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Institut de Mathématiques de Marseille

Investigation of mixing and particle
transport in 2D incompressible Euler
flows using the characteristic mapping

method

Master’s thesis submitted in fulfilment of the requirements for the degree of

M. Sc. Physikalische Ingenieurwissenschaft

Author:
Julius Bergmann

Submission:
Berlin, April 20, 2022

Examiner:
Prof. Dr. rer. nat. Julius Reiss

Prof. Dr. Kai Schneider





Declaration of independence

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has
not been submitted for credit elsewhere.
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Je déclare et confirme que cette thèse est entièrement le résultat de mon propre
travail original. Lorsque d’autres sources d’information ont été utilisées, elles ont
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Abstract

Exponentially growing vorticity gradients in computations of turbulent flow governed
by the two-dimensional incompressible Euler equations impose huge constraints for
conventional numerical solution methods. The Semi-Lagrangian characteristic map-
ping method proposes a new approach to overcome this issue by evolving the flow
map along characteristic curves. With the possibility to decompose the flow map
into several sub-maps due to its semi-group structure and the gradient-augmented
level set method to combine individual discrete sub-maps together, this method is
able to capture the exponentially growing gradients. It achieves exponential resolu-
tion in linear time, enabling strong magnification of regions of interest until machine
precision. This thesis deals with the extension of the work previously done. Strong
focus is done in continuing the code development, initially written by Badal Ya-
dav, to solve the characteristic mapping method efficiently on GPUs. The code is
fully reworked and validated according to modern programming standards and re-
cent mathematical advancements for the method. Afterwards, the implementation
of fluid and inertial point particles is stated and validated. At last, applications of
the code for further research interests are presented in the form of flow of passive
scalar in shear layer flow and inertial particle behaviour in artificial homogeneous
isotropic turbulence. The framework proves to be highly flexible and efficient in
order to deal with further open topics regarding the incompressible Euler equation.
The particle implementation enables research of more advanced immersed particle
problems, such as the fractality of particle clusters in turbulent flow.
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Kurzfassung

Exponentiell wachsende Gradienten der Wirbelstärke in Simulationen von turbulen-
ten Strömungen bestimmt durch die zweidimensionalen inkompressiblen Eulergle-
ichungen bewirken starke Einschränkungen für herkömmliche numerische Lösungsmeth-
oden. Die Semi-Langrangesche Characteristic Mapping Methode (CMM) stellt einen
neuen Ansatz dar um diese Limitierung zu überwinden indem es die Strömungskarte
entlang charakteristischer Kurven entwickelt. Mit der Möglichkeit die Strömungskarten
aufgrund der Halbgruppenstruktur in mehrere Teilkarten aufzuteilen und der Gradient-
Augmented Level Set Methode um die einzelnen diskreten Teilkarten wieder zusam-
menzuführen ist die CMM fähig die exponentiell wachsenden Gradienten aufzulösen.
Sie erreicht exponentielle Auflösung in linear Zeit, was eine Vergrößerung von wichti-
gen Bereichen bis zumMaschinenfehler ermöglicht. Diese Abschlussarbeit beschäftigt
sich mit der Fortführung des Computercodes, ursprünglich entwickelt von Badal
Yadav, um die Characteristic Mapping Methode effizient auf GPUs zu lösen. Der
Code ist komplett überarbeitet und validiert übereinstimmend mit modernen Pro-
grammierungsstandards und aktueller mathematischen Fortschritten für die Meth-
ode. Anschließend wird die Implementierung von Interial- und Fluidpunktpartikeln
gegeben und validiert. Zuallerletzt werden Anwendungen des Codes an weitern
Forschungsinteressen präsentiert in der Form von Transport und Vermischung von
passiven Skalaren in Scherschichtströmungen und dem Verhalten von inertiellen Par-
tikeln in künstlicher homogener und isotroper Turbulenz. Das Rahmenwerk zeichnet
sich durch seine hohe Flexibilität und Effizienz aus um für weitere offene Themen-
felder der inkompressiblen Eulergleichungen genutzt zu werden. Die Partikelimple-
mentierung er-möglicht die Untersuchung von komplexeren Problemen von einge-
betten Partikeln von endlicher Grösse, wie der Fraktalität von Partikelgruppen in
turbulenten Strömungen.
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Résumé

La croissance exponentielle du gradient de vorticité dans les calculs de turbulence
pour les équations d’Euler incompressibles bidimensionnelles impose d’énormes con-
traintes aux méthodes conventionnelles de résolution. La méthode d’application
caractéristique semi-lagrangienne propose une nouvelle approche pour surmonter ce
problème en faisant évoluer l’application de l’écoulement le long de courbes car-
actéristiques. Via la possibilité de décomposer l’application de l’écoulement en
plusieurs sous-applications grâce à la structure de semi-groupe ainsi qu’à la méthode
GALS pour composer ensemble les sous-applications discrètes, cette méthode est
capable de prendre en compte la croissance exponentielle du gradient. Elle atteint
une résolution exponentielle en temps linéaire, permettant un fort grossissement
des régions d’intérêt jusqu’à la précision de la machine. Ce mémoire porte sur
l’extension de travaux réalisés précédemment. Une attention particulière est portée
à l’extension du code, initialement développé par Badal Yadav, pour résoudre la
méthode d’application caractéristique sur les GPU. Le code est entièrement révisé et
validé selon les standards de programmation actuels et les avancées mathématiques
récentes de la méthode. De plus, des particules ponctuelles fluides et inertielles
ont été implémentées et validées. Enfin, des applications du code à d’autres su-
jets de recherche sont présentées comme l’écoulement d’un scalaire passif dans des
couches de cisaillement ainsi que le comportement de particules inertielles dans une
turbulence homogène isotrope. Le cadre s’avère très flexible et efficace pour traiter
d’autres sujets ouverts concernant l’équation d’Euler incompressible. L’implémenta-
tion des particules permet d’étudier des problèmes plus avancés, tels que la fractalité
des amas de particules dans un écoulement turbulent.
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Notation

All important notations and symbols can be found in this section. They will be
stated in three-dimensions for completeness. In order to retrieve the two-dimensional
equivalents, all terms containing the z-coordinate can be omitted and vectors become
two-dimensional. Special caution has to be taken for the vorticity ω⃗, which in 2D
reduces to a pseudo-scalar ω := ωz

ρ Density of the fluid
p Pressure of the fluid
θ Passive scalar
Ψ Stream function of the fluid
χ+ Forward characteristic flow map
χ− Backwards characteristic flow map

x⃗ =

x
y
z

 Cartesian coordinate directions

k⃗ =

kx
ky
kz

 Wavelengths in Fourier space

u⃗ =

ux
uy
uz

 Velocity of the fluid flow

ω⃗ =

ωx
ωy
ωz

 Vorticity of the fluid

∇f =

∂xf
∂yf
∂zf

 Gradient of a scalar function f

∇⊥ =

(
−∂y
∂x

)
Perpendicular gradient in two dimensions

∇× f⃗ =

∂zfy − ∂yfz
∂xfz − ∂zfx
∂yfx − ∂xfy

 Curl of a vector function f⃗

∇ · f⃗ = ∂xfx + ∂yfy + ∂zfz Divergence of a vector function f⃗

∆f = ∇ · ∇f = ∂xxf + ∂yyf + ∂zzf Laplacian of a scalar function f
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1 Introduction

Fluid flow is an important and fascinating phenomenon encountered in nature all
around us. One feature of fluid flow, being turbulence, is still to this day a widely
researched topic with many important applications. Its difficulty lies in the broad
range of scales, where kinetic energy of the fluid flow forms large scale coherent struc-
tures emerging from bodies, which is continuously broken down into smaller scales
and at last dissipated to heat due to viscous friction at very fine scales. This makes
simulations challenging, as often a very high resolution in space and time is needed
to represent all relevant physical phenomena. This becomes even more challenging
when dealing with inviscid flow, where no dissipation of energy takes place and it is
broken down into infinitesimally small structures. As current simulation techniques
are hardly able to appropriately represent those scales, novel methods are needed.
The characteristic mapping method used in this work makes up for a good approach
with its possibility to resolve exponential resolution in space within linear time.

Figure 1: Clustering of light point par-
ticles embedded into turbulent flow com-
puted with the characteristic mapping
method

In 2009, Nave et al. developed the
gradient-augmented level set (GALS)
method in [14]. This method presented
an optimal way to transport a level set
function together with its derivatives,
where the level set method itself can
represent a surface as the zero contour
of the level set function. With the pre-
sented method, approximations of cur-
vature information were preserved with
tracking local structures smaller than
the grid size and later using Hermite
interpolation for reconstruction. Being
initially used to represent surfaces, this
was quickly extended to track trans-
port along characteristics. In [7], it
was compared to other common meth-
ods to solve linear advection along char-
acteristics, where it proved to be highly
efficient. From this, Mercier et al.
constructed the characteristic mapping
method (CMM) for the linear advection

of arbitrary sets [13]. It allowed transport of sets due to a velocity field to be
computed to high accuracy with low computational cost and was achieved by com-
putation of long-term deformation maps. The characteristic maps, which basically
describe the movement of individual positions within the sets, form a sub-group
structure. Together with the Hermite interpolation from the GALS method, each
long-term deformation can be separated into small individual sub-maps, where the
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positions can be interpolated in order to link the maps together. This allows the
representation of the solution to arbitrarily fine sub-grid resolution.
At a meeting between Prof. Nave and Prof. Schneider, the idea sparked to extend
this for the 2D incompressible Euler equations. As there the pseudo-scalar vorticity
is merely transported, the characteristic mapping method can be used in order to
solve the vorticity and velocity over time. A first framework to solve this, from which
the presented framework origins from, was developed by Badal Yadav in the scope of
his master thesis at the McGill university in Canada in 2015 [19]. This featured the
mathematical framework being implemented on C++ and Nvidia Cuda to be solved
efficiently on graphics card. First result showed stunning results, especially with
the possibility to magnify areas until machine precision. The mathematical formu-
lation was further extend by Xi-Yuan Yin during his doctorate. He first extensively
formulated and validated the method to be used as a Semi-Lagrangian approach to
solve the 2D incompressible Euler equations in [21]. It was later extended to 3D by
the use of Lie algebra in [22]. There, the vortex stretching term is included into the
characteristic maps to practically couple the vorticity in all three dimensions. He
also conducted tests in order to investigate how diffusion effects can be computed by
the means of the characteristic mapping method in [20]. Currently, the CM-method
for the 2D incompressible Euler equations is adapted for applications and further
refinement. This includes the research in an on-going project funded by the Agence
Nationale de la Recherche (ANR) in France. There, the method should be further
enhanced by the usage of multi-resolution techniques and further applications in
3D. Included in the project was also the master thesis by Nicolas Saber in [15], who
implemented advected point particles into the 2D code initially developed by Badal
Yadav. His master project preceded the work presented in this thesis, which is also
funded by the ANR project.

The end of the thesis of Nicolas Saber also marked the beginning of this work.
The main work was centred around the framework and code as the main tool to
solve and include further applications. However, it still lacked several features de-
veloped by Xi-Yuan Yin. In comparison to his work the code was not yet validated
and even missed key features as in example the higher order time-stepping methods.
In addition, the code initially from Badal Yadav was still in prototype form and
therefore barely suitable to be used for special applications. At last, the particle
implementation by Nicolas Saber was included, but a thorough validation was yet
to be done.
This all together formed the first tasks for this thesis. The code and framework had
to be cleaned and reworked in regards to recent advancements and more accessible
coding standards. In addition, a thorough validation was needed in order to verify
the correctness of both the implementation of the CM-method itself and the point
particle implementation.
After this has been concluded, several aspects were considered as possible physical
extensions to the framework. From those the inclusion of passive scalar quantities as
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an additional feature to the framework and further work with inertial point particles
were chosen. With that, several initial conditions also have been reworked in order
to better represent physically significant conditions.

This thesis is divided into several chapter, each explaining different aspects that have
been used, studied or investigated. It starts with an explanation of the mathemat-
ical background in chapter 2. The 2D incompressible Euler equations are derived
in vorticity form and the characteristic mapping method to solve it is presented.
Chapter 3 gives an introduction to the Cuda framework, which is used to solve the
CM-method on graphics cards. Additionally, the work on the code which was done
will be presented. Thereafter, starting from chapter 4, my work on and with the
framework will be further presented. In the chapter itself, several mathematical
improvements will be explained. The code is validated in space and time and im-
portant hyper-parameters will be discussed. The implementation of finite sized fluid
and inertial particles will be introduced and validated in chapter 5. The following
two chapters deal with specific implementations, each focusing on a new aspect while
dealing with a specific initial condition. In chapter 6, the computation of passive
scalars will be introduced. Those will be included in the simulation of a shear layer
flow. The zoom property will be used to more precisely investigate the mixing be-
haviour of shear flow. The next chapter 7 deals with fluid and inertial particles
embedded in 2D homogeneous isotropic turbulence. The inertial particles are fur-
ther classified and their Stokes number will be validated. Afterwards, the fractality
of a ring-structure will be investigated under turbulent flow. At last in chapter 8,
the results of this work will be summarised. Limitations will be given and further
research ideas will be listed.

Figure 2: Kelvin-Helmholtz instabilities developing in the vorticity from shear layer
flow computed with the characteristic mapping method. Regions of high vorticity
are depicted in blue.
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2 Mathematical framework

Not only do many different ways to formulate the behaviour of fluid flow exist, but
there are different ways to solve each individual formulation. Most features of real
fluids can be described by the famous Navier-Stokes-equation, which were developed
in the beginning of the 19th century and are given in Equation (2.1) and (2.2) in
convective form. ([10], p.20)

dρ

dt
= ∂tρ+∇ · u⃗ = 0 (2.1)

ρ
du⃗

dt
= ρ∂tu⃗+ u⃗ · ∇u⃗ = −∇p+∇ · τττ (2.2)

These equations describe the conservation of mass and momentum in three dimen-
sions on a flow domain Ω ∈ R3 with increasing time t ∈ R+ and further respective
boundary and initial conditions. With the total derivative, the momentum equation
greatly resembles Newton’s second law of motion, defining the acceleration of the
fluid as the sum of pressure and stress forces acting on it.
The two biggest factors giving rise to different fluid flow properties is the compress-
ibility of the density ρ and the viscosity due to the stress tensor τττ acting on the fluid.
The first mainly differentiates gaseous from liquid flows and also largely changes how
structural information propagates inside a fluid. The main parameter for this is the
Mach number, describing the ratio of fluid velocity to the velocity of propagation of
information within the fluid. The second can give rise to highly complex phenom-
ena like turbulence and, together with the governing Reynolds number describing
its strength, is a key parameter in modern engineering fluid flow investigations.
In the following sections, the incompressible Euler equation will be derived as a sim-
plification of the Navier-Stokes equations. Later, the equations will be reformulated
in vorticity form and the characteristic mapping method as a solution approach will
be presented in detail.
Afterwards, further elaborations on the numerical discretisation in space and time
will also be given for the derived set of equations.

2.1 Derivation of the 2D Incompressible Euler equations in vortic-
ity form

The given framework computes solutions to the incompressible Euler equations.
These set of equations describe the conservation property of perfect, incompressible
fluids and consist of the conservation equations for the mass and momentum, similar
to the Navier-Stokes equations.
In comparison to the full set of Navier-Stokes equations both friction and com-
pressibility are neglected. An incompressible fluid has a constant density over time
ρ = const., so equation (2.1) breaks down to a divergence free condition for the
velocity. This simplification assumes the Mach number to be close or equal to zero
and information like a change in pressure or velocity travels infinitely fast through
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the domain. By assuming the density to be equal to 1, it can be eliminated from all
equations. A friction-less fluid has no shear stress acting on it, which eliminates the
stress term from the momentum equation (2.2). This would coincide to a Reynolds
number limit of infinity. No energy is lost due to friction over time and the flow
becomes reversible. Together, the incompressible Euler equations read the following:

∇ · u⃗ = 0 (2.3)

du⃗

dt
= ∂tu⃗+ u⃗ · ∇u⃗ = −∇p (2.4)

Here, the first equation describes the conservation of mass via a divergence free
condition for the velocity. The second equation is the conservation of momentum.
With the exemption of the friction term, this equation becomes similar to a nonlinear
transport equation, where the pressure gradient forms a numerical source term for
the motion of the fluid. In fact, it represents a Lagrangian multiplier imposing the
incompressibility condition.
For the used framework, the equations are defined on a 3-flat Torus T3 with periodic
boundary conditions in order to easily define all quantities as Fourier series. The
initial state is only given by the initial velocity

u⃗(t = 0) = u⃗0 (2.5)

As no time derivative for the pressure is present, no initial condition has to be im-
posed for it.
The equations (2.3) and (2.4) form an idealised case, as real fluids are neither per-
fectly incompressible nor completely friction-less. However, many present phenom-
ena in real fluids can be approximated by using this formulation and especially
behaviour of real turbulence can be well approximated. All together the charac-
teristics of these equations are very unique, as only the velocity is transported in
respect to the pressure gradients.

As turbulent flow consists of many vortical structures, it is beneficial to rewrite
the transport equation for the velocity (2.4) to the transport of vortical motion. The
derivation will be done similar to [21] and [15]. The vorticity is defined as the rotation
of a fluid at any given point. It is connected to the velocity by ω⃗ = ∇× u⃗. Applying
the curl operator to the momentum equation, one can retrieve the transport equation
for the vorticity together with its initial condition:

dω⃗

dt
= ∂tω⃗ + (u⃗ · ∇)ω⃗ = (ω⃗ · ∇)u⃗ (2.6)

ω⃗ (t = 0) = ω⃗0 (2.7)

The curl of a gradient is always zero, the pressure term therefore vanishes after
application of the curl operator. The vorticity is solely transported, with the vor-
tex stretching term (ω⃗ · ∇)u⃗ describing the flow between the coordinate directions.
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While the vorticity for each coordinate direction is not conserved on the computa-
tional domain, it is in respect to all dimensions.

For further derivation the flow is assumed to be two-dimensional in x- and y-
direction. In planar flow, the vorticity simplifies greatly. Due to no velocity being
present in z-direction, the vorticity vector reduces to

ω⃗ = (0, 0, ωz)
T (2.8)

The vorticity therefore reduces to a pseudo-scalar ω := ωz = ∂yux − ∂xuy. By
definition it is perpendicular to the planar flow. Due to that, the vortex stretching
term ω⃗ · ∇u⃗ vanishes and the transport of vorticity becomes

dω

dt
= ∂tω + u⃗ · ∇ω = 0 (2.9)

In order to later solve the equations, a formulation for the velocity from the
vorticity is beneficial. This is achieved by connecting both quantities via the stream
function Ψ. The existence of the stream function arises from the divergence free
condition for the velocity in two-dimensional flow.

u⃗ = ∇⊥Ψ (2.10)

ω = ∆Ψ (2.11)

The operator ∇⊥ = (−∂y, ∂x)
T is the perpendicular gradient in two dimensions and

the condition for the scalar vorticity comes from taking the 2D-curl of the prior
equation (2.10). Both equations (2.10) and (2.11) can be combined to form the
so-called Biot-Savart law:

u⃗ = ∇⊥∆−1ω (2.12)

Here ∆−1 is the inverse Laplacian, which is well defined for smooth functions and
can be properly constructed utilising Green’s functions.
All-together, the total set of equations read as:

dω

dt
= ∂tω + u⃗ · ∇ω = 0 (2.13)

∇ · u⃗ = 0

u⃗ = ∇⊥∆−1ω

ω (t = 0) = ω0

For the boundary conditions, the domain is assumed to be on the 2-flat Torus T2

with periodic boundary conditions. Due to that, a Fourier series representation of
all quantities can be defined which are used to solve the Biot-Savart law in Fourier
space which is shown and explained later in Section (2.3.5).
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2.1.1 Behaviour of global quantities

Important quantities to study for physical flow are global quantities being defined
over the whole domain. For planar flow, the energy, enstrophy and palinstrophy
are of interest. These formulate the change in total kinetic energy, vorticity and
vorticity gradients over the whole domain and are defined as

E(t) =
1

2

∫
T2

|u⃗(x⃗, t)|2dx⃗ (2.14)

Z(t) =
1

2

∫
T2

|ω(x⃗, t)|2dx⃗ (2.15)

P (t) =
1

2

∫
T2

|∇ω(x⃗, t)|2dx⃗ (2.16)

As the computational domain with periodic boundaries is formulated as a closed
system, mass and energy have to be conserved in respect to the whole domain. The
first leads to a preservation of volume, as the density is set to be constant. The
latter is a useful condition in order to test numerical schemes and is usually hard
to achieve with artificial diffusion present in many applications, leading to a loss in
global energy over time. Derived from the transport of vorticity for two-dimensional
flow in equation (2.9), the scalar vorticity is also conserved globally. Both the global
conservation of energy and enstrophy can be mathematically taken from the fulfilled
transport equations without source terms:

dE(t)

dt
= 0

dZ(t)

dt
= 0 (2.17)

dtP (t) = −2

∫
T2

θ · ∇θ · udx⃗ where θ = ∇⊥ω (2.18)

However, the palinstrophy is not globally conserved. In fact, for solutions of the
Euler equations it increases exponentially over time. This is due to the fact, that
the gradient of vorticity increases exponentially over time, with the vorticity contin-
uously breaking down into finer and finer scales. This is also called the enstrophy
cascade, as explained in ([10], p. 183).
As the computational domain is the 2-flat torus T2, all quantities can be represented
as a super-composition of Fourier modes k⃗ in all cardinal directions. Due to this
representation, the energy, enstrophy and palinstrophy can also be represented the
same way as the integration over all wave-numbers.
In order to quantify and investigate the quantities of isotropic turbulence in Fourier
space, the isotropic spectrum is used. This combines the wave-numbers in both

directions by k =
√

k2x + k2y. Later, one-dimensional spectra of the energy, energy

and palinstrophy can be computed in respect to the norm of the wave numbers k.
This will later be a useful representation in order to show-case the emerging energy
and enstrophy cascades, as for isotropic turbulent flow the intensity is the same in
all directions.
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2.2 Characteristic mapping method

Figure 3: Pullback of the vorticity from the initial condition (left), overlay of the
deformed backwards flow map (middle) and reformed vorticity with uniform initial
map (right).

All together the equations (2.13) form a closed set in an Eulerian frame. One would
be able to discretise the vorticity on a fixed mesh and advect it over time by evalu-
ating the velocity.
However, as the flow is invertible and incompressible, it can also be discretised in a
more specialised way by computing the movement of the fluid particles.
One way to do that is by using the characteristic mapping method, which was first
introduced by Mercier et al. in [13] for the linear advection of arbitrary sets. The
movement of individual flow particles is tracked back to the initial condition where
they originate from. This can be done since the flow merely transports fluid par-
ticles while preserving the volume, leading to no actual distortion or diffusion on
the domain. Further refined by Yin et al. in [21], this was adapted to work with
the 2D incompressible Euler equation. This section aims to derive the characteristic
mapping method for the 2D incompressible Euler equations similar to [21].

The momentum equation for the vorticity in the equations (2.13) consists merely
of the advection of the vorticity by the velocity. This forms a strongly non-linear
form of a transport equation, however, normal properties of transported sets still
apply. As no source term is present, one can define the solution of the vorticity at
any time by transporting along characteristic curves γ⃗:

ω(γ⃗(t), t) = ω0(γ⃗(0)) (2.19)

This essentially describes a Lagrangian form of the solution, where it can be inter-
preted as fluid particles being transported along a characteristic curve, starting from
initial positions γ⃗0. The characteristic itself can be defined from the velocity as:

dγ⃗(t)

dt
= u⃗(γ⃗(t), t) (2.20)
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γ⃗(0) = γ⃗0 (2.21)

To solve the vorticity at an arbitrary time t, it is therefore enough to only integrate
the characteristic curves along the velocity. As a result, the solution at any time
is only a movement from the initial condition along the velocity of a fluid particle.
This way of solving the transport equation is called method of characteristics and
is commonly applied to solve transport equations. A huge benefit of this formalism
is, that many different integration techniques are globally stable for Lagrangian
formulations [1].
All characteristic curves γ⃗(t) together form characteristic mappings defined on the
whole domain. Due to the invertibility of the flow, these can be defined forward and
backwards in time, so that

χ+(γ⃗0, t) = γ⃗(t) (2.22)

χ−(γ⃗(t), t) = γ⃗0 (2.23)

In equation (2.22), χ+ is the forward flow map which describes the mapping from
an initial position γ⃗0 at time 0 to an advected position γ⃗(t) at time t, practically
combining all characteristic curves. Accordingly, χ− as the backwards flow map
describes the mapping from an advected position at time t back to its initial position,
practically forming a pullback to the initial state. With this, one is able to compute
from which position on the initial condition a fluid particle is advected to the given
position. One can easily see, that both maps applied in sequence reduce to the
identity, as

χ−(χ+(γ⃗0, t), t) = γ⃗0 (2.24)

As the velocity has to satisfy the divergence-free condition and are assumed to be
smooth, no two characteristic curves will collide to any given time. Due to that, the
two flow maps form diffeomorphisms, uniquely mapping one point of the domain to
another and therefore the characteristic maps satisfy a transport condition on their
one:

∂tχ+ u⃗ · ∇χ = 0 (2.25)

χ(x⃗, 0) = x⃗ (2.26)

Here the initial condition of the maps is the identity, mapping any point on the
domain to itself. The solution of the vorticity at any position at time t can now
conveniently be described by utilising the backwards flow map

ω(x⃗, t) = ω0(χ
−(x⃗, t)) (2.27)

An illustration for this can be found in figure 3. The image on the right represents a
uniform grid as the initial condition for the backwards flow map at time t. Using the
backward flow map, each position can be traced back to where they originally come
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from the initial condition, which is shown in the center image. By doing this for the
whole plane, the initial condition shown in the left image is essentially distorted,
shown again in the right image.
While before in the equations (2.13) the vorticity itself was transported, forming an
Eulerian and static way of solving the equations, now we only advect the character-
istic map and get the vorticity by forming a pullback to the initial condition. Using
the Biot-Savart-law, the velocity can be computed from the vorticity, which is again
used to advect the characteristic map. The set of equations to be solved changes to

ω(x⃗, t) = ω0(χ
−(x⃗, t)) (2.28)

u⃗ = ∇⊥∆−1ω

∂tχ
− + u⃗ · ∇χ− = 0

being called the advection-vorticity coupling. As the incompressibility condition is
not directly included in this set of equations, a strong condition has to be additionally
imposed in order to retain it. For the characteristics maps, this is given by

det(∇χ) = 1 (2.29)

This implies a volume preserving property for the characteristic mappings due to
isometry, forming the pendant to the mass preserving property of the divergence-free
condition in the Eulerian frame. It will be further referenced as the incompressibility
condition for the flow map.
While in theory only the forward map could be utilised to track the movement of
fluid particles from an initial time, it imposes some difficulties. To later compute
the velocity with the help of Fourier series representations of the vorticity, it has
to be given on a uniform grid at the current time-step. This can be achieved by
using the backwards map, as we can easily define the grids at time t on which we
want to pull back the initial condition. Together with using an analytical initial
condition, this also enables to impose no loss of information from sampling from the
initial conditions, even with very high distortion present. However, working with the
backwards flow map also makes definitions more confusing, as it is always defined to
map backwards in time. Special caution has to be taken when using integrational
time-stepping methods, to take this into account.

2.3 Discretisation

In order to numerically solve the equations (2.28), they have to be discretised in
space and time. This section gives further explanation on these specific parts.
Firstly, the transport equation of the backwards flow map will be discretised and
the used numerical methods will be presented, mainly the Hermite interpolation and
gradient-augmented level set method (GALS). Afterwards, the remapping structure
is explained in order to highlight the benefits of the chosen method. This also further
explains how the vorticity is numerically reconstructed using the computed maps.
A brief explanation of the computation of the Biot-Savart law is given and at last,
a summary of the whole framework will be presented.
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2.3.1 Discretisation of the backwards flow map in time

A characteristic flow map does not have to point from time t = 0 by definition, but
could rather map a fluid particle from any arbitrary time instant to another, whereas
the time direction is not important due to the invertibility of the flow. This property
can be used, to basically divide a mapping from one time instant to another into
smaller sub-intervals containing several maps applied in sequence and is called the
semi-group structure. It is an important property of the flow maps.

χ[0,τ ] = χ[τ2,τ ] ◦ χ[τ1,τ2] ◦ χ[0,τ1] (2.30)

The subscript denotes the interval boundaries, to or from which the flow map points
to. The previously used notations for the backwards and forward map become
χ+(x⃗, t) = χ[0,t] and χ−(x⃗, t) = χ[t,0]. Using this expression, the full flow maps can
be numerically adapted onto discrete time instants. The maps at further times t+∆t
with small time-steps ∆t, can be computed from the flow maps at time t using the
sub-composition:

χ+(x⃗, t+∆t) = χ[t,t+∆t] ◦ χ+(x⃗, t) (2.31)

χ−(x⃗, t+∆t) = χ−(x⃗, t) ◦ χ[t+∆t,t] (2.32)

Therefore, instead of evolving the flow map through the transport equation (2.25),
it is always advanced through the semi-group structure. Also, already computed
flow maps are used in order to then trace back to the initial position, as showcased
in figure 4. This is the core of the characteristic mapping method and the reason to
many of its beneficial features.

t0 tn tn+1

t

Backwards map

Forward map

Figure 4: Computation of total map by application of previously computed map
(blue) and integration to or from next timestep (green).

The flow maps for the discrete interval [t + ∆t, t] can be computed by individ-
ually advecting the fluid particles on each discrete position along the characteristic
curves. The computational domain is discretised onto a finite, uniform grid, where
each position is now advanced by solving the ordinary differential equation (2.20).
This can be done using available numerical integration methods. In the presented
framework Runge-Kutta methods were used, which will be further explained and
discussed in section (4.1.2).
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2.3.2 Hermite interpolation as integral bridge between Eulerian and La-
grangian frame

When discretising the flow map as explained in the last section, the backwards map
is advanced from a uniform grid at time tn+1 to time tn. This will lead to it being
present at arbitrary positions, as also depicted in figure 5. However, at that time
all variables are just available on another uniform grid, being previously computed.
Important here are the velocity in order to actually advance the backwards map for
the finite time and the previous backwards flow map in order to trace back to the
initial position. This explains a common problem of semi-Lagrangian approaches,
where some parts are defined on fixed grids, while others move alongside the flow.
In order to combine those quantities, an interpolation method is needed. this will
essentially build a bridge between the Lagrangian and Eulerian frame and allow the
interpolation of needed quantities at arbitrary positions.

χ+

χ−

tn tn+1

Figure 5: Uniform grid at time tn+1 (right) leads to arbitrary position at time tn
(left)

For the interpolation, a Hermite bicubic interpolation as done in [21] was cho-
sen. As the procedure of this has been already presented in detail in the preceding
literature, only a short overview will be given here together with the key features.
The computational domain is spatially discretised on a uniform rectangular mesh-
grid with constant grid size Nx, Ny ∈ N. Values of each quantities together with
its first order normal derivatives in x- and y-direction and the first order mixed
derivative are needed, in order to interpolate at an arbitrary position between the
grid-points using the Hermite basis functions on the four neighbouring grid-points.
Due to the property of the Hermite basis functions, each interpolated quantity is
bicubic in each cell and everywhere differentiable with continuous mixed derivative
∂x∂y. In addition, it has continuous normal derivatives and C∞ tangential deriva-
tives on cell boundaries.
The interpolation itself is of fourth order accuracy. Additionally, the continuous
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first derivatives can be computed of third order accuracy. The Hermite interpolants
are especially useful due to their compact form to achieve high-order estimates,
as only the four adjacent grid-points are needed, making them well suited for fast
but accurate implementations. Other interpolation methods of similar orders using
multi-point approaches were found to be less optimal in terms of memory used over
achieved accuracy.
In the implemented framework, the mappings, vorticity and stream function are
used for Hermite interpolation. In order to compute the velocity for the advection
of the flow maps, it is sampled from the stream function being of third order accu-
racy in space. All of those variables will be represented in their respective Hermite
form, where the values are stacked together with their first order normal and cross
derivatives.

2.3.3 Advection of derivatives of the flow map using the gradient-
augmented level set method

While the advection of the map itself is straight forward using numerical integration
techniques, one has to take into account the computation of the derivatives too. This
is needed in order to represent the characteristic maps in Hermite form to be used
for the Hermite interpolation and will be done by utilising the gradient-augmented
level set (GALS) method, first presented in [14]. In this, a local stencil of sub-grid
size around the uniform grid-points is chosen and advected. Afterwards, by utilising
finite difference schemes, the map position and the derivatives are computed.

χ−

tn+1 tn

Figure 6: Local uniform stencil (left) is distorted after advecting backwards map to
previous time instant (right).

In order to efficiently solve for the first order normal and mixed derivatives, a
cross-shaped stencil proofs to be the most efficient in terms of needed points to
advect, which is the largest factor to define the computational cost. The stencil can
be increased in size to compute the quantities of higher order. A depiction of the
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stencil can be seen in figure 6. Each point is located [±i · ϵm,±i · ϵm]T away from
the grid point, where ϵm can be freely chosen. The factor i ∈ Z notes the stencil
depth and ranges from one to the stencil size. Choosing a stencil size of n, 4n points
have to be computed. With that, the quantity and all derivatives can be computed
of order 2n, as can easily be proven by insertion into the Taylor expansion. In order
to not reduce the spatial accuracy, a size of n ≥ 2 should be chosen to compute the
map advection in at least fourth order, being consistent with the fourth order of the
cubic Hermite interpolation being used.
The computation of the flow map values in Hermite form is given by

χ =
n∑
i=1

[
ci ·
(
χNE
i + χSE

i + χNW
i + χSW

i

)]
∂xχ =

n∑
i=1

[
ci
ϵmi

·
(
χNE
i + χSE

i − χNW
i − χSW

i

)]

∂yχ =
n∑
i=1

[
ci
ϵmi

·
(
χNE
i − χSE

i − χNW
i + χSW

i

)]

∂x∂yχ =
n∑
i=1

[
ci

ϵ2mi
2
·
(
χNE
i − χSE

i + χNW
i − χSW

i

)]
Here, χNEi , χSEi , χNWi , χSWi represent the stencil points in north-east, south-east,
north-west and south-west direction with their respective stencil depth. The factors
ci are the coefficients for the finite difference scheme. For n = 1, the only coefficient
is c0 = 1

4 , resulting in a 2D version of the classical second order central averaging
scheme and central differences scheme for the normal derivatives.
Further analysis on improvements made on the actual map update will be given in
section (4.2).

2.3.4 Sub-map structure and computation of vorticity

The use of the semi-group structure can not only be used to numerically discretise
the grid, but also to further structure the backwards flow map. With the enstrophy
cascade building up finer and finer scales for the vorticity for solutions to the Euler
equations ([10], p. 183), the vorticity gradients ∇ω increase exponentially too. The
flow map, being linked to the vorticity, also experiences an exponentially increasing
gradient ∇χ. This leads to strong deformation in specific parts of the computational
domain. Using the composition structure of the map would eventually result in resets
of the grid structure, leading to reduced error growth. This effect can be effectively
repeated in order to adaptively adjust the numerical resolution of the flow map. The
map acting on the total interval [0, τ ] is divided into arbitrary many sub-intervals
acting only on a relatively small time interval.
Each of these individual sub-maps can be computed and stored separately using the
system of equations (2.28).
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In order to bound the growth of error in each sub-map, a condition for remapping has
to be defined. From the mathematical definitions, three numerical error quantities
can be defined:

δinc,b(x⃗, t) = det(∇χ−(x⃗, t))− 1 (2.33)

δinc,f (x⃗, t) = det(∇χ+(x⃗, t))− 1 (2.34)

δinv(x⃗, t) = χ−(χ+((x⃗, t)), t)− x⃗ (2.35)

The first two quantities describe the numerical incompressibility error from deviating
from the incompressibility condition (2.29), while the last is the invertibility error
from the invertibility condition (2.24). The first two give a measure of accumulation
of error in each individual map and the invertibility error gives a measure for the
connectivity of the two maps.
As the velocity is computed each step utilising only the backwards map, the error
δinc,b was determined to be the most important for a remapping condition.
When the maximum incompressibility error of the current sub-map exceeds a specific
thresh-hold, it’s values are stored and a new map with the initial condition (2.26)
will be used for further evaluations. In order to reduce computations, the initial
condition from which the vorticity will be pulled back every step does not come
directly from the condition at time t = 0. Rather, each latest sub-map is used to
evolve the vorticity ω∗ on a discrete fine grid. For each step, the current vorticity
will be sampled from this quantity, which is represented in Hermite form to allow
interpolation. With τ as the initial time for a given sub-map, the vorticity at the
current time t ≥ τ is computed by

ω∗(x⃗, τ) = ω0(χ
−(x⃗, τ)) (2.36)

ω(x⃗, t) = ω∗(χ[τ,t]) (2.37)

As the pullback from time t = 0 could involve hundreds or thousands of sub-maps,
the computation of the fine vorticity in Hermite form is very expensive, especially
with increasing amount of sub-maps to compose with. It is therefore only done for
the initial condition of each sub-map. In order to resolve the fine scale structures
that arise in the vorticity profile of turbulent flow, the fine grid to be used there
should be chosen of larger size than that of the flow map or stream function.

2.3.5 Computation of Biot-Savart-Law in Fourier space

In order to advect the maps to the next time-step, an approximate of the velocity of
the flow is needed to integrate along the characteristic curves. This can be computed
using the Biot-Savart-Law from equation (2.12). By choosing the computational
domain to be the 2-flat Torus T of size [0, 2π]2, all quantities can be described by
Fourier series. This allows to benefit from spectral derivatives in order to numerically
compute equation (2.12). This drastically simplifies the computation of the inverse
Laplacian and the derivatives, as these operations are merely just scalings with the
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respective wave-numbers.
Instead of computing the velocity and using it directly, the stream function will be
computed in Hermite form. From that, the velocity can be sampled at any arbitrary
point with third order accuracy in space.
After transforming the vorticity into Fourier space with ω̂(k⃗, tn) = F(ω(x⃗, tn)), the
entries of the stream function can be computed in Fourier space via

Ψ̂(k⃗, tn) = − 1

k2x + k2y
ω̂(k⃗, tn)

∂̂xΨ(k⃗, tn) = ikxΨ̂(k⃗, tn)

∂̂yΨ(k⃗, tn) = ikyΨ̂(k⃗, tn)

∂̂x∂yΨ(k⃗, tn) = −kxkyΨ̂(k⃗, tn)

In the case of k⃗ = 0⃗ the computation of the inverse Laplacian reduces to Ψ̂(⃗0, tn) = 0.
Thereafter, the values can be re-transformed to real space. Using this approach is
not only fast, but also allows for accurate computation of the inverse Laplacian.
Especially with strong gradients present in the vorticity, a finite difference approach
would be challenging in terms of accuracy and feasibility.

Real space Fourier space

Vorticity at current time
ω(x⃗, tn) = ω∗(χ[τ,t])

Vorticity in Fourier space
ω̂(k⃗, tn) = F(ω(x⃗, tn))

Apply low-pass filter
ω̂(k⃗, tn) = 0 for |⃗k| > klp

Stream function with inverse Laplacian
Ψ̂(k⃗, tn) = − 1

k2x+k
2
y
ω̂(k⃗, tn)

Stream function in Hermite form
using spectral derivatives

Stream function in real space
ΨH(x⃗, tn) = F−1(Ψ̂H(k⃗, tn))

Figure 7: Flow-chart for the computation of the stream function in Hermite form
within the final framework.

Another benefit of the use of computations in Fourier space is, that filters on
the frequency can be easily applied. Especially low-pass filters are often used in
resource-heavy fluid simulations in order to stabilise the solution. Possible filters
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can and were implemented directly in the computation of the Biot-Savart law, which
will be further explained later in the section (4.4.2). A flow-chart depicting how the
stream function in Hermite form is computed from the vorticity and current sub-map
can be found in the following figure 7.

2.3.6 Overview over the complete framework

All steps discussed in the previous sections together form the key framework in order
to compute solutions to the 2D incompressible Euler equations using the character-
istic mapping method. As several mathematical and numerical concepts have been
explained, this section is dedicated to connecting everything together and forming
a broad overview. All major building blocks and there connection and data depen-
dency are depicted in the flow-chart in figure 8.

tn = tn +∆t
until tn = T

Initialisation

Map advection
χ− at time tn

Incompressibility check
δinc = |det(∇χB)− 1|∞

Evaluate stream hermite
Ψ, ω and u⃗ at time tn

Particle advection
x⃗p and u⃗p at time tn

Possibility to save variables
or compute conservation and zooms

Reinitialise
sub-map

Figure 8: Flow-chart for the advancement of the complete framework.

A computation starts with an initialisation step. There the first sub-map is
initialised as the identity map in Hermite form on the coarse grid. Thereafter the
vorticity as the initial condition of this sub-map is sampled from a given analytical
or discrete initial condition in Hermite form on a fine grid together with the stream
function in Hermite form on the psi grid.
With that the actual simulation loop can start, where at first the flow map is ad-
vected. This is done by using the GALS-method where foot-points are advected by
the velocity being interpolated as the derivative of the stream function. Using finite-
differences the map is updated in Hermite form at the current time tn. With the
incompressibility condition the sub-map is tested if it exceeds a given thresh-hold.
If that is the case a new sub-map will be initialised together with the vorticity as
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the initial condition and is used from here on.
After that, the stream function is evaluated in Hermite form at the current time,
which is also used for the advection of point particles embedded in the flow. At
last, the variables can be saved or further quantities as the energy, enstrophy and
palinstrophy computed.
This loop is repeated until the final time is reached. It is important to note that ∆t
as the time-step is not fixed but could be set arbitrarily in order to reach specific
time targets within the simulation span.
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3 Computational framework

As all numerical frameworks have to be eventually discretised and solved in many
small cells or parts, the computing power is a key factor to limit the feasibility of
large-scale computations. Therefore, not only is a mathematically and numerically
efficient implementation of a physical problem important, but it has to be adapted
in order to run well on modern processing units too. This comes with adapting it
to the current world of central processing units (CPU) and memory management.
A famous observation describing the growth of the computing power is the so-called
“Moore’s law”, stating that the amount of transistors in integrated circuits double
every approximately two years. As CPUs largely consist of those transistors, this can
be seen as a limiting factor to the growth of computing power too. However, impor-
tant problems of fluid dynamics and turbulence expect resources far beyond current
standards for full direct numerical simulations (DNS). This is due to the fact, that
3D-turbulent simulations require a computation scaling with Re3. It is estimated
that DNS computations of a full aircraft at a Reynolds number of Re = 107 will not
be achieved in the next 50 years with current growth of computational power. Also
for solutions of the Euler equations this becomes a challenge, as the needed grid-size
goes to infinity, so the highest resolution possible is pursued in order to minimise
numerical approximation.
One huge step in the advancement of solving numerical equations is to increase the
amount of computing cores to effectively solve the equations. For calculations with
CPUs, this often means dividing a domain into smaller sub-domains, each individ-
ually solved by one core with memory exchange at the boundaries. However, the
developed equations in the presented framework can benefit from more optimisation.
In fact, three major aspects have to be computed during a time-step for the CM-
method, being the Hermite interpolation, numerical advection of the flow map and
Fourier transformations to compute the stream function. Luckily, all of those com-
putations do not require many interactions between neighbouring cells to compute
further quantities. This largely comes due to the fact, that the system of equations
is governed by a transport equation as the central part, where each fluid particle can
be individually advected. This stands in contrast to viscous flow, where movement
is dependent on the density between neighbouring fluid particles.
Due to this largely independent character of the computational building blocks, the
computing power of graphical processing units (GPUs) can be harnessed, where
each computational core acts largely independent. In fact, the whole framework has
been implemented to be solved entirely on GPUs. This was firstly done by Badal
Yadav in the scope of his master thesis [19] in Montreal, Canada. The code was
subsequently refined by Thibault Oujia and later Nicolas Saber in his master thesis
[15] at Marseille, France.
In the scope of this work, the code received a complete major overhaul, aiming to im-
prove the readability and transitioning it to more modern programming techniques.
This chapter of the thesis aims to introduce important programming aspects when
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dealing with GPU applications, mainly the Cuda framework. The introduction is
in accordance with the current official programming guide, which can be found in
[9]. In addition, a broad overview of major novel features regarding the code will be
given to document the work done.

3.1 Introduction to Cuda

Cuda stands for “Compute Unified Device Architecture”. With hardware drivers
and an API to extend the programming language “C++”, it gives a toolkit to en-
able the utilisation of GPUs in order to solve computational tasks efficiently. As
those GPUs offer much higher instruction throughput and memory bandwidth than
a CPU, this can lead to significant improvements in computation speed. Neverthe-
less, GPUs are designed fundamentally different, so implementing a task has to focus
on other aspects. The biggest design difference is the execution strategy of several
instruction sets. While the CPU commonly computes everything in sequence and
synchronous, the GPU is designed to run thousands of different executions at once
in parallel without any given order.

Figure 9: Different core structures between CPU and GPU hardware, [9]

As memory in CPU applications is mainly generously available due to the com-
putation being the bottleneck of instruction speed, one usually does not have to
pay attention to the transfer of data in computational tasks. However, for graphical
processing units this is not the case and specific care has to be taken on the mem-
ory latency of presenting data to the cores for computation. This is also depicted
in figure 9. While CPU cores usually feature their own caches and control units,
individual cores of a GPU share local caches and control units.
In order to form a universal approach, CUDA introduces a general purpose program-
ming model to maximise the usage of GPUs while making it possible to optimise
the memory management in detail. This model aims to logically redefine executions
on GPUs similar to CPU instructions, to greatly simplify the usage. The biggest
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being the introduction of so-called “Kernels”. These kernels logically share great re-
semblance to normal programming functions, being composed of an in- and output.
However, by definition they are functions being executed numerous times in parallel
by different threads. While logically showing great resemblance, kernels introduce
further new terms and specific ways to be executed. These will be presented in the
following sections.

3.2 Structure of Cuda-kernel execution

All kernel executions are meant to be executed on a logical grid, which can be 1-, 2-
or 3-dimensional. The given grid is divided into two subdivisions, being a block and
thread, shown in figure 10. While a thread resembles the smallest structure and can
be compared to a node on a grid of a computational domain, a block aims to bundle
up several computations with logical cross-access to optimise parallel data transfer.
Each thread can be individually identified by given block- and thread-ids, however,
the order in which they are executed is not known beforehand. They are therefore
completely independent of each other. Sharing data is realised on block-level. Blocks
are computed individually by Streaming Multiprocessors (SMs). Those SMs can be
logically roughly compared to CPU cores, where all blocks are computed indepen-
dently from each other. A task can therefore easily be scaled dependent on the avail-
ability of SMs in the hardware.

Figure 10: Subdivision of a grid in blocks
and threads, [9]

The execution of a block is managed
in a unique architecture called SIMT
(Single-Instruction, Multiple-Thread).
Several instructions are pipe-lined to
leverage instruction-level parallelism
within a single thread. Group of 32 con-
current threads form a warp, which are
created, managed, scheduled and exe-
cuted together. The term warp itself
originates from weaving, the first par-
allel thread technology. They start at
the same program address and only one
common instruction is executed at a
time. Due to this, full efficiency is only
realised when all individual thread in-
struction counter addresses point to the
same location. However, different code
execution is still possible, with all other

threads being disabled in the meantime. Due to the low occupancy, code with
different paths within a warp are not recommended and can drastically effect the
performance.
For example it is very common in numerical simulations to deal with boundary
conditions depending on the position on the computational domain. However, this
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could mean for a kernel implementation, that all threads within a warp have to wait
for the threads located at the boundary to finish computing the boundary condition.
Dependent on the code structure this can quickly lead to diverged instruction paths.
Special care should therefore be taken in order to avoid path divergence within a
Cuda kernel.

__global__ void diverging_periodic_derivative(double* x, double* dx, int N)
{

int t_id = blockDim.x * blockIdx.x + threadIdx.x; // id of current thread
if (t_id == 0) { // case for left boundary

dx[0] = (x_in[1] - x_in[N-1]) / 2.0;
}
else if (int_id == N-1) { // case for right boundary

dx[N-1] = (x_in[0] - x_in[N-2]) / 2.0;
}
else { // case inside domain

dx[t_id] = (x_in[t_id+1] - x_in[t_id-1]) / 2.0;
}

}
__global__ void conforming_periodic_derivative(double* x, double* dx, int N) {

int t_id = blockDim.x * blockIdx.x + threadIdx.x; // id of current thread
// cases are connected by warping indices at borders back inside the domain
dx[t_id] = (x_in[t_id+1 - N*(t_id==N)] - x_in[t_id-1+N*(t_id==0)]) / 2.0;

}

Code example 1: Two functioning Cuda Kernels to solve a numerical central dif-
ference scheme with periodic boundary conditions in a warp-divergent (top) and
non-divergent way (bottom).

The previous code example 1 shows two kernel functions in order to compute a
numerical derivative for an input vector of size N . While the first kernel takes
special care to formulate the boundary conditions, this is only executed by one
warp at a time with all the other warps waiting. The second kernel directly takes
the boundary conditions into account by projecting the indices of boundary cells
back into the domain with the help of a logical statement, wich for other parts
of the domain reduces to zero. While for usual computations this would lead to
unnecessary computations, it actually prevents a kernel execution from diverging
paths.

3.3 Memory of GPU devices

Due to the high amount of processing cores inside of GPUs, the individual data
cache per thread is small compared to CPU caches and threads cannot access each
others private local memory. However, threads are connected in blocks, which have
shared memory visible for all threads within the block. All threads from all blocks
can access the same global memory. This leads to a three-level data hierarchy, which
is also shown in figure 11. In addition, there exist two additional read-only memory
spaces available by all threads, which is the constant and texture memory space.
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Figure 11: Main memory access of the dif-
ferent subdivisions, [9]

Similar to CPU architecture, the data
transfer is faster, the closer the data is
located to the core with the fastest being
the local memory. This is the memory
which is being passed by value as the
input or created inside a function. It is
only visible to the current thread and
cannot be exchanged with neighbouring
threads.
The second memory available is the
shared memory. It gives rise to the pos-
sibility for inter-block communication of
data and has to be defined and loaded
for each kernel execution individually.
It is especially useful if several threads
load or save similar data at different po-
sitions, so that the data only has to be
loaded once. For newer Cuda architec-
tures with compute capabilities 6.x and
upwards it resides in the same memory
as the local memory cache, where the

individual capacity has to be divided for those two memories. The developing and
testing setup used in this work featured a Cuda architecture with compute capability
5.0. There, the shared memory has it’s own fixed cache. This gives large differences
in computation between those two architectures, as the local cache is one limiting
factor of the current computations.
The third memory is the global memory. All kernel launches can access the same
data residing in the global memory, which is loaded and stored into the local cache
in order to modify data. This loading and storing process is especially costly. In
addition, different threads cannot assign data to the same global address simulta-
neously. A function violating this behaviour can be found in the preceding kernel
function:

__global__ void conflict_energy_sum(double& E, double* vel, int N) {
int t_id = blockDim.x * blockIdx.x + threadIdx.x; // id of current thread
// E is reference to global memory leading to unexpected behaviour
E += 0.25 * vel[t_id] * vel[t_id] / (double)N / (double)N;

}

Code example 2: A Cuda Kernels trying to compute the Energy from the velocity
leading to memory conflicts.

Each thread in a warp first loads the value for E, then evaluates the assignment and
later tries to assign the value to E. However, during this process another thread
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could have already assigned a value to E, which is now overwritten. This prob-
lem can be circumvented in this case with atomic-functions, practically combining
all steps from loading to saving into one instruction. The example illustrates the
challenge of global memory handling within Cuda Kernels. The sample applies for
shared memory as well, where each warp still individually deals with the instruction
set of a function. All warps have to be synchronised in case any loading or storing
has to be done by another thread not inside the same warp.
Constant memory has loading time comparably to global memory, however, it’s value
is always broadcasted to all threads inside a warp, making it optimal if all warps try
to access the same data at the same position. For the use inside kernels it is optimal
for constants, which do not change over the course of the kernel execution. This is
often the case for numerical applications, as there are often many constant factors
for numerical schemes involved.
The texture cache is optimised for memory reads with two-dimensional data, with
higher read performance for data being located closely to each other in both dimen-
sions.

3.4 Work on the code

Many kernels in the code have been optimised in the scope of this work. In fact,
almost every line present was adapted to be more readable, accessible or accurate.
The initial structure of the code was clearly written in a C-style behaviour. In the
50 years since the programming language C was first introduced in 1972 however, a
lot has changed. While the reworked code still misses a lot of C++ like style, a lot
of effort was invested into making the code more broad and to transition it to more
objective-oriented programming procedures.
The code in the state of summer 2021 featured already a fully working implemen-
tation of the characteristic mapping method to solve the 2D incompressible Euler
equations. However, large parts of it were uncommented, making the way in which
it worked unclear. Also, usage for more refined simulations was complicated and dif-
ferent settings and parameters scattered along the whole structure. In the process
to transition it to a version being usable by more people, the structure was reworked
and widely commented. Repeated code with little to no modification, which is also
called boilerplate code, was merged and old and redundant functions were removed.
During this process the memory usage by temporary variables in the GPU global
memory was reduced to 1/6th of its initial size. While before the GPU-memory
available imposed major limits to the computations, it now makes up less of a bot-
tleneck in comparison to the CPU RAM memory to store the individual sub-maps
and the overall memory to save processed data.
The structure of the code-files was reworked and clustered into numerical-related,
CMM-simulation-related and file and user related scripts. Together with a more clear
and flexible compilation and assembly of the machine code, the overall file structure
of the framework was improved significantly. The same applies to the in- and output
of simulations. All settings have been coalesced into a settings-file, where they can
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be easily altered and have a more detailed description available. Each simulation run
can receive input on command-line execution, enabling automated scripting of larger
batch-runs. In addition, each simulation can read in settings from a parameter-file
and outputs it’s setting to a parameter file, giving more transparency on the actual
values being set also for later understanding. For the output, the frequency and
variables to be saved can be easily altered inside of the parameters, enabling very
detailed precision for wanted quantities without unnecessarily filling up the machine
hard drive storage. Computations of individual zooms, samples at specific grid-sizes
and particle computations can be easily en- or disabled and is stored in a reasonable
file structure. Each computation also keeps track of the timing, incompressibility
error and other quantities during the run and outputs them to the console if re-
quested.
Overall, the structure of the code was changed from a purely single-user prototype
to a code, that can be used and executed by several users without major knowledge
of the code itself. It is also currently in the final stages of being made open-source
on the platform GitHub. While science often features individual researchers advanc-
ing in previously unknown ideas, requiring often prototype code to be written, this
is often hard to deal and exchange with into larger communities of other research
groups. The rework of the code was made in order to be accessible by further sci-
entists to come, even if it is just parts of the code to be reused.
However, also the current situation of the code still represents a work in progress.
The biggest being a possible extension to three-dimensions. While this does not
come with major numerical challenges, it does need some rethinking and reworking
of the data structure in order to be implemented efficiently. Some other enhance-
ments could be saving the data in HDF5-format, which represents a more modern
and compact way to save the created data, or rethinking the velocity interpolation.
Also, currently all different kernels are working synchronous, in order to benefit from
several GPUs or to optimise data and computation handling at the same time, these
have to be reworked to fit those needs.
Another big challenge is a data-efficient implementation of the Hermite interpola-
tion. Currently, the loading of the data to be implemented from global memory is
not optimised, leading to filled up data caches. This introduces major constrain on
the speed of computation, with the data transfer rate becoming the major bottleneck
in comparison to the computational speed. However, as the data read especially for
map values being advected during the GALS-step is largely unpredictable for tur-
bulent velocity fields, a more optimised and Cuda-like implementation was not yet
achieved and could improve the computation times drastically.
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4 Improved methods and convergence validation

After having presented the mathematical, numerical and computational backbone of
the characteristic mapping method, further refined details in the scope of this work
are presented in this chapter. Here, a strong focus on fine-tuning numerical param-
eters or methods is given. This aims to maximise the quality of produced results.
First of all, various time-stepping schemes with different orders of convergence are
introduced. The map update step for the GALS framework is presented in more
detail and higher order finite differences schemes are introduced and their proper-
ties investigated. Next the actual orders of convergence of the code are validated in
time and space, to confirm the theoretical properties of the method. At last in this
chapter, the importance of minor settings for the method is discussed in order to
assess their behaviour on improving the results or stabilising the simulation. This
should aim to quantify the influence of changing different hyperparameters.

4.1 Addition of higher order time-stepping schemes for the GALS
advection

The initial code developed by Badal Yadav in [19] featured a second order Adam-
Bashford scheme to advect the characteristic flow map each time step. However,
it was found that this implementation was not only disadvantageous in terms of
accuracy, with a third order implementation being preferred to go along the third
order Hermite implementation in space, but also featured a fixed point iteration,
which imposed large computational costs.
Already in the work of Nicolas Saber in [15] , a third order Runge-Kutta method
was presented and implemented, but not yet sufficiently validated. In the work of
this thesis, more time-stepping schemes with different order of convergence and op-
timisation were introduced and will be presented in the following sections. Later,
in section (4.3), those schemes will be validated. The schemes chosen are all in the
nature of Runge-Kutta methods, being composed of one or several intermediate es-
timations and can be represented in so-called Butcher tables. The presented tables
for the methods are taken or derived from [4].
Special caution has to be taken when reading the Butcher tables, as the backwards
flow map operates backwards in time. A depiction of that can also be found in figure
4.

4.1.1 Lagrange interpolation of the velocity

The characteristic map is advected by the velocity of the flow, which is only given at
the current time tn. However, in all computations of the backwards map, the velocity
is needed at least at time tn+1 and possibly further intermediate times too, where
the velocity is not available. To overcome this issue, previous values of the velocity
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are saved and values for upcoming time instants are extrapolated by using Lagrange
polynomials. Using more previously computed velocity values increases the order
of the Lagrange polynomials and therefore also the order of the extrapolation. The
polynomials are constructed by

Li(t) =
l∏

k=0
k ̸=i

(
t− tk
ti − tk

)
with i ∈ Z , i ∈ [0, l] (4.1)

where l is the order of the Lagrange interpolation and Li is the resulting weighting
factor. The velocity at any time t can then be inter- or extrapolated with

ũ(xn, t) =
l−1∑
i=0

(
Li(t) · u(xn, tn−i)

)
(4.2)

Due to the flexible implementation, the time instants of the Lagrange polynomials
can be chosen arbitrarily. As a consequence, the length of a time-step is not fixed by
the polynomials and can be altered during the simulation.

t0

t

O(Δt)

O(Δt2)

O(Δt3)

O(Δt3) O(Δt3) O(Δt3) O(Δt3)

O(Δt3)

O(Δt2)

Figure 12: Initialisation of the velocity by
computing with increasing orders of La-
grange interpolation for a third order sim-
ulation.

With this, modern approaches like
Runge-Kutta-Fehlberg methods or com-
puting at specific time instants can be
implemented. However, if the time-step
is increased too largely, the Lagrange
polynomials cannot extrapolate the ve-
locity well. Usually, Lagrange interpo-
lation can show oscillations quickly, as
a finite amount of polynomials cannot
interpolate exponential behaviour well.
However, this issue was not observed
with a maximum of fourth order inter-
polation used.
As the intermediate velocity is a super-
position of velocities satisfying the in-
compressibility condition (2.3) , the in-
termediate velocity therefore is also di-

vergence free:

∇ · ũ(xn, t) =
∑
i

(
Li(t) · ∇u(xn, tn−i)

)
= 0 (4.3)

At the beginning of the simulation the values for previous velocities are not given.
In order to use the interpolation from the first step on-wards, these values have to
be initialised. An easy idea to initialise those values would be to compute a few
steps backwards in time with a first order method, where no interpolation is needed.
However, a more sophisticated way was chosen, as initialisation errors are easily
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propagated but only account for a small fraction of the computation time for long
simulations.
First of all one first order step is computed to advect the map and the velocity is
computed at that time-step. Afterwards the map is reinitialised and the direction
of computation inverted. Now, the velocity at time t0 and the first order estima-
tion for the previous time-step is available and can be used with a second order
time-stepping method. With that two steps are computed to compute the map ad-
vection and velocity and afterwards the map is again reinitialised and the direction
of computation inverted. This procedure can be continued, until all needed previous
velocities have been computed with a time-stepping method of the requested order
for the computation. An illustration for this can be found in figure 12. Here, the
computation is always started from time t0 (in black) to compute new time-steps (in
blue). With increasing order of the time-stepping methods more previous values are
needed, given in green. When all previous velocities were computed with a method
of the desired convergence order, the simulation can start.

4.1.2 Presentation of different classical schemes of first to fourth order

Here, all the new time-stepping schemes are presented with their respective Butcher
tables. In total, six Runge-Kutta methods are now present in the framework, where
the explicit Euler and the third order classical Runge-Kutta method were taken over
from previous work.
In order to advance the flow map to the next time-step, the characteristics have to
be advected to the next time steps in equations (2.31) and (2.32). This will be done
by the Runge-Kutta methods with intermediate time-steps kj :

χ[t,t+δt] = x⃗+∆t
∑
j

bjk
+
j (4.4)

χ[t+δt,t] = x⃗−∆t
∑
j

bjk
−
j (4.5)

Dependent on the evaluation of the forward or backwards map, the computation
directions changes as well. The amount of estimations j ∈ Z, j ∈ [1, n] is dependent
on the convergence order n of the method. The factors amj , bj and cj can be
extracted from the Butcher table. Further explanation can be found in [15] or [4].
Each intermediate evaluation is computed by

k+j = u⃗(x⃗+∆t

j−1∑
m=1

ajmkm, t+ cj∆t) (4.6)

k−j = u⃗(x⃗−∆t

j−1∑
m=1

ajmkm, t+∆t(1− cj)) (4.7)

The already included first order implementation constitutes to the Euler explicit
method (EulerExp). It’s Butcher table is fairly simple ([4] p.185):
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0

1

It only consists of updating the map position using the current position. Since
only one function evaluation is done, no intermediate steps actually have to be
constructed.
The second order method was chosen as the Heuns method and uses the second
order stencil from ([4] p.185) with c2 = 1 for the second step. The Butcher table for
this method is:

0
1 1

1/2 1/2

Due to the equal averaging applied in the final evaluation, it is also known as the
explicit trapezoidal rule.
For the third order method, a classical third order implementation was chosen (RK3).
This constitutes to the general third order case I from ([4] p.186) with c2 = 1/2 and
c3 = 1. It has been already introduced in the work of [15] and is included here for
completeness.

0
1/2 1/2
1 -1 2

1/6 2/3 1/6

The scheme chosen for the fourth order implementation is also very well known and
widely applied to different applications, due to its simplicity. It is the classical fourth
order Runge-Kutta method (RK4), which is given in ([4] p.194) as the Case V with
b3 = 1/3. The Butcher table for this method is:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

While an implementation of third order was favoured for the framework, the fourth
order implementations where straight forward in their implementation and can help
to assess the quality of a third order implementation.

4.1.3 Remark on the computational complexity and construction of more
optimised third and fourth order schemes

When computing the velocity for the Runge-Kutta methods, they have to be inter-
polated in space with the Hermite interpolation in order to be located at the right
positions. While each interpolation should feature one estimation of the velocity for
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each spatial dimension, this has to be done several times in the Lagrange interpola-
tion. In fact, a Lagrange interpolation of order l means, that l velocities have to be
interpolated, effectively heavily increasing the computational cost with increasing
order of interpolation.
In order to deal with this, higher order Runge-Kutta methods can be chosen with
more optimal time-stepping instants chosen. If they coincide with times at which
the previous value is available, no interpolation has to be done. However, while this
reduces the computational cost, it also reduces the accuracy of the Runge-Kutta
methods, as evaluations further away reduce the accuracy at which the time evolu-
tion of the velocity is predicted by the intermediate evaluations. However, as they
still contain the same order of convergence, an implementation might be favourable
and the efficiency will be further investigated after the convergence validation in
section (4.3.3).
For both the third and fourth order method a different Butcher table was chosen.
As the forward and backwards flow map point into different directions, the imple-
mentation for both differs. The third order method with the general case I from ([4]
p.186) can be chosen with different time instants outside of the integration interval
[tn, tn+1], making it optimal to minimise the amount of Lagrange interpolations For
the backwards flow map the coefficients c2 = 1 and c3 = 2 were chosen, giving rise
to the Butcher table (RK3Mod):

0
1 1
2 4 -2

5/12 2/3 -1/12

The time instants c2 = 1 and c3 = 2 constitute for tn and tn−1, where the velocity
value is available. Therefore, only for the first evaluation at tn+1 a Lagrange inter-
polation has to be done. This reduces the amount of Lagrange interpolation needed
from two to one.
For the forward flow map c2 = −1 and c3 = −2 were chosen:

0
-1 -1
-2 -8/5 -2/5

23/12 -4/3 5/12

With the velocity at times tn, tn−1 and tn−2 all available, no Lagrange interpolation
has to be done.
For the fourth order method all available cases have time instants in the interval
[tn, tn+1]. The only way to reduce the amount of Lagrange interpolations is therefore
to choose methods with as many evaluations as possible at time tn. Luckily, there
exist methods with two evaluations at that time which can be used for the backwards
and forward flow map, which are case IV with b4 = 1/4 for the backwards flow map
(left) and case III with b3 = 1/6 for the forward flow map (right) from ([4] p.193)
(RK4Mod):
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0
1 1
1/2 3/8 1/8
1 0 -1/3 4/3

1/6 -1/12 2/3 1/4

0
1/2 1/2
0 -1/2 1/2
1 -3/2 3/2 1

0 2/3 1/6 1/6

The coefficient b was chosen arbitrarily to vanish one term. For both the forward and
backwards flow map computations, one Lagrange interpolation is saved, resulting in
three less Hermite interpolations of the velocity.

Abbreviation Lagrange Hermite Lagrange Hermite
of interpolations interpolations interpolations interpolations

Method backwards backwards forward forward

EulerExp 1 2l 0 2
Heun 1 2l + 2 1 2l + 2
RK3 2 4l + 2 2 4l + 2

RK3Mod 1 2l + 4 0 6
RK4 3 6l + 2 3 6l + 2

RK4Mod 2 4l + 4 2 4l + 4

Table 1: Amount of Lagrange interpolations and Hermite interpolations of velocity
values for each time-stepping method.

As can be excerpted from table 1, the two different third order Runge-Kutta
methods with Lagrange interpolation in respective order need different amounts of
interpolation. For the backwards map, 14 Hermite interpolations are needed for RK3
and 10 for the modified version RK3Mod, reducing the computational complexity
by 28.5%. For the forward map it is even more extreme with still 14 interpolations
for RK3 and only 6 Hermite interpolation for RK3Mod, reducing the computational
complexity by 57.1%. For the fourth order Runge-Kutte methodes, the amount of
Hermite interpolations reduces from 26 for RK4 to 20 for RK4Mod, needing 23%
less evaluations.

4.2 Increased update order of the flow map update step

As the map is stored in bi-cubic Hermite form, the x-, y- and cross-derivative have
to be updated in each step as well. For this the GALS framework is used, where
foot-points close to the grid-points are chosen, advected and used to compute all
new quantities, as it was already presented in section (2.3.3). The computation of
the quantities are afterwards done by finite difference.
While previously only a second order stencil was implemented, this was updated to
be able to choose a fourth and sixth order stencil too. Already for fourth order the
error should be in the same order as the cubic Hermite interpolation, however, the
sixth order was chosen to be implemented to check this expected behaviour.
The different stencil coefficients were computed by solving for the coefficients in
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the Taylor expansion. The coefficients them-self were computed numerically solving
the system of linear equations.This also enabled to easily check other stencils too.
However, the cross-shaped stencils proofs to be the most efficient in terms of points
needed per order.
The coefficients which have been computed for second, fourth and sixth order can
be found in the following table.

Order c1 c2 c3
2nd 1

4

4th 1
3 − 1

12

6th 3
8 − 3

20
1
40

Table 2: Coefficient of different orders for the map update finite difference stencils.

Following, several simulations have been done with different stencil distances
ϵm for second, fourth and sixth order stencils. All other simulation parameters
were taken similar to the tests from section (4.3). During the simulations, the
incompressibility error from equation (2.33) and enstrophy conservation error to
the initial enstrophy from equation (4.12) where monitored in order to assess the
properties of each implementation.
As it can be seen in figure (13), the previously used second order stencil is not able
to compute the Hermite form of the flow map well. Not only does it randomly
oscillate for small ϵm, but also has increasing incompressibility error for larger ϵm.
An optimum for the incompressibility error can be seen at at around ϵm = 5 · 10−5.
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Figure 13: Incompressibility error (left) and Enstrophy conservation error in L2-
norm over time for different map epsilon ϵm with a second order map update stencil.

The right image of figure 13 shows the enstrophy conservation error to the initial
enstrophy. While this error converges for smaller ϵm, a saturation is only reached
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for values with oscillations for the incompressibility error. Overall, the second order
stencil for the map update is not fit for the framework.
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Figure 14: Incompressibility error (left) and Enstrophy conservation error in L2-
norm over time for different map epsilon ϵm with a fourth order map update stencil.
Curves for low ϵm-values are overlapping for the conservation of enstrophy.

The fourth order stencil achieves more accurate result. With higher stencil dis-
tance, the incompressibility error is lowered and finally saturates almost completely
for ϵm = 10−3. Even higher stencil distances diverge completely, which hints on the
stability of the method. After longer time, all computations with different ϵm even-
tually cap at the same value. Eventually, the introduced error of the high frequencies
of the velocity field takes over and dominates the growth of the incompressibility
error. Different simulations showed, that this error is neither dependent on the time-
stepping scheme, nor the step-size or the grid-size of the stream function to represent
the velocity. It does correlate however with the growth of palinstrophy, which are
strongly tied to the map gradients. A look at the conservation of enstrophy shows,
that all different simulations cap, meaning that the influence of the map update step
is negligible to the flow map computation and the fourth order stencil indeed im-
proves the simulation. An optimal value was found around 1-5 · 10−3. Surprisingly,
this coincides with the final value used in [22]. There, an error estimate was given
by the formula

Em ≈ ϵ4m + δm

3∑
i=0

(
∆xiϵ−im

)
(4.8)

Where Em is the L∞-error being introduced by the map update step and δm ≈
2.22 · 10−16 is the machine precision, computed in [15]. However, when using this
formula, an optimum of 3 · 10−4 for ∆t = 1/1024 should be given, which could not
be confirmed by the simulations using our framework.
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The sixth order results, depicted in figure 15, do not show any major improvements
over the fourth order stencil with only more improvements in stabilisation for higher
ϵm. For the computation, four additional points have to be advected in comparison to
the fourth order method. As is noticeably more costly, a usage is not recommended.
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Figure 15: Incompressibility error (left) and Enstrophy conservation error in L2-
norm over time for different map epsilon ϵm with a sixth order map update stencil.
Curves for low ϵm-values are again overlapping for the conservation of enstrophy.

4.3 Validation of convergence order in space and time

After all parts of the framework have been presented, their capabilities have to be
validated to ensure, that the stated convergence properties are achieved. All con-
vergence tests here have been done similar to [21] in order to compare the results
with each other. Simulations have been done to verify an unchanged convergence
behaviour in space, validate the convergence properties of the different time-stepping
methods and to reconfirm the influence of different orders of Lagrange interpolation.

Name Value Name Value

Ncoarse 1024 Nfine 1024
Nψ 2048 Nω 1024
hfluid 1/512
ϵm 10−3 Initial condition 4-mode-flow

Fluid time scheme RK3 Map update stencil 4th order

Table 3: Settings for reference simulation, similar to [21].

In the preceding table 3, all important parameters for the reference simulations
can be retrieved. No low-pass filter was implemented for the computations. The
computed map underwent no remapping during the whole simulation time-span in
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order to capture the error completely. All simulations are run until a final time of
t = 1.
The error of four quantities were computed to validate the convergence order. Those
are the flow map and vorticity error in L∞-norm and the Energy and Enstrophy
conservation error in L2-norm. All the errors were evaluated by sampling the map
on a uniform 20482-grid and computing the vorticity and velocity respectively on
this map.

Map error = ||χref (·, tn)− χ(·, tn)||∞ (4.9)

Vorticity error = ||ωref (·, tn)− ω(·, tn)||∞ (4.10)

Energy error = ||ω(·, tn)2||2 − ||ω(·, t0)2||2 (4.11)

Enstrophy error = ||u⃗(·, tn)2||2 − ||u⃗(·, t0)2||2 (4.12)

According to [21], an error bound for the characteristic map is given by

Ẽn = O
(
∆x2min(∆t,∆x2∆t−1) + ∆ts +∆tp

)
(4.13)

Here s and p are the orders of the s-stage Runge-Kutta scheme and the used order
of Lagrange interpolation for the velocity respectively.

4.3.1 Convergence order in space

As no feature concerning the spatial resolution changed in regards to the imple-
mentation of [21], the convergence order in space should remain unchanged. How-
ever, as the complete code of the framework around it was reworked, it is impor-
tant to validate this property once more. Due to the bicubic Hermite interpo-
lation used, errors of order O(∆x3) are expected, which comes from the veloc-
ity to advect the map using the GALS framework. The velocity is sampled as
the derivative of the stream function in Hermite form and is therefore present
in third order accuracy in space. Simulations were run with different grid-size
∆x ∈ {1/32, 1/64, 1/128, 1/256, 1/512, 1/1024} with the computation of the small-
est grid-size used as reference.
All four quantities show the expected third order behaviour, as can be concluded
from figure 16, therefore validating the spatial implementation.
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Figure 16: Convergence errors in space with a theoretical perfect third order con-
vergence as reference.

4.3.2 Convergence order in time

With the introduction of new time-stepping schemes, the convergence behaviour
in time was made largely flexible. However, as no new method to discretise or
solve the flow map in time was used, the overall error estimates were not changed
in regards to [21]. According to them, the estimate is directly dependent of the
Runge-Kutta scheme and order of Lagrange polynomials being used. Due to there
being six different schemes available, a majority of the graphs can be found in the
appendix. For illustration, the error estimates will be shown here for the classical
third order Runge-Kutta scheme with second and third order Lagrange polynomials
to match the reference paper. Detailed convergence validation can be found in the
appendix in section (9.1) and (9.2). For each method, simulations were run with
∆t ∈ {1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512}, where the computation with low-
est time-step was used as reference to compute the map and vorticity error.
The achieved results show the exact same behaviour as in [21]. While the conserva-
tion of energy and the error for the backwards flow map and vorticity are consistent
with the minimum of the order of Lagrange interpolation and order of Runge-Kutta
scheme, the Enstrophy only depends on the time-stepping scheme.
In terms of error quantity, the current framework achieve better vorticity error and
worse conservation of energy. This, however, could be originating from the defi-
nition of the computation of those quantities, as the exact method of computing
those quantities in the reference is not clear. The energy in the current framework
is computed directly from the velocity, being the derivatives of the stream function.
However, one could also sample it from the present stream function in Hermite form.
The same applies for the vorticity, which in this case was sampled directly using the
map from the initial condition, making it more precise than sampling it from the fine
vorticity initial condition of the sub-map. As all quantities are of roughly the same
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Figure 17: Convergence errors in time with second order (left) and third order (right)
Lagrange interpolation and third order classical Runge-Kutta scheme.

order with maximum values ranging between 5 · 100 and 3 · 101, it is reasonable that
all error quantities for a fully third order implementation are close to one another.
However, as can be seen in the appendix, this is only the case for this specific setup.
Nevertheless, the implemented schemes and methods work as intended.

4.3.3 Evaluation of efficiency for different time-stepping methods

After evaluation of the accuracy of the time-stepping methods together with the
convergence in time, a remark will be given for the efficiency of the methods. Us-
ing the results from the convergence validation, the timings can be compared and
possible stochastic effects between different simulations mitigated by averaging the
timings. The variance can be used in order to quantify these effects.

σt =

√∑
hi

(t̃C,hi − t̃C,mean)2 ·
hi∑
hi

(4.14)

Here t̃C,hi =
tC
hi

is the average computational time per step of one specific compu-

tation and t̃C,mean =
∑
tC∑
hi

is the total average time per step of all computations
for one specific method. The second factor weights each computation dependent on
their contribution to the total steps computed. The measurements were taken on a
machine featuring an Intel(R) Core(TM) i7-4710HQ CPU @ 2.50GHz with 8 logical
CPUs and 16GB of RAM, paired with a NVIDIA GeForce 845M with 2GB of video
memory (VRAM).
A low relative variance in comparison to the relative timings indicates, that the
stochastic effects can be mitigated and the results of the different sets of simulations
be compared against each other. The average computation time per step for each
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time-stepping method is shown in table 4 together with the relative variance and
relative timings in comparison to the first order Euler explicit method.

Name EulerExp Heun RK3 RK3 Mod RK4 RK4 Mod

t̃C,mean [s] 0.38 0.557 0.909 0.797 1.713 1.394
σt/t̃C,mean 0.001 0.006 0.022 0.021 0.02 0.026
t̃C,mean,rel 1 1.463 2.39 2.095 4.5 3.66

Table 4: Time per step, variance and relative time to EulerExp for computations
with different time-stepping methods.

The low relative variances in the percentage range indicate that the stochastic
effects being present for each set of computations can be mitigated. This is suffi-
cient to compare the results between the different time-stepping methods against
each other. The needed computation time is increasing with increasing convergence
order, with especially the third and fourth order method having noticeably more
computational effort. This comes from the increased amount of Hermite interpola-
tions needed, as explained in the previous section.
By plotting the achieved computation time over the achieved convergence error, the
efficiency of the methods can be illustrated, where lower error and timing results to
a more efficient method. The plots for all different errors defined in section (4.3) is
found in figure 18. It can be easily seen how the first order method is not efficient at
all in comparison to the other methods. The second, third and fourth order methods
are of surprisingly similar efficiency and only with smaller time-steps they start to
differ. The modified versions for the third and fourth order time-stepping methods
exceed their classical version for all different errors. However, also the saturation
effects can clearly be seen for very low time-steps. This has to be taken into account
when running simulations with very small time-steps in comparison to the step-size,
as lower order methods would be highly more efficient once the error is dependent
on different factors. All in all the third order methods proof to be nicely accurate
for their given computational effort with the modified version to be chosen over the
classical variant for simulations aiming to achieve optimal efficiency.

38



10-7 10-5 10-3 10-1Error
51020

50100200
500

Comput
ation tim

e [sec]

10-7 10-5 10-3 10-1Error
51020

50100200
500

Comput
ation tim

e [sec]

EulerExpRK2RK3RK3ModRK4RK4Mod

10-9 10-7 10-5 10-3 10-1Error
51020

50100200
500

Comput
ation tim

e [sec]

10-8 10-6 10-4 10-2 100Error
51020

50100200
500

Comput
ation tim

e [sec]

Figure 18: Computational time over achieved map (top left), vorticity (top right),
energy (bottom left) and enstrophy (bottom right) error for different time-stepping
methods.

4.4 Hyper-parameters to fine-tune balance between computational
complexity and accuracy

Solutions of the incompressible Euler equations experience a transfer of enstrophy
into finer scales over time , also called the energy cascade ([10], p.183). As the
framework deals with a semi-Lagrangian approach, it still suffers the fact, that a
finite uniform grid to represent the stream function can only capture frequencies
until the Nyquist-frequency. When the amount of energy or enstrophy rises in finer
scales, numerical errors start to occur. Vorticity present in finer frequency will be
misinterpreted and aliasing effects occur, leading to a non-physical accumulation of
enstrophy at fine scales close to the Nyquist-frequency.
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While this does not only create a non-physical behaviour, it additionally imposes
problems for the Runge-Kutta schemes to fulfil the incompressibility condition, as
higher frequencies create steeper gradients inside the velocity field itself. With higher
gradients, the numerical deviation to true incompressibility rises, which is implied
on the flow map after map advection. Therefore, the incompressibility error from
equation (2.29) is increased and more and more remappings are needed to keep the
flow incompressible.
As each remapping comes with the computation of the very expensive vorticity on
the fine grid from equation (2.36) and also increases the memory usage, this wants
to be minimised, largely by dampening the influence of high frequencies while still
preserving the information carried by the velocity.

4.4.1 Influence of different grid-sizes

With the core structure of the Characteristic Mapping method comes two different
grid-sizes to capture the fluid dynamics. The first is the grid size of the flow map,
also called coarse grid, which describes the uniform grid, to or from which the flow
map will point to. As all sub-maps are applied in sequence, it is only important
that a specific sub-map can contain all data needed to stay volume preserving. This
is largely influenced by the composition of the stream function in Hermite form
used to advect the flow map. Especially as the velocity to advect the flow is not
smooth around cell corners when being sampled from the stream function, the vol-
ume preserving property of the flow map is largely dependent on it. As the volume
preserving quantity is given by the incompressibility thresh-hold, an optimum of flow
map size and amount of sub-map can be tuned for a given computation dependent
on the available memory. With increasing map size, the total memory used by all
sub-maps increase. The map size therefore has to be reduced when reaching CPU
RAM memory limits, as all sub-maps are saved on the CPU RAM.
On the other hand, each sub-map samples the vorticity on a finer grid to be used as
the initial condition. The aim there is to capture as many characteristics as possi-
ble. With exponentially rising palinstrophy for turbulent flow and shift of enstrophy
to finer scales, initial vorticity in Hermite form on a sub-map will eventually not
be able to capture all scales for longer turbulent simulations. In order to capture
more scales, the size is usually higher than the size of the flow map. Larger fine
grid increases the size of all temporary arrays used in the framework too, eventually
filling up the GPU RAM. This effectively limits the largest available fine grid for
each setup.
With those two different grid-sizes also comes a gap which has to be passed when
evaluating the Biot-Savart-Law. Typically, the grid-size has to be reduced from the
fine initial vorticity in order to be applied to advect the flow map. Over the course
of this and previous work, a few techniques and ideas have been developed in or-
der to achieve optimal results. This section elaborates on the idea of intermediate
grids-sizes and gives a suggestion on how to set them during simulation runs.
The first idea is tied up with another idea being presented in the next section. There,

40



the idea of mollification is presented in order to reduce the grid-size at which the
vorticity is sampled for the computation of the Biot-Savart-Law. This was done in
order to reduce the load of the forwards Fourier transformation to compute the vor-
ticity in Fourier space. This grid-size, in the framework dealt with as the “vorticity
grid”, however currently serves only little purpose. This is due to the fact, that
the mollifier was replaced with filtering in Fourier space. In addition, the forward
Fourier transformation is not as computation heavy at all in comparison to other
parts of the code. A forward Fourier transformation on the full fine grid is therefore
possible without heavy constraints on the computation. In simulation applications,
the vorticity grid-size can therefore be set equal to the fine grid-size without any
problems.
A more important grid-size however is the size of the stream function. Effectively,
this decides the smoothness of the velocity to advect the flow map. It therefore
directly influences the quality of the map advection. It was argued in [21], that this
smoothness is of great importance. To feature a larger grid with more information
available than present can be easily achieved by zero-padding in Fourier space by
artificially increasing the domain with higher wavelengths with amplitude of zero.
When computing the inverse transformation, this samples the stream function on a
finer grid, smoothing out the spatial representation. In the scope of their work the
grid for the stream function, called “psi grid” with parameter NΨ, even exceeded
the grid-size of the fine grid. However, in the current framework this comes with
several issues. First of all, the grid-size of the stream function actually imposes
huge computational constraints on the time-stepping methods, due to the current
implementation in Cuda eventually reaching memory caching limits. Additionally,
with a psi grid exceeding the fine grid as the largest grid size, all auxiliary grids to
compute the Fourier operations have to be increased as well and overall increases
the memory usage of the GPU RAM.
A series of simulations have been done in order to assess the influence of the

psi grid. Those were carried out with the settings of the reference simulation
from section (4.3). Seven different simulations were run with increasing NΨ ∈
{1024, 1216, 1448, 1720, 2048, 2432, 2896}. Over the course of the simulation, the
map error from section (4.3) and the incompressibility error from equation 2.33
have been monitored. The simulation with NΨ = 2896 has been used as a reference
simulation in order to compute the map error in L∞-Norm. The results can be
found in figure 19. The graphs for the incompressiblity error show no significant
improvement with only differences for small times, after which other effects start to
dominate. A larger psi grid is therefore not beneficial to minimise the amount of
remappings. However, the map error is reduced for larger NΨ. Overall, an error
reduction of a factor 10 can be achieved in reference to the finest computation be-
fore a saturation effect is observed. Timings for the different computations can be
found in table 5 with t̃C,mean being the mean time it took for one time-step to be
computed on the used machine. The measurements were taken on a machine fea-
turing an Intel(R) Core(TM) i7-4710HQ CPU @ 2.50GHz with 8 logical CPUs and
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Figure 19: Incompressibility error (left) and flow map error (right) for computations
with different NΨ.

16GB of RAM, paired with a NVIDIA GeForce 845M with 2GB of video memory
(VRAM). The timings were not repeated and therefore still contain random devi-
ations by the computation structure of the GPU. They are merely shown here to
give a relative comparison between the methods. While for each method the main
difference is the increased size of Fourier transformations, only the time-stepping
methods take up more and more execution time with increasing NΨ, according to
the debugging tools from NVIDIA. This comes from the fact, that for large NΨ the
Hermite interpolation of the velocity for the Runge-Kutta methods has to load in
more points from the Stream function in Hermite representation. This eventually
exceeds the memory cache and creates a bottleneck, as all data have to be loaded
in from the global memory, which is slow in comparison to cached data. This effect
becomes extremely visible with an NΨ of two times the size of the coarse grid, with
the whole computation taking up twice the amount of time, but also starts to be
visible for a NΨ = 1448 with a 20% increase. While a decrease in the computed
error of the flow map is desirable and can be shown with the computations, it also
comes with sharply increased computational cost. However, nevertheless an increase
of the psi grid to a certain degree actually benefits the computation. In the current
framework it is yet still not recommended, as the effect is negligible in comparison
to its increased computational complexity and memory requirement. Increasing the
fine grid or order of times-stepping method more efficiently increase the accuracy of
simulations.
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NΨ 1024 1216 1448 1720 2048 2432 2896

t̃C,mean [s] 0.73 0.7 0.86 0.89 0.96 1.44 2.34
t̃C,mean,rel 1 0.96 1.18 1.23 1.32 1.99 3.23

Table 5: Timings for simulations with different NΨ

4.4.2 Low-pass filtering of vorticity

In order to limit the gradients of the velocity, high frequencies can be filtered out.
As in physical fluid flow only little energy is present in high frequencies due to the
energy power law with exponent k = −3 ([10], p.183), the filtering does not discard
much of the energy. It rather acts as an artificial dissipation for the map deforma-
tion.
In the previous work of [21], the filtration has been done by mollification. Before ap-
plying the Fourier transformation to compute the stream function in Hermite form
as described in section (2.3.5), the vorticity was already sampled in lower resolution.
The effect of a small cluster of points are convoluted with a smooth mollifier function
in order to compute the down-sampled vorticity. In discrete form, convoluting with
the mollifier acts similar to a weighted average, where the coefficients can be chosen
from any suitable discrete spatial low-pass filter.
However, in the course of this work it was chosen, that filtering using a mollifier is
not optimal for the given framework. The application of the weighted average takes
a lot of neighbouring points into account. In order to properly implement it, special
care has to be taken for the memory when writing the Cuda kernel function. In
addition, the actual filtering effect would have to be properly investigated in order
to quantify the behaviour of chosen stencils. Further usage was therefore discarded
in regards to other filtering methods.
In the research of this work it was favoured to implement a direct low-pass filter in
Fourier space instead. When computing the Biot-Savart-Law, the vorticity is trans-
formed to Fourier-space, where the inverse Laplacian and perpendicular gradient
operators are applied. Instead of filtering in real space using the mollification, one
can directly filter in the frequency domain. While this features a larger forward
Fourier transformation of the vorticity, this computation takes up only a small frac-
tion of the computation of a time-step. In exchange, the actual effect of the filter
can be chosen more directly. Currently, a steep low-pass filter is implemented in

the framework, where all Fourier modes with a norm k =
√
k2x + k2y larger than the

filter strength klp are set to zero. It is important to note, that due to the entirely
real-valued vorticity in real space, the vorticity in Fourier space is symmetric around
the Nyquist frequency. The low-pass filter was therefore applied with the same sym-
metry in both x- and y-direction.
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Figure 20: Map error in L∞-norm to unfiltered computation without remapping
(left) and amount of sub-maps with δinc,b = 10−4 (right) for different filter strengths
klp.

The graphs in figure 20 show different properties of the applied filter. The com-
putations where done with the reference setup with the 4-mode flow from section
(4.3). In the left image, the map error can be observed over time for different filter
strengths. Featuring initially only very low frequent modes present in the flow, one
can observe how each filter takes effect at further time with more and more enstro-
phy being shifted to higher frequencies. After time, the deviation between filtered
and unfiltered flow increases, as the flow now features much more enstrophy in fil-
tered out wavelengths. However, as a lot of enstrophy is starting to non-physically
accumulate at frequencies close to the Nyquist-frequency, this error in the flow map
does not at all have to be non-physical.
In the right image the large benefits of the application of the filter is depicted.
There, the amount of occurred remappings is plotted over the time for different fil-
ter strengths. The filter greatly reduces the exponential growth of needed sub-maps.
In fact, the amount of remappings per time approaches a maximum when applying
a filter, making long time simulations possible.
As the remapping step is very computationally costly and the amount of sub-maps
is limited to available memory, typically an optimal filter strength has to be chosen.
In larger simulations it was observed, that the applied filter strength plays a major
part for the computational cost of a simulation. In future work, the filter strength
could be automatically adapted to only filter out the non-physical accumulation of
enstrophy in high frequencies. The needed details can be extracted from an enstro-
phy power-spectrum.
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5 Validation of implementation of fluid and inertial par-
ticles

While the implementation of point particles being advected by the velocity of the
flow was already introduced by Nicolas Saber in [15], the implementation of the
time-stepping schemes itself was not yet validated. In this section, all the different
schemes from first to fourth order are derived to be able to arbitrarily choose the
convergence order similar to the advection of the flow map. Afterwards, the imple-
mentation is validated with simulations aiming to show the actual convergence and
the performance is discussed.

5.1 Equations of motion for fluid and inertial particles

Currently, there are two different types of advected point particles implemented in
the framework. The first is a rather simple approach and computes the advection
of fluid particles by the fluid velocity. For that case, the velocity of the particles u⃗p
is equal to the velocity of the flow u⃗f at the particle position x⃗p:

d

dt
x⃗p = u⃗p = u⃗f (5.1)

This approach should yield equal results to fluid particles being transported via the
forward map χ+.
The other types of particles are inertial particles. Those particles have a velocity on
their own and do not strictly follow the fluid flow, but are rather dragged along and
accelerated by the surrounding medium. In order to model this drag, the equations
of motion by Maxey & Riley in [12] have been used.

d

dt
x⃗p(t) = Fx(x⃗p(t), u⃗p(t), t) = u⃗p(t) (5.2)

d

dt
u⃗p(t) = Fu(x⃗p(t), u⃗p(t), t) = −

u⃗p(t)− u⃗f (x⃗p(t), t)

τp
(5.3)

The definition of the functions Fx and Fu is used to show the coupling of those two
ordinary differential equations and are handy to derive the time-stepping schemes.
The factor τp as the particle relaxation time depicts how resistant a particle is against
acceleration and deceleration due to the drag forces acting on the particle. Further
elaboration on that can be taken from [15].
The initial velocity for inertial particles is set to zero, but can chosen to be set after
the fluid velocity as well in case stability issues arise. The initial positions of the
particles can be chosen arbitrarily.

5.2 Different time-stepping schemes for advection of fluid particles

All implementations of time-stepping schemes used are Runge-Kutta methods of dif-
ferent convergence order and are similar to the schemes for the advected flow maps.
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Only the modified third and fourth order methods have been adapted to represent
more optimal schemes. Since the advection of the particles is computed after the
computation of the stream function in Hermite form, the velocity of the fluid flow is
available at times {tn+1, ..., tn+2−l}, where l is the chosen order of Lagrange inter-
polation of the velocity values. This is beneficial, as the fluid velocity at time tn+1

is needed in all schemes and therefore does not have to be Lagrange extrapolated
anymore.
In this section, the detailed equations for inertial particles is shown for the modified
third order Runge-Kutta scheme. No further derivations will be given for other im-
plementations of the inertial particles and all implementations for the fluid particles,
as the derivation is straight forward from the illustrated case.
By closer inspection of the equations (5.2) and (5.3), the computation for interme-
diate time-steps ki of the Runge-Kutta schemes can be optimised to use as little
computations as possible with the following equations:

k⃗xi = Fx(x⃗(tni), u⃗p(tni), tni) = u⃗p(tni)

k⃗vi = Fv(x⃗(tni), u⃗p(tni), tni) = −
k⃗xi(tni)− u⃗f (x⃗p(ti), ti)

τ

With this, usages of the intermediate velocity u⃗p(ti) from k⃗xi are reused in the

computation of k⃗vi . While this seems only like a small change, optimisations like
this add up drastically for long computations. This is especially important for GPU
computations, as loading and storing values to global memory (here x⃗, u⃗p and u⃗f ) is
very expensive. In fact, by temporarily saving x⃗p(tn) in local memory, only one read
from global memory has to be done for each the particle position and velocity, as
u⃗p(tn) will always be loaded by k⃗x1 for all explicit Runge-Kutta schemes. This results
in an optimal memory handling for the particle data. However, the bigger concern is
the velocity, where each value has to be interpolated from the Hermite representation
of the stream function, resulting in a load of many global memory values for one
velocity value. Therefore, a Lagrange interpolation of the velocity, as done in the
map advection, should be avoided at all times to minimise the computations and
also loads from global memory done.
The special third order Runge-Kutta scheme was chosen to aim to reduce the amount
of Lagrange interpolations for the fluid velocity. This constitutes to the general third
order case I from ([4] p.186) with c2 = −1 and c3 = 1. Those special time-steps where
chosen, as the velocity of the flow is available at all those times. Interpolating the
velocity with Lagrange interpolation is therefore not needed, which greatly speeds
up the computation.
The Butcher table for this implementation is:

0
1 1
-1 1 -2

2/3 5/12 -1/12
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From this, the general formula with all three intermediate steps becomes:

k1 = F (xn, tn)

k2 = F (xn +∆t/2 · k1, tn+1)

k3 = F (xn +∆t · k1 − 2∆t · k2, tn−1)

xn+1 = xn +∆t/12 · (8 · k1 + 5 · k2 − k3)

When applied to the inertial particles, one gets the following equations:

k⃗x1 = Fx(x⃗p(tn), u⃗p(tn), tn)

= u⃗p(tn)

k⃗v1 = Fu(x⃗p(tn), u⃗p(tn), tn)

= − 1

τp
(k⃗x1 − u⃗f (x⃗(tn), tn))

k⃗x2 = Fx(x⃗(tn) + ∆t · k⃗x1 , u⃗p(tn) + ∆t · k⃗v1 , tn+1)

= u⃗p(tn) + ∆t · k⃗v1
k⃗v2 = Fv(x⃗(tn) + ∆t · k⃗x1 , u⃗p(tn) + ∆t · k⃗v1 , tn+1)

= − 1

τp
(k⃗x2 − u⃗f ((x⃗(tn) + ∆t · k⃗x1), tn+1)

k⃗x3 = Fx(x⃗(tn) + ∆t · k⃗x1 − 2∆t · k⃗x2 , u⃗p(tn) + ∆t · k⃗v1 − 2∆t · k⃗v2 , tn−1)

= u⃗p(tn) + ∆t · k⃗v1 − 2∆t · k⃗v2
k⃗v3 = Fv(x⃗(tn) + ∆t · k⃗x1 − 2∆t · k⃗x2 , u⃗p(tn) + ∆t · k⃗v1 − 2∆t · k⃗v2 , tn−1)

= − 1

τp
(k⃗x3 − u⃗f (x⃗(tn) + ∆t · k⃗x1 − 2∆t · k⃗x2), tn−1)

x⃗p(tn+1) = x⃗p(tn) +
∆t

12
· (8 · k⃗x1 + 5 · k⃗x2 − k⃗x3)

u⃗p(tn+1) = u⃗p(tn) +
∆t

12
· (8 · k⃗v1 + 5 · k⃗v2 − k⃗v3)

While this specially chosen method may not achieve as good error bounds as
more classical methods with time instants withing the integration interval [tn, tn+1],
the speedup aims to improve the overall error over computational complexity.

5.3 Convergence order for the particle time-stepping schemes

To show the convergence of the methods, all other error factors have to be mitigated
and kept constant. However, as the flow of the particles is influenced by the fluid flow
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and the computations are dependent on the fluid velocity at specific previous time-
steps, the error of the flow map and particle computation are coupled. Due to this,
the convergence was computed externally from the main computation. The flow was
evolved until a time T = 1, afterwards the particles are embedded and computed
with stationary fluid velocity (ui = unfor all ti ∈ [T, Tp]) until time Tp = 2 with
different time-step sizes ∆t ∈ {1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512}, similar
to the time convergence study of the flow map. The different computations are
compared against the computation with ∆t = 1/512 as a reference to compute the
particle error:

Particle error = ||Pref (·, Tp)− P (·, Tp)||∞

The computations are done for fluid particles with τp = 0 and inertial particles
with τp = 0.5. Since the computation of the particles are independent of the fluid
flow computation, the parameters can be chosen arbitrarily. The set of parameters
being used can be found in the following table:

Name Value Name Value

Ncoarse 1024 Nfine 2048
Nψ 1024 Nω 2048
hfluid 1/128
ϵm 10−3 klp 512

Fluid time scheme RK3 Map update stencil 4th order
Inital condition 4-mode-flow Number of particles 106

Table 6: Simulation parameter for particle convergence simulations.

Figure 21 shows the convergence behaviour for all available methods for both the
fluid and inertial particles. In general, all used methods mainly show the expected
convergence behaviour. Also, as expected, the modified third and fourth order
methods show a marginally worse performance due to their less accurate schemes
chosen.
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Figure 21: Convergence errors for the fluid particles (left) and inertial particles with
τp = 0.5 (right) with respective orders in dashed lines.

A saturation effect can be observed starting at an error of around 10−8. This
throttles the convergence behaviour for the fourth order methods, whose convergence
order is afterwards reduced by one.

5.3.1 Timing for the particle time-stepping schemes

As the previous convergence tests featured a completely decoupled particle loop, the
computations of the particle advection itself can be directly timed. The different
computations done were used to compute an estimate of deviation in the computed
averages for each set. The variance helps to give an estimate on the stability of the
measured times and was computed the same way as done in section (4.3.3).
The measurements were taken on a machine featuring an Intel(R) Core(TM) i7-
4710HQ CPU @ 2.50GHz with 8 logical CPUs and 16GB of RAM, paired with a
NVIDIA GeForce 845M with 2GB of video memory (VRAM). The timings should
aim to give a relative comparison between the methods.
The results can be found in the following table:

Name EulerExp Heun RK3 RK3 Mod RK4 RK4 Mod

t̃C,mean [s] 0.1 0.212 0.578 0.342 0.929 0.704
σt/t̃C,mean 0.001 0.003 0.002 0.004 0.002 0.001
t̃C,mean,rel 1 2.131 5.8 3.437 9.325 7.065

t̃C,mean [s] 0.11 0.219 0.579 0.344 0.93 0.704
σt/t̃C,mean 0.005 0.005 0.004 0.003 0.003 0.004
t̃C,mean,rel 1 1.986 5.256 3.118 8.440 6.389

Table 7: Time per step, variance and relative time to EulerExp for fluid (top) and
inertial particles (bottom).
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Overall, the average variance is about or lower than 0.5%, so that the stochastic
difference in computed steps per time between the simulations of one set can be
neglected. As no Lagrange interpolation is used for the first order explicit Euler,
second order Heun and modified third order Runge-Kutta method, their compu-
tational cost scales almost linearly in respect to each other due to the amount of
intermediate estimates being computed. This behaviour is supported by the timings.
Once a Lagrange interpolation is needed, the time per step is increased drastically,
but still scales roughly with the amount of total Hermite interpolations being done.
Also, the advection of the fluid particles and inertial particles takes almost exactly
the same time, again giving a strong link to the importance of the Hermite interpo-
lation.
In order to further assess the qualities of the methods, the computation time plot-
ted over the achieved error for the fluid and inertial particles can be seen in figure
22. As per definition of the axes, a curve closer to the origin depicts a faster and
more accurate method. The first order method is not efficient at all and with each
increase in convergence order, the methods become more and more efficient, as the
cost only increases linearly. Interestingly, the modified versions of the higher order
methods do not achieve largely more efficient results. Especially for the third or-
der methods, the classical Runge-Kutta scheme slightly outperforms the modified
version. However, the modified fourth order version does improve the efficiency in
comparison to the classical method, while still being almost as fast as the classical
third order method. Considering purely the particle methods not embedded in fluid
flow, the fourth order modified version proves to be the most efficient one and is
recommended to be used for simulations.
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Figure 22: Computational time over achieved particle position error for fluid (left)
and inertial particles with τp = 0.5 (right) and different time-stepping method.
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5.3.2 Convergence order and timing for the particle time-stepping
schemes embedded in fluid flow

While the previous tests well showed the convergence behaviour of the different par-
ticle time-stepping methods, it did not represent real working conditions. Usually,
the particle error for computations with the framework will always be connected
to the flow map error. To assess the difference, another convergence test has been
conducted, however this time the particles were embedded in the fluid flow right
from the beginning and the time-step ∆t was therefore changed for the flow map
and particle computation simultaneously.
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10-5
10-4
10-3
10-2
10-1

Error

Slope 1
Slope 2
Slope 3

Slope 4
1/256 1/128 1/64 1/32 1/16 1/8Timestep ∆t

10-910-810-710-610-510-410-310-210-1

Error
Slope 1
Slope 2
Slope 3

Slope 4
EulerExpHeunRK3RK3ModRK4RK4Mod

Figure 23: Convergence errors for the fluid (left) and inertial particles with τp = 0.5
(right) embedded in fluid flow. The convergence for both 4th order methods is
identical.

Surprisingly, the convergence behaviour is not changed much. Mainly, the prop-
erty of the third and fourth order methods is improved. For the two third order
methods, the behaviour is improved and both methods show also smaller deviation.
Both fourth order methods coincide with each other and have decreased performance.
As the velocity is computed to third order accuracy in time, the decreased perfor-
mance is actually anticipated. However, these higher order methods surprisingly
are still able to compute the particle positions more accurately. Which presumably
comes from the increased 4th order of Lagrange interpolation needed for those higher
order implementations.
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Name EulerExp Heun RK3 RK3 Mod RK4 RK4 Mod

t̃C,mean [s] 0.976 1.198 1.914 1.442 3.133 2.466
σt 0.005 0.004 0.002 0.005 0.003 0.003

t̃C,mean,rel 1 1.227 1.961 1.478 3.21 2.527

Table 8: Time per step, variance and relative time to EulerExp for combined fluid
and inertial particle sets embedded in fluid flow. A third order Runge-Kutta method
was used to advect the flow map.
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Figure 24: Computational time over achieved particle position error for fluid (left)
and inertial particles with τp = 0.5 (right) embedded in fluid flow.

Again, the timing for each computation was measured in order to assess the
efficiency of each method. Due to the advecting of fluid and inertial particles being
almost identically fast, they have been computed together at the same time. In table
8, the time per step, variance and relative time are shown similar to the preceding
section. As the number of advected particles with 106 is almost equal to the number
of points inside the flow map with 10242, the computation length for the particle
computation starts to dominate the simulation from those times, which reach an
increase of two or more times in comparison to computations with the first order
method. Especially the fourth order methods take more time due to the increased
order of Lagrange interpolation.
However, as can be seen in figure 23, the increased computational cost for higher
order methods is made up for in terms of accuracy, yielding more efficient results.
Both modified versions are more efficient than their classical counterpart, with the
modified third order variant even exceeding the classical fourth order method for
inertial particles. When enough time and resources on hand, the modified fourth
order method gives excellent results while still being sufficiently fast. For fully third
order methods, the third order modified version exceeds its classical counterpart and
is to be preferred, especially when implementing small time-steps.
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6 Scalar mixing in shear layer flow

Besides the movement of the vorticity or velocity, investigating the flow of other
passive phenomena not directly influencing the fluid flow is of high interest too.
This has many application fields, for example the investigation of several different
fluids or concentration fields. Those can be used to study chemical reaction rates or
mixing properties.
As turbulence is an important phenomena to support mixing of different quantities,
there is a particular interest in investigating the fine structures of mixing fluids due
to turbulent flow.
In this chapter, a test-case will be setup and used to study the mixing behaviour
of two fluids with opposing velocity, shearing against each other. Kelvin-Helmholtz
instabilities arise and the two fluids start to mix more and more at the boundary
zone. This mixing is qualitatively investigated in order to show-case the effectiveness
of the magnifying properties of the characteristic mapping method.

6.1 Scalar transport with the characteristic mapping method

The characteristic mapping method does not only solve the transport equation for
the vorticity, but can solve it for any passive scalar quantity θ being advected by
the velocity u⃗:

dθ

dt
= ∂tθ + u⃗ · ∇θ = 0 (6.1)

θ(x⃗, 0) = θ0(x⃗) (6.2)

By definition, any passive scalar is advected by use of the characteristic flow map
χ. Similar to the vorticity, the solution at time t can be traced back using the
backwards flow map:

θ(x⃗, t) = θ0(χ
−(x⃗, t)) (6.3)

Therefore, solving a passive scalar can also benefit from the semi-group structure.
As the backwards flow map is already computed, computing the advection of passive
scalars is imposing very little additional computational cost.

6.2 Initial condition - shear layer flow

To investigate the mixing behaviour, a typical reference flow was chosen. This fea-
tures a shear flow of two fluids with opposing velocity direction. A thin transition
layer between the two fluids creates a vorticity profile being present at the bound-
ary zone and zero everywhere else. Physically, the flow is inviscidly unstable and
perturbation leads to the formation of Kelvin-Helmholtz instabilities in the form of
multiple vortices of equal direction. In order to accelerate the emergence of this
phenomena numerically, an instability of the same frequency was superimposed. An
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explanation of this problem can be found for example in [16].
The initial velocity profile features a boundary layer with a hyperbolic tangent pro-
file. When applying the curl operator to get the vorticity, it becomes

ω0(x, y) = c1(1 + c2 cos(c3x)) · sech2(−c4(y − π)) (6.4)

Here, sech is the hyperbolic secant. The factors have different influence, which can
be extracted from table 9. While c1 to c3 can be set freely, the thickness of the
boundary profile c4 is physically connected to the most amplified mode.

Parameter Definition Value

c1 Strength of mean stream velocity 5
c2 Strength of perturbation 0.01
c3 Frequency of perturbation 2

c4 Thickness of boundary profile 14c3
π

Table 9: Different parameters of the shear flow initial condition with hyperbolic
tangent velocity profile.

The strength of the mean stream velocity defines how fast the flow develops
and merges. The frequency of the instability corresponds to the amount of Kelvin-
Helmholtz instabilities, which are formed. Usually the boundary thickness physically
defines the amount of vortices, but it was chosen the other way round in order to
preset these. While a shear flow initial condition was already presented in the work
of [15], it did not feature a hyperbolic tangent profile for the velocity as well as the
physical distinction of the parameters.
The simulations to achieve the result featured the highest Ncoarse available for the
CPU RAM of 190GB on the machine running them. The set of parameters used
were:

Name Value Name Value

Ncoarse 2048 Nfine 8192
Nψ 4096 Nω 8192
hfluid 1/6144 δinc,b 5 · 10−4

ϵm 10−3 kLP 256
Fluid time scheme RK3 Map update stencil 4th order

Table 10: Simulation parameters for the shear layer flow.

The low-pass filter strength and incompressibility threshold were chosen to bal-
ance the amount of remappings. All variables for investigations where captured on a
40962 grid. As depicted in figure 25, the initial vorticity profile rolls up in clock-wise
direction to form two Kelvin-Helmholtz vortices, one at the center of the compu-
tational domain and one at the periodic boundary. Interaction between the outer
layers of the two vortices form very thin vorticity structures. Eventually, at a time
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Figure 25: Vorticity profile for the shear flow simulation at times t = 0 (upper left),
t = 8 (upper right) over the whole domain and zooms between the vortices at times
t = 15 (lower left) and t = 25 (lower right).

of around t = 30, the symmetry between the two vortices is broken and they start
to merge.
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Figure 26: Relative conservation of energy (left) and enstrophy (right) to time t = 0:
(E(t)− E(t = 0))/E(t = 0).

The conservation properties of the simulations are shown in figure 26. The values
for the computational variable where taken from the individual vorticity and stream
function used inside the computation and where taken at a high rate, while the
values for the sampled variable where computed after application of all individual
sub-maps at that time instant. As all saved variables are sampled, their conserva-
tion corresponds to the conservation of the result, while the computational variables
provide information on the stability of the computation.
After an initial phase where the two individual vortices are formed, the conservation
of the computational variable starts to oscillate, hinting on stronger partial deforma-
tion of the maps. However, overall the error growth is bounded and stays at small
magnitudes below 10−3.

6.3 Mixing in shear layer flow

An important property of turbulence is the increased amount of mixing and trans-
port occurring. With the widespread presence of shear layer flow in applications
and its clear developing coherent structures, it makes an excellent test-case to qual-
itatively study the mixing behaviour of scalar quantities in turbulent flow.
The following observations were made comparatively to [3], where the transport in
shear layer flow was investigated using a pseudo-spectral method. Using the CM-
method allows to greatly focus on the fine scale structures emerging in comparison
to earlier work.
In order to differentiate between the two fluids which are shearing alongside each
other, a scalar with value θ = 1 for the lower, and θ = 0 for the upper half plane was
embedded into the flow. Due to the backwards map always pointing to a discrete
location and the initial condition being analytical, the scalar θ will always have dis-
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crete values of zero or one, no matter the quality of the flow map. This also means,
that flow transported by the incompressible Euler equations does not actually mix,
but only further and further intertwines the two fluids. In addition, the transport
equation implies that the scalar quantity has to be conserved in the scope of the
simulation. In fact, the achieved conservation was quite stable over the course of the
simulation, with a maximum relative conservation error of 7.34 · 10−4 in comparison
to the sum of the initial scalar.

Figure 27: Zoom of passive scalar between the two vortices at times t = 8 (left),
t = 15 (middle) and t = 25 (right).

Figure 27 shows the behaviour of the passive scalar over time. The formation of
the vortices forms swirls of the two sides in its center. In addition, the two vortices
interact and scalar parts that are sucked into the other domain will later travel to
the other vortex. As an example, the red half-circle visible in the left image will
continue to move to the right, eventually forming the thin sheet visible at the center
image. This leads to the formation of a very thin folded structure, which is visible
at later times.
Due to the zoom-property of the method, the fine structures can be further analysed,
as all of them are preserved within the composition of the sub-maps. Enlarging the
area at the center between the vortices shows, how the two scalars are continuously
folded. The left image in figure 28 shows a close-up at time t = 15. The image
represents the square with side-length π/4. The firstly explained folding is here
clearly visible. A close-up at later times captures the highly-folded structure. While
the outer parts start to get irregular, this structure still follows the original division
line visible in the left image of figure 27. Further zooming in to a frame with side-
length π/16 visualises the thin sheet-like structures. While initially barely visible in
the right image of figure 27, all of the fine structures are still preserved within the
full map-stack itself. This feature proves to be a big advantage of the method, as
capturing fine structures is not dependent on the initial grid. However, due to the
incompressibility error of the map, artificial structures can arise as well, which can
quickly reach sizes of those fine structures investigated here.
Together with the folding structure comes a large interface between the two scalar
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parts. This is highly beneficial for dissipation processes, resulting in blending of the
two individual parts. In addition, reaction processes benefit from large interfaces as
well, further accelerating the rate of reactions happening.

Figure 28: 8-folded zoom of the passive scalar between the two vortices at times
t = 15 (left) and t = 25 (middle) and 32-folded zoom at t = 25 (right).
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7 Particle transport in fully developed turbulence

Particles suspended in turbulent flow is a common real-world scenario. From impu-
rities in atmospheric flow acting as seeds for cloud formation, pollution and virus
spreading inside cities to bacteria in liquid flows - aerosols of particles and fluids is
an important occurring phenomena, especially in the field of geophysical flow. This
is for example largely argued by Matsuda et al. in [11], where they investigated the
statistics of inertial particles in turbulent flow. Especially the reaction of particles to
turbulent flow is a current, interesting topic, due to the advancements made in com-
puting turbulent fields. A special case of turbulence, called isotropic homogeneous
turbulence, gives ideal condition in order to investigate the influence of turbulent
flow on particles. A turbulent fluid is isotropic and homogeneous, if it is statistically
invariant to translations and rotations. This means, that all statistical quantities are
everywhere and in all directions equal. Effectively, small portions of an isotropic ho-
mogeneous turbulent domain are again isotropic and homogeneous. This gives some
kind of self-resemblance, comparable to fractal dynamics. In real world, this can be
created by for example running a fine mesh through a domain, creating turbulence
along its path without imposing a mean flow. Numerically however, often real world
data has to be used in order to impose this kind of turbulent flow. Another option
is to create turbulence with a suitable instable initial condition. In order to have an
analytical initial condition, the latter was chosen in this work to create a state of
isotropic homogeneous turbulence.

7.1 Initial condition for 2D homogeneous isotropic turbulence

In order to generate 2D isotropic turbulence, an unstable initial condition with high
enstrophy present in large wavelengths can be constructed. However, it is important
that this enstrophy is spread out evenly in order to be as homogeneous as possible.
Randomised instabilities lead to enstrophy moving to finer scales due to the enstro-
phy cascade, eventually forming a state fitting for isotropic homogeneous turbulence.
In this work, the approach of Clercx et al. from [8] was adapted. The main idea
is to evenly spread out Gaussian vortices with alternating sign in a checker-board
pattern. The position of the vortices is randomly perturbed in order to destabilise
the flow. In the setup for the following simulations, a field of 10 × 10 vortices was
chosen. Distributed evenly over the domain with size [0, 2π]2, each vortex inhibits a
space of dv = π/5. A radius of expansions of σv = dv/4 = π/20 was chosen, so that
each vortex fills out the given space without spreading too much into neighbouring
cells. Without perturbation, the vorticity should be zero at the interface between
two vortices, with overlapping effects cancelling each other out. For the random per-
turbation of the vortex positions, a maximum perturbation of pv = σv/2 = π/40 was
chosen per dimension. The initial vorticity can then be constructed from superim-
posing the influence of all vortices. The final equation can be found in equation (7.1).
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(7.1)

P⃗v(ix, iy) = [(ix + 0.5)
π

5
+ rx(ix), (iy + 0.5)

π

5
+ ry(iy)]

T (7.2)

The position of each vortex is given by the vector P⃗v(ix, iy), where rx(ix) and ry(iy)
are the random perturbations for each vortex. The positions are shifted by dv/2 in
order to correlate the vortex box boundaries with the domain boundaries. In order
to achieve periodicity, the influence of the vortices from the next domains have to be
taken into account too. This is done by projecting the border vortices into the next
domain and adding their influence too. As the Gaussian vortices scale exponentially,
a border size of 2 at each side was chosen to be sufficient. This means, that for each
point the influence of 14×14 vortices is added up together. With this approach, the
global sum of the vorticity is close to machine precision, as all the vortices cancel
each other out in respect to the whole domain.
The simulations where done with largely similar parameters as the ones for the shear
layer flow. All variables for investigations where captured on a 40962 grid.

Name Value Name Value

Ncoarse 2048 Nfine 8192
Nψ 4096 Nω 8192
hfluid 1/6144 δinc,b 10−3

ϵm 10−3 kLP 256
Fluid time scheme RK3 Map update stencil 4th order

Table 11: Simulation parameters for the isotropic homogeneous turbulence simula-
tions.

The vorticity over time is depicted in the images in figure 29. The slight random
displacement is visible in the initial condition, which quickly leads to vortices of
the same sign being attracted to each other. This procedure continues and more
and more vortices merge. At the same time, the enstrophy cascade shifts more and
more enstrophy into smaller scales. As the grid is not able to capture all frequencies
at some point, noise appears in later time-steps. The conservation of energy and
enstrophy is depicted in figure 30. Similar to the simulation of the shear layer flow,
both the conservation for the computational and sampled variables are shown. Noise
starts to appear starting at t = 5, being especially present in the energy. As the
conservation of energy for the computational variable is already low-pass filtered, it
also shows, that no visible amounts of the global energy are discarded due to the fil-
tering process. For the enstrophy, the computational variable is not able to capture
the enstrophy well. This is due to it being computed on a 20482 grid in comparison
to the 81922 grid of the fine vorticity as an initial condition for each sub-map. This
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Figure 29: Vorticity for the simulation of isotropic turbulence at times t = 0 (upper
left), t = 5 (upper right), t = 15 (lower left) and t = 25 (lower right) over the whole
domain.

down-sampling discards enstrophy in finer scales and leads to reduced conservation
properties. However, those effects are not present for sampled variables.
The palinstrophy is supposed to grow exponentially over time. However, due to the
finite grids used to capture vorticity gradients and low-pass filtering, it eventually
stagnates and reaches a maximum. Again here the computational and sampled vari-
able differ, with the sampled variable being able to capture more vorticity gradients
due to its larger grid-size.
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Figure 30: Relative conservation of energy (left) and enstrophy (right) to time t = 0.
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Figure 31: Palinstrophy over time for the simulation of isotropic turbulence.

7.2 Estimation of the time interval suitable for investigations of
physical turbulence

Turbulence is a physical behaviour being present only in three-dimensional systems,
due to the vortex stretching terms reducing to zero for two-dimensional flow. Due
to that, simulations containing real physical turbulence are not possible in the 2D
case. However, considering the physically expected behaviour, an interval of homo-
geneous isotropic turbulence can be defined in planar flow too, which can evolve
from a suiting initial condition. A strong condition is the cascade of enstrophy from
larger to finer scales and for energy the other way round respectively. While for
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the three-dimensional case this follows the widely known Kolmogorov-law with a
power-law of exponent −5/3 for the relevant scales of the energy, this changes to
−3 for the energy and −1 for the enstrophy for two-dimensional flow ([10] p183).
This power law has to be validated with the constructed initial condition in order
to assure the self-similarity, which is important for turbulent flow.
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Figure 32: Isotropic spectrum of enstrophy from the vorticity at different times.

Depicted in figure 32 is the isotropic spectrum of the enstrophy for different
times until a final time of t = 25. The initial spectrum at t = 0 shows a strong
peak at wavelength k = 7 ≈ 5

√
2, coming from the initial checker-board grid of

distributed vortex-pairs with 5 pairs per length. With increasing time more and
more enstrophy is transported onto finer scales and after some time it starts to pile
up for large frequencies around the Nyquist-frequency of the grid being kNyq = 2048.
From this transport a power-law for the decay of enstrophy to finer scales is quickly
visible, which decreases over time. Also, as more and more vortices merge the peak in
enstrophy increases to smaller wave-numbers. Overall, a linear fit can approximate
the power-law fairly well. A depiction of that for three different time instants can
be found in the left image of figure 33. They were fitted on a range between the
initial peak for low wave-numbers and pile-up of enstrophy at high wave-numbers.
As many stochastic variations are present and the up-rise in enstrophy at larger
wave-numbers for later time instants bends the curve slightly, this deviates it from a
definite power-law. Nevertheless, the power-law generally follows a pattern over time
with increasing values from −2.75 at the beginning to −0.8 at the end. It reaches
the desired power-law for self-similar isotropic turbulence at t ≈ 15 and stays in a
25%-range starting from t = 11. For higher time instants the power-law seems to
converge.
For the scope of further investigations it was concluded, that starting from t = 10
the generated flow can be assumed to sufficiently approximate physical isotropic
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Figure 33: Fitted power-law curves for enstrophy spectra at different time instants
(left) and estimated power law over time (right).

homogeneous turbulence.

7.3 Stokes number for embedded inertial particles

Dependent on the inertia of the particles, the characteristics of their behaviour
embedded in fluid flow differs greatly. This can be well characterised by the so-
called Stokes-number, which according to [15] is defined as

St =
τp
τη

(7.3)

This number describes the relation between the particle relaxation time τp and the
Kolmogorov time scale τη which can be expressed as

τη =
(ν
ϵ

)1/2
(7.4)

being the relation between the kinematic viscosity ν and the energy dissipation
ϵ. Both time scales can be seen as the respecting non-dimensional factors rep-
resenting the speed in which the velocity reacts to forces. For Stokes numbers
St ≪ 1, the fluid flow defines the trajectory of particles. They are expected to
largely follow the fluid stream lines with St = 0 representing full fluid particles.
With St ≈ 1, both time scales even itself out and the rate at which the particles
reacts to change in fluid flow equals to the change in the fluid velocity itself. For
the special case St = 1, the particles are expected to cluster in local minima of
the norm of the vorticity, which for isotropic turbulence are lines separating clus-
ters of vortices with identical direction. With increasingly large Stokes number
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St ≫ 1, the particle becomes more and more resistant to fluid motion until for
St → ∞ it eventually is completely unaffected by the fluid it is immersed in [11].
As for the incompressible Euler equations no viscosity and energy dissipation is
present, a Kolmogorov time scale cannot be defined. However, due to the nature of
the isotropic turbulence arising from the initial condition, individual particle relax-
ation times τp lead to particle behaviour corresponding to different Stokes numbers.
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Figure 34: Initial particle spectrum at
time T = 10.

By comparing this to results from other
simulations, the Stokes number can be
largely estimated. For reference, the
work in [11] was used. The particles
were uniformly random distributed over
the whole domain at time T = 10, af-
ter which they start to cluster in or
avoid specific regions. By comparing the
particle density spectrum, a comparison
can be made to the reference. Especially
the value τp leading to St = 1 is of in-
terest in order to categorise the particle
behaviour into regions of Stokes number
larger or smaller than one.
The particle density was computed by
counting the amount of particles in dis-
crete boxes with 4096 × 4096 uniform
boxes distributed over the whole do-
main. This size of the density grid was
chosen in order to coincide with the
grid-size for the fluid velocity. In total, eight different sets of particles were embed-
ded at time T = 10 with one million particles each. The positions of the particles
were computed until a final time of T = 25. The positions were saved in an interval
of ∆T = 0.5 in order to show the development of the particle spectra over time.
Similar to [11], the influence of the initial particle spectrum can be subtracted. As
all particle sets shared the same random seed, the initial position and spectrum are
identical. With uniformly distributed particles the initial spectrum should expe-
rience a power-law with exponent 1, which can be seen in figure 34. A linear fit
estimates a power-law of 0.997 with an initial density of 2.28 · 10−8 at wave-length
k = 1. For further investigations, the linear fit of the initial spectrum was sub-
tracted. This is done in log-log-scale by division with the initial density for each
wavelength.
All particle spectra experience an increase in density with maxima at around k = 4
and after some time, the spectra approach stationary states.
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Figure 35: Particle spectrum with τp = 0.05 (left) and τp = 1 (right) over time.

Two particle spectra over time are visualised in figure 35. The left one depicts
a state with low Stokes number, where a stationary state is reached rather quickly.
In addition, the maximum particle density is comparably small. The spectra on the
right shows a state with larger Stokes number closer to St = 1. Not only is the
maxima shifting further to k = 1, but also is a stationary state is reached slower in
the interval of the simulation. Due to the relaxation effects of the fluid and particles
evening itself out for St ≈ 1, the initial condition for the particles needs more time
to adapt to the turbulent fluid flow, as more light particles more easily follow the
fluid flow and more heavy particles more easily resist it.
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Figure 36: Particle spectrum for different τp at time T = 25.

With increasing particle relaxation times τp, this maxima is further and further
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increased until around τp = 0.5, at which it reaches a maximum. Afterwards, it
starts to decrease again and shifts toward larger wavenumbers. According to [11],
a particle distribution with St = 1 is reached with the highest maximum, which
in the tested case corresponds to τp ≈ 0.5. Figure 36 depicts the final spectra for
different values of τp. While the spectra for τp = 0.5 and τp = 1 show a largely
similar maxima, the spectra for τp = 0.5 shows higher particle density for larger
wavenumbers.

Figure 37: Absolute value of vorticity and particle distribution with τp = 0.5 at time
T = 25.

Figure 37 shows, how the particles with St ≈ 1 avoid regions with high absolute
vorticity. Especially the vortex structures are largely avoided, eventually partition-
ing the domain into regions containing one vortex each. The regions with more
spread out particles all correspond to regions of low absolute vorticity. Consider-
ing the spectra and particle distribution, particles with a particle relaxation time
τp = 0.5 are considered to have Stokes number St ≈ 1.

7.4 Length of a finite line in turbulent flow

In 1999, Carmona et al. studied the movement of drifters in fluid flow driven by
random external forcing in [5]. In their work, they inserted a line of particles ori-
ented in a circle and advected them, to later study the length of the line and how it
spreads over the domain. Already in [6] they concluded, that the length of the line
growths exponentially in time for isotropic turbulent flows besides shear flow and
related that to the positivity of the Lyaponov exponents, which describes the rate
of separation of infinitesimally close trajectories.
The simulations with the particle ring in [5] showed strong growth over time and
started filling up the plane. From this, they tried to compute the fractal dimension
of the particle set, precisely the Minkowski dimension. This is defined as the rate
of growth of area, when surrounding the particle set with a tube of size ϵM and
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changing the tube size. However, the results did not give clear results.
Bec investigated the fractal clustering behaviour in random flows in [2]. He also
investigated the Lyaponov exponents and concluded, that the particles are either
clustering or space filling dependent on a critical Stokes number. Looking at his
definition of the Stokes number it is roughly in proportion to 1

τp
from the given

definition in this work. He defines a critical Stokes number Stc dependent on sev-
eral factors, which separates the behaviour of the particles. For a Stokes number
St > Stc fractal clustering appears, while St < Stc would lead to space filling prop-
erties according to his findings. In addition, his findings show a gradual change of
the Lyaponov dimension. In this work, the simulations containing the ring prob-

Figure 38: Particles initially arranged in a circle at time t = 10 (top, left) and
advected at time t = 20 for τp = 0 (top, right), τp = 0.5 (bottom, left) and τp = 2
(bottom, right)

lem are repeated for fluid particles embedded in turbulent flow. In addition, they
are extended to inertial particles with different Stokes numbers. Later, the line
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length and fractality are investigated. In order to avoid effects of the formation of
isotropic turbulence from the initial conditions, the particles are embedded into the
flow starting from t = 10. The previously studied initial condition is used for that
and the time range was extended until t = 30 in order to have more deformation of
the line. All particles where embedded in a circle with center (π, π) and diameter
π. In total, four different particle sets were embedded. One as fluid particles with
τp = 0, and three with τp = 0.1, τp = 0.5 and τp = 2. This should resemble particles
with St = 0, St < 1, St = 1 and St > 1. For each set, 10 million particles were
evenly distributed over the circle with no initial velocity.
The initial condition together with results at time t = 20 can be found in figure 38.
The particles were coloured by initial angle in order to reference the course of the
distorted ring at later times. Largely, three different behaviour emerges for different
Stokes numbers. For flow with St < 1, the ring starts to be scattered along the
computational domain. Vortices further and further distort the line especially close
to vortex cores. In the special case of St = 0, the ring starts to fill up the entire
domain. Overall, the line does not overlap itself for St < 1 and is only bend and
distorted over time. For St = 1, the line does not start to fill up parts of the plane.
Different sections of the line are moved close to each other and overlap in thin lines.
Starting from St > 1, the line intersects with itself, which can clearly be seen in the
lower right image of figure 38. Parts of the line oscillate around a common center,
forming more structured-like behaviour.
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Figure 39: Length of the line (left) and maximum distance between two points
(right) for the different particle sets.

The line length was computed by summing up the distance between all points.
Results can be seen in figure 39. The greater the particle relaxation time, the greater
the resistance is against distortion due to the turbulent flow, resulting in less line
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elongation. Initially, heavier particles need more time in order to be accelerated.
The line length experiences exponential growth for low times.
The left image of figure 39 shows the maximum distance between two points, which
steadily increases over time for all different particle sets. Eventually it caps at π,
which was used as a maximum length on the domain to regard periodicity. While
this hints at large distortion levels for the individual particles, it was only achieved
for a handful of points. This can be extracted from the cumulative density of the
individual distances between two points, seen in the right image of figure 40. In
fact, for all four particle sets, 99% of the distances between points was smaller
than 1.2 · 10−2. This can also be further shown by investigating the change in line
length for different sampling rates of the points, effectively decreasing the number
of particles, depicted in the left image of figure 40. While the length of the line does
not seem to be completely converged, the change for small decreased sample rates
is low. For increasing τp-values, this estimation becomes better and better. The
particle density to represent the lines was therefore estimated to be sufficient for all
particle sets.
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Figure 40: Length of the line with different sampling rates (left) and cumulative
density for different distances between points at time t = 30 (right) for fluid particles.

7.5 Estimation of fractal dimension of ring of particles embedded
in fully turbulent flow

Estimation of fractal quantities is generally a tedious task. Especially as the number
of particles is finite, computing it comes with various challenges. In the scope of this
work, first estimation of a Hausdorff dimension Hd will be presented, which were
computed using a box counting algorithm. This algorithm computes the amount of
uniform finite-sized boxes in the domain containing at least one particle over the
total amount of boxes with varying box size. The Hausdorff dimension from this is
defined as the rate of change for different box sizes.
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In order to minimise local effects of the structure, a sliding box scan has been chosen.
The size of the boxes is increased by a factor of 4 and the starting positions have
been uniformly distributed so that the last box ends at the end of the domain. With
this, at any position four boxes will overlap each other. This helps in detecting
sharp edges for a given box size. It is especially helpful due to the fact, that the
line is still only present at discrete points of the particles and small boxes will fail
to appropriately capture the fractality of the actual lines.
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Figure 41: Boxes with particles over amount of boxes in each dimension over time
for fluid particles (left) and particles with St = 1 (right). Estimated linear fits are
included in black dotted lines.

The results for two particle sets over time can be found in figure 41. As expected,
the amount of boxes with particles increases for all sets over time. In addition, the
curves become further and further bent, as a small amount of boxes distributed over
the region treats the scattered line segments as two-dimensional and a high amount
of boxes starts to differentiate more and more between the individual particles.
However, it can also be observed how this effect is different for each set of particles,
with the particle set with St = 1 having more straight lines than the other sets.
In order to estimate a region suitable for linear fitting, the cumulative density was
taken as a reference. It was chosen, that the box length should be larger than at
least 90% of all distances between two points. This leads to a maximum of 775
boxes for the most affected particle set, which was chosen as an upper limit. For the
lower limit, around 90 boxes was chosen. This would constitute of boxes having at
maximum approximately 1

20th of the domain length as box length. This was chosen
to be sufficiently small to capture effects from the fractality of the curve.
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Figure 42: Estimated fractal order over time for ring problem with different particle
sets.

The estimated fractal orders over time can be found in figure 42. It can generally
be seen, that all fractal orders increase over time from a dimension of one, as the
ring gets more and more distorted. Also, the fractal order for fluid particles and
light particles of St < 1 increase at the same rate over time, which hints on their
fractality being connected to each other. For particles with St = 1, the fractal order
firstly increases, but stalls at around Hd ≈ 1.35. This estimated dimension is the
lowest in comparison to the other sets. However, against what was anticipated, a
fractal dimension of one could not be confirmed. This could be due to some low
vorticity regions present to form particle clusters, which increases the fractal order.
For heavy particles with St > 1, their inertia initially resist the distortion of the
line. At later times the estimated fractal dimension rises for later times though,
approaching further and further the estimated value for the lighter particles.
Overall it can be seen, that while some first tendencies can be extracted from the
results, they do not allow any clear conclusions. Mostly, because the time interval
chosen did not allow for the ring of particles to completely spread out over the do-
main. For this, the initial condition has to be adapted in order to allow a longer
range for isotropic homogeneous turbulence to be investigated. This can for example
be achieved by increasing the number of vortices, leading to overall more mergers
happening. However, this also increases the complexity and cost of the computa-
tions. In addition, further studies with varying random effects could be conducted.
Mainly the change of position of the initial ring or random displacement of the
Gaussian vortices.
Nevertheless, the fractal investigation could be a powerful tool in order to describe
the characteristic behaviour of embedded particles in turbulent flow. A possible ex-
tension in 3D would be especially interesting, where the span of dimensions could be
increased and particle sets could become completely space-filling, again forming line-
like structures of dimension HD = 1 or forming sheets of particles with dimension
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HD = 2.

7.6 Final state solution for isotropic turbulent flow with the char-
acteristic mapping method

Two-dimensional decaying turbulent flow is known to approach apparently stable
states after a long time evolution, according e.g. to [18]. For this section long term
simulations with the initial conditions of the chequerboard pattern of 10×10 vortex
cores were run. The simulation parameters were adapted in order to be more robust
for a higher amount of remappings, they can be found in table 12. All variables for
investigations where captured on a 40962 grid.

Name Value Name Value

Ncoarse 1024 Nfine 8192
Nψ 4096 Nω 8192
hfluid 1/3072 δinc,b 10−3

ϵm 10−3 kLP 256
Fluid time scheme RK3 Map update stencil 4th order

Table 12: Simulation parameters for the isotropic homogeneous turbulence simula-
tion.

Figure 43: Stream function (left) and filtered vorticity (right) at time T = 820.

As the sub-maps after some time completely fill up the available CPU RAM of
190GB, the simulation was restarted several times with the latest vorticity possible
sampled on the 40962 grid as a discrete initial condition. With that, the enstrophy
conservation to the beginning was reduced due to interpolation effects to 2 · 10−1.
While this is very large, the continuations were able to preserve the patterns within
the flow. The energy to the beginning was conserved up to a deviation of 10−2. In
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total, four simulations were run with a length of [270, 255, 170, 125], summing up to
a final time of T = 820.
As was shown by Segre et al. in [18], long term simulations for decaying 2D vorticity
fields in periodic domains approach a stable state with two large vortices of opposing
signs with the largest possible distance away from each other. This state is reached
by continuous merging of the individual vortices from the initial condition. In fact,
the merging of the vortices was already visible for the shorter version, however it
will now be shown that for longer simulations eventually all vortices merge.
The results for the stream function and vorticity can be seen in figure 43. The
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Figure 44: Enstrophy power spectrum (left) and correlation between vorticity and
stream function (right) at T = 820.

vorticity shows large random oscillations as was therefore filtered with a low-pass
filter of filter strength klp = 64 in order to show the global structures. This filter was
chosen from the isotropic spectrum, depicted in the left graph of figure 44. There,
the linear increase in enstrophy in larger scales is clearly visible, which experiences
a k1 power law. At around the filter strength the enstrophy is at minimum, so
that all the artefacts are filtered out. The two main vortices are clearly visible,
however, some minor other vortices are still present. The flow is therefore not fully
merged yet and a prolonged simulation should give more stable results. However, a
correlation between the stream function and the vorticity can already be established,
seen in the right graph of figure 44. Besides some visible outliers coming from not
yet merged vortices, most of the points follow a correlation. According to [17],
this relation should approach a hyperbolic sine function. A fit with a least-square
method, depicted in red, shows the functional relation. It was fitted to a function
of a sinh(bx) with parameters a ≈ 0.04 and b ≈ −5.21. While the side with positive
values of the stream function already largely follows the curve for large values, the
negative part is not yet fully developed, mainly coming from the one missing larger
vortex, which is also clearly visible within the graph. However it is important to
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note, that especially the minor peaks and vortices take up only very little fraction
of the domain in comparison to all the points close to the fitted curve. In [18] a
similar initial condition with a checker-board of 8 × 8 vortices merged at a time of
T = 1291, giving further evidence that the time of T = 800 was not yet able to depict
the final time. Longer simulations which were out of the scope due to large CPU
time requirements are thus expected to show a clear sinh functional relationship
between the stream function Ψ and the vorticity ω. The characteristic mapping
method is however able to reach the final states for the 2D incompressible Euler
equations and show the functional relationship, as it can already be excerpted from
the presented data.
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8 Conclusion

The characteristic mapping method in its form presented in this thesis solves the
2D incompressible Euler equations by evolving the flow map along characteristic
curves. With the gradien-augmented level set method and the computation of the
Biot-Savart law in Fourier space, several mathematical building blocks have been
presented that allow for an efficient discrete formulation and their efficient imple-
mentation on graphics processing units.

8.1 Summary

With the validations and investigations presented in this thesis, the framework cur-
rently serves as a well rounded up baseline in order to be used for further research
applications. The mathematical features were implemented in a structured and clean
way that allows for a lot of flexibility to adapt to specific needs in accuracy and ef-
ficiency, showcased in chapter 2 and 4. In space, several different grids are available
in order to fine-tune the accuracy, RAM memory requirements for both CPU and
GPU, and computational complexity. The grid of the flow sub-maps, called coarse
grid, was found to be best chosen after the available CPU RAM available to fit all
sub-maps. The fine grid, which is needed for the initial condition of the vorticity
for each sub-map, can be chosen as large as possible for the available GPU RAM.
In order to limit the amount of remappings for highly turbulent flow a low-pass
filter can be applied to prolong the simulations. The grid of the stream function,
called psi grid, was found to have a positive impact when increased, however the
current implementation is not efficient. Utilising the Hermite interpolation, the con-
vergence in space is of third order accuracy, consistent with the work of [21]. For the
discretisation in time, several methods of different order of convergence have been
implemented. This allows for first to fourth order convergence for the time-stepping
methods, dependent on the need for accuracy or computational time. More refined
time-stepping schemes RK3Mod and RK4Mod have been formulated for the given
requirements, which also proved to be more efficient and should be chosen over their
classical variants. Similar to [21], a Lagrange-interpolation of the velocity is used
in order to use the Runge-Kutta schemes. Additionally the map update scheme for
the update step of the gradient-augmented level set method has been investigated
and increased to fourth order. Overall, all implementations for the discretisation in
time were validated and yield the predicted order of convergence. Summing up, the
framework does now feature a flexible and well-documented implementation of the
characteristic mapping method for solving the 2D incompressible Euler equations.
The used methods were adapted to reproduce the current convergence analyses in
[21].
The implementation of point particles by Nicolas Saber in [15] was completed and
validated in chapter 5. It was made consistent with the implementation of the time-
stepping methods of variable convergence order. The methods were validated for
both fluid and inertial particles in each a case with fixed velocity and fluid embed-
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ded case with evolving flow map. It was found, that the more optimally chosen
third and fourth order methods with less interpolations of velocity values deliver
the best performance and are recommended for usage. Later on in section (7.3) the
implementation of the particles was validated with respect to the literature for an
estimated Stokes number. A particle relaxation time of τp ≈ 0.5 was found to corre-
spond to St = 1. With this, further simulations can be done to investigate particle
behaviour in turbulence, which is currently of high interest. The framework is able
to quickly and precisely produce particle data, which can subsequently be used for
analysis or comparison.
Also on the computer science part a lot has been done in order to make the whole
code and framework more usable. GPU programming brings in many new program-
ming concepts, of which the most important have been reported in chapter 3. This
is especially useful, as mathematics and engineering scientists working with the code
are not likely to be familiar with important programming concepts. In addition, the
whole code has been reworked to be more understandable and usable. This features
a large restructuring and commenting of the code including new function and source
file structure. But also in order to use the code many aspects have been reworked
as the extraction of variables to a settings file, the inclusion of parameters on the
command-line level and usage of parameter files to enable detailed settings of all
available parameters. The output structure was also reworked to be more consistent
with options in the parameters to control in fine details which variables should be
outputted at what times. Together with a short introduction for new users, the code
should be ready to be further used by new scientists for their studies. In order to
increase the availability, the code will be made open-source on GitHub withing the
following weeks.
At the end of the thesis two applications were presented together with new phys-
ical features added to the code in the chapters 6 and 7. The inclusion of passive
scalar fields with vanishing diffusivity in chapter 6 for turbulent mixing problems
showed great potential for further research applications. As the computation of the
advection of passive scalars does not impose any additional work, arbitrary many
passive scalars can be included and investigated. This comes in handy especially
with the zoom property of the characteristic mapping method, making it possible
to investigate very fine details of emerging structures. In chapter 7 point particle
behaviour in 2d turbulence was investigated. A first study on the dynamical be-
haviour gave further inside on chaotic behaviour and long term simulations are able
to reach near final state solutions for relaxating vorticity fields. In both chapters
two important initial conditions for theoretical studies, being the mixing layers and
turbulence emerging from a random superposition of positive and negative vortices,
have been further investigated and reworked for a more physical consistency.

8.2 Limitations and further research interests

The work in this thesis does not only provide a complete and finished project, but
rather serves as a chapter within a larger research development.
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The mathematical implementation now giving a working foundation can be further
utilised. By far the most interesting addition would be the extension to three di-
mensions. This, however, would not only need the inclusion of new mathematical
concepts from the Lie-algebra but also some restructuring of how the different di-
mensions are dealt with within the code. However, a documentation and first tests
for the three-dimensional case have already been done in [22], so an implementa-
tion would be possible and straight-forward. This would open up the possibility
for many new applications to be investigated, however memory issues could arise
quickly. Besides that, the interpolation of the velocity could be changed for a Her-
mite interpolation, as done in [22] as well. This would stabilise the interpolation
more but also increase the memory requirements for time-stepping methods of lower
order.
For the code there is much that could still be done with many small improvements
that could be made. They all represent a gradual change of the project from a C-like
code to a more modern and object-oriented code with more features of C++. This
would greatly reduce the amount of code, while increasing readability and flexibil-
ity. With the addition of vectors and classes for the variables, the whole process of
transferring from and to the GPU and detailed index addressing could be greatly re-
duced. Already the usage of classes for the settings structure proved itself to be very
useful for a flexible data structure, showcasing the potential. In addition, currently
the largest bottleneck is in the Hermite interpolation of the velocity. While a fast
implementation is present, it has to be improved in terms of memory handling. This
could in the best case be a mere check on if the issues persist on new architectures
and the worst case needs a manual implementation on how the data is loaded from
the array to be interpolated from.
The currently available initial conditions and applications with the point particle
implementation and possibility to compute passive scalars present a ready tool-set
for further usage. There are several points that could be implemented. Especially
with the forward flow map, forms of diffusion or external forces could be imple-
mented for all passive elements. With the backwards and forward flow map data as
a diffusion displacement could be tracked over time and be projected back onto the
initial condition. Also the zoom property, being arguably the largest selling point
of the characteristic mapping method in comparison to other methods, still lacks
proper use-cases in order to show-case its potential.
Both the investigation of the dynamical behaviour of inertial particles 2D-turbulence
and long time statistical turbulence, while being very promising aspects, did not de-
liver clear and interpretable results yet. Further refinement of the available initial
condition can hopefully achieve more clean results.
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9 Appendix

9.1 Convergence order in time for all time-stepping schemes

The convergence behaviour in time for all first to fourth order time-stepping schemes
will be given here. A further explanation of all used parameters can be found in
section (4.3.2). The simulations where done with a Lagrange interpolation of the
velocity with a convergence order respectant to the order of the time-stepping scheme
used.
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Figure 45: Convergence errors in time with first order Euler explicit (left) and second
order Heun (right) methods.

For the first order Euler explicit method, the error quantities are all of first order.
Surprisingly, the enstrophy and energy error are way higher than the other two error
quantities. Due to the high error, a first order implementation is not practical for
usual simulations and is mainly used for testing purposes.
The second order Heun’s method shows largely second order convergence behaviour.
However, surprisingly, the Enstrophy shows third order accuracy.
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Figure 46: Convergence errors in time with classical (left) and modified (right) third
order Runge-Kutta methods.

The two third order methods show very similar behaviour. Both show third order
convergence for all quantities. The modified version shows slightly less convergence,
especially for the enstrophy.
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Figure 47: Convergence errors in time with classical (left) and modified (right) fourth
order Runge-Kutta methods.

Both fourth order methods further decrease the error. However, only the map
and vorticity error are of fourth order accuracy, while the conservation of energy
and enstrophy is further improved to show fifth order accuracy. It is not clear why
this is the case. At an error of around 10−8 all error quantities stagnate and reach
a minimum.
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9.2 Convergence order in time for different order of Lagrange poly-
nomials

In comparison to the convergence graphs with second and third order of Lagrange
polynomials in section (4.3.2), the convergence properties with first and fourth order
implementation are given in the subsequent graphs.
The values for first order are as expected, with first order behaviour for all quantities
except the conservation of enstrophy. For fourth order, the order of convergence
stays is not further increased with energy and enstrophy error being very similar to
the third order implementation. Surprisingly however, the higher order Lagrange
interpolation is able to decrease the map and vorticity error by a noticeable amount,
which is roughly a factor of 8.
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Figure 48: Convergence errors in time with first order (left) and fourth order (right)
Lagrange interpolation of the velocity.
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