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Canons de Vuza étendus

Résumé de la thése de doctorat

Greta Lanzarotto

1 Introduction

Le lien entre musique et mathématiques a été découvert et étudié depuis 1’Antiquité par
de nombreux scientifiques, philosophes, musiciens tels que Pythagore, Galileo Galilei, Gottfried
Wilhelm Leibniz et Leonhard Euler. A premiére vue, deux domaines diamétralement opposés,
au fil des siécles, la musique et les mathématiques se sont révélées avoir beaucoup en commun.
Cette thése découle de la volonté d’approfondir un théme qui puise des concepts dans les deux
disciplines et de la conviction que 1’étude combinée des deux ne peut que profiter aux deux cotés
de la relation.

Dans cette thése, nous traitons des canons rythmique de pavage, qui sont des compositions
contrapuntiques purement rythmiques. Les canons en musique ont une trés longue tradition;
quelques cas de canons rythmiques de pavage (c’est-a-dire des canons tels que, étant donné un
tempo fixe, a chaque battement, exactement une voix joue) ont également été composés. Ce
n’est qu’au siécle dernier, issu du probléme analogue de la factorisation des groupes abéliens
finis, que des canons rythmiques de pavage apériodique ont été étudiés : ce sont des canons qui
pavage un certain intervalle de temps dans lequel chaque voix (rythme intérieure) joue a une
séquence apériodique de battements, et la séquence des battements de départ de chaque voix
(rythme externe) est également apériodique. Du point de vue musical, Iarticle séminal était
probablement l’article en quatre parties écrit par D.T. Vuza entre 1991 et 1993 ([18, 20, 19, 21]),
tandis que la contrepartie mathématique du probléme a également été étudiée auparavant, par
exemple. par de Bruijn ([8]), Sands ([17]), etc., et aprés, par ex. par Coven et Meyerowitz ([7]),
Jedrzejewski ([12]), Amiot ([1]), Andreatta ([3]), etc.

Une théorie approfondie des conditions d’existence et de la structure des canons rythmiques
de pavage apériodique n’a pas encore été établie; nous essayons d’apporter une contribution &
ce domaine fascinant. Dans ce but, la thése propose un ensemble de théorémes montrant des
méthodes de construction de canons rythmiques apériodiques. Deux définitions sont présentées.
La premiére définit les canons de Vuza comme des canons construits a I’aide de Théoréme 2,
Théoréeme 3, Théoréme 4 et Théoréme 5. Ensuite, la seconde définit ’ensemble des canons de
Vuza étendus comme les canons construits & ’aide de Théoréme 6 et Théoréme 7, éventuellement
combinées de Théoréme 2, Théoréme 3, Théoréme 4 et Théoréme 5. La thése présente également
des avancées dans le domaine du calcul en fournissant deux nouveaux algorithmes résultant plus
efficaces que ceux connus dans la littérature d’au moins un ordre de grandeur.

2 Canons de pavage apériodiques

Nous fixons quelques notations et donnons les principales définitions.



Définition 1. Si Z,, = A® B, on appelle (A, B) un canon rythmique de pavage de période n; A
est appelée la voix intérieure et B la voix extérieure du canon.

Définition 2. Un rythme A c Z,, est périodique (de période z) si et seulement s’il existe un
élément z € Z,, z # 0, tel que z + A = A. Dans ce cas, A est aussi appelé périodique modulo
2z € Zy,. Un rythme A c Z,, est apériodique si et seulement s’il n’est pas périodique.

Soit ®4(x) le polynome cyclotomique d’indice d. Ensuite, les canons rythmiques de pavage
peuvent étre caractérisés comme suit.

Lemme 1. Soit A un rythme dans Z,, et soit A(z) le polyndme caractéristique de A, ¢’est-a-dire
A(z) = Ycq 2", Etant donné B < Z,, et son polynome caractéristique B(x), on a que

A(w) Bla) = 3 a* = “;::11 = ] ®u»)  mod " 1) (1)
k=0 d|n,d#1

st et seulement si A(x) et B(x) sont des polynomes a coefficients dans {0,1} et A® B = Z,.

Par conséquent, pour chaque d | n, avec d > 1, on a

Dy(z) | A(x) ou 4(z) | B(z).
Définition 3. Un canon rythmique de pavage (A, B) in Z,, est un canon rythmique de pavage
apériodique si A et B sont apériodiques.

On note H V’ensemble des périodes des groupes de Hajos, c’est-a-dire des groupes qui n’ad-
mettent pas de factorisations apériodiques, et V ’ensemble des périodes des groupes qui ad-
mettent de telles factorisations. Le résultat suivant, en conjonction avec Théoréme 2, identifie
quelles sont les périodes des canons rythmiques de pavage apériodique.

Théoréme 1 (Vuza). Soient

1. V={neN:n=pnipsngng avec PGCD (pini,psnz) =1 et p1,n1,ps,na, ng > 1}, et

2. H= {po‘,po‘q,pqu,pqr7 p?qr,pqrs : a € N, p,q,r, s nombres premiers distincts},
alors N* =V L H.

Une méthode de construction exhaustive de canons rythmiques de pavage apériodique n’est
pas connue & ce jour ; la premiére méthode pour trouver certains d’entre eux a été fournie par le
résultat suivant (voir [11] par Hajos, Théoréme 1 dans [8] par de Bruijn, et Proposition 2.2 dans
[18] par Vuza).

Théoréme 2. Soit n = pynipansng € N tel que
1. p1,n1,p2,n2,n3 > 1 el
2. PGCD (plnl,pgng) =1.
Alors Z,, admet un canon rythmique de pavage apériodique.
Exemple 1. Dans les hypothéses de Théoréme 2, un exemple de canon de pavage de Z,, avec

deux sous-ensembles apériodiques est donné par la construction suivante de F. Jedrzejewski (voir
Théoréme 227 dans [12]). En désignant par I 'ensemble {0,1,...,k — 1}, appelons :

Ay = nzpinill,, Az = nzpanaly,,

Ui = n3pininaly, Us = n3pananil,,

Vi = n3nal, Vo = nanql,

K, = {0} Ko = {1,2,...,n5 — 1}.



Puis prenant

A=A,® A
B=Ui@VeK)u(leVieK,),

nous avons le canon Z,, = A® B.

Remarque 1. Désormais, étant donné py, ni, pa, ne, et ng, on notera Ay, As, Uy, Us, V1, et V5
les ensembles ainsi appelés dans Exemple 1.

De nombreuses autres fagcons de construire des canons de pavage apériodiques sont possibles,
voir par exemple de Bruijn ([8]), Vuza ([18]), Fidanza ([9]) et Jedrzejewski ([12]). Ces méthodes
entrent dans une catégorie traitée par F. Jedrzejewski (Théoréme 14 in [13]).

3 Canons de Vuza étendus

Nous donnons maintenant un premier résultat qui affine celui de Jedrzejewski, en levant
I’hypothése que p; et py sont premiers et en prouvant que B est apériodique si ng satisfait une
contrainte arithmétique simple (voir [15]).

Théoréme 3. Soit n = pinipansng € N tel que :

1. p1,n1,p2,na,ng >1;

2. PGCD (piny,pang) = 1;

3. si ng n'est pas premier, il n’y a pas de premier q tel que q | n3, mais q ¥ p1n1pana.

Soit H le sous-groupe H = n3ly n,pon, de Zy et soit K un ensemble complet de cosets repré-
sentatifs de Z,, modulo H tel que K est l'union disjointe K = Ky u Ko. Alors le couple (A, B)
défini par

A=A40A,

B=UeVWeK)uU.,eVeK,)

est un canon rythmique de pavage apériodique de Z,,.

Dans une généralisation de Théoréme 3, le rythme B est I'union disjointe de trois ensembles,
I'un étant périodique a la fois modulo n/p; et modulo n/ps.
Théoréme 4. Soit n = pinipanaong € N tel que :
1. P1,N1,pP2,N2,N3 > 1 ;
2. PGCD (pini,pang) = 1;
3. sing n'est pas premier, il n’y a pas de premier q tel que q | ng, mais q f pinipans.
Soit H le sous-groupe H = n3ly, n,p,n, de Zyn, K un ensemble complet de cosets représentatifs
de Z,, modulo H tel que K est l'union disjointe K = K; u Ko u K3 avec K1,Ks # &, et
W = ngninall,, p,. Alors le couple (A, B) défini par
A=A A
B=U1®VLeK)uU:eVeK)u(WaeKs;)

est un canon rythmique de pavage apériodique de Z,,.



La deuxiéme généralisation de Théoréme 3 élargit les définitions des ensembles A1, As, V7 et
Va.
Théoréme 5. Soit n = pinipanaong € N tel que :

1. p1,n1,p2,n2,n3 > 1;

2. PGCD (piny,pans) =1;

3. st ng n’est pas premier, il n’y a pas de premier q tel que q | ng, mais q f p1n1pana.
Soit H le sous-groupe H = nglly nypony de Ly, et K = K7 1 Ky (avec Ky, Ky # &) un ensemble
complet de cosets représentatifs pour Z, modulo H. Prendre

— A, comme un ensemble apériodique complet de représentants de cosets pour Zy,n, modulo

nZ]IPQ ;

— Ay comme un ensemble apériodique complet de représentants de cosets pour Zy,n, modulo
nl]IPl ;

— V..., V] comme ensembles apériodiques complets de représentants de cosets pour Zpyn,

modulo pal,, ;
— \721, cee ‘72h comme complet les ensembles apériodiques de représentants de cosets pour Zy, n,
modulo pil,,.

Définissez K1 = K{ u--- U K{ et Ko = K u--- UKl ou K2 = {kis’1+17...,ké"} sont des
sous-ensembles non vides de K, pour o = 1,2. Alors le couple (A, B) défini par
A = nzpini Ay @ ngpano A,
B- ((Ul@ngnﬂ?;@{ki,...,kﬁl}) O
e (U1 @ngnlf/zj @ {k‘ij_1+1, cen 7k|1K1‘}))l_J
(] ((Ug@ngnzvll@{k’%,...,k’;ﬂl}) Lt
e (U2 (—Bngngvlh $) {k;nhiﬁ»l, ey k‘QKZ‘}))

est un canon rythmique de pavage apériodique de Z,,.

Définition 4 (canon de Vuza). On appelle canons de Vuza tous les canons obtenus a 1'aide des
constructions décrites dans Théoréme 2, Théoréme 3, Théoréme 4 et Théoréme 5.

Il est possible d’étendre encore plus ce type de constructions. Avec le théoréme suivant, on
améliore le résultat de Jedrzejewski (Théoréme 21 dans [13]).
Théoréme 6. Soit n = pynipansng € N tel que :
1. p1,n1,p2,n2,n3 >1;
2. PGCD (piny,pang) = 1;
8. il n’y a pas de nombre premier q tel que q | n3, mais q f pynipano.
Soit H le sous-groupe H = n3ly, n,pon, de Zy. Supposons que L et K soient des sous-ensembles
propres de L, tels que LOK = 7y, et K = K1 1 Ky, avec K1, Ko # &. Alors le couple (A, B)
défini par
A=A4180A,0L
B=U®VeK)ulU.,eVeK,)

est un canon rythmique de pavage apériodique de Z,,.



Définition 5. R4 = {d: ®4(x) | A(z)} et Sa = {p® € R4 : p premier}.

Les conditions de Coven-Meyerowitz sont les suivantes :
(T1) |A] = []pees, P;
(T2) pour tout p®,¢®,r7,... € Sa, p*¢®r7--- € Ra, ot p®,¢% r7,... sont des puissances de

nombres premiers distincts.

Définition 6 (extension). Soit A un sous-ensemble de Z,, et soit S4 = {p"‘,qﬁ,...,ﬂ}. On
appelle extension de A tout rythme A dont le polynéme caractéristique est

Az) = Bpe (;ET) s (IT) D, (I—k) 7
ot kp, kg, ..., k, sont des diviseurs de n tels que p [/ kp,q t kg, ..., 7t k;.
Notez que par définition clairement S4 = Sy.
Proposition 1. Soit A® B = Z,, et soit B vérifie la condition (T2). Alors A® B =7, aussi.

En combinant Théoréme 6 et Proposition 1, nous sommes capables de trouver de nouveaux
canons de Vuza ot L n’est pas un sous-ensemble de Z,,,.
Théoréme 7. Soit n = pynipansng € N tel que :

1. p1,n1,p2,n2,n3 > 1;

2. PGCD (piny,pang) = 1;

3. il n’y a pas de nombre premier q tel que q | ng, mais q ¥ p1nipang .

Soit H le sous-groupe H = n3ly, n,pyn, de Zy. Supposons que L et K soient des sous-ensembles
propres de Ly, tels que LOK = Z,, et K = K; 1 K, avec K1, Ko # J. Soit L une extension
de L ; alors le couple (A, B) défini par

A=A10A 0L
B=U®VeK)ulUaeVeK,)

est un canon rythmique de pavage apériodique de Z,,.

Définition 7 (canon de Vuza étendu). On appelle canons de Vuza étendus tous les canons
obtenus & ’aide des constructions de Théoréme 6 et Théoréme 7, éventuellement combinées avec
celles de Théoréme 2, Théoréme 3, Théoréme 4 et Théoréme 5.

Exemple 2. Nous montrons maintenant un canon de Vuza étendu de période n = 240 (p1 =
5,n1 =3,p2 = 2,n9 = 2,n3 =4). L =1y, alors L = 15[5. En choisissant K; = {2} et Ky = {0},
on obtient le canon
A=A 0A 0L
= 601y @ 1615 @ 151,
B=U1@Vo®K)u UV @ K>)
= (1201 ® 1215 @ {2}) L (4815 ® 8L ® {0}) .

Il est & noter qu’il ne serait pas possible d’obtenir un tel canon sans appliquer Théoréme 7.



FIGURE1 -n=240. A=A, ® A, ® L.

(a) Uy @ Vi = 1200, @ 1215

Représentation en treillis d’un canon rythmique de pavage apériodique de période n = 240, ou A = 60Ix @
163 @ 1502 et B = (120]12 @ 1215 @ {2}) [} ( &) {0})

Il est maintenant naturel de se poser la question suivante : combien y a-t-il de canons de Vuza
étendus étant donné les cing paramétres py, ny, p2,n2,n3 et la factorisation Z,,, = L K ?

La premiére étape consiste & déterminer combien de partitions de Z,,, permettent de distribuer
de maniére disjointe les n3 classes de reste dans les facteurs (U @ ngniVy), (Us + nana V') et
W, en faisant attention d’attribuer au moins une classe aux deux premiers facteurs (sinon le
canon deviendrait périodique). D’aprés Théoréme 5, nous devons également considérer tous les
différents ‘71] et Vi qui fournissent un canon de Vuza (étendu). Nous voulons déterminer dans
combien de maniéres nous pouvons choisir des sous-ensembles apériodiques d’éléments distincts
modulo p; in Zy,, ,, (resp. in Zp,,,) jusqu’a la translation. Par convention, nous fixons le premier
élément a 0, et pour chaque autre classe de reste modulo p; nous avons no possibilités. Nous
devons ignorer les périodiques et finalement nous écartons toutes les translations possibles de
p1 — 1. Alors,

P2 lpe
() (-
v|p1

t'ml t’m2 tm3

comme la matrice dans laquelle chaque ligne t;, avec ¢ = 1,...,m, représente une partition
admissible des classes de reste modulo ng, et I'entrée unique dans chaque ligne est le nombre de
classes de reste modulo ns affectées au i-iéme facteur

U ® n3n1‘72j, Us + 713712‘71}7', ou W.



Dans ce cas, le nombre de rythmes externes possibles B est le suivant :

LR G ) ()
B=1" TR Ve . L HV B . .
# n Klzgm ns - p1 #n n3 - p2 W n3 - p1- P2 t;

Exemple 3. Montrons combien de rythmes apériodiques B il existe étant donné n; = 2,ny =
3,n3 = 5,p1 = 2,p2 = 3. Les vecteurs possibles ¢ pour Z,, sont 10 :

T ={[1,4,0],[4,1,0],
[2,3,0],[3,2,0],
[1,2,2],[2,1,2],[2,2,1],
[1,1,3],[1,3,1],[3,1,3]}.

Le nombre total de rythmes apériodiques possibles B est donné par :

1 180 B 7180 Bz r180 \"* (5
o 3 (521) () (rs) ()
180, &4 \5-2 5.3 5.2-3 t;

= 45360 + 77760 + 85536 + 72576
= 281232.

Ce nombre de canons est trois fois supérieur a ce qui était connu dans la littérature et a ensuite
été vérifié indépendamment grace a un algorithme exhaustif (voir Section 4.3).



TABLE 1 — Nombre de rythmes de Vuza étendus pour les valeurs non-Hajos n < 216.

Tl lmalmalea] 2 [ox]  #a e
Théoréme : (2) ‘ (6) ‘ (7) (2) ‘ (3) ‘ (4) ‘ (5) ‘ (6)
‘ 72 ‘ 2 ‘ 2 ‘ 3 ‘ 3 ‘ 2 ‘ {0} ‘ 1 ’ 3 ‘ 0 ‘ 0 ‘ 6 0 0 ‘ 0 ‘ 0
‘ 108 ‘ 2 ‘ 2 ‘ 3 ‘ 3 ‘ 3 ‘ {0} ‘ 1 ‘ 3 ‘ 0 ‘ 0 ‘ 180 0 72 ‘ 0 ‘ 0
2|2 |3|5 |2 {0} 1| 16 0 0 20 0 0 0 0
120
2| 2|5 |32 {0} 1 8 0 0 18 0 0 0 0
2 2 3 3 4 {0} 1 3 0 0 2808 1944 3888 0 0
2 2 3 3 4 {0, 1} 2 0 312 0 0 0 0 0 6
2 2 3 3 4 {0, 9} 2 0 0 12 0 0 0 0 6
144
2 2 3 3 4 {o, 2} 4 0 156 0 0 0 0 0 12
2| 4 |3|3]2 {0} 1 6 0 0 12 0 0 48 0
4| 23|32 {0} 1 6 0 0 6 0 0 30 0
2| 23| 7] 2 {0} 1 | 104 5} 0 14 0 0 28 0
168
2 2 7 3 2 {0} 1 16 0 0 6 0 0 48 0
2 5 3 3 2 {0} 1 9 0 0 15 0 0 105 0
5 2 3 3 2 {0} 1 6 0 0 6 0 0 90 0
180 3 5 2 2 3 {0} 1 16 0 0 500 0 200 1100 0
503|223 {0} 1 8 0 0 252 0 72 1728 0
2|2 |3|3]|s5 {0} 1 3 0 0 45360 77760 | 158112 0 0
‘ 200 ‘ 2 2 ‘ 5 ‘ 5 ‘ 2 ‘ {0} ‘ 1 ‘ 125 ‘ 0 ‘ 0 ‘ 10 0 0 ‘ 50 ‘ 0
2 4 3 3 3 {0} 1 6 0 0 180 + 540 | 72 + 216 0 12672 0
2 2 3 3 6 {0, 3} 8 0 156 0 0 0 0 0 180 540 + 72 216
2 2 3 3 6 {0, 1} 2 0 324 0 0 0 0 0 180 + 72
2|2 |3| 3|6 {0} 1 3 0 0 754272 | 2449440 | 5832000 | 0 0
216 2| 2| 3] 3] 6]¢,1,2)| 3 0 | 34902 | 0 0 0 0 0 6
2| 2| 3| 3|6 |{0,24)] 9 0 | 10935 | 0 0 0 0 0 6412
2 2 3 9 2 {0} 1 729 0 0 € 12 0 0 54 0
2 2 9 3 2 {0} 1 27 0 0 6 0 0 162 0
4 2 3 3 3 {0} 1 6 0 0 252 0 72 5940 0

Dans chaque colonne, seulement les rythmes qui peuvent étre engendrés par le théoréme correspondant, mais
pas par les précédents sont comptés. Les chiffres gris correspondent aux rythmes qui peuvent étre engendrés
également par le choix des parameétres de la ligne précédente. Lorsqu’il n’y a pas de colonne (par exemple, #A
pour le théoréme 3) tous les rythmes possibles apparaissent déja dans les colonnes précédentes.



TABLE 2 — Nombre de rythmes de Vuza étendus pour les valeurs non-Hajos 240 < n < 280.

n‘m‘"l‘ﬁz‘"z "3‘ L ‘#K #A #B
Théoréme : (2) ‘ (6) ‘ (7) (2) ‘ (3) ‘ (4) ‘ (5) ‘ (6)
24|35 2 {0} 1 32 0 0 20 0 0 20 + 160 0
22 |3|5 ]| 4] {06} | 4 0 0 588 0 0 0 0 20 + 20
22 [3]|5 ]| 4] {02 | 4 0 7252 | 0 0 0 0 0 20 + 20
22 |3]| 5| 4|{015}] 2 0 0 64 0 0 0 0 20
22 |3]|5 | 4] {03} 2 0 1176 | © 0 0 0 0 20
22 [3]|5 | 4] {01} 2 0 |[14504| O 0 0 0 0 20
2|2 |3 |54 {0} 1 16 0 0 13000 9000 18000 94000 0
2|2 |5 |3]4 {0} 1 8 0 0 6264 3240 5184 197856 0
0 2|2 5| 3] 4]{0,1}| 2 0 4016 | © 0 0 0 0 18
2|2 |5 | 3] 4]{05} | 2 0 0 112 0 0 0 0 18
22 |5]| 3| 4|{015}| 2 0 0 32 0 0 0 0 18
22 |5]| 3] 4] {02} | 4 0 2008 | © 0 0 0 0 12 + 24
2|2 |5 | 3] 4]{010}| 4 0 0 56 0 0 0 0 12 + 24
2|4 |5 |3]2 {0} 1 16 0 0 12 0 0 24 + 576 0
4|2 |35 2 {0} 1 32 0 0 10 0 0 290 0
4|2 |5]|3]2 {0} 1 16 0 0 6 0 0 102 0
2 |7 |3]3]2 {0} 1 27 0 0 21 0 0 315 0
702 |3|3]z2 {0} 1 9 0 0 6 0 0 618 0
252 3 | 7 |2 2|3 {0} 1 | 104 0 0 980 0 392 5096 0
7|03 |2]2]3 {0} 1 16 0 0 324 0 72 21312 0
22 (3|3]|7 {0} 1 3 0 0 | 12830400 | 71383680 | 206126208 0 0
2| 2 |3 [11] 2 {0} 1 | 5368 0 0 22 0 0 88 0
264
2 |2 (11| 3| 2 {0} 1 40 0 0 6 0 0 552 0
33 |2]|5]3 {0} 1 9 0 0 1125 0 450 48825 0
270
3 (3|5 2]3 {0} 1 6 0 0 288 0 72 48600 0
2|2 |5 |72 {0} 1 | 2232 0 0 14 0 0 112 0
280
22 | 7|52 {0} 1| 480 0 0 10 0 0 170 0

Dans chaque colonne, seulement les rythmes qui peuvent étre engendrés par le théoréme correspondant, mais
pas par les précédents sont comptés. Les chiffres gris correspondent aux rythmes qui peuvent étre engendrés
également par le choix des paramétres de la ligne précédente. Lorsqu’il n’y a pas de colonne (par exemple, #A
pour le théoréme 3) tous les rythmes possibles apparaissent déja dans les colonnes précédentes.



4 Algorithmes pour énumérer les compléments apériodiques

Nous poursuivons en présentant deux nouveaux algorithmes (qui sont le fruit d’un travail
commun avec G. Auricchio, L. Ferrarini, S. Gualandi et L. Pernazza) pour la recherche exhaustive
de motifs de pavage (apériodiques), 'un en langage de programmation linéaire entier (le CS
Algorithm) et Pautre en codage SAT. Nous montrons comment ces modéles peuvent étre utilisés
pour définir un algorithme itératif qui, étant donné une période n, trouve tous les rythmes qui
tuilent avec un rythme donné A. Pour conclure, nous menons plusieurs expériences pour valider
Pefficacité temporelle des deux modéles (voir [4]).

Nous définissons deux types de contraintes :

1. les contraintes de pavage qui imposent la condition A @ B = Z,, et

2. les contraintes d’apériodicité qui imposent que le canon B soit apériodique.

4.1 Contraintes de pavage

Etant donné la période n et le rythme A, soit @ = [ao, . .., a,_1]T son vecteur caractéristique,
c’est-a-dire a; = 1 si et seulement si ¢ € A. En utilisant le vecteur a nous définissons la matrice
circulante T € {0,1}"*"™ du rythme A, c’est-d-dire que chaque colonne de T est le décalage
circulaire de la premiére colonne, qui correspond au vecteur a. Ainsi, la matrice T est égale a

aop Ap—-1 Ap—92 ... Q1
ay ag ap—-1 ... Qa2

T =
Ap—-1 Qp—-2 0ap—-3 ... Qo

Nous pouvons utiliser la matrice circulante 7" pour imposer les conditions de pavage comme suit.
Introduisons un littéral x; pour ¢ = 0,...,n — 1, qui représente le vecteur caractéristique du
rythme de pavage B, soit z; = 1 si et seulement si ¢ € B. Ensuite, la condition de pavage peut
étre écrite avec la contrainte linéaire suivante :

i€{0,...,n—1}

Notez que I'ensemble de contraintes linéaires (2) impose qu’exactement une variable (littérale)
dans l'ensemble {Z,4i—;j mod n}jea est égale a 1. Par conséquent, nous encodons cette condi-
tion sous la forme d’une contrainte Exactement-un, c’est-a-dire qu’exactement un littéral peut
prendre la valeur 1. La contrainte Exactement-un peut étre exprimée comme la conjonction des
deux contraintes Au-moins-un et Au-plus-un, pour lesquelles il existe un codage SAT stan-
dard (par exemple, voir [6, 16]). Par conséquent, les contraintes de pavage (2) sont codées avec

I’ensemble de clauses suivant dépendant de ¢ =0,...,n —1:
\/ ('rn—(j—i) mod n) /\ ("xn—(k—i) mod n ¥V " Tp—(l—i) mod n) . (3)
jeA k,leAk#l

4.2 Contraintes d’apériodicité

Au vu de Définition 2, s’il existe un b € B tel que (d + b) mod n # b, alors le canon B n’est
pas périodique modulo d.
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On formule les contraintes d’apériodicité en introduisant des variables auxiliaires yq i, 2.,

ugq,; € {0,1} pour tout diviseur premier d € D,, et pour tout entier i = 0,...,d — 1. On pose
n/d—1 n n/d—1
ug; =1 < Z Tivkd = 5 |V Z Tivka =0 ], (4)
k=0 k=0
pour tout d € D,,, i =0,...,d — 1, avec la condition
d—1
Yluai<d—1, VdeD,. (5)
i=0

Comme pour [5], les contraintes (4) peuvent étre linéarisées a I’aide de techniques de reformulation
standard comme suit :

n/d

0< Y Civrd — oyai < =~ 1 VdeD,, i=0,...,d—1, (6)
= d d
n/d n n

0< Y (1= @iska) = 52ai < 5 — 1 VdeD,, i=0,...,d—1, (7)
= d d

Yd,i T 2di = Ud,i VdE'Dn, i=0,...,d—1. (8)

Notez que lorsque uq4; = 1 exactement une des deux alternatives incompatibles dans le c6té droit
de (4) est vraie, alors que chaque fois que uq,; = 0 les deux contraintes ne sont pas vérifiées.
Corrélativement, la contrainte (8) impose que les variables yq; et zq,; ne puissent pas étre égales &
1 en méme temps. D’autre part, la contrainte (5) impose qu’au moins une des variables auxiliaires
ugq,; soit égale a 0.

Ensuite, nous encodons les conditions précédentes sous la forme d’'une formule SAT. Pour
coder la clause Si-et-seulement-si, nous utilisons I’équivalence logique entre C; < Cs et
(—Ci v C3) A (Cy v —=Cs). La clause C; est donnée directement par le littéral uq;. La clause
(5, exprimant le c6té droit de (4), c’est-a-dire la contrainte que les variables doivent étre toutes
vraies ou toutes fausses, peut s’écrire

n/d n/d
Cy = /\ Tivkd | V /\ Ziykd |, VdeDy.
k=0 k=0

Ensuite, la contrainte linéaire (5) peut étre énoncée comme la formule SAT :

d—1
- (Ud,o AUGT A A Ud,(d—l)) = Uq,, VdeDy.

Il
=]

Enfin, nous exprimons les contraintes d’apériodicité en utilisant

d

|
—

d—1
[(_'CQ \Y ud,i) A (02 \Y ﬂd,i)] A \/ Ud,1, Vd € D,,. (9)
=0

Il
o

i

Notez que joindre (2), (6)—(8) avec une fonction objectif constante donne un modeéle ILP complet,
qui peut étre résolu avec un solveur ILP moderne tel que Gurobi pour énumérer tous les possibles
solutions. En méme temps, en joignant (3) et (9) dans une formule CNF unique, nous obtenons
notre codage SAT complet du probléme des compléments de pavage apériodiques.
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TABLE 3 — Compléments de pavage apériodiques pour les périodes n € {72,108, 120, 144, 168}.

temps d’exécution (s
‘ " ‘ i R B FOP | s \ (5le [p| 7P
[72]2]2]3[3]2] 1.59 | 0.10 [ <0.00 [ 003] 6|
(18] 22 [3]3]3] 896.06 | 784 0.09] 019 ] 252 ]
0l 225372 24.16 027 0.02] 004] 18
2 12 |3|5]2 10.92 014 | 001] 004[ 20
4727332 82.53 293 [ 0.02] 011 36
gl 2023 ]3] 4| >1080.00 | >10800.00 | 11.04 | 46.96 | 8640
2 23|34 7.13 0.10 | <0.01 | 0.05 6
2 |4 [3]3]2 80.04 094 | 0.02] 0.08] 60
wsl 227372 461.53 1761 ] 0.04] 020 54
2 23|72 46.11 091 | 0.02] 007 | 42

4.3 Reésultats de calcul

Tout d’abord, nous comparons les résultats obtenus en utilisant notre modéle ILP et 1'enco-
dage SAT avec les temps d’exécution de la Fill-Out Procédure (voir [14]) et de le CS Algorithme
(voir [5]). Nous utilisons les canons de périodes 72, 108, 120, 144 et 168 qui ont été entiérement
énumérés par Vuza [18], Fripertinger [10], Amiot [2], Kolountzakis et Matolcsi [14]. Tableau 3
montre clairement que les deux nouvelles approches surpassent ’état de l’art, et en particulier,
que SAT fournit la meilleure approche de solution.

Les nouveaux algorithmes ont également été utilisés pour étudier certaines classes de canons
de périodes n plus grandes (180,216,240, 900) qui étaient auparavant insolubles. En particulier,
nous avons terminé ’énumération des canons apériodiques de période 180. Il s’est avéré que les
canons apériodiques que nous obtenons a la fin de la recherche informatique sont exactement les
canons de Vuza étendus de période 180.
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Chapter 1

Introduction

The link between music and mathematics was discovered in ancient times, a few obser-
vations being traditionally attributed to the genius of Pythagoras. He was allegedly the
first to guess the existence of numerical relationships between pitches, and to build a
musical scale through these. But this relationship was then studied by many scientists,
philosophers, musicians such as Ptolemy, Boethius, Zarlino, Galileo Galilei, Gottfried
Wilhelm Leibniz, Jean-Philippe Rameau, and Leonhard Euler. At first sight two diamet-
ric domains, music and mathematics came out to actually have many things in common.
Many connections have been discovered, some of which albeit having nowadays a long
tradition, are still offering new problems and ideas to researchers, whether they be music
composers or computer scientists. The combined study of the two disciplines can only
benefit both parts of the relationship.

The help of mathematics is fundamental in the study and understanding of music, as
in 1722 the composer Jean-Philippe Rameau wrote:

Despite all the experience I may have gained in music from being associ-
ated with it for so long, I must confess that it was only with the help of
mathematics that my ideas became clearer.

It is equally true that at times, in history, music has anticipated mathematical con-
cepts discovered only later.

In this thesis we deal with Tiling Rhythmic Canons, that are purely rhythmic con-
trapuntal compositions. Canons in music have a very long tradition; a few cases of tiling
rhythmic canons (i.e. canons such that, given a fixed tempo, at every beat exactly one
voice is playing) have also been composed. Ouly in the last century, stemming from the
analogous problem of factorising finite abelian groups, aperiodic tiling rhythmic canons
have been studied: these are canons that tile a certain interval of time in which each
voice (inner voice) plays at an aperiodic sequence of beats, and the sequence of starting
beats of every voice (outer voice) is also aperiodic. From the musical point of view the
seminal paper was probably the four-parts article written by D.T. Vuza between 1991
and 1993 ([29, 31, 30, 32]), while the mathematical counterpart of the problem was stud-
ied also before, e.g. by de Bruijn ([10]), Sands ([28]), etc., and after, e.g. by Coven and
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2 CHAPTER 1. INTRODUCTION

Meyerowitz ([9]), Jedrzejewski ([18]), Amiot ([1]), Andreatta ([4]), etc. A thorough the-
ory of the conditions of existence and the structure of aperiodic tiling rhythmic canons
has not been established yet; we try to give a contribution to this fascinating field.

In Chapter 2, we present tiling rhythmic canons from a mathematical and algebraic
point of view, focusing in particular on their polynomial representation and reporting
the fundamental results known in the literature.

In Chapter 3, we deal in particular with aperiodic rhythmic canons, that is canons in
which in both rhythms there is no repeated inner structures: neither the inner nor the
outer rhythm is obtained as a repetition of a shorter rhythm. From a mathematical point
of view, they are the most interesting canons since they constitute a possible approach
to solve the Fuglede conjecture on spectral domains.

If one of the sets, say A, is given, it is well-known that the problem of finding a
complement B has in general no unique solution. It is very easy to find tiling canons in
which at least one of the sets is periodic, i.e. it is built repeating a shorter rhythm.

In Chapter 4 we deal with the design of two algorithms whose purpose is to find the
complementary tiling rhythm of a given aperiodic rhythm in a certain period n.

To enumerate all aperiodic tiling canons one has to overcome two main hurdles: on
one side, the problem lacks the algebraic structure of other ones, such as those involving
ring or group theory; on the other side, the combinatorial size of the domain becomes
very soon enormous.

The algorithms are implemented through Integer Linear Programming (ILP) model
and SAT Encoding and solve the Aperiodic Tiling Complements Problem presented in
Section 4.3 in a faster time than previously known approaches.

Using a modern SAT solver we have been therefore able to compute the complete
list of aperiodic tiling complements of some classes of Vuza rhythms for periods n =
{180, 420,900}, which were up to now computationally unreachable.



Chapter 2

Tiling rhythmic canons

2.1 Musical and algebraic definition

In this section, we introduce the main notions about rhythmic canons in mathematics.
We refer to [11] for a complete and exhaustive discussion of these preliminary results.

A canon is a polyphonic musical form, born in the fourteenth century, typical of
classical music. It is a contrapuntal composition, that is, it is formed by the progressive
superposition of several voices, performing the same melodic theme, or variations of it
according to precise tonal rules. Popular culture is rich in them: consider for example
the italian popular nursery song “Fra’ Martino” (originally “Frére Jacques” or, in English,
“Brother John”).

There are two fundamental characteristics:

1. each voice periodically performs the same motif, and
2. these performances are temporally shifted.

In the following we will be interested in the case in which the motif, or pattern, is
purely rhythmic, and we can therefore imagine it performed by a percussive instrument,
disregarding the duration and pitch of the individual notes.

Musically, a rhythmic canon consists in the performance of the same rhythmic motif
by different voices, each with a different starting time. In this work we are interested
in a particular family of rhythmic canons: those in which the voices do not overlap but,
when played simultaneously, give rise to a regular pulsation, that is, in each time beat
there is one and only one active voice. These rhythmic canons are called tiling.

Since we are considering the pattern from an exclusively rhythmic point of view, and
each beat occurs only in the presence of a note, we consider a musical writing without
rests, obtained by incorporating each rest in the note that precedes it. We therefore
arrive at a first mathematical definition.

Definition 1 (rhythm). A rhythm is a subset of a cyclic group R < Z,,. The order n of
the group is the period of the rhythm.
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To complete the model of a tiling rhythmic canon it remains to express mathemati-
cally the complementarity of the voices, that is the simultaneous occurring of the following
facts:

1. voices do not overlap, and
2. the execution of the canon gives rise to a regular pulse.

Let R be the rhythm of the canon and n its period. Since each voice of the canon
performs R translated over time, the i-th voice will perform R + [b;],. Assuming for
the sake of simplicity that the first voice begins its performance at time by = 0, we can
express mathematically the different entries with the following sets of remainder classes
modulo n:

Ao=R
A =R+ [bl]n
A = R+ [bi]n,

and all of these are subsets of Z,,. The two previous conditions of complementarity are
expressed mathematically in the following way:

1. AinAj = foreveryi#j,4,j=0,...,k and
2. Agu Ay v U A =7y

Example 1. We observe that not all rhythms can verify these conditions: it is not always
possible to find an appropriate set of entries B = {bi}f=1 C Zy,. An example of this is
the samba rhythm S = {0,2,5,7,9,12,14} mod 16, as can be seen directly: let Ag = S
be the first voice. Since the second voice, A7 = S + [b1]16, must not intersect Ay, we
necessarily have by = +1. Given these two voices of 7 elements each, only 2 elements
remain in Zg, insufficient for a third voice.

We are lead to give the following definition.

Definition 2 (direct sum). Let (G, +) be an abelian group, let A, B — G. Let us define
the application

c:AxB—->G
(a,b) —a+b

We call A+ B = Im(o). If it is injective we say that A and B are in direct sum, or,
equivalently, that Imo < G is the direct sum of A and B and we write

A® B = Im(o).

Given an element ¢ € A@® B, the unique a € A and b € B such that ¢ = a + b will be the
projections of ¢ on A and B respectively. If G = A® B, we say that G is factored as a
direct sum of A and B, and we call G = A® B factorisation of G.



2.2. THE COVEN-MEYEROWITZ THEOREM )

Clearly, if A and B are in direct sum, then o : A x B — A @® B is bijective, so
[A® B| - |A||B.

We conventionally denote the elements of the cyclic group Z, with the integers
{0,1,...,n—1}, i.e. with the least non-negative representatives of the remainder classes
modulo n: {[0],, [1]n,---,[n — 1]n}-

The direct sum of sets, a priori, has no algebraic structure; however, if subsets A and
B are also subgroups of G, the direct sum of A and B thought as sets (see Definition 2)
coincides with the usual direct sum between subgroups. We can therefore speak of direct
sum without risk of ambiguity. We now have all the tools necessary to define a tiling
rhythmic canon.

Definition 3 (tiling rhythmic canon). We have a tiling rhythmic canon of period n with
motif (or inner rhythm) A and set of entries (or outer rhythm) B when A, B are subsets
of Z, and A® B = Z,.

We can now already give a necessary condition for a rhythm to be an inner rhythm
of a tiling canon: if A@® B is a factorisation of Z,, then |A||B| = n.

We observe that the commutativity of the addition in the cyclic group Z,, makes the
definition of rhythmic canon symmetrical in the inner and outer rhythms. What is the
inner rhythm and what the outer rhythm depends solely on the order of writing, and in
fact it is defined as:

Definition 4 (dual canon). Given a tiling canon Z, = A@® B, the canon Z = B® A is
called dual canon, or obtained from it by duality.

2.2 The Coven-Meyerowitz Theorem

The inner rhythm of a canon is traditionally represented by the tile of its least non-
negative representatives, as we have seen in Section 2.1. We have also assumed that each
tile contains at least the element 0. Given these two assumptions, we can naturally transit
from a set representation to a polynomial representation using the following definition.

Definition 5 (characteristic polynomial). The characteristic polynomial of A < Z,, is

Az) = ) 2"

acA

Definition 5 provides a one-to-one correspondence between the subsets of Z,, and the
set of polynomials with coefficients 0 or 1:

{AcZy} < {0,1}[z]
A A(x)

n—1
{a; : a; = 1};:01 <« Z a;x".
i=0
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Then the rhythms of a canon can be represented by the respective characteristic polyno-
mials.

For a rhythmic pattern to tile, E. Coven and A. Meyerowitz (see [9]) discovered two
conditions that are sufficient, and in certain circumstances even necessary. We discuss
their findings in full in this section utilizing the polynomial representation of rhythmic
canons.

Definition 6 (R4, S4). Let A < Z,, and ®4 the d-th cyclotomic polynomial. We define:
1. R4y ={de N*:d4(x) | A(x)} and
2. Sy ={de Ry :d=p* p prime,a € N*}.

Since cyclotomic polynomials will play a fundamental role in this discussion, let us
recall the main properties which will be used in the sequel without mention.

a1, Qa2 Qi

Proposition 1. Let p be a prime and n = p{'py*---py, with p; prime Vi = 1,...,n,
then:

1. ®p(z)=1+a+a?+ - +aP L

aj—1 ap-—1

2. () = Py, (a1 P );
3. if n > 1 is odd, then ®op(z) = ®p(—2x);

Qpn(r) < pln

4. Dp(2P) = {

Py (2)Ppn(z) = pin;

0 <= n=1
(0%

5 ®,(1) = p <= n=p

1 otherwise;

6. let m be a positive integer and let k = max{d | m : (d,n) = 1}, then, taking m = hk,
we have:

Op(a™) = [ Panla).

In particular, if (m,n) =1 we have: ®,(x™) = Hd|m Dy, ().

Actually, Definition 6 can be given also for A < Z; let us simplify the exposition
of Coven and Meyerowitz slightly, since for any other polynomial congruent with A(z)
mod (z™ — 1), the subset of the divisors of n in R4, which are the indices of the relative
cyclotomic factors, does not change and Sy is always composed of divisors of n.

Example 2. For example with A = {0, 25, 28, 35, 40, 55, 65, 68, 80, 95, 108, 120, 125, 135,
148,155,160, 165, 188,195} we obtain R4 = {2,8,25,50,200} and S4 = {2,8,25}. The
presence of all the ®4, with d | n, in A(z)B(z) implies that
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e S, U Sp is the set of all prime powers dividing n, and
e R4 U Rp is the set of all divisors of n (excluding 1).
We can now state the Coven-Meyerowitz theorem.

Theorem 1 (Coven, Meyerowitz). Let us consider the following conditions on A (and
on its characteristic polynomial A(x)).

(T1): A1) = TTynes, p
(T2): If pi*,...,p5m € Sa are powers of distinct primes, then pi* ---pim € Ry.
Then,

1. if A satisfies (T1) and (T2), then A tiles;

2. if A tiles, then A satisfies (T1);

3. if A tiles and |A| has at most two prime factors, then A satisfies (T2).

Remark 1. In their paper [9] Coven and Meyerowitz give condition (T1) in the following
form:
A1) = [] @pe(D).
peeSa

If p is prime, by Proposition 1 ®,(1) = p Yoo > 1, therefore the two forms are equivalent.

We now introduce some lemmas, as presented in [9] and proved in detail in [11], which
we will use in the proof of Theorem 1, but also to prove some results in Chapter 3: the
polynomial approach, in fact, provides a few new important properties.

Lemma 1. Let A(z), B(x) € N[z] and n € N*. Then

n—1
A(x)B(z) = Z ¥ mod (" —1) (T0)
k=0

if and only if

1. A(z), B(x) € {0,1} [z], so they are the characteristic polynomials of rhythms, resp.,
A and B, and

2. A®B ={r1,...,rn} € Z, withr; # r; mod n for alli,j e {1,...,n} withi # j.
Proof.

= : Let A and B be the sets of exponents that appear, respectively, in A(z) and B(x),

then
A(z)B(x) = Z nqx® Z npa’ = Z ngpa”

acA beB ke A+B



8 CHAPTER 2. TILING RHYTHMIC CANONS

where ny = >3, 4y nanp. For every k€ A+ B we consider ke {0,...,n—1} such
that K =k mod n, then, reducing A(x)B(z) modulo z" — 1, we have:

Z mat =1+z 422+ 42"
keA+B

therefore, necessarily,

(a) ng =1 for each ke A+ B,
(b) n=]A+B|=|A+ B

Therefore

1. by (a), A(x) and B(z) are polynomials with coefficients in {0, 1} and the sets
A and B are in direct sum, and

2. by (b), A® B is a complete set of representatives modulo n.

<= : We have
(A® B)(z) = A(z)B(z) = {r1,...,rp}(x) =2 + 2" +--- + 2.

The classes [r1]n, ..., [rn]n are all distinct, therefore there exist ko,...,kn—1 € Z
such that:

0= Tig — kon

1=ry —kin

n—1=mr;, |, —kp_1n

and therefore

n—1
A(z)B(z) = zhom 4 gtthn g gnettke-an - Z 2 mod (z"—1).
k=0

O

Lemma 2. Let n € N* and let A(x) and B(z) be the characteristic polynomials of
rhythms, resp., A and B. The following statements are equivalent:

1. A(z)B(z) = Y72 % mod (a" —1);

2. (a) n=A(1)B(1) and
(b) for everyt | n, with t > 1, we have that ®,(x) | A(z)B(z).

Proof.
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1 = 2: Condition 1 implies that there exists a polynomial ¢(z) € Z[x] such that

A@B(@) = Y o* +q(a)(a" 1)
k=0
Then
(a) A(1)B(1) = n and
(b) since 2™ —1 = (z —1) >~ Ox Oy (x )Hf‘;}@t( z), we have that
n—1
A(z)B(z) = (1 + q(z)(z — 1)) > ¥,
k=0

and therefore, for every ¢t | n such that ¢ > 1, we have that ®4(z) | A(x)B(x).

2 = 1: Condition 2 implies that A(z)B(z) = g(z) >;_ Oxk Moreover, A(1)B(1) = n, so
q(1) = 1. Then, setting ¢(z) = >7" ; a;z", we have that

since 2 Y70 aF = Y7 ek mod (2" — 1).

Remark 2. By Lemma 1, A® B = Z, if and only if

n—1
A(z)B(z) = Y 2 mod (" —1).
k=0

Moreover, we infer that, for any ¢t | n, with ¢t > 1,

Oi(z) | A(x) or O4(z) | B(x)
using Lemma 2 and the fact that the cyclotomic polynomials are irreducible in Z[x].

Now we can prove part 1 of Theorem 1.
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Proof of Theorem 1 1. : Let us define a polynomial B(z) as
B(x)= [] @4 (xt(qﬁ)) ,
qPeS
where S = {¢? : ¢° | lem(S4)}\Sa and ¢ (¢°) = max{d : d | lem(S4) and ged(d, ¢%) =
1}. By Proposition 1, we have that

0 (xt(q")) — P, (a;t@")qﬁ”) € {0,1}[z].

Hence B(z) € N[z].
Let s € N*\{1} satisfy s | A(1)B(1) and consider its prime factorisation s =
pit - ~pz‘k. We have 2 possibilities:

L pY e SaVi=1,...,k; by (T2), ®s(z) | A(z);
2. 7" ¢ Sa for some i =1,....k; ‘I)P?i (zt(p?i)) | B(x), s/p;" is a factor of ¢ (p5"),
and, by Proposition 1, ®4(z) | (I)p;"i (xt(p?i)).
Then, by Lemma 2, condition (T0) of Lemma 1 holds, that is

n—1
A(z)B(zx) = Z ¥ mod (2" —1);
k=0

therefore B(z) is the polynomial associated with the set B of its exponents, and A @ B
is a complete set of representatives modulo A(1)B(1); in particular, A tiles. O

Part (2) of Theorem 1 follows from the following lemma.

Lemma 3. Let A(z),B(x) € {0,1}[z], n = A(1)B(1), and S = {r7 : v7 | n}. If
Vit € N*\{1} such that t | n we have that ®(x) | A(x)B(x), then

1 A(l) = Hp‘)‘GSA (I):D"‘(l) and B(l) = HqBESB q)qB(l);

2. 8= SA (] SB.
Proof. Since for every ¢t | n, with ¢ > 1, we have that ®;(x) | A(z)B(x), then S
Sa v Sp. Clearly A(1) > [ [ 0cg, ®po(1) and B(1) > [ scg, Pgo(1). Thus

n=A1B1) > [] &) [] )= [] @m(1) =n
preES A qPeSp rYesS
The last equality follows from Proposition 1. Hence,
1. A(1)B(1) = [[ecs, Ppo(1) [ pes, Pge(1), which implies that
A1) = [] @) and B(1) = J] ®gs(1);

p*eSa qPeSp
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2. [Lpees, @po (1) [ pes, @p(1) = [l0es @ (1) and therefore Sq U Sp < S and
SA M SB = @
O
We can now complete the

Proof of Theorem 1.2. Since A tiles, by Lemma 1, there exists B ¢ Z, such that A and
B verify condition (T0) in Lemma 1; therefore, by Remark 2, A(z) and B(z) verify the
hypotheses of Lemma 3. In particular A verifies (T1) condition. O

Example 3. We observe that the converse of Theorem 1.2 does not hold, that is, con-
dition (T1) is not sufficient for A to tile. For example, let us consider the rhythm

A=1{0,1,3,4,6,7}.
A clearly does not tile and its characteristic polynomial is
Al)=1+z+ 23 +2t + 25+ 27 = 1+ 2)(1 + 2° + 25) = By(2) Py (x).
Sa = {2,3?}, then A verifies condition (T1):

A1) =6=2-3=[] .

pESA

For the proof of the third part of the Coven-Meyerowitz theorem, see [9].
The tiling property is invariant under affine transformations.

Lemma 4. Let A c N be finite. For everyt e Z and k € N we have:
A tiles <= kA +1 tiles.

Proof. Because of the translation invariance of the tiling property, it is sufficient to show
that
Atiles <= kA tiles.

—> Since A tiles, there exists C' < Z such that A® C = Z is a tiling. We therefore
have kA @ kC' = kZ, and consequently the tiling

Z=40,....k—1}@®kZ={0,....k—1}®@kA®KC = kA® ({0,...k — 1} ® kC).

<= Since kA tiles, there exists C' — Z such that kA® C = Z. Setting Cy = {c e C :
¢ =0 mod k}; we have that
kEA® Cy = KZ.

N

It is clear;

2 For every kz € kZ < Z, kz = ka + ¢, consequently ¢ € Cj.
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Then A® Cy/k = Z is a tiling.

O

The next two lemmas establish that also conditions (T1) and (T2) are invariant with
respect to affine transformations.

Lemma 5. Let A c N be finite and n € N, let us set A = A +n. We have that:
1. A(x) satisfies (T1) if and only if A'(x) satisfies (T1),
2. A(z) satisfies (T2) if and only if A'(x) satisfies (T2).

Proof. 1t suffices to observe that |A| = |A’| and A'(z) = a2™A(z), therefore for every
cyclotomic polynomial ®4(x) we have that ®4(x) | A(x) < P4(x) | A'(z). O

Lemma 6. Let A< N and k € N. Let us set A = kA, we have:
1. A satisfies (T1) < A satisfies (T1),
2. A satisfies (T2) < A satisfies (T2).
Proof. Let us start with one remark. Let &k = p prime, then we are going to prove that
S3 = {p°*1 p% € Sa} U {g” € S+ q prime # p}.
A(z) = A(z"), therefore:
R;=pRyu{ne Ry:ptn}.
In particular S; = {r” € R : r prime} and
1. epRy — r=pand e Ry
2.1e{neRa:ptn} < r+#pandr?’ e Ry hence the thesis.
Using the previous remark we prove separately the two statements of our theorem.
1. We divide the proof of this first statement into cases:

(a) If k = p prime, the thesis follows from the remark.

(b) If k = p®, by iterating the remark we have that
Si={p"":p*eSa}u {¢° € S4 : q prime # p},

and the thesis follows, as in the previous case.
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(c) Let k = p{*p% we prove that
n
Si= U{p?ﬂi :p¥e St u{¢®e Sy qprime # p;Vi}.
i=1
In fact just consider
n
Sa = U{pll € Satu {¢” € Sa : q prime # p;Vi}.

i=1

and iterate the previous remark, since at each step the multiplication by the
first p; modifies the set obtained in the previous step only the exponent of p;,
increasing it by 1. Again the thesis follows.

2. Let us consider the case k = p prime and define
;. Jpn ifpln
n = )
n ifpin

We have:
!
neRy < n' € Rya.

Let pi*ps? - - - pi* € N be powers of distinct primes. By remark we have:

p?i €Sy — (pgi)/ € Spa.

ai, az

Then, since (p{'p3*---pp¥) = (P1*) (p52)" - - - (p")’ we have the thesis. The general
case follows by iterating the previous case for each first p | k.

O

We now lay the foundations for the next chapter, introducing the definition of periodic
sets.

Definition 7 (periodic set). Let (G, +) be an abelian group, 0 € G the identity. A set
A c G is periodic if and only if there exists an element g € G, g # 0, such that g+ A = A.
In this case, A is also called periodic module g € G.

Definition 8 (basic form). The basic form of A < Z, is the smallest (for reverse lexico-
graphic order) circular permutation of the set of consecutive intervals in A,

A(A) = (a2 —a1,a3 — ag, ..., a — ap—1,a1 — ay)

where 0 < a1 < ag < ...ap < n are the elements of A, considered as numbers in [0, n—1].
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Chapter 3

Vuza canons

3.1 Aperiodic factorisations

The definition of a tiling rhythmic canon as a factorization of a finite cyclic group with two
of its subsets was given in Chapter 2. Effectively, the study of these musical structures
comes under the broader subject of factorisations of an abelian group with n subsets.
As pointed out in [11], when the Hungarian mathematician G. Hajos inquired in 1950
([15]) if we can derive that A or B must be periodic given a factorisation G = A@® B of
an abelian group with two of its subsets, this topic was brought to the attention of the
mathematical community. He answered the question in the negative in the same article.

Without being aware of Hajos” work, Nicolaas Goovert de Bruijn, a Dutch mathe-
matician, posed himself the identical question in 1950 and conjectured a positive solution
(see [10]). Despite this first mistake, de Bruijn was later among the scholars who made a
decisive contribution to the characterisation of the groups for which the answer to Hajos’
question is positive.

Several examples of groups for which the answer is affirmative had been indeed ex-
hibited since 1941 in other contexts and up to 1957 others appeared, in articles by Hajos
([14], [15], [16]), Redei ([25], [26]), de Bruijn ([8], [10]), and Sands ([27], [28]), and the
aforementioned Hajos’ result on the groups for which it is negative was generalised, ar-
riving at a complete characterisation in both cases.

Subsequently, after a long hiatus, between 1991 and 1993 a long paper in four parts
by the Romanian mathematician Dan Tudor Vuza (see [29], [30], [31], and [32]) was
published, dedicated to the formalisation of a particular class of rhythmic canons: the
RCCMCs (Regular Complementary Canons of Mazimal Category). The nature of Vuza’s
work is exceptional since he, completely ignoring the results of Hajoés, Rédei, de Bruijn,
and Sands, proves many of the theorems contained in the cited articles.

We will take a quick look at the findings immediately. Let us begin with some
definitions.

Definition 9 (k-factorisation). Let G be an abelian group. A k-factorisation of G is a
direct sum factorisation of G with k subsets of G. A k-factorisation G = A1@AsD- - -D Ay

15



16 CHAPTER 3. VUZA CANONS

is said to be periodic if there is an index i € {1,2,...,k} such that A; is periodic. A
non-periodic k-factorisation is called aperiodic.

Definition 10 (k-Hajos group). Let G be an abelian group. G is k-Hajds if all its
k-factorisations are periodic. G is non k-Hajos if it is not a k-Hajos group, that is, if
aperiodic k-factorisations of G exist. For k = 2, we will simply call them Hajos and
non-Hajos groups.

Definition 11 (aperiodic canon). An aperiodic canon is an aperiodic 2-factorisation of
a cyclic group. The order of the cyclic group is the period of the canon.

We observe that the aperiodic canons exist only for non-Hajos cyclic groups. We also
note that an aperiodic canon is a rhythmic canon Z, = A@® B in which both the inner
rhythm A and the outer rhythm B are aperiodic.

The following proposition establishes a polynomial criterion for the periodicity of a
given rhythm.

Proposition 2. A set A € 7, is periodic modulo k | n, if and only if

" —1
xk—1

| A(z).
If we indicate the set {d € N | d | n} by div(n), Proposition 2 can be restated as:

Proposition 3. A set A c Zy is aperiodic if and only if for all k | n, k # N, we have

" —1

T AG),

that is, if and only if for all k € div(n)\{n} there exists d € div(n)\div(k) such that
Dq(x) | Alz).

Proof. By definition, A c Z,, is periodic modulo k if and only if £+ A = A, and we have
the following chain of double implications:

k+ A=A < 2FA(z)

A(x) mod (2" —1)

— <xk—1 A(z) =0 mod (2" —1)

N———

— x"—l\(mk—l)A(m)

" —1

] A(z)

OJ

Theorem 2 (Tijdeman). If A®B = Z,, is a rhythmic canon, then also kA®B = Z,Vk €
N* such that (k,|A]) = 1.

For the proof, we need the following.
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Lemma 7. Let A,B < N be finite subsets, and A(x), B(x) be the associated polyno-
mials, n = A(1)B (1), and p be a prime such that p { A(1). If A(x)B(z) = Ap(x)
mod (z"™ — 1), then

A(zP)B(z) = Ap(z) mod (z" —1).

Proof. We consider the congruences:

A (2P) B(z) = (A(z))? B(z) mod p

(A(z))
= (A(2))"' A(z)B(z) mod p
= (A(2))"' An(z) mod (a" —1,p)
= (AM)P~

= Ap(z) mod (2" —1,p).
Now let r(z) = Z?:_()l r;x' be be the remainder of the division of A (2P) B(x) by " — 1;
for what has been said r(z) = Ap,(z) mod p, i.e. r; = 1 mod p, and being r (1) =
A(1)B (1) =n we have r; = 1 for each ¢ = 0,...,n — 1, that is the thesis. O
Proof of Theorem 2. By hypothesis, A(z)B(z) = A,(xz) mod (2™ —1). First of all we
observe that for every h € N, (hA) (z) = A (z"), in particular (hA) (1) = A(1). Consid-

ering the factorisation of k, k = p{*p5?...pS%m, for each i = 1,...,m, (p;,|4]) = 1. We
can therefore iterate the application of Lemma 7 and we obtain

(kA) (z)B(z) = Ap(x) mod (2" —1),

that is (kA) ® B = Z,. 0

3.2 Vuza canons

An exhaustive construction method for aperiodic tiling rhythmic canons is not known to
date; the first method to find some of them was provided by the following result (see [15]
by Hajos, Theorem 1 in [10] by de Bruijn, and Proposition 2.2 in [29] by Vuza).

Theorem 3 (Hajos, de Bruijn, Vuza). Let n = pinipanang € N such that
1. p1,n1,p2,n2,n3 > 1 and
2. ged (ping, pang) = 1.

Then Z,, admits an aperiodic tiling rhythmic canon.

We give the proof of this theorem showing how to construct an aperiodic tiling rhyth-
mic canon only for particular choices of factors A and B of Z,,, which will be useful in
the sequel, using the elegant factorisation suggested by Franck Jedrzejewski ([18]).
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Theorem 4 (Hajos, de Bruijn, Vuza, Jedrzejewski). In the hypotheses of Theorem 3,
an example of tiling canon of Z, with two aperiodic subsets is given by the following
construction. Indicating with T, the set {0,1,... k — 1}, let us call:

Ay = ngpinly, Ag = ngpanaly,
Ur = ngpininal, Us = ngpanonilly,,
Vi = nznaly, Vo = ngnill,
K, = {0} Ko={1,2,...,n5—1}.
Then taking
A=A® A

B=UdV,@K)u(U®dVi®K>)

we have the aperiodic rhythmic canon Z, = A® B.
Proof. First we list the general results that we will apply.

1. Vk | n, I} is a complete set of representatives of Z,/kZ,,, that is

Ly, =1 ®KZy,
(which, in fact, is the trivial canon).
2. VkeZ* if Z, = S®T, then kZ,, = kS ® kT.
3. IfZ, = S®T then Z, = kS@®T for every k such that (k,|S|) = 1.

The first two results are trivial, the third is Theorem 2.
So let n = pypaningng as in the statement. We look for a factorisation Z,, = A® B
with A and B aperiodic. Let us start with the trivial canon:

Ly, =1y ® kZy,.
First of all, applying 3, we have the following factorisations of Z,:
1:Zy =1, ®nZ,
= panally,, @ n1Zy,
2: 7y =1, ®noly
= p1niln, ® noZy,
Then, applying 1 and 2 alternately, we have the following factorisations of n3Z,:
1: n3Zy, = nzpanaly, @ nazniZy,
= ngpanaly,, @ n3nily,, @ nznipi1Z,
= ngpanaly, @ n3nily, @ nynipil,, @ nanipiney;
2 :ngZy = ngpinily, ® ngnaelZy,
= ngp1n1ly, @ ngnaly, @ nynopeZy,
= n3p1ni1ly, @ ngnaly, @ nanapall,, @ ngnopaniZy,.

Then the two factorisations become:
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1. n3Z, = A® (U; ®V3), and
2. n3Zy =A@ (U2 ®V1).
Going back to the initial factorisation, we obtain
Ly =1, ®n3Zy, = n3ly 0 {l,...,n3 — 1} ®nsZ,

where U indicates the disjoint union; we use the first and the second factorisations for
the first and the second instance of n3Z,, respectively, that is:

Zn:A@(U1®‘/2)\_I{177713—1}@14@((]2@‘/1)
=Ad(i@Vz) u{l,...,ns =1} @ U280 W)).
Then taking
B=U@V)ull,...,ns—1}® (U280 W),

we have the canon Z,, = A® B.
We still need to prove that A and B are aperiodic. Let us start with A:

hp2nan1 _ 1 pnapininz

A() = By ("9272) Ay ("07) =

gnsp2n2 1 gnapint ]

We use Proposition 3: we fix any h € div (n) \ {n} and look for a d € div (n) \div (k) such
that ®4(z) t A(x).
We have the following cases:

L. ngpang { h and @pyp,n, () 1 A(T);
2. ngp1ny J( h and (I)n3p1n1 (x) J[A(x)

There are no other possibilities, in fact, if absurdly we had nspans | h and ngping | h,
then h = angpeng = Bngpiny and therefore apang = Bping. Since (pini,peng) = 1, it
would follow that o = piny and 8 = pans and therefore h = n, which is absurd.

Let us move on to B:

B(z) = (U1 @Va) (2) + (z + 2% + - + 2™ ) (U2 ® Vi) (x)
= Ay, (™M) Ay, (x%) + zApy—1(x)Ap, (2™72) A, (Q?%)

P 1 g ( );c":spznz —1a"—1
= + 2, _1(x
N ng o
xnant — 1 rrr — 1 xnan2 — 1 ol — 1

As we did for A, given any h € div (n)\ {n}, we look for a d € div (n)\div(h) such that
®,4(x) 1 B(x). Let us consider the cases:
L. ngpanani )f h and q>n3p2n2n1 (x> J(B(x) since (I)nsp2n2n1 (x) | % but q)n3p2n2n1 (37) )f

P2 -1
xM3P2n2 ] pn_1] .
mAngfl(fE) 312 1 n )
xP1 —1
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2. ngpining t h and @pupinin, (2) | B(x) (symmetrically to the previous case).

There are no other possibilities, in fact, if absurdly we had ngpanang | h and ngpining | h,
then h = angpangong = Pngpining and therefore aps = Bp1. Since (p1,p2) = 1, it would
follow a = p; and 8 = po and so h = n, which is absurd.

O

Remark 3. From now on, given pi, ni, p2, ng, and ng, we will denote by Aj, As, Uy,
Us, V1, and V5 the sets so called in Example 4.

We therefore know that there exist aperiodic tiling rhythmic canons of period n =
pinipanong, as in the hypothesis of Vuza’s Theorem 3. The following result explicitly
establishes which are the periods not included in the previous theorem.

Theorem 5 (Fidanza). Let

e V= {neN:n=pmpangng with (p1n1,panz) = 1 and p1,p2,n1,n2,n3 > 1}, the
set of natural numbers which satisfy the hypotheses of Vuza’s theorem, and

o H = {pa,paq,quQ,pqr, p2qr,pgrs : a € N, p,q,r, s distinct pm’mes},
then N* =V LU H.

Proof. We set V' = N*\V and H' = N*\H: it is sufficient to prove the two inclusions
H <V and HE < V.

VY < H' : There are p1,p2,ni,ne € N* Vo € V with (p1n1,pang) = 1 and pinipang | z, and
this property is not verified by the elements of H of type p® and p®q, with p,q
primes and o € N. Moreover, there are pi,p2,n1,n2,n3 € N* Vo € V such that
pinipenang | x, and this property is not verified by the remaining elements of H,
which are those of type p?¢?, pgr, p>qr and pqrs, with p, ¢, 7, s primes.

H <V : Let v = p{'p32...ppt e HC, with p1,pa,...,pp distinct primes. We consider the
different cases, according to the number A > 1 of the primes that divide x.
h=1:x=p{" €H so this case is impossible.
h=2: We have a; > 3 and «y > 2 (or vice versa), so it is sufficient to consider
(p1n1, panzg, ng) = (p%p?:p?l_Z)-
h =3 : Up to a permutation of the factors, we have two cases:

x a1 = 2, ag = 2 and ag > 1, so it is sufficient to consider (piny, pang, ng) =
(p7. 052, 95);
* a1 = 3, ag = 1 and ag = 1, so it is sufficient to consider (pini, pang, ng) =
(v2.257p5°, 07 2).
h =4 : We have a1 + as + a3 + a4 = 5 and we assume a1 > 2, so it is enough to

consider (pini, pang,n3) = (p7*, p52ps, pyt).
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a1, 2

h >4 : Just consider (pini, pang,n3) = (p7 P52, p3*py*, ps”).
L]

We observe that all the examples of rhythmic canons encountered so far are not
aperiodic, since their period is too small: the minimum period necessary for an aperiodic
tiling rhythmic canon is 72, for which (p1,n1,p2,n2,n3) = (2,2,3,3,2).

Example 4. Theorem 4 gives the following factorisation of Zro:

A = ngpinil,, @ napanaly,
~ 18{0,1} @810, 1,2}
— {0,8,16, 18,26, 34}

B=(Uh@W) u{l,...,ng—1})® U0 W)
= (nzprninaly, @ nanily, ) L {l, ..., n3 — 1} @ nanall,, @ nznipanaZy,
= 4{0,1} ® 24Zr> L {1} @6 {0, 1,2} ® 36Zr
= {0,4,24,28,48,52} L {1} @ {0, 6,12, 36, 42, 48}
= {0,1,4,7,13,24, 28, 37,43, 48, 49, 52} .

We observe that the aperiodic factorisation constructed in Theorem 4 is symmetric with
respect to pyny and ponsg, therefore as outer rhythm we can also consider

B =Us®Vi)u{l,....n3 =1} ® (U1 ®V2)
= ngnall,, @ n3nipeneZy, L {l,...,n3 — 1} @ ngnil, nznopiniZy,
= 6{0,1,2} ®36Zm L {1} D 4{0,1} ® 24Zr
— {0,6,12,36,42,48} L {1} @ {0, 4,24, 28, 48, 52}
— {0,1,5,6,12,25,29, 36,42, 48, 49, 53} .

Zro = A® B’ is in fact the factorisation shown by Laszlo Fuchs in Abelian Groups, and
taken up by the Parisian mathematician Frangois Le Lionnais, who inserts 72 in Les
Nombres Remarquables precisely because "le groupe cyclique a soixante-douze éléments
se décompose sous la forme S + T non-périodiques".

The aperiodic canons with periods 72, 108, 120, 144, and 168 have been completely
enumerated by Vuza [29], Fripertinger [12]|, Amiot [2], Kolountzakis and Matolcsi [21].

Many other ways of constructing aperiodic tiling canons are possible, see for example
de Bruijn ([10]), Vuza (|29]), Fidanza ([11]), and Jedrzejewski ([18]). These methods fall
into a category treated by F. Jedrzejewski (Theorem 14 in [19]).
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In the next section, after briefly showing the two best known graphic representations
used for tiling rhythmic canons, we introduce a new diagram representing the lattice of
the cyclotomic factor indices of the characteristic polynomials of the canon.

3.3 Lattice representations

There are several ways to represent graphically a rhythmic canon. The main ones are
the circular representation and the grid representation.

Figure 3.1a shows the circular representation (also called Krenek diagram) of Z,
with n points equidistant along a circumference, starting from the pole and proceeding
clockwise. A rhythmic pattern is represented by the polygon in such circumference whose
vertices are the elements of the pattern, in our case, {0,1,5}. The other voices are added
by rotating the pattern as indicated by the elements of the outer rhythm.

In Figure 3.1b, the inner voice is represented with a sequence of black boxes in a row
of length n. The outer voice is represented by the starting black box in each row. This
is the grid representation, also called TUBS (Time Unit Box System).

Let us now introduce a new type of representation of canons: a lattice representation
through a Hasse diagram. In our context, we will call lattice representation of a rhythm
the graphical representation of the divisors of the period of the canon, which can be
considered a poset under the divisibility relation. For this poset, any edge in the diagram
is such that the number below divides the number immediately above. In this diagram,
we highlight the vertices representing the indices of the cyclotomic polynomials dividing
the characteristic polynomial of the rhythm and the edges connecting them.

The lattice representation of a rhythm can tell us a lot about its structure. As a
notable example, one can easily see that a rhythm is periodic if and only if its lattice
representation contains a whole hyperplane (parallel to all axes but one) passing through
the point corresponding to n. This is a very simple geometric (graphical) criterion that
will prove valuable later. We have chosen to represent with the Hasse diagrams the
rhythms of the aperiodic tiling rhythmic canons enumerated with periods < 168 whose
sets R4 do not include the index n.

Figure 3.1: Graphic representations of tiling rhythmic canons.

0
8 1
01 2 3 45 6 7 8
7\ V¥ 2
6 3
5 4
(a) Krenek (b) TUBS
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Figure 3.2: n = 72. Aoy = 1815 @ 8l3.

23

Sa = {3,4}. #B = 6.

Figure 3.3: n = 108. Agy = 271, @ 1213.

Sa ={2,9}. #B = 252.

Figure 3.4: n = 120. A = 30l @ 8I3.

Sa={3,4}. #B = 18.
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Figure 3.5: n = 120. A = 30l @ 815.

Sa = {4,5}. #B = 20.

Figure 3.6: n = 144. Acpy = 181, @ 1613.

Sa = {3,4}. #B = 36.

Figure 3.7: n = 144. Acyr = 361, @ 1613.

Sa = {3,8}. #B = 8640.
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Figure 3.8: n = 144. A1 @ A ® Az = 361> @ 1613 P As.

(a) A3 = L = 9I,. #B = 6. (b) A3 = L =T,. #B = 6.

Sa ={2,3,8}.

Figure 3.9: n = 144. A1 @ A2 @ 2A3 = 36]12 @ 16]13 @ 2A3.

Sa = {3,4,8}.

Figure 3.10: n = 168. A = 421, @ 8Is.

Sa = {3,4}. #B = 54.
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Figure 3.11: n = 168. A = 421, & 8.

Sa ={4,7}. #B = 42.

3.4 Extended Vuza canons

We now give a first result that refines Jedrzejewski’s one, lifting the hypothesis that
p1 and po are prime and proving that B is aperiodic if ng satisfies a simple arithmetic
constraint (see [22]).

Theorem 6. Let n = pinipensns € N such that:
1. p1,n1,p2,n2,n3 > 1;
2. ged (p1n1, pana) = 1;
3. if ng is not prime, there is no prime q such that q | ns, but q } pinipans.

Let H be the subgroup H = n3ly nipon, of Zn and let K be a complete set of cosets
representatives for Z, modulo H such that K is the disjoint union K = K1 1 Ko. Then
the pair (A, B) defined by

A=A1® A
B=UdV@K)uU:®dVi®K>)

s an aperiodic tiling rhythmic canon of Z,.

Proof. The proof that A@® B = Z, and that the set A is aperiodic is the same as in
Vuza (Proposition 2.2 in [29]). We are left to prove that B is aperiodic. Consider the
characteristic polynomial B(z):

g 1 gn 1 gnapenz ] gn 1

x
xna3ny — 1 gn3pininz — | 1( ) + xn3n2 — ] gpnap2n2ni — |

B(z) = Ko(x).

Given any h € div (n)\ {n}, we look for a d € div (n)\div (h) such that ®4(x) | B(z).
Let us consider the following cases:



3.4. EXTENDED VUZA CANONS 27

(a) U1 @ V2 = 108]12 @ 18]13 (b)

Lattice representation of an aperiodic tiling rhythmic canon with period n = 216, where A =
5415 @ 2413 and B = (1081, @ 1813 @ {21,43,122,167}) w ( @ {0, 106}).

1. if ngpanany f h, then ®p,ponon, (2) 4 B(z) since

" —1

Prspanan: (7) | PNz _ |

but
gnep2nz — 1 g —1

(I)nspznzm (x> pnanz _ | gnapanani _ 1K2(x)'
In particular, ®,,,p,n0n, (¢) / K2(x) by Lemma 4 of Rédei’s paper ([26]).
2. if ngpining  h, then @, 010, (x) | B(x) (symmetrically to the previous case).

There are no other possibilities: in fact, if we had ngpsnoni | h and ngpinins | h, then
h = angpangny = Bngpining and therefore aps = Bp;. Since ged (p1,p2) = 1, it would
follow that o = p; and 8 = po and so h = n, which is a contradiction. O

Example 5. Consider n = 216; let p; = 3, n1 = 3, po = 2, ng = 2, and ng = 6. Theorem
6 ensures that, defining

A = 541, @ 2415
B = (1081, @ 1815 @ {21, 43, 122,167}) L (7213 @ 12I, @ {0, 106}) ,

A® B = 76 and (A, B) is an aperiodic tiling rhythmic canon.

In a generalisation of Theorem 6, rhythm B is the disjoint union of three sets, one
being periodic both modulo n/p; and modulo n/ps.

Theorem 7. Let n = pinipanong € N such that:
1. p1,Nn1,p2,N2,N3 > 1,’
2. ged (ping, pane) = 1;

3. if n3 is not prime, there is no prime q such that q | ns, but q } pi1nipane.
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Let H be the subgroup H = n3ly n,pons 0f Zn, K be a complete set of cosets representatives
for Z,, modulo H such that K is the disjoint union K = K; 1 Ko u K3 with K1, Ko # &,
and W = naninal,, p,. Then the pair (A, B) defined by

A=A A

B=U1Vo@K))u (U Vi ®Ky)u (W K3)
s an aperiodic tiling rhythmic canon of Z,.

Proof. The only case we need to consider is K3 # (J (notice that this is possible only if
ng > 2). Moreover, the case where ng is prime is very simple and we will omit its proof.
We already know, from Theorem 3 that A is aperiodic; B is aperiodic too, since

B(z) = Uy(x)Va(x) K1 () + Us(z) Vi (2) Ko (x) + W (z)K3(x)

and the cyclotomic polynomials ®,,p,n,n, and ®p.pn,n, divide exactly 2 of the sum-
mands on the right hand side.

We now prove that A @ B = Z,: to this aim we make use of the following facts,
proven by F. Jedrzejewski (Theorem 14 in [19]):

A+ U+ Vo= A1 + Uy + Us
As +Us + Vi = Ay + Uy + Uy
By an easy check , we see that
Ui + Uz = naning (p1l,, + paly,) = nsnineZy,p, = W,
and |U;||Us| = pap1 = |W/|. This means that
UeU;=W.
We obtain that
A+B=(A1+A)+ (U1 +Va+ K1) u(Us+ V1 + K3) u (W + K3))
= (A1+A2+U1+‘/2+K1)I_I(A1+A2+U2+‘/1+K2)I_I
I_I(A1+A2+W+K3)
= (A1+A2+U1+U2+K1)\_I(A1+A2+U2+U1+K2)\_I
I_I(A1+A2+U1+U2+K3)
=A14+ A2+ U1 + Uy + (K7 u Ky 1 K3)
=A1+U; +Ay+Us + K.

Again, an easy computation shows that
(A1 + U1) + (Ag + Ug) = n3p1n1]1p2n2 + ngpgngﬂplnl = nﬂmnlmm =H

and so
A+B=H+ K =7Z,,.

Moreover, since |A||B| = n = |H||K]|, the sum A + B is direct. O
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Figure 3.13: n =216. B= (U1 ® V2@ K7) u ( @ Ko)u (V@ Ks).

Lattice representation of an aperiodic tiling rhythmic canon with period n = 216, where A =
5415 @ 2413 and B = (1081, @ 1813 @ {21,43}) L ( @ {0,106}) u ( @ {122,167}).

Example 6. Let us go back to n = 216 with the same choices of p1, ni, p2, no, and ns.
By Theorem 7, we find a new aperiodic tiling rhythmic canon (A, B) defining

A = 541, @ 2415
B = (1081, @ 1813 @ {21, 43}) u (7213 @ 121, @ {0, 106}) u (3615 @ {122,167}) .

The second generalisation of Theorem 6 widens the definitions of sets A1, Ao, V1, and
V3. We precede it with a useful lemma.

Lemma 8. Suppose that a subset S S Z,, is periodic of period m | n, i.e. S+ m =9,
and fori=0,....,k—11let S;={ae€ S:a=1 mod k} where k is a divisor of m. Then
for each i also the sets S; are periodic of period m.

Proof. Tt is sufficient to observe that since m is a multiple of k£ the remainder classes
modulo k are invariant by the translation by m, hence also S; +m = 5;. O

Theorem 8. Let n = pinipsonong € N such that:
1. p1,n1,p2,n92,n3 > 1;
2. ged (p1n1, pana) = 1;
3. if n3 1s not prime, there is no prime q such that q | n3, but q } pinipans.

Let H be the subgroup H = n3ly n,pony Of Zn, and K = Ky 1 Ky (with K1, Ky # ) be
a complete set of cosets representatives for Z, modulo H. Take
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e A; as a complete aperiodic set of coset representatives for Zp,yn, modulo nal,, ;

o Ay as a complete aperiodic set of coset representatives for Zy,n, modulo nil,, ;

° ‘711,...,‘71j as complete aperiodic sets of coset representatives for Zip,n, modulo
pZan

° V;,...,V{‘ as complete aperiodic sets of coset representatives for Zyp,n, modulo
pl]ITLQ'

Set Ky = K} Ui+ U Kd and Ky = K} U - U K, where K5 = {k#l“,...,k&s} are
non-empty subsets of K, for oo =1,2. Then the pair (A, B) defined by

A = nzgpini Ay ® napana Ag
B = ((Ul@ngnlfleeg{ki,...,k:lll}) T
oo (r@ngm ¥ @ (k7))
o (e @ngnaVl @ (K, K} ) b
cou (T @nagm @ (B

s an aperiodic tiling rhythmic canon of Z,.

Proof. We have
o napini Ay + Uy = naping (zzh &) nzﬂp2> = nap1nilp,n, = A1 + Ut
o napang Ay + Uy = ngpany (1212 @ n1]1p1> = ngpanaly n, = Az + Us;
o Ay +n3ni Vo = ngng (pl]In2 + ‘72) = ngnilyn, = A1 + Vo
o Ay + nsnsVi = nans (pQ]In1 + ‘71) = nanalpyn, = As + V1.

For the sake of simplicity, we now give the proof in the case j = 1 and h = 1. The general
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case is completely analogous. We compute
A+B=
= (n3p1n1f~11 + n3p2n2A2> + ((Ul + n3n1‘~/2 + K1) (] (UQ + n3n2‘71 + KQ))

= (ngplnlfll + ?”Lgpz'n,g/iz + Ui + n3n1‘~/2 + Kl) L

L (ngplnlfh + ngpgngjlg + Us + n3n2‘~/1 + Kg)

A+ ngpgngflg + Uy + 713711‘72 + K1> [ (ngplnlfil + Ay + Us + ngngf/l + KQ)

(A1 + ngpgngjlg + U+ Vo + Kl) [ (ngplnlxzh + A+ Uy + V) + KQ)

(A1 + ngpgngfig + U1 +Us + Kl) LJ <n3p1n1f~11 + Ay + Uy + U7 + KQ)

=A1+ A+ Uy + Uz + (K7 u Ko)
=A1+U1 +A+ U+ K
= D,

A cardinality argument similar to that used in Theorem 7 shows that the sum is
direct.

The proof that A is aperiodic follows from Vuza’s argument (Proposition 2.2 in [29)]),
as above. Assume now that B is periodic of period a: we can assume without loss of
generality that a = n/p where p is a prime number. Hypothesis 3 now implies that a
is a multiple of ng: but then by Lemma 8 also the sets B; = B n ({i} + n3Z,) must
be periodic of period a. However, the sets B; are simply translates of U; @ nsniVa by
elements of K1 or of Uy G—)ngngf/l by elements of Ky (remember that also the elements of
Ui and Us are multiple of n3): on their turn, Uy @ ngnlf/'g and Us ® ngngffl are indeed
periodic resp. of period n/p; and n/ps, but since p; and py are coprime no common
period smaller than n is possible. A contradiction follows since we assumed both K7 and
K> to be non-empty. O

Example 7. This time we choose n = 252; let p1 = 2, ny =7, po = 3, neg = 3, and
ng = 2. We can take e.g.

Ay ={0,2,7} Ay ={0,1,3,4,9,12,13}
Vi = {0,10,17} Vo =1, = {0,1}
Ky = {0} Ky = {1}

obtaining a new canon (A, B) where

A =9284, ®184,
= {0,56,196} @ {0, 18, 54, 72,162, 216, 234}

B= (U1 @ 14Vs @Kl) L (U2 @ 6V) @Kz)
= ({0,84,168} @ {0, 14} @ {0}) L ({0,126} @ {0, 60,102} ® {1}) .
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Figure 3.14: n = 252. B= (U; @14V, ® K1) L ( D K>).

(a) Uy @ 14V, = 8413 ® 14{0, 1} (b)

Lattice representation of an aperiodic tiling rhythmic canon with period n = 252, where A =
{0,56,196} @ {0, 18,54, 72,162, 216,234} and B = (84I3 ® {0, 14}) u ( ®{1}).

Definition 12 (Vuza canon). We call Vuza canons all the canons obtained using the
constructions described in Theorems 3, 6, 7, 8.

It is possible to stretch this type of constructions even further. With the following
theorem, we improve the result of Jedrzejewski (Theorem 21 in [19]).

Theorem 9. Let n = pinipsnong € N such that:
1. p1,n1,p2,n9,n3 > 1;
2. ged (pina, pang) = 1;
3. there is no prime q such that q | ns, but q ¥ pinipane.

Let H be the subgroup H = n3ly nipony 0Of Zn. Suppose that L and K are proper subsets
of Zp, such that L® K = Zp, and K = Ky u Ky, with K1,Ky # . Then the pair
(A, B) defined by

A=A40A:@L
B=U@V,®K))u U@V ®K>)

18 an aperiodic tiling rhythmic canon of Z,,.
Proof.

A+B=(A1+ A+ L)+ (Uh +Va+ Ky)u (U + V1 + Ky))
=(A14+ A2+ L+U1+Va+ K))u (A1 + A+ L+ Uz + V1 + Ko)
=M1+ A+ L+U+Us+ K1) u (A1 + Ay + L+ Uz + Ur + Ka)
=A+A+L+Ui+ U+ (K1 u K»)
=A1+U;+ A+ Us + L+ K.



3.4. EXTENDED VUZA CANONS 33

Figure 3.15: n =216. A=A DA, P L.

(a) Uy @ Vy = 1081, @ 181

Lattice representation of an aperiodic tiling rhythmic canon with period n = 216, where A =

The sum is direct because the computation of the cardinality leads to
|A1]|A2||Ur]|U2||L © K| = n.

Aperiodicity of A is immediate from Lemma 8, since A; + As is aperiodic and B is
the union of the subsets B; contained in different remainder classes modulo ng3, some of
which have a period coprime with the period of the other ones (exactly as in the previous
theorem). O

Example 8. Choosing again n = 216 and the same values for p1, n1, p2, no, and ng as
in Example 6, we set L = {0,1}, K1 = {2}, and Ky = {0,4}. By Theorem 9, we get that

A=54l,®24Is® L
B = (108]12 @ 1813 @Kl) [ (72H3 ® 121, @Kg)

define an aperiodic tiling rhytmic canon.

To prove our next result we take advantage of the equivalent polynomial formulation
of tilings and of the Coven-Meyerowitz conditions (|9]).

Definition 13 (extension). Let A be a subset of Z,, and let Sy = {po‘, @, ..., 1“7}. We
call the extension of A any rhythm A whose characteristic polynomial is

Ala) = @y (275 ) 0,0 () o (27
where kp, kq, ...,k are divisors of n such that p } ky,q f kg, ..., 7 | kr.

Note that by definition clearly S4 = S5.

Proposition 4. Let A® B = Z,, and let B satisfy condition (T2). Then A® B = Zy,
too.
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Proof. Since p® is a prime power, then
o (mT) € {0,1} [x],
and so A(z) € N[z]. Moreover,
e A(1)B(1) = n and
o &,(x) | A(x)B(z) for all d | n, with d > 1.

By Lemma 2, this means that
. n—1
A(z)B(z) = Z ¥ mod (z"—1),
k=0
that is, condition (T0) in Lemma 1 holds. Therefore A(x) € {0,1}[z] and A® B = Z,,
that is, A tiles with B. O

Combining Theorem 9 and Proposition 4, we are able to find new Vuza canons where
L is not a subset of Zy,.

Theorem 10. Let n = pynipsnons € N such that:
1. p1,n1,p2,ne,ng > 1;
2. ged (p1na, pana) = 1;
3. there is no prime q such that q | ns, but g ¥ pinipans .

Let H be the subgroup H = n3lly nipon, 0f Zn. Suppose that L and K are proper subsets
of Ly such that L® K = Zp, and K = Ky u Ko, with Ki,Ks # . Let L be an
extension of L; then the pair (A, B) defined by

A=A10A 0L
B=U V@ K)uU®dVi®K>)

s an aperiodic tiling rhythmic canon of Z,.

Proof. Since, by definition, A; and As coincide with their own extensions, the extension
of A1 ® Ay, ® L is A. By Theorem 9, A1 ® Ao ® L ® B = Z,, therefore Proposition 4
implies that A® B = Z,.

We already know from Theorem 9 that B is aperiodic. To show that A is aperiodic,
consider L(z). By hypothesis 3, St does not contain any maximal prime power dividing
n, as Sa, and Sy4,. As a consequence, S4 = 5S4, US4, U ST does not contain any such
prime power, either. By Proposition 3, A cannot be periodic. O

Definition 14 (extended Vuza canon). We call extended Vuza canons all the canons
obtained using the constructions of Theorems 9 and 10, possibly combined with those of
Theorems 3, 6, 7 and 8.
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Figure 3.16: n =240. A=A ® A, ® L.

(a) Uy @ Vo = 1201, @ 1215

Lattice representation of an aperiodic tiling rhythmic canon with period n = 240, where A =
601> @ 16I3 @ 151, and B = (1201, @ 1215 @ {2}) u ( @ {0}).

Example 9. We show now an extended Vuza canon with period n = 240 (p; = 5,n; =
3,p2 = 2,n9 = 2,n3 = 4). Set L = IIy; then L = 15I3. Choosing K1 = {2} and K, = {0},
we obtain the canon
A=A A aL
= 60I, @ 16135 P 151,
B=U1@Ve@K))u(U20V1 ®K>)
= (1201 @ 12I5 @ {2}) v (4815 @ 8l ® {0}) .

It is worth noting that it would not be possible to obtain such a canon without applying
Theorem 10.

Example 10. Given L & K = I, @ 2y = Z4, an extended Vuza canon with period
n =144 is
A=A410A:®L
= 1613 @ 361, @ I
B=U1®V:2®K1)u(U20Vi®Ky)
= (4813 ® 8L, @ {0}) L (721, ® 1203 @ {2}) .

The lattice representation of A is in Figure 3.17.

It is now natural to pose the following question: how many extended Vuza canons
are there given the five parameters pi,n1, p2, n2, ng and the factorisation Z,, = L ® K?
The first step consists in determining how many partitions of Z,,, allow to disjointly

distribute the n3 remainder classes in the factors <U1 @n3n1172j>, <U2 + n3n2f/1h> and

W, paying attention to assign at least one class to the first two factors (otherwise the
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Figure 3.17: n = 144. A = 1613 ® 361, @ I5.

Sa ={2,3,8}.

canon would become periodic). By Theorem 8, we need also to consider all the different
V7 and Vi which provide a (extended) Vuza canon. We want to determine in how many
ways we can choose aperiodic subsets of distinct elements modulo p; in Zy, p, (resp. in
Zpyn, ) up to translation. By convention, we fix the first element as 0, and for every other
remainder class modulo p; we have no possibilities. We have to disregard the periodic
ones and finally we discard all the p; — 1 possible translations. Then,

=L 30 () (4 -

bz ulpa
- LT (2) ()

When there is no factor L in the inner rthythm A, we consider

t1n ti2 t13

tor  tog  tos
T —

tm1 tm2 tms
as the matrix in which every row ¢;,with ¢ = 1,...,m, represents a possible partition

of the remainder classes modulo ng3, and the single entry in every row is the number of
remainder classes modulo ng assigned to the i-th factor

U@ nsmff{, Uz + nzn2 VY, or W.

In this case, the number of possible outer rhythms B is as follows:

K 5 ti1 5 tio ti3
:#lgzzfﬁg, 3 < n “#yq> . < n w#y§> . <7l> . <n3>.
no So\ns-p n3 - p2 ng - p1- P2 t;
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Example 11. Let us show how many aperiodic rhythms B there exist given n; = 2,ng =
3,n3 = 5,p1 = 2,p2 = 3. The possible vectors ¢ for Z,, are 10:
T ={[1,4,0],[4,1,0],
[2,3,0],[3,2,0],
(1,2,2],[2,1,2],[2,2,1],
[1,1,3],[1,3,1],[3,1,3]}.

The total number of possible aperiodic rhythms B is given by:

1 1 ti1 1 ti2 1 ti3
o 3 (5e) () () ()
180, =4 \5-2 53 5-2-3) \&

= 45360 + 77760 + 85536 + 72576
= 281232.
Example 12. Given, instead, n; = 2,n9 = 3,n3 = 4,p1 = 2,p2 = 3, we calculate how
many aperiodic rthythms B there exist in Zj44. The possible vectors ¢ for Z,,, are 6:
T= {[17330]3 [33 170]7
[2,2,0],[1,1,2],
[1,2,1],[2,1, 1]}
The total number of possible extended Vuza aperiodic rhythms B is given by:

4p -] 3 <144 1)“‘(144 1>“2<144>“3 (4)
144 4= A8 12 24 t;

= 864 + 1944 + 1944 + 648 4 1296 + 1944
= 8640.

We include a table showing the number of Vuza canons and extended Vuza canons
for all the periods n with values between 72 and 280.

Theorem 11. Let A® B = Z,, be a Vuza canon. Then A and B satisfy condition (T2).
Proof.

B is (T2): Let A1 = nzpanal,, and As = ngpinil,,. Then, as in the proof of Theorem 4, we
consider A = A1 @ As. Since

phap2nenl 1 pn3pininz _

A(x) - xnsp2m2 — 1 gnspini — ]
= 1_[ ®q, (z) H g, (z),
di|n3panang da|ngpining
difnzpana datnzpini
it follows that Vd; with prime powers factorisation d; = p{*'--- pgk such that

g4, () | A(z), there is a prime power pi* | ning such that P01 | A(z). Simi-
larly for do. Then B(z) satisfies condition (T2).
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Table 3.1: All possible A; and A, for some non-Hajos values of n < 168.

ngpanaAg ‘

83

72 3 3 2 2 2 {0} 0 3 181, 8{0, 2,4}

8{0, 1,5}

1205

108 | 3 3 2 2 3 {0} 0 3 2715 12{0,2, 4
12{0,1,5

8l5
8{0, 2
8{0,1
8{0,3
8{0,1
8{0,2
8{0,1
8{0, 4,
8{0,1,
2
1
3
1
2
3
2

[n [ p ni p2 ng ny | L | #K | #A | nzpiniA;

}
}

&

AAONDWWNO R AN W®
0NN TDWTTD R DA R
=~ (O (0 0 © © O 0000w~ R

)

B

B

3 5 2 2 2 {0} 0 16 | 30l

8{0
8{0
8{0
8{0
8{0
8{0
8{0
8l5
8{0, 2, 4)
8{0, 1,5}
8{0, 4, 5}
8{0, 2,7}
8{0. 5,7}
8{0, 1,8}
8{0. 4, 8}
{0} 1613
3 83 2 2 a4 | SO0 3 | 36l 16{0,2, 4}
: 16{0, 1, 5}
T6I5
gl 16{0, 2, 4}
.2,
18(0,2,3,5) | 1oi0' D g}
1613
16{0, 2, 4}
16{0, 1, 5}
85
8{0, 2,4}
8{0. 1, 5}
8{0, 4, 5}
8{0, 2,7}
8{0. 5,7}
8{0, 1,8}
8{0, 4,8}
8{0, 7,8}
8{0, 2, 10}
8{0, 5, 10}
8{0, 8, 10}
8{0,1,11}
8{0, 4,11}
8{0,7, 11}
8{0. 5. 13}

B

B

)

120

B

B

)

I 1 A e S S e e S e e e e

s o

B

o
(N
©
N
N

{0} 0 8 301y

(R

144 | 3 3 2 4 2 {0} 0 6

181
18{0, 3}

168 | 7 3 2 2 2 {0} 0 16 | 42I,
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Table 3.2: All possible A; and A, for n = 180.

ny | L | #K | #A | nzpinidAi I

napangAs

1815

3 3 2 5 2 {0} 0 9

2013
200, 2, 4}
20{0, 1,5}

{0} 0 6

2013
2040, 2, 4}
20{0, 1,5}

{0} 0 16

180

1205

39y

AR ONOOWWNO B RN W®W
WV TTDWTTO R DA A
== 0O © OO O WKW -I~D
I 1 A S S A e S S e e e e

{0} 0 8 451

1213
12{0, 2, 4}
12{0,1,5}
12{0, 4, 5}
12{0, 2, 7}
12{0, 5,7}
12{0, 1, 8}
12{0, 4, 8}

{0} 0 3 451

2013
20{0, 2, 4}
20{0, 1, 5}

Ais (T2) : By definition,

Ra, = {f e N*: f | ngpanony and f 1 nsgpana},
Ra, = {9 € N*: g |ngpining and g { nzpini},

and

Sa, = {p” € Ra, : p prime, a € N*, p® | ngpanony, and p® { ngpana},

Sa, = {qﬁ € Ry, : ¢ prime, B € N*,¢” | ngpinin,, and qﬁjf”?’pl”l}'

Let us start with S4,: since (pan2,n1) =1,

39

Sa, = {p® € Ra, : p* | ngpang, p® { nzpana} U {p® € Ra, : p* | ngni, p® { n3pana}

= {p“ € Ra, : p° | nany, p™ { n3pana}
= {p” € Ra, : p” | ngni,p™ { n3}.

Similarly,

Sa, =1{4¢” € Ra, : ¢° | nana, ¢” t ns}.

Then, consider any product of powers of distinct primes p{*

pit, .. pyt € Sa, and qlﬁl,...,qﬁ" € Sa,. We have
o an B M, _n, M+N
P p e | g

an B

IBTL

g

with
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Table 3.3: All possible V; and V5 for non-Hajos values of n < 180.

n | p1 ni p2 na ny | L | #K | #B | Ui @naniVs [ Uy ®@ngnaVi |
72 | 3 3 2 2 2 [ {0y | 0 | 6 [ 36lx@6l3 [ 241; @ 4L, \
08 | 3 3 2 2 3 [ {0y [ 0 | 252 [ 54, @0l [ 3613 @ 6l |
1013 @ 4l
3 5 2 2 2 {0} 0 20 60l @ 1013 401, B {0, 3)
120 602 @ 615
5 3 2 2 2 {0} 0 18 60l @ 6{0, 2, 3, 4, 6} 2415 @ 4l
60l @ 6{0,1,3,4,7}
3 3 2 2 4 {é?i} g 86640 7205 @ 1213 4813 @ 8Iy
7215 @ 613
7215 @ 6{0, 2, 4}
3 3 2 4 2 {0} 0 60 721, @ 6{0, 1,5} 4815 @ 8,
7215 @ 6{0, 4, 5}
144 721, @ 6{0, 2, 7}
1815 @ 4l
4815 @ 440, 2, 3,5}
4815 @ 4{0, 1, 3, 6
3 3 4 2 % {0} 0 36 3614 @ 613 48]12 o 4§0’ 35 6%
4815 @ 440, 1, 2, 7}
4815 @ 4{0, 2, 5, 7}
5613 @ 4l
3 7 2 2 2 {0} 0 42 84l @ 1413 563 @ 4{0, 3}
5615 @ 4{0, 5}
8415 @ 617
841, @ 6{0,2, 3,4, 5, 6, 8}
168 841, @ 6{0, 1, 3,4, 5,6, 9}
84l @ 6{0,3,4,5,6,8,9}
7 3 2 2 2 {0} 0 54 841, @ 6{0,1,2,4,5,6,10} | 24I; @ 4l
84l @ 6{0,2,4,5,6,8,10}
84l @ 6{0, 1,4, 5,6,9, 10}
841, @ 6{0,2,3,5,6,8,11}
84I, @ 6{0,1,3,5,6,9,11}
90l @ 613
90l @ 6{0, 2, 4}
901, @ 6{0, 1, 5}
901, @ 6{0, 4, 5} )
3 3 2 5 2 {0} 0 120 901 & 6{0. 2.7} 60l3 @ 101y
90I> @ 6{0,5, 7}
90I, @ 6{0, 1, 8}
901, @ 6{0, 4, 8}
6013 @ 4l5
6015 @ 4{0, 2, 3,4, 6}
6015 @ 4{0,1, 3,4, 7}
60l5 @ 4{0, 3,4,6, 7}
6015 @ 4{0,1,2, 4, 8}
6013 @ 4{0, 2,4, 6,8}
180 605 @ 4{0, 1,4, 7, 8}
& 3 5 2 2 {0} 0 96 3615 @ 613 gg%; %iég:ig,;:gg
6013 @ 4{0, 2, 3, 6, 9}
6015 @ 4{0,1, 3,7, 9}
6015 @ 4{0, 3, 6, 7,9}
6013 @ 4{0,1, 2, 8, 9}
6015 @ 4{0, 2, 6, 8, 9}
6015 @ 4{0, 3,4, 7, 11}
6013 @ 4{0,2,4, 8,11}
6015 @ 612
3 5 2 2 3 {0} 0 1800 90l @ 1513 60]12 ® 60, 3}
90l @ 915
5 3 2 2 3 {0} 0 2052 9015 @ 9{0, 2, 3,4, 6} 3615 @ 6l
90l @ 9{0, 1, 3,4, 7}
3 3 2 2 5 {0} 0 281232 | 90l @ 1503 6013 @ 101>




3.4. EXTENDED VUZA CANONS

Table 3.4: Number

of extended Vuza rhythms for non-Hajos values of n < 216.

n ‘m ‘n] p2‘n2 713‘ L ‘#K #A #B
Theorem: (3) ‘ (9) ‘ (10) (3) ‘ (6) ‘ (7 ‘ (8) ‘ (9)
‘72‘2‘2‘3‘3‘2‘{0)‘1 3‘0‘0‘ 6 ‘ 0 ‘ 0 ‘o‘ 0
‘108‘2‘2‘3‘3‘3‘{0}‘1 3‘0‘0‘ 180‘ 0 ‘72‘0‘ 0
2| 2|3 |52 {0} 1| 16 0 0 20 0 0 0 0
120
2 2 5 3 2 {0} 1 8 0 0 18 0 0 0 0
2 2 3 3 4 {0} 1 3 0 0 2808 944 3888 0 0
2 2 3 3 4 {0, 1} 2 0 312 0 0 0 0 0 6
2 2 3 3 4 {0, 9} 2 0 0 12 0 0 0 0 6
144
2 2 3 3 4 {0, 2} 4 0 156 0 0 0 0 0 12
2| 4| 3] 3]2 {0} 1 6 0 0 12 0 0 48 0
42 |3]|3]z2 {0} 1 6 0 0 6 0 0 30 0
2|2 |3 |72 {0} 1 |104| o 0 14 0 0 28 0
168
2| 2| 7] 3]2 {0} 1| 16 0 0 6 0 0 48 0
2|5 |3 ]3]2 {0} 1 9 0 0 15 0 0 105 0
5 2|3 3]2 {0} 1 6 0 0 6 0 0 90 0
180 3 5 2 2 3 {0} 1 16 0 0 500 0 200 1100 0
5 3 2 2 3 {0} 1 8 0 0 252 0 72 1728 0
2 2 3 3 5 {0} 1 3 0 0 45360 77760 158112 0 0
‘ 200 ‘ 2 ‘ 2 ‘ 5 ‘ 5 ‘ 2 ‘ {0} ‘ 1 125 0 ‘ 0 ‘ 10 ‘ 0 0 ‘ 50 ‘ 0
2 4 3 3 3 {0} 1 6 0 0 180 + 540 | 72 + 216 0 12672 0
2 2 3 3 6 {0, 3} 8 0 156 0 0 0 0 0 180 + 540 72 216
2| 2| 3] 3] 6| {01} 2 0 | 324 0 0 0 0 0 180 + 72
2|2 |3|3]|6 {0} 1 3 0 0 754272 | 2449440 | 5832000 | 0 0
216 2 | 2| 3| 3] 6 |{0,1,2}] 3 0 |34992| o 0 0 0 0 6
2 (2 |3|3]|6 [{0,24| 9 0 | 10935 o 0 0 0 0 6+ 12
2 2 3 9 2 {0} 1 729 0 0 6 + 12 0 0 54 0
2 2 9 3 2 {0} 1 27 0 0 6 0 0 162 0
4 2 3 3 3 {0} 1 6 0 0 252 0 72 5940 0

41

In each column only the rhythms that can be generated by the corresponding theorem, but not by
previous ones are counted. Grey numbers correspond to rhythms that can be generated also by the
choice of parameters in the previous line. When there is no column (e.g., #A for Theorem 6) all the
possible rhythms already appear in previous columns.
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Table 3.5: Number of extended Vuza rhythms for non-Hajos values of 240 < n < 280.

n ‘ P1 | m1 ‘ p2 | n2 | n3 ‘ L ‘ #K #A #B
Theorem: (3) ‘ (9) ‘ (10) (3) ‘ (6) ‘ (7) ‘ (8) ‘ (9)
2 4 3 5 2 {0} 1 32 0 0 20 0 0 20 + 160 0
2 2 3 5 4 {0, 6} 4 0 0 588 0 0 0 0 20 + 20
2 2 3 5 4 {0, 2} 4 0 7252 0 0 0 0 0 20 + 20
2 2 3 5 4 {0, 15} 2 0 0 64 0 0 0 0 20
22 [3]|5 | 4]|{03)]| 2 0 1176 | 0 0 0 0 0 20
2 2 3 5 4 {0, 1} 2 0 14504 0 0 0 0 0 20
2|2 |35 |4 {0} 1 16 0 0 13000 9000 18000 94000 0
2| 2|5 |34 {0} 1 8 0 0 6264 3240 5184 197856 0
240
2 2 5 3 4 {0, 1} 2 0 4016 0 0 0 0] 0 18
2 2 5 3 4 {0,5} 2 0 0 112 0 0 0 0 18
2 2 5 3 4 {0, 15} 2 0 0 32 0 0 0 0 18
2 2 5 3 4 {0, 2} 4 0 2008 0 0 0 0 0 12 + 24
2 2 5 3 4 | {0, 10} 4 0 0 56 0 0 0 0 12 + 24
2|4 |5 |3]2 {0} 1 16 0 0 12 0 0 24 + 576 0
42|35 ]2 {0} 1 32 0 0 10 0 0 290 0
4|2 |5 3] 2 {0} 1 16 0 0 6 0 0 102 0
2| 73|32 {0} 1 27 0 0 21 0 0 315 0
7 2 3 3 2 {0} 1 9 0 0 6 0 0 618 0
252 3 7 2 2 3 {0} 1 104 0 0 980 0 392 5096 0
7 3 2 2 3 {0} 1 16 0 0 324 0 72 21312 0
2 2 3 3 7 {0} 1 3 0 0 12830400 | 71383680 | 206126208 0 0
2 2 3 11 2 {0} 1 5368 0 0 22 0 0 88 0
264
2 2 11 3 2 {0} 1 40 0 0 6 0 0 552 0
33 |2]|5]3 {0} 1 9 0 0 1125 0 450 48825 0
270
3 (3|5 2|3 {0} 1 6 0 0 288 0 72 48600 0
2 2 5 7 2 {0} 1 2232 0 0 14 0 0 112 0
280
2|2 |75 ]2 {0} 1 | 480 0 0 10 0 0 170 0

In each column only the rhythms that can be generated by the corresponding theorem, but not by
previous ones are counted. Grey numbers correspond to rhythms that can be generated also by the
choice of parameters in the previous line. When there is no column (e.g., #A for Theorem 6) all the
possible rhythms already appear in previous columns.
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and since (n1,n2) = 1 and p{" { ng and qu f ng, we can conclude

Pt pr g B | nyngns.

Moreover, since

1

p?l .. p%}u +n3p2n2 and q1 qS" an?;plnl

it follows that

an B aj By

Pyt piM gt g tnapang and pit--plig) ~ g fngping.

This means that
ans b1

p{flpM ql qf” ERAI mRA2-

Considering, instead, any product of prime powers p{* - --piM (resp. qlﬁ1 e qﬁ")

belonging exclusively to S4, (resp. Sa,), we obtain:

( B1

(7 (634 .
Pt piM [ mang  (vesp. ¢)t - ghm | nang),

and therefore
pit-- Py € Ra,  (resp. Qfl c-q)r € Ray).

In both cases, those products are elements of R4, U R4,, and so A(z) satisfies (T2)
condition.

O

Example 13. Let us consider the following Vuza canon with period n = 9000:

Ly
N

<
4 ' ‘n' ~
Py, Sy < W
e | AR
el I W
SRSl s P
Eﬁ'-’i';’ﬂﬁ'ﬂﬂ Bia-iin
K | LR
Bias R
T [ s =
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N
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LTS

A=4,® A

Sa—a,@4, = {4,9,25}
R4, n R4, = {36,100, 180, 300,900}

3.5 Operations on aperiodic canons

In this section we describe some known techniques for the construction of tiling rhythmic
canons starting from aperiodic tiling rhythmic canons. We show that these operations
preserve condition (T2) in the following sense.

Let us say that the canon A@® B = Z,, verifies condition (T2) if at least one of the
rhythms A and B verifies it.

We illustrate the central role of the Vuza canons in this type of constructions and
finally, we introduce new operations on tiling rhythmic canons based on their cyclotomic
factorisation.

Given a rhythmic canon, there are many ways to generate new canons, used (and
often devised) by the composers themselves. Let us see the mathematical interpretation
of such manipulations.

3.5.1 Duality

We observed in Chapter 2 that the commutative property of the addition in the cyclic
group Z, makes the definition of rhythmic canon symmetrical in the inner and outer
rhythms. Then, the simplest transformation we can apply to a canon is the interchange
between inner and outer rhythm.

Definition 15 (duality). Given a tiling rhythmic canon Z, = A ® B, the canon Z, =
B ® A is said to be obtained from the first by duality.
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3.5.2 k-stuttering (and multiplexing) and k-zooming

Zooming and stuttering are two dual transformations: starting from a canon A®B = Z,,
one gets a new canon obtained by replacing each note or rest in the inner voice A by k
repetitions of itself, and by stretching by factor k the entries of the outer voice B.

Definition 16 (k-stuttering). Let A@® B = Z,,. The k-stuttering of A is
Stut(A, k) = kA®{0,1,...,k — 1} € Zy 4.
Definition 17 (k-zooming). Let A® B = Z,. The k-zooming of B is kB € Zp.
Theorem 12 (Amiot). A® B = Z, if and only if Stut(A, k) D kB = Zyy,.
The multiplering transformation is a simple extension of stuttering:
Definition 18 (multiplexing). Let A; ® B = Z,, for i =0,...,k — 1, be k canons with
the same outer rhythm. The multiplezing of Ag, A1, ..., Ax_1 i8

k—1
MPlex (Ao, Aq, ... ,Akfl) = U (7, + kAZ) .
1=0

Theorem 13 (Amiot). A; @B =27, foralli=0,...,k—1 if and only if
MPlex (Ao, Al, ce ,Akfl) @ kB = an

We observe trivially that the rhythms of a canon always verify condition (T'1) (by the
Coven-Meyerowitz Theorem 1); consequently, in particular, condition (T1) is invariant
under multiplexing and zooming.

Proposition 5. The multiplexing transformation preserves condition (T2).

These operations also preserve the aperiodicity of each voice, and hence turn a (ex-
tended) Vuza canon into a larger (extended) Vuza canon.

Note that the dual transformation, that is the multiplexing of the outer voice, is also
possible.

Example 14. Let us consider the canons with period 72

= {0,8,16,18,26,34} @ {0, 1,5, 6,12,25, 29, 36,42, 48, 49, 53} ,

whose grid representation is in Figure 3.19a, and

A'@ B = (181 ©8{0,2,4}) ® (361 @ 6I3) L (2413 ® 41 © {1})) =
= {0,16,18,32,34,50} ® {0, 1,5, 6,12, 25,29, 36, 42,48, 49, 53} ,
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Figure 3.18: n = 144. Aoy = 9l @ 3615 @ 1615.

Lattice representation of the multiplexing and the 2-zooming in Example 14.

Figure 3.19: n = 144. Grid representation.

(a) {0,8,16,18,26,34} @ {0,1,5,6, 12,25, 29, 36, 42, 48, 49, 53}

(b) {0,16,18,32,34,50} @ {0, 1,5,6,12, 25, 29, 36, 42, 48, 49, 53}

(c) {0,1,16,32,33,36,37,52,65,68,69,101} ® {0, 2, 10, 12, 24, 50, 58, 72, 84, 96, 98, 106}

whose grid representation is in Figure 3.19b. The multiplexing of A and A’ and the
2-zooming of B produce the following Vuza canon with period 144:

({0} +24) U ({1} +24")) @2B
= {0,1,16, 32, 33, 36, 37, 52, 65, 68,69, 101} @ {0, 2, 10, 12, 24, 50, 58, 72, 84, 96, 98, 106}.

whose lattice representation is in Figure 3.18. The segment whose prime power is not a
multiple of k = 2 extends until it touches the final hyperplane of multiples of 16. The
axis of indices of cyclotomic polynomials extending from one power of k = 2 instead is
translated to include cyclotomic polynomials with indices {8,24, 72} and the edge from
2 to 18 is inserted.
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3.5.3 Affine transformation
Recall Tijdeman’s theorem:

Theorem 14 (Tijdeman). If A® B = 7Z, is a rhythmic canon, then also kA® B = Z,
for every positive integer k such that (k,|A|) = 1.

As we have seen above, by Lemma 6, the sets R4 and Sp4 are exactly the same as
R4 and S4: hence (T2) and aperiodicity are true for kA whenever they are true for A.

3.5.4 k-concatenation

Definition 19 (k-concatenation). The k-concatenation of the rthythm A € Z,, is the
rhythm:
Conc(A, k) = (A {0,n,2n,...,(k—1)n}) € Zg,.

It is easy to see the following consequence of our previous definition:
Theorem 15 (Amiot). A® B = Z, if and only if Conc(A, k) ® B = Zgy,.
Proof. For every z € Z and for every r = s + tk, with 0 < s < k, we have

z=a+b+rn < z=(a+sn)+b+t(kn).

Proposition 6. Concatenation preserves condition (T2).

Proof. We observe that

xkn

(0,20, (k= 1)n (1) = (B (@) = T (0" = = =[] ®ate),
d|kn,dfn

then Ry, = {d | kn|d tn} and Sy, = {p“ | kn | p® f n,p prime}. For each set of
powers of distinct primes p?, ..., p%m € Spr,., pit - - pSm € Ry, i.e. nl, verifies condition
(T2). Since (A®{0,n,2n,...,(k—1)n}) (z) = A(z)I (z™) and cyclotomic polynomials
are irreducible, we have that Ragnr, = Ra U Ryr,. We see that A @ nly, also verifies
condition (T2): if pi*,...,p%m € Sagni, are powers of distinct primes, there are three
possibilities:

Lopfte Sa¥i =1,...,m = [[[%,p;" € Ra because, by hypothesis, A verifies
condition (T2), then [, pi" € Ragni,-

2. plie Sy Vi=1,...,m = [[[%, p{" € Ryr, because, as we have seen, nly, verifies

condition (T2), then [, pi" € Ragni, -

3. pi" € SaVi=1,...,h and p?j € Snr,Vj = h+1,...,m, then Vi,j we have that
pit | N, p?j | kN and p?j t N, therefore, since we are dealing with powers of
distinct primes, [ [}, = p;* | kN and | N, that is [ [[2, pi"" € Rppa € Ragni, -
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Figure 3.20: n = 360. Grid representation.

(a) {0,8,16,18,26,34} @ {0,1,5,6, 12,25, 29, 36, 42, 48, 49, 53}

(b) {0,16,18,32,34,50} @ {0,1,5,6,12,25,29, 36,42, 48, 49, 53}

(c) {0,8,16,54,62,70} ® {0,1,5,6, 12, 25, 29, 36, 42, 48, 49, 53}

(d) {0,2,18,40,56,58} @ {0, 1, 5,6, 12, 25, 29, 36, 42, 48, 49, 53}

(e) {0,2,10,18,56,64} @ {0,1,5,6,12,25, 29, 36, 42, 48, 49, 53}

(f) Multiplexing and zooming of 5 canons of period n = 72.
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Figure 3.21: n = 360. Acy = 901 @ 4013.

Lattice representation of the multiplexing and the 5-zooming in Figure 3.20.

Figure 3.22: n = 144. Acpy = 181 @ 7215 @ 1613.

Lattice representation of the concatenation in Example 15.

O

Concatenation replaces the rhythm by several copies of itself. It is therefore obvious
that the resulting rhythm is periodic.

Example 15. Let us go back to Example 14 and consider the inner rhythm A =
{0, 8,16, 18,26, 34}. The 2-concatenation of A < Zrs is

A®{0,72} = {0,8,16,18, 26,34, 72,80, 88,90, 98, 106} .

The lattice representation of the canon Conc(A,2) @ B = Zj44 is given in Figure 3.22.
We see that the new canon Conc(A,2) @ B = Zj44 is periodic modulo 72: all the indices
of the maximal hyperplane 16-48-144 are in Rcoope(A,2)-

Let us remark that a Vuza canon is precisely a canon that cannot be produced by
concatenation of some smaller canon. In particular,

Proposition 7 (Amiot). Every tiling rhythmic canon can be produced by concatenation
and duality from either the trivial canon {0} @ {0} = {0} or a Vuza canon.
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3.5.5 Uplifting

Proposition 8 (Amiot). If A tiles Z,, then A tiles any larger cyclic overgroup Ziy;
moreover, translating any element of A by any multiple of n provides a motif that also
tiles Z.p,.

Proof. 1f

A@B = {ao,...,ap_l}@{bo,...,bq_l} = Zn,
let A = {ag + kon,...,ap-1 + kp_1n} < Zyy, and B = {bj + kn}, with k = 0,...,k — 1.
Then A® B = Zyy since the mapping A@® B 5 (a,b) — a + b is still injective and
|A||B| = kN. O

Example 16. Once again, let us look at the effects of this transformation to our canon
of reference in Example 14. Starting with the canon

A® B ={0,8,16,18,26,34} ®{0,1,5,6,12,25,29, 36,42, 48,49, 53} ,
one can produce
{0,16,18,26,34,80 =8+ 72} ®(Bu B +1:-72) = Z144

Let us now see how Vuza canons become fundamental for the study of rhythmic
canons.

Theorem 16 (Amiot). Every rhythmic canon can be reduced to trivial canon {0} @®{0} =
{0} or a Vuza canon.

Corollary 1. If a rhythmic canon does not satisfy the condition (T2) it is possible to
collapse it to a Vuza canon that does not satisfy the condition (T2).

The problem of the need for condition (T2) is reduced to the investigation of the
canons of Vuza.

3.5.6 Operations on extended Vuza canons

The following operations naturally follow from the definition of extended Vuza canon.
Recall that an extended Vuza canon is characterised by the following sets: Ay, As, Vi,
V. Whenever we replace the sets Ay, Ay, Vi, Vo with A}, A}, V/ and VJ, we get new
extended Vuza canons, as proved in Theorems 7, 8, 9 and 10.

Starting from a Vuza canon, or an extended Vuza canon, it is possible to consider
different choices of the parameters pi,n1, p2, n2, and ns and of the sets Ay, Ag, Vi, Va,
W, L, and K on the basis of the theorem seen in the previous section to produce new
extended Vuza canons.

In this section we see, starting from a Vuza canon (or extended Vuza canon) the
lattices of the new canon change according to the different choice of parameters and
characteristic sets. Let us see the classical example of Z7o. When 71 is a multiple of nq
we can recognise some precise changes in the lattices of the canons. We are dealing with
extended Vuza canons, so we consider the following hypothesis. Let n = pinipanong € N
such that:
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L. pi,n1,p2,n2,n3 > 1;
2. ged (pina, pana) = 1
3. if ng is not prime, there is no prime ¢ such that q | ns, but q f pinipane.

Let H be the subgroup H = nslly, nipon, of Zy with n = pinipanong, K be a complete
set of cosets representatives for Z, modulo H such that K is the disjoint union K =
K1 u Ke u Ky with K1, Ko # ¢, and W = N3n1n2]1p1p2. Take

e A as a complete aperiodic set of coset representatives for Zpyn, modulo noly,;

o Ay asa complete aperiodic set of coset representatives for Z,,,, modulo n{l,,;

° ‘711, cee f/lj as complete aperiodic sets of coset representatives for Zy,,, modulo
p2]1n1§

° 1721, e f/Qh as complete aperiodic sets of coset representatives for Zy, ,, modulo
plﬂnz-

Let A® B be a (extended) Vuza canon, with

A = napini A} @ napena A ® L
B— ((Ul@ngmffg@{k},...,k{l}) L
L (Uleangnlf/g@{kij—l“,...,k‘f”}))u
L ((Ug@ngnszf@{k;,...,k;’“}) e
u (UQ@nSnQW@ {k;””'*lﬂ, N .,k‘ZKQ'}))

u (ngninaly, p, ® Ks)

n;~operation (i = 1,2)

Definition 20 (7;-operation). Let A@® B = Z, be a (extended) Vuza canon and let
n1 = Onq, with 0 € N*, such that py, n1, p2, ne, and ng satisfy conditions 1, 2, and 3.
The 7i1-operation on A@ B = Z,, produces the new (extended) Vuza canon:

Opern, (A® B) = A™ ® B™ = Z,,
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with
A™ = ngp1ig Ay @ napangAS' © L
B™ = ((U{“ ®nzn Vg @ {k,&, . .,klll}) e
oo (U @ngm Vi @ (ke ) o
L ((U;'“ @ ngna VM @{k;,...,k;nl}) Lo
. (U;1 @ ngna V™ @ {k;;”h—l“, o k|2K2‘}>)
U (ngninglpy, p, @ K3),
where

n —
o Ut = ngpininaly,;
n —
o Uyt = napanonily,;
e A5 is a complete aperiodic set of coset representatives for Zy,z, modulo 711,,;

1.1 7.7 . . .
o V", ..., V] are complete aperiodic sets of coset representatives for Zy,n, mod-
ulo pollz,;

The definition is completely symmetric for the ns-operation.

We notice that R4 < Ryn, since, by construction (see Theorem 3), the elements of
R4 are the divisors of ngpining which do not divide ngpin; together with the divisors
of ngpanany which do not divide ngpang, while the elements of R4a;, are the divisors of
Onspining which do not divide Ongpin; together with the divisors of Onsponeni which do
not divide nzpang. Also note that Sa & Sa, , which implies that |[A™| = 0]A|. Instead,
Spm is quite different from Sp and Sp & Sp, : the powers of primes dividing 6 and
greater than n3 in Sp are multiplied by 6. As a consequence, |B"| = |B).

In this regard, it is interesting to observe what happens to the lattices of the cyclo-
tomic polynomials of A@® B = Z,, and A, ® B, = Zg,. Comparing them, the effect
of the nj-operation is the following: the edge resulting from the difference between the
convex hull of n3pansgl,, and the convex hull of the cyclotomic indices of A, appears to
be expanded by factor 6 along the axes of the powers of the primes that divide 0; as
for the first factor of A, on the other hand, there is an expansion by factor 6 of both
the edge obtained as the difference between the convex hull of n3pin;1l,, and the convex
hull of the cyclotomic indices of A;, and the convex hull A; itself. Figures 3.23, 3.24,
and 3.25 show three examples referring to a generic extended Vuza canon of period 72
(we have only one possible lattice of cyclotomic polynomials for extended Vuza canons
of period n = 72) to which we applied the n;-operation, for ¢ = 1,2: in the first two
figures, 0 is a prime that already divided n (these are the 60 = 48 + 12 rhythms B
for n = 144 and the 72 = 6 + 12 + 54 rhythms B for n = 216 analyzed in Table 3.4),
while, in the last one, 8 is a prime that did not divide n. Graphically, the two necessary
conditions for aperiodicity in both rhythms remain satisfied: each maximal hyperplane
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Figure 3.23: n = 144. Acy = 1815 @ 3615 @ 1613.

4™ _operation on a Vuza canon of order 72. The parameters become: p; = 2, n; = 2-2 = 4,
p2 =3, n2 =3, and ng = 2. L = {0}. #B = 60.

Figure 3.24: n = 216. Agy = 541 @ 813 P 2413.

Ny = 9-operation on a Vuza canon of order 72. The parameters become: p1 = 2, n; = 2, ps = 3,
ny=3-3=9,and n3 =2. L ={0}. #B = T72.

of the lattice has non-null intersection with convex hulls of the cyclotomic indices of A,
and the intersection is different from an entire maximal hyperplane.

ns-operation

In dealing with the case of the change of parameter from n3 to Ons, we need to distinguish
two starting situations: Vuza canons or extended Vuza canons. The reason lies in the
fact that a variation in m3 necessarily affects a variation in the sets L and K (since
L@ K = Zy,), when we are treating the case of extended Vuza canons.

Therefore, we first deal with the non-extended Vuza canons.

Definition 21 (7fiz-operation). Let A @ B = Z,, a Vuza canon and let i3 = Ong, with
6§ € N*, such that py, n1, pa, n2, and i3 satisfy conditions 1, 2, and 3. Let also H™ be the
subgroup H™ = figly,n1ponsy Of Zgn and K™ = K7® 1 K3? 1 K3? (with K72, KJ® # &)
be a complete set of cosets representatives for Zg, modulo H". The n3-operation on
A® B = Z, produces the new Vuza canon:

Opern,(A® B) = A™ @ B™ = Zj,,
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Figure 3.25: n = 360. A = 18I @ 40L,.

n1 = 10-operation on a Vuza canon of order 72. The parameters become: p1 = 2, n1 = 25,
p2 =3, n2 =3, and ng = 2. L = {0}. #B = 990.

with
A" = fgping Ay @ gpang Ag
B = ((Uf?» ® g1 V3 @ {l gy K, ) 0
_ o . n3
L <Uf3 ® nzn Vi @ {k’l‘jﬁ;“, o k'ff; })) L
o (U3 @manat @ (ko)) 0+
_ ~ ng
H (ﬁ3n1n2]lplp2 S Kgm) )
where

n3 _ = .
[ ] Ul = n3p1n1n2]1p2,
n .
o Uy? = ngpananily,;

o K3 = Kll’ﬁgu LK™ with Ki;, = {er’lﬂ, NN } are non-empty subsets

1,m3> 1,n3 1,n3
of Ki'%;
ng __ 1 h"3 : S _ Ys—1+1 Ys
o Ky’ =Kyp, 1 -uKyn, with K3, = {klﬁs yees >k1,n3 are non-empty subsets
of K33,

Unlike after the application of n;-operation with ¢ = 1,2, in this case the elements of
both R4ns and Rpas undergo the same effect (and in fact ns has a symmetric role in A
and B):

Ryns = 0R4 U (RA\(ORA U ORp))
Rpnz; =0Rp v (Rp\(0Rp v ORR)).
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Figure 3.26: n = 144. Acy = 361, @ 1613.

n3 = 4-operation on a Vuza canon of order 72. The parameters become: p1 = 2, ny = 2, ps = 3,
n2=3,andng =2-2=4. L = {0}. #B = 8640.

Figure 3.27: n = 216. Acy = 541, @ 2413.

n3 = 6-operation on a Vuza canon of order 72. The parameters become: p1 = 2, n; = 2, ps = 3,
ny =3,and ng =2-3=6. L ={0}. #B = 9035712.

As a consequence, the cyclotomic polynomials with indices less than or equal to n3 are
all factors of B™ just as the cyclotomic polynomials with indices less than or equal to
ng were all factors of B. This means also that, |B™| = | B|, while the cardinalities of A
and A™ are the same.

Again, we are interested in giving a graphic interpretation of Rfff and R%?’ observing
what happens to the lattices of the cyclotomic polynomials of A®B = Z,, and Ap,®Bp, =
Zgy,. The ng-operation determines an expansion by factor 8 of both the edge obtained as
the difference between the convex hull of ngp1n11,, and the convex hull of the cyclotomic
indices of Al, and the convex hull A; itself. Similarly for factor ngpgngAQ of A. Figures
3.26, 3.27, and 3.28 show three examples referring to our generic extended Vuza canon
of period 72 to which we applied the ng-operation: again, in the first two figures, 4 is a
prime that already divided n (these are the 8640 rhythms B for n = 144 and the 9035712
rhythms B for n = 216 analyzed in Table 3.4), while, in the last one, 8 is a prime that
did not divide n.

Let us now consider as starting canon an extended Vuza canon, whose inner rhythm
A also has a factor L.

Definition 22 (fig-operation). Let A @ B = Z, be an extended Vuza canon and let
ng = Ong, with 8 € N*, such that p1, n1, p2, ne, and ng satisfy conditions 1, 2, and 3. Let
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Figure 3.28: n = 360. Acy = 901 @ 4013.

n3g = 10-operation on a Vuza canon of order 72. The parameters become: p; = 2, n1 = 2, pa = 3,
ny =3, and ng = 2-5=10. L = {0}. #B = 9969957367560.

also H™ be the subgroup H™ = 731, 5, pyn, of Zgy,. Consider K™ as a proper subset of
L, such that L@ K™ = Zy, and K™ = K| U K3® U K3® (with K%, K3® # ). The
ng-operation on A @ B = Z, produces the new extended Vuza canon:

Opern,(A® B) = A™ @ B™ = Zy,,,

with
A™ = fgpimg Ay @ igpana A ® L
B — ((U{Lg (‘Bﬁ3n1‘~/21 @ {]{;iﬁs, ceey k’ilﬁg}) L
_ ~ ; e
R <U{13 @ﬁganQJ @ {kijn_;-i_la cees k|1,[;13 })) -
¥ ((U2"3 @ fgna Vit @ {k%,ﬁs""’k?ﬁsb e
_ ~ 73
cee U <U§L3 @ T_lg’l”LQVlh @ {k;)f;l;-i_lv R k|2f7{i; |}>>
] (ﬁ3”1n2ﬂp1p2 @ ng) )
where

n. — .
L4 U1 8 = n3p1n1n2]1p21
n _
o U,? = nigpananily,;

° Kf“"’ = Kllj13 L-uK? with Ki;, = {k‘xr_lﬂ, RO S } are non-empty subsets

N 1,n3 1,73
of Ki%;
n3 _ 1 K3 ; S _ Ys—1+1 Ys
o Ky’ =Kjp, 00Ky n, with K350 = {k2,ﬁ3 s+ k5, ¢ are non-empty subsets

of K§3.
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Figure 3.29: n = 288. Acy = 361, @ 3213.

(c) L =2I,. #B = T72. (d) L = 18I,. #B = 72 + 288.

4™3_operation on an extended Vuza canon of order 144. The parameters become: p; = 4, n; = 2,
p2=3,n2=3,and ng =2 -2 =4.

In this case, the factor L of A remains a factor of A™ after the application of the
ns-operation: it is in fact an extension of a proper subset L of Z,, < Zz,. In this case,
however, it is necessary to choose a suitable set K™ such that K"@®L = Zj,. In general,
the observations made in the case of the ng-operation applied to a non-extended Vuza
canon continue to be valid.

Figure 3.29 shows an example referring to a generic extended Vuza canon of period
144 to which we applied the ns-operation.

pi1-operation (i = 1,2)
Definition 23 (p;-operation). Let A@® B = Z, be a (extended) Vuza canon and let

p1 = Op1, with 6 € N*, such that p1, ny, p2, n2, and ng satisfy conditions 1, 2, and 3.
The p1-operation on A@® B = Z,, produces the new (extended) Vuza canon:

Operp, (A® B) = AP @ BP* = Zj,,
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with
APY = ngping Ay @ ngpana AL @ L
B — (U7 @ngm V37 @ {1, K }) oo
cou (UP @nem V3T @ (k) ) o
o (B @nsnaVl @ {13, K} ) b
L (Ufl D ngna Vi @ {k;”h*“, . k‘QKQ'}))
U (ngnanally,p, ® Ks) |
where

D1 _ o5 .
L4 U1 = n3p1n1n2ﬂp27
P1_ .
o Uy' = ngpananily;;
e AD' is a complete aperiodic set of coset representatives for Zz,,,, modulo nql5,;

~ 1,5 ~h.p - .
o V0P L, VQh’p ' are complete aperiodic sets of coset representatives for Zg, ,, mod-
ulo p11,,,;

The definition is completely symmetric for the ps-operation.

As in the case of nj-operation, we notice that R4 < Ry5 by construction. Also note
that Sa = Sa, , which implies that [AP'| = |A]. Instead, Sp & Spsi, incorporating the
new prime powers introduced by 0. As a consequence, |BP!| = 0| B).

The effect of the pi-operation in the lattice of cyclotomic indices of A @ B can be
seen only in the complex hull representing ngpiniAp: there is an expansion by factor 6
of both the edge obtained as the difference between the convex hull of n3p;n;l,, and the
convex hull of the cyclotomic indices of A1, and the convex hull A; itself. Figures 3.30
and 3.31 show two examples referring to our generic extended Vuza canon of period 72
to which we applied the p;-operation, for ¢ = 1,2: 0 is a prime that already divided n
(these are the 36 rhythms B for n = 144 and the 168 rhythms B for n = 216 analyzed
in Table 3.4).

Rearrangement of K

As we have seen in Theorem 7 and 8, another possible way to pass from a (extended)
Vuza canon to another, is to consider a different way to partition the set K and choose
different sets K1, K2 (and maybe K3). This time, the cyclotomic polynomials which
divide, respectively, the inner rhythm and the outer rhythm, remain the same.
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Figure 3.30: n = 144. Acpy = 181, @ 1613.

59

p1 = 4-operation on a Vuza canon of order 72. The parameters become: p1 = 2-2 =4, n; = 2,
p2 =3, n2 =3, and ng = 2. L ={0}. #B = 36.

Figure 3.31: n = 216. Acpr = 541 @ 8l;.

p2 = 9-operation on a Vuza canon of order 72. The parameters become: p; = 2, n1 = 2, p2 =
3-3=9,n2=3,and n3 =2. L ={0}. #B = 168.
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Substitution of A;, V; (i = 1,2)

We are left to consider also the effects of Theorem 9 and Theorem 10. In these cases,
we are going to substitute the sets fll, 1212, ‘71, Vs with other coset representatives. The
cyclotomic polynomials which divide A and B will not change, (or at least, the essential
cyclotomic polynomials will not change) so the lattices of cyclotomic indices of the new
(extended) Vuza canon will not show any changes.

Substitution of prime factors

The lattice representation of the two complementary rhythms of an aperiodic tiling rhyth-
mic canon leads naturally to an operation on the prime factors of n: indeed, it is obvious
that all the geometric properties of the lattice representation do not depend on which
primes are the factors of n, but only on their relations. It is easy to see that (only with
a small exception for the prime p = 2 in Theorem 7, where we need that a parameter be
at least 3) if we exchange the primes in n with other ones, keeping the structure of the
factorisation of n unchanged, a (extended) Vuza canon will be transformed into a new
(extended) Vuza canon.



Chapter 4

Algorithms for aperiodic
complements

Numerous algorithms have been devised by various mathematicians for the computation
of aperiodic canons. An essential part of the construction of rhythmic canons is the
search for e.g. the outer voice B, knowing the inner one A. In this chapter, we show
some algorithms used for the generation of aperiodic motifs tiling with a given inner
rhythm and within a given period.

The first two known procedures that we illustrate in Section 4.1 and Section 4.2
are the application of Coven-Meyerowitz theorem in [9] (which is not exhaustive for the
research of all possible aperiodic tiling complements) and the Kolountzakis and Matolcsi
Fill-Out Procedure in [21] (which is exhaustive).

We then go on presenting two new algorithms in Section 4.3 and Section 4.4 (which
are the fruit of a joint work with G. Auricchio, L. Ferrarini, S. Gualandi, and L. Pernazza)
for the exhaustive search of (aperiodic) tiling motifs, one in integer linear programming
language (the CS Algorithm) and the other in SAT encoding. We show how these models
can be used to efficiently check the necessity of the Coven-Meyerowitz condition (T2) and
also to define an iterative algorithm that, given a period n, finds all the rhythms which
tile with a given rhythm A. To conclude, we run several experiments to validate the time
efficiency of both models.

We proceed in Section 4.5 taking advantage of the fastest procedure in connection
with the Coven-Meyerowitz formula to realise the complete enumeration of the aperiodic
canons with periods n = 180 and n = 200. We conclude this chapter by showing that
for period n = 900 there exist aperiodic canons that are not extended Vuza canons; this
is an observation that projects the investigation of aperiodic canons and their structure
towards new interesting conjectures and directions.

4.1 The Coven-Meyerowitz complement

In this section we show how to apply the Coven-Meyerowitz Theorem to obtain a comple-
mentary motif, given the inner rhythm and the period of the final canon. In general, the

61
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Coven-Meyerowitz theorem does not provide an aperiodic complement; however, there
are some conditions for which one can be sure that the final result will indeed be an
aperiodic canon.

Proposition 9 (Coven, Meyerowitz). If A ¢ Z,, satisfies conditions (T1) and (T2), then
a complement of A in Z,, (i.e., Boy satisfying A@® Bons = Zy,) can be defined taking as
its characteristic polynomial:

- __ npa71
BCM(Z‘) = H <I>pa (a;p”(p)) = H Q)p (1‘ v (@) ) ,
P In pYin

PU¢Sa PrESA

where n =[], pr®0

i is the decomposition of n into prime powers.

This proposition allows us to define the Coven-Meyerowitz complement as a set.

Definition 24 (Coven-Meyerowitz complement). We define Coven-Meyerowitz comple-
ment the rhythm Bgjys < Z,, obtained as

np

Bom = C—D v(p) P
p*n P
pYESaA

a—1

(the Proposition above ensures that A @ Boy = Zy,).

Example 17. Consider a generic aperiodic inner rhythm B < Zg45009 such that Sp =
{3,4,5,9,125}. A rhythm with these characteristics could be, for example, the extended
Vuza rhythm
B = 150013 @ 2501, & {0, 1, 2, 3,4, 25, 26, 27, 28, 29, 50, 51, 52, 53, 54}
L 22500, @ 37513 @ {75, 76,77,78,79,100,101, 102, 103, 104}.

The Coven-Meyerowitz complement is given by
Acy = (9-125)I, @ (4-125)I3 D (4-9 - 5)Is.

Figure 4.1 shows the lattice representation of Acps: R4 is graphically represented as the
union of the hyperplanes which, starting from the vertices p® ¢ Sp, extend along all the
orthogonal axes, those corresponding to the prime powers that divide n and are different
from p, to include all multiples of p* (dividing n) which are not multiples of platl),

Example 18. Now suppose that our starting motif is the Coven-Meyerowitz complement
of Example 17:
A= 1125H2 ® 500H3 @ 180H5 c Z4500.

The Coven-Meyerowitz complement is given by
Boy=(2-9-125,®8(3-4-125) I3 (4-9)I5® (4-9-25)I5

as shown by its lattice representation in Figure 4.2. Tt is evident that, in this case, the
Coven-Meyerowitz complement is periodic of periods n/p;, for every prime p; | n.
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Figure 4.1: n = 4500. Acpr = 112515 @ 50013 & 18015.
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Lattice representation of Acar = (9-125)I> @ (4-125)I3® (49 - 5)I5 when S = {4,5,9,125}.
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Figure 4.2: n = 4500. BC’M = 2250][2 @ 1500][3 (—B 36]15 EB 900]15.
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Lattice representation of Bear = (2-9-125)[o @ (3-4-125)I3 @ (4 - 9)Is @ (4 - 9 - 25)I5 when
Sa = {2,3,25}.

Example 17 and Example 18 are instances of the following trivial observation.

Remark 4. Consider A @® Boy = Z,,. Beyy is aperiodic if and only if S4 contains all
the maximum prime powers that divide n.

An interesting detail is the fact that the Coven-Meyerowitz complement actually has
a factorisation very similar to that of the (extended) Vuza motifs A. Indeed, the Coven-
Meyerowitz complement falls among these ones precisely under the hypotheses of Remark
4, i.e. that no element of Sp,,, is a maximum power (with respect to the factorisation
of n). Conversely, an extended Vuza motif A can be considered a Coven-Meyerowitz
complement when n; and ny are prime powers and the factor L, if present, is of the form

a—1

L= a: pV(P) Iy,
P ng

that is, L is itself a Coven-Meyerowitz complement of another rhythm in Z,,.

As a last comment, we underline that the application of the Coven-Meyerowitz theo-
rem does not provide an exhaustive algorithm for the search of the complements of a given
motif in a given cyclic group Z,: on the contrary, they provide a unique complement for
each choice of n and Sp,,,.
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4.2 The Fill-Out Procedure

In [21], M. N. Kolountzakis and M. Matolcsi used the Coven-Meyerowitz complement
and a new heuristic algorithm called Fill-Out Procedure, which they applied twice for an
exhaustive search for aperiodic canons (with a given n and S4). The key idea behind
the last one is the following: given a rhythm A € Z,, such that 0 € A, the algorithm sets
P = {0} and starts the search for possible expansions of the set P. The expansion is
accomplished adding an element a € Z,, to P according to the reverse order induced by
a ranking function r(x, P), which counts all the possible ways in which z can be covered
through a translation of A. Once every element of Z,,\(A @ P) has been ranked, the
algorithm tries to add the element with the lowest rank. Adding a new element defines a
new set, namely P o P, which is again expanded until either it can no longer be expanded
or the set becomes a tiling complement. The search ends when all the possibilities have
been explored.

The Fill-Out procedure is exhaustive, but, given an inner rhythm in a given cyclic
group Zy, it finds all the tiling complements, regardless of whether they are periodic or
aperiodic. The algorithm finds also multiple translations of the same rhythm, which we
consider equivalent: this means that there are many solutions that must be removed in
post-processing to obtain a list of aperiodic canons without repetitions.

In their work, Kolountzakis and Matolcsi carry out a complete classification of all
aperiodic tiling of Zy44; however, the method described is not convenient to classify all
aperiodic tiling for periods > 200. Indeed, the number of aperiodic tiling increases to at
least exponentially with n (see [21]):

Theorem 17 (Kolountzakis, Matolcsi). There are arbitrarily large n and aperiodic
tilings Z, = A@ B, such that there are additional distinct aperiodic tiling complements
Bi,...,Bp of A, with k > OV with C a constant.

4.3 The Cutting Sequential Algorithm

In this section, we propose an Integer Linear Programming Model (ILP) whose solutions
are the aperiodic rhythms tiling with a given rhythm A. In particular, we formulate the
Aperiodic Tiling Complements Problem using ILP model that is based on the polynomial
characterisation of tiling canons. The ILP model uses auxiliary 0-1 variables to encode
the product A(z) - B(x) which characterises tiling canons. The aperiodicity constraint is
also formulated in terms of 0 — 1 variables; the objective function is equal to a constant
and has no influence on the solutions found by the model. The ILP model is coupled with
a sequential cutting algorithm that adds a no-good constraint every time a new canon
B is found, to prevent finding solutions twice. In addition, the sequential algorithm sets
new no-good constraints, one for each translation of B; hence, in contrast to the Fill-Out
Procedure, the CS Algorithm needs no post-processing.

The purpose of the model is twofold. First, we want to determine, for a given rhythm
A, all the tiling complements B in Z,. In this case, we are interested not only in testing
the tiling property but also in finding all the complements of A. Given a rhythm A
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and a period n, the Matolcsi and Kolountzakis’ Fill-Out Procedure provides a complete
classification of the complements of A in Z, [21]. The main idea behind this algorithm
is to use packing complements and add one by one the new elements discovered by an
iterative search. At the best of our knowledge, this is the only algorithm able to provide
the complete list of complements of a given rhythm, for n < 200. For larger n the
problem has been considered in [19], but the author was able to give only a lower bound
to the number of tiling complements. Therefore, we choose to compare our performances
with the one of the Fill-Out Procedure.

Secondly, we aim to determine if a given aperiodic rhythm A, that does not satisfy
the (T2) property, tiles with an aperiodic thythm B. This could be used to efficiently
test possible counterexamples to the necessity of condition (T2) [3].

The tiling problem is very similar to the decision problem of DIFF studied in [20],
which is shown to be NP-complete. This suggests a lower bound on the computational
complexity of the tiling decision problem. Since our problem consists in solving a linear
system of 3n — 1 unknowns and 3n + 3(M,(p) — 1) constraints, the complexity of finding
a single aperiodic solution is O(n® + 3M,(p)), where M, (p) denotes the number of all
distinct primes in the factorisation of n. However, Kolountzakis argued that verification
of condition (T2) can be done in polynomial time. So if condition (T2) were necessary
for tiling, the problem would be P-complete.

As we will see, solving this linear problem finds us only one of the possible solutions.
However, we can update the problem by removing the found solution from the feasible
set. If we solve the updated problem, we are then able to find a new solution. By iterating
this process until the problem cannot be solved we will find all the tiling complements
of the given rhythm A.

Since we are not interested in looking for all the possible solutions but rather for all
the classes of equivalents rhythms modulo translations or affine transformations, we can
customise the constraints added at each step. In particular, if we are interested in finding
all the solutions modulo affine transformations, the number of constraints to add at each
iteration is equal to the cardinality of P = {a € N : ged(a,n) = 1} times the cardinality
of the set of all translations fixing the first entry of the solution equal to 1. Therefore,
we add O (|77|%> new constraints at every iteration, where n4 is the cardinality of the

rhythm A. As a result, finding new tiling rhythms gets harder at each iteration.

An important property exploited in this algorithm is the invariance of the set of
solutions under affine transformations, that is, any affine transformation sends tiling
solutions into tiling solutions.

Remark 5. Recall that a set A is periodic modulo k | n if and only if

z" —1

ot A(x).

Whenever a rhythm A is periodic modulo k& | n, with k& # n, it is periodic modulo

all multiples of k dividing n. For this reason, when it comes to check whether A is

periodic or not, it suffices to check if it is periodic modulo m; = p?l_lpg‘Q .. .p?(,N, mo =
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a1, az—1 an _ o, an ay—1 a1, a2 an s .
1 P5 DN o, my = prtpy? . py T, where no= pitpy? ... pRY is the prime

powers factorization of n.

Our main result is Theorem 18, where we state that imposing the aperiodicity of the
solution can be done through linear constraints. Finally, we show how solving a sequence
of increasingly harder linear problems leads to a complete enumeration of all the tiling
complements of a given rhythm A.

4.3.1 Tiling constraints

First of all, we define the linear equations that describe the tiling property. Let us take an
inner rhythm A and a possible outer rhythm B. Since the degrees of their characteristic
polynomials, A(x) and B(z), are both less than or equal to n — 1, the degree of the
product R(x) is less than or equal to 2n — 2. We denote by r the vector with 2n — 1
entries containing the coefficients of the polynomial R(z) := A(z)B(z). By Remark 2,
we know that B tiles with A if and only if

Rz)=1+z+4+2%+ - +2" mod z" — 1. (4.1)
We can express condition (4.1) through n linear equations

i+ Tign = 1, Vi=0,...,n—1.

Therefore, we can express the constraint

n—1
R(z) = A(z)B(z) = Z z', mod z" — 1,
1=0
through the linear system
FZ‘(B)—TZ‘ZO ViE{O,...,2H—2},
Tj+7“j+n=1 Vje{O,...,n—l},

where F;(B) is the function that associates to a rhythm B the i-th coefficient of A(z)B(x),
that is

F()(B) = aobo,
Fl(B) = a1bg + agpby,
FQ(B) := agbg + a1by + agbs,

FQn_Q(B) = p—1bp—1,

where b = (bg, b1, . ..,bn—1) are the coeflicients of B(z). Notice that, since A is given, all
the equations presented above are linear with respect to the variables b; and ;. We then
can express them through a linear system

A-X =Y, (4.2)

where
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e Aisa (3n —1) x (3n — 1) matrix which depends only on the given rhythm A,

e X = (b,r)T is the vector composed by the coefficients of B(x) and the coefficients
of R;

e Y is the (3n — 1)-dimensional vector defined as

Vi =

0 ifie{0,...,2n — 2},
1 otherwise.

Finally, in order to ensure that B(x) and R(x) are polynomials with coefficients in {0, 1},
we will require b; and r; to be binary variables, i.e. they can only assume value 0 or 1.

4.3.2 Aperiodicity constraints
We impose now the aperiodicity constraints. Let us assume n = p{*p3?...pR". Without

loss of generality, we can suppose

pL<p2 <---<PN

and, therefore, if we define the set of the maximal divisors of n as M, = {m; =
n
m }e=1,...N, we have

my <my—1 <-:---<<mj.

According to Remark 5, to verify if the rhythm B is periodic or not, it is sufficient to
check its periodicity only for periods in M,,. We can characterize the periodicity with
respect to a given period m; as it follows.

Proposition 10. Let B be a rhythm in Z,, let b be the binary vector containing the
coefficients of pp, and let mj € M,,. Then, B is m;-periodic if and only if

pj—1 Dy Zf 1e B
D7 bisem, = (4.3)
r=0

0 otherwise,
for each i =0,...,m; — 1.

Proof. Let us assume B C Z, is mj-periodic. We prove that (4.3) holds. By Definition
7, we have that
ieB <= i+rmjeB (4.4)

for each r = 0,...,p; —1. Let b be the vector of the coefficients of pgp. By equation (4.4),
we get

bi =0 = b(i+rm]-) mod n — 0 for r = 0,... yDj — 1, (4.5)

bi=1 <= Ditrm;) modn =1 forr =0,...,p; — 1, (4.6)
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therefore, for any given 7 = 0,...,m; — 1, we have

pj—1 V2 if 1e B

Z bi+7‘mj =
r=0

0 otherwise,

which concludes the first half of the proof.
Let us now assume that (4.3) holds and fix i € {0,...,m; — 1}. If

pj—1

Z bi+rmj =0,

r=0
we have by, = 0 for each 7 = 0,...,p; — 1, since each by is either equal to 0 or 1,
which is equivalent to (4.5). Similarly, if

pj—1

Z b’i+’/‘mj = Dy,

r=0

we have b;,m; = 1 for each 7 = 0,...,p; — 1, which is equivalent to (4.6). Since (4.5)
and (4.6) are equivalent to the mj-periodicity of B, the thesis follows. O

Let us take m; € M,,. To impose that the rhythm B is not m;—periodic, we introduce
the family of auxiliary variables

UD = {UDY i1, 1.

Each family U/ @) is composed of binary variables subject to the following constraints:

pi—1 }
3 biskm, —pUY <pj -1, (4.7)
k=0
p;i—1 ,
3 biskm, — 0 U 20, (4.8)
k=0
m]-fl ) n
Yo <, (4.9)
i=0 Pj
for each j such that pj|np and for each i = 0,...,m; — 1, where np is the cardinality of
B.
Since sz:_ol bitkm; < pj, condition (4.7) assures us that Ui(j) =1if
pi—1
Z bitkm; = Dj-

k=0
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Condition (4.8) assures us that Ui(j =1 only if

pj—1
D7 bivkm, = Dj-
k=0

Therefore, conditions (4.7) and (4.8) combined, assure us that

pj—1

Ul(J) =] Z bi+km_j :pj'
k=0

Since 2?2_01 b; = npg, if Z;ij(;l Ui(j ) — Z—f, it follows that

pi-1 p i U =1

Z bi+km]~ =
k=0

0 otherwise,

and, hence, according to Proposition 10, B is mj-periodic. By adding the constraints
(4.7), (4.8), and (4.9) to the linear system, we, therefore, remove all the periodic solutions
from the feasible set.

Remark 6. To improve efficiency, we remove a family of auxiliary variables ) :=
{Ui(] )} imposing

mjfl n
Mobi<-E -1 (4.10)
i=0 P;

Indeed, if B = (bo,b1,...,bp—1) is not mj—periodic, there must exist a translation of

B such that (4.10) holds. Since U() is the family containing the highest number of
variables, and therefore the one more memory demanding, we choose to remove it.

Conditions (4.7)—(4.9) and (4.10) are linear for any j, therefore, we can add them

to the system described in (4.2) and obtain the following Integer Linear Programming
(ILP) problem
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min  O({b;}, {r:},U)

i
s.t. Z ai_jbj —r; =0
§=0
i+1
Z an,(i,j)bj — Ti4+n = 0
=0

Tj+Tjpn =1

mol

Z b 37—1

p_]il .
> biskm, ~pUP <p -1,
k=0

pj—1

k=0

m;—1

ZU —71

bO = 17

b € {0, 1}
Tk € {07 1}
U e {0,1}

Vie{0,...,n—1},
Vie {0,...,n—2},
Vie{0,...,n—1}
Vie{l,...,N},
ViE{O,...,mj—l},
Vie{l,...,N},
Vie{0,...,m; — 1},
Vie{l,...,N},
Vie{0,...,m; — 1},
Vke{l,...,n—1},
Vk e {0,...,2n — 2},
Vie{l,...,N},
Vie{0,...,m; — 1},

71

(4.11)

(4.12)

(4.13)
(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

where O is a suitable linear function to minimize. The constraint (4.19) allows us to

reduce the size of the feasible set by removing a degree of freedom from the possible

solutions. We denote the model just introduced as the Master Problem (MP).

Theorem 18. Given an inner rhythm A in Z, let Y=

the rhythm associated to the characteristic polynomaial

n—1
7
S
=0

1s aperiodic and tiles with A.

(b,r) be a solution of MP. Then,
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Remark 7. The set of constraints of the MP fully characterize the possible aperiodic
rhythms tiling with a given rhythm A. The functional O does not play any role; however
it can be used to induce an order or a selection criteria on the space of solutions. For
example, let us consider the following functional

2n—2

O(b,r) := Z i2b;.

=0

This functional prefers the tiling complements whose first components are as full as
possible of 1’s. Choosing the right functional O can help in discerning, among all the
possible tiling complements of the given rhythm A, the ones we want to find. However,
since the aim of our tests is to find all the possible tilings, we will not need to impose
any selection criteria and, therefore, we set

O(b,r) :=0.

Once we find an aperiodic rthythm B() tiling with a given rhythm A, we can remove
BW from the set of all possible solutions D4 and obtain a new set of feasible solutions
DS). Let us denote with M P the restriction on DS) of M P and call B® the solution

of MPW, we can then remove this solution from DS), define the set Dg), and define
MP®), starting the whole process again. Repeating this process until we find an unsolv-
able problem, we retrieve all the possible solutions of the original Master Problem and,
therefore, we generate all the aperiodic rhythms tiling with the rhythm A.

Let us now detail how to cut out from the feasible set the solution found at each
iteration. Let B be a rhythm tiling with A and let (1) = (bg,...,b,_1) be the coeffi-
cients of its characteristic polynomial. We denote with I(") the set of non-zero coordinate
indexes of the vector b, that is

b= 1}.

We then define a new linear system by adding the constraint

.= {ie{(),...,n—l}

1) n
Db # — (4.20)
ielr()
or equivalently
Moo < L, (4.21)
ie1(h) na

to the MP. By solving this new problem, we find a new solution b@ = b of the initial
tiling problem. We iterate this procedure until we find an unsolvable problem. All the
solutions found during this process are stored in memory and given as final output of the
algorithm.

In Algorithm 1, we sketch the pseudocode of this algorithm.
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Input : rhythm A
Output: 5, list of Aperiodic rhythms B, such that A® B = Z,,
z* = OPT(MP)
add z* to S
while P # (J do
add Y., , bi < B to (MPW)
Solve (M P®)
Znew = OPT(MPWY)

set Ix =1, .
add zpew to S
end
return S

Algorithm 1: The Cutting Sequential Algorithm.

Remark 8. Adding the constraints one by one is highly inefficient. Therefore, once we
find a solution, we compute all its affine transformations, which, according to Theorem
3, are possible solutions and remove them as well. Since we impose by = 1, we consider
only the affine transformations that preserve this constraint.

This procedure, however, is customizable: if we remove only the translations of the
found solution the algorithm will return all the solutions modulo translations. Given
a solution b(!)| we can remove the affine transformations of a given solution through a
linear constraint. According to (4.21), we impose

Z ba(i+k) <np-1 (4.22)
iel()

where k runs over all the translations which fix the first position and a runs over the set
of numbers co-prime with n.

Complexity of the Method

To conclude, we analyze the complexity of the system (4.2). The unknowns to determine
are the 3n — 1 coordinates of the vector (b,r) plus the variables needed to impose the

aperiodicity constraints, Ui(j ), which are

n
o= ) o

pePo\{po} ¥

where P, is the set of primes that divide ng. Therefore, we have 3n — 1 constraints for
the feasibility, the 3o, given by conditions (4.16), (4.17), and (4.18) plus the one given
by condition (4.15).

If we want a complete enumeration of all the tiling complements of the given rhythm,
the complexity increases, since we are adding constraints at each iteration. The amount
of constraints to add depends on the equivalence relation we are considering. If we are
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Table 4.1: Number of tiling complements of the aperiodic rhythms tested.

‘ n ‘ Ra ‘ Rp ‘ n° of A’s ‘ n° of B’s ‘
[ 72 ] {2,8,9,18,72} \ {3,4,6,12, 24, 36} | 62 [ 31 |
[ 108 ] {3,4,12,27,108} \ {2,6,9,18,36, 54} [ 252(30) [ 3(1) |
120 {2,5,8,10,15, 30,40, 120} {3,4,6,12,20, 24, 60} 18 (4) 8 (2)
120 {2,3,6,8,15,24,30, 120} {4,5, 10, 12, 20, 40, 60} 20 (3) 16 (5)
144 {2,8,9,16, 18,72, 144} {3,4,6,12,24, 36, 48} 36 (10) 6 (1)
144 {4,9,16, 18,36, 144} {2,3,6,8,12,18,24,48, 72} 6 (2) 12 (9)
{2,3,6,8,12,24,48, 72} 312 (1)
144 {2,9,16, 18,36, 144} {3,4,6,8,12,24, 36,48, 72} 12 (2) 6 (1)
{2,9,16, 18,144} 48 (7)
{3,4,6,8,12,24, 48,72} 156 (9)
168 {2,7,8,14,21, 42,56, 168} {3,4,6,12,24, 28,84} 54 (8) 16 (3)
168 {2,3,6,8,21,24,42,168} {4,7,12,14, 28,56, 84} 42 (4) 104 (15)
180 | {3,4,5,12,15,20,45, 60, 180} {2,6,9,10,18, 30, 36, 90} 2052 (136) 8 (2)
180 | {2,5,9, 10,18, 20,45, 90, 180} {3,4,6,12,15, 30, 36, 60} 96 (12) 6 (1)
180 {3,4,9,12, 36,45, 180} {2,5,6,10,15, 18,20, 30, 60,90} | 1800 (171) 16 (5)
180 {2,4,9,18,20, 36,180} {3,5,6,10,12,15,30,45,60,90} | 120 (18) 9 (2)

looking for all the solutions modulo translation, we add np constraints at each iteration,
since there are exactly np feasible translations preserving the constraint by = 1. If we
search for all the solutions up to affine transformations, the number of constraints added
is np times the quantity of numbers primes to n.

4.3.3 Computational results

We observe that the CS Algorithm is faster than the Fill-Out Procedure. We compare
the two algorithms on rhythms in Z,,, for n = 72,108, 120, 144, 168, 180. We ran all our
experiments on a ASUS VivoBook15 with Intelcore i7. The algorithm is implemented in
Python using Gurobi v9.1.1, [13].

It is worth of mention that the Fill-Out-Procedure finds every complement modulo
translation, while the CSA can be customized to compute every complement modulo all
the affine transformations. We chose to run our method to compute all the solutions
modulo affine transformation, The experiment we ran is the following: given a rhythm
A, we list every complement. Afterwards, we reverse the problem: we fix one of the
found complements, namely B, and search for all the complements of B. The rhythms
used for our experiments are reported in Table 4.1 while, in Table 4.2, we compare the
runtimes of CSA with the runtimes of the Fill-Out Procedure. The CSA is customized
in order to find all the classes modulo affine transformations.

Every time we find a solution, we have to add new constraints to the Master Problem
and solve it again. As a result, the problem we solve gets computationally harder at each
iteration. In Figure 4.3, we report the time required to find the next tiling solution for
two rhythms in Zgp.
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Figure 4.3: Times (in seconds) to find the next solution with CS Algorithm.
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Table 4.2: Runtimes (in seconds) of the CS Algorithm and the Fill-Out Procedure.

[n ] Ra \ Rp | CSAA[FP A[CSA B[ FP B |

[ 72 ] {2,8,9,18,72} [ {3,4,6,12,24, 36} [ 010 [ 159 [ 0.02 | 033 |

[[108 ] {3,4,12,27,108} \ {2,6,9,18,36, 54} | 7.84 [896.06] 0.03 | 0.72 |
120 | {2,5,8,10,15,30,40, 120} {3,4,6,12,20, 24, 60} 0.27 [24.16 [ 0.07 | 2.13
120 | {2,3,6,8,15,24,30,120} {4,5, 10,12, 20, 40, 60} 0.14 [10.92] 0.15 3.30
144 {2,8,9,16,18, 72,144} {3,4,6,12,24, 36, 48} 2.93 [8253] 0.06 3.77
144 {4,9,16,18,36, 144} {2,3,6,8,12,18,24,48, 72} 0.10 | 7.13 | 1.71 | 66.27

{2,3,6,8,12,24,48, 72}

144 {2,9,16,18,36, 144} {3,4,6,8,12,24, 36,48, 72} 0.11 [12.13 | 1.08 | 33.39
168 | {2,7,8,14,21,42, 56,168} {3,4,6,12,24, 28,84} 17.61 [461.53] 0.13 7.91
168 | {2,3,6,8,21,24,42,168} {4,7,12,14, 28,56, 84} 0.91 [46.11| 1.94 | 35.36
180 [{3,4,5,12,15,20, 45,60, 180} {2,6,9,10,18, 30, 36, 90} 1422.09]>3600] 0.25 [1243.06
180 [{2,5,9,10, 18,20, 45,90, 180} {3,4,6,12,15, 30, 36, 60} 48.04 [900.75| 0.11 8.22
180 {3,4,9,12, 36,45, 180} {2,5,6,10,15, 18,20, 30,60,90} | 492.18 | >3600| 0.18 7.51
180 {2,4,9,18,20, 36, 180} {3,5,6,10,12,15,30,45,60,90} | 8.82 [280.72] 029 | 14.34

4.4 The SAT Encoding Algorithm

In this section, we present in parallel a second ILP model and a SAT encoding for
the Aperiodic Tiling Complements Problem that are both used to enumerate all tiling
complements of A in Z, (see [5]).

Before analyzing the tiling problem, let us introduce the SAT encoding, that is, the
process of transforming a problem into a SAT problem. If such an assignment M exists,
then it is said to satisfy B and we talk about a model of B.

A Boolean formula is in Conjunctive Normal Form (CNF) if the formula is a conjunc-
tion (s) of clauses where each clause is a disjunction (or) of literals and each literal is a
propositional variable or the negation of a propositional variable. There has been a great
deal of effort in devising techniques and creating tools for solving SAT problems, that is,
to determine if a CNF formula is satisfactory and to identify the model of the formula.
We refer to tools such as SAT solvers. Satisfiability is interesting as any problem can be
coded as a CNF formula and a SAT solver can be used to solve the corresponding SAT
problem.

We define two sets of constraints:

1. the tiling constraints that impose the condition A @ B = Z,, and

2. the aperiodicity constraints that impose that the canon B is aperiodic.

4.4.1 Tiling constraints

Given the period n and the rhythm A, let @ = [ap,...,an,—1]7 be its characteristic
(column) vector, that is, a; = 1 if and only if ¢ € A. Using vector a we define the
circulant matrix 7' € {0, 1}™*™ of rhythm A, that is, each column of T is the circular shift
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of the first column, which corresponds to vector a. Thus, the matrix T is equal to

ap Qp—-1 AaAnpn—2 ... Qa1
al ap ap—-1 ... Q9

T = )
p—1 0Gp—2 ap-3 ... 4Q

We can use the circulant matrix 7" to impose the tiling conditions as follows. Let us
introduce a literal z; for ¢ = 0,...,n — 1, that represents the characteristic vector of the
tiling rhythm B, that is, x; = 1 if and only if ¢ € B. Note that a literal is equivalent to
a 0-1 variable in ILP terminology. Then, the tiling condition can be written with the
following linear constraint:

Y Tywi=1, Yj=0,...,n-1 (4.23)
i€{0,....,n—1}

Notice that the set of linear constraints (4.23) imposes that exactly one variable (lit-
eral) in the set {Z,4i—; mod n}jed is equal to one. Hence, we encode this condition as
an Exactly-one constraint, that is, exactly one literal can take the value one. The
Exactly-one constraint can be expressed as the conjunction of the two constraints
At-least-one and At-most-one, for which standard SAT encoding exist (e.g., see [7, 24]).
Hence, the tiling constraints (4.23) are encoded with the following set of clauses depend-
ingont=0,...,n—1:

\/ (xn—(j—i) mod n) /\ (_'l'n—(k—i) mod n ¥V T'Tn—(I—i) mod n) . (424)
jeA kleA k£l

4.4.2 Aperiodicity constraints

In view of Definition 7, if there exists a b € B such that (d + b) mod n # b, then the
canon B is not periodic modulo d. Notice that by Remark 5 we need to check this
condition only for the values of d € D,.

We formulate the aperiodicity constraints introducing auxiliary variables yq;, za,

uq,; € {0, 1} for every prime divisor d € D,, and for every integer i = 0,...,d — 1. We set
n/d—1 n n/d—1

Ug; =1 < T; =—1|v Z; =01, 4.25

d,i kZZO i+kd d kgo i+kd ( )

forallde Dy, i=0,...,d— 1, with the condition

d—1
Mugi <d—1, Vde D, (4.26)
=0
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Similarly to [6], the constraints (4.25) can be linearized using standard reformulation
techniques as follows:

n/d

0< Y Citha— —yai < = -1 VdeD,, i=0,. . ..d—1, (4.27)
Py d d
n/d n n

0< Z(l—mkd)—gzd,isa—l VdeD,, i=0,...,d—1, (4.28)
k=0

Ydi T 2di = Ud,i VdeD,, i=0,...,d—1. (4.29)

Notice that when ug; = 1 exactly one of the two incompatible alternatives in the right
hand side of (4.25) is true, while whenever u4; = 0 the two constraints are false. Corre-
spondingly, the constraint (4.29) imposes that the variables y4; and z4; cannot be equal
to 1 at the same time. On the other hand, constraint (4.26) imposes that at least one of
the auxiliary variables uq; be equal to zero.

Next, we encode the previous conditions as a SAT formula. To encode the if and only
if clause, we make use of the logical equivalence between C; < Co and (—C; v Cs) A
(C1 v —=Cy). The clause C is given directly by the literal ug;. The clause Cs, expressing
the right hand side of (4.25), i.e. the constraint that the variables must be either all true
or all false, can be written as

n/d n/d
Cy = /\ Titkd | V /\ Tivkd |, VdeDy.
k=0 k=0

Then, the linear constraint (4.26) can be stated as the SAT formula:

d—1

= (udo A tgr A A g o)) = \/ﬂd,h Vd € D,.
1=0

Finally, we express the aperiodicity constraints using

d

|
—

d—1
[(_\CQ \Y udﬂ-) A (CQ Y "L_Ldﬂ')] A Ud,, Vd e D,. (4.30)

I
o
-

Il
=}

i

Note that joining (4.23), (4.27)—(4.29) with a constant objective function gives a complete
ILP Model, which can be solved with a modern ILP solver such as Gurobi to enumerate all
possible solutions. At the same time, joining (4.24) and (4.30) into a unique CNF formula,
we get our complete SAT encoding of the Aperiodic Tiling Complements Problem.

4.4.3 Computational results

First, we compare the results obtained using our ILP model and SAT encoding with the
runtimes of the Fill-Out Procedure and of the CS Algorithm. We use the canons with
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Table 4.3: Aperiodic tiling complements for periods n € {72,108,120, 144, 168}.

runtimes (s) 4B
S e R FOP | CSA| SAT| ILP

|2 ]2]2[3[3]2] 1.59 | 010 [ <0.01] 003] 6]
(18] 2] 2[3[3]3] 896.06 | 784 0.09] 019[ 252 |
o] 212532 24.16 027 0.02] 004] 18
22 ]3|5]2 10.92 014 | 0.01| 0.04] 20
Aal213[3]2 82.53 293 0.02] 011 36

gl 20233 | 4] >10800.00 | >10800.00 | 11.04 | 46.96 | 8640
22 |3|3]|4 7.13 0.10 | <0.01 | 0.05 6
2413|132 80.04 094 | 002 008] 60

el 2 27]3]2 461.53 1761 | 004 020 54
223 |7]2 46.11 091 ] 0.02] 007 ] 42

periods 72, 108, 120, 144 and 168 that have been completely enumerated by Vuza [29],
Fripertinger [12], Amiot [2], Kolountzakis and Matolcsi [21]. Table 4.3 shows clearly that
the two new approaches outperform the state-of-the-art, and in particular, that SAT
provides the best solution approach. We then choose some periods n with more complex
prime factorisations, such as n = p?¢®r = 180, n = p?qrs = 420, and n = p2¢*r? = 900.
To find aperiodic rthythms A, we apply Vuza’s construction [29] with different choices of
parameters p1, ps, n1, N2, n3. Thus, having n and A as inputs, we search for all the
possible aperiodic complements and then we filter out the solutions under translation.
Since the post-processing is based on sorting canons, it requires a comparatively small
amount of time. We report the results in Table 4.4: the solution approach based on
the SAT encoding is the clear winner. It is also noteworthy that, from a Music theory
perspective, this is the first time that all the tiling complements of the studied rhythms
are computed (their number is reported in the last column of the two tables).

Implementation Details

We have implemented in Python the ILP model and in PySat [17] the SAT encoding
discussed in 4.3. We use Gurobi 9.1.1 as ILP solver and Maplesat [23| as SAT solver.
The experiments are run on a Dell Workstation with a Intel Xeon W-2155 CPU with 10
physical cores at 3.3GHz and 32 GB of RAM.
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Table 4.4: Aperiodic tiling complements for periods n € {180,420, 900}.

n D, pi| mi| p2| n2| n3 S?;t‘lm% ) 7P #B
21215 3] 3 2.57 5.62 2052
31 3|5] 2] 2 0.07 0.14 96
180|  {36,60,90} [ 2 2[3|5] 3| 125 223 1800
21513 3| 2 0.05 0.16 120
21 23] 3] 51]8079.07| > 10800.00 | 281232
T 53] 2| 2 2.13 3.57 720
51713 2] 2 1.52 4.08 672
T 5 2] 3| 2 7.73 16.11 3120
5| 7| 2| 3| 2 1.63 4.18 1008
73| 5] 2| 2 4.76 7.45 864
31 75| 2] 2 12.78 32.19 6720
4201 {60, 84,140, 210} 73| 2] 5| 2 107.83 1186.21 | 33480
31712 5] 2 0.73 2.36 840
T2 5] 3| 2 11.14 21.19 1872
21 715 3] 2 17.31 52.90 | 10080
7T 2| 3] 5| 2 89.97 691.56 | 22320
21 713 5| 2 1.17 4.13 1120
21251 3| 3| 2 43.60 110.65 | 15600
51101 3| 3| 2 107.36 741.79 | 15840
900 | {180,300,450} | 2| 9| 5| 5| 2| 958.58| > 10800.00| 118080
6| 3] 5| 5| 2| 5559.76| > 10800.00 | 123840
31 6] 5| 5| 2] 486.39 8290.35| 62160
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4.5 Enumerating aperiodic canons

As pointed out by E. Amiot in [3], an application of the Coven-Meyerowitz completion
formula in Proposition 9 is part of an algorithm (due to M. Matolcsi [21, 5]), designed to
catalogue the aperiodic canons in a given non-Hajoés group Z,. This algorithm allowed
to check the Fripertinger results for n = 72 and n = 108 and to complete the catalogue
for n = 120, n = 144, and n = 168. The idea is to check all possible Sy sets. In light of
the good performance of the SAT Encoding Algorithm, it could be proposed to use it to
search for all the possible aperiodic complements of a given rhythm with a given period.

1. Compute all partitions into two subsets of the set of prime power divisors of n.
Keep (usually) the smaller part, which will be S4 (the other will obviously be Sg).

2. Discard all the partitions that produce only periodic tilings due to condition (T2),
eliminating all sets R4 that either

e make sure that A is periodic, or

e make sure that B must be periodic (remembering that Rp must contain at
least all the divisors of n not in Ry).

3. Compute the Coven-Meyerowitz complement By for Sa.

4. Find all possible A by completing By, using the SAT Encoding Algorithm. Sort
by the different R4 values, keeping a representative for each possibility.

5. For each remaining representative of possible A’s, compute B’s complements with
the SAT Encoding Algorithm, discarding periodic ones.

6. Whatever remains is an aperiodic canon.

4.5.1 The cases n = 180 and n = 200

Let us now apply the algorithm described above and try to complete the enumeration of
the aperiodic canons of period 180.

1. The prime powers that divide 180 are 2, 4, 3, 9, and 5. In any tiling A@B = Zg the
cyclotomic polynomials corresponding to these prime powers must divide exactly
one of A(z) and B(z), according to condition (T1) of [9]. There are 15 possible
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partitions {H4, HP} of the elements {2,4,3,9,5}. The partitions are:

{{2,4},{3,9,5}}, {{2},{4,3,9,5}},
{12,3},{4,9,5}}, {{4},{2,3,9,5}},
{{2,9},{4,3,5}}, {{3},{2,4,9,5}},
{{2,5},{4,3,9}}, {{9},{2,4,3,5}},
{{4,3},{2,9,5}}, {{5},{2,4,3,9}},

{{4,9,{2,3,5}},
{{4,5},{2,3,9}},
{13,9},{2,4,5}},
{{3,5},{2,4,9}},
{{9,5},{2,4, 3}}.

2. No partition produces periodic tilings due to condition (T2) of [9]. Therefore, in
this step, we can not discard any case.

3. We list out all subsets Boays © Zigg such that Bopy tiles Zigg and ®p(z) divides
Beow () for all h e HBowm:

2013 @ 6013 @ 3615), (451 @ 2013 @ 6013 @ 36L5),
901, @ 6013 @ 3615), (901, @ 2015 @ 6013 @ 36I5),
90L, @ 2015 @ 3615), (45T, @ 901, @ 6013 @ 365),
90L, @ 2015 @ 601;), (45T, @ 901, @ 2013 @ 3615),

(451 @ 90T, @ 2013 @ 60L3),

4515 @ 2013 @ 6013),
4515 @ 9015 @ 3615),
4515 @ 9015 @ 6013),

)
)
)
)
451, @ 603 @ 36L5),
)
)
)
)
451, @ 90, @ 20I3).

(
(
(
(
(
(451, @ 2015 @ 36L5),
(
(
(
(

4. We search all possible A’s by completing the Boyy’s using the SAT Encoding Algo-
rithm and keep a representative for each possible R4 value (represented in Figure
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4.4:

R4 = {2,3,6,10,12, 15,18, 30, 60, 90},
A = {0,20, 40, 45, 65, 85},

R4 ={2,9,6,10,18,30,36,90},
A ={0,12,24,45,57,69},

R4 = {4,3,6,12,15, 30, 36,60},
A ={0,18,20, 38,40, 58},

R4 = {2,5,6,10,15, 18,20, 30, 60, 90},
A = {0,12,24, 36,45, 48,57, 69, 81, 93},

Ra ={3,5,6,10,12, 15,30, 45,60, 90},
A = {0, 18,20, 36,38, 40, 54, 56, 58, 72, 74, 76, 92,94, 112}.

5. For each representative of possible A’s found in the previous step, we then compute
complements B discarding periodic ones. The possible Rp are the following:

Rp = {4,9,5,6,12,18, 20, 36, 45, 180},
Rp = {4,9,5,6,12,20, 36, 45, 180},
Rp = {4,9,5,6,18,20, 36, 45, 180},
Rp = {4,9,5,6,20, 36,45, 180},

Rp = {4,9,5,12, 18,20, 36, 45, 180},
Rp = {4,9,5,12,20, 36,45, 180},

Rp = {4,9,5, 18,20, 36,45, 180},

Rp = {4,9,5,20,36,45, 180},

Rp = {4,3,5,10,12, 15,20, 45, 60, 180},
Rp = {4,3,5,12, 15,20, 45, 60, 180},

Rp = {2,9,5,10, 18,20, 45,90, 180},
Rp = {4,3,9,12,36,45},

Rp = {2,4,9,18,20, 36, 180}.

6. It turns out that the aperiodic canons we get at the end of the research are exactly
the extended Vuza canons of period 180. Note that all the aperiodic rhythms B such
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that Rp is one of the 8 types including Sp = {4, 9, 5} tile with aperiodic rhythms A
such that R4 = {2, 3,6,10,12,15,18,30,60,90}. This means that elements 6, 12, 18
in those Rp’s can be considered indices of non-necessary cyclotomic polynomials
dividing B(z). Similarly, the aperiodic rhythms B such that Rp is one of the
2 types including Sp = {4, 3,5} tile with aperiodic rhythms A such that R4 =
{2,9,6,10,18,30,36,90}, and so 10 in those Rp’s is the index of a non-necessary
cyclotomic polynomial.

Remark 9. As pointed out by E. Amiot in [3] and as can be verified applying
Matolcsi’s algorithm described above, the necessity of condition (T2) also holds for
all aperiodic rhythms in Zig.

The order of the next non-Hajos group is n = 200. It is a simple case in which n = p>¢?,
with p and ¢ primes; then, we are also sure that condition (T2) is necessary for tiling, for
all rhythms in Zsyg. Therefore, from the point of view of the construction of extended
Vuza canons, this case is analogous to n = 72 and n = 108 (see Figure 4.5).

Applying Matolcsi’s algorithm in combination with the SAT Encoding Algorithm, we
found also in this case that all the aperiodic canons possible with period 200 are exactly
the extended Vuza canons of Chapter 3.

Remark 10. Thus, the catalogue of aperiodic canons is complete for all (non-Hajos)
groups with order n < 200 and it coincides with Table 3.4.

4.5.2 The case n =900 with S, = {2, 3,5}

As we have seen in Table 4.5 and in Table 4.6, the possible choices of the parameters p1,
ni, p2, ng, and ng for the period n = 900 are numerous and most of them provide an
extremely high number of extended Vuza canons. At the moment, it is hard to verify
the number of every combination of parameters through an algorithm for the exhaustive
research of complements.

However, studying the partition {HA,HB} = {{2,3,5},{4,9,25}} of prime powers
dividing 900, we were able to calculate the number of all aperiodic rhythms tiling with
the Coven-Meyerowitz complement

Acp(z) = Pg (a:225) P4 (33100) D5 (x36) )

The SAT Encoding Algorithm allowed us to compute the number of all tiling complements
of Acys, which turned out to be 303360. As underlined in Remark 4, Acps can in this
case be part of an extended Vuza canon as “inner rhythm” (the one for which n ¢ Ry4)
according to the construction:
A=A ®@A:0L
= napini A1 @ ngponaAs ® L,

where parameters p1, ni, pa, n2, ng and factors Ay, As, L are defined as in Chapter 3. In
light of this, we have three possibilities.
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180.

Figure 4.4: n

= 451, @® 2015.

(a) Acm

18I, @ 201I3.

(c) A

4515 @ 1215.

(b) A

2005 @ 18I5.

(e) A

45T, @ 12I5.

(d) A

180.

nons of period n

epresentations of all possible A’s for aperiodic ca

Lattice r
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Figure 4.5: n = 200. Acpy = 501, @ 8I3.

Lattice representation of any rhythm A of any aperiodic tiling rhythmic canon with period n = 200.

1. (p1,n1,pa,n2,n3) = (2,2,3,3,25). A1 = 1004;, Ay = 22545, L = 361;.
2. (p1,n1,p2,n2,n3) = (2,2,5,5,9). A; = 36A1, Ay = 22545, L = 10013.
3. (p1,n1,p2,n2,n3) = (3,3,5,5,4). A; = 36A;, Ay = 1004,, L = 225I,.

We compute the extended Vuza complements B’s in each case. Recall that

#0150 (2) ()

b2
#a g S (5) (67 1),

L #Vi=1. #Vh=1. #K =5. |K|=5. U1 =25-2-2-3-13. Uy =25-3-3-2-1.

B= ((U1@25.2-%@{k},...,kﬁl}) e
cou(ese2 e (k) Ju
o (@253 W@k, . k) o

u (U2@25.3-W@{k?h*“,...,k'fﬂ})) L (2523 Tos @ Ks).

The number of extended Vuza complements of Acps in Zggg is

#B = #K Z (n1p2n2 : #%)til'<n2p1n1 : #‘72)“2'(”1712)%' <|f|> = 281232,

n y
1<is<m

where (t;1,ti2,t:3), with ¢ = 1,...,m, represents a possible partition of the remain-

der classes modulo | K| of Zggo.
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2. HVI =3 #Vo=2 #K =3. |[K|=3.0U,=9-2-2-5-15. Uy =9-5-5-2- 1.
B= ((U1@9-2.f/21@{k%,...,klf}) e
(o9 e {k L) o
G ((ve@9-5- Vi @ {kd, o kg }) L
oo (@95 e (L)) D925 s @ K).

Similarly to the previous case, the number of extended Vuza complements of Acps
in Zgoo is #B = 12600.

3. #Vi=16. #Vo =8 #K =2 |K|=2. U1 =4-3-3-5-I5. Uy =4-5-5-3-13.
B= ((U1@4.3-f/21@{k},...,k?})u...
o (eas e (L) o
G((e@d5 V@ (kg k) e
L (U2@4-5-f/{‘@{kg’"”h”“,...,k'fﬂ})).

The number of extended Vuza complements of Agys in Zggg is #B = 1920.

It is interesting to note that the number of extended Vuza complements for each of the
three individual cases for n = 900 analyzed above, corresponds to the number of extended
Vuza complements of A, = ngplnlfll @ n%pgngflg for a new period n’ = pinipanons
such that n§ = ng/a and o = |L| = ng/|K|. Let us see how to construct the Vuza
complements respectively in the cases n’ = 900/5, n’ = 900/3, and n’ = 900/2. Note,
first of all, that #V; and #V5 will not change, since they are independent of the parameter
ns.

L #Vi=1.#Vh=1. K =75. U =5-2-2-3-13. Uy =5-3-3-2I,.
B = ((U{@5.2-V;@{k},...,klll}) e
. (U{@5~2-1721'@{kllf—”l,...,k‘lKl'}))u
L (<U§®5-3-‘711@{@,...,]{:?1}) e
o (s e ) ) b2 3 by e k).

The number of extended Vuza complements of Ay, in Zig is

1 - ti1 ~ ti2 . n3/ o

#B =5 Y, (mpena #74) - (napina - #V) - (nana)" < / ) = 281232,
a I<ism i

where (t;1,ti2,ti3), with i = 1,...,m, represents a possible partition of the remain-

der classes modulo |K'| = nfy = |K| of Z1g (see Figure 4.6).
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2. H#HVI =3 #Vo=2 K' =73. U/ =3-2-2-5-15. Uy=3-5-5-2-1Ty.

B = ((U{@?,.z-%@{k},...,k?}) e
cou(Utes- 2 e (it k) o
o((@s5 @k k) o
U (U§@3~5-f/{l@{k?h—l“,...,k'fﬂ})) U325 Tps @ Ks).

The number of extended Vuza complements of Af,, in Zsn is therefore #B’ =
12600 (see Figure 4.7).

3. #V =16, #Vo =8 K' =75 U, =2-3-3-5-15. Uy =2-5-5-3-I3.

B = ((U{@2-3-1721@{/@%,...,#11}) e
(U{@2.3-@@{kif—”l,...,k‘lf{l'})>u

¥ (<U§@2-5-‘711@{@,...,%”1}) Ly

o <U§@2~5~f/lh@{k;"h*ﬁl,...,k|2K2|})>.

BN

The number of extended Vuza complements of Aj,, in Zyso is #B' = 1920 (see
Figure 4.8).

What we have seen is the effect of fg-operation applied to a Vuza canon of period
pinipaneng to get an extended Vuza canon of period pinipans(fng), in combination
with the addition of an appropriate set L that makes the cardinalities of the old and new
sets K identical. Note that the number of all tiling sets with L = rl (s prime) in Z,, is
s".

Remark 11. Finally, note that the extended Vuza motifs B tiling in Zggg with Acpr =
nspini A @ napanaAs ® L (such that S; = {2,3,5} and L is an extension of L), are
the same B’s tiling with A’s which differ only for different extensions of L (see Figures
(b), (¢), (d), and (e) in Figures 4.6, 4.7, and 4.8). The reason lies in the fact that the
three summands of B(z) always have in common all the cyclotomic factors with indices
grater than ng which are not factors of A(x), whatever K (z). Therefore, in our case, all

cyclotomic polynomials with indices multiple of ¢ | ng and not of n3 are always divisors
of B(x).

Let us now go back to the 303360 aperiodic tiling complements calculated with the
SAT FEncoding Algorithm. The sum of the extended Vuza complements of the same
Acp turns out to be 281232 + 12600 + 1920 = 295752 < 303360. Our attention is
then drawn to the 7608 exceeding rhythms. It is easy to prove that these rhythms have
characteristic polynomials with factorisations in cyclotomic polynomials that cannot be
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achieved through the Vuza construction, nor the extended Vuza algorithm. The set Rp
for all these 7608 rhythms is in fact given by

Rp = {4,9,25,36, 100, 225,900},

which does not correspond to any extended Vuza rhythm as pointed out in Remark 11.
Note that condition (T2) holds also for these rhythms.

A nice characteristic is that there is no equirepartition of any of them modulo some
divisor of n; that is to say when (w.l.o.g.), the rhythm is not divisible by some ¢. Lagarias
and Szabo, in [|, were the first who exhibited tilings which have this feature. In fact,
they found the smallest known aperiodic canon without equirepartition for n = 900,
and the outer rhythm of this canon is one of the 7608 aperiodic rhythm we are talking
about. In Figure 4.9, the lattice of the 7608 aperiodic with no equirepartition rhythms
is represented: it consists of 8 vertices of the lattice cube of 900 (all except, of course,
vertex 1).

In their paper Lagarias and Szabo pointed out that the rhythm they found, although
less regular than others, gives rise anyway to a quasiperiodic canon (i.e. a canon of the
form A® B = Z, such that there exists a subgroup H = {hy = 0, he, ...} and a partition
B = uB; with A+ By + h; = A+ B;). In their case, H = {0, 300, 600}.

The quasi-periodicity conjecture, originally made by Hajos, states that every canon
is in fact quasi-periodic (because either A or B admits the above type f partition).

It is worth noting that all 7608 complements (the one found by Lagarias and Szabo
included) admit a partition as in the above definition, and are thus quasi-periodic, with
respect to each of the 3 possible subgroups Hs = {0,450}, Hs = {0,300,600}, and
H; = {0,180, 360,540, 720}. Indeed, they usually admit several such partitions; they
therefore offer no counterexample against the quasi-periodicity conjecture.
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Figure 4.7: n = 900. A1 @ Ay = 2251, @ 3615.
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10013 @ 361s.
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Figure 4.9: n = 900. Acy = 2251, ® 10015 @ 361

Lattice representations of the tiling complements of the 7608 aperiodic rhythms with Rp =
{4,9, 25, 36,100, 225, 900}.
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Table 4.5: Number of extended Vuza canons for n = 900, with ns € {2, 3,5, 6, 10, 15}.

[p1 [ n1 [ p2[ne [ ns] L | #K | Sa | #B |
2 125 3| 3 | 2 0] T | (3,525 15600
%2 332 0 1 3,4) 67783083736
5 10 3 | 3 | 2 0 i (3,4,5) 15840
0] 5 3] 3|2 0 1 3,5} 235200
219552 0 1T | 3,59 118080
91255 2 0} i 4,5) 1302000
376 5[5 |2 0 1 (3,4,5) 62160
613552 0} 1 (3,5) 123840
3 (23223 0 T [ (2525 870000
25 3 2 2 3 {0} 1 {2,9} 405323290006272
5 |15 2| 2 | 3 0 1 12,5,9) 585900
15 5 2 2 3 {0} 1 {2,5} 3572152200
2 6 5 5 3 {0} 1 {2,5,9} 606526200
6 255 |3 0 1 2,5} 481892400
312553 0 T | (2,45 45859200
113553 0} i 15,9 21816000
31225 0 T ] 12,325 30487590000
15 3 2 2 5 {0} 1 {2, 3} 6199976956848428880
519225 0 T | 12,39 14392209600
9 5 2 2 5 {0} 1 {2, 25} 9397268160000
2 10 3 3 5 {0} 1 {2,3,25} 28101810330000
10 2 3 3 5 {0} 1 {2, 3} 19135986535691625600
51 4335 0} i 12,3,4) 1290026373120
153315 0 1 13,25} 221859000000
2 13556 0] 1 15,9 1108799538300000
513556 0,0 7 | 1(2,5,9) 619200
2 13556 10,1,2) 3 [ (3,59 480
2 13 |55 |6 10,3} 8 2,5,9) 2476800
2 3556 10,2,4) 9 | 3,5,9) 1440
312556 0] 1 4,5) 4261202400000
32556 0,1 2 2,4,5) 98400
312556 0,1,2) 3| (3,4,5) 240
3125156 10,3} 8 2,4,5) 393600
312 5] 56 10,2,4) 9 (3,4,5) 720
2 5 3 3 10 {0} 1 {3,25} 70815038895648196875000
2 5 3 3 10 {0,1} 2 {2,3,25} 7733880000
2[5 |33 [10] (0,5,2,3,4 | 5 | (3525 120
2 15 33|10 10,5} 32 | {2,3,25) 123742080000
>[5 | 3 3 [10] {0,2,4,6,8 | 25 | (3.5,25) 600
5 2 3 3 10 {0} 1 {3,4} 358259231912762271522816
512 33|10 0,1 2 12,3,4) 12015371520
512 |33 [10] (06LL534) | 5 | (3,45 96
5 2 3 3 10 {0, 5} 32 {2,3,4} 192245944320
512 3|3 |10] {0,468 | 25 | (3,45 480
3 5 2 2 15 {0} 1 {2,25} 39058645298760000000000000
352215 {0,1,2] 3 [ {2,3,25) 9540000
315 22 |15 {0,1,2,3,4) | 5 | {2,525 1800
315 21 215 10,5, 10} 243 | {2,3,25) 772740000
35 2] 2 [15]10,36,0912) | 125 | (2,5, 25] 45000
5 3 2 2 15 {0} 1 {2,9} 2922314149256236917556396032
5 132 2|15 10,1,2) 3 12,3,9) 21792240
513 22 |15] (0,234 | 5 | (2509 2052
5 3 2 2 15 {0, 5, 10} 243 {2,3,9} 1765171440
513 212 |15]1{0,36,0912 | 125 | {2,5,9) 51300
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Table 4.6: Number of extended Vuza canons for n = 900, with ns € {4,9, 25}.

B

P1 ny P2 n2 n3 #B
5 5 3 3 4 {0} 1 {3,5} 4393656000
5 5 3 3 4 {0,1} 2 {2,3,5} 1920
5 5 3 3 4 {0, 2} 4 {3,4,5} 3840
5 5 2 2 9 {0} 1 {2,5} 492531744599996000
5 5 2 2 9 {0, 1,2} 3 {2,3,5} 12600
5 5 2 2 9 {0, 3,6} 27 {2,5,9} 113400
2 2 3 3 25 {0} 1 {2, 3} 4490273576208113571719324814532411392
2 2 3 3 25 {0,1,2,3,4} 5 {2,3,5} 281232
2 2 3 3 25 {0,5,10, 15,20} 3125 {2, 3,25} 175770000
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4.6 Testing necessity of condition (T2)

As mentioned in Section 4.3, we wanted to test the CS Algorithm and the SAT Encoding
Algorithm not only to find all the complements of a given aperiodic rhythm for a certain
period n of the canon. A second objective was to try to test some "critical" rhythms
which could be candidates for a non-T2 aperiodic canon.

We have therefore created a short routine in Wolfram Mathematica capable of pro-
ducing a 0-1 product A(z) of cyclotomic polynomials which had among its factors at
least one whose index’s prime power factors were not in R, by testing the divisibility by
the Coven-Meyerowitz complement characteristic polynomial. Such A(x) is by construc-
tion overloaded with superfluous cyclotomic factors; hence it may be hoped that some
complements B(z) will lack at least one product of elements of Sp in their Rp, i.e. (T2)
might be false though A® B = Z,,. Therefore, we were interested in determining whether
a given rhythm A admits an aperiodic tiling complement B. For this reason, being able
to verify the tiling property of a rhythm A in a reasonable amount of time is important.

In Table 4.7, we report the rhythms tested with our method. The runtimes required
to determine the non-existence of an aperiodic complement vary in a range from 1 minute
(for the rhythms in Z1g50, Z2310, and Zgsep) up to 10 minutes (for the rhythm in Za7e9s).

Table 4.7: Rhythms with superfluous cyclotomic factors checked.

n Rhythm tested
1050 | {0,15,30,35,45,60, 70, 75,90, 105}
2310 | {0,5,6,10,12,18,24, 26, 30, 31, 36}
6300 | {0,2,4,5,6,7,8,10,12,350, 352, 354, 355, 356, 357, 358, 360, 362}
27225 | {0,9,15,18,24, 27,30, 36, 39, 45, 54, 3025, 3034, 3040, 3043, 3049, 3052, 3055, 3061,
3064, 3070, 3079, 6050, 6059, 6065, 6068, 6074, 6077, 6080, 6086, 6089, 6095, 6104}
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Figure 4.10: n = 1050. R4 = {2,10,21, 25,50, 105}.
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Lattice representation of the non-tiling rhythm A = {0, 15, 30, 35, 45, 60, 70, 75, 90, 105}. No prime
power dividing 21 or 105 (in blue) is in Sa.
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Figure 4.11: n = 6300. R4 = {3,4,9,10, 20, 28, 100, 140, 700}.
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Lattice representation of the non-tiling rhythm A = {0,2,4,5,6,7,8, 10, 12, 350, 352, 354, 355, 356,
357,358,360, 362}. No prime power dividing 10 (in blue) is in Sa.
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Résumé

On étudie les canons rythmiques de pavage, qui sont des compositions contrapuntiques purement rythmiques.
Issu du probléme analogue de la factorisation des groupes abéliens finis, que des canons rythmiques de pavage
apériodique ont été étudiés : ce sont des canons qui pavage un certain intervalle de temps dans lequel chaque
voix (rythme interne) joue a une séquence apériodique de battements, et la séquence des battements de
départ de chaque voix (rythme externe) est également apériodique.

La these propose un ensemble de théorémes montrant des méthodes de construction de canons rythmiques
apériodiques et présente également des avancées dans le domaine du calcul en fournissant deux nouveaux
algorithmes résultant plus efficaces que ceux connus dans la littérature d’au moins un ordre de grandeur.

Canons de Vuza, Problemes de pavage

Résumé en anglais

We deal with tiling rhythmic canons, that are purely rhythmic contrapuntal compositions. Stemming from the
analogous problem of factorizing finite Abelian groups, aperiodic tiling rhythmic canons have been studied :
these are canons that tile a certain interval of time in which each voice (inner voice) plays at an aperiodic
sequence of beats, and the sequence of starting beats of every voice (outer voice) is also aperiodic.

The thesis proposes a set of theorems showing methods for constructing aperiodic rhythmic canons, and it also
presents advances in the field of computation by providing two new resulting algorithms that are more efficient
than those known in the literature by at least an order of magnitude.

Vuza canons, Tiling problems




