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Titre : Combinaison de réseaux de régulation génique et d’apprentissage statis-
tique séquentiel pour le repositionnement de médicaments

Résumé : À cause du coût toujours croissant de la conception de molécules
thérapeutiques de novo, et la masse considérable de données biologiques disponibles
actuellement, la création deméthodes d’exploration systématique pour le développe-
ment de thérapies est devenue un enjeu crucial. Lors de ma thèse, je me suis
concentrée sur le paradigme du repositionnement de médicaments, qui cherche
à identifier de nouvelles indications thérapeutiques pour des molécules chimiques
connues. J’ai cherché des méthodes qui traitent de façon reproductible la quantité
importante de données transcriptionnelles disponibles (relative à la production de
protéines à travers la transcription des séquences ADN géniques) pour le criblage de
molécules. Une revue de l’état de la recherche en développement de médicaments
montre que de telles approches génériques peuvent permettre de considérablement
accélérer la découverte de thérapies prometteuses, plus particulièrement contre
les maladies rares. Premièrement, en remarquant que les mesures d’activité tran-
scriptionnelle résultent d’un réseau dynamique complexe d’interactions régulatrices
entre gènes, j’ai travaillé sur l’intégration d’information biologique de différent types
afin de construire un modèle de ces régulations géniques. C’est là que les réseaux
de régulation génique, et, plus spécifiquement, les réseaux booléens, interviennent.
Ces modèles permettent à la fois d’expliquer les mesures d’origine transcriptionnelle
observées, et de prédire le résultat de perturbations de l’activité de certains gènes
par des molécules. Ensuite, ces modèles permettent d’effectuer des essais cliniques
in silico de médicaments. Tandis que l’utilisation des prédictions faites par des
réseaux booléens peut s’avérer coûteuse, l’hypothèse centrale de ma thèse est
que leur combinaison avec des algorithmes d’apprentissage séquentiel, comme les
bandits à bras multiples, peuvent non seulement réduire ce coût, mais également
contrôler le taux d’erreur dans les recommandations de candidats thérapeutiques.
Cette démarche est la procédure d’essai clinique in silico analysée tout au long de
mon travail de thèse. Le problème de l’intégration des vecteurs caractéristiques
connues des composants chimiques dans les bandits à bras multiples a également
été étudié. Enfin, j’ai appliqué une partie de mon travail de thèse au classe-
ment de différents protocoles de traitement pour de la neuroréparation dans le
cas d’encéphalopathies chez des enfants prématurés. J’ai également contribué à
la conception d’un algorithme qui permet d’étendre la procédure d’essai médica-
menteux in silico à un cadre collaboratif, où plusieurs sous-populations de patients
sont considérées simultanément.

Mots-clefs : repositionnement de médicaments ; analyse de données transcrip-
tionnelles ; inférence de réseaux de régulation génique ; réseaux booléens ; essai
de médicaments ; apprentissage séquentiel ; bandits à bras multiples.



Title: Combination of gene regulatory networks and sequential machine learning

for drug repurposing

Abstract: Given the ever increasing cost of designing de novo therapeutic molecules,

and the huge amount of currently available biological data, the development of

systematic explorative pipelines for drug development has become of paramount

importance. In my thesis, I focused on drug repurposing, which is a paradigm that

aims at identifying new therapeutic indications for known chemical compounds. I

investigated how to leverage in a reproducible way for drug screening the huge

collection of available transcriptomic data –relative to protein production through

the transcription of gene DNA sequences. The current state of research in drug

development indicates that such generic approaches might considerably fasten the

discovery of promising therapies, especially for rare diseases research. First,

noting that transcriptomic measurements are the product of a complex dynamical

system of regulatory interactions on genes, I worked on integrating diverse types of

biological information in order to build a model of these regulations. That is where

gene regulatory networks, and more specifically, Boolean networks, intervene.

Such models are useful for both explaining observed transcription levels, and for

predicting the result of gene activity perturbations through molecules. Second,

these models allow online in silico drug testing. While using the predictive fea-

tures of Boolean networks can be costly, the core assumption of this thesis is

that, combining them with sequential learning algorithms, such as multi-armed

bandits, might mitigate that effect, and help control the error rate in recommended

therapeutic candidates. This is the drug testing procedure suggested throughout

my PhD. The question of the proper integration of known side information about

the chemical compounds into multi-armed bandits is crucial, and has also been

investigated. Finally, I applied part of my work to ranking different treatment

protocols for neurorepair in the case of encephalopathy in premature infants. On

the theoretical side, I also contributed to the design of an algorithm which is able

to extend the drug testing procedure to a collaborative setting, where personalized

recommendation of drug candidates can be made to heterogeneous subpopulations

of patients, while being learnt using observations made on the whole set of sub-

populations.

Keywords: drug repurposing ; transcriptomic data analysis ; gene regulatory

network inference ; Boolean networks ; drug testing ; sequential learning ; multi-

armed bandits.



Résumé substantiel en français

Le développement de médicaments est un processus connu pour son coût
en temps de recherche, pouvant prendre près de dix ans, et financier im-
portant, avec un coût chiffré en millions de dollars. De plus, il est sujet à
d’assez forts taux d’échec de développement,1 même tardivement dans le
développement. Seulement 64 % des traitements entrés en phase III d’un
essai clinique après 2007 ont été commercialisés en 2012.2

Cependant, grâce aux améliorations technologiques dans le domaine de
la bioinformatique, une large quantité de données biologiques est disponible
publiquement ; par exemple, la base de données Gene Expression Om-
nibus (GEO) pour les données transcriptomiques.3 Cela permet d’accélérer la
phase de recherche de thérapie en explorant ces données. Afin de garantir
la reproducibilité et la transparence des résultats obtenus (et donc, leur
robustesse), il est nécessaire pour traiter ces données de faire appel à des
méthodes in silico automatisées.4 De plus, le développement de molécules
thérapeutiques de novo est à la fois complexe (puisque requérant la concep-
tion de molécules synthétisables ayant la fonction désirée) et relativement
risqué, car il n’y a d’informations ni sur leur capacité d’administration, ni sur
leurs éventuels effets secondaires néfastes, ce qui explique une partie des
échecs dans le développement.5

Ce constat m’a incitée à m’intéresser à un paradigme nommé le «reposi-
tionnement de médicaments » (drug repurposing), qui propose de rechercher
de nouvelles thérapies parmi des composants chimiques d’ores et déjà com-
mercialisés, soit en tant que molécules-outils, soit en tant que médicaments

1T. Burki (2020). “A new paradigm for drug development”. The Lancet Digital Health,
2(5), e226–e227.

2D. Lowe (2019). The Latest on Drug Failure and Approval Rates. https://www.science.
org/content/blog-post/latest-drug-failure-and-approval-rates. Accessed: [March 23,
2022].

3T. Barrett et al. (2012). “NCBI GEO: archive for functional genomics data sets—update”.
Nucleic acids research, 41(D1), pp. D991–D995.

4P. Zucchelli (2018). Lab Automation Increases Repeatability, Reduces Errors in Drug
Development. https : / / www . technologynetworks . com / drug - discovery / articles / lab -
automation - increases - repeatability - reduces - errors - in - drug - development - 310034.
Accessed: [March 23, 2022].

5V. D. Mouchlis et al. (2021). “Advances in de novo drug design: from conventional to
machine learning methods”. International journal of molecular sciences, 22(4), p. 1676.
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approuvés.6 Cela permet à la fois de limiter la phase préclinique et la phase
I de développement, mais également de réduire la probabilité d’émergence
d’effets secondaires non désirables inconnus. Ces observations sont basées
sur une revue de l’état-de-l’art effectuée en début de thèse.7

En particulier, cette thèse s’intéresse à une approche spécifique, nommé
l’inversion de signature (signature reversion).8 Cette méthode a déjà dé-
montré son efficacité, par exemple, pour le repositionnement de médica-
ments contre la grippe,9 où les auteurs ont pu vérifier in vitro que l’administra-
tion de nifurtimox ou de chrysine permettait de réduire la quantité de virions
grippaux.
Cette approache exploite des données transcriptomiques d’expression de

gène. Le niveau d’expression d’un gène donné, dans un contexte spatial
et temporal fixé, correspond à une mesure du nombre de transcriptions
de la séquence génique. Cette mesure est corrélée au nombre de copies
effectuées du produit encodé par ce gène (par exemple, une protéine). Ce
produit est ce par quoi le gène exécute sa fonction dans l’organisme, en
participant à des réactions chimiques au sein de l’organisme. Plus le nombre
de copies de ce produit est élevé, plus l’effet de la fonction du gène se fait
ressentir. La mesure du niveau d’expression d’un gène consiste d’abord à
dénombrer les transcrits (nombres d’ARN messager, ou ARNm associés à
ce gène) présents dans un échantillon de cellules, ce qui peut être fait par
les technologies de séquençage à très haut débit. Une normalisation de
cette quantité donne le niveau d’expression, c’est-à-dire le nombre moyen
de transcriptions du gène par échantillon.
L’approche d’inversion de signature utilise alors cette donnée dans le but

de trouver un candidat thérapeutique contre une pathologie fixée :
(1). D’abord, le niveau d’expression de gène chez des échantillons traités

par diverses molécules, avec leur population de référence («contrôle »), est
mesuré. À partir de ces profils transcriptionnels, on en déduit une signature
«traitement », c’est-à-dire une quantification de la variation d’expression de
chaque gène des échantillons traités par rapport aux contrôles due à la dif-
férence de traitement. Par exemple, si l’expression d’un gène A est globale-
ment plus (respectivement, moins) importante chez les échantillons traités
par rapport à son expression chez les contrôles, alors ce gène sera noté

6D. W. Carley (2005). “Drug repurposing: identify, develop and commercialize new uses
for existing or abandoned drugs. Part I”. IDrugs: the investigational drugs journal, 8(4),
pp. 306–309.

7Réda, Kaufmann, and Delahaye-Duriez (2020). “Machine learning applications in drug
development”. Computational and structural biotechnology journal, 18, pp. 241–252.

8J. Lamb et al. (2006). “The Connectivity Map: using gene-expression signatures to
connect small molecules, genes, and disease”. science, 313(5795), pp. 1929–1935.

9Y. Xin et al. (2022). “Identification of Nifurtimox and Chrysin as Anti-Influenza Virus
Agents by Clinical Transcriptome Signature Reversion”. International Journal of Molecular
Sciences, 23(4), p. 2372.
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comme étant «up-régulé » (resp., «down-régulé »). L’avantage de consid-
érer des signatures, plutôt que les profils transcriptionnels eux-mêmes, est
de permettre de comparer les évolutions au niveau de l’expression de gène
corrélées au traitement, indépendamment du contexte spatial et temporel
des mesures transcriptomiques ;

(2). De même, le niveau d’expression de gène est mesuré chez des indi-
vidus sains pour la pathologie considérée et des individus malades. Pareille-
ment, une signature «maladie »est construite, représentant la différence
d’expression entre individus sains et malades due à la maladie ;

(3). Pour chaque signature «traitement », une comparaison avec la
signature «maladie »est effectuée. Si une signature «traitement »est sim-
ilaire à la signature «malade », alors cela signifie que l’évolution au niveau
de l’expression de gène chez un échantillon traité est corrélée à celle chez un
échantillon malade ; autrement dit, le traitement semble «reproduire »un
profil malade. Si au contraire, il existe une forte différence entre signatures «
traitement »et «maladie », alors, par un même raisonnement, on en déduit
que le traitement semble «restaurer »des niveaux d’expression de gène
similaires à ceux observés chez les individus sains ;

(4). Traditionnellement, les candidats recommandés à la suite de cette
procédure sont ceux dont la dissimilarité entre leur signature associée et la
signature «maladie »est la plus grande.

Exemple d’application du principe de l’inversion de signature. J’ai
appliqué10 cette procédure dans un projet de sélection d’un protocole de
traitement par cellules souches mésenchymateuses humaines chez le mod-
èle murin d’encéphalopathie de la prématurité.
Dans cette étude, deux voies d’administration, trois âges d’injection des

cellules souches et trois grades de doses (dépendant du poids de l’animal)
ont été testés sur des rats modèles dont les cellules microgliales ont été
séquencées, ainsi que celles d’animaux modèles n’ayant pas reçu de cellules
souches, et d’animaux sains injectés avec un traitement factice. En me
basant sur les profils transcriptionnels obtenus et l’approche d’inversion de
signature, j’ai calculé la signature «traitement »associée à chaque protocole
de traitement (en comparant échantillons modèles traités selon le protocole
par cellules souches, et échantillons modèles non traités) ainsi que la signa-
ture «contrôle », en comparant échantillons sains et échantillons modèles
non traités par cellules souches. Enfin, j’ai classé les différents protocoles de
traitement par similarité décroissante entre chaque signature «traitement »
et la signature «contrôle ».
Le classement obtenu ne semble pas dépendre de facteurs confondants

10Bokobza, Réda, et al. (in prep.). “Therapeutic evaluation of Hu-MSCs in a rat model of
perinatal inflammation: a systematic outcome scoring”.
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liés à la mesure des données et non au traitement («effet batch »), et ne
présente pratiquement que des scores positifs, dont certains sont proches de
la valeur 1. Cela suggère que l’injection de cellules souches est globalement
bénéfique pour le traitement de l’encéphalopathie de la prématurité chez
le modèle murin. L’approche par inversion de signature semble donc être
intéressante en pratique. Dans ce cas, elle permet de déterminer le mode
d’administration (voie, âge, dose relative au poids) qui maximise l’effet
des cellules souches mésenchymateuses humaines sur la restauration d’un
phénotype sain.

Limites de l’approche d’inversion de signature. Cependant, l’utilisa-
tion de cette approche pour le repositionnement de médicaments est con-
frontée à plusieurs défis.

Premièrement, (A) il n’est pas clair que les signatures obtenues respec-
tivement aux étapes (1) et (2) dans le paragraphe précédent soient le reflet
des conséquences directes du traitement (ou de la pathologie) au niveau
transcriptionnel. En particulier, l’existence bien connue de cascades trans-
criptionnelles de régulation,11 avec un effet «domino »de la perturbation sur
l’expression des gènes, semble plutôt suggérer que ces signatures sont le
fruit de profils transcriptionnels «stabilisés ». Cela pose donc le problème
de distinguer la cause des symptômes de la pathologie étudiée, de même
que les processus biologiques réellement ciblés par un traitement ;

Deuxièmement, (B) d’un point de vue pratique, cette méthode requiert
d’assez grandes quantités de données transcriptomiques. Il est alors capi-
tal d’exploiter les données de traitement et de profils patients de façon
générique pour augmenter la reproductibilité (c.à.d., compatible avec n’impor-
te quelle pathologie considérée) ;

Troisièmement, (C) la procédure de recommandation de candidats, qui
consiste à considérer les candidats les mieux classés (par exemple, les N
premiers), ne permet pas ni de contrôler le taux d’erreur, ni de fournir une
interprétation des résultats au niveau transcriptionnel ;

Enfin, (D) la démarche d’inversion de signature ne prend en compte
qu’une tendance globale au niveau de l’évolution de l’expression à travers
la population de patients : définir un cadre personnalisé pour la recomman-
dation de candidats thérapeutiques pourrait être intéressant pour l’étude de
maladies avec de multiples sous-catégories, comme par exemple l’épilepsie,
ou le cancer du sein.

Introduction des réseaux de régulation pour le repositionnement
de médicaments. Tout d’abord, dans le but de résoudre les problèmes

11H. Bolouri and E. H. Davidson (2003). “Transcriptional regulatory cascades in
development: initial rates, not steady state, determine network kinetics”. Proceedings
of the National Academy of Sciences, 100(16), pp. 9371–9376.
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évoquées en (A) et en (B), j’ai considéré12 l’intégration de réseaux de
régulation génique dans l’approche d’inversion de signature.
En effet, un réseau de régulation génique (gene regulatory network)

modélise l’effet d’interactions régulatrices de l’expression sur un ensemble
de gènes. Ce réseau est un graphe dont les nœuds sont les gènes, et ses
arêtes sont les interactions régulatrices entre les gènes.
Cependant, ce modèle reste statique, et dans le but de démêler les

causes des conséquences (A), nous avons besoin d’un modèle prédictif
de l’expression de gène, en particulier, en réponse à des perturbations
externes. Plusieurs types de réseaux satisfont ce critère, et dans cette thèse,
je considère le formalisme des réseaux booléens.13 D’abord, parce que ce
type de modèle permet d’obtenir des prédictions d’ordre qualitatif, ce qui
en facilite l’interprétation ; ensuite, parce que le calcul des «états stables »
dans le réseau a été bien étudié.
Un réseau booléen est défini par, premièrement, un graphe d’interactions

B(G, E) qui connecte les nœuds dans l’ensemble G agissant les uns sur les
autres à travers l’ensemble d’arêtes E ; et, deuxièmement, un système
logique S(V, F, [[·]]) qui décrit la dynamique du modèle. Ce système com-
porte un ensemble de variables booléennes (c’est-à-dire, pouvant prendre
la valeur 0 ou 1 uniquement) V , et de formules logiques F , en nombre égal
à la taille de G. On confond en général l’ensemble des nœuds G et des
variables associées V . Pour tout nœud g dans G (g ∈ G), la formule logique
ϕg ∈ F comporte des connecteurs logiques («et »∧, «ou »∨, «non »¬ . . . ) qui
combinent les variables associées à des régulateurs directs du nœud g dans
le graphe B. Si un régulateur r ∈ G est un activateur (resp., un inhibiteur)
de l’expression du nœud g, alors il existe une arête de r vers g activatrice
(resp., inhibitrice) dans l’ensemble des arêtes du graphe d’interactions E.
À un moment donné, l’état du réseau est décrit par l’ensemble des valeurs

booléennes attribuéees à toutes les variables associées aux nœuds. Pour
obtenir l’état du réseau après application de l’effet des interactions régula-
trices sur les valeurs des variables, on utilise la fonction [[·]] («sémantique »
). Elle définit la façon d’évaluer la proposition logique ϕg =⇒ g pour chaque
gène g, en fonction des valeurs actuelles des variables du réseau. Si pour
une variable g donnée, cette proposition est vraie ([[ϕg =⇒ g]] = 1) alors
l’état du nœud associé g est égal à 1 (interprété biologiquement comme «le
gène g est exprimé »). Sinon, cet état est égal à 0 («non exprimé »). On

12Réda and Delahaye-Duriez (2022). “Prioritization of Candidate Genes Through Boolean
Networks”. International Conference on Computational Methods in Systems Biology.
Springer, pp. 89–121.
13S. A. Kauffman (1969). “Metabolic stability and epigenesis in randomly constructed

genetic nets”. Journal of theoretical biology, 22(3), pp. 437–467; R. Thomas (1973).
“Boolean formalization of genetic control circuits”. Journal of theoretical biology, 42(3),
pp. 563–585.
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ne détaillera pas dans ce résumé les sémantiques possibles. La sémantique
définit alors une relation entre deux états s1, s2 du réseau : s1 →[[·]] s2 si et
seulement si évaluer ces propositions logiques avec [[·]] aboutit à l’état s2. On
peut alors construire un diagramme de transition entre états, c’est-à-dire,
un graphe dont les nœuds sont les états possibles du réseau et les arêtes
les relations →[[·]]. En particulier, on s’intéresse aux états qui «bouclent sur
eux-mêmes »dans ce diagramme : ce sont les états attracteurs stables.
Autrement dit, une fois que le réseau se trouve dans cet état, l’application
de la sémantique laisse cet état invariant. Ces états sont intéressants parce
que, biologiquement, on les considère comme les phénotypes «stabilisés »
des types de cellules modélisés.14

On peut alors utiliser ce réseau pour prédire des profils transcriptionnels
«stabilisés », en particulier, après perturbation de certains gènes. Une
perturbation du gène g est définie par le fait de rajouter dans la sémantique
la règle [[g]] = 0 (knock-out) ou [[g]] = 1 (surexpression, ou knock-in) qui sup-
plante l’évaluation de [[ϕg]]. En partant d’un état initial du réseau et en appli-
quant itérativement la sémantique choisie, on peut prédire l’état attracteur
stable dans lequel on aboutit au bout d’un certain nombre d’itérations de
la sémantique, s’il existe. Le nombre d’itérations est en général choisi
suffisamment grand pour pouvoir détecter cet état attracteur s’il existe.
La construction d’un réseau booléen, en particulier sans la présence d’un

modèle de régulation déjà existant ni de données pertinentes d’expression
de gène, est souvent un processus manuel de collecte d’interactions entre
paires de gènes (dans la littérature ou dans des bases de données), et
de amélioration itérative du modèle en comparant les prédictions d’états
obtenues avec des données transcriptomiques issues d’expériences de per-
turbation de gène. Cette procédure atteint rapidement ses limites à partir
du moment où l’on considère quelques centaines de gènes dans le réseau,
ou dans le cas où l’on étudie les régulations dans le contexte d’une maladie
rare.

Construction automatisée de réseau booléen associé à une mal-
adie donnée. Une première étape a porté sur le développement d’une
méthode de construction automatique de réseau booléen associé à une mal-
adie donnée, dans le but de résoudre le problème évoqué dans (B).
Cette méthode part d’un ensemble de gènes associés à une maladie, de

données d’expression dans des expériences de perturbation de ces gènes
(un gène à la fois est perturbé) issues de la base de données LINCS L1000,15

et des interactions répertoriées entre protéines codées par ces gènes, via

14P. Bloomingdale et al. (2018). “Boolean network modeling in systems pharmacology”.
Journal of pharmacokinetics and pharmacodynamics, 45(1), pp. 159–180.
15Subramanian et al. (2017). “A next generation connectivity map: L1000 platform and

the first 1,000,000 profiles”. Cell, 171(6), pp. 1437–1452.
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la base de données STRING.16 En utilisant les données d’expression, j’ai
pu construire un ensemble d’interactions possibles entre gènes. Puis j’ai
utilisé la méthode d’inférence de réseau booléen BoNeSiS17, qui calcule les
formules logiques et le sous-graphe d’interactions qui permettent de satis-
faire toutes les observations expérimentales extraites de LINCS L1000. Enfin,
j’ai sélectionné un réseau parmi les solutions retournées par la méthode
d’inférence sur des critères topologiques, en maximisant une fonction de
désirabilité.18 Les seules entrées requises sont une liste de gènes à utiliser
dans le réseau et les lignées cellulaires d’intérêt.
J’ai appliqué cette méthode à une liste de gènes présélectionnés19 pour

construire un réseau booléen sur des lignées cérébrales, afin d’étudier les
mécanismes liés à l’épilepsie, et mieux comprendre l’épilepsie réfractaire,
qui touche 25 % des patients épileptiques, qui ne réagissent pas aux traite-
ments actuels.

Priorisation de régulateurs-clés par le réseau booléen. Pour éval-
uer l’intérêt de ce réseau, j’ai cherché à déterminer les nœuds régulateurs-
clés dans le réseau, c.à.d., les gènes qui sont en amount de la régulation
d’un grand nombre de gènes, donc dont la perturbation a des répercussions
sur l’ensemble du réseau. Ces gènes pourraient donc constituer des cibles
thérapeutiques intéressantes, en particulier, si leur inhibition ou leur surex-
pression permet d’inverser le profil malade.
Actuellement, une des méthodes les plus courantes pour identifier ces

régulateurs-clés est de calculer, pour chaque gène, une mesure relative à la
centralité de la position de ce gène dans le réseau. Cependant, d’une part,
cette méthode n’exploite que la topologie du réseau lorsqu’elle est appliquée
à un réseau booléen. D’autre part, cette définition ne colle pas exactement
à la définition d’un régulateur-clé.
J’ai donc conçu une méthode qui retourne, pour chaque gène, un score

(appelé «spread ») proportionnel à la perturbation de l’état du réseau par
la perturbation de ce seul gène. L’idée derrière ce score est de calculer la
dissimilarité entre les états attracteurs stables atteints sans perturbation du
gène, et ceux dans lesquels le système peut aboutir lors de la perturbation
du gène dans la lignée cellulaire d’intérêt.

16D. Szklarczyk et al. (2021). “The STRING database in 2021: customizable protein–
protein networks, and functional characterization of user-uploaded gene/measurement
sets”. Nucleic acids research, 49(D1), pp. D605–D612.
17S. Chevalier et al. (2019). “Synthesis of boolean networks from biological dynamical

constraints using answer-set programming”. 2019 IEEE 31st International Conference on
Tools with Artificial Intelligence (ICTAI). IEEE, pp. 34–41.
18S. Babichev et al. (2019). “Technique of Gene Regulatory Networks Reconstruction

Based on ARACNE Inference Algorithm.” IDDM, pp. 195–207; E. C. Harrington (1965).
“The desirability function”. Industrial quality control, 21(10), pp. 494–498.
19Delahaye-Duriez, Srivastava, et al. (2016). “Rare and common epilepsies converge

on a shared gene regulatory network providing opportunities for novel antiepileptic drug
discovery”. Genome biology, 17(1), pp. 1–18.
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Le classement par «spread »décroissant est corrélé à la centralité du
gène dans le réseau (Control Centrality,20 degré total et sortant du nœud).
Cependant, ce classement est davantage corrélé à des mesures de pathogénic-
ité de gène, par exemple, à l’intolérance d’un gène à une mutation perte-
de-fonction (pLI). Dans l’application à l’épilepsie, des gènes associés aux
encéphalopathies épileptiques et à de graves troubles du développement
sont retrouvés de manière significative («enrichis ») parmi les 12 premiers
gènes du classement par «spread ».

Repositionnement demédicaments par le réseau booléen. Ensuite,
j’ai cherché à résoudre les points évoqués dans la partie (A), en définissant
une procédure de repositionnement de médicaments, basée sur l’approche
d’inversion de signature, qui exploite les propriétés prédictives du réseau
booléen.

Cette procédure a été appliquée au réseau construit pour l’épilepsie,
et les résultats obtenus ont été comparés à une méthode traditionnelle
d’inversion de signature, appelée L1000 CDS2. Pour ce faire, j’ai récupéré des
profils transcriptionnels d’hippocampes épileptiques et sains21 ainsi qu’une
signature construite sur des échantillons traités et contrôles pour chaque
molécule à cribler, à partir de la base de données LINCS L1000.22 Puis, pour
chaque échantillon patient perturbé et chaque molécule, le réseau prédit un
ensemble d’états attracteurs stables atteints à partir du profil patient per-
turbé selon la signature de la molécule. Les gènes notés comme up- (resp.,
down-) régulés dans la signature sont surexprimés (resp., knocked-out) tout
au long de la simulation. Pour chaque état attracteur prédit, on calcule un
score associé à la distance entre cet état et la frontière de classification qui
sépare échantillons contrôles des échantillons patients dans un espace en 2D
bien choisi. Ce score est positif si l’état attracteur est dans l’hyperplan des
échantillons contrôles, négatif sinon. Un score final pour ce profil patient
et cette molécule est obtenu en pondérant les scores par attracteur par la
probabilité d’aboutir dans cet attracteur. Enfin, un seul score par traitement
est obtenu en moyennant les scores sur l’ensemble des patients.

Cette approche a été testée sur un ensemble de 22 proconvulsivants et
12 antiépileptiques connus. On observe que cette méthode a des perfor-
mances similaires à L1000 CDS223, avec une faible amélioration au niveau de
la mesure d’aire sous la courbe (AUC) qui quantifie la relation entre le taux

20Liu, J.-J. Slotine, and A.-L. Barabási (2012). “Control centrality and hierarchical
structure in complex networks”.
21N. Mirza, R. Appleton, et al. (2017). “Genetic regulation of gene expression in the

epileptic human hippocampus”. Human molecular genetics, 26(9), pp. 1759–1769.
22Subramanian et al. (2017). “A next generation connectivity map: L1000 platform and

the first 1,000,000 profiles”. Cell, 171(6), pp. 1437–1452.
23Q. Duan et al. (2016). “L1000CDS2: LINCS L1000 characteristic direction signatures

search engine”. NPJ systems biology and applications, 2(1), pp. 1–12.
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d’antiépileptiques détectés par la méthode, et le taux de proconvulsivants
prédits comme antiépileptiques dans le classement obtenu (L1000 CDS2 :
AUC≈ 0.55 contre AUC≈ 0.63 avec notre méthode, arrondi à la seconde déci-
male). Plus ce score est grand, meilleure est la méthode. De même, le score
F1 quantifie la relation entre sensitivité (le ratio du nombre d’antiépileptiques
détectés sur le nombre total d’antiépileptiques présents) et la spécificité
(le ratio du nombre de proconvulsivants détectés sur le nombre total de
proconvulsivants présents). Le score F1 est de 0.44 pour L1000 CDS2, contre
F1 ≈ 0.58 (arrondi à la seconde décimale) pour notre méthode.

Variabilité entre individus dans la réponse au traitement. Cepen-
dant, il y a une variation assez importante au niveau des scores obtenus par
un traitement à travers les profils patients (écart-type de l’AUC à travers les
patients : 0.01, arrondi à la seconde décimale). Cela fait écho au problème
évoqué en (C) sur le calcul du taux d’erreur dans les recommandations, et
l’intérêt de recommandations personnalisées en (D). De plus, pour calculer
ce score moyen, il faut itérer la procédure de prédiction d’états attracteurs
(qui est assez coûteuse en temps et en puissance de calcul) sur l’ensemble
des profils patients disponibles, et ce, pour chaque traitement à cribler.

J’ai donc réfléchi à une procédure adaptative, qui calculerait les scores
de façon parcimonieuse, dans le but de déterminer les meilleurs candidats à
repositionner. Cette procédure pourrait éventuellement reposer sur les sig-
natures des traitements, qui sont informatives sur leur effet transcriptionnel.
Cela m’a donc amené à m’intéresser aux algorithmes de bandit.

Introduction des algorithmes de bandit pour le repositionnement
de médicaments. Les algorithmes de bandit appartiennent de la catégorie
d’algorithmes d’apprentissage statistique par renforcement. L’algorithme
(l’«agent ») doit interagir avec un environnement dont il peut tirer des
observations, à partir desquelles il prend des décisions ; il adapte alors sa
prise de décision en fonction des retours reçus de l’environnement. Dans
cette thèse, l’environnement est le réseau booléen qui retourne le score («
observation ») du traitement sur un ensemble de gènes, et la décision à
prendre est le choix du prochain traitement («bras ») à à évaluer. Le but
est d’ultimement identifier les meilleurs candidats thérapeutiques à partir de
leur effet moyen sur le réseau. Les bandits sont surtout populaires dans le
domaine des systèmes de recommendation,24 même s’ils ont été introduits
pour décrire les essais cliniques adaptatifs,25 c’est-à-dire avec un processus
d’allocation des patients aux bras de traitement qui n’est pas uniforme.

24D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski (2012). “A contextual-bandit
algorithm for mobile context-aware recommender system”. International conference on
neural information processing. Springer, pp. 324–331.
25W. R. Thompson (1933). “On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples”. Biometrika, 25(3-4), pp. 285–294.
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Maintenant, introduisons le concept de bandit (ici, on ne considèrera
que les «bandits stochastiques structurés à nombre de bras finis »). On
considère un nombre K de bras, associés à des vecteurs caractéristiques
(Xk)k∈[K]. Un agent sélectionne séquentiellement ces bras pendant un nom-
bre de tours donnés ou lorsqu’un critère d’arrêt est satisfait. En tirant le
bras It ∈ [K] := {1, 2, . . . , K − 1, K} au tour t, l’agent exécute une action sur
l’environnement, et perçoit son impact sur l’environnement via une observa-
tion bruitée Yt. On fait l’hypothèse que cette observation est une réalisation
d’une distribution de probabilité νIt (Yt ∼ νIt), c’est-à-dire, un nombre tiré
selon cette distribution. Celle-ci est considérée fixée et inconnue de l’agent
νIt (hypothèse de stochasticité), et dépendante du vecteur caractéristique
associé XIt (hypothèse de structure). On note l’espérance de la distribution
νa de probabilité µa := E{Y∼νa}[Y ] pour tout bras a ∈ [K]. En particulier, ici, on
suppose que le modèle de bruit pour tout bras a ∈ [K] est additif et suit une
distribution sous-gaussienne de moyenne µa de variance fixée σ2

Yt = µIt + ψt, où ψt satisfait pour tout réel λ ∈ R+,E[exp(λψt)] ≤ exp
(
λ2σ2

2

)
.

Pour la suite du résumé, on se restreint aux distributions gaussiennes de
variance fixée σ2. Sans perte de généralité, on considère qu’une action
positive a sur l’environnement émet une observation moyenne µa plus grande
que celle émise par une action négative sur l’environnement. Cependant,
l’agent ne peut estimer l’observation moyenne associée à un bras qu’en
tirant plusieurs fois certains bras. Un bras optimal a⋆ est alors un bras dont
l’observation moyenne est la plus grande de tous les bras :

µ⋆ = µa⋆ :=max
a∈[K]

µa

(il peut y en avoir plusieurs) ; similairement, on définit le Nème meilleur bras

µ(N) = µa(N)
:=

N
max
a∈[K]

µa .

L’agent peut avoir différents objectifs. Par exemple, l’objectif le plus couram-
ment défini est d’obtenir la plus grande somme cumulative d’observations
en T tours, ce qui s’appelle la minimisation du regret cumulatif (cumulative
regret minimization).26 Dans ce cas, l’agent doit souvent jouer le bras que
l’agent estime optimal à partir des observations précédentes, au risque
d’être pénalisé si on tire un bras sous-optimal. Dans notre cadre de reposi-

26P. Auer, N. Cesa-Bianchi, Y. Freund, et al. (2002). “The nonstochastic multiarmed bandit
problem”. SIAM journal on computing, 32(1), pp. 48–77; Li, W. Chu, et al. (2010). “A
contextual-bandit approach to personalized news article recommendation”. Proceedings of
the 19th international conference on World wide web, pp. 661–670.
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tionnement de médicaments (et en particulier, sachant que l’on utilise des
simulations in silico), on n’a pas d’intérêt à pénaliser l’exploration, c’est-à-
dire l’observation de bras sous-optimaux pour acquérir de l’information sur
l’environnement. L’objectif de l’agent en utilisant l’algorithme de bandit A est
donc l’identification des N meilleurs bras (Top-N identification) avec un plus
petit nombre d’observations τA possible. Ce nombre est défini par le critère
d’arrêt de l’algorithme. Pour répondre au problème en (C), l’algorithme A

doit retourner un ensemble de bras ŜN(τA) de taille N, avec une probabilité
d’erreur de recommandation inférieure à un seuil fixé δ

P
[
ŜN(τA) 6⊆ S⋆N

]
≤ δ, où S⋆N :=

{
a ∈ [K] : µa ≥ µ(N)

}
, (1)

est l’ensemble des bras optimaux. On peut aussi définir l’ensemble des bras
ε-optimaux (c.à.d., optimaux à ε près) S⋆N(ε) :=

{
a ∈ [K] : µa ≥ µ(N) − ε

}
.

Combinaison des réseaux géniques et des algorithmes de bandit
pour le repositionnement de médicaments. La méthode de reposition-
nement de médicaments que je propose combine les scores obtenus par
le réseau booléen et les algorithms de bandit. En réponse à la requête de
l’agent, un score lié au traitement t est calculé par le réseau booléen, sur
un profil patient tiré aléatoirement. Ce score est retourné à l’agent. Celui-ci
doit alors choisir le prochain traitement à tester, de sorte à limiter le nombre
de scores nécessaires avant de trouver les N meilleurs candidats. Contraire-
ment aux travaux publiés avant le début de ma thèse,27 l’algorithme de ban-
dit peut exploiter les signatures associées aux traitements. Premièrement,
cette information supplémentaire permet de réduire le nombre d’évaluations
nécessaires, en supposant que des traitements ayant des signatures simi-
laires auront des scores de repositionnement similaires. Deuxièmement,
cela permet d’apprendre un modèle mathématique des scores en fonction
des signatures, et de pouvoir alors interpréter l’importance d’un gène sur la
valeur du score.

Résolution du problème d’identification des N meilleurs bras avec
vecteurs caractéristiques. D’abord, je me suis concentrée28 sur l’identifica-
tion des N bras ε−optimaux sous taux d’erreur fixé δ se reposant sur les
vecteurs caractéristiques.
N’importe quel tel algorithme A est défini par trois règles :
(a) la règle d’échantillonnage (sampling rule), qui choisit le bras à tirer

en fonction des observations précédentes ;

27V. Gabillon, M. Ghavamzadeh, and A. Lazaric (2012). “Best arm identification: A unified
approach to fixed budget and fixed confidence”. Advances in Neural Information Processing
Systems, 25; S. Kalyanakrishnan et al. (2012). “PAC subset selection in stochastic multi-
armed bandits.” ICML. vol. 12, pp. 655–662.
28Réda, Kaufmann, and Delahaye-Duriez (2021). “Top-m identification for linear bandits”.

International Conference on Artificial Intelligence and Statistics. PMLR, pp. 1108–1116.
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(b) le critère d’arrêt (stopping rule), qui choisit d’arrêter la phase d’appren-
tissage (et donc, choisit le temps τA) pour entrer dans la phase de décision ;

(c) la règle de décision (decision rule), qui construit l’ensemble de can-
didats ŜN(τA).

L’analyse de cet algorithme se décompose en deux parties. D’une part,
on prouve sa correction, c’est-à-dire si la Condition (1) est bien satisfaite. En
pratique, on construit un «bon »évènement E de probabilité supérieure à 1−δ
sur lequel l’évènement {ŜN(τA) ⊆ S⋆N} est toujours vrai (c.à.d., l’algorithme
ne se trompe pas). D’autre part, on calcule une borne supérieure sur le
nombre τA d’observations suffisant pour déclencher le critère d’arrêt (sample
complexity).

J’ai donc défini une famille d’algorithmes de bandit appelée GIFA (Gap-
Index Focused Algorithms), qui suppose une relation linéaire entre les scores
et les vecteurs caractéristiques des bras, avec un paramètre inconnu à es-
timer θ

∃θ ∈ Rd∀a ∈ [K], µa := θ⊤Xa . (2)

En particulier, si le vecteur caractéristique Xa est la signature du traitement
a, alors le paramètre θ estimé à la fin de la phase d’apprentissage donne
les cœfficients de la combinaison linéaire θ⊤Xa. J’ai proposé une analyse
unifiée de sample complexity pour ces algorithmes, dont la correction peut
être montrée même sur des algorithmes partiellement définis (c.à.d., l’une
des trois règles ci-dessus n’est pas définie). Cette famille d’algorithmes se
fonde sur les valeurs («indices ») (Ba,b(t))(a,b)∈[K]2,t≥0, tels que Ba,b(t) surap-
proxime l’écart (gap) µa − µb entre les bras a et b à n’importe quel tour t,
avec probabilité 1 − δ. J’ai montré que cette condition constitue un «bon »
évènement pour tout algorithme de la famille GIFA, ce qui en garantit sa
correction. Au tour t, un algorithme de la famille GIFA définit à l’aide de ces
indices un ensemble de candidats J(t) ; un représentant de l’ensemble des
candidats J(t) noté b(t) ; et un compétiteur c(t) qui n’est pas dans J(t). Ce
dernier est défini comme le bras qui n’est pas dans J(t) qui maximise l’indice
sur l’écart avec b(t) : c(t) ∈ argmax

a ̸∈J(t)
Ba,b(t)(t). Un algorithme GIFA A retourne

à la fin de sa phase d’apprentissage l’ensemble J(τA).

Deux types d’algorithmes GIFA, nommés LUCB-GIFA et Gap-GIFA selon
les définitions de J(t) and b(t), sont particulièrement intéressants car ils
généralisent des travaux antérieurs29. Le premier traque la valeur de l’écart
minimal entre un bras dans J(t) et un autre qui n’y est pas, via l’indice

29V. Gabillon, M. Ghavamzadeh, and A. Lazaric (2012). “Best arm identification: A unified
approach to fixed budget and fixed confidence”. Advances in Neural Information Processing
Systems, 25; S. Kalyanakrishnan et al. (2012). “PAC subset selection in stochastic multi-
armed bandits.” ICML. vol. 12, pp. 655–662.
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Bc(t),b(t)(t), et s’arrête au tour

τ LUCB := inf
{
t ≥ 0 : Bc(t),b(t)(t) < ε

}
.

Le second suit la valeur de l’écart entre le bras b(t) et le Nème meilleur bras

a(N) (µa(N)
:=

N
max
k∈[K]

µk, qui est la Nème plus grande observation moyenne), en

considérant
N
max
a ̸=b(t)

Ba,b(t)(t). Le critère d’arrêt correspondant est

τUGapE := inf
{
t ≥ 0 :max

a∈J(t)

N
max
b ̸=a

Bb,a(t) < ε

}
.

Ces deux types d’algorithmes sont parfaitement définis une fois leur règle
d’échantillonnage implémentée. J’ai montré que le critère d’arrêt τUGapE était
plus agressif que τ LUCB (c’est-à-dire, qu’avec les mêmes observations au
cours de la phase d’apprentissage, les algorithmes Gap-GIFA tirent moins
de bras que les algorithmes LUCB-GIFA).
Enfin, j’ai testé les performances de ces algorithmes avec deux algo-

rithmes qui ne tiennent pas compte des vecteurs caractéristiques des bras.
J’ai considéré un petit problème de repositionnement pour N = 3 candi-
dats et un taux d’erreur maximal de 10 % sur un ensemble de 21 médica-
ments pour l’épilepsie (avec 10 anti-épileptiques, et 11 pro-convulsivants),
en transformant les signatures de médicaments pour obtenir un modèle
linéaire. Les algorithmes n’utilisant pas les signatures échantillonnent tou-
jours plus de 10 000 bras, alors que le nombre d’échantillons pour les deux al-
gorithmes GIFA proposés est inférieur à 400, ce qui montre que tenir compte
de ces vecteurs caractéristiques permet effectivement d’efficacement ré-
duire le nombre d’échantillons pendant l’apprentissage.

Intégration des vecteurs caractéristiques dans le modèle de ban-
dit. Cependant, on peut remettre en cause l’hypothèse de linéarité (Con-
dition (2)) dans le modèle de scores, en particulier dans le contexte de
données réelles. En effet, si le modèle sous-jacent n’est pas adapté aux
données, alors la régression effectuée sur le paramètre θ à partir des ob-
servations peut donner une approximation θ̂ trop mauvaise (i.e., la dis-
tance entre θ̂⊤Xa et µa est importante). Alors, le «bon »évènement, défini
précédemment avec l’hypothèse de linéarité, peut être faux avec une prob-
abilité supérieure à δ. Donc l’algorithme peut retourner des résultats incor-
rects avec une probabilité plus grande que δ. Toutefois, le modèle linéaire
est intéressant car la procédure de régression ainsi que l’interprétation du
modèle y sont simples.
J’ai donc travaillé30 par la suite sur le problème des erreurs de spécifi-

30Réda, Tirinzoni, and Degenne (2021). “Dealing With Misspecification In Fixed-
Confidence Linear Top-m Identification”. Advances in Neural Information Processing

xiii



cation (de modèle) pour le problème d’identification des N meilleurs bras.
Pour ce faire, j’ai étudié un type de modèle, appelé «déviés de la linéarité
»(linear misspecified models). Un tel modèle comprend une partie linéaire
(avec un paramètre inconnu θ comme dans la Condition (2)) et une partie
sans structure (avec un paramètre inconnu η) qui n’utilise pas le vecteur
caractéristique associé au bras :

∃θ ∈ Rd∃η ∈ RK∀a ∈ [K], µa = θ⊤Xa + ηa . (3)

La valeur absolue des cœfficients θ est comme précédemment associée à
l’influence de chaque gène sur le score moyen de repositionnement, en in-
troduisant une valeur de biais ηt propre au traitement t. On suppose comme
seule hypothèse supplémentaire que l’on connaît une borne supérieure Ψ

nommée «déviation maximale »sur la valeur absolue de la partie non struc-
turée ηa pour tout bras a : ‖η‖∞ := max

a∈[K]
‖ηa‖ ≤ Ψ. Un tel modèle est dit «

Ψ-dévié ». Le but est de construire un algorithme qui suppose que les scores
résultent d’un modèle dévié de la linéarité (Condition (3)), et qui identifie
les N meilleurs bras avec une probabilité supérieure à 1 − δ, avec le moins
d’observations possible. Dans le travail fait dans cette partie de la thèse,
une borne inférieure sur le nombre d’observations nécessaire pour qu’un
algorithme A retourne un ensemble de candidats correct avec probabilité
1− δ (Condition (1)) a été trouvée, et peut être calculée numériquement

E[τA] ≥ (C⋆)−1 log
(

1

2.4δ

)
où C⋆ := sup

ω∈△K

min
i∈S⋆

N
j ̸∈S⋆

N

inf
λ alternatif

1

2σ2

∑
a∈[K]

ωa(µa − λa)2 , (4)

est appelé «temps caractéristique ». C⋆ est proportionnel à une combinaison
convexe de différences (bras à bras) entre l’observation moyenne µa dans
l’environnement que l’on considère, et celle λa dans un environnement «
alternatif ». Cet environment alternatif satisfait la Condition (3), et est tel
que l’ensemble des N meilleurs candidats dans cet environment soit différent
de l’ensemble des meilleurs bras S⋆N . 4K := {p ∈ [0, 1]K :

∑
k∈[K] pk = 1} est

l’ensemble des allocations sur un ensemble fini à K éléments. L’allocation
ω ∈ 4d donne alors la probabilité avec laquelle tirer chaque bras a ∈ [K] pour
se rapprocher de la borne inférieure. Étant donné la Condition (4), si de
plus un algorithme A satisfait la Condition (1) et qu’il atteint cette borne
asymptotiquement pour de petites valeurs de δ, alors l’algorithme A est
dit «asymptotiquement optimal ». L’avantage d’avoir une borne inférieure
calculable numériquement, c’est qu’elle peut être utilisée dans le corps de
l’algorithme afin que celui-ci puisse être asymptotiquement optimal. J’ai
donc travaillé sur la conception et à l’analyse d’un tel algorithme nommé

Systems, 34.
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MisLid. Si Na(t) est le nombre de fois où l’agent sélectionne le bras a jusqu’au
tour t inclus, le principe de l’algorithme est de tirer des bras tant que le critère
d’arrêt suivant, lié à l’Équation (4)

inf
λ alternatif

1

2σ2

∑
a∈[K]

Na(t)(λa − µ̃a(t))2 < Tt−1(δ) ,

n’est pas vérifié au tour t ≥ 1. (µ̃a(t))a∈[K] est la projetée, sur l’ensemble des
modèles Ψ-déviés, des moyennes empiriques (µ̂a(t))a∈[K] pour chaque bras
a au tour t. T·(δ) est un seuil qui quantifie la distance maximale tolérée
entre le modèle empirique et un modèle Ψ-dévié alternatif. La définition
de T·(δ) garantit que MisLid satisfait la Condition (1). À la fin de sa phase
d’apprentissage, MisLid retourne les N bras optimaux selon (µ̂a(τMisLid))a∈[K]

ŜN(τMisLid) :=
N

argmax
k∈[K]

µ̂k(τMisLid) .

J’ai comparé cet algorithme avec un algorithme GIFA (N-LinGapE) et un
autre algorithme (LUCB) n’utilisant pas la structure des scores sur le même
problème de repositionnement sur 21 médicaments, en transformant les
signatures pour satisfaire la Condition (3) et connaître la valeur de la dévia-
tion maximale Ψ. La connaissance de cette déviation est malheureusement
indispensable pour que l’algorithme soit plus performant qu’un algorithme
n’utilisant pas la structure des scores. La table 1 présente les résultats
obtenus. En comparant les nombres d’observations entre LUCB et MisLid, on
observe, comme précédemment, qu’il est avantageux de prendre en compte
les signatures des médicaments pour limiter le nombre d’observations. De
plus, sur ce modèle des scores non linéaires, N-LinGapE se trompe systéma-
tiquement sur les recommandations de candidats, contrairement à MisLid.

Algo. δ̂ ŝ

MisLid 0 % 158 869 ± 126 209

LinGapE 100 % 161 ± 159

LUCB 0 % 222 969 ± 22 798

Table 1: La table des résultats associée. δ̂ est la fréquence d’erreur dans les
100 itérations, ŝ est le nombre moyen (± l’écart-type), arrondi à l’entier le
plus proche, d’échantillons utilisés.

Extension à différentes populations de patients. Dans la dernière
partie de la thèse, je m’intéresse31 au problème en (D) relatif à la définition
d’une recommandation personnalisée. En effet, toutes les approches de

31Réda, Vakili, and Kaufmann (2022). “Near-Optimal Federated Learning in Bandits”. In
press.
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bandit précédentes supposent l’existence d’une population relativement uni-
forme dans ses réponses à un médicament (avec des observations bruitées
avec une variance σ2 = 1 dans mes expériences) pour laquelle on veut trouver
un ensemble de candidats.
Maintenant, comment procéder si les populations sont disparates, par

exemple au niveau génomique, ou au niveau du sous-type de maladie dont
elles sont atteintes ? Dans ce cas-là, on aimerait pouvoir recommander des
ensembles de candidats spécifiques à chaque population, tout en exploitant
les observations obtenues sur d’autres populations, afin de limiter le nom-
bre d’observations. Toutefois, partager chaque nouvelle information entre
toutes les populations peut aussi être coûteux, et donc le coût de commu-
nication doit également être réduit, en plus du nombre d’observations.
Similairement au concept d’apprentissage de bandit fédéré introduit dans

le cadre de la minimisation de regret cumulatif,32 j’ai travaillé sur une version
(plus générale) de l’identification centralisé de N meilleurs bras, qui n’utilise
pas 33 les vecteurs caractéristiques. J’ai prouvé une borne inférieure sur
l’espérance du nombre d’observations pour retourner un ensemble de can-
didats correct avec probabilité 1− δ dans ce cadre centralisé. J’ai également
travaillé sur une nouvelle approche pour obtenir un algorithme quasi optimal.
Au lieu de résoudre de manière répétée le problème dans l’Équation (4), ou
de le faire de façon incrémentale comme pour MisLid, l’idée est de procéder
par phases, dans laquelle l’on résout un problème plus simple qui est proche,
et l’on utilise l’allocation calculée sur ce problème pour tirer les bras. L’infor-
mation sur les différentes populations n’est alors partagée qu’à la fin des
échantillonnages de la phase courante pour tous les groupes.
J’ai prouvé que l’algorithme correspondant donnait des recommendations

correctes avec probabilité 1 − δ, et l’ai ensuite appliqué cet algorithme au
problème de repositionnement des 21 médicaments, où les patients sont
clusterisés enM groupes en fonction de leur profil transcriptionnel sur d = 194

gènes de M30. J’ai comparé ces résultats avec une méthode de référence
inspiré du cadre fédéré qui a motivé ce travail34. Les résultats sont présentés
dans la Table 2.

32C. Shi and C. Shen (2021). “Federated multi-armed bandits”. Proceedings of the
35th AAAI Conference on Artificial Intelligence (AAAI); C. Shi, C. Shen, and Yang (2021).
“Federated multi-armed bandits with personalization”. International Conference on Artificial
Intelligence and Statistics. PMLR, pp. 2917–2925.
33Encore...
34C. Shi and C. Shen (2021). “Federated multi-armed bandits”. Proceedings of the 35th

AAAI Conference on Artificial Intelligence (AAAI).

xvi



α 0.4 0.6 0.8
ŝ r̂ ŝ r̂ ŝ r̂

CPE 47 418 ± 1 016 6 ± 0 59 537 ± 1 677 6 ± 0 70 201 ± 2 300 6 ± 0
Réf. 230 836 ± 55 904 13 ± 0 92 278 ± 1 071 12 ± 0 64 393 ± 376 11 ± 0

Table 2: La table des expériences dans le cadre de l’apprentissage centralisé
(δ = 10 %, N = 1, K = 21, M = 3, 100 itérations). La fréquence d’erreur δ̂ est
à 0% dans toutes les expériences. ŝ est le nombre moyen (arrondi à l’entier
le plus proche) d’échantillons utilisés (± l’écart-type), et r̂ est le nombre
moyen de phases de communication. Notre algorithme est celui dénommé
CPE. La référence n’est valable que pour N = 1 et pour W = αIM + 1−α

M
1M×M ,

avec α ∈ [0, 1], et 1M×M est la matrice remplie de 1.

Conclusion. Ma thèse se situe à l’interface entre la bioinformatique
et le traitement de données génomiques, à travers l’utilisation de réseaux
booléens, et l’apprentissage statistique, et plus précisément les algorithmes
de bandit, qui permettent d’exploiter le score retourné par le réseau booléen.
Ce travail de thèse s’est concentré sur quatre objectifs :
(A) la construction d’un modèle simulant l’effet de médicaments sur un

réseau de régulation transcriptionnel ;
(B) l’automatisation quasi complète de cette procédure ;
(C) la conception d’une méthode de recommandation de candidats théra-

peutiques exploitant le modèle en (A) ;
(D) l’extension de cette méthode à un contexte où l’apprentissage est

centralisé.
Ce travail est une nouvelle étape vers l’automatisation du processus de

recherche pour le développement de médicaments, qui permet de diminuer
le temps d’identification de molécules d’intérêt, mais aussi, en exploitant les
données disponibles de façon transparente et reproductible, de faire face au
problème des maladies rares.
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The contents of this chapter rely on some of my publications.a

aRéda, Kaufmann, and Delahaye-Duriez (2020). “Machine learning
applications in drug development”. Computational and structural
biotechnology journal, 18, pp. 241–252.
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Figure 1: Drug development timeline and principle of drug repurpos-
ing. Top plot : Timeline for a typical drug development pipeline, comprising
of four main research stages followed by post-commercialization monitoring.
Bottom plot : Illustration of the approach of “signature reversion” for drug
repurposing.

Development of new drugs is a time-consuming and costly process (Réda,
Kaufmann, and Delahaye-Duriez, 2020). Indeed, in order to ensure both the
patients’ safety and drug effectiveness, prospective drugs must undergo a
competitive and long procedure. This process, from the identification of a
molecule of interest to its commercialization, is completed on average in 5

years, and can take up to 10 years, depending on the considered disease,
and have millions of dollars spent -still next to $2 billion on average for
major pharmaceutical labs in 2021 (Deloitte Centre for Health Solutions,
2022). Figure 1 illustrates the typical pipeline for drug development. Drug
development is roughly split into four major stages, called phases. The
preclinical phase comprises of basic research, drug discovery and preclinical
tests, which aim at assessing the efficiency and body processing of the drug
candidate. The last three stages are clinical trials : study of dose-toxicity,
short-lived side effects, and kinetic relationships (Phase I) ; determination
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of drug performance (Phase II) ; and comparison of the molecule to the
standard-of-care (Phase III). An optional Phase IV (post-drug marketing)
can be set to monitor long-lasting side effects and drug combination with
other therapies. In addition to being time-consuming and expensive, drug
development is subject to high failure rates, event in the latest stages of the
pipeline (Burki, 2020). Only 64% of the molecules which reached Phase III
after 2007 –the third block on the timeline in Figure 1– were marketed by
2012 (Lowe, 2019). Main reasons for failure were the lack of efficacy (57%
of the failing drug candidates), and safety concerns (17%). Among safety
concerns were increased risk of death or of serious side effects, which were
still the main reasons of failure in Phases II and III in 2012 (Schuhmacher,
Gassmann, and Hinder, 2016), and in 2019 (Lowe, 2019).

Although political efforts have been made to promote orphan disease
research –the Orphan Drug Act in 1983 in the United States, three national
reasearch plans in France, with the latest one passed in 2018 (Ministère des
solidarités et de la santé, 2018)– with some success (Institute for Clinical and
Economic Review (ICER), 2022), this situation has led the pharmaceutical
industry to focus on the most profitable diseases. Cancer still represents the
most studied therapeutic area in 9 of the biggest 10 pharmaceutical compa-
nies ; although a shift has been observed towards coronavirus 2019 (Covid-
19) treatments in all of these companies. At least 4 drug pipelines related
to Covid-19 were launched per company for treatment, disease prevention,
or complications. This observation raises the issue of finding therapies for
rarer, complex diseases, where the limited number of patients might hinder
meaningful studies to be carried on ; or for tropical “neglected” diseases,
such as malaria, where the drug development cost might be too prohibitive
with respect to the estimated selling profits (Walker, Hamley, et al., 2021).
As highlighted by Carbonell, Radivojevic, and Garcia Martin (2019); Mak
and Pichika (2019), one rather inexpensive way to improve these numbers
might be to automate some important but repetitive data processing and
analysis tasks. For instance, artifical intelligence is massively featured in
drug development methods during the Covid-19 outbreak (Chen, See, et
al., 2020; Jamshidi et al., 2020; Vaishya et al., 2020). Such collaborations
between researchers in artificial intelligence, pharmaceutical labs, and hos-
pitals slowly bridge the gap in bioinformatics between applied mathematics,
computer sciences and biology. This would accelerate drug development
pipelines as they might be computationally, thus automatically, performed
and less prone to human-related technical mistakes.

Moreover, thanks to technological breakthroughs in bioinformatics, a large
amount of biological information and experiments is publicly available ; for
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instance, the Gene Expression Omnibus (GEO) database (Barrett et al.,
2012), which collects various types of data. This allows a lesser reliance on
the access to wet-lab experiments to study biological phenomena. Again,
automated methods intervene in the transparent and reproducible process-
ing of this data. This data availability, combined with the rise of machine
learning techniques, has led researchers to consider screening known mole-
cules for a specific therapeutic indication, and finding them a new purpose,
instead of designing de novo molecules. This approach to drug develop-
ment is called drug repurposing –or drug repositioning– and might allow to
decrease the failure rates and the development time. Indeed, repurposed
drugs have well-documented safety-profiles –that is, side effects are known,
thus avoiding the discovery of negative side effects in the later stages of
development (Mouchlis et al., 2021)– and the preclinical phase of dose
and administration route testing have already been performed. Different
approaches have been used to tackle the drug repurposing problem. For
example, some rely on automatic processing of Electronic Health Records
(EHR), clinical trial data, and text mining methods to identify correlations
between drug molecules and gene or protein targets in literature (Andronis
et al., 2011; Bisgin et al., 2012; Tari and Patel, 2014). However, this
approach might be sensitive, but not really specific, since text interpretation
is still a hard problem, and the relationship between disease factors and
drugs might not be clear. The current state-of-the-art methods seem to
have turned to different paradigms of repurposing, as emphasized by the
following review papers (Alaimo, Giugno, and Pulvirenti, 2016; Hodos et
al., 2016; Sardana et al., 2011). However, most of these methods rely on
a rather strong hypothesis, which is that similarity between elements –for
instance, chemical composition of drug molecules– implies correlation at
drug target level. Nonetheless, some counter-examples to this hypothesis
have led to health disasters : for instance, thalidomide exists as two chiral
forms –that is, with the same chemical composition but having mirrored
structures. One of these forms can treat morning sickness ; the other form
can have teratogen effects (Vargesson, 2015).

An attempt at quantifying more accurately drug effects is signature re-
version, also called connectivity mapping, which focuses on transcriptomic
measurements, that is, relative to the production of molecules as encoded by
gene sequences. Indeed, the transcriptome is the set of the different types
of ribonucleic acids (RNA), which contain a part of the genomic information
encoded in the deoxyribonucleic acid (DNA). RNA is key to the production
of proteins, and, as such, ensures that vital chemical reactions occur, as
illustrated in Figure 2. While DNA is a double helix comprising of four dif-
ferent small unit called nucleobases : adenine, guanine, cytosine, thymine,
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which are usually denoted by the letters A, G, C, T and paired (Watson and
Crick, 1953), RNA are single-strand molecules composed of four nucleobases
(adenine, guanine, thymine, and uracil, which “replaces” cytosine). First,
immature messenger RNAs are usually produced by “copying” a strand of
DNA in the cell nucleus, where DNA resides, during a process called tran-
scription. If a gene sequence is represented in the RNA, the sequence of RNA
corresponding to that gene sequence is called gene transcript. After matu-
ration, messenger RNA (mRNA) is transported to the cell cytoplasm, outside
the nucleus, to be read by a small unit called ribosome during the process
of translation. During translation, the RNA sequence is read by triplets of
nucleobases (called codons). Once the ribosome encounters a start codon
(usually in human, AUG), each following codon is successively matched to
a single aminoacid, which is concatenated to previous aminoacids, until
the ribosome reaches one of the stop codons. This procedure generates
a single protein. Then RNAs are interesting (proxy) snapshots of the state
of protein production at a given time. In particular, in order to quantify
this, one needs to detect gene transcripts, and count them, assuming that
the number of transcripts associated with a given gene will be proportional
to the quantity of the product encoded by the gene that would have been
produced post-translation. This count is called gene expression, and can
be measured through RNA sequencing for instance. The basic idea of RNA
sequencing is to align a genomic sequence, obtained from the mRNAs, to a
reference genome, and then count the number of successful matches to a
gene sequence of the reference genome.

mRNA

Transcription

MRNA transport

mRNA Ribosome

Translation

Measure of the gene expression levels

Aminoacid chain: 
protein

Chemical 
reactions

Chemical 
reactions

reads

Count of the number of 
aligned reads

≈ expression level

Sequencer

DNA
Maturation

Figure 2: Transcriptomics. Transcriptomics : relationship between
deoxyribonucleic and ribonucleic acids (DNA and RNA), and the measure
of gene expression.
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Signature reversion leverages gene expression data in order to screen
molecules for a specific indication. Given a “signature”, that is, a subset
of genes which are perturbed in patients at expression level –for instance,
with increased or decreased expression levels in patients with respect to
healthy individuals– the objective is to identify which treatments are most
able to revert this signature ; that is, increasing the expression levels of
genes with decreased expression in patients, and vice-versa. This operation
is performed via comparisons of the query signature with “drug signatures”,
that is, summaries of genewise expression changes, this time due to the drug
treatment. This approach has recorded some successes in drug repurposing,
as noticed in Musa et al. (2018). For example, Xin et al. (2022) recently
applied this approach for drug repurposing against influenza. They identified
among potential drug candidates nifurtimox, which is usually prescribed
to treat Chagas’ disease, and could successfully decrease the number of
influenza virions in later experiments (World Health Organization (WHO),
2021). The bottom diagram in Figure 1 illustrates each step of signature
reversion to find novel drugs against a fixed pathology of interest :

(1). First, gene expression levels are measured in each group of treated
samples and their controls. 40 (for every molecule to screen) A drug signa-
ture is computed from these transcriptomic profiles, which reports genewise
expression changes due to the effect of the treatment. A gene which ex-
pression is increased (resp., decreased) in treated samples with respect to
controls is said up-regulated (resp., down-regulated). The advantage of
drug signatures over directly considering transcriptomic profiles is that the
changes in gene expression described in the signature only depends on the
treatment, and not on other possibly confounding factors.

(2). A disease-specific signature –that is, the aforementioned query
signature– is built in a similar fashion by comparing transcriptomic samples
from patients to healthy individuals (or another appropriate control group).

(3). A series of comparisons are performed between the disease signa-
ture and each of the drug signatures. If a drug signature is deemed similar to
the disease signature, then this means that the treatment incurs the same
type of perturbations at gene expression level than the pathology itself,
since the same genes are affected by both the treatment and the disease in
a similar way. To the contrary, if a drug signature and the disease signature
are opposite, then the drug seems to restore the gene expression levels
conversely to the effects of the disease. Then the considered drug might be
a good candidate for repurposing. Finally, drugs can be ranked according to

40All parameters are similar but for the treatment, which can be a sham or no treatment
at all.
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their similarity to the disease signature.

In this thesis, I exhibit an application of signature reversion applied to the
treatment of encephalopathy of prematurity, a devastating condition due to
premature birth, in Chapter 7 (Bokobza, Réda, et al., in prep.). This project
aimed at selecting the optimal treatment protocol for the injection of stem
cells in a rat model of encephalopathy of prematurity : age of injection,
administration route, and weight-dependent dose level. Disease and drug
signatures were computed as previously described, from the transcriptomic
profiles of rats exposed to the treatment, and from appropriate controls.
The final ranking of the treatment protocols emphasized the global positive
effect of the injection of stem cells in rat models, and further bioinformatical
analyses showed that the first two candidates were indeed promising.

However, in that project, I was lucky to get access to appropriate control
groups for each treatment, which allowed me to build drug and disease
signatures of good quality. That was possible because that work was a
collaboration which involved custom wet-lab experiments. However, most
existing molecules have not been tested on every pathology and every cell
line. This raises the question of designing proper drug signatures when
several factors (outside the treatment) might mismatch between samples
from patient, healthy individuals, treated and control individuals. Then, I
have identified four main questions to further enable the use of automated
signature reversion, which constitute the core work in my PhD :

(A). There are online databases which compile drug signatures, based
on in vitro treatment of human cells in standardized pipelines for transcrip-
tomics (Lamb et al., 2006; Subramanian et al., 2017). These signatures
could be alternatives to drug signatures specifically run on diseased pro-
files. However, the existence of regulatory cascades (Bolouri and Davidson,
2003) 41 rather suggests that appropriate drug signatures are the result
of “stabilized” transcriptional profiles, after potential molecular interactions
between the perturbed levels of gene expression in the initial patient sample,
and the perturbations due to the treatment itself. The method developed
in Chapter 3 aims at modelling these regulatory cascades, and stable in
silico treated profiles, by combining the information about drug-induced
gene expression and a cohort of transcriptional profiles from patient and
healthy individuals. In order to achieve this goal, I have built a model of
gene expression regulation, which is called a gene regulation network, that
allowed the prediction of gene expression levels under gene perturbations.
Drugs can be scored according to the proximity between the corresponding

41That is, gene expression changes that trickle downstream of the initial gene
perturbations incurred by a treatment.
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in silico treated profiles and profiles from healthy individuals.

(B). In practice, the method mentioned in paragraph (A) requires a large
amount of transcriptional data. A reproducible and transparent pipeline
for collecting and processing these data, in a generic way that is disease-
agnostic, is crucial to obtain drug signatures of good quality, and to ensure
the replicability of drug repurposing. Chapter 2 (Réda and Delahaye-Duriez,
2022) deals with building the aforementioned gene regulatory network used
for predicting drug signatures in a fully automated, reproducible and trans-
parent fashion, from publicly available data.

(C). In the traditional pipeline for signature reversion, as shown at the
bottom of Figure 1, drug candidates are ranked by increasing score, which
might be the distance to a disease signature. Then, the top-N candidates
are selected. However, this recommendation does not control for the er-
ror in recommendation. Moreover, a single scalar (score) might not be
informative enough about the transcriptional interactions which accounts
for its high (or low) value, which hinders the interpretability of the results.
Chapters 5 (Réda, Kaufmann, and Delahaye-Duriez, 2021) and 6 (Réda, Tir-
inzoni, and Degenne, 2021) describe the introduction of sequential learning
algorithms to solve these two issues. More specifically, these algorithms
adaptively select the drugs to be scored and aim at reducing the number
of selections needed to make a recommendation, by leveraging information
about drug-induced perturbations of gene expression. Chapter 5 assumes
that a linear model connects the drug-associated perturbations to the scores,
which increases interpretability, at the cost of a sometimes bad approxima-
tion ; whereas Chapter 6 relies on a type of structure which generalizes linear
models. These algorithms sequentially interact with the gene regulatory
network, by sequentially observing the noisy score obtained for a specific
treatment until they can make a guess about the top candidates.

(D). Finally, the pipeline shown at the bottom of Figure 1 only takes
into account a global trend at gene expression level in the whole population
of patients. However, for some diseases (for instance, epilepsy or brain
cancer), there might be several subpopulations of patients with distinct
disease subtypes. One might be interested in making personalized drug
recommendations for each subpopulation, while leveraging the information
about the response to treatment for all subpopulations. Chapter 8 (Réda,
Vakili, and Kaufmann, 2022) describes the extension of the framework pre-
viously studied in (C) to a collaborative setting, where the information about
subpopulations should be shared, but only at times. Indeed, running exper-
iments per batches is more practical and cost-effective, instead of having
to wait until all tests have been run on all subpopulations. This issue of
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delayed feedback, and the need for a finite number of interim analyses, is
indeed one of the main issues in adaptive clinical trials (Pallmann et al.,
2018; Villar, Bowden, and Wason, 2015), which are the in vivo counterpart
to drug repurposing.

The ultimate objective of this work is to combine sophisticated techniques
for modelling gene expression and recommending candidates to enable au-
tomated and transparent in silico drug repurposing.
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Part I

Analyzing a disease-specific
regulatory network
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The contents of this chapter rely on some of my publications.a

aRéda and Delahaye-Duriez (2022). “Prioritization of Candidate
Genes Through Boolean Networks”. International Conference on
Computational Methods in Systems Biology. Springer, pp. 89–121;
Réda, Kaufmann, and Delahaye-Duriez (2020). “Machine learning
applications in drug development”. Computational and structural
biotechnology journal, 18, pp. 241–252.

Boolean networks provide a qualitative summary of regulatory interac-
tions at molecular level. Provided the current huge amount and diversity
of biological data, being able to integrate all this data to automatize and
control each step of the model inference procedure becomes crucial. On
the one hand, it might help targeting true causal regulatory interactions,
and replay probable regulatory cascades and mechanisms which had lead
to a given experimental, observed, phenotype. On the other hand, this
systematization of the inference allows higher replication, lower time and
wet-lab costs.

We propose a fully automated Boolean network inference pipeline. In
order to illustrate our method, we focus on a gene module named M30, which
global gene expression has been shown to be anti-correlated to epileptic
phenotypes (Delahaye-Duriez, Srivastava, et al., 2016). Thus, targeting one
of the M30 genes might potentially be of interest for therapeutic purposes.
Advanced graph analysis of a graph of regulatory interactions in this module
might help identifying master regulators related to epilepsy factors ; give
indications about the potential of molecules –for instance, whether they have
an antiepiletic or proconvulsant effect ; and predict their effect on patients.

First, we describe a reproducible pipeline to identify the network as-
sociated with M30. It relies on perturbation experiments of interest from
several public databases, and on the integration of supplementary biological
information to further constraint the network inference procedure. Second,
we will suggest a method using influence maximization to find a set of
maximally perturbating set of genes. In particular, we exploit this to identify
master regulator genes, at the top of the regulatory hierarchy. These genes
might be potential therapeutic candidates, and might shed a light on the
mechanisms of the considered disease. Last, we propose a method which
directly uses this inferred model, in order to predict and to compare in silico
the effect of potential drug candidates on patient phenotypes.
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Chapter 1

Introduction to Boolean
networks

The power of systems biology and network-based approaches comes from
the analysis of multiple genes in functionally enriched pathway, as opposed
to traditional single gene and single target approaches. In an effort to
encode the effects of a molecule on the transcriptional activity of genes, we
consider gene regulatory networks. These graphs connect genes according
to their regulatory interactions. An arrow is drawn from one gene to another
if the former regulates the expression level of the latter, for instance by
preventing or encouraging its transcription. Such a model describes a dy-
namical system, which can be used for predicting transcriptional profiles. In-
tegration of system biology-related methods to drug development has been
implemented for epilepsy in Delahaye-Duriez, Srivastava, et al. (2016), and
has allowed the identification of a gene module which global expression is
highly anti-correlated to epileptic phenotypes (Delahaye-Duriez, Srivastava,
et al., 2016). Then, a whole set of genes can be targeted for treatment,
instead of screening drugs against a single relevant target. Prior literature
emphasized on the importance of small-effect gene in a system biology
model, as their belonging to highly interconnected gene regulatory networks
implies that any slight perturbation on these genes might impact signifi-
cantly “core” disease genes (Dugger, Platt, and Goldstein, 2018). A large
and active literature (Ahmed, Roy, and Kalita, 2018) has emerged about
the formalization, the building and the validation of such gene regulatory
networks, along with the identification of gene modules highly correlated
with pathological phenotype. As gene regulatory networks are assumed to
mirror gene activity with regard to other genes’ expression, building them
usually require (time-series) expression data. These data can be extracted
from databases recording measurements of expression after genewise per-
turbations – for instance, in Young, Yeung, and Raftery (2016), which relies
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Type Example Implication
protein-gene In Escherichia Coli, when Gene ompC codes for protein
(transcriptional) the concentration in OmpC which blocks cell

solute is too high, protein pores and does not allow
OmpR activates the solute to enter the cell :
transcription of gene solute concentration
ompC decreases

protein-protein In the case of an onco- Tumor suppressor protein
(post-transcrip- genic insult, protein p53 is active during
tional) USP42 prevents oncogenic threat

degradation of protein
p53

Table 1.1: Examples of regulatory interactions. Two examples of
regulatory interactions of various types, and their implications (Aiba et al.,
1989; Hock et al., 2011).

on knock down gene expression measurements collected in the LINCS L1000
database (Subramanian et al., 2017).

In this thesis, we focus on a specific type of gene regulatory networks,
called Boolean networks. This class of networks allows to model in a qualita-
tive way the effects of the interconnected gene regulations. Moreover, what
makes them particularly attractive is the ability to easily simulate transcrip-
tional profiles that result from the perturbation of one or several genes in the
network. This property is key to our solution to tackle drug repurposing while
taking into account the effect of regulatory cascades (Bolouri and Davidson,
2003).

1.1 Modelling gene expressionwith regulatory

networks

As illustrated in Figure 2 in introduction, the main connection between our
genomic information –encoded into our DNA and shared by almost all cells
in our body– and the state of our organism at some point in time is described
by the “central dogma” (Crick, 1958) : DNA material (that is a double
helix comprising of nucleotides) is transcribed into immature messenger
RNA (mRNA, which is a single strand of nucleotides) within the cell nucleus.
Immature mRNA matures, and then exits the nucleus to enter the cyto-
plasm. At this point, if sequencing occurs, then the mRNAs are retrieved
and aligned against a reference genome in order to identify their matching
gene transcripts. The number of successfully aligned mRNAs corresponds to
the expression level of the considered gene. Later in the cytoplasm, mature
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mRNA is translated into aminoacid chains (i.e., proteins) via ribosomes,
which “read” mRNA by triplets of nucleotides. Each triplet of nucleotides
uniquely encodes for an aminoacid (or for a signal that the current aminoacid
chain should start or end). However, several combinations of nucleotides can
lead to the same aminoacid. Although this dogma is now often challenged,
for instance by the existence of reverse transcription (Baltimore, 1970),
where RNA-like molecules can be turned into genomic material, this dogma
interestingly highlights the link between our more-or-less static genetic in-
formation, and the adaptation of our organism to its environment.

If there were no regulatory interplay on gene expression, i.e., no regu-
latory interaction of a given gene on the expression level of another gene,
then there would be no to little adaptability to the environment. Indeed,
almost every cell possess the same genomic information, yet there are
different cell behaviors, implying a change in expression, with hundreds of
existing different cell types in humans. Table 1.1 gives examples of such
interactions, and their implications in terms of cell behavior and structure.
Such regulatory relationships between genes, proteins, or other molecules
produced from DNA can be summed up into a graph, that is called regulatory
network. This model allows the identification of upstream regulators of
specific proteins, that have an impact on the cellular property or prop-
erties of interest, and their regulatory patterns, that is, the dynamics of
expression levels in this network. In Zhao, Sun, and Zhao (2012), this
model is used to report a competiting co-regulatory mechanism between
tumor-suppressor genes and oncogenes –i.e., genes that promote cancer
growth. Tumor-suppressor genes, which are primarily involved in DNA repair
and apoptosis, target genes that are functionally linked to the response to
hormone stimuli ; whereas the downstream targets of oncogenes, which
regulate response to hormone stimuli, act upon apoptosis. This model might
cast a light upon patient response to hormonotherapy. In other domains,
such as evolutionary development (evo-devo), networks help understand
the embryonic development, that is, the process that leads an embryo to a
fully-fledged organism. For instance, Dunn, Martello, et al. (2014); Dunn,
Li, et al. (2019) successfully model the reprogramming of differentiated
(i.e., “specialized”) cells into pluripotent cells in mice by the Yamanaka
transcription factors (Takahashi and Yamanaka, 2006). Transcription factors
are genes that bound to the DNA to modulate the transcription of some
sequences, and often play a key role in regulatory networks.
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1.2 Overview of gene regulatory networks

A gene regulatory network is a model of the regulatory interactions which
modulate the expression level of a set of genes. Those regulatory inter-
actions may intervene at transcription, or by a subsequent mechanism.
As a general rule, this network is represented as a diagram which can
be decomposed into three main components, respectively called “Inputs”,
“Regulatory network” and “Outputs”. The second component “Regulatory
network” connects the first part of the network “Inputs” to the “Outputs”
component. It is a graph which nodes are genes or proteins, or any actively
regulating compound, and edges (if the graph is undirected) or arrows (oth-
erwise) between the nodes are regulatory interactions of gene expression.
This decomposition is illustrated in Figure 1.1 for one of the most well-known
examples of gene regulation, that is, the adaptation of Escherichia Coli to
an environment lacking in glucose (Pardee, Jacob, and Monod, 1959). The
inputs to a gene regulatory network usually refer to the “actable” points
of the network, to which an external perturbation can be applied, whereas
outputs represent interesting biological states (called “phenotypes”) result-
ing from the gene regulatory interplay. Phenotypes might be cell behaviors
(e.g., apoptosis, that is, cell death) or structures (e.g., differenciation of a
pluripotent stem cell into a more specialized cell line).

Several methods have been investigated to implement these networks in
practice, especially the “Regulatory network” component, which correspond
to different venues of research and can achieve different goals. Karlebach
and Shamir (2008) classify these frameworks into three main groups, in
increasing order of complexity.

Discrete models. First, they consider discrete models of gene expres-
sion, for instance Boolean networks (Kauffman, 1969; Thomas, 1973) which
will be discussed at length in the next section. The principle of discrete
models is to consider discrete values of expression and a finite set of types
of regulatory interactions. This simple description –to the price of some loss
of information– has already been useful to show the relationship between
the structure of the network, and the presence of steady stable attractor
configurations, in which the network remain under no external perturba-
tions (Thomas, 1978).

Deterministic continuousmodels. Second, continuous models of gene
expression, where values which amount to expression levels are updated for
each species (gene, protein, . . . ) of interest, are considered (Goodwin et al.,
1963). The idea is to find, for each species, a mathematical function which
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connects the expression level of regulator genes to the decay and synthesis
rate for the considered species. The resulting set of functions yield a system
of coupled differential equations which can be solved, for instance in order
to identify basins of attraction. This system represent chemical kinetics
between species, and can be formally described and executed using the
κ-language (Danos and Laneve, 2004) for instance. However, the predicting
power of this framework greatly rely on accurate estimations of the kinetic
constants in the chemical equations, which can be difficult to obtain in the
first place.

Stochastic continuous models. Last, a regulatory network can also
be viewed as a global system, which comprises of several type of small
molecules. Each interaction between two types of molecules occurs with an
associated probability (McAdams and Arkin, 1997), which can also be seen
as chemical reaction rates. Then, given the probabilities associated with the
interactions, and the initial number of each molecular type, the Gillespie
algorithm (Gillespie, 1977) can compute the probability of a phenotype,
along with the associated number of each species. This framework shows
an accurate description of the regulatory dynamics, but can be hard to
analyze (Karlebach and Shamir, 2008).

Because of its straightforward qualitative interpretation, and its relatively
low computational cost, my PhD revolved around discrete models of gene
regulation, and more specifically, around Boolean networks.

1.3 Introduction of dynamicswith Boolean net-

works

We now focus on Boolean networks to model gene regulation networks. In
the graph associated with a Boolean network, called “interaction graph”, only
two types of interactions are considered, either activatory or inhibitory. 1

The type of an interaction is called its sign. Interactions are also directed,
meaning that in the two genes involved in the interaction, one is set as the
regulator, which causes the regulation, and the other is the regulated gene.

1Note that, in this thesis, we will not consider non monotonous regulatory interactions,
which can be either inhibiting or activatory given the local context. This assumption is based
on the fact that, in most models, it has been shown that non-monotonous regulations could
be successfully modelled via post-transcriptional mechanisms, such as the involvement
of non-coding DNA sequences, as mentioned in Réda and Wilczyński (2020). Dynamics
encoded by multi-level formalisms (i.e., with more than two expression states) can also
be encompassed by carefully selecting the type of dynamics in the network (Paulevé et al.,
2020).
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Figure 1.1: Lac operon regulation as a gene regulatory network.
Decomposition of the well-known lac operon regulatory network in the
Escherichia Coli (E. Coli) bacteria from Pardee, Jacob, and Monod (1959),
based on the regulatory network in Santillán and Mackey (2008). It
shows the adaptation of the bacteria to the type of nutrients present in
its environment. E. Coli preferably feeds on glucose, but when it is missing
from its environment, the inhibition on the transcription starting site LacP
through repressor R, that blocks the transcription of genes LacY and LacZ, do
not hold anymore, which allows the bacteria to feed on lactose. Gene LacY
is involved in the transport of external lactose to the bacteria, and LacZ is
involved in the transformation of lactose (and allolactose) into galactose. In
the presence of glucose, the production of protein cAMP and CAP is inhibited,
which further blocks the transcription of LacY and LacZ due to the presence of
repressor R. To allow a readable figure, I omitted an activatory link between
glucose and the output node, and the reaction between allolactose and LacZ
which results in the production of galactose.
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Figure 1.2: Gene regulatory networks and Boolean networks. Going
from a set of regulatory interactions between genes, to a Boolean network
with both the interaction graph and the set of regulatory functions for each
node in the network. Left plot : Regulatory interactions (of different types)
are shown between three genes (nodes of rectangular shape). Center plot :
The gene regulation network between those three genes. Right plot : One
possible Boolean model associated with the gene regulatory network. There
might be potentially several sets of regulatory functions which can match
the regulatory network, in the absence of additional information about gene
expression.

The expression level of a gene has two states : either it is equal to 0, which
stands for absent to low expression, or it is equal to 1, which corresponds
to a state of high expression. These states belong to the Boolean domain,
that is, {0, 1}, hence the name of the framework. A so-called “regulatory
function” is assigned to each node in the regulatory network. This function
describes the behavior of the expression state of a given gene at a given
time point, depending on the expression states of its direct regulators, that
is, the predecessor nodes in the network. This function is encoded as a
Boolean (logical) function of the variables associated with gene expression
states, which can be evaluated to get the current gene expression state.
Figure 1.2 illustrates how to go from a set of regulatory interactions to a
Boolean network, on a dummy example with three genes. From now on,
we will often abuse notation by indifferently using “genes” and “variables”
to designate gene expression states or nodes in the network. In order to
determine how the configuration of the network –i.e., the set of expression
states for every node in the network– changes at a given time point, one
has to define the dynamics of the system. That is, the type of update
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between network configurations, in addition to the interaction graph and
the regulatory functions. 2 Several update types have been proposed, listed
in Chatain, Haar, and Paulevé (2018) for example. The two most simple
types of updates are the synchronous and the asynchronous updates. The
synchronous update means that, at each update step, all the gene regulatory
functions are simultaneously evaluated, based the gene expression states at
the current time step ; whereas in the asynchronous update step, a single
gene regulatory function is selected at time for evaluation. Different update
types mean different dynamics. In particular, depending on the chosen up-
date type, the network can reach different configurations. Once the update
type is set, a state-transition graph (STG) can be built, connecting network
configurations to each other with directed links, such that, if there exists
an arrow going from a network configuration A to another one B, then the
network can go from the initial configuration A to final configuration B in a
single update step. A state-transition graph thus depends both on the set
of gene regulatory functions and the definition of the update step. The STG
is particularly interesting because steady attractors –that is, configurations
that loop upon themselves in the STG– and unsteady attractor states –cycles
in the STG– can be directly read from this diagram. The attractor states in
a Boolean network –and in gene regulatory networks in general– usually
correspond to interesting biological phenotypes (Bloomingdale et al., 2018;
Wery et al., 2019). Examples of STGs, with different types of attractor
states, are shown in Figure 1.3.

A Boolean network can be straightforwardly built from a known static
gene regulatory network, or maps of molecular interactions, by automati-
cally assigning gene regulatory functions based on the activators, resp. the
inhibitors, of each gene, for instance using CaSQ (Aghamiri et al., 2020).
In order to infer the Boolean network “from scratch”, that is, from a set of
genes, one must define both an interaction graph and an set of gene regu-
latory functions which match experimental observations under the selected
update type. One way to find the appropriate Boolean network requires to
know a set of possible genepairwise interactions –sometimes known as the
“prior knowledge network” (Ostrowski et al., 2016; Vaginay, Boukhobza,
and Smail-Tabbone, 2021)– and a set of time-series (binarized) transcrip-
tional profiles which (hopefully) exhibits enough of the true dynamics of
the biological system. Then gene regulatory functions are tuned until all the
experimental constraints are satisfied by the model. However, there are two
main hurdles in this inference problem. First, the binarization step to go from
transcriptional profiles of continuous gene expression to binary profiles –with

2When it is obvious, the term “state” can also be used to designate network configurations
instead of gene expression states.
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Figure 1.3: Dynamics in a Boolean network. Dynamics in a Boolean
network. Left plot : Two instances of Boolean networks, with the
same interaction graph, but different sets of regulatory functions. Right
plot : Corresponding state-transition graphs (STG), assuming synchronous
updates, that is, simultaneous update of all gene regulatory functions.

potentially genes which have no known binary state, if their expression is not
high or low enough– incurs an unavoidable loss of information, and should
be performed carefully. Binary profiles might also been built using prior
knowledge on the expected behavior of the system, for instance, the pheno-
types that should be observed under specific perturbations, but this requires
supplementary access to custom wet-lab experiments or to the literature,
at the risk of propagating scientific bias. Second, the problem of infering a
network, which satisfies both the topological (related to interactions) and the
dynamical (related to observations) constraints, is usually underdetermined.
As the number of genes in the network grows, so does the amount of ex-
perimental data needed in order to pinpoint a single model which can satisfy
all the constraints. This fact makes unbiased model building difficult when
done manually. Some tools allow the automation of the tuning step, such
as Re:In (Dunn, Martello, et al., 2014) or BoNeSiS (Chevalier et al., 2019).
These methods are based on enumerating putative network solutions, and
testing whether the network satisfies all constraints using a solver of Boolean
equations (SAT solver).
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1.4 Boolean networks in drug repurposing

Now, using the same tools as in Boolean network inference, a Boolean net-
work can be predict (binary) transcriptional profiles under the perturbation
of one or several genes.

The perturbation of a given gene, either by knockout –i.e., the expression
of the gene is totally inhibited– or by overexpression –that is, the gene is
forcibly expressed– is defined by setting the corresponding gene variable to
either 0 or 1. Then, under these new Boolean constraints, and starting from
a fixed initial state, update steps are iteratively executed, until an attractor
state is reached, or until a maximum number of update steps is performed
(in order to get results in finite time).

This maximum number of steps, that is, the length of the (configuration)
trajectory, can be chosen large enough to end up in an attractor state, if
any exists. However, the network might end up in an unsteady attractor
state, that is, a cycle of configurations between which the network indef-
initely oscillates in the absence of supplementary perturbations. This can
be checked by considering the whole trajectory of configurations from the
initial to the last reached configuration, and matching the corresponding
cycle –if it exists– to one of those present in the STG. Nonetheless, note that
computing the whole STG, especially as the number of considered nodes is
large, becomes quickly non computationally tractable. Fortunately, model
checking tools such as Z34Bio (Yordanov et al., 2013) –which uses SAT
solvers– or BioModelAnalyzer (BMA) (Benque et al., 2012), can prove the
stabilization of the system or that the final configurations belong to a cycle.

This property of Boolean networks will be useful in the drug repurposing
method proposed in this thesis. Indeed, it allows to explicitly model the tran-
scriptomic cascades, and to compute the “stabilized” qualitative biological
profile the regulatory network ends up in after a single gene or drug-induced
perturbation.

However, as previously mentioned, the accurate building of a Boolean
network requires a rather large amount of data, which is often manually
retrieved from the literature (Collombet et al., 2017). When modelling
a network on a large number of genes, the process is often incremental
and based on iterative improvements of the model (Niarakis and Helikar,
2021). At best, it requires at least collecting a set of putative regulatory
interactions, and a set of time-series experiments of good quality, which
reports the initial configurations, the perturbations (if needed), and the
final observed configurations ; and then feeding these inputs to a Boolean
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network inference algorithm (Chevalier et al., 2019; Dunn and Yordanov,
2019; Réda and Wilczyński, 2020). This approach might show its limits
when facing hundreds of genes in a relatively poorly studied cell line.

This led me to first design an automated, reproducible method for building
Boolean networks, as described in the next chapter.
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Chapter 2

Prioritization of candidate genes
through Boolean networks

This chapter focuses on in silico detection of master regulator genes, which
is a popular approach to speed up drug development. Master regulator
genes might be directly related to the onset of the disease, or may act on
one pathway which counteracts the associated symptoms. Then, one could
perhaps screen drugs to select chemical compounds targeting these genes.
In prior works, the detection of these candidates was performed through
the identification of the regulatory interactions between genes of interest for
the disease. Indeed, system biology approaches have proven a useful tool
to integrate transcriptomic data and predict transcriptional profiles under
gene perturbations. In particular, Boolean networks, where gene expression
levels are reduced to two values, are a flexible framework for qualitatively
modelling gene expression. However, for rare diseases, building such a
regulatory model can become a tedious and time-consuming task.

In this work, we show how to build, in a reproducible fashion, a Boolean
network related to a subset of interesting genes for the disease, using pub-
licly available data. Then, we describe a method to identify master regu-
latory genes, that is, genes which have an impact on the dynamics of the
gene regulation in a specific disease-related transcriptional context. As a
proof-of-concept, we focus on a subset of genes related to various epileptic
phenotypes, in order to find novel master regulator genes associated with
epilepsy. These genes might help casting a light on the causes of refractory
epilepsy, which are epilepsies which cannot be managed by conventional
antiseizure medication. We show that our method for the identification of
master regulatory genes is consistent with network controllability measures,
while targeting genes which are significantly enriched for epilepsy-related
terms. We show that in silico perturbation of these candidates can reproduce
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epileptic phenotypes. Our pipeline allows for systematic and automated
synthesis of a Boolean network and identification of putative drug targets.
This work was accepted at the 20th conference on Computational Methods in
Systems Biology (CMSB 2022) (Réda and Delahaye-Duriez, 2022). 1

2.1 Related work

We propose a novel generic method for the detection of master regulator
genes, which can be applied to any disease, and relies on a dynamic interplay
between a gene regulatory network and gene expression data. We focus
here, as a proof-of-concept, on an application to epilepsy.

Epilepsy actually encompasses various neurological diseases and syn-
dromes, which can originate from brain injury or genetic background, that
have in common a propensity to trigger chronic epileptic crises. Epilep-
tic crises are characterized by a transitory abnormal neuron electric dis-
charge, which might lead to unconsciousness, seizures, and/or body stiff-
ness. Epilepsy is one of the most common neurological diseases world-
wide, with around 50 million people living with this disease (World Health
Organization (WHO), 2022). Moreover, more than 25% of epileptic patients
are afflicted with drug-resistant epilepsy (González et al., 2015), also called
refractory epilepsy. Symptoms in those patients could not be managed by at
least two different antiepileptic therapies. This shows the limits of conven-
tional antiepileptic medication, which are often molecules with antiseizure
effects, and emphasizes the need to look for novel therapeutic candidates.
Epilepsy-related genes are shown to be usually mainly expressed in a specific
brain region, called hippocampus (Mirza, Appleton, et al., 2017). This region
is also affected by morphological changes linked to neuronal discharges
in some epileptic patients (Ogren et al., 2009). The exact relationship
between lesions in the hippocampus and epilepsy-associated symptoms is
still unclear, but might be related to the fact that hippocampus is one of
the most excitable parts of the brain (Kuruba, Hattiangady, and Shetty,
2009). Several animal models of epilepsy exist, including a mouse model
where injection of pilocarpine induce symptoms similar to temporal lobe
epilepsy (Srivastava, Bagnati, et al., 2017), or another involving sodium
channels, which play a role to convey electric potentials. For instance, a
genetically modified animal with invalidation of gene Scn1a, which code
for sodium channels, models a severe form of epilepsy called Dravet syn-
drome (Kalume et al., 2013).

1Related code is located at https://github.com/clreda/PrioritizationMasterRegulators.
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In prior works, the identification of master regulators in gene networks
has been a powerful method to detect novel genes of interest for a given
disease. Master regulator genes are genes which might have a large, global
influence on the expression of a group of genes in a specific pathway. For
instance, SESTRIN3 (Johnson et al., 2015) and CSF1R (Srivastava, van
Eyll, et al., 2018) were prioritised as candidate antiepileptic drug targets
using different systems-biology approaches dedicated to identifying master
regulators of epilepsy-associated networks of gene expression. Such genes
might be forcibly expressed or knocked out –i.e., no more expressed–
by molecules, which might be interesting antiepileptic drug target candi-
dates. Other approaches exploit the location of a given gene inside a gene
regulatory network. It is assumed that the more central it is, the most
regulatory it should be. Other approaches use the concept of “network
controllability” (Liu, Slotine, and Barabási, 2011) which is loosely related to
the centrality of the gene in the network, as it estimates the number of down-
stream targets possibly affected by a perturbation of this gene. Yet, most of
the cited approaches for the detection of interesting regulatory genes only
leverage topological knowledge about the network, without considering the
actual dynamics of the regulatory system. In order to find master regulator
genes related to rheumatoid arthritis based on expression data, Zerrouk
et al. (2020) have considered an approach which combines a transcrip-
tion factor (TF) co-regulatory network and gene expression in fibroblast-like
synoviocytes in patients afflicted with rheumatoid arthritis. 2TF influence in
these samples was assessed using the tool CoRegNet (Nicolle, Radvanyi,
and Elati, 2015), which computes a score of influence per TF on a set of
transcriptional profiles. This score is defined for TF t, that activates a set
At of genes and inhibits a set It of genes, and a matrix of transcriptional
profiles M 3 as follows

Influence(t) :=

(
1

|At|
∑

a∈At
M [a, :]

)
−
(

1
|It|
∑

i∈It M [i, :]
)

√
(sAt)

2/|At|+ (sIt)
2/|It|

(2.1)

where sAt (resp., sIt) is the standard deviation in gene expression of all
genes in At (resp., It) across all profiles in M. However, such a computation
does not take into account downstream transcriptional cascades beyond
genes directly regulated by the TF. Yet these regulatory cascades might
allow to identify off-target genes –i.e., genes subject to non specific and
involuntary changes– which might lead to serious side effects (Huang et al.,
2019). These regulatory cascades can be modelled through a dynamical

2Fibroblast-like synoviocytes are a cellular subtype which is present in conjunctive
tissues.

3Rows are genes, and columns are samples.
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gene regulatory network. In that case, setting up a reproducible pipeline for
building this regulatory network –especially for the retrieval of raw biological
data– is crucial to ensure replicability in drug development research. Finally,
this gene regulatory network can be represented by a Boolean network. This
type of model comprises of discrete, qualitative, gene regulatory interac-
tions, which promote an increased interpretability of the predicted changes
and less expensive computations compared to continuous models of gene
expression.

To this aim, we developed a fully automated pipeline to infer a Boolean
network which models the regulatory interactions in a subset of genes. Our
method is based on perturbation experiments of genes that may partic-
ipate in our network, and on the integration of supplementary biological
information to further constraint our inference procedure. In our work,
we exploit the database LINCS L1000, which provides a large number of
gene expression profiles for various combinations of cell types, and genetic
perturbations (Subramanian et al., 2017).

In our application to epilepsy, we focus on a module of 320 genes, called
M30, which global expression was shown to be anticorrelated with various
epileptic profiles and with the severity of epilepsy (Delahaye-Duriez, Srivas-
tava, et al., 2016). Using the Boolean network selected by this method, we
rank genes in M30 according to their in silico estimated ability to permanently
modify the expression of the whole network, and prioritized top genes. In
favor of the important role in epilepsy-related biological processes of these
genes, this prioritised set of candidate genes is significantly enriched in
terms related to epilepsy and neurodevelopmental issues when compared
to the whole M30 module.

2.2 Reproductible inference of a cell-line spe-

cific Boolean network

This part of our work aims at designing a method which, given a set of genes
of interest, is able to retrieve a Boolean network that allows the prediction
of transcriptomic profiles. We consider the formalism of Boolean networks,
introduced in Kauffman (1969); Thomas (1973), which are popular models
to describe gene-gene expression regulations as gene regulatory networks.

Boolean networks. A Boolean network is characterized: first, by a
graph –i.e., the network– which connects genes by their regulatory inter-
actions. Such connections are enriched with the direction of the interaction,
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which distinguishes between regulator and regulated genes, and with the
sign of this interaction, that is, whether the regulator inhibits or activates the
expression of its target. Second, by the dynamics of the regulatory system :
a logical function, called “gene regulatory function”, is assigned to each
gene. Regulatory functions are logical Boolean formulas where variables
correspond to the expression of genes. The expression of a given variable is
set to 1 if the associated gene is expressed, otherwise 0. For a given gene,
a logical formula contains in its premise variables associated with direct
regulators of the considered gene –i.e., direct predecessors of this gene in
the network– and, in its conclusion, the variable related to this gene. Then,
given the expression states of the regulators, one can obtain the expression
state of the considered gene by evaluating the corresponding formula. The
vector collecting all the binary gene expression states at a given time point
is called network state, or sometimes network configuration. From this
model, one can build a state-transition diagram, which is a graph where
an edge goes from a given network state A to another network state B if
and only if one can reach state B from state A in a single update step.
One can read from this diagram attractor states, that is, self-looping nodes,
which are defined as steady stable network configurations. That is, the
application of the update step to this configuration will lead to itself. Attractor
states are interesting because they are commonly related to observable
biological phenotypes (Bloomingdale et al., 2018; Wery et al., 2019). This
diagram also displays cycles of configurations, which correspond to unsteady
stable configurations ; the application of the update step makes the system
oscillate between a set of configurations in a cyclic way. A state-transition
diagram is associated with a given model and a type of update. Several types
have been suggested in the literature (Chatain, Haar, and Paulevé, 2018),
the most well-known ones being the synchronous and the asynchronous
updates. In the former, all regulatory functions are evaluated in a single
step, whereas in the asynchronous update, only one regulatory function
is evaluated at one update step. Recently, Paulevé et al. (2020) have
introduced new dynamics for Boolean networks, which was shown to be
flexible enough to represent (a)synchronous dynamics as well as multi-level
formalisms, that is, beyond boolean values for gene expression.

Building a Boolean network from scratch. Our work focused on
combining several trusted public data sources, and published methods for
the design of an end-to-end pipeline for the synthesis of a Boolean network,
represented in Figure 2.1. This network models the regulatory dynamics on a
subset of genes, in the absence of external perturbation, from a well-chosen
cell line ; for instance, the regulations between M30 genes in brain cell lines
for our application to epilepsy. Contrary to the contemporaneous work
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of Montagud et al. (2022) applied to cancer, here we do not have any
access to a generic model which could model any type of epilepsy to start
with. Moreover, relying too much on prior epilepsy-oriented knowledge
might lead us to find already known gene targets. The big picture of this
pipeline comprises of the following three main steps in chronological order,
respectively denoted (A), (B) and (C) in Figure 2.1 :

(A) Data collection. Step (A) represents the collection and filtering of
information from public, large databases : measurements of transcriptomic
data are retrieved from the LINCS L1000 database (Subramanian et al., 2017)
using careful filtering and quality control measures ; known unsigned, undi-
rected protein pairwise regulatory interactions involving genes in M30 are
obtained from the STRING database (Szklarczyk et al., 2021).

(B) Data processing. Step (B) represents the processing of this in-
formation into appropriate inputs for the inference of Boolean networks.
First, a set of binarized phenotypes is built, corresponding to profiles from
single gene perturbations and their associated controls, from the LINCS L1000
transcriptomic data. Then, a signed network of admissible regulatory inter-
actions is constructed from the STRING-extracted regulatory interactions,
by filtering out and signing edges based on Spearman’s ρ gene pairwise
expression correlations computed on LINCS L1000 profiles.

(C) Network inference. Finally, step (C) is the inference of a set of
Boolean networks which satisfy all the experimental and topological con-
straints given by the phenotypes and the signed network. The experimental
constraints comprise of each knockout experiment, where the control phe-
notype is considered the initial condition, and the perturbed one the final
configuration reached after stabilitization of the system perturbed by the
gene knockout or overexpression. A Boolean network solution should satisfy
all of these time-series constraints by only considering a subset of admissible
regulatory interactions, represented in the signed network. The final step of
the procedure is the selection of an optimal Boolean network among these
solutions, according to its topology. This final inferred network is selected
through a desirability function maximization (Babichev et al., 2019) which
aims at maximizing a parameter called general topological parameter (GTP),
which depends on several network topology measures.

Details in the implementation are available in Appendix 9.1. Note that,
although this issue did not have to be addressed for epilepsy, since the
method is meant to be generic (i.e., usable for any disease), which is
why, if no gene set is provided, the method automatically retrieves genes
from DisGeNet (Piñero et al., 2020) from the disease Concept ID (CID)
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Figure 2.1: Automated building of Boolean networks. Overview of the
pipeline for the automated building of Boolean networks. Blocks are colored
according to the step they belong to: step (A) for the lightest blocks, step
(B) for blocks at the center of the picture, and step (C) for the darkest blocks.

defined in PubMed (Doğan, Leaman, and Lu, 2014). Table 9.4 in Appendix
reports the values used to filter out genes from the DisGeNet database.
The single network obtained at the end of step (C) is a dynamical system
which can predict the behavior of gene expression under one or several
gene perturbations, by considering the stable states (attractors and cycles)
reachable from a given initial state under these perturbations. We now
describe on how we leveraged this network model to rank genes according
to their regulatory influence on other genes.

2.3 Detection of master regulators in a spe-

cific disease-context

As mentioned in Section 2.1, when looking for therapeutic candidates, one
might be interested in master regulators, that is, genes at the top of the
gene regulation hierarchy. Change in expression in a master regulator
gene generally induces a large change in downstream gene expression ;
for instance, this master regulator gene encodes for a transcription factor
which affects the transcription of other genes (Mattick, Taft, and Faulkner,
2010). In practice, it is frequently quantified using the node (outgoing)
degree and by the detection of hub nodes in the network. Many measures
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defining this “centrality” property for nodes in a graph exist, and can be
computed using for instance Cytoscape (Shannon et al., 2003), modules
NetworkAnalyzer (Assenov et al., 2008) and CytoCtrlAnalyser (Wu, Li, et
al., 2018). For example, control centrality (Liu, Slotine, and Barabási, 2012)
has been recently used to identify regulations between NFATC4 and Type 2

diabetes-associated genes (Sharma et al., 2018). However, these measures
only use the topological information in the network, whereas our network
inference pipeline allows, along with the identification of regulatory relation-
ships, the inference of gene regulatory functions, which encode how regula-
tors influence the expression of their target genes. This is why we designed
a method which uses this supplementary information for the detection of
master regulators.

Gibbs and Shmulevich (2017) used a machine learning technique called
“influence maximization” in order to identify key genes in their continuous
model of the yeast regulatory network. In our work, we adapted influ-
ence maximization to generic Boolean networks. For long, online recom-
mendation and advertising researchers have been interested in influence
maximization (Kempe, Kleinberg, and Tardos, 2003), which aims at finding
a subset of fixed size of nodes which influences most the remainder of
the network. The most well-known use cases for influence maximization
are in online sponsoring of influencers on social media (Leskovec, Adamic,
and Huberman, 2007). We will describe below the general setting for the
problem of influence maximization.

Influence maximization. Considering a (un)directed graph G on a set
of nodes V connected through a set of edges E ⊆ V × V, the goal is to
determine a seed set N of fixed size k –that is, a subset of k nodes which
start propagating some quantity (influence) throughout the network from
their direct neighbors– which maximizes the influence spread. This influence
spread is the expected number of vertices ultimately (in)directly influenced
by seed set N. k is selected by the user depending on the final application
case –for instance, the number of influencers to sponsor on social media
to increase the advertisement of a product. Then, we study the random
variable I(N) which is the random number of vertices influenced by seed set
N by the cascades of propagating influence.

In order to make this technique applicable to Boolean networks, we need
to explicitly define the concept of influence on gene expression in this type
of regulatory networks, that is called “spread process”. This quantity is
proportional to the influence that propagates along the edges of the network.
We define influence in an iterative way ; first we consider a single gene and
initial network state, then we proceed to define multi-gene influence, and
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finally influence for a set of genes across a set of initial network states.

Genewise influence in a Boolean network. The most intuitive defi-
nition of influence (denoted in the remainder of the paper “spread value”)
SVB({n}, {i}) of a given node n on the other nodes in a Boolean network,
in a given initial state i, would be that any perturbation of this node would
“greatly change” the attractor states reachable from state i, compared to
the set of attractor states reachable from state i in the absence of any
perturbation. We define this great change (i.e., a positive spread value)
by the fact that those two sets of attractors have an empty intersection.
Let us denote A(i, P ) the set of attractor states reachable from state i,
under perturbations in set P . Set P contains pairs of gene names and
their perturbation (either 0 for knockout, or 1 for overexpression). Let us
also denote O the set of output genes, that we define here as the set of
genes with a positive in-degree. Then, considering any similarity measure
S between network states, this definition of spread value SVB({n},i) for node
n and initial state i is defined as :

SVB({n}, {i}) = 1−max
{
S
(
a1|O, a

2
|O
)
: a1, a2 ∈ A(i, ∅)× ∈ A(i, {(n,¬i[n])})

}
,

where we restrict the attractor states a1 and a2 to the set of output genes O
when computing their similarity.

The perturbation denoted by (n,¬i[n]) means that gene n is perturbed in
the opposite direction to its expression state i[n] in i : for instance, if n is
expressed in state i, then we consider knockouts of gene n. The restriction
a|O of any attractor state a to output genes in O is actually important in order
to have consistent results when considering isolated nodes.

Note that, if n does not have a determined expression state in initial state
i, we set the associated perturbation set to ∅. This implies that some genes
with individual spread value equal to 0 can either have no true influence on
the network, or have no determined expression state in initial state s, which
means that they are not measured during the generation of transcriptomic
data.

The value SVB({n}, {i}) is equal to 0 if and only if A(i, ∅)∩A(i, {(n,¬i[n])}) 6=
∅ (that is, if there is any attractor state in common). But, note that, if
A(i, ∅) ∩ A(i, {(n,¬i[n])}) = ∅, then SVB({n}, i) is not necessarily equal to 1,
as reachable attractors might still be close to those obtained without any
external perturbation.

Geneset influence in a Boolean network. When considering several
nodes in set N instead of a single one n, that is, to assess the influence of
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a subset of nodes all simultaneously perturbed, we consider :

SVB(N , {i}) = 1−max
{
S
(
a1|O, a

2
|O
)
: a1, a2 ∈ A(i, ∅)×A(i, {(n,¬i[n]) : n ∈ N})

}
.

Aggregation of values for several initial states. When considering
several putative initial states in set I instead of a single one i, for a given
gene set N , we consider the geometric mean of their spread values for each
initial state i ∈ I:

SVB(N , I) =

(∏
i∈I

(SVB(N , {i}) + 1)

)1/|I|

− 1 ,

where |I| is the number of considered initial states. Note that we need to
correct for zeroes to order to avoid the collapse of this measure when one
perturbation does not trigger a change in reachable attractors for one of
the initial states, while keeping spread values between 0 and 1 for better
interpretability.

Algorithm 1 Gene influence maximization. Greedy influence maximiza-
tion algorithm for Boolean networks
Input: B = (V,E, F ) a Boolean network on node set V with edges in E and
regulatory functions F ; K the number of simultaneous perturbations on
the network ; I set of initial Boolean states
Initialize N = ∅, k = 0
repeat
k ← k + 1
# Adding to set N nodes that maximize the spread value
N ← N ∪Nk

where Nk ← arg max
n∈V \N

SVB(N ∪ {n}, I)

# Ensuring submodularity
until k = K or the following condition holds

max
n∈V \N

SVB(N ∪ {n}, I) ≤ SVB(N , I)

Output: N and observed spread values

Matching to the general setting of influence maximization. The
graph that describes the connections between nodes (genes) is the interac-
tion graph of the considered Boolean network B. Random variable I(N) is no
longer an integer (the number of influenced nodes) but directly the minimum
frequency of change in binary expression across all downstream genes in
reachable attractor states due to the perturbation(s). Note that computing
SVB(·, ·) in practice runs several stochastic trajectories to compute possibly
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reachable attractor states.

Once the concept of influence is defined, we propose an algorithm which
greedily builds the set of nodes which influence most the remainder of the
network.

Influence maximization algorithm on Boolean networks. We de-
scribe how to use this spread value to identify a subset of master regulators
in the network. Current literature on influence maximization (Perrault et al.,
2020), which is NP-hard, relies on the fact that the spread value function is
submodular : roughly, as the considered subset increases, the difference in
the value of this function due to adding another single element to the subset
decreases. However, no such property can be assessed for the definition of
spread value defined in the previous paragraph.

Then, we slightly adapted the greedy algorithm designed by Kempe,
Kleinberg, and Tardos (2003), which determines the set of nodes of minimal
size K which are the most influent, where K is a predefined fixed value.
Algorithm 1 goes as follows: starting from an empty set of nodes N0, a fixed
set of initial states I, at each step k ∈ {1, 2, . . . , K}, the algorithm selects the
node n 6∈ Nk−1 which maximizes spread value SVB(Nk−1∪{n}, I) and computes
the set Nk = {n} ∪ Nk−1, until step k = K, or until the first step k when the
spread value SVB(Nk−1, I) is no longer increasing, that is,

max{SVB(Nk−1 ∪ {n}, I) : n 6∈ Nk−1} ≤ SVB(Nk−1, I) , (2.2)

which is necessarily to compensate for the fact that the function might not
be submodular. If, at a given step k, several nodes maximize the spread
value, they are all added to set Nk. The iteratively built set NK is then
the set of possible K-sized gene subsets to simultaneously perturb on the
network, such that the set of attractors reachable from initial set I is greatly
modified. In this work, we selected K = 1, that is, we looked at individual
contributions of genes to the changes, and we ranked gene n according to
its spread value SVB({n}, I).

Set of initial network states (I). We consider transcriptomic profiles
from human hippocampi afflicted with temporal lobe epilepsy (TLE) in Mirza,
Appleton, et al. (2017) for the initial states, such that genes are ranked
according to their influence in an epileptic context. Temporal lobe epilepsy
is one of the most common forms of partial epilepsy, where seizures affect
one part of the brain, and is often associated with cases of refractory epilepsy
that cannot be surgically treated (Han et al., 2014). Details about the imple-
mentation and initial states are available in Appendix 9.4. 207 genes out of
232 genes both from the M30 module and present in the network are mapped
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to expression levels in these states, which means that for these genes, we
are sure that any spread value equal to 0 for any of these genes truly means
that the gene has no influence over the remainder of the network.

Similarity between attractor states (S). The definition of influence
relies on a similarity function S between two network states, that we left to
be defined in the concept of influence. In the implementation of the method,
we used a distance function which is relevant for binary vectors. The main
difference with other binary distances is that we wanted to compute the
differences in the presence of 1’s, but also of 0’s in the vectors, which
prevented us from directly using Jaccard’s score. Based on previous surveys
of the state-of-the-art on binary distances (Choi, Cha, and Tappert, 2010),
we decided to use a “normalized” ℓ1-norm distance. That is, if a1 and a2 are
the two binary vectors to compare (of size d), then the resulting similarity
S(a1, a2) between a1 and a2 is :

S(a1, a2) = 1− 1

d

d∑
i=1

|a1[i]− a2[i]| . (2.3)

This expression is exactly the percentage of row-wise equal coefficients in
a1 and a2, and yields 1 when a1 = a2, and 0 for a2 = (a1 + 1) ≡ [2] (modulo 2).
It penalizes in a symmetric way differences in 1’s and 0’s.

2.4 Results

Networks obtained from the inference procedure

We discuss the networks resulting from the inference procedure described
in Section 2.2.

Inferred network. The final network obtained at the end of step (C) is
shown in Figure 2.2. In this figure, nodes are colored by their degree ; the
darker the color, the higher the degree. Edges in Figure 2.2 are colored ac-
cording to their source of evidence as reported by the STRING database (Szk-
larczyk et al., 2021). One can notice that there are a lot of undirect gene-
to-gene regulatory interactions in this network. This actually is not very
surprising, since few gene pairwise interactions are experimentally tested
compared to all possibly existing interactions. Moreover, our model does
not aim at taking into account exclusively transcriptomic interactions, but
possibly non-physical, post-transcriptomic effects.
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Min. 25th quantile Median Mean 75th quantile Max.
# RFs 1 1 2 2.202 3 11
GTP 0.796 0.798 0.800 0.800 0.800 0.802

Table 2.1: Distribution statistics for the inferred networks. Distribu-
tion statistics on the number of unique regulatory functions (RFs) across
solutions per gene, and on the value of the general topological parameter
(GTP) used for network selection in step (C) of the inference procedure. All
values are rounded up to the 3rd decimal place.

Comparison of the different solutions. Now, we consider all 25 4 so-
lutions generated at the end of step (B), and estimate how far they are from
each other, in terms of node degree distribution, edge numbers, redundancy
in interactions, unicity of regulatory functions for each node across those
solutions, and values of general topological parameter (GTP). GTP is a value
comprised between 0 and 1 that is used to select the final network among the
25 ones (as further described in Section 9.1 in Appendix) and characterizes
the proximity of a network topology to a scale-free topology.

Table 2.1 shows distribution statistics about the values of GTP and the
unicity of gene regulatory functions across solutions. Note that all solutions
present similar topologies, with similar GTP scores quite close to 1, which
matches what can be expected from biochemical interaction networks in
non-fungi systems (Broido and Clauset, 2019). Moreover, except for less
than 25% of the genes in the network, genes are assigned at most 3 different
regulatory functions across all solutions, which shows that their function in
the network is globally preserved.

Figure 2.3 displays the boxplots of edge number and node degree distri-
butions across solutions. These two plots show that, as mentioned before,
the typical scale-free topology, with a few “hub nodes” with large degree
and a large number of genes with few regulatory interactions, is present in
all solutions. There are 74 interactions (that is, around 30 − 34% of edges)
which are present in at least 75% of the solutions, among which 25 are
present in all of them. They are shown in Table 9.5 located at the Appendix.
These numbers are confirmed by plotting the network comprising of all
genepairwise interactions which are present in at least one solution, shown
in Figure 2.4.

All in all, the networks obtained just before the model selection step
mostly seem similar, both functionally (at the level of regulatory functions)
and topologically (considering the node degrees, the number of edges, and
the GTP scores).

4That number was chosen for reasons related to computational cost and time.
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Figure 2.3: Comparison of the inferred networks. Left-hand plot:
Boxplots of node total degrees (in- and out-degree) per solution. The green
lines represent median values. Right-hand plot: Boxplot of the number of
edges across solutions. Again, the green line represent the median value.

Figure 2.4: Illustration of the collapsed network. Network comprising
of all gene-to-gene interactions which are present in at least one solution.
The darker and thicker an edge is, the more frequent it is across solutions.
Sinewave edges are inhibitory interactions, whereas solid lines denote
activatory interactions. Orange nodes correspond to the genes which are
perturbed in the LINCS L1000 experimental profiles used for inference.
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Recommended master regulator candidates

We now study the results from the method of detection of master regulators.

Comparison to known gene measures. We computed the correlation
between spread values for our application to epilepsy, genewise Control
Centrality (Liu, Slotine, and Barabási, 2012) values computed with CytoC-
trlAnalyser (Wu, Li, et al., 2018), and genewise outgoing degrees. The
outgoing degree (“outdegree”) is the number of direct downstream targets,
whereas Control Centrality is the number of nodes which are affected by a
change in the considered node, based on the (directed) network topology.
More specifically, in order to compute the Control Centrality for any gene g in
the setting we consider, at some time step t, (continuous) expression levels
x(t) ∈ RN are time-invariant and depend linearly on those x(t− 1) ∈ RN at the
previous time step t− 1, where N is the number of genes in the network

∂x(t)

∂t
= Ax(t) + ug(t) , (2.4)

where A is the adjacency matrix in RN×N associated with the network, and
ug(t) ∈ R is the external signal imposed on node g at time t (either overexpres-
sion if it is positive, or knockout otherwise). In such a system, computing
the number of nodes which can be controlled by gene g boils down to getting
the rank of the so-called controllability matrix related to A and g, which is
a function of powers of matrix A. This rank can be computed by solving a
combinatorial optimization problem described in Equation (3) in Liu, Slotine,
and Barabási (2012). Moreover, since, as a general rule, the true nonzero
values in A as well as ug(·) are unknown, Control Centrality aims at quan-
tifying structural controllability, independently from the values of nonzero
coefficients in A and ug(·). All in all, Control Centrality is a solid counterpart
to our method. It does not take into account neither the set of regulatory
functions nor the gene expression levels in patients, but models regulatory
cascades through the differential equation in Equation (2.4).

We compared these measures, related to the influence of a node in the
network, to scores associated with the pathogenicity of genes :

- probability of loss of function intolerance (pLI) (Lek et al., 2016), which
quantifies the intolerance to a deleterious mutation of a given gene.

- enhancer-domain score (EDS) (Wang and Goldstein, 2020), which stud-
ies the conservation of the regulatory domain around genes ;

- residual variation intolerance score (RVIS) (Petrovski et al., 2013),
which quantifies functional genetic variation, and is anticorrelated to gene
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pathogenicity.

Finally, we computed influence scores (Nicolle, Radvanyi, and Elati, 2015)
as well, which expression is reported in Equation (2.1).

Figure 2.5 displays the Spearman’s ρ correlation heatmap between these
different measures. We observed that, contrary to influence values, spread
values were consistent and strongly correlated with Control Centrality and
the outgoing degree, that is, network-dependent measures. Moreover, spread
values have a stronger correlation to the gene pathogenicity-related mea-
sures pLI and (opposite of) RVIS.

We tested whether the spread value was actually totally determined by
the number of downstream (not necessarily direct) regulated genes. To do
so, we performed a Spearman’s ρ linear correlation test on the spread values
and the number of downstream regulated genes. We confirmed that there
is a strong, significative correlation between the two –which is expected,
given the definition of the spread value– but that the spread value is not
completely determined by this value, that is, the correlation value is not
equal to 1 (ρ = 0.82, p = 3.10−57).

Enrichment analysis in epilepsy-related terms of genes with high
spread values. From Figure 2.6, it can be noticed that there is a lot of dis-
crepancy between pLI scores and spread values on M30 genes. Nonetheless,
it should be noted that Ziegler et al. (2019) warns against genes which are
involved in recessive forms of diseases, while having a low pLI score. That
is actually the case for gene GNB5, which has a central place in our network
(see Figure 2.1) with spread value 0.024, and a pLI score close to 0, and is
involved in a recessive form of epileptic encephalopathy (Poke et al., 2019).

In order to statistically test if the top genes for spread values are related
to epilepsy-related symptoms and mechanisms, we performed a pathway
enrichment analysis. This analysis allows the identification of the gene
functions most represented among these top genes. An over-representation
analysis (ORA) (Yaari et al., 2013) determines which sets of functionally simi-
lar genes are statistically surrepresented in the subset of genes, if they exist.
Surrepresentation of a gene function set is quantified by comparing the gene
function categories represented in the subset of genes (enrichments) to the
categories present in a background set of genes, which contains the subset
of interest. The statistical tests –one per gene function category– were run
by the online tool WebGestalt (Liao et al., 2019).

In this case, the subset of considered genes is the set of 14 genes with
spread value greater than 0.01 (displayed in Figure 2.6). The selected back-
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Minimum 25th quantile Median Mean 75th quantile Maximum
0.0 0.0 0.0 0.00254 0.0 0.0556

Table 2.2: Distribution statistics of the spread values. Distribution
statistics (rounded up to the 5th decimal place) of the spread values obtained
for M30 genes present in the inferred network.

ground genes were the 233 genes present in the Boolean network. We
considered the gene categories annotated in the DisGeNet database (Piñero
et al., 2020). 5

Indeed, the subset of genes is (weakly) significantly enriched in genes re-
lated to the term “Epileptic encephalopathy” (odds ratio OR = 7.5, Benjamini-
Hochberg (BH) (Benjamini and Hochberg, 1995)-adjusted p ≈ 0.038), and
more strongly enriched with (neuro)developmental issues, for instance, “Loss
of developmental milestones” (OR = 10.5, BH-adjusted p ≈ 0.012), as reported
in Figure 2.5. Similar results can be observed on another family of gene
annotations, GLAD4U (Jourquin et al., 2012), as shown in Figure 9.2 in
Appendix. These enrichment results go beyond the fact that M30 is glob-
ally enriched in epilepsy-related de novo mutations compared to the whole
measured genome, as shown in Delahaye-Duriez, Srivastava, et al. (2016) :
what is shown is that, among genes in the M30 module, ranking by spread
values pinpoints epilepsy-related genes.

Selection of a list of candidates. Based on the results shown in Fig-
ure 2.5 and Table 2.2, we have selected a shorter list of candidate genes,
comprised of rather large spread value (greater than 0.01) and pLI score
greater than 0.9, and of genes with very large spread value (greater than
0.02), in order to avoid the shortcoming in the pLI score mentioned above.
Candidate genes are CACNA1C, RBFOX1, STXBP1, DNM1, NRIP3, SCN8A,
CHRM2, GNB5, TUBB2A, PAK7 and GRIN1, shown in Figure 2.6. Most of
these candidates –except for NRIP3, which is notably mainly expressed
in the hippocampus– have a relationship to epilepsy-related symptoms in
humans as shown in prior works (Appenzeller et al., 2014; Butler et al.,
2017; Cushion et al., 2014; Al-Eitan et al., 2019; Lal et al., 2013; Myers
et al., 2016; Ohba et al., 2015; Poke et al., 2019; Stamberger et al., 2016),
as expected due to their membership to the M30 module.

In silico validation of the candidates. In order to further confirm
our list of candidate genes, we exploited the Boolean network inferred in
Section 2.2 to predict whether a knockout of each of these genes would
trigger a transcriptional profile close to epileptic states. Knockouts are easier

5Remember that, in the application to epilepsy, we do not use genes from DisGeNet, but
the preselected set of genes M30.
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Figure 2.5: Comparison between spread values and other gene
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Figure 2.6: Gene ranking by decreasing spread value. Genes ranked by
decreasing spread value, restricted to spread value greater than 0.01 (center
bar), with their associated Control Centrality (CC) (top bar), and pLI scores
(bottom bar).
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Algorithm 2 Single gene perturbation scoring. Scoring of the effect
towards pseudo-epileptic transcriptional profiles
Input: C set of control transcriptional profiles and P set of epileptic
profiles ; a list of genes L ; B = (V,E, F ) a Boolean network on node
set V with edges in E and regulatory functions F
Initialize scores(g)← 0 for any gene g ∈ L
Binarize profiles in C and in P in matrix X ∈ {−1, 1}(|C|+|P|)×|M30|

# Normalize the matrix of control and patient samples per feature (gene)
X̃ ← ( 1

σg
(Xg − µg))g∈{1,...,|M30|}, where µg =mean(Xg) and σg = std(Xg)

# Learn a mapping from the initial high-dimensional space to 2D
Fit a Principal Component Analysis (PCA)M : {−1, 1}|M30| 7→ R2 on matrix X̃

# Run Characteristic Direction on the set of control and patient samples
# to determine the classification frontier between the two groups
Compute S ← CD[P‖C] ∈ R|M30|

for g ∈ L do
for c ∈ C do
Initialize scores_profile(g)← 0 for any gene g ∈ L
Enumerate a set of attractors A(c,g) which are reachable from binarized
control profile c under the knockout of gene g
Initialize list(a)← 0 for a ∈ A(c,g)

for a ∈ A(c,g) do
π(M(a))←projection ofM(a) onto hyperplane of normal vectorM(S)

# Compute the “signed distance” between the considered attractor
# and the classification frontier defined by S in 2D
list(a)← signed(M(a), π(M(a)))

end for

# Compute a score based on the probabilities of presence of attractors
scores_profile(c, g)←

∑
a∈A(c,g)

p(a,c,g)list(a) where p(a,c,g) is the probability
associated with attractor a, initial profile c and knockout of g

end for

# Obtain a single score per gene
scores(g)← 1

|C|
∑

c∈C scores_profile(c, g)
end for
Output: scores
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to experimentally confirm than overexpression perturbations, and most of
the selected genes have a reported pro-epileptic deletion mutation (Appen-
zeller et al., 2014; Griffin et al., 2021; Lal et al., 2013). Our procedure is
summarized in Algorithm 2. The key idea behind this algorithm is that the
repurposing score aims at determining in which part of the 2D plane an in
silico treated profile located : either on the hyperplane globally assigned to
control samples, or the one mainly associated with patient profiles. Then,
the “signed” distance of this treated profile to the frontier which separates
these two hyperplanes is computed. The sign of this distance is indicative
of the hyperplane the treated profile belongs to (positive if in the “control”
hyperplane, negative otherwise). We now describe Algorithm 2. We consider
this time both sets of binarized epileptic and control (healthy for epilepsy)
hippocampi samples in Mirza, Appleton, et al. (2017), respectively denoted
P (|P| = 24) and C (|C| = 23). These profiles are restricted to the set of M30

genes present in the network. The binarization step is performed similarly
to what is described in Section 9.1 in Appendix. In order to score the
perturbation related to a given gene, first, we fit a Principal Component
Analysis (PCA) model M with the standard-normalized matrix of binary
control and patient profiles (with values in {−1, 1}). The use of PCA allows
to renormalize the distances on the 2D plane, and transform the profiles
to make them more informative, by considering the two axes on which
the most variance across samples is observed. Second, we consider the
PCA-transformed Characteristic Direction (CD) signature (Clark et al., 2014)
M(S) computed on patient and control profiles.

I refer the reader to the corresponding paper (Clark et al., 2014) for the
details about Characteristic Direction. The main principle that should be kept
in mind is that the signature CD[G1‖G2], computed through Characteristic
Direction for two condition groups G1 and G2, is actually the vector normal
to the decision frontier in a high-dimensional space, which classifies samples
into either G1 or G2, and that is oriented in the direction from G2 to G1. That
means in particular that the changes reported in the signature are changes
in G1 compared to the reference group G2.

Then, for each candidate gene g and each control profile c available, we
retrieve a set of attractor states denoted A(c,g) reachable from state c under
knockout of gene g, as described in Section 9.4 in Appendix. To compute
the score associated with an attractor state a (that is, how close to a control
profile it is), first, we PCA-transform this attractor into a 2D vector M(a) ;
second, we compute the associated projection π(M(a)) onto the frontier
between control and patient samples (which normal vector isM(S)) ; finally,
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CACNA1A DNM1 GNB5 STXBP1 SCN8A PAK7 TUBB2A CHRM2
−0.17 −0.17 −0.17 −0.20 −0.20 −0.20 −0.22 −0.24

NRIP3 GRIN1 RBFOX1
−0.25 −0.29 −0.30

Table 2.3: Scores for genes prioritized by spread values. In silico
perturbation scores, rounded up to the second decimal place, resulting from
the comparison of attractor states, reachable from control samples, to the
set of control samples, after the knockout of one of the candidate genes in
the Boolean network in Figure 2.2.

we compute the signed distance betweenM(a) and its projection π(M(a)) :

signed(M(a), π(M(a))) :=
n∑
i=1

(π(M(a))i −M(a)i) .

Note that, contrary to the distance function used in Section 2.3, this quantity
is signed. This value is positive ifM(a) is in the zone delimited by the hyper-
plan which contains control samples, and negative otherwise. The large it
is, the more the attractor state is considered in the control or patient zone.
Such a score allows a quick interpretation of the results and a straightforward
visualization of the improvement (or worsening) of the patient profile after
treatment.

In the presence of several attractors, we use the probability p(a,c,g) of pres-
ence of attractor a reachable from the initial control state c under knockout
of gene g, as provided by PyMaBoSS (Stoll et al., 2017), using the same
parameters as in Section 9.4 in Appendix. For an attractor which is not
reachable from profile c, we have p(a,c,g) = 0. The final score for a given gene
g based on |C| control profiles is then :

score(g) :=
1

|C|
∑
c∈C

∑
a∈A(c,g)

p(a,c,g) × signed(M(a), π(M(a))) .

If no attractor state is found, then we set this value to “not a number”. 6

Table 2.3 shows the scores obtained for each candidate gene. These scores
show that any knockout of these genes will globally turn a control transcrip-
tomic profile into one which is similar to an epileptic one, with some of these
genes which may never been investigated in the research related to epilepsy,
such as NRIPS3, and some of them, notably, STXBP1 and GRIN1, which or-
thologuous genes were associated with epileptic seizures in zebrafish (Griffin
et al., 2021).

6This case never happened in practice.

44



2.5 Discussion

We introduced in this work two main contributions to in silico disease re-
search. First, we designed a method for the inference of gene regulatory
network only from a subset of genes. This method carefully combines infor-
mation from several public databases and methods, and infers a dynamical
model of gene regulation adapted to the considered set of genes. This
method yields to quite robust network solutions, and is easily reproducible.
Second, we showed how to exploit the inferred network model, and more
specifically its dynamics, to detect master regulatory genes, which may be
interesting candidates to investigate a disease. We applied our method-
ology to tackle epilepsy, and to find novel gene candidates to investigate
epilepsy. It allowed us to get a list of candidate genes which perturbations
greatly impact the whole network in an epileptic transcriptomic context. The
experimental validation of the knockout of some of these candidates in the
zebrafish is an ongoing collaboration with Nadia Soussi-Yanicostas at Inserm
UMR1141. This methodology allows reproducible and transparent research,
while reducing the amount of data needed as input, which is one of the
main caveats of researching on rare or tropical neglected diseases. Next,
we will investigate, using the inferred network, the simulation of the effect
of molecules –that is, which potentially targets several genes at a time.
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Chapter 3

Drug efficacy scoring using a
Boolean network

I now introduce how to use the Boolean network inferred in Chapter 2 in
order to simulate and score the effect of a given drug at transcriptomic level.
Had we had access to several clinical trials involving the considered disease
and molecules –for instance, in the form of a binary matrix with molecules as
rows and diseases as columns, where ones would indicate successful trials–
we could have used traditional machine learning techniques for classification
tasks (He, Yang, Gong, et al., 2020; Jarada, Rokne, and Alhajj, 2020; Xue
et al., 2018; Yang, Luo, et al., 2019) to solve drug repurposing. However,
when facing rare diseases, we actually lack of information about putative
successful drugs, and even sometimes information about the disease itself
(e.g., classification, biological mechanism, . . . ). This problem bears more
than a passing resemblance to the “cold start” problems in recommender
systems. Nonetheless, when no prior information can be collected before
running the recommender system, the methods used to circumvent this
hurdle mostly rely on the guilt-by-association principle, where diseases with
similar transcriptomic profiles may have common successful treatments.

However, when it comes to medical purposes, simple similarity is not
enough, as mentioned in Réda, Kaufmann, and Delahaye-Duriez (2020),
as a change in chirality 1 is enough to turn a morning illness treatment
into a teratogen molecule. In particular, in order to perform signature
reversion on a fixed pair of disease and drug, simply comparing the signature
built from transcriptomic profiles from healthy individuals and patients on
the one hand, and the one obtained on control and in vitro treated cells
on the other hand, might not be enough to estimate the actual reversing

1That is, the orientation of the 3D molecular structure. Two molecules which only
difference lies in their chirality cannot overlap, as the conformation of one is the mirror
inverted version of the other.
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power of the considered molecule. Genes interact on the expression level
of others through regulatory cascades (Bolouri and Davidson, 2003), and
they sometimes undirectly act upon their own expression. When screen-
ing thousands of molecules, the experimental measure of the actual post-
treatment transcriptomic profiles on diseased patients or animal models is
too time-consuming and expensive to be effectively implemented ; hence the
proposed drug repurposing method, which exploits the Boolean network in-
ferred in Chapter 2 to model regulatory cascades, and predict post-treatment
transcriptomic profiles.

In this chapter, I will describe how to leverage the Boolean network to
predict post-treatment transcriptomic profiles. These predictions will help
scoring the therapeutic effect of the treatment, by comparing in silico treated
profiles and appropriate control ones. A special attention is brought to the
selection of the drug-induced perturbations at transcriptomic level. These
scores allow ranking putative drug candidates by their performance, which
effectively solves the problem of drug repurposing. As a proof-of-concept,
this procedure has been applied to epilepsy, for which a Boolean network was
inferred in Chapter 2. The resulting ranking on a subset of known epilepsy-
related molecules was compared to a baseline method, which does not model
regulatory cascades.

3.1 Related work

In this section, I briefly recall important concepts related to this chapter.

Drug repurposing and signature reversion. Drug repurposing is a
paradigm of drug development which aims at discovering new therapeutic
indications for already commercially available molecules. The reuse of well-
documented and already approved drugs allows decreasing the allocated
budget and time for drug discovery research, while limiting the possibility of
undiscovered negative side effects (Hwang et al., 2016).

A promising method is the method of “signature reversion” (Lamb et
al., 2006; Sirota et al., 2011) : drug candidates are ranked according to
the similarity between disease- and drug-associated signatures. Signatures
describe the changes in gene expression which were induced by the disease,
resp. by the treatment. The key idea is that, if the same genes are affected
in both signatures in a different direction –i.e., up-regulated in the drug
signature, and down-regulated in the disease one, or vice-versa– then this
treatment could be an interesting therapy. Many examples of applications
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of signature reversion are available in the following review papers (Hodos
et al., 2016; Musa et al., 2018). This approach has further been facilitated
by the creation of databases of treated transcriptomic profiles, which are
systematically produced through a standard RNA-sequencing pipeline on
immortalized human cells. One of the first databases collecting this data
is the Connectivity map (CMap) database (Lamb et al., 2006) in 2006, fol-
lowed by the LINCS L1000 database in 2017 (Subramanian et al., 2017) at a
larger scale. Each drug signature is built by comparing significant genewise
changes in expression between cells in vitro treated by a control molecule
or by a specific active molecule. The main asset of LINCS L1000 is that
the database is extremely large : up to 30, 000 drugs or genetic perturba-
tions are tested across 98 cell lines, going from 1, 309 chemical compounds
applied to 5 cell lines in CMap. This is due to the reduced cost in the
generation of transcriptomic data. Only around a thousand genes are truly
assayed, and the expression of the remainder of the genome is inferred
through a linear regression model. This computational inference seems to
give satisfying results compared to the fully-assayed genome (Cheng and Li,
2016; Subramanian et al., 2017). However, these databases might provide
discordant drug signatures, and thus rankings, probably due to differences in
the technical tools used in their profile generation pipeline (Lim and Pavlidis,
2021). The latter work also highlights the importance of careful selection of
drug signatures –in particular, in terms of cell lines– from these databases,
as we will develop in the next sections.

The LINCS L1000 database has been exploited in a signature reversion
method called “L1000 CDS2” (Duan et al., 2016). First, this method computes
the drug signatures on the whole LINCS L1000 genome (≈ 12, 000 genes)
with Characteristic Direction (CD) (Clark et al., 2014). CD is run over a set
of treated and control samples from the same plate. Control samples are
treated with a “sham” treatment, for instance dimethyl sulfoxide (DMSO).
Then, CD signatures are averaged across replicates. In our application, in
order to have a single drug signature per drug, I have also averaged across
the two cell lines NPC (neural progenitor cell) and SH-SY5Y (neublastoma
line), doses and exposure times. 2 Second, a CD signature S is obtained
from applying CD to healthy and patient profiles (respectively denoted C
and P). 3 Last, L1000 CDS2 ranks drugs by computing a cosine distance
score between S and each drug signature. That is, for any drug signature s,

2This choice was made in order to ensure fairness when comparing this method to ours,
since our drug signatures are computed over brain cell lines, as described later in this
chapter.

3Characteristic Direction (CD) has been introduced in the previous chapter. In a nutshell,
this procedure creates a vector CD[G∞‖G∈] which reports the genewise magnitude and
direction of change in expression from reference sample group G∈ to treated group G∞.
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the method computes

cos (s,S) := 1−
∑
gene g S[g]× s[g]√∑

gene g S[g]2
√∑

gene g s[g]
2
.

The higher the cosine score is, the more epilepsy-affected genes are per-
turbed by the drug in the opposite direction with respect to the disease ;
then the considered molecule is a putative drug candidate. This method is
the baseline for the suggested drug repurposing procedure presented in this
chapter.

Gene regulatory networks as Boolean networks. A gene regula-
tory network (GRN) is a summary of gene regulatory interactions, which is
depicted as a graph : nodes are genes or proteins, (directed) edges are
regulatory interactions from a regulator to a regulated gene. We implement
GRNs as Boolean networks. In this type of models, nodes can have two
expression states : 0 for low expression, and 1 otherwise. A “regulatory func-
tion” is assigned to each node. This function computes the new expression
state of the associated node, depending on the expression states of its direct
regulators at the previous time step. A network state is the concatenation of
all the expression states at a time point. The procedure to update a network
state using the regulatory functions is defined by the dynamics of the model.
Examples of dynamics are described in Chatain, Haar, and Paulevé (2018);
Paulevé et al. (2020). A Boolean model can predict the final binary network
state(s) under the perturbation of one or several genes in the network, by
iteratively applying the update step. These final states are attractor states.
An attractor state is such that either (a) applying the update step leaves
that state invariant (steady attractor) ; (b) the system oscillates in a cycle
to which this state belong (unsteady attractor).

Application to epilepsy. In Chapter 2, we focused on a module of 320
genes called M30, which has been shown to have a global gene expression
that is anti-correlated to various epileptic transcriptomic profiles (Delahaye-
Duriez, Srivastava, et al., 2016) ; and we inferred a Boolean network which
models the regulatory interactions in this gene module.

At the end of the previous chapter, we actually described a method
which allowed us to score the effect of a single gene perturbation on the
network. The goal of the current chapter is to explain how we have extended
Algorithm 2 to scoring chemical compounds ; and, more specifically, how we
have modelled the effect of the treatment, based on a careful selection of
drug signatures from the LINCS L1000 database (Subramanian et al., 2017).
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3.2 Selection of drug signatures

Extension of Algorithm 2 to drug perturbations. Algorithm 2 in Chap-
ter 2 predicts (binary) transcriptomic profiles under the perturbation of a
single gene. These predictions are (steady) attractor states reachable from
a control profile 4 under the knockout of a given candidate gene g. To each
knocked-out gene, a score was computed as a weighted sum of “signed
distances” from each attractor state to the classification frontier between
control and patient samples. This frontier was defined by the Characteristic
Direction signature (Clark et al., 2014) obtained from healthy and epileptic
patient profiles, which corresponds to the normal vector to this frontier.
However, potentially several genes can simultaneously be perturbed.

Nonetheless, current lists of drug targets –i.e., genes which are directly
affected by a drug at transcriptional level– are not completely satisfying for
our purpose. This motivates the use of drug signatures, which are a proxy to
estimate which genes are specifically affected by a treatment and in which
direction, i.e., whether they would be overexpressed or underexpressed
after the treatment.

Gene targets. Several online databases list drug-associated gene tar-
gets : DrugBank (Wishart et al., 2018), MINERVA (Hoksza et al., 2019),
Drug Central (Ursu et al., 2016), Therapeutic Targets Database (TTD) (Zhou
et al., 2022) or LINCS L1000 (Subramanian et al., 2017). Let us check the
relevance of these lists with regards to our application to epilepsy.

We compiled a set of 71 known antiepileptics and proconvulsant drugs
–i.e., which trigger seizures, which is shown in Table 10.1 (36 antiepileptics)
and in Table 10.2 (35 proconvulsant drugs) in Appendix. The objective is
to determine how well the information about the drug targets in the M30

module discriminates between antiepileptics and proconvulsant drugs, from
the comparisons in Figure 3.1. Each list of gene targets (per database of
origin, independently of the direction of change) is turned into a binary
vector of size (71 × 320), where ones represent gene targets to a given
molecule prior to the comparisons. In the right-hand plot in Figure 3.1,
an “aggregated” target matrix in {0, 5}71×320 was built, such that coefficient
in position (i, j) is the number of times gene j is denoted as a target to drug
i across the listed five databases.

Indeed, as shown in the right-hand heatmap in Figure 3.1, the heatmap
regroups on one hand (right-most cluster at the top of the plot) antiepileptics
which target gamma-aminobutyric acid (GABAergic) receptors : GABRA4,

4That is, the transcriptional profile of a healthy individual with respect to epilepsy.
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Figure 3.1: Visualization of gene targets for antiepileptic and
proconvulsant drugs. Left plot : Spearman’s ρ correlation matrix
heatmap which represents the redundancy of targets across databases.
Right plot : Heatmap associated with the aggregated target matrix described
in the main text. This matrix is restricted to genes (39/320) and drugs
(27/71) with at least one nonzero coefficient in the matrix. Antiepileptic, resp.
proconvulsant, drugs are written using a green, resp. red, font. Rows and
columns are ordered according to two hierarchical clusterings represented
on the plot.

GABRD, GABRB3, . . . , which are related to synaptic transmission and notably
known for intervening in epilepsy-linked mechanisms (Treiman, 2001) ; and
on the other hand, drugs targeting sodium channel genes : SCN1A, SCN8A,
SCN4B, which are involved in the initiation and propagation of action poten-
tials in the central nervous system (Meisler, O’brien, and Sharkey, 2010) ;
and calcium genes : CACNA1C, CACNB4, . . . , which might induce neuron hy-
perexcitability (Steinlein, 2014). However, these lists are discordant across
databases, as shown by the left-hand plot in Figure 3.1. Moreover, they do
not usually provide the direction of expression changes (except for TTD).
Last, these lists are too sparse, i.e., a large number of drugs have no
reported gene targets, and some genes cannot be linked to any drug, as
shown in the caption for the right-hand plot in Figure 3.1.

Nonetheless, these gene targets constitute an interesting ground truth to
guide the feature selection to build drug signatures.

Types of drug signatures. We considered three different methods,
denoted “BrainCell”, “AllCell” and “BestCell”, to build drug signatures from
the transcriptional profiles in the LINCS L1000 database (Subramanian et
al., 2017) for the 71 selected antiepileptics and proconvulsant drugs. These
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three approaches are mentioned in both plots in Figure 3.2. They only differ
on the considered type of cell lines. As mentioned in Lim and Pavlidis (2021),
the correct selection of the cell line(s) on which differential expression is
considered is key in signature reversion.

Any of these methods proceeds as follows : for any molecule, transcrip-
tional profiles from control and treated cells, with at least two technical
replicates, are retrieved. Depending on the selected approach, these profiles
are possibly filtered on the cellular type on which they were measured. Then,
at most 30 of the most reproducible profiles are kept for each group of profiles
(treated and control groups). 5 Last, we run Characteristic Direction (Clark
et al., 2014) on these two groups, which outputs a single real-valued vector.
This vector reports the magnitude of change in expression for each gene.
Based on the p-values (per gene) computed by CD, 6 this vector is binarized
by assigning ones to genes with positive magnitude and significant p-value
at level 5%, resp., zeroes to genes with negative magnitude and significant
p-value at level 5%. In particular, it means that ones correspond to genes
which are significantly upregulated after treatment –with respect to the
control group– whereas zeroes correspond to significantly downregulated
genes. Genes which are not represented in this vector are non significantly
differentially expressed, that is, almost unaltered by the treatment.

As previously claimed, we consider the three following filters on cell lines

- In “BrainCell”, we further restrict the set of transcriptional profiles to
profiles obtained in one of the two brain cell lines in LINCS L1000 : neural
progenitor cells (NPCs) and a neuroblastoma cell line (SHSY-5Y).

- “AllCell” does not use any filter on the cell line.

- “BestCell” only considers the cell line in which a treatment experi-
ment with this drug has yielded the highest Transcriptomic Activity Score
(“cell_tas”), as reported by the LINCS L1000 database. The highest this score
is, the most reliable the profiles with this treatment in this cell line are. 7

In all three methods, 194 genes (out of 320 genes present in M30) are
significantly differentially expressed in at least one of the drug signatures
computed for the 71 epilepsy-related molecules. Due to the fact that exper-
iments involving drugs do not necessarily cover all 98 cell lines present in

5This is done in practice by considering the reported value distil_ss in LINCS L1000 for
each profile. This quantity is correlated to the number of differentially expressed genes
(genes altered by the treatment), and is predictive of the reproductibility of the profile (Lim
and Pavlidis, 2021).

6We set the number of permutations performed by CD at 10, 000.
7This metric (like others such as distil_ss) is further discussed at https://clue.io/

connectopedia/glossary.
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LINCS L1000, there are only 34 drug signatures in “BrainCell”, whereas there
are 68 drug signatures in “BestCell” and “AllCell”. The list of 34 antiepilep-
tic and proconvulsant drugs having a “BrainCell” signature is reported in
Tables 10.1 (12 antiepileptics) and 10.2 (22 proconvulsants) in Appendix
(column “BrainCell”). Note that not all 71 drugs are present, due to the
condition on having at least two technical replicates.

Feature selection with respect to gene targets. We compare all
three methods to the lists of gene targets mentioned earlier in Figure 3.2.
We denote “Aggregated” the binary matrix in {0, 1}71×320, where the coefficient
at position (i, j) is equal to 1 if and only if gene j is reported as a target of
drug i in at least one of the following 5 databases : DrugBank, DrugCentral,
LINCS L1000, TTD, and MINERVA. Similarly, for each type of drug signature,
the associated drug signature matrix is converted into a binary matrix in
{0, 1}71×320, where ones represent significantly differentially expressed genes
(up-regulation or down-regulation) according to the drug signatures.
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Figure 3.2: Comparison between the different types of drug signa-
tures. Similarity between the three types of drug signatures retrieved from
LINCS L1000 and the lists of gene targets, on the set of 71 epilepsy-related
drugs. Associated matrices are converted into binary vectors of size (71×320).
Each pairwise comparison is restricted to common genes and drugs. Left
plot : We compare the similarities of clusterings (obtained by running
k-means++ (Arthur and Vassilvitskii, 2006) with 3 clusters) by computing
the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985).a Right plot :
The Jaccard index (Jaccard, 1912) is computed between approaches. In
both heatmaps, the higher the score, the most similar two methods are.
Rows and columns of the heatmaps are ordered by a hierarchical clustering
represented on the plots.

aThe choice of 3 clusters was motivated by the minimum number of clusters which could
be found using any of the three types of features.
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Figure 3.2 shows that, out of the three methods for retrieving drug sig-
natures, the one exclusively using profiles from brain cell lines (“Brain-
Cell”) is the most similar to the aggregated list of gene targets ; both in
terms of regrouping drugs (left-hand plot), and in terms of intersection of
genes (right-hand plot). However, there is still little correlation between
the drug signatures from LINCS L1000 and the gene target lists. This might
be due to the fact that a gene might be differentially expressed –up- or
downregulated– even when it is not directly targeted by a given drug. More-
over, the number of currently reported targets might be a lot smaller than
the actual number of targets. Based on these plots, from now on, we only
consider only “BrainCell” drug signatures.

3.3 Scoring with the Boolean network

Now, we lay out the outlines of the extension of Algorithm 2 in Chapter 2
to scoring chemical compounds, instead of single gene perturbations. Al-
gorithm 3 describes the associated pseudo-code, with differences with Al-
gorithm 2 written in bold type. Notice that one of the main differences is
that we consider as initial conditions perturbed patient profiles –instead of
profiles of healthy individuals– and that perturbations on the initial states
are defined by drug signatures, and no longer by single gene perturbations.
That means in particular that, if a gene is denoted as upregulated in a drug
signature, then the corresponding perturbation of this gene in the algorithm
will be an overexpression. Conversely, a downregulated gene denotes a
knockout perturbation of this gene.

In our application to epilepsy, we considered the sets of binarized epileptic
and control hippocampi samples for temporal lobe epilepsy (TLE) in Mirza,
Appleton, et al. (2017), respectively denoted P (|P| = 24) and C (|C| = 23).
The use of these profiles is justified by the link between TLE and refractory
epilepsies (refer to Chapter 2). This procedure was run on the 34 drugs
related to epilepsy with the “BrainCell” signatures, as defined in Section 3.2.
This took several hours to complete. 8 Indeed, the runtime is proportional
to the number of nodes in the Boolean network B and the number of patient
samples |P|. Solving the problem of finding a single attractor state reachable
from an initial state, using the most permissive semantics (Paulevé et al.,
2020), is PSPACE-complete as a general rule. 9 It is coNP-complete under
some conditions on the behaviour of regulatory functions. 10

8On a personal computer (processor Intel Core i7-8750H, 12 cores @2.20GHz, RAM 16GB).
9i.e., this problem can be solved using an amount of memory at most polynomial in the

number of nodes in the network.
10i.e., the proof that the considered state is not a reachable attractor state is verifiable

in polynomial time (in the number of nodes) by a deterministic algorithm.
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Algorithm 3 Drug perturbation scoring. Scoring the effect of a drug
candidate on epileptic transcriptional profiles
Input: C set of control transcriptional profiles and P set of epileptic
profiles ; a list of drug candidates L along with their drug
signatures ; B = (V,E, F ) a Boolean network on node set V with edges in
E and regulatory functions F
Initialize scores(d)← 0 for any drug d ∈ L
Binarize profiles in C and in P in matrix X ∈ {−1, 1}(|C|+|P|)×|M30|

# Normalize the set of control and patient profiles, per feature (gene)
X̃ ← ( 1

σg
(Xg − µg))g∈{1,...,|M30|}, where µg =mean(Xg) and σg = std(Xg)

# Learn a mapping from the initial high-dimensional space and the
# 2D plane
Fit a Principal Component Analysis (PCA)M : {−1, 1}|M30| 7→ R2 on matrix X̃

# Run Characteristic Direction on the set of control and patient samples
Compute S := CD[P‖C] ∈ R|M30|

for d ∈ L do
# We now consider patient profiles in initial conditions
for p ∈ P do
Initialize scores_profile(d)← 0 for any drug d ∈ L
Enumerate a set of attractors A(p,d) which are reachable from binarized
patient profile p under the perturbations by drug d, as defined by
its drug signature
Initialize list(a)← 0 for a ∈ A(p,d)

for a ∈ A(p,d) do
π(M(a))← projection ofM(a) onto hyperplane of normal vectorM(S)

# Compute the “signed distance” between the considered attractor
# and the classification frontier defined by S in 2D
list(a)← signed(M(a), π(M(a)))

end for
# Compute a score based on the probabilities of presence of an
# attractor
scores_profile(c, g)←

∑
a∈A(p,d)

p(a,p,d)list(a) where p(a,p,d) is the probability
associated with attractor a, initial profile p and perturbation by d

end for
# Get a single value per drug candidate
scores(d)← 1

|P|
∑

p∈P scores_profile(p, d)
end for
Output: scores
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Then, each call to the Boolean network to solve the reachable attractor
problem in Algorithm 3 is polynomial (in memory space) in the number of
nodes in the Boolean network, up to a multiplicative constant corresponding
to the maximum total number of attractor states to enumerate. There are
|P| × |L| such calls in total, where |L| is the number of considered drugs.

In Chevalier et al. (2019), using their implementation of the most per-
missive semantics, they have been able to solve a single call to the solver
–with complex constraints, that is, a potentially even harder problem than
the reachability of attractor states– in a couple hours of CPU time in net-
works with up to 200 nodes. In a nutshell, these problems are tractable
in practice for a limited number of nodes in the network, but cannot be
extended to a large-scale screening of hundreds of drugs. We will discuss
the consequences of this high computational cost at the end of the chapter.

3.4 Results

We compare repurposing results on the set of 34 drugs mentioned in Sec-
tion 3.2 from Algorithm 3 and L1000 CDS2 (Duan et al., 2016), described in
Section 3.1. Recall that L1000 CDS2 computes a cosine distance score on
CD signatures derived from LINCS L1000 profiles. In both approaches, the
higher the score is, the best the candidate. The rankings on the 34 drugs
are shown in Figure 3.3. Their associated receiver operating characteristic
and precision-recall curves are represented in Figure 3.4.

From Figure 3.4, we observe that Algorithm 3 slightly improves over L1000
CDS2 in predictability. In order to additionally assess the relevance of the
proposed drug scoring method, we compute the hit ratio at fixed rank k (Ko-
ren, 2008), denoted HR@k (or Recall@k), which is the accuracy restricted
to the top-k elements. This quantity can be computed from the rankings in
Figure 3.3. The hit ratio metric is useful for evaluating recommendations, as
one might only be interested in the first top items. Hit ratios at rank 2, 3, 5
and 10 –which are reasonable ranks for drug repurposing– for both methods
are reported in Table 3.1. This table confirms that, indeed, the proposed
drug scoring fares better than the baseline.

HR@2 HR@3 HR@5 HR@10

Scoring 0.5 0.7 0.4 0.3

L1000 CDS2 0.0 0.3 0.2 0.4

Table 3.1: Hit ratios on the proposed drug scoring and the baseline.
Hit ratios at ranks 2, 3, 5, 10 in the proposed scoring and L1000 CDS2 (Duan
et al., 2016) , rounded up to the 1st decimal place.
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Figure 3.3: Drug repurposing on a set of antiepileptics and procon-
vulsant drugs. Boxplots of rewards across patient profiles on the set of 34
drugs, sorted by decreasing average score, as reported in the x-axis. a The
dot (average score) and labels on the x-axis are colored in green (resp., in
red) if they match an antiepileptic (resp., a proconvulsant) drug. The black
solid line is the function of median score values. Left plot : ranking from
L1000 CDS2 (baseline). Right plot : ranking from Algorithm 3.

aIn L1000 CDS2, there is a single value equal to the average value.
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Figure 3.4: Comparison between the drug repurposing method and
the baseline. Receiver operating characteristic (ROC) and precision-recall
(PR) curves, representative of the performance of a method (prediction :
Algorithm 3, baseline : L1000 CDS2) on the set of 34 drugs. Left plot : ROC
curves. Right plot : PR curves.
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3.5 Discussion

In this chapter, we described how the algorithm in Chapter 2 for scoring
single gene perturbations was extended to drug-induced perturbations. The
proposed method relies on a careful selection of the drug signatures, which
highlights the importance of the choice of the cell line, as previously re-
marked by Lim and Pavlidis (2021). This method slightly improves over a
baseline approach on a dataset of 34 antiepileptics and proconvulsants. Yet it
is unfortunately still not satisfying in terms of interpretability. Indeed, most
of the drug candidates are assigned negative scores ; according to the way
the score was designed in Chapter 2, it means that these drugs do not truly
“treat” patient profiles. Indeed, a negative score means that, in average,
in silico treated profiles remain in the part of the 2D plane that is globally
associated with epileptic profiles.

Nonetheless, as discussed in the introduction to this thesis, except for
the use case described in Chapter 7, there is no transcriptomic database
on individual patient responses to treatment at a large scale for any pathol-
ogy, 11 similar to what LINCS L1000 is to drug perturbations on in vitro human
immortalized cells. This work is an attempt at bridging the gap between
what is known about the drug-induced changes in expression and modelling
in silico patient responses to treatment.

Yet the proposed method might be improved with further work on the
feature selection ; e.g., by incorporating the influence of the treatment
dose. Indeed, higher doses might be more effective and lead to more reliable
transcriptional profiles –which was our primary criterion for feature selection.
However, they might be toxic, and trigger unwanted side effects. Some-
times, high doses might even trigger paradoxical effects, that is, reinforcing
the symptoms of the disease, as reported for some antiepileptics in in vivo
experiments (Nakken et al., 2003; Osorio et al., 1989).

Moreover, as highlighted by the plots associated with Algorithm 3 (Fig-
ures 3.3 and 3.4), there exists a quite large variation, in terms of scores
and predictability, across patient profiles. Indeed, on the right-hand plot
in Figure 3.3, we can notice that some patients seem to respond well to
the treatment (i.e., with positive scores). For instance, at least one patient
outputs a score close to 0.18 when treated by Whitaferin-A, even if the related
average score across patients is negative. This raises the question on how
to properly aggregate the scores across patients.

11e.g., the Genomics of Drug Sensitivity in Cancer (GDSC) database (Yang, Soares, et al.,
2012) for cancer subtypes.
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Finally, as previously evoked when discussing the computational com-
plexity of Algorithm 4, large-scale screening might not be tractable in prac-
tice. This fact led me to consider sequential learning methods (namely,
multi-armed bandits) in the next chapters : combining an online sampler,
which asks for the evaluation of a given drug at points in time, and Algo-
rithm 4 (below) which performs the evaluation of a single drug on a single
patient profile. Additionally, this paves the way for a personalized drug
repurposing method, which suggests drug candidates which are the most
adapted to a specific patient. Personalized drug recommendation in cancer
was recently investigated in Montagud et al. (2022), showing promising
results.

In the next chapters, we will apply multi-armed bandit algorithms to a
drug repurposing instance, on a subset of 21 antiepileptics and proconvulsant
drugs. This instance comprises of “BrainCell” drug signatures and associated
average repurposing scores derived from Algorithm 3. This instance is fur-
ther described in Table 10.3 in Appendix. This restricted instance, which
displays a larger gap in scores between the set of antiepileptic and procon-
vulsant drugs, allows us to illustrate our proof-of-concept on the application
of multi-armed bandit algorithms to drug repurposing. In practice, the actual
gap in score is of course unknown, and such a transformation only holds to
support our proof-of-concept.

Algorithm 4 Sequential drug perturbation scoring. Socoring of the
effect of a drug candidate in a sequential setting
# In practice, a patient profile is sampled at random from the available
# pool of patient profiles
Input: a patient profile p ∈ {0, 1}|M30| and a drug candidate d with drug
signature sd ∈ {−1, 0, 1}|M30|

Parameters: B = (V,E, F ) a Boolean network on node set V with edges in
E and regulatory functions F , fitted Principal Component Analysis model
M, classification frontier defined by normal vectorM(S) in the 2D plane
Enumerate a set of attractors A(p,d) which are reachable from binarized
patient profile p under the perturbations by drug d, as defined by its drug
signature sd
Initialize list(a)← 0 for a ∈ A(p,d)

for a ∈ A(p,d) do
π(M(a))← projection ofM(a) onto hyperplane of normal vectorM(S)
# Compute the “signed distance” between the considered attractor
# and the classification frontier defined by S in 2D
list(a)← signed(M(a), π(M(a)))

end for
# Compute a score based on the probabilities of presence of an attractor
score ←

∑
a∈A(p,d)

p(a,p,d)list(a) where p(a,p,d) is the probability associated with
attractor a, initial profile p and perturbation by d
Output: score
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Part II

Adaptive drug testing using
bandits
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The contents of this chapter rely on some of my publications.a

aRéda, Kaufmann, and Delahaye-Duriez (2020). “Machine learning
applications in drug development”. Computational and structural
biotechnology journal, 18, pp. 241–252; Réda, Kaufmann, and
Delahaye-Duriez (2021). “Top-m identification for linear bandits”.
International Conference on Artificial Intelligence and Statistics.
PMLR, pp. 1108–1116; Réda, Tirinzoni, and Degenne (2021). “Dealing
With Misspecification In Fixed-Confidence Linear Top-m Identification”.
Advances in Neural Information Processing Systems, 34.

In Chapter 3, we described how to build a model which simulates the
transcriptional effect of a given drug, based on a Boolean network. In partic-
ular, this procedure can be seen as a black box, which takes as input a drug
signature –as previously defined previously– and a patient transcriptomic
profile, and returns a score proportional to its signature reversing power.
However, in practice, we know that this model retrieves a set of reachable
steady attractor states in order to output a single score. Moreover, since
we know there can be a high variability across patients’ scores, estimating
robustly the average score (across patients) of a given drug would require
iterating it for all patients. All in all, this might be a time-consuming and
computationally expensive process, especially when performed for a large
number of drugs. I wondered if there was some adaptive, “smart”, procedure
for exploring the space of drugs. This is why I resorted to multi-armed bandit
algorithms, which are introduced in the first sections of this chapter. For a
given disease, we are interested in identifying a subset of drugs that may
have a therapeutic interest. Providing a group of 5 or 10 drugs, rather than
a single one, can ease the decision of further investigation, as many leads
are provided. The problem of determining the N best options out of K ones
was introduced in Kalyanakrishnan et al. (2012), and is named EXPLORE-
N (Kalyanakrishnan et al., 2012), Top-N identification (Chen, Li, and Qiao,
2017), or Best-N identification (Jiang, Li, and Qiao, 2017). Moreover, drug
signatures can be leveraged to discriminate between drug candidates, and
make the algorithm more efficient. Hence, in my PhD, I worked on struc-
tured Top-N identification, 13 which exploits the structure of the model, that
is, the relationship between drug signatures and scores.

13Which is the name we will retain for the remainder of the manuscript.
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Chapter 4

Introduction to Top-N
identification

We will use machine learning techniques to refine our drug repurposing
method. Machine learning is a subfield of artificial intelligence in Computer
Science. Here, a machine learning algorithm designates any computational
method where results from past actions or decisions, or past observations,
are used to improve predictions or future decision-making. Machine learning
techniques are now extremely popular in drug development (Aliper et al.,
2016; Ekins et al., 2019; Hodos et al., 2016) as they allow automation of
highly-dimensional, noisy biological data analysis. Many different machine
learning tasks have been studied, which fall broadly into three categories.
The first one is supervised learning, in which the goal is to predict the label
of new observations given a large database of labelled examples. Several
supervised learning algorithms have been applied in a biological context,
such as Support Vector Machines (Noble et al., 2004) or (Deep) Neural
Networks (Chen, Engkvist, et al., 2018). The second task is unsupervised
learning, and it aims at detecting underlying relationships or patterns in
unlabeled data. Dimension reduction methods, like Principal Component
Analysis (PCA), fall in this class. But other unsupervised problems are also
studied in the context of drug development, such as density estimation and
clustering (Zhang et al., 2018). 1 The third type of task is renforcement
learning, where algorithms rely on trial-and-error, and iteratively use ex-
ternal observations in order to find the best decision with respect to the
environment they interact with. A large literature has dwelled on the use
of sequential learning algorithms, where an agent, i.e., a goal-oriented
entity which interacts with its environment, must make one choice at a time
according to previous observations of the environment. Offline –or batch–

1That is, grouping data.
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methods use batches of data in order to learn, whereas online –or sequential
learning– algorithms process one data point at a time, and update their
prediction or decision accordingly.

In this thesis, I am interested in multi-armed bandit algorithms. They
constitute a popular and versatile family of sequential decision-making al-
gorithms. In multi-armed bandit algorithms, a fixed set of actions, called
arms, is available. An agent sequentially interacts with the environment
by selecting arms, as illustrated in Figure 4.1 below. Each arm selection
produces some noisy observation, often interpreted as a reward. However,
the average reward associated with each arm is initially unknown to the
agent, and has to be learnt in the process while achieving a certain objec-
tive. Typically, this objective could be to discover the most efficient arm(s),
that is, the arm(s) with highest average reward (Kalyanakrishnan et al.,
2012), or to maximize the total reward accrued across iterated arm selec-
tions (Auer, Cesa-Bianchi, and Fischer, 2002). See the following referenced
paper (Kaufmann and Garivier, 2017) for a comparison between these two
bandit objectives.

In our application to drug repurposing, multi-armed bandit algorithms will
help decreasing the number of calls to the Boolean network, introduced in
Chapter 3, needed in order to find the best drug candidates with respect
to their score. In terms of drug development, one might restrict their
search for new therapies to N leads associated with the highest repurposing
score. What is left to do is to design an appropriate recommender sys-
tem to automatically test and recommend drug candidates. Recommender
systems actually belong to different families of machine learning methods,
since a recommender system broadly designates an algorithm which aims
at predicting rating of a given user which tests a given object (Adomavicius
and Tuzhilin, 2005). A large part of the literature about recommender
systems is motivated by commercial purposes (Brynjolfsson, Hu, and Smith,
2010; Smith and Linden, 2017), including works on multi-armed bandit
algorithms (Guillou, Gaudel, and Preux, 2016; Mary, Gaudel, and Preux,
2015). However, we will demonstrate that multi-armed bandit algorithms
can actually be applied to solve drug repurposing.

As described in Chapter 3, one evaluation –that is, one call to the Boolean
network– outputs a score, which is computed by comparing the attractor
states reached after a drug-induced perturbation on a single patient profile,
and the attractors states reached in the absence of perturbation. Compu-
tation of reachable steady states in Boolean networks, although easier than
in continuous dynamical systems, 2 can still be expensive, especially as the

2Even easier with the dynamics described in Paulevé et al. (2020).
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network grows larger. Moreover, we only consider one patient profile at a
time, and plots in Chapter 3 show that there is a high variability in scores
across patients. In a nutshell, a single call to the Boolean network might
be computationally expensive and noisy, hence the need to reducing the
number of calls, especially when considering a large number of drugs to
screen.

Observation

Agent Set of arms Environment

Choice of 
the next
arm to 
sample

Acts on the environment

Returns an observation

Figure 4.1: Multi-armed bandits. Illustration of the principle of multi-
armed bandit algorithms.

4.1 Structured stochastic bandits

In this thesis, I consider a specific type of multi-armed bandits, 3 which
are adapted to the use in real-life applications. We denote throughout the
manuscript [L] := {1, 2, . . . , L − 1, L} for any positive integer L ∈ N∗. We
consider a finite set of K arms, associated with feature vectors (Xa)a∈[K]

which belong to Rd. Let us denote the feature matrix X ∈ RK×d such that the
feature vectors are the rows of this matrix : X := [X⊤

1 , X
⊤
2 , . . . , X

⊤
K ]. An agent

sequentially selects arms for a given number of rounds or when a specific
stopping criterion is satisfied. Sampling arm It ∈ [K] at round t, based on
past observations, 4 yields a noisy observation Yt ∈ R. Yt is a realization of
νIt drawn independently from all past observations, denoted Yt ∼ νIt. Let
µa := EY∼νa [Y ] be the expected reward associated with probability law νa for
any arm a ∈ [K]. The probability law νa, for any arm a ∈ [K], is assumed
fixed and unknown to the agent (assumption of stochasticity), and depends
on feature vector Xa (assumption of structure). In the cases studied during
my PhD, I focused on zero-mean σ2-subgaussian additive noise, for a fixed

3I denote “(multi-armed) bandit” the setting, and “bandit algorithm” the algorithm itself.
4And also some internal randomization variable Ut ∈ [0, 1] in practice.
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value of σ that is known to the agent. 5 In order to reconcile all the works
done on the structure of bandits, I introduce the following definition

Definition 4.1.1.M-structured stochastic bandit with σ2-subgaussian
noise. Let σ be a positive real number, andM⊆ (Rd → R) a class of functions
mapping from Rd to R. If µ is M-structured, then there is a deterministic
function f ∈ M such that for any arm a, µa = f(Xa). At round t, the agent
then observes

Yt := f(XIt) + ψt ,

where ψt is a centered random variable independent from past observations,
and is σ2-subgaussian, 6 that is, satisfies for any λ ∈ R

E[exp(λψt)] ≤ exp
(
λ2σ2

2

)
.

The idea of this generic definition is to put an emphasis on the structure
of the expected rewards for all arms, that is, the relationship between the
expected reward µa and the feature vector Xa for any arm a. In particular, the
key ingredient in such a structure is that parameters of functions f ∈M are
shared across arms. This is what makes speeding up the bandit algorithm
possible, 7 since the set of putative models matching the observations is
possibly reduced to M-structured models. What should be kept in mind
is that, here, features are a fixed, known, input to the problem, and one
of the main questions tackled in this PhD is about their integration in the
underlying (drug repurposing) model. Three familiar structures of bandit
models are presented below.

Unstructured bandits (M = (Rd → R)). This means that any function
mapping from Rd to R can be considered, which implies that we do not
actually restrict the set of possible models, since we do not exploit fea-
ture vectors. This is the most straightforward model for bandits –in regret
minimization (Auer and Ortner, 2010; W. R. Thompson, 1933)– and was
the first class of models considered for the identification of the N arms
with highest expected rewards, see for instance Chen, Li, and Qiao (2017);
Gabillon, Ghavamzadeh, and Lazaric (2012); Jiang, Li, and Qiao (2017);
Kalyanakrishnan et al. (2012). Additional assumptions are often made, for
instance, bounds on the value of any expected reward : for any arm a,

5In practice, such an assumption could be discussed, especially for real-life applications.
Nonetheless, it still remains an interesting simplification for our drug repurposing problem.
Some theoretical work on the case of unknown variance is present in the literature, see for
instance Chowdhury et al. (2022).

6Familiar examples of σ2-subgaussian distributions are Gaussian distributions with fixed
variance set to σ2, or bounded distributions.

7That is, reducing the number of calls to the Boolean network, in our case.
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µa ∈ [0, 1], or |µa| ≤ 1.

Linear bandits (M = {x 7→ θ⊤x | θ ∈ Rd}). In this case, we know
that the expected reward of an arm a is the product of a linear function
of the associated feature vector. As mentioned in the previous paragraph,
parameter θ is common to all arms in [K]. Such a setting has been studied
in the context of regret minimization (Abeille and Lazaric, 2017; Agrawal
and Goyal, 2013), but also for best arm identification (Jedra and Proutiere,
2020; Soare, Lazaric, and Munos, 2014; Xu, Honda, and Sugiyama, 2018).
We will mention this class of models in Chapter 5. Supplementary assump-
tions might be that feature vectors span Rd, which is justified by numerical
concerns related to matrix singularity.

Remark 4.1.2. Given all the expected rewards (µa)a∈[K], there is not neces-
sarily a unique θ such that for any arm a, µa = θ⊤Xa, depending on the set of
feature vectors (Xa)a∈[K]. For instance, considering two arms with respective
feature vectors [1, 1]⊤ and [0.5, 0.5]⊤ and expected rewards µ1 = 1 and µ2 = 0.5,
both θ = [1, 0]⊤ and θ′ = [0, 1]⊤ could be considered as valid parameters.
Without supplementary assumptions, potentially several distinct functions
in the classM can represent the same model µ (however, a function f ∈M
represent a single model). In particular, this is why I chose to parametrize
expectations and probabilities with model functions inM instead of models
µ themselves. This underdetermination raises questions, especially for the
interpretability of the inferred parameter(s).

Generalized linear bandits (M = {x 7→ ℓ(θ⊤x) | θ ∈ Rd, ℓ link function}).
Generalized linear models are known beyond the multi-armed bandit field,
and comprise of a link function –denoted ℓ here– which belongs to the
exponential family, i.e., ℓ is any probability distribution parametrized by
some scalar γ ∈ R 8 which density, with respect to a reference measure, is
of the following form

P{X∼ℓ}[X = x] = h(x)exp(Γ(γ)× T (x)− A(γ)) ,

where h is a function with nonnegative values, and Γ, T , and A (log-partition
function) are known functions. Such a family includes the normal, exponen-
tial, and Poisson distributions. They have already been studied extensively
in the literature (Filippi et al., 2010; Li, Lu, and Zhou, 2017; Russo and
Van Roy, 2013). In particular, when ℓ : y 7→ 1

1+exp(−y), the class of models
becomes

M =

{
x 7→ 1

1 + exp(−θ⊤x)
| θ ∈ Rd

}
,

8We will only consider scalar parametrization here.
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which correspond to logistic bandits (Dumitrascu, Feng, and Engelhardt,
2018; Faury et al., 2020).

The agent can estimate the expected rewards from a given arm by sam-
pling it repeatedly, or, when exploiting feature vectors, by sampling other
arms. We denote the optimal arm, that is, the arm yielding the highest
expected reward, a⋆ : µ⋆ = µa⋆ :=max

a∈[K]
µa. In a similar fashion, we define the

N th best arm, that is, the arm which yields the N th highest reward a(N) such

that µ(N) :=
N
max
a∈[K]

µa. Note that there can be several of them, but we assume

in the remaining of the manuscript that it is unique. 9

Several types of objectives might be satisfied by the agent : for instance,
the most commonly studied is the maximization of the cumulative sum of
rewards in T rounds, where T is fixed, which is called regret minimiza-
tion. (Bubeck and Cesa-Bianchi, 2012) In that case, the agent has to play
a large number of times the estimated optimal arm, from the past observa-
tions. Sampling a suboptimal arm incurs a penalty in terms of payoff, while
the agent needs to have a good idea of the performance of each arm in the
set to correctly estimate the best arm : this is the well-known exploration-
exploitation dilemma. Inspired by the image of one-armed bandits in casinos
–which gave their names to multi-armed bandits– let us try to illustrate this
principle : a player enters a casino and considers a row of one-armed bandit
machines, numbered from 1 to K. This player yields an average payoff µa
of winning on machine a, for any a ∈ [K]. That player then wants to win
as much as possible with its fixed budget of T tokens. If they knew which
was the most rewarding machine, playing it repeatedly would ensure to win
the greatest average return. Of course, the owner of the casino would not
disclose such an information, which drives the player to sample all machines
enough so that they can rule out probably suboptimal arms, while trying to
maximize their profits within their limited token budget.

Other types of objectives belong to in the field of pure exploration prob-
lems, that aim at answering a question about the set of arms, which have
also received a lot of attention (Bubeck, Munos, and Stoltz, 2009; Bubeck,
Wang, and Viswanathan, 2013; Degenne and Koolen, 2019; Garivier and
Kaufmann, 2016; Jun and Nowak, 2016). In our setting of drug repurposing,
since we are considering in silico simulations, the agent has to explore as
much as possible in order to detect which molecules are the best candidates
for repurposing. Consider once again the casino example. Let us assume
that the player decides to sneak at night into the casino, having stolen a

9Because it simplifies the proof of correctness of the algorithms (refer to the next
sections). This assumes that the expected rewards of the N th and the (N + 1)th arms are
distinct, which is a reasonable assumption in practice.
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large number of tokens, and plays all night long the K one-armed bandit
machines so that to estimate which one is the best. They cannot leave
the casino with their payoff this time, but they might escape before sunset
with the information about the best arm to sample the next day. This pure
exploration setting is the closest to our drug repurposing use case.

Therefore, in my thesis, I studied the design of algorithms A which tackle
the pure exploration problem of identifying the N best arms with as few
observations as possible –called in this manuscript Top-N identification 10.
At final round τA, these algorithms return the set ŜN(τA), of size N, based
on past observations. The number of samples τA is a random variable which
depends on a stopping rule, which ensures that each arm in ŜN(τA) belongs
to the true set of N best arms with probability higher than 1− δ. This is the
fixed-confidence setting.

Definition 4.1.3. Fixed confidence Top-N identification for bandits
with structure M. At fixed class M, the goal of fixed-confidence Top-N
identification is to design an algorithm A which is δ-correct for any f ∈M

P{f}

[
ŜN(τA) 6⊆ S⋆N,f

]
≤ δ , where S⋆N,f :=

{
a ∈ [K] : f(Xa) ≥

N
max
i∈[K]

f(Xi)

}
.

S⋆N,f is the true set of N best arms (again, considered unique) in model
µ associated with function f ∈ M. I drop the subscript f in the notation
S⋆N,f when we consider a single M-structured model. One might also be
interested in the set of (N, ε)-best arms, that is, the set of arms which are
among the N-best arms up to some margin ε ≥ 0

S⋆N(ε) ≈ S⋆N,f (ε) :=
{
a ∈ [K] : f(Xa) ≥

N
max
i∈[K]

f(Xi)− ε
}
. (4.1)

In that case, algorithms which satisfy the inequality constraint in Defini-
tion 4.1.3 with set S⋆N(ε) are said to be (ε, δ)−Probably Approximately Correct
(PAC) (Valiant, 1984)

Definition 4.1.4. (ε, δ,N)-Probably Approximately Correct (PAC) for
M-structured models. Algorithm A is (ε, δ,N)-PAC 11 if and only if, for any
f ∈M, A satisfies

P{f}[ŜN(τA) 6⊆ S⋆N,f (ε)] ≤ δ .

Then, we aim at minimizing the number of samples τA among all δ-
(PA)Correct algorithms A, either in high probability (what is proven in Chap-
10Sometimes called best arm identification in the case where N = 1.
11I will often abuse notation by only mentioning “δ-PAC”.
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ters 5 and 8)
∀f ∈M,P{f}[τA ≤ C(f, δ, ε,N)] ≤ δ , (4.2)

or in expectation (what is proven in Chapter 6)

∀f ∈M,E{f}[τA] ≤ E(f, δ, ε,N) , (4.3)

where C and E are some functions depending on the inputs of the problem.

In practice, as illustrated in the next sections of this chapter, in order to
show that an algorithm is δ−PAC, we build a minimally “good” event which
is defined as an event E such that P{A}(E) ≥ 1 − δ and

{
ŜN(τA) ⊆ S⋆N(ε)

}
⊆ E.

Then it directly follows that

P
[
ŜN(τA) 6⊆ S⋆N(ε)

]
≤ P[(E)c] ≤ δ ,

where (E)c is the complementary event to E : given the universe Ω (i.e., the
set of all possible events),

E ∩ (E)c = ∅ and E ∪ (E)c = Ω .

Typically, to prove a high-probability sample complexity bound as in Equa-
tion (4.2), we prove an upper bound on the total number of samples τA when
this event E holds, as done in Kalyanakrishnan et al. (2012); Réda, Kauf-
mann, and Delahaye-Duriez (2021) and in Chapter 8 for instance. Proving
an sample complexity upper bound in expectation (Equation (4.3)) is a bit
more complex and is done in Degenne and Koolen (2019); Kaufmann and
Kalyanakrishnan (2013); Réda, Tirinzoni, and Degenne (2021). The goal is
to carefully craft a time-dependent event Et which probability exponentially
increases as t increases (such that the complementary event seldom hap-
pens), combining events that allow the algorithm to stop and be δ-correct.
Then, finding a suitable time T0 > 0 which ensures that, for any t ≥ T0,
Et ⊆ {τA ≤ t}, yields

E[τA] =
+∞∑
t=0

P(τA > t) ≤
T0−1∑
t=0

1 +
+∞∑
t=T0

P((Et)c)︸ ︷︷ ︸
finite value E

≤ T0︸︷︷︸
to upper bound

+E .

Remark 4.1.5. Note that, in high probability, we do not actually end up with
a true upper bound on the total number of samples needed, that is, an upper
bound in the worst-case scenario. Indeed, when the “good event” does not
hold anymore, it is likely that the algorithm is no longer δ-correct, and we do
not control what happens in that case (i.e., the upper bound does not hold
anymore). However, Kalyanakrishnan et al. (2012, Theorem 8) showed
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that the worst case in Top-N identification for unstructured bandit models
yields an upper bound on the number of samples of order O(Kε−2 log(N/δ))

(for 0 < δ < 1
4
, 0 < ε ≤

√
1/32, N ≥ 6 and K ≥ 2N). That means that, for any

bandit algorithm, we could add to the stopping rule the following condition :
regardless of the satisfaction of the initial stopping criterion, if the number
of samples is higher than Kε−2 log(N/δ), then the algorithm should stop and
apply its decision rule.

Remark 4.1.6. In addition to the error probability and the sample com-
plexity, we could also evaluate algorithm A on their simple regret (Bubeck,
Munos, and Stoltz, 2008; Gabillon, Ghavamzadeh, and Lazaric, 2012), de-

fined as follows for Top-N identification rN :=
N
max
k∈[K]

µk − min
a∈ŜN (τA)

µa. Note

that, by definition, that quantity is always non negative (|ŜN(τA)| = N), and
positive if and only if ŜN(τA) 6⊆ S⋆N . Then, studying the error probability is
estimating the expectation EA,µ [1 (rN > ε)]. However, in the context of drug
repurposing, dealing with recommendation errors is more straightforward,
especially in the case where ε = 0.

4.2 Bandit algorithms for Top-N identification

Any algorithm for Top-N identification 12 comprises of three distinct parts
which fully define it. At each round t, algorithm A uses a sampling rule to
select arm It, based on past observations Y1, Y2, . . . , Yt−1 obtained from arms
I1, I2, . . . , It−1 conditioned on some internal randomization U1, U2, . . . , Ut−1. 13

Then, considering the σ-algebra 14 F(t) := σ ({Is, Ys, Us | s ≤ t}) generated by
all observations up to round t included, random variable It is then F(t −
1)-measurable. That is, intuitively, all the information needed to set the
value of It is contained in the subsets of random variables present in F(t−1).
Algorithm A keeps sampling arms until the adaptive stopping rule is triggered
at round t. As it is adaptive, this stopping rule is a stopping time with respect
to the filtration F(t). This means that the time when the algorithm stops
sampling is a random variable which depends on the variables in the filtration
which contains all variables of interest collected at the previous time steps.
At stopping time τA, algorithm A outputs its answer ŜN(τA) which is computed
12It still holds for any algorithm for pure exploration.
13The generation of noisy observations, and selection of arms (for instance, when choosing

between two arms maximizing the same criterion) rely on the seed of a pseudo-random
generator.
14The σ-algebra (“tribu” in French) σ(X) associated with a set X is a collection of subsets

of X, such that : X ∈ σ(X) ; if subset A ∈ σ(X), so is (A)
c (closure under complement) ; if a

finite number n of subsets A1, A2, . . . , An belong to σ(X), then so is
⋃

i≤n Ai (closure under
countable unions) and

⋂
i≤n Ai (closure under countable intersections).
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from the decision rule. Set ŜN(τA) is of size N and is F(τA)-measurable. The
interactions between these three rules are illustrated in Algorithm 5.

Algorithm 5 Top-N identification. Skeleton of a bandit algorithm for
Top-N identification
1: t← 0

2: repeat
3: # Selection of an arm to sample
4: It ← sampling_rule({Is, Ys, Us : s < t})
5: # Observation of sampled arm It drawn from law νIt

6: Yt ∼ νIt

7: t← t+ 1

8: until stopping_rule (t, {Is, Ys, Us : s ≤ t})
9: # Making a decision for the Top-N set
10: ŜN(τA)← decision_rule ({Is, Ys, Us : s ≤ τA})
11: return ŜN(τA)

4.3 Sample complexity in bandits

As previously mentioned, the goal in the fixed-confidence setting is to design
an algorithm A with an (expected) number of samples as small as possi-
ble, while keeping the error rate under the threshold δ on a given class
of models M. Depending on what we want to achieve (Equation (4.3),
resp. Equation (4.2)) E{·}[τA], resp. an upper bound on τA, is called sample
complexity, as observations are sometimes called samples. We would like
to assess whether our algorithms perform well by checking out the behavior
of the sample complexity depending on the expected rewards (when we
know them). In particular, consider the extreme case where the difference
between the expected rewards of the N th best arm and of any of the (K−N)

worst-performing arms is equal to some small value ε > 0, that is, the
minimal gap in performance between the top N arms and the others. It
is easy to guess that, as ε decreases, the harder it is to distinguish between
these two arms. Then, a large number of observations will be needed to
return the correct set of best arms (and vice-versa, had we considered one
of the N best arms and the (N + 1)th best one). Hence, we already suspect
that the sample complexity needed to return a δ-correct answer crucially
depends on the vector of expected rewards µ. As suggested by the previous
example, (expected reward) gaps to the N th or (N+1)th will play a significant
role in the analysis of structured bandit models in Chapter 5. We define the
gap associated with any of the arms a ∈ [K] as follows
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Sample complexity bound in high probability

LUCB 292HLUCB(f) ln
(
HLUCB(f)

δ

)
+ 16 where HLUCB(f) :=

∑
a∈[K]max

(
∆a,

ε
2

)−2

KLLUCB 2exp(1)HKL(f)
[
log

(
6K
δ

)
+ 2 log

(
HKL(f)

δ

)]
where HKL(f) :=

∑
a∈[K]max

(
∆2
a, (ε/2)

2
)−2

UGapE 2HUGapE(f) log
(
K
δ

)
+ 12HUGapE(f) log

(
K + 2HUGapE(f) log

(
K
δ

)
+ 6HUGapE(f)

)
where HUGapE(f) :=

∑
a∈[K]max

(
∆a+ε

2 , ε
)−2

Table 4.1: Prior results on the sample complexity for unstructured
bandits. Sample complexity results for unstructured bandits, for any f :
Rd → R (unstructured case). References : LUCB (Kalyanakrishnan et al.,
2012, Corollary 7), KL-LUCB and KL-Racing (Kaufmann and Kalyanakrishnan,
2013) (α = 2,C0(α) = 2exp(1),k1 = 3), UGapE (Gabillon, Ghavamzadeh, and
Lazaric, 2012, Theorem 2) (b = 1). To find the upper bound with the correct
constants for UGapE, I have used Kaufmann, Ménard, et al. (2021, Lemma
15). I have omitted factors in O(K).

Definition 4.3.1. Characteristic individual arm gap forM-structured
bandit. For any f ∈M such that, for any arm k ∈ [K], µa = f(Xa), we define
the positive gap quantity for arm k as follows

∆k :=max
(
µk − µ(N+1), µ(N) − µk

)
.

In particular, it implies that

∆k :=

{
µ(N) − µk if k 6∈ S⋆N(ε) ,
µk − µ(N+1) otherwise .

We further illustrate the importance of arm gaps by considering sample
complexity results (in high probability, as in Equation (4.2)) from prior work
on Top-N identification in unstructured bandits in Table 4.1.

Moreover, had we have a guess on the lower bound on the sample com-
plexity needed to solve our pure exploration problem on any model function
f ∈ M, and if we managed to upper bound the sample complexity of our
algorithm on that model by some quantity not too far from that lower bound,
then we could ensure that our algorithm was performant with regards to
sample efficiency. There exists an instance-dependent lower bound on the
minimum expected number of samples needed to make a δ-PAC decision in
a pure exploration problem (Kaufmann, Cappé, and Garivier, 2016, Lemma
1), in the regime of small, finite values of error rate δ. This lower bound relies
on the definition ofM-structured alternative model functions to f, which are
the set of model functions in M where the set of N best arms differs from
S⋆N,f . Intuitively, if there exists an alternative, similarly structured, model
function f̃ which is close enough to f such as S⋆N,f 6⊆ S⋆N,f̃ , then the associated
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pure exploration problem will be hard, that is, will need a large number of
samples to output a probably correct answer. That distance between models
is expressed in terms of Kullback-Leibler divergence (Kullback and Leibler,
1951), denoted KL, which is defined as follows

Definition 4.3.2. Kullback-Leibler divergence. For a pair of probability
densities νa and αa (for a fixed arm a ∈ [K])

KL(νa, αa) = DKL(νa‖αa) := E{Y }

[
νa(Y ) log

(
νa(Y )

αa(Y )

)]
.

In particular, for continuous probability densities νa and αa with respect
to Lebesgue measure,

KL(νa, αa) =
∫ +∞

−∞
νa(x) log

(
νa(x)

αa(x)

)
dx .

It has a closed-form in the case of Gaussian distributions that is sym-
metric, contrary to the general definition of Kullback-Leibler divergence in
Definition 4.3.2. In the remainder of the manuscript, since we consider a
single class of models M at a time, we will systematically abuse notation
by considering model functions f, f̃ ∈ M such that E{Y∼νa}[Y ] = f(Xa) and
E{Y∼αa}[Y ] = f̃(Xa), instead of probability laws νa, αa, and then denote

KLa(f, f̃) := KL(νa, αa) .

The lower bound stated in Kaufmann, Cappé, and Garivier (2016, Lemma
1) is as follows : for any small δ, any δ-PAC algorithm A on any model
function f ∈M will sample in expectation a number of observations at least
as large as some constant C⋆(f) inflated by a factor O(log (1/δ)). Constant
C⋆(f) is called “characteristic time”. It depends on f and reflects the intrinsic
hardness of the problem in terms of alternative model functions.

Known result 4.3.3. Lower bound on the expected number of sam-
ples in a pure exploration problem in Kaufmann, Cappé, and Garivier
(2016, Lemma 1). For any function f ∈M and any δ ≤ 1/2, δ-PAC algorithm
A satisfies the following inequality

E{f}[τA] ≥

 supω∈△K

inf
f̃∈Alt(f)

∑
a∈[K]

ωaKLa(f, f̃)︸ ︷︷ ︸
= C⋆(f)


−1

log
(

1

2.4δ

)
,
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where
Alt(f) :=

{
f̃ ∈M | S⋆N,f (ε) 6⊆ S⋆N,f̃ (ε)

}
, and

4K :=

p ∈ [0, 1]K |
∑
k∈[K]

pk = 1

 is the simplex on [K] .

The lower bound in Result (4.3.3) was shown to be rather tight for ε = 0

and Gaussian bandits : indeed, for Gaussian bandits with fixed variance σ2,
the Kullback-Leibler divergence has the following closed-form

∀f, f̃ ∈M ∀a ∈ [K], KLa(f, f̃)2 =
(f(Xa)− f̃(Xa))

2

2σ2
. (4.4)

Then Garivier and Kaufmann (2016, Theorem 5) have shown that

Hopt(f) ≤ (C⋆(f))−1 ≤ 2Hopt(f) where Hopt(f) :=
∑
a∈[K]

2σ2

∆2
a

,

which is, up to a factor log(1/C⋆(f)), what is shown in Table 4.1. However, this
lower bound is probably not reachable as a general rule. In order to compare
algorithms to this lower bound, the concept of asymptotic optimality is
defined as the ability of a δ-PAC algorithm A of recovering the optimal scaling
(C⋆(f))−1 in the asymptotic regime of small values of δ (i.e., δ tends to 0).

Known result 4.3.4. Asymptotic optimality for pure exploration ban-
dit algorithms in Degenne and Koolen (2019, Theorem 11). δ-PAC
algorithm A is asymptotically optimal onM-structured models if and only if
for any f ∈M

lim inf
δ→0

E{f}[τA]

log(1/δ)
= (C⋆(f))−1 .

In order to prove such a result for a δ-PAC candidate algorithm A, we
have to exhibit an upper bound on the expected sample complexity E{f}[τA]

for any model function f ∈ M, which ratio to log(1/δ) tends to (C⋆(f))−1 as δ
tends to 0. For example, it has been shown in Degenne and Koolen (2019,
Theorem 11) that Track-and-Stop (Garivier and Kaufmann, 2016, Section 3),
for the best arm identification (N = 1) problem, is asymptotically optimal. 15

In Chapter 6, an algorithm is proven asymptotically optimal for a specific
structure which encompasses linear bandits.

15For best arm identification, Sticky Track-and-Stop (mentioned in Degenne and Koolen
(2019, Algorithm 1)) and Track-and-Stop coincide.
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4.4 Integration of bandits to drug repurposing

In my thesis, I considered the integration of multi-armed bandits in drug
repurposing. First, in order to reduce the number of calls to the gene
regulatory network in Chapter 3. Second, in order to control the error rate
(through the formalism of δ-PAC in Definition 4.1.3). Last, in order to infer
an explanable model, based on the drug signatures, which are the feature
vectors associated with screened molecules. This last point was something
rather novel at the beginning of my PhD, since the few papers about Top-N
identification were dealing with unstructured bandits (Chen, Li, and Qiao,
2017; Gabillon, Ghavamzadeh, and Lazaric, 2012; Kalyanakrishnan et al.,
2012; Kaufmann and Kalyanakrishnan, 2013). Figure 4.2 illustrates the
connection between Boolean networks and multi-armed bandits for drug
repurposing.

BANDIT ALGORITHM
Identification of the N maxima 

under fixed error rate 𝛿 ∈ (0,1) and 
slack ε ≥ 0

Structure: (µak)k≤K depend on (xak)k≤K

K drugs (ak)k≤K associated with
signatures (xak)k≤K

BOOLEAN GENE 
REGULATORY NETWORK
Effect of drug a on genes of 
interest using its signature 
xa on a randomly sampled

patient profile

Sampling rule:
Asks for an observation from

drug a at round t

Returns the 
repurposing score

Gene A
Gene B

Gene C

Patient profile & Drug 
targets

(initial condition C0)

Predicted treated profile :
steady state reachable

from C0

Patient Targets (xa)

Gene activation
Gene inhibition
Active gene (product translation)
Inactive gene
No information about the gene

A
B
C

A
B
C

Solver

System of boolean
equations

Online update of 
average score 

estimators for all 
barms at round t

Decision rule: N arms a[1], a[2], …, a[N] that satisfy

Prob(it exists j ∈ {1,2,…,N} s.t. µa[j] < max µa[k] - ε) ≤ 𝛿

where max is the operator that retrieves the Nth greatest value

Adaptive stopping rule:
minimize t under a fixed

maximum error rate

N

k ≤ K

N

Figure 4.2: Drug repurposing with bandits. Illustration of the drug
repurposing method integrating both Boolean networks and multi-armed
bandits.
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Chapter 5

Sequential identification in
linear models

The most crucial question, with respect to the state-of-the-art at the start
of my PhD, was about the integration of feature vectors into the bandit
model. Inspired by prior works on structured best-arm identification and
regret maximization (Auer, 2002; Fiez et al., 2019; Li, Chu, et al., 2010; Xu,
Honda, and Sugiyama, 2018), I first considered the simpler setting of linear
bandits : bandits where, for any arm a ∈ [K], the associated expected reward
vector µa linearly depends on feature vector Xa ∈ Rd, with a parameter θ
shared by all arms

∃θ ∈ Rd ∀a ∈ [K], µa = X⊤
a θ .

In the terminology introduced in Chapter 4, such models have structure
Mlin, where Mlin :=

{
x 7→ θ⊤x | θ ∈ Rd

}
(Definition 4.1.1). Linear models are

interesting because they are easily interpretable ; if feature vector Xa ∈ Rd

corresponds to the gene expression signature of molecule a, where d is
the number of considered genes, then parameter θ exactly encodes the
genewise contributions to the repurposing score. In this chapter, I will
describe my contributions in solving the problem of Top-N identification
in linear bandits. In particular, I introduced a set of generic algorithms
with adaptive sampling, called gap-index focused algorithms (GIFA), which
are δ−PAC (Definition 4.1.3) under weak assumptions about their definition
(Section 4.2), and are on par with the state-of-the-art for Top-N identifica-
tion in terms of empirical performance. This work was published in Réda,
Kaufmann, and Delahaye-Duriez (2021) at the 24th Artificial Intelligence and
Statistics conference (AISTATS 2021). 1

1Related code is available at https://github.com/clreda/linear-top-m.
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5.1 Related work

Roughly two types of fixed-confidence algorithms have been proposed for
Top-N identification in an unstructured bandit :

- based on adaptive sampling such as LUCB (Kalyanakrishnan et al.,
2012), or UGapE (Gabillon, Ghavamzadeh, and Lazaric, 2012).

- based on uniform sampling and eliminations (Chen, Li, and Qiao, 2017;
Kaufmann and Kalyanakrishnan, 2013).

At the time of publication, the only efficient algorithms for linear bandits
were proposed for the best arm identification (BAI) problem, which corre-
sponds to N = 1. This setting, first investigated by Soare, Lazaric, and Munos
(2014), recently received a lot of attention. An efficient adaptive sampling
algorithm called LinGapE was proposed by Xu, Honda, and Sugiyama (2018).
Subsequent elimination-based works such as Fiez et al. (2019); Hassidim,
Kupfer, and Singer (2020) sought to achieve the minimal sample complexity.
In particular, the LinGame algorithm of Degenne, Ménard, et al. (2020) was
shown to exactly achieve the problem-dependent sample complexity lower
bound for linear BAI, in the regime in which δ goes to zero (Result 4.3.4).
We note that, in principle, LinGame can be used for any pure exploration
problem in a linear bandit, which includes Top-N identification for N > 1.
However, this algorithm relies on a game theoretic formalism which needs
the computation of a best response for Nature in response to the player’s
selection ; a computable expression of this strategy was (at that time) not
available to our knowledge for Top-N (N > 1). Besides, naively computing
the information-theoretic lower bound for Top-N identification is computa-
tionally hard. 2

These remarks led us to investigate efficient adaptive sampling algo-
rithms for Top-N identification (N ≥ 1) in linear bandits, which are still
missing in the literature, instead of trying to propose asymptotically optimal
algorithms, as done in linear BAI. First, by carefully looking at existing
adaptive sampling bandits for unstructured Top-N identification, we propose
a generic algorithm structure based on gap indices, called gap-index focused
algorithms (GIFA), which encompasses existing adaptive algorithms for un-
structured Top-N identification and linear BAI. This structure allows a higher
order and modular understanding of the learning process, and correctness
properties can readily be inferred from a partially specified bandit algorithm.
It allows us to define two interesting new algorithms, called N-LinGapE
and LinGIFA. Then, we present a unified sample complexity analysis of a

2Note that we tackled both issues in Chapter 6.
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subclass of GIFA which comprises existing methods. Finally, we empirically
show that N-LinGapE and LinGIFA perform better than their counterparts for
unstructured bandits, which showcases the importance of side information
in sample efficiency.

5.2 General structure for efficient algorithms

As mentioned in Definition 4.1.1, we consider one-dimensional subgaussian
distributions of fixed variance σ2 > 0, which are uniquely defined by their
vector of expected rewards per arm. At each round t, the agent observes
Yt ∼ νIt from pulled arm It. We solve Top-N identification with error rate
δ ∈ (0, 1) and any margin ε ≥ 0, that is, for a model function f ∈Mlin

find S⋆N(ε) :=
{
a ∈ [K] | f(Xa) ≥

N
max
i∈[K]

f(Xi)− ε
}
.

Estimation of the linear structure

The learner needs to estimate the unknown linear parameter θ ∈ Rd, which
can be done via a (regularized) least-squares estimator, defined as follows.
For any arm a ∈ [K] and at round t, we define the number of times a is
sampled up to round t included as

Na(t) :=
∑
s≤t

1(Is = a) ,

and the κ-regularized design matrix and least-squares estimate of θ as

V̂ κ(t) := κId +
∑
a∈[K]

Na(t)XaX
⊤
a and θ̂(t) :=

(
V̂ κ(t)

)−1
(∑

s≤t

YsXIt

)
.

Note that matrix σ2
(
V̂ κ(t)

)−1

can be interpreted as the posterior covariance
in a Bayesian linear regression model, in which the covariance of the prior
is σ2/κId.
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Introduction to gap indices

Any adaptive sampling-based algorithm mentioned in Section 5.1 –along
with the GIFA family that we introduce– crucially relies on estimating the
gaps (∆i,j)(i,j) between pairs of arms (i, j) ∈ [K]2 for any model f ∈Mlin

∀i ∈ [K] ∀j ∈ [K], ∆i,j := f(Xi)− f(Xj) .

One way to achieve this estimation is by building upper confidence bounds
(UCBs) on these quantities ; i.e., indices (Ui,j(t))i,j,t such that the following
inequalities all hold with high probability

∀i ∈ [K] ∀j ∈ [K] ∀t > 0, ∆i,j ≤ Ui,j(t) .

For this purpose, we respectively introduce the empirical arm-individual
mean and the empirical arm-pairwise gap at round t

∀a ∈ [K], µ̂a(t) :=
(
θ̂(t)

)⊤
Xa and ∀(a, b) ∈ [K]2, ∆̂a,b(t) := µ̂a(t)− µ̂b(t) .

A first option to build UCBs on pairwise gaps (∆i,j)i,j consists in building
individual confidence intervals –that is, lower and upper bounds for ∆i,j for
any i, j– on the mean of each arm a ∈ [K]. These (symmetrical) confidence
intervals are of the form {µ̂a(t)±Wa(t)}, where Wa(t) := σ2Tδ(t)‖Xa‖(V̂ κ(t))−1, for
some threshold function Tδ(·) to be specified later. ‖ · ‖M is the Malahanobis
norm for any positive definite matrix M, such that, for any vector x, ‖x‖M :=√
x⊤Mx. For a well-chosen Tδ(·), and for any pair of arms (i, j) and round t,

the following quantity

Bindi,j (t) := ∆̂i,j(t) +W ind
i,j (t) where W ind

i,j (t) :=Wi(t) +Wj(t)

is an upper bound on ∆i,j (“individual” UCB). Yet, using the linear model,
one can also directly build a “paired” UCB on the difference

Bpairi,j (t) := ∆̂i,j(t) +Wpair
i,j (t) where Wpair

i,j (t) := σ2Tδ(t)‖Xi −Xj‖(V̂ κ(t))−1 .

Both constructions lead to symmetrical bounds, called gap indices, of the
general form Bi,j(t) := ∆̂i,j(t) +Wi,j(t). To sum it up,

Definition 5.2.1. (Symmetrical) gap index. Let us define B·,·(·) = (Bi,j(t))i,j,t
so that Bi,j(t) := ∆̂i,j(t)+Wi,j(t) for any arms (i, j), whereW·,·(·) ∈ ([K]×[K]×N∗ 7→
R+). B·,·(·) is a gap index if, with probability 1− δ

∀i ∈ [K] ∀j ∈ [K] ∀t > 0, ∆i,j ≤ Bi,j(t) .

79



Remark 5.2.2. As shown in Section 5.2, in order to ensure that an algorithm
using gap indices is δ-PAC, we only need those upper confidence bounds to
hold with probability 1 − δ for specific gaps, namely the gaps between the
true good arms and arms which are not in the set of N best arms up to ε

∀j ∈ (S⋆N(ε))
c ∀i ∈ S⋆N ∀t > 0, ∆i,j ≤ Bi,j(t) .

However, to upper bound the sample complexity, we will need Definition 5.2.1.

This generic form of gap index allows us to study and compare in a mod-
ular way the gain (or loss) in performance incurred by different definitions.
For instance, let us compare individual and paired indices. Paired indices
may indeed increase sample-efficiency. First, it directly follows from the
triangular inequality for the Mahalanobis norm ‖ · ‖(V̂ κ(t))−1 that

∀(i, j) ∈ [K]2 ∀t > 0, Wpair
i,j (t) =Wi,j(t) ≤ Wi(t) +Wj(t) =W ind

i,j (t) .

Therefore, if both types of gap indices use the same threshold function Tδ(·),
paired indices are smaller

Bpairi,j (t) = ∆̂i,j(t) +Wpair
i,j (t) ≤ ∆̂i,j(t) +W ind

i,j (t) = Bindi,j (t) .

Moreover, the following lemma implies that paired or individual indices using
arm features can yield smaller bounds on the gaps than individual indices
which do not exploit the structure. This is proven in Réda, Kaufmann, and
Delahaye-Duriez (2021, Lemma 2) by induction, combining the Sherman-
Morrison formula and the Cauchy-Schwartz inequality.

Remark 5.2.3. Note that, in the unstructured case, one can consider the
vectors of the canonical basis of RK as feature vectors : Xa = (1(i = a))i∈[K].
As a consequence, for any round t, V̂ κ(t) = diag(N1(t)+κ,Nb(t)+κ, . . . , NK(t)+κ),
and ‖Xa‖(V̂ κ(t))−1 = 1/

√
Na(t) + κ.

Lemma 5.2.4. Individual versus paired gap indices. The following
inequality holds

∀t > 0 ∀a ∈ [K] ∀y ∈ Rd, ‖y‖(V̂ κ(t))−1 ≤ ‖y‖2/
(√

Na(t)‖Xa‖22 + κ

)
.

In particular, when κ = 0, for any t > 0, and arms a, b ∈ [K]

‖Xa −Xb‖(V̂ κ(t))−1 ≤ ‖Xa‖(V̂ κ(t))−1 + ‖Xb‖(V̂ κ(t))−1 ≤ 1/
√
Na(t) + 1/

√
Nb(t) .

As we will see in the next sections, the gap index plays an important part
in the stopping rule, and the tighter it is, the faster the stopping time will be
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reached. We will show in Section 5.4 that empirically, the choice of paired
indices over individual ones considerably speeds up the sampling phase. We
will describe later how to build these gap indices in practice.

Remark 5.2.5. For any symmetrical gap index B·,·(·), we actually get a full
confidence interval for free. Indeed, for any pair of arms i, j and round t,
the following inequalities hold

−Bj,i(t) ≤ ∆i,j ≤ Bi,j(t) .

Gap-index focused algorithms (GIFA)

Algorithm 6 Structure of GIFA. GIFA for (ε, δ)-PAC Top-N identification,
with four undefined rules stopping, compute_Jt, compute_bt and selection and
gap indices.
1: t← 1
2: # For unstructured bandits
3: initialization()
4: while stopping

(
(Bi,j(t))i,j∈[K]2 ; ε, t

)
> ε do

5: # J(t) is the set of estimated N best arms at t
6: J(t)← compute_Jt((Bi,j(t))i,j, (µ̂i(t))i)
7: # b(t) is the estimated N th best arm a(N) and c(t) its challenger at t
8: b(t)← compute_bt

(
J(t), (Bi,j(t))i,j

)
and ct ← argmax

a ̸∈J(t)
Ba,b(t)(t)

9: # Selection of the sampled arm It

10: It ← selection
(
b(t), c(t); V̂ κ(t− 1)

)
11: Yt ∼ νIt
12: Update design matrix V̂ κ(t), means (µ̂i(t))i (if needed), (Bi,j(t+ 1))i,j
13: t← t+ 1
14: end while
15: ŜN(τGIFA)← J(τGIFA)
16: return ŜN(τGIFA)

The gap indices introduced in Subsection 5.2 allow us to introduce a
generic family of algorithms that encompasses the state-of-the-art in adap-
tive sampling-based algorithms for BAI and Top-N identification. Using this
generic structure, we can easily extend an efficient BAI algorithm, LinGapE,
to Top-N identification : this extension is called N-LinGapE. We also de-
fine another algorithm, called LinGIFA, for Top-N identification which only
needs to keep and track their (symmetrical) gap indices, regardless of their
actual definition. We will discuss the consequences of this flexibility later
in this section. In this section, unless specified, we consider any type of
symmetrical gap index, as defined in Definition 5.2.1.

Algorithm 6 sums up the idea behind GIFA. The principle of GIFA is to
estimate in each round t a set of candidate N best arms, denoted by J(t),

81



GIFA compute_Jt compute_bt selection stopping

LUCB
[N ]

argmax
j∈[K]

µ̂j(t) argmax
j∈J(t)

max
i ̸∈J(t)

Bi,j(t) {b(t), c(t)} τLUCB

UGapE
[N ]

argmin
j∈[K]

N
max
i ̸=j

Bi,j(t) argmax
j∈J(t)

max
i ̸∈J(t))

Bi,j(t) argmax
a∈{b(t),c(t)}

Wa(t) τUGapE

LinGapE argmax
j∈[K]

µ̂j(t) J(t) greedy, τLUCB

optimized

N-LinGapE
[N ]

argmax
j∈[K]

µ̂j(t) argmax
j∈J(t)

max
i ̸∈J(t)

Bi,j(t) greedy, τLUCB

optimized

LinGIFA
[N ]

argmin
j∈[K]

N
max
i ̸=j

Bi,j(t) argmax
j∈J(t)

N
max
i ̸=j

Bi,j(t) greedy, τUGapE

argmax
a∈{b(t),c(t)}

Wa(t)

Table 5.1: Adaptive sampling-based algorithms for linear Top-N
identification. Adaptive sampling-based algorithms for (ε, δ)-PAC Top-N
identification (our proposals are in bold type ; except for LUCB and UGapE,
all algorithms use paired indices instead of individual indices). References :
LUCB (Kalyanakrishnan et al., 2012), UGapE (Gabillon, Ghavamzadeh, and
Lazaric, 2012), LinGapE (Xu, Honda, and Sugiyama, 2018). Greedy and
optimized sampling rules are defined in the main text.

and to select the two most ambiguous arms : b(t) ∈ J(t), which can be
viewed as a guess for the N th-best arm a(N), and a challenger c(t) 6∈ J(t). c(t)
is defined as a potentially misassessed µ(N). c(t) is defined as having the
largest possible gap index to b(t) among the estimated (K −N) worst arms

c(t) := argmax
c∈[K]

Bc,b(t)(t) .

The idea of using two ambiguous arms goes back to the LUCB algorithm
(Kalyanakrishnan et al., 2012) for Top-N identification in unstructured ban-
dits. 3 Selected arm at round t It should help discriminate between b(t)

and c(t). A naive idea is to either draw b(t) or c(t), but alternative selection
rules will be discussed later. At the end of the learning phase, at stop-
ping time τGIFA, the final set ŜN(τGIFA) is equal to J(τGIFA). The part denoted
initialization is an optional phase where all arms are sampled once. 4 We
assume that ties are randomly broken. The yet unspecified parts of the
bandit algorithm remain in the choice of the rules compute_Jt (definition of
J(t)), compute_bt (definition of b(t)), selection rule (choice of It), and the
definition of the stopping rule stopping. Some of these rules may also rely
on the gap indices.

3That is, whenM is the entire set of functions mapping from Rd to R, see Definition 4.1.1.
4Which is a mandatory step for unstructured bandits in order not to sample at random

in the first rounds, but might be ignored for structured ones, provided κ > 0.
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Rules compute_Jt, compute_bt. Table 5.1 presents some instanciations of
the GIFA structure presented in Algorithm 6. Two types of algorithms can
be distinguished :

- the LUCB-GIFA type, which most intuitively computes J(t) as the empir-
ical set of µ(N) arms and b(t) as the arm in J(t) closest to [K] \ J(t) in terms of
(estimated) expected reward. It comprises of algorithms LUCB (Kalyanakr-
ishnan et al., 2012), LinGapE (Xu, Honda, and Sugiyama, 2018), and N-
LinGapE.

- the Gap-GIFA type. This subclass of GIFA includes the unstructured
bandit algorithm UGapE (Gabillon, Ghavamzadeh, and Lazaric, 2012) and
LinGIFA.

To better understand the rules associated with Gap-GIFA, we first prove
the following result for any gap index

Lemma 5.2.6. Upper bound on the gap to a(N). If B·,·(·) is a gap index in
the sense of Definition 5.2.1, then with probability 1− δ

∀t > 0 ∀a ∈ [K], µ(N) − µa ≤
N
max
b∈[K]

Bb,a(t) .

Proof. Except for some degenerate cases where two arm features are equal
and the past observations made from both arms are exactly the same, we
can assume that, at fixed arm a ∈ [K] and round t > 0, values (Bb,a(t))b∈[K] are
distinct. Then, assume towards contradiction that there exists a round t > 0

and an arm i ∈ [K] such that

N
max
j∈[K]

Bj,i(t) < µ(N) − µi = ∆a(N),i .

Then, using the definition of gap index in Definition 5.2.1, with probability
greater than 1− δ, for any k ∈ S⋆N =

N
argmax

a∈[K]

µa

Bk,i(t) ≥ ∆k,i ≥ ∆a(N),i >
N
max
j∈[K]

Bj,i(t) .

That means that at least N distinct values of (Bj,i(t))j∈[K] are strictly greater

than
N
max
j∈[K]

Bj,i(t), which contradicts the definition of operator
N
max
a∈[K]

.

Remark 5.2.7. In UGapE, which only uses individual indices, the following
result (Gabillon, Ghavamzadeh, and Lazaric, 2012, Lemma 1) was shown

∀t > 0 ∀a ∈ [K], µ(N) − µa ≤
N
max
b ̸=a

Bb,a(t) .
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However, it only holds for general gap indices when a 6∈ S⋆N (see the previous
proof). Nonetheless, for any Gap-GIFA A, at any time t < τA

N
max
c ̸=b(t)

Bc,b(t)(t) > 0 ,

meaning that if b(t) ∈ S⋆N , then
N
max
c ̸=b(t)

Bc,b(t)(t) > 0 ≥ µ(N) − µb(t) which makes

the lemma hold in that important case, which justifies the stopping rule, as
shown below.

Then, in Gap-GIFA, at round t, the set J(t) is the set of arms which true
expected rewards are more likely to minimize the (signed) distance to µ(N).
In a similar fashion, arm b(t) is the arm which true expected reward µb(t)

is likely to maximize the distance to µ(N) among arms in J(t). Then b(t) is
a proxy for arm a(N). Indeed, using the definition of b(t) in LinGIFA, and
Lemma 5.2.6

max
j∈J(t)

N
max
i ̸=j
Bi,j(t) =

N
max
i ̸=b(t)

Bi,b(t)(t) ≥ µ(N) − µb(t) .

Stopping times. We restrict our attention to two stopping times already
proposed for the LUCB (Kalyanakrishnan et al., 2012) and UGapE (Gabillon,
Ghavamzadeh, and Lazaric, 2012) algorithms, respectively

τ LUCB := inf
{
t ∈ N∗ | Bc(t),b(t)(t) ≤ ε

}
and τUGapE :=

{
t ∈ N∗ |max

j∈J(t)

N
max
i ̸=j
Bi,j(t) ≤ ε

}
.

Why do these stopping times work? Let us deconvolute their expression.

τ LUCB relies on quantity Bc(t),b(t)(t), which is defined in all algorithms using
stopping time τ LUCB as

Bc(t),b(t)(t) =max
j∈J(t)

max
i ̸∈J(t)

Bi,j(t) ≥max
j∈J(t)

max
i ̸∈J(t)

∆i,j =max
i ̸∈J(t)

µi − min
j∈J(t)

µj ,

by definition of b(t) and c(t), and using the fact that B·,·(·) is a gap index. If
the algorithm correctly identifies J(τ LUCB) = S⋆N(ε) at stopping time, then

ε ≥ Bc(τLUCB),b(τLUCB)(τ LUCB) ≥ µ(N+1) − µ(N) .

So stopping time τ LUCB actually tracks the value µ(N+1) − µ(N), that is, the
separation (i.e., the minimum gap) between arms in J(t) and in [K] \ J(t) at
each round t.

What about τUGapE? Using Gabillon, Ghavamzadeh, and Lazaric (2012,
Lemma 1) for individual indices at stopping time τUGapE, if J(τUGapE) = S⋆N(ε),
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then
ε ≥ max

j∈S⋆
N (ε)

N
max
i ̸=j
Bi,j(τUGapE) ≥ µ(N) − min

j∈S⋆
N (ε)

µj = 0 ,

that is, stopping time τUGapE tracks the distance of the worst-performing arm
in J(t) to a(N) at each round t. Now, intuitively, since this distance can reach 0

–contrary to what is tracked by τ LUCB– it seems that this stopping rule τUGapE

stops earlier than τ LUCB, given the same past observations. This claim can
be proven for any gap index

Lemma 5.2.8. τUGapE stops earlier than τLUCB. For any t > 0, for any
subset J ⊆ [K] of size N, for any j ∈ J, and any values (Bi,j(t))i,j

N
max
i ̸=j
Bi,j(t) ≤max

i ̸∈J
Bi,j(t) , which implies max

j∈J

N
max
i ̸=j
Bi,j(t) ≤max

j∈J
max
i ̸∈J

Bi,j(t) .

Proof. Indeed, for any round t > 0 and arm j ∈ J

N
max
i ̸=j
Bi,j(t) = min

S⊆[K]
|S|=N−1

max
i ̸∈(S∪{j})

Bi,j(t) ,

since the set S matching the outer bound is
[N−1]

argmax
i∈[K]

Bi,j(t), meaning that we

consider the maximum value over the set of (Bi,j(t))t>0,i∈[K] from which the

N−1 largest values (and Bj,j(t), if j does not already belong to
[N−1]

argmax
i∈[K]

Bi,j(t))

are removed. Then consider S = J \{j} ⊆ [K] of size N −1 (since j ∈ J). Then

N
max
i∈[K]

Bi,j(t) ≤ max
i ̸∈((J\{j})∪{j})

Bi,j(t) =max
i ̸∈J

Bi,j(t) .

We will empirically compare these two stopping rules in Section 5.4.

Selection rule. Besides the gap indices, this is the part where all infor-
mation about the structure is concentrated. Regarding the selection rules
shown in Table 5.1, Gap-GIFA algorithms select the least sampled arm among
b(t) and c(t), which coincides with the following rule that we propose for a
general setting, that is, at round t

It ← argmax
a∈{b(t),c(t)}

Wa(t) , (largest variance) (5.1)

which is still defined even when considering paired indices. In the original
version of LUCB (Kalyanakrishnan et al., 2012), both arms b(t) and c(t) are
sampled at time t, but the analysis that we propose in this paper obtains
similar guarantees for LUCB using the largest variance rule, so we only

85



consider this selection rule in the remainder of the chapter. In LinGapE (Xu,
Honda, and Sugiyama, 2018), authors propose two different selection rules
to possibly sample another arm that would reduce at round t the variance
on the estimation of gap ∆c(t),b(t)

It ← argmin
a∈[K]

‖Xc(t) −Xb(t)‖(V̂ κ(t−1)+XaX⊤
a )−1 , (greedy) (5.2)

and It ← argmax
a∈[K]

ω⋆
a(b(t),c(t))>0

Na(t)
‖ω⋆(b(t), c(t))‖1
|ω⋆a(b(t), c(t))|

, (optimized) (5.3)

where ω⋆(b(t), c(t)) ∈ RK is a minimizer to the following optimization problem

min
ω∈RK

‖ω‖1 s.t. Xb(t) −Xc(t) = ωX . (5.4)

As explained by Xu, Honda, and Sugiyama (2018), these two rules are
meant to bring the empirical proportions of arm selections close to an op-
timal design (ω1, ω2, . . . , ωK) which asymptotically minimizes quantity ‖Xb(t) −
Xc(t)‖(∑a∈[K] ωaXaX⊤

a )−1. This quantity is present in the lower bound for best arm
identification in linear bandits (Fiez et al., 2019).

Novel algorithms. As previously mentioned, we introduce two new
algorithms : an extension of LinGapE (Xu, Honda, and Sugiyama, 2018)
to Top-N identification named N-LinGapE, and a new algorithm of type
Gap-GIFA named LinGIFA, with a completely new rule for the computation
of arm b(t). The strength of LinGIFA is that it is completely defined in terms
of gap indices, and, as such, may be improved by deriving tighter bounds
on the gaps.

Moreover, we emphasize that, provided that the regularizing constant κ in
the design matrix V̂ κ(t) is positive at any round t, both LinGapE and LinGIFA
can be run without an initialization phase. This permits to avoid the initial
sampling cost when the number of arms is large that was noticed by Fiez
et al. (2019). However, both algorithms still need to compute maximizers
or minimizers over the whole set of arms during the learning rounds (for
instance, when computing set J(t)). This might be mitigated by considering
only a subset of arms when computing these rules, as mentioned in the
experimental part of Réda, Tirinzoni, and Degenne (2021).
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5.3 Theoretical guarantees in GIFA

In this section, we present theoretical guarantees on GIFA. The fact that
these algorithms are (ε, δ)-PAC (Definition 4.1.4) is a consequence of generic
correctness guarantees that can be obtained for partially specified GIFA
algorithms, which rely on the definition of gap indices (Definition 5.2.1). We
further analyze the sample complexity of LUCB-GIFA algorithms, for instance
N-LinGapE, in a unified proof.

Correctness analysis

We justify that the two stopping rules τ LUCB and τUGapE introduced in Sec-
tion 5.2 lead to (ε, δ)-PAC algorithms, in the sense of Definition 4.1.4. This
holds provided the following condition on the gap indices

Definition 5.3.1. Good gap indices. Let us denote

EGIFA :=
⋂
t>0

⋂
i ̸∈S⋆

N (ε)

⋂
j∈S⋆

N (ε)

{Bj,i(t) ≥ ∆j,i} .

Then a good choice of gap indices (Bi,j(t))i,j,t>0 satisfies P[EGIFA] ≥ 1− δ.

We will show that such a choice of good gap indices exist, and any
symmetrical gap index as in Definition 5.2.1 will satisfy this constraint. First,
we observe that on event EGIFA, for any GIFA A (Algorithm 6), both stopping
rules τ LUCB and τUGapE output a (ε, δ)-correct answer.

Theorem 5.3.2. On event EGIFA, if A is from the family GIFA, then
LUCB-GIFA. If b(t) := argmax

j∈J(t)
max
i ̸∈J(t)

Bi,j(t), then J(τ LUCB) = ŜN(τA) ⊆ S⋆N(ε).

Gap-GIFA. If b(t) ∈ J(t), then J(τUGapE) = ŜN(τA) ⊆ S⋆N(ε).

Proof. Assume towards contradiction that at stopping time τA ∈ {τ LUCB, τUGapE},
there exists an arm b ∈ J(τA) ∩ (S⋆N(ε))

c (meaning that there is a mistake in
the recommendation). If there is another arm c ∈ S⋆N such that Bc,b(τA) ≤ ε, 5

then using event EGIFA and c ∈ S⋆N(ε)

µ(N) − µb ≤ ∆c,b ≤ Bc,b(τA) ≤ ε =⇒ µ(N) − ε ≤ µb ,

which is a contradiction to the fact that b 6∈ S⋆N(ε). We will actually show that
such an arm c always exists. Assuming towards contradiction that it does

5Be careful that here we consider c ∈ S⋆N (one of the N best arms), and not c ∈ S⋆N (ε) (one
of the N best arms up to ε).
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not exist, and introducing set CN(b) := {a ∈ [K]\{b} | Ba,b(τA) > ε}, the following
two claims hold

∀c ∈ S⋆N , Bc,b(τA) > ε =⇒ S⋆N ⊆ CN(b) , (5.5)

∀c ∈ S⋆N , Bc,b(τA) > ε and |S⋆N | = N =⇒
N

argmax
a ̸=b

Ba,b(τA) ∈ CN(b) . (5.6)

Let us split the proof in two parts for each stopping rule
LUCB-GIFA (τA = τLUCB). Using the definition of τ LUCB, c(t), b(t), and b ∈
J(τ LUCB), it holds that for any c 6∈ J(τ LUCB)

Bc,b(τ LUCB) ≤ max
j∈J(τLUCB)

max
i ̸∈J(τLUCB)

Bi,j(τ LUCB) = Bc(τLUCB),c(τLUCB)(τ LUCB) ≤ ε .

Then
(
J(τ LUCB)

)c ⊆ ([K]−{b})\CN(b). Then, by Equation (5.5), S⋆N∩
(
J(τ LUCB)

)c
=

∅, which means S⋆N ∩ J(τ LUCB) 6= ∅ since both sets are not empty, of size N,
which implies that S⋆N = J(τ LUCB). Then

J(τ LUCB) ∩ (S⋆N(ε))
c = S⋆N ∩ (S⋆N(ε))

c = ∅ ,

which is a contradiction to the fact that b ∈ J(τ LUCB) ∩ (S⋆N(ε))
c.

Gap-GIFA (τA = τUGapE). Using the definition of τUGapE, and b ∈ J(τUGapE)

N
max
a ̸=b

Ba,b(τUGapE) ≤ max
j∈J(τUGapE)

N
max
i≠j
Bi,j(τUGapE) ≤ ε ,

but, according to Equation (5.6),
N
max
a ̸=b

Ba,b(τUGapE) > ε, which is a contradic-

tion. Hence, there always is c ∈ S⋆N such that Bc,b(τA) ≤ ε, which allows us to
prove the theorem.

It easily follows from Theorem 5.3.2 that if LinGapE or LinGIFA are based
on good gap indices in the sense of Definition 5.3.1, both algorithms are
δ-PAC. We exhibit below a threshold function Tδ(·), which defines the width
of the upper confidence bounds, for which the corresponding gap indices are
good gap indices.

Lemma 5.3.3. Example of good gap indices. If for any pair of arms (i, j)

and round t > 0, gap index Bi,j(t) is of the form

∆̂i,j(t)+σ
2Tδ(t)W̃i,j(t) , where W̃i,j(t) :=

{
‖Xi −Xj‖(V̂ κ(t))−1 (paired) ,

‖Xi‖(V̂ κ(t))−1 + ‖Xj‖(V̂ κ(t))−1 (individual) ,

and

Tδ(t) :=

√
2 ln

(
1

δ

)
+ d ln

(
1 +

(t+ 1)L2

κd

)
+

√
κ

σ
S ,

with L := max
a∈[K]

‖Xa‖2 and S ∈ R+ is such that ‖θ‖2 ≤ S, then B·,·(·) is a good

88



gap index in the sense of Definition 5.3.1.

Proof. The proof follows from the fact that⋂
t∈N∗

{
‖θ̂(t)− θ‖V̂ κ(t) ≤ σ2Tδ(t)

}
⊆ EGIFA ,

together with Kaufmann (2014, Lemma 4.1) which yields

P
[
∀t ∈ N∗, ‖θ̂(t)− θ‖V̂ κ(t) ≤ σ2Tδ(t)

]
≥ 1− δ .

For paired indices, the inclusion follows from the fact that, for any pair of
arms (i, j) and round t > 0∣∣∣∆̂i,j(t)−∆i,j

∣∣∣ = ∣∣∣(θ̂(t)− θ)⊤(Xi −Xj)
∣∣∣ ≤(1) ‖θ̂(t)−θ‖V̂ κ(t)‖Xi−Xj‖(V̂ κ(t))−1 ≤(2) W̃i,j(t) ,

where (2) is either an equality for paired indices, or the application of the
triangle inequality for individual indices. (1) is shown by proving that, as a
general rule, for any pair of vectors x, y ∈ Rd and positive definite matrix Σ

∣∣x⊤y∣∣ ≤ ‖x‖Σ‖y‖Σ−1 .

Indeed, using the Cauchy-Schwarz inequality

∣∣x⊤y∣∣ = ∣∣(Σ⊤x)⊤Σ−1y
∣∣ ≤ ‖Σ⊤x‖2‖Σ−1y‖2 = ‖x‖Σ‖y‖Σ−1 .

Remark 5.3.4. Note that L can easily be computed, since the agent has
access to all the feature vectors. In order to provide a good value for S, if
we know an upper bound M on the maximum absolute value of any of the
expected rewards (µa)ain[K] (which is slightly easier to obtain depending on
the application case), then using the fact that µa = θ⊤Xa for any arm a ∈ [K]

∀a ∈ [K], |µa| =
∣∣θ⊤Xa

∣∣ ≤ L× S ≤M ,

and then use S = L/M as a proxy.
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Unified sample complexity analysis

We derive below a high-probability upper bound on the sample complexity –
that is, on the maximum value of τGIFA– of the subclass LUCB-GIFA, combined
with different selection rules, and a conjecture on the sample complexity
upper bound for Gap-GIFA algorithms. More precisely, we upper bound the
sample complexity on event

E :=
⋂
t>0

⋂
i∈[K]
j∈[K]

(∆i,j ∈ [−Bj,i(t),Bi,j(t)]) , (5.7)

which is included in EGIFA. Considering any gap index of the form described in
Definition 5.2.1, combined with Remark 5.2.2, event E holds with probability
1− δ.

Theorem 5.3.5. Sample complexity of LUCB-GIFA algorithms. On
event E, stopping time τ LUCB satisfies on model function f ∈Mlin

τ LUCB ≤ inf
{
u ∈ R∗+ | u > 1 +HLUCB-GIFA(f)(Tδ(u))2

}
,

where, depending on the selection rule
Largest variance rule (Eq. (5.1))/sampling both b(t) and c(t).

HLUCB-GIFA(f) := 4σ2
∑
a∈[K]

max
(
ε,
ε+∆a

3

)−2

,

Optimized rule (Eq. (5.3)).

HLUCB-GIFA(f) := σ2
∑
a∈[K]

max
i,j∈[K]2

|ω⋆a(i, j)|

max
(
ε, ε+∆i

3
,
ε+∆j

3

)2 ,
where ω⋆(i, j) is the minimizer of Problem (5.4) for any pair of arms (i, j).

We compare all these claims to known results from the literature in Ta-
ble 5.2, in particular, with regard to their complexity constant HGIFA(f) for
f ∈Mlin :=

{
x 7→ θ⊤x | θ ∈ Rd

}
. We note that all GIFA algorithms have a scaling

which is roughly of order O(
∑

a∈[K](ε+∆a)
−2) when using the largest variance

selection rule, or, interchangeably, the selection of both arms b(t) and c(t) at
each round t. This is on par with what is observed in unstructured bandits
in prior works.

Moreover, more sophisticated rules –namely, greedy and optimized se-
lection rules– allow a possibly smaller scaling which might account for their
empirical performance compared to the more naive largest variance rule.
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Algorithm Upper bound

Unstructured inf {u ∈ R∗+ | u > 1 +Huns(f)(Tδ(u))2}

LUCB Huns(f) := 2
∑

amax (ε/2,∆a)
−2

UGapE Huns(f) := 2
∑

amax (ε, (ε+∆a)/2)
−2

GIFA⋆ inf
{
u ∈ R∗+ | u > 1 +Hlin(f)(Tδ(u))2

}
Largest var. Hlin(f) := 4σ2

∑
amax (ε, (ε+∆a)/3)

−2

Optimized Hlin(f) := σ2
∑

a max
i,j∈[K]2

|ω⋆a(i, j)| (max (ε, (ε+∆i)/3, (ε+∆j)/3))
−2

Greedy⋆ Hlin(f) := σ2
∑

a max
i,j∈[K]2

∥Xi−Xj∥22
∥Xa∥22

(max (ε, (ε+∆i)/3, (ε+∆j)/3))
−2

Table 5.2: Sample complexity results for linear bandits. Sample
complexity results for unstructured and linear bandits on any model function
f ∈ Mlin. ω⋆ is defined as the minimizer of Problem (5.4). Our proposed
algorithms are in bold type, and conjectures are denoted with a superscript
star. I omit factors in O(K) in unstructured bandit algorithms.

However, at fixed arm a, no problem-dependent upper bound is known on
quantity |ω⋆a(i, j)| for any arms (i, j), where ω⋆(i, j) is solution to Problem (5.4),
which intervenes in the complexity constant for the optimized selection rule.
If it exists, let us denote it Γa(X). Then the associated constant would be

upper-bounded by a quantity of order O
(
σ2max

b∈[K]
Γb(X)Kmaxa(ε+∆a)

−2

)
. If

1 � σ2max
b∈[K]

Γb(X), then this quantity depends on something indeed smaller

than the sample complexity of unstructured bandit algorithms. This bound
for the optimized selection rule is similar to what was derived in the original
paper of LinGapE (Xu, Honda, and Sugiyama, 2018) for best arm identifica-
tion. 6

For the conjectured bound for the greedy rule, consider the following ratio
between the ℓ2 norms of feature vectors at fixed arm a ∈ [K] 7

Γ′
a(X) := max

i,j∈[K]2

‖Xi −Xj‖2
‖Xa‖2

≤ 2L(‖Xa‖2)−1 .

Th associated complexity constant is then upper bounded by a factor

O
(
σ2max

b∈[K]
Γ′
b(X)Kmax

a
(ε+∆a)

−2

)
.

6However, note that the gaps depend on N and thus are defined differently.
7We suspect that, if X is well-conditioned (w.r.t. a well-chosen norm), Γ′

a(X) ≈ O(1).
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Sketch of proof. The proof of Theorem 5.3.5 generalizes and extends
the proofs for unstructured and linear Top-N identification, with both paired
and individual gap indices. Only a big picture of the proof is provided. The
full proof is contained in the supplementary part in Réda, Kaufmann, and
Delahaye-Duriez (2021). Appendix 12 comprises of the computations that
guided Conjectures 5.3.9 and 5.3.10. As mentioned in Table 5.1, the LUCB-
GIFA type of algorithms comprises of the following two rules : at round t

J(t) := argmax
j∈[K]

µ̂a(t) (compute_Jt) and b(t) := argmax
j∈J(t)

max
i ̸∈J(t)

Bi,j(t) (compute_bt).

This class of algorithms includes LinGapE (Xu, Honda, and Sugiyama, 2018)
for best arm identification, our proposal N-LinGapE for Top-N identification,
but also LUCB (Kalyanakrishnan et al., 2012). The key ingredient in the
proof is a lemma that gives an upper bound for any round t on the stopping
quantity Bc(t),b(t)(t). This lemma holds for any gap index satisfying Defini-
tion 5.2.1

Lemma 5.3.6. Upper bound on the stopping quantity (LUCB-GIFA).
On event E, for any round t > 0

Bc(t),b(t)(t) ≤min
(
−max(∆b(t),∆c(t)) + 2Wc(t),b(t)(t), 0

)
+Wc(t),b(t)(t) .

This result is shown by case disjunction on the membership of b(t) and
c(t) to S⋆N(ε). This is a counterpart to Lemma 4 in Xu, Honda, and Sugiyama
(2018), but does not require |J(t)| = 1 at round t > 0, notably by noticing
that, by definition of b(t) and c(t), for any N ≥ 1,

Bc(t),b(t)(t) =max
j∈J(t)

max
i ̸∈J(t)

Bi,j(t) .

In order to get the upper bound in Theorem 5.3.5 using the optimized rule
(Equation (5.3)), one can straightforwardly apply Xu, Honda, and Sugiyama
(2018, Lemma 1) to the inequality in Lemma 5.3.6. For the selection rule
which either selects both b(t) and c(t), or the largest variance rule (Equa-
tion (5.1)), by combining Lemma 5.3.6 with the definition of the stopping
time τ LUCB, we obtain the following upper bound on the number of times
NIt(t) that arm It has been sampled up to round t included, at any round
t < τ LUCB

Lemma 5.3.7. Upper bound on the number of selections (LUCB-GIFA,
largest variance rule). For any round t > 0, t < τ LUCB

NIt(t) ≤ 4σ2(Tδ(t))2max
(
ε,
ε+∆It

3

)
.
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Finally, we apply the following result

Lemma 5.3.8. Inversion lemma. Let f : [K] × (0, 1) × N∗ → R∗+ be a
nondecreasing function in its last argument, and It the set of sampled arms
at exactly round t. Let E be an event such that for any t < τA, for any δ ∈ (0, 1),
there is an arm It ∈ It such that NIt(t) ≤ f(It, δ, t). Then, on event E,

τA ≤ inf

u > 0 | u > 1 +
∑
a∈[K]

f(a, δ, t)

 .

The proof for both lemmas is available in Réda, Kaufmann, and Delahaye-
Duriez (2021). I also propose a few conjectures present in Table 5.2, as
listed below

Conjecture 5.3.9. Sample complexity of Gap-GIFA. On event E, stop-
ping time τUGapE satisfies on model function f ∈Mlin

τUGapE ≤ inf
{
u > 0 | u > 1 +HGap-GIFA(f)(Tδ(u))2

}
,

where, depending on the selection rule
Largest variance rule (Eq. (5.1))/sampling both b(t) and c(t).

HGap-GIFA(f) := 4σ2
∑
a∈[K]

max
(
ε,
ε+∆a

3

)−2

.

Conjecture 5.3.10. Greedy rule (Eq. (5.2)). On event E and model func-
tion f ∈Mlin, using the same notations as in Theorem 5.3.5

HLUCB-GIFA(f) := σ2
∑
a∈[K]

max
i,j∈[K]2

‖Xi −Xj‖22
‖Xa‖22

max
(
ε,
ε+∆i

3
,
ε+∆j

3

)−2

.

5.4 Application to drug repurposing

We compared the empirical performances of both GIFA proposals –namely,
N-LinGapE and LinGIFA– to the two adaptive sampling algorithms for un-
structured models in GIFA, that is, LUCB (Kalyanakrishnan et al., 2012) and
UGapE (Gabillon, Ghavamzadeh, and Lazaric, 2012). These algorithms were
applied to a drug repurposing instance created using the drug scoring in
Chapter 3 on 21 drugs –comprised of 10 antiepileptics and 11 proconvulsants,
that is, that trigger seizures. In practice, the scores for each drug and patient
profile have been obtained prior to the experiments, and saved in a matrix.
When an agent asks for the evaluation of a given arm, a patient index is
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sampled at random, and the score related to the arm and this patient is
returned. At first, drug signatures directly computed from LINCS L1000, as
described in Chapter 3, were considered as feature vectors in R194. However,
the underlying model is very far from being linear, and this fact incurred
empirical error rates higher than δ. The next chapter (Chapter 6) is actually
motivated by this issue. In the meanwhile, in order to test our theoretical
results on GIFA, a feature transformation procedure is performed on the drug
signatures, as done in Papini et al. (2021, Appendix F.4). This procedure only
transforms the feature vectors such that the resulting model is –roughly–
linear. This procedure goes as follows : a linear model is extracted from
the data by first fitting a neural network that regresses a linear model from
each feature vector Xa to score µa for any arm a. Then, the activations from
the last layer are selected as feature vectors (of dimension d = 15), and the
associated network parameters constitute the linear parameter θ. The ℓ∞

norm of the difference between the predictions of the resulting linear model
and the scores (µa)a∈[K] is equal to 0.132, which is lower than the minimum
gap ∆a(N)a(N+1)

≈ 0.14 for N = 3, which is enough to assume in practice that this
transformed model is quasi-linear (Ghosh, Chowdhury, and Gopalan, 2017;
Réda, Tirinzoni, and Degenne, 2021). To sum it up, the feature vectors of
dimension d = 15 are considered, and observed rewards are computed true
scores from a randomly selected patient for the sampled treatment.

Remark 5.4.1. Of course, in a real-life setting, one does not have access
to the true labels (average scores) associated with candidate drugs. Such
a setting is however useful to check if our theoretical results empirically
hold. In practice, either a non-linear algorithm should be considered on
the untransformed data (see next Chapter 6), or either the (quasi) linearity
of the data should be assessed on some datapoints (drugs) such that the
recommendations from linear algorithms can be trusted. For instance, if the
number of features is a lot larger than the number of arms/candidate drugs,
the problem is intrinsically linear –but remember that a large number of fea-
tures will result with high computing cost, due to the matrix multiplications
which are cubic in the number of features. Application to “real life” drug
repurposing is performed in Appendix 14.

In this experiment, we consider σ2 = 1, δ = 0.1, N = 3 and we set ε to 0.2.
For each algorithm, we use the corresponding theoretically-supported gap
index, and we run it 100 times on the drug repurposing problem, in order to
estimate its average empirical error rate and sample complexity.

One boxplot per algorithm is displayed in Figure 5.1. The y-axis cor-
responds to the sample complexity while the x-axis shows the algorithmic
variants, with their reported empirical error rate δ̂ computed across the 100
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Figure 5.1: Drug repurposing instance with linear bandits. Drug
repurposing instance with linear bandit algorithms (number of dimensions
d = 15, σ = 1, δ = 10 %, ε = 0.2 > ∆a(N)a(N+1)

≈ 0.14, N = 3, 100 iterations) with
their reported empirical error rates δ̂.

iterations, and rounded up to the 5th decimal place. Individual outcomes are
shown as gray dots. Strikingly, both LUCB and UGapE, but also the version
of LinGIFA which uses individual gap indices instead of paired ones, need
more than 10, 000 samples at each iteration of the experiment –which is why
they are not shown in the boxplot. We have tested several versions of our
two proposals :

- LinGIFA with the largest variance selection rule (LinGIFALargevar).

- LinGIFA (that is the version mentioned in Table 5.1 with the greedy
selection rule).

- LinGIFA with the stopping rule τ LUCB instead of τUGapE (LinGIFATLUCB).

- N-LinGapE with the optimized selection rule (LinGapEOptimized).

- The default version of N-LinGapE shown in Table 5.1 with the greedy
selection rule (LinGapE).

This plot hightlights several interesting points :

1. Taking into account feature vectors is crucial for sample-efficient
algorithms, at the condition of selecting the appropriate structure. Especially
in this drug repurposing instance, linear algorithms perform better by several
orders of magnitude than unstructured ones.

2. The experiment with the version of LinGIFA using individual gap indices
shows that upper confidence bounds built with individual gap indices can be
a lot larger than those associated with paired indices, which was predicted
by our Lemma 5.2.4. Moreover, this suggests that the loss of performance
between unstructured and linear bandit algorithms is mainly due to the use
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Figure 5.2: Comparison between the two stopping rules. Plotting τ LUCB
against τ LUCB on a same set of 100 trajectories of the version of LinGIFA using
the stopping rule τ LUCB (LinGIFATLUCB) on the drug repurposing instance.
The blue curve (“τ LUCB”) plots Bc(t),b(t)(t) at each round t : the solid line being
the average value at round t across the 100 iterations, the blue lighter zone
the interval around the average value ± the standard deviation. Similarly,
the red curve (“τUGapE”) plots max

j∈J(t)

N
max
i ̸=j
Bi,j(t).

of individual gap indices, in addition to less sophisticated selection rules.

3. As expected from the conclusion of our Lemma 5.2.8, LinGIFA (the
default version using the stopping rule τUGapE) is more sample-efficient than
LinGIFATLUCB (the version of LinGIFA which only differs by the use of
stopping rule τ LUCB). Figure 5.2 plots the two curves associated with stopping
quantities Bc(t),b(t)(t) (for τ LUCB), max

j∈[K]

N
max
i ̸=j

Bi,j(t) (for τUGapE) on the same 100

trajectories, which empirically confirms Lemma 5.2.8.

4. On average, LinGapE (N-LinGapE with the greedy selection rule) ends
before LinGapEOptimized (N-LinGapE which uses the optimized selection
rule), although the speedup is roughly of 7%, which seems to confirm our
Conjecture 5.3.10.

5.5 Discussion

This chapter introduced a family of algorithms aimed at solving Top-N iden-
tification for linear models. According to Table 5.2, the sample complexity-
related constant is always at most of order O(

∑
k(ε+∆k)

−2), which is similar
to what holds for unstructured bandits. However, can we exhibit an algo-
rithm for Top-N identification which would be theoretically optimal (that is,
asymptotically optimal, in the sense of Result 4.3.4)? Can we even get an
easily computable version of the lower bound in Result 4.3.3? Moreover,
how robust are these algorithms to non-linearity in the model? These points
motivate the next chapter.
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Chapter 6

Dealing with non-linear models

In Chapter 5, I studied the integration of feature vectors into a Top-N iden-
tification problem for bandits. As discussed in the conclusion of Chapter 5,
although linear models are extremely attractive for their interpretability and
the existence of associated efficient algorithms, real-life models might de-
viate from linearity. In particular, there might not be any valid value of
parameter θ in the linear regression described in Subsection 5.2. As a
consequence, the confidence intervals might not hold anymore, and the
algorithm might return errors with rate higher than δ. In Table 6.1, I exhibit
a synthetic experiment that shows that an efficient linear bandit algorithm
can fail a lot more often than δ% of the time when facing non-linear models.

Ψ 0 1 2 2.7 2.8 3 4 5

δ̂ 0% 0% 0% 1% 6% 28% 100% 100%

Table 6.1: Running a linear bandit algorithm on an increasingly
non linear model. Empirical error δ̂ from running N-LinGapE for Top-N
identification (introduced in Chapter 5) on synthetic models of the form
θ⊤X + Ψ

(
1(i = a(N+1))

)
i∈[K]

, using δ = 5%, d = 5, K = 10, N = 3, σ = 1, and
the theoretically-supported gap index in Lemma 5.3.3 across 100 iterations.
Feature vectors were drawn at random. a The minimum gap in the associated
linear model θ⊤X is ∆a(N),a(N+1)

≈ 0.2786. The larger Ψ is, the more the
underlying model deviates from linearity, and the error δ̂ increases.

aThe exact value of matrix X is available at https://github.com/clreda/
misspecified-top-m/tree/main/data (“simulated misspecified instance” in Réda, Tirinzoni,
and Degenne (2021)).

However, we might still want to preserve the linear part of the model :
first, for better interpretability ; second, to design a flexible bandit algo-
rithm that can switch between perfectly linear and completely unstructured
models, when feature vectors no longer bring supplementary information
about the scores. In this chapter, I considermisspecified linear models, that
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can interpolate between linear and unstructured models. The corresponding
classMΨ of Ψ-misspecified models is

MΨ := {x 7→ θ⊤x+ η(x) | θ ∈ Rd, η ∈ (Rd → R) s.t. max
k∈[K]

|η(x)| ≤ Ψ} .

As their name alludes to, the deviation of these models to a linear model
–in terms of the maximum absolute coefficient of the unstructured term η–
is always smaller than a fixed Ψ ≥ 0. When Ψ = 0, this class is the class of
linear models, whereas, as Ψ grows, it matches the class of unstructured
models –with bounded means. For large values of Ψ, the contribution ηa

to the expected reward µa of arm a can be a lot larger than the linear part
θ⊤Xa : most of the information about arm a is present in ηa.

Remark 6.0.1. In practice, we consider the vector of expected rewards µ

µ = θ⊤X + η , where θ ∈ Rd, η ∈ RK .

In particular, here, compared to Equation 6, possibly two arms a, b with
the same feature vectors (Xa = Xb) might have a different “unstructured”
coefficient ηa 6= ηb. However, in our drug repurposing problem, the rewards
result from a function of the signatures, which prevents that case from
arising.

Remark 6.0.2. Notice that the class of Ψ-misspecified models is different
from the following class

M = {x 7→ θ⊤x̃ | θ ∈ Rd+1} ,

where ·̃ is the operator that turns a vector in Rd into a vector in Rd+1 by
appending vector [1] to the initial vector. Indeed, in that case, the last
coefficient θd+1 is shared by all arms, whereas coefficients η1, η2, . . . , ηK can
possibly have different values.

In this chapter, we focus on fixed-confidence exact Top-N identification
(ε = 0). First, a tractable lower bound on the sample complexity of any
δ-correct algorithm (Definition 4.1.4) is derived. Then, an algorithm adapted
to misspecified linear models is designed. Finally, the performance of this
algorithm is compared to unstructured and linear bandit algorithms on a
drug repurposing instance. This is a joint work with Andrea Tirinzoni and
Rémy Degenne (SCOOL Inria team), and it led to a publication at the 35th

Neural Information Processing Systems conference (NeurIPS 2021) in Réda,
Tirinzoni, and Degenne (2021). 1

1The code related to experiments is available at https://github.com/clreda/
misspecified-top-m.
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6.1 Related work

Learning a model under misspecification of its structure requires adapting
to the scale of misspecification, typically under the assumption that some
information about the latter is known –e.g., an upper bound Ψ to ‖η‖. Due
to its importance, this problem has recently gained increasing attention in
the bandit community for regret minimization, but has not been addressed
in the context of pure exploration. Ghosh, Chowdhury, and Gopalan (2017)
introduced the class of misspecified models for regret minimization. In that
work, the authors show that if T is the learning horizon, for any bandit
algorithm which enjoys an optimal regret scaling on linear models, there
exists a misspecified instance where the regret is necessarily linear. As a
workaround, they design a statistical test based on sampling a subset of
arms prior to learning, to decide whether a linear or an unstructured bandit
algorithm should be run on the data. Similar ideas are suggested in Chat-
terji, Muthukumar, and Bartlett (2020), where the authors design a sequen-
tial test to sequentially switch between linear and unstructured algorithms.
More recently, elimination-based algorithms (Lattimore, Szepesvari, and
Weisz, 2020; Takemura et al., 2021) and model selection methods (Foster et
al., 2020; Pacchiano et al., 2020) were popular approaches to tackle model
misspecification for regret minimization. Notably, these regret minimization
algorithms adapt to the amount of misspecification Ψ without knowing it
beforehand, at the cost of an additive linear term that scales with Ψ.

Moreover, while best-arm identification has been the focus of many prior
works in the realizable linear setting, some suggesting asymptotically-optimal
algorithms (Degenne, Ménard, et al., 2020; Jedra and Proutiere, 2020),
Top-N identification has been seldom studied in terms of problem-dependent
lower bounds. Lower bounds on the sample complexity for the unstruc-
tured 2 Top-N problem have been derived previously, either focusing on
explicit bounds (Kaufmann, Cappé, and Garivier, 2016, Theorem 4), or on
worst-case lower bounds (Chen, Li, and Qiao, 2017, Theorem 1.1), or on
getting the correct dependence in the problem parameters for any error
rate δ (Simchowitz, Jamieson, and Recht, 2017, Proposition 6). Because of
the combinatorial nature of the Top-N identification problem, obtaining a
tractable, tight, problem-dependent lower bound is not straightforward.

2i.e., M := (Rd → R), the whole set of functions mapping from Rd → R.
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6.2 Assumptions

We denote L := max
k∈[K]

‖Xk‖2, and we assume that the feature vectors span

Rd –otherwise, those vectors could be rewritten in a subspace of smaller
dimension. Furthermore, we assume that there exists some C ∈ R+ such
that, for any model function f ∈ MΨ, |f(X)|∞ := max

k∈[K]
|f(Xk)| ≤ C. 3 Since

f is a Ψ-misspecified model function, let us consider associated parameters
θ and η, such that for any arm a ∈ [K], f(Xa) = θ⊤Xa + ηa. With regard to
interpretability, we can observe that the absolute values of the coefficients
in θ ∈ Rd are still related to the influence of each of the d features on the
average score f(Xa) ; with the addition of an arm-specific bias term ηa.

As previously mentioned, we focus on the case where ε = 0, that is, we
only aim at returning arms in the true top-N set S⋆N,f . However, the set of N
best arms of model function f might not be well defined since the set S⋆N,f :={
k ∈ [K] | f(Xk) ≥

N
max
i∈[K]

f(Xi)

}
might contain more than N elements if some

arms have the same mean. Thus, let SN,f :=
{
S ⊆ S⋆N,f | |S| = N

}
be the set

containing all subsets of N elements of S⋆N,f . Moreover, suppose that the true
model function f has exactly N arms that are among the top-N, i.e., that∣∣S⋆N,f ∣∣ = N and SN,f = {S⋆N,f}. Remember that any δ-correct algorithm A

satisfies Definition 4.1.4, that is, for any f ∈MΨ

P{f}

(
ŜN(τA) 6⊆ S⋆N,f

)
≤ δ .

6.3 Tractable lower bound for general Top-N

identification

In this section, we consider any class of modelsM, not necessarilyMΨ. As
mentioned in Section 4.3, being able to asymptotically match –in the sense
of Result 4.3.4– the lower bound on the sample complexity might lead to
performant algorithms. In prior works that tackle pure exploration tasks,
authors have focused on recovering (an estimation of) the oracle allocation
argmin
ω∈△K

in the general pure exploration lower bound (Result 4.3.3) to design

asymptotically optimal algorithms. This oracle allocation can be approached
either by using tracking (Du et al., 2021; Garivier and Kaufmann, 2016;
Russac et al., 2021), or through online optimization algorithms (Degenne
and Koolen, 2019; Degenne, Ménard, et al., 2020).

3In practice, the algorithm proposed in this work will not need to use the actual value of
C.

100



The computation of an oracle is tractable and well-studied for best arm
identification, i.e., N = 1, since there are K − 1 sets of alternative models
when the optimal arm a⋆ is unique. Each alternative corresponds to one of
the K − 1 alternative best arms. However, in Top-N identification, the naive
computation of the lower bound-related optimization problem is done over(
K
N

)
= K!

(K−N)!N !
sets, where k! = 1 × 2 × 3 × · · · × k for any positive integer k.

In this problem, the set of alternative models to f ∈ M –which can be any
structure– is

Alt(f) :=
{
f̃ ∈M | SN,f̃ ∩ SN,f = ∅

}
.

This is the set of all M-structured model functions f̃, such that the set of
top-N arms differs from S⋆N,f . Note that, while we assumed that the set of
top-N arms under f is unique, this might not be the case for alternative
f̃. Given any δ−correct algorithm A tackling Top-N identification in M-
structured models, for any δ ≤ 1/2, we can combine Result 4.3.3, which gives
a lower bound on the sample complexity for any pure exploration problem,
with the following lemma

Lemma 6.3.1. Expression of Alt(f) in Top-N identification. For any
model functions f, f̃ ∈M such as |SN,f | = 1

f̃ ∈ Alt(f)⇔ ∀S ∈ SN,f ∃i 6∈ S ∃j ∈ S, f̃(Xi) > f̃(Xj) .

Proof. Implication. If f̃ ∈ Alt(f), then it means that SN,f ∩SN,f̃ = ∅. Suppose
that

∃S ∈ SN,f ∀i 6∈ S ∀j ∈ S, f̃(Xi) ≤ f̃(Xj) . (6.1)

Then, this implies that for any arm i 6∈ S, f̃(Xi) ≤ min
j∈S

f̃(Xj). Since, by

definition, |S| = N, then S is a valid Top-N set under model function f̃, which
means that SN,f ∩SN,f̃ 6= ∅, and then f̃ 6∈ Alt(f). In conclusion, Equation (6.1)
implies that f̃ 6∈ Alt(f). Then the contraposition also holds.

Inverse implication. Consider S ∈ SN,f (unique top-N set associated
with f), and arms i, j that satisfy the right-hand expression in Lemma 6.3.1.
We now consider two cases :

- If there exists a top-N set S̃ associated with f̃, i.e., S̃ ∈ SN,f̃ , such that
j ∈ S̃, then by definition of i, i ∈ S̃ ∩ (S)c.

- Otherwise, j is not among the best N arms under model function f̃.
Then for any S̃ ∈ SN,f̃ , j ∈ S ∩

(
S̃
)c
.

This means that, in both cases, S 6∈ SN,f̃ , and then SN,f̃ ∩ SN,f = ∅.

The combination of these two results yields the following lower bound for
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any structured Top-N identification problem

Theorem 6.3.2. Characteristic time for Top-N identification. Let KL
be the Kullback-Leibler divergence on continuous probability densities (Def-
inition 4.3.2). For any δ-correct algorithm A for Top-N identification where
δ ≤ 1/2, and any f ∈ M, the following lower bound holds on the sample
complexity

E{f}[τA] ≥ (C⋆(f))−1 log
(

1

2.4δ

)
,

where
C⋆(f) = sup

ω∈△K

min
i ̸∈S⋆

f

min
j∈S⋆

f

inf
f̃∈M

f̃(Xi)>f̃(Xj)

∑
a∈[K]

ωaKLa(f, f̃) ,

and KLa(f, f̃) := KL(νa, αa) where νa, αa are two Gaussian laws with fixed
variance σ2 that satisfy E{Y∼νa}[Y ] = f(Xa) and E{Y∼αa}[Y ] = f̃(Xa), and

4K :=

p ∈ [0, 1]K |
∑
k∈[K]

pk = 1


is the simplex on [K].

Computing this quantity now requires to : (a) maximize once over the
simplex –which can be still hard ; (b)minimize over the N(K−N) half-spaces
{f̃ ∈ M | f̃(Xi) > f̃(Xj)} for (i, j) ∈

(
S⋆f
)c × S⋆f . Those minimizations are

convex optimization problems, and can be solved efficiently for M = MΨ.
Our algorithm inspired from that bound will need to perform only those min-
imizations, since it uses an online approach to estimate the oracle allocation
ω ∈ 4K. For Gaussian bandits with fixed variance σ2 –i.e., when rewards
follow a Gaussian distribution with variance σ2– using the expression of the
Kullback-Leibler divergence in that case (Equation (4.4)) yields the following
optimization problem related to characteristic time C⋆

min
i ̸∈S⋆

f

min
j∈S⋆

f

inf
f̃∈MΨ

f̃(Xi)>f̃(Xj)

1

2σ2

∑
a∈[K]

ωa(f(Xa)− f̃(Xa))
2 . (6.2)

This problem can be solved in Python by iterating over all pairs (i, j) ∈
(
S⋆f
)c×

S⋆f , and independently solving at fixed (i, j) the quadratic program derived
in Réda, Tirinzoni, and Degenne (2021, Appendix C.3) using module quadprog
based on Goldfarb and Idnani (1983). Finally, the solution which yields the
minimum value across all pairs of arms is selected.

Note that a lower bound for Top-N identification using Result 4.3.3 has
been obtained in Kaufmann, Cappé, and Garivier (2016, Theorem 4). Aiming
to be more explicit, they defined the set of alternative models as the set of

102



models where one of the best arms is switched with the (N + 1)th best arm
under f, or one of the K−N worst ones with the N th best one under f. These
models are a strict subset of Alt(f) for any f ∈M. Hence this bound is not as
tight as the one in Theorem 6.3.2, which is why the algorithm we introduce
in the next section will rely on the latter instead. Note that for Ψ = 0 (linear
models) and N = 1 (best arm identification), this lower bound is exactly the
one derived by Fiez et al. (2019, Theorem 1).

Moreover, it was shown in Réda, Tirinzoni, and Degenne (2021, Section
3.1) using Theorem 6.3.2 that knowing that a problem is misspecified without
knowing the upper bound Ψ on ‖η‖∞ is the same as not knowing anything
about the structure of that problem. This means that there is no optimal
δ-correct algorithm which is oblivious to Ψ ; if an algorithm A is δ-correct
and optimal –in terms of sample complexity– on the set of model functions
MΨ, then it cannot be optimal as well on a strict subset of model functions
MΨ′, where Ψ′ < Ψ. Hence, the algorithm described in the next section will
crucially need a good estimate Ψ of the deviation to linearity.

In a related work on δ-correct best arm identification dealing with mis-
specified model structures (Zhu, D. Zhou, et al., 2021), the proposed algo-
rithm also relies on an estimated upper bound on the approximation error
between the misspecified model (represented by a neural network) and the
true expected rewards.

6.4 Misspecified Top-N identification

Now we introduce an algorithm for fixed-confidence Ψ-misspecified Top-N
identification, named misspecified linear identification (MisLid). Its structure
is outlined in Algorithm 7. This algorithm is only well-defined for Gaussian
bandits with fixed variance σ2 = 1. On the one hand, the design of MisLid
builds on top of recent approaches for constructing pure exploration algo-
rithms from lower bounds (Degenne, Koolen, and Ménard, 2019; Degenne,
Ménard, et al., 2020; Jedra and Proutiere, 2020; Zaki, Mohan, and Gopalan,
2020). On the other hand, its main components and their analysis introduce
several technical novelties to deal with misspecified Top-N identification,
that might be of independent interest for other settings. We describe these
components below. Let us define for any vector v ∈ RK

Dv := diag(v1, v2, . . . , vK) and V̂ κ(t) :=
∑
s≤t

XItX
⊤
It (note that κ = 0 here) .
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The core principle of the algorithm is to sample arms according to the oracle
allocation ω(t) at round t. This allocation is estimated by an online learner L,
which is iteratively updated based on the expression of characteristic time
C⋆(f) in Theorem 6.3.2. Sampling stops at round τMisLid so that

τMisLid := inf
t>0

{
inf

f ′∈Alt(f̃t)
‖f̃t(X)− f ′(X)‖2DN·(t)

> 2Tδ(t)

}
,

where f̃t ∈ MΨ is a model function which corresponds to the projection
of the vector of empirical means (µ̂a(t))a∈[K] onto the set of Ψ-misspecified
model functions ; Tδ(·) is a time-dependent threshold function to be defined.
Remember that the empirical mean µ̂a(t) for arm a ∈ [K] at round t is defined
as

µ̂a(t) :=
1

Na(t)

∑
s≤t

1(Is = a)Yt ,

where Na(t) is the number of selections of arm a up to round t. For short, we
denote f̃t(X) vector (f̃t(Xa))a∈[K]. Provided that function Tδ(·) is well-chosen,
the stopping rule ensures that MisLid is δ-correct, and asymptotically opti-
mal, as defined in Result 4.3.4

inf
f ′∈Alt(f̃t)

‖f̃t(X)− f ′(X)‖2DN·(t)
= inf

f ′∈Alt(f̃t)
(f̃t(X)− f ′(X))⊤DN·(t)(f̃t(X)− f ′(X))

= inf
f ′∈Alt(f̃t)

∑
a∈[K]

Na(t)(f̃t(Xa)− f ′(Xa))
2 .

If the (Na(t))a∈[K] were replaced by some allocation ω ∈ 4K and f̃t by the true
model function f, the expression would have matched the definition of C⋆

in the lower bound for Gaussian bandits with fixed variance σ2 = 1, up to
constant 1/2 (Equation (6.2)). This quantity is the statistic associated with
a parallel generalized likelihood ratio test (GLRT), as described in Garivier
and Kaufmann (2021). 4 Here, the GLRT is a sequential statistical test of
the following two non-overlapping hypotheses

H0 :
(
S⋆N,f 6⊆ S⋆N,f̃t

)
(null hypothesis) , versus H1 :

(
S⋆N,f ⊆ S⋆N,f̃t

)
(alternative) ,

and rejects the null hypothesis when the statistic is large enough. If H0

is rejected, then we cannot rule out the possibility that the top-N arms
under current empirical model f̃t includes the true set S⋆N,f . At the end of
the sampling phase in round τMisLid, MisLid returns the N-best arms of the
projected estimated mean vector f̃τMisLid(X). I will now explicit the different
steps in Algorithm 7.

4However, GLRTs date back at least to Wilks (1938).

104



Algorithm 7 MisLid algorithm for misspecified models.
Require: Online learner L, stopping thresholds {Tδ(t)}t≥1

1: # Initialization
2: L←max

a∈[K]
‖Xa‖2

3: Compute a sequence of arms I1, I2, . . . , It0 such that

t0∑
t=1

XItX
T
It � 2L2Id

4: for t = 1, . . . , t0 do
5: # Pull spanner
6: Pull It, receive Yt, and set ω(t)← (1(i = It)i∈[K]

7: end for
8: Compute empirical mean µ̂·(t0) := (µ̂a(t0))a∈[K] and the model function
associated with its projection onto the set of Ψ-misspecified models

f̃t0 ← argmin
f ′∈MΨ

‖f ′(X)− µ̂·(t0)‖2DN·(t0)
.

9: for t = t0 + 1, t0 + 2, . . . , do
10: # Stopping rule
11: if inff ′∈Alt(f̃t−1)

‖f̃t−1(X)− f ′(X)‖2DN·(t−1)
> 2Tδ(t− 1) then

12: Stop and return ŜN(τMisLid) := S⋆N,f̃τMisLid
13: end if
14: Obtain ω(t) from learner L
15: Compute closest alternative f(t)← argmin

f ′∈Alt(f̃t−1)

‖f̃t−1(X)− f ′(X)‖2Dωt

16: # Update learner
17: Update L with gain

g(t) : ω 7→
∑
k∈[K]

ωk

(∣∣∣f̃t−1(Xk)− f(t)(Xk)
∣∣∣+√c(t− 1)k

)2
18: # Action sampling
19: Pull It ∼ ω(t) and receive reward Yt
20: # Estimation
21: Update µ̂·(t) and compute its projection f̃t ← argmin

f ′∈MΨ

‖f ′(X)− µ̂·(t)‖2DN·(t)

22: end for
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Initialization phase. Algorithm 7 starts by sampling a deterministic
sequence of t0 arms that make the minimum eigenvalue of the resulting
design matrix V̂ κ(t0) larger than 2L2. Since the rows of feature matrix X are
assumed to span Rd (Section 6.2), such sequence can be easily found by
taking any subset of d arms that span the whole space –e.g., by computing
a barycentric spanner. A barycentric spanner of Rd of size d is a set of d arms
if any element in Rd can be expressed as a linear combination of these arms
with coefficients in [−1, 1]. An approximation of this set can be computed
in polynomial time (Awerbuch and Kleinberg, 2004). Once this barycentric
spanner is built, arms in the spanner are sampled in a round robin fashion
until the desired condition is met. This is required to make design matrix
V̂ κ(·) invertible, and to ensure that concentration inequalities hold. While
prior works typically avoid this step by regularizing (Abbasi-Yadkori, Pál,
and Szepesvári, 2011), in our misspecified setting it is crucial not to do so to
obtain tight concentration results for the estimator of f(X). In order to get an
upper bound on the length t0 of the initialization phase, let us denote σmin(M)

the minimal singular value of matrix M. Let us consider B = {b1, b2, . . . , bd} ⊆
[K], such that | B |= d, the barycentric spanner of size d computed on feature
matrix X. Then, if we stopped the round-robin sampling at round t0 such
that each arm in the barycentric spanner is sampled a number u0 of times,

V̂ κ(t0) = u0
∑
b∈B

XbXb .

The following condition is enough to ensure that V̂ κ(t0) � 2L2Id –that is, that
matrix (V̂ κ(t0)− 2L2Id) is positive definite

u0σmin

(∑
b∈B

XbX
⊤
b

)
≥ 2L2 . (6.3)

Let us denote Γ′
d(X) := min

B d-sized spanner
σmin(

∑
b∈BXbXb). Then u0 =

⌈
2L2

Γ′
d(X)

⌉
satis-

fies Condition (6.3), and then t0 ≤ d
⌈

2L2

Γ′
d(X)

⌉
.

Remark 6.4.1. When the condition number of the matrix is very large –
e.g., feature vectors are collinear– this initialization phase can be time-
consuming. Specifically in that case, feature selection (or transformation)
prior to the application of bandits is of paramount importance.

Estimation. At each round t ≥ t0, MisLid updates an estimator f̃t of the
true bandit model f, by first computing the empirical mean for each arm a

µ̂a(t) :=
1

Na(t)

∑
s≤t

1(Is = a)Yt .
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Then this empirical model is projected onto the set of Ψ-misspecified models,
according to the norm weighted by the individual number of draws Na(t) of
each arm a

f̃t := argmin
f ′∈MΨ

‖f ′(X)− µ̂·(t)‖DN·(t)
.

In Réda, Tirinzoni, and Degenne (2021), this projection can be computed
efficiently as two independent quadratic optimization problems, one for each
of the two parameters θ and η.

Stopping rule. MisLid uses the standard stopping rule adopted in many
existing algorithms for pure exploration (Degenne, Koolen, and Ménard,
2019; Garivier and Kaufmann, 2016; Shang et al., 2020), which is based
on generalized likelihood ratio tests. But the difficulty lies in its calibration,
that is, the choice of an appropriate threshold function Tδ(·) for which the
algorithm is δ-correct. MisLid requires a careful combination of concentration
inequalities. First, for linear bandit models, to make the algorithm adapt
well to (quasi) linear models with low misspecification Ψ ; and, second, for
unstructured bandits, to guarantee asymptotic optimality in the sense of
Result 4.3.4. The precise definition of Tδ(·) is given in the following result.

Theorem 6.4.2. Correctness of MisLid. For the following expression of
Tδ(·), where δ ∈ (0, 1), Algorithm 7 is δ-correct in the sense of Definition 4.1.4

∀t ≥ 0, Tδ(t) :=min
(
βunsδ (t), β linδ (t)

)
, where

βunsδ (t) := 2KW

(
1

2K
log

(
2exp(1)

δ

)
+

1

2
log (8exp(1)K log(t))

)
,

β linδ (t) :=

(
4√
2

√
tΨ+

√
1 + log(δ−1) +

(
1 +

1

log(δ−1)

)
d

2
log

(
1 +

t

2d
log(δ−1)

))2

,

and W (x) := −W−1(−exp(−x)) ≈ x+ log(x) ,

where W−1 is defined such that, if z ∈ [−exp(−1), 0) , x ≤ −1, and x = W−1(z)

then xexp(x) = z (W−1 is the negative branch of the Lambert W function) .

Note that this stopping rule crucially relies on the knowledge of misspec-
ification level Ψ.

Proof sketch. The objective is to show that MisLid is δ-correct on Ψ-
misspecified models, that is, according to Definition 4.1.4, for any f ∈ MΨ,
Pf
[
ŜN,f (τMisLid) 6⊆ S⋆N,f

]
≤ δ.
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If τ = τMisLid, then

Pf
[
ŜN,f (τ) 6⊆ S⋆N,f

]
= Pf

[
inf

f ′∈Alt(f̃τ )
‖f̃τ (X)− f ′(X)‖2DN·(τ)

> 2Tδ(τ) and f̃τ ∈ Alt(f)

]

And then

Pf
[
ŜN,f (τ) 6⊆ S⋆N,f

]
≤ Pf

[
∃t > 0, inf

f ′∈Alt(f̃t)
‖f̃t(X)− f ′(X)‖2DN·(t)

> 2Tδ(t) and f̃t ∈ Alt(f)

]

≤ Pf

[
∃t > 0, inf

f ′∈Alt(f̃t)
‖f̃t(X)− f ′(X)‖2DN·(t)

> 2Tδ(t)

]
,

By the definition of threshold function Tδ(·) and applying a union bound

Pf
[
ŜN,f (τ) 6⊆ S⋆N,f

]
≤ Pf

[
∃t > 0, inf

f ′∈Alt(f̃t)
‖f̃t(X)− f ′(X)‖2DN·(t)

> 2βunsδ (t)

]
︸ ︷︷ ︸

≤ δ/2

+Pf

[
∃t > 0, inf

f ′∈Alt(f̃t)
‖f̃t(X)− f ′(X)‖2DN·(t)

> 2β linδ (t)

]
︸ ︷︷ ︸

≤ δ/2

≤ δ ,

where the last two inequalities respectively stem from the unstructured and
the linear concentration inequalities derived in Réda, Tirinzoni, and Degenne
(2021, Appendix F.1).

Sampling strategy and online learners. The sampling strategy of
MisLid aims at achieving the optimal sample complexity from the lower
bound from Theorem 6.3.2. Instead of using a tracking procedure as done
in Garivier and Kaufmann (2016), MisLid uses an online regret minimization
learner L, which incrementally estimates the optimal allocation ω ∈ 4K in the
expression of the characteristic time in Theorem 6.3.2. 5 Arm It is selected
according to this allocation ω(t). Learner L iteratively updates its estimation
ω(t) at round t through gains g(t). Gains translate the regret incurred by a
bad approximation of the true allocation ω. If we knew the true model f, we
would use the gradient at ω(t) of the following gain function to quantify the

5The use of online learners is a standard approach in bandits ; however, their description
is outside the scope of this thesis. The interested reader can refer to De Rooij et al. (2014).
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regret incurred by estimate ω(t)

g⋆ : ω 7→ inf
f ′∈Alt(f)

‖f(X)− f ′(X)‖2Dω
.

Since f is not available, we settle for an upper bound on argmin
f ′∈Alt(f̃t)

‖f̃t(X) −

f ′(X)‖Dω for any ω ∈ 4K, using minimizer f(t), and optimistic bonuses c(t) ∈
RK such that, with high probability

∀ω ∈ 4K ∀t > 0, gt(ω) =
∑
k∈[K]

ωk

(
| f̃t(Xk)− f(t)(Xk) | +

√
c(t)k

)2
≥ g⋆(ω) .

In pratice, c(t)k is defined for any arm k ∈ [K] as follows

c(t)k :=min
{
8(LK + 1)2Ψ2 + 4αlint2 ‖Xk‖2(V̂ κ(t))−1 ,

2αunst2

Nk(t)
, 4C2

}
,

where αunst := βuns1/(5t3)(t) and αlint := log(5t2) + d log(1 + t/(2d)). As briefly men-
tioned in Section 6.3, using an online learner avoids having to rely on min-
max oracles which might be computationally inefficient –due to the maxi-
mization over the simplex 4K– and might be prone to numerical approxi-
mations that prevent convergence.

Given these parameters, Algorithm MisLid is provably asymptotically op-
timal (in the sense of Result 4.3.4). The full proof of the theorem is available
in the supplementary section of Réda, Tirinzoni, and Degenne (2021).

Theorem 6.4.3. Sample complexity of MisLid. The following inequality
about the expected sample complexity of MisLid holds

E{µ}[τMisLid] ≤ τ δ + 2 ,

where τ δ satisfies the following inequality in t (ℓt := log(t) and Ô is the sum
of O of each argument)

Tδ(t) ≥ tC⋆+Ô
(
min{tK2Ψ2+d

√
tℓt,
√
Ktℓt}; logK

√
t;
√
min{tK2Ψ2+dℓt, Kℓt} log(1/δ)

)
.

In particular, for Ψ ≈ 0 (quasi linear models)

τ δ ≤ (C⋆)−1
[
log(δ−1) +

(
Ψ2τ δ + log(K)

√
τ δ + d

√
τ δ log(τ δ) +

√
d log(τ δ)

)
o(log(δ−1))

]
,

and for Ψ� 0 (close to unstructured models)

τ δ ≤ (C⋆)−1
[
log(δ−1) +

(
log(K)

√
τ δ +

√
Kτ δ log(τ δ) +

√
K log(τ δ)

)
o(log(δ−1))

]
.
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Based on Theorem 6.4.3, for small values of δ,

τ δ ≈ (C⋆)−1 log(δ−1) + Cµo(log(δ−1)) ,

where Cµ is a problem-dependent constant. Then

lim inf
δ→0

E{µ}[τMisLid]

log(δ−1)
= lim inf

δ→0

τ δ

log(δ−1)
= (C⋆)−1 ,

which confirms that MisLid is indeed asymptotically optimal. Note that when
Ψ ≈ 0 (i.e., , the model is quasi linear) there is only a logarithmic dependence
on the number of arms K, which is on par with the state-of-the-art (Jedra
and Proutiere, 2020; Kirschner et al., 2021; Tirinzoni et al., 2020). More-
over, the bound exhibits an adaptation to the value of Ψ. As Ψ grows, the
upper bound transitions to terms matching the optimal unstructured bound
without any dependence in the number of dimensions d and deviation Ψ.

6.5 Application to drug repurposing

Since our algorithm is the first to solve Top-N identification in Ψ-misspecified
models, we compare it against an efficient linear algorithm, N-LinGapE,
introduced in Chapter 5 –which is an extension to algorithm LinGapE de-
scribed in Xu, Honda, and Sugiyama (2018)– and an unstructured one,
LUCB (Kalyanakrishnan et al., 2012). In all experiments, we consider δ =

10% and σ = 1. It has frequently been noted in the fixed-confidence lit-
erature that stopping thresholds which guarantee δ-correctness tend to be
too conservative and to yield empirical error frequencies that are actually
much lower than δ. Moreover, these thresholds are different between linear,
misspecified and unstructured bandit models. In order to ensure a good
trade-off between performance and computing speed, and fairness between
the tested algorithms, as in prior works (Kaufmann and Kalyanakrishnan,
2013; Réda, Kaufmann, and Delahaye-Duriez, 2021), we use the following
heuristic value

∀t > 0, Tδ(t) := ln
(
1 + ln(t+ 1)

δ

)
.

We consider the drug repurposing problem on 10 antiepileptics and 11 pro-
convulsants mentioned in Chapter 5. However, contrary to what was previ-
ously done, this time we truly stick to the theoretical setting, and make the
environment return a realization of a Gaussian distribution of fixed variance
σ2 = 1 when the agent samples arm It ∈ [K]

Yt ∼ N (µIt , 1) .
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Moreover, knowing that our algorithm relies on a good knowledge of the
maximum misspecification Ψ, we apply the same type of feature transfor-
mation procedure as in Chapter 5. We compute Ψ as the ℓ∞ norm of the
difference between the predictions of the regressed linear model, and the
average drug repurposing scores. Selecting the most deviated model to
linearity yields Ψ = 0.236 with d = 21 dimensions. Since the misspecification
Ψ is a lot larger than the minimum gap min

k∈[K]
∆k –contrary to the model built in

Chapter 5– this model is highly misspecified, which will allow us to observe
the same behavior as in the experiment in Table 6.1.

Figure 6.1 shows one boxplot per algorithm, which reports the sample
complexity on the y-axis, and the error frequency δ across 100 iterations
rounding up to the 5th decimal place. Individual outcomes are shown as
gray dots. In order to speed up LUCB, we consider the PAC version of Top-N
identification –that is, ε > 0– choosing as stopping threshold ε = 0.042 ≈
min
k∈[K]

∆k (for N = 4), so that the algorithm stops earlier while returning the

exact set of N best arms.

As previously mentioned, we expect N-LinGapE to dramatically fail since
the misspecification scale Ψ is large. Moreover, from the sample complexity
bound derived in Theorem 6.4.3, we expect MisLid to have an average sam-
ple complexity at most as large as the one incurred by a good unstructured
bandit algorithm. As shown by the boxplot in Figure 6.1, linear algorithm
N-LinGapE dramatically fails, whereas LUCB (for unstructured models) and
MisLid remain δ-correct. Moreover, even with the early stopping rule using
ε > 0, in average LUCB needs 40% more samples than MisLid, which does
not use the information about ε.

6.6 Discussion

We have designed the first algorithm to tackle misspecification in fixed-
confidence Top-N identification. The proposed algorithm can be applied to
misspecified models which can deviate from linearity (i.e., Ψ ≥ 0), which
encompass both unstructured (for large values of Ψ) and linear models
(i.e., Ψ = 0).

The main limitation of MisLid is its computational complexity : at each
round, O(KN) convex optimization problems need to be solved for both the
sampling and stopping rules, which can be expensive if the number of arms
is large. Moreover, since the sampling of our algorithm is designed to aim
at a lower bound, we can expect it to suffer from the same shortcomings as
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Figure 6.1: Drug repurposing with
misspecified bandits. Drug repur-
posing instance with reduced dimen-
sion (#arms K = 21, #dimensions
d = 21, σ = 1, δ = 10 %, ε = 0.042,
Ψ = 0.236, N = 4, 100 iterations) with
empirical error rates δ̂.

Algorithm δ̂ ŝ
MisLid 0% 158, 869 ±126, 209
LinGapE 100% 161 ±159
LUCB 0% 222, 969 ±22, 798

Table 6.2: Results for drug repur-
posing with misspecified bandits.
Table of results associated with the
boxplots. δ̂ is the empirical error rate
across 100 iterations, ŝ is the average
number of samples (± the standard
deviation) rounded up to the closest
integer.

that bound. Indeed, it is known that the bound in question does not capture
some lower order (in O(δ−1)) effects, in particular those due to the multiple-
hypothesis nature of the test we perform, which can be very large for small
times. Work to take these effects into account to design algorithms has
started recently (Katz-Samuels, Jain, Jamieson, et al., 2020; Katz-Samuels
and Jamieson, 2020; Wagenmaker, Katz-Samuels, and Jamieson, 2021) and
we believe that it is an essential avenue for further improvements in pure
exploration.

Finally, a good estimation of the maximum deviation to linearity, that we
denoted Ψ, is crucial to obtain a sample-efficient algorithm. Unfortunately,
this information is usually not available when dealing with real-life datasets.
If the estimate Ψ̂ is smaller than the true value Ψ, then there is a risk of
losing the property of δ-correctness ; however, if this estimate is too large,
then the performance of MisLid should be similar to a good bandit algorithm
for unstructured models. Finding a good procedure to heuristically estimate
the deviation level Ψ –without having access to the expected rewards– at the
price of some loss in accuracy in the estimation of the true scores could be
as well an interesting subsequent work. Indeed, determining the relative
ranking of arms is more important in drug repurposing than estimating
exactly the scores. 6

6Even though the latter can be useful for interpretability, as previously mentioned.
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Part III

Application & extension of drug
repurposing
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The contents of this chapter rely on some of my publications.a

aBokobza, Réda, et al. (in prep.). “Therapeutic evaluation of
Hu-MSCs in a rat model of perinatal inflammation: a systematic out-
come scoring”; Réda, Vakili, and Kaufmann (2022). “Near-Optimal
Federated Learning in Bandits”. In press.

In this part of my thesis, I present two works related to the drug repur-
posing method I have proposed. Chapter 7 exhibits a instance of systematic
treatment protocol ranking procedure through signature reversion when the
appropriate conditions are reunited to build good quality signatures. Chap-
ter 8 deals with the extension of any adaptive clinical trial to a collaborative
setting.

In Chapter 7, I have collaborated with a team of biologists in order to
select the optimal treatment protocol of stem cell injections in a rat model
of infant encephalopathy. Transcriptional data obtained through sequencing
comprised of samples subject to varying doses, modes and ages of injection.
The goal was to rank the different treatment protocols depending on the esti-
mated recovery of treated samples through signature reversion. This project
is a proof-of-concept that present a systematic method to rank treatments
based on transcriptomic data.

Chapter 8 deals with the theoretical setting where there are several het-
erogeneous subpopulations of patients which are recruited to join a collabo-
rative adaptive clinical trial, in order to find the most interesting drug candi-
dates for their own population of patients, while exploiting the results from
other populations. This work is a step towards personalized clinical trials,
which are a topical question in drug research, especially in cancer (Maitland
and Schilsky, 2011), where there is a plethora of subtypes and biomarkers
which are sometimes unique to a patient.
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Chapter 7

Application of systematic drug
scoring

This chapter focuses on an application of signature reversion in practice,
in a particularly favorable context for computing drug signatures : indeed,
the drug signatures will exactly represent the transcriptional changes due to
the drug treatment applied on patients. The simulating procedure using the
Boolean network will not be needed in this case. This application highlights
how signature reversion allows to discriminate between treatments.

The work presented in this chapter aims at validating umbilical cord-
derived human mesenchymal stem cells (MSCs) as a regenerative therapy
for encephalopathy of prematurity (EoP), which is due to brain lesions in pre-
mature birth. Several treatment protocols –with varying weight-dependent
doses, modes and ages of injection of MSCs– are performed on rat models of
EoP, from which transcriptomic profiles are obtained, for control rats (which
do not receive stem cells), rat models, and rat models treated with stem
cells. The signature reversion method outputs a score for each treatment
protocol, based on this transcriptomic data. These scores allow ranking
treatment protocols according to their rescuing of a healthy transcriptomic
profile. Further pathway analyses seem to confirm the impact of top-ranked
treatment protocols on inflammation-related and developmental genes. A
manuscript is in preparation for the Journal of Neuroinflammation (Bokobza,
Réda, et al., in prep.).
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7.1 Related work

Preterm birth represents an estimated 15 million births every year, and
related complications are the leading cause of death in children before the
age of 5 in 2018, according to the World Health Organization (World Health
Organization (WHO), 2018). Deliveries before 37 on 40 weeks of gestation
lead to a constellation of neurodevelopmental injuries, regrouped under the
term of encephalopathy of prematurity (EoP) (Bokobza, Van Steenwinckel,
et al., 2019). White matter injury (WMI) is the most common brain injury
associated to preterm birth. WMI is due to a myelination deficit during
development. Myelination is an important step in nervous system devel-
opment, as layers of myelin are produced and wrapped around the neuronal
axons. This allows “insulating” the transmission of electric action potentials
along the axon, and faster information processing and more complex brain
processes. Myelin is produced by oligodendrocytes, that differentiate be-
tween 20 weeks of gestation to the first year of infant life. Preterm birth
disturbs normal differentiation processes by blocking oligodendrocytes to a
precursor state, which is unable to produce myelin. Moreover, microglial
cells, which are a subtype of glial cells and the brain resident macrophages,
produce cytotoxic molecules affecting precursor oligodendrocytes, which are
highly vulnerable to such insults. This induces WMI through neuroinflam-
mation in the white matter. In a good healthcare setting, more than half
of babies who survive will suffer from lifelong disabilities, including cere-
bral palsy, severely impaired cognitive functions, and psychiatric disorders,
such as attention-deficit and hyperactivity disorder, or autism spectrum
disorder (Crump, Sundquist, and Sundquist, 2021). There is no existing
treatment yet to repair brain damage incurred by EoP (Chung, Chou, and
Brown, 2020).

In addition to their high regenerative capacity, mesenchymal stem cells
(MSCs) 1 are reported as anti-inflammatory, and with a low immunogeni-
city (Passera et al., 2021), meaning that they do not trigger a strong im-
mune response. Moreover, several studies report that MSCs and molecule-
derived MSCs contribute to reduce microglial reactivity both in vitro and in
vivo (Barati et al., 2019; Go et al., 2020; Liu, Zhang, et al., 2014). How-
ever, there is no current data which compiles effects of MSCs on microglial
reactivity in a same animal model, at different time points. Indeed, for a
common time of insult, MSCs will not correct the same microglial pathways
depending on administration age –denoted by postnatal day (P) 5, P10, . . . ,
which are known to model prenatal humans.

1That is, adult stem cells, which can be sourced from different body tissues.
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This project introduces a newmodel of EoP, on rats, by neuroinflammation
induced by the injection of interleukin 1 beta (IL1β) at postnatal day 5 (P5).
The characterization of the microglial transcriptome has already been carried
out in an identical mouse model by Krishnan et al. (2017). In that work, they
have shown the existence of clusters of genes involved with inflammatory
processes hyper-regulated at postnatal day 1 (P1) and P5, as well as clusters
negatively regulated by IL1β and grouping together developmental genes.

The objective of this project is to assess the optimal administration set-
tings for MSCs injections in the rat model of EoP, in terms of weight-dependent
dose, route of administration and age of administration. In order to achieve
this, we consider using the paradigm of signature reversion, reviewed in
particular in Musa et al. (2018), where post-treatment transcriptional levels
are compared with control transcriptional profiles. The more similar these
two groups of profiles are, the most interesting the associated treatment is.
This method has already been successful, for instance, in drug repurposing
against influenza, where candidates obtained through signature reversion
have been validated in vitro (Xin et al., 2022). Combining this paradigm
with the experimental transcriptional profiles generated for every selected
treatment protocol allows us to rank the different treatment protocols de-
pending on their similarity score to a healthy profile. This work was a
collaboration with the Neurokines team (Inserm U1141), which performed
the experimental part of this project, and the PREMSTEM consortium.

7.2 Setting and experimental data

All rat pups were intraperitoneally injected twice daily from post-natal day
(P)1 to P4 and once in the morning of P5 with recombinant mouse IL1β,
or the same volume of phosphate-buffered saline (PBS). Figure 7.1 shows
the timeline of the experimental part. Rats were injected once with MSCs,
according to their treatment protocol. Table 7.1 shows all parameters for
the samples considered for treatment outcome scoring. In particular, note
that there are 6 sequencing batches, with N = 3 replicates per condition. A
condition represents the set of the following parameters : dose level, age
and mode of administration, and treatment. IL1β samples are the rat models
of EoP, whereas whereas PBS samples are the rat control group (without
any neuroinflammation). The rats with a neuroinflammation induced by the
injections of IL1β, and then treated with MSCs are considered the treated
groups. Note that, since the doses of MSCs are weight-dependent, since
we compare different ages of administration, the actual doses can be very
dissimilar across groups. The numbering of doses 1, 2, 3 respectively stand
for low, moderate and high doses of MSCs. In a nutshell, in addition to
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the injection with PBS, IL1β and IL1β followed by a treatment with MSCs,
we consider three different dose levels (low, moderate and high doses),
two administration routes (intranasal and intravenous), and three ages of
administration (postnatal days 5, 10 and 20).

Age∗ Dose (#cells) Age∗∗ Mode∗ † Treatment #repl. Batch
P5 P7 INAS PBS, 3, 1

IL1β, 3,
Dose 1 : 200, 000 IL1β+Dose 1, 3,
Dose 2 : 500, 000 IL1β+Dose 2, 3,
Dose 3 : 1, 000, 000 IL1β+Dose 3 3

IV PBS, IL1β, 3, 2

IL1β, 3,
IL1β+Dose 1, 3,
IL1β+Dose 2, 3,
IL1β+Dose 3 3

P10 P12 INAS PBS, 3, 3

IL1β, 3,
Dose 1 : 350, 000 IL1β+Dose 1, 3,
Dose 2 : 900, 000 IL1β+Dose 2, 3,
Dose 3 : 2, 000, 000 IL1β+Dose 3 3

IV PBS, IL1β, 3, 4

IL1β, 3,
IL1β+Dose 1, 3,
IL1β+Dose 2, 3,
IL1β+Dose 3 3

P20 P22 INAS PBS, 3, 5

IL1β, 3,
Dose 1 : 750, 000 IL1β+Dose 1, 3,
Dose 2 : 2, 000, 000 IL1β+Dose 2, 3,
Dose 3 : 4, 500, 000 IL1β+Dose 3 3

IV PBS, 3, 6

IL1β, 3,
IL1β+Dose 1, 3,
IL1β+Dose 2, 3,
IL1β+Dose 3 3

Table 7.1: Experimental batches for rat transcriptional profiles.
Samples used for the outcome scoring. ∗ of administration of human MSCs.
∗∗ of microglial cell sorting before RNA sequencing. † INAS stands for
intranasal, whereas IV stands for intravenous. “repl” stands for “replicates”.
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age

P1 P2 P3 P4 P5

Injection of IL1β twice (once) a day

Intranasal or intravenous injection of MSCs

Microglial cell sorting for RNA sequencing

P5 
administration 

protocol

P12P7

P10

P10 
administration 

protocol

P20

P20 
administration 

protocol

P22

Figure 7.1: Timeline of the experiments. Timeline of the experimental
part.

7.3 Systematic outcome scoring

Once the transcriptional profiles from all condition groups in Table 7.1 were
generated, I applied the principle of signature reversion in order to rank
the different condition groups depending on their ability to rescue the IL1β-
induced inflammatory profiles. In signature reversion, the in silico identifi-
cation of the most appropriate treatment protocols relies on a scoring of the
changes at gene expression level. These changes are computed between
the samples treated associated with a single condition, and a carefully de-
termined reference group. As mentioned in previous chapters (Chapter 3),
changes in expression for a group of genes between treated and reference
groups can be quantified by a vector of numbers called signature, which
is as large as the number of genes in the group. A signature accounts for
the magnitude and the direction of the genewise expression change that is
only due to this treatment. It can be used to characterize the treatment
effect at transcriptional level. In particular, the magnitude of the change in
expression of gene g is inferred from the absolute value of the coefficient
at position g in the signature. Likewise, the direction of the change of
expression of gene g –up-regulation versus down-regulation– is encoded
in the sign of this very same coefficient. Genes which are not subject to
expression changes are either absent from the signature, or present with
a coefficient equal to 0. Actually, signatures can be built from the results
of a (univariate) differential expression analysis. In that case, the absolute
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values of coefficients are log2 fold-changes : i.e., the binary logarithm of the
ratio of gene expression levels in the treated and the reference groups. The
set of genes associated with nonzero coefficients is restricted to significantly
differentially expressed genes –i.e., associated with an adjusted 2 p-value
lower than some threshold, for instance 5%. However, we will consider here
another method for differential expression analysis, which is not univariate.
Indeed, we suppose that the changes in expression are mainly driven by
groups of genes rather than individual genes. Leaving out the group inter-
action might incur important information loss about the perturbed pathways,
as we will see in Section 7.4.

For each treatment protocol, the goal is to compute the similarity of the
associated treatment signature to a reference signature. This reference
signature is defined as the signature computed between corresponding PBS-
control rats and IL1β-EoP model samples ; it represents the transcriptional
changes expected from a good treatment protocol that is able to rescue the
disease phenotype.

Figure 7.2 illustrates the ranking procedure. In order to build a signature
for a given treatment protocol T of MSCs injection (Step 1.a in Figure 7.2), we
rely on a computational method called Characteristic Direction (CD) (Clark
et al., 2014). 3 To build the treatment signature, this method takes as in-
put RNA-sequencing (DESeq2 (Love, Huber, and Anders, 2014) normalized)
profiles from two condition groups in the same sequencing batch. The first
group is the IL1β-EoP model samples treated with T , and the second group
comprises of IL1β-EoP model samples without any injection of MSCs. We
denote the resulting vector CD[T‖IL1β]. The reference signature, denoted
CD[PBS‖IL1β], to which treatment signature CD[T‖IL1β] should be compared,
is built in a similar way (Step 1.b). CD is run on the condition groups of
PBS-control samples and IL1β-EoP model samples without any injection of
MSCs from the same sequencing batch as the previous two groups. Ensuring
to use samples from the same sequencing aims at limiting the effect of the
sequencing batch, which could otherwise be a confounding factor for the
effect of the treatment. Moreover, the correction of batch effects from

2The adjustment is necessary to compare p-values resulting from a multiple hypothesis
testing, as done in a univariate differential expression analysis, here, one hypothese per
gene.

3Characteristic Direction was introduced in Chapter 2. In a nutshell, signature CD[G1‖G2],
computed through Characteristic Direction for two condition groups G1 and G2, is the vector
normal to the decision frontier in a high-dimensional space, which classifies samples into
either G1 or G2, and that is oriented in the direction from G2 to G1. That means in particular
that the changes reported in the signature are changes in G1 compared to the reference
group G2. Associated empirical p-values, relying on data permutations, might be computed
using this method to assess the significance of the change in expression, and we used
threshold 5% and 100 permutations in the computations.
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Figure 7.2: Application of signature reversion to encephalopathy
of prematurity. The procedure of scoring treatments protocols using
signature reversion.

raw data is a tricky procedure, which might lead to serious signal loss.
This is why computations were run on normalized expression matrices (per
batch), instead of batch-corrected raw expression data. Finally, in order
to assign a score to treatment protocol T (Step 2), we compute the cosine
similarity between the signature ST = CD[T‖IL1β], corresponding to T , and
the associated reference signature R = CD[PBS‖IL1β] on the same set of
genes G –even if it means adding zero coefficients to the signatures. This
cosine score is defined as

cos (ST ,R) :=
∑

g∈G ST [g]×R[g]√∑
g∈G ST [g]

√∑
g∈GR[g]

. (7.1)

This score is comprised between −1 (strong dissimilarity) and 1 (strong
similarity). As shown in Step 3 of the figure, the underlying idea is that,
the higher the similarity score is, the most the injection of MSCs is able to
reproduce transcriptional genewise changes, in the right direction, from the
diseased to a healthy phenotype.
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7.4 Results

The final ranking of treatment protocols is shown in Table 7.2. First, this
ranking shows that the method described in Section 7.3 seems robust to
batch effect –meaning that groups treated with different doses at the same
age and through the same mode of administration may be associated with
dissimilar scores ; for instance, samples treated at P20 by intranasal injection
yield score 0.80 when treated with a moderate weight-dependent dose, 0.51
when treated with a high dose, and 0.08 when treated with a low dose. This
brings us to a second claim : dose does not have a monotonic effect on
the reversion of the inflammation-induced gene expression change. We can
notice, as a sanity check, that most of the scores are indeed positive, some
being even rather close to 1 (up to 0.80). This supports the fact that most
human MSC injections have a positive, therapeutic effect at transcriptomic
level. One can notice that treatments with the intranasal route seem to rank
relatively higher than treatments with intravenous injections.

Batch number Age Mode Dose level Dose name Score
5 P20 INAS Moderate Dose 2 0.80
3 P10 INAS High Dose 3 0.79
1 P5 INAS High Dose 3 0.68
6 P20 IV Low Dose 1 0.55
1 P5 INAS Moderate Dose 2 0.54
5 P20 INAS High Dose 3 0.51
3 P10 INAS Low Dose 1 0.36
3 P10 INAS Moderate Dose 2 0.33
1 P5 INAS High Dose 3 0.31
6 P20 IV High Dose 3 0.27
4 P10 IV Low Dose 1 0.24
6 P20 IV Moderate Dose 2 0.20
2 P5 IV High Dose 3 0.11
4 P10 IV Moderate Dose 2 0.08
5 P20 INAS Low Dose 1 0.08
4 P10 IV High Dose 3 0.01
2 P5 IV Low Dose 1 −0.02
2 P5 IV Moderate Dose 2 −0.12

Table 7.2: Ranking of the treatment protocols. Ranking of the treatment
protocols (dose, age and mode of administration) resulting from the method
described in section 7.3. Scores are rounded up to the 2nd decimal place.

We checked our assumption on the impact on gene expression made in
Section 7.3 : that is, the fact that changes are rather driven by groups
of genes than by individual genes. In order to do so, instead of building
signatures based on Characteristic Direction (Clark et al., 2014), we con-
sidered signatures which coefficients were log2 fold-change values associ-
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Figure 7.3: Comparison between Characteristic Direction signa-
tures and univariate differential analysis. Comparison between the
numbers of common differentially expressed (DE) genes across groups
of conditions, when differential gene expression analysis is performed
through DESeq2 (Love, Huber, and Anders, 2014) (top plot) or through
Characteristic Direction (Clark et al., 2014) (bottom plot). DE genes are
genes which are associated with nonzero coefficients in the signatures. The
number of genes contained in the most populous bars are reported in both
plots.

ated with Benjamini-Hochberg-adjusted p-values (Benjamini and Hochberg,
1995) lower than 5%, as derived with the classic (univariate) differential
analysis approach DESeq2 (Love, Huber, and Anders, 2014). The top plot
in Figure 7.3 shows that, for DESeq2-derived signatures, few genes were
in common (that is, with a nonzero coefficient in the signatures) across
condition groups. That means that cosine scores computed on these sig-
natures have a value close to 0. As such, these cosine score are weakly
informative of the relevance of a given treatment protocol. To the contrary,
the bottom plot of Figure 7.3 –that considers signatures computed through
Characteristic Direction– shows that there is a small core subset of genes
which have a nonzero coefficient in all signatures. These genes are Sparc,
Csf1r, Lgmn, Ctsb, Cst3, AABR07006310.1, Mt-co1, Hexb, Ttr, and Apoe. It
means that every cosine score at least relies on changes on this core set ;
such, the score is indeed reflective of some transcriptional changes due to
the treatment. These two plots highlight the fact that reversal in expression
is essentially driven by groups of genes, and confirm our choice of using
Characteristic Direction to build signatures.

Moreover, since only nonzero coefficients are involved in the computation
of the cosine score (Equation (7.1)), one might think that there might be
a bias of higher cosine scores for treatment protocols which signature has
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Figure 7.4: Correlation between score and number of common
differentially expressed genes. Plot of the cosine score depending on
the number of common differentially expressed (DE) genes of the associated
signature (CD[IL1β + treatment‖IL1β]) with the control signature (that is,
CD[PBS‖IL1β]). R2 is the residual error of the linear regression (red line).

a large number of common differentially expressed genes with the control
signature CD[PBS‖IL1β]. We have tested this assumption by running a Spear-
man’s ρ correlation test between the scores and the number of common
differentially expressed genes with the control group. The test showed no
significative linear correlation between the scores and the number of genes
on which this score is computed (Spearman’s ρ : 0.19, p = 0.44). Moreover, a
linear regression from the number of common differentially expressed genes
to the score has shown a bad fit (quantified by the residual R2 = 0.04), as
displayed by Figure 7.4. It is still interesting to note that this plot most likely
gives away the reason why groups from the batch treated with intravenous
injections at P5 are associated with low, sometimes even negative, scores
in Table 7.2 ; the signatures associated with these groups have only a few
genes in common with the control signature CD[PBS‖IL1β]. As such, the
support of genes on which the associated scores are computed might not be
informative enough.

Finally, in order to assess the relevance of the Top-2 candidates, that is,
P20-INAS-Dose 2 and P10-INAS-Dose 3, I performed a pathway analysis on
the Top-2 treatment protocols. Both candidates are associated with a score
around 0.80 in Table 7.2. A pathway analysis allows the identification of the
biological pathways which are most perturbed by these treatment protocols.
I considered the over-representation analysis (ORA) (Yaari et al., 2013),
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which determines which sets of functionally similar genes –if there are any–
are statistically surrepresented among a given subset of genes. Surrep-
resentation of a gene subset is computed by comparing the gene function
categories represented in the subset (enrichments) to those present among
a background set of genes, which contains the subset of interest. The gene
function categories are annotated in Gene Onthology (GO) (Ashburner et al.,
2000). In these annotations, genes are regrouped by biological processes
in which they are involved (category GO Biological Process NoRedundant).
The statistical tests –one per gene function category– were run by the online
tool WebGestalt (Liao et al., 2019).

The gene subset associated with a treatment protocol T was built from
the list of one-to-one orthologuous human genes with nonzero coefficients
in the associated signature CD[T‖IL1β]. 4 We consider the human genes
instead of rat genes because the gene categories for Homo sapiens are more
robust. We also built two other gene lists, which respectively contains genes
with positive (up-regulated), resp. negative (down-regulated), coefficients
in the signature. This procedure output three lists of genes per treatment
protocol : 5, 263 genes for P20-INAS-Dose 2, with 2, 631 up-regulated genes
and 2, 632 down-regulated genes ; 6, 233 genes for P10-INAS-Dose 3, with
3, 534 up-regulated genes, and 2, 699 down-regulated genes. The background
set of genes comprises of the 16, 699 human genes which are orthologuous
to rat genes measured in all sequencing batches shown in Table 7.1.

Figure 7.5 shows the ORA results for P20-INAS-Dose 2, and Figure 7.6
those for P10-INAS-Dose 3. Similarly to differential expression analysis, the
p-values associated with the enrichments should be adjusted for multiple
hypothesis testing, for each gene function category –e.g., using Benjamini-
Hochberg’s correction (Benjamini and Hochberg, 1995). According to Fig-
ure 7.5, intranasal injection of a moderate dose of MSCs at a later stage
(P20-INAS-Dose 2), as well as the intranasal injection of a high dose at
postnatal day 10 (P10-INAS-Dose 3) perturb the expression of genes involved
in the activation of granulocytes and neutrophils, which are cellular subtypes
which play an important role in the immune system, and in the response to
inflammation. Moreover, both treatments significantly down-regulate the
expression of genes involved in phagocytosis and autophagia. These pro-
cesses are activated in microglia exposed to the IL1β-induced inflammation,
and are partly responsible for the deficit in myelin.

4That is, we match rat genes with human genes which have a close common genetic
ancestor in the phylogenetic tree. As a general rule, orthologuous genes have the same
function across species, which is the basis for running the analysis on human genes.
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Figure 7.5: Enrichment analysis of differentially expressed genes in
the best recommended treatment. Top left plot : enrichments (Top-10 in
terms of decreasing p-value) of the subset of genes differentially expressed
(both up- and down-regulated genes) by treatment protocol P20-INAS-Dose
2. Top right plot : considering the subset of up-regulated genes. Bottom
plot : considering the subset of down-regulated genes.
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Figure 7.6: Enrichment analysis of differentially expressed genes in
the second best recommended treatment. Top left plot : enrichments
(Top-10 in terms of decreasing p-value) of the subset of genes differentially
expressed (both up- and down-regulated genes) by treatment protocol P10-
INAS-Dose 3. Top right plot : considering the subset of up-regulated genes.
Bottom plot : considering the subset of down-regulated genes.

Moreover, a similar enrichment analysis was performed on the core set of
9 genes (excluding AABR07006310.1, having no human orthologuous gene)
which are significantly differentially expressed in all signatures. The follow-
ing terms are significantly enriched at level 5% with an adjusted p-value of
0.021 : “regulation of cell morphogenesis”, “neutrophil mediated immunity”,
“granulocyte activation” and “extracellular structure organization”. The four
genes that contribute to the enrichments in neutrophil-mediated immunity
and granulocyte activation –which are important terms with regards to EoP,
as discussed above– are CST3, CTSB, HEXB and TTR. The fact that this core
set of genes comprises of genes involved in the response to inflammation is
quite conforting with respect to the relevance of our ranking.

127



7.5 Discussion

Other experimental analyses, through the detection of the presence of myelin
basic protein (MBP) via Western blots, showed a restoration of the levels of
the MBP in stem cell-treated samples. It means that what we observe at
transcriptomic level –positive scores of signature reversion– seems to match
what is measured at the level of proteomics. This project showcases signa-
ture reversion, which is the key to ranking treatments. Signature reversion
crucially relies on the definition of appropriate reference groups, in order
to accurately quantify the transcriptional changes due to the treatment.
This approach is agnostic to the disease, which enables its use in a generic
fashion for other drug research investigations. Furthermore, this application
highlights the potential of transcriptomics for drug repurposing. Even if
transcriptomics might not be as informative as proteomics –i.e., the direct
study of protein production– analysis of transcriptomic data still provides
important clues about groups of genes affected by a disease. This confirms
our choice of focusing on transcriptomic data throughout the thesis.

Lastly, this project allows us to take a step back to contemplate the big
picture of this thesis. Contrary to the drug repurposing method proposed
in my PhD, the main focus of this project was the design of a score as-
sociated with drug signatures, which already matched the appropriate cell
lines and diseased tissues. The main difficulty of the drug repurposing
method, as mentioned in introduction, lies in the design of appropriate
drug signatures when the only available data is a set of in vitro treated
profiles in immortalized cell lines –most likely cancerous, in the case of the
LINCS L1000 database (Subramanian et al., 2017). This issue was tackled in
Chapter 3, which combines the Boolean network in Chapter 2 with carefully
built drug-induced perturbation signatures.

One might wonder why we did not apply the cosine score directly on the
“stabilized” binary profiles predicted by the Boolean network and signature
CD[Healthy‖Patients] built on patient and control profiles, as done in the
project on EoP. This scoring method was actually shown to be less predic-
tive than the current score function on a smaller subset of 10 molecules
(4 antiepileptic and 6 proconvulsant drugs), where the proconvulsant or
antiepileptic effect is provably assessed, except for Withaferin-A. The re-
sulting rankings and receiver operating characteristic (ROC) curves for both
methods are respectively shown in Figures 7.7 and 7.8. 5 This can actually
be explained by the fact that the profiles predicted by the Boolean network

5Note that we replaced zeroes by −1’s in the binary profiles, in order to appropriately
reflect down-regulation when computing the cosine score.
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are not exactly drug signatures per se : they are in silico treated patient
profiles. As such, they do not represent changes in expression, but predicted
expression levels in treated profiles. This is why the repurposing score
described in Algorithm 3 aims at determining in which part of the 2D plane
the in silico treated profile is –either on the hyperplane globally assigned
to control samples, or the one mainly associated with patient profiles– and
then computes the distance of that point to the frontier separating the two
sides of the plane. For the sake of completeness, we also report the ranking
and associated ROC curve when the cosine score method is applied to the
whole set of 34 drugs mentioned in Chapter 3 in Figure 11.1 in Appendix.
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Figure 7.7: Rankings from cosine scores and repurposing scores on
a subset of drugs. Boxplots of scores (left : repurposing score described
in Algorithm 3 ; right : cosine score on “stabilized” profiles) on the smaller
subset of 10 drugs, sorted by decreasing average score.
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Figure 7.8: Performance of cosine scores and repurposing scores on
a subset of drugs. ROC curves for the repurposing score (Algorithm 3, left)
and the cosine score applied on “stabilized” profiles (right) on the smaller
subset of 10 drugs. The baseline is L1000 CDS2 (Duan et al., 2016).
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Chapter 8

Extension to a collaborative
setting

In the last part of my PhD, I was interested in extending to a multi-agent
setting the principles laid out for a single agent facing a problem of identifi-
cation. That setting might be of interest in personalized drug repurposing,
in which potentially different sets of drug candidates are recommended to
different subpopulations of patients. Heterogeneous patient subpopulations
are a common sight for versatile diseases which actually regroup a large
number of pathologies : e.g., in breast cancer (Sims et al., 2007) or in
epilepsy (Mirza, Stevelink, et al., 2021; Walker, Mirza, et al., 2015). In
these diseases, a few number of patients might be afflicted with a specific
subtype of disease, hence the idea of exploiting drug responses from other
related patient subpopulations, while looking for the subpopulation-specific
best drug candidates.

In the single-agent setting, the observations from a given action on the
environment were assumed to be relatively uniform, as observations are
“true” average scores with some additive noise of fixed variance equal to
σ2. Now, in order to model several subpopulations, a set of M agents is
considered, across which expected rewards from the same arm might differ.
Taking into account the observations made by other agents might decrease
the total number of samples needed to determine the best drug candidates
for each agent –especially as the reliance on others subpopulations grows–
contrary to the case where each agent works separately.

However, in practice, broadcasting every new information about the ob-
servations to every agent might also be costly : indeed, launching a batch of
trials is easier than having to wait for all other subpopulations to determine
the next arm allocation. Moreover, with respect to patient data privacy
–particularly in the context of adaptive clinical trials– sharing the raw patient
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drug response might also be harmful.

Therefore, inspired by the “federated” 1 bandit learning setting which was
proposed for regret minimization (Shi, Shen, and Yang, 2021), a generalized
framework for collaborative bandit Top-N identification is introduced. An as-
sociated novel information theoretic lower bound on the sample complexity
was derived. Furthermore, a phased elimination-based algorithm, which is
nearly optimal with respect to the proposed lower bound, 2 was designed.
This algorithm features two novel key ideas

- First, the tracking of an oracle allocation through a relaxed optimization
problem, which is related to the characteristic time involved in the lower
bound.

- Second, a data-dependent sampling scheme that selects the arms to
sample in a more adaptive way than in prior works.

The combination of these two elements defines a new computationally
cheaper approach to design near-optimal algorithms. This work has been
accepted at the 36th Conference on Neural Information Processing Systems
(NeurIPS 2022) (Réda, Vakili, and Kaufmann, 2022), and was done in collab-
oration with Sattar Vakili (MediaTek Research). 3

8.1 Collaborative Top-N (identification)

In this chapter, we do not consider specific model structures, and we con-
sider exact Top-N identification (ε = 0). This work introduces a general
multi-agent bandit model in which each agent is facing a finite set of K
arms, and may communicate with the other M − 1 agents through a central
controller. The objective for an agent is to identify its own N best arms, in
a context where optimality is defined with respect to mixed rewards. The
mixed reward of an arm is a weighted sum of the rewards of this arm across
agents, where the weight assigned by one agent to rewards observed by
another is known. If positive (nonzero) weights are set on other agents’
rewards, then communication between agents becomes necessary. This
general setting recovers and extends several recent models for (centralized)
collaborative bandit learning.

Let us now discuss the differences between this framework and the single-

1Their setting does not satisfy some requirements in federated learning, e.g., dealing
with communication interruption.

2That is, up to logarithmic multiplicative factors.
3Related code is located at https://github.com/clreda/near-optimal-federated.
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agent one discussed in Chapters 4 and 5. At each round, an agent can either
sample an arm, or remain idle. In our case –dealing with a pure exploration
problem– remaining idle means not sampling any arm, or, equivalently,
sampling a “ghost” arm denoted 0, which returns observations equal to the
smallest possible reward, so that it is quickly discarded from the set of top
arms.

When agent m ∈ [M ] samples an arm Imt ∈ [K] at round t based on prior
observations, m observes local reward Y ′m

t , which only she can observe. This
local reward is drawn from a σ2-subgaussian distribution of mean µ(k,m), inde-
pendently from past observations and from other agents’ observations –just
like what happens in the single-agent context described in Definition 4.1.1.

However, this agent does not seek to identify the set ofN arms
N

argmax
k∈[K]

µ(k,m)

that maximizes her local expected reward ; but rather, the set that max-
imizes a mixed reward, which definition relies on a known weight matrix
W∶ = (wn,m)n,m∈[M ] ∈ [0, 1]M×M . The mth column of matrix W quantifies the
normalized contributions of each agent to the mixed reward of agent m,
such that for any agent m ∈ [M ]∑

n∈[M ]

wn,m = 1 .

In practice, this weight matrix could be obtained by considering a column-
stochastic similarity matrix between patient subpopulations, based on their
biomarkers, or transcriptional profiles. Then, as previously alluded to, the
mixed reward at round t > 0 for agent m ∈ [M ] and arm Imt ∈ [K] is defined as
a weighted sum of the local rewards across agents, had they sampled the
same arm Imt at round t

Y ′m
t :=

∑
n∈[M ]

wn,mY
′n
t .

The expectation of this (unobserved) mixed reward, called expected mixed
reward, is

µ′
(k,m) :=

∑
n∈[M ]

wn,mµ(k,n) .

We denote by SmN,µ :=
N

argmax
k∈[K]

µ′
(k,m) the set ofN arms with largest expected

mixed rewards for agent m, which is assumed unique. When it is obvious,
we refer to this set as SmN . Besides the degenerated case in which wn,m =

1(n = m), that is, each agent can solve their own bandit problem in isolation,
agents need to communicate to fulfill their own identification targets ; i.e., to
share information about their local rewards to other agents.
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The communication model for an agent m ∈ [M ] is defined as follows : at
each round t, this agent either remains idle ; or samples arm Imt and observes
Y ′m

t ; or communicates information to a central server –e.g., the empirical
means of its past local observations. This central server broadcasts this
information to all other agents, at the price of some fixed communication
cost. Similarly to the communication model described in Shi, Shen, and Yang
(2021); Tao, Zhang, and Zhou (2019), communication between agents,
i.e., broadcasting from the server, only happens at the end of local sampling
phases for all agents ; that is, when all agents are idle at the same time.
Like in single-agent settings, the analysis of the strategy adopted by the M
agents will rely on the definition of mixed gaps related to pairs (agent, arm)

Definition 8.1.1. Characteristic gap for collaborative bandits. For
agent m ∈ [M ] and arm k ∈ [K], the gap is defined as follows

∆′
k,m :=max

(
µ′
(k,m) −

N+1
max
a∈[K]

µ′
(a,m),

N
max
a∈[K]

µ′
(a,m) − µ′

(k,m)

)
.

In particular, it implies that

∆′
k,m :=


N
max
a∈[K]

µ′
(a,m) − µk if k 6∈ SmN ,

µ′
(k,m) −

N+1
max
a∈[K]

µ′
(a,m) otherwise .

The analysis will also depend on arm-pairwise gaps related to an agent, that
is, for any pair of arms (k, ℓ) and agent m

∆
′m
k,ℓ := µ′

(k,m) − µ′
(ℓ,m) .

We denote the matrix in RK2×M , ∆′ := (∆
′m
k,ℓ)k,ℓ,m.

Our goal is to construct a δ-correct algorithm A, i.e., a set of sampling,
stopping and decision rules, so that, for any model of local expected rewards
µ ∈ RK×M and weight matrix W , the algorithm returns at stopping time τA

M sets of N arms (Ŝ1
N(τA), . . . , ŜMN (τA)). These sets satisfy the property of

correctness
P{µ,W}

(
∀m ∈ [M ], ŜmN (τA) ⊆ SmN

)
≥ 1− δ ,

while : first, achieving a small exploration cost

Exp{µ,W}(A)∶ =
∑
m∈[M ]

∑
k∈[K]

N(k,m)(τA) ,

where N(k,m)(t) :=
∑

s≤t 1(Y
′m
s = k) is the number of selections of arm k by

agent m up to round t included ; and, second, aiming at a small communi-
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cation cost, defined as

Com{µ,W}(A) :=
∑
t≤τA

1(It) ,

where It is the event that the central server broadcasts information to all
agents at round t.

In the algorithm we propose in this chapter, Com{µ,W}(A) will be equal to
the number of sampling phases, where agents observe local rewards from
selected arms before sending information to the server. Similarly to the
single-agent setting, a bound on the exploration cost can be expressed either
in high probability (Equation (4.2)) or in expectation (Equation (4.3)).

8.2 Related work

The weighted collaborative model proposed above in the context of Top-N
identification –and of pure exploration as a general rule– is novel. How-
ever, it encompasses different recent frameworks in collaborative learning,
which formalized the case where several multi-armed bandits collaborate to
efficiently perform sequential decision making (Zhu, Zhu, et al., 2021).

In particular, Shi, Shen, and Yang (2021) study a special case in which,
given some personalization coefficient α ∈ [0, 1], the mixed reward for arm k ∈
[K] and agent m ∈ [M ] is an interpolation between the local expected reward
µ(k,m) and the average reward across agents 1

M

∑
n∈[M ] µ(k,n). This amounts to

choosing W = (1− α)IM + 1−α
M

1M×M , where 1M×M is the matrix of size M ×M
with all coefficients equal to 1. In that work, authors consider the objective of
minimizing regret in as few communication rounds as possible. Another work
aimed at regret minimization considers a similar weighted model (Wu, Wang,
et al., 2016) in a different setting in which a central controller chooses in
each round an arm for the unique agent (corresponding to a sub-population)
that arrives. 4

The counterpart pure exploration problem of fixed-confidence Top-N iden-
tification in a collaborative context is the focus of this chapter. The weighted
collaborative framework described in Section 8.1 extends the well-studied
fixed-confidence Top-N identification problem (Chen, Li, and Qiao, 2017;
Even-Dar et al., 2006; Gabillon, Ghavamzadeh, and Lazaric, 2012; Kalyanakr-
ishnan et al., 2012).

4This type of bandits is an instance of contextual bandits, which are outside the scope of
this thesis.
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Another related setting is the “single-model” collaborative pure explo-
ration (Hillel et al., 2013; Tao, Zhang, and Zhou, 2019; Yang, Chen, et al.,
2021; Zhu, Mulle, et al., 2021), where M agents face the same best arm
identification problem. Variants of this problem have been investigated. For
instance, Yang, Chen, et al. (2021) consider asynchronous agents, which
can only sample at some times ; whereas in Zhu, Mulle, et al. (2021); Zhu,
Zhu, et al. (2021), agents can only communicate information to some of the
other agents. The goal in these papers is to reduce the sample complexity
needed to solve a single pure exploration problem, at the cost of some
communication rounds. Our model recovers the synchronous setting when
considering µ(k,m) = µ(k,n) for any arm k ∈ [K] and agents m,n ∈ [M ], and by
setting the weight matrix to W = IM .

An interesting kernelized collaborative pure exploration problem was re-
cently studied by Du et al. (2021). In that work, both agents and arms
are described by feature vectors, and there is a known kernel encoding the
similarity between the mean reward of each (agent,arm) pair. This indepen-
dent work follows a similar approach as ours and also propose a near-optimal
phased elimination algorithm inspired by a lower bound, although the models
and related lower bounds are significantly different. Finally, Russac et al.
(2021) considers a pure exploration task in which the expected reward of an
arm is the weighted sum of its rewards across M distinct subpopulations. A
parallel can be drawn between their setting and the weighted collaborative
framework by setting each weight wn,m to some αn independent from m, so
that the best arm is common to all subpopulations. However, the proposed
algorithms do not aim at a low communication cost across subpopulations.
Moreover, in the setting described in Section 8.1, an agent can potentially
consider any linear combination of the others’ observations in its mixed
rewards, that is, any degree of personalization across agents.

In bandits working in collaboration, the need for a small communication
cost makes algorithms based on phased eliminations appealing. In this cate-
gory of algorithms, agents maintain a set of a active arms that are candidates
for being optimal. At the end of each sampling phase, arms are possibly
eliminated from this set, until the stopping criterion is met. Adaptivity to
the observed rewards –and, in our case, communication– is only needed
between sampling phases, which are typically long. This type of structure
has been used in various bandit settings, both for regret minimization (Auer
and Ortner, 2010; Shi, Shen, and Yang, 2021) and pure exploration (Fiez et
al., 2019; Hassidim, Kupfer, and Singer, 2020; Hillel et al., 2013). In some
of these algorithms, including Shi, Shen, and Yang (2021), the number of
samples gathered from an arm which is active in some phase r is fixed in
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advance. Going beyond such a deterministic sampling scheme might be
crucial to achieve optimal performance with phased algorithms. In order to
achieve (near)-optimality, others phased algorithms rely on the computation
of an oracle allocation from the optimization problem related to a lower
bound on sample complexity (Du et al., 2021; Fiez et al., 2019; Garivier
and Kaufmann, 2016; Russac et al., 2021). In Du et al. (2021); Fiez et al.
(2019), based on this allocation, a total number of samples to get in the
current round is computed, depending on the identity of the surviving arms,
that is, arms that remain in the candidate set. The distribution of samples
across arms for the current round is proportional to the oracle allocation,
and is obtained through a rounding procedure. Compared to these works,
the algorithm proposed in this chapter is built on an allocation inspired by a
relaxation of a lower bound, which does not only depend on the identity of
surviving arms, and an alternative to the rounding procedure.

In our setting, we do not put constraints on the type of information that is
exchanged in each communication round –which can be interesting when we
consider privacy issues (Dubey and Pentland, 2020; Zhu, Zhu, et al., 2021)–
nor on the lengths of the messages. Each communication round has a unit
cost. In a communication round, all agents send messages to the central
server –e.g., estimates of their local means– and the server can send back
arbitrary quantities or instructions –e.g., how many times each arm should
be sampled in the next exploration phase, and when to communicate next.

Moreover, contrary to the works of Hillel et al. (2013); Tao, Zhang, and
Zhou (2019) on collaborative learning, we do not look at strategies that
explicitly minimize for the number of communication rounds. Instead, our
approach consists in proving a lower bound on the smallest possible ex-
ploration cost of a δ-correct algorithm which would communicate at every
round ; and then, finding an algorithm which exploration cost matches this
lower bound, while suffering a reasonable communication cost.

8.3 Lower bound for collaborative Top-N

We first present a lower bound on the exploration cost, i.e., the total number
of samples across arms and agents, needed for any δ-correct algorithm A to
make a decision (ŜmN (τA))m∈[M ]. This lower bound holds on the exploration cost
of a collaborative exact Top-N identification algorithm, in which all agents
communicate to the central server their latest observation as soon as they
received it. Moreover, it assumes that we consider unstructured Gaussian
bandits with fixed variance σ2 ; meaning that the reward Y ′m

t from arm Imt ∈
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[K] observed at round t > 0 by agent m ∈ [M ] will be drawn from N (µ(Imt ,m), σ
2)

Y ′m
t ∼ µ(Imt ,m) + ψmt where ψ

m
t ∼ N (0, σ2) .

Similarly to the lower bound in single-agent settings (Result 4.3.3), this
lower bound will be expressed as the value 5 of an optimization problem
involving the characteristic gaps, inflated by a factor of order O(δ−1).

Definition 8.3.1. Oracle problem. Optimization problem P⋆ on any vector
∆ ∈ RK×K×M is defined as follows

P⋆ (∆) := argmin
T∈(R+)K×M

∑
m,k Tk,m (1)

s.t. ∀m ∈ [M ] ∀k ∈ SmN ∀ℓ 6∈ SmN ,
∑

n∈[M ]w
2
n,m

(
1

Tk,n
+ 1

Tℓ,n

)
≤ (∆[k,ℓ,m])2

2
. (2)

If allocation T ∈ RK×M satisfies T ∈ P⋆(∆), it means that T is a minimizer
of Problem P⋆, which minimizes the objective (1) while satisfying the con-
straints (2).

Before stating the lower bound, we further assume that the weight matrix
W satisfies wn,m 6= 0 for any agent m ∈ [M ]. This assumption means that the
mixed reward of any agent –at least partially– depends on her own local
reward.

Theorem 8.3.2. Lower bound on the exploration cost for collabora-
tive Top-N identification. Let µ be a fixed matrix of expected rewards in
RK×M . For any δ ∈ (0, 1/2], let A be a δ-correct algorithm under which each
agent communicates each reward to the central server after it is observed.
Then the expected exploration cost of algorithm A satisfies

E[Expµ(A)] ≥ N ⋆(µ) log
(

1

2.4δ

)
,

where N ⋆(µ) :=
∑

m∈[M ]

∑
k∈[K] τ

⋆
k,m and τ ⋆ ∈ P⋆(∆′), and ∆′ := (∆

′m
k,ℓ)k,ℓ,m.

The full proof (displayed below) uses standard change-of-distribution ar-
guments, together with classical results from constrained optimization. Since
the setting only deals with unstructured models, we drop all notations related
to model functions, and directly consider bandit models instead.

Proof. Let us use Lemma 6.3.1 to define the set of alternative models to µ
5The value of a minimization problem is the objective evaluated at a minimizer (a similar

definition can be given for maximization problems).
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in Top-N identification

Alt(µ) ∶ :=
{
λ ∈ RK×M | ∃m ∈ [M ], SmN (µ) 6⊆ SmN (λ)

}
=

{
λ ∈ RK×M | ∃m ∈ [M ] ∃k ∈ SmN (µ) ∃ℓ 6∈ SmN (µ), λ′(ℓ,m) > µ′

(k,m)

}
.

where λ′(k,m) :=
∑

n∈[M ]wn,mλ(k,n) for any arm k and agent m. If, for δ-correct
algorithm A, we assume that stopping time τA is almost surely finite under
model µ, then let event Eµ := {∃m ∈ [M ], ŜmN (τ) 6⊆ SmN }. Since A is δ-correct,
this event holds with probability at most δ under model µ and at least 1 − δ
under any alternative model to µ. We define τk,m := E{µ}[N(k,m)(τA)], where
N(k,m)(t) is the number of samples arm k is sampled by agent m up to round t
included, and kl : (x, y)→ x log(x/y)+(1−x) log((1−x)/(1−y)) the binary relative
entropy function. Since A is δ-correct with δ ≤ 1/2, by Kaufmann, Cappé, and
Garivier (2016, Lemma 1) and the expression of Kullback-Leibler divergence
for Gaussian distributions with fixed variance σ2 in Equation (4.4), for any
alternative model λ to µ

1

2σ2

∑
m∈[M ]

∑
k∈[K]

τk,m(µ(k,m) − λ(k,m))
2 ≥ kl(δ, 1− δ) . (8.1)

Since all diagonal coefficients of W are positive, for any k ∈ [K], m ∈ [M ],
τk,m > 0. Indeed, if wm,m 6= 0, it is possible to pick λ that only differs from µ by
the entry λ(k,m), in such a way that arm k becomes optimal –or sub-optimal–
for agent m 

λ(q,n) = µ(q,n) if q 6= k or n 6= m ,

λ(k,m) = w−1
m,m

(
µ(k,m) +∆′

k,m

)
if k 6∈ SmN (µ) ,

λ(k,m) = w−1
m,m

(
µ(k,m) −∆′

k,m

)
otherwise .

From Equation (8.1) and δ ∈ (0, 1), we get

τk,m (µ(k,m) − λ(k,m))
2︸ ︷︷ ︸

>0

≥ kl(δ, 1− δ) > 0 =⇒ τk,m > 0 .

Consider now a fixed agent m ∈ [M ], and two arms k ∈ SmN (µ) and ℓ 6∈ SmN (µ).
We will build an alternative model λ, similar enough to µ, where only arms k
and ℓ are modified for all agents, so that k 6∈ SmN (λ) and ℓ ∈ SmN (λ). Given two
nonnegative sequences γ, γ′ ∈ (R+)M , we define λ such that for all n ∈ [M ]


λ(q,n) = µ(q,n) if q /∈ {k, ℓ} ,
λ(k,n) = µ(k,n) − γn ,
λ(ℓ,n) = µ(ℓ,n) + γ′n ,
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and λ is an alternative model to µ if and only if

(λ′(ℓ,m)−µ′
(ℓ,m))− (λ′(k,m)−µ′

(k,m)) =
∑
n∈[M ]

wn,m(γ
′
n+ γn) ≥ ∆

′m
k,ℓ := µ′

(k,m)−µ′
(ℓ,m) . (8.2)

Then, finding λ such that Equation (8.1) is as tight as possible –that is,
building the closest alternative model to µ– yields the following constrained
optimization problem in γ, γ′

inf
γ,γ′∈(R+)M

Equation 8.2 holds

∑
n∈[M ]

τk,n
γ2n
2σ2

+
∑
n∈[M ]

τℓ,n
γ′2n
2σ2

 .

The infimum can be computed in closed form using constraint optimization.
Introducing a Lagrange multiplier Γ ∈ R+ and the minimizer (γ⋆, γ′⋆), from
the KKT conditions (Karush, 1939; Kuhn and Tucker, 2014) and the fact that
(τq,n)q,n are positive, we get that, for any agent n,

σ−2τk,nγ
⋆
n − Γwn,m = 0 =⇒ γ⋆n =

Γwn,m
σ2τk,n

σ−2τℓ,nγ
⋆
n − Γwn,m = 0 =⇒ γ′⋆n =

Γwn,m
σ2τℓ,n

Γ

∆
′m
k,ℓ −

∑
n∈[M ]

wn,m(γ
⋆
n + γ′⋆n )

 = 0 .

Solution Γ = 0 is not acceptable, because otherwise γ⋆n = γ′⋆n = 0 for any agent
n ∈ [M ], and then λ 6∈ Alt(µ). If Γ 6= 0, then

∆
′m
k,ℓ =

Γ

σ2

∑
n

w2
n,m

(
τ−1
k,n + τ−1

ℓ,n

)
=⇒ Γ =

σ2∆
′m
k,ℓ∑

nw
2
n,m(τ

−1
k,n + τ−1

ℓ,n )
,

And finally, plugging this expression into γ⋆ and γ′⋆ yields the following
minimizer

∀n ∈ [M ], γ⋆n =
∆

′m
k,ℓwn,mτ

−1
k,n∑

n′∈[M ]w
2
n′,m(τ

−1
k,n′ + τ−1

ℓ,n′)
and γ′⋆n =

∆
′m
k,ℓwn,mτ

−1
ℓ,n∑

n′∈[M ]w
2
n′,m(τ

−1
k,n′ + τ−1

ℓ,n′)
,

and the conclusion follows by plugging these expressions to get the expres-
sion of the infimum.

Note that this theorem only focuses on the exploration cost, without
attempting to minimize the number of communication rounds. Indeed, the
number of communication rounds for an algorithm in which the central server
shares information after each new observation is equal to the exploration
cost, and is thus suboptimal in this regard.
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Note that, for the single-agent case (M = 1), Theorem 8.3.2 recover the
complexity of best arm identification in a Gaussian bandit model (Garivier
and Kaufmann, 2016).

8.4 Structure for nearly-optimal Top-N

In single-agent pure exploration tasks, lower bounds can guide the de-
sign of optimal algorithms, as they allow to recover an oracle allocation
–i.e., the argmin for τ ∈ (R+)K×M in Problem (8.3.1). Algorithms may try

to achieve this allocation by using some tracking (Du et al., 2021; Garivier
and Kaufmann, 2016; Russac et al., 2021). Yet, these approaches may be
computationally expensive, as they solve the optimization problem featured
in the lower bound in every phase.

In this section, a third approach to design near-optimal algorithms in
collaborative settings is introduced. This approach leverages the knowledge
of the lower bound within a phased elimination algorithm. This is crucial to
maintain a small communication cost Comµ(A), and also to reduce the com-
putational complexity compared to a pure tracking approach. The algorithm
derived from this approach relies on a relaxed complexity term Ñ (µ). As we
will see, this term is within constant factors of the true constant N ⋆(µ). This
implies that the upper bound on the exploration cost incurred by algorithm
A will ultimately depend on N ⋆(µ).

Relaxation of the lower bound optimization problem

The main issue with Problem (8.3.1) is its dependence on the knowledge
of the true set SmN for any agent m ∈ [M ]. In other algorithms which aim
at asymptotic optimality –for instance, MisLid for Top-N identification for
misspecified bandits in Chapter 6– it requires using the empirical best arms
as proxy, and controlling the gap between this empirical estimate and the
true one.

A simpler approach is actually to consider the following problem P̃ in-
stead, for any matrix ∆ ∈ (R+)K×M

P̃(∆) := argmin
τ∈(R+)K×M

∑
m,k

τk,m s.t. ∀m ∈ [M ] ∀k ∈ [K],
∑
n∈[M ]

w2
n,m

τk,n
≤ (∆k,m)

2

2
. (8.3)

In Top-N identification, the value of Problem P̃ on the characteristic gaps is
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at least upper bound by the quantity N ⋆(µ) from the oracle problem P⋆ in
Theorem 8.3.2. This result gets even more exciting for N = 1, as the value
Ñ (µ) of Problem P̃(∆′) is equal up to a multiplicative absolute constant to
the characteristic time N ⋆(µ).

Lemma 8.4.1. Bounds on the value of relaxed Problem P̃. Consider

Ñ (µ) :=
∑
k,m

τ̃k,m and N ⋆(µ) :=
∑
k,m

τ ⋆k,m ,

where τ̃ ∈ P̃ (∆′) and τ ⋆ ∈ P⋆ (∆′), then

(i). Ñ (µ) ≤ N ⋆(µ) .

Moreover, for N = 1

(ii). Ñ (µ) ≤ N ⋆(µ) ≤ 2Ñ (µ) .

Proof. Since we consider a single model µ here, we drop the indexing by µ
in all notations in this proof.

(i). The following set of constraints of the oracle problem

Const⋆N :=

{
t ∈ (R+)K×M | ∀m ∈ [M ] ∀k ∈ SmN ∀l 6∈ SmN ,

∑
n

w2
n,m

(
t−1
k,n + t−1

l,n

)
≤
(
∆

′m
k,l

)2
2

}

is included in the set of constraints of the relaxed problem in Equation 8.3

C̃onstN :=

{
t ∈ (R+)K×M | ∀m ∈ [M ] ∀k ∈ [K],

∑
n

w2
n,m

tk,n
≤
(
∆′
k,m

)2
2

}
.

Indeed, if t ∈ Const⋆N , then for any m ∈ [M ], and any l 6∈ SmN ,

∀k ∈ SmN ,
∑
n

(
0 +

w2
n,m

tl,n

)
≤
∑
n

w2
n,m

(
1

tk,n
+

1

tl,n

)
≤
(
∆

′m
k,l

)2
2

=⇒
∑
n

w2
n,m

tl,n
≤ min

k∈Sm
N

(∆
′m
k,l)

2

2
=

(
N
max
q∈[K]

µ(q,m) − µ′
(l,m)

)2

2
=

(
∆′
k,m

)2
2

,

Symmetrically, for any agent m and k ∈ SmN , one can check that
∑

nw
2
n,mt

−1
k,n ≤

1
2

(
∆′
k,m

)2, hence t ∈ C̃onstN . Then, by minimality –that is, since τ̃ ∈ C̃onstN ,
t = τ ⋆ ∈ C̃onstN ∩ Const⋆N , and τ̃ ∈ P̃(∆′)– we conclude that Ñ ≤ N ⋆ .

(ii). The lower bound is provided by (i) applied to the case N = 1.
Now let us consider the solutions τ ⋆ ∈ P⋆(∆′) and τ̃ ∈ P̃(∆′). Let us denote
km⋆ := argmax

k∈[K]

µ′
(k,m) the (unique) optimal arm for mixed expected rewards

141



for agent m. Then, for any agent m ∈ [M ] and any arm k 6= km⋆

∑
n∈[M ]

(
w2
n,m

2τ̃k,n
+

w2
n,m

2τ̃km⋆ ,n

)
=

1

2

∑
n∈[M ]

w2
n,m

τ̃k,n


︸ ︷︷ ︸

≤(∆′
k,m)

2
/2

+
1

2

∑
n∈[M ]

w2
n,m

τ̃km⋆ ,n


︸ ︷︷ ︸

(∗)

≤
(
∆′
k,m

)2
/2 .

where (∗) uses the fact that by Definition 8.1.1 for N = 1

∆′
km⋆ ,m

:= µ′
(km⋆ ,m) −

2
max
q∈[K]

µ′
(q,m) =min

q ̸=km⋆
∆′
q,m ≤ ∆′

k,m .

Then 2τ̃ ∈ Const⋆1, therefore once again by minimality, N ⋆ ≤ 2Ñ .

Compared to Problem P⋆, a nice feature of P̃ is that its constraint set
does not depend on the knowledge of (SmN )m∈[M ], which will allow us to design
algorithms that do not suffer too much from bad empirical guesses on the
N-best arms, especially in early phases.

Remark 8.4.2. We further note that solving P̃ is slightly easier than solving
P⋆. Indeed, this optimization problem can be decoupled across arms, and it
is sufficient to compute, for any arm k ∈ [K]

argmin
τk∈(R+)M

∑
m∈[M ]

τ km s.t. ∀m ∈ [M ],
∑
n∈[M ]

w2
n,m

τ kn
≤
(
∆′
k,m

)2
2

,

and then consider as the oracle allocation for the problem on the whole
set of arms (τk,m)k,m := (τ km)k,m. To solve this convex optimization problem,
we may rely on solvers for disciplined convex optimization, such as those
implemented in CVXPy (Agrawal, Verschueren, et al., 2018; Diamond and
Boyd, 2016).

However, we cannot get access to the true gaps (∆′
k,m)k,m. Thus, our algo-

rithm will rely on gap proxies (∆̃′
k,m)k,m which will depend on past samplings

and observations. The following lemma will be crucial in the analysis of the
algorithm, in order to compare values, under some condition, from P̃(∆′) and
P̃(∆̃), where ∆̃ := (∆̃′

k,m)k,m. Its proof is given in Appendix (Lemma 13.1.1).

Lemma8.4.3. Comparison of values of Problem P̃ with different gaps.
Consider ∆,∆′ ∈ (R+)K×M , such that τ ∈ P̃(∆) and τ ′ ∈ P̃(∆′). Moreover,
assume that there is a positive constant β such that for any agent m and
arm k, ∆′

k,m ≤ β∆k,m. Then

1

β2

∑
k,m

τk,m ≤
∑
k,m

τ ′k,m .
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Collaborative Phased Elimination (CPE)

We now introduce an algorithm for collaborative Top-N identification,
called CPE and stated as Algorithm 8.

CPE proceeds in phases, indexed by r. In phase r, we let Bm(r) be the
set of active arms for agent m –that is, the set of candidate arms that agent
m keeps sampling at phase r– and B(r) :=

⋃
m∈[M ]Bm(r) be the set of arms

that are active for at least one agent at phase r. The algorithm maintains
proxy gaps (∆̃′

k,m(r))k,m for the true gaps (∆′
k,m)k,m that are halved at the end

of each phase for arms that remain active, hence the dependence in past
observations. At the beginning of each phase r, the oracle allocation t(r),
with respect to the proxy gaps, is computed, as well as the number of new
samples (dk,m(r))k,m that player m should get from arm k in phase r. For
any arm k and agent m, dk,m(r) is defined such that the total number of
selections nk,m(r) of arm k by agent m up to round r included becomes close
to –a quantity slightly larger than– tk,m(r) log (1/δ).

We observe that any arm k 6∈ B(r) will not get any new samples in phase r,
as the associated proxy gaps (∆̃′

k,n)n∈[M ] are identical to those in the previous
phase r − 1, hence tk,n(r) = tk,n(r − 1) and dk,n(r) = 0 for any agent n ∈ [M ].

In contrast to prior works, where the allocation in each round only de-
pends on the identity of the surviving arms and the round index (Du et al.,
2021; Fiez et al., 2019), in CPE it also depends on when the arms have
been eliminated (which condition which gaps are frozen). After each agent
m samples arm k dk,m(r) times, they all send their empirical local expected
rewards

(
µ̂(k,m)(r)

)
k
to the central server, which computes the empirical mixed

expected rewards
(
µ̂′
(k,m)(r)

)
k,m,r

∀m ∈ [M ] ∀k ∈ [K] ∀r ≥ 0, µ̂′
(k,m)(r) :=

∑
n∈[M ]

wn,mµ̂(k,m)(r) .

The active sets (Bm(r))m∈[M ] of all agents are then updated by removing arms
whose empirical mixed expected rewards are too small. The number of
communication rounds in Algorithm 8 is then exactly equal to the number
of phases needed until the stopping criterion in Line 29 is fulfilled.

As in several prior works (Kaufmann and Kalyanakrishnan, 2013; Shi,
Shen, and Yang, 2021), we rely on confidence intervals to perform these
eliminations. However, constructing confidence intervals on the mixed ex-
pected rewards under our adaptive sampling rule is more challenging than
when the number of samples from an active arm in phase r is fixed in
advance. We build an confidence interval of the form

{
µ̂(k,m)(r)± Ω(k,m)(r)

}
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Algorithm 8 CPE algorithm for the collaborative setting. Collaborative
Phased Elimination (CPE)

1: Initialize r ← 0, ∀k,m, ∆̃′
k,m(0)← 1, nk,m(0)← 1, ∀m,Bm(0)← [K]

2: Draw each arm k by each agent m once
3: repeat
4:
5: # * Central server side *
6: B(r)←

⋃
m∈[M ]Bm(r)

7: Compute t(r)← P̃
((√

2∆̃′
k,m(r)

)
k,m

)
8: For all k ∈ [K], compute

(dk,m(r))m∈[M ] ← argmin
d∈NM

∑
m

dm s.t. ∀m ∈ [M ],
nk,m(r − 1) + dm
Tδ(nk,·(r − 1) + d)

≥ tk,m(r)

9: Send to each agent m ∈ [M ] (dk,m(r))k∈[K] and dmax(r) :=max
n∈[M ]

∑
k∈[K] dk,n(r)

10:
11: # * Agent m ∈ [M ] side *
12: Sample arm k ∈ B(r) dk,m(r) times, so that nk,m(r) = nk,m(r − 1) + dk,m(r)
13: Remain idle for dmax(r)−

∑
k∈[K] dk,m(r) rounds

14: Send to server empirical local mean µ̂(k,m)(r) based on the nk,m(r)
samples

15:
16: # * Central server side *
17: Compute each empirical mixed mean µ̂′

(k,m)(r) based on the empirical
local means

18: # Update set of candidate best arms for each user
19: for m = 1 to M do

20: Bm(r+1)←
{
k ∈ Bm(r) | µ̂′

(k,m)(r) + Ω(k,m)(r) ≥
N
max
j∈Bm(r)

(
µ̂′
(j,m)(r)− Ω(j,m)(r)

)}
21: end for
22: # Update the gap estimates
23: for k = 1 to K do
24: for m = 1 to M do
25: if k ∈ Bm(r + 1) and |Bm(r + 1)| > N then
26: ∆̃′

k,m(r + 1)← ∆̃′
k,m(r)/2

27: end if
28: end for
29: end for
30: r ← r + 1
31:
32: until ∀m ∈ [M ], |Bm(r)| ≤ N

33: Output: for any agent m, ŜmN (τCPE) := Bm(r)
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to control empirical mixed expected rewards. The width Ω(k,m)(r) of the
confidence interval scales with the following quantity

Definition 8.4.4. Confidence interval for CPE. For any arm k, agent m,
and round r ≥ 0, we define

Ω(k,m)(r) :=

√√√√Tδ(nk,·(r)) ∑
n∈[M ]

w2
n,m

nk,n(r)
,

where Tδ(·) : (R+)M → R+, N 7→ Tδ(N) is a threshold function to be defined.

A choice of threshold that gives valid confidence intervals can be derived
by leveraging some time-uniform concentration inequalities from Kaufmann
and Koolen (2021, Proposition 24). The proof is postponed to the Appendix
(Lemma 13.1.2).

Lemma 8.4.5. Choice of threshold function Tδ(·). For any N ∈ (N+)M

Tδ(N) := 2

gM ( δ

KM

)
+ 2

∑
m∈[M ]

ln (4 + ln(Nm))

 ,

where gM is a function that satisfies gM(δ) ≈ log(1/δ) +M log log(1/δ). Then
the good event

ECPE∶ =
{
∀r ≥ 0 ∀m ∈ [M ] ∀k ∈ [K],

∣∣∣µ′
(k,m)−µ̂′

(k,m)(r)
∣∣∣ ≤ Ω(k,m)(r)

}
holds with probability larger than 1− δ.

From this lemma and the elimination criterion at Line 17 in Algorithm 8, it
easily follows that CPE for Top-N identification is δ-correct for this choice of
threshold function, as, for any agent m ∈ [M ], no good arm k ∈ SmN can ever
be eliminated from Bm(r) at any round r on event ECPE.

Theorem 8.4.6. CPE is δ-correct. On event ECPE, CPE outputs the correct
set of optimal arms SmN for each agent m.

The fact that the sample complexity of CPE scales with Ñ (and N ⋆ as well,
thanks to Lemma 8.4.1) stems from the interplay between the confidence
interval width Ω(k,m)(t) –which, up to the threshold function Tδ(·), is exactly
one of the constraints featured in the lower bound (Theorem 8.3.2)– and
the definition of the allocation t(r). This leads to the following crucial result

Lemma 8.4.7. On event ECPE, for any arm k, agent m, and round r

Ω(k,m)(r) ≤ ∆̃′
k,m(r) .
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Proof. For any round r and arm k, using first the definition of d(r) at Line 7

and then the definition of oracle allocation t(r) at Line 6 in Algorithm 8

Ω(k,m)(r) :=

√√√√Tδ(nk,·(r)) ∑
n∈[M ]

w2
n,m

nk,n(r)
=

√√√√∑
n∈[M ]

w2
n,m

Tδ(nk,·(r − 1) + dk,·)

nk,n(r − 1) + dk,n(r)

≤


√∑

n∈[M ]

w2
n,m

tk,n(r)
≤ ∆̃′

k,m(r) if k ∈ B(r)√∑
n∈[M ]

w2
n,m

tk,n(r
′
k)
≤ ∆̃′

k,m(r
′
k) = ∆̃′

k,m(r) (∗) otherwise .

where r′k := sup {r′ ≥ 0 | k ∈ B(r′)} when k 6∈ B(r) and (∗) uses the fact that
dk,m(r) = 0 when k 6∈ B(r).

All in all, the following upper bound in high probability on the exploration
cost of CPE is proven

Theorem 8.4.8. Upper bound on Expµ(CPE). On any model µ, with prob-
ability 1 − δ, CPE outputs the set of N best arms for each agent with an
exploration cost at most

32N ⋆(µ) log2

(
8

∆′
min

)
log (1/δ) + o (1/δ) where ∆′

min := min
m∈[M ]

min
k∈[K]

∆′
k,m ,

and at most
⌈
log2

(
8

∆′
min

)⌉
communication rounds.

A sketch of the proof will be given in this section. The full proofs of Theo-
rems 8.4.6 and 8.4.8 are available in Appendix (Theorems 13.2.1 and 13.3.1).

This theorem proves that CPE is matching the exploration lower bound
of Theorem 8.3.2 in the asymptotic regime of small values of δ, up to a
logarithmic term in O (1/∆′

min). It achieves this using only dlog2 (8/∆
′
min)e com-

munication rounds. We note that a similar extra multiplicative logarithmic
factor is present in the analysis of near-optimal phased algorithms in other
contexts (Du et al., 2021; Fiez et al., 2019). Such a quantity appears as an
upper bound on the number of phases, and may be a price to pay for the
phased structure.

We argue that the communication cost of CPE is actually of the same order
of magnitude as that featured in some related work. In Shi, Shen, and Yang
(2021), which is the closest setting to our framework, the equivalent number
of communication rounds p needed to solve the regret minimization problem
is upper bounded by O

(
2 log2

(
8√

M∆′
min

))
. In the setting of collaborative

learning, whereM agents face the same set of arm distributions andW = IM ,
Hillel et al. (2013, Theorem 4.1) prove that an improvement of multiplicative
factor 1/M on the exploration cost for a traditional best arm identification
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algorithm can be reached by using at most dlog2(1/∆min)e communication
rounds, where ∆min is the gap between the best and second best arms.

Sketch of proof. We let R denote the random number of phases used by
Algorithm 8 before stopping. On the good event ECPE, considering any agent
m ∈ [M ], we have proven that the algorithm never eliminates any good arm
k ∈ SmN (Theorem 8.4.6), hence R := max

m∈[M ]
max
k ̸∈Sm

N

Rk,m, where Rk,m is the last

phase r in which k ∈ Bm(r). Using Lemma 8.4.7, we can easily establish that

Rk,m ≤ rk,m :=min
{
r ≥ 0 | 4× 2−r < ∆′

k,m

}
,

which satisfies rk,m ≤ log2

(
8/∆′

k,m

)
. This yields R ≤ log2 (8/∆

′
min), and further

permits to prove that the proxy gaps
(
∆̃′
k,m(r)

)
k,m,r

can be lower bounded by

the true gaps

∀r ≤ R ∀k ∈ [K] ∀m ∈ [M ], ∆̃′
k,m(r) ≥ 1/8∆′

k,m .

Using the monotonicity properties of the oracle that are stated in Lemma 8.4.3,
we establish that the allocation t(r) computed from the proxy gaps at Line 7

in Algorithm 8 satisfies

∀r ≤ R,
∑
m∈[M ]

∑
k∈[K]

tk,m(r) ≤ 32Ñ (µ) . (8.4)

To upper bound the exploration cost Expµ(CPE), the next step is to relate
the number of selections of arm k by agent m up to phase R nk,m(R) to
the oracle allocations. To do so, we observe that if R̂k,m is the last phase r
before R such that the number of selections of arm k by agent m in phase r
dk,m(r) is positive, then nk,m(R) = nk,m(R̂k,m), and by definition of the quantities
(dk,m(r))k,m,r and Tδ(·)

nk,m(R̂k,m) ≤ tk,m(R̂k,m)Tδ(nk,·(R̂k,m)) + 1 ≤ tk,m(R̂k,m)Tδ(nk,·(R)) + 1 . (8.5)

Then τCPE :=
∑

m,k nk,m(R) is bounded from above by

τCPE ≤
∑
m,k

tk,m(R̂
′
k,m)Tδ(nk,·(R)) +KM

≤
∑
m,k

∑
r≤R

tk,m(r)β
⋆(τCPE) +KM

≤ 32RÑ (µ)β⋆(τCPE) +KM ,
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where we use Equation 8.4 and introduce

β⋆(τCPE) := 2

(
gM

(
δ

KM

)
+ 2M ln(4 + ln(τCPE))

)
.

Then, using the upper bound on the total number of rounds R and Lemma 8.4.1

τCPE ≤ 32 log (8/∆′
min)N ⋆(µ)β⋆(τCPE) +KM . (8.6)

The end of the proof consists in using the known upper bound on R, and
finding an upper bound for the largest τA satisfying Equality 8.6.

8.5 Application to drug repurposing

Our general framework for any weight matrix W and µ ∈ RK×M has not been
studied in pure exploration prior to this work. However, we can compare it
in known settings, namely, in the personalized collaborative best arm iden-
tification, which is a straightforward counterpart to personalized federated
regret minimization introduced in Shi, Shen, and Yang (2021). As we did
throughout this chapter, we always consider Gaussian bandits with fixed
variance σ2 = 1.

Baseline algorithm for collaborative best arm identification (BAI).
We state below as PF-UCB-BAI (Algorithm 9) a straightforward adaptation
of the PF-UCB algorithm in Shi, Shen, and Yang (2021) to personalized
collaborative best arm identification ; meaning that only weight matrices
of the form wn,m = α1(n = m) + 1−α

M
for any pair of agents (n,m) ∈ [M ]2 are

considered.

The original regret algorithm uses phased eliminations designed for each
agent to identify their best arm together with exploitation : when all best
arms have been found, or when some agent is waiting for others to finish
their own exploration rounds, agents keep playing their empirical best arm.

To turn this into a δ-correct algorithm, we remove the exploitation rounds ;
keep the same sampling rule within each phase –in which the number of
samples from each arm is proportional to some rate function f(r) ; and
calibrate the size of the confidence intervals used to perform eliminations
slightly differently, introducing for any δ ∈ (0, 1) function

∀r ≥ 0, Br(δ) :=

√
2 log (KMζ(β)rβ/δ)

MF (r)
.
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where F (r) =
∑r

p=1 f(p), for some β > 1, and where ζ is the Riemann zeta
function. In practice, we use β = 2. This algorithm follows the same
general structure as our algorithm, with the notable difference that the
number of samples of an arm k ∈ Bm(r) in phase r is fixed in advance.
PF-UCB-BAI is indeed δ-correct. On the good event G introduced in the
following Lemma 8.5.1, the optimal arm for any agent m can never be
eliminated from the set Bm(r) at phase r.

Algorithm 9 PF-UCB-BAI. Benckmark algorithm for Collaborative Top-N
1: f(r): sampling effort in phase r, Br(δ): size of the confidence intervals in
phase r.

2: Initialize r ← 0 , ∀k,m, nk,m(0)← 0 , ∀m,Bm(0)← [K] , k̂m ← 0 .
3: repeat
4:
5: # * Central server side *
6: if |Bm(r)| = 1 then
7: k̂m ← the unique arm in Bm(r)
8: Bm(r)← ∅
9: end if
10: B(r)←

⋃
m∈[M ]Bm(r)

11: for k ∈ [K],m ∈ [M ] do
12: if k ∈ B(r) then
13: dk,m(r)← d(1− α)f(r)e+ dαMf(r)e1 (k ∈ Bm(r)) else dk,m(r)← 0
14: end if
15: end for
16: Send (dk,m(r))k∈[K] to agent m
17:
18: # * Agent m ∈ [M ] side *
19: Sample arm k ∈ [K] by agent m dk,m(r) times, so that the total number

of samples is nk,m(r) = nk,m(r − 1) + dk,m(r)
20: Compute the empirical mixed means (µ̂′

k,m(r))k,m based on the
(nk,m(r))k,m samples and send them to the central server

21:
22: # * Central server side *
23: // Update set of candidate best arms for each user
24: for m = 1 to M do
25:

Bm(r + 1)←
{
k ∈ Bm(r) | µ̂′

k,m(r) + Br(δ) ≥ max
j∈Bm(r)

(
µ̂′
j,m(r)− Br(δ)

)}
26: end for
27: r ← r + 1
28:
29: until |B(r)| = ∅
30: Output:

{
k̂m : m ∈ [M ]

}
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Lemma 8.5.1. Event

G :=
{
∀r ∈ N∗ ∀m ∈ [M ] ∀k ∈ Bm(r),

∣∣∣µ̂′
(k,m)(r)− µ

′
(k,m)

∣∣∣ ≤ Br(δ)
}

holds with probability 1− δ.

This lemma is a simple adaptation of Shi, Shen, and Yang (2021, Lemma
1) combined with a union bound on r ∈ N∗. Moreover, on event G, similarly
to the analysis of PF-UCB (Shi, Shen, and Yang, 2021), we can upper bound
the number of rounds where arm k is sampled by agent m by

pk,m := inf{r : Br(δ) ≤ ∆′
k,m/4} .

When f(p) = 2p, one can prove that

pk,m∑
p=1

f(p) = O
(
M−1∆′−2

k,m log(δ
−1)
)
.

Summing the (deterministic) global and local exploration cost over rounds,
arms and agents, yields an exploration cost of order

O

∑
k∈[K]


 1− α
min
n∈[M ]

(
∆′
k,n

)2
+

 ∑
m∈[M ]

α(
∆′
k,m

)2

 log(1

δ

) .

This algorithm can therefore serve as a baseline to be compared to our
proposal in this particular case.

Drug repurposing. As mentioned in Chapter 6, in fixed-confidence BAI
as well, algorithms using symmetric confidence intervals of width√

2Tδ(nk,·(r))g
(

1

nk,·(r)

)
for some arm k and some linear function g –which ensures that the confi-
dence interval holds with probability 1 − δ– are usually quite conservative.
Indeed, their reported empirical error frequency is usually a lot lower than
the expected bound δ. As often done in other fixed-confidence best arm iden-
tification papers (Kaufmann and Kalyanakrishnan, 2013; Réda, Kaufmann,
and Delahaye-Duriez, 2021), to decrease the exploration cost, instead of
implementing the theoretical value of Tδ(·), we consider for any N ∈ NM

T heurδ (N) := log

1 + log

∑
n∈[M ]

Nn

 /δ

 .
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Figure 8.1: Clustering of epileptic profiles. PCA plot with 2 principal
components of patient profiles (centers are denoted by a star).

For the baseline PF-UCB-BAI introduced above, which relies on a function f of
the length of the exploration phase at phase p, we consider f(p) := 2p log(1/δ)
for p ≥ 0. Our experiment compares the performance of Algorithm 8 with the
baseline algorithm PF-UCB-BAI on the drug repurposing instance mentioned
in Chapter 3 with K = 21 drugs –note that here, we do not take into account
the feature vectors in R194, so we do not need to apply feature transforma-
tions as we did in Chapters 5 and 6. We consider the setting where N = 1 and
the weight matrix is of the form αIM + (1− α)/M1M×M , since the correctness
of PF-UCB-BAI only holds in that case. We set δ = 0.1, and change the degree
of personalization α ∈ {0.4, 0.6, 0.8}.

In order to determine the M clusters of patients, we first applied a Princi-
pal Component Analysis (PCA) transformation (using the first two principal
components) on the standard-normalized matrix of transcriptomic profiles
from epileptic patients (Mirza, Appleton, et al., 2017). Then, we ran k-
means++ (Arthur and Vassilvitskii, 2006) with M clusters. The clusters and
the patient datapoints on the PCA-transformed standard-normalized matrix
are represented on the scatter plot on Figure 8.1. According to the scatter
plot of the datapoints, the choiceM = 3 seemed the most appropriate. Then,
per cluster m ∈ [M ] and treatment k ∈ [K], we defined µ(k,m) as the average
repurposing score (as defined in Chapter 3) obtained by treatment k ∈ [K]

across all patients in cluster m.

Results are shown in Table 8.1. Indeed, using the “heuristic” confidence
interval has no consequences on the empirical error frequency δ̂. In terms
of exploration and communication cost, CPE (Algorithm 8) improves con-
siderably over the baseline, while being –for this specific instance of drug
repurposing– extremely robust to changes in α, and thus to changes in ∆′

min.
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α 0.4 0.6 0.8
∆′
min ≈ 0.083 ≈ 0.082 ≈ 0.079

ŝ r̂ ŝ r̂ ŝ r̂
CPE 47, 418 ± 1, 016 6 59, 537 ± 1, 677 6 70, 201 ± 2, 300 6
PF-UCB-BAI 230, 836 ± 55, 904 13 92, 278 ± 1, 071 12 64, 393 ± 376 11

Table 8.1: Results for collaborative drug repurposing. Experiments on
collaborative Top-N identification (δ = 10 %, N = 1, K = 21, M = 3, 100
iterations). Empirical error rate δ̂ = 0 everytime. ŝ is the average sample
complexity (rounded up to the closest integer, ± standard deviation), and r̂
is the average number of communication rounds (which standard deviation
is always strictly smaller than 1).

8.6 Discussion

This work introduced a general framework for collaborative, or centralized,
learning in multi-armed bandits, along with a lower bound on the associated
exploration cost. Furthermore, we proposed a phased elimination algorithm
for fixed-confidence Top-N identification. This algorithm tracks the optimal
allocation from the pure exploration lower bound by considering a relaxed
optimization problem instead, which is in contrast with prior works. Its
exploration cost is matching the lower bound up to logarithmic factors, within
a reasonable number of communication rounds.

As mentioned in introduction, our collaborative setting was motivated by
the design of collaborative adaptive clinical trials for personalized drug rec-
ommendations, where several patient subpopulations (for instance, repre-
senting several subtypes of cancer) are considered and sequentially treated.
However, in practice, especially when dealing with patient data, disclosing
the mean response values to the central servor should be handled with care
to preserve the anonymity of the patients. As such, the current solution is
useful only to trustful partners. A possible solution to overcome this problem
would be to carefully combine our algorithm with a data privacy-preserving
method, for instance by adding some noise to the data (Dubey and Pentland,
2020).

Finally, one might wonder why a given subpopulation should be interested
in outputs from other subpopulations (and, as such, be associated with
a non-entirely diagonal weight matrix). In the context of rare diseases
or subtypes, the number of patients might not be large to give a robust
estimate of the success rate/score of the selected arm, hence the use of
outcomes from other populations, weighted by their similarity to the original
set of patients. A first approximation of this setting is the suggested “fixed
weighted collaborative setting” introduced in this chapter. An interesting
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subsequent work could rely on the relaxation of these fixed weights to a
more adaptive weighting scheme. Another possibility is considering a kernel
function instead of the fixed weights, as done in Du et al. (2021) ; however, it
raises the issue of selecting an appropriate kernel, as opposed to computing
the similarity coefficients in our use case.
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Conclusion
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Summary

My PhD aims at tackling the problem of drug repurposing. This is the product
of an interdisciplinary work, combining bioinformatics, through the mod-
elling and analysis of drug-induced transcriptomic changes, and Computer
Science, via the use of machine learning techniques for recommendation
of treatments. I have focused on the approach of signature reversion,
which compares the treatment-induced genewise expression changes to the
expected changes associated with a good treatment. The main objective
of this PhD was to develop a method which is disease-agnostic and easily
reproducible –that is, that can be used in a generic and systematic fashion.

Chapter 7 aimed at describing a real-life application of signature re-
version, to identify the optimal treatment protocol for stem cells against
encephalopathy of prematurity, based on in vivo rat models. However,
the main issue in drug repurposing based on signature reversion is data
availability, especially for specific cell lines. To overcome this hurdle, Chap-
ter 3 describes a method that is able to score the effect of a treatment on
specific cell lines, based on drug signatures carefully built on in vitro exper-
iments, and a dynamical system (Boolean network) inferred from scratch in
Chapter 2. This network plays an important role in scoring treatments, as
this dynamical system is able to score the effect of a treatment on a given
patient for the considered disease. This score was slightly more predictive
than traditional methods for signature reversion. Nonetheless, the previous
method, when run on a set of repurposable drugs –which can be as large as
millions of drugs to be screened– can be time-consuming. This motivates
the works described in Chapters 5 and 6, which investigate the use of a
specific type of sequential learning algorithms, called multi-armed bandit
algorithms. Multi-armed bandits might be helpful to reduce the number of
calls to the simulations run by the Boolean network, in order to identify the
N most promising drug candidates. This approach can be extended to a col-
laborative context, where drug candidates can be simultaneously identified
for heterogeneous subpopulations of patients, as described in Chapter 8.

Application in a more realistic setting is laid out in Appendix 14. It
confirms the theoretical and empirical observations made throughout the
thesis, and shows that the methods developed during the time course of
the PhD can be robust in the face of real life data. This thesis is a new
step towards the full automation of drug development research, which might
allow the speed-up of early clinical phases for the identification of interesting
molecules, and further increase reprodubility of clinical results. Tackling poor
data availability is particularly of interest when dealing with rare diseases.
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Next steps

The importance of feature selection is highlighted throughout the thesis ;
more particularly in Chapter 3, where the choice of the appropriate cell line
to compute drug signatures impacts the identification of gene targets ; and in
Chapter 6, where the number of samples needed at the start of the algorithm
is correlated with feature collinearity. Several other venues for research
could be explored :

Adding new types of features in the bandit algorithm. In order to
better estimate the similarity between two drugs with close rewards from
the gene regulatory network, one might be interested in adding supplemen-
tary information in feature matrix X. For instance, information about the
chemical structure of the molecules, or about their drugability, that is, their
ability to be administered as a drug. Even if that supplementary information
is not exploited in the simulation of regulatory cascades, it may have an
impact both on the sample-efficiency of the algorithm, and on discriminating
between two drug candidates with similar transcriptomic effects but different
potentials for commercialization.

Improving the inference of the Boolean network by integrating
non-coding elements. Non-coding elements in the DNA might have a
regulatory impact by binding to specific transcription factors for instance,
without actually coding for a product. Inspired by Réda and Wilczyński
(2020), adding the regulatory interactions between genes and non-coding
elements might add a biologically meaningful structure which additionally
constraints the network. The main challenges for this integration are the
retrieval of relevant non-coding elements across cell lines, and assessing
their true impact on regulation.

Interpretation of the parameters learnt in the bandit algorithm.
Although frequently mentioned in order to justify the choice of a given
structure for a bandit model, a proper framework to analyze and exploit the
parameters learnt during the sampling phase is missing. In the algorithm
for misspecified linear models (Chapter 6), a sequential statistical test is
performed to assess whether the null hypothesis, which claims that the
current empirical model is an alternative model to the true model, should be
rejected. In that case, if the empirical model is out of the alternative set at
some point in time, one might be interested in leveraging the values of the
coefficients associated with feature vectors to determine the role of a given
feature –in our case, the change in expression for a gene– on the observed
scores.
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Controlling for the dose-related and exposure time effects. I have
focused most of my PhD on carefully crafting the selection process of tran-
scriptomic profiles to obtain the most relevant drug signatures. This process
relied on the selection of the appropriate cell line, as shown in Chapter 3.
However, as demonstrated by the case study in Chapter 7, other parameters
might significantly impact the changes on transcription, such as the dose or
time of administration. Again, new challenges arise as there is a need to
simulate the dose and time-related effect for drugs which have never been
tried on patients.

Towards adaptive clinical and drug repurposing trials. Finally, Chap-
ter 8 offers a glimpse into a new framework of uncovering new drug candi-
dates, by sharing information across patient subpopulations in an communi-
cation-efficient way. However, this raises the issue of data privacy, as
potentially, the actual outputs shared from agents to the central controller
might be enough to threaten the anonymity of patients. This is one of the
main topics studied in distributed or federated learning, which would be
another approach to investigate the use of the drug repurposing method
proposed in this thesis.
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Chapter 9

Chapter 2 : Building the cell line
specific Boolean network

9.1 Building the Boolean network

This section of the Appendix describes in details the procedure used to infer
a Boolean network in our application to epilepsy.

Step (A) Building a undirected unsigned graph

This step builds an undirected, unsigned network of putative gene-to-gene
regulations. The M30 module, as defined by Delahaye-Duriez, Srivastava,
et al. (2016), comprises of 320 genes which global expression anticorrelates
with epileptic phenotypes. We retrieved all 320 genes of the M30 module
from the additional file 1 in Delahaye-Duriez, Srivastava, et al. (2016).
Undirected and unsigned protein-pairwise interactions are then retrieved
from the STRING database (Szklarczyk et al., 2021) on this specific set
of genes for the human (NCBI taxon ID 9606). In order to perform the
inference, it is necessary for computational reasons to restrict the set of
edges to consider ; however, (weak) connectivity in the graph of interactions
should also be preserved to fully exploit the dynamical constraints provided
later on.

Considering the full network retrieved from the STRING database, we
trimmed out isolated genes (i.e., without any interactions with any gene,
not even themselves). For the M30 module, 318 genes out of 320 were
retained after this procedure, with a total of 14, 662 undirected regulatory
interactions. The STRING database also provides scores associated with
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each undirected edge named “combined scores”, comprised between 0 and
1, 000, which are an aggregation of various scores related to the type of
evidence supporting these edges (Von Mering et al., 2005). This higher this
score is, the more strongly supported the associated edge is. Provided a
user-provided threshold η, we built the resulting gene regulatory network
(GRN) by first preserving all edges with a STRING “combined score” greater
than η ; second, considering all edges which contain at least one gene that
do not appear in the set of edges at Step (1), we sorted them in the order
of decreasing STRING “combined scores”, and added them sequentially (by
batch of edges with the same STRING “combined score”) to the network
until the number of weakly connected components is 1. We tested (weak)
connectivity by performing a Depth-First Search (Cormen et al., 2009),
which is a well-known procedure that explores all the nodes in a graph by
favoring the exploration of child nodes instead of sibling nodes, until all
nodes have been visited.

In order to select the threshold η = 400, we performed a gridsearch on
[[100; 1, 000]] with a step of 5, and selected the value which minimized the
number of edges. This step is automatically performed the first time the
inference procedure in the repository 1 is run, such that the user can use
the threshold value η recommended by the grisearch. Choosing η = 400

allowed reducing the number of undirected edges from 14, 662 to 1, 633.

Step (A) Gene perturbation experiments

After that step, we restricted the set of genes (and thus, of interactions) to
genes present in the database of transcriptional profiles LINCS L1000 (Sub-
ramanian et al., 2017). In order to filter out genes, we first converted
all gene identifiers in M30 into EntrezGene IDs using BioDBnet (Mudunuri
et al., 2009). Then, we filtered out genes for which EntrezGene ID was
not present in LINCS L1000 (using the API in LINCS L1000). After this step,
236 genes, out of 318, were retained. We selected all experiments present
in LINCS L1000 such that at least one gene from M30 has been perturbed
in a genetic experiment (knockdown or overexpression, along with control
samples). All experiments involved any brain cell line in LINCS L1000 in our
application to epilepsy. Unfortunately, there are no hippocampal neuron
human (HN-h) cell lines in LINCS L1000, which are able to differenciate into
neurons and glial cells as shown in the rat (Eves et al., 1992) ; although
we can assume the neural progenitor cell (NPC) line present in LINCS L1000
might be appropriate. Among the genetic perturbation experiments listed in

1https://github.com/clreda/PrioritizationMasterRegulators
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the database, we selected those which satisfy all following conditions

- which are the richest, by considering metric distil_ss provided by
the LINCS L1000 API, which is correlated to the number of significantly dif-
ferentially expressed transcripts found in the differential analysis between
the matching genetically treated and the control groups. In practice, this
measure is correlated to the reproducibility of a drug signature (Lim and
Pavlidis, 2021).

- where there is at least two replicates from the same plate for the
perturbed (of type pert_sh) and control (of type ctl_vector) conditions.

- which interference scale, as described in Cheng and Li (2016), is posi-
tive. This ensures that the associated genetic perturbation experiment was
successful, meaning that a gene which has been perturbed by a knock-
down (resp., an overexpression) has an expression lower (resp., greater) in
treated profiles than in controls, compared to an appropriate housekeeping
gene. The expression of the housekeeping gene should not dramatically
change in both groups of profiles. A list of housekeeping genes is provided
by Cheng and Li (2016).

- where the associated experiment is either using shRNA (knockdown
perturbation), cDNA, also known as knock-in (overexpression perturbation),
or CRISPR (knockout perturbation).

- where the associated cell line is either SHSY-5Y (neuroblastoma) or NPC
(neural progenitor cells), which are the only brain cell lines in LINCS L1000.

The result of this step is a matrix of M30 genes by experimental profiles,
which contains Level 3 LINCS L1000 data (normalized expression data for the
whole genome) for each perturbation experiment. See Table 9.2 in Appendix
for the list of experimental profiles used in the application to epilepsy.

Step (B) Binarization of experiments into binary profiles

Although there are known methods for the binarization of (single) RNA-seq
data (Béal et al., 2019; Finak et al., 2015), probably due to the fact Level 3
LINCS L1000 data is a combination of measured and inferred expression data,
for different platforms, 2 there were issues with the model fitting. Only a
few genes were assigned a binary value 0 or 1 –the alternative being that
they are not considered expressed “enough”, according to the thresholds
computed by these methods, to be assigned a state equal to 1, nor too

2RNA-sequencing data for the most recent version, microarray for the first generated
profiles.
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weakly expressed to be assigned a state equal to 0. A data-driven method to
tune the granularity of the binarization, adaptive to the selected perturbation
expression data, was necessary in order to explicitly enforce a trade-off
between a full reliance on the undirected edges provided by the STRING
database, and on the experimental profiles from LINCS L1000.

Binarization. We designed an ad hoc binarization method to satisfy
these constraints. This binarization was performed independently on each
cell line. Gene expression (in normalized RNA counts) data was first quantile-
normalized and clipped to the interval [0, 1]. Control samples, for the same
cell line, were aggregated by considering the genewise median expression
value. Given the threshold ζ, all genes with expression greater than 1 − ζ

were considered greatly expressed (with assigned state 1), whereas genes
with expression lower than ζ were considered non-expressed (with assigned
state 0). Genes which expression levels were in the interval [ζ, 1 − ζ] had
an undetermined expression state. Note that the quantile normalization is
necessary, even though the initial expression data was normalized, in order
to apply a same threshold ζ on all profiles. The higher ζ is, the more con-
strained the experiments are, as more genes have a determined expression
state 0 or 1. Lower thresholds mean less constrained experiments, and a
higher preference for the regulatory interactions filtered from the STRING
database over expression data from LINCS L1000.

Using a bisection method in interval [0; 0.5] with precision 0.005, we identi-
fied ζ = 0.265 as the maximum threshold such that the inference of Boolean
networks described in the next sections admits at least one solution. We
recommend using this bisection method to determine the threshold ζ when
using the pipeline with another dataset.

Background expression data. However, this method relies on having
enough data to compute reliable statistics of expression (minimum, maxi-
mum, mean) for each gene, which is why, for each cell line, we automatically
retrieved from LINCS L1000 a “background” expression matrix, which we
concatenated to the set of profiles before binarization. After binarization,
we removed samples associated with the background dataset. In order
to collect the background expression matrix, we selected all experiments
in the considered cell line, with type pert_sh (knockdown experiments),
and we filtered out experiments with less than two replicates, with metric
distil_cc_q75 greater or equal to 0.2, and with metric pct_self_rank_q25 lower
than 0.05. Metrics distil_cc_q75 and pct_self_rank_q25 are two measures as-
sociated with experimental profiles which quantify the reproducibility based
on the correlation between the same technical replicates (distil_cc_q75) and
the diversity of profiles for a given experimental setting (pct_self_rank_q25).
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These rules correspond to the requirements for reproducible and distinct
(“gold”) profiles according to LINCS L1000 documentation. Finally, we se-
lected the same-plate replicates with the highest value of distil_ss. 3

Step (B) Implementation of topological constraints

The inference of a Boolean network relies on a set of admissible regulatory
interactions and a set of time-series expression constraints. Indeed, solution
networks only comprise of admissible interactions, such that all constraints
provided by the experimental transcriptional observations are valid.

First, to build the set of admissible interactions (topological constraints),
we restricted the selection of interactions to the network extracted from the
STRING database. Since STRING-extracted interactions are unsigned, we
decided to reduce the number of possible interactions by using the gene
perturbation expression matrix retrieved from LINCS L1000 (Table 9.2), in
order to improve the computational cost. A Pearson’s r (Bravais, 1844) gene
correlation matrix was computed from these profiles, and raised to the power
of β coefficient-wise, which allowed signing the interactions using pairwise
correlation signs. To preserve connectivity, we built the filtered signed
undirected network similarly to what we previously did with a threshold value
equal to τ = 0.4.

β was chosen as it is known that raising an adjacency matrix A to the
power of β yields coefficients A[i, j] in position (i,j) equal to the number of
paths (with eventually repeated edges) between node i and node j of length
β. τ was chosen as a compromise between richness of the network (number
of edges) and computational cost, by a bisection search in interval [0.01; 1]
with step 0.005, which would be the way to go to apply our method to other
datasets.

After this procedure, we removed isolated genes in the network (that is,
with both in-degree and out-degree equal to 0). After this step, 232 genes
were left in the network, with 637×2 putative genepairwise interactions (one
for each direction between two genes). We stress on the fact that preserving
connectivity will be crucial for properly exploiting the experimental data,
which is why we trim out isolated genes.

3All these measures are further described at https://clue.io/connectopedia/glossary.
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Step (B) Implementation of experimental constraints

Second, we turned to building dynamical constraints, that is, the time-series
binary expression states of genes in the network, according to the gene
perturbation experiments from LINCS L1000. The experiments shown in Ta-
ble 9.2 comprise of control and perturbed profiles in single gene perturbation
experiments (either by knockdown through shRNA, or by overexpression
using cDNA).

First, these profiles were binarized using the binarization procedure de-
scribed above. Then, for each single gene perturbation experiment, we
considered as initial condition the profile obtained from control samples, and
as final condition those from perturbed samples, which are set as a (steady)
attractor states. In order to implement the new dynamics in Paulevé et
al. (2020), we used the Python package BoNeSiS (Chevalier et al., 2019),
which infers by answer-set programming Boolean networks (that is, both
the set of regulatory interactions and regulatory functions) which satisfy the
experimental constraints by only using the provided set of possible interac-
tions. BoNeSiS is fed the binarized experimental profiles, along with their
annotated gene perturbations, and the set of valid interactions determined
in the previous section. Thus, the inferred GRN should satisfy all these
constraints by assigning logical functions to genes and selecting regulatory
interactions.

We use the procedure in BoNeSiS which randomizes the search for net-
work solutions. Moreover, in order to avoid trivial solutions without in-
teractions, we also implemented the constraint that the state where all
genes were not expressed (i.e., with expression state 0) cannot lead to any
of the reported final attractor states. This constraint can be challenged,
as one might assume that a network could end up in the state where all
genes are turned off in a transient way, if there are some genes which are
only regulated by inhibitors. However, in practice, the inference procedure
without this constaint yields singularly trivial and poorly connected solutions
(i.e., most genes ending up without any regulators). We conjecture that it is
linked to the procedure of answer-set programming, as similar methods, for
instance Re:In (Dunn and Yordanov, 2019), give the option of adding sup-
plementary constraints about the presence of an activator for some genes.
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Step (C) Inference solutions and model selection

Inference of putative Boolean network solutions. In BoNeSiS, we
asked for the enumeration of at most 1 solution to the set of topological and
experimental constraints defined above. In the implementation of the most
permissive semantics in Paulevé et al. (2020) by Chevalier et al. (2019), the
size of the Boolean function specification can be upper-bounded by a pre-
specified value. In my application, I have used the maximum total (ingoing
and outgoing) degree of the underlying network in order to avoid spurious
gene regulatory functions. Due to the intrinsic randomness stemming from
the solver clingo (Gebser et al., 2016), and the randomized search procedure
used in BoNeSiS, we iterated this enumeration, such that we obtained 25

Boolean network solutions (among which 25 are unique in terms of regulatory
functions).

Selection of an optimal model. In order to select a “representative”
network consistent with what is known about the topology of biological
networks, Babichev et al. (2019) compiled a list of network measures to
maximize in biological networks. Then, they computed a single scalar cri-
terion value comprised in the interval [0, 1] (called in their paper “general
topological parameter”) to maximize through the Harrington desirability in-
dex (Harrington, 1965). In practice, using notations from Babichev et al.
(2019), we considered the following weights

aDS = 3, aCL = 3, aCentr = 3, and aGT = 1 ,

where

- DS corresponds to the network density, that is, the ratio of the number of
edges to the maximum number of possible connections between the nodes
in the network (that is, if the network was fully connected) ; for a network
of n nodes, this maximum number is equal to (n− 1)n/2.

- CL corresponds to the network clustering coefficient which is the average
of node-wise clustering coefficients. The clustering coefficient of a node is
the ratio of the degree of the considered node and the maximum possible
number of connections such that this node and its current neighbors form a
clique (i.e., form a fully connected graph).

- Centr corresponds to the network centralization, which is correlated to
the similarity of the network to a graph with a star topology.

- GT corresponds to the network heterogeneity, which quantifies the nonuni-
formity of the node degrees across the network by computing the ratio
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between the standard deviation of the node degrees and the average degree
across the network.

The higher the weights, the more importance is given to having a large
associated coefficient. Finally, for every network solution N returned by
BoNeSiS, we computed

exp (mean {−exp (x× a− 1) : (x, a) ∈ V(N)}) ,

where V(N) is the set of pairs (value, weight) associated with each topolog-
ical measure

V(N) := {(DS(N), aDS), (CL(N), aCL), (Centr(N), aCentr), (GT(N), aGT)} .

The final network was the one which maximized this quantity.
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9.2 Robustness on a larger set of 50 solutions

Since the enumeration of solutions is still computationally expensive and
time-consuming, we focused our work on a collection of 25 solutions. How-
ever, in order to assess the robustness of our inference procedure, we
enumerated an additional set of 25 solutions, and reproduced the two plots
shown in the results. Note that these 25 solutions were different from the
first 25 ones, yielding a set of 50 unique solutions (in terms of gene regulatory
functions). The selection of the optimal model run on these 50 models still
returned the same network as shown in the main paper. Table 2.1 and
Figure 2.3 allows us to conclude similarly to the main paper that the networks
obtained just before the network selection step are mostly functionally and
topologically similar.

Min. 25th quantile Median Mean 75th quantile Max.
# RFs 1 1 2 2.635 3 17

GTP 0.794 0.796 0.797 0.797 0.799 0.802

Table 9.1: Distribution statistics on the number of unique regulatory
functions (RFs) across solutions per gene, and on the value of the general
topological parameter (GTP) used for network selection in step (C) of the
inference procedure. All values are rounded up to the 3rd decimal place.
Applied on the set of 50 solutions.

Figure 9.1: Left-hand plot: Boxplots of node total (ingoing and outgoing)
degrees per solution. The green lines represent median values. Right-hand
plot: Boxplot of the number of edges across solutions (each solution
comprises of 232 nodes). The green line represent the median value. Applied
on the set of 50 solutions. Note that the first 25 boxplots match the plot in
Figure 2.3.
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9.3 Tables

Experimental profiles from LINCS L1000

Profile brew identifier (suffix) Cell line Gene Type Time∗∗ Dose Nb#

KDB003_NPC_96H NPC PSMG1 KD∗ 96 1.5µL 4
Samples {X1,2.A2,X2,X3.A2}
T B6_DUO52HI53LO:K16
C B6_DUO52HI53LO:F13
EKW001_SHSY5Y_120H SHSY-5Y SOD1 KD 120 N/A 3
Samples {X1,X2,X3}
T F1B3_DUO52HI53LO:J20
C F1B3_DUO52HI53LO:I05
T F1B3_DUO52HI53LO:H17 SYT1 KD 120 N/A 3
T F1B3_DUO52HI53LO:I19 CACNA1C KD 120 N/A 3
T F1B3_DUO52HI53LO:A03 CDC42 KD 120 N/A 3

Table 9.2: Experimental profiles retrieved from LINCS L1000 for the
application to epilepsy, as annotated in LINCS L1000. ∗ KD stands for
knockdown. ∗∗ Time (in hours) of exposure to the perturbagen. # number
of replicates. T (resp., C) stands for treated (resp., control).

Parameters

Definition Value
η Threshold for selecting edges from STRING 400

ζ Threshold for the binarization step 0.265

β Power applied to the matrix of genepairwise correlations 1

τ Threshold for filtering out edges in the putative network 0.4

Table 9.3: Parameter values for the synthesis of Boolean networks (in
the application to drug-resistant epilepsy). STRING refers to the STRING
database (Szklarczyk et al., 2021).

Score EI DSI DPI Source
Value 0 0 0.25 0 CURATED

Table 9.4: Parameter values (minimal values) for retrieving genes associated
with a specific disease from DisGeNet (Piñero et al., 2020). The full
definitions of these indices are reported at this page.a EI : Evidence Index.
DSI : Disease Specificity Index. DPI : Disease Pleiotropy Index.

aDisGeNet (2022). FAQ : Original Data Sources. https://www.disgenet.org/. Accessed:
[May 4, 2022].
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9.4 Implementation of the influencemaximiza-

tion algorithm

This section deals with supplementary data about the implementation of the
influence maximization procedure.

Iteration of attractor states

In order to enumerate attractors under perturbations, we used PyMaBoSS (Stoll
et al., 2017). We ran PyMaBoSS with 1, 000 trajectories, for reachable attrac-
tors within 50 time steps, and parameters time_tick = 1, use_physrandgen = 0.
Unfortunately, this method does not guarantee the similarity of attractors
from one iteration to another, but our tests showed that, although there is
some noticeable change in the resulting spread values, it does not affect
the final ranking on genes. We never had to deal with the case where no
attractor state is retrieved with these parameter values.

Choice of initial states

In our application, we considered the integration of a disease-specific context
by considering 24 hippocampi normalized transcriptional profiles of humans
affected with Temporal Lobe Epilepsy (TLE) (Mirza, Appleton, et al., 2017)
(EMTAB 3123 on ArrayExpress). The main idea is that we specifically tar-
get genes which perturbative power is high in a transcriptional context for
epilepsy. We restricted these epileptic profiles to genes present in the
network, by retrieving their associated Entrez ID identifiers and by matching
with identifiers in LINCS L1000. Then, we binarized the profiles according to
the binarization procedure described in the first section, with corresponding
threshold ζ equal to 0.5, so that all genes have a determined binary expres-
sion state.
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9.5 Additional results

This section shows additional results related to the inference of the Boolean
network and the spread values.

Regulator Regulated Sign Evidence source∗

RBFOX1 PEG3 Inhibitory Coexpression
SLITRK3 IL1RAP Inhibitory Text-mining
TSPAN7 AFF2 Activatory Coexpression
UQCRQ TIMM17A Inhibitory Coexpression
CENPJ ANAPC1 Activatory Coexpression
SYT13 MLLT11 Inhibitory Coexpression
GUCY1B3 AHNAK2 Activatory Text-mining
PLEKHG3 CCDC68 Inhibitory Text-mining
MLLT11 TTC3 Activatory Text-mining
SULT4A1 KIAA0232 Inhibitory Text-mining
GRIN1 CIT Activatory Interaction
GPI ANXA6 Inhibitory Text-mining
RBFOX1 ZMAT4 Activatory Coexpression
FAR2 FAM49A Inhibitory Text-mining
RAB3A REEP2 Activatory Coexpression
CAMK2B AGGF1 Inhibitory Association in databases
GAP43 ELAVL2 Inhibitory Coexpression
ADAM22 EPB41L3 Inhibitory Coexpression
CDC42 ARHGAP44 Activatory Interaction
GNB5 PAK1 Inhibitory Association in databases
STMN2 PSMG1 Inhibitory Coexpression
AMPH AAGAB Activatory Interaction
GNB5 PRKCE Inhibitory Association in databases
ATP1B3 FXYD7 Inhibitory Association in databases
ATP1A3 PANK2 Activatory Text-mining

Table 9.5: Regulatory interactions present in all of the 25 solutions.
∗ strongest evidence source from the STRING database. “Association in
databases” means associated in curated pathway databases.
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Figure 9.2: Enrichment results from the ORA analysis on the filtered list
of genes based on spread values from the DisGeNet annotations (Piñero et
al., 2020) (top) and GLAD4U (Jourquin et al., 2012) (bottom). The top-10
annotations (in increasing order of BH-adjusted p-value) are reported. All
of these adjusted p-values are lower than 20%.
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Chapter 10

Chapter 3: Drug repurposing
scoring

10.1 List of antiepileptic and proconvulsant

drugs

The initial tables of 71 epilepsy-related drugs on the next page (Tables 10.1
and 10.2) have been compiled thanks to Baptiste Porte.
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PubChem ID Drug name Reference “BrainCell”
(best match)

5070 Riluzole Ground truth Yes
3121 Valproic-Acid Ground truth Yes
3878 Lamotrigine Ground truth Yes
2554 Carbamazepine Ground truth Yes
4909 Primidone Ground truth Yes
3331 Felbamate Ground truth Yes
5734 Hydroxyzine Ground truth Yes

5360696 Dextromethorphan Exploratory Yes
4107 Methocarbamol Exploratory Yes
265237 Withaferin-A Exploratory Yes
3038 Diclofenamide Proven Yes
441074 Quinidine Proven Yes
4843 Piracetam Ground truth
2118 Alprazolam Ground truth
3292 Ethotoin Ground truth
5719 Zaleplon Ground truth
4506 Nitrazepam Ground truth

5311454 Stiripentol Ground truth
1775 Phenytoin Ground truth
4737 Pentobarbital Ground truth
5576 Trimethadione Ground truth
6839 Phensuximide Ground truth

5284627 Topiramate Ground truth
3291 Ethosuximide Ground truth
34312 Oxcarbazepine Ground truth
1986 Acetazolamide Ground truth
3016 Diazepam Ground truth
3446 Gabapentin Ground truth
5665 Vigabatrin Ground truth

5284583 Levetiracetam Ground truth
5732 Zolpidem Proven
3516 Guaifenesin Exploratory
2733 Chlorzoxazone Exploratory
2712 Chlordiazepoxide Exploratory
5735 Zopiclone Exploratory
3440 Furosemide Exploratory

Table 10.1: Initial list of antiepileptics with their associated references,
and annotated presence of existing “BrainCell” signatures as described in
Chapter 3. Drugs with existing “BrainCell” signatures are included in the
ranking shown in Figure 3.3. Antiepileptics are classified in three categories:
“Ground truth” (well-known antiepileptics, according to Epilepsy.com (2022)
for instance), “Proven” (antiepileptics listed for epileptic encephalopathies in
recent works (Johannessen Landmark et al., 2021; Pepi et al., 2021) and/or
proven antiepileptic effect), and “Exploratory” (observed antiepileptic effect
in animal).
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PubChem ID Drug name Class “BrainCell”
(best match)

2310 Bemegride Ground truth Yes
104999 Dmcm Ground truth Yes
5917 Pentylenetetrazol Ground truth Yes
5904 Benzylpenicillin Ground truth Yes
4993 Pyrimethamine Proven Yes
3676 Lidocaine Proven Yes
442021 Brucine Proven Yes
2519 Caffeine Proven Yes
2170 Amoxapine Proven Yes
2719 Chloroquine Proven Yes
3151 Domperidone Proven Yes

9915886 Thiocolchicoside Proven Yes
54687 Pravastatin Exploratory Yes
16362 Pimozide Exploratory Yes
442872 Securinine Exploratory Yes
5472 Ticlopidine Exploratory Yes
4828 Pindolol Exploratory Yes
39042 Bezafibrate Exploratory Yes
1548943 Capsaicin Exploratory Yes
5095 Ropinirole Exploratory Yes
4184 Mianserin Exploratory Yes
2708 Chlorambucil Exploratory Yes
3767 Isoniazid Proven
2153 Theophylline Proven
6167 Colchicine Proven
3156 Doxapram Proven
92722 Argatroban Exploratory
938 Niacin Exploratory

441130 Meropenem Exploratory
5479 Tinidazole Exploratory
4583 Ofloxacin Exploratory
53025 Cefotetan Exploratory
12035 Acetylcysteine Exploratory
753 Glycerin Exploratory
3823 Ketoconazole Exploratory

Table 10.2: Initial list of proconvulsants with their associated references,
and annotated presence of existing “BrainCell” signatures as described
in Chapter 3. Drugs with existing “BrainCell” signatures are included in
the ranking in Figure 3.3. Similarly to Table 10.1, I rank drugs in three
categories : “Exploratory” (observed proconvulsant effect in animal or
human), “Proven” (proven proconvulsant effect), “Ground truth” (in the class
of proconvulsant drugs).

174



10.2 Drug repurposing instances in bandits

Note that the scores shown in Table 10.3 do not match the average scores in
the right-hand boxplot in Figure 3.3, although the resulting ranking is similar
to the one shown in the figure. This model has been obtained on the very
same set of signatures as the one shown in Chapter 3.3. The one difference
between the two models is in the initial patient states. On the one shown in
Chapter 3, gene identifiers for genes measured in the profiles from Mirza,
Appleton, et al. (2017) were converted into gene symbols present in LINCS
L1000, which guaranteed a greater number of matches (207 matched genes
instead of 194) than using the gene identifiers provided in the initial dataset
(which were the profiles used for computing the scores shown in Table 10.3).

Drug name Effect Average repurposing score
Withaferin-A Antiepileptic -0.110999
Carbamazepine Antiepileptic -0.196116
Quinidine Antiepileptic -0.207422
Hydroxyzine Antiepileptic -0.353716
Diclofenamide Antiepileptic -0.395736
Dextromethorphan Antiepileptic -0.456390
Lamotrigine Antiepileptic -0.492804
Felbamate Antiepileptic -0.503488
Valproic-Acid Antiepileptic -0.518016
Primidone Antiepileptic -0.526466
Pimozide Proconvulsant -0.595459
Chlorambucil Proconvulsant -0.605096
Domperidone Proconvulsant -0.605607
Securinine Proconvulsant -0.607568
Caffeine Proconvulsant -0.676425
Pindolol Proconvulsant -0.694313
Capsaicin Proconvulsant -0.757241
Pentylenetetrazol Proconvulsant -0.760638
Pravastatin Proconvulsant -0.819149
Ropinirole Proconvulsant -1.001871
Amoxapine Proconvulsant -1.151488

Table 10.3: Bandit instance selected from the set of 34 ranked drugs using
their “BrainCell” drug signatures (refer to Chapter 3). This instance is
considered as it is in Chapter 8, whereas feature transformation (to make
the model linear, resp. misspecified linear) is applied to the drug signatures
in Chapter 5, resp. Chapter 6.
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Chapter 11

Chapter 7 : Results for the
cosine method applied to the
“stabilized” profiles

We report on Figure 11.1 the ranking, the ROC and PR curves obtained
by computing a cosine similarity score between “stabilized” binary profiles
predicted by the Boolean network, and the “disease” signature for epilepsy
CD[Healthy‖Patient] based on Characteristic Direction (Clark et al., 2014).
The reported baseline method is L1000 CDS2 (Duan et al., 2016), performed
as described in Chapter 3. Note that on this larger dataset, the AUC is
equal to the one reported in Chapter 3 for the drug repurposing method we
proposed. However, the precision-recall curve is significantly worse.
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Figure 11.1: Cosine method applied to the whole set of 34 drugs. Top
left plot : Ranking obtained by computing cosine scores on the “stabilized”
profiles predicted by the Boolean network. Top right plot : the associated
ROC curve, where the baseline is L1000 CDS2 (Duan et al., 2016). Bottom
left plot : the associated PR curve. Bottom right plot : the PR curve in
Chapter 3.
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Chapter 12

Chapter 5: Theoretical
guarantees for GIFA

12.1 Conjecture 5.3.9: sample complexity anal-

ysis for Gap-GIFA

We consider now Gap-GIFA, where the following rules are fixed (see Ta-
ble 5.1)

J(t) :=
[N ]

argmin
j∈[K]

N
max
i ̸=j
Bi,j(t) , (compute_Jt)

and b(t) := argmax
j∈J(t)

N
max
i ̸=j
Bi,j(t) , (compute_bt)

and the stopping rule is

τUGapE := inf
{
t ∈ N∗ |max

j∈J(t)

N
max
i ̸=j
Bi,j(t) =

N
max
i ̸=b(t)

Bi,b(t)(t) ≤ ε

}
.

Similarly to the proof for LUCB-GIFA in Réda, Kaufmann, and Delahaye-
Duriez (2021), the objective is first to upper bound the stopping quantity
B̃b(t)(t) :=

N
max
i ̸=b(t)

Bi,b(t)(t).

Lemma 12.1.1. Gap-independent upper bound on B̃b(t)(t). For any t > 0,
for any gap index satisfying Definition 5.2.1,

B̃b(t)(t) ≤ Bc(t),b(t)(t) ≤ 2max
(
Wc(t)(t),Wb(t)(t)

)
.
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Proof. Using successively Lemma 5.2.8, the triangle inequality (when con-
sidering paired gap indices), and Corollary 1 from Gabillon, Ghavamzadeh,
and Lazaric (2012)

B̃b(t)(t) =
N
max
i ̸=b(t)

Bi,b(t)(t) ≤ max
i ̸∈J(t)

Bi,b(t)(t) = Bc(t),b(t)(t)

≤ Bindc(t),b(t)(t)

≤ 2max
(
Wc(t)(t),Wb(t)(t)

)
.

Lemma 12.1.2. Upper bound on (B̃b(t)(t))t>0 (Gap-GIFA). For any round
t > 0, on event

E :=
⋃
t>0

⋃
(i,j)∈[K]2

{∆i,j ∈ [−Bj,i(t),Bi,j(t)]} ,

B̃b(t)(t) ≤min
(
−max

(
∆b(t),∆c(t)

)
+ 6Wat(t), 0

)
+2Wat(t) , where at ∈ argmax

a∈{b(t),c(t)}
Wa(t) .

Proof. Lemma 12.1.1 implies that B̃b(t)(t) ≤ 2Wat(t). It means that we only
have to prove that in all cases,

B̃b(t)(t) ≤ −max
(
∆b(t),∆c(t)

)
+ 6Wat(t) .

Also note that, by triangle inequality, for any t > 0, for any pair of arms
(i, j) ∈ [K]2

Wi,j(t) ≤ 2max
a∈{i,j}

Wa(t) .

Then, let us consider four cases :

(i). b(t) ∈ S⋆N and ct ∈ (S⋆N)
c. Using Lemma 5.2.8

B̃b(t)(t) ≤ Bct,bt(t) = µct − µbt +Wct,bt(t) .

Then, because c(t) ∈ (S⋆N)
c and b(t) ∈ S⋆N

B̃b(t)(t) ≤ (µ(N+1) − µb(t)) +Wc(t),b(t)(t) = −∆b(t) +Wc(t),b(t)(t) ,

and B̃b(t)(t) ≤ (µct − µ(N)) +Wc(t),b(t)(t) = −∆c(t) +Wc(t),b(t)(t) , and then

B̃b(t)(t) ≤ −max
(
∆b(t),∆c(t)

)
+ 2Wat(t) .

(ii). b(t) ∈ (S⋆N)
c and c(t) ∈ S⋆N . Using Lemma 5.2.6 (since EGIFA ⊆ E)
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combined with Lemma 12.1.1

∆b(t) ≤
N
max
i ̸=b(t)

Bi,b(t)(t) = B̃b(t)(t) ≤ 2Wat(t) ,

and using the fact that c(t) ∈ S⋆N , b(t) ∈ (S⋆N)
c, event E and Lemma 12.1.1

∆c(t) = ∆c(t),b(t)+∆b(t),a(N+1)
< ∆c(t),b(t)+0 ≤ Bc(t),b(t)(t) ≤ 2Wat(t) , which implies that

B̃b(t)(t) ≤ 0 + 2Wat(t) ≤ (2Wat(t)−max
(
∆b(t),∆c(t)

)
) + 2Wat(t)

=⇒ B̃b(t)(t) ≤ −max
(
∆b(t),∆c(t)

)
+ 4Wat(t) .

(iii). b(t) ∈ (S⋆N)
c and c(t) ∈ (S⋆N)

c. Since b(t) ∈ (S⋆N)
c, using Lemma 5.2.6

combined with Lemma 12.1.1

∆b(t) ≤
N
max
i ̸=b(t)

Bi,b(t)(t) = B̃b(t)(t) ≤ 2Wat(t) .

Moreover, there exists c ∈ (J(t))c∩S⋆N ; otherwise, for any c ∈ J(t), c ∈ S⋆N , and
since |J(t)| = |S⋆N | = N, then J(t) = S⋆N . However, b(t) ∈ J(t)∩(S⋆N)

c, hence there
is a contradiction. Then, using successively event E twice, the definition of
c(t), event E again and the fact that c ∈ S⋆N

∆c(t),b(t) ≥ −Bb(t),c(t)(t) = Bc(t),b(t)(t)− 2Wb(t),c(t)(t)

≥ Bc,b(t)(t)− 2Wb(t),c(t)(t)

≥ ∆c,b(t) − 2Wb(t),c(t)(t)

≥ µ(N) − µb(t) − 2Wb(t),c(t)(t)

=⇒ ∆c(t),a(N)
+ 2Wb(t),c(t)(t) ≥ 0

=⇒ −∆c(t) + 4Wat(t) ≥ 0 , and then we conclude similarly to (ii)

B̃b(t)(t) ≤ −max
(
∆b(t),∆c(t)

)
+ 6Wat(t) .

(iv). b(t) ∈ S⋆N and c(t) ∈ S⋆N . This is the part I haven’t been able to show
so far. I assume from now on that the lemma is correct. My conjecture is
that, in this specific case

B̃b(t)(t) ≤ −max
(
∆b(t),∆c(t)

)
+ 8Wat(t) .
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Then, similarly to the proof for LUCB-GIFA, I show an upper bound on the
number of times sampled arm It has been sampled up to round t included

Lemma 12.1.3. Upper bound on the number of samples from It (Gap-
GIFA, largest variance rule). For any round t > 0, t < τUGapE

NIt(t) ≤ 4σ2(Tδ(t))2max
(
ε,
ε+∆It

3

)−2

.

Proof. Using successively the definition of the stopping rule τUGapE at time
t < τUGapE, if at ∈ argmax

a∈{b(t),c(t)}
Wa(t) and It is sampled according to the largest

variance rule (Equation (5.1)), then

ε < B̃b(t)(t) ≤ min
(
−max(∆b(t),∆c(t)) + 6Wat(t), 0

)
+ 2Wat(t)

max
(
ε,
ε+∆b(t)

3
,
ε+∆c(t)

3

)
≤ 2Wat(t) = 2σ2Tδ(t) max

a∈{b(t),c(t)}
‖Xa‖(V̂ κ(t))−1

max
(
ε,
ε+∆It

3

)
≤ 2σ2Tδ(t)‖XIt‖(V̂ κ(t))−1

Then using Lemma 5.2.4, provided that κ ≥ 0

max
(
ε,
ε+∆It

3

)
≤ 2σ2Tδ(t)

‖XIt‖2√
NIt(t)‖XIt‖22 + κ

≤ 2σ2Tδ(t)√
NIt(t)

.

which yields NIt(t) ≤ 4σ2(Tδ(t))2max
(
ε,
ε+∆It

3

)−2

.

Then we apply Lemma 5.3.8, which gives us the final upper bound.

Note that, empirically, LinGIFA has the same performance thanN-LinGapE
in terms of sample complexity, which makes us more confident in this con-
jecture.
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12.2 Conjecture 5.3.10: analysis of the greedy

selection rule

Note that, for some κ ≥ 0, ∀t > 0, V̂ κ(t) := κId +
∑

a∈[K]Na(t)xax
⊤
a . Greedy

selection rule is selecting at round t > 0 the arm at which satisfies

at ∈ argmin
a∈[K]

‖xbt − xct‖(V̂ κ(t−1)+xax⊤a )−1 .

The goal is to upper bound the quantity ‖xbt − xct‖(V̂ κ(t−1)+xatx
⊤
at
)−1 with some-

thing depending on Nat(t), in order to apply Lemma 5.3.8.

Lemma 12.2.1. For any t > 0, for any a ∈ [K],

||xbt − xct ||(V̂ κ(t−1)+xax⊤a )−1 ≤
‖xbt − xct‖2√

λbt,ct,a
,

where (λi)i≤d are the eigenvalues of (V̂ κ(t − 1) + xax
⊤
a ) associated with

respective eigenvectors (vi)i≤d, and λbt,ct,a := min
j≤d

v⊤j (xbt−xct) ̸=0

λj.

Proof. We denote Va := V̂ κ(t − 1) + xax
⊤
a . Matrix Va is real, symmetric, and

positive definite, thus all its eigenvalues (λi)i≤d are positive. Then, due to
the spectral theorem, these eigenvalues are all real-valued, and there exists
a orthonormal basis of associated eigenvectors (vj)j≤d. In particular,

∀j ≤ d, vj = V −1
a Vavj = λjV

−1
a vj ⇔ V −1

a vj = λ−1
j vj .

Moreover, Span({vj}j≤d) = Rd, which means that there exists at least one
j ≤ d such that v⊤j (xbt − xct) 6= 0. Then

‖xbt − xct‖2V −1
a

= (xbt − xct)V −1
a

∑
j ̸=d

v⊤j (xbt − xct)vj

= (xbt − xct)⊤
∑
j≤d

v⊤j (xbt − xct)λ−1
j vj

≤ λ−1
bt,ct,a
‖xbt − xct‖22 .

Now, we will find a lower bound for the quantity λbt,ct,at depending on
Nat(t), for any t > 0, with at as defined by the greedy selection rule.
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Lemma 12.2.2.
λbt,ct,at ≥ κ+ (Nat(t− 1) + 1)‖xat‖22 .

Proof. For any arm a ∈ [K], let us denote for any b ∈ [K], b 6= a,

Ṽb :=
κ

K
Id +Nb(t− 1)xbx

⊤
b and Ṽa :=

κ

K
Id + (Na(t− 1) + 1)xax

⊤
a ,

such that
∑

b ̸=a Ṽb + Ṽa = Va. Ṽb, for any b 6= a, and Ṽa are all real, symmetric,
positive definite square matrices (if κ > 0 or if there is an initialization phase
with uniform samplings). We will use these simple lemma to analyze the
eigenspace of xx⊤, for any x ∈ Rd

Lemma 12.2.3. For any matrix A and for any constant α ∈ R, if ζ is an
eigenvalue of A, then αζ is an eigenvalue of αA, and η + α is an eigenvalue
of A+ αId.

Proof. For any eigenvector v associated with eigenvalue ζ of A,

(αA)v = (αζ)v and (A+ αId)v = ζv + αv = (ζ + α)v .

We will now analyze the eigenspace of xx⊤, where x 6= 0. For any eigen-
value ζ of xx⊤ associated with eigenvector v, ζv = (xx⊤)v = x(x⊤v) = (x⊤v)x,
which means that

- any vector in Span(x)⊥ := {v : x⊤v = 0} (of dimension d − 1) is an
eigenvalue of xx⊤ associated with eigenvalue 0 (which then has a multiplicity
of d− 1).

- any nonzero eigenvalue ζ (necessarily of multiplicity 1) satisfies v =
x⊤v
ζ
x ∈ Span(x) := {αx : αR}. Moreover, we can show that (xx⊤)x = x(x⊤x) =

‖x‖22x, which means that this eigenvalue is ‖x‖22.

Finally, we recall Weyl’s matrix inequality (Weyl, 1912)

Lemma 12.2.4. Weyl’s matrix inequality. If M and P are hermitian ma-
trices of dimension d×d, 1 and λk(A) denotes the kth largest (with multiplicity)
eigenvalue of any hermitian matrix A, then

max
i,j≤d

i+j=k+d

λi(M) + λj(P ) ≤ λk(M + P ) ≤ min
i,j≤d

i+j=1+k

λi(M) + λj(P ) .

1For real matrices, it means symmetric.
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By induction, if we consider K hermitian matrices Pa, a ∈ [K], then

∀a′ ∈ [K], λk

∑
a∈[K]

Pa

 ≥ λk(Pa′) +
∑
a ̸=a′

min
j≤d

λj(Pa) .

Now, let us apply this to eigenvalue λbt,ct,a. Consider the permutation
pa ∈ Sd such that the eigenvalues of Va ordered by pa are in the order of
decreasing value: λpa(1) ≥ λpa(2) ≥ · · · ≥ λpa(d).

Let us denote j′a := max
j≤d

v⊤
pa(j)(xbt−xct) ̸=0

j such that λbt,ct,a = λpa(j′a)(Va).

λbt,ct,a ≥ λpa(j′a)(Ṽa) +
∑
b ̸=a

min
j≤d

λj(Ṽb)

= λpa(j′a)

( κ
K
Id + (Na(t− 1) + 1)xax

⊤
a

)
+
∑
b ̸=a

min
j≤d

λj

( κ
K
Id +Nb(t− 1)xbx

⊤
b

)
=

κ

K
+ (Na(t− 1) + 1)λpa(j′a)(xax

⊤
a ) +

∑
b ̸=a

(
κ

K
+Nb(t− 1)min

j≤d
λj(xbx

⊤
b )

)
=

κ

K
+ (Na(t− 1) + 1)λpa(j′a)(xax

⊤
a ) +

κ

K
(K − 1) +

∑
b ̸=a

Nb(t− 1)× 0

= κ+ (Na(t− 1) + 1)λpa(j′a)(xax
⊤
a ) .

The second equality sign is due to Lemma 12.2.3 and the third one is due
to the analysis of the eigenspace of xx⊤, where x 6= 0.

We know that λpa(j′a)(xax
⊤
a ) ∈ {0, ‖xa‖22} for any a ∈ [K]. Now all that is left

is to prove that λpa(j′at)(xatx
⊤
at) = ‖xat‖22 where at is the arm selected by the

greedy rule, which means that any eigenvector v associated with the largest
eigenvalue λmax of matrix Vat satisfies v⊤(xct−xbt) 6= 0 and that, for any strictly
smaller eigenvalue, associated eigenvector v satisfies v⊤(xbt − xct) = 0 (such
that, necessarily, λbt,ct,at = λmax). This is the trickiest part of the proof, and is
left unproven.
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Combining this last lemma with stopping rule τ LUCB := inft>0{Bct,bt(t) < ε},
and the upper bound on Bct,bt(t) for Algorithm N-LinGapE, on event EGIFA at
t < τ LUCB:

ε ≤ Bct,bt(t) ≤min(−max(∆bt ,∆ct) + 3Wt(bt, ct),Wt(bt, ct))

⇔max
(
ϵ,
∆bt + ϵ

3
,
∆ct + ϵ

3

)
≤ Wt(bt, ct) = σTδ(t)||xct − xbt ||(V̂ κ(t−1)+xatx

⊤
at)

−1

≤ σTδ(t)
‖xbt − xct‖2√
κ+Nat(t)‖xat‖22

(at pulled at t)

⇔ Nat(t) ≤ σ2Tδ(t)2
‖xbt − xct‖22
‖xat‖22

max
(
ε,
∆bt + ε

3
,
∆ct + ε

3

)−2

.

Applying Lemma 5.3.8 allows us to conclude on the conjecture similarly
to what was previously done.
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Chapter 13

Chapter 8 : Proofs for CPE

13.1 Technical lemmas

Lemma 13.1.1. Comparison of values of Problem P̃ from different
gaps. Consider ∆ , ∆′ ∈ (R+)K×M , τ ∈ P̃(∆) and τ ′ ∈ P̃(∆′). Then (i). If there
is a constant α > 0 so that ∀k ∈ [K] ∀m ∈ [M ], α∆k,m ≤ ∆′

k,m then

∑
k,m

τ ′k,m ≤
1

α2

∑
k,m

τk,m .

(ii). If there is a constant β > 0 so that ∀k ∈ [K] ∀m ∈ [M ], ∆′
k,m ≤ β∆k,m then

1

β2

∑
k,m

τk,m ≤
∑
k,m

τ ′k,m .

Proof. The proof follows from the fact that τ and τ ′ are minimal. In particular,
to prove (ii), let τ ′′k,m = β2τ ′k,m for any k ∈ [K], m ∈ [M ]. Then, for any agent m
and arm k, ∑

n∈[M ]

w2
n,m

τ ′′k,n
=
∑
n∈[M ]

w2
n,m

β2τ ′k,n
≤ 1

2

(
∆′
k,m

β

)2

≤
∆2
k,m

2
.

By minimality of τ , ∑
m∈[M ]

τk,m ≤
∑
m∈[M ]

τ ′′k,m = β2
∑
n∈[M ]

τ ′k,m .

(i) similarly follows.
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Lemma 13.1.2. Choice of threshold function Tδ(·). For any N ∈ (N+)M

Tδ(N) := 2

gM ( δ

KM

)
+ 2

∑
m∈[M ]

ln (4 + ln(Nm))

 ,

where gM is a function that satisfies gM(δ) ≈ log(1/δ) +M log log(1/δ). Then
the good event

ECPE∶ =
{
∀r ≥ 0 ∀m ∈ [M ] ∀k ∈ [K],

∣∣∣µ′
(k,m)−µ̂′

(k,m)(r)
∣∣∣ ≤ Ω(k,m)(r)

}
holds with probability larger than 1− δ.

Proof. We prove that, if we define the threshold function for N ∈ (N∗)M as

Tδ(N) := 2

(
gM

(
δ

KM

)
+ 2

M∑
m=1

ln(4 + ln(Nm))

)
,

where

- ∀δ ∈ (0, 1), gM(δ) :=MCgG (log(1/δ)/M) ,

- ∀x > 0, CgG(x) :=minλ∈(0.5,1)(gG(λ) + x)/λ ,

- ∀λ ∈ (0.5, 1), gG(λ) := 2λ− 2λ log(4λ) + log(ζ(2λ))− 0.5 log(1− λ) ,

and ζ is the Riemann zeta function, then, the good event

ECPE :=
{
∀r ∈ N ∀m ∈ [M ] ∀k ∈ [K],

∣∣∣µ̂′
(k,m)(r)−∆′

k,m

∣∣∣ ≤ Ω(k,m)(r)
}
.

holds with probability larger than 1− δ. Using Kaufmann and Koolen (2021,
Proposition 24) on µ′

(k,m), for any arm k and agent m, directly yields

P

(
∃r ≥ 0,

∣∣µ′
(k,m)r −∆′

k,m

∣∣ >√Tδ(nk,·(r))∑
n

w2
n,m

nk,n(r)

)
≤ δ

KM

(using the notation of the paper, consider µ = µ(k,·) and c = W·,m). Then all
that is needed to conclude is to apply a union bound on [K]× [M ]

P (Ec) = P

(
∃m ∈ [M ] ∃k ∈ [K] ∃r ≥ 0,

∣∣µ′
(k,m)r −∆′

k,m

∣∣ >√2Tδ(nk,·(r))
∑
n

w2
n,m

nk,n(r)

)

≤
∑
m∈[M ]

∑
k∈[K]

δ

KM
≤ δ .

Remark 13.1.3. Although the expression of gM is not in closed-form, its
value can easily be retrieved through any scalar minimization procedure.
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13.2 Correctness analysis

Theorem 13.2.1. CPE is δ-correct. On event ECPE, CPE outputs the correct
set of optimal arms SmN for each agent m.

Proof. If CPE was not δ-correct on event ECPE, then, for some agent m, there
would be an arm ℓ ∈ SmN which is eliminated at round r from Bm(r+1). But, on
event ECPE, Lemma 8.4.5 implies that, for any r ≥ 0, m ∈ [M ], and (i, j) ∈ [K]2,

µ̂′
(i,m)(r)−µ̂′

(j,m)(r)+Ω(i,m)(r)+Ω(j,m)(r) ≥ ∆
′m
i,j ≥ µ̂′

(i,m)(r)−µ̂′
(j,m)(r)−Ω(i,m)(r)−Ω(j,m)(r) .

Then, combining the right-hand inequality for j = ℓ with the elimination
criterion at Line 17 in Algorithm 8

N
max
i∈[K]

∆
′m
i,ℓ ≥

N
max
i∈[K]

(
µ̂′
(i,m)(r)− µ̂′

(ℓ,m)(r)− Ω(i,m)(r)− Ω(ℓ,m)(r)
)

≥
N
max

i∈Bm(r)⊆[K]

(
µ̂′
(i,m)(r)− µ̂′

(ℓ,m)(r)− Ω(i,m)(r)− Ω(ℓ,m)(r)
)
> 0 ,

which is absurd because ℓ ∈ SmN .

13.3 Sample complexity analysis

Theorem 13.3.1. Upper bound on Expµ(CPE). On any model µ, with
probability 1− δ, CPE (Algorithm 8) outputs the set of N best arms for each
agent with an exploration cost at most

32N ⋆(µ) log2

(
8

∆′
min

)
log (1/δ) + o (1/δ) ,

and at most
⌈
log2

(
8

∆′
min

)⌉
communication rounds, where∆′

min := min
m∈[M ]

min
k∈[K]

∆′
k,m.

Proof. Thanks to Theorem 8.4.6, CPE is shown to be δ-correct on event ECPE,
of probability greater than 1 − δ (Lemma 8.4.5). Then we upper bound the
exploration cost when ECPE holds. We denote by R the (random) number of
rounds used by the algorithm, and, for all m ∈ [M ] and k 6∈ SmN , by Rk,m the
(random) last round in which k is still a candidate arm for player m

Rk,m := sup {r ≥ 0 | k ∈ Bm(r)} .

By definition of Algorithm 8, R = max
m∈[M ]

max
k ̸∈S⋆

mN
Rk,m. We first provide upper

bounds on Rk,m and R. To achieve this, we introduce the following notation
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for any arm k ∈ [K] and agent m ∈ [M ]

rk,m := min
{
r ≥ 0 | 4× 2−r < ∆′

k,m

}
and rmax := max

m∈[M ]
max
k ̸∈Sm

N

rk,m .

From the definitions of rk,m and rmax, the following upper bounds can be easily
checked.

Lemma 13.3.2. For any arm k ∈ [K] and agent m ∈ [M ], rk,m ≤ log2

(
8/∆′

k,m

)
and rmax ≤ log2 (8/∆

′
min) , where ∆′

min := min
m∈[K]

min
k∈[M ]

∆′
k,m.

Using the fact that CPE only halves the gap proxies of arms that are not
eliminated, we can write down the value of the gap proxies for these arms

Lemma 13.3.3. ∀m ∈ [M ] ∀k ∈ Bm(r), ∆̃′
k,m(r) = 2−r .

Using the important relationship between gap proxies and the confidence
width as established in Lemma 8.4.7, we can further show that

Lemma 13.3.4. On ECPE, for any m ∈ [M ] and any k 6∈ SmN , Rk,m ≤ rk,m .

Proof. Assume ECPE holds. For any suboptimal arm k for agent m, at round
r = rk,m, if k 6∈ Bm(r), then trivially Rk,m < rk,m. Otherwise, if k ∈ Bm(r), then

µ̂′
(k,m)(r) + Ω(k,m)(r) ≤(1) µ

′
(k,m) + 2Ω(k,m)(r)

≤(2) µ
′
(k,m) + 2∆̃′

k,m(r) = µ′
(k,m) + 4∆̃′

k,m(r)− 2∆̃′
k,m(r)

<(3)

N
max
i∈[K]

µ′
(i,m) − 2∆̃′

k,m(r) =(4)

N
max
i∈Bm(r)

µ′
(i,m) − 2∆̃′

k,m(r)

≤(1)

N
max
i∈Bm(r)

(
µ̂′
(i,m)(r)− Ω(i,m)(r) + 2Ω(i,m)(r)

)
− 2∆̃′

k,m(r)

≤(2)

N
max
i∈Bm(r)

(
µ̂′
(i,m)(r)− Ω(i,m)(r) + 2∆̃′

i,m(r)
)
− 2∆̃′

k,m(r)

=(5)

N
max
i∈Bm(r)

(
µ̂′
(i,m)(r)− Ω(i,m)(r)

)
+ 2× 2−r − 2× 2−r ,

=⇒ µ̂′
(k,m)(r) + Ω(k,m)(r) <

N
max
i∈Bm(r)

(
µ̂′
(i,m)(r)− Ω(i,m)(r)

)
,

where (1) is because event ECPE holds ; (2) uses Lemma 8.4.7 ; (3) uses
r = rk,m and k 6∈ SmN ; (4) uses event ECPE and Theorem 8.4.6, that implies
that for any ℓ ∈ SmN , ℓ ∈ Bm(r) ; (5) holds because of Lemma 13.3.3. It follows
that k 6∈ Bm(rk,m + 1) and Rk,m ≤ rk,m.

The previous lemma straightforwardly implies that

Corollary 13.3.4.1. R ≤ rmax ≤ log2(8/∆
′
min) .
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Moreover, it also permits to prove that, in the last round R, the gap proxies
are lower bounded by the true characteristic gaps.

Corollary 13.3.4.2. At final round R, and for any agent m and suboptimal
arm k 6∈ SmN , if ECPE holds,

∆̃′
k,m(R) ≥

1

8
∆′
k,m .

Proof. If R < rk,m, by definition of rk,m, ∆̃′
k,m(R) ≥ (1/4)∆′

k,m ≥ (1/8)∆′
k,m. If

R ≥ rk,m, we first observe that ∆̃′
k,m(R) = ∆̃′

k,m(Rk,m) = (1/2)∆̃′
k,m(Rk,m − 1) by

definition of the algorithm (the gaps remain frozen when an arm is elimi-
nated, and they are halved otherwise). As Rk,m − 1 < rk,m by Lemma 13.3.4,
by definition of rk,m, it follows that

4∆̃′
k,m(Rk,m − 1) > ∆

′

k,m

and we conclude that ∆̃′
k,m(R) ≥ (1/8)∆′

k,m.

Now, for any m ∈ [M ] and k ∈ [K], using Corollary 13.3.4.2, and the fact
that the gap proxies are nonincreasing between two consecutive phases, we
get

∀k ∈ [K] ∀m ∈ [M ] ∀r ≤ R, ∆̃′
k,m(r) ≥ ∆̃′

k,m(R) ≥ ∆′
k,m/8 .

Using Lemma 8.4.3 and once again the fact that gap proxies are nonin-
creasing, for any round r ≤ R, the optimal allocation t(r) ∈ P̃

(√
2∆̃
)
satisfies

∑
k,m

tk,m(r) ≤ 32
∑
k,m

t′k,m ,

where t′ ∈ P̃ (∆′) , hence

max
r≤R

[∑
k,m

tk,m(r)

]
≤ 32Ñ . (13.1)

For every arm k ∈ [K] and agent m ∈ [M ], we now introduce

r′k,m := sup{r ≤ R : dk,m(r) 6= 0} ,

so that nk,m(R) = nk,m(r
′
k,m) . Using Lemma 13.3.5 stated below, and the

fact that threshold function Tδ(·) is nondecreasing in each coefficient of its
argument (see its definition in Lemma 8.4.5),

nk,m(R) = nk,m(r
′
k,m) ≤ tk,m(r

′
k,m)Tδ(nk,·(r′k,m)) + 1

≤ tk,m(r
′
k,m)Tδ(nk,·(R)) + 1 .
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Lemma 13.3.5. For any k,m, r ≥ 0, either dk,m(r) = 0, or

nk,m(r) = nk,m(r − 1) + dk,m(r) < tk,m(r)Tδ(nk,·(r)) + 1 .

Proof. At fixed r ≥ 0, for any set S ⊆ [K] × [M ], let us prove by induction on
|S| ≥ 1 1

∀k ∈ [K] ∀m ∈ [M ], d′k,m(r) := (dk,m(r)− 1S((k,m)))+

=⇒ ∀(k,m) ∈ S,
nk,m(r − 1) + d′k,m(r)

Tδ(nk,·(r − 1) + dk,·(r))
< tk,m(r)

or dk,m(r) = 0 .

At |S| = 1: Let us denote S = {(k′,m′)}. If dk′,m′(r) = 0, then it is trivial.
Otherwise,

∑
k,m d

′
k,m(r) <

∑
k,m dk,m(r), and then, by minimality of solution d(r),

at least one constraint from the optimization problem of value
∑

k,m dk,m(r) has
to be violated. For any (k,m) 6∈ S, by definition of d(r) and nondecreasingness
of Tδ(·)

nk,m(r − 1) + d′k,m(r) = nk,m(r − 1) + dk,m(r)

≥ tk,m(r)Tδ(nk,·(r − 1) + dk,·(r))

≥ tk,m(r)Tδ(nk,·(r − 1) + d′k,·(r)) .

That means, necessarily the only constraint that is violated is the one on
(k′,m′). Using the nondecreasingness of Tδ(·)

nk′,m′(r − 1) + dk′,m′(r)− 1 = nk′,m′(r − 1) + d′k′,m′(r)

< tk′,m′(r)Tδ(nk′,·(r − 1) + d′k,·(r))

≤ tk′,m′(r)Tδ(nk′,·(r − 1) + dk,·(r)) .

Combining the two ends of the inequality proves the claim.

At |S| > 1: At fixed (k′,m′) ∈ S, we can apply the claim to S \ {(k′,m′)}.
Moreover, if dk′,m′(r) = 0, then the claim is proven. Otherwise, towards
contradiction

nk′,m′(r − 1) + d′k′,m′(r) ≥ tk′,m′(r)Tδ(nk′,·(r − 1) + dk,·(r)) .

Let us then consider the following allocation

∀k ∈ [K] ∀m ∈ [M ], d′′k,m(r) := dk,m(r)− 1{(k′,m′)}((k,m)) .

It can be checked straightforwardly – using the nondecreasingness of Tδ() –
1For any x ∈ NM , (x)+ := (max(0, xm))m∈[M ], and 1S is the indicator function of set S.
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that d′′ satisfies all required constraints for any pair (k,m) ∈ [K] × [M ], and
that

∑
k,m d

′′
k,m(r) =

∑
k,m dk,m(r)−1 , which, by minimality of d, is absurd. Then

the claim is proven for |S| > 1. Then Lemma 13.3.5 is proven by considering
S = [K]× [M ] .

By summing the upper bound on (nk,m(R))k,m over [K]× [M ], we can upper
bound the exploration cost τ as

τ :=
∑
k,m

nk,m(R) ≤
∑
k,m

tk,m(r
′
k,m)Tδ(nk,·(R)) +KM

≤
∑
k,m

tk,m(r
′
k,m)β

∗(τ) +KM

≤
∑
k,m

∑
r≤R

tk,m(r)β
∗(τ) +KM

≤ Rmax
r≤R

[∑
k,m

tk,m(r)

]
β∗(τ) +KM

≤ log2 (8/∆
′
min)max

r≤R

[∑
k,m

tk,m(r)

]
β∗(τ) +KM ,

where we use Corollary 13.3.4.1 and introduce the quantity

β∗(τ) := Tδ(τ1M) = 2

(
gM

(
δ

KM

)
+ 2M ln (4 + ln (τ))

)
where ∀n ∈ [M ],1M(n) = 1 .

Using Equation (13.1) and Lemma 8.4.1,

τ ≤ 32Ñ log2 (8/∆
′
min) β

∗(τ) +KM ≤ 32N ⋆ log2(8/∆
′
min)β

∗(µ) +KM .

Therefore, τ is bounded from above by

sup {n ∈ N∗ : n ≤ 32N ⋆ log2(8/∆
′
min)β

∗(n) +KM} .

Applying Kaufmann, Ménard, et al. (2021, Lemma 15) with

∆ =

(√
32N ⋆ log2 (8/∆

′
min)

)−1

,

a = KM + 2gM

(
δ

KM

)
,

b = 4M ,

c = 4 ,

d = e−1 using ∀n, log(n) ≤ ne−1 ,
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yields an explicit upper bound on τ

T̂ (µ) := 32N ⋆ log2 (8/∆
′
min)

[
KM + 2gM

(
δ

KM

)
+4M ln

(
4 + 1, 024

(N ⋆ log2 (8/∆
′
min))

2

e

(
KM + 2gM

(
δ

KM

)
+ 4M(2 +

√
e)

)2
)]

,

which satisfies τ T̂ (µ) ≤ a+ b ln(c+ dτT̂ (µ)). Using that gM(x) ' x+M log log(x)
in the regime of small values of δ, we obtain that

T̂ (µ) = 32N ⋆ log2 (8/∆
′
min) log(1/δ) + oδ→0

(
log(δ−1)

)
.

The upper bound on the communication cost follows from the upper bound
on the number of phases given in Corollary 13.3.4.1.
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Chapter 14

Chapters 5 & 6: Real-life
conditions for drug repurposing

One shortcoming of the experiments in Chapters 5 and 6 is that the set-
ting is actually made closer to the studied frameworks –respectively linear
and misspecified linear structures, by transforming the drug features in a
supervised fashion, Gaussian rewards in Chapter 6 instead of raw patient-
specific scores. In this chapter, we actually run the algorithms developed
in this thesis (N-LinGapE, LinGIFA, MisLid, in their default versions) and the
benchmark (unstructured) algorithm LUCB (Kalyanakrishnan et al., 2012) in
a setting closer to the drug repurposing application.

We consider again the set of K = 21 drugs which associated average
scores are displayed in Table 10.3. A boxplot of these reward values is
reported in the left-hand plot in Figure 14.1. The gap between the low-
est average reward among antiepileptics and the highest average reward
across proconvulsant drugs is around 0.07, which means that the associated
instance (for N = 10) is moderately hard to solve.

We want to determine the N = 3 best treatments (∆a(N)a(N+1)
≈ 0.14), based

on d = 10 features. 1 In order to compute these features from the original
194 ones, we apply Principal Component Decomposition (PCA) and select the
d largest components. The a posteriori heatmap built on these PCA-reduced
features, according to the true reported class (antiepileptic or proconvulsant)
is displayed in Figure 14.1 (right-hand plot). This heatmap shows that using
these features allows to cluster very roughly the two class of drugs (ARI ≈
0.080 > 0), which tends to show that the underlying model is far from linear
(with a full dependence on the features to infer the scores). Note that this
feature transformation is reward-agnostic.

1The choice of the value of d is guided by computational considerations, whereas N = 3
is based on the choice made in Chapter 5.
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Lamotrigine
Diclofenamide
Felbamate
Dextromethorphan
Chlorambucil
Primidone
Securinine
Pentylenetetrazol
Pindolol
Amoxapine
Domperidone
Ropinirole
Pimozide
Quinidine
Pravastatin
Carbamazepine
Hydroxyzine
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Valproic-Acid
Capsaicin

1

0

1

Figure 14.1: Visualization of the “real life” repurposing instance. Left
plot : Boxplot of rewards, by increasing order of average scores. Right
plot : Pearson’s r correlation heatmap based on the d = 10 PCA-reducred
features, ranked by the order obtained through hierarchical clustering. The
first row of colors (red/green) corresponds to the class (resp., proconvulsant
drug/antiepileptic), whereas the second row of colors (7 different colors)
corresponds to the clusters found through hierarchical clustering.

Similarly to the experimental setting in Chapter 5, each time a treatment
is selected, a patient is selected at random, and the score associated with
this patient and the selected treatment is observed.

When using MisLid, we need to determine the value to assign to param-
eter Ψ (please refer to Chapter 6). In practice, the repurposing scores (see
Table 10.3) are roughly comprised between −1 and 1. In order to ensure
that the property of correctness is satisfied, we use the reasoning laid out in
the discussion of Chapter 6 ; we start by considering Ψ = 1, and decreasing
its value by a fixed step size (size = 0.1) until the sample complexity is equal
or lower than the one incurred by an unstructured algorithm on the same
instance (e.g., LUCB). Of course, such a procedure is (1) not theoretically
supported, (2) not tractable in practice because it would imply running
first an unstructured instance. As previously mentioned in the thesis, an
interesting subsequent work would be the design of an adequate finetuning
method for Ψ.

The parameter values are reported in Table 14.1, whereas the final error
frequencies and sample complexities are reported in Table 14.2.
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Figure 14.2: Results for
the drug repurposing in
epilepsy. Boxplots of the sample
complexity for MisLid for Ψ ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
for the “real life” drug repurposing
instance. Green (resp., red) boxplots
correspond to (resp., non) δ-correct
algorithms.

Parameter Value
K 21
d 10
σ 1∗

δ 10%
ε 0.14
N 3
#iterations 100

Table 14.1: Parame-
ters values for the
drug repurposing in
epilepsy. Parameter
values for the “real-life”
drug repurposing set-
ting. ∗ Although this
parameter is not related
to the actual observa-
tions, it is used to build
the confidence intervals
in the algorithms.

MisLid was also run with a few lower values of Ψ in order to illustrate
the effect of Ψ on the performance of the algorithm. The trend in sample
complexity depending on Ψ is illustrated in the boxplot in Figure 14.2.

The comments made in the experimental part of Chapter 6 are still valid in
this “real life” setting : linear bandit algorithms (including MisLid with Ψ = 0)
do not preserve correctness anymore, whereas unstructured algorithms are
not sample-efficient. In practice, as illustrated by Figure 14.2, selecting
values around a educated guess about the absolute value of the upper bound
on rewards seems rather robust and sample-efficient, while ensuring that
the correctness property is preserved.

Considering MisLid and Figure 14.2, while the error rate drastically in-
creases as the misspecification level ψ in input decreases (as described in
the conclusion of Chapter 6), the trend of the sample complexity depending
on ψ displays a different, non-monotonic pattern. In Table 14.2, the aver-
age sample complexity globally increases in the range ψ ∈ [0, 0.4], globally
decreases in the range ψ ∈ [0.5, 0.8], and then slowly increases again starting
from ψ = 0.8.
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Alg. δ̂ ŝ
LUCB 0% 37, 425 ±271
MisLid (Ψ = 1) 0% 16, 189 ±1, 492
MisLid (Ψ = 0.9) 0% 16, 070 ±1, 287
MisLid (Ψ = 0.8) 0% 15, 846 ±1, 371
MisLid (Ψ = 0.7) 0% 15, 942 ±1, 311
MisLid (Ψ = 0.6) 0% 17, 205 ±1, 610
MisLid (Ψ = 0.5) 0% 60, 992 ±4, 433
MisLid (Ψ = 0.4) 100% 167, 233 ±13, 922
MisLid (Ψ = 0.3) 100% 84, 337 ±5, 966
MisLid (Ψ = 0.2) 100% 29, 586 ±24, 571
MisLid (Ψ = 0.1) 100% 31, 144 ±11, 606
MisLid (Ψ = 0) 100% 1, 393 ±491
N-LinGapE 100% 157 ±13
LinGIFA 100% 91 ±14

Table 14.2: Results for the drug repurposing in epilepsy. Results (in
terms of empirical error frequency and sample complexity) for the “real-
life” drug repurposing example. δ̂ is the empirical error frequency across
100 iterations, ŝ is the average sample complexity across iterations (± the
standard deviation), rounded up to the closest integer.

The last “increasing” section of the plot is consistent with the conclusion
in Chapter 6, which predicts that, the greater ψ is, the largest the set of
modelsMψ which the algorithm focuses on is, and gets closer to the set of all
models (i.e., unstructured models). Then, the expected sample complexity
of MisLid should be closer and closer to the expected sample complexity of
a good unstructured bandit algorithm (e.g., LUCB). However, the observed
behaviour of sample complexity for smaller values of ψ does not follow a
linear pattern, and its study would be an interesting subsequent theoretical
work.
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