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Introduction (version française)

Mes travaux de recherche relèvent principalement de l’analyse numérique selon deux théma-
tiques distinctes. Les travaux menés durant mes doctorat et post-doctorats ont porté sur le
développe-ment de méthodes numériques pour la simulation d’écoulements à plusieurs com-
posants. A mon arrivée à Centrale Nantes, j’ai été amenée à changer de thématique pour me
focaliser sur le développement et l’analyse de méthodes d’approximation et réduction de modèle
pour les équations aux dérivées partielles. Dans ce manuscrit, j’ai choisi de me concentrer sur
mes plus récentes contributions portant sur le second thème. Un bref aperçu de mes travaux
de thèse et post-doctorats [MBF1,MBF2,MBF4,MBF3,MBF5,MBF6,MBF7] est néanmoins
donné en annexe (voir page 63).

Le présent mémoire se constitue de trois chapitres. Cependant, on peut voir se dessiner deux
axes suivant lesquels les contributions présentées peuvent être rangées avec d’une part des
méthodes déterministes et d’autre part des approches probabilistes. Par souci de concision,
les concepts utilisés seront motivés et introduits au fur et à mesure des enjeux et des objectifs
soulignés.

Approximation de faible rang pour les problèmes dépendant de paramètres

La première direction concerne le développement de méthodes d’approximation de faible rang
pour la réduction de modèle de problèmes dépendant de paramètres.

Dans le Chapitre 1, des contributions dédiées à la résolution de tels problèmes motivés par
des applications en quantification d’incertitude sont présentées. Le chapitre est divisé en deux
sections selon les deux points de vue suivants: d’une part les méthodes d’approximation de
faible rang sous format de tenseur et d’autre part les méthodes basées sur des projections.
En particulier, une méthode d’approximation sous format de tenseur, basée sur des formula-
tions idéales en minimum de résidu pour des problèmes en grande dimension, est d’abord pro-
posée [MBF8,MBF9]. Puis, des méthodes basées sur des projections pour pour l’approximation
de quantités d’intérêt à valeur fonctionnelle ou vectorielle [MBF10] sont discutées. Ces travaux
ont été réalisés en collaboration avec A. Nouy et O. Zahm.

Dans le Chapitre 2, les méthodes d’approximation sous format de faible rang, discutées au
chapitre précédent, sont étendues pour des problèmes paramétrés dépendant du temps. En
particulier, des approches de faible rang dites dynamiques sont discutées. Premièrement, une
méthode de type bases réduites dynamiques est présentée [MBF11]. La méthode proposée sur-
passant les approches classiques pour des problèmes de type transport, des pistes d’extension
pour les systèmes de loi de conservation hyperboliques ont été explorées. Notamment, une
méthode de reconstruction dans un cadre volume fini a été proposée et validée pour des prob-
lèmes de transport linéaires et dépendant de paramètres [MBF16]. Dans un second temps, une
méthode de faible rang dynamique travaillant dans la variété des matrices de rang fixé est con-
sidérée. Cette approche repose sur la paramétrisation géométrique de cette variété, proposée
dans [MBF13], à partir de laquelle un nouveau schéma d’intégration de type splitting a été
dérivé pour l’approximation de faible rang dynamique de solutions de systèmes dynamiques
matriciels [MBF14]. Ces diverses contributions ont été le fruit d’une collaboration avec T.
Heuzé, A. Falcó et A. Nouy.
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Méthodes d’approximation probabilistes pour les EDP

Le deuxième axe de ce manuscrit concerne le développement de méthodes numériques pour
l’approximation de la solution d’équations aux dérivées partielles (éventuellement dépendant
de paramètres) en utilisant des estimations ponctuelles de la fonction recherchée.

Dans ce but, des approches probabilistes sont discutées dans le Chapitre 3. La clef de voûte
des contributions présentées est le théorème de représentation de Feynman-Kac qui permet
d’expliciter la solution d’une équation aux dérivées partielles, évaluée ponctuellement, comme
l’espérance d’une fonctionnelle stochastique. En utilisant cet outil, une méthode probabiliste
d’interpolation parcimonieuse a été proposée pour des équations en grande dimension [MBF17].
Par ailleurs, une méthode de bases réduites probabiliste basée sur des estimations ponctuelles
est proposée [MBF17] pour la résolution d’EDP paramétrées. En particulier, une telle méthode
s’appuie sur une procédure glouton avec un estimateur d’erreur probabiliste combiné avec un
algorithme de type bandit adaptatif "probably approximately correct" [MBF15]. Ces travaux
ont été réalisés en collaboration avec A. Macherey, A. Nouy et C. Prieur.
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Introduction

My research fits in the domain of numerical analysis. The work done during my PhD and
post-doctorates concerned the development of numerical methods for the simulation of multi-
component flows. Since I arrived in Centrale Nantes, my research work has mainly focused
on the development of approximation and model order reduction methods for partial differ-
ential equations. In this manuscript, I have made the choice to not present in detail the
work [MBF1, MBF2, MBF4, MBF3, MBF5, MBF6, MBF7] done before arriving in Centrale
Nantes. Only a concise summary is provided in appendix (see page 63).

This document is mainly composed of three chapters, following two principal directions with
deterministic and probabilistic approximation methods.

Low-rank approximation for parameter-dependent problems

The first direction concerns the development of suitable low-rank approximation methods for
model order reduction of parameter-dependent problems.

In Chapter 1, contributions devoted to the resolution of such problems motivated by uncer-
tainty quantification are presented. The chapter is divided in two parts following a natu-
ral presentation of the proposed approaches within the framework of low-rank approximation
mainly : low-rank approximation in tensor format and projection based low-rank approxi-
mation for parameter-dependent problems. More particularly tensor approximation meth-
ods based on ideal minimal residual formulations for the solution of high-dimensional prob-
lems [MBF8, MBF9] are first proposed. Then, goal oriented projection based model order
reduction methods for the estimation of vector-valued variables of interest [MBF10] are dis-
cussed. These contributions were done in collaboration together with A. Nouy and O. Zahm.

In Chapter 2, low-rank approximation methods discussed in Chapter 1 are extended for the
approximation of time and parameter-dependent problems. Here, dynamical low-rank approx-
imation methods are discussed following two subsequent directions. First, dynamical reduced
basis method for parameter-dependent dynamical systems that can be interpreted as a dynam-
ical low-rank approximation approach with a subspace point of view is presented [MBF11]. As
the proposed method is shown to perform better than usual reduced basis for transport (dom-
inated) problems, possible extension to parameter-dependent hyperbolic conservation laws is
discussed. In this direction a reconstruction method in finite volume setting has been devel-
oped and validated for linear parameter-dependent transport problems [MBF16]. Secondly,
we consider a dynamical low-rank approximation method that works directly in the set of
fixed rank matrices. Based on a suitable geometric parametrization of this set [MBF13], a
new splitting integration scheme for the approximation of the solution of matrix dynamical
systems [MBF14], arising from discretization of parameter-dependent dynamical systems, has
been proposed. These works were the result of a joint work with T. Heuzé, A. Falcó and A.
Nouy.
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Probabilistic approximation methods for PDEs

The second direction deals with the problem of constructing an approximation of the solution
of a partial differential equation (possibly parameter-dependent) using approaches that rely on
sampled estimates of the function to approximate.

To that goal, probabilistic approaches are presented in Chapter 3. The main corner stone
of the proposed contributions is the Feynman-Kac representation formula of the solution of
a partial differential equation. Using this key ingredient, a probabilistic sparse polynomial
interpolation method has been proposed to deal with high dimensional problem [MBF12]. Then
reduced basis method using pointwise estimates is discussed [MBF17] for solving parameter-
dependent partial differential equations. Especially, it relies on a greedy procedure with a
probabilistic error estimate gathered with a probably approximately correct bandit algorithm
proposed in [MBF15]. These contributions were done in collaboration with A. Macherey, A.
Nouy and C. Prieur.

4



List of publications

Here is a summary of my publications listed in two categories, depending on whether the topics
have been addressed during my PhD and post-doctorates, or since I am associate professor at
Centrale Nantes.

My publications are cited thorough the manuscript using the reference [MBF*].

Work related to PhD and post-doctorates

[MBF1] M. Billaud, Stabilized finite element method for incompressible-compressible two-phase
flows, PhD thesis, Université Sciences et Technologies - Bordeaux I, tel-00565815, 2009.

[MBF2] M. Billaud, G. Gallice and B. Nkonga, Stabilized Finite Element Method for
Compressible–Incompressible Diphasic Flows. In: Kreiss G., Lötstedt P., Målqvist A.,
Neytcheva M. (eds) Numerical Mathematics and Advanced Applications 2009. Springer,
Berlin, Heidelberg, 2010.

[MBF3] M. Billaud, G. Gallice and B. Nkonga, A simple stabilized finite element method for
solving two phase compressible-incompressible interface flows. Comput. Methods Appl.
Mech. Eng., 200(9), 1272–1290, 2011.

[MBF4] M. Billaud-Friess, B. Boutin, F. Caetano, G. Faccanoni, S. Kokh, F. Lagoutière and L.
Navoret, A second order anti-diffusive Lagrange-remap scheme for two-component flows.
ESAIM Proc., 32, 149–162, 2011.

[MBF5] M. Billaud-Friess, and S. Kokh, An anti-diffusive Lagrange-Remap scheme for multi-
material compressible flows with an arbitrary number of components. ESAIM Proc., 35,
203–209, 2012.

[MBF6] M. Billaud-Friess, J. Breil, P.-H. Maire and M. Shashkov, A Multi-Material CCALE-
MOF Approach in Cylindrical Geometry. Comm. Comput. Phys., 15(2), 330–364, 2014.

[MBF7] M. Billaud-Friess, and S. Kokh, Simulation of sharp interface multi-material flows
involving an arbitrary number of components through an extended five-equation model. J.
Comput. Phys., 273, 488–519, 2014.

Work related to topics covered since I am at Centrale Nantes

[MBF8] M. Billaud-Friess, A. Nouy and O. Zahm, Méthode de réduction de modèle a priori
basée sur des formulations idéales en minimum de résidu. Actes CSMA 2013, 2013.

[MBF9] M. Billaud-Friess, A. Nouy, and O. Zahm, A tensor approximation method based on
ideal minimal residual formulations for the solution of high-dimensional problems. ESAIM:
Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse
Numérique, 48(6), 1777–1806, 2014.

5

https://tel.archives-ouvertes.fr/tel-00565815


[MBF10] Zahm, O., M. Billaud-Friess, and A. Nouy, Projection-Based Model Order Reduction
Methods for the Estimation of Vector-Valued Variables of Interest. SIAM J. Sci. Comput.,
39(4), A1647–A1674, 2017.

[MBF11] M. Billaud-Friess, and A. Nouy, Dynamical Model Reduction Method for Solving
Parameter-Dependent Dynamical Systems. SIAM J. Sci. Comput., 39(4), A1766–A1792,
2017.

[MBF12] M. Billaud-Friess, A. Macherey, A. Nouy and C. Prieur, Stochastic Methods for Solv-
ing High-Dimensional Partial Differential Equations. Monte Carlo and Quasi-Monte Carlo
Methods. MCQMC 2018. Springer Proceedings in Mathematics and Statistics, vol 324.
Springer, Cham, 2020.

[MBF13] M. Billaud-Friess, A. Falcó, and A. Nouy, Principal bundle structure of matrix man-
ifolds. MDPI, Mathematics, 9(14), 1669, 2021.

[MBF14] M. Billaud-Friess, A. Falcó, and A. Nouy, A new splitting algorithm for dynamical
low-rank approximation motivated by the fibre bundle structure of matrix manifolds. Bit
Numer. Math., 1–22, 2021.

[MBF15] M. Billaud-Friess, A. Macherey, A. Nouy and C. Prieur, A PAC algorithm in relative
precision for bandit problem with costly sampling., Mathematical Methods of Operations
Research, 1–25, 2022.

[MBF16] M. Billaud-Friess, and T. Heuzé, Reconstruction of finite volume solution for
parameter-dependent linear hyperbolic conservation laws. arXiv, 2006.1035 (preprint)

[MBF17] M. Billaud-Friess, A. Macherey, A. Nouy and C. Prieur, A probabilistic reduced basis
method for parameter-dependent problems. (in preparation)

6



Chapter 1
Low-rank approximation for parameter-dependent equations

Parameter-dependent problems are ubiquitous in large variety of applications such as uncertainty
quantification, sensitivity, inverse problems, control or optimization. This chapter presents con-
tributions devoted to the resolution of such problems with application in uncertainty quantifica-
tion using low-rank approximation methods.

The chapter is divided in two parts following a natural presentation of the proposed approaches
within the framework of low-rank approximation : low-rank approximation in tensor format
and projection based low-rank approximation for parameter-dependent problems. After a brief
introduction on low-rank tensor approximation methods for model order reduction of parameter-
dependent problems in Section 1.1, we present in Section 1.2 a tensor approximation method
based on ideal minimal residual formulation for the solution of high-dimensional problems.
Then, in Section 1.3, we propose projection based methods for the estimation of vector-valued
variables of interest.

1.1 General context

In this chapter, we are concerned with the resolution of high-dimensional partial differen-
tial equations (PDEs) arising in physics or stochastic calculus, or the solution of parameter-
dependent or stochastic equations. The following general linear parameter-dependent equation
is considered

A(ξ)u(ξ) = b(ξ). (1.1.1)

Here, A is a linear operator, depending on the (random) parameters ξ = (ξ1, . . . , ξp)
T that take

their values in some set Ξ ⊂ Rp (with p possibly large). The parameter-dependent solution is
u(ξ) which belongs to some vector space V .

1.1.1 Low-rank approximation for model reduction

Computing a solution u to the problem (1.1.1) rises various difficulties, related to the complex-
ity and cost of the computations, when one wants to access to pointwise evaluations of u over Ξ
or is interested in having a global approximation of the solution map u : Ξ→ V , in particular
in high-dimension (when p is large). As discussed in what follows, low-rank approximation
methods are nowadays widely used for the solution of problem (1.1.1) in these contexts. We
refer e.g. the reader to the surveys [91] or [134,135].

In a multiquery context, one has to evaluate the solution u of (1.1.1) for many instances of
the parameter ξ. For complex numerical model, arising for example from the standard linear
approximation of a PDEs with dim(V ) = n (n large), the computation of the solution for one
instance of the parameter can be very costly. To tackle this problem, Model Order Reduction
(MOR) methods have emerged these last decades. The idea of MOR is to provide an accurate
surrogate of the solution map u : Ξ→ V cheaper to compute, and allowing rapid evaluation of
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the solution or quantities of interest. Such methods usually rely on linear approximation since
there are aimed at approximating u as follows

u(ξ) ≈
r∑
i=1

αi(ξ)vi, (1.1.2)

where {v1, . . . , vr} are elements in V and {α1, . . . , αr} are elements of a some vector space S of
functions defined on Ξ. Such an approximation can be interpreted as a rank-r approximation
in the tensor space X := V ⊗ S. Standard MOR methods aim at finding an approximation
under the form (1.1.2) with a small number of terms r << n. To compute an approximation
under the form (1.1.2) we can distinguish two kinds of approaches depending on either they
rely on constructing a basis {vi}ri=1 ⊂ V , or directly computing an approximation under the
form (1.1.2) in a low-rank subset of X. The approaches of the first kind are called projection
based low-rank approximation methods, since the approximation is obtained by a projection
(e.g. Galerkin, Least-Square, interpolation . . . ) of u in the subspace of V spanned by a basis
selected a priori. Classical projection based low-rank methods include the Proper Orthogonal
Decomposition (POD) method, the Empirical Interpolation Method (EIM) or the Reduced Ba-
sis (RB) method. The approaches of the second kind include low-rank tensor methods that rely
on direct optimization in low-rank manifold. Classical examples are the best r-term approxi-
mation that coincides with the rank-r truncated Singular Value Decomposition (SVD), as well
as the Proper Generalized Decomposition (PGD) methods. All, these methods differ by their
selection of the reduced basis for different controls of the error over the parameter set (uni-
form control for EIM and RB or control in mean-square sense for POD and PGD see, e.g., [134]).

Computing a global approximation of the solution u as a function of multiple parameters ξ =
(ξ1, . . . , ξp) ∈ Ξ, is challenging in particular for high-dimensional problems. A widespread idea
is to construct some suitable approximation of the solution map using a separated representation
under the form

u(ξ) ≈
r1∑

ν1=1

· · ·
rp∑

νp=1

aν1,...,νpφ
1
ν1

(ξ1) . . . φpνp(ξp). (1.1.3)

Seeking an approximation in a tensorized basis is not fully satisfactory because of the so-called
curse of dimensionality [20]. In brief, the storage or computational complexity for solving
(1.1.1) grows exponentially in the parametric dimension p, i.e., it has the form ρp with ρ > 1.
The last decades significant research effort has been done in order to develop tensor formats
whose complexity increases slowly with the number of parameters p. In this manuscript, we
focus on low-rank approximations in tensor format that aims at reducing the complexity by
exploiting (high-order) low-rank structures of multivariate functions, considered as elements
of tensor product spaces. Classical low-rank tensor formats include canonical tensor formats,
Tucker formats, Tensor Train formats [104, 140], Hierarchical Tucker formats [102] or more
general tree-based Hierarchical Tucker formats [77]. Other approaches are also available for
the construction of structured approximation of the solution map. Among them, let mention
sparse tensor methods that consist in searching an approximation of the form (1.1.3) with only
a few non-zero terms. To this end, the idea is to properly select a small number of functions in
a set of functions as e.g. multivariate polynomial [49,50,52].

1.1.2 Contributions
The contributions presented in this chapter are mainly related to the PhD of O. Zahm (IN-
RIA, Grenoble-Rhône Alpes) [167] supervised together with A. Nouy (LMJL, ECN). In this
work, we have dealt with the problem of low-rank approximation in the context of uncertainty
quantification addressing the following points.
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• Generally, the solution u is unknown and only given implicitly through the equation
(1.1.1). As a consequence practical low-rank approximation methods often use the residual
of (1.1.1) measured with a certain norm. Such methods are not able to provide optimal
approximations, but only quasi-optimal approximations in the best case. This loss of
accuracy can be problematic for the efficiency of the methods.

• In many applications (e.g. motivated by uncertainty quantification), we only need to
compute a partial information, called a quantity of interest (QoI), which is a function of
the solution map. In particular, the main challenge is to develop goal-oriented low-rank
approximation methods which provide accurate approximation of QoI while reducing the
computational complexity.

1.2 Low-rank approximation in tensor format

We recall briefly in Section 1.2.1 general tensor formats for approximation of a multivariate
function u belonging to an Hilbert tensor space and related best low-rank approximation prob-
lem in Section 1.2.2. In Section 1.2.3 we rise difficulties of classical residual based approximation
methods when u is a tensor solution of a PDEs formulated in tensor Hilbert space. Then ideal
minimal residual formulation, introduced in [MBF8,MBF9] for the solution of high-dimensional
problems related low-rank approximation method, is presented in Section 1.2.4. Numerical il-
lustrations of the proposed approach are given in Section 1.2.4.

Notations. Let Xµ, 1 ≤ µ ≤ d be Hilbert spaces equipped with inner products 〈·, ·〉µ and
associated norms ‖ · ‖µ. In what follows, we denote by ⊗pµ=1v

µ = v1 ⊗ . . . ⊗ vp, vµ ∈ Xµ, an
elementary tensor. A Hilbert tensor space X (see [103] for more details) equipped with the
norm ‖ · ‖X is obtained by the completion with respect to ‖ · ‖X of the algebraic tensor space

X = ‖·‖X

p⊗
µ=1

Xµ = span{⊗pµ=1v
µ : vµ ∈ Xµ, 1 ≤ µ ≤ p}‖·‖X .

A natural inner product on X is induced by inner products 〈·, ·〉µ in Xµ, 1 ≤ µ ≤ d. It is
defined by 〈v, w〉X =

∏p
µ=1〈vµ, wµ〉µ for v, w two elementary tensors. Finally, we denote by X ′

the topological dual of X and by 〈·, ·〉X′,X the duality pairing between X and X ′. We denote
by RX : X → X ′ the Riesz isomorphism.

1.2.1 Classical tensor formats
Here, we give some brief summary of the most classical tensor formats used in the litterature.
The reader is referred to the textbook [103] and survey [91] for a more exhaustive review of
the different tensor formats and their mathematical properties. In this section, for the sake of
presentation, we assume that dim(Xµ) = n, µ = 1, . . . , p.

• The set of tensors in canonical format with rank lower than r ∈ N is defined as the set

Tcanr (X) =

{
v =

r∑
i=1

⊗pµ=1v
µ
i : vµi ∈ Xµ

}
.

Here, r is the canonical rank of the tensor v in X, i.e. the smallest integer such that v
can be written under the form

∑r
i=1⊗pµ=1v

µ
i . The canonical tensor format has a storage

complexity in O(rnp).
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• The set of tensors in Tucker format with multilinear rank bounded by r = (r1, . . . , rp) ∈
Np is given by

Ttucr (X) =

v =

r1∑
i1=1

. . .

rp∑
ip=1

αi1,...,ip ⊗pµ=1 v
µ
iµ

: vµiµ ∈ Xµ, αi1,...,ip ∈ R


In this format α ∈ Rr1×···×rp is a tensor of order p. An approximation v in Tucker
format, can be interpreted as an approximation in the tensor space U1 ⊗ · · · ⊗ Up where
Uµ = span(vµ1 , . . . , v

µ
rp) is a rp-dimensional subspace of Xµ. Actually, if the multilinear

rank is r = (r, . . . , r) (with r = maxµ(rµ)) the storage complexity is in O(rp+nrp), which
limits the applicability of the Tucker format for very large values of p.

• To overcome such a limitation due to storage complexity, Tree-based (or Hierarchical)
Tucker formats [76,77,102] based on a notion of rank associated with a dimension partition
tree have been introduced. As a particular example, let mention the set of tensor in Tensor
Train (TT) format [140] with TT-rank bounded by r = (r1, . . . , rp−1) ∈ Np−1

TTTr (X) =

v =

r1∑
i1=1

. . .

rp∑
ip=1

v1
1,i1
⊗ v2

i1,i2
⊗ · · · ⊗ vµiµ,1 : vµiµ−1,iµ

∈ Xµ


Let r = (r, . . . , r) (with r = maxµ(rµ)) be the the TT-rank. In comparison to the Tucker
format, TT format has a storage of lower complexity in O(pr2n) (which does not grow
exponentially with p).

1.2.2 Best low-rank approximation
Low-rank tensor approximation methods consist in searching for approximations in a subset of
tensors of X noted

M≤r(X) = {v ∈ X : rank(v) ≤ r} ,
where the notion of rank(v) depends of the tensor format used for the approximation v, as
previously discussed (i.e. canonical rank, multilinear rank or TT-rank). Then, the best ap-
proximation of u ∈ X in a given set of tensor format M≤r with respect to the norm ‖ · ‖X
is

min
v∈M≤r(X)

‖u− v‖X . (1.2.1)

Existence of a solution

Low-rank tensor subsets M≤r are neither linear subspaces nor convex sets. However, they usu-
ally satisfy topological and geometrical properties that make the best approximation problem
(1.2.1) meaningful

M≤r(X) is weakly closed (or simply closed in finite dimension), (1.2.2)
M≤r(X) ⊂ γM≤r(X) for all γ ∈ R. (1.2.3)

Property (1.2.3) is satisfied by all the classical tensor subsets (i.e. Tcanr (X),Ttucr (X) or TTTr (X)).
Property (1.2.2) ensures the existence of minimum in the set M≤r(X) to problem (1.2.1). This
property, under some suitable conditions on the norm ‖ · ‖X (which is naturally satisfied in
finite dimension), is verified by most tensor subsets used for approximation. For the the set
M≤r(X) with the notion of canonical rank for p ≥ 3 the property (1.2.2) is only fullfiled for the
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set of elementary tensors Mr≤1(X) [74]. Subsets of tensors associated with the notions of multi-
linear rank or TT-rank have better properties. They are closed sets and they are differentiable
manifolds [76, 104, 161]. This has useful consequences in practice for optimization [161] or for
the projection of dynamical systems in these manifolds (see, e.g., [121] and Chapter 2).

Practical aspects

For the case p = 2, all classical low-rank tensor formats coincide with the canonical format
so that M≤r(X) = Tcanr (X) for some rank r. When the norm ‖ · ‖X is the canonical norm,
then ur coincides with a rank-r SVD of u. Efficient algorithms for computing the SVD can
therefore be applied. For d > 2 and when the norm ‖ · ‖X is the canonical norm, different
algorithms based on optimization methods have been proposed for the different tensor formats
(see, e.g., [72,105] or [103] for a recent review). Very efficient algorithms based on higher order
SVD have also been proposed in [61], [90] and [139], respectively for Tucker, Hierarchical Tucker
and Tensor Train tensors. Note that these algorithms provide quasi-best approximations with a
quasi-optimality factor bounded by a function of the dimension d. For a general norm ‖·‖X , the
computation of a global optimum to the best approximation problem is still an open problem for
all tensor subsets, and methods based on SVD cannot be applied anymore. However, classical
optimization methods can still be applied (such as Alternating Least Square (ALS)) in order
to provide an approximation of the best approximation [72,148,160].

1.2.3 Approximation of the solution of high-dimensional problems

Given X (resp. Y ) a Hilbert tensor space equipped with inner product 〈·, ·〉X (resp. 〈·, ·〉Y )
and associated norm ‖ · ‖X (resp. ‖ · ‖Y ), we consider the following general problem

Au = b, u ∈ X. (1.2.4)

with A ∈ L(X, Y ′). We assume that A is weakly coercive operator satisfying the assumptions
of the Nečas’ theorem (see, e.g.„ [71, Chapter 2] for details). In particular, we have for all
v ∈ X,

α‖v‖X ≤ ‖Av‖Y ′ ≤ β‖v‖X , (1.2.5)

The constants α, β stand for the weakly coercive and continuity constants of the operator A
defined by

inf
06=v∈X

sup
06=w∈Y

〈Av,w〉Y ′,Y
‖v‖X‖w‖Y

:= α > 0 and sup
06=v∈X

sup
06=w∈Y

〈Av,w〉Y ′,Y
‖v‖X‖w‖Y

:= β <∞,

Under these assumptions the problem (1.2.4) is well-posed, and the condition number of the
operator A is

κ(A) =
β

α
≥ 1.

Usual algorithms

Here, we want to compute an approximation in M≤r(X) of the solution u ∈ X of the problem
(1.2.4). As u is not explictly given, the best approximation problem (1.2.1) cannot be solved
directly. Low-rank approximation methods in tensor format typically rely on the definition
of approximations based on the residual Au − b, which is a computable quantity. Different
strategies have been proposed for the construction of low-rank approximations of the solution
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of equations in tensor format.

The first family of methods rely on classical iterative algorithms for linear or nonlinear systems
of equations with low-rank tensor algebra (using low-rank tensor compression) for standard
algebraic operations [13,111,116,126]. The second family of methods consists in directly com-
puting an approximation of u in M≤r(X) by minimizing some residual norm [24,65,131]

min
v∈M≤r(X)

‖Av − b‖Y ′ , (1.2.6)

for some choice of the norm ‖ · ‖Y ′ . To that goal, constructive approaches well known as
greedy algorithms have been proposed (see [155] and monograph [156]). Such algorithms, often
referred as the PGD [4,117,131] consist in computing successive corrections in a small low-rank
tensor subset, typically the set of rank-1 canonical tensors. A step r of this algorithm can be
summarized as follows:

wr ∈ arg min
w∈Tcan1 (X)

‖A(ur−1 + w)− b‖Y ′ , (1.2.7)

ur = ur−1 + wr. (1.2.8)

where ur stands for a rank-r approximation in Tcanr (X). In practice, the rank-one approximation
that defines the correction wr can be solved using ALS algorithm. These greedy algorithms
have been analyzed in several papers [5, 36, 37, 73, 74, 81] and a series of improved algorithms
have been introduced in order to increase the quality of suboptimal greedy constructions [73,
83,118,132,133].

Good choice of the residual norm

Although minimal residual based approaches are well founded, they generally provide low-
rank approximations that can be very far from optimal approximations (1.2.1), with respect
to the natural norm ‖ · ‖X , when using usual measures of the residual. Indeed, for such a
choice, the operator A is often badly conditioned. If we are interested in obtaining an optimal
approximation with respect to the norm ‖ · ‖X , it implies to choose the residual norm [51, 58]
such that

‖Av‖Y ′ = ‖v‖X , v ∈ X, (1.2.9)

in (1.2.6) to recover the best approximation problem (1.2.1). This implies

IX = R−1
X A∗R−1

Y A⇔ RY = AR−1
X A∗ ⇔ RX = A∗R−1

Y A, (1.2.10)

thus

‖w‖Y = ‖A∗w‖X′ , (1.2.11)

where A∗ : Y → X ′ stands for the adjoint operator of A. This choice implies that α = β = 1,
and therefore

κ(A) = 1,

meaning that problem (1.2.4) is ideally conditioned. Imposing (1.2.9) can be interpreted as
applying implictely some preconditioning operator R−1

X A∗R−1
Y to A. Let us mention, that it

is also possible to construct a priori an explicit preconditioner. See, e.g., [64] for stochastic
problems and more recently [168] for parameter dependent algebraic problems. In the latter,
the construction of an explicit parameter dependent preconditioner is obtained by interpolation
of the inverse operator.
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Ideal minimal residual method

For solving (1.2.6), we have proposed in [MBF9] the following gradient-type algorithm. Letting
u0 = 0, we construct a sequence {uk}k≥0 in M≤r(X) and a sequence {yk}k≥0 in Y defined for
k ≥ 0 by {

yk = R−1
Y (Auk − b)

uk+1 ∈ Πr(u
k − ρR−1

X A∗yk)
(1.2.12)

with ρ > 0. Here, Πr : X →M≤r(X) denotes the set-valued map that associates to an element
u ∈ X the set of best approximations of u in M≤r:

Πr(u) = arg min
v∈M≤r(X)

‖u− v‖X . (1.2.13)

The algorithm defined by (1.2.12) can be interpreted as a preconditioned gradient algorithm
with an implicit preconditioner. Let us observe at step k we have

uk+1 ∈ Πr(u
k − ρR−1

X A∗R−1
Y (Auk − b))

where the residual is ideally preconditioned. The resulting method is then refered as Ideal
Minimal Residual (IMR) method. We have the following convergence result [MBF9, Proposition
4.3].
Proposition 1.2.1. Assuming that γ(ρ) := max{|1−ρβ2|, |1−ρα2|} < 1/2, the sequence {uk}k≥1

defined by (1.2.12) is such that

‖uk − u‖X ≤ (2γ)k‖u0 − u‖X +
1

1− 2γ
‖u− Πr(u)‖X (1.2.14)

and

lim sup
k→∞
‖uk − u‖X ≤

1

1− 2γ
‖u− Πr(u)‖X (1.2.15)

The condition γ(ρ) < 1/2 imposes β
α
<
√

3 and ρ ∈ ( 1
2α2 ,

3
2β2 ) which is a very restrictive

condition, generally not satisfied without an excellent preconditioning of the operator A. Thus,
for the ideal choice of norms (1.2.11), we have α = β = 1. Then , we have convergence for all
ρ ∈ [1

2
, 3

2
] towards a neighborhood of Πr(u) of size 2γ

1−2γ
‖u−Πr(u)‖X with γ = |1−ρ|. Moreover,

if ρ = 1, then u1 ∈ Πr(u), the algorithm converges in one iteration for any initialization u0.

Approximate Ideal Minimal Residual method

The practical implementation of the IMR method rises some difficulties discussed as follows.

1. The computation of the iterate yk requires to solve an auxiliary problem that involves the
Riesz map inverse R−1

Y such that RY = AR−1
X A∗. It is equivalent to compute the initial

operator inverse A−1. To overcome this difficulty, following [51], we use instead Λδ(rk) an
approximation of the residual rk = R−1

Y (Auk − b) ∈ Y with a controlled relative precision
δ > 0. Here, we have introduced Λδ : Y → Y the approximation map such that

‖Λδ(y)− y‖Y ≤ δ‖y‖Y , y ∈
{
R−1
Y (Av − b); v ∈M≤r(X)

}
. (1.2.16)

2. Moreover, we may not be able to solve the best approximation problem inM≤r(X) exactly,
because there is no available algorithm for computing a global optimum, or because the
algorithm has been stopped at a finite precision. Here, we introduce a set of quasi-optimal
approximations Πη

r(u) ⊂M≤r(X) such that

‖u− Πη
r(u)‖X ≤ η‖u− Πr(u)‖X (η ≥ 1). (1.2.17)
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Using the two approximation maps defined by (1.2.16)-(1.2.17), we have proposed a perturbated
version of the ideal gradient type algorithm amenable for numerical use. Letting u0 = 0, we
construct two sequences {uk}k≥0 ⊂M≤r and {yk}k≥0 ⊂ Y defined for k ≥ 0 by{

yk = Λδ(R−1
Y (Auk − b))

uk+1 ∈ Πη
r(u

k −R−1
X A∗yk)

(1.2.18)

The resulting algorithm can be interpreted as a preconditioned gradient algorithm with an im-
plicit preconditioner that approximates the ideal preconditioner. The algorithm works into
steps. At the first step, an auxiliary problem provides an approximation of the residual
R−1
Y (Auk − b) up to precision δ. Then uk is computed as a quasi-optimal approximation in

M≤r(X) of the update uk−R−1
X A∗yk. The resulting low-rank approximation approach is called

Approximate Ideal Minimal Residual (A-IMR) method. In practice, these two steps are per-
formed using practical low-rank approximation algorithms discussed previously as e.g. SVD,
ALS or PGD. For a detailed presentation of the method see [MBF9, Section 5]. Again we
have the following convergence result [MBF9, Proposition 5.3] for the perturbed gradient type
algorithm.
Proposition 1.2.2. Assume (1.2.9), (1.2.16), and (1.2.17), with δ(1+η) < 1. Then, the sequence
{uk}k≥1 defined by (1.2.18) is such that

‖uk − u‖X ≤ ((1 + η)δ)k‖u0 − u‖X +
η

1− δ(1 + η)
‖u− Πr(u)‖X . (1.2.19)

Note that (1.2.19) implies that

‖u− Πr(u)‖X ≤ ‖u− uk‖X ≤ (1 + γk)‖u− Πr(u)‖X , (1.2.20)

This proposition states that the sequence {uk}k≥0 converges towards a neighborhood of the best
approximation of u in M≤r(X). The error depends on γk such that lim supk→∞ γk ≤ c(η, δ)
where c(η, δ) depends on the parameters δ and η that control the quality of this approximation.
Remark 1.2.3. We have proposed in a [MBF9, Section 6] a (weak) greedy algorithm for the
adaptive construction of an approximation of the solution of problem (1.2.4). In particular, we
use the A-IMR method for the computation of the greedy corrections in rank-1 tensor subset
(see Equation (1.2.7)). A convergence proof of this algorithm is provided under some conditions
on the parameters δ, η.

1.2.4 Numerical applications
We illustrate the behavior of the A-IMR method for the numerical solution of steady reaction-
advection-diffusion stochastic problem on a two-dimensional unit square domain D = [0, 1]2

−∇(ξ) · (κ(ξ)∇u(ξ)) + c(ξ) · ∇u(ξ) + a(ξ)u(ξ) = f in D, (1.2.21)
u = 0 on ∂D.

The solution u(ξ) : D → R depends on ξ = (ξ1, . . . , ξp) a random vector. Here a, κ are
the reaction and diffusion coefficients respectively and advection field c. Combining a finite
element discretization in space and stochastic Galerkin method for the parameters, the resulting
Galerkin approximation still denoted by u, identified with its set of coefficients, is a tensor
u ∈ X = Rn ⊗ (⊗pµ=1Rs). Here, n and s are the dimensions of the finite element and piecewise
polynomial space respectively. The tensor u is solution of the following algebraic tensor equation

Au = b, (1.2.22)

where the tensor operator A and tensor b are the algebraic representations of the bilinear and
linear forms arising in the Galerkin formulation of the considered problem.
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Two dimensional case with p = 1

We present numerical results concerning the A-IMR method applied to equation (1.2.22). This
method provides an approximation ũ of the best approximation of u in M≤r(X) with respect to
‖ · ‖2 the natural canonical norm on X. This choice corresponds to an operator RX = In ⊗ Is,
where In (resp. Is) is the identity in Rn (resp. Rs). We takeM≤r(X) = Tcanr (X). For considered
numerical applications, we have dim(X) ≥ 105. The exact solution u of (1.2.22) is computed
and used as a reference solution. For that choice, the ‖ ·‖X-best approximation of u in M≤r(X)
is a rank-r SVD that can be computed exactly using classical algorithms (see Section 1.2.2). For
the construction of an approximation in Tcanr (X) using A-IMR, we consider two strategies: the
direct approximation in Tcanr (X) using the gradient type algorithm with M≤r(X) = Tcanr (X),
and a greedy algorithm that consists in a series of r corrections in Tcan1 (X) computed using
with the gradient type algorithm, with M≤r(X) = Tcan1 (X) and with an updated residual b at
each correction.
The A-IMR is compared to a standard approach, denoted CMR, which consists in minimizing
the canonical norm of the residual. The latter approach has been introduced and analyzed in
different papers, using either direct minimization or greedy rank-one algorithms [5,24,65], and
is known to suffer from ill-conditioning of the operator A.

The convergence curves with respect to the rank are shown in Figure 1.2.1, where the error
is measured in the ‖ · ‖2 norm. Concerning the direct approach, we observe that the different
algorithms have roughly the same rate of convergence. The A-IMR convergence curves are
close to the optimal SVD for a wide range of values of δ. Concerning the greedy approach, we
observe a significant difference between A-IMR and CMR. We note that A-IMR is close to the
optimal SVD up to a certain rank (depending on δ) after which the convergence rate decreases
but remains better than the one of CMR.
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Figure 1.2.1: Comparison of minimal residual methods for M≤r(X) = Tcan
r (X) and ‖ · ‖X = ‖ · ‖2. Convergence

with the rank r of the approximations obtained with CMR and A-IMR with different precisions δ, and with
direct (left) or greedy rank-one (right) approaches.

Higher dimensional case with p = 9

Here, we compute low-rank approximations of the solution of u in the canonical tensor sub-
set Tcanr (X) with r ≥ 1. We rely on the greedy algorithm with successive corrections in
M≤r = Tcan1 (X) computed with the gradient type algorithm. For considered numerical applica-
tions, we have dim(X) ≥ 1011. As a reference solution, we consider a low-rank approximation
uref of u computed using a greedy rank-one algorithm based on a canonical minimal residual
formulation.

On Figure 1.2.2, we plot the convergence with the rank r of the approximations computed by

15



both A-IMR and CMR algorithms and of the greedy approximations ũ of the reference solution
uref. We observe (as for the lower-dimensional example) that, with different values of the
parameter δ (up to 0.9), the A-IMR method provides a better approximation of the solution in
comparison to the CMR method. When decreasing δ, the proposed algorithm seems to provide
approximations that tend to present the same convergence as the greedy approximations.
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Figure 1.2.2: Convergence with the rank of approximations obtained with the greedy CMR and A-IMR algo-
rithms for different precisions δ. Convergence is plotted with respect to the norm ‖ · ‖2

1.2.5 Summary
We have proposed a new algorithm for the construction of low-rank approximations of the
solutions of high-dimensional weakly coercive problems formulated in a tensor space X. This
algorithm is based on the approximate minimization of a particular residual norm on given
low-rank tensor subsets M≤r(X), the residual norm coinciding with some measure of the error
in solution. Therefore, the algorithm is able to provide a quasi-best low-rank approximation
with respect to a norm ‖ · ‖X that can be designed for a certain objective. In view of goal
oriented approximation, it is possible to design the norm ‖ · ‖X such that it takes into account
some particular quantity of interest, see first results in [MBF9]. This topic has been studied
more deeply in [167, Chapter 5], but not considered for publication. However, it is discussed in
Section 1.3 within the context of projection based low-rank approximation.

Let mention that the method has been applied with encouraging results for the solution of
transient elastodynamics equations in space-time domain [29]. Some extension to saddle points
problems [22] with possible perturbed Uzawa algorithm have also been investigated.

1.3 Projection based goal oriented low-rank approximation

We recall briefly in Section 1.3.1 projection based low-rank approximation methods for the
solution of parameter dependent linear problem under the form (1.1.1) formulated in Hilbert
space. Then, in Section 1.3.2, we discuss possible goal oriented projection methods when the
quantity to compute is not the solution itself but some Quantity of Interest (QoI) expressed as
s = Lu, with L a linear map. From these two ingredients we derive a goal oriented reduced
basis method. This work is related to the publication [MBF10]. Some illustrative examples of
the proposed approach are given in the last section.

Notations. For a Hilbert space H, we denote by RH ∈ L(H,H ′) the Riesz map such that
‖v‖2

H = 〈RHv, v〉, where 〈·, ·〉 denotes the duality pairing. The dual norm ‖ · ‖H′ on H ′ is such
that RH′ = R−1

H . Then ‖v‖H = ‖RHv‖H′ and |〈v, w〉| ≤ ‖v‖H‖w‖H′ hold for any v ∈ H and
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w ∈ H ′. For any operator C ∈ L(H1, H
′
2), with H1 and H2 two Hilbert spaces, C∗ ∈ L(H2, H

′
1)

denotes the adjoint of C, such that 〈Cv1, v2〉 = 〈v1, C
∗v2〉 for any v1 ∈ H1 and v2 ∈ H2.

1.3.1 Projection based low-rank approximation

Let V and W be two Hilbert spaces. We consider the linear parameter-dependent equation

A(ξ)u(ξ) = b(ξ) (1.3.1)

with A(ξ) ∈ L(V,W ′) and b(ξ) ∈ W ′, where the operator A(ξ) and right-hand side b(ξ) depend
on a parameter ξ which takes values in some parameter set Ξ ⊂ Rp. We assume that A(ξ) is a
norm-isomorphism such that for all u ∈ V ,

α(ξ)‖u‖V ≤ ‖A(ξ)u‖W ′ ≤ β(ξ)‖u‖V ,

where

inf
06=v∈V

sup
06=w∈W

〈A(ξ)v, w〉
‖v‖V ‖w‖W

:= α(ξ) > 0 and sup
06=v∈V

sup
06=w∈W

〈A(ξ)v, w〉
‖v‖V ‖w‖W

:= β(ξ) <∞,

which ensures the well-posedness of (1.3.1).

We adopt here a subspace point of view for the low-rank approximation of the solution map
u : Ξ → V . It relies on two key ingredients : properly chosen (small) subspaces of V , and
appropriate projections on this subspaces. Here, we will focus in particularly on the well
known Reduced Basis (RB) method, see monograph [144], the surveys [99], and [134, 135] for
a presentation within low-rank approximation framework. RB method performs in two steps.
During an offline step, the subspaces are constructed from snapshots of the exact solution u(ξ)
for a small number of values of the parameter ξ. Then the low-rank approximation defined as
some projection of the solution u(ξ) in this subspace, is computed for any new instance of the
parameter ξ ∈ Ξ during the online stage.

Online step: Galerkin type projections

In what follows, we consider that we are given a finite-dimensional subspace Vr ⊂ V with
dim(Vr) = r , the reduced space together with the associated reduced basis noted {v1, . . . , vr} ⊂
V .

Classical methods used for problems under the form (1.3.1) are Galerkin-type projections.
They provide an approximation ur(ξ) of u(ξ), in the dimensional subspace Vr deduced from
some orthogonality condition on the residual r(u(ξ), ξ) = A(ξ)u(ξ)− b(ξ) with respect to a r-
dimensional space or by minimizing some residual norm. The resulting approximation ur ∈ Vr
is quasi-optimal that for all ξ ∈ Ξ i.e. there exists γ(ξ) ≥ 1

‖u(ξ)− ur(ξ)‖V ≤ γ(ξ)‖u(ξ)− PVru(ξ)‖V , (1.3.2)

were PVr is the orthogonal projection of u in Vr, defined as

‖u(ξ)− PVru(ξ)‖V = inf
v∈Vr
‖u(ξ)− v‖V .

We give here two typical examples of Galerkin projection methods.
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Minimal residual based projection. The minimal residual projection ur is defined through

min
v∈Vr
‖r(v, ξ)‖W ′ . (1.3.3)

In that case (1.3.2) holds with γ(ξ) = β(ξ)
α(ξ)

the condition number of the operator A(ξ). For
problems badly conditioned, the minimal residual approximation method may lead to an ap-
proximation ur far from the best approximation in Vr for the norm ‖ · ‖V . In that context, it
should be relevant to use parameter dependent preconditioner or ideal minimal residual based
projection as discussed in Section 1.2.3.

Petrov-Galerkin projection. Let assume that the approximation ur ∈ Vr is defined as a Petrov-
Galerkin projection of u characterized by

〈r(ur(ξ), ξ), y〉 = 0, ∀y ∈ Wr, (1.3.4)

where Wr ⊂ W is a test space of dimension r. Under the assumption that

αVr,Wr(ξ) = inf
06=v∈Vr

sup
06=y∈Wr

〈A(ξ)v, y〉
‖v‖V ‖y‖W

> 0, (1.3.5)

Céa’s lemma [71, Lemma 2.8] states that (1.3.2) holds with γ(ξ) = 1 + β(ξ)
αVr,Wr (ξ)

.

The resulting low-rank approximation is a Galerkin projection of u(ξ) in Vr given by

ur(ξ) =
r∑
i=1

αi(ξ)vi,

where {α1, . . . , αr} are the coefficients of ur(ξ) in the reduced basis. If the residual r(ur(ξ), ξ)
(through the operator A(ξ) and the right-hand side b(ξ)) admits low-rank representations, also
called affine representation, it can be computed with a complexity only depending on r. If not,
such representations can be obtained by the Empirical Interpolation Method (EIM) [14]. It
allows to compute the Galerkin projection ur(ξ) by solving a reduced system of r equations on
the unknown coefficients {αi(ξ)}ri=1 with a computational complexity only depending on r.

Offline step: Construction of subspaces

At this step, the question is how to properly select the reduced space Vr so that the solution
manifold

K := {u(ξ) : ξ ∈ Ξ}
can be well approximated. To answer these question, we can use an error measure that gives
a good indication on how well K can be approximated by a r-linear subspace. Assuming that
the manifold K is compact, let us define

d∞r (K)V = min
dim(Vr)=r

sup
ξ∈Ξ
‖u(ξ)− PVru(ξ)‖V

which is the Kolmogorov r-width of K. This measure of error is a good indicator for uniformly
accurate approximation over the parameter set Ξ. In particular, when the Kolmogorov r-width
has a rapid decay with r, one can expect to obtain a good low-rank approximation. It is
also relevant to consider subspaces optimal with respect to the L2-norm (or more generally
Lp-norm). In that case, we could consider

d2
r(K)V = min

dim(Vr)=r

(∫
Ξ

‖u(ξ)− PVru(ξ)‖2
V dµ(ξ)

)1/2

,
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where µ is the probability measure of ξ.

A simple choice is to take the subspaces Vr generated from evaluations (snapshots) of the solu-
tion u(ξ) at for some a finite number of instances (possibly randomly chosen) Ξ̃ = {ξ1, . . . , ξK} ⊂
Ξ of the parameter ξ. But nothing guarantees that this choice provides reduced space close to
the optimal r-dimensional subspaces. Thus, in practice Vr is sought as the best r-dimensional
subspace satisfying some optimality criterion related the measures d2

r(K)V or d∞r (K)V .

From samples. For the norm L2-norm, Vr is sought such that

min
dim(Vr)=r

1

K

K∑
k=1

‖u(ξk)− PVru(ξk)‖2
V

where Ξ̃ is a K-sample according to the probability measure µ. This choice is at the basis of
POD methods for parameter-dependent equations [109,162]. For L∞-norm, Vr is such that

min
dim(Vr)=r

max
ξ∈Ξ̃
‖u(ξ)− PVru(ξ)‖V .

where Ξ̃ is a set of K points in Ξ (called training set). In view of computation, a tractable
definition of the subspaces relies on finding an appropriate set of parameters {ξ1, . . . , ξr} ⊂ Ξ̃
and impose Vr = span{u(ξ1), . . . , u(ξr)}. Practically, greedy algorithm (e.g. [14, 17] for (EIM)
) are prominent techniques for constructing such a nested sequence of reduced space from
snapshots of the solution computed for adaptively chosen parameter values. It works as follows
: given {ξ1, . . . , ξr−1} and the corresponding subspace Vr−1 = span{u(ξ1), . . . , u(ξr−1)}, a new
parameter value ξr is selected such that

‖u(ξr)− PVru(ξr)‖V = max
ξ∈Ξ̃
‖u(ξ)− PVr−1u(ξ)‖V ,

Then the reduced space is Vr = span{u(ξ1), . . . , u(ξr)}.

From equations. As in the present case, u(ξ) is solution of the parameter-dependent equation
(1.3.1), the quantities ‖u(ξ) − PVru(ξ)‖V are not longer computable. Instead, a posteriori
error estimates ∆(ur(ξ), ξ), computable without requiring u(ξ) and with low cost, are used.
Typical choice consists in taking for ∆(ur(ξ), ξ) a bound of a certain norm of the residual
r(ur(ξ), ξ) which is behind the PGD and RB methods. In the particular case of RB method,
when ∆(ur(ξ), ξ) is certified and under the quasi-optimality of the Galerkin projection (1.3.2),
the resulting algorithm is the so-called weak greedy algorithm. Convergence results on greedy
algorithms can be found in [30, 31, 62], especially they have proven that the approximation
error in Vr has the same type of decay as the Kolmogorov r-width for algebraic and exponential
convergence.

1.3.2 Goal oriented projections
In many applications one is not interested in the solution u(ξ) itself, but only in a QoI s(ξ)
which is a functional of u(ξ). Let Z be an Hilbert space, we consider

s(ξ) = L(ξ)u(ξ),

with L(ξ) ∈ L(V, Z). For example, for boundary value problems, L(ξ) can be defined as the
trace operator providing the restriction of the solution to the boundary of the domain. In this
case the QoI belongs to an infinite dimensional space or, after discretization, to a finite but
possibly high dimensional space.
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MOR for evaluation of QoI

Efficient goal-oriented methods have been proposed for the estimation of a scalar-valued variable
of interest s(ξ). A standard method consists in computing an approximation of the solution of
the so-called dual problem associated to (1.3.1) which is used to correct the estimation of s(ξ).
We refer to [142] for a general survey on primal-dual methods and to [46, 94, 99, 143] for the
application in the context of RB methods. Difficulties arise when the variable of interest s(ξ)
takes its values in a vector space of finite or infinite dimension. The standard approach, which
consists in treating s(ξ) as a collection of scalar-valued variables of interest and in building
one reduced dual space for each of them, has a complexity which grows proportionally to the
dimension of s(ξ). To circumvents this issue, one could construct a single reduced dual space,
thus allowing to handle variables of interest with high and potentially infinite dimension. Such
an approach can be found for parametric dynamical systems, see the monograph [21] for a gen-
eral introduction. In this framework, projection-based model order reduction methods are used
for the approximation of s(ξ) which is an output of the dynamical system. Petrov-Galerkin
methods have been proposed with different ways of constructing the reduced basis for the test
and trial space, such as the balanced truncation methods, (balanced) POD method, moment
matching methods, etc. We refer to [23] for a recent review on these methods.

In what follows, we present some work [MBF10] concerning goal-oriented low-rank approxima-
tion for parameter dependent PDEs following the subsequent road map.

1. Develop an appropriate method for the approximation of variable of interest s(ξ) taking
values in a single vector space of finite or infinite dimension.

2. Choose suitable projection principle (Petrov-Galerkin, Primal-Dual approach, Saddle
point formulation) that guarantees the best approximation error on the QoI while us-
ing a single reduced space.

3. Using computable error estimate, propose greedy approaches to select the reduced spaces
associated to the solution and the QoI.

Goal oriented projections

To alleviate the notations, we have omitted the dependence to ξ in this section. The approxi-
mation of any quantity a is noted ã.

A posteriori computation of QoI. We assume that ũ = ur ∈ Vr, the Petrov-Galerkin projection
of u by Equation (1.3.4) with Wr satisfying the assumption (1.3.5). Then, we consider s̃ as the
standard approximation of s, computed a posteriori from ũ as

s̃ = Lũ. (1.3.6)

The next proposition [MBF10, Proposition 2.1] provides an error bound for the standard ap-
proximation s̃.
Proposition 1.3.1. Let ũ = ur be the Petrov-Galerkin projection defined by (1.3.4), the approx-
imation s̃ of s defined by (1.3.10) satisfies

‖s− s̃‖Z ≤
δLWr√

1− (δVr,Wr)
2

min
v∈Vr
‖u− v‖V , (1.3.7)

with

δVr,Wr = max
0 6=v∈Vr

min
y∈Wr

‖v −R−1
V A∗y‖V
‖v‖V

< 1, (1.3.8)
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and
δLWr

= sup
06=z′∈Z′

min
y∈Wr

‖L∗z′ − A∗y‖V ′
‖z′‖Z′

. (1.3.9)

Primal-dual approach. Let us introduce the dual variable Q ∈ L(Z ′,W ) defined by the dual
problem A∗Q = L∗. For given approximations ũ and Q̃, we define the approximation s̃ by

s̃ = Lũ+ Q̃∗(b− Aũ), (1.3.10)

where Q̃∗(b − Aũ) is a correction using the approximation of the dual variable. The following
proposition [MBF10, Proposition 2.5] provides an error bound on the QoI, which is a generaliza-
tion of the classical error bound for scalar-valued variables of interest (see [142]) to vector-valued
variables of interest.
Proposition 1.3.2. Let ũ = ur be the Petrov-Galerkin projection defined by (1.3.4), the approx-
imation s̃ of s defined by (1.3.10) satisfies

‖s− s̃‖Z ≤
‖L∗ − A∗Q̃‖Z′→V ′√

1− (δVr,Wr)
2

min
v∈Vr
‖u− v‖V , (1.3.11)

where

‖L∗ − A∗Q̃‖Z′→V ′ = sup
06=z′∈Z′

‖(L∗ − A∗Q̃)z′‖V ′
‖z′‖Z′

. (1.3.12)

For the approximation Q̃ of Q ∈ L(Z ′,W ), the bound (1.3.11) suggests that ‖L∗ −A∗Q̃‖Z′→V ′
should be small. We then propose to choose Q̃ as a solution of

min
Q̃∈L(Z′,WQ

k )

‖L∗ − A∗Q̃‖Z′→V ′ , (1.3.13)

where WQ
k ⊂ W is a given approximation space (different from Wr). The next proposition

[MBF10, Proposition 2.6] shows how to construct a solution of (1.3.13).
Proposition 1.3.3. The operator Qk : Z ′ → WQ

k defined for z′ ∈ Z ′ by

Qkz
′ = arg min

yk∈WQ
k

‖L∗z′ − A∗yk‖V ′ (1.3.14)

is linear and is a solution of (1.3.13). Moreover Qkz
′ ∈ WQ

k is characterized by

〈L∗z′ − A∗Qkz
′, R−1

V A∗yk〉 = 0, ∀yk ∈ WQ
k . (1.3.15)

We give now a new bound [MBF10, Proposition 2.8] of the error on the QoI.
Proposition 1.3.4. Let ũ = ur be the Petrov-Galerkin projection defined by (1.3.4) and let
Q̃ = Qk be defined by (1.3.15). Then the approximation s̃ defined by (1.3.10) satisfies

‖s− s̃‖Z ≤
δL
WQ
k√

1− (δVr,Wr)
2

min
v∈Vr
‖u− v‖V . (1.3.16)

where

δL
WQ
k

= sup
06=z′∈Z′

min
y∈WQ

k

‖L∗z′ − A∗y‖V ′
‖z′‖Z′

. (1.3.17)

For such choice of Q̃, the Proposition 1.3.4 provides a sharper bound than Proposition 1.3.2
for the error on the QoI by taking advantage of the orthogonality property (1.3.15).
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Projection based on a saddle point problem In the line of [59] for the approximation of (vector-
valued) variables of interest, we define the projection of u on the reduced space Vr by means of
a saddle point problem.

Let us equipW with a norm ‖·‖W such that the relation ‖y‖W = ‖A∗y‖V ′ holds for any y ∈ W ,
which is equivalent to the following relation between the Riesz maps RW and RV :

RW = AR−1
V A∗. (1.3.18)

We introduce a subspace Tp ⊂ W of dimension p and we define the projection ur,p in Vr as the
solution of the saddle point problem

min
v∈Vr

max
w∈Tp
‖w‖W=1

〈Av − b, w〉. (1.3.19)

Under the condition (discrete inf-sup condition)

inf
06=v∈Vr

sup
06=y∈Tp

〈Av, y〉
‖v‖V ‖y‖W

=: αVr,Tp > 0, (1.3.20)

we have proven [MBF10, Proposition 2.10] that there exists a unique solution (ur,p, yr,p) in
Vr × Tp to

〈RWyr,p, y〉+ 〈Aur,p, y〉 = 〈b, y〉 ∀y ∈ Tp, (1.3.21a)
〈A∗yr,p, v〉 = 0 ∀v ∈ Vr. (1.3.21b)

Now, we define the approximation s̃ as

s̃ = Lũ+ LR−1
V A∗ỹ, (1.3.22)

where (ũ, ỹ) := (ur,p, yr,p) ∈ Vr × Tp is the solution of the saddle point problem (1.3.21). The
following proposition [MBF10, Proposition 2.14] provides an error bound for the approximation
of the QoI.
Proposition 1.3.5. Let (ũ, ỹ) := (ur,p, yr,p) ∈ Vr × Tp be the solution of the saddle point problem
(1.3.21). The approximation s̃ defined by (1.3.22) satisfies

‖s− s̃‖Z ≤
δLTp√

1− (δVr,Tp)
2

min
v∈Vr
‖u− v‖V . (1.3.23)

with

δLTp = sup
06=z′∈Z′

min
y∈Tp

‖L∗z′ − A∗y‖V ′
‖z′‖Z′

(1.3.24)

and

δVr,Tp = max
06=v∈Vr

min
y∈Tp

‖v −R−1
V A∗y‖V
‖v‖V

. (1.3.25)

In practice, we will consider for Tp spaces of the form

Tp = Wr +WQ
k , (1.3.26)

with dim(Wr) = r which implies

δLTp ≤ δL
WQ
k

and δVr,Tp ≤ δVr,Wr ,

so that the error bound (1.3.23) for the QoI is better than the error bound (1.3.16) of the primal-
dual method with primal approximation space Vr, primal test spaceWr and dual approximation
space WQ

k . Therefore, we expect the approximation ur,p to be closer to the solution u than the
Petrov-Galerkin projection ur. Also, the approximation of the QoI is expected to be improved.
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Practical aspects

The projection methods introduced for the estimation of the QoI rely on the introduction
of three spaces: the primal approximation space Vr, the primal test space Wr and the dual
approximation spaceWQ

k and for the saddle point approach the space Tp = Wr+W
Q
k . We adopt

an offline/online strategy. Reduced (low-dimensional) spaces Vr, Wr and WQ
k are constructed

during the offline phase. Then, the projections on these reduced spaces and the evaluations of
the QoI are rapidly computed for any parameter value ξ ∈ Ξ during the online phase.

Reduced space Wr. Given the primal approximation space Vr, we know that Wr should be
chosen such that δVr,Wr is as close to zero as possible (see Propositions 1.3.1, 1.3.4 and 1.3.5).
To that goal, we define the (parameter-dependent) test space as

Wr(ξ) = Pm(ξ)∗RV Vr, (1.3.27)

where Pm(ξ) is an interpolation of the inverse of A(ξ) using m interpolation points in the
parameter set Ξ [168]. The interpolation points are chosen as the points where solutions
(primal and dual) have already been computed, i.e. the points given by (1.3.28).

Reduced spaces Vr and WQ
k . From suitable error estimates ∆(ξ) for the vector-valued QoI

(see for details [MBF10, Section 3] and Section 1.3.3), different greedy algorithms for the
construction of the reduced spaces Vr and WQ

k can be proposed. Given Ξ̃ ⊂ Ξ a training set,
they broadly consist in searching for a parameter value ξ∗ ∈ Ξ̃, a finite set where the error
estimate ∆(ξ) is maximum, i.e.

ξ∗ ∈ arg max
ξ∈Ξ̃

∆(ξ). (1.3.28)

A first strategy is to simultaneously enrich both the primal approximation space

Vr+1 = Vr + span(u(ξ∗)) (1.3.29)

and the dual approximation space

WQ
k+l = WQ

k + range(Q(ξ∗)) (1.3.30)

at each iteration. This strategy is referred as the simultaneous construction, as opposed to
the alternate construction which consists in enriching WQ

k (resp. Vr) if Vr (resp. WQ
k ) were

enriched at the previous greedy iteration step.

1.3.3 Numerical applications

We consider the benchmark problem of the cooling of electronic components [168]. The equation
to solve is an advection-diffusion equation over the domain D ⊂ R2

−∇ · (κ(ξ)∇T (ξ)) + c(ξ) · ∇T (ξ) = f, (1.3.31)

whose solution T (ξ) : D → R is the temperature field. Here κ and c denote respectively the
parameter-dependent diffusion coefficient and the advection field. Here, we focus on the result-
ing algebraic parameter-dependent equation coming from stabilized finite element discretization
of (1.3.31), that is A(ξ)u(ξ) = b(ξ), where u(ξ) ∈ Rn are the coefficients of the finite element
approximation T h =

∑n
i=1 uiϕi of T , and where ξ = (ξ1, . . . , ξ4) is a 4-dimensional random

vector. The space V = Rn with n = 2.8× 104 is endowed with the norm ‖ · ‖V = ‖ · ‖V0 which
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corresponds to the H1(D)-norm1. The variable of interest s(ξ) = (s1(ξ), s2(ξ)) is the mean
temperature of both electronic components, with

s1(ξ) =
1

|DIC1|

∫
DIC1

T h(ξ) , s2(ξ) =
1

|DIC2|

∫
DIC2

T h(ξ), (1.3.32)

where DICi (i = 1, 2) are two subdomains of D. Then we can write s(ξ) = Lu(ξ) for an
appropriate L ∈ Rl×n, with l = 2. Here we have Z = R2, which we equip with the canonical
norm on R2.

Comparison of the projections methods Here the approximation spaces Vr, WQ
k and the test

space Wr are given. We denote by V r, WQ
k and W r the matrices containing the basis vectors

of the corresponding subspaces. The matrix V r = (u(ξ1), . . . , u(ξ50)) contains 50 snapshots of
the primal solution (r = 50), and WQ

k = (Q(ξ1) . . . Q(ξ25)) contains 25 snapshots of the dual
solution so that the dimension of WQ

k is k = 25l = 50. The test space Wr is defined according
to (1.3.27). The matrix associated to the test space is given by W r(ξ) = P T

m(ξ)RVV r. We
consider a samples set Ξt of size t = 104. For any ξ ∈ Ξt we compute the exact quantity of
interest s(ξ) and the approximation s̃(ξ) by the following methods.

• Primal only: solve the linear system
(
W T

r (ξ)A(ξ)V r

)
Ur(ξ) = W r(ξ)

T b of size r and
compute s̃(ξ) =

(
LV r

)
Ur(ξ).

• Dual only: solve the linear system(
(WQ

k )TA(ξ)R−1
V A(ξ)∗WQ

k

)
Yk(ξ) = (WQ

k )T b

of size k and compute s̃(ξ) =
(
LR−1

V A(ξ)∗WQ
k

)
Yk(ξ).

• Primal-dual: solve the linear system of the Primal only method, solve the linear system(
(WQ

k )TA(ξ)R−1
V A(ξ)∗WQ

k

)
Yk(ξ) =

(
(WQ

k )T b
)
−
(
(WQ

k )TA(ξ)V r

)
Ur(ξ)

of size k, and compute s̃(ξ) =
(
LV r

)
Ur(ξ) +

(
LR−1

V A(ξ)∗WQ
k

)
Yk(ξ).

• Saddle point: solve the linear system of size p+ r(
T T
p (ξ)A(ξ)R−1

V A(ξ)∗T p(ξ) T T
p (ξ)A(ξ)V r(

T T
p (ξ)A(ξ)V r

)T
0

)(
Yr,p(ξ)
Ur,p(ξ)

)
=

(
T p(ξ)

T b
0

)
with T p(ξ) =

(
W r(ξ),W

Q
k

)
, and compute

s̃(ξ) =
(
LV r

)
Ur,p(ξ) +

(
LR−1

V A(ξ)∗T p(ξ)
)
Yr,p(ξ).

The numerical results are given in Figure 1.3.1. The saddle point method leads to the lowest
error on the variable of interest. Also, we see that a good preconditioner (for example with
m = 30) improves the accuracy for the saddle point method, the primal only method and the
primal-dual method. However, this improvement is not really significant for the considered
application: the errors are barely divided by 2 compared to the non preconditioned Galerkin
projection (m = 0). In fact, the preconditioner improves the quality of the test space, and
the choice Wr = Vr (yielding the standard Galerkin projection) is sufficiently accurate for this
example and for the chosen norm on V .

1It means that ‖v‖V0 = ‖vh‖H1(D) for all v ∈ V , where vh =
∑n

i=1 viϕi.
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(a) PDF of the error. Three different precondition-
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(dashed lines) and m = 30 (continuous lines).

Primal only L∞-norm L2-norm
m = 0 1.284× 100 1.245× 10−1

m = 5 1.203× 100 9.637× 10−2

m = 10 1.458× 100 1.064× 10−1

m = 20 1.068× 100 8.386× 10−2

m = 30 1.066× 100 7.955× 10−2

Primal-dual L∞-norm L2-norm
m = 0 2.751× 10−1 1.085× 10−2

m = 5 1.308× 10−1 5.708× 10−3

m = 10 1.333× 10−1 5.807× 10−3

m = 20 1.232× 10−1 5.465× 10−3

m = 30 1.224× 10−1 5.408× 10−3

Saddle point L∞-norm L2-norm
m = 0 1.023× 10−1 4.347× 10−3

m = 5 9.715× 10−2 3.389× 10−3

m = 10 9.573× 10−2 3.867× 10−3

m = 20 6.022× 10−2 2.996× 10−3

m = 30 5.705× 10−2 2.896× 10−3

(b) L∞ and L2 norm of the error.

Figure 1.3.1: Application 2: Probability density function, L∞ norm and L2 norm of the error ‖s(ξ) − s̃(ξ)‖Z
estimated from a samples set of size 104.

Quality of error estimate We discuss now the quality of the error estimate ∆(ξ) for the variable
of interest. We consider

∆(ξ) = ‖Pm(ξ)(A(ξ)ur(ξ)− b(ξ))‖V0‖L(ξ)∗ − A(ξ)∗Qk(ξ)‖Z′→V ′0 (1.3.33)

for the primal-dual method, and

∆(ξ) = ‖Pm(ξ)(A(ξ)tr,p(ξ)− b(ξ))‖V0 sup
06=z′∈Z′

inf
y∈Tp

‖L(ξ)∗z′ − A(ξ)∗y‖V ′0
‖z′‖Z′

(1.3.34)

for the saddle point method. Figure 1.3.2 shows statistics of the effectivity index η(ξ) =
∆(ξ)/‖s(ξ) − s̃(ξ)‖Z for different numbers m of interpolation points for the preconditioner.
We see that the max-min ratio and the normalized standard deviation are decreasing with
m: this indicates an improvement of the error estimate. Furthermore, the mean value of
η(ξ) seems to converge (with m) to 19.5 for the primal-dual method, and to 13.8 for the
saddle point method. In fact, with a good preconditioner, ‖Pm(ξ)(A(ξ)ur(ξ) − b(ξ))‖V0 (or
‖Pm(ξ)(A(ξ)tr,p(ξ) − b(ξ))‖V0) is expected to be a good approximation of the primal error
‖u(ξ)− ur(ξ)‖V0 (or ‖u(ξ)− tr,p(ξ)‖V0), but this does not ensure that the effectivity index η(ξ)
will converge to 1.

1.3.4 Summary
We have proposed and analyzed projection based methods for the estimation of vector-valued
variables of interest in the context of parameter-dependent equations. This includes a gener-
alization of the classical primal-dual method to the case of vector-valued variables of interest,
and also a Petrov-Galerkin method based on a saddle point problem.

The error estimates proposed and used during the greedy enrichment of the reduced spaces,
involve the use of Cauchy-Schwarz inequalities, which are clearly not optimal. To overcome
this limitation, randomized a posteriori error estimator for low-rank approximations, reliable
and efficient at given high probability have been proposed recently in [150].
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Figure 1.3.2: Application 2: PDF, mean, max-min ratio and normalized standard deviation of the effectivity
index η(ξ) = ∆(ξ)/‖s(ξ)− s̃(ξ)‖Z . Here, ∆(ξ) is defined by (1.3.33) for the primal-dual method and by (1.3.34)
for the saddle point method.
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Chapter 2
Dynamical low-rank approximation

In this chapter, model order reduction methods introduced previously are extended for the solu-
tion of parameter and time-dependent problems. Among these methods, we particularly focus
on dynamical low-rank approximation approaches.

After a brief discussion on possible low-rank approximation methods for model order reduction
of time-dependent and parameter-dependent problems in Section 2.1, we present in Section 2.2
dynamical reduced basis method that can be interpreted as a dynamical low-rank approximation
method with a subspace point of view. Then, in Section 2.3, we present a new splitting integra-
tion scheme suitable for dynamical low-rank approximation in the set of fixed rank matrices.

2.1 General context

Here, we focus on parameter and time-dependent problems. Typical problems could either be
ordinary differential equations (ODEs), or partial differential equations (PDEs) depending on
some (random) parameters. When PDEs are considered, we apply a method of lines approach,
that is, we first discretize in space such that the problem is approximated by a system of ODEs.
Thus, we are concerned with the solution of parameter-dependent non-autonomous dynamical
systems of the form {

u′(t, ξ) = f(u(t, ξ), t, ξ), t ∈ (0, T ],

u(0, ξ) = u0(ξ),
(2.1.1)

where the flux f and initial condition u0 depend on some (random) parameters ξ = (ξ1, . . . , ξp)
T

with values in a parameter set Ξ ⊂ Rp. We denote T > 0 the final time. We assume that the
solution u(t, ξ) belongs to some vector space V for all t ∈ [0, T ].

2.1.1 Low-rank approximation for parameter and time-dependent problems

In Chapter 1, we have seen that low-rank approximation methods are effective approaches for
solving time-independent parameter-dependent problems (1.1.1). Seeking a solution u to the
problem (2.1.1) leads to similar difficulties in term of complexity and computation costs. Here,
we discuss how to extend such low-rank approximation methods to compute an approximation
of the solution map ξ 7→ u(t, ξ) for all t ∈ [0, T ].

Low-rank projection based approaches

In the context of RB methods (see, e.g., [99, 138]), the reduced approximation is classically
obtained as the (Petrov-)Galerkin projection of the solution u of (2.1.1) onto a time-independent
sub-space Vr of V . It writes under following form

u(t, ξ) ≈
r∑
i=1

viαi(t, ξ), (2.1.2)
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where {v1, . . . , vr} is a time-independent basis of Vr and {α1(t), . . . , αr(t)} are elements of some
vector space S of functions defined on Ξ. Such an approximation, can be seen as a rank-r
approximation in the tensor space V ⊗ S at each time t. If the flux f admits a low-rank repre-
sentation, the approximation (2.1.2) can be computed efficiently by solving a reduced dynamical
system of r equations satisfied by the coefficients {αi(ξ)}ri=1, using e.g. a time-stepping scheme.
Sample-based methods have been proposed for the construction of Vr (see, e.g., [16,32,108,129]).
In [94], Vr is obtained as the span of snapshots u(tk, ξi) (in both time and parameter) of the
solution of the full-order model. However, for a high-dimensional space V , it is not feasible
(and far from optimal) to retain a large number of snapshots. Then, one can rely on a POD of
the snapshots matrix in order to extract subspaces which are optimal in a mean-square sense.
In particular, adaptive construction of Vr can be performed through a POD-greedy algorithm
using a posteriori error estimates [66,70,95,97,98,165].
As pointed in [138], efficiency of such methods is limited by the effectivity of error estimators
that may show bad long-time effectivity. Moreover, for parameter and time dependent prob-
lems with complex dynamics (e.g. advection dominated or hyperbolic parameter-dependent
equations), the optimal subspace on which to approximate the solution at each time instant
can considerably change over time. In that context, classical RB methods may require very
high-dimensional (time-independent) reduced spaces for computing an approximation given by
(2.1.2) with prescribed accuracy.

PGD method has also been considered in [131, 132] for the low-rank approximation of the
solution of stochastic evolution equations. In this context, the approximation is sought under
the form

u(t, ξ) ≈
r∑
i=1

vi(t)αi(ξ), (2.1.3)

where {v1(t), . . . , vr(t)} is a time-dependent basis of Vr(t) and {α1, . . . , αr} are elements of
S. Approximation (2.1.3) is a rank-r element in the tensor space V [0,T ] ⊗ S. The resulting
approximation can be seen as a projection of u(t, ξ) ∈ V onto a time-dependent sub-space
Vr(t) = span{v1(t), . . . , vr(t)} ⊂ V which allows to well capture transient phenomena. Contrary
to RB basis method previously discussed, the approximation in (2.1.3) is obtained with a
global in time variational principle that is not optimal at each instant t. Let us mention, that
reduced basis method based on Petrov-Galerkin space-time (PG-ST) formulations has also been
introduced, see for example [152, 158]. Such an approach provides a low-rank approximation
of the form (2.1.3). At the discrete level, previous approaches differ from RB approaches since
they do not rely on time-stepping scheme except in very particular cases [84] .

Dynamical low-rank approximation methods

Dynamical low-rank approximation (DLRA) methods (see survey [161, Section 9.5]) aim at
computing an approximation of u under the form

u(t, ξ) ≈
r∑
i=1

vi(t)αi(t, ξ). (2.1.4)

The approximation (2.1.4) can be interpreted as a projection onto a time-dependent reduced
space Vr(t) obtained through principles which are local in time (e.g. Dirac Frenkel principle).
DLRA methods are particular low-rank tensor methods since they rely on computing a rank-r
approximation in the tensor space V ⊗S at each time t. They first appeared in [114,130] in the
case of low-rank matrices and then extended to low-rank approximation in tensor format (see,
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e.g., [121, 159]) for the solution of high dimensional time dependent problems. Let us mention
that dynamically (bi-)orthogonal methods that provide approximations under the form (2.1.4),
have been also proposed [44, 45, 80, 149] and analysed [128] for the numerical solution of time-
dependent stochastic equations.

2.1.2 Contributions

The contributions [MBF11,MBF13,MBF14,MBF16] presented in the next sections are the result
of collaborations with A. Falcó (Univ. CEU Cardenal Herrera) and A. Nouy (ECN, LMJL) on
dynamical low-rank approximation methods for the solution of parameter dependent dynamical
systems and T. Heuzé (ECN,GeM) for possible extension to hyperbolic parameter dependent
conservation laws.

• We have proposed a dynamical RB method for the solution of parameter-dependent dy-
namical systems of the form (2.1.1). It relies on the greedy construction of time-dependent
sub-spaces Vr(t) ⊂ V generated from samples of the solution of the full-order model at
some selected parameter values. The resulting method can be interpreted as a DLRA
method with a subspace point of view and a uniform control of the error over the pa-
rameter set. Some prospects for extension of such dynamical RB to parameter dependent
hyperbolic conservation laws, within finite volume framework, are also discussed.

• Regarding to matrix ODE (e.g., arising from (2.1.1) after discretization of the parameter
domain), the DLRA relies on approximation in the set of fixed rank matrices. However,
the representation of any element of this set is not unique. To dodge this undesirable
property, we have proposed a geometric description of the set of fixed rank matrices
endowed with the structure of analytic principal bundle, relying on an explicit description
of local charts. From this description, we have derived a new splitting integration scheme
suitable for DLRA.

The work concerning dynamical RB methods has been partially supported by the GdR MOMAS
through the project REDYN (2015). The work concerning application to hyperbolic conservation
laws has been founded through the project PEPS : DROME by the Cellule Energie du CNRS
(2019), co-driven with T. Heuzé.

2.2 Projection based dynamical low-rank approximation

Notations. We consider in this section the resolution of a dynamical system under the form
(2.1.1) in algebraic setting i.e. V = RN . In what follows, V is equipped with canonical inner
product 〈u, v〉 := uTv and associated norm ‖u‖.

The dynamical RB approach developed in [MBF11] performs in two steps. During an offline
step, the time-dependent subspaces are constructed in greedy fashion from the trajectories
t 7→ u(t, ξ) of the exact solution for the selected values of the parameter ξ. Then the low-
rank approximation is defined as the Galerkin projection of the solution u(t, ξ) in the time
dependent subspace, and computed for any new instance of the parameter ξ ∈ Ξ during the
online stage. For the sake of brevity, we only detail the projection step and greedy construction
of the time-dependent reduced spaces.
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2.2.1 Construction of the approximation
We consider that for any t > 0, the reduced space Vr(t) ⊂ V is given and satisfies

dimVr(t) = r for all t > 0. (2.2.1)

We denote by {v1(t), . . . , vr(t)} the an orthonormal basis of Vr(t) and V (t) = [v1(t), . . . , vr(t)] ∈
RN×r the associated orthogonal matrix. Finally ΠVr(t) = V (t)V T (t) ∈ Rd×d is the orthogonal
projector onto Vr(t). We seek an approximation ur(t, ξ) ∈ Vr(t) of u(t, ξ) under the form

ur(t, ξ) :=
r∑
i=1

αi(t, ξ)vi(t) for all t > 0. (2.2.2)

where αr = (α1, . . . , αr)
T is solution of the small r-order system obtained through the Galerkin

projection of (2.1.1) onto Vr(t) {
α′r(t, ξ) = fr(αr(t, ξ), t, ξ),

αr(0, ξ) = α0
r(ξ),

(2.2.3)

with α0
r(ξ) = V T (0)u0(ξ) and a reduced flux fr defined by

fr(αr, t, ξ) = V (t)Tf(V (t)αr, t, ξ)− V (t)TV ′(t)αr. (2.2.4)

We have the following error estimate [MBF11, Proposition 2.4] .
Proposition 2.2.1. Let assume that f : V → V is Lipschitz continuous function. The error
norm satisfies

‖u(t, ξ)− ur(t, ξ)‖ ≤ ∆r(t, ξ) (2.2.5)

for all t ≥ 0, where ∆r(t, ξ) is the solution of the ordinary differential equation{
∆′r(t, ξ) = L[f ](ur(t, ξ))∆r(t, ξ) + ‖r(t, ξ)‖,
∆r(0, ξ) = ‖u0(ξ)−ΠVr(0)u0(ξ)‖, (2.2.6)

with r(t, ξ) = ΠV ⊥r
(t)(V ′(t)V (t)Tur(t, ξ)−f(ur(t, ξ), t, ξ)), the log-lipschitz constant defined as

L[f ](v) = sup
u∈V,u6=v

〈u− v, f(u)− f(v)〉
‖u− v‖2

.

Remark 2.2.2. Note that the last term in (2.2.3) takes into account the time dependency of the
subspace Vr, otherwise V ′(t) = 0 and we recover the usual projected dynamical system within
the framework of classical RB method (see, e.g., [97]).
Remark 2.2.3. In practice, the coefficients αr as well as the error bound ∆r are computed
using an appropriate integration scheme. The resulting numerical method can be implemented
in an efficient time-stepping offline/online fashion provided suitable assumptions on the flux
(see [MBF11, Section 4] for details).

2.2.2 Selection of sub-spaces
We present greedy algorithms for the construction of an increasing sequence of reduced spaces
{Vr}r>0. These spaces are generated from successive samples of the solution u of the full-order
model at parameters values {ξr}r>0 which are selected adaptively using the an a posteriori
estimate ∆r among a finite training set Ξ̃ ⊂ Ξ.
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T-Greedy We have proposed in [MBF11], an adaptive greedy strategy called T-greedy algo-
rithm. A step r of this algorithm is as follows:

ξr+1 ∈ arg max
ξ∈Ξ̃

∆(0,T )
r (ξ), (2.2.7)

Vr+1(t) = Vr(t) + span{u(t, ξr+1)}. (2.2.8)

with the following global error bound ∆
(0,T )
r (ξ) := ‖∆r(·, ξ)‖(0,T ),p, where ‖ · ‖(0,T ),q denotes the

natural norm in Lq(0, T ) with q = 2,∞.

POD-Greedy For the adaptive construction of time-independent reduced spaces Vr, we recall
the POD-greedy algorithm [95]. It selects a new parameters value

ξr+1 ∈ arg max
ξ∈Ξ̃

∆(0,T )
r (ξ).

then the trajectory u(·, ξr+1) of the full-order model is computed and the space Vr is enriched
by the `-dimensional subspace generated by the first ` POD modes of u(·, ξr+1)−ΠVru(·, ξr+1).
Remark 2.2.4. If the error estimate is such that

cr∆r(t, ·) ≤ ‖u(t, ·)− ur(t, ·)‖ ≤ Cr∆r(t, ·), (2.2.9)

with 0 < cr ≤ Cr < ∞ some positive constants, the POD-greedy algorithm has been proved to
converge with quasi-optimal rates [98].

Advantages of the proposed approach

• For time-dependent subspace Vr(t), the Galerkin projection ur of the reduced dynami-
cal system interpolates the solution u for the instances of the parameters ξ1, . . . , ξr se-
lected with the T-greedy algorithm. Whereas, for time-independent subspace Vr obtained
through the POD-greedy algorithm, the approximation ur does not in general interpolate
the function ξ 7→ u(·, ξ) for ξ1, . . . , ξr.

• POD-greedy algorithm may lead to high-dimensional reduced spaces for reaching a desired
accuracy. A typical example is the advection problem for which a very high-dimensional
time-independent reduced space may be required to approximate the solution even for
one instance of the parameter. We will see on numerical examples (see Section 2.2.3),
that using time-dependent reduced spaces allows to overcome such a limitation.

2.2.3 Numerical applications
The proposed approach is applied for the numerical approximation of the solution of the follow-
ing nonlinear partial differential equation defined on a open interval D ⊂ R and a time interval
I = (0, T )

∂

∂t
u(ξ) +

∂

∂x
(c(u(ξ), ξ)u(ξ)) + a(ξ)

∂

∂x
u(ξ)− µ(ξ)

∂2

∂x2
u(ξ) = g(ξ), on D × I, (2.2.10)

with appropriate boundary conditions and a parameter-independent initial condition u0(x).
Here ξ = (ξ1, . . . , ξd) denotes a random vector with values in Ξ and with independent compo-
nents. The functions c : X × Ξ → R and a : D × Ξ → R will be specified in each test case.
Finally, µ : Ξ→ R is a parameter-dependent coefficient and g : D×I×Ξ→ R is a given source
term. We consider an approximation of the solution of (2.2.10), still noted u, obtained with
an appropriate scheme yielding a system of N ordinary differential equations of the form (2.1.1).

In what follows, we denote by MTI (resp. MTD) the method using time-independent (resp.
time-dependent) reduced spaces.
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Advection equation

Let D = (0, 1) and I = (0, 0.2). The first application is an advection equation µ(ξ) = 0,
g(x, t, ξ) = 0, c(u, ξ) = 0 and a(x, ξ) = a(ξ) = a0 + a1ξ

1, with ξ1 ∼ U(−1, 1), a0 = 1 and a1 =
0.5. We impose periodic boundary conditions and consider a finite difference upwind scheme
with N = 2000, together with an explicit Euler time integration scheme. We consider two
functions as initial conditions. One is a smooth function given by u0

cont(x) = 1√
2π

exp(−
(
x−0.6
0.05

)2
)

whereas the second is a discontinuous function given by u0
disc(x) = 1[0.1,09](x)(b3xc+ sin(10x)).

Deterministic case We first consider a deterministic problem with ξ = 0.65 and compare the
approximations obtained by projections on reduced spaces constructed in two different ways.
In the first method (MTI), the reduced space Vr is time-independent and generated by the first
r modes of the POD of the trajectory t 7→ u(t, 0.65), with 1 ≤ r ≤ 200. In the second method
(MTD), we consider the one-dimensional time-dependent space Vr(t) = span{u(t, 0.65)}, r = 1.
For obtaining a very accurate precision, we have shown that the MTI requires a reduced space
with rather high dimension (i.e. 50) when u0 = u0

cont. This is worst when u0 = u0
disc where a

reduced space with higher dimension (i.e. 200) is required to well approximate the discontinuous
solution. Concerning the MTD, we always obtain relative errors up to the machine precision,
in both cases, with only one-dimensional time dependent reduced space.

General case We now consider the parameter-dependent problem and compare the approxi-
mations obtained with MTI and MTD for a subspace of dimension r = 20 generated from a
training set of size 30. We estimate the expectation E(Eq(ξ)) and maximum maxξ∈Ξ(Eq(ξ)) of
the relative errors Eq = ‖ur − u‖I,q/‖u‖I,q, with q = 2,∞, by the empirical mean and by the
maximum of the values of Eq taken at 50 randomly chosen values of the parameters. These
quantities are depicted on Figure 2.2.1 for different values of r and for both continuous and
discontinuous initial conditions. For the same dimension of the reduced spaces, MTD clearly
provides a more accurate approximation than MTI in particular when considering discontinuous
initial condition.
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Figure 2.2.1: Advection equation: Statistical estimations of the expectation and maximum of the relative errors
E2 and E∞ with respect to the reduced dimension r, for MTD (left) and MTI (right) for both continuous (top)
and discontinuous (bottom) initial conditions.
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Viscous Burger’s equation

We study a nonlinear viscous Burger’s equation with uncertain parameters [165]. We consider
a spatial domain D = (0, 1), a time interval I = (0, 1), homogeneous Dirichlet boundary
conditions and an initial condition u0 = 0. We consider c(u, ξ) = 1

2
u, a(x, ξ) = 0 and a

diffusion coefficient µ(ξ) = ξ, with ξ ∼ U(0.01, 0.06) a uniform random variable. The source
term is defined by g(x, t, ξ) = g1(x, t) + g2(x, t), with g1(x, t) = 4e−(x−0.2

0.03
)2

1[0.1,0.3](x) sin(4πt)
and g2(x, t) = 4 · 1[0.6,0.7](x)1[0.2,0.4](t). We use a finite difference scheme in space (N = 298)
and a semi-implicit Euler scheme in time (with K = 200 time steps). Reduced spaces are
constructed with POD-greedy and T-greedy algorithms with a training set of size 60. The
superiority of MTD over MTI is confirmed by Figure 2.2.2 where we have plotted statistical
estimations (with a random sample of size 50) of the expectation and maximum of the relative
errors. As we can see, MTD provides with r = 15 an approximation with a relative error of
10−10, whereas MTI only provides an approximation with a relative error of 10−2 for the same
dimension of the reduced space. For r = 50, MTI provides an approximation with relative error
10−6, which is still higher than MTD with r = 15.
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Figure 2.2.2: Burger’s equation: Statistical estimations of the expectations and maxima of the relative errors
E2 and E∞ with respect to the reduced dimension r, for MTD (left) and MTI (right).

2.2.4 Prospects for parameter-dependent conservation laws
In this section, we give some elements of discussion concerning the extension of the proposed
dynamical RB for parameter-dependent hyperbolic conservation laws. Let us consider the fol-
lowing one dimensional parameter-dependent scalar conservation equation. The space domain
is the bounded open interval D ⊂ R, and I = [0, T ] is the time domain. The function u(·, t; ξ),
belonging to the space V , is solution of the equation

∂tu(x, t, ξ) + ∂xf(u(x, t, ξ), ξ) = 0, (x, t) ∈ D × I, (2.2.11)

with initial condition u0 : D → R and suitable boundary conditions. The considered initial
boundary value problem (2.2.11) depends on parameters ξ ∈ Ξ ⊂ Rp through the conservative
flux f(·, ξ).

Context and challenges

It is now well understood that classical low-rank approximation methods are linear approxi-
mation methods which are not suitable for solving (parameter-dependent) hyperbolic problems
because the solution manifold can not be well approximated with a linear space of small di-
mension r. Indeed, for such problems, the Kolmogorov r-width decreases slowly with r (see,
e.g., [92, 164]). To overcome this issue, new ROM approaches have emerged this past years. A
seminal work for dealing with transport dominated problem has been considered in [137] using a
freezing method. It opened the route to various MOR approaches most of them relying on con-
structing suitable approximations from transformed snapshots see, e.g., [25,34,141,145,146,164].
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Moreover, defining suitable projection based ROM methods providing approximations that pre-
serve as much as possible the mathematical features of solutions (conservative, entropic, mono-
tonic, total variation dimininishing...) of hyperbolic PDEs remain an opened question. In this
direction, it was proposed in [1,2] an approximation problem based on the minimization of the
residual of the discretized equations in L1-norm for ROM of hyperbolic conservation laws. It
has the advantage to provide non oscillatory approximation, especially in presence of shocks.
Projection-based hyper-reduced models of nonlinear conservation laws globally conservative
that inherits a semi-discrete entropy inequality has also been proposed in [42].

Transformed dynamical reduced basis

As illustrated in Section 2.2.3, the dynamic RB method discussed previously has shown to
be interesting candidate when dealing with parameter-dependent transport dominated prob-
lems. We have considered, within the project PEPS DROME, to combine this approach with
adapted local basis, with respect to the parameter, for solving Equation (2.2.11). The idea
is to design reduced spaces spanned by local basis functions {φi(x, t; ξ)}ri=1 deduced from
{u(ϕi(x, t, ξ), t), t; ξi)}ri=1, which correspond to transformed snapshots of the solution for given
parameter instances with ϕ(·, t, ξ, ξi) : D → D a parameter-dependent space transformation at
the instant t. Then, the solution u(x, t, ξ) of Equation(2.2.11) is approximated by the following
rank-r approximation

u(x, t, ξ) ≈
r∑
i=1

αi(t, ξ)φi(x, t; ξ). (2.2.12)

From a physical viewpoint, a relevant choice is to derive the parameter-dependent transfor-
mations ϕ(ξ, ξi) from the characteristic associated with the hyperbolic system (2.2.11), such
that the approximation (2.2.12) captures well the features of the original solution. Such ap-
proximation is exact with r = 1 for parameter-dependent linear transport equation when the
space transformation ϕi(ξ, ξi) is a suitable chosen parameter and time dependent space shift
(see, e.g., [146, Example 3.6]). Thus, efficiently computing the transformed snapshots of the
trajectory of the true solution for given instances of the parameter is crucial in that context.

Reconstruction of finite volume solution from snapshots

In the paper [MBF16], we have focused on the design of a robust approximation for discon-
tinuous solutions generated by parameter-dependent linear hyperbolic systems. The proposed
approach is derived in Finite Volume (FV) framework where the snapshots consist of trajec-
tories of the numerical approximation provided by a known FV scheme. To this end, the
Reconstruct-Translate-Average (RTA) method have been introduced, which is inspired from
Godunov’s method also interpreted as Reconstruct-Evolve-Average (REA) [120]. The proposed
method is detailed and analyzed for one dimensional parameter-dependent linear scalar trans-
port equation, and an application to system of linear hyperbolic conservation laws is shown. In
that case, one snapshot is sufficient to approximate the FV solution for any parameter values.
This leads to a simple and efficient method that does not require any projection step neither
time stepping procedure. The proposed approach has been applied for the reconstruction of
solutions for the parameter-dependent transport problem and the wave equation.

2.2.5 Summary and discussion for future research
We have discussed previously projection-based model order reduction approach for the solution
of parameter-dependent dynamical systems. This generalizes classical reduced basis methods
with time-independent reduced spaces and performs better in practice. In particular, the pro-
posed T-Greedy provides smaller reduced spaces Vr(t) allowing reduced computational cost
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during the online stage.

Here are some some perspectives and questions that follow from the presented contributions.

Towards nonlinear approximation.

• Obviously the RTA approach proposed in [MBF16] is only a tool to compute efficiently
a robust approximation of the finite volume solution of linear conservation laws, for any
parameter values, from precomputed snapshots. It is a first step toward efficient nonlinear
ROM strategies, in particular to design dynamical RB method with adapted local basis in
finite volume framework e.g. from some precomputed dictionnary. In the lines of [34,146],
using RTA approach together with efficient strategies to compute both transformations
and reduced basis would be interesting for attacking general hyperbolic conservation laws.

• More generally, designing approximation methods for solving parameter-dependent evo-
lution equations has become an active field of research in the MOR community leading
to the emergence of nonlinear approximation methods. Beyond approximation relying on
transformed snapshots, many effort has also been put on finding suitable approximation
format for attacking the approximation of the solution itself but the question of construct-
ing such an approximation, when only the equation is available, remains a challenging
task. In this direction, recent approaches involving machine learning techniques such as
e.g. Neural Galerkin schemes [33], that are dynamical nonlinear approximation methods,
seem appealing.

Randomized linear algebra for dynamical reduced basis. Despite the proposed time-dependent
RB approach yields a significant reduction of online computation costs, it requires during the
offline step the storage of the whole trajectory of the snapshots as well as related reduced
quantities (matrices, error estimates etc.) which can be limiting for very large complex nu-
merical model. Recently, novel projection methods based on randomized linear algebra have
been proposed in [10,11]. The idea behind is to approximate the ROM from its random sketch,
which is a set of low-dimensional random projections of the reduced approximation space and
the spaces of associated residuals. An interesting fact is that such an approach can be used for
reducing both complexity and memory requirements of classical ROM approaches. Moreover,
it allows to provide sharp error estimates that can be computed efficiently [106, 150, 151] and
improve projection stability [10]. It would be of interest of extending such approaches within
the framework of dynamical RB proposed in this section for parameter and time dependent
problem.

2.3 Geometry based dynamical low-rank approximation

We now focus on low-rank approximation of time-dependent matricesA(t) ∈ Rn×m. Introducing
Ȧ(t) = d

dt
A(t) the time derivative, the matrix A(t) is defined as the solution of the following

matrix ODE
Ȧ(t) = F (A(t), t), A(0) = A0, (2.3.1)

given A0 ∈ Rn×m and F : Rn×m× [0, T ]→ Rn×m. In view of MOR, the goal of DLRA methods
methods is to approximate the solution A(t) of (2.3.1) with a matrix Z(t), cheaper to compute,
which belongs to the nonlinear manifold of fixed rank matrices

Mr(R
n×m) = {Z ∈ Rn×m : rank(Z) = r},
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where r � min(n,m) stands for the rank. When A(t) is known, Z(t) can be defined as the
best rank-r approximation solution of

Z(t) = arg min
W∈Mr(Rn×m)

‖A(t)−W‖, (2.3.2)

with ‖ · ‖ the Frobenius norm. In that case, Z is obtained through a truncated SVD of A(t) for
each instant t. Nevertheless, as A is implicitly given by (2.3.1), it is more relevant to introduce
low-rank approximation using Ȧ. To that goal, the approximation Z is classically obtained
through its derivative Ż which satisfies the Dirac-Frenkel variational principle

Ż(t) = arg min
δW∈TZ(t)Mr(Rn×m)

‖δW − F (Z(t), t)‖, (2.3.3)

given Z(0) = Z0 ∈ Mr(R
n×m) the best rank-r approximation of A(0) and TZ(t)Mr(R

n×m)

the tangent space to Mr(R
n×m) at Z(t). Equivalently, Ż(t) corresponds to the orthogonal

projection of F (Z(t), t) on the solution dependent tangent space, i.e.

Ż(t) = PTZ(t)F (Z(t), t), Z(0) = Z0, (2.3.4)

where PTZ denotes the projection onto TZ(t)Mr(R
n×m).

Towards numerics. One way to deal with the numerical integration of (2.3.4) is to use projection
based methods (see, e.g., [113]), in the lines of Riemaniann optimization. Such methods work
as follows. Perform one step of the numerical scheme (e.g. Runge Kutta) leaving Mr(R

n×m),
and then project back to it by means of retraction. This latter step is usually performed using a
r-terms truncated SVD. As these approaches work directly in the ambiant space Rn×m, they do
not exploit the geometry of the set of fixed rank matrices Mr(R

n×m). Following [114], we adopt
a second point of view and propose numerical integration of the differential equation (2.3.4)
using suitable geometric description of Mr(R

n×m) which requires to deals with the subsequent
difficulties.

1. The first difficulty relies on the proper geometric description of the set of fixed rank
matrices Mr(R

n×m). In practice, a way to compute the rank-r matrix Z(t) is done
through its parametrization

Z(t) = U(t)G(t)V (t)T , (2.3.5)

with U(t) ∈ Rn×r, V (t) ∈ Rm×r and G(t) ∈ Rr×r. Such a parametrization of the matrix
Z(t) is not unique. A way to dodge this undesirable property is to properly define
the tangent space TZ(t)Mr(R

n×m) imposing the so-called gauge conditions on U, V . In
that case, the matrix Z(t) admits a unique decomposition (see [114, Proposition 2.1]) of
the form (2.3.5). In addition, the system (2.3.4) results in a system ODEs driving the
evolution of the parameters U,G, V .

2. The second difficulty appears when numerical integration is performed for solving the
resulting system of ODEs governing the evolution of parameters U, V and G [114, 130].
In presence of small singular values for Z(t), the matrix G(t) may be ill-conditioned.
As consequence, classical integration schemes may be unstable for large rank and time
steps (see, e.g., [112, Section 2.1]). Moreover, in case of overapproximation, i.e. when the
approximation Z(t) has a rank r greater than the rank of the exact solution A(t), these
methods fail since G(t) becomes singular.

Using a chart based geometric description of Mr(R
n×m) relying on a natural parametrization of

matrices, we have proposed numerical integrator in local coordinates for solving (2.3.4), suitable
for MOR.

36



2.3.1 Geometry of the set of fixed-rank matrices

In what follows, we present briefly the geometric description of the fixed-rank matrix manifold
and the associated tangent space proposed in [MBF13].

Any matrix Z ∈Mr(R
n×m) can be represented (in non-unique way) by means of the factoriza-

tion
Z = UGV T , (2.3.6)

with U ∈ Mr(R
n×r), V ∈ Mr(R

m×r) and G ∈ GLr with GLr the Lie group of r × r invertible
matrices. We consider U⊥ ∈ Mn−r(Rn×(n−r)), V⊥ ∈ Mm−r(Rn×(m−r)), the matrices such that
UT
⊥U = 0 and V T

⊥ V = 0. The neighborhood UZ of Z in Mr(R
n×m) is defined as the set

UZ = {(U + U⊥X)H(V + V⊥Y )T : (X, Y,H) ∈ R(n−r)×r ×R(m−r)×r ×GLr}.

Mr(Rn×m)

Manifold

UZ

•
×

W = (U + U⊥X)H(V + V⊥Y )T

Z = UGV T

Parameters

(X,Y )

H •

(0, 0)

G×

(R(n−r)×r × R(m−r)×r)×GLr

θZ

Figure 2.3.1: Representation of the local chart θZ that associates to W = (U + U⊥X)H(V + V⊥Y )T in UZ ⊂
Mr(Rn×m) the parameters (X,Y,H) ∈ R(n−r)×r ×R(m−r)×r ×GLr .

We associate to the neighborhood UZ of Z the local chart θZ : UZ → R(n−r)×r×R(m−r)×r×GLr
(see Figure 2.3.1) which is given by

θZ(W ) = (U+
⊥W (V +)T (U+W (V +)T )−1, V +

⊥W
T (U+)T (V +W T (U+)T )−1, U+W (V +)T )

for any W ∈ UZ . Here U+ and V + stand for the Moore-Penrose pseudo-inverses 1 of U and
V respectively. This means that any matrix W belonging to the neighborhood UZ admits a
unique parametrization

W = (U + U⊥X)H(V + V⊥Y )T ,

with parameters (X, Y,H) ∈ R(n−r)×r × R(m−r)×r × GLr. In this description, the parameters
are not longer U, V,G but X, Y,H.

Such geometric description confers the set Mr(R
n×m) the structure of an analytic r(n+m− r)-

dimensional manifold. Moreover, Mr(R
n×m) is an analytic principal bundle with typical fiber

GLr and base2 Gr(R
n)×Gr(R

m) (see [MBF13, Theorem 7]).

We now define the tangent map at Z ∈Mr(Rn×m) noted TZi by

TZi : R(n−r)×r × R(m−r)×r × Rr×r → Rn×m,

(δX, δY, δH) 7→ U⊥δXGV
T + UG(V⊥δY )T + UδHV T .

1For any A ∈ Rn×m, the Moore-Penrose pseudo inverse is given by A = (ATA)−1AT .
2Here Gr(Rp) = {Vr ⊂ Rp : dim(Vr) = r} denotes the Grassmann manifold.
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Then, the tangent space to Mr(Rn×m) at Z is defined as the image through TZi of the tangent
space in the local coordinates in R(n−r)×r × R(m−r)×r × Rr×r

TZMr(Rn×m) = {U⊥δXGV T + UG(V⊥δY )T + UδGV T : δX ∈ R(n−r)×r, δY ∈ R(m−r)×r, δG ∈ Rr×r}.

As stated in [MBF13, Proposition 6], TZi is an isomorphism between TZMr(Rn×m) and R(n−r)×r×
R(m−r)×r×Rr×r. Thus, any tangent matrix δZ ∈ TZMr(R

n×m) admits a unique parametrization
of the form

δZ = TZi(δX, δY, δH) = U⊥δXGV
T + UG(V⊥δY )T + UδHV T , (2.3.7)

where (δX, δY, δH) ∈ R(n−r)×r × R(m−r)×r × Rr×r are uniquely given through

δX = U+
⊥ δZ(V +)TG−1,

δY = V +
⊥ δZ

T (U+)TG−T ,
δH = U+δZ(V +)T .

(2.3.8)

2.3.2 Dynamical low-rank approximation

In the context of dynamical low-rank approximation, we recall that Z is given through the
projected Equation (2.3.4). By definition of the tangent map (2.3.7), the tangent matrix is
given by Ż = TZi(Ẋ, Ẏ , Ḣ) where the parameters satisfies

(Ẋ, Ẏ , Ḣ) = TZi
−1 (PTZF (Z)) (2.3.9)

with
PTZF (Z) = P⊥U F (Z)P T

V + P T
U F (Z)(P⊥V )T + PUF (Z)P T

V .

Here PU = UU+, PV = V V + denote the projections associated to U, V respectively, and their
related orthogonal projections P⊥U = I−PU , P⊥V = I−PV . Equation (2.3.9) yields equivalently
to the following system of ODEs on the parameters:

Ẋ = U+
⊥F (Z)(V +)TG−1,

Ẏ = V +
⊥ F (Z)T (U+)TG−T ,

Ḣ = U+F (Z)(V +)T .

(2.3.10)

Unlike [114, Proposition 2.1], the proposed geometrical description allows to avoid the non
uniqueness of the parametrization (2.3.5) without imposing some gauge conditions a posteriori
trough the tangent space. More precisely, if we impose (U̇ , V̇ , Ġ) = (U⊥Ẋ, V⊥Ż, Ḣ) and assum-
ing that U, V orthogonal, our parametrization naturally fulfills the gauge conditions UT U̇ = 0
and V T V̇ = 0 and we recover the following system of ODEs [114] governing the evolution of
the factors U,G, V

U̇ = (I − UUT )F (Z)V G−1,

V̇ = (I − V V T )F (Z)TUG−T ,

Ġ = UTF (Z)V.

(2.3.11)

Remark 2.3.1. Let us remark that if F : Rn×m → Rn×m is a Cp is vector field then (2.3.1) admits
a unique maximal solution. With the proposed chart-based based description, the projected
dynamical system (2.3.9) inherits such properties. Indeed, TZi

−1PTZF : Rn×m → R(n−r)×r ×
R(m−r)×r × Rr×r is also a Cp vector field [78, Theorem 2.6, Theorem 3.5].
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2.3.3 Integration schemes

In seminal work [122], and more recently in [38, 39], projection-splitting integrators have been
proposed to deal with numerical integration of (2.3.4). They have the advantage to be accurate,
robust and stable independently of the rank r and do not need any regularization in case of
over-approximation. The integrator initially proposed in [122], is based on an explicit scheme
using a Lie-Trotter splitting of the projection operator PTZ(t)

. In addition to its simplicity,
it has the advantage to remains robust in case of small singular values and especially for
overapproximation as it avoids the inversion of G(t). Following the same idea, we have derived
in [MBF14] a first order numerical integrator in local coordinates for solving (2.3.4) that can
be interpreted as a splitting integrator.

Symmetric splitting method

We first consider the setting of the classical description [114]. To perform time integration, a
symmetric Lie-Trotter splitting method [122] is applied to Equation (2.3.3). This integration
scheme relies on a decomposition of the projection PTZ(t) as follows

PTZ(t) = Q1 −Q2 +Q3, (2.3.12)

where Q1, Q2 and Q3 are three projections respectively defined by

Q1A = AP T
V , Q2A = PUAP

T
V , Q3A = PUA, (2.3.13)

for any A ∈ Rn×m. Using this splitting, one integration step from t0 to t1 starting from the
factorized rank-r matrix Z0 = Z(t0) under the form Z0 = U0G0V

T
0 reads as follows.

1. Integrate on [t0, t1] the n× r matrix differential equation

d

dt
(UG) = F ((UG)V T )V, V̇ = 0,

with initial conditions (UG)(t0) = U0G0, V (t0) = V0. Then set U1 and Ĝ1 such that
U1Ĝ1 = (UG)(t1).

2. Integrate on [t0, t1] the r × r matrix differential equation

Ġ = −UTF (UGV T )V, U̇ = 0, V̇ = 0,

with initial conditions G(t0) = Ĝ1, U(t0) = U1, V (t0) = V0. Set G̃1 = G(t1).

3. Integrate on [t0, t1] the m× r matrix differential equation

d

dt
(V GT ) = F (U(V GT )T )TU, U̇ = 0,

with initial conditions (V G)T (t0) = V0G̃
T
1 , U(t0) = U1. Set V1 and G1 such that V1G

T
1 =

(V GT )(t1).

After these steps, the obtained approximation is Z(t1) = U1G1V
T

1 . Each step corresponds to
the integration of the right hand side of (2.3.4) associated to the projections Q1, Q2 and Q3

respectively (for details see [122, Lemma 3.1]).
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Chart based splitting method

In [MBF14], we have proposed a numerical integrator relying on the fibre bundle structure of
the manifold of fixed rank matrices. Thus, the guiding idea is to perform some update of the
parameters (X, Y,H), instead of (U,G, V ) directly, whose dynamic is governed by the system
of ODEs (2.3.10). Working in a fixed neighborhood UZ of Z, the matrices U, V,G are fixed and
Equation (2.3.10) writes equivalently

Ḣ = U+F (Z)(V +)T ,

ẊG = U+
⊥F (Z)(V +)T ,

Ẏ GT = V +
⊥ F (Z)T (U+)T .

(2.3.14)

Then, we integrate the system (2.3.14) from t0 to t1 in three steps. Letting U(t) = U(t0) +
U(t0)⊥X(t), V (t) = V (t0)+V (t0)⊥Y (t) and Z(t) = U(t)H(t)V (t)T , we start from (X(t0), Y (t0), H(t0)) =
(0, 0, G(t0)) and we proceed as follows.

1. Integrate on [t0, t1] the r × r matrix differential equation

Ḣ = U+F (Z)(V +)T , Ẋ = 0, Ẏ = 0,

with initial conditions X(t0) = 0, H(t0) = G(t0) and Y (t0) = 0. Set H1 = H(t1).

2. Integrate on [t0, t1] the n× r matrix differential equation

ẊH = U+
⊥F (Z)(V +)T , Ḣ = 0, Ẏ = 0,

with initial conditions X(t0) = 0, H(t0) = H1 and Y (t0) = 0. Then set X1 = X(t1).

3. Integrate on [t0, t1] the m× r matrix differential equation

Ẏ HT = V +
⊥ F (Z)T (U+)T , Ḣ = 0, Ẋ = 0.

with initial conditions X(t0) = X1, H(t0) = H1 and Y (t0) = 0. Then set Y1 = Y (t1).

After these three steps, we obtain an approximation Z(t1) := U1H1V
T

1 with U1 = U(t0) +
U(t0)⊥X1 and V1 = V (t0) + V (t0)⊥Y1.

The chart based method can be interpreted as a Lie-Trotter splitting that relies on the following
decomposition of the projection

PTZ(t) = P1 + P2 + P3, (2.3.15)

where P1, P2 and P3 are three projections respectively defined by

P1A = PUAP
T
V , P2A = P⊥U AP

T
V , P3A = PUA(P⊥V )T , (2.3.16)

for any A ∈ Rn×m. Here each term Pi of the projection is associated to the ODE solved at Step
i (see [MBF14, Appendix 1]).
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Comparaison of the two approaches

• The inversion of G in the symmetric splitting method (and H in the chart based split-
ting method) is avoided. This convenient choice allows to deal with the case of over-
approximation.

• The symmetric splitting and the chart based methods differ by the update order. Indeed,
the chart based method first updates H and then X, Y (or equivalently G and then U, V )
whereas the symmetric splitting updates UG, then G and finally V G. Moreover, Step
2 of the symmetric splitting method described in Section 2.3.3 can be interpreted as a
backward evolution problem that can be ill-conditionned, as pointed out in [9, Section 5].
In the chart based method, the update of G at Step 1 is still a forward evolution problem
due to our splitting choice.

• In practice, we provide practical formulation of those methods amenable for numerical
use. Explicit approximation of the flux is performed leading first order accurate schemes.
The two method are proven to coincide and are exact for matrix approximation [MBF14,
Lemma 3.11].

2.3.4 Numerical applications
We consider the approximation of the parameter-dependent Burger’s viscous equation in one
dimension. To that goal, let Ω × I = (0, 1) × [0, 1] be a space time domain. We seek u(ξ) the
solution of

∂tu(ξ)− µ(ξ)∂2
xxu(ξ) + u(ξ)∂xu(ξ) = f(ξ), on Ω× I, (2.3.17)

with the initial data u0(ξ) : Ω → R and supplemented with homogeneous Dirichlet boundary
conditions. The solution u(·; ξ) depends on the parameter ξ ∈ R3 through the viscosity µ(ξ) =
ξ1, the initial condition and the source term defined by means of the function f(ξ) : Ω× I → R

given by
f(x, t; ξ) = ξ2 exp(−(x− 0.2)2/0.032) sin(ξ2πt)1[0.1,0.3](x).

The problem (2.3.17) is semi-discretized in space by means of finite difference (FD) schemes
with n nodes and m instances of the parameter ξ such that we get the following dynamical
system

Ẋ(t) = LX(t) + h(X, t), X(0) = 0, (2.3.18)

with solution X(t) ∈ Rn×m. We denote L the operator obtained by tensorization of discrete
Laplacian and diagonal matrix obtained from m instances of ξ1. Moreover, we define the matrix
valued function h obtained by the discrete version of the first derivative.

In what follows we denote KSL the symmetric approach and chart based approach our approach.

Single parameter Burger’s problem

In this section, the parameter ξ1 takes its values in [0.01, 0.06] while the others are fixed to
ξ2 = 4 and ξ3 = 0. We chose the following initial condition

u0(x; ξ) = sin(xξ1)e−100(x−10ξ1)2

.

and set n = 100 and m = 60. For solving the matrix ODE given by Equation (2.3.18), we
first confront the chart based and KSL algorithms for various ranks, fixing ∆t = 10−4. The
approximations obtained are compared to a reference solution noted {Xk

ref}Kk=0 computed with
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an explicit Euler scheme with ∆t = 5.10−6.

On Figure 2.3.2, the evolution of ek = ‖Xk
ref − Zk‖ for both algorithms is studied for different

ranks. As we can observe, both methods seem to provide an approximation with similar ac-
curacy, except for ranks 15 and 20 where the chart based algorithm provides a slightly more
accurate approximation than the KSL algorithm.
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Figure 2.3.2: Burgers’s equation: evolution of ek for both algorithms for r ∈ {5, 8, 10, 12, 15, 20}.

This observation is confirmed by Figure 2.3.3 where we analyze the convergence with respect
to rank and time step. As we can see, the error eK = ‖XK

ref − ZK‖ decreases with respect to
the rank and time step, and is the smallest (by up to one order of magnitude) for the chart
based algorithm for larger rank.
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Figure 2.3.3: Burgers’s equation: error eK at final time for different (r,∆t).

Multiple varying parameters Burger’s problem

To conclude this section, we illustrate the behavior of the two methods for the case where ξ is a
vector of independent random parameters uniformly distributed on [0.01, 0.06]×[2, 4]×[0.01, 0.1]
with u0(x; ξ) = ξ3e

−100(x−10ξ2)2
. The numerical simulations are performed for m = 60 and

n = 100. Here, the two KSL and Chart methods are run with ∆t = 10−4 and compared to true
numerical reference solution {Xk

ref}Kk=0 obtained with the explicit Euler scheme with the same
time step. We represent on Figure 2.3.4 the approximation error at final time for the three
approaches with respect to r ∈ {5, 10, 12, 15, 20, 25, 30}. We clearly observe that the chart
method provides a better approximation than KSL for which the error seems to stagnate after
r ≥ 12.
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Figure 2.3.4: Burgers’s equation (multiple parameter case): error eK at final time for different r.

2.3.5 Summary and discussion for future research
We have introduced and compared some geometry based algorithms for dynamical low-rank
approximation. Using a different geometry description of the set of fixed rank matrices relying
on charts, we generalized the description of [114]. Then, from this description we derive a new
splitting algorithm motivated by fibre bundle structure of the manifold of fixed rank matrices.

Let us now outline some possible perspectives and applications.

Analysis of convergence order and stability of the splitting scheme. The presented results
demonstrate the feasibility of an alternative splitting naturally provided by the proposed ge-
ometric description. It would clearly be interesting to conduct further numerical experiments
and theoretical analysis, to better understand the differences with KSL splitting algorithm,
especially in term of accuracy with respect to time step and rank following [112] as well as a
study of the influence of backward/forward integration for G on the scheme stability in the
lines of [9, 110].

Alternating scheme relying on the fibre bundle structure of the set of fixed rank matrices.
The proposed splitting scheme is a first step towards designing new algorithms integrating the
geometric structure of the manifold of fixed rank matrices, by working in neighborhoods. Espe-
cially, deriving a numerical scheme working alternatively with the fiber and base, (with possible
parallelization as in [39] to enhance computation efficiency) should be interesting.

Toward adaptive DLRA. Presented methods compute low-rank approximations with a fixed
rank r. This choice, done a priori, may not be optimal at each time t. Especially if the
actual rank of X(t) varies with time (e.g. for applications arising from the discretization of a
particular PDE). This is a first reason why allowing the rank of the approximation to evolve
with time is interesting. Moreover, adapting the rank through the iterative process enables
some computational time saving. DLRA with rank adaptivity has been the object of recent
prospects. In [40] the authors propose a variant of the splitting integrator introduced in [39] with
an additional truncation step, to allow-rank adaptivity.

• To our knowledge, rank adaptivity is introduced at numerical level trough efficient al-
gorithms in view of preserving some particular features as : exactness, robustness or
symmetry properties. An interesting question concerns the possibility of formulating
an adaptive DRLA method based on a global optimization in a "dynamical" low-rank
manifold with suitable geometry description (e.g. integrating the rank).

• Finally, when considering the general case of tensors, as in [41, 60, 67, 147], one could
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imagine the development of adaptive algorithms for the construction of DLRA that adapts
dynamically not only the rank but also the tensor format, e.g., with dynamical choice of
tree-based formats.

Revisiting classical Riemannian optimization algorithm. To finish, let us mention that the
geometric description of the low-rank matrix manifold, proposed in [MBF13], was motivated
within the context of DLRA for parameter-dependent dynamical systems. However, it can
be carried over to optimization in the manifold of fixed rank matrices, in particular to revisit
classical Riemannian optimization algorithm. This has been object of investigation during the
internship of M. M. Abedin Nejad [3].
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Chapter 3
Approximation for PDEs with probabilistic interpretation

In the previous chapters, we focused on low-rank approximation methods for the MOR of com-
plex numerical models typically arising from the discretization of parameter-dependent PDEs.
Here, we consider another direction by addressing directly the problem of constructing an ap-
proximation of the solution of the considered PDEs (possibly parameter-dependent) using ap-
proaches that rely on pointwise evaluations (possibly noisy) of the function to approximate.

This chapter is organized as follows. After giving a brief discussion on probabilistic approxi-
mation methods in Section 3.1, we give required notations and results concerning Monte Carlo
method for estimating the solution of elliptic PDEs in Section 3.2. In section 3.3, we introduce
a probabilistic sparse polynomial interpolation methods to deal with high dimensional equations.
Then, in section 3.4, we discuss some probabilistic RB method for parameter dependent equa-
tions.

3.1 General context

In this chapter, we focus on computing an approximation of the solution u : D̄ → R of the
following continuous boundary problem (possibly parameter dependent)

−Au = g in D,
u = f on ∂D,

(3.1.1)

where D is an open bounded domain in Rd with boundary ∂D. Here, A is some linear elliptic
partial differential operator and the functions f : ∂D → R and g : D → R are the source and
boundary terms respectively. Here, we assume that u lies in V , some high dimensional vector
space.

3.1.1 Probabilistic approaches for approximation

When solving a problem of the form (3.1.1), standard numerical approaches (e.g. finite differ-
ence, finite element ...) are usually considered to provide a global approximation un of u, for a
given mesh of D, in a finite dimensional space Vn ⊂ V . Such methods meet their limit when
addressing parameter dependent problems, when many evaluations of the complex numerical
solution un is required, or are no longer suitable in high-dimension. As discussed in previous
chapters, approximations in low-rank tensor formats are good candidates to tackle those limi-
tations. Classically, the presented methods are deterministic and rely on projection principles
or optimization problems, that provide an approximation ur of the complex numerical solution
un in linear subspace Vr ⊂ Vn of small dimension. Here, we follow another path, by considering
probabilistic approaches, in the sense that they integrate some randomness, which only use
pointwise evaluations of u.
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Monte Carlo methods for approximation

Monte Carlo (MC) methods are well known to be efficient probabilistic approaches when com-
puting numerically an integral or an expectation (see, e.g., monographs [88, 89]), especially in
high dimension.

When turning to the computation of the solution of a PDE under the form (3.1.1), MC method
allows to provide an estimate of the solution u(x) at any point x ∈ D without suffering from
the curse of dimensionality. Such an estimate relies on the so-called Feynman-Kac probabilistic
representation formula. In brief, for any x ∈ D, u(x) can be interpreted as the expectation
of some given stochastic functional depending on the operator A and the data f, g. The main
limitations of such approaches are that they only provide pointwise estimates of u and may suffer
from slow convergence of MC estimate. To tackle the first limitation, it is possible to compute
approximations in a given approximation format through classical interpolation or regression
(see, e.g., [18, 19, 163]) within deep learning context. Let us mention, that it is also possible
to consider some general approximation setting relying on the minimization of an empirical
risk on a selected model class [68, 69]. The resulting method called variational Monte Carlo
method is shown to be applicable to a broad range of problems including e.g. approximation
using neural networks, or approximation in low-rank tensor format. Concerning the second
difficulty, variance reduction techniques (see Section 3.2) can be considered. In particular let
us mention that in [85,86], the authors have proposed to combine some polynomial interpolation
for reconstructing a global approximation un of u in some polynomial space Vn ⊂ V from MC
estimates, such that the approximation error en = u− un can be used as control variate during
some iterative procedure.

Probabilistic approaches within MOR

In MOR, various probabilistic approaches have recently emerged in view of improving the ef-
ficiency of the underlying methods either in term of their approximation properties or their
numerical complexity and stability.

Within the framework of RB method for parameter-dependent problems, the authors in [56]
have proposed a probabilistic greedy algorithm that uses, at each step, different training sets
with moderate cardinality, randomly chosen. In practice, the resulting method allows to deal
efficiently with high dimensional parametric problems. In [35], the authors derive a similar
probabilistic EIM using sequential sampling in the parameter set, which provides an inter-
polation with a prescribed precision with high probability. Probabilistic approaches can be
also used to provide numerically stable and efficient error estimates for low-rank approxima-
tions, see, e.g., [150, 151] for contributions using randomized (a posteriori) error estimates.
In [10, 11], this idea has been generalized within the framework of randomized linear algebra
to enhance the efficiency and stability of projection-based model order reduction methods for
solving parameter-dependent equations. In particular, it allows drastic computational savings.
Finally, let us also mention that a control variate using a reduced basis paradigm, has been
proposed in [26, 27] for MC estimate of the expectation of some parameter dependent random
variable.

3.1.2 Contributions

Within this chapter, our main concern is the development of probabilistic approximation meth-
ods, as previously discussed, that use on pointwise estimates, over D̄, of the solution u of (3.1.1).
To that goal, probabilistic interpretation of PDEs using the Feynman-Kac formula was the com-

46



mon thread in contributions [MBF12,MBF15,MBF17] within the PhD of A. Macherey [123]
supervised together with A. Nouy (LMJL, ECN) and C. Prieur (LJK, UGA). Especially, we
have followed two subsequent directions.

• From pointwise estimates of the solution u over D̄, we propose to compute a global
approximation through polynomial interpolation overcoming possible limitations due to
high dimension and slow convergence rates of Monte Carlo estimates.

• The idea is to propose a RB method in full sampling setting, i.e. that uses pointwise
estimates of the solution u over D for given instances of the parameter. In particular, we
propose a greedy algorithm using some probabilistic MC error estimate. In that case, the
difficulty is to perform such algorithm keeping a reasonable budget (for MC sampling) in
particular during the selection of the parameter and ensuring that the resulting procedure
is a weak greedy algorithm with high probability.

3.2 Monte Carlo methods for PDEs

In this section, we introduce essential ingredients and notations concerning numerical proba-
bilistic methods for PDEs that will be considered in the next sections. A deeper discussion on
that topic can be found e.g. in [88].

Notations. In what follows, (Ω,F,P) denotes a probability space, with Ω is the sample space, F
a σ-algebra and P a probability measure.

3.2.1 Monte Carlo methods

Let Z be a random variable with finite expectation E(Z) and variance V(Z). MC methods are
simple methods that compute an estimate of E(Z) through the empirical mean

Z̄M :=
1

M

M∑
m=1

Zm, (3.2.1)

where {Z1, . . . , ZM} are M independent random variables having the same distribution as Z.
It is well known, that Z̄M is an unbiased estimate that converges almost surely to E(Z), by
the strong law of large numbers. At this point, a natural question is to understand how good
is the estimate Z̄M for the expectation E(Z), in which sense (e.g. error bounds via confidence
interval, root mean square...) and as M →∞.

Error bounds via confidence intervals

It is possible to derive some asymptotic error bounds, through confidence intervals, of the error
|E(Z) − Z̄M |, as M → ∞. Using Central Limit theorem (other asymptotic controls are also

possible see [88, Chapter 2.3]), we get the following result. Let x ∈ (0, 1) and c(M,x) = zx

√
V̄M
M

with, we have
P
(
|ZM − E[Z]| ≤ c(M,x)

)
→ 1− x,

as M →∞. Here zx ∈ R satisfies F (zx) = 1−x/2 with F the cumulative distribution function
of the centered reduced normal distribution and V M = 1

M

∑M
m=1

(
Zm − ZM

)2 is the empirical
variance. This result means that for M large enough, the error is bounded by c(M,x) with a
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probability 1 − x. In practice, the question of how to choose M , to use these error bounds,
remains a delicate task. Alternatively, non-asymptotic error bounds, such that

P
(
|ZM − E[Z]| ≤ c(M,x)

)
≥ 1− x, (3.2.2)

is valid for any value ofM , are preferable. Some of this non-asymptotic error bounds are related
to concentration inequalities (e.g. Heoffding, Bernstein). We refer the interested reader to [28]
for a detailed overview.

Root mean square error and variance reduction techniques

Another relevant measure of the quality of the estimate (3.2.1) is given by

E(|E(Z)− Z̄M |2) = V(Z̄M) =
V(Z)

M
. (3.2.3)

This result says that Z̄M is an estimate of the expectation E(Z) for which the root mean square
error behaves like O(M−1/2). This show the limitations of the MC method that requires a large
number of samples of Z to converge. In practice, this may induce high computation cost when
the samples of Z are costly to compute (e.g. when Z is related to the evaluation of the solution
of a PDEs).

The so-called variance reduction methods [88, Chapter 3], are aimed at improving the vari-
ance in (3.2.3). Among these approaches, let mention the antithetic sampling, conditioning or
stratification and importance sampling methods. Some variance reduction methods use control
variate. They consist in using an additional centered square integrable random variable Y that
is simulated jointly with Z such that

Z̄c
M :=

1

M

M∑
m=1

(Zm − Ym), (3.2.4)

with {Y1, . . . , YM} is a M -sample of Y , is a new unbiased estimate of E(Z), that converges to
E(Z). In practice, Y is chosen such that the new estimate variance

V(Z̄c
M) = E(|E(Z)− Z̄c

M |2) =
V(Z − Y )

M
,

is smaller than V(Z). A possible optimal choice, is to seek Y as a linear combinaison of finite
number of random variables, that minimize E((Z − Y )2). This approach has been extended to
multilevel approaches that construct sequences of control variates via Multilevel Monte-Carlo
method (MLMC) (see survey [82]). Let us mention that other reduction variance approaches,
using control variates, have been also developed in the context of the numerical simulation of
PDEs, possibly parameter-dependent (see, e.g., [26, 85,86]).

3.2.2 Probabilistic representation of solution of PDEs

Notations. Let W = (Wt)t≥0 be a d-dimensional brownian motion, i.e. W = (W1, . . . ,Wd)
T

where each Wi, i = 1, . . . , d are independent standard brownian motions defined on (Ω,F,P)
endowed with its natural filtration (Ft)t≥0.

Given D be an open bounded domain in Rd, we consider the following boundary problem

−Au = g in D,

u = f on ∂D,
(3.2.5)
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with solution u : D → R and f : ∂D → R, g : D → R the boundary condition and source
terms, respectively. Here, we assume that A is linear and elliptic partial differential operator
given by

A =
1

2

d∑
i,j=1

(σσT )ij∂
2
xixj

+
d∑
i=1

bi∂xi . (3.2.6)

It corresponds to the infinitesimal generator associated to the d-dimensional diffusion process
Xx = (Xx

t )t≥0 which is the solution of the stochastic differential equation

dXx
t = b(Xx

t )dt+ σ(Xx
t )dWt, Xx

0 = x ∈ D, (3.2.7)

where b : Rd → Rd and σ : Rd → Rd×d are the drift and diffusion coefficients, respectively.

Before recalling Feynman-Kac formula, we first need to introduce additional assumptions and
notations. Denoting by ‖ · ‖ both euclidean norm on Rd and Frobenius norm on Rd×d, we
introduce the following assumption on b and σ.
Assumption 1 (A1). There exists a constant 0 < M < +∞ such that for all x, y ∈ D̄ we have

‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖ ≤M‖x− y‖, (3.2.8)

Under Assumption 1, by [57, Theorem 5.3], there exists an unique strong solution to the Equa-
tion (3.2.7).

Denoting a = σσT , we introduce the following uniform ellipticity assumption.
Assumption 2 (A2). There exists c > 0 such that

yTa(x)y ≥ c‖y‖2, y ∈ Rd, x ∈ D.

As problem (3.2.5) is defined on a bounded domain, we have to define the first exit time of D
for the process Xx as

τx = inf {s > 0 : Xx
s /∈ D} . (3.2.9)

Also, we assume some regularity property on the spatial domain D and data.
Assumption 3 (A3). The domain D is an open connected bounded domain of Rd, regular ac-
cording to the two following assumptions:

i)
P(τx = 0) = 1, x ∈ ∂D,

ii) each point of ∂D satisfies the exterior cone condition which means that, for all x ∈ ∂D,
there exists a finite right circular cone K, with vertex x, such that K ∩D = {x}.

Assumption 4 (A4). We assume that f is continuous on ∂D, g is Hölder-continuous on D.
The following probabilistic representation theorem [57, Theorem 2.4] holds.
Theorem 3.2.1 (Feynman-Kac formula). Under assumptions (A1)-(A4) there exists a unique
solution of (3.2.5) in C

(
D
)
∩ C2 (D), which satisfies for all x ∈ D

u(x) = E
(
f(Xx

τx) +

∫ τx

0

g(Xx
t )dt

)
, (3.2.10)

with Xx the stopped diffusion process solution of (3.2.7).
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3.2.3 Numerical estimation of the solution of a PDEs
We now discuss the numerical computation of an estimate of u(x). We perform a suitable
integration scheme, to get an approximation of the stopped diffusion process Xx with a MC
method to evaluate the expectation in formula (3.2.10).

Integration of diffusion process

An approximation of the diffusion process is obtained using an Euler-Maruyama scheme. More
precisely, setting tn = n∆t, n ∈ N, Xx is approximated by a piecewise constant process Xx,∆t,
where Xx,∆t

t = Xx,∆t
n for t ∈ [tn, tn+1[ and

Xx,∆t
n+1 = Xx,∆t

n + ∆t b(Xx,∆t
n ) + σ(Xx,∆t

n ) ∆Wn,

Xx,∆t
0 = x,

(3.2.11)

where ∆Wn = Wn+1 −Wn is an increment of the standard Brownian motion.

Numerical computation of u(x), for all x ∈ D̄, also requires the computation of a stopped
process Xx,∆t at τx,∆t an estimation of the first exit time of D. Here, we consider the simplest
way to define this discrete exit time

τx,∆t = min
{
tn > 0 : Xx,∆t

tn /∈ D
}
. (3.2.12)

Such a discretization choice may leads to over-estimation of the exit time with an error in
O(∆t1/2). More sophisticated approaches [88, Chapter 6] exist to improve the order of converge,
as Brownian bridge, boundary shifting or Walk On Sphere (WOS) methods.

Monte Carlo estimate

Letting {Xx,∆t(ωm)}Mm=1 be independent samples of Xx,∆t, we obtain an the MC estimate noted
u∆t,M(x) for u(x) defined as

u∆t,M(x) =
1

M

M∑
m=1

[
f(Xx,∆t

τx,∆t
(ωm)) +

∫ τx,∆t

0

g(Xx,∆t
t (ωm))dt

]
. (3.2.13)

Approximation error

Introducing the following pointwise estimate,

u∆t(x) = E

(
f(Xx,∆t

τx,∆t
) +

∫ τx,∆t

0

g(Xx,∆t
t )dt

)
,

the error is the sum of two contributions,

u(x)− u∆t,M(x) = u(x)− u∆t(x)︸ ︷︷ ︸
ε∆t

+u∆t(x)− u∆t,M(x)︸ ︷︷ ︸
εMC

, (3.2.14)

where ε∆t is the time integration error and εMC is the Monte-Carlo estimation error.

Under assumptions (A1)-(A4), in particular assumption (A3-ii) which ensures that D does not
have singular points, it can be proven [86, §4.1] that the time integration error ε∆t converges to
zero. It can be improved to O(∆t1/2) by adding differentiability assumptions on the boundary
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[87]. The estimation error εMC is a random variable with zero mean and standard deviation
converging as O(M−1/2). The computational complexity for computing a pointwise evaluation
of u∆t,M(x) is in O (M∆t−1) in expectation for ∆t sufficiently small , so that the computational
complexity for achieving a precision ε (root mean squared error) behaves as O(ε−4). This does
not allow to obtain a very high accuracy in a reasonable computational time. The convergence
with ∆t can be improved to O(∆t) by suitable boundary corrections [87], therefore yielding a
convergence in O(ε−3). Variance reduction methods, discussed in Section 3.2, can be used to
further improve the convergence.

3.3 High dimensional PDEs

Keeping the same notations as in Section 3.2.2, we assume that u : D̄ → R is solution of (3.2.5).
We recall that under the assumptions (A1)-(A4), u admits, by Theorem 3.2.1, the following
probabilistic representation

u(x) = E[F (u,Xx)] := E
(
u(Xx

τx)−
∫ τx

0

Au(Xx
t )dt

)
, x ∈ D̄

where F depends on the data of the problem and Xx is the stopped diffusion process solution
of Equation (3.2.7). An MC estimate of u(x) is

u∆t,M(x) :=
1

M

M∑
m=1

F
(
u,Xx,∆t(ωm)

)
.

with Xx,∆t the approximated stopped diffusion process obtained through Euler-Maruyama
scheme.

Within this section, we consider the problem of reconstructing a global approximation of the
solution u from pointwise estimates u∆t,M(x) for any x ∈ D̄. It is structured as follows. In
the Section 3.3.1, we discuss possible strategies for global reconstruction of a function from
pointwise evaluations. Then, we present the control variate method for high dimensional PDEs
proposed in [MBF12]. Some numerical experiments illustrating the behavior of the proposed
approach are given in Section 3.3.3.

3.3.1 Approximation from pointwise evaluations
We consider the problem of constructing a global approximation un of u, in some finite dimen-
sional linear space Vn ⊂ V , from pointwise evaluations of u at given points Γm = {x1, . . . , xm} ⊂
D with m ≥ n. Two projection based strategies are classically used to construct un namely :
the interpolation and least-squares methods.

Interpolation method

Well known interpolation methods include polynomial and spline interpolation as well as Krig-
ing. Let u be continuous and Γn be an unisolvent grid of interpolation points (here m = n)
for Vn, Lagrange interpolation methods aim at constructing the approximation un of u as the
unique function in Vn such that

un(xi) = u(xi), xi ∈ Γn.

Such an approximation satisfies the following error bound in L∞-norm

‖u− un‖∞ ≤ (1 + Ln) inf
v∈Vn
‖u− v‖∞,
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where Ln stands for the Lebesgue constant. The choice of the points Λn is crucial to control
the growth of the Lebesgue constant with respect to n. In dimension one, interpolation is
quite well understood for polynomial approximation (see, e.g., [107, 153]). In that context,
it is well known that taking uniformly distributed interpolation points leads to a Lebesgue
constant Ln that grows exponentialy with n. A suitable choice of interpolation points, is
the sequence of Chebyshev points for which Ln grows only logarithmically with n. When
turning to general multivariate domains with arbitrary linear approximation space (i.e. Vn is not
necessary polynomial space), a general procedure consists in selecting the interpolation points
by maximizing overDn of the determinant of the collocation matrix. This provides the sequence
of Fekete points, for which the Lebesgue constant grows linearly with n. However, it remains
computationally untractable in high dimension as it requires to solve a multivariate non convex
optimization problem. Another procedure, first proposed in the context of reduced basis [14],
is to select interpolation points in greedy fashion providing sequence of nested interpolations
points Γn ⊂ Γn+1. This method has a reasonable computational cost for moderate d and is
independent on n. The resulting interpolation points, called magic points [124] coincide, in the
univariate case for polynomial approximation, with Leja point. In that case, an upper bound of
Ln behaves quadratically with n. When turning to high dimensional problem, sparse polynomial
interpolation methods [49, 50] are suitable approaches that allow to construct adaptively the
sequence of interpolation point {Γn}n≥0 for which the Lebesgue constant behaves well and do
not suffer from the curse of dimensionality.

Least-square method

Let u be a fonction in L2
µ(D) with some probability measure µ on D. Least square fitting

methods construct the approximation un of u in Vn as solution of the following least square
regression problem

min
v∈Vn

m∑
i=1

|u(xi)− v(xi)|2 (3.3.1)

where the {x1, . . . , xm} is m-sample for the probability measure µ. The least squares method is
stable and accurate for large m large enough [53]. Weighted least squares have been proposed
to overcome this limitation. In that case, the approximation un is sought as the solution of

min
v∈Vn

m∑
i=1

w(xi)|u(xi)− v(xi)|2 (3.3.2)

where the w(xi) are some weights related to {x1, . . . , xm}. Here the xi are independent and
identically distributed copies of a new measure ρ. It is shown in [54], that for an optimal choice
of weight w and sampling measure ρ, stability and optimal accuracy are achieved if m scales
linearly with n up to an additional logarithmic factor. To that goal the weight w and sampling
measure ρ are given through the inverse Christoffel function that depends on the space Vn and
the measure µ. It can be boosted when the measure ρ is chosen so as to ensure the stability
of the weighted least-squares projection [100]. In that case, it has the advantage to requires a
sample of size close to the ideal m = n, as for interpolation.

3.3.2 Control variate method for high dimensional PDEs

We seek a global approximation of u from pointwise estimates u∆t,M(x) for any x ∈ D̄. In that
context, we have proposed in [MBF12] algorithms that combine the variance reduction method
proposed in [85,86] with adaptive sparse polynomial interpolation [49,50] for approximation of
u for high-dimensional problem.
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Notations. Let Λ ⊂ Nd be a finite set of multi-indices and VΛ ⊂ C2(D) an approximation
space of finite dimension #Λ and let IΛ : RD → VΛ be the interpolation operator associated
with an unisolvent grid ΓΛ = {xν : ν ∈ Λ}. We let {ϕν}ν∈Λ denote the (unique) basis of
VΛ that satisfies the interpolation property ϕν(xµ) = δνµ for all ν, µ ∈ Λ. The interpolation
IΛ(w) =

∑
ν∈Λw(xν)ϕν(x) of function w is then the unique function in VΛ such that

IΛ(w)(xν) = w(xν), ν ∈ Λ.

A sequential control variate method

The sequential control variate procedure of [85] provides a sequence of approximations {ũk}k≥1

of u in VΛ, which are defined for all k ≥ 1 by ũk = ũk−1 + ẽk, where ẽk is an approximation of
ek, solution of

−A(ek)(x) = g(x) + A(uk−1)(x), x ∈ D,
ek(x) = f(x)− uk−1(x), x ∈ ∂D.

Note that ek admits a Feyman-Kac representation ek(x) = E(F (ek, Xx)), where F (ek, Xx)
depends on the residuals g + A(uk−1) on D and f − uk−1 on ∂D. Here, the approximation

ẽk = IΛ(ek∆t,M)

is defined as the interpolation of the Monte-Carlo estimate ek∆t,M(x) of ek∆t(x) = E(F (ek, Xx,∆t))
(using M samples of Xx,∆t).

Now, let us introduce the time integration error at point x for a function h

e∆t(h, x) = E[F (h,X∆t,x)]− E[F (h,Xx)].

Then the following theorem [MBF12, Theorem 2] gives a control of the error ũk+1(xν)− u(xν)
in expectation at step k of the control variate algorithm.
Theorem 3.3.1. Assuming (A2)-(A4), it holds

sup
ν∈Λ

∣∣E [ũk+1(xν)− u(xν)
]∣∣ 6 C(∆t,Λ) sup

ν∈Λ

∣∣E [ũk(xν)− u(xν)
]∣∣+ C1(∆t,Λ)

with C(∆t,Λ) = sup
ν∈Λ

∑
µ∈Λ

|e∆t(lµ, xν)| and C1(∆t,Λ) = supν∈Λ

∣∣e∆t(u− IΛ(u), xν)
∣∣.

Moreover if C(∆t,Λ) < 1, it holds

lim sup
n→∞

sup
ν∈Λ

∣∣E [ũk(xν)− u(xν)
]∣∣ 6 C1(∆t,Λ)

1− C(∆t,Λ)
. (3.3.3)

For ∆t sufficiently small (i.e. under the condition C(∆t,Λ) < 1), the error at interpolation
points uniformly converges geometrically up to a threshold term depending on time integration
errors for interpolation functions lν and the interpolation error u− IΛ(u).

Theorem 3.3.1 can be extended [MBF12, Corollary 1] to provide a convergence result in L∞(D)
using Lebesgue constants in L∞-norm associated to IΛ.
Corollary 3.3.2 (Convergence in L∞). Assuming (A2)-(A4), it holds

lim sup
n→∞

‖E
[
ũk − u

]
‖∞ 6

C1(∆t,Λ)

1− C(∆t,Λ)
LΛ + ‖u− IΛ(u)‖∞, (3.3.4)

with the Lebesgue constant LΛ = supx∈D
∑

ν∈Λ |ϕν(x)|.
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Adaptive sparse (polynomial) interpolation

When D admits some cartesian product structure, multivariate interpolation can be performed
on tensor product of univariate bases. For high dimensional problems, there can be some
advantage in considering approximation spaces that are sparse and anisotropic with respect
to the different variables. To that goal, adaptive selection of the interpolation points can be
envisaged. In such a procedure the set of interpolation points is successively enriched, as the
polynomial dimension increases, at different stages of the computation. In what follows, we
recall in brief the main elements of sparse polynomial interpolation following [49,50].

Notations Here, we assume that the function to interpolate u is defined on D = D1× . . .×Dd,
where the Dk are open bounded intervals of R. For 1 ≤ i ≤ d, we consider {ϕ(i)

k }k∈N where the
ϕ

(i)
k are univariate polynomial of degree k defined on Di. For a multi-index ν = (ν1, . . . , νd) ∈
Nd, we introduce the multivariate function

ϕν(x) =
d∏
i=1

ϕ(i)
νi

(xi).

Let Λ ⊂ Nd downward closed i.e. for all ν ∈ Λ, such that µ ≤ ν then µ ∈ Λ. To define a
set of points ΓΛ unisolvent for PΛ, we can proceed as follows. For each dimension 1 ≤ i ≤ d,
we introduce a sequence of points {z(i)

k }k∈N in Di such that for any p ≥ 0, Γ
(i)
p = {z(i)

k }pk=0 is
unisolvent for Pp = span{ϕ(i)

k : 0 ≤ k ≤ p} (therefore defining an interpolation operator I(i)
p ).

Then we let
ΓΛ = {zν = (z(1)

ν1
, . . . , z(d)

νd
) : ν ∈ Λ} ⊂ D.

Main idea The goal of sparse interpolation is to provide a sequence of approximations {IΛn(u)}n≥1,
in increasing polynomial spaces {PΛn}n≥1, associated with a nested sequence of downward closed
subsets {Λn}n≥1. The sequence of downward closed subsets (Λn)n≥1 is selected such that the
best approximation error and the Lebesgue constant satisfy

LΛn inf
w∈PΛn

‖u− w‖∞ → 0, as n→∞.

In practice, sparse interpolation algorithm with bulk chasing procedure introduced in [48] pro-
vides a practical algorithm that constructs a good sequence of sets Λn.

Proposed algorithms

We have proposed (see [MBF12] for details) two algorithms combining sparse adaptive interpo-
lation and sequential control variate procedure discussed previously. Here we give the general
guidelines of the proposed algorithms.

1. The first algorithm called Perturbed Adaptive Sparse Interpolation algorithm. It is a
perturbed version of the sparse adaptive algorithm where at each step n the computation
of the exact interpolant IΛn(u) from u(xν) is replaced by an approximation denoted un
in Vn = PΛn based on MC estimate u∆t,M(xν). In particular, this approximation approx-
imation is computed with the sequential control variate procedure stopped for a given
number of iterations or according to some stopping criterion.

2. As a second algorithm, we consider an Adaptive Sequential Control Variates algorithm
where an approximation eknk of ek is obtained by applying the adaptive interpolation
algorithm to the function ek∆t,M , which uses Monte-Carlo estimations ek∆t,M(xν) of ek(xν) at
interpolation points. At each iteration, eknk therefore belongs to a different approximation
space Vnk = PΛnk

.
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3.3.3 Numerical applications
In this section, we give a short illustration of the behavior of the perturbed adaptive sparse
algorithm for polynomial interpolation in high dimension. A detailed study of the different
algorithms discussed previously is available in [MBF12, Section 4.3].

Let us consider the following simple diffusion equation

−4u(x) = g(x), x ∈ D,
u(x) = f(x), x ∈ ∂D, (3.3.5)

were D =] − 1, 1[d. The source terms and boundary conditions will be specified later for each
test case. The stochastic differential equation associated to (3.3.5) is the following

dXx
t =
√

2dWt, Xx
0 = x, (3.3.6)

where (Wt)t≥0 is a d-dimensional Brownian motion. We use tensorized grids of magic points
for the selection of interpolation points evolved in adaptive algorithms.

We consider two test cases noted respectively (TC1) and (TC2).

(TC1) As first test case in dimension d = 10, we define (3.3.5) such that its solution is the
Henon-Heiles potential

u(x) =
1

2

d∑
i=1

x2
i + 0.2

d−1∑
i=1

(
xix

2
i+1 − x3

i

)
+ 2.5 10−3

d−1∑
i=1

(
x2
i + x2

i+1

)2
, x ∈ D.

(TC2) We also consider the problem (3.3.5) whose exact solution is a sum of non-polynomial
functions in dimension d = 20, given by

u(x) = x2
1 + sin(x12) + exp(x5) + sin(x15)(x8 + 1).

MC estimate are computed for (∆t,M) = 10−4, 1000) and use set to 30 the maximal number
of iterates in the controle variate procedure. Since for both test cases the exact solution is
known, we propose to compare the behavior exact and perturbed sparse adaptive algorithms.
In Table 3.1 and Table 3.2, we summarize the results associated to both algorithms for (TC1)
and (TC2) respectively. We observe that the perturbed sparse adaptive algorithm performs
well in comparison to sparse adaptive algorithm, for (TC1). Indeed, we get an approximation
with a precision below the prescribed value ε for both algorithms.

#Λn ‖u− IΛn(u)‖∞ ‖u− IΛn(u)‖2 #Λn ‖u− un‖∞ ‖u− un‖2

1 3.0151e+00 1.2094e+00 1 8.3958e-01 6.9168e-01
17 1.8876e+00 5.9579e-01 17 5.2498e-01 3.4420e-01
36 7.0219e-01 2.0016e-01 36 1.9209e-01 1.2594e-01
46 1.6715e-01 4.9736e-02 46 4.6904e-02 2.8524e-02
53 2.9343e-02 4.8820e-03 53 7.8754e-03 2.8960e-03
60 1.5475e-02 4.1979e-03 61 3.0365e-03 1.7610e-03
71 8.4575e-03 2.1450e-03 71 2.3486e-03 1.2395e-03
77 3.9968e-15 1.5784e-15 77 6.2172e-15 1.2874e-15

Table 3.1: (TC1) Comparison of sparse adaptive algorithm (first four columns) and perturbed
sparse adaptive algorithm (last four columns).
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Similar observation holds for (TC2) in Table 3.2 and this despite the fact that the test case
involves higher dimensional problem.

#Λn ‖u− IΛn(u)‖∞ ‖u− IΛn(u)‖2 #Λn ‖u− un‖∞ ‖u− un‖2

1 3.9361e+00 1.2194e+00 1 7.2832e-01 7.0771e-01
6 2.2705e+00 5.4886e-01 6 2.7579e-01 5.1539e-01
11 2.8669e-01 1.0829e-01 11 4.4614e-02 4.1973e-02
15 1.6425e-01 4.7394e-02 15 1.5567e-02 2.5650e-02
20 2.7715e-03 7.2230e-04 20 5.6927e-04 5.3597e-04
24 1.5564e-04 7.5314e-05 24 2.5952e-05 3.0835e-05
30 8.0838e-06 2.1924e-06 30 2.8808e-06 1.9451e-06
35 8.9815e-08 2.4651e-08 35 2.1927e-08 1.5127e-08
40 2.0152e-09 6.9097e-10 40 2.8455e-10 2.6952e-10
45 2.4783e-10 4.1600e-11 45 3.3188e-11 1.7911e-11
49 4.6274e-13 8.5980e-14 49 8.6362e-14 5.0992e-14
54 2.2681e-13 3.1952e-14 54 4.8142e-14 2.6617e-14
56 8.4376e-15 3.0438e-15 56 8.4376e-15 6.3039e-15

Table 3.2: (TC2) Comparison of sparse adaptive algorithm (first four columns) and perturbed
sparse adaptive algorithm (last four columns).

3.4 Parameter-dependent PDEs

Now, we consider a parameter-dependent variant of the model problem (3.2.5). Let Ξ ⊂ Rp be
a set of parameter. Keeping the same notations as in Section 3.2, the problem of interest is

−A(ξ)u(ξ) = g(ξ), in D,
u(ξ) = f(ξ), on ∂D, (3.4.1)

where the boundary and source terms f and g as well as the linear elliptic operator A (through
the coefficients b, σ in (3.2.6)), depend on ξ. Also, we assume that, for any ξ ∈ Ξ, there is a
unique solution u(ξ) to (3.4.1). Moreover, if for all parameter ξ ∈ Ξ, the assumptions (A1)-(A4)
are fulfilled, by Theorem 3.2.1, the solution u(ξ) admits a probabilistic representation under
the form

u(x, ξ) = E
(
F (x,Xx,ξ, ξ)

)
:= E

(
f(Xx,ξ

τx,ξ
, ξ) +

∫ τx,ξ

0

g(Xx,ξ
t , ξ)dt

)
, x ∈ D̄. (3.4.2)

Here, Xx,ξ is a parameter-dependent diffusion process, defined for all t ≥ 0 by

Xx,ξ
t = Xx,ξ

0 +

∫ t

0

b(Xx,ξ
s , ξ)ds+

∫ t

0

σ(Xx,ξ
s , ξ)dWs, Xx,ξ

0 = x ∈ D, (3.4.3)

where W stands for the standard brownian motion. A MC estimate of u(x, ξ) is then

u∆t,M(x, ξ) :=
1

M

M∑
m=1

F (x,Xx,∆,ξ(ωm), ξ), (3.4.4)

for m-independent realisations of Xx,∆,ξ the approximated diffusion process obtained through
Euler-Maruyama scheme.
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This section concerns the approximation of the solution manifold M = {u(ξ) : ξ ∈ Ξ}. First,
we motivate a probabilistic RB method in full sampling setting in Section 3.4.1. It leads us to
consider some probabilistic greedy procedure with a bandit algorithm for the selection of a new
snapshot detailed in Section 3.4.2.

Here, we present some working directions and preliminary results obtained in [123]. Prac-
tical implementation and numerical illustrations are under consideration for future publica-
tion [MBF17].

3.4.1 Sample based probabilistic reduced basis method

Notations. Throughout this section, we assume that u(ξ) belongs to V ⊂ L2(D) a Hilbert space
equipped with its inner product 〈·, ·〉V and the related norm ‖ · ‖V .

Classical framework

We recall that RB method (see Section 1.3) is aimed at providing a low-rank approximation
ur of u in a low-dimensional subspace Vr ⊂ V , of small dimension r, following two steps: the
offline and online stages.

During the offline step, the reduced basis space Vr is deduced from snapshots of u computed
for r instances of the parameter ξ selected in a training set Ξ̃ ⊂ Ξ using a greedy procedure
relying on some computable error estimate ∆(ur(ξ), ξ). It is summarized in Algorithm 3.4.1.
Algorithm 3.4.1 (Deterministic greedy algorithm). Let Ξ̃ ⊂ Ξ be a finite training set and V0 =
{0}. For r ≥ 1 proceed as follows.

(Step 1.) Select
ξr ∈ arg max

ξ∈Ξ̃
∆(ur−1(ξ), ξ).

(Step 2.) Compute u(ξr) and update Vr = span{u(ξ1), . . . , u(ξr)}.

Usually, the Algorithm 3.4.1 is stopped when ∆(ur−1(ξ), ξ) is below some target precision ε > 0
or for a given space dimension r. Then, during the offline stage, ur is computed as an approx-
imation of u through suitable projection in Vr at low complexity depending only on r.

We recall that, if the projection ur ∈ Vr satisfies the following quasi-optimality condition

‖u(ξ)− ur(ξ)‖V ≤ C‖u(ξ)− PVru(ξ)‖V , ξ ∈ Ξ (3.4.5)

for some constant C independent from Vr and ξ, and if the error estimate ∆(ur(ξ), ξ) is chosen
such that

‖u(ξr)− PVru(ξr)‖V ≥ γ sup
ξ∈Ξ̃

‖u(ξ)− PVru(ξ)‖V , γ ∈ (0, 1], (3.4.6)

thus the Algorithm 3.4.1 is a weak greedy algorithm with respect to the discrete solution man-
ifold K̃ = {u(ξ) : ξ ∈ Ξ̃}.

Probabilistic and sample based framework

As the exact solution u(ξ) of (3.4.1) is not computable in general, a numerical approximation
un(ξ) in a finite dimensional subspace Vn ⊂ V is usually considered. It is usually related to some
discretization a priori for a given mesh ofD of the boundary problem (3.4.1). Instead, we assume
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that we can only compute pointwise estimates u∆t,M(x, ξ) of u(x, ξ) for any (x, ξ) ∈ Ξ×D. In
view of practical applications, it rises several questions listed below.

1) How to compute the snapshots required for generating the reduced spaces Vr and the ap-
proximation ur ?

2) How to choose a computable error estimator ∆(ur(ξ), ξ) in Algorithm 3.4.1 ?

The first point could be addressed by computing a snapshot as a global approximation un(ξ)
over D obtained through suitable projection in some finite dimensional vector space Vn ⊂ V ,
from pointwise estimate u∆t,M(x, ξ). To that goal we can, for example, consider a least-square
or interpolation procedure in polynomial space as discussed in Section 3.3. Following the same
path, it is possible to compute ur(ξ) the approximation of u(ξ) in Vr. At this step, the goal is to
compute such a projection using a small number of samples in comparison to seeking directly
an approximation un(ξ) in some approximation space Vn.

Concerning the second point, the error estimate ∆(ur(ξ), ξ) required in Algorithm 3.4.1 is
usually related to some norm of the equation residual in classical RB methods (see Section
1.3.1). Here, we follows another path by considering the L2-norm of the current approximation
error er(ξ) = u(ξ)− ur(ξ) i.e.

∆(ur(ξ), ξ) = ‖er(ξ)‖2
L2 .

By construction, ur(ξ) is a linear approximation in Vr, regular enough (inherited from the
snapshots), so that er(ξ) can be written as the solution, for all ξ in Ξ, of

−A(ξ)er(ξ) = gr(ξ) on D,

er(ξ) = fr(ξ) on ∂D,
(3.4.7)

where fr(ξ) := f(ξ) − ur(ξ) and gr(ξ) = g(ξ) + A(ξ)ur(ξ). By Theorem 3.2.1 for all ξ in Ξ,
er(ξ) is the unique solution of (3.4.7) in C(D) ∩ C2(D) and satisfies for all x ∈ D

er(x, ξ) = E
(
Fr(x,X

x,ξ, ξ)
)

= E

(
fr(X

x,ξ
τx,ξ

, ξ) +

∫ τx,ξ

0

gr(X
x,ξ
t , ξ)dt

)
. (3.4.8)

Then, we have [123, Theorem 5.7] the following probabilistic reinterpretation of ‖er(ξ)‖2
L2 .

Theorem 3.4.2. Taking Y ∼ U(D) uniformly distributed on D, we have for any ξ in Ξ

‖er(ξ)‖2
L2 = |D|E (Zr(ξ)) . (3.4.9)

Here Zr(ξ) = Fr(Y,X
Y,ξ, ξ)Fr(Y, X̃

Y,ξ, ξ) where Xx,ξ and X̃x,ξ are two i.i.d random stopped
diffusion processes solution of (3.4.3), for any x ∈ D̄, and |D| is the Lebesgue measure of D.

3.4.2 Probabilistic greedy algorithm
In this section, we present and analyze a probabilistic variant of Algorithm 3.4.1, in general
setting, motivated by the applications discussed in the previous section. As a starting point,
we assume that the error estimator required at the r-th iteration is under the form

∆(ur(ξ), ξ) := ‖u(ξ)− ur(ξ)‖2
V = E(Zr(ξ)), (3.4.10)

where Zr(ξ) is some parameter-dependent real valued random variable, defined on the proba-
bility space (Ω,F,P). Solving the following optimization problem,

ξr ∈ arg max
ξ∈Ξ̃

E(Zr−1(ξ)), (3.4.11)
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at step r of Algorithm 3.4.1, is in general out of reach, since E(Zr−1(ξ)) is unknown a priori or
too costly to compute.

In view of numerical applications, a first practical and naive approach is to seek ξr as the max-
imum of a crude MC estimate (empirical mean) of E(Zr−1(ξ)) , computed using i.i.d. samples
of Zr−1(ξ), ξ ∈ Ξ̃. Despite its simplicity, we have seen that such an estimate for the expectation
suffers from low convergence with respect to the number of samples leading to possible high
computational costs especially here where Zr−1(ξ) can be expensive to evaluate. Moreover,
nothing ensures that returned (random) parameter ξr is a (quasi-)optimum for (3.4.11), almost
surely or at least with high probability.

Probably Approximately Correct maximum

Instead, the so-called bandit algorithms (see, e.g., monograph [119]) are good candidates to
address (3.4.11). In particular probably approximately correct (PAC) bandit algorithms are
designed not to return an optimum almost surely but a quasi-optimum, either in absolute or
relative precision, with high probability. Here, we particularly focus on PAC bandit algorithms
that return ξr (random) as a PAC maximum in relative precision for E(Zr(ξ)) over Ξ̃, i.e.,

P (E(Zr−1(ξ?r ))− E(Zr−1(ξr)) ≤ εE(Zr−1(ξ?r ))) ≥ 1− λ, (3.4.12)

for any prescribed threshold ε in (0, 1), probability of failure λ in (0, 1) and

ξ?r ∈ arg max
ξ∈Ξ̃

E[Zr−1(ξ)].

In what follows, we denote ξr := PACλ,ε(Zr−1, Ξ̃) a PAC maximum in relative precision for
(3.4.11), if it satisfies (3.4.12).

Practical algorithms Classical PAC bandit algorithms are aimed at returning a PAC maximum
in absolute precision [6]. Here, we are rather interested in having a PAC maximum in relative
precision as proposed in [MBF15]. In this paper, we studied two variants : a naive and an
adaptive one. The interest of the adaptive algorithm is that it outperforms the mean complexity
of the naive algorithm in terms of number of required samples. Such an algorithm preferentially
samples the random variable Zr(ξ) for the parameter values for which it is more likely to find
a maximum. Thus it is particularly well suited for applications with high sampling cost. Both
algorithms have been proven [MBF15, Propositions 3.1 & 3.2] to provide PAC solution in
relative precision for a family of random variables {Zr(ξ), ξ ∈ Ξ̃}, indexed by ξ, satisfying
suitable concentration inequalities under the form (3.2.2).

A weak greedy algorithm with high probability

Now, we present a probabilistic weak greedy algorithm where the parameter ξr is a PAC max-
imum in relative precision at each step r.

Algorithm 3.4.3 (Probabilistic greedy algorithm). Let Ξ̃ ⊂ Ξ be a discrete training set and
(λr)r≥1 ⊂ (0, 1). Starting from V0 = {0}, proceed, for r ≥ 1, as follows.

(Step 1.) Select
ξr := PACλr,ε(Zr−1, Ξ̃)

(Step 2.) Compute u(ξr) and update Vr = span{u(ξ1), . . . , u(ξr)}.
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We have proven in [123, Chapter 5] that Algorithm 3.4.3 is a weak greedy algorithm with high
probability.
Theorem 3.4.4. Take (λr)r≥1 ∈ (0, 1) such that

∑
r≥1 λr = λ < 1, ε ∈ (0, 1) and Ξ̃ ⊂ Ξ

a discrete training set. Moreover, suppose that for r ≥ 1, the approximation ur of u in Vr
satisfies the following quasi-optimality condition (3.4.5). Then, Algorithm 3.4.3 is a weak-
greedy algorithm of parameter

√
1−ε
C

, with probability at least 1− λ i.e.

P
(
‖u(ξr)− PVr−1u(ξr)‖V ≥

√
1− ε
C

max
ξ∈Ξ̃
‖u(ξ)− PVr−1u(ξ)‖V ,∀r ≥ 1

)
≥ 1− λ. (3.4.13)

General comments

• At a step r of the Algorithm 3.4.3, the reduced space Vr = span{u(ξ1), . . . , u(ξr)}, as well
as the approximation ur(ξ) are no longer deterministic. Indeed, they are related to the
selected parameters ξ1, . . . , ξr depending themselves on the errors at the previous steps
through i.i.d. samples of the random variables Zi(ξ) for all ξ ∈ Ξ̃ and i < r (required
during PAC selection of ξr). Thus, the result stated in Theorem 3.4.4 holds with high
probability instead of with certainty, which is the price to pay when introducing some
randomness in the greedy procedure. Especially, it demonstrates that Algorithm 3.4.3
is a weak greedy algorithm, with high probability, with respect to the discrete solution
manifold K̃ = {u(ξ) : ξ ∈ Ξ̃}.

• In the lines of [56], it is also possible to consider a fully probabilistic variant of Algorithm
3.4.3, in which a training set Ξr randomly chosen is used at each step r of Algorithm
3.4.3 instead of Ξ̃. For a particular class of functions, of ξ, that can be approximated by
polynomials with a certain algebraic rate, it can be proven that, for suitable chosen size
of random training set Ξr, the resulting algorithm is a weak greedy algorithm with high
probability with respect to the continuous solution manifold K = {u(ξ) : ξ ∈ Ξ} (some
elements of proof are given in [123, Chapter 5]).

3.5 Summary and discussion for future research

In this chapter, we have addressed the problem of approximating the solution of PDEs, whose
solution admits a probabilistic representation. Within this framework, we have proposed a
probabilistic sparse interpolation method for high dimensional problems.

Ongoing work concerns some probabilistic reduced basis method using samples of the function
to approximate. Beyond the validation of the proposed approach, one pending and challenging
question that originally motivated this work concerns the feasibility of such an approach for
parameter-dependent problems in high dimension.

In what follows we give additional elements concerning possible extensions to these contribu-
tions.

Learning approaches with tensor using F-K representation for PDEs. Several recent works on
developing algorithms that are learning approaches in tensor format i.e. that use random and
unstructured evaluation of the function to approximate have been proposed see e.g. [93,101,136]
or [68]. Within this framework, an interesting idea would be to combine it with Feynman-Kac
pointwise estimations of the solution to perform suitable approximation of high dimensional
PDEs.
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Applications of the probabilistic reduced basis framework. The approach, discussed in Sec-
tion 3.4.1, has been motivated by the solution of PDEs with probabilistic representation. It is
none the less usable for the general problem of approximating any family of functions (possibly
random) {u(ξ) : ξ ∈ Ξ}, indexed by the parameter ξ. In particular, if u(ξ) is known a priori
but costly to evaluate, the proposed probabilistic greedy algorithm can be used to generate
a sequence of spaces Vr and corresponding interpolant ur of u onto Vr. Then, the proposed
method leads to a probabilistic EIM as in [35]. In particular, in a fully discrete setting, u can
be identified with a matrix and the resulting algorithm is a probabilistic version of adaptive
cross approximation for low-rank matrix approximation [15,157], where the proposed PAC ban-
dit algorithm provides a particular column-selection strategy that sparsely explores the matrix
entries.

Time dependent problems. The proposed approaches were mainly applied for the approxima-
tion of linear (parameter-dependent) elliptic problems. However, Feynman-Kac representation
formula still holds for parabolic problems (see e.g. [57, 88]). Thus, applying for example the
proposed interpolation method, or a learning approach with low-rank tensor format as previ-
ously discussed, for dealing with time dependent high-dimensional and/or parameter-dependent
problem approaches is straight-forward. However, extending the presented probabilistic and
sampling based RB paradigm for time-dependent and parameter-dependent problems (as dis-
cussed in Chapter 2) is a challenging and open question.
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Past research contributions

In this chapter we give a concise summary of the contributions [MBF2,MBF4,MBF3,MBF5,
MBF6,MBF7] concerning the development of numerical methods for the simulation of multi-
component or multi-phase flows.

Compressible-incompressible interface flows

In the literature, several approaches are available to treat diphasic flows constituted of im-
miscible gaz and liquid. Some of them consider both fluids as e.g. incompressible [183] or
compressible [186]. However, in one approach the one does not ensure the volume variation of
the gaz whereas the second does not respect the volume conservation of the liquid. As [171],
we consider an approach that consider the gaz as compressible fluid and the liquid as an incom-
pressible fluid. To deal numerically with such interface flows, one faces at least to the following
difficulties: (1) transition from a gas density linked to the local temperature and pressure by
an equation of state to a liquid density mainly constant in space, (2) proper approximation of
the divergence constraint in incompressible regions and (3) wave transmission at the interface.

We proposed in [MBF2,MBF3] a global numerical approach (i.e. the same for each phase)
that allow to easily simulate compressible-incompressible on unstructured meshes (allowing
complex geometry) which possible high order precision. This work was related to my PhD thesis
[MBF1] made at CEA-CESTA (Comissariat à l’énergie atomique et aux énergies alternatives,
Centre d’études scientifiques et techniques d’Aquitaine), under the supervision of Jean-Paul
Caltagirone (Trèfle, I2M, Université de Bordeaux), Gérard Gallice (CEA-CESTA, retired),
Boniface Nkonga (Laboratoire J.A. Dieudonné, Université de Nice Sophia Antipolis).

Global model

The proposed numerical approach relies on the formulation of a global model using the same
set of primitive unknowns and equations used everywhere in the flow, but with a dynamic
parameterization that changes from compressible to incompressible regions.

Flows under consideration are viscous, Newtonian and consequently described by the Navier-
Stokes equations. On one hand, the compressible Navier-Stokes equations are considered under
weakly compressibility assumption so that a non-conservative formulation can be used. On
the other hand, the incompressible non-isothermal model is retained. In addition, the level
set transport equation is used to capture the interface position needed to identify the local
characteristics of the fluid and to recover the adequate local modelling.

The first step of unification consists in choosing a same unknown suitable for both compressible
and incompressible models. This is possible for both primitive and entropic unknowns. For flows
without shocks, we consider quasi-linear unified equations [179, 180], for primitives unknowns
YYY = (p,ut,T)t (with p the pressure, u the velocity and T the temperature)

L(Y,χ, ρ, )Y = S(Y, ρ), (1)
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with

L(Y,χ, ρ, µ, κ) = A0(Y,χ, ρ)∂t +
d∑
i=1

Ai(Y,χ, ρ)∂xi −
d∑

i,j=1

∂xi
(
Kij(Y, µ, κ)∂xj

)
.

Here, A0, Ai correspond the jacobian matrices derived from Navier-Stokes equations under their
conservative form. The Kij are the diffusion matrices (see [MBF3, Section 2.2]). Here, the jaco-
bian matrices A0, Ai depend on three quantities namely the density ρ, and two thermodynamical
coefficients

χ = (αp, βT ) =

(
−1

ρ

(
∂ρ

∂T

)
p

,
1

ρ

(
∂ρ

∂p

)
T

)
that represent respectively the volumic dilation effects (αp) and isothermal compressibility (βT ).
In the particular case of perfect gaz (indicated with subscript g) we have

χg =

(
1

T
,
1

p

)
and ρg =

p

RT
, (2)

whereas for an incompressible (indicated with subscript l) fluid it holds

χl = (0, 0) et ρl = constant. (3)

The diffusion matrices also depend on the viscosity coefficient µ and, κ the thermal conductivity
which are different for each fluid. For the liquid (gas), they are noted µl, κl (respectively µg, κg).

The interface is captured through Level Set method [185]. It is given as the zero isovalue of
a continuous function φ, called Level Set function that satisfies φ < 0 in the liquid and φ > 0
in the gaz. Here, we consider diphasic flow without any state change, so that the Level Set φ
satisfies the following transport equation

∂tφ+ u · ∇φ = 0, (4)

where u is the fluid flow velocity.

Combining (1)-(4), we derive the following global system of equations

L(YYY , φ)YYY = SSS(YYY , φ), (5)

∂tφ+ u · ∇φ = 0, (6)

where L is defined by

L(YYY , φ) = A0(YYY , φ)∂t +
d∑
i=1

Ai(YYY , φ)∂xi −
d∑

i,j=1

∂xi
[
Kij (YYY , φ) ∂xj

]
,

with the global matrices
A0(YYY , φ) = A0(YYY ,χχχ(φ), ρ(φ)),
Ai(YYY , φ) = Ai(YYY ,χχχ(φ), ρ(φ)),
Kij(YYY , φ) = Kij(YYY , µ(φ), κ(φ)),
S(YYY , φ) = SSS(YYY , ρ(φ)),

and


χχχ(φ) = (1−H(φ))χχχ +H(φ)χχχg,
ρ(φ) = (1−H(φ))ρ +H(φ)ρg,
µ(φ) = (1−H(φ))µ +H(φ)µg,
κ(φ) = (1−H(φ))κ +H(φ)κg,

In the previous definition H(φ) = 1φ≥0 is the characteristic function equals to 1 in the gas.
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Global finite element approximation

The resolution of (5)-(6) relies on a time splitting. A each time step, we first solve the global
equation (5) then the interface position is updated through (6). The two relates subproblems
are solved independently with different numerical schemes but with the same mesh in time and
space (thus the time step fulfills a global CFL condition). As they are adapted to treat complex
geometry and provide high order approximation, Stabilized Finite Element (SFE) have been
used for the space discretization of (5) together with explicite Euler scheme in time. A Runge
Kutta / Discontinous Galerkin (RKDG) [174,184] has been considered for solving the transport
equation on the level set (6). The combination, a posteriori, of these two solvers has been done
following the procedure proposed in [183] for incompressible and diphasique flows (see details
in [MBF3]). Here, we only present the "coupled" and "global" numerical methop used for the
numerical solution of (5).

For single fluid flow Lagrange FE method are no suitable for numerical solution of (1) are
they provides unstable approximations in case of large advection, and violate the inf-sup con-
dition (for the pressure). To overcome these limitations, it is possible to add to the Galerkin
formulation some additional term called stabilization. To that goal, a Galerkin Least Square
(GLS) [179,180] method is retained since it allows to deal with those problems for both incom-
pressible and compressible equations. GLS method is a Petrov-Galerkin method, where the test
fonction isWWW h plus an additional term LWWW h multiplied by a matrix containing coefficients τ e.
These coefficients defined locally on each element e of the mesh act as stabilization term. This
matrix is defined differently depending on the compressible [178] or incompressible case [175].
Thus, the resulting numerical scheme is said to be unified, as it allows to solve numerically
both compressible and incompressible Navier-Stokes equations.

This unified FE scheme is a good candidate for numerical solution of (5), however it requires
some particular care for the treatment of the elements crossed by the interface (thus containing
incompressible and compressible fluid). Indeed, it requires the computation of “discontinuous”
integrals (i.e. where the quantity to integrate is discontinuous due to density, viscosity and
conductivity) that allows correct wave transmission at the interface and the derivation of a
suitable stabilization term adapted to each phase. To this end, we use averaged quantities in
each element e relying on the volume fraction of the compressible fluid in each element noted
εne (obtained using φ). We take

• arithmetical average for the unknown YYY
n

e , the matrix of stabilization τ ne , and for the the
thermodynamical coefficients χχχne ,

• while harmonic average is retained for the density ρne , viscosity µne and conductivity κne .

We finally get a general numerical method relying on the following global discrete variational
formulation. Let be given YYY n

h at tn and the interface position through φn, Equation (5) is
solved from tn to tn+1 for 1 ≤ n ≤ N − 1 by seeking YYY n+1

h ∈ Sph × Suuuh × STh such that for all
WWW h ∈ Tph × Tuuuh × TTh we have

∑
e∈Th

∫
e
WWW h ·

(
A0

n
e

YYY n+1
h − YYY n

h

δt
+

d∑
i=1

Ai
n
e∂xiYYY

n+1
h − S

n
e

)
+

d∑
i,j=1

∂xiWWW h ·Kij
n

e∂xjYYY
n+1
h dΩ︸ ︷︷ ︸

Galerkin part

+
∑
e∈Th

∫
e
L
n
e
t
WWW h · τne

(
L
n
eYYY

n+1
h − S

n
e

)
dΩ︸ ︷︷ ︸

GLS stabilization

= 0,

+ boundary conditions .

(7)
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Here YYY n

h is the FE approximation at tn andWWW h the test fonction. Finally the average matrices
A0

n

e ,Ai
n

e ,Kij
n

e , S
n

e , τ
n
e are given through

A0
n

e = A0(YYY
n

e ,χχχ
n
e , ρ

n
e ),

Ai
n

e = Ai(YYY
n

e ,χχχ
n
e , ρ

n
e ),

Kij
n

e = Kij(YYY
n

e , µ
n
e , κ

n
e ),

τne = εne τe,g(YYY
n

e , ρ
n
e , µ

n
e , κ

n
e ) + (1− εne )τe,l(YYY

n

e , ρ
n
e , µ

n
e , κ

n
e ),

S
n

e = S(YYY
n

e , ρ
n
e ),

with τe,g, τe,l the stabilization matrices for a compressible and incompressible fluide respectively.

Numerical results

First numerical results have concerned numerical simulation of smooth flow for which the global
behavior is driven by the gaz compressibility. For the considered cases, comparisons with
analytical computation of relevant quantity related to the flow permitted the validation of the
proposed approach as well as convergence study, in both one and two dimensions. Then more
general test cases have been considered as rising bubble or oscillation water column (see [MBF3]
for details) .

Multi-material compressible flows

My post-doctorate was dedicated to the simulation of multi-material compressible flows aris-
ing in astrophysics ou inertial confinement fusion (ICF). Several approaches are available
for numerical simulation of such flows, using either interface capturing or tracking meth-
ods. Here we have adopted subsequently each point of view leading to several publications
[MBF4,MBF5,MBF6,MBF7]. These contributions are related to several collaborations with
the CEA with Edouard Audit (Maison de la simulation, CEA), Jérôme Breil (CEA-CESTA,
Celia), Guy Schurtz (CEA-CESTA, Celia, retired) and Samuel Kokh (CEA, Saclay) but also
during research stay during CEMRACS 2010 with the team SIMCAPIAD.

Eulerian methods: We consider problems restricted to multi-material flows with m component
on cartesian mesh. In this framework, some methods [169, 170] consider a global model to
represent the flow with particular Equation of States (EOS). Chosing suitable EOS allows
to treat the diffusion region (it is only numerical i.e. not related to any physics) appearing
near the interface when solving numerically those equations (e.g. using finite volume (FV)). In
particular, it allows the numerical solution to converge to the correct solution. Some approaches
have been developped to limitate the interface diffusion [172,173] using anti-diffusive numerical
scheme. In [169, 182], a 5 equation model (quasi-conservative) is proposed to modelize the
evolution ofm = 2 compressible and immiscible fluides separated by an interface. It corresponds
to Euler equations combined to partial mass equations, and the transport of a color function.
In [182], this system is solved using anti-diffusive FV scheme, in order to capture accurately the
interface (less numerical diffusion). In that goal, a splitting is proposed 1) the acoustic part of
the equations is solved using a classical FV scheme (e.g. relaxation, acoustic scheme), 2) the
transport is solved using the anti-diffusive scheme [172, 173]. This approach is only proposed
to two materials compressible flows and is only first order accurate.

1. In [MBF4] we have proposed to improve the accuracy of this method to second order using
MUSCL resonstruction scheme in space (for acoustic fluxes) together with Heun scheme
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in time. The approach has been validated in 1D, and 2D dimensional case have been
treated using directional splitting.

2. Then, to deal with flows with a arbitrary number of component, we have proposed an
extension of the five equation model [169], leading to the following m-component model

∂t(ρu) + ∇ · (ρu⊗ u) +∇p = 0, moment conservation
∂t(ρE) + ∇ · ((ρE + p)u) = 0, energie conservation
∂t(ρYk) + ∇ · (ρuYk) = 0, partial mass conservation
∂tZk + u · ∇Zk = 0, color function transport,

(8)

where ρ is the density, u the velocity, p the pressure, E total energy and the Yk are mass
fractions for each fluid k, 1 ≤ k ≤ m. This system, together with properly chosen equa-
tion of states is hyperbolic. Following [182], we proposed to apply a lagrange-projection
scheme with an anti-diffusive scheme for the projection step when solving (8). In that
case, the main difficulty was to generalize the proposed scheme to m > 2 color function
Zk preserving the maximum principle and such that the sum is equal to 1. To that goal,
a recursive construction of the fluxes for the color function has been proposed in the line
of [181] . The resulting method has been tested and validated on several test cases in
1D and 2D for flows with 3 and 5 materials [MBF5,MBF7] for different equations of state.

Contribution on ALE method: Here we focus on the simulation of multi-material compressible
flows on unstructured meshes. In that context, we consider an interface capturing approach
that consists in explicit reconstruction of interfaces from color functions see e.g. VOF (volume
of fluid) method (m = 2) or MOF (moment of fluid) method (m ≥ 2) which are very efficient
when combined with ALE (Arbitrary Lagrangian Eulerian) method to track the interface. The
latter allows to combine the advantages of an eulerian approach adapted for complex flows
with distortion and a lagrangian approach that allows to exactly capture material fronts as
interfaces. Here, we retained a CCALE-MOF (Cell-Centered Arbitrary Lagrangian Eulerian
MOF), where the color functions are the fluid moment (e.g. mass fraction) [176, 177]. This
algorithm works according to the following steps.

1. Lagrangian step: First, the mesh as well as conservative unknowns (ρ, ρu, ρE) are up-
dated during a Lagrangian step using a centered VF: Explicit Unstructured Cell-Centered
Lagrangian HYDrodynamics (EUC-CLHYD). The color functions (e.g. mass fraction) re-
main unchanged during this step.

2. Reconstruction step: Interfaces are reconstructed from fluid moment allowing perfect
recovering of interfaces.

3. Rezoning step: During this step the mesh is "reshaped", i.e, if the mesh is very distorted
during lagrangian step it is rectifed.

4. Projection step: Finally, a projection step is done. It constists in interpolating in conser-
vative way the physical quantities on the new mesh.

The CCALE-MOF approach, works well for cartesian coordinates and can be extended quite
easily for cylindrical coordinates. The objective of the work [MBF6] was to develop some "hy-
brid" approach valid for both coordinates with axisymmetric geometries. The method was
tested with success for the numerical simulation of complex multimaterial flows with axisym-
metric geometries for cartesian, polar or unstructured meshes.
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