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Titre : Enseignement machine interactif avec et pour les novices
Mots clés : Interaction Humain-Machine, Apprentissage machine, Évaluations centrées sur l’humain

Résumé : Les algorithmes d’apprentissage ma-
chine déployés dans la société ou la technologie
offrent généralement aux utilisateurs aucune prise
sur la manière dont les modèles d’apprentissage
sont optimisées à partir des données. Seuls les ex-
perts conçoivent, analysent et optimisent les algo-
rithmes d’apprentissage automatique.
À l’intersection de l’Interaction Humain-Machine
(IHM) et de l’apprentissage machine, le domaine
de l’apprentissage automatique interactif vise à in-
tégrer l’apprentissage automatique dans des pra-
tiques existantes. L’enseignement machine interac-
tif (Interactive Machine Teaching), en particulier,
cherche à impliquer des utilisateurs non experts en
tant qu’enseignant de la machine afin de les auto-
nomiser dans le processus de construction de mo-
dèles d’apprentissage. Ces utilisateurs pourraient
profiter de la construction de modèles d’appren-
tissage pour traiter et automatiser des tâches sur
leurs propres données, conduisant à des modèles
plus robustes et moins biaisés pour des problèmes
spécialisés.
Cette thèse adopte une approche empirique sur
l’enseignement machine interactif en se concen-
trant sur la façon dont les utilisateurs développent
des stratégies et comprennent les systèmes d’ap-
prentissage machine interactifs à travers l’acte
d’enseigner. Cette recherche fournit deux études
utilisateurs impliquant des participants en tant
qu’enseignant de classificateurs d’images utilisant

des réseaux de neurones artificiels appris par trans-
fert. Ces études se concentrent sur ce que les utili-
sateurs comprennent du comportement du modèle
ML et sur la stratégie qu’ils peuvent utiliser pour le
"faire fonctionner". La seconde étude se concentre
sur la compréhension et l’utilisation de deux types
d’incertitude : l’incertitude aléatorique, qui traduit
l’ambiguïté, et l’incertitude épistémique, qui tra-
duit la nouveauté. Je discute de l’utilisation de l’in-
certitude et de l’apprentissage actif (Active Lear-
ning) comme outils pour l’enseignement machine
interactif. Enfin, je présente mes collaborations ar-
tistiques et adopte une approche réflexive sur les
obstacles et les opportunité de développement de
l’apprentissage automatique interactif pour l’art.

Je soutiens que les utilisateurs novices développent
différentes stratégies d’enseignement qui peuvent
évoluer en fonction des informations obtenues tout
au long de l’interaction. Les stratégies d’enseigne-
ment structurent la composition des données d’en-
traînement et affectent la capacité des utilisateurs
à comprendre et à prédire le comportement de l’al-
gorithme.

En plus de permettre aux gens de construire des
modèles d’apprentissage automatique, l’enseigne-
ment machine interactif présente un intérêt péda-
gogique en favorisant les comportements d’inves-
tigation, renforçant les connaissances des novices
en apprentissage machine.
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Abstract :
Machine Learning algorithms in society or interac-
tive technology generally provide users with little
or no agency with respect to how models are op-
timized from data. Only experts design, analyze,
and optimize ML algorithms.
At the intersection of HCI and ML, the field of
Interactive Machine Learning (IML) aims at incor-
porating ML workflows within existing users’ prac-
tices. Interactive Machine Teaching (IMT), in par-
ticular, focuses on involving non-expert users as
"machine teachers" and empowering them in the
process of building ML models. Non-experts could
take advantage of building ML models to process
and automate tasks on their data, leading to more
robust and less biased models for specialized pro-
blems.
This thesis takes an empirical approach to IMT by
focusing on how people develop strategies and un-
derstand interactive ML systems through the act
of teaching. This research provides two user studies
involving participants as teachers of image-based

classifiers using transfer-learned artificial neural
networks. These studies focus on what users un-
derstand from the ML model’s behavior and what
strategy they may use to "make it work." The se-
cond study focuses on machine teachers’ unders-
tanding and use of two types of uncertainty : alea-
toric uncertainty, which conveys ambiguity, and
epistemic uncertainty, which conveys novelty. I dis-
cuss the use of uncertainty and active learning
in IMT. Finally, I report artistic collaborations
and adopt an auto-ethnographic approach to chal-
lenges and opportunities for developing IMT with
artists.
I argue that people develop different teaching stra-
tegies that can evolve with insights obtained throu-
ghout the interaction. People’s teaching strategies
structure the composition of the data they curated
and affect their ability to understand and predict
the algorithm behavior.
Besides empowering people to build ML models,
IMT can foster investigative behaviors, leveraging
peoples’ literacy in ML and artificial intelligence.
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Résumé étendu en français

Les systèmes d’apprentissage automatique, en particulier les réseaux neuronaux profonds, peuvent s’attaquer
à un nombre toujours plus grand de tâches complexes, en utilisant des données annotés. Ces algorithmes
d’apprentissage automatique sont désormais omniprésentes dans les domaines générant des données, tels
que la science, la finance, l’ingénierie, la médecine, le droit, l’administration et l’art.

Cependant ces algorithmes n’offrent peu ou pas de prise sur la manière dont ils sont optimisées. La
conception, l’analyse et l’optimisation des algorithmes ML sont principalement le fait d’experts, tels que
des ingénieurs ou des chercheurs, qui utilisent des outils de programmation, d’analyse et de visualisation
hors de portée du grand public.

À l’intersection de l’Interaction Humain-Machine (IHM) et de l’apprentissage machine, l’enseignement
machine interactif (Interactive Machine Teaching) cherche à impliquer des utilisateurs non experts en tant
qu’enseignants afin de les autonomiser dans le processus de construction de modèles d’apprentissage. Ces
utilisateurs pourraient profiter de la construction de modèles d’apprentissage pour traiter et automatiser
des tâches sur leurs données, ce qui pourrait conduire à des modèles plus robustes et moins biaisés pour
des problèmes spécialisés.

Cette thèse adopte une approche empirique sur l’enseignement machine interactif en se concentrant sur la
façon dont les utilisateurs développent des stratégies et comprennent les systèmes d’apprentissage machine
interactifs à travers l’acte d’enseigner.

Le premier chapitre introduit ce travail et souligne l’importance de la capacité des novices à entraîner leurs
propres algorithmes d’apprentissage.

Le chapitre 2 définit d’abord l’apprentissage automatique interactif et les recherches existantes. Il présente
ensuite l’enseignement machine interactif (IMT) et ses spécificités. Enfin, le chapitre présente Marcelle,
une boîte à outils pour la composition de flux de travail et d’interfaces en apprentissage automatique
interactif. Cet outil a servi à menner les recherches présentées dans cette thèse et je présente en quoi il et



pourrait aider à la conception de systèmes enseignables.

Le chapitre 3 se concentre sur la manière dont les novices utilisent les algorithmes d’apprentissage, sur
ce qu’ils comprennent de leur comportement et la stratégie qu’ils utilisent pour les faire apprendre. La
première section présente le contexte de vulgarisation scientifique dans lequel cette recherche est ancrée.
Les sections suivantes présentent ensuite une quasi-expérience (observation structurée) dans laquelle les
participants ont effectué des tâches d’enseignement de la machine à l’aide d’un protocole de réflexion à
voix haute.

Le chapitre 4 adopte une approche centrée sur l’humain pour l’évaluation de l’incertitude dans l’apprentissage
profond. Il explore comment les deux types d’incertitude—aléatorique et épistémique—peuvent aider les
utilisateurs novices à comprendre les forces et les faiblesses d’un classificateur d’image dans un scénario
d’apprentissage interactif par machine (IML).

Le chapitre 5 présente deux collaborations artistiques qui ont donné lieu à deux installations impliquant
des algorithmes d’apprentissage automatique. Il une perspective réflexive et discute des défis confrontés
pour utiliser l’apprentissage automatique dans des projets artistiques contrastés.

Le chapitre 6 discute des stratégies d’enseignement des participants ainsi que le rôle de l’incertitude dans
une tâche d’enseignement. Enfin, j’aborde les implications socioculturelles de cette recherche, comme
l’utilisation de l’enseignement machine interactif pour la pédagogie.

Je soutiens que les utilisateurs novices développent différentes stratégies d’enseignement qui peuvent
évoluer en fonction des informations obtenues tout au long de l’interaction. Les stratégies d’enseignement
structurent la composition des données d’entraînement et affectent la capacité des utilisateurs à compren-
dre et à prédire le comportement de l’algorithme.

En plus de permettre aux gens de construire des modèles d’apprentissage automatique, l’enseignement
machine interactif présente l’avantage pédagogiques peut favoriser les comportements d’investigation, ren-
forçant les connaissances implicites des novices en apprentissage machine.
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Chapter 1

Introduction

This thesis investigates peoples’ interactions and understanding of interactive
machine learning systems when placed in the role of machine teachers. In-
teractive machine teaching (IMT) systems are specifically designed to leverage
barriers to creating machine learning (ML) models by exploiting humans’ nat-
ural ability to teach. [Ramos et al., 2020]. This work mainly focuses on peoples’
understanding and appropriation of image-based IMT systems involving users
in creating their own data. Observing end-users teaching IMT systems can
simultaneously shed light on how they reason, interact and learn about teach-
able interactive systems, which is essential with systems that convey complex
notions such as predictive uncertainty. This thesis analyzes evidence that users’
teaching strategies affect their understanding of ML models.

1.1 Context

Since machines have demonstrated behaviors that simulate cognitive
abilities, attention has been placed on improving these abilities. The
first “intelligent” machines were proofs of concept, but their inventors
already anticipated that it would not take long for them to surpass hu-
man intelligence, leaving us all as spectators of a new kind of supra-
intelligence [Grudin, 2009]. History proved them wrong, revealing a
way less linear (or exponential) evolution than expected. Instead, arti-
ficial intelligence has developed through waves and winters, in which
different paradigms (symbolic or connectionist) succeeded one another
[Cardon et al., 2018]. More importantly, the goal of making machines
more intelligent now coexist with the goal of augmenting human in-
telligence through interaction and partnership.

Nowadays, AI mainly revolves around Machine Learning (ML) algo-
rithms that automatically improve on a task based on experience accu-
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mulated from data [Jordan and Mitchell, 2015]. They produce models
that can be used to automate many of our activities by first model-
ing phenomena or concepts from real-world data and then predicting
future outcomes with new data. ML algorithms increasingly take on
governance roles in public and private domains, implying consider-
able ethical implications. ML algorithms are widely used for facial
recognition in streets and airports in certain countries [wik, 2004b],
they assist decision-making in the medical field [Bhatt et al., 2021a,
Bakator and Radosav, 2018, Shen et al., 2017] and justice field [wik,
2004a], and are developed in the automotive industry for autonomous
driving [Muhammad et al., Grigorescu et al.]. Deep Learning, in par-
ticular, involves artificial neural networks and demonstrates the best
performances in complex tasks using raw data, such as recognizing
speech, identifying elements in images, and generating realistic sound
and images. The high learning capacity of these models also requires
a large amount of data in the form of vectors, which are the interme-
diate representations on which ML algorithms learn from the world.
This increasing need for data shaped different humans roles toward
ML.

On the ML expert side, researchers, engineers, developers, and data
scientists are in charge of designing new learning algorithms, analyz-
ing data, training and evaluating ML models on these data, and de-
ploying them in interactive technology used in society. On the other
side of the expertise scale, the general public mainly provide labeled
data, with or without their knowledge or consent1. For instance, micro-

1 A well-known example is CAPTCHAs
(Completely Automated Public Turing
test to tell Computers and Humans
Apart), which are test questions used on
many platforms to determine whether
users "are not a robot." Some CAPTCHA
tasks are a pretext for collecting tagged
images for the growing industry of au-
tonomous driving for example.

workers or turkers2 are remotely located workers that perform small

2 Turker refers to the Amazon Mechanical
Turk platform, a crowdsourcing website
for businesses to hire remotely located
micro-workers. The platform’s name
refers to an 18th-century chess-playing
fake automaton made by Wolfgang von
Kempelen that toured Europe.

units of work on tasks for which no efficient algorithm has been de-
signed yet. By labeling and preparing data, micro-workers are also
at the source of the virtual assembly line of ML models3. Hence,

3 A detailed cartography of the hu-
man labor division and interaction in-
volved in AI can be found on https:

//anatomyof.ai/.

ML systems are trained on peoples’ data, but most of them, includ-
ing subject-matter experts, which are experts in other disciplines than
computer science or ML, are excluded from controlling how ML mod-
els are trained or deployed.

Non-experts in ML could take advantage of building ML models to
process and automate tasks on customized data. Involving people
other than ML experts in the creation of ML models could potentially
result in more robust and less biased models for specialized problems
as well as the development of new communities of practice. For exam-
ple, a specialized medical doctor could train an ML model to classify
their own scan images without the help of an ML specialist but with
appropriate interactive tools. The model built could be shared with
students to support their diagnoses in their absence.

https://anatomyof.ai/
https://anatomyof.ai/
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This dissertation is interested in understanding the role of machine
teacher [Ramos et al., 2020], i.e. people involved in the process of
building ML models, with a specific focus on non-experts in ML from
the general public or among subject-matter experts.

Interactive Machine Teaching

Interactive Machine Teaching (IMT) is a research field that aims at de-
signing interactive ML systems designed to leverage peoples’ inherent
teaching abilities [Ramos et al., 2020]. IMT systems are intended to
enable users without scientific or technological expertise to create ML
models with interactive ML systems.

Interactive Machine Teaching should not
be mistaken for Machine Teaching in the
realm of the computational learning the-
ory [Shinohara and Miyano, 1991, Zhu,
2015, Zhu et al., 2018]. In this context,
Machine Teaching (MT) is framed as the
inverse problem of ML in the sense that
in ML, the source is the training data,
and the target is the trained model. In
MT, the source is the trained model, and
the target is an optimal set of examples
leading to this trained model. There is
no dialog between a human teacher and
a learning machine, although MT finds
some uses in intelligent tutoring systems
[Koedinger et al., 2013]. The tutoring
system tries to model the student knowl-
edge in order to find the optimal exam-
ples [Patil et al., 2014].

IMT is defined in contrast to the traditional ML field. While ML fo-
cuses on improving models given data, IMT aims at «making human
teachers more productive at building ML models, given a learning algorithm»
[Simard et al., 2017]. IMT focuses on «extracting knowledge from people
rather than extracting knowledge from data» [Ramos et al., 2020]. Hence,
the corresponding research seeks to improve the dialog fluency be-
tween humans and interactive ML systems.

Figure 1.1. Frank Rosenblatt and
the Perceptron Mark 1 in the 1960s.
Source: Cornell university web-
site, wikimedia creative common.

The idea of a human teaching a machine has appeared under different
names and forms in the HCI literature [Ware et al., 2001]. Maybe the
first machine teachers were Frank Rosenblatt and his colleagues at the
Cornell Aeronautical Laboratory in the 1960s. They had show and

https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
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label image examples in a trial and error manner in order to train their
perceptron mark 1, a proof-of-concept machine capable of learning
visual patterns4.

4 Researchers in the 1960s teaching a ma-
chine to recognize gender from face im-
ages: https://youtu.be/cNxadbrN_aI.
Source: BBC

IMT, as defined by Simard et al. [Simard et al., 2017] and Ramos et al.
[Ramos et al., 2020], is a recent and promising approach that offers a
novel and concrete vision of how interactive ML systems should be
designed from both an HCI and a software engineering perspective.
The IMT approach is presented in more detail in the next chapter, in
section 2.2.

IMT could empower millions of people with data automation and pro-
cessing without computer science expertise and lead to more under-
standable AI systems that are easier to maintain. In doing so, IMT
could simultaneously meet the demand for data automation in spe-
cialized areas (medicine, law, science etc.) and the demand for more
transparent AI systems.

1.2 Research approach

This thesis takes an empirical approach rather than software engineer-
ing by focusing on how people develop teaching strategies and un-
derstanding of interactive ML systems through the act of teaching.
Investigating human behaviors and understanding when teaching a
machine can shed light on what afford ML system and therefore, in-
form the design of more teachable systems.

The teaching scenario considered in this thesis involves users in the
training of image classifier with fast iterations between training and
evaluation. It is quite a minimal IMT scenario considering more ad-
vanced workflow involving semantic feature decomposition or expla-
nations [Ramos et al., 2020]. However, in the scenario considered, users
can create their own training data on the fly, either by sketching or
with a webcam, which allows them to create teaching curriculum and
strategies, to challenge or steer the machine in the direction they de-
cide. They receive instant feedback on the system’s learning status,
which influences their choices and understanding. This thesis inves-
tigates how people perceive and use ML uncertainty in this teaching
scenario.

This interactive approach to ML has already been studied with simple
models in IML research [Fails and Olsen, 2003] which training could

https://youtu.be/cNxadbrN_aI


5

be seen as a calibration rather than teaching. Users’ behavior and
understanding remain to be studied when teaching more expressive
models, able to learn abstract representations with complex data. For
this reason, this thesis takes a particular interest in artificial neural
networks as machine learners i.e. the underlying ML algorithm of our
IML systems.

Finally, IMT can be a tool for ML education. Involving novices in
training an ML system and exploring its limitations can develop their
literacy about ML. Scientific popularization collaborations with the as-
sociation Traces influenced this thesis, which discusses the pedagogical
benefits of engaging novices with the expressive capabilities of modern
ML (deep learning) and conveying rich concepts through data.

1.3 Research methods

Both IML and IMT processes are inherently co-adaptive, driven by
the user, but both the model and the user evolve together when ex-
changing information [Dudley and Kristensson, 2018]. Changing the
systems’ ML model or feedback can disrupt the co-adaptive process
between human “teachers” and learning machines. For this reason,
human-centered methodologies that captures people’s experiences at
the moment they teach the system is one of the relevant approach to
understand interactive machine teaching as a phenomenon. More gen-
erally, the methodology in this thesis triangulates between observation,
theory, and software design, following the framework of Mackay and
Fayard [Mackay and Fayard, 1997] for Human-Computer Interaction
(HCI) research. Observations, theory, and software design "constantly
evolve and influence or change models at the theoretical level and ob-
servations at the empirical level." Figure 1.2 summarizes the triangula-
tion of this research, illustrating the sequence of empirical, design and
theoretical contributions that informed each others along the research
process. The course of this research was also influenced by external
events such as the covid-19 crisis which required the conduct of re-
mote user studies, and invitations to organize science popularization
workshops with the Traces association, which shaped the design of
IMT systems for the general public.

The following subsections briefly detail the empirical and analytical
methodologies used, which might be new to readers outside of HCI.
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Theory Design and 
techniques

Observation

User study
Observing non-experts 

teaching Marcelle-Sketch

Toolkit
Development of Marcelle 

and Marcelle-Sketch

Controlled experiment
Understanding novices’ 
understanding of deep 
learning uncertainty

Benchmark
Development of real-time 
deep learning uncertainty 

estimations for MT

Workshops
with the general public

Non-experts strategies and 
(mis)understandings in 

machine teaching

Benchmark
Investigations on active 

learning performance gains

Art-Science
Collaborations on artistic 
installations involving ML

Chapter 2: Related-work 

Chapter 3: How do people teach machines?

Chapter 4: Deep learning uncertainty in machine teaching

Chapter 5: Challenges and opportunities for machine teaching in art

Chapter 6: Discussion

Non-experts understanding 
and use of deep learning 
uncertainty in machine 

teaching

Challenges and 
opportunities for IMT in 

art

Utility of uncertaity 
and deep learning for 

IMT

Role of IMT for 
literacy in ML and AI

Figure 1.2. Methods’ triangulation
in this thesis. This research mixes
qualitative methods such as struc-
tured observations of non-experts
users teaching interactive ML sys-
tems with the design of teach-
able systems (using Marcelle) and
evaluation of techniques for esti-
mating better uncertainties in IML
systems. All the "bricks" are con-
nected with a common theoretical
foundation from HCI and ML.
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Participatory workshops

Participatory workshops involve a community of people in an ex-
change with researchers. They mainly help researchers decide what
research would be helpful regarding communities of practices [North-
way et al., 2014]. In HCI, participatory workshops often involve future
end-users in creating artifacts and knowledge to support the design of
technologies beneficial to them. The core elements of the workshop are
participants, facilitators, information systems, tasks, and places [Numa
et al., 2008]. In collaboration with the association Traces5, my research

5 Traces is a think-and-do, nonprofit
group interested in science, its commu-
nication, and its relationship with soci-
ety: https://www.groupe-traces.fr/

collaborators and I conducted several participatory workshops with
various kinds of audiences during science popularization events on a
festival, online, and in high schools. These workshops are briefly pre-
sented in section 3.2 and influenced this thesis’ research directions and
methodologies.

Structured observations

Structured observation [Garcia et al., 2014, Mackay, 2014] is a form
of quasi-experiment [Cook et al., 1979] in which researchers employ
experiment design principles to compare tasks and gather observa-
tional data to increase their understanding of a problem. This is a
generative methodology in which participants perform realistic tasks
in real-world settings. This methodology does not verify a hypothesis
but allows researchers to identify novel user behavior while enhancing
ecological validity to respond to nuanced qualitative research ques-
tions that cannot be quantified yet, or at all. Structured observation
allows researchers to explore promising issues, enhance the discovery
of new ideas, generate design implications, and gain insight into using
technology in real-world settings. The study presented in section 3.4 is
informed by this approach. The study uses a think-aloud protocol as
well as both qualitative and quantitative analysis to understand users’
strategies and (mis)understanding when teaching a machine.

Controlled experiments

Controlled experiments seek to establish cause-effect relationships. They
usually try to observe correlations between independent variables i.e.
study conditions, and dependent variables i.e. quantitative measures
of a phenomenon in order to test the validity of hypotheses. I used a
controlled experiment mixed with structured observations to investi-
gate users’ perception of ML uncertainty in a machine teaching task.
The experiment is described in section 4.4 and studies the type of un-
certainty shown as an independent variable. We complemented this
controlled and quantitative approach with a qualitative analysis of

https://www.groupe-traces.fr/
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think-aloud verbalizations and semi-structured interviews.

Semi-structured interviews

Semi-structured interviews are a particular form of interview study
where an interviewer explores a set of pre-defined themes with the
interviewee. For technology design, semi-structured interviews can be
oriented towards incidents or objects.

The critical incident technique collects "direct observations of human be-
havior in such a way as to facilitate their potential usefulness in solving
practical problems" [Flanagan, 1954]. The technique relies on reporting
critical incidents, which are events associated with a system failure and
with a special significance for the user. The method focuses on report-
ing facts rather than interpretations, opinions, or general impressions
regarding systems failures.

The critical object techniques described by Mackay [Mackay, 2002] is a
variation of Flanagan’s critical incident technique, which encourages
interviewees to recall and reflect on past experiences by sharing and
describing artifacts they created. For instance, interviewees could ex-
plain how they organize files by describing and reflecting on their ac-
tual virtual desktop on their personal computer.

This research performed semi-structured interviews with participants
after the two laboratory studies presented in Chapters 3.4 and 4.4. The
goal of these interviews was to reflect on their experience as machine
teachers. The semi-structured interviews conducted are similar to the
critical incident technique, except that we were also interested in inter-
pretations of the system’s behavior and how they changed throughout
the task. These interpretations convey beliefs and priors on novice’s
mental model that influences users’ teaching choices. Understanding
these influences is a central challenge of this research.

Think-aloud protocol

Think-aloud protocols involve participants thinking aloud as they are
performing a task to make thought processes as explicit as possible.
A think-aloud protocol provides researchers insights into the partic-
ipant’s cognitive processes rather than only their state of mind after
the task. We usually distinguish talk-aloud and think-aloud proto-
cols. Talk-aloud only encourages participants to describe their actions,
such as what they are looking at or interacting with. Think-aloud en-
courages participants to describe their thoughts, interpretations, and
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feelings. The downside of think-aloud or talk-aloud protocols is the
high cognitive load associated.

I used a think-aloud protocol in both the structured observation study
and controlled experiment presented in sections 3.4 and 4.4. Partici-
pants had to speak their thoughts while teaching the system with their
own data. This method plays an important role in this thesis methodol-
ogy since it represents a direct technique to approach users’ evolution
of their mental representations of the machine learner, which is one of
the research goals of this work.

Thematic analysis

Thematic analysis is a well-established analysis method in psychol-
ogy and HCI research to analyze qualitative data [Braun and Clarke,
2006]. Like grounded theory [Strauss and Corbin, 1998, Walker and
Myrick, 2006], it involves an iterative process in which the researchers
associate codes to transcribed verbalizations, and craft themes to char-
acterize the observed phenomena. However, it differs from grounded
theory because the objective is not to generate a theory of behavior but
address research questions. I used thematic analysis to interpret inter-
views and think-aloud verbalizations in both of the laboratory studies
presented in sections 3.4 and 4.4. The analysis procedure and themes
are further explained in both experimental protocol sections.

1.4 Contributions and statement

In this section, I present and discuss the empirical, technological, method-
ological and theoretical contributions developed in this dissertation.

Empirical contributions

From an empirical point of view, I conducted two user studies to un-
derstand how people teach machines and apprehend uncertainty. This
thesis shows that:

• Non-expert machine teachers engage with different teaching strate-
gies that shape both model performance and their understanding
of the ML model behavior. When free to explore, non-expert users
actively investigate features to test and refine their hypothesis about
the model’s learning behavior.
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• Non-experts’ ability to predict the model’s behavior depends on
the characteristics of their teaching curricula rather than uncertainty
feedback. However, they can perceive the difference between aleatoric
and epistemic uncertainty in specific situations.

• In our context of incremental machine teaching, a simulated AL cur-
riculum exhibits no performance gain over random data selection.
Users’ teaching curricula lead to better performances given similar
number of examples.

Technological contributions

• This research contributed to the design of Marcelle
6, a toolkit

6 https://marcelle.devfor composing IML workflows and interfaces. This thesis discusses
how Marcelle can scale to IMT systems.

• We designed a shareable sketch-based IML system for studying
non-experts users in a machine teaching task7.

7 https://marcelle-sketch-v2.

netlify.app/
• We designed and evaluated a ML pipeline to calculate real-time

deep learning uncertainty estimates (aleatoric and epistemic) with
transfer learning. These uncertainty estimates were included in IML
system to detect ambiguous and novel images within a machine
teaching workflow 8.

8 Demonstration video for IUI 2022:
https://youtu.be/e-2XLLVxjlg

Methodological contributions

• This thesis demonstrates how machine teaching can be used as a
method to investigate peoples’ understanding and appropriation of
ML-based systems.

Theoretical contributions

• This thesis highlights machine teachers strategies and (mis)understandings
when teaching an IML system with data they create themselves and
toward ML uncertainty.

• It also discusses the advantages and drawbacks of deep learning in
teachable systems as well as the utility of calculating two types of
uncertainty.

https://marcelle.dev
https://marcelle-sketch-v2.netlify.app/
https://marcelle-sketch-v2.netlify.app/
https://youtu.be/e-2XLLVxjlg
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1.5 Thesis overview

This chapter introduced the goals, methodologies, and contributions
of this research. I now present the content and organization of the
following chapters.

Chapter 2 defines interactive machine learning (IML) along with exist-
ing research focusing on specific groups of users. It then presents the
goals and characteristics of the Interactive Machine Teaching (IMT)
field. Finally, it introduces Marcelle, a toolkit for composing IML
workflows and interfaces, which is tightly coupled with the research
presented in this thesis and could support the design of IMT systems.

Chapters 3 and 4 present two user studies, structured observations,
and a controlled experiment that let novices teach an IML systems
with image data they curated themselves by either sketching or us-
ing a webcam. These studies are the core of this thesis contributions
and focus on what users understand from ML algorithm behavior and
what strategy they may use to "make it work." Although both studies
have a similar study design, the controlled experiment in Chapter 4 fo-
cuses on users’ understanding and use of two types of Deep Learning
uncertainty for "teaching" IML systems.

Finally, chapter 5 takes a reflective approach to two contrasted artistic
collaborations involving ML algorithms. I discuss the challenges and
opportunities for applying interactive machine teaching applied to art
through the obstacles encountered.

The insights from the two user studies are discussed in chapter 6. I
argue that people develop different teaching strategies that rely on
their priors and on the systems’ feedback. Their teaching strategies
structure the composition of their data (sequencing, number, and vari-
ability) and affect their ability to understand and predict the algorithm
behavior. I discuss the utility of uncertainty, active learning, and deep
learning in IMT. Finally, I suggest that IMT systems could be designed
as a tool to support peoples’ literacy about ML and AI. A conclusion
of this work and future research directions are provided in chapter 7.

I provide three appendices. The first one provides the reader with a
brief guide to transfer learning that I believe is relevant to building
expressive yet effective IML systems with deep neural network archi-
tectures. Intended for non-experts in ML, this appendix is a gateway
for transfer learning and gives pointers to essential papers and contri-
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butions. The second appendix provides an overview of possible data
acquisition scenarios in active learning. Finally, the last appendix talks
about the aesthetics conveyed by mode-covering or mode-seeking gen-
erative deep learning models.

1.6 Publications and collaborations

Some of the content of this thesis produced publications in interna-
tional conferences.

The user study in chapter 3 appears in:

Sanchez, T., Caramiaux, B., Françoise, J., Bevilacqua, F. and Mackay,
W.E., 2021. How do People Train a Machine? Strategies and (Mis) Un-
derstandings. Proceedings of the ACM on Human-Computer Interac-
tion, 5(CSCW1), pp.1-26.9

9 Presentation video for CSCW 2021:
https://youtu.be/x_fNhZP2mBQ

The controlled experiment in chapter 4 appears in:

Sanchez, T., Caramiaux, B., Thiel, P. and Mackay, W.E., 2022, March.
Deep Learning Uncertainty in Machine Teaching. In 27th International
Conference on Intelligent User Interfaces (pp. 173-190). 10

10 Presentation video for IUI 2022:
https://youtu.be/H1S24WSD4OY.

The description of the Marcelle toolkit implementation appears in:

Françoise, J., Caramiaux, B. and Sanchez, T., 2021, October. Marcelle:
Composing Interactive Machine Learning Workflows and Interfaces. In
The 34th Annual ACM Symposium on User Interface Software and Tech-
nology (pp. 39-53).11

11 Presentation video for UIST 2021:
https://youtu.be/gkMnUl2OZ-Y

https://youtu.be/x_fNhZP2mBQ
https://youtu.be/H1S24WSD4OY
https://youtu.be/gkMnUl2OZ-Y
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Chapter 2

Background and related work

This chapter first defines interactive machine learning (IML) and existing re-
search that focus on existing practices. It then presents interactive machine
teaching (IMT) and its specificities regarding IML. Finally, I present Mar-
celle, a toolkit for composing IML workflows and interfaces, which is tightly
coupled with the research presented in this thesis and could support the design
of IMT systems.

2.1 Interactive Machine Learning

The field of Interactive Machine Learning (IML) lies within the Human-
Computer Interaction (HCI) field. It focuses on making the process of
building ML models interactive, programming-free, and accessible to
a broad range of users [Dudley and Kristensson, 2018]. IML systems
can also support the well-established working activities of ML practi-
tioners as well as open the door of ML technologies to new users and
practices. In the IML workflow, users drive the training and refinement
of an ML model through various interactions: providing examples
[Amershi et al., 2011], choosing and refining features [Kulesza et al.,
2014, Suh et al., 2019], and selecting high-level parameters, among oth-
ers. In return, the machine learner can provide performance feedback
[Fiebrink et al., 2011], visualizations of errors [Amershi et al., 2015], or
guidance [Cakmak and Thomaz, 2012a] to convey what it has learned.
A desired characteristic of IML is to create shorter iteration cycles be-
tween the different activities mentioned above [Amershi et al., Dudley
and Kristensson, 2018]. Users should be able to edit the data, train the
model and evaluate its outcomes more fluently and without expertise
compared with existing ML programming tools. Meaningful interac-
tions and workflows are likely to improve user trust and understand-
ing of the resulting model [Stumpf et al., 2009b].
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Dudley and Kristensson [Dudley and Kristensson, 2018] provide an
extensive review of IML research and systems, structured by the type
of input data on which the system learns, which strongly conditions
the type of interactions and ML algorithm used. The authors pro-
pose a general workflow encompassing existing IML systems. The
IML workflow can be decomposed into various activities illustrated in
Figure 2.1.

Figure 2.1. The IML workflow, as
a behavioural breakdown into dis-
tinct user activities. Source: Dud-
ley and Kristensson [Dudley and
Kristensson, 2018].

Several guidelines for the design of IML systems have been proposed
from empirical studies involving users interacting with IML systems
[Amershi et al., 2019]. From their literature review, Dudley and Kris-
tensson [Dudley and Kristensson, 2018] propose six design principles:
(1) make task goals and constraints explicit, (2) support user under-
standing of model uncertainty and confidence, (3) capture intent rather
than input, (4) provide effective data representations, (5) exploit inter-
activity and promote rich interactions, (6) engage the user.

In practice, new interaction techniques and visualization have often fo-
cused on one or a subset of the activities presented in Figure 2.1, such
as data iteration [Hohman et al., 2020] or quality assessment [Fiebrink
et al., 2011]. Similarly, IML integrates into various existing expert prac-
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tices, either in computer science or others, resulting in original itera-
tive workflows that push the boundaries of these activities illustrated
in figure 2.1. In the following subsection, I present some examples of
IML research that apply to specialized users.

ML experts

ML experts gather professions that traditionally deal with the produc-
tion of ML models: ML researchers, ML engineers, and data scien-
tists. The IML literature regarding ML practitioners mainly focuses
on improving a part of the ML workflow e.g. improving performance
metrics, iteration on data, and debugging models through more trans-
parent feedback.

For instance, Hohman et al. [Hohman et al., 2020] showed that ML
practitioners improve model performance primarily by iterating on
training data (i.e. collecting new data, adding labels) rather than it-
erating on the model (i.e. architecture and hyperparameters). Fur-
thermore, if versioning is a widespread tool to iterate on code, there
may not be any equivalent for training sets. The authors designed
Chameleon, depicted in Figure 2.2, a collection of interactive visu-
alizations for training set versioning in an ML classification task. ML
practitioners can navigate timelines allowing comparisons between dif-
ferent versions of data sets and inspect changes in features and perfor-
mance measures after retrainig the model.

Figure 2.2. Chameleon, a col-
lection of interactive visualizations
for ML versioning in a classifica-
tion task [Hohman et al., 2020]

For the evaluation phase, ModelTracker, depicted in Figure 2.3, is
an interactive visualization for examining and debugging binary clas-
sifiers at the level of individual examples [Amershi et al., 2015]. Users
can inspect and correct mislabeled instances and inadequate features
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throughout the model building.

Figure 2.3. ModelTracker: an
interactive visualization for
example-level performance ex-
amination and debugging of
binary classification [Amershi
et al., 2015]. A classifier is well
trained when all red dots are
separated from the green dots on
the horizontal scale representing
the prediction probability. Arrows
represent classification changes at
the instance-level from a model
state to another.

A typical task for ML expert users is to compare several trained mod-
els. EnsembleMatrix, represented in Figure 2.4, is an interactive
visualization enabling practitioners to explore an ensemble of mod-
els and build combinations of models to improve performance [Talbot
et al., 2009]. Users can inspect the confusion matrix of several models
and the confusion matrix of the combined classifier.

Figure 2.4. EnsembleMatrix: in-
teractive visualization of confusion
matrices to explore and build com-
binations of models for image clas-
sification [Talbot et al., 2009]

The systems presented above require expertise to comprehend and
operate them. They focus on a single activity of the ML workflow.
This thesis does not focus on ML experts, but it is worth mentioning
existing work for ML practitioners that constitute an important share
of the IML research and could inspire the design of IML dedicated to
non-expert users.

Another important line of IML research is to empower non-expert
users (in ML or computer science) with the predictive and automation
capabilities of ML. A major challenge is understanding how specific
or general the design of IML systems should be. Are there principles
of IML interaction that apply to all types of users? It appears that this
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is also what the IMT domain seeks to accomplish, as presented in sec-
tion 2.2. Regarding non-expert users, Yang et al. [Yang et al., 2018b]
conducted interviews with different types of non-experts to under-
stand the opportunities and breakdowns when novices (in ML) build
ML solutions for themselves in real life. In the following sections,
we present the research and ML systems that have been considered
for non-experts, including various types of subject-matter experts who
have specific goals and existing practices of technology: designers, de-
velopers, creatives and artists, scientists, and the general public.

Designers and developers

Designers and developers both design interactions for future end-users.
IML can help them to improve user experience with data-driven in-
teraction design. For example, ML can help game developers create
gameplays that exploit players’ gestures and poses through motion
sensors or video frames from a webcam. These types of interactions
are difficult to build with explicit programming. However, ML is a te-
dious design material for HCI practitioners [Yang et al., 2018a]. Dove
et al. [Dove et al., 2017] identified four design challenges for interac-
tion designers: the difficulty (1) to consider the interplay between the
ML statistical intelligence and common-sense human intelligence, (2)
to apply ML in less obvious ways, (3) to represent ML dependency on
data in early prototypes and (4) to envision the ethical considerations
of ML.

Fails et al. [Fails and Olsen, 2003] introduce Crayons, an IML proof-
of-concept intended to provide an efficient method for developers and
designers to create Perceptual interactions i.e. interactions that rely
on high-dimensional data and are difficult to implement explicitly.
Crayons is a camera-based IML system for automatic image segmen-
tation. Users can paint on the image directly to identify foreground or
background areas. The model is retrained after each annotation. It is
historically one of the seminal papers introducing IML.

Figure 2.5: The iterative training
process of Crayons, a camera-
based interactive segmentation
system [Fails and Olsen, 2003]

IML workflows and tools have also been developed for developers, in
particular, game developers [Diaz et al., Xie et al., 2019, Bernardo et al.,
2017]. InteractML [Diaz et al.] is a visual programming extension
for Unity3D dedicated to game developers and designers willing to
explore perceptual interactions for new gameplay mechanics. Inter-
actML enables to can create ML models by joining nodes together
and visualizing in real-time the data from a Unity scene in the graph.
In this situation, IML systems are analogous to no-code development
platforms (NCDPs) that allow developers to create application soft-
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ware through graphical user interfaces and configuration instead of
traditional computer programming. InteractML does require basic
concepts of ML, such as the difference between a classification and a
regression, as well as being familiar with the Unity3D environment.
This work demonstrates how IML can support the adoption of ML
technologies within existing practices and tools (e.g. a popular game
engine) in order to be adopted by a specific community of users.

Creatives and artists

An IML research community has also developed around performing
arts and musical applications. For instance, the IML workflow was
used to build musical instruments and movement-to-sound regression
mapping for live performances [Françoise and Bevilacqua, 2160]. As
an example of a system, the Wekinator [Fiebrink et al., 2009] is a stan-
dalone software using ML algorithms to map arbitrary inputs and out-
puts in real-time. It uses an analogy of input and output signals and
the OSC format, which are popular concepts and formats of the au-
dio community. The arbitrary inputs and outputs mappings allow
for broader uses than in music and performing art. More special-
ized libraries integrate ML algorithms into the popular digital sound
processing (DSP) platform and graphical programming language Cy-
cling’74 Max: the ml.lib [Bullock and Momeni, 2015] include general-
purpose models whereas XMM [Françoise et al., 2014] focus on spe-
cialized and probabilistic models.

These IML tools offer the possibility to quickly design and play digital
instruments with various input modalities [Fiebrink and Caramiaux,
2018]. Morris et al. [Morris et al., 2012] conducted workshops with
music students to design and play digital instruments created with
IML tools. Their results highlight the role that IML can play in peda-
gogy: not only did music students discover the possibilities of ML, but
they were also engaged in high-level creativity and social interaction
regardless of sensorimotor or theoretical skills. In other words, IML
offers personalized controls to express musical intentions that exempt
students from mastering a musical instrument or music theory.

IML fosters inclusive design techniques to define gesture-sound map-
ping by demonstration or through listening in which users create the map-
ping by performing on a sound they hear [Caramiaux et al., 2013, 2015,
Françoise and Bevilacqua, 2160]. Once trained, users can interact with
the sound, and perform in real-time, as illustrated in Figure 2.6 taken
from [Françoise and Bevilacqua, 2160]. This design and performing
process can be carried out by a wide range of users with different
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motor skills: professional artists, children, or disabled people [Katan
et al., 2015, Scurto and Fiebrink, 2016]. The training phase in this re-
search also involves the performer in a tight interaction loop but could
be seen more like a calibration than a teaching process.

Figure 2.6. Overview of the work-
flow of Mapping through Inter-
action taken from Francoise and
colleagues [Françoise and Bevilac-
qua, 2160]. Blue and green
dashed arrows respectively repre-
sent listening and moving. In
Demonstration (top), the user per-
forms a movement while listen-
ing. Both movement and sound are
used to learn an interaction model
(mapping). In performance (bot-
tom), the user’s movements con-
tinuously control the sound syn-
thesis with the learned mapping.
Source: [Françoise and Bevilacqua,
2160] with the author’s consent.

The adoption of ML techniques by artists and creatives also challenges
assessment criteria. Creatives might have subjective criteria for qual-
ity assessment of machine behavior. As an example in the musical
domain, Fiebrink et al. [Fiebrink et al., 2011] found that non-expert
users also use qualitative measures such as unexpectedness and real-
time evaluation to reflect on the data curated in addition to simple
performance metrics such as accuracy and cost. Furthermore, the IML
workflows can foster exploration and discovery. Co-Explorer is a
parametric synthesizer using deep reinforcement learning. Users can
give positive or negative rewards while the sound is being generated
[Scurto et al., 2021]. Co-Explorer offers a new co-exploratory work-
flow for sound designers in which the IML process may become more
important than the learned model itself.

Aside from artistic performance, generative or image processing ML
models have appealed to many artists or graphic designers. These
models are more significant technical obstacles than the simpler re-
gression models mentioned earlier because they usually involve deep
and convolutional architectures, implying heavier computational re-
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sources. If platforms exist to popularize these technologies (e.g. Run-
awayML), they generally do not involve end-users in a tight interaction
loop, enabling them to train models incrementally.

Scientists

Research in IML aims to support other scientific practitioners in the
medical field, biology, or robotics. In the medical, biomedical, and
biology fields, IML systems mainly support decision making or auto-
mate laborious tasks that comprise small, complex datasets with rare
occurrences [Holzinger, 2016]. Ilastik [Berg et al.] is an IML sys-
tem that applies to (bio)image analysis for image segmentation, object
classification, counting and tracking. Practitioners can interactively
update the model with sparse annotations on few images and iter-
ations on the system predictions, in the same fashion as Crayons

1

1 Ilastik demo: https://youtu.be/

5N0XYW9gRZY?t=62
[Fails and Olsen, 2003]. Similar tools were developed to support spe-
cific image-analysis tasks in cardiovascular research [Razeghi et al.,
2020] and radio-therapy [Smith et al., 2022].

IML can also foster knowledge discovery, and data mining in the sci-
entific domain [Wallace et al., 2012, Holzinger and Jurisica, 2014, Cai
et al.]. Abstrackr [Wallace et al., 2012] is a collaborative IML tool in-
tended to support researchers to screen research articles. The system
shows article abstracts to end-users, who can tag relevant or irrelevant
keywords to refine an SVM model. Users can also tag a document to
be relevant or not, which updates the model. Abstrackr samples
new abstracts using Active Learning, which aims at selecting the most
uncertain document i.e. lying on the decision boundary between rel-
evance and irrelevance. The IML workflow also leverages end-users
trust because they are involved in the training process and develop
more accurate mental model of the system capabilities than if they
used a ML system “out-of-the-box” [Cai et al., Guo et al., 2022].

IML workflow also applies to robotics in order for scientists or users to
demonstrate a particular behavior to a robot [Lee, 2017]. Users can di-
rectly manipulate a robotic arm [Ravichandar et al., 2020] (called kines-
thetic teaching), give rewards or penalties when the robot tries a move-
ment by itself [Chernova and L. Thomaz, 2014, Thomaz and Hoffman],
demonstrate segments of a movement, etc. Consequently, the Human-
Robot Interaction field also studied teaching modalities enabling hu-
mans to convey concepts to robots [Thomaz and Breazeal], as well as
robots to be proactive and engage with the users with queries [Cakmak
and Thomaz, 2012a, Chao et al., Racca et al.]. For instance, Cakmak
et al. [Cakmak and Thomaz, 2012b] found that human teachers are

https://youtu.be/5N0XYW9gRZY?t=62
https://youtu.be/5N0XYW9gRZY?t=62
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often sub-optimal when conveying a concept among a set of possi-
bilities and active learning help human teachers to converge faster to
the concept despite being sometimes counter-intuitive. Thomaz et al.
[Thomaz and Breazeal] found that participants tend to give more pos-
itive than negative rewards in reinforcement learning settings. These
results are often transferable to HCI considering similar task complex-
ity, even though the fact a robot embodies the learning system might
affect users’ perceptions and interactions.

Figure 2.7. A human teaches con-
cepts with colored paper patterns
to the robot Simon. Figure taken
from [Cakmak and Thomaz, 2012b]

The general public

IML offers the general public tools to create and control personalized
AI systems [Amershi et al., Gillies et al., 2016, Wolf et al., 2018]. The
general public might also have many unlabeled data they might ben-
efit from labeling to filter information. For instance, EluciDebug is
an email-like text management and classification tool [Kulesza et al.,
2015] develop as a proof of concept to illustrate the notion of explana-
tory debugging. The system comprises several folders i.e. categories in
which emails are classified. The system provides explanations along
with predictions. End-users can interact and change the explanations
if inadequate, giving both instance or feature-based corrections. IML
can also support the general public to browse information from large
online databases. For instance, CueFlik is an interactive Web image
search tool [Fogarty et al., 2008]. Rather than search keywords, users
can add positive and negative image examples to update the ranking
of a Web image base [Amershi et al., 2011]. The CueFlik interface is
illustrated on figure 2.8.
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Figure 2.8. CueFlik: a web im-
age search application using posi-
tive and negative image examples
to train a searching model interac-
tively [Fogarty et al., 2008]

Aside from empowering end-users in their interaction with technology,
an important thread of IML research aims at designing IML systems
for ML education i.e. how interaction with an IML system can make
people learn about ML. Few research works engage children with IML
to develop literacy with ML technology. Agassi et al. [Agassi et al.,
2019] designed a gesture recognition IML component in Scratch, a
visual programming language dedicated to children [Resnick et al.,
2009]. Along with the Scratch modules, they designed a physical de-
vice with embedded accelerometers. The authors aimed at encourag-
ing children to include gesture recognition in their Scratch project,
allowing them to collect gesture data by themselves and train the
model through trials and error. The authors argue that fostering an
early understanding of ML processes through the game and direct
manipulation can help children later understand more complex ML
systems. Dwivedi et al. [Dwivedi et al.] reports outcomes from work-
shops with children in which they used an IML system to classify
origamis. The authors argue that IML could help children develop
creativity and comfort with ML and AI. In another work, Hitron et al.
[Hitron et al., 2019] showed that teaching a gesture-based recognition
system fosters children’s understanding of machine learning mech-
anisms, and this knowledge can be transferred to applications from
everyday life. With older students, a similar approach has been ex-
plored in sports with young athletes to foster introspection on athletic
movements [Zimmermann-Niefield et al., 2019a].

Teachable Machine is an online application to create, customize
and export ML classifier [Carney et al., 2020a]. The authors’ pri-
mary goal was to help students and teachers learn, teach and explore
ML concepts through interaction. They have recently tried to fill the
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Figure 2.9. Image classification
from Teachable Machine. Users
can curate images with their web-
cam, train a classifier and perform
real-time prediction for model as-
sessment [Carney et al., 2020a].
The different activities in the IML
workflow are represented by boxes
connected with cords.

gap between ML and the makers’ community by enabling model ex-
ports for micro-controllers. This tool is largely used in educational
ressources [aic, 2019].

Summary

The IML research emphasizes empowering people, either ML prac-
titioners (out of the scope of this thesis), subject-matter experts, or
the general public, with automation, processing and predicting capa-
bilities. Subject-matter experts can benefit from IML tools in diverse
ways. The IML research demonstrated that developers and designers
could create new data-driven interactions without explicit program-
ming. Creatives and performers can build embodied interactions with
sound or images that foster exploration. Scientists and medical doc-
tors can benefit from IML to automate tasks, discover knowledge, or
support decision-making. In several examples, the IML workflow was
embedded in existing practices and tools, which has the benefit of en-
gaging users with familiar vocabularies and interactions [Ramos et al.,
2020].

2.2 Interactive Machine Teaching

This section describes Interactive Machine Teaching (IMT), as defined by
Simard et al. [Simard et al., 2017] and Ramos et al. [Ramos et al., 2020].
In particular, it highlights the specificities of IMT, which is belongs to
the more general IML research.
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Specificities of IMT research

IMT can be seen as a subfield of IML with more specific characteris-
tics: (1) a specific goal (model building rather than task completion), (2)
the specific role users are involved in (teachers), and (3) the specific
types of interactions that leverage people abilities to convey knowl-
edge [Ramos et al., 2020]. The two subsections detail these charac-
teristics. The third point includes design considerations, and will be
discussed in a separate section 2.2.

IMT Goals

First, IMT aims to leverage the barrier for subject-matter experts to
build ML models. IML, on the other hand, applies to a wider vari-
ety of users and is often task-specific [Amershi et al., 2015, Hohman
et al., 2020]. IML integrates into existing practices and tasks as seen in
section 2.1, including those of ML experts. ML models, as objects, are
not necessarily the goal but also a means to accomplish a task [Scurto
et al., 2021]. The goal of IMT is to enable users to build ML models to
perform future tasks that go beyond a one-time-only specific task. It
appears that most situations and systems can pursue both objectives
like in segmentation tools for biomedical research introduced above
in subsection 2.1. In this case, the goal is to facilitate and automa-
tize laborious tasks (biomedical image segmentation) and create ML
models that can be shared with collaborators. In analogy with Grudin
[Grudin, 2005], I believe IMT strive for a more discretionary hands-on
use of ML i.e. people and workers should possess the ability to build
ML models if they wish 2.

2 On the opposite, micro-workers inter-
action with ML could be qualified as a
mandatory hands-on use i.e. people have
no choice than performing the proposed
data labeling task and do not have con-
trol on the trained model.

The role of teacher

Second, Ramos et al. [Ramos et al., 2020] emphasizes the role embod-
ied by users. In a socio-technical context, a role can be seen as a set
of connected behaviors and beliefs people conceptualize when inter-
acting with others and technology. As mentioned in the introduction,
only ML experts are involved in the creation of ML models nowadays
(which may seem reasonable at first glance). IMT can enhance novices
or subject-matter experts in the role of teachers rather than mere an-
notators and empower them to create specialized ML models for their
own needs. Having ML knowledge does not disqualify a person as a
machine teacher, but the ML knowledge (model architecture, hyper-
parameters, etc.) should ideally be out of the scope of the language of
Interactive Machine Teaching.

According to Ramos et al. [Ramos et al., 2020], a user acts as a machine
teacher if they:
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1. Plan and update the teaching curriculum: the teacher is free to
arrange explanations, the type and timing of evaluations, the task’s
goal, and choose when and how to fix the model.

2. Explain knowledge pertinent to the subject domain: to make the
teaching process more efficient, Ramos et al. [Ramos et al., 2020] em-
phasize the importance of IMT systems to enable users to express
rich semantic knowledge. In practice, this translates into the possi-
bility to create, decompose or merge features or tasks, and provide
information beyond labeling.

3. Review the learner’s progress while interacting with the given
knowledge: as in IML, the interaction is a dialog in which the ma-
chine learner can provide meaningful feedback on its learning sta-
tus. This feedback (or explanations) influences the machine teacher’s
next action, which makes IML (and IMT) a co-adaptive process by
nature [Dudley and Kristensson, 2018].

Figure 2.10. The IMT loop. Dur-
ing an interactive machine teach-
ing session, a human teacher
and a machine learner communi-
cate iteratively through a teach-
ing vocabulary (labels, examples,
explanations, etc.). While en-
gaged in this process, teachers plan
the curriculum, explain knowl-
edge, and review the learner’s state
and model’s predictions. Source:
[Ramos et al., 2020]

Machine teachers intertwine these three activities over time. This co-
adaptive interplay between these three desired behaviors of machine
teachers is called the IMT loop [Ramos et al., 2020], and is depicted in
Figure 2.10. The IML literature also depicts similar representations of
this co-adaptive dialog between a user and a learning system [Amershi
et al., Dudley and Kristensson, 2018, Fails and Olsen, 2003]. However,
the IMT loop emphasizes human-centered behaviors that characterize
machine teachers.
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Dialog between human teachers and machine learners

IMT should include specific types of interactions that leverage peo-
ple’s abilities to convey knowledge. Ramos et al. [Ramos et al., 2020]
identify four inherent capabilities that should serve as material for de-
signing IMT interactions. These four abilities and their descriptions in
the scope of IML are listed aside in Figure 2.11.

Judgement: capability to make decisions
about the label value of particular exam-
ple.

Insight: capability to analyze and syn-
thesize relevant knowledge.

Foresight: capability to articulate
knowledge solely from prior subject-
domain knowledge, without the need to
see a particular piece of information.

Sensemaking: capability to interpret the
information they see so far and translate
into hypothesis regarding ways in which
information and concepts relate through
higher-level concepts, structures, or rela-
tionships.

Figure 2.11: Intrinsic human ca-
pabilities involved in teaching.
Source: [Ramos et al., 2020]

Teaching beyond labels

To support the inherent human capabilities to teach, IMT systems
should encourage people to produce knowledge beyond labels. Many
IML systems are limited to producing labeled data, but knowledge can
be transmitted through many forms. For instance, selecting a set of
data without necessarily attributing any labels can already be infor-
mative for a learner. Reinforcement learning (RL) enable users with
critiques, such as in Co-explorer [Scurto et al., 2021] for sound ex-
ploration or in human-robot interaction [Chernova and L. Thomaz,
2014]. Few works explored text prompt as a modality to teach inter-
active RL models [Krening, 2018, Krening et al., 2017], that might be
fueled by a growing literature on deep learning that bridges multiple
data modalities [Radford et al., 2021, Baevski et al.]. Several works
recommend and investigate the use of semantic features, which are
necessary for the model to be interpretable by people [Ramos et al.,
2020, Ng et al., 2020]. AnchorViz, for instance, is a data visual-
ization technique for IML in which users can place semantic features
on a circular data visualization. The anchors (semantic features) act
like magnets on data points i.e. the data points that match the feature
are attracted to the anchor. Placing several anchors can help users to
separate data on the visualization. IMT argues for enabling machine
teachers with the possibility to create, merge, compose or decompose
semantic features because people build knowledge on top of other
knowledge building blocks. In this direction, Kulesza et al. [Kulesza
et al., 2015] demonstrated that structured labeling (i.e. enabling a hi-
erarchy of labels) could help users in being consistent in their labeling
and avoid concept evolution. However, they do not tackle features
crafting but rather structured annotations at the instance level. Ramos
et al. [Ramos et al., 2020] tackled feature decomposition with text doc-
uments. The authors envisioned PICL, an IMT system in which ma-
chine teachers can compose features extracted from several models
they taught to form a schema. For instance, a taught extractor (e.g.
detect if a string of characters is an ingredient) can be used to refine
a classifier (e.g. decide if a document is a cooking recipe or not). The
ingredient extractor itself could be decomposed into other extractors
(quantities, fruit, vegetables, etc.).
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Designing actionable feedback

IMT should also provide information about the machine learner so
that teacher can affect the learning process outcomes [Ramos et al.,
2020]. The IML field also shares this goal but much remains to be
done, especially considering the rapid expansion of the explainable
and intelligible AI (XAI) research field [Gunning et al., 2019]. Research
on intelligible AI systems was impulsed by the “right to explanation”
in the European General Data Protection Regulation [Goodman and
Flaxman, 2017] and focuses on providing explanations in addition to
predictions. Explanations are feedback that supplements predictions
by answering the question: “why was this prediction made?”. Despite
ongoing discussions on defining and evaluating interpretability in in-
telligent systems [Doshi-Velez and Kim, 2017, Lipton, 2018], two main
approaches stand out for making models more intelligible [Weld and
Bansal, 2019].

First, the model can be intelligible by design, such as linear models,
rule-based systems and decision trees [Rudin, 2019], which provide
explicit rules that subject-matter experts can use without computation.
For example, such model can predict if a patient is diabetic and give
explicit decision criteria e.g. a patient is diabetic if fasting blood glu-
cose is above 1.26g/L or the rate of glycated haemoglobin (HbA1c) is
above ≥ 6.5%.

These models can provide algorithmic transparency by design but
might rely on heavily engineered features for complex data [Lipton,
2018] and can lead to poor generalization. The second approach aims
at computing explanations using the model or an approximation of
the model itself [Ribeiro et al., 2016, Zeiler et al.]. This approach can
be applied to more complex data such as raw images, in which the
explainer module can highlight pixels responsible for a prediction, for
instance. This approach is criticized because the explainer i a model it-
self that can be wrong and contributes to the lack of interpretability of
the ensemble. Current research in XAI tries to balance or push the lim-
its of the accuracy-interpretability compromise [Lakkaraju et al., 2016,
Caruana et al., 2015, Ustun and Rudin, 2017, Valdes et al.], especially
in high-stake domains such as medicine.

In IMT, exchanging explanations rather than labels and predictions
is a desired characteristic of IMT systems, which could contribute to
developing a new language for the dialog between human teachers
and machine learners. Explanations were explored in IML research
[Kulesza et al., 2015, Kim et al., 2020, Ghai et al., 2020] but play a



28

central role in the IMT field.

Designing machine learners’ interventions

Being active when learning something is generally a desired charac-
teristic of a student. Students that ask questions are perceived as more
engaged and motivated to learn, especially if the question points out a
relevant ambiguity or novelty. Besides the expressiveness of the signals
mentioned above, machine learner interventions’ design is a promis-
ing direction to enhance people’s abilities to understand the ML model
knowledge and provide directions for improving it. Interventions can
take multiple forms: advice, guidance, and queries, among others.
These interventions can be generated by the learning model itself or
decided by the designers of IMT systems.

Among interventions generated by the system, Active Learning (AL) is
a scenario in which an ML model is allowed to be “curious” i.e. query
unlabeled instances on which it should be trained [Settles, 2010]. An
uncertainty measure drives the selection criterion: if the uncertainty is
too high on a new example, this external information source is queried
to a human annotator [Cohn et al., 1996]. AL techniques differ accord-
ing to the data acquisition scenario i.e. if unlabeled data are available
at once (pool-based scenario), as a sequence in time (stream-based sce-
nario), or generated de novo (Membership query synthesis scenario).
These variants are illustrated on appendix B. The AL research also ex-
plores situations with noisy annotations i.e. erroneous responses to AL
queries [Xu et al., 2017] and query formulation that goes beyond label-
ing instances [Shivaswamy and Joachims, 2012, Kane et al., 2017]. For
instance, users could express preferences by reorganizing a ranking
(the query). The model could then learn from this improved ranking,
even if the ranking is sub-optimal. Related to AL, Active Class Se-
lection (ACS) [Lomasky et al., 2007] focuses on calculating the most
beneficial class in which the one should add data according to the
model parameters.

Several works in Human-Robot Interaction (HRI) consider AL in an in-
teractive setting to balance agency between the human teacher and the
active machine learner. How to share agency in IMT systems belongs
to a broader discussion on the tension between automation and di-
rect manipulation in HCI, addressed by Horvitz [Horvitz, 1999, 2007].
Cakmak et al. [Cakmak et al., 2010] compared four different interac-
tion modalities between a human teacher and a learning robot: (1) a
fully supervised learning mode (SL) in which the robot does not ask
queries, (2) a fully active learning mode (AL) in which the robot only
asks queries, (3) an “any question” mode (AQ), in which queries are
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only human-triggered, and a mixed-initiative active learning (MI) in
which queries can be triggered both by the human and the robot. For
each of these interaction modalities, participants had to teach concepts
such as “house” or “snowman”, using colored papers patterns with
various characteristics (shape, size, and color). The authors [Cakmak
et al., 2010] show that human-controlled active learning (AQ and MI)
achieve performance gain over the fully supervised scenario. The use
of active learning was preferable for the perception of the robot’s intel-
ligence, ease of teaching, and enjoyability. Overall, the “any question”
mode (AQ) was the most preferred. Finally, the authors suggest that
the optimal strategy is likely to be user-dependent but insist on the
need to balance the control early on in the learning process and avoid
uninformative queries that might confuse the human teacher. These
results might change in different teaching tasks and situations but sup-
port the idea that human teachers should not be mere annotators i.e.
machine learner interventions should not take over the control of the
training. Ramos et al. [Ramos et al., 2020] use AL as a sampler to pick
a new document. In their system PICL, active learning sampling co-
exists with other techniques (keyword search, random selection, pos-
sible errors, and predicted positives) as a way for the machine teacher
to parse documents to be labeled by the machine teacher. In this case,
AL is closer to the “any question” mode introduced in [Cakmak et al.,
2010] and the end-user is free to use its sampling strategy. Other work
suggests that class imbalances can compromise the benefits of AL in
terms of performance and other sampling heuristics should be applied
in this case [Attenberg and Provost, 2010].

Machine learner interventions may not only be a query calculated by
the system from the model uncertainty. Wall et al. [Wall et al., 2019]
designed guidance using teaching patterns from experienced machine
teachers. Their goal was to understand if machine teaching skills
could be transferred to novices by reifying teaching patterns from ex-
perienced machine teachers. The authors applied this concept in a
text document labeling task, and guidances take the form of notifica-
tions that trigger at specific moments of the teaching. They found that
teaching guidance did not improve the classifier’s performance trained
by novices, but participants expressed less frustration and mental de-
mand.

Toward an IMT language?

Simard et al. [Simard et al., 2017] insist on the need for a standardized
IMT language, disconnected from the theory of ML. Formed as a set
of user interaction, this language would not only consider labels as
the main object users can iteract with but also features and schemas
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i.e. and how several ML models can be combined to solve a prob-
lem. Along with design patterns and documentation, an IMT language
could enable machine teachers to collaborate more fluently. Machine
teachers could read, understand, refine, and maintain taught mod-
els with a common language, which could help to scale ML model-
building across multiple collaborators.

Socio-technical benefits of having machine teachers

First, Simard et al. [Simard et al., 2017] argue that there is a mismatch
between the growing demand for ML systems and the ability of orga-
nizations to build them. The diversification of roles within ML may
follow the same path as IT has experienced in the past. Computing is
somehow decoupled between a science, a technology, or a tool. This
decoupling started with the first programming languages that have
separated physicality from symbols. Developers no longer need to
know the inner working of computers (e.g. CPU architectures) to de-
velop software. Similarly, ML practices could diversify and enable
intermediate roles that efficiently build ML models (machine teach-
ers) that would be independent from professions that improve exist-
ing models and architectures (ML researchers). If the IMT develops
as a community, it could foster a new economic market with a more
decentralized production of ML models.

Second, IMT principles such as feature decomposition and model schemas
(different sub-models organized in a graph) could be a way to lower
the technical debt of ML systems. Technical debt is the implied cost of
additional rework caused by choosing an easy solution instead of us-
ing a better approach that would take longer. ML systems are known
to induce heavy maintenance costs at the system level [Sculley et al.,
2014], mostly because the training process is performed at once, with
large training sets. ML practitioners might need to retrain the model
from scratch if the trained model does not perform as expected. This
maintenance is even harder to perform when models are monolithic
such as deep neural networks trained in an end-to-end fashion3. Fea-

3 The end-to-end processing, commonly
associated with Deep Learning, tends
to discard any process of producing in-
termediate representations: the models
take the "raw" data and output the final
labels without human intervention such
as feature extraction.

tures decomposition is also meant to facilitate ML system debugging.

Third, IMT can help to meet the desire for ethical accountability re-
garding deployed ML systems since IMT envisions a more transparent
and explicable model-building process. The IMT language is desired
to be modular and easier to version and review. Assisting more people
in building their own ML systems can balance the power asymmetry
between the owners of massively deployed ML algorithms and citizens
or subject-matter experts.
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How does this thesis position regarding IML and IMT?

IMT is a recent and promising approach that builds upon IML by con-
sidering the design of systems that could support peoples’ ability to
teach a concept or a behavior to a computing system. This thesis is
part of this line of research but takes an empirical methodology and
focuses on users without ML knowledge 4.

4 In the following thesis, novices will re-
fer to novices in ML

More precisely, this thesis studies how novice users develop strategies
and understand an IML system during a realistic teaching scenario.
Users’ understanding mainly refers to functional mental model, which
focuses on users’ ability to know how the system behaves as opposed
to structural mental model, which focuses on a detailed understand-
ing of how and why a system works [Kulesza et al., 2013]. Prior re-
search in this direction by Ng et al. [Ng et al., 2020] and Sultanum
et al. [Sultanum et al., 2020] looked at the behavior of human teachers
to teach hypothetical learners through formative studies. This work
tries to understand how novices teach and understand learning ma-
chines under the lens of a working learning system, which can inform
the design of IMT systems accessible to the most.

Although the users studied in this thesis are engaged in a tight interac-
tion loop with the machine learner, the IMT systems used in this work
are quite minimal regarding the interaction possibilities offered by ex-
planations and features decomposition presented above. Our teaching
scenario fits the basic requirements of IMT according to Ramos et al.
[Ramos et al., 2020]: “the simplest ML model-building process deserving of
the interactive machine teaching moniker is an iterative process of (1) selecting
and labeling of examples and (2) evaluating student learner performance us-
ing selected examples.”. The teaching scenarios considered differs from
existing IMT work in that users are free to create their own training
data on the fly. This characteristic engages people differently than a
situation that provides a large unlabeled dataset from the start. Creat-
ing their own data allows users to steer the machine’s behavior in the
direction they want and voluntarily create an instance that can chal-
lenge the system.

The second difference of this thesis is that it considers image data and
deep architectures of artificial neural networks. In contrast, seminal
articles of IMT focus on large collections of text documents [Ramos
et al., 2020]. Deep learning models are not recommended in IMT for
their lack of transparency and interpretability. However, users’ abil-
ity to craft features is more challenging with images than text. Deep
Neural Networks (DNN) demonstrate the capacity to learn from com-
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plex and disparate examples and self-organize different levels of ab-
straction across hidden layers. The thesis discusses their benefits and
disadvantages in the scope of IMT.

2.3 Marcelle: composing interactive machine learn-
ing workflows and interfaces.

This section presents Marcelle, a toolkit that allows for designing
and implementing IML and IMT applications. With Marcelle, one
can compose ML workflows and on-demand interfaces. During my
thesis, I used and contributed to the development of Marcelle. This
section first presents the toolkit, which was used in the following chap-
ters.

Domain expert’s DashboardML expert’s Dashboard

Data Store f

Processing

Streams
Components

Modular and reactive ML Pipeline

ML expert
Domain expert

Designer

Figure 2.12. Marcelle is a toolkit
for IML addressing the composi-
tion of custom workflows. It im-
plements a component-based ar-
chitecture using reactive program-
ming for pipeline specification.
Components provide views that
can be composed to form cus-
tom interfaces. Marcelle’s archi-
tecture facilitates collaboration be-
tween machine learning experts,
designers and end-users. Source:
[Françoise et al., 2021]

Marcelle relies on an architectural model to design human interac-
tions with ML. The architecture model is built upon a modular collec-
tion of interactive machine learning components with a unified inter-
face, that can be composed to form custom processing pipelines and
user interfaces. This component-based architecture is extensible and
facilitates reuse of interaction techniques across projects. The archi-
tecture is built over web technologies to facilitate collaboration, and
supports sharing of applications, data and models.
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Design principles

Component-based architecture

Building IML applications require assembling interactions to manipu-
late machine learning concepts and objects. These objects of interest
are highly heterogeneous and relate to various activities, such as the
ones reported by Dudley and Kristensson [Dudley and Kristensson,
2018]. Depending on the activity, users might need to operate upon
various objects: data, algorithms, parameters, models, predictions, ex-
planations, etc. In addition, interactions can be dramatically different
depending on users’ expertise and intents. Thus, their actions upon
the ML pipeline need to be supported by a custom arrangement of
interfaces.

Components are the building blocks of Marcelle. They embed the
state, logic, and interaction for particular tasks and possess a minimal
interface enabling visualization and communication with other com-
ponents. A component is essentially a JavaScript object that (1) exposes
a set of reactive streams that can be processed by other components
and (2) provides methods to display the component’s graphical user
interface in the DOM. Components are versatile in scope and can ad-
dress various tasks, including data acquisition, data management and
storage, models, visualization tools, and standard GUI widgets.

Components often provide a graphical user interface, or view, that can
be displayed on demand in a web application. Examples of views of
components are included in the dashboards presented in Figure 2.12.
Views only communicate with the component using streams: they are
reactive to changes and push events into the component’s streams.
This mechanism separates the view and the component’s processing.
In other words, a component remains functional in a given pipeline
even if its view is not displayed.

Interaction-Driven Pipelines

IML applications involve custom workflows where user interactions
trigger various types of processing. Therefore, it is essential to let
developers create custom pipelines specifying complex relationships
between the user’s actions (e.g. capturing a new instance) and the re-
sulting processing (e.g. adding it to a dataset, training a model, updat-
ing predictions, etc.). Reactivity is key to handling diverse workflows
where heterogeneous event streams must be interconnected.

Marcelle use reactive pipelines, which give developers explicit con-
trol over the information flow. Reactive pipelines in Marcelle relies
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on reactive programming [Bainomugisha et al., 2013], an event-driven
paradigm that is well-suited for the development of IML applications.
It facilitates the creation, filtering, transformation, and consumption of
asynchronous data streams that propagate changes over the pipeline.
Marcelle’s implementation of reactive streams relies on Most.js [mos].

Composable Interfaces

Workflows encompass two main facets: the specification of reactive
pipelines describing the relationships between various objects and ac-
tions, as described in the previous section, and the visual arrangement
of components in the end-user interface. In their review of user inter-
face design for IML, Dudley and Kristensson [Dudley and Kristensson,
2018] underline that while there exist common elements, the design of
IML interfaces varies considerably according to the data and applica-
tion.

Since components provide their views, creating user interfaces tailored
for a particular application or user is straightforward. Developers can
mount any component to a given element in the DOM. To simplify
interface design, Marcelle provides two high-level mechanisms for
building user interfaces: Dashboards and Wizards. Dashboards pro-
vide applications with multiple pages displaying collections of compo-
nents. The resulting interface is similar to Tensorboard [Wongsupha-
sawat et al., 2018]. Wizards are dedicated to the creation of walk-
through guides for beginners. Wizards are inspired by Teachable

Machine’s training wizard that walks users through the training of
a machine learning model [Carney et al., 2020a]. Marcelle wizards
are flexible and allow developers to specify what components should
be displayed at every step.

Data Persistence and Communication

In a collaborative scenario involving users with diverse levels of exper-
tise in ML, it is essential that the objects of various types contained in
the application are shared among collaborators: datasets, annotations,
models, predictions, or logs.

While reactive programming facilitates real-time data communication,
most scenarios require data persistence to store parts of the applica-
tion’s state. For instance, the training data provided by the user should
persist, even when changes to the pipeline are made. Marcelle

can instantiate flexible data stores with various backends: data can
be stored in the browser’s local storage or on a remote server. Choos-
ing the backend location only requires passing a URL to the data store.
Developers can create different backends to customize where different
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objects are stored. Data collections can be created on the fly to store
custom information when relevant, some of the states of the applica-
tion (for instance, the model’s parameters), or session logs of the user’s
interactions.

Interoperability with ML Libraries

Machine learning practice now relies on a key set of programming lan-
guages and libraries widely used among researchers and engineers.
Among them, Python is particularly popular, with libraries such as
Scikit-Learn [Pedregosa et al., 2011], Tensorflow [Abadi et al., 2016] or
Pytorch [Paszke et al., 2019], to name a few. The architecture needs
to provide interoperability with machine learning frameworks in or-
der to be used by machine learning experts. It is essential to provide
an interface to communicate data and models between Python pro-
grams and components. For instance, enabling access to data stores
from third-party programs would help create bridges between pro-
gramming environments.

Training and running inference on ML models in web browsers is pos-
sible with dedicated JavaScript libraries. Using Tensorflow.js [Smilkov
et al., 2019], it is possible to make real-time predictions with potentially
large models with several million parameters. Marcelle’s dataset ar-
chitecture is optimized for training, using asynchronous iterators that
can stream and process data lazily. Yet, the limited computing power
of current web browsers harms scaling to larger datasets and mod-
els. Marcelle partially supports interoperability with standard ma-
chine learning frameworks in Python. Interoperability gives Marcelle
the capacity to scale easily according to the developer’s computing re-
sources. The Marcelle Python package can be used to interact with
a backend server, with reading and writing access to data stores.

To facilitate extensibility and reuse, Marcelle comes with a Command-
Line Interface (CLI) to generate new projects, custom components, and
backends. The documentation, source code, API, and examples are
available on https://marcelle.dev/.

Marcelle’s development context

Marcelle was developed at the same time as the course of this thesis.
It is not part of the thesis contributions since it was initiated and imple-
mented by Jules Françoise and Baptiste Caramiaux. However, the ex-
perimental requirements of this research steered its development and
contributed to shaping the concepts around the toolkit described in
the corresponding publication [Françoise et al., 2021]. In return, Mar-

https://marcelle.dev/
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celle greatly supported this research. The two applications used in
the user study of this thesis were developed with Marcelle which
became a major tool for conducting the human-centered research of
this thesis. Its composability enabled it to iterate the design of experi-
mental applications just a few weeks apart.

Marcelle was initially created to support the development of master
student’s projects for a class on Interactive Machine Learning. With the
covid-19 pandemic crisis, the shareable characteristics of Marcelle

have made it a tool of choice for developing remote workshops and
user studies involving novices in a machie teaching task. These re-
quirements steered the development of a database backend that could
log participants’ interactions on a server. The application of the sec-
ond user experiment presented in section 4.4 also logs participants’
answers to tests and questionnaires. It also steered the development
of several components, such as the drawing canvas enabling people to
create their own training data and accessible uncertainty visualization
described in section 3.3.

Marcelle and Interactive Machine Teaching

Marcelle does not yet implement all design concepts suggested by
the recent literature on IMT. For instance, it does enable users to com-
pose and decompose semantic features natively, nor create schemas
i.e. chaining models inputs and outputs in a graph.

However, its reactive programming scheme could allow the library to
extend toward these characteristics since output streams from a model
could be easily composed with other input streams of another model.
Furthermore, reactive programming foster short iteration cycles be-
tween human teachers and machine learner, and explanations for im-
age classification starts to be incorporated into the toolkit5.

5 https://demos.marcelle.dev/

gradcam-transfer/
The main benefits of Marcelle for IMT lies in the back-end imple-
mentation to share data and models across different collaborators. For
example, PICL [Ramos et al., 2020] includes many desired IMT prop-
erties and aims to be general across subject-matter experts but is still
limited to the processing of a large collection of unlabeled text docu-
ments, which I assume could be beneficial to lawyers more than medi-
cal doctors that might deal with image documents, for instance. Mar-
celle is, for the moment, limited to images and raw data. However,
Marcelle could support IMT design by allowing rapid design itera-
tion on interfaces suited to various collaborators’ expertise. On the one
hand, a medical doctor could have a personalized collection of com-

https://demos.marcelle.dev/gradcam-transfer/
https://demos.marcelle.dev/gradcam-transfer/
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ponents to evaluate the model outcomes, correct models explanations,
and add new data to the training set. On the other hand, an ML ex-
pert could have dedicated components for performance analysis and
the choice of model parameters. However, both the medical doctor and
the ML practitioner could work on the same objects i.e. datasets, expla-
nations, and models. Marcelle thus offers interesting perspectives
to the IMT field through the rapid design of interfaces suited to the
expertise of different collaborators, which might shape the way people
are willing to teach the system.

Finally, Marcelle is not specifically designed for running DNNs.
However, several of Marcelles’ contributions facilitate the use of DNNs
in IMT systems. First, Marcelle proposes a MobileNetV1 component
used for applying transfer learning in the browser. Multi-layers Per-
ceptron can be appended to the MobileNetV1 features to speed up
training and predictions on images. Second, the interoperability with
python enables the training of more computationally heavy models
using local infrastructure.

2.4 Summary

This chapter gives an overview of Interactive Machine Learning (IML)
research and its application to specific roles and expertise (ML ex-
perts, designers, developers, artists, scientists, and the general pub-
lic). It then defines and illustrates the specificity of Interactive Ma-
chine Teaching (IMT) regarding its goals, the specific role of end-users
(teachers), and the desired interaction between human teachers and
machine learners. Finally, it presents Marcelle, a toolkit for compos-
ing IML workflows and interfaces, and how it both benefited and con-
tributed to the conduct of this research. Finally, we discuss how Mar-
celle could scale to IMT design concepts and collaborative model-
building processes.





39

Chapter 3

How do people teach a machine?

This chapter investigates how people teach machines. It focuses on the ways
novices handle learning algorithms, what they understand from their behavior
and what strategy they may use to “make it work”. The first section presents the
science popularization context in which the research is anchored. The following
sections then present an experimental study in which participants performed
individual and realistic ML-teaching tasks using a think-aloud protocol. The
study investigates participants’ strategies and (mis)understandings through in-
cremental interaction with a sketch recognition application called Marcelle-
Sketch, with which participants can incrementally curate and label drawings
to train the classifier.

Contributions: I designed and conducted the study presented in section 3.4
under the advice of Baptiste Caramiaux, Wendy E. Mackay, and Frédéric Bevilac-
qua. I led the analysis of the results with the help of Baptiste Caramiaux, Jules
Françoise, and Frédéric Bevilacqua for the cross-validation of the thematic anal-
ysis. Jules Françoise developed an early version of Marcelle a few months before
Marcelle-Sketch. He built Marcelle-Sketch and set up the data col-
lection and extraction database for the Twitch workshop and remote individual
study.

We know little about how novice users understand learning algorithms:
how do they interpret the system’s behavior and understand which
strategies they would use to convey concepts to an ML model?

Exploring how general public interacts with learning algorithms is im-
portant: First, it can offer us insights on new guidelines for design-
ing rich interactions with ML based systems, following an important
line of previous research in the field [Stumpf et al., 2009a, Yang et al.,
2018b]. Second, it can bring the technology closer to people such as
empowering them in their activities, as described in both IML and IMT
fields [Amershi et al., Simard et al., 2017, Lee et al., 2019], and foster-
ing ML democratisation. Third, it can foster ML education [Fiebrink,
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2019]. Finally, gaining insight into how the general public interacts
with machine learning systems, and in particular the learning part of
the process, has the potential to increase our understanding of “ma-
chine behaviour” [Rahwan et al., 2019], and highlight the contextual and
socio-cultural influences of Human-ML (and Human-AI) interaction.

In order to explore how novices can train an ML system, we focus on
the specific use case of a sketch-based recognition algorithm. In this
machine teaching scenario, the goal is to train a recognition system by
drawing sketches associated to a set of categories. The system is in-
crementally trained and the predictions produced from drawings are
used as inputs to monitor its accuracy. This chapter is interested in (1)
identifying novice teaching strategies for an image recognition algo-
rithm; (2) investigating novice understanding of the machine behav-
ior;and (3) highlighting the socio-technical implications of engaging
end users with ML.

The core contribution stems from an experimental study inspecting
the use of Marcelle-Sketch by novices. We present a set of quan-
titative and qualitative findings about users’ teaching strategies and
users’ understanding (or misunderstanding) of the system’s behavior,
discussed in chapter 6.

3.1 Context and design motivation

This work is anchored in a science popularization context that origi-
nated from a collaboration with the association Traces, a think-and-do,
nonprofit group interested in science, its communication, and its rela-
tionship with society1. I participated in three different science popu-

1 https://www.groupe-traces.fr/en/

traces/
larization events initiated by the Traces association.

In October 2019, the association Traces held a workshop on “Educat-
ing Artificial Intelligence” at the TURFU festival in Caen2, in which

2 https://turfu-festival.fr/we were invited as “AI experts”. We presented our research and con-
ducted a short workshop in which participants taught a sketch classi-
fier with categories of their choice. Participants had diverse profiles,
from high-school students to jobseekers. The application was a proto-
type I developed using a Max/MSP front-end communicating with a
python server.

In March 2020, soon after the first covid-19 lockdown, Traces organized
weekly virtual sessions addressing a wide range of scientific topics to

https://www.groupe-traces.fr/en/traces/
https://www.groupe-traces.fr/en/traces/
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Figure 3.1. Workshop in the
TURFU festival in Caen, using a
sketch-based IML prototype.

the general public. We collaborated with them for the first session of
the series on Artificial Neural Networks. The session was held on-
line on the Twitch streaming platform. We led a remote workshop

Figure 3.2. Virtual workshop held
on the Twitch platform during the
covid crisis.

in which participants used Marcelle-Sketch, a shareable IML tool
in which they can also teach the system to recognize sketches they
drew. We specifically designed and implemented Marcelle-Sketch

for this session, which is further described in the next Section 3.3. The
application runs in a web browser and is available online 3. This sec-

3 The first version used in the workshop:
https://marcelle-sketch.netlify.

app/

ond workshop was a pilot for designing our individual user study
presented in section 3.4.

In May 2021, the Traces association invited me to two workshops led
in a high school in Clichy, in the suburbs of Paris. With a member
of the Traces association, we led a workshop discussing AI and Ma-
chine Learning. Students used a Marcelle application to train a clas-
sifier using images from the computers’ webcam. Samples are easier
to create using a webcam rather than sketches. This, it appeared to be

https://marcelle-sketch.netlify.app/
https://marcelle-sketch.netlify.app/
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better suited for the workshops that had significant time constraints.
However, webcam-based IML systems are harder to share since not
all devices are equipped with webcams, and Marcelle is not suited for
mobile phones yet.

Figure 3.3. Lycée Newton in Clichy,
in which the third round of work-
shops was held in may 2021.

Definition 1: “AI refers to many de-
velopments related to new technologies.
They are recent and have experienced
a boom from the 21st century. These
new technologies are mainly associated
with intelligent cars, machine learning,
robots. The objects designed are gener-
ally autonomous and independent.”

Definition 2: “Autonomous algorithmic
program created by humans capable of
learning and adapting to time!”

Definition 3: “It is an autonomous and
discrete technology, allowing to replace
some human activities. It brings ad-
vantages like Elon Musk with his elec-
tric car Tesla which allows improving
road safety (and to pollute less) but also
disadvantages like in agriculture which
causes the loss of jobs.”

Definition 4: “Program created by hu-
mans allowing to recreate a computer
brain. It can execute complex tasks faster
than humans. It may have the ability to
learn over time.”

Definition 5: “Computer science based
on several algorithms aiming to perform
tasks more efficiently and complex than
humans. It is based on autonomous
learning and works with data.”

Definition 6: “Artificial intelligence is
knowledge developed on a specific do-
main, virtual or material, which can po-
tentially be improved. AI is used for the
benefit of humans.”

Figure 3.4: Definitions of AI give
by high school students

Besides understanding IML systems in a pedagogical context, these
workshops were an opportunity to probe peoples’ literacy in ML (and,
more broadly, in AI). The general public might struggle to envision the
scope of action of these technologies and the concrete impact on their
lives. For example, high-school students in the third workshop had
to define AI before the workshop. Their definitions are listed aside,
and we can extract two emergent characteristics emerging from these
definitions.

Participants seem divided on whether AI is an autonomous entity
or relies on human labor and data. I believe that IMT activities in-
volving participants in data collection and labeling develop peoples’
understanding of the ML dependence on labeled data and human la-
bor.

Participants sense the social implications of these technologies, but
their scope of action remains unclear. This is particularly striking in
definition 3, which cites two applications without clearly acknowledg-
ing how AI is involved. Again, involving participants in the training
of an ML model could help demystify the application scope of ML by
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anchoring students’ knowledge into a concrete experience: the train-
ing of a classifier on real-world data. I believe it is an engaging activity
that can be a gateway to the AI and ML disciplines.

Overall, these workshops demonstrate the engaging and playful po-
tential of IMT for the general public, but longer workshops would be
necessary to engage participants in real reflection on how they imag-
ine using and designing tools that they could teach. For researchers,
shareable and easy-to-use IML systems offer opportunities to probe
how interactive machine teaching can shape peoples’ literacy about
ML and AI. For these reasons, the applications used in the three work-
shops were designed following three important requirements:

1. People should be able to produce their own data to teach the system;

2. People should receive immediate feedback about the model’s pre-
dictions and uncertainty;

3. People should be able to use the application anywhere and easily.

With the first requirement, we aim to involve users in generating and
curating the training examples. We are interested in studying the
teaching strategies that emerge when users are free to change the input
data in response to the system’s outcomes. Except for the third work-
shop, we use drawn sketches as inputs because they do not require
specific expertise or hardware, and they are personal.

Second, people need to be able to interpret the model’s predictions.
Model predictions always embed uncertainty which is also important
to convey to the users. A common feedback strategy displays likeli-
hoods, i.e. values between 0 and 1, conveying the confidence level that
the input instance belongs to each class. In addition to likelihoods,
we use another approach that estimates this uncertainty using model
ensembles. A further explanation of model uncertainty in deep neural
networks is presented in Section 4.2.

Third, our goal was to inspect the real-world use of the system by
novice users. As such, we brought particular attention to designing
an application that can run online, which is easy to use. This third
requirement was crucial for the remote workshop held on Twitch and
drove the development of the Marcelle toolkit for producing share-
able web-based IML applications equipped with remote backends for
accessing interaction logs.
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Altogether, Marcelle-Sketch is thought of as a tool to probe novices’
teaching strategies and understanding of a sketch recognition system
and will be used for our remote and individual user study presented
in section 3.4.

3.2 Exploring machine teaching with the general pub-
lic through the remote workshop led on Twitch

In this section, we present in more detail the workshop we conducted
during the live session on the Twitch platform in collaboration with the
Traces association. The analysis of participants’ interactions informed
the design of the individual remote study presented in section 3.4 and
the design iteration conducted on Marcelle-Sketch presented in
3.3.

The live stream lasted about 90 minutes and was divided into three
parts. The association moderators started with an introduction to
artificial neural networks that lasted around 20 minutes. Then, we
conducted the machine teaching workshop for 40 minutes using the
Marcelle-Sketch application presented in Section 3.3. Finally, we
answered questions from the audience asked via the chat for 20 min-
utes.

Procedure and participants

After introducing neural networks, we started the workshop by pre-
senting the interface. We sent them a link to the application in the
chat, and participants opened it in a new tab. If they had questions,
they could communicate with them on the chat. One moderator gave
a live demonstration of the application while a researcher was giving
the explanations.

We chose a pre-defined set of categories to structure and focus the ob-
servations on the teaching strategies. Participants could not train on
new custom categories. Enabling the creation of new categories would
have made difficult the comparison between participants’ strategies,
both in the pilot workshop and the study (presented in the following
section). The number of categories was fixed, and their labels pre-
defined: “Moon”, “Hat”, “Wave”,“Cheese” and “Time”. The model
was initialized with random parameters (except for the MobileNet
embedding) at loading, and the training set was empty. We asked the
participants to train the system until the model was accurate and confi-
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dent about the predictions for each category. We gave them 20 minutes
to perform the task at their own pace. After that, we explained how
to share their project publicly. Then, we asked them to load a model
from another participant and explore it with their own drawings. Fi-
nally, we invited the audience to answer an online questionnaire about
the training process, posted in the text chat.

At the beginning of the workshop, 160 people were connected to the
stream live. The number decreased during the session until reaching
84 people at the end of the session. Among these participants, 22 par-
ticipants made their Marcelle-Sketch project public, i.e. we could
analyze the data of 22 participants. 7 participants answered the online
questionnaire.

Data collection and analysis

We analyzed participants’ use of the system afterward, by collecting
images after every stroke they did, including all the predictions from
the classifier and the label they chose for the training data. We re-
moved three projects from the whole set of projects that were submit-
ted twice and kept only the projects with at least one drawing per
category. Eventually, we kept 14 projects from 14 participants over the
22 projected submitted. The data included the images (png format),
the timestamps, the predicted/trained category, and the MobileNet
network features, all stored after each stroke made on the interface.
Our analysis focused on the order in which categories are trained, the
proportion of discarded images, and the images’ variability.

Insights and limitations

The analysis highlighted that most participants iterated quickly across
categories when training. On average, they did less than two consec-
utive drawings of the same category before moving to another cate-
gory. We observed that most participants included all their drawings
in the training set. Few participants discarded some of their draw-
ings. Most of the discarded drawings were examples of existing cat-
egories that might have helped participants assess if the model had
effectively learned previous representations. The remaining discarded
drawings were off-category drawings that may have been occasionally
used out of curiosity as a way to challenge the algorithm without spe-
cific expectations on its outcome. Finally, we found that participants
used different variations of the drawings for each category, including
variations in representations of the concept (for instance, clocks and
hourglasses to represent the "time" category) or transformations such
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as orientations, colors, and shapes.

The workshop allowed us to collect rich data in a non-controlled ex-
perimental context. However, it also brought limited insights regard-
ing our second research question that focuses on how the participants
understand the system during a realistic teaching task. We decided
to conduct an experimental study, using a think-aloud protocol in in-
dividual sessions, to investigate further the underlying choices and
decisions behind the observed behavior and how participants became
aware of ML-based systems.

3.3 Marcelle-Sketch: Application overview and de-
sign iteration

Marcelle-Sketch was developed with an early version of the Mar-
celle toolkit presented in section 2.3. Significant changes have been
made to the toolkit since then. Furthermore, we iterated on the design
of Marcelle-Sketch after the remote workshop held on Twitch. The
second version was used in the individual remote study presented in
section 3.4. The application is available online 4 and illustrated on

4 https://marcelle-sketch-v2.

netlify.app/
figure 3.5.

Application overview

Marcelle-Sketch is a dashboard composed of two panels, as de-
picted in Figure 3.5. The left-side panel is dedicated to inputs. It
exposes a white canvas where users can create drawings. It also al-
lows for data management such as dataset download or upload. The
right-side panel is dedicated to prediction, training, and data visual-
ization.

The workflow is as follows. The user starts drawing a line ("sketch
input") and releases the mouse button. Predictions are automatically
updated (chart bars) and the prediction uncertainty (gauge). The user
also receives feedback on the predicted label (drop-down menu below
the gauge). If the user wants to correct the prediction, they can click
on the drop-down menu, select the correct label, and then click on the
button to update the training set and launch training. Training is fast
(a few seconds). Once the training is done, both the prediction and
uncertainty are automatically updated using the newly trained model.
The user could also choose not to add the drawing to the training set
and keep adding elements to their drawings, inspecting the changes

https://marcelle-sketch-v2.netlify.app/
https://marcelle-sketch-v2.netlify.app/
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Figure 3.5. Application interface
used in the think-aloud study.
Miniatures of the drawings are dis-
played on the main screen (bottom
right component). We removed the
history component and the pos-
sibility of changing the drawing
pen’s line width and color for more
controlled data.

in predictions and uncertainty.

The application is built using Vue.js, a JavaScript frontend framework.
Each component displayed on the interface is a Vue component and
is reactive. If a change is made on data (e.g. a new sketch or a new
prediction made by the model), the components’ display is updated
automatically. The server was built with Node.js, and the data were
saved in a MongoDB database.

Machine learning pipeline and technical features

Marcelle-Sketch is designed to allow for online and fast learning.
The key technical features of the applications are presented in this
section. The machine learning pipeline is divided between an encoder
used to extract features from the raw image representing the user’s
sketch and a classifier (built on top of the feature encoder), which the
participant trains.

Machine learning pipeline and transfer learning

The application uses MobileNetV1 as a pre-trained deep neural net-
work [Howard et al., 2017], which provides embedding suited for im-
age classification. Its architecture uses depth-wise separable convolu-
tions to build lightweight embedding. The weights are initialized ran-
domly when the application is loaded, the training is then incremen-
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tal, and only the learning rate is reset at each update. As explained in
appendix A, the use of transfer learning through MobileNet allows a
simpler classifier to be trained quicker (a few seconds), using minimal
data (below 100 instances), which is critical in our scenario. Then, the
method can be made more robust by assessing the model uncertainty,
which is the second technical feature presented in the next section.

Classification with uncertainty estimation

Technically, one originality of our approach is the use of an ensem-
ble of models, called Deep Ensembles [Lakshminarayanan et al., 2017]
to improve model performance under limited data and to allow un-
certainty estimation. The Deep Ensembles approach was presented in
section 4.2 and involved to train a set of N distinct classifiers (ini-
tialized randomly). Each classifier is trained independently, and their
predictions are combined to produce the final prediction. In the pro-
posed system, we built an ensemble model comprised of 5 Multilayer
Perceptrons (MLPs), initialized with random weights on the top of the
MobileNet encoder. The ensemble is trained in parallel with the user
data: the 5 MLPs simultaneously learn the mapping between the Mo-
bileNet features and the 5 pre-defined classes.

The benefit of having an ensemble of models trained in parallel is the
possibility to compute an estimation of the model uncertainty over the
predictions. We used variation ratio as an estimator of the prediction
uncertainty [Beluch et al., 2018], defined as the number of models that
agree on the same class divided by the number of models. In other
words, the variation ratio can take five values of uncertainty: between
1/5 = 0.2 (all the ensemble models disagree on the prediction) and
5/5 = 1 (when all the models in the ensemble agree on the prediction).
We mapped its values to four categories: "Very uncertain" (ratio ≤ 0.4),
"Uncertain" (ratio = 0.6), "Rather confident" (ratio = 0.8) and "Confi-
dent" (ratio = 1). This uncertainty is displayed to the user on the gauge
of the component "incertitude" on figure 3.5.

3.4 User study: think-aloud individual teaching ses-
sions

We conducted a remote think-aloud protocol with novices (in ML and
CS) with the following objectives: (1) identify novices’ teaching strate-
gies of a sketch-based recognition algorithm; and (2) investigate their
understanding of the machine behavior. The teaching task is similar
to the pilot workshop and consists in teaching a classification algo-
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rithm from scratch to recognize hand-made drawings in Marcelle-
Sketch. The methodology employed in this study borrows from the
structured observation approach [Garcia et al., 2014, Mackay, 2014]
introduced in section 1.3. Indeed, we do not attempt to test an hy-
pothesis but gather observational data to increase our understanding
of novices’ behavior and understanding when placed in the situation
of machine teachers.

Participants

We recruited 12 participants with limited to no knowledge in ma-
chine learning or computer science. We recruited participants by email
among contacts of the association and from the university’s students,
avoiding scientific or technological profiles. Among the 12 partici-
pants, 7 are female, and 5 are male. 7 participants are aged between
18 and 29, 1 between 30 and 39, 3 between 40 and 49 and 1 between
50 and 59. Participants graded their prior knowledge about image
recognition systems in the pre-questionnaire about their knowledge. 6
participants answered that they are novices, 4 participants are “little
informed”, 1 participant is “informed,’ and 1 is knowledgeable.

Setup

We used an open-source video conferencing platform hosted on a se-
cure server to communicate with the participants. The video con-
ferencing platform can be accessed from the browser. We asked the
participants to share their screens at the beginning of the session. We
video-recorded their shared screen while they were training the model.
We used the computer microphone to record the audio from the video-
conference application. The participants performed the task on their
own computer, using Marcelle-Sketch in their browser. The appli-
cation was linked to a server and a database to collect data, such as
participants’ drawings and models. From the version of Marcelle-
Sketch used in the pilot, we removed the possibility to change the
color and the width of the pen. Participants did not often use it, and
it allowed us to reduce the variability and better compare the teaching
strategies. The questionnaires were created with an open-source plat-
form called Framaforms and shared with the participants through a
link.

Procedure

When participants log in to the video conferencing platform in the
browser, the experimenter starts by explaining the general structure of
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the experiment. During the session, the participants are told that they
will have 30 minutes to train an image recognition algorithm to rec-
ognize drawings that they will create, each drawing belonging to one
of the predefined categories. Then, a link to the Marcelle-Sketch

application is sent to the participants. In the application, the third tab
of the interface is a page where appears the link to the pre and post-
questionnaires. Participants are asked to fill out the pre-questionnaire.
The purpose of the first questionnaire is twofold. First, we want to
inspect participants’ knowledge about image recognition algorithms.
Second, it serves as a primer to encourage them to think about how
image recognition algorithms work. Participants are asked to share
their screens once the pre-questionnaire has been filled out. The main
teaching session comprises three steps:

1. Explanation of the task and interface. The task is explained to the par-
ticipants to teach the algorithm to correctly classify drawings that
they make with the mouse into pre-defined categories. We use the
same categories as in the workshop: “Moon - Lune”, “Hat - Cha-
peau”, “Wave - Vague”, “Cheese - Fromage” and “Time.- Temps”.
Then, we explain each interface component to the participants, and
we start recording the session.

2. Think-aloud teaching phase. Participants have 30 minutes to teach the
model. During this training phase, we ask them to think aloud.
If the participant stops talking for a few minutes, the experiment
conductor reminds them to comment on their thoughts.

3. Think-aloud retrospection on the data. After the teaching phase, there
is a 10-minute phase to encourage the participants to reflect and de-
brief on the algorithm recognition abilities. Participants are asked
to describe: (1) which drawings are correctly recognized by the al-
gorithm and (2) which drawings the model is uncertain about. Like
the teaching session, participants are asked to comment on their
choices out loud. The screen and audio recordings are stopped af-
ter this step.

The study ends with a post-questionnaire, which aims to evaluate how
participants perceived the system and how participants’ prior ideas
about the behavior of an image recognition algorithm evolved after
the interaction.
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Data collection

We recorded the think-aloud sessions through screen recording. In
addition, we collected the datasets made of the intermediate drawings
(i.e. drawings after each stroke) and the training set (i.e. drawings used
to train the system). We also collected the two datasets built after the
training, containing “recognized drawings“ and “drawings the model
is uncertain about”. For those four datasets, we stored drawing as png
images together with their creation timestamps, the predicted category
when drawn (or assigned category when trained), the computed un-
certainty, and the features from the MobileNet network. Finally, we
collected the answers to the questionnaires stored on the Framaforms
platform.

Data Analysis

Quantitative analysis of the teaching process

We computed three measures related to the drawings performed by
the participants to teach the model. Our first research question on
characterizing novices’ teaching strategies motivated these measures.
The measures are:

• The amount of drawings trained i.e. how many drawings were used
to train the system. It relates to the speed at which the participant
draws and how often participants want to use a finished drawing
to train the model.

• The variability in the drawings. We computed a measure of variability
within a category using Euclidean distance between pairs of draw-
ings in the feature space, i.e. the output vectors of MobileNet asso-
ciated with each drawing. We averaged distances between all pair-
wise combinations of instances within a category (to avoid compar-
ing images from different categories). We then averaged the vari-
ability across categories for each participant. Formally:

Vparticipant =
1
5

∑

c∈categories

1
C2

size(c)
∑

Xi ,Xj∈c
d(M(Xi), M(Xj)) (3.1)

with C2
size(c) the number of combinations of 2 instances in the cate-

gory c, d the Euclidean distance, and M(X) the feature vector after
passing the input image X into the MobileNet network. To help
the reader appreciate the variability across participants, Figure 3.7
depicts the training set of the most variable and least variable par-
ticipants.
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• The average number of consecutive inputs with the same category. This
measure highlights the sequencing i.e. the order in which partic-
ipants trained the proposed categories. We display participants’
sequencing on the upper timelines on figure 3.10 at the end of the
result section.

Quantitative analysis of the model performance

We computed the following measures related to the performance of
the trained classifier:

• The generalization performance measures how each trained model can
generalize beyond a participant. We used the final trained model of
each participant. We then computed an accuracy score on the test
set composed of all the training sets from the 12 participants.

• The personalization performance measures how well the model can fit
a participant’s data provided during the training session. We also
used the final trained model of each participant. We then computed
an accuracy score on a test set composed of all finished drawings
of the participant (that are used to train the model or not). We
annotated the finished images (images before the participant "clear")
by hand, discarding errors or involuntary strokes.

The performance scores are used as indicators of the model abilities
rather than a quantification of the task completion. Participants were
not asked to improve the generalization of their model when we intro-
duced the task to them.

Qualitative analysis of the verbalizations

To analyze the verbal elicitation from the participants, we applied the-
matic analysis [Braun and Clarke, 2006] to code and categorized the
transcribed audio recordings. Two authors first labeled each mean-
ingful verbalization, describing the participant’s actions or thoughts.
From these labels, we created a set of themes that convey the par-
ticipant’s intent and address our research goals: (1) identify novice
teaching strategies for an image recognition algorithm and (2) investi-
gate novice understanding of the machine behavior. The theme created
during this phase are:

• 5 themes about the participants’ learning behavior understanding:
"interpretations and beliefs about the learning behavior of the system",
"asking oneself about the learning behavior of the system", "misunder-
standing", "the participant felt the system could learn a drawing success-
fully", "the participant felt the system could not learn a drawing success-
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fully";

• 2 themes about the participants’ teaching decision: "justification of
an action according to previous ones", "organisation and structure of the
overall session";

• 2 themes about the participants’ teaching intentions "evaluation of
previous images learned" and "exploration of new drawings".

In addition to the thematic analysis, we aligned the verbalization to the
drawings mentioned within them to understand the course of events
and context better. Then, the authors coded the verbalizations again
according to these themes. The first author of the paper coded all par-
ticipants’ transcriptions, and three co-investigators coded four partici-
pants each. We gathered the codes and discussed their alignment. We
categorized the 710 quotes from the 12 participants over the 9 themes
mentioned above.

We finally kept the quotes where a clear agreement could be found
between annotators, so approximately 350 quotes. The study, the tran-
scriptions, and the analysis were conducted in French. The translation
to English was only made to report the results. Note that the neutral
pronoun is identical to the masculine pronoun in French. We then de-
cided to keep the neutral pronoun every time the participant referred
to the system.

3.5 Results

In this section, we report the findings resulting from (1) the qualitative
and quantitative analysis of participants’ teaching strategy and (2) the
qualitative analysis of their understanding of the machine’s learning
behavior.

Analyzing teaching strategies

In this section, we present our findings related to the first research
question on identifying teaching strategies by novices and their rela-
tionship to model performance. The results in this section are pri-
marily quantitative. They are complemented with quotes from the
thematic analysis, which allows us to describe better participants’ in-
tentions about their strategy (when verbalized).
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Novices adopt contrasting strategies

We analyzed the teaching strategies by looking at three measures in-
forming on the teaching process: the number of drawings trained, the
variability infused in the inputs, and the adopted teaching sequenc-
ing (see Section ??). Figure 3.6 depicts each participant within this
teaching strategy space.

Figure 3.6. Teaching strategy space:
Variability (y axis) according to
training set size (x axis) and se-
quencing (color map).

We first investigated whether these dimensions provide insights on
complementary aspects of teaching strategies. We computed the cor-
relations between these three dimensions and found that there are not
significant, meaning that each measure represents a dimension of the
teaching strategies adopted by participants. In addition, we found that
participants are well distributed in the space. Within the 2-dimensional
space created by the dimensions variability and size of the training set,
the two extreme cases P2 and P10 suggest that low variability is more
often related to simple shapes in the training set. The training set of
P2 and P10 is depicted on Figure 3.7.

We also found that the participants adopted different teaching strate-
gies by analyzing how they sequenced the training instances. We
found that the number of consecutive training drawings from the same
category spans from 1 to 3.3 (see Figure 3.6). For instance, P4 never
trained the same category with two consecutive drawings (leading to a
consecutive rate of 1). By contrast, P5 and P7 have consistently drawn
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(a) Training set of participant 2

(b) Training set of participant 10

Figure 3.7. Most variable (a)
and least variable (b) training set
among participants.

on average more than 3 drawings in a row from the same category.
The average number of consecutive drawings from the same category
is 1.9. This result highlights the spectrum of strategies from focusing
on one category at a time (using several drawings) to constantly chang-
ing the training category. Importantly, participants did not explicitly
state that they used a sequencing strategy.

Finding: Participants adopted heterogeneous teaching strate-
gies in terms of training size, variability, and sequencing, which
underline the lack of means of the classifier on the actions to be
taken to train it.

Impact of the variability on system performance

We consider two types of performance indicators: generalization per-
formance and personalization performance (as described in Section 3.4).
In this section, our goal is to link participants’ strategies, described in
the previous section, to these notions of system performance. How-
ever, this study is a structured observation conducted out-of-lab set-
tings. Hence, regular frequentist statistical inference methods like
ANOVA cannot be conducted and would yield to low statistical power
considering the low number of participants.
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Data variability tends to be correlated to generalization performance,
suggesting that participants that infuse greater diversity in their draw-
ings train a model that tends to better generalize across other partici-
pants’ data. To a certain extent, this was expected since, in ML, vari-
ability is known to be beneficial to generalizability. However, this rule
can also be mitigated by the fact that idiosyncratic variability could
degrade the performance because fewer correlations within the data
can be found.

Interestingly, as a counter-example, P5 created a dataset with low vari-
ability and reached a higher generalization score than P9, which cre-
ated a dataset with high variability.

Figure 3.8 depicts examples from the data provided by these two par-
ticipants. It shows that P5 favored simplistic, icon-style representations
while P9 opted for more complex and idiosyncratic representations.
Therefore, variability, as considered in this work, does not systemati-
cally imply a good generalization score. These results suggest that the
nature of this variability is critical.

Participant 5 Participant 9
Wave Hat Time Wave Hat Time

Figure 3.8. Samples of the train-
ing set of P5 and P9. P5 adopted a
more icon style, whereas P9 opted
for more idiosyncratic drawings.

We found that participant 12 is the participant that obtained the best
scores in both performance indicators. P12 obtained the best gener-
alization score (accuracy equals 0.40) and the second-best personal-
ization score (accuracy equals 0.82). P12 has the largest training set
and one of the highest data variability. P12 managed to create well-
separated categories that may be shared across participants. P12 also
gradually increased the difficulty of the inputs curated. As a matter of
fact,

P12’s verbalizations in the theme "organization and structure of the overall
session" give us information about the dynamic of her teaching strate-
gies. She elicited a precise training policy early in the session to avoid
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adding similar instances if they are already confidently recognized.
She then updated her decision “threshold" based on the subjective
quality of the drawing: «If it’s still confident even if I make an ugly draw-
ing, I want to start training it to be very confident with my ugly drawings.
That’s going to be my new policy because I see that it can be confident with
my ugly drawings». This process operates as a curriculum for the recog-
nizer.

Finding: Variability tends to favor the generalization of the
model, while the other dimensions of the teaching strategy do
not seem to affect the system’s performance. The type of vari-
ability, and the fact it might be introduced progressively, plays
a role in building an efficient classifier that can handle various
representations.

Sequencing affects the model performance and performance perception

The sequencing (i.e. average number of consecutive instances trained
with the same category) is not correlated with generalization or per-
sonalization performances. However, we found that the first drawings
used to train the system are critical to ensuring a good performance.
Participants who focused on a single category at the beginning of the
session created a model that predominantly predicted this category
over the rest of the session. This phenomenon is due to the incremen-
tal nature of the training procedure involved in the system. The model
is optimizing its parameters according to limited data drawn from a
single category. The loss function can then remain locked into a local
minimum, blocking the network parameters. The model then requires
multiple iterations on new instances from other categories to escape
from this local minimum and reach a better optimum.

Figure 3.9 depicts the training sequencing for participants 7, 1, and 8.
For each participant, the top line represents the training sequencing
(each instance from the beginning to the end of the training and its
label), while the bottom line represents the predictions. These partic-
ipants are the ones who trained at least four images from the same
category at the very beginning of the session. We can see that the
consecutive predictions remain the same as the first category. P1 suc-
ceeded in canceling this effect at about 37% of the session by providing
a balanced number of instances to other categories. The effect remains
for P8 and progressively disappears between 33 and 60% of the ses-
sion. The effect seems to persist for P7 until the end of the session.
This might be because P7 trained the highest number of consecutive
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instances from the same category at the very beginning of the session
(9 consecutive "Moon"). Figure 3.10 depicts the same visualization for
other participants. We can see that this effect also affected participant
2.

Figure 3.9. Categories trained (up-
per timeline) and predicted (lower
timeline) in chronological order for
participants 7, 1, and 8. These
participants trained at least four
consecutive images with the same
class at the beginning, and their
predictions were affected for the
rest of the session. The x-axis rep-
resents the completion of the task
(in %).

From the verbalizations related to the themes “misunderstanding” and
“the participant felt the system could not learn a drawing success-
fully”, we notice that P7, P1, and P8 perceived this inertia effect while
not necessarily understanding it. Only P1 seems to adopt appropriate
actions. Indeed, P7 mentioned two times that “it really likes moon”,
while P8 and P1 refer to this effect multiple times: «But why it still
thinks it’s a wave there, I don’t understand.» (P8), and: «I change the cate-
gory because it always refers me to the Moon» (P1).

Finding: The training sequencing (i.e. the order in which ex-
amples are given) has an essential role in incremental teaching,
especially at the very beginning of the teaching. The actions
necessary to unlock confusing model behaviors are not trans-
parent.s
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Figure 3.10. Categories trained (up-
per timeline) and predicted (lower
timeline) in chronological order for
each participant according to the
completion of the task (in %).
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Understanding the machine’s learning behavior

We now present the results relating to novices’ understanding of the
system’s learning behavior. This section reports qualitative results
drawn from the thematic analysis (findings 4 and 6) and the ques-
tionnaire (finding 5). The quantitative data (images drawn) were only
used during the analysis to give a broader picture of the context.

Participants investigate and teach input feature variations.

We found that some participants became aware of the features that the
system takes into account in the recognition process. In a first pre-
liminary analysis, we categorized verbalizations in which participants
mentioned variability. They are gathered in the theme “exploration of
new drawings” mentioned in Section 3.4. When we categorized the
quotes in the theme “exploration of new drawings”, we noticed the
occurrences of geometric vocabulary (rotations, size changes) and de-
cided to group these explorations as “operations”. This group includes
the reuse of the same representation for geometrical transformations
or duplications. The group “executions” stood out since two different
gestures could lead to the same representations. Finally, the “represen-
tations” group encompasses all remaining extracted labels. The draw-
ings in this group are all characterized by changes in the composition
of the drawing i.e. drawings made with a different organization of the
strokes with respect to each other. We built a taxonomy of the differ-
ent input features that the participants mentioned when introducing
variability from this categorization. This taxonomy is summarized in
Table 3.1. As we mentioned above, we identified three groups: 1) the
representation of an image such as the shape, the infilling, the relief
(plane or depth), and context (adding contextual details on the im-
age); then 2) the execution of the drawing, such as the gesture used
to draw; and finally 3) the operations on an image such as translation,
rotation, duplication (drawing several representations on one image),
or change in size. In Table 3.1 we also report participants who used
these features and an example from their verbalization. In bold in the
table are the participants who intentionally conducted investigations
to understand how the system could handle this feature. By contrast,
underlined participants are the ones who came up with conclusions
from their investigations.
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Feature
group

Feature Part. ID Quote example

Shape P6, P7, P9,
P10, P11

"Ok so I think it’s pretty much all learned now, mostly based on the
shapes" (P11)

R
ep

re
se

nt
at

io
ns

Infilling P2, P6, P7,
P11

"I was wondering [...] if it’s only the structure that I draw, if it would
be detected as a moon even with the color with all the details" (P11)

Relief P9 "I think that’s a key thing like knowing the difference between 2D ans
3D." (P9)

Context P11 "Now I’m trying to add more other details rather than just "vague" [...]
to see if the machine can still detect the main subject of this painting."
(P11)

Execution Gesture P6, P10 "I thought it was recording the final image, but it’s possible that it
records every movement I make." (P6)

Translation P8, P10 "Maybe the position didn’t change anything. I’m going to put the
cheese in a different corner." (P10)

O
pe

ra
ti

on
s

Rotation P7, P8, P12 "First I will try to see if my theory is confirmed, that there is no direc-
tion" (P8)

Duplication P9 "I tried different methods such as doubling the amount, maybe even
tripling, quadrupling, so many many more" (P9)

Size P8, P10 "Does size matter? [...] I do a little clock test depending on the size
and it doesn’t work at all." (P8)

Table 3.1. Input features that
are presumed to be considered in
the learning process. Participants
that investigated their hypothesis
with further inputs are indicated in
bold.

From this analysis, we found that participants created new insights
on the model mostly when investigating operations and execution. We
assume representation features are harder to isolate in order to con-
duct investigations. For instance, changing the context (adding related
representations on the drawing) also affects the general shape of the
drawing. Conversely, execution and operations can easily be isolated
and tested on learned representations.

Intentional investigations on the representations were mainly made
with "infilling" i.e. participants investigated what happened when they
changed inner details, such as texture and color. P6 and P11 both con-
cluded that the color did not affect the prediction only after drawing
one or two new colored images that were correctly recognized. They
did not perform extensive analysis of this feature and conclude with
a partially false claim about the importance of the infilling regarding
the shape.

Regarding execution and operations, 5 out of the 7 participants that con-
ducted investigations generated insights that were in line with the de-
sign of the system. P10 did two identical images regarding execution
but inverted the direction in which she made the strokes. Based on
these tries, she concluded that only the final image is taken into ac-
count. P7 investigated rotations and found that the uncertainty de-
creased when tilting a learned representation: «When I flipped the hat
90 degrees, it became uncertain. Maybe I didn’t notice that for the moon.»
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(P8). Another example is how P10 explored translations and resizing.
P10 drew each category with a regular size, and then drew a small
“cheese” in the bottom right corner (see figure ??). P10 trained the
model with the transformed representation twice. After placing the
cheese in another corner (top left-hand corner), P10 became aware of
the translation properties of the machine learner: «It still thinks it’s a
cheese [...] when it’s not at all in the same corner of the picture, so it must
not be the position in the picture». Here participant 10 understood that
the model is invariant to translations (i.e. position). Then she did the
same operation with other categories, but the system kept predicting
“cheese”. P10 concluded that: « I first showed the system that cheese could
be in different corners, so it understood for the cheese. When I do other things
in other corners, it still thinks it’s a cheese ». This case illustrates how
participants who actively investigate operations (i.e. transformation of
examples on which the model is already trained) may build a more
precise mental model about the underlying algorithm and the features
it takes into account. In other word, participants explore different
model’s blind spots [Meek, 2016] and can perceive when an example
resolve the model blindness as well as the models’ invariant.

Finding: Participants verbalized various features that the sys-
tem might take into account in the learning, and they tend to
discover insights about the system’s inner workings when in-
vestigating “execution” and “operations”.

Participants understood the order in which the examples were given
affects the training

In the pre and post-questionnaires, we asked the following question:
“According to you, how important do you think the following criteria
are for learning the algorithm?”. We provided a list of criteria that
participants annotated on a 5-point Likert scale (from “not important
at all”, to “very important”). Using pairwise t-tests, we found that
the importance attributed to "the order in which examples are given"
significantly increased after the teaching session (p = 0.011).

P8 and P12 explicitly expressed doubts about the importance of order
during the session: «Yes, so you’ll notice that I didn’t take the time to sit
down and think [. . . ] without thinking about whether the order in which I
draw will have an impact on the algorithm in fine.» (P8). P5 and P2 became
aware of order regarding the wrong predictions following the category
they trained: «If I had started by drawing rectangle-shaped cheeses before the
hats, it would have recognized the cheeses well. So it’s not that it’s badly rec-
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ognized, but it’s because I did it in that order!» (P5). «Oh yes, so everything
is a wave. From now on, everything is a wave». (P2). It is worth men-
tioning that P2 and P5 have a high number of consecutive examples
from the same class, meaning that they mostly focus on training one
class after the other. The design choice (incremental teaching) and the
phenomenon described in finding 3 (model locked on certain predic-
tions) are probably responsible for the participants’ reconsideration of
the order effect after the experiment. Participants did not anticipate
this effect, suggesting that they were expecting a more intuitive learn-
ing behavior from the machine, possibly closer to human learning. P7

said: «This is the big difference between the machine and humans because
we are intuitive. The machine will never have an intuition». This result
shows the need to help novice users consider the order in the interac-
tion by helping them build a meaningful curriculum in the teaching
(discussed in the implications for design section 7).

Finding: Participants became aware of the importance of the
order in which drawings are provided, which may characterize
incremental teaching.

Underlying neural network properties are confusing for novices.

This section studied all the quotes where participants asked them-
selves questions about the system’s behavior or expressed a lack of
understanding. The quotes are gathered in the themes "asking oneself
about the learning behavior of the system" and "misunderstanding" intro-
duced in section 3.4. We categorized them according to the source
of the confusion. If the majority of the confusions are due to unex-
pected predictions, 29% of them stemmed from properties of Neural
Networks. From these confusions, we built a taxonomy reported in
Table 3.2.

System property Participants Quote example

Exclusivity P2, P6 “Is it possible for a drawing to be well recognised in both one
category and another, and is it true?” (P6)

Pre-existence of categories P2, P5 “I am very surprised, because I don’t understand why it makes
me a proposition when it has never seen a hat or anything else.”
(P2)

Optimization inertia P1, P2, P3, “It predicted a hat with a low confidence, and I told it "yes it is
a hat", and it didn’t say "ah well ok, I’m confident because you
told me."”

Prior knowledge P5, P8 “It’s weird, you still get the impression that others have pro-
vided images. I feel like I’m not the first.” (P5)

Table 3.2. Properties of artificial
neural networks are perceived as
confusing for novices along with
the teaching session.

The taxonomy is composed of four properties. Exclusivity is the fact
that each input is associated with a unique output both during train-
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ing and prediction. The network cannot predict that a drawing belongs
to two different categories simultaneously. P2 and P6 discussed this
property since they drew ambiguous images expecting that the system
would predict two categories. Pre-existence of categories stems from the
initialization of the network with a pre-defined output size (number
of categories). Thus, P2 and P5 were surprised that the model could
predict a category for which no image was yet provided. Optimization
inertia is the fact that the model is not building immediate rules from
participants’ demonstrations, but it optimizes parameters towards an
optimum. Thus, P1, P2, and P3 were surprised that the model could
still be wrong on the same image after being trained on that image.
Finally, Prior knowledge is the fact that the model embeds prior knowl-
edge or not. P5 wondered if the algorithm was trained with other
participants’ drawings beforehand: « It’s strange, you still get the impres-
sion that others have provided images. I feel like I’m not the first. » (P5). P5

then changed her mind when the model failed on categories she had
not trained yet.

P8 first believed that the algorithm relied on rules that the system
designer chose. The idea of a rule-based system was primed in the
questionnaire. P8 stated that « it would be easier to provide rules rather
than drawing over and over. ». Later, P8 tried to identify the nature of
these rules: « it was part of your rules that if there’s some kind of vague
line, it’s a wave ». She finally intuited a notion of optimization with the
idea that the rules could be adaptable to the data: « I think it’s the one
that may have... not the fewest rules, but the rules that get the more easily
adapted» (P8).

Finding: About a third of the confusions expressed by the par-
ticipants originate from 4 properties of neural network inherent
mechanisms that we identified.

3.6 Limitations

This study does not provide a definitive picture of the large, if not infi-
nite, space of mental models about human teaching strategies. In par-
ticular, the experimental setup largely constrains participants’ behav-
iors. First, the interaction scenario involves sequential data creation,
curation, and real-time predictions on users’ sketches. This scenario
limits users’ apprehension of the model on data batches and exacer-
bates the sequencing effects identified. Second, the way participants
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are prompted can constrain exploratory behaviors. If people had been
prompted to generalize the model, their behavior could have been dif-
ferent. Ensuring that participants conceptualize the same teaching task
is crucial for the reproducibility of the results. Generalizing experi-
mental methods beyond classification tasks, such as the generation of
text, image, or sound, may prove even more difficult due to the sub-
jectivity of the task and its evaluation criteria.

IMT aims to extract teaching interaction principles independent of the
learning algorithm. These interaction principles should form the IMT
language. If users’ understanding and strategies can be affected by the
underlying algorithm (in particular, its performance), the interactions
and language users can use to correct it should remain the same. The
main challenge I foresee is to extract interaction principles robust to
different teaching scenarios (e.g. sequence or batch) and tasks (e.g.
classification, regression, generation).

3.7 Summary

We explored the way people teach learning algorithms, what strategy
they use to “make it work”, and what they understood from their
behavior. To do so, we studied how novice users use Marcelle-
Sketch, a sketch recognition application designed to be incrementally
teachable and usable in a web browser. The application has original
ML features allowing for rapid and robust training. This application
has been used in both a general public online pilot workshop and
individual think-aloud sessions with novice users in ML and CS.

We found that participants adopted heterogeneous teaching strategies
regarding sequencing and variability. The variability tends to favor the
model generalization abilities, but the type of variability, and the fact it
might be introduced progressively, plays a role in building an efficient
classifier. We also found that repetitive sequencing at the beginning of
the teaching can be detrimental to future predictions. We found that
participants discovered new insights into the system by investigating
transformations on existing representations. They also became aware
of the importance of sequencing. Then, participants’ confusions orig-
inate from four inherent properties of neural network, which fuel the
discussion on the use of deep learning in IMT, discussed in 6.4.

This study shows that participants explore the limitations of the model
when given sufficient room to explore. They use ambiguous or novel
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examples to reason about learning behavior and system invariants.
The next chapter further explores notions of uncertainty in neural net-
works and investigates how machine teachers perceive and use model
uncertainty.
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Chapter 4

Deep learning uncertainty in
interactive machine teaching

This chapter takes a human-centered approach to uncertainty evaluation in deep
learning. It explores how the two types of uncertainty—aleatoric and epis-
temic—can help non-expert users understand the strengths and weaknesses of
a classifier in an interactive machine teaching (IMT) scenario. The chapter
first presents a benchmark investigating uncertainty estimation using transfer
learning to enable participants to retrain their model efficiently in an Interac-
tive Machine Learning (IML) pipeline. It then investigates users’ understand-
ing of the difference between aleatoric and epistemic uncertainty and how they
use uncertainty to teach an image classifier. The chapter outlines a controlled
experiment in which non-experts train a classifier to recognize card images.
The experiment employed a hybrid evaluation method to understand how par-
ticipants perceive and use uncertainty feedback. We first tested participants’
ability to predict the classifier outcome; we then conducted thematic analysis on
think-aloud verbalizations and interviews. Finally, this chapter discusses Ac-
tive Learning (AL) simulations in which the model is trained with a curriculum
that chooses the most uncertain example at each step. The performance results
inform the benefits of incorporating AL in an IMT workflow.

Contributions: I led the research conducted in this chapter and imple-
mented the benchmark presented in subsection 4.3. Baptiste Caramiaux
implemented the binary classification (in-distribution vs out-of-distribution).
Pierre Thiel and I equally contributed to the experiment design pre-
sented in section 4.4 under the supervision of Baptiste Caramiaux and
Wendy Mackay. Pierre and I both conducted pilot studies. Pierre Thiel
programmed the interface used by participants with Marcelle. I con-
ducted the experiments and did both the qualitative and quantitative
analysis.
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4.1 Context

Although deep neural networks (DNN) have developed state-of-the-
art performance on image classification problems for over a decade [Krizhevsky
et al., 2012], they remain prone to predicting false positives with high
confidence levels [Guo et al., 2017]. Furthermore, barely perceptible
input variations can easily deceive deep neural networks [Szegedy
et al., 2013]. The real-world implications of these issues are often dra-
matic, especially for safety-critical applications such as autonomous
driving and assistive decision-making. One strategy for mitigating
this problem is to estimate ML uncertainty. The research literature on
ML uncertainty, particularly Deep Learning uncertainty, distinguishes
between aleatoric and epistemic uncertainty. Aleatoric uncertainty cap-
tures ambiguity and noise in the data, and epistemic uncertainty cap-
tures novelty. These notions are also called known unknown (epistemic
uncertainty) and unknown unknown (aleatoric) [Lakkaraju et al., At-
tenberg et al.]. Researchers have actively explored both aleatoric and
epistemic uncertainty estimation in DNN on controlled, stereotyped
data, such as Fashion MNIST [Mukhoti et al., 2021]. Within this clas-
sical ML empirical approach, uncertain examples—either ambiguous
or novel—are often defined artificially for performance considerations.
Especially, we lack a clear understanding of uncertainty in DNN from
the user’s perspective in interactive settings.

The field of Explainable AI (XAI) explores the role of uncertainty to ex-
plain ML predictions and shape people’s trust in ML-based decision-
making systems [Bhatt et al., 2021b, Delaney et al., 2021, Zhang et al.,
2020]. Confidence levels alone can be insufficient to improve AI-assisted
decision making [Zhang et al., 2020, Zhou et al., 2015]. Human-Computer
Interaction (HCI) research has shown that the uncertainty inherent in
probabilistic models can itself be considered as design material for
interaction design [Benjamin et al., 2021]. Finally, Attenberg et al. [At-
tenberg et al.] developed a game-like system that encourages people
to provide examples that are difficult for an ML model to classify. The
authors show that people can identify more wrongly confident exam-
ples than the techniques for discovering errors in predictive models at
that time (2014). Furthermore, these examples were not outliers, but
coherent examples missed during model training, also called concept
blindness errors.

To our knowledge, inspecting ML aleatoric and epistemic uncertainty
has not been explored in the context of Interactive ML, in which partic-
ipants take the role of machine teachers and iteratively train a model.
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This two-levels uncertainty can theoretically help users understand if
a model is incorrect because it lacks data or because the example is in-
trinsically ambiguous. This chapter investigates this assumption em-
pirically through human-centered evaluations on a realistic teaching
task with an IML system.

In an interactive machine teaching (IMT) context, this chapter investi-
gates the following research questions:

• How do non-experts in Computer Science and ML use aleatoric and
epistemic uncertainties when teaching a ML classifier?

• How do non-experts perceive the difference between aleatoric and
epistemic uncertainty?

• Do aleatoric and epistemic uncertainties improve non-experts’ un-
derstanding of the classifier and their ability to predict its outcome?

This chapter first provide the reader with the specific and fast-growing
related-work of uncertainty estimation in Deep Learning. Most tech-
niques are used offline and do not apply to HCI and fast iteration
cycles on the ML model training.

I then report on the results of a benchmark study that assesses aleatoric
and epistemic uncertainty estimates of real-world data using feature
transfer from pre-trained models, with two different datasets. The
benchmark results are used to select the appropriate method for an
experiment investigating how non-experts understand both types of
uncertainty. Designed for creative and educational domains [Carney
et al., 2020b], this controlled experiment use the same teaching work-
flow as the previous user study presented in chapter 4. Participants be-
gin with an empty image classifier that makes random predictions and
then trains it incrementally by selecting and presenting a series of im-
ages. I show that teaching decisions on training set size and data vari-
ability are more critical than the type of uncertainty participants were
exposed to. I also identify and discuss two ML teaching approaches
adopted by participants: using uncertainty as a teaching guide or in-
troducing systematic variations of class-dependent instances. Finally,
the results also identified specific situations in which participant can
identify differences between aleatoric and epistemic uncertainty.
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4.2 Deep learning uncertainty estimation

The research literature on ML uncertainty, particularly Deep Learning
uncertainty, distinguishes between aleatoric and epistemic uncertainty.
Aleatoric uncertainty captures ambiguity and noise in the data, and
epistemic uncertainty captures novelty. In this context, the concept
of ambiguity refers to the gray area between the classes of a trained
model. For example, if a classifier has been trained to discriminate
between cats and dogs, an ambiguous example would be a picture
that includes both cats and dogs. By contrast, the concept of novelty
in epistemic uncertainty refers to new classes on which a model has
not been trained yet. Thus in the above example of a cat-dog classifier,
an image of a panda would be considered a novel instance for the
model.

Before ML, the characterization of uncertainties and the manner of
dealing with them was primarily the subjects of study of statisticians
and engineers [Paté-Cornell, 1996, Faber, 2005, Spiegelhalter and Ri-
esch, 2011] and largely applied to risk analysis. These fields first intro-
duced the distinction and use of the terms epistemic and aleatoric [Hora,
1996]. Other works talk about known unknown or data uncertainty to re-
fer to aleatoric uncertainty, and unknown unknown, model uncertainty,
or concept blindness to refer to epistemic uncertainty [Lakkaraju et al.,
Attenberg et al.]. The notions spread within the Machine Learning
community much more recently [Kendall and Gal, 2017]. Uncertainty
estimation in Machine Learning has been explored in active learning,
which aims to select the most informative instances to train the model
and optimally reduce its epistemic uncertainty [Settles, 2010]. With the
advent of Deep Learning and its adoption in many real-world appli-
cations, there has been an increasing endeavor in developing methods
able to estimate uncertainty.

Aleatoric uncertainty captures the intrinsic randomness and ambigu-
ity of the task and is irreducible with further training data. Epistemic
uncertainty is caused by a lack of knowledge and is reducible given
additional training data. An approach in uncertainty estimation relies
on Bayesian Neural Networks (BNN) that are an extension of Neural
Networks in which all parameters– weights and bias– have a probabil-
ity distribution associated with them. One benefit of BNN is that they
emit predictions with uncertainty i.e. the errors margin in a data point
prediction.

The posterior of BNN in deep learning architectures is generally in-
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tractable without strong approximations. Thus, a recent branch of re-
search has emerged around these notions and proposed methods for
approximating BNN inferences.

Aleatoric and epistemic uncertainties contributions can be retrieved
in the formulation of BNN uncertainty. Indeed, Gal et al. [Gal, 2016]
and Smith et al. [Smith and Gal, 2018] showed that the entropy of the
predictive distribution p(y∣x,D) given a data point x and the training
data D can be expressed as:

H[Y∣x,D]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

entropy of p(y∣x,D)

= I[Y; ω∣x,D]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

epistemic

+Ep(ω∣D)[H[Y∣x, ω]]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

aleatoric

(4.1)

Within the BNN approach, the distinction between aleatoric and epis-
temic uncertainty was first discussed by Kendall et al. [Kendall and
Gal, 2017], showing neural network’s limited awareness of its own con-
fidence [Hüllermeier and Waegeman]. The research was driven by the
necessity to know if additional training data can resolve uncertainty.
Empirically, the ML literature showed that the challenge lies in esti-
mating epistemic uncertainty. Estimations of the aleatoric uncertainty
use well-understood measures drawn from information theory such as
the Shannon entropy [Shannon, 1948]. In the following subsection, we
present state-of-the-art techniques to estimate epistemic uncertainty.

Gal et al. [Gal, 2016] proposed a method to sample a trained model by
randomly switching off a certain number of connections at inference
(called dropout). Hence, one can derive N different models from a sin-
gle trained model. Each model potentially provides different predic-
tions. The variability across the N predictions of the ensemble is used
as an estimator of epistemic uncertainty. Similarly, Lakshminarayanan
and colleagues [Lakshminarayanan et al., 2017] proposed to indepen-
dently train N DNN randomly initialized, using the same training
examples. This approach is called Deep Ensemble. This approach also
looks for disagreement among the predictions of the models’ ensem-
ble. The uncertain instances, according to the epistemic uncertainty,
are those on which the ensemble strongly disagree i.e. the ensemble
gives confident predictions contradicting themselves. The ambiguous
instances, i.e. uncertain according to the aleatoric uncertainty, are the
instances on which the models of the ensemble all give non-confident
predictions. Deep Ensembles have empirically outperformed all other
methods for estimating epistemic uncertainty. For example, Dropout-
based techniques [Gal and Ghahramani, 2015], or techniques involv-
ing end-to-end learning of uncertainty measures [DeVries and Taylor,
2018, Franchi et al., 2020] were proved to be less successful. However,
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the drawback with the Deep Ensemble approach is that training time
and memory load linearly increase with the number of models in the
ensemble.

Figure 4.1 illustrates both types of uncertainty in the context of Deep
Ensemble. At the top, the figure depicts an ambiguous image (with
respect to a handwritten digit dataset), leading to predictions with low
confidence. The average confidences are low, as well as the error bars.
At the bottom, the figure depicts a novel image leading to different
predictions with high confidence. The average confidences remain low,
but the error bars are large.
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Figure 4.1. Illustration of aleatoric
and epistemic uncertainties
through the Deep Ensemble
approach, using as input data
an ambiguous image with re-
spect to the training set made of
handwritten digits recognition
problem (MNIST) and a novel
image (unrelated to the training
set).

Recently, uncertainty estimation has been tackled through a novel ap-
proach involving the use of feature space distances and density [Lee
et al., 2019, Van Amersfoort et al., 2020, Liu et al., 2020, Liu et al.,
Mukhoti et al., 2021]. This approach assumes epistemic uncertainty in-
creases in sparse regions of the feature space i.e. where fewer training
examples were given. This feature-based approach aims at providing
a deterministic, efficient and reliable estimation of epistemic uncer-
tainty. Postel and colleagues [Postels et al., 2020] proposed a method
using the density of the feature space in different layers as a measure
of the epistemic uncertainty. They found that deeper layers provide
better aleatoric uncertainty while shallower layers provide better epis-
temic uncertainty. The challenge of this approach lies in the problem
of feature collapse [Van Amersfoort et al., 2020], i.e. the fact that inter-
mediate layers tend to map novel samples to the dense region of the
feature space. Mukhoti and colleagues [Mukhoti et al., 2021] intro-
duced regularization techniques of the feature space to mitigate this
effect. The technique provides good results on low-resolution image
datasets in which the distinction between novel and ambiguous data
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is controlled and exacerbated. For example, they used MNIST as the
in-distribution data and Fashion MNIST as novel data.

This short overview reveals that Deep Ensemble remains the baseline
for estimating epistemic uncertainty while density-based approaches
are promising to lower the computational cost of epistemic uncertainty
estimation. That said, reported methods were evaluated in a setting
where the training set was fixed and controlled, and the models were
trained end-to-end using standard offline methods. As far as we know,
epistemic and aleatoric has not been evaluated within an IML work-
flow, and the ML literature does not address the effect of transfer learn-
ing techniques on the DNN uncertainty estimations. We propose to
explore this problem in Section 4.3 and choose adequate uncertainty
estimation for the user experiment presented in section 4.4.

4.3 Benchmark Study: estimating uncertainty with

transfer learning

This section explores state-of-the-art epistemic and aleatoric uncer-
tainty estimation in a transfer learning context. The goal is to select
uncertainty measures that will be used in the IMT experiment pre-
sented in the following sections.

Datasets and embeddings

We explore uncertainty estimates on two different datasets. The first
dataset is derived from literature in ML. The second dataset was col-
lected using the apparatus of the IMT experiment presented in Sec-
tions 4.2. Each dataset contains a training set, a test set and uncertain
set. The training and test sets are comprised of In-Distribution (ID)
data whereas the uncertain set is comprised of Out-of-Distribution
(OoD) data. The uncertain set contains both epistemic and aleatoric
instances. The datasets are:
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Figure 4.2: In-distribution
(top) and uncertain data (bot-
tom) for the MNIST dataset
taken from Mukhoti and col-
leagues [Mukhoti et al., 2021]

1. The MNIST dataset [Lecun, Y] with additional ambiguous (Dirty-
MNIST) and novel (Fashion-MNIST) images. MNIST and Dirty-
MNIST are 28x28 pixel images representing handwritten digits. Dirty-
MNIST includes ambiguous and noisy images. Fashion-MNIST
contains 28x28 pixel images representing clothes. This dataset has
been previously used in ML uncertainty assessment [Mukhoti et al.,
2021]. We used 160 examples in the training set, 200 examples in
the test set and 240 examples in the uncertain set.
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2. The CARDS dataset are 350 images of playing cards we collected
with a webcam fixed above a black tray used in the experiment re-
ported in the following sections (see Figure 4.11). We collected the
card images in the same lighting condition as the IMT experiment.
The dataset comprises 150 training examples and 150 testing exam-
ples of the cards Nine, Queen and King, and 50 uncertain images
showing both ambiguous and novel configurations. Note that the
choice of the images to be added to the uncertain set was subjective.
Our aim is not to create a benchmark dataset with validated labels
across annotators. Rather, we designed a dataset as close as possible
to the ones that participants may create in the experimental study
presented in Section 4.4.
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Figure 4.3: In-distribution (top)
and uncertain data (bottom) for
the CARDS dataset we collected.

Images from each dataset are processed through a pre-trained model
and give a feature vector called embedding, on which we conduct the
benchmark. This approach is standard in transfer learning, where a
pre-trained model is used to create embeddings, on which a simpler
classifier is trained to map embeddings values to class outputs. Trans-
fer learning enables incremental and few-shot learning [Wang et al.,
2020]. To assess the impact of the feature extraction technique on un-
certainty estimation, we consider three pre-trained models available
online: MobileNetV1 [Howard et al., 2017], MobileNetV2 [Sandler et al.,
2018b] and ResNet50 [Mukti and Biswas].

Uncertainty estimation

We present here our approach to estimate both epistemic and aleatoric
uncertainty for real-time prediction in an IMT context.

Epistemic uncertainty estimation

To estimate epistemic uncertainty, we used two approaches from the
related work: the Deep Ensemble baseline and a deterministic ap-
proach using Density estimation in the feature space given by the pre-
trained models introduced above.

• The Deep Ensemble method consists of training N DNNs indepen-
dently on the same training data. Each DNN in the ensemble is
randomly initialized. Measuring epistemic uncertainty consists of
estimating the disagreement between the predictions emitted by the
ensemble, which we achieve by computing the averaged standard
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deviation of the per-class likelihoods:

u(z) =
1
N

N
∑

i=1
std([pk

i (z)]k=1..M) (4.2)

where pk
i (z) is the probability of class i given by the kth model in the

ensemble, for input data z, std is the standard deviation computed
over the models in the ensemble. In this paper we consider an en-
semble of 3 Multi-Layer Perceptrons (MLP) with two hidden layers
of 64 and 32 neurons. Each MLP is placed on top the pre-trained
model. During training, only the MLPs are trained.

Input 
224 x 224 x 64

Pre-trained embedding  
(MobileNetV1, MobileNetV2 or ResNet50) 

Feature vector

MLP Ensemble

Predictions
3 

Standard
deviation

Entropy Aleatoric
uncertainty

64
32

1024
( for MobileNet V1) 

Epistemic
uncertainty

Multilayer Perceptron

Figure 4.4. Schema of the Deep
Ensemble approach for calculating
epistemic and aleatoric uncertain-
ties.

• The Density estimation computes the data density in the feature
space as created by the pre-trained models. Novel images are as-
sumed to be far from the dense area composed of the training data
projected in the feature space. They will therefore obtain low like-
lihood probability under the density model. The density-based un-
certainty measure relies solely on data representation in the feature
space and does not require the training of a classifier. We use two
different approaches:

1. Gaussian Mixture Model (GMM): each Gaussian component is
centered on a class from the training set. The model learns the
variances and the mixing weights. Epistemic uncertainty is es-
timated using the weighted log-likelihood of a new input data
point under the trained GMM.
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2. Gaussian Density: one density function using Gaussian kernel is
trained per class on data embeddings created by the pre-trained
models. Measuring epistemic uncertainty is performed by com-
puting the sum log-likelihood over the density models.

Input 
224 x 224 x 64

Pre-trained embedding  
(MobileNetV1, MobileNetV2 or ResNet50) 

Feature vector

1024
(for MobileNet V1) 

Feature-based  
density estimation model 

Epistemic
uncertainty

Figure 4.5. Schema of the feature-
based approach for calculating
epistemic uncertainty.

Aleatoric uncertainty estimation

To estimate aleatoric uncertainty, we follow the standard approach by
computing the entropy of the softmax distribution provided at the out-
put of the classifier [Mukhoti et al., 2021].

The entropy computed on the softmax probability distribution is as
follows:

H(z) = −
N
∑

i=1
pi(z) log2 pi(z) (4.3)

where z is an input data point and pi(z) is the softmax value for class
i. We note that the uncertainty is calculated downstream from the
predictions’ probability emitted by the Neural Network.

The pre-trained embeddings, models and acquisition functions used
in the benchmark are summarized in table 4.1

Results

We assessed uncertainty estimates through their performance in de-
tecting uncertain data (out-of-distribution) from test data (in-distribution).
We consider the problem as a binary classification between positives
(test data) and negatives (uncertain data) and use the area under the
ROC curve (AUROC) as the performance metric. We also report a
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Type of uncertainty Embeddings Model Acquisition function

Aleatoric uncertainty MobileNetV1 MLP Ensemble Shannon Entropy
MobileNetV2

ResNet50

MobileNetV1 Single MLP Shannon Entropy
MobileNetV2

ResNet50

Epistemic uncertainty MobileNetV1 MLP Ensemble Standard deviation
GMM Log-lokelihood
Gaussian Kernel Density estimation

MobileNetV2 MLP Ensemble Standard deviation
GMM Log-lokelihood
Gaussian Kernel Density estimation

ResNet50 MLP Ensemble Standard deviation
GMM Log-lokelihood
Gaussian Kernel Density estimation

Table 4.1. Summary of the ap-
proaches used in the benchmark.
Each techniques was applied on
the MNIST dataset and the CARDS
dataset.

complementary analysis on the influence of pre-trained models on un-
certainty estimation.

Epistemic uncertainty estimation

Figure 4.6.a reports the results obtained considering epistemic un-
certainty measures. The results showed an influence of the type of
embedding (MobileNetV1, MobileNetV2, or ResNet50) on the detec-
tion performance. On the MNIST dataset, techniques using ResNet50

performed significantly better than when using the two other embed-
dings. In addition, combining with density-based approaches pro-
vided nearly optimal detection rates (AUROC=0.98 for both GMM and
Gaussian density). On the CARDS dataset, both MobileNetV1 and
MobileNetV2 achieved higher performance than ResNet50. Combin-
ing with density-based approaches also showed higher performance
(AUROC=0.93 [resp. 0.87] for Gaussian density [resp. GMM]). Hence,
this result showed that epistemic uncertainty on the playing card data
is better estimated using MobileNetV1 as an embedding and Gaussian
Kernel density.

Aleatoric uncertainty estimation

Figure 4.6.b reports the results obtained considering aleatoric uncer-
tainty measures. On the MNIST dataset, we found that a MobileNetV1

embedding yields the highest AUROC measure, regardless of whether
there is an MLP or an ensemble of MLPs used to produce the predic-
tion likelihoods (AUROC=0.69 [resp. 0.76] for MLP Ensemble [resp.
Simple MLP]). On the CARDS dataset, we found fewer differences
between embedding and techniques. The highest detection rates are
about 0.8.
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(a) Epistemic uncertainty estimation
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MLP Ensemble
Simple MLP

Model

Dataset = Playing cards

Embedding
MobileNetV1
MobileNetV2
ResNet50

(b) Aleatoric uncertainty estimations

Figure 4.6. (a) AUROC metric of
a binary classifier detecting un-
certain data from in-distribution
data with the epistemic uncer-
tainty estimation techniques, con-
sidering different datasets (MNIST
and CARDS) and embeddings
(MobileNetV1, MobileNetV2 and
ResNet50). (b) AUROC metric of
a binary classifier detecting uncer-
tain data from in-distribution data
with the aleatoric uncertainty es-
timation techniques and consid-
ering different datasets (MNIST
and CARDS) and embeddings
(MobileNetV1, MobileNetV2 and
ResNet50). The dashed black line
represents random sample assign-
ment between uncertain and in-
distribution.

Detecting ambiguous and novel data in the play card dataset

We focused on the CARDS dataset. We inspected the distribution of
uncertainty estimates for in-distribution, ambiguous and novel data.
We used the best techniques from 3.3.1 and 3.3.2: Gaussian Kernel on
MobilenetV1 for estimating epistemic uncertainty, and MLP Ensemble
on MobilenetV1 for estimating aleatoric uncertainty. Figure 4.7 reports
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the histograms: the left panel reports the histogram of epistemic un-
certainty estimations (Gaussian Kernel), the right panel reports the
histogram of aleatoric uncertainty estimations (Deep Ensemble). Both
techniques use the MobileNetV1 embedding.

Novel data has high values from the Gaussian Kernel density estima-
tion. By contrast, novel data have low entropy values computed on the
MLP Ensemble probability distributions and are confused by positive
data. Ambiguous data, however, has intermediate entropy values.
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Gaussian Kernel with MobileNetV1

0

5

10

15

20

C
ou
n
t

0.0 0.2 0.4 0.6 0.8 1.0
MLP Ensemble + entropy with MobileNetV1
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UncertaintyLabel
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Figure 4.7. Distribution of the
playing card data according to
(left) the epistemic uncertainty
(Gaussian Kernel on MobileNetV1
features) and (right) the aleatoric
uncertainty (entropy on MLP En-
semble using MobileNetV1 fea-
tures). The label “classifiable”
refers to data from the test set.
Ambiguous and novel labels have
been assigned to instances from
the uncertain set by the first author.

(a) Epistemic uncertainty estimation (b) Aleatoric uncertainty estimations

Figure 4.8. Images from the play-
ing card dataset that obtained ex-
treme values according to the two
types of uncertainty: (a) Gaus-
sian Kernel with MobileNetV1 for
the epistemic uncertainty and (b)
entropy on a MLP Ensemble us-
ing MobileNetV1 features for the
aleatoric uncertainty.

To help the reader appreciate the data detected as uncertain, Figure 4.8
depicts the images located at the highest values of both uncertainty
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measures. We observed that high estimates of epistemic uncertainty
showed out-of-distribution data, where the background may be dark
or showing a hand. This data can be considered as novel in the sense
that the concept defined by a hand or a dark background is novel for
playing cards. On the other side, high estimates of aleatoric uncer-
tainty show ambiguous images, in which two cards are shown instead
of one.

Analysis of variance

Finally, we report further analysis to understand pre-trained model’s
influence on detection performance in epistemic uncertainty. More
precisely, we inspect whether the distribution of variance within the
space influences the detection performance. We performed a Prin-
cipal Component Analysis (PCA) on the training set through each
pre-trained model— MobileNetV1, MobileNetV2 and ResNet50. We
kept the 10 first principal components and computed the variance
explained by each component. Finally, we computed the entropy of
these 10-dimension vectors. High entropy means that the variance is
spread over the components, while low entropy means that the vari-
ance is concentrated on fewer components. Table 4.2 reports the en-
tropy values together with the averaged AUROC values across models.
It shows that entropy is intrinsically linked to detection performance:
higher entropy values imply better detection. In other words, having
an embedding where the variance is spread over a higher number of
components increases the detection capacity of epistemic uncertainty
estimates.

MNIST Playing cards
entropy mean(AUROC) entropy mean(AUROC)

MobileNetV1 1.72 0.63 1.98 0.87

MobileNetV2 1.69 0.51 1.98 0.84

ResNet50 1.99 0.89 1.87 0.59

Table 4.2. Entropy of the ten first
components of the PCA on both
datasets and the three different
embeddings.

In figure 4.10, we display the dataset according to the first two compo-
nents to illustrate the how data set spread over two first components.
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Figure 4.9. The CARDS dataset
across the first two principal com-
ponents using MobileNetV1

Figure 4.10. The CARDS dataset
across the first two principal com-
ponents using ResNet5

Findings: Feature-based uncertainty estimation using pre-
trained embeddings can be used to identify uncertain exam-
ples, both aleatoric or epistemic and on standard data (MNIST)
or specific data (CARDS). The variance of the data among the
pre-trained embedding is an indicator of the ability of model
ability to distinguishing uncertain examples.
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Limitations

On the difficulty of providing annotations of uncertain instances

Researchers usually rely on annotated data that distinguish ambigu-
ous from novel instances to evaluate both uncertainty estimates (aleatoric
and epistemic). However, it might be very challenging for users and
researchers to make a clear distinction between ambiguous and novel
data in real-world problems. ML researchers working on uncertainty
estimation typically use stereotyped datasets that clearly define am-
biguous and novel data. For example, Mukhoti et al. [2021] used hand-
written digits as in-distribution data but clothing items as novel data.
Such distinction might sound arbitrary in a real-world problem. We
typically encountered this problem when labeling the CARDS dataset.
Differentiating between ambiguous and novel examples was not a triv-
ial task and might be subjective.

On the technological dependency on pre-trained model

We saw that the choice of a pre-trained DNN is crucial when using
real-time uncertainty estimation in a transfer learning setting. We
showed that the variance distribution of the data in the feature space
dimensions influences the participants’ ability to detect uncertain ex-
amples (ambiguous and novel) from in-distribution examples. Exist-
ing approaches retrain the embedding using regularization techniques
for ensuring sensitivity and smoothness of the feature space [Mukhoti
et al., 2021, Van Amersfoort et al., 2020]. In the context of IML, where
iteration cycles are tight [?], we could not afford to retrain the whole
model generating the embedding. However, we assume that an em-
bedding extractor calibrated for the task can be trained offline. Then,
one could freeze its parameters for real-time uncertainty estimation.

The main problem is that it introduces a task-dependent technolog-
ical dependency for uncertainty estimation. Rather than using out-
of-the-box parameters from Imagenet, we could develop pre-trained
embedding for large recognition tasks (e.g. medical images, written
characters, etc.), ensuring accurate uncertainty estimations in related
tasks. With this approach, we encourage further research to under-
stand Transfer Learning for uncertainty estimation and provide pre-
trained embedding enabling interactive machine teaching.
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4.4 Experimental study

The benchmark study looked at aleatoric and epistemic uncertainty
estimates on two fixed data sets in order to identify appropriate uncer-
tainty measures for an interactive image classification task. Here, our
focus shifts to the human teachers: we are interested in the strategies
that novices use to predict the behavior of the classifier, given the two
types of uncertainty. We conducted a one-factor within-participant ex-
periment where participants interactively teach an image classifier to
recognize three types of ordinary playing cards—nines, queens, and
kings—. The two conditions are the type of uncertainty used as feed-
back: aleatoric or epistemic.

Participants

We recruited 16 participants (11 women, 5 men, 15 aged between 18

and 29, 1 above 30). We recruited participants using mailing lists and
social networks from the university, associated schools, and student
residences. We selected participants with little or no computer science
training. They are from biology (6), design (4), sociology (1, former
student), philosophy (1), linguistics (1, former student), math (1), eco-
nomics (1) and chemistry (1). Half have never programmed, 6 have
minimal programming training, 2 have programming experience, but
not as their main activities. Six participants had never heard of Ma-
chine Learning. The rest have heard about it through the media but
have never had any theoretical or practical training. Participants re-
ceived 10 euros in compensation.

Setup

Apparatus: Figure 4.11:(top) shows the setup, which includes a 42"
monitor and a mouse for interacting with the experiment application
and a camera stand with a fixed Logitech C270 HD webcam located
25 cm above a tray covered with black fabric, where participants place
cards to be trained or tested. Participants have a set of 12 playing
cards (4 nines, 4 queens and 4 kings from each suit) from a standard
French deck with the Paris pattern. This deck represents the classes
that participants must teach to the classifier. They also have access to
the rest of the deck, blank sheets of paper, a pen, and a black and a
red marker.

Software1: Figure 4.11:(bottom) shows the experiment application, de-
1 The source code of both the Mar-
celle application and the bench-
mark presented in section 4.3 is
available at https://github.com/teo-
sanchez/teaching-uncertainties-iui2022.

veloped using the Marcelle [Françoise et al., 2021] interactive machine
learning (IML) toolkit for building interactive web interfaces based

https://github.com/teo-sanchez/teaching-uncertainties-iui2022
https://github.com/teo-sanchez/teaching-uncertainties-iui2022
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Interface

Rest of the deck

Paper and penSet of cards (9, K, Q) 

Camera

Tray to capture cards

Mouse

Only during exploration

Figure 4.11. Top: The setup in-
cludes a screen, mouse, and cam-
era stand for recording individual
cards. Participants have access to
the 12 training cards, the rest of the
deck, paper and pens. Bottom: The
application displays the live web-
cam feed, training set, prediction,
uncertainty estimation and a series
of tabs associated with each step
of the experiment. The above in-
terface is not shown in full screen
for legibility. During the experi-
ment, the different components are
arranged in the same way but in
full screen format.

upon ML pipelines. The application and the model training and in-
ference all run in JavaScript. The application also uses a python server
to run a python script that performs Gaussian Kernel density estima-
tion with each new data input. We use a NeDB backend for data stor-
age. The software displays 9 tabs. The first seven describe the succes-
sive steps of the experiment (see Section 4.4): Introduction, Instructions,
Teaching, Exploration, Uncertainty Test, Classification Test, Questionnaire
and Pause. The final tab Debug is for us to retrain the classifier in
case the application crashed, which did not happen during the exper-
iments.

Machine Learning pipeline and uncertainty estimation: Figure 4.12

summarized the choice made during the benchmark on the ML pipeline
and uncertainty estimation techniques. We use a pre-trained Mo-
bileNetV1 model to process the input image. The MobileNetV1 output
(features) is used as input to both the 3 MLPs (2 layers of 64 and 32

hidden units) and the density estimation algorithm. Aleatoric uncer-
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tainty is computed using the entropy on the MLPs’ outputs. Epistemic
uncertainty is computed through the Gaussian kernel density model.

Input 
224 x 224 x 64

Pre-trained embedding  
MobileNetV1

Feature vector

MLP Ensemble

Predictions
3 

Normalization Aleatoric
uncertaintyEntropy 

64
32

1024
MobileNet V1

Multilayer Perceptron

Gaussian Kernel Model 

Normalization Epistemic
uncertainty

Density
estimation

Figure 4.12. Machine Learning
pipeline and uncertainty estima-
tion chosen for the user experi-
ment. The first image represent a
frame from the video stream. All
the computation are performed in
real-time. The prediction given on
the interface is the averaged pre-
diction over the MLP Ensemble

Procedure

We use a one-factor, within-participants design with two conditions:
aleatoric and epistemic uncertainty. Participants first watch an intro-
ductory video that describes the purpose of the study, a short primer
on machine learning, a description of the setup, and the procedure
steps. We ask participants to read and sign a consent form. Next,
participants watch a video introducing ML uncertainty concepts, the
experiment interface, and the basic training task. We label the two un-
certainty measures A and B. Uncertainty A corresponds to aleatoric
uncertainty, uncertainty B corresponds to epistemic uncertainty. We
only tell participants that they correspond to two different methods
for computing uncertainty. Participants do not know what they are
nor how they are computed. Participants then complete two iterations
of the following five steps, one for each uncertainty condition, coun-
terbalanced for order across participants.
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1. Teaching: Participants have 7.5 minutes to provide the classifier
with a series of training examples. The participant first picks a card
and places it on the tray. The participant clicks on a label —nine,
queen or king— to add a new labeled image to the training set. Af-
ter the participant labeled three examples, the model is trained for
the first time and the timer starts. Until then, the system gives real-
time predictions from the camera video stream. The video frames
are used to predict both the label and the uncertainty. The name of
the predicted label is displayed while the uncertainty is represented
by a gauge (high values correspond to high uncertainty). Each time
the participant labels a new image, it launches training on the up-
dated training set again. We asked participants to provide a verbal
comment to explain their actions, their current understanding of
the classifier’s behavior, and any confusion about the classifier or
the uncertainty measures.

2. Exploration: The aim of this phase is for the participant to under-
stand how the classifier behaves. We do not allow the participant
to label new images. Therefore, the classifier is not further trained
on new examples. However, the participant can continue placing
cards under the camera to explore the classifier predictions. They
can use kings, queens, nines, or any other or use cards from the
remaining deck. As before, participants provide a verbal comment
as they work. They can also write notes to help them memorize the
classifier behavior.

3. Uncertainty test: Participants see a sequence of 12 new card images
on the interface. For each card, participants use a slider to manually
set the level of uncertainty that they predict the trained classifier
would display for this card. 7 out of 12 cards are in-distribution i.e.
they represent either a nine, a queen or a king. 5 out of 12 are out-
of-distribution. They represent an empty image (1), a hand (1), and
two different cards on the same image (3). None of the 12 images
are cards from the rest of the deck.

4. Classification test: Participants see a sequence of 20 new images of
playing cards among nines, kings, and queens. Participants must
predict if the system will successfully classify them or not. Partic-
ipants receive one point for each correct prediction: either by cor-
rectly predicting that it will succeed or by correctly predicting that it
will fail. They lose a point for each incorrect prediction and neither
gain nor lose a point if they answer that they do not know.

5. Questionnaire: Participants answer five questions about the teach-
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ing session and their perception of the uncertainty measure using
5-point Likert scales. One question is about the classifier’s perfor-
mance; the next three questions are about the usefulness of the un-
certainty measure to identify the examples that the classifier knows,
does not know, or is ambiguous about. The last question is about
the predictability of the uncertainty measure. The questionnaire is
given in appendix.

6. Interview: The experiment ends with a semi-structured interview
based on the participants’ questionnaire answers. It also comprises
open-ended questions about their comments during the teaching,
exploration and test steps, and how they describe the system’s un-
certainty behavior.

7. Pause: After the first condition, participants take a short break be-
fore starting the second condition.

After completing the above five steps for each of the two uncertainty
conditions, participants complete a questionnaire with demographic
information, their background level of knowledge of programming
and understanding of machine learning, their reasons for participat-
ing in the study, and their level of engagement with the tasks in the
experiment.

Data collection and analysis

We collected all the images used for training by each participant, the
weights of the model trained after each example, and the participants’
answers given during the uncertainty test, classification test, and ques-
tionnaire. We also recorded audio during all steps and video during
the exploration step. To preserve anonymity, we transcribed the au-
dio of participants’ verbal comments throughout the experiment and
conducted a mixed thematic analysis [Braun and Clarke, 2006] with
anonymized transcripts. We first identified themes that emerged from
analyzing the transcripts from the first eight participants; and then ex-
amined the transcripts of the remaining eight participants according
to those themes. We iterated on the themes by re-examining all 16

participants.

We divided the themes in two groups:

1. Teaching curricula contains four themes: systematic, non-systematic,
exhaustive and exclusive curricula.
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2. Understanding of the uncertainty measures contains four themes: ex-
planations, differences, usefulness and confusions.

We also present the results of the Likert-scale questionnaire to sup-
port for the qualitative results. Regarding the quantitative analysis,
we computed the following measures to be compared between the two
conditions:

• Participant uncertainty test score, calculated the average proximity
between the uncertainty values chosen by the participants on the
12 images and the actual uncertainty estimation for the condition,
either aleatoric uncertainty (A) or epistemic uncertainty (B). To have
a performance score that increases when participants succeed, we
calculate the proximity as one minus the average distance between
participants’ response and the actual value:

scoreuncert = 1−
1
N

N
∑

i=1
∣umodel(X) − uguessed(X)∣ (4.4)

with umodel(X) being the actual uncertainty on the image X dis-
played and uguessed(X) the uncertainty estimated by the participant
for the same image X during the study. In our case, N equals 12,
the number of images tested.

• Participant classification test score, calculated as described in subsec-
tion 4.4 i.e. the number of times participants correctly predicted the
classifier outcomes minus the number of wrongly predicted classi-
fier outcomes.

• Classifier accuracy, calculated as the number of times the classifier
found the correct label among the test images, divided by the num-
ber of test images (20).

• Number of training examples is a simple counting of the number of
images given by the participants to the classifier.

• Training set variability, computed within a class using Euclidean dis-
tance between pairs of images in the feature space, i.e. between the
output vectors of MobileNetV1 for each drawing. We only calculate
the similarity between images of a same a class. It does not make
sense to compute a similarity between images from different con-
cept class. Finally, we averaged the computed distances between all
pairwise combinations of instances within a class. We then averaged
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the per-class variability for each participant. Formally:

Vtrainingset =
1
3
∑

c∈classes

1
C2

size(c)
∑

Xi ,Xj∈c
d(M(Xi), M(Xj)) (4.5)

with C2
size(c) the number of combinations of 2 instances in the class c,

d the Euclidean distance, and M(X) the feature vector after passing
the input image X through the MobileNet network. To help the
reader appreciate the variability across participants, Figure 4.13 and
Figure 4.14 depict the training sets of the most variable and least
variable teaching sessions.

Figure 4.13: The least variable
training set (participant 15) from
the teaching sessions of the par-
ticipants.

Figure 4.14: The most variable
training set (participant 4) from
the teaching sessions of the par-
ticipants.

4.5 Results

This section reports results on (1) participants’ ability to predict the
behavior of the classifier and (2) their ability to explain how it behaves.
The results on (1) are presented is section 4.5, and studied through
the quantitative analysis of the uncertainty test and classification test
scores introduced in section 4.4. The results on (2) are presented in
section 4.5 through the analysis of the think-aloud verbalizations from
the teaching and exploration phases and from the interviews conducted
in each condition. On average, participants managed to train their
classifier with a mean classification accuracy of 0.83 (std = 0.09).

Ability to predict the classifier behavior

After teaching, participants successfully predicted the classifier out-
comes during the test phase. One-way ANOVAs reveal that partici-
pants predicted both model classification and uncertainty above chance
(F = 96 and pvalue < 0.001 for classification test and F = 25 and pvalue <

0.001 for uncertainty test).

Influence of the type of uncertainty

We inspect whether the type of uncertainty affects participants’ ability
to predict the classifier behavior. More precisely, we test whether this
factor influences both the participants’ uncertainty test and classifica-
tion test scores.

When grouping teaching sessions across participants according to the
two conditions, aleatoric uncertainty and epistemic uncertainty, two one-
way ANOVAs reveal that the type of uncertainty has no significant
effect on participants’ uncertainty test score (F = 0.43 and pvalue = 0.52)
nor on classification test score (F = 0.135 and pvalue = 0.72). This sug-
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gests that participants do not predict one type of uncertainty better
than the other after teaching the classifier. Moreover, it indicates that
the type of uncertainty shown has little effect on participants’ ability
to predict the classifier outcomes, both for classification and uncer-
tainty. The Likert scale questionnaire suggests that the uncertainty
predictability is subject to a great variability across participants and
does not depend on the type of uncertainty used, as depicted in Fig-
ure 4.15. Finally, we performed a similar test using classifier accuracy
as an independent measure. We also found no significant effect of the
type of uncertainty (F = 0 and pvalue = 1.0).

Figure 4.15. Answers to the
question "Globally, the uncertainty
measure had a predictable be-
havior" exhibit a great variability
across participants no matter the
type of uncertainty shown as feed-
back.

Order and learning effect

Participants, especially novices, might be subject to a learning effect:
their ability to perform the task increases from the first iteration to the
second. We found that participants gave more variable images in the
second iteration than in the first one. A Student’s t-test shows that
the training set variability (see section 4.4) is significantly higher in
the second iteration than in the first one (F = 13.4 and pvalue = 0.001).
We can explain this observation by the fact that participants usually
explore the level of variability the classifier can handle in the first it-
eration. Thus, we assume that participants gave more variable images
in the second iteration because they already explored the limits of the
classifier in the first iteration.

Furthermore, participants better estimate uncertainty after the second
iteration, independently of the type of uncertainty. A t-test shows a
borderline effect of iteration on the participant uncertainty test score
(F = 3.24 and pvalue = 0.081). However, the iteration does not help in
estimating the classification behavior.

One participant commented on this learning effect: «I don’t know if it’s
the lessons I learned from the other one that made me behave this way for this
one or if it’s because the measure of uncertainty is different and therefore it
induced a different behavior in me. I really can’t say.» (P2).
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Accuracy

We found that the classifier accuracy is positively correlated with the
participant classification test score (R = 0.60 and pvalue < 0.001) but not
with the participant uncertainty test score (R = 0.27 and pvalue = 0.13).
This result shows that it is easier to estimate the classification accuracy
when the model is well-trained, probably because participants do not
have to remember all the cases where the classifier might fail. How-
ever, it is worth noting participants’ ability to predict their classifier
uncertainty is not influenced by the classifier accuracy.

Number of training examples and variability

The variability in the test results suggests that the individual speci-
ficity of the teaching prevails over the effect of the type of uncertainty.
We propose looking at the teaching curriculum i.e. the strategy of or-
ganizing the training examples and introducing complexity. In these
quantitative results, we focus on two characteristics of the teaching
curricula: the training set size and variability (described in section
4.4).

First, we found that participants who gave more training examples
also gave more variable ones. Indeed, we found a positive Pearson’s
correlation between the size of the training set and the training set
variability (R = 0.50, pvalue < 0.01). We also found that participants
who give a higher number and more variable training examples train
more accurate classifiers. The size and variability of the training set
are both correlated with the classifier accuracy (R = 0.50, pvalue < 0.01
for the training size and R = 0.57 and pvalue < 0.001 for the variabil-
ity). In the same way, the size and variability of the training set are
also both correlated with the participant accuracy test score (R = 0.62,
pvalue < 0.001 for the training size and R = 0.47 and pvalue < 0.001 for
the variability). Bigger and more variable training sets produce a more
accurate classifier, and the outcomes of an accurate classifier are easier
predict for participants.

More importantly, we found that only the variability of the training set
correlates with high scores in the participant uncertainty test (R = 0.40
and pvalues = 0.024). We assume that exploring more variable config-
urations might trigger greater variations in uncertainty between these
configurations, which in turn would help participants understand the
uncertainty dynamics. Finally, neither the size of the training set nor
the classifier accuracy affects the participants’ ability to predict the
classifier uncertainty. We report these results in Figure 4.16, as well
the linear regressions between the size and variability of the training
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set and the participants’ classification and uncertainty scores.
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Figure 4.16. Linear regressions be-
tween the training set size (the
first two) and variability (the last
two) and the participants’ uncer-
tainty test score (blue) and classi-
fication test score (orange). The
dashed black lines represent the
chance baseline i.e. random re-
sponses during the test phases.

In Figure 4.17, we summarize the significant correlations found in sub-
sections 4.5 and 4.5.

The findings of this subsection 4.5 can be summarized as follow:
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Figure 4.17. Correlation matrix
between characteristics of partici-
pants’ teaching strategy, the result-
ing classifier and the participants’
evaluation on their ability to pre-
dict the classifier outcomes (pre-
dictions and uncertainty). All cor-
relations are positive and signifi-
cant correlations are indicated with
stars as follow: ∗ for pvalue < 0.1, ∗∗
for pvalue < 0.05 and ∗∗ for pvalue <

0.001.

Findings:
• Participants can successfully predict the classifier outcomes

both in term of predictions and uncertainty. Participants’
ability to predict the system behavior does not depend on
the type of uncertainty shown.

• The choices made during teaching about the number of train-
ing examples and their variability affect the participants’
ability to predict the classifier’s behavior. The training set
size only improves participants’ ability to predict the classi-
fications made by their classifier. The training set variabil-
ity improves both participants’ ability to predict their model
classification and uncertainty.

• The more accurate the classifier, the more easily partici-
pants can predict the classification made by their classi-
fier—however, this correlation does not hold when predict-
ing the type of uncertainty.
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Participants’ teaching curricula

This section examines the participants’ teaching curricula in more de-
tail than the two characteristics —size and variability— introduced in
the previous section. We analyze participants’ verbalizations to catego-
rize and describe the different teaching curricula employed and how
these curricula relate to the uncertainty. We use acronyms to quote
participant number and the condition in which the quote was verbal-
ized. For example, P3-A refers to condition A (aleatoric uncertainty)
of participant 3.

Uncertainty as a guide

Four participants—P2-A, P7-B, P9-B, P8-B and P15—AB used the un-
certainty measure as a guide to look for uncertain images and add
them to the training set. They expect this strategy to optimally reduce
the epistemic uncertainty and errors: « The greater the uncertainty, the
more careful I am. It’s more the negative that makes you adjust than the pos-
itive. [...] We are more driven to fix what’s wrong than to take care of what’s
right. Actually that’s it, I have to test it by moving it around, to see what
it does in terms of uncertainty. » (P2). Similarly, P9 explicitly looked for
the most uncertain region and validated the class. P8 also had a spatial
metaphor to describe this strategy: «I tell myself that I just have to train
it as much as possible when it is the most uncertain, so that he can fill the
void it has.» (P8).

These strategies echo the Active Learning paradigm [Settles, 2010]
where a model tries to select the most uncertain—therefore informa-
tive— instances in order to improve performance while reducing the
amount of data resource.

Systematic teaching curricula

Participants can adopt systematic teaching curricula. Systematic cur-
ricula imply a planned order in which images are added, usually by
series of colors or inclination across all classes. These strategies are
usually conducted after participants realize that imbalanced variations
across classes cause misclassifications.

Participants 4-B, 6-AB, 7-B and 8-A were explicitly systematic in their
curriculum. For example, P4 said « I did all the same series in one direc-
tion, the 9 of diamonds, the queen of diamonds and the king of diamonds, all
in the same order each time. [...] It’s already obvious that it’s better trained
than the first time, I think I dispersed it a bit too much the first time and
the fact to be ordered right away, it doesn’t get lost and it concentrates on
the essentials of the cards» (P8). Among the participants mentioned, two
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claimed that being systematic helped them understand the uncertainty
behavior. Participant 8 said: « The fact that I created a protocol allowed me
to understand better how the gauge reacts. I trained all the cards the same,
with the same number of images, four red, four black, four different angles.
It’s like I trained it in a more neutral way. This way, I understand its behavior
a bit more than the first time.» (P8).

The teaching sessions in which participants claimed to use a systematic
curriculum have significantly larger training set size and variability
than others according to Student’s t-tests (F = 4.16, pvalue = 0.050 for the
training size, and F = 5.39, pvalue = 0.027 for the variability). However,
having a systematic curriculum does not seem to lead to better results
at the classification or uncertainty test than other teaching curricula
(F = 2.78, pvalue = 0.10 for classification test score and F = 0.13, pvalue =

0.72 for uncertainty test score).

Findings:
• Participants exhibit various teaching curricula in which the

uncertainty measure can be a guide for selecting new train-
ing images.

• Participants who adopted a systematic teaching curriculum
expressed a better understanding of the classifier behavior.
They also provide larger and more variable training sets.

Understanding of differences between aleatoric and epis-
temic uncertainty

We are now interested in how participants perceive the difference be-
tween aleatoric and epistemic uncertainty. The questionnaire suggests
a slight difference for the question "The uncertainty measure helped
me to identify examples my classifier does not know" in favor of the
epistemic uncertainty as shown in Figure 4.18.

Based on the qualitative data, we found that five participants (P5, P6,
P10, P13 and P16) claimed that they perceived a difference without
being able to express the difference precisely: «I see that the logic of the
A is different from the B but don’t know how. The results are a bit different»
(P10). Three participants (P4, P16 and P2) acknowledged that the dif-
ference they perceived might be due to a different training strategy of
the classifier rather than an intrinsic difference in the way the uncer-
tainties behave: « In fact, in general I understood uncertainty A less than
B, but I can’t figure out if that was because of what I recorded or because of
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the uncertainty» (P16). That being said, we found that specific situa-
tions triggered notable differences in the way participants perceived
epistemic and aleatoric uncertainty. We report these situations and
participants’ comments in the following subsections.

Figure 4.18. The results from
the likert-scale question "The un-
certainty measure helped me to
identify examples my classifier
does not know" suggest that epis-
temic uncertainty is more help-
ful to identify novel images than
aleatoric uncertainty.

Placing a card in the exact same configuration as a training example
would give consistent epistemic uncertainty

Four participants (P3, P8, P9, P16) stated that epistemic uncertainty
was extremely low when a card was placed in the exact same position
as an other example (from the same class) in the training set. They
declared that moving away from this exact position resulted in a quick
increase of the epistemic uncertainty. For instance, participant 3 said
«If it’s the same place where I took the picture it’s completely certain. And
when I start to move from the card, the uncertainty rises» (P3).

This situation can also occur after adding a new image in the training
set and leaving this card under the camera. Participant 15 was con-
fused that aleatoric uncertainty was not decreasing significantly when
considering the exact same image after the classifier update: «I don’t
understand why it’s not at 100% certain since I just told it that it’s a queen»
(P15-A). These reactions may explain the Likert-scale result presented
in Figure 4.18 which suggests that epistemic uncertainty is seen as
more useful to identify images that the classifier does not know.

Ambiguous configurations and unstable classification lead to consis-
tent aleatoric estimation.

Most participants explored ambiguous examples by placing two differ-
ent cards next to each other from different classes. This situation trig-
gers comments regarding the difference between aleatoric and epis-
temic uncertainty. Since the classifier can only guess a single class,
participants commented that the classifier prioritizes one class over
another. For example, when participants placed a Nine next to a King
(resp. Queen), the classifier usually predicted a Nine and ignored the
King (resp. the Queen). This led P2 to wonder about the inner working
of the classifier during the aleatoric uncertainty condition: «I wonder
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if it works with a sufficient minimum, if there is a sufficient minimum of
data to say that there is a nine, and it says that there is a nine and so the
king here is negligible.» (P2). Still on aleatoric uncertainty, participant 10

said: « when there is a difficult situation, such as two cards of different types
or another new card, for this machine [aleatoric uncertainty condition], it is
difficult to be certain, as if this machine is aware of the situation. It can’t take
responsibility for the answer. The answer is always "I’m not sure"» (P10).

When exploring ambiguous configurations, participants encountered
situations in which the predicted label was unstable i.e. it was quickly
changing between two classes despite a stable image in the camera. In
this situation, the two types of uncertainty behaved differently. Since
the aleatoric uncertainty is based on the softmax predictions i.e. its
computation is based on predictions, and the uncertainty level was
mainly high in this situation. By contrast, the epistemic uncertainty is
computed on the feature space, before the predictions. Consequently,
the uncertainty level could be very low in this situation. Three partic-
ipants expressed their confusion with the epistemic uncertainty, when
the classification was unstable. For example, participant 8 said that
«Then it’s funny because it switches between queen and king all the time
while saying it’s certain. It seems strange to me that it’s certain about the
uncertainty but at the same time the label changes every half second like that»
(P8). In the second iteration with aleatoric uncertainty, participant 8

perceived the difference: «The first time, it blinked between queen and king
and was certain. This time it blinked but was less certain» (P8).

Image background and participants’ hand trigger consistent epistemic
uncertainty

The edge cases of having another object in the image, such as the
participant’s hand, or having no card at all, also raised comments that
differ between the types of uncertainty.

We observed that the aleatoric uncertainty stayed low when a card
was presented next to the participants’ hand. By contrast, epistemic
uncertainty was always high when the participants’ hand was next
to the card. Five participants (P1, P7, P8, P9 and P10) noticed such
behavior in either one or the other condition. Participant 7 placed a
nine next to a queen during aleatoric uncertainty condition. When
P7 hid the queen with their hand, the aleatoric uncertainty rose: «
And if I put a 9... the uncertainty increases, it predicts that it is a king.
If I put my hand on the queen, the uncertainty goes down and it hesitates
between a king and a 9. That’s a pretty good sign» (P7). For epistemic
uncertainty, participant 1 said: «For example, when I showed the card with
the hand, right away, it gives high uncertainty» (P1). Participant 9 also



98

said on epistemic uncertainty that «It is going to be very uncertain when
it’s something that doesn’t match at all, like the hand. When I tried to put the
hand, it was very high because it didn’t know at all» (P9).

In summary:
• The epistemic uncertainty is seen as more helpful than

aleatoric uncertainty to identify examples a classifier does
not know.

• Differences between the aleatoric and epistemic are per-
ceived in specific situations highlighting the notions of am-
biguity and novelty.

4.6 Comparing users’ teaching curricula with active

learning curricula.

This section discusses our previous empirical results in the light of Ac-
tive Learning (AL). In particular, it presents performance comparisons
of a model trained with a simulated teaching curriculum using AL
with models our participants trained.

Active learning is a scenario in which the learning model is allowed to
be “curious” and can query unlabeled instances on which it will be
trained [Settles, 2010]. The human role is contrasted betwee AL and
IMT. In AL, the machine chooses training data, and the human delivers
annotations, while in IMT, the human chooses training data and the
machine delivers its feedback.

At the core of AL strategies lies a measure of epistemic uncertainty.
This measure drives the selection criterion: if the uncertainty is too
high on a new example, this external information source is queried
[Cohn et al., 1996]. AL is designed as a "human-the-loop" method,
where a human annotator labels the queries from the algorithm. The
model is thus expected to learn faster and with fewer examples by
strategically choosing new uncertain examples (according to the epis-
temic definition of uncertainty).

Active learning (AL) fits most standard tasks in machine learning, such
as classification or regression and applies to various machine learning
models, from shallow classifiers [Pereira-Santos et al.] to deep neural
networks [Gal et al., 2017], as well as a wide variety of real-world
problems such as speech recognition [Riccardi and Hakkani-Tür, 2005],
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image search [Feng et al., 2012], prediction of protein functions [Xiong
et al., 2014] or tomography [Maiora et al., 2014] among others. AL
is used in assistive educational systems, in which the ML algorithm
model students’ knowledge and queries the student with the most
uncertain example. This uncertain example is assumed to trigger the
most progress from the human student.

AL is generally used to reduce the cost of labeling and achieve good
performance with fewer labeled examples. Pereira et al. [Pereira-Santos
et al.] and Ramirez-Loaiza et al. [Ramirez-Loaiza et al., 2017] studied
AL performances with shallow ML models and showed that AL im-
proves classification performance over standard random learning on
average but not systematically. Pereira et al. [Pereira-Santos et al.]
conducted a benchmark evaluation of various combinations of classi-
fiers, datasets, and active learning strategies. They showed that perfor-
mance gains are uneven and application-specific and highlighted the
prevalence of the classifier chosen over the AL strategy on the classifi-
cation performance. Gal et al. [Gal et al., 2017] applied AL to an im-
age recognition task with deep convolutional networks, approximating
epistemic uncertainty through stochastic forward passes referred to as
Monte Carlo Dropout [Gal and Ghahramani, 2015]. The authors com-
bined AL with an approximated Bayesian deep neural network (using
Monte Carlo dropout) and significantly improved the classification ac-
curacy for real-world datasets such as the MNIST dataset [Lecun, Y]
and skin cancer diagnosis from lesion images [Codella et al., 2018].
Beluch et al. [Beluch et al., 2018] demonstrated that an ensemble of
deep learning models (Deep Ensemble) outperforms the Monte Carlo
dropout technique for uncertainty-based AL.

Active learning offers other advantages than performance gains, which
is not the main goal of IMT. It allows users to reflect on the model
by revealing uncertain regions. However, it is relevant to wonder
whether a machine teacher controlling the information given to the
system could perform better than passive annotators. Would AL lead
to better classification performances than participants’ curricula in our
interactive machine teaching scenario2? The following subsection com-

2 Our ML pipeline includes a pre-trained
embedding appended with a trainable
multi-layers perceptron (MLP), see Sec-
tion4.4

pares the performance of a model trained with a simulated teaching
curriculum using AL and the model our participants trained.

Benchmark on active learning teaching curriculum

This section describes the procedure to compute the learning curves
of several teaching curricula using active learning (AL). These learn-
ing curves use the same models, datasets, and uncertainty estimates



100

presented in Section 4.3. We analyze the CARDS dataset in order to
compare the classification performances calculated with the ones ob-
tained by the participants’ models in the machine teaching experiment
presented in Section 4.4.

AL spans three data acquisition scenarios, which are summarized in
appendix B. The analysis uses the pool-based scenario i.e. the model
picks queries among a pool of unlabeled data. This pool comprises the
150 training examples presented in Section 4.3. The model accuracy is
computed on the same 20 instances used in the user experiment. We
use the MobileNetV1 embedding because it provided the best per-
formance for identifying uncertain images on the CARDS dataset, as
demonstrated in Section 4.3. We consider both aleatoric and epistemic
uncertainty estimates and a random baseline i.e. a random sampling
strategy that picks random examples to be queried.

The seed, i.e. initial training set, comprises three randomly chosen im-
ages. The maximal budget of training images is fixed at 30, which
is more than what the participants could collect in 7 minutes and 30

seconds. For each sampling technique, 100 different curricula are com-
puted using 100 seeds taken randomly. The test accuracy is calculated
for each query.

Results

For each uncertainty sampling strategy, we plot the test accuracy av-
eraged over the 100 curricula according to the budget i.e. the size of
the training set. The learning curves are represented on Figure 4.19.
Participants’ final accuracy and training set sizes are represented with
black dots, for each iteration (A or B).

Our results show that most uncertainty sampling strategies perform
similarly to the random selection baseline. The performances start to
diverge after 20 training instances with around a maximum 5% ac-
curacy gap. More importantly, most participants’ classifiers perform
significantly better given a budget than models trained with the AL
procedure.

• AL performance gains are not significantly higher than ran-
dom baseline when used with transfer learning, including
pre-trained embedding appended with a trainable MLP.

• Participants’ teaching curricula exhibit better performance
than AL curricula, given a certain budget.
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Figure 4.19. Learning curves using
pool-based active learning sam-
pling strategies. The participants’
model accuracies given their final
training set are represented with
black dots.

These results are preliminary in that they are follow-ups of the main
user study presented in chapter 4.4. An entire study could be devoted
to comparing machine-computed and human curricula. However, our
precise use case begs an important question: What knowledge a hu-
man person provides beyond machine-computed uncertainty that fur-
ther improves models? In this situation, either our uncertainty esti-
mates are flawed, either we capture human’s ability to teach (by or-
ganizing curricula with their foresight, insight, and sensemaking) that
an untrained artificial neural network alone could not have.

4.7 Summary of the chapter

We explored two types of uncertainty, aleatoric and epistemic, in an
interactive machine teaching task with non-expert users. We ran a
benchmark study that applied transfer learning techniques to real-time
uncertainty estimation. We found that the variability of the data in the
feature space is essential for detecting ambiguous and novel images.

We used the results of the benchmark study to design a one-factor,
within-participants experiment with non-experts that compares how
they use and perceive aleatoric and epistemic uncertainty, both with
respect to their teaching strategies and their understanding of the clas-
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sifier. We asked participants to teach a classifier to recognize a dozen
different playing cards among three classes using an Interactive Ma-
chine Learning application. Each participant received real-time classi-
fication and uncertainty feedback selected from the benchmark study
results. We measured participants’ ability to guess how well the clas-
sifier will predict new card images, with respect to both classification
and uncertainty. We also interviewed participants about their subjec-
tive understanding of the uncertainty measures.

We found that participants’ choices made while teaching—especially
regarding training set size and variability—are more important than
the type of uncertainty participants were exposed to. We also identi-
fied and discussed two teaching approaches: the first uses uncertainty
to guide the selection of training data; the second systematically in-
troduces variation across the classes. We found that the latter results
in a better understanding of the classifier outcome. Finally, we identi-
fied three specific situations where participants successfully perceived
differences between the two uncertainties, highlighting the notions of
ambiguity and novelty in the data.

Lastly, we compared the accuracy of our participants’ classifiers with
models trained using an active learning procedure. Participants ob-
tained better performances than simulated curricula using AL. Fur-
thermore, AL curricula do not perform noticeably better than a ran-
dom selection baseline. These results suggest that transfer learning
performances improvement prevails over AL ones. Future research
should focus on user-centered evaluations of AL in an IMT context,
especially mixed-initiative or user-triggered AL.

This chapter brings a human-centered perspective to a theoretical and
computational problem—uncertainty estimation in neural networks—that
may be beneficial to several fields such as Explainable AI and Interac-
tive Machine Learning.
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Chapter 5

Challenges and opportunities for
machine teaching in art

This chapter presents two artistic collaborations that resulted in two installa-
tions involving machine learning (ML) algorithms. Figures dissidentes in col-
laboration with the artist Rita Hajj was exhibited in Institut du Monde Arabe
during summer 2021. Cor Epiglottae was created in a context of an artistic
Hackathon with Hervé de Saint Blanquard, Alexandre Boiron, Elsna Aurand,
and Junhang Yu and exhibited in Gallerie Joseph in August 2021. I adopt a
reflective perspective and discuss the challenges we face to use ML in those two
contrasting art projects. Through these two experiences, I discuss how IMT
principles can be challenged when applied to artistic projects.

The research presented in the previous chapters tackles the general
public when involved in the teaching image classifiers. This chapter
does not report research but personal reflections on artistic collabora-
tions using ML for art installation. For this reason, I adopt a reflective
approach to discuss challenges and opportunities to apply IMT in art.
This chapter may be of more interest to artists and designers eager to
use ML in their work than to scientists.

The usual assessment criteria of ML models are generally inapplicable
in art since no objective metrics apply to evaluate the model’s outcome.
Artists are interested in the generative properties of ML algorithms.
Model outcomes are judged subjectively and re-purposed in the nar-
ratives of a piece. Indeed, using ML in a piece of art often imply to
discuss its use in society and the political connotation associated with
ML, such as crowd surveillance with facial recognition [Caramiaux
and Donnarumma, 2021] 1.

1 See for example https:

//marcodonnarumma.com/series/

humane-methods/

https://marcodonnarumma.com/series/humane-methods/
https://marcodonnarumma.com/series/humane-methods/
https://marcodonnarumma.com/series/humane-methods/
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Artists are also subject-matter experts, among others. They can have
practices that generate artifacts in a systematic way. For instance, artist
Ronan Barrot painted a skull on his palette whenever he had a break
during his work time. He thus accumulated thousands of paintings
of skulls as by-products of his primary artistic production, which led
him to collaborate with AI artist Robbie Barrat for the piece Infinite
Skulls that uses a Generative Adversarial Network (GAN) to generate
a unique skull to each visitor2. IMT might also empower artists in

2 The collaboration and the resulting
art piece are described here https://

robbiebarrat.github.io/skulls.html

their activities and be challenged by artists’ specific needs, which often
rely on new types of tasks (generation), an explorative workflow (i.e.
emphasize the importance of making mistakes without consequences),
and a subjective assessment of the generated outcomes.

I present two artistic collaborations that resulted in installations in-
volving ML algorithms. I highlight the contrast in their context of
creation, collaboration, techniques, and interactions, illustrated in Ta-
ble 5.1, and discuss my personal insights on how artistic re-purposing
of ML could challenge IMT design guidelines.

Figures Dissidentes Cor Epiglottae

Installation
Type Visual and sound Sculpture and sound
Keywords Belly dance - Arabic Divas -

Bodies - Feminism
Science - Biology - Cyber-
netic

Collaboration
Context Spontaneous collaboration Hackathon
Number of collaborators 2 5

Timespan Spread over a year Intensive, on 5 days

ML pipeline
Models Generative DNNs (VAE

and RNN)
Real-time regression and
classification using stochas-
tic models (HMM)

Training Offline using GPUs In situ, with a Machine
Teaching scenario

Interactivity None With the audience

Table 5.1. Contrasts on the type of
installation, collaborative process
and ML pipeline between the two
artistic collaboration Figures Dissi-
dentes and Cor Epiglottae.

5.1 Figure Dissidentes

Description of the artwork

This section presents the description of the artwork as envisioned and
written by Rita Hajj, the leading artist of the project.

Figures Dissidentes is a digital work that investigates the practice of
dance known during the golden age of Egyptian cinema under the

https://robbiebarrat.github.io/skulls.html
https://robbiebarrat.github.io/skulls.html


105

Figure 5.1. Figures Dissidentes ex-
hibited in Institut du Monde Arabe
(IMA) in Paris.

reductive term of “oriental dance”. This work aims to celebrate Arab
divas and deconstruct the stereotyped representations they evoke.

This cultural dancing heritage was exposed to the rest of the world
through women divas dancers and the movie industry that developed
in Egypt in the 1940s. Dancers conveyed freedom far from the social
and religious hegemony of the time, in which dancers remained under
the control of the movie industry, their husbands, or family. The belly
dance showed a distorted reality of an Arab world without sigma on
womens’ status and freedom.

Figures Dissidentes echoes the aspiration for socio-political changes of
the new generations. Dancing is a way to express this joyful and cre-
ative resistance. The work reveals the popular, family, and festive an-
chors of this mode of expression. Fed by movie scenes and amateur
practices, Figures Dissidentes plays the role of a mimetism of the Arab
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cultural memory. The installation shows a video generated by an ar-
tificial neural network trained on a corpus of both dance scenes from
the 1940s movies of the golden era and amateur dancing videos taken
from social networks such as TikTok. The first DNN is a Variational
Auto-Encoder which is trained to deconstruct and reconstruct each
video frame. The second DNN is a recurrent neural network (RNN)
that is trained to learn the temporal dependencies between these im-
ages and the motion. The juxtaposition of the raw videos and noises
incorporated in the neural network introduces transitions that blur the
lines between the past and the present, between bodies of different
eras and genres.

Context of creation

Rita Hajj received a Friends Prize from the Institut du Monde Arabe
(IMA) in Paris, from which she obtained a grant and three months
of an artistic residency in the Cité internationale des Arts in Paris. Rita
Hajj initiated the collaboration, who was looking for technical assis-
tance on ML algorithms for generating videos. The collaboration was
spread over a year and a half, from January 2020 to May 2021. The
covid-19 pandemic extended her stays in Paris and postponed the in-
auguration of the piece to May 2021, during an exhibition dedicated
to Arab divas3.

3 https://www.imarabe.org/fr/expositions/divas-
arabes

Collaboration specificities

Soon after starting the project, our collaboration became fully remote
due to the pandemic. My work on the project was conducted during
my free time in parallel with other research and teaching activities.

The pipeline we set up for exchanging data inputs and model out-
comes is illustrated in Figure 5.2. Rita Hajj and I shared a common
repository hosted by the DropBox company. Rita Hajj was uploading
new samples from her corpus i.e. movie scenes from the 1940s golden
age of Egyptian cinema, and amateur videos are mainly taken from the
TikTok social network. The neural network computations were made
on a computer equipped with Graphical Process Unit (GPUs) located
at the university. I uploaded the new video samples once new gener-
ations were performed, and we discussed the results through various
messaging applications, either by phone, skype, or email.

The development of Figures Dissidentes suffered from a heavy data
pipeline in which Rita Hajj curated the model inputs but could not
access the model or its outcomes directly. Moreover, the main artist
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Rita Hajj Téo Sanchez

University’s GPUs

Corpus

Model outcomes

Discussion on outcomes

Figure 5.2. Schema of our re-
mote collaborative process during
the pandemic.

could not directly change the model parameters nor trigger a new
model training. In our collaboration, I sometimes played the role of a
proxy between the artist’s intents and the model. I tried to interpret
subjective feedback on the visual aesthetics of the outcomes and turn
them into actionable modifications of the model parameters. I believe
these obstacles are widespread in art-science collaborative works. I
believe these issues could be partially solved with an adequate frame-
work. Even though Marcelle is only applied to classification yet, it
provides the building blocks to improve collaboration between artists
and ML practitioners: the possibility to create customized interfaces
and interactions that share data and models on a common object (the
datastores). Developing the necessary interactive applications prior to
the collaboration (even using Marcelle) would have taken a crucial
amount of time away from the main project.

Machine Learning pipeline

Rita Hajj wanted to preserve recognizable motions of the dancers as
well as using the corpus video as raw material. These prerequisites
constrained the choice of the model since usual trajectories in GANs’
latent space might not provide a sense of dance movements. Far from
being an expert in generative models, I conducted literature review
to explore generative models that could learn temporal dependencies
(the movement) on raw videos and that could result in the highest res-
olution possible given the computational resources at my disposal. We
agreed on an ML pipeline that involves videos as inputs and outputs
and implies two different DNNs, one to learn how to reconstruct the
video frames (spatial reconstruction) and one to learn how these video
frames sequence in time (temporal reconstruction).

• The first model is a Variational Auto-Encoder (VAE). It jointly learns
to encode each video frame (no matter in which order) in a latent
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space4 and decodes the latent vector into a reconstructed image.
4 The latent space encodes each original
image into a vector of lower dimension-
ality

VAE belongs to the family of probabilistic graphical models, which
are graphs (the neural network) that learn the conditional depen-
dence structure between random variables, the original image, and
its reconstruction.

• The second model is a Recurrent Neural Network (RNN) using
Long Term Short Term (LSTM) memory units. It is intended to
learn the temporal sequence of the video frames in the latent space,
which is a simpler task than learning temporal dependencies in the
original pixel space. It takes the latent vector of each video frame
sequenced in time and tries to learn these temporal dependencies.

This model architecture was proposed and experimented with by the
research scientist Arthur Juliani 5. The model architecture chosen is il-

5 https://github.com/awjuliani/NeuralDreamVideoslustrated in Figure 5.4. The VAE and LSTM are trained independently
in this pipeline. Earlier model architectures replace the encoder and
decoder layers (grey) with LSTM layers (green) to train the image re-
construction and temporal dependencies together. After training, new
video samples can be generated using the trained RNN and the VAE
decoder, as illustrated in Figure 5.4.
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Input tensor

256x256x3

Input Tensor

LSTM Neurons
Encoded Features or
latent space
Predicted Tensor

Encoding LSTM


Decoding LSTM 


z

VAE Neurons

Output tensor

256x256x3

Learn the sequence of frames
in the latent space

Figure 5.3. ML model train-
ing pipeline uses both a Varia-
tional Auto-Encoder (top) and a
Recurrent Neural network (bot-
tom). Both models are trained in-
dependently.
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Input Tensor

LSTM Neurons
Encoded Features or
latent space
Predicted Tensor

Encoding LSTM


Decoding LSTM 


z

VAE Neurons

Output tensor
(video frames)


256x256x3

Figure 5.4. ML model infer-
ence pipeline only use the Recur-
rent Neural Network and the Vari-
ational Auto-Encoder decoder to
generate new video frames.

We decided to stick to this architecture and tried to exploit it by adjust-
ing hyper-parameters and iterating on the resulting generations. Gen-
erative ML models exhibit many hyper-parameters that might affect
the aesthetic of the results. The hyper-parameters of our configuration
are listed in Table 5.2.

We explored the generative space trying different hyper-parameters
by trial and errors. While the hyper-parameters of the VAE affected
the aesthetic of the static image, the hyper-parameters of the RNN
affected the motion across different images. The material generated
was edited and assembled by Rita Hajj for final rendition. Figure 5.5
depicts intermediate results along this trial-and-error process.

Figure 5.5. Snapshots of interme-
diate results along the trial-and-
error process. The image recon-
structed could be to too sharp
or too blurred, and the learned
movement (succession of frames)
could change greatly depending
on the choice of the RNN hyper-
parameters.
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Variational Auto-Encoder Recurrent Neural Network

Architecture
Size of the latent space

Type of memory units
Number of hidden layers Number of hidden layers
Number of neurons per layers Number of neurons per layers

Optimization
Length of the input sequence
Decay rate

Learning rate Learning rate
Batch size Batch size
Epochs Epochs

Table 5.2. Model hyperparameters
that could possibly be adjusted in
the architecture chosen.

Subjective insights on the collaboration and prospects for

IMT in art.

Frustrations resulted from the use of ML models in this artistic collab-
oration. The trial-and-error process was frustrating in the ML pipeline
because the aesthetic changes when trying new training configurations
were neither predictable nor sufficiently large in magnitude. The aes-
thetic we obtained with a VAE was restricted to a narrow domain. I
later understood that VAE is mode-covering while GANs are mode-
seeking, which explains why they result in such different aesthetics.
This distinction that constrains the resulting visual aesthetic of VAEs
and GANs is discussed in Appendix C. One may wonder why a VAE
model was chosen over a Generative Adversarial Network (GAN),
which is a popular generative model for art and design [Goodfellow
et al., 2016]. I was discouraged from trying another generative archi-
tecture because I had already invested too much time and effort in
exploiting the VAE-RNN architecture, even though its results were not
entirely satisfactory regarding motions and resolutions. This fear of
making a step backward is a well-known cognitive bias called sunk-
cost fallacy or escalation of commitment. I believe the computational and
memory cost of generative deep learning architectures might affect
end-users will to explore model alternatives. Second, GANs are dif-
ficult to train because they rely on two deep neural networks trained
simultaneously. A brief description on the training process of GANs
is also given in Appendix C. Third, the training procedure of GANs
does not include an image encoder that can encode the video frames
in lower-dimensional space. Consequently, learning time dependen-
cies between the video frames is challenging with a GAN. I later dis-
covered the existence of a VAE-GAN architecture that both encode an
image in a latent space and decode the image using a decoder trained
with the adversarial pipeline [Larsen et al., 2016].
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On the collaborative aspects, the frustration resulted in the lack of
agency from the main artist, Rita Hajj, on the training process and re-
sulting models. It is striking that applying IMT concepts to generative
models is challenging for several reasons.

First, the heavy architectures of generative networks do not afford fast
iteration cycles on the model training, which makes difficult to ap-
ply the IMT principles. As seen in previous chapters with classifi-
cation problems, we could expect transfer learning to leverage these
issues. However, transfer learning and pre-trained models raise essen-
tial questions in the creative process. In a thread on Twitter, the artist
Alisson Parish highlighted the problem of pre-trained models regard-
ing authorship. To her, understanding a language model’s training
set is essential for understanding its predictions. Furthermore, she
argues that using publicly available pre-trained models prevents her
from accessing and understanding the "voices" with which the model
is speaking. She emphasizes that large models do not generate but
reflect other people’s voices. Understanding and owning her training
set allow her to judge if she is morally and legally authorized to speak
with those voices. Alisson Parish’s point might particularly applies to
generative models for natural language. Ownership problems also lie
in the available infrastructures and research directions taken which do
not always promote lightweight architectures6. Artists need easy-to-

6 In a tweet from 2019, the artist He-
lena Sarin argues that «it feels less and less
likely that there will be any research around
deep learning on small compute/less data -
Google, Facebook et al. are not interested,
they want everybody to use their cloud and
pre-trained models.»

compute architectures that preserve a high degree of personalization
on idiosyncratic data. Transfer Learning using publicly-available pre-
trained models does not seem to offer a way out since it conflicts with
the need for authorship and customization of the generated outcomes
and suggests new research directions for HCI and ML research.

Second, very little research focuses on the interpretability and explica-
bility of generative models, which is central to designing meaningful
teacher-student interactions according to the IMT framework. In our
case, it would have been helpful to be guided to understand how the
hyper-parameters affect the resulting visual aesthetic.

Finally, the termination criteria, which deal with the aesthetics of the
generated images, can not be expressed clearly as in classification or
regression tasks.

On this last point, it is well-known that generative models (especially
large GAN architectures) can lead to interesting outcomes at the inter-
mediate training state. Hyper-parameters cannot be tuned automat-
ically to find this optimal training state. Artists then develop know-
how by trials and error and look for parameters on which they sub-

https://twitter.com/aparrish/status/1286808606466244608
https://twitter.com/NeuralBricolage/status/1191018788520636417?lang=bg
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jectively obtain interesting and novel aesthetics7. Researchers have a
7 For instance, the artist Vadim Epstein
published several state-of-the-art gen-
erative models on his GitHub https:

//github.com/eps696/stargan2, along
with personal findings for tuning hyper-
parameters. On intermediate model
states, he stated:
«Model weights may seriously oscillate dur-
ing training, especially for small batches
(typical for Cycle- or Star- GANs), so it’s
better to save models frequently (there may
be jewels). The best-selected models can be
mixed together [...] for better stability.»

role to play in developing and maintaining this artistic and algorith-
mic cultural heritage. First, HCI and AI researchers could provide
more interactive, composable, and appropriable generative models for
artists. Quickly browsing and benchmarking several generative archi-
tectures could have been beneficial to our collaboration. Second, orig-
inal artists’ tweaks and workflows with ML models should be docu-
mented because it is a new form of artistic heritage and can inspire the
design of new creative interactions for controlling generative models.

I believe that these collaboration challenges described in this section
should be addressed outside of an art-science project but as an HCI
problem that would try to apply IMT design principles to generative
art.

5.2 Cor Epiglottae

Description of the artwork

Figure 5.6. Visitors communicat-
ing with Cor Epiglottae, during the
first exhibition in Gallerie Joseph,
Paris.

Inspired by cybernetics and ASMR (Autonomous Sensory Meridian
Response), Cor Epiglottae is an interactive sculpture mimicking a liv-
ing organism that reacts to the audience’s sound stimuli. The visitor
can make sounds to communicate with the sculpture, which will re-

https://github.com/eps696/stargan2
https://github.com/eps696/stargan2
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spond by purring, moaning, or screaming. The visitor must come close
enough to the sculpture to engage in this dialogue that leaves freedom
for interpretation.

The installation learns the stimulus-reaction association using a ma-
chine learning algorithm that maps the recorded sound qualities (voiced
vowels, sibilant consonants, whistling consonants, etc.) to various re-
actions. The sound emitted by the sculpture uses a real-time physi-
cal model of vocal folds, glottis, and mouth called Cantor Digitalis 8

8 https://cantordigitalis.limsi.fr/[Feugère et al., 2017].

Context of creation
Hidden speaker

Inflatable organs

Hidden microphone

Figure 5.7: Dissection of Cor
Epiglottae, seen from below.

This work was created in collaboration with Elna Aurand (design),
Alexandre Boiron (art), Hervé de Saint Blancard (art), and Junhang Yu
(HCI and design) during the first edition of an artistic hackathon en-
titled the creartathon9, organized by the Université Paris-Saclay, Inria

9 https://creartathon.com/

Saclay and Societies. This hackathon gathered seven teams of five stu-
dents from art, design, human-machine interaction, or machine learn-
ing who spent a week brainstorming, designing, and implementing
an interactive and intelligent object. Each team was advised by pro-
fessional artists, Fablab managers, and HCI and AI researchers. Cor
Epiglottae is the result of this short but intensive collaboration, articu-
lated around the notions of intelligence and interaction.

The creation of the work involved several phases. The first days were
dedicated to brainstorming. The existing artistic practices of the artists
in the team, Alexandre Boiron10 and Hervé de Saint Blanquard11,

10 https://www.instagram.com/alexandreboiron/?hl=en

11 https://blancardsuperstar.com/

strongly influenced the design space. The ideation process included
various sketches, models, and generated images from large text-to-
image ML models depicted in Figure 5.8. The ideation ended with
the realization of a short video prototype explaining the envisioned
artwork. The video prototype can be seen at https://vimeo.com/

591541265/00a484989c.

https://creartathon.com/
https://vimeo.com/591541265/00a484989c
https://vimeo.com/591541265/00a484989c
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Figure 5.8. Artifacts resulted from
the ideation process. (Left) The
first sketches, drawn by Junhang
Yu, (Center) text-to-image gener-
ation using a VQGAN model,
(Right) mock-up of the spatial dis-
position of the artwork, realized by
Junhang Yu.

The roles were naturally divided according to each person’s expertise
during the design phase. Elna Aurand, Alexandre Boiron, and Hervé
de Saint Blancard were in charge of the shell made with a melted
acrylic sheet, the organs made with sewn silicone tissues. Alexan-
dre Boiron and Junhang Yu built the pumping system to inflate and
deflate the organs to make the installation more alive. I was in charge
of the software development i.e. the sound processing, real-time ML
regression using the XMM library in MaxMSP [Françoise et al., 2014],
and the association to the physical model for voice synthesis [Feugère
et al., 2017].

Figure 5.9. Organs artefacts ob-
tained by molding silicone on dif-
ferent objects and surfaces.
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Figure 5.10: Manufacturing of
the shell of Cor Epigloatte, with
acrylic melted with a heat gun.

Sound processing and machine learning pipeline

Software development was steered by the necessity to have real-time
responses to the sound stimuli from the audience. For this reason, the
installation embeds an algorithm developed with Cycling’74 Max, that
maps Mel-frequency cepstral coefficients (MFCCs) from the recorded
audio to the parameters of the Cantor Digitalis, a performative singing
synthesizer using a physical model of the vocal folds, glottis, and
mouth. Cantor Digitalis was developed between Sorbonne Université
and Université Paris-Saclay [Feugère et al., 2017].

This mapping is learned using the XMM [Françoise et al., 2014] li-
brary included in the MuBu toolbox [Schnell et al.]. Jules Françoise
developed XMM for movement interaction in creative applications. It
implements an interactive machine learning workflow with fast train-
ing and continuous real-time inference. It includes various models,
such as Gaussian Mixture Models and Hidden Markov Models, usable
in Cycling’74 Max.

Figure 5.11. Visual programming
patch (Max) made for the project
using the XMM library [Françoise
et al., 2014].

The first version of the algorithm used Hierarchical Multimodal Hid-
den Markov Models for continuous mapping. The algorithm learned
by simultaneously taking sound examples from the audience along
with synthesizer trajectories performed on the Cantor Digitalis inter-
face depicted in Figure 5.12, that controls the pitch and vocal intensity
of the simulated voice. Performing both the stimuli from the stimulus
and the reaction was cognitively demanding, so we curated training
examples in duo, as illustrated in Figure 5.13. Hervé de Saint Blan-
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Figure 5.12. The Cantor Digitalis
can be controlled with a graphic
tablet or a mouse and keyboard.
The musician can navigate this
two-dimensional space where the
x-axis corresponds to the pitch and
the y-axis to the vocal intensity.

quard provided sounds while I was simultaneously performing with
the Cantor Digitalis.

In summary, the recorded audio is first transformed into MFCCs, which
are mapped to synthesis parameters with the ML model from the
XMM library. Finally, the synthesizer outputs are sent back to a speaker
hidden in the organs of the sculpture.

Interactive Machine Teaching in Cor Epiglottae

It is worth mentioning that the training approach involving two per-
sons falls within the scope of Machine Teaching. Users (the installa-
tion designers) can curate their own data and incrementally evaluate
the learning progression of the system. However, it moves away from
typical applications seen before since no annotations were involved.
Instead, the teaching resembles a duet performance, which is illus-
trated in Figure 5.13. The teacher-learning relationship is similar to
imitation learning in that the system learns a behavior policy from
demonstrations.

In the vein of the cybernetics, Cor Epiglottae is sensing its environment
and reacting to it in real-time, which sometimes resulted in a feedback
loop. Indeed, since the microphone and the speakers are not too far
apart, the system sensed its own sound emissions. We did not consider
that in the first attempt to teach the system. The system stayed locked
in overreacting states, similar to a Larsen effect. Thus, we had to curate
examples of its own sound for the system to have a stable behavior. It
is worth noting that we had to retrain (finetune or from scratch) the
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Figure 5.13. The teaching process
of Cor Epiglottae involved a syn-
chronized interpretation of both
the input sounds performed by
Hervé de Saint Blancard (left) and
the output sounds played on the
Cantor Digitalis by Téo Sanchez
(right).

system each time the installation was moved because the training set
was not suited to the new acoustic properties of the room, leading to
unstable reactions from the system.

This work leads to challenging considerations regarding IMT, both in
terms of the teaching scenario and the system limitations to adapt
to new situations. The installation required two persons to train the
model synchronously and training adjustments after “deploying” the
installation in new acoustic environments. It is worth noting that the
system was not learning along with the interaction with the audience
durig the exhibition. Improvements could focus on designing more
adaptive behaviors that can learn to adapt to new acoustic environ-
ments or stimuli over time. Many artists tackled this concept of evo-
lution and learning with installations that learn from interactions with
various entities during the exhibition. For instance, Aglaopheme was
a robotic guitarist invented by Nicolas Anatol Baginsky in 1992. The
robot learned to play by listening to its environment and its own play
for several years. The installation B-612 from the polish artist Natalia
Balska is a reinforcement learning algorithm that learns to optimally
share water with a living plant and get rewards or penalties according
to the health indicators of the plant. These artistic installations adapt
to a situation initially staged by the artist throughout the exhibition.
Of course, the system’s progress should not be too slow, too fast, or
too easily predictable to be captivating. Artists investigating learn-
ing installations certainly test and tune the learning behavior of their
creations in advance. I believe this situation opens exciting prospects
regarding IMT because artists do not only want to convey information
to the system but also perform a "meta-teaching" by defining how the
system will learn over time.
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5.3 Summary

This chapter takes a reflective and discusses the challenges and oppor-
tunities for applying interactive machine teaching applied to art.

«Figures Dissidentes» addresses the problem of learning movement from
a corpus of raw video, aiming at a specific aesthetic that focuses on
movements rather than bodies. This is a challenging problem for an
ML practitioner since the objective cannot be clearly expressed, and
such models imply heavy architectures. We saw that the choice of a
generative model strongly conditioned the aesthetic of the results. I
believe IML research should provide tools to explore different gen-
erative model architectures more easily. Artists and ML researchers
would also benefit from documenting artists’ innovative tricks to tune
generative models to produce novel aesthetics.

The second project, Cor Epiglottae is intrinsically different since it does
not involve neural networks but lightweight probabilistic models that
run in real-time. The installation is also interactive and requires to
be “taught” before each exhibition. The system challenges offer inter-
esting prospects to design IMT systems for artists to control how an
ML-based artistic installation will learn from its environment through-
out an exhibition.

My collaborators and I were in charge of training ML models for
artistic installations with atypical termination criteria. This specificity
might be less common in other fields of expertise (e.g. medicine, law,
science etc.). The challenges we face to convey aesthetic concepts or
specific behaviors to the machine highlight promising directions for
applying IMT concepts in art and designing collaborative tools for art-
science projects involving ML.
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Chapter 6

Discussion

This chapter discusses our findings on people’s understanding and teaching
strategies of image-based ML classifiers in an IMT scenario. In particular, it
discusses the teaching strategies elicited by our participants as well as the role
of uncertainty in IMT. I finally discuss the socio-cultural implications of this
research, such as the use of IMT to leverage peoples’ literacy about ML.

6.1 Consolidation and exploration in interactive ma-
chine teaching.

In the two user studies presented in chapters 3.4 and 4.4, our findings
mostly stem from studying a particular case of teaching: the training
of image classifiers in which data are dynamically generated by human
teachers. Therefore, model evaluation arises from the ability to create
data and get immediate predictions about them. This process blurs
the frontier between model testing and training. The quality of the
model is assessed without any performance metrics calculated on an
existing test set. Participants’ verbalization suggests that the creation
of an image can carry different users’ intents.

An image can be created to consolidate the fundamentals of the con-
cepts i.e. participants create examples that the model should know
and be confident about. If the classifier fails on these examples, the
example is generally added to the training set.

An image can also be created to explore the boundaries of concepts.
The boundaries of the concepts can be explored in two directions. The
more frequent is to challenge the concepts with examples that inves-
tigate novel areas that carry epistemic uncertainty. The less frequent



122

exploration is to precise the boundaries between two or several con-
cepts, which corresponds to areas carrying aleatoric uncertainty i.e.
ambiguity regarding the concepts.

These intents echo the teaching phases elicited by experienced machine
teachers in Wall et al. [Wall et al., 2019] and Ramos et al. [Ramos et al.,
2020]. Consolidation corresponds to the cold start that roughly defines
the representative images of each concept (also referred as test-driven
machine teaching [Yang et al., 2018b]), while the exploration includes
the challenge and boundaries phases. Our scenario differs in that the
testing phase is not a separated phase but is incorporated all along the
teaching process due to the real-time predictions and uncertainty feed-
back from the system. As the curriculum develops and the classifier
improves, images that were used to explore might become those used
to strengthen the model. For instance, in the study from chapter 3, we
found that participants that investigated geometrical operations also
taught the system with the transformations created. In other words,
the tight coupling between exploration and consolidation allows par-
ticipants to use variability as a way to both 1) challenge the algorithm
with ambiguous or novel examples and 2) extend the generality of the
taught concepts.

Hong et al. [Hong et al., 2020] also documented the use of variabil-
ity. However, their task involves separate training and testing phases,
which encourage fixed training strategies (also highlighted in [Oh et al.,
2020]). These two studies do not involve users as teachers since they
have no direct way to inspect the model progress when providing ex-
amples. Surprisingly, the authors noticed that testing examples were
less variable than training examples. We can suppose that direct feed-
back and incremental training influences data variability by arousing
participants’ curiosity to challenge the taught concepts.

It is not clear how the trade-off between consolidation and exploration
improves human teachers’ functional mental model of the learner. Our
results suggest that participants’ explorations can trigger either rele-
vant or erroneous insights about the model learning behavior. I sus-
pect that participants who explore the boundaries of the concepts with-
out consolidating fundamental examples might have a worse mental
model than people with a curriculum that gradually incorporates com-
plexity and variability in the training set. Relevant insights might arise
when participants explore after ensuring a solid understanding of the
models’ capabilities on basic examples.

Any new insight about the model, either relevant or erroneous, is
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likely to drive participants to update or refine their teaching curricu-
lum and decision-making rules (i.e. participants’ criteria to discard or
add a created image to the training set). For instance, it is common
among participants that consecutive incorrect predictions on examples
from a concept may lead the machine teacher to conclude that the
model is not trained enough in this class. Consequently, the teacher
might update its curriculum to include more examples of that concept.
Alternatively, if complex examples (e.g. used to explore the models’
boundaries) are correctly predicted, the machine teacher could think
that the model is actually more robust to variability than expected. The
teacher may subsequently decide to allow for more difficult examples
to be added to the training set. This situation was central to par-
ticipant 12’s strategy reported in section 3.5. However, this situation
might occur more frequently in an advanced phase of the teaching,
when the model is already robust on variable examples. Figure 6.1 il-
lustrates these two types of updates (curriculum and decision-making
rules) described here. The top figure shows how new insight ob-
tained by exploring model blind spots can affect the curriculum en-
visioned by machine teachers. Note that a participant may not have
an well-established teaching strategy in mind. The bottom figure rep-
resents how insights can influence participants’ decision-making rules
i.e. their criteria to decide if the image created should be added to the
training set. Indeed, an image belonging to the concept may not be
added if the participant judges that it could fool the algorithm 1

1 For instance, in the study 3.4, partici-
pant 8 said: «I don’t know if I’m confusing
him by trying to make things too specific or
not. Do I keep it simple so he can understand
something simple or do I push him a little bit
and try to get him to differentiate things a
little bit harder?»

We assume that different data acquisition scenarios and interaction
techniques might lead to variation in the teaching strategies regarding
curriculum planning and evaluation. For instance, participants can
have access to existing datasets of images or documents or provide
a batch of data to be learned at once (as implemented in Teachable
Machine [Carney et al., 2020a]). Such scenarios provide a different way
to assess the model and correct its behavior. As a research field, LMI
needs to articulate general and application-specific principles of how
people should convey new knowledge to a learning system. This thesis
contributes to that effort for scenarios involving sequential learning
and user-curated data.

6.2 On the use of uncertainty in interactive machine

teaching

Participants using uncertainty as a guide did not train more accurate
models, nor were they more able to correctly foresee their classifier
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(a) Teaching curriculum updates

Decision-making rules
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(b) Decision-making rules updates

Figure 6.1. Observed behavior on
how people update their curricu-
lum and decision-making rules.
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outcomes. Instead, participants with a systematic way of curating the
data usually provided more and more variable data. Consequently,
they trained a more accurate classifier and better predicted their clas-
sifier’s outcomes regarding both classification and uncertainty estima-
tion. To explain this result, we hypothesize that participants opting
for a structured curriculum might have a better mental picture of the
content of their training set. Hence, encouraging structured rather
than uncertainty-based curricula might be more indicated if we want
to improve users’ general understanding of their classifier.

Should we then consider uncertainty as unimportant and dismiss its
presentation during a teaching session? Our suggest that the two-
level distinction in ML uncertainty might not be necessary when the
system is trained from scratch to reach a reasonable accuracy. How-
ever, I would argue that further research is needed to fully understand
the role of uncertainty in IMT. First, uncertainty should be evaluated
in other teaching scenarios than sequential learning. For instance, dis-
playing uncertainty evolution over a batch of data might be a powerful
tool for users to understand ML models. Second, uncertainty might be
helpful in refining the model on more complex tasks involving a larger
number of classes and a model evolution on a longer time scale.

The utility of uncertainty estimates might change if users are (1) con-
solidating the fundamental examples of the concepts by training exam-
ples on model blind spots that are easy to find or (2) exploring the tail
of the uncertainty distribution (extreme values) to explore the bound-
aries of the model. On the one hand, filling the model’s blind spots is
easy but time-consuming. Indeed, our results in study 3.4 show that
several participants exploited geometrical operations (rotations, trans-
lations, changes in size) to investigate models’ invariance and augment
the training set. On the other hand, accessing the tail of the uncertainty
distribution is difficult in teaching scenarios that do not involve large
unlabeled data a priori. For both situations, we foresee promising
research directions in integrating data augmentation guided by epis-
temic uncertainty in order to generate these edge-cases examples from
previously given examples. Such a process could make machine teach-
ers more efficient in consolidating the concepts and exploring the tail
of the uncertainty distribution.



126

6.3 On the use of active learning in interactive ma-
chine teaching.

This section discusses the results presented in Figure 4.19 in the light
of the existing literature that applied an active learning scenario in a
teaching task.

As presented in related work, the teaching task considered in the HRI
articles when assessing active learning is very different from ours. In
[Cakmak et al., 2010], the task only has 552 possible inputs, and a
concept comprises between 10 and 28 possible positive examples. The
input space is limited because examples are composed of discrete char-
acteristics (shape, size, and color). In our case, our classification task
has an infinite input space, and a concept can comprise an infinity
of examples. Our ML pipeline involves transfer learning techniques
to make deep learning models quickly adaptable to users’ inputs. In
this situation, we observed that simulated performance gains with AL
are much less significant and systematic than with a discrete input
space, which corroborates the observations from Pereira-Santos et al.
[Pereira-Santos et al.].

Without transfer learning, deep learning accuracy gains using AL are
significant but are only about 2% (MNIST) or 5% (CIFAR) consider-
ing budgets between 1000 (MNIST) or 10000 (CIFAR) [Gal et al., 2017,
Beluch et al., 2018]. In addition, the entire ML model is retrained from
scratch at each query, which prevents rapid iteration on the model
training. The performance gains, training costs, and budgets envi-
sioned in these traditional ML publications are far from applicable in
an IMT scenario and might not even be perceived by participants.

Furthermore, AL requires a large pool of unlabeled data, which users
do not have when creating the data from scratch, as in our IMT sce-
nario. This constraint also applies to stream-based AL, whose effec-
tiveness relies on a low-cost acquisition of stream data. These reasons
confirm that AL might not always be applicable with data acquisition
scenarios encountered in interactive machine teaching and should not
be used for performance gains in IMT.

Detailed user-centered evaluations of AL in IMT remain to be done.
The query labeling process can disrupt the incremental workflow of
IML and make users lose control of the teaching process. Hence,
mixed-initiative AL or user-triggered AL (as envisioned in Ramos et al.
[Ramos et al., 2020] in which AL is used as a data sampler) are promis-
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ing interactions that might improve users’ teaching curricula and en-
courage users to reflect on the systems’ knowledge and gaps.

6.4 On the use of deep learning in interactive ma-
chine teaching

The use of deep learning (DL) models is criticized in human-centered
AI and in IMT for their lack of intelligibility [Ramos et al., 2020, Rudin,
2019], especially when involved in high-stake decision-making ap-
plications (e.g. in medicine or law). DL models are opaque by de-
sign because the learned knowledge is dispersed among the neurons’
weights. Furthermore, our results suggest that participants were con-
fused about neural networks properties, as reported in 3.5. Designing
actionable explanations with DL is possible [Schramowski et al., 2020]
but requires other models, complicating the overall pipeline.

On the opposite, inherently intelligible such as linear models, rule-
based algorithms and decision trees are preferred because they offer
actionable parameters that humans can understand and verify. IMT
suggests enabling users to decompose semantic features into sub-features
and compose inherently intelligible models into a schema. This modu-
lar approach would decompose problems into simpler and more trans-
parent ones. I would argue that DL models can fit in this modular
vision developed in IMT [Simard et al., 2017, Ramos et al., 2020].

Training a DL model can take several hours, which is a main problem
for human-centered AI and a stalemate for IMT. However, the active
field of transfer learning (TL) [Niu et al., 2021, Weiss et al., 2016, Pan
and Yang, Tan et al.], which is briefly introduced in appendix A, can
enable the use and expressive DL with rapid training. TL relies on
reusing trained networks (e.g. the first layers of neurons) to speed up
the training on a new task. Mishra et al. [Mishra and Rzeszotarski,
2021] showed that transfer learning concepts are accessible to non-
experts with appropriate interactive tools. They designed a prototype
in which users can stack pre-trained neural networks to perform im-
age classification with transfer learning. As in this thesis, participants
develop strategies, sometimes ineffective, to perform the TL task. The
authors point out that inaccurate perceptions of the system’s progress
can impede their ability to perform the task. These results show that,
as in electronics, ML models could not only be composed in parallel
(schema) but also in series (transfer learning) to personalize the behav-
ior of a system on a new task. This serial composition illustrated by
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Mishra et al. [Mishra and Rzeszotarski, 2021] is particularly effective
and developed with artificial neural networks.

The modularity of AI systems echoes the rivalry between the con-
nectionist and symbolic approaches of AI in the 1960s. The symbolic
approach considers that the mind does not directly access the world
but acts on intermediate representations (i.e. semantic features and
schemas). These representations must be described with symbols that
algorithms can manipulate. On the other hand, the connectionists con-
sider that the mind is an emergent property of the interconnection be-
tween neurons (i.e. artificial neural networks and deep learning). The
duality between the connectionism and the symbolism might often be
exaggerated, and symbolic AI researchers do acknowledge the contri-
bution of the connectionists such as Frank Rosenblatt. In the preface
from the 1988 edition of Perceptrons: an introduction to computational
geometry [Minsky and Papert, 1969], Seymour Papert and Marvin Min-
sky challenge the assumptions made about the two approaches. An
extract is presented in the side note 6.2.

«Too many people too often speak as though
the strategies of thought fall naturally
into two groups whose attributes seem
diametrically opposed in character:

Symbolic Connectionist
Logical Analogical
Serial Parallel

Discrete Continuous
Localized Distributed

Hierarchical Heterarchical
Left-brained Right-brained

This broad division makes no sense to
us, because these attributes are largely
independent of one another.»

Later in the preface, the authors claimed
that:
«It is just as clear to us today as it was
20 years ago that the marvelous abilities of
the human brain must emerge from the par-
allel activity of vast assemblies of intercon-
nected nerve cells. But, as we explain in our
epilogue, the marvelous powers of the brain
emerge not from any single, uniformly struc-
tured connectionist network but from highly
evolved arrangements of smaller and special-
ized networks which are interconnected in
very specific ways.»

Figure 6.2: Extract of the preface
of the expanded version of Per-
ceptron: introduction to computa-
tional geometry [Minsky and Pa-
pert, 1969]

Marvin and Papert’s statement is from a period where the goal was
to build a general intelligence, not assist humans in their activities.
However, I perceive many similarities concerning the choice of models
in IML and IMT, which should not exclude DL per se. Future ML re-
search in transfer learning and lightweight DL might provide efficient
models to use in interactive systems.

I also see historical analogies between IMT and expert systems, which
developed in the 1980s on LISP machines (Figure 6.3). Theorized by
Edward Feigenbaum, expert systems embed a knowledge base and an
inference engine. AI researchers designed expert systems to be under-
stood, reviewed and edited by domain experts rather than IT experts.
The inference engine applies the rules to the known facts to deduce
new facts. The development of expert systems is a key moment in AI
history because it is the first time that people other than researchers
have appropriated an AI technology. A machine can learn from a per-
son’s knowledge if it can be translated into rules and data. Domain-
expert can program expert systems themselves with little expertise in
programming or with the help of a computer scientist. Furthermore,
it is the first time that AI systems are deployed outside of AI research
labs, into companies, hospitals, or other research labs from other dis-
ciplines [Buchanan and Shortliffe, 1984, Feigenbaum et al., 1970].

In the late 1980s, Personal Computers were more affordable and pow-
erful than the specialized LISP Machines [Markoff]. Consequently,
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the LISP machine market collapsed and dragged expert systems down
with it. Fundamentally, expert systems presented limitations when the
knowledge base became too large. They were not flexible enough to
update the knowledge and the inference process became intractable.
In their system PICL, Ramos et al. [Ramos et al., 2020] reported pos-
sible limitations with high number of samples, features and models.
These limitations were attributed to the interface design but future re-
search should investigate if the teaching process itself would become
intractable or hard to update with an increasing number of samples,
semantic features and models.

Figure 6.3: An example of LISP
machine, vector of the expert sys-
tems diffusion in the 1980s. The
model shown is a Symbolics
3640.

Furthermore, semantic features and deep learning are not confronta-
tional since DL models can learn semantic features, especially within
specific layers of their architecture. In DL, the model takes charge
of the feature crafting rather than the user. Beyond automation, DL
can be seen as a way to learn intermediate representations. The ML
research suggests that users could fix explicit constraints in the way
these features are learned in DL models through conditioning and dis-
entanglement [Ridgeway and Mozer, Bengio et al.]. This shift back
to a more symbolic deep learning rather than performance-based and
end-to-end processing is an opportunity for HCI research to provide
new interaction and visualization techniques that offer more agency
to DL models parameters. For instance, Boggust et al. [Boggust et al.,
2022] designed an embedding comparator that can quickly reveal se-
mantic changes after fine-tuning a model on a new natural language
processing task.

If user-crafted semantic features work well with text documents, it
is less true with images. Defining a semantic feature with images is
challenging. Only deep learning can create abstract and variable se-
mantic features such as “animal” or “sadness”. Image-processing tech-
niques might also be incomprehensible and impossible to manipulate
for users for less abstract features. For example, the semantic feature
“redness” might be the average of the red pixels in an image or the
averaged red pixels minus the averaged green pixels of an image. In
the latter case, it might not be evident that greenness is opposed to
redness. A feature “redness” might also be confusing if applied to the
entire image rather than the object of interest.

I would argue that a modular and semantic vision of IMT models
can coexist with deep learning, especially when applied with data in
which semantic features are difficult to obtain without deep learning.
Deep learning becomes necessary (although challenging) if we con-
sider extending IMT for subject-matter experts like artists, which need
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generative models.

6.5 Interactive machine teaching as a tool for ML
and AI education

The primary goal of IMT, as defined by Simard et al. [Simard et al.,
2017] and Ramos et al. [Ramos et al., 2020], is to support people in the
creation of ML models. This thesis suggest that another underlying
approach would be to use IMT as a tool to support peoples’ literacy
about ML and AI.

With a model-building goal, IMT systems that guide users toward an
optimal teaching strategy are beneficial. Wall et al. [Wall et al., 2019]
endorse this approach with guidance that supports novices to be “be
quickly on-boarded” with an efficient teaching strategy.

I would argue that there are pedagogical benefits to letting novices ex-
plore either good or bad teaching strategies. Retrospectively, several
participants were critical of the strategy employed during our studies.
In the user experiment presented in section 4.4, some participants dras-
tically changed their teaching strategy from one condition to another.
Thus, I would argue that offering people the condition to adopt an
exploratory approach to machine teaching (e.g. a badly trained model
should not be penalized) can be beneficial to engage them in an in-
vestigative mindset that involves self-reflection (i.e. updates on the
curriculum and decision-making rules). On the opposite, constrain-
ing people with a more fixed teaching strategy and curriculum, either
by providing guidance or encouraging them to choose and stick to a
single teaching strategy, might be beneficial when machine teachers
should efficiently build an accurate ML model.

These considerations open interesting research perspectives regarding
usual IMT goals oriented toward model-building. IMT could also aim
at designing interactions that could leverage teachers’ curiosity or un-
derstanding of ML models, either from a functional (model behavior)
or structural (model inner working) point of view. More generally,
we see in this approach of interactive machine teaching an interesting
means for research in ML democratization and education. The work
presented in this paper has been initiated through a collaboration with
the association Traces, dedicated to science popularization. Our collab-
orators from the association saw the idea of teaching a machine as a
means to give people a tool to learn about ML, reflect on it and democ-
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ratize it. This idea is gaining a very recent interest in the field of HCI,
and CSCW [Hitron et al., 2019, Fiebrink, 2019, Zimmermann-Niefield
et al., 2019b, Lee et al., 2019]. Our work is in line with this work, pro-
moting learning, appropriation and decentralized governance of tech-
nology and extends it by allowing novice users to be engaged with the
expressive capacities of modern ML (deep learning), which means the
possibility to convey increasingly rich concepts through data.
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Chapter 7

Conclusion

In this thesis, I explore how non-experts users behave when placed in
the role of machine teachers i.e. in control of an interactive ML system.
I was particularly interested in eliciting their reasoning, strategies, and
learning when teaching an IML system. Through two artistic collab-
orations, I also offer a first-person perspective on the challenges and
opportunities of IMT for art.

This thesis is anchored in science popularization collaborations, which
allowed us to conduct remote workshops and a user study. The latter
is inspired by a structured observation method and uses a think-aloud
protocol. It involves participants in teaching an image classifier using
sketches they create. Remote participants used Marcelle-Sketch, a
sketch recognition application we designed to be incrementally teach-
able and usable in a web browser. I found that participants engage in
heterogeneous teaching strategies regarding sequencing and variabil-
ity. The variability tends to favor the model generalization abilities,
but the type of variability, and the fact it might be introduced pro-
gressively, plays a role in building an efficient classifier. Participants
discovered new insights about the system by investigating transfor-
mations on existing representations and were confused about four in-
herent neural network properties. These insights contributed to dis-
cussing novices’ teaching strategies and understanding and the use of
IMT as a tool for active pedagogy that can leverage peoples’ literacy
in ML and AI.

The thesis then explores the place of uncertainty in IMT. In particu-
lar, we explored two types of uncertainty in deep learning. From a
benchmark analysis investigating transfer learning techniques to per-
form real-time uncertainty estimation, we found that the variability
in the data in the feature space is essential for detecting uncertain
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images. We conducted a hybrid controlled experiment using a think-
aloud protocol and quantitative tests to probe non-experts’ perception
and use of uncertainty in an IMT scenario. We found that partici-
pants’ choices made while teaching—especially regarding training set
size and variability—are more important than the type of uncertainty
participants were exposed to. We also identified and discussed two
teaching approaches: the first uses uncertainty to guide the selection
of training data; the second systematically introduces variation across
the classes. We found systematic teaching strategies resulted in a better
understanding of the classifier outcome. We compared the accuracy of
our participants’ classifiers with models trained using an active learn-
ing procedure from these results. Participants obtained better perfor-
mances than simulated curricula using AL. All these results fueled the
discussion on the utility of a two-level uncertainty in IMT and design
directions to support novices in a machine teaching task.

I took a reflective perspective on my involvement in two art-science
projects using ML, “Figures dissidentes” and “Cor Epiglottae”. Artis-
tic practices raise significant challenges to IMT, such as subjective as-
sessment criteria f models’ outcomes, the difficulty of efficiently ex-
ploring various generative models that convey different aesthetics, or
the unusual situations in which learning systems are deployed (e.g. in
interaction with the audience). At the same time, these challenges of-
fer exciting research opportunities such as understanding artists’ em-
pirical tricks to control generative models and designing IMT tools
dedicated to artistic practices.

Lastly, I discuss the place of modern ML (deep learning) in IMT, high-
lighting promising prospects in creating interaction and visualization
techniques to foster non-experts’ agency on the self-taught semantic
features of neural networks.

This thesis contributes to seeing machine learning as a human activ-
ity that IMT systems can democratize among novices, opening a new
perspective to see IMT as a tool for education or artistic creation.
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Appendix A

Transfer learning: improving
efficacy-expressivity trade-off for the

design of more teachable systems
using deep learning

Deep Learning presents important technical constraints for their use
in IMT systems:

(C1) DNNs usually require thousands to millions of examples to learn a
task. Such data is collected once and used as a batch to train the
deep learning architecture.

(C2) Similarly, DNNs require a large number of optimization steps to
converge.

(C3) At training time, a DNN optimization step is computationally costly
because the gradient descent requires to propagate the error across
all the neuron layers. This calculation can however be parallelized
and computed on Graphics Processing Units (GPU).

For these reasons, DNNs are difficult to embed in interactive ML ap-
plications involving rapid and reactive interaction between users and
model. This section is intended for an non-expert audience in ML and
presents transfer learning techniques that can leverage the constrains
above and foster the use of expressive DNNs in interactive and teach-
able systems.
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A.1 Definition

Machine Learning (ML) algorithms are designed to address a single
task on which they must minimize an error function. Transfer learn-
ing focuses on the improvement of an ML algorithm on a new task
by using knowledge taken from previous tasks that have already been
learned. This approach is illustrated in figure A.1. Transfer learning
is valuable for our problem because it can considerably reduce data
and computational costs associated with DNNs training compared to
the traditional ML approach. More precisely, it can leverage the con-
straints listed above.

Task 1

Target task

Task 2

Model 1 Model 2 Target model

…

Source tasks

(a) Traditional ML approach

Task 1

Target task

Task 2

Knowledge Target model

…

Source tasks

Weights or Metrics

Priors

Training

(b) Transfer Learning approach

Figure A.1: The traditional
ML approach (a) retrain a new
model for each new task. The
Transfer Learning approach (b)
tries to extract knowledge from
previous related tasks to train
a model faster on a new target
task.

Transfer learning encompasses many terminologies that may confuse
the reader. This section does not attempt to be exhaustive but tries to
clarify the transfer learning field to a non-ML-expert audience.

As a first example, few-shot learning is an overlapping field of transfer
learning that aims at building models capable of adapting with very
few examples, usually under 20 [Wang et al., 2020]. Some of the trans-
fer techniques presented below also apply to the problem of few-shot
learning. Throughout this appendix, I try to clarify the expected mag-
nitude of the training efficiency gain for each transfer learning tech-
nique.

Aside from the few-shot learning scenario, the rest of the transfer
learning literature generally focuses on reaching a good accuracy after
the knowledge transfer. The purpose is generally to facilitate training
by minimizing the number of examples given or the number of opti-
mization epochs performed. Unlike few-shot learning, minor concerns
are placed on reaching drastic training efficiency using few examples.
Another branch called distant domain transfer learning focuses on es-
timating the distance between two tasks and transferring knowledge
between very dissimilar tasks.

Transfer learning also encompasses several scenarios that should not be
confused, although they are sometimes used interchangeably in the
literature. In particular, it is important to distinguish domain adapta-
tion or transductive transfer learning from the rest. Domain adaptation
seeks to adapt to new distributions in the input domain. For example,
after training a model to recognize the Latin alphabet with lowercase
characters, we want to recognize uppercase characters. The source and
target tasks are identical: we want to classify the 26 letters of the Latin
alphabet. Only the inputs are different.
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By contrast, inductive Transfer learning seeks to adapt to a new task, no
matter if the input distribution is similar or not. For example, after
training a model on handwritten characters in the Latin alphabet, we
want to recognize Japanese characters. The task is different because
the nature and number of predicted outcomes changed. The different
scenarios are summarized in figure A.2.

Tasks
Outputs / Objective

D
om

ai
ns

In
pu

ts Inductive TL

Traditional ML

Transductive TL
or 

Domain adaptation

Same

Different

Same Different

Figure A.2. The transfer learning
scenario depends on the similarity
or difference between source do-
mains and target domains (inputs)
resp. source tasks and target tasks
(ouputs and objectives)

Domain adaptation can occur in the online learning scenario, in which
the model must learn from examples arriving sequentially. This se-
quential data source can be non-stationary i.e. the distribution of the
incoming inputs is changing over time. Such scenario is called con-
cept drift. Webb and colleagues [Webb et al., 2016] proposed taxonomy
and formal definitions of the different drifts that might differ on their
subject (class drift, covariate drift, novel class appearance), duration,
magnitude, or reoccurrence.

Models that are intentionally designed to adapt to both concept drifts
or task changes are relevant for the design of teachable interactive sys-
tems. However, this thesis mainly focuses on inductive transfer learning
to obtain models that can be taught quickly and with fewer examples.
The research in inductive transfer learning1 spans different branches

1 We will use only transfer learning for
the rest of the manuscript for ease of
reading.

that explored transfer learning with neural networks: weight trans-
fer, deep metric learning, and meta-learning.

A.2 Weight transfer

Transfer learning using weight transfer considers a trained neural net-
work on a source task as an initialization point for training on the
target task [Amiriparian et al., 2017, Long et al., Zhang et al., 2017,
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Pratt et al.].

Research has shown that the layers of a neural network have differ-
ent degrees of generality or specificity to a given problem [Yosinski
et al., 2014]. For instance, the first layers of convolutional neural net-
works trained on natural images are systematically responsive to Ga-
bor filters and color blob patterns, as shown in figure A.3 taken from
Brachmann and colleagues [Brachmann and Redies, 2016]. Yosinsky
and colleagues [Yosinski et al., 2015] developed an interactive visual-
ization tool to explore neurons activation in convolutional networks.
Their demo video sheds light on how the deeper layers of an AlexNet
convolutional neural network learn specialized features2. For example,

2 Available in their blog post
https://yosinski.com/deepvis

the fifth convolutional layer is composed of neurons that fire i response
to face and shoulders, wrinkles on shirts, or printed text given as input
images.

Figure A.3: Gabor filter and
color blobs patterns systemati-
cally activate neurons in the first
layer of a convolutional neural
networks. Figure taken from
[Brachmann and Redies, 2016]

The weight transfer approach does not reuse a pretrained model as
is. Source and target models can sometimes be trained simultaneously
[Rozantsev et al., Caruana, 1997]. More often, layers are split in two
groups to keep the trained generalist layers and only retrain the spe-
cialized layers. We consider two groups of layers:

• The first n layers that learned general features on the source task.
These layers can be either frozen or fine-tuned when retraining on
the target task. Fine-tuning implies backpropagating the errors from
the new task into the copied source features. By contrast, freezing
correspond that the transferred feature layers will not change dur-
ing training on the new target task. We illustrate the frozen transfer
learning approach in figure A.4. The fine-tuned approach is simi-
lar except that pretrained layers are trainable. Choosing to freeze
or fine-tune the source neuron layers relies on the size of the tar-
get dataset and the number of parameters in the n first layers. It is
preferable to leave the features frozen if the target dataset is small
and the number of parameters in the n first layers is large. By con-
trast, if the target dataset is large or the number of parameters is
small, we tend to fine-tune the neural network.

• The last layers (n + 1 to the end) that learned specialized features
on the source task. The neuron weights of these layers are usually
reinitialized to be retrained on the target task.

The frozen transfer learning approach mitigates constraints (C1), (C2)
and (C3) mentioned above since a smaller model is trained. The fine-
tuned approach only affect (C1) and (C2).

https://yosinski.com/deepvis
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Figure A.4. Weight transfer in deep
neural networks using frozen pre-
trained neurons layers. The fine-
tuning approach does not freeze
the pretrained neurons layers.

The question is now about the choice of n i.e. to know on which
layer we should split the neural network in two. Yolinski and col-
leagues [Yosinski et al., 2014] conducted systematic investigations on
this problem using the popular AlexNet convolutional neural network
composed of 7 hidden layers. They explored transfer learning varying
n from 0 (retrain all the model, not transfer learning) to 7 (the pre-
trained model is used as is) both with freezing and fine-tuning the first
layers. Their results first showed that transfer learning is negatively
affected by the specialization of higher layers to the source task at the
expense of the target task. Thus, performing weight transfer on the
last layers is often contraindicated. Second, they demonstrated that
consecutive layers in the middle of the neural network might be co-
adapted, and splitting between two co-adapted layers might result in
a poor transfer. Overall, the transfer was performed on large target
datasets (k > 1000) and observed a modest improvement in accuracy
over the baseline condition on ignoring the source task and retrain-
ing the full network on the target task from scratch. However, weight
transfer yields considerable calculation savings. Weight transfer was
also applied to domain adaptation [Oquab et al., Rozantsev et al.].
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A.3 Meta-learning

We saw that weight transfer focus on reusing trained weights from
source task to target task [Vanschoren, 2018, Vilalta and Drissi, 2002,
Li et al., Hsu et al., 2019]. Meta-learning aims at building models that
learn to learn. In this paradigm, researchers not only consider a single
source task but a variety of tasks on which the model is trained to
adapt from one to another, as illustrated in figure A.5. The pretrained
model is generally trained to adapt across the different tasks. After
this training procedure, the resulting weights are expected to quickly
adapt to a new related task with only a few training examples.

Source task Target task

a)

b)

Task 1 Task 1

Task 1 Task 1

Transfer learning

Target task

Figure A.5: (a) Traditional trans-
fer learning techniques transfer
knowledge from a single source
to a new target task. (b) Meta-
learning techniques developed
by [Finn et al., 2017] consider
an ensemble of tasks on which
the model is trained to be able
to adapt from one to the other.
After this meta-training process,
the resulting weights can be effi-
ciently fine-tuned on a new tar-
get class.

Finn and colleagues [Finn et al., 2017] proposed a popular model-
agnostic approach that trains a model on several tasks at each opti-
mization epoch and enables to do few-shot learning. At each epoch,
the meta-model weights are the averaged weights of all fine-tuned
models on each task. This training process leads to sub-optimal per-
formance on all tasks. However, few optimization epochs on a new
related task lead to fast adaptation and performance improvements.
This approach responds to the constraints (C1) and (C2) listed above
and can be used for few-shot learning. The training procedure is illus-
trated on figure A.7.

This popular meta-learning approach presents two drawbacks. First,
model agnostic meta-learning complexifies data collection since the
data must comprise multiple labeled tasks. Second, the meta-training
process is computationally expensive, but more efficient algorithms
using first-order approximations were proposed and exhibit similar
performances [Nichol et al., 2018]. As an example, the authors of the
Reptile meta-learning algorithm demonstrate their algorithm with a
one-shot interactive sketch-based classifier on their blog3. A screen-

3 https://openai.com/blog/reptile/shot of the toy application is presented below in Figure A.6.

https://openai.com/blog/reptile/
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Figure A.6. One-shot learning ap-
plication using Reptile.

Meta gradient descent

Gradient descent step 
oneach task

Meta-learning gradient descent

*

*
*

Figure A.7: Diagram of the
model-agnostic meta-learning
algorithm (MAML) [Finn et al.,
2017]. The training process
optimizes a representation that
can quickly adapt to new tasks.
The parameters represented by
the point at the extremity of
the plain arrow are closed to
optimal parameters θ∗i on each
task.

A.4 Deep metric learning

The deep metric learning approach aims at creating embedding which
is a feature space suited to a large set of tasks, including both the
source and target tasks [Scott et al., 2018, Bellet et al., 2013, Chopra
et al., Schroff et al.]. In other words, deep metric learning learns
transferable features for a set of problems. The embeddings are then
used as features to train a shallow neural network or even a simple
distance-based model such as k Nearest Neighbors, enabling few-shot
learning. The deep metric learning approach reuses the first layers of
a pre-trained network, which are generally trained on vast datasets
with a large number of classes. These pre-trained layers can also be
further optimized using a metric-learning loss, which ensures that in-
stances from the same class are close to each other and distant from
instances from other classes [Ustinova and Lempitsky, Ridgeway and
Mozer, Wang et al.]. Scott and colleagues showed that histogram loss
[Ustinova and Lempitsky] is the state-of-the-art metrics in deep met-
ric learning. MobileNet architectures [Howard et al., 2017, Sandler
et al., 2018a, Koonce, 2021] are popular models for creating embed-
dings in computer vision. They are designed with depth-wise sepa-
rable convolutions to build lightweight models on which the trade-off
between accuracy and latency can be adjusted using a single hyper-
parameter. Several few-shot learning techniques such as prototypical
learning [Snell et al.] or matching networks [Vinyals et al.] rely on
well-suited embeddings to the target task. Natural language process-
ing also relies on embedding, such as the popular word2vec embed-
ding [Goldberg et al., 2014].
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Figure A.8. Illustration of the
transfer learning using the deep
metric learning approach.

Overall, deep embeddings are much more efficient than weight trans-
fer for designing models that can adapt with few examples. Meta-
learning can also be used for few-shot learning but requires retraining
the entire model for fine-tuning. The pretraining procedure is also
more demanding in terms of data preprocessing.

Research is still active on understanding how far knowledge can be
transferred on dissimilar tasks. Furthermore, these techniques permit
us to take advantage of both the expressiveness of deep neural net-
works and the rapid adaptation of shallow models. If the benefits on
the training efficiency are impressive, it is not clear how priors pre-
vent high model specialization. For example, an embedding trained
on 1000 classes such as MobileNetV1 might not work when used as
features for retraining a model on a binary task with medical chest
scans images in which the changes for detecting a disease might be
very subtle.
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Appendix B

Data acquisition scenarios in active
learning

Active learning spans three data acquisition scenarios, which comprise
specific techniques.

Pool-based scenario [Lewis et al., 1994] is the most common scenario
in which data is available all at once. The model can pick a query from
the unlabeled pool of data. This approach is illustrated in figure B.1.

Unlabeled pool

Learning model

Human annotator

Labeled 
training set

Query
7 3 1

9 5 8

5 4 6

0

Labeled image

Uncertainty 
sampling 
method

Figure B.1. Pool-based active learn-
ing using uncertainty as sampling
method.

Stream-based scenario: By contrast to pool-based AL, stream-based
AL “makes immediate query decisions at each instance during a single
scan of the data stream” [Loy et al., 2012]. At each sample within a se-
quence, the algorithm decides whether to query a label or discard this
sample. This approach does not require computations across a large
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unlabeled data set but supposes that sream data acquisition is cheap.
Stream-based AL aso ignores the underlying data distribution [Ho and
Wechsler, 2008] which is prone to concept evolution [Mohamad et al.,
2018, Zliobaite et al., 2014, Loy et al., 2012]. This approach is illustrated
in figure B.2.

Learning model

Human annotation

Labeled 
training setIncomming instance

7 3 1

9 5 8

5 4 6

0

Labeled image

Uncertainty 
estimation

Stream of unlabeled data

Discard
Figure B.2. Stream-based active
learning using uncertainty as a de-
cision method.

Membership Query Synthesis [Angluin, 1988] considers that models
can query for any unlabeled instance in input space, including queries
that the model generates de novo, rather than those sampled from
some underlying natural distribution [Settles, 2010].

Learning model

Human annotator

Labeled 
training set

Newly generated query
7 3 1

9 5 8

5 4 6

0

Labeled image

Uncertainty-based 
generation

Figure B.3. Membership Query
Sythesis AL, that generates an un-
certain query de novo.
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Appendix C

Aesthetics of mode-covering or
mode-seeking generative ML models

Generative deep neural networks are increasingly used in art since
2016. In particular, Generative Adversarial Network (GAN) become
popular models in visual art because they can successfully generate
realistic images. GANs are composed of two sub-models. The first
model is a generator, which aims to generate realistic images. The
second model is a discriminator trained to distinguish a real dataset
image from fake images created by the generator. Both models are
trained simultaneously i.e. the generator becomes better and better at
generating realistic images while the discriminator becomes better and
better at distinguishing fake images. Figure C.1 illustrate the training
procedure of a GAN architecture. The progress balance between the

Generator neurons

Encoded Features or latent space

Discriminator neurons

Fake or Real?

z

Generated
sample

Training set
Figure C.1. Schema of a Genera-
tive Adversarial Networks (GAN)
architecture

generator and the discriminator is key for training a GAN that can



146

generate a great variety of samples. In many situations, parameters
oscillate and never converge, or the discriminator gets too successful
compared to the generator leading to a limited variety of generations.

A less popular generative model is the VAE, which is a probabilistic
model that learns the conditional dependence structure between ran-
dom variables, the original image, and its reconstruction.

It turns out that VAEs and GANs outcome distinctive aesthetics. Fig-
ure C.2 [Larsen et al., 2016] compare generations from a VAE or a
GAN. It shows the distinctive aesthetic of images generated with a
GAN decoder compared to a VAE decoder. GANs are known to pro-
duce more realistic images with exciting textures and artifacts. VAE
results in a more blurry and spectral aesthetic and is more difficult to
scale with higher resolution images.

This difference can be explained by the fact that VAE are mode-covering
while GANs are mode-seeking. The difference between mode-covering
and mode-seeking lies in the compromises made when a model does
not have enough capacity to capture all the variability in the data.
Likelihood-based models such as VAEs are mode-covering i.e. they
overgeneralize and produce interpolations that may not be meaning-
ful. This is due to the maximization of the joint likelihood of the data.
Adversarial models such as GANs are mode-seeking because the loss
can be minimized without necessarily trying to reproduce all data-
points characteristics, as long as the produced images trick the dis-
criminator. Thus, some parts of the distribution are ignored.

VAE GAN

Figure C.2: Samples generated
by a VAE (left) or a GAN (right)
from a single encoded image.
Images taken from Larsen and
colleagues [Larsen et al., 2016]

As illustrated above in Figure C.2, GANs provide a sharply different
aesthetic than VAEs, with their own distinctive and recognizable tex-
tures and artifacts. Researchers and artists ironically invented the term
GANism as a modern art movement, echoing famous painting move-
ments (impressionism, cubism, fauvism etc.). In a Tweet from 2017,
the ML engineer and developer François Chollet claimed that «GAN-
ism (the specific look and feel of seemingly GAN-generated images) may yet
become a significant modern art trend».

Thus, if likelihood-based models homogennize the images generated
by design, GANs also have a uniform and recognizable aesthetic that
artists might want to challenge and escape from to offer novel artistic
productions 1. Indeed, GANs are already quite old (2016) but have

1 In a tweet from 2021, the pioneer artist
of ML-art Mario Klingemann claimed: «I
do not really care much for "pretty" gen-
erative art. I want something that has an
interesting concept, is algorithmically chal-
lenging and ideally so complex that I cannot
reverse engineer its mechanism right away.
Unfortunately I don’t see a lot of that these
days.»

diversified. New generative models use text-guided diffusion models
[Dhariwal and Nichol, Nichol et al., Kim and Ye, 2021]. Taken from
a publicly available Git repository or online platform (Google Collab),

https://twitter.com/fchollet/status/885378870848901120?lang=en
https://twitter.com/quasimondo/status/1436290218403975177
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models might convey a uniform aesthetic that artists might need to
tweak and escape from. To do so, artists must develop transverse ex-
pertise across different models and develop their workflow by chaining
or composing different models to create novel pieces.
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