Puis Prenant 
  
Remarque 1 Désormais 
  
2 ' K 1 q \ pU 2 ' V 1 ' K 2 q , nous avons le canon Z n " A ' B

on notera A 1 , A 2 , U 1 , U 2 , V 1 , et V 2 les ensembles ainsi appelés dans Exemple 1.

De nombreuses autres façons de construire des canons de pavage apériodiques sont possibles, voir par exemple de Bruijn ([8]), Vuza ([18]), Fidanza ([9]) et Jedrzejewski ([12]). Ces méthodes entrent dans une catégorie traitée par F. Jedrzejewski (Théorème 14 in [13]).

Canons de Vuza étendus

Nous donnons maintenant un premier résultat qui affine celui de Jedrzejewski, en levant l'hypothèse que p 1 et p 2 sont premiers et en prouvant que B est apériodique si n 3 satisfait une contrainte arithmétique simple (voir [15]).

3. si n 3 n'est pas premier, il n'y a pas de premier q tel que q n 3 , mais q ffl p 1 n 1 p 2 n 2 .

Soit H le sous-groupe H " n 3 I p1n1p2n2 de Z n et soit K un ensemble complet de cosets représentatifs de Z n modulo H tel que K est l'union disjointe K " K 1 \ K 2 . Alors le couple pA, Bq défini par

est un canon rythmique de pavage apériodique de Z n .

Dans une généralisation de Théorème 3, le rythme B est l'union disjointe de trois ensembles, l'un étant périodique à la fois modulo n{p 1 et modulo n{p 2 . Théorème 4. Soit n " p 1 n 1 p 2 n 2 n 3 P N tel que :

1. p 1 , n 1 , p 2 , n 2 , n 3 ą 1 ; 2. P GCD pp 1 n 1 , p 2 n 2 q " 1 ; 3. si n 3 n'est pas premier, il n'y a pas de premier q tel que q n 3 , mais q ffl p 1 n 1 p 2 n 2 .

Soit H le sous-groupe H " n 3 I p1n1p2n2 de Z n , K un ensemble complet de cosets représentatifs de

est un canon rythmique de pavage apériodique de Z n .

Canons de Vuza étendus

Résumé de la thèse de doctorat Greta Lanzarotto

Introduction

Le lien entre musique et mathématiques a été découvert et étudié depuis l'Antiquité par de nombreux scientifiques, philosophes, musiciens tels que Pythagore, Galileo Galilei, Gottfried Wilhelm Leibniz et Leonhard Euler. À première vue, deux domaines diamétralement opposés, au fil des siècles, la musique et les mathématiques se sont révélées avoir beaucoup en commun. Cette thèse découle de la volonté d'approfondir un thème qui puise des concepts dans les deux disciplines et de la conviction que l'étude combinée des deux ne peut que profiter aux deux côtés de la relation.

Dans cette thèse, nous traitons des canons rythmique de pavage, qui sont des compositions contrapuntiques purement rythmiques. Les canons en musique ont une très longue tradition ; quelques cas de canons rythmiques de pavage (c'est-à-dire des canons tels que, étant donné un tempo fixe, à chaque battement, exactement une voix joue) ont également été composés. Ce n'est qu'au siècle dernier, issu du problème analogue de la factorisation des groupes abéliens finis, que des canons rythmiques de pavage apériodique ont été étudiés : ce sont des canons qui pavage un certain intervalle de temps dans lequel chaque voix (rythme intérieure) joue à une séquence apériodique de battements, et la séquence des battements de départ de chaque voix (rythme externe) est également apériodique. Du point de vue musical, l'article séminal était probablement l'article en quatre parties écrit par D.T. Vuza entre 1991Vuza entre et 1993 ([18, 20, 19, 21] ([18, 20, 19, 21]), tandis que la contrepartie mathématique du problème a également été étudiée auparavant, par exemple. par de Bruijn ( [8]), Sands ([17]), etc., et après, par ex. par Coven et Meyerowitz ( [7]), Jedrzejewski ([12]), Amiot ( [1]), Andreatta ([3]), etc.

Une théorie approfondie des conditions d'existence et de la structure des canons rythmiques de pavage apériodique n'a pas encore été établie ; nous essayons d'apporter une contribution à ce domaine fascinant. Dans ce but, la thèse propose un ensemble de théorèmes montrant des méthodes de construction de canons rythmiques apériodiques. Deux définitions sont présentées. La première définit les canons de Vuza comme des canons construits à l'aide de Théorème 2, Théorème 3, Théorème 4 et Théorème 5. Ensuite, la seconde définit l'ensemble des canons de Vuza étendus comme les canons construits à l'aide de Théorème 6 et Théorème 7, éventuellement combinées de Théorème 2, Théorème 3, Théorème 4 et Théorème 5. La thèse présente également des avancées dans le domaine du calcul en fournissant deux nouveaux algorithmes résultant plus efficaces que ceux connus dans la littérature d'au moins un ordre de grandeur.

Canons de pavage apériodiques

Nous fixons quelques notations et donnons les principales définitions. Définition 1. Si Z n " A ' B, on appelle pA, Bq un canon rythmique de pavage de période n ; A est appelée la voix intérieure et B la voix extérieure du canon. Définition 2. Un rythme A Ă Z n est périodique (de période z) si et seulement s'il existe un élément z P Z n , z ‰ 0, tel que z `A " A. Dans ce cas, A est aussi appelé périodique modulo z P Z n . Un rythme A Ă Z n est apériodique si et seulement s'il n'est pas périodique. On note H l'ensemble des périodes des groupes de Hajós, c'est-à-dire des groupes qui n'admettent pas de factorisations apériodiques, et V l'ensemble des périodes des groupes qui admettent de telles factorisations. Le résultat suivant, en conjonction avec Théorème 2, identifie quelles sont les périodes des canons rythmiques de pavage apériodique.

Théorème 1 (Vuza). Soient 1. V " tn P N : n " p 1 n 1 p 2 n 2 n 3 avec P GCD pp 1 n 1 , p 2 n 2 q " 1 et p 1 , n 1 , p 2 , n 2 , n 3 ą 1u, et 2. H " ␣ p α , p α q, p 2 q 2 , pqr, p 2 qr, pqrs : α P N, p, q, r, s nombres premiers distincts ( , alors N ˚" V \ H.

Une méthode de construction exhaustive de canons rythmiques de pavage apériodique n'est pas connue à ce jour ; la première méthode pour trouver certains d'entre eux a été fournie par le résultat suivant (voir [START_REF] Hajós | Sur la factorisation des groupes abéliens[END_REF] par Hajós, Théorème 1 dans [8] par de Bruijn, et Proposition 2.2 dans [18] par Vuza). Théorème 2. Soit n " p 1 n 1 p 2 n 2 n 3 P N tel que 1. p 1 , n 1 , p 2 , n 2 , n 3 ą 1 et 2. P GCD pp 1 n 1 , p 2 n 2 q " 1. Alors Z n admet un canon rythmique de pavage apériodique.

Exemple 1. Dans les hypothèses de Théorème 2, un exemple de canon de pavage de Z n avec deux sous-ensembles apériodiques est donné par la construction suivante de F. Jedrzejewski (voir Théorème 227 dans [12]). En désignant par I k l'ensemble t0, 1, . . . , k ´1u, appelons :

A 1 " n 3 p 1 n 1 I n2 U 1 " n 3 p 1 n 1 n 2 I p2 V 1 " n 3 n 2 I p2 K 1 " t0u A 2 " n 3 p 2 n 2 I n1 U 2 " n 3 p 2 n 2 n 1 I p1 V 2 " n 3 n 1 I p1 K 2 "
t1, 2, . . . , n 3 ´1u . Théorème 5. Soit n " p 1 n 1 p 2 n 2 n 3 P N tel que :

1. p 1 , n 1 , p 2 , n 2 , n 3 ą 1 ; 2. P GCD pp 1 n 1 , p 2 n 2 q " 1 ; 3. si n 3 n'est pas premier, il n'y a pas de premier q tel que q n 3 , mais q ffl p 1 n 1 p 2 n 2 . Soit H le sous-groupe H " n 3 I p1n1p2n2 de Z n , et K " K 1 \ K 2 (avec K 1 , K 2 ‰ H) un ensemble complet de cosets représentatifs pour Z n modulo H. Prendre -Ã1 comme un ensemble apériodique complet de représentants de cosets pour Z p2n2 modulo n 2 I p2 ; -Ã2 comme un ensemble apériodique complet de représentants de cosets pour Z p1n1 modulo n 1 I p1 ; -Ṽ 1 1 , . . . , Ṽ j 1 comme ensembles apériodiques complets de représentants de cosets pour Z p2n1 modulo p 2 I n1 ; -Ṽ 1 2 , . . . , Ṽ h 2 comme complet les ensembles apériodiques de représentants de cosets pour Z p1n2 modulo p 1 I n2 .

Définissez K 1 " K 1 1 \ ¨¨¨\ K j 1 et K 2 " K 1 2 \ ¨¨¨\ K h 2 , où K s α " ! k js´1`1 α
, . . . , k js α ) sont des sous-ensembles non vides de K α pour α " 1, 2. Alors le couple pA, Bq défini par

A " n 3 p 1 n 1 Ã1 ' n 3 p 2 n 2 Ã2 B " ´´U 1 ' n 3 n 1 Ṽ 1 2 ' ! k 1 1 , . . . , k l1 1 )¯\ ¨¨\ ´U1 ' n 3 n 1 Ṽ j 2 ' ! k lj´1`1 1 , . . . , k |K1| 1 
)¯¯\

\ ´´U 2 ' n 3 n 2 Ṽ 1 1 ' ␣ k 1 2 , . . . , k m1 2 ( ¯\ ¨¨\ ´U2 ' n 3 n 2 Ṽ h 1 ' ! k mh´1`1 2 , . . . , k |K2| 2 
)¯ē st un canon rythmique de pavage apériodique de Z n .

Définition 4 (canon de Vuza). On appelle canons de Vuza tous les canons obtenus à l'aide des constructions décrites dans Théorème 2, Théorème 3, Théorème 4 et Théorème 5.

Il est possible d'étendre encore plus ce type de constructions. Avec le théorème suivant, on améliore le résultat de Jedrzejewski (Théorème 21 dans [13]). Théorème 6. Soit n " p 1 n 1 p 2 n 2 n 3 P N tel que :

1. p 1 , n 1 , p 2 , n 2 , n 3 ą 1 ; 2. P GCD pp 1 n 1 , p 2 n 2 q " 1 ; 3. il n'y a pas de nombre premier q tel que q n 3 , mais q ffl p 1 n 1 p 2 n 2 . Soit H le sous-groupe H " n 3 I p1n1p2n2 de Z n . Supposons que L et K soient des sous-ensembles propres de Z n3 tels que L ' K " Z n3 et K " K 1 \ K 2 , avec K 1 , K 2 ‰ H. Alors le couple pA, Bq défini par

A " A 1 ' A 2 ' L B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q
est un canon rythmique de pavage apériodique de Z n . Définition 5. R A " td : Φ d pxq Apxqu et S A " tp α P R A : p premieru.

Les conditions de Coven-Meyerowitz sont les suivantes : (T1) |A| " ś p α PSA p ; (T2) pour tout p α , q β , r γ , . . . P S A , p α q β r γ ¨¨¨P R A , où p α , q β , r γ , . . . sont des puissances de nombres premiers distincts.

Définition 6 (extension). Soit A un sous-ensemble de Z n et soit S A " ␣ p α , q β , . . . , r γ ( . On appelle extension de A tout rythme A dont le polynôme caractéristique est Apxq " Φ p α ´x n p α kp ¯Φq β ´x n q β kq ¯¨¨¨Φ r γ ´x n r γ kr ¯, où k p , k q , . . . , k r sont des diviseurs de n tels que p ffl k p , q ffl k q , . . . , r ffl k r .

Notez que par définition clairement S A " S A .

Proposition 1. Soit A ' B " Z n et soit B vérifie la condition (T2). Alors A ' B " Z n aussi.

En combinant Théorème 6 et Proposition 1, nous sommes capables de trouver de nouveaux canons de Vuza où L n'est pas un sous-ensemble de Z n3 . Théorème 7. Soit n " p 1 n 1 p 2 n 2 n 3 P N tel que :

1. p 1 , n 1 , p 2 , n 2 , n 3 ą 1 ; 2. P GCD pp 1 n 1 , p 2 n 2 q " 1 ; 3. il n'y a pas de nombre premier q tel que q n 3 , mais q ffl p 1 n 1 p 2 n 2 .

Soit H le sous-groupe H " n 3 I p1n1p2n2 de Z n . Supposons que L et K soient des sous-ensembles propres de Z n3 tels que L ' K " Z n3 et K " K 1 \ K 2 , avec K 1 , K 2 ‰ H. Soit L une extension de L ; alors le couple pA, Bq défini par

A " A 1 ' A 2 ' L B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q
est un canon rythmique de pavage apériodique de Z n .

Définition 7 (canon de Vuza étendu). On appelle canons de Vuza étendus tous les canons obtenus à l'aide des constructions de Théorème 6 et Théorème 7, éventuellement combinées avec celles de Théorème 2, Théorème 3, Théorème 4 et Théorème 5.

Exemple 2. Nous montrons maintenant un canon de Vuza étendu de période n " 240 (p 1 " 5, n 1 " 3, p 2 " 2, n 2 " 2, n 3 " 4). L " I 2 , alors L " 15I 2 . En choisissant K 1 " t2u et K 2 " t0u, on obtient le canon

A " A 1 ' A 2 ' L " 60I 2 ' 16I 3 ' 15I 2 B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q
" p120I 2 ' 12I 5 ' t2uq \ p48I 5 ' 8I 2 ' t0uq .

Il est à noter qu'il ne serait pas possible d'obtenir un tel canon sans appliquer Théorème 7. Représentation en treillis d'un canon rythmique de pavage apériodique de période n " 240, où A " 60I 2 ' 16I 3 ' 15I 2 et B " p120I 2 ' 12I 5 ' t2uq \ p48I 5 ' 8I 2 ' t0uq.

Il est maintenant naturel de se poser la question suivante : combien y a-t-il de canons de Vuza étendus étant donné les cinq paramètres p 1 , n 1 , p 2 , n 2 , n 3 et la factorisation Z n3 " L ' K ?

La première étape consiste à déterminer combien de partitions de Z n3 permettent de distribuer de manière disjointe les n 3 classes de reste dans les facteurs pU 1 ' n 3 n 1 Ṽ j 2 q, pU 2 `n3 n 2 Ṽ h 1 q et W , en faisant attention d'attribuer au moins une classe aux deux premiers facteurs (sinon le canon deviendrait périodique). D'après Théorème 5, nous devons également considérer tous les différents Ṽ j 1 et Ṽ h 2 qui fournissent un canon de Vuza (étendu). Nous voulons déterminer dans combien de manières nous pouvons choisir des sous-ensembles apériodiques d'éléments distincts modulo p 1 in Z p1n2 (resp. in Z p2n1 ) jusqu'à la translation. Par convention, nous fixons le premier élément à 0, et pour chaque autre classe de reste modulo p 1 nous avons n 2 possibilités. Nous devons ignorer les périodiques et finalement nous écartons toutes les translations possibles de p 1 ´1. Alors,

# Ṽ1 " 1 p 2 ÿ u|p2 µ ´p2 u ¯´n pu´1q 1 ´1# Ṽ2 " 1 p 1 ÿ v|p1 µ ´p1 v ¯´n pv´1q 2 
´1¯.

Lorsqu'il n'y a pas de facteur L dans le rythme intérieur A, on considère comme la matrice dans laquelle chaque ligne t i , avec i " 1, . . . , m, représente une partition admissible des classes de reste modulo n 3 , et l'entrée unique dans chaque ligne est le nombre de classes de reste modulo n 3 affectées au i-ième facteur

U 1 ' n 3 n 1 Ṽ j 2 , U 2 `n3 n 2 Ṽ h 1 , ou W.
Dans ce cas, le nombre de rythmes externes possibles B est le suivant :

#B " #K n ÿ 1ďiďm ˆn n 3 ¨p1 ¨# Ṽ1 ˙ti1 ¨ˆn n 3 ¨p2 ¨# Ṽ2 ˙ti2 ¨ˆn n 3 ¨p1 ¨p2 ˙ti3 ¨ˆn 3 t i ˙.
Exemple 3. Montrons combien de rythmes apériodiques B il existe étant donné n 1 " 2, n 2 " 3, n 3 " 5, p 1 " 2, p 2 " 3. Les vecteurs possibles t pour Z n3 sont 10 :

T " tr1, 4, 0s, r4, 1, 0s, r2, 3, 0s, r3, 2, 0s, r1, 2, 2s, r2, 1, 2s, r2, 2, 1s, r1, 1, 3s, r1, 3, 1s, r3, 1, 3su.

Le nombre total de rythmes apériodiques possibles B est donné par :

#B " 1 180 ÿ 1ďiď10 ˆ180 5 ¨2 ¨1˙t i1 ˆ180 5 ¨3 ¨1˙t i2 ˆ180 5 ¨2 ¨3 ˙ti3 ˆ5 t i "
45360 `77760 `85536 `72576 " 281232.

Ce nombre de canons est trois fois supérieur à ce qui était connu dans la littérature et a ensuite été vérifié indépendamment grâce à un algorithme exhaustif (voir Section 4.3). Dans chaque colonne, seulement les rythmes qui peuvent être engendrés par le théorème correspondant, mais pas par les précédents sont comptés. Les chiffres gris correspondent aux rythmes qui peuvent être engendrés également par le choix des paramètres de la ligne précédente. Lorsqu'il n'y a pas de colonne (par exemple, #A pour le théorème 3) tous les rythmes possibles apparaissent déjà dans les colonnes précédentes. Dans chaque colonne, seulement les rythmes qui peuvent être engendrés par le théorème correspondant, mais pas par les précédents sont comptés. Les chiffres gris correspondent aux rythmes qui peuvent être engendrés également par le choix des paramètres de la ligne précédente. Lorsqu'il n'y a pas de colonne (par exemple, #A pour le théorème 3) tous les rythmes possibles apparaissent déjà dans les colonnes précédentes.

Algorithmes pour énumérer les compléments apériodiques

Nous poursuivons en présentant deux nouveaux algorithmes (qui sont le fruit d'un travail commun avec G. Auricchio, L. Ferrarini, S. Gualandi et L. Pernazza) pour la recherche exhaustive de motifs de pavage (apériodiques), l'un en langage de programmation linéaire entier (le CS Algorithm) et l'autre en codage SAT. Nous montrons comment ces modèles peuvent être utilisés pour définir un algorithme itératif qui, étant donné une période n, trouve tous les rythmes qui tuilent avec un rythme donné A. Pour conclure, nous menons plusieurs expériences pour valider l'efficacité temporelle des deux modèles (voir [4]).

Nous définissons deux types de contraintes :

1. les contraintes de pavage qui imposent la condition A ' B " Z n , et 2. les contraintes d'apériodicité qui imposent que le canon B soit apériodique.

Contraintes de pavage

Étant donné la période n et le rythme A, soit a " ra 0 , . . . , a n´1 s ⊺ son vecteur caractéristique, c'est-à-dire a i " 1 si et seulement si i P A. En utilisant le vecteur a nous définissons la matrice circulante T P t0, 1u nˆn du rythme A, c'est-à-dire que chaque colonne de T est le décalage circulaire de la première colonne, qui correspond au vecteur a. Ainsi, la matrice T est égale à

T " » - - - - a 0 a n´1 a n´2 . . . a 1 a 1 a 0 a n´1 . . . a 2 . . . . . . . . . . . . . . . a n´1 a n´2 a n´3 . . . a 0 fi ffi ffi ffi fl .
Nous pouvons utiliser la matrice circulante T pour imposer les conditions de pavage comme suit.

Introduisons un littéral x i pour i " 0, . . . , n ´1, qui représente le vecteur caractéristique du rythme de pavage B, soit x i " 1 si et seulement si i P B. Ensuite, la condition de pavage peut être écrite avec la contrainte linéaire suivante : ÿ iPt0,...,n´1u

T ij x i " 1, @j " 0, . . . , n ´1.

(

) 2 
Notez que l'ensemble de contraintes linéaires (2) impose qu'exactement une variable (littérale) dans l'ensemble tx n`i´j mod n u jPA est égale à 1. Par conséquent, nous encodons cette condition sous la forme d'une contrainte Exactement-un, c'est-à-dire qu'exactement un littéral peut prendre la valeur 1. La contrainte Exactement-un peut être exprimée comme la conjonction des deux contraintes Au-moins-un et Au-plus-un, pour lesquelles il existe un codage SAT standard (par exemple, voir [6,16]). Par conséquent, les contraintes de pavage (2) sont codées avec l'ensemble de clauses suivant dépendant de i " 0, . . . , n ´1 :

ł jPA `xn´pj´iq mod n ˘ľ k,lPA,k‰l `␣x n´pk´iq mod n _ ␣x n´pl´iq mod n ˘. (3) 

Contraintes d'apériodicité

Au vu de Définition 2, s'il existe un b P B tel que pd `bq mod n ‰ b, alors le canon B n'est pas périodique modulo d.

On formule les contraintes d'apériodicité en introduisant des variables auxiliaires y d,i , z d,i , u d,i P t0, 1u pour tout diviseur premier d P D n et pour tout entier i " 0, . . . , d ´1. On pose

u d,i " 1 ô ¨n{d´1 ÿ k"0 x i`kd " n d '_ ¨n{d´1 ÿ k"0 x i`kd " 0 ', (4) 
pour tout d P D n , i " 0, . . . , d ´1, avec la condition

d´1 ÿ i"0 u d,i ď d ´1, @d P D n . (5) 
Comme pour [5], les contraintes (4) peuvent être linéarisées à l'aide de techniques de reformulation standard comme suit :

0 ď n{d ÿ k"0 x i`kd ´n d y d,i ď n d ´1 @d P D n , i " 0, . . . , d ´1, (6) 
0 ď n{d ÿ k"0 p1 ´xi`kd q ´n d z d,i ď n d ´1 @d P D n , i " 0, . . . , d ´1, (7) 
y d,i `zd,i " u d,i @d P D n , i " 0, . . . , d ´1. (8) 
Notez que lorsque u d,i " 1 exactement une des deux alternatives incompatibles dans le côté droit de (4) est vraie, alors que chaque fois que u d,i " 0 les deux contraintes ne sont pas vérifiées. Corrélativement, la contrainte (8) impose que les variables y d,i et z d,i ne puissent pas être égales à 1 en même temps. D'autre part, la contrainte (5) impose qu'au moins une des variables auxiliaires u d,i soit égale à 0. Ensuite, nous encodons les conditions précédentes sous la forme d'une formule SAT. Pour coder la clause Si-et-seulement-si, nous utilisons l'équivalence logique entre C 1 ô C 2 et p␣C 1 _ C 2 q ^pC 1 _ ␣C 2 q. La clause C 1 est donnée directement par le littéral u d,i . La clause C 2 , exprimant le côté droit de (4), c'est-à-dire la contrainte que les variables doivent être toutes vraies ou toutes fausses, peut s'écrire

C 2 " ¨n{d ľ k"0 x i`kd '_ ¨n{d ľ k"0 xi`kd ', @d P D n .
Ensuite, la contrainte linéaire (5) peut être énoncée comme la formule SAT :

␣ `ud,0 ^ud,1 ^¨¨¨^u d,pd´1q ˘" d´1 ł l"0 ūd,l , @d P D n .
Enfin, nous exprimons les contraintes d'apériodicité en utilisant

d´1 ľ i"0 rp␣C 2 _ u d,i q ^pC 2 _ ūd,i qs ^d´1 ł l"0 ūd,l , @d P D n . (9) 
Notez que joindre (2), ( 6)-( 8) avec une fonction objectif constante donne un modèle ILP complet, qui peut être résolu avec un solveur ILP moderne tel que Gurobi pour énumérer tous les possibles solutions. En même temps, en joignant (3) et (9) dans une formule CNF unique, nous obtenons notre codage SAT complet du problème des compléments de pavage apériodiques. 

Résultats de calcul

Tout d'abord, nous comparons les résultats obtenus en utilisant notre modèle ILP et l'encodage SAT avec les temps d'exécution de la Fill-Out Procédure (voir [14]) et de le CS Algorithme (voir [5]). Nous utilisons les canons de périodes 72, 108, 120, 144 et 168 qui ont été entièrement énumérés par Vuza [18], Fripertinger [10], Amiot [2], Kolountzakis et Matolcsi [14]. Tableau 3 montre clairement que les deux nouvelles approches surpassent l'état de l'art, et en particulier, que SAT fournit la meilleure approche de solution.

Les nouveaux algorithmes ont également été utilisés pour étudier certaines classes de canons de périodes n plus grandes (180, 216, 240, 900) qui étaient auparavant insolubles. En particulier, nous avons terminé l'énumération des canons apériodiques de période 180. Il s'est avéré que les canons apériodiques que nous obtenons à la fin de la recherche informatique sont exactement les canons de Vuza étendus de période 180. 

' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q. . . . . . . . . . . . . . . 3.13 n " 216. B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q \ pW ' K 3 q. . . .

Introduction

The link between music and mathematics was discovered in ancient times, a few observations being traditionally attributed to the genius of Pythagoras. He was allegedly the first to guess the existence of numerical relationships between pitches, and to build a musical scale through these. But this relationship was then studied by many scientists, philosophers, musicians such as Ptolemy, Boethius, Zarlino, Galileo Galilei, Gottfried Wilhelm Leibniz, Jean-Philippe Rameau, and Leonhard Euler. At first sight two diametric domains, music and mathematics came out to actually have many things in common. Many connections have been discovered, some of which albeit having nowadays a long tradition, are still offering new problems and ideas to researchers, whether they be music composers or computer scientists. The combined study of the two disciplines can only benefit both parts of the relationship. The help of mathematics is fundamental in the study and understanding of music, as in 1722 the composer Jean-Philippe Rameau wrote: Despite all the experience I may have gained in music from being associated with it for so long, I must confess that it was only with the help of mathematics that my ideas became clearer.

It is equally true that at times, in history, music has anticipated mathematical concepts discovered only later.

In this thesis we deal with Tiling Rhythmic Canons, that are purely rhythmic contrapuntal compositions. Canons in music have a very long tradition; a few cases of tiling rhythmic canons (i.e. canons such that, given a fixed tempo, at every beat exactly one voice is playing) have also been composed. Only in the last century, stemming from the analogous problem of factorising finite abelian groups, aperiodic tiling rhythmic canons have been studied: these are canons that tile a certain interval of time in which each voice (inner voice) plays at an aperiodic sequence of beats, and the sequence of starting beats of every voice (outer voice) is also aperiodic. From the musical point of view the seminal paper was probably the four-parts article written by D.T. Vuza between 1991 and1993 ([29, 31, 30, 32]), while the mathematical counterpart of the problem was studied also before, e.g. by de Bruijn ( [10]), Sands ([28]), etc., and after, e.g. by Coven and 2 CHAPTER 1. INTRODUCTION Meyerowitz ( [9]), Jedrzejewski ([18]), Amiot ([1]), Andreatta ([4]), etc. A thorough theory of the conditions of existence and the structure of aperiodic tiling rhythmic canons has not been established yet; we try to give a contribution to this fascinating field.

In Chapter 2, we present tiling rhythmic canons from a mathematical and algebraic point of view, focusing in particular on their polynomial representation and reporting the fundamental results known in the literature.

In Chapter 3, we deal in particular with aperiodic rhythmic canons, that is canons in which in both rhythms there is no repeated inner structures: neither the inner nor the outer rhythm is obtained as a repetition of a shorter rhythm. From a mathematical point of view, they are the most interesting canons since they constitute a possible approach to solve the Fuglede conjecture on spectral domains.

If one of the sets, say A, is given, it is well-known that the problem of finding a complement B has in general no unique solution. It is very easy to find tiling canons in which at least one of the sets is periodic, i.e. it is built repeating a shorter rhythm.

In Chapter 4 we deal with the design of two algorithms whose purpose is to find the complementary tiling rhythm of a given aperiodic rhythm in a certain period n.

To enumerate all aperiodic tiling canons one has to overcome two main hurdles: on one side, the problem lacks the algebraic structure of other ones, such as those involving ring or group theory; on the other side, the combinatorial size of the domain becomes very soon enormous.

The algorithms are implemented through Integer Linear Programming (ILP) model and SAT Encoding and solve the Aperiodic Tiling Complements Problem presented in Section 4.3 in a faster time than previously known approaches.

Using a modern SAT solver we have been therefore able to compute the complete list of aperiodic tiling complements of some classes of Vuza rhythms for periods n " t180, 420, 900u, which were up to now computationally unreachable.

Chapter 2

Tiling rhythmic canons

Musical and algebraic definition

In this section, we introduce the main notions about rhythmic canons in mathematics. We refer to [START_REF] Hajós | Sur la factorisation des groupes abéliens[END_REF] for a complete and exhaustive discussion of these preliminary results.

A canon is a polyphonic musical form, born in the fourteenth century, typical of classical music. It is a contrapuntal composition, that is, it is formed by the progressive superposition of several voices, performing the same melodic theme, or variations of it according to precise tonal rules. Popular culture is rich in them: consider for example the italian popular nursery song "Fra' Martino" (originally "Frère Jacques" or, in English, "Brother John").

There are two fundamental characteristics:

1. each voice periodically performs the same motif, and 2. these performances are temporally shifted.

In the following we will be interested in the case in which the motif, or pattern, is purely rhythmic, and we can therefore imagine it performed by a percussive instrument, disregarding the duration and pitch of the individual notes.

Musically, a rhythmic canon consists in the performance of the same rhythmic motif by different voices, each with a different starting time. In this work we are interested in a particular family of rhythmic canons: those in which the voices do not overlap but, when played simultaneously, give rise to a regular pulsation, that is, in each time beat there is one and only one active voice. These rhythmic canons are called tiling.

Since we are considering the pattern from an exclusively rhythmic point of view, and each beat occurs only in the presence of a note, we consider a musical writing without rests, obtained by incorporating each rest in the note that precedes it. We therefore arrive at a first mathematical definition.

Definition 1 (rhythm). A rhythm is a subset of a cyclic group R Ă Z n . The order n of the group is the period of the rhythm.
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To complete the model of a tiling rhythmic canon it remains to express mathematically the complementarity of the voices, that is the simultaneous occurring of the following facts:

1. voices do not overlap, and 2. the execution of the canon gives rise to a regular pulse.

Let R be the rhythm of the canon and n its period. Since each voice of the canon performs R translated over time, the i-th voice will perform R `rb i s n . Assuming for the sake of simplicity that the first voice begins its performance at time b 0 " 0, we can express mathematically the different entries with the following sets of remainder classes modulo n:

A 0 " R A 1 " R `rb 1 s n . . . A k " R `rb k s n ,
and all of these are subsets of Z n . The two previous conditions of complementarity are expressed mathematically in the following way:

1. A i X A j " H for every i ‰ j, i, j " 0, . . . , k and

2. A 0 Y A 1 Y ¨¨¨Y A k " Z n .
Example 1. We observe that not all rhythms can verify these conditions: it is not always possible to find an appropriate set of entries B " tb i u k i"1 Ă Z n . An example of this is the samba rhythm S " t0, 2, 5, 7, 9, 12, 14u mod 16, as can be seen directly: let A 0 " S be the first voice. Since the second voice, A 1 " S `rb 1 s 16 , must not intersect A 0 , we necessarily have b 1 " ˘1. Given these two voices of 7 elements each, only 2 elements remain in Z 16 , insufficient for a third voice.

We are lead to give the following definition.

Definition 2 (direct sum). Let pG, `q be an abelian group, let A, B Ă G. Let us define the application

σ : A ˆB Ñ G pa, bq Þ Ñ a `b
We call A `B " Impσq. If it is injective we say that A and B are in direct sum, or, equivalently, that Imσ Ă G is the direct sum of A and B and we write A ' B " Impσq.

Given an element c P A ' B, the unique a P A and b P B such that c " a `b will be the projections of c on A and B respectively. If G " A ' B, we say that G is factored as a direct sum of A and B, and we call G " A ' B factorisation of G.

Clearly, if A and B are in direct sum, then σ : A ˆB Ñ A ' B is bijective, so |A ' B| " |A||B|.

We conventionally denote the elements of the cyclic group Z n with the integers t0, 1, . . . , n ´1u, i.e. with the least non-negative representatives of the remainder classes modulo n: tr0s n , r1s n , . . . , rn ´1s n u.

The direct sum of sets, a priori, has no algebraic structure; however, if subsets A and B are also subgroups of G, the direct sum of A and B thought as sets (see Definition 2) coincides with the usual direct sum between subgroups. We can therefore speak of direct sum without risk of ambiguity. We now have all the tools necessary to define a tiling rhythmic canon.

Definition 3 (tiling rhythmic canon). We have a tiling rhythmic canon of period n with motif (or inner rhythm) A and set of entries (or outer rhythm) B when A, B are subsets of Z n and A ' B " Z n .

We can now already give a necessary condition for a rhythm to be an inner rhythm of a tiling canon: if A ' B is a factorisation of Z n , then |A||B| " n.

We observe that the commutativity of the addition in the cyclic group Z n makes the definition of rhythmic canon symmetrical in the inner and outer rhythms. What is the inner rhythm and what the outer rhythm depends solely on the order of writing, and in fact it is defined as: Definition 4 (dual canon). Given a tiling canon Z n " A ' B, the canon Z " B ' A is called dual canon, or obtained from it by duality.

The Coven-Meyerowitz Theorem

The inner rhythm of a canon is traditionally represented by the tile of its least nonnegative representatives, as we have seen in Section 2.1. We have also assumed that each tile contains at least the element 0. Given these two assumptions, we can naturally transit from a set representation to a polynomial representation using the following definition.

Definition 5 (characteristic polynomial). The characteristic polynomial of

A Ă Z n is Apxq " ÿ aPA x a .
Definition 5 provides a one-to-one correspondence between the subsets of Z n and the set of polynomials with coefficients 0 or 1:

tA Ă Z n u Ø t0, 1urxs A Þ Ñ Apxq ta i : a i " 1u n´1 i"0 Ð n´1 ÿ i"0 a i x i .
Then the rhythms of a canon can be represented by the respective characteristic polynomials.

For a rhythmic pattern to tile, E. Coven and A. Meyerowitz (see [9]) discovered two conditions that are sufficient, and in certain circumstances even necessary. We discuss their findings in full in this section utilizing the polynomial representation of rhythmic canons.

Definition 6 (R A , S A ). Let A Ă Z n and Φ d the d-th cyclotomic polynomial. We define:

1. R A " td P N ˚: Φ d pxq Apxqu and 2. S A " td P R A : d " p α , p prime, α P N ˚u.

Since cyclotomic polynomials will play a fundamental role in this discussion, let us recall the main properties which will be used in the sequel without mention.

Proposition 1. Let p be a prime and n " p α 1 1 p α 2 2 ¨¨¨p αn n , with p i prime @i " 1, . . . , n, then:

1. Φ p pxq " 1 `x `x2 `¨¨¨`x p´1 ; 2. Φ n pxq " Φ p 1 ¨¨¨pn px p α 1 ´1 1 ¨¨¨p αn´1 n q; 3. if n ą 1 is odd, then Φ 2n pxq " Φ n p´xq; 4. Φ n px p q " # Φ pn pxq ðñ p | n Φ n pxqΦ pn pxq ðñ p ∤ n; 5. Φ n p1q " $ ' & ' % 0 ðñ n " 1 p ðñ n " p α 1 otherwise;
6. let m be a positive integer and let k " maxtd | m : pd, nq " 1u, then, taking m " hk, we have:

Φ n px m q " ź d|m,h|d Φ dn pxq.
In particular, if pm, nq " 1 we have: Φ n px m q " ś d|m Φ dn pxq. Actually, Definition 6 can be given also for A Ă Z; let us simplify the exposition of Coven and Meyerowitz slightly, since for any other polynomial congruent with Apxq mod px n ´1q, the subset of the divisors of n in R A , which are the indices of the relative cyclotomic factors, does not change and S A is always composed of divisors of n. Example 2. For example with A " t0, 25, 28, 35, 40, 55, 65, 68, 80, 95, 108, 120, 125, 135, 148, 155, 160, 165, 188, 195u we obtain R A " t2, 8, 25, 50, 200u and S A " t2, 8, 25u. The presence of all the Φ d , with d n, in ApxqBpxq implies that • S A Y S B is the set of all prime powers dividing n, and • R A Y R B is the set of all divisors of n (excluding 1).

We can now state the Coven-Meyerowitz theorem.

Theorem 1 (Coven, Meyerowitz). Let us consider the following conditions on A (and on its characteristic polynomial Apxq). T1) and (T2), then A tiles; 2. if A tiles, then A satisfies (T1); 3. if A tiles and |A| has at most two prime factors, then A satisfies (T2).

(T1): Ap1q " ś p α PS A p. (T2): If p α 1 1 , . . . , p αm m P S A are powers of distinct primes, then p α 1 1 ¨¨¨p αm m P R A . Then, 1. if A satisfies (
Remark 1. In their paper [9] Coven and Meyerowitz give condition (T1) in the following form:

Ap1q " ź

p α PS A Φ p α p1q.
If p is prime, by Proposition 1 Φ p α p1q " p @α ě 1, therefore the two forms are equivalent.

We now introduce some lemmas, as presented in [9] and proved in detail in [START_REF] Hajós | Sur la factorisation des groupes abéliens[END_REF], which we will use in the proof of Theorem 1, but also to prove some results in Chapter 3: the polynomial approach, in fact, provides a few new important properties.

Lemma 1. Let Apxq, Bpxq P Nrxs and n P N ˚. Then

ApxqBpxq " n´1 ÿ k"0 x k mod px n ´1q (T0)
if and only if 1. Apxq, Bpxq P t0, 1u rxs, so they are the characteristic polynomials of rhythms, resp., A and B, and 2. A ' B " tr 1 , . . . , r n u Ă Z, with r i ‰ r j mod n for all i, j P t1, . . . , nu with i ‰ j.

Proof.

ùñ : Let A and B be the sets of exponents that appear, respectively, in Apxq and Bpxq, then ApxqBpxq "

ÿ aPA n a x a ÿ bPB n b x b " ÿ kPA`B n k x k CHAPTER 2.
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where n k " ř a`b"k n a n b . For every k P A `B we consider k P t0, . . . , n ´1u such that k " k mod n, then, reducing ApxqBpxq modulo x n ´1, we have: The classes rr 1 s n , . . . , rr n s n are all distinct, therefore there exist k 0 , . . . , k n´1 P Z such that:

ÿ kPA`B n k x k " 1 `x `x2 `¨¨¨`x n´1 , therefore, necessarily, (a) n k " 1 for each k P A `B, (b) n " |A `B| " |A `B|.
0 " r i 0 ´k0 n 1 " r i 1 ´k1 n . . . n ´1 " r i n´1 ´kn´1 n and therefore ApxqBpxq " x k 0 n `x1`k 1 n `¨¨¨`x n´1`k n´1 n " n´1 ÿ k"0
x k mod px n ´1q .

Lemma 2. Let n P N ˚and let Apxq and Bpxq be the characteristic polynomials of rhythms, resp., A and B. The following statements are equivalent:

1. ApxqBpxq " ř n´1 k"0 x k mod px n ´1q; 2. (a) n " A p1q Bp1q and (b) for every t n, with t ą 1, we have that Φ t pxq ApxqBpxq.

Proof.
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1 ùñ 2: Condition 1 implies that there exists a polynomial qpxq P Zrxs such that

ApxqBpxq " n´1 ÿ k"0 x k `qpxqpx n ´1q. Then (a) Ap1qBp1q " n and (b) since x n ´1 " px ´1q ř n´1 k"0 x k " Φ 1 pxq ś tn tą1
Φ t pxq, we have that

ApxqBpxq " p1 `qpxqpx ´1qq n´1 ÿ k"0 x k ,
and therefore, for every t n such that t ą 1, we have that Φ t pxq ApxqBpxq.

2 ùñ 1: Condition 2 implies that ApxqBpxq " qpxq ř n´1 k"0 x k . Moreover, Ap1qBp1q " n, so qp1q " 1. Then, setting qpxq " ř m i"0 α i x i , we have that

ApxqBpxq " ˜m ÿ i"0 α i x i ¸˜n´1 ÿ k"0 x k " ˜m ÿ i"0 α i ¸˜n´1 ÿ k"0 x k ¸mod px n ´1q " qp1q n´1 ÿ k"0 x k mod px n ´1q " n´1 ÿ k"0
x k mod px n ´1q,

since x i ř n´1 k"0 x k " ř n´1 k"0 x k mod px n ´1q. Remark 2. By Lemma 1, A ' B " Z n if and only if ApxqBpxq " n´1 ÿ k"0 x k mod px n ´1q.
Moreover, we infer that, for any t n, with t ą 1, Φ t pxq Apxq or Φ t pxq Bpxq using Lemma 2 and the fact that the cyclotomic polynomials are irreducible in Zrxs.

Now we can prove part 1 of Theorem 1.
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Proof of Theorem 1 1. : Let us define a polynomial Bpxq as

Bpxq " ź

q β PS Φ q β ´xtpq β q ¯,
where S " ␣ q β : q β lcmpS A q ( zS A and t `qβ ˘" maxtd : d lcmpS A q and gcdpd, q β q " 1u. By Proposition 1, we have that Φ q β ´xtpq β q ¯" Φ q ´xtpq β qq β´1 ¯P t0, 1urxs.

Hence Bpxq P Nrxs.

Let s P N ˚zt1u satisfy s Ap1qBp1q and consider its prime factorisation s "

p α 1 1 ¨¨¨p α k k .
We have 2 possibilities: 1. p α i i P S A @i " 1, . . . , k; by (T2), Φ s pxq Apxq;

2. p α i i R S A for some i " 1, . . . , k; Φ p α i i ´xtpp α i i q ¯ Bpxq, s{p α i i is a factor of t pp α i i q, and, by Proposition 1, Φ s pxq Φ p α i i ´xtpp α i i q ¯.
Then, by Lemma 2, condition (T0) of Lemma 1 holds, that is

ApxqBpxq " n´1 ÿ k"0 x k mod px n ´1q;
therefore Bpxq is the polynomial associated with the set B of its exponents, and A ' B is a complete set of representatives modulo Ap1qBp1q; in particular, A tiles.

Part (2) of Theorem 1 follows from the following lemma.

Lemma 3. Let Apxq, Bpxq P t0, 1urxs, n " Ap1qBp1q, and S " tr γ : r γ nu. If @t P N ˚zt1u such that t n we have that Φ t pxq ApxqBpxq, then 1. Ap1q " ś p α PS A Φ p α p1q and Bp1q "

ś q β PS B Φ q β p1q; 2. S " S A \ S B .
Proof. Since for every t n, with t ą 1, we have that

Φ t pxq ApxqBpxq, then S Ă S A Y S B . Clearly Ap1q ě ś p α PS A Φ p α p1q and Bp1q ě ś q β PS B Φ q β p1q. Thus n " Ap1qBp1q ě ź p α PS A Φ p α p1q ź q β PS B Φ q β p1q ě ź r γ PS Φ r γ p1q " n.
The last equality follows from Proposition 1. Hence,

1. Ap1qBp1q " ś p α PS A Φ p α p1q ś q β PS B Φ q β p1q, which implies that Ap1q " ź p α PS A Φ p α p1q and Bp1q " ź q β PS B Φ q β p1q; 2.2. THE COVEN-MEYEROWITZ THEOREM 11 2. ś p α PS A Φ p α p1q ś q β PS B Φ q β p1q " ś r γ PS Φ r γ p1q and therefore S A Y S B Ă S and S A X S B " H.
We can now complete the Proof of Theorem 1.2. Since A tiles, by Lemma 1, there exists B Ă Z n such that A and B verify condition (T0) in Lemma 1; therefore, by Remark 2, Apxq and Bpxq verify the hypotheses of Lemma 3. In particular A verifies (T1) condition.

Example 3. We observe that the converse of Theorem 1.2 does not hold, that is, condition (T1) is not sufficient for A to tile. For example, let us consider the rhythm A " t0, 1, 3, 4, 6, 7u.

A clearly does not tile and its characteristic polynomial is

Apxq " 1 `x `x3 `x4 `x6 `x7 " p1 `xqp1 `x3 `x6 q " Φ 2 pxqΦ 9 pxq. S A " t2, 3 2 u, then A verifies condition (T1): Ap1q " 6 " 2 ¨3 " ź pPS A p.
For the proof of the third part of the Coven-Meyerowitz theorem, see [9]. The tiling property is invariant under affine transformations.

Lemma 4. Let A Ă N be finite. For every t P Z and k P N we have:

A tiles ðñ kA `t tiles.

Proof. Because of the translation invariance of the tiling property, it is sufficient to show that A tiles ðñ kA tiles.

ùñ Since A tiles, there exists C Ă Z such that A ' C " Z is a tiling. We therefore have kA ' kC " kZ, and consequently the tiling

Z " t0, . . . , k ´1u ' kZ " t0, . . . , k ´1u ' kA ' kC " kA ' pt0, . . . k ´1u ' kCq.
ðù Since kA tiles, there exists C Ă Z such that kA ' C " Z. Setting C 0 " tc P C : c " 0 mod ku; we have that kA ' C 0 " kZ.

Ď It is clear;

Ě For every kz P kZ Ă Z, kz " ka `c, consequently c P C 0 .
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Then A ' C 0 {k " Z is a tiling.

The next two lemmas establish that also conditions (T1) and (T2) are invariant with respect to affine transformations. Lemma 5. Let A Ă N be finite and n P N, let us set A 1 " A `n. We have that:

1. Apxq satisfies (T1) if and only if A 1 pxq satisfies (T1), 2. Apxq satisfies (T2) if and only if A 1 pxq satisfies (T2).

Proof. It suffices to observe that |A| " |A 1 | and A 1 pxq " x n Apxq, therefore for every cyclotomic polynomial Φ d pxq we have that Φ d pxq Apxq ðñ Φ d pxq A 1 pxq. Lemma 6. Let A Ă N and k P N. Let us set  " kA, we have:

1. A satisfies (T1) ðñ Â satisfies (T1), 2. A satisfies (T2) ðñ Â satisfies (T2).
Proof. Let us start with one remark. Let k " p prime, then we are going to prove that S Â " tp α`1 : p α P S A u Y tq β P S A : q prime ‰ pu.

Âpxq " Apx k q, therefore:

R Â " pR A Y tn P R A : p ∤ nu.
In particular S Â " tr γ P R Â : r primeu and 1. r γ P pR A ðñ r " p and r γ´1 P R A 2. r γ P tn P R A : p ∤ nu ðñ r ‰ p and r γ P R A hence the thesis.

Using the previous remark we prove separately the two statements of our theorem.

1. We divide the proof of this first statement into cases: (a) If k " p prime, the thesis follows from the remark. (b) If k " p α , by iterating the remark we have that S Â " tp α`γ : p α P S A u Y tq β P S A : q prime ‰ pu, and the thesis follows, as in the previous case.
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13 (c) Let k " p α 1 1 p αn n we prove that S Â " n ď i"1 tp α`γ i i : p α P S A u Y tq β P S A : q prime ‰ p i @iu.
In fact just consider

S A " n ď i"1 tp γ i i P S A i u Y tq β P S A : q prime ‰ p i @iu.
and iterate the previous remark, since at each step the multiplication by the first p i modifies the set obtained in the previous step only the exponent of p i , increasing it by 1. Again the thesis follows.

2. Let us consider the case k " p prime and define

n 1 " # pn if p | n n if p ∤ n
We have:

n P R A ðñ n 1 P R pA .
Let p a 1 1 p a 2 2 ¨¨¨p a k k P N be powers of distinct primes. By remark we have:

p a i i P S A ðñ pp a i i q 1 P S pA .
Then, since pp a 1 1 p a 2 2 ¨¨¨p a k k q 1 " pp a 1 1 q 1 pp a 2 2 q 1 ¨¨¨pp a k k q 1 we have the thesis. The general case follows by iterating the previous case for each first p | k.

We now lay the foundations for the next chapter, introducing the definition of periodic sets.

Definition 7 (periodic set). Let pG, `q be an abelian group, 0 P G the identity. A set A Ă G is periodic if and only if there exists an element g P G, g ‰ 0, such that g `A " A. In this case, A is also called periodic module g P G.

Definition 8 (basic form). The basic form of A Ă Z n is the smallest (for reverse lexicographic order) circular permutation of the set of consecutive intervals in A, ∆pAq " pa 2 ´a1 , a 3 ´a2 , . . . , a k ´ak´1 , a 1 ´ak q where 0 ď a 1 ă a 2 ă . . . a k ă n are the elements of A, considered as numbers in 0, n´1 .

Chapter 3

Vuza canons

Aperiodic factorisations

The definition of a tiling rhythmic canon as a factorization of a finite cyclic group with two of its subsets was given in Chapter 2. Effectively, the study of these musical structures comes under the broader subject of factorisations of an abelian group with n subsets. As pointed out in [START_REF] Hajós | Sur la factorisation des groupes abéliens[END_REF], when the Hungarian mathematician G. Hajós inquired in 1950 ( [15]) if we can derive that A or B must be periodic given a factorisation G " A ' B of an abelian group with two of its subsets, this topic was brought to the attention of the mathematical community. He answered the question in the negative in the same article.

Without being aware of Hajós' work, Nicolaas Goovert de Bruijn, a Dutch mathematician, posed himself the identical question in 1950 and conjectured a positive solution (see [10]). Despite this first mistake, de Bruijn was later among the scholars who made a decisive contribution to the characterisation of the groups for which the answer to Hajós' question is positive.

Several examples of groups for which the answer is affirmative had been indeed exhibited since 1941 in other contexts and up to 1957 others appeared, in articles by Hajós ([14], [15], [16]), Rédei ([25], [START_REF] Rédei | Ein Beitrag zum Problem der Faktorisation von endlichen abelschen Gruppen[END_REF]), de Bruijn ( [8], [10]), and Sands ([27], [START_REF] Sands | On the factorisation of finite abelian groups. iii[END_REF]), and the aforementioned Hajós' result on the groups for which it is negative was generalised, arriving at a complete characterisation in both cases.

Subsequently, after a long hiatus, between 1991 and 1993 a long paper in four parts by the Romanian mathematician Dan Tudor Vuza (see [START_REF] Vuza | Supplementary sets and regular complementary unending canons (part one)[END_REF], [START_REF] Vuza | Supplementary sets and regular complementary unending canons (part three)[END_REF], [START_REF] Vuza | Supplementary sets and regular complementary unending canons (part two)[END_REF], and [START_REF] Vuza | Supplementary sets and regular complementary unending canons (part four)[END_REF]) was published, dedicated to the formalisation of a particular class of rhythmic canons: the RCCMCs (Regular Complementary Canons of Maximal Category). The nature of Vuza's work is exceptional since he, completely ignoring the results of Hajós, Rédei, de Bruijn, and Sands, proves many of the theorems contained in the cited articles.

We will take a quick look at the findings immediately. Let us begin with some definitions.

Definition 9 (k-factorisation). Let G be an abelian group

. A k-factorisation of G is a direct sum factorisation of G with k subsets of G. A k-factorisation G " A 1 'A 2 '¨¨¨'A k CHAPTER 3. VUZA CANONS
is said to be periodic if there is an index i P t1, 2, . . . , ku such that A i is periodic. A non-periodic k-factorisation is called aperiodic.

Definition 10 (k-Hajós group). Let G be an abelian group. G is k-Hajós if all its k-factorisations are periodic. G is non k-Hajós if it is not a k-Hajós group, that is, if aperiodic k-factorisations of G exist. For k " 2, we will simply call them Hajós and non-Hajós groups.

Definition 11 (aperiodic canon). An aperiodic canon is an aperiodic 2-factorisation of a cyclic group. The order of the cyclic group is the period of the canon.

We observe that the aperiodic canons exist only for non-Hajós cyclic groups. We also note that an aperiodic canon is a rhythmic canon Z n " A ' B in which both the inner rhythm A and the outer rhythm B are aperiodic.

The following proposition establishes a polynomial criterion for the periodicity of a given rhythm.

Proposition 2. A set A Ă Z n is periodic modulo k | n, if and only if x n ´1 x k ´1 | Apxq.
If we indicate the set td P N | d nu by div pnq, Proposition 2 can be restated as:

Proposition 3. A set A Ă Z N is aperiodic if and only if for all k n, k ‰ N , we have x n ´1 x k ´1 ffl Apxq,
that is, if and only if for all k P div pnq z tnu there exists d P div pnq zdivpkq such that Φ d pxq ffl Apxq.

Proof. By definition, A Ă Z n is periodic modulo k if and only if k `A " A, and we have the following chain of double implications:

k `A " A ðñ x k Apxq " Apxq mod px n ´1q ðñ ´xk ´1¯A pxq " 0 mod px n ´1q ðñ x n ´1 | ´xk ´1¯A pxq ðñ x n ´1 x k ´1 ˇˇApxq Theorem 2 (Tijdeman). If A'B " Z n is a rhythmic canon, then also kA'B " Z n @k P N ˚such that pk, |A|q = 1.
For the proof, we need the following.
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Lemma 7. Let A, B Ă N be finite subsets, and Apxq, Bpxq be the associated polynomials, n " A p1q B p1q, and p be a prime such that p ∤ Ap1q. If ApxqBpxq " ∆ n pxq mod px n ´1q, then Apx p qBpxq " ∆ n pxq mod px n ´1q .

Proof. We consider the congruences:

A px p q Bpxq " pApxqq p Bpxq mod p " pApxqq p´1 ApxqBpxq mod p " pApxqq p´1 ∆ n pxq mod px n ´1, pq

" pAp1qq p´1 ∆ n pxq mod px n ´1, pq " ∆ n pxq mod px n ´1, pq .
Now let rpxq " ř n´1 i"0 r i x i be be the remainder of the division of A px p q Bpxq by x n ´1; for what has been said rpxq " ∆ n pxq mod p, i.e. r i " 1 mod p, and being r p1q " A p1q B p1q " n we have r i " 1 for each i " 0, . . . , n ´1, that is the thesis.

Proof of Theorem 2. By hypothesis, ApxqBpxq " ∆ n pxq mod px n ´1q. First of all we observe that for every h P N, phAq pxq " A `xh ˘, in particular phAq p1q " A p1q. Considering the factorisation of k, k " p α 1 1 p α 2 2 . . . p αm m , for each i " 1, . . . , m, pp i , |A|q " 1. We can therefore iterate the application of Lemma 7 and we obtain pkAq pxqBpxq " ∆ n pxq mod px n ´1q , that is pkAq ' B " Z n .

Vuza canons

An exhaustive construction method for aperiodic tiling rhythmic canons is not known to date; the first method to find some of them was provided by the following result (see [15] by Hajós, Theorem 1 in [10] by de Bruijn, and Proposition 2.2 in [START_REF] Vuza | Supplementary sets and regular complementary unending canons (part one)[END_REF] by Vuza).

Theorem 3 (Hajós, de Bruijn, Vuza). Let n " p 1 n 1 p 2 n 2 n 3 P N such that 1. p 1 , n 1 , p 2 , n 2 , n 3 ą 1 and 2. gcd pp 1 n 1 , p 2 n 2 q " 1.
Then Z n admits an aperiodic tiling rhythmic canon.

We give the proof of this theorem showing how to construct an aperiodic tiling rhythmic canon only for particular choices of factors A and B of Z n , which will be useful in the sequel, using the elegant factorisation suggested by Franck Jedrzejewski ([18]).
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Theorem 4 (Hajós, de Bruijn, Vuza, Jedrzejewski). In the hypotheses of Theorem 3, an example of tiling canon of Z n with two aperiodic subsets is given by the following construction. Indicating with I k the set t0, 1, . . . , k ´1u, let us call:

A 1 " n 3 p 1 n 1 I n 2 U 1 " n 3 p 1 n 1 n 2 I p 2 V 1 " n 3 n 2 I p 2 K 1 " t0u A 2 " n 3 p 2 n 2 I n 1 U 2 " n 3 p 2 n 2 n 1 I p 1 V 2 " n 3 n 1 I p 1 K 2 " t1, 2, . . . , n 3 ´1u .

Then taking

A " A 1 ' A 2 B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q
we have the aperiodic rhythmic canon Z n " A ' B.

Proof. First we list the general results that we will apply.

1. @k n, I k is a complete set of representatives of Z n {kZ n , that is Z n " I k ' kZ n , (which, in fact, is the trivial canon). 2. @k P Z ˚, if Z n " S ' T , then kZ n " kS ' kT . 3. If Z n " S ' T then Z n " kS ' T for every k such that pk, |S|q " 1.
The first two results are trivial, the third is Theorem 2.

So let n " p 1 p 2 n 1 n 2 n 3 as in the statement. We look for a factorisation Z n " A ' B with A and B aperiodic. Let us start with the trivial canon:

Z n " I k ' kZ n .
First of all, applying 3, we have the following factorisations of Z n :

1 : Z n " I n 1 ' n 1 Z n " p 2 n 2 I n 1 ' n 1 Z n 2 : Z n " I n 2 ' n 2 Z n " p 1 n 1 I n 2 ' n 2 Z n
Then, applying 1 and 2 alternately, we have the following factorisations of n 3 Z n :

1 : n 3 Z n " n 3 p 2 n 2 I n 1 ' n 3 n 1 Z n " n 3 p 2 n 2 I n 1 ' n 3 n 1 I p 1 ' n 3 n 1 p 1 Z n " n 3 p 2 n 2 I n 1 ' n 3 n 1 I p 1 ' n 3 n 1 p 1 I n 2 ' n 3 n 1 p 1 n 2 Z n ; 2 : n 3 Z n " n 3 p 1 n 1 I n 2 ' n 3 n 2 Z n " n 3 p 1 n 1 I n 2 ' n 3 n 2 I p 2 ' n 3 n 2 p 2 Z n " n 3 p 1 n 1 I n 2 ' n 3 n 2 I p 2 ' n 3 n 2 p 2 I n 1 ' n 3 n 2 p 2 n 1 Z n .
Then the two factorisations become:

1. n 3 Z n " A ' pU 1 ' V 2 q, and 2. n 3 Z n " A ' pU 2 ' V 1 q.
Going back to the initial factorisation, we obtain

Z n " I n 3 ' n 3 Z n " n 3 Z n \ t1, . . . , n 3 ´1u ' n 3 Z n
where \ indicates the disjoint union; we use the first and the second factorisations for the first and the second instance of n 3 Z n , respectively, that is:

Z n " A ' pU 1 ' V 2 q \ t1, . . . , n 3 ´1u ' A ' pU 2 ' V 1 q " A ' ppU 1 ' V 2 q \ t1, . . . , n 3 ´1u ' pU 2 ' V 1 qq .
Then taking

B " pU 1 ' V 2 q \ t1, . . . , n 3 ´1u ' pU 2 ' V 1 q,
we have the canon Z n " A ' B.

We still need to prove that A and B are aperiodic. Let us start with A:

Apxq " ∆ n 1 px n 3 p 2 n 2 q ∆ n 2 px n 3 p 1 n 1 q " x n 3 p 2 n 2 n 1 ´1 x n 3 p 2 n 2 ´1 x n 3 p 1 n 1 n 2 ´1
x n 3 p 1 n 1 ´1 .

We use Proposition 3: we fix any h P div pnq z tnu and look for a d P div pnq zdiv phq such that Φ d pxq ∤ Apxq.

We have the following cases:

1. n 3 p 2 n 2 ∤ h and Φ n 3 p 2 n 2 pxq ∤ Apxq; 2. n 3 p 1 n 1 ∤ h and Φ n 3 p 1 n 1 pxq ∤ Apxq.
There are no other possibilities, in fact, if absurdly we had n 3 p 2 n 2 | h and n 3 p 1 n 1 | h, then h " αn 3 p 2 n 2 " βn 3 p 1 n 1 and therefore αp 2 n 2 " βp 1 n 1 . Since pp 1 n 1 , p 2 n 2 q " 1, it would follow that α " p 1 n 1 and β " p 2 n 2 and therefore h " n, which is absurd.

Let us move on to B:

Bpxq " pU 1 ' V 2 q pxq `px `x2 `¨¨¨`x n 3 ´1qpU 2 ' V 1 qpxq " ∆ p 1 px n 3 n 1 q ∆ p 2 ´x n p 2 ¯`x∆ n 3 ´1pxq∆ p 2 px n 3 n 2 q ∆ p 1 ´x n p 1 " x n 3 p 1 n 1 ´1 x n 3 n 1 ´1 x n ´1 x n p 2 ´1 `x∆ n 3 ´1pxq x n 3 p 2 n 2 ´1 x n 3 n 2 ´1 x n ´1 x n p 1

´1

As we did for A, given any h P div pnq z tnu, we look for a d P div pnq zdivphq such that Φ d pxq ∤ Bpxq. Let us consider the cases:

1. n 3 p 2 n 2 n 1 ∤ h and Φ n 3 p 2 n 2 n 1 pxq ∤ Bpxq since Φ n 3 p 2 n 2 n 1 pxq | x n ´1 x n p 2 ´1 but Φ n 3 p 2 n 2 n 1 pxq ∤ x∆ n 3 ´1pxq x n 3 p 2 n 2 ´1 x n 3 n 2 ´1 x n ´1 x n p 1 ´1 ; 20 CHAPTER 3. VUZA CANONS 2. n 3 p 1 n 1 n 2 ∤ h and Φ n 3 p 1 n 1 n 2 pxq | Bpxq (

symmetrically to the previous case).

There are no other possibilities, in fact, if absurdly we had n 3 p 2 n 2 n 1 | h and n 3 p 1 n 1 n 2 | h, then h " αn 3 p 2 n 2 n 1 " βn 3 p 1 n 1 n 2 and therefore αp 2 " βp 1 . Since pp 1 , p 2 q " 1, it would follow α " p 1 and β " p 2 and so h " n, which is absurd.

Remark 3. From now on, given p 1 , n 1 , p 2 , n 2 , and n 3 , we will denote by

A 1 , A 2 , U 1 , U 2 , V 1
, and V 2 the sets so called in Example 4.

We therefore know that there exist aperiodic tiling rhythmic canons of period n " p 1 n 1 p 2 n 2 n 3 , as in the hypothesis of Vuza's Theorem 3. The following result explicitly establishes which are the periods not included in the previous theorem.

Theorem 5 (Fidanza). Let • V " tn P N : n " p 1 n 1 p 2 n 2 n 3 with pp 1 n 1 , p 2 n 2 q " 1 and p 1 , p 2 , n 1 , n 2 , n 3 ą 1u, the set of natural numbers which satisfy the hypotheses of Vuza's theorem, and

• H " ␣ p α , p α q, p 2 q 2 , pqr, p 2 qr, pqrs : α P N, p, q, r, s distinct primes

( , then N ˚" V \ H.
Proof. We set V A " N ˚zV and H A " N ˚zH: it is sufficient to prove the two inclusions

H Ă V A and H A Ă V.
V Ă H A : There are p 1 , p 2 , n 1 , n 2 P N ˚@x P V with pp 1 n 1 , p 2 n 2 q " 1 and p 1 n 1 p 2 n 2 | x, and this property is not verified by the elements of H of type p α and p α q, with p, q primes and α P N. Moreover, there are p 1 , p 2 , n 1 , n 2 , n 3 P N ˚@x P V such that p 1 n 1 p 2 n 2 n 3 | x, and this property is not verified by the remaining elements of H, which are those of type p 2 q 2 , pqr, p 2 qr and pqrs, with p, q, r, s primes.

H A Ă V : Let x " p α 1 1 p α 2 2 .

. . p α h

h P H A , with p 1 , p 2 , . . . , p h distinct primes. We consider the different cases, according to the number h ě 1 of the primes that divide x. h " 1 : x " p α 1 1 P H so this case is impossible. h " 2 : We have α 1 ě 3 and α 2 ě 2 (or vice versa), so it is sufficient to consider

pp 1 n 1 , p 2 n 2 , n 3 q " ´p2 1 , p α 2 2 , p α 1 ´2 1 ¯.
h " 3 : Up to a permutation of the factors, we have two cases:

* α 1 " 2, α 2 ě 2 and α 3 ě 1, so it is sufficient to consider pp 1 n 1 , p 2 n 2 , n 3 q " `p2 1 , p α 2 2 , p α 3 3 ˘; * α 1 ě 3, α 2 ě 1 and α 3 ě 1, so it is sufficient to consider pp 1 n 1 , p 2 n 2 , n 3 q " ´p2 1 , p α 2 2 p α 3 3 , p α 1 ´2 1 ¯.
h " 4 : We have α 1 `α2 `α3 `α4 ě 5 and we assume α 1 ě 2, so it is enough to

consider pp 1 n 1 , p 2 n 2 , n 3 q " pp α 1 1 , p α 2 2 p α 3 3 , p α 4 4 q. h ą 4 : Just consider pp 1 n 1 , p 2 n 2 , n 3 q " pp α 1 1 p α 2 2 , p α 3 3 p α 4 4 , p α 5 5 q.
We observe that all the examples of rhythmic canons encountered so far are not aperiodic, since their period is too small: the minimum period necessary for an aperiodic tiling rhythmic canon is 72, for which pp 1 , n 1 , p 2 , n 2 , n 3 q " p2, 2, 3, 3, 2q.

Example 4. Theorem 4 gives the following factorisation of Z 72 :

A " n 3 p 1 n 1 I n 2 ' n 3 p 2 n 2 I n 1 " 18 t0, 1u ' 8 t0, 1, 2u
" t0, 8, 16, 18, 26, 34u We observe that the aperiodic factorisation constructed in Theorem 4 is symmetric with respect to p 1 n 1 and p 2 n 2 , therefore as outer rhythm we can also consider The aperiodic canons with periods 72, 108, 120, 144, and 168 have been completely enumerated by Vuza [START_REF] Vuza | Supplementary sets and regular complementary unending canons (part one)[END_REF], Fripertinger [12], Amiot [2], Kolountzakis and Matolcsi [21].

B " ppU 1 ' V 2 q \ t1, . . . , n 3 ´1uq ' pU 2 ' V 1 q " pn 3 p 1 n 1 n 2 I p 2 ' n 3 n 1 I p 1 q \ t1, . . . , n 3 ´1u ' n 3 n 2 I p 2 ' n 3 n 1 p 2 n 2 Z n " 4 
B 1 " pU 2 ' V 1 q \ t1, . . . , n 3 ´1u ' pU 1 ' V 2 q " n 3 n 2 I p 2 ' n 3 n 1 p 2 n 2 Z n \ t1, . . . , n 3 ´1u ' n 3 n 1 I p 1 n 3 n 2 p 1 n 1 Z n " 6 
Many other ways of constructing aperiodic tiling canons are possible, see for example de Bruijn ( [10]), Vuza ([29]), Fidanza ([11]), and Jedrzejewski ([18]). These methods fall into a category treated by F. Jedrzejewski (Theorem 14 in [19]).
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In the next section, after briefly showing the two best known graphic representations used for tiling rhythmic canons, we introduce a new diagram representing the lattice of the cyclotomic factor indices of the characteristic polynomials of the canon.

Lattice representations

There are several ways to represent graphically a rhythmic canon. The main ones are the circular representation and the grid representation.

Figure 3.1a shows the circular representation (also called Krenek diagram) of Z n with n points equidistant along a circumference, starting from the pole and proceeding clockwise. A rhythmic pattern is represented by the polygon in such circumference whose vertices are the elements of the pattern, in our case, t0, 1, 5u. The other voices are added by rotating the pattern as indicated by the elements of the outer rhythm.

In Figure 3.1b, the inner voice is represented with a sequence of black boxes in a row of length n. The outer voice is represented by the starting black box in each row. This is the grid representation, also called TUBS (Time Unit Box System).

Let us now introduce a new type of representation of canons: a lattice representation through a Hasse diagram. In our context, we will call lattice representation of a rhythm the graphical representation of the divisors of the period of the canon, which can be considered a poset under the divisibility relation. For this poset, any edge in the diagram is such that the number below divides the number immediately above. In this diagram, we highlight the vertices representing the indices of the cyclotomic polynomials dividing the characteristic polynomial of the rhythm and the edges connecting them.

The lattice representation of a rhythm can tell us a lot about its structure. As a notable example, one can easily see that a rhythm is periodic if and only if its lattice representation contains a whole hyperplane (parallel to all axes but one) passing through the point corresponding to n. This is a very simple geometric (graphical) criterion that will prove valuable later. We have chosen to represent with the Hasse diagrams the rhythms of the aperiodic tiling rhythmic canons enumerated with periods ď 168 whose sets R A do not include the index n. 

n " 144. A 1 ' A 2 ' 2A 3 " 36I 2 ' 16I 3 ' 2A 3 .

Extended Vuza canons

We now give a first result that refines Jedrzejewski's one, lifting the hypothesis that p 1 and p 2 are prime and proving that B is aperiodic if n 3 satisfies a simple arithmetic constraint (see [START_REF] Lanzarotto | Extended vuza canons[END_REF]). Theorem 6. Let n " p 1 n 1 p 2 n 2 n 3 P N such that:

1. p 1 , n 1 , p 2 , n 2 , n 3 ą 1; 2. gcd pp 1 n 1 , p 2 n 2 q " 1;
3. if n 3 is not prime, there is no prime q such that q n 3 , but q ffl p 1 n 1 p 2 n 2 .

Let H be the subgroup H " n 3 I p 1 n 1 p 2 n 2 of Z n and let K be a complete set of cosets representatives for Z n modulo H such that K is the disjoint union K " K 1 \ K 2 . Then the pair pA, Bq defined by

A " A 1 ' A 2 B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q
is an aperiodic tiling rhythmic canon of Z n .

Proof. The proof that A ' B " Z n and that the set A is aperiodic is the same as in Vuza (Proposition 2.2 in [START_REF] Vuza | Supplementary sets and regular complementary unending canons (part one)[END_REF]). We are left to prove that B is aperiodic. Consider the characteristic polynomial Bpxq:

Bpxq "

x n 3 p 1 n 1 ´1

x n 3 n 1 ´1

x n ´1

x n 3 p 1 n 1 n 2 ´1 K 1 pxq `xn 3 p 2 n 2 ´1
x n 3 n 2 ´1

x n ´1

x n 3 p 2 n 2 n 1 ´1 K 2 pxq.

Given any h P div pnq z tnu, we look for a d P div pnq zdiv phq such that Φ d pxq ffl Bpxq.

Let us consider the following cases: 

Figure 3.12: n " 216. B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q. 1 2 3 
(b) U 2 ' V 1 " 72I 3 ' 12I 2
Lattice representation of an aperiodic tiling rhythmic canon with period n " 216, where A " 54I2 ' 24I3 and B " p108I2 ' 18I3 ' t21, 43, 122, 167uq \ p72I3 ' 12I2 ' t0, 106uq.

1. if n 3 p 2 n 2 n 1 ffl h, then Φ n 3 p 2 n 2 n 1 pxq ffl Bpxq since Φ n 3 p 2 n 2 n 1 pxq x n ´1 x n 3 p 1 n 1 n 2 ´1 but Φ n 3 p 2 n 2 n 1 pxq ffl x n 3 p 2 n 2 ´1
x n 3 n 2 ´1

x n ´1

x n 3 p 2 n 2 n 1 ´1 K 2 pxq. In particular, Φ n 3 p 2 n 2 n 1 pxq ffl K 2 pxq by Lemma 4 of Rédei's paper ( [START_REF] Rédei | Ein Beitrag zum Problem der Faktorisation von endlichen abelschen Gruppen[END_REF]).

if n

3 p 1 n 1 n 2 ffl h, then Φ n 3 p 1 n 1 n 2 pxq Bpxq (

symmetrically to the previous case).

There are no other possibilities: in fact, if we had n 3 p 2 n 2 n 1 h and n 3 p 1 n 1 n 2 h, then h " αn 3 p 2 n 2 n 1 " βn 3 p 1 n 1 n 2 and therefore αp 2 " βp 1 . Since gcd pp 1 , p 2 q " 1, it would follow that α " p 1 and β " p 2 and so h " n, which is a contradiction. Example 5. Consider n " 216; let p 1 " 3, n 1 " 3, p 2 " 2, n 2 " 2, and n 3 " 6. Theorem 6 ensures that, defining

A " 54I 2 ' 24I 3 B " p108I 2 ' 18I 3 ' t21, 43, 122, 167uq \ p72I 3 ' 12I 2 ' t0, 106uq ,
A ' B " Z 216 and pA, Bq is an aperiodic tiling rhythmic canon.

In a generalisation of Theorem 6, rhythm B is the disjoint union of three sets, one being periodic both modulo n{p 1 and modulo n{p 2 . Theorem 7. Let n " p 1 n 1 p 2 n 2 n 3 P N such that:

1. p 1 , n 1 , p 2 , n 2 , n 3 ą 1; 2. gcd pp 1 n 1 , p 2 n 2 q " 1;
3. if n 3 is not prime, there is no prime q such that q n 3 , but q ffl p 1 n 1 p 2 n 2 .
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Let H be the subgroup H " n 3 I p 1 n 1 p 2 n 2 of Z n , K be a complete set of cosets representatives for Z n modulo H such that K is the disjoint union K " K 1 \ K 2 \ K 3 with K 1 , K 2 ‰ H, and W " n 3 n 1 n 2 I p 1 p 2 . Then the pair pA, Bq defined by

A " A 1 ' A 2 B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q \ pW ' K 3 q
is an aperiodic tiling rhythmic canon of Z n .

Proof. The only case we need to consider is K 3 ‰ H (notice that this is possible only if n 3 ą 2). Moreover, the case where n 3 is prime is very simple and we will omit its proof.

We already know, from Theorem 3 that A is aperiodic; B is aperiodic too, since

Bpxq " U 1 pxqV 2 pxqK 1 pxq `U2 pxqV 1 pxqK 2 pxq `W pxqK 3 pxq and the cyclotomic polynomials Φ n 3 p 2 n 2 n 1 and Φ n 3 p 1 n 1 n 2 divide exactly 2 of the summands on the right hand side. We now prove that A ' B " Z n : to this aim we make use of the following facts, proven by F. Jedrzejewski (Theorem 14 in [19]):

A 1 `U1 `V2 " A 1 `U1 `U2 A 2 `U2 `V1 " A 2 `U2 `U1 .
By an easy check , we see that

U 1 `U2 " n 3 n 1 n 2 pp 1 I p 2 `p2 I p 1 q " n 3 n 1 n 2 Z p 1 p 2 " W,
and |U 1 ||U 2 | " p 2 p 1 " |W |. This means that U 1 ' U 2 " W.
We obtain that A `B " pA 1 `A2 q `ppU 1 `V2 `K1 q \ pU 2 `V1 `K2 q \ pW `K3 qq " pA 1 `A2 `U1 `V2 `K1 q \ pA 1 `A2 `U2 `V1 `K2 q \ \ pA 1 `A2 `W `K3 q

" pA 1 `A2 `U1 `U2 `K1 q \ pA 1 `A2 `U2 `U1 `K2 q \ \ pA 1 `A2 `U1 `U2 `K3 q " A 1 `A2 `U1 `U2 `pK 1 \ K 2 \ K 3 q " A 1 `U1 `A2 `U2 `K.
Again, an easy computation shows that

pA 1 `U1 q `pA 2 `U2 q " n 3 p 1 n 1 I p 2 n 2 `n3 p 2 n 2 I p 1 n 1 " n 3 I p 1 n 1 p 2 n 2 " H and so A `B " H `K " Z n .
Moreover, since |A||B| " n " |H||K|, the sum A `B is direct. Lattice representation of an aperiodic tiling rhythmic canon with period n " 216, where A " 54I2 ' 24I3 and B " p108I2 ' 18I3 ' t21, 43uq \ p72I3 ' 12I2 ' t0, 106uq \ p36I6 ' t122, 167uq.

3.4. EXTENDED VUZA CANONS 29 Figure 3.13: n " 216. B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q \ pW ' K 3 q. 1 2 3 
(b) U 2 ' V 1 " 72I 3 ' 12I 2 1 2 3 
Example 6. Let us go back to n " 216 with the same choices of p 1 , n 1 , p 2 , n 2 , and n 3 . By Theorem 7, we find a new aperiodic tiling rhythmic canon pA, Bq defining

A " 54I 2 ' 24I 3 B " p108I 2 ' 18I 3 ' t21, 43uq \ p72I 3 ' 12I 2 ' t0, 106uq \ p36I 6 ' t122, 167uq .
The second generalisation of Theorem 6 widens the definitions of sets A 1 , A 2 , V 1 , and V 2 . We precede it with a useful lemma. Lemma 8. Suppose that a subset S Ď Z n is periodic of period m n, i.e. S `m " S, and for i " 0, . . . , k ´1 let S i " ta P S : a " i mod ku where k is a divisor of m. Then for each i also the sets S i are periodic of period m.

Proof. It is sufficient to observe that since m is a multiple of k the remainder classes modulo k are invariant by the translation by m, hence also S i `m " S i . Theorem 8. Let n " p 1 n 1 p 2 n 2 n 3 P N such that:

1. p 1 , n 1 , p 2 , n 2 , n 3 ą 1; 2. gcd pp 1 n 1 , p 2 n 2 q " 1;
3. if n 3 is not prime, there is no prime q such that q n 3 , but q ffl p 1 n 1 p 2 n 2 .

Let H be the subgroup H " n 3 I p 1 n 1 p 2 n 2 of Z n , and K " K 1 \ K 2 (with K 1 , K 2 ‰ H) be a complete set of cosets representatives for Z n modulo H. Take CHAPTER 3. VUZA CANONS • Ã1 as a complete aperiodic set of coset representatives for Z p 2 n 2 modulo n 2 I p 2 ;

• Ã2 as a complete aperiodic set of coset representatives for Z p 1 n 1 modulo n 1 I p 1 ;

• Ṽ 1 1 , . . . , Ṽ j 1 as complete aperiodic sets of coset representatives for Z p 2 n 1 modulo p 2 I n 1 ;

• Ṽ 1 2 , . . . , Ṽ h 2 as complete aperiodic sets of coset representatives for

Z p 1 n 2 modulo p 1 I n 2 . Set K 1 " K 1 1 \ ¨¨¨\ K j 1 and K 2 " K 1 2 \ ¨¨¨\ K h 2 , where K s α " ! k j s´1 `1 α , . . . , k js α )
are non-empty subsets of K α for α " 1, 2. Then the pair pA, Bq defined by

A " n 3 p 1 n 1 Ã1 ' n 3 p 2 n 2 Ã2 B " ´´U 1 ' n 3 n 1 Ṽ 1 2 ' ! k 1 1 , . . . , k l 1 1 )¯\ ¨¨\ ´U1 ' n 3 n 1 Ṽ j 2 ' ! k l j´1 `1 1 , . . . , k |K 1 | 1 )¯¯\ \ ´´U 2 ' n 3 n 2 Ṽ 1 1 ' ␣ k 1 2 , . . . , k m 1 2 ( ¯\ ¨¨\ ´U2 ' n 3 n 2 Ṽ h 1 ' ! k m h´1 `1 2 , . . . , k |K 2 | 2
)¯ī s an aperiodic tiling rhythmic canon of Z n .

Proof. We have

• n 3 p 1 n 1 Ã1 `U1 " n 3 p 1 n 1 ´Ã 1 ' n 2 I p 2 ¯" n 3 p 1 n 1 I p 2 n 2 " A 1 `U1 ; • n 3 p 2 n 2 Ã2 `U2 " n 3 p 2 n 2 ´Ã 2 ' n 1 I p 1 ¯" n 3 p 2 n 2 I p 1 n 1 " A 2 `U2 ; • A 1 `n3 n 1 Ṽ2 " n 3 n 1 ´p1 I n 2 `Ṽ 2 ¯" n 3 n 1 I p 1 n 2 " A 1 `V2 ; • A 2 `n3 n 2 Ṽ1 " n 3 n 2 ´p2 I n 1 `Ṽ 1 ¯" n 3 n 2 I p 2 n 1 " A 2 `V1 .
For the sake of simplicity, we now give the proof in the case j " 1 and h " 1. The general case is completely analogous. We compute

A `B " " ´n3 p 1 n 1 Ã1 `n3 p 2 n 2 Ã2 ¯`´´U 1 `n3 n 1 Ṽ2 `K1 ¯\ ´U2 `n3 n 2 Ṽ1 `K2 ¯" ´n3 p 1 n 1 Ã1 `n3 p 2 n 2 Ã2 `U1 `n3 n 1 Ṽ2 `K1 ¯\ \ ´n3 p 1 n 1 Ã1 `n3 p 2 n 2 Ã2 `U2 `n3 n 2 Ṽ1 `K2 " ´A1 `n3 p 2 n 2 Ã2 `U1 `n3 n 1 Ṽ2 `K1 ¯\ ´n3 p 1 n 1 Ã1 `A2 `U2 `n3 n 2 Ṽ1 `K2 " ´A1 `n3 p 2 n 2 Ã2 `U1 `V2 `K1 ¯\ ´n3 p 1 n 1 Ã1 `A2 `U2 `V1 `K2 " ´A1 `n3 p 2 n 2 Ã2 `U1 `U2 `K1 ¯\ ´n3 p 1 n 1 Ã1 `A2 `U2 `U1 `K2 " A 1 `A2 `U1 `U2 `pK 1 \ K 2 q " A 1 `U1 `A2 `U2 `K " Z n .
A cardinality argument similar to that used in Theorem 7 shows that the sum is direct.

The proof that A is aperiodic follows from Vuza's argument (Proposition 2.2 in [START_REF] Vuza | Supplementary sets and regular complementary unending canons (part one)[END_REF]), as above. Assume now that B is periodic of period a: we can assume without loss of generality that a " n{p where p is a prime number. Hypothesis 3 now implies that a is a multiple of n 3 : but then by Lemma 8 also the sets B i " B X ptiu `n3 Z n q must be periodic of period a. However, the sets B i are simply translates of U 1 ' n 3 n 1 Ṽ2 by elements of K 1 or of U 2 ' n 3 n 2 Ṽ1 by elements of K 2 (remember that also the elements of U 1 and U 2 are multiple of n 3 ): on their turn, U 1 ' n 3 n 1 Ṽ2 and U 2 ' n 3 n 2 Ṽ1 are indeed periodic resp. of period n{p 1 and n{p 2 , but since p 1 and p 2 are coprime no common period smaller than n is possible. A contradiction follows since we assumed both K 1 and K 2 to be non-empty.

Example 7. This time we choose n " 252; let p 1 " 2, n 1 " 7, p 2 " 3, n 2 " 3, and n 3 " 2. We can take e.g.

Ã1 " t0, 2, 7u Ṽ1 " t0, 10, 17u Definition 12 (Vuza canon). We call Vuza canons all the canons obtained using the constructions described in Theorems 3, 6, 7, 8.

K 1 " t0u Ã2 " t0, 1, 3, 4, 9, 12, 13u Ṽ2 " I p 1 " t0, 1u K 2 "
It is possible to stretch this type of constructions even further. With the following theorem, we improve the result of Jedrzejewski (Theorem 21 in [19]). Theorem 9. Let n " p 1 n 1 p 2 n 2 n 3 P N such that:

1. p 1 , n 1 , p 2 , n 2 , n 3 ą 1;
2. gcd pp 1 n 1 , p 2 n 2 q " 1;

3. there is no prime q such that q n 3 , but q ffl p 1 n 1 p 2 n 2 .

Let H be the subgroup H " n 3 I p 1 n 1 p 2 n 2 of Z n . Suppose that L and K are proper subsets of Z n 3 such that L ' K " Z n 3 and K " K 1 \ K 2 , with K 1 , K 2 ‰ H. Then the pair pA, Bq defined by

A " A 1 ' A 2 ' L B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q is an aperiodic tiling rhythmic canon of Z n . Proof. A `B " pA 1 `A2 `Lq `ppU 1 `V2 `K1 q \ pU 2 `V1 `K2 qq " pA 1 `A2 `L `U1 `V2 `K1 q \ pA 1 `A2 `L `U2 `V1 `K2 q " pA 1 `A2 `L `U1 `U2 `K1 q \ pA 1 `A2 `L `U2 `U1 `K2 q " A 1 `A2 `L `U1 `U2 `pK 1 \ K 2 q
" A 1 `U1 `A2 `U2 `L `K. 

EXTENDED VUZA CANONS

(b) U 2 ' V 1 " 72I 3 ' 12I 2
Lattice representation of an aperiodic tiling rhythmic canon with period n " 216, where A " 54I2 ' 24I3 ' I2 and B " p108I2 ' 18I3 ' t2uq \ p72I3 ' 12I2 ' t0, 4uq.

The sum is direct because the computation of the cardinality leads to

|A 1 ||A 2 ||U 1 ||U 2 ||L ' K| " n.
Aperiodicity of A is immediate from Lemma 8, since A 1 `A2 is aperiodic and B is the union of the subsets B i contained in different remainder classes modulo n 3 , some of which have a period coprime with the period of the other ones (exactly as in the previous theorem).

Example 8. Choosing again n " 216 and the same values for p 1 , n 1 , p 2 , n 2 , and n 3 as in Example 6, we set L " t0, 1u, K 1 " t2u, and K 2 " t0, 4u. By Theorem 9, we get that

A " 54I 2 ' 24I 3 ' L B " p108I 2 ' 18I 3 ' K 1 q \ p72I 3 ' 12I 2 ' K 2 q
define an aperiodic tiling rhytmic canon.

To prove our next result we take advantage of the equivalent polynomial formulation of tilings and of the Coven-Meyerowitz conditions ( [9]).

Definition 13 (extension).

Let A be a subset of Z n and let S A " ␣ p α , q β , . . . , r γ ( . We call the extension of A any rhythm A whose characteristic polynomial is

Apxq " Φ p α ´x n p α kp ¯Φq β ˆx n q β kq ˙¨¨¨Φ r γ ´x n r γ kr ¯,
where k p , k q , . . . , k r are divisors of n such that p ffl k p , q ffl k q , . . . , r ffl k r . x k mod px n ´1q , that is, condition (T0) in Lemma 1 holds. Therefore Apxq P t0, 1u rxs and A ' B " Z n , that is, A tiles with B.

Note that by definition clearly S

Combining Theorem 9 and Proposition 4, we are able to find new Vuza canons where L is not a subset of Z n 3 . Theorem 10. Let n " p 1 n 1 p 2 n 2 n 3 P N such that:

1. p 1 , n 1 , p 2 , n 2 , n 3 ą 1; 2. gcd pp 1 n 1 , p 2 n 2 q " 1;
3. there is no prime q such that q n 3 , but q ffl p 1 n 1 p 2 n 2 .

Let H be the subgroup H " n 3 I p 1 n 1 p 2 n 2 of Z n . Suppose that L and K are proper subsets of Z n 3 such that L ' K " Z n 3 and K " K 1 \ K 2 , with K 1 , K 2 ‰ H. Let L be an extension of L; then the pair pA, Bq defined by

A " A 1 ' A 2 ' L B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q
is an aperiodic tiling rhythmic canon of Z n .

Proof. Since, by definition, A 1 and A 2 coincide with their own extensions, the extension of

A 1 ' A 2 ' L is A. By Theorem 9, A 1 ' A 2 ' L ' B " Z n , therefore Proposition 4 implies that A ' B " Z n .
We already know from Theorem 9 that B is aperiodic. To show that A is aperiodic, consider Lpxq. By hypothesis 3, S L does not contain any maximal prime power dividing n, as S A 1 and S A 2 . As a consequence, S A " S A 1 Y S A 2 Y S L does not contain any such prime power, either. By Proposition 3, A cannot be periodic. Definition 14 (extended Vuza canon). We call extended Vuza canons all the canons obtained using the constructions of Theorems 9 and 10, possibly combined with those of Theorems 3, 6, 7 and 8. 

(b) U 2 ' V 1 " 48I 5 ' 8I 2
Lattice representation of an aperiodic tiling rhythmic canon with period n " 240, where A " 60I2 ' 16I3 ' 15I2 and B " p120I2 ' 12I5 ' t2uq \ p48I5 ' 8I2 ' t0uq.

Example 9. We show now an extended Vuza canon with period n " 240 (p 1 " 5, n 1 " 3, p 2 " 2, n 2 " 2, n 3 " 4). Set L " I 2 ; then L " 15I 2 . Choosing K 1 " t2u and K 2 " t0u, we obtain the canon

A " A 1 ' A 2 ' L " 60I 2 ' 16I 3 ' 15I 2 B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q " p120I 2 ' 12I 5 ' t2uq \ p48I 5 ' 8I 2 ' t0uq .
It is worth noting that it would not be possible to obtain such a canon without applying Theorem 10.

Example 10. Given L ' K " I 2 ' 2I 2 " Z 4 , an extended Vuza canon with period n " 144 is

A " A 1 ' A 2 ' L " 16I 3 ' 36I 2 ' I 2 . B " pU 1 ' V 2 ' K 1 q \ pU 2 ' V 1 ' K 2 q " p48I 3 ' 8I 2 ' t0uq \ p72I 2 ' 12I 3 ' t2uq .
The lattice representation of A is in Figure 3.17.

It is now natural to pose the following question: how many extended Vuza canons are there given the five parameters p 1 , n 1 , p 2 , n 2 , n 3 and the factorisation Z n 3 " L ' K?

The first step consists in determining how many partitions of Z n 3 allow to disjointly distribute the n 3 remainder classes in the factors canon would become periodic). By Theorem 8, we need also to consider all the different Ṽ j 1 and Ṽ h 2 which provide a (extended) Vuza canon. We want to determine in how many ways we can choose aperiodic subsets of distinct elements modulo p 1 in Z p 1 n 2 (resp. in Z p 2 n 1 ) up to translation. By convention, we fix the first element as 0, and for every other remainder class modulo p 1 we have n 2 possibilities. We have to disregard the periodic ones and finally we discard all the p 1 ´1 possible translations. Then,

´U1 ' n 3 n 1 Ṽ j 2 ¯, ´U2 `n3 n 2 Ṽ h 1 ¯and W ,
# Ṽ1 " 1 p 2 ÿ u|p 2 µ ´p2 u ¯´n pu´1q 1 ´1# Ṽ2 " 1 p 1 ÿ v|p 1 µ ´p1 v ¯´n pv´1q 2 ´1¯.
When there is no factor L in the inner rhythm A, we consider as the matrix in which every row t i ,with i " 1, . . . , m, represents a possible partition of the remainder classes modulo n 3 , and the single entry in every row is the number of remainder classes modulo n 3 assigned to the i-th factor

U 1 ' n 3 n 1 Ṽ j 2 , U 2 `n3 n 2 Ṽ h 1 , or W.
In this case, the number of possible outer rhythms B is as follows:

#B " #K n ÿ 1ďiďm ˆn n 3 ¨p1 ¨# Ṽ1 ˙ti1 ¨ˆn n 3 ¨p2 ¨# Ṽ2 ˙ti2 ¨ˆn n 3 ¨p1 ¨p2 ˙ti3 ¨ˆn 3 t i ˙.

EXTENDED VUZA CANONS

Example 11. Let us show how many aperiodic rhythms B there exist given n 1 " 2, n 2 " 3, n 3 " 5, p 1 " 2, p 2 " 3. The possible vectors t for Z n 3 are 10:

T " tr1, 4, 0s, r4, 1, 0s, r2, 3, 0s, r3, 2, 0s, r1, 2, 2s, r2, 1, 2s, r2, 2, 1s, r1, 1, 3s, r1, 3, 1s, r3, 1, 3su.

The total number of possible aperiodic rhythms B is given by: #B " 1 180

ÿ 1ďiď10 ˆ180 5 ¨2 ¨1˙t i1 ˆ180 5 ¨3 ¨1˙t i2 ˆ180 5 ¨2 ¨3 ˙ti3 ˆ5 t i "
45360 `77760 `85536 `72576 " 281232.

Example 12. Given, instead, n 1 " 2, n 2 " 3, n 3 " 4, p 1 " 2, p 2 " 3, we calculate how many aperiodic rhythms B there exist in Z 144 . The possible vectors t for Z n 3 are 6:

T " tr1, 3, 0s, r3, 1, 0s, r2, 2, 0s, r1,

The total number of possible extended Vuza aperiodic rhythms B is given by: #B " 1 144

ÿ 1ďt i ď6 ˆ144 8 ¨1˙t i1 ˆ144 12 ¨1˙t i2 ˆ144 24 
˙ti3 ˆ4 t i "
864 `1944 `1944 `648 `1296 `1944 " 8640.

We include a table showing the number of Vuza canons and extended Vuza canons for all the periods n with values between 72 and 280. Theorem 11. Let A ' B " Z n be a Vuza canon. Then A and B satisfy condition (T2).

Proof.

B is (T2): Let A 1 " n 3 p 2 n 2 I n 1 and A 2 " n 3 p 1 n 1 I n 2 . Then, as in the proof of Theorem 4, we consider

A " A 1 ' A 2 . Since Apxq " x n 3 p 2 n 2 n 1 ´1 x n 3 p 2 n 2 ´1 x n 3 p 1 n 1 n 2 ´1 x n 3 p 1 n 1 ´1 " ź d 1 |n 3 p 2 n 2 n 1 d 1 ∤n 3 p 2 n 2 Φ d 1 pxq ź d 2 |n 3 p 1 n 1 n 2 d 2 ∤n 3 p 1 n 1 Φ d 2 pxq,
it follows that @d 1 with prime powers factorisation

d 1 " p α 1 1 ¨¨¨p α k k such that Φ d 1 pxq | Apxq, there is a prime power p α 1 1 | n 1 n 3 such that Φ p α 1 1
| Apxq. Similarly for d 2 . Then Bpxq satisfies condition (T2). A is (T2) : By definition,

CHAPTER 3. VUZA CANONS

R A 1 " tf P N ˚: f | n 3 p 2 n 2 n 1 and f ∤ n 3 p 2 n 2 u , R A 2 " tg P N ˚: g | n 3 p 1 n 1 n 2 and g ∤ n 3 p 1 n 1 u , and 
S A 1 " tp α P R A 1 : p prime, α P N ˚, p α | n 3 p 2 n 2 n 1 , and p α ∤ n 3 p 2 n 2 u , S A 2 " ! q β P R A 2 : q prime, β P N ˚, q β | n 3 p 1 n 1 n 2 , and q β ∤ n 3 p 1 n 1
) .

Let us start with S A 1 : since pp 2 n 2 , n 1 q " 1,

S A 1 " tp α P R A 1 : p α | n 3 p 2 n 2 , p α ∤ n 3 p 2 n 2 u Y tp α P R A 1 : p α | n 3 n 1 , p α ∤ n 3 p 2 n 2 u " tp α P R A 1 : p α | n 3 n 1 , p α ∤ n 3 p 2 n 2 u " tp α P R A 1 : p α | n 3 n 1 , p α ∤ n 3 u. Similarly, S A 2 " tq β P R A 2 : q β | n 3 n 2 , q β ∤ n 3 u.
Then, consider any product of powers of distinct primes p α 1 1 ¨¨¨p α M M q β 1 1 ¨¨¨q βn n , with p α 1 1 , . . . , p α M M P S A 1 and q β 1 1 , . . . , q βn n P S A 2 . We have

p α 1 1 ¨¨¨p α M M q β 1 1 ¨¨¨q βn n | n M 1 n n 2 n M
`N 3 , Table 3.3: All possible Ṽ1 and Ṽ2 for non-Hajós values of n ď 180. In each column only the rhythms that can be generated by the corresponding theorem, but not by previous ones are counted. Grey numbers correspond to rhythms that can be generated also by the choice of parameters in the previous line. When there is no column (e.g., #A for Theorem 6) all the possible rhythms already appear in previous columns. In each column only the rhythms that can be generated by the corresponding theorem, but not by previous ones are counted. Grey numbers correspond to rhythms that can be generated also by the choice of parameters in the previous line. When there is no column (e.g., #A for Theorem 6) all the possible rhythms already appear in previous columns.

n p 1 n 1 p 2 n 2 n 3 L #K #B U 1 ' n 3 n 1 Ṽ2 U 2 ' n 3 n 2 Ṽ1 72 3 3 2 2 2 t0u 0 6 36I 2 ' 6I 3 24I 3 ' 4I 2 108 3 3 2 2 3 t0u 0 252 54I 2 ' 9I 3 36I 3 ' 6I 2 40I 3 ' 4I 2 3 5 2 2 2 t0u 0 20 60I 2 ' 10I 3 40I 3 ' 4t0, 3u 60I 2 ' 6I 5 60I 2 ' 6t0, 2,
and since pn 1 , n 2 q " 1 and p α i i ∤ n 3 and q β j j ∤ n 3 , we can conclude

p α 1 1 ¨¨¨p α M M q β 1 1 ¨¨¨q βn n | n 1 n 2 n 3 .
Moreover, since

p α 1 1 ¨¨¨p α M M ∤ n 3 p 2 n 2 and q β 1 1 ¨¨¨q βn n ∤ n 3 p 1 n 1 it follows that p α 1 1 ¨¨¨p α M M q β 1 1 ¨¨¨q βn n ∤ n 3 p 2 n 2 and p α 1 1 ¨¨¨p α j j q β 1 1 ¨¨¨q β k k ∤ n 3 p 1 n 1 .
This means that

p α 1 1 ¨¨¨p α M M q β 1 1 ¨¨¨q βn n P R A 1 X R A 2 .
Considering, instead, any product of prime powers p α 1 1 ¨¨¨p α M M (resp. q β 1 1 ¨¨¨q βn n ) belonging exclusively to S A 1 (resp. S A 2 ), we obtain:

p α 1 1 ¨¨¨p α M M | n 1 n 3 (resp. q β 1 1 ¨¨¨q βn n | n 2 n 3 ),
and therefore

p α 1 1 ¨¨¨p α M M P R A 1 (resp. q β 1 1 ¨¨¨q βn n P R A 2
). In both cases, those products are elements of R A 1 Y R A 2 , and so Apxq satisfies (T2) condition.

Example 13. Let us consider the following Vuza canon with period n " 9000: 

A " A 1 ' A 2 S A"A 1 'A 2 " t4, 9, 25u R A 1 X R A 2 " t36
, 100, 180, 300, 900u

Operations on aperiodic canons

In this section we describe some known techniques for the construction of tiling rhythmic canons starting from aperiodic tiling rhythmic canons. We show that these operations preserve condition (T2) in the following sense.

Let us say that the canon A ' B " Z n verifies condition (T2) if at least one of the rhythms A and B verifies it.

We illustrate the central role of the Vuza canons in this type of constructions and finally, we introduce new operations on tiling rhythmic canons based on their cyclotomic factorisation.

Given a rhythmic canon, there are many ways to generate new canons, used (and often devised) by the composers themselves. Let us see the mathematical interpretation of such manipulations.

Duality

We observed in Chapter 2 that the commutative property of the addition in the cyclic group Z n makes the definition of rhythmic canon symmetrical in the inner and outer rhythms. Then, the simplest transformation we can apply to a canon is the interchange between inner and outer rhythm.

Definition 15 (duality). Given a tiling rhythmic canon Z n " A ' B, the canon Z n " B ' A is said to be obtained from the first by duality.

k-stuttering (and multiplexing) and k-zooming

Zooming and stuttering are two dual transformations: starting from a canon A'B " Z n , one gets a new canon obtained by replacing each note or rest in the inner voice A by k repetitions of itself, and by stretching by factor k the entries of the outer voice B.

Definition 16 (k-stuttering). Let A ' B " Z n . The k-stuttering of A is StutpA, kq " kA ' t0, 1, . . . , k ´1u P Z k|A| . Definition 17 (k-zooming). Let A ' B " Z n . The k-zooming of B is kB P Z |B| .
Theorem 12 (Amiot). A ' B " Z n if and only if StutpA, kq ' kB " Z kn .

The multiplexing transformation is a simple extension of stuttering: Definition 18 (multiplexing). Let A i ' B " Z n , for i " 0, . . . , k ´1, be k canons with the same outer rhythm. The multiplexing of A 0 , A 1 , . . . , A k´1 is MPlex pA 0 , A 1 , . . . , A k´1 q " k´1 ď i"0 pi `kA i q .

Theorem 13 (Amiot). A i ' B " Z n for all i " 0, . . . , k ´1 if and only if MPlex pA 0 , A 1 , . . . , A k´1 q ' kB " Z kn .

We observe trivially that the rhythms of a canon always verify condition (T1) (by the Coven-Meyerowitz Theorem 1); consequently, in particular, condition (T1) is invariant under multiplexing and zooming.

Proposition 5. The multiplexing transformation preserves condition (T2).

These operations also preserve the aperiodicity of each voice, and hence turn a (extended) Vuza canon into a larger (extended) Vuza canon.

Note that the dual transformation, that is the multiplexing of the outer voice, is also possible. whose lattice representation is in Figure 3.18. The segment whose prime power is not a multiple of k " 2 extends until it touches the final hyperplane of multiples of 16. The axis of indices of cyclotomic polynomials extending from one power of k " 2 instead is translated to include cyclotomic polynomials with indices t8, 24, 72u and the edge from 2 to 18 is inserted.

Example 14. Let us consider the canons with period 72

A ' B " p18I 2 ' 8I 3 q ' pp36I 2 ' 6I 3 q \ p24I 3 ' 4I 2 ' t1uqq " " t0,

Affine transformation

Recall Tijdeman's theorem:

Theorem 14 (Tijdeman). If A ' B " Z n is a rhythmic canon, then also kA ' B " Z n for every positive integer k such that pk, |A|q " 1.

As we have seen above, by Lemma 6, the sets R kA and S kA are exactly the same as R A and S A : hence (T2) and aperiodicity are true for kA whenever they are true for A.

k-concatenation

Definition 19 (k-concatenation). The k-concatenation of the rhythm A P Z n is the rhythm:

ConcpA, kq " pA ' t0, n, 2n, . . . , pk ´1q nuq P Z kn .

It is easy to see the following consequence of our previous definition:

Theorem 15 (Amiot). A ' B " Z n if and only if ConcpA, kq ' B " Z kn .

Proof. For every z P Z and for every r " s `tk, with 0 ď s ă k, we have z " a `b `rn ðñ z " pa `snq `b `t pknq . Proposition 6. Concatenation preserves condition (T2).

Proof. We observe that t0, n, 2n, . . . , pk ´1q nu pxq " pnI k qpxq " I k px n q "

x kn ´1

x n ´1 " 

ź
1. p α i i P S A @i " 1, . . . , m ùñ ś m i"1 p α i i P R A because, by hypothesis, A verifies condition (T2), then ś m i"1 p α i i P R A'nI k . 2. p α i i P S nI k @i " 1, . . . , m ùñ ś m i"1 p α i i P R nI k because, as we have seen, nI k verifies condition (T2), then ś m i"1 p α i i P R A'nI k . 3. p α i i P S A @i " 1, .
. . , h and p α j j P S nI k @j " h `1, . . . , m, then @i, j we have that p α i i N , p α j j kN and p α j j ffl N , therefore, since we are dealing with powers of distinct primes, ś m i"1 " p α i i kN and ffl N , that is (f) Multiplexing and zooming of 5 canons of period n " 72.

ś m i"1 p α i i P R nkA Ă R A'nI k . CHAPTER 3.

Uplifting

Proposition 8 (Amiot). If A tiles Z n then A tiles any larger cyclic overgroup Z kn ; moreover, translating any element of A by any multiple of n provides a motif that also tiles Z kn .

Proof. If A ' B " ta 0 , . . . , a p´1 u ' tb 0 , . . . , b q´1 u " Z n , let à " ta 0 `k0 n, . . . , a p´1 `kp´1 nu Ă Z kn and B " tb i `κnu, with κ " 0, . . . , k ´1. Let us now see how Vuza canons become fundamental for the study of rhythmic canons.

Then à ' B " Z kn since the mapping à ' B Q pa, bq Þ Ñ a `b
Theorem 16 (Amiot). Every rhythmic canon can be reduced to trivial canon t0u't0u " t0u or a Vuza canon.

Corollary 1. If a rhythmic canon does not satisfy the condition (T2) it is possible to collapse it to a Vuza canon that does not satisfy the condition (T2).

The problem of the need for condition (T2) is reduced to the investigation of the canons of Vuza.

Operations on extended Vuza canons

The following operations naturally follow from the definition of extended Vuza canon. Recall that an extended Vuza canon is characterised by the following sets:

A 1 , A 2 , V 1 , V 2 . Whenever we replace the sets A 1 , A 2 , V 1 , V 2 with A 1 1 , A 1 2 , V 1 1 and V 1 2
, we get new extended Vuza canons, as proved in Theorems 7, 8, 9 and 10.

Starting from a Vuza canon, or an extended Vuza canon, it is possible to consider different choices of the parameters p 1 , n 1 , p 2 , n 2 , and n 3 and of the sets Ã1 , Ã2 , Ṽ1 , Ṽ2 , W , L, and K on the basis of the theorem seen in the previous section to produce new extended Vuza canons.

In this section we see, starting from a Vuza canon (or extended Vuza canon) the lattices of the new canon change according to the different choice of parameters and characteristic sets. Let us see the classical example of Z 72 . When n1 is a multiple of n 1 we can recognise some precise changes in the lattices of the canons. We are dealing with extended Vuza canons, so we consider the following hypothesis. Let n " p 1 n 1 p 2 n 2 n 3 P N such that:

1. p 1 , n 1 , p 2 , n 2 , n 3 ą 1; 2. gcd pp 1 n 1 , p 2 n 2 q " 1;
3. if n 3 is not prime, there is no prime q such that q n 3 , but q ffl p 1 n 1 p 2 n 2 .

Let H be the subgroup H "

n 3 I p 1 n 1 p 2 n 2 of Z n with n " p 1 n 1 p 2 n 2 n 3 , K be a complete set of cosets representatives for Z n modulo H such that K is the disjoint union K " K 1 \ K 2 \ K 3 with K 1 , K 2 ‰ H, and W " n 3 n 1 n 2 I p 1 p 2 . Take
• Ã1 as a complete aperiodic set of coset representatives for Z p 2 n 2 modulo n 2 I p 2 ;

• Ã2 as a complete aperiodic set of coset representatives for Z p 1 n 1 modulo n 1 I p 1 ;

• Ṽ 1 1 , . . . , Ṽ j 1 as complete aperiodic sets of coset representatives for Z p 2 n 1 modulo

p 2 I n 1 ; • Ṽ 1 2 , . . . , Ṽ h 2 as complete aperiodic sets of coset representatives for Z p 1 n 2 modulo p 1 I n 2 .
Let A ' B be a (extended) Vuza canon, with

A " n 3 p 1 n 1 Ã1 ' n 3 p 2 n 2 Ã2 ' L B " ´´U 1 ' n 3 n 1 Ṽ 1 2 ' ! k 1 1 , . . . , k l 1 1 )¯\ ¨¨\ ´U1 ' n 3 n 1 Ṽ j 2 ' ! k l j´1 `1 1 , . . . , k |K 1 | 1 )¯¯\ \ ´´U 2 ' n 3 n 2 Ṽ 1 1 ' ␣ k 1 2 , . . . , k m 1 2 ( ¯\ ¨¨\ ´U2 ' n 3 n 2 Ṽ h 1 ' ! k m h´1 `1 2 , . . . , k |K 2 | 2 )¯\ pn 3 n 1 n 2 I p 1 p 2 ' K 3 q ni -operation (i " 1, 2)
Definition 20 (n 1 -operation). Let A ' B " Z n be a (extended) Vuza canon and let n1 " θn 1 , with θ P N ˚, such that p 1 , n1 , p 2 , n 2 , and n 3 satisfy conditions 1, 2, and 3. The n1 -operation on A ' B " Z n produces the new (extended) Vuza canon:

Oper n1 pA ' Bq " A n1 ' B n1 " Z θn , with A n1 " n 3 p 1 n1 Ã1 ' n 3 p 2 n 2 Ãn 1 2 ' L B n1 " ´´U n1 1 ' n 3 n1 Ṽ 1 2 ' ! k 1 1 , . . . , k l 1 1 )¯\ ¨¨\ ´U n1 1 ' n 3 n1 Ṽ j 2 ' ! k l j´1 `1 1 , . . . , k |K 1 | 1 )¯¯\ \ ´´U n1 2 ' n 3 n 2 Ṽ 1,n 1 1 ' ␣ k 1 2 , . . . , k m 1 2 ( ¯\ ¨¨\ ´U n1 2 ' n 3 n 2 Ṽ h,n 1 1 ' ! k m h´1 `1 2 , . . . , k |K 2 | 2 )¯\ pn 3 n1 n 2 I p 1 p 2 ' K 3 q , where • U n1 1 " n 3 p 1 n1 n 2 I p 2 ; • U n1 2 " n 3 p 2 n 2 n1 I p 1 ; • Ãn 1 2 is a complete aperiodic set of coset representatives for Z p 1 n1 modulo n1 I p 1 ; • Ṽ 1,n 1 1 , . . . , Ṽ j,n 1 1 are complete aperiodic sets of coset representatives for Z p 2 n1 mod- ulo p 2 I n1 ;
The definition is completely symmetric for the n2 -operation. We notice that R A Ă R A n1 since, by construction (see Theorem 3), the elements of R A are the divisors of n 3 p 1 n 1 n 2 which do not divide n 3 p 1 n 1 together with the divisors of n 3 p 2 n 2 n 1 which do not divide n 3 p 2 n 2 , while the elements of R A n1 are the divisors of θn 3 p 1 n 1 n 2 which do not divide θn 3 p 1 n 1 together with the divisors of θn 3 p 2 n 2 n 1 which do not divide n 3 p 2 n 2 . Also note that S A Ĺ S An 1 , which implies that |A n1 | " θ|A|. Instead, S B n1 is quite different from S B and S B Ę S Bn 1 : the powers of primes dividing θ and greater than n 3 in S B are multiplied by θ. As a consequence, |B n1 | " |B|.

In this regard, it is interesting to observe what happens to the lattices of the cyclotomic polynomials of A ' B " Z n and A n1 ' B n1 " Z θn . Comparing them, the effect of the n1 -operation is the following: the edge resulting from the difference between the convex hull of n 3 p 2 n 2 I n 1 and the convex hull of the cyclotomic indices of Ã2 appears to be expanded by factor θ along the axes of the powers of the primes that divide θ; as for the first factor of A, on the other hand, there is an expansion by factor θ of both the edge obtained as the difference between the convex hull of n 3 p 1 n 1 I n 2 and the convex hull of the cyclotomic indices of Ã1 , and the convex hull Ã1 itself. Figures 3.23, 3.24, and 3.25 show three examples referring to a generic extended Vuza canon of period 72 (we have only one possible lattice of cyclotomic polynomials for extended Vuza canons of period n " 72) to which we applied the ni -operation, for i " 1, 2: in the first two figures, θ is a prime that already divided n (these are the 60 " 48 `12 rhythms B for n " 144 and the 72 " 6 `12 `54 rhythms B for n " 216 analyzed in Table 3.4), while, in the last one, θ is a prime that did not divide n. Graphically, the two necessary conditions for aperiodicity in both rhythms remain satisfied: each maximal hyperplane n1 " 10-operation on a Vuza canon of order 72. The parameters become: p1 " 2, n1 " 2 ¨5, p2 " 3, n2 " 3, and n3 " 2. L " t0u. #B " 990.

with

A n3 " n3 p 1 n 1 Ã1 ' n3 p 2 n 2 Ã2 B n3 " ˆ´U n3 1 ' n3 n 1 Ṽ 1 2 ' ! k 1 1,n 3 , . . . , k u 1 1,n 3 )¯\ ¨¨\ ˆU n3 1 ' n3 n 1 Ṽ j 2 ' " k u j´1 `1 1,n 3 , . . . , k |K n3 1 | 1,n 3 *˙˙\ \ ˆ´U n3 2 ' n3 n 2 Ṽ 1 1 ' ! k 1 2,n 3 , . . . , k v 1 2,n 3 )¯\ ¨¨\ ˆU n3 2 ' n3 n 2 Ṽ h 1 ' " k v h´1 `1 2,n 3 , . . . , k |K n3 2 | 2,n 3 *˙\ `n 3 n 1 n 2 I p 1 p 2 ' K n3 3 ˘, where • U n3 1 " n3 p 1 n 1 n 2 I p 2 ; • U n3 2 " n3 p 2 n 2 n 1 I p 1 ; • K n3 1 " K 1 1,n 3 \¨¨¨\K j n3 1,n 3 , with K r 1,n 3 " ! k x r´1 `1 1,n 3 , . . . , k xr 1,n 3 ) are non-empty subsets of K n3 1 ; • K n3 2 " K 1 2,n 3 \¨¨¨\K h n3 2,n 3 , with K s 2,n 3 " ! k y s´1 `1 2,n 3 , . . . , k ys 1,n 3 )
are non-empty subsets of K n3 2 . Unlike after the application of n i -operation with i " 1, 2, in this case the elements of both R A n3 and R B n3 undergo the same effect (and in fact n 3 has a symmetric role in A and B): n3 " 4-operation on a Vuza canon of order 72. The parameters become: p1 " 2, n1 " 2, p2 " 3, n2 " 3, and n3 " 2 ¨2 " 4. L " t0u. #B " 8640. n3 " 6-operation on a Vuza canon of order 72. The parameters become: p1 " 2, n1 " 2, p2 " 3, n2 " 3, and n3 " 2 ¨3 " 6. L " t0u. #B " 9035712.

R A n3 " θR A Y pR A zpθR A Y θR B qq R B n3 " θR B Y pR B zpθR B Y θR B qq.
As a consequence, the cyclotomic polynomials with indices less than or equal to n3 are all factors of B n3 just as the cyclotomic polynomials with indices less than or equal to n 3 were all factors of B. This means also that, |B n1 | " θ|B|, while the cardinalities of A and A n3 are the same.

Again, we are interested in giving a graphic interpretation of R n3 A and R n3 B observing what happens to the lattices of the cyclotomic polynomials of A'B " Z n and A n3 'B n3 " Z θn . The n3 -operation determines an expansion by factor θ of both the edge obtained as the difference between the convex hull of n 3 p 1 n 1 I n 2 and the convex hull of the cyclotomic indices of Ã1 , and the convex hull Ã1 itself. Similarly for factor n 3 p 2 n 2 Ã2 of A. Figures 3.26, 3.27, and 3.28 show three examples referring to our generic extended Vuza canon of period 72 to which we applied the n3 -operation: again, in the first two figures, θ is a prime that already divided n (these are the 8640 rhythms B for n " 144 and the 9035712 rhythms B for n " 216 analyzed in Table 3.4), while, in the last one, θ is a prime that did not divide n.

Let us now consider as starting canon an extended Vuza canon, whose inner rhythm A also has a factor L.

Definition 22 (n 3 -operation). Let A ' B " Z n be an extended Vuza canon and let n3 " θn 3 , with θ P N ˚, such that p 1 , n 1 , p 2 , n 2 , and n3 satisfy conditions 1, 2, and 3. Let n3 " 10-operation on a Vuza canon of order 72. The parameters become: p1 " 2, n1 " 2, p2 " 3, n2 " 3, and n3 " 2 ¨5 " 10. L " t0u. #B " 9969957367560. also H n3 be the subgroup

H n3 " n3 I p 1 n 1 p 2 n 2 of Z θn . Consider K n3 as a proper subset of Z n3 such that L ' K n3 " Z n3 and K n3 " K n3 1 \ K n3 2 \ K n3 3 (with K n3 1 , K n3 2 ‰ H).
The n3 -operation on A ' B " Z n produces the new extended Vuza canon:

Oper n3 pA ' Bq " A n3 ' B n3 " Z θn , with A n3 " n3 p 1 n 1 Ã1 ' n3 p 2 n 2 Ã2 ' L B n3 " ˆ´U n3 1 ' n3 n 1 Ṽ 1 2 ' ! k 1 1,n 3 , . . . , k u 1 1,n 3 )¯\ ¨¨\ ˆU n3 1 ' n3 n 1 Ṽ j 2 ' " k u j´1 `1 1,n 3 , . . . , k |K n3 1 | 1,n 3 *˙˙\ \ ˆ´U n3 2 ' n3 n 2 Ṽ 1 1 ' ! k 1 2,n 3 , . . . , k v 1 2,n 3 )¯\ ¨¨\ ˆU n3 2 ' n3 n 2 Ṽ h 1 ' " k v h´1 `1 2,n 3 , . . . , k |K n3 2 | 2,n 3 *˙\ `n 3 n 1 n 2 I p 1 p 2 ' K n3 3 ˘, where • U n3 1 " n3 p 1 n 1 n 2 I p 2 ; • U n3 2 " n3 p 2 n 2 n 1 I p 1 ; • K n3 1 " K 1 1,n 3 \¨¨¨\K j n3 1,n 3 , with K r 1,n 3 " ! k x r´1 `1 1,n 3 , . . . , k xr 1,n 3 ) are non-empty subsets of K n3 1 ; • K n3 2 " K 1 2,n 3 \¨¨¨\K h n3 2,n 3 , with K s 2,n 3 " ! k y s´1 `1 2,n 3 , . . . , k ys 1,n 3 )
are non-empty subsets of K n3 2 . In this case, the factor L of A remains a factor of A n3 after the application of the n3 -operation: it is in fact an extension of a proper subset L of Z n 3 Ă Z n3 . In this case, however, it is necessary to choose a suitable set K n3 such that K n3 'L " Z n 3 . In general, the observations made in the case of the n 3 -operation applied to a non-extended Vuza canon continue to be valid. Figure 3.29 shows an example referring to a generic extended Vuza canon of period 144 to which we applied the n3 -operation.

OPERATIONS ON APERIODIC CANONS

p 1 -operation (i " 1, 2)
Definition 23 (p 1 -operation). Let A ' B " Z n be a (extended) Vuza canon and let p1 " θp 1 , with θ P N ˚, such that p1 , n 1 , p 2 , n 2 , and n 3 satisfy conditions 1, 2, and 3. The p1 -operation on A ' B " Z n produces the new (extended) Vuza canon:

Oper p1 pA ' Bq " A p1 ' B p1 " Z θn , with A p1 " n 3 p1 n 1 Ã1 ' n 3 p 2 n 2 Ãp 1 2 ' L B p1 " ´´U p1 1 ' n 3 n 1 Ṽ 1,p 1 2 ' ! k 1 1 , . . . , k l 1 1 )¯\ ¨¨\ ´U p1 1 ' n 3 n 1 Ṽ j,p 1 2 ' ! k l j´1 `1 1 , . . . , k |K 1 | 1 )¯¯\ \ ´´U p1 2 ' n 3 n 2 Ṽ 1 1 ' ␣ k 1 2 , . . . , k m 1 2 ( ¯\ ¨¨\ ´U p1 2 ' n 3 n 2 Ṽ h 1 ' ! k m h´1 `1 2 , . . . , k |K 2 | 2 )¯\ pn 3 n 1 n 2 I p1 p 2 ' K 3 q , where • U p1 1 " n 3 p1 n 1 n 2 I p 2 ; • U p1 2 " n 3 p 2 n 2 n 1 I p1 ;
• Ãp 1 2 is a complete aperiodic set of coset representatives for Z p1 n 1 modulo n 1 I p1 ;

• Ṽ 1,p 1 2 , . . . , Ṽ h,p 1 2
are complete aperiodic sets of coset representatives for Z p1 n 2 modulo p1 I n 2 ;

The definition is completely symmetric for the p2 -operation. As in the case of n1 -operation, we notice that R A Ă R A p1 by construction. Also note that S A " S Ap 1 , which implies that |A p1 | " |A|. Instead, S B Ĺ S B p1 , incorporating the new prime powers introduced by θ. As a consequence, |B p1 | " θ|B|.

The effect of the p1 -operation in the lattice of cyclotomic indices of A ' B can be seen only in the complex hull representing n 3 p1 n 1 Ã1 : there is an expansion by factor θ of both the edge obtained as the difference between the convex hull of n 3 p 1 n 1 I n 2 and the convex hull of the cyclotomic indices of Ã1 , and the convex hull Ã1 itself. Figures 3.30 and 3.31 show two examples referring to our generic extended Vuza canon of period 72 to which we applied the pi -operation, for i " 1, 2: θ is a prime that already divided n (these are the 36 rhythms B for n " 144 and the 168 rhythms B for n " 216 analyzed in Table 3.4).

Rearrangement of K

As we have seen in Theorem 7 and 8, another possible way to pass from a (extended) Vuza canon to another, is to consider a different way to partition the set K and choose different sets K 1 , K 2 (and maybe K 3 ). This time, the cyclotomic polynomials which divide, respectively, the inner rhythm and the outer rhythm, remain the same. p1 " 4-operation on a Vuza canon of order 72. The parameters become: p1 " 2 ¨2 " 4, n1 " 2, p2 " 3, n2 " 3, and n3 " 2. L " t0u. #B " 36. p2 " 9-operation on a Vuza canon of order 72. The parameters become: p1 " 2, n1 " 2, p2 " 3 ¨3 " 9, n2 " 3, and n3 " 2. L " t0u. #B " 168.
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Coven-Meyerowitz theorem does not provide an aperiodic complement; however, there are some conditions for which one can be sure that the final result will indeed be an aperiodic canon.

Proposition 9 (Coven, Meyerowitz). If A Ă Z n satisfies conditions (T1) and (T2), then a complement of A in Z n (i.e., B CM satisfying A ' B CM " Z n ) can be defined taking as its characteristic polynomial:

B CM pxq " ź p α n p α RS A Φ p α ´x n p νppq ¯" ź p α n p α RS A Φ p ˜x np α´1 p νppq ¸,
where n "

ś i p νpp i q i
is the decomposition of n into prime powers.

This proposition allows us to define the Coven-Meyerowitz complement as a set. 

The Coven-Meyerowitz complement is given by

A CM " p9 ¨125qI 2 ' p4 ¨125qI 3 ' p4 ¨9 ¨5qI 5 .

Figure 4.1 shows the lattice representation of A CM : R A is graphically represented as the union of the hyperplanes which, starting from the vertices p α R S B , extend along all the orthogonal axes, those corresponding to the prime powers that divide n and are different from p, to include all multiples of p α (dividing n) which are not multiples of p pα`1q .

Example 18. Now suppose that our starting motif is the Coven-Meyerowitz complement of Example 17:

A " 1125I 2 ' 500I 3 ' 180I 5 Ă Z 4500 . The Coven-Meyerowitz complement is given by B CM " p2 ¨9 ¨125qI 2 ' p3 ¨4 ¨125qI 3 ' p4 ¨9qI 5 ' p4 ¨9 ¨25qI 5 as shown by its lattice representation in Figure 4.2. It is evident that, in this case, the Coven-Meyerowitz complement is periodic of periods n{p i , for every prime p i n. Lattice representation of ACM " p9 ¨125qI2 ' p4 ¨125qI3 ' p4 ¨9 ¨5qI5 when SB " t4, 5, 9, 125u. An interesting detail is the fact that the Coven-Meyerowitz complement actually has a factorisation very similar to that of the (extended) Vuza motifs A. Indeed, the Coven-Meyerowitz complement falls among these ones precisely under the hypotheses of Remark 4, i.e. that no element of S B CM is a maximum power (with respect to the factorisation of n). Conversely, an extended Vuza motif A can be considered a Coven-Meyerowitz complement when n 1 and n 2 are prime powers and the factor L, if present, is of the form L " à
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p α n 3 np α´1 p νppq I p , that is, L is itself a Coven-Meyerowitz complement of another rhythm in Z n .
As a last comment, we underline that the application of the Coven-Meyerowitz theorem does not provide an exhaustive algorithm for the search of the complements of a given motif in a given cyclic group Z n : on the contrary, they provide a unique complement for each choice of n and S B CM .

THE FILL-OUT PROCEDURE

65

The Fill-Out Procedure

In [21], M. N. Kolountzakis and M. Matolcsi used the Coven-Meyerowitz complement and a new heuristic algorithm called Fill-Out Procedure, which they applied twice for an exhaustive search for aperiodic canons (with a given n and S A ). The key idea behind the last one is the following: given a rhythm A Ď Z n such that 0 P A, the algorithm sets P " t0u and starts the search for possible expansions of the set P . The expansion is accomplished adding an element α P Z n to P according to the reverse order induced by a ranking function rpx, P q, which counts all the possible ways in which x can be covered through a translation of A. Once every element of Z m zpA ' P q has been ranked, the algorithm tries to add the element with the lowest rank. Adding a new element defines a new set, namely P Ą P , which is again expanded until either it can no longer be expanded or the set becomes a tiling complement. The search ends when all the possibilities have been explored.

The Fill-Out procedure is exhaustive, but, given an inner rhythm in a given cyclic group Z n , it finds all the tiling complements, regardless of whether they are periodic or aperiodic. The algorithm finds also multiple translations of the same rhythm, which we consider equivalent: this means that there are many solutions that must be removed in post-processing to obtain a list of aperiodic canons without repetitions.

In their work, Kolountzakis and Matolcsi carry out a complete classification of all aperiodic tiling of Z 144 ; however, the method described is not convenient to classify all aperiodic tiling for periods ą 200. Indeed, the number of aperiodic tiling increases to at least exponentially with n (see [21]):

Theorem 17 (Kolountzakis, Matolcsi). There are arbitrarily large n and aperiodic tilings Z n " A ' B, such that there are additional distinct aperiodic tiling complements B 1 , . . . , B k of A, with k ě e C ? n , with C a constant.

The Cutting Sequential Algorithm

In this section, we propose an Integer Linear Programming Model (ILP) whose solutions are the aperiodic rhythms tiling with a given rhythm A. In particular, we formulate the Aperiodic Tiling Complements Problem using ILP model that is based on the polynomial characterisation of tiling canons. The ILP model uses auxiliary 0-1 variables to encode the product Apxq ¨Bpxq which characterises tiling canons. The aperiodicity constraint is also formulated in terms of 0 ´1 variables; the objective function is equal to a constant and has no influence on the solutions found by the model. The ILP model is coupled with a sequential cutting algorithm that adds a no-good constraint every time a new canon B is found, to prevent finding solutions twice. In addition, the sequential algorithm sets new no-good constraints, one for each translation of B; hence, in contrast to the Fill-Out Procedure, the CS Algorithm needs no post-processing.

The purpose of the model is twofold. First, we want to determine, for a given rhythm A, all the tiling complements B in Z n . In this case, we are interested not only in testing the tiling property but also in finding all the complements of A. Given a rhythm A CHAPTER 4. ALGORITHMS FOR APERIODIC COMPLEMENTS and a period n, the Matolcsi and Kolountzakis' Fill-Out Procedure provides a complete classification of the complements of A in Z n [21]. The main idea behind this algorithm is to use packing complements and add one by one the new elements discovered by an iterative search. At the best of our knowledge, this is the only algorithm able to provide the complete list of complements of a given rhythm, for n ď 200. For larger n the problem has been considered in [19], but the author was able to give only a lower bound to the number of tiling complements. Therefore, we choose to compare our performances with the one of the Fill-Out Procedure.

Secondly, we aim to determine if a given aperiodic rhythm A, that does not satisfy the (T2) property, tiles with an aperiodic rhythm B. This could be used to efficiently test possible counterexamples to the necessity of condition (T2) [3].

The tiling problem is very similar to the decision problem of DIFF studied in [20], which is shown to be NP-complete. This suggests a lower bound on the computational complexity of the tiling decision problem. Since our problem consists in solving a linear system of 3n ´1 unknowns and 3n `3pM n ppq ´1q constraints, the complexity of finding a single aperiodic solution is Opn c `3M n ppqq, where M n ppq denotes the number of all distinct primes in the factorisation of n. However, Kolountzakis argued that verification of condition (T2) can be done in polynomial time. So if condition (T2) were necessary for tiling, the problem would be P-complete.

As we will see, solving this linear problem finds us only one of the possible solutions. However, we can update the problem by removing the found solution from the feasible set. If we solve the updated problem, we are then able to find a new solution. By iterating this process until the problem cannot be solved we will find all the tiling complements of the given rhythm A.

Since we are not interested in looking for all the possible solutions but rather for all the classes of equivalents rhythms modulo translations or affine transformations, we can customise the constraints added at each step. In particular, if we are interested in finding all the solutions modulo affine transformations, the number of constraints to add at each iteration is equal to the cardinality of P " ta P N : gcdpa, nq " 1u times the cardinality of the set of all translations fixing the first entry of the solution equal to 1. Therefore, we add O ´|P| n n A ¯new constraints at every iteration, where n A is the cardinality of the rhythm A. As a result, finding new tiling rhythms gets harder at each iteration.

An important property exploited in this algorithm is the invariance of the set of solutions under affine transformations, that is, any affine transformation sends tiling solutions into tiling solutions.

Remark 5. Recall that a set A is periodic modulo k n if and only if

x n ´1 x k ´1 ˇˇApxq.
Whenever a rhythm A is periodic modulo k n, with k ‰ n, it is periodic modulo all multiples of k dividing n. For this reason, when it comes to check whether A is periodic or not, it suffices to check if it is periodic modulo m

1 " p α 1 ´1 1 p α 2 2 . . . p α N N , m 2 " p α 1 1 p α 2 ´1 2 . . . p α N N , . . . , m N " p α 1 1 p α 2 2 . . . p α N ´1 N
, where n " p α 1 1 p α 2 2 . . . p α N N is the prime powers factorization of n.

Our main result is Theorem 18, where we state that imposing the aperiodicity of the solution can be done through linear constraints. Finally, we show how solving a sequence of increasingly harder linear problems leads to a complete enumeration of all the tiling complements of a given rhythm A.

Tiling constraints

First of all, we define the linear equations that describe the tiling property. Let us take an inner rhythm A and a possible outer rhythm B. Since the degrees of their characteristic polynomials, Apxq and Bpxq, are both less than or equal to n ´1, the degree of the product Rpxq is less than or equal to 2n ´2. We denote by r the vector with 2n ´1 entries containing the coefficients of the polynomial Rpxq :" ApxqBpxq. By Remark 2, we know that B tiles with A if and only if

Rpxq " 1 `x `x2 `¨¨¨`x n´1 , mod x n ´1. (4.1) 
We can express condition (4.1) through n linear equations r i `ri`n " 1, @i " 0, . . . , n ´1.

Therefore, we can express the constraint

Rpxq " ApxqBpxq " n´1 ÿ i"0

x i , mod x n ´1, through the linear system F i pBq ´ri " 0 @i P t0, . . . , 2n ´2u, r j `rj`n " 1 @j P t0, . . . , n ´1u, where F i pBq is the function that associates to a rhythm B the i-th coefficient of ApxqBpxq, that is

F 0 pBq :" a 0 b 0 , F 1 pBq :" a 1 b 0 `a0 b 1 , F 2 pBq :" a 2 b 0 `a1 b 1 `a0 b 2 , . . . . . . F 2n´2 pBq :" a n´1 b n´1 ,
where b " pb 0 , b 1 , . . . , b n´1 q are the coefficients of Bpxq. Notice that, since A is given, all the equations presented above are linear with respect to the variables b i and r i . We then can express them through a linear system

A ¨X " Y, (4.2) 
where CHAPTER 4. ALGORITHMS FOR APERIODIC COMPLEMENTS Remark 7. The set of constraints of the MP fully characterize the possible aperiodic rhythms tiling with a given rhythm A. The functional O does not play any role; however it can be used to induce an order or a selection criteria on the space of solutions. For example, let us consider the following functional Opb, rq :"

2n´2 ÿ i"0 i 2 b i .
This functional prefers the tiling complements whose first components are as full as possible of 1's. Choosing the right functional O can help in discerning, among all the possible tiling complements of the given rhythm A, the ones we want to find. However, since the aim of our tests is to find all the possible tilings, we will not need to impose any selection criteria and, therefore, we set Opb, rq :" 0.

Once we find an aperiodic rhythm B p1q tiling with a given rhythm A, we can remove B p1q from the set of all possible solutions D A and obtain a new set of feasible solutions D A , and define M P p2q , starting the whole process again. Repeating this process until we find an unsolvable problem, we retrieve all the possible solutions of the original Master Problem and, therefore, we generate all the aperiodic rhythms tiling with the rhythm A.

Let us now detail how to cut out from the feasible set the solution found at each iteration. Let B p1q be a rhythm tiling with A and let b p1q " pb 0 , . . . , b n´1 q be the coefficients of its characteristic polynomial. We denote with I p1q the set of non-zero coordinate indexes of the vector b p1q , that is

I p1q :" ! i P t0, . . . , n ´1u ˇˇb i " 1 
) .

We then define a new linear system by adding the constraint

ÿ iPI p1q b p1q i ‰ n n A , (4.20) 
or equivalently ÿ

iPI p1q b p1q i ď n n A ´1, (4.21) 
to the MP. By solving this new problem, we find a new solution b p2q ‰ b p1q of the initial tiling problem. We iterate this procedure until we find an unsolvable problem. All the solutions found during this process are stored in memory and given as final output of the algorithm.

In Algorithm 1, we sketch the pseudocode of this algorithm. Similarly to [6], the constraints (4.25) can be linearized using standard reformulation techniques as follows: Next, we encode the previous conditions as a SAT formula. To encode the if and only if clause, we make use of the logical equivalence between C 1 ô C 2 and p␣C 1 _ C 2 q pC 1 _ ␣C 2 q. The clause C 1 is given directly by the literal u d,i . The clause C 2 , expressing the right hand side of (4.25), i.e. the constraint that the variables must be either all true or all false, can be written as

0 ď n{d ÿ k"0 x i
C 2 " ¨n{d ľ k"0 x i`kd '_ ¨n{d ľ k"0 xi`kd ', @d P D n .
Then, the linear constraint (4.26) can be stated as the SAT formula:

␣ `ud,0 ^ud,1 ^¨¨¨^u d,pd´1q ˘" d´1 ł l"0 ūd,l , @d P D n .

Finally, we express the aperiodicity constraints using 

d´1 ľ i"0 rp␣C 2 _ u d,i q ^pC 2 _ ūd,i qs ^d´1 ł l"0 ūd,l , @d P D n . ( 4 

Computational results

First, we compare the results obtained using our ILP model and SAT encoding with the runtimes of the Fill-Out Procedure and of the CS Algorithm. We use the canons with CHAPTER 4. ALGORITHMS FOR APERIODIC COMPLEMENTS 

Enumerating aperiodic canons

As pointed out by E. Amiot in [3], an application of the Coven-Meyerowitz completion formula in Proposition 9 is part of an algorithm (due to M. Matolcsi [21,5]), designed to catalogue the aperiodic canons in a given non-Hajós group Z n . This algorithm allowed to check the Fripertinger results for n " 72 and n " 108 and to complete the catalogue for n " 120, n " 144, and n " 168. The idea is to check all possible S A sets. In light of the good performance of the SAT Encoding Algorithm, it could be proposed to use it to search for all the possible aperiodic complements of a given rhythm with a given period.

1. Compute all partitions into two subsets of the set of prime power divisors of n. Keep (usually) the smaller part, which will be S A (the other will obviously be S B ).

2. Discard all the partitions that produce only periodic tilings due to condition (T2), eliminating all sets R A that either

• make sure that A is periodic, or

• make sure that B must be periodic (remembering that R B must contain at least all the divisors of n not in R A ).

3. Compute the Coven-Meyerowitz complement B CM for S A .

4. Find all possible A by completing B CM , using the SAT Encoding Algorithm. Sort by the different R A values, keeping a representative for each possibility.

5. For each remaining representative of possible A's, compute B's complements with the SAT Encoding Algorithm, discarding periodic ones.

6. Whatever remains is an aperiodic canon.

The cases n " 180 and n " 200

Let us now apply the algorithm described above and try to complete the enumeration of the aperiodic canons of period 180.

1. The prime powers that divide 180 are 2, 4, 3, 9, and 5. In any tiling A'B " Z 180 the cyclotomic polynomials corresponding to these prime powers must divide exactly one of Apxq and Bpxq, according to condition (T1) of [9]. There are 15 possible 

1. # Ṽ1 " 1. # Ṽ2 " 1. #K " 5. |K| " 5. U 1 " 25 ¨2 ¨2 ¨3 ¨I3 . U 2 " 25 ¨3 ¨3 ¨2 ¨I2 . B " ´´U 1 ' 25 ¨2 ¨Ṽ 1 2 ' ! k 1 1 , . . . , k l 1 1 )¯\ ¨¨\ ´U1 ' 25 ¨2 ¨Ṽ j 2 ' ! k l j´1 `1 1 , . . . , k |K 1 | 1 )¯¯\ \ ´´U 2 ' 25 ¨3 ¨Ṽ 1 1 ' ␣ k 1 2 , . . . , k m 1 2 ( ¯\ ¨¨\ ´U2 ' 25 ¨3 ¨Ṽ h 1 ' ! k m h´1 `1 2 , . . . , k |K 2 | 2 )¯¯\ p25 ¨2 ¨3 ¨I2¨3 ' K 3 q . The number of extended Vuza complements of A CM in Z 900 is #B " #K n ÿ 1ďiďm ´n1 p 2 n 2 ¨# Ṽ1 ¯ti1 ¨´n 2 p 1 n 1 ¨# Ṽ2 ¯ti2 ¨pn 1 n 2 q t i3 ¨ˆ|K| t i ˙" 281232,
where pt i1 , t i2 , t i3 q, with i " 1, . . . , m, represents a possible partition of the remainder classes modulo |K| of Z 900 .
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87 2. # Ṽ1 " 3. # Ṽ2 " 2. #K " 3. |K| " 3. U 1 " 9 ¨2 ¨2 ¨5 ¨I5 . U 2 " 9 ¨5 ¨5 ¨2 ¨I2 . B " ´´U 1 ' 9 ¨2 ¨Ṽ 1 2 ' ! k 1 1 , . . . , k l 1 1 )¯\ ¨¨\ ´U1 ' 9 ¨2 ¨Ṽ j 2 ' ! k l j´1 `1 1 , . . . , k |K 1 | 1 )¯¯\ \ ´´U 2 ' 9 ¨5 ¨Ṽ 1 1 ' ␣ k 1 2 , . . . , k m 1 2 ( ¯\ ¨¨\ ´U2 ' 9 ¨5 ¨Ṽ h 1 ' ! k m h´1 `1 2 , . . . , k |K 2 | 2 )¯¯\ p9 ¨2 ¨5 ¨I2¨5¨' K 3 q .
Similarly to the previous case, the number of extended Vuza complements of A CM in Z 900 is #B " 12600.

3. # Ṽ1 " 16. # Ṽ2 " 8. #K " 2. |K| " 2. U 1 " 4 ¨3 ¨3 ¨5 ¨I5 . U 2 " 4 ¨5 ¨5 ¨3 ¨I3 . B " ´´U 1 ' 4 ¨3 ¨Ṽ 1 2 ' ! k 1 1 , . . . , k l 1 1 )¯\ ¨¨\ ´U1 ' 4 ¨3 ¨Ṽ j 2 ' ! k l j´1 `1 1 , . . . , k |K 1 | 1 )¯¯\ \ ´´U 2 ' 4 ¨5 ¨Ṽ 1 1 ' ␣ k 1 2 , . . . , k m 1 2 ( ¯\ ¨¨\ ´U2 ' 4 ¨5 ¨Ṽ h 1 ' ! k m h´1 `1 2 , . . . , k |K 2 | 2 )¯¯.

The number of extended Vuza complements of

A CM in Z 900 is #B " 1920.
It is interesting to note that the number of extended Vuza complements for each of the three individual cases for n " 900 analyzed above, corresponds to the number of extended Vuza complements of A

1 CM " n 1 3 p 1 n 1 Ã1 ' n 1 3 p 2 n 2 Ã2 for a new period n 1 " p 1 n 1 p 2 n 2 n 1 3 
such that n 1 3 " n 3 {α and α " |L| " n 3 {|K|. Let us see how to construct the Vuza complements respectively in the cases n 1 " 900{5, n 1 " 900{3, and n 1 " 900{2. Note, first of all, that # Ṽ1 and # Ṽ2 will not change, since they are independent of the parameter n 3 .

1. # Ṽ1 " 1. # Ṽ2 " 1. K 1 " Z 5 . U 1 1 " 5 ¨2 ¨2 ¨3 ¨I3 . U 1 2 " 5 ¨3 ¨3 ¨2 ¨I2 . B 1 " ´´U 1 1 ' 5 ¨2 ¨Ṽ 1 2 ' ! k 1 1 , . . . , k l 1 1 )¯\ ¨¨\ ´U 1 1 ' 5 ¨2 ¨Ṽ j 2 ' ! k l j´1 `1 1 , . . . , k |K 1 | 1 )¯¯\ \ ´´U 1 2 ' 5 ¨3 ¨Ṽ 1 1 ' ␣ k 1 2 , . . . , k m 1 2 ( ¯\ ¨¨\ ´U 1 2 ' 5 ¨3 ¨Ṽ h 1 ' ! k m h´1 `1 2 , . . . , k |K 2 | 2 )¯¯\ p5 ¨2 ¨3 ¨I2¨3 ' K 3 q .
The number of extended Vuza complements of A )¯¯\ p3 ¨2 ¨5 ¨I2¨5¨' K 3 q .

The number of extended Vuza complements of A 1 CM in Z 300 is therefore #B 1 " 12600 (see Figure 4.7).

3. # Ṽ1 " 16. # Ṽ2 " 8. K 1 " Z 2 . U 1 1 " 2 ¨3 ¨3 ¨5 ¨I5 . U 1 2 " 2 ¨5 ¨5 ¨3 ¨I3 .

B 1 " ´´U 1 1 ' 2 ¨3 ¨Ṽ 1 2 ' ! k 1 1 , . . . , k l 1 1 )¯\ ¨¨\ ´U 1 1 ' 2 ¨3 ¨Ṽ j 2 ' ! k l j´1 `1 1 , . . . , k |K 1 | 1 )¯¯\ \ ´´U 1 2 ' 2 ¨5 ¨Ṽ 1 1 ' ␣ k 1 2 , . . . , k m 1 2 ( ¯\ ¨¨\ ´U 1 2 ' 2 ¨5 ¨Ṽ h 1 ' ! k m h´1 `1 2 , . . . , k |K 2 | 2
)¯¯.

The number of extended Vuza complements of A 1

CM in Z 450 is #B 1 " 1920 (see Figure 4.8).

What we have seen is the effect of n3 -operation applied to a Vuza canon of period p 1 n 1 p 2 n 2 n 3 to get an extended Vuza canon of period p 1 n 1 p 2 n 2 pθn 3 q, in combination with the addition of an appropriate set L that makes the cardinalities of the old and new sets K identical. Note that the number of all tiling sets with L " rI s (s prime) in Z n 3 is s r . Remark 11. Finally, note that the extended Vuza motifs B tiling in Z 900 with A CM " n 3 p 1 n 1 Ã1 ' n 3 p 2 n 2 Ã2 ' L (such that S Ã " t2, 3, 5u and L is an extension of L), are the same B's tiling with A's which differ only for different extensions of L (see Figures (b), (c), (d), and (e) in Figures 4.6,4.7,and 4.8). The reason lies in the fact that the three summands of Bpxq always have in common all the cyclotomic factors with indices grater than n 3 which are not factors of Apxq, whatever Kpxq. Therefore, in our case, all cyclotomic polynomials with indices multiple of q n 3 and not of n 3 are always divisors of Bpxq.

Let us now go back to the 303360 aperiodic tiling complements calculated with the SAT Encoding Algorithm. The sum of the extended Vuza complements of the same A CM turns out to be 281232 `12600 `1920 " 295752 ă 303360. Our attention is then drawn to the 7608 exceeding rhythms. It is easy to prove that these rhythms have characteristic polynomials with factorisations in cyclotomic polynomials that cannot be achieved through the Vuza construction, nor the extended Vuza algorithm. The set R B for all these 7608 rhythms is in fact given by R B " t4, 9, 25, 36, 100, 225, 900u, which does not correspond to any extended Vuza rhythm as pointed out in Remark 11. Note that condition (T2) holds also for these rhythms.

A nice characteristic is that there is no equirepartition of any of them modulo some divisor of n; that is to say when (w.l.o.g.), the rhythm is not divisible by some t. Lagarias and Szabo, in [], were the first who exhibited tilings which have this feature. In fact, they found the smallest known aperiodic canon without equirepartition for n " 900, and the outer rhythm of this canon is one of the 7608 aperiodic rhythm we are talking about. In Figure 4.9, the lattice of the 7608 aperiodic with no equirepartition rhythms is represented: it consists of 8 vertices of the lattice cube of 900 (all except, of course, vertex 1).

In their paper Lagarias and Szabo pointed out that the rhythm they found, although less regular than others, gives rise anyway to a quasiperiodic canon (i.e. a canon of the form A ' B " Z n such that there exists a subgroup H " th 1 " 0, h 2 , . . . u and a partition B " YB i with A `B1 `hi " A `Bi ). In their case, H " t0, 300, 600u.

The quasi-periodicity conjecture, originally made by Hajós, states that every canon is in fact quasi-periodic (because either A or B admits the above type f partition).

It is worth noting that all 7608 complements (the one found by Lagarias and Szabo included) admit a partition as in the above definition, and are thus quasi-periodic, with respect to each of the 3 possible subgroups H 2 " t0, 450u, H 3 " t0, 300, 600u, and H 5 " t0, 180, 360, 540, 720u. Indeed, they usually admit several such partitions; they therefore offer no counterexample against the quasi-periodicity conjecture. Lattice representations of tiling complements of the 281232 extended Vuza rhythms for p1 " 2, n1 " 2, p2 " 3, and n2 " 3. Lattice representations of tiling complements of the 12600 extended Vuza rhythms for p1 " 2, n1 " 2, p2 " 5, and n2 " 5. Lattice representations of tiling complements of the 1920 extended Vuza rhythms for p1 " 3, n1 " 3, p2 " 5, and n2 " 5. 

ENUMERATING APERIODIC CANONS

CHAPTER 4. ALGORITHMS FOR APERIODIC COMPLEMENTS
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Testing necessity of condition (T2)

As mentioned in Section 4.3, we wanted to test the CS Algorithm and the SAT Encoding Algorithm not only to find all the complements of a given aperiodic rhythm for a certain period n of the canon. A second objective was to try to test some "critical" rhythms which could be candidates for a non-T2 aperiodic canon.

We have therefore created a short routine in Wolfram Mathematica capable of producing a 0-1 product Apxq of cyclotomic polynomials which had among its factors at least one whose index's prime power factors were not in R, by testing the divisibility by the Coven-Meyerowitz complement characteristic polynomial. Such Apxq is by construction overloaded with superfluous cyclotomic factors; hence it may be hoped that some complements Bpxq will lack at least one product of elements of S B in their R B , i.e. (T2) might be false though A'B " Z n . Therefore, we were interested in determining whether a given rhythm A admits an aperiodic tiling complement B. For this reason, being able to verify the tiling property of a rhythm A in a reasonable amount of time is important.

In Table 4.7, we report the rhythms tested with our method. The runtimes required to determine the non-existence of an aperiodic complement vary in a range from 1 minute (for the rhythms in Z 1050 , Z 2310 , and Z 6300 ) up to 10 minutes (for the rhythm in Z 27225 ). 5, 6, 10, 12, 18, 24, 26, 30, 31, 36u 6300 t0, 2, 4, 5, 6, 7, 8, 10, 12, 350, 352, 354, 355, 356, 357, 358, 360, 362u 27225 t0, 9, 15, 18, 24, 27, 30, 36, 39, 45, 54, 3025, 3034, 3040, 3043, 3049, 3052, 3055, 3061, 3064, 3070, 3079, 6050, 6059, 6065, 6068, 6074, 6077, 6080, 6086, 6089, 6095, 6104u 4.6. TESTING NECESSITY OF CONDITION (T2) Lattice representation of the non-tiling rhythm A " t0, 2, 4, 5, 6, 7, 8, 10, 12, 350, 352, 354, 355, 356, 357, 358, 360, 362u. No prime power dividing 10 (in blue) is in SA.

d pxq mod px n ´1q ( 1 )Définition 3 .

 13 Soit Φ d pxq le polynôme cyclotomique d'indice d. Ensuite, les canons rythmiques de pavage peuvent être caractérisés comme suit. Lemme 1. Soit A un rythme dans Z n et soit Apxq le polynôme caractéristique de A, c'est-à-dire Apxq " ř kPA x k . Étant donné B Ă Z n et son polynôme caractéristique Bpxq, on a que Apxq ¨Bpxq " si et seulement si Apxq et Bpxq sont des polynômes à coefficients dans t0, 1u et A ' B " Z n . Par conséquent, pour chaque d n, avec d ą 1, on a Φ d pxq Apxq ou Φ d pxq Bpxq. Un canon rythmique de pavage pA, Bq in Z n est un canon rythmique de pavage apériodique si A et B sont apériodiques.

Figure 1 -

 1 Figure 1n " 240. A " A 1 ' A 2 ' L.

Therefore 1 .

 1 by (a), Apxq and Bpxq are polynomials with coefficients in t0, 1u and the sets A and B are in direct sum, and 2. by (b), A ' B is a complete set of representatives modulo n. ðù : We have pA ' Bqpxq " ApxqBpxq " tr 1 , . . . , r n upxq " x r 1 `xr 2 `¨¨¨`x rn .
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 312332 Figure 3.1: Graphic representations of tiling rhythmic canons.
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 33 Figure 3.3: n " 108. A CM " 27I 2 ' 12I 3 . 1 2 3 4 6 27 9 12 18 54 36 108

Figure 3 . 4 :Figure 3 . 5 :

 3435 Figure 3.4: n " 120. A " 30I 2 ' 8I 3 .

Figure 3 . 6 :

 36 Figure 3.6: n " 144. A CM " 18I 2 ' 16I 3 . 1 2 3 4 6 8

Figure 3 . 7 :

 37 Figure 3.7: n " 144. A CM " 36I 2 ' 16I 3 . 1 2 3 4 6 8

25 Figure 3 . 8 :

 2538 Figure 3.8: n" 144. A 1 ' A 2 ' A 3 " 36I 2 ' 16I 3 ' A 3 .1 2 3 4 6 8

  A 3 " L " I 2 . #B " 6.SA " t2, 3, 8u.

Figure 3 . 9 :

 39 Figure 3.9: n " 144. A 1 ' A 2 ' 2A 3 " 36I 2 ' 16I 3 ' 2A 3 .

  2A 3 " L " 18I 2 . #B " 60.

  2A 3 " L " 2I 2 . #B " 12.SA " t3, 4, 8u.

Figure 3 .Figure 3 .

 33 Figure 3.10: n " 168. A " 42I 2 ' 8I 3 .

Figure 3 .U 1 ' V 2 "

 312 Figure 3.16: n " 240. A " A 1 ' A 2 ' L.

Figure 3 .

 3 Figure 3.25: n " 360. A " 18I 6 ' 40I 2 .

3. 5 .Figure 3 .

 53 Figure 3.26: n " 144. A CM " 36I 2 ' 16I 3 . 1 2 3 4 6 8

Figure 3 .

 3 Figure 3.27: n " 216. A CM " 54I 2 ' 24I 3 . 1 2 3 4 6 8

Figure 3 .

 3 Figure 3.28: n " 360. A CM " 90I 2 ' 40I 3 .

4

  n3 -operation on an extended Vuza canon of order 144. The parameters become: p1 " 4, n1 " 2, p2 " 3, n2 " 3, and n3 " 2 ¨2 " 4.

3. 5 .Figure 3 .

 53 Figure 3.30: n " 144. A CM " 18I 2 ' 16I 3 .

Figure 3 .

 3 Figure 3.31: n " 216. A CM " 54I 2 ' 8I 3 . 1 2 3 4 6 8
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 141 Figure 4.1: n " 4500. A CM " 1125I 2 ' 500I 3 ' 180I 5 .

Figure 4 . 2 :Remark 4 .

 424 Figure 4.2: n " 4500. B CM " 2250I 2 ' 1500I 3 ' 36I 5 ' 900I 5 .

p1qA.

  Let us denote with M P p1q the restriction on D p1q A of M P and call B p2q the solution of M P p1q , we can then remove this solution from D p1q A , define the set D p2q

Figure 4 . 3 :

 43 Figure 4.3: Times (in seconds) to find the next solution with CS Algorithm.

90CHAPTER 4 .Figure 4 . 6 :n 3 " 5 .

 44635 Figure 4.6: n " 900. A 1 ' A 2 " 45I 2 ' 20I 3 .

n 3 "n 3 "n 3 "n 3 "

 3333 [START_REF] Rédei | Zwei lückensätze über polynome in endlichen primkörpern mit anwendung auf die endlichen abelschen gruppen und die gaussischen summen[END_REF]. L " 36I 5 . 25. L " I 5 . 25. L " 4I 5 . 25. L " 9I 5 .

Figure 4 . 7 :

 47 Figure 4.7: n " 900. A 1 ' A 2 " 225I 2 ' 36I 5 .

n 3 " 9 .

 39 L " 25I 3 .

Figure 4 . 8 :n 3 " 2 .

 4832 Figure 4.8: n " 900. A 1 ' A 2 " 100I 3 ' 36I 5 .

n 3 " 4 .

 34 L " 25I 2 .

Figure 4 . 9 :

 49 Figure 4.9: n " 900. A CM " 225I 2 ' 100I 3 ' 36I 5 .

Figure 4 .

 4 Figure 4.10: n " 1050. R A " t2, 10, 21, 25, 50, 105u.

Table 1 -

 1 Nombre de rythmes de Vuza étendus pour les valeurs non-Hajós n ď 216.

	n	p 1 n 1 p 2 n 2 n 3	L	#K		#A				#B		
				Théorème :			p2q	p6q	p7q	p2q	p3q	p4q	p5q	p6q
						t0u	1	6	0	0	6	0	0	30	0
	168	2 2	2 2	3 7	7 3	t0u t0u	1 1	104 16	0 0	0 0	14 6	0 0	0 0	28 48	0 0
		2	5	3	3	t0u	1	9	0	0	15	0	0	105	0
		5	2	3	3	t0u	1	6	0	0	6	0	0	90	0
	180	3	5	2	2	t0u	1	16	0	0	500	0	200	1100	0
		5	3	2	2	t0u	1	8	0	0	252	0	72	1728	0
		2	2	3	3	t0u	1	3	0	0	45360	77760	158112	0	0
	200	2	2	5	5	t0u	1	125	0	0	10	0	0	50	0
		2	4	3	3	t0u	1	6	0	0	180 `540 72 `216	0	12672	0
		2	2	3	3	t0, 3u	8	0	156	0	0	0	0	0	180 `540 `72 `216
		2	2	3	3	t0, 1u	2	0	324	0	0	0	0	0	180 `72
		2	2	3	3	t0u	1	3	0	0	754272	2449440 5832000	0	0
	216	2	2	3	3	t0, 1, 2u	3	0	34992	0	0	0	0	0	6
		2	2	3	3	t0, 2, 4u	9	0	10935	0	0	0	0	0	6 `12
		2	2	3	9	t0u	1	729	0	0	6 `12	0	0	54	0
		2	2	9	3	t0u	1	27	0	0	6	0	0	162	0
		4	2	3	3	t0u	1	6	0	0	252	0	72	5940	0

Table 2 -

 2 Nombre de rythmes de Vuza étendus pour les valeurs non-Hajós 240 ď n ď 280.

	n	p 1 n 1 p 2 n 2 n 3	L	#K		#A				#B		
				Théorème :			p2q	p6q	p7q	p2q	p3q	p4q	p5q	p6q
		2	4	3	5	2	t0u	1	32	0	0	20	0	0	20 `160	0
		2	2	3	5	4	t0, 6u	4	0	0	588	0	0	0	0	20 `20
		2	2	3	5	4	t0, 2u	4	0	7252	0	0	0	0	0	20 `20
		2	2	3	5	4	t0, 15u	2	0	0	64	0	0	0	0	20
		2	2	3	5	4	t0, 3u	2	0	1176	0	0	0	0	0	20
		2	2	3	5	4	t0, 1u	2	0	14504	0	0	0	0	0	20
		2	2	3	5	4	t0u	1	16	0	0	13000	9000	18000	94000	0
	240	2 2	2 2	5 5	3 3	4 4	t0u t0, 1u	1 2	8 0	0 4016	0 0	6264 0	3240 0	5184 0	197856 0	0 18
		2	2	5	3	4	t0, 5u	2	0	0	112	0	0	0	0	18
		2	2	5	3	4	t0, 15u	2	0	0	32	0	0	0	0	18
		2	2	5	3	4	t0, 2u	4	0	2008	0	0	0	0	0	12 `24
		2	2	5	3	4	t0, 10u	4	0	0	56	0	0	0	0	12 `24
		2	4	5	3	2	t0u	1	16	0	0	12	0	0	24 `576	0
		4	2	3	5	2	t0u	1	32	0	0	10	0	0	290	0
		4	2	5	3	2	t0u	1	16	0	0	6	0	0	102	0
		2	7	3	3	2	t0u	1	27	0	0	21	0	0	315	0
		7	2	3	3	2	t0u	1	9	0	0	6	0	0	618	0
	252	3	7	2	2	3	t0u	1	104	0	0	980	0	392	5096	0
		7	3	2	2	3	t0u	1	16	0	0	324	0	72	21312	0
		2	2	3	3	7	t0u	1	3	0	0	12830400 71383680 206126208	0	0
	264	2 2	2 2	3 11	11 3	2 2	t0u t0u	1 1	5368 40	0 0	0 0	22 6	0 0	0 0	88 552	0 0
	270	3 3	3 3	2 5	5 2	3 3	t0u t0u	1 1	9 6	0 0	0 0	1125 288	0 0	450 72	48825 48600	0 0
	280	2 2	2 2	5 7	7 5	2 2	t0u t0u	1 1	2232 480	0 0	0 0	14 10	0 0	0 0	112 170	0 0

Table 3 -

 3 Compléments de pavage apériodiques pour les périodes n P t72, 108, 120, 144, 168u.

	n	p 1 n 1 p 2 n 2 n 3	temps d'exécution (s) FOP CSA SAT	ILP	#B
	72 108 2 2	2 2	3 3	3 3	2 3	1.59 896.06	0.10 ă 0.01 7.84 0.09	0.03 0.19	6 252
	120	2 2	2 2	5 3	3 5	2 2	24.16 10.92	0.27 0.14	0.02 0.01	0.04 0.04	18 20
	144	4 2 2 2	2 2 2 4	3 3 3 3	3 3 3 3	2 4 4 2	82.53 ą 10800.00 ą 10800.00 2.93 7.13 0.10 ă 0.01 0.02 11.04 46.96 8640 0.11 36 0.05 6 80.04 0.94 0.02 0.08 60
	168	2 2	2 2	7 3	3 7	2 2	461.53 46.11	17.61 0.91	0.04 0.02	0.20 0.07	54 42
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  Grid representation. . . . . . . . . . . . . . . . . . . . . . . . . . 3.21 n " 360. A CM " 90I 2 ' 40I 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.22 n " 144. A CM " 18I 2 ' 72I 2 ' 16I 3 . . . . . . . . . . . . . . . . . . . . . . 3.23 n " 144. A CM " 18I 2 ' 36I 2 ' 16I 3 . . . . . . . . . . . . . . . . . . . . . . 3.24 n " 216. A CM " 54I 2 ' 8I 3 ' 24I 3 . . . . . . . . . . . . . . . . . . . . . . . 3.25 n " 360. A " 18I 6 ' 40I 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.26 n " 144. A CM " 36I 2 ' 16I 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.27 n " 216. A CM " 54I 2 ' 24I 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.28 n " 360. A CM " 90I 2 ' 40I 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.29 n " 288. A CM " 36I 2 ' 32I 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.30 n " 144. A CM " 18I 2 ' 16I 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.31 n " 216. A CM " 54I 2 ' 8I 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 n " 4500. A CM " 1125I 2 ' 500I 3 ' 180I 5 . . . . . . . . . . . . . . . . . . .

	. . . . 3.14 n " 252. B " pU 1 ' 14 Ṽ2 ' K 1 q \ pU 2 ' 6 Ṽ1 ' K 2 q. . . . . . . . . . . . . . 3.15 n " 216. A " A 1 ' A 2 ' L. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.16 n " 240. A " A 1 ' A 2 ' L. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.17 n " 144. A " 16I 3 ' 36I 2 ' I 2 . . . . . . . . . . . . . . . . . . . . . . . . . 3.18 n " 144. A CM " 9I 2 ' 36I 2 ' 16I 3 . . . . . . . . . . . . . . . . . . . . . . . 3.19 n " 144. Grid representation. . . . . . . . . . . . . . . . . . . . . . . . . . 3.20 n " 360. Chapter 1

  Figure 3.14: n " 252.B " pU 1 ' 14 Ṽ2 ' K 1 q \ pU 2 ' 6 Ṽ1 ' K 2 q.Lattice representation of an aperiodic tiling rhythmic canon with period n " 252, where A " t0, 56, 196u ' t0, 18, 54, 72, 162, 216, 234u and B " p84I3 ' t0, 14uq \ p126I2 ' t0, 60, 102u ' t1uq.

						CHAPTER 3. VUZA CANONS
	4 28	2 14	1 12 7 84	3 36 21 126 18 252 42 6	9 63	4 28	2 14	1 12 7 84	3 36 21 126 18 252 42 6	9 63
	(a) U 1 ' 14 Ṽ2 " 84I 3 ' 14t0, 1u	(b) U 2 ' 6 Ṽ1 " 126I 2 ' 6 t0, 10, 17u
					t1u					
	obtaining a new canon pA, Bq where						
	A " 28 Ã1 ' 18 Ã2 " t0, 56, 196u ' t0, 18, 54, 72, 162, 216, 234u B " ´U1 ' 14 Ṽ2 ' K 1 ¯\ ´U2 ' 6 Ṽ1 ' K 2 "
	pt0, 84, 168u ' t0, 14u ' t0uq \ pt0, 126u ' t0, 60, 102u ' t1uq .	

  .15: n " 216. A " A 1 ' A 2 ' L.

	8	4	2 24	1 12 72 6	3 36 216 18 108 9	54	27	8	4	2 24	1 12 72 6	3 36 216 18 108 9	54	27
			(a) U 1 ' V 2 " 108I 2 ' 18I 3								

  paying attention to assign at least one class to the first two factors (otherwise the CHAPTER 3. VUZA CANONS Figure 3.17: n " 144. A " 16I 3 ' 36I 2 ' I 2 .

	16	8	4 48	1 12 144 2 24	6 72	3 36	18	9
			SA " t2, 3, 8u.			

Table 3 .

 3 1: All possible Ã1 and Ã2 for some non-Hajós values of n ď 168.

	n	p 1	n 1	p 2	n 2	n 3	L	#K	#A	n 3 p 1 n 1 Ã1	n 3 p 2 n 2 Ã2
	72	3	3	2	2	2	t0u	0	3	18I 2	8I 3 8t0, 2, 4u 8t0, 1, 5u
	108	3	3	2	2	3	t0u	0	3	27I 2	12I 3 12t0, 2, 4u 12t0, 1, 5u
											8I 5
											8t0, 2, 3, 4, 6u
											8t0, 1, 3, 4, 7u
											8t0, 3, 4, 6, 7u
											8t0, 1, 2, 4, 8u
											8t0, 2, 4, 6, 8u
											8t0, 1, 4, 7, 8u
		3	5	2	2	2	t0u	0	16	30I 2	8t0, 4, 6, 7, 8u 8t0, 1, 2, 3, 9u
											8t0, 2, 3, 6, 9u
											8t0, 1, 3, 7, 9u
	120										8t0, 3, 6, 7, 9u 8t0, 1, 2, 8, 9u
											8t0, 2, 6, 8, 9u
											8t0, 3, 4, 7, 11u
											8t0, 2, 4, 8, 11u
											8I 3
											8t0, 2, 4u
											8t0, 1, 5u
		5	3	2	2	2	t0u	0	8	30I 2	8t0, 4, 5u 8t0, 2, 7u
											8t0, 5, 7u
											8t0, 1, 8u
											8t0, 4, 8u
		3	3	2	2	4	t0u t0, 1u	0 2	3	36I 2	16I 3 16t0, 2, 4u 16t0, 1, 5u
	144	3	3	2	4	2	t0u	0	6	18I 4 18t0, 2, 3, 5u	16I 3 16t0, 2, 4u 16t0, 1, 5u
		3	3	4	2	2	t0u	0	6	18I 2 18t0, 3u	16I 3 16t0, 2, 4u 16t0, 1, 5u
											8I 3
											8t0, 2, 4u
											8t0, 1, 5u
											8t0, 4, 5u
											8t0, 2, 7u
											8t0, 5, 7u
											8t0, 1, 8u
	168	7	3	2	2	2	t0u	0	16	42I 2	8t0, 4, 8u 8t0, 7, 8u
											8t0, 2, 10u
											8t0, 5, 10u
											8t0, 8, 10u
											8t0, 1, 11u
											8t0, 4, 11u
											8t0, 7, 11u
											8t0, 5, 13u

Table 3 .

 3 2: All possible Ã1 and Ã2 for n " 180.

	n	p 1	n 1	p 2	n 2	n 3	L	#K	#A	n 3 p 1 n 1 Ã1	n 3 p 2 n 2 Ã2
		3	3	2	5	2	t0u	0	9	18I 5 18t0, 1, 3, 4, 7u 18t0, 1, 2, 4, 8u	20I 3 20t0, 2, 4u 20t0, 1, 5u
		3	3	5	2	2	t0u	0	6	18I 2 18t0, 3u	20I 3 20t0, 2, 4u 20t0, 1, 5u
											12I 5
											12t0, 2, 3, 4, 6u
											12t0, 1, 3, 4, 7u
											12t0, 3, 4, 6, 7u
											12t0, 1, 2, 4, 8u
											12t0, 2, 4, 6, 8u
											12t0, 1, 4, 7, 8u
		3	5	2	2	3	t0u	0	16	45I 2	12t0, 4, 6, 7, 8u 12t0, 1, 2, 3, 9u
											12t0, 2, 3, 6, 9u
											12t0, 1, 3, 7, 9u
	180										12t0, 3, 6, 7, 9u 12t0, 1, 2, 8, 9u
											12t0, 2, 6, 8, 9u
											12t0, 3, 4, 7, 11u
											12t0, 2, 4, 8, 11u
											12I 3
											12t0, 2, 4u
											12t0, 1, 5u
		5	3	2	2	3	t0u	0	8	45I 2	12t0, 4, 5u 12t0, 2, 7u
											12t0, 5, 7u
											12t0, 1, 8u
											12t0, 4, 8u
		3	3	2	2	5	t0u	0	3	45I 2	20I 3 20t0, 2, 4u 20t0, 1, 5u

Table 3 .

 3 5: Number of extended Vuza rhythms for non-Hajós values of 240 ď n ď 280.

	n	p 1 n 1 p 2 n 2 n 3	L	#K		#A				#B		
				Theorem:			p3q	p9q	p10q	p3q	p6q	p7q	p8q	p9q
		2	4	3	5	2	t0u	1	32	0	0	20	0	0	20 `160	0
		2	2	3	5	4	t0, 6u	4	0	0	588	0	0	0	0	20 `20
		2	2	3	5	4	t0, 2u	4	0	7252	0	0	0	0	0	20 `20
		2	2	3	5	4	t0, 15u	2	0	0	64	0	0	0	0	20
		2	2	3	5	4	t0, 3u	2	0	1176	0	0	0	0	0	20
		2	2	3	5	4	t0, 1u	2	0	14504	0	0	0	0	0	20
		2	2	3	5	4	t0u	1	16	0	0	13000	9000	18000	94000	0
	240	2	2	5	3	4	t0u	1	8	0	0	6264	3240	5184	197856	0
		2	2	5	3	4	t0, 1u	2	0	4016	0	0	0	0	0	18
		2	2	5	3	4	t0, 5u	2	0	0	112	0	0	0	0	18
		2	2	5	3	4	t0, 15u	2	0	0	32	0	0	0	0	18
		2	2	5	3	4	t0, 2u	4	0	2008	0	0	0	0	0	12 `24
		2	2	5	3	4	t0, 10u	4	0	0	56	0	0	0	0	12 `24
		2	4	5	3	2	t0u	1	16	0	0	12	0	0	24 `576	0
		4	2	3	5	2	t0u	1	32	0	0	10	0	0	290	0
		4	2	5	3	2	t0u	1	16	0	0	6	0	0	102	0
		2	7	3	3	2	t0u	1	27	0	0	21	0	0	315	0
		7	2	3	3	2	t0u	1	9	0	0	6	0	0	618	0
	252	3	7	2	2	3	t0u	1	104	0	0	980	0	392	5096	0
		7	3	2	2	3	t0u	1	16	0	0	324	0	72	21312	0
		2	2	3	3	7	t0u	1	3	0	0	12830400 71383680 206126208	0	0
	264	2	2	3	11	2	t0u	1	5368	0	0	22	0	0	88	0
		2	2	11	3	2	t0u	1	40	0	0	6	0	0	552	0
	270	3	3	2	5	3	t0u	1	9	0	0	1125	0	450	48825	0
		3	3	5	2	3	t0u	1	6	0	0	288	0	72	48600	0
	280	2	2	5	7	2	t0u	1	2232	0	0	14	0	0	112	0
		2	2	7	5	2	t0u	1	480	0	0	10	0	0	170	0

  Figure 3.18: n " 144. A CM " 9I 2 ' 36I 2 ' 16I 3 .

	8	4	2 24	1 12	6 72	3 36	18	9	16	8	4 48	1 12 144 2 24	6 72	3 36	18	9
		Lattice representation of the multiplexing and the 2-zooming in Example 14.		
						Figure 3.19: n " 144. Grid representation.				
				(a) t0, 8, 16, 18, 26, 34u ' t0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53u		
				(b) t0, 16, 18, 32, 34, 50u ' t0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53u		
	(c) t0, 1, 16, 32, 33, 36, 37, 52, 65, 68, 69, 101u ' t0, 2, 10, 12, 24, 50, 58, 72, 84, 96, 98, 106u
	`pt0u `2Aq Y `t1u `2A 1 ˘˘' 2B " t0, 1, 16, 32, 33, 36, 37, 52, 65, 68, 69, 101u ' t0, 2, 10, 12, 24, 50, 58, 72, 84, 96, 98, 106u.
				8, 16, 18, 26, 34u ' t0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53u ,			
	whose grid representation is in Figure 3.19a, and								
	A 1 ' B " p18I 2 ' 8 t0, 2, 4uq ' pp36I 2 ' 6I 3 q \ p24I 3 ' 4I 2 ' t1uqq " " t0, 16, 18, 32, 34, 50u ' t0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53u ,			

whose grid representation is in Figure

3

.19b. The multiplexing of A and A 1 and the 2-zooming of B produce the following Vuza canon with period 144:

  Since pA ' t0, n, 2n, . . . , pk ´1q nuq pxq " ApxqI k px n q and cyclotomic polynomials are irreducible, we have that R A'nI k " R A Y R nI k . We see that A ' nI k also verifies condition (T2): if p α 1

dkn,dffln Φ d pxq, then R nI k " td kn | d ffl nu and S nI k " tp α kn | p α ffl n, p primeu. For each set of powers of distinct primes p α 1 1 , . . . , p αm m P S nI k , p α 1 1 ¨¨¨p αm m P R A , i.e. nI k verifies condition (T2). 1 , . . . , p αm m P S A'nI k are powers of distinct primes, there are three possibilities:

  VUZA CANONS Figure 3.20: n " 360. Grid representation.

	(a) t0, 8, 16, 18, 26, 34u ' t0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53u
	(b) t0, 16, 18, 32, 34, 50u ' t0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53u
	(c) t0, 8, 16, 54, 62, 70u ' t0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53u

  is still injective and | Ã|| B| " kN . Example 16. Once again, let us look at the effects of this transformation to our canon of reference in Example 14. Starting with the canon A ' B " t0, 8, 16, 18, 26, 34u ' t0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53u , one can produce t0, 16, 18, 26, 34, 80 " 8 `72u ' pB \ B `1 ¨72q " Z 144

  Figure 3.29: n " 288. A CM " 36I 2 ' 32I 3 .

	32	16	8 96	1 12 144 2 24 288 4 48	6 72	3 36	18	9	32	16	96 8	1 12 144 2 288 4 24 48	6 72	3 36	18	9
			(a) L " I 2 . #B " 36.					(b) L " 9I 2 . #B " 36.		
	32	16	96 8	1 12 144 2 288 4 24 48	6 72	3 36	18	9	32	16	96 8	1 12 144 2 288 4 24 48	6 72	3 36	18	9
			(c) L " 2I 2 . #B " 72.										

(d) L " 18I 2 . #B " 72 `288.

  Definition 24(Coven-Meyerowitz complement). We define Coven-Meyerowitz complement the rhythm B CM Ă Z n obtained as (the Proposition above ensures that A ' B CM " Z n ). Consider a generic aperiodic inner rhythm B Ă Z 4500 such that S B " t3, 4, 5, 9, 125u. A rhythm with these characteristics could be, for example, the extended Vuza rhythm

	B CM "	à p α RS A p α n	np α´1 p νppq I p
	Example 17. B " 1500I 3 ' 250I 2 ' t0, 1, 2, 3, 4, 25, 26, 27, 28, 29, 50, 51, 52, 53, 54u \ 2250I 2 ' 375I 3 ' t75, 76, 77, 78, 79, 100, 101, 102, 103, 104u.

  Notice that when u d,i " 1 exactly one of the two incompatible alternatives in the right hand side of (4.25) is true, while whenever u d,i " 0 the two constraints are false. Correspondingly, the constraint (4.29) imposes that the variables y d,i and z d,i cannot be equal to 1 at the same time. On the other hand, constraint(4.26) imposes that at least one of the auxiliary variables u d,i be equal to zero.

		`kd	´n d	y d,i ď	n d	´1	@d P D n , i " 0, . . . , d ´1,	(4.27)
	0 ď	n{d ÿ k"0 p1 ´xi`kd q	´n d	z d,i ď	n d	´1	@d P D n , i " 0, . . . , d ´1,	(4.28)
	y d,i `zd,i " u d,i						@d P D n , i " 0, . . . , d ´1.	(4.29)

  .30) Note that joining (4.23), (4.27)-(4.29) with a constant objective function gives a complete ILP Model, which can be solved with a modern ILP solver such as Gurobi to enumerate all possible solutions. At the same time, joining (4.24) and (4.30) into a unique CNF formula, we get our complete SAT encoding of the Aperiodic Tiling Complements Problem.

Table 4 .

 4 4: Aperiodic tiling complements for periods n P t180, 420, 900u.

	n	D n	p 1 n 1 p 2 n 2 n 3	runtimes (s) SAT	ILP	#B
	180 420 t60, 84, 140, 210u t36, 60, 90u	2 2 5 3 3 3 3 5 2 2 2 2 3 5 3 2 5 3 3 2 2 2 3 3 5 8079.07 ą 10800.00 2.57 5.62 0.07 0.14 1.25 2.23 0.05 0.16 7 5 3 2 2 2.13 3.57 5 7 3 2 2 1.52 4.08 7 5 2 3 2 7.73 16.11 5 7 2 3 2 1.63 4.18 7 3 5 2 2 4.76 7.45 3 7 5 2 2 12.78 32.19 7 3 2 5 2 107.83 1186.21 3 7 2 5 2 0.73 2.36 7 2 5 3 2 11.14 21.19 2 7 5 3 2 17.31 52.90 7 2 3 5 2 89.97 691.56 2 7 3 5 2 1.17 4.13	
	900 t180, 300, 450u	2 25 3 3 2 5 10 3 3 2 2 9 5 5 2 6 3 5 5 2 5559.76 ą 10800.00 43.60 110.65 107.36 741.79 958.58 ą 10800.00 3 6 5 5 2 486.39 8290.35	

  Ṽ1 ¯ti1 ¨´n 2 p 1 n 1 ¨# Ṽ2 ¯ti2 ¨pn 1 n 2 q t i3 ¨ˆn 3 {α t i ˙" 281232,where pt i1 , t i2 , t i3 q, with i " 1, . . . , m, represents a possible partition of the remainder classes modulo|K 1 | " n 1 3 " |K| of Z 180 (see Figure 4.6). CHAPTER 4. ALGORITHMS FOR APERIODIC COMPLEMENTS 2. # Ṽ1 " 3. # Ṽ2 " 2. K 1 " Z 3 . U 1 1 " 3 ¨2 ¨2 ¨5 ¨I5 . U 1 2 " 3 ¨5 ¨5 ¨2 ¨I2 .

	#B 1 "	1 n α	1 CM in Z 180 is )¯\ ¨¨\ 1 ' 3 ¨2 ¨Ṽ j k 1 ! 1 , . . . , k l 1 1 ´U 1 2 ' 1 ' 3 ¨2 ¨Ṽ 1 ´n1 p 2 n 2 ¨# B 1 " ´´U 1 ÿ 1ďiďm 2 ' ! k l j´1 `1 1 , . . . , k )¯¯\ |K 1 | 1 \ ´´U 1 2 ' 3 ¨5 ¨Ṽ 1 1 ' ␣ k 1 2 , . . . , k m 1 2 ( ¯\ ¨¨\ ´U 1 2 ' 3 ¨5 ¨Ṽ h 1 ' ! k m h´1 `1 2 , . . . , k |K 2 | 2

Table 4 .

 4 5: Number of extended Vuza canons for n " 900, with n 3 P t2, 3, 5, 6, 10, 15u.

	p 1	n 1	p 2	n 2	n 3	L	#K	S A	#B
	2 25 5 10 2 9 3 6	25 2 10 5 9 2 6 3	3 3 3 3 5 5 5 5	3 3 3 3 5 5 5 5	2 2 2 2 2 2 2 2	t0u t0u t0u t0u t0u t0u t0u t0u	1 1 1 1 1 1 1 1	t3, 5, 25u t3, 4u t3, 4, 5u t3, 5u t3, 5, 9u t4, 5u t3, 4, 5u t3, 5u	
	2 2 2 3 3 3 3 3 2 2 2 2 2 5 5 5 5 5 3 3 3 3 3 5 5 5 5 5	3 3 3 2 2 2 2 2 5 5 5 5 5 2 2 2 2 2 5 5 5 5 5 3 3 3 3 3	5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2	5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15	t0, 1u t0, 1, 2u t0, 3u t0, 2, 4u t0u t0, 1u t0, 1, 2u t0, 3u t0, 2, 4u t0u t0, 1u t0, 1, 2, 3, 4u t0, 5u t0, 2, 4, 6, 8u t0u t0, 1u t0, 1, 2, 3, 4u t0, 5u t0, 2, 4, 6, 8u t0u t0, 1, 2u t0, 1, 2, 3, 4u t0, 5, 10u t0, 3, 6, 9, 12u t0u t0, 1, 2u t0, 1, 2, 3, 4u t0, 5, 10u t0, 3, 6, 9, 12u	2 3 8 9 1 2 3 8 9 1 2 5 32 25 1 2 5 32 25 1 3 5 243 125 1 3 5 243 125	t2, 5, 9u t3, 5, 9u t2, 5, 9u t3, 5, 9u t4, 5u t2, 4, 5u t3, 4, 5u t2, 4, 5u t3, 4, 5u t3, 25u t2, 3, 25u t3, 5, 25u t2, 3, 25u t3, 5, 25u t3, 4u t2, 3, 4u t3, 4, 5u t2, 3, 4u t3, 4, 5u t2, 25u t2, 3, 25u t2, 5, 25u t2, 3, 25u t2, 5, 25u t2, 9u t2, 3, 9u t2, 5, 9u t2, 3, 9u t2, 5, 9u	

Table 4 .

 4 6: Number of extended Vuza canons for n " 900, with n 3 P t4, 9, 25u.

	p 1	n 1	p 2	n 2	n 3	L	#K	S A	#B
	5	5	3	3	4	t0u	1	t3, 5u	4393656000
	5	5	3	3	4	t0, 1u	2	t2, 3, 5u	1920
	5	5	3	3	4	t0, 2u	4	t3, 4, 5u	3840
	5	5	2	2	9	t0u	1	t2, 5u	492531744599996000
	5	5	2	2	9	t0, 1, 2u	3	t2, 3, 5u	12600
	5	5	2	2	9	t0, 3, 6u	27	t2, 5, 9u	113400
	2	2	3	3	25	t0u	1	t2, 3u	4490273576208113571719324814532411392
	2	2	3	3	25	t0, 1, 2, 3, 4u	5	t2, 3, 5u	281232
	2	2	3	3	25	t0, 5, 10, 15, 20u	3125	t2, 3, 25u	175770000

Table 4 .

 4 7: Rhythms with superfluous cyclotomic factors checked.

	n	Rhythm tested
	1050 t0, 15, 30, 35, 45, 60, 70, 75, 90, 105u 2310 t0,

List of Tables

Concatenation replaces the rhythm by several copies of itself. It is therefore obvious that the resulting rhythm is periodic.

Example 15. Let us go back to Example 14 and consider the inner rhythm A " t0, 8, 16, 18, 26, 34u. The 2-concatenation of A Ă Z 72 is A ' t0, 72u " t0, 8, 16, 18, 26, 34, 72, 80, 88, 90, 98, 106u .

The lattice representation of the canon ConcpA, 2q ' B " Z 144 is given in Figure 3. [START_REF] Lanzarotto | Extended vuza canons[END_REF]. We see that the new canon ConcpA, 2q ' B " Z 144 is periodic modulo 72: all the indices of the maximal hyperplane 16-48-144 are in R ConcpA,2q .

Let us remark that a Vuza canon is precisely a canon that cannot be produced by concatenation of some smaller canon. In particular, Proposition 7 (Amiot). Every tiling rhythmic canon can be produced by concatenation and duality from either the trivial canon t0u ' t0u " t0u or a Vuza canon. 4 n1 -operation on a Vuza canon of order 72. The parameters become: p1 " 2, n1 " 2 ¨2 " 4, p2 " 3, n2 " 3, and n3 " 2. L " t0u. #B " 60. n2 " 9-operation on a Vuza canon of order 72. The parameters become: p1 " 2, n1 " 2, p2 " 3, n2 " 3 ¨3 " 9, and n3 " 2. L " t0u. #B " 72.

of the lattice has non-null intersection with convex hulls of the cyclotomic indices of A, and the intersection is different from an entire maximal hyperplane.

n3 -operation

In dealing with the case of the change of parameter from n 3 to θn 3 , we need to distinguish two starting situations: Vuza canons or extended Vuza canons. The reason lies in the fact that a variation in n 3 necessarily affects a variation in the sets L and K (since L ' K " Z n 3 ), when we are treating the case of extended Vuza canons.

Therefore, we first deal with the non-extended Vuza canons.

Definition 21 (n 3 -operation). Let A ' B " Z n a Vuza canon and let n3 " θn 3 , with θ P N ˚, such that p 1 , n 1 , p 2 , n 2 , and n3 satisfy conditions 1, 2, and 3. Let also H n3 be the subgroup

2 ‰ H) be a complete set of cosets representatives for Z θn modulo H n3 . The n3 -operation on A ' B " Z n produces the new Vuza canon:

We are left to consider also the effects of Theorem 9 and Theorem 10. In these cases, we are going to substitute the sets Ã1 , Ã2 , Ṽ1 , Ṽ2 with other coset representatives. The cyclotomic polynomials which divide A and B will not change, (or at least, the essential cyclotomic polynomials will not change) so the lattices of cyclotomic indices of the new (extended) Vuza canon will not show any changes.

Substitution of prime factors

The lattice representation of the two complementary rhythms of an aperiodic tiling rhythmic canon leads naturally to an operation on the prime factors of n: indeed, it is obvious that all the geometric properties of the lattice representation do not depend on which primes are the factors of n, but only on their relations. It is easy to see that (only with a small exception for the prime p " 2 in Theorem 7, where we need that a parameter be at least 3) if we exchange the primes in n with other ones, keeping the structure of the factorisation of n unchanged, a (extended) Vuza canon will be transformed into a new (extended) Vuza canon.

Chapter 4

Algorithms for aperiodic complements

Numerous algorithms have been devised by various mathematicians for the computation of aperiodic canons. An essential part of the construction of rhythmic canons is the search for e.g. the outer voice B, knowing the inner one A. In this chapter, we show some algorithms used for the generation of aperiodic motifs tiling with a given inner rhythm and within a given period.

The first two known procedures that we illustrate in Section 4.1 and Section 4.2 are the application of Coven-Meyerowitz theorem in [9] (which is not exhaustive for the research of all possible aperiodic tiling complements) and the Kolountzakis and Matolcsi Fill-Out Procedure in [21] (which is exhaustive).

We then go on presenting two new algorithms in Section 4.3 and Section 4.4 (which are the fruit of a joint work with G. Auricchio, L. Ferrarini, S. Gualandi, and L. Pernazza) for the exhaustive search of (aperiodic) tiling motifs, one in integer linear programming language (the CS Algorithm) and the other in SAT encoding. We show how these models can be used to efficiently check the necessity of the Coven-Meyerowitz condition (T2) and also to define an iterative algorithm that, given a period n, finds all the rhythms which tile with a given rhythm A. To conclude, we run several experiments to validate the time efficiency of both models.

We proceed in Section 4.5 taking advantage of the fastest procedure in connection with the Coven-Meyerowitz formula to realise the complete enumeration of the aperiodic canons with periods n " 180 and n " 200. We conclude this chapter by showing that for period n " 900 there exist aperiodic canons that are not extended Vuza canons; this is an observation that projects the investigation of aperiodic canons and their structure towards new interesting conjectures and directions.

The Coven-Meyerowitz complement

In this section we show how to apply the Coven-Meyerowitz Theorem to obtain a complementary motif, given the inner rhythm and the period of the final canon. In general, the
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• A is a p3n ´1q ˆp3n ´1q matrix which depends only on the given rhythm A,

• X " pb, rq T is the vector composed by the coefficients of Bpxq and the coefficients of R;

• Y is the p3n ´1q-dimensional vector defined as

Finally, in order to ensure that Bpxq and Rpxq are polynomials with coefficients in t0, 1u, we will require b i and r i to be binary variables, i.e. they can only assume value 0 or 1.

Aperiodicity constraints

We impose now the aperiodicity constraints. Let us assume n " p α 1 1 p α 2 2 . . . p α N N . Without loss of generality, we can suppose p 1 ă p 2 ă ¨¨¨ă p N and, therefore, if we define the set of the maximal divisors of n as M n :" tm k "

According to Remark 5, to verify if the rhythm B is periodic or not, it is sufficient to check its periodicity only for periods in M n . We can characterize the periodicity with respect to a given period m j as it follows.

Proposition 10. Let B be a rhythm in Z n , let b be the binary vector containing the coefficients of p B , and let m j P M n . Then, B is m j -periodic if and only if

for each i " 0, . . . , m j ´1.

Proof. Let us assume B Ă Z n is m j -periodic. We prove that (4.3) holds. By Definition 7, we have that

for each r " 0, . . . , p j ´1. Let b be the vector of the coefficients of p B . By equation (4.4), we get b i " 0 ðñ b pi`rm j q mod n " 0 for r " 0, . . . , p j ´1, (4.5)

b i " 1 ðñ b pi`rm j q mod n " 1 for r " 0, . . . , p j ´1, (4.6)
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69 therefore, for any given i " 0, . . . , m j ´1, we have

which concludes the first half of the proof.

Let us now assume that (4.3) holds and fix i P t0, . . . , m j ´1u. If

we have b i`rm j " 0 for each r " 0, . . . , p j ´1, since each b k is either equal to 0 or 1, which is equivalent to (4.5). Similarly, if

we have b i`rm j " 1 for each r " 0, . . . , p j ´1, which is equivalent to (4.6). Since (4.5) and (4.6) are equivalent to the m j -periodicity of B, the thesis follows.

Let us take m j P M n . To impose that the rhythm B is not m j ´periodic, we introduce the family of auxiliary variables

Each family U pjq is composed of binary variables subject to the following constraints:

for each j such that p j |n B and for each i " 0, . . . , m j ´1, where n B is the cardinality of

Therefore, conditions (4.7) and (4.8) combined, assure us that

and, hence, according to Proposition 10, B is m j -periodic. By adding the constraints (4.7), (4.8), and (4.9) to the linear system, we, therefore, remove all the periodic solutions from the feasible set.

Remark 6. To improve efficiency, we remove a family of auxiliary variables U pjq :" a i´j b j ´ri " 0 @i P t0, . . . , n ´1u, (4.12)

i`1 ÿ j"0 a n´pi´jq b j ´ri`n " 0 @i P t0, . . . , n ´2u, (4.13) r j `rj`n " 1 @j P t0, . . . , n ´1u (4.14)

@i P t0, . . . , m j ´1u,

@i P t0, . . . , m j ´1u,

@i P t0, . . . , m j ´1u,

b k P t0, 1u @k P t1, . . . , n ´1u, r k P t0, 1u @k P t0, . . . , 2n ´2u, U pjq i P t0, 1u @j P t1, . . . , N u, @i P t0, . . . , m j ´1u,

where O is a suitable linear function to minimize. The constraint (4.19) allows us to reduce the size of the feasible set by removing a degree of freedom from the possible solutions. We denote the model just introduced as the Master Problem (MP).

Theorem 18. Given an inner rhythm A in Z, let Ŷ " pb, rq be a solution of M P . Then, the rhythm associated to the characteristic polynomial

is aperiodic and tiles with A.

Input : rhythm A Output: S, list of Aperiodic rhythms B, such that A ' B " Z n z ˚" OP T pM P q add z ˚to S while P ‰ H do add ř iPI z ˚bi ď β to (M P piq ) Solve (M P piq ) z new = OPT(M P piq ) set I z ˚:" I znew add z new to S end return S Algorithm 1: The Cutting Sequential Algorithm.

Remark 8. Adding the constraints one by one is highly inefficient. Therefore, once we find a solution, we compute all its affine transformations, which, according to Theorem 3, are possible solutions and remove them as well. Since we impose b 0 " 1, we consider only the affine transformations that preserve this constraint. This procedure, however, is customizable: if we remove only the translations of the found solution the algorithm will return all the solutions modulo translations. Given a solution b p1q , we can remove the affine transformations of a given solution through a linear constraint. According to (4.21), we impose

where k runs over all the translations which fix the first position and a runs over the set of numbers co-prime with n.

Complexity of the Method

To conclude, we analyze the complexity of the system (4.2). The unknowns to determine are the 3n ´1 coordinates of the vector pb, rq plus the variables needed to impose the aperiodicity constraints, U pjq i , which are

where P n is the set of primes that divide n B . Therefore, we have 3n ´1 constraints for the feasibility, the 3σ n given by conditions (4.16), (4.17), and (4.18) plus the one given by condition (4.15). If we want a complete enumeration of all the tiling complements of the given rhythm, the complexity increases, since we are adding constraints at each iteration. The amount of constraints to add depends on the equivalence relation we are considering. If we are CHAPTER 4. ALGORITHMS FOR APERIODIC COMPLEMENTS looking for all the solutions modulo translation, we add n B constraints at each iteration, since there are exactly n B feasible translations preserving the constraint b 0 " 1. If we search for all the solutions up to affine transformations, the number of constraints added is n B times the quantity of numbers primes to n.

Computational results

We observe that the CS Algorithm is faster than the Fill-Out Procedure. We compare the two algorithms on rhythms in Z n , for n " 72, 108, 120, 144, 168, 180. We ran all our experiments on a ASUS VivoBook15 with Intelcore i7. The algorithm is implemented in Python using Gurobi v9.1.1, [13].

It is worth of mention that the Fill-Out-Procedure finds every complement modulo translation, while the CSA can be customized to compute every complement modulo all the affine transformations. We chose to run our method to compute all the solutions modulo affine transformation, The experiment we ran is the following: given a rhythm A, we list every complement. Afterwards, we reverse the problem: we fix one of the found complements, namely B, and search for all the complements of B. The rhythms used for our experiments are reported in Table 4.1 while, in Table 4.2, we compare the runtimes of CSA with the runtimes of the Fill-Out Procedure. The CSA is customized in order to find all the classes modulo affine transformations.

Every time we find a solution, we have to add new constraints to the Master Problem and solve it again. As a result, the problem we solve gets computationally harder at each iteration. In Figure 4.3, we report the time required to find the next tiling solution for two rhythms in Z 180 . 
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The SAT Encoding Algorithm

In this section, we present in parallel a second ILP model and a SAT encoding for the Aperiodic Tiling Complements Problem that are both used to enumerate all tiling complements of A in Z n (see [5]). Before analyzing the tiling problem, let us introduce the SAT encoding, that is, the process of transforming a problem into a SAT problem. If such an assignment M exists, then it is said to satisfy B and we talk about a model of B.

A Boolean formula is in Conjunctive Normal Form (CNF) if the formula is a conjunction (s) of clauses where each clause is a disjunction (or) of literals and each literal is a propositional variable or the negation of a propositional variable. There has been a great deal of effort in devising techniques and creating tools for solving SAT problems, that is, to determine if a CNF formula is satisfactory and to identify the model of the formula. We refer to tools such as SAT solvers. Satisfiability is interesting as any problem can be coded as a CNF formula and a SAT solver can be used to solve the corresponding SAT problem.

We define two sets of constraints:

1. the tiling constraints that impose the condition A ' B " Z n , and 2. the aperiodicity constraints that impose that the canon B is aperiodic.

Tiling constraints

Given the period n and the rhythm A, let a " ra 0 , . . . , a n´1 s ⊺ be its characteristic (column) vector, that is, a i " 1 if and only if i P A. Using vector a we define the circulant matrix T P t0, 1u nˆn of rhythm A, that is, each column of T is the circular shift
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77 of the first column, which corresponds to vector a. Thus, the matrix T is equal to We can use the circulant matrix T to impose the tiling conditions as follows. Let us introduce a literal x i for i " 0, . . . , n ´1, that represents the characteristic vector of the tiling rhythm B, that is, x i " 1 if and only if i P B. Note that a literal is equivalent to a 0-1 variable in ILP terminology. Then, the tiling condition can be written with the following linear constraint:

T ij x i " 1, @j " 0, . . . , n ´1.

Notice that the set of linear constraints (4.23) imposes that exactly one variable (literal) in the set tx n`i´j mod n u jPA is equal to one. Hence, we encode this condition as an Exactly-one constraint, that is, exactly one literal can take the value one. The Exactly-one constraint can be expressed as the conjunction of the two constraints At-least-one and At-most-one, for which standard SAT encoding exist (e.g., see [7,[START_REF] Philipp | Pblib-a library for encoding pseudo-boolean constraints into cnf[END_REF]). Hence, the tiling constraints (4.23) are encoded with the following set of clauses depending on i " 0, . . . , n ´1:

Aperiodicity constraints

In view of Definition 7, if there exists a b P B such that pd `bq mod n ‰ b, then the canon B is not periodic modulo d. Notice that by Remark 5 we need to check this condition only for the values of d P D n . We formulate the aperiodicity constraints introducing auxiliary variables y d,i , z d,i , u d,i P t0, 1u for every prime divisor d P D n and for every integer i " 0, . . . , d ´1. We set

for all d P D n , i " 0, . . . , d ´1, with the condition Fripertinger [12], Amiot [2], Kolountzakis and Matolcsi [21]. Table 4.3 shows clearly that the two new approaches outperform the state-of-the-art, and in particular, that SAT provides the best solution approach. We then choose some periods n with more complex prime factorisations, such as n " p 2 q 2 r " 180, n " p 2 qrs " 420, and n " p 2 q 2 r 2 " 900.

To find aperiodic rhythms A, we apply Vuza's construction [START_REF] Vuza | Supplementary sets and regular complementary unending canons (part one)[END_REF] with different choices of parameters p 1 , p 2 , n 1 , n 2 , n 3 . Thus, having n and A as inputs, we search for all the possible aperiodic complements and then we filter out the solutions under translation. Since the post-processing is based on sorting canons, it requires a comparatively small amount of time. We report the results in Table 4.4: the solution approach based on the SAT encoding is the clear winner. It is also noteworthy that, from a Music theory perspective, this is the first time that all the tiling complements of the studied rhythms are computed (their number is reported in the last column of the two tables).

Implementation Details

We have implemented in Python the ILP model and in PySat [17] the SAT encoding discussed in 4.3. We use Gurobi 9.1.1 as ILP solver and Maplesat [START_REF] Liang | Machine Learning for SAT Solvers[END_REF] 2. No partition produces periodic tilings due to condition (T2) of [9]. Therefore, in this step, we can not discard any case.

3. We list out all subsets B CM Ă Z 180 such that B CM tiles Z 180 and Φ h pxq divides B CM pxq for all h P H B CM :

4. We search all possible A's by completing the B CM 's using the SAT Encoding Algorithm and keep a representative for each possible R A value (represented in Figure that R B is one of the 8 types including S B " t4, 9, 5u tile with aperiodic rhythms A such that R A " t2, 3, 6, 10, 12, 15, 18, 30, 60, 90u. This means that elements 6, 12, 18 in those R B 's can be considered indices of non-necessary cyclotomic polynomials dividing Bpxq. Similarly, the aperiodic rhythms B such that R B is one of the 2 types including S B " t4, 3, 5u tile with aperiodic rhythms A such that R A " t2, 9, 6, 10, 18, 30, 36, 90u, and so 10 in those R B 's is the index of a non-necessary cyclotomic polynomial.

Remark 9. As pointed out by E. Amiot in [3] and as can be verified applying Matolcsi's algorithm described above, the necessity of condition (T2) also holds for all aperiodic rhythms in Z 180 .

The order of the next non-Hajós group is n " 200. It is a simple case in which n " p 3 q 2 , with p and q primes; then, we are also sure that condition (T2) is necessary for tiling, for all rhythms in Z 200 . Therefore, from the point of view of the construction of extended Vuza canons, this case is analogous to n " 72 and n " 108 (see Figure 4.5). Applying Matolcsi's algorithm in combination with the SAT Encoding Algorithm, we found also in this case that all the aperiodic canons possible with period 200 are exactly the extended Vuza canons of Chapter 3.

Remark 10. Thus, the catalogue of aperiodic canons is complete for all (non-Hajós) groups with order n ď 200 and it coincides with Table 3.4.

4.5.2

The case n " 900 with S A " t2, 3, 5u

As we have seen in Table 4.5 and in Table 4.6, the possible choices of the parameters p 1 , n 1 , p 2 , n 2 , and n 3 for the period n " 900 are numerous and most of them provide an extremely high number of extended Vuza canons. At the moment, it is hard to verify the number of every combination of parameters through an algorithm for the exhaustive research of complements.

However, studying the partition ␣ H A , H B ( " tt2, 3, 5u, t4, 9, 25uu of prime powers dividing 900, we were able to calculate the number of all aperiodic rhythms tiling with the Coven-Meyerowitz complement

The SAT Encoding Algorithm allowed us to compute the number of all tiling complements of A CM , which turned out to be 303360. As underlined in Remark 4, A CM can in this case be part of an extended Vuza canon as "inner rhythm" (the one for which n R R A ) according to the construction:

where parameters p 1 , n 1 , p 2 , n 2 , n 3 and factors Ã1 , Ã2 , L are defined as in Chapter 3. In light of this, we have three possibilities. Lattice representations of all possible A's for aperiodic canons of period n " 180. 1. pp 1 , n 1 , p 2 , n 2 , n 3 q " p2, 2, 3, 3, 25q. A 1 " 100 Ã1 , A 2 " 225 Ã2 , L " 36I 5 .

2. pp 1 , n 1 , p 2 , n 2 , n 3 q " p2, 2, 5, 5, 9q. A 1 " 36 Ã1 , A 2 " 225 Ã2 , L " 100I 3 .

3. pp 1 , n 1 , p 2 , n 2 , n 3 q " p3, 3, 5, 5, 4q. A 1 " 36 Ã1 , A 2 " 100 Ã2 , L " 225I 2 .

We compute the extended Vuza complements B's in each case. Recall that La thèse propose un ensemble de théorèmes montrant des méthodes de construction de canons rythmiques apériodiques et présente également des avancées dans le domaine du calcul en fournissant deux nouveaux algorithmes résultant plus efficaces que ceux connus dans la littérature d'au moins un ordre de grandeur.

Canons de Vuza, Problèmes de pavage

Résumé en anglais

We deal with tiling rhythmic canons, that are purely rhythmic contrapuntal compositions. Stemming from the analogous problem of factorizing finite Abelian groups, aperiodic tiling rhythmic canons have been studied : these are canons that tile a certain interval of time in which each voice (inner voice) plays at an aperiodic sequence of beats, and the sequence of starting beats of every voice (outer voice) is also aperiodic.

The thesis proposes a set of theorems showing methods for constructing aperiodic rhythmic canons, and it also presents advances in the field of computation by providing two new resulting algorithms that are more efficient than those known in the literature by at least an order of magnitude.

Vuza canons, Tiling problems