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Résumé

Comprendre l’autogénération des écoulements dans les plasmas de tokamak est
un sujet primordial. En effet, le contrôle des écoulements par injection de moment
externe dans les futurs réacteurs sera difficilement réalisable, voire impossible. Les
écoulements jouent pourtant un rôle majeur dans la stabilité et la performance d’un
plasma de fusion. Dans cette thèse, l’autogénération de l’écoulement perpendiculaire
aux lignes de champ, associée au champ électrique radial, est étudiée dans deux
contextes expérimentalement pertinents. La manière dont s’établit ce champ est
un enjeu majeur, car il est impliqué dans la formation et le maintien des barrières
de transport qui apparaissent spontanément dans les décharges hautes puissance,
réduisant fortement le transport turbulent.

Dans une premier temps, l’effet d’une perturbation 3D du champ magnétique
comme celle causée par la modulation provenant du nombre fini de bobines to-
roïdales, aussi appelé “ripple", est étudié. Une telle perturbation affecte la vitesse
toroïdale du plasma, elle-même générée de façon spontanée par la turbulence. Jus-
qu’à présent, la compétition et la synergie entre ces deux contributions n’avaient
pas été étudiées numériquement et théoriquement. Pourtant, de nombreuses études
expérimentales sur différents tokamaks ont montré que ces deux effets impactent
drastiquement la vitesse toroïdale du plasma. À l’aide d’un modèle théorique et de
simulations effectuées avec le code gyrocinétique GYSELA, la compétition a été ob-
servée et quantifiée. Une expression de l’amplitude critique du ripple pour laquelle
la turbulence devient sous-dominante dans le contrôle de la rotation toroïdale a été
définie puis validée avec ces simulations. Des études préliminaires montrent alors que
ce seuil pourrait être franchi dans ITER. La synergie entre la turbulence et le ripple
a également été évaluée. L’effet dominant est l’impact du ripple sur le tenseur de
Reynolds au travers de la modification du cisaillement du champ électrique radial.

Dans un second temps, les expériences récentes sur le tokamak WEST montrant que
le champ électrique radial est sensible au taux d’enroulement des lignes de champ
magnétique, appelé “facteur de sécurité", sont investiguées numériquement via des
simulations gyrocinétiques. Comme observé expérimentalement, ces simulations
montrent que le champ électrique radial se creuse lorsque le facteur de sécurité
et l’intensité turbulente diminuent. Les effets collisionnels apparaissent cependant
négligeables pour l’établissement du champ électrique radial mettant en avant le rôle
indéniable de la turbulence. L’effet majoritaire vient du transfert d’énergie turbulente
variant avec le facteur de sécurité, qui favorise soit les écoulements à très basse
fréquence appelés “zonal flows" , soit ceux à plus haute fréquence appelés “GAMs".

Mots clés : Plasma, fusion, turbulence, néoclassique, simulations gyrocinétiques
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Abstract

Understanding the self-generation of flows in tokamak plasmas is of prime impor-
tance. Indeed, the control of flows by external momentum injection in future reactors
will be challenging, if not impossible. However, flows play a major role in the stability
and performance of a fusion plasma. In this thesis, the self-generation of the flow
perpendicular to the field lines, associated with the radial electric field, is studied in
two experimentally relevant contexts. The way this field is established is a major issue,
as it is involved in the formation and sustainment of transport barriers that appear
spontaneously in high power discharges, significantly reducing turbulent transport.

In a first step, the effect of a 3D perturbation of the magnetic field such as the one
caused by the modulation arising from the finite number of toroidal coils, also called
“ripple", is studied. Such a perturbation impacts the toroidal velocity of the plasma,
itself generated spontaneously by the turbulence. Until now, the competition and
synergy between these two contributions had not been studied numerically and theo-
retically. However, numerous experimental studies on different tokamaks have shown
that these two effects drastically impact the toroidal velocity of the plasma. Using a
theoretical model and simulations performed with the gyrokinetic code GYSELA, the
competition has been observed and quantified. An expression of the critical ripple
amplitude for which turbulence becomes subdominant in the control of the toroidal
rotation has been defined and validated with these simulations. Preliminary studies
show that this threshold could be reached in ITER. The synergy between turbulence
and ripple has also been evaluated. The dominant effect is the impact of the ripple on
the Reynolds tensor through the modification of the radial electric field radial shear.

In a second step, recent experiments on the WEST tokamak showing that the radial
electric field is sensitive to the winding rate of the magnetic field lines, called “safety
factor", are numerically investigated with gyrokinetic simulations. As observed experi-
mentally, these simulations show that the radial electric field increases as the safety
factor and the turbulent intensity decrease. However, collisional effects appear to be
negligible for the establishment of the radial electric field, highlighting the undeniable
role of turbulence. The main effect comes from the transfer of turbulent energy vary-
ing with the safety factor, which favors either very low frequency flows called “zonal
flows", or higher frequency flows called “GAMs".

Keywords: Plasma, fusion, turbulence, neoclassic, gyrokinetic simulations
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1.1. Fusion energy: context and purpose
The energy crisis is one of the most pressing challenges the world faces as of 2022,

the year this thesis was written, and presumably for the upcoming century. Indeed,
the energy demand is increasing rapidly as the supply of fossil fuels dwindles. In
addition to the resulting sharp increase in the price of energy, its current production
is one of the main sources of released greenhouse gases from human activity. The
greenhouse effect is the process by which radiation from the Sun warms the planet’s
surface up to a temperature above what it would be without an atmosphere, due to
greenhouse gases trapping the associated heat. Consequently, the Earth’s atmosphere
is warming at an unprecedented rate, causing several serious problems including
rising sea levels, more extreme weather events, or the loss of biodiversity. Many reports
(see for example the recent IPCC reports or french RTE report) provide evidence
of this global warming and project multiple scenarios for the future. Most foresee
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catastrophic implications if no drastic changes are made to the way we produce and
consume energy. Among numerous examples, let us look at the current projection
regarding the global temperature which acts as a good proxy for the global warming
intensity. Extracted from the latest GIEC report [1], Fig.1.1a shows the evolution in
time of the observed global temperature variations between 1850 and 2020. A relatively
constant behavior was reported until the fifties from which a sharp increase started.
In addition, this figure shows the simulated temperature variation with and without
human activity, showing clearly its responsibility for this increase. From the same
report, Fig.1.1b shows the increase in frequency and intensity of the heat waves with
a reference taken before 1900. An exceptional heat wave that occurred once every
50 years before the first industrial revolution now occurs more often and will occur
even more often in the future, and with increasing intensity. In 2050, it indicates that
heat waves would reach as high as 50°C in France. The recent deadly heat wave in
Pakistan in Spring 2022 illustrates this global trend: an event of this scale was expected
to occur once every 3000 years in the pre-industrial age, but is rendered 30 times more
probable due to human activity. Following this figure, if the current trend on CO2

emission does not change, it will be 8 times more probable in 2050 than it is today.

(a) (b)

Figure 1.1. – Measured global temperature evolution (a) as well as the frequency and
intensity of exceptional heat waves compared to the pre-industrial era
(b). Extracted from the latest GIEC report [1].

All of these elements make it clear that we need to find alternative long term sources
of energy. Among the possible ones, nuclear energy presents a viable option to address
both the energy crisis and global warming. Indeed nuclear power plants generate
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large amounts of continuous energy without emitting greenhouse gases, making them
a reliable and sustainable energy source.

This energy is harvested from nuclear reactions, described in the next section, that
eject one or more particles with high kinetic energy. The most widely used method to
convert kinetic energy of particles is through collisions with the nucleus of atoms that
constitute a fluid. This causes the fluid to heat up as a result, which can then be used
as the hot reservoir for a Carnot cycle and hence generate electricity.

1.2. Nuclear reactions
A nuclear reaction is the evolution of a nucleus that follows a triggering event. Two

types of nuclear reactions release energy: fission and fusion. Nuclear fission is a
process in which an atom splits into two or more lighter atoms generally as a result of
neutron absorption. One can take the example of the fission of Uranium 235, which is
the most common in current nuclear reactors. It reads

235
92U+ 1

0n → 236
92U → FP1 +FP2 +α× 1

0n (∼ 200MeV)

where FP stands for "Fission Product" which can be many different combinations of
atoms lighter than 235

92U (the most probable ones are the Krypton 92 and Barium 141),
andα is average number of neutron emitted per fission (usually around 2-3). When the
235

92U absorbs a neutron, a new unstable nucleus of Uranium 236 is formed and quickly
splits into other more stable nuclei. While the kinetic energy of the incident neutron
can be as low as 0.025 eV, around 200 MeV are released in the process as kinetic energy
carried mainly by the fission product. Furthermore, the ejected neutrons can trigger
another fission reaction and entertain the reaction chain used in current reactors.

The other class of nuclear reaction that releases energy, and on which we will focus,
is fusion. Nuclear fusion is a process in which two small atoms merge into a bigger
one, as a result of nuclei collision. An example is the fusion of Deuterium 2

1D and
Tritium 3

1T into a Helium 4
2He nucleus as well as an energetic neutron. It reads

2
1D+ 3

1T → 4
2He (3.52MeV)+ 1

0n (14.1MeV) .

Triggering a fusion reaction requires making two nuclei collide, although they are
both positively charged and hence repel each other. Contrarily to fission, fusion is then
only accessible by providing enough energy to the reactants such that the Coulomb
barrier can be crossed. In practice, this input energy is obtained by heating the 2

1D
/ 3

1T mixture so that the thermal energy becomes comparable to the electrostatic
potential energy 1. In the remainder of the manuscript, the thermal energy Eth will
be assimilated to the temperature T as they are related with the Boltzmann constant
kB through the relation Eth = kB TK (Kelvin)/e = T (eV), where e ≃ 1.6×10−19C is the
absolute value of the electron charge.

1. Quantum tunnelling allows the fusion reaction to occur at thermal energy lower (but comparable)
than the electric potential energy.
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On Fig.1.2 the cross-section, representative of the interaction probability, of the
fission of 235

92U and the fusion of different mixtures including 2
1D / 3

1T as a function of
the energy of the incident neutron for fission and of the thermal energy of reactants for
fusion is displayed. It appears that, while fission probability is maximum with thermal
neutrons at around ∼ 0.01 eV or lower, fusion is more likely to occur at thermal energy
around ∼ 10−100 keV which converts to ∼ 108 −109 °C. Heating and confining matter
at these temperatures is a major challenge for fusion. It is discussed in more detail in
the next section.
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1p (Fusion)

2
1D + 3

1T 4
2He + 1

0n (Fusion)

Figure 1.2. – Cross-section of 235
92U fission vs. the energy of the incident neutron (blue)

and cross-section of fusion of two fusion reactions (red & purple) vs. the
thermal energy of the reactants.

So where does this energy come from? Whether it’s fission or fusion, the same under-
lying physics is at play. The nucleus of an atom is composed of nucleons that are held
close by the strong interaction. It manifests in the binding potential energy between
nucleons. Depending on the nucleus structure, which is determined by the number
of neutrons/protons A that constitute it, the mean binding energy associated with
each nucleon E/A is variable. A high mean binding energy relates to a tightly bound
nucleus and consequently a more stable element. The binding energy per nucleon
E/A of stable elements is shown in the Aston curve displayed Fig.1.3 (represented
here with negative energy). It appears that E/A increases with A up to the iron 56

26Fe,
which is the most stable nucleus, and then decreases for higher elements. This binding
energy translates into the deficit of mass, which means that a bound nucleus is lighter
than the sum of each nucleon that constitutes it. This is a consequence of the famous
Einstein relation E = mc2 where m is the nucleus mass, c is the speed of light and E
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is the energy held by the matter. Following the Aston curve, it means that fusioning
elements lighter than 56

26Fe into a more stable nucleus also means the formation of a
nucleus weighting less than the combined mass of the reactants. Analogously, the
fission of elements heavier than 56

26Fe forms fission products that are more tightly
bound, i.e. weighting less, than the original nucleus. This surplus of mass converts
into energy, explaining the important kinetic energy carried by the products of the
reaction.

Figure 1.3. – Binding energy per nucleus as a function of the number of nucleons in
the nucleus.

To grasp the magnitude of this released energy, one can compare it to the energy
released by carbon 12

6C combustion used in charcoal power plant:

C+O2 → CO2 (4eV) .

Compared to the fission of 235
92U, even when taking the atomic mass ratio 235/12

into account, the energy content per mass unit released in the fission reaction exceeds
the carbon combustion by about a factor 2.5×106. For the fusion of 2

1D and 3
1T, this

factor reaches about 1×107. It means that the oxidation of one ton of carbon releases
the same energy as the fission of 0.4 gram of uranium 235 or the fusion of 0.1 gram of
deuterium and tritium.

It partly explains why nuclear fission and fusion are attractive sources of energy. Of
course, many constraints and challenges are linked with the harnessing of nuclear en-
ergy, and they are quite different in fission and fusion devices. Here no exhaustive list
of the advantages and drawbacks of each technology will be made, but it is interesting
to draw the current picture of nuclear energy implementation and the foreseen future.
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First, the current industrial nuclear reactors all make use of the fission of uranium or
plutonium, although the reactor designs can be very different. They all share at least
one issue: the shortening of the available fuel. Indeed, it is expected that the extraction
and enrichment of 235

92U will cease to be profitable in about 100-200 years [2]. However,
at least two technologies of reactors can alleviate this problem. The first one is the
next generation of fission reactors that are designed to be fast-breeder, meaning that
fuel will be produced (from a currently unusable uranium isotope) while the reactor
is running. Also, some of these reactors plan to use alternatives to Uranium, like
Thorium for which global supply is believed to be significant. The other technology is
fusion reactors for which the planned fuel is a 2

1D/3
1T mixture. Tritium is a radioactive

element with a half-life of 12.3 years, such that it does not exist in nature. However,
there are multiple ways to generate tritium. Currently, the main producer of tritium is
Canada thanks to their CANDU-type nuclear reactors [3]. CANDU reactors make use
of heavy water D2 O as the neutron moderator, such that neutron captures can lead
to the formation of tritiated water T2 O while the reactor is running. Approximately
20 kg of tritium are produced each year globally, which is enough for the short future
of planned prototypes and demonstrators. For the longer term though, it is expected
that a single industrial fusion reactor would require about 100 to 200 kg of tritium per
year. Much like fast-breeder reactors, it is planned to use the neutrons created in the
fusion reactor and walls of Lithium 6, 6

3Li, and Lithium 7, 7
3Li, to trigger the reactions

6
3Li+ 1

0n → 4
2He+ 3

1T

and 2

7
3Li+ 1

0n(≥ 2.466MeV) → 4
2He+ 3

1T+ 1
0n .

This way, it is expected that the resulting fuel would meet the current demand for
energy for several thousand years.

While both of these nuclear technologies are very relevant to the energy crisis,
the focus in this thesis concerns fusion reactors and more specifically magnetized
confined plasmas in a tokamaks which are detailed in the next sections.

1.3. Hot and magnetized plasmas
As previously mentioned, the peak fusion cross sections for the most accessible

fusion reaction is in the range of T ∼ 10keV. The matter at this temperature comes
with its share of interesting physics but also operational constraints. At such thermal
energy, electrons and nuclei are partially or totally unbound, forming gas of charged
particles. The matter in this state is called plasma.

2. This reaction was discovered inadvertently when the USA tested their most powerful nuclear
H-bomb ever launched: Castle Bravo. The detonation explosive yield was about 2.5 times the predicted
6 megatonnes of TNT because of the tritium generated by the lithium present inside the bomb.
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Plasma is by far the most abundant state of matter in the universe that makes
up more than 99.99% of its constituents. However, there are few manifestations of
plasma under terrestrial conditions, where natural and observable plasmas sum up
to flames, stars, and auroras. Accounting for plasmas observed or created using new
technologies, the resulting diversity in plasma density and temperature covers a broad
range of orders of magnitude, as shown in Fig.1.4.

Figure 1.4. – Diversity of plasma in the universe. Source: Wikipedia

Compared with a neutral gas, plasma is sensitive to electromagnetic fields but also
generates its own. The focus in this thesis is of course high temperature plasmas,
commonly referred to as hot plasmas.

1.3.1. Lawson criterion
Despite the high energy needed to produce fusion reactions, it is relatively easy

to achieve in a laboratory (examples are particle accelerators or in a more somber
fashion, nuclear bombs). However, in a reactor, the production of energy by fusion
needs to be superior to the energy lost to the environment. It is linked to a fundamental
criterion for a reactor related to how much of the released energy is retrieved by the
fuel, with the idea of self-sustainment of the reactions. In this context, a figure of
merit characterizing fusion reactors, called the Lawson criterion, turns out to be quite
handy to understand the current reactor designs. Three quantities appear in this 0D
criterion:

— Not surprisingly, the plasma temperature T , which is a requirement for the
fusion reactions to occur as already discussed in Sec.1.2;
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— The plasma density n, which can be understood as the measurement of the
particles’ proximity to each other. More particles in the same volume translates
to a higher probability for two nuclei to collide and fusion reactions to occur.

— The energy confinement time τE , which measures how fast the energy provided
to the fuel escapes the device. Larger τE corresponds to smaller required energy
to reach the target temperature.

It turns out that maximizing the product of these quantities is beneficial for reaching
reactor operational conditions. A common dimensionless parameter to characterize
the power yield of a reactor is the energy gain factor Q. It is defined as the ratio
between the power released by fusion reaction and the heating power provided to
the plasma. The dream for fusion reactors is that α particles transfer enough of their
energy to the fuel such that no external heating is required. This self-sustainment limit
is called the ignition and corresponds to Q →∞. Another interesting limit, referred
to as the break-even, is Q = 1, i.e. when the fusion power compensates exactly the
heating power. Back in 1957, J.D. Lawson proposed that break-even is reached past
a threshold on the triple product nTτE [4]. For the 2

1D/3
1T fuel, it appears that the

minimum of the nτE product is reached at T ∼ 26keV . From this point, two different
ways of making a reactor emerge:

— By maximizing the density: this is done in practice by compressing and heating
a target of fuel with energetic lasers. This method is called inertial confinement
fusion. The most advanced projects are the National Ignition Facility (NIF) in
the USA and the Laser Mégajoule in France [5].

— By maximizing the confinement time: this is done in practice by confining a hot
plasma with magnetic fields. This is called magnetic confinement fusion. Numer-
ous technologies based on magnetic confinement exist: tokamaks, stellarators,
Z-pinch, Field Reversed Configuration, spheromaks, magnetic mirrors, Reverse
Field Pinch ...

So how far are we from break-even?
Fig.1.5 shows the product nτE as a function of the ion temperature for experiments

done in both inertial and magnetized fusion devices. It appears that the only experi-
ment that crossed this threshold has been performed at the NIF in 2021 [6]. However,
NIF (as well as the Laser Megajoule) are not reactor-oriented projects. Next in line
are tokamaks, which are coming closer and closer to the break-even. The record for a
long reactor-oriented discharge has arguably been performed with the JET tokamak
in 2021 [7], which released about 60M J of fusion power in about 5s, yielding a gain
factor of Q ∼ 0.25. The first reactor prototypes (ITER, SPARC and STEP) are planned to
function in the next decades and are expected to exceed break-even.
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Figure 1.5. – nτE as a function of ion temperature T for fusion experiments with dif-
ferent types of inertial and magnetized confinement devices. The right
y-axis represents the ratio of fusion power to externally applied heating
power. Extracted from [8].

1.3.2. Characteristic scales of a hot magnetized plasma
The focus of this thesis is on magnetic confinement fusion. The associated plasma is

then immersed in a strong magnetic field and is referred to as magnetized plasma. The
fusion conditions in reactors using magnetic confinement are typically densities of the
order n ∼ 1020 particles/m3 and temperatures T ∼ 10keV . Resulting hot magnetized
plasmas cover a broad range of temporal and spatial scales. For spatial scales, from
smaller to larger:

— The nucleus scale (∼ 10−15 m) is associated with the strong nuclear force which
is at play when nuclei collide and fusion reaction occurs.

— The minimal distance of approach λL (∼ 10−12 m) is the distance from a charged
particle to another for which the initial kinetic energy Ek becomes equal to the
Coulomb potential energy. In practice this energy is assimilated to the plasma
thermal energy T . In other words, it is the distance to the charged nucleus at
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which a particle turns over on a head-on collision. For two particles of charge e,

it reads λL = e2

(4πϵ0)T where ϵ0 is the vaccum permittivity.

— The inter-particle distance (∼ 10−7 m) is defined by λi−p = n−1/3 where n is the
plasma density.

— The Debye length λD (∼ 10−4 m) is the distance above which the charge of a
particle is screened by particles of opposite charges, as illustrated in Fig.1.6. It

is defined as λD =
√

ϵ0T
e2n

. At scales larger than λD , the plasma is considered
quasi-neutral such that the relation ene = Z eni , with ne /ni the electron/ion
density and Z e the ion charge, is valid.
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Figure 1.6. – Illustration of the charge screening effect in plasmas. A Debye sphere of
radius λD defines the volume for which a charged particle is screened by
particles of opposite charge.

— The Larmor radius ρc (∼ 10−3 m for ions, ∼ 10−4 m for electrons) denote the
radius of the circular trajectory of a charged particle in the plane orthogonal to
the magnetic field direction, called the gyromotion (see Sec.1.4.1).

— The thermodynamical gradient length (∼ 1 m), related to the spatial gradient of
the equilibrium quantities, is comparable to the size of the reactor.

For temporal scales, from shorter to longer:

— The inverse plasma frequency ω−1
p (∼ 10−9 s), with ωp =

√
ne2

ϵ0m , is the charac-
teristic time of plasma response to a charge displacement (without a magnetic
field).

— The cyclotron period (∼ 10−7 s for ions, ∼ 10−11 s for electrons) is associated
with the gyromotion (see Sec.1.4.1).

— The collision time (∼ 10−3 s) is the mean time for the direction of the velocity
vector of a particle trajectory to deviate of an angle of order π due to Coulomb
collisions.

The next section is dedicated to explaining the charged particle trajectories im-
mersed in a magnetic field in order to understand the magnetic configuration used in
fusion devices.
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1.4. Motion of charged particles in a magnetic field
To assess the complex problem of plasma confinement, one must be able to predict

the motion of charged particle. A perfect situation for a reactor would be such that
trajectories of all particles that constitute the plasma are restricted to a finite volume.
Magnetic confinement devices are actually designed for this purpose. However, as is
developed in the next sections, many instabilities make this goal extremely challenging.
The aim of this section is to build a confined trajectory for a single charged particle in
order to introduce essential key quantities and tools used throughout this document.
First, the trajectory of a charged particle in a stationary and uniform magnetic field
is derived to introduce the cyclotron motion. Then the tools to assess more complex
problem with non-uniform and non-stationary electromagnetic fields are presented.
Finally, a description of confined trajectories is given.

1.4.1. Cyclotron motion
In the Cartesian frame (ex,ey,ez), the Newton equations of motion of a single particle

of mass m, electric charge e and position coordinates (x, y, z), immersed in a uniform
and static magnetic field B = Bez read

m

 ẍ
ÿ
z̈

= e

 ẏB
−ẋB

0

 (1.1)

meaning that the velocity in the direction parallel to the magnetic field is constant
and that the magnetic field only modifies the motion in the plane normal to this
direction. One can show 3 that the transverse motion is described by the following
equations

x = (vc /Ωc )cos(Ωc t ) (1.2)

y =−(vc /Ωc )sin(Ωc t ) (1.3)

where one defines the cyclotron frequency Ωc = eB/m and the cyclotron velocity vc .
The transverse motion of the particle is circular: this is the gyromotion. The radius of
this circle is called the Larmor radius and reads ρc = vc /Ωc . The center of this circular
motion is called the guiding center. It is often useful to decompose the particle motion
as the guiding center of position X and the gyromotion, as depicted in Fig.1.7.

3. It is straightforward by defining two new variables: α= x − i y and β= x + i y
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Figure 1.7. – Trajectory of a positively charged particle immersed in a uniform and
stationary magnetic field.

1.4.2. Newtonian, Lagrangian, and Hamiltonian formulations
of the problem

When accounting for a more general problem, i.e. a particle motion in an evolving
and inhomogeneous electromagnetic field, the tractability of the associated derivation
can become challenging (when at all possible). Multiple equivalent formulations of
classical mechanics exist and one must choose the most appropriate to one particular
problem. Here is a description of the formulations most commonly used in plasma
physics:

— Newtonian formulation: this formulation makes use of the Newton equations
of motion of a single particle of mass m and electric charge e immersed in an
arbitrary electric field E and magnetic field B reads

m
dv

dt
= e [E(x, t )+v×B(x, t )] (1.4)

where x is the particle position, t is the time and v = dx
dt . This formulation is

intuitive but usually not the most practical for calculation.
— Lagrangian formulation: this formulation of the problem relies on the least

action principle [9, 10] which leads to the definition of the particle Lagrangian L.
For a charged particle, this scalar quantity reads

L(x,v, t ) = 1

2
mv2 −e[φ(x, t )−v ·A(x, t )] (1.5)
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where φ is the electric potential and A is the magnetic vector potential. The
particle Lagrangian is then the kinetic energy subtracted from the potential
energy of the particle 4.
With this description, the equations of motion read

dpi (x,v, t )

dt
− ∂L
∂xi

= 0 (1.6)

where xi is one coordinate of x and pi = ∂L
∂ẋi

is the associated canonical momen-
tum. With Eq(1.6), it is easy to notice that ifLdoes not depend on the coordinates
xi , the associated canonical momentum pi are invariants of motion. This notion
of invariance is essential in dynamical systems as it allows the formulation of
conservation laws. Calculating the canonical momentum vector from Eq(1.5)
gives p = mv+eA(x, t ). As compared to more common systems, the kinetic part
of p in magnetized plasmas is negligible compared to the electromagnetic part
such that

∣∣ eA
mv

∣∣≫ 1.
— Hamiltonian formulation: this formulation makes use of another scalar field of

interest that can describe dynamical systems: the Hamiltonian H. For a charged
particle immersed in an electromagnetic field, it reads

H(x,p, t ) = [p−eA(x, t )]2

2m
+eφ(x, t ) . (1.7)

Note that the Hamiltonian depends on the momentum and not on the velocity
as for the Lagrangian. The equations of motion then read

dxi

dt
= ∂H
∂pi

(1.8)

dpi

dt
=−∂H

∂xi
(1.9)

and p is said to be conjugate to x. The Hamiltonian is convenient inter-alia for
changing the considered set of coordinates while conserving the structure of
Eq(1.8) and Eq(1.9).

In the following, both Lagrangian and Hamiltonian formulations are used. In partic-
ular, the Hamiltonian formulation can be used in a practical set of coordinates. This is
the aim of the next section.

1.4.3. Integrable motion
Regardless of the adopted formulation, the complex nature of charged particle

trajectories in an inhomogeneous and evolving electromagnetic field is analytically
intractable in the general case. For the equations of motion to be integrable, three

4. There is actually an infinite number of Lagrangian for a given system, here is shown the conven-
tional one.
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invariants of motion are needed [11]. Furthermore, the constraint of confining parti-
cles further adds to the problem. Indeed, to have spatially bounded trajectories, the
hairy ball theorem states that these trajectories should be inscribed in a torus 5. In
other words, the torus is the only shape that contains a singularity-free vector field,
which is essential when the major confining element is the magnetic field which must
respect the divergence-free condition. With this condition met, a convenient change
of coordinates in the Hamiltonian formalism from the set (x,p) to the angle/action
variables (α,J) is possible. Equations of motion then read

dαi

dt
= ∂H
∂Ji

=Ωi (1.10)

dJi

dt
=− ∂H

∂αi
= 0 (1.11)

whereΩi are the Hamiltonian angular eigenfrequencies. With (αi 0, Ji 0) the initial
conditions, the trajectory then take the simple form

αi =Ωi t +αi 0 (1.12)

Ji = Ji 0 . (1.13)

A magnetic field then confines charged particles if three periodic directions charac-
terize their motion. This also ensures the existence of magnetic surfaces, which are
defined as finite surfaces of normal vector n such that B ·n = 0. These surfaces are sim-
ply nested tori. Of course, the same difficulty remains regarding system integrability:
one must find 3 invariants of motion.

1.4.4. Confined particle trajectories
Fortunately, plasmas in tokamaks are characterized by a strong confining magnetic

field, in the sense that the Larmor radius is small compared to the magnetic field
gradient length, i.e. |∇ lnB |−1 ≫ ρc . This field also evolves slowly in time compared to
the cyclotron period, such that |∂t lnB |≪Ωc . This ordering is referred as the adiabatic
theory, and allows a perturbative treatment of Eq(1.4). Within this ordering, it is
possible to show [12, 13] that an adiabatic invariant µ exists. This invariant is nothing
else than the particle magnetic moment

µ= mv2
c

2B(X)
(1.14)

which is proportional to the magnetization of a small magnet induced by the current

5. In a sphere, for example, there is no way to have a continuous vector field without any singularity.
Taking the wind vector field on Earth, for instance, it means that there is at least one location where
there is no wind at all.
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which is generated by the gyromotion of the charged particle.
Under these hypotheses, it was demonstrated by Littlejohn [14] that a Lagrangian

in the set of variables (X, v∥,µ,ϕc ), where v∥ is the component of the particle velocity
parallel to the magnetic field lines and the other coordinates are defined in Fig.1.7, is

L(X, v∥,µ,ϕc , t ) = eA⋆ · Ẋ+ mµ

e
ϕ̇c −H (1.15)

where the Hamiltonian is

H=
mv2

∥
2

+µB +eφ (1.16)

and
eA⋆ = eA+mv∥b (1.17)

which can be seen as the canonical moment of a guiding center that follows magnetic
field lines, with b = B/B the unit vector along the direction parallel to the magnetic
field line.

Using the Euler-Lagrange equation Eq(1.6), the motion equations then read

ϕ̇c = eB

m
=Ωc (1.18)

µ̇= 0 (1.19)

v∥ = b · Ẋ (1.20)

B⋆
∥ Ẋ = v∥B⋆+ b

e
×∇

(
µB +eφ

)
(1.21)

B⋆
∥ mv̇∥ =−B⋆ ·∇(

µB +eφ
)

(1.22)

where

B⋆ =∇×A+ mv∥
e

∇×b (1.23)

B⋆
∥ = b ·B⋆ . (1.24)

The detailed derivation of these equations can be found in Appendix A.
Using the identity ∇×b = (b ·∇×b)b+b×κ with κ= (b ·∇)b, it is straightforward

to show

B⋆

B⋆
∥
= b+ mv∥

eB⋆
∥

b×κ (1.25)

such that the guiding center velocity can be recast in its most common expression

Ẋ = v∥b+vD +vE (1.26)

where

vD = 1

eB⋆
∥

b× (
µ∇B +mv2

∥κ
)

(1.27)
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is the magnetic drift velocity, which depends on the particle charge, mass and
magnetic moment, as well as

vE = B×∇φ

B⋆
∥ B

(1.28)

is the electric drift velocity, which only depends on the electric and magnetic fields,
and the parallel velocity of the particle through B⋆

∥
6.

These drifts are of fundamental importance and are basically the cause of departure
from a perfect confinement of particles. Indeed, Eq(1.26) shows that the magnetic
field and the electric field E =−∇φ inhomogeneities prevent the particle to strictly
follow the magnetic field lines. A similar effect appears in the momentum evolution
Eq(1.22). Indeed, neglecting the curvature κ, a parallel electric force f∥,E = eb ·E and
the magnetic mirror force f∥,D =−µ(b ·∇)B modify the constant velocity of particle
along the parallel direction. The mirror force describes the force exerted by the
magnetic field gradient on small magnets of magnetic moment µ. It can increase,
decrease or even reverse the velocity of particles. In this last case, it means that
a magnetic well along the parallel direction can trap particles that would reverse
their velocity periodically. It has a significant impact on the plasma confinement
properties, as is detailed further. With all this knowledge, the tokamak and its magnetic
configuration can be introduced. We will see that one can recover three invariants of
motion.

1.4.5. Magnetic configuration of a tokamak
To generate closed field lines winded around a torus, the technological solution

chosen for tokamaks and stellarators is to use magnetic coils. It can be pictured this
way: first starting from a linear solenoid composed of coils, one could join each end to
form a loop. This would form a purely toroidal magnetic field. However there is a catch:
looping back the solenoid unavoidably strengthens the magnetic field amplitude close
to the center (where coils are closer) and weakens the one at the outer radius (where
the coils are sparser). The resulting magnetic gradient causes a vertical magnetic
drift vD which points in opposite directions for ions and electrons. The associated
charge separation is responsible for a vertical electric field, retaining the charged
particle from drifting vertically. This electric field in turn drives an electric drift vE,
independent of particle characteristics, directed outward. A purely toroidal magnetic
field would thus naturally drive particles out of the device. The solution adopted in
tokamaks and stellarators to counteract this effect is to add a poloidal component to
the magnetic field. Consequently, the upward and downward regions of the devices
are connected by the helicity of the magnetic field lines. The charge separation
is then perfectly compensated by the rapid motion of particles along the parallel
direction. In stellarators, the helical magnetic field lines are directly induced by the

6. The approximation vE = B×∇φ

B 2 will be made in this manuscript, as in most cases the approxima-
tion B⋆

∥ ≈ B holds.
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magnetic coils that have a complex geometry. In tokamaks, the magnetic field results
from the sum of a purely toroidal field, generated by coils that are aligned vertically
and spatially distributed along the torus, and a weaker poloidal field generated by
inducing a current IP in the plasma along the parallel direction, which in turn induces
the poloidal component of the magnetic field. The tokamak geometry and magnetic
configuration are summed up in Fig.1.8. In this same figure is also introduced the
toroidal set of coordinates (r,θ,ϕ) in the specific case of a circular geometry. From now
on, this simplified case is the one that will be considered throughout this manuscript.

IP

BT

BPa

R0

r θ

Z

φ

Magnetic 
field line

Magnetic surface

Figure 1.8. – Magnetic configuration of a tokamak.

The magnitude of the poloidal component is smaller than the toroidal one, and is
often referred to through another quantity that appears naturally in most calculations:
the safety factor q . It is defined as the number of toroidal revolutions of field lines for
one poloidal revolution. It reads

q(ψ) = B ·∇ϕ

B ·∇θ⋆
(1.29)

where θ⋆, referred to as the intrinsic poloidal angle, is defined such that q only
depends on ψ which is the poloidal magnetic flux normalized to (−2π) such that it is
expressed

ψ=− 1

2π

∫ 2π

ϕ=0

∫ r

B ·∇θ
dr ′dϕ′

|(∇ϕ×∇r ) ·∇θ| .

It should be stressed that the intrinsic poloidal angle θ is not the geometric poloidal
angle θ⋆. However, in the large aspect ratio limit that we will consider throughout this
thesis, the difference between these two angles is small.

In tokamaks, the axisymmetry approximation is often made. It means that the
equilibrium electric and magnetic fields are left invariant when rotating around the
torus revolution axis. The fields are then independent of the toroidal angle ϕ. This
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thesis will focus extensively on the disparity from this axisymmetric assumption.
But first, it is important to define this reference situation where invariants can be
constructed.

The axisymmetric magnetic field B can be written

B = I (ψ)∇ϕ+∇ϕ×∇ψ (1.30)

where I =µ0IP (ψ)/2π (µ0 is the vacuum permeability).

1.4.6. Particle periodic motion and invariants in an
axisymmetric tokamak

Fig.1.9 is helpful for understanding the following and also acts as a summary for this
section. The usual angle/action coordinates in tokamaks are meant to describe parti-
cle motion in the axisymmetric case. In this limit, it is useful to make the difference
between two classes of particle trajectories that can occur in such a configuration. To
understand why there are two distinct classes of trajectories, one can look at the paral-
lel velocity v∥ expression when the particle Hamiltonian H, i.e. the particle energy, is
conserved:

v∥ =±v
p

1−λb (1.31)

where v is the particle velocity modulus, λ= µB0
H−eφ is called the trapping parameter,

with B0 the magnetic field amplitude taking at the magnetic axis, and b = B/B0. As
particles lie in the magnetic surface vicinity, the helicity of the magnetic field lines
imposes on particles to explore a varying magnetic field amplitude along their transit.
This is due to the fact that the magnetic field amplitude decays from the torus axis to
the outward region. This magnetic field inhomogeneity due to the curvature is called
the 1/R magnetic decay. Then two situations emerge. If the maximum normalized
magnetic field amplitude bmax encountered by the particle is such that λbmax < 1
then the sign of v∥ does not change during the particle transit. In other words, these
particles have a sufficiently high parallel energy - compared to the perpendicular
one - to cross any modulation of the magnetic field amplitude along the trajectory.
These particles are referred to as passing particles and, in a first approximation, follow
magnetic field lines. In the other case, i.e. when λbmax reaches unity, the particle
encounters a magnetic field amplitude barrier during its trajectory, such that the
parallel velocity vanishes, then reverses. These particles are referred to as trapped
particles. These distinct periodic trajectories are shown in Fig.1.9. The action/angle
sets of coordinates can now be introduced.

The first periodic motion, shared by both of these populations, is the gyromo-
tion. The associated angle/action are the gyroangle ϕc and J1 = m

e µ. The frequency
dϕc /d t =Ωc is the cyclotron frequency. The two other periodic motions are however
different for passing and trapped particles.
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θ = θB
αB = π

Rr

1/R decay

Figure 1.9. – Typical trajectories of passing (top) and banana-trapped (bottom) par-
ticle. On the right is the projection of these trajectories on the poloidal
plane. Extracted from [15].

As mentioned previously, passing particles roughly follow the magnetic field lines.
Their trajectory projected on the poloidal and toroidal plane then describe two pe-
riodic motions. The associated invariants are not detailed here as the focus is on
trapped particles.

For trapped particles, the motion is more complex. In the poloidal plane, the
projected trajectories have a banana shape. This movement is also periodic. The
associated angle αB is defined such that the poloidal angle of the particle reads θ =
θB sinαB for the deeply trapped particles. This can be understood by looking at Fig.1.9.
The angle αB then varies between −π and π whatever the span between −θB and θB .
The frequency dαB /d t =ΩB is called the bounce frequency. The associated action
is called the longitudinal invariant and reads J2 =J∥ =

∮ dl
2πmv∥ where the integral

is taken over the distance between two consecutive bounce points. In the toroidal
plane, subtleties appear. The banana trapping is also present but superimposed to
another slow regular motion called the precession drift. As the banana periodic motion
is already described by the (αB /J∥) angle/action coordinates, there is no need to
account for it again. The last periodic motion is then the precession motion. The
associated angle is referred as ϕ0. The frequency dϕ0/d t = ΩD is the precession
frequency. The associated action is the canonical toroidal momentum J3 = Pϕ =−eψ.

The angle, action and frequency of each periodic motion for banana trapped parti-
cles are summarized in Tab.1.1.
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Motion Angle Frequency
(+ rough expression

in circular geometry)
Action

Gyromotion ϕc Ωc = eB/m J1 = m
e µ

Banana αB = arcsin(θ/θB ) ΩB ≈p
ε v⊥

qR0
J2 =J∥ =

∮ dl
2πmv∥

Precession ϕ0 =ϕ−qΩB t ΩD ≈ qΩCρ
2
i

r R0
J3 = Pϕ =−eψ

Table 1.1. – Angle, frequency and action for each of the three periodic motions of
banana trapped particles in a tokamak.

Outcome one
Outcome two

1.5. Why plasma flows matter

1.5.1. Loss of symmetry and transport
As detailed in the previous sections, confinement is ensured as long as three periodic

motions exist. So why ignition hasn’t been reached in any tokamak? The answer is
clear: there are mechanisms at play causing breaking of symmetry and resulting in
the loss of one or more invariant of motion. This loss of invariance usually leads to
the onset of chaos, inevitably leading to transport. This will be detailed in the next
Chapter. In short, three mechanisms can be linked to transport.

First, there is the effect of fluctuating perturbations. For instance, the kinetic energy
is no longer an invariant of motion when the fields are time dependent. Multiple
instabilities in magnetized plasmas can drive the electromagnetic fields. Especially, a
family of these instabilities leads the plasma in a turbulent state in which electromag-
netic fluctuations take place in a wide range of spatiotemporal scales. Turbulence is
a chaotic process, i.e. a manifestation of the loss of symmetry, which appears in all
tokamak experiments. It is usually the main cause of confinement degradation.

Secondly, breaking of symmetry can also come from static perturbations. Indeed,
the three invariants of motion previously presented are valid in the axisymmetric limit.
However, the true magnetic field in a tokamak is not axisymmetric because of error
fields, external magnetic perturbations, or the toroidal modulation due to a finite
number of coils referred to as magnetic ripple. The focus in this work is on the latter.
When magnetic ripple is accounted for, the magnetic field has to be corrugated in the
toroidal direction: its amplitude is weaker between two consecutive coils and stronger
near the coils. This static perturbation is responsible for the loss of invariance of the
canonical toroidal momentum Pϕ.

Finally, the last transport channel is the effect of collisions. Collisions cause diffusion
in the velocity space while conserving energy. Consequently, particles jump from one
magnetic surface to another which translates into a net radial diffusion. This effect is
enhanced by the presence of mirror trapping, constituting the neoclassical transport.
This is discussed in details in Sec.2.4. Neoclassical physics is also a chaotic process,
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but its interpretation is a bit different. During a collision, the particle energy and
momentum are not conserved, resulting in a diffusive transport. However, between
two successive collisions, the invariants are conserved and the particle motion is
integrable.

Transport is unavoidable in fusion devices: there will always be mechanisms causing
a disparity from an integrable system, i.e. a perfect confinement. However, perfect
confinement is not needed to operate a fusion reactor. The goal is merely to reduce the
transport in order to increase the confinement time sufficiently to reach ignition. This
requires to understand transport, a tremendous task. Indeed, numerous transport
channels exist and their very existence often causes the loss of integrability of the
system. On the theoretical side, this imposes to either build reduced models, that can
only include some physical ingredients, or to rely on simulation codes that currently
can only scan a limited range of parameters. This is in fact exactly the approach taken
in this thesis.

1.5.2. Flows and confinement
This thesis focuses on studying flows in tokamak plasmas. Study of "flows" should

be understood as the study of the species average velocity V and the flux Γ= nV. The
velocity evolution for one species reads

mn
dV

dt
= ne [E+V×B]−∇P +nmν∇2V (1.32)

with P the pressure, n the density, m and e the species mass and charge respectively
and ν the viscosity. The radial component of the velocity is small compared with
poloidal and toroidal ones. Indeed, the associated radial flux is Γr = nVr ≈ −D∂r n
with D a diffusion coefficient usually measured around ∼ 10 m2.s−1 such that Vr ∼
10 m.s−1. In comparison, the measured poloidal and toroidal velocity lies around
Vθ,Vϕ ∼ 1 km.s−1. Capturing the mechanisms at play for transport, which is described
by the radial flux = nVr , and their respective weight is complex. Projecting Eq(1.32)
on the radial direction yields the force balance which in a circular geometry reads

nm
dVr

dt
=−dP

dr
+neBT

(
Er

BT
+VP −VT

ε

q

)
(1.33)

with BT the toroidal component of the magnetic field, VP and VT the poloidal and
toroidal rotation velocities, ε = r /R with R = R0 + r cos(θ) and R0 the major radius,
and Er the radial electric field. At fixed thermodynamical gradients, the transport is
then ruled by the plasma velocity in the toroidal and poloidal direction as well as by
the radial electric field. Predicting these quantities is the main objective of this thesis.
Studying the transport with these quantities is handy to isolate some mechanisms as
it will be developed in the manuscript. Furthermore, these quantities are also easier
to obtain experimentally.

Another key aspect of confinement are transport barriers. They are regions exhibit-
ing a strong shear of velocity, such that turbulent structures trying to cross this region
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are cut into smaller structures. The consequence is a substantial reduction in turbu-
lent transport. Transport barriers are regions of generally steep gradients of density
and/or temperature. One of the most common transport barriers spontaneously ap-
pears at the edge in all tokamaks above a threshold in power transferred to the plasma.
Once this barrier is set up, the plasma is said to be in an enhanced confinement mode.
This is the case of the High confinement mode (H-mode) that was discovered in 1982
on ASDEX by F. Wagner. The transition to H-mode, 40 years later, is still not fully
understood even though several tokamaks operate in this confinement mode daily.
The role of flows is however expected to be important, as they are related to the radial
electric field that drives the shear of the E ×B velocity that maintains the barrier. As
an example, the radial profiles of the radial electric field and plasma pressure for
a plasma in Low confinement mode (L-mode) and H-mode in the ASDEX-Upgrade
tokamak are displayed in Fig.1.10. This experimental result shows that a well of the
radial electric field Er forms at the plasma edge for the plasma in H-mode. In addition,
this kind of discharge exhibits typical plasma pressure ∼ 2 times higher than the one in
L-mode, with a steep gradient at the edge that correlates with the Er well. This region
of important gradients is often referred to as the pedestal. The price to pay for such a
confining feature is the presence of Edge Localized Modes (ELMs), which are bursty
relaxations of this steep pressure gradient that release an important heat quantity to
the wall.

(a) (b)

Figure 1.10. – Radial profile of the radial electric field (a) and plasma pressure (b)
in ASDEX-Upgrade discharges in L-mode (black) and in H-mode (red).
Extracted from [16].

Another type of self-generated flow is of particular interest in the fusion community:
zonal flows (ZFs). ZFs are meso-scale flows in the direction perpendicular to the
magnetic field lines that spontaneously appear in turbulent plasmas. They have been
observed in experiment [17], and also in turbulent simulations [18, 19] in which they
have been identified to greatly reduce the turbulent transport. A comprehensive
review of ZFs is [20].
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Flows are also involved in magnetic stability, which can be altered with magneto-
hydrodynamic (MHD) instabilities. These instabilities, often driven by the plasma
current, can lead to violent events that can damage the reactor if not controlled prop-
erly. In ITER, it is expected that a single disruption, i.e. a particular type of MHD
instability, in the thermonuclear phase would mark the end of the machine. In this
context, flows can act as a mean of control. For instance, it was shown [21] that the
toroidal rotation can stabilize certain MHD modes.

1.5.3. Toroidal flow in presence of magnetic ripple and
turbulence

In this thesis, first, the toroidal velocity dependency on the effect of 3D magnetic
perturbations like magnetic ripple is studied. Particular attention is paid to the toroidal
rotation in absence of any external momentum input, also referred to as intrinsic
rotation. One of the reasons is that, for reactor-sized tokamaks like ITER, the control
of the rotation will be very challenging, if at all possible [22]. The magnetic ripple is
expected to play a role because, as explained in detail in Chapter 2, neoclassical effects
in a 3D magnetic configuration strongly impact the toroidal velocity in a realistic,
i.e. non-axisymmetric, magnetic configuration. Several experimental results [23–27]
demonstrate that magnetic ripple impacts the plasma rotation from the edge up to the
core. Examples from the JET and Tore Supra tokamaks are shown in Fig.1.11. Indeed,
Fig.1.11a shows that the plasma rotation of the core and edge plasma in JET decreases
with the ripple amplitude and Fig.1.11b shows the radial profile of the toroidal velocity
that decreases when the ripple amplitude increases in Tore Supra. This neoclassical
drive is competing with another drive source: turbulence. Indeed, turbulence can also
drive plasma rotation due to complex wave-particle interactions. It is also shown in the
previous figure, as even when the ripple amplitude is low, the plasma carries a finite
toroidal velocity. An experimental study on Tore Supra [28] assessing this turbulent
drive has also been carried out. Generally, the toroidal velocity is positive, meaning
that the plasma rotates in the same direction as the plasma current (this is often called
the "co-current direction"). However, when the ripple amplitude increases, the plasma
velocity decreases and can change sign to spin in the other direction (often called the
"counter-current direction").
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(a) (b)

Figure 1.11. – (a) Mach number at the plasma center r /a ∼ 0 (blue) and plasma edge
r /a ∼ 0.9 (red) versus the ripple amplitude at the outer separatrix in JET
discharges. Extracted from [27]. (b) Radial profiles of the toroidal veloc-
ity in Tore Supra discharges for different ripple amplitudes. Extracted
from [25].

The radial electric field is also affected. On Tore Supra [29], it has been observed that
Er follows its neoclassical prediction [30], i.e. it increases with the ripple amplitude.
The knowledge of the resulting flows is important to assess the total transport. Espe-
cially, it has also been shown that magnetic ripple has an impact on H-mode plasmas.
Indeed, it has been observed in JET that an increase of the edge ripple amplitude from
∼ 0.01% to ∼ 1% is responsible for a monotonic reduction up to ∼ 20% of the con-
finement time [31]. It was also observed in JET and JT-60U that ripple seems to ease
the fast relaxations of the H-mode pedestal: the ELMs. It results that, with increasing
ripple amplitude, the ELM amplitude decreases while their frequency increases [23, 24,
31] in such a way that the maximum ejected power is reduced. Finally, it was observed
in JET [32] that the power threshold to access H-mode is unchanged between an edge
ripple amplitude of 0.08% and 1.1%. Magnetic ripple is thus an important feature for
reactor design and the way it impacts the plasma flows still lacks robust predictions.

In this thesis, we focus on the impact of ripple on the establishment of intrinsic
toroidal rotation in a tokamak plasma. In particular, the competition and the synergy
between the neoclassic and turbulent drive of the toroidal velocity are assessed for
the first time, using a kinetic reduced model in 5D and simulations.

1.5.4. Radial electric field dependency on the safety factor
Secondly, the impact of the safety factor on the edge radial electric field is assessed.

The safety factor q is an important parameter as it is linked to the plasma current IP
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near the edge. Experimental evidence, detailed below, shows that the radial electric
field Er is strongly impacted by the plasma current. Understanding the physics at
play here is important as the radial electric field is involved in the formation and
sustainment of transport barriers which are of great interest for fusion. The plasma
current is also the main mean for heating plasma. In ITER, IP will reach about 15MA,
which can be compared to the maximum current of JET reaching ∼ 5MA (current
record holder) or the 2MA of ASDEX-Upgrade. However, predictions of the radial
electric field under such a plasma current are currently lacking.

The focal point is on recent results [33] obtained with experiments performed
in the WEST tokamak showing that the radial electric field Er strongly increases in
amplitude with the plasma current IP at the plasma edge. Fig.1.12 shows the radial
profile of the velocity transverse to the magnetic field lines measured by the Doppler
Back-Scattering (DBS) diagnostic in dedicated WEST discharges.

(a) (b)

Figure 1.12. – Radial profile, near the edge of the plasma, of the transverse velocity
measured in the WEST tokamak for different plasma current values in
the Upper Single Null (left) and Lower Single Null (right) configurations.
Extracted from [33].

This velocity is mainly due to the E ×B drift velocity VE×B ≈−Er /B . As the magnetic
field B only mildly decreases from the core to the edge, one can conclude that Er is
indeed strongly affected by the plasma current value. This deepening of edge Er with
the plasma current has also been witnessed in other tokamaks such as Tore Supra [34]
and MAST [35]. As the plasma current is inversely proportional to the safety factor at
the edge, a suggestion, further assessed in this thesis, is that q has a strong impact on
Er . Several mechanisms that carry a dependence on the safety factor are expected to
play a role in the establishment of a radial electric field: neoclassical processes, zonal
flows, Geodesic Acoustic Modes (GAMs), poloidal convective cells [36], turbulence
and plasma-edge interactions.

Experimental evidence suggests that plasma current plays a role in the transition
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toward enhanced confinement modes. Indeed, it has been observed in the ASDEX-
Upgrade tokamak that IP impacts the power threshold for the transition toward H-
mode in the low-density branch [37]. However, in the high-density branch, the plasma
current does not appear in the scaling law of this power threshold for a wide selection
of tokamaks [38]. Understanding how the plasma current impacts the transition is
therefore important to gain insight into the establishment of transport barriers.

In this thesis, the mechanisms that can impact the radial electric field and which
depend on the safety factor are assessed using gyrokinetic simulations and further
described with a 0D model.

1.5.5. Thesis objectives and outline
The present work aims to tackle the following questions:
— Can we build a reduced kinetic model in a 3D magnetic configuration to predict

flows without turbulence? This is the subject of Chapter 2.
— Does this model agree with gyrokinetic simulations? This is the subject of Chap-

ter 3.
— In presence of magnetic ripple, which is the main drive of the toroidal velocity

between turbulence and neoclassical processes, and in which circumstances?
This is the subject of Chapter 4.

— What are the mechanisms at play that make the plasma current impact the
radial electric field in experiments and can it be explained with a safety factor
dependence? This is the subject of Chapter 5.
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The aim of this Chapter is to obtain a reduced model of transport that takes into
account collisional physics and the chaos arising without turbulence. This model
will be used to estimate the non-turbulent contribution to the total transport in
simulations of Ion Temperature Gradient driven turbulence. This chapter is organized
as follows.

— First, the different transport channels in tokamak plasmas are listed and de-
scribed in Sec.2.1;

— Second, the concept of resonant surfaces, which are a way to treat the particle
trajectories in a perturbed magnetic field, is presented in Sec.2.2. This formalism
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is convenient to introduce collisional and stochastic transport on the same
footing;

— Then, a "variational principle", which is useful to write transport equations in a
compact way, is outlined in Sec.2.3;

— The collisional contribution to transport is described and detailed in Sec.2.4;
— The stochastic contribution to transport is explained and derived in Sec.2.5;
— Finally, the turbulent channel of transport, not included in the model but of

prime importance for the following chapters, is qualitatively addressed in Sec.2.7.

2.1. Driving flows: a kinetic description
In this section, a global picture of the mechanisms responsible for driving flows is

drawn. In addition, the way to describe these processes, i.e. the chosen equations that
rule their behavior, is detailed.

2.1.1. The different descriptions of a plasma
There are multiple ways to describe a plasma, i.e. writing the equations that rule its

behavior. Three possible ways allow a treatment of the plasma dynamics, particle and
field-wise.

— The particle description is the most intuitive but also the least common descrip-
tion. It consists in treating the Newton equations of motion for each particle of
mass mp , charge ep and velocity vp: mp dtvp = ep (E+vp×B) and their relative
interactions through the Maxwell equations. It is the description that carries the
most detailed information: particle’s position and velocity, and electromagnetic
field. Regarding the plasma description needed for fusion, this is actually an
overwhelming excess of information. On the one hand, because simulating
a typical fusion plasma constituted of ∼ 1022 particles would mean solving as
many coupled equations. This is way out of reach of current High-Performance
Computing (HPC) platforms. On the other hand, the knowledge of each particle
characteristic is generally unusable on its own. More averaged data (i.e. density,
mean velocity ...) are required.

— The kinetic description is a statistical approach that relies on the distribution
function of a considered species (i.e. main ion, electrons, impurities...). Instead
of considering a great number of particles, the distribution function Fs of the
species s gives the probability of finding a particle at a certain position x and
velocity v. The evolution of each distribution function is described through the
Fokker-Planck equation coupled with the Maxwell equations. The Fokker-Planck
equation treats the advection of Fs in time:

dFs(x,v, t )

dt
= ∂Fs

∂t
+v · ∂Fs

∂x
+ dv

dt
· ∂Fs

∂v
= C(Fs) (2.1)

in which v = dx
dt and C is a collision operator. This formalism carries the informa-
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tion of interest for fusion-related studies. However, as discussed in Chapter 3,
the numerical treatment of the kinetic approach is challenging.

— The fluid description is an integrated version of the kinetic approach that consid-
ers moments of the distribution function. A simplified expression of the moment
of order k is Mk = ∫

d 3vFs vk . They are related to meaningful physical quantities:
⋄ M0 = n is the plasma density;
⋄ M1 = nV with V is the averaged species velocity;
⋄ M2 = 2

m P with P is the species pressure;
⋄ and so on ...

The huge advantage of this approach is that these quantities live in the physical
3D space, making both analytical and numerical treatment simpler. However,
two critical issues are related to this approach. First, each evolution equation of
moment Mk requires the knowledge of the next order moment Mk+1 to be solved.
It means that a closure equation must be considered. Second, the fluid approach
fails to capture the mechanism causing a departure of the distribution function
from a Maxwellian distribution as the distinction between trapped and passing
populations (as described in Sec.1.4.6) are some examples. This is especially true
for hot plasmas that are almost collisionless.

Kinetic simulation codes are heavier than fluid codes as one must calculate the
distribution functions at each point in a 6D phase space grid. For this reason, both
these approaches are generally used for usually different purposes. Fluid codes can be
used to simulate long discharges, MHD activity, and realistic plasma-wall interactions.
Kinetic codes are used to describe kinetic phenomena on short-time scales, like
collision processes or micro-turbulence. The gyrokinetic model used in these codes is
introduced in the next Chapter in Sec.3.2.

2.1.2. Channels of flow drive in tokamak plasmas
One can define 5 families of flow drive/damping channels:
— Chaos physics describes the global effect of stochastic particle motion or field

that can arise in tokamaks. Here it is separated into two parts. First, there is the
ripple-induced chaos coming from the co-existence of two static perturbations
intrinsic to the tokamak magnetic configuration: the 1/R magnetic decay and the
magnetic ripple. Second, there is turbulence which describes the effect of small-
scale spatiotemporal fluctuations of the electric and/or magnetic potentials. It
contains viscous damping, pinch and drive via wave-particle interactions.

— Neoclassical physics describes the effect of collisions in a non-homogeneous
magnetic field. It contains both damping and drive via thermal forces.

— MagnetoHydroDynamic (MHD) activity describes the plasma magnetic stability.
— External sources or sinks of momentum, describing the momentum injections

or plasma-wall interactions.
The three first channels are detailed in the following sections of this chapter. The

MHD activity describes the effect of macroscopic instabilities that impact the magnetic
topology. This activity can modify or even suppress magnetic surfaces. MHD can lead
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to violent events responsible for heat and particle losses. Such events can then lead to
magnetic islands or even disruptions that can damage the tokamak in worst cases. In
this thesis, this channel is not studied as following considered simulations are here
performed in the electrostatic limit.

The last channel concerns sources and sinks of momentum. External injections of
momentum are numerous in tokamaks experiments. They can be done on purpose or
result from indirect effects. Here is a list of different means of injection:

— Neutral Beam Injection (NBI) consists of injecting a high-energy beam of neutral
particles thanks to a particle accelerator. Momentum can be transferred from the
fast incident particles to the plasma, either in the poloidal or toroidal direction,
depending on the angle between the beam and the magnetic axis.

— Resonant or Non-Resonant Magnetic Perturbations (RMP / nRMP) consist of
destabilizing either resonant or non-resonant modes using external coils. This
method, used mainly for mitigating ELMs, also transfers momentum to the
plasma by amplifying the breaking of axisymmetry. This loss of symmetry is
associated with a new torque in the toroidal direction (this is discussed in detail
in Sec.4.1).

— Radio wave heating and current-drive consist of transferring energy from an
incident electromagnetic wave to particles. Depending on the incident wave
frequency and the selected mode to amplify, it is possible to heat and accelerate
only one species, e.g. electrons. This generates a current and thus transfers a net
momentum to the plasma.

In addition to external momentum injection, plasma-wall interactions can also
play an important role in the establishment of edge plasma flows. There are many
mechanisms at play like orbit losses [39], momentum flux carried by waves [40],
scrape-off layer interactions, turbulence spreading [41], or the role of neutral particles.
In this work, the considered boundary physics is the one that is implemented in
GYSELA. The GYSELA boundary conditions are detailed in Sec.3.2 in the next chapter.

The main focus is then on stochastic, neoclassical, and turbulent flow drives. To
properly describe these phenomena on the same footing, one must use kinetic formal-
ism. Indeed, each of the studied channels of transport in this thesis requires a kinetic
approach:

— the stochastic motion of particles arises when considering the possible interac-
tions of islands that live in the phase space (see Sec.2.5);

— for neoclassical flows, the conventional fluid models do not cover the physics at
low collisionality which is relevant for fusion plasmas;

— turbulence is better described with a kinetic formalism as resonant wave-particle
interactions depend on particle velocity.

2.2. Resonant surfaces in a rippled tokamak
In this section, we show how perturbations on a system at equilibrium modify the

particle trajectories through the phase space. In the first subsection, it is demonstrated
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that a single small perturbation creates an island in phase space. An island describes
the shape of closed iso-contours of the energy when plotted in some angle/action
or position/velocity space. Particle trajectories are of course embedded in these iso-
contours. A closed iso-contour then denotes a trapped trajectory in both phase and
real space. Surprisingly, a single perturbation applied on an unperturbed system
does not deteriorate confinement. As detailed in the following, transport arises when
considering either collisions or multiple perturbations. The perturbations considered
here are the 1/R magnetic decay, the magnetic ripple and the turbulence. In short,
what happens when multiple perturbations exist is the following. When the islands
generated by the different perturbations are "far enough", the transport is only due
to collisions. However, when they are "close enough", the particle motion becomes
stochastic and transport appears. First, let us see how an island is formed from an
analytical point of view.

2.2.1. Phase space island generated by resonance
Let us remind that if three invariants of motion exist, the Hamiltonian motion

of a particle is integrable. In a tokamak, the motion can be described by a set of
action/variables (α,J) from the equilibrium Hamiltonian Heq(J) such that dt Ji =
−∂αiHeq = 0 and dtαi = ∂JiHeq =Ωi . Roughly speaking, J1 is related to the magnetic
moment µ, J2 to the parallel adiabatic invariant

∮
mv∥dl and J3 to the toroidal kinetic

momentum Pϕ. The angles α1, α2 and α3 are related to the cyclotron phase, the
poloidal angle and the toroidal angle respectively. This equilibrium already includes
the 1/R magnetic decay perturbation. Let us now consider that a perturbation H̃ is
added to the equilibrium Hamiltonian Heq such that

H̃(α,J, t ) = h(J)cos(ξ(t )) (2.2)

where h is the perturbation amplitude and

ξ= n ·α−ωt (2.3)

is the perturbation phase. The triplet n represents the mode numbers with respect to
angular variables of the perturbation and ω is the perturbation frequency. Writing the
total Hamiltonian H=Heq +H̃, the Hamilton equations then read

dα

dt
= ∂H

∂J
=Ω+ ∂h

∂J
cos(ξ) (2.4)

dJ

dt
=−∂H

∂α
= nh sin(ξ) (2.5)

withΩ= ∂Heq

∂J .

If the phase is time-independent, i.e. dξ
dt = n ·Ω−ω = 0, the trajectories are sig-

nificantly impacted. The condition n ·Ω−ω = 0 defines a resonant surface in the J
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action space. The motion in the vicinity of this resonance remains integrable with
the following perturbative treatment. Let us consider a small displacement I n of the
action near a point JR of the resonance such that J = JR + I n. A Taylor expansion yields

H(J) =H(JR)+n · ∂H
∂J

∣∣∣
JR

I +o (I ) (2.6)

and, as dtα= dJH=Ω+dJH̃,
dξ

dt
= CI (2.7)

where C = ni nk
∂2H
∂Ji∂Jk

∣∣∣
JR

is commonly referred to as the Hamiltonian curvature. It is

then possible to define a new Hamiltonian

HI = CI 2

2
+H̃ (2.8)

associated with the following equations of motion 1

dξ

dt
= ∂HI

∂I
(2.9)

dI

dt
=−∂HI

∂ξ
. (2.10)

Trajectories follow the constant HI contour in the (ξ, I ) space. Analogously to ba-
nana trapped particle, they are either passing or trapped depending on whether
I =√

(2/C)(HI −h cos(ξ)) goes to zero along the particle motion or not. It then defines
an island, with the characteristic shape of a cat’s eye, in the angle/action (ξ, I ) space,
as depicted in Fig.2.1.

1. Here we have used the properties dJ
dt = d(JR+I n)

dt = n dI
dt =− ∂H

∂α and ∂H
∂α = ∂ξ

∂α
∂H
∂ξ .
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Trapped I h

Separatrix I = h

Figure 2.1. – Iso-contour in the angle/action (ξ, I ) space of the new Hamiltonian HI

describing the resonance. Particles are passing (trapped) if the amplitude
of the perturbation h is higher (smaller) than HI .

In this thesis, we consider two static perturbations of the magnetic field, as well
as fluctuating perturbations on the electric potential which is called electrostatic
turbulence. In the next subsection, we look at the associated islands. For the sake of
clarity, the phase space considered will not be the angle-action space but rather the
position-velocity space. It offers a better physical understanding of what the island
represents in real space.

2.2.2. 1/R magnetic decay and banana trapped particles
In this study, a simplified geometry is considered where magnetic surfaces are taken

circular and concentric. Using toroidal coordinates
(
r,θ,ϕ

)
, and in the limit of large

aspect ratio and small ripple magnitude, the axisymmetric magnetic field amplitude
B can be approximated as follows:

B = B0R0

R(r,θ)
≃ B0(1−ε(r )cosθ︸ ︷︷ ︸

1/R decay

) . (2.11)

Here, B0 is a reference magnetic field amplitude taken on the magnetic axis, R(r,θ) =
R0 + r cos(θ) with R0 the major radius and ε= r /R0. The perturbation is then simply
the magnetic gradient that exists in all tokamaks.

As already discussed in the previous chapter, this perturbation is responsible for
banana trapping. The representations of trajectories under such a perturbation on
the real space and the phase space are depicted in Fig.2.2a and Fig.2.2b respectively.
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(b)

Figure 2.2. – (a) Principle of the banana trapping. For the same perpendicular momen-
tum, the blue trajectory is passing and the green trajectory is trapped due
to a different parallel momentum. (b) Island generated by the banana
trapping in the (θ, v∥) phase space.

2.2.3. Locally trapped particle in magnetic ripple wells
Let us now consider a tokamak without the 1/R decay but only the magnetic ripple

as a perturbation. The magnetic field amplitude would then read

B = B0(1+δ(r,θ)cos(Ncϕ)︸ ︷︷ ︸
magnetic ripple

) (2.12)

where B0 is a reference magnetic field amplitude taken on the magnetic axis, and in
between two coils, δ is the ripple amplitude and Nc is the number of toroidal coils.

The ripple amplitude can be expressed for each radial and poloidal coordinate as a
function of the minimum and maximum magnetic field amplitude encountered along
the toroidal direction ϕ. It reads

δ(r,θ) =
max
ϕ

(B)−min
ϕ

(B)

max
ϕ

(B)+min
ϕ

(B)
. (2.13)

It is common to express it in percent, and this convention is used here unless specified
otherwise throughout the manuscript. A ripple amplitude poloidal section - here the
one in the Tore Supra tokamak - is displayed in Fig.2.3.
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Figure 2.3. – Poloidal section of the ripple amplitude in the Tore Supra tokamak (Tore
Supra and WEST contain 18 toroidal coils.) in closed flux surfaces.

All tokamaks exhibit the same shape of ripple amplitude, i.e. roughly radially expo-
nential from an origin slightly shifted toward the high field side. The maximal value is
then reached at the low field side in the midplane and seldom exceeds 1%. The Tore
Supra ripple amplitude shown is then unusually high, which makes it a particularly
interesting case to study the effect of magnetic perturbations. As developed in the
next sections, even a ripple amplitude equal to a fraction of a percent can drastically
change plasma flows.

A phenomenon similar to banana trapping occurs when accounting for the magnetic
field ripple. Indeed ripple causes a modulation of the magnetic field in the toroidal
direction: the magnetic field amplitude under a coil is stronger than in-between two
consecutive coils. Depending on the parallel momentum of the particle, the trajectory
can either be passing or trapped between two consecutive coils. This is called the local
trapping. Trajectories in such a magnetic configuration are plotted in the real space
and phase space in Fig.2.4a and Fig.2.4b respectively.
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(a)
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Figure 2.4. – (a) Principle of trapping induced by ripple with Nc = 8: for the same
perpendicular momentum, the blue trajectory is passing and the green
trajectory is trapped due to a different parallel momentum. (b) Island
generated by the local trapping in the (ϕ, v∥) phase space.

2.2.4. Realistic magnetic configuration with two static
perturbations

Both resonances due to the 1/R magnetic decay perturbation and the magnetic
ripple, and their associated trapping, can co-exist. The ripple wells are however not
existing in all the plasma domain. Indeed, Fig.2.5 shows the shape of the kinetic
energy as function of the angle ϕ0 + qθ. Particles travel at constant kinetic energy
E − eφ, where φ is the electric potential, such that their trajectory is passing when
E−eφ>µBmax and banana-trapped in the other case. However in region of high ripple
amplitude, the locally trapped particles are located in the multiple small wells that are
particularly deep near the mid-plane at low field side ϕ0 +qθ = 0 for a realistic ripple
amplitude as shown in Fig.2.3. Then an important remark can be made: if the ripple
amplitude is too weak, the magnetic wells do not exist. This can be described thanks
to the trapping parameter Y (r,θ) = ε|sinθ|

Nc qδ (see [42] p.127 for more insight) which is the
condition of existence of ripple-induced magnetic wells. Magnetic wells exists only in
regions where Y (r,θ) < 1.
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Figure 2.5. – Typical shape of the kinetic energy as function of the angle ϕ0 +qθ that
parametrizes a particular field line for each ϕ0. Particle trajectory follows
constant energy lines.

That said, the Kolmogorov-Arnold-Moser theorem (KAM) [43] states that the system
stays integrable as long as the islands associated with each perturbation are far enough
from each other in the phase space, and their amplitude is sufficiently small. On the
contrary, when the islands are too close to each other and/or their amplitude is large
enough, the system becomes chaotic.

Here a subtle point should be assessed. In the previous sections, the discussed
islands were described in the position/velocity (x,v) space for clarity. However when
two perturbations are accounted for, the angle/action (α,J) space is more appropriate.
The poloidal and toroidal angles θ and ϕ are related to the unperturbed Hamiltonian
angles αB and ϕ0 such that, in the deeply trapped limit, they are related through

θ = θB sin(αB ) (2.14)

ϕ= ϕ0 +qθB sin(αB ) (2.15)

where θB is the poloidal bounce angle. Note that this choice of angle/action co-
ordinates means that banana particles are selected. The ripple perturbation is then
added, resulting in the trajectories of banana-trapped particles modified by magnetic
ripple. Note that one could also have chosen the angle/action coordinates related to
the particle locally trapped and then add the 1/R magnetic decay perturbation. This
would result in the trajectories of particles trapped between two coils perturbed by
the magnetic gradient. However, the chaos resulting from this channel is expected
to be way lower than for the banana-trapped particle and consequently will not be
discussed in this thesis.

In this banana-related set of coordinates, and remembering that the generating
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function of the first kind Bessel functions Jn of order n reads

+∞∑
n=−∞

Jn(x)e i nβ = e i x sin(β) ∀(x,β) (2.16)

then the magnetic ripple harmonic becomes

cos
(
Ncϕ

)= 1

2

+∞∑
nB=−∞

JnB (Nc qθB )cos
(
Ncϕ0 +nBαB

)
(2.17)

meaning that these two perturbations in the real phase space actually translate into
an infinite number of perturbations in the angle/action space. This will be developed
in Sec.2.5.

It can be shown that chaos arises when the precession frequencyΩD is high enough,
more precisely whenΩD >ΩB /Nc (see Sec.2.5.1). Even in this non-integrable situation,
it is possible to estimate the resulting transport. In the other limit ΩD < ΩB /Nc ,
particle trajectories are integrable. However, integrable does not mean that there is no
transport. In fact, these perturbations impact each other. The banana trajectories are
indeed modified, especially near the bounce point where the rapid parallel motion
vanishes. Depending on the direction of the magnetic drift, and whether the toroidal
angle of the bounce point is at a coil level or between two coils, the particle bounce
point position is modified. This effect is depicted in Fig.2.6 (left). However, as long as
the particle is far away from the separatrix, defined as the last closed flux surface, the
trajectory stays confined. The locally trapped particles are also affected by the 1/R
magnetic decay. Indeed, for such a trapped particle, the vertical magnetic drift is not
compensated by the helicity of the magnetic field lines. These particles drift vertically
out of the tokamak. This effect is depicted in Fig.2.6 (right).
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Figure 2.6. – Trapped particle trajectories with both perturbations - 1/R magnetic
field decay and magnetic ripple - obtained with the GCT code [44]. (Left)
Banana trapped trajectories exhibit radial and poloidal shifts of bounce
points due to magnetic ripple. (Right) Locally trapped particles drift
vertically due to the magnetic drift induced by the 1/R magnetic decay
perturbation.

On top of these effects, collisions play an important role. Collisional transport exists
independently of any resonance. However, the collisional processes are enhanced by
resonances, as described within the neoclassical theory. The resulting flow is assessed
in Sec.2.4.

2.2.5. Multiple fluctuating perturbations: turbulence
The situation can become intractable when accounting for multiple time-evolving

perturbations. This is the case for turbulence, which is one of the most important
topics in the tokamak community 2 as the transport across the magnetic field is often
mainly turbulent. Turbulence is a chaotic process that deserves to be treated sepa-
rately from chaos induced by static perturbations because of its complexity. Indeed,
compared with the magnetic perturbation discussed previously, the mechanisms
at play in turbulence are not fully understood yet. In this Chapter, turbulence is
described qualitatively in Sec.2.7.

2. Also in stellarators now: recent experiments in W7X showed that turbulent heat transport domi-
nates the neoclassical transport above a certain input power.
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2.3. Linking forces and fluxes with an entropy
variational principle

In this brief section, a method to describe an equilibrium in a compact way is intro-
duced. In particular, this method makes the link between thermodynamic forces and
fluxes thanks to the transport matrix. The method is based on the entropy production
rate Ṡ, which must be minimum at equilibrium. The idea is that a variational principle
can be built from this condition. Variational principles carry multiple benefits, but
the one of use for this work is that it allows one to express all the transport equations
in a compact way. Here only the main ingredients of the method are presented, but
the interested reader can refer to [45–47]. First, it can be shown that the Fokker-
Planck equation expressed in the angle/action coordinates (α,J) on a slow evolving
equilibrium can take the form

∂Feq(J, t )

∂t
+ ∂Γi

∂Ji
= C[Feq] (2.18)

where Feq is the equilibrium distribution function, Γi the flux of action Ji and
C a collision operator. Note that "equilibrium" here is not a full thermodynamic
equilibrium, but one that only weakly differs from it. Here fluxes are considered
diffusive, such that

Γi =−Di k
∂Feq

∂Jk
(2.19)

where Di k is the transport matrix, i.e. the quantity of interest in this chapter, and
∂Feq/∂Jk is a measure of the departure from equilibrium and can be seen as thermo-
dynamical gradients. Let us see the link with the entropy production rate Ṡ.

The entropy is defined as S =−∫
dγFeq lnFeq with dγ a volume element in the phase

space. The considered equilibrium is of the form Feq = exp
{
−

(Heq−Ueq

T0

)}
, where Heq

is the equilibrium Hamiltonian, Ueq a thermodynamical potential and T0 a constant
reference temperature. Hence, the production rate at equilibrium reads

Ṡ =− 1

T0

∫
dγ

∂Feq

∂t
Ueq . (2.20)

From this entropy production rate, it is possible to construct a functionalS(Ueq,U †
eq)

such that

S = Ṡt + Ṡres + Ṡcoll (2.21)

where
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Ṡt(Ueq,U †
eq) = 2

T 2
0

∫
dγFeq

(
U †

eq

∂Ueq

∂t

)
(2.22)

Ṡres(Ueq,∂JU
†
eq) = − 1

T 2
0

∫
dγ

(
∂U †

eq

∂Ji
Di j

∂U †
eq

∂J j

)
(2.23)

Ṡcoll(Ueq,∂JU
†
eq) = − 1

T 2
0

∫
dγFeq

(
U †

eqC[U †
eq]

)
. (2.24)

This segmentation of the functional is convenient: Ṡt encompasses the dynamic
of Feq while Ṡcoll describes the effect of collisions and Ṡres describes the resonant
behavior of the plasma as it is detailed in the next sections. Regarding the dynamic
term to describe a situation out of equilibrium, minimizing Ṡt with respect to U † leads
to an evolution equation on U †. In the weak collisionality limit, which is of interest
for core tokamak plasmas, Ṡcoll is subdominant compared to Ṡres which is reinforced
in collisionless systems (collisions actually smooth the resonance and its associated
transport). The quantity of interest that describes the equilibrium is therefore Ṡres. It
can be expressed in the real space [47] as follows

Ṡres =−1

2

∫
dV n

(
Γ

n

1

N
dN
dr

+ M
nmVth

VT

Vth
+ Q

nT

1

T

dT

dr

)
(2.25)

with dV a volume element, Γ the particle flux, M the rate of dissipated toroidal
momentum, Q the heat flux and

1

N
∂N
∂r

= 1

n

dn

dr
− eEr

T
(2.26)

where N is a density modified by the radial electric field.
These fluxes can then be derived as

Γ = −1

2

∂Ṡres

∂(∂ lnN /∂r )
(2.27)

M = −1

2
nmV 2

th

∂Ṡres

∂VT
(2.28)

Q = −1

2
nT

∂Ṡres

∂(∂ lnT /∂r )
. (2.29)

For the following the resonant entropy production rate is considered to come from
two mechanisms: neoclassical processes encompassed in Ṡneo and stochastic pro-
cesses encompassed in Ṡst such that Ṡres = Ṡneo + Ṡst. In the next sections, each
mechanism is described and an expression is given for these terms.
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2.4. Neoclassical contribution in presence of ripple:
the role of collisions

Neoclassical transport at low collisionality is due to the resonant enhancement of
collisional processes.

It owes its existence to trapped particles, for which adding collisions accounts
for the neoclassical theory. When the collision frequency becomes comparable or
smaller to the bounce frequency of the considered trapped population, a random walk
with a characteristic step linked to the trajectory orbit width prevails. Considering
banana trapping, for example, this step would be roughly the banana width. Subtleties
also appear when accounting for the synergies between the different trappings. For
example, the ripple causes banana bounce points to drift radially in such a way that
they undergo a random walk process. Neoclassical theory is meant to describe all those
processes. It relies on a kinetic derivation of the equilibrium distribution function for
the considered species. Each population (trapped or passing) tends to relax towards a
Maxwellian equilibrium under the effect of collisions. The resulting total distribution
function can however be non-Maxwellian and therefore lead to finite fluxes.

This physics is captured by the gyrokinetic code GYSELA. Fig.2.7 shows the impact
of the 1/R magnetic field decay and magnetic ripple on the distribution function in
the (θ, v∥) and (ϕ, v∥) spaces. Magnetic ripple produces islands in the (ϕ, v∥) space
corresponding to particles trapped toroidally between coils. The island in the (θ, v∥)
space, corresponding to the banana trapping, is also modified with ripple. As dis-
cussed previously, the effect is maximum at v∥ = 0 where the effect of ripple is not
smoothed out by the fast parallel motion. A similar mechanism also exists for particles
locally trapped.
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Figure 2.7. – Distribution function, taken at fixed radius and magnetic moment µ, of
trapped particles without (left) and with (right) ripple, obtained with
GYSELA with Nc = 16. Ripple accounts for an additional trapping in
the toroidal direction and also modifies the island of banana-trapped
particles near bounce points.

To get the expression of the distribution function and associated transport, the sim-
plest starting point is the drift kinetic equation (DKE). The first step of the derivation
then relies on solving the DKE for each perturbation, i.e. the 1/R magnetic field decay
or ripple, independently. They are labeled ‘primary’ perturbations. Solving the DKE
with the 1/R magnetic field decay as primary perturbation leads to the axisymmetric
neoclassical theory and the well known commonly called "neoclassical transport
regimes" visible in the black curve on Fig.2.8. Doing the same for the ripple pertur-
bation amounts to consider collisional processes in a tokamak without curvature, i.e.
a rippled cylinder, with equally spaced coils that leads to local trapping. The next
step is to perturb the trapped population by the primary perturbation with the other
one, labeled ‘secondary’ perturbation. If ripple is the secondary perturbation, it then
accounts for the radial drift of the banana bounce point induced by ripple. If the 1/R
magnetic field decay is the secondary perturbation, it then accounts for the bounce
points of the ripple-induced trapped trajectories drifting vertically due to the magnetic
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drift. These four contribution branches to neoclassical transport can be summed up
in this list, from which the terminology comes from the stellarator community [48]:

— the axisymmetric branch is the neoclassical contribution of unperturbed banana
particles;

— the helically symmetric branch is the neoclassical contribution of unperturbed
ripple-induced trapping;

— the banana drift branch is the neoclassical contribution from ripple effect on
banana trapped particles;

— the ripple-wells drift branch is the neoclassical contribution from the 1/R mag-
netic field decay effect on particles trapped in ripple-induced magnetic wells.

The typical collisionality scaling in tokamaks of the radial fluxes for each of these
branches is displayed in Fig.2.8. Note that when ν⋆→ 0 the fluxes vanish. This is intu-
itive for banana-trapped particles but counter-intuitive for locally-trapped particles.
Indeed, at "low" collisionality, locally trapped particles account for a 1/ν behaviour
due to the fact the vertical drift of particles is not stopped by collisions. However, at
even lower collisionalities, higher order magnetic and electric drifts regularize this
behaviour.
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Figure 2.8. – Typical scaling of the radial neoclassical fluxes with the collisionality for
each branch.

The whole analytical calculation of neoclassical transport is a formidable task that
will not be detailed here. Here is however a bit of history on the development of the
neoclassical theory, particularly in non-axisymmetric devices. Note that many actors
shaped the current knowledge of this channel of transport, and only a handful of them
are mentioned here. The following should then be considered as our specific point of
view on what we consider to be the main milestones in this domain.

63



2. Physics of flows in a 3D magnetic configuration – 2.4. Neoclassical contribution in
presence of ripple: the role of collisions

The foundations for the enhancement of collisional processes by the presence
of trapped particles were laid in the late 60’s in particular with the work of Galeev
& Sagdeev [49, 50] and Kovrizhnykh [51]. From these pioneering works, a growing
interest arose and several publications at the origin of the neoclassical theory appeared
in the 70’s. A review of this work was done by Hinton [46], and a more recent and
comprehensive one has been published by Helander [52]. In that time almost all of
them were devoted to axisymmetric devices 3 except for the work of Stringer [53] and
Connor [54] that noticed the 1/ν behavior of the ripple-wells drift branch. Interest in
neoclassical transport in non-axisymmetric systems peaked in the late 70’s-beginning
of the 80’s. At that time, the impact of ripple on banana trapping has been extensively
studied [55–57] and a generalized transport of banana trajectories was proposed by
Yushmanov [58]. The transport due to locally trapped particles has also been detailed
with, among other, an emphasis on the work by Yushmanov [59] and Shaing [60,
61]. An important review at that time was the one of Kovrizhnykh [62]. Among the
numerous studies that follow, we want to emphasize on the very helpful review on
transport in rippled configuration by Yushmanov [42] in the 90’s. Also, the zoology
of very low collisionality regimes, i.e. the 1/ν, ν−p

ν regimes, as well as the effect of
lower order electric and magnetic drift making up for the superbanana regime, has
known a strong development with the work by Shaing et al. around 2010 [63–65].

In the present work, the derivation of the neoclassical fluxes is based on the cal-
culation included in the review by Garbet et al.[30], up to some minor corrections.
Note that this model does not account for the ν−p

ν regimes of the "banana-drift"
and "ripple-wells" branches that arise at extremely low collisionality. Also, the very
high collisionality regime, referred to as Pfirsch–Schlüter regime, is not considered.
The resonant production rate of entropy Ṡneo due to neoclassical processes can be
partitioned such that

Ṡneo = Ṡtor,I + Ṡrip,I + Ṡtor,II + Ṡrip,II (2.30)

with Ṡtor,I and Ṡrip,I the contributions from the axisymmetric and helically symmetric
branches, and Ṡtor,II and Ṡrip,II the contributions from the banana drift and ripple-wells
drift branches respectively. They can be expressed as a function of three parameters:

— The collisionality ν⋆;
— The product of the number of coils and the safety factor Nc q ;
— The ratio between the ripple and 1/R decay magnetic perturbations δ/ε.
These entropy productions rates are given by [30]:

3. The reason was not only the increased complexity when accounting for 3D magnetic perturba-
tions, but also that the stellarator was disregarded at that time due to their poor performances back
then.
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Ṡtor,I = 1
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√
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+∞∫
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(2.31)

Ṡrip,I = 1
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√
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Ṡtor,II = 8
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Ṡrip,II =
(
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where δ̄= 1
2π

∫
dθδ(r,θ), DP = qR0

Vth

(
T

eB0R0

)2
is a reference diffusion coefficient with

Vth =p
T /m the ion thermal velocity, and ν̄ is the normalized collision frequency [66]

defined as:

ν̄(u) = 3

4

p
2π

1

u3/2

(
Φ(u1/2)−G(u1/2)

)
where

{
Φ(u) = 2p

π

∫ u
0 d x exp

(−x2
)

G(u) = 1
2u2

(
Φ(u)−u dΦ(u)

du

)
The functions K provide smooth transitions between various collision regimes:

Krip,I(r,u) = min

(
G ′

0,G ′′
0

4

π
I ν⋆

Nc q

(
ε

δ̄

)3/2 ν̄(u)

u1/2

)
with I = 1.38 (2.35)

Ktor,I(r,u) = min

(
1,

4

π
Iν⋆ ν̄(u)

u1/2

)
(2.36)

Krip,II(r,u) = 1+ π2

8
ν⋆(Nc q)2 ν̄(u)

u1/2
(2.37)

where is defined the continuous function min(x, y) = x y
x+y .

The form factors G ′
0, G ′′

0 , G1, used to discriminate banana trapped particles and
magnetic wells, are given by the relations:

G ′
0(r ) = ∫

Y <1
dθ
2π δ̃

2(r,θ)

G ′′
0 (r ) = ∫

Y <1
dθ
2π δ̃

1
2 (r,θ)

G1(r ) = ∫
Y <1

dθ
π δ̃

3
2 (r,θ)sin2θ

(2.38)
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where Y (r,θ) = ε|sinθ|
Nc qδ < 1 is the condition of existence of ripple-induced magnetic

wells (see Sec.2.2.4) and δ̃(r,θ) = δ(r,θ)∫ dθ
2π δ(r,θ)

. Note that the entropy production rate for

the banana drift branch is carrying an upper limit uc in the energy integral. The reason
is that, over this limit, the trajectories of banana-trapped particles become stochastic
such that the nature of transport is not neoclassical anymore. This limit as well as the
entropy production rate associated with the stochastic transport are assessed in the
next section.

2.5. Chaos and transport: the stochastic motion of
particles

2.5.1. Physical origin
Stochastic transport refers to a collisionless diffusion that can arise in the presence

of ripple for some banana-trapped particles. Here is the principle. As detailed in
Appendix B, ripple causes a radial jump ∆r of the banana-trapped particles at the
bounce point locations. This jump is either inward or outward depending on the
bounce point position relative to the nearest coil. It can be expressed 4 as

∆r =λρiδcos(NcϕB −π/4) (2.39)

where |λ| ∼ p
Nc (q/ε)3/2 [67] with q the safety factor, ρi is the ion Larmor radius

and ϕB the toroidal angle of bounce points. In most tokamaks, an estimate at the
edge is

√
〈∆r 2〉ϕ ∼ 2−3ρi where 〈.〉ϕ is the toroidal average. If ∆r > 0 (outward) in

between two coils, then∆r < 0 (inward) in the vicinity of the coils. As trapped particles
drift toroidally at the precession frequencyΩD , they undergo a different radial shift
at each bounce point. After each bounce period 2π/ΩB , one can define a toroidal
phase shift ∆ϕB =ϕB (t +2π/ΩB )−ϕB (t ). If ∆ϕB is small with respect to the toroidal
angle span separating two coils ∆ϕC = 2π/NC , the consecutive radial shifts exerted on
the particle are expected to be as often inward as outward, resulting in a zero mean
radial displacement. However, in the other limit, namely NCΩD ≫ΩB , ∆ϕB becomes
comparable to ∆ϕC . In this scenario, consecutive bounce point positions follow no
particular order and stochasticity appears. This mechanism is illustrated in Fig.2.9.

4. This form is obained by taking Eq(.72) and neglecting terms of order ∼ 1.
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Figure 2.9. – (a) Schematic view in toroidal section of bounce point for trapped parti-
cles either below the stochasticity limit (red) or above (blue). The green
arrow shows the direction and amplitude of the radial shift ∆r exerted on
the particle by ripple. (b) Successive radial positions of the bounce point
for each case.

Surprisingly, we found little documentation [67–69] on this important channel
of transport. In the following sections, we will see under which circumstances the
perturbation of the Hamiltonian due to ripple can lead to chaos.

2.5.2. Resonance due to magnetic ripple
This section aims at finding a threshold in ripple amplitude above which the trajec-

tory of particles becomes chaotic. The following derivation is heavily inspired from
[68].
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In a large-aspect ratio (circular-concentric) tokamak, the axisymmetric equilibrium
Hamiltonian reads

Heq = 1

2
mv2

∥ +µB0 [1−εcos(θ)] . (2.40)

Magnetic ripple adds a perturbation H̃ to this Hamiltonian that is written

H̃=µB0δcos
(
Ncϕ

)
. (2.41)

As discussed in Sec.2.2.4, magnetic ripple adds an infinite number of perturbations
such as Eq(2.2) in the angle/action space. Using Eq(2.17), the perturbed Hamiltonian
can be written 5

H̃=
+∞∑

nB=−∞
hnB cos

(
ξnB

)
(2.42)

with

hnB = µB0δ

2
JnB (Nc qθB ) (2.43)

ξnB = Ncϕ0 +nBαB . (2.44)

According to the KAM theorem, motion stays integrable as long as the resonant islands
linked to each of these single perturbations are "far" from each other. If they are too
"close", the motion becomes stochastic. A useful criterion can be used to quantify
this transition: the Chirikov overlap parameter S. This parameter is a dimensionless
quantity often used to describe the level of chaos in a dynamic system. It is also called
the resonance-overlap criterion, as it describes the relative proximity between two
unperturbed resonances in the phase space. Above a critical Chirikov parameter,
i.e. when the resonances overlap, a deterministic trajectory will travel between the
resonances in an unpredictable way. The particle trajectory is considered to be chaotic
when S ≥ 1. Let us obtain an expression for this parameter.

For this purpose, we first restrain the analysis to a single nB to select one single
Hamiltonian perturbation HnB = hnB cos

(
ξnB

)
. The resonant surface associated with

HnB yields

ωnB = dξnB

dt
= nBΩB +NcΩD (2.45)

where we recall that ΩB is the banana bounce frequency and ΩD is the precession
frequency. As done in Sec.2.2.1, one can write a new invariant

HI ,nB = CnB I 2

2
+hnB cos

(
ξnB

)
(2.46)

with

CnB = nB
∂ωnB

∂J2

∣∣∣
JR

+Nc
∂ωnB

∂J3

∣∣∣
JR

(2.47)

5. JnB is the modified Bessel function of order nB .
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where we recall that J2 is the longitudinal invariant and J3 is the canonical toroidal
momentum.

Recalling Eq(2.7), i.e. ωnB = dξnB
dt = CnB I , it is convenient to manipulate the normal-

ized Hamiltonian Hω,nB = CnBHI ,nB such that

Hω,nB = ω2
nB

2
+ (δωnB )2 cos

(
ξnB

)
(2.48)

where δωnB = √
CnB hnB . Regarding Eq(2.45), for any nB the distance between two

resonant surfaces reads

∆ω=ωnB+1 −ωnB = (nB+1ΩB +NcΩD )− (nBΩB +NcΩD ) =ΩB (2.49)

nB

nB+1

nB

nB + 1

2 nB

2 nB+1

= B

Figure 2.10. – Iso-contour at constant Hω,nB for 2 distinct nB (so for 2 different reso-
nant surfaces).

The sketch in Fig.2.10 can then be drawn, giving more sense to the Chirikov overlap
criterion S: two islands "overlap" when the distance∆ω between the islands is inferior
to the sum of their respective half-width 2δωnB (taken at the separatrix). The Chirikov
parameter is then expressed as

S = 2
δωnB +δωnB+1

∆ω
. (2.50)
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However, with ripple, things in fact are a bit more complicated. Trouble arises when
accounting for the θB dependence in hnB . Indeed, one has to deal with the Bessel
function JnB (Nc qθB ) that appears in the perturbation amplitude hnB Eq(2.43). This is
important because it is possible to relate θB to ωnB . To do this, a Taylor expansion is
done on the bounce angle such that θB (J) = θB (JR)+C′

nB
I where

C′
nB

= nB
∂θB

∂J2

∣∣∣
JR

+Nc
∂θB

∂J3

∣∣∣
JR

. (2.51)

The Bessel function can then be recast as JnB (Nc qθB ) = JnB (Nc q(θB (JR)+C′
nB

I )). As
ωnB = CnB I , the Hamiltonian then reads

Hω,nB = ω2
nB

2
+CnB

µB0δ

2
JnB (Nc qθB (JR)+τnBωnB )cos

(
ξnB

)
(2.52)

where τnB = Nc qC′
nB

/CnB is a characteristic time that describes the dependence of the
perturbed Hamiltonian with the action I , or equivalently with the frequency ωnB . It
is also important to note that in most cases the offset due to Nc qθB (JR) in the Bessel
function is not negligible, as in most tokamaks the product Nc q is high (in general
Nc > 15 and q > 2). It can be understood in Fig.2.11, which displays the iso-contour of
the perturbed Hamiltonian defined in Eq(2.52) for different values of nB and τnB . If
τnB → 0, the Bessel function then tends toward a finite value, which would not have
been the case for nB ̸= 0 without the offset 6. In this limit, the classical cat’s eye shape
of Hω,nB iso-contour is retrieved for each nB . If τnB is finite though, structures a bit
more complex than typical islands appear. Indeed, increasing enough τnB results in
iso-Hω,nB structures with multiple separatrices.

It then appears that two asymptotic regimes of transport emerge and depend on the
value of the characteristic time τnB :

— The weak perturbation regime where a single separatrix exists;
— The strong perturbation regime where multiple separatrices exist.
The next step is then to obtain a practical expression for the Chirikov overlap pa-

rameters and diffusion coefficients associated with each of these regimes.

6. Indeed, lim
x→0

JnB (x) = 0 for all nB except nB = 0.
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Figure 2.11. – Iso-contour at constant Hω,nB (with the Bessel function dependence)
for different nB and τnB with Nc = 18, q = 3 and θB (JR) =π/2. Units are
arbitrarily chosen.

2.5.3. Chirikov overlap criterions and diffusion coefficients
The detail of the derivation to obtain the Chirikov overlap parameters and diffusion

coefficients of each regime is detailed in Appendix C.
Introducing the weak perturbation regime Chirikov overlap criterion Sweak, which is
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the lower limit for chaos to arise, it reads (Eq(.83))

Sweak = 2

√
2

πθB
s1/2 qρi

R0

δ1/2

ε2
u1/2 (2.53)

where u = v2
⊥/V 2

th, s = r
q

dq
dr is the magnetic shear and ρi is the Larmor radius.

This criterion makes it possible to estimate the critical normalized energy uc for
which the trajectories become stochastic (this is the upper limit of the energy integral
in Eq(2.34) calculated within the neoclassical theory). It reads

uc = π

8

1

s

(
R0

qρi

)2 ε4

δ
. (2.54)

This threshold is commonly associated with energetic particles, as the r.h.s. of

Eq(2.54) is large in most tokamak discharges. In particular, the ratio ε4

δ
is really high in

most of tokamaks for typical ripple amplitudes. This is why "ripple losses" of particles
are usually attributed to fast particles.

The particle diffusion coefficient Dweak in this regime is the quasilinear coefficient
DQL. After some algebra, detailed in Appendix C, it yields the following expression
(Eq(.91))

Dweak = DQL = 1

8θB
Nc qu3/2DP

δ2

ε5/2
(2.55)

with DP = qR0
Vth

(
T

eB0R0

)2
.

The Chirikov criterion Sstrong in the strong perturbation regime reads (Eq(.86))

Sstrong ≈ 1

2

√
2θB

π
s(Nc q)3/2 δ

ε5/2

qρi

R0
u1/2 . (2.56)

In this regime, as the resonance shape is more complex than the classical cat-eye,
the quasi-linear expression for the diffusion coefficient is not valid. A solution is to
add a correction to DQL with a form factor Ξ. The idea is here to fit the diffusion
coefficient to the one obtained by Goldston [67] which is based on a random walk
argument on the radial shift of particles in the banana bounce point vicinity due to
ripple. This diffusion coefficient is actually the one in the strong perturbation regime.
This gives the form factorΞ= 2/Sstrong. The resulting diffusion coefficient in the strong
perturbation regime Dstrong then reads

Dstrong =ΞDQL (2.57)

With these diffusion coefficients, it is then possible to obtain an expression for the
entropy production rate Ṡst associated with the stochastic transport.

The following expression is found
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Ṡst = 1
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due−uu2Kst(r,u)

[
1

N
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+
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2

)
1

T

dT
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]2

(2.58)

with Kst(r,u) = min(1,Sstrong(r,u)).
This entropy production rate, when added to the ones obtained considering neo-

classical processes (Eq(2.31-2.34)), gives the last ingredient to obtain the transport
matrix that gives the link between fluxes and forces. We should mention that, actually,
this stochastic regime of transport is subdominant for the studies of the next chapters
with gyrokinetic simulations. The reason is that the velocity threshold for a trajectory
to become stochastic is quite high and we do not consider fast particle population
throughout this thesis. However, there was no real way to predict this without actually
deriving this threshold and hopefully, this will be helpful for future studies accounting
for fast particles.

2.6. An analytical model to predict flows in
presence of magnetic ripple

2.6.1. Explicit form of the reduced model
Using the two previous sections (Sec.2.4 & 2.5), it is now possible to construct a

reduced model taking into account both neoclassical and stochastic physics to get the
resulting flows without turbulence. The total resonant entropy production rate can
now be calculated using Eq(2.31), Eq(2.32), Eq(2.33), Eq(2.34) and Eq(2.58). It leads to
a transport matrix that links the equilibrium fluxes of particles Γ and heat Q as well
as the magnetic drag force M, with the thermodynamic gradient forces, the mean
toroidal velocity VT and the radial electric field Er . For a single ion species, it can be
expressed in a compact way: ΓN

ΓVT

ΓT

=−DP

 d0 + d̃0 d0 d1 + d̃1

d0 d0 + d̂0 d1

d1 + d̃1 d1 d2 + d̃2

 ·
 AN

AVT

AT

 (2.59)

where ΓN = Γ
n , ΓVT = M

neBp
, ΓT = Q

nT , AN = 1
n

dn
dr − eEr

T , AVT = eBp

T VT , AT = 1
T

dT
dr with

n the density, T the temperature, e the electric charge and BP the poloidal component

of the magnetic field. We also recall that DP = qR0
Vth

(
T

eB0R0

)2
is a reference diffusion

coefficient.
The transport matrix coefficients are detailed in Appendix D. They only depend

on three dimensionless parameters: ν⋆, δ/ε and Nc q . The coefficients di are inde-
pendent of δ/ε. Without ripple, d̃i = 0 and d̂i = 0, such that one recovers the classic
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coefficients resulting from the axisymmetric neoclassical theory at lower order in ε. In
that case, it is clear that the two first lines of the transport matrix are identical. This
degeneracy explains why axisymmetric neoclassical theory cannot predict AN and
AVT independently, and hence treats a combination of the radial electric field and the
toroidal velocity as a single unknown.

2.6.2. Assessing the equilibrium flows with the model
This model is now used to predict meaningful quantities relevant to the plasma

flow and is compared with common asymptotic regimes. Let us first define these
"meaningful quantities". First, there are thermal drive coefficients that link the equi-
librium toroidal velocity VT ,eq, poloidal velocity VP ,eq and the radial electric field Er ,eq

to the temperature gradient, labelled kVT , kN and kVP respectively. The thermal drive
coefficient expressions are obtained when considering that both ΓN and ΓVT go to
zero at equilibrium (without external sources of particles and momentum).

Under these conditions, Eq(2.59) gives the equalities

kVT

∇Teq

eBP
= VT ,eq (2.60)

kVP

∇Teq

eBT
= VP ,eq (2.61)

kN
∇Teq

Teq
= eEr ,eq

Teq
− ∇neq

neq
(2.62)

where the “eq" subscript denotes values taken at equilibrium and BT ,BP are the
toroidal and poloidal components of the magnetic field B.

These equations can also be written in a dimensionless form:

AVT = kVT AT (2.63)

AVP = kVP AT (2.64)

AN =−kN AT (2.65)

The explicit expressions of the thermal drives when these two fluxes vanish are

kVT = d0d̃1 −d1d̃0

(d0 + d̃0)(d0 + d̂0)−d 2
0

(2.66)

kN = (d0 + d̂0)(d1 + d̃1)−d0d1

(d0 + d̃0)(d0 + d̂0)−d 2
0

(2.67)

kVP = 1+kVT −kN (2.68)

where the thermal drive kVP has been obtained with the force balance equation
AVP = eBT

T VP = AN + AVT + AT . Knowing those thermal drive coefficients as well as the
temperature gradient, one can make predictions on the final flow.
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These coefficients have a fixed value in some asymptotic regimes of collisionality
and ripple amplitude. These regimes depend among others on the trapping parameter
Y (r,θ) = ε|sinθ|

δNc q introduced in Sec.2.2.4 Regions with Y < 1 are characterized by local
magnetic wells in between two toroidal field coils. Conversely, for Y > 1, such magnetic
wells do not exist so there is no ripple-induced trapping in those regions.
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Figure 2.12. – Condition of existence of ripple-induced magnetic wells in the Tore
Supra tokamak (a) a radially gaussian ripple (see next Chapter for the
reasons to consider such a shape) centered at mid-radius and poloidally
symmetric with a δ= 3% peak (b) and a δ= 0.5% peak (c). There are no
magnetic wells in Y > 1 areas (blue) so no local trapping can occur.

This subtle point is worth discussing as predictions are significantly different be-
tween regions with or without ripple-induced magnetic wells. It indicates that a
poloidal dependence must be taken into account. Indeed, one could construct an aca-
demic case in which δ has no poloidal dependency but then Y does (as displayed in
Fig.2.12a and Fig.2.12b), and inversely one could impose a poloidally symmetric Y but
then δ would be proportional to |sin(θ)|. Still, for numerical convenience explained
below, the considered ripple perturbation for this academic work is poloidally symmet-
ric. Fig.2.12 displays the poloidal map of Y for the Tore Supra tokamak and for radially
gaussian ripple δ(r ) profiles centered at mid-radius such that δ(r ) = δ0e−32(r /a−0.5)2

with δ0 the mid-radius ripple amplitude. This latter unrealistic shape of ripple am-
plitude is useful for numerical simulations as detailed in next Chapter. That said, the
asymptotic regimes of kVT , kN and kVP are summarized in Tab.2.1.

Y > 1 Y < 1 (Local mirrors) ∀Y
∀δ/ε δ/ε< 1 δ/ε> 1 ∀δ/ε

ν⋆≪ (Nc q)−2 (Nc q)−2 ≪ ν⋆≪ 1 ν⋆ < (δ/ε)3/2 ν⋆ < 1 ν⋆≫ 1
kN 3.37 1.5 3.37 3.37 1.5
kVP 1.17 1.17 1.17 -2.37 -0.5
kVT 3.54 1.67 3.54 0.0 0.0

Table 2.1. – Asymptotic values of kVT , kN and kVP for different ranges of δ/ε, ν⋆ and
Nc q .

75



2. Physics of flows in a 3D magnetic configuration – 2.6. An analytical model to
predict flows in presence of magnetic ripple

In this table, one can observe that thermal drive coefficients change substantially
depending on collisionality regimes. For example, kVT can double in regions without
magnetic wells under the sole effect of collisionality. It means that for a given tem-
perature gradient, the toroidal velocity can change drastically when the collisionality
evolves (due to heating for example). Similar effects can be observed for kN and kVP .
However, this table can easily be misleading for several reasons. First, the model is
poloidally averaged so the resulting thermal drive can be a mix between their predic-
tions in Y > 1 regions and Y < 1 regions. Then, those asymptotic regimes hide that
those thermal drives actually depend non-linearly on δ/ε and ν⋆.

Although less accurate than simulation codes, the reduced model has the advantage
over simulation codes to provide transport coefficients effortlessly. In other words,
it can be used to perform scans on wide ranges of δ/ε, ν⋆ and Nc q . Now and for
the remaining of this section, a fixed Nc q = 16×1.4 is considered. The thermal drive
coefficients kVT , kN or kVP are scanned for the ranges of δ/ε and ν⋆ as shown in
Fig.2.13.
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Figure 2.13. – Scan in ripple amplitude of thermal drives kVT , kN and kVP for a wide
range of ν⋆. Red plain lines represent the asymptotic values that appear
in Tab.2.1.

All asymptotic regimes are recovered. It should be mentioned however that the
Pfirsch–Schlüter regime, expected to play a role for ν⋆ ≫ 10, is not included in the
model and is expected to change kVP towards even more negative values [70] (indeed
the prediction in axisymmetric configuration is kVP →−2.1). The transitions between
the different regimes are mainly due to the (δ/ε)−1 dependence of Y . Indeed, as
(δ/ε) increases, the size of the regions where ripple-induced magnetic wells exist
also increases. In the range of the (δ/ε) parameter where the Y < 1 regions become
dominant compared with Y > 1 regions, important variations of kVT , kN and kVP are
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observed. In particular, kVP decreases toward negative values with increasing ripple
amplitude. It means that the poloidal velocity changes sign when increasing the ripple
amplitude. A physical explanation could be the following. At high ripple amplitude
and low collisionality, particles are locally trapped and undergo the vertical drift due
to the 1/R magnetic decay. These toroidally trapped particles do not carry any toroidal
velocity so kVT = 0. The vertical drift account for non-ambipolar diffusion resulting in
a finite electric field such that kN = 3.37. The poloidal velocity drive has to adapt to
fulfill the force balance equation, and is then negative.

2.6.3. Assessing the dynamics of the flows with the model
Another interesting quantity can be defined: the neoclassical toroidal friction νϕ. It

corresponds to the characteristic damping rate – set by ripple-induced neoclassical
processes – of the toroidal flow toward its predicted equilibrium value (governed by
kVT ). The idea is that, if the toroidal momentum conservation is dominated by the
magnetic braking M force, then

nm
∂VT

∂t
=M (2.69)

or equivalently

ΓVT = m

eBP

∂VT

∂t
. (2.70)

Developing the two first lines of Eq(2.59) yields

ΓVT =−DP
(−d0 AN + d̂0 AVT − d̃1 AT

)+ΓN . (2.71)

The neoclassical toroidal friction νϕ is the coefficient that multiplies AVT . Its expres-
sion significantly changes depending on the assumptions taken on the fluxes. Indeed,
if one considers that neither the particle flux nor the momentum flux vanishes in this
out-of-equilibrium situation, i.e. ΓN ̸= 0 and ΓVT ̸= 0, the neoclassical friction then
simply reads

νϕ = d̂0 . (2.72)

However, keeping the zero particle flux constraint ΓN = 0 but with a finite momen-
tum flux, i.e. ΓVT ̸= 0, Eq(2.59) gives

ΓVT =−DPν
ΓN=0
ϕ (AVT −kVT AT ) (2.73)

where the thermal drive kVT is same as derived in Eq(2.66). The neoclassical friction
ν
ΓN=0
ϕ in this case then reads

ν
ΓN=0
ϕ = d̂0 + d0d̃0

d0 + d̃0
. (2.74)

Notice that, since d̂0 and d̃0 go to zero when δ/ε→ 0, the neoclassical friction always
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(i.e. regardless of the assumption on the fluxes) vanishes in the axisymmetric case as a
consequence of the well known neoclassical degeneracy: without ripple, the toroidal
velocity cannot be separated from Er . Furthermore, d̂0 and d̃0 increase with δ/ε so
that the system relaxes faster with higher ripple amplitude, as one would expect on
the basis of qualitative physical arguments.

In Sec.3.3.4, the neoclassical friction is assessed with the GYSELA code. References
on this neoclassical friction addressing the impact of externally applied magnetic
perturbations can be found in [71–74]. However, none of the references known to the
author clearly addresses this neoclassical toroidal friction due to magnetic ripple in
tokamaks, neither through analytical study nor numerical simulations.

This reduced model that gives predictions on flows without turbulence is assessed in
GYSELA simulations in Chapter 4. The next section is meant to describe qualitatively
the turbulence in fusion plasmas.

2.7. Turbulence: a short introduction
Turbulence is a rich and complex phenomenon that is still not fully understood.

It describes a chaotic state that appears above an instability threshold, depending
on thermodynamical gradients, where several modes are destabilized and are non-
linearly coupled. The resulting turbulent flow exhibits a large number of degrees
of freedom 7 and, as such, is difficult to assess with a predictive theory. Turbulence
manifests as swirly flows, with mixing eddies covering a wide range of spatiotemporal
scales. In magnetized plasmas, the underlying mechanisms of turbulence are not the
same as in neutral fluids. One of the main differences is the presence of a fluctuating
electromagnetic field, which is required to be consistent with the density and current
fluctuations. The resulting physics includes, inter-alia, particle-wave resonant interac-
tions, mode-coupling, and stochasticity of the magnetic field, which are not present
in neutral fluid turbulence. Also, in hydrodynamics, the dissipation of kinetic energy
into heat occurs at small scales while the excitation sets at large scales. In between, the
"free" spectral region is said to be "inertial". In plasmas, the collisionless dissipation
comes from the Landau resonances over a broad range of scales and the excitation
comes from instabilities that develop at all scales such that there is no true inertial
region. A typical wavenumber spectrum in a tokamak discharge, here in Tore Supra, is
displayed in Fig.2.14 and shows the broad range of scales involved as well as excitation
and dissipative regions.

7. In hydrodynamics, this number of degrees of freedom is evaluated with the Reynolds number
which is defined as the ratio between the non-linear advection to the viscous dissipation. In plasmas,
other dimensionless numbers relevant to turbulence also play a role.
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Figure 2.14. – Wavenumber spectrum of density fluctuations in the #45511 discharge
of the Tore Supra tokamak. The region with a k−3 scaling is the region
of energy injection, and the region with a k−3/(1+k2)2 scaling is the
energy transfer region. Extracted from [75].

So why is the turbulence of interest for fusion? Historically, in the ’80-90s, one
realized that the observed heat diffusion measured in experiments was in fact way
higher than what was predicted with neoclassical theory. This discrepancy was called
anomalous transport, which is now understood to originate from turbulence 8. It is
then of prime importance to understand this mechanism in order to possibly reduce
the resulting transport. A visual representation of turbulence in magnetized plasma is
displayed in Fig.2.15, where one can see turbulent structures through a colormap on
the electric potential fluctuations φ̃.

8. Note that "anomalous" now designates non-diffusive flows.
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Figure 2.15. – Fluctuation of the electric potential φ̃ seen through a colormap in the
whole tokamak, simulated with the GYSELA code [76].

These mixing eddies are bound to induce radial transport of heat and particles.
Indeed, in the direction perpendicular to the magnetic field lines, the particles undergo

the effect of turbulence through the perturbed electric drift velocity ṽE xB = B×∇φ̃

B 2 .
With this expression, it is clear that iso-contours of φ̃ are also the particle trajectory
projected on the plane perpendicular to the direction of B, as illustrated in Fig.2.16.

Figure 2.16. – Sketch of turbulence impact on the fluctuating part of the electric drift
in a poloidal section (magnetic drift is neglected here). This drift adds
to the parallel motion of the guiding center represented in red.

These structures are elongated in the toroidal direction due to the fast parallel
transit of particles. As the main interest is transport, we will focus on turbulent radial
motion of particles. In that projection, the spatial scale of the main turbulent structure
responsible for transport is of the order of the ion Larmor radius lc ∼ ρi ∼ 1mm and
the correlation time is about τc ∼ R/v∥ ∼ 10µs.
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In this thesis, the instability of interest is the "interchange-like instability" driven
by the main ion temperature gradient. The resulting turbulence is called "Ion Tem-
perature Gradient (ITG) driven turbulence". The interchange instability principle
is illustrated in Fig.2.17. The idea is the following. Let us assume that a perturba-
tion causes the emergence of vertically aligned charged structures near the equatorial
plane, represented as red and blue circles in the figure for positive and negative charges
respectively. The electric field resulting from these convective cells causes a horizontal
electric drift directed left - resp. right - when considering the up-down dipole with
the negative cell on top - resp. below. The advected quantity, i.e. particles or heat

(particles on the figure), also undergoes the vertical magnetic drift vD = mv2
∥+µB

eB
B×∇B

B 2

which depends on the particle charge. The advection coming from the right then
tends to neutralize the cell while the one from the left tends to amplify the total charge
of the cell. The instability happens when the total advection benefits more to the
amplification than the neutralization. This happens when the density (i.e. number of
particles) or temperature is higher on the left of the cells than on the right. In other
words, this occurs when the pressure gradient is aligned with the gradient of magnetic
field modulus. In tokamaks, the high-field side is then locally stable regarding the
interchange instability, while the low-field side is unstable. Due to the helicity of the
magnetic field lines, particles explore both these regions. Thus the plasma parallel
current, which carries electric charges between stable and unstable regions, has a
stabilizing effect. This will be developed further in Chapter 5.
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Figure 2.17. – Illustration of the interchange instability. A positive (negative) con-
vective cell tends to become even more positive (negative) when the
magnetic field gradient and the pressure gradient are aligned, thus caus-
ing an instability on the electric field.

2.8. Conclusion of chapter 2
In this Chapter, intrinsic channels of transport in a non-axisymmetric system have

been introduced. To model this disparity from axisymmetry, the magnetic ripple is
considered. The effect of the static perturbations of the magnetic field on the trajec-
tory of particles is described: the 1/R magnetic decay is responsible for the banana
trapping and the magnetic ripple for the local trapping between two consecutive
toroidal coils. The transport is assessed using a variational principle that separates the
channel into two categories: the neoclassical (collisional) processes and the stochas-
tic (collisionless) particle motion. When the precession frequency is negligible with
respect to the banana bounce frequency, neoclassical physics is well described. The
magnetic ripple breaks the degeneracy of axisymmetric system where neoclassical
theory cannot predict the radial electric field and the toroidal velocity separately.

In presence of this perturbation, four branches of neoclassical transport exist. The
two ’primary’ ones refer to the random walk of the orbit width of the banana and
the locally trapped particles. The two ’secondary’ ones refer to the impact of one
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perturbation on the other: ripple is responsible for the radial displacement of banana
bounce points and vice-versa.

When the precession frequency is comparable with the banana bounce frequency,
the stochasticity of particle trajectories arise. The Chirikov overlap parameter is
derived, as well as the resulting diffusion and the threshold velocity for a particle
trajectory to become chaotic.

Both of these transport channels are included in a compact reduced model that
predicts the fluxes as a function of the thermodynamical gradients (i.e. density and
temperature), the toroidal velocity and the radial electric field.
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The purpose of this chapter’s is twofold. First, it briefly describes the simulation
code GYSELA which is a tool extensively used in the studies of this thesis. Second, the
way the magnetic ripple has been implemented in the code and further benchmarked
is explained in detail. The chapter is organized as follows: Sec.3.1 gives the set of equa-
tions solved by GYSELA that constitutes the gyrokinetic model, Sec.3.2 explains the
basic features of GYSELA (the numerical model, the accessible spatio-temporal scales
...) and Sec.3.3 is a comprehensive description of the magnetic ripple implementation,
verification and validation.

3.1. Gyrokinetic model
This section aims to present briefly the gyrokinetic model equations that are solved

in the GYSELA code. The gyrokinetic model describes strongly magnetized plasmas
for which typical frequencies are less than the cyclotron frequency. Hence, it is well
designed to characterize collisional and turbulent processes. This model aims to
reduce the dimensionality of the 6D kinetic approach by averaging the dynamics
over the cyclotron motion (this is called the gyroaverage), while still accounting for
finite Larmor radius effects. It leads to the building of a new adiabatic invariant of
motion, the magnetic moment µs , related to a virtual particle: the gyrocenter. It differs
weakly from the particle guiding center but is more adapted to describe small-scale
fluctuations. Compared to the guiding center, the gyrocenter takes into account
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the effect of electromagnetic perturbations during the gyromotion. Consequently,
polarization and magnetization of the plasma are well described even in this 5D
description. The derivation of the gyrokinetic theory is a formidable task that will not
be detailed in this thesis, but the interested reader can refer to [77, 78]. Here only the
resulting equations are given.

The first one is the gyrokinetic Fokker-Planck equation . It describes the evolution
of the gyrocenter distribution function F̄s of each species s in a 5D phase space
(xG , vG∥,µG ) where xG is the gyrocenter position, vG∥ is the gyrocenter velocity parallel
to the magnetic field line and µG is the gyrocenter magnetic moment. It reads

∂F̄s

∂t
+ dxG

dt
·∇F̄s +

dvG∥
dt

∂F̄s

∂vG∥
= C(F̄s)+S (3.1)

where C is a collision operator [79] and S a source (of particles, moment and/or
heat).

The second is the electrostatic quasi-neutrality equation Eq(3.2), here expressed in
the case of adiabatic electrons and in the limit of long wavelengths (with respect to
the thermal ion Larmor radius):

e
[
φ−〈φ〉]

Te
−∑

s

1

neq,s
∇⊥ ·

[
msneq,s

esB 2
∇⊥φ

]
=∑

s

1

neq,s

Ï 2πB⋆
∥,s

ms
d vG∥dµJ (F̄s − F̄eq,s)

(3.2)
with 〈.〉 denotes a flux-surface average, J is the gyroaverage operator. φ is the

electric potential, Te is the electron temperature and e the ion charge. For each ion
species s, ms is the mass, es is the charge and B⋆

∥,s is the Jacobian of the phase space
coordinate transform. The density neq,s is calculated with the equilibrium Maxwellian
gyroaveraged distribution function F̄eq,s .

This is the set of equations solved in the simulation code GYSELA.

3.2. Code description
GYSELA is a full-f, non-linear, global 5D gyrokinetic code based on a backward

semi-Lagrangian numerical scheme. Let us decipher each of these terms.
— 5D means that the code evolves the distribution function in a 5D phase-space,

which is a reduction from the real 6D phase space as mentioned in the previous
section.

— Full-f means that the total distribution functions are evolved, as opposed to
the “δ f " codes which only describe the departure from a reference distribution
function.

— Backward semi-Lagrangian scheme [15] is a hybrid scheme that incorporates
specificities from both Eulerian and Lagrangian schemes. An Eulerian scheme is
based on a fixed grid in phase space where the distribution function F is eval-
uated at time t +∆t through finite differences or finite elements knowing F at
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time t . A Lagrangian scheme, mainly used in Particle-In-Cell (PIC) codes, rather
relies on the invariance of F along trajectories when solving the Fokker-Planck
equation Eq(3.1). This method tracks the orbit of markers 1 in phase-space. The
backward semi-Lagrangian scheme used in GYSELA then starts from a point
of a fixed grid (Eulerian) at time t +∆t and solves the trajectory equation (La-
grangian) to obtain this same point’s position at time t . In general, the computed
position at time t doesn’t match a grid point, so an interpolation is done from
nearby mesh points. The main advantages of semi-Lagrangian schemes are
their immunity against Courant-Friedrichs-Lewy (CFL) conditions (comparing
to explicit Eulerian schemes) and reduced numerical noise (compared to PIC
schemes). The major drawbacks are the costly interpolations (often simplified at
the cost of precision) and that particle conservation is not guaranteed. GYSELA
is the only gyrokinetic code at High-Performance Computing (HPC) scale that
uses this numerical scheme.

— Flux-driven means that gradients evolve self-consistently, unlike in gradient-
driven simulations. Flux-driven simulations then require a source (of heat in
most cases) to reach an equilibrium with gradients. Consequently, they also
inevitably require a sink at the edge. Gradient-driven simulations are useful
to estimate the fluxes for given plasma parameters. Flux-driven simulations
allow the study of bursty behaviors of some essential transport mechanisms (like
avalanches, Edge Localised Modes ...).

— Electrostatic means that only the electrostatic potential φ is evolved at the ex-
pense of the perturbed vector potential Ã. Hence the magnetic field remains
static in the simulations. This approximation is made given that taking elec-
tromagnetic effects into account drastically increases the cost of simulations,
as some of the associated mechanisms are characterized by frequencies higher
than the electrostatic ones, and also because the electron response is needed to
compute the perturbed current µ0J̃ =∇× B̃. The validity of this simplification is
questionable for the edge plasma, but reasonable for the core region. Note that
the electromagnetic version of GYSELA is in the testing phase.

— Global means that the plasma is simulated over the whole tokamak - from core
to edge - contrary to local codes that usually treat one or few magnetic surfaces.
Global simulations are way more costly than local ones. They are however essen-
tial to take non-local effects into account, e.g. turbulence spreading, avalanches
or profile shearing.

— Non-linear means the term (vE ·∇)F in Eq(3.1) is not linearized.
Put simply, GYSELA is a code designed to simulate turbulence, as well as its inter-

action with other phenomena in the same scale range. An overview picture of the
captured physical mechanisms is displayed in Fig.3.1.

1. Individual particle, fluid element, mesoscopic plasma volume ...
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Figure 3.1. – Spatiotemporal scales range described by the GYSELA code and the cap-
tured mechanisms. Inspired from Y. Sarazin presentation at Festival de
théorie 2022.

GYSELA has been developed since the beginning of the 2000s. It has been evolving
continuously to include more and more physics, taking advantage of the development
of more powerful computers and by using state-of-the-art high-performance comput-
ing 2. Despite access to a large amount of numerical resources (hundreds of millions
of CPU hours per year), it is currently impossible to describe all the physics happening
in a tokamak with a single code. In GYSELA, the major missing physics at the time of
this thesis are:

— Fluctuations are electrostatic: the magnetic field B doesn’t evolve in time. As a
consequence, there is no retro-action of the pressure gradient on B , either at
the equilibrium scale (i.e. the Grad-Shafranov shift) or at fluctuating scale (i.e.
electromagnetic turbulence). MHD events are also dismissed.

— Adiabatic electrons 3: the electron dynamics exhibit a thermodynamical re-

2. In particular regarding the OpenMP/MPI parallelism (with plans to port parts of the code on
GPUs)

3. It should be noted that kinetic electrons are implemented in the code, but this version was not
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sponse such that the electron density reads ne = n0(1+ e
Te

(φ−〈φ〉)). Turbulence

developing at electron scale is then not described 4.
A detailed description of the GYSELA code can be found in Grandgirard et al. [76].

In the frame of this thesis, magnetic ripple has been added to the code.

3.3. Implementation of magnetic ripple

3.3.1. GYSELA geometry
The current version of the GYSELA code uses a set of orthogonal toroidal coordi-

nates labeled
{

xi
}= (r,θ,ϕ), where r is the radial position, θ the geometric poloidal

geometric angle, andϕ the toroidal angle. This is a choice among many others such as
Hamada coordinates, Boozer coordinates, or other intrinsic coordinates. The metric
tensor gi k is defined via the distance element d s such that

d s2 = gi k d xi d xk = g i k d xi d xk

The Jacobian in space Jx is defined as Jx = p
g with g the determinant of the

metric tensor. It is calculated as Jx = [(
∇x1 ×∇x2

) ·∇x3
]−1

. The element of the
contravariant metric tensor verifies the relation g i j =∇xi ·∇x j . With these notations,
each vector A can be defined in terms of its covariant components Ai as A = Ai∇xi .
In the specific case of circular concentric magnetic surfaces considered in GYSELA, it
is straightforward to show that

gi j =
 1 0 0

0 r 2 0
0 0 R2


and, as the tensor

{
g i j

}
is the inverse of

{
gi j

}
,

g i j =
 1 0 0

0 1
r 2 0

0 0 1
R2


where R(r,θ) = R0+r cosθ with R0 the major radius of the torus at the magnetic axis.

The Jacobian in space is then Jx = r R . Note that work is currently done by the GYSELA
team to implement an arbitrary magnetic geometry in the code.

3.3.2. Method of implementation
This section aims to explain how magnetic ripple is implemented in GYSELA. The

axisymmetric magnetic field B is defined as

used for the present work.
4. Note that the version of GYSELA with trapped kinetic electrons has been recently benchmarked

successfully and is ready for production runs.
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B = B0R0

R(r,θ)

[
r

q(r )R0
êθ+ êϕ

]
(3.3)

where êθ = r∇θ and êϕ = R∇ϕ are unit vectors in the poloidal and toroidal periodic
direction respectively, and q is the safety factor.

In the axisymmetric case, the electrostatic gyrokinetic equations of motion for
species s solved in GYSELA are

B⋆
∥s

dxG

dt
= vG∥B⋆+ b

es
×∇H (3.4)

B⋆
∥sms

dvG∥
dt

=−B⋆ ·∇H (3.5)

where b = B/B is the unit vector parallel to the magnetic field direction,

B⋆ = B+ ms vG∥
es

∇×b

and

H= ms

2
v2

G∥+µsB +esJ [φ] (3.6)

is the axisymmetric Hamiltonian, with φ the electric potential.
In principle, the ripple perturbation δB should be included by modifying both the

magnetic field vector B and its modulus. Modifying the vector B in such a heavy code
is very challenging. Indeed, adding a toroidal component to the magnetic field would
change the magnetic surface shape such that the metrics would become 3D. This
tremendous work is unnecessary, as modifying only the Hamiltonian is sufficient for
acceptable accuracy 5.

The new effective Hamiltonian reads

Heff =
ms

2
v2

G∥+µs(B +δB)+esJ [φ] (3.7)

where

δB = B0δ(r,θ)cos
(
Ncϕ

)
. (3.8)

The magnetic drift vDs , the electric drift vE×Bs and the parallel force f∥s appear when
developing Eq(3.4) and Eq(3.5) such that

5. It can be shown that this simplification changes the expression of the magnetic braking torque

TM,s , which is the main effect of ripple, from TM,s = −∫
d 3vFs

{
(ms v2

G∥+µs B)R
(êϕ·∇)B

B

}
to TM,s =

−∫
d 3vFs

{
µs R(êϕ ·∇)B

}
. At low collisionality, magnetic ripple impacts mainly the trapped particles so

the error on TM,s can not exceed ε for banana trapped particles and δ for locally trapped particles. This
reasonable assumption is detailed in reference [80] that discusses the non-axisymmetric perturbation
implementation in the gyrokinetic code GT5D.
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vDs =
ms v2

G∥+µsB

esB⋆
∥s

B×∇B

B 2
, (3.9)

vE×Bs =
B×∇φ̄

BB⋆
∥s

, (3.10)

f∥s =−µs(b⋆s ·∇)B , (3.11)

the motion equations of GYSELA are then modified as follows

dxG

dt
= vG∥b⋆s +vDs +δvDs +vE×Bs (3.12)

ms
dvG∥

dt
= f∥s +δ f∥s −eb⋆s ·∇φ̄+ ms vG∥

B
vE×Bs ·∇B (3.13)

where b∗
s is defined as

b∗
s = 1

B∗
∥s

(
B+ ms vG∥

esB
∇×B

)
. (3.14)

The new terms due to ripple are displayed in red and yield

δvDs =
µsB

esB⋆
∥s

B×∇δB

B 2
(3.15)

δ f∥s =−µs(b⋆s ·∇)δB (3.16)

such that the magnetic ripple only adds a term δvD to the magnetic drift and a
parallel force f∥s in the parallel momentum conservation.

With the notation wDs = µs
es B∗

∥s
JxB , the contravariant components of the new mag-

netic drift term δvD are

δv r
Ds = wDs

(
Bθ
∂δB

∂ϕ
−Bϕ

∂δB

∂θ

)
(3.17)

δvθDs = wDsBϕ
∂δB

∂r
(3.18)

δvϕDs =−wDsBθ
∂δB

∂r
(3.19)

The parallel force f∥s reads

f∥s =−µs

(
∂δB

∂r
b∗r

s + ∂δB

∂θ
b∗θ

s + ∂δB

∂ϕ
b∗ϕ

s

)
where the contravariant coordinates of b⋆s read
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b∗i
s = (

b∗
s ·∇

)
xi

G = 1

B∗
∥s

(
B i + ms vG∥

es

(∇×B)i

B

)
or more specifically

b∗r
s = 0 ; b∗θ

s = Bθ

B∗
∥s

; b∗ϕ
s = 1

B∗
∥s

(
Bϕ+ ms vG∥

es

(∇×B)ϕ

B

)
.

In practice, ∂δB
∂r and ∂δB

∂θ are negligible compared to ∂δB
∂ϕ . Consequently, only ∂δB

∂ϕ has
been added to the code to avoid unnecessary additional calculations and increased
simulation time. The following sections are dedicated to the verification and validation
of this implementation.

In the future, if the modification of the magnetic field vector B appears of use, it will
be sufficient to add to the present field the perturbed one

δB = δBr∇r +δBθ∇θ+δBϕ∇ϕ . (3.20)

The contravariant components of δB are easily deduced from the metric tensor
B i = g i k Bk . For the current GYSELA geometry, they read

δB r = B0R0

Nc

∂δ(r,θ)

∂r
sin

(
Ncϕ

)
(3.21)

δBθ = 1

r 2

B0R0

Nc

∂δ(r,θ)

∂θ
sin

(
Ncϕ

)
(3.22)

δBϕ = 1

R2
B0R0δ(r,θ)cos

(
Ncϕ

)
. (3.23)

3.3.3. Verification through toroidal angular momentum
conservation

From now on, only a single ion species is considered so the subscript s is omitted.
To verify the implementation of the ripple perturbation in GYSELA, a scan in ripple
amplitude is considered to check the conservation of toroidal angular momentum.
One of the major effects of a non-axisymmetric magnetic perturbation is an additional
toroidal torque TM, which is called "magnetic braking torque" (or just "magnetic
braking" when referring to the associated force M). The flux surface averaged, i.e.
radially local, momentum conservation relation [81] involves this new term:

m
∂〈nRVT 〉

∂t︸ ︷︷ ︸
Temporal
evolution

= − 〈∇·Πϕ〉︸ ︷︷ ︸
Reynolds

stress

− 〈Tϕ〉︸︷︷︸
Polarisation

+ 〈J 〉 ·∇ψ︸ ︷︷ ︸
Radial

currents

+ 〈TM〉︸ ︷︷ ︸
Magnetic braking

torque

(3.24)

where VT = 1
n

∫
d 3v

{
vG∥(BT /B)F

}
is the gyrocenter mean toroidal velocity (BT is
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the toroidal component of the magnetic field), Πϕ the toroidal Reynolds stress, Tϕ
a polarization term and J the sum of the radial currents due to the magnetic and
electric drifts respectively.

Boundary physics, inevitably present either in global codes or experiments, acts as
a momentum sink that is not included in the analytical model. For this reason, the
considered profile of the ripple amplitude in the following simulations is taken radially
gaussian and maximum at mid-radius. Also, no poloidal dependence is accounted for.
It reads δsim(r ) = δ0e−32(r /a−0.5)2

with δ0 the mid-radius ripple amplitude. The usual
way to perform simulations for neoclassical studies is to artificially filter out all toroidal
Fourier modes of the electric potential φ except the axisymmetric component. This
cannot be done here as ripple adds toroidal harmonics with Nc periodicity. The chosen
solution to avoid turbulence is then to initiate the simulations below the instability
threshold, i.e. with a sufficiently weak temperature gradient and high density gradient.
It is also verified that ripple-induced mode amplitudes are low enough such that
the inequality on Fourier modes eφkNc ≪ µBkNc , with k = 1,2, ..., is satisfied, which
ensures that the Hamiltonian is not affected by fluctuations of the electric potential.
The parameters of the simulations are summarized in Tab.3.1.

Species Deuterium
Aspect ratio R0/a 3.2
Safety factor q = 0.854+2.184(r /a)2

Density gradient R0/LN = 6
Temperature gradient R0/LT = 6
Collisionality at r /a = 0.5 ν⋆ = 0.1
ρi /a at r /a = 0.5 ρ⋆ = 1/150
Number of coils Nc = 16

Table 3.1. – Simulation parameters. LN and LT are the density and temperature gradi-
ent’s lengths, ρi is the ion Larmor radius.

Four simulations using different ripple amplitudes are analyzed. The l.h.s of Eq(3.24),
which is a standard output of GYSELA, is compared with the sum of the contributions
in the r.h.s for each simulation. The radial profiles of these quantities are plotted in
Fig.3.2 and show a satisfactory agreement for all ripple amplitudes attesting to proper
momentum conservation in the code.
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Figure 3.2. – Radial profile of the total toroidal momentum (dashed) and the sum of
the expected contributions (plain) for different ripple amplitudes δ0.

Without turbulence, magnetic braking quickly becomes the dominant contribution
and determines the mean toroidal velocity. This torque is negative, which in the
GYSELA convention means that magnetic braking pushes the toroidal velocity toward
the counter-current direction, as expected. The implementation of a ripple magnetic
perturbation being successful, the GYSELA code can be confronted to the analytical
neoclassical reduced model presented in Sec.2.6 and the reference code NEO.

3.3.4. Comparison of GYSELA global simulations with
neoclassical predictions and NEO

In this section, the ability of the GYSELA code to assess neoclassical processes is
tested against two different tools. The first one is the reduced model developed in
Chapter 2. The other one is the 3D version of the drift kinetic solver NEO which cap-
tures all the neoclassical physics with ripple. Commonly, the neoclassical theory in ax-
isymmetric configurations is benchmarked by comparing the thermal drive coefficient
kVP of the poloidal velocity VP such that its equilibrium value reads VP ,eq = kVP

∇T
eBT

.
This exercise has already been done to benchmark GYSELA against the axisymmetric
neoclassical theory [82].

In the case of a non-axisymmetric magnetic perturbation, the transport matrix
is not degenerate so this exercise can be extended to other quantities. It could be
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tempting to perform a benchmark on each of the transport matrix coefficients (di j )
that appear in the reduced model Eq(2.59) and which only depend on δ/ε, ν⋆ and
Nc q . Given the structure of Eq(2.59), one could determine those coefficients if a
sufficient number of (AN , AVT , AT ) and associated (ΓN ,ΓVT ,ΓT ) sets were known. Let
us remind that AVT and AT can be seen as the normalized mean toroidal velocity
and normalized temperature gradient. Also, AN is a dimensionless quantity that
varies with the density gradient and the radial electric field. In theory, only 3 sets
would suffice for a given (δ/ε,ν⋆, Nc q) set to determine the transport matrix from
simulations. However, the least-square method used as a linear solver proved to be
inefficient and would probably need more statistics. In addition, the benchmark aims
at verifying the validity range of the theory for a wide range of ripple amplitudes and
collisionalities. As discussed below, obtaining a set (AN , AVT , AT ,ΓN ,ΓVT ,ΓT ) linked
to one combination of (δ/ε,ν⋆, Nc q) basically amounts to run one simulation. The
number of simulations required to retrieve all the matrix coefficients for a wide range
of (δ/ε,ν⋆, Nc q) values would then be enormous. As the ripple’s primary effect is a
toroidal torque, the focus is here on the thermal drive of the toroidal velocity kVT and
the neoclassical toroidal friction νϕ.

The methodologies to retrieve these coefficients in GYSELA and NEO are described
in detail in the following subsections.

3.3.4.1. Computing neoclassical coefficients with GYSELA

In GYSELA, the main difficulty lies in the boundary conditions that can add extra
effects not taken into account in the reduced model like orbit losses, momentum flux
carried by waves or scrape-off layer interactions. For this reason, a radially gaussian
ripple, as defined in Sec.3.3.3, is considered. The radial location of interest is then
chosen at r /a = 0.5. In GYSELA, (AVT , AT ) are inputs and ΓVT is an output. The tem-
perature gradient AT evolves slowly compared with AVT and ΓVT . In all simulations,
AT is then fixed at the same value and only the initial AVT profile is changed. This
makes the numerical resolution even simpler and more robust, as linear regression
on ΓVT (AVT ) gives νϕ and kVT which according to Eq(2.73) are respectively associated
with the slope and intersection with the x-axis. A (AVT ,ΓVT ) set is retrieved after the
GAM phase which is here longer than a few collision times in each simulation, i.e.
the characteristic time needed for neoclassical effects to establish. This method for
extracting kVT from the slope of the ΓVT (AVT ) is illustrated in Fig.3.3. This figure is the
result of 16 simulations with four different ripple amplitudes, four toroidal velocities,
and a single ν⋆ profile.
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Figure 3.3. – Magnetic braking force ΓVT versus AVT for different ripple amplitudes
δ. Each point corresponds to a simulation with different initial toroidal
velocity profiles and represents the (AVT ,ΓVT ) retrieved at r /a = 0.5 after
the GAMs phase, here at ν⋆ = 0.1.

This exercise has been done with four collisionality profiles for a total of 48 gyroki-
netic simulations. All the input profiles are shown in Fig.3.4.
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Figure 3.4. – Initial radial profiles of the effective ripple amplitudes δ/ϵ (a), the colli-
sionalities ν⋆ (b) and the normalized toroidal velocities AVT (c) used for
the scan.

3.3.4.2. Computing neoclassical coefficients with NEO

NEO is an Eulerian local code that solves the drift-kinetic equation with a linearized
full Fokker-Planck collision operator [83, 84]. It is considered as k⊥ρi ≪ 1 where k⊥ is
the characteristic wave number of the distribution function. The only approximation
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is the drift-ordering ρ⋆ ≪ 1 [85]. As NEO is able to handle non-axisymmetric flux
surfaces (see [86] for more details), the following simulations use the same ripple
perturbations used in GYSELA. NEO has to be benchmarked in the same conditions as
in GYSELA. This requires zero particle fluxΓN = 0, as imposed by the adiabatic electron
response in GYSELA. However, contrary to the axisymmetric version, here NEO does
not enforce ambipolarity so that ΓN ̸= 0 in the general case. Notice that, at equilibrium,
both ΓN and ΓVT go to zero. Hence VT = kVT ∇T /eBP , as stated in Eq(2.60), which is
an output in NEO. It follows that, in such a regime, this methodology does not allow
one to retrieve the neoclassical toroidal friction νϕ with NEO. To retrieve kVT , one
must first find an input set of (AN , AT ) for which ΓN = 0. There is no quasi-neutrality
constraint in NEO, and consequently no onset of non-linearity, even small, due to
the electric potential as in GYSELA. For this reason, the relation between (AN , AT )
and (ΓN ,ΓVT ,ΓT ) is linear in NEO. Taking advantage of this, AN is set to a constant
value while a scan on AT is performed 6. The resulting outputs of interest, i.e. ΓN , ΓVT

and AVT then exhibit a linear dependency with respect to AT , as depicted in Fig.3.5.
Note that this method could also have been done by performing a scan on AN at
fixed AT . The ΓN = 0 condition is then obtained by drawing the ΓN (AT ) line using a
few points, each obtained with one simulation, and by retrieving the AT value that
cancels the particle flux. At this value ΓVT = 0 as expected and already discussed, so
the output toroidal velocity is equal to AVT = kVT AT . This provides the value of kVT .
Fig.3.6 illustrates this procedure, that is repeated for each ν⋆ considered for a given
ripple amplitude δ.

6. We here remind that the transport coefficients kN , kVT and kVP depends only on δ/ε, ν⋆ and Nc q .
It means that the scan could have been performed on AN and this would give the same results.
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Figure 3.5. – From NEO simulations: Equilibrium particle flux ΓN (a), equilibrium
magnetic braking force ΓVT (b) and equilibrium mean toroidal velocity
VT (c) for different collisionalities ν⋆ at fixed δ/ε= 0.03/0.16 and Nc q =
16×1.4 over a wide range of AT .
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Figure 3.6. – Zoom-up of Fig.3.5 in range of AT where ΓN = ΓVT = 0. The value of VT

at AT for which ΓVT cancels is directly linked to the neoclassical thermal
drive kVT .

3.3.4.3. Benchmark

The comparison between the reduced model, GYSELA and NEO is performed in
the range of collisionalities ν⋆ ∈ [0.05−0.5] and for three ripple amplitudes: δ= 0.5%,
δ = 1% and δ = 3% at ε = 0.16 and at a fixed Nc q = 1.4×16. Fig.3.7 shows the kVT

obtained with GYSELA, NEO by the procedure explained above for a ν⋆ scan and for
those three ripple amplitudes. The value of kVT given by the reduced model is also
plotted. A fair agreement is found between GYSELA and NEO, where the average
relative error is less than 10%, even tough it can reach ∼ 50% at combined high
collisionality ν⋆ = 0.5 and low ripple δ = 0.5%. These results show that the model
collision operator used in GYSELA is well designed to describe neoclassical processes
in the collisionality range ν⋆ ∈ [0.05,0.5]. Agreement between both codes and the
neoclassical model in non-axisymmetric configurations is also obtained regarding the
thermal drives. However, the δ= 0.5% case with GYSELA does not seem to undergo
the 1/ν⋆ trend followed by the model and NEO. One possible explanation is that this
is the only case not dominated by Y < 1 regimes (cf. Sec.2.6). In other words, only
this case is dominated by the effect of banana-trapped particles. The point is that at
low ν⋆, other regimes affecting only banana trapped particles exist [63, 65, 73]. They
are sometimes labeled super-banana regimes and correspond to the effect of higher
order electric and magnetic drifts at bounce points, negligible at higher collisionalities.
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These regimes are not included in the present reduced model, nor in the present
NEO simulations. However, they are treated by GYSELA, which could explain this
discrepancy at low collisionality. Note that NEO can actually compute those drifts [86].
This option was not switched on as the methodology here used to retrieve kVT in NEO
is not compatible if those drifts are activated. However, a few tests with reasonable
parameters for those drifts were performed in NEO and showed a reduction of kVT

even for collisionality around ν⋆ ≈ 0.1. At high ν⋆, a larger discrepancy is observed at
δ= 0.5% between GYSELA and both NEO and the model. While these later agree, the
discrepancy with GYSELA remains unexplained, but is still in an acceptable agreement
with NEO and the reduced model. Overall, the model which is derived in the large
aspect ratio limit ε≪ 1 is showing a fair agreement with NEO. Alleviating this latter
limit actually already modifies neoclassical predictions in the axisymmetric case quite
substantially. In fact, for the axisymmetric neoclassical theory, i.e. without ripple, the
finite aspect-ratio corrections [87] can change kVP = 1.17 to kVP ∼ 0.6 for ε= 0.17 as
observed in GYSELA [82]. To our knowledge, there is no analytical derivation of the
aspect ratio correction for the neoclassical theory with ripple. The agreement is then
unexpectedly good, especially at high δ/ε where the condition Y < 1 dominates.
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Figure 3.7. – Collisionality scan of kVT obtained with the reduced model, GYSELA
and NEO for δ= 0.5% (left), δ= 1% (middle) and δ= 3% (right) at fixed
ε= 0.16 and Nc q = 16×1.4.

The benchmark on the toroidal friction is shown in Fig.3.8. Both expressions derived
in Sec.2.6, i.e. νϕ and ν

ΓN=0
ϕ are displayed on this figure. It was expected that the

expression with the zero particle flux assumption, i.e. ν
ΓN=0
ϕ , should be the best

approximation as the electron are adiabatic in these simulations. However, it appears
that the toroidal friction obtained in GYSELA is about 5 to 10 times lower than νΓN=0

ϕ .
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The expression of the neoclassical friction obtained by considering a finite particle
flux is however in reasonable agreement with GYSELA. The reason for this behavior is
still an open issue.
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Figure 3.8. – Collisionality scan of νϕ and νΓN=0
ϕ obtained with the reduced model and

GYSELA for δ = 0.5% (left), δ = 1% (middle) and δ = 3% (right) at fixed
ε= 0.16 and Nc q = 16×1.4.

3.4. Conclusion of chapter 3
Magnetic ripple perturbations have been successfully implemented in GYSELA by

modifying the effective Hamiltonian. Key verification has been achieved through
toroidal momentum conservation where a new term, the magnetic drag due to the
ripple perturbation, becomes the dominant contribution at large ripple amplitude.
GYSELA results have been benchmarked regarding the neoclassical processes occur-
ring in presence of ripple thanks to an analytical neoclassical model and the NEO code.
Good agreement with the NEO code is found, meaning GYSELA is able to properly
describe ripple-induced neoclassical processes down to relatively low collisionality
ν⋆ ∼ 0.05. GYSELA results are also found to well agree with the analytical model
presented in Chapter 2 which is derived in the low collisionality and large aspect ratio
limit.
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In this chapter, the turbulence is considered in addition to the neoclassical and
stochasticity effects due to the magnetic ripple alone (as studied in the previous
chapter). Particular attention is paid to the resulting toroidal velocity, even though
the magnetic ripple also impacts the radial electric field and the poloidal velocity. The
reason is that the main effect of ripple is to add a new force in the toroidal direction,
forcing the mean toroidal velocity toward a finite value. The objective is then to see
what is the effective drive of this rotation when turbulence is also accounted for, as it
also acts as a rotation drive. The content of the following is published in [88].

4.1. Introduction
Toroidal rotation plays a key role in the confinement properties of tokamak plasmas.

Indeed, numerous experiments have highlighted the link between plasma rotation
and improved plasma performance [21, 26, 89–91]. On most medium size tokamaks,
rotation is controllable using the external torque exerted by tangential neutral beam
injection. However in reactor-size tokamaks, including ITER, external torque is ex-
pected to be small [22], so the plasma rotation will likely be driven by intrinsic plasma
mechanisms. Intrinsic generation of rotation results from symmetry breaking [92].
Therefore, toroidal asymmetry of the magnetic field plays a leading role in rotation
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drive, as realistic magnetic configurations always include non-axisymmetric perturba-
tions. They result from error fields due to coil misalignment, magnetohydrodynamic
instabilities, externally applied perturbations, or magnetic field modulations due to
the finite number of toroidal coils, called ripple. We here focus on the latter. Toroidal
magnetic ripple constrains the toroidal torque through magnetic braking, i.e. the
force resulting from the magnetic field inhomogeneity on particle magnetic moments.
This force substantially changes the plasma rotation even for small amplitude per-
turbations [24]. The resulting torque, called Neoclassical Toroidal Viscosity, and its
impact on toroidal rotation have been experimentally observed [25, 73, 93–95] and
widely studied theoretically [30, 42, 54, 56–59, 61, 62, 96–99] as well as numerically
[72, 80, 100–102]. Turbulence can also be responsible for intrinsic rotation of the
plasma. However a symmetry-breaking mechanism is also required, which can be
either a background E ×B shear [103], an up-down asymmetry [104] or a shear of
turbulent intensity [105]. While this turbulent drive has also been extensively studied
[92, 103–116], the possible competing and/or synergetic effects of extrinsic (ripple)
versus self-generated (turbulence) asymmetries on rotation has drawn little [117]
attention so far. Consequences are of prime importance, since any modification of
mean flows impacts the radial electric field, and therefore also the transition toward
improved confinement regimes [118]. In this thesis, the ripple amplitude threshold
δc below which turbulence governs plasma flows is estimated theoretically, first with-
out any cross-talk between ripple and turbulence. This estimation is in agreement
with non-linear gyrokinetic simulations using the GYSELA code [76] and leads to a
proposed simple expression. Secondly, the interplay between turbulence and ripple
regarding the toroidal velocity is studied thanks to comprehensive gyrokinetic GYSELA
simulations. As main results, it is found that the modification of the spectral intensity
by ripple through mode-coupling is found negligible. However, ripple is found to
modify the toroidal Reynolds stress through the shear of radial electric field.

4.2. Reduced model for the competition between
neoclassical effects and turbulence

Based on the complete toroidal angular momentum conservation [81, 107], one
can write a simplified expression of the toroidal momentum evolution keeping the
dominant terms (cf. Appendix E). Expressed within the large aspect ratio limit, i.e. ε=
r /R0 ≪ 1 with R0 the tokamak major radius 1, the ripple and turbulent contributions
to the toroidal velocity VT evolution read as follow:

∂t VT =M− r−1(rΠ)′ (4.1)

where a prime stands for the derivative along the radial coordinate r , M is the mag-
netic braking force and Π is the turbulent radial flux of toroidal momentum, called
toroidal Reynolds stress. Each contribution deserves some attention.

1. For a reminder of the toroidal coordinates and geometrical main quantities, see Fig.1.8.
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Magnetic braking is derived within neoclassical theory, i.e. a kinetic derivation
describing the resonant enhancement of collisional transport processes. A well-
established result of this theory in axisymmetric configurations is the degeneracy
between the toroidal velocity VT and the radial electric field Er . Ripple breaks axisym-
metry, leading to non-ambipolar diffusion of particles and heat [30]. The resulting
radial electric field constrains the toroidal torque through magnetic braking M, re-
moving the degeneracy. Magnetic braking is defined as the following fluid moment of
the ion distribution function F :

M= −1

nm

〈∫
d 3vR∇ϕ ·∇(µB̃)F

〉
(4.2)

where 〈.〉 denotes a flux surface average, ϕ the toroidal angle, µ the magnetic moment,
m the particle mass, n the density and R = R0 + r cos(θ). The toroidal perturbation
of the magnetic field amplitude due to ripple reads B̃ = B(r,θ)δ(r,θ)cos(Ncϕ), where
θ is the poloidal angle, B the axisymmetric magnetic field amplitude, δ the ripple
amplitude and Nc the number of toroidal coils. M is thus the force due to toroidal
asymmetry of the magnetic field, which is related to the torque TM defined in 3.3.3 by
the relation TM ≃ mnRM. It takes the form of a friction [30]:

M=−νϕ (VT −Vneo) (4.3)

where Vneo is the target velocity fixed by collisional processes (see Sec.2.6.2 and
Eq(2.60)) and νϕ is the magnetic drag coefficient (see Sec.2.6.3). The former, roughly
independent of δ as reflected by results in Fig.3.7, is in the counter-current direction
as the non-ambipolar particle flux results in a negative Er [54, 58]. Both Vneo and νϕ
are predicted by neoclassical theory. In the absence of turbulence, VT dynamic is then
governed by the magnetic drag coefficient νϕ which depends on the ripple amplitude
δ.

The other drive mechanism is turbulence through the toroidal Reynolds stressΠ. It
is defined as a fluid moment of the distribution function:

Π= 1

n

〈∫
d 3v(vϕvEr )F

〉
(4.4)

where vϕ = R(b ·∇ϕ)v∥ with b = B/B and vEr =−B−1∂θφ with φ the electric potential.
Keeping only turbulent contributions, the toroidal component of the stress tensor can
be expressed as follow [105, 111, 112]:

Π=−χV ′
T +VVT +Πres (4.5)

where χ is a turbulent viscosity coefficient, V a momentum pinch coefficient and Πres

the residual stress. The latter describes the momentum exchange between waves and
particles, which acts as the only source of intrinsic plasma rotation in the axisymmet-
ric case.
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We want to gain insight into flows at equilibrium, which we here define as a quasi-
stationary turbulent state. Combining previous mechanisms, i.e. magnetic braking
and turbulence, the equilibrium toroidal velocity VT eq reads:

VT eq = νϕVneo − r−1(rΠres)′

νϕ+χλv +Vκv
(4.6)

with λv =−(rχV ′
T eq)′/(rχVT eq) and κv = (rVVT eq)′/(rVVT eq). As discussed below, this

equation allows one to estimate the ripple amplitude for which magnetic braking
overcomes turbulence. Note that any interplay between ripple and turbulence is
not considered here, but will be discussed later. Since νϕ is an increasing monotonic
function of the ripple amplitude δ (as reflected by results in Fig.3.8), neoclassical terms

vanish at low ripple, i.e. δ→ 0, so that VT eq → Vturb = − r−1(rΠres)′
χλv+Vκv

. At high ripple, i.e.
δ→∞, turbulent terms become negligible so that VT eq →Vneo. Computing VT eq as a
function of the ripple amplitude requires solving a transport equation, i.e. the use of
kinetic simulation codes. However a “critical ripple" amplitude δc can be devised such
that magnetic braking is dominant when δ> δc . As shown Fig.4.1, this critical value
can be defined as VT eq(δc ) = (Vneo +Vturb)/2. This value is then the ripple amplitude
above which the toroidal velocity becomes closer to its neoclassical prediction than
its turbulent prediction. The critical ripple amplitude δc is then defined by

νϕ(δc ) = |λv |χeff (4.7)

with the effective viscosity defined as χeff =χ+ (κv /λv )V .
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Figure 4.1. – Sketch of the proposed simplified definition for the critical ripple ampli-
tude describing the neoclassical/turbulence competition. The synergistic
effects are not accounted for here, but are detailed further below.

4.2.1. Turbulent coefficients using GYSELA simulations
without ripple

As already mentioned, predictions on νϕ and its dependence on δ are known (see
Sec.2.6.3). Conversely, there are so far no reliable analytical predictions about χ and V .
For given plasma parameters, determining those coefficients is actually an active topic
of both experimental and theoretical research. Here they are determined with four
gyrokinetic simulations of ITG turbulence with four different initial toroidal velocity
profiles, performed with adiabatic electrons, of a typical Tore Supra discharge [119]
without ripple (i.e. δ= 0).

The main input parameters and initial profiles used in GYSELA flux-driven simula-
tions in this chapter are presented in Tab.4.1 and Fig.4.2.
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Turbulence ITG only
Electron response Adiabatic
Aspect ratio 3.2
∇n at ρ = 0.65 R0/LN = 2.2
∇T at ρ = 0.65 R0/LT = 8
Collisionality at ρ = 0.65 ν⋆ = 0.14
ρi /a at ρ = 0.65 ρ⋆ = 1/250

Table 4.1. – Simulation parameters.
LN and LT are the density
and temperature gradient
length and ρi the ion
Larmor radius.
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Figure 4.2. – Initial profiles in simula-
tions.

Taking advantage of theΠ structure Eq(4.5), χ and V are determined for each radius
using a least square method on the resulting VT , V ′

T andΠprofiles, displayed on Fig.4.3,
and initialized with different toroidal velocities. Note that such analysis is done after
saturation of turbulence. As indicated by the clear correlation between Reynolds stress
and toroidal velocity shear, the viscosity term is dominant. The viscosity resulting
from this least square regression is plotted in Fig.4.4. AsΠ cancels near midradius for
each simulation, the evaluation near this radial area is incorrect. Invoking continuity
properties, the viscosity in this zone is reconstructed using splines and gives the final
profile of χ (plotted in orange). In addition, at r /a ≈ 0.5, V ′

T vanishes andΠ reaches
the same value for each simulation. Since VT is extremal at this radial position, while
the pinch contribution is linear with VT , it can be concluded that the pinch term in
these simulated cases is negligible. This has already been observed in gyrokinetic
simulations with adiabatic electrons [92]. The Reynolds stressΠ is then dominated
by the residual stress at vanishing V ′

T . Note however that in experiments, the pinch
contribution can be significant and actually plays an important role in determining
the radial profile of VT . In the following we then consider χeff =χ with χ the turbulent
viscosity of Fig.4.4 (orange curve).
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Figure 4.3. – Radial profiles of the toroidal velocity VT (a) and its shear V ′
T (b), as

well as the stress tensor Π (c), taken at turbulent saturation for simula-
tions without ripple and with different initial toroidal velocity profiles
VT (t = 0) =VT 0 exp

((−32(r /a −0.5)2
))

with a the minor radius. Velocities
are normalized to a reference ion thermal velocity VT 0 and lengths to a
reference ion Larmor radius ρ0.
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Figure 4.4. – Evaluation of the turbulent viscosity χ by the least square method using
profiles of Fig.4.3 obtained using GYSELA simulations without ripple for
plasmas parameters summarized in Tab.4.1 (green). The incorrect points
due to a lack of proper statistics at midradius are removed and this zone is
reconstructed using splines, giving the final χ profile (orange). Distances
are normalized to a reference Larmor radius ρ0.
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4.2.2. Assessing the competition thanks to simulations with
ripple
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Figure 4.5. – Comparison of the theoretical prediction of νϕ in presence of ripple
of different amplitude (green and blue lines) and the turbulent viscous
contribution χ|λv | (orange) to assess Eq(4.7). The orange zone represents
χ|λv | for a/2 ≤ |λv |−1/2 ≤ a. Time is normalized to the cyclotron period
ω−1

c0 .

In order to determine δc in the specific plasma conditions studied in this work
(Tab.4.1) and test its proposed definition Eq(4.7), two additional simulations with finite
ripple (and consequently finite magnetic drag) such that νϕ≪χ|λv | and νϕ≫χ|λv |
were run. Since the physics of the boundary acts as a complex momentum sink,
controlled by orbit losses, momentum flux carried by waves [120] and scrape-off layer
interactions, a model ripple amplitude is chosen with a radially Gaussian envelope
centered at midradius: δ(r ) = δ0 exp

{(−32(r /a −0.5)2
)}

and a number of coils Nc = 16.
This ensures a disentanglement between boundary conditions and intrinsic physics
in a controlled way. With this ripple amplitude structure, and the knowledge of
the turbulent viscosity χ, an estimation for the peak ripple amplitude δ0 such that
δ0 = δc (r /a = 0.5) is possible. As |λv | is difficult to estimate, it is approximated that
|λv |−1/2 scales as the system size such that the true value is expected in the wide range
a/2 ≤ |λv |−1/2 ≤ a. This is consistent with experimental measurements in Tore Supra
[28]. It then appears that the critical ripple amplitude at midradius for this particular
turbulence is δc (r /a = 0.5) ≈ 0.5%. In these two additional simulations, the midradius
ripple amplitudes are δ0 = 0.1% and δ0 = 1%. Fig.4.5 displays the magnetic drag νϕ,
from model presented in Sec.2.6.3, associated to these simulations (blue and green
lines) as well as the turbulent contribution χ|λv |.

The time evolution near midradius of the toroidal velocity VT and the radial electric
field Er for each case - without ripple and the δ0 = [0.1%,1%] cases - is shown in
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Fig.4.6. The δ0 = 0.1% case exhibits no significant difference with the axisymmetric
case δ0 = 0%, neither regarding VT nor Er . Conversely, the toroidal velocity in the
δ0 = 1% case, evolving deeply in the counter-current direction, suggests that VT is
driven by magnetic braking. Also, Er increases roughly by a factor 1.5.
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Figure 4.6. – Time traces of the toroidal velocity VT (a) and the radial electric field
Er (b) in 0.45 < r /a < 0.55 (shaded areas, mean: solid lines) for different
ripple amplitudes. Markers are only here for better visibility.

4.2.3. An heuristic expression for the critical ripple amplitude
The critical ripple amplitude stands out as a practical landmark to determine the

main driving flow mechanism. All the elements of the relation νϕ(δc ) = |λv |χeff may
not be known, in particular because the viscosity and pinch profiles are difficult to
obtain experimentally. Here a rule of thumb is proposed to evaluate the order of
magnitude of δc . Let us address the approximations used to obtain it. First, one can
fairly approximate the magnetic drag to its asymptotic value in the ripple-plateau
regime of collisionality [30]. In most tokamaks, including ITER, this regime is the most
relevant and states that νRP

ϕ ∼ NcVth
R δ2 where Vth is the ion thermal velocity. There is

more uncertainty regarding a proxy for the effective viscosity. Nevertheless, one can

consider a gyroBohm scaling χeff ∼ ρ2
i Vth

LT
where LT is the temperature gradient length
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and ρi the ion Larmor radius.
The validity of these approximations was verified with GYSELA simulations. On

the one hand, the turbulent viscosity χ was checked in the simulations without rip-
ple described previously. A radial profile of the ratio χ/χGB is presented in Fig.4.7a
(blue line). For further validation, the Prandtl number χ/χHF, where χHF is the heat
diffusivity, is also plotted (orange line). Indeed, χHF is also expected to follow the
gyroBohm scaling and simulations show good agreement in order of magnitude. The
gyroBohm scaling then stands out as a proper proxy for the turbulent viscosity. On
the other hand, the neoclassical friction νϕ has been tested in GYSELA in dedicated
simulations without turbulence, presented in Sec.3.3.4, with radially gaussian ripple
amplitude equal to 0.5%, 1% and 3% at maximum. The radial profile for the 1% case
of the resulting friction νGYS

ϕ is presented in Fig.4.7b (red lines) and compared with

the asymptotic prediction for the ripple-plateau regime νRP
ϕ (blue). It appears that

νGYS
ϕ ∼ νRP

ϕ for a wide range of collisionalities. It should be stressed that the prediction
on νϕ used in the Fig.4.5 of the manuscript for validating the critical ripple amplitude
is not this asymptotic value but rather from the reduced model developed in Chapter
2.
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Figure 4.7. – (a) Radial profiles obtained in GYSELA of the turbulent viscosity χ nor-
malized to the gyroBohm viscosity χGB (blue) and heat diffusivity χHF

(orange). (b) Radial profiles obtained in GYSELA (red) of the neoclassical
friction at δ0 = 1% for different ν⋆ (estimated at r /a = 0.5) and its asymp-
totic prediction (blue).

Finally, Fig.4.8 shows the ratios νGYS
ϕ /χ and νRP

ϕ /χGB for different ripple amplitudes,
here taken at r /a = 0.5 in simulations. Each red point on this plot is the result of 8
gyrokinetic simulations. It is found that these estimates become less accurate with
increasing ripple amplitude but hold remarkably well for δ up to a 1%, which is hardly
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exceeded in most tokamaks.
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Figure 4.8. – Ripple amplitude scan of νGYS
ϕ /χ (red points) and νRP

ϕ /χGB (blue line).

In short, magnetic braking follows the standard neoclassical theory and the gy-
roBohm scaling fits the turbulent viscosity in magnitude. It indicates that the pro-
posed approximations hold in the parameter range of our simulations. Under these
hypotheses, i.e. νRP

ϕ ∼ |λv |χGB, the critical ripple amplitude can be estimated as

δc ∼ ρ⋆E
(

1

Nc

R

LT
R2|λv |

)1/2

(4.8)

where E = a/R0 is the inverse aspect ratio and ρ⋆ = ρi /a. An application on a Tore
Supra ohmic discharge at r /a = 0.8 with ρ−1

⋆ = 700, R/LT = 12, Nc = 18, E = 3.2
and R0|λv |1/2 ∼ 11.25 [28] gives δc ≈ 0.4% which is way lower than the actual ripple
amplitude in Tore Supra at this location (see Fig.2.3). Consistently the equilibrium
rotation and radial electric field are found to be ruled by ripple [29]. One could
argue that such a critical ripple could only be reached in Tore Supra as its ripple
is significantly higher than in most other tokamaks. However, the ripple in ITER is
actually expected to exceed 1% at the edge in some scenarios according to the recent
ITER Research Plan within the Staged Approach (see Appendix F.3 therein). With
the ferritic inserts meant to decrease the peak ripple amplitude from δ ∼ 1.2% to
δ∼ 0.3% for discharges at B = 5.3T , for the discharges at B = 1.8T these inserts will
overcompensate the ripple amplitude that will peak at δ∼ 1.3%. The critical ripple
amplitude could then be crossed near the edge for future fusion devices.

4.3. Interplay mechanisms between ripple and
turbulence

So far, magnetic braking and turbulent stress were computed separately in the
model, ignoring any cross-talk. In this section, the interplay between turbulence
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and magnetic braking is addressed. This study relies on three simulations performed
with different ripple amplitudes, which are the δ0 = 0% (i.e. without ripple) and
δ0 = 1% cases discussed in the previous section, as well as a new δ0 = 3% very high
ripple amplitude case. On the one hand, based on Eq(4.2), the effect of turbulence
on magnetic braking M is observed to be negligible as ripple wave numbers are
non-resonant with wavelengths related to turbulence, hence hardly generated via
mode-coupling. On the other hand, magnetic braking is found to impact the turbulent
momentum transport −r−1(rΠ)′. It is known that the residual stress is predicted to
depend on the radial shear of the turbulent intensity and the E ×B drift radial shear
[105, 111] whilst turbulent viscosity depends only on the former.

At this point, it is worth making a little digression on the nature of the considered
turbulent viscosity and residual stress obtained with GYSELA simulations. A common
expression of the residual stress is Πtot

res = −Cχturb∂r VE where χturb is a turbulent
viscosity that slightly differs from the one obtained in simulations, C is a constant
depending on geometrical parameters and VE =−Er /B . The force balance states that
Er = ∂r P

Ne +VT BP −VP BT . The residual stress can then be split into a diamagnetic part
and another part proportional to ∂r VT . Assuming ∂r ln(BP /B) ≪ ∂r lnVT , one could
then rewrite the total toroidal stress tensor [115] as

Π=−
(
χturb −Cχturb

BP

B

)
︸ ︷︷ ︸

χ

∂r VT + Cχturb

B
∂r

(
∂r P

Ne
−VP BT

)
(4.9)

meaning that the part of the residual stress proportional to ∂r VT can be included in
the viscous term by defining the viscosity χ=χturb(1−C BP

B ) which is actually the one
obtained with simulations. Indeed, to recover the viscosity a scan in ∂r VT was done
(see Fig.4.3). It gave the contribution proportional to ∂r VT which we called viscosity
χ, and the contribution not proportional to ∂r VT which we calledΠres that can then
only come from the diamagnetic part. Note that "our" viscosity χ is the right quantity
for this particular study, as separating the toroidal Reynolds stress in contributions
proportional to VT and ∂r VT is necessary to make use of Eq(4.6) which is the starting
point for obtaining the critical ripple amplitude expression Eq(4.7).

For the following, we call "residual stress" only this diamagnetic part. This residual
stress can be expressed as:

Πres =
∑
k

k∥kθ

∣∣∣∣eφk

T

∣∣∣∣2

τk (4.10)

where φk are the Fourier components of the electric potential, T the thermal energy,
k∥ and kθ the parallel and poloidal wave numbers and τk a form factor [121]. Ripple
can impact the residual stress by retro-acting on the turbulent spectral amplitude∣∣φk

∣∣2, which is related to the turbulent intensity I, or the radial shear of Er through
the parallel wave number k∥.

This model forΠres comes from a mean-field theory which holds when Er and I are
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averaged over multiple turbulent structure lengths and correlation times, defining the
coarse-grain average labeled 〈.〉CG. This is done by time averaging over 105 cyclotron
periods, i.e. about 50 correlation times, and performing a sliding radial average with a
50ρi window, i.e. about 5-6 correlation lengths. The residual stress profile is calculated
asΠres =Π+χV ′

T using the previously obtained viscosity (see Fig.4.4). Since the initial
toroidal velocity in these simulations is zero, the viscous term is subdominant, as
displayed in Fig.4.9 showing the radial profile of coarse-grained total toroidal Reynolds
stress and calculated residual stress.
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Figure 4.9. – Radial profile of the coarse-grained total toroidal stress tensor 〈Π〉CG

(dashed) and the coarse-grained diamagnetic part of the residual stress
〈Π+χ∂r VT 〉CG (plain).

In this same figure, it appears that Πres grows monotonically with δ and changes
sign. As mentioned above, the next step consists in linking this behavior with an
impact of ripple on either the turbulent intensity shear I ′ or the radial electric field
shear E ′

r .

4.3.1. Ripple impact on the turbulent intensity

The modification of the spectral intensity
∣∣φk

∣∣2 is expected through toroidal mode
coupling between turbulence and electric potential fluctuations induced by the mag-
netic toroidal perturbation due to ripple. Turbulent resonant modes of the electric
potential are located around n =−m/q line, forming a resonance cone, in the (m,n)
space where m and n are the poloidal and toroidal mode numbers respectively. These
mode numbers are related to the wave numbers by k∥ = R−1(n +m/q) and kθ = m/r .

Magnetic ripple also accounts for destabilization of poloidally uniform modes, i.e.
m = 0, with a toroidal periodicity equal to a harmonic of the number of coils, i.e.
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n = kNc , k ∈ Z⋆. These modes (0,kNc ) can then couple to a resonant one (m0,n0)
to form a non-zero (m0,n0 +kNc ) mode, and vice versa. A visual representation of
this coupling is presented in Fig.4.10 which displays the (m,n) spectra of |φm,n |2 for
different ripple amplitudes in simulations. An increasing ripple amplitude translates
into a more populated spectrum in the m = 0 vicinity. These new modes are coupled
to modes in the resonant cone, accounting for the checkerboard structure near the
ripple harmonics due to the relatively low resolution for the toroidal modes. Whilst
visually impressive, one has to notice the logarithmic scale.
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Figure 4.10. – Spectra of |φm,n |2 in the (m,n) space taken at r /a = 0.65.

There are some reasons to think that ripple can significantly modify the residual
stress through mode coupling. In simulations, ripple is responsible for lowering the
amplitude of modes in the resonant cone. Indeed, as defined in Fig.4.11, one can
choose an arbitrary δr = 0.1a (with a the minor radius) such that the cone is delimited
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by the lines n =−m/qin and n =−m/qout where qout, qin = q(r ±δr ).

400 200 0 200 400
m

n

n = m/qin

n = m/qout

0 = 3%
log10(| m, n|2)

Figure 4.11. – Spectra of |φm,n |2 in the (m,n) space taken at r /a = 0.65 for the δ0 = 3%
case. The resonance cone is defined by the lines n =−m/qin and n =
−m/qout where qout/qin = q(r ±δr ) with an arbitrary δr = 0.1a

One can then consider the quantity S(m) =
∑

n∈C (m) |φm,n |2
m

(
q−1

out−q−1
in

) where C (m) =
[
− m

qin
;− m

qout

]
is containing all the modes in between the two green lines in Fig.4.11 and a vertical
line at abscissa m (not represented on the figure). It represents the turbulent spectral
intensity associated with a mode number m. Fig.4.12 displays S versus the poloidal
wave number kθ for different ripple amplitudes and its relative difference with the case
without ripple δ0 = 0%. Adding ripple then tends to diminish the spectral intensity in
the resonant cone, especially for high mode numbers. There is however no clear effect
for the large-scale modes (i.e. low kθρi ).
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Figure 4.12. – Power spectrum S at r /a = 0.65 of the turbulent modes for different
ripple amplitudes δ0 (left) and the relative difference with the axisym-
metric case (right).

In addition, ripple tends to broaden the spectrum through mode coupling with
(0,kNc ) modes as already mentioned above and visible in Fig.4.10, giving additional
importance to the k∥kθ product for modes outside the resonant cone. The turbulent
intensity consequently cannot be simply obtained by taking the sum of the modes
in the resonance cone. In presence of a 3D magnetic perturbation, one has then to
define carefully the turbulent intensity I .

Here the adopted solution is to consider all poloidal and toroidal modes, except the
n = 0 and m = 0 modes. For the m = 0 modes, the reason is that the new finite modes
due to ripple are not due to turbulence but rather non-axisymmetric neoclassical
effects. This is similar for the n = 0 modes, except that the considered neoclassical
modes are due to the 1/R magnetic field decay.

The considered turbulent intensity is then I = eφ̃RMS/T with

φ̃RMS =
√ ∑

m ̸=0,n ̸=0
|φm,n |2 . (4.11)

Fig.4.13a displays the radial profile of time-averaged and coarse-grained turbulent
intensity for different ripple amplitudes. It appears that 〈I〉CG actually increases
monotonically with the ripple amplitude, gaining in average 2− 3% between the
axisymmetric case and the δ0 = 3% case. Compared with the opposite behaviour seen
in Fig.4.12, this means that ripple tends to amplify modes outside of the resonant cone.
This modest increase is associated with an enhancement of the turbulent intensity
shear, especially in the core, as displayed in Fig.4.13b. However, as already observed
in Fig.4.9, this modification of 〈I ′〉CG does not seem correlated with the impact of
ripple onΠres which is maximum nearer to the midradius. This either indicates that
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the turbulent intensity shear is too weakly impacted by ripple 2 or that this effect is
negligible compared with the one coming from the Er shear (as discussed in the next
section).

In any case, it indicates 1) that the turbulent viscosity could be only mildly affected
by ripple and 2) that it cannot explain the observed modification of the residual stress
with ripple. As mentioned previously, the other natural candidate to explain the ripple
effect onΠres is through the Er shear.
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Figure 4.13. – Radial profile of the turbulent intensity (left) and its coarse-grained
radial shear (right).

4.3.2. Impact of ripple on the shear of radial electric field
The E ×B shear modifies the parallel wave number by introducing radial asymmetry

[113]. Ripple increases the radial electric field amplitude through neoclassical effects,
as detailed in Sec.2.4, so the Er shear depends among others on the radial shape
of the ripple amplitude. Mean Er and associated shear are plotted in Fig.4.14a and
4.14b. The effect of ripple on these profiles is clear: both 〈Er 〉CG and 〈E ′

r 〉CG increase
in amplitude with δ near the core region.

2. The relative gain between δ0 = 0% and δ0 = 3% at r /a = 0.3 is about 30%.
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〈Πres〉CG, shown in Fig.4.14c, is correlated with the increase of 〈E ′
r 〉CG, shown in

Fig.4.14b, up to an offset, consistently with the numerical study [122]. The offset is
likely explained by the impact of turbulent intensity shear, which for each simulation
is about the same as displayed in Fig.4.13, and significant near the region in between
the core and the midradius where this offset is particularly visible. Note that this offset
can also be impacted by the effect of diamagnetism [105]. Finally, Fig.4.14d shows the
averaged −r−1(rΠ)′ that appears in the momentum conservation equation Eq(4.1).
Regarding plasma rotation, the increment of the toroidal velocity due to turbulence, i.e.
the opposite of toroidal Reynolds stress divergence, is modified. Under the effect of an
increasing radially gaussian ripple, it goes from co- to counter-current rotation drive
in the plasma core and from an about-vanishing to deeply co-current rotation drive
past the midradius. All in all, it is reasonable to conclude that, in these simulations,
magnetic ripple impacts the residual stress significantly through the radial electric
field shear and only weakly through the turbulent intensity shear. The critical ripple
expression, derived without interplay, is still valid as it does not depend on the residual
stress.

4.4. Conclusion of chapter 4
In summary, the effect of turbulent drive and magnetic braking has been studied on

the same footing thanks to comprehensive gyrokinetic simulations. The critical ripple
amplitude for which magnetic braking overcomes turbulence has been estimated
theoretically and agrees with gyrokinetic simulations. An evaluation of this threshold
is proposed and its value in Tore Supra agrees with experimental measurements. A
quick estimate suggests that this threshold could be crossed in ITER. However, an
open question remains about the validity of this threshold near the plasma edge when
boundary conditions, not included in the presented model, could play a role.

Ripple also modifies the toroidal velocity by changing the turbulent toroidal Reynolds
stress through the residual stress. In fact, the residual stress is observed to vary mono-
tonically with the ripple amplitude in simulations. The residual stress is expected
to depend on the turbulent intensity radial shear and the radial electric field radial
shear. It is observed in simulations that the turbulent intensity shear is only weakly
impacted by the magnetic ripple. However, the radial electric field shear is enhanced
in presence of ripple and is clearly correlated with the residual stress modification due
to ripple.

The sketch in Fig.4.15 acts as a summary of this chapter.
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Figure 4.15. – Sketch summarizing Chapter 4.

Robust knowledge of this intrinsic physics provides means to control the rotation.
Indeed, recent work [123] demonstrated that restoring the magnetic symmetry is
actually possible, giving some leverage on the magnetic braking strength.
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5.1. Introduction
As discussed in Chapter 1, the radial electric field is a key element for the con-

finement of a tokamak plasma, as it is expected to play a major role in turbulence
quenching and is presumed to be a necessary ingredient for transitions toward en-
hanced confinement modes. Knowing the mechanisms at play in the establishment
of this field is then of prime importance in order to get robust predictions and means
of control of a reactor’s performance.

In this Chapter, we focus on the effect of the safety factor on the radial electric
field. The motivation for this study comes from experimental observations on the
Tore supra, WEST, and MAST tokamaks, which show a deepening of the well in radial
electric field, i.e. the E ×B flow, near the edge of the plasma with high plasma current.
Once again, we will make use of gyrokinetic simulations. The plasma current is not
an input in the GYSELA code. However, the edge safety factor, which is inversely
proportional to the plasma current, is an input. The idea is then to see if changing the
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safety factor does impact the radial electric field in the same way as experiments. The
premise of this study is that q is the main player regarding the establishment of Er in
this plasma current scan. Looking at this particular dependence is interesting for at
least two reasons:

— The plasma current is bound to increase in future reactors, and toward values
never encountered before. ITER for example is expected to operate as high
as IP = 15MA, which is to be compared to the maximum current of existing
tokamaks which is about IP = 5MA. This study then gives insight into the radial
electric field behavior of next-generation tokamaks.

— The aforementioned experimental studies on the effect of the plasma current on
WEST and Tore Supra are great frameworks for developing theoretical models
and testing numerical codes. As we will see in this Chapter, several mechanisms
are expected to shape the radial electric field and depend sensitively on the
safety factor, which we recall is inversely proportional to the plasma current near
the edge. Simulation codes and reduced models can then be used to identify the
main mechanisms, and can be compared with the experimental measurements.

5.2. Experimental observations

5.2.1. Doppler back-scattering diagnostic
The experimental profiles shown in the next section rely on a diagnostic called

Doppler Back-Scattering (DBS) using a reflectometry-like method. The reflectometry
principle relies on probing a plasma with high-frequency electromagnetic waves, usu-
ally in the microwave range (∼ 30−150 GHz), and studying the wave that is reflected by
the plasma. The incident wave propagates in the plasma as long as the refractive index
is strictly positive. If the refractive index cancels along the propagation direction, the
wave is then reflected at the cut-off layer where the index is zero. This refractive index
depends on the plasma characteristics, in particular its density 1, but also the wave fre-
quency. Knowing the medium characteristics, one can then choose the frequency such
that the reflection occurs at a chosen cut-off layer position. The specificity of the DBS
diagnostic [124, 125] is to detect only the electric field that is back-scattered by density
fluctuations of a given spatial scale at the cut-off layer location. The probing wave is
launched with a finite incident angle with respect to the direction normal to the iso-
index-of-refraction surfaces. The principle of back-scattering is illustrated in Fig.5.1,
here considering the probing waves in O-mode polarization where the iso-index-of-
refraction surfaces are also iso-density surfaces. During its propagation, the incident
probing wave of wavevector ki is scattered in all directions with a large enhancement
in the cut-off layer vicinity. The DBS antenna then selects only the back-scattered part
kbs =−ki. This diagnostic carries the emitter and the receptor at the same location,
such that only the back-scattered part is measured. The back-scattering technique

1. Depending on the probing wave polarization, it may also depend on the electric field or, in
X-mode polarization, it also depends on the magnetic field.
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is then actually not a reflectometry method as it uses the scattered wave and not the
reflected one. The density fluctuations such that the wavevector kf matches the Bragg
rule kf =−2ki are selected through this method.

ki

kbs

kf

Reflected wave

Incident wave

Iso-index of 
refraction surface

Cut-off layer

Back-scattered 
wave

Figure 5.1. – Principle of back-scattering reflectometry. For probing wave in O-mode
polarization, the iso-index-of-refraction surfaces are also the iso-density
surfaces. The backscattered wave carries the plasma density fluctuations
characteristics associated with the k f =−2ki wavenumber.

The back-scattered signal gives the power spectral density of the fluctuations of a
given spatial scale. The name "Doppler" back-scattering comes from the Doppler-
shift ∆ f = kf ·vf where vf is the velocity of density fluctuations. The velocity of the
associated fluctuations can then be determined from the detected signal using a ray-
tracing code to evaluate the wavenumber k f at the location of the cut-off layer [126].
As a result, this method gives access to the velocity v f of density fluctuations in the
direction bi-normal to the magnetic field. It reads v f = vE×B + vph where vE×B is the
electric drift velocity and vph is the phase velocity of the fluctuations, which can be
significant in some cases [119] but appears negligible at the extreme edge of confined
plasmas. Actually, in the experimental results presented in the next section, the phase
velocity at the very edge of the plasma (r /a > 0.9) is assessed as negligible compared
with the electric drift: the DBS gives the same velocity regardless of the wavenumber
k f chosen. Thus we can consider that the measurements give the E ×B velocity.
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5.2.2. Scan of velocity profiles with plasma current
This section presents the experimental observations related to the impact of plasma

current on the radial electric field. A dedicated experimental study in the WEST
tokamak can be found in [33]. To summarize and focus on the part of interest for
our work: it has been found that the Er amplitude increases significantly near the
edge of the plasma with the plasma current IP , which is inversely proportional to
the safety factor near the edge. Indeed, edge safety factor q and plasma current IP

are linked through Ampère’s law IP = 2πaεBϕ
µ0q (where µ0 is the vacuum permeability).

Increasing q then translates into decreasing IP . In Chapter 1, in Fig.1.12, we already
showed the radial profile of the transverse velocity, mainly due to the E ×B drift,
obtained through DBS diagnostic for different plasma currents at the edge in WEST
discharges. This experiment has been done in the Lower Single Null (LSN) and Upper
Single Null (USN) configurations. They refer to discharges where one of the magnetic
X-points is inside the vessel, either at the bottom (LSN) or top (USN) of the plasma.
Regardless of the configuration, a monotonic behavior is observed where Er increases
in amplitude when IP increases, even though the effect is more pronounced in the
USN configuration.

An interesting remark is that this trend with the plasma current has already been
observed in Tore Supra [34], as shown in Fig.5.2 that displays radial profiles of the
velocity measured by DBS for different plasma current values. The experimental
safety factor profiles of the discharges shown in this figure are displayed in Fig.5.3. It
appears that the magnetic shear stays constant between each discharge. Tore Supra
had circular magnetic surfaces which means that the triangularity and elongation are
not necessary ingredients to witness the sensibility of the radial electric field to the
plasma current. In these discharges, there are no USN or LSN configurations but the
plasma is in contact with the wall, either at the top or bottom of the vessel. This is
reassuring in the idea that the following GYSELA simulations, performed with circular
magnetic surfaces, should be able to catch the physics at play in the establishment of
the radial electric field well.
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(a) (b)

Figure 5.2. – Radial profiles, near the edge of the plasma, of the VE×B velocity mea-
sured in the Tore Supra tokamak for different plasma current values. The
plasma is in contact with the wall at the top (left) / bottom (right).

(a) (b)

Figure 5.3. – Radial profiles of the experimental safety factor in the Tore Supra toka-
mak for the discharges of Fig.5.2.

The IP scan performed in these experiments is physically complex: it mingles
plasma-wall interactions, the effect of different magnetic configurations, asymmetric
gas puff and pumping, orbit-losses in presence of an X-point ... One must simplify the
problem to obtain a reduced model and run relevant simulations that discriminate
various processes.
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5.3. Effect of the safety factor in dedicated GYSELA
simulations

5.3.1. Isolating the safety factor effect
Running simulations with experimental plasma parameters seems attractive. They

provide a precise estimation of all wanted quantities that are not retrievable with the
diagnostics available during the experiments. However, this is a risky way to proceed.
The reason is that in general all profiles tend to evolve in the experiments as it is
challenging to increase the plasma current while keeping steady density and tempera-
ture 2 in the plasma. Comparing simulations with several different varying parameters
makes post-processing extremely challenging. Indeed, let’s say a quantity of interest
changes between two of these simulations: how to be sure that this modification is
due to the difference in plasma current? or in temperature gradient? or a synergy
between the two? It is in general more reasonable to perform a scan with only one
parameter of interest. For this reason, carefully tailored simulations are designed to
isolate the sole effect of the safety factor.

If a similar effect on the perpendicular velocity is observed in these simulations,
as in the experimental IP scans, it then gives a good hint as to the role of the safety
factor in building these edge radial electric field profiles. As this study only considers
turbulence driven by the ion temperature gradient in a plasma with adiabatic electron
response, this would also imply that kinetic physics of electrons is not mandatory to
explain this effect. The considered simulation profiles are now detailed.

5.3.2. GYSELA simulations parameters
For convenience, the reference simulation considered in this study is the same

as the one without ripple in Chapter 4. The main advantages are that it saves the
cost of one (expensive) simulation, and that the associated heat source has already
been adjusted to maintain a quasi-steady temperature profile 3. Note also that this
reference simulation is actually shaped to mimic the Tore Supra discharge #45511,
which is not related to the ones shown in Fig.5.2, but that exhibits realistic shapes
of thermodynamical gradients. The input profiles are those plotted in Fig.4.2 in
the previous Chapter. The main initial parameters are summarized in Tab.4.1. The
magnetic ripple is switched off as it causes simulations to consume more CPU hours,
and is observed to play a subdominant role in the q effect on the radial electric field a
posteriori.

The only varying input parameter between simulations is the safety factor. Two
cases, in addition to the reference one, have been run. To leave the magnetic shear

s = r
q

dq
dr unchanged, as in the WEST and Tore Supra experiments, the safety factor from

2. Especially for the ohmic discharges considered where the only heating channel is through the
plasma current.

3. This adjustment is actually a tremendous task.
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the reference simulation is simply multiplied by a constant factor. This is important
as some studies [127] (see the first figure) suggest that q and s can have opposite
effects regarding the turbulent spectra which may play a role in the final Er profile.
The reference case is labeled q1.0, the "low" q case is labeled q0.5 and corresponds to
the reference safety factor multiplied by 0.5 while the "high" q case is labeled q1.5 and
correspond to the reference safety factor multiplied by 1.5. The resulting radial profile
of each safety factor is displayed in Fig.5.4.
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Figure 5.4. – Radial profiles of the safety factor used in each simulation.

Finally, note that these simulations are all run with a bottom limiter. They can then
be assimilated to the Tore Supra discharge with the bottom contact point described in
Fig.5.2. Note that a discharge with limiter (unpublished #48208), not shown here, has
shown the same trend with IP on the radial electric field.

5.3.3. Observations of the safety factor impact in GYSELA
simulations

Simulations have been run for about ∼ 150000 reference cyclotron periods ω−1
c0 . As

they are flux-driven, the equilibria reached are not perfectly stationary as thermo-
dynamical gradients are free to evolve. However, the provided heat source identical
for each simulation maintains temperature profiles in a quasi-steady state. Note that
the tuning (location, amplitude and shape) of this heat source is a tremendous work.
It partly justifies the choice of the reference simulation q1.0 for which this exercise
was already done. We add that the heat flux is expected to vary with the safety factor
[128] A verification must then be made in the turbulent phase of the simulations to
verify that profiles are similar in each case. The temperature and temperature gradient
profiles for each case at t = 140000ω−1

c0 are depicted in Fig.5.5.
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Figure 5.5. – Radial profile of the temperature (a) and its radial gradient (b) for each
safety factor profiles at t = 140000ω−1

c0 .

The relative disparity in temperature is less than 10% for all the safety factors con-
sidered. The temperature gradients are also of similar amplitude, especially near the
edge. The density profile has also been studied and is the same for each simulation.
These simulations are then well designed to isolate the sole effect of the safety factor.

The radial profile of the radial electric field in the turbulent equilibrium obtained
with the aforementioned simulations is displayed in Fig.5.6. There is a clear relation-
ship between the Er amplitude and the increase of the safety factor. Indeed, near the
plasma edge 0.75 < r /a < 0.85, the radial electric field amplitude increases substan-
tially and monotonically when the safety factor decreases. The trend is then the same
as in the experimental measurements.
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Figure 5.6. – Radial profile of the radial electric field Er for each safety factor profile
averaged between 100000 < t [ω−1

c0 ] < 145000.

Interesting observations can be made when looking at the spatiotemporal evolution
of Er displayed in Fig.5.7 for the q0.5 and q1.5 cases.
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Figure 5.7. – Spatiotemporal map of the radial electric field Er for extremal safety
factor profiles.

It appears that radial structures in the q0.5 case are steady, or at the very least slowly
drifting. These zonal flows have already been observed and assessed in GYSELA [19,
129]. Their impact on ITG-driven turbulence reduction is well-known [18], which
partly explains why they are of great interest in the fusion community. The interested
reader may take a look at [20] for a comprehensive review of zonal flows by Diamond et
al. On the contrary, the q1.5 exhibits short-lasting structures that drift radially. Also, the
Geodesic Acoustic Modes (GAMs) behavior is quite different between these two cases.
The q1.5 case exhibits stronger GAMs amplitudes and their attenuation is weaker.

Another interesting quantity is the turbulent intensity I. Here 4 it is written as
I =

√
〈(δn/n)2〉 with 〈.〉 the flux surface average and δn = e(φ−φ00)/T , where φ00 is

the (n = 0,m = 0) mode of the electric potential with m and n the poloidal and toroidal
mode numbers. This quantity is basically the energy allocated to turbulence, up to
the normalization with the ion temperature. For each safety factor profile, the radial
profile of I is displayed Fig.5.8.

4. In chapter 4, the definition was slightly different to exclude the modes induced by magnetic ripple
which are non-turbulent.
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Figure 5.8. – Radial profile of the turbulent intensity I time-averaged between
100000 < t [ω−1

c0 ] < 145000 for each safety factor profile.

It appears that the turbulent intensity grows with q , with a more pronounced in-
crease at low safety factor value. This behavior is reported in several publications
both theoretically, numerically and experimentally. On the experimental side, the
effect of q has been isolated and shown that turbulent heat transport, which increases
with turbulent intensity, in the DIII-D tokamak [128] increases with q . On the theo-
retical and numerical sides, it is shown in [127] and [130] that the linear growth rate
kθ-spectra (with kθ the poloidal mode number) of the electric potential is weaker for
low q . When looking at the electric potential fluctuations Fig.5.9, one can observe that
the turbulent structures in the q0.5 case are more tilted poloidally than the q1.5 case.
This is characteristic of a flow shear, that is consistent with both the observation of
zonal structures in Fig.5.7 and the reduction of turbulent intensity for the q0.5 case
displayed Fig.5.8.
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Figure 5.9. – Fluctuations of the electric potential at t=93600 ω−1
c0 at a toroidal angle

ϕ=π/8 for each case.

Another lead for this reduction of turbulent intensity with the plasma current is the
transition between the excitation and dissipative spectral regions that is expected to
occur at a wavenumber kθ,cutoff ∼ LT /(qRρi ), where LT is the temperature gradient’s
length, which depends on the safety factor value [131]. To assess this point, Fig.5.10
shows the kθ-spectra of non-zonal modes of the normalized squared electric potential
for each case, at r /a = 0.8 where the effect on Er is maximum according to Fig.5.6.
It appears that the low safety factor case exhibits a spectral density of the electric
potential lower than the higher ones at all scales. In addition, these spectra exhibit
a non-linear trend with q , which is in agreement with the spectra in [127]. However,
the transition between driving and dissipative regions is not clearly visible in any
case. The reason could be that this transition occurs at very high wavenumbers
that are not resolved in our simulations. Anyway, as the effect on the radial electric
field is recovered, we conclude that this mechanism is then not necessary for its
establishment.
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Figure 5.10. – kθ-spectra of the electric potential spectral density for each safety factor
profile at r /a = 0.8 and averaged between 100000 < t [ω−1

c0 ] < 140000.
The maximal accessible kθ decreases with q since the resonant modes
follow the n = −m/q line so low q means a steeper line that fastly
reaches the limit of the (m,n) box, fixed by the poloidal and toroidal
resolution.

All of these observations are important clues to understand the main mechanisms
responsible for the formation of the radial electric field.

5.3.4. Generalized vorticity conservation and force balance
As in Chapter 4, it would be convenient to use a conservation equation on the radial

electric field Er to see the different contributions and their nature. Unfortunately,
the radial electric field is not a conservative field, in the sense that one cannot write
an equation as ∂t Er +∇ ·Γ = 0 with Γ a flux. However, one can show that another
quantity close to the Er shear is conserved. Labeled generalized vorticity and noted Ω,
it is defined for one species, and for k⊥ρi ≪ 1, as

Ω=−∇ ·
(

mn

B
∇⊥φ+ 1

2

m

eB 2
∇⊥P⊥

)
(5.1)

with P⊥ the perpendicular pressure. This vorticity is related to the shear of Er through
its dependence on ∇2

⊥φ. The related conservation equation [81] reads

∂tΩ+∇ · (JE + JD) = 0 (5.2)
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where JE and JD are the current densities due to the electric and magnetic drift respec-
tively. This equation is valid in the gyrokinetic formalism and with the following Taylor

expansion 5 of the gyroaverage operator J [φ] ≃φ+ 1
2∇ ·

(
mµ

e2B
∇⊥φ

)
.

First, let us actually check if this conservation is fulfilled in the aforementioned
GYSELA simulations. Each term in the flux surface averaged equation Eq(5.2) is
composed of quantities that are standard outputs of GYSELA. The generalized vorticity
conservation can then be visualized by comparing the radial profile 6 of the terms
∂t 〈Ω〉 and−〈∇·(JE+JD)〉where 〈.〉 is the flux surface average operator. This is displayed
in Fig.5.11 in the turbulent phase of each simulation.
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Figure 5.11. – Radial profile of each term appearing in the generalized vorticity equa-
tion Eq(5.2) at t = 130000ω−1

c0 for each case.

5. Note that, in GYSELA, no approximation is made on the gyro-averaging.
6. The relative difference is usually more appropriate to compare two quantities, but here they are

fluctuating around 0.
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Fair agreement is found between these terms indicating robust conservation in the
code, especially since the plotted terms contain some second-order radial derivatives
as well as a time derivative. It could be tempting to integrate spatially the generalized
vorticity conservation as each term is the spatial divergence of some quantity. It reads

∂tP + JE + JD = 0 (5.3)

with P = mn
B ∇⊥φ+ 1

2
m

eB 2∇⊥P⊥. This equation is attractive as it gives the evolution
of a quantity that depends on the radial electric field and not its shear. However, as
shown in Fig.5.12, the resulting conservation, cast on the radial direction, is not as
good as for the vorticity.
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Figure 5.12. – Radial profile of each term appearing in the spatially integrated general-
ized vorticity equation at t = 130000ω−1

c0 for each case.

This error could come from the approximation on the gyroaverage, which could
eventually lead to a current that could be written as ∇×XXX such that the equation on
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the vorticity still holds 7 as verified in GYSELA. Another reason for this disparity could
be that the limit in numerical precision is reached. It is still unclear whether or not this
impacts the simulation results in any way. We will thus proceed assuming accuracy is
sufficient.

Another interesting verification is the force balance equation that can be expressed
through the poloidal velocity VP such that

VP = ∇r P

neBT
− Er

BT
+ ε

q
VT . (5.4)

In Fig.5.13, for each simulation, the radial profile of each term is plotted as well as
their sum which is compared to the VP GYSELA output. A good agreement is found
between the sum of all terms on the r.h.s of Eq(5.4) (in black dashed line) and the
poloidal velocity VP GYSELA output.
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Figure 5.13. – Radial profile of each term appearing in the force balance Eq(5.4) time
averaged in the range 100000 < t [ω−1

c ] < 145000. The black dashed curve
represent the sum ∇r P

neBT
− Er

BT
+ ε

q VT .

An interesting observation is that the toroidal velocity VT partially balances the
strong radial electric field in the q0.5 case. Also, the poloidal velocity is strongly
impacted by the radial electric field. In the following section, different mechanisms
that could explain the effect of q on the radial electric field are explored.

5.4. Mechanisms impacting flows carrying a q
dependence

There is a variety of mechanisms that impact flows, including the radial electric
field, and which depend on the safety factor. Here is a list of the ones that are well

7. As ∇· (∇×XXX ) = 0 ∀XXX
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described by the GYSELA code:
— Neoclassical processes;
— Turbulence, through an energy transfer to either the Geodesic Acoustic Modes

(GAMs), which are oscillations of the electric potential due to the geodesic
magnetic curvature, or the zonal flows (ZFs) which are quasi-stationary radial
structures of the n = 0 and m = 0 modes of the electric potential.

— A synergy between neoclassical processes and turbulence;
Note that some authors call "zonal flows" all the dynamics related to φ00, such

that GAMs are just the high-frequency branch of ZFs. In this thesis, "zonal flows" are
associated with the low-frequency events on φ00 only.

5.4.1. Neoclassical processes
The previous observations showed that the turbulent intensity is substantially lower

in the q0.5 case than in the q1.0 and q1.5 cases, in conjunction with the radial electric
field which is mostly impacted in the q0.5 case. It then suggests that the neoclassical
effects could play a role.

In absence of 3D magnetic perturbations, the neoclassical processes only impact
the poloidal velocity VP as there is a degeneracy between the toroidal velocity VT and
the radial electric field Er . However, a radial shear of the poloidal velocity can lead
to a reduction of the turbulent intensity. This shear could be driven by neoclassical
mechanisms. Without turbulence, the equilibrium poloidal velocity V neo

P,eq is set by
neoclassical processes and is predicted as

V neo
P,eq = kVP

∇r T

eBT
(5.5)

with kVP the amplitude of the thermal force exerted by collisional processes on VP .
GYSELA has already been benchmarked [82] regarding these neoclassical effects.

In order to quantify the weight of neoclassical processes regarding the equilibrium
poloidal velocity, non-turbulent versions of the simulations with the q0.5 and q1.5

safety factor profiles were run. In these new simulations, all the toroidal modes except
n = 0 are artificially killed, i.e. set to zero. This is a way to prevent most turbulent
modes to grow while keeping the neoclassical ones which are contained in the modes
n = 0. In Fig.5.14 and Fig.5.15 are compared the time evolutions of Er and VP for the
q0.5 and q1.5 cases with and without turbulence at r /a ∼ 0.8 where the effect on Er in
the turbulent simulations is maximum.
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Figure 5.14. – Time evolution of the radial electric field for the q0.5 and q1.5 cases with
only the n = 0 mode (top) and all toroidal modes (bottom).
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Figure 5.15. – Time evolution of the poloidal velocity for the q0.5 and q1.5 cases with
only the n = 0 mode (top) and all toroidal modes (bottom).

For both Er and VP , there is no significant difference for the q0.5 and q1.5 cases
without turbulence. Regarding the radial electric field, this is not a surprise as the
degeneracy between Er and VT predicted by the axisymmetric neoclassical theory
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states that Er is unchanged when VT is unchanged (the initial toroidal velocity is the
same in each simulation). Regarding the low dependence of the poloidal velocity with
the safety factor, this is consistent with the heuristic fit on kVP taking all collisionality
regimes into account [46] (See Eq(6.135) and Eq(6.136)). It reads

kVP =
(

1.17−0.35ν⋆1/2

1+0.7ν⋆1/2
−2.1ν⋆2ε3

)
1

1+ν⋆2ε3
(5.6)

and thereby does not depend on the safety factor, provided that the normalized
collisionality ν⋆ does not change, which is the case in these simulations. More pre-
cisely, the value of the collisionality ν⋆ in our simulation is specified at r /a = 0.625.
As ν⋆ = νi

qR0

Vthε
3/2 , it means that the ion collision frequency νi adapts to keep ν⋆ = 0.14

at r /a = 0.625. As proof Fig.5.16 shows the radial profile of νi for each case, and
demonstrates the 1/q variation of this collision frequency between each simulation.
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Figure 5.16. – Radial profile of ion collision frequency for each case.

However, the simulations including turbulence are similar to the ones without
turbulence only at the initial time steps (when the amplitude of the turbulent mode is
still negligible). Multiple pieces of information are then given by these new simulations
without turbulence. First, that turbulence is an indispensable ingredient to explain
the Er dependence on q in these simulations. Second, the GAMs are strongly damped
early in both neoclassical simulations: they become negligible from ∼ 20000ω−1

c0 .
However, in the simulation with all modes, the GAMs are driven by turbulence. This is
particularly visible for the q1.5 case and is detailed in the next subsection. Lastly, the
radial electric field in the q1.5 case with turbulence is actually really close to the one
obtained in the non-turbulent simulation whereas this is the case that exhibits the
highest turbulent intensity.
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5.4.2. Zonal flows (ZFs) and Geodesic Acoustic Modes
(GAMs)

Looking at Fig.5.7, it appears that the dynamic of Er is quite different between the
low and high safety factor cases. Indeed, in the q0.5 case one can observe steady zonal
structures on the radial electric field forming once turbulence sets on. The q1.5 case
exhibits higher frequency events and especially lasting GAMs at the edge.

Both of these mechanisms, i.e. ZFs and GAMs, are known to be sensitive to the
safety factor profile. The question is: how do these mechanisms modify the radial
electric field? The physics of ZFs and GAMs is actually quite different:

— GAMs manifest as fast oscillations of the radial electric field and the associated
E×B drift. They are due to the plasma compressibility and the geodesic magnetic
curvature, ubiquitous in toroidal devices such as tokamaks. A full review of
GAMs by Conway et al. can be found in [132]. The principle is the following: the
magnetic curvature translates into a (m,n) = (1,0) pressure perturbation, which
couples with the diamagnetic velocity vdia = B×∇P

neB 2 to induce a (m = 0) mode of
the radial electric field. GAMs are known to play a role in turbulence regulation,
first by the establishment of sheared E ×B flows and second by acting as a sink
for the energy carried by turbulence (that then acts as a source for the GAMs).
However GAMs oscillate at high frequency, such that the turbulence mitigation
through corresponding sheared E ×B flow is expected to be small compared
with steady flows 8.

— Zonal flows are low-frequency flows driven by turbulence. Contrary to GAMs,
they can exist even without magnetic curvature. In fact, zonal flows are not re-
stricted to magnetized plasmas: Jupiter jet streams are an example. However, like
GAMs, they also act as a reservoir that can pump energy from turbulence. Zonal
structures can be associated with strong shearing flow regions. The stationary
feature of these structures allows efficient mitigation of turbulence.

Some publications [133, 134] on the effect of the safety factor on flows invoke the
argument that q affects the way turbulent energy is distributed among ZFs and GAMs
(scalings of associated damping rates with the safety factor are given in upcoming
section Sec.5.4.3). The principle is quite simple: at low q , the GAMs are strongly
damped but not the ZFs so the excess of turbulent energy is transferred to ZFs. In
turn, the radial structures associated with these ZFs increase the sheared flows, i.e. the
radial electric field, and by doing so lower the turbulent intensity. On the contrary, at
high q , the GAMs are not damped. The oscillatory nature of GAMs makes the effective
flow shear lower than ZFs, and so is the associated radial electric field. At intermediate
q values, ZFs and GAMs coexist.

Quantifying these processes is complicated, even with comprehensive gyrokinetic
simulations. The approach here is to find "clues" that support this idea of energy
transfer between turbulence, ZFs and GAMs. Fig.5.17 shows frequency spectra of the
q0.5 and q1.5 cases, averaged in the region of interest 0.75 < r /a < 0.85, and obtained

8. Indeed, if the direction of the shearing flows oscillates fast in time, turbulent structures perpen-
dicular stretch is limited.
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in two different time ranges in the simulation. The first time range is plotted in
Fig.5.17a and corresponds to the beginning of the simulations. These simulations
are run from an initial distribution function that always differs from the equilibrium
distribution function. During the transition to this equilibrium, GAMs are driven. This
phase is shown in order to identify the GAMs frequency, and is further assessed by a
comparison with the Winsor prediction 9 [136] of the GAMs frequency that reads

ωtheo
GAM = 2

R0

√
5

3

T

m

(
1+ 1

2q2

)
. (5.7)

The bump in the frequency spectra of Er is then clearly identified as GAMs and
can be compared with Fig.5.17b showing the same quantity in the turbulent phase 10.
In this phase, the GAMs amplitude is more than 10 times lower in the q0.5 case than
the q1.5. This behavior is expected, as the damping rate of the GAMs is known to
decrease with the safety factor in the collisionless case which is relevant in these
simulations. The interesting part of these simulations is that GAMs can only be driven
by turbulence, itself driven by the thermodynamical gradients which are the same in
each simulation. As seen previously in Fig.5.8, the energy in the q0.5 case is not fed
substantially to the turbulent intensity (relative to the other cases). Here we observe
that the energy is not fed to the GAMs either. The remaining channel is an energy
transfer to static zonal flows.

9. The first paper with an explicit form is actually [135].
10. The effect is less clean than Fig.5.17a due to the undersized time resolution fixed by the rate at

which data are saved ∆tdiag = 450ω−1
c0 .
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Figure 5.17. – Frequency-spectra of the radial electric field averaged in the range 0.75 <
r /a < 0.85 and taken at the beginning of the simulations (left) and in
the turbulent phase (right) for the q0.5 and q1.5 cases. The vertical lines
represent the theoretical GAMs frequency ωtheo

GAM.

Another interesting clue is the radial profile of the poloidal Reynolds stress diver-
gence which can be seen as the drive for zonal flows and GAMs drives.

Fig.5.18 shows the spatiotemporal evolution of the radial electric field Er in the
turbulent phase and the coarse-grained poloidal Reynolds stress divergence ∇·〈Πrθ〉CG

radial profile for the q0.5 and q1.5 cases. The coarse-grain procedure is the same as
described in Sec.4.3: it consists of a time average of 105[ω−1

c0 ], i.e. about 50 turbulent
correlation times and a sliding radial average with a ∼ 50ρi window, i.e. about 5-6
correlation lengths. The poloidal Reynolds stress is estimated in the code as a fluid
moment of the distribution function F :

Πrθ =
1

n

〈∫
d 3v(vθvEr )F

〉
(5.8)

where vθ is the poloidal component of the particle’s velocity and vEr =−B−1∂θφ with
φ the electric potential.

For the q0.5 case, there is a clear correlation between the radial zonal structures of
Er and the turbulent drive. For the q1.5 case, there is also a quite clear correlation
between the turbulent source and the radial electric field: high amplitude events of Er

are mostly located at a radial position that matched the peaks of ∇·〈Πrθ〉CG. Between
the two cases, there is about an order of magnitude of difference in the Reynolds stress
divergence. This matches the idea that the turbulent source, by feeding zonal flows,
reduces efficiently the turbulent intensity and consequently itself.
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Figure 5.18. – Spatiotemporal evolution of the radial electric field (top) and the coarse-
grained electric Reynolds stress divergence radial profile (bottom) for
the q0.5 case (a) and q1.5 case (b).

Given all these observations, the mechanisms of energy transfer from turbulence to
ZFs and GAMs are further developed with a 0D reduced model.

5.4.3. Reduced model of energy transfer between turbulence,
zonal flows and GAMs

Based on the previous observations, the main mechanism retained for the formation
of a steep radial electric field near the edge is the plasma safety factor dependence on
the flow generated by turbulence. The idea is that turbulence can transfer energy to
ZFs and GAMs, which themselves retroact on turbulence. This transfer favors either
GAMs or ZFs depending on the safety factor value. To assess this idea, a simplified
version of the 0D model proposed by Miki & Diamond [137] is first described and
further utilized. The original model is meant to study the L-H transition. Here, it is
complemented by restoring the safety factor dependence of the main parameters. The
objective of this model is not to obtain a quantification of energy transfer but rather
to have a rough idea of how the energy is distributed based on both observations
and well-known scalings. Any assumptions and simplifications made, most of them
arguable, are mentioned. This section should be treated as a preliminary attempt
toward a more detailed description of turbulent energy transfer. Fig.5.19 shows a
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sketch of the model’s key features. The principal difference with the Miki & Diamond
model is that the energy transfer between ZFs and GAMs is not considered here. This
choice is done as it does not seem necessary to obtain the q scaling of interest, and it
greatly simplifies the problem.

Geodesic Acoustic 
Modes (GAMs)

energy EG

Turbulence energy I

Zonal flows (ZF)
energy E0

Figure 5.19. – Sketch summarizing the 0D model for the energy exchanges between
turbulence, zonal flows and GAMs. Note that the possible direct inter-
play between GAMs and zonal flows is not considered, which constitutes
the main difference with the model of Miki & Diamond [137].

Defining the turbulent intensity I , the ZFs energy E0 and the GAMs energy EG , the
model equations are

∂tI = γLI−∆ωI2 −α0IE0 −αG EGI (5.9)

∂t E0 = α0IE0 −ν0E0 −γ0E 2
0 (5.10)

∂t EG = αGIEG −νG EG −γG E 2
G (5.11)

where each of the parameters is defined in Tab.5.1.

Description Expected q dependence
γL Linear growth rate Yes
∆ω Non-linear saturation Unknown
α0, αG Turbulence coupling coefficients to ZFs, GAMs Unknown
ν0, νG Linear damping of ZFs, GAMs Yes
γ0, γG 2nd order saturation of ZFs, GAMs Unknown

Table 5.1. – Parameters appearing in the system of equations.

In this same table is indicated whether or not a q-dependence is accounted for each
parameter. If unknown, no dependence with q is considered in the following.
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Expressed in words, these equations can be described as follow. Eq(5.9) states that
the turbulent energy I grows linearly at a rate γL but saturates non-linearly at a rate
∆ω, while allowing energy transfer with zonal flows and GAMS through the two last
quadratic terms. Eq(5.10) states that the zonal flow energy E0 can only grow when
turbulent energy is transferred, but is damped linearly as observed in experiments. A
quadratic saturation γ0E 2

0 is added for the stability of the model 11, which is another
difference with the model in [137]. Eq(5.11) is analogous to Eq(5.10) for the GAMs.
Note that the total energy I+E0 +EG is conserved when all the drive/damping rates
are set to zero.

Handy normalizations allow the rewriting of these equations such that

∂τI = I(IL −I−C0E0 −CGEG ) , (5.12)

a0∂τE0 = E0(I−I0 −E0) , (5.13)

aG∂τEG = EG (I−IG −EG ) (5.14)

with the new terms defined in Tab.5.2.

τ=∆ωt Normalized time
E0 = γ0

α0
E0, EG = γG

αG
EG Normalized energies of ZFs, GAMs

I0 = ν0
α0

, IG = νG
αG

Normalized dampings of ZFs, GAMs

IL = γL
∆ω Normalized turbulent growth rate

C0 = α2
0

∆ωγ0
, CG = α2

G
∆ωγG

Coupling parameters of ZFs, GAMs

a0 = ∆ω
α0

, aG = ∆ω
αG

Normalized evolution rate of ZFs, GAMs

Table 5.2. – Normalization parameters

One can now calculate the fixed points, i.e. the (I ,E0,EG ) sets such that ∂τ(I ,E0,EG) =
0. In order to describe interesting equilibria, we consider a finite turbulent intensity
such that I > 0. Four different equilibria can then be found:

1. The "No flows" case where E0 = EG = 0. In that case, the solutions are simply

INF = IL , (5.15)

ENF
0 = 0 , (5.16)

ENF
G = 0 . (5.17)

2. The "ZFs only" case where EG = 0 and E0 > 0. The solutions are

11. And also because the choice γ0 = γG = 0 does not allow an equilibrium "GAMs only" or a "Mixed
ZFs/GAMs" when a "ZFs only" equilibrium exists, as presented further.
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IZF = IL +C0I0

1+C0
, (5.18)

EZF
0 = IL −I0

1+C0
, (5.19)

EZF
G = 0 . (5.20)

3. The "GAMs only" case where E0 = 0 and EG > 0. By analogy with the previous
case, the solutions are

IGAM = IL +CGIG

1+CG
, (5.21)

EGAM
0 = 0 , (5.22)

EGAM
G = IL −IG

1+CG
. (5.23)

4. The "mixed ZFs/GAMs" case where each parameter is strictly positive. The
solutions are

IMIX = 1

1+C0 +CG
(IL +IGCG +I0C0) , (5.24)

EMIX
0 = 1

1+C0 +CG
(IL −I0(1+CG )+CGIG ) , (5.25)

EMIX
G = 1

1+C0 +CG
(IL −IG (1+C0)+C0I0) . (5.26)

Each equilibrium’s stability is assessed in Appendix F.
Let us take the normalized growth rate IL as a parameter control. Increasing it from

zero, the first stable equilibrium is the "No flows" case. Then two cases can occur.
In one case, when I0 < IG , then the "ZFs only" equilibrium is satisfied when IL

reaches I0 and the zonal flow energy E0 is allowed to grow. In this situation, the
"GAMs only" and "mixed ZFs/GAMs" equilibria are not allowed as EG < 0 when
I0 ≤ IL < IG . By continuity, the "mixed ZFs/GAMs" equilibrium is reached when
IL = IG +C0(IG −I0) where E0 = IG −I0.

In the other case, i.e. IG < I0, then the "GAMs only" equilibrium is satisfied when
IL reaches IG and the GAMs energy E0 is allowed to grow. The "mixed ZFs/GAMs"
equilibrium is reached when IL = I0 +CG (I0 −IG ) and then EG = I0 −IG .

Let us look at the results given by this model when accounting for the safety factor
scaling of the main parameters. The three main parameters with a safety factor
dependence are expected to be:

— The linear growth rate γL of turbulence, for which a prediction is not available.
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However, in our simulation as well as other numerical results [127], γL increases
monotonically with q in a non-linear fashion. As the increase is slower when q
increases, here it is arbitrarily modeled with a q1/3 scaling;

— The damping rate of zonal flows ν0, for which the choice is delicate. On the one
hand, it should be chosen as the collisional damping rate of ZFs as calculated
by Hinton & Rosenbluth [138]. On the other hand, it is clear that observations
are related to the mean flow, which can be seen as the zero frequency limit of
ZFs. In this case, the damping rate is the one predicted by neoclassical theory.
The second path is adopted here, where ν0 is then the neoclassical friction νθ,neo.
Here it is estimated that it follows the plateau regime 12 of collisionality where
the prediction is νθ,neo = 2.21qVth/R;

— The damping rate of GAMs νG , which has different predictions regarding the
magnetic surface shape, the orbit width effects or the collisional regime. They are
all available in [132] (check p.22 for a table with all damping rates predictions).
Here we consider two different scalings for the collisional and collisionless cases.
For the collisionless case, the simplest prediction is the one of Landau that scales
like νG ∝ q5 exp

(−q2
)
. However, this simple prediction is not valid for low values

of q , which are of interest here. Indeed the Landau prediction states that νG → 0
when q → 0 when actually it should go toward very high values. Fig.5.20 shows
typical GAMs damping rates compared with a precise theoretical prediction from
Gao [139] and some simulations codes. In all cases, the damping rate increases
substantially when q approaches unity. To account for this, an arbitrary prefactor
1+q−6 is added to the Landau prediction.

Figure 5.20. – GAMs damping rate obtained with the Gao theoretical prediction (lines)
and obtained with several simulation codes (points). Extracted from
[132].

12. Note that in the banana regime of collisionality the prediction is νθ,neo = 0.66q2νi /ε3/2
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For the collisional case, we consider the Novakoskii prediction νG = (4/7)νi that
scales as q−1 at fixed collisionality ν⋆ (as discussed in 5.4.1).

These scalings give the following expressions

IL = AL q1/3 , (5.27)

I0 = A0q , (5.28)

IG = AG (1+q−6)q5 exp
(−q2) (Collisionless) , (5.29)

IG = AG q−1 (Collisional) . (5.30)

Where AL , A0 and AG are constant control parameters. In order to obtain physically
relevant results, the ordering A0 ≪ AL , AG must be considered. If this ordering on AL

is an assumed gamble, we believe that it does make sense for A0 and AG because it
is expected that the dissipation ν0 of ZFs is weak while the non-linear coupling α0 is
expected to be strong, such that I0 = ν0/α0 is small. The coupling parameters, C0 and
CG are set arbitrarily to unity.

Considering the collisionless case first, the q dependence of IL, I0 and IG is dis-
played in Fig.5.21. In this same figure is displayed the boundary between each equilib-
rium. Increasing the safety factor from q = 0, the first equilibrium is the "Zonal flows
only", then the "Mixed ZFs/GAMs" and for very high values of q the "GAMs only"
equilibrium is reached.
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Figure 5.21. – Safety factor dependence of the normalized damping rates I0 (ZFs)
and IG (GAMs) and the normalized turbulent growth rate IL in the
collisionless case. The parameters of control are A0 = 0.1, AL = 1 and
AG = 1.

The resulting turbulent, zonal flows and GAMs energies are displayed in Fig.5.22. As
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expected, the zonal flow energy is maximum at low q and decays with an increasing
safety factor, for the benefit of the GAMs energy that increases in the meantime. The
turbulent intensity keeps a roughly q1/3 profile. This sequence is in line with what is
observed in simulations. The abrupt transition from "ZFs only" to "Mixed ZFs/GAMs"
is due to the steep scaling of the GAMs damping rate with the safety factor.
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Figure 5.22. – Zonal flows (left), GAMs (middle) and turbulent (right) energy in the
situation described in Fig.5.21.

In the collisional case, the scaling with the safety factor of IL , I0 and IG is displayed
in Fig.5.23. The resulting turbulent, zonal flows and GAMs energies are displayed in
Fig.5.24. Behavior similar to the collisionless case is retrieved.
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Figure 5.23. – Safety factor dependence of the normalized damping rates I0 (ZFs)
and IG (GAMs) and the normalized turbulent growth rate IL in the
collisional case. The parameters of control are A0 = 0.1, AL = 1 and
AG = 1.
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Figure 5.24. – Zonal flows (left), GAMs (middle) and turbulent (right) energy in the
situation described in Fig.5.23.

All in all, this simple model that includes the minimal physical ingredients carry-
ing a safety factor dependence is comforting in the idea of an energy transfer from
turbulence to zonal flows and GAMs. It should be taken with a grain of salt, as many
parameters are set ad-hoc. However, it gives some bricks to build a more precise
description of the role of the safety factor in turbulence regulation.
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5.4.4. Synergy between turbulence and neoclassical effects
We already assessed neoclassical effects without turbulence in Sec.5.4.1. Neverthe-

less, this does not rule out the effect of neoclassical processes on Er when there is also
turbulence. To assess this synergy, the vorticity conservation equation is not suitable
as the neoclassical and turbulent effects are challenging to discriminate in terms that
constitute it.

Instead, we use an approximate expression for the evolution of the poloidal velocity
VP , which is a proxy for the radial electric field Er , that reads

∂VP

∂t
=−∇· (Πrθ+Π⋆rθ)−νθ(VP −V0) (5.31)

withΠrθ the poloidal Reynolds stress due to the electric drift,Π⋆rθ the diamagnetic
Reynolds stress and νθ a friction.

Let us give sense to the physical meaning of these terms. The divergence of the
electric and diamagnetic Reynolds stress can be seen as the turbulent source. The
term νθ(VP −V0) states that the poloidal velocity is pushed toward a value V0 at a
rate νθ. The structure of this term comes from the fact that, without turbulence, the
axisymmetric component n = 0 of the terms in the integrated vorticity conservation
Eq(5.3) can be expressed in this fashion, with νθ equal to the neoclassical poloidal
friction 13 νθ,neo and V0 =V neo

P,eq given in Eq(5.5).
Even this simplified form comes with its share of complexities. The first difficulty

is to calculate the diamagnetic Reynolds stress, which requires the knowledge of the
pressure fluctuations in the 3D real space, unfortunately only saved at some time steps
in these simulations. It has been shown [140] that this diamagnetic termΠ⋆rθ can be of
the same order of magnitude, and on average even two times higher, than the electric
Reynolds stress Πrθ in GYSELA simulations of ITG turbulence. This diamagnetic
term is also expected to be in phase with the electric Reynolds stress. Here a rough
assessment of this quantity is made using the 3D data at time t = 93600ω−1

c0 , for
which the radial profile is displayed in 5.25 and compared with the electric Reynolds
stress for each simulation. As expected, it appears that the diamagnetic Reynolds
stress is indeed in phase with the electric Reynolds stress, and with the same order of
magnitude.

13. This quantity is analogous to the toroidal friction νϕ discussed in Chapter 2 but in the poloidal
direction
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Figure 5.25. – Radial profile of the diamagnetic stress tensor Π⋆ and the electric
Reynolds stressΠrθ for each simulation at t = 93600ω−1

c0 .

In the following, we define the quantity Π=Πrθ+Π⋆rθ will be reasonably approxi-
mated toΠ≈ 2Πrθ.

The second complexity comes from the friction νθ and the target velocity V0 that are
unknowns of the problem. The neoclassical effects are expected to be fully included in
these terms. A first step consists to consider that νθ and V0 are only due to neoclassical
effects. Then, at equilibrium, Eq(5.31) becomes

VP,eq ≃V neo
P,eq − ∇·Π

νθ,neo
. (5.32)

Compared with the case with neoclassical processes only, a new term appears
and depends both on collisional effects through νθ,neo and turbulence through Π.
A problem is that the collisional friction νθ is not a GYSELA output. Estimating
this friction precisely would require a whole study similar to what has been done in
Chapter 3 for obtaining the toroidal neoclassical friction νϕ. Here, we use the heuristic
expression taking into account all collisional regimes in the axisymmetric case given
in [141] (See Eq(C.15)) that reads

νθ,neo =µi (q/ε)2 (5.33)

with

µi = 0.452 ftνi

(1+1.03ν⋆1/2 +0.31ν⋆)(1+0.66ν⋆ε3/2)
(5.34)

where νi is the ion-ion collision frequency and ft is the fraction of trapped particles
estimated as

p
2ε.

The equilibrium velocity V neo
P,eq is given by the simulations without turbulence dis-

cussed in Sec.5.4.1. The contribution of each of these terms, for the q0.5 and q1.5 cases,
is given in Fig.5.26.
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Figure 5.26. – Radial profile of V neo
P,eq obtained with the "neoclassical" simulations

(green), − ∇·Π
νθ,neo

obtained with the electric Reynolds stress from turbu-

lent simulations and the heuristic neoclassical friction Eq(5.33) (blue)
and the poloidal velocity from turbulent simulations (red) for the q0.5

and q1.5 cases. These profiles are also temporally averaged between
65000 < t [ω−1

c0 ] < 70000.

It appears that the proxy of the heuristic neoclassical friction νθ,neo is unsatisfactory
for predicting the equilibrium poloidal velocity. Indeed, the term −∇ ·Π/νθ,neo is
overestimated. However, we already assessed that the edge poloidal velocity in the
q0.5 case is not retrieved with the contribution of the neoclassical prediction V neo

P,eq
(as seen in Sec.5.4.1). Then, if the simplified expression of the poloidal momentum
conservation Eq(5.31) is accurate enough, the effect observed on Er and VP can only
be due to the turbulent/neoclassic synergistic term −∇·Π/νθ,neo.

If this is true, a source of disagreement between the simulation’s results and the
model is that the neoclassical friction in the code is different from the one given by
the heuristic formula Eq(5.33). Another is that turbulence can modify the equilibrium
poloidal velocity V0, which would be consistent with the establishment of zonal flows
in the q0.5 case. It would also explain the relatively low amplitude of the Reynolds
stress divergence near the edge: if turbulence transfers most of its energy to zonal flows
that then quench turbulence, the turbulent source is expected to drop consequently.

Based on rough scalings estimate, the synergistic term −∇·Π/νθ,neo must decrease
with the safety factor to explain the behavior of VP and ultimately Er . It means that
νθ,neo should increase faster with q than −∇·Π. Fig.5.27a shows the opposite of coarse-
grained divergence of poloidal Reynolds stress −〈∇·Πr 〉CG for each simulation case.
Taking the value of −〈∇ ·Πr 〉CG in the vicinity of r /a = 0.8, we can estimate a rough
scaling of this turbulent drive with the safety factor as shown in Fig.5.27b. As shown
with the green curve on this figure, −〈∇·Πr 〉CG in the radial range of interest follows
a rough q1/3 scaling. Regarding the collisional friction νθ,neo, as the collisionality
at r /a = 0.8 for each case is about ν⋆ ≃ 0.25, it is reasonable to claim that νθ,neo
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follows the q-scaling of the plateau collisionality regime which is linear with q . These
rough estimates support the idea that the synergetic term −∇·Π/νθ,neo decreases in
amplitude with the safety factor.
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Figure 5.27. – Radial profile of coarse-grained −∇ ·Πr in range 100000 < t [ω−1
c ] <

145000 with a sliding radial average with a 50ρi window (a) for each
simulation. Safety factor scan of −〈∇·Πr 〉CG taken in simulation in radial
range 0.79 < r /a < 0.81 (C is a constant) (b).

5.5. Conclusion of chapter 5 and discussion
In this Chapter, the impact of safety factor q on flows and especially the edge radial

electric field in simulations of ITG turbulence has been assessed. The safety factor is
a parameter of interest as it is inversely proportional to the plasma current near the
edge. Recent experimental measurements on the WEST tokamak, and previous ones
on Tore Supra and MAST, demonstrated that the radial electric field amplitude near
the edge of the plasma increases when the plasma current increases, i.e. when the
safety factor decreases. Using GYSELA simulations with different safety factor profiles,
this trend has been retrieved.

The effect of neoclassical processes, without their possible synergy with turbulence,
in the establishment of the flow has been assessed as negligible.

The flow, directly related to the radial electric field, induced by turbulence is of
different nature depending on the safety factor value. For high q values, turbulence
generates intermittent flows at GAMs frequency while for low q values, turbulence
feeds quasi-steady zonal flows. As the turbulent intensity is observed to increase with
the safety factor, the idea is that zonal flows in the low q case are efficient to quench
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the turbulence but the GAMs in the high q case are not. Several clues in simulations
point to this phenomenon. In addition, a 0D reduced model that keeps the main safety
factor dependency on key model parameters determining the turbulent intensity, the
zonal flow energy, and the GAMs energy, is developed and is in agreement with this
idea. To go further, one could use advanced signal processing to assess the transfer of
information from one quantity to another, e.g. Reynolds stress to the low-frequency
zonal mode of the electric potential for the zonal flows, or the turbulent intensity to
the (m,n) = (1,0) mode of the pressure for the GAMs. The usual tools to quantify the
energy transferred from one mode to another are the bispectrum and bicoherence
which are used to quantify the correlation between signals. They have been used
here and there [142–144] for magnetized plasmas-related studies, and especially to
study the energy transfer between zonal flow and turbulence. These tools are quite
tricky to use, especially as reliable results only emerge given proper statistics. In
our simulations, the available statistics are unfortunately too low as the time step
∆tdiag = 450ω−1

c0 at which the data have been saved is too large.
The synergy between neoclassical effects and turbulence assessment with GYSELA

revealed as a complex task. First, the fluctuating nature of the poloidal Reynolds
stress in addition to the missing data to reconstruct the diamagnetic tensor make the
estimation of the turbulent source challenging to assess. Secondly, it appears that
the common predictions on the neoclassical friction and neoclassical equilibrium
poloidal velocities are unable to explain the effect on the radial electric field. It could
indicate that turbulence actually modifies these terms. However, estimates based
on the available scalings with the safety factor indicate that the synergy between
neoclassical effects and turbulence is encouraging to explain the observation on the
radial electric field.

The sketch in Fig.5.28 acts as a summary of this chapter.
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Figure 5.28. – Sketch summarizing Chapter 5.

Let us end this chapter with a conundrum. In this study, we emphasized on the
behavior of GAMs, and especially on their damping which is theoretically expected
to decrease with the safety factor as observed in the simulations. However experi-
mentally, on both WEST and Tore Supra, the oscillations of the mean perpendicular
velocity detected by the DBS, with a frequency in the range of expected frequency
for GAMs, are found to decrease when the safety factor increases. An example of the
#45333 Tore Supra discharge is displayed on Fig.5.29. It shows the amplitude of the
velocity oscillations at the GAMs frequency as a function of the safety factor, effectively
decreasing when q increases.
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Figure 5.29. – Amplitude of the fluctuations associated with frequencies in the range
of GAMs in the #45333 discharge of Tore Supra as a function of the safety
factor.

Note that this trend is observed at low (ν⋆ < 0.5) and high (ν⋆ ≫ 1) collisionality.
This behavior remains unexplained. A reason could be that the simulations and theo-
ries come with their share of approximations, e.g. adiabatic electrons, electrostatic
field or simplified boundary condition, which may impact the GAMs damping. Regard-
ing the 0D model developed in Sec.5.4.3, it is possible to find a sequence that matches
this observation, i.e. a turbulent energy transfer that favors GAMs at low q but not at
high q . For this, one must consider that the GAMs damping is subdominant compared
with the ZFs damping at low q , but that it increases faster. An example is shown in
Fig.5.30 which shows the safety factor dependence of the normalized damping rates
and growth rate in such a situation. The associated safety factor dependence of the
ZFs, GAMs and turbulence energies is shown in Fig.5.31. In this case, one can observe
that the GAMs energy decreases with q but at the expense of an enhancement of the
zonal flows energy that is weaker than in observations/gyrokinetic simulations.

This indicates the tremendous task that remains is to obtain a robust scaling be-
tween these damping and growth rates, as well as their safety factor dependence.
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Figure 5.30. – Safety factor dependence of the normalized damping rates I0 = A0q
(ZFs) and IG = AG q (GAMs) and the normalized growth rate IL = AL q1/3

in the collisional case. The parameters of control are AL = 1, A0 = 0.1
and AG = 0.15.
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Figure 5.31. – Zonal flows (left), GAMs (middle) and turbulent (right) energy in the
situation described in Fig.5.30.
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Conclusion

Flow generation in tokamak plasmas plays a key role in confinement and plasma
stability. A new record on the K-STAR tokamak has been set at the time these lines
are written: 20 seconds of sustained plasma at a temperature of 100 million Kelvin
[145]. Such a milestone is attributed to the fast ion flow that reduces core plasma
turbulent transport. This is an example among many others that illustrates the need
to understand the plasma behavior in order to design new reactors and optimize the
operation of the present generation of tokamaks. This thesis aims to give insight into
two important unanswered questions regarding the establishment of flows.

The first question is: "How does magnetic ripple, due to the finite number of toroidal
coils, impact flows in a turbulent magnetized plasma?" Several experiments have
shown that 1) an enhanced magnetic ripple amplitude is correlated with an increment
of the toroidal velocity in the counter-current direction and 2) toroidal velocity is also
driven by turbulence. Magnetic ripple is known to impact collisional processes and to
stochastize trajectories of a class of particles even in the absence of turbulence. All
of this put together, the main effect of ripple is to produce a new force in the toroidal
direction: the magnetic braking, which is also sometimes referred to as Neoclassical
Toroidal Viscosity. The strategy to understand this competition/synergy between
magnetic braking and turbulent drive is the following. A kinetic model including the
neoclassical theory for a non-axisymmetric perturbation as well as the stochastic
motion of particles has first been developed in order to predict the magnetic braking
scaling with key parameters, such as the collisionality or the ripple amplitude. Adding
turbulence crushes all possible dreams of integrability for this problem. The resulting
flow can only be assessed with gyrokinetic codes due to the kinetic nature of mech-
anisms associated with both ripple and turbulence. The magnetic ripple has then
been implemented in the gyrokinetic simulation code GYSELA. Using non-turbulent
simulations, this implementation was first verified by testing toroidal momentum
conservation where now magnetic braking appears. It has then been successfully
benchmarked with the non-axisymmetric version of the reference drift-kinetic code
NEO. A further comparison against the kinetic analytical model also showed reason-
able agreement. The way was opened to add turbulence in simulations. Before this,
a simple model of the toroidal momentum evolution has been devised, where only
appears the magnetic braking and turbulent drive. This simple model states that
magnetic braking becomes the main drive for the toroidal velocity above a predictable
critical ripple amplitude. Simulations showed that this threshold is a good landmark
to characterize the main drive of toroidal velocity. Furthermore, a simple expression
giving the order of magnitude of this threshold is given. A step further is an assessment
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of the synergy between these two drives, which is reachable as GYSELA simulations
treat both of these effects on the same footing. The only channel of synergy found is
from magnetic braking on the turbulent drive. It has been shown that neoclassical
effects due to ripple modify the shear of the radial electric field, which in turn impacts
the source term of the turbulent drive.

Future perspectives opened by this work include:
— Implementing the kinetic electron physics in the source term of the turbulent

drive of the toroidal rotation, in order to assess the impact of momentum pinch;
— Considering the momentum source/sink induced by the boundary physics in

the expression of the critical ripple amplitude;
— Gyrokinetic simulations of planned ITER discharges in presence of magnetic

ripple and error fields, in order to predict if magnetic braking is competitive with
the turbulent rotation drive;

The second question is: "Can we find mechanisms that deepen the well of the radial
electric field when the safety factor decreases near the edge of the plasma?" The aim
of this study is to explain the experimental measurements on the WEST and Tore
Supra tokamak where a scan in plasma current, which is inversely proportional to
the edge safety factor, has been performed. It was found that the radial electric field
near the edge is enhanced for high plasma current. This study is quite relevant as
the physics that governs this radial electric field is expected to impact the formation
and the sustainment of transport barriers which reduce turbulent transport. For this
assessment, GYSELA gyrokinetic simulations have been run with different safety factor
profiles. This approach is not meant to replicate the experiments in which profiles are
different from one discharge to the other. Instead, these simulations are run with the
exact same parameters, including the magnetic shear, except for the safety factor. It
has been observed that the radial electric field amplitude indeed increases near the
edge when the safety factor decreases, i.e. the plasma current increases. The influence
of neoclassical effects, without accounting for their possible synergy with turbulence,
is found negligible. The main effect seems to come from turbulence which transfers
energy in a way that favors zonal flows or GAMs depending on the value of the safety
factor. First, the GAMs are only damped in the low safety factor case while clearly fed
by turbulence in higher safety factor cases. Second, the radial shape dependence of the
poloidal Reynolds stress divergence, which is the source of zonal flows, is correlated
with the enhancement of the radial electric field at the edge. Regarding the poloidal
velocity, which is a proxy for the radial electric field, this turbulence source amplitude
added to the standard neoclassical predictions is too weak to explain the final poloidal
velocity profile at the edge. This behaviour of the velocity is consistent with an energy
transfer from turbulence to the mean flow, in which case the neoclassical predictions
are not applicable, and would then explain this disparity. In order to reconcile all these
aspects, this energy transfer is further assessed with a 0D reduced model taking into
account the safety factor scaling of the damping of zonal flow and GAMs, as well as the
turbulence growth rate. This scaling matches our simulations. Such results indicate
that the observed gain in confinement in high plasma current experiment could be
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linked to the turbulence self-regulation through zonal flow establishment.
Future perspectives opened by this work include:
— A new plasma current scan with gyrokinetic simulations with proper statistics in

order to use advanced signal processing and quantify the energy transfer from
turbulence to zonal flows and GAMs;

— Assessing the order of magnitude of the damping and growth rates of turbulence,
GAMs and zonal flows in order to strengthen the reduced 0D model.
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A. Derivation of the guiding center equations of
motion

This appendix is meant to give the detail of derivation of the motion equations of
the guiding center that are shown in Sec.1.4.4 in Chapter 1.

Starting from the Lagrangian in the set of variables (X, v∥,µ,ϕc )

L(X, v∥,µ,ϕc , t ) = eA⋆(X, t ) · Ẋ+ mµ

e
ϕ̇c −H(X, v∥,µ, t ) (.35)

where the Hamiltonian is

H(X, v∥,µ, t ) =
mv2

∥
2

+µB(X, t )+eφ(X, t ) (.36)

and
A⋆(X, t ) = A(X, t )+ mv∥

e
b(X, t ) (.37)

the motion equations are obtained from the Euler-Lagrange equation

d

dt

(
∂L
∂ẋi

)
= ∂L
∂xi

. (.38)

A.1. xi =ϕc

This gives the evolution equation of the magnetic moment µ. Indeed, as ∂L
∂ϕc

= 0 and
∂L
∂ϕ̇c

= mµ
e then it comes

d

dt

(mµ

e

)
= 0 (.39)

which confirms that µ is an invariant of motion.

A.2. xi =µ
This gives the evolution equation of the cyclotron phase angle φc Indeed, as ∂L

∂µ̇ = 0

and ∂L
∂µ = mϕ̇c

e −B

ϕ̇c = eB

m
(.40)

which is the cyclotron frequency, as expected.

A.3. xi = v∥
It is straightforward to show ∂L

∂v̇∥ = 0 and ∂L
∂v∥ = e∥ · Ẋ− v∥. This equation then gives

the following constraint:

v∥ = e∥ · Ẋ (.41)

164



5. Influence of the safety factor on the radial electric field – A. Derivation of the
guiding center equations of motion

A.4. xi = Xi

This calculation is a bit heavier. It gives the last evolution equations on X and v∥. Let
us calculate the l.h.s and r.h.s of Eq..38 separately.

First, it is direct to obtain
∂L
∂Ẋ

= eA⋆ . (.42)

It then appears when calculating the only non-vanishing term of the lagrangian deriva-
tive in the l.h.s are

e
dA⋆

dt
= e

(
∂A⋆

∂t
+ (Ẋ ·∇)A⋆

)
. (.43)

Let us now calculate the r.h.s

∂L
∂X

= e∇
(
A⋆ · Ẋ

)−µ∇B −e∇φ (.44)

where
∇

(
A⋆ · Ẋ

)= (A⋆ ·∇)Ẋ+ (Ẋ ·∇)A⋆+A⋆× (∇× Ẋ)+ Ẋ× (∇×A⋆) . (.45)

As X and Ẋ are independent, the non-vanishing terms are

∇
(
A⋆ · Ẋ

)= (Ẋ ·∇)A⋆+ Ẋ×B⋆ (.46)

with
B⋆ =∇×A⋆ =∇×A+ mv∥

e
∇×b . (.47)

Combining Eq(.43) and Eq(.44) yield

e
∂A⋆

∂t
= eẊ×B⋆− (

µ∇B −e∇φ
)

. (.48)

Developing the l.h.s with A⋆ = A+ mv∥
e b yield

m
dv∥
dt

b = eẊ×B⋆−µ∇B −e

[
∇φ+ ∂A

∂t

]
. (.49)

Note that the partial derivative on v∥ became a lagrangian derivative as v∥ does not
depend on other coordinates. From Eq..49, the motion equation on X is obtained
through a cross-product with b and the one on v∥ through a projection on B⋆.

Defining B⋆
∥ = b ·B⋆, applying the vectorial product with b then gives

B⋆
∥

dX

dt
= v∥B⋆+ b

e
×

(
µ∇B +e

[
∇φ+ ∂A

∂t

])
. (.50)
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where we took advantage of the relation

b× (
Ẋ×B⋆

)= Ẋ(b ·B⋆)−B⋆(b · Ẋ) (.51)

= ẊB⋆
∥ −B⋆v∥ (.52)

and the projection on B⋆ of Eq..49 gives directly

B⋆
∥ m

dv∥
dt

=−B⋆ ·
(
µ∇B +e∇φ+e

∂A

∂t

)
. (.53)

The electrostatic form of these equations is simply obtained by removing the ∂A
∂t term.

B. Radial jump of banana trapped particles due to
ripple

This appendix is meant to give a derivation of the radial displacement of banana
bounce point when magnetic ripple is considered.

For banana trapped particles, the action J3 = Pϕ can be seen as a magnetic surface
label as it only depends on the poloidal magnetic flux ψ. In presence of ripple, J3

invariance is broken so the radial position of the particle evolves in time. Consequently,
the angle ϕ0 associated with J3 becomes a variable of the problem.

With the change of variable (µ, J2, J3,ϕ0) → (µ′,H, J ′3,ϕ′
0) where H is the Hamilto-

nian, J2 the longitudinal invariant, µ = µ′, J3 = J ′3 and ϕ0 = ϕ′
0, one can define a

function J such that:

J (µ′,H(µ, J3,ϕ0, J2), J ′3,ϕ′
0) = J2 . (.54)

Deriving with respect to ϕ0 reads:

dJ
dϕ0

=
(
∂J
∂H

)
µ′,J ′3,ϕ′

0

(
∂H
∂ϕ0

)
µ,J2,J3

+
(
∂J
∂ϕ′

0

)
µ′,H,J ′3

(
∂ϕ′

0

∂ϕ0

)
µ,J2,J3︸ ︷︷ ︸

=1

= 0 . (.55)

The Hamilton equations give dJ3
dt =− ∂H

∂ϕ0
.

Replacing in Eq(.55) holds:

dJ3

dt
=−

(
∂H
∂J

)
µ,J3,ϕ0︸ ︷︷ ︸

≡ ΩB

(
∂J
∂ϕ0

)
H,µ,J3

(.56)

withΩB the banana bounce frequency. For circular and concentric magnetic sur-

faces, dΨ
dr = r B0

q so

dr

dt
=− q

eB0r
ΩB

∂J2

∂ϕ0
. (.57)
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The next step is to obtain an expression for J2.
The longitudinal invariant is expressed J2 =

∮
banana

mv∥ dl
2π , where the integral is taken

along a banana trajectory.
Ignoring the banana width, dl is then given by the magnetic field line expression :

dl

B
= r dθ

Bθ
⇒ dl ≃ qR0dθ . (.58)

With the energy E invariance, the parallel component of the particle velocity reads:

v∥(θ,ϕ) =
√

2

m

√
E −µB(θ,ϕ) =

√
2µ

m

√
B(θB )−B(θ,ϕ) (.59)

with θB the poloidal angle of the bounce point where v∥ = 0. J2 then reads:

J2 = m

π

√
2µ

m

∫ θB

−θB

qR0dθ
{√

B(θB )−B(θ,ϕ)
}

. (.60)

With the expression of the magnetic field amplitude B(r,θ,ϕ) = B0
(
1−εcosθ−δ(r,θ)cos(Ncϕ)

)
one obtains:

√
B(θB )−B(θ,ϕ) =

√
B0

{
ε(cosθ−cosθB )

(
1+ δ(r,θ)cos Ncϕ

ε(cosθ−cosθB )

)}
≃

√
B0ε(cosθ−cosθB )

(
1+ δ(r,θ)cos Ncϕ

2ε(cosθ−cosθB )

)
.

(.61)

Defining
√

2µB0
m = v , the J2 dependant of the ripple amplitude becomes:

J2 = mqR0v

2π

∫ θB

−θB

dθ
{

2
√
ε(cosθ−cosθB )

}
︸ ︷︷ ︸

J2

+ mqR0v

2π
p
ε

∫ θB

−θB

dθ

{
δ(r,θ)cos Ncϕ√

cosθ−cosθB

}
︸ ︷︷ ︸

J̃2
(.62)

where J2 corresponds to the ripple contribution to the longitudinal invariant of
motion.

It is useful to decompose the integral as follows:

J̃2 = mqR0v

2π
p
ε

[∫ 0

−θB

dθ

{
δ(r,θ)cos(Ncϕ)√

cosθ−cosθB

}
+

∫ θB

0
dθ

{
δ(r,θ)cos(Ncϕ)√

cosθ−cosθB

}]
. (.63)

The fundamental point of this development is based on the fact that a trapped par-
ticle spends much more time in the vicinity of the bounce point than at the equatorial
plane. This has multiple consequences regarding the derivation:

— Asδ is weakly dependant of θ, the approximation
∫ θB
−θB

δ(r,θ)X dθ ≃ δ(r,θB )
∫ θB
−θB

X dθ
is reasonable;
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— It allows a Taylor expansion of the cosine function about the bounce angle;
— Finally, replacing the bounds of the integral from [0,θB ] (resp. [-θB ,0]) to ]−∞,θB ]

(resp. [-θB ,∞[) only has a limited impact and is useful to make appear Fresnel
integrals.

With these simplifications, adding the θ dependence of the toroidal angle ϕ =
ϕ0 +qθ, the ripple contribution becomes:

J2 = mqR0vδ(r,θB )

2π
√
ε|sinθB |

∫ +∞

−θB

dθ

{
cos(Ncϕ0 +Nc qθ)√

θB +θ
+ cos(Ncϕ0 −Nc qθ)√

θB +θ

}
. (.64)

A first change of variable θ→ x −θB gives:

J2 = mqR0vδ(r,θB )

2π
√
ε|sinθB |

∫ +∞

0

d xp
x

{
cos(Ncϕ0 +Nc qx −Nc qθB )+cos(Ncϕ0 −Nc qx +Nc qθB )

}
= mqR0vδ(r,θB )

2π
√
ε|sinθB |

2cos(Nϕ0)
∫ +∞

0

d xp
x

{
cos(Nc qθB −Nc qx)

}
(.65)

and another one x → t 2

N q gives:

J2 = 2mR0vδ(r,θB )

πεNc

√|sinθB |
cos(Ncϕ0)

∫ +∞

0
d t

{
cos(Nc qθB − t 2)

}
. (.66)

Using the Euler expression for cosinus:

∫ +∞

0
d t

{
cos(Nc qθB − t 2)

}= 1

2

[
e i Nc qθB

∫ +∞

0
d t

{
e−i t 2

}
+e−i Nc qθB

∫ +∞

0
d t

{
e i t 2

}]
(.67)

and with the Fresnel formula reading∫ +∞

0
d t

{
cos(t 2)

}= ∫ +∞

0
d t

{
sin(t 2)

}= 1

2

√
π

2
(.68)

then one can write:
∫ +∞

0 d t
{

e−i t 2
}
= ∫ +∞

0 d t
{
cos t 2

}− i
∫ +∞

0 d t
{
sin t 2

}= p
π

2 e−i π4∫ +∞
0 d t

{
e i t 2

}
= ∫ +∞

0 d t
{
cos t 2

}+ i
∫ +∞

0 d t
{
sin t 2

}= p
π

2 e+i π4 .

Giving the final expression for the ripple contribution to the longitudinal invariant:

J2 = mqR0vδ(r,θB )√
πεNc q |sinθB |

cos(Ncϕ0)cos
(
Nc qθB − π

4

)
. (.69)

Combining Eq.(.57) and Eq.(.69), as ∂J2
∂ϕ0

= 0, the radial velocity associated to the
particle is finite due to ripple and reads
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dr

dt
=ΩB

(
v

Ωc

)
δ(r,θB )

(q

ε

) 3
2

√
Nc

π|sinθB |
cos

(
Nc qθB − π

4

)
︸ ︷︷ ︸

C

sin(Ncϕ0) (.70)

with the cyclotron frequencyΩc = eB0
m .

The radial jump ∆r experienced by the particle during a banana transit is obtained
when averaging the radial velocity during a bounce period 2π/ΩB .

One must take into account the temporal dependence of ϕ0. The angle/action

equation gives dϕ0
dt =ΩB

q
eB0r

∂J2
∂r with the total J2. The part associated to J 2 is associated

to the motion in an axisymmetric device, i.e. the precession motion ϕ0 = ϕ00 +
ΩD t with ϕ00 the initial toroidal angle and ΩD the precession frequency. The part
associated with J̃2 is associated with the ripple perturbation and is here considered
subdominant compared to the precession motion. The radial jump then reads

∆r = CΩB

[−cos(Ncϕ00 +2πNc
ΩD
ΩB

)+cos(Ncϕ00)

NcΩD

]
. (.71)

Assuming NcΩD /ΩB ≪ 1, and using once again a Taylor expansion for the cosine,
and using the ion Larmor radius expression ρi = v/Ωc , the final expression for the
radial jump is

∆r = 2

√
Ncπ

|sinθB |
(q

ε

) 3
2
ρiδ(r,θB )cos

(
Nc qθB − π

4

)
sin(Ncϕ00) . (.72)

C. Derivation of Chirikov overlap parameters and
diffusion coefficients related to stochastic
transport

In this appendix is the derivation of the Chirikov overlap parameters and diffusion
coefficients of the weak and strong perturbation regime defined in Sec.2.5.3.

As a reminder, the form of the normalized Hamiltonian obtained in Sec.2.5.2 is the
following

Hω,nB = ω2
nB

2
+CnB

µB0δ

2
JnB (Nc qθB (JR)+τnBωnB )cos

(
ξnB

)
. (.73)

From this point, it is necessary to simplify the problem. It is reasonable to assume
that banana-trapped orbits satisfy the condition Nc qθB ≫ n2

B , which allows the use of
the asymptotic form of the Bessel function
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J(Nc qθB (JR)+τnBωnB ) ≈
√

2

π(Nc qθB (JR)+τnBωnB )
cos

(
Nc qθB (JR)−nB

π

2
− π

4
+τnBωnB

)
.

(.74)
In Fig.32, this limit is assessed with reasonable parameters, that is Nc = 18 and q = 3,

in a range θB ∈ [0,π].
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x cos(x nB2 4 )
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Figure 32. – Comparison between the Bessel function of the first kind (plain) and an
approximation (dashed) for different order nB , for the argument range
Nc q[0,π] with q = 3 and Nc = 18.

It appears that this approximation is well fulfilled, at least for low nB which are the
most relevant for transport. The last form of the Hamiltonian then reads
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Hω,nB = ω2
nB

2
+ (δω′

nB
)2 cos

(
ϕnB +τnBωnB

)
cos

(
ξnB

)
(.75)

where ϕnB = Nc qθB (JR)−nB
π
2 − π

4 and

δω′
nB

=
√√√√CnB

µB0δ

2

√
2

πNc qθB
(.76)

As the variation of δω′
nB

with ωnB is weak compared with cos
(
ϕnB +τnBωnB

)
, the

Hamilton equations of motion read

dξnB

dt
= ∂Hω,nB

∂ωnB

=ωnB − (δω′
nB

)2τnB sin
(
ϕnB +τnBωnB

)
cos

(
ξnB

)
(.77)

dωnB

dt
= −∂Hω,nB

∂ξnB

= (δω′
nB

)2 cos
(
ϕnB +τnBωnB

)
sin

(
ξnB

)
(.78)

The frequency (δω′
nB

)2τnB then characterizes the new structures in the phase-space
that appear when the Hamiltonian is deformed by the action. The two regimes of
transport can be identified. When δω′

nB
τnB ≤ Slim, introducing a number Slim to be

determined, the iso-contours of Hω,nB are characterized by a single separatrix and the
typical cat-eye shape. This regime is labeled weak perturbation regime. In the other
case δω′

nB
τnB > Slim, iso-contours of Hω,nB are characterized by multiple separatrices

and complex structures. This regime is labelled strong perturbation regime.
The Chirikov criterion can be estimated in both regimes. For this, it will be assumed

that the nB dependence of τnB and δω′
nB

is weak between two consecutive nB . In the
weak perturbation regime, the island size is simply 4δω′

nB
and the distance between

consecutive perturbations isΩB so the associated Chirikov parameter is

Sweak =
4δω′

nB

ΩB
(.79)

In the strong perturbation regime, the size of the global is structure delimited by the
two outermost separatrices and reads 2τnB (δω′

nB
)2. The associated Chirikov parameter

is

Sstrong = 2τnB

(δω′
nB

)2

ΩB
(.80)

The value Slim = δω′
nB
τnB ,lim that defines the transition between the weak to strong

perturbation regime is defined by the condition Sweak = Sstrong. It is then simply

Slim = 2. The link between the two Chirikov parameters Sweak = Slim
τnBω

′
nB

Sstrong ensures

that Sweak < Sstrong by construction.
One would want to express these criteria as a function of meaningful quantities: the

ripple amplitude or the particle velocity for example. Rigorously, it requires to know
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the relation between angle-action coordinates and the position/velocity coordinates.
This is not feasible in most cases, including this one. Instead, many more or less
reasonable assumptions are made along the way.

Let us start with the weak perturbation regime Chirikov criterion Eq(.79). The main
difficulty lies in obtaining an expression of CnB that appears in the product δωnB .
Developing Eq(2.47) yields

CnB = N 2
c
∂ΩD

∂Pϕ

∣∣∣
JR

+n2
B
∂ΩB

∂JB

∣∣∣
JR

+2nB Nc
∂2HI ,nB

∂JB∂Pϕ

∣∣∣
JR

. (.81)

Here it is difficult to have an intuition on the scaling between these terms. In the
absence of better approximation, it is considered that they all share the same scaling
such that we keep the only easily tractable term CnB ∼ N 2

c
∂ΩD
∂Pϕ

. In circular geometry,
∂Pϕ
∂r = −e B0r

q . Also, we consider that the precession frequency is expressed ΩD =
q

r R0
Ω−1

c v2
⊥ whereΩc is the cyclotron frequency. With these elements, it is possible to

find an expression for CnB that reads 14

CnB ≈−(Nc q)2s
v2
⊥

mΩ2
c R0r 3

(.82)

where s = r
q

dq
dr is the magnetic shear. Consequently, there is no dependence on

nB anymore. The interpretation of the resulting Chirikov criterion should then be
understood as a unique threshold for stochasticity, accounting for all perturbations
induced by ripple. The banana bounce frequency is approximated by ΩB ≈p

ε v⊥
qR0

, so
that the weak perturbation regime Chirikov criterion then reads

Sweak = 2

(
2

πθB

)1/4

s1/2 qρc

R0

δ1/2

ε2
u1/2 (.83)

with u = v2
⊥/V 2

th (Vth is the ion thermal velocity). Here kept in the expression, θB can
be set to π/2 when necessary. As already mentioned, Sweak is the lower limit for chaos
to arise. It is then possible to estimate the critical normalized energy uc for which the
trajectories become stochastic (this is the upper limit of the energy integral in Eq(2.34)
calculated within the neoclassical theory). It reads

uc = π

8

1

s

(
R0

qρc

)2 ε4

δ
. (.84)

This threshold is commonly associated with energetic particles, as the ratio ε4

δ is
really high in most of tokamaks for typical ripple amplitudes. This is why "ripple
losses" of particles are usually attributed to fast particles.

Let us now express the strong perturbation regime Chirikov criterion. The main
difficulty lies in obtaining an expression of C′

nB
that appears in the product τnB (δω′

nB
)2

14. Note that in the radial derivative ofΩD we considered the term proportional to q/r 2 negligible
compared with the one proportional to q ′/r
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Here we simply take the expression proposed in [68]

C′
nB

≈ Nc q

mΩc r 2
sθB . (.85)

The final expression yields

Sstrong ≈ 1

2

√
2θB

π
s(Nc q)3/2 δ

ε5/2

qρc

R0
u1/2 . (.86)

We can now estimate the diffusion coefficients associated with the weak regime
which is the first to emerge when δ increases. In the weak perturbation transport
regime, the quasi-linear diffusion coefficient DQL holds. The diffusion matrix reads

Di j =π
∑
nB

ni n j |hnB |2δ(nBΩB +NcΩD ) (.87)

where δ is the Dirac delta function. As the objective is ultimately to get the radial
diffusion, we here select the element linked to the action Pϕ. In practice, the ni and n j

coefficient are then replaced by Nc . The quasi-linear diffusion of interest then reads

DQL = N 2
c π

∑
nB

|hnB |2δ(nBΩB +NcΩD ) . (.88)

Note that this coefficient does not have the dimension of (m2.s−1) yet, as it is ex-
pressed in unity of (∂Pϕ/∂r )2.

Using the property δ(ax) = |a|−1δ(x) and replacing the sum on nB with an integral,
it appears that

DQL = N 2
c π

∫
dnB |h(nB )|2 1

ΩB
δ(nB +n⋆) (.89)

where n⋆ = NcΩD /ΩB .
Using the property

∫
f (x)δ(x −x0) = f (x0), it is straightforward to show that DQL =

N 2
c π|h−n⋆ |2/ΩB . The Hamiltonian modulus is given by Eq(2.43). The Bessel function

modulus can be approximated to its asymptotic form for high arguments: |J−n⋆(Nc qθB )| =√
2

πNc qθB
.

It leads to the following diffusion coefficient:

DQL = N 2
c

(µB0δ)2

2Nc qθBΩB
. (.90)

Dividing by (∂Pϕ/∂r )2 gives the particle diffusion coefficient

DQL = 1

8θB
Nc qu3/2DP

δ2

ε5/2
(.91)

where we remind that DP = qR0
Vth

(
T

eB0R0

)2
.
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D. Explicit expression of the transport matrix
coefficients

This section gives the details of the terms that appear in the transport matrix in
Sec.2.6. In the general case the ripple perturbation amplitude δ depends on (r,θ). It is
useful to separate this amplitude in a poloidal average δ(r ) = ∫ dθ

2πδ(r,θ) and a poloidal

modulation δ̃(r,θ) = δ(r,θ)/δ(r ).
The transport matrix is symmetrical. Its 6 independent elements are given by the

following expressions:

dn =
∫ +∞

0
du

(
u − 3

2

)n

K(u) (.92)

d̃n =
∫ +∞

0
du

(
u − 3

2

)n

K̃(u) (.93)

d̂n =
∫ +∞

0
du

(
u − 3

2

)n

K̂(u) (.94)

where

K(u) =
√
π

2
e−uu2Ktor,I(r,u) (.95)

K̃(u) = 32

9

(
2

π

)3/2
(
δ

ε

)3/2
G1

ν⋆
e−uu5/2 1

ν(u)

+ 2

(
2

π

)3/2 1

Nc q

(
δ

ε

)2
1

ν⋆
[1−H (u −uc )]e−uu5/2 1

ν(u)
Krip,II(r,u)

+
√
π

2
Nc q

(
δ

ε

)2

H (u −uc )e−uu2Kst(r,u) (.96)

K̂(u) =
√
π

2

(
Nc q

)(δ
ϵ

)2

e−uu2Krip,I(r,u) (.97)

where H is the Heaviside function.

E. Development of a simple model for the
neoclassical/turbulent competition

A starting point to study the plasma rotation is the toroidal angular momentum
conservation:
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m
∂〈nRVT 〉

∂t︸ ︷︷ ︸
Temporal
evolution

=−〈∇·Πϕ〉︸ ︷︷ ︸
Reynolds

stress

− 〈Tϕ〉︸︷︷︸
Polarisation

+〈JD〉+〈JE 〉︸ ︷︷ ︸
Radial currents

+ 〈TM〉︸ ︷︷ ︸
Magnetic

braking torque

+eψ (∂t n +∇·Γ)︸ ︷︷ ︸
l.h.s of vorticity

conservation

.

(.98)
Here there is a actually a new term compared with Eq(3.24), the l.h.s. of the vorticity

conservation, that was set to zero in Sec.3.3.3 as it was negligible in the simulations
treated in that section 15. The goal is to find the dominant terms in order to simplify
the problem. Before developing any physical argument, one can look at Fig.33 ob-
tained with a GYSELA simulation with ripple detailed further, that shows the radial
profile of each r.h.s term, averaged temporally and radially, of this equation. The first
observation is that the radial current and the l.h.s of the vorticity conservation have
similar amplitude and are of opposite signs. These terms then tend to compensate, as
expected given their similar structure. Another observation is that the polarization
term seems subdominant, which was then confirmed in each of our simulations.
However, this polarisation term can play a strong role as shown in [110].

Figure 33. – Radial profile of the r.h.s of the toroidal angular momentum conserva-
tion Eq..98. These quantities are temporally averaged between 100000 <
tωc0 < 150000 and radially slide-averaged with a 50ρi window.

The dominant players for the toroidal flow drive are then the magnetic braking and
the Reynolds stress divergence. The Reynolds stress can be separated into a compo-

15. The reason is that the time step in the simulations in Sec.3.3.3 was way shorter, as they were
designed to test the angular momentum conservation. Here, the simulations are more numerically
costly, such that we could not take the same time step.
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nent due to the magnetic drift 〈vDr vϕ〉 and another from the electric drift 〈vEr vϕ〉.
Fig.34 displays the radial profile of the total Reynolds stress and its component from
the electric drift, for each ripple perturbation used in the presented GYSELA simu-
lations. It appears that the transport of momentum by the magnetic drift is indeed
subdominant, in particular when magnetic ripple is present. The approximation
〈Π〉 ≈ 〈vEr vϕ〉 is then made.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
4

2

0

2
1e 6

= 0.0

vErv
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
4

2

0

2

1e 6

= 0.01 vErv
vErv + vDrv

0.0 0.2 0.4 0.6 0.8 1.0 1.2
r/a

2.5

0.0

2.5

5.0
1e 6

= 0.03 vErv
vErv + vDrv

Figure 34. – Radial profile of the total toroidal Reynolds stress (dashed) and the electric
drift component of the Reynolds stress (plain), both averaged in time
between 100 000 < t < 150 000 cyclotron periods, for different ripple
amplitudes δ.

In the end, a simple reduced model keeping only the magnetic braking and the
electric Reynolds stress as flow drive is obtained.
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F. Stability of the equilibriums for the model of
energy transfer

In this appendix, the stability of the fixed points found in Sec.5.4.3 on the normalized
turbulent intensity I , normalized zonal flow energy E0 and normalized GAMs energy
EG are assessed. To this aim, a perturbative treatment is done around the fixed points
such that

I = I+ Ĩeλτ , (.99)

E0 = E0 + Ẽ0eλτ , (.100)

EG = EG + ẼG eλτ . (.101)

Neglecting the second-order terms proportional to e2λτ, the perturbed system readsλ+I C0I CGI
−E0 λa0 − (I−I0 −2E0) 0

−EG 0 λaG − (I−IG −2E0)


︸ ︷︷ ︸

A

·

 Ĩ
Ẽ0

ẼG

=
0

0
0

 . (.102)

The eigenvalues of this system are obtained by setting the determinant of the matrix
A to zero. The equilibrium is stable if all these eigenvalues are negative. Let us find
the condition for each equilibrium to be stable.

F.1. Equilibrium "No flows"
Using the properties of this equilibrium, i.e. E0 = EG = 0, it is straightforward to

show that

det(A) = (λ+I)
[(
λa0 − (I−I0)

)(
λaG − (I−IG )

)]
(.103)

such that the set (λ1,λ2,λ3) of eigenvalues read

λ1 =−I ; λ2 = I−I0

a0
; λ3 = I−IG

aG
. (.104)

The turbulent intensity is always positive, so this solution is stable when I < I0 and
I < IG .

F.2. Equilibrium "Zonal flows only"
For this equilibrium, EG = 0 and E0 > 0 which imposes that I −I0 −E0 = 0 at the

fixed point. The matrix A determinant then reads
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det(A) = (aGλ− (I−IG ))︸ ︷︷ ︸
1⃝

[
C0IE0 + (λ+I)(a0λ+E0)

]
︸ ︷︷ ︸

2⃝

. (.105)

First eigenvalue λ1 is given by 1⃝ and the two other by the second order polynomial
2⃝. The determinant ∆ of this polynomial reads

∆=
(
E0 +Ia0

)2 −4E0I(C0 +1) . (.106)

If ∆> 0, the other eigenvalues (λ2,λ3) reads

λ2,3 =
−

(
E0 +Ia0

)
±p

∆

2a0
(.107)

both of which are always negative as

√(
E0 +Ia0

)2 −4E0I(C0 +1) <
(
E0 +Ia0

)
.

If ∆< 0 then (λ2,λ3) are complex and their real parts are always negative. The three
eigenvalues are such that

λ1 = I−IG

aG
; Re(λ2) < 0 ; Re(λ3) < 0 . (.108)

F.3. Equilibrium "GAMs only"
For this equilibrium, E0 = 0 and EG > 0 which imposes that I −IG −E0 =G at the

fixed point. By analogy with the previous case, the eigenvalues are

λ1 = I−I0

a0
; Re(λ2) < 0 ; Re(λ3) < 0 . (.109)

F.4. Equilibrium "Mixed ZF/GAMs"
For this equilibrium, E0 > 0 and EG > 0 which impose that I −I0 − E0 = 0 and

I−IG −E0 = 0 at the fixed point. The determinant of A is then a 3rd order polynomial
P(λ) =λ3 + sλ2 +qλ+p with

s =
(
I+ E0

a0
+ EG

aG

)
, (.110)

q =
(
IE0

a0
(1+C0)+ IEG

aG
(1+CG )+ E0EG

a0aG

)
, (.111)

p = IE0EG

a0aG
(1+C0 +CG ) . (.112)
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Each of these scalars is strictly positive. This polynomial takes the form P(λ) =
(λ−λ1)(λ−λ2)(λ−λ3) so the following constraints can be identified:

λ1 +λ2 +λ3 = −s < 0 ; (.113)

λ1λ2 +λ2λ3 +λ1λ3 = q > 0 ; (.114)

λ1λ2λ3 = −p < 0 . (.115)

The coefficients s, q and p are reals. The inflexion point of this polynomial are the
roots of its derivative dP/dλ= 3λ2 +2sλ+q . The reduced discriminant then reads
∆′ = s2 −3q . If ∆′ > 0, then the roots of dP/dλ are real and read

λ± =−s ±
p
∆′ (.116)

which are always negative because q > 0 and s > 0. Fig.35 give the general form of
dP/dλ as a function of λ.

Figure 35. – Form of dP/dλ.

The constraint λ1λ2λ3 < 0 in the case where each eigenvalue is real gives two differ-
ent cases. First, all eigenvalues are negative and so the equilibrium is stable. Second,
one is negative and the two others are positive. However this last case is not allowed,
as λ+ < 0 so λ1 and λ2 have to be negative. The constraint Eq(.115) then guarantees
that λ3 is also negative. This situation is drawn in Fig.36a.

Still in the case where ∆′ > 0, it could occur that one root λ3 is real and the two other
(λ1,λ2) are complex conjugates. This situation is represented in Fig.36b.
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(a) (b)

Figure 36. – (a) General form of P(λ) when all eigenvalues are reals. (b) General form
of P(λ) when ∆′ < 0 or when ∆′ > 0 and two eigenvalues are complex.

Regarding the sign of the eigenvalues, this case is equivalent to the ∆′ < 0 case.
Writing λ1 =λr + iλi and λ2 =λr − iλi , the constraint Eq(.115) reads

λ3(λ2
r +λ2

i ) < 0 (.117)

which directly yields λ3 < 0. A difficulty arises to obtain the sign of λr , which
must be negative of the equilibrium to be stable. It is straightforward to show that

λr = qλ3+p
2λ2 . At the transition from the "ZFs only" or "GAMs only" equilibrium to

the "Mixed ZFs/GAMs" equilibrium, either E0 = 0 or EG = 0. Consequently, at the
transition, p = 0 and so λr < 0 and the equilibrium is stable. For non-vanishing values
of p, the equilibrium stays stable as long as a0 ≥ 1 and aG ≥ 1, which is considered in
the model for consistency.
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