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Résumé détaillé

Cette thèse s’intéresse à la représentation numérique des interactions air-mer, notamment
au sein du couplage entre un modèle d’océan et un modèle d’atmosphère. Nous étudierons
donc conjointement des méthodes de couplage et la représentation numérique de la couche
limite de surface : une zone cruciale pour le calcul des interactions.

Chapitre 1: Modélisation d’une colonne océan-

atmosphère

Le chapitre 1 présente les équations et principes physiques utilisés au sein de cette thèse.

Tout d’abord, le système des équations primitives décrivant les écoulements at-
mosphériques et océaniques est présenté. Une attention particulière est portée à la
représentation de la turbulence, qui induit une séparation entre des échelles “résolues” et
des plus petites échelles dites “turbulentes”.

Cette séparation d’échelle est nécessaire d’un point de vue numérique : les échelles
résolues correspondent à celles représentées dans les grilles de calcul des schémas numériques
(actuellement, de l’ordre de centaines de mètres). Au contraire, les échelles turbulentes sous-
maille ne peuvent pas être représentées explicitement par les grilles de calcul et doivent être
paramétrisées.

Le concept de couche limite de surface (basé sur une hypothèse de flux constants) est
ensuite introduit. Celui-ci est au centre du sujet de la thèse : il permet de décrire, à travers
un formalisme nommé “loi du mur”, le comportement turbulent des écoulements aux abords
de la surface.

Dans les modèles d’atmosphère, la couche limite de surface est représentée par les for-
mulations bulk, qui permettent de calculer les composantes turbulentes des flux air-mer à
partir des données autour de l’interface. La stratification (variation verticale de la densité)
joue un rôle important dans la couche limite de surface. Elle affecte la “loi du mur” et est
une composante essentielle des formulations bulk.

Cette thèse s’articule autour d’une hiérarchie de modèles présentés au chapitre 1. Ceux-ci
décrivent tous l’évolution temporelle d’une colonne d’atmosphère au-dessus d’une colonne
d’océan en une seule dimension spatiale (verticale).
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1. Le plus bas niveau de la hiérarchie est un couplage de simples équations réaction-
diffusion, utilisé aux chapitres 2 et 3 pour étudier et optimiser des méthodes itératives
de couplage (dites méthodes de Schwarz ). Ce modèle ne prend pas en compte les
aspects de turbulence sous-maille.

2. Le niveau intermédiaire (utilisé au chapitre 6) est un autre couplage d’équations
réaction-diffusion. Cependant, ce couplage utilise des conditions de bord à l’interface
décrivant une couche limite de surface.

3. Le plus haut niveau de la hiérarchie est un modèle utilisant une paramétrisation de la
turbulence et qui inclut une stratification en température. A l’interface, de véritables
formulations bulk sont utilisées (au lieu d’une formulation simplifiée dans le niveau
intermédiaire). Ce modèle est utilisé aux chapitres 4 et 5 pour s’intéresser à l’impact
des discrétisations de couche limite, notamment dans le couplage océan-atmosphère.

Les objectifs de cette thèse correspondent aux trois niveaux de la hiérarchie :

1. étudier l’effet de la discrétisation sur la vitesse de convergence des méthodes de
Schwarz ;

2. étudier la vitesse de convergence des méthodes de Schwarz en présence d’une couche
limite de surface (i.e. avec des conditions de transmission non-linéaires) ;

3. développer une discrétisation permettant de représenter au mieux les couches limites
de surface, en prenant en compte les paramétrisations au sein de ces couches limites.

Chapitre 2 : Analyse discrète des méthodes de Schwarz

avec des équations de réaction-diffusion

Le chapitre 2 a été publié sous la forme de l’article [Clement et al., 2022] dans le journal
SMAI Journal of Computational Mathematics.

• Modèle continu et méthode de Schwarz : Le modèle utilisé dans les deux premiers
chapitres est le suivant:

∂tuj + (r − νj∂
2
x)uj = fj (j = o, a) (x, t) ∈ Ω̃j×]0, T ] (1a)

uj(x, 0) = uj,0(x) x ∈ Ω̃j (1b)

uo(0
−, t) = ua(0

+, t) t ∈ [0, T ] (1c)

νo∂xuo(0
−, t) = νa∂xua(0

+, t) t ∈ [0, T ] (1d)

où r et νj sont les coefficients de réaction et de diffusion. Pour résoudre ce problème

couplé, les domaines Ω̃o = R− et et Ω̃a = R+ voient leurs équations correspondantes
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(1a) être résolues tour à tour dans Ω̃j × [0, T ] en utilisant les équations (1c) et (1d) en
tant que conditions de bord. Cette méthode s’appelle Relaxation d’onde de Schwarz
avec des conditions de transmission Dirichlet-Neumann. L’étude de la convergence de
cette méthode se fait en deux étapes :

– Les équations (1a) sont résolues dans l’espace de Fourier : la dimension tem-
porelle devient un espace de fréquences. On obtient une formule analytique de la
différence entre ukj (k note l’itération de Schwarz courante) et la solution couplée,
c’est-à-dire de l’évolution de l’erreur en fin des itérations.

– Les conditions de transmission à l’interface permettent de quantifier l’évolution
de cette différence au fur et à mesure des itérations.

La convergence est linéaire, c’est-à-dire que la différence entre ukj et la solution couplée
est multipliée à chaque itération par un facteur de convergence ne dépendant pas de k.
Dans le cas continu avec des conditions de transmission Dirichlet-Neumann, le facteur
de convergence ne dépend pas non plus de la fréquence ni de r et vaut ρ

(c,c)
DN =

√
νo
νa
.

• Facteur de convergence semi-discret en temps : la convergence observée lors de
l’implémentation d’une méthode de Schwarz dépend des discrétisations en temps et en
espace utilisées. On utilise la transformée en Z au lieu de la transformée de Fourier
pour étudier un signal semi-discret en temps. Si le passage du continu au discret est
aisé pour les schémas en temps qui ne comportent qu’une étape, les schémas à plusieurs
étapes demandent une attention particulière. En effet, les conditions d’interface sont
interpolées durant les étapes intermédiaires. Cette interpolation modifie la vitesse de
convergence de la méthode de Schwarz, particulièrement dans les hautes fréquences
temporelles.

• Discrétisation en espace : la convergence des méthodes de Schwarz a été étudiée
pour deux discrétisations en espace. La première est une discrétisation de référence util-
isant des différences finies (FD) centrées d’ordre 2 ; la deuxième est une discrétisation
en volumes finis (FV) basée sur des splines paraboliques. Chaque maille est ainsi car-
actérisée par un polynôme d’ordre 2 et l’approximation volumes finis est déduite du rac-
cord des polynômes entre les mailles. Retrouver la solution numérique mono-domaine
s’avère immédiat lorsque la discrétisation FV est utilisée. Avec la discrétisation FD,
utiliser une condition de transmission particulière dans ce but diminue drastiquement
la vitesse de convergence.

• Analyse discrète : une méthode d’analyse est présentée et appliquée pour les com-
binaisons de deux discrétisations en temps et en espace. Ces combinaisons sont
démontrées stables en étudiant les valeurs propres des matrices à inverser.

Finalement, en utilisant des conditions de transmission contenant des degrés de liberté,
la vitesse de convergence des méthodes de Schwarz peut être accélérée en optimisant les
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paramètres introduits. Si l’optimisation se fait au niveau continu, les paramètres choisis
ne seront en général pas optimaux pour la vitesse de convergence observée numériquement.
Au contraire, en optimisant sur le facteur de convergence discret on obtient des vitesses de
convergence supérieures dans les expériences numériques.

Le facteur de convergence discret peut cependant s’avérer contraignant à calculer, en
particulier pour des discrétisations en temps à plusieurs étapes ou pour des discrétisations
en espace d’ordre élevé.

Chapitre 3 : Approximation du facteur de convergence

discret des méthodes de Schwarz

L’objet du chapitre 3 est donc de proposer de nouvelles approximations qui rendent le facteur
de convergence observé numériquement plus facile à estimer que par une approche d’analyse
discrète complète (comme au chapitre 2), tout en étant plus précis que le facteur de conver-
gence continu. La première approximation étudiée est la méthode des équations modifiées
qui introduit un terme représentant les principaux effets de la discrétisation. La seconde est
une combinaison des analyses semi-discrètes pour approcher l’analyse complètement discrète.

Équations modifiées

La méthode des équations modifiées consiste à étudier au niveau continu non pas l’équation
différentielle originale mais celle qui est résolue par le schéma numérique. Ces équations
modifiées sont obtenues à l’aide d’un développement de Taylor de la discrétisation.

Équations modifiées en temps

Lors du calcul du facteur de convergence, l’utilisation d’équations modifiées en temps se
traduit par un changement de la variable fréquentielle ω utilisée dans la transformée de
Fourier :

• La complexité de l’étude continue des équations modifiées en temps est similaire à celle
semi-discrète des schémas à une étape.

• Les équations modifiées en temps simplifient l’étude de convergence des schémas à
deux étapes. Cependant, l’utilisation du développement de Taylor cache l’opération
d’interpolation des données de transmission réalisée dans les étapes intermédiaires.
Ainsi, lorsque la différence entre les facteurs de convergence continu et semi-discret en
temps vient de cette opération d’interpolation, les équations modifiées ne permettent
pas d’approcher le facteur de convergence semi-discret.
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Équations modifiées en espace

L’utilisation des équations modifiées sur les schémas en espace suscite d’autres observations :

• le développement de Taylor introduit des dérivées d’ordre plus élevé que dans l’équation
originale. Pour obtenir le caractère bien posé des équations modifiées, il est donc
nécessaire d’ajouter des conditions d’interface. Celles-ci peuvent être judicieusement
choisies à partir de la discrétisation en espace proche du bord.

• Il est en général insuffisant de n’étudier que l’effet de la discrétisation de l’équation
aux dérivées partielles. En effet, les conditions d’interface et de bord sont elles aussi
affectées par la discrétisation et leurs versions discrètes doivent être utilisées dans le
calcul du facteur de convergence.

• Dans le cas général, l’utilisation des équations modifiées en espace augmente l’ordre
de l’équation aux dérivées partielles et ne rend pas plus aisé le calcul du facteur de
convergence par rapport au calcul semi-discret.

• Dans le cas particulier d’une équation ne faisant intervenir qu’une seule différentiation
en espace de n’importe quel ordre : une astuce de calcul permet de se ramener au cas
où un simple changement de variable fréquentielle suffit pour caractériser l’équation
modifiée. L’analyse de la convergence en prenant en compte la discrétisation devient
alors similaire à l’analyse continue.

Combinaison des facteurs de convergence

Il est possible de combiner les facteurs de convergence semi-discrets (S-D) et continu pour
approcher le facteur de convergence discret selon la formule:

DISCRET ≈ S-D EN ESPACE + S-D EN TEMPS− CONTINU (2)

Des expériences numériques présentées à la fin du chapitre 3 montrent dans quels cas et
dans quelle mesure :

• ces diverses approximations sont efficaces pour approcher le facteur de convergence
discret ;

• la convergence peut être accélérée en optimisant ces approximations.

Chapitre 4 : Vers une discrétisation de la couche limite

atmosphérique cohérente avec la théorie physique

Dans le chapitre 4, nous étudions une colonne atmosphérique et sa discrétisation. À cause
de considérations numériques, la colonne d’atmosphère doit se diviser en deux parties :
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1. la couche limite de surface, exclue du domaine de calcul et paramétrisée par une “loi
du mur” ;

2. le reste de la colonne, qui réagit plus lentement aux variations des conditions à la
surface.

L’objectif de ce chapitre est d’évaluer les discrétisations possibles de cette couche limite.

• Dans une discrétisation FD typique (telle que celle qui sera utilisée au chapitre 6), ce
découpage est implicite : l’équation d’évolution est utilisée à partir du premier point de
grille et on considère la zone sous ce point comme la couche limite. Les flux turbulents
sont calculés à l’aide de la solution au premier point de grille, ce qui correspond donc
à l’extrémité supérieure de la couche limite.

• La construction de discrétisations en volumes finis est moins souple dans sa gestion de
la couche limite. La solution au premier point de grille correspond alors à une moyenne
sur une cellule qui se trouve partagée entre deux zones. Des travaux antérieurs ont
montré qu’une gestion de la couche limite calquée sur les méthodes FD conduit à un
biais systématique dans l’estimation des flux turbulents.

Ainsi, [Nishizawa and Kitamura, 2018] proposent d’étendre la couche limite de surface
à l’entièreté de la première cellule et d’utiliser un algorithme bulk adapté aux données
moyennées.

Ce chapitre 4 propose d’implémenter directement dans la discrétisation FV les hypothèses
existantes dans les formulations bulk. Pour ce faire, la reconstruction à l’intérieur de la
première maille est réalisée à l’aide des fonctions particulières intervenant dans les lois du
mur et non seulement avec des polynômes.

Ces reconstructions particulières permettent notamment d’étendre la hauteur de la
couche limite au-delà de la première maille. En effet, le log-layer mismatch, un problème
numérique bien connu dans les simulations à haute résolution (Large Eddies Simulations),
provient d’une couche limite trop mince.

En étant capable de choisir l’épaisseur de la couche limite de surface sur des critères
physiques et non seulement numériques, la consistance des schémas s’en trouve améliorée. La
résolution verticale peut ainsi être raffinée sans pour autant changer les équations continues
résolues par la discrétisation.

En utilisant un critère de consistance, les stratégies de gestion de la couche limite sont
comparées pour différents types de stratification. Une comparaison de ces stratégies est
également effectuée à l’aide d’un couplage avec une colonne océanique.

Chapitre 5 : Discrétisation de la couche limite oceanique

Le chapitre 5 est tourné vers la définition et l’implémentation d’une couche limite de surface
océanique.
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Il est maintenant bien connu que les algorithmes bulk doivent utiliser des vents relatifs aux
courants de surface pour calculer plus précisément les flux turbulents. Des travaux récents
[Pelletier et al., 2021] se sont intéressés à la prise en compte des mouvements turbulents dans
la description des courants de surface. Par symétrie avec les caractéristiques de la couche
limite atmosphérique, les formulations bulk peuvent également intégrer une couche limite
océanique.

L’implémentation de cette couche limite peut suivre les mêmes principes que son homo-
logue atmosphérique. Une différence notable est la présence de la pénétration du flux solaire,
très importante dans les premiers mètres sous la surface. Ce flux solaire vient contredire la
notion de flux constant utilisée dans les lois du mur.

Les stratégies de gestion de la couche limite océanique sont comparées dans des simula-
tions numériques, dans un cas forcé et dans un cas couplé.

Chapitre 6: Méthodes de Schwarz pour le couplage dis-

cret océan-atmosphère

Le dernier chapitre de cette thèse met en relation l’étude discrète des méthodes de Schwarz
et l’utilisation d’une couche limite de surface.

Comme mentionné précédemment, la hauteur de la couche limite de surface est choisie
dans les modèles actuels en fonction de la résolution de la grille. Pour cette raison, étudier la
convergence de l’algorithme de Schwarz au niveau semi-discret en espace semble pertinent,
puisque les conditions de transmission sont liées au choix de discrétisation.

Le chapitre 6 se concentre sur la discrétisation FD qui a le mérite d’être à la fois simple à
manipuler et représentative de l’état de l’art. Les conditions de transmission sont simplifiées
: on formule le flux à l’interface comme égal à CD|∆U |∆U où ∆U est le saut des solutions à
travers l’interface et CD est une constante (au lieu d’être une fonction non-linéaire de ∆U).

Nous prouvons l’existence et l’unicité d’une solution du problème couplé au voisinage
d’un état stationnaire. Cette preuve est réalisée au niveau semi-discret en espace, pour
lequel l’état stationnaire est unique pour notre choix de paramètres.

La convergence des méthodes de Schwarz sur une version linéaire du problème (où on
pose α = CD|∆U | = const) est tout d’abord discutée. L’optimisation d’un paramètre de
relaxation θ introduit dans la condition de transmission donne un paramètre optimal θ ≈ 1.

Le problème non-linéaire est ensuite étudié en passant par une linéarisation de la con-
dition de transmission autour de l’état stationnaire. Au contraire de ce qu’on peut trouver
habituellement dans les études de convergence (qui utilisent dans l’immense majorité des
cas des conditions de transmission linéaires), le facteur de convergence pour une fréquence
donnée change d’une itération à une autre. Une optimisation est également réalisée dans ce
cas et donne un paramètre optimal θ ≈ 1.5.

Finalement, des expériences numériques valident les résultats obtenus analytiquement.
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Introduction

Numerical models are ubiquitous in oceanography, climatology and meteorology. They be-
come more and more accurate as the computational power increases and as we refine our
knowledge on both physical phenomena and numerical behaviour. As long as we want to
encompass more phenomena in the simulations, both mathematical models and their imple-
mentations must be adapted to new scales and new challenges.

The interactions between the ocean and the atmosphere are crucial for climate projec-
tions and mid- to long-term weather forecasts. It means that the ocean and atmosphere must
be jointly simulated; however, there is no ocean-atmosphere model in a single block to our
knowledge. Indeed, the scales and dynamics involved in those two systems are sufficiently
different to justify the use of separate models, and there are historically two separate commu-
nities behind the models. For those reasons simulations of the air-sea system always rely on
the coupling between numerical models describing the oceanic and atmospheric circulations.

A numerical implementation does not directly solve the mathematical model (the con-
tinuous equations) but an approximation of it (the discrete equations). There exist many of
these approximations (called discretizations), the choice of which is not to be taken lightly: a
discretization introduces some numerical error, and may also enforce desirable mathematical
or physical properties.

A numerical simulation cannot explicitly represent all the scales involved in geophysical
phenomena, because of the colossal cost it would induce. In climate simulations, scales
smaller than an hour in time and dozens of kilometers in space are only represented through
their effects on larger scales. Among the parameterizations of small scales, the turbulence
accounts for sub-grid chaotic motions.

Moreover, the interface between the models in the case of the ocean-atmosphere coupling
contains specific turbulent motions. The discretization of this zone called surface layer is a
key for a proper coupling.

Because of cost constraints, the ocean-atmosphere coupling algorithms are in practice
quite simple and many of them actually correspond to a single step of a Schwarz method
[Lemarié et al., 2015a]. The latter domain decomposition methods consist in solving iter-
atively the models (here, the ocean model and the atmosphere model) until the solutions
at the interface match. These coupling methods, widely used for number of applications
outside the ocean-atmosphere context, are known for being relatively slow. However, the
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mismatch at the interface is multiplied at each iteration by a convergence factor which can
be optimized to accelerate the convergence of the Schwarz method.

[Marti et al., 2021] used several Schwarz iterations instead of a single one to evaluate the
loss of precision generated by the coupling within the operational climate model IPSL-CM.
A significant difference was found “after sunrise and before sunset, when the external forcing
(insolation at the top of the atmosphere) has the fastest pace of change” and recent addi-
tional ensemble simulations tend to highlight a significant long-term impact of performing
iterations. Although it would be unaffordable to use multiple iterations of Schwarz methods
in actual climate simulations, this approach is useful to evaluate current methods used in
this context. Studying the convergence properties of Schwarz methods is hence of interest,
first for the evaluation of present simulations, and then for the reduction of the error in the
first iteration1.

The discretizations interact with the coupling methods: if the study of the convergence
factor is pursued at the continuous level, the coupling of the discrete equations may converge
differently than expected. Moreover, if the convergence is optimized at the discrete level,
one expects to obtain a faster numerical convergence. Besides, the continuous equations
describing the surface layer are actually linked with the numerical implementation. It is
hence appropriate to directly study at the discrete level the coupling methods when taking
into account the surface layer.

In this context, the objectives of this thesis are:

• Improve our knowledge on how the discretization affects the convergence factor of
Schwarz methods.

• Discuss the numerical treatment of the surface layer and propose improvements.

• Study the effect of the surface layer within the ocean-atmosphere coupling.

The surface layer

The surface layer contains strong disparities and can be modeled by a so-called law of the
wall. A review of wall modelling was done by [Larsson et al., 2016], focusing on Large Eddy
Simulations (which are simulations for small scales). In particular, it is emphasized that the
height of the surface layer should be chosen based on both physical and numerical criteria.

Recent advances in bulk formulations (which characterize the law of the wall in the
atmosphere models) partially underpin this thesis: one is the introduction by [Pelletier
et al., 2021] of an oceanic part of the surface layer in the bulk formulations. The other is the
discovery of a systematic bias created in some discretizations because the variables are “used
as the center point value in the model grid to estimate the surface fluxes even though the

1However, note that in the overwhelming majority of convergence studies (including this thesis) the
convergence factor of Schwarz methods does not characterize the very first iteration because the initial value
is not the solution of the considered differential equation.
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variables are volume-averaged values” [Nishizawa and Kitamura, 2018]. In the latter case,
the bias can be avoided by adapting the bulk formulations to averaged data.

Moreover, the hypotheses on which the bulk formulations rely are generally not included
in the discretization. We propose to reunite the hypotheses in the bulk formulations and in
the discretization in order to approximate more rigorously the continuous equations.

From a more theoretical point of view, the modeling of the surface layer leads to non-
linearities in the surface fluxes. This raises some questions about the well-posedness of the
mathematical problem. The existence and regularity of solutions for the ocean-atmosphere
coupling is proved in [Lions et al., 1995] with linear conditions at the interface and a part
of the non-linearities inside the computational domains. More recently, a study focused
only on the ocean domain [Chacon-Rebollo et al., 2014] shows the existence and unicity of
a solution in the neighborhood of a steady state. It is proven on a one-dimensional model
that includes a parameterization of the turbulence. We will discuss the well-posedness of the
ocean-atmosphere coupling in the presence of a parameterized surface layer.

Schwarz methods

The choice of the coupling methods in the ocean-atmosphere context is not straightforward.
In addition to the trade-off between the required computational time and the achieved pre-
cision, the coupling methods also face some constraints:

• some quantities must be conserved by the method (e.g. water, energy);

• the atmosphere and ocean models being very sophisticated, the methods should not
be intrusive (i.e. they should consider the models as black boxes);

• it is generally unaffordable to call multiple times the ocean and atmosphere models.

With wisely chosen interface conditions, Schwarz methods can satisfy those constraints. In
the context of making a very small number of iterations, the acceleration of the convergence
can be used to increase the precision of the coupling. Discrete transparent boundary condi-
tions [Zisowsky and Ehrhardt, 2006] allow to converge up to the numerical precision in two
iterations. However, those boundary conditions are non-local in time. Schwarz methods can
be instead accelerated by an optimization [Gander, 2006] where the boundary conditions at
interface are local in time.

This optimization, when carried in a semi-discrete in space [Wu and Al-Khaleel, 2014],
in time [Arnoult et al., 2022] or in a fully discrete setting [Wu and Al-Khaleel, 2017] yields a
theoretical convergence rate which is closer to the one observed in numerical simulations and
generally leads to faster convergence. However, even if they also consider reaction-diffusion
equations, [Wu and Al-Khaleel, 2014] and [Wu and Al-Khaleel, 2017] focus on electric circuits
where there are overlaps between the domains. [Gander et al., 2018] analyze the presence
of an overlap but to our knowledge no previous study stands in the discrete case without
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overlap (note that the semi-discrete 2D stationary case was done by [Gerardo-Giorda and
Nataf, 2005]). Discrete Schwarz Waveform Relaxation studies with other equations can
be found in [Haynes and Mohammad, 2020] together with the finite domain case. In the
continuous case, a lot of efforts have been made to study the convergence of Schwarz methods
(e.g. [Thery et al., 2021] where the viscosity is varying and is discontinuous at interface or
[Häberlein and Halpern, 2014] who give an overview of nonlinear systems).

Outline

This thesis contains six chapters. Chapter 1 focuses on the derivation of the equations driving
the ocean-atmosphere coupling. It presents in particular a hierarchy of models which is used
in the other chapters: two couplings of reaction-diffusion equations (with linear or nonlinear
conditions at interface), and a more sophisticated model using a turbulence parameterization.

[Clement et al., 2022] (Chapter 2) studies the effect of the discretisation in space and
time of the linear reaction-diffusion coupling problem without overlap. In particular, it gives
a methodology to study the convergence factor of Schwarz methods at the discrete and semi-
discrete levels and highlights some features of these convergence factors. It also presents a
Finite Volume discretization used throughout all the other chapters.

Chapter 3 introduces alternative methods to estimate the convergence speed of the dis-
crete problem with less computations. The ultimate goal would be to obtain the conver-
gence speed of the discrete or semi-discrete optimization with a continuous study. The linear
reaction-diffusion coupling is taken as an illustration to show how much the convergence can
be accelerated with the proposed approximations and to discuss their correctness.

Using the sophisticated model based on a parameterization of turbulence, Chapter 4 and
5 discuss the discretization of the surface layer. We propose a discretization that is more
coherent with the physical theory of the surface layer. Chapter 4 introduces the ideas and
discretization for the atmosphere surface layer and Chapter 5 extends the discussion to the
ocean surface layer and focuses on handling specific features of the ocean surface layer.

Finally, Chapter 6 treats the nonlinearity due to the presence of the surface layer. The
well-posedness of the nonlinear coupling of reaction-diffusion equations is discussed. Nonlin-
earities at interface were introduced in domain decomposition methods by [Caetano et al.,
2011] where they created interface conditions resembling to linear ones specifically to match
with the existing studies. We start instead with an existing nonlinear interface and study
its convergence properties.
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Chapter 1

Ocean-atmosphere vertical column
modelling

Table of contents

1.1 Derivation of the primitive equations . . . . . . . . . . . . . . . 6

1.1.1 Unaveraged primitive equations . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Reynolds decomposition . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 The turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Turbulent closure and kinetic energy . . . . . . . . . . . . . . . . . 9

1.2.2 Law of the wall and Monin-Obukhov Similarity Theory . . . . . . 11

1.2.3 Two-sided bulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 A hierarchy of models . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Neutral or Stratified Ekman problem with bulk and turbulent ki-
netic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Ekman problem with a friction law . . . . . . . . . . . . . . . . . . 16

1.3.3 Reaction-diffusion equations coupling with heterogeneous diffusion 18

1.4 Schwarz methods for the ocean-atmosphere coupling . . . . . . 19

1.4.1 Current practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Schwarz Waveform Relaxation . . . . . . . . . . . . . . . . . . . . 19

1.4.3 Schwarz Waveform Relaxation with a surface layer . . . . . . . . . 21

We present in this chapter the concepts and equations at the continuous level which
will be used in the rest of this thesis. In particular, in Section 1.1 the primitive equations
describing the large-scale oceanic and atmospheric circulation are derived; then the turbulent
features are described in Section 1.2. Finally, the simplified models used in this thesis are
summed up in Section 1.3, before discussing Schwarz methods in Section 1.4.
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Symbol Quantity Unit
ρ Density kg.m−3

p Pressure kg.m−1.s−2

U Velocity m.s−1

θ Potential temperature K
Ku,mol Molecular viscosity m−1.s−2

g Gravity acceleration m.s−2

Ω Earth angular speed rad.s−1

∇ Spatial Gradient m−1

∆ Spatial Laplacian m−2

Table 1.1: Symbols used in Section 1.1. Bold letters indicate that the quantity lies in R3.

1.1 Derivation of the primitive equations

This section aims to present the so-called primitive equations, which are used to model the
fluid dynamics in the inner parts of both the atmosphere and ocean. They represent a
classical choice for studying climate and weather predictions.

1.1.1 Unaveraged primitive equations

We start from the Navier-Stokes momentum equation in a rotating frame which describes
the evolution of the momentum ρU (the symbols are given in Table 1.1):

ρ (∂t +U · ∇)︸ ︷︷ ︸
Material derivative

U = −∇p︸ ︷︷ ︸
Pressure gradient

+ Ku,mol∆U︸ ︷︷ ︸
Molecular diffusion

− ρg︸︷︷︸
Gravity

− 2Ω× (ρU)︸ ︷︷ ︸
Coriolis effect

(1.1)

and the continuity equation which ensures conservation of mass:

∂tρ = −∇ · (ρU) (1.2)

In the three components of U =



u
v
w


, u and v correspond to the horizontal velocities (in

x and y directions) and w is the vertical velocity (the vertical axis is noted with the letter
z). Some common approximations simplify the two equations (1.1) and (1.2):

• Spherical geoid approximation: we assume that the earth is spherical and that the

gravity acceleration is given by g =



0
0
g


 where g ≈ 9.81m.s−2.
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1.1. Derivation of the primitive equations

• Traditional approximation: We neglect the horizontal terms of the rotation vector Ω

involved in the Coriolis force: we assume that Ω =




0
0
f/2


 where f depends on the

latitude. f is commonly referred to as the Coriolis frequency.

• Hydrostatic fluid : the vertical pressure gradient balances the gravity force: ∂zp =
−ρg. The vertical acceleration is neglected compared to pressure and gravity. This
approximation is usually done in large-scale simulations when the horizontal space step
is larger than the vertical one by several orders of magnitude; it is typically the case
in climate simulations.

• Boussinesq approximation [Boussinesq, 1903]: the density ρ is close to a constant
ρ0. The variation of density ρ̃ = ρ − ρ0 is neglected except when it is multiplied by
g computing in the pressure gradient ∂zp = −ρg. The atmosphere models rely on
compressibility and do not use this approximation. However, we make the Boussinesq
approximation for both domains as we assume that the compressibility effects are small
close to the surface and that they can be neglected to study the surface layer.

We hence obtain the unaveraged primitive equations:




∇ ·U = 0

∂tu+∇ · (Uu) = −∂xp
ρ0

+Ku,mol∆u+ fv

∂tv +∇ · (Uv) = −∂yp
ρ0

+Ku,mol∆v − fu

∂zp = −ρg

(1.3)

where the vertical component of the velocity w is implicitly represented and can be obtained
from ∇ ·U = 0.

Stratification ρ is given by an equation of state, which only involves the temperature
in our case (in particular, the effect of humidity (in the atmosphere) and salinity (in the
ocean) are neglected here). A neutral stratification refers to a constant density along the
vertical axis. Our focus will eventually be reduced to the vertical axis and we assume for this
reason that the density is a constant along all directions. A consequence of the density being
constant is that the temperature does not need to be computed to determine the velocity U.

On the contrary, in a stratified case the density depends on the potential temperature θ
through an equation of state:

ρ = ρeos(θ) (1.4)

and θ is given by a transport-diffusion equation:

∂tθ +∇ · (Uθ) = Kθ,mol∆θ + Fθ (1.5)
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whereKθ,mol and Fθ are the molecular diffusivity and some forcing term. θ must be computed
jointly with U to solve the system (1.3). The coupling between θ and U is done through the
pressure gradient.

1.1.2 Reynolds decomposition

The solution of the system (1.3) contains very small scales which cannot be solved numerically
for large domains such as the ocean or the atmosphere. It is hence usual to use the Reynolds
decomposition, which consists in separating the variables into an “average” part which can
be represented by the numerical schemes and a turbulent part which will be parameterized
with appropriate turbulence closure schemes (detailed later in §1.2.1).

For X = u, v, w or θ, we note

X = ⟨X⟩︸︷︷︸
average part

+ X ′
︸︷︷︸

turbulent part

(1.6)

where ⟨·⟩ represents a statistical average which satisfies:

⟨X ′⟩ = 0

⟨∂βX⟩ = ∂β⟨X⟩, β = x, y, z, t

⟨⟨·⟩⟩ = ⟨·⟩
⟨⟨X⟩Y ⟩ = ⟨X⟩⟨Y ⟩

(1.7)

Using those properties, the Reynolds decomposition of (1.3) gives a system of equations
satisfied by the Reynolds-averaged quantities:





∇ · ⟨U⟩ = 0

∂t⟨u⟩+∇ · (⟨U⟩⟨u⟩) = −∂xp
ρ0

+Ku,mol∆⟨u⟩+ f⟨v⟩ − ∇ · ⟨U′u′⟩
∂t⟨v⟩+∇ · (⟨U⟩⟨v⟩) = −∂yp

ρ0
+Ku,mol∆⟨v⟩ − f⟨u⟩ − ∇ · ⟨U′v′⟩

∂zp = −ρg
∂t⟨θ⟩+∇ · (⟨U⟩⟨θ⟩) = Kθ,mol∆⟨θ⟩+ Fθ −∇ · ⟨U′θ′⟩
ρ = ρeos(⟨θ⟩)

(1.8)

From now on, this thesis will only focus the vertical terms ⟨w′u′⟩, ⟨w′v′⟩ and ⟨w′θ′⟩ because
the surface layer turbulent features are mainly limited to those terms. For the same reason,
we restrict our spatial domain to one dimension: the equations model a vertical column
of atmosphere and of ocean. Those are common simplifications to study vertical turbulent
mixing problems. Finally, note that (1.8) shoult be completed with initial and boundary
conditions: they will be given for our models of interest in §1.2.2.

The non-linear advective terms and the horizontal pressure gradient term absent from the
one dimensional model will be taken into account through an external geostrophic forcing.
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1.2. The turbulence

The latter represents the geostrophic equilibrium which is a state of the fluid in which the
pressure gradient compensates the Coriolis effect. This geostrophic forcing reduces drasti-
cally the complexity of the system and keeps reasonable values for the variables.

The one-dimensional system of equations is the following:





∂t⟨u⟩+ ∂z⟨w′u′⟩ = Ku,mol∂
2
z ⟨u⟩+ f (⟨v⟩ − vG)

∂t⟨v⟩+ ∂z⟨w′v′⟩ = Ku,mol∂
2
z ⟨v⟩ − f (⟨u⟩ − uG)

∂t⟨θ⟩+ ∂z⟨w′θ′⟩ = Kθ,mol∂
2
z ⟨θ⟩+ Fθ

ρ = ρeos(⟨θ⟩)

(1.9)

where uG, vG are the geostrophic velocity.
With this decomposition we obtain more unknown than equations because of the in-

troduction of the terms ⟨w′u′⟩, ⟨w′v′⟩ and ⟨w′θ′⟩: this is known as the turbulence closure
problem. The quantities of interest are the averaged quantities ⟨u⟩, ⟨v⟩, ⟨θ⟩: a turbulence
closure defines a relation between the turbulent terms ⟨w′u′⟩, ⟨w′v′⟩, ⟨w′θ′⟩ and those aver-
aged quantities. The density ρ is not used explicitly in (1.9) but appear in the turbulence
closure.

1.2 The turbulence

To tackle the turbulence closure problem, we now provide additional relations between the
turbulent terms and the average quantities. We first detail a common choice of parame-
terization for the turbulence closure far from the surface and then (in §1.2.2) focus on the
surface layer which acts as a bottom boundary condition for (1.9) in the atmosphere. The
ocean case is discussed in §1.2.3.

1.2.1 Turbulent closure and kinetic energy

Boussinesq hypothesis From the observation that the turbulent term acts like a diffusion
term oriented “down-gradient”, the turbulent terms are approximated with the help of a
“turbulent viscosity” Ku and a “turbulent diffusivity” Kθ:

⟨w′u′⟩ = −Ku∂z⟨u⟩, ⟨w′v′⟩ = −Ku∂z⟨v⟩, ⟨w′θ′⟩ = −Kθ∂z⟨θ⟩ (1.10)

This is known as the Boussinesq hypothesis ([Boussinesq, 1897], different from the Boussinesq
approximation neglecting effects of compressibility)

The turbulent viscosity and diffusivity can be defined in a lot of different ways. A typical
formulation for Ku, Kθ is

Ku = Cmlm
√
e, Kθ =

Cm
Pr

lm
√
e =

Ku

Pr
(1.11)
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where Cm is a constant; the turbulent Prandtl number Pr indicates the ratio of the viscosity
to the diffusivity; the mixing length lm is a characteristic length of the turbulent flow and
depends on the stratification. e is an important quantity often used in the turbulence models,
the Turbulent Kinetic Energy (TKE):

e =
1

2

(
⟨(u′)2⟩+ ⟨(v′)2⟩+ ⟨(w′)2⟩

)
(1.12)

The evolution equation for the TKE is

∂te − ∂z (Ke∂ze)︸ ︷︷ ︸
diffusion with Ke∝Ku

= P︸︷︷︸
source
(shear)

+ B︸︷︷︸
source/sink
(buoyancy)

− ϵ︸︷︷︸
dissipation rate

(1.13)

where P > 0 and B are terms denoting respectively the shear and buoyancy production of
kinetic energy; ϵ > 0 is the dissipation rate of TKE into heat.

P corresponds to the energy lost by ⟨u⟩ through the shear term ∂z (Ku∂z⟨u⟩): to compute
it, we multiply by ⟨u⟩ the equation ∂t⟨u⟩ = ∂z(Ku∂z⟨u⟩) and express the result as a function
of the energy of the mean velocity ⟨u⟩2/2. This gives (e.g. [Burchard, 2002], where the
derivation is done both at the continuous and at the discrete level):

∂t

(⟨u⟩2
2

)
− ∂z

(
Ku∂z

(⟨u⟩2
2

))
= −Ku (∂z⟨u⟩)2 (1.14)

where we deduce that P = Ku

(
(∂z⟨u⟩)2 + (∂z⟨v⟩)2

)
is the energy produced by the shear.

A similar treatment with the density (whose diffusion term is multiplied by z instead of
⟨u⟩) gives that the potential energy is increased or reduced by B = −KθN

2 where N2 =
−g∂zρ/ρ0 is the Brunt-Väisälä frequency. The dissipation rate ϵ can be parameterized by

ϵ ∝ e3/2

lϵ(z)
where lϵ is a mixing length similar to lm. This parameterization of ϵ gives the

widely used Prandtl’s one-equation turbulence model.
Finally, the one-dimensional evolution equation for the TKE is

∂te = ∂z (Ke∂ze)︸ ︷︷ ︸
diffusion

+Ku

(
(∂z⟨u⟩)2 + (∂z⟨v⟩)2

)
︸ ︷︷ ︸

source
(shear)

− KθN
2

︸ ︷︷ ︸
source/sink
(buoyancy)

− cϵ
e3/2

lϵ(z)︸ ︷︷ ︸
dissipation

(1.15)

The equation (1.15) is used as a model of the turbulent energy: e is jointly integrated in time
with ⟨U⟩, ⟨θ⟩ and is used to characterize the turbulent terms appearing in (1.9). From now
on, the operator ⟨·⟩ will be omitted and the letters u, v, θ will refer to the averaged variables
⟨u⟩, ⟨v⟩, ⟨θ⟩.

This model is only accurate outside the surface layer. The latter offers boundary condi-
tions for the turbulent terms and is discussed in the next §.
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1.2. The turbulence

1.2.2 Law of the wall and Monin-Obukhov Similarity Theory

We call surface layer the area close to the ocean surface such that it responds to a change
at the surface with a “short” timescale1. Wall modelling gives us a description of the surface
layer and provides the boundary conditions for ⟨w′u′⟩, ⟨w′v′⟩ and ⟨w′θ′⟩.

One of the main hypothesis of the wall modelling is that the interface is a rough surface.
Indeed, for the atmosphere the ocean surface can be seen as rough: the wind cannot slip on
the ocean which means that the velocity of the wind is zero relatively to the surface.

Neutral case We first present the case without stratification: [Kármán, 1930] noticed
that the fluids close to rough surfaces present similarities and proposed a universal function
based on dimensional analysis. Von Kármán also states that “the characteristic length of
the flow pattern is proportional to [the distance to the wall]”.

z

Figure 1.1: The characteristic size of the eddies (in purple) is proportional to the distance to
the surface. The link between the size of the eddies and the logarithmic profile (in
orange) is the constant flux approximation.

We list below the main features of the surface layer:

• the Coriolis effect and the geostrophic forcing are neglected (we assume that the effect
of the proximity to the surface is predominant);

• it is well mixed: the governing equation is quasi-stationary (the surface layer imme-
diately adjusts to the external parameters). As a consequence, the fluxes ⟨w′u′⟩ =
−Ku∂zu and ⟨w′v′⟩ = −Ku∂zv are constant along the vertical axis.

• The vertical profile of K strongly depends on z. The size of the turbulent eddies at
height z is proportional to the distance to the surface z (e.g. [Kawai and Larsson,
2012], see Figure 1.1). As a consequence, the turbulent viscosity linearly scales with
z + zu:

Ku ∝ z + zu (1.16)

where zu (detailed later) accounts for both the molecular viscosity and the geometry of
the surface. In the stratified case we also have for the turbulent diffusivity Kθ ∝ z+zθ.

1In the literature, a boundary layer can also be defined as the region in which the fluid goes from zero
velocity to the maximum velocity: this definition is however less adapted to the oceanic surface layer where
the currents are driven by the surface wind.

11



Chapter 1. Ocean-atmosphere vertical column modelling

We first assume that it is aligned with the direction of u: since the Coriolis effect is neglected
and the turbulence is assumed isotropic, there is no rotation of the fluid inside the surface
layer and we can assume without loss of generality that v = 0 (with a possible rotation of
the axes). We will use the orientation of the wind speed later.

Let us define the friction scale u⋆ such that2 u2⋆ = |⟨w′u′⟩| and we have that zu =
zu(Kmol, u⋆) (see e.g. [Schlichting, 1960] for the choice of zu as a constant of integration).

Finally, the profiles of u can be integrated vertically with the two equations

Ku∂zu = u2⋆ Ku = κu⋆(z + zu) (1.17)

and we obtain the law of the wall which reads:

u(z)− u(0) =
u⋆
κ
ln

(
z + zu
zu

)
∀z ∈ [0, δa] (1.18)

where κ = 0.4 is the Von Kármán constant. δa ≈ 10 m is the height of the atmospheric
surface layer.

Remark Generally, the law of the wall refers to an expression using ln
(
z
zu

)
. By using z+zu

instead of z, the molecular sub-layer is included inside the law of the wall: we can hence use
the profile of u for small z [Pelletier et al., 2021]. This formulation is not standard but it is
appropriate for mathematical analyses and it does not change the results significantly.

Stratified case The extension of the law of the wall to stratified fluids is called Monin-
Obukhov Similarity Theory. It is used in all ocean-atmosphere coupled methods to our
knowledge. The quasi-stationarity is also assumed for the temperature and Ku∂zu and
Kθ∂zθ are both constant along the vertical axis. We can define a friction scale θ⋆ for the
potential temperature, such that

⟨w′θ′⟩ = u⋆θ⋆ (1.19)

Figure 1.2 summarizes the handling of the turbulent terms in the stratified case. To describe

0

z

δa |⟨w′u′⟩| = u2⋆, ⟨w′θ′⟩ = u⋆θ⋆

⟨w′u′⟩ = −Ku∂zu, ⟨w′θ′⟩ = −Kθ∂zθ

Figure 1.2: Summary of the turbulent term handling

the stratification, the Obukhov length is used:

LMO =
u2⋆

gκ θ⋆
θ(δa)

(1.20)

2If v ̸= 0 then the formula reads instead u2
⋆ =

√
⟨w′u′⟩2 + ⟨w′v′⟩2.

12



1.2. The turbulence

which is the only characteristic length describing accurately the effect of the stratification
in the surface layer [Obukhov, 1946]. LMO > 0 in stable stratifications (where θ⋆ > 0) and
LMO < 0 in unstable stratifications (where θ⋆ > 0). The neutral case will be recovered for
LMO → ∞, corresponding to θ⋆ → 0.

Note that the potential temperature at the very top of the surface layer θ(δa) is used.
Indeed, the surface layer is usually driven by the values of u, θ computed at δa.

The difference with the neutral case is then contained in stability functions ϕm, ϕh:

Ku ∝ (z + zu) ϕm

(
z

LMO

)

Kθ ∝ (z + zu) ϕh

(
z

LMO

) (1.21)

Typical stability functions are plotted in the left panel of Figure 1.3. A stable (resp. unstable)

100 101

φx

0

|LMO|

2 |LMO|

δa

z

−10 −5 0

ψx

LMO < 0 (unstable)

LMO → 0 (neutral)

LMO > 0 (stable)

φm, ψm (x = m)

φh, ψh (x = h)

Figure 1.3: Typical profiles of the stability functions (left) and of their integrated form (right) in
the surface layer [0, δa]. In the unstable and stable cases, δa

LMO
was arbitrarily set to

respectively -3 and 3.

stratification leads to a decrease (resp. increase) ofKu, Kθ and LMO → ∞ indeed recovers the
neutral case. To obtain the solution profiles, the integrated forms of the stability functions
ψm, ψh are defined as

ψx

(
z

LMO

)
=

∫ z
LMO

0

1− ϕx(ζ)

ζ
dζ, x = m,h (1.22)

and we have

u(z)− u(0) =
u⋆
κ

(
ln

(
1 +

z

zu

)
−ψm

(
z

LMO

))

θ(z)− θs =
θ⋆
κ

(
ln

(
1 +

z

zθ

)
−ψh

(
z

LMO

)) (1.23)

where θs is the surface temperature. Monin-Obukhov Similarity Theory is extensively used
(e.g. [Basu and Lacser, 2017]); it is however not universally accepted in particular in very
stable stratifications (see [Optis et al., 2014]).
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Chapter 1. Ocean-atmosphere vertical column modelling

Bulk algorithm Using (1.23) and the values of u(δa)−u(0) and θ(δa)−θs it is possible to
compute the friction scales u⋆, θ⋆. It is however not trivial as LMO and zu, zθ depend them-
selves on u⋆, θ⋆. The so-called “bulk algorithms” are designed for this task: they generally
rely on a fixed-point method:

1. input: u(δa)− u(0) and θ(δa)− θs;

2. choose a first guess un=0
⋆ , θn=0

⋆ ;

3. iteratively apply (1.23) (or (1.18) in the neutral case) to compute un⋆ , θ
n
⋆ using u

n−1
⋆ , θn−1

⋆

in the expressions of zu, zθ and LMO;

4. at convergence i.e. (un⋆ , θ
n
⋆ ) ≈ (un−1

⋆ , θn−1
⋆ ), return the friction scales u⋆ = un⋆ , θ⋆ = θn⋆

(or only u⋆ = un⋆ in the neutral case)

The bulk formulation is generally part of the atmosphere models and is essential to compute
the surface boundary conditions given the typical grid resolution in numerical models. The
convergence of this fixed point method is discussed in [Thery, 2021].

1.2.3 Two-sided bulk

The ocean and atmosphere have not been distinguished in equations so far. From this point,
we will use a subscript “o” for the ocean quantities and “a” for the atmosphere quantities.
In Chapter 5 we will also consider the oceanic surface layer. In actual numerical models the
sea surface temperature and the surface currents are often evaluated taking values below
the surface. The common approach is to neglect the difference between the temperature
and currents at the surface and typically one meter below. However, [Donlon et al., 2002]
show that the difference between the surface temperature and the sub-surface temperature
is approximatively constant for medium and strong winds but that it is harder to evaluate
in stratified condition corresponding to winds slower than 6 m.s−1). [Ward, 2006] “show
the strong dependency of the SST on air-sea heat flux estimates, with warm-layer errors
of almost 60 W.m−2 associated with intense stratification. This indicates the importance
of the inclusion of the skin temperature for accurate calculation of latent, sensible, and net
longwave heat fluxes”. In [Pelletier et al., 2021] a non-standard bulk formulation which uses
Monin-Obukhov Similarity Theory (MOST) in the oceanic surface layer is derived. Figure
1.4 shows the difference between the one-sided and the two-sided bulk formulations. We
follow this idea and incorporate to our coupled model an oceanic surface layer which follows
the same principles as the surface layer in the atmosphere.

The application of MOST will yield the ocean counterpart of (1.23) with different friction
scales. The continuity of the fluxes across the interface

ρaKu,a∂zua|z=0 = ρoKu,o∂zuo|z=0 , ρaKu,a∂zθa|z=0 = ρoKu,o∂zθo|z=0 (1.24)
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1.2. The turbulence

numerically treated numerically treated

numerically treated numerically treated

constant profile

MOST profile MOST profile

MOST profile

0

z

δa

δo

ztop

zbottom

u(z) u(z)

Ku∂zuo|z=δo
Ku∂zuo|z=δo

Ku∂zua|z=δa
Ku∂zua|z=δa

Figure 1.4: Comparison between one-sided (left) and two-sided (right) bulk formulations. The
gradient discontinuity at zero comes from the difference in density. Adapted from
[Pelletier et al., 2021].

adds the constraint that the friction scales of the ocean are
√

ρa
ρo
u⋆ and

√
ρa
ρo

cpa
cpo
θ⋆ where c

p
o, c

p
a

are the heat capacities of water and air. We hence have for δo ≤ z ≤ 0 (where δo ≤ 0 is the
depth of the surface layer):

|Ku∂zuo| =
ρa
ρo
u2⋆

Kθ∂zθo =
ρac

p
a

ρoc
p
o
θ⋆u⋆

(1.25)

and the reconstruction of uo, θo follow equations similar to (1.23):

uo(0)− uo(z) =
ρa
ρo

u⋆
κ

(
ln

(
1− z

zou

)
−ψom

(
− z

LMO

))

θs − θo(z) =

√
ρa
ρo

cpa

cpo

θ⋆
κ

(
ln

(
1− z

zoθ

)
−ψoh

(
− z

LMO

)) (1.26)

If δo is set to zero, then there is no surface layer in the ocean and we call the surface layer
one-sided. In the other case (δo < 0) the surface layer is two-sided. The full coupled problem
described until here is called “turbulent Ekman problem”. It is summed up in §1.3.1.
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Chapter 1. Ocean-atmosphere vertical column modelling

1.3 A hierarchy of models

The analysis of coupling algorithms applied to the ocean-atmosphere system requires ad-
ditional simplifications to be performed. These simplifications form a hierarchy of models
which will be used in this thesis, from the most sophisticated to the most idealized:

1. Turbulent Ekman: described in the previous sections.

2. Ekman: additionally, the viscosity is constant in the atmosphere and in the ocean;
the bulk formulation is simplified.

3. Reaction-diffusion: The surface layer is ignored; the density jump is neglected; the
Coriolis term is replaced by a reaction term.

1.3.1 Neutral or Stratified Ekman problem with bulk and turbu-
lent kinetic energy

The Turbulent Ekman model is the one described up till now. We restrict ourselves to a
vertical column of atmosphere above a vertical column of ocean. For an easier handling, u
and v will be represented together in a single complex variable uC = u + iv. The rotation
of the Coriolis effect corresponds to a rotation in the complex plane. Indeed, rewriting (1.9)
with an operator L corresponding to everything except the Coriolis term gives:

{
Lu = fv

Lv = −fu = (i2)fu
(1.27)

which can be written LuC = −ifuC. In the following we will drop the C superscript and
use a reaction term ifu for the Coriolis effect. The orientation of u will be noted eτ = u

|u| .
Figure 1.5 gives the equations of the coupled system. In the stratified case, the potential
temperature θ is jointly computed with the momentum u whereas in the neutral case the
momentum is the only quantity of interest.

1.3.2 Ekman problem with a friction law

To our knowledge, the discrete analysis of the convergence of Schwarz methods currently
exists only with a constant viscosity. This is a very strong assumption which corresponds
to a vertical mixing not physically relevant. However, it allows a first attempt to study the
effect of the surface layer on the convergence of Schwarz methods. The bulk methods used
to parameterize the surface layer use implicitly defined applications which are hard to deal
with in a convergence study. For this reason, we parameterize u⋆ with

u2⋆ = CD|Ua(δa)− Uo(δo)|2 (1.28)
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0

z

δa

(∂t + if)u− ∂z(Ku∂zu) = ifuG

Ku∂zu = u2⋆eτ

δo

(∂t + if)u− ∂z(Ku∂zu) = 0

Ku∂zu = ρa
ρo
u2⋆eτ

∂tθ − ∂z(Kθ∂zθ) = Fθ

∂tθ − ∂z(Kθ∂zθ) = Fθ

Kθ∂zθ =
ρa
ρo

cpa
cpo
u⋆θ⋆

Kθ∂zθ = u⋆θ⋆

∂zθ = 0
ztop

zbottom

∂zu = 0

∂zθ = 0 ∂zu = 0

Figure 1.5: Summary of the turbulent ekman problem with a two-sided surface layer (where the
initial conditions were omitted). The system with a one-sided surface layer corre-
sponds to δo → 0.

where CD is a constant and capital letter U denotes the solution for this non-turbulent
Ekman problem. The right-hand side of the boundary condition of the turbulent term hence
reads CD|Ua(δa) − Uo(δo)|(Ua(δa) − Uo(δo)). It corresponds to actual implementations in
atmosphere models, except that CD usually depends on u⋆. The simplifications are hence:

• constant viscosity in each fluid;

• neutral stratification;

• CD is constant.

The surface layer is excluded from the computational domain and the reaction-diffusion
equations are hence solved in Ωa = [δa, Ha] and in Ωo = [Ho, δo] where Ha = ztop, Ho =
zbottom. The model problem (analyzed in Chapter 6) reads:

∂tUj + ifUj − ∂z (νj∂zUj) = gj, (j = o, a) in Ωj × (0, T )
Uj(Hj, t) = U∞

j (t), t ∈ (0, T ),
Uj(z, 0) = U0(z), ∀z in Ωj,

ρoνo∂zUo(δo, t) = ρaνa∂zUa(δa, t) = Fsl(Ua(δa, t)− Uo(δo, t)), t ∈ (0, T )

(1.29)

Table 1.2 gives the specific notations used for the Ekman problem.
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Chapter 1. Ocean-atmosphere vertical column modelling

Notations (j = a, o) Quantities Unit
Uj fluids velocities m.s−1

νj constant viscosities m−1.s−2

gj geostrophic forcing terms m.s−2

U∞
j boundary values m.s−1

Hj(→ ∞) size of the domains m
T (→ ∞) length of the time windows s

Ωj computational domains -
Fsl(·) = ρaCD| · |(·) simplified bulk method -

Table 1.2: Notations used in Chapter 6.

1.3.3 Reaction-diffusion equations coupling with heterogeneous
diffusion

To study in details the mechanisms involved in the discrete coupled system, we will also
study the very idealized case where

• both viscosities are constant but possibly different;

• the law of the wall is not applied at the interface;

• u(z, t) ∈ R and if is replaced by r ∈ R;

• we do not include the density ratio in the continuity of the flux at interface.

The coupled system is more symmetric and we note u1, u2 instead of uo, ua in Chapters 2
and 3.

∂tu1 + (r − ν1∂
2
x)u1 = f1 (x, t) ∈ (−∞, 0)×]0, T ] (1.30a)

∂tu2 + (r − ν2∂
2
x)u2 = f2 (x, t) ∈ (0,+∞)×]0, T ] (1.30b)

u1(x, 0) = u1,0(x) x ∈ (−∞, 0) (1.30c)

u2(x, 0) = u2,0(x) x ∈ (0,+∞) (1.30d)

u1(0
−, t)= u2(0

+, t) t ∈ [0, T ] (1.30e)

ν1∂xu1(0
−, t)= ν2∂xu2(0

+, t) t ∈ [0, T ] (1.30f)

Here, f1 and f2 stand for forcing terms and are not linked with the Coriolis effect. r ∈ R is
a reaction term.
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1.4. Schwarz methods for the ocean-atmosphere coupling

1.4 Schwarz methods for the ocean-atmosphere cou-

pling

The coupled problems presented in Section 1.3 are numerically solved with coupling algo-
rithms. Schwarz methods include a large diversity of coupling strategies relying on iteratively
solving the subdomains separately and using boundary conditions as transmission conditions.

1.4.1 Current practices

Many ocean-atmosphere coupling methods are equivalent to performing one iteration of a
Schwarz method. They splits the computation time into time windows and use the averaged
information at the interface as transmission conditions. The coupling algorithms then iterate
(once):

• either in parallel, where both models use information of the previous time windows
(e.g. in CNRM [Voldoire et al., 2013] or in IPSL [Marti et al., 2010]);

• or sequentially, where the atmosphere model uses interface data from the previous time
windows whereas the ocean uses the updated air-sea fluxes. This is the atmosphere-first
method described in Figure 1.6 and used in the European Centre for Medium-Range
Weather Forecasts [Mogensen et al., 2012] and by Environment and Climate Change
Canada [Marti et al., 2021]. In the atmosphere-first method, the models can actually
also be run in parallel by using the data of the ocean not of the previous time windows
but from the one before.

Performing only one iteration and using the data of the previous time windows induces
significant errors in the air-sea interactions [Marti et al., 2021].

1.4.2 Schwarz Waveform Relaxation

There are many Schwarz Waveform Relaxation methods as there are multiple choices for
the boundary conditions for the interface. Moreover, the two domains can be run either
simultaneously or sequentially. The analyses of convergence are similar and it is generally
found that the convergence factor of the parallel version is the square root of the convergence
factor of the sequential version. We restrict our study to the latter.

The Schwarz Waveform Relaxation applied to the reaction-diffusion equations coupling
consists in solving at iteration k the system (1.30a, 1.30c) , with the transmission operator B1

prescribing the boundary condition with the information obtained at the previous iteration
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Atmosphere

Ocean

u⋆, θ⋆ = BULK (ua(δa)− uo(δo))

ti−1 ti

u⋆, θ⋆ = BULK (ua(δa)− uo(δo))

Figure 1.6: Atmosphere-first method: note that the models are integrated on time windows that
are composed of a lot of internal time steps. In the stratified case, the BULK function
takes θa(δa) − θo(δo) as an additional parameter. The dashed arrows represent the
transmission of uo(δo) and the continuous arrows represent the transmission of the
fluxes which depend on u⋆, θ⋆.

B2u
k−1
2 (0+, t):

∂tu
k
1 + (r − ν1∂

2
x)u

k
1 = f1 (x, t) ∈ (−∞, 0)×]0, T ] (1.31a)

uk1(x, 0) = u1,0(x) x ∈ (−∞, 0) (1.31b)

B1u
k
1(0

−, t) = B2u
k−1
2 (0+, t) t ∈ [0, T ] (1.31c)

The iteration is then completed by the resolution of the system in the other subdomain,
using another transmission operator C2:

∂tu
k
2 + (r − ν2∂

2
x)u

k
2 = f2 (x, t) ∈ (0,+∞)×]0, T ] (1.32a)

uk2(x, 0) = u2,0(x) x ∈ (0,+∞) (1.32b)

C2uk2(0+, t) = C1uk1(0−, t) t ∈ [0, T ] (1.32c)

The convergence is attained when B1u
k
1(0

−, t) = B2u
k
2(0

+, t) over all the time window. The
convergence study of Schwarz methods in the linear case with T → ∞ relies on 3 steps:

1. consider the difference with the coupled solution u∞j : ekj = ukj − u∞j . This amounts to
set to zero the forcing terms fj, the initial conditions uj,0 and the boundary conditions.

2. Perform a Fourier (or Laplace) transform on all the equations: the convergence will be
studied on the transformed variables êkj (x, ω) where ω is the time frequency variable.

3. Use the transmission operators to derive the convergence factor ρ(c,c)(ω) = | êkj (0,ω)

êk−1
j (0,ω)

|.

20



1.4. Schwarz methods for the ocean-atmosphere coupling

1.4.3 Schwarz Waveform Relaxation with a surface layer

In the presence of a surface layer, the Schwarz Waveform Relaxation takes a slightly different
form. Indeed,

• the surface layer is excluded from the computational domains, creating a sort of “neg-
ative overlap”: the informations are not transmitted at 0 but at δa and at δo.

• There is a nonlinear transmission condition: the bulk formulation. It computes the
turbulent fluxes from the jump of u and θ across the interface.

Omitting external boundary conditions and initial conditions, a realistic version of the
implementation of Schwarz methods for the ocean-atmosphere coupling in the neutral case
would be:

(∂t + if)uko − ∂z
(
Ku∂zu

k
o

)
= ifuoG (z, t) ∈ Ωo×]0, T ] (1.33a)

(∂t + if)uka − ∂z
(
Ku∂zu

k
a

)
= ifuaG (z, t) ∈ Ωa×]0, T ] (1.33b)

Ku∂zu
k
o(δo) = Ku

ρa
ρo
∂zu

k
a(δa) t ∈]0, T ] (1.33c)

|Ku∂zu
k
a(δa)| = BULK(uka(δa)− uk−1

o (δo))
2, t ∈]0, T ] (1.33d)

In Chapters 4 and 5 the coupling is implemented with (1.33). However the implementation
of the nonlinear boundary condition (1.33d) is not straightforward and for the analysis of
the discrete version of the Ekman problem in Chapter 6 we use instead of (1.33d) the
transmission condition:

νaρa∂zU
k
a (δa) = CD

∣∣Uk−1
a (δa)− Uk−1

o (δo)
∣∣ (Uk−1+θ

a (δa)− Uk−1
o (δo)

)
(1.34)

where θ is a relaxation parameter and Uk−1+θ
a = (1− θ)Uk−1

a + θUk
a . The implementation of

(1.34) is direct: once Uk−1
a , Uk−1

o are known it is equivalent to a Robin condition.
We focus on Schwarz Waveform Relaxation (SWR) methods:

• Waveform means that the time domain is split in time intervals;

• Relaxation means that there are some parameters in the transmission conditions that
can be optimized for a faster convergence. Despite the name suggesting that the
parameter is a relaxation parameter this name is used for other types of parameters
like the ones in Robin transmission conditions.

A particularity of the surface layer is that the values of δa, δo are set to match the first
grid level of the vertical grids. The surface conditions (1.33d) or (1.34) are hence linked with
the numerical implementation. Moreover, some nonlinearities in (1.33d) can be simplified
(see Chapter 4) through the discretization in time. The analysis of Schwarz methods at the
semi-discrete level in space or even at the fully discrete level is hence adapted to (1.33).
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Chapter 2

Discrete Analysis of Schwarz methods
for a diffusion reaction problem with
discontinuous coefficients
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As seen in the previous chapter (§1.4.2) the convergence of Schwarz methods is usually
studied on the continuous problem. For the inclusion of the surface layer in the convergence
study it seems important to switch to the semi-discrete level or even to the fully discrete
level. In this chapter the focus is on the effect of the discretization on the convergence
speed of Schwarz methods. The reaction-diffusion equations coupling problem presented in
Chapter 1 is used: the goal is to present the methodology that can be used to study the
convergence of Schwarz methods in a discrete setting.
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2.1. Introduction

For this purpose, the article [Clement et al., 2022] was published in SMAI Journal of
Computational Mathematics and is reported here. This article is built upon the following
steps:

• Description of a methodology to study the convergence speed of Schwarz methods.

• Introduction of space and time schemes, notably a Finite Volume discretization based
on quadratic spline reconstruction in space and a Diagonally Implicit Runge Kutta
scheme in time.

• Numerical experiments and optimization of continuous and discrete convergence fac-
tors.

The key points of this chapter are:

• The difference between the discrete convergence factor and the continuous one and the
expression of those convergence factors.

• The stability of the discrete schemes considered.

• An operator showing the specificity of multi-stage time schemes within Schwarz meth-
ods.

• The interactions between the time and space discretizations.

• The numerical optimization of the convergence factors.

Code availability All the theoretical results were numerically validated: the code used
for the experiments in this chapter and all the others is available in a Zenodo archive
(https://doi.org/10.5281/zenodo.7092357, [Clement, 2022]).
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Abstract. In this paper, we investigate the effect of the space and time discretisation on the convergence properties
of Schwarz Waveform Relaxation (SWR) algorithms. We consider a reaction-diffusion problem with discontinuous
coefficients discretised on two non-overlapping domains with several numerical schemes (in space and time). A
methodology to determine the rate of convergence of the classical SWR method with standard interface conditions
(Dirichlet-Neumann or Robin-Robin) accounting for discretisation errors is presented. We discuss how such conver-
gence rates differ from the ones derived at a continuous level (i.e. assuming an exact discrete representation of the
continuous problem). In this work we consider a second-order finite difference scheme and a finite volume scheme
based on quadratic spline reconstruction in space, combined with either a simple backward Euler scheme or a two-
step “Padé” scheme (resembling a Diagonally Implicit Runge Kutta scheme) in time. We prove those combinations
of space-time schemes to be unconditionally stable on bounded domains. We illustrate the relevance of our analysis
with specifically designed numerical experiments.

2020 Mathematics Subject Classification. 65B99, 65L12, 65M12.
Keywords. Schwarz methods, Waveform relaxation, Semi-discrete.

1. Introduction

Schwarz Waveform Relaxation (SWR) methods [e.g. 14] are widely used in scientific computing for the
parallel resolution of numerical models. These iterative methods have proved to be quite efficient, their
performances being closely linked to a proper optimisation of their convergence rate. This convergence
speed can indeed be improved thanks to several levers, in particular by designing more or less so-
phisticated interface conditions and by optimising their associated degrees of freedom (e.g. the weight
between the Dirichlet and Neumann components within Robin interface conditions, or a relaxation
parameter within Dirichlet-Neumann interface conditions). However the actual performances obtained
in numerical experiments may be not as good as expected, and several recent studies [e.g. 1, 17, 31]
showed that this can be attributed to the effect of the numerical discretisation. As a matter of fact,
working at a continuous level neglects the impact of this discretisation, that may be rather significant.
On the other hand, taking into account the discretised form of the equations for the optimisation of
the convergence obviously reduces the scope of the results and their generality.

In the present paper, we address this optimisation of SWR methods at the discrete level in the
context of 1-D diffusion-reaction equations. Such equations are relevant in many fields of application.
For example (this was our initial motivation), they can be seen as a simplified formulation of the
oceanic and atmospheric thermodynamics in the vicinity of the air-sea interface [e.g. 19], hence as a

This work was supported by the French national research agency through the ANR project “COCOA” (COmprehensive
Coupling approach for the Ocean and the Atmosphere), grant ANR-16-CE01-0007. Florian Lemarié appreciates the
funding from the SHOM/DGA under grant agreement No 19CP07.
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toy model for ocean-atmosphere coupling. But more generally, these equations are also relevant for
applications in porous media, electrochemistry, biology, electrical circuit simulations, etc [7, 26].

The diffusion-reaction equations have been widely studied in the context of Schwarz domain decom-
position methods (e.g. [8, 11, 13, 24]). However the discrete optimisation of SWR method for these
equations has been few addressed yet to our knowledge: the specific case of discrete duality finite
volumes with backward Euler time discretisation has been investigated in [5] and [6], while comple-
mentary results are presented in the stationary case in [12, 15]. [29] addressed the semi-discrete (i.e.
continuous in time) optimisation problem for second-order central and fourth-order compact finite
differences, and [30] extended this work to the discrete case with a θ-scheme in time combined with
second-order central finite differences in space. However, the analysis excludes a multi-physics setting
and the optimisation requires overlapping domains.

Our aim here is to complement those preceding papers by studying the case of several discretisa-
tion schemes commonly used in the context of ocean-atmosphere modelling, and trying to take a step
back to be fairly general in our methodology and conclusions. Section 2 presents our model problem,
and briefly recalls about the SWR algorithm and its convergence rate computed from the continuous
equations. Section 3 introduces the two time schemes (backward Euler and Diagonally Implicit Runge
Kutta - DIRK) and the two space schemes (second-order central finite difference, and a finite vol-
ume scheme based on quadratic spline reconstruction) that we consider. The analytical expression of
the semi-discrete convergence rate is computed for Dirichlet-Neumann and for Robin-Robin interface
conditions. In Section 4, we prove the stability of the discrete schemes, and study the discrete conver-
gence rate and the interactions between the discretisations in time and space. Then (Section 5), the
theoretical speeds of convergence predicted by these continuous, semi-discrete and discrete analyses
are compared in actual numerical experiments. We will see that significant differences may appear and
emphasize the peculiar role of a centering operator involved in multi-step time schemes.

2. Model problem and Schwarz waveform relaxation algorithm

2.1. Model problem

As indicated previously, the model problem that will be considered in this paper is a reaction-diffusion
problem, that reads:

∂tu1 + (r − ν1∂
2
x)u1 = f1 (x, t) ∈ (−∞, 0)×]0, T ] (2.1a)

∂tu2 + (r − ν2∂
2
x)u2 = f2 (x, t) ∈ (0,+∞)×]0, T ] (2.1b)

u1(x, 0) = u1,0(x) x ∈ (−∞, 0) (2.1c)
u2(x, 0) = u2,0(x) x ∈ (0,+∞) (2.1d)
u1(0−, t) = u2(0+, t) t ∈ [0, T ] (2.1e)

ν1∂xu1(0−, t) = ν2∂xu2(0+, t) t ∈ [0, T ] (2.1f)

where ν1, ν2, r are given positive constants. For the sake of simplicity we consider the same damping
rate r in the two subdomains, but it is straightforward to extend our results to the case with two
different values.

2.2. Schwarz waveform relaxation algorithm

To solve the coupled problem (2.1), a Schwarz waveform relaxation (SWR) algorithm can be set.
Such algorithms are well-known and widely used in scientific computing, at least for domain decom-
position problems [e.g. 23]. They are also particularly well-suited for coupled problems, since they
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can naturally handle differences in the continuous formulations of the models to be coupled (dimen-
sions, equations. . . ) as well as in their discrete formulations (discretisation techniques, space and time
steps. . . ). A SWR algorithm applied to (2.1) reads

∂tu
k
1 + (r − ν1∂

2
x)uk1 = f1 (x, t) ∈ (−∞, 0)×]0, T ] (2.2a)

uk1(x, 0) = u1,0(x) x ∈ (−∞, 0) (2.2b)
B1u

k
1(0−, t) = B2u

k−1
2 (0+, t) t ∈ [0, T ] (2.2c)

then

∂tu
k
2 + (r − ν2∂

2
x)uk2 = f2 (x, t) ∈ (0,+∞)×]0, T ] (2.3a)

uk2(x, 0) = u2,0(x) x ∈ (0,+∞) (2.3b)
C2u

k
2(0+, t) = C1u

k
1(0−, t) t ∈ [0, T ] (2.3c)

where k ≥ 1 is an iteration index, and where u0
2(0+, t) is chosen arbitrarily, or using previous cal-

culations. This iteration loop is repeated until convergence of the sequences (uk1)k and (uk2)k. The
interface operators Bj and Cj (j = 1, 2) are chosen such that (2.2) and (2.3) are well-posed, and that
satisfying both relations B1u1(0−, t) = B2u2(0+, t) and C2u2(0+, t) = C1u1(0−, t) is equivalent to (2.1e)
and (2.1f). This ensures that the converged solution satisfies the desired Dirichlet-Neumann interface
conditions and thus is the solution of the initial coupled system (2.1).
This algorithm is said to be “multiplicative”, while replacing uk1 by uk−1

1 in (2.3c) would lead to a
so-called “parallel” version which requires more iterations to converge but allows for a simultaneous
resolution of (2.2) and (2.3) when implemented numerically.

2.3. General form of the continuous convergence rate

In order to study the convergence of the preceding SWR algorithm (2.2)-(2.3), let us introduce the
errors ekj (x, t) = ukj (x, t)− uj(x, t) where uj(x, t) is the solution on domain j of (2.1).. Assuming that
the operators Bj and Cj are linear, these errors satisfy:

∂te
k
1 + (r − ν1∂

2
x)ek1 = 0 (x, t) ∈ (−∞, 0)×]0, T ]

ek1(x, 0) = 0 x ∈ (−∞, 0)
B1e

k
1(0−, t) = B2e

k−1
2 (0+, t) t ∈ [0, T ]

and
∂te

k
2 + (r − ν2∂

2
x)ek2 = 0 (x, t) ∈ (0,+∞)×]0, T ]

ek2(x, 0) = 0 x ∈ (0,+∞)
C2e

k
2(0+, t) = C1e

k
1(0−, t) t ∈ [0, T ].

A time Fourier transform can be performed, assuming that T → +∞ and extending ej to zero for
t < 0. This leads to the following ordinary differential equations for the errors êj in Fourier space:

(iω + r) êk1 − ν1 ∂
2
xê
k
1 = 0 (x, ω) ∈ (−∞, 0)× R (2.4a)

B1ê
k
1(0−, ω) = B2ê

k−1
2 (0+, ω) ω ∈ R (2.4b)

and

(iω + r) êk2 − ν2 ∂
2
xê
k
2 = 0 (x, ω) ∈ (0,+∞)× R (2.5a)

C2ê
k
2(0+, ω) = C1ê

k
1(0−, ω) ω ∈ R (2.5b)
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where ω is the Fourier frequency. Hence the analytic expressions:
êk1(x, ω) = Ak e

µ1x and êk2(x, ω) = Bk e
−µ2x (2.6)

where µj is the square root of (r + iω)/νj with positive real part (since e1(x) → 0 for x → −∞ and
e2(x)→ 0 for x→ +∞).
Convergence factors can thus be defined, equal to êkj /ê

k−1
j , i.e. Ak/Ak−1 or Bk/Bk−1. The convergence

rate of the SWR algorithm is thus equal to the module of these convergence factors. The link between
(Ak, Bk) and (Ak−1, Bk−1) is provided by the interface conditions (2.4b) and (2.5b). In the particular
case of Dirichlet-Neumann conditions ek1(0−, t) = ek−1

2 (0+, t) and ν2 ∂xek2(0+, t) = ν1 ∂xek1(0−, t), one
gets Ak = Bk−1 and −ν2µ2Bk = ν1µ1Ak, which leads to Ak/Ak−1 = Bk/Bk−1 = −(ν1µ1)/(ν2µ2) =
−
√
ν1/ν2. The convergence rate for infinite domains 1 is thus

ρ
(c,c)
DN =

√
ν1
ν2
. (2.7)

The exponent (c, c) means that both the time and space dimensions have been treated in a continuous
way to derive (2.7) whereas in the following we will study semi-discrete and fully discrete cases. Simi-
larly, for so-called two-sided Robin interface conditions ν1 ∂xek1(0−, t)+p1 ek1(0−, t) = ν2 ∂xe

k−1
2 (0+, t)+

p1 e
k−1
2 (0+, t) and ν2 ∂xek2(0+, t)+p2 ek2(0+, t) = ν1 ∂xek1(0−, t)+p2 ek1(0−, t), the convergence rate reads:

ρ
(c,c)
RR =

∣∣∣∣∣
p1 −

√
ν2
√
iω + r

p1 +√ν1
√
iω + r

p2 +√ν1
√
iω + r

p2 −
√
ν2
√
iω + r

∣∣∣∣∣ .

3. Semi-discrete and discrete convergence rates

The discretisation in time (resp. space) uses a step ∆t (resp. h) constant across subdomains j = 1 and
j = 2. Time index is noted with the letter n whereas grid points are localised through the index m.
The letter k denotes the Schwarz iterate.

From the analysis conducted in this section, we can derive several discrete and semi-discrete conver-
gence rates. In the following, to characterize those convergence rates, we will use the unified notation
ρ

(time,space)
interface where “interface” can be either “DN” for Dirichlet-Neumann or “RR” for Robin-Robin,

“time” can be “c” for continuous, “BE” for backward Euler or “P2” for the second-order Padé scheme,
and “space” is either “c” for continuous, or “FD” for finite difference or “FV” for finite volume. In
this section we give the expression of ρ for various combinations of time and space discretisations and
interface conditions.

Choosing the discretisation of a continuous problem requires to focus on some desirable proper-
ties (e.g. simplicity, accuracy, discrete conservation laws). Two properties arise when using Schwarz
methods: the speed of convergence (characterized by ρ) and the difference between the converged
solution and a so-called monolithic solution, which solves the problem discretised over the full domain
Ω1∪Ω2 without any domain decomposition method. The latter difference should not exceed the order
of accuracy w.r.t. the continuous problem; apart from that, it may be desirable for additional dis-
crete properties to recover the monolithic solution at convergence up to the precision set to stop the
iterations.

3.1. Time discretisation

In this subsection, the objective is to incorporate in the convergence analysis the impact of the time
discretisation. The error in time will now be interpreted as a discrete signal {e(n)}∞n=0 with constant

1For finite domains of size H, [27] gives ρ(c,c)
DN =

√
ν1
ν2

∣∣∣coth (−H
√

r+iω
ν1

) tanh (H
√

r+iω
ν2

)
∣∣∣. With our numerical param-

eters the relative difference with (2.7) is smaller than 1% for ω ≥ 10−3 s−1 without reaction and for all ω if r ≥ 10−3 s−1.
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sampling ∆t (∆t > 0) such that e(n) approximates the continuous signal e(t = n∆t). To play the role
of a discrete equivalent of the Fourier transform used in the continuous analysis (see Sec. 2.3), we use
the one-sided Z-transform [e.g. 4] which is defined as

ê(z) = Z {e(n)} =
∞∑

n=0
e(n)z−n

where z = exp(s∆t) with ∆t the sampling period and s a complex frequency. In the following we
extensively use the property

Z {e(n+ 1)} = z (Z {e(n)} − e(0)) (3.1)
knowing that e(0) = 0 in our context (the error is initially zero).

3.1.1. One-step time schemes: a change of frequency variable

Time discretisation of our model problem (2.1a)-(2.1b) applied to the errors (i.e. with fj = 0) with a
backward Euler scheme gives

e(n+ 1)− e(n)
∆t

+ (r − ν∂2
x)e(n+ 1) = 0. (3.2)

After a Z-transform and using property (3.1), the semi-discrete equation (3.2) becomes
(
z − 1
z∆t

)
ê(z) + (r − ν∂2

x)ê(z) = 0. (3.3)

For one-step time schemes, using a Z-transform instead of a Fourier transform is equivalent to perform-
ing a change of variable: the Fourier variable s = iω is approximated in the Z-domain by a stime

d . For
the backward Euler scheme it is obvious from (3.3) that sBE

d (z) = z − 1
z∆t

. Once the approximation sd
associated to the temporal discretisation of interest has been found, the rest of the convergence analysis
follows the same steps as the one in the continuous case and convergence rates accounting for the time
discretisation can be derived. However this methodology only works for one-step time schemes using
two time levels like Euler (forward or backward) or Crank-Nicholson, and for one-step time schemes
using more time levels like Leapfrog. For more advanced time integration methods, for example used
for realistic simulations of geophysical flows [e.g. 20, 28], the determination of convergence rates in the
semi-discrete case is significantly more complicated, as shown in the next subsection.

3.1.2. A two-step time scheme

The analyses of two-step time schemes feature higher-order Z-transformed differential equations. An-
other specificity of multiple-step time schemes is the time interpolation operator providing boundary
and interface conditions to the intermediate steps. A similar temporal operator also appears when
considering differing time steps [22], and has a significant impact on the convergence rate of Schwarz
iterations.

Determination of the semi-discrete errors. We now consider the “Padé” two-step (P2) scheme
proposed in [21] and [28] which, when applied to our model problem for the errors and reformulated,
reads

(
1 + β∆t

(
r − ν∂2

x

))
e? =

(
1− (1− 2β)∆t

(
r − ν∂2

x

))
e(n) (3.4a)

(
1 + β∆t

(
r − ν∂2

x

))
e(n+ 1) = e? (3.4b)
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Figure 3.1. Absolute value of the real (left) and imaginary (right) parts of the four
complex roots of the characteristic equation associated with the Padé time scheme with
respect to ω∆t. The non-dimensional frequency variable ω∆t naturally appears when
dealing with time discretisations. The roots in the continuous case are also reported
(solid lines). Parameter values are ν1∆t = 0.5 m2, ν2∆t = 1 m2, r∆t = 0.1 and ω∆t ≤
π.

with β = 1 + 1/
√

2. This scheme, implemented in the atmospheric model of the European Centre for
Medium-Range Weather Forecasts (ECMWF), has the property to be second-order accurate, uncon-
ditionally stable and “monotonic damping” (i.e. shortest resolved scales are always more damped than
the larger ones). This last property is not satisfied by a Crank-Nicolson scheme, which explains why
this scheme is seldom used in “real-world” simulations. In a multiple step scheme like (3.4), a discrete
frequency sd ∈ C does not naturally appear. Indeed, combining the Z-transforms of (3.4a) and (3.4b),
we obtain (

z
(
1 + β∆t

(
r − ν∂2

x

))2
−
(
1− (1− 2β)∆t

(
r − ν∂2

x

)))
ê(x) = 0 (3.5)

where, unlike (3.3), derivatives with orders higher than that of the original equation are present. By
analogy with the one-step case, we can rearrange (3.5) as

(
sP2
d + r − ν∂2

x

)
ê = 0 to find that sP2

d

corresponds to the following differential operator:

sP2
d = sBE

d +∆t(r − ν∂2
x)
(
(2β − 1) sBE

d + β2(r − ν∂2
x)
)

where sBE
d = z − 1

z∆t
is defined in §3.1.1. In multiple-step schemes, even if sd takes the form of a differ-

ential operator and not of a complex scalar, a discrete analysis can nevertheless be pursued. However
having no representation of the time discretisation as a simple change of variable means that the tem-
poral scheme contribution to the convergence factor cannot be separated from the space scheme contri-
bution. In the continuous-in-space case, we solve the fourth-order ordinary differential equation (3.5)
whose solutions have general form ê(x) = ∑4

p=1 c
(p) exp(λ(p)x) with λ(p) the complex roots of the asso-

ciated characteristic equation. If we note λ(1), λ(2), λ(3), λ(4) respectively λ(+,−), λ(−,−), λ(+,+), λ(−,+),
the λ(p)’s are

λ(±,±) = ± 1
β
√

2∆tν

√
z−1 + 2β∆tsBE

d + 2β2∆tr ±
√
z−1

√
z−1 + 4β (1− β)∆tsBE

d

and the semi-discrete form of the errors is obtained. Two of the roots (λ(2) and λ(4)) have a negative
real part and the two others (λ(1) and λ(3)) have a positive real part. The evolution of λ(p) with respect
to ω∆t is plotted in Figure 3.1.
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3.1.3. Semi-Discrete convergence rates

In the following we use the subscript j to distinguish the two subdomains. The boundary conditions
at infinity lead to c(2)

1 = c
(4)
1 = 0 and c(1)

2 = c
(3)
2 = 0 and thus

ê1(x) = c
(1)
1 exp(λ(1)

1 x) + c
(3)
1 exp(λ(3)

1 x), x ∈ Ω1

ê2(x) = c
(2)
2 exp(λ(2)

2 x) + c
(4)
2 exp(λ(4)

2 x), x ∈ Ω2
(3.6)

where Ω1 = R− and Ω2 = R+. At this point we have four coefficients to set but only two relations
provided by the transmission conditions (either Dirichlet-Neumann or Robin-Robin).

To close this system, it is necessary to provide interface conditions to e? in (3.4). In the time domain
and in the Dirichlet-Neumann case, those interface conditions are e?1 (x = 0) = e2 (t = t?, x = 0) (with
t? = (n+ 1− β)∆t = (n− 1/

√
2)∆t) for subdomain j = 1 and ν2∂xe?2 (x = 0) = ν1∂xe1 (t = t?, x = 0)

for subdomain j = 2. We note γ the frequency operator used to center the appropriate values at time
t?. This interpolation or extrapolation operator γ will impact the convergence rate: the choice of γ
is discussed below in the present subsection. Considering Dirichlet-Neumann interface conditions, the
remaining coefficients in (3.6) are thus determined using the following conditions

êk1(x = 0, z) = êk−1
2 (x = 0, z) (3.7a)

ν2∂xê
k
2(x = 0, z) = ν1∂xê

k
1(x = 0, z) (3.7b)

(
1 +∆tβ(r − ν1∂

2
x)
)
zêk1(x = 0, z) = γ(z) êk−1

2 (x = 0, z) (3.7c)

ν2
(
1 +∆tβ(r − ν2∂

2
x)
)
z∂xê

k
2(x = 0, z) = γ(z) ν1∂xê

k
1(x = 0, z) (3.7d)

where (3.4b) was used to treat the term e?j (x = 0). Combining (3.7) and (3.6), we get after some
algebra:

c
(1)
1,k = (1− γ̃)

(
c

(2)
2,k + c

(4)
2,k

)

c
(3)
1,k = γ̃

(
c

(2)
2,k + c

(4)
2,k

)

ν2c
(2)
2,kλ

(2)
2 = (1− γ̃) ν1

(
c

(1)
1,k−1λ

(1)
1 + c

(3)
1,k−1λ

(3)
1

)

ν2c
(4)
2,kλ

(4)
2 = γ̃ν1

(
c

(1)
1,k−1λ

(1)
1 + c

(3)
1,k−1λ

(3)
1

)

(3.8)

where

γ̃ =
z

(
1 + β∆t

(
r − ν1

(
λ

(1)
1

)2
))
− γ

(1/β)
√

1 + 4β (1− β) (z − 1)
=
z

(
1 + β∆t

(
r − ν2

(
λ

(2)
2

)2
))
− γ

(1/β)
√

1 + 4β (1− β) (z − 1)

γ̃ represents a weighted difference between two ways to estimate ej(x = 0, t = t?): either via a
time interpolation/extrapolation (by operator γ) or via the second step of the time scheme (3.4),
represented by z

(
1 + β∆t

(
r − νjλ2

j

))
. From (3.8) we can deduce a convergence rate defined here as

ρ
(P2,c)
DN =

∣∣∣%(P2,c)
DN

∣∣∣ =
∣∣∣∣∣
ν1∂xêk1
ν1∂xê

k−1
1

∣∣∣∣∣ with

%
(P2,c)
DN =

c
(1)
1,kλ

(1)
1 + c

(3)
1,kλ

(3)
1

c
(1)
1,k−1λ

(1)
1 + c

(3)
1,k−1λ

(3)
1

= %
(c,c)
DN

√
ν1
ν2

(
λ

(1)
1 (1− γ̃) + λ

(3)
1 γ̃

)(1− γ̃
λ

(2)
2

+ γ̃

λ
(4)
2

)
.

105

Chapter 2. Discrete Analysis of Schwarz methods for a diffusion
reaction problem with discontinuous coefficients

30



S. Clement, F. Lemarié, et al.

Choosing γ for multi-step time schemes. When implementing a Schwarz method with multi-
step time scheme, a special attention should be paid to the choice of the operator of projection onto the
intermediate steps. In the case of the Padé time scheme, a first-order extrapolation from the current
times (γextr = z(1 − β) + β, which corresponds to the weights 1 − β at tn+1 and β at tn) suffices to
guarantee a second-order accuracy of the solution.

Once the desired order of accuracy is attained, one may want to recover the monolithic solution (i.e.
the solution that would have been obtained by discretising the problem directly on Ω1 ∪Ω2) to obtain
additional discrete properties. This solution can only be obtained if γ perfectly matches the second
step of the scheme, resulting in γ̃ = 0. In such an ideal case, the analysis would be similar to a one-step
scheme with the change of variable sP2,γ̃=0

d = 1
2β2∆t

(
2β+(1− 2β) z−1−

√
z−1

√
z−1 + 4β (1− β)∆tsBE

d

)

and the operator of projection would be γγ̃=0(z) = 1− 1
2β

(
1−

√
1 + 4β (1− β) (z − 1)

)
.

However this operator γγ̃=0(z) is non-local in time: indeed γ is a sum of z±p with z0 representing
the current time tn and z±p the time tn±p. If γ(z) is not of this form, then its time counterpart is not
local-in-time.

To ensure a small γ̃ and a local-in-time γ, a second-order Taylor development of γγ̃=0(z) at z = 1
can be made: γimit(z) = z−β(z−1)−β (β − 1)2 (z−1)2. This development is not in general a second-
order accurate extrapolation. Indeed, instead of precisely computing the interface condition at t = t?,
γ needs to mimic the second step of the time scheme (3.4). A more precise interpolation/extrapolation
of e(t = t?) would thus not give a smaller γ̃ because of the error committed by the second step of (3.4).

The choice of γ is crucial for the convergence speed, as can be seen in Figure 3.2 which compares
the first-order extrapolation to the Taylor expansion of γγ̃=0(z). This operator is a specific feature of
the intermediate steps of multi-step time schemes.

Equivalence with DIRK scheme. The analysed Padé two-step time scheme is equivalent to a
Diagonally Implicit Runge-Kutta scheme (DIRK) for space-periodic problems. However, in DIRK
schemes as defined in [2]:

(
1 + β∆t

(
r − ν∂2

x

))
e?? = e(n)

(
1 + β∆t

(
r − ν∂2

x

))
e(n+ 1) = e(n) + (1− β)∆t

(
r − ν∂2

x

)
e??

the intermediate step is not performed in the same way. Consequently, t?? is not ∆t (n+ 1− β) but
is t?? = ∆t (n+ β). When considering problems that are non-periodic in space, a Dirichlet interface
condition on this e?? yields instead of (3.7c):

êk1(x = 0, z) = γ(z)
(
1 + β∆t(r − ν1∂

2
x)
)
êk−1

2 (x = 0, z)

γ̃ and γ hence depend on the intermediate step and the convergence rate may differ from the P2 scheme.
However canceling γ̃ never leads to a local-in-time γγ̃=0(z) and the above discussion is extendable to
other multi-step schemes as long as the steps involve space differentiation.

3.2. Space discretisation

We now consider the semi-discretisation in space at a given location x = (m + l)h of the partial
differential equation satisfied by the errors on subdomain Ωj

(∂t + r) em+l,j − νj∂
2
xej
∣∣∣
x=xm+l

= 0

where we formulate the second-order derivative as a general flux divergence:

νj∂
2
xej
∣∣∣
x=xm+l

= νj
h

(
φm+l+ 1

2 ,j
− φm+l− 1

2 ,j

)
, with φm+l+ 1

2 ,j
≈ ∂xej |x=x

m+l+ 1
2

(3.10)
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10−1 100

ω∆t

0.6

0.7

0.8

0.9

1.0

ρ
(P2,c)
DN

r = 0 s−1, γ = z − β(z − 1)

r = 0 s−1, γ = z − β(z − 1)− β(β − 1)2(z − 1)2

r = 0.1 s−1, γ = z − β(z − 1)

r = 0.1 s−1, γ = z − β(z − 1)− β(β − 1)2(z − 1)2

√
ν1
ν2

Figure 3.2. Convergence rate ρ(P2,c)
DN with respect to ω∆t for different choices of the

extrapolation function γ(z) and different values of the reaction coefficient. Other pa-
rameter values are ν1 = 0.5 m2 s−1, ν2 = 1 m2 s−1, ∆t = 1 s and ω∆t ≤ π. The Finite
Differences numerical experiment (circles) uses 104 vertical levels with a space step
h = 10−2m and 300 time steps are performed.

where l = 0 or l = 1
2 depending on the discretisation scheme (see Figure 3.3). In the following we

introduce a second-order centered finite difference scheme for which l = 0 and a finite volume scheme
based on quadratic splines reconstruction for which l = 1

2 . For both schemes we provide the form of
the semi-discretised in space error in Fourier space for various interface conditions. Note that the
domains are assumed of infinite size (m ∈ Z) and the numerical experiments that will be presented
later will also use a domain large enough for this approximation to be valid.

x1 x2 x3x0x−1x−2

x 1
2

h
Ω1 = (−∞, 0)

Ω2 = (0,+∞)

Figure 3.3. Computational grid in space for the discretisation in subdomains Ω1
and Ω2 with a common interface located at x = x0. For the finite difference scheme
presented in Sec. 3.2.1 the solution is computed at integer indices xm (m ∈ Z) and
fluxes at half indices while for the finite volume scheme in Sec. 3.2.2 control volumes
are centered on half indices, i.e. at xm+1/2 (m ∈ Z).

3.2.1. Standard finite difference scheme

We first consider a standard second-order finite difference space scheme for which the approximation
of derivatives at cell interfaces is

φFD
m+ 1

2 ,j
= em+1,j − em,j

h
.

Using (3.10), we easily find that the error at x = xm satisfies the differential equation

(∂t + r)em,j −
νj
h2 (em+1,j − 2em,j + em,j) = 0.
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Denoting êm,j(s) the Fourier transform2 of em,j(t) with s ∈ C, the error in the frequency domain
satisfies

(χj + 2) êm,j − (êm−1,j + êm+1,j) = 0, with χj = h2(r + s)
νj

. (3.11)

The general form of the semi-discretised error arising from a finite-difference spatial discretisation is

êkm,1 = αk(s)
(
σ+

1

)m
+ γk(s)

(
σ−1
)m

êkm,2 = βk(s)
(
σ−2
)m

+ ςk(s)
(
σ+

2

)m

where σ±j = 1
2

(
2 + χj ±

√
χj (χj + 4)

)
. The αk, γk, βk, and ςk coefficients are determined using the

boundary conditions. The infinite domain assumption leads to γk = ςk = 0 and thus

êkm,1 = αk(s)
(
σ+

1

)m
, êkm,2 = βk(s)

(
σ−2
)m

. (3.12)

3.2.2. A finite volume scheme based on quadratic spline reconstruction

A finite volume alternative to the standard finite difference scheme is derived in appendix A. This
scheme offers the advantage to naturally handle the transmission conditions between the two non-
overlapping domains and to guarantee that the converged solution is similar to the monolithic solution
of the problem. Among others, [13] also uses a finite volume scheme for the same reasons. This scheme,
denoted FV, corresponds to solving the tridiagonal system

1
6φ

FV
m−1 + 2

3φ
FV
m + 1

6φ
FV
m+1 =

ūm+ 1
2
− ūm− 1

2

h
(3.13)

to get φFV
m , and to deduce the second-order derivative via (3.10). In (3.13), ūm+ 1

2
is defined in a

finite-volume sense as ūm+ 1
2

= 1
h

∫ xm+1

xm
u(x) dx with h = xm+1 − xm. We then find that the error at

x = xm satisfies the differential equation

(∂t + r)
(1

6φ
FV
m−1,j + 2

3φ
FV
m,j + 1

6φ
FV
m+1,j

)
− νj
h2

(
φFV
m+1,j − 2φFV

m,j + φFV
m−1,j

)
= 0 (3.14)

where using coefficients ( 1
12 ,

5
6) instead of (1

6 ,
2
3) would give a fourth-order accurate compact scheme

[e.g. 18]. For convenience we will formulate here the convergence rate in terms of derivatives φFV
m,j

instead of the errors ēm+ 1
2 ,j

themselves. It is straightforward to show that both approaches lead to
equivalent results. Unlike in the finite difference case where we applied a Fourier transform on em,j(t),
we apply it here on φFV

m,j(t) in (3.14) to obtain the tridiagonal system
(
χj
6 − 1

)
φ̂FV
m−1,j +

(2χj
3 + 2

)
φ̂FV
m,j +

(
χj
6 − 1

)
φ̂FV
m+1,j = 0 (3.15)

where χj is defined in (3.11). The roots of the characteristic equation associated to (3.15) are

λ±j = 1
1
χj
− 1

6

(
1
χj

+ 1
3 ±

√
1
χj

+ 1
12

)
whose Taylor expansion gives

λ±j = 1±
√
r + s

νj
h+ h2

2

(
r + s

νj

)
+ O(h3)

2When the time axis is continuous, it should be noted ê. However we use the discrete notation ê because s can be
either the continuous frequency variable or a one-step time scheme change of variable.
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showing that λ±j is an approximation of e
±
√

r+s
νj

h
. The infinite domain assumption thus leads to

(
φ̂FV
m,1
)k

= υk(s)
(
λ+

1

)m
,

(
φ̂FV
m,2
)k

= τk(s)
(
λ−2
)m

(3.16)

where υk(s) =
√

s+r
ν1
αk(s) and τk(s) = −

√
s+r
ν2
βk(s) will be determined using the interface conditions.

3.2.3. Interface conditions

The discretisation of the interface conditions will allow to determine the semi-discrete errors in (3.12)
and (3.16). In the following we will consider the discretisations of Dirichlet and Neumann interface
conditions which also straightforwardly provide the discretisation of Robin interface conditions. We
define ηj,operator to represent the boundary operator on domain j where “operator” can either be “dir”
for a Dirichlet condition or “neu” for a Neumann condition. In a continuous setting, application of the
Dirichlet-Neumann interface conditions would lead to

η1,dirαk(s) = êk1(0, s) η2,dirβk(s) = êk2(0, s)
η1,neuαk(s) = ν1∂xê

k
1(0, s) η2,neuβk(s) = ν2∂xê

k
2(0, s)

with η1,dir = η2,dir = 1, η1,neu =
√
ν1(s+ r), and η2,neu = −

√
ν2(s+ r). We now derive the discrete

counterpart for ηj,operator in the finite difference and finite volume cases. In case we work on fluxes
φ̂kj = ∂xê

k
j rather than directly on the error êkj , we would simply have

η1,dirαk(s) =
√

ν1
s+ r

φ̂k1(0, s) η2,dirβk(s) = −
√

ν2
s+ r

φ̂k2(0, s)

η1,neuαk(s) = ν1φ̂
k
1(0, s) η2,neuβk(s) = ν2φ̂

k
2(0, s).

Finite differences interface conditions. Due to the grid arrangement we used (see Figure 3.3),
the discretisation of the Dirichlet boundary condition in the finite difference case is trivial since a
grid point is located on the interface at x = x0. We thus obtain in (3.12) êk0,1 = αk(s) and therefore
ηFD

1,dir = 1 which corresponds to the continuous case (same applies for subdomain 2). As far as the
Neumann boundary condition is concerned, derivatives are naturally located at cell interfaces i.e. a
half grid cell inside the domain and the finite difference discretisation requires a specific care. We
propose two possible discretisations for the Neumann boundary condition:

• Strategy #1 (naive discretisation): assume a Dirichlet-Neumann algorithm with Dirichlet
on Ω1 and Neumann on Ω2. For the grid points at x = x1 and x = x−1 we have

ν1∂
2
xe1
∣∣∣
x=x−1

= ν1
h

(
φ̃FD
− 1

2 ,1
− φFD

− 3
2 ,1

)

ν2∂
2
xe2
∣∣∣
x=x1

= ν2
h

(
φFD

3
2 ,2
− φ̃FD

1
2 ,2

)

where the ·̃ fluxes are influenced by interface conditions. On Ω1 we receive a Dirichlet condition
em=0,1 = eint such that

φ̃FD
− 1

2 ,1
= eint − em=−1,1

h

and ν1φFD
− 1

2 ,1
is sent to subdomain 2 and used as a Neumann condition.

On Ω2 we have
ν2φ̃

FD
1
2 ,2

= ν1φ̃
FD
− 1

2 ,1
(3.17)
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and the Dirichlet condition eint for subdomain Ω1 is computed as

eint = em=1,2 − hφ̃FD
1
2 ,2
.

• Strategy #2 (corrected discretisation): the previous interface discretisation has the
drawback to be less accurate than inside the domains. We now derive a second-order accurate
discretisation with the additional property of recovering the monolithic solution at convergence
of the Schwarz iterations. Starting from the discretisation we would have at x = x0 in the
monolithic case:

(∂t + r) e|x=x0
− 1
h

(
ν2φ

FD
1
2 ,2
− ν1φ

FD
− 1

2 ,1

)
= 0

and considering that e|x=x0
= 1

2 (em=0,j=1 + em=0,j=2) we end up with

ν1φ
FD
− 1

2 ,1
+ h

2 (∂t + r) e0,1 = ν2φ
FD
1
2 ,2
− h

2 (∂t + r) e0,2 (3.18)

as a substitute for (3.17) in the naive case. It is similar to a so-called ghost-point method,
but the time derivative in (3.18) will have a significant effect on the convergence. Using the
reaction-diffusion equation to replace the time derivative would require to know in a given
subdomain the diffusivity used in the other subdomain, which is not always practical.

To obtain unified notations between the naive and the corrected cases, we introduce a parameter κc
in front of the h

2 coefficient in (3.18) such that for κc = 0 we recover the naive Neumann condition (3.17)
and for κc = 1 we get the corrected discretisation (3.18).

Now going back to the determination of the ηj,neu we apply a Fourier transform on the discretisa-
tions (3.17) and (3.18) and use (3.12) to obtain

ν1 ∂xê
k
1

∣∣∣
x=x0

= ν1
êk0,1 − êk−1,1

h
+ κc

h

2 (s+ r)êk0,1 = αk(s) ν1
h

(
1− 1

σ+
1

+ κc
2 χ1

)

︸ ︷︷ ︸
ηFD

1,neu

ν2 ∂xê
k
2

∣∣∣
x=x0

= ν2
êk1,2 − êk0,2

h
− κc

h

2 (s+ r)êk0,2 = βk(s) ν2
h

(
σ−2 − 1− κc

2 χ2

)

︸ ︷︷ ︸
ηFD

2,neu

.

Finite volume discretisation of interface conditions. In the case of the finite volume discreti-
sation (3.13), the interface conditions are much easier and natural to discretise. Using the notations
introduced in appendix A, the error at the interface reads as follows

e1(x = 0, t) = S− 1
2

(h/2) = ē− 1
2 ,1

+ h

6
(
φFV
−1,1 + 2φFV

0,1
)

e2(x = 0, t) = S 1
2

(−h/2) = ē 1
2 ,2
− h

6
(
φFV

1,2 + 2φFV
0,2
)

where S is defined in (A.1) as the spline reconstruction of the solution. Considering the Fourier
transform of (A.4) for m = 0 and j = 1, we obtain the expression of ̂̄e− 1

2 ,1
, and similarly, using (A.3)
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Figure 3.4. Convergence rates with Dirichlet-Neumann interface conditions with re-
spect to ω for s = iω, ν1 = 0.5 m2 s−1, ν2 = 1 m2 s−1. The convergence rates
represented correspond to (a) ρ(c,FD)

DN for κc = 0 and r = 0 s−1, (b) ρ(c,FD)
DN for κc = 1

and r = 0 s−1, (c) ρ(c,FV)
DN for r = 0 s−1 (d),(e) and (f) are the same as (a),(b) and

(c) but for r = 0.1 s−1. Results are shown for different values of h: h = 0.1 m (black
dashed lines), h = 1 m (black solid lines), h = 5 m (grey dashed lines), and h = 10 m
(grey solid lines). The convergence rate in the continuous case is represented with red
solid lines.

for m = 0 and j = 2, we obtain ̂̄e 1
2 ,2

. We end up with:

êk1(0, s) =
{(

h

3 + h

χ1

)(
φ̂FV

0,1
)k

+
(
h

6 −
h

χ1

)(
φ̂FV
−1,1

)k}
= αk(s)

√
χ1

[(1
3 + 1

χ1

)
+
(1

6 −
1
χ1

) 1
λ+

1

]

︸ ︷︷ ︸
ηFV

1,Dir

êk2(0, s) =
{(

h

χ2
− h

6

)(
φ̂FV

1,2
)k
−
(
h

χ2
+ h

3

)(
φ̂FV

0,2
)k}

= βk(s)
√
χ2

[( 1
χ2

+ 1
3

)
−
( 1
χ2
− 1

6

)
λ−2

]

︸ ︷︷ ︸
ηFV

2,Dir

.

The expressions for ηFV
j,Dir thus obtained can be further simplified and are such that ηFV

j,Dir =
√

1 + χj
12 .

As far as the Neumann boundary condition is concerned, since we have constructed the scheme under
the constraints ∂ξS1/2(−h/2) = φFV

0,2 and ∂ξS−1/2(h/2) = φFV
0,1 (see appendix A) we easily obtain

η1,neu =
√

(s+ r)ν1 =
ν1
√
χ1
h

and η2,neu = −
√

(s+ r)ν2 = −ν2
√
χ2
h

(i.e. the ones from the continuous
case). As mentioned earlier our finite volume discretisation allows to recover at convergence the solution
that would have been obtained by a numerical simulation over the union of the two subdomains up
to the precision set to stop the iterations.

111

Chapter 2. Discrete Analysis of Schwarz methods for a diffusion
reaction problem with discontinuous coefficients

36



S. Clement, F. Lemarié, et al.

Table 3.1. Summary of the formulation of the ηj,dir and ηj,neu quantities which charac-
terise the space discretisation through the interface operators. κc = 1 for the corrected
FD case and κc = 0 in the naive FD case.

Space setting η1,dir η2,dir η1,neu η2,neu

Finite Volume
√

1 + χ1
12

√
1 + χ2

12
ν1
h

√
χ1 −ν2

h

√
χ2

Finite Difference 1 1 ν1
2h

(
χ1(κc − 1) +

√
χ1(4 + χ1)

)
ν2
2h

(
χ2(1− κc)−

√
χ2(4 + χ2)

)

Continuous 1 1 ν1
h

√
χ1 −ν2

h

√
χ2

Table 3.2. Frequency variables s, which characterise the time discretisation. z can
be replaced by eiω∆t. Using a change of variable for a multi-step time scheme would
neglect the projection operator γ (see section 3.1.3).

Time setting s
Backward Euler sBE

d = z−1
z∆t

Padé scheme sP2
d = z−1

z∆t −∆t
(
(2β − 1) z−1

z∆tν
(
∂2
x − r

)− β2ν2 (∂2
x − r

)2)

Continuous sc = iω

3.2.4. Semi-Discrete convergence rates

We study the semi-discrete in space case where the determination of αk(s) and βk(s) in (3.12) can
be easily done via the ηj,dir and ηj,neu expressions derived in previous subsection. In the Dirichlet-
Neumann case, the transmission conditions lead to

ηFD
1,dirαk(s) = ηFD

2,dirβk(s) (3.19)
ηFD

2,neuβk(s) = ηFD
1,neuαk−1(s) (3.20)

and using the specific form of the ηj functions given in Tab. 3.1 we obtain the convergence rate
(corresponding here to |αk/αk−1|)

ρ
(c,FD)
DN =

∣∣∣∣∣
ηFD

2,dirη
FD
1,neu

ηFD
1,dirη

FD
2,neu

∣∣∣∣∣ =
∣∣∣%(c,FD)

DN

∣∣∣ , %
(c,FD)
DN = ν1

ν2

(
χ1(κc − 1) +

√
χ1(χ1 + 4)

χ2(1− κc)−
√
χ2(χ2 + 4)

)

where we recall that χj = h2(s+ r)/νj . For h→ 0 we have

%
(c,FD)
DN =

√
ν1
ν2

+ (κc − 1)h2

(√
ν1
ν2
− 1

)√
s+ r

ν2
+ O(h2)

and thus ρ(c,FD)
DN is a first-order (resp. second-order) approximation of the convergence rate ρ(c,c)

DN in the
continuous case for κc = 0 (resp. κc = 1). The Taylor expansion of %(c,FD)

DN suggests that the impact of
numerical errors is small when ν1 is close to ν2 and ν2 is large because the leading order term is scaled
by
√
ν1 −

√
ν2

ν2
. In other situations the numerical results may deviate significantly from the continuous

analysis as shown in Figure 3.4. Moreover, whatever the parameter values, lim
ω→∞ %

(c,FD)
DN

∣∣∣
κc=1

= 1 (with
ω = Im(s)) such that we can anticipate poor performances with finite differences for high temporal
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frequencies. Figure 3.4 illustrates this aspect. On the other hand, lim
ω→∞ %

(c,FD)
DN

∣∣∣
κc=0

= ν1
ν2

which means
that the algorithm converges faster (if ν1 < ν2) for high frequencies.

In the continuous analysis, the reaction coefficient r does not appear in the convergence factor which
depends only on the diffusion coefficients νj (j = 1, 2), see (2.7). However in the semi-discretised in
space case with finite difference, the following asymptotes for low frequencies can be found:

lim
ω→0

%
(c,FD)
DN

∣∣∣
κc=1

=
√
ν1
ν2


1 + rh2

4ν1

1 + rh2
4ν2


 , lim

ω→0
%

(c,FD)
DN

∣∣∣
κc=0

=
√
ν1
ν2

√
1 + rh2

4ν1
−
√

rh2
4ν1√

1 + rh2
4ν2
−
√

rh2
4ν2

meaning that the discretisation affects the convergence factor even at lower frequencies compared to the

continuous case. In particular, assuming that ν1 < ν2 we have
(

1+ rh2
4ν1

1+ rh2
4ν2

)
> 1. The convergence is thus

slower and increasing r slows it down with the corrected FD discretisation. With the naive FD discreti-

sation, the convergence is faster than predicted by the continuous analysis since

√
1+ rh2

4ν1
−
√

rh2
4ν1√

1+ rh2
4ν2
−
√

rh2
4ν2

< 1,

and increasing r accelerates the convergence. The impact of the reaction coefficient on the convergence
rate is illustrated in Figure 3.4.

In the finite volume case, (3.19) and (3.20) also apply, and

ρ
(c,FV)
DN =

∣∣∣∣∣
ηFV

1,neuη
FV
2,dir

ηFV
2,neuη

FD
1,dir

∣∣∣∣∣ =
∣∣∣%(c,FV)

DN

∣∣∣ , %
(c,FV)
DN =

ν1
√

χ1
12+χ1

ν2
√

χ2
12+χ2

.

%
(c,FV)
DN is a second-order approximation of

√
ν1/ν2, since

%
(c,FV)
DN =

√
ν1
ν2

+ h2

24

(
ν1 − ν2√
ν1ν2

)(
s+ r

ν2

)
+ O(h4).

Just like in the finite difference case, the order of magnitude of the leading error term in the Taylor
expansion for h → 0 depends on the parameter values for ν1 and ν2. This is also the case for large
values of ω since lim

ω→∞ %
(c,FV)
DN = ν1

ν2
. Like in the naive FD case, in the FV case the algorithm for

ν1 < ν2 will be more efficient for high temporal frequencies than for low frequencies. This is confirmed
by Figure 3.4.

The reaction coefficient does not affect the asymptote for large values of ω. However for small values
of ω we have

lim
ω→0

%
(c,FV)
DN =

√
ν1
ν2

√√√√1 + h2r
12ν2

1 + h2r
12ν1

which is systematically smaller than
√
ν1/ν2 for ν1 < ν2 as seen in Figure 3.4. Moreover, with both

discretisations %(c,c)
DN is obtained when χj → 0. Consequently if s+ r → 0 the continuous convergence

rate is recovered even when using a large h.

4. Discrete case

4.1. Stability analysis

In the following, we investigate the stability of the various combinations between the space and time
discretisations. To this aim, we consider a Dirichlet condition on the external boundaries of the indi-
vidual subproblems and Robin conditions at interface. It will thus be straightforward to extend the
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results to a Dirichlet or a Neumann interface condition. The subscript j is omitted as the stability
does not depend on it. To describe the space discretisations, we introduce two tridiagonal matrices
Y {FD,FV} and two tridiagonal matrices D{FD,FV} such that both discretisations read in matrix form

(
(∂t + r)Y − ν

h2 D

)
x = c

where x represents the variable u with the finite difference discretisation and the variable φ when using
finite volumes. c has no effect on the stability, and consists of the possible forcing and contributions
from the boundary and interface conditions.

Y FD =




1
2κc

1 0
. . .

0 1
0



,DFD =




−(hν p̃+ 1) 1
1 −2 1 0

. . . . . . . . .
0 −2 1

0 −1




(4.1)

and

Y FV = 1
6




2(3 + h
ν p̃)

h
ν p̃

1 4 1 0
. . . . . . . . .

0 1 4 1
1 2



,DFV =




−hp̃
ν

hp̃
ν

1 −2 1 0
. . . . . . . . .

0 1 −2 1
1 −1



. (4.2)

p̃ is p1 in the domain Ω1 or −p2 in the domain Ω2.

4.1.1. Theoretical tools for analysis

The proof of stability relies on the hypothesis that p̃ ≥ 0 to obtain diagonally dominant matrices. The
following propositions will help us proving the stability of both time schemes by providing the sign of
the eigenvalues of (DFD)−1Y FD and (Y FV)−1DFV.
Proposition 4.1. For any l ∈ C such as R(l) > 0, det(D− lY ) 6= 0 (i.e. det(DFV − lY FV) 6= 0 and
det(DFD − lY FD) 6= 0).
Proof. Using the hypotheses p̃ ≥ 0 and R(l) > 0, we get:

• DFV − lY FV is strictly diagonally dominant and is hence non-singular.

• If κc = 1 or p̃ > 0, DFD − lY FD is also strictly diagonally dominant.

• If κc = 0 and p̃ = 0, the first row of DFD− lY FD is only weakly diagonally dominant. However
the matrix is weakly chained diagonally dominant (see e.g. [3]) thus non-singular.

Proposition 4.2. DFD and Y FV are non-singular.
Proof. Y FV is strictly diagonally dominant and DFD is weakly chained diagonally dominant. Hence
both are non-singular.

From now on, the superscript FD or FV will be omitted when a sentence stands for both discretisations.
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4.1.2. Stability of the Backward Euler scheme

The Backward Euler scheme corresponds to the operation Axn+1 = Y xn + ∆tc where A =
((1 + r∆t)Y − ΓD) and Γ is the parabolic Courant number.

Proposition 4.3. The Backward Euler scheme is unconditionally stable with FD and FV on a bounded
domain with Dirichlet-Robin boundary conditions.

Proof. It is easy to see that A is non-singular for p̃ ≥ 0. Let σ ∈ C∗ be a non-zero eigenvalue of
A−1Y and v the associated eigenvector. Then σAv = Y v, i.e. (σ(1 + r∆t)− 1)Y v = σΓDv. Then:

• v is an eigenvector of (Y FV)−1DFV, with eigenvalue λ = σ(1+r∆t)−1
Γσ .

• v is an eigenvector of (DFD)−1Y FD, with eigenvalue 1/λ.

We assumed that σ 6= 0. By definition of λ, det(D − λY ) = 0. From proposition 4.1 we get that
R(λ) ≤ 0, and since σ = 1

1+r∆t−Γλ , we conclude that |σ| ≤ 1. The moduli of all eigenvalues of A−1Y
are therefore smaller or equal to 1: the Backward Euler scheme is unconditionally stable for finite
differences and for finite volumes (for variable φ).
Special attention must be paid to the finite volume scheme if r = 0: unm+1/2 = u0

m+1/2+ ν
h

∑n
i=1(φim+1−

φim + f
i
m+1/2). To prove stability we need this serie to be bounded when f = 0 and the eigenvalues

should hence be of modulus strictly smaller than 1 in order to have geometric convergence. However
the eigenspace associated to 1 is the kernel of DFV . In this eigenspace, φm+1 − φm = 0. We hence
conclude that the Backward Euler scheme is unconditionally stable also for the variable u of finite
volumes.

4.1.3. Stability of the “Padé” two-step scheme

The “Padé” two-step time scheme studied in this paper reads:

(Ỹ β − βΓD)x? =
(
Ỹ 2β−1 − (2β − 1)ΓD

)
xn + β∆tc? − (2β − 1)∆tcn

(Ỹ β − βΓD)xn+1 = Y x? + β∆tcn+1

where Ỹ X = (1 +Xr∆t)Y and Γ = ν∆t
h2 .

Proposition 4.4. The “Padé” two-step scheme is unconditionally stable with FD and FV on a bounded
domain with Dirichlet-Robin boundary conditions.

Proof. We study the eigenvalues of the matrix
AP =

(
Ỹ β − βΓD

)−1
Y
(
Ỹ β − βΓD

)−1 (
Ỹ 2β−1 − (2β − 1)ΓD

)
.

From proposition 4.1:

• we get that all eigenvalues λ ∈ C of (Y FV)−1DFV are such that R(λ) ≤ 0.

• All non-zero eigenvalues 1/λ ∈ C of (DFD)−1Y FD are such that R(λ) ≤ 0.

Let λ ∈ C defined as in one of the two cases above. The associated eigenvector is also an eigenvector
of AP , with eigenvalue σ given by:

σ = 1 + (2β − 1)(r∆t− Γλ)
(1 + β(r∆t− Γλ))2 . (4.3)
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All the eigenvalues of AP correspond to a λ in (4.3) or correspond to the zero eigenvalue of
(DFD)−1Y FD. In the latter case, the eigenvectors correspond to the zero eigenvalue of AP .
Since Γ and r∆t are strictly positive, we can restrain our study to the function λ̃ 7→

∣∣∣1+(2β−1)λ̃
(1+βλ̃)2

∣∣∣, where
λ̃ = r∆t − Γλ belongs to the right half of the complex plane. A routine calculation returns that for
β = 1 + 1/

√
2, this function is always strictly smaller than 1, except in λ̃ = 0.

As for the Backward Euler scheme, the eigenspace associated to σ = 1 for finite volumes scheme is the
kernel of DFV and we can draw the same conclusion: the Padé two-step time scheme is unconditionally
stable.

4.2. Convergence rates

In previous subsections we have derived the semi-discrete (either in time or in space) convergence
rates of SWR algorithm. Now that we have checked that the various combinations of space and time
discretisations are unconditionally stable for bounded domains, the discrete convergence rates can be
studied.

In Section 3.1 we mentioned that adding the time-discretisation in the analysis amounts to a change
of variable for one-step time schemes (i.e. s in the continuous case is replaced by sd(z) in the discretised
case). We also showed that for a multiple-step time scheme, the convergence factor %(P2,space)

DN requires
solving a characteristic equation which is fourth order. Because of the lengthy computations involved
in the derivation of ρ(P2,FD)

DN and ρ(P2,FV)
DN we do not provide their analytical expressions.

4.2.1. Dirichlet-Neumann boundary conditions

The convergence with Dirichlet-Neumann operators does not directly depend on the discretisation in
time itself. Indeed ρ(BE,c)

DN = ρ
(c,c)
DN and ρ(P2,c)

DN = ρ
(c,c)
DN (provided that γ̃ = 0). With those transmission

operators, changing the value of ∆t in a semi-discrete in time convergence rate has no effect, whereas
changing it in a fully-discrete case shows the effect of the time scheme on the semi-discrete in space
convergence rate.

Figure 4.1 shows the fully-discrete convergence rate for several values of the parabolic Courant
number Γ = ν∆t/h2. The convergence rate is not much affected by Backward Euler scheme (a,
b, c). This is not surprising as the semi-discrete in time and the continuous convergence rates are
identical. On the other hand, the Padé time scheme (d, e, f) interacts with the Finite Difference scheme
differently when changing the operator γ. In the right column, the reaction coefficient r accelerates
the convergence in low frequencies and damps the space-time interactions. We see that leaving aside
the operator γ which plays an important role in high frequencies, the discretisation in time modifies
only slightly the effect of the semi-discrete analysis in space.

4.2.2. Robin-Robin boundary conditions

Now considering the two-sided Robin-Robin case for one-step time schemes, we obtain the following
general expression of the interface conditions:

p1η1,dirαk(s) + η1,neuαk(s) = p1η2,dirβk(s) + η2,neuβk(s)
p2η2,dirβk(s) + η2,neuβk(s) = p2η1,dirαk−1(s) + η1,neuαk−1(s).

The convergence rate thus reads:

ρRR =
∣∣∣∣∣
(p2η1,dir + η1,neu) (p1η2,dir + η2,neu)
(p2η2,dir + η2,neu) (p1η1,dir + η1,neu)

∣∣∣∣∣ .
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Figure 4.1. Interactions between space and time discretisations with Dirichlet-
Neumann transmission operators. The relative importance of time and space schemes
are characterised by the parabolic Courant number Γ = ν1

∆t
h2 : as Γ → 0 (in red), the

semi-discrete in space case is recovered, whereas the convergence rate gets closer to the
semi-discrete in time setting when Γ→∞.
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ρ
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RR , γ = γimit
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(f)

ρ
(P2,FD)
RR , γ = γimit, r = 0.1s−1

Figure 4.2. Convergence factor for different combinations of space and time discreti-
sation schemes, with Robin two-sided transmission operators optimised in the semi-
discrete in space setting (see Section 5.2). Several values of Γ = ν1

∆t
h2 are compared.

The reference red curve corresponds to the very small value Γ = 10−3 (i.e. almost
semi-discrete in space). The reaction coefficient r is set to 0, except in the right column
(r = 0.1). The extrapolation is γextr = z−β(z−1) whereas the imitation of the scheme
is γimit = γextr − β (β − 1)2 (z − 1)2.

The operators η, which depend on the space discretisation, are given in Table 3.1, and the frequency
variables are given in Table 3.2. A semi-discrete or fully-discrete setting is thus characterized by a
particular interface operator ηSpace

j and frequency variable sTime
d . Using sP2

d here amounts to neglecting
the operator γ. We instead use for ρ(P2,·)

RR an other expression based on subsection 3.1.3.
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Section 5.2 will detail the optimisation of the convergence rate with Robin two-sided interface
conditions and compare the discrete and semi-discrete cases. First results are shown in Figure 4.2
which presents the discrete convergence rates with several discretisations, reaction coefficients r and
parabolic Courant number Γ. For each discretisation and reaction coefficient, Robin parameters are
fixed as the optimal parameters for a semi-discrete in space setting, in order to focus on the effect of
changing Γ. It is seen on this figure that the convergence speed is accelerated by Backward Euler (a,b,c)
when Γ increases. When using Padé time scheme (d, e, f) the interaction with the finite difference
scheme drastically depends on γ. In the right column, the presence of a reaction coefficient r > 0
accelerates the convergence.

The operator of projection γ becomes more important as Γ increases. However, unlike with Dirichlet-
Neumann boundary conditions, the convergence is not slowed down by γ.

5. Numerical examples and optimisation of convergence rates

5.1. Comparison between numerical and theoretical convergence rates

Figures 3.2, 3.4, 4.1, 4.2 include circles that represent frequencies obtained in numerical simulations
3. It is seen that the numerical simulation fits the theoretical convergence rates. In Figure 3.4 for
r = 0 s−1 there are significant differences between the theoretical prediction with h = 10−1 m with
FD and FV. For lower frequencies, this comes from the limited size of the space domains (100 vertical
levels are used in each Ωj : the domains are smaller if h is smaller) In the highest frequencies, the
difference comes from the time discretisation. Figure 3.4 uses ∆t = 10−2 s and 105 time steps to
be close to a semi-discrete in space setting. In Figures 4.1 and 4.2 there are 104 time steps and 100
vertical levels are used in each Ωj . The differences between the theoretical analysis and the numerical
simulation come from the size of the time window. Other parameters are given in legend of Figure 5.1.

Note that for all the numerical experiments (including those in next section) we tried to obtain a
robust estimation of the convergence rate by performing 10 simulations, each one being initialized with
ek=0 as a white noise. Schwarz algorithm is applied to each of these 10 simulations. The convergence
rate is then computed as the rate of reduction of the standard deviation of the quantity |p1êk2 + ν2φ̂k2|
over the 10 instances.

5.2. Optimisation of the two-sided Robin interface conditions

Having an accurate description of the discrete convergence rate is useful to maximize the convergence
speed. One way to do so stems from the optimised Schwarz methods framework [e.g. 14]. In the present
study we consider an optimisation based on the two-sided Robin interface conditions defined in §2.3.
Those interface conditions introduce two free parameters p1, p2 which can be chosen to minimise the
convergence rate:

(p1, p2) = argmin
(q1,q2)∈R2

max
ωmin≤ω≤ωmax

ρ
(·,·)
RR (ω; q1, q2). (5.1)

Depending on which ρ(·,·)
RR is used, the optimal (p1, p2) may differ.

Figure 5.1 compares the solutions of (5.1) with convergence rates obtained through continuous, semi-
discrete in time and discrete analyses. It illustrates how taking a discretisation into account in (5.1)
affects the convergence speed of Schwarz algorithms. Several comments can be drawn (theoretical ρ(.,.)

are referred to as “prediction” in the following sentences):

3The code used is available in the Zenodo archive (https://doi.org/10.5281/zenodo.6324930, [9])
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Table 5.1. Ratio of the L2 norms between consecutive iterations (k = 1, 2) in cases
shown in Figure 5.1. Left (resp. right) parts of the cells correspond to the BE (resp.
P2) implementation and to the left (resp. right) of Figure 5.1. The first three lines of
this Table are obtained with the FV implementation.

Optimised ρ(·,·)
RR (left | right) ||p1ek=2

2 +φk=2
2 ||2

||p1ek=1
2 +φk=1

2 ||2 (with BE | P2) Figure 5.1 color

ρ
(c,c)
RR | ρ(c,c)

RR 0.32 | 0.32 green
ρ

(BE,c)
RR | ρ(P2,c)

RR 0.28 | 0.29 red
ρ

(BE,FV)
RR | ρ(P2,FV)

RR 0.28 | 0.30 black
ρ

(BE,FD)
RR | ρ(P2,FD)

RR 0.23 | 0.23 (FD) blue

• The first thing to notice is that predictions (triangles) are close to corresponding observed
values (solid lines of the same color): they accurately fit, except for high frequencies in the
continuous or semi-discrete cases.

• For high frequencies, the convergence rate predicted by the continuous analysis significantly
differs from the actual convergence rate, which is here smaller than the prediction. For lower
frequencies, the discretisations accurately describe the continuous equations. Similarly to Fig-
ure 4.1, changing the time step would shift the frequencies for which the continuous equation
is well represented. As in the upper part of Figure 3.4 decreasing the space step would reduce
the range of frequencies for which the continuous and semi-discrete in space convergence rate
differ since r is small.

• The discrete analysis provides a better convergence (the maximum attained by the curves “Dis-
crete” are smaller than the maximum attained by the other analyses) and Robin parameters
change significantly between the discrete and continuous cases.

• The optimised convergence is faster for finite differences with kc = 0 than for finite volumes. It
is also the case for Dirichlet-Neumann in Figure 4.1 and Figure 3.4 indicates that this comes
from the discretisation of the flux.

• The optimal Robin parameters minimise a 3-point equi-oscillation. If the prediction differs
from the observed convergence at one of the equi-oscillation points then the minimisation can
be refined.

• Table 5.1 gives the convergence rate of the L2 norm in the time domain for each simulation
of Figure 5.1. The maximum of ρ(·,·)

RR is an upper bound of the L2 convergence rate and it is
seen that the discrete analysis provides as well a better convergence in the time domain. It
was checked that the convergence is linear for our choice of time window. For shorter time
windows, the convergence is superlinear as shown in the case of SWR with Dirichlet boundary
conditions in [10].

The choice was made here to illustrate the use of discrete analysis on Robin two sided transmission
operators, but an optimisation could of course also be performed on a relaxation parameter within
Dirichlet-Neumann interface conditions [e.g. 16, 22]. We quantitatively checked (not shown) that for
values of ν1, ν2 varying in a range from 10−2 to 2 the results obtained are consistent with the one
shown in Figure 5.1 for particular values of ν1, ν2. Our results hence seem quite robust to the values
of these parameters.
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Optimized convergence rates with different methods

Continuous Semi-discrete Discrete, FV Discrete, FD Theoretical prediction

Figure 5.1. Comparison of theoretical (triangles) and observed (solid lines) con-
vergence rates with Robin-Robin interface conditions. Theoretical values corre-
spond to ρ

(c,c)
RR (p1, p2) (green), ρ(Time,c)

RR (p1, p2) (red), ρ(Time,FV)
RR (p1, p2) (black) and

ρ
(Time,FD)
RR (p1, p2) (blue), with “Time” being BE (left panel) or P2 (right panel). The

actual values of p1, p2 are chosen to solve the min-max optimisation problem of the cor-
responding convergence rate. Solid lines are Fourier-transformed observed convergence
rates obtained by implementing SWR in a numerical code, with the finite difference
scheme (κc = 0) for the blue line and the finite volume scheme in the other cases.
Parameter values are ν1 = 0.5 m2s−1, ν2 = 1 m2s−1, h = 1 m, r = 10−3 s−1, ∆t = 1 s
and ω∆t ≤ π. For Padé time scheme, γ = γextr. There are 100 space levels in each
domain and 106 time steps.

6. Conclusion

In this paper, we studied an iterative Schwarz method defined for non-overlapping diffusion-reaction
problems with discontinuous coefficients. We analytically examined the behavior of the discrete con-
vergence rates of the iterative process for different spatial and temporal discretisations of the problem
and compared it to the ones obtained in the conventional continuous case. In particular we showed
that the discretisation of the interface conditions has a significant impact on the efficiency of the
method. For example the standard ghost-point method used for the finite difference discretisation of
Neumann conditions significantly slows down the convergence speed for high frequencies. As far as
the time dimension is concerned, when a simple one-step time-stepping scheme is used the impact of
the temporal discretisation on the convergence can be easily obtained from the continuous analysis
via a change of frequency variable. However for more advanced multi-step schemes the algebra is more
tedious because higher-order differential equations must be considered to determine the convergence
rate. In this case we also showed that the projection operator required to provide the boundary data at
the intermediate steps must be carefully chosen not to compromise the convergence speed. This aspect
has been discussed for a diagonally implicit Runge-Kutta scheme and a two-step “Padé” scheme.

A discrete analysis provides a convergence rate more representative of the behavior observed in
actual numerical experiments. Knowledge of the discrete convergence rate is thus advantageous for
techniques aimed at optimising the speed of convergence either through approximation of the absorbing
conditions or through a relaxation parameter weighting two or more successive iterates. We have
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illustrated this aspect in the particular case of zeroth-order approximation of the absorbing conditions
(i.e. using two-sided Robin-Robin interface conditions).

In future work the methodology developed in the present paper will be applied to problems with
more complex interface conditions (e.g. in the presence of turbulent boundary layers) like the ones
arising from wall laws in fluid dynamics. With applications to multi-physics settings in mind the
approach presented in this paper can also be used to analyse the case of different time and space
discretisations in each subdomain.

Appendix A. A finite volume scheme based on quadratic spline reconstruction

We present here a finite volume alternative to the standard finite difference scheme introduced in
section 3.2.1. We construct a scheme based on quadratic splines. This scheme offers the advantage to
naturally handle the transmission conditions between the two non-overlapping domains and to guar-
antee that the converged solution is similar to the monolithic solution of the problem. In this appendix
we drop the j subscript to denote subdomains for the sake of clarity. As described in Figure 3.3, we
consider control volumes delimited by xm and xm+1 such that h = xm+1− xm and the solution ūm+ 1

2

has to be interpreted in a finite volume sense, i.e. ūm+ 1
2

= 1
h

∫ xm+1

xm
u(x) dx.

We suppose here that the subgrid reconstruction u(x) on a volume centered at x = xm+ 1
2
is given

by a quadratic polynomial:

u(x) = Sm+ 1
2
(x− xm+ 1

2
) with x− xm+ 1

2
∈
[
−h2 ; h2

]

Sm+ 1
2
(ξ) = rm+ 1

2 ,2
ξ2 + rm+ 1

2 ,1
ξ + rm+ 1

2 ,0
.

Consistent with (3.10) in section 3.2, we note φFV
m the approximation of the derivative of u at the

interface between volumes m− 1
2 and m+ 1

2 . The coefficients rm+ 1
2 ,p

in Sm+ 1
2
(ξ) are chosen to satisfy

the following constraints:

(1) 1
h

∫ h/2

−h/2
Sm+ 1

2
(ξ) dξ = ūm+ 1

2

(2) ∂ξSm+ 1
2
(−h/2) = φFV

m

(3) ∂ξSm+ 1
2
(h/2) = φFV

m+1.

Those constraints, imposing the continuity of φ between two neighboring volumes and the consistency
with ūm+ 1

2
, provide rm+ 1

2 ,p
coefficients such that:

Sm+ 1
2
(ξ) = ūm+ 1

2
+ φFV

m+1 + φFV
m

2 ξ + φFV
m+1 − φFV

m

2h

(
ξ2 − h2

12

)
. (A.1)

The last step amounts to impose the continuity of the solution at cell interfaces, i.e. Sm− 1
2

(
h
2

)
=

Sm+ 1
2

(
−h

2

)
, to obtain

1
6φ

FV
m−1 + 2

3φ
FV
m + 1

6φ
FV
m+1 =

ūm+ 1
2
− ūm− 1

2

h
(A.2)

which corresponds to a tridiagonal problem to solve to get φFV
m and then the second-order derivative

via (3.10). This scheme was also used for example in [25] to discretise vertical advection in an oceanic
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model. Note that using coefficients 1
12 instead of 1

6 and 5
6 instead of 2

3 in (A.2) would lead to a
fourth-order accurate compact scheme [e.g. 18].

Now that we have presented the numerical scheme of interest, we apply it to the equation satisfied
by the error. Considering (3.10) and the equations satisfied by the errors ēm interpreted in a finite
volume sense we end up with

(∂t + r)ēm+ 1
2

= ν

h

(
φFV
m − φFV

m−1
)

(A.3)

(∂t + r)ēm− 1
2

= ν

h

(
φFV
m+1 − φFV

m

)
(A.4)

which, when combined with (A.2), leads to

(∂t + r)
(1

6φ
FV
m−1 + 2

3φ
FV
m + 1

6φ
FV
m+1

)
− ν

h2

(
φFV
m+1 − 2φFV

m + φFV
m−1

)
= 0.
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In Chapter 2 the semi-discrete and discrete convergence factors of Schwarz methods were
studied. As the complexity of the discretizations increase, it becomes tedious to compute
those convergence factors. The goal of this chapter is to ease the computations with ap-
proximations. An article in preparation is reported here: it discusses two different methods
to approximate the discrete or semi-discrete convergence factor without actually having to
compute them.

• The first method approximates a semi-discrete (in space or time) convergence factor
by using modified equations.

• The second method combines the semi-discrete convergence factors and the continuous

50



3.1. Introduction

one to get an approximation of the discrete in space and time convergence factor.

Those two methods are then used in the optimization of the convergence to evaluate the
potential of these approximations in the acceleration of Schwarz methods.

The main results of this chapter are listed below.

• The convergence study with modified equations includes the main features of the semi-
discrete schemes for low-frequencies.

• Using the modified equations technique on a multi-step time scheme amounts to ig-
noring the presence of the intermediate step. We conclude that this technique should
not be used for the approximation of the semi-discrete in time convergence factor.

• For space schemes, using the modified equations simplifies the analysis of the con-
vergence factor (compared to the semi-discrete level) only for a particular type of
differential equations.

• The combination of the semi-discrete analyses can provide a good approximation of
the discrete convergence factor. For a large range of the problem parameters, the
optimization performs better on the combined convergence than on the continuous
one. However, this improvement is not systematic and using this method on other
problems without further investigations would be uncertain.
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Abstract. This paper discusses two methods to estimate the discrete and semi-discrete convergence
speed of Schwarz coupling algorithms without having to carry out the full calculations. A first method
is based on the modified equations technique to approximate the semi-discrete convergence factor. A
second method whose purpose is to estimate the discrete convergence factor by combinations between
continuous and semi-discrete analyses is also introduced. Both methods are illustrated with a het-
erogeneous coupling of two 1-D reaction-diffusion equations, discretised with second-order schemes in
time (diagonally implicit Runge Kutta) and space (finite differences). We consider Dirichlet-Neumann
Waveform Relaxation and two-sided Robin-Robin coupling algorithms which both offer the possibility
of optimising the convergence speed. We compare the performance of such algorithms when the opti-
misation is done on the exact discrete convergence factor and on approximate forms of it. Interestingly
it appears that the modified equations are not applicable in time and are of limited interest in space.
On the other hand, optimising the combination of the semi-discrete and the continuous analyses can
accelerate significantly the convergence speed, especially in the Robin two-sided case.

Keywords. Schwarz methods, Semi-discrete, Discrete.

2020 Mathematics Subject Classification. 65M12; 65M55; 65L20.

1. Introduction

Schwarz iterative methods are widely used for efficiently computing the solution of PDEs on parallel
computers, and/or solving coupled problems. Their factor of convergence often depends on some free
parameters that are present in the interface conditions. It is therefore important to assess the expression
of the convergence factor a priori as accurately as possible, in order to determine values of the free
parameters that allow an efficient convergence. This is done usually by considering the continuous
form of the PDEs, often using Fourier and/or Laplace transform to get an analytical expression of the
convergence factor in the spectral space (see [8] for a review).
However actual numerical simulations use discretised versions of the PDEs rather than the continuous
one, which may lead to significant differences in the convergence factor. That is why several recent
works focused on the determination of this factor starting directly from the discretised equations
(listed in [12]). But such calculations often appear to be difficult and tedious, especially as the space
stencil size in finite differences methods and the number of stages in the time-integration increase. In
this context, this paper presents two possible alternative methods to approximate the actual discrete

This work was supported by the French national research agency through the ANR project ”COCOA” (COmprehensive
Coupling approach for the Ocean and the Atmosphere), grant ANR-16-CE01-0007. Florian Lemarié appreciates the
funding from the SHOM/DGA under grant agreement No 19CP07.
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convergence factor of Schwarz algorithms while avoiding the corresponding fully discrete calculations.
The first method (for multistage time schemes or finite differences space schemes), described in Section
3, is to use the so-called modified equations, that represent the ”actual partial differential equations
which are solved numerically” [16]. The second method presented in Section 4 combines semi-discrete
and continuous analyses to get an approximation of the fully discrete convergence factor. Section 5
discusses whether the methodologies described in Sections 3 and 4 provide an improvement compared
to the continuous analysis in the case of an optimisation process on free parameters arising from a
relaxation step or Robin interface conditions. Note that for sake of clarity the technical details of the
computation of continous, semi-discrete and discrete convergence factors are grouped in Appendices
A and B.

2. Discretisation and Schwarz methods studied

We consider in this paper the use of an iterative Schwarz algorithm for solving the evolution equation
∂tu − Lu = F on a domain Ω with some given boundary conditions, where L is a linear operator.
In order to design the Schwarz method, Ω is divided into two subdomains Ω1 and Ω2. Let Lj denote
the restriction of L to Ωj . If L1 = L2 then one gets a domain decomposition problem and Ω1 and Ω2

may partially overlap, otherwise it is a coupling problem and Ω1 and Ω2 cannot overlap. We focus on
the latter case in our examples but the methods discussed in the following can be applied in broader
context.
Schwarz methods correspond to a sequence of resolutions of ∂tu

k
j − Ljukj = Fj with boundary condi-

tions on ∂Ω and additional conditions at the interface between Ω1 and Ω2. j = 1, 2 denotes the space
domain and k is the iteration index. The convergence of the Schwarz methods can be investigated by
considering the error ekj = ukj −u and we define the convergence factor as the ratio of the Fourier trans-

forms (denoted by a hat) at the interface % =
êk1 |int

êk−1
1 |int

. Lj being linear, ekj satisfies the corresponding

homogeneous equations. We will thus focus throughout this paper on the equations:

∂tu
k
j = Ljukj , ukj (t = 0) = 0, j = 1, 2 (2.1)

For our illustrations and numerical examples, we will use 1-D reaction-diffusion operators Lj = νj∂xx−
r, with an interface {x = 0}. Two variants of Schwarz methods are presented in this study:

• Dirichlet-Neumann Waveform Relaxation (DNWR, [9]), whose interface conditions are

uk1(0−, t) = (1− θ)uk−1
2 (0+, t) + θuk−1

1 (0−, t) (2.2a)

ν2∂xu
k
2(0+, t) = ν1∂xu

k
1(0−, t) (2.2b)

• Robin-Robin Schwarz methods (RR, [7]), whose interface conditions are

(p1 + ν1∂x)uk1(0+, t) = (p1 + ν2∂x)uk−1
2 (0−, t) (2.3a)

(p2 + ν2∂x)uk2(0+, t) = (p2 + ν1∂x)uk1(0−, t) (2.3b)

θ is called the relaxation parameter and p1, p2 are called the Robin parameters.
The discretisation in space used for ullustrative purposes is a simple centered second-order finite

difference (FD) scheme. The Neumann interface condition is approximated with the help of a ghost
point:

ν2∂xu
k
2(x0) ≈ ν2

uk2(x1)− uk2(x0)

h
− h

2
(∂t + r)uk2(x0) (2.4)

which is the simplest non-intrusive second-order discretisation of the transmission condition allowing
to recover the monolithic semi-discrete in space solution at convergence [e.g. see 5]. x0 stands here for

2
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Figure 1. Comparison between the convergence factors modulus predicted with the
continuous analyses (yellow), the convergence factors predicted by the discrete analy-
ses (red dashed), and the convergence factors observed through numerical simulations
(grey). x-axis: ω is the time frequency. The Robin parameters p1, p2 and the relaxation
parameter θ are chosen in each setting to minimise the min-max problem on continuous
equations described in Section 5. The numerical experiments are described in 5.3. The
convergence factor is computed with the ratio of the discrete Fourier transform of the
first two errors.

the interface point and x1 the first point inside the domain. We use a Diagonally Implicit Runge-Kutta
(DIRK, [1]) two-stage time scheme, in order to illustrate the methods for multistage time schemes:

u?j − unj
∆t

= bL(u?j )− aL(unj ) (2.5a)

un+1
j − u?j

∆t
= bL(un+1

j ) (2.5b)

where b = 1 + 1/
√

2 and a = 2b − 1 = 1 +
√

2 guarantee that it is a second-order scheme which
monotonically damps the frequencies [14]. The superscript k (Schwarz iteration index) was omitted
and n stands for the time index. A linear combination between times tn and tn+1 is used to provide the
boundary and interface conditions for u?j when solving (2.5a). Let γ be the discrete Fourier transform

of this operation (see e.g. (A.8)). An analysis of the effect of γ on the convergence of Schwarz methods
can be found in [5]. In the following we will return several times to the particular role played by the
operator γ in our study.

The usual domain decomposition procedure with Schwarz methods is to derive a convergence factor
from the continuous problem and choose parameters independently from the discretisation [e.g. 7,
9]. However, as seen in Figure 1, the convergence factor derived with the continuous equations can
significantly differ from the convergence factor observed in the numerical simulation because of the
discretisation. Semi-discrete and discrete analyses of Schwarz methods (e.g. [12] for the heat equation)
better anticipate the behaviour of numerical simulations.

The semi-discrete in space, semi-discrete in time and discrete analyses of the convergence factor are
given in appendices for the case study presented here. Figure 1 shows that the discrete convergence
factor fits the numerical simulation for our set of parameters. However the semi-discrete computations
become tedious as the size of the stencil (in space) and as the number of stages (in time) increase. The
fully discrete analyses generally combine the difficulty of both schemes and it can become challenging
to derive the exact convergence factor. We hence introduce two alternative methods for estimating the
discrete or semi-discrete convergence factor and discuss their validity.

3
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In Section 3 an intermediate convergence factor is used: ”Continuous with Discrete Transmission
Operators” (CDTO). Appendix A.1 presents this convergence factor that takes into account the dis-
cretisation of the boundary condition (2.4) while keeping the continuous equation inside the domains.
Figure 2 shows that in our case this convergence factor is close to the semi-discrete in space con-
vergence factor (which takes into account the spatial discretisation also in the inner domains). The
importance of the discretisation of the transmission operators is discussed in [5].

3. Semi-discrete convergence factor from the modified equation technique

It is shown in Appendix A that switching from the continuous to the semi-discrete case affects the
derivation of the convergence factor in the following ways:

• With one-stage time schemes, a change of variable is sufficient to switch from the continuous
analysis to the discrete one. Conversely, for time schemes with multiple stages the nature of the
differential equation to be considered is fundamentally different from the one in the continuous
case which makes the study more challenging.

• Space schemes change the way of computing the solutions in the frequency domain ûk. Instead
of solving a differential equation, ûk is obtained by finding roots of a characteristic polynomial.
The order of the characteristic polynomial increases with the stencil of the space scheme under
consideration.

The analysis of convergence of Schwarz methods is hence specific to the space and time discretisations.
In the same spirit as [3] where a modified viscosity is used to include the impact of an off-centered (a.k.a.
upwind) advection scheme in a continuous analysis, we will use modified equations associated to the
discretisations considered so far. We thereby introduce a new approach to estimate the convergence
factor of a discretised Schwarz algorithm through the modified equations technique. An advantage
of such an approach is that it takes into account the main features of the discrete schemes for low
frequencies while keeping the simplicity of the continuous analysis. By analysing a continuous problem
closer to the one actually solved by the numerical scheme, the discrete convergence factor could be
better approximated.

3.1. Derivation of the modified convergence factor

When numerically solving a differential equation using structured grids, a way to analyse the discreti-
sation error is to interpret an error term as a differential operator. By solving the modified differential
equation, the effect of the discretisation on the solution can be quantified [16, 4].

We propose to add the main error terms of the discretisation in the derivation of the continuous
convergence factor. It leads to a modified convergence factor, more accurate in well-resolved frequencies
than the continuous one. Modified equations were also used to analyse the convergence speed of
successive overrelaxation in [10].

3.1.1. Time scheme

We assume that the discrete operator Dt which approximates ∂t can be developed into a sum of
differential operators through a Taylor expansion:

Dtu =
(
∂t + dt1 ∆t∂tt + dt2 ∆t2∂ttt

)
u+ o(∆t2)

where dt1 = 0 for second-order time schemes and dt1 = dt2 = 0 for higher-order time schemes (for
which higher-order expansions are therefore needed). Instead of equation (2.1), the following modified

4
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equation is considered: {(
∂t + dt1 ∆t∂tt

)
u = Lu if dt1 6= 0(

∂t + dt2 ∆t2∂ttt
)
u = Lu otherwise

(3.1)

For instance, for the DIRK scheme (2.5) dt1 = 0 and dt2 = 2
3 +

√
2

2 .

Let s(c,c) = iω and s
(Time,c)
m = iω + dt1∆t(iω)2 (or s

(Time,c)
m = iω + dt2∆t2(iω)3 if dt1 = 0) be the

symbols of respectively ∂t and the left-hand side of (3.1). The effect of the time discretisation can be

studied by replacing s(c,c) by s
(Time,c)
m in the continuous analysis.

Recall that similarly to the previous method the semi-discrete analysis of a single stage time scheme
(for instance Euler or Crank-Nicolson methods) can already be done by a simple change of frequency
variable [5]. Hence, in those single-stage cases there is no point using modified equations. We thus
restrain our study to the multistage time schemes, for which we will show in Section 3.2 that modified
equations are not helpful because of the projection in time operator γ used for interface conditions.

Note on well-posedness. Since our initial condition is limited to uj(t0), additional initial condi-
tions are necessary for (3.1) to be well-posed as soon as dt1 6= 0 or dt2 6= 0. Assuming u regular enough,
L a linear space differential operator and ∂pt u(t0) = 0 for some p ≥ 0, recursively differentiating (2.1)

in time and reversing the order of differentiation gives ∂p+1
t u(t0) = L∂pt u(t0) = 0. The number of

homogeneous initial boundary conditions can thus be sufficient to allow the well-posedness. [11] states
that modified problems should be used instead of modified equations. In example (C) of [11] an initial
condition prevents modified problems to attain third order of correctness. Similarly to this example
there is no modified problem of third order that takes into account γ.

3.1.2. Finite Differences space scheme

The discussion in subsection 3.1.1 can be applied to FD space schemes as well, or other methods that
have a FD interpretation. For instance the modified equation in space of the centered second-order
FD scheme is

(∂t + r)u− ν∂xxu−
h2

12
ν∂xxxxu = 0 (3.2)

with the homogeneous initial condition u(x, t0) = 0. At the interface, the modified equation satisfies
the RR or DNWR condition given in Section 2. An additional interface condition is needed to ensure
unicity of the modified solution (see the paragraph on well-posedness below). To keep the order of
accuracy, a Taylor expansion up to o(h2) of the discrete evolution equation at the first inner point
(∂t + r)u(x1) = ν

h2 (u(x2)− 2u(x1) + u(x0)) gives in Ω2:

(
1 + h∂x +

h2

2
∂xx

)(
∂t + r − ν∂xx −

h2

12
ν∂xxxx

)
u(0) = 0. (3.3)

Using the modified equations in space may not be simpler than using the semi-discrete equations:
indeed the order of the modified ODE that needs to be solved (the Fourier transform of (3.2) is a
fourth-order ODE) is higher than the degree of the characteristic polynomial of the semi-discrete
case (the order being 2 for the second-order FD scheme, as mentioned in Appendix A). The modified
equations generally lead to a derivation which is more tedious than the semi-discrete analysis that
they aim to approximate. However in the particular case of L having exactly one differentiation
operator of any order, a transformation can be pursued: the space differentiation can then be treated
like time derivatives. Taking the example of the reaction-diffusion equation, the modified equation is

5
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(∂t + r)uj = νj
(
∂xx + dx1h

2∂xxxx
)
uj . We use the approximation νj∂xx ≈ ∂t + r and get this modified-

in-space equation: (
∂t + r − dx1

∆t

Γj
(∂t + r)2

)
uj − νj∂xxuj = 0

where Γj = νj
∆t
h2 is the parabolic Courant number. A similar derivation is done in [16] to interpret the

error in time as dissipative or dispersive operators in space. Here we do the opposite, transforming
space derivatives into time derivatives so that a simple change of variable can be used: after a Fourier

transform in time, the modified equation indeed becomes (s
(c,Space)
m + r)ûj = νj∂xxûj where

s(c,Space)
m = s(c,c)

m − dx1
∆t

Γj
(s(c,c)
m + r)2

is an approximation of the symbol of ∂t modified by the discretisation of L. This transformation
requires to have a single differentiation in space: for instance, the error term of an advection-diffusion
equation would generally fail to be expressed only as a combination of time derivatives. Note that sm
depends on the domain j; it does not however make the continuous derivation much more tedious.

As mentioned in [11], the modified equations need to be analysed with the discrete boundary
conditions (or an approximation of them). This also stands in the case of Schwarz convergence analysis:
we will hence use the discrete interface transmission operators when comparing modified-in-space and
continuous convergence factors, the latter being referred as ”Continuous with Discrete Transmission
Operators” (CDTO, see Appendix A.1) in the figures.

Note on well-posedness. The well-posedness of (3.2) together with boundary conditions can be
easily proven following Appendix C of [6] with the simplification coming from the homogeneous initial
condition and the semi-infinite domain in space. For given h, ν, r, it then suffices to show that the
interface conditions are not redundant in the Laplace domain.

3.2. Frequency range of validity for the modified equation technique

Figures 2 and 3 illustrate the approximation made by using modified equations respectively in space
and time when estimating the semi-discrete convergence factors. Figure 2 shows that the use of
modified-in-space equations results in a gain of accuracy once the discrete transmission operators
are used. This improvement is notable on an intermediate range of frequencies for which the con-
tinuous prediction deviates from the discrete convergence factor. In Figure 3, the estimation of the
semi-discrete in time convergence factor leads to less positive results: as mentioned in Section A.3, the
convergence factor of the DIRK time scheme is highly dependent of the projection in time operator
γ used for interface conditions. The convergence factor of any multistage time scheme depends on
a time interpolation/extrapolation of boundary data and is thus likely to contain a term fj(γ) (see
equation (A.10) where fj(γ) is independent of j and noted γ̃). The Robin-Robin convergence factor
of a two-stage time scheme should be similar to (A.20):

%
(DIRK,c)
RR =

(
p1 + ν2σ2

p2 + ν2σ2
(1− γ̃) +

p1 + ν2σ4

p2 + ν2σ4
γ̃

)(
p2 + ν1σ1

p1 + ν1σ1
(1− γ̃) +

p2 + ν1σ3

p1 + ν1σ3
γ̃

)
. (3.4)

where γ̃ contains the dependency in γ. The definition of σi is in (A.6). The modified equation technique
yields an approximation of p1+ν2σ2

p2+ν2σ2

p2+ν1σ1

p1+ν1σ1
and can thus only approximate the ratios multiplied by

(1− γ̃) in (3.4). Consequently using modified equations is effective only if this γ̃ is sufficiently small.
In the particular case of Dirichlet-Neumann transmission operators (right panel in Figure 3), the
difference between analyses in the continuous case and in the semi-discrete in time case comes only
from γ (see (A.15) in Appendix). Hence, in this case the use of modified equations has no effect
on the theoretical prediction of the convergence. Since γ is usually not chosen to diminish fj(γ)
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Figure 2. Comparison of the convergence factors obtained with the continuous with
discrete transmission operators (brown), semi-discrete in space (green) and modified-in-
space (dashed red) analyses. The modified-in-space convergence factors are computed
with discrete interface operators. The Robin parameters p1, p2 and the relaxation pa-
rameter θ are chosen in each setting to minimise the min-max problem on the semi-
discrete in space convergence factor. Fully continuous case (yellow) is shown for refer-
ence.
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Figure 3. Comparison of the convergence factors obtained with the continuous (in
yellow), semi-discrete in time (in blue) and modified-in-time (in dashed red) analyses.
The Robin parameters p1, p2 and the relaxation parameter θ are chosen in each setting
to minimise the min-max problem on the semi-discrete in time convergence factor.

when designing the scheme, we advise not to use modified-in-time equations for the study of Schwarz
methods’ convergence and we do not present them in Section 5. In the figures, the operator γ is defined
as a linear interpolation1 operator.

4. Combining semi-discrete analyses

We have seen that the applicability of the method presented in Section 3 is limited to the inner
equations of semi-discrete schemes in space with exactly one differentiation in space. We now introduce

an other approach in order to approximate the fully discrete convergence factor %
(DIRK,FD)
RR whose

1We chose γ = (1 − b)z + b which corresponds to u? ≈ (1 − b)un+1 + bun
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Figure 4. Comparison of the convergence factors for the continuous analyses (dashed
yellow), combined analyses (purple), semi-discrete in space (dashed green) and in time
(dashed blue) analyses. The fully discrete analyses are plotted in pink. The Robin
parameters p1, p2 and the relaxation parameter θ are chosen in each setting to minimise
the min-max problem on the fully discrete convergence factor.

derivation is presented in Appendix B. This derivation is specific to the given selection of space and
time schemes and becomes lengthy as the schemes are more and more sophisticated. In this section
we propose an approximation of the fully discrete convergence factor, based on the continuous, semi-
discrete in time and semi-discrete in space derivations.

We first observe (e.g. in Appendix A) that the semi-discrete convergence factors varies smoothly
when the step size is changed. For a given frequency ω, the discrete convergence factor asymptotically
equals the continuous case when the step sizes tend to zero:

%(Time,Space) −−−−→
∆t→0

%(c,Space) −−−→
h→0

%(c,c) and %(Time,Space) −−−→
h→0

%(Time,c) −−−−→
∆t→0

%(c,c) (4.1)

where %(c,c), %(Time,c), %(c,Space) and %(Time,Space) are respectively the continuous, semi-discrete in time,
semi-discrete in space and fully discrete convergence factors. Assuming that the space and time schemes
have at least a first order accuracy, we combine Taylor expansions with regards to h and ∆t of the
convergence factors appearing in (4.1) and get:

%(c,Space) + %(Time,c) − %(c,c) = %(Time,Space) − h∆t
∂2%(Time,Space)

∂∆t ∂h
+ o(h∆t) = %

(Time,Space)
combined (4.2)

This combined convergence factor is a second-order approximation of the fully discrete convergence
factor, and tends to the semi-discrete factor in time as h → 0 and to the semi-discrete convergence
factor in space as ∆t→ 0. It therefore captures the main effects of both schemes on the convergence
factor, and combines them accurately as long as they don’t interact too much with each other (the

interactions are represented by the term h∆t∂
2%(Time,Space)

∂∆t∂h ). We considered here constant h and ∆t
but the combination could be made with variable time and space steps (if the semi-discrete analysis
is available). Note that this method can be applied in a wide variety of situations.

Figure 4 shows that the combined factor ρ
(DIRK,FD)
combined =

∣∣∣%(DIRK,FD)
combined

∣∣∣ is accurate (i.e. close to ρ(DIRK,FD))

in low frequencies. However it should be used carefully in the high frequencies where it is often that

the interactions ∂2%(Time,Space)

∂∆t ∂h play an important role. Although the combined convergence factor is not
more accurate than the continuous one on Figure 4, Section 5 exhibits parameter ranges for which the
combined analysis is better than the continuous one.

8
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5. Effect on the optimisation on free parameters

The accurate estimation of the convergence factor of a Schwarz method is motivated by the possibility
to optimise the convergence speed of the algorithm via the free parameters brought by the interface
conditions (2.2) or (2.3). The corresponding optimisation problem takes the form of a min-max problem

min
θ

(
max

ω∈(ωmin,ωmax)
ρ

(.,.)
DNWR(ω, θ)

)
or min

(p1,p2)

(
max

ω∈(ωmin,ωmax)
ρ

(.,.)
RR (ω, p1, p2)

)
which is solved numerically

for a given ρ. We note θ?, p?1, p
?
2 the solutions of those optimisation problems. Our objective is here to

answer the following questions:

• Can we accelerate the convergence speed of Schwarz methods when the optimisation is done
on the convergence factor obtained from the modified equations technique compared to the
Continuous analysis with Discrete Transmission Operators (CDTO)?

• Is the optimised convergence speed obtained with the combined analysis presented in Section
4 faster compared to that obtained with the semi-discrete in space or time and continuous
analyses ?

As it is shown in Figure 2 the transmission operators account in our case for the greatest part of
the difference between the continuous and semi-discrete in space convergence factors. Moreover, the
modified equations only aim to take into account the discretisation inside the domains. This is why
CDTO (rather than the standard continuous analysis) is compared to modified equations in the first
question.

Numerical experiments. In all the figures, unless otherwise specified, ν1 = 0.5 m2s−1, ν2 =
1 m2s−1, r = 10−3 s−1, h= 1 m. The time step is ∆t = 2s and the number of steps is N = 103.
Frequencies of interest are (ωmin, ωmax) = ( π

N∆t ,
π

∆t). The results shown in Figures 1 and 8 are ob-
tained from numerical simulations initialised with a white noise and discretised using 100 space points
in each domain. The space domains are assumed infinite in the theoretical convergence factors. [15]
gives an analysis of the effect of bounded domains and it is found that in our case this assumption is
justified for the parameter values considered here.

5.1. One-parameter optimisation

Figure 5 and 6 compare the maximum (over the range of time frequencies) of the convergence factors
obtained with the different analyses, for a range of the free parameters p1 (= −p2) and θ. The optimised
convergence factor with a single parameter presents an equi-oscillation between the lowest ωmin and
highest ωmax frequencies (not seen in the figures). The maximum of the convergence factor is attained
in low frequencies for the largest values of θ and p1, and it is attained at the highest frequency for small
θ and p1 (for instance in Figure 1, θ is smaller than the optimum θ?: the discrete convergence factor
is larger in high frequencies than in low frequencies). Since the proposed approximation methods are
mostly valid for low frequencies, the maxima of the convergence factors obtained from continuous and
modified equations are close to the corresponding maximum of the discrete case on the right sides
of the plots (i.e. for the largest values of θ and p1). Conversely, for small values of the optimised
parameter p1 or θ, the effect of the discretisation is more visible since high frequencies influence the
convergence speed.

5.1.1. Modified equations

Is the optimised convergence speed obtained with the modified equations technique faster compared to
the one obtained from a continuous analysis? Recall that the modified equations aim to approximate

9
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Actual convergence rate

CDTO S-d space Modified
RR 0.603 (p?1 = 0.312) 0.600 (p?1 = 0.308) 0.602 (p?1 = 0.306)

DNWR 0.063 (θ? = 0.564) 0.063 (θ? = 0.566) 0.063 (θ? = 0.566)

Figure 5. Maximum of the convergence factor, derived in the continuous (with Dis-
crete Transmission Operators, CDTO), semi-discrete (S-d) in space and modified-in-
space cases for ω ∈ (ωmin, ωmax). Robin transmission condition is chosen to be one-sided
(p1 = −p2) for easier representation. See Figure 7 for the two-sided Robin operators.
We aim to approximate the semi-discrete in space convergence factor: the ”actual con-
vergence rate” indicated in the table is to be read on the green curves (”×” markers).
The vertical dotted lines highlight the parameters chosen with each convergence factor.

the semi-discrete case which is the reference in this paragraph. In Figure 5, the use of the modified-
in-space setting is compared to the CDTO and semi-discrete in space convergence factors. For each
convergence factor, the parameter chosen by the optimisation procedure is shown with a vertical dotted
line. The performance of parameters obtained with the optimisation procedure can be read on the
table or on the green curve. The parameter obtained with modified equations does not significantly
outperforms the CDTO parameter. As seen in Figure 2, in our case the discrete transmission operators
stand for most of the effect of the space discretisation. It is confirmed in Figure 5 where the semi-
discrete optimised parameter is close to its CDTO counterpart. Since the modified-in-time equation
approach was not found to improve the approximation of the convergence factor compared to the
continuous case in Figure 3, the time scheme equivalent to Figure 5 is not presented.

5.1.2. Combined analyses

Is the optimised convergence speed obtained with the combined analysis faster compared to the one
obtained with semi-discrete in space or time and continuous analyses? Figure 6 compares combined,
continuous, semi-discrete and fully discrete analyses; the actual convergence factor maximum is to be
read on the discrete case to compare parameters.

• It is seen that the discrete parameter outperforms every other parameters.

• The combined parameter gives a faster convergence than the continuous one.

• The semi-discrete analysis brings the parameter in the wrong direction compared to the con-
tinuous analysis. This can be explained by the particular choice of transmission operators (2.4)
discussed in [5]. The effect of (2.4) on the convergence factor in high frequencies is weakened
by the time discretisation. Hence, the semi-discrete in space parameter choice compensates for
an effect that vanishes in the discrete case.

10
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Continuous Discrete Combined S-d space S-d time
RR 0.523 (p?1 = 0.243) 0.365 (p?1 = 0.154) 0.496 (p?1 = 0.224) 0.600 (p?1 = 0.309) 0.452 (p?1 = 0.197)

DNWR 0.271 (θ? = 0.586) 0.157 (θ? = 0.677) 0.233 (θ? = 0.616) 0.296 (θ? = 0.566) 0.236 (θ? = 0.614)

Figure 6. Same as Figure 5 but for the continuous, discrete, combined and semi-
discrete cases.

• The combined parameter is close but not better than the one chosen with the semi-discrete in
time analysis. The interactions between space and time discretisations (e.g. weakening of the
effect of (2.4)) prevents the combined analysis to fit the discrete one.

5.2. Robin two-sided optimisation

Figure 7 presents the optimised Robin-Robin two-sided parameters (i.e. p1 6= −p2) for the modified-
in-space equations and for the combined method.The convergence factors with Robin two-sided trans-
mission conditions often have two local minima: at (p1, p2) ≈ (1,−0.05) and (p1, p2) ≈ (0.05,−1).
The optimisation routine selects the best output of two local optimisations starting from the previous
values.

The conclusions of Section 5.1 are confirmed by Figure 7. The parameters chosen with the proposed
alternative approaches are getting closer to the discrete optimal than the parameters chosen with the
continuous approaches, and lead to a faster convergence than the continuous analyses in both cases.
The alternative methods can hence accelerate the convergence when combined with an optimisation
of the free parameters.

5.3. Robustness

Figure 8 shows the evolution of the L2 norm of the error across iterations for RR and DNWR. In both
cases, optimising with the combined convergence factor accelerates the convergence speed compared
to the continuous case. Unsurprisingly it is seen that a smaller convergence factor in the frequency
domain leads to a faster convergence with the L2 norm. The modified case is not presented because
the differences of convergence speed are negligible.

Figure 9 shows how much the alternative methods accelerate the theoretical convergence depend-
ing on the problem’s parameters. Although the parameters space is not fully covered, the following
conjectures can be made:

• The ”Combined” method is efficient for large ν1, ν2 and for a small r;
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Figure 7. Comparison of the optimised parameters yielded by the Robin two-sided
analyses. The contour lines are those of maximum of the discrete convergence factor.
The value of the latter function for the parameters of each analysis is given in the
legend.

• The ”Modified” method does not significantly improve the convergence speed and the depen-
dency on the parameters is not easy to interpret. For DNWR, the zero line for ν1 = ν2 is
coherent with the optimal relaxation parameter being θ? = 1

2 in the continuous, semi-discrete
in space and modified cases.

• A non-negligible part of the parameter space is filled with negative values which means that
the proposed approaches can occasionally degrade the performance of the algorithm compared
to the continuous case.

• For both methods the convergence speed accelerates with ∆t. Indeed, for larger ∆t (or equiv-
alently for lower frequencies) the proposed approximations are more accurate.

• For both methods the convergence speed accelerates as h becomes smaller since in this case
the Taylor expansion is more and more accurate.

6. Conclusion

In this paper we have investigated different ways of taking into account discretisation errors when
studying the convergence speed of Schwarz iterative methods. Given the complexity of a discrete
analysis for multi-stage time-stepping schemes and high-order spatial discretisations, our objective
was to find ways to obtain accurate approximations of the discrete convergence factor. Considering
either separately or jointly the impact of the discretization of the interface conditions and of the
equations in the inner domains, different approximation methods have been introduced. The proposed
methods have been applied to a reaction-diffusion problem discretized using a second-order Finite
Differences discretisation in space and a diagonally implicit Runge-Kutta multi-stage scheme in time.

We first investigated the possibility to use the modified equations technique to account for the main
error term of the discretisation in the convergence analysis. An advantage of such an approach is that
it takes into account the main features of the discrete schemes for low-frequencies. We discussed the
relevance of using such an approach with a general linear differential equation, and focused on the
particular case with exactly one differentiation in space of any order. In this case, we derived the
modified-in-space method which turned out to provide relatively modest improvements compared to
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Figure 8. L2 norm of the error in the time domain across iterations for RR (left) and
DNWR (right). The dashed lines show the upper bound on the convergence obtained
with the theoretical convergence factor. It is expected that the yellow and purple dashed
lines do not really bound the L2 norm since the discretisation is not perfectly taken
into account.

the standard continuous analysis. This result suggests that the discretization in the inner domains does
not have much influence on the convergence speed for reaction-diffusion equations. This statement is
supported by the fact that keeping the continuous formulation in the inner domain and accounting
only for the discretization of the interface conditions leads to a similar approximation of the discrete
convergence factor. The modified equations in time could easily be used but we have pointed out that
they do not simplify the discrete analysis for one-stage schemes and are not accurate for multi-stage
schemes.

We then introduced a second method whose principle is to combine the semi-discrete in time,
semi-discrete in space, and continuous analyses to approximate the fully discrete convergence factor.
Even though this approach neglects the interactions between the time and space discretisations, the
combined analysis can provide a good approximation of the discrete convergence factor.

To illustrate the benefits of the proposed methods, we examined the gain of performance obtained
when optimising the convergence factor taking advantage of the free parameters provided either by
Dirichlet-Neumann (with relaxation parameter) or Robin-Robin (one-sided and two-sided) interface
conditions. Optimising on a better approximation of the discrete convergence factor leads to a faster
numerical convergence. When the optimisation is done on the convergence factor obtained from the
modified equations approach, the convergence speed is not significantly improved compared to a con-
tinuous analysis. The combined method provides much better results especially for large diffusion
coefficients and small reaction parameter, and seems quite robust by nature. As a future work, theses
findings should generalized to other types of PDEs. Moreover, each of the two methods can be further
developed. By following [13] the modified equations can be derived around any wave number. The
idea of combining semi-discrete analyses can be extended to other aspects (e.g. variable diffusivity,
particular shape of the domains) to take into account specific problems one by one.
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Appendix A. Semi-discrete convergence analysis

This Appendix presents the method to derive the convergence factor in the semi-discrete cases, through
the example of the reaction-diffusion equation in two 1D non-overlapping subdomains with different
diffusivities. The Schwarz iteration index is noted k. The solution ukj of the homogeneous equation

(2.1) studied here is to be understood as the error of a coupling problem with respect to the converged
solution.
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A.1. Continuous with Discrete Transmission Operators (CDTO)

We examine the convergence factor with semi-discrete in space transmission operators defined by
(2.4). This convergence factor is referred by ”Continuous with Discrete Transmission Operators” in
this study because we keep the continuous equations in the inner domains. The Fourier transform
of the equation (2.1) with L = ν∂xx − r together with the assumption that the spatial domains are

of infinite size yield ûk1 = Ak exp(x
√

iω+r
ν1

) and ûk2 = Bk exp(−x
√

iω+r
ν2

). The DNWR transmission

operators (2.2) discretised with (2.4) give

Ak = (1− θ)Bk−1 + θAk−1, Bk =
η1

η2
Ak (A.1)

where η1 = ν1

(
1−exp(x−1

√
iω+r
ν1

)

h + h iω+r
2

)
and η2 = ν2

(
exp(−x1

√
iω+r
ν2

)−1

h − h iω+r
2

)
. The convergence

factor %
(c,CDTO)
DNWR =

ûk1(x=0)

ûk−1
1 (x=0)

with discrete transmission operator is Ak
Ak−1

= (1 − θ)η1

η2
+ θ. For Robin-

Robin transmission conditions, keeping the same η1, η2 (2.3) discretised with (2.4) give

(p1 + η1)Ak = (p1 + η2)Bk−1, (p2 + η2)Bk = (p2 + η1)Ak. (A.2)

The convergence factor %
(c,CDTO)
RR with discrete transmission operator is hence Ak

Ak−1
= (p1+η2)(p2+η1)

(p1+η1)(p2+η2) .

A.2. Semi-discrete in space

When applying a second-order FD centered scheme to L = ν∂xx − r, the PDE is transformed into
a set of ODEs, which can be solved through Fourier transform together with the ansatz ûk1(x−m) =
Ak(λ1 + 1)m and ûk2(xm) = Bk(λ2 + 1)m where m ∈ N is the space index, x0 is the location of the
interface and xm is the m-th collocation point. λj (j = 1, 2) is the root with negative real part of

a second-order polynomial: λj = χj − √χj
√
χj + 2 with χj = (iω+r)h2

2νj
(see [17] for a more detailed

derivation). The convergence factor then depends on the Schwarz method used (in both cases, the
transmission operator (2.4) is treated with a ghost point):

• DNWR: A discretised Neumann transmission condition in the Fourier domain simplifies to

Bk = −
√

ν1
ν2

√
χ1+2
χ2+2Ak and the Dirichlet transmission condition together with the relaxation

step yield a convergence factor equal to %
(c,FD)
DNWR =

ûk1(0)

ûk−1
1 (0)

= Ak
Ak−1

= −θ
√

ν1
ν2

√
χ1+2
χ2+2 + (1− θ).

• RR: The discretised Robin conditions yieldBk = p2h−ν1(λ1−χ1)
p2h+ν2(λ2−χ2)Ak andAk = p1h+ν2(λ2−χ2)

p1h−ν1(λ1−χ1)Bk−1.

Hence the convergence factor %
(c,FD)
RR = Ak

Ak−1
= p1h+ν2(λ2−χ2)

p1h−ν1(λ1−χ1)
p2h−ν1(λ1−χ1)
p2h+ν2(λ2−χ2) .

A.3. Semi-discrete in time

Instead of the Fourier transform, the discretisation in time requires using the z-transform (e.g. [2, 12]).
In the simple case of the Backward-Euler scheme, a semi-discrete frequency sBE = z−1

z∆t appears and
replaces the symbol iω appearing in a continuous in time case. For one-stage time schemes, the semi-
discrete analysis of the convergence of Schwarz methods only requires a change of frequency variable.

Let us now consider the multi-stage time scheme (2.5). The convergence factor of Schwarz Waveform
Relaxation with Dirichlet-Neumann condition is given in [5]. Once a z-transform is applied to both
stages, a fourth-order differential equation is obtained:(

z
(
1 + r∆t b−∆t b ν ∂2

x

)2 − 1− r∆t a+ ∆t a ν ∂2
x

)
ûkj = 0 (A.3)
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Using 2b = 1 + a and the frequency variable sBE = z−1
z∆t , it becomes:

(
sBE − (1 + a∆tsBE)

(
ν∂2

x − r
)

+ b2∆t
(
ν∂2

x − r
)2)

ûkj = 0 (A.4)

The solution of this fourth-order ODE is:

ûk1 = Ake
xσ1 +A′ke

xσ3 + Cke
−xσ1 + C ′ke

−xσ3

ûk2 = Bke
xσ2 +B′ke

xσ4 +Dke
−xσ2 +D′ke

−xσ4
(A.5)

where

σ{1,2,3,4} = ± 1

a
√

∆tνj

√
1 + as̃+ a2∆tr ±

√
1− s̃

√
1− a2s̃ (A.6)

with s̃ = ∆t sBE, where σ{1,3} use ν1 and σ{2,4} use ν2. σ1 and σ3 (resp. σ2 and σ4) have positive (resp.
negative) real parts and have a + (resp. −) sign in place of the first ± in (A.6). The second ± is a − sign
for σ1, σ2 and a + sign for σ3, σ4. We will look at the evolution of ûkj , where Ck = C ′k = Dk = D′k = 0
because of the infinite domain assumption together with the real parts signs.

ûk1 = Ake
xσ1 +A′ke

xσ3

ûk2 = Bke
xσ2 +B′ke

xσ4
(A.7)

A.3.1. Neumann conditions

We now apply the preceding expressions of ûkj in the following system:

ν2 ∂xû
?
2
k(x0) = γ(z) ν1 ∂xû

k−1
1 (x0)

ν2 ∂xû
k
2(x0) = ν1 ∂xû

k−1
1 (x0)

(A.8)

where γ(z) is the discrete Fourier image of the projection operator in the frequency domain that uses
the interface values of u1 and returns a projection to the interface condition of the intermediate step
u?2. Let µi = z(1 + r∆t b − ∆t b νjσ

2
i ) be the frequencies characterising the second stage of the time

scheme (for all the variables indexed by i, the domain j = 1 for i = 1, 3 and j = 2 for i = 2, 4). The

intermediate values then read û?1
k = Ak µ1e

xσ1 + A′k µ3e
xσ3 and û?2

k = Bk µ2e
xσ2 + B′k µ4e

xσ4 . (A.8)
implies:

µ2Bkσ2 + µ4B
′
kσ4 = γ

ν1

ν2

(
Ak−1σ1 +A′k−1σ3

)

Bkσ2 +B′kσ4 =
ν1

ν2

(
Ak−1σ1 +A′k−1σ3

) (A.9)

Calculating Bk, B
′
k as a function of Ak−1, A

′
k−1 leads to the part of the convergence factor driven by

the Neumann transmission operator:

Bk = (1− γ̃)
1

σ2

Fk−1

ν2
, γ̃ =

µ2 − γ
µ2 − µ4

B′k = γ̃
1

σ4

Fk−1

ν2

Fk−1 = ν1

(
Ak−1σ1 +A′k−1σ3

)
(A.10)

where Fk is the surface flux applied to subdomain Ω1 at iteration k.

Remark A.1. γ̃j represents a weighted difference between two ways to determine u(t?): either via a
time extrapolation (with the operator γ), or via the second stage of the time scheme, represented by
µi.
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• γ̃j = 0 gives a convergence factor similar to one-stage time schemes, because the time scheme
performs (through µi) an interpolation identical to γ. This implies that the semi-discrete in
time solutions of the coupling problem and the monolithic one of the full domain are identical.
However γ̃j = 0 also implies that γ is nonlocal in time.

• As γ̃j increases, the impact of using a two-stage scheme on the convergence factor is increasingly
important. When γ is different from µi the coupled solution differs from the monolithic solution.
For the DIRK scheme considered here, a linear extrapolation suffices to guarantee that the
scheme is second order accurate.

A.3.2. Dirichlet conditions and DNWR convergence factor

We now apply the different equalities linking Ak, A
′
k, Bk and B′k to the following system arising from

the DNWR interface conditions:

û?1
k(x0) = γ

(
θûk2(x0) + (1− θ)ûk−1

1 (x0)
)

ûk1(x0) = θûk−1
2 (x0) + (1− θ)ûk−1

1 (x0).
(A.11)

Note that the intermediate step û?1 used in the relaxation is projected using γ. We assume here that
the data û? is not stored for the relaxation step. Using µ1 and µ3 to express û?1, we obtain

µ1Ak + µ3A
′
k = γ

(
θ(Bk +B′k) + (1− θ)(Ak−1 +A′k−1)

)

Ak +A′k = θ(Bk +B′k) + (1− θ)(Ak−1 +A′k−1)
(A.12)

which is equivalent to:

µ1Ak + µ3A
′
k = γ

(
θ

(
1− γ̃
σ2

+
γ̃

σ4

)
Fk−1

ν2
+ (1− θ)(Ak−1 +A′k−1)

)

Ak +A′k = θ

(
1− γ̃
σ2

+
γ̃

σ4

)
Fk−1

ν2
+ (1− θ)(Ak−1 +A′k−1).

(A.13)

The evolution of Ak, A
′
k is given by

µ1Ak + µ3A
′
k = γ

(
ξ1Ak−1 + ξ3A

′
k−1

)

Ak +A′k = ξ1Ak−1 + ξ3A
′
k−1

(A.14)

where ξi = θ
(

1−γ̃
σ2

+ γ̃
σ4

)
ν1
ν2
σi+ (1− θ). We define the convergence factor as the non-zero eigenvalue of

the transition matrix between Ak−1, A
′
k−1 and Ak, A

′
k, which is equal to

ξ1Ak+ξ3A′k
ξ1Ak−1+ξ3A′k−1

= ξ1(1−γ̃)+ξ3γ̃,

easily computed with (A.14) with the identity γ̃ = µ1−γ
µ1−µ3

. Finally we get

%
(DIRK,c)
DNWR = θ

(
1− γ̃
σ2

+
γ̃

σ4

)
ν1

ν2
(σ1(1− γ̃) + σ3γ̃) + (1− θ) (A.15)

Note that while the semi-discrete in space analysis tells us that for identical diffusivities ν1 = ν2,
the optimal relaxation parameter θ is 1/2, here setting ν1 = ν2 may lead to a different conclusion,
depending on the projection γ.
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A.3.3. Robin two-sided case

In the Robin case, the transmission conditions are

z(1 + r∆t b−∆t b ν2∂
2
x)(ν2∂x + p2)ûk2(x0) = γ(ν1∂x + p2)ûk−1

1 (x0)

(ν2∂x + p2)ûk2(x0) = (ν1∂x + p2)ûk−1
1 (x0)

z(1 + r∆t b−∆t b ν1∂
2
x)(ν1∂x + p1)ûk1(x0) = γ(ν2∂x + p1)ûk2(x0)

(ν1∂x + p1)ûk1(x0) = (ν2∂x + p1)ûk2(x0)

(A.16)

By defining the same µi as in (A.9), in subdomain 2 we end up with:

µ2Bk (p2 + ν2σ2) + µ4B
′
k (p2 + ν2σ4) = γ

(
Ak−1 (p2 + ν1σ1) +A′k−1 (p2 + ν1σ3)

)

Bk (p2 + ν2σ2) +B′k (p2 + ν2σ4) = Ak−1 (p2 + ν1σ1) +A′k−1 (p2 + ν1σ3)
(A.17)

and on subdomain 1:

µ1Ak (p1 + ν1σ1) + µ3A
′
k (p1 + ν1σ3) = γ

(
Bk (p1 + ν2σ2) +B′k (p1 + ν2σ4)

)

Ak (p1 + ν1σ1) +A′k (p1 + ν1σ3) = Bk (p1 + ν2σ2) +B′k (p1 + ν2σ4)
(A.18)

Using γ̃ = µ2−γ
µ2−µ4

= µ1−γ
µ1−µ3

previously introduced in the Dirichlet-Neumann analysis, we obtain

Bk (p2 + ν2σ2) =
(
Ak−1 (p2 + ν1σ1) +A′k−1 (p2 + ν1σ3)

)
(1− γ̃)

B′k (p2 + ν2σ4) =
(
Ak−1 (p2 + ν1σ1) +A′k−1 (p2 + ν1σ3)

)
γ̃

Ak (p1 + ν1σ1) =
(
Bk (p1 + ν2σ2) +B′k (p1 + ν2σ4)

)
(1− γ̃)

A′k (p1 + ν1σ3) =
(
Bk (p1 + ν2σ2) +B′k (p1 + ν2σ4)

)
γ̃

(A.19)

By defining Rk = Ak (p2 + ν1σ1) + A′k (p2 + ν1σ3), the non-zero eigenvalue of the transition matrix

between Ak−1, A
′
k−1 and Ak, A

′
k is Rk

Rk−1
:

%
(DIRK,c)
RR =

Rk
Rk−1

=

(
p1 + ν2σ2

p2 + ν2σ2
(1− γ̃) +

p1 + ν2σ4

p2 + ν2σ4
γ̃

)(
p2 + ν1σ1

p1 + ν1σ1
(1− γ̃) +

p2 + ν1σ3

p1 + ν1σ3
γ̃

)
(A.20)

Appendix B. Analysis for discrete space and time: DIRK and Finite Differences

This Appendix presents the analysis of the convergence in the fully discrete case for a reaction-diffusion
problem.

B.1. Resolution of the ODEs

We consider a simple centered second-order FD as described in Section 2. In particular, the discrete

representation of the flux at interface is ν2∂xu2(x0) ≈ ν2
u2(x1)−u2(x0)

h − h
2 (∂t + r)u2(x0) for domain

2 and ν1∂xu1(x0) ≈ ν1
u1(x0)−u1(x−1)

h + h
2 (∂t + r)u1(x0) for domain 1. For the sake of readability, we

introduce δ2
xφ = φm−1 − 2φm + φm+1 such that the semi-discrete problem reads:

(∂t + r)ukj −
νj
h2
δ2
xu

k
j = 0 (B.1)

Now considering the DIRK scheme to discretise the time derivative, we obtain (k exponents were
omitted) (

1 + rb∆t− b∆t νj
h2
δ2
x

)
u?j =

(
1 + ra∆t− a∆t

νj
h2
δ2
x

)
unj

(
1 + rb∆t− b∆t νj

h2
δ2
x

)
un+1
j = u?j

(B.2)
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By substitution of u?, we find:
(
z
(
1 + rb∆t− Γbδ

2
x

)2 −
(
1 + ra∆t− Γaδ

2
x

))
ûkj = 0 (B.3)

with Γb = b∆t
νj
h2 . The ansatz ûkm,j=1 =

∑
iA

i
k(λ̃ij)

−m and ûkm,j=2 =
∑

iB
i
k(λ̃ij)

m , m ∈ Z, leads to

(z (1 + br∆t)2 − 1− ar∆t)λ̃2
ij + (Γa − 2zΓb (1 + rb∆t)) λ̃ij

(
λ̃ij − 1

)2
+ zΓ2

b

(
λ̃ij − 1

)4
= 0 (B.4)

The 4 roots of this polynomial are noted λ̃ij = ehσ̃i . The index j is omitted in σ̃i as i = 1, 3 corresponds
to j = 1 and i = 2, 4 corresponds to j = 2. σ̃i is the discrete in space counterpart of σi: when h→ 0,
σ̃i → σi. The evolution of ûj is given by

ûkm,1 = Ake
−mhσ̃1 +A′ke

−mhσ̃3

ûkm,2 = Bke
mhσ̃2 +B′ke

mhσ̃4
(B.5)

where, as in the semi-discrete in time case, two roots have a positive real part (σ̃1, σ̃3) and σ̃2, σ̃4 have
negative real parts: the infinite domain assumption allows to consider only the roots of one side of the
complex plane.

The previous ansatz will also be useful to express û?kj . Introducing µ̃i = z
(

1 + r∆tb− Γb

(
λ̃i − 2 + 1

λ̃i

))
,

we obtain

û?km,1 = µ̃1Ake
−mhσ̃1 + µ̃3A

′
ke
−mhσ̃3

û?km,2 = µ̃2Bke
mhσ̃2 + µ̃4B

′
ke
mhσ̃4

(B.6)

B.2. Boundary conditions

B.2.1. Neumann conditions

In the case of the DNWR algorithm, we have two Neumann conditions: one is prescribed to u? and
the other is applied to û. This leads to (k exponents were omitted)

βν2
u?2(x1)− u?2(x0)

h
− aν2

un2 (x1)− un2 (x0)

h
− h

2

(
u?2(x0)− un2 (x0)

∆t
+ βru?2(x0)− arun2 (x0)

)
= (βγ − a)gnDN

ν2
un+1

2 (x1)− un+1
2 (x0)

h
− h

2

(
un+1

2 (x0)− u?2(x0)

β∆t
− run+1

2 (x0)

)
= gn+1

DN

where gnDN = ν1
un1 (x0)−un1 (x−1)

h + h
4∆t(u

n+1
1 (x0) − un−1

1 (x0)) + h
2 ru

n
1 (x0). In the frequency domain,

ĝkDN =
(
ν1
h + h z

2+2zr∆t−1
4z∆t

)
(Ak +A′k)− ν1

h

(
Ake

−hσ̃1 +A′ke
−hσ̃3

)
and

η?2Bk + η?4B
′
k = (βγ − a) ĝk−1

DN , with η?i = (βµ̃i − a)(ν2
ehσ̃i − 1

h
− h

2
r)− hµ̃i − 1

2∆t
(B.7)

η2Bk + η4B
′
k = ĝk−1

DN , with ηi = ν2
ehσ̃i − 1

h
− h

2
r − h1− µi/z

2β∆t
(B.8)

From those two equalities we get

Bk +B′k =
η?4 − η?2 − (η4 − η2)(βγ − a)

η2η?4 − η?2η4
ĝk−1
DN (B.9)
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B.2.2. Dirichlet conditions and DNWR convergence factor

We now consider the Dirichlet conditions with relaxation parameter θ. In practice, we have two
Dirichlet conditions: one is applied on û? and the other is applied on û.

û?1
k(x0) = γ

(
θûk2(x0) + (1− θ)û1

k−1(x0)
)

ûk1(x0) = θûk−1
2 (x0) + (1− θ)ûk−1

1 (x0).
(B.10)

It is very similar to the Dirichlet conditions of the semi-discrete in time case (A.12) :

µ̃1Ak + µ̃3A
′
k = γ

(
θ(Bk +B′k) + (1− θ)(Ak−1 +A′k−1)

)

Ak +A′k = θ(Bk +B′k) + (1− θ)(Ak−1 +A′k−1)
(B.11)

where Bk +B′k can be expressed as Ak, A
′
k using (B.9):

µ̃1Ak + µ̃3A
′
k = γ

(
ξ̃1Ak−1 + ξ̃3A

′
k−1

)

Ak +A′k = ξ̃1Ak−1 + ξ̃3A
′
k−1

(B.12)

where ξ̃i = 1− θ + θ
η?4−η?2−(η4−η2)(βγ−a)

η2η?4−η?2η4

(
ν1

1−e−hσ̃i
h + h z

2+2zr∆t−1
4z∆t

)
. We define the convergence factor

as the non-zero eigenvalue of the transition matrix between Ak−1, A
′
k−1 and Ak, A

′
k, which is equal to

ξ1Ak+ξ3A′k
ξ1Ak−1+ξ3A′k−1

= ξ̃1(1− γ̃1) + ξ̃3γ̃1, obtained with (B.12). Finally,

%
(DIRK,FD)
DNWR = 1−θ+θη

?
4 − η?2 − (η4 − η2)(βγ − a)

η2η?4 − η?2η4

(
ν1

1− (1− γ̃1)e−hσ̃1 − e−hσ̃3 γ̃1

h
+ h

z2 + 2zr∆t− 1

4z∆t

)

(B.13)

B.3. Robin two-sided case

In the Robin two-sided case, transmission conditions are similar to the Dirichlet-Neumann conditions:
we define ĝ1 such that ĝ1 · (Ak, A′k)T = ĝkDN + p2(Ak + A′k) and ĝ2 the corresponding value in the
domain j = 2, using the Robin parameter p1:

ĝ2 =

(
ν2
ehσ̃2 − 1

h
− hz

2 − 1

4z∆t
− h

2
r + p1, ν2

ehσ̃4 − 1

h
− hz

2 − 1

4z∆t
− h

2
r + p1

)
(B.14)

We note δx/h the approximation of the first-order space differentiation and our discrete Robin trans-
mission conditions read(

(ν2
δx
h

+ p2 −
h

2
r)(βµ− a)− h

2

µ− 1

∆t

)
ûk2(x0) = (βγ − a) ĝ1 · (Ak−1, A

′
k−1)T

(ν2
δx
h

+ p2 −
h

2

1 + rβ∆t− µ/z
β∆t

)ûk2(x0) = ĝ1 · (Ak−1, A
′
k−1)T

(
(ν1

δx
h

+ p1 +
h

2
r)(βµ− a) +

h

2
(
µ− 1

∆t
)

)
ûk1(x0) = (βγ − a) ĝ2 · (Bk, B′k)T

(ν1
δx
h

+ p1 +
h

2

1 + rβ∆t− µ/z
β∆t

)ûk1(x0) = ĝ2 · (Bk, B′k)T

(B.15)

Noting ς?i = (ν2
ehσ̃i−1

h + p2 − h
2 r)(βµi − a)− hµi−1

2∆t for i = 2, 4 and ς?i = (ν1
1−e−hσ̃i

h + p1 + h
2 r)(βµi −

a) + hµi−1
2∆t for i = 1, 3,

ς?i
βµi−a asymptotically equals the semi-discrete in time νjσi + pj when h → 0.

We also define ςi = ν2
ehσ̃i−1

h + p2 − h
2

1+rβ∆t−µ̃i/z
β∆t for i = 2, 4 and ςi = ν1

1−e−hσ̃i
h + p1 + h

2
1+rβ∆t−µ̃i/z

β∆t

for i = 1, 3, which are asymptotically equal to νjσi + pj when h→ 0.
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We get the evolution of Ak, A
′
k, Bk, B

′
k:

ς?2Bk + ς?4B
′
k = (βγ − a)ĝ1 · (Ak−1, A

′
k−1)T

ς2Bk + ς4B
′
k = ĝ1 · (Ak−1, A

′
k−1)T

ς?1Ak + ς?3A
′
k = (βγ − a)ĝ2 · (Bk, B′k)T

ς1Ak + ς3A
′
k = ĝ2 · (Bk, B′k)T

(B.16)

The convergence factor is then
ĝ1·(Ak,A′k)T

ĝ1·(Ak−1,A
′
k−1)T

which is equal to

%
(DIRK,FD)
RR = ĝ1 ·

(
ς?3 − ς3(βγ − a)

ς?3 ς1 − ς?1 ς3
,
ς1(βγ − a)− ς1
ς?3 ς1 − ς?1 ς3

)T
× ĝ2 ·

(
ς?4 − ς4(βγ − a)

ς?4 ς2 − ς?2 ς4
,
ς2(βγ − a)− ς2
ς?4 ς2 − ς?2 ς4

)T

(B.17)
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4.1 Introduction

Schwarz methods have been studied in Chapters 2 and 3; we now focus on the discretisation
of the atmospheric surface layer. The dynamics presented in Chapter 1 are recalled in §4.1.1

74
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and the specific problem of the treatment of the surface layer is raised in §4.1.2.

4.1.1 Physical considerations

We consider in this chapter the turbulent Ekman model presented in Chapter 1. This 1D
vertical model includes the Coriolis effect and a vertical turbulent term (the stratification
will be introduced later in §4.3):

∂tu+ ifu+ ∂z⟨w′u′⟩ = ifuG (4.1)

Remark As it was detailed in §1.3.1 u is considered to be a complex-valued function for an
easier representation of the Coriolis effect. The vector norm || · || is equivalent to the modulus
| · |.

In (4.1), the Boussinesq hypothesis is applied on the turbulent flux ⟨w′u′⟩ = −Ku∂zu
where Ku is the turbulent viscosity. In this chapter we focus on this flux and its bottom
boundary expression.

We present a continuous model which describes the atmosphere column as the coupling
of two regions:

• the surface layer which responds to surface forcing with a short timescale [LeMone
et al., 2019];

• the remainder of the atmosphere which is not directly driven by the surface forcing.

In fluid dynamics, the presence of a rough surface makes strong gradients appear: due to
the no-slip boundary condition the scales of motion close to the surface are much smaller
than elsewhere in the domain and it is numerically intractable in most applications to refine
the mesh enough for those small scales. The models hence exclude from the computational
domain a part of the surface layer, using an adapted boundary condition. [Mohammadi
et al., 1998] show that bulk boundary conditions can be derived with domain decomposition
arguments; the computational domain is split into two parts: the surface layer (0, δa) and
the remainder of the atmosphere column, (δa,+∞) (see Figure 4.1).

The surface layer has two main characteristics:

• it is well mixed. The governing equation is usually stationary because the surface layer
immediately adjusts to the external parameters. As a consequence (and because the
Coriolis effect and the geostrophic forcing are neglected), the flux K∂zu is a constant
along the vertical axis.

• The vertical profile of K strongly depends on z.
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0

z

δa

(∂t + if)u− ∂z(Ku∂zu) = ifuG

Ku∂zu = u2⋆eτ

Figure 4.1: Continuous equations where the surface layer is excluded from the computational
domain.

The equations in the atmosphere column are hence (see Figure 4.1):

(∂t + if)u− ∂z(Ku∂zu) = ifuG, z ≥ δa (4.2a)

Ku∂zu = u2⋆eτ , z < δa (4.2b)

where uG is a constant value representing the geostrophic guide and f is the Coriolis pa-
rameter. The orientation of ∂zu is contained in eτ = u(δa)−u(0)

||u(δa)−u(0)|| where the surface current

u(0, t) is set to 0 or given by the ocean model in a coupled situation. In the neutral case
(without stratification) we assume u(0, t) = 0 to shorten the expressions1. The initial and
top boundary conditions are

u|t=0 = uG (4.3a)

∂zu|z=ztop = 0 (4.3b)

The viscosity in the surface layer is Ku(z ≤ δa) = κu⋆(z + zu) where zu = zu(Kmol, u⋆)
depends on the geometry of the space domain; κ = 0.40 is the Von Kármán constant and
Kmol is the molecular viscosity. It follows from (4.2b) that

||u(z, t)|| = u⋆
κ

ln

(
1 +

z

zu

)
(4.4)

which is called logarithmic profile (or in the stratified case MOST profile). The expression
wall law can refer to either the logarithmic profile, the surface layer viscosity Ku(z ≤ δa)
and the boundary condition (4.2b).

BULK routines The routine used to compute the friction velocity u⋆ is called BULK. It
takes as parameters:

• the (relative) wind speed u(δa);

• the height of the surface layer δa;

1Setting u(0, t) = 0 amounts to consider the “absolute” wind speed rather than the “relative” wind
w.r.t. the surface currents: the implementation of current feedbacks in ocean-atmosphere coupled models is
discussed in [Renault et al., 2019].
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• the temperature difference θ(δa)− θ(0) (for the stratified case);

In the neutral case, it starts with a first guess of zu then uses (4.4) to compute iteratively
u⋆ and zu(Kmol, u⋆) (see [Fairall et al., 2003] for more precisions).

Bottom boundary condition A typical integration in time from u(z, tn) to u(z, tn+1) is:

1. Neutral Bulk: Use (4.4) to compute u⋆ = BULK(u(δa, t
n)) :=

κ||u(δa, tn)||
ln
(
1 + δa

zu

)

2. Integrate in time (4.2a) using (4.2b) as a boundary condition either explicitly:

Ku∂zu|z≤δa,tn+1 = u2⋆
u(δa, t

n)

||u(δa, tn)||
(4.5)

or implicitly:

Ku∂zu|z≤δa,tn+1 = u2⋆
u(δa, t

n+1)

||u(δa, tn)||
(4.6)

[Lemarié et al., 2015b] showed that the explicit numerical interface condition is not
necessarily stable: we choose to use the implicit condition and note u2⋆eτ the right-hand
side of (4.6). This implicit implementation is used for instance in the ECMWF model
(see Section 3.5 of [ECMWF, 2020]). Other more sophisticated possibilities can also
guarantee better numerical properties [Connors et al., 2012].

4.1.2 Treatment of the surface layer

The exclusion of the surface layer from the computational domain is justified by the lack of
numerical resolution close to the surface: the continuous model (4.2) is split according to
the numerical ressources. The height of the surface layer δa is hence generally chosen as the
first grid level. However, in present numerical models, the evolution equation (4.2a) is also
solved inside the surface layer which contradicts the quasi-stationary hypothesis. In order
to improve the treatment of the surface layer, we can identify three issues (subjectively in
decreasing order of importance and ease of correction):

1. δa is too small compared to the space steps. This issue is well-known in the LES
community and is called log-layer mismatch. Since the scales of motion in the surface
layer are proportional to the distance to the surface, it should not be assumed that
we solve correctly the mechanisms in the first levels of a finite difference classical
approach. [Kawai and Larsson, 2012] propose to use other levels than the first one to
parameterize the wall law in the neutral case. [Maronga et al., 2020] give an improved
boundary condition for stratified Large-Eddy Simulations which consists in using as
the bulk input horizontally averaged values at δa chosen for physical and numerical
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reasons (within the surface layer, above the roughness sub-layer and in a region where
flows are well-resolved).

2. The quasi-stationary hypothesis of the wall law is not compatible with treating the
first cell like the other ones. [Nishizawa and Kitamura, 2018] have shown that a bias is
created in some Finite Volume models because the average of the first cell is considered
to be the value in its center.

Ku∂zu|z≤δa = u2⋆eτ ⇒
{
(∂t + if)u− ∂z(Ku∂zu) ̸= ifuG, z < δa
1
z1

∫ z1
0
u(z)dz ̸= u(z 1

2
)

(4.7)

The discretization should take into account the surface layer and adapt to the wall
law.

3. It is expected from most discretizations to be consistent : the continuous model should
be recovered when the space step tends to zero. In particular, the surface layer should
still be parametrized with the same wall law which is not the case when δa is chosen
as the first grid level.

lim
h→0

Ku∂zu|z≤δa = u2⋆eτ (4.8)

[Basu and Lacser, 2017] warn that in several recent LES studies the space step is so
small that the Monin-Obukhov hypotheses (that the height of the roughness elements
is small: zu ≪ δa) do not apply: the consistency problem is not only a theoretical
consideration.

This chapter aims to study the treatment of the surface layer and to address those issues. In
Section 4.2, the Finite Volume discretisation used in Chapter 2 is recalled and we introduce
several strategies to treat the surface layer. In particular, one of the strategies (“FV free”)
enforces the wall law in the surface layer and does not assume a specific δa. The discussion
is extended to a stratified case in Section 4.3 then the strategies are compared in Section
4.4.

4.2 Neutral case

This section introduces a method to discretize properly the surface layer of a simplified
atmosphere column model. First in §4.2.1, the Finite Volume discretization using spline
reconstruction is recalled. §4.2.2 is an overview of several strategies used to deal with the
coupling of the two zones mentioned previously. When it makes sense, the strategies are
applied with a Finite Volume discretization so that they can be compared with each other.
Finally §4.2.3 introduces a new strategy to handle the surface flux scheme, based on a
logarithmic reconstruction of the profiles within the surface layer.
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In this section 4.2, we assume that the stratification is neutral. As it was explained in
Chapter 1, there is no effect of the stratification on the turbulent viscosity so the wind speed
u(z, t) can be integrated in time without the temperature and humidity profiles.

4.2.1 Space discretization of (4.2a) with Finite Volumes

We recall here the Finite Volume discretization used throughout this chapter. We focus on
the space discretisation and the time dependency of u(z, t) is hence omitted.

z0

zm−1

zm

zM

ϕm

zm− 1
2

u(z) = Sm− 1
2
(z − zm− 1

2
)

um− 1
2

hm− 1
2

ϕm−1

u(z)

Figure 4.2: Summary of the notations related to the discretisation.

As already mentioned in chapter 3 the space domain is divided into M cells delimited
by heights (z0 = 0, .., zm, .., zM). The size of the m-th cell is hm− 1

2
= zm − zm−1 and the

average of u(z) over this cell is noted um− 1
2
= 1

h
m− 1

2

∫ zm
zm−1

u(z)dz. The space derivative of u

at zm is noted ϕm. Figure 4.2 summarized the notations used related to the discretisation.
Averaging (4.2a) over a cell gives the semi-discrete equation

(∂t + if)um+ 1
2
− Ku,m+1ϕm+1 −Ku,mϕm

hm+ 1
2

= ifuG (4.9)

The reconstruction of u(z) = Sm+ 1
2
(z − zm+ 1

2
) inside a cell must be chosen to pursue the

derivation of the scheme. A simple choice is a quadratic polynomial, Sm+ 1
2
(ξ) = r0+r1ξ+r2ξ

2
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where −hm+1/2

2
≤ ξ ≤ hm+1/2

2
. Averaging Sm+ 1

2
over the cell and prescribing its space

derivative at zm and zm+1 lead to the following system:

um+1/2 =
1

hm+1/2

∫ hm+1/2
2

−
hm+1/2

2

Sm+ 1
2
(ξ)dξ

ϕm = ∂zSm+ 1
2

(
−hm+1/2

2

)

ϕm+1 = ∂zSm+ 1
2

(
hm+1/2

2

)
(4.10)

In matrix form, we obtain a system that can be inverted to compute r0, r1, r2:




um+1/2

hm+ 1
2
ϕm

hm+ 1
2
ϕm+1


 =



1 0 1

12

0 1 −1
0 1 1







r0
r1hm+ 1

2

r2h
2
m+ 1

2


 (4.11)

The reconstruction of u(z) between zm and zm+1 is then

Sm+ 1
2
(ξ) = ūm+ 1

2
+
ϕm+1 + ϕm

2
ξ +

ϕm+1 − ϕm
2hm+1/2

(
ξ2 −

h2m+1/2

12

)
(4.12)

The continuity of the solution at cell interfaces (Sm− 1
2

(
hm−1/2

2

)
= Sm+ 1

2

(
−hm+1/2

2

)
) is

then equivalent to

hm−1/2

6
ϕm−1 +

2
hm+1/2+hm−1/2

2

3
ϕm +

hm+1/2

6
ϕm+1 = ūm+ 1

2
− ūm− 1

2
(4.13)

Combining (4.9) and (4.13) finally gives the prognostic equation to integrate ∂zu in time:

(∂t + if)

(
hm− 1

2

6
ϕm−1 +

hm− 1
2
+ hm+ 1

2

3
ϕm +

hm+ 1
2

6
ϕm+1

)

−
(
Ku,m+1ϕm+1 −Ku,mϕm

hm+ 1
2

− Ku,mϕm −Ku,m−1ϕm−1

hm− 1
2

)
= 0

(4.14)

To reconstruct the solution, u should also be integrated in time with (4.9). (4.14) and (4.9)
are hence the two equations defining our finite volume discretization. Note that we arrive
naturally on fourth-order compact schemes for the first derivative ∂zu (eq (4.13)) and second-
order for ∂2zu (see e.g. [Piller and Stalio, 2004]), but with a different approach of imposing
a spline reconstruction. This approach lets us better control the vertical profiles than the
usual compact methods and facilitates the derivation of the boundary conditions.
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Remark: fourth-order compact scheme To get a more accurate scheme for the second-
order derivative, a fourth degree polynomial could also be used. if 1

12
, 5
6
are used in (4.14)

instead of 1
6
, 2
3
, a fourth-order compact scheme is obtained. This scheme is studied in the

Finite Difference sense in [Adam, 1977] and was also used by [Piller and Stalio, 2004] in a Fi-
nite Volume framework close to the one we are using. If one assumes that the reconstruction
is the fourth degree polynomial S4

m+ 1
2

(ξ) = r40 + r41ξ + r42ξ
2 + r43ξ

3 + r44ξ
4, the two addi-

tional degrees of freedom r43, r
4
4 need to be constrained. To recover the fourth-order compact

scheme through the continuity constraint as in (4.13) one must put as constraints that the

reconstruction on the boundaries of the cell is S4
m+ 1

2

(
h
m+1

2

2

)
= um+ 1

2
+

h
m+1

2

12
(ϕm + 5ϕm+1)

and S4
m+ 1

2

(
−
h
m+1

2

2

)
= um+ 1

2
−

h
m+1

2

12
(5ϕm + ϕm+1). Then the reconstruction is given by




r40
r41hm+ 1

2

r42h
2
m+ 1

2

r43h
3
m+ 1

2

r44h
4
m+ 1

2




=




1 0 1
12

0 1
80

0 1 −1 3
4

−1
2

0 1 1 3
4

1
2

1 −1
2

1
4

−1
8

1
16

1 1
2

1
4

1
8

1
16




−1



um+1/2

hm+ 1
2
ϕm

hm+ 1
2
ϕm+1

u− 5
12
hm+ 1

2
ϕm − 1

12
hm+ 1

2
ϕm+1

u+ 1
12
hm+ 1

2
ϕm + 5

12
hm+ 1

2
ϕm+1




(4.15)

and one obtains a subgrid reconstruction corresponding to the fourth-order 2 compact scheme
considered. However this representation is heavier than using the quadratic splines: the
fourth-order compact scheme will not be used in the following.

4.2.2 State-of-the-art surface flux schemes

We present in this subsection several strategies to derive the discretization of the surface
layer (the corresponding equation is (4.2b)). A surface layer discretization consists in two
parts, corresponding to the two steps of the integration in time presented in Section 4.1.1:

• how u⋆ is computed. For instance, with Finite Differences u(δa, t
n) is used as an input

of the bulk routine to get the value of u⋆ = BULK(u(δa, t
n)).

• How (4.2b) is implemented as a boundary condition: in particular, the height at which
the flux is prescribed. The space discretisation of u(δa, ·) is the same in the bulk routine

and in eτ =
u(δa,tn+1)
||u(δa,tn)|| .

[Nishizawa and Kitamura, 2018] investigated the effect of the first part of the discretization
and showed that there is a negative bias in conventional surface flux schemes. This bias

2On the domain boundaries there is no continuity constraint. S4
1
2

(
−

h 1
2

2

)
can be constrained by a special

treatment (see [Piller and Stalio, 2004]) to keep the fourth-order accuracy on Dirichlet boundaries.
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0

u 1
2

u(z 1
2
)

z1

u(z)

Figure 4.3: The averaged value of the wall law is systematically smaller that the value at the
center of the cell.

comes from the fact that these schemes assume that the volume-averaged variables are equal
to the value in the center of the volume. However the prognostic variables in the surface
layer follow a logarithmic profile as shown in (4.4): the concavity of this profile thus creates
a systematic error when assuming that the average and the value at the center of the cell
are equal (see Figure 4.3). Finally, [Nishizawa and Kitamura, 2018] propose an alternative
bulk formulation which uses the averaged variable in the surface layer instead of its value at
the top.

Remark The scheme (4.14) relies on quadratic spline reconstruction; the value at the center
of the first cell is

S1/2(0) = u1/2 +
h1/2
24

(ϕ0 − ϕ1) (4.16)

If ϕ0 and ϕ1 are aligned with eτ = 1 + 0i then ϕ0 > ϕ1 implies that u(z) is concave (it is
parabolic) and that u1/2 < S1/2(0). However, as it will be discussed in §4.2.3 (“On the value
of Ku,0”) the wall law cannot be followed. The modification of Ku,0 used in §4.2.3 reduces
the difference between u1/2 and S1/2(0). In the following, the difference between “FV pure”
and “FV1” will be small for this reason.

Our objective is to compare the surface flux scheme corresponding to the alternative bulk
formulation with the conventional ones and to introduce another surface flux scheme that is
more coherent with respect to the continuous model of Section 4.1.1. We now present the
strategies that are representative of what is done in actual models. The strategies are applied
to the Finite Volume scheme presented in Section 4.2.1 and are summarized in Figure 4.4.

• With Finite Differences: it is assumed that δa = z 1
2
. A standard Finite Difference

approximation applied to the evolution equation states that (∂t + if)u 1
2
= 1

h 1
2

(K1ϕ1 −
K0ϕ0)+ ifuG. The input value of the bulk is u(δa) = u1/2 and the boundary condition
is simply applied on the surface flux:

Ku,0ϕ
n+1
0︸ ︷︷ ︸

Surface flux

= u2⋆eτ , u⋆ = BULK( un1
2︸︷︷︸

FD value at z 1
2

) (4.17)
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Note that using another point further from the surface (e.g. un7
2

) instead of un1
2

is the

idea of the method given by [Kawai and Larsson, 2012] to eliminate log-layer mismatch
in LES models. We do not consider this method here as we focus on Finite Volume
discretisation.

• “FV pure”: it is assumed again that δa = z 1
2
. The scheme is similar to the Finite

Difference one. The reconstruction of u(z) inside the first grid cell is used to get u(z 1
2
).

The first cell is treated like the others: (4.2a) is applied inside the surface layer. The
bottom boundary condition is

Ku,0ϕ
n+1
0︸ ︷︷ ︸

Surface flux

= u2⋆eτ , u⋆ = BULK( Sn1/2(ξ = 0)
︸ ︷︷ ︸

Reconstruction at z 1
2

) (4.18)

Note that ξ = 0 corresponds here to z = z 1
2
̸= 0.

• “FV1”: it is assumed again that δa = z 1
2
. In state-of-the-art models using finite

volumes, u⋆ is often computed using the volume-averaged value u(δa) = u 1
2
. (4.2a) is

also applied inside the surface layer. The corresponding bottom boundary condition is

Ku,0ϕ
n+1
0︸ ︷︷ ︸

Surface flux

= u2⋆eτ , u⋆ = BULK( un1
2︸︷︷︸

Average around z 1
2

) (4.19)

We present now two additional strategies corresponding to the treatment of the surface layer
in [Nishizawa and Kitamura, 2018].

• “FV Nishizawa”: unlike the other strategies, it is assumed that the first cell is en-
tirely inside the surface layer: δa = z1. We mentioned previously that [Nishizawa and
Kitamura, 2018] show that the “FV1” strategy systematically underestimates u(δa)
because of the concavity of the logarithmic profile. An alternative bulk algorithm is
hence derived by averaging (4.4) in the first cell:

||u 1
2
|| = u⋆

κ

(
1+

zu
δa

)(
ln

(
1 +

z

zu

)
−1

)
(4.20)

However, the equation (4.2a) and the spline reconstruction are left unchanged in the
surface layer:

Ku,0ϕ
n+1
0︸ ︷︷ ︸

Surface flux

= u2⋆eτ , u⋆ = BULK(︸ ︷︷ ︸
Adapted for averages

un1
2

) (4.21)

• “FV2”: the “FV Nishizawa” scheme is not adapted to spline reconstruction. We
extend it to our Finite Volume discretisation with the assumption that the spline
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reconstruction u(z) inside the surface layer is given by the wall law. The surface layer
is the first cell: the equation (4.2a) is not integrated in time in this cell and we use
instead the wall law (4.4) between 0 and δa = z1. Since the profile of u is given by the
wall law in the first cell, using u 1

2
as input of the alternative bulk algorithm of “FV

Nishizawa” becomes rigorously equivalent to using the classical bulk formulation with

u(z1) as input. We hence use the reconstruction un(δa) = Sn3
2

(−h3/2
2
) and the boundary

condition at z1 is

Ku,1ϕ
n+1
1︸ ︷︷ ︸

Flux at z1

= u2⋆eτ , u⋆ = BULK(un1
2
)

︸ ︷︷ ︸
Averaged bulk

= BULK(Sn3/2(ξ = −
h 3

2

2
)

︸ ︷︷ ︸
Reconstruction at z1

) (4.22)

The first cell is inactive with this method: the numerical computation domain matches
with the continuous one (Figure 4.1).

The different strategies are summarized in Table 4.1 together with the “FV free” scheme
which will be presented in §4.2.3. Let us draw some comments and comparisons on the
surface flux schemes:

• “FV1” relies on the assumption that u 1
2
= u(z 1

2
); as it will be seen on Figure 4.7 the

induced difference with “FV pure” is not important in our case where the spline profile
are less concave than the logarithmic profile. We will thus only consider “FV pure” to
reduce the number of cases.

• Some of the strategies assume (4.2a) inside the surface layer; it is not satisfactory
because it is incompatible with the wall law (4.2b). Note that this is not the case with
Finite Differences: (4.2a) is only assumed at z1/2.

• With our spline reconstruction, when we assume (4.2a) a spline profile (that is incom-
patible with the logarithmic profile) is also assumed.

As shown in Table 4.1 the “FV2” surface flux scheme solves those problems. However for this
scheme and all the others presented here, changing the space step also changes the height of
the surface layer δa. This behaviour is not satisfactory: although the choice of δa is mainly
related to numerical reasons we aim to approximate the continuous equations (4.2). [Basu
and Lacser, 2017] warns that using a small space step while keeping the same treatment in
LES goes against the range of validity of the MOST profiles. That is why in the following,
we derive a surface flux scheme that keeps the advantages of the “FV2” scheme, but with a
free δa.
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z0

z 1
2

z1

z2

Ku,0ϕ
n+1
0 = u2⋆eτ Ku,0ϕ

n+1
0 = u2⋆eτ

FD ”FV1”

Ku,0ϕ
n+1
0 = u2⋆eτ

”FV pure”

u⋆ = BULK(un1
2

) BULK(un1
2

) BULK(Sn1
2

(0))

z0

z 1
2

z1

z2

Ku,0ϕ
n+1
0 = u2⋆eτ

”FV Nishizawa”

BULK(un1
2

)

Ku,1ϕ
n+1
1 = u2⋆eτ

”FV2”

BULK(u 1
2
) = BULK(Sn3

2

(−
h 3

2

2
))

Figure 4.4: Summary of the surface flux schemes. Averaged values are noted with vertical dotted
lines; Values considered in the Finite Difference sense are encircled; implicit parts of
the schemes are represented as dashed lines; orange profiles follow the wall law. With
“FV Nishizawa”, the average is interpreted as the average of a wall law and is used
in the BULK routine.
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Scheme SL flux u⋆ δa (4.2b) in SL?
FD Ku,0ϕ0 BULK(u 1

2
) z 1

2

“FV pure” Ku,0ϕ0 BULK(Sn1/2(ξ = 0)) z 1
2

×
“FV1” Ku,0ϕ0 BULK(u 1

2
) z 1

2
×

“FV Nishizawa” Ku,0ϕ0 BULK(u 1
2
) z1 ×

“FV2” Ku,1ϕ1 BULK(S 3
2
(−h3/2

2
)) z1

“FV free” Ku,δϕδ BULK(u(δa)) δa

Table 4.1: Summary of the surface flux schemes presented in Section 4.2

4.2.3 A surface flux scheme with a free δa

We now construct a boundary condition that is coherent with the continuous model presented
in §4.1.1 with a free δa, named “FV free” in Table 4.1:

Ku,δϕ
n+1
δ︸ ︷︷ ︸

Flux at δa

= u2⋆eτ , u⋆ = BULK( un(δa)︸ ︷︷ ︸
Reconstruction at δa

) (4.23)

We first assume that δa < z1 and will then relax this hypothesis. In the first grid cell,
we assume that (4.4) applies for z < δa and we separate the first volume into two parts:
the surface layer [0, δa] and the “sub-cell” [δa, z1]. This split corresponds to the change of

governing equations in the continuous case (4.2). Let h̃ = z1−δa be the size of the upper sub-
cell [δa, z1] and ũ = 1

h̃

∫ z1
δa
u(z)dz be the averaged value of u on this interval. The following

subgrid reconstruction is used:

u(z) =





S1/2

(
z − z1 + δa

2

)
, z ≥ δa

u⋆
κ

ln

(
1 +

z

zu

)
eτ , z < δa

(4.24)

The quadratic spline S1/2 used for reconstruction is computed with the averaged value ũ,

the size of the sub-cell h̃ and the fluxes at the extremities ϕδ and ϕ1: a similar equation to

(4.12) is obtained: S1/2(ξ) = ũ + ϕ1+ϕδ
2

ξ + ϕ1−ϕδ
2h̃

(
ξ2 − h̃2

12

)
. The notations are summed up

in Figure 4.5.

Remark The flux Kuϕ is constant in the surface layer. Hence Ku,δϕδ = Ku,0ϕ0 and since
the viscosity at z = 0 is the molecular viscosity we get ϕδ =

Kmol

Ku,δ
ϕ0. The implementation uses

ϕδ as a prognostic variable instead of ϕ0: this surface flux scheme is hence exactly equivalent
to using the “FV2” scheme with grid levels {0, δa, z1, z2, ..., zM}.

We now rewrite the reconstruction (4.24) in terms of the prognostic variables u1/2, ϕδ, ϕ1.

The relation between u1/2 and ũ is given by the Chasles’ relation
∫ z1
δa
udz =

∫ z1
z0
udz−

∫ δa
z0
udz,
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z0

z1

z2

z3

h 3
2

h̃

δa

(∂t + if)u3/2 − Ku,2ϕ2−Ku,1ϕ1
h3/2

= ifuG

Ku,δϕ
n+1
δ = u2⋆eτ

u(z)− u(0) = u⋆
κ
log
(
1 + z

z⋆

)
eτ

u 1
2
= 1

h 1
2

(
h̃ũ+

∫ δa
z0
u(z)dz

)

h 1
2

BULK(Sn1
2

(− h̃
2
))

(∂t + if)ũ− Ku,1ϕ1−Ku,δϕδ

h̃
= ifuG

Figure 4.5: Surface layer scheme “FV free”.
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which can be written as

h̃ũ = h1/2u1/2 − eτ
u⋆
κ

∫ δa

z0

ln

(
1 +

z

zu

)
dz (4.25)

where the time indices in eτ =
un+1(δa)
||un(δa)|| must be the same as in the bottom boundary condition

(4.23). Let us inject the reconstruction of u(δa) = ũ− h̃(ϕδ/3+ϕ1/6) (obtained from (4.24))

and the wall law ||un(δa)|| = u⋆
κ
ln
(
1 + δa

zu

)
in (4.25). One then gets:

ũ αsl = u 1
2
+ h̃

(
ϕδ
3

+
ϕ1

6

)(
αsl −

h̃

h 1
2

)
(4.26)

with

αsl =
h̃

h1/2
+

1

h1/2

∫ δsl

z0

ln
(
1 + z

zu

)

ln
(
1 + δa

zu

)dz =
(h1/2 + zu) ln

(
1 + δa

zu

)
− δa

h1/2 ln
(
1 + δa

zu

) (4.27)

a non-dimensional number 0 < αsl ≤ 1 which depends on the wall law and on the values of
h̃, h1/2. Finally, note that

αsl = 1 ⇐⇒ h̃ = h1/2 (4.28)

and in this case (4.26) is equivalent to ũ = u1/2. Figure 4.6 shows the profile of αsl where
we see that it decreases when increasing δa/z1 or zu.

0.0 0.5 1.0

δa/z1

0.90

0.95

1.00

α
a

zu = 10−4

zu = 10−3

zu = 10−2

zu = 10−1

Figure 4.6: Value of αsl for several values of zu with z1 = 20 m.

Remark αsl is a not constant as it depends on zu(u⋆) which will vary. On the other hand,
we assume that δa does not change over time. Indeed, it would be challenging to decrease δa
during the integration in time because a part of the wall law would need to be treated as a
spline. It would be however desirable to be able to vary δa as a physical parameter and we
leave this improvement for future work.

In the reconstruction (4.24) ũ can be expressed in terms of the prognostic variables with
(4.26) and we obtain u(δa) which is used as input of the bulk routine and in the computation
of eτ :

u(δa) =
u1/2 − h̃2

h1/2
(ϕδ

3
+ ϕ1

6
)

αsl

(4.29)
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The boundary condition (4.23) is hence formulated as:

Ku,δϕ
n+1
δ︸ ︷︷ ︸

Flux at δa

= u2⋆

u1/2 − h̃2

h1/2
(ϕδ

3
+ ϕ1

6
)

αsl||un(δa)||︸ ︷︷ ︸
eτ using reconstruction at δa

(4.30)

and the evolution equation in the upper part of the first grid level (∂t+ if)ũ =
Ku,1ϕ1−Ku,δϕδ

h̃
becomes

(∂t + if)

(
1

αsl(t)

(
u1/2 + h̃

(
ϕδ
3

+
ϕ1

6

)(
αsl −

h̃

h 1
2

)))
=
Ku,1ϕ1 −Ku,δϕδ

h̃
(4.31)

The prognostic equation (4.13) used to integrate ϕ in time is also changed for m = 1: hm−1/2

is replaced with h̃ and Ku,m−1ϕm−1 is replaced by Ku,δϕδ.

4 6 8

||u(z)|| (m.s−1)
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)
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z 1
2

z 3
2

z 5
2

z 7
2

0

100

FV1, K0 = Kmol

FV1

FV pure

FV Nishizawa

FV2

Finite Differences

FV free

Figure 4.7: Vertical profiles of ||u|| (left) and arg(u) (right) for the various surface flux schemes
presented after one day of integration in time in neutral conditions. The time step is
∆t = 30 s and the vertical levels are taken on the ECMWF website3 as the 25 first
of the 137 levels configuration of IFS.

Figure 4.7 is a snapshot of the vertical profiles of |u| and arg(u) close to the surface for
the surface flux schemes presented. The profiles are obtained after 24 hours of integration in
neutral conditions and with u(0) = 0. One can see that the profiles of |u| with the “FV free”
and “FV2” follow a wall law. The “FV1” and “FV pure” discretizations present identical
profiles that are close to the “FV Nishizawa” and Finite Difference discretizations. However,
it is the case only when K0 is replaced by Kδ in those discretizations (see the paragraph “On

3https://confluence.ecmwf.int/display/OIFS/4.4+OpenIFS%3A+Vertical+Resolution+and+
Configurations
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the value of Ku,0” below). The profile of arg(u) is significantly affected by the surface flux
scheme: this is not surprising as the Coriolis effect is not taken into account in the surface
layer for the “FV2” and “FV free” parameterizations. The differences between “FV2” and
“FV free” only come from the choice of δa: by choosing δa = z1, both profiles would have
been rigorously identical (see the paragraph “in the general case where δa ≥ z1” below).

On the value of Ku,0 According to the wall law Ku,0 should be equal to Kmol. However,
the boundary condition Ku,0ϕ0 = u2⋆eτ does not behave the same way with Finite Differences
and Finite Volumes.

• Finite Differences: Injecting the boundary condition at the first grid level gives

(∂t + if)u1/2 =
1

h1/2

(
Ku,1

u3/2 − u1/2
h1

− u2⋆eτ

)
(4.32)

The value of K0 does not intervene in the equation.

• Finite Volumes (“FV pure”, “FV1” and “FV Nishizawa”): Combining the equa-

tion (4.14) and the reconstruction (4.12) in the second cell u(z1) = S 3
2

(
−
h 3

2

2

)
the

discretisations “FV pure”, “FV1” and “FV Nishizawa” implicitly use that

(∂t + if)u(z1) =
Ku,1ϕ1 − u2⋆eτ

h1/2
+ (∂t + if)

(
ϕ1

3
+

u2⋆eτ
6Ku,0

)
h1/2 (4.33)

The (small) value of Ku,0 directly appears when we assume the parabolic profile inside
the first grid cell. As a result, u(z1) scales with 1

K0
and as it is seen in Figure 4.7

exhibits unreasonable values. To obtain physically plausible profiles, by mimicking
the relation ϕδ =

Kmol

Ku,δ
ϕ0 of the “FV free” scheme, we choose to multiply the surface

viscosity by
Ku,δ

Kmol
. As a consequence, the wall law is denied and (∂zu)(z0) is multiplied

by Kmol

Ku,δ
. Note that this problem is specific to schemes where ϕ0

Ku,0
is involved, and is

not characteristic of Finite Volume schemes.

In the general case where δa ≥ zk. Let k be such that zk ≤ δa < zk+1. The surface
layer scheme “FV free” is identical to the case k = 0, except that

• the sub-cell of average ũ and of size h̃ is [δa, zk+1]: k is added to the indices in (4.30)
and (4.31);

• αsl =
h̃

h
k+1

2

+ 1
h
k+1

2

∫ δa
zk

ln(1+ z
zu
)

ln(1+ δa
zu
)
dz;
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z0

zk+1

h̃

δa

(∂t + if)ũ− Ku,k+1ϕk+1−Ku,δϕδ

h̃
= ifuG

Ku,δϕ
n+1
δ = u2⋆eτ

u(z)− u(0) = u⋆
κ
log
(
1 + z

z⋆

)
eτ

uk+ 1
2
= 1

h
k+1

2

(
h̃ũ+

∫ δa
zk
u(z)dz

)

zk

BULK(Sn
k+ 1

2

(− h̃
2
))

Figure 4.8: Surface layer scheme “FV free” with δa ≥ zk.

• for m < k, the cell [zm, zm+1] is filled with Ku,mϕm = Ku,kϕk = u⋆
2eτ and the average

um+1/2 is computed with the integrated wall law between zm and zm+1. The subgrid
reconstruction in those cells is directly the wall law.

It is straightforward to check that for δa = z1 the “FV2” scheme is rigorously recovered.
The derivation for any δa ≥ 0 is detailed for the stratified case in Section 4.3.2. Figure 4.8
shows how the surface layer is handled in this case: the part in gray is neutralized for the
prognostic equation and is filled afterward with the help of the wall law.

4.3 Stratified case

Now that all the ideas have been presented in the neutral case, we extend the discussion to
the case of a stratified column. A stratified fluid has layers of different densities. We assume
for simplicity that the atmosphere is dry and that the density variation is proportional to
the variation of the temperature:

∂zρ ∝ −∂zθ (4.34)

The stratification is hence given by a temperature profile: if the temperature increases with
z, the column is said to be stable and the vertical mixing is reduced. This is typically the
case above sea ice or during the night. On the contrary an unstable stratification comes from
a decreasing temperature with z: it happens during daytime of diurnal cycles and enhance
the vertical mixing. Finally, if the temperature is a constant, the neutral case is recovered.

In this section, we first discuss the continuous and semi-discrete in space equations,
then extend the previous discussion on the wall law to Monin-Obukhov Similarity Theory
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(MOST). Finally, Section 4.3.3 derives the profile of viscosities depending on the Turbulent
Kinetic Energy (TKE).

4.3.1 Continuous model and Finite Volume discretization

The stratification in the column is given by the potential temperature: it will be integrated in
time together with u. The continuous equations are given in §4.3.1.1 and their discretisation
is detailed in §4.3.1.2. The stratification affects u in two ways:

• As explained in Chapter 1 the bulk routine in the stratified case also gives a friction
scale θ⋆ for the potential temperature:

u⋆, θ⋆ = BULK(θ(δa), u(δa)) (4.35)

where we omitted the BULK dependency on u(0) and on the surface temperature θs.
The bulk routine is based on equations (4.37) of §4.3.1.1.

• The TKE (detailed in §4.3.3.1) has a buoyancy term which involves the Brunt-
Väisälä frequency N2 = −g∂zρ

ρ0
. With the assumption (4.34) that ∂zρ ∝ −∂zθ we

use instead that N2 = −g∂zθ
θref

where θref = 283K.

4.3.1.1 Continuous model

The continuous equations remain the same for u (see (4.2)), except that the turbulent vis-
cosity and the friction scale u⋆ depend on the potential temperature θ, which is governed
by:

∂tθ − ∂z(Kθ∂zθ) = Fθ, z ≥ δa (4.36a)

Kθ∂zθ|z≤δa = θ⋆u⋆ = CH ||u(δa)− u(0)|| (θ(δa)− θs) , z < δa (4.36b)

The viscosities Ku, Kθ will be detailed with the discretization of the turbulent kinetic energy
in section 4.3.3. In the surface layer, Monin-Obukhov Similarity Theory (MOST) profiles
for u and θ are

||u(z)− u(0)|| = u⋆
κ

(
ln

(
1 +

z

zu

)
−ψu

(
z

LMO

))

θ(z)− θs =
θ⋆
κ

(
ln

(
1 +

z

zθ

)
−ψθ

(
z

LMO

)) (4.37)

where zθ typically depends on u⋆, Kmol and LMO = θ(δa)u2⋆
θ⋆κg

. Similarly to the neutral case, the

semi-discrete in time boundary condition is not explicit: Cn
H ||un(δa) − un(0)|| is computed

with the values at the current time step whereas the temperature variation is taken at time
tn+1: the boundary condition for temperature is

Kθ∂zθ = Cn
H ||un(δa)− un(0)||(θn+1(δa)− θn+1

s ), z < δa (4.38)
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4.3.1.2 Finite Volume discretization

The discretization of u is exactly the same as in the neutral case ((4.9) and (4.14)) and the
discretization of the potential temperature is very similar: the average potential temperature
θm+1/2 evolves with

∂tθm+1/2 −
Kθ,m+1(∂zθ)m+1 −Kθ,m(∂zθ)m

hm+1/2

= F θ,m+1/2 (4.39)

And the derivative of temperature at zm−1, zm, zm+1 solves

∂t

(
hm−1/2

6
(∂zθ)m−1 +

hm−1/2 + hm+1/2

3
(∂zθ)m +

hm+1/2

6
(∂zθ)m+1

)

−
(
Kθ,m+1

hm+1/2

(∂zθ)m+1 −
(hm−1/2 + hm+1/2)Kθ,m

hm−1/2hm+1/2

(∂zθ)m +
Kθ,m−1

hm−1/2

(∂zθ)m−1

)

= F θ,m+1/2 − F θ,m−1/2

(4.40)

Identically to the reconstruction of u(z), inside the m-th cell θ(z) = Tm− 1
2
(z − zm− 1

2
) where

(4.12) gives T by replacing u, ϕ with θ, ∂zθ. We also extend the surface flux scheme strategies
for the temperature: the ideas of those strategies remain the same (see Figure 4.4) and we
only need to introduce the bottom boundary condition for θ.

• With Finite Differences the evolution equation is solved at z 1
2
with the surface flux:

Kθ∂zθ
n+1
0︸ ︷︷ ︸

Surface flux

= CH |∆u|(θn+1
1
2

− θs), using BULK( θn1
2
, un1

2︸ ︷︷ ︸
FD values at z 1

2

) (4.41)

where CH |∆u| = CH ||un(δa)− un(0)|| = u⋆κ

ln(1+ z
zu
)−ψθ

(
z

LMO

) .

• With “FV pure” the evolution equation is solved in the whole first grid cell with the
reconstructed value θ(δa) = T1/2(0):

Kθ∂zθ
n+1
0︸ ︷︷ ︸

Surface flux

= CH |∆u|(T n+1
1/2 (0)− θs), using BULK( T n

1/2(0),Sn1/2(0)︸ ︷︷ ︸
Reconstructions at z 1

2

) (4.42)

• With “FV Nishizawa” the evolution equation is solved in the whole first grid cell and
the adapted bulk for averaged values is used:

Kθ∂zθ
n+1
0︸ ︷︷ ︸

Surface flux

= CH |∆u|(θ
n+1
1
2

− θs), using BULK( θ
n
1
2
, un1

2︸ ︷︷ ︸
Averages around z 1

2

) (4.43)
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The adapted bulk routines read

||u 1
2
− u(0)|| = u⋆

κ

(
1+

zu
δa

)(
ln

(
1 +

z

zu

)
−1

)
−Ψu

(
z1
LMO

)

θ 1
2
− θs =

θ⋆
κ

(
1+

zθ
δa

)(
ln

(
1 +

z

zθ

)
−1

)
−Ψθ

(
z1
LMO

) (4.44)

where Ψx(z) =
∫ z
0
(ψx(z

′))dz′ for x = u, θ.

• With “FV2” in the first grid cell the MOST profile for θ is assumed as in [Nishizawa
and Kitamura, 2018]. The boundary condition is the flux at the top of the surface
layer δa = z1, using the reconstructed solution at z1:

Kθ∂zθ
n+1
1︸ ︷︷ ︸

Flux at z1

= CH |∆u|
(
T n+1
3/2

(
−
h 3

2

2

)
− θs

)
, using BULK



T n
3/2

(
−
h 3

2

2

)
,Sn3/2

(
−
h 3

2

2

)

︸ ︷︷ ︸
Reconstructions at z1




(4.45)

The limitations of the strategies shown in the neutral case are the same for the temperature:
the “FV pure” and “FV Nishizawa” schemes assume that the evolution equation stands in
the surface layer and approximate a MOST profile with a quadratic spline. The value of
Kθ at z0 cannot be set to the molecular diffusivity in those cases for the same reason as the
viscosity Ku,0 in the neutral case. Moreover, the discretizations force δa to the first grid level
z 1

2
(or z1 in the case of “FV2” and “FV Nishizawa”). We now derive the stratified version

of the “FV free” surface scheme to eliminate those limitations.

4.3.2 FV free

In this §4.3.2 we follow step by step the derivation of the neutral “FV free” scheme and apply
it to this stratified case. The stratification adds no complexity: we hence present directly
the derivation directly for any δa ≥ 0. Let k such that zk ≤ δa < zk+1. As in the neutral
case, the cell [zk, zk+1] is split into two parts for the “FV free” surface flux scheme. The
first part [zk, δa] is contained in the surface layer where the temperature and wind follow

(4.37). The second part is the “sub-cell” [δa, zk+1] of size h̃, of averages ũ, θ̃ and of sub-grid
reconstructions

Sk+1/2(ξ) = ũ+
ϕk+1 + ϕδ

2
ξ +

ϕk+1 − ϕδ

2h̃

(
ξ2 − h̃2

12

)

Tk+1/2(ξ) = θ̃ +
(∂zθ)k+1 + (∂zθ)δ

2
ξ +

(∂zθ)k+1 − (∂zθ)δ

2h̃

(
ξ2 − h̃2

12

) (4.46)
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where ξ = z − (zk+1 − h̃
2
) is defined for δa < z < zk+1. The relation between uk+1/2, θk+1/2

and ũ, θ̃ is, similarly to the neutral case:

(ũ− u(0))αsl,u = uk+1/2 − u(0) + h̃

(
ϕδ
3

+
ϕk+1

6

)(
αsl,u −

h̃

hk+ 1
2

)

(
θ̃ − θs

)
αsl,θ = θk+1/2 − θs + h̃

(
(∂zθ)δ

3
+

(∂zθ)k+1

6

)(
αsl,u −

h̃

hk+ 1
2

) (4.47)

where the non-dimensional numbers αsl,u, αsl,θ depend on the stratification. For x = u, θ,

αsl,x =
h̃

hk+ 1
2

+

1
h
k+1

2

∫ δa
zk

(
ln
(
1 + z

zx

)
−ψx

(
z

LMO

))
dz

ln
(
1 + δa

zx

)
−ψx

(
δa

LMO

)

=
h̃

hk+ 1
2

+

1
h
k+1

2

[
(z + zx) ln

(
1 + z

zx

)
− z + zΨx

(
z

LMO

)]δa
zk

ln
(
1 + δa

zx

)
−ψx

(
δa

LMO

)

(4.48)

Note that, instead of ψx, we used Ψx, the averaged form of the universal profile stability

functions defined in [Nishizawa and Kitamura, 2018]. Since ln
(
1 + z

zx

)
− ψx(

z
LMO

) is non-

negative and increases with z even in strongly unstable situations, 0 < αsl,x ≤ 1 and as in

the neutral case αsl,x = 1 ⇐⇒ h̃ = hk+1/2. This lets us retrieve the “FV2” surface flux
scheme by setting the height of the surface layer to exactly z1.

Finally, equations (4.30) and (4.31) of the neutral case can be used for u and the equations
for θ are similar: the boundary condition of “FV free” is

Kθ,δ(∂zθ)δ︸ ︷︷ ︸
Flux at δa

= CH |∆u|
θk+1/2 − h̃2

hk+1/2

(
(∂zθ)k

3
+

(∂zθ)k+1

6

)
− θs

αsl,θ︸ ︷︷ ︸
Reconstruction at δa

(4.49)

and the evolution equation in the first active grid cell is

∂t

(
1

αsl,θ(t)

(
θk+ 1

2
+ h̃

(
(∂zθ)δ

3
+

(∂zθ)k+1

6

)(
αsl,θ −

h̃

hk+ 1
2

)
− (1− αsl,θ)θs

))
=

Kθ,k+1(∂zθ)k+1 −Kθ,δ(∂zθ)δ

h̃
+F θ,k+1/2

(4.50)
The prognostic equation (4.40) for ∂zθ is also adjusted for the first cell to replace hk+1/2 by

h̃.
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4.3.3 Turbulent viscosities and diffusivities

As it was explained in Chapter 1 the viscosity Ku and diffusivity Kθ follow the Monin-
Obukhov theory in the surface layer and are parameterized above the surface layer by the
Turbulent Kinetic Energy (TKE) with a one-equation closure. The objective of this section
is to derive the discretised turbulent closure:

1. The vertical profiles of u and θ depend strongly on the discretisation of the Turbulent
Kinetic Energy and of the mixing lengths. Those discretisations are detailed in §4.3.3.1.

2. To obtain smooth solutions, the viscosity and the diffusivity must also be smooth.
At the top of the surface layer, the parameterization of Ku, Kθ with the TKE should
follow Monin-Obukhov similarity theory: the link is done through the mixing lengths
in §4.3.3.2.

4.3.3.1 Finite Volume discretization of TKE equation

The Turbulent Kinetic Energy (TKE) evolves with the equation

∂te = ∂z (Ke∂ze)︸ ︷︷ ︸
diffusion

+Ku||∂zu||2︸ ︷︷ ︸
shear

− KθN
2

︸ ︷︷ ︸
buoyancy

− cϵ
e3/2

lϵ(z)︸ ︷︷ ︸
dissipation

(4.51)

The turbulent viscosities Ku, Kθ and Ke are computed with constants Cm, Cs, Ce such that
(Ku, Kθ, Ke) = (Cm, Csϕz(z), Ce)lm(z)

√
e(z). The value ϕz is proportional to the inverse of

the so-called turbulent Prandtl number and is bounded by ϕmax
z = 2.2 [Lemarié et al., 2021].

ϕz =
1

1 + max
(
−0.5455, 0.143× lmlϵN2

e

) (4.52)

Mixing lengths The mixing lengths lm(z) = min (lup(z), ldown(z)) and lϵ(z) =√
lup(z)ldown(z) (introduced in [Bougeault and Lacarrere, 1989]) are obtained with the

method named l⋆D80 described in [Lemarié et al., 2021] that we explain here:

1. Define

l⋆D80 =
2
√
e

c0||∂zu||+
√
c20||∂zu||2 + 2N2

, with c0 = 0.2 (4.53)

2. initialize lup and ldown to l⋆D80;

3. limit lup by the distance to the top and to a strongly stratified area of the air column:
this is done by ensuring −∂zlup < 1 and lup(ztop) ≈ 0.
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Figure 4.9: Typical vertical profiles of the mixing lengths (left) reported with the corresponding
TKE (right). It is seen that ∂zlup is limited by −1 for z ∈ (50 m, 150 m) whereas
∂zldown is limited by 1 for z < 100 m. The surface flux scheme used is “FV free”
which is why the profiles start at δa = 10 m.

4. limit ldown by the distance to the surface and to a strongly stratified area of the air col-
umn: this is done by ensuring ∂zldown < 1 and an appropriate surface layer value. The
value here is not zero, so that the surface layer links correctly with the computational
domain.

Steps 3 and 4 are implemented by applying sequentially from top (for lup) and bottom (for
ldown):

lup(zm) = min
(
l⋆D80(zm), lup(zm+1) + hm+ 1

2

)

ldown(zm) = min
(
l⋆D80(zm), ldown(zm−1) + hm− 1

2

) (4.54)

Figure 4.9 shows vertical profiles of lup, ldown, lm, l
⋆
D80. The value of ldown in the surface

layer is detailed in §4.3.3.2 to link the Monin-Obukhov similarity theory to the turbulent
parameterization based on the TKE.

Turbulent Kinetic Energy in the computational domain The discretisation of the
turbulent kinetic energy requires some care. Instead of choosing the Finite Volume scheme
used for u and θ, we prefer a Finite Difference method which has a positivity preserving
property. The energy e and the lengths scales lm, lϵ are evaluated at the interfaces zm
between the cells:

(
cϵ
√
enm
lϵ

+ ∂t

)
em =

(Ke∂ze)m+1/2 − (Ke∂ze)m−1/2

zm+1/2 − zm−1/2

+Ku||∂zu||2 −KθN
2 (4.55)

The discretisation of the dissipation term cϵ
√
enme

n+1
m

lϵ
ensures the preservation of the positivity

of e, as long asKu||∂zu||2−KθN
2 is positive. Indeed, ignoring the diffusion term a backward-
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Euler discretisation of (4.55) gives

en+1 =
en + (Ku||∂zu||2 −KθN

2)

1 + ∆t cϵ
√
en

lϵ

(4.56)

which is non-negative if en is non-negative. In the cells where the buoyancy is stronger
than the shear, KθN

2 is multiplied by en+1

en
to keep the positivity preserving property. This

multiplication is known as the “Patankar’s trick” [Lemarié et al., 2021].

Boundary conditions In the surface layer, because of the strong mixing, e is quasi-
stationary (∂te = 0). The energy is given by an equilibrium between shear, buoyancy and
dissipation:

e(z < δa) =

(
lϵ
cϵ
(Ku||∂zu||2 −KθN

2)

)2/3

(4.57)

where Ku||∂zu||2 and KθN
2 are given by MOST. A homogeneous Neumann boundary con-

dition is used at the top: ∂ze(ztop) = 0

4.3.3.2 Matching viscosities at the surface layer

In order to obtain a regular solution from the “FV free” discretization, we derive here the
constraints on mixing length and on TKE inside the surface layer. A sub-grid model that
suits both surface layer and free turbulence was proposed by [Redelsperger et al., 2001],
physically justified by measurements. In the neutral case, this sub-grid model leads to linear
mixing lengths lm, lϵ in the surface layer; with stratified fluids, the formulation is more
sophisticated and depends strongly on the Obukhov length. The link between the surface
layer and the regions further away from the surface is ensured with a linear combination
between the two regimes.

Instead of following the latter method, we aim to keep the mixing lengths (4.53) of the
computational domain and to set a particular boundary condition for ldown to satisfy the
Monin-Obukhov Similarity Theory. Assuming that

Km = Cmlm
√
e and Kθ = Cslmϕz

√
e (4.58)

inside the SL, we have for z ≤ δa

1. Monin-Obukhov viscosity profiles in the surface layer:

Km = κu⋆
z + zu

ϕm(z/LMO)
and Kθ = κu⋆

z + zu
ϕh(z/LMO)

(4.59)

(4.58) together with (4.59) put a constraint on ϕz in the surface layer: ϕz =
Cmϕm(z/LMO)
Csϕh(z/LMO)

∀z ≤ δa.
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2. Quasi-equilibrium of the TKE equation:

cϵ
e3/2

lϵ
= Km||∂zu||2 −

g

θref
Kθ∂zθ (4.60)

We assume that lϵ in (4.60) is taken at time index n, so that the energy can be integrated
in time with a proper boundary condition before computing the mixing length. The charac-
teristic length lup (resp. ldown) indicates how much the turbulent mixing is acting upwards
(resp. downward). In the surface layer, it is hence natural to follow the procedure (4.53)
for lup, using the MOST profiles for the shear and buoyancy. We derive the surface value of
ldown to link Monin-Obukhov Similarity Theory with the turbulent closure used here.

Rewriting (4.60) with MOST and lup, ldown gives:

e = (lupldown)
1
3

(
u⋆
cϵ

(
u2⋆
ϕm(z/LMO)

κ(z + zu)
− g

θref
θ⋆

)) 2
3

(4.61)

which is the bottom boundary condition of the TKE (4.57). Now, (4.59) gives

min(l2down, l
2
up) =

1

e

(
κu⋆
Cm

z + zu
ϕm(z/LMO)

)2

(4.62)

ldown is limited by the distance to the bottom only in the free-turbulence zone. In the SL, it
is given by (4.62) so that (4.59) is verified. We inject (4.61) into the previous equation and
get 




l
7/3
down = 1

l
1/3
up

u
4/3
⋆

(
κ

Cm

z+zu
ϕm(z/LMO)

)2

(
u2⋆

ϕm(z/LMO)

cϵκ(z+zu)
− g

θrefcϵ
θ⋆

)2/3 if ldown < lup

l
1/3
down = 1

l
7/3
up

u
4/3
⋆

(
κ

Cm

z+zu
ϕm(z/LMO)

)2

(
u2⋆

ϕm(z/LMO)

cϵκ(z+zu)
− g

θrefcϵ
θ⋆

)2/3 otherwise

(4.63)

It is actually sufficient to use (4.62) with the assumption ldown < lup to compute ldown

explicitly. It also guarantees that the MOST viscosity and the MOST diffusivity numerically
scale with lm

√
e. However, using (4.62) with the surface condition for the TKE (4.57)

amounts to solving iteratively (4.61- 4.62); using (4.63) directly solves the system (4.61-
4.62).

4.4 Consistency study

In this section, we investigate the consistency of the discretisation depending on the strategy
used to treat the surface layer. In particular, a special attention is paid to the effect of
changing δa. Let δ1,δ2 two different heights of surface layer such that δ1 < δ2; let u1, u2 be
solutions of (4.2) using respectively δ1, δ2 for δa. The main direct changes between u1 and
u2 are:
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• the Coriolis effect and the large-scale forcing are taken into account in [δ1, δ2] only by
u1;

• the viscosity Ku(z) for z ∈ [δ1, δ2] is forced by the wall law to compute u2 and not to
compute u1.

There are also indirect effects due to the non-linearity of the problem:

• If the bulk algorithm is well designed it does not need the very top of the surface layer.
Any height z < δa within the wall law can be used to obtain the friction scales u⋆, θ⋆:
changing δa does not directly change the friction scales. However, the changes between
u1 and u2 mentioned above indirectly change the output of the bulk algorithm. The
friction scales u⋆,1 and u⋆,2 are hence different.

4.4.1 Study of the consistency: neutral case

Figure 4.10 shows three vertical profiles of u obtained with δa = 5, 10 and 20 m. As expected,
the angle Arg(u) is constant in the surface layer because the Coriolis effect is not taken into
account: changing δa has an effect on the orientation of the wind. Moreover, the vertical
profile of ||u|| above the surface layer does not follow the wall law. Consequently, the profile
of ||u|| depends strongly on the choice of δa.
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Figure 4.10: Typical profiles of ||u|| and Arg(u) for several choices of δa, obtained with the “FV
free” discretisation. Notice the changes of horizontal and vertical scales between the
bottom and top panels.

4.4.1.1 Analytical study of the sensitivity to δa

In this subsection we study the sensitivity to δa of the continuous solution of (4.2). We will
assume that the viscosity Ku and the roughness length zu are the same for both u1 and u2.
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In Figure 4.10 the value of zu for δa = 5 m, 10 m, 20 m is respectively zu = 3.8 ×
10−5 m, 3.8×10−5 m and 3.6×10−5 m. It seems reasonable to assume that zu do not depend
on δa for this analytical study of the sensitivity to δa.

First, note that inside the surface layer for u2, since u2(z) = u⋆
κ
ln
(
1 + z

zu

)
u2(δ2)

||u2(δ2)|| , as-

suming ||u2(z)|| follows the same wall low (it only works when the problem is continuous in
time), we have:

(∂t + if)u2(z) =
ln
(
1 + z

zu

)

ln
(
1 + δ2

zu

)(∂t + if)u2(δ2), ∀z ≤ δ2 (4.64)

Let us assume that K∂zu2 is continuously differentiable at δ2; then ∂z(K∂zu2) = 0 in all the
interval (0, δ2) and the evolution equation of u2 in (δ1, δ2) is

(∂t + if)u2(z) =
ln
(
1 + z

zu

)

ln
(
1 + δ2

zu

)ifuG, ∀z ∈ (δ1, δ2) (4.65)

The difference between u1 and u2 is governed by the difference of treatment of this interval:
subtracting the two evolution equations gives

(∂t + if)(u2 − u1) =



ln
(
1 + z

zu

)

ln
(
1 + δ2

zu

) − 1


 ifuG − ∂z(K∂zu1), ∀z ∈ (δ1, δ2) (4.66)

We see in the right hand side of the latter equation the two items of the beginning of the
section: the large-scale forcing with the Coriolis effect, and the diffusion term of u1 which is
actually ∂z(K∂zu1) = ∂z(K∂zu1 −K∂zu2)

Let w = u2 − u1. If we assume that K is the viscosity for both u2 and u1 then





(∂t + if)w = ∂z(K∂zw), ∀z > δ2

(∂t + if)w = ∂z(K∂zw) +

(
ln(1+ z

zu
)

ln(1+ δ2
zu
)
− 1

)
ifuG, ∀z ∈ (δ1, δ2)

K∂zw = κ

ln(1+ δ1
zu
)
(u⋆,2u2(δ1)− u⋆,1u1(δ1)) , ∀z ≤ δ1

(4.67)

Apart from the bulk sensitivity in the surface condition, the difference comes hence from the

forcing

(
ln(1+ z

zu
)

ln(1+ δ2
zu
)
− 1

)
ifuG. This forcing is more important when δ

zu
is small. As it can be

seen on Figure 4.10 the effect of changing δa is not limited to the surface: the differences
between the profiles are seen up to 150 meters.
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Figure 4.11: The “High resolution” has two additional grid levels between each “Low resolution”
levels.

4.4.1.2 Study of the consistency: neutral case

We now compare the profiles of a high resolution simulation with the profiles of a simulation
with lower resolution. To create the high resolution grid, two additional grid levels are
added between each grid levels (see Figure 4.11). After the simulation (∆t = 30 s, one
day of integration in time) the high resolution (“HR”) simulation is projected onto the

low resolution (“LR”) grid and the relative difference ||uHR(z)−uLR(z)||
||uLR(z)|| is computed. For each

surface flux scheme, Figure 4.12 shows the profile of ||u||, the relative u difference and the
relative u⋆ difference between low and high resolutions. One can see that the difference
between low and high resolution of the “FV free” scheme is small in low altitude. Two
factors reduce the difference between low and high resolution for “FV free”:

• δa = zLR1
2

is the same for both low and high resolution whereas for the other surface

flux schemes the continuous equations changes with δa.

• In the relative u⋆ difference, one can see that the initial relative difference for u⋆ is
already smaller than with the other schemes. This is a consequence of the imposed
wall law: at initialization, there is already a logarithm profile in the surface layer.

Figure 4.12 shows that the Finite Difference discretisation is not very sensitive to the increase
of the space step. We show in §4.4.1.3 that the boundary condition is robust with regard to
δa.

4.4.1.3 Semi-Discrete sensitivity to δa (Finite Differences)

We put aside the sensitivity of the bulk procedure by assuming as in §4.4.1.1 that zu is a
constant. The approach used in Finite Difference schemes consists in assuming δa = z1/2 and

to use the flux at z0 in the integration in time K0ϕ0 = u2⋆
u(δa)

||u(δa)|| (we assume that u(0) = 0
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Figure 4.12: Evolution of u⋆, vertical profiles of ||u|| and relative difference of u between low and
high resolutions. Above 200m, the profiles are those of the initial condition. In all
the numerical experiments the bulk routine is based on zu = zθ =

Ku,mol

κu⋆
.

for simplicity). We generalize the usual approach with δa = z1/2 − ϵ with ϵ <
h 1

2

2
. The value

u(δa) can be approximated by u1/2 − (∂zu)(δa)ϵ. The implementation of such a boundary
condition would be

K0ϕ0 = κ2||u1/2 − (∂zu)(δa)ϵ||
u1/2 − (∂zu)(δa)ϵ

ln
(
1 + δa

zu

)2 (4.68)

and it becomes convenient to compute the difference between δa = z1/2 and δ′a = z1/2 − ϵ.

Indeed, |u − (∂zu)ϵ| = |u| − ϵR(u∂zu)
|u| + O(ϵ2) so |u − (∂zu)ϵ|(u − (∂zu)ϵ) = |u|u −

ϵ
(
uR(u∂zu)

|u| + |u|∂zu
)
+O(ϵ2). Using the wall law ∂zu = u(δa)

(δa+zu) ln(1+ δa
zu
)
we obtain

|u− (∂zu)ϵ|(u− (∂zu)ϵ)− |u|u = −ϵ


 2|u1/2|u1/2
(δa + zu) ln

(
1 + δa

zu

)


+O(ϵ2) (4.69)

Combining with the derivative of κ2

ln(1+ δa
zu
)
, we find the derivative of the right-hand side of

(4.68) with respect to δa to be equal to zero. In conclusion, if zu does not depend on u and
if the evolution equation is integrated in time at z 1

2
, then for the Finite Difference scheme

∂δa(K0ϕ0) = 0 (4.70)
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Figure 4.13: Evolution of u⋆ and vertical profiles of ||u|| and arg(u) for several surface flux
schemes. Above 200m, the profiles are those of the initial condition.

This result is expected since in the boundary condition K0ϕ0 = u2⋆eτ the orientation eτ is not
changed by the use of the wall law for ∂zu and the friction scale u⋆ is not affected because
u(z 1

2
− ϵ) is given by the wall law.

4.4.2 Study of the consistency: stable case

We study numerically in a stable case the consistency of the discretisations: how does the
change of the space step affect the solution of the discrete equations ?

Description of the test case We intend to obtain a strongly stratified profile: the tem-
perature is hence increasing with the height at the initialization and the surface temperature
decreases with time. The initial temperature is 265 K in the first 100 meters of the atmo-
sphere and then gains 1 degree every 100 meters; the surface temperature starts at 265 K
and loses 1 degree every ten hours. The geostrophic wind is uG = 8 m.s−1, the time step
is ∆t = 30 s. The profiles obtained after 72 hours of integration are shown in Figure 4.13.
It is seen that the temperature and wind profiles are all similar. Two simulations are done:
the first one (“Low resolution”) uses 15 grid points in the 400m column and the second one
(“High resolution”) uses 45 grid points (see Figure 4.11) and is then projected onto the first
grid for the comparison.

Results The differences between the two simulations are shown in Figure 4.14. The differ-
ence between the high resolution and the low resolution does not significantly change with
the surface flux schemes. The difference in u⋆ is especially high for the “FV2” scheme. Note
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Figure 4.14: Differences in u⋆, ||u|| and arg(u) between a high resolution and a low resolution of
the surface flux schemes presented in a stable stratification.

that the initialization for FV free and FV2 is particular: to ensure the continuity of the
solution, the initial profile is already adjusted for the MO theory. This is why the relative u⋆
difference is zero at initialization whereas it is very high for the other surface flux schemes.
The “FV2” scheme is not very consistent because it follows the continuous model with δa
changing together with the space step. The Finite Difference or the “FV pure” methods
suffer less from this problem because even if δa changes, it is assumed that the evolution
equation is integrated inside the surface layer. [Maronga et al., 2020] also find that the
sensitivity of their LES model to the grid spacing is “more likely related to under-resolved
near-surface gradients and turbulent mixing at the boundary-layer top, to the [sub-grid scale]
model formulation, and/or to numerical issues, and not to deficiencies due to the use of
improper surface boundary conditions”.

4.4.3 Study of the consistency: unstable case

Figure 4.15 shows the differences found between a high resolution simulation and a low
resolution simulation in an unstable situation.

Description of the test case To design a test case with an unstable stratification the
sea surface temperature is forced to follow a daily oscillation between 279 K and 281 K. The
initial profiles of temperature and wind are set to constant values of respectively 280 K and
8 m.s−1. As in the stable case the geostrophic wind is uG = 8 m.s−1 and the time step is
∆t = 30 s. The “low resolution” is composed of 50 grid levels of 10 m each; 15 additional
stretched levels between 500 m and 1080 m make sure that the upper boundary condition
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Figure 4.15: Differences (bottom) in u⋆, t⋆, ||u|| and θ between a high resolution and a low res-
olution of the surface flux schemes presented in an unstable stratification. The
corresponding profiles with the low resolution simulations are shown in the top pan-
els.
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Figure 4.16: Schwarz algorithm applied to ocean-atmosphere coupling

is not involved in the results. The “high resolution” divides every space levels into 3 space
levels of equal size.

Results Figure 4.15 shows that the “FV2” scheme is also less consistent in the unstable
case. This time in the first 200 meters the scheme “FV free” seems a lot more robust than
the other schemes. However, above this height the differences between the high resolution
and the low resolution simulations oscillate and there is no clear conclusion that can be
made. As in the stable case, the schemes that assume an evolution equation inside the
surface layer are not very sensitive to the choice of the height of the surface layer. The
main conclusion is hence that if Monin-Obukhov profiles are enforced in the surface
layer the importance of the choice of δa increases. In both cases, the different profiles
are very similar. A ocean-atmosphere coupled case is presented in Section 4.4.4, where the
surface scheme may be of a greater importance.

4.4.4 Study of the consistency: coupled case

We now introduce an oceanic column model below the atmospheric model. Figure 4.17 shows
the differences found between a high resolution simulation and a low resolution simulation
in an unstable situation of this coupled system.

Description of the test case In this test case everything is identical to the unstable
case except for the sea surface temperature θs and the surface current u(0). Instead of
prescribing these values directly, a Schwarz algorithm is used: the first iteration begins with
the atmosphere and corresponds to the unstable test case. The atmosphere is integrated
in time and sends its turbulent fluxes u2⋆ and u⋆θ⋆ to the ocean model, which returns the
surface values u(0), θs. This process is iterated (see Figure 4.16) and Figure 4.17 shows the
state of the atmospheric model after 3 iterations.
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Figure 4.17: Same as Figure 4.15 but the sea surface temperature θs and surface currents u(0)
are obtained with a coupled ocean column model.
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4.5. Partial conclusion

The ocean model will be described in Chapter 5 (Finite Differences, δo = 0). It is forced
with radiative fluxes to model a diurnal cycle:

• a shortwave (positive downward) heat flux

Qsw = max(0, Qmax cos(2πd)) (4.71)

penetrates in the first few levels of the ocean (d is the time in days and Qmax =
500W.m−2);

• a longwave (positive downward) heat flux Qlw = −Qmax

π
is applied at the surface. Its

value corresponds to the daily-averaged Qsw.

Results Figure 4.17 shows in its top panels u⋆, θ⋆ and the vertical profiles of ||u||, θ in the
atmosphere after 3 Schwarz iterations with the ocean model. First, note that the oscillations
of u⋆ and θ⋆ are of a smaller amplitude than in the unstable experiment. Then, in the
bottom panel, one can see that the difference in u⋆ and u between high and low resolutions
when using the “FV free” scheme is smaller than with the other schemes. Unlike the previous
cases, the “FV2” scheme do not show a lot of differences between its high and low resolutions.
Finally, the dependency of t⋆ and θ on the resolution was attenuated by the coupling with
the ocean column.

4.5 Partial conclusion

In fluid dynamics, having a rough surface requires to exclude from the computational domain
a surface layer. A vast majority of models use Monin-Obukhov Similarity Theory (MOST)
to avoid solving the small scales of motion inside the surface layer. We compared several
strategies for the treatment of the surface layer and proposed one (“FV free”) with two main
assets:

• one can choose freely the height δa of the surface layer;

• MOST is enforced in the surface layer which avoids a contradiction between the evo-
lution equation and MOST (that is quasi-stationary).

We compared the strategies by verifying that a high-resolution discretisation would be close
to the low-resolution one. The strategy “FV free” shows less differences between high- and
low-resolution simulations than the other strategies, especially for the wind speed and in
unstable situations.

In the comparison, we used a Finite Volume method based on spline reconstruction. This
method encourages us to be clean in the derivation of the discretisation: using the wall law
for the surface viscosity together with the quadratic spline reconstruction in the surface layer
led to an unphysical behaviour. On the other hand, this method also allows to choose the
reconstruction to follow the wall law.
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In this Chapter, we focus on the ocean part of the coupled turbulent Ekman problem
(defined in Chapter 1) and in particular to the oceanic surface layer. [Pelletier et al., 2021]
introduced a two-sided bulk method which does not only take as input the “relative” (w.r.t.
surface currents) wind but also takes into account the depth δo at which the surface current
is evaluated. This two-sided bulk is detailed in Section 5.1. We call the region between z = 0

0

z

δa

(∂t + if)u− ∂z(Ku∂zu) = ifuG

Ku∂zu = u2⋆eτ

(∂t + if)u− ∂z(Ku∂zu) = 0

0

z

δa

(∂t + if)u− ∂z(Ku∂zu) = ifuG

Ku∂zu = u2⋆eτ

δo
(∂t + if)u− ∂z(Ku∂zu) = 0

Ku∂zu = ρa
ρo
u2⋆eτ

Figure 5.1: one-sided surface layer (left) and two-sided surface layer (right).
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Figure 5.2: Comparison between two-sided bulk (δo = z− 1
2
) and one-sided bulk (δo = 0) in a

coupled situation after one day of integration. The parameters of this experiment are
the same as in Section 4.4.4.

and z = δo the Oceanic Surface Layer (OSL). The two-sided bulk method relies on MOST
profiles in the OSL. The idea of the previous chapter is used again to derive a discretization
based on spline reconstruction in Section 5.2. In all this chapter, the atmosphere surface
flux scheme chosen is “FV free”.

5.1 A two-sided bulk for the ocean-atmosphere inter-

face

As it is explained in [Pelletier et al., 2021], it is now recognized that the wind-stress depends
strongly on surface currents. However in actual coupled ocean-atmosphere simulation, the
surface currents are evaluated below the surface at z = δo: this amounts to assume that the
currents are constant in the oceanic surface layer.

The new idea introduced by [Pelletier et al., 2021] is to consider that there is a Monin-
Obukhov boundary layer below the ocean surface when calculating friction scales with the
BULK algorithm. The method of assuming a boundary layer on either side of the interface
is called two-sided bulk (see Figure 5.1).

Figure 5.2 shows the difference between the use of a two-sided bulk and a one-sided bulk
in a coupled situation. The atmosphere model “FV free” (described in Chapter 4) is coupled
with a Finite Difference discretization of the ocean column. This corresponds to comparing
δo < 0 and δo = 0. We find that using a surface layer in the ocean changes the sea surface
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temperature and leads to a difference in temperature in the atmosphere column.
By applying bulk methods on the outputs of realistic models, [Pelletier et al., 2021] found

that the near-surface velocity profiles are more affected by the use of a two-sided bulk than
the surface temperature. We find different results here with idealized models but including
the two-sided bulk method inside the coupling. Other experiments are needed to evaluate
the consequences of using a two-sided bulk method.

5.2 Oceanic surface layer

This section focuses on the discretization of an ocean column and its surface layer. Indeed,
we consider from now on that the bulk formulation takes into account the surface layer of
the ocean and that this surface layer is based on

∀z ∈ [δo, 0],

{
|Ku∂zu| = ρa

ρo
u2⋆

Kθ∂zθ = ρac
p
a

ρoc
p
o
θ⋆u⋆ − Qlw+Qsw(z)

ρoc
p
o

(5.1)

where cpa, c
p
o are the heat capacities of air and water and Qlw, Qsw are radiative fluxes defined

in Section 5.2.2.
As it was discussed in Chapter 4, it can be important to take into account the hypotheses

of the surface layer within the discretization. The first part of this section is dedicated to
the extention of the surface flux scheme of Chapter 4 for the oceanic surface layer.

The second part of this section focuses on a specificity of the oceanic surface layer: the
radiative fluxes. The latter penetrate in the first few meters of the ocean, creating an external
forcing which affects the surface layer. In particular, the flux ⟨w′θ′⟩ = −Kθ∂zθ is no more
constant along the vertical when considering the radiative fluxes.

As a first step towards a discretization including the radiative fluxes, we will derive
in Section 5.2.2 a discretization based on an approximative reconstruction of the potential
temperature.

We first (§5.2.1) specify the differences between the ocean and atmosphere models in use,
then focus on the radiative fluxes in §5.2.2. Finally, Section 5.2.3 presents the sensitivity to
the discretization obtained of the surface layer in a forced setting and in a coupled setting.

5.2.1 Differences with the atmosphere and derivation of a sym-
metric surface flux scheme

In this section, the numerical model of a stratified column of ocean is described. The
objective is to obtain a model similar to the atmosphere while including the specificity of
the ocean. In particular, the main changes compared to the atmosphere model are:

• the density which mainly affects the exchanges between ocean and atmosphere;
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• the universal stability functions which are taken in [Large et al., 2019];

• the vertical coordinate z is negative;

• the time and space scales (the motion in the ocean is slower and smaller space steps
are used with larger time steps).

5.2.1.1 The Ocean model

We describe here the continuous model in use for the ocean. The equations for momentum,
potential temperature and turbulent kinetic energy in the inner domains are similar to those
of the atmosphere except that the geostrophic momentum is not included in the ocean:

(∂t + if)u− ∂z(Ku∂zu) = 0, z ≤ δo

∂tθ − ∂z(∂zKθθ) = Fθ, z ≤ δo

∂te = ∂z (Ke∂ze)︸ ︷︷ ︸
diffusion

+Ku||∂zu||2︸ ︷︷ ︸
shear

− KθN
2

︸ ︷︷ ︸
buoyancy

− cϵ
e3/2

lϵ(z)︸ ︷︷ ︸
dissipation

(5.2)

Fθ = −∂zQsw

ρoCp
is a forcing corresponding to the penetration of a shortwave radiadive flux

coming from the sun in a diurnal cycle. As in the atmospheric case the buoyancy N2 is
given by a linear equation of state N2 = gα∂zθ. The mixing lengths follow the description
in 4.3.3 except that lup and ldown are swapped and the shear is neglected in (4.53).

Initialization and boundary conditions. At initialization, the TKE is set to e = emin,
the temperature is set to a constant θ = 280 K and the initial momentum is set to u =
0 m.s−1. At the bottom boundary, ∂zu = 0, ∂zθ = 0 and e = emin.

5.2.1.2 The surface boundary condition

We derive here the discretization “FV free” applied to the oceanic column model. Let k be
the space index such that zk−1 < δo ≤ zk; in this chapter, we will assume that δo is inside
the first cell under the surface as it was done in the beginning of Chapter 4. The index k
hence corresponds to the surface index zk = 0. we note ũ, θ̃ the averaged variables over the
interval (zk−1, δo). In the case of the atmosphere column, equation (4.47) gives the relation
between the averaged variables u, θ over the volume (zk−1, zk). The same relation can be
written here:

αo,uũ = uk−1/2 − h̃

(
ϕδ
3

+
ϕk−1

6

)(
αo,u −

h̃

hk−1/2

)
− (1− αo,u)u(0)

αo,θθ̃ = θk−1/2 − h̃

(
(∂zθ)δ

3
+

(∂zθ)k−1

6

)(
αo,θ −

h̃

hk−1/2

)
− (1− αo,θ)θs

(5.3)
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with for x = u, θ:

αo,x =
h̃

hk−1/2

+

1
hk−1/2

∫ zk
δo
x(0)− x(z)dz

x(0)− x(δo)
(5.4)

Appendix 5.A details the derivation of the explicit formula of αo with the oceanic universal
stability functions. Finally, the scheme at the first grid level above the surface layer is:

(∂t + if)ũ =
Ku,δoϕδo −Ku,k−1ϕk−1

h̃
(5.5)

∂tθ̃ =
Kθ,δo(∂zθ)δo −Kθ,k−1(∂zθ)k−1

h̃
+ F̃θ (5.6)

where for x = u, θ:

x̃ =
1

αo,x(t)

(
xk−1/2 − h̃(

(∂zx)δo
3

+
(∂zx)k−1

6
)

(
αo,x −

h̃

hk−1/2

)
− (1− αo,x)x(0)

)
(5.7)

In the surface layer, the hypothesis that the potential temperature is quasi-stationary gives
that ∀z ∈ [δo, 0], ∂z (Kθ∂zθ) = ∂zQsw

ρoCp
. The scheme uses as boundary conditions at the

surface layer:

Ku,δoϕδo =
ρa
ρo
u2⋆eτ

Kθ,δo(∂zθ)δo =
ρac

p
a

ρoc
p
o
θ⋆u⋆ −

Qlw +Qsw(δo)

ρoc
p
o

(5.8)

The surface flux scheme is summarized in Figure 5.3. As it will be explained in Section 5.2.2
this surface flux scheme would require an integration of the radiative flux and we will instead
use an evolution equation for θ together with an approximated reconstruction.

5.2.2 Radiative fluxes, another surface flux scheme

We note Qsw and Qlw the shortwave and longwave (positive downward) radiative fluxes. To
include those fluxes in the bulk formula, [Pelletier et al., 2021] introduced a variable θrad⋆
that is similar to a friction scale but depends on z:

θrad⋆ (z) = θ⋆ −
Qsw(z) +Qlw

u⋆ρac
p
a

(5.9)

This variable is used instead of θ⋆ in the ocean part of the two-sided bulk procedure to include
the radiative fluxes. To be fully consistent between the computational domain and the
oceanic surface layer, the boundary condition for the temperature should take into account
the radiative fluxes: in (5.8) the flux Kθ∂zθ is exactly equal to ρac

p
a

ρoc
p
o
θrad⋆ (δo)u⋆.
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Figure 5.3: Surface layer scheme “FV free” in the ocean model
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The reconstruction of θ requires an vertical integration of a combination of Qsw and the
stability functions of MOST. The integral involves a special functions (the exponential inte-
gral) and it would need to be integrated a second time for the Finite Volume representation.
These difficulties are left for future work.

Instead, as an intermediate step to avoid the double integration of Qsw in the Finite
Volume discretization, we use an evolution equation inside the surface layer despite the
contradiction with the quasi-stationarity. This intermediate discretization features a different
reconstruction than outside the surface layer: it cannot be fully coherent with the surface
layer hypotheses because of the quasi-stationarity but it might be more adapted than the
quadratic spline reconstruction used outside the surface layer.

We neglect the molecular sub-layer and integrate between δo and 0: the flux at z = 0 is
Kθ∂zθ =

QH−Qlw

ρoc
p
o

where QH = θ⋆u⋆ρac
p
a

hosl∂tθosl =
QH −Qlw

ρoc
p
o

− Kθ∂zθ|δo − hosl

∫ 0

δo

∂zQsw

ρoc
p
o
dz (5.10)

where hosl = |δo| is the size of the surface layer and θosl is the average potential temperature
in the surface layer.

Approximate reconstruction of θ(z)

We will use the following reconstruction of θ inside the SL (taken from [Zeng and Beljaars,
2005] where the molecular surface layer was neglected to simplify the expressions):

θ(z) = θs −
(
z

δo

)ν
(θs − θδo) (5.11)

where ν is a constant parameter that can be set to 1 to recover a linear reconstruction of
θ(z). [Zeng and Beljaars, 2005] choose ν = 0.3 and argue that the choice of ν is linked to the
size of the molecular sub-layer. We formulate the reconstruction in terms of θosl and ∂zθ|δo :

θosl =
1

ν + 1
(θδo + νθs), ∂zθ|δo =

ν

hosl
(θs − θδo) (5.12)

We get that the surface temperature is θs = θosl+
hosl

ν(ν+1)
∂zθ and the difference of temperature

between the surface and the bottom of the surface layer is θs − θδo =
hosl
ν
∂zθ:

θ(z) = θosl +
hosl
ν
∂zθδo

(
1

ν + 1
−
(
z

δo

)ν)
(5.13)

Remark It would be possible to consider that θosl is the average in an interval (δo, zk) with
zk ̸= 0. However the radiative forcing would affect each individual cell inside the surface
layer, leading to a contradiction with the simple reconstruction (5.11) of the surface layer.
We instead assume here that |δo| < |zk−1| and zk = 0.
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Link with the quadratic spline

Let us assume now that θ(z) is a quadratic spline between z−1 and δo. Using the continuity
at z = δo and Chasles’ relation, we link the surface layer profile with the spline:

θosl −
hosl
ν + 1

∂zθ|δo︸ ︷︷ ︸
θ(δ+o )

= θ̃ +
h̃

3
∂zθ|δo +

h̃

6
∂zθ|z−1︸ ︷︷ ︸

θ(δ−o )

, h−1/2θ = hoslθosl + h̃θ̃︸ ︷︷ ︸
∫ 0
z−1

θ(z)dz

(5.14)

The reconstruction for |z| < |δo| (inside the surface layer) is hence

θ(z) = θ− 1
2
+

(
hoslh̃

−z−1(ν + 1)
+

h̃2

−3z−1

+
hosl
ν

(
1

ν + 1
+

(
z

hosl

)ν))
∂zθδo +

(
h̃2

−6z−1

)
∂zθ−1

(5.15)
for |δo| < |z| < |z−1| (in the quadratic region) we have

θ(z) = θ̃ +

(
z − δo +

(z − δo)
2

2h̃
+
h̃

3

)
∂zθδo +

(
h̃2 − 3(z − δo)

2

6h̃

)
∂zθ−1 (5.16)

where θ̃ is computed with

θ̃ = θ−1/2 −
δo
z−1

(
hosl
ν + 1

+
h̃

3

)
∂zθδo −

h̃δo
6z−1

∂zθ−1 (5.17)

Now that the reconstruction in all the first cell is known, the only thing left to do is to derive
the evolution equations to integrate in time the potential temperature.

The discretization

The continuity equation at z−1 uses h̃ as the space step:

θ̃ − h̃

3
∂zθ−1 −

h̃

6
∂zθδo = θ−3/2 +

h̃

3
∂zθ−1 +

h̃

6
∂zθ−2 (5.18)

The evolution equation of the first volume is:

h− 1
2
∂tθ− 1

2
=
Q−Qlw

ρoc
p
o

−Kθ,−1∂zθ−1 − h− 1
2

∫ 0

z−1

∂zQsw

ρoc
p
o
dz (5.19)

We need a last equation to close the system. Starting from (5.17), we use the evolution

equation h̃∂tθ̃Kθ∂zθδo −Kθ∂zθ−1 − h̃
∫ δo
z−1

∂zQsw

ρoc
p
o
dz to obtain

∂t

(
h̃θ−1/2 −

δo
z−1

(
h̃hosl
ν + 1

+
h̃2

3

)
∂zθδo −

h̃2δo
6z−1

∂zθ−1

)
= Kθ∂zθδo −Kθ∂zθ−1− h̃

∫ δo

z−1

∂zQsw

ρoc
p
o
dz

(5.20)
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Note that the reconstruction we are using is not differentiable in z = 0. If greater regularity
is needed, it is possible to link the reconstruction with a proper modeling of the molecular
sub-layer (e.g. ρoc

p
oKmol∂zθ(z) = Q−Qlw −

∫ 0

z
∂zQsw(z

′)dz′ for |z| ≪ |δo|)

5.2.3 Sensitivity to the discretization of the surface layers

Figure 5.4 show the profiles obtained in wind and potential temperature with several dis-
cretisations. As in Chapter 4 a high resolution simulation where every cell is divided into
three cells is also performed.

For the velocity, the differences between the different cases are located between z = −1 m
and z = 0 m. For the temperature, significant differences are found down to the depth of 10
meters.

The output of the normal simulation is not extremely sensitive to the discretization (the
continuous lines are close with each others); the Finite Difference and the Finite Volume
discretizations give coherent results.

The size of the oceanic surface layer is |δo| = 0.17. This choice actually corresponds to
first grid level of the high resolution cutted in half. Indeed, the “FV free” discretization does
not allow for inactive grid levels like in the atmosphere case.

The distance between the dashed line and the continuous line for the same color indicates
how consistent is the surface layer discretization. Contrarily to the atmosphere case, the least
consistent of the discretizations appears to be the “FV free”.

Figure 5.5 is the same as Figure 5.4 except that the ocean column is coupled with the
atmosphere column described in Chapter 4.

Similarly to the sensitivity to the use of a two-sided bulk (Figure 5.2), the difference
in temperature is bigger than the difference in velocity. Moreover, as in Figure 5.4 the
differences between the cases are in the direct neighborhood to the surface for u whereas
they are also present further from the interface for θ.

The difference between the one-sided bulk (δo = 0) and the two-sided bulk also appears
in the potential temperature in the two “FV pure” cases.

The biggest difference between the normal simulation and the high-resolution simulation
is again the scheme “FV free”. A possible reason for this undesirable behavior is the lack of
accuracy of the approximation of the profile of θ in the oceanic surface layer.

5.3 Partial conclusion

In this chapter, we extended the “FV free” discretization for the oceanic surface layer. The
radiative fluxes inclusion was studied and we proposed a discretization to take them into
account. They represent an instance of additional difficulties encountered when developping
coherent numerical treatment of the surface layer.
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Figure 5.4: Forced case: dashed lines indicate a high resolution simulation and solid lines show
the normal simulation. Numerical parameters are the same as in §4.4.4.
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Figure 5.5: Coupled case. The observed convergence factor of the Schwarz method was around
10−2 (i.e. convergence in 2 or 3 iterations). Dashed lines indicate a high resolution
simulation and solid lines show the normal simulation.
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Chapter 5. Discretization of the oceanic surface layer

The discretization proposed in this chapter does not perform better than the other ones
when comparing the consistencies in a coupled case and in a forced case.

No stability nor accuracy studies were conducted on the proposed discretisations. Al-
though they seem to behave correctly in the experiments, further analyses of the “FV free”
scheme are necessary before they can be used. In particular, the Finite Volume approxima-
tion between the first cell and the second corresponds to the use of a strongly unstructured
grid, the second cell being typically twofold bigger than the explicit part of the first cell.

5.A Appendix: computing αsl: stability function inte-

gration

In the ocean, we use the universal function of [Large et al., 2019] (as in [Pelletier et al.,
2021])

ϕm(ζ) = ϕh(ζ) = 1 + 5ζ, ζ ≥ 0 (5.21)

ϕm(ζ) = (1− 14ζ)−1/3, ζ < 0 (5.22)

ϕh(ζ) = (1− 25ζ)−1/3, ζ < 0 (5.23)

and the first integrated form, ψ{m,h}(ζ) =
∫ ζ
0

1−ϕ{m,h}(ζ′)
ζ′ dζ ′ is for ζ < 0

ψ{m,h}(ζ) =
√
3

[
arctan

(√
3
)
− arctan

(√
3

3
(2C{m,h} + 1)

)]
+
3

2
ln

(
(C{m,h})2 + C{m,h} + 1

3

)

(5.24)
and ψ{m,h}(ζ) = −5ζ for ζ ≥ 0 where Cm = (1−14ζ)1/3, Ch = (1−25ζ)1/3. We now compute

its volume-averaged form Ψ{m,h}(ζ) =
1
ζ

∫ ζ
0
ψ{m,h}(x)dx.

First,

∫
ln
(
C2
m + Cm + 1

)
dζ = −2

ζ

3
− 1

28
C2
m − 1

14
Cm + ζ ln

(
C2
m + Cm + 1

)
+ const (5.25)

and

∫
arctan

(
2Cm + 1√

3

)
dζ =

√
3

56
Cm(Cm − 2) + ζ arctan

(
2Cm + 1√

3

)
+ const (5.26)

Putting them together, we get

Ψm(ζ) =
√
3 arctan

(√
3
)
− 3

2
ln(3)− 3

56ζ
Cm(Cm − 2)−

√
3 arctan

(
2Cm + 1√

3

)

−1− 3

56ζ
C2
m − 3

28ζ
Cm +

3

2
ln
(
C2
m + Cm + 1

)
+

const

ζ

(5.27)
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5.A. Appendix: computing αsl: stability function integration

After simplification, using limζ → 0
∫ ζ
0
ψ(x)dx = 0:

Ψ{m,h}(ζ) = −5

2
ζ, ζ ≥ 0

Ψ{m,h}(ζ) = ψ{m,h}(ζ)−
(2C{m,h} + 1)(C{m,h} − 1)

2
(
(C{m,h})2 + C{m,h} + 1

) , ζ < 0
(5.28)

We finally get for u:

αsl,u =
h̃

hk−1/2

+

1
hk−1/2

[
(−z + z0m) ln

(
1 + −z

z0m

)
+ z − zΨm(

−z
LMO

)
]zk
δo

ln
(
1 + −δo

z0m

)
− ψu(

−δo
LMO

)
(5.29)

and for θ:

αsl,θ =
h̃

hk−1/2

+
1

hk−1/2

(QH −Qlw)
[
(−z + zθ) ln

(
1 + −z

zθ

)
+ z − zΨm(

−z
LMO

)
]zk
δo
−Qsw

∫ zk
δo
E(z)dz

(QH −Qlw)
(
ln
(
1 + −δo

zθ

)
− ψθ(

−δo
LMO

)
)
−QswE(δo)

(5.30)

where E(z) =
∫ 0

z
ϕh(−x/Lo)

∑
Ai exp(kix)

−x+zu dx and QH = θ⋆u⋆ρac
p
a. In practice, αsl,θ will not be

used: in Section 5.2.2 we describe another way to include the radiative fluxes in the surface
layer.
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Chapter 6

Convergence of Schwarz methods
applied to the discrete
ocean-atmosphere coupling
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We presented in Chapter 2 the discrete analysis of the convergence of Schwarz methods
with Dirichlet-Neumann interface conditions; the implementation of the law of the wall was
discussed in Chapter 4. We now aim to study the convergence properties of Schwarz methods
when the law of the wall is used at the interface between ocean and atmosphere. In this
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6.1. Introduction

chapter, we study the Ekman problem with a simplified bulk condition at the surface such
that it can be easily implemented to numerically validate the convergence results.

A part of this chapter was published in the proceedings of the 26th International Con-
ference on Domain Decomposition Methods [Clement et al., 2021]. In addition to minor
clarifications, Section 6.4 and Appendix 6.A were added, where the steady state and the
well-posedness of the coupling problem considered are discussed. Moreover, a mistake in
asymptotes computations has been noticed and corrected in Section 6.5. The convergence
study of §6.5.2 was also further pursued, with the corresponding computations being pre-
sented in Appendix 6.B.

The full text of [Clement et al., 2021] is reported here and complemented: this chapter
hence contains some redundancies with the previous ones (mainly in Sections 6.1 and 6.2).

6.1 Introduction

Schwarz-like domain decomposition methods are very popular in mathematics, computa-
tional sciences and engineering notably for the implementation of coupling strategies. Such
an iterative method has been recently applied in a state-of-the-art Earth System Model
(ESM) to evaluate the consequences of inaccuracies in the usual ad-hoc ocean-atmosphere
coupling algorithms used in realistic models [Marti et al., 2021]. For such a complex appli-
cation it is challenging to have an a priori knowledge of the convergence properties of the
Schwarz method. Indeed coupled problems arising in ESMs often exhibit sharp turbulent
boundary layers whose parameterizations lead to peculiar transmission conditions. The ob-
jective in this chapter is to study a model problem representative of the coupling between
the ocean and the atmosphere, including discretization and so-called bulk interface condi-
tions which are analogous to a quadratic friction law. Such a model is introduced in Section
6.2 and its discretization, as done in state-of-the-art ESMs, is described in Section 6.3. In
the semi-discrete case in space we compute in Section 6.4 the steady state and discuss the
well-posedness. A semi-discrete convergence analysis of the model problem is conducted in
Section 6.5 first with a linear friction and then with a quadratic friction linearized around
equilibrium solutions. Finally, in Section 6.6, numerical experiments in the linear and non-
linear case are performed to illustrate the relevance of our analysis.

6.2 Model problem for ocean-atmosphere coupling

We focus on the dynamical part of the oceanic and atmospheric primitive equations and
neglect the horizontal variations of the velocity field, which leads to a model problem de-
pending on the vertical direction only. This assumption, commonly made to study turbulent
mixing in the boundary layers near the air-sea interface, is justified because of the large
disparity between the vertical and the horizontal spatial scales in these layers. We consider
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the following diffusion problem accounting for Earth’s rotation (f is the Coriolis frequency
and k a vertical unit vector):





∂tu+ fk× u− ∂z (ν(z, t)∂zu) = g, in Ω× (0, T ),
u(z, 0) = u0(z), ∀z in Ω,

u(Ho, t) = u∞
o (t), u(Ha, t) = u∞

a (t), t ∈ (0, T ),

with u = (u, v) the horizontal velocity vector, ν(z, t) > 0 the turbulent viscosity and Ω =
(Ho, Ha) a bounded open subset of R containing the air-sea interface Γ = {z = 0}. In the
ocean and the atmosphere, which are turbulent fluids, the velocity field varies considerably in
the few meters close to the interface (in a region called surface layer, see Chapter 1). The cost
of an explicit representation of the surface layer in numerical simulations being unaffordable,
this region is numerically accounted for using wall laws [e.g. Mohammadi et al., 1998]. This
approach, traditionally used to deal with solid walls, is also used in the ocean-atmosphere
context, with additional complexity arising from the stratification effects [e.g. Pelletier et al.,
2021]. In this context wall laws are referred to as surface layer parameterizations. The role
of such parameterizations is to provide ν∂zu on the upper and lower interfaces of the surface
layer as a function of the difference of fluid velocities. Thus the coupling problem of interest
should be understood as a domain decomposition with three non-overlapping subdomains.
For the sake of convenience the velocity vector u = (u, v) is rewritten as a complex variable
U = u+ iv. Then the model problem reads

∂tUj + ifUj − ∂z (νj(z, t)∂zUj) = gj, (j = o, a) in Ωj × (0, T )
Uj(Hj, t) = U∞

j (t), t ∈ (0, T ),
Uj(z, 0) = U0(z), ∀z in Ωj,

ρoνo∂zUo(δo, t) = ρaνa∂zUa(δa, t) = Fsl(Ua(δa, t)− Uo(δo, t)), t ∈ (0, T )

(6.1)

where ρo, ρa are the densities of water and air at the surface with ρa
ρo

≈ 10−3; the space

domains are Ωo = (Ho, δo), Ωa = (δa, Ha), and Fsl is a parameterization function for the
surface layer extending over Ωsl = (δo, δa). A typical formulation for Fsl is

Fsl(Ua(δa, t)− Uo(δo, t)) = ρaCD|Ua(δa, t)− Uo(δo, t)|(Ua(δa, t)− Uo(δo, t))

which corresponds to a quadratic friction law with CD a drag coefficient (assumed constant
in the present study). Geostrophic winds and currents uaG, u

o
G ∈ R are used in this study as

source terms and boundary conditions: gj = ifujG and U∞
j = ujG. Geostrophic equilibrium

is the steady state for which the Coriolis force compensates for the effects of gravity. It
corresponds to the large scale dynamics of ocean and atmosphere, and leads to reasonable
values of the solution U .

The well-posedness of (6.1) has been studied for a particular parameterization of νj in
[Thery, 2021], where it is proved that its steady version admits a unique solution for realistic
values of the parameters. The study of the nonstationary case is much more challenging:
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6.3. Discretized coupled problem

numerical experiments tend to confirm this well-posedness and we give in Section 6.4.2
some elements for a theoretical proof. In the following, the viscosities νj are assumed to be
constant.

6.3 Discretized coupled problem

6.3.1 Implementation of the surface layer

As described in Section 6.2, the full domain Ω is split into three parts: Ωo in the ocean,
Ωa in the atmosphere and Ωsl a thin domain containing the interface (see Fig. 6.1). The
role of Ωsl is to provide ρjνj∂zUj at z = δj (j = o, a) as a function of fluid velocities at the
same locations. However, in state-of-the-art climate models, the discretization is based on
an approximate form of the coupled problem (6.1). For practical reasons, the computational

domains are Ω̃o = (Ho, 0) = Ωo

⋃
(δo, 0) and Ω̃a = (0, Ha) = (0, δa)

⋃
Ωa, and the locations

of the lower and upper boundaries of the surface layer (z = δj) are assimilated to the centers
of the first grid cells (i.e. δo = −ho/2 and δa = ha/2 with ho and ha the thicknesses of the
first grid cell in each subdomain), where the values of the velocity closest to the interface are
available. Typical resolutions in the models are δa = ha/2 = 10 m and δo = −ho/2 = −1 m.
At a discrete level, the transmission condition in (6.1) is replaced by

ρoνo∂zUo(0, t) = ρaνa∂zUa(0, t) = ρaα

(
Ua

(
ha
2
, t

)
− Uo

(
−ho

2
, t

))
(6.2)

where α = CD
∣∣Ua

(
ha
2
, t
)
− Uo

(
−ho

2
, t
)∣∣ for the nonlinear case. In the following, for the

analysis in Section 6.5, we consider a linear friction where α is assumed constant and a
quadratic friction linearized around equilibrium solutions. The coupled problem with this
surface layer implementation reads:

∂tUj + ifUj − ∂z (νj(z, t)∂zUj) = gj, (j = o, a) in Ω̃j × (0, T )
Uj(Hj, t) = U∞

j (t), t ∈ (0, T ),

Uj(z, 0) = U0(z), ∀z in Ω̃j,
ρjνj∂zUj(0, t) = ρaα

(
Ua

(
ha
2
, t
)
− Uo

(
−ho

2
, t
))
, t ∈ (0, T )

(6.3)

for which we will now define a Finite Difference discretization and a Schwarz Waveform
Relaxation.

6.3.2 Schwarz Waveform Relaxation

As discussed for example in [Marti et al., 2021], current ocean-atmosphere coupling methods
can actually be seen as a single iteration of a Schwarz Waveform Relaxation (SWR) algo-
rithm. SWR applied to the coupling problem (6.3) with constant viscosity in each subdomain
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Figure 6.1: Discrete representation of the three domains Ωa,Ωsl,Ωo together with a typical steady
state. Note the different scales for (u, v) in the ocean and in the atmosphere.

reads:

(∂t + if)Uk
j − νj∂zϕ

k
j = gj, in Ω̃j × (0, T ) (6.4a)

Uk
j (z, 0) = U0(z), ∀z ∈ Ω̃j (6.4b)

Uk
j (Hj, t) = U∞

j , t ∈ [0, T ] (6.4c)

νaϕ
k
a(0, t) = αk−1

(
Uk−1+θ
a

(
ha
2
, t

)
− Uk−1

o

(
−ho

2
, t

))
, t ∈ [0, T ] (6.4d)

ρoνoϕ
k
o(0, t) = ρaνaϕ

k
a(0, t), t ∈ [0, T ] (6.4e)

where j = a, o, ϕj = ∂zUj, and U
k−1+θ
a = θUk

a + (1 − θ)Uk−1
a with θ a relaxation parameter

(interpolation for 0 ≤ θ ≤ 1 or extrapolation for θ > 1). At each iteration, (6.4e) ensures
that the kinetic energy is conserved at the machine precision in the coupled system which
is a major constraint for climate models. In (6.4d), the presence of the parameter θ makes
it resemble to a Dirichlet-Neumann Waveform Relaxation algorithm. Indeed, if (6.4d) is
replaced by Uk

a = θUk−1
o +(1−θ)Uk−1

a the DNWR algorithm is retrieved, as examined in the
continuous case in [Gander et al., 2016] and in the discrete case in [Meisrimel et al., 2020].
However (6.4d) involves both ϕka and Uk−1+θ

a : the θ parameter appears thus here within a
(close to Robin) condition νaϕa(0) − αθUa(ha/2) = . . ., i.e. the relaxation is not performed
directly on the converging variable which leads to convergence properties different from the
DNWR case, as shown in Section 6.5. It is important to distinguish between the relaxation
procedure described here and the choice of using an implicit or explicit interface condition
discussed in Section 4.1.1. The latter refers to changing the time step tn whereas the former
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refers to choosing the iteration step k.
In the following, centered finite difference schemes in space are used with constant space

steps hj. Derivatives are approximated as ϕj(z, t) =
Uj(z+hj/2,t)−Uj(z−hj/2,t)

hj
and the semi-

discrete version of (6.4a) is

(∂t + if)Uj,m+ 1
2
(t) = νj

ϕj,m+1(t)− ϕj,m(t)

hj
+ gj (6.5)

6.4 Discrete steady state and well-posedness

In this section the focus is on the well-posedness of the semi-discrete coupled problem:

(∂t + if)Uj,m+ 1
2
= νj

ϕj,m+1 − ϕj,m
hj

+ ifujG (6.6a)

Uj|t=0 = U0 (6.6b)

Uj|z=Hj
= U∞

j (6.6c)

νaϕa,0 = CD

∣∣∣Ua, 1
2
− Uo,− 1

2

∣∣∣
(
Ua, 1

2
− Uo,− 1

2

)
(6.6d)

ρoνoϕo,0 = ρaνaϕa,0 (6.6e)

[Lions et al., 1995] proved the existence at the continuous level of global-in-time weak so-
lutions in two dimensions of the primitive equations with the nonlinearity of the advection
inside the computational domains but with a linear interface condition. We focus here on
showing the existence of strong unsteady solutions of the semi-discrete in space problem with
a nonlinear interface condition. In [Chacon-Rebollo et al., 2014], the existence of unsteady
solutions of nonlinear turbulent models for oceanic surface mixing layers is proven with the
help of the inverse function theorem recalled here:

Inverse Function Theorem ([e.g. Hörmander, 2015]) If a function Φ is continuously
differentiable and its derivative is invertible around some point U e then Φ is invertible in a
neighborhood of U e.

We will follow their method which consists of three steps:

1. showing the existence of a steady state;

2. showing the well-posedness of the linearized problem around the steady state;

3. using of the inverse function theorem;

The previously cited studies use a continuous framework. Since we study here the semi-
discrete in space well-posedness, the function spaces are not the same and some tools must
be adapted (e.g. the variation of parameters in Appendix 6.A). However the steps of the
proof remain the same.
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6.4.1 Derivation of the steady state

The first step of the proof is the derivation of the steady state. The special case f = 0 is first
set aside in §6.4.1.1; the steady states of the inner subdomains are then given in §6.4.1.2.
Finally, the nonlinear boundary condition is treated in §6.4.1.3 and solutions are given in
§6.4.1.4.

6.4.1.1 Special case f = 0

If we set to zero the Coriolis parameter, the steady state flux νjϕj is constant in each domain.
If moreover U∞

a ̸= U∞
o , because of the interface conditions, the derivatives ϕa and ϕo cannot

be equal to zero and Uj are affine.

• With spatial domains of finite size: a steady state can be found following §6.4.1.3,
except that Uj are affine.

• With spatial domains of infinite size: ϕj does not tend to zero for z → ±∞ and we
hence have that for z → ±∞, Uj → ∞. There is no stationary solution with
infinite domains for f = 01. Note that this is true for both semi-discrete and
continuous cases.

In the remainder we consider f ̸= 0 and we assume without loss of generality that the space
domain is sufficiently large (Hj → ∞): the results can be easily extended to domains of
finite size.

6.4.1.2 Resolution in each subdomain

We note U e
j (z) the stationary solution (and ϕej its finite difference derivative) of (6.6). Com-

puting U e
j is similar to the discrete analysis of the finite difference scheme for Schwarz

methods (see Chapter 2 or [Wu and Al-Khaleel, 2017]), except that:

• the frequency variable ω is not present;

• the transmission conditions are not required to be linear;

• since the source term does not vanish, the variable U e
o −uoG is considered to obtain the

analytical expression of U e
o .

We obtain ϕeo,−m = Ae(λo + 1)m and ϕea,m = Be(λa + 1)m with λj =
1
2

(
χj −√

χj
√
χj + 4

)
,

χj =
ifh2j
νj

and m the space index.

1The existence of the stationary solution depends on the set of functions considered: there exists a
stationary solution but it is not integrable or square-integrable.
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Finally, the space discretization at the first grid level
hj
2
gives:

U e
o |z=δo = uoG − νoλo

ifho
Ae, U e

a |z=δa = uaG +
νaλa
ifha

Be (6.7)

Remark ([Thery, 2021], §5.1.3, §5.1.4) Similarly to the continuous case, the solution is of
the form U e

a |z=δa = uaG−u2⋆eτΨa where u
2
⋆eτ = νaϕ

e
a|z=δa. The difference stands in the discrete

version of Ψj = − λj
ifhj

which is simpler thanks to the hypotheses of constant diffusivities and

infinite domains.

6.4.1.3 The nonlinear transmission condition

The first condition of the bulk equation (6.6e) gives us Be = ρoνo
ρaνa

Ae and the nonlinear

condition (6.6d) gives

ρoνo
ρaCD

Ae =

∣∣∣∣
(
ρo
ρa

νoλa
ifha

+
νoλo
ifho

)
Ae + (uaG − uoG)

∣∣∣∣
((

ρo
ρa

νoλa
ifha

+
νoλo
ifho

)
Ae + (uaG − uoG)

)

(6.8)

In order to lighten the notations we introduce d = CD

(
λa
ifha

+ ρa
ρo

λo
ifho

)
and x̃ = Ae ρoνo

ρaCD
d +

(uaG − uoG). x̃ is the difference between the solutions U e
j at interface and d is a quantity (in

m−1.s) that links x̃ and ρjνjϕ
e
j(0). The problem is to find x̃ ∈ C such that

x̃− (uaG − uoG) = d|x̃|x̃ (6.9)

Remark If the infinite domains hypothesis is relaxed, equation (6.9) is retrieved with slightly
different x̃ and d; If f = 0 with finite domains we also obtain an equation of the form (6.9).

Introducing the real and imaginary parts of x̃ = x̃R + ix̃I and d = dR + idI , one gets:

x̃R = |x̃|(dRx̃R − dI x̃I) + uaG − uoG
x̃I = |x̃|(dI x̃R + dRx̃I)

(6.10)

A combination (product with x̃I , x̃R) between those equations gives dI |x̃|3 = (uaG − uoG) x̃I
which means that either dI = x̃I = 0 or dI ̸= 0 and

uaG−uoG
dI

x̃I > 0. From (6.9), x̃ cannot be

real because uaG ̸= uoG and d is not real. We get the equality x̃I =
dI

uaG−uoG
|x̃|3. The system is

hence equivalent to:

(1− |x̃|dR) (uaG − uoG) x̃R = −dI2|x̃|4 + (uaG − uoG)
2

|x̃|2 = dR|x̃|3 + (uaG − uoG) x̃R.
(6.11)

1 − |x̃|dR should not be zero as it would require that uaG − uoG = ± dI
d2R

(d does not depend

on ujG and the latter values are arbitrarily chosen in this study: it is therefore unlikely that
this equality holds). Eliminating x̃R then leads to an equation on |x̃|:

|x̃|2 − 2dR|x̃|3 + |d|2|x̃|4 = (uaG − uoG)
2 (6.12)
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A routine calculation finds 4 potential roots to this problem. Note that only the real positive
roots are relevant. Typical values for our problem are |d| ≈ 10−1 m−1.s and dR ≈ −8 ×
10−2 m−1.s. The solution is detailed below.

6 8 10

R(u)

101

102

103

z
0 1 2

I(u)

0.10 0.15

Real part R(u)

−102

−101

−100

z

−0.04 −0.02 0.00

Imaginary part I(u)

−102

−101

−100

Result of 40 Schwarz iterations

Theoretical

Figure 6.2: Stationary solution profile in ocean and atmosphere; the analysis exactly fits the
result of Schwarz iterations. Notice that the surface layer is not explicitly computed.
The profile is the same as in Figure 6.1.

6.4.1.4 Solutions

We define:

d = CD

(
λa
ifha

+
ρa
ρo

λo
ifho

)
, dR = R(d),

s = 2 + (uaG − uoG)
2 (72|d|2 − 108d2R

)
, β = 1− 12|d|2 (uaG − uoG)

2 ,

γ =

3

√
s+

√
s2 − 4β3

3 3
√
2|d|2

+
3
√
2β

3|d|2 3

√
s+

√
s2 − 4β3

, ζ = − 2

3|d|2 +
dR

2

|d|4

(6.13)

The steady state is given by a real, positive solution |x̃| of (6.12). Experimentally, it is seen
that if it exists, it is the root of (6.12) corresponding to the three + operators in:

|x̃| = dR
2|d|2 ±

√
ζ + γ

2
± 1

2

√
2ζ − γ ± 2dR

3 − 2dR|d|2
|d|6√ζ + γ

(6.14)

where the first ± and the third one are necessarily the same. For our parameters there is
only one value of (6.14) that is real and non-negative. There is hence only one solution of
(6.6).
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6.4. Discrete steady state and well-posedness

Finally, we recover x̃ from (6.9): x̃ =
uaG−uoG
1−d|x̃| , then Ae = CDρa

ρoνod
(x̃− (uaG − uoG)) and

Be = ρoνo
ρaνa

Ae. The steady state U e
j is given by

U e
o,−m−1/2 = uoG − νoλo

ifho
(1 + λo)

mAe

U e
a,m+1/2 = uaG +

νaλa
ifha

(1 + λa)
mBe

(6.15)

Figure 6.2 shows that this analysis exactly fits the result of Schwarz algorithm.

6.4.2 Existence of solutions of the nonlinear semi-discrete in space
problem

The method used by [Chacon-Rebollo et al., 2014] to prove the existence and unicity of
a solution in the neighborhood of a steady state can be used to deal with other types of
nonlinearities. In particular, we can prove the existence and uniqueness of a solution to the
problem (6.6) close to the steady state, thanks to the following steps:

1. The existence of a steady state U e is discussed in §6.4.1.

2. The well-posedness of the linearized problem is discussed in Appendix 6.A.

3. The use of the inverse function theorem can be done in four steps:

(a) concatenate the state vectors in a single vector U = {Ua, Uo, ϕa|z=0} ∈ U where
U = L2([0, T ])Ma+Mo+1. Ma,Mo are the number of grid levels in the subdomains.
ϕa|z ̸=0 and ϕo are not in U because they can be expressed as linear combinations
of elements of U.

(b) Define a mapping Φ : U → Y such that

Φ(U) = {(∂t + if)Ua − νa∂zϕa − ga,

(∂t + if)Uo − νo∂zϕo − go,

Ua(Ha, t)− U∞
a , Uo(Ho, t)− U∞

o ,

νa ϕa|z=0 − α
(
Ua, 1

2
− Uo,− 1

2

)
,

Ua|t=0 − U e
a , Uo|t=0 − U e

o}

(6.16)

where ϕj|z ̸=0 = ∂zUj and ∂z is to be understood as the finite difference operator
which is applied only where it makes sense: for instance the first line of (6.16) is
not applied for z = Ha. Let us draw some important remarks about Φ:

• The equation ϕo =
ρaνa
ρoνo

ϕa at interface is implicit: in (6.16), ∂zϕo at the first

grid level is ρaνa
ρoνo

ϕa

∣∣∣
z=0

−
U
o,− 1

2
−U

o,− 3
2

ho
.
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• Φ(Ue) = 0 where Ue is the steady state;

• The codomain Y is

Y = L2([0, T ])Ma−1 × L2([0, T ])Mo−1 × L2([0, T ])3 × RMa+Mo (6.17)

• Finding Φ−1(y) is equivalent to solving the nonlinear semi-discrete problem
(6.6) if the component of y corresponding to the interface condition is zero
(the other components correspond to other forcing terms, boundary condi-
tions and initial condition.). The idea of the proof is that if Φ is invertible
around Ue then the nonlinear semi-discrete problem (6.6) is invertible. More-
over, the inverse function theorem also tells us that Φ−1 is continuous: this
means that around the equilibrium state, the problem (6.6) is well-posed: it
has a unique solution that depends continuously on the initial data.

(c) Prove thatΦ is C1 in a neighborhood ofUe. Φ is linear except for the transmission
condition. Besides, the nonlinearity in this transmission condition is the function
x 7→ |x|x, which is analytic in a ball that does not contain zero. It is then
straightforward to show that Φ is C1 and that its differential DΦ(Ue) is given
by the linearized problem (a rigourous proof that can be directly adapted here is
given in [Chacon-Rebollo et al., 2014]).

(d) Prove that DΦ(Ue) is an isomorphism: DΦ(Ue) can be inverted by solving the
linearized problem with additional input data. It is shown that it is well-posed in
appendix 6.A.

6.5 Convergence analysis

In this section we conduct a convergence analysis of the SWR algorithm (6.4) first with α
a constant and then in a more complicated case where the problem is linearized around its
steady state. In the following we systematically make the assumption that the space domain
is of infinite size (i.e. Hj → ∞) for the sake of simplicity.

6.5.1 Linear friction case (α = const)

We assume in this paragraph that α = αc with αc a constant independent of Uj and we
study the system satisfied by the errors (i.e. gj, U0, U

∞ = 0). The Fourier transform in time
of the finite difference scheme (6.5), together with an analysis of the convergence as it was
done in Chapters 2 and 3 (see Appendix 6.B for a detailed derivation in the linearized case)
leads to ûk

o,−m− 1
2

= Ak(λo+1)m and ûk
a,m+ 1

2

= Bk(λa+1)m with λj =
1
2

(
χj −√

χj
√
χj + 4

)
,

χj =
i(ω+f)h2j

νj
, and m the space index. The convergence factor of SWR is then the rate at

which Ak or Bk tends to 0. The Fourier transform in time of the interface transmission

132



6.5. Convergence analysis
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Figure 6.3: Convergence factor ξ(ω) in the linear case for θ = 0.5, 0.75, 1. The vertical dashed
line highlights the frequency for which ω + f → 0.

conditions gives the evolution of Bk which eventually leads to the following convergence
factor:

ξ =

∣∣∣∣
Bk

Bk−1

∣∣∣∣ =
∣∣∣∣∣
1− θ − ϵλa−χa

λo
νaho
νoha

νa
αcha

(λa − χa)− θ

∣∣∣∣∣ (6.18)

where ϵ = ρa
ρo

≈ 10−3 in the ocean-atmosphere context. Note that the convergence factor

(6.18) differs significantly from the semi-discrete convergence factor

ξDNWR = |1− θDNWR (1− ϵhaλo/(λaho))| (6.19)

of the DNWR algorithm. Moreover, λj is equivalent to −√
χj when (ω + f) → 0, and as

(ω + f) → ∞ we have λj → −1 and |λa − χa| → ∞. The asymptotes of ξ for(ω + f) → 0
and (ω + f) → ∞ are finally

lim
(ω+f)→0

ξ =
1

θ

∣∣∣∣1− θ − ϵ

√
νa
νo

∣∣∣∣ = ξ0, lim
(ω+f)→∞

ξ = ϵ
νaho
νoha

.

As ω+f → 0 the asymptotic value ξ0 depends on θ: it is +∞ for θ = 0 (i.e. a fast divergence),
and ξ0 = ϵ

√
νa
νo

for θ = 1. When ω → ∞, the convergence factor tends to a small value that
does not depend on θ (i.e. the convergence is rather fast for high frequencies). Since we
have ϵ ≈ 10−3, the convergence is fast for θ = 1. On the contrary, ξ0 → ∞ for θ = 0 with
almost all parameter values: the Schwarz method quickly diverges in this case. The optimal
parameter θopt for low frequencies is 1− ϵ

√
νa
νo

which is very close to 1.

Remark The asymptotes are different in [Clement et al., 2021]. The mistake made in the
authors’ previous work is to consider for ω+ f → 0 the convergence factor of (ϕk)k∈N. Since
ϕk → 0 as ω + f → 0 there is an underlying division by zero.

Figure 6.3 shows that the asymptote ω+f → 0 is the upper bound of ξ for several values
of θ. In this linear case, θ ≈ 1 is a good choice to reduce the convergence factor.

6.5.2 Linearized quadratic friction case

The analysis of the nonlinear quadratic friction case (i.e. with α = CD | Ua (ha/2, t) −
Uo (−ho/2, t) |) cannot be directly pursued through a Fourier transform. We thus consider
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the linearization of the problem around a steady state U e
j , ϕ

e
j satisfying (6.6): assuming

that Uk
j (±hj/2, t) is in a neighborhood of U e(±hj/2), the modulus in α is non-zero and we

can differentiate α. Differences with the steady state are noted δϕkj = ϕkj (0, t) − ϕej(0) and
δUk

j = Uk
j (±hj/2, t)− U e

j (±hj/2).

Linearization of the transmission condition We will now linearize the transmission
operator. First, αk−1

(
δUk−1+θ

a − δUk−1
o

)
is split into two parts in the nonlinear transmission

condition:

νaϕ
k
a = αk−1

(
(U e

a − U e
o ) +

(
δUk−1

a − δUk−1
o

))
︸ ︷︷ ︸

CD|·|(·)

+θαk−1
(
δUk

a − δUk−1
a

)
(6.20)

The transmission condition is linearized as

νaδϕ
k
a =

〈
D(Ue

a−Ue
o )CD| · |(·),

(
δUk−1

a − δUk−1
o

)〉
+ θαk−1

(
δUk

a − δUk−1
a

)
(6.21)

where the linear map ⟨DxΥ, ·⟩ is the total derivative of the application Υ at x. Let us first
compute the total derivative of x 7→ |x|x. The total derivative of | · |2 is

⟨Dx| · |2, µ⟩ = xµ+ xµ (6.22)

where x is the complex conjugate of x. We then use the chain rule to differentiate |x| =
√
|x|2

and obtain

⟨Dx| · |, µ⟩ =
1

2

x

|x|µ+
1

2

x

|x|µ (6.23)

Finally, the total derivative of the map x 7→ |x|x reads

⟨Dx| · |(·), µ⟩ =
1

2

xx

|x|︸︷︷︸
=|x|

µ+
1

2

x2

|x|︸︷︷︸
=|x|x

x

µ+ |x|µ = |x|
(
3

2
µ+

1

2

x

x
µ

)
(6.24)

and the linearized transmission operator reads

νaδϕ
k
a = αe

((
3

2
− θ

)
δUk−1

a + θ δUk
a − 3

2
δUk−1

o +
1

2

U e
a − U e

o

U e
a − U e

o

δUk−1
a − δUk−1

o

)
(6.25)

with αe = CD |U e
a (ha/2)− U e

o (−ho/2)|.

Convergence study with the linearized transmission condition Following the
derivation in the previous paragraph (detailed in Appendix 6.B with space domains of finite
size), we find that the evolution of Bk is:

Bk+1(ω) = a1(ω)Bk(ω) + a2(ω)Bk(−ω) (6.26)
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Figure 6.4: Singular values ξ̃1(ω), ξ̃2(ω) of the matrix

(
a1(ω) a2(ω)

a2(−ω) a1(−ω)

)
. The observed “con-

vergence factor” at the first iteration ξobs =
√

|B2(ω)|2+|B2(−ω)|2
|B1(ω)|2+|B1(−ω)|2 is in purple. The

numerical validation ξobs fits the convergence analysis since ξ̃2 ≤ ξobs ≤ ξ̃1: Figure
6.5 explains that it is theoretically the case.

where a1, a2 ∈ C are defined in Appendix 6.B. Note that the variable iω = −iω appears
when using the Fourier transform on δUk−1

a − δUk−1
o . As a consequence, the convergence

factor ξq in the linearized quadratic friction case differs from one iteration to another: it is

a function of Bk−1(−ω)
Bk−1(ω)

. We need to look at both Bk+1(ω), Bk+1(−ω) at the same time:

Bk+1(ω) = a1(ω)Bk(ω) + a2Bk(−ω)
Bk+1(−ω) = a1(−ω)Bk(−ω) + a2(−ω)Bk(ω)

(6.27)

We examine the evolution of those two simultaneously evolving quantities:
(
B(ω)

B(−ω)

)

k+1

=

(
a1(ω) a2(ω)

a2(−ω) a1(−ω)

)(
B(ω)

B(−ω)

)

k

(6.28)

The singular values (shown in Figure 6.4) of the 2×2 matrix in (6.28) can be studied instead
of the convergence factor. One can see on Figure 6.4 that the two singular values are different
for small frequencies, especially around the frequencies f and −f .

One can hence expect (see Figure 6.5) that for frequencies close to f and −f the “con-

vergence factor”
√

|Bk(ω)|2+|Bk(−ω)|2
|Bk−1(ω)|2+|Bk−1(−ω)|2 will be different from one iteration to another and

will be between ξ̃1 and ξ̃2.
We optimize only the maximum over the frequencies of the largest singular value ξ̃1 (see

Figure 6.6) and find that the optimal value of θ is slightly smaller than 1.5 (instead of an
optimal value slightly larger than 1.5 for the asymptotic convergence for one iteration)

6.6 Numerical experiments

The aim of this section is to illustrate the influence of the parameter θ, in the linear and
quadratic friction cases. The steady state U e

j is used to compute αc = αe = CD|U e
a (

ha
2
) −
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Bk=1
1

BkBk
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1

Bk=2
1

: ξ̃1 : ξ̃2 : ξ(k)

Figure 6.5: The vectorBk =

(
Bk(ω)

Bk(−ω)

)
can be decomposed into a basis2of eigenvectorsBk

i which

converge linearly with convergence factors ξ̃i. 4 iterations are shematically represented

in blue, pink, orange and purple. The “convergence factor” ξobs(k) =
||Bk+1||
||Bk|| is such

that ξ̃2 ≤ ξobs ≤ ξ̃1 and varies from one iteration to another. ξ(k) gets closer to ξ̃1
when k increases as Bk gets closer to Bk

1.

U e
o (

ho
2
)| in the linear case. Parameter values of the problem are taken as realistic: CD =

1.2×10−3, the space steps are ha
2
= 10 m, ho

2
= 1 m, the time step is 60 s, the size of the time

window T is 1 day (1440∆t) and the computational domains sizes are Ho = Ha = 2000 m
(100 and 1000 nodes respectively in Ωa and Ωo). The Coriolis parameter is f = 10−4 s−1

and the diffusivities are νa = 1 m2 s−1, νo = 3 × 10−3 m2 s−1. The geostrophic wind and
current ujG = U∞

j are set to constant values of 10 m s−1 in the atmosphere and 0.1 m s−1

in the ocean, while the forcing terms gj = ifujG and the initial condition U0(z) = U e
j (z).

SWR is initialized at the interface with a white noise around the interface value of the
initial condition. Figure 6.7 shows the evolution of the error for two choices of θ. The
theoretical convergence according is also displayed: supω ξ is an upper bound of the L2

convergence factor [Thery, 2021]. In the case α = const we use ξ0 as an approximation of

supω ξ. The theoretical bounds maxω ξ̃1 and ξ0 fit rather accurately the convergence rate
and one can see that those values are indeed greater than the observed convergence rate.
Figure 6.7 confirms the results of Section 6.5: when considering α = αc constant, the fastest
convergence is achieved when θ is close to 1, similarly to the DNWR algorithm. However
this does not translate into the nonlinear case, which converges faster with θ = 1.5. Figure
6.8 shows that the convergence behavior with the linearized transmission condition is similar
to the nonlinear case. As expected the convergence is faster for θ = 1.5 than for θ = 1. We
observed that those results are robust to changes in the values of the parameters in the range
of interest. Linearized transmission conditions are hence relevant to study theoretically the
convergence properties of our nonlinear problem.

2The matrix is indeed diagonalizable if ξ̃1 ̸= ξ̃2; otherwise we have a simple convergence factor ξ = ξ̃1 = ξ̃2.
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1 2 3 4 5 6 7 8 9 10

Iteration

10−6

10−5

10−4

10−3

10−2

10−1

100

E
rr

or
||
·|
| 2 Constant α, θ = 1.0

Constant α, θ = 1.5

Non-linear, θ =1.0

Non-linear, θ =1.5

Corresponding maxω(ξ)k

Figure 6.7: Evolution of the L2 norm of the errors. Black lines represent the observed convergence;
grey lines are the estimated convergence with slopes ξ0 for linear cases and maxω ξ̃1
for quadratic cases.

2 4 6 8 10

Iteration

10−6

10−5

10−4

10−3

10−2

10−1

100

E
rr

or
||
·|
| 2

NL

L

NL, νa = 0.1 m2 s−1

L, νa = 0.1 m2 s−1

NL, νo = 10−4 m2 s−1

L, νo = 10−4 m2 s−1

NL, f = 10−5 s−1

L, f = 10−5 s−1

θ = 1.5

θ = 1

Figure 6.8: Evolution of the L2 norm of the errors with linearized (L) and nonlinear (NL) trans-
mission conditions. The legend indicates the changes in the parameters for each case.

137



Chapter 6. Convergence of Schwarz methods applied to the discrete
ocean-atmosphere coupling

6.7 Conclusion

In this chapter, we studied a SWR algorithm applied to a simplified ocean-atmosphere
problem. This problem considers nonlinear transmission conditions arising from wall laws
representative of the ones used in Earth-System Models and analogous to a quadratic friction
law. We motivated the fact that the convergence analysis of such problems can only be done
at a semi-discrete level in space due to the particular practical implementation of continuous
interface conditions in actual climate models. The steady state of the coupled problem
was derived analytically and it was proven that the unsteady problem is well-posed in a
neighborhood of the steady state. Then we analytically studied the convergence properties
in a case with linear friction and in a case with linearized quadratic friction. We formulated
the problem with a relaxation parameter θ in the transmission conditions and systematically
assessed its impact on the convergence speed. For the two cases of interest, the convergence
factors were derived which allowed us to choose appropriate values for the parameter θ
to guarantee fast convergence of the algorithm. The behavior of the algorithm for linear
friction and linearized quadratic friction turns out to be different which leads to different
“optimal” values of θ. Numerical experiments in the nonlinear case showed that the observed
convergence behaves as predicted by the linearized quadratic friction case.

6.A Appendix: well-posedness of the linearized

quadratic friction case

We look for the solutions of the Laplace transform (with the frequency variable s = σ +
iω, σ > 0) of our coupled problem (the steady state has been subtracted from u):

(s+ if)ûm+ 1
2
− νj

ϕ̂m+1 − ϕ̂m
hj

= U0 ω ∈ (ωmin, ωmax) (6.29a)

um(t = 0) = U0(zm), ∀m,Mo ≤ m ≤Ma

(6.29b)

û(Hj, s) = 0, ω ∈ (ωmin, ωmax) (6.29c)

3αe

2

(
û1/2 − û−1/2 +

O
3
û1/2(s)− û−1/2(s)

)
= νaϕ̂a,0, ω ∈ (ωmin, ωmax) (6.29d)

ρoνoϕ̂o,0 = ρaνaϕ̂a,0, ω ∈ (ωmin, ωmax) (6.29e)

where O = Ue
a−Ue

o

Ue
a−Ue

o
.

Remark To show the well-posedness of the non-linear problem, it is necessary to add external
data that does not depends on û in (6.29c) and (6.29d). It only complicates the derivation
and does not need any special treatment: we hence omit them.
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6.A. Appendix: well-posedness of the linearized quadratic friction case

To show that there exists a unique solution to (6.29), we first compute the jump û1/2 −
û−1/2 then prove that the friction law always has a unique solution.

6.A.1 Jump of the solution û1/2 − û−1/2

We first compute the jump of the solution û1/2 − û−1/2.

Remark If a Fourier transform was used (corresponding to σ = 0), the case ω = −f would
require a particular attention as λ−1

u − λu would attain 0.

We extend the well-known method of variation of parameters to the discrete case to
compute a solution of (6.29a). Let B1

m, B
2
m and λu such that the solutions of (6.29a) are

ûa,m+ 1
2
= B1

mλ
m
u + B2

mλ
−m
u , where λu = 1 + χ2

2
− 1

2

√
χ2

√
χ2 + 4 and χj = h2j

s+if
νj

. Note

that it it similar to the solution of the homogeneous equation but B1, B2 now depend on m.
Equation (6.29a) can be rewritten as

(ûm+ 3
2
− ûm+ 1

2
)− χ2ûm+ 1

2
− (ûm+ 1

2
− ûm− 1

2
) = −h

2
2

ν2
U0 (6.30)

Injecting ûm+ 1
2
= B1

mλ
m
u +B2

mλ
−m
u and rearranging terms gives

B1
m

(
λm+1
u − λmu − χ2λ

m
u − (λmu − λm−1

u )
)

︸ ︷︷ ︸
=0

+B2
m × 0

+ λm+1
u (B1

m+1 −B1
m)− λmu (B

1
m −B1

m−1) + λ−m−1
u (B2

m+1 −B2
m)− λ−mu (B2

m −B2
m−1)

+ (λmu − λm−1
u )(B1

m −B1
m−1) + (λ−mu − λ−m+1

u )(B2
m −B2

m−1)

= −h
2
2

ν2
U0

(6.31)
A particular solution of (6.29a) can be taken as

{
λmu (B

1
m −B1

m−1) + λ−mu (B2
m −B2

m−1) = 0

(λmu − λm−1
u )(B1

m −B1
m−1) + (λ−mu − λ−m+1

u )(B2
m −B2

m−1) = −h22
ν2
U0

(6.32)

which can be inverted:

(
B1
m −B1

m−1

B2
m −B2

m−1

)
=

(
λmu λ−mu

(λmu − λm−1
u ) (λ−mu − λ−m+1

u )

)−1
(

0
h22
ν2

− U0

)
(6.33)

The determinant of the inverse matrix in (6.33) is λ−1
u − λu which is never zero because

σ > 0.
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Remark A particular solution was chosen here: as in the continuous case of the variation
of parameters, the difference between this solution and another one solves the homogeneous
equation. The degrees of freedom B1

0 and B2
0 actually represent the whole space of solutions.

The sum of (6.33) from 1 to m gives a relation between B1
m, B

2
m and B1

0 , B
2
0 with the

parameters λu,
h22
ν2
U0 and m. Showing that B1

0 , B
2
0 are uniquely determined is hence sufficient

to show that there is a unique solution û in the atmosphere.

Let us note

(
B1
m

B2
m

)
:=

(
B1

0 + S1
m(U0)

B2
0 + S2

m(U0)

)
. The vector

(
S1
m(U0)
S2
m(U0)

)
is the sum of the right

hand side of (6.33) from 1 to m. It makes the link between B1
0 , B

2
0 and B1

m, B
2
m but will not

affect the presence of a unique solution for B1
0 , B

2
0 .

Remark All the variables S in the following will not be used to determine the existence of
a unique solution û.

The Dirichlet boundary condition at Ha = (Ma +
1
2
)ha is equivalent to B1

Ma
(λu)

2Ma =
−B2

Ma
which determines B2

0 :

−B2
0 =

(
S1
Ma

(U0) +B1
0

)
(λu)

2Ma + S2
Ma

(U0) (6.34)

We hence only need the sole value of B1
0 to characterize û. In particular, the variable û 1

2

used in the linearized transmission condition reads

û 1
2
= B1

0(1− λ2Ma
u ) + S1

0 + S2
0 − S1

Ma
λ2Ma
u − S2

Ma︸ ︷︷ ︸
:=S

m=1/2
u,a (U0)

(6.35)

To obtain the derivative at interface ϕ̂a,0 (6.29a) is used at the first grid level:

χaû 1
2
= û 3

2
− û 1

2
− haϕ̂a,0 +

h2a
νa
U0 (6.36)

Those equations give

ϕ̂a,0 =B
1
0

1

ha

(
λu − λ2Ma−1

u − (χa + 1)(1− λ2Ma
u )

)

︸ ︷︷ ︸
:=K1,a

− 1

ha

(
(χa + 1)Sm=1/2

u,a − Sm=3/2
u,a − h2a

νa
U0

)

︸ ︷︷ ︸
:=Sm=0

ϕ,a

(6.37)

We obtain similar equations in the ocean part:

û− 1
2
= A1

0(1− λ2Mo
uo ) + Sm=−1/2

u,o (U0)

ϕ̂o,0 = −A1
0K1,o − Sm=0

ϕ,o , K1,o =
1

ho

(
λuo − λ2Mo−1

uo − (χo + 1)(1− λ2Mo
uo )

) (6.38)
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The continuity of the flux at interface ρoνoϕo = ρaνaϕa lets us rewrite

A1
0 = −B1

0 × ϵ
νa
νo

K1,a

K1,o

−
S0
ϕ,o − ϵνa

νo
S0
ϕ,a

K1,o

(6.39)

and the jump between the solutions is

û 1
2
− û− 1

2
= B1

0K2 +∆S (6.40)

where K2 = 1−λ2Ma
ua +(1−λ2Mo

uo )ϵνa
νo

K1,a

K1,o
and ∆S = S

m= 1
2

u,a −S
m=− 1

2
u,o +(1−λ2Mo

uo )
S0
ϕ,o−ϵ

νa
νo
S0
ϕ,a

K1,o
.

6.A.2 Inverting the friction law

After substitution of û 1
2
−û− 1

2
and ϕa,0 in the friction law (6.29d), we obtain a linear equation

involving B1
0(s) and B

1
0(s):

(νaK1,a −
3αeK2

2
)

︸ ︷︷ ︸
K3(s)

B1
0(s)− αe

OK2(s)

2︸ ︷︷ ︸
K4(s)

×B1
0(s) = Sfriction (6.41)

where Sfriction = 3αe

2

(
∆S + O

3
∆S(s)

)
+ νaS

m=0
ϕ,a . The complex conjugate of (6.41) taken at

s gives
−K4(s)B

1
0(s) +K3(s)B1

0(s) = Sfriction(s) (6.42)

Finally, B1
0 (and ûj) can be uniquely determined if the system (6.41-6.42) has a unique

solution, i.e. if the following matrix is invertible:
(
K3(s) −K4(s)

−K4(s) K3(s)

)
(6.43)

Figure 6.9 shows that the determinant of this matrix is not zero for σ > 0. For the frequencies
ω = f and ω = −f the determinant is close to zero, and it seems to be asymptotically
proportional to

√
σ.

The Laplace transform can be uniquely inverted (e.g. [Cohen, 2007]) because ûj(s) does
not grow faster than exponentially for |s| → ∞. Indeed, the asymptotic values of Ki for
|s| → ∞ are

K1,j ∼ −χj
hj
, K3 ∼ −νaχa

ha

K2 → 1− ϵ
ha
ho
, K4 → αe

O
2
(1− ϵ

ha
ho

)

One can see that K3 → ∞ whereas K4 tends to a constant. Since û is given by the inverse
of (6.43), it tends to zero as s → ∞. Figure 6.9 also shows that the determinant of (6.43)
increases with ωβ (for some β ≈ 2) for high |s|.
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Figure 6.9: Absolute value of the determinant of (6.43) depending on the frequency variable.
With our parameters, if σ > 0 the matrix is invertible ∀ω.

6.B Appendix: detailed convergence study of the lin-

earized case

We interest ourselves to the linearization of (6.4) around a stationary state U e
j , ϕ

e
j .

(∂t + if)uk
j,m+ 1

2

= νj
ϕkj,m+1−ϕkj,m

h

ukj
∣∣
t=0

= 0

ukj
∣∣
z=Hj

= 0

ρoνoϕ
k
o,0 = ρaνaϕ

k
a,0

νaϕ
k
a,0 = CD |∆U e|

(
3
2
∆uk−1 + 1

2
∆Ue

∆Ue∆u
k−1
)

−θ CD|∆U e|
(
uka − uk−1

a

)

The three first equations are used in a Fourier transform or z-transform to obtain

(s+ if)ûk
j,m+ 1

2

= νj
ϕ̂kj,m+1−ϕ̂kj,m

h

ûkj
∣∣
z=Hj

= 0
(6.44)

where s is the frequency variable. Using the form of ϕj,m̸=0 =
uj,m+1/2−uj,m−1/2

h
we obtain for

m > 0

(χj + 2)ûk
j,m+ 1

2
= ûj,m+3/2 + ûj,m−1/2, χj = h2j

s+ if

ν
(6.45)
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We use the ansatz

ûa,m+1/2 =
∑

i

Bi
k(1 + λia)

m

ûo,−m−1/2 =
∑

i

Aik(1 + λio)
m

where λij can be obtained by injecting the ansatz in (6.45):

(χj + 2)(1 + λij) = (1 + λij)
2 + 1

The solutions of this equation are λj = λ1j =
1
2

(
χj −√

χj
√
χj + 4

)
and λ̃j = λ2j = χj − λj.

One can prove that (1 + λj)(1 + λ̃j) = 1.

The boundary condition at Hj = ±(Mj + 1
2
)hj gives that {A2

k, B
2
k} =

−{A1
k, B

1
k} (1 + λj)

2Mj . Finally, the jump of the solution across the interface is

ûa,1/2 − ûo,−1/2 = B1
k − A1

k −B1
k (1 + λa)

2Ma + A1
k (1 + λo)

2Mo := B1
kI

−
a − A1

kI
−
o

and we also define I+j = 2− I−j . Note that all the variables I
±
j → 1 with the infinite domain

hypothesis, which is used in (6.18). The fluxes inside the domains are computed with the
finite differences:

ϕa,m+1 = B1
k

λa
ha

(1 + λa)
m +B2

k

λ̃a
ha

(1 + λ̃a)
m (6.46)

ϕo,−m−1 = −A1
k

λ̃o
ho

(1 + λo)
m − A2

k

λo
ho

(1 + λ̃o)
m (6.47)

And the fluxes at the interface are obtained by using (6.44):

haϕa,0 = haϕa,1 − χaûa,1/2 = B1
k (λa − χa) +B2

k

(
λ̃a − χj

)
= B1

k(λaI
+
a − χa)

hoϕo,0 = hoϕo,−1 + χoûo,−1/2 = A1
k

(
−λ̃o + χo

)
+ A2

k (−λo + χo) = A1
k((λo − χo)I

+
o + χo)

A2
k, B

2
k will not intervene anymore and we now note (Ak, Bk) = (A1

k, B
1
k).

Remark It can be checked that ϕa,0 and ϕo,0 correspond to the values obtained with m = −1
in (6.46) and (6.47). This was not obvious since they do not correspond to a finite difference

approximation
u
j, 12

−u
j,− 1

2

hj
. It is hence correct if ω ̸= −f to start from ϕj(±mhj) = ϕj,0(λj +

1)m in Section 6.4 (where it is assumed that Hj → ∞). However, the asymptotic analysis
of the convergence factor for ω + f → 0 (as it was done in [Clement et al., 2021]) hides a

division by zero when considering
ϕkj,0

ϕk−1
j,0

.
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We are now ready to study the transmission conditions. The continuity of the flux leads
to

hoϕ̂o,0 = haϕ̂a,0ϵ
νaho
νoha

⇒ Ak = Bk
λaI

+
a − χa

(λo − χo)I+o + χo
ϵ
νaho
νoha

(6.48)

We inject this equality in the jump of the solution across the interface and obtain

ûk
a, 1

2
− ûk

o,− 1
2
= Bkµ(s) (6.49)

where

µ(s) = I−a − I−o
λaI

+
a − χa

(λo − χo)I+o + χo
ϵ
νaho
νoha

(6.50)

The second interface transmission condition which is linearized gives

νa
ha
Bk

(
λaI

+
a − χa

)
= αe

(
3

2
Bk−1µ(s) + θ(ûka − ûk−1

a ) +
1

2

∆U e

∆U e
Bk−1(s)µ(s)

)
(6.51)

where
ûka − ûk−1

a = (Bk −Bk−1)I
−
a (6.52)

We finally obtain
Bk(s) = a1Bk−1(s) + a2Bk−1(s) (6.53)

where

a1 = αe
3
2
µ(s)− θI−a

νa
ha

(λaI+a − χa)− αeθI−a
, a2 = αe

1
2
∆Ue

∆Ueµ(s)
νa
ha

(λaI+a − χa)− αeθI−a
(6.54)

Remark It is easy to obtain the convergence factor of the case α = const by removing the
conjugate term and the factor 3

2
in (6.51). The convergence rate is then identical to a1,

without the 3
2
factor.

144



Conclusion and perspectives

This thesis focused on the numerical analysis of interactions between the ocean and atmo-
sphere within their coupling. We proposed a new discretization of the surface layer which
relies on hypotheses already in use in the computation of turbulent fluxes. Besides, the
Schwarz methods were studied at discrete and semi-discrete levels and we have highlighted
important features of their convergence. The analysis of convergence of Schwarz methods
was finally pursued in the presence of a parameterized surface layer and we proved some
convergence results on this simplified air-sea coupled problem.

Let us recall the three objectives of this thesis (a hierarchy of three models was used to
achieve each of them):

• Improve our knowledge on how the discretization affects the convergence factor of
Schwarz methods.

• Discuss the numerical treatment of the surface layer and propose improvements.

• Study the effect of the surface layer within the ocean-atmosphere coupling.

Chapter 2 discussed the convergence analysis of Schwarz methods at the semi-discrete and
discrete levels. The goal was do develop a methodology to be used later on more sophisticated
models. The effect of the discretization in both space and time was highlighted: we have
notably identified the importance of the interface conditions, both in their interpolation
within a multi-step time scheme and in their discretization in space. The interactions between
space and time discretizations were also investigated: they are characterized by the parabolic
Courant number. Finally, a Finite Volume discretization was derived based on a subgrid
reconstruction with quadratic splines. The special attention on the subgrid reconstruction
was later used for the discretization of the surface layer.

Chapter 3 introduced approximations that can be used to simplify the derivation of the
theoretical semi-discrete and fully discrete convergence factors. Indeed, as the complexity of
the discretizations increase the theoretical convergence factors become tedious to compute
analytically. One method approximates the semi-discrete convergence factors relying on the
modified equations technique and the other method combines the semi-discrete analyses to
approximate the fully discrete one. The ideas of those methods are simple and we exposed
some of their inherent strengths and weaknesses. For instance, the effect of the interpolation
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of the interface conditions discussed in Chapter 2 is not present when using the modified
equations technique. We found in which case those approximations could be useful and
explained the reasons for which they can be inadequate in other cases.

In Chapter 4, the surface layer hypotheses were discussed: we proposed a discretiza-
tion based on the Monin-Obukhov Similarity Theory. We used the solution profiles of this
Similarity Theory as the subgrid reconstruction on which is based the Finite Volume dis-
cretization. This discretization is such that the computation of turbulent fluxes is coherent
with the subgrid reconstruction of the solution. It was recently highlighted that the height
of the surface layer should not (always) be limited to the first grid level. We hence allowed
the size of the surface layer to be freely chosen independently from the grid levels: as a
result, the consistency of the discretization was found to be better than the usual methods
that constrain the surface layer height.

This discretization is applied to the oceanic part of the surface layer in Chapter 5, even
though considering an oceanic surface layer is recent and still uncommon. We focused
specifically on the handling of radiative fluxes which lead to particular difficulties in terms
of subgrid reconstruction. The proposed discretization of the surface layer including radiative
fluxes is a first step toward a well discretized oceanic surface layer. We have shown that this
discretization does not perform well in terms of consistency and should be improved.

Finally, Chapter 6 studied at the semi-discrete-in-space level the effect of the surface
layer on the ocean-atmosphere coupling. The methodology presented in Chapter 2 was
used to treat a surface layer which was simplified compared to Chapters 4 and 5. The
well-posedness of the coupled problem was discussed and the existence and unicity of a
solution in the neighborhood of the steady state was proved using the inverse function
theorem. We examined the convergence of Schwarz methods with a parameterized surface
layer as a nonlinear transmission condition: interestingly, the convergence factor was found
to change from one iteration to another. The convergence study was pursued by linearizing
the transmission condition and we derived upper and lower bound of the convergence factor,
corresponding to the singular values of a transition matrix between the iterations. We
optimized numerically the convergence with respect to a relaxation parameter and compared
the convergence of the nonlinear system with the one with a linearized transmission condition.

Perspectives

The ultimate goal of this thesis is to reduce the numerical errors linked to the ocean-
atmosphere coupling in operational models. Two perspectives directly linked with this
objective arise:

• Implement and evaluate the discretization of the surface layer introduced in Chapter
4 and 5 within more realistic simulations. The order of accuracy would need to be
improved in the process: in particular, splitting a cell in two parts breaks the possible
structured grid properties. Furthermore, the schemes should be analyzed in terms of
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stability, monotonicity, and other mathematical or physical properties.

• Make sure that the convergence of Schwarz methods is attained in one or two iterations:
iterative coupling is otherwise unaffordable in this ocean-atmosphere context. This can
be done by choosing better transmission conditions and/or by improving the first guess.
This first guess could be obtained either with a well-chosen extrapolation of other time
windows (the latter option is presently studied in the AIRSEA team in collaboration
with O. Marti for the model IPSL-CM) or with Schwarz iterations on a simplified
internal subproblem (e.g. similar to the ones studied in this thesis).

Besides those direct applications, the theoretical aspects also need to be consolidated in
terms of well-posedness and in terms of convergence of Schwarz methods. It seems that this
mathematical knowledge is not going to catch up soon with the increasing complexity of the
operational models. However, the former could provide guidelines to wisely parameterize
and discretize the latter while keeping good mathematical properties.

Several steps forward can be pursued as the following of the present thesis which used
the simplification that the viscosity is constant. Convergence studies of Schwarz methods
were conducted with variable viscosities but never to our knowledge at the semi-discrete-in-
space level. Two perspectives arise from the objective of taking the varying viscosities into
account:

• Developing mathematical tools so that the semi-discrete-in-space convergence factor
could be studied with varying viscosities (as it was done in the continuous case in
[Thery, 2021]) or varying space steps. A first step toward this convergence factor
would be to use the idea of the combined convergence factor in Chapter 3: instead of
combining the contribution of the space scheme and of the time scheme, it could be
relevant to combine the contribution of the space scheme and of the varying viscosities.

• Extending the proof of well-posedness of Chapter 6 to varying viscosities that depend
on the surface layer parameterization. The atmosphere and ocean models were de-
veloped separately and are coupled through a surface layer whose parameterization
contains additional hypotheses. The compatibility between all the components of the
ocean-atmosphere coupling is not guaranteed and the well-posedness study of simplified
models could teach us a lot.

The coherence between the surface layer parameterization and the discretization is a small
aspect within the much wider problem of articulating a dynamical core with a physical
parameterization. Incoherence may appear in this conception because of the huge complexity
of the numerical models: the development and the implementation of parameterizations need
a numerical analysis to ensure a global harmony.
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Les modèles numériques de prévision de
l’océan et de l’atmosphère sont essentiels
pour la compréhension des phénomènes
géophysiques qui y sont liés. Le cou-
plage de ces modèles dans les simula-
tions joue un rôle clé pour une large
gamme d’échelles temporelles (cycle di-
urne, cyclone tropicaux, climat...) où il
est nécessaire de représenter les interac-
tions entre l’océan et l’atmosphère.

L’implémentation du couplage est
généralement réalisée de manière par-
tielle et introduit une erreur numérique
qu’il convient de minimiser. Dans ce
but, des méthodes de couplage itératives
et leur vitesse de convergence sont
considérées ici, les pratiques actuelles
étant souvent équivalentes à une seule
itération.

Une difficulté dans l’analyse
mathématique de la convergence des
méthodes de couplage est la présence
d’une couche limite de surface entre
l’océan et l’atmosphère. Cette spécificité
justifie d’étudier la convergence au niveau
discret (c’est-à-dire en prenant en compte
certains choix d’implémentation) plutôt
que continu.

Par ailleurs, les paramétrisations de
la couche limite de surface s’appuient
sur des hypothèses qui ne sont pas
mathématiquement imposées au sein des
modèles. Cette thèse propose de renforcer
la cohérence entre le calcul des flux turbu-
lents intervenant dans la couche limite et
les discrétisations des équations décrivant
l’océan et l’atmosphère.

L’analyse de la couche limite de surface
au sein du couplage océan-atmosphère est
réalisée ici en utilisant une hiérarchie de
modèles permettant à la fois d’obtenir des
résultats mathématiques et de reproduire
des comportements numériques d’intérêt.

Numerical models of the ocean and atmo-
sphere are essential for the understanding
of the associated geophysical phenomena.
The coupling of these models plays a key
role for a wide range of time scales (di-
urnal cycle, tropical cyclone, global cli-
mate...) where it is necessary to repre-
sent the interactions between the ocean
and the atmosphere.

The implementation of the coupling is
generally done only partially and intro-
duces a numerical error that should be
minimized. For this purpose, iterative
coupling methods and their convergence
speed are considered here, the current
practices being often equivalent to a sin-
gle iteration.

A difficulty in the mathematical conver-
gence analysis of coupling methods is the
presence of a surface layer between the
ocean and the atmosphere. This speci-
ficity justifies studying the convergence at
the discrete level (i.e. taking into account
some implementation choices) rather than
at the continuous level.

Moreover, the parameterizations of the
surface layer are based on assumptions
which are not mathematically enforced
within the models. This thesis proposes
to consolidate the coherence between the
computation of turbulent flows in the sur-
face layer and the discretizations of the
equations describing the ocean and the at-
mosphere.

The analysis of the surface boundary layer
within the ocean-atmosphere coupling is
carried out here using a hierarchy of mod-
els allowing to obtain both mathematical
results and the replication of numerical
behaviors of interest.
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