
HAL Id: tel-03835054
https://hal.science/tel-03835054v1

Submitted on 31 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Extension of Vectorial Complex Ray Model and its
application to the metrology of nonspherical particles

Zelong Ma

To cite this version:
Zelong Ma. Extension of Vectorial Complex Ray Model and its application to the metrology of
nonspherical particles. Classical Physics [physics.class-ph]. Université de Rouen Normandie; CORIA,
2018. English. �NNT : 2018NORMR053�. �tel-03835054�

https://hal.science/tel-03835054v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 
 
 
 

 

 

 

THESIS 
 

For the degree of Doctor of Philosophy  
 

Speciality : Energy 
 

Prepared at the University of Rouen 
 

 

 

Title of the thesis 
Extension of Vectorial Complex Ray Model and its application to the metrology of non-

spherical particles 

 

Presented and defended by 

Zelong MA 

 

 
 

Thesis directed by Kuan Fang REN and Claude ROZÉ, laboratory CORIA-UMR 6614 

 

 

 

       

Thesis defended publicly on January 31, 2018 

before the jury composed of  

Fabrice ONOFRI Director of research at CNRS, IUSTI, Marseille, France Reviewer 

Bernard POULIGNY Director of research at CNRS, CRPP, Bordeaux, France Reviewer 

Denis LEBRUN Professor at Rouen University, CORIA-UMR 6614, Rouen, France Examiner 

Loïc MÉÈS Research fellow at CNRS, LMFA, Ecole centrale de Lyon, France Examiner 

Claude ROZÉ Professor at Rouen University, CORIA-UMR 6614, Rouen, France Co-supervisor 

Kuan Fang REN Professor at Rouen University, CORIA-UMR 6614, Rouen, France Supervisor 





 
 
 
 

 

 

 

THESE 
 

Pour obtenir le diplôme de doctorat  
 

Spécialité : Energétique 
 

Préparée au sein de l’université de Rouen  
 

 

 

Titre de la thèse 
Extension du modèle de Tracé de Rayons Vectoriels Complexes et application à la 

caractérisation d’une particule non-sphérique 

 

Présentée et soutenue par 

Zelong MA 

 

 
 

Thèse dirigée par Kuan Fang REN et Claude ROZÉ, laboratoire CORIA-UMR 6614 

 

 

 

 

       

Thèse soutenue publiquement le 31 Janvier, 2018  

devant le jury composé de 

Fabrice ONOFRI Directeur de recherche au CNRS, IUSTI, Marseille, France Rapporteur 

Bernard POULIGNY Directeur de recherche au CNRS, CRPP, Bordeaux, France Rapporteur 

Denis LEBRUN Professeur à l'Université de Rouen, CORIA-UMR 6614, Rouen, France Examinateur 

Loïc MÉÈS Chargé de recherche au CNRS, LMFA, Ecole centrale de Lyon, France Examinateur 

Claude ROZÉ Professeur à l'Université de Rouen, CORIA-UMR 6614, Rouen, France Codirecteur de thèse 

Kuan Fang REN Professeur à l'Université de Rouen, CORIA-UMR 6614, Rouen, France Directeur de thèse 





.

My goal is simple. It is a complete understanding of
the universe, why it is as it is and why it exists at all.

Stephen Hawking





Acknowledgements

I would like to pay special thankfulness, warmth and appreciation to the persons be-
low who made my research successful and assisted me at every point to cherish my goal:

Firstly, I would like to express my deep and sincere gratitude to my supervisor Pro-
fessor Kuan Fang REN for giving me the opportunity to do research and providing
invaluable guidance throughout of my research and writing of this thesis. He has
taught me the methodology to carry out the research and to present the research
works as clearly as possible. And his dynamism, vision, sincerity and motivation have
deeply inspired me. Ever since, Professor REN has supported me not only by pro-
viding a research assistantship, but also academically and emotionally thorough the
rough road to finish my thesis. It was a great privilege and honor to work and study
under his guidance. I am extremely grateful for what he has offered me and could not
have imagined having a better supervisor and mentor for my Ph.D study.

Besides, I would like to thank my co-supervisor Professor Claude ROZÉ, for his en-
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Chapter 1

Introduction

1.1 Optical metrology

In the environment control, the biochemistry, the fluid mechanics and the combus-
tion fields, we need to measure the characteristics of particles, like their size, shape,
velocity, temperature etc. Among different kinds of measurement techniques, optical
metrology is largely employed because of being accurate, reliable and non-intrusive.

A large effort has been devoted to develop powerful optical techniques for non-
intrusive measurements of particle dynamics and characteristics since the invention of
laser. According to the measurement principle and quantities to be measured, optical
particle characterization techniques can be classified as direct imaging, intensity or
intensity ratio, interferometry, time shift, pulse delay and inelastic scattering [2].
Among them, the intensity-based light-scattering methods are most attractive owing
to their advantages of being simple in realization and rapid in the interpretation of
the results. A rather large number of measurement techniques fall under this general
classification, like Laser Doppler Velocimetry (LDV), Phase Doppler Anemometry
(PDA), rainbow refractometry (RRF), diffraction and holography.

Laser Doppler Velocimetry and Phase Doppler Anemometry are two classical tech-
niques in fluid mechanics. The former uses frequency of signals acquired from small
inhomogeneities in the flow, usually tracer particles, to measure the flow velocity [3].
The latter is developed as an extension of LDA for measuring size and velocity of a
moving particle simultaneously [4]. Its principle of velocity measurement is the same
as that used in LDA. For particle size measurement, the scattered light is collected
by two or three detectors. The diameter of the particle is deduced from the phase
difference between the signals. A large efforts were made to their extensions and con-
figurations like extended PDA [5], dual mode PDA [6], dual burst PDA [7]. However
the particles have to be spherical, otherwise the diameter and consequently the mass
flux cannot be determined correctly.

11
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Rainbow refractometry is a versatile intensity-based light-scattering diagnostic
technique for determining the refractive index and sizes for both, single liquid droplets
[8] and in entire sprays [9, 10]. The principle of RRF is that the angular position of
a rainbow is very sensible to the refractive index and its supernumerary structure
depends mainly on the size of the particle. By analyzing the rainbow signal, the
droplet size and refractive index, can be simultaneously extracted. However in the
implementation of classical rainbow refractometry, two conditions must be satisfied:
(i) the droplets must be spherical, (ii) the size of the droplet must be far greater than
the wavelength of incident light [11].

Similarly, for the other optical techniques, such as diffraction and holography, the
shape of the particles is usually considered to be spherical [12]. Therefore the char-
acterization of non-spherical particles is still a veritable challenge in the development
of optical metrology in very large scope of applications. It is mainly due to a lack of
theoretical model to describe the interaction of light with large non-spherical particles.

1.2 Classical theories and models for light scatter-

ing

All the optical techniques listed above are based on the achievement of fundamental
researches on light scattering theory. Various theories and models have been devel-
oped to describe the interaction between light and particles. They can be generally
categorized into three categories: rigorous theories, numerical methods and approxi-
mate models. In practice, we can choose an adequate method among them according
to the properties of the waves and the scatters.

1.2.1 Rigorous theories

Light is a high frequency electromagnetic wave. Theoretically, all kinds of phenomena
concerning the interaction of light and electromagnetic waves can be solved by the
famous Maxwells equations together with the associated boundary conditions. During
the past decades, many researchers have devoted themselves to the development of
theories by solving the Maxwells equations with a variable separation method. And
the spherical particles, because of their simplifies, are widely used for the exploration
of light scattering. Among these theories, the Lorenz-Mie Theory (LMT) developed
by Gustav Mie [13] and Ludvig Lorenz [14] is one of the most classical theories.

Despite Lorenz-Mie Theory was originally developed to describe the interaction
between a homogeneous isotropic sphere and an electromagnetic plane wave, to meet
the requirements of more practical situations, it has been generalized along two lines in
the past half century: (i) particle shape and (ii) beam shape. Most particles existing
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in nature or produced in industrial processes are non-spherical, therefore LMT is
extended to the scattering of a plane wave by other simple shape particles, such
as spheroid [15], cylinder [16–18], elliptical cylinder [19, 20], multi-layered circular
cylinders [21, 22], etc. On the other hand, with the emergence of laser and new light
sources, the focused laser beam is widely used in many applications such as optical
manipulation, optical trapping and optical metrology. The Lorenz-Mie theory was
then generalized to the application of focused laser beams. One of the most famous
extensions is the Generalized Lorenz-Mie Theory (GLMT) developed by Gouesbet et
al [23]. Since its foundation in 1980s, more and more researches devoted themselves
to its studies. Nowadays, GLMT has been extended from a single spherical particle to
multi-layered spheres [24], spheroids [25, 26], infinity cylinders [27], infinity elliptical
cylinders [28], pulsed laser scattering [29] and aggregates of spheres [30].

Lorenz-Mie theory and its extensions can be used to numerically compute the
scattered intensity. However none of them can shed light on the physical mechanisms
that cause various prominent features appearing in the intensity. In contrast, Debye
series expansion (DSE) allows a detail view of the scattering by expanding scattering
coefficients in Lorenz-Mie Theory in Debye series to study the contribution of different
orders of rays in rigorous regime. Until now, remarkable work has been done for
cylinders [31], spheres [32], coated [33] and multilayered spheres [34], and multilayered
cylinders [35]. In recent years the Debye series was developed for light scattering by
spheroidal particles [36], and then generalized to non-spherical particles with complex
shape using the extended boundary condition method [37].

Generally, the advantage of the Lorenz-Mie theory and its extensions is that they
provide a rigorous solution to the scattering problem. As a result, they are widely
referred to validate the other methods [38]. However due to the difficulties in evalu-
ating the special functions involved in such theories, except for the spherical particle
and the infinite circular cylinder at normal or oblique incidence [35], the scatterer can
hardly exceed a few tens of wavelengths.

1.2.2 Numerical methods

The scattering problem of arbitrary shaped particle can also be dealt with by direct
numerical solution of Maxwell’s equations. These methods are termed as numerical
methods.

Among the numerical methods, Waterman’s T-matrix method [39, 40], also re-
ferred to as either the extended boundary condition method or the null field method,
is an accurate and powerful tool capable of yielding a highly accurate numerical so-
lution for the scattering of light by non-spherical particles [18, 41–43]. In addition,
the elements of the T-matrix are independent of the incident and scattered fields, de-
pending only on the scatterer and its orientation with respect to the reference frame.
Therefore once the T-matrix is calculated, it can be used directly in light scatter-
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ing computations for any incidence direction [44]. T-matrix method is one of the
most widely used approaches to obtain highly accurate numerical optical properties
of morphologically complex particles with moderate aspect ratios and size parameters
ranging from zero to 200 [45].

The other numerical methods can be categorized into two groups by the form of
Maxwells equations they solve: differential equation methods and integral equation
techniques. The first group uses a differential form of the governing equations and
needs the discretization in the entire domain. Two of the most famous methods in
this group are the finite element method (FEM) [46] and the finite difference time
domain method (FDTD) [47]. But both FDTD and FEM are very costly in term of
computer resources and the size parameter of the scatter is also limited.

The integral equation techniques reformulate the original boundary value problems
by applying the integral equations over the boundary interfaces or over the entire
volume. And the integral equations are converted to mathematical equations with the
help of techniques like method of moments (MoM) [48] or its modifications like the
discrete dipole approximation (DDA) [49]. MoM is widely used for scattering by large
homogeneous particles because of its accuracy and efficiency. Various acceleration
methods are developed for MoM. Among these acceleration methods, the multilevel
fast multipole algorithm (MLFMA) [50, 51] can solve challenging problems and reduce
the time and the memory requirement of MoM. In recent years, MLFMA have already
applied for computing radiation pressure force and surface stress of large non-spherical
particles whose size parameter larger than 600 [52, 53].

However, even with the development of computer technology in recent year, the
CPU time and memory resources of numerical methods remains to be very consuming
and is its main constraint on development.

1.2.3 Approximate models

As noted above, even if the rigorous theories can predict the interaction between waves
and particles, due to the difficulties in evaluating the special functions involved, except
for sphere, and infinite circular cylinder, the scatterer can hardly exceed a few tens
of wavelengths. For the numerical methods, the size parameter of the particle is also
limited and they are very time consuming and require a lot of CPU memory. On the
other hand, approximate models, even if not fully rigorous, are very flexible and can
predict the scattering of light by complex shaped particles.

For a particle whose size is much smaller than the wavelength of light, its scattering
problem can be solved by the Rayleigh approximation [54] assuming that the incident
field inside and near the particle behaves almost as an electrostatic field and the
internal field is homogeneous. For large and complex shaped particles, high frequency
approximate methods, such as the geometrical optics (GO), the physical optics, the
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geometrical theory of diffraction and the physical theory of diffractions, can be applied.
Geometrical optics approximation, despite some inaccuracies, is most widely applied.
Its main advantage is that it can be applied to any shape. Besides its powerful
computational capabilities for large particles of complex shape, GO also allows to
isolate the contributions of different orders of rays and the effects of interferences,
which helps us to understand the mechanism of scattering.

Studies on geometric optics have been of interest to many researchers in the past
several decades. Davis [55] derived the geometric divergence factor, as well as intensity
of scattered light by an air bubble in water. Van de Hulst [56] gave a detailed discus-
sion on the GO approximation of plane wave scattering by spherical particles in his
classical monograph. The intensities and phases of emergent rays are studied. Since
then many researchers have devoted themselves to the improvement of geometrical
optics approximation. By introducing the interference between the diffraction, the re-
flected and refracted rays, Glantschnig and Chen [57] further calculated the scattered
intensity of water droplets in the forward angular from 0◦ to 60◦. Ungut et al [58] gave
a detailed comparison between the GO and the Mie theory in the forward scattering
angles (0−20◦) for transparent spherical particles in a range of diameter from 1 µm to
100 µm. Hovenac [59] used GO to predict far field light scattering by particles which
are symmetric about the optical axis. The errors in the backscatter direction and the
limitation of GO approximation were also analyzed. Xu et al [60] applied GO to light
scattering by a coated particle and compared their results to those obtained with the
Aden-Kerker theory [61], which shows that the GO is valid for the coated particles in
the near forward directions. Li et al. [62] gave the GO method for the computation
of light scattering intensity within a forward angular range (0 − 60◦) for spheres of
gradient-index. Yu and Shen [63] presented the GO method for acceleration of the
computation of the scattering intensity in all directions by lager air bubbles in water.
Grynko and Shkuratov [64] studied the scattering characteristics of semi-transparent
particles faceted with various shapes by means of GO method. Yang et al [65, 66]
combined geometrical optics with the electromagnetic wave method.

However GO is rarely applied to light scattering of a three dimensional (3D) ir-
regular shaped particle because of the difficulties in the calculation of local diver-
gence/convergence and the phase shift due to focal lines. It is easy to calculate the
phase due to focal lines for spherical particle or circular cylinder, in which, for a given
incident ray, the deviation angles of all orders can be obtained analytically and the
focal lines or focal points can also be counted accordingly. In contrast, for a particle
of complex form, it’s impossible to obtain an analytical expression of phase due to
the focal line.

In this context, a new model of light-particle interaction, called Vectorial Complex
Ray Model (VCRM) has been recently developed in the laboratory. Theoretical and
numerical comparisons with other methods show that VCRM is very suitable for the
description of the interaction of an arbitrary wave with an object of smooth surface
and complex shape [1, 67].
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1.3 Rainbow and caustics of non-spherical drops

1.3.1 Rainbow of spherical particles and its applications

Our human beings have been curious about nature since time immemorial. Rainbow
phenomena, one of the most beautiful optical phenomena in nature, has long been a
source of curiosity for scientists who have tried to explain it theoretically.

We can observe rainbows in nature when we face a rain shower with the sun shining
at our backs. Fig. 1.1 is a photo of rainbow in nature. Marvelously concentric coloured
bands can be distinguished on a part or parts of a circle arranged from the inner to
the outer border as violet, indigo, blue, green, yellow, orange and red. Sometimes,
higher in the sky, a secondary rainbow is seen which is much weaker in intensity
and has its colours reversed. The first one originates from rays suffering from one
internal reflection, while the second one results from rays that have experienced two
internal reflections. With each reflection some light is lost, that is why the secondary
rainbow is fainter than the primary one. The rainbow observed in the nature is
composed of different colors, because the sun light has a continuous spectrum of
wavelengths. The dependence of the refractive index on the wavelength of the sunlight
makes the different colors at different directions, so forming the multicolored arches.
The black region between the two orders is so called Alexander’s dark band, after the
Greek philosopher Alexander of Aphrodisias, who first described it in about A.D. 200.
Theoretically an infinite number of rainbows exist. These higher-order rainbows are
never seen in nature because they are weaker than the background sky brightness.

Aristotle [68] is the first who attempt to rationally explain the appearance of the
rainbow. He explained correctly the circular shape of the bow and perceived that
rainbow is the light scattered into the eyes. In 1266 the angle formed by the rainbow
rays and the incident sunlight was first measured by Roger Bacon [69]. These angles
are named as the rainbow angle in the successive researches. In 1304, Theodoric [70]
showed that each drop is individually capable of producing a rainbow. By using a
spherical cup full of water, the mechanism, as well as the angular positions of first
and second orders of rainbow are given. Theodoric’s findings were ignored for three
centuries, until they were rediscovered by Descartes [71] in the seventeenth century.
Descartes gave a very satisfactory mathematical explanation of the rainbows with his
newly established geometrical optics. With the help of the geometrical optics model,
we can explain the rainbow of different orders and approximatively determine the
rainbow angle.

When a single particle is illuminated by a monochromatic light, we can observe a
set of fringes, called supernumerary bows, near the geometrical optics rainbow angle
[72]. The optical effect underlying the supernumerary arcs was firstly explained in 1803
by Thomas Young [73]. He explained the supernumerary arcs based on a wave theory
of light and showed that light is capable of interference. In 1835, Potter calculated
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Figure 1.1: Rainbow in nature (photographed by the author in Rouen’s city center).

the intensity of scattered light near the rainbow angle by introducing the calculation
of caustics. Based on the model of Potter and the wave propagation principle of
Hugyens-Fresnel, in 1838 Airy [74] predicted quantitatively the intensity distribution
taking into account the size and the refractive index of the particle. Compared with
the results predicted by Descartes and Young, the angular position of the maximum
intensity of rainbow, an infinite intensity at rainbow angle and complete darkness in
Alexander’s dark band are revised in Airy’s prediction.

The difference between the geometrical rainbow angle and the first Airy bow,
and those between two adjacent Airy bows are calculated by Wang et al [75]. They
showed that the position of Airy bows depends on the particle size and the refractive
index. So in principle we can measure the refractive index and the size of the par-
ticle from the angular positions of supernumerary bows. Based on this principle, a
new light-scattering technique is investigated by Roth et al [76] for determining the
refractive indices of transparent, homogeneous, spherical droplets. The angles of the
first intensity peak and the maxima of supernumerary bows, are measured by a linear
CCD, and then used to determine the refractive index and size of the particle. This
measurement technique is our aforementioned rainbow refractometry (RRF).

In the implementation of classical rainbow refractometry, the following issues
should be taken into account: the size of the droplet, the temperature/refractive
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index gradients inside the droplet [77], the high-frequency oscillations superimposed
on the supernumerary bows, and the sphericity of droplets. In classical rainbow refrac-
tometry, the size of the droplet should be far greater than the wavelength of incident
rays. The existence of temperature or composition gradients inside the droplets, which
induce a modification of the relationship between rainbow angular location and re-
fractive index value. The high frequency oscillations found on the supernumerary
bows, called ripple structures, are the signature of interferences between the light
directly reflected at the surface of the particle and the light internally reflected. Rip-
ple structures can increase the uncertainty of the position determination especially
when the particle size is not much greater than the wavelength. The sphericity of
the droplets may modify the angular positions of the rainbows. Van Beek and Rieth-
muller [11, 78] indicated that a shape different from the perfect sphere will introduce
the modification of the relationship between refractive index and rainbow position in
their measurement of free-falling droplets.

1.3.2 Rainbow and caustics of levitated drops

Most of natural and artificial particles have non-spherical shapes or lack a spherically
symmetric internal structure. The scattering properties of non-spherical particles can
differ dramatically from those of spheres [79]. For example, many optical phenomenas
observed for non-spherical particles, like halos, arcs, pillars and zenith-enhanced lidar
backscatter observed for ice crystals, are not remarkable for a spherically symmetric
particles. Therefore, the study of light scattering by non-spherical particles is essen-
tial for developing optical diagnostic techniques to characterize deformed droplets in
terms of refractive index, size, shape, and orientation, as well as for evaluating errors
arising from the spherical shape assumption by many scattering-based measurement
techniques.

Oblate droplets, first approximation of particles deformed, exist in many industrial
processes, e.g. fuel injection for combustion, spray cooling, and spray coating. In
the experiment of light scattering by levitated drops [1], the levitated drop can be
consider as a oblate spheroid. When a plane wave is incident on the drop in the side-
on orientation, the scattered intensity observed on a distant screen exhibits a number
of prominent and interesting optical caustics. For a range of shapes, the caustic
is made of two parts, an Airy caustic (which corresponds to that of the ordinary
rainbow) and a cusp caustic spread out transverse to the generally radial direction
of the outward propagating wavefront. These caustics are full of information and
experimental studies of light scattering by a levitated drop involve relatively simpler,
cheaper instrumentation, making them very effective to study the light scattering of
oblate particles and validate theoretical model.

Caustics from a spheroidal droplet in the vicinity of the primary rainbow region
were firstly referred by Marston et al [80, 81]. They found that the modulation of the
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light scattered in the rainbow region reveals small changes in the drops shape, in their
early measurements of the response of acoustically levitated liquid drops to modulated
ultrasonic radiation pressure. To distinguish such a rainbow from those arising from a
spherical droplet, the pattern from spheroidal droplets is called a generalized rainbow
pattern in the successive researches. In 1984, Marston et Trinh [82] showed how
an acoustic levitated spheroidal water drop of millimeter illuminated by a parallel
beam of light forms a caustic in the far field. By changing the ultrasonic amplitude,
they observed the generalized rainbow patterns of different axis-ratio. They found a
horizontal V-shaped focal section of a caustic is formed for a particular aspect of the
drop. This caustic is characterized by the hyperbolic umbilic (HU) catastrophe – a
generalization of the primary rainbow formed by a spherical drop. Simultaneously,
Nye [83] computed the drop’s aspect ratio for a hyperbolic umbilic focal section. In
1985, the angular position of the cusp is calculated as function of the axis ratio of
an oblate spheroid [84]. In the calculation, Marston assumes that, the diameter of
the drop illuminated should be much greater than the wavelength of incident light
and a hyperbolic umbilic caustic is limited to illumination perpendicular to the short
axis of the spheroid. Besides, the transverse cusp diffraction catastrophes [85, 86] and
E6 diffraction catastrophe [87], from scattering of levitated drops by monochromatic
and collimated white-light illumination, have also been observed and discussed. The
opening rate of the transverse cusp diffraction catastrophe in light scattered by oblate
spheroidal drops is calculated [88].

In 1992, Nye [89] studied the essential features of the far-field caustics including
HU caustic, lip events [85] and E6 catastrophe according to geometrical optics and
the principles of catastrophe optics. In 2000, Lock et al [90] studied the formation of
the rainbow caustic, transverse cusp and HU caustics of oblate spheroids in the nu-
merical solution of the exact electromagnetic. In 2013, the optical caustics structures,
including rainbow and HU fringes in the vicinity of primary rainbow of light scattering
from oblate levitated water droplets, were simulated by Yu et al [91] with their new
developed vector ray tracing (VRT) model based on geometric optics. The location
of cusp caustics, as well as the changes of the optical caustic structures in response
to shape deformation of oblate droplets were investigated. Recently, Onofri and Ren
[1] compared the scattering patterns of large oblate droples with the predictions of
Vectorial Complex Ray Model. Through the comparisons, the authors showed that
the VCRM predictions, with its high computational efficiency, fit the experimental
scattering patterns in the inter-caustic region very well, therefore it is suitable for the
characterization of large non-spherical particles.

The rainbow and caustics of levitated drops are widely used to study light scat-
tering by non-spherical particles. However it has also drawbacks. Firstly, for large
aspect ratios (e.g. the horizontal radius / the vertical radius > 1.23), the droplet
vibrates significantly in the levitator and the generalized rainbow pattern becomes
highly instable and blurry which makes it difficult to distinguish the rainbow fringe.
For this reason, the aspect radios of the levitated droplet are limited [91]. Besides
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the heating effect by the acoustic trap is also introduced and the refractive index of
droplet varies during the course of the experiment. Most of all, the method of acoustic
levitation can only generate oblate droplets, while the scattering properties of oblate
droplets is quite different from that of prolate droplets. Therefore the study of light
scattering by prolate spheroids are needed.

1.3.3 Rainbow pattern and caustics of pendant drops

Pendant drop is a another typical non-spherical particle. On the equatorial plane
it can be considered as a prolate spheroid, complement to acoustic levitated oblate
spheroid. Besides, it is a natural non-spherical drop, making it easy to obtain and
control. The pendant drop obtained in experiment is also very stable. Most of all,
pendant drop is much rich in the scattering pattern, like twisted rainbow structure
and forward rainbows and Airy like bows due to reflexion and refraction light (i.e. zero
order and primary order of rainbow). Therefore its study can reveal the influences of
particle non-sphericity on the rainbow patterns. Its phenomena will be explored in
this thesis using VCRM.

Lower and higher-order rainbows formed by pendant drops have been experimen-
tally studied by a number of researchers. Sassen [92] has firstly observed rainbows up
to the 6th order formed by a pendant drop. From the experiment he found that the
near-spherical particles can generate also primary, secondary, and associated super-
numerary bows, but unexpectedly strong higher order bows as well. The scattered
light is increased in certain scattering angle intervals, especially for the higher-order
rainbows. Sassen concluded that it is due to the decreased curvature in the cen-
tral elongated regions, thus providing relatively more surface area available within
the drop for generating rainbow rays. He also suggested that large raindrops having
reduced curvature at their equators would also show an increased Airy brightness.
Nevertheless, the study of Langley and Marston [93] showed that vertically focused
rays outside the equatorial plane may contribute significantly to rainbow brightness
for smaller drops that are oblate but have their greatest curvatures at the equator.
Most of all, Sassen found that, compared with the primary order rainbow, the rela-
tive strength of the secondary order rainbow increases with increasing drop size, often
resulting in that the secondary order rainbow has an equal or greater strength. He
supposed that it is because of the generally reduced near-backscattering efficiency of
the pendant drops.

After that, Walker [72] observed rainbows up to the 17th order using a pendant
drop. Lock and Woodruff [94] observed an enhancement of the glare spot, virtual
images of scattered light undergone internal reflection(s) inside and emerge from the
droplet, associated with the 11th-order rainbow formed by a pendant water drop.
Chan and Lee [95] observed as high as 32 order rainbows formed by a pendant drop
whose radius in equatorial is 2.6 mm. Ng et his coworkers [96] observed higher-order
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rainbows, up to the 200th order, formed by a pendant water drop. The experimental
set up is similar to that of Chan and Lee. Deliberate misalignment of 0.1 mm from the
equatorial plane of the laser beam was made to observer the very high order rainbow.
Then Ng et al [97] studied the interference of the 11th- and higher-order rainbows
formed by a pendant water drop. Time variations of the glare-point intensity, due to
vibration of the droplet, were compared with the numerical calculations in reference
[95].

However, to our best knowledge, except the prediction of the rainbow angle for a
slightly deformed sphere by van Beek [98] and Möbius [99], there was no reliable expla-
nation for the phenomenon observed in the experiment of Sassen [92], nor analytical
expression for the intensity ratio of first to second order rainbow.

1.4 Structure of the thesis

The body of the thesis is organized as follows. In Chapter 2 classical models for light
scattering by a sphere are presented. Among them, Lorenz-Mie theory (LMT) and
its series version - Debye theory are rigorous solutions of the Maxwell equations and
will serve us as a reference in this thesis. Geometric optics approximation is an ap-
proximate method and the base of our VCRM. Its introduction provides fundamental
concepts and formula in the following chapters. Besides, the Airy theory is also in-
troduced. We’d like to reexamine it later in the framework of VCRM to show that
the Airy theory can be further improved. Its idea serves us to deal with the rainbow
structure of non-spherical particles in the framework of VCRM. In chapter 3, the
Vectorial Complex Ray Model (VCRM) is introduced and applied to the scattering in
a symmetric plane of an ellipsoid. The scattering diagrams of spherical particles by
VCRM are compared with those of LMT. The effect of particle size on the precision
of VCRM is examined. In addition, the scattering diagrams of spheroidal particles
are presented to show the influence of particle non-sphericity on the rainbow pattern.
In chapter 4, we apply VCRM first to revisit the Airy theory and then to investigate
the properties of the rainbows formed by a prolate and an oblate spheroidal particles.
The positions and the intensity of different order of rainbow of spheroidal particles
illuminated by a plane wave in the symmetrical plane are calculated analytically in
the framework of VCRM. The peak due to the focal effect of an oblate spheroidal
particle is evaluated analytically by using the divergence factor of VCRM. A rainbow
measurement system for light scattering by pendant drops is set up in the laboratory.
The chapter 5 is devoted to the description of the system and its exploitation. The
experimental investigation of light scattering by a pendant drop will be done in terms
of VCRM. The influence of particle ellipticity on intensity distribution of scattered
light is studied. The last Chapter is dedicated to the conclusions and perspectives of
the work.
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Chapter 2

Classical models for light scattering
by a sphere

In this chapter, two rigorous theories and two approximate methods for light scatter-
ing by a sphere are recalled. Lorenz-Mie theory is the rigorous solution of Maxwell
equations which can be used to describe the plane wave scattering by an optically
homogeneous spherical particle. It is widely used as a reference to validate the other
models. Debye series expansion is developed for scattering of light by a homogeneous
particle which could interpret the scattered intensity in terms of various physical
processes. However, these rigorous theories cannot be applied to large non-spherical
particles. Geometrical optics approximation is a very simple and intuitive method. It
is flexible to deal with the scattering of the plane wave by a spherical particle in the
neighborhood of the rainbow angles and the scattering of non-spherical particles. Airy
theory is an approximate method, widely used in the optical particle characterization.

2.1 Lorenz-Mie theory and Debye series expansion

The principle of Lorenz-Mie theory is that

1. Express the electric and magnetic field of the incident plane wave, the scattered
wave and those in the particle in a vector spherical harmonic expansion, which
satisfies Maxwell equations.

2. Apply the boundary conditions at the sphere surface to obtain the expansion
coefficients.

3. Calculate the physical quantities, such as the extinction and scattering efficien-
cies, and scattering diagram, etc.

Consider a homogeneous, isotropic sphere of radius a and refractive index m1

embedded in a dielectric medium of refractive index m2. The sphere is located at the

23
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Figure 2.1: Scattering geometry, spherical coordinate system.

center O of a Cartesian coordinate system as shown in Fig. 2.1 and illuminated by
a plane wave polarized in x direction and propagating in z direction. The relative
refractive index of the sphere to the medium m = m1/m2. The scattered light is
observed at point P in the far field with distance r. The incident electric field Ei and
magnetic field Hi can be expanded in an infinite series of vector spherical harmonics
[100]

Ei =
∞∑
n=1

En(M
(1)
o1n − iN

(1)
e1n) (2.1)

Hi =
−k
ωµ
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n=1

En(M
(1)
e1n − iN

(1)
o1n) (2.2)

The electromagnetic field inside the sphere E1 and H1, and the scattered field Es and
Hs can also be expanded in the same way:

E1 =
∞∑
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(1)
o1n − idnN
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(3)
o1n + anM
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e1n) (2.6)
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where the expression coefficient is given by

En = inE0
2n+ 1

n(n+ 1)
(2.7)

Mo1n, Me1n, No1n and Ne1n are vector spherical harmonics. The superscripts in the
functions of M and N denote the kind of spherical Bessel function. an and bn in Eqs.
(2.5) and (2.6) are Mie coefficients to calculate the amplitudes of scattered field, and
cn and dn in Eqs. (2.3) and (2.4) are those for the internal field. These coefficients
are determined by the boundary conditions of the fields at the sphere surface

(Ei +Es −E1)× êr = 0 (2.8)

(Hi +Hs −H1)× êr = 0 (2.9)

êr is the unit vector in the radial direction. By solving the equation system generated
by Eqs. (2.8) and (2.9), we can obtain the expressions of the scattering coefficients
an and bn [58]:

an =
ψn(x)ψ′n(µ)−mψn(µ)ψ′n(x)

ξn(x)ψ′n(µ)−mψn(µ)ξ′n(x)
(2.10)

bn =
mψn(x)ψ′n(µ)− ψn(µ)ψ′n(x)

mξn(x)ψ′n(µ)− ψn(µ)ξ′n(x)
(2.11)

where x = 2πa/λ is the size parameter, and λ is the wavelength of plane wave. µ = mx
is the second size parameter. ψn(z) and ξn(z) are Ricatti-Bessel functions deformed
by

ψn(z) =

√
πz

2
Jn+ 1

2
(z) (2.12)

ξn(z) = (−1)n
√
πz

2
J−n− 1

2
(z) (2.13)

where Jn+ 1
2
(z) is the classical half-integer Bessel function. The prime ′ indicates the

derivative of the function relative to its augment.

The scattered wave in far field is spherical and its electric fields for the two polar-
ized directions are respectively [101]:

Es,1 =
i exp(ikr)

kr
S1(θ)Ei,1 (2.14)

Es,2 =
i exp(ikr)

kr
S2(θ)Ei,2 (2.15)

k = 2π/λ is the wave number. Es,1 is the scattered far-field component in the scat-
tering plane (OZP ), and Es,2 is the component perpendicular to this plane. Ei,1 and
Ei,2 are incident electric field components of two polarized directions and we have

Ei,1 = Ei cosϕ (2.16)
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Ei,2 = Ei sinϕ (2.17)

S1 and S2 are amplitude functions in the perpendicular and parallel polarizations and
can be calculated by

S1(θ) =
∞∑
n=1

2n+ 1

n(n+ 1)
[anπn(cos θ) + bnτn(cos θ)] (2.18)

S2(θ) =
∞∑
n=1

2n+ 1

n(n+ 1)
[anτn(cos θ) + bnπn(cos θ)] (2.19)

πn and τn are Legendre functions defined by

πn(cos θ) =
P 1
n(cos θ)

sin θ
(2.20)

τn(cos θ) =
dP 1

n(cos θ)

dθ
(2.21)

where P 1
n(cos θ) are nth order Legendre functions of first kind.

The corresponding far-field scattering intensities in the two polarized directions
are [75]

I1(θ) =
i1
k2r2

cos2 ϕI0 (2.22)

I2(θ) =
i2
k2r2

sin2 ϕI0 (2.23)

where
i1 = |S1(θ)|2 (2.24)

i2 = |S2(θ)|2 (2.25)

I0 is the incident intensity. In practice i1 and i2 are distance free intensities of scattered
light and its plot is called the scattering diagram or scattering pattern.

Lorenz-Mie theory provides rigorous solutions to the Maxwell equations and are
widely referred to validate the other methods. However, it cannot reveal the contri-
bution of different scattering orders to the overall scattering pattern. To meet this
demand, the Debye series is developed to study the contribution of different order
of wave in rigorous regime. It rewrites each term of Mie series as another infinite
series and clarifies the physical origins of many effects that occur in electromagnetic
scattering [102, 103]. The classical Mie coefficients an (TM amplitude) and bn (TE
amplitude) are expanded in the Debye series to represent the separated contributions
of the scattered waves:
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bn

}
=

1

2

[
1−R212

n −
T 21
n T

12
n

1−R121
n

]
=

1

2

[
1−R212

n −
∞∑
p=1

T 21
n (R121

n )p−1T 12
n

]
(2.26)
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Figure 2.2: Debye series model of scattering by a homogeneous sphere.

where as denoted in Fig. 2.2, p is the order of emergent waves. T 21
n and T 12

n are
partial-wave transmission coefficients, and R212

n and R121
n are partial-wave reflection

coefficients. The superscripts 1 and 2 represent regions inside and outside the sphere
respectively. These partial-wave transmission and reflection coefficients are defined
by

T 21
n = −m 2i

Dn

(2.27)

R212
n =

αξ
(2)
n

′
(m2ka)ξ

(2)
n (m1ka)− βξ(2)n (m2ka)ξ

(2)
n

′
(m1ka)

Dn

(2.28)

T 12
n = − 2i

Dn

(2.29)

R121
n =

αξ
(1)
n

′
(m2ka)ξ

(1)
n (m1ka)− βξ(1)n (m2ka)ξ

(1)
n

′
(m1ka)

Dn

(2.30)

where

Dn = −αξ(1)n

′
(m2ka)ξ(2)n (m1ka) + βξ(1)n (m2ka)ξ(2)n

′
(m1ka) (2.31)

α =

{
1 TE wave

m TM wave
(2.32)

β =

{
m TE wave

1 TM wave
(2.33)

The superscripts (1) and (2) in the functions ξ
(1)
n and ξ

(2)
n denotes the kind of Ricatti-

Hankel function.

Each term in the right-hand side of Eq. (2.26) has physical interpretation. The
first term 1/2 corresponds to the contribution of the diffraction. The second term
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1
2
R212
n corresponds to the specular reflected wave. And the third term is the sum of

refracted wave undergoing p− 1 internal reflections. Therefore we have

an(p = 0)
bn(p = 0)

}
=

1

2

(
1−R212

n

)
(2.34)

for the contribution from diffraction and the specular reflected wave, and

an(p)
bn(p)

}
= −1

2
T 21
n (R121

n )p−1T 12
n (2.35)

for the emergent wave of order p. When all the Debye series terms are added together,
the results of Lorenz-Mie theory are recovered. This Debye series is integrated in
ABSphere developed by K. F. Ren [104]. In the following of the thesis, all calculations
concerning Debye series will be realized with ABSphere.

2.2 Geometrical optics

All rigorous solutions for scattering problems of a particle (spheroid, elliptical cylin-
der,...) are limited to the objects of simple shape that can be described in a math-
ematical coordinate system of the same geometry. But even in these simple cases,
due to the difficulties in evaluating the special functions involved, the calculable size
can hardly exceed a few tens of wavelengths except for a sphere or an infinite circu-
lar cylinder [67]. For particles whose dimension is much larger than the wavelength,
geometrical optics (GO) is a good choice. It permits to deal with the scattering of
particles with irregular shapes. We will recall firstly the basic concepts of geometrical
optics. Then as a typical example, we will explain how to deal with the scattering
problem with GO, which serves us as a basic knowledge for the further development
of VCRM.

In GO, all waves are described by bundles of rays. When a ray enters the medium
1 from the medium 2 and arrives on the interface of the two media at an incident
angle α. It is partly reflected and refracted. The relationship between the incident
angle α and refractive angle β is given by Snell’s law:

sinα = m sin β (2.36)

m = m1/m2 is the relative index of the medium 1 to the medium 2.

The direction of the reflected ray is determined by the law of reflection:

α = α′ (2.37)

α′ is the angle of reflection. Both the reflected and refracted rays are in the same
plane as the incident ray.
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Figure 2.3: Light paths of ray interaction with a sphere.

The ratio of the amplitude of the reflected wave to the incident wave is given by
Fresnel formulas [56]:

r1 =
cosα−m cos β

cosα +m cos β
(2.38)

r2 =
m cosα− cos β

m cosα + cos β
(2.39)

where the subscript 1 and 2 of Fresnel coefficients stand for perpendicular and parallel
polarization respectively.

When α + β = 90◦, the Fresnel coefficient for parallel polarization r2 is equal to
zero, which means that the reflected wave at this angle is perpendicularly polarized.
The corresponding incident angle αB is called Brewster’s angle and given by

αB = tan−1m (2.40)

It is 36.87◦ for the relative refractive index m = 0.75 and 53.12◦ for m = 1.333.

When the incident light propagates from an optically denser medium into the less
dense medium, i.e. the relative index m < 1, and sinα = m, from Eq. (2.36) we know
that sin β = 1, i.e. β = 90◦. The ray emerges in a direction tangent to the boundary
and when the incident angle is larger than this angle, the energy is totally reflected.
The corresponding incident angle is called critical angle αc and can be calculated by

αc = sin−1m (2.41)

In the following, we will apply the fundamental laws of GO (Snell’s law and Fres-
nel formulas) to study the plane wave scattering by a homogeneous sphere. Fig. 2.3
presents light scattering by a homogeneous sphere of refractive index m in the geo-
metrical optics sense. A ray impinging on the sphere is partly reflected and partly
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refracted. For each incident ray, there is an infinite series of emergent rays. And each
emergent ray is characterized by the incident angle α and an integer p, called the
order of ray. p = 0 stands for the ray reflected at the out surface of the sphere and
p = 1 for the first order refracted ray. When p ≥ 2, p designates the order of rays
undergoes p− 1 internal reflections.

2.2.1 Direction of emergent rays

The total deviation angle θ′ from the original direction is given by Descartes [105]:

θ′ = 2τ − 2pτ ′ (2.42)

or
θ′ = 2pβ − 2α + (1− p)π (2.43)

where τ = π/2−α, τ ′ = π/2−β. Because of the symmetry of the problem, in practice,
we talk often about the scattering angle θ between 0 and π, such that:

θ = 2πl + qθ′ (2.44)

where l is a integer and q = +1 or −1. They are chosen to make sure that θ is reported
to the interval [0, π].

2.2.2 Amplitude of scattered ray

The amplitude of scattered ray is affected by two factors in term of GO. One is the
reflection and refraction on the particle surface and the other is the convergence factor
of the wave on the curved surface of the particle. For a homogeneous sphere, both of
them can be calculated analytically.

The amplitude ratio εX of an emergent wave to the incident wave is calculated
by the Fresnel formulas. For the external reflected ray (p = 0), this ratio is directly
the Fresnel coefficient of reflection. For the internal reflection, the same fractions are
reflected except the sign of rX is reversed. And the refracted part of the intensity is
1 − r2X . Therefore the total intensity of a given incident pencil, is divided into the
parts r2X for the ray p = 0, (1− r2X)2 for the ray p = 1, r2X(1− r2X)2 for the ray p = 2,
etc. All rays of order p ≥ 2 undergo two transmissions and p− 1 internal reflections,
so its amplitude ratio εX can be calculated by.

εX =

{
rX p = 0

(1− r2X)(−rX)p−1 p ≥ 1
(2.45)

The subscript X = 1 or 2 stands for the perpendicular or parallel polarization.
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Consider a pencil of rays of the plane wave arriving at the sphere with an incident
angle α. The element of the illuminating surface is dSi = a2 cos τdτdϕ. ϕ is the
azimuth angle of incident ray. Let I0 denote its intensity, then the incident energy
flux is:

I0a
2 cos τ sin τdτdϕ (2.46)

The emergent rays spread into a solid angle dΩ = sin θdθdφ which corresponds to a
surface element dS = r2dΩ = r2 sin θdθdφ in a distance r from the sphere. According
to the energy balance, the scattering intensity of order p in GO is given by [56]

IX(p, α) =
ε2XI0a

2 cos τ sin τdτdϕ

r2 sin θdθdφ
=
a2

r2
I0ε

2
XDp (2.47)

Dp is usually called divergence factor, a parameter denoting the influence of the shape
of a particle on the angular intensity distribution. Dp is given by

Dp =
sinα cosα

sin θ |dθ′/dα|
(2.48)

According to Snell law sinα = m sin β, we have

dβ

dα
=

cosα

m cos β
(2.49)

and the derivative of Eq. (2.43) yields

dθ′

dα
= 2

(
p
dβ

dα
− 1

)
= 2

(
p

cosα

m cos β
− 1

)
(2.50)

Therefore Dp can be calculated by:

Dp =
sinα cosα

2 sin θ
∣∣∣p cosα
m cosβ

− 1
∣∣∣ =

sinα cosα

2 sin θ

∣∣∣∣∣
√
m2 − sin2 α

p cosα−
√
m2 − sin2 α

∣∣∣∣∣ (2.51)

For convenience, the amplitude and the phase of the scattered light can be ex-
pressed by means of the “amplitude functions” S1(θ) and S2(θ), which are firstly
introduced in section 2.1 and used throughout this thesis. Therefore we can define
the corresponding amplitude function of scattering light by:

Sj,p(θ) = xεX
√

Dp exp (iφp) (2.52)

The size parameter x = 2πa/λ. φp is the phase of emergent ray and will be introduced
in next subsection.

The dimensionless intensity i1 and i2 of emergent ray of order p in two polarizations
are then:

i1,p = |S1,p(θ)|2 = x2ε21Dp (2.53)

i2,p = |S1,p(θ)|2 = x2ε22Dp (2.54)
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2.2.3 Phase of emergent rays

The phase of emergent ray φp plays an important rule in the interference of different
modes and the rays of the same mode undertaken different paths. According to van
de Hulst [56], it is composed of three contributions:

1. the phase due to the reflection

2. the phase due to the optical path φop

3. the phase due to the focal line φfl

The reflection may change the sign of the amplitude of light and introduces a
phase shift π. This possible change of the sign is already included in the definition of
amplitude ratio εX calculated by Fresnel formula. When total reflection occurs or for
an absorbing medium, the Fresnel coefficients are complex and the phase shift can be
calculated from the complex Fresnel formula.

The optical path is the product of the geometric length of the path of a ray, and
the index of refraction of the medium through which it propagates. In the calculation
of the phase due to the optical path, the emergent ray is compared to a reference ray,
which arrives at the center of the particle in the same direction as the incident ray
and goes out in the direction of emergent ray as if no particle exists. Referring to
Fig. 2.3, we can get the difference in optical path of an emergent ray of order p to the
reference ray δ = 2a(cosα − pm cos β). Therefore the phase due to the optical path
φop can be calculated by

φop = kδ = 2x(cosα− pm cos β) (2.55)

According to van de Hulst, at the passage of any focal line, the phase advances
by π/2. Thus to calculate the phase due to the focal line φfl, the number of the focal
lines encountered along the entire path must be counted. van de Hulst classified the
focal lines in two types: type a for the crossing of two adjacent rays in the scattering
plane and type b for the crossing of a ray with the central optical axis. It is found
that the rays pass p − (1 − s)/2 focal lines of type a and −2l + (1 − q)/2 focal lines
of type b, where s is equal to +1 or −1 depending to the sign of dθ′/dτ . l and q are
defined in Eq. (2.44). The phase due to the focal line φfl is then given by:

φfl =
π

2

(
p− 2l +

s− q
2

)
(2.56)

The total phase of a ray is then

φp = φop + φfl (2.57)
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2.2.4 Total complex amplitude

The total amplitude of scattered light at a given angle θ is calculated by the summation
of the complex amplitude of all order rays as well as the diffraction:

Sj = Sd(θ) +
∞∑
p=0

Sj,p(θ) (2.58)

Sd(θ) is the amplitude of diffraction which can be calculated by using the Fraunhofer
diffraction of the projection circular disk of the object on a plane perpendicularly to
the incident wave.

2.3 Rainbows and Airy theory

In the framework of geometrical optics, a rainbow corresponds to an extreme of devi-
ation for rays experiencing internal reflections. This means the divergence factor Dp

defined in Eq. (2.51) trends to infinity, i.e.

dθ′

dα
= 2

(
p

cosα

m cos β
− 1

)
= 0 (2.59)

Combining with Snell’s law, we can obtain incident angle αrg of rainbow angle by

sinαrg =

√
p2 −m2

p2 − 1
(2.60)

and the refraction angle βrg by

sin βrg =

√
p2 −m2

m2(p2 − 1)
(2.61)

Their complement can be then calculated from:

τ = tan−1

√
m2 − 1

p2 −m2
(2.62)

τ ′ = tan−1

√
p2(m2 − 1)

p2 −m2
(2.63)

By substituting Eqs. (2.62) and (2.63) into Eqs. (2.42) and (2.44), we can get the
rainbow angle θrg by [75]

θrg(p,m) = 2πl + q

[
2 arctan

(√
m2 − 1

p2 −m2

)
− 2p arctan

(√
p2(m2 − 1)

p2 −m2

)]
(2.64)
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Figure 2.4: The geometric rainbow angle for first, second and third order rainbows as
function of refractive index.

Then for the first order rainbow (p = 2), we have

θrg = 6 tan−1
√
m2 − 1

4−m2
(2.65)

and for the second order rainbow (p = 3)

θrg = 2π − 16 tan−1
√
m2 − 1

9−m2
(2.66)

For a sphere of relative refractive index m = 1.333, the primary and the secondary
rainbow angles are 137.922◦ and 129.109◦ respectively.

From the above equations, we can find that rainbow angles in GO are function
of refractive index and independent of particle size. Fig. (2.4) depicts the geometric
rainbow angles of the first, second, and third order rainbows (p = 2, 3 and 4 respec-
tively) as function of the refractive index m. From the figure we can find that when
the refractive index m is rather small, the angular position of the first order rainbow
is smaller than that of the second order rainbow. With increase of the refractive
index, the geometric rainbow angle of the first order rainbow increases while that of
the second order rainbow decreases. When refractive index m = 1.312, they have the
same value.

Geometrical optics (GO) permits to explain clearly the formation of rainbows of
different orders and give a clear physical picture of mechanism of light scattering.
However GO cannot predict the intensity at the rainbow angles. Furthermore, the
position of the maximum intensity in a rainbow is offset slightly from the geometrical
rainbow angle θrg. Most of all it cannot explain the existence of series of maxima and
minima associated with rainbows (known as supernumerary structure). To overcome
these problems, Airy introduced the wave nature of light. The idea of Airy in dealing
with this problem can be explained by Figure 2.5. A homogeneous sphere is illumi-
nated by a plane wave. Five rays around the first rainbow angles are shown here and
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Figure 2.5: Coordinate system for Airy’s theory of the rainbow.

the path of rays is calculated by software VCRMEll2D [106] developed in laboratory.
The middle ray (in red) is the one with the minimum deflection and leaves the sphere
at the geometric rainbow angle. All the other incident rays in its neighborhood (num-
ber 1, 2 in blue and 4, 5 in green) emerge from the drop in the same side of the extreme
ray. Because these rays from two side of the extreme ray emergent in the same side
and experience different optical path. They will interfere and the interference may be
constructive or destructive. This leads to the supernumerary structure.

In order to understand what’s going on in simple terms and calculate the intensity
of scattered light, Airy used a virtual cubic wavefront to replace the true wavefront,
and assumes that the outgoing wave comes from this virtual plane perpendicular to
the rainbow ray. The total field in a given direction is the integration of the field on
this plane. To obtain the phase function, Airy used the Taylor series expansion of
scattering angle in the neighborhood of the rainbow angle. He designed a Cartesian
coordinate system Ouv. The u-axis is along the extreme rainbow ray and the v-axis
is perpendicular to the rainbow ray and passing through the center of the sphere.
Suppose that θrg is the rainbow angle in GO and αrg is its incident angle which can
be calculated from Eq. (2.60). τrg = π/2−αrg is the complement of the incident angle.
When the incident angle α = αrg, we have θ = θrg. Because a rainbow corresponds
to an extreme of the deviation angle, we have:

dθ

dτ
= 0 (2.67)

Then by further differentiation we have

d2θ

dτ 2
=

3

2 tan τrg
(2.68)
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Therefore the scattering angle in the neighborhood of the rainbow angle can be given
in the sense of Taylor expansion by

θ − θrg =
3

4 tan τrg
(τ − τrg)2 (2.69)

Besides, the slope of the wavefront in the neighborhood of θrg is

du

dv
= θ − θrg (2.70)

and
v = a cos τ − a cos τrg ≈ −a(τ − τrg) sin τrg (2.71)

Finally we have
du

dv
=

3v2

4a2 sin2 τrg tan τrg
(2.72)

The equation of the cubic wavefront can be got by integration:

u =
hv3

3a2
(2.73)

where h is a constant

h =
(p2 − 1)2

p2
(p2 −m2)1/2

(m2 − 1)3/2
(2.74)

Airy further assumes that the amplitude along the wavefront is constant. The far field
amplitude of the wave in the direction θ is the integral of the contributions at all the
points on the cubic wavefront. He extend the integration on v from −∞ to +∞. So
the amplitude of the scattered wave is proportional to∫ ∞

−∞
e−ikv(θ−θrg)+ikhv

3/3a2dv (2.75)

By combining the integrands for positive and negative v, Airy introduced the “rainbow
integral”:

f(z) =

∫ ∞
0

cos
1

2
π(zt− t3)dt (2.76)

where
t = v/l (2.77)

l = (3λa2/4h)1/3 (2.78)

z = 4l(θ − θrg)/λ = (12/hπ2)1/3x2/3(θ − θrg) (2.79)

The intensity is proportional to f 2(z). The Airy intensity for the rainbow of p − 1
order can be calculated by [102]

IpAiry(θ) =
∣∣Ep

Airy(θ)
∣∣2 (2.80)
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Figure 2.6: Intensity distribution calculated by Airy theory for a sphere of refractive
index m = 1.333 and radius a = 50 µm

where Ep
Airy(θ) is the electric field in the vicinity of θrg and is given by

Ep
Airy(θ) = x

(
2π sinαrg

sin θrg

)1/2
x1/6

h1/3
t21(αrg)×

[
r11(αrg)

]p−1
t12(αrg)

×Ai(−x
2/3∆

h1/3
)× exp(2πiLR/λ) exp

[
(ix∆)

(
p2 −m2

p2 − 1

)1/2
]

(2.81)

where ∆ in Eq. (2.81) is the angular difference between observation (scattering) angle
θ and rainbow angle θrg

∆ = θ − θrg (2.82)

LR is the optical path of the rainbow ray:

LR = 2a(pm cos βrg − cosαrg) + 2a (2.83)

βrg is the refractive angle corresponding to the incident angle αrg, and is given in Eq.
(2.61). Ai is the Airy function defined by

Ai(x) =
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt (2.84)

t21 is the transmission factor of the electric field from the exterior to the interior of
the sphere. t12 is the transmission factor from the interior to the exterior and r11 is
the internal reflection coefficient.

As an example, Fig. 2.6 shows the intensity near the primary rainbow angle as
function of scattering angle calculated by Airy theory. Supernumerary structure can
be observed clearly. Geometrical rainbow angle is also indicated for comparison.
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The positions of the Airy maxima θAiry,K can also be found according to the
properties of Airy functions [75]

|θAiry,0 − θrg(p,m)| = 1.087376

(
π2

12x2
h

)1/3

(2.85)

for main peak K = 0, and

|θAiry,K − θrg(p,m)| =

[
9π2

4x2

(
K +

1

4

)2

h)

]1/3
(2.86)

for the subsidiary supernumerary bows (K = 1, 2, 3...). h depends on the refractive
index m and x is the size parameter. Therefore it is clear that the angular positions
of supernumerary bows depend on the particle size and its refractive index.

Besides from Eqs. (2.85)and (2.86), we deduce that

θrg(p,m) =
θAiry,K − cθAiry,0

1− c
(2.87)

where the constant c is defined by

c =
1

1.087376

[
27

(
K +

1

4

)2
]1/3

(2.88)

Similar formula can be derived for the determination of geometrical rainbow angle by
two other Airy bows K1 and K2.

θrg(p,m) =
θAiry,K1 − dθAiry,K2

1− d
(2.89)

where constant d is defined by

d =

(
K1 + 1

4

K2 + 1
4

)2/3

(2.90)

Both c and d are independent of the refractive index, the particle size and the
order of rainbow. This means that they can be applied to determine the geometrical
rainbow angles from two Airy bows of any order of rainbow for a particle of any size
and material.

2.4 Conclusion and comments

Two typical classical methods for dealing with the light scattering by a small particle
are presented.
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The first one, Lorenz-Mie theory, is a rigorous solution of the Maxwell equation,
which will serve us as a reference to validate the model developed in this thesis and
to evaluate its precision. Especially its series version - Debye theory is particular
important for the development of VCRM since it permits to decompose different
modes of scattering, very suitable to compare directly with the results of VCRM.

Geometric optics approximation is an approximate method, but it is very flexible
allowing to deal the scattering of non-spherical particles. It is largely used in the
optical particle characterization, directly or indirectly. It is also the base of our
VCRM. The Airy theory, also an approximate method, has been applied naturally
since long time in the rainbow refractometry. Its precision is so satisfactory that
few researchers intend to examine the approximation and calculation involved in the
theory. We present this theory in details for two purposes:

• To provide a basic knowledge to understand and apply VCRM in the character-
ization of non-spherical particles.

• To reexamine it later in the framework of VCRM to show that the Airy theory
can be further improved, and the idea of Airy serves us to deal with non-spherical
particle.

We will present in the next chapter the principle of VCRM and its application to the
characterization of non-spherical particles.
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Chapter 3

VCRM for scattering by an
ellipsoid

Geometrical optics is a simple and intuitive method for treating the interaction of an
object with electromagnetic or light waves when the dimension of the object is much
larger than the wavelength. It can be applied to objects of complex shape, which
are hard or even impossible to be dealt with by rigorous theories or most numerical
techniques. Many researchers have contributed to its improvement. Some take into
account the forward diffraction or other particular wave effects (Airy theory for the
rainbow [56, 102, 107] and Marstons model for the critical scattering [108, 109]. Others
combine directly geometrical optics with the electromagnetic wave method [65, 66].
However, in these studies, interference effects of all order rays are rarely taken into
account. Besides, when ray optics is extended to a three dimensional (3D) object of
irregular shape, it becomes a heavy task (see [110–113] and references therein) because
of the difficulties in the tracing of rays in a complex shaped particle, the calculation
of local divergence factors and the phase shift due to focal lines.

To overcome these difficulties, a new model of light-particle interaction, called Vec-
torial Complex Ray Model (VCRM) is developed [67]. It is based on the geometrical
optics but a new property – the wave front curvatures is introduced. In this model,
all waves are described by vectorial complex rays. The ray direction and the wave
divergence/convergence after each interaction of the wave with a dioptric surface as
well as the phase shifts of each ray are determined by the vector Snell law and the
wavefront equation according to the curvatures of the surfaces. The total scattered
field is the superposition of the complex amplitude of all orders of the rays emergent
from the object.

In this chapter, we will firstly describe Vectorial Complex Ray Model in general
case, i.e. reflection and refraction of an arbitrarily shaped wave by a dioptric surface
in arbitrary direction. Then VCRM is applied to predict the light scattering by an
ellipsoid.

41
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3.1 Vectorial Complex Ray Model

In VCRM, the wave is considered as bundles of vectorial complex rays. And each ray
possesses five properties:

• direction of propagation k̂

• polarization state X

• amplitude Ap,X

• phase φp

• wavefront curvature

where the wavefront curvature is newly introduced compared with classical ray mod-
els making VCRM easy to extend to irregularly shaped 3D objects. The complex
amplitude Sp,X of an emergent ray can be then expressed as

Sp,X = Ap,X exp(iφp) (3.1)

where subscripts X = 1 or 2 correspond respectively to the perpendicular and parallel
polarization to the plane of incidence. p is the order of the emergent ray.

The direction of the rays before and after reflection or refraction are described
respectively by the normalize wave vectors k̂ = k/k and k̂′ = k′/k′. The two wave
vectors k and k′ satisfy the vector Snell’s law:

(k − k′)× n = 0 (3.2)

with n the normal vector of the dioptric surface at incident point.

Two factors play rule in the amplitude of the emergent field: divergence/convergence
of the waves and reflection/refraction on the dioptry surface. In VCRM, the diver-
gence/convergence of the wave, described by the divergence factor, is calculated di-
rectly by the wave front curvature radii. The divergence factor Dp of an emergent ray
after q = p+ 1 interactions with the dioptry surface can be calculated by

Dp =
R′11R

′
21

R12R22

· R
′
12R

′
22

R13R23

. . .
R′1,qR

′
2,q

(r +R′1,q)(r +R′2,q)
(3.3)

where r is the distance from the emergent point to the observation point, R1,q and
R2,q are the two principal wavefront curvature radii of rays before interaction. R′1,q
and R′2,q are those after interaction (reflection or refraction). The curvature radii
are determined by the curvature matrix of the corresponding surface. Suppose that
an arbitrary wave of curvature matrix Q impinges on a dioptric surface of curvature
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matrix C. Then the curvature matrix Q′ of the wave after intersection can be deduced
from the wavefront matrix equation [67]

(k′ − k) · nC = k′Θ′TQ′Θ′ − kΘTQΘ (3.4)

where the letters with prime represent the quantities after refraction or reflection, the
superscript T represents the transpose of the matrix, and Θ is the projection matrix
between the base unitary vectors of the coordinates systems on the planes tangent to
the wavefront (s1, s2) and to the dioptric surface (t1, t2)(

s1 · t1 s1 · t2
s2 · t1 s2 · t2

)

εp,X stands for the relative amplitude of the X polarized ray of order p and is
determined by Fresnel coefficients:

εp,X =

{
r0,X p = 0

t0,Xt
′
p,X

∏p−1
n=1 r

′
n,X p ≥ 1

(3.5)

r0,X and t0,X are respectively the Fresnel reflection and refraction coefficients for a ray
impinging the particle surface from surrounding medium, and r′n,X and t′n,X are those
for a ray arriving at the dioptric interface from inside of the particle. To be consistent
with VCRM and simply the calculation, the Fresnel coefficients for reflected ray in
Eqs. (2.38) and (2.39) can be written as function of the normal components of the
wave vector:

r1 =
kn − k′n
kn + k′n

(3.6)

r2 =
m2kn − k′n
m2kn + k′n

(3.7)

and the amplitude ratio of transmitted waves tX can be calculated by

t1 =
√

1− r21

=
2
√
knk′n

kn + k′n
(3.8)

t2 =
√

1− r22

=
2m
√
knk′n

m2kn + k′n
(3.9)

Attention: It should be noted that for a non-spherical particle, the Fresnel coeffi-
cients must be calculated at each intersection point because the incident and refractive
angles change each time a ray encounters the surface.
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The amplitude Ap,X of the emergent ray is product of Fresnel factor εX and the
square root of the divergence factor Dp

Ap,X = |εp,X |
√
Dp (3.10)

The phase of each emergent ray φp is composed of four parts: the phase of the inci-
dent wave φinc; the phase due to the optical path φop; the phase due to the focal point
or focal line φfl and the phase due to the reflection φrl,X . The fist one is calculated
directly by the phase function of the incident electromagnetic wave expression. The
phase due to the optical path φop can be computed according to the optical trajectory.
Each time the sign of the curvature radius changes, a phase shift π/2 is added for the
phase due to the focal point or focal line φfl. And the phase due to the reflection is
included in the Fresnel coefficient.

Knowing the amplitude and the phase of each ray, we calculate the total scat-
tered field by the summation of the complex amplitudes of all emergent rays and the
diffraction field.

3.2 Scattering in a symmetric plane of an ellipsoid

Consider an ellipsoidal particle of refractive index m illuminated by a plane wave
propagating in the symmetric plane of the ellipsoid. Suppose that the semi-axes of
the ellipsoid in x, y and z directions are respectively a, b and c. And the incident plane
wave propagates in the xz plane and making an angle θi (0 ≤ θi ≤ π

2
) with the z axis

as show in Fig. 3.1. Here we only focus on the scattering in xz plane (symmetric
plane). The problem is therefore a 2D scattering since the rays remain always in
this plane. But the curvature of the particle surface in the direction perpendicular to
this plane counts in the VCRM. This is a key difference of VCRM from the classical
geometrical optics.

3.2.1 Ray tracing

The cross section of the ellipsoid in this plane is described by

x2

a2
+
z2

c2
= 1 (3.11)

Incident rays

In VCRM, the plane wave is considered as bundles of vectorial complex rays. The
linear equation in the slope-intercept form for each incident ray in the xz plane is
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Figure 3.1: Schema of a ellipsoid illuminated by a plane wave

then

x = γz + d (3.12)

where γ = tan θi is the slope of the ray and d is the x-intercept of the incident ray.
Substituting Eq. (3.12) into Eq. (3.11), we can get

(γz + d)2

a2
+
z2

c2
= 1 (3.13)

To determine the illumination region, we rewrite the Eq. (3.13) in the quadratic
equation in one unknown z

(c2γ2 + a2)z2 + 2γdc2z + (c2d2 − a2c2) = 0 (3.14)

The discriminant ∆ of this quadratic equation is

∆ = 4γ2d2c4 − 4(c2γ2 + a2)(c2d2 − a2c2) (3.15)

When ∆ = 0, Eq. (3.13) has one solution, corresponding to the rays tangent to the
ellipsoid surface. The two solutions of d in ∆ = 0 are the two x-intercepts of the
incident rays (see Fig. 3.1)

dmax,min = ±
√
c2γ2 + a2 (3.16)
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The rays with x-intercept dmin < d < dmax interact the ellipsoid with the coordinate

z =
−2γdc2 ±

√
∆

2(c2γ2 + a2)
(3.17)

Substitute Eq. (3.17) in Eq. (3.12), we can get the coordinate x of intersection point
of the ray with the ellipsoid.

Attention: in our code, we suppose that the rays arrive on the ellipsoid from
negative axis of z to positive axis and 0 ≤ θi ≤ π/2, so only the solution with the
smaller z-value meets our demand.

Interaction point

The refracted ray after the incident point will propagate and interact with the particle
surface, and is split to the reflected ray and refracted ray. The internal reflected ray
will continue to propagate and interact with the particle surface. Suppose that the
two successive interaction points are (zj−1, xj−1) and (zj, xj), and the slope of the ray
is γj−1, then we have:

xj − xj−1 = γj−1(zj − zj−1) (3.18)

Substituting this equation into Eq.(3.11) , we can get zj of next interaction point with
the ellipsoid.

zj = zj−1 − 2
γj−1xj−1c

2 + zj−1a
2

c2γj−12 + a2
(3.19)

Knowing the coordinate (zj−1, xj−1) of the (j − 1)th interaction point, the coordinate
(zj, xj) of the next interaction point are given by Eqs. (3.18) and (3.19).

Wave vectors

In VCRM, the direction of a ray is described by the wave vector. When a ray arrives
at the particle surface, its wave vector can be expressed by

k = kxex + kzez (3.20)

where kx and kz are respectively the components of the wave vector k in x and z
directions. The components of the wave vector in the normal and tangent directions
of the particle surface can be expressed as

kn = k · n = kxnx + kznz (3.21)

kτ = k · τ = −kznx + kxnz (3.22)

where n and τ are the unit vectors, respectively, normal and tangent to the particle
surface. Their calculations will be given below. According to the Snell-Descartes law
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in Eq. (3.2), we can get the tangent components of the reflected wave vector klτ and
the refracted wave vector k′τ are equal to that of the incident wave vector

kτ = klτ = k′τ (3.23)

The normal component of the reflected wave vectors is

kln = −kn (3.24)

and the reflected wave vector is then

kl = klττ + klnn = kττ − knn (3.25)

It can also be given in x and z components:

kl = klxex + klzez (3.26)

where
klx = klnnx + klττx (3.27)

klz = klnnz + klττz (3.28)

For the refracted wave vector k′, we have

k′ = mk (3.29)

k′ = k′ττ + k′nn (3.30)

where its normal component

k′n =

√
k′2 − k′τ 2 (3.31)

Normal and tangent vectors of ellipsoid

Suppose that our solution for the coordinate of the interaction point in xz plane is
(z, x), and the outward-pointing unit normal vector n of the surface of ellipsoid in xz
plane is the normalized gradient of the surface equation f(x, z) = x2

a2
+ z2

c2
− 1, i.e.

n =
2x
a2
ex + 2z

c2
ez√

(2x
a2

)2 + (2z
c2

)2
=
c2xex + a2zez√
c4x2 + a4z2

= nxex + nzez (3.32)

It should be noted that for the first refraction and reflection of the incident rays on the
ellipsoid, the unit normal vector of the surface should be reversed, i.e. the outward-
pointing normal vector is changed to the inward-pointing normal vector. Then the
unit tangent vector to the surface at this point is

τ = τxex + τzez = −nzex + nxez (3.33)

Even if nzex − nxez is also the unit tangent vector to the surface, we chose the
definition in Eq. (3.33) to make sure that our reflection angle and refraction angle are
in the interval [0, π/2].
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3.2.2 Amplitudes and phases of emergent rays

In VCRM, the complex amplitude Sp,x is calculated step by step at each interaction
of the rays with the particle. Its module Ap,x is determined by three factors: incident
wave amplitude, divergence factor and the Fresnel coefficients. For the plane wave
incidence, the amplitude and the phase of incident rays are constant. Here the calcu-
lations of divergence factor and the Fresnel coefficients will be presented. The phase
shifts will be discussed later.

Divergence factor

When the rays encounter the curved dioptric surface, it will be converged or diverged.
This convergence or divergence, called the divergence factor in VCRM, is essential
to calculate the amplitude of the emergent rays and the phase shift due to the focal
line. In VCRM, the divergence factor Dp defined in Eq. (3.3) is calculated directly by
the wavefront curvature radii. To get the curvature radii of the wavefront after each
interaction, the wavefront matrix in Eq. (3.4) can be written as two scalar equations
due to the symmetry of the problem [67]

k′n
2

k′R′1,q
=

kn
2

kR1,q

+
k′n − kn
ρ1

(3.34)

k′

R′2,q
=

k

R2,q

+
k′n − kn
ρ2

(3.35)

For a plane wave, its curvature radii of wavefront are infinity. The two principal
curvature radii ρ1 and ρ2 of the ellipsoid surface at the plane y = 0 are given by

ρ1 = −c
2

a

[
1 + (a2/c2 − 1)z2/c2

]3/2
(3.36)

ρ2 = −b
2

a

[
1 + (a2/c2 − 1)z2/c2

]1/2
(3.37)

The curvature radii can be positive or negative depending on its convergent or diver-
gent property. Here we adopt the convention that the curvature radii are positive if
the focal line/point is after the intersection point.

Therefore the divergence factor D0 of the reflected wave p = 0 is given by

D0 =
R′′11R

′′
21

(r +R′′11)(r +R′′21)
(3.38)

R′′11 and R′′21 are wave front curvature radii of the reflected wave. To make a difference
with the wave front curvature radii of the refracted wave, in the following equations
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we use R′′1,q and R′′2,q to specialize the wavefront curvature radii of the reflected rays.
And the divergence factor D1 of the emergent ray p = 1 is

D1 =
R′11R

′
21

R12R22

· R′12R
′
22

(r +R′12)(r +R′22)
(3.39)

where R12 and R22 are the curvature radii of incident wave before the first internal
reflection.

R12 = R′11 − d (3.40)

R22 = R′21 − d (3.41)

d is the distance between the two successive interaction points. And R′12 and R′22 are
the curvature radii of the first order refraction ray.

Fresnel coefficients

The factor εp,X of each emergent ray can be calculated by Eq. (3.5).

Phase of emergent rays

To take into account the effect of interference, generally, the phase of each ray must
be computed, which is composed of four parts:

1. the phase of the incident wave φi

2. the phase due to the optical path φop

3. the phase due to the focal point or focal line φfl

4. the phase due to the reflection φrl,X

The phase φi of the incident wave is calculated directly according to the wavefront
of the incident wave expression. It is a constant for the plane wave and plays no role
in the interference, so we neglect it in the calculation.

The phase φop due to the optical path is calculated according to the optical path in
and out of the particle relative to the reference ray, which propagates in the vacuum
and arrives at the center of the particle in the same direction as the incident ray, then
goes out in the direction of the emergent ray. Therefore, the reflected ray (p = 0)
with a shorter path than the reference rays has a positive phase shift. The refracted
rays (p = 1, 2, 3, · · ·) have a longer path and negative phase shift.

The phase due to the focal lines indicates the phase shifts due to the crossing
of two adjacent rays or crossing of a ray with the central optical axis. Each time a
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ray passes a focal line, the phase advances π/2 according to van de Hulst [56]. This
holds also for a focus point where two focal lines coincide, so the phase advances by
π. It is easy to calculate the phase due to focal lines for a spherical particle or a
circular cylinder, in which, for a given incident ray, the deviation angles of all orders
can be obtained analytically and the focal lines or focal points can also be counted
accordingly. However for a particle of complex form, it’s impossible to obtain an
analytical expression of phase due to the focal line. In VCRM we integrate the wave
property in the ray model and then the phase shifts due to the focal lines can be
determined directly by the change of sign of the wavefront curvature. Each time the
curvature (radius) changes the sign, we add a phase shift π/2.

The phase due to reflection is included in the Fresnel coefficient. An additional
phase π, is added when the Fresnel coefficient is negative. But when the incident light
is traveling from an optically denser medium towards an optically less dense medium
and the incident angle is greater than the so-called critical angle αc = sin−1m, the
total reflection occurs and the energy is totally reflected. In this case, the wave number
in the second medium is less than the tangent component of wave vector in the first
medium, i.e. k′ < kτ . Fresnel coefficient will be a complex number. We can write
k′n = i

√
k′τ

2 − k′2. The Eqs. (3.6) and (3.7) are turned to be:

r1 =
kn − i

√
k′τ

2 − k′2

kn + i
√
k′τ

2 − k′2

=
(kn

2 − k′τ
2 + k′2)− 2kn

√
k′τ

2 − k′2i
kn

2 + k′τ
2 − k′2

(3.42)

r2 =
m2kn − i

√
k′τ

2 − k′2

m2kn + i
√
k′τ

2 − k′2

=
(k′τ

2 − k′2 −m4kn
2) + 2m2kn

√
k′τ

2 − k′2i
m4kn

2 + k′τ
2 − k′2

(3.43)

The phase shifts of the reflected rays are then

φrl,1 = arctan
−2kn

√
k′τ

2 − k′2

kn
2 − k′τ 2 + k′2

(3.44)

φrl,2 = arctan
−2m2kn

√
k′τ

2 − k′2

m4kn
2 − k′τ 2 + k′2

(3.45)

The total phase of a ray is then

φ = φi + φop + φfl + φrl,X (3.46)
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3.2.3 Total scattered field and intensity

Amplitude of each ray

Finally we can get amplitude of each emergent ray Ap,X . As defined in Eq. (3.10), the
amplitude Ap,X of each emergent ray is the product of the Fresnel factor εp,X and the
square root of the divergence factor Dp. For example, the amplitude of the external
reflected ray (p = 0) is

A0,X = |ε0,X |
√
D0

= |r0,X |

√
R′′11R

′′
21

(r +R′′11)(r +R′′21)
(3.47)

and for the refracted ray of p = 1

A1,X = |ε1,X |
√
D1

= |t0,Xt′1,X |

√
R′11R

′
21

R12R22

· R′12R
′
22

(r +R′12)(r +R′22)
(3.48)

where t0,X and t′1,X are respectively the Fresnel refraction coefficients at the first and
second interaction points.

Total scattered field

The total scattered field at a given angle is the superposition of the complex ampli-
tudes Sp,X (Eq. (3.1)) of all the rays arriving in that direction

SX =
∞∑
p=0

Sp,X (3.49)

In VCRM, the directions of emergent rays are determined by the angles and the
positions of the incident rays, the orders of the emergent rays and the refractive index
of the particle. Their emergent angles have irregular intervals. As an example, Fig.
3.2 shows the variation of the amplitude as function of the emergent rays. It is clear
that we can’t calculate the summation of the amplitude of the rays of orders p =0
and 3 in a given angle since we do not know the phase and the amplitude of the
emergent rays at that angle. For example at 128.8◦ as indicated in Fig. 3.2, a careful
interpolation of the amplitudes and the phase shifts (not shown here) are necessary
to calculate the summation of the complex amplitude. It should be noted that several
rays of the same order may arrive at the same angle. Here the rays of order p = 3
arrive twice in the angles less than the rainbow angle (129.1◦ here). Usually, the
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Figure 3.2: Amplitude of scattered light near the second rainbow angle for a plane
wave λ = 0.6328 µm scattered by a sphere of refractive index m = 1.333 and radius
a = 50 µm

interpolation algorithm applies to the monotone interval, therefore we must split the
data obtained by ray tracing into groups in each of which the validation of the angle
is monotone, i.e. only increasing or only decreasing, but never the both. Then we
can calculate the amplitudes and the phases of all the rays arriving at the same angle
by interpolation. And the summation of them gives rise to the complex amplitude of
the total field. The intensity is just the square of the module of the total complex
amplitude.

The scattered wave in the far field has the character of spherical wave. The
direction of scattering is defined by the deviation angle θ with respect to the direction
of propagation of the incident light and an azimuth angle ϕ. Let I0 be the intensity of
the incident light, I the intensity of the scattered light in a point at a large distance
r from the particle. Since I must be proportional to I0 and r−2, we may write

I =
I0i(θ, ϕ)

k2r2
(3.50)

Here the square of wave number k is added to make i(θ, ϕ) a dimensionless function of
the direction but independent of r. It also depends on the orientation of the particle
with respect to the incident wave and the polarization state of the incident wave.
The relative values of i, may be plotted in a polar diagram, as a function of θ in a
fixed plane (given ϕ) respect to the direction of incidence. This diagram is called
scattering diagram of the particle. So to get the final scattering diagram, our results
of intensities should be still multiplied by k2r2.
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(a) Perpendicular polarization
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(b) Parallel polarization

Figure 3.3: Scattering diagram predicted by VCRM and LMT for a sphere of radius
a = 50 µm illuminated by a plane wave of wavelength λ = 0.6328 µm. Refractive
index of particle m = 1.333. The results of VCRM are shifted by 102 for clarity.

3.2.4 Numerical results and comparisons

In this thesis, I have written a code of VCRM in C# for the scattering of a plane
wave by an elliptical particle in a symmetric plane. In this subsection, we focus on the
validation of this code by comparing the scattering diagrams of the spherical particles
calculated by VCRM with the results of Lorenz-Mie theory (LMT), which provides
rigorous solution for light scattering by spherical particles. Then in chapter 4 this code
is applied to the light scattering by large spheroidal particles to show the influence of
particle non-sphericity on rainbow patterns.

In the following numerical calculations, the wavelength λ of the incident wave is
fixed to 0.6328 µm. The particle is embedded in vacuum and its refractive index m is
set to be 1.333. The maximum order of ray is 5 because the calculation contribution
of higher orders are very small [114]. And numbers of incident and scattered rays
are respectively 20000 and 10000. Besides, diffraction, which is very important in the
forward direction, is also taken into account.

In principle, the ray model is only valid for the particles of size much larger than
the wavelength. Therefore we start our comparisons for a water droplet of radius
a = 50 µm. Fig. 3.3 illuminates the scattering diagram predicted by VCRM and
LMT in perpendicular and parallel polarizations. From the figures we can find that
VCRM is in agreement with LMT especially for perpendicular polarization. However
discrepancies exist in the vicinity of 90◦ and Alexander’s dark region.

To further examine the effect of particle size on the precision of ray model, Fig.
3.4 shows the scattering diagram calculated by VCRM and LMT in perpendicular
polarization for a sphere of radius a = 30 µm. We can find that the general agreement
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Figure 3.4: Same parameter setting as in Fig. 3.3(a) except particle radius a = 30
µm.
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Figure 3.5: Same parameter setting as in Fig. 3.3(a) except particle radius a = 10
µm.

between VCRM and LMT is still very good. However discrepancies near rainbow angle
and 90◦ is more remarkable compared with Fig. 3.3.

In Fig. 3.5, we further reduce radius of the spherical particle to 10 µm. The
discrepancies between VCRM and LMT become more significant. Even if the profiles
of their scattering diagrams are still similar, details are different in the region larger
than 70◦. But even in this case, the overall accuracy of VCRM is still acceptable.

The scattering properties of non-spherical particles can differ dramatically from
those of spheres. Now we apply VCRM to light scattering by prolate and oblate
spheroids to study the influence of particle non-sphericity on the rainbow pattern.
The scattering diagrams of spheroidal particles are compared with that of a sphere.

Consider a spheroid of refractive index m illuminated by a plane wave propagating
in its equatorial plane. The equatorial radius of this spheroid is a and the distance
from center to pole along the symmetry axis is b. Then this spheroid can be expressed
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Figure 3.6: Scattering diagrams computed by VCRM for a prolate spheroid (b = 65
µm and aspect ratio κ = 1.3) with that of a sphere (radius a = 50 µm). The plane
wave of wavelength λ = 0.6328 µm propagates along z axis polarized in y axis. The
observe plane is fixed in xz plane. The results of VCRM are shifted by 102 for clarity.

as
x2 + z2

a2
+
y2

b2
= 1 (3.51)

It is centered at the origin and symmetric to y axis. The incident plane wave propa-
gates in the xz plane with an incident angle θ0 respective to z axis. In this thesis we
are interested only in the scattering in this symmetric plane. We take the equatorial
radius a = 50 µm and the radius in the transversal direction b as parameter. If the
aspect ratio κ = b

a
is unity, the spheroid is reduced to a sphere. If κ > 1, it is a prolate

spheroid. If κ < 1 it is a oblate spheroid.

Fig. 3.6 is a comparison of the scattering diagrams of a sphere (radius a = 50
µm) with that of a prolate spheroid (b = 65 µm and κ = 1.3). From the figure we
can find that differences exist in the vicinity of the first and second rainbow angles
near 139◦ and 127◦. Compared with the scattering diagram of a sphere, the intensity
of the second order rainbow of the prolate spheroid increases and becomes very close
to that of the first order rainbow. This can be explained by the convergence effect
due to the surface curvature of the particle in the vertical direction. In fact, the
rays of the first order rainbow experience one internal reflection while the second
ones experience two internal reflections. Therefore, the focalization effect decreases
faster in the second rainbow than the first rainbow as the major axis increases. In
next chapter, we will quantify the relation between the intensity ratio of the first to
the second order rainbow and the curvature radii in the equatorial plane. Besides,
a remarkable peak appears near 116◦. Its formation will be examined in the next
chapter.

Fig. 3.7 is a comparison of the scattering diagram of a sphere (radius a = 50
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Figure 3.7: Scattering diagrams computed by VCRM for a oblate spheroid (b = 45
µm and aspect ratio κ = 0.9) with that of a sphere (radius a = 50 µm). The plane
wave of wavelength λ = 0.6328 µm propagates along z axis polarized in y axis. The
observe plane is fixed in xz plane. The results of VCRM are shifted by 102 for clarity.

µm) with that of an oblate spheroid (b = 45 µm and κ = 0.9). From the figure we
can find is a peak near 158.2◦ for the scattering diagram of oblate spheroid. This is
our forementioned hyperbolic umbilic (HU) catastrophe caused by the eccentricity of
oblate spheroid. Nye explained that this is the interference of the two light rays in the
horizontal (equatorial) plane and two skew light rays which do not lie in the horizontal
plane on entering the droplet, but are confined to the horizontal direction upon exiting
the droplet [83]. These phenomena can be explained easily in the framework of VCRM
by the analytical convergence factor. We will discuss it in detail in chapter 4.



Chapter 4

Rainbow of a spheroidal particle

4.1 Revisit of Airy theory

Airy theory (see section 2.3) can predict the intensity distribution near rainbow angle
and offers a greatly simplified computation compared to rigorous theories, especially
for large particles. However as an approximate method, its precision is limited. Here
we will revisit its theoretical and numerical aspects, and examine its precision, es-
pecially that related to the particle metrology, by comparison with Debye series and
VCRM.

4.1.1 Comparison of Airy theory with Debye theory

First of all, we will compare the scattering diagrams calculated by Airy theory with
those obtained by the Debye series expansion – a rigorous theory. Fig. 4.1 illustrates
the scattered intensity distribution around the first and the second order rainbows
predicted by the two theories for a sphere of radius a = 50 µm and refractive index
m = 1.333 illuminated by a plane wave of wavelength λ = 0.6328 µm. A significant
discrepancy can be observed for both the positions and the maximum intensities in
supernumerary bows. This is due to the two approximations introduced in Airy theory.

The first is in the calculation of the phase of rays. Airy deduced the cubic function
to describe the variation of the phase of the emergent rays as function of the coordinate
u perpendicular to the geometrical rainbow ray, by using the Taylor expansion of
the deviation of angle of the rays θ in the neighborhood of the geometrical rainbow
angles θrg. This means that the cubic function is only valid in the neighborhood
of geometrical rainbow angles. However, in order to obtain the amplitude of the
scattered field, Airy extended the integration on the variable u from −∞ to +∞.

The second approximation is on the amplitude of the emergent rays. To simplify

57
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the integration, Airy supposed further that all the emergent rays have the same con-
stant amplitude. In fact, we know well that the amplitude of the emergent ray is
certainly not constant, especially, the amplitude of the rays in geometrical rainbow
angle tends to infinity.
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Figure 4.1: The comparison of main peak and supernumerary bows calculated by
Debye series and Airy theory for a sphere of radius a = 50 µm and refractive index
m = 1.333.

In VCRM, instead of assuming a cubic function, the phase of each emergent ray is
calculated numerically. The amplitude is also evaluated directly by Fresnel formulas
and divergence factor. Therefore, VCRM should be theoretically more accurate than
Airy theory. In the following subsection, we will compare the predictions of Airy
theory with those of Debye series and VCRM, then quantify the errors introduced in
the particle measurement.

4.1.2 Comparison between Airy theory and VCRM

We examine firstly the scattering patterns near rainbow angles computed by VCRM
and Airy theory for the case presented in the previous subsection.

The scattering diagrams near the first and the second order rainbows computed
by VCRM, Airy theory and Debye series expansion are shown respectively in Fig.
4.2(a) and Fig. 4.2(b). In the calculation of VCRM, the number of incident rays and
scattered rays are set to 20000 and 10000 respectively. From Fig. 4.2(a), we find
that the first order rainbow predicted by VCRM is in excellent agreement with Debye
series except in the vicinity of geometrical rainbow angle, while the difference between
Airy theory and Debye theory increases as the order of the supernumerary bows. In
the second order rainbow, the scattered intensity of VCRM is slightly smaller than
that of Debye, but their peak positions are in good agreement. We constate greater
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differences between the Airy theory and the Debye theory for both the intensity and
the peak position. For example, the angular position differences between Airy theory
and Debye theory for the third supernumerary bow is as large as 0.5◦ for in the first
order rainbow and near 1◦ in the second order rainbow.
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Figure 4.2: First and second order rainbows predicted by Debye theory, VCRM and
Airy theory for a sphere whose radius a = 50 µm and refractive index m = 1.333.

For larger particles, the discrepancy between the Airy theory and the Debye theory
is smaller, but the VCRM predicts always better the scattering patterns than the Airy
theory. Fig. 4.3 and Fig. 4.4 show the same case as Fig. 4.2 but the particle radius are
100 µm and 500 µm respectively. The discrepancies between Airy theory and Debye
series, i.e. the harmonic shift of the angular position of the supernumerary bows and
the overestimation of the scattered intensity, are still remarkable, especially for the
second order rainbow. With increase in particle size, both VCRM and Airy theory
fit Debye better in angular position. And VCRM is still more accurate than Airy
theory respect to Debye series. Besides we can also observe that the supernumerary
structure depends on the particle size. As we can find in Eq. (2.86), the greater the
particle size, the smaller the interval between two adjacent bows.

The discrepancy of Airy theory and VCRM from Debye theory depends also on
the refractive index of the particle. Fig. 4.5 and Fig. 4.6 are the same case as Fig. 4.2
except that the refractive index of the particle m is equal to 1.2 and 1.5 respectively.
We find that VCRM is in good agreement for the first and the second rainbow of
the particle with refractive index m = 1.5 and the first rainbow of the particle with
refractive index m = 1.2. The discrepancy of the Airy theory from Debye theory is
always much more significant than VCRM in these three cases.

In the case of the second order rainbow for a particle of refractive index m = 1.2
(Fig. 4.5 (b)). The scattered intensity predicted by the Airy theory is much greater
than that of the Debye theory and the difference on the positions of the supernumerary
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Figure 4.3: Same parameter setting as in Fig. 4.2 except particle radius a = 100 µm.
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Figure 4.4: Same parameter setting as in Fig. 4.2 except particle radius a = 500 µm.

bows is also significant. VCRM predicts well a portion of the scattering pattern in
the main peak (between 164◦ and 170◦) and a good angular position for the first
supernumerary bow. But no higher orders in the supernumerary bows positions.

We can conclude that both Airy theory and VCRM predict better scattering pat-
terns for particles of larger size and bigger refractive index. And in most cases, VCRM
agrees much better with Debye theory than the Airy theory.

4.1.3 Discrepancy on the particle sizing

We will now investigate the discrepancy in the particle sizing caused by using the
supernumerary bow positions of Airy theory. To this end, we need to extract the
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Figure 4.5: Same parameter setting as in Fig. 4.2 except refractive index m = 1.2.
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Figure 4.6: Same parameter setting as in Fig. 4.2 except refractive index m = 1.5.
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angular positions of the main peak and the supernumerary bows in the scattering
patterns.

The peak positions of all supernumerary bows in Airy theory can be calculated
analytically by using the Eqs. (2.85) and (2.86) given in section 2.4. The peak
positions of the supernumerary bows of VCRM and Debye theory are to be extracted
numerically from their scattering diagrams. If the angular step in the calculation is
sufficiently small, the peak positions can be obtained directly by finding the local
maximum in the scattering diagram. To obtain a good precision on the peak position,
we must calculate for a huge number of rays and it will be very time consuming.

An alternative method is to calculate scattering diagrams with reasonably larger
number of rays and then use the interpolation method to find the peaks of main and
secondary supernumerary bows. The procedure is as follows.

We give a staring point θi, usually the geometrical rainbow angles and calculate
the intensity difference at two successive points, i.e. δ1 = I(θi−1) − I(θi) and δ2 =
I(θi)− I(θi+1). Then we recalculate these two differences by increasing (for the first
order rainbow) or decreasing (for the second order rainbow) the scattering angle i until
the two differences have an opposite sign, θi will be the approximate peak position.

Then we suppose that the intensity around the local peak can be expressed as a
quadratic function of scattering angle:

I(θ) = a′θ2 + b′θ + c′ (4.1)

By using the standard routine for curve fitting in C# and the 7 points around i,
i.e. (θi−3, · · · , θi+3), we can find the coefficients a′, b′ and c′. The angular position of
peak θpeak is then given by

θpeak = − b′

2a′
(4.2)

The above procedure is applicable to all the supernumerary bows calculated by
Debye theory and VCRM except the main peak of VCRM for which a special method
must be used.

By observing the structure of the main peak in VCRM scattering patterns, we
can note that there is no peak in the main bow and the intensity tends to infinity at
geometrical rainbow angle, this is to be remedied by including the diffraction effect.
But to be able to compare with Airy theory we intend to find its “possible peak”
position which is located around the point where the second derivative is zero.

To find this point, we suppose that the scattered intensity is a cubic function of
the scattering angle:

I(θ) = a′θ3 + b′θ2 + c′θ + d′ (4.3)
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Knowing the fact that the second derivative changes the sign around the point
whose second derivative is zero, we calculate firstly numerically the difference of the
first derivative of the curve at a given angle θj

∆I ′(θj) =
I(θj+1)− I(θj)

θj+1 − θj
− I(θj)− I(θj−1)

θj − θj−1
(4.4)

which has the same sign as the second derivative at this point θj. Then we compare
the value of ∆I ′(θj) at two successive points, if the signs are different then the pont
to be found is around these two points j − 1 and j. Similar as for the other bows
described above we choose 6 points from j − 3 to j + 2 and use the standard curve
fitting routine in C# to find the coefficients in Eq. (4.3), The angular position of the
main peak θmp can be calculated by

θmp = − b′

3a′
(4.5)

On the other hand, we can also deduce the VCRM main peak position by using
the subsidiary supernumerary bow positions of VCRM found above and the relation
between the main peak and subsidiary supernumerary bows given in the Airy theory.
From Eqs. (2.87) and (2.88), I get the relation between angular position of main peak
θAiry,0 and those of supernumerary bows θAiry,K (K = 1, 2, 3...) in Airy theory :

θV CRM,0 =
θV CRM,K − θgo(p,m)(1− c)

c
(4.6)

where θgo(p,m) is the geometrical optics rainbow angle. Assume that this angular
relation also works for VCRM, then we can deduce the main peak position θV CRM,0

in VCRM from positions of its supernumerary bows θV CRM,K .

We have compared the main peak position of VCRM obtained by the two methods
described above and found that the main peaks found directly by the second derivative
of scattering patterns of VCRM have the same trend as Debye theory but the difference
is greater than those found using Airy formula. So in what follows, we use the results
calculated with Airy theory.

Fig. 4.7 shows the angular positions of the main peak K = 0 as well as subsidiary
supernumerary bows of orders K = 1, 2 calculated by Debye, VCRM and Airy as
function of particle radius for a sphere of refractive index m = 1.333 illuminated by a
plane wave of wavelength λ = 0.6328 µm. We find that all supernumerary bows tend
to the geometrical optics rainbow angle for large particle and the results of Airy theory
and VCRM are in rather good agreement with Debye theory. The peak positions of
VCRM fit always better with those of Debye than Airy theory.

To illustrate the discrepancy of the angular positions of Airy theory and VCRM
from those of Debye theory, we show in Fig. 4.8 the respective angular differences
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Figure 4.7: Angular positions of main peak and subsidiary supernumerary bows pre-
dicted by Airy theory, Debye and VCRM as function of particle radius. The rainbow
angle of GO is also added for comparison.

calculated from the results in the figure above. It is clear that the angular differences
between VCRM and Debye is much smaller than those between Airy theory and Debye
theory, especially in the first order rainbow.

Fig. 4.9 shows the peak positions differences of the Airy theory and VCRM from
Debye theory as function of the refractive index m for particle radius a = 50 µm.
These differences decreases with the refractive index.
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Figure 4.8: Angular differences of main peak and supernumerary bows between VCRM
and Debye, and those between Airy and Debye, as function of particle radius.

The discrepancy in the angular positions of supernumerary bows introduces an
error in the particle sizing. For example, the Airy theory predicts bigger angle po-
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Figure 4.9: Angular differences of main peak and supernumerary bows between VCRM
and Debye, and those between Airy and Debye, as function of refractive index for a
droplet whose radius a = 50 µm.

sitions of bows than the Debye theory in the first order rainbow, which correspond
to a smaller particle. In principle, this error in particle sizing can be evaluated by
looking for the scattering diagram of Debye theory which corresponds to the angular
peak positions of Airy theory or VCRM. This concerns an inverse problem and rela-
tively difficulty to realized. In order to estimate roughly the error introduced due to
the discrepancy of the peak position of the Airy theory and VCRM from the Debye
theory, we use in the following the analytical relation between the peak positions and
particle radius in the Airy theory.

We rewrite the size parameter in Eq. (2.85) for the main peak (K = 0) as an
explicit function of particle radius:

|θ0 − θrg(p,m)| = 1.087376

(
λ2h

48a2

)1/3

(4.7)

For the supernumerary bows of order K > 0, we rewrite Eq. (2.86) as function of
particle radius:

|θK − θrg(p,m)| =
[

9λ2

16a2
(K +

1

4
)2h)

]1/3
(4.8)

h can be calculated by the order of rainbow p and refractive index m according to Eq.
(2.74).

For first order rainbow (p = 2), from Fig. 2.6, we know that the angular positions
of Airy Maxima is larger than rainbow angle in the geometrical optic. Therefore the
differentiation of Eqs. (4.7) and (4.8) with respect to the particle radius yields

∆θ0 = −1.087376

3

(
λ2hp=2

6

)1/3

a−5/3∆a (4.9)
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for Airy main peak, and for other supernumerary bows (K > 0)

∆θK = −2

3

[
9λ2

16
(K +

1

4
)2hp=2

]1/3
a−5/3∆a (4.10)

where

hp=2 =
9(4−m2)1/2

4(m2 − 1)3/2
(4.11)

Similarly, for second order rainbow (p = 3), we have

∆θ0 =
1.087376

3

(
λ2hp=3

6

)1/3

a−5/3∆a (4.12)

for Airy main peak, and for other supernumerary bows (K > 0)

∆θK =
2

3

[
9λ2

16
(K +

1

4
)2hp=3

]1/3
a−5/3∆a (4.13)

where

hp=3 =
64(9−m2)1/2

9(m2 − 1)3/2
(4.14)

From these equations we can find that the discrepancy of the angular position of peak
will introduces an error ∆a in the particle radius measurement.

Fig. 4.10 shows the error introduced in the particle sizing by the discrepancy
of peak positions differences of the Airy theory and VCRM from Debye theory as
function of the particle radius for the refractive index m = 1.33. We find that in
the first order rainbow, the relative error in the particle sizing is almost constant and
equal to about 5% for the Airy theory and 0.5% for VCRM. While in the second
order rainbow, it is the absolute error is almost constant. The particle radius found
by Airy theory from the first and the second supernumerary bow positions K = 1, 2,
is about 30 µm larger than the given size. The particle radius determined by the
second VCRM supernumerary bow position K = 2 is in good agreement with given
size and that found from the first VCRM supernumerary bow position is smaller than
the given size. The particle size found from the main peak is larger than the given
one for both Airy theory and VCRM, the relative error is about 200% for Airy theory
and 150% for VCRM for a particle of 50 µm. The relative errors are 60% and 40%
for a particle of 500 µm.

4.2 Rainbows of spheroidal particles

Scattering diagrams of non-spherical particles differ dramatically from those of spheres.
We cite in the following the research on two typical non-spherical particles, one can be
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Figure 4.10: Size error introduced by Airy theory and VCRM respect to Debye series,
as function of particle radius.

considered as a prolate spheroidal particle and the other is an acoustically levitated
oblate spheroidal particle.

In an experimental study of rainbow formed by pendant drops in 1978, Sassen
observed that the relative intensity of different orders of rainbow depends on the
deformation degree of drops and noted [92] “near-spherical particles can generate
not only exceptionally well-defined primary, secondary, and associated supernumer-
ary rainbows, but unexpectedly strong higher order bows as well”. He intended to
explain the phenomena concerning the first and second order rainbows, “perhaps due
to the generally reduce near-backscattering efficiency of the pendant drops, the rel-
ative strength of the secondary bow in comparison with that of the primary bow
typically increases with increasing drop size, often resulting in secondary bows of
equal or greater strength for the largest drops studied” [92] (page 1088, paragraph 2
in right).

Later in 1998, Langley and Marston, in their study of rainbow by slightly oblate
drops, noted that “Sassen found that large pendant drops showed increased rainbow
scattering, especially for the higher-order bows, because of decreased curvature in the
equatorial plane, and suggested that large raindrops having reduced curvature at their
equators would also show an increased Airy brightness. The mechanism described in
our study, however, shows that vertically focused rays outside the equatorial plane
may contribute significantly to rainbow brightness for smaller drops that are oblate
but have their greatest curvatures at the equator ” [93] (page 1525, paragraph 2 in
right, line 7-18).

We would firstly comment that the particles in their study are quite different. The
drop levitated of Langley and Marston is oblate spheroidal particle while the pendant
drop of Sassen can be considered as a prolate spheroid. Their convergence effect can
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be very different. Secondly, Langley and Marston talked about the size of particle, but
the characteristics of rainbow of particles much larger than the wavelength of incident
wave depend much more on the shape of the particle than in their size. We note both
of them intend to conjecture the mechanism according to their observations, however,
none of their explanations is convincing.

In the framework of VCRM, the amplitude of the scattered field, the phase and
the direction of all the emergent rays in the symmetric plane of a spheroidal particle
can be calculated analytically. So we can predict the position of the supernumerary
bows easily. In this section, we will give a detailed description of this method and
intend to quantify the relation of the intensity ratio of the first order rainbow to the
second order rainbow with the curvature radius of the particle surface in the direction
perpendicular to the scattering plane, i.e. equatorial plane.

4.2.1 Amplitude of scattered field near rainbow angle

1. Wavefront curvature radii of wavefront at each interaction

Consider a spheroid of refractive index m, centered at O with y as its symmetric axis,
illuminated by a plane wave propagating in its equatorial plane, i.e. perpendicular to
y axis. The radius of this spheroid in this plane is a and its half-axis in y direction
is b. Then this spheroid is described in a Cartesian coordinate system Oxyz by Eq.
(3.51).

The direction of the incident plane wave is along the z axis. Here we are interested
only by the scattering in this symmetric plane. By the symmetry of the problem,
we know that all incident rays in this plane remain always in this plane. The two
principle curvature radii can be evaluated step by step according to Eqs. (3.34) and
(3.35). To facilitate the analysis in a familiar manner, we rewrite the two equations
in the function of the incident angle α and the refraction angle β:

k′ cos2 β

R′1,q
=

k cos2 α

R1,q

+
k′ cos β − k cosα

ρ1
(4.15)

k′

R′2,q
=

k

R2,q

+
k′ cos β − k cosα

ρ2
(4.16)

Eq. (4.15) gives the relation of the curvature radii of wavefronts with the local surface
curvature radius of the particle in the equatorial xz plane while Eq. (4.16) is that for
the direction perpendicular to the incident plane. Both α and β are constant for the
case under study. R1,q and R2,q (q = 1, 2, .., p + 1) are the two principal wavefront
curvature radii of rays before the qth interaction. R′1,q and R′2,q are those after the
interaction (reflected or refracted). To ease the discussion, we use, from now on, R′1,q
and R′2,q to designate the wavefront curvature radii of refracted rays, and R′′1,q and
R′′2,q for the reflected rays.



4.2. RAINBOWS OF SPHEROIDAL PARTICLES 69

The curvature radii of the particle surface and the wavefront may be positive
or negative depending on the convex or concave property. In our convention, the
curvature radii are positive if the surface is concave, i.e. the focal line/center is after
the intersection point. Therefore, at the first interaction point, the two main curvature
radii of the spheroid at equatorial plane (y = 0) are given by:

ρ1 = a (4.17)

ρ2 =
b2

a
(4.18)

The wavefront curvature radii R11 and R21 of the plane wave are infinite, we can
deduce the curvature radii R′′11 and R′′21 of reflected rays by Eqs. (4.15) and (4.16)

R′′11 =
a cosα

2
(4.19)

R′′21 =
b2

2a cosα
(4.20)

The positive sign indicates that the reflected wave is divergent in the two directions:
perpendicular and parallel to the incident plane, i.e. the curvature center of reflected
wave is on the other side of emergent wave.

The curvature radii R′11 and R′21 of rays refracted into spheroid are

R′11 =
ma cos2 β

m cos β − cosα
=
ma2 cos2 β

h
(4.21)

R′21 =
mb2

a(m cos β − cosα)
=
mb2

h
(4.22)

where h = a(m cos β − cosα). Here the positive values of R′11 and R′21 correspond
well the fact that the wave refracted into the particle is convergent also in the two
directions.

The distance between two successive interaction points in the particle is d =
2a cos β, therefore the wavefront curvature radii of the ray arriving at the second
interaction point are given by

R12 = R′11 − d

= −a cos β(m cos β − 2 cosα)

m cos β − cosα

= −a cos β(h− a cosα)

h
(4.23)

R22 = R′21 − d

=
mb2

h
− 2a cos β

= −2ah cos2 β −mb2

h
(4.24)
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Then by using again Eqs. (4.15) and (4.16), we can obtain the wavefront curvature
radii of emergent ray of order p = 1

R′12 = −a cosα(m cos β − 2 cosα)

2(m cos β − cosα)

= −a cosα(h− a cosα)

2h
(4.25)

R′22 = −b
2(2ah cos β −mb2)

2h(mb2 − ah cos β)

=
b2

2h
− ab2 cos β

2(mb2 − ah cos β)
(4.26)

And for the first internal reflected ray, its wavefront curvature radii R′′12 and R′′22 are
calculated by

R′′12 =
a cos β(m cos β − 2 cosα)

m cos β − 3 cosα

= a cos β +
a cosα cos β

m cos β − 3 cosα
(4.27)

R′′22 =
(2ah cos β −mb2)b2

2a cos β(2ah cos β −mb2)− b2h

=
Hb2

2aH cos β − b2h
(4.28)

where H = 2ah cos β −mb2 = 2a2m cos2 β − 2a2 cosα cos β −mb2.

Then using the same principle, the wavefront curvature radii of the ray arriving
at the third interaction point are given by

R13 = R′′12 − d

=
a cosα cos β

m cos β − 3 cosα
− a cos β

= −a cos β(m cos β − 4 cosα)

m cos β − 3 cosα
(4.29)

R23 = R′′22 − d

= −(4a2 cos2 β − b2)(2ah cos β −mb2)− 2ab2h cos β

2a cos β(2ah cos β −mb2)− b2h

= −4a2 cos2 βH − 2ab2h cos β −Hb2

2aH cos β − b2h
(4.30)
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The wave curvature radii of emergent ray of order p = 2

R′13 = −a cosα(m cos β − 4 cosα)

2(m cos β − 2 cosα)

= −a cosα(h− 3a cosα)

2(h− a cosα)

= −a
2 cosα(m cos β − 4 cosα)

2(h− a cosα)
(4.31)

R′23 = −b
2[2a cos β(2aH cos β − b2h)−Hb2]

2H(hb2 − aH cos β)

= −b
2[4a2 cos2 βH − 2ab2h cos β −Hb2]

2H(hb2 − aH cos β)
(4.32)

The wavefront curvature radii of the ray after second internal reflection can be calcu-
lated by

R′′13 =
a cos β(m cos β − 4 cosα)

m cos β − 5 cosα
= a cos β +

a cos β cosα

m cos β − 5 cosα
(4.33)

R′′23 =
b2(4a2H cos2 β − 2ab2h cos β −Hb2)

4a cos β(2a2H cos2 β − ab2h cos β −Hb2) + hb4
(4.34)

The wavefront curvature radii of the ray arriving at the fourth interaction point are
given by

R14 = R′′13 − d

=
a cosα cos β

m cos β − 5 cosα
− a cos β (4.35)

R24 = R′′23 − d

=
b2(4a2H cos2 β − 2ab2h cos β −Hb2)

4a cos β(2a2H cos2 β − ab2h cos β −Hb2) + hb4
− 2a cos β (4.36)

The wavefront curvature radii of emergent ray of order p = 3

R′14 = −a cosα(h− 5a cosα)

2(h− 2a cosα)
(4.37)

R′24 = − b2 [2(2a2H cos2 β − ab2h cos β −Hb2)(4a2 cos2 β − b2) +m6]

(2a2H cos2 β − ab2h cos β −Hb2) [4mab2 cos β − 2h(4a2 cos2 β − b2)]
(4.38)

Similarly, we can get the wavefront curvature radii of other order rays.

2. Divergence factor of emergent rays for an spheroid

The divergence factor Dp of an emergent ray after q = p + 1 time interactions with
the dioptry surface is given in VCRM by Eq. (3.3). The divergence factor for the



72 CHAPTER 4. RAINBOW OF A SPHEROIDAL PARTICLE

reflected ray of order p = 0 is

D0 =
R′′11R

′′
21

r2
=

b2

4r2
(4.39)

The divergence factor for the emergent ray of order p = 1 is

D1 =
R′11R

′
21

R12R22

· R
′
12R

′
22

r2

=
m2b4 cosα cos β

4r2(m cos β − cosα)2(mb2 −ma2 cos2 β + a2 cosα cos β)
(4.40)

The divergence factor for the emergent ray of order p = 2 is

D2 = D1 ·
R′13R

′
23

R13R23

=
m2b6 cosα cos β

4r2(m cos β − 2 cosα)(2ma2 cos2 β − 2a2 cosα cos β −mb2)
×

× 1

(2mb2 cos β − b2 cosα− 2ma2 cos3 β + 2a2 cosα cos2 β)
(4.41)

And the divergence factor for the emergent ray p = 3 can be calculated by

D3 = D2
R′14R

′
24

R14R24

(4.42)

The divergence factor for emergent ray of higher order can be calculated by fol-
lowing recurence formula

Dp = Dp−1
R′1,p+1R

′
2,p+1

R1,p+1R2,p+1

(4.43)

3. Divergence factor of emergent rays for a sphere

To check the divergence factor of a spheroid obtained above, we will apply them to a
simple case where a = b, i.e. a sphere, for which we know the analytical formula. In
the case, Eq. (4.39) is simplified to

Ds,p=0 =
a2

4r2
(4.44)

The divergence factor for the emergent ray of order p = 1 is

Ds,p=1 =
m2a2 cosα cos β

4r2(m cos β − cosα)2(m sin2 β + cosα cos β)
(4.45)
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and that for emergent ray p = 2 is

Ds,p=2 =
m2a2 cosα cos β

4r2(m cos β − 2 cosα)(2m cos2 β − 2 cosα cos β −m)
×

× 1

(2m sin2 β cos β − cosα + 2 cosα cos2 β)
(4.46)

On the other hand, the divergence factor D of order p in GO is given by Eq.
(2.51), recalled here for convention:

Dp =
sin(2α)

4 sin θ

(
p cosα√

m2−sin2 α
− 1

) (4.47)

where θ is the scattering angle, which is related to the deviation angle θp by

θp = qθ − pπ + 2nπ (4.48)

where q = ±1, n is an integer so that θ is between [0, π]. θp is determined by the
incident angle and the refraction angle by

θp = 2pβ − 2α + π (4.49)

By introducing Eqs. (4.48) and (4.49) into Eq. (4.47), the divergence factor of
GO can be expressed as the incident angle and the refraction angle, which must be in
agreement with those obtained by VCRM. Before the theoretical verification, it worth
to note that the divergence factor of GO is independent of particle radius while that
of VCRM includes the particle dimension (the two half axes a and b of the spheroid).
When the latter is simplified to spherical case, the divergence factor of GO differs
from that of VCRM by a factor a2/r2.

For the reflected ray of order p = 0, we have θ = π − 2α, so we get

Dp=0 =
1

4
(4.50)

This is just r2

a2
×Ds,p=0, as it should be.

For the emergent ray of order p = 1, θ = 2(β − α), we have

Dp=1 =
sin(2α)

4 sin θ
(

cosα
m cosβ

− 1
)

=
sin(2α)

4 sin [2 (β − α)]
· m cos β

cosα−m cos β

=
m2 cos β cosα

4(cosα−m cos β)2(cos β cosα +m sin2 β)
(4.51)
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This is equal to r2

a2
×Ds,p=1 as it should be.

For the emergent ray of order p = 2, θ = π − 2(2β − α), then

Dp=2 =
sin(2α)

4 sin θ
(

2 cosα
m cosβ

− 1
)

=
sin(2α)

4 sin [2 (2β − α)]
· m cos β

2 cosα−m cos β

=
m sinα cosα cos β

4(2 cosα−m cos β) sin(2β − α) cos(2β − α)
(4.52)

This is also equal to r2

a2
×Ds,p=2.

From Eqs. (4.50)-(4.52) above, we can find that, for order p = 0, 1, 2, after
multiplied a factor of r2/a2, our divergence factors derived in VCRM are identical to
those defined in GO for a sphere. In principle, this verification can be done for high
order rays but the mathematical calculation is very tedious. However, the numerical
check can be made easily for any order.

We compile in Table 4.1 the divergence factors of orders p = 3, 4 calculated by
VCRM for a sphere of refractive index m = 1.33 and radius a = 50 µm according to

Ds,p=3 = Dp=2 ·
R′′13R

′′
23

R′13R
′
23

· R
′
14R

′
24

R14R24

(4.53)

and

Ds,p=4 = Ds,p=3 ·
R′′14R

′′
24

R′14R
′
24

· R
′
15R

′
25

R15R25

(4.54)

Dp=2 is given as a starting point. The divergence factors calculated by GO is exactly
the same as those of VCRM, so only one Ds,p value is given.

4.2.2 Peak intensity of supernumerary bows

In the scattering of light by a spheroidal particle in the equatorial plane, the phase of
each ray is the same as that in the scattering by a spherical particle and the rainbows
as well as the supernumerary bows are located in the same angles as those of a sphere.
But the intensities of the bows of a spheroidal particle are different from those of a
sphere due to the convergence caused by the curvature of the particle surface in the
direction perpendicular to the equatorial plane. This curvature is constant for all rays,
therefore we can calculate the peak intensity of each bows analytically. This section
is devoted to the exploitation of the method.

In VCRM, the complex amplitude Sp,X of an emergent ray is

Sp,X = Ap,X exp(iΦp) (4.55)



4.2. RAINBOWS OF SPHEROIDAL PARTICLES 75

Incident Angle α (deg.) α = 0 α = 30 α = 45 α = 60 α = 90
Dp=2 0.985 1.125 1.573 -34.384 -3.403
R′13R

′
23 9926 8672 8349 -95094 0.001

R′′13R
′′
23 1323 1441 1648 2052 3602

R14R24 4048 2935 1622 -278 -1428
R′14R

′
24 4887 3217 1516 -200 -9.042

Ds,p=3 0.159 0.205 0.290 0.536 -9.443
R′′14R

′
24 1696 2254 299175 142 667

R15R25 3460 1824 -430699 3244 1507
R′15R

′
25 3900 1699 -5508 4444 4.0×10−4

Ds,p=4 0.062 0.134 0.732 -0.522 1.7×10−7

Table 4.1: Wavefront curvature radii and divergence factor of high order rays calcu-
lated VCRM for a sphere of refractive index m = 1.33 and radius a = 50 µm. The
divergence factors are exactly the same as those obtained by Eq. (4.47) of GO.

where subscripts X designates the state of polarization, perpendicular or parallel to
the plane of incidence. Φp is the phase of the pth order ray, and Ap,X is its amplitude
given by

Ap,X = Ei

√
|Dp|εp,X (4.56)

εp,X stands for the relative amplitude of the emergent ray and is determined by Fresnel
coefficients.

In general, the total amplitude of scattered field at a given angle is the superpo-
sition of the complex rays of all orders arriving at that direction. However, if the
aspect ratio of the spheroid is near unity (slightly deformed sphere), the low order
rainbows as well as their supernumerary bows are separated far enough so that their
intensity can be considered as formed by the two rays of the same order. Suppose that
the incident angles of the two rays are respectively α1 and α2. From the formation
mechanism of Airy structure we know that the phase difference between these two
rays is multiple of 2π. Therefore, their resultant amplitude at that point is equal to
the sum of the amplitudes of the two rays:

Ip,X(θ) = |Ap,X(α1) + Ap,X(α2)|2 (4.57)

Combined with expressions of divergence in subsection 4.2.1, this intensity can be
calculated easily.

Then the intensity ratio χp
′

p,X of two rainbows of orders p′ and p can be calculated
by

χp
′

p,X =
Ip′,X(θ′)

Ip,X(θ)

=

∣∣∣∣Ap′,X(α′1) + Ap′,X(α′2)

Ap,X(α1) + Ap,X(α2)

∣∣∣∣2 (4.58)
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where θ and θ′ are the main peak positions of the two rainbows. α1, α2 and α′1, α
′
2

are the incident angles of the corresponding rays.

4.2.3 Incident angles of rays arriving at bow peaks

In order to calculate the amplitudes of the two emergent rays arriving at the super-
numerary bow peak according to the vertical and horizontal curvature of the particle
surface, we need their incident angles. In VCRM these angles cannot be calculated
directly. From subsection 4.1.2 we know that the angular positions of main peaks of
rainbow predicted by VCRM and Airy theory are very close, so we can determine the
incident angles of the rays arriving at the bow peak by using the analytical relation
in the Airy theory.

The main peak position θAiry,0 and the peak positions of the subsidiary supernu-
merary bows (K ≥ 1) are given by Eqs. (2.85) and (2.86) respectively. The rainbow
angle in the geometrical optics is calculated by Eq. (2.64). For a given spheroidal
particle (m and a are known) and given order p, the peak positions of the main and
subsidiary bows can be solved from Eqs. (2.85) and (2.86). Then the corresponding
incident angles α1 and α2 can be calculated by using Eqs. (4.48) and (4.49), as well
as the Snell’s law.

Here we take an example of a plane wave scattered by a spheroid of symmetrical
semi-axis a = 50 µm and refractive index m = 1.33. The angle position of the first
order rainbow (p = 2) can be calculated by Eq.(2.64)

θrg(2, 1.33) = 137.5◦ (4.59)

The main peak position is

θAiry,0 = 139.0◦ (4.60)

Since we know that the scattering angle is related to the incident angle α and the
refracted angle β by θ = π − 2(2β − α), and β = arcsin(sinα/m), the two incident
angles α1 and α2 corresponding to this scattering angle can be solved by following
equation

θAiry,0 = 2

[
2 arcsin

(
sinα

m

)
− α

]
(4.61)

which give rise to α1 = 50.85◦ and α2 = 67.45◦.

This procedure can also be explained graphically. The solid curves in Fig. 4.11
shows main peak positions of different orders of rays calculated by Eqs. (4.48) and
(4.49) as function of incident angle. The angular position of each main peak is indi-
cated by a horizontal line. From the figure, we can find that there are two incident
angles corresponding to the scattering angle for each main peak.
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Figure 4.11: Scattering angle of rays p = 2, 3, 4, 5 as function of incident angle,
and angular positions of main supernumerary peaks for a spheroid of refractive index
m = 1.33) and symmetric semi-axis a = 50 µm.

The main peak position as well as the two incident angles depend also on the size
of the particle. Figs. 4.12-4.15 show respectively the scattering angle of rays p = 2,
3, 4 and 5 as function of incident angle. The rainbow angles of geometric optics
and the angular positions of main peaks of different order rainbows for spheroid of
m = 1.33 with different semi-axis a = 20, 50, 500 and 1500 µm are indicated with
dashed straight lines. For convenience of calculation, these data are also given in
Tab. 4.2. It is evident that the difference between the two incident angles decreases
as function of the particle size. This can be understood by the fact that to have the
same phase difference the two incident rays must be farther for a smaller particle.
Besides, the incident angles of each main peak can be got easily from figures which
will be useful for our study of relative intensity as function of vertical and horizontal
curvature radii in the next subsection.

4.2.4 Rainbow intensity ratio of a prolate spheroid

For the scattering in the symmetric plane of a spheroid, the rainbow angles as well as
the angular positions of the supernumerary bows are the same as a spherical of the
same size. But their intensities are affected by the curvature radius of the spheroid
in the direction perpendicular to the scattering plane, which is related directly to the
aspect ratio of the spheroid. So it is possible to calculated the intensity ratio between
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Figure 4.12: Scattering angle of the first rainbow (p = 2) as function of incident angle,
as well as its geometric optics rainbow angle and the angular positions of the main
peak for spheroid/sphere of m = 1.33, a = 20, 50, 500 and 1500 µm. The incident
wavelength is 0.6328 µm.
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Figure 4.13: Same as Fig. 4.12 but for the second rainbow (p = 3).
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Figure 4.14: Same as Fig. 4.12 but for the third rainbow (p = 4).

70 75 80 85 90
Incident Angle [deg.]

42

43

44

45

46

47

48

49

50

51

52

Sc
at

te
ri

ng
 A

ng
le

 [
de

g.
]

p=5
GO
Airy 20
Airy 50
Airy 500
Airy 1500

Figure 4.15: Same as Fig. 4.12 but for the second rainbow (p = 5).

different orders of rainbow.

When the refractive index and the two axes a and b of a spheroidal particle are
given, the positions of Airy peaks can be calculated by Eqs. (2.85) and (2.86). Then
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m = 1.33 p = 2 p = 3 p = 4 p = 5
Geometric Optics θgo(p,m) 137.5 129.9 42.8 42.3

Airy Theory

a = 1500 137.6 129.6 42.4 42.8
a = 500 137.8 129.3 42.0 43.4
a = 50 139.0 127.1 38.9 47.4
a = 20 140.3 124.7 35.5 51.7

Table 4.2: Comparison of rainbow angle calculated by GO and angular position of
Airy maxima by Airy theory for a water sphere (m = 1.33) of radius a =20, 50, 500
and 1500 µm. The incident wavelength is 0.6328 µm.

the corresponding incident angles α1 and α2 are determined for each order of rainbow
according to the method described above. On this base, the divergence factor, the
amplitude of each emergent ray as well as the intensity ratio of two orders of rainbow
p′ and p noted by χp

′

p,X can be calculated according to the procedure described in
Subsection 4.2.2.

It is worth to point out that the two incident angles corresponding to a given rain-
bow main peak is determined by the Airy theory, the intensity calculated analytically
with these angles Ip,X may differs from the scattering intensity IV CRMp,X calculated nu-
merically by the code VCRM. To investigate this discrepancy, we compare in Tab. 4.3
the intensities calculated by the two methods for a sphere. We find that the intensities
calculated with the analytical expressions are in good agreement with those by the
code VCRM. In the following, we will examine the intensity ratio of different orders
of rainbow as function of the aspect ratio of a prolate spheroid.

p θAiry,0 IV CRMp,1 α1 [deg.] α2 [deg.] Ip,1 IV CRMp,1 /Ip,1 χp2,1
2 139.0 148936 50.9 67.5 146433 1.02 -
3 127.1 13740 64.0 79.4 14137 0.97 0.097
4 38.9 3715 69.2 84.2 3853 0.96 0.026
5 47.4 758 72.1 87.1 756 1.00 0.005

Table 4.3: Comparison of the intensity calculated by the code VCRM and the ana-
lytical expressions for a sphere of refractive index m = 1.33 and radius a = 50 µm,
and intensity ratio of Airy main peak of order p = 3, 4 and 5 to order 2. The incident
wavelength is λ = 0.6328 µm and the polarization is perpendicular X = 1.

Consider a spheroid illuminated by a plane wave of wavelength λ = 0.6328 µm
and polarization is perpendicular to the symmetric axis (i.e. the scattering plane).

First of all, we reexamine in Fig. 4.16 the scattering diagrams of a sphere (a =
b = 50 µm) with that of a spheroid (a = 50 µm and b = 65 µm. The refractive index
of the particle is m = 1.333. We find that the intensity of second order of a spheroid
increases and becomes very close to that of first order rainbow. Besides, a remarkable
peak appears near 116◦. It is due to the convergence effect of the rays of order p = 3.
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Figure 4.16: Comparison of scattering diagrams for a sphere and a spheroid illumi-
nated by a plane wave of λ = 0.6328 µm in perpendicular polarization.

For further study of influences of aspect ratio on intensity distribution, Fig. 4.17
illustrates first and second order rainbow near the rainbow angle when b = 50, 55, 60
and 65 µm, i.e. aspect ratio κ = b/a = 1.0, 1.1, 1.2 and 1.3. From the figure we find
that, compared with rainbow of a sphere, when the transversal semi-axis b increases,
the intensity of the second order rainbow also increases while that of the first order
rainbow decreases, leading that the relative intensity of first to second order rainbow
decreases. When κ = 1.3, the second order rainbow is even in the same order as the
first order rainbow.

From the above analysis, we see that the intensity ratio between the different
orders of rainbow is sensible to the aspect ratio of the prolate spheroid. So we can use
the intensity ratio to measure the deformation of a particle. To quantify this relation,
we compile in Tab. 4.4 the intensity ratio of the second to fifth order rainbows (p = 3
to 5) to that of the first oder rainbow (p = 2) for the 4 aspect ratios (κ=1, 1.1,
1.2, 1.3). The two incident angles α1 and α2, the corresponding amplitudes and the
curvature radii of the emergent rays, as well as the intensity of the main peak are
calculated with the method described in the previous section. We find that the ratio
of the second order rainbow to the first order rainbow increases as function of the
aspect ratio, while the relation between the intensity ratio and the aspect ratio is not
monotone for the higher order rainbows.

It is clear that relative intensity of different order rainbows depends on the de-
formation of the particle due to the curvature of the reflected and refracted waves.
VCRM provides a powerful tool to this study.
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p κ α (◦) R′1,q (µm) R′2,q (µm)
√
|Dp| εp,1 Ap,1 Ip,1 χp

2,1

p=2

1
50.90 125.50 76.19 74.56 0.24 18.24

1485.3 1.000
67.50 -28.70 72.28 58.03 0.35 20.30

1.1
50.90 125.50 58.50 70.74 0.24 17.30

1296.5 1.000
67.50 -28.70 51.34 53.46 0.35 18.70

1.2
50.90 125.50 46.63 69.93 0.24 17.10

1246.6 1.000
67.50 -28.70 38.49 52.03 0.35 18.20

1.3
50.90 125.50 37.35 70.63 0.24 17.27

1259.1 1.000
67.50 -28.70 28.86 52.05 0.35 18.21

p=3

1
64.00 54.01 -12.06 42.52 0.12 5.30

143.4 0.097
79.40 -2.78 -27.98 27.16 0.25 6.68

1.1
64.00 54.01 -68.97 56.78 0.12 7.08

251.8 0.194
79.40 -2.78 -85.81 35.78 0.25 8.79

1.2
64.00 54.01 -304.16 102.27 0.12 12.75

808.1 0.648
79.40 -2.78 -328.34 63.81 0.25 15.68

1.3
64.00 54.01 460.04 119.73 0.12 14.92

1109.3 0.881
79.40 -2.78 470.99 74.81 0.25 18.38

p=4

1
69.20 35.46 75.75 36.31 0.07 2.70

39.1 0.026
84.20 0.39 66.57 19.20 0.18 3.55

1.1
69.20 35.46 30.73 30.19 0.07 2.24

26.8 0.021
84.20 0.39 20.16 15.84 0.18 2.93

1.2
69.20 35.46 5.14 30.59 0.07 2.27

27.3 0.022
84.20 0.39 -5.48 15.96 0.18 2.95

1.3
69.20 35.46 -21.16 33.94 0.07 2.52

33.5 0.027
84.20 0.39 -31.77 17.65 0.18 3.26

p=5

1
72.10 27.12 -28.43 27.57 0.05 1.32

7.7 0.005
87.05 0.75 -43.29 11.11 0.13 1.45

1.1
72.10 27.12 -726.16 93.34 0.05 4.46

86.4 0.067
87.05 0.75 -746.17 36.95 0.13 4.83

1.2
72.10 27.12 101.27 34.82 0.05 1.66

12.1 0.010
87.05 0.75 93.66 13.91 0.13 1.82

1.3
72.10 27.12 45.39 27.62 0.05 1.32

7.6 0.006
87.05 0.75 36.51 10.99 0.13 1.44

Table 4.4: Intensity ratio of (p − 1)th order rainbow (main peak K = 0) with that
of the first order rainbow (p = 2) of a prolate particle of a = 50 µm, m = 1.333 with
aspect ratio κ = b/a = 1, 1.1, 1.2 and 1.3.
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Figure 4.17: First and second order rainbow of an spheroidal water droplet with
a = 50 µm and b =50, 55, 60, 65 µm (i.e. κ=1.0, 1.1, 1.2, and 1.3) illuminated by a
plane wave of λ = 0.6328 µm in perpendicular polarization.

4.2.5 Hyperbolic umbilic foci of an oblate particle

When an oblate droplet is illuminated by a plane wave in the direction perpendicular
to the symmetrical axis, the slight eccentricity causes a bending of the rainbow in
this plane. Decreasing the aspect ratio κ = b/a leads to caustics arising from the
interference of two light rays in the equatorial plane and two skew light rays which
do not lie in the horizontal plane en entering the drop but confined to the horizontal
direction upon exiting the droplet. As the ratio is further decreased, the four light
rays come out with the same angle, i.e. at the rainbow angle. The resulting pattern
is that of a hyperbolic umbilic (HU) focal section. Nye [83] gave the critical aspect
ratio for such hyperbolic umbilic section as:

κ =
[
4(m2 − 1)/3m2

]1/2
(4.62)

It is approximately 0.764 for the refractive index m = 1.333.

These phenomena can also be explained analytically in the framework of VCRM.
As an example, we reproduce in Fig. 4.18 the figure in the paper of Onofri et al
[1]. The properties of the particles are given in the figure and the wavelength of the
incident wave is 532.130 µm. Apart from the first rainbow in the angle around 153◦

we observe another peak hyperbolic-umbilic diffraction catastrophe (HUDC) whose
position depends on the aspect ration and refractive index. In the framework of
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VCRM, both the rainbow position and the second peak can be explained by the
divergence factor of a spheroidal particle given in Eq. (4.41).

Figure 4.18: Comparison of VCRM and experimental normalized equatorial scattering
diagrams of a Di-Ethyl-Hexyl-Sebacat droplet [1]

The first denominator
T1 = m cos β − 2 cosα

is independent of the aspect ratio. When it tends to zero, the divergence factor,
therefore the intensity of the scattered light, tends to infinity, that is the case of the
first rainbow.

The second denominator

T2 = 2ma2 cos2 β − 2a2 cosα cos β −mb2

depends on the aspect ratio. When it tends to zero, the divergence tends to infinity.
We can evaluate the position of the peak by this term. The solution of T2 = 0 for the
three cases in the figure is compiled in Tab 4.5.

The third term

T3 = (2mb2 cos β − b2 cosα− 2ma2 cos3 β + 2a2 cosα cos2 β)

is positive in the three case presented in the figure. Therefore it does not generate a
complementary peak.
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case refractive index aspect ration α(◦) θ(◦)
1 1.4505 0.8938 69.69 158.25
2 1.4465 0.9608 82.05 171.26
3 1.4446 0.9816 85.14 175.84

Table 4.5: Variation of the HUDC peak as for an oblate particle of different refractive
index and aspect ratios.

4.3 Conclusion

In this chapter, we applied VCRM first to revisit the Airy theory and then to inves-
tigate the properties of the rainbows formed by a prolate and an oblate spheroidal
particles. We have shown that the VCRM predict better the intensity and positions
of the supernumerary bows of rainbow of a spherical particle than the Airy theory.
The precision in the particle sizing by the supernumerary bows of VCRM is ten times
better than Airy theory for the first order rainbow. However the VCRM is to be
improved for the prediction of the main peak position.

VCRM permits also to calculate analytically the positions and the intensity of
different order of rainbow of a spheroidal particle when it is illuminated in the sym-
metrical plane. The peak due to the focal of an oblate spheroidal particle can also be
evaluated analytical by using the divergence factor of VCRM.

It is shown that the intensity ratio of different orders of rainbows is very sensible
to the aspect ratio of a prolate particle. This property can be applied to characterize
the deformation of particles.
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Chapter 5

Experimental study of scattering
by a pendant drop

A rainbow measurement system by light scattering of pendant drops is set up in the
laboratory. In this chapter, the experimental investigation of light scattering by such
particles in the vicinity of rainbow angle is shown. By comparisons of experimental
results with the predictions of VCRM, the validity of VCRM for prolate spheroidal
droplets is confirmed. The influence of particle ellipticity on the intensity distribution
of the scattered light is discussed.

Because the current numerical implementation of the VCRM addresses only the
scattering of a plane wave in the equatorial plane of an ellipsoidal particle, our study
is focused on the symmetric plane of pendant drops, more specifically, in the angular
region near the rainbow angle.

5.1 Experimental setup

5.1.1 Consideration of the measurement system

Simple but effective, the rainbow patterns of pendant water drops are full of infor-
mation and suitable to validate VCRM and study the influences of particle ellipticity
on the intensity distribution of scattered light. To do this, the experiment system
requires high quality rainbows for pendant droplets of different shapes. Therefore
following aspects are critical and considered in the design of the measurement system:

• Rainbows of high quality: a stable rainbow of hight quality is very important in
our experiment. To achieve it, a high quality laser, a well-designed optical path,
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Figure 5.1: Experimental setup

as well as stable and homogeneous water droplets are indispensable. Meanwhile,
the noise from environment should be reduced.

• Flexibility of system: to study the influence of particle’s non-sphericity on the
rainbow pattern, like the relation between the intensity ratio of the first to the
second order rainbows and the deformation degree of drops, the system should
have the ability to adjust the shape of droplets flexibly. Besides, the acquisition
system of scattering pattern needs to be synchronized with the imaging camera
of the droplet.

5.1.2 Composition of the measurement system

To meet the above demand, the following rainbow measurement system is set up in
the laboratory. The photo of the system and the schema of the configuration are
shown in Figs. 5.1 and 5.2. It is composed of 4 parts:

1. generator of droplets;

2. optical system to form and adjust a laser beam illuminating the droplets;

3. acquisition system to detect the scattered light and record the image of the
droplet

4. motorized rotation platform.

The generator of droplets is made up of a water tank under pressure of 1 to 10 bar,
a rotameter (Model 1355, Brooks Instrument) and circular capillary tubes of inner
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Figure 5.2: Schema of experimental set-up

diameters vary from 0.6 to 0.95 mm. The water is stored in the tank of 6 L and flows
through a pipe to the rotameter, which is connected to the capillary tube.

A beam of wavelength λ = 0.6328 µm is emitted by a high quality He-Ne laser
(JDSU He-Ne Laser, Model 1145, Mode Quality > 95% and non-polarized). Its beam
diameter at exit wexit = 0.7 mm. A polarizer and a half-wave plate are used for
shifting the polarization direction of the beam emitted by the laser. Then the beam is
reflected by two mirrors which are designed to facilitated the adjustment of the beam.
The laser beam is expanded by an expander of expansion ratio 20, so that the beam
is large enough compared to the droplet. After the expander, a diaphragm is used to
adjust the position of the droplet illuminated by the beam. A 4F optical system is
set up after the diaphragm. This system consists of 2 two bi-convex lenses of same
focal length and can be used for Fourier transform image processing. Finally the laser
interacts with the suspended droplet or liquid jet.

The acquisition system consists of two camera, one to register the scattering pat-
tern and the other to record the image of the droplet. The light scattered by the
droplet is acquired by camera 1, which is a 1000 x1000 pixels, 14-bit CCD camera
(C9100-02, Hamamatsu). It is mounted on a rail fixed to the rotation platform. A
white screen is put before camera 1 in order to assure a sufficient large field of view.
The distance d between the screen and the droplet is 60 mm. The acquisition camera
can also be replaced by our linear CCD (Spyder 3 SG-14, DALSA) in some cases, for
example, acquisition of light scattered by a liquid jet, for which, fast acquisition is
needed. And our linear CCD, because of its high responsivity (2064 DN (nJ/cm2)
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at 0 dB gain), high scan frequency (68 kHz) and high dynamic range (1400 : 1), is
very suitable for fast acquisition. The image of the droplet is registered by camera 2,
a 2048x2048 pixels, 10-bit CCD camera (Jai TM-4200CL). And the imaging system
was equipped with a long distance microscope allowing ∼ 2.5 X magnification of the
droplet images. To calibrate the magnification factor of the lens system, one records
an image of a grid positioned at the exit of capillary tube. Subsequently, the relation
between the pixel number and the droplet size is found. The scale of the resulting
spatial intensity data was 460 pixels/mm, and the resolution of the complete imaging
system was on the order of 5 µm. The two cameras are synchronized by BNC Pulse
Generator.

The rotation platform consists of two motorized rotation stages (RSA200, Zolix).
They are driven by a stepper motor controller (SC300, Zolix). The controller can
be connected to a PC for multi-axis motion control and parameters setting with the
software provided. It can also be programed by the communication protocol. In
addition, the default parameter settings saved within the controller allow remote op-
erations without computer. The two rotation stages rotate on same axis and can
provide continuous rotation of arc-second resolution (0.00125◦). A 5-Axis stage with
the capillary tube is mounted on the upper rotation stage. The 5-Axis stage can
provide five adjustments, three translation and two rotation. These five independent
degrees of freedom provide 13 mm of horizontal translation, 6 mm of vertical trans-
lation, and 10◦ of pitch and yaw adjustment. By the adjustment of 5-Axis stage, we
make sure that the capillary tube is located on the axis of rotation stage and sus-
pended drops / liquid jets are illuminated by laser in the direction perpendicular to
their axis. In this way, the upper rotation stage can be used to adjust the incident
direction of beam by rotating the capillary tube. The lower stage is connected with
the rail where camera 1 is mounted. Thus we can measure the scattered light in all
directions.

5.1.3 Acquisition and image processing software

Acquisition software for camera Two different softwares HoKaWo and Dynam-
icStudio are used for the image acquisition of camera 1 and 2 respectively. They
include all basic functions required to acquire and process images. Both acquisition
softwares support the external trigger mode, making it possible to synchronize the
two cameras by BNC Pulse Generator. For the linear CCD, based on the develop-
ment platform of DALSA, an image acquisition and camera control software has been
developed. This homemade software has a user-friendly interface (Fig. 5.3) and all
the basic functions like camera configuration and image acquisition. The intensity
diagram can also be exported for further treatment.
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Figure 5.3: Interface of the image acquisition and camera control software for our
linear CCD

Image processing software The image of scattering pattern is processed by Im-
ageJ, a well-known image processing software. It was designed with an open archi-
tecture that provides extensibility via Java plugins and recordable macros. Custom
acquisition, image analysis and processing plugins can be developed using ImageJ’s
built-in editor and a Java compiler. In our experiment, three macros of image process-
ing are developed to meet our demand. Their purposes and principles will be shown
in section 5.3. The details of the macros will be presented in Appendix B.

5.2 Experimental observations

Fig. 5.4 illustrates four images of scattering diagrams around the first and the second
rainbows. Image 5.4(a) is a typical image of scattering diagram of a drop almost
spherical. The rainbows are similar to what we observe in the nature. Two visible
bows correspond to the primary (right) and the secondary (left) order rainbows. The
supernumerary bows, well known as Airy structure, are clearly visible in both the first
and the second rainbows. Each rainbow consist of a main peak and the subsidiary
bows. For a sphere, Airy structure has a concave shape bending over toward the
backscattering, leaving a constant angular width, named as Alexanders dark band.
When pendant drop becomes bigger and is elongated in the vertical direction, corre-
spondingly, the bows are deformed. The rainbow patterns in images 5.4(b) and 5.4(c),
notably the second order on the left, are more curved. In image 5.4(d), the second or-
der rainbow is completely twisted. The forming mechanism of these twisted structure
will be discussed lately. Besides by simple observation we find that the intensities of
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the two orders of rainbow in image 5.4(a) and image 5.4(b) are about in the same
order. However when the drop is deformed, the intensity of the first rainbow becomes
very weak compared to the second one in image 5.4(c) and 5.4(d). This phenomena
agrees with the observation of Sassen[92] (section 1.3.3) and attracts our attention. In
this thesis, we are mainly concerned about the relation between the rainbow intensity
and the curvature radii of droplets in the equatorial plane.

5.3 Image processing

In previous experiment, scattering pattern near the rainbow angle, as well as images
of drops, are recorded by two synchronized cameras. For the quantitative comparisons
with VCRM, the image processing is needed.

Firstly, the noises from environment, especially the light reflected by the tube
exist in the scattering pattern recorded in camera 1. They can not be neglected.
Therefore, before the comparison, we should subtract the noise from the images of
scattering pattern.

Secondly, we need to extract two principal curvature radii of the droplet in the
equatorial plane for simulation. In VCRM, the two principal curvature radii of the
droplet in the equatorial plane are needed for the calculation of the scattering diagram
in this plane.

Finally, it is needed to get the scattering diagram in equatorial plane from images
of scattering pattern. The existing software, ImageJ for example, can get intensity
distribution of an indicated region from images, but when the shape of drop changes,
its equatorial plane moves vertically. We need to locate this plane in the image.
Besides, for all the image processing procedures above, batch processing function is
also essential.

To meet these demands, three plugins of ImageJ are developed in Macro language
which is a scripting language built into ImageJ and allows to automate a series of
ImageJ commands. Programs written in macros, Macros for short in this thesis, can
be used to perform sequences of actions.

The first Macro is for batch background noise reduction (see Appendix B.1). The
principle of this macro is that we define the image without droplet as a background,
and then subtract it from the particle images. The existing ImageJ command can
realize the calculation between two images, but it is limit to the number of images and
cannot meet our demand of batch processing. So a macro of images batch processing
is developed here, to automate the subtraction of background noise from the images
of droplets.

The second Macro is developed to extract the two principal curvature radii of the
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(a) (b)

(c) (d)

Figure 5.4: Images of pendant drops and their scattering pattern near rainbow angle.
The region between two yellow line is the equatorial region selected. The yellow and
red curve along the rainbow pattern are respectively the outline extracted and curve
fitted for the main peak of rainbow.
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drop in the equatorial plane (see Appendix B.2). This Macro will make binary the
image to separate the droplet from the background; extract the contour of droplet
near equatorial plane by Moving Average Method; curve fit the contour; locate the
equatorial plane and calculate two principal curvature radii in this plane from the
approximating function.

The third Macro is for the calculation of the intensity ratio of the two orders
rainbows (see Appendix B.3). When the equatorial plane is found, we can export the
intensity distribution at this plane, and calculate the intensity ratio of the first to the
second order rainbow. The following cases should be considered:

location of the equatorial plane When the drop is nearly spherical like in image
B.7(a), both the first and the second rainbow have a concave shape and symmetry to
the equatorial plane. Therefore once their main peaks are extracted, we can fit each
of them with a quadratic function respectively and locate the equatorial plane by
calculating vertexes of these quadratic functions. However, as observed before, when
the pendant drop becomes bigger, the scattering patterns changes. The second order
rainbows in images B.7(b), B.7(c) and B.7(d) are deformed and no longer symmetrical.
On the contrary, the first order rainbow remains symmetrical relative to the equatorial
plane. In this case, we determine the equatorial by the first order rainbow.

Selection of a region near equator for measure of scattering diagram Once
the equatorial plane in an image of scattering diagram is located, the intensity distri-
bution in this plane can be got. Image 5.5(a) is an image of 2D scattering diagram,
the yellow line is the calculated equatorial plane. The intensity distribution in the
equatorial plane is shown in image 5.5(b). From image 5.5(b), we can find that noise
cannot be ignored. The intensity ratio of the first to the second order rainbow cannot
be calculated. Therefore a region of wide w=40 pixels are selected near the equato-
rial plane to calculate the mean value of the intensity in image 5.6(a). After such
treatment the intensity distribution of image 5.6(b) becomes rational, both first and
second order rainbows are identifiable for further calculations.

Conversion of intensity In experiment, the main peak value Gvalue exported from
scattering diagram is the gray level. It is proportional to its illuminance. Furthermore,
all the elements of the screen are not perpendicular to the light rays arriving on it and
the difference of their distance from the drop is not negligible. Thus for comparison
with VCRM, we define an dimensionless factor E referring Fig. 5.2 by

E =
Gvalue

cosα
· r2 =

Gvalue

h
· r3 (5.1)

This factor is theoretically proportional to the distance free intensity defined in Eqs.
(2.24) and (2.25).
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(a) (b)

Figure 5.5: image of scattering diagram, and its intensity distribution in equatorial
plane got from experiment

(a) (b)

Figure 5.6: image of scattering diagram, and its intensity distribution in a selected
window (wide =40 pixels) near equatorial plane
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Image Number Minor and major
axes (µm)

Experiment
Emax1/Emax2

Theory
Imax1/Imax2

Theory/Experiment

1 (807, 849) 1.65 2.16 1.31
2 (1067, 1149) 1.63 1.98 1.21
3 (1195, 1325) 1.44 1.79 1.24
4 (1292, 1418) 1.39 1.89 1.36
5 (1362, 1548) 1.29 1.68 1.30
6 (1393, 1651) 0.76 1.17 1.53
7 (1431, 1765) 0.74 0.95 1.28
8 (1453, 1864) 0.66 0.91 1.38
9 (1476, 1798) 0.62 0.82 1.32

Table 5.1: Comparison of the rainbow intensities of experimental measurement with
the numerical results simulated by VCRM.

5.4 Results and conclusions

In this section, we will compare experimental results with our predictions of VCRM.
Because we are interested only in the scattering intensity distribution in the equatorial
plane, only the geometry of the droplet in this plane plays its role. We need only
the local curvature radii in the equatorial (horizontal) plane a1 and in the vertical
plane a2. For better understanding, the pendant drop can be considered as a prolate
spheroid of semi-minor axis equal to a1 and the semi-major axis b equal to b =

√
a1a2.

The minor and major axes extracted from a series of 9 images are given in Tab 5.1.
Based on them, our code of VCRM developed in C# can calculate the full scattering
diagram in the equatorial plane of pendant drops. The intensity ratio of the first to
the second order rainbows are then extracted from the scattering diagram calculated.
The experimental intensity ratios of first to second order rainbows are extracted from
the corresponding images of scattering diagram recorded by camera 1. From Tab 5.1
we can find firstly that as indicated above, in contrary to the case of spherical particle,
the intensity of the first order rainbow may be weaker than that of the second order
rainbow for pendant drops. Besides, it is found that, even the theoretical ratios are
around 30% larger than the ratios obtained from the experiment, their trends are in
good agreement.

Fig. 5.7 shows the intensity ratios of the first to the second order rainbow obtained
as function of aspect ratio b/a1. The intensity ratio of an equivalent sphere is also
added for comparison. We know that, for a sphere, the intensity of the first rainbow
is always stronger than the second one because the loss of energy in the reflection
and in the divergence of the wave on the particle surface. The theoretical simulation
in this figure shows that the intensity ratio of the first to the second order rainbow
of equivalent spheres in the range of size 800 to 1500 µm, is almost constant and
equal to about 2.5. While the intensity ratio of the pendant drops decreases as the
aspect ratio. The simulations by VCRM for prolate spheroids are in agreement with
the experimental results. The decrease of the intensity ratio as function of the aspect
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Figure 5.7: Intensity ratio of first to second order rainbow as function of aspect ratio.

ratio can be explained by the vertical convergence. In fact, the rays of the first rain-
bow experience one internal reflection while the second ones experience two internal
reflections. Therefore, the focalization effect decreases faster in the second rainbow
than the first rainbow as the aspect ratio increases.

From the above studies, we find that the scattering properties of non-spherical
particles can differ dramatically from those of spheres. The intensity ratio of the first
to the second order rainbows is very sensitive to to the deformation. It is therefore
can be used as a parameters to measure the deformation of the deformation of the
droplets. Meanwhile, in this application of VCRM in the simulation and interpretation
of scattering patterns of naturally generated pendant drops, we have shown that this
model can predict correctly complex structure in the scattering diagrams of non-
spherical particles. The results demonstrate the large potential of the model in the
characterization of non-spherical particles. Besides, we observe in the experiment
many interesting phenomena near the rainbow angle and in forward direction (not
shown in this thesis). However by the limitation of the numerical simulation with 3D
VCRM, our study is limited to the equatorial plane of the drops. For further studies
of the influence of particle non-sphericity on the rainbow pattern, 3D code of VCRM
is essential.
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Chapter 6

Conclusions and Perspectives

This thesis is devoted to the extension of Vectorial Complex Ray Model (VCRM) and
its application to the metrology of non-spherical particles. In this chapter we will give
the conclusions of presented work and some perspectives in further studies.

6.1 Conclusions

In various research domains, such as the environment control, the biochemistry, the
fluid mechanics and the combustion field, we need to measure the characteristics of
the particles, like the particle size, shape, velocity, temperature etc. Among different
kinds of measurement techniques, optical metrology is largely employed because of
being accurate, reliable and non-intrusive. A large effort has been devoted to develop
powerful optical techniques. However, in most optical techniques, the shape of the
particles is considered to be spherical, while the scattering properties of non-spherical
particles can differ dramatically from those of spheres. This is mainly due to a lack of
theoretical model to describe the interaction of light with large non-spherical particles.
Therefore characterization of non-spherical particles is still a veritable challenge in the
development of optical metrology in very large scope of applications.

Various theoretical and numerical methods have been developed for non-spherical
particle, such as spheroid, ellipsoid, or elliptical cylinder to take into account the shape
of the particles. However, the sizes or shapes of the particles are often limited because
of the numerical difficulty. The Vectorial Complex Ray Model (VCRM) recently
developed in the laboratory permits to deal with the scattering of large irregularly
shaped particles. It is based on the geometrical optics but a new property – the wave
front curvatures is introduced. This makes VCRM possible to calculate the divergence
factor of a single ray bundle and is easy to extend to irregularly shaped 3D objects.
VCRM has been proved to achieve good agreement with the rigorous theories. In this
thesis, I devoted myself to the further extension of VCRM and its application to large

99
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non-spherical particles.

After a brief recall of the fundamental models and concepts in light scattering,
the general principles of the VCRM are presented. The model is then applied to the
scattering of light in the symmetric plane of an ellipsoid. The scattering diagrams of
spherical particles by VCRM are compared with those of Lorenz-Mie theory (LMT)
– a rigorous theory. Good agreement can be observed between VCRM and LMT for
spherical particles of diameter larger than tens of wavelength. The effect of particle
size on the precision of VCRM is examined. In addition, the scattering diagrams of
spheroidal particles are presented to show the influence of particle’s non-sphericity on
the rainbow pattern. For the scattering diagram of a prolate spheroid, compared with
that of a sphere, its intensity of the second order rainbow increases and becomes very
close to that of first order rainbow. For the scattering of light by an oblate spheroid,
hyperbolic umbilic diffraction catastrophe occurs.

VCRM is also applied to revisit the Airy theory and then to investigate the prop-
erties of the rainbows formed by a prolate and an oblate spheroidal particles. The
comparisons show that VCRM predict better the intensity and positions of different
supernumerary bows of rainbow of a spherical particle than the Airy theory. The
precision in the particle sizing by the supernumerary bows of VCRM is better than
Airy theory for the first order rainbow. However the VCRM is to be improved for the
prediction of the main peak position.

The positions and the intensities of different orders of rainbow of spheroidal parti-
cles illuminated by a plane wave in the symmetrical plane are calculated analytically
in the framework of VCRM. The relation between the intensity ratio of different orders
of rainbows and the curvature radius of a prolate spheroid in the direction perpendic-
ular to the equatorial plane is quantified. The results show that the intensity ratio of
different order rainbow is very sensible to the aspect ratio of a prolate particle. This
property can be applied to characterize the deformation of particles. The peak due
to the focal effect of an oblate spheroidal particle is evaluated analytical by using the
divergence factor of VCRM.

Besides, a rainbow measurement system for light scattering by pendant drops is set
up in the laboratory. The experimental investigation of light scattering by a pendant
drop in the vicinity of rainbow angle is shown. By comparisons of experimental results
with predictions of VCRM, the validity of VCRM for prolate spheroidal droplets is
confirmed. The influence of particle’s ellipticity on intensity distribution of scattered
light is discussed. We conclude that the focalization effect decreases faster in the
second order rainbow than the first rainbow as the vertical curvature radius increases,
leading that the relative intensity of first to second order rainbow decreases.
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6.2 Perspectives

In this thesis, I have shown good agreement between VCRM and LMT for large
spherical particles. However, compared with rigorous theories, discrepancies can still
be observed: (i) in the rainbow angle where the intensity tends to infinite, (ii) at the
border of the particle where the variation of the amplitude of the incident wave is
abrupt, (iii) in the critical angle where the total reflection occurs, so the amplitude
of the reflected wave is not continuous. In these regions, supplementary theories or
models are needed to correct the prediction of VCRM. The fundamental idea is to
take into account the wave effect near the singularity point or caustics by analytical
or semi-analytical expression. To profit the advantage of the VCRM to deal with
the scattering of shaped beams by particles of arbitrary shape, wave effect near the
singularity point need to be added.

In addition, for better understanding of the influences of particle’s non-sphericity
on rainbow patterns, further investigation of the relations between supernumerary
bows (positions and intensities) and spheroidal particle parameters is needed. The
property, like that the intensity ratio of different orders of rainbows is very sensible
to the particle ellipticity, deserves more study and can be applied to characterize the
deformation of particles.

Finally, experimental measurement and data processing procedure in this thesis
need to be improved. The scattering patterns of different liquids and sizes will be
examined. Most of all, our current numerical implementation of the VCRM only
addresses rays propagating within the equatorial plane of an ellipsoidal particle. Due
to this, our experimental study is also limited to the symmetric plane of pendant
drops. In experiment, we observe many interesting phenomena near the rainbow
angle and in forward direction. For example when pendant drop becomes bigger and
is elongated in the vertical direction, correspondingly, the scattering patterns changes.
The second order rainbow is deformed with increase of the particle size. However by
the limitation of the numerical simulation with 3D VCRM, our study is limited to
the equatorial plane of the drops. For further studies of the influence of particle
non-sphericity on the rainbow pattern, we need to extend our code of VCRM to 3D
scattering of complex objects.
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Appendix A

Interpolation of scattered field

In the calculation of the total field of scattering light, the interpolation of the data
obtained by ray tracing is necessary (see section 3.2.3). In my code of VCRM in
C#, this subroutine of interpolation is translated from the code of Professor REN in
language Pascal and Lagrange polynomials are used for this interpolation.

For a given set of (xj, yj), the Lagrange polynomial is the polynomial of the lowest
degree that assumes at each xj the corresponding value yj (i.e. the functions coincide
at each point). Given a set of n + 1 data points, (x0, y0), · · · , (xj, yj), · · · , (xn, yn),
where all values of xj are different. The interpolation polynomial in the Lagrange
form is a linear combination given by

L(x) =
k∑
j=0

yjlj(x) (A.1)

lj(x) is the Lagrange basis polynomials

lj(x) =
n∏

m=0,m 6=j

x− xm
xj − xm

=
x− x0
xj − x0

· · · x− xj−1
xj − xj−1

· x− xj+1

xj − xj+1

· · · x− xn
xj − xn

(A.2)

Only when x = xj, we have

lj(xj) =
n∏

m=0,m 6=j

xj − xm
xj − xm

= 1 (A.3)

Otherwise, when x = xi and i 6= j,

lj(xi) =
xi − x0
xj − x0

· · · xi − xi
xj − xi

· · · xi − xn
xj − xn

= 0 (A.4)

Therefore

L(xj) = y0l0(xj) + · · ·+ yjlj(xj) + · · ·+ ynln(xj) = yjlj(xj) = yj (A.5)
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proving that L(x) interpolates the function exactly.

In VCRM, after ray tracing, we get several sets of data points of amplitude and
phase, as functions of emergent rays, i.e., deviation angle θp,i of the emergent ray
of order p for an incident ray i, with their corresponding amplitude Ap,i, and the
phase Φp,i. Referred to Fig. 3.2 in section 3.2.3, we know that, to calculate the
summation of the amplitude of all the rays in a given angle, a careful interpolation of
the amplitudes and the phase shifts of each order emergent ray is necessary. Besides,
in the implementation of interpolation algorithm to the amplitude and phase of each
order emergent ray, we should noted that, normally the interpolation algorithm applies
to the monotone interval. However from Fig. 3.2 we can find that two rays of the same
order may arrive at the same angle, that is because the deviation angle θp,i increases
as function of emergent rays and then decreases after the rainbow angle. Therefore
we must split the data obtained by ray tracing into monotone groups according to
rainbow angle and interpolate the data respectively.

An interpolation of the second degree Lagrange polynomials is applied for points
between the first and last two points. And an interpolation of the three degree La-
grange polynomials is applied for points between two intermediate points. For exam-
ple, if θ is a point located between the first two points θ0 and θ1, then its amplitude
is calculated by

Aθ = Aθ0 ·
(θ − θ1)(θ − θ2)

(θ0 − θ1)(θ0 − θ2)

+Aθ1 ·
(θ − θ0)(θ − θ2)

(θ1 − θ0)(θ1 − θ2)

+Aθ2 ·
(θ − θ0)(θ − θ1)

(θ2 − θ0)(θ2 − θ1)
(A.6)

If θ is a point located between two intermediate points θj and θj+1, we have

Aθ = Aθj−1
· (θ − θj)(θ − θj+1)(θ − θj+2)

(θj−1 − θj)(θj−1 − θj+1)(θj−1 − θj+2)

+Aθj ·
(θ − θj−1)(θ − θj+1)(θ − θj+2)

(θj − θj−1)(θj − θj+1)(θj − θj+2)

+Aθj+1
· (θ − θj−1)(θ − θj)(θ − θj+2)

(θj+1 − θj−1)(θj+1 − θj)(θj+1 − θj+2)

+Aθj+2
· (θ − θj−1)(θ − θj)(θ − θj+1)

(θj+2 − θj−1)(θj+2 − θj)(θj+2 − θj+1)
(A.7)

In this method, we can calculate the amplitudes and the phases of all the rays arriving
at the same angle by interpolation. And their summation is the complex amplitude
of the total field.



Appendix B

Macros of ImageJ for image
processing

This thesis is devoted to investigate the influences of particle ellipticity on the inten-
sity distribution of scattered light. Scattering patterns near the rainbow angles, and
images of drop, are recorded by two synchronized cameras. For further comparisons
between the theoretical scattering diagrams and the experimental results, two princi-
ple curvature radii of drop in the equatorial plane of the drops are essential. Besides,
it is needed to get intensity distribution in the equatorial plane from the images of
scattering pattern. Finally the noise from the environment can not be ignored. Noise
reduction is therefore necessary.

To meet these demands, three plugins of ImageJ are developed in Macro language.
The ImageJ Macro language is a script built into ImageJ. It allows to automate a
series of ImageJ commands. Programs written in macros, Macros for short in this
thesis, can be used to perform sequences according to our design. The first Macro is
designed to find the equatorial plane. The curvature radii of drop in this plane are
then calculated. The second one is programed for batch background noise reduction
of scattering pattern. And the third one is to find the equatorial plane in the images
of scattering pattern, to get its intensity distribution, and to calculate the intensity
ratio between the first and the second order rainbows for comparison. In the following
sections, I will give a detailed description of these three Macros.

B.1 Macro for Batch background noise reduction

In our experiment, the light scattered by the drop is recorded by a camera mounted on
a rail fixed to the rotation platform. Between the camera and the drop, a white screen
is installed in order to assure a sufficient large field of view. In such configuration the
light reflected by the tube can not be negligible. Therefore it is needed to subtract
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the noise from the images of scattering pattern.

The principle of this macro is that we define the image without drop as a back-
ground, and then subtract it from the other images. The existing ImageJ command
can realize the calculation between two images, but it is limited to the number of
images and can’t meet our demand of batch processing ( more than 100 images). So a
macro of images batch processing is developed, to automate the subtraction of noise
from our images.

Image B.1(a) is an original image of scattering pattern near rainbow angles. Noise
from the environment, particularly the reflected light from the tube in the middle of
the image, can be observed obviously. After the application of our background noise
reduction macro, most of noise is deleted in the image B.1(b). Further comparison is
made for their scattering diagram measured in the middle of images. Images B.2(a)
and B.2(b) are respectively scattering diagrams of image B.1(a) and B.1(b) . We can
find that, with the help of our macro, the main noise is eliminated and a typical Airy
structure of the first and the second order rainbows is much better.

(a) Before treatment (b) After treatment

Figure B.1: Scattering pattern near the rainbow angle before and after treatment.

(a) Before treatment (b) After treatment

Figure B.2: Scattering diagram in the equatorial plane before and after treatment.
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B.2 Macro for the treatment of images of drops

This macro is developed to get the profiles of drops from the images recorded in
experiment and find their curvature radii in the equatorial plane.

1. Make binary A binary image is a digital image that has only two possible values
for each pixel. The procedure of making binary is to convert the current gray scale
image to a binary image. The output image replaces all pixels in the input image with
luminance greater than threshold level with the value 255 and replaces all other pixels
with the value 0. This threshold level can be determined by analyzing the histogram
of a selected region or set by the user. Making binary can simplify the data processing.
Image B.3(a) is an image of drop recorded in experiment. After application of binary
image processing, it is converted to Image B.3(b). In this way, the object can be
separated from the background easily, for further extraction of drop’s contour.

(a) before (b) after

Figure B.3: The image of drop before and after making binary

2. Extract the contour of a drop near equatorial plane by Moving Average
Method After previous procedure, a image recorded in experiment is converted to a
binary image. In this step, we want to determine the contour of drop from its image.
To calculate the scattering intensity of a sphere in the equatorial plane in VCRM,
only local curvature radii of the particle surface in this plane is needed. Therefore,
just contour near equatorial plane is necessary. To reduce the noise outside of the
drop, the Moving Average method is applied. It uses a moving window to search
values and averages all data points within the window. Here it is used to average
intensities of n successive pixels in a row. The window is moved according to the
scanning direction and step value. When the average value is greater than or equal to
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Figure B.4: Partial enlarged detail of a drop after applying Moving Average method.
Black part in the right is part of drop. The other black pixels out of it are noise
introduced in experiment. And the red pixels selected are the contour extracted.

a indicated value (for example 127.5 here, half intensity of a pixel within the object),
the frontier between the points of gray scale 0 and 256 is considered as the contour of
drop. This method is very efficient to suppress the noise from the environment. Fig.
B.4 is the partial enlarged detail of a drop after applying Moving Average method.
The black part in the right is a part of the drop. Outside of the drop, the back pixels
are the noise introduced in the experiment. After apply the Moving Average method,
the red points are pixels selected for the contour of drop. We can find that even if the
noise exist, the result is hardly affected.

Fig. B.5 is the contour near the equatorial plane extracted from a pendant drop
image. Here we are interested only in the scattering intensity distribution in the
equatorial plane of pendant drop. In this circumference, only the geometry of the drop
in this plane plays its role. We need only the local curvature radii in the horizontal
and vertical directions. Because a pendant drop is axial symmetric and has a circular
cross section in the horizontal plane, the radius of drop in the equatorial plane is then
horizontal curvature radius. The curvature radius of contour at a point of the equator
is the vertical curvature radius. To get curvature radii of contour, an approximating
function is needed.

3. Curve fitting The contour of the drop obtained in the above section is not
smooth. To calculate the curvatures, the curve fitting is necessary. We should firstly
find a mathematical function to fit the contour data, then the curvature radii in the
equatorial plane can be calculated.
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Figure B.5: Contour near the equatorial plane extracted from a pendant drop image.
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Figure B.6: Left contour (in black) extracted from the pendant drop image and its
fitted curve (in red). The abscissa and ordinate of the contour is exchanged to ease
the explanation.

We find that our contour is a quadratic like curve, therefore a second degree
polynomial function may be suitable. Suppose that P (x, y) is a pixel on one of the
contour in Fig. B.5. We aim to find a suitable approximation function y = ax2+bx+c
which has the best fit to the contour. For ease of explanation, we exchange the
horizontal and vertical axes of the Fig. B.5 and take only the left cure of the two
branches, as shown by the black curve in Fig. B.6. Here we use directly the curve
fitting tool CurveFitter provided by ImageJ. The red curve in Fig. B.6 is the fitted
curve. From the comparison, we can find that the curve obtained from our method
fits very well with the contour extracted from the image of drop, proving that our
quadratic function is suitable to describe the contour of drop near the equatorial plane.

4. Calculations of curvature radii The symmetrical axis of the drop is vertical
in Fig. B.5 and horizontal in Fig. B.6. So the equatorial plane corresponds to the
point on the fitted curve where the tangent is zero, y′ = 2ax + b = 0, i.e., x = − b

2a
,



112 APPENDIX B. MACROS OF IMAGEJ FOR IMAGE PROCESSING

y = 4ac−b2
4a

. Its abscissa x shows the position of equatorial plane in Fig.B.5. And the
curvature radius of this curve, is the vertical curvature radius of drop in the equatorial
plane. We know that if a curve is given in Cartesian coordinates as y(x), then the
radius of curvature Rc at any point x is

Rc =

∣∣∣∣∣(1 + y′2)
3
2

y′′

∣∣∣∣∣ (B.1)

where y′ = dy
dx

, y′′ = d2y
dx2

. For our quadratic equation y = ax2 + bx + c, its curvature
radius Rqua is then

Rq =

∣∣∣∣∣ [1 + (2ax+ b)2]
3
2

2a

∣∣∣∣∣ (B.2)

At the equatorial plane x = − b
2a

, the curvature radius of curve is therefore

R =

∣∣∣∣ 1

2a

∣∣∣∣ (B.3)

The same method can be applied to the right part of Fig. B.5 and we should
obtain the same result. The good agreement between them can show the symmetric
of the pendant drop. Difference of the ordinates of the two points in the equatorial
plane is the diameter of the circular cross section of drop in this plane. Besides, it
should be noted that, the curvature radii got from the images of drops are in pixels.
They should be converted to real size with help of a reference in the experiment.

B.3 Macro for scattering pattern

This macro is designed to get the intensity distribution of the scattered light in the
equatorial plane, more specifically, near the rainbow angle. However for pendant
drops of different shapes, the positions of their equatorial planes are different. Fig.
B.7 illustrates four images of a series of scattering diagrams. Image B.7(a) is a typical
image of scattering diagrams taken near the rainbow angle when the drop is almost
spherical. The rainbows are similar to what we observe in the nature. Two visible
bows correspond to the primary (right) and the secondary (left) order rainbows. Each
of them has a fold structure, well known as Airy structure. It consists of a main
peak and its subsidiary supernumerary bows. With growing of drop, the rainbows
in image B.7(b), notably the second one on the left, are more curved. Finally the
rainbow structures in images B.7(c) and B.7(d) are completely twisted due to further
deformation of the particle. Therefore in this macro, to get intensity distribution of
scattered light in the equatorial plane, we have to at first locate its corresponding
region in the images of scattering pattern, and then export its scattering diagram.
Finally the intensity ratio of the first to the second order rainbow is calculated.
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(a) (b)

(c) (d)

Figure B.7: Scattering pattern for suspended drops of different shapes. The scattering
patterns of main peak in the region of interest (yellow rectangle) are extracted (red
curve) and curve fitted (green curve).
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1. Extract the scattering pattern of the first order rainbow by Moving
Average method Through our analysis, we find that if we fit the scattering pattern
of main peak of first order rainbow near the equatorial plane with a quadratic function,
its vertex is on the equator. In this way, the equatorial plane can be located. Hence
the first step is to extract the scattering pattern of main peak by Moving Average
method. Firstly a region of interest (ROI) is selected manually in Fig. B.7. By
adjusting the range of ROI, the interference from the second order rainbow can be
eliminated. Then our former mentioned Moving Average method is applied in the
selected region. It averages intensities of a indicated number of successive pixels in
each row. When the average intensity of a window is largest in this row, the window
center is selected as the main peak. Finally we can get the scattering pattern of the
main peak near the equatorial plane (red curve in Fig. B.7).

2. Curve fitting and calculation of equatorial plane The scattering pattern
of the first order rainbow near the equatorial plane is fitted by a quadratic function
. The principle is the same as our aforementioned curve fitting method in section
B.2. From Fig. B.7, we can find that our equation (green curve) fits the scattering
pattern very well. The extreme point on the fitted curve indicates the position of the
equatorial plane.

3. Export of intensity distribution diagram and calculation of intensity
ratio between first and second order rainbow As soon as the equatorial plane
is determined, the intensity on this plane is extracted as described in section B.1 and
then we can calculate the intensity ratio of the two orders of rainbow.
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[13] Gustav Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Met-
allösungen. Annalen der physik, 330(3):377–445, 1908.

[14] L Lorenz. Det Kongelige Danske Videnskabernes Selskabs Skrifter 6, 1890.

[15] Shoji Asano and Giichi Yamamoto. Light scattering by a spheroidal particle.
Applied optics, 14(1):29–49, 1975.

[16] James R Wait. Scattering of a plane wave from a circular dielectric cylinder at
oblique incidence. Canadian Journal of Physics, 33(5):189–195, 1955.

[17] Craig F Bohren and Donald R Huffman. Absorption and scattering by a sphere.
Absorption and Scattering of Light by Small Particles, pages 82–129, 1983.

[18] Peter W Barber and Steven C Hill. Light scattering by particles: computational
methods, volume 2. World scientific, 1990.

[19] C Yeh. Backscattering cross section of a dielectric elliptical cylinder. Journal
of the Optical Society of America, 55(3):309–314, 1965.

[20] A Sebak and L Shafai. Generalized solutions for electromagnetic scattering by
elliptical structures. Computer physics communications, 68(1):315–330, 1991.

[21] Charles L Adler, James A Lock, Justin K Nash, and Kirk W Saunders. Exper-
imental observation of rainbow scattering by a coated cylinder: twin primary
rainbows and thin-film interference. Applied optics, 40(9):1548–1558, 2001.

[22] Renxian Li, Xiang’e Han, Huifen Jiang, and Kuan Fang Ren. Debye series
of normally incident plane-wave scattering by an infinite multilayered cylinder.
Applied optics, 45(24):6255–6262, 2006.

[23] Gérard Gouesbet, Bruno Maheu, and Gérard Gréhan. Light scattering from a
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du 5e congrès Francophone de Vélocimétrie Laser, Rouen, France E, 1, 1996.



BIBLIOGRAPHY 121

[78] JPAJ Van Beeck and ML Riethmuller. Rainbow phenomena applied to the
measurement of droplet size and velocity and to the detection of nonsphericity.
Applied optics, 35(13):2259–2266, 1996.

[79] Michael I Mishchenko, Joachim W Hovenier, and Larry D Travis. Light scatter-
ing by nonspherical particles: theory, measurements, and applications. Academic
press, 1999.

[80] Philip L Marston and Robert E Apfel. Quadrupole resonance of drops driven
by modulated acoustic radiation pressureExperimental properties. The Journal
of the Acoustical Society of America, 67(1):27–37, 1980.

[81] Philip L Marston. Rainbow phenomena and the detection of nonsphericity in
drops. Applied optics, 19(5):680–685, 1980.

[82] Philip L Marston and Eugene H Trinh. Hyperbolic umbilic diffraction catastro-
phe and rainbow scattering from spheroidal drops. Nature, 312(5994):529–531,
1984.

[83] JF Nye. Rainbow scattering from spheroidal dropsan explanation of the hyper-
bolic umbilic foci. Nature, 312(5994):531–532, 1984.

[84] Philip L Marston. Cusp diffraction catastrophe from spheroids: generalized
rainbows and inverse scattering. Optics letters, 10(12):588–590, 1985.

[85] Harry J Simpson and Philip L Marston. Scattering of white light from levitated
oblate water drops near rainbows and other diffraction catastrophes. Applied
optics, 30(24):3468–3473, 1991.

[86] Philip L Marston. Transverse cusp diffraction catastrophes: Some pertinent
wave fronts and a Pearcey approximation to the wave field. The Journal of the
Acoustical Society of America, 81(2):226–232, 1987.

[87] Gregory Kaduchak, Philip L Marston, and Harry J Simpson. E6 diffraction
catastrophe of the primary rainbow of oblate water drops: observations with
white-light and laser illumination. Applied optics, 33(21):4691–4696, 1994.

[88] Cleon E Dean and Philip L Marston. Opening rate of the transverse cusp
diffraction catastrophe in light scattered by oblate spheroidal drops. Applied
optics, 30(24):3443–3451, 1991.

[89] JF Nye. Rainbows from ellipsoidal water drops. In Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, volume
438, pages 397–417. The Royal Society, 1992.

[90] James A Lock and Feng Xu. Optical caustics observed in light scattered by an
oblate spheroid. Applied optics, 49(8):1288–1304, 2010.



122 BIBLIOGRAPHY

[91] Haitao Yu, Feng Xu, and Cameron Tropea. Optical caustics associated with the
primary rainbow of oblate droplets: simulation and application in non-sphericity
measurement. Optics express, 21(22):25761–25771, 2013.

[92] Kenneth Sassen. Angular scattering and rainbow formation in pendant drops.
Journal of the Optical Society of America, 69(8):1083–1089, 1979.

[93] Dean S Langley and Philip L Marston. Generalized tertiary rainbow of slightly
oblate drops: observations with laser illumination. Applied optics, 37(9):1520–
1526, 1998.

[94] James A Lock and Judith R Woodruff. Non-Debye enhancements in the Mie
scattering of light from a single water droplet. Applied optics, 28(3):523–529,
1989.

[95] CW Chan and WK Lee. Measurement of a liquid refractive index by using
high-order rainbows. Journal of the Optical Society of America B, 13(3):532–
535, 1996.

[96] PH Ng, MY Tse, and WK Lee. Observation of high-order rainbows formed by a
pendant drop. Journal of the Optical Society of America B, 15(11):2782–2787,
1998.

[97] Pak-hong Ng, Pui-yiu So, Chiu-wah Chan, and Wing-kee Lee. Interference of the
eleventh-and higher-order rainbows formed by a pendant water drop. Journal
of the Optical Society of America B, 20(11):2395–2399, 2003.

[98] Jeronimus Petrus Antonius Johannes van Beeck. Rainbow phenomena: de-
velopment of a laser-based, non-intrusive technique for measuring droplet size,
temperature and velocity. 1997.
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Résumé

Cette thèse est dédiée à l’extension du Tracé de Rayons Vectoriels Complexes (TRVC)
développé au laboratoire et son application à la caractérisation des particules non-
sphériques.

Dans divers domaines de recherche, tels que la mécanique des fluides et la com-
bustion, nous devons mesurer les caractéristiques des particules. Parmi les différents
types de techniques de mesure, la métrologie optique est largement utilisée grâce à
sa précision et sa fiabilité. Cependant, la forme des particules est souvent considérée
comme sphérique principalement à cause du manque de moyens pour prédire avec
précision l’interaction de la lumière avec de grandes particules non-sphériques. TRVC
a été développ pour répondre à ces besoins. Il est basé sur le modèle de rayons mais
une amélioration radicale a été apporté dans ce nouvel modèle par l’introduction d’une
nouvelle propriété dans la notion de rayons lumineux - la courbure de front d’onde.

Dans cette thèse, le modle est appliqué réexaminer la théorie d’Airy. Il a été
montré que TRVC prédit mieux les intensités et les positions des lobes secondaires
dans les arcs-en-ciel d’une particule sphérique que la théorie d’Airy. Ensuite, TRVC
est appliqué à l’étude des propriétés des arcs-en-ciel formés par les ellipsöıdes allongé
et aplati. Il est montré que TRVC peut prédire analytiquement les positions et les
intensités de lobes secondaires dans les arcs-en-ciel dune particule sphérodale lorsquelle
est éclairée par une onde plane dans le plan symétrique. Les pics dus à l’effet focal
d’une particule sphéröıdale aplati ont galement été évalué analytiquement en utilisant
le facteur de divergence de TRVC.

Un système de mesure est aussi mis en place dans le laboratoire pour la diffusion
de la lumière par des gouttes pendantes. Il a été montré que le rapport des intensités
des deux premiers arcs-en-ciel est sensible à l’ellipticité d’un sphéröıde équivalent.
Ceci ouvre un champ d’application potentiel pour caractériser la déformation d’une
goutte pendante.

Mots-clés: diffusion de lumière, Tracé de Rayons Vectoriels Complexes, particule
non-sphérique, théorie d’Airy, goutte pendante, métrologie optique



.

Abstract

This thesis is dedicated to the extension of Vectorial Complex Ray Model (VCRM)
developed in the laboratory and its application in the characterization of large non-
spherical particles.

In various research domains, such as the fluid mechanics and the combustion field,
we need to measure the characteristics of the particles. Among different kinds of mea-
surement techniques, the optical metrology is largely employed due to its advantage of
being accurate, reliable and non-intrusive. However, in many optical techniques, the
shape of the particles is assumed to be spherical. The main reason of this limit is due
to the lack of theoretical model to describe with precision the interaction of light with
large non-spherical particles. The Vectorial Complex Ray Model has been developed
to reply this demand. It is based on the ray model but a radical improvement has
been done by introducing a new property the wave front curvatures in the ray model.

In this thesis, the model is firstly applied to reexamine the Airy theory. It is shown
that even in the case of spherical particle VCRM predicts better the intensity and
positions of supernumerary bows of rainbow than the Airy theory. Then VCRM is
applied to investigate the properties of the rainbows formed by a spheroidal (prolate
or oblate) particle. It is shown that VCRM can predict analytically the positions and
the intensity of supernumerary bows and the peaks due to the focal effect when it is
illuminated by a plane wave in the symmetrical plane.

The theoretical research results have been also applied to the experimental charac-
terization of a pendant drop. The intensity ratio of the two first orders of rainbow is
shown sensible to the aspect ratio of the equivalent spheroid and it opens a potential
to develop a measurement technique to characterize the deformation of pendant drop.

Keywords: light scattering, Vectorial Complex Ray Model, non-spherical parti-
cle, Airy theory, pendant drop, optical metrology


