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1 Introduction

This manuscript describes some of my work at the Laboratoire Kastler Brossel on
Casimir physics. I joined the group “Fluctuations Quantiques et Relativité” at the
LKB in 2009 and got recruited in 2011 in the CNRS as Chargé de Recherche.

Casimir physics study the many phenomena related to fluctuations-induced forces.
Those include the van der Waals interaction between atoms or molecules as well as
the Casimir interaction between macroscopic bodies.

There are two main interpretations for Casimir interactions. In the so-called
“field” interpretation, the vacuum field fluctuates and the bodies act merely as
boundary conditions for those fluctuations. On the other hand, in the so-called
“source” interpretation, fluctuations originates inside the matter forming the bod-
ies and propagates through the vacuum field. The field interpretation was used by
Casimir in his original paper [1] where he studied the interaction between perfectly
reflecting plane-parallel plates. The fact that the plates were perfectly reflecting
allowed to enforce hard boundary conditions on the vacuum field. The source inter-
pretation is used to explain the van der Waals interaction where a fluctuating dipole
in one atom creates a field which polarize the other atom which then acts back on
the first atom.

There is no “correct” interpretation and source and field interpretations have
been shown to be completely equivalent [2]. In fact, for the situation of explaining
spontaneous emission of an excited atom, it was shown that one can go from one
interpretation to the other simply by changing the ordering of atomic and field
operators used to calculate expectation values [3]. The same line of reasoning has
been done for the Casimir interaction [4].

There is a surprisingly large number of different methods to calculate the Casimir
interaction. Most of those methods though, being based on quantum field theory,
often require some regularization methods in order to get rid of infinite quantities.
In this manuscript, we present a method of calculating the Casimir interaction be-
tween an arbitrary number of bodies. The method is expressed solely in terms of
the scattering properties of the bodies in interaction and do not require any regu-
larization.

We begin by carefully deriving our method of calculation based on the scattering
theory and proceed to show some applications. Those applications include compari-
son with Casimir experiment using grating surfaces, quantum reflection which arise
from the Casimir-Polder interaction between an atom and a material surface and
other related phenomena in Casimir physics.

2 The Casimir effect

2.1 Casimir interaction energy between scatterers

In this section, we derive an expression for the Casimir interaction energy between an
arbitrary number of scatterers in thermal equilibrium with their surrounding which
we take to be vacuum. We base our demonstration on the fundamental concept
which is the electromagnetic local density of states (LDOS) and its relation with
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scattering operators.
As an introduction, let us first recover the energy density of the blackbody radia-

tion at temperature T . Consider a blackbody cavity of volume V . Thermodynamics
and quantification of the field inside of the cavity leads to a mean (internal) energy
Uω for a given frequency

Z−1 = 2 sinh βℏω/2 (1)

Uω = −∂ logZ
∂β

= ℏω
(
nPl +

1

2

)
(2)

nPl = (eβℏω − 1)−1 (3)

with β−1 = kBT . In vacuum, the density of states per unit volume per unit angular
frequency is ρ0(ω) =

ω2

π2c3
. The total energy inside the cavity is given by

U =

∫
V

d3r

∫ ∞

0

dω ρ0(ω)Uω = V

∫ ∞

0

dω
ℏω3

π2c3

(
nPl +

1

2

)
(4)

The observable blackbody energy density per unit volume per unit angular frequency
uω is the part of the above expression without the zero-point energy. We recover
the usual expression

uω =
ℏω3

π2c3
nPl (5)

From this example and eq. (4), we see that any observable can be calculated as an
integral of the spectral density of said observable weighted by the density of states.
We will now use this formalism in order to derive the Casimir interaction energy. We
place in the cavity an ensemble of N scatterers. The scatterers are unspecified, we
merely require them to be of finite volume. In that case, the ensemble of scatterers
can always be embedded in a (fictitious) sphere of radius R with respect to which a
scattering setup can be properly defined. The mere presence of the scatterers makes
the density of states ρ(r, ω) a local quantity which now depends of the position r
inside the cavity.

We define ∆ρ(r, ω) = ρ(r, ω)− ρ0(ω) the difference of the LDOS with respect to
the situation without any scatterers. Importantly, ∆ρ(r, ω) vanishes for r far from
any scatterers surfaces. We can then increase the size of the blackbody cavity to
infinity and define

∆D(ω) =

∫
d3r∆ρ(r, ω) (6)

and refer to D(ω) as the global density of states [5]. We cannot say that the quantity
∆D(ω) is finite because of the behaviour of the LDOS ρ(r, ω) on the surface of the
scatterers but at least it does not depend explicitly on the volume of the blackbody
cavity, as it should. Next, instead of the internal energy (which can be calculated) we
are now rather interested in the Helmholtz free energy A or rather its modification
because of the presence of the scatterers

Aω = − 1

β
logZ (7)

∆Avac =

∫
dω∆D(ω)Aω (8)
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Again, the quantity ∆Avac is the modification of the vacuum free energy induced
by the presence of the ensemble of scatterers. We are now in position of making
the connection with the scattering theory. Indeed, we now invoke the fundamental
relation between global density of states and Wigner time delay [6]. Defining Q, the
Wigner-Smith time-delay operator [7], we have

Q = −iS†∂S

∂ω
= −i ∂

∂ω
logS (9)

∆D(ω) = trQ/2π =
1

2iπ

∂

∂ω
log detS (10)

where the last equation is nothing more than the Krein-Friedel-Lloyd formula. In
the above equations, we have used the unitarity of the scattering operator S† = S−1

and the fact that it is trace-class so that tr log = log det. As mentioned earlier,
the scattering operator S can be defined with respect to a sufficiently large sphere
enclosing all scatterers. Putting everything together, we arrive at

∆Avac =
1

2iπ

∫
dω

[
∂

∂ω
log detS

]
Aω (11)

Finally, we now define the Casimir interaction free energy Aint(L) as

Aint(L) = ∆Avac(L)−∆A∞
vac (12)

In the above equation, the quantity L symbolically represents the position of all
scatterers with respect to each others. The quantity ∆A∞

vac corresponds to the sit-
uation where all scatterers are infinitly separated from each others. We see that in
order to calculate the Casimir interaction energy, one has to extract from the scat-
tering operator S (or rather its determinant) only the part which explictly depends
on the position of the scatterers with respect to each others. This will constitute
the next section.

2.1.1 The scattering operator of an ensemble of scatterers

Let us briefly recall the definition of the scattering operator S first in the case of
one scatterer. Given a bounding surface enclosing the scatterer and {V−,V+} basis
states for the incoming and outgoing fields. We have

ψin(r) = V−(r)cin (13)

ψout(r) = V+(r)cout (14)

Then, the outgoing amplitudes are related to the incoming ones by

cout = Scin (15)

A few words about the basis states V∓: those are line vectors collecting a number
of basis functions φk(r). Concretly, those could be for instance a number of plane
waves or vector spherical harmonics. The index k collects any number of quantum
numbers defining the basis (frequency, wavector, angular momentum, etc...). In a
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more abstract way, the basis states V∓ collects any number of scattering channels
or scattering ports. In a lossless embedding medium, the outgoing channels V+ can
be chosen to be the time-reversal of the incoming ones V−.

In the case of an ensemble of N scatterers, the arguments above basically still
holds. We need a bounding surface enclosing all scatterers. It is convenient to
express the total scattering operator S in a multicenter basis: given the position
vectors of each scatterers ri, 1 < i < N , the basis states V∓ will now consist of
functions φ∓k(r − ri) centered on each scatterer. We now introduce the concept
of internal and external scattering channels. Intuitively, a set of internal scattering
channels φi

∓ is one linking two different scatterers. In other words, internal channels
between scatterer n and m are such that

φi
−(r− rm) = φi

+(r− rn)Tnm (16)

meaning that incoming channels on scatterer n are obtained from applying the
translation operator Tnm to the outgoing channels from scattererm. We then collect
in the external channels all other scattering channels. External scattering channels
include for instance channels connecting each scatterer to the enclosing bounding
surface.

1

1

3 2

2

Figure 1: Scattering diagrams for the case of N = 2 and N = 3 scatterers. Each
diagram consists ofN external ports (blue), N external channels (solid lines), N(N−
1) internal ports (red) and N(N − 1)/2 internal channels (dashed lines).

Obviously, the total scattering operator S will be expressed in terms of the
external channels only. Indeed, the derivation of S is a known problem which has
been tackled both in a very concrete way [8] or in a more abstract way [9, 10]. It
is based on the so-called internal channels elimination method which is formally
similar to the closed channels elimination method of multichannel quantum defect
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theory. In the concrete way, each scatterer is a sphere and the basis states are
vector spherical harmonics leading to the so-called generalized multiparticle Mie-
solution formalism. In the abstract way, the total scattering operator is obtained
for unspecified scatterers and basis states. We will briefly rederive the scattering
operator S in a way suited to our purpose. In the following, we will work with
operators in block-matrix form. We first define the operators Sn, the scattering
operator of each individual scatterer. These operators act upon the basis functions
φ∓(r− rn) some of which are internal channels if they link to other scatterer. This
leads to the following block structure

Sn =

(
See
n Sei

n

Sie
n Sii

n

)
(17)

We consider that each of the scatterer can be absorbing i.e. it is described by complex
permittivities and permeabilities. This leads, a priori, to non-unitary scattering
operators Sn and S. However, in the derivation of eq. (9), we have used the unitarity
of S. Therefore, we have to include in the operators Sn any channels responsible
for the absorption. We include these absorption processes in additional external
channels. By doing so, we now work with unitary individual operators Sn which
will necessarily lead to a unitary total operator S. As a consequence of unitarity, we
have the following property (which we will use later) for the individual scattering
operators:

detSn =
det (See

n )

det
(
Sii
n

)∗ if S†
n = S−1

n (18)

Next, we introduce two auxiliary multi-centered operators S and W. Those act on
the full basis states V∓ which include all channels i.e. internal and external centered
on all scatterers. The operator S collects all individual scattering operators as if the
different scatterers were not interacting with each others. We choose to partition
it according to (multi-centered) external and internal channels. Each blocks are
themselves block-diagonal in terms of the different scatterers:

S =

(
S
ee

S
ei

S
ie

S
ii

)
=



See
1 Sei

1
. . . . . .

See
N Sei

N

Sie
1 Sii

1
. . . . . .

Sie
N Sii

N


(19)

Note that the off-diagonal blocks Sie and Sei are in general non-square since there
are N external ports and N(N − 1) internal ones.

Then, the operator W is the weighted adjacency matrix of the graph associated
to the situation. The weights over each internal channel being simply the relevant
translation operator T. Obviously, by definition the operator W only acts over the
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internal channels. It then has then following structure:

W =

(
0 0

0 W
ii

)
(20)

[
W

ii
]
nm

=

{
Tkl if (nm) is an internal channel k → l

0 otherwise
(21)

Above, the indexes n, m make reference to internal ports. The notation k , l make
reference to particular scatterer. At the end of the section, we will give explicit
expressions for W in simple cases of two and three scatterers.

We then have the operator S which only depends on the scattering properties
of each scatterer, independently of their relative positions. On the other hand, the
operator W only depends on the relative position of each scatterer, independently
of their scattering properties. Remarkably, the total scattering operator S of the
ensemble of scatterer has a rather simple form. It is the part acting on the external
channels of the operator (1− SW)−1

S i.e.

S = X (1− SW)−1
SXT (22)

if X denotes a projector on the external channels. Using the above partitioning of
the operators S and W and the expression of the inverse of a 2× 2 block matrix, we
obtain the explicit expression for S

S = S
ee + S

ei
W

ii(1− S
ii
W

ii)−1
S
ie (23)

2.1.2 The determinant of the scattering operator

Having obtained an explicit expression for the total scattering operator S of an
ensemble of N scatterers eq. (23), we are left evaluating its determinant. We will
use the so-called matrix determinant lemma which enables us to manipulate the
determinant of the sum of two matrices.

We first obtain

detS =
det(See)

det(1− SiiWii)
det
[
1− (Sii − S

ie
S
ee−1

S
ei)Wii

]
(24)

As a consequence of the unitarity of the individual scattering operators Sn, we have

Sie
nS

ee−1
n Sei

n = Sii
n − Sii†−1

n (25)

So, we get

detS =
det(See)

det(1− SiiWii)
det(1− S

ii†−1
W

ii) (26)

After additional use of the matrix determinant lemma on the last term of the above
equation, we get

detS =
det(See)

det(Sii)∗
det(−Wii)

det(1−W
ii−1

S
ii†)

det(1− SiiWii)
(27)
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Let us discuss each terms of this expression. The first one, thanks to the property
in eq. (18) and the fact that both See and Sii are block-diagonal gives

det(See)

det(Sii)∗
=
∏
n

detSn (28)

For the second term, we note that the dimension of Wii, in terms of blocks, is
N(N − 1) which is the number of internal ports and which is an even number. So

det(−Wii) = det(Wii) (29)

For the last term, we will use the fact that in a lossless embedding medium W
ii

is unitary. Indeed, it is easy to see that the matrix Wii
W

ii† is block-diagonal with
elements TklT

†
kl = 1 if the medium is lossless. From the unitarity of Wii, we get

det(1−W
ii−1

S
ii†)

det(1− SiiWii)
=

det(1− S
ii
W

ii)∗

det(1− SiiWii)
(30)

Putting everything together, we obtain our main result

detS =
∏
n

detSn det(Wii)
det(1− S

ii
W

ii)∗

det(1− SiiWii)
(31)

Under this form, it becomes evident that detS is a complex number of unit modulus
providing that Sn and Wii are unitary.

2.1.3 Expression of the Casimir interaction free energy

We have derive the expression of the determinant of the total scattering opera-
tor S of an ensemble of N scatterers. In the subtraction in eq. (12), only the
distance-dependent part of this determinant will remain. It means that the first
term

∏
n detSn which represent a kind of self-energy for each scatterer drops out.

We also discard the second term det(Wii). Indeed, this term originates because we
work in a multicentered basis. The outgoing field, analyzed on the enclosing surface,
is a sum of fields originating from each scatterer. Its phase-shift with respect to the
incoming field must take into account the multicentered character of our basis via
all the translations from one scatterer to the other encoded in Wii. In the expression
of the Casimir interaction free energy, we only keep the last term in eq. (31) to get

Aint(L) = − 1

π

∫
dω

[
∂

∂ω
Im log det(1− S

ii
W

ii)

]
Aω (32)

Finally, we wish to transform a bit the above expression. It can be shown that the
quantity Im log det(1 − S

ii
W

ii)Aω vanishes both for ω = 0 and ω → ∞. Under
this condition, we can perform an integration by parts on eq. (32). Noting that
∂Aω

∂ω
= ℏ

2
coth βℏω/2, we obtain our final expression

Aint(L) =
ℏ
2π

∫
dω coth βℏω/2

[
Im log det(1− S

ii
W

ii)
]

(33)
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Other quantities of interest are the Casimir interaction force Fint = −∂Aint/∂L
as the change in interaction energy as a function of a change in the arrangements
of the scatterers and the interaction entropy Sint = −∂Aint/∂T . The derivative
with respect to L, the relative positions of the scatterers, acts only on Wii and the
derivative with respect of the temperature acts only on the hyperbolic cotangent (we
neglect the variation with temperature of the scattering properties in S

ii). Under
the additional assumption that we can interchange derivatives and integrals, we get

Fint(L) =
ℏ
2π

∫
dω coth βℏω/2

[
Im tr (1− S

ii
W

ii)−1∂LS
ii
W

ii
]

(34)

Sint(L) = −βℏ
2ω

4πT

∫
dω csch2βℏω/2

[
Im log det(1− S

ii
W

ii)
]

(35)

The internal energy Uint can be obtained plugging Uω in eq. (32) or equivalently
from the thermodynamic relation Aint = Uint−TSint. Finally, we note that eq. (33)
has a non-vanishing expression for T → 0 giving the Casimir interaction energy Eint

Eint(L) = lim
T→0

Aint(L) =
ℏ
2π

∫
dω Im log det(1− S

ii
W

ii) (36)

2.1.4 Explicit expressions for few scatterers

The vast majority of problem studied in Casimir physics involve the interaction
between two objects. We will therefore give an explicit expression of the Casimir
interaction energy in that case. We then give an explicit expression for the case of
three objects, a case which is yet tractable explicitly and which illustrate concretly
how to extrapolate to N objects.

Consider then two objects in interaction. There is N = 2 external ports from
which originate 2 external channels. There is also N(N − 1) = 2 internal ports
which lead to 1 internal channel. In this simple case, we have

S
ii =

(
Sii
1 0
0 Sii

2

)
(37)

W
ii =

(
0 T12

T21 0

)
(38)

det(1− S
ii
W

ii) =

∣∣∣∣ 1 −Sii
1T12

−Sii
2T21 1

∣∣∣∣ = det(1− Sii
1T12S

ii
2T21) (39)

It turns out that the case with two scatterers is somewhat of a special case because
N = N(N − 1) and do not illustrate how the situation evolves with N > 2. The
reason is that in order to write down the operators S and W one has to choose how
to index the internal ports i.e. which internal port is attached to which scatterer.
For two scatterers, this indexing is trivial : port 1 attached to scatterer 1 and port
2 attached to scatterer 2 . One has to go to three scatterers at least to have a more
general picture.

We now consider three objects in interaction. There are N = 3 external ports
and N(N − 1) = 6 internal ones. We want to keep the block-diagonal structure of
the operator S. A natural indexing method is to sequentially associate internal ports
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with scatterers i.e. ports 1 and 2 attached to scatterer 1 , ports 3 and 4 attached to
scatterer 2 and so on. Of course, the end result will not depend on how we choose
that indexing method. With this indexing method, we have

S
ii =

Sii
1 0 0
0 Sii

2 0
0 0 Sii

3

 (40)

W
ii =


0 0 0 0 0 T13

0 0 T12 0 0 0
0 T21 0 0 0 0
0 0 0 0 T23 0
0 0 0 T32 0 0
T31 0 0 0 0 0

 =

 0 T̃12 T̃13

T̃21 0 T̃23

T̃31 T̃32 0


(41)

det(1− S
ii
W

ii) =

∣∣∣∣∣∣
1 −Sii

1 T̃12 −Sii
1 T̃13

−Sii
2 T̃21 1 −Sii

2 T̃23

−Sii
3 T̃31 −Sii

3 T̃32 1

∣∣∣∣∣∣ (42)

= det(1− Sii
1 T̃12S

ii
2 T̃21) det(1− Sii

1 T̃13S
ii
3 T̃31)

× det
[
1− (Sii

2 T̃23 + Sii
2 T̃21S

ii
1 T̃13)(1− Sii

3 T̃31S
ii
1 T̃13)

−1

(Sii
3 T̃32 + Sii

3 T̃31S
ii
1 T̃12)(1− Sii

2 T̃21S
ii
1 T̃12)

−1
]

(43)

As we see, an explicit formula becomes quickly intractable. Nevertheless, the above
expression is interesting : the first two terms describe the Casimir interaction be-
tween scatterers 1 ↔ 2 and 1 ↔ 3 . The last term though cannot be so simple
and reflect the fact that Casimir (or van der Waals) interactions are non-additive.
It is the interaction between scatterers 2 ↔ 3 taking into account the presence of
scatterer 1 .

2.1.5 Expression in terms of imaginary frequencies

It turns out that the final expression in eq. (33) is of little practical use. The integral
over real frequencies ω is tedious and it is hard to obtain an accurate numerical result.
It is because the end result of the integral involves near-cancellations between large
positive and negative parts. In addition to that, the integral converges slowly at
large frequencies because the integrand has an oscillatory behavior. Hopefully, we
are able to obtain a particularly simple and easy-to-evaluate expression using contour
integration in the complex plane as we will see. We introduce a complex frequency
z = ω + iξ and the function e(ω):

e : R→ C

ω → log det(1− S
ii(ω)Wii(ω)) (44)

where we have explicitly written down that both Sii and Wii are in general functions
of the frequency ω. It can be shown that the function e can be extended to complex
arguments. We will come back to this point later. We then know how to define
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the function e(z). On the real axis, we have the property e∗(ω) = e(−ω) meaning
that the real part of e is an even function of ω whereas its imaginary part is an odd
function. In the whole complex plane, this property becomes a Schwartz reflection
principle along the imaginary axis i.e. e∗(z) = e(−z∗). Then, we define the function
f :

f : C→ C

z → coth βℏz/2 [e(z)] (45)

Our goal is to apply Cauchy’s theorem on the integral of f(z) over a well chosen
contour. Let us first discuss the analytic properties of f(z). The total Smatrix given
by eq. (23), when extended in the complex frequency plane, has poles corresponding
to the modes of the system of scatterers. This can be the modes corresponding
to each individual scatterer (the poles of S) or the modes of the complete system
resulting from a particular spatial arrangements of the scatterers (the zeroes of
det(1 − S

ii
W

ii)). In the expression of the interaction energy, only the latter are
present. Application of the logarithm function then leads to logarithmic singularities
for the function e(z) from which branch cuts emerge. We are not interested any
further in those singularities because it can be shown that they necessarily lie in
the complex lower half-plane and that the branch cuts can always be chosen to also
totally lie in the complex lower half-plane. We wish to choose a contour which lie
in the complex upper half-plane which will then avoid all the modes of the system
of scatterers.

In addition to singularities from e(z), the function f(z) inherits those from the
hyperbolic cotangent. Those lie on the imaginary axis at z = in2πkBT/ℏ ≡ iξn, n
being an integer. We call those (purely imaginary) frequencies Matsubara frequen-
cies. The residue is

Res(f(z), z = iξn) =
2kBT

ℏ
e(iξn) (46)

As a contour, we choose an outer semi-circle CR of radius R, an inner semi-circle Cη
of radius η. Both semi-circles lie in the upper half-plane, we close our contour by
parts on the real axis covering ω ∈ [−R,−η] and ω ∈ [η,R] and the whole contour
is oriented counterclockwise. Lastly, we deform the contour by taking the limits
R → ∞ and η → 0 and apply Cauchy’s theorem. Upon deformation

� the integral over CR vanishes

� the integral over Cη picks up the residue of f(z) at z = 0 viewed from a −π
angle

� the result of Cauchy’s theorem picks up the residues of f(z) at z = iξn, n ≥ 1,
viewed from a +2π angle

Putting everything together, we obtain

−
∫ ∞

−∞
dω coth βℏω/2 [e(ω)] = 2iπ

2kBT

ℏ

∞∑
n=0

′
e(iξn) (47)
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We have introduced above two notations. The slashed integral reads −
∫∞
−∞ =

limη→0

∫ −η

−∞+
∫∞
η

and the primed sum
∑∞

n=0

′
means that the term with n = 0

is weighted with 1/2. Finally, taking advantage of the parity properties of f(ω) and
if the slashed integral is equal to the regular one, we obtain a particularly simple
expression for the Casimir interaction free energy:

Aint(L) = kBT
∞∑
n=0

′
e(iξn) ⇐⇒ −

∫ ∞

−∞
dω f(ω) =

∫ ∞

−∞
dω f(ω) (48)

Providing that the function e(iξ) can be evaluated, this expression is now trivial to
use since the series is exponentially convergent. An expression for the limit T → 0
can be easily obtained by noting that 2π

ℏ Aint =
2πkBT

ℏ
∑∞

n=0

′
e
(
in2πkBT

ℏ

)
is a Riemann

sum. We then have

Eint(L) = lim
T→0

Aint(L) =
ℏ
2π

∫
dξ e(iξ) (49)

which bears a striking formal resemblance with eq. (36). This is why, in numerous
work and as far as T = 0 is concerned, this whole section on the application of
Cauchy’s theorem is often summed up by saying that the replacement ω → iξ is to
be done.

2.2 Applications

In this section, we present a few concrete applications. The formulas presented in the
previous section are basis-independent. All is left is to specify a basis in which the
operators are represented. This amounts to specify the quantum numbers defining
a scattering channel. Obviously, this is chosen depending on which type of scatterer
are considered.

In the following, we begin with the simplest application of the scattering formula
which is the study of the Casimir interaction energy between two plane-parallel
mirrors. This will lead to the so-called Lifshitz formula which can then be used in
approximations for non-planar geometries. We continue with situations involving
diffraction gratings for which a few experiments have been performed.

We start from the expression of the Casimir interaction free energy between
two objects given by eqs. (33) and (39). We introduce the so-called ”round-trip”
operator ρ as

ρ = Sii
1T12S

ii
2T21 (50)

in terms of the objects’ scattering operators Si acting among the internal channels
(which we might refer to as reflection operators) and translation operator T (in our
case, we will always have T12 = T21 = T).

2.2.1 Plane-parallel mirrors: The Lifshitz formula

Consider now the situation of two plane-parallel mirrors. The mirrors lie in the
(xy) plane and are separated by a distance L along the z direction. This distance
is the only degree of freedom and coincide with the symbolic quantity L entering
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eq. (33). Obviously a basis adapted to this geometry consists of plane waves. Those
are characterized by a wave vector k and a polarization σ. Therefore, a scattering
channel is defined by the three components of the wave vector kx, ky and kz and
the polarization σ: |kx, ky, kz, σ⟩. We will not use this basis though but one very
closely related to it: we wish to emphasize on the good quantum numbers which
are conserved through a scattering process. Those are the norm of the wavevector
k = ω/c (which correspond to the fact that the mirrors are static and therefore
the reflection conserve the frequency ω) and the two components kx and ky (which
correspond to the fact that we consider the reflection by the plane mirror to be
specular). We collect the two components kx and ky in a vector q as k = q+ kz êz.

The z−component is now deduced as kz = ±
√
ω2/c2 − q2 where the sign of kz

indicates the direction of propagation. Our final basis is then |ω,q,±, σ⟩. Finally,
we consider the mirrors to be made of a linear, homogeneous material whose optical
properties can be described by a local relative permittivity ϵ(ω) and permeability
µ(ω). Under those assumptions and the fact that the positive z axis goes from
mirror 1 to mirror 2 , we have

S1|ω,q,−, σ⟩ = rσ1 (ω,q)|ω,q,+, σ⟩ (51)

S2|ω,q,+, σ⟩ = rσ2 (ω,q)|ω,q,−, σ⟩ (52)

T12|ω,q,+, σ⟩ = eikzL|ω,q,+, σ⟩ (53)

T21|ω,q,−, σ⟩ = eikzL|ω,q,−, σ⟩ (54)

ρ|ω,q,+, σ⟩ = rσ1 r
σ
2 e

2ikzL|ω,q,+, σ⟩ (55)

Above, the matrix elements of the scattering operators are Fresnel reflection ampli-
tudes [11] for the two polarizations σ = s and σ = p which can be simply written in
terms of the z-component of the wavevector in vacuum kz and in the material Kz:

rs =
µkz −Kz

µkz +Kz

(56)

rp =
ϵkz −Kz

ϵkz +Kz

(57)

Kz =
√
ϵµω2/c2 − q2 (58)

The plane-plane geometry is therefore a very special case where the operator ρ and
hence also log(1− ρ) is diagonal in a basis of plane waves. The continuous variable
q can be discretized in the usual way by imposing periodic boundary conditions on
a cell of dimension 2π

Lx
× 2π

Ly
in the (kx, ky) space to obtain

Im log det(1− ρ) −−−−−−→
Lx,Ly→∞

LxLy

4π2

∑
σ=s,p

∫
d2q Im log

[
1− rσ1 (ω,q)r

σ
2 (ω,q)e

2ikzL
]
(59)
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and Lx, Ly can be identified with the transverse dimensions of the plane mirrors 1.
We finally get

A(L) =
ℏ
2π

∫ ∞

0

dω coth βℏω/2

(∑
σ=s,p

∫
d2q

4π2
Im log

[
1− rσ1 (ω,q)r

σ
2 (ω,q)e

2ikzL
])
(60)

= kBT
∞∑
n=0

′ ∑
σ=s,p

∫
d2q

4π2
log
[
1− rσ1 (iξn,q)r

σ
2 (iξn,q)e

−2κzL
]

(61)

where now A = Aint/LxLy is a free energy per unit area and κz =
√
ξ2n/c

2 + q2.
This is the so-called Lifshitz formula. It has been derived (for the Casimir force)
by EM Lifshitz in his 1956 seminal paper [12] using a completely different approach
based on fluctuating electromagnetism.

For the sake of simplicity, let us define dimensionless quantities and an energy
spectral density. As a unit of frequency, we choose the free spectral range ω0 of
the Fabry-Perot formed by the two plane mirrors. We also define a characteristic
thermal frequency ωT and associated thermal wavelength λT . Finally, we define a
characteristic unit of energy E0 in terms of ℏ, c and L. We set

ω0 = 2π × c

2L
(62)

ωT =
2kBT

ℏ
= 2π × c

2λT
; λT ≈ 12µm@T = 300K (63)

E0 =
ℏc

8π2L3
(64)

eσ(ω) = L2

∫
d2q log

[
1− rσ1 (ω,q)r

σ
2 (ω,q)e

2ikzL
]

(65)

and we get

A(L)

E0

=

∫ ∞

0

d

(
ω

ω0

)
coth

(
λT
L

ω

ω0

)
Im

[
es
(
ω

ω0

)
+ ep

(
ω

ω0

)]
(66)

=
ξ1
ω0

∞∑
n=0

′
[
es
(
i
ξn
ω0

)
+ ep

(
i
ξn
ω0

)]
(67)

In the last equation, ξn
ω0

= nπ L
λT

where ξn are the Matsubara frequencies. Note that,

in first approximation 2, the spectral densities eσ(ω) do not depend on the temper-
ature but only on the geometry. The only effect of the temperature is throught the
hyperbolic cotangent weighting function which will enhance the effect of the low

1This point actually deserves a discussion: if the plane mirrors have infinite transverse dimen-
sion, tr log(1−ρ) is actually infinite because it is an extensive quantity. In this case, the operator
log(1−ρ) is not trace class but is anyway ill-defined because there cannot be an ”outside from the
two mirrors” from which incoming fluctuations are scattered to. The solution is to divide by the
size of the mirrors to get an intensive quantity.

2Rigorously, the optical properties of the scatterers depend of the temperature. Here, we neglect
this effect.
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frequencies. We conclude with an interesting formula: by using the series represen-
tation of the hyperbolic cotangent, we can show that

coth

(
λT
L

ω

ω0

)
= ω0

L

λT

∞∑
n=0

′ 2ω

ω2 + ξ2n
(68)

Re [eσ(iξ)] = eσ(iξ) =
1

π

∫ ∞

0

dω
2ω

ω2 + ξ2
Im [eσ(ω)] (69)

The above formula is interesting because it is a Kramers-Kronig relation: the spec-
tral density eσ(ω) is actually a causal linear response function which obeys Kramers-
Kronig relation. Its real and imaginary parts are therefore related through a Hilbert
transform. It also emphasizes the fact that the value eσ(iξn) for a single Matsubara
frequency is always an integral over all frequencies of the spectral density. This
integral is weighted by the function 2ω

ω2+ξ2n
which has a maximum at ω = ξn.

2.2.2 Drude-plasma models for metallic mirrors

In order to illustrate an important point concerning the comparison between theory
and experiments, let us now express the preceding formula when applied to a metallic
plane mirror. To that end, we have to specify a form for the relative permittivity
ϵ(ω) (we consider here non-magnetic metals i.e. we take µ(ω) = 1). The complex
refractive index N = n + ik of usual materials is tabulated for a certain frequency
range and the associated relative permittivity is given by ϵtab(ω) = N2(ω). Those
tabulated data have to be extrapolated both at low and high frequencies. While
the extrapolation to high frequencies do not pose a problem, there is in the Casimir
physics community two different approaches for the extrapolation to low frequencies.

A reasonable way of extrapolating the relative permittivity to low frequencies is
to use a Drude model

ϵDrude(ω) = 1− ω2
p

ω(ω + iγ)
. (70)

While rather crude, this model reproduces the static conductivity σ(0)
ϵ0

=
ω2
p

γ
for

suitable values of the plasma frequency ωp and the relaxation frequency γ. Another
way is to neglect the conduction electrons relaxation properties and to use a so-called
plasma model

ϵplasma(ω) = 1− ω2
p

ω2
. (71)

This model obviously do not reproduce the properties of metals at low frequencies
and one could wonder why use it in the first place. It turns out that the most precise
Casimir experiments are in agreement with theoretical calculations using the plasma
model, excluding calculations using the more physically accurate Drude model. This
state of affair has been dubbed the ”Drude-plasma puzzle” and has not yet been
solved. The issue appeared back in 2007 [13] and has again been confirmed very
recently [14].

To gain insight on the differences in using the Drude or the plasma models, let us
illustrate the two important preceding formulas : the Lifshitz formula eq. (66) and
the Lifshitz-Matsubara formula eq. (67) for a Drude relative permittivity. We take
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a Drude permittivity at all frequencies for the sake of clarity because we are only
interested into what happens at low frequencies. We take numerical values ℏωp = 9
eV and ℏγ = 35 meV which are typical of good metals (those particular values are
often used to model gold). As for the other parameters, we take T = 300 K and a
distance L = 500 nm (the most precise experiments are done at ambient temperature
for distances ranging from 300 to 800 nm). The Lifshitz formula associated with the
particular plane-plane geometry lends itself into an analysis in terms of contributions
from s or p polarizations as well as from propagative (ω2/c2 > |q|) or evanescent
(ω2/c2 < |q|) waves.

We show in figures (2) and (3) the illustration of the Lifshitz formula (66) for
the parameters cited above. Every features in those figures are associated with the
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Figure 2: Illustration of the Lifshitz formula (66) for the s polarization. The Casimir
free energy is the integral of the functions shown.
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Figure 3: Illustration of the Lifshitz formula (66) for the p polarization. The Casimir
free energy is the integral of the functions shown.

different modes pertaining to the geometry of two plane-parallel metallic surfaces :

� the modes associated with the Fabry-Perot cavity formed by the two mirrors,

� the modes associated with surface plasmons and

� the modes associated with magnetic eddy currents.
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Fabry-Perot modes are propagative in nature and occur for both s and p polar-
izations in the frequency range 0 < ω ≲ ωp. They show up in both figures (2)
and (3) as excess in free energy density near the frequencies ω ≈ nω0 together with
a default in free energy density between those frequencies. With the Drude model
for the permittivity which we use, the plasma frequency ωp acts as a rather sharp
frequency cut-off for those modes. With a more realistic model based on tabulated
optical data, the vanishing of those modes would be smoother. The net effect (ex-
cess or default) of those modes when integrated over all frequencies is not obvious.
It turns out though that the net effect is always a default in free energy density.
Surface plasmons modes occur for evanescent p polarization in a frequency range
0 < ω ≲ ωp/

√
2 and therefore show up in figure (3). As already studied in ref. [15],

the two plasmonic branches lead to both an excess and default in the free energy
density, depending on the frequency. Finally, the magnetic eddy currents modes
occur for evanescent s polarization in a frequency range 0 < ω ≲ γ. They show up
as the very sharp peak near ω = 0 in figure (2) and they contribute to an excess of
free energy density.

We now illustrate the Lifshitz-Matsubara formula (67) in figure (4). For the sake

-s(ⅈ ξn
ω0

)

p(ⅈ ξn
ω0

)

2 4 6 8
n π L/λT

-0.20

-0.15
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σ(ⅈ
ξn
ω0

)

Figure 4: Illustration of the Lifshitz-Matsubara formula (67). Note that the sign
of the s polarization contribution has been changed for clarity. The Casimir free
energy is the area of the rectangles.

of clarity, we show the functions −es
(
i ξn
ω0

)
and ep

(
i ξn
ω0

)
. The Casimir free energy

is the sum of the area of the rectangles in figure (4) and is obviously a negative
quantity.

Now that we have some intuition about every feature in the free energy spectral
density eσ(ω) we can study what happens in the limiting case where the conduction
electron relaxation parameter γ vanishes; which will be the situation when using
the plasma model to describe the low frequency part of the relative permittivity
ϵ(ω). In the limit γ → 0, nothing much happens concerning the contribution to
the free energy originating from the Fabry-Perot modes and the surface plasmons
modes. This is not surprising as those are loosely dependent on γ only and the Drude
parameters we have chosen already correspond to a good metal having γ/ωp ≪ 1.
The situation is less clear for the contribution from the eddy currents which are
restricted to the frequency range 0 < ω ≲ γ. It turns out that the sharp peak
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corresponding to the contribution of the eddy currents in fig. (2) becomes a dirac
delta function δ(ω) in the limit of γ → 0. Therefore, the contribution of the eddy
currents becomes a constant independent of γ in the limit γ → 0. We stress that
this is a direct consequence of the finite temperature T (for T = 0, the contribution
of the eddy currents would vanish as γ → 0).

Therefore, as far as the Lifshitz formula is concerned, the calculated free energy
is continuous and smooth in the limit γ → 0. The situation is different when
using the Lifshitz-Matsubara expression eq. (67). Remember that this expression
corresponds to the slashed integral as defined around eq. (47) which amounts to
remove from the frequency integral the single point ω = 0. As such, the Lifshitz-
Matsubara expression eq. (67) fails at taking into account the contribution from the
magnetic eddy currents as it becomes a Dirac delta function δ(ω) as γ → 0. The
Casimir free energy for metallic mirrors when calculated with the Lifshitz-Matsubara
formula is discontinuous at γ = 0. Going back to the ”Drude-plasma puzzle”, every
theoretical calculation is always performed using the Lifshitz-Matsubara formula.
Since it is a calculation with γ = 0 which is in agreement with the experiments and
we have just shown that this calculation do not take into account the interaction
between magnetic eddy currents, we have to conclude that, in the experiments, the
interaction between eddy currents is somehow suppressed.

Recently, it has been recognized that by using a more sophisticated model for the
permittivity of metals which include nonlocal effects can lead to a good agreement
between theory and experiments [16]. However, this is still merely a phenomenolog-
ical explanation rather than an ab initio one.

Interpretation - The function e(ω, L) = log det(1− ρ) does not have an obvious
physical interpretation. On the one hand, as we have seen in eq. (32) its derivative
with respect to the frequency ∆D(ω) ∝ −∂ωIm e(ω, L) represents the modification
in electromagnetic local density of states, with respect to the vacuum DOS, induced
by the mere presence of the scatterers. Furthermore, remember that the fact that we
have subtracted the situation pertaining with each individual scatterer (see eq. (12))
means that we are really dealing with the modification of LDOS concentrated be-
tween the scatterers where the LDOS is modified by the mutual interaction between
the scatterers 3.

On the other hand, the derivative with respect to the distance p(ω) ∝
−∂LIm e(ω, L) is the quantity which enters the formula for the Casimir force, or
in this case pressure (see eq. (34)). This has a trivial interpretation in that when
this quantity is positive, resp. negative, its contribution to the pressure is repulsive,
resp. attractive.

We show in Figure (5) the two quantities ∆D(ω) and p(ω) corresponding to the
parameters of the preceding example. Those two quantities are seen to be nearly
identical and lends credence to the following interpretation of the Casimir interac-
tion: for frequencies where there is less DOS between the scatterers than on the
outside (where ∆D(ω) < 0), the contribution from those frequencies is attractive.
And vice versa. The vacuum outside the scatterers exerts an inward pressure while
the DOS located between the scatterers exerts an outward pressure. The net pres-

3The concept of ”between the scatterers” can be a bit fuzzy when dealing, for instance, with
the interaction between two spheres. Here, in the plane-plane geometry it is quite clear
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sure (attractive or repulsive) depends whether there is more or less DOS between the
scatterers than outside the scatterers. This interpretation of the Casimir interaction

-∂ωIm (ω,L)

-∂LIm (ω,L)

2 4 6 8 10
ω/ω0

-0.5

0.5

1.0

Arb. units

Figure 5: Derivative with respect to frequency and distance of the quantity e(ω, L)
defined in (62). Positive parts correspond to excess in density of states between the
plates and a repulsive force and vice versa.

is often used and is therefore seen to be quite accurate.
Thermodynamics of the Casimir interaction - Recall that the Casimir Helmholtz

free energy A, the Casimir internal energy U and the entropy S are linked by the
thermodynamical equation A = U − TS. Furthermore, since the entropy is defined
as S = −∂TA we obtain the additional equation ∂TU = T∂TS which would define
the heat capacity. We define a reduced temperature T = πL/λT ≈ 837

(
L
1m

) (
T
1K

)
.

We show in figs (6) and (7) the free energy A, the internal energy U and the entropy
S as a function of the reduced temperature T for a system of two gold plates and
for a system of gold-silica plates. The plates are separated by a distance L = 4 µm
leading to realistic absolute temperature.

In the case of the system of two gold plates, a peculiar feature appears. The
Casimir entropy is negative for a range of temperature. This is obviously related
to the fact that the free energy begins to decrease in magnitude as the temperature
increase. Since S(0) = 0 according to Nernst heat theorem, the entropy must
necessarily be negative in a certain range of temperature. The fact that the free
energy begins to decrease in magnitude as the temperature increase is due to the
interaction between eddy currents as we have seen already before. More precisely,
it is due to the fact that this interaction is at very low frequency and is repulsive.
On the other hand, in the case of the interaction between a gold plate and a silica
one there is no emergence of negative entropy because the dielectric plate does not
support eddy currents. This can be seen in figure (7).

Other more universal features which can be seen on both figures (6) and (7)
are the fact that the entropy reaches an asymptotic value S∞ and the fact that the
internal energy U vanishes at large temperature. Therefore, the free energy reaches
an asymptotic regime A(T ) → −TS∞ where it increases linearly with temperature
as T → ∞.

We conclude this part on the thermodynamics of the Casimir interaction by
emphasizing that negative entropies in this context are not necessarily surprising.
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Figure 6: Thermodynamics of the Casimir interaction between two gold plates sep-
arated by a distance L = 4 µm.
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Figure 7: Thermodynamics of the Casimir interaction between a gold and a silica
plates separated by a distance L = 4 µm.
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Indeed, we stress once again that the quantity we calculate here is an interaction
entropy of the electromagnetic field. As such, it is the difference in entropy in
the field with or without the presence of the objects. Most notably, it does not
take into account any entropy in the objects themselves. If one were to take into
account both the entropies in the field and in the objects, for a given geometric
arrangement one would of course find a positive quantity. Another note is that the
figures (6) and (7) are done by neglecting any dependence of the permittivity with
the temperature. One can model the temperature dependence of the permittivity to
a certain extent by, for instance for metals, relating the Drude dissipation parameter
γ to the resistivity ρ and use tabulated values for ρ(T ). Doing so only change
marginally the results shown in figures (6) and (7).

2.2.3 Grating geometry

In this section, we consider the Casimir interaction between nanostructured surfaces.
In particular, we consider surfaces with nanoscale rectangular corrugations as a
number of experiments have been performed using that kind of surfaces.

As with the previous section, we start from the basis-independent expression for
the Casimir free interaction energy between two objects (eqs. (33) and (39))

Aint(L) =
ℏ
2π

∫
dω coth βℏω/2 [Im log det(1− S1T12S2T21)] (72)

where the scattering operators S1 and S2 are understood to be the part acting on
the internal channels. We consider the two surfaces to lie in the (xy) plane so that
the distance between them is along the z direction i.e. L = Lêz.

If we consider the nanostructures to consist of corrugation lines along the y di-
rection, of period d, the surface will diffract an incoming plane wave with wavevector
kin = (kx, ky, kz) into an infinite number of outgoing plane waves with wavevectors

kn
out = (knx , ky, k

n
z ) with knx = kx + n2π

d
, knz = ±

√
ω2/c2 − (knx)

2 − k2y and n is the

diffraction order.
By analogy with the previous section, our final basis consists of all the different

plane waves coupled by the diffraction process i.e. |ω, knx , ky,±, σ⟩ ≡ |ω,q, n,±, σ⟩
with q = (kx, ky), ± represent the direction of propagation and σ is the polarization.

We are left to evaluate the matrix element of the scattering operators Si as well
as of the translation operators T entering the eq. (72). At this point, we stress an
important advantage of using the scattering method : by expressing the Casimir
interaction energy solely in terms of scattering operators, we can take advantage
of the fact that those operators are usually known from other fields of research
than Casimir physics. Here, obviously the expression of the scattering operator of
a diffraction grating is known from classical physics and we can readily use the
expressions previously derived. We won’t go into the details of the derivation which
is presented in [17] and heavily inspired from an earlier classical derivation [18].

The scattering operators are, in practice, truncated to a maximum number of
diffraction orders N . In that case, the operators are of dimension 2 × (2N + 1)
as the diffraction order satisfy −N < n < N and the factor two accounts for the
polarization degree of freedom. Reflection and transmission operators are found
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by solving a system of 2 × (2N + 1) coupled differential equations satisfied by the
reflected and transmitted fields. Translation from one surface to the other does not
diffract nor mixes polarizations ; the translation operators are therefore diagonal :

S1|ω,q, n,−, σ⟩ =
∑
n′σ′

[S1]
σσ′

nn′ |ω,q, n′,+, σ′⟩ (73)

S2|ω,q, n,+, σ⟩ =
∑
n′σ′

[S2]
σσ′

nn′ |ω,q, n′,−, σ′⟩ (74)

T12|ω,q, n,+, σ⟩ = eik
n
z L|ω,q, n,+, σ⟩ (75)

T21|ω,q, n,−, σ⟩ = eik
n
z L|ω,q, n,−, σ⟩ (76)

As in the previous section concerning the parallel plane geometry, we need
to write out the trace appearing in the expression of the Casimir interaction en-
ergy (72). 4 The situation is very similar to the parallel planes case except that
the translational invariance has been lost because of the corrugations. The period-
icity along the x direction means that the integration over q has to be restricted to
the first Brillouin zone (FBZ). The first Brillouin zone restricts kx to an interval of
length 2π

d
while the range for ky remains unrestricted∫

FBZ

d2q ≡
∫ π/d

−π/d

dkx

∫ ∞

−∞
dky (77)

We arrive at a final expression for the Casimir interaction energy between cor-
rugated surfaces

A(L) =
ℏ
2π

∫ ∞

0

dω coth βℏω/2
∫
FBZ

d2q

4π2
Im log det(1− S1T12S2T21) (78)

where once again A is an interaction energy per unit surface.
Thanks to that expression of the Casimir interaction energy, we are able to com-

pare with a series of experiments involving corrugated surfaces. Those experiments
were performed with silicon surfaces with either deep or shallow corrugations [19, 20].
We show in figure (8) scanning electron microscope images of the corrugated sur-
faces used in the experiments. They consist of corrugations with a 400 nm period
and the depth of the corrugations is either 90 nm or 1 µm. Those surfaces are made
out of doped silicon and the quality of the corrugations is very good as seen on the
SEM images.

The bottom-right part of figure (8) shows a schematics of the experiment. It
consists of two gold covered spheres of radius R = 50 µm glued on a micromechani-
cal resonator consisting of a 500 µm square silicon plate suspended by two torsional
rods. The experiments measures the interaction between the gold-covered sphere
and the corrugated surface which is brought above the micromechanical resonator.
The presence of the corrugated surface induces a shift in the frequency of the mi-
cromechanical resonator which is proportional to the force gradient F ′

sc(L) between
the sphere and the corrugated surface. The quantity measured in the experiments is
therefore the gradient of the Casimir force whose expression is F ′

sc(L) = −∂Fsc/∂L

4Remember that for a trace-class operator, log det ≡ tr log.
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Figure 8: Scanning electron microscope images of the corrugated silicon surfaces
used in the experiments. Top row : side (a) and top (b) views of the deep corruga-
tions surface. Bottom row : side (a) view of the shallow corrugations surface and
(b) schematics of the experiment.

with Fsc(L) being the Casimir force between the gold-coated sphere and the corru-
gated surface. Finally, the Casimir force between the gold-coated sphere and the
corrugated surface can be related to our previous expression (78) using the so-called
proximity force approximation (PFA) which is valid when the distance between the
sphere and the surface is small compared to the radius of the sphere i.e. L/R ≪ 1.
Under the proximity force approximation, we have Fsc(L) ≈ 2πRA(L).

Finally, the force gradient F ′
sc(L) between the sphere and the corrugated sur-

face can be normalized by its expression under the pairwise additive approximation
(PAA) to absorb most of the variation with respect to the distance L. Under this
approximation, the interaction Casimir energy A(L) is given by the sum of the con-
tributions from the top of the corrugations and from the bottom. It therefore reads
APAA(L) = 0.5 [App(L) +App(L+ a)] where App is the Casimir interaction energy
between plane parallel surfaces given by (60), the height of the corrugation is given
by a and the factor 0.5 represents the duty cycle of the corrugations. The ratio
ρ = F ′

sc(L)

F ′PAA
sc (L)

is therefore a smooth quantity of order one for all measured distances

L.
We show in figure (9) the ratio ρ measured experimentally together with theoret-

ical calculations for the experiments involving either deep or shallow corrugations.
As predicted, the ratio ρ stays of the order unity throughout the range of distances
explored. This ratio measures in a sense the degree of “non additivity” of the
Casimir interactions which is seen to reach around 30 % at most. The theoretical
calculations are done both for T = 0 K and T = 300 K, which is the temperature at
which the experiments are done. The agreement between theory and experiments
is reasonably good while the experimental uncertainties cannot highlight any clear
effect due to the temperature.
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(a)

(b)

Figure 9: Comparison with theory for the experiments measuring the Casimir force
gradient between a gold-coated sphere and a silicon surface with (a) deep and (b)
shallow corrugations. The quantity shown is the ratio ρ = F ′

sc(L)/F
′PAA
sc (L) as a

function of the distance L (see text). Experimental data are the points with the
error bars. Theoretical calculations are shown as solid curves and are done for T = 0
K (blue) and T = 300 K (red).

2.2.4 Quantum reflection and gravitational quantum states

In this part, we are interested in the phenomenon of quantum reflection. When
a slow quantum particle of energy E is incident onto a material surface, it has
a probability of being reflected by the Casimir-Polder interaction potential even
though this interaction potential is attractive. The probability of reflection tends to
unity as the particle’s momentum ℏk =

√
2mE tends to zero. Quantum reflection

has been observed experimentally using slow metastable helium or neon atoms [21,
22] incident upon different surfaces.

With the possibility of reaching nearly perfect quantum reflection, we then study
the problem of gravitational quantum states which are quantum states of a particle
above a material surface in a gravitational field. While the energies of those states
are analytically known in the case of perfect reflection, we study the shifts of those
energies when taking into account the Casimir-Polder potential.

Quantum reflection — We start by expressing the Casimir-Polder interaction
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energy between an atom and a material surface. It is obtained starting from the
general expression for the Casimir free interaction energy between two objects given
by equation (72). From this expression, we will make a number of approximation :

� First of all, we will consider the interaction energy at zero temperature Eint

rather than the free energy Aint. Temperature has mostly the effect of popu-
lating excited states of the atom. For an atom in its ground state, which we
consider here, a temperature of 300 K leads to a negligible population in the
excited states which lies at optical frequencies from the ground state.

� Second of all, we will consider that the reflection operator for the atom is
small. This assumes that an atom is a very poor scatterer and will be made
clear when we give the expression of the atomic reflection operator. Under
this assumption, we will then develop the logarithm appearing in eq.(72) to
first order.

Under those two approximations, our starting expression for the Casimir-Polder
interaction energy is

ECP
int (L) = − ℏ

2π

∫
dω Im tr (S1T12S2T21) (79)

In a basis of plane waves |ω,q,±, σ⟩, the reflection operator for the atom is [23]

S1|ω,q′,−, σ′⟩ =
∫
d2q

4π2

∑
σ

[
iω2α(ω)

2c2kz
ê−σ (q) · ê+σ′(q′)

]
|ω,q,+, σ⟩ (80)

where ê±σ (q) are the unitary vectors for a plane wave |ω,q,±, σ⟩ and α(ω) is the
atomic dynamic dipole polarizability5. The expressions for the translation operators
T and the reflection operator for the planar surface S2 in terms of Fresnel amplitudes
rs and rp have been given in eqs. (51).

Putting everything together, we finally obtain

ECP
int (z) = − ℏ

2π

∫
dω Im

iω2α(ω)

c2

∫
d2q

4π2

e2ikzz

2kz

[
rs −

(
1− 2c2q2

ω2

)
rp
]

(81)

with L = zêz. The Casimir-Polder interaction energy given by the above expression
has two limiting behavior for small and large distances z i.e.

ECP
int (z) −→

z/λ≪1
−C3

z3
(82)

ECP
int (z) −→

z/λ≫1
−C4

z4
(83)

where the change of behavior occurs around λ which is a typical atomic transition
wavelength appearing in the dynamical polarizability α(ω).

As an example, we show in Figure (10) the Casimir-Polder potential between an
hydrogen atom in its ground state and a silicon surface. In order to have an atom-

5The polarizability is α = αSI/4πε0 and has the dimension of a volume.
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Figure 10: Casimir-Polder interaction potential ECP
int (z) between an hydrogen atom

in its ground state and a silicon surface as a function of the atom-surface distance z.
The quantity shown is z3

∣∣ECP
int

∣∣ and highlights the non-retarded behavior in −C3/z
3

and the retarded behavior in −C4/z
4.

surface interaction potential at all distances, the Casimir-Polder potential must be
supplemented with a short range part responsible for hydrogen atoms adsorption on
the silicon surface. In the case of hydrogen on a silicon surface, some data exist in the
literature. We use the data found in ref. [24] and fit a Morse potential. We obtain
an atom-surface potential V (z) valid at all distances that we show in Figure (11).

Now that we have the atom-surface at all distance V (z), we can calculate the
probability of quantum reflection. This is done by solving the 1D time-independent
Schrödinger equation with appropriate initial conditions. The Schrödinger equation
is

− ℏ2

2m
Ψ

′′
(z) + V (z)Ψ(z) = EΨ(z) (84)

with E = ℏ2k2
2m

= 1
2
mv2 is the atom incident kinetic energy on the surface (v is the

component of the atom’s velocity normal to the surface). This equation is solved by
imposing that the wave function is an incoming wave at a z = zs close to the surface
i.e. Ψ(zs) = φin(zs). The wave function is then analyzed at a distance z = z∞
far from the surface and decomposed over incoming and outgoing solutions i.e.
Ψ(z∞) = Aφin(z∞)+Bφout(z∞). The probability of quantum reflection is then R =
|r|2 = |B/A|2. The value of the distance zs close to the surface is chosen to be around
1 nm ; the final value for the probability of quantum reflection should not depend
on the exact value of zs. As for the value of z∞, it must be chosen at a distance
where the effect of the potential are negligible i.e. E ≫ V (z∞). Quantum reflection
occurs around a distance zr when the local wave vector k(z) = ℏ−1

√
2m(E − V (z))

changes behavior i.e. |V (zr)| = E. We show in Figure (12) the probability of
quantum reflection for an hydrogen atom in its ground state impinging on a silicon
surface as a function of the incident velocity. We observe that the reflectivity goes to
unity as the incident velocity vanishes and that it drops rapidly for higher velocity.

Gravitational quantum states — In this section, we introduce the gravitational
quantum states (GQS) and study the effects of the Casimir-Polder potential on their
energies. GQS are the bound states of a sufficiently cold particle above a material
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Figure 11: Complete atom-surface potential V (z) for an hydrogen atom and a silicon
surface. The potential consists of a short range well modeled by a Morse potential
responsible for adsorption as well as the Casimir-Polder part which itself can be
separated into a non-retarded (−C3/z

3) and retarded part (−C4/z
4).
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Figure 12: Reflectivity |r|2 for an hydrogen atom impinging on a silicon surface as
a function of the incident velocity.

surface and in a gravitational field. Bound states occur because the particle is
bounded from below by quantum reflection and from above by the gravitational
field.

Let us first introduce the energies and wave functions in the case of perfect
reflection on the material surface. In this case, the problem is to solve the 1D
time independent Schrödinger equation given by equation (84) with the potential
V (z) = mgz and subjected to the boundary condition Ψ(0) = 0 corresponding to
a condition of perfect reflection on the material surface. The equation (84) can be
re-written by introducing adimensional lengths z̃ = z/zg and energies Ẽ = E/εg as
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follows

−Ψ
′′
(z̃) + z̃Ψ(z̃) = ẼΨ(z̃) (85)

z3g =
ℏ2

2m2g
(86)

εg = mgzg (87)

Under this form, the solutions to the equation (85) subjected to the boundary con-
ditions Ψ(0) = 0 (perfect reflection) and Ψ(∞) = 0 (bound state) are proportional
to Airy functions Ψn(z̃) ∝ Ai(z̃− Ẽn) with the energies Ẽn = −λn where the λn are
the zeros of the regular Airy function Ai(z)6.

To take into account the effect of the Casimir-Polder potential, we include it
in the potential entering the Schrödinger equation i.e. V (z) = ECP

int (z) +mgz and
solve for the energies which we write En = −λnεg +∆E. The Schrödinger equation
including the Casimir-Polder potential is solved in a manner similar to the problem
of quantum reflection. The initial condition consists of imposing the wavefunction
to be an incoming wave close to the surface at z = zs and solving for the energies
which lead to a bound state i.e. Ψ(∞) = 0. The energies compatible with those
boundary conditions are complex valued and express the fact that because of the
imperfect reflection, the GQS are merely quasistationary states with a finite lifetime
above the surface.
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Figure 13: Complex energy shifts ∆E for the first 100 GQS of an hydrogen atom
above a silicon surface.

We show in Figure (13) the complex energy shifts ∆E which arise when we take
into account the effect of the Casimir-Polder potential between the atom and the

6Note that the zeros of the regular Airy function λn are negative quantities leading to positive
GQS energies.
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Figure 14: Probability of quantum reflection for an incident energy equal to that of
the first GQS.

surface. We see that those energy shifts are on the level of |∆E/λn| ≈ 10−4. This
can be understood because the effect of the Casimir-Polder potential is only at short
distances to the surface. Indeed, for an hydrogen atom above an silicon surface, we
find that the altitude z× for which mgz× = |ECP

int (z×)| is z× ≈ 0.1zg. This is to be
compared to the typical size of a perfect GQS Ψn(z̃) which is −λn (we recall that
−λ1 ≈ 2.3 and −λ100 ≈ 60.4).
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2.3 Miscellaneous

In this section, we quickly present a few other results related to Casimir physics
based on a particular publication.

2.3.1 Van der Waals interaction between two different atoms

In ref. [25], included hereafter, we have studied the van der Waals interaction be-
tween two different atoms, one of which is in an excited state.

This situation, at first glance a textbook example of QED calculations, has led to
a long standing controversy regarding the behavior of the interaction as a function
of the distance between the two atoms. Indeed, some authors predict a monotonic
behavior of the interaction energy as a function of the inter-atomic distance whereas
other authors predict an oscillating behavior. It has been argued that the different
behaviors found from different authors stem from an ambiguity in the treatment
of poles arising from energy denominators in the standard QED treatment of the
problem.

We have studied this problem using time-dependent perturbation theory as there
is no such ambiguities there : the poles arising from energy denominators have to be
handled in a way as to make the relevant integrals converge. Using this method, we
have found an interaction energy which present an oscillatory behavior as a function
of the distance between the two atoms.

We mention also that the aforementioned ambiguities in treating energy denom-
inators can be related to the use of either advanced, retarded or Feynman propa-
gators. A similar, oscillating, behavior of the van der Waals interaction energy has
been found in ref. [26] to be a direct consequence of the use of Feynman propagators.

A conclusion to that controversy seems to have been found recently. It involves
reflecting on what exactly is the van der Waals interaction energy in that situation.
It can be identified as the shift, as a function of the inter-atomic distance, of the
ground state atom, of the excited atom or a phase shift rate of the two atoms
wavefunction [27, 28].

The conclusion is quite interesting. The shift on the ground state atom is found
to be monotonic as a function of the distance between the two atoms. This was,
to some extent, the quantity calculated by the authors who found a monotonic van
der Waals interaction. On the other hand, the shift of the excited atom is found to
have an oscillatory behavior as a function of the distance and this was the quantity
calculated by the other group of authors. The controversy lasted so long because
both parties were right.

This surprising results raise some questions because it apparently violates the
principle of action-reaction or the conservation of momentum. The explanation is
as follows : during the time the atom stays in its excited state, there is a transfer
of momentum between the two atoms system and the electromagnetic field. This
transferred momentum is then released when the excited atom decays in its ground
state via spontaneous emission.
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We present a time-dependent quantum calculation of the van der Waals interaction between a pair of
dissimilar atoms, one of which is initially excited while the other one is in its ground state. For small
detuning, the interaction is predominantly mediated at all distances by the exchange of doubly resonant
photons between the two atoms. We find that it presents both temporal and spatial oscillations. Spatially
oscillating terms depend on the resonant frequencies of both atoms, while the frequency of the time
oscillations is given by their detuning. We analyze the physical content of our findings and discuss to what
extent previous conflicting stationary approaches provide compatible results. A proper account of causality
is found essential in order to obtain the correct result.

DOI: 10.1103/PhysRevLett.115.033201 PACS numbers: 34.35.+a, 34.20.Cf

Dispersion forces between neutral atoms are often inter-
preted as a result of the quantum fluctuation of both the
electromagnetic (EM) field and the atomic charges [1,2]. A
prominent example of those are van der Waals (vdW) forces
acting between neutral atoms and molecules, which are
important in atomic andmolecular interferometry where they
influence the measured interference pattern [3]. In quantum
information, vdW forces between Rydberg atoms produce a
Rydberg blockade, which may be exploited to realize
quantum gates [4]. In biophysical and chemical processes
vdW forces are known to play a crucial role for the stability
and assembling of molecules [5].
At zero temperature, two atoms in their ground states

undergo a series of virtual transitions to upper levels. It is the
coupling of the charges of each atom to the quantum EM field
that induces the correlation between their transient dipole
moments, giving rise to a nonvanishing vdW interaction. The
lifetime of the virtual atomic transitions is very short in
comparison to ordinary observation times and thus, the use of
stationary quantum perturbation theory is well justified for
the calculation of this interaction [6]. For short interatomic
distances r in comparison to the relevant transition wave-
lengths (nonretarded regime) the interaction scales as r−6,
while for large distances (retarded regime) it goes like r−7

[1,6–9]. The situation is different for excited atoms. First,
excited states are unstable and present finite lifetimes. This
implies that, generically, the interaction between excited
atoms must depend on time. Second, if any of the transitions
from the excited to lower atomic levels is relevant to the
interaction, the exchange of resonant photons between the
atoms must be considered. The energy of the interaction
mediated by resonant photons is usually referred to as
resonant van der Waals potential in the literature [10–13].
In the retarded regime the resonant potential overtakes by
far the nonresonant one. It is in this regime that different
approaches yield conflicting results concerning the spatial

oscillations of the interaction [14–21]. This long-standing
problem is the main motivation of the present Letter.
In the following, we address the time-dependent quan-

tum computation of the interaction between two dissimilar
atomic dipoles, one of which is excited. The excited atom is
taken of type A while the atom in its ground state is
considered of a different type B. Without loss of generality
we approximate the atoms by two-level systems of resonant
frequencies ωA and ωB, respectively, with respective line-
widths ΓA and ΓB. Further, in order to ensure the pertur-
bative nature of the calculation and to avoid resonant
energy transfer we set the detuning ΔAB ≡ ωA − ωB such
that jΔABj > ðΓA þ ΓBÞ=2 and jΔABj ≫ hWðTÞi=ℏ, with
WðTÞ being the interaction Hamiltonian at the time of
observation T. Since the observation is made for atom A
excited, we must have T ≲ 2πΓ−1

A . Lastly, we assume
without much loss of generality ΓA;B < jΔABj ≪ ωA;B,
which is easily met by pairs of alkali atoms. We will refer
to this condition as quasiresonant. Wewill see that it allows
for a great reduction in the number of calculations and
makes the resonant potential dominant at all distances.
We will show that the interaction energy oscillates both
in time and in space. It contains time-independent terms
that oscillate in space with frequency 2ωA=c, and time-
dependent terms which oscillate in time with frequency
ΔAB and in space with frequency 2ωB=c. We compare our
results to previous conflicting approaches and discuss in
detail to which extent they provide compatible results.
We aim at computing the EM energy of atom A due to

the presence of atom B. To this end we apply standard time-
dependent quantum perturbative techniques in the electric
dipole approximation [22]. At any given time T the state
of the two-atom-vacuum system can be written as jΨðTÞi¼
UðTÞjΨð0Þi, where the state of the system at time 0 is
jΨð0Þi ¼ jAþi ⊗ jB−i ⊗ j0γi. In this expression ðA; BÞþ;−
label the upper or lower internal states of the atoms A and
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B, respectively, and j0γi is the EM vacuum state. UðTÞ
denotes the time evolution operator in the Schrödinger
representation,

UðTÞ ¼ T exp

�
−iℏ−1

Z
T

0

dt

�
HA þHB þHEM þW

��
:

In this equation HA þHB is the free Hamiltonian of the
internal atomic states, ℏωAjAþihAþj þ ℏωBjBþihBþj,
while the Hamiltonian of the free EM field is HEM ¼P

k;ϵℏωðak;ϵa†k;ϵ þ 1=2Þ, where ω ¼ ck is the photon

frequency, and the operators a†k;ϵ and ak;ϵ are the creation
and annihilation operators of photons with momentum
ℏk and polarization ϵ, respectively. Finally, the interaction
Hamiltonian reads W ¼ WA þWB, with WA;B ¼ −dA;B·
EðRA;BÞ. In this expression dA;B are the electric dipole
operators of each atom and EðRA;BÞ is the electric field
operator evaluated at the position of each atom, which
can be written in the usual manner as a sum over normal
modes as [6]

EðRA;BÞ ¼
X
k

Eð−Þ
k ðRA;BÞ þ EðþÞ

k ðRA;BÞ

¼ i
X
k;ϵ

ffiffiffiffiffiffiffiffiffiffi
ℏck
2Vϵ0

s
½ϵakeik·RA;B − ϵ�a†ke−ik·RA;B �;

where V is a generic volume and Eð∓Þ
k denote the

annihilation or creation electric field operators of photons
of momentum ℏk, respectively. While the internal atomic
and EM degrees of freedom are quantum variables, the
position vectorsRA;B are classical variables. We emphasize
here that we do not make further simplifications to these
potentials. In particular, we do not replace the EM response
of any of the atoms by its ordinary polarizability, as is the
case in Ref. [20].
Next, considering W as a perturbation to the free

Hamiltonians, the unperturbed time-evolution operator
for atom and free photon states is U0ðtÞ ¼
exp ½−iℏ−1ðHA þHB þHEMÞt�. In order to make contact
with a realistic setup, we imagine that atom A starts being
excited at time −τ by a laser pulse of duration τ < jΔ−1

ABj.
This fixes our temporal resolution and implies that at time
≃0 the initial state jΨð0Þi is well defined within a time
interval of the order of τ. We are now ready to compute the
EM energy of atom A due to the presence of atom B at any
time T such that 0≲ T ≲ 2πΓ−1

A ,

hWAðTÞi ¼ −hΨð0ÞjU†ðTÞdA ·EðRAÞUðTÞjΨð0Þi: ð1Þ
The above expression admits an expansion in powers
of W, which can be developed out of the time-
ordered exponential equation for UðTÞ, UðTÞ ¼
U0ðTÞT exp

R
T
0 U†

0ðtÞWU0ðtÞdt. At leading order, Eq. (1)
contains a series of terms of fourth order in W where an
electric field operator creates or annihilates a photon at time T
at the position of atom A. They correspond to the twelvewell-
known time-ordered diagrams of Fig. 1 [6,15]. In the time-
dependent approach, each diagram contributes to hWAðTÞi
with two terms in which WA is flanked by two U matrices
which make the system evolve, in opposite time directions,
from the initial state to two different states at time T, which
differ from one another in the state of atom A and in the
number of photons by one unit. In quasiresonant conditions,
the greatest contribution to hWAðTÞi comes from diagram
ðaÞ, in which two doubly resonant photons are exchanged
one after the other. Doubly resonant photons are those
emitted by one of the atoms in its upper level and absorbed
by the other atom in its lower level, while for nonresonant
photons the emission and absorption processes are inverted.
Last, simply resonant photons are those emitted and absorbed
by both atoms in either their upper or lower levels. In
addition, the diagrams ðbÞ − ðfÞ of Fig. 1, which contain
both doubly resonant and nonresonant photons, provide
terms which make it possible to extend the frequency
integrals of diagram ðaÞ into the negative domain. Their
contribution is indeed essential for establishing causality
(cf. Ref. [23]). All the other contributions from these and
from the rest of the diagrams are at the most of the order of
ΔAB=ωA;B times smaller and hence negligible. Putting every-
thing together, transforming the sums over photon momenta
into continuum integrals and imposing the causality condition
T > 2R=c with R ¼ RB −RA, we find at leading order,

hWAðTÞi≃ 1

2ℏ3

Z
∞

−∞

Vk2dk
ð2πÞ3

Z
∞

−∞

Vk02dk0

ð2πÞ3
Z

4π

0

dΩ
Z

4π

0

dΩ0
�
ihΨð0ÞjU0ð−TÞjΨð0ÞiΘðT − 2R=cÞ

Z
T

0

dt
Z

t

0

dt0

×
Z

t0

0

dt00hΨð0ÞjdA ·Eð−Þ
k0 ðRAÞU0ðT − tÞdB ·EðþÞ

k0 ðRBÞU0ðt − t0ÞdB · Eð−Þ
k ðRBÞ

× U0ðt0 − t00ÞdA ·EðþÞ
k ðRAÞU0ðt00ÞjΨð0Þi

�
þ ½k↔ k0�†: ð2Þ

FIG. 1. Diagrammatic representation of the twelve time-or-
dered processes that contribute to hWAðTÞi at the lowest order in
W. The time variable runs along the vertical.
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The time integrals of the time-evolution operators in Eq. (2)
yield a series of terms with poles along the real axis,

c
ΔABðk− kAÞðk0 − kAÞ

−
c cos ðΔABTÞ

ΔABðk− kBÞðk0 − kBÞ

−
cos ½ðω−ωAÞT�

ðk− kAÞðk− kBÞðk0 − kÞ þ
cos ½ðω0 −ωAÞT�

ðk0 − kAÞðk0 − kBÞðk0 − kÞ :

ð3Þ

Further, the development of this expression contains
terms in which both photons resonate either with the

transition of atom A or with the transition of atom B only.
This is a direct consequence of energy conservation.
Upon integration in frequencies, the former terms are
time independent while the latter oscillate in time as
∼ cosΔABT. Important is the fact that only the first term in
Eq. (3) arises in the stationary approach [6,9,15].
However, the integration in frequencies of the third
and fourth terms provides additional time-independent
contributions which are missing in the stationary
approach. Last, replacing the time integrals in Eq. (2)
with the result (3) and integrating in orientations and
frequencies, we obtain [24]

hWAðTÞi ¼
U ijpq

R6
½βijβpq−k2AR

2ðβijβpq þ 2αijβpqÞþ k4AR
4αijαpq� cos ð2kARÞ þ

2U ijpq

R5
kA½βijβpq− k2AR

2αijβpq� sinð2kARÞ

−
U ijpq

R6
½βijβpq − k2BR

2ðβijβpq þ 2αijβpqÞ þ k4BR
4αijαpq� cos ð2kBRþ ΔABTÞ

−
2U ijpq

R5
kB½βijβpq − k2BR

2αijβpq� sin ð2kBRþ ΔABTÞ þ
U ijpq

R6
½1þ…þ ðkA;BRÞ4�OðΔAB=ωA;BÞ þ…; ð4Þ

where U ijpq¼μAi μ
A
qμ

B
j μ

B
p=½ð4πϵ0Þ2ℏΔAB�, μA¼hA−jdAjAþi,

μB ¼ hB−jdBjBþi and βij ¼ δij−3RiRj=R2, αij ¼ δij−
RiRj=R2. It is worth stressing that the Heaviside function
in Eq. (2), together with the time-order prescription, do not
only guarantee causality, but also determine univocally the
contours of integration over frequencies in the complex
plane when taking the principal value [24]. The last term in
Eq. (4) indicates the order of the leading corrections to the
dominant doubly resonant photon exchange terms of
Eq. (2) [25]. As anticipated, the time-independent terms
of Eq. (4) oscillate only in space with frequency 2kA. On the
contrary, the time-dependent terms oscillate in time with
frequency ΔAB and in space with frequency 2kB. Only for
large integration times, δT ≫ jΔ−1

ABj, their time average
vanishes. In the short time limit, T → 2R=c, hWAðTÞi
vanishes identically at our order of approximation. This is a
consequence of the fact that, in order to establish the
interaction, it is necessary that the excitation be transferred
actually to atom B. For T > R=c, the probability of
excitation of atom B oscillates in time as jhΨðTÞjA−i ⊗
jBþi ⊗ j0γij2 ∼ sin2½ΔABðR=c − TÞ�=2�, being maximum
for the first time at T ¼ R=cþ πjΔ−1

ABj. Correspondingly,
hWAðTÞi becomes maximum for the first time at
T ¼ 2R=cþ πjΔ−1

ABj. The lapse R=c between these two
times is the time for a photon to travel back fromRB toRA
after the excitation of atom B.
A long-standing debate exists in the literature concerning

the spatial oscillations of the two-atom interaction in the
retarded regime when one of the atoms is excited [14–21].
The existence of spatial oscillations is indeed supported
by experiments [26,27]. According to our findings, for
kA;BR ≫ 1 and T > 2R=c, the interaction oscillates both in
time and in space as

hWAðTÞi

≃ U ijpq

R2
αijαpq½k4A cos ð2kARÞ − k4B cos ð2kBRþ ΔABTÞ�

≃ −2U ijpq

R2
αijαpqk4A sin ½ΔABðR=c − T=2Þ�

× sin ½kAðRþ cT=2Þ þ kBðR − cT=2Þ�: ð5Þ

From the last expression we read that, at fixed time, the
interaction is modulated by long-range oscillations of
frequency ΔAB=c, while short-range oscillations take place
at frequency kA þ kB. Also, as a function of time, the
interaction is modulated by oscillations of frequency ΔAB.
In Fig. 2 we plot the energy of the interaction between two
alkali atoms, one of 87Rb which is excited to the state 5P1=2

and another one of 40K which is in its ground state, in the
retarded regime.
In contrast to our result, the stationary approach of Power

and Thirunamachandran in Ref. [14] predicts no oscillations
for hWAi in the far field. The key point in their calculation is
the addition of small imaginary parts to the resonant
frequency of atom A in such a way that poles get shifted
off the real axis. They used the prescription that a positive
(negative) imaginary part must be added for emitted
(absorbed) photons in order to account for the finite line-
width of the excited atom. In particular, for ΔAB ≪ ωA;B

the dominant term in their stationary calculation is the
first one in Eq. (3), but with the real poles shifted as
½ΔABðk − kA − iη=cÞðk0 − kA þ iη=cÞ�−1, η → 0þ. After
integrating in orientations an analogous equation to
Eq. (2) [6,24], they must have obtained for the energy in
the far field limit, kAR ≫ 1,
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−
U ijpq

4π2R2
αijαpq

Z þ∞

−∞
dk

Z þ∞

−∞
dk0k2k02

×
eiðkþk0ÞR þ e−iðkþk0ÞR − eiðk−k0ÞR − e−iðk−k0ÞR

ðk − kA − iη=cÞðk0 − kA þ iη=cÞ ; ð6Þ

with η → 0þ. Since the pole in k lies on the upper half of the
complex plane and the pole in k0 lies on the lower half, the
only nonvanishing contribution to the above integral comes
from the term proportional to eiðk−k0ÞR. As the real part of
the poles is in both cases kA, taking the limit η → 0þ, the
exponent vanishes after evaluating the residues and the
integral yields the nonoscillating result ðUijpq=R2Þk4Aαijαpq.
In the previous stationary calculation of McLone and

Power [15] and Gomberoff et al. [16] the poles in Eq. (6)
were not shifted. As a result, when taking the principal
value of the integrals in Eq. (6) with η ¼ 0, the four
exponentials in the numerator contribute as ∼2 cos 2kARþ
2 ¼ 4cos2kAR after adding up the residues, yielding the
oscillating result ðU ijpq=R2Þk4Aαijαpqcos2kAR. As men-
tioned after Eq. (3), some time-independent terms are
missing in the stationary calculation, which explains the
discrepancy of this result with the time-independent
component of ours in Eq. (5). In fact, the correct time-
independent result can be obtained by switching on adibati-
cally the interaction potential W, within the time-dependent
causal approach. That is, by replacing WA;BðtÞ in Eq. (2)
with WA;BðtÞeηt, η → 0þ, and extending the lower limit of
the time integrals to −∞ [24]. This results in an equation
analogous to Eq. (6) but with both poles shifted along the

imaginary axis in the same direction an amount iη=c, which
yields ðU ijpq=R2Þk4Aαijαpq cos 2kAR for kAR ≫ 1.
Recently, Safari and Karimpour have published a Letter

[19] where they claim to obtain for kAR ≫ 1 the same
oscillating behavior as Gomberoff, McLone, and Power
[16]. However, a straightforward comparison of Eq. (19)
of Ref. [19] and Eqs. (14), (26) of Ref. [16] reveals that this
is indeed not the case. Whereas the result of the latter is
the one outlined above, ∼cos2kAR, the authors of the
former have found ∼ cos 2kAR, despite the fact that both
approaches are based on fourth order stationary perturba-
tion theory. The origin of the discrepancy is in the algebraic
manipulation inherited by the authors of Ref. [19] from
Ref. [9]. In Appendix B of Ref. [9] the authors have tried to
express the total contribution of the twelve diagrams of
Fig. 1 as a single frequency integral whose integrand is a
function of the ordinary polarizabilities of the two atoms. In
doing so by means of Eq. (B2) of Ref. [9], the authors have
replaced effectively the denominator of Eq. (6), which is a
symmetric and separable function of k and k0 for η ¼ 0, by
the expression ½ΔABðk − kAÞ�−1½1=ðk0 − kÞ þ 1=ðk0 þ kÞ�,
which is neither symmetric nor separable. As a conse-
quence, that replacement makes the frequency integrals
depend arbitrarily on the order of integration. Next,
integrating in k0 first and in k later, one obtains
ðU ijpq=R2Þk4Aαijαpq cos2kAR, which agrees with Eq. (19)
of Ref. [19] for kAR ≫ 1, ΔAB ≪ ωA;B, upon averaging in
atomic orientations. Interestingly, this result equals the
time-independent term of Eq. (5). However, this coinci-
dence can only be accidental, since the above replacement
and the subsequent prescription on the order of integration
are neither connected to the time-dependent terms of
Eq. (3), which cause the actual discrepancy with respect
to the result of Refs. [15,16], nor to the causal-adiabatic
approximation.
It is worth noting that while we have invoked the

existence of finite lifetimes ∼Γ−1
A;B in order to impose

physical constraints on the detuning ΔAB and on the
observation time T, no explicit reference to these quantities
appear in our expression for hWAðTÞi. As a matter of fact,
only the emission through the exchange of resonant
photons between the two atoms has been implicitly
accounted for in our calculation of hWAðTÞi. However,
our calculation lacks the inclusion of the spontaneous
emission of each atom into free space, whose rates are
k3A;Bμ

2
A;B=3πϵ0ℏ, respectively. The processes corresponding

to the latter phenomenon are generally unimportant in
comparison to those depicted in Fig. 1 since their leading
contribution to hWAðTÞi is of order OðW6Þ ∼ μ4Aμ

2
B,

μ2Aμ
4
B—see Fig. 3. They might only be relevant for the

case that the lifetimes are of the order of the temporal
frequency of the interaction, ΓA;B ∼ jΔABj, but they cannot
affect in any case the oscillatory behavior found here for the
terms of order μ2Aμ

2
B. This argument opposes the reasons

FIG. 2 (color online). Graphical representation of the interaction
between a 87Rb atom in state 5P1=2 ðkA ¼ 2π12578.95 cm−1Þ and
a 40K atom in its ground state, for kAR ≫ 1. The black line
corresponds to a snapshot of the interaction at time 3.0 × 10−12 s,
where the contributions of the D1 and D2 transition lines of the
40K atom (k1B ¼ 2π12985.17 cm−1 and k2B ¼ 2π13045.876 cm−1,
respectively) add up approximately in phase. A long-range period
cπ=jΔ̄ABj, with Δ̄AB=c ¼ kA − ðk1B þ k2BÞ=2, is identified. The red
line corresponds to the time-independent result of the causal-
adiabatic approximation. The average over dipole orientations has
been taken.
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given in Ref. [14] to add imaginary shifts to the real poles at
OðW4Þ. We finalize by mentioning that Berman has shown
in a recent publication [21] how to introduce spontaneous
emission in a consistent manner in an adiabatic approxima-
tion. Assuming that atom A is excited adiabatically with
τ; δT ≫ jΔ−1

ABj, he has obtained the correct time-independent
result.
In this Letter we have shown that the van der Waals

interaction between two dissimilar atoms, one of which is
initially prepared in an excited state, presents generically
oscillations both in time and in space. In quasiresonant
conditions the interaction is dominated at all distances by
the exchange of doubly resonant photons between the two
atoms. It is modulated in space by long-range oscillations
of frequency ΔAB=c, while short-range oscillations take
place at frequency kA þ kB. The time frequency is ΔAB,
which determines the rate at which the excitation is
transferred to atom B. In the retarded regime the interaction
takes the form of Eq. (5). Only for large integration times,
δT ≫ jΔ−1

ABj, that expression reduces to a time-independent
term which oscillates in space with frequency 2kA. The
latter is also equivalent to the result of the causal-adiabatic
approximations [21,24]. It does not agree, however, with
the result of stationary perturbation theory [15,16].
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2.3.2 Multiscattering formalism

In ref. [29], included hereafter, we studied the statistical properties of the Casimir-
Polder interaction between a nanosphere and a dilute inhomogeneous medium. The
inhomogeneous medium is itself modeled by a collection of nanospheres of size a
randomly distributed in a semi-infinite half space at a distance z from the probe
nanosphere. The nanospheres forming the inhomogeneous medium are distributed
with a constant density n and we have considered the dilute limit na3 ≪ 1.

The interaction energy between the probe sphere and the inhomogeneous medium
is calculated using the multiscattering formalism presented before. If the inhomo-
geneous medium consists of N nanospheres randomly distributed in a volume V at
a fixed density n = N/V , the interaction energy U(z) between this medium and an
additional probe sphere placed at a distance z from the surface of the inhomogeneous
medium is

U(z) = U (N+1)(z)− U (N+1)(z → ∞) = U (N+1)(z)− U (N)(z) (88)

where U (N+1)(z) is the total Casimir interaction energy between the N spheres
forming the inhomogeneous medium and the probe sphere.

The interaction energy between a collection ofN (orN+1) spheres can be readily
calculated using the expression given in Eq. (36) as we chose to perform a calculation
at zero temperature. We represent the scattering and translation operators in a basis
of spherical waves. In this basis, the scattering operators of the spheres entering the
matrix S are simply Mie reflection coefficients. Closed expression for the translation
operators entering the W matrix can be found in ref. [30].

We have performed numerical calculations of the Casimir interaction energy U(z)
for different realizations of the inhomogeneous medium. In addition, using some ap-
proximations valid in the dilute limit na3 ≪ 1, we were able to derive an analytical
expression for the probability distribution function obeyed by the Casimir interac-
tion U(z). Comparison between this analytical expression and histograms of the
numerical calculations is found to be very good.
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dimensional heterogeneous medium, by means of extensive numerical simulations based on the scattering theory
of Casimir forces. The simulations allow us to confirm recent predictions for the mean and standard deviation
of the Casimir potential, and give us access to its full distribution function in the limit of a dilute distribution of
heterogeneities. These predictions are compared with a simple statistical model based on a pairwise summation
of the individual contributions of the constituting elements of the medium.
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I. INTRODUCTION

Materials placed in close vicinity to each other modify
the modes of the electromagnetic field. This results in a
change of the vacuum energy, which eventually manifests
itself as a net force known as the Casimir force [1,2].
The Casimir force has been the subject of a number of
experimental investigations at object separations ranging from
tens of nanometers to a few micrometers. Starting with the
experiments by Lamoreaux [3] and Mohideen [4], the Casimir
effect has experienced an enormous increase in experimental
activities in recent years [5–20].

Theoretical approaches to the Casimir force are usually
built on an effective medium description of the interacting
materials. Within such an approximation, the local details of
the materials’ microstructure are neglected and the objects
are described by macroscopic, spatially independent dielectric
constants. While the effective medium description is in general
quite satisfactory for describing dense materials that indeed
look homogenous at the typical scales of the Casimir force,
this is not necessarily the case for strongly heterogeneous
(“disordered”) media that are made of many constituting
elements (“scatterers”) well separated from one another.
Examples of such heterogeneous systems include nanoporous
materials [21], clouds of cold atoms [22], and, in a slightly
different context, corrugated surfaces [23,24].

From a theoretical viewpoint, interaction phenomena in-
volving strongly heterogeneous materials have been little
studied. Seminal works on that subject considered the thermal
Casimir interaction between slabs made of piled layers
separated from random distances (one-dimensional disor-
der) [25,26]. The question of disorder was also addressed
recently [27] in the context of the Casimir-Polder (CP)
interaction [28] between a sphere and a plate [29]. In a recent
work finally, the CP interaction between a dielectric sphere
(or an atom) and a three-dimensional disordered dielectric
material was also investigated [30]. This is the scenario we
consider in the present paper.

When a probe sphere or an atom interacts with a spatially
heterogeneous material such as a semi-infinite disordered
medium, the CP potential naturally fluctuates in space. In
other words, the Casimir interaction depends on the specific
statistical realization of the disorder. A shared conclusion of
Refs. [25–27,30] is that when the two objects are far enough

from each other, precisely when the distance between them
is large compared to the typical separation between two
heterogeneities, the value of the Casimir potential from a
realization to another is well captured by its configuration
average, which coincides with the prediction of the effective
medium prescription. In strong contrast, at smaller distances
fluctuations of the potential become larger than its mean,
which is consequently no longer representative. In practice,
this conclusion is crucial for measurements of quantum reflec-
tion [21,31–34], and more generally for any measurement of
the Casimir force involving heterogeneous materials.

In our previous work [30], we developed an exact math-
ematical treatment of the fluctuations of the CP interaction
between a dielectric sphere and a dilute disordered dielectric
medium, and applied it to the calculation of the mean value
of the CP potential and of its standard deviation. In this
paper, we consider the same geometry (recalled in Sec. II),
for which we perform extensive numerical simulations of the
CP potential. The results of these simulations confirm the
predictions of [30] (Sec. III), and additionally allow us to
compute the full probability distribution of the CP potential
which, for a given distribution of the scatterers, does not
depend on the microscopic properties of the latter. In a second
time (Sec. IV), we present a simple statistical model based on
a pairwise summation of the individual contributions of the
scatterers, and confront it with the simulations. Concluding
remarks are collected in Sec. V.

II. MEAN AND STANDARD DEVIATION OF THE
CASIMIR-POLDER POTENTIAL

We address the CP interaction between a probe dielectric
sphere (placed in a vacuum) of static polarizability α0 (here
and in the following, polarizabilities are expressed in SI units
divided by ε0) and a semi-infinite, three-dimensional disor-
dered medium consisting of a collection of many scatterers,
as illustrated in Fig. 1. We denote by z the distance between
the sphere and the surface of the disordered medium. For
definiteness, in this paper we restrict our discussion to the
retarded regime of the Casimir interaction where z much
exceeds the resonance wavelength λ0 of the probe sphere (the
treatment of the opposite limit z � λ0 is analogous). Scatterers
are also modeled by dielectric spheres of size a and of static
polarizability αs . Throughout the paper, we assume that they
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FIG. 1. (Color online) We consider the Casimir-Polder interac-
tion between a dielectric sphere (placed in vacuum) and a semi-infinite
disordered medium. The disordered medium consists of a collection
of dielectric spheres (size a, density n) whose positions are uniformly
distributed in space.

are uniformly distributed in space with density n, and we
consider the case of a dilute disordered medium, such that
the average distance between the scattering spheres is larger
than their size, na3 � 1. This is the typical regime where the
statistical fluctuations of the CP potential are the largest [30].
In the opposite limit na3 ∼ 1 of scatterers very close to each
other, the approach developed below does not apply but we
expect the statistics of the Casimir-Polder potential to be
approximately captured by a model where the atom interacts
with a rough surface [35].

In [30], the question of fluctuations in the limit na3 � 1
was tackled with the help of a statistical description of the
disordered material, in which the CP potential U (z) becomes
a random variable. Its mean, U (z), and its variance, δU 2(z),
were calculated from an exact treatment of radiation-matter
interaction, based on the scattering approach to Casimir
forces [36,37] combined with a diagrammatic description of
radiation scattering off the disordered medium [38,39]. In
the limit z � λ0, the following expression for the mean was
found [30]:

U (z) = 23

60
nαsU

∗(z), (1)

where U ∗(z) = −3α0�c/(32π2z4) is the Casimir potential
between the probe sphere and a perfect mirror. As announced,
the result (1) coincides with the prediction of an effective
medium description where the probe sphere interacts with
an homogeneous surface of relative permittivity ε̃ = 1 + nαs .
The amplitude of fluctuations, quantified by the ratio γ of the
standard deviation of the CP potential and its mean, was found
to be (for z � λ0)

γ =
√

δU 2(z)

|U (z)| � a1√
nz3

, (2)

with a1 � 0.7. Equation (2) indicates that U (z), i.e., the pre-
diction of the effective medium theory, is well representative
of U (z) only when z � n−1/3. At smaller scales, γ becomes
larger than unity and U (z) no longer provides a trustful
estimation of the interaction.

III. NUMERICAL SIMULATIONS

A. Methodology

We now propose to investigate the statistical properties
of the CP potential from exact numerical simulations in the
geometry of Fig. 1. For this purpose, we proceed as follows. We
generate an ensemble of N dielectric spheres of radius a and
frequency-dependent permittivity ε(ω), uniformly distributed
in a cube of side L. This system constitutes a disordered
medium of average density n = NL−3. An additional probe
sphere is placed above this cube, at a distance z to the center
of one face, as in Fig. 1. Denoting by U (N+1)(z) the total,
internal Casimir energy between the N + 1 spheres [40], the
CP interaction U (z) is by definition

U (z) = U (N+1)(z) − U (N+1)(z → ∞)

= U (N+1)(z) − U (N). (3)

The strategy thus consists of calculating the interaction energy
as the difference between the internal energies of N + 1 and
N spheres. Within the scattering formalism [36,37], the total
Casimir energy between N spheres is given by [40]

U (N) = �
2π

∫ ∞

0
dω log det

(
MM−1

∞
)
. (4)

M is a block-square matrix of dimension N with the following
structure:

M =

⎛
⎜⎜⎜⎜⎝

R−1
1 T1→2 . . . T1→N

T2→1 R−1
2 . . . T2→N

...
...

. . .
...

TN→1 TN→2 . . . R−1
N

⎞
⎟⎟⎟⎟⎠. (5)

The diagonal blocks of M are the inverse of the spheres’
reflection operators Ri . The (i,j ) off-diagonal block of M
contains the translation operator Ti→j , which relates an out-
going spherical wave centered on ri to an incoming spherical
wave centered on rj [40]. Finally, M−1

∞ is the block-diagonal
matrix diag(R1, . . . ,RN ). For the simulations, we express the
scattering and translation operators Ri and Ti→j in a basis
of spherical vector waves |	mP 〉, with 	 > 1, −	 � m � 	,

and P = {E,M}. In this basis, the matrix elements of Ri are
given by the standard Mie scattering amplitudes [41]. We
compute these amplitudes without any approximation, taking
into account the full multipole expansion. Finally, we evaluate
the matrix elements of Ti→j using the formalism of Ref. [42].

B. Mean and standard deviation

Making use of the approach described in Sec. III A, we
compute the CP potential U (z) between a dielectric sphere of
radius a = 10 nm and a disordered medium consisting of N =
32 other identical spheres with the same radius a, uniformly
distributed in a cube of side L = 12 μm. For these parameters,
the disordered medium is dilute, na3 � 1, and we are effec-
tively describing the geometry of a semi-infinite bulk system as
long as z � L. For definiteness, we give to all the spheres the
permittivity of silicon: ε(ω) = 1 − [ε(0) − 1]ω2

0/(ω2 − ω2
0 +

iγ ω), where ω0 = 2πc/λ0 with λ0 = 295 nm, ε(0) = 11.6,

and γ = 0.03ω0 [43]. Figure 2 displays the absolute value
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FIG. 2. (Color online) Absolute value of the mean CP potential
between a dielectric sphere and a semi-infinite disordered medium,
as a function z. Dots are the results of exact numerical simulations
and the dashed line is the theoretical prediction (1).

of the disorder-averaged CP potential U (z) computed with
these parameters, for several values of z (red dots). Each dot
is obtained by generating thousands (typically between 3000
and 8000 depending on z) of disorder realizations, computing
U (z) for each of them and finally averaging the results. In
Fig. 2, we also show the theoretical prediction (1) (dashed
line), which is in very good agreement with the numerics. The
small disagreement visible at large z stems from deviations to
the geometry of the semi-infinite medium: when z becomes
of the order of L/2, the probe sphere starts to be sensitive
to the boundaries of the system, and a cross-over toward the
sphere-cube geometry is expected. We also show in Fig. 3 the
standard deviation of the CP potential relative to its mean,
γ , as a function of nz3. Red dots are the numerical results,
and the dashed curve is the theoretical prediction (2). The
agreement between theory and numerics is very good, up to
small finite-size effects at large z.

C. Probability distribution function

As was pointed out in [30], the fluctuations of U (z) become
significant at distances z � n−1/3, when γ becomes larger
than unity, see Eq. (2) and Fig. 3. This suggests that at
small distances, the mean U (z) is no longer representative
of U (z). In order to confirm this picture, we compute the

FIG. 3. (Color online) Relative fluctuations of the CP potential as
a function of nz3. Dots are the results of exact numerical simulations
and the dashed line is the theoretical prediction (2).

FIG. 4. (Color online) Scatter plot of the CP potential normalized
to its mean value, s = U/U , computed for 5500 disorder realizations,
for nz3 = 0.5.

full probability distribution function p(s) of the CP potential
normalized to its mean, s = U/U , by constructing histograms
of the numerical data. In Fig. 4, we show as an example a
scatter plot of the data obtained for 5500 disorder realizations,
for nz3 = 0.5. The associated histogram p(s) is displayed
in Fig. 5, together with the histograms corresponding to
three other values of the parameter nz3. A quick look at
the distributions in Fig. 5 forthwith confirms the property
already outlined by the analysis of γ : as the sphere gets closer
to the disordered medium, the distribution function becomes
more and more peaked around a value s � 1, corresponding
to a CP potential much smaller than its mean. In other
words, U (z) is no longer a self-averaging quantity. Only
when nz3 > 1 does the maximum of the distribution approach
s = 1. Such a phenomenon was previously observed in the
context of the interaction between plates with one-dimensional
disorder [25,26]. We see here that it is a quite general property,
not restricted to one-dimensional systems.

FIG. 5. (Color online) Probability distribution function p(s =
U/U ), for four increasing values of nz3. Histograms (vertical lines)
are the results of exact numerical simulations, and solid curves are the
theoretical prediction, Eq. (15). The lower-right panel also displays
as a dashed curve the Gaussian distribution expected in the limit of
very large distances, Eq. (17).
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FIG. 6. (Color online) Numerical probability distribution p(s)
for two different sets of parameters of the scattering spheres, for
nz3 = 1 (histograms, vertical lines). No visible difference is seen
between the two histograms. This is confirmed by the theoretical
prediction (solid curve), Eq. (15), which depends on the single
parameter nz3.

D. Sensitivity to microscopic parameters

To conclude our numerical study, we address the question
of the sensitivity of p(s) with respect to changes in the
microscopic properties of the scatterers. For this purpose, we
perform additional numerical simulations involving scatterers
with a different radius a = 1 nm and made of a different
material with frequency-independent permittivity ε = 10. We
also set the radius of the probe sphere to a = 1 nm, but
keep the same value of the permittivity of silicon as in the
previous section. The distribution p(s) obtained for these
new parameters is shown in the right panel of Fig. 6, for
nz3 = 1. For comparison, we also display the distribution p(s)
computed with the parameters of the previous section. No
visible difference is seen between the two histograms, which
indicates that in the dilute limit, p(s) is in fact a function of
the parameter nz3 only. In particular, the parameter na3 is
irrelevant. This could have been anticipated since in the limit
na3 � 1 of independent scatterers, na3 enters both U and
U within the same prefactor, which thus cancels out when
considering the ratio s = U/U (see Sec. IV for a general
proof). This property is in particular fulfilled by the second

moment of the distribution, γ 2 = δU 2/U
2
, see Eq. (2).

IV. SIMPLE MODEL

We now develop a simplified statistical description of the
CP interaction between a dielectric sphere and a disordered
bulk medium, based on a pairwise summation (PWS) ap-
proximation [44]. This approximation describes the total CP
interaction U (z) as a sum of the pair interaction E between
the probe sphere and each of the N scatterers. It has to be
distinguished from the perturbative expansion, as it can in
principle be used for nonperturbative pair interactions. In the
problem studied in this paper, however, the validity of the two
approximations is a consequence of the same assumption of a
dilute disorder (na3 � 1).

A. Pairwise summation

As in the numerical simulations (Sec. III), we consider
a situation where the distance z much exceeds the sphere
resonance wavelength λ0 (in the opposite limit z � λ0, the
reasoning follows exactly the same lines). Consequently, the

FIG. 7. (Color online) Left: parametrization of the geometry for
the statistical approach of Sec. IV A. Right: typical (rare) disorder
realization contributing to the Lifshitz tail: the atom is above a large
region free of scatterers, of size R � z.

interaction potential between the probe sphere and a scatterer
located at distance r takes the simple form E = −
7/r7, where

7 is a constant characteristic of the microscopic properties of
the two interacting objects. Let us consider a small spherical
cap of volume dV containing dN scatterers, as illustrated in
the left panel of Fig. 7. The elementary CP interaction between
them and the probe sphere is dU = EdN = −
7dN/r7. As
in the simulations, we assume the positions of the scatterers
to follow a uniform distribution, so the random variable dN is
Poisson distributed. The mth cumulant of dN , Km(dN), thus
fulfills

Km(dN) = K1(dN) = ndV, (6)

where n = N/L3 is the average density of scatterers. Within
the PWS approximation, the cumulant of the elementary CP
potential dU involving dN scatterers reads

Km(dU ) =
(

−
7

r7

)m

Km(dN )

=
(

−
7

r7

)m

ndV ≡ dKm(U ), (7)

where we have used the property Km(aX) = amKm(X) in
the first equality, and Eq. (6) in the second. The cumulant
of the total CP potential between the probe sphere and the
N scatterers is finally obtained by using the parametrization
dV = 2πr(r − z)dr , see Fig. 7, and integrating over r from
r = z to ∞. This yields

Km(U ) = (−1)m2πn
m
7

(7m − 3)(7m − 2)z7m−3
, (8)

from which various statistical properties can be deduced, as
we now discuss.

B. Mean and standard deviation

As a preliminary application of our statistical approach, we
propose to rederive predictions (1) and (2), previously obtained
from an exact treatment of the radiation-matter interaction.
For simplicity we assume the scatterers to be spheres of static
polarizability α0, identical to the probe sphere. The coefficient

7 then describes the large-distance interaction between two
identical spheres. It can be readily evaluated, for instance,
from the Casimir-Polder law [1] for the energy between two
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atoms [45]:


7 = 23�cα2
0

(4π )3
. (9)

The mean U (z) is by definition the first-order cumulant:
U (z) = K1(z) = −2πn
7/(20z4), where we have used Eq. (8)
for m = 1. Combining this expression with Eq. (9), we recover
Eq. (1). The variance δU 2(z) is, on the other hand, given by
the second-order cumulant, K2(z) = 2πn
2

7/(132z11). Taking
the ratio with K1(z), we find

γ =
√

δU 2(z)

|U (z)| �
√

50

33π

1√
nz3

, (10)

which is nothing but Eq. (2), with an analytic expression of
the coefficient

√
50/(33π ) � 0.7.

C. Probability distribution function

Let us now derive the probability distribution function
p(s = U/U ) that was studied numerically in Sec. III C. p(s)
is given by the inverse Laplace transform

p(s) = 1

2πi

∫ δ+i∞

δ−i∞
est eϕ(t)dt, (11)

where δ is greater than the real part of all singularities of
eϕ(t). ϕ(t) is the cumulant generating function of s, and can be
expressed as a power series of the cumulants (8):

ϕ(t) =
∞∑

m=0

(−t)m

m!

Km(U )

U
m . (12)

Making use of Eq. (8) and of the relation U (z) =
−2πn
7/(20z4) obtained above, we find

ϕ(t) = 2πnz3

6
[−1 + e−τ − 2τ 3/7γ4/7(τ ) + 3τ 2/7γ5/7(τ )],

(13)

where we have introduced τ = 20t/(2πnz3) and where
γq(τ ) = ∫ τ

0 xq−1e−xdx is the lower incomplete γ function.
Since eϕ(t) has no singularities in the complex plane, we can
set δ = 0 in Eq. (11). Furthermore, we have the property
ϕ∗(t) = ϕ(t∗), such that after the substitution t = ix, Eq. (11)
simplifies to

p(s) = 1

π

∫ ∞

0
Re[eixseϕ(ix)]dx. (14)

Inserting Eq. (13) into this relation, we finally obtain

p(s) = nz3

10
Re

∫ ∞

0
exp

{
2πnz3

6

[
3

10
siτ − 1 + e−iτ

− 2(iτ )3/7γ4/7(iτ ) + 3(iτ )2/7γ5/7(iτ )

]}
dτ. (15)

Distributions p(s) obtained from numerical evaluation of
Eq. (15) are displayed in Fig. 5 as solid curves on top of the
numerical results of Sec. III. The agreement is excellent for
all the values of nz3. Furthermore, we notice that Eq. (15)
confirms the conclusion drawn from the simulations in
Sec. III D: p(s) depends on the parameter nz3 only, being

completely independent of the microscopic details of the probe
sphere and of the scatterers.

D. Asymptotics

Although the distribution p(s), Eq. (15), has no evident
analytic expression, several simple asymptotic limits can be
readily examined.

Large-s limit. We describe the limit of large s by expanding
the term inside the square brackets in Eq. (15) up to second
order in τ � 1. Since essentially the values of τ such that
τsnz3 � 1 contribute to the integral, this expansion is a good
approximation provided 1/(snz3) � 1. It results in a Gaussian
integral which is straightforwardly performed to give

p(s) �
√

33nz3

10
exp

[
−33π

100
nz3(s − 1)2

]
. (16)

Making use of Eq. (10), we rewrite Eq. (16) as

1√
2πδU 2

exp

[
− (U − U )2

2δU 2

]
. (17)

At large s, p(s) is thus simply a (normalized) Gaussian
distribution of mean U and variance δU 2. The expansion used
to derive Eq. (17) being valid as long as s � (nz3)−1, the
Gaussian shape is a very good approximation of the whole
distribution when nz3 � 1, which is a direct consequence of
the weakness of fluctuations at large distances. We expect
this Gaussian distribution to be universal at large distances, as
a consequence of the central-limit theorem [many scatterers
contribute to U (z) when nz3 � 1], regardless the nature of the
disordered medium. This conclusion is supported by similar
predictions previously made in the context of the thermal
Casimir effect in one-dimensional disordered media [25,26], as
well as in recent studies of the CP interaction involving quasi-
two-dimensional disordered metals [27]. For comparison,
we show Eq. (17) in the lower-right panel of Fig. 5 as a
dashed curve, for nz3 = 40. Note that in the chosen geometry
this limit is difficult to reach in the numerical simulations,
because it requires the generation of a significant number of
scattering spheres in order to satisfy the condition nz3 � 1,
while maintaining z � L/2 to avoid finite-size effects. When
nz3 � 1, Eq. (17) still holds but only in the very far tail of the
distribution, s � (nz3)−1 � 1. The physical reason for which
we recover a Gaussian tail even for small values of nz3 is the
following. Large values of s correspond to particular disorder
realizations D for which the Casimir potential is very large,
i.e., for which the density of scatterers nD underneath the probe
atom is very high. Thus, for these specific disorder realizations
the condition nDz3 � 1 is effectively fulfilled.

Moderate values of s. To describe the limit s � (nz3)−1,
we expand the term inside the square brackets in Eq. (15) for
large τ :

p(s) � nz3

10
Re

∫ ∞

0
dτ exp

{
2πnz3

6

[
3

10
isτ − 2
(4/7)

× (iτ )3/7 + 3
(5/7)(iτ )2/7

]}
. (18)
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FIG. 8. (Color online) Distribution p(s) for nz3 = 0.005 (solid
red curve), together with the approximate form (19) at moderate s

(dashed curve).

We then perform a Wick rotation τ = ix, and express both
exponential terms exp(αx3/7) and exp(βx2/7) as power series.
This gives

p(s) = −nz3

10
Im

∫ ∞

0
dx exp

(
−πnz3

10
sx

) ∞∑
n,m=0

1

n!m!

×
[
−2πnz3

3

(4/7)(−x)3/7

]n

[πnz3
(5/7)(−x)2/7]m.

If we additionally assume s � nz3, the terms (m,n) = (0,1)
and (m,n) = (1,0) give the leading contribution to p(s) (the
term m = n = 0 is purely real and does not contribute).
Keeping only these two terms and computing the remaining
integral, we find

p(s) � 2

7
103/7 (πnz3)4/7

s10/7

[
1 −

(
πnz3s

10

)1/7
]
. (19)

Equation (19) holds for nz3 � s � (nz3)−1. It is shown in
Fig. 8 as a dashed curve for nz3 = 0.005, together with the
exact distribution calculated from Eq. (15) (solid red curve).

Small-s limit. We finally consider the low-potential tail s �
nz3 of p(s). In order to find an asymptotic expansion in that
limit, we come back to Eq. (18) and apply the change of
variables τ = (y/s)7. This yields

p(s) � 7nz3

10s7
Re

∫ ∞

0
y6dy exp

{
2πnz3

6s6

[
3

10
iy7

− 2
(4/7)i3/7s3y3 + 3
(5/7)i2/7s4y2

]}
. (20)

In the limit of very small s, we are thus led to evaluate

I = Re
∫ ∞

0
dyy6 exp [�f (y)], (21)

where � = πnz3/(3s6) � 1 and f (y) = (3/10)iy7 −
2
(4/7)i3/7s3y3 + 3
(5/7)i2/7s4y2. Equation (21) naturally
calls for the method of steepest descent. There are five saddle
points, solutions of f ′(y) = 0. Only one of them, denoted by
ySP, turns out to give a nonzero contribution to p(s):

ySP =
[

60
(4/7)s3

21

]1/4

e−iπ/14. (22)

Using Cauchy’s theorem, we then deform the path of integra-
tion to a path coinciding with the path of steepest descent in
the vicinity of ySP. This is achieved by expanding f (y) up
to second order around y = ySP and performing the change
of variables x = (y − ySP) exp(−3iπ/14), leaving us with a
Gaussian integral whose evaluation leads to

p(s) � α

√
nz3

s11/8
exp

[
−β

nz3

s3/4

]
, (23)

with prefactors α = (20/7)3/8
(4/7)7/8 and β =
16

√
2π (5/7)3/4
(4/7)7/4/21. The asymptotic form (23)

is completely analogous to the so-called Lifshitz tail that
describes the band edge of the density of states of disordered
conductors in solid-state physics [46]. Physically, it can be
understood from the following qualitative argument. Low
values of s are achieved for rare disorder realizations where the
probe sphere stands above a large region free of scatterers, as
illustrated in the right scheme of Fig. 7. Since the distribution
of scatterers is Poissonian (Sec. IV), the distance between
the events of this Poisson process follows an exponential
distribution. Consequently, the probability to find a large
region of size R free of scatterers is ∝ exp(−cnR3), where c

is a numerical constant. In such a configuration, the Casimir
potential felt by the atom can be estimated as (see Fig. 7)

U = −2πn
7

∫ ∞
√

z2+R2

r(r − z)dr

r7
∝ −n
7

R4
, (24)

to leading order in z/R � 1. On the other hand, we have
seen in Sec. IV B that the average Casimir potential is
U ∝ −n
7/z

4. Therefore, for the rare disorder realization
displayed in Fig. 7, we have U ∝ (z/R)4U , such that

p(s) ∼ exp(−cnR3) = exp

⎡
⎣−cn

(
z
U

1/4

U 1/4

)3
⎤
⎦

= exp

(
−cnz3

s3/4

)
, (25)

which is nothing but the asymptotic form (23).

V. CONCLUSION

In this paper, we have developed a statistical description
of Casimir-Polder potentials from both a numerical and
an analytical perspective. This approach is well suited for
describing the Casimir interaction between a simple dielectric
object and a strongly heterogenous medium made of a
large number of independent constituting elements. It can be
readily extended to other geometries and to heterogeneous
media characterized by a more complex statistics involving,
for instance, a nonuniform or polydisperse distribution of
scatterers.

As a first extension of our work, it would be interesting
to investigate deviations to the dilute limit na3 � 1 where
the scatterers can no longer be systematically considered
independent. We expect these deviations to primarily affect
the far tails of the distribution p(s). A second open question
concerns the change in the statistics of the Casimir-Polder po-
tential when the host (homogeneous) medium has a dielectric
constant differing from unity. This problem is more difficult
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to treat since it now involves a surface, which implies multiple
reflections inside and outside the medium. The presence of
a host medium may therefore strongly affect the distribution
p(s) [in the obvious limit where the dielectric constant of the
host medium goes to infinity, one recovers a perfectly reflecting
interface and p(s) should tend to the Dirac function δ(s − 1)].

In practice, the distribution p(s) could be experimentally
accessed either by moving the sphere over a static disordered
medium to record different disorder distributions, or by taking

advantage of a Brownian motion of the scatterers if the
measurement process is fast enough. Indeed, in that case
different disorder realizations can be obtained by detecting
the Casimir force and then letting the scatterers move before
carrying out the next measurement. If the measurement process
is slow, the effect of the motion of the scatterers is to average
the Casimir potential, giving him a value well approximated by
Eq. (1) since Doppler shifts have a negligible effect at thermal
velocities [47–49].
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Judd, A. Günther, and J. Fortágh, Nat. Nanotech. 7, 515 (2012).

[23] C. Genet, A. Lambrecht, P. A. Maia Neto, and S. Reynaud,
Europhys. Lett. 62, 484 (2003).

[24] P. A. Maia Neto, A. Lambrecht, and S. Reynaud, Phys. Rev. A
72, 012115 (2005).

[25] D. S. Dean, R. R. Horgan, A. Naji, and R. Podgornik, Phys. Rev.
A 79, 040101(R) (2009).

[26] D. S. Dean, R. R. Horgan, A. Naji, and R. Podgornik, Phys. Rev.
E 81, 051117 (2010).

[27] A. A. Allocca, J. H. Wilson, and V. Galitski, Phys. Rev. A 91,
062512 (2015).

[28] F. Intravaia, C. Henkel, and M. Antezza, in Casimir Physics,
edited by D. Dalvit et al., Lecture Notes in Physics 834
(Springer-Verlag, Berlin, 2011), p. 345.

[29] A. Canaguier-Durand, A. Gérardin, R. Guérout, P. A. Maia
Neto, V. V. Nesvizhevsky, A. Yu. Voronin, A. Lambrecht, and
S. Reynaud, Phys. Rev. A 83, 032508 (2011).

[30] N. Cherroret, R. Guérout, A. Lambrecht, and S. Reynaud, Eur.
Phys. J. D 69, 99 (2015).

[31] H. Friedrich, G. Jacoby, and C. G. Meister, Phys. Rev. A 65,
032902 (2002).

[32] A. Y. Voronin, P. Froelich, and B. Zygelman, Phys. Rev. A 72,
062903 (2005).

[33] G. Dufour, A. Gérardin, R. Guérout, A. Lambrecht, V. V.
Nesvizhevsky, S. Reynaud, and A. Yu. Voronin, Phys. Rev. A
87, 012901 (2013).

[34] G. Dufour, R. Guérout, A. Lambrecht, V. V. Nesvizhevsky,
S. Reynaud, and A. Yu. Voronin, Phys. Rev. A 87, 022506
(2013).

[35] G. A. Moreno, R. Messina, D. A. R. Dalvit, A. Lambrecht,
P. A. Maia Neto, and S. Reynaud, Phys. Rev. Lett. 105, 210401
(2010).

[36] A. Lambrecht, P. A. Maia Neto, and S. Reynaud, New J. Phys.
8, 243 (2006).

[37] T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Phys. Rev. Lett.
99, 170403 (2007).

[38] A. Lagendijk and B. A. van Tiggelen, Phys. Rep. 270, 143
(1996).

[39] M. C. W. van Rossum and Th. M. Nieuwenhuizen, Rev. Mod.
Phys. 71, 313 (1999).

[40] S. J. Rahi, T. Emig, N. Graham, R. L. Jaffe, and M. Kardar,
Phys. Rev. D 80, 085021 (2009).

[41] A. Canaguier-Durand, P. A. Maia Neto, A. Lambrecht, and S.
Reynaud, Phys. Rev. A 82, 012511 (2010).

[42] R. C. Wittmann, IEEE Trans. Antennas Propag. 36, 1078 (1988).
[43] E. D. Palik, Handbook of Optical Constants of Solids (Aca-

demic, New York, 1997).
[44] A.-F. Bitbol, A. Canaguier-Durand, A. Lambrecht, and

S. Reynaud, Phys. Rev. B 87, 045413 (2013).
[45] E. A. Power and T. Thirunamachandran, Phys. Rev. A 48, 4761

(1993); 50, 3929 (1994).
[46] I. M. Lifshitz, Adv. Phys. 13, 483 (1964).
[47] T. L. Ferrell and R. H. Ritchie, Phys. Rev. A 21, 1305 (1980).
[48] G. Barton, New J. Phys. 12, 113045 (2010).
[49] G. V. Dedkov and A. A. Kyasov, Surf. Sci. 605, 1077 (2011).

042513-7



2.3.3 ForcaG experiment

In ref. [31], included hereafter, we have studied the effect of a material surface on the
Wannier-Stark states for atoms trapped in an optical lattice. This work was done
in the context of the ForcaG experiment at SYRTE which aims at measuring the
Casimir-Polder and the gravitational force between atoms and a material surface
using atomic interferometry techniques.

Wannier-Stark states are the solutions of a Hamiltonian consisting of a periodic
potential plus a constant force. In the experiment, rubidium atoms are trapped in a
vertical optical lattice. The periodic part of the Hamiltonian is then the optical po-
tential Vopt(z) = U (1− cos 2klz) /2 created by the trapping laser and the constant
force part of the Hamiltonian is the gravity force deriving from the gravitational
potential Vg(z) = −mgz. Above, the quantity U is the optical lattice depth. De-
pending on it, the Wannier-Stark states can be very localized on each lattice sites
or spread out over multiple lattice sites.

In addition to the gravity and the trapping optical potential, the atoms are also
subjected to the potential due to the presence of the mirror used to reflect the
trapping laser. This surface potential consists of the Casimir-Polder potential and a
short range part responsible for possible adsorption of atoms onto the surface which
we model by a Lennard-Jones potential. Our work was to study the effects of this
surface potential on the Wannier-Stark states of the atoms. The trapping laser has
a wavelength of λl = 532 nm so that the lattice sites are located at a multiple of 266
nm from the mirror. The mirror is a Bragg mirror consisting of alternating layers
of SiO2 and Ta2O5 designed to be nearly transparent at 780 nm and 1064 nm while
being reflecting at 532 nm. In order to calculate the Casimir-Polder potential, we
calculated the reflection coefficient of this mirror using transfer matrix theory.

Data on the adsorption of rubidium atoms on the surface of the Bragg mirror
are unknown. So, the parameters of the short range Lennard-Jones potential are
unknown. We therefore use reasonable parameters for typical adsorption energies.
The short range Lennard-Jones potential supports a number of surface bound states.

We found that the two least bound surface states lie in the energy range rele-
vant to the Wannier-Stark states and strongly modify the Wannier-Stark spectrum.
According to the LeRoy-Bernstein law, the position of those least bound states only
depends on the depthD of the Lennard-Jones potential (not its exact shape) and the
C3 coefficient of the non-retarded part of the Casimir-Polder potential. While the
C3 coefficient can be reliably determined from our calculations, the depth D stays
unknown. For that reason, we cannot draw any further conclusions concerning the
surface-modified Wannier-Stark spectrum.

Nevertheless, the Wannier-Stark states localized far from the surface are basically
insensitive to the unknown parameters of the Lennard-Jones potential. Using those
states, it is possible to perform Raman interferometry and we have simulated a
typical Raman spectrum. The effect of the Casimir-Polder potential between the
atoms and the mirror is noticeable in the Raman spectrum and we concluded that the
determination of the C3 coefficient would be possible from a Raman interferometry
experiment.
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We study the energy spectrum of atoms trapped in a vertical one-dimensional optical lattice in close proximity
to a reflective surface. We propose an effective model to describe the interaction between the atoms and the
surface at any distance. Our model includes the long-range Casimir-Polder potential together with a short-range
Lennard-Jones potential, which are considered nonperturbatively with respect to the optical lattice potential. We
find an intricate energy spectrum which contains a pair of loosely bound states localized close to the surface in
addition to a surface-modified Wannier-Stark ladder at long distances. Atomic interferometry involving those
loosely bound atom-surface states is proposed to probe the adsorption dynamics of atoms on mirrors.

DOI: 10.1103/PhysRevA.94.053602

I. INTRODUCTION

Trapping and manipulating cold neutral atoms in an optical
lattice offers high control over the atomic locations and robust
quantum coherence on the dynamics of the atomic states.
These properties make of an optical lattice an ideal system for
applications in metrology [1,2] and in precision measurements
of the interactions between the atoms and the environment
[3]. It is to the latter that the FORCA-G project applies [4].
In particular, the FORCA-G experiment aims at performing
high-precision measurements of the electromagnetic and
gravitational interactions between a neutral atom and a massive
dielectric surface. Ultimately, it aims at establishing accurate
constraints in the search of hypothetical deviations from the
Newtonian law of gravitation at short length scales, the reason
why an accurate knowledge of the electromagnetic interaction
is also needed. It is on the electromagnetic interaction that we
concentrate in this article.

In the setup of FORCA-G atoms of 87Rb are trapped in
a vertical optical lattice by the potential generated by the
standing waves of a laser source of wavelength λl = 532 nm,
which reflect off a Bragg mirror (see Fig. 1). The optical
potential takes the periodic form

Vop(z) = U (1 − cos 2klz)/2, (1)

where kl = 2π/λl , z is the vertical distance relative to the
surface position and U is the optical depth which depends on
the laser intensity. In addition, the uniform Earth gravitational
field creates a linear potential

Vg(z) = −mgz (2)

with m being the atomic mass and g being the gravitational
acceleration. Disregarding the atom-mirror interaction, the
spectrum which results from the addition of the optical and
gravitational potentials consists of a ladder of quasistable states
referred to as Wannier-Stark (WS) states. The WS eigenstates
are localized around the equilibrium points zn = nλl/2, n

being an integer, and are uniformly distributed along the energy

*maury@lkb.upmc.fr
†on leave from Laboratoire de physique des lasers, Université Paris

13, Villetaneuse, France.

spectrum at constant intervals mgλl/2 = hνB . In this expres-
sion νB is referred to as Bloch frequency, and the degree of
localization is determined by the relative optical depth with re-
spect to the recoil energy, U/(�2k2

l /2m) = U/Er (see Fig. 2).
In addition to Vop(z) and Vg(z), the neutral atoms interact

with the surface through the mutual coupling of their charge
fluctuations to the vacuum fluctuations of the electromagnetic
field. This interaction is known generically as Casimir-Polder
(CP) interaction [5,6]. At zero temperature its strength depends
generally on the dielectric properties of the surface, the state
of the atom, and the distance between them.

The modus operandi of FORCA-G consists of a sequence of
pulses generated by Raman lasers and microwaves which are
used to create an atomic interferometer. The pulses drive the
atoms through a coherent superposition of low-lying Zeeman
sublevels at different lattice sites [4]. The CP interaction
induces a phase shift on the atoms which depends strongly
on the distance of the atoms to the surface and slightly on
the internal atomic states. The phase shift accumulated by
the atomic wave function throughout the sequence of pulses
is finally measured by atomic interferometry techniques. If
the atoms are made to oscillate between lattice sites far
from the surface, the CP-induced shift is additive. Therefore,
once the phase shift associated to the passage through different
WS levels, which is characteristic of the interferometer
scheme, is substracted, the remaining phase is the CP-induced
shift we are interested in.

The latter applies to the case where the CP interaction is
small with respect to the optical potential depth, so that it can
be treated as a perturbation to the potential Vop(z) + Vg(z) and
hence to the original WS states. This takes place at separation
distances of the order of microns, at which the perturbative
development of Refs. [7,8] applies. On the contrary, at
submicrometer distances and beyond the perturbative regime,
it was already noticed in Ref. [7] that the CP corrections to
the original WS energies diverge. This is especially relevant
to the purposes of the FORCA-G project, as deviations from
Newtonian gravity are expected to occur at submicrometer
distances. Therefore, a precise knowledge of the CP interaction
at this length scale as well as an accurate description of the
spatial distribution of the atomic wave function are crucial
in order to detect those gravitational effects. In Ref. [7] the
authors apply a regularization scheme for the CP potential

2469-9926/2016/94(5)/053602(7) 053602-1 ©2016 American Physical Society



MAURY, DONAIRE, GORZA, LAMBRECHT, AND GUÉROUT PHYSICAL REVIEW A 94, 053602 (2016)

FIG. 1. Scheme of the experimental device. Cold 87Rb atoms
are trapped in a blue-detuned vertical optical lattice. An infrared
laser at λ = 1064 nm ensures the transverse confinement. A pair of
contrapropagating Raman lasers at λ = 780 nm (not shown) drives
the transitions between lattice sites.

based on the assumption that the minimum distance of the atom
to the surface is determined by the atomic radius. However, it
is found there that the resultant corrections strongly depend on
this radius. Thus, nonreliable results were obtained.

It is the main purpose of the present article to develop a
nonperturbative approach to this problem in order to determine
accurately the energy spectrum and the profile of the atomic
states at submicrometer distances. To this end, we model the
short-range interaction between the atom and the surface by
a Lennard-Jones potential which features the adsorption of
the atoms on the surface. We find that, in addition to slightly
modified WS states, the resultant spectrum contains a number
of loosely bound atom-surface states whose properties depend
critically on the parameters of the Lennard-Jones potential.
Nonetheless, independent measurements can be performed to
determine the unknowns of such potential.

The remainder of the article is organized as follows. In
Sec. II, we present the features of the potential modeling the
interaction between the atom and the surface. In Sec. III we
show that the overall effect of the surface leads to a com-
plex energy spectrum significantly departing from the usual
Wannier-Stark states. We conclude by calculating a typical
atomic interferometry spectrum obtained using stimulated
Raman transitions between those surface-modified Wannier-
Stark states.

II. THE ATOM-SURFACE POTENTIAL

In addition to the optical potential described in the
precedent section, the atoms interact with the mirror through

n 5 n n 5

2 z

λl
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0.3
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FIG. 2. Profile of the squared-norm of the wave function of the
nth WS state for different values of the optical depth, U = 3 Er

(upper figure) and U = 9 Er (lower figure).

the electromagnetic field. Quite generally, this interaction
is made of two distinct components, a short-range and a
long-range potentials. The short-range potential results from
the spatial overlap between the electronic clouds of the
atoms and the surface at subnanometer distances. In turn,
this potential depends on the precise profile of the electronic
density distribution, which is difficult to determine both
experimentally and theoretically. Hence, a parametrization
scheme is required for the short-range potential. In contrast,
the long-range potential originates from the mutual coupling
of the charges within the atoms and the currents in the
mirror to the fluctuating electromagnetic field. This is the so-
called Casimir-Polder potential, which is computed in the
electric dipole approximation at second order in stationary
perturbation theory.

In the framework of the scattering theory [9], the Casimir-
Polder potential between a flat mirror in the (xy) plane and
an atom in the ground state separated by a distance z, at
temperature T , is given by [10]

V CP
s (z) = kBT

∑
n

′ ξ 2
n

c2

α(iξn)

4πε0

∫ ∞

0

d2k
κ

e−2κz

×
[
ρTE −

(
1 + 2κ2c2

ξ 2
n

)
ρTM

]
(3)

053602-2



SURFACE-MODIFIED WANNIER-STARK STATES IN A . . . PHYSICAL REVIEW A 94, 053602 (2016)

with k2 = k2
x + k2

y , κ = √
k2 + ξ 2

n /c2 and the sum runs over
Matsubara frequencies ξn = 2πnkBT /�. In this equation ρTE

and ρTM are the reflection coefficients of the mirror for
the TE and TM polarizations, respectively, and α(iξ ) is the
polarizability of a 87Rb atom in its ground state evaluated at
imaginary frequencies [11],

α(iξ ) = 2

�
∑

j

ωjgd
2
jg

ω2
jg + ξ 2

, (4)

where ωjg = ωj − ωg and djg are, respectively, the transition
frequency and the electric dipole matrix element between the
states |j 〉 and |g〉.

Concerning the optical properties of the mirror used in
the FORCA-G experiment, its design is such that it is nearly
transparent at 780 nm and 1064 nm while it is reflective at
532 nm. It is a Bragg mirror formed by alternating layers of
SiO2 and Ta2O5. Its reflection coefficients ρTE and ρTM are
obtained using standard transfer matrix theory. Let us define
first by Ti the transfer matrix associated to the transmission
through the interface between the layers i and i + 1, as well
as to the propagation throughout the layer i + 1 of width di+1.
It relates the field on the left of the layer i to the field on the
right and reads [12]

Ti = 1

t̄i

(
ti t̄i − ri r̄i r̄i

−ri 1

)(
eikzdi+1 0

0 e−ikzdi+1

)
. (5)

In this equation, ri and ti are the Fresnel amplitudes from
medium i to medium i + 1. The barred quantities are the
reciprocal amplitudes from medium i + 1 to medium i and
kz is the z component of the wave vector in medium i + 1. The
transfer matrix of the Bragg mirror, T, is the product of the
transfer matrices of all the layers T = ∏

i Ti and reads

T = 1

τ̄

(
τ τ̄ − ρρ̄ ρ̄

−ρ 1

)
, (6)

from which the total reflection amplitude reads ρ =
−[T]21/[T]22.

We show in Fig. 3 the Casimir-Polder potential calculated
using Eq. (3) for a temperature T = 300 K. The potential is
scaled with z3, the third power of the atom-surface distance,
in order to emphasize the nonretarded van der Waals regime
characterized by its coefficient C3 ≈ 3.28 a3

0 eV.
As for the short-range potential, we parametrize it using a

12 − 3 Lennard-Jones form,1

V LJ
s (z) = D

3

[(
z0

z

)12

− 4

(
z0

z

)3
]
, (7)

which is characterized by a well depth D and an equilibrium
distance z0 which correspond to the energy and distance from
the surface of an adsorbed atom, respectively. Continuity of
the atom-surface potential demands that V LJ

s (z) and V CP
s (z)

smoothly merge at some intermediate distance zm. This implies

1In surface science, a 9 − 3 Lennard-Jones potential is also often
used as it arises as pairwise summation of 12 − 6 Lennard-Jones
atom-atom interactions.

un
it

s 
of

FIG. 3. The Casimir-Polder potential calculated between a Ru-
bidium atom and a SiO2–Ta2O5 Bragg mirror as a function of the
distance z. The value of the van der Waals coefficient C3 is indicated.

that D and z0 are no longer independent but are related by the
equation

4
3Dz3

0 = C3, (8)

where C3 is the van der Waals coefficient in the Casimir-Polder
potential. With this condition between the parameters D and
z0 in the Lennard-Jones potential, the matching distance zm is
chosen where both potentials V LJ

s (z) and V CP
s (z) behave in z−3

and leads to the total surface potential Vs(z):

Vs(z) = V LJ
s (z)�(zm − z) + V CP

s (z)�(z − zm), (9)

where �(z) is the Heaviside function.
The form used for V LJ

s (z) is merely of a physisorption type
and hence is expected to underestimate the adsorption energy.
For instance, for an equilibrium distance z0 = 2.3 Å we find
D ≈ 30 meV to be compared with a value of ≈350 meV
from a recent density functional theory calculation [13]. As
a matter of fact, the parameters of the short-range potential
carry the largest uncertainty in our calculation. An accurate
determination of this part of the potential would require
extensive ab initio calculations up to distances of the order
of the nanometers which are beyond the scope of this work.
Alternatively, the parameters D and z0 can be determined
experimentally. Be that as it may, we will study in the next
section the influence of our results upon the parameters of the
Lennard-Jones model.

III. SURFACE-MODIFIED WANNIER-STARK STATES

In the following and unless otherwise stated, we will refer
to the distance z to the surface in units of λl/2 = 266 nm

and the energies in units of the recoil energy Er = �2k2
l

2m
≈

5.37 × 10−30 J for a Rubidium atom. The surface-modified
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FIG. 4. Potential V (z) in units of the recoil energy Er shown as
the black curve. The dashed blue and red curves are, respectively, the
surface potential Vs(z) and the gravitational potential −mgz.

Wannier-Stark states (SMWSSs) are solutions of the time-
independent Schrödinger equation

− �2

2m

d2ψn(z)

dz2
+ V (z)ψn(z) = Enψn(z), (10)

with V (z) = Vs(z) + Vg(z) + Vop(z). (11)

In the situation where the mirror is above the atoms, the
potential V (z) is not bounded from below so that all states are
rigorously Siegert states [14]. That corresponds to the situation
where the atoms could ultimately “fall from the optical lattice.”
Nevertheless, it has been shown in Ref. [8] that lifetimes are
of the order of 1014 s for the first Bloch band, and hence they
can be considered stable for any experimental realization. We
show in Fig. 4 the potential V (z) for an optical depth U = 3Er .

At z ≈ 2, the magnitudes of the gravitational and the
Casimir-Polder potentials are similar. As a result, the very first
optical well is strongly influenced by the surface to the point
of becoming weakly bounding. Note that the minimum of the
Lennard-Jones part of the surface potential has very different
orders of magnitude, both in binding energy (D ≈ 109Er )
and in equilibrium distance (z0 = 2.3 Å ≈ 10−3λl/2), a reason
why it does not appear in Fig. 4.

The SMWSSs ψn(z) are conveniently characterized accord-
ing to their mean distance to the surface 〈z〉:

〈z〉 = 〈ψn|z|ψn〉
〈ψn|ψn〉 . (12)

We show in Table I values of the mean distance 〈z〉 and the
energy intervals for the first few SMWSSs calculated for an
optical depth U = 3 Er and z0 = 2.3 Å, ordered according
to an increasing value of 〈z〉 (the first excited Bloch band
corresponds to energies greater than the optical depth U and

TABLE I. SMWSSs for a lattice depth U = 3 Er ordered
according to their mean distance to the surface 〈z〉. Energy intervals
are given in units of Er . Further analysis (see text) shows that
surface-modified Wannier-Stark states begin at n = 3, while the first
two states are atom-surface bound states. The last column refers to the
energy intervals of an infinite potential surface (i.e., perfect surface).

n 〈z〉 En − En−1 Perfect surface

1 0.799 E1 = −0.0709
2 1.006 +1.9690
3 3.372 − 0.5468
4 4.268 − 0.1264 − 0.1371
5 4.681 − 0.0934 − 0.0996
6 4.746 − 0.0693 − 0.0804
7 5.617 − 0.0579 − 0.0722
8 6.881 − 0.0637 − 0.0703
9 7.962 − 0.0679 − 0.0701
10 8.985 − 0.0692 − 0.0701
11 9.994 − 0.0696 − 0.0701
12 10.998 − 0.0698 − 0.0701
13 12.001 − 0.0700 − 0.0701
14 13.002 − 0.0700 − 0.0701
15 14.003 − 0.0700 − 0.0701
16 15.003 − 0.0701 − 0.0701
17 16.003 − 0.0701 − 0.0701
...

...
...

...

is therefore not trapped). The closest SMWSSs are modified
very strongly by the presence of the surface, which reflects on
the lack of regularity characteristic of a Wannier-Stark ladder.
As 〈z〉 increases, though, we progressively recover a usual
Wannier-Stark ladder spaced by the Bloch energy hνB and
integer values of 〈z〉.

For the purpose of the FORCA-G experiment, we are
mostly interested in the states closest to the surface.

We show in Fig. 5 the profile of the real wave functions
corresponding to the first four SMWSSs according to Table I.
The probability amplitudes of the first two states exhibit very

FIG. 5. Wave functions for the first four SMWSSs ψn(z) accord-
ing to Table I. As it is customary, the vertical offset of the wave
functions correspond to their respective energies.
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rapid oscillations within the Lennard-Jones well, while they
are vanishingly small outside this well. On the other hand,
the states n = 3 and n = 4 already are well spread along the
optical potential as the ordinary Wannier-Stark states would.
The tail of their wave functions still shows some oscillations
caused by the Lennard-Jones potential.

A. Dependence upon the Lennard-Jones parameters

While modeling the short-range potential, our largest
uncertainty lies in the unknown shape of the potential well.
Although we have used a known analytical form which
correctly converges towards the Casimir-Polder potential, the
actual short-range potential may differ from the Lennard-Jones
form [13]. It is therefore crucial to study the dependence of our
results upon the free parameters in V LJ

s (z). Let us recall some
general features of the bound states of a 12 − 3 Lennard-Jones
potential. Having a finite depth D and vanishing sufficiently
fast as z → ∞, the potential V LJ

s (z) given by Eq. (7) possesses
a finite number of bound states. Those states represent
vibrational states for an atom bound to the surface and are
therefore indexed with an integer vibrational quantum number
v starting with v = 0 for the ground state. When the total
number of bound states supported by a potential well is
unknown (e.g., due to uncertainties on the dissociation energy
D) it is customary to label the least bound states as v = −1,
the second least bounded states as v = −2, and so on. To a
very good approximation, the position of the few least bound
states depends only on the asymptotic behavior of the potential
as z → ∞ and on a noninteger effective vibrational quantum
number at dissociation, vD , which varies between 0 and −1
[15]. By decreasing continuously the depth of the potential
the states v = −1, v = −2 will be eventually expelled to the
continuum. From those considerations we see that, as far as
the few least bound states are concerned, the exact shape of the
potential energy well is not important. In our case, the effective
vibrational quantum number vD can be varied by simply
decreasing the depth D of our 12 − 3 Lennard-Jones model.
Owing to Eq. (8), the dissociation energy D is decreased
by increasing the equilibrium atom-surface distance z0 as
D(eV) ≈ 0.36z−3

0 (Å).
We show in Fig. 6 the energies of the SMWSSs as a function

of z0 or, equivalently, as a function of decreasing dissociation
energy D. In the first place, one sees that the states n = 1
and n = 2 have a very different behavior compared to all the
others. The position of those states depends critically upon the
dissociation energy D. As such, it is clear that the two SMWSS
states n = 1 and n = 2 are basically the last two bound states
v = −2 and v = −1, respectively, of the short-range potential.
As the equilibrium distance z0 increase, the energies of the
states n = 1 and n = 2 increases, and they cross all the other
states. Nonetheless there must be avoided crossings since all
those states result from the diagonalization of the Hamiltonian
operator.

On the other hand, the energies of the states starting from
the n = 3 are very much independent of the parameters used
in the short-range surface potential V LJ

s (z) except near an
avoided crossing with a bound atom-surface state. From Fig. 6
we conclude that the state n = 3 can be considered the first
surface-modified Wannier-Stark states. The coupling between

2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34
2

1

0

1

2

z0

E
ne

rg
ie

s
un

it
s

of
E

r
n=1

n=2

n=3
n=4

FIG. 6. Calculated energies of the SMWSSs as a function of the
distance z0 in the Lennard-Jones potential, at constant C3 coefficient.
The first four states depicted in Fig. 5 and calculated for z0 = 2.3 Å
are indicated by arrows.

the few first SMWSSs and the atom-surface bound states
quickly vanishes as n increases owing to the vastly different
mean atom-surface distance 〈z〉. This leads to negligible
avoided crossings between the state n = 2 and already the
state n = 7. Far from any avoided crossings, the SMWSSs are
still influenced by the surface. At z0 = 2.3 Å it is shown in
Table I that the energy intervals between successive states are
not equal to the Bloch frequency for the first Wannier-Stark
states.

It is also illustrative to compare our results with those
obtained from the modeling of the short-range potential with
that of a perfect surface:

Vs(z) =
{+∞ z < 0

0 z > 0 . (13)

In the first place, the repulsive part of the Lennard-Jones
potential plays the role of an infinite potential wall. However,
in the case of an infinite potential surface the wave function has
a different behavior at z = 0. In particular, the wave function
vanishes monotically as z → 0 [7,8], whereas it oscillates very
rapidly within a Lennard-Jones potential. Obviously, a major
drawback of an infinite potential surface is the total absence of
bound atom-surface states. Values of the corresponding energy
intervals can be found in Table I.

B. Simulated Raman spectrum

The experimental setup of the FORCA-G is detailed, e.g., in
Ref. [16]. In it, two counterpropagating Raman lasers operating
at λ = 780 nm drive coherent transitions between the ground
|5 2S1/2,F = 1,mF = 0〉 and excited |5 2S1/2,F = 2,mF = 0〉
hyperfine levels of trapped 87Rb atoms. Those transitions can
involve different SMWSSs with a probability proportional to
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FIG. 7. Raman transition probabilities between an initial
SMWSS ψn(z) and a final state ψm(z).

the generator of translations along the z axis, 〈ψn|eikeffz|ψm〉,
with keff ≈ 4π/(780 nm).

We show in Fig. 7 the Raman transition probabilities
between the states presented in Table I. The first two states,
ψ1(z) and ψ2(z), which are the atom-surface bound states are
only weakly coupled to the surface-modified Wannier-Stark
states but strongly coupled to each other. We can see the smooth
evolution of the SMWSSs towards “regular,” unmodified
Wannier-Stark states whose transition probabilities become
a function of |n − m| only. For a lattice depth of 3 Er , a given
state ψn(z) roughly couples to states up to n ± 6.

With a low-density atomic cloud like in Ref. [16], some
104 lattice sites are populated, and the Raman spectrum
is dominated by transitions involving unmodified Wannier-

FIG. 8. Raman stick spectrum involving the states in Table I.
Lines involving the atom-surface bound states ψ1(z) and ψ2(z) are
not shown.
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FIG. 9. Change in Raman transition frequencies νn→m, as a
function of the van der Waals coefficient C3, for selected states: (a)
|m − n| = 1 transitions; (b) |m − n| = 3 transitions; (c) |m − n| = 5
transitions.

Stark states. When the frequency difference between the two
Raman lasers, νR = νR1 − νR2 , is scanned around the rubidium
hyperfine splitting νHFS, this leads to a simple spectrum
with lines at integer numbers of the Bloch frequency νB =
h−1mgλl/2 ≈ 568.5 Hz. One could imagine an experiment
with a much more dense atomic sample with a size of a few
microns where the contribution from the SMWSSs would be
visible.

We show in Fig. 8 the simulated Raman stick spectrum
(spectrum without line shapes) for the states listed in Table I.
As we have shown in Fig. 6, the position of the atom-surface
bound states ψ1(z) and ψ2(z) is largely unknown. Therefore,
we do not show their contributions in the spectrum of Fig. 8.
The energies of those atom-surface bound states will appear
as additional lines in the Raman spectrum. As expected, the
departure from the regular Wannier-Stark ladder generates
many lines. Those lines have the tendency to bundle up around
integer numbers of the Bloch frequency though. Recently a
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relative sensibility of 4 × 10−6 at 1 s on the measure of the
Bloch frequency has been demonstrated using a Ramsey-type
interferometry [17]. Such a sensibility would in principle allow
to resolve the lines presented in Fig. 8.

C. Determination of the Casimir-Polder potential

Up to now, the Casimir-Polder potential has been kept
constant to its calculated value in Sec. II. The aim of the
FORCA-G experiment is to determine this Casimir-Polder
potential from a recorded Raman spectrum. Thus, we have
to know how the Raman spectrum changes when one changes
the Casimir-polder potential. For other references related to the
use of Bloch oscillations in order to measure the coefficients
in the Casimir-Polder potential, see, e.g., Refs. [18,19]. In the
following, we focus on the van der Waals coefficient C3.

We show in Fig. 9 the change in Raman transition
frequencies νn→m = h−1(En − Em) when the C3 coefficient
is allowed to vary from its nominal value of 3.28 a3

0 eV
calculated in Sec. II. We present in Fig. 9 selected transitions
involving |n − m| = 1, 3, and 5 and selected states n � 6.
A precise analysis of the position of those lines with respect
to integer values of the Bloch frequency will allow the van
der Waals coefficient C3 to be determined. In fact, from an
absolute uncertainty of 20 mHz [17] on the determination of

Raman transition frequencies, we infer a relative uncertainty
δC3/C3 on the van der Waals coefficient ranging from 10−2

to 10−4.

IV. CONCLUSION

We have calculated the energies of atoms trapped in a
one-dimensional vertical optical lattice taking into account
the interaction between those atoms and the mirror used
to realize the lattice. We have found that, in the range of
energy of a few recoil energy Er , loosely bound atom-mirror
states appear as additional levels among an otherwise surface-
modified Wannier-Stark ladder. The energies of those loosely
bound atom-mirror states depend critically on the details of
the adsorption atom-surface potential. Atomic interferometry
involving those loosely bound atom-mirror states will shed
light on the adsorption dynamics of rubidium atoms on mirrors.
The close surface-modified Wannier-Stark states correspond to
optically trapped atoms which nevertheless have a significant
probability of being adsorbed by the mirror.
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3 Conclusion

We have presented our method of calculating the Casimir interaction energy between
an arbitrary number of bodies based on the scattering theory. This method can be
applied to any object whose scattering operator is known and do not require any
regularization method leading automatically to a finite interaction energy. The
comparison between theory and experiments in the case of metallic bodies is still
not satisfactory regarding the role of the dissipation in the model of permittivity
used in the calculations. We hope that further experiments will permit to shed some
light on this puzzle.
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eration acting on antimatter as it falls. This has been the subject of our last three
thesis and has shifted the focus of our research from Casimir physics. We hope
that the field of Casimir physics will stay active in the coming years and that the
remaining discrepancies between theory and experiments will be finally resolved.
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