let g be a covering grid of I. Then, for all p ≥ 1, δ ∈ (0, 1 4 ∧ 1 p ), T > 0 and x ∈ I there exists a constant C > 0 such that

where |g| X = sup c∈C(g) {|c|m(c)}.

Remark.

In the case where m(dx) ≥ k 1 dx, the constant 5 C > 0 in Theorem 5.2.1 does not depend on the starting point of the diffusion.

Remark. If X is a diffusion process on natural scale such that (5.6) holds, the bound in (5.8) can be replaced by C|g| 2δ .

The convergence of the Wasserstein distances implies the convergence in law [90, p. 109].

Corollary 5.2.2. For all T > 0, the processes ( X g t ) t∈[0,T ] converges in law to (X t ) t∈[0,T ] in the Skorokhod space D([0, T ], I) as |g| X -→ 0.

Chapter 6

Numerical experiments

Chapter outline: In this chapter we aim to test numerically the theoretical results established in this thesis, namely the STMCA approximation of one-dimensional diffusions of Chapter 5, the local time approximation and the stickiness parameter estimation of Chapter 4. In Section 6.1, we give numerical STMCA approximation examples of diffusions that exhibit various path-wise features. In Section 6.2, we assess numerically the stickiness parameter estimation and the local time approximation. We also see how the flexibility of grid choice in Algorithm 1 make it suitable for simulations regarding the local time approximation.

Approximation in distribution 6.1.1 Standard Brownian motion:

The standard Brownian motion can be defined as the diffusion process with scale function and speed measure

Then, from the definition of the scale function,

where by BM we mean these quantities are associated with the Brownian motion. Thus from (5.5), we have all the necessary quantities we need to implement the algorithm. with initial value x 0 = 5 using Algorithm 1 with a uniform grid of step-size h = 0.01. The quantities (6.1) were approximated using 100-step Riemann approximations. 

• rej: percentage of trajectories where the local time estimation equals 0, i.e rej = # j ≤ N MC :

Observations, conclusion

From the numerical experiments (Tables 6.1-6.5), we observe the following:

• As long as n is high enough, the higher the value of α ∈ (0, 1), the lower the estimated variance and the better the approximation of the local time,

• Also, the higher the α, the more the trajectory of X ρ is inflated and the less things are observed through g. Thus, having a finite set of path-wise observations of X ρ , one must find an α ∈ (0, 1) large enough to trigger the asymptotic regime of (4.1) and low enough so we do not dump too much path-wise observations. • In Table 6.5 we see that for a fixed c > 0, every (n, α) such that log n = c/α yield the same Monte Carlo variance. This relation can be guessed from (4.4) and (4.1),

• The convergence (4.7) seems to hold for α ∈ [1/2, 1), values not covered by Theorem 4.1.3. We thus conjecture the following:

Algorithm 1 gives us the flexibility to remediate to the latter by using grids of higher precision around the point of stickiness and thus achieving higher orders of convergence for (6.2) without significant increase in the numerical complexity.

We observe that the usage of grid g 1 yields far superior results than g 0 . Using g 1 we have an abundance of simulated path-wise observations close to the point of stickiness. The statistic (6.2) remains thus relevant for large values of α and we can achieve higher orders of convergence. Let (P t ) t≥0 be the semi-group of the standard Brownian motion B, defined for every measurable bounded f , x ∈ R and t ≥ 0 by

Then, (P t ) t≥0 is not strongly continuous on C b (R).

Proof. Let ϕ n be the sequence of functions defined for every n ∈ N and x ∈ R by

Let also f and g be the functions defined for every x ∈ R by

and

Thus, for all t ≥ 0 and ϵ > 0, there exists n 0 ∈ N large enough such that for all n ≥ n 0 ,

From (A.1) and (A.2), for all t ≥ 0,

and thus (P t ) t≥0 is not strongly continuous over C b (R).

A.2 Semimartingale results

A.2.1 Change of variables in a stochastic integral

Definition A.2.1.

• An (F t ) t≥0 -time change is any almost surely increasing, rightcontinuous family of (F t ) t≥0 -stopping times (T t ) t≥0 such that T 0 = 0.

• A process M is said to be in synchronization with T iff M is constant on [T s-, T s ].

• Given an (F t ) t≥0 -semi-martingale M , let L(M, (F t ) t≥0 ) be the class of (F