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We study new monotonicity theorems for minimal surfaces in warped geometry. Applications include renormalised versions of the isoperimetric inequality for complete minimal surfaces of the hyperbolic space and a vanishing result for knot/link invariants obtained by counting these surfaces.

Résumé

Nous étudions de nouveaux théorèmes de monotonicité pour les surfaces minimales en géométrie déformée. Les applications obtenues incluent des versions renormalisées de l'inégalité isopérimétrique pour les surfaces minimales complètes de l'espace hyperbolique et un résultat d'annulation pour les invariants de noeuds/entrelacs obtenus en comptant ces surfaces.
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Summary Monotonicity theorems

The objects studied in this thesis are minimal submanifolds of a Riemannian manifold (X, g). They are the critical points of the volume functional, and equivalently, have vanishing mean curvature. The most important tools in the study of such submanifolds in the Euclidean space are the Barrier Method and the Monotonicity Theorem. The latter says that the density of a minimal submanifold is an increasing function. To define the density, we look at the part of the submanifold inside a ball of radius r and normalise its volume by that of the equatorial disc of the ball. Concretely, for any point p 0 ∈ R n and minimal k-submanifold Σ, the function

Θ(r) = vol(Σ ∩ B(p 0 , r)) vol(B k )r k (0.1)
is increasing in r.

In [START_REF] Michael | Complete minimal varieties in hyperbolic space[END_REF], Anderson proved that the same result holds in the hyperbolic space H n . A different version of the monotonicity theorem for X = H n and X = S n was proved by Choe and Gulliver [START_REF] Choe | Isoperimetric inequalities on minimal submanifolds of space forms[END_REF]. In this version, the volume of the submanifold and of the ball are weighted by the function cosh r (or cos r in S n ).

The first main result of this thesis is the following monotonicity theorem for minimal k-submanifolds of H n . We call a Minkowskian coordinate of H n a function ξ coming from pulling back a coordinate function of the Minknowski space R n,1 via the embedding of H n as the unit hyperboloid. The restricted Lorentz group SO + (n, 1) acts on these functions and preserves the Minkowskian norm of dξ. We say that ξ is of time/space/null type if this norm is respectively -1, +1 or 0. Let a and t be positive real numbers, and ξ be a Minkowskian coordinate, we define a function Q(a, t) by

Q(a, t) = ˆt a (t 2 + δ) k/2-1 dt + 1 ka (a 2 + δ) k/2 .
This function only depends on ξ via a parameter δ, given by δ = -1, 0, +1 if ξ is of time, null, or space type.

Theorem 0.1 (1.33). Let Σ be a minimal k-submanifold of H n and let a be the infimum of ξ on Σ. Suppose that a > 0, then the density

Θ(t) = vol(Σ ∩ {a < ξ < t}) Q(a, t)
is an increasing function in t.

When ξ is of time type and a = 1, we recover the result of Anderson mentioned above.

We obtain Theorem 0.1 with the following strategy. We first prove its weighted version, which for a time coordinate is the aforementioned monotonicity of Choe-Gulliver. Then we point out a comparison mechanism, which produces more monotonicity results out of a given one.

We will see in Chapter 1 that each function whose Hessian is a multiple of the metric yields a weighted monotonicity theorem for minimal k-submanifolds of X. Such functions satisfy Hess h = U .g, U ∈ C 0 (X) (0.2) and such monotonicity theorems concern the volume of the submanifold between level sets of h, weighted by the function U . The denominator of (0.1) will be the weighted volume of a tube formed by flowing along the gradient field of h, a (k -1)-submanifold.

A different choice of this submanifold only changes the density Θ(r) by a constant and so does not affect the monotonicity result. Equation (0.2) is locally equivalent to a way to write X as a warped product. We will prove that:

Theorem 0.2 (1.8). The weighted density of a minimal submanifold is increasing in the region U > 0 and decreasing in the region U < 0.

When X = R n , the only functions satisfying (0.2) are the coordinates x i and the distance ρ := x 2 i . Equation (0.2) pulls back to the harmonic equation for the coordinates function x i and therefore yields the Barrier Method. Theorem 0.2 for ρ is the classical version.

The Euclidean coordinates of S n and the Minkowskian coordinates of H n also satisfy (0.2). These coordinates are obtained by embedding S n as the unit sphere in R n+1 and of H n as the hyperboloid in R n,1 . Each point H n (or S n ) corresponds to a unique time coordinate (or Euclidean coordinate) that it minimises. Choe-Gulliver's result follows from Theorem 0.2 for these functions. Meanwhile, each totally geodesic hyperplane of H n defines a space-coordinate and each point on the sphere at infinity S ∞ defines a null-coordinate. Theorem 0.2 is new in these cases.

The proof of Theorem 0.2 can be adapted for weaker analogues of minimal submanifolds such as stationary currents, varifolds or harmonic maps. We do this in the Appendix A.

Comparison lemma

We can define the P -density of Σ by replacing U with a different function P . The scope of Theorem 0.2 becomes significantly larger due to the following lemma: Lemma 0.3 (1.15). There is a transitive relation ≪ among the weights such that if P 1 ≪ P 2 then:

1. any submanifold Σ (not necessarily minimal) having increasing P 2 -density automatically has increasing P 1 -density. Moreover, the P 2 -density is always greater than the P 1 -density.

2. a submanifold Σ that has increasing P 1 -density may not have increasing P 2 -density. However, its P 2 -density is still always greater than its P 1 -density.

In the unit ball B n , a submanifold can have five different densities, depending on the metric of the ball (the Poincaré metric, the Euclidean metric or the half-sphere metric) and whether we want to weight the volume or not. These densities can be compared in the following way: weighted hyperbolic ≫ hyperbolic ≫ Euclidean ≫ spherical ≫ weighted spherical.

(0.

3) The relation (0.3) combines with Lemma 0.3 to give unweighted monotonicity theorems in the hyperbolic space. They are statements on how minimal submanifolds distribute their volume between level sets of Minkowskian coordinates (Theorem 1.33).

On the other hand, the Clifford torus of S 3 is minimal but not monotone in the unweighted density. This shows that we cannot go backwards in the last ≫ of (0.3).

Because the Monotonicity Theorem 0.2 is in itself an inequality, it still holds when (0.2) is replaced by Hess h ≥ U g. Such function h appears as the distance function in Riemannian manifold with curvature bounded from above. The extension of Theorem 0.2 to this context will be presented in Appendix B. We will also see a continuous version of the chain (0.3) there.

Isoperimetric inequalities

Each Minkowskian coordinate ξ can be used to normalise the hyperbolic metric to a metric ξ -2 g in the conformal infinity of H n . These are round metrics on S n-1 for time coordinates, flat metrics on S n-1 \ {pt} = R n-1 for null coordinates and the doubled hyperbolic metrics. The third kind of metric is given by putting the (n -1)-dimensional hyperbolic metric on the two halves of the sphere at infinity S ∞ divided by the totally geodesic hyperplane associated to ξ. In Chapter 2, we will give upper bounds of Graham-Witten's renormalised area of a minimal surface in term of the length of its boundary under these metrics. Because a complete minimal surface of H n has infinite area and perimeter, this can be considered as a renormalised version of the isoperimetric inequality.

In Proposition 0.4, the supremum in (0.4) is taken among round metrics on S ∞ . The metrics g0 , g1 , glight in (0.5) are the round/ the doubled hyperbolic/ the flat metrics associated to the time coordinate ξ 0 / the space coordinate ξ 1 / the null coordinate ξ light . The estimate (0.4) was independently discovered by Jacob Bernstein [START_REF] Bernstein | A Sharp Isoperimetric Property of the Renormalized Area of a Minimal Surface in Hyperbolic Space[END_REF]. Proposition 0.4 (2.22, 2.23). Let Σ ⊂ H n be a minimal surface with ideal boundary γ ⊂ S ∞ and A R (Σ) its renormalised area, then A R (Σ) + sup round g |γ| g ≤ 0.

(0.4) Moreover, if a Minkowskian coordinate ξ * has minimum value a > 0 on Σ, then:

A R (Σ) +        1 2 a + 1 a |γ| g0 1 2 a -1 a |γ| g1 1 2 a|γ| glight ≤ 0 (0.5)

Minimal surfaces and knot invariants

The counting problem for minimal surfaces bounded by a given curve was initiated by Tomi-Tromba's resolution of the embedded Plateau problem [START_REF] Tomi | Extreme curves bound embedded minimal surfaces of the type of the disc[END_REF] and was later studied systematically by Brian White [START_REF] White | The Space of m-dimensional Surfaces That Are Stationary for a Parametric Elliptic Functional[END_REF]. Let Σ be a surface with boundary and -M be the quotien space of C k,α minimal immersions from Σ to R n by boundarypreserving diffeomorphisms. -C = C k,α (∂Σ, R n ) be the space of boundary curves. White proved that M is a Banach manifold and that the boundary map Π : M -→ C is Fredholm and of index 0. Moreover, when we restrict to the space of embedded minimal surfaces in a convex body of R 3 , the map Π is proper and an integer-valued degree can be given to a curve by counting with sign the number of minimal surfaces filling it.

A similar counting problem can be set up in H n for minimal surfaces with ideal boundary in the sphere at infinity. The case n = 3 was studied by Alexakis and Mazzeo [START_REF] Alexakis | Renormalized Area and Properly Embedded Minimal Surfaces in Hyperbolic 3-Manifolds[END_REF] where M is the space of properly embedded minimal surfaces of H 3 and C is the space of collections of circles in S 2 .

It is of great interest to upgrade Alexakis and Mazzeo's result to dimension n = 4 because the degrees, depending only on the isotopy class of the boundary curve, are by definition knot/link invariants. This direction was recently investigated by Joel Fine [START_REF] Fine | Knots, minimal surfaces and J-holomorphic curves[END_REF], who proves that the projection map Π : M -→ C is Fredholm and of index 0. He also shows that the only way properness can fail is when the complex structure of the minimal surface develops a node. The counting problem of minimal surfaces will be discussed in Chapter 2, Appendix C and Section 2.5. The contribution of this thesis is Theorem 0.5 (2.40). Let L := L 1 ⊔ L 2 be a separated union of two embedded (k -1)submanifolds of S n-1 . Then we can rearrange L in its isotopy class so that there is no connected minimal k-submanifolds in H n whose ideal boundary is L.

In particular, all Alexakis-Mazzeo degrees vanish for collections of more than 1 circle.

The proof of Theorem 0.5 is based on the observation that a minimal surface whose ideal boundary is a curve L can only pass by points that "see" L as longer than 2π. The volume of a submanifold of S ∞ seen from an interior point of H n is called the visual volume by Gromov and the set of such points is called the visual hull of γ [START_REF] Gromov | Filling Riemannian manifolds[END_REF].

On the other hand, let H a be the Hopf link zw = a in S 3 = {(z, w) ∈ C 2 : |z| 2 + |w| 2 = 1}, a family of explicit minimal annuli M a of H 4 whose ideal boundary is H a will be constructed in Section 2.2.

It follows from Lemma 0.3 that the standard Hopf link H 0 has no minimal filling other than the union M 0 of two totally geodesic discs. Up to SO(4), the annuli M a provide a 2-parameter family of perturbations of M 0 . This suggests that links which bound nodal minimal surfaces only occurs in codimension 2.

Visual volume, first eigenvalue of the Laplacian and free boundary minimal surfaces

Each k-dimensional submanifold γ on the sphere S n induces a positive function V γ on H n+1 whose value at a point p is given by the volume of γ under the round metric associated to p. The visual hull is, in particular, an upper level set of this function. Chapter 3 is dedicated to the study of the visual volume function V γ .

It was proved by Li and Yau [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF] then El Soufi and Ilyas [START_REF] Soufi | Le volume conforme et ses applications d'après Li et Yau[END_REF], that the maximum value of V γ is an upper bound for the normalised first eigenvalue of the Laplacian on γ.

Here we equip γ with any metric g in the conformal class induced by that of S n and normalise the first eigenvalue by the volume of γ under g. This upper bound was the motivation behind Li-Yau's definition of conformal volume and was utilised by them to verify the Willmore conjecture for certain tori. A historical account on this can be found in Section 3.1. The new results in Chapter 3 are: Proposition 0.6 (3.19). Let γ be a k-dimensional immersed submanifold of S n and V γ be its visual volume function. Then the restriction of V γ to any minimal submanifold of H n of dimension at least k + 1 is super-harmonic.

Because the Douglas-Rado Plateau problem can be solved in H n , it follows that: Corollary 0.7 (3.27). When γ is in S n , the upper level sets of V γ are simply-connected.

It is easy to check if a point is a local maximiser of V γ but very difficult to prove that it is a global maximiser. This question arises in the computation of the conformal volume [START_REF] Montiel | Minimal immersions of surfaces by the first Eigenfunctions and conformal area[END_REF][START_REF] Bryant | On the conformal volume of 2-tori[END_REF], and more recently in the work of Fraiser and Schoen on free boundary minimal submanifolds. For such a submanifold Σ of the Euclidean unit ball, one can check that V ∂Σ is locally maximised at the centre of the ball. Whether this is a global maximum is still an open question. I hope that Proposition 0.6 can be useful here.

The appendices

Several parts of this thesis can be safely skipped without affecting the readability of the text as a whole. For this reason, I put them in the appendices. The goal of Appendix A and Appendix B was explained above. Appendix C reviews of the counting problem for minimal surfaces in the Euclidean context. In Appendix D, I define Graham-Witten's renormalised area and explain why it is an inherent quantity of the surface. It also contains a criteria for a quantity of a surface to be renormalisable. In particular, I proved that Sacks-Uhlenbeck's α-energies [START_REF] Sacks | The Existence of Minimal Immersions of 2-Spheres[END_REF] are renormalisable for a wide class of surfaces.

Résumé Théorème de monotonicité à poids

Dans cette thèse, nous nous intéressons aux sous-variétés minimales, c-à-d. à courbure moyenne nulle, d'une variété riemannienne (X, g). Dans l'espace euclidien, les outils les plus importants dans l'étude de ces sous-variétés sont la technique de barrière et le théorème de monotonicité. Ce dernier dit que la densité d'une telle sous-variété Σ k , obtenue en normalisant son volume dans une boule de rayon r par le volume d'un kdisque de même rayon, c-à-d.

Θ(r) = vol(Σ ∩ B(p 0 , r)) vol(B k )r 2 (0.6)
est une fonction croissante en r.

Il était démontré par Anderson [START_REF] Michael | Complete minimal varieties in hyperbolic space[END_REF] que le résultat est encore valable pour les sous-variétés de l'espace hyperbolique. Une autre version du théorème de monotonicité pour X = H n (et X = S n ) était obtenue par Choe et Gulliver [START_REF] Choe | Isoperimetric inequalities on minimal submanifolds of space forms[END_REF] où l'aire (de la sous-variété et de la boule) est pondérés par la fonction cosh r (respectivement cos r).

Le premier résultat de cette thèse est la version suivante du théorème de monotonicité pour les sous-variétés minimales de l'espace hyperbolique. Soit ξ une coordonnée minkowskienne, a et t deux nombres réels positifs, nous définissons

Q(a, t) = ˆt a (t 2 + δ) k/2-1 dt + 1 ka (a 2 + δ) k/2
où δ = -1, 0 ou +1 quand ξ est de genre temps, lumière ou espace.

Theorem 0.8 (1.33). Soit Σ une sous-variété minimale à dimension k dans la région ξ > a. Alors la densité

Θ(t) = vol(Σ ∩ {a < ξ < t}) Q(a, t)
est une fonction croissante en t.

Nous retrouvons, lorsque ξ est de genre temps et a = 1, le résultat susmentionné d'Anderson.

Pour obtenir le Théorème 0.8, nous démontrons d'abord sa version à poids (qui pour les coordonnées de genre temps redonne la monotonicité de Choe et Gulliver), puis nous montrons une lemme de comparaison qui nous permet à redescendre vers la version sans poids.

Nous allons voir dans le chapitre 1 qu'il y a un théorème de monotonicité associé à chaque fonction h de X dont le hessien est colinéaire au tenseur de métrique g. Concrè-tement, une telle fonction satisfait Hess h = U .g, pour U ∈ C 0 (X) (0.7) et le théorème associé concerne le volume pondéré par U de la sous-variété entre deux niveaux de h. On normalise ce volume par celui d'un tube, formé par l'image d'une sous-variété à dimension k -1 sous le flot du gradient de h. Chaque fonction h qui satisfait (0.7) correspond à une façon de réaliser X comme produit tordu de variétés riemanniennes.

Theorem 0.9 (1.8). La densité à poids d'une sous-variété minimale est croissante dans la région U > 0 et décroissante dans la région U < 0.

Dans l'espace euclidien, les seules fonctions qui satisfont (0.7) sont les coordonnées x i , pour lesquelles (0.7) redonne la technique de barrière, et la fonction distance ρ := x 2 i avec laquelle on retrouve la version classique du théorème de monotonicité.

Les coordonnées euclidiennes de la sphère et les coordonnées minkowskiennes de l'espace hyperbolique satisfont aussi (0.7). On obtient ces coordonnées en plongeant S n et H n dans R n+1 et R n,1 comme la sphère et l'hyperboloïde unité. Géométriquement, chaque point de H n correspond à une coordonnée de genre temps (qui y est minimisée), et chaque point de la sphère S n correspond à une coordonnée euclidienne. En appliquant le Théorème 0.9 à ces fonctions nous retrouvons le résultat de Choe et Gulliver. D'autre part, les coordonnées de genre espace de H n sont caractérisées par les codimensions 1 totalement géodésiques et les coordonnées de genre lumière par les points de la sphère à l'infini. Le Théorème 0.9 est nouveau dans ce cas.

Nous mettons en Appendice A les adaptations du Théorème 0.9 pour les sous-variétés minimales au sens faible. Le lecteur y trouvera les versions pour les courants stationnaires, les varifolds et les applications harmoniques.

Lemme de comparaison

Nous appelons la densité à poids P la quantité obtenue en remplaçant U dans la définition de la densité à poids par une autre fonction P . Le lemme suivant élargit le champ d'application du Théorème 0.9. Lemma 0.10 (1.15). Il existe une relation transitive ≪ parmi les poids avec les propriétés suivantes. Soit Σ une sous-variété (non nécessairement minimale) et supposons que P 1 ≪ P 2 .

1. Si la densité à poids P 2 de Σ est croissante, alors la densité à poids P 1 l'est aussi et de plus elle est majorée par la première.

2. Si la densité à poids P 1 est croissante, nous ne pouvons rien conclure de la monotonicité à poids P 2 . Par contre, nous avons toujours la majoration de la densité à poids P 1 par celle à poids P 2 .

Il y a, pour une sous-variété de la boule unité, 5 densités différente, provenant du choix de la métrique (Poincaré/ euclidienne/ sphérique) et du poids (uniforme/ temporal/ euclidien). Ces densités se comparent de manière suivante : hyperbolique à poids ≫ hyperbolique ≫ euclidien ≫ sphérique ≫ sphérique à poids.

(0.8) Cette relation nous permet de retrouver les théorèmes de monotonicité à poids uniforme pour les sous-variétés minimales de H n . Ils sont des contraintes sur la distribution de volume d'une sous-variété minimale entre les niveaux d'une coordonnée minkowskienne (voir Théorème 1.33).

Étant de nature une inégalité, le Théorème 0.9 est encore valable lorsque nous remplaçons (0.7) par une inégalité de la forme Hess h ≥ U g. Une telle fonction h apparaît naturellement comme la fonction distance dans une variété riemannienne de courbure majorée. Nous adaptons le Théorème 0.9 dans ce contexte en Appendice B. Le lecteur y trouvera aussi la version continue de la chaîne (0.8).

Inégalités isopérimétriques

Chaque coordonnée minkowskienne définit une métrique dans la classe conforme à l'infini de H n . Elles sont des métriques rondes (de courbure +1) pour les coordonnées de genre temps, des métriques plates sur S n-1 \ {pt} = R n-1 pour les coordonnées de genre lumière et des métriques hyperboliques doublées le long du bord de la codimension 1 pour les coordonnées de genre espace. Dans le chapitre 2, nous utilisons le Théorème 0.9 pour majorer l'aire renormalisée de Graham-Witten d'une surface minimale en terme de la longueur de son bord idéal pour ces métriques. Nous pouvons regarder ces résultats comme des inégalités isopérimétriques pour les surfaces minimales complètes de H n .

Dans la Proposition 0.11 ci-dessous, le supremum de (0.9) est pris parmi les métriques rondes sur S n-1 . Les métriques g0 , g1 , glight dans (0.10) sont respectivement les métriques rondes/ hyperboliques doublées/ plates, associées aux coordonnées de genre temps ξ 0 / de genre espace ξ 1 / de genre lumière ξ light . L'inégalité (0.9) était démontrée indépendamment par Jacob Bernstein [START_REF] Bernstein | A Sharp Isoperimetric Property of the Renormalized Area of a Minimal Surface in Hyperbolic Space[END_REF]. Proposition 0.11 (2.22, 2.23). Soit Σ ⊂ H n une surface minimale dont le bord idéal est donné par une courbe γ ⊂ S n-1 et A R (Σ) l'aire renormalisée de Σ. Alors :

A R (Σ) + sup round g |γ| g ≤ 0 (0.9)
Plus généralement, soit ξ * une coordonnée minkowskienne et a > 0 sa valeur minimale sur Σ, alors :

A R (Σ) +        1 2 a + 1 a |γ| g0 1 2 a -1 a |γ| g1 1 2 a|γ| glight ≤ 0 (0.10)

Application à la théorie de noeuds

L'idée de compter le nombre de surfaces minimales dont le bord est une courbe donnée est due à Tomi et Tromba dans leur résolution du problème de Plateau pour les surfaces plongées [START_REF] Tomi | Extreme curves bound embedded minimal surfaces of the type of the disc[END_REF]. Cette idée a été développée de manière systématique par Brian White [START_REF] White | The Space of m-dimensional Surfaces That Are Stationary for a Parametric Elliptic Functional[END_REF]. Soit Σ une surface à bord et -M le quotient de l'espace des immersions minimales de Σ dans R n par le sousgroupe des difféomorphismes de Σ qui fixent ∂Σ.

-C = C k,α (∂Σ, R n ) l'espace de courbes dans R n .
Alors M est une variété de Banach et que l'application bord Π : M -→ C est Fredholm et d'indice 0. De plus, Π est propres si on se restreint aux surfaces plongées (au lieu d'immergées) dans un ensemble convexe de R 3 . Dans ce cas, nous pouvons associer à chaque courbe dans C un entier, qui est le degré de l'application Π.

On peut aussi penser à compter le nombre de surfaces minimales de H n dont le bord idéal est une courbe donnée dans la sphère à l'infini. Ce problème était étudié dans H 3 par Alexakis et Mazzeo [START_REF] Alexakis | Renormalized Area and Properly Embedded Minimal Surfaces in Hyperbolic 3-Manifolds[END_REF] pour l'espace M des surfaces minimales proprement plongées et C des collections de cercles dans S 2 .

Il est de grand intérêt d'étendre la théorie des degrés d'Alexakis et Mazzeo à la dimension 4, avec C l'espace des courbes plongées dans la sphère S 3 . Les degrés, qui ne dépendent que de la classe d'isotopie du bord, sont des invariants de noeuds/entrelacs. Cette piste de recherche était récemment explorée par Joel Fine [START_REF] Fine | Knots, minimal surfaces and J-holomorphic curves[END_REF]. Nous allons la discuter en détail dans l'Appendice C et la Section 2.5 du Chapitre 2.

La contribution de cette thèse dans la direction susmentionnée est le théorème suivant.

Theorem 0.12 (2.40). Soit L := L 1 ⊔ L 2 une union séparée de deux sous-variétés plongées à dimension k -1. Alors il est toujours possible de réarranger L dans sa classe d'isotopie de manière qu'il n'existe pas de surface minimale connexe de H n dont le bord idéal est L.

En particulier, les degrés d'Alexakis-Mazzeo s'annulent pour toute collection qui contient plus qu'un cercle.

Le Théorème 0.12 se découle d'une observation clé : une surface minimale de H n de bord idéal une courbe γ ne peut contenir que les points intérieurs qui voient γ de longueur supérieure à 2π. L'ensemble de tels points est appelé la clôture visuelle de γ [START_REF] Gromov | Filling Riemannian manifolds[END_REF]. D'autre part, soit H a l'entrelacs de Hopf donné par l'équation zw = a dans S 3 = {(z, w) ∈ C 2 : |z| 2 + |w| 2 = 1}, on va construire dans la Section 2.2 une couronne minimale M a ⊂ H 4 de bord idéal H a . D'autre part, il n'y a qu'une seule surface minimale admettant H 0 comme bord idéal : l'union de deux disques totalement géodésiques.

Volume visuel, première valeur propre du Laplacien et surfaces minimales au bord libre

Nous pouvons associer à chaque sous-variété γ à dimension k de la sphère S n une fonction positive V γ sur H n+1 dont la valeur dans un point p est donnée par la volume de γ sous la métrique ronde associée à p. La clôture visuelle est, en particulier, un super-niveau de V γ . Le chapitre 3 est dédié à l'étude de cette fonction.

Il a été observé par Li et Yau [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF], puis El Soufi et Ilyas [START_REF] Soufi | Le volume conforme et ses applications d'après Li et Yau[END_REF], que le maximum de V γ est une borne supérieure naturelle de la première valeur propre normalisée du laplacien de γ. Ici le laplacien provient d'une métrique g dans la classe conforme de γ induite par celle de S n et sa première valeur propre est normalisée par le volume de γ sous g. Cette observation a motivé Li et Yau à définir leur notion de volume conforme qu'ils ont utilisée ultérieurement pour vérifier partiellement la conjecture de Willmore. Un résumé de ce développement se trouve dans la Section 3. 

Weighted monotonicity theorems and comparison lemma

The goal of this chapter is to prove that:

1. Each function h on a Riemannian manifold (M , g) whose Hessian is a multiple of the metric tensor corresponds to a weighted monotonicity theorem for minimal submanifolds of M .

2. Weighted monotonicity theorems can be compared to each other.

Such a function h corresponds to a way to write M as a warped space.

Warped spaces and examples

A metric on a Riemannian manifold

M = N × [a, b] is called a warped product if it has the form g = dr 2 + f 2 (r)g N (1.1)
where r ∈ [a, b] and g N is a Riemannian metric on N . It can be checked that an antiderivative h of the warping function f satisfies Hess(h) = f ′ (r)g. On the other hand, if such function h exists, the space can be locally written as a warped space by the level sets of h.

Proposition 1.1 (cf. [START_REF] Cheeger | Lower Bounds on Ricci Curvature and the Almost Rigidity of Warped Products[END_REF]). Let h be a C 2 function on (M , g) with no critical point. Suppose that the level sets of h are connected and

Hess h = U .g (1.2)
for a function U ∈ C 0 (M ). Then:

1. U is a function of h, i.e.

a composition of h and a function

U : R -→ R. The function V := |dh| 2 ∈ C 1 (M ) is also a function of h and we have U = 1 2 V ′ . 2. The metrics g a , g b induced from g on the level sets h -1 (a) and h -1 (b) are related by ga V (a) = g b V (b)
via the inverse gradient flow of h. This defines a metric g on level sets of h under which the flow is isometric. The inverse gradient flow of h defines a map h -1 (a) × Range(h) -→ M and the metric g on M pulls back to

g = V (h) V (a) g a + dh 2 V (h) = V (h) g + dh 2 V (h) (1.3)
which is a warped product after a change of variable dr = dh V (h) 

v(V ) = 2g(∇ v ∇h, ∇h) = 2 Hess(h)(v, ∇h) = 2U g(v, ∇h)
It follows, by first taking v to be any vector field tangent to level sets of h, then to be the inverse gradient u := ∇h |∇h| 2 , that V is constant on the level sets, and as a function of h, V ′ = 2U .

For the second part, let v t be the vector field of M tangent to level sets h -1 (t) given by pushing forward via the flow of u a vector field v a tangent to h -1 (a). By definition of Lie bracket, [v t , u] = 0 for all t, and so

d dt |v t | 2 = 2g(∇ u v t , v t ) = 2g(∇ vt u, v t ) = 2 |∇h| 2 Hess(h)(v t , v t ) = V ′ V |v t | 2 .
Here in the third equality, we used the fact that v t is orthogonal to the gradient of h. We conclude that |vt| 2 V (t) is constant along the flow and so ga V (a) = g b V (b) for all a, b in the range of h.

The metric g is the g N of (1.1) and it is conformal to the restriction of g on level sets of h. We will use g to denote the metric V (h) -1 g on M and will call it the normalised metric.

In applications, we will only assume that the function h satisfies (1.2) on M and it can have critical points, as in the following examples.

Example 1.2. In the Euclidean space, it is not difficult to prove that the only functions satisfying (1.2) are 1. the coordinates x i , i = 1, . . . , n with U = 0, V = 1 and 2. the square of distance ρ := 1 2 n i=1 x 2 i with U = 1, V = 2ρ. Example 1.3. In the unit sphere

S n = {(x 1 , x 2 , . . . , x n+1 ) ∈ R n+1 : n+1 i=1 x 2 i = 1}, the Euclidean coordinates x i satisfy (1.2) with U = -x i , V = 1 -x 2 i .
Example 1.4. In the hyperbolic space

H n = {(ξ 0 , . . . , ξ n ) ∈ R n,1 : ξ 2 0 - n i=1 ξ 2 i = 1, ξ 0 > 0}, the Minkowskian coordinates ξ α satisfy (1.2) with U = ξ α , V = ξ 2 α -|∂ ξα | 2 ,
where |∂ ξα | 2 is the Minkowskian norm, which is +1 for time-like unit vectors and -1 for space-like vectors.

By Proposition 1.1, the hyperbolic space can be written as a warped product in three distinct ways:

1. Each interior point corresponds to a unique time coordinate that it minimises.

Each boundary point corresponds to a half-space model, thus defines a null coordi-

nate uniquely up to a multiplicative constant.

3. Each (cooriented) totally geodesic hyperplane corresponds to a unique space coordinate that vanishes on it. Note that no other level set is totally geodesic.

The normalised metrics g in the case (R n , ρ) and (S n , x i ) are the round metric on S n-1 . In the hyperbolic space, there are 3 types of normalised metrics in the conformal infinity of H n . Those are round metrics for time coordinates, flat metrics for null coordinates (the Euclidean metric in half-space model) and the doubled hyperbolic metrics for space coordinates. The third metrics are obtained by glueing two (n -1)-dimensional hyperbolic metrics on the hemispheres along a totally geodesic hyperplane.

The three examples 1.2, 1.3, 1.4 are summarized in the following table

(M , g) h U (h) V (h) g R n Euclidean coordinate x i 0 1 flat ρ = i x 2 i 1 2ρ round S n → R n+1 Euclidean coordinate x i -x i 1 -x 2 i round time coordinate ξ 0 ξ 0 ξ 2 0 -1 round H n → R 1,n null coordinate ξ l ξ l ξ 2 l flat space coordinate ξ 1 ξ 1 ξ 2 1 + 1 doubled hyperbolic

Weighted monotonicity theorems in Warped space

Given a function h on a Riemannian manifold M and a submanifold Σ, we write ´Σ,h≤t and ´Σ,h=t for the integration over the sub-level h -1 [t, +∞) and the level set h = t in Σ.

The gradient vector of h in M is denoted by ∇h and its projection to the tangent of Σ by ∇ Σ h. The rought Laplacian of h on Σ is

∆ Σ h = div Σ ∇ Σ h
The volume of the k-dimensional unit sphere will be denoted by ω k .

Weighted volume and density

Let h be a C 2 function satisfying (1.2) on M and V = |dh| 2 , we will define the weighted volume of a k-submanifold Σ to be

A h (Σ)(t) := ˆΣ,h≤t U . (1.4)
The weighted density is obtain by normalising the weighted volume of Σ by that of a k-dimensional tube. Let us suppose for a moment that h is bounded from below by h min . Given a (k -1)-dimensional submanifold γ in a level set of h, the h-tube T γ (t) is built by flowing γ along the gradient field of h among level sets h min ≤ h ≤ t. The weighted volume of T γ (t) can be computed by (1.3) to be

A h (T γ )(t) = ˆTγ U = ˆγ d vol k-1 g ˆt h min V ′ (h)V k 2 -1 (h)dh = |γ| k V (t) k/2 (1.5)
where |γ| is the g-volume of γ. The last equality is because V (h min ) = 0. We define the weighted density of Σ as

Θ A h (t) := A h (Σ)(t) ω k-1 k V k/2 (t)
.

(1.6) Equation (1.5) shows that, as a function of t, the weighted volume of a tube is, up to a factor, independent of γ. In other words, the density of a tube is constant. When h is not bounded from below, or when the area of Σ is not finite in the region h ≤ t, (this happens for example when h is the space and null coordinates of H n ). We define the compensated weighted volume by counting only the volume in the region h ≥ h 0 :

B h (Σ)(h 0 , t) := ˆΣ,h 0 ≤h≤t U (h) + 1 k ˆγ0 |∇ Σ h|. (1.7)
Here γ 0 is the intersection of Σ and the level set h = h 0 . The compensated weighted density is defined as

Θ B h (t) := B h (t) ω k-1 k V k/2 (t)
.

It is useful to give a name to the boundary term in (1.7).

Definition 1.5. Let T be a distribution of k-dimensional planes of M along a submanifold γ of a level set of h. The T -parallel volume |γ T | of γ is defined as

γ T := ˆγ cos ∠(∇h, T ) vol k-1 g ,
where the integral was taken with the volume form of the normalised metric g and ∠(∇h, T ) is the angle between ∇h and T . When ∇h is contained in T at every point of γ, the parallel volume is the g-volume.

The volume forms of g and g on γ are related by vol k-1 g

= vol k-1 g V k-1 2
and the angle ∠(∇h, T ) satisfies cos ∠(∇h, T ).V1/2 = |∇ Σ h|. So the compensated volume can 1.2. Weighted monotonicity theorems in Warped space be rewritten as

B h (Σ)(t) := ˆΣ,h 0 ≤h≤t U (h) + |γ T Σ 0 | k V (h 0 ) k/2 .
The denominator of Θ B h is again, up to constant, the compensated weighted volume of a tube T γ (h 0 , t) built by the gradient flow of a (k -1)-submanifold γ from level h 0 to level t. This can be seen via a computation similar to (1.5):

B h (T γ (h 0 , t)) = |γ| k (V (t) k/2 -V (h 0 ) k/2 ) + |γ| k V (h 0 ) k/2 = |γ| k V (t) k/2 . (1.8)
Recall that |γ| is the volume of γ under g.

Compensated or Uncompensated?

The condition (1.2) forces all non-degenerate critical points of h to be either local maxima or local minima. The functions in Examples 1.2, 1.3, 1.4 fall into two types:

1. h has no other critical value than its minimum h min and the sublevel sets {h ≤ t} are compact. This is the case of (R n , ρ), (S n \ {pt}, x i ) and (H n , ξ 0 ). Both densities Θ A h and Θ B h are well-defined. 2. h has no critical point and the sublevel sets are no longer compact, as in the case of H n with the null and space coordinates. The integral in (1.4) may not be finite and we are therefore interested in the compensated density Θ B h . We will see that it is useful to look at the compensated density even when the function h is of the first type.

Weighted monotonicity theorem

The following lemma often appears in the literature as

div Σ X Σ = div Σ X + g(k(Σ), X)
for a submanifold Σ and a vector field X along Σ. Here k(Σ) is the mean curvature and X Σ is the tangent component of X. We will denote the gradient vector in M of a function h by ∇h and its projection to Σ by ∇ Σ h. Lemma 1.6 (Leibniz rule). Let f : (Σ k , g Σ ) -→ (M n , g) be a map between Riemannian manifolds and τ (f ) be its tension field 1 , then for any C 2 function h on M . We have:

∆ Σ (h • f ) = Tr Σ f * Hess h + dh.τ (f ) (1.9)
In particular, the Laplacian of h on a submanifold Σ is given by

∆ Σ h = Tr Σ Hess h + dh.k(Σ).
(1.10) 

In particular, if k(Σ) = 0 at a point p ∈ Σ or T p Σ
A h (Σ)(t) = ˆΣ,h≤t U (h) = 1 k ˆΣ,h≤t ∆ Σ h = 1 k ˆΣ,h=t ∇ Σ h • n = 1 k ˆΣ,h=t |∇ Σ h| (1.11) because the outer normal of the sublevel set h ≤ t in Σ is n = ∇ Σ h |∇ Σ h| . By the coarea formula, dA h (t) dt = U (t) ˆΣ,h=t 1 |∇ Σ h| .
Combining this with (1.11) and

|∇ Σ h| 2 ≤ V (h), one has 1 U dA h dt ≥ kA h V , or 1 U d dt ( A h V k/2 ) ≥ 0.
Similarly, one has B h (t) = 1 k ´Σ,h=t |∇ Σ h|, and dB h dt = U (t) ´Σ,h=t 1 |∇ Σ h| and the same conclusion is drawn for the compensated case.

For tube extension, it suffices to rewrite equation (1.11) as

kA h (t) = ˆΣ,h≤t + ˆTγ,h≤t ∆h = ˆΣ,h=t |∇ Σ h| + ˆγ∩{h≤t} |∇ Σ h| + ˆTγ,h=t |∇ M h| - ˆγ∩{h≤t} |∇ M h| ≤ ˆΣ,h=t |∇ Σ h| + ˆTγ,h=t |∇ M h| = ˆΣ,h=t |∇ Σh|.
Remark 1.9.

1. If Σ contains a multiple of γ, the volume of the tube should be counted with multiplicity.

2. We only need the "≤" sign in (1.11) and hence it suffices that ∆ Σ h ≥ kU (h).

Theorem 1.8 still holds if Hess h ≥ U .g, provided that U and V = |dh| 2 are still functions of h and that U = 1 2 V ′ . This direction is explored in Appendix B. In practice, we are interested in the situations where Σ is contained in a region where U is signed. The U-shape minimal surface in Figure 1.1 for example cannot happen in the region U ≤ 0 because the function h is super-harmonic on Σ: ∆h = kU ≤ 0.

Lemma 1.10. Let Σ be a minimal submanifold of the region U ≥ 0 such that h ≤ t 0 on the boundary of Σ, then h ≤ t 0 on the entire submanifold.

Comparison lemma

We will suppose in this section that the submanifold Σ is contained in the region U ≥ 0. Theorem 1.8 says that the weighted density is an increasing function. It is useful to weight the volume functional of (1.4) by a function P of h other than U .

The uncompensated and compensated P -volumes are defined as

A P (Σ)(t) := ˆΣ,h≤t P (h) or B P (Σ)(t) := ˆΣ,h 0 ≤h≤t P (h) + c k |γ T Σ 0 |V (h 0 ) k/2 (1.12)
where c is a positive real number. The term |γ T Σ 0 | here is the T Σ-parallel volume of the intersection of Σ and the level set h = h 0 .

The uncompensated and compensated P -volumes of tubes are

A P (T γ (t)) = |γ| ˆh≤t P (h)V k 2 -1 (h)dh, B P (T γ (h 0 , t)) = |γ| ˆt h=h 0 P (h)V k 2 -1 (h)dh + c k V (h 0 ) k/2
They are still, up to a factor, independent of the choice of γ.

We define the P -densities of a submanifold by normalising its P -volume by that of a tube. Concretely,

Θ P (Σ)(t) := A P (t) Q(t) or B P (t) Q(t)
where

Q(t) :=    ω k-1 ´h≤t P (h)V k 2 -1 (h)dh,
for the uncompensated volume,

ω k-1 ´t h=h 0 P (h)V k 2 -1 (h)dh + c k V (h 0 ) k/2
for the compensated volume (1.13) When P = U and c = 1, these are the weighted volume and weighted density defined in (1.4) and (1.7). We will always assume that the weight function P is positive on Σ.

Remark 1.11. The compensated P -density of any submanifold Σ has limit

lim t→h 0 Θ P (Σ)(t) = ´Σ,h=h 0 |∇ Σ h| ω k-1 V (h 0 ) k/2 = |γ T Σ 0 | ω k-1 , (1.14) provided H k (Σ ∩ h -1 (h 0 )) = 0
. This is satisfied for example when Σ meets the level set h = h 0 transversely. If Σ is strictly contained in the region h > h 0 , then

lim t→h 0 Θ P (Σ)(t) = 0.
Therefore, the limit at t = h 0 of the density Θ P does not depend on the weight function P and the constant c.

Example 1.12. On the round sphere S n = R n ∪ {∞}, with the metric g S = 4 (1+r 2 ) 2 g E , the function x := 1-r 2 1+r 2 is the coordinate function of Example 1.3 that is maximised at the origin and minimised at infinity. The g E -volume functional is a P -volume with P = (1 + x) -k .

Example 1.13. In the Poincaré ball B n with metric g H =

4

(1-r 2 ) 2 g E , the function ξ 0 := 1+r 2 1-r 2 is the time coordinate minimised at the centre. The g E -volume corresponds to P = (1 + ξ 0 ) -k . The volume under the metric g S above corresponds to P = ξ -k 0 and the x-weighted g S -volume corresponds to P = ξ -k-1 0 . Definition 1.14. Given 2 weight functions P 1 , P 2 (respectively (P 1 , c 1 ), (P 2 , c 2 )) whose tube volumes Q 1 , Q 2 are defined by (1.13), we say that P 1 is weaker than P 2 (respectively (P 1 , c 1 ) is weaker than (P 2 , c 2 )) if

P 1 Q 1 ≤ P 2 Q 2 , or equivalently d dt Q 1 Q 2 ≤ 0.
In other words, the P 2 -volume of a k-dimensional tube increases faster than its P 1volume.

Clearly, this is a transitive relation. Moreover, (P , c 1 ) ≪ (P , c 2 ) if and only if c 1 > c 2 .

Lemma 1.15 (Comparison). Let Σ k ⊂ M n be a submanifold not necessarily minimal and P 1 , P 2 (respectively (P 1 , c 1 ), (P 2 , c 2 ) in the compensated case) be two positive continuous weight functions. Let Θ 1 , Θ 2 be the corresponding densities. In the compensated case, we suppose, in addition, that:

(Non-tangency) Σ meets the level set h = h 0 non-tangentially, i.e. the intersection γ 0 = Σ ∩ h -1 (h 0 ) is either empty or has zero H k -volume.

1. Suppose that P 1 is weaker than P 2 and that Θ 2 is an increasing function. Then

Θ 1 ≤ Θ 2 and dΘ 1 dt ≥ Q 2 P 2 P 1 Q 1 dΘ 2 dt .
In particular, the density Θ 1 is also increasing.

2. On the other hand, if P 2 is weaker than P 1 and Θ 2 is increasing, then Θ 1 ≥ Θ 2 . Moreover, if dΘ 2 dt vanishes at a certain t 0 ∈ R, then dΘ 1 dt (t 0 ) ≤ 0.

Proof. One has P -1

1 dA P 1 dt = P -1 2 dA P 2
dt (or P -1

1 dB P 1 dt = P -1 2 dB P 2
dt respectively), from coarea formula, therefore

Q 1 P 1 dΘ 1 dt + ω k-1 V k 2 -1 Θ 1 = Q 2 P 2 dΘ 2 dt + ω k-1 V k 2 -1 Θ 2 (1.15)
which can be rearranged into

P -1 1 d dt (Q 1 (Θ 1 -Θ 2 )) = Q 2 P 2 - Q 1 P 1 dΘ 2 dt (1.16)
Let us prove the second part of the Lemma. We see from the hypothesis that the RHS of (1.16) is positive, and therefore the function

Q 1 (Θ 1 -Θ 2 ) is increasing.
This function vanishes at t = h min in the uncompensated case because of Q 1 , and at t = h 0 in the compensated case because of Θ 1 -Θ 2 (Remark 1.11). Therefore one has Θ 1 ≥ Θ 2 at all time. Apply this and the fact that dQ 1 dt ≥ 0 in (1.16), we see that if dΘ 2 dt (t 0 ) = 0 then dΘ 1 dt (t 0 ) ≤ 0 For the first part, the RHS of (1.16) is negative and so, for the same reason given above, we have Θ 2 ≥ Θ 1 . The conclusion follows by substituting this into (1.15).

A more robust proof for rectifiable varifolds and currents can be found in Appendix B.

Remark 1.16. For minimal submanifolds, the non-tangency condition is even less restrictive then transversality to the level h = h 0 . In particular, it is automatically satisfied if Σ is a minimal submanifold such that Σ ∩ {h ≤ h 0 } is a submanifold with boundary in the level h = h 0 . This is because ˆΣ,h=h 0 |∇ Σ h| = ˆΣ,h≤h 0 kU .

(1.17)

and the LHS of (1.17) is positive if Σ is in the region U > 0. Similarly, we could not have H k (Σ ∩ h -1 (h 0 )) > 0 because the restriction of h to a minimal submanifold Σ cannot be locally constant.

Volume comparison with tubes

Let Σ be a k-dimensional submanifold of M whose boundary γ is a submanifold of the level set h -1 (t 0 ). Let Σ be the extension of Σ by the tube T γ (t 0 , T ). In the region t ≤ t 0 , 1.3. Comparison lemma the monotonicity of Σ does not reveal any new information other than the monotonicity of Σ.

The monotonicity of Σ in the region t > t 0 is, on the other hand, equivalent to a comparison between the weighted volume of Σ in the region h ≤ t 0 and that of a tube (see Figure 1.2).

Lemma 1.17. Let t 1 < t 2 be two numbers in [t 0 , T ), then the following statements are equivalent:

1. Θ A P ( Σ)(t 1 ) ≤ Θ A P ( Σ)(t 2 ) (respectively Θ B P ( Σ)(t 1 ) ≤ Θ B P ( Σ)(t 2 )). 2. A P (Σ)(t 0 ) ≤ A P (T γ (h min , t 0 )) (respectively B P (Σ)(t 0 ) ≤ B P (T γ (h 0 , t 0 )))
Here γ is the intersection of Σ and the level set h = t 0

Proof. The argument is based on straightforward volume addition/subtraction and the fact that the density of a tube is constant. Without loss of generality, we suppose t 1 = t 0 and will only prove the statement for the compensated case. By definition,

Θ B P ( Σ)(t 0 ) ≤ Θ B P ( Σ)(t 2 ) is equivalent to B P (Σ)(t 0 ) B P (T γ )(t 0 ) ≤ B P (Σ)(t 0 ) + A P (T γ )(t 0 , t 2 ) B P (T γ )(t 0 ) + A P (T γ )(t 0 , t 2 ) (1.18)
where A P (T γ )(t 0 , t 2 ) = ´Tγ,t0≤h≤t2 P . Here we used the fact that P -volume of T γ is, up to a factor, independent of γ. Simplify (1.18) and we have B P (Σ)(t 0 ) ≤ B P (T γ )(t 0 ). An immediate consequence of Lemma 1.17 is the following lower bound on the volume of the intersection between a minimal submanifold and the level set h = t. Proposition 1.18 (Estimates of level set). Let Σ k be a tube extension of a minimal submanifold in the region U ≥ 0. Let γ t , t ≥ h min (respectively t ≥ h 0 ) be its intersection with the level set h = t. Then 1. In the uncompensated case,

m ω k-1 k V k/2 (t) ≤ A h (Σ)(t) ≤ |γ t | k V k/2 (t),
where m := lim t→h min Θ h (t) is the multiplicity of Σ at h -1 (h min ). In particular,

|γ t | ≥ mω k-1
2. Similarly, in the compensated case:

|γ T Σ 0 | ω k-1 Q(t) ≤ B h (Σ)(t) ≤ |γ t | ω k-1 Q(t).
In particular, |γ t | ≥ |γ T Σ 0 |. More generally, for any two level sets

γ t i = Σ ∩ h -1 (t i ), i = 1, 2 with t 1 < t 2 , the g-volume of γ t 2 is greater than the parallel volume of γ t 1 .
By Lemma 1.15, we can also compare the P -volume of a minimal submanifold with that of a tube: Corollary 1.19. Let P be a weaker weight than U and Σ be a minimal submanifold in the region U ≥ 0. Then 1. P -density of Σ is an increasing function 2. The P -volume of Σ in the region h ≤ t (respectively the compensated P -volume in the region h 0 ≤ h ≤ t) is less than that of the tube with the same boundary.

1.4 Weighted monotonicity theorems in the hyperbolic space and the sphere

Time Monotonicity and Null Monotonicity

We will restate Theorem 1.8 when M is H n and S n with the function h being a Minkowskian or Euclidean coordinate.

Given a time coordinate ξ 0 of H n , the time-weighted volume functional is defined as

A ξ 0 (Σ)(t) := ˆΣ,1≤ξ 0 ≤t ξ 0 .
For a totally geodesic copy H of H k in H n passing by the minimum point of ξ 0 , we have

A ξ 0 (H)(t) = ω k-1 k (t 2 -1) k/2 . Definition 1.20. The time-weighted density of a submanifold Σ k of H n is Θ A ξ 0 (Σ)(t) := A ξ 0 (Σ)(t) A ξ 0 (H)(t) = A ξ 0 (Σ)(t) ω k-1 k (t 2 -1) k/2 .
Theorem 1.21 (Time Monotonicity). The time-weighted density of a minimal surface (or its extension by ξ 0 -tube) is increasing on (1, +∞).

Let ξ l be a null coordinate and x = ξ -1 l > 0 be the corresponding half-space coordinate. The null-weighted volume functional is defined as

A ξ l (Σ) := ˆΣ,ξ l ≤t ξ l = ˆΣ,x≥ 1 t 1 x
which is finite for submanifolds not containing the point at infinity ξ -1 l (0) (or equivalently bounded in the corresponding half-space model). For a k-dimensional ξ l -tube,

A ξ l (T γ (0, t)) = |γ| k t k .
Definition 1.22. The null-weighted density of a submanifold Σ k of H n is

Θ A ξ l (Σ)(t) := A ξ l (Σ)(t) ω k-1 k t k .
Theorem 1.23 (Null Monotonicity). The null-weighted density of a minimal submanifold (or its extension by ξ l -tube) not containing ξ -1 l (0) is increasing on (0, +∞).

It is also useful to write down the compensated version of Theorem 1.21 and Theorem 1.23. Definition 1.24.

1. Given any a > 1, the compensated time-weighted volume and density are defined as

B ξ 0 (Σ)(t) := ˆΣ,a≤ξ 0 ≤t ξ 0 + |γ T Σ a | k (a 2 -1) k/2 , Θ B ξ 0 (Σ)(t) := B ξ 0 (Σ)(t) ω k-1 k (t 2 -1) k/2 , where |γ T Σ a | is the parallel volume of the intersection γ a = Σ ∩ ξ -1 0 (a). 2.
Given any a > 0, the compensated null-weighted volume and density are defined as

B ξ l (Σ)(t) := ˆΣ,a≤ξ l ≤t ξ l + |γ T Σ a | k a k , Θ B ξ l (Σ)(t) := B ξ l (Σ)(t) ω k-1 k t k , where |γ T Σ a | is the parallel volume of the intersection γ a = Σ ∩ ξ -1 l (a).
Theorem 1.25 (Compensated time and null monotonicity). Let Σ k be a minimal submanifold in the region ξ 0 ≥ a > 1 (respectively ξ l ≥ a > 0) that does not meet the a-level set of ξ 0 (respectively ξ l ) tangentially. Then the density Θ B ξ 0 (respectively Θ B ξ l ) of any tube extension of Σ is increasing on (a, +∞).

Space Monotonicity

To state the weighted monotonicity theorem corresponding to a space coordinate ξ 1 , we assume that the submanifold Σ k is contained in the region ξ 1 ≥ a and that its boundary consists of a (possibly empty) part γ a in ξ -1 1 (a) and a part γ ∞ in the sphere at infinity S ∞ , both of them are disjoint from the equator ξ -1 1 (0) ∩ S ∞ . The space-weighted volume functional is

B ξ 1 (Σ)(t) := ˆΣ,a≤ξ 1 ≤t ξ 1 + |γ T Σ a | k (a 2 + 1) k/2
and is finite for such submanifold Σ.

In particular, if γ is a (k -1)-submanifold in the interior of ξ -1 1 (0) ∼ = H n-1 with hyperbolic volume |γ|, the ξ 1 -tube T γ (a, t) built upon γ between level sets ξ 1 = a and

ξ 1 = t has B ξ 1 (T γ (a, t)) = |γ| k (t 2 + 1) k/2
Definition 1.26. The space-weighted density of a k-dimensional submanifold Σ of H n is defined as

Θ ξ 1 (Σ)(t) := B ξ 1 (Σ)(t) ω k-1 k (t 2 + 1) k/2
Theorem 1.27 (Space Monotonicity). The density Θ ξ 1 of a minimal submanifold (or its extension by ξ 1 -tube) is increasing on (a, +∞).

Weighted Monotonicity theorem in sphere

In the round sphere S n seen as a warped space using a Euclidean coordinate x = x i , we define the weighted volume of a submanifold Σ by:

A x (Σ)(t) := ˆΣ,x≥t x.
A totally geodesic k-sphere S passing by

x -1 (1) has A x (S)(t) = ω k-1 k (1 -t 2 ) k/2 . Definition 1.28. The weighted density of a submanifold Σ of S n is Θ x (Σ)(t) := A x (Σ)(t) A x (S)(t) = A x (Σ)(t) ω k-1 k (1 -t 2 ) k/2 ,
Theorem 1.29 (Weighted monotonicity in S n ). The weighted density of a minimal submanifold (or its extension by x-tube) in S n , is decreasing on (0, 1) and increasing on (-1, 0).

Unweighted monotonicity

The unit ball B n can be equipped with 3 metrics g E , g S , g H as in Example 1.12 and Example 1.13. Its submanifolds have 5 different densities: the unweighted densities from the 3 metrics and 2 weighted densities from the time coordinate and Euclidean coordinate associated to the origin.

The time-weighted hyperbolic volume, the hyperbolic volume, the Euclidean volume, the spherical volume, the weighted spherical volume can be written as P -volume with respect to the metric g S with weights given by

P 1 = ξ -k-1 0 , P 2 = ξ -k 0 , P 3 = (1 + ξ 0 ) -k , P 4 = 1, P 5 = ξ 0 .
It can be checked that P i+1 is weaker than P i . Lemma 1.15 says that one has the following chain of monotonicity:

time-weighted g H ≫ unweighted g H ≫ g E ≫ unweighted g S ≫ weighted g S . (1.19) If a submanifold Σ k ⊂ B n
has increasing density in one volume functional of the chain, then 1. it automatically has increasing density in any volume functional on the right.

2. the densities of Σ are comparable, with order given by (1.19).

The chain (1.19) has three implications:

1. The first ≫ shows that Choe-Gulliver's Monotonicity implies Anderson's monotonicity.

2. The second ≫ shows that area-minimising cones in hyperbolic space are exactly those in Euclidean space.

3. The last ≫ recovers the volume estimate of Cheng-Li-Yau for minimal submanifold of the sphere [START_REF] Shiu-Yuen | Heat Equations on Minimal Submanifolds and Their Applications[END_REF] The first point above is immediate. For organisational purpose, the statements of the last two points are delayed until the next chapter.

Remark 1.30. While minimal surfaces of S n are weighted-monotone, they may not be monotone with the uniform weight. In fact, the unweighted density of the Clifford torus in S 3 is not an increasing function, even on one hemisphere. This means that the last ≫ of (1.19) is strict.

A continuous version of the chain (1.19) for minimal surfaces in manifolds with sectional curvature bounded from above can be found in the Appendix B. The third implication above becomes the volume estimate of Hoffman and Spruck [START_REF] Hoffman | Sobolev and isoperimetric inequalities for riemannian submanifolds[END_REF].

For the compensated case, we have Lemma 1.31. Let ξ be a Minkowskian coordinate of H n . Then in the region ξ ≥ a > 0, the weight

P 1 = ξ, c 1 = 1 is stronger than the weight P 2 = 1, c 2 = a -1 . Proof. Because Q 1 P 1 (t) = ω k-1 k V (t) k/2 t , Q 2 P 2 (t) = ω k-1 ˆt a V (ξ) k 2 -1 dξ + ω k-1 ka V (a) k/2
and V ′ (t) = 2t for the three cases of h, we have

d dt Q 1 P 1 = ω k-1 V k 2 -1 - V k/2 kt 2 ≤ ω k-1 V k 2 -1 = d dt Q 2 P 2
Therefore the function

Q 2 P 2 -Q 1 P 1 is decreasing.
Since it vanishes at t = a, one has

Q 1 P 1 ≤ Q 2 P 2 for all t ≥ a, which means (P 1 , c 1 ) is stronger than (P 2 , c 2 ).
It follows from the Comparison lemma 1.15 that the (1, a -1 ) density of a minimal submanifold is increasing. Therefore we have the following Theorem 1.32 and Theorem 1.33.

Theorem 1.32. Let Σ be a minimal submanifold of the hyperbolic space. We denote by A(t) the volume of Σ inside a geodesic ball ξ 0 ≤ t, given as a sublevel set of a time coordinate ξ 0 . Then the quantity

A(t) Q(t) is increasing in t. Here Q(t) is 1 ω k-1 the

volume of a totally geodesic k-disc in the equator of the ball, which is

Q(t) = ˆt 1 (s 2 -1) k/2-1 dt + 1 k (a 2 -1) k/2
The case a = 1 of Theorem ?? was proved by Anderson [START_REF] Michael | Complete minimal varieties in hyperbolic space[END_REF].

Theorem 1.33. Let ξ be a Minkowskian coordinate of H n and Σ be a minimal submanifold in the region ξ ≥ a. Suppose that Σ has no boundary except its non-tangential intersection γ with the level set ξ = a. We denote by B(t) the compensated volume of Σ in the region a ≤ ξ ≤ t:

B(t) = vol(Σ ∩ {a ≤ ξ ≤ t}) + 1 ka |γ T Σ |V (a) k/2
and by Q(t) the quantity

Q(t) = ˆt a V (s) k/2-1 ds + 1 ka V (a) k/2 . Then A(t) Q(t) is increasing in t.
Here V (s) is s 2 -1, s 2 + 1, or s 2 depending on the type of ξ. The statement of Theorem 1.33 becomes cleaner in 2 situations:

1. When k = 2, the quantity Q is:

Q(t) = t - 1 2        a + 1 a , for time coordinate a,
for null coordinate a -1 a , for space coordinate 2. When Σ does not intersect the level set ξ = a, B(t) is just the area of the surface in the region a ≤ ξ ≤ t.

Recall that by Remark 1.16, the non-tangency condition is automatically satisfied if Σ is the intersection of a minimal submanifold with the region ξ > a.

Appendix A: Weighted monotonicity and comparison lemma for stationary currents, varifolds and harmonic maps. Monotonicity formulae.

Theorem 1.8 also holds when Σ is a stationary rectifiable k-current. The proof can be adapted in the same fashion as [START_REF] Michael | Complete minimal varieties in hyperbolic space[END_REF] and [START_REF] Ekholm | Embeddedness of Minimal Surfaces with Total Boundary Curvature at Most $4\pi[END_REF]. We replace the integration by part (1.11) by the first variation formula of current, which reads

ˆΣ div Σ X d∥Σ∥ = 0 (1.20)
where X is any smooth vector field and d∥Σ∥ is the mass measure.

We recover kA h -V U A ′ h ≤ 0 by choosing X := χ(h)∇h in (1.20) where χ is a decreasing function that approximates the characteristic function of [-∞, t]:

div Σ X = χ ′ |∇ Σ h| 2 + χ∆ Σ h ≥ χ ′ V + kχU .
To define the tube extension and the compensated volume B h , we replace the boundary γ of Σ (and the intersection γ 0 = Σ ∩ h -1 (h 0 ) respectively) by an H k-1 -rectifiable set such that the pair (Σ, γ) is strongly stationary. This means that

ˆΣ div Σ X ≤ ˆγ |X ⊥ |
for any smooth vector field X whose normal component to γ is X ⊥ . Equivalently there exists an H k-1 -measurable normal vector field ν on γ with sup |ν| ≤ 1 such that

ˆΣ div Σ X = ˆγ g(X, ν)
The definition (1.7) should be rewritten for strongly stationary pair (Σ, γ 0 ) as

B h (Σ)(t) := ˆΣ U (h) - 1 k ˆγ0 g(∇h, ν 0 ).
Here the normal derivative of h in the boundary term was replace by g(∇h, ν 0 ) When Σ is a stationary rectifiable k-varifold, the first variation formula reads

δΣ.X = ˆT ∈Gr(k,M ) div T X dΣ(T )
where the integral was taken in the Grassmannian Gr(k, M ) of unoriented k-dimensional planes in M . Because div T ∇h = Tr T Hess h = kU for any T ∈ Gr(k, M ), one still has, for any perturbation X := χ(h)∇h:

div T X = χ ′ |∇ T h| 2 + χ div T ∇h ≥ χ ′ V + kχU ,
where χ is a decreasing function and ∇ T h is the projection of the gradient of h to T . Lemma 1.10 can be stated and proved in the same manner:

Lemma 1.34. Let Σ be a rectifiable k-varifold and γ be a (k -1)-rectifiable set such that the pair (Σ, γ) is strongly stationary. Suppose that γ is contained in the region h ≤ t 0 and Σ is supported in the region U ≥ 0. Then Σ is supported in the region h ≤ t 0 .

Proof. By definition of strong stationary pair, one has for any vector field X ˆGr(k,M)

div T XdΣ(T ) ≤ ˆγ |X ⊥ |. With X = f (h)∇h, one has div T X = f ′ |∇ T h| + f kU for any T ∈ Gr(k, M ), so ˆγ |f ||∇h ⊥ | ≥ ˆGr(k,M) f ′ |∇ T h| dΣ(T ) + k ˆM f U d∥Σ∥. (1.21)
Now we choose the function f to be any non-negative, increasing function in h with support in (t 0 , ∞), the LHS of (1.21) vanishes while the RHS is non-negative. Equality in (1.21) happens only if f vanishes ∥Σ∥-almost everywhere, which is the conclusion.

Theorem 1.8 can also be extended for harmonic maps. Given a map f : (Σ, g Σ ) -→ (M , g), we define its dimension at a point p ∈ Σ to be the ratio |dfp| 2 |dfp| 2 o of the tensor norm of the derivative at p (the energy density) and its operator norm. It is +∞ if df p = 0. Note that when df p is non-zero and conformal, this is the dimension of Σ. The dimension of f , defined as the smallest dimension among all points of Σ. It will play the role of k in our argument.

The weighted Dirichlet energy of f in the region h ≤ t is defined as

E h (t) := ˆΣ,h•f≤t U |df | 2
or in the compensated case,

E h (t) := ˆΣ,h 0 ≤h•f ≤t U |df | 2 + ˆΣ,h•f=h 0 |d(h • f )|.
The weighted density is defined as

Θ h (t) := E h (t) V (t) k/2
where k is the dimension of f . Theorem 1.35. Let h, U , V be as in Theorem 1.8 and f : Σ -→ M be a harmonic map. Then d dt Θ h (f ) has the same sign as U .

Proof. By Lemma 1.6 one has ∆(h

• f ) = U |df | 2
and by integration by part,

E h (t) = ˆΣ,h•f=t |d(h • f )|. (1.22)
One then compares E h with its derivative obtained from coarea formula

dE h dt = U (t) ˆΣ,h•f=t |df | 2 |d(h • f )| . The definition of k guarantees |df | 2 |d(h • f )| ≥ k |d(h • f )| |dh| 2 and therefore U -1 dE h (t) dt ≥ k V E h .
The harmonic map version of Proposition 1.18 is:

Corollary 1.36. Let h, U , V be as in Theorem 1.8. Let (Σ 2 , g Σ ) be a surface with boundary γ = ∂Σ and f : Σ -→ M be a harmonic map. Suppose that f sends γ to a level set h = t. Then the weighted Dirichlet energy of f is bounded between:

2mπV (t) ≤ E h (f ) ≤ |f (γ)|.V (t) (1.23)
where |f (γ)| is the length of the image of γ in M and m is the multiplicity of f at h -1 (h min ).

In particular, if h is minimised at a point and m is the multiplicity of f at his point, then |f (γ)| ≥ m.2π.

Proof. The first half of (1.23) follows from Theorem 1.35. For the second half, since the RHS of (1.22) does not depend on the metric on γ, we have:

E h (f )(t) ≤ ˆγ |dh| g vol 1 f * g = |f (γ)|V (t).
By carefully writing down all the estimate in the proof of Theorem 1.8, we obtain monotonicity formulae for submanifolds and maps Theorem 1.37 (Monotonicity formula for submanifolds). Let (M , g), h, U , V be as in Theorem 1.8 and Σ be a k-dimensional submanifold of M with mean curvature vector H, then

ω k-1 k Θ A h (Σ)(t 2 ) -Θ A h (Σ)(t 1 ) = ˆΣ,t 1 ≤h≤t 2 |∇h ⊥ | 2 U V k 2 +1 + ˆt2 t=t 1 U V k 2 +1 ˆΣ,h≤t dh.H,
where ∇ ⊥ h is the part of ∇h orthogonal to Σ.

Theorem 1.38 (Monotonicity formula for maps). Let (M , g), h, U , V be as in Theorem 1.8 and f : Σ -→ M be a C 2 map of dimension k with density e(f ) and tension field τ (f ), then

Θ h (f )(t 2 ) -Θ h (f )(t 1 ) = ˆΣ,t 1 ≤h•f ≤t 2 e(f ) - |f * dh| 2 |dh| 2 k U + k ˆt2 t=t 1 U V k 2 +1 (t) ˆh•f≤t dh.τ (f )dt
The proof of the Comparison Lemma 1.15 can also be adapted for rectifiable varifolds and currents. We will write down the details for the compensated case here. The relation P -1

1 dB P 1 dt = P -1 2 dB P 2
dt , hence equation (1.15), remains true in distribution sense because of Fubini theorem

ˆT t=h 0 ˆM 1 h 0 ≤h≤t .f (h(m))φ(t)d∥Σ∥(m) dt = ˆM f (h(m)) ˆh(m) t=h 0 φ(t)dt d∥Σ∥(m) for all ∀φ ∈ C ∞ c (0, T ). So it follows from (1.16) that d dt [Q 1 (Θ 1 -Θ 2 )] ≥ 0 as distribu- tion, i.e. ˆT t=h 0 Q 1 (Θ 1 -Θ 2 )φ ′ dt ≤ 0 ∀φ ∈ C ∞ c (h 0 , T ), φ ≥ 0 (1.24)
We will prove that (1.24) and the non-tangency condition ∥Σ∥(h -1 (h 0 )) = 0 imply that Θ 1 ≥ Θ 2 on [h 0 , T ). The monotonicity of B P i implies that B P i and Θ i are continuous except at countably many points. Moreover, we have lim sup

t→a - Θ i (t) ≤ Θ(a) = lim inf t→a + Θ i (t) ∀a ∈ (0, T ) (1.25)
Let t 1 ∈ (h 0 , T ) be a point where both Θ i are continuous, we will prove that Θ 1 (t 1 ) ≥ Θ 2 (t 1 ). It follows from (1.25) that Θ 1 ≥ Θ 2 everywhere. We choose the test function φ in (1.24) so that φ ′ is a negative bell curve of width ϵ around t 1 and positive bell curve around h 0 + ϵ 2 , as in Figure 1.3. It suffices to see now that the negative bell part of the integral (1.24) converges to [Q 1 (Θ 1 -Θ 2 )](t 1 ) while the positive bell part converges to 0. The former is due to continuity at

t 1 . Because Q 1 , Q 2 , P 1 , P 2 are continuous, to prove lim ϵ→0 1 ϵ ˆϵ t=0 Q 1 (Θ 1 -Θ 2 ) = 0,
we only need:

lim ϵ→0 1 ϵ ˆϵ t=h 0 ˆΣ,h 0 ≤h≤t 1 = 0,
which is true because of Fubini and Monotonic convergence:

1 ϵ ˆϵ t=0 ˆΣ,h 0 ≤h≤t 1 = 1 ϵ ˆΣ,h 0 ≤h≤h 0 +ϵ (h 0 + ϵ -h) ≤ ∥Σ∥({h 0 ≤ h ≤ h 0 + ϵ}) -→ 0 as ϵ → 0. Now substitute Θ 1 ≥ Θ 2 into (1.
15), we have Θ ′ 2 ≥ 0 as distribution. By the same choice of test function φ as before, one has Θ 2 (t 1 ) ≤ Θ 2 (t 2 ) for continuous points t 1 < t 2 , and then by (1.25) for all t 1 < t 2 . 

Appendix B: Monotonicity theorems and comparison

lemma in space of bounded curvature.

Fix a point O in a Riemannian manifold (M n , g), and let r inj be the injectivity radius at O. The Hessian of the distance function r to O is given by:

Hess p r(∂ r , •) = 0, Hess p r(v, v) =: I(v), ∀p ∈ B(O, r inj ), ∀v ⊥ ∂ r (1.26)
where

I(v) = ˆΓ | V | 2 -K M ( γ, V )|V | 2
is the index form of the Jacobi field V along the geodesic Γ between O and p that interpolates 0 at O and v at p. When the sectional curvature satisfies K M ≤ -a 2 (respectively b 2 ), we can check that

I(v) ≥ a coth(ar)|v| 2 (respectively b cot(br)|v| 2 ).
This gives an estimate of the Hess r on the directions orthogonal to ∂ r . By a change of variable, we can estimate the Hessian in a more isotropic way.

Proposition 1.39. Inside B(O, r inj ), one has 1. Hess(a -2 cosh ar) ≥ cosh ar. g if K M ≤ -a 2 . 2. Hess(-b -2 cos br) ≥ cos br. g if K ≤ b 2 and r ≤ π b .
This means that the functions h = a -2 cosh ar and h = -b -2 cos br satisfy Hess h ≥ U .g. We note that the functions U , V defined as in Proposition 1.1 are still functions of h:

U = a 2 h (respectively -b 2 h), V = |∇h| 2 = a 2 h 2 -a -2 (respectively -b 2 h 2 + b -2 )
and one still has

U = 1 2 V ′ . We define the eligible interval [0, r max ) to be [0, r inj ) when K M ≤ -a 2 and [0, min(r inj , π 2b )) when K M ≤ b 2 . Remark 1.40.
1. When M is H n or S n , the function h is the time-coordinate ξ 0 and the Euclidean coordinate x in Example 1.4 and Example 1.3.

It follows from maximum principle and Proposition 1.39 that there exists no closed minimal submanifold in B(O, r max ).

If M is Cartan-Hadamard (r max = +∞) and if the boundary of a minimal submanifold is contained in a geodesic ball, the entire submanifold stays inside that ball.

Weighted monotonicity theorem

As explained in Remark 1.9, we can still have weighted monotonicity theorem for the function h. The weighted volume and weighted density of a submanifold Σ k are defined as

Ā(Σ)(t) := ˆΣ,r≤t U , Θ(t) := Ā(Σ)(t) Q(t) , Q(t) := ω k-1 k sinh k at a k , when K M ≤ -a 2 ω k-1 k sin k bt b k , when K M ≤ b 2
Note that Q is the weighted volume of a ball of radius t in the k-dimensional space-forms of curvature -a 2 or b 2 and that the density converges to 1 as t decreases to 0.

Theorem 1.41. Let M be a Riemannian manifold with sectional curvature K M ≤ -a 2 or K M ≤ b 2 and Σ k ⊂ M be an extension of a minimal submanifold by geodesic cone, then the density Θ(Σ)(t) is an increasing function on the eligible interval.

We can also prove that the intersection of a minimal submanifold with a geodesic sphere of M has bigger (k -1)-volume than the great k-sphere of the sphere of same radius in space-form.

Corollary 1.42. Let Σ k ⊂ M be a minimal submanifold containing the point O with multiplicity m and l t := H k-1 Σ ∩ r -1 (t) . For all t in the eligible interval, we have

Q(t) ≤ Ā(Σ)(t) ≤ l t k V (t) 1/2
In particular,

l t ≥      mω k-1 sinh at a k-1 , if K M ≤ -a 2 mω k-1 sin bt b k-1 , if K M ≤ b 2
Proof. Instead of Lemma 1.17 (see Remark 1.47), the upper estimate of Ā follows from (1.11):

Ā(Σ)(t) ≤ 1 k ˆΣ,h=t |∇ Σ h| ≤ V (t) 1/2 k l t .

Comparison lemma

It is more convenient see a weight P as a non-negative continuous function on r instead of h. The P -volume is defined as A P (Σ)(t) := ´Σ,r≤t P (r) and the P -density is

Θ P := A P Q .
Here Q is P -volume of a ball of radius r in space-form:

Q(t) :=    ω k-1 ´r≤t P (r) sinh k-1 ar a k-1 dr, when K M ≤ -a 2 ω k-1 ´r≤t P (r) sin k-1 br b k-1 dr, when K M ≤ b 2 (1.27)
Lemma 1.43 (Comparison). Let Σ k ⊂ M be any submanifold not necessarily minimal and P 1 , P 2 be two non-negative, continuous weight functions. Define Q 1 , Q 2 from P 1 , P 2 as in (1.27).

1. If P 1 is weaker than P 2 , i.e.

P 1 Q 1 ≤ P 2 Q 2 , and d dt Θ 2 ≥ 0 in the eligible interval, then Θ 1 ≤ Θ 2 and dΘ 1 dt ≥ Q 2 P 2 P 1 Q 1 dΘ 2 dt ≥ 0 2. If P 2 is weaker than P 1 and d dt Θ 2 ≥ 0 in the eligible interval, then Θ 1 ≥ Θ 2
We note that it is necessary to mention a or b in order to compare two weights. However, it can be checked that Lemma 1.44. For any a, b ≥ 0 and u ≥ v ≥ 0,

1. P 1 = cosh vr is weaker than P 2 = cosh ur when K M ≤ -a 2 , 2. P 1 = cos ur is weaker than P 2 = cos vr in the interval t ≤ π 2u when K M ≤ b 2 .
Remark 1.45. 1. It follows from Lemma 1.44 and Theorem 1.41 that for negatively curved space K M ≤ -a 2 , the monotonicity theorem holds for any weight P u = cosh ur with u ∈ [0, a) and in particular the uniform weight P 0 = 1. One recovers the Theorem 1 of [START_REF] Michael | Complete minimal varieties in hyperbolic space[END_REF]. 

2. When K M ≤ b 2 ,
A(Σ ∩ B(O, t)) ≥ mω k-1 ˆt r=0 sin k-1 (br) b k-1 dr
In particular, if M is simply connected, with curvature pinched between b 2 4 and b 2 and Σ ⊂ M is a closed minimal surface, then

A(Σ) ≥ 1 2 ω k b -k . (1.28)
A weaker version of inequality (1.28), with 1 2 ω k replaced by the volume of the unit k-ball, was proved in [START_REF] Hoffman | Sobolev and isoperimetric inequalities for riemannian submanifolds[END_REF].

Remark 1.47. Lemma 1.17 does not generalise because the P -volume of a geodesic cone in M is no longer proportional to Q.

2 Harmonic maps and Minimal surfaces in the hyperbolic space and the sphere

A few properties of minimal surfaces and harmonic maps in H n

In this section, we are interested in minimal submanifolds of the hyperbolic space that are asymptotic to a properly embedded submanifold γ of the sphere at infinity. Those are submanifolds-with-boundary Σ of the compatification Bn of H n , whose boundary is γ. We will denote the interior by Σ and call γ its ideal boundary. The Poincaré ball model provides a C ∞ compactification of H n . This is the smooth structure we use to talk about boundary regularity.

Properness, Maximum principle and Convex hull

Recall that a k-dimensional minimal submanifold Σ k of H n is minimal if and only if the Minkowskian coordinates satisfy

∆ξ α = kξ α (2.1)
as functions on Σ. This is obtained by pulling back (1.2) to Σ. The same result also holds for maps. A map f : Σ k -→ H n is harmonic if and only if

∆(ξ α • f ) = λξ α
for all Minkowskian coordinate ξ α and a certain λ ≥ 0. In that case, λ is the energy density of f . It was observed by Anderson [START_REF] Michael | Complete minimal varieties in hyperbolic space[END_REF] that if the boundary of a minimal submanifold lies on one half of the hyperbolic space cut out by a totally geodesic hyperplane H then the entire submanifold also lies on that side. One can see this by applying maximum principle to the space coordinate ξ 1 whose zero set is H, which satisfies (2.1). This argument shows that a minimal submanifold of H n is contained in the convex hull of its boundary. This convex hull property can be proved for weaker notion of "minimal submanifold", such as stationary currents or varifolds with the technique of Appendix A.

Definition 2.1. Let γ be a (k -1)-dimensional submanifold of S ∞ . The convex hull of γ, denoted by ConvHull(γ), is the intersection of all half spaces of H n containing γ. Here a half space is a connected component of the complement of a totally geodesic hyperplane.

Equation (2.1) also shows that the time coordinate ξ 0 is sub-harmonic on a minimal submanifold. Therefore, a minimal submanifold of H n is proper if it is proper near the boundary.

Definition 2.2. Let f : Σ -→ M be a map between the interiors of manifolds with boundary Σ and M . We say that f is proper near boundary if there exists an open neighbourhood U at infinity of Σ, i.e. an open subset of

Σ such that Σ \ U is a compact, such that f U : U -→ M is proper.
The previous discussion on the convex hull can be stated as: Proposition 2.3. Let Σ k be a manifold with boundary γ and f : (Σ k , γ) -→ (H, S ∞ ) be a harmonic map that is proper near boundary. Then f is proper on Σ and its image is contained in ConvHull(γ).

It also follows from convex hull property is that minimal submanifolds of the hyperbolic space meets the sphere at infinity at a right angle: the normal vector of S ∞ in H n is tangent to Σ.

Using the convex hull and the unweighted monotonicity theorem, Anderson solved the asymptotic Plateau problem in H n . Theorem 2.4 (Anderson cf. [START_REF] Michael | Complete minimal varieties in hyperbolic space[END_REF]). Let γ be an immersed closed (k -1)-submanifold of S ∞ . There exists an area-minimising locally integral k-current of H n asymptotic to γ in the following sense:

supp Σ ∩ S ∞ = γ.
For harmonic maps, the initial value problem was solved by Li and Tam using the tension field flow.

Theorem 2.5 ). Let f : S k-1 -→ S n-1 be a C j,α map, 1 ≤ j ≤ m -1 with nowhere vanishing energy density. Then there exists a unique C j,α harmonic extension F :

H k -→ H n of f .
There is also a notion of convex hull in Lawson's work [START_REF] Lawson | The Global Behavior of Minimal Surfaces in $S^n$[END_REF] on minimal submanifolds of S n that could be contained in one hemisphere. This exploits the fact that the restriction of any Euclidean coordinate of R n+1 to a minimal submanifold is super harmonic when it is positive, as seen by the equation ∆x i = -kx i .

Renormalised area

A boundary defining function is a non-negative function ρ on the compactification H n that vanishes exactly on S ∞ and exactly to first order, that is dρ ̸ = 0 at all points of S ∞ . Such function is called special if |d ln ρ| g H n = 1 on a neighbourhood of the boundary.

It was proved by Graham and Witten [GW99] that:

Theorem 2.6 (Graham-Witten). Let Σ 2 be a minimal surface in an asymptotically hyperbolic manifold M that is C 2 up to boundary and ρ be a special boundary defining function. Then the area of Σ has the expansion

A(Σ ∩ {ρ ≥ ϵ}) = |γ| ḡ ϵ + A R + o(1) (2.2)
where ḡ = ρ 2 g. Moreover, the coefficient A R , called the renormalised area of Σ, is independent of the choice of ρ.

Remark 2.7. The expansion (2.2) will also be valid if ρ is replace by a boundary defining function ρ 1 that is equal to ρ up to third order:

ρ 1 = ρ + o(ρ 2 ) or equivalently ρ = ρ 1 + o(ρ 2 1 )
. This is because ρ 2 1 g and ρ 2 g induce the same metric on the ideal boundary and

A(Σ ∩ {ρ 1 ≥ ϵ}) = A(Σ ∩ {ρ ≥ ϵ + o(ϵ 2 )}) = |γ| ḡ ϵ + o(ϵ 2 ) + A R + o(1) = |γ| ḡ ϵ + A R + o(1).
The natural boundary defining functions coming from Minkowskian coordinates ξ 0 , ξ 1 , ξ l of the hyperbolic space are all special up to third order.

1. The function ρ l = ξ -1 l is a special boundary defining function. It is the half-space coordinate corresponding to ξ l . The metric ḡ in (2.2) is the flat metric on boundary.

The function

ρ 0 = ξ -1
0 is also a boundary defining function. It is third order close to a special boundary defining function: In the associated Poincaré model, the function ρ = 2 1-r 1+r , where r is the Euclidean distance to the centre, is special. It is related to ρ 0 by

ρ 0 = ρ 1 + ρ 2 4 = ρ + O(ρ 3 ). Graham-Witten expansion (2.2) becomes A(Σ ∩ {ξ 0 ≤ t})(t) = |γ| gt + A R + O(t -1 ) (2.3)
where g is the round metric associated to ξ 0 . 3. The function ρ 1 = |ξ 1 | -1 is a boundary defining function except on the equator where it is undefined. It is special up to third order. The function l = | arsinh ξ 1 | which computes the distance to the totally geodesic hyperplane ξ -1 1 (0) satisfies |dl| = 1, and so ρ = 2 exp(-l) is special. The functions ρ 1 and ρ are related by

ρ 1 = ρ 1 -(ρ/2) 2 = ρ + O(ρ 3 ).
The Graham-Witten expansion (2.3) can be rewritten as

A(Σ ∩ {ξ 1 ≤ t}) = |γ ∞ | gt + A R + O(t -1 ) (2.4)
where g is the doubled hyperbolic metric associated to ξ 1 (see Example 1.4).

It was proved by Alexakis and Mazzeo [START_REF] Alexakis | Renormalized Area and Properly Embedded Minimal Surfaces in Hyperbolic 3-Manifolds[END_REF] that the renormalised area and the Willmore energy are, up to a constant, the same for minimal surfaces of H n . The Willmore energy of a surface is defined as the total integral of its trace-free second fundamental form:

W(Σ) = 1 2 ˆΣ | ÎI| 2 .
It is a conformal invariant of the metric in the ambient space. For this reason, it is finite if the surface extends smoothly at infinity.

Proposition 2.8 (cf. [AM10]

). Let Σ be a minimal surface of H n that extend in a C 2 way up to its ideal boundary γ. Then its renormalised area and Willmore energy are

related by A R (Σ) = -W(Σ) -2πχ(Σ) (2.5)
Here χ(Σ) is the Euler characteristic. Moreover, if we double Σ along its boundary to obtain a closed surface 2Σ of S n , then for any round metric g S on S n ,

2A R (Σ) = -A g S (2Σ) - ˆ2Σ H 2 . (2.6)
Here A g S and H are the area and mean curvature of 2Σ under g S .

Proof. It follows from the Gauss-Codazzi formula in

H n that -1 + H 2 = κ + 1 2 | ÎI| 2 (2.7)
where κ is the Gauss curvature of the surface Σ and H is its mean curvature. Now we substitute H = 0, integrate (2.7) over the region Σ ϵ := Σ ∩ {ρ ≥ ϵ}, and apply Gauss-Bonnet formula to obtain:

A(Σ ϵ ) = -2πχ(Σ ϵ ) + ˆ∂Σϵ k - 1 2 ˆΣϵ | ÎI| 2 (2.8)
Here k is the curvature of the curve ∂Σ ϵ inside Σ. It follows from minimal surface equation of Σ that

|∂Σ ϵ | ḡ = |∂Σ| + O(ϵ 2 ), k = 1 + O(ϵ 2 )
We plug these into (2.8) and compare with Graham-Witten expansion to obtain (2.5).

The equation (2.5) can be rewritten as A R (Σ) = -1 2 W(2Σ) -2πχ(Σ). Now the Gauss-Codazzi formula for the surface 2Σ in S n says

1 + H 2 = κ + 1 2 | ÎI| 2
Integrate this and we have

A g S (2Σ) + ˆ2Σ H 2 = W(2Σ) + 2πχ(2Σ) = -2A R (Σ).

Explicit minimal surfaces

Minimal annuli of H 3

There are three families of minimal surfaces of genus 0 in H 3 that fill a pair of circles, with three different relative positions. They were documented under different names by do Carmo-Dajczer [START_REF] Do | Rotation Hypersurfaces in Spaces of Constant Curvature[END_REF] and then later by Krtouš-Zelnikov [START_REF] Krtouš | Minimal surfaces and entanglement entropy in anti-de Sitter space[END_REF]. Each of these three families were also separately found by Wang and Wei [START_REF] Bombieri | Seminar On Minimal Submanifolds[END_REF], Mori [START_REF] Mori | Minimal Surfaces of Revolution in H 3 and Their Global Stability[END_REF], and recently Martin-White [START_REF] Martin | Properly embedded, area-minimizing surfaces in hyperbolic $3$-space[END_REF]. It is perhaps useful to summarise here the results proved by these authors.

-Two disjoint circles. Up to isometry, there is a one-parameter family of annuli filling this configuration. These surfaces was first discovered by Mori [START_REF] Mori | Minimal Surfaces of Revolution in H 3 and Their Global Stability[END_REF]. They were called surfaces of spherical type in [START_REF] Do | Rotation Hypersurfaces in Spaces of Constant Curvature[END_REF] and rotational symmetric in [START_REF] Krtouš | Minimal surfaces and entanglement entropy in anti-de Sitter space[END_REF]. By a Möbius transform, we can assume that the boundary is a pair of concentric circles of radius R 1 < R 2 on the boundary plane of the half-space.

The surfaces are rotationally symmetric and the number of solutions with a given boundary modulus can be seen from Figure 2.1. When the two circles are sufficiently far from each other, there is no minimal annulus filling them. As they get closer, we start to see exactly one minimal annulus, which then splits into two: one tends to the two-discs solution and one escapes to infinity. The annulus that escapes to infinity is stable while the other has Morse index 1. This stability question was settled by Bérard and Sa Earp [START_REF] Bérard | Lindelöf's theorem for hyperbolic catenoids[END_REF], with partial results due to Mori and do Carmo-Dajczer. -Two circles intersecting at 2 points. The problem can be reduced further to finding minimal discs filling two circular arcs intersecting each other non tangentially (see Figure 2.3 and Figure 2.4). Up to isometry, the family is one-parameter. These surfaces were called of parabolic type in [START_REF] Do | Rotation Hypersurfaces in Spaces of Constant Curvature[END_REF] and translational in [START_REF] Krtouš | Minimal surfaces and entanglement entropy in anti-de Sitter space[END_REF]. They were first found by Wang and Wei as counter-examples for the Bernstein conjecture in the hyperbolic space [START_REF] Bombieri | Seminar On Minimal Submanifolds[END_REF]. If we assume, after a Möbius transform, that the boundary curve is the union of two rays starting at the origin of the halfspace model, then these surfaces are scale-invariant. Wang and Wei proved that these surfaces are area-minimising. It is worth noting that although the boundary is not C 1 , the minimal disc is smoothly embedded everywhere in the interior. -Two circles tangent to each other. Up to Möbius transform, there is only one configuration of the boundary: two parallel line of distance 1 to each other on the boundary of the half-space model. The minimal surface filling these two lines is invariant by translation along the lines. It was called hyperbolic type in [START_REF] Do | Rotation Hypersurfaces in Spaces of Constant Curvature[END_REF] and horocylic in [START_REF] Krtouš | Minimal surfaces and entanglement entropy in anti-de Sitter space[END_REF]. The surface was proved to be stable by do Carmo and Dajczer and later area-minimising by Martin and White when they rediscovered it. The overlapping efforts and terminologies are summarised in the following table. 

Minimal annuli filling Hopf link

We will point out an explicit one-parameter family of annuli of H 4 whose boundaries are Hopf links of S 3 . We see a Hopf link as a pair of orbits of the S 1 -action

(z 1 , z 2 ) -→ (e iθ z 1 , e -iθ z 2 )
(2.9) on the 3-sphere

ρ := |z| 2 + |w| 2 = 1 in C 2 . If C 2 is
identified with the space of quaternions by (z, w) → z + jw, this action corresponds to the multiplication on the left by e iθ . Let φ = φ(ρ) be any radial function on R 4 , we will construct surfaces that are invariant by (2.9) and minimal under the metric g = e 2φ g E . When φ is constant, these surfaces are the complex curves z 1 z 2 = a, a ∈ C. In the general case, they are obtained by rotating a curve

z 1 z 2 = F (ρ) in the real plane Im z 1 = Im z 2 = 0.
Here F is a real function on ρ. The minimal surface equation can be rewritten as the following second order ODE of

F X ′ X - Y ′ Y + 1 ρ + φ ′ 2 8 + ρ X 2 Y 2 -4 F ′ F = 0, where X = F -F ′ ρ, Y = F ′ 2 ρ 2 -4F 2 .
This can be reduced to a first order ODE using a symmetry of the problem. Starting from a solution curve, we can obtain more solution by rotating it in the real plane. This second rotation corresponds to multiplying on the right of z 1 + jz 2 by e jα and it commutes with the left multiplication by e iθ . Concretely, by a change of variable F = ρ 2 sin θ(ρ) the ODE above reduces either to the first order Bernoulli equation θ ′2 = -ρ 2 + C 2 ρ 4 e 4φ for a parameter C > 0, or to θ ′ = 0 which corresponds to pairs of 2-planes. The profile curve can be described in a more geometric fashion, as in Proposition 2.9. This description allows us to see that these surfaces are the complex curves z 1 z 2 = a when g is the Euclidean metric. Proposition 2.9. Let M C be the surface in R 4 given by rotating the following real plane curve:

sin 2 ψ = C 2 e -4φ ρ 2 , C > 0 (2.10)
Here ψ is the angle formed by the tangent of the curve at a point p and the radial direction -→ Op. Then M C is minimal under the metric g = e 2φ g E . Up to SO(4), the annuli M C and the 2-planes are the only minimal surfaces obtained as orbit of a real plane curve by the rotation (2.9).

For the hyperbolic space, e φ = 2 1-ρ . Seen from the origin, the profile curve spans an angle θ C that varies between 0 (C = +∞) and π 2 (C = 0). The profile curves are drawn in Figure 2.6 (a).

For the round sphere, e φ = 2 1+ρ and the parameter C can only be chosen in (0, 1). The angle θ C can take any value between π 2 (C = 0) and π √ 2 (C = 1). In the case C = 0, M C is a totally geodesic S 2 and in the case C = 1, M C is (part of) the Clifford torus of the equatorial S 3 . In particular, if θ C is a rational multiple of π in this interval, we can close the surface by repeating the profile curve. This produces a countable family of immersed tori in S 4 that are invariant by the quaternionic rotation. The dynamical system description of the family M C in the next section will show that the resulting tori are smooth at the circles where the annuli are glued together. It was pointed out to the author by Benjamin Aslan that the annuli M C in the case of S 4 are already known. Hsiang and Lawson [Hsiang.H.BlaineLawson71_MinimalSubmanifoldsLow] constructed a family τ p,q,α of minimal annuli of S 3 invariant by the (p, q)-rotation (z, w) -→ (e ipθ z, e iqθ w)

where we have identified the Euclidean space R 4 , where S 3 is embedded as the unit sphere, with C 2 . Lawson [Lawson70_CompleteMinimalSurfaces] defined a trans- form, called bipolar transform, that turns a minimal surface in S 3 into a minimal surface in S 5 . This transformation is defined by wedging a conformal harmonic map f : Σ -→ S 3 ⊂ R 4 with its Gauss map (valued in R 4 ). The result is a map from Σ to the unit sphere of Λ 2 R 4 ∼ = R 6 , which is conformal and harmonic. It is easy to check that if the map f is (p, q)-invariant, then its bipolar transform is contained in a subsphere S 4 of S 5 and is invariant by a (p + q, p -q)-rotation. In case p = 0, q = 1, one obtains the annuli M C .

From dynamical system point of view

In this subsection, we will write the minimal surface equation of M C as a dynamical system. We start with the following Lemma which computes how the second fundamental form changes under conformal transform. Recall that for a C 2 map f : (Σ, h) -→ (M , g), the second fundamental form is a 2-form on Σ with value in f * T M given by the covariant derivative II(f ) = ∇df . Its trace τ (f ) is called the tension field. Here we see df as a section of Ω 1 (f * T M ) and the connection on f * T M is obtained by the Levi-Civita connections of M and Σ.

Lemma 2.10. Let f : (Σ k , h) -→ (M n , g) be a C 2 map and denote by II(f , h, g) its second fundamental form. Then 1. For all function φ on M

II(f , h, e 2φ g) = II(f , h, g) + df ⊗ d(φ • f ) + d(φ • f ) ⊗ df -∇ g φf * g 2. For all function φ on Σ II(f , e 2φ h, g) = II(f , h, g) -df ⊗ dφ -dφ ⊗ df + (f * ∇ h φ) ⊗ h In particular, τ (f , e 2φ h) = e -2φ τ (f , e 2φ h) + (k -2)f * ∇ h φ .
Proof. Both equations follow from Leibniz rule II(u • v) = v * II(u) + u * II(v) and the formula of the second fundamental form of the identity map ι : (M , g) -→ (M , e 2φ g):

II(ι) = ι ⊗ dφ + dφ ⊗ ι + ∇φ ⊗ g,
where ∇φ denotes the g-gradient.

Now let us look for harmonic maps f : (S 1 × R, dθ 2 + ds 2 ) -→ (R 4 , g φ ) given by the equation

z 1 = e iqθ u(s), z 2 = e -ipθ v(s), p, q ∈ Z (2.11)
Here u and v are complex-valued functions on R.

The Euclidean tension field of f is

τ (f ) = u ′′ u -q 2 z 1 ∂ z 1 + ū′′ ū -q 2 z1 ∂ z1 + v ′′ v -p 2 z 2 ∂ z 2 + v′′ v -p 2 z2 ∂ z .
So f is harmonic into the Euclidean space if and only if

u = A 1 e qs + Ā2 e -qs , v = B 1 e ps + B2 e -ps , (A 1 , A 2 , B 1 , B 2 ) ∈ C 4
(2.12) Among these maps, those that are conformal have

q 2 A 1 A 2 + p 2 B 1 B 2 = 0 (2.13)
Most of the minimal surfaces found this way are not complex curves under any complex structure of R 4 compatible with the Euclidean metric. By definition, a surface is complex under any such complex structure if and only if one of its two Gauss lifts is constant. Let J 0 be the complex structure that gives the coordinates (z 1 , z 2 ).

Proposition 2.11. The surfaces given by the equation (2.11) and (2.12) with parameters (A 1 , A 2 , B 1 , B 2 ) ∈ C 4 satisfying (2.13) are minimal in the Euclidean 4-space.

1. When p = q = 1, all of these surfaces are complex curves under compatible complex structures of R 4 .

2. When p ̸ = q, the surfaces are complex curves under a complex structure homotopic to J 0 if and only if A 1 B 1 = A 2 B 2 = 0, and a complex structure not homotopic to

J 0 if and only if A 1 B 2 = A 2 B 1 = 0.
The tension field under the metric g φ can be computed using Lemma 2.10. The map f is g φ -harmonic if and only if

   u ′′ -q 2 u = 2uφ ′ q|u| 2 + p|v| 2 + |v ′ | 2 -u ′2 ū u -(v ′ v + v v′ ) u ′ u v ′′ -p 2 v = 2vφ ′ q|u| 2 + p|v| 2 + |u ′ | 2 -v ′2 v v -(u ′ ū + u ū′ ) v ′ v (2.14)
Here φ ′ denotes dφ dρ while all other derivatives are taken in s. By holomorphicity of the Hopf differential, a map f given by (2.14) is conformal everywhere if it is conformal at one value s = s 0 . For this reason, the conformality Figure 2.8 -Approximation of the profile curve in Figure 2.8 using the system (2.14).

Initial state is described with a blue dot and arrow.

condition is an initial condition of the system. Concretely, f is conformal if and only if

q 2 |u| 2 + p 2 |v| 2 = |u ′ | 2 + |v ′ | 2 q(u ū′ -u ′ ū) = p(v v′ -v ′ v) (2.15)
It can be checked that (2.15) holds for all s if it holds for one value s = s 0 . When u, v are real-valued, the initial condition (2.15) is equivalent to

H := 1 2 (u ′2 + v ′2 -q 2 u 2 -p 2 v 2 ) = 0. Under this condition, (2.14) becomes u ′′ = q 2 u + 4φ ′ v ′ (uv ′ -u ′ v) v ′′ = p 2 v -4φ ′ u ′ (uv ′ -u ′ v) (2.16)
It can be checked that H is a first integral. When p = q = 1, the system (2.16) has a symmetry as described in subsection 2.2.2. This corresponds to the first integral

C = e 2φ (uv ′ -u ′ v).
which is the parameter C in Proposition 2.9.

When p ̸ = q, the system no longer has the quaternionic symmetry and I cannot solve (2.14) explicitly. A few numerical approximations are shown in Figure 2.8 and Figure 2.9.

Applications of monotonicity theorems

In this section, we will be looking at submanifolds of the Euclidean unit ball B n . We denote by B(r) the closed n-ball centred at the origin with radius r ∈ (0, 1) and S(r) its boundary sphere. Figure 2.9 -A solution of the system (2.14) in S 4 when (p, q) = (2, 5) that seems to be periodic.

Intersection curves

Recall that Proposition 1.18 allows us to estimate the intersection of a minimal submanifold with the level set h = t. One immediate consequence is: Proposition 2.12. Let Σ k be a submanifold of the unit ball B n that contains the origin with density m. Suppose that the intersection of Σ with B(r) has no other boundary than its intersection γ r with the sphere. If Σ is minimal, either under the Poincaré metric, the Euclidean metric or the half sphere metric of B n , then the radial projection of γ r on S(1) has Euclidean volume least mω k-1 .

The Propositions 2.13 and 2.14 are the application of Proposition 1.18 to null and space coordinates of H n : Proposition 2.13. Let Σ be a minimal k-submanifold of H n that is bounded in the half space model and C 2 up to its ideal boundary γ ∞ . Let γ t be the intersection of Σ and the horizontal hyperplane ξ l = t, or equivalently x = 1 t for the half space coordinate x. Then the Euclidean volume of γ ∞ is greater than the T Σ-parallel volume of γ t : |γ ∞ | ≥ |γ T Σ t |. More generally, the Euclidean volume of a level set γ t 1 = Σ ∩ {x = 1 t 1 } is greater than the parallel volume of any level set γ t 2 = Σ ∩ {x = 1 t 2 } higher than it (that is, with t 2 < t 1 ).

Recall that here the parallel volume of γ t (see Definition 1.5) is the Euclidean volume weighted by the angle between T Σ at the vertical direction. Proposition 2.13 is not at all obvious when we look at a neighbourhood of the smaller boundary circle of a Mori surface (as shown in Figure 2.10). The circumference of horizontal slices of this collar increases as we get higher and Proposition 2.13 becomes a statement about of how horizontal the surface has to be as it goes into the interior of H n . In other words, it is an estimate of the angle θ formed by the surface and the vertical direction.

We will illustrate Proposition 2.13 by computing the parallel length of the waist of the Mori's surfaces. Recall that in the half-space model, these are rotational annuli bounded by a pair of concentric circles. The waist is the circle closest to the rotational axis in hyperbolic distance. The green curve in Figure 2.11 is the parallel length of this circle. The orange curve represents its Euclidean length, of which we have no control. Proposition 2.13 says that the green curve has to stay below 1.

For the space coordinates, we have: Proposition 2.14. Let Σ be a minimal k-submanifold of H n in the region ξ 1 ≥ a > 0.

Suppose that the boundary of Σ is the union of a (k -1)-submanifold γ a of the level set ξ 1 = a and a (k -1)-submanifold γ t of ξ 1 = t > a. Then the normalised volume of γ t is not less than the T Σ-parallel volume of γ a .

In particular, when t = ∞ and γ ∞ is a submanifold of S ∞ , we have

|γ ∞ | ≥ |γ T Σ a |.

Lower bound of area of minimal surface in S n

The Comparison Lemma 1.15 can be useful even when we only have monotonicity in a weaker weight (in order words, how to go upstream in the chain (1.19)). We illustrate this with the following result, originally proved by Cheng, Li and Yau using by their estimate of the heat kernel of space forms.

Proposition 2.15 (Cheng-Li-Yau [START_REF] Shiu-Yuen | Heat Equations on Minimal Submanifolds and Their Applications[END_REF]). Let Σ k be a submanifold of the unit ball that contains the origin with density m. Suppose that Σ is minimal under the metric g that is either the Poincaré, the Euclidean or the half sphere metric of B n . Then the g-volume of Σ inside any ball B(r) is not less than m times the g-volume of a totally geodesic k-disc containing the origin.

Corollary 2.16. Any k-dimensional closed minimal submanifold of the sphere has volume at least ω k . Equality happens only for totally geodesic subspheres.

Proof of Proposition 2.15. It suffices to prove that the unweighted density functional with respect to the metric g is not less than m. When g is the Euclidean metric, this is Proposition 1.18. When g is the hyperbolic metric, this is Corollary 1.19. When g is the sphere metric, we know by Theorem 1.8 that the weighted density in the half sphere is not less than m. We do not know if the unweighted density is an increasing function, but the second half of the Comparison Lemma 1.15 says that it is also not less than m.

Proof of Corollary 2.16. We pick any point p on the submanifold and apply Proposition 2.15 to prove that the unweighted volume in the half sphere containing p is at least ω k 2 . We do not know whether the submanifold contains the antipodal -p, but we know that the weighted volume in the half sphere centred at -p is equal to the weighted volume in the half sphere centred at p. This is because any Euclidean coordinate function

x of R n+1 ⊃ S n satisfies ˆΣ x - 1 k ˆΣ ∆x = 0.
Now repeat the argument of Proposition 2.15 in the half sphere containing -p.

Area-minimising cone

As we claimed in Section 1.5, the second ≫ of the chain (1.19) recovers the following result, originally due to Anderson: Proposition 2.17 (cf. Theorem 9 of [START_REF] Michael | Complete minimal varieties in hyperbolic space[END_REF]). In the unit ball B n , minimising cones in the Poincaré metric are exactly minimising cones in the Euclidean metric.

It is not difficult to see that a cone is hyperbolic minimising only if it is Euclidean minimising.1 Proposition 2.18. Let C γ be a k-dimensional radial cone, constructed over a submanifold γ on the sphere at infinity of the Poincaré model. If C γ is Euclidean-minimising, then there is no other minimal surface asymptotic to γ.

Proposition 2.18 is stronger than Proposition 2.17. Knowing that the pair of 2-planes zw = 0 in C 2 is hyperbolic-minimising only allows us to rule out minimal surfaces of H 4 that agree with the planes on a neighbourhood of infinity.

Proof of Proposition 2.18. We know from the monotonicity chain (1.19) that the Euclidean volume functional is weaker than the hyperbolic volume. Suppose by contradiction that there is a minimal submanifold Σ k of H n filling γ. Then Σ k is Euclidean monotone and by Corollary 1.19, it has Euclidean volume strictly less than that of C γ . This means that C γ was not Euclidean-minimising.

In R 4 , the cone whose section is the Hopf link zw = ϵ, |z| 2 + |w| 2 = 1 is not Euclideanminimising because this link bounds the complex curve zw = ϵ. This cone is therefore not hyperbolic minimising either. This is why in Section 2.2, we were able to find another minimal surface of H 4 filling it.

Isoperimetric inequality for minimal surfaces in H n . Visual volume.

In the Euclidean plane, the round disk maximises area among shapes with the same perimeter. More precisely, a curve of length L encloses a region of area at most L 2 4π . In general, if Ω is a domain in the 2-dimensional space form of curvature K, then its area A and perimeter L are related by: 4πA ≤ L 2 + KA 2 (2.17)

Equality happens if and only if the domain is a geodesic disk.

Because the space forms R 2 , S 2 , H 2 can be isometrically and minimally embedded in higher dimensional space forms, we may hope to generalise (2.17) for minimal surfaces in R n , S n , H n . Even in the Euclidean case, the history of this problem is fascinating.

-The case of minimal disk was proved by Carleman in 1921 [START_REF] Carleman | Zur Theorie der Minimalflächen[END_REF]. From the late 50s, the restriction on the topological type of the surface was removed: -The case of minimal surfaces with connected boundary was proved by Reid in 1959 [START_REF] Reid | The Isoperimetric Inequality and Associated Boundary Problems[END_REF] and Hsiung in 1961 [START_REF] Chih-Hsiung | Isoperimetic Inequalities for Two-Dimensional Riemannian Manifolds with Boundary[END_REF]. -The case of minimal annuli was proved by Osserman-Schiffer in 1975 [START_REF] Osserman | Doubly-connected minimal surfaces[END_REF] and Feinberg in 1977 [START_REF] Feinberg | The isoperimetric inequality for doubly-connected minimal surfaces inRn[END_REF]. The late 80s saw more relaxation on the boundary curve: -Li, Schoen and Yau [START_REF] Li | On the isoperimetric inequality for minimal surfaces[END_REF] proved in that the inequality holds for minimal surfaces with weakly connected boundary. This means that there is a orthogonal coordinates system {x i } of R n such that ∂Σ cannot be separated by any plane x i = c. Any curve with 2 components fall into this type.

-In 1990, Choe [START_REF] Choe | The isoperimetric inequality for a minimal surface with radially connected boundary[END_REF] proved that the inequality holds for minimal surfaces with radially connected boundary. This means that there is a point O in the surface such that the set {d(a, O) : a ∈ ∂Σ} of distances from O to boundary points is a connected interval. This condition is satisfied for connected surfaces with two boundary components (it suffices to choose O to have equal distance to each boundary component). -Very recently, Brendle [START_REF] Brendle | The isoperimetric inequality for a minimal submanifold in Euclidean space[END_REF] proved the isoperimetric inequality for minimal submanifolds of codimension at most 2 in R n . The isoperimetric inequality (2.17) for minimal surfaces in the hyperbolic space was proved by Choe and Gulliver [START_REF] Choe | The sharp isoperimetric inequality for minimal surfaces with radially connected boundary in hyperbolic space[END_REF] when the boundary curve is radially connected. The crucial idea here, also featured in Choe's work on the Euclidean case, is that:

1. the area of a minimal surface in the Poincaré ball is less than the radial cone built upon its boundary and2 

2. the quantity 4πA -KA 2 is increasing in

A when K = -1 or K = 0.
Therefore, it suffices to verify the inequality (2.17) for radial cones.

Recall that each interior point of the hyperbolic space defines a round metric on the sphere at infinity S ∞ and that the volume of a submanifold of S ∞ under this metric is by definition its visual volume at O. Lemma 2.19 ). Let γ be a closed embedded, radially connected curve in the interior of the Poincaré model. Suppose that the visual volume of γ from the centre O of the ball is at least 2π, then the hyperbolic length L of γ and the hyperbolic area A of the radial cone of section γ satisfy

4πA + A 2 ≤ L 2 .
(2.18)

Theorem 2.20 (Choe-Gulliver [START_REF] Choe | The sharp isoperimetric inequality for minimal surfaces with radially connected boundary in hyperbolic space[END_REF]). Let Σ ⊂ H n be a minimal surface whose boundary ∂Σ is radially connected from a point of Σ. Then the area A of Σ and the length L of its boundary also satisfy (2.18). Equality happens if and only if Σ is a geodesic disk in a totally geodesic copy of H 2 .

Here the visual volume from O of a submanifold γ ⊂ H n is the Euclidean volume of its radial projection to S ∞ . When γ lies on a geodesic sphere centred at O, this is exactly its volume under the normalised metric.

To prove Theorem 2.20 from Lemma 2.19, it suffices to choose O on Σ. Proposition 1.18 guarantees that the visual volume is at least 2π.

The visual volume was called the angle of γ by Choe and Gulliver. We adopt here the terminology due to Gromov [START_REF] Gromov | Filling Riemannian manifolds[END_REF], which was defined in a larger context. Definition 2.21. Let X n be a complete, connected, simply connected Riemannian manifold without conjugate points and Y k be an immersed submanifold of X. Let p be a point in X \ Y and E p : X \ {p} -→ S n-1 be the geodesic projection onto the unit sphere of the tangent space of X at p. The visual volume Vis(Y , p) of Y from p is the Euclidean volume of its image via E p .

A priori, the point p has to be outside of Y , but when Y is smoothly immersed, the function Vis(Y , •) extends continuously to the interior of Y (except when it is +∞ everywhere). For example, if Y is a k-dimensional plane of the Euclidean space R n , then Vis(Y , •) is 1 2 ω k everywhere. More generally, if Y is smoothly immersed, then the visual volume from an interior point of Y is at least 1 2 ω k . We will discuss more on the visual volume in the next Chapter.

Renormalised Isoperimetric inequality.

The most technical part of Choe-Gulliver's proof of Theorem 2.20 was to show that the area of a minimal surface is less than a cone built upon its boundary. We have seen in the previous subsection that the comparison lemma provides a shortcut to this. We will now use the same argument to prove a renormalised version of isoperimetric inequality for complete minimal surfaces of H n .

Since the area of a complete surface is infinite, we need to replace it by the Graham-Witten's renormalised area (see Theorem 2.6 for definition). The perimeter also needs to be normalised. We have already seen three ways to do that: with the round metric, the flat metric or the doubled hyperbolic metric in the conformal class at infinity.

Our first estimate of the renormalised area is a consequence of Corollary 1.19 for a time coordinate ξ 0 and the uniform weight. This corollary says that the area of a minimal surface Σ in the region ξ 0 ≤ t is less than the area of a radial cone built over the intersection γ t = Σ ∩ ξ -1 0 (t): The renormalised area of these families however, tends to -∞ as the surfaces "escape" to infinity. One way to see this without any computation of the renormalised area is by the version of (2.19) for compensated area. Recall that for any Minkowskian coordinate ξ * , with * = 0, 1, l and any number a > 0, the uniform weight (P = 1, c = 1 a ) is weaker than the weight (P = ξ * , c = 1) in the region ξ ≥ a (Lemma 1.31). Let Σ t be a minimal surface in the region a < ξ * ≤ t with boundary γ t in ξ -1 * (t). By Corollary 1.19, the area of Σ t is less than that of the tube built upon γ t , that is

A(Σ ∩ {ξ 0 ≤ t}) ≤ |γ t | ˆt 1 dh = |γ t |(t -1) = |γ|t -|γ| + O(t -
B 1 (Σ)(t) = A(Σ ∩ {ξ ≤ t}) ≤ B 1 (T γ (a, t)) (2.22)
For a surface meeting S ∞ at right angle, the expansion (2.20) also holds for null and space coordinates. Combine this with (2.22), we have the following estimates, which generalise Theorem 2.22.

Theorem 2.23 (Renormalised isoperimetric inequalities). Let ξ 0 , ξ 1 , ξ l be Minkowskian coordinates with the corresponding round/ double hyperbolic/ flat metrics on S ∞ denoted by g0 , g1 , gl . Let Σ be a complete minimal surface that is embedded and C 2 near its ideal boundary γ.

1. If Σ is in the region ξ 0 ≥ a ≥ 1 then A R (Σ) + 1 2 |γ| g0 a + 1 a ≤ 0 (2.23) 2. If Σ is in the region ξ 1 ≥ a > 0 then A R (Σ) + 1 2 |γ| g1 a - 1 a ≤ 0 (2.24) 3. If Σ is in the region ξ l ≥ a > 0 then A R (Σ) + 1 2 |γ| gl a ≤ 0 (2.25)
Remark 2.24.

1. The null estimate (2.25) is the limit case of (2.23) and (2.24) when the point associated to ξ 0 and the codimension 1 associated to ξ 1 are sent to infinity.

Both the time and space estimates imply that the renormalised area of a minimal surface is at most -2π (see Corollary 2.25 below). The null estimate (2.25) on the other hand only implies

A R ≤ -π.
Corollary 2.25. The renormalised area of a minimal surface of H n is at most -2π.

Proof. We can choose a time coordinate associated to a point on the minimal surface, then use (2.23) and Proposition 2.12.

There are two other proofs of Corollary 2.25, both use rescaling argument. The first one uses the space estimate (2.24) and the second one uses the relation between renormalised area and the Willmore energy (Proposition 2.8).

Alternative proof #1 of Corollary 2.25. We first note that the function y := ξ 1 ξ 0 foliates H n into totally geodesic codimension 1. So by a Möbius transform, we can put the boundary of Σ, and by convexity the entire minimal surface, between level sets y = β and y = β + ϵ, β > 0. This guarantees that ξ 1 ≥ α := β √ 1-β 2 on the surface. The Möbius transform can be chosen so that the normalised length of the boundary curve is ϵ-near to that of a great circle on {y = β} ∩ S ∞ , which is 2π

√ 1-β 2 β
. Apply (2.24) and send ϵ to 0, we have Alternative proof #2 of Corollary 2.25. It follows from (2.6) that

A R + 2π(1 - 1 2β 2 ) ≤ 0 for all β > 0, which means A R ≤ -2π.
A R (Σ) + 1 2 sup g A g (2Σ) ≤ 0
where the supremum is taken among round metric on the sphere S n containing the doubled surface 2Σ. In other words:

A R (Σ) + 1 2 sup p∈H n+1
Vis(2Σ, p) ≤ 0 (2.26)

As p tends to a point on 2Σ, the visual area converges to 4π. The estimate (2.26) implies that A R ≤ -2π.

Remarks on the time estimate (2.23) and renormalised area of the family M C

We see from the time estimate (2.23) that the renormalised area of the annuli M C of Proposition 2.9 is unbounded as the surfaces escape to infinity (as C → +∞). This is because the two boundary circles have Euclidean length 4π while the distance of the annuli towards the center increases to infinity. More precisely, the minimum value of the time coordinate (based at the origin) on

M C is a = a(C) := min M C ξ 0 = (C + 1) 1/2 .
This means that the boundary term b(C) := 1 2 (a + a -1 ).4π increases like 1 2 C 1/2 as the surfaces escape. The renormalised area can be computed directly to be

A R (M C ) = ˆ∞ a ξ 2 -1 (ξ 2 -1) 2 -C 2 -1 dξ -4πa
The comparison between these two quantities can be seen from Figure 2 The null estimate (2.25) can be rewritten in the half space model as

A R (Σ) + 1 2 |γ| x max ≤ 0
where |γ| is the Euclidean length of the boundary and x max is the maximal height of the surface. For totally geodesic disc, A R = -2π and 1 2 |γ| xmax = π and so one may think that perhaps the constant 1 2 can be removed. We will see that if it is replaced by any constant bigger than 0.599 then the resulting estimate fails for a Mori annulus.

Proposition 2.26. Let a be any number bigger than

a 0 := E(0.5) √ 2 - K(0.5) √ 2 ≈ 0.59907,
where K(m) and E(m) are the complete elliptic integrals of first and second type. Then there is a Mori surface with

A R (Σ) + a |γ| x max > 0
Proof. The renormalised area of Mori's family was computed by Krtouš and Zelnikov [START_REF] Krtouš | Minimal surfaces and entanglement entropy in anti-de Sitter space[END_REF] in term of their parameter t of the family

A R = 4π t 2 √ 1 + 2t 2 K 1 + t 2 1 + 2t 2 -1 + 2t 2 E 1 + t 2 1 + 2t 2 .
The parameter t is related to the Mori's parameter θ 0 by t = tan θ 0 . (When t = 0, the annulus degenerates to a pair of disc). The complete elliptic integrals are defined as

K(m) := ˆπ/2 0 dx √ 1 -m sin 2 x , E(m) := ˆπ/2 0 1 -m sin 2 x.
The maximal height x max is difficult to write down explicitly, but can be estimated in a relatively simple way. Suppose that the Mori surface is placed so that its boundary is a pair of concentric circles of radius 1 and R > 1. The maximal height can be bounded between:

cos θ 0 ≤ x max ≤ R cos θ 0 .
Because R decreases to 1 as t → +∞, we have:

|γ| x max = 4πt + o(t) as t → +∞.
The conclusion follows from:

lim t→∞ A R (Σ t ) t = 4π K(0.5) √ 2 -E(0.5) √ 2 = -4πa 0 .

Appendix C: Degree theory for minimal surfaces in R n

The counting problem for minimal surfaces bounded by a curve was investigated in many contexts. In the works mentioned below, the general expectation is that 1. the space M of minimal surfaces is a Banach manifold, 2. the boundary map Π : M -→ C, which associates to a surface in M its boundary, which lies in a certain space C of curves is Fredholm and of index 0.

If we can prove that Π is proper, then the number of surfaces bounded by a generic curve is finite. This number defines a degree modulo 2 for each curve in C. If the index bundle of Π is trivial, this degree can be chosen to be integer-valued.

It is important to specify the space M and C carefully. In addition to the regularity, several details need to be given, such as whether we consider at surfaces or maps, and in the second case, which reparametrisation we need to mod out, whether the surfaces need to be immersed, embedded, orientable, which topological type they are etc. . .

Tomi-Tromba's solution to the embedded Plateau problem

The counting problem for minimal surfaces was first considered by Tomi and Tromba [START_REF] Tomi | Extreme curves bound embedded minimal surfaces of the type of the disc[END_REF] in their resolution of the embedded Plateau problem. Let f : S 1 -→ R n be a map with nowhere vanishing density |df | on the circle and that can be extended to the disk D. It was proved by Douglas and Rado in the early 30s that f can be extended to a conformal harmonic map F : D -→ R n . The embedded Plateau problem asks whether the extension F can be chosen to be embedded: Theorem 2.27 (Tomi-Tromba). Let f : S 1 -→ R3 be a C 2 curve on the boundary of a convex body B of R 3 , then there exists an embedded conformal harmonic map F : D -→ R 3 such that F (S 1 ) = f (S 1 ).

The space of curves C in Tomi and Tromba's context is space of H 5 immersions from S 1 to R 3 and the space of "surfaces" is

S := C × D
where D is the space of H 2 diffeomorphisms of S 1 that fixes 3 points e ik 2π 3 , k = 0, 1, 2. 3 Each element (f , φ) of S defines an H 2 map f • φ from S 1 to R 3 and is identified with its harmonic extension F to the disk. The boundary map Π : S -→ C is just the first projection. The space M of "minimal surfaces" is defined as the set of (f , φ) ∈ S such that F is conformal. Because the Hopf's quadratic differential of a harmonic map is holomorphic, it suffices to check that F is conformal at all points on S 1 and that dF does not degenerate at any point of D. The defining equation of M in S is q(f , φ) = 0 on S 1 , dF ̸ = 0 on D Tomi and Tromba proved that 1. M is a Banach submanifold of S,

the boundary map Π

M : M -→ C is Fredholm and of index 0.
Even though the space M here contains immersed surfaces, the two facts above can be used to solve the embedded Plateau problem.

Tomi and Tromba call a curve that lies on the boundary of a convex body extreme. Any minimal surface bounded by such a curve is embedded on the boundary. In other word, an extreme curve satisfies the following property (P) every conformal harmonic immersion F : D -→ R 3 filling γ has no branch point on boundary and the boundary does not overlap with the interior, i.e. F (D) ∩ F (S 1 ) = ∅.

It was proved in [START_REF] Tomi | Extreme curves bound embedded minimal surfaces of the type of the disc[END_REF] that this property is open. On the other hand, it can be proved by maximum principle that a limit of a family of embedded minimal surface is automatically embedded in the interior if it is embedded on the boundary.

Lemma 2.28 (Gulliver-Spruck [START_REF] Gulliver | On Embedded Minimal Surfaces[END_REF]). Let (F n ) be a sequence of conformal harmonic embeddings in M that C 1 -converge to a limit F ∞ ∈ M. Suppose that the boundary of

F n C 2 -converges to the boundary f ∞ ∈ C of F ∞ . Then if f ∞ satisfies (P) then F ∞ is embedded.
We can now prove Theorem 2.27 by the continuity method.

Proof of Theorem 2.27. Given a curve f 1 on the boundary of the convex body of R 3 , we can isotope it to a plane curve f 0 via a path {f t } of embedded curve on ∂B. Now if the family {f t } is already transversal to the map Π M , we can lift it to onedimensional submanifold of M. Let (F t ) t∈[0,1] be its connected component containing the plane F 0 = Π -1 (f 0 ). By Lemma 2.28, the set {t ∈ [0, 1] : F t is embedding} is both closed and open in [0, 1] and so is [0, 1]. This means that there is at least one embedded conformal harmonic map F 1 whose boundary is by f 1 .

If the family {f t } is not transversal to Π

M

, we can perturb it by Sard-Smale without changing the fact that the f t satisfy condition (P) (they may no longer be extreme). The previous argument gives us embedded minimal disc bounded by generic curves arbitrarily closed to f 1 . The conclusion follows from the compactness result for maps satisfying the three-point property, then from Lemma 2.28.

Brian White's integral degree

The previously results of Tomi and Tromba was generalised by White [START_REF] White | The Space of m-dimensional Surfaces That Are Stationary for a Parametric Elliptic Functional[END_REF], [START_REF] White | New applications of mapping degrees to minimal surface theory[END_REF], then Hoffman and White [START_REF] Hoffman | On the number of minimal surfaces with a given boundary[END_REF] to minimal immersions of a manifold with boundary Σ into a Riemannian manifold M . The properness of Π : M -→ C is not always guaranteed, but when this is the case, the modulo 2 degree can be lifted to an integer-valued degree. The sign associated to each minimal surface is given by the parity of its stability index.

The space S in this case is the quotient of the space of C j,α maps from (Σ, ∂Σ) to (M , ∂M ), by the group of diffeomorphisms of Σ that is identity on ∂Σ. The space C of curves is C j,α (∂Σ, ∂M ) and M ⊂ S is the space of minimal immersions.

The Jacobi operator (or stability operator) of a minimal immersion f : (Σ, ∂Σ) -→ (M , ∂M ) is a self-adjoint, second-order differential operator on the normal bundle N f of f given by

J : C j,α 0 (N f ) -→ C j-2,α (N f ) s -→ J (s) := ∆ N s + Tr Σ (R N (s, •)•) + Ã(s) (2.27)
where ∆ N is the connection Laplacian on the normal bundle, R N is the normal projection of the Riemann curvature of M and à = A * A is the Simons' operator. This operator is obtained by composing the second fundamental form with its adjoint. Here we see the second fundamental form as a map

A : N f -→ T Σ * ⊗ T Σ.
The stability index of a minimal immersion is the number of negative eigenvalues of J. The kernel of J is called the nullity of f and its elements are call Jacobi fields.

Theorem 2.29 (White [Whi87b]).

1. The space

M = {f ∈ C j,α (Σ, R n ) : f is minimal immersion} {φ : Σ -→ Σ, C j,α diffeomorphism, φ ∂Σ = Id} is a smooth Banach manifold. The boundary map Π : M -→ C j,α (∂Σ, R n ) is a smooth Fredholm map of index 0.

The previous statement also holds if the numerator of M is replaced by

f ∈ C j,α (Σ, M ) : f is minimal immersion, f (∂Σ) ⊂ ∂M , f (int Σ) ⊂ int M , f is nowhere tangential to ∂M
where M is a smooth manifold with boundary M , and Π : M -→ C j,α (Σ, ∂M ). 

Suppose that the restriction Π

d(Σ, γ) := [f ]∈Π -1 (γ) (-1) index[f ] .
(2.28)

Here index[f ] is the stability index of [f ]. It only depends on the equivalent class of f .

It was proved by White [Whi87b] that the properness condition is satisfied when M is a strictly convex region of R 3 , M 0 is the space of embedded minimal surfaces and C 0 is the space of embedded curve. It is based on a compactness result proved by White [START_REF] White | Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals[END_REF] in a larger context.

We also note that instead of minimal surfaces, White studied immersions that are stationary to a more general functional

A Θ (f ) := ˆΣ Θ(f (x), Im df (x)) vol f * g .
Here Θ is a function on the Grassmannian bundle of k-dimensional tangent planes in M and is supposed to satisfy an elliptic condition. When Θ = 1, this is just the area functional.

Properness fails, as pointed out in [Whi89, Theorem 3], in any 3-manifold with boundary M that admits a closed minimal surface, and in particular in any 3-manifold that is not homeomorphic to a ball. In such manifold, there exists a sequence of embedded discs with boundary in ∂M that converge to a smoothly embedded curve, but the area of these disc remains unbounded.

On the other hand, when properness does hold (for example in a strictly convex region of R 3 ), the corresponding degree can be computed explicitly. It is +1 when Σ is a union of discs. We can see this by isotoping the boundary components to flat curves, which can only be filled by planes. The embedded Plateau problem follows directly from this. When Σ is not a union of discs, White proved that the degree vanishes. This result can be generalised for any weight function Θ(x, T ) on R 3 × Gr(2, 3) that is independent of the first variable.

In general, we can think of the degree as the Euler characteristic of the fibre Π -1 (γ) in S. The volume functional defines a function on the fibre Π -1 (γ) whose critical points are elements of Π -1 (γ) ∩ M. Their Morse index is, by definition, their stability index and Morse equality says that the RHS of (2.28) is the Euler characteristic of the fibre. This explains why the degree is independent of Θ.

The choice of sign in (2.28) is closely related to the proof that M is a Banach manifold. One way to prove that the space of minimal immersions is a Banach manifold is to see it as a subset of the space of C j,α maps defined by the equation H = 0. The mean curvature H is a section of the vector bundle B -→ S whose fibre over each map f ∈ S is the Banach space of C j-2,α sections of the normal bundle of f . We need to check that H is transversal to the 0-section. This is not how Theorem 2.29 was proved in [START_REF] White | The Space of m-dimensional Surfaces That Are Stationary for a Parametric Elliptic Functional[END_REF]. We will instead use C as a model to construct an atlas of M. The benefit of this is that we can relate the degree of Π and the stability index of minimal immersion.

Let us recall a few facts about Fredholm maps between Banach manifolds. Suppose that M, C are Banach manifolds and Π : M -→ C is a Fredholm map. If the differential dΠ(f 0 ) at a point f 0 ∈ M is a bijection, then there exists an inversion F : C -→ M of Π that maps diffeomorphically a neighbourhood of f 0 in M onto a neighbourhood of Π(f 0 ) in C. If dΠ(f 0 ) has a k-dimensional kernel K and a k ′ -dimensional cokernel K ′ , then we can still invert Π up to finite dimension. This means that there exists a diffeomorphism F : C ⊕ K -→ M ⊕ K ′ and so the space M can be embedded into C ⊕ K as a codimension k ′ submanifold given by the equation g = 0. Here g : C ⊕ K -→ K ′ is the composition of F and the second projection. There are of course several ways to choose F (and g correspondingly).

Now let M be the space of conformal harmonic maps as before (to be proved a Banach manifold) and C = C j,α (∂Σ, R n ). We also denote by Π : C j,α (Σ, R n ) -→ C j,α (∂Σ, R n ) the restriction map that induces the boundary map M -→ C. Given a minimal immersion f 0 ∈ C j,α (Σ, R n ) with boundary γ 0 : ∂Σ -→ R n , we will construct the "inverse" F of the previous paragraph around γ 0 with the following properties:

-(F1) F : C -→ C j,α (Σ, R n ) if the nullity of f 0 is 0. The map F is C ∞ , well-defined on a neighbourhood of γ 0 in C and satisfies Π • F = Id C and F (γ 0 ) = f 0 .
The image of F are minimal immersions, and contains all minimal immersions near [f 0 ] in S.

-(F2) F : C ⊕ K -→ C j,α (Σ, R n ) if the nullity of f 0 is a k-dimensional vector space K. The map F is C ∞ , satisfies F (γ 0 , 0) = f 0 and Π • F : C ⊕ K -→ C
is the first projection. The image of F in S contains all conformal harmonic immersions near [f 0 ] and there exists a smooth function g :

C ⊕ K -→ K such that F (γ, κ) is a minimal immersion if and only if g(γ, κ) = 0. Moreover, D 2 F (γ 0 , 0) is the inclusion of K into C j,α (Σ, R n ).
This automatically gives M a Banach chart around each point f 0 ∈ M. Then, we need to prove that the transition maps between overlapping charts are smooth.

The Fredholm property of Π and its vanishing index follow from the identification of the kernel and cokernel of Π as the vector space K. This identification implies that determinant bundle of F is trivial, and thus the preimage

Π -1 (γ) of a generic γ ∈ C is orientable.
There is an extra consequence of the existence of such F . By definition, the kernel of dΠ contains vector fields that can be integrated to a one-parameter family of minimal immersions. The nullity, on the other hand, contains all Jacobi fields (defined as solutions of a differential equation). Because the two are the same space K, we have Corollary 2.30 (White [Whi87b]). Any Jacobi field along a minimal immersion f 0 can be realised as the velocity of a one-parameter family4 {f t } of conformal harmonic immersions.

The map F : C ⊕ K -→ S is constructed via the Implicit Function Theorem, and is uniquely characterised by the condition

p(H(F (γ, κ))) ⊂ K ∀(γ, κ) near (γ 0 , 0)
where H(F (γ, κ)) is the mean curvature of F (γ, κ) and p is the projection of R n onto the normal vector space of f 0 . The map g will be then given by

g : C ⊕ K -→ K (γ, κ) -→ pH(F (γ, κ)) (2.29)
When (γ, κ) is near (γ 0 , 0), the condition g = 0 is equivalent to F (γ, κ) being minimal.

Proof of part 1 of Theorem 2.29. As discussed above, we will construct the coordinate map F : C × K -→ S near a minimal immersion f 0 : Σ -→ R n where K is the nullity of f 0 . We will regard the normal projection p as a map from Σ to Gr(n, k) and a section s of the normal bundle N f 0 of f 0 as s : ΣR n with image s(a) ∈ Im p a . We consider the easier case first, when the nullity K is 0. Given any map γ : ∂Σ -→ R n near the boundary γ 0 of f 0 , we denote by ϕ(γ) the harmonic extension of γ to Σ. The metric used on Σ is the pullback of the Euclidean metric via f 0 , so ϕ(γ 0 ) = f 0 , but ϕ(γ) is not conformal in general. We define

Ψ : C j,α (∂Σ, R n ) × C j,α 0 (N f 0 ) -→ C j-2,α (N f 0 ) (γ, s) -→ pH(ϕ(γ) + s) (2.30)
Clearly Ψ(γ 0 , 0) = 0 and D 2 Ψ(γ 0 , 0) is the Jacobi operator, which is invertible in this case. The Inverse Function Theorem says that we can find a neighbourhood

U ⊂ C j,α (∂Σ, R n ) of γ 0 , a neighbourhood V ⊂ C j,α (N f 0 ) of 0 and a map F 0 : U -→ V such that solutions of Ψ = 0 in U × V are of form (γ, F 0 (γ)). Then F (γ) = F 0 + ϕ(γ) satisfies (F1)
. Moreover, since any immersion f that is C j,αclose to f 0 can be reparameterised as ϕ(γ 0 ) + s, the image of F in S contains the equivalent classes of all minimal immersions near [f 0 ]. Now let us consider the case when the nullity of f 0 is non-trivial. Let K ⊥ and K ⊥ 0 be the L 2 -orthogonal complement of K in C j-2,α (N f 0 ) and C j,α 0 (N f 0 ) respectively. Because C 0,α → L 2 , these are closed subspaces and the projection π K ⊥ onto K ⊥ is continuous. We define

Ψ : C j,α (∂Σ, R n ) × K × K ⊥ 0 -→ K ⊥ (γ, κ, s) -→ π K ⊥ pH(ϕ(γ) + κ + s) (2.31)
As before, we remark that Ψ(γ 0 , 0, 0) = 0 and that by elliptic theory, D 3 Ψ(γ 0 , 0, 0) is invertible. Therefore we can find an open neighbourhood U of (γ 0 , 0) in C j,α (∂Σ, R n ) × K, and V of 0 in K 0 and a map

F 0 : U -→ V such that solutions of Ψ = 0 in U × V are of form (γ, κ, F 0 (γ, κ)). The map F (γ, κ) = ϕ(γ) + κ + F 0 (γ, κ) satisfies condi- tion (F2)
. Now that we have a smooth Banach chart around each minimal immersion f 0 of M, the remaining of the proof is to show that the transition maps between overlapping charts are smooth. Let F i : C ⊕ K i -→ C j,α (Σ, R n ) be two overlapping charts centred around minimal immersions f 1 and f 2 . This means that each

F -1 i (M) = g -1 i (0) is a smooth k i -codimensional submanifold of C ⊕ K i and that F 1 (γ 1 , κ 1 ) = F 2 (γ 2 , κ 2 ) = f is a minimal immersion.
The transition map τ 12 : g -1 1 (0) -→ g -1 2 (0) is well-defined on a neighbourhood of (γ 1 , κ 1 ). The trick here is construct smooth maps

Ω i : C j,α (Σ, R n ) -→ C ⊕ R k i such that Ω i • F i is a diffeomorphism. If we can do this, then τ 12 = (F 2 • Ω 2 ) -1 • Ω 2 • F 1 is smooth. The maps are illustrated in the following diagram. C ⊕ K 2 F 2 & & ≃ / / C ⊕ R k 2 C ⊕ K 1 F 1 / / C j,α (Σ, R n ) Ω 2 O O Let us construct Ω 1 . If k 1 = dim K 1 = 0, then we can just use Ω 1 = Π. If not, we will choose Ω 1 (f ) := Π(f ), ˆΣ f * ω 1 , . . . , ˆΣ f * ω k 1 , f ∈ C j,α (Σ, R n ).
where ω 1 , . . . , ω k 1 are differential forms of R n with degree equal to the dimension of Σ. It suffices to choose the form ω i so that d(Ω 1 • F 1 ) is invertible at (γ 1 , 0) and then shrink the chart F 1 so that Ω 1 • F 1 is invertible. Recall that D 2 F 1 (γ 1 , 0).κ = κ for any Jacobi field κ of f 1 and that for any perturbation {u t } of a map u 0 along a vector field X, we have d dt t=0

´Σ u * t ω = ´Σ u * 0 L X ω. We extend any vector field κ ∈ K along the image of F 1 by d dt F 1 (γ 0 , tκ) and use the same notation for the extension. Then

d(Ω 1 • F 1 ) is invertible if and only if for a basis κ 1 , . . . , κ k 1 of K, the k 1 × k 1 matrix ´Σ f * 1 L κ j ω i ij is invertible.
Since for any vector field κ ∈ K, there exists a form ω such that

ˆΣ f * 1 L κ ω ̸ = 0.
It suffices to apply the following linear algebra result:

Lemma 2.31. Let V and W be vector spaces over a field R and A : V × W -→ R be a bilinear map such that:

For any v ∈ V \ {0}, there exists w ∈ W such that A(v, w) ̸ = 0.
Then for any set of linearly independent vectors v 1 , . . . , v n in V , there exist w 1 , . . . , w n in W such that the n × n matrix (A(v i , w j )) ij is invertible.

The following formula relates the stability index of a minimal immersion in a chart around f 0 and the index of f 0 . Lemma 2.32 (cf. Proposition 4 of [START_REF] White | The Space of m-dimensional Surfaces That Are Stationary for a Parametric Elliptic Functional[END_REF]). Let F (γ, κ) be a minimal immersion near f 0 and K be the k-dimensional space of normal vector fields along F (γ, κ) given by the normal part of elements in the image of D 2 F (γ, κ). The Jacobi operator of F (γ, κ) defines a symmetric bilinear form on K. Let d be its index (maximal dimension of a negative definite subspace). Then the stability index of F (γ, κ) and that of f 0 are related by index F (γ, κ)

= index f 0 + d (2.32)
In particular, when the nullity of f 0 is 1, then d is given by the sign of D 2 g(γ, κ):

d =        1, if D 2 g preserves orientation of K 0, if D 2 g = 0 -1, if D 2 g < 0 reverses orientation of K Corollary 2.33. Let f 0 : Σ -→ M be an immersed minimal surface of nullity k, then any immersed minimal surface near f 0 has stability index in the range [index f 0 , index f 0 + k].
We will prove using the relation (2.32) that the RHS of (2.28) is constant on connected component of C, and so it can be used to defined an integer-valued degree of Π. Let L := {γ t } be a path in C connecting two generic curves γ 0 , γ 1 and that is transversal to Π. We can suppose that dΠ has at most 1 dimensional kernel for every surface in L ′ := Π -1 (L). It suffices to give L ′ an orientation that is compatible with (2.28). Relation (2.32) proves that the following choice works:

-For each f t ∈ Π -1 (γ t ) where dΠ has no kernel, its neighbourhood U in L ′ is mapped diffeomorphically to a neighbourhood of γ t in L. We orient U so that Π is orientation-preserving if and only if the index of f t is even. -If the kernel of dΠ at f t has dimension one, then a neighbourhood U of f t in L ′ can be embedded as a codimension 1 of L × K, given by an equation g(t, κ) = 0 with D 1 g ̸ = 0. We pick any orientation of K ∼ = R and use the counter-clockwise orientation of L × K ∼ = [0, 1] × R. We orient U = g -1 (0) as the boundary of g > 0 if and only if the index of f t is even.

Proof of Lemma 2.32. By differentiating g in (2.29), we have

D 2 g(γ, κ) = p.DH(F (γ, κ)).D 2 F (γ, κ)
We will denote by B 0 and B 1 the normal bundles of f 0 and F (γ, κ). By choosing (γ, κ) near (γ 0 , 0), we can suppose that the image of D 2 F (γ, κ) is k-dimensional and that its projection to B 0 , the space K in the statement, is also k-dimensional.

It suffices to apply the following Lemma 2.34 with J 0 being the Jacobi operator of f 0 , J 1 = pJ (γ,κ) p * where J (γ,κ) is the Jacobi operator of F (γ, κ) and K 1 = p * -1 ( K).

Here p * : B 0 -→ B 1 is the fibre-wise adjoint of projection p from B 1 to B 0 . It is exactly the projection to B 1 . Because

⟨J 1 u, u⟩ = ⟨J (γ,κ) p * u, p * u⟩ ∀u ∈ C k,α 0 (N F (γ, κ)),
the operators J 1 and J (γ,κ) have the same index.

Lemma 2.34 (Lemma 4 of [START_REF] White | The Space of m-dimensional Surfaces That Are Stationary for a Parametric Elliptic Functional[END_REF]). Let J 0 , J 1 : C h,α 0 (B 0 ) -→ C h-2,α (B 0 ) be two Schrödinger operators on a vector bundle B 0 over Σ such that: -they are ϵ-closed to each other, i.e.

∥J 0 -J 1 ∥ L 2 ≤ ϵ (2.33)
-there exists a k-dimensional vector space K 1 ⊂ C ∞ 0 (B 0 ) such that J 1 (K 1 ) ⊂ K where K = ker J 0 also has dimension k. Then for ϵ sufficiently small, one has index J 1 = index J 0 + d where d is the index of J 1 as a symmetric bilinear form on K.

Proof. The spectra of J i are discrete subset of R whose intersection with any interval (-∞, c) is a finite set. Now we decompose

C k,α (B 0 ) = N ⊕ ⊥ K ⊕ ⊥ P
where N is spanned by negative eigenfunctions of J 0 and P is the closure of the subspace spanned by positive eigenfunctions. We claim that

C k,α (B 0 ) = N ⊕ K 1 ⊕ P .
(2.34)

For (co)dimensional reason, it suffices to check that there is no element a in K 1 ∩ N ⊕ P . Such a would have J 1 a ∈ K and J 0 a ⊥ K, so J 1 a ⊥ J 0 a. But these two elements had to be closed to each other due to (2.33). A contradiction would happen if ϵ is small enough so that there is no non-zero eigenvalue of J 0 in (-2ϵ, 2ϵ). Now we decompose

K 1 = N ′ ⊕ K ′ ⊕ P ′
using the symmetric bilinear form associated to J 1 : ⟨J 1 u, u⟩ is negative (respectively positive) if u lies in N ′ (respectively P ′ ) and

J 1 u ⊥ K 1 if u ∈ K ′ . This gives a finer decomposition of C k,α 0 (B 0 ) as C k,α 0 (B 0 ) = N ⊕ N ′ ⊕ K ′ ⊕ P ′ ⊕ P
We will prove that J 1 is negative definite on N ⊕ N ′ , positive definite on P ⊕ P ′ and zero on K ′ . Lemma 2.34 clearly follows from this:

index

J 1 = dim N + dim N ′ =: index J 0 + d.
Given any a ∈ K ′ , we have J 1 a ⊥ N ⊕ P because J 1 a ∈ K. Also J 1 a ⊥ K 1 by the definition of K ′ . We conclude, by (2.34), that J 1 a = 0. This means that J 1 vanishes on K ′ .

Given n ∈ N and n ′ ∈ N ′ , we have

⟨J 1 (n + n ′ ), n + n ′ ⟩ = ⟨J 1 n, n⟩ + ⟨J 1 n ′ , n ′ ⟩ + 2⟨J 1 n ′ , n⟩,
where the first two term of the RHS are strictly negative. The third term vanishes because J 1 n ′ ∈ K 1 ⊥ N . Therefore J 1 is negative definite on N ⊕ N ′ . Similar argument proves that J 1 is positive definite on P ⊕ P ′ .

Degree theory for minimal surfaces in the hyperbolic space

In this subsection, we consider the counting problem of minimal surfaces in the hyperbolic space. The surfaces considered here are complete and smoothly embedded near their ideal boundary. We also suppose that the surfaces are sufficiently smooth on a neighbourhood of their ideal boundary.

The Fredholm part of White's Theorem 2.29 becomes more delicate because the minimal surface equation is no longer elliptic. Its symbol is positive in the interior, but tends to 0 on the boundary. We can see this by writing down the Jacobi operator (see (2.27))

J (s) := ∆ N s -2s + Ã(s), s ∈ Ω 0 (N Σ)
Recall that here à = A * A is the Simons' operator on the normal bundle and the second fundamental form is written as a map A : N Σ -→ End(T Σ).

It follows from Lemma 2.10 that the second fundamental form tends uniformly to 0 if the surface is C 2 up to the boundary and meets the sphere at infinity orthogonally. Concretely, in the half space model {(x, y 1 , . . . , y n-1 ) ∈ R >0 × R n-1 }, the norms of the Euclidean second fundamental form ĨI and the hyperbolic second fundamental form II are related by

|II| 2 = x 2 | ĨI| 2 + 2|∂ x ⊥ | 2 .
Here |∂ ⊥ x | is the Euclidean norm of the orthogonal projection of ∂ x to the normal bundle.

Therefore, near infinity, the Jacobi operator looks like

(∆ -2)s i = x 2 (∂ 2 x + ∂ 2 y ) -2 s i , i = 1, 2, . . . , n -2 (2.35)
where (x, y) ∈ R >0 × R are the half-space coordinates of H 2 . Here (s 1 , . . . , s n-2 ) are the coordinates of s in a hyperbolic frame of H n . The operator ∆ -2 is elliptic in the interior, but its symbol fails to be invertible on the boundary. The Fredholm property of such operators was studied by Mazzeo and Melrose [START_REF] Mazzeo | Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature[END_REF], [START_REF] Mazzeo | Elliptic theory of differential edge operators I[END_REF]. Let (M , g) be a conformally compact 5 (n + 1)-manifold, x be a boundary defining function and ḡ be the normalised metric on M given by ḡ = x 2 g. An operator of the form

P = i+|j|≤m a ij (x, y)(x∂ x ) i (y∂ y ) j (2.36) where i ∈ N, j ∈ N n , (x, y) ∈ R >0 × R n are local coordinates in a neighbourhood of infinity, is called a 0-differential operator of order m. It is 0-elliptic if the symbol i+|j|=m a ij (x, y)t i s j
is invertible for any non-zero s, t at any interior point (x, y).

The Fredholm property of such operators is studied as maps between weighted Hölder and Sobolev spaces. The weighted Hölder space x µ Λ k,α (M ) is defined as the vector space of all functions f = x µ u where u is a C k,α function on M . This means that k th derivatives of u with respect to vector fields x∂ x and x∂ y i are α-Hölder under the metric g. The norm of f is defined as the Hölder norm of u and this turns x µ Λ k,α (M ) into a Banach space. The letter Λ is used here to remind us that the Hölder norm was taken in (M , g) and not (M , ḡ). In the same manner, we define the Sobolev spaces x µ H k (M ) to be the Banach space of functions f = x µ u with u ∈ H k (M ). 6 The operator P can be seen as a bounded map between Hölder and Sobolev spaces:

P : x µ Λ k,α (M ) -→ x µ Λ k-m,α , P : x µ H k (M ) -→ x µ H k-m
To prove that P is Fredholm, we have to check that its normal operator is invertible. Suppose that P is given locally by (2.36). Its normal operator N q at point q on the boundary of M is obtained by freezing the coordinates (x, y) of q and replacing the derivatives x∂ x , x∂ y i by the derivatives t∂ t and t∂ s i of H n+1 . For example, if q is (0, 0) then

N q = i+|j|≤m a ij (0, 0)(t∂ t ) i (t∂ s ) j , (t, s) ∈ R >0 × R n .
When P is the operator between vector bundles E and F , N q is an operator on the trivial bundle

H n+1 × E q -→ H n+1 × F q .
5. See Appendix D for definition. 6. Here we use the g-volume form dx x dy1

x . . . dyn x to define the L 2 norm. Several authors use the ḡ-volume form dxdy 1 . . . dyn. The two space are equivalent, up to a shift in the weight:

t µ H k (volg) = t µ-n+1 2 H k (vol ḡ ).
The indicial roots of P are solutions of the equation det(

i a i0 (0, 0)X i ) = 0.
This equation is obtained by replacing t∂ s by 0 and t∂ t by a variable X in the formula of N q . What we did in (2.35) was to compute the normal operator of the Jacobi operator. Since

x 2 (∂ 2 x + ∂ 2 y ) -2 = (x∂ x ) 2 -x∂ x + (x∂ y ) 2 -2, the indicial roots solve the equation X 2 -X -2 = 0. So they are -1 and 2.
Theorem 2.35 (Mazzeo [Maz91]). Let P be a second-order 0-elliptic operator and N q be its normal operator at q. Suppose that the indicial roots of P are real and constant on ∂M . If there is a certain ν 0 such that the maps

N q : x ν 0 -n 2 H k (H n+1 ) -→ x ν 0 -n 2 H k-2 (H n+1
) are isomorphism for all q ∈ ∂M , then: 1. The operator P :

x ν 0 -n 2 H k (M ) -→ x ν 0 -n 2 H k-2 (M ) is Fredholm. 2. Let (µ 1 , µ 2 ) be an interval that contains no indicial root. Suppose that ν 0 ∈ (µ 1 , µ 2 ), then for all ν ∈ (µ 1 , µ 2 ), N q : x ν-n 2 H k -→ x ν-n 2 H k-2 is invertible and the operators P : x ν-n 2 H k (M ) -→ x ν-n 2 H k-m (M ) P : x ν Λ k,α (M ) -→ x ν Λ k-m,α (M )
are Fredholm. Their kernels are the same vector subspace and are contained in x µ 2 Λ j,α (M ) for any j.

Because the Laplacian ∆ N is negative, the operator ∆ N -2 is invertible on H 2 -→ L 2 . It follows from Theorem 2.35 with ν 0 = 1 2 ∈ (-1, 2) that the Jacobi operator

J : x µ Λ j,α (N f ) -→ x µ Λ j-2,α (N f ) (2.37) is Fredholm for every µ ∈ (-1, 2).
There is a small subtlety here. The space S (or M) contains immersions that are C j,α up to the boundary while the Fredholm property (2.37) is between the weighted Hölder spaces. These function spaces are related in the following way. On a conformally compact manifold (M , g), we denote by C j,α (M ) the Hölder space on (M , g) and C j,α r (M ), r ≤ j the closed subspace of functions that vanish up to order r, that is

(∂ x ) j f = 0 on ∂M ∀j = 0, 1, . . . , r
We equip C j,α r (M ) with the Banach structure of C j,α (M ). It turns out that the Banach spaces x j+α Λ j,α (M ) and C j,α j (M ) are equivalent (see [START_REF] Lee | Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds[END_REF]). Now if we are to set the problem in the space of C 2,α minimal immersions, the perturbations field s (as in (2.30) and (2.31)) should be at least x 2+α Λ 2,α when written under a ḡ-frame, or in other words x 1+α Λ 2,α under a g-frame. So the Jacobi operator goes between Hölder spaces of weight 1 + α, which indeed lies in the range (-1, 2).

The Fredholm part of Theorem 2.29 was establish in H 4 in a recent work of Joel Fine [START_REF] Fine | Knots, minimal surfaces and J-holomorphic curves[END_REF]. In his work, the space of maps is modded out by all diffeomorphisms and not just those preserving the boundary. Also, by the Eells-Salamon's correspondence [START_REF] Eells | Twistorial construction of harmonic maps of surfaces into four-manifolds[END_REF], he studies holomorphic curves in the twistor space instead. This means that the minimal surfaces considered there are allowed to have branched points.

Theorem 2.36 (Fine [Fin21]). Let Σ be a compact, connected, oriented surface with c boundary components and C be the space of C 2,α oriented links of c components in S 3 .

The space M is defined as {(f , j)}/ ∼ where j is a complex structure on Σ and f : (Σ, j) -→ H 4 such that: -The map f is C 2,α and conformal on Σ. In the interior,

f is harmonic, -f (Σ) ⊂ H 4 , f meets S ∞ transversally, -f embeds the boundary ∂Σ to a C 2,α link in S ∞ , -The relation ∼ identifies pairs (f , j) that are related by a diffeomorphism of Σ. The boundary map Π : M -→ C associates to each class [f , j] the link [f ∂Σ ].
Then M is a smooth Banach manifold, Π is Fredholm and has index 0. Moreover, the determinant bundle of dΠ has a distinguished trivialisation over the complement of a codimension 2 in M.

The proof of Theorem 2.36 is more complicated than the sketch we did above. This is due to the quotient by the full diffeomorphism group as well as the inclusion of branched minimal surfaces in the setup. The prize to gain from this extra work lies in the "properness part". Recall that in Theorem 2.29, properness of Π was a hypothesis. In the hyperbolic setting, one may hope that it is a feature. The precise statement and a sketch of proof for discs will be given in Section 2.5.1.

The determinant bundle of Π is given by top power of its kernel and cokernel bundles:

det Π = det(ker dΠ) ⊗ (det coker dΠ) * .
So a trivialisation of det Π near a generic curve γ is a choice of volume form, therefore an orientation, of the fibre Π -1 (γ). These orientations are consistent in the sense that for any Sard-Smale curve {γ t } t∈[0,1] transversal to Π, the union Π -1 (γ 0 ) ∪ Π -1 (γ 1 ) with the opposite orientation on Π -1 (γ 1 ) has the boundary orientation of Π -1 ({γ t }). In the context of Theorem 2.36, this means (with properness supposed) we can have an integer-valued degree of Π. This integer is an invariant of each connected component of C, and so is a knot/link invariant. We can have more invariants by just counting minimal surfaces in a component of S, for example those with a given Euler characteristic. There is another topological invariant that describes how an immersed oriented surface sits in a four-dimensional space. For closed surfaces, this is the self-intersection number, or equivalently, the Chern number of its normal bundle. When the surface is open, any complex line bundle over it is trivialisable but we still have an analogue of this, given by the following instruction:

1. First trivialise the normal bundle of the surface with a non-zero normal vector field ⃗ n. Because the surface meets the sphere S 3 orthogonally at a curve γ, ⃗ n is tangent to S 3 and is a normal vector field of γ. Such choice of ⃗ n is often called a framing of γ 2. In S 3 , compute the number τ of turns ⃗ n makes along γ. It is the linking number between γ and its push-off γ + ϵ⃗ n for a small, positive ϵ.

The number τ is in fact independent of ⃗ n. To see this, take any other normal vector field ⃗ n ′ of the surface. This new vector field has to be the rotation of ⃗ n by an angle θ in the normal bundle. Here θ is a function on the surface with value in S 1 . The difference between τ and the new linking numbers is just the degree of the map θ γ : γ -→ S 1 .

Since θ extends to the surface, this degree is zero.

In H 3 , the properness of the boundary map Π was proved by Alexakis and Mazzeo [START_REF] Alexakis | Renormalized Area and Properly Embedded Minimal Surfaces in Hyperbolic 3-Manifolds[END_REF]. In their setup, S is the space of embedded C k,α surfaces (k ≥ 2) and C is the space of embedded disjoint circles in S 2 . This is enough to define a Z/2Z-valued degree that counts the number of minimal surfaces of Euler characteristic χ that fill a collection of disjoint circles.

A way to lift these degrees to Z was also proposed in [START_REF] Alexakis | Renormalized Area and Properly Embedded Minimal Surfaces in Hyperbolic 3-Manifolds[END_REF] using the stability index as White did in Theorem 2.29. It is unclear how this sign convention is well defined and consistent. The reason is as follows. Although we can prove that certain7 eigenspaces of the Jacobi operator J are finite-dimensional, Lemma 2.34 needs the spectrum of J to be discrete. On a compact manifold, this is due to the fact that any minimising sequence of the Rayleigh quotient has a converging subsequence. This may fail in the hyperbolic space because the inclusion H 1 → L 2 is no longer compact.

On the other hand, the minimal surfaces that are C 2 up to their ideal boundary have finite index in a more relaxed sense. First, the classical argument shows that any open region Ω compactly contained in the interior of the surface has a finite stability index d Ω . If a minimal surface of H 3 has finite total curvature

ˆΣ | II | 2 < +∞,
it was proved by Bérard, do Carmo and Santos [START_REF] Bérard | The index of constant mean curvature surfaces in hyperbolic 3-space[END_REF] that sup Ω d Ω < +∞. The finitude of the index in this sense was first studied by Fischer-Colbrie [START_REF] Fischer-Colbrie | On complete minimal surfaces with finite Morse index in three manifolds[END_REF], who proved that a minimal surface of R 3 has finite index if and only if its total curvature is finite. The total curvature of a minimal surface in H n is its Willmore energy and thus is finite if the surface is C 2 up to its ideal boundary.

Properness of the boundary map

Fine proves that the only way the properness of Π can fail is when the complex structures of the surface develops node.

Theorem 2.37 (Fine [Fin21]). Let f n : (Σ, j n ) -→ H 4 be a sequence of conformal harmonic maps in the space M of Theorem 2.36. Suppose that the complex structures j n converge to smooth limit j ∞ and that the boundary links f n (∂Σ) converge to a C 2,α link K. Then a subsequence of f n converges to a map (f ∞ , j ∞ ) ∈ M with boundary K.

We will sketch out a few ideas by proving Theorem 2.37 for the disc. By acting with diffeomorphisms on Σ, we can assume that the j n are the same complex structure j.

The proof is divided into two pieces: in the interior piece and the collar piece. In the interior, we will upper-bound all higher derivatives ∇ k f of a conformal harmonic map f : (Σ, j) -→ H 4 . Here we equip Σ with the unique hyperbolic metric in the conformal class given by j. In the collar piece of the proof, we prove that the images of f n are embedded as graphs uniformly over a cylinder built upon K and more importantly, in this region, their Euclidean second fundamental form are uniformly bounded.

In the interior, to control all derivatives of a conformal harmonic map f , it suffices to control its energy density e(f ) = |∇f | 2 . The Bochner formula for a harmonic map f : Σ -→ M between Riemannian manifolds Σ and M reads

∆e(f ) = | II(f )| 2 + ⟨Ric(Σ)∇ v f , ∇ v f ⟩ -⟨Riem(M )(∇ v f , ∇ w f )∇ v f , ∇ w f ⟩ (2.38)
where II(f ) is the second fundamental form of f , Ric(Σ) and Riem(M ) are the Ricci and Riemann curvatures of Σ and M . The subscripts u, v indicate how the trace is taken.

The Laplacian here is non-positive:

∆ = Tr ∇ 2 . When f is conformal, M = H 4 and the metric on Σ is hyperbolic, (2.38) becomes ∆e ≥ -e + e 2 2 .
(2.39)

It follows from the harmonic map equation that the energy density e(f ) converge to 2 on the boundary (cf. Corollary 1.4 of [START_REF] Li | Uniqueness and Regularity of Proper Harmonic Maps[END_REF]). Combine this with (2.39) and apply Maximum Principle, we have e(f ) ≤ 2 on Σ. Now let us move to the collar piece of the proof. Let f n : (Σ, j n ) -→ H 4 be a sequence of conformal harmonic maps in the space M of Theorem 2.36 and suppose that their boundary K n = f n (∂Σ) converges in C 2 to a link K ∞ . We fix a half-space model of H 4 where K n are bounded and denote the coordinates by (x, y 1 , y 2 , y 3 ).

Proposition 2.38 (Fine [Fin21]). Let f n : (Σ, j n ) -→ H 4 be a sequence of conformal harmonic maps whose boundary

K n = f n (∂Σ) converges in C 2,α to a link K ∞ . Let M n := f n (Σ), M n,ϵ := M n ∩ x -1 ([0, ϵ]) and Σ n,ϵ = f -1 n (M n,ϵ ).
Then there exists ϵ sufficiently small such that:

1. For sufficiently large n, the maps f n are embedding in Σ n,ϵ and the surfaces M n,ϵ are graph over a cylinder C K := [0, ϵ] × K built over a smooth link K near to K ∞ . The graphing functions s n are C 2,α sections of the normal bundle of C K .

2. The Euclidean second fundamental form of M n,ϵ are uniformly bounded and after passing to subsequence, {s n } converges in C 2,α .

To prove Proposition 2.38, we assume that the conclusion is false, then try to find a contradiction by rescaling M n using the homotheties (x, y i ) → (λx, λy i ), λ > 0. The argument can be sketched as follows.

Let Q be a geometric quantity of the surfaces M n that we want to control. Suppose that:

1. Q is invariant by homothety, i.e. for any surface M of H 4 and any point p ∈ M , Q(M , p) = Q(λM , λp).

2. Q = 0 everywhere on any vertical plane H (copy of H 2 in H 4 ), and

Q = 0 on each boundary K n of M n .
By geometric quantity, we assume that if a family of pointed surfaces

(M n , p n ) con- verge in C ∞ to (H, p ∞ ) on an open set of p ∞ , then Q(M n , p n ) → Q(H, p ∞ ) = 0.
Examples of such Q are the hyperbolic second fundamental form | II |, the product x| ĨI| of the half space coordinate and the Euclidean second fundamental form, and the (Euclidean) gradient norm |∇s n | of the graphing function s n in Proposition 2.38. We claim that for these examples, Q(M n ) converges uniformly to 0 as x → 0, i.e. 

Q = 0.
Suppose by contradiction that there are points p n ∈ M n with x(p n ) → 0 and Q(M n , p n ) is bigger than, say, 1. Let b n ∈ K be the point closest to the projection (y 1 , y 2 , y 3 )(p n ). We translate and rotate M n so that b n is at the origin and that the tangent of K there is in y 1 -direction. Then we rescale M n by ratio λ n = 1

x(pn) to obtain a new family of surfaces Y n . After rescaling, the bad points p n become points q n on the level set x = 1 that converge to q ∞ = (1, 0, 0, 0). The rescaled surfaces Y n converge as sets to the vertical plane H = {y 2 = y 3 = 0}. This notion of convergence is due to White and means that

H = {p ∈ H 4 : lim sup n→∞ d(p, Y n ) = 0} = {p ∈ H 4 : lim inf n→∞ d(p, Y n ) = 0}
Both of these convergences can be justified by Anderson's convex hull and the fact that the links K n has the same osculating radius: there exists a number r > 0 independent of n such that each link K n lies outside of any 3-ball of radius r tangent to it. Now we have Q(Y n , q n ) > 1 and the pointed surfaces (Y n , q n ) converge as sets to (H, q ∞ ) which has Q = 0. A contradiction will be produced if we can upgrade this convergence to C 2 . This is where we need the following version of Allard regularity, due to Brian White.

Theorem 2.39 (White, Theorem 5.1 of [START_REF] White | Controlling area blow-up in minimal or bounded mean curvature varieties[END_REF]). Let M n be a sequence of stationary integral k-varifolds in a Riemannian manifold Ω. Suppose that M n converges as set to a subset of a connected, smoothly embedded submanifold H of Ω and that at some point of H, there is a neighbourhood U ⊂ Ω such that M n ∩ U converge weakly to H ∩ U with multiplicity 1. Then M n converges smoothly to M with multiplicity 1 everywhere.

As pointed out by White, the key difference between Theorem 2.39 and Allard's Regularity Theorem is that one only needs weak convergence on a small open set.

Back to our situation, we can assume that p n are the lowest points of M n such that Q(M n , p n ) ≥ 1. This mean that Q(Y n , •) ≤ 1 in the region x ≤ 1. In all three instances of Q, this bound gives us C 0,α convergence (thus weak convergence) of Y n to H in a neighbourhood U of ( 1 2 , 0, 0, 0). Theorem 2.39 upgrades this to C ∞ convergence at q ∞ and produces a contradiction. The case Q = |∇s| in particular proves part 1 of Proposition 2.38.

For part 2 of Proposition 2.38, we need to bound the Euclidean second fundamental form of M n uniformly in the region M n,ϵ for sufficiently small ϵ. To do this, we repeat the above rescaling argument: denote by p n ∈ M n the bad points with x(p n ) → 0 and

| ĨI(M n , p n )| → ∞, then rescale (M n , p n ) to new surfaces (Y n , q n ) with | ĨI(Y n , q n )| = 1.
Since we have proved that Q = x| ĨI(M n )| converges uniformly to 0 as x → 0, we have lim n→∞ x(q n ) = 0. Now let us show that the points p n (thus q n ) can be chosen so that | ĨI(Y n , q)| ≤ 2 for all q ∈ Y n with x(q) ≤ 1. Let us fix n. If we cannot choose such p n , there must be a point p 1 n with

x(p 1 n ) ≤ | ĨI(M n , p n )| -1 , | ĨI(M n , p 1 n )| ≥ 2| ĨI(M n , p n )|
and similarly a point p 2 n with

x(p 2 n ) ≤ | ĨI(M n , p 1 n )| -1 ≤ 1 2 | ĨI(M n , p n )| -1 , | ĨI(M n , p 2 n )| ≥ 2| ĨI(M n , p 1 n )|
This procedure goes on and produces a sequence

{p k n } k∈N ⊂ M n with ĨI(M n , p k n ) ≥ 2 k | ĨI(M n , p n )|, x(p k n ) ≤ 2 -k | ĨI(M n , p n )| -1
which is clearly a contradiction as k tends to infinity. As before, White's theorem says that the rescaled surfaces Y n converge smoothly to H in the interior of H 4 . This does not immediately produce a contradiction because the points q n where | ĨI(Y n , q n )| = 1 converge to q ∞ = 0 on the boundary of H. To finish, we need the graphing functions w n of Y n over H to C 2 -converge up to boundary. By the point-picking argument above, we already have C 0 control on the Euclidean second fundamental form. We use this to upper bound the C 0,α norm of the Euclidean mean curvature kn of Y n in a neighbourhood of q ∞ . Recall that the mean curvature kn is an elliptic operator L n (w n ) on the graphing function ω n . The coefficients of L n depend on ∇ω n , but since we have arranged so that | ĨI(Y n )| is bounded in the region x ≤ 1, these are bounded. Therefore a uniform C 0,α bound on kn produces uniform C 2,α bound on w n and thus a contradiction.

The Euclidean mean curvature can be estimated via the Willmore equation

∆ n kn = Fn
Here Fn is an algebraic expression built up from the Euclidean second fundamental form ĨI(Y n ), and so ∥ Fn ∥ C 0 is bounded uniformly in n. The ∆ n is the normal bundle Laplacian of Y n and so its coefficients depend on first order of the surface. Because of this, the bootstrap argument requires extra care. We refer to [START_REF] Fine | Knots, minimal surfaces and J-holomorphic curves[END_REF] for a detailed treatment.

To prove the convergence of f n , we need to find a collar neighbourhood V of Σ such that f n (V ) is contained in M n,ϵ for all n. Then we apply the collar argument on V and interior argument on its complement. The existence of such V is also a delicate argument. One first proves that the length of ∂Σ n,ϵ under the hyperbolic metric of Σ is upper bounded by a constant l independent of n. This boils down to a uniform lower bound on the energy density of f n along this curve, which requires another rescaling argument. When this is done, it suffices to apply an isometry of H 2 so that a point on this curve is placed at the origin and choose V to be the complement of the geodesic ball of radius l.

Minimal surfaces and splitness of their boundary

It is difficult to compute the degree of a given link γ from its definition. The only case where this can be done is when γ is an unlinked union of c circles. When c = 1, we can isotope γ to a round circle which, by Maximum Principle, can only be filled by a totally geodesic disc.

When c > 1, after isotoping the components of γ into round circles, we see that there is at least one minimal surface filling it, namely the union of totally geodesic discs. Theorem 2.40 below says that it is the only solution.

2. There exists a boundary defining function ρ such that ρ > 0 in M , ρ = 0 and dρ ̸ = 0 at every point of ∂M . Moreover the metric ḡ := ρ 2 g extends over M .

We will always fix a compactification M in advance. The restriction of the normalised metric ḡ to X varies in a same conformal class independent of ρ. This class is called the conformal infinity of g. A collar neighbourhood is an open set of M containing X.

The sectional curvatures R of g and R of ḡ are related by: 

R ijij = ρ -2 Rijij + ρ -1 [Hess
= |dρ| ḡ = 1 on X. A boundary-defining function ρ is called special if |dρ| ḡ = 1 on an open neighbourhood of X.
Using a special boundary defining function ρ, we can rewrite the metric g in a collar neighbourhood X × [0, ϵ) ρ as

g = dρ 2 + h(ρ) ρ 2 = dρ 2 + h 0 ρ 2 + h 1 ρ + h 2 + . . . (2.40)
where h(ρ) is a path of metrics on X and h 0 + ρh 1 + h 2 ρ 2 is its Taylor expansion in S 2 T * X.

Lemma 2.45 (Graham-Witten [START_REF] Graham | Conformal Anomaly Of Submanifold Observables In AdS/CFT Correspondence[END_REF]). Let (M n+1 , g) be an AH manifold.

1. Let h 0 be any metric in the conformal infinity of g. Then there exists a special boundary defining function ρ such that ρ 2 g restricts to h 0 on X. Moreover, ρ is unique in a collar neighbourhood.

2. Let ρ 1 , ρ 2 be two special boundary defining functions. Then

ρ 2 = ρ 1 e φ (2.41)
where φ is a function on the collar X × [0, ϵ) that satisfies

∂φ ∂ρ i ρ i =0 = 0.
Note that in (2.44), we write the curvature of a metric in its orthonormal frame. This means that Ric g ij and Ric ḡ ij are written using two different frames. Corollary 2.48 ). Suppose in addition that metric g is Einstein up to first order in ρ, that is, the tensor norm of Ric g +ng vanishes in first order at infinity. Then the tensor h 1 of (2.40) vanishes.

From now on, we will suppose that the metric g is Einstein up to first order and so (2.40) becomes

g = dρ 2 + h 0 ρ 2 + O(1) (2.45)
for a special boundary defining function ρ.

Renormalisability

Let (Σ, g Σ ) be a conformally compact surface. We call a boundary defining function ρ eligible if g Σ has the expansion

g Σ = dρ 2 + h 0 ρ 2 + O(1). (2.46)
in other words, if there is no h 1 ρ term. Here h 0 is a metric on ∂Σ and O(1) denotes a finite metric on Σ.

We note that any boundary defining function r third order close to an eligible boundary defining function ρ in the sense that r = ρ + O(ρ 3 ) or equivalently ρ = r + O(r 3 ), is also eligible.

Lemma 2.49. Let (M , g) be an AH manifold and Σ be a surface in M meeting its boundary transversally, then the pullback of any boundary defining function of M is a boundary defining function of Σ.

Moreover, if the surface Σ meets the boundary X of M at right angle, then the pullback of any special boundary defining function is eligible to the induced metric on Σ.

Proof. The second statement is true because we can write the map inclusion map Σ → M in collar neighbourhoods ∂Σ × [0, ϵ) and X × [0, ϵ) as (p, t) → (p t , t). The point p t is determined by flowing along the inverse gradient of ρ in Σ from level ρ = 0 to ρ = t, then flowing backwards to level ρ = 0 by the inverse gradient in M . If Σ meets X at right angle, the point p t is O(t 2 ) close to p. This leads to (2.46).

The angle condition is necessary because the collar neighbourhoods of M and Σ are identified X × [0, ϵ) and ∂Σ × [0, ϵ) using two different gradient fields. The goal of this section is to study the behaviour at 0 of the function

Q(ϵ) = ˆΣ∩{ρ≥ϵ} Q vol g Σ (2.47)
associated to each function Q on Σ. Theorem 2.50 gives a condition of the growth of Q at infinity so that the integral (2.47) can be renormalised and that its renormalisation is independent on the choice of ρ. The proof will be delayed until the next Section.

Theorem 2.50 (Renormalisation Criteria). Let ρ be an eligible boundary defining function of Σ and Q be a function on Σ such that ∂Q ∂ρ = 0 on the boundary. Then

Q(ϵ) = L Q ϵ + Q R + O(ϵ) (2.48)
where 

L Q = ´Σ
Q(ϵ) = ˆΣ,ρ≥ϵ Q vol g Σ .
has the expansion

Q(ϵ) = L Q ϵ + Q R + O(ϵ).
Moreover, the quantity Q R is independent of the choice of ρ.

Proof. By Lemma 2.49 the restriction of any special boundary defining function to Σ is eligible. It is always possible to join two special boundary defining functions ρ 0 , ρ 1 of M by a path of special boundary defining function {ρ t } t∈ [0,1] . This can be done by joining the two normalised metrics ρ 2 1 g and ρ 2 2 g in the conformal infinity by their convex combination, then applying Lemma 2.45. The second half of Lemma 2.45 assures that the resulting family satisfies the condition of Theorem 2.50.

When Q = 1, Corollary 2.51 was proved by Graham and Witten and Q R is their renormalised area.

We can also formulate a version of Theorem 2.50 for maps between a conformally compact surface (Σ, g Σ ) and an AH manifold (M , g). We are interested in maps that send the boundary to boundary and interior to interior. Given such a map f , the pullback ρ • f of a boundary defining function ρ of M is a boundary defining function of Σ if and only if f meets X transversally. This latter condition means that the tangent of f on ∂Σ is not contained in X at any point.

As before, we assume that g is Einstein up to first order, ρ is special and we want the pullback ρ • f to be eligible to the metric f * g in a collar of Σ. For this, we need f to be immersion in a collar neighbourhood and, similar to Lemma 2.49, the tangent of f contains the gradient of ∇ρ at all points of ∂Σ. We say that the map f meets X at right angle if these two conditions are satisfied.

We can define a mapping version of (2.47) as follows. Let Q be a function on Σ and ρ be a special boundary defining function of M , then we define Q(ϵ) by

Q(ϵ) = ˆΣ,ρ•f≥ϵ Q vol g Σ = ˆΣ,ρ•f≥ϵ Q | det g Σ f * g| 1/2 vol f * g (2.49)
where | det g Σ f * g| 1/2 is the Jacobian of f . Now it follows from Theorem 2.50 that:

Proposition 2.52. Let (M , g) be AH manifold, Einstein up to first order and ρ be a special boundary defining function. Let f : (Σ, g Σ ) -→ (M , g) be a map that meets X at right angle and Q be a function on Σ that satisfies

∂ ∂ρ Q | det g Σ f * g| 1/2 = 0 on X.
Then the quantity Q(ϵ) defined by (2.49) admits the following expansion

Q(ϵ) = L Q ϵ + Q R + O(ϵ)
where L Q = ´∂Σ Qds ḡ is the length of f (∂Σ) under the metric ḡ = ρ 2 g weighted by Q. Moreover, the normalisation Q R is independent of the choice of the special boundary defining function ρ.

We will use Proposition 2.52 to prove, under a natural boundary condition of f , that the Dirichlet energy and Sacks-Uhlenbeck's α-energy can be renormalised and that their renormalisations are independent of the choice of boundary defining function.

Recall that the energy density e(f ) is defined as the tensor norm of df under the metric g on M and g Σ on Σ e(f )

:= |df | 2 = Tr g Σ f * g.
The Dirichlet energy is the total integral of e(f ) over Σ and the α-energy is the total integral of |df | α = e(f ) α/2 . Definition 2.53. Given a map f between a Riemann surface and a Riemannian manifold (M , g), the quadratic differential of f is the 2-tensor

q(f , g) := ⟨ ∂f ∂z , ∂f ∂z ⟩ g dz ⊗ dz
where z is a complex coordinate of Σ and the inner product on T M ⊗ C is complexified to be C-linear on both factors. The map f is conformal if and only if q(f , g) vanishes.

The quadratic differential relates the energy density of a map f and its Jacobian by:

Tr g Σ (f * g) 2 -4det g Σ (f * g) = 1 4 |q(f , g)| 2 g Σ (2.50)
Definition 2.54. A map f : (Σ, ∂Σ) -→ (M , X) is called renormalisable if its image meets X at right angle and its quadratic differential vanishes on ∂Σ:

|q(f , g)| g Σ = O(ρ) (2.51)
The previous discussion is summarised in the following diagram.

Vanishing order of q(f , g)

Property of f O(1)
Meeting boundary transversally

k s O(ρ) K S + 3
Energies are renormalisable

O(ρ 2 ) K S harmonic k s o(ρ 2 ) K S + 3 conformal if harmonic

Proof of the Renormalisation Criteria (Theorem 2.50)

We will sketch here the proof of Theorem 2.50. It uses repeatedly the following formulation of the co-area formula. When ρ t is a linear function in t, this becomes the standard form of the co-area formula.

Lemma 2.58. Let (Ω, h) be an open domain in a k-dimensional Riemannian manifold and {ρ t } t=0,1 be a family of functions on Ω such that dρ t are nowhere-zero. Let Ω t be subdomains cut out by the condition ρ t ≥ δ. Then for any function F ∈ C 0 (Ω), one has

d dt t=0 ˆΩt F vol k h = ˆ∂Ω 0 dρ t dt t=0 F |∇ρ 0 | h vol k-1 h .
To simplify the notation, we will denote the metric on Σ by h. Let ρ be a h-eligible boundary defining function, that is

h = dρ 2 + h 0 ρ 2 + O(1) (2.52)
and h = ρ 2 h be the corresponding normalised metric on Σ. Instead of proving that

Q(ϵ) = L Q ϵ + Q R + O(ϵ),
we will prove that dQ(ϵ) dϵ

+ L Q ϵ 2 = O(1) (2.53)
By Lemma 2.58 (in fact, the standard form of the coarea formula is enough), we have

dQ(ϵ) dϵ = - ˆΣ,ρ=ϵ Q |∇ρ| ds h = -ϵ -2 ˆΣ,ρ=ϵ Q |dρ| hds h.
(2.54)

Gromov's Visual volume and Li-Yau's Conformal volume

We have seen that each point p in the interior of the ball B n+1 correspond to a unique round metric g p on the boundary sphere. This metric is obtained by pulling back the standard Euclidean metric g 0 via the hyperbolic homothety (or Lorentz boost) φ p along the axis Op that sends p to the centre of the ball. Definition 3.1.

1. The visual volume V Σ (p) of a measurable subset Σ ⊂ S n at a point p ∈ B n+1 is its volume under the metric g p . Given a conformal manifold (Σ, [h]), the conformal volume of Σ is given by

V c (Σ, n) := inf f sup p V f (Σ) (p) (3.1)
where the infimum is taken among branched conformal immersions f : Σ -→ S n . 

The

E M (f ) = sup p∈B n+1 E M (f , p) = sup φ∈SO+(1,n+1) E(φ • f )
We have seen the role played by the visual volume (and its superlevel sets) in the study of minimal surfaces in the hyperbolic space. The conformal volume, on the other hand, was studied by Li and Yau [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF] as a natural upper bound for the first eigenvalue λ 1 of M . It is an extension of a topological argument by Hersch [START_REF] Hersch | Quatre proprietes isoperimetriques de membranes spheriques homogenes[END_REF] in case of S 2 and of Yang-Yau [START_REF] Yang | Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds[END_REF] in case of Riemann surfaces.

Conformal volume and Willmore conjecture

Hersch topological argument and upper bound of λ 1

We call a map f : X k -→ Y n between Riemannian manifolds (measure-theoretically) non-constant if the preimage of any point y ∈ Y has zero k-dimensional measure on X. Lemma 3.2 (Hersch-Li-Yau [START_REF] Hersch | Quatre proprietes isoperimetriques de membranes spheriques homogenes[END_REF], [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF]). Let f : (Σ k , h) -→ (S n , g 0 ) be a measuretheoretically non-constant map. Then there exists a Möbius transform φ that h-balances f , i.e.

ˆΣ x i • φ • f vol h = 0 for all Euclidean coordinate x i .
Proof. We define a map F : B n+1 -→ B n+1 by

F (p) := 1 V (Σ) n+1 i=1 ˆΣ x i • φ p vol h ∂ x i
where φ p is the hyperbolic homothety sending p to the centre of the ball. As p approaches a point p ∞ on the boundary sphere, the map φ p send S n \ {p ∞ } to -p ∞ and thus by Dominated Convergence theorem,

lim p→p∞ F (p) = -p ∞ .
So the map F extends continuously to the antipodal map on the boundary sphere and therefore has to be surjective. Using Lemma 3.2, Hersch proved that Theorem 3.3 (Hersch [Her70]). The normalised first eigenvalue of any metric h on S 2 is at most 8π.

Proof. Since there is only one conformal class up to diffeomorphism on S 2 , we can suppose that h is conformal to the standard metric g 0 . By choosing Σ = S 2 in Lemma 3.2, one has a Möbius transform φ and 3 pull-back coordinate functions x i , i = 1, 2, 3 such that ´S2 x i vol h = 0. By the variational characterisation of λ 1 one has

λ 1 ˆS2 x 2 i vol h ≤ ˆS2 |∇ h x i | 2 h vol h = ˆS2 |∇x i | 2 g 0 vol g 0 (3.2)
where the last equality is due to the conformal nature of the integrand. The RHS sums up, for i = 1, 2, 3 to 2.4π = 8π while the LHS is the normalised first eigenvalue of h.

Theorem 3.3 was generalised to Riemann surfaces by Yang and Yau [START_REF] Yang | Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds[END_REF].

Theorem 3.4 (Yang-Yau). Let (Σ, h) be a Riemannian surface of genus g and of area V . Then λ 1 V ≤ 8π(g + 1).

Proof. It suffices to immerse the surface to S 2 via holomorphic map π of degree d ≤ g + 1, which always exists due to Riemann-Roch theorem. We then h-balance it via a Möbius transform and rewrite (3.2) as

λ 1 ˆΣ x 2 i vol h ≤ ˆΣ |∇ h (x i • π)| 2 h vol h = d ˆS2 |∇x i | 2 g std vol g std = 8πd.

Conformal volume as upper bound of λ 1

With a same proof, Theorem 3.4 can be stated in a slightly different way using the conformal volume. The case m = 2 of the following result was due to Li and Yau [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF] and the general case to El Soufi and Ilias [START_REF] Soufi | Le volume conforme et ses applications d'après Li et Yau[END_REF].

Theorem 3.5 (Li-Yau , El Soufi-Ilias). Let (Σ, h) be a Riemannian k-manifold and n be a sufficiently big number so that Σ admits a branched conformal immersion into S n . Then one has

λ 1 V (Σ) 2/k ≤ kV c (Σ, n) 2/k .
Equality happens if and only if (Σ, h) admits an homothetic minimal immersion into S n by first eigenfunctions.

An immersion

f : (X, g X ) -→ (Y , g Y ) is called homothetic if f * g Y = λg X
for a constant λ. We will prove the following stronger statement. Theorem 3.6. Let f : (Σ k , h) -→ (S n , g 0 ) be any measure-theoretically non-constant map. Then there exists a Möbius transform φ ∈ SO + (1, n + 1) such that

λ 1 (Σ).V (Σ) ≤ E(φ • f ). (3.3)
In particular λ 1 V (Σ) is not bigger than the Möbius energy of f . Moreover, if we define the m-energy of f by E m (f

) := ´Σ |df | m vol h , then λ 1 V (Σ) 2/k ≤ E k (φ • f ) 2/k . (3.4)
Equality in (3.4) happens if and only if equality in (3.3) happens, and it is exactly when f is a harmonic map with constant energy density e(f ) = λ 1 .

Proof. Let φ be the Möbius transform that balances f and xi = x i • φ • f , it suffices to sum up the following estimate for i = 1, 2, . . . , n + 1 to obtain (3.3).

λ 1 ˆΣ x2 i vol h ≤ ˆΣ |∇ h xi | 2 vol h = ˆΣ Tr h (d xi ) 2 vol h .
When dim Σ = k > 2, (3.4) follows from Hölder inequality:

E(φ • f ) ≤ ˆΣ [Tr h (φ • f ) * g 0 ] k/2 vol h 2/k V (Σ) 1-2 k = E k (φ • f ) 2/k V (Σ) 1-2 k Remark 3.7. 1. The k-energy E k only depends on the conformal class of h. When f is (weakly) conformal it is the mapping volume, E k (φ • f ) = k k/2 V (φ • f
) . One obtains Theorem 3.5 by taking supremum among conformal immersion f . 2. The two sides of (3.3) are not scale-invariant unless when k = 2. This is why we could not just take the supremum directly there.

Li-Yau's approach to the Willmore conjecture

Theorem 3.5 can also be seen as a lower bound of the conformal volume in term of the first eigenvalue. This point of view is particularly useful when we have better understanding of the spectrum of one metric on Σ than the area of its conformal image in the sphere. This is the case of tori, where we have know very well the spectrum of the flat metric (by Fourier series). The conformal area, on the other hand, is a lower bound of the Willmore energy:

V c (Σ) ≤ ˆf(Σ) vol gp ≤ ˆf(Σ) (1 + |H p | 2 ) vol gp =: W(f (Σ)) (3.5)
Here f : Σ 2 -→ S n is an arbitrary conformal immersion, g p is a round metric on the sphere and |H p | 2 is the norm of mean curvature of f (Σ) under g p . The famous Willmore conjecture reads Theorem 3.8 (Marques-Neves, Willmore conjecture). For every smooth immersed torus T in S 3 , one has

W(T ) = ˆT | ÎI| 2 = ˆT (1 + |H| 2 ) ≥ 2π 2
It follows from (3.5) that Theorem 3.8 is true when the conformal structure on T satisfies V c ≥ 2π 2 .

The spectrum of the flat metric on tori can be compute explicitly as follows. The conformal structure of a torus T τ is given by a lattice of C generated by 1 and a complex number τ = a + ib. The eigenvalues of the flat metric in this case are

λ pq = 4π 2 q 2 + p -qa b 2 with eigenfunctions f pq = cos 2π qx + p -qa b y , g pq = sin 2π qx + p -qa b y .
It can be proved using Fourier series that: Lemma 3.9 (cf. [START_REF] Montiel | Minimal immersions of surfaces by the first Eigenfunctions and conformal area[END_REF], [START_REF] Bryant | On the conformal volume of 2-tori[END_REF]). Let ψ : (T τ , g flat ) -→ S n be a conformal immersion from the flat torus T τ into S n such that ´Tτ ψ vol g flat = 0, then the mapping area of ψ is bounded from below by

V (ψ) ≥ 4π 2 b 1 + b 2 + a 2 -a It follows from Lemma 3.2) that: Theorem 3.10 (Bryant-Montiel-Ros [MR86], [Bry15]). If τ = a + ib then V c (T τ , n) ≥ 4π 2 b 1 + b 2 + a 2 -a . ( 3 

.6)

In particular, the Willmore conjecture is true for tori of modulus τ in the disk |τ -

( 1 2 + i)| < 1 2 .
Moreover, if there is a point p distinct from the origin such that V M (Σ, 0) = V M (Σ, p), then Σ is a totally geodesic subsphere of S n . Therefore, the normalised first eigenvalue of any metric h in the induced conformal class on Σ satisfies

λ 1 (h)V (Σ, h) 2/k ≤ V (Σ, g 0 ) 2/k .
The proof of Theorem 3.13 can be described in geometric term. It relies on the collinearity of two vector fields on S n that one can associate to the family of Lorentz boosts in H n+1 . The first vector field is their infinitesimal action on S n . Each Lorentz boost moves the standard round metric g 0 of S n inside its conformal class, and the second vector field is the gradient of the conformal factor.

Proof. Let {p t } t∈R be the arc-length parametrisation of a geodesic line in the Poincaré ball B n+1 along the x 1 -axis, passing by the centre p 0 and connecting 2 antipodal points p ±∞ = x -1 1 (±1). Denote by φ t the hyperbolic homothety that sends p t to the centre. Because the orbits of {φ t } on S n are the gradient lines of x 1 , the conformal vector field v T = dφ dt t=T at a fixed time T ∈ (0, ∞) is of the form v T = -u 1 ∂ x 1 where u 1 is a positive function on S n depending on the coordinate x 1 , and ∂ x 1 is the gradient on S n of the x 1 .

The vector v T lives in the Poincaré model centred at p T in which the surface φ T (Σ) is minimal under g p -T . The conformal factor θ ∈ C ∞ (S n ) given by g p -T = φ * -T g 0 = e 2θ g 0 , is a decreasing function in x 1 and its g 0 -gradient is of the form ∇θ = -u 2 ∂ x 1 for a positive function u 2 = u 2 (x 1 ). Now one has

d dt t=T V M (Σ, p t ) = - ˆφT (Σ) H 0 .v T vol g 0 = -k ˆφT (Σ) (∇θ) ⊥ .v T vol g 0 = -k ˆφT (Σ) u 1 u 2 |∂ ⊥ x 1 | 2 vol g 0 (3.8)
Here H 0 is the mean curvature of φ T (Σ) under the metric g 0 and is related to the mean curvature under g p -T by:

0 = H p -T = e -2θ H 0 -k(∇θ) ⊥ .
The ⊥ sign denoting projection to the normal bundle of φ T (Σ). So H 0 = k(∇θ) ⊥ and this explains the second equality of (3.8). We conclude that V Σ (p t ) is decreasing in t on (0, +∞).

When there is a point p ̸ = O with V Σ (p) = V Σ (0), equation (3.8) assures that the S n -gradient of x 1 at any point of Σ lies inside Σ and so all S n -gradient lines of x 1 intersecting Σ belongs to it. It follows that Σ contains p ±∞ and is a totally geodesic subsphere of S n .

One can compute directly that in the proof of Theorem 3.13

u 1 = 1, u 2 = sinh T cosh T + x 1 sinh T .
This boils down to the computation of the conformal factor, which will be done in the next section. It may be tempting to generalise Theorem 3.13 for harmonic maps, the same approach however does not work because the conformal transform for the tension field of a map

f : (Σ, h) -→ S n is τ (f , e 2θ g 0 ) = τ (f , g 0 ) -|df | 2 g 0 ∇ g 0 θ + 2f * ∇ h (θ • f ) It is not always true that |df | 2 |∇θ| 2 ≥ 2g 0 (f * ∇ h (θ • f ), ∇θ)
, unless when f is conformal and the dimension of Σ is at least 2.

Properties of the visual volume

One simple way to compute the conformal factor corresponding to the action of a Lorentz boost on the sphere at infinity is the following. The metric g p is given by g p = (ξ 0,p + 1) 2 g H where ξ 0,p is the time-coordinate minimising at p, therefore gp g 0 = ξ 0,O +1 ξ 0,p +1 2 . When p lies in the x 1 -axis in the Poincaré model centred at O, the famous Lorentz boost formula reads

ξ 0,p = cosh ϕ ξ 0,O -sinh ϕ ξ 1,O , ξ 1,p = -sinh ϕ ξ 0,O + cosh ϕ ξ 1,O
where ϕ is the hyperbolic distance from p to O and ξ 1 is the space coordinate pointing to the x 1 -direction. Therefore,

ξ 0,p + 1 ξ 0,O + 1 = cosh ϕ ξ 0,O ξ 0,O + 1 -sinh ϕ ξ 1,O ξ 0,O + 1 + 1 ξ 0,O + 1 on B n+1 = cosh ϕ -sinh ϕ x 1 on S n
The second equality is because ξ 1,O ξ 0,O +1 = x 1 on S n and ξ 0,O tends to infinity as one approaches the boundary.

Recall that each point s ∈ S n defines a null coordinate ξ s ∈ C ∞ (H n+1 ) uniquely up to a multiplicative constant. The conformal factor, as function on S n can be rewritten as Lemma 3.14. Let p and q be interior points of B n+1 and s ∈ S n is a point on its boundary, then

g p g q (s) = ξ s (q) ξ s (p) 2 
In particular, if we choose q = O to be the centre of B n+1 and normalise the null coordinate ξ s so that ξ s (O) = 1, then

g p g 0 (s) = ξ s (p) -2 .

Derivatives

It can be checked that the powers ξ k s of the null coordinate ξ s associated to a boundary point s are eigenfunctions of the hyperbolic Laplacian. By Lemma ??, the visual volume and the Möbius energy are just combinations of these functions and therefore are also eigenfunctions. We will compute in this subsection the first derivative and the hyperbolic Hessian of the visual volume function. Note that we can always assume the point where we differentiate is the centre O of B n+1 . Let Σ be a k-dimensional submanifold of S n . In the following statements, the volume form vol 0 is given by the Euclidean metric g 0 and the light coordinates ξ s are normalised so that ξ s (O) = 1. In particular, given any pair of points p, q of hyperbolic distance D to each other, one has V Σ (q)e -kD ≤ V Σ (p) ≤ V Σ (q)e kD (3.10) Proposition 3.18 (Hessian of visual volume). The hyperbolic hessian of V Σ at O is

Hess V Σ = -kV Σ g H + k(k + 1) ˆΣ(d ln ξ s ) 2 vol 0 (3.11)
In particular, V Σ is an eigenfunction of the hyperbolic Laplacian:

∆V Σ = -k(n -k)V Σ .
Let e i be the hyperbolic-unit vector at O pointing to the x i -direction then by (3.11), 

Hess V Σ (e i , e i ) = -kV Σ + k(k + 1) ˆΣ x 2 i vol 0 (3.12)

Boundary behavior

Recall that φ p is our notation for the Lorentz boost sending p to O. Let {p t } t≥0 be a geodesic ray from O to a boundary point p ∞ which we assume to lie on a k-submanifold Σ. Then φ pt (Σ) converges on compact sets of S n \ {-p ∞ } to a k-dimensional subsphere of S n containing p ∞ . If Σ is an immersed submanifold with m sheets passing by p ∞ , the limit will be m copies of S k whose tangents coincide with sheets of Σ at p ∞ . Therefore we have lim

t→∞ V Σ (p t ) = mω k (3.13)
It follows from this that an immersed k-submanifold with visual volume less than 2ω k has to be embedded. By (3.10), we still have (3.13) for a sequence {q n } of interior points that converges to p ∞ orthogonally, i.e. the hyperbolic distance from q n to the ray {p t } t≥0 tends to 0. Lemma 3.21. Suppose that Σ is an embedded C 2 k-submanifold of S n and M is a minimal (k + 1)-submanifold of H n+1 filling Σ. Then the restricted function V Σ on M converges uniformly to ω k on the boundary.

In fact, M only needs to be in the convex hull of Σ. To see this, it suffices to prove that Lemma 3.22. The hyperbolic distance between a point p ∈ H n+1 in the convex hull of a C 2 embedded submanifold Σ of S n and the cone C O (Σ) centred at O built upon Σ tends to zero as p goes to infinity.

In particular, the function V Σ can be extended continuously to a function on Σ ∪ ConvHull(Σ) by imposing its value to be ω k on Σ.

It is clear that if Lemma 3.22 is true for one choice of the centre O, it is true for all choices. Moreover, if we choose a point ∞ on S n \ Σ and denote by C ∞ (Σ) the vertical cylinder Σ × R >0 in the half-space model, we only need to prove that the distance d(p, C ∞ (Σ)) tends to zero as the altitude of p decreases to 0.

The C 2 and embeddedness hypotheses imply the existence of an osculating radius r 0 > 0. We recall that this means Σ lies on one side of the (n -1)-sphere of radius r 0 tangent to it. Lemma 3.23 follows from the definition of the convex hull. It proves Lemma 3.22 and thus Lemma 3.21. Lemma 3.23. Let p ∈ H n+1 be a point in the convex hull of Σ, of altitude x(p) < r 0 in the half-space model. Then the Euclidean distance between p and the lifted copy

Σ × {x(p)} of Σ is at most r 0 -r 2 0 -x(p) 2 . Therefore the hyperbolic distance satisfies d(p, C ∞ (Σ)) ≤ x(p) r 0 + r 2 0 -x(p) 2 < x(p) r 0

Submanifolds of S n with visual volume ω k

Let M k+1 be a minimally immersed submanifold of H n+1 with ideal boundary a submanifold Σ k of S n . Corollary 3.19 and Lemma 3.21 say that the visual volume function V Σ is super-harmonic on M with value at least ω k on the boundary. This gives another proof of Proposition 2.12.

Moreover, if Σ is embedded and max H V Σ = ω k , we can conclude, by Corollary 3.19, that Σ is a totally umbilic subsphere of S n . This result was proved by Bryant with a different method in his chapter of [START_REF] Wells | The Mathematical Heritage of Hermann Weyl[END_REF]. Proposition 3.24 (Bryant [Wel88]). Any immersed submanifold Σ k → S n , has visual volume at least ω k . Equality happens only for totally umbilic subspheres.

Although the above proof requires a C 2 minimal filling M of Σ, the maximum principle argument can be rewritten with the first variation formula for currents. For the claim on equality in Proposition 3.24, we only need a smooth point of M , whose existence is due to Almgren (see for example [START_REF] Morgan | Geometric measure theory: a beginner's guide[END_REF]). Proposition 3.25. Let Σ k be a k-dimensional C 2 embedded submanifold of S n and M be a stationary, locally integral (k + 1)-current of H n+1 asymptotic to Σ. Then ∥M ∥almost everywhere, one has V M (Σ) ≥ ω k .

Proof. The statement is true when Σ is a totally umbilic subsphere of S n . Suppose that this is not the case, then by Corollary 3.19 div M ∇V Σ < 0 everywhere on supp M .

For any

C 1 function f : [0, +∞) -→ R, one has 0 = ˆM div M [f (V Σ )∇V Σ ] = ˆM f (V Σ ) div M ∇V Σ + ˆM f ′ (V Σ )|∇ M V Σ | 2 (3.14)
as long as the vector field v f := f (V Σ )∇V Σ is compactly supported in the interior.

When f is a non-negative, decreasing function f ϵ supported in [0, ω k -ϵ) and is identically 1 on [0, ω k -2ϵ), the RHS of (3.14) is non-positive. By Lemma 3.22, ConvHull(Σ) ∩ V -1 Σ (-∞, ω k -ϵ] lies strictly in the interior and so the vector field v f is compactly supported. Thus (3.14) implies that V Σ ≥ ω k -2ϵ ∥M ∥-almost everywhere, and the conclusion as we send ϵ to 0.

Bryant's proof [START_REF] Wells | The Mathematical Heritage of Hermann Weyl[END_REF] of Proposition 3.24 involves writing down the second order development of V Σ at a point p ∈ Σ:

V Σ ((1 -t)p) =    4π + π 2 | ÎI| 2 t 2 log 1 t + O(t 2 ), if k = 2 ω k + 2 k-1 ω k-1 k 2 -4 | ÎI| 2 t 2 + O(t 3 log 1 t ), if k > 2 (3.15)
where | ÎI| 2 is the trace-free second fundamental form of Σ at p under the Euclidean metric.

The following question was raised by Li-Yau [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF].

Question 3.26 (Li-Yau). Given a k-dimensional manifold with conformal volume ω k , can we say that it is conformally a round k-sphere? Proposition 3.24 says that if the answer to Question 3.11 is affirmative than so is the answer to Question 3.26.

Superlevel sets

There are two justifications of our interest in superlevel set of the visual volume function. Firstly, it is to understand Gromov's visual hull, which together with Anderson's convex hull, are the only restriction for minimal submanifolds of the hyperbolic space in term of their boundary. The second motivation is to understand critical points of the visual volume function, in particular its local maximisers. We have seen in the computation of the conformal volume of tori that this is a delicate issue. One way to prove that a function has a unique global maximiser, is to show that the superlevel sets are eventually connected.

Theorem 3.27. If Σ 1 is a closed immersed curve in S n , then any superlevel set of V Σ is simply-connected. In particular, the visual hull of a closed immersed curve is simplyconnected.

Proof. Let Γ be an arbitrary closed smooth curve in a superlevel set U c := V -1 Σ [c, ∞) . Because π 1 (B n+1 ) = 0, the space C of locally Lipschitz maps F : B2 -→ H n+1 that parametrise Γ monotonically on S 1 is non-empty. It was proved by Lonseth [START_REF] Lonseth | The Problem of Plateau in Hyperbolic Space[END_REF] and Morrey [Mor48] that C contains a conformal harmonic map F (that is in fact a minimiser for the mapping area functional) which is a smooth immersion except at isolated branched points.

By Corollary 3.19, V Σ • F is a super-harmonic function on B 2 with value at least c on the boundary circle, and so it is at least c everywhere in B 2 . We have just constructed a continuous map F : B 2 -→ U c filling an arbitrary closed simple curve Γ, and thus proved π 1 (U c ) = 0.

In general, the visual hull of a k-submanifold Y of a Riemannian manifold X is defined as the set of points p ∈ X where the visual volume Vis(Y , p) is at least ω k , cf. Definition 2.21. It was proved by Gromov [Gro83, Theorem 8.1.B] that a curve is always contractible in its visual hull. 2 Theorem 3.27 can be seen as a way to improve this in the hyperbolic space.

The only reason why we could not generalise Theorem 3.27 for all dimension of Σ, with π 1 replaced by π h for any h ≥ k, is that we no longer have Douglas-Rado-Morrey solution to the Plateau problem.

Critical metrics and minimal surfaces

We know from Theorem 3.5 that if a metric h on Σ admits an homothetic minimal immersion then its normalised first eigenvalue is the biggest in the conformal class. It was proved by Nadirashvili and El Soufi-Ilias that if h is critical to the normalised first eigenvalue functional, then (Σ, h) admits a homothetic minimal immersion to S n by its first eigenfunctions [EI00; Nad96]. The result was later generalised for other eigenvalues [START_REF] Ilias | Laplacian eigenvalues functionals and metric deformations on compact manifolds[END_REF].

Remark 3.28. The eigenvalues λ k (h) is generally not differentiable in h. So to make sense of critical points of λ k , one needs to take an analytic perturbation {h t } of h, then define left and right derivatives δ + = d dt λ k (h) t=0 + , δ -= d dt λ k (h) t=0 -. A metric h is called critical (or extremal) if the two derivatives has opposite sign, that is δ + δ -≤ 0, for all analytic perturbations.

In this section, we will present an expository version of Nadirashvili-El Soufi-Ilias's argument in the case of surfaces. We will differentiate the eigenvalue and eigenfunctions as if they depend smoothly on the metric. This can be made rigorous by a projection trick due to Fraser and Schoen [START_REF] Fraser | Minimal surfaces and eigenvalue problems[END_REF], [START_REF] Fraser | Sharp eigenvalue bounds and minimal surfaces in the ball[END_REF].

Theorem 3.29 (Nadirashvili [Nad96], El Soufi-Ilias [EI00; SI08]). Let Σ be a compact surface and h 0 be a critical metric with respect to λ k (h)V (Σ, h). Then there exists k th eigenfunctions u 0 , . . . , u n of h 0 such that the map f = (u 0 , . . . , u n ) : Σ -→ S n is a homothetic minimal immersion.

We will denote the k th -eigenspace of h 0 by E k (h 0 ). Proof that Assertion 1 implies Theorem 3.29. Let {h t } be a perturbation of h 0 in a direction ω ∈ S 2 T * Σ that preserves the area of Σ. This means ´Σ⟨h 0 , ω⟩ vol h 0 = 0. Because h 0 is critical,

0 = d dt t=0 [λ k (h t )V (h t )] = V (h 0 ) d dt t=0 λ k (h t )
By Assertion 1, ω is L 2 -orthogonal to q(u) := (du) 2 -1 2 |∇u| 2 h 0 + λ k 2 u 2 h 0 in L 2 (S 2 T * Σ) for all u ∈ E k as long as it is L 2 -orthogonal to h 0 . By Hahn-Banach theorem, h 0 lies in the closure of the convex hull of Q := {q(u) : u ∈ E k (h 0 )}. The convex hull of Q is already closed, because it is a finite dimensional subspace, at most generated by the images q(u i ) of a basis {u i } of E k and the polarisations q(u i , u j ). So one has

h 0 = n i=0 q(u i ) = n i=0 (du i ) 2 - n i=0 1 2 |∇u i | 2 h 0 + λ k 2 n i=0
u 2 i h 0 (3.17)

for certain elements u i ∈ E k (h 0 ). By taking inner product of (3.17) with h 0 , we have u 2 i = 2 λ k . Substituting this into (3.17), we see that h 0 is conformal to (du i ) 2 , and the conformal factor is constant because

0 = ∆ n i=0 u 2 i = 2 n i=0 |∇u i | 2 + 2 n i=0 u i ∆u i = 2 n i=0 |∇u i | 2 -2λ k n i=0 u 2 i = 2 n i=0 |∇u i | 2 -4.
The theorem follows by normalising the u i . Now it remains to prove the Assertion.

Proof that Assertion 1. Let u t be a smooth family of k th eigenfunctions of a perturbation h t in direction ḣ = d dt t=0

h t . Suppose also that ∥u t ∥ L 2 (ht) = 

λ k 2 ˆu2 0 ⟨h 0 , ḣ⟩
There is a version of Theorem 3.29, also due to El Soufi and Ilias [START_REF] Ilias | Laplacian eigenvalues functionals and metric deformations on compact manifolds[END_REF], that establishes the same relation for metrics that are critical to the normalised eigenvalues in a given conformal class and harmonic maps into sphere with constant energy density. These two relations provide a motivation for the problem of maximising the normalised eigenvalues, either among all metrics or those in a given conformal class. In the case of first eigenvalue of surfaces, the existence and regularity problem for conformally maximal metric was settled by Petrides [START_REF] Petrides | Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces[END_REF], and for maximal metric Petrides [START_REF] Petrides | On the Existence of Metrics Which Maximize Laplace Eigenvalues on Surfaces[END_REF], Mathiesen and Siffert [START_REF] Matthiesen | Handle attachment and the normalized first eigenvalue[END_REF], [START_REF] Matthiesen | Existence of metrics maximizing the first eigenvalue on non-orientable surfaces[END_REF].

Free boundary minimal submanifolds

We have seen in the previous section that Riemannian metrics on a surface Σ that are critical to the "normalised eigenvalue" functional are pullback metrics from minimal immersions of Σ into a sphere. The goal of this section is to present a similar relation, discovered by Fraser and Schoen, between critical metrics of the Steklov eigenvalues and free boundary minimal surfaces of the Euclidean unit ball.

Explicit examples

Definition 3.30. A submanifold (Σ k , ∂Σ) ⊂ (B n , S n-1 ) is called a free boundary minimal submanifold if Σ is minimal with respect to the Euclidean metric, ∂Σ is contained in the sphere S n-1 and Σ meets the sphere orthogonally.

Example 3.31 (The critical catenoid). In R 3 , the catenoid x 2 + y 2 = cosh 2 z given by rotating the curve r = cosh z around the z-axis intersects a certain sphere of radius R 0 at right angle. The radius R 0 is approximately 2.1716. To find this, we look for a point (z crit , r crit ) on the profile curve where the its tangent passes by the origin. Such point is given by r crit z crit = sinh z crit and so z crit is the only positive solution of the equation z = coth z.

Rescale (x, y, z) coordinates and we obtain a smaller version of the catenoid, called the critical catenoid which intersects the unit sphere at right angle.

Example 3.32 (The critical Mobius band). One can check that the following map from the Möbius band M := R × S 1 /(t, θ) ∼ (-t, θ + π) with metric h = dt 2 + dθ 2 to the Euclidean ball (B 4 , g E ) is harmonic F (t, θ) = (2 sinh t cos θ, 2 sinh t sin θ, cosh 2t cos 2θ, cosh 2t sin 2θ).

Moreover because the pull-back metric is F * g E = 4(cosh 2 t + sinh 2 2t)h, the map F is conformal. So its image is an (unorientable) minimal surface of R 4 . Because 4 i=1 x 2 i = 4 sinh 2 t + cosh 2 2t, the surface intersects spheres of R 4 at level sets of t. We claim that there is a certain level T 0 > 0 where the surface meets the sphere at right angle. It is exactly the value of t such that the gradient of ρ =

x 2 i as a function on the surface has the same norm its gradient as a function on R 4 , i.e. |d(ρ • F )| 2 h . h g E = 4ρ. Because d(ρ • F ) = (4 sinh 2t + 2 sinh 4t)dt, one finds sinh 2 T 0 = 1 2 .

More recent examples can be found in the survey [START_REF] Li | Free boundary minimal surfaces in the unit ball: recent advances and open questions[END_REF].

The reason why such submanifolds are called "free boundary" is that they are critical points of the volume functional under free boundary perturbations. These are perturbations of Σ by a family {Σ t } ⊂ B n whose boundary ∂Σ t is contained in S n-1 at every instance t. The infinitesimal perturbation v = d dt t=0 Σ t is a vector field along Σ that is tangent to S n-1 at boundary. The first variation formula reads

d dt t=0 V (Σ t ) = -ˆΣ H • v + ˆ∂Σ v • n
where H is the mean curvature vector of Σ and n is the normal vector of ∂Σ inside Σ.

It follows that Σ is critical if and only if its mean curvature vanishes and Σ meets S n-1 orthogonally.

Optimisation of Steklov eigenvalues

The free boundary minimal surface equation can be rewritten with the pullback coordinate functions as:

∆x i = 0, in Σ ∂x i ∂n = x i , on ∂Σ (3.19)
Or equivalently, x i are eigenfunctions of the Dirichlet-to-Neumann operator:

L : C ∞ (∂Σ) -→ C ∞ (∂Σ) u -→ Lu = ∂ ũ ∂n
Here ũ is the unique harmonic extension of u on Σ. The k th eigenvalue of L, often denoted by σ k , is called the k th Steklov eigenvalue of Σ.

Boundary volume and Interior volume. Two conjectures by Fraser and

Schoen.

We will now investigate geometric property of a free boundary minimal k-submanifold Σ of B n . Recall that the pullback Euclidean coordinates are harmonic functions on Σ and there sum of square ρ = i x 2 i satisfies ∆ρ = 2k (3.22)

In particular it is sub-harmonic on Σ and so interior points of Σ lie strictly in the interior 

+ ˆΣ ρ∆x i = ˆ∂Σ x i + ˆΣ ρ∆x i = 0.
The last equality is due to (3.23) and harmonicity of x i .

Recall that (3.23) is the critical point equation of the visual volume (Proposition 3.15). So O is critical to the visual volume function of a submanifold γ of S n-1 if γ can be realised as boundary of a free boundary minimal submanifold of B n . Fraser and Schoen [FS11; FS13] asked Conjecture 3.37 (Fraser-Schoen). If a (k -1)-dimensional submanifold ∂Σ bounds a free boundary minimal submanifold Σ, then its visual volume is maximised at the origin O. In other words, any Möbius transform reduces the volume of ∂Σ.

Similarly, if we define the relative visual volume V Σ of a submanifold Σ of B n to be the function which associates to each point p ∈ B n the volume of Σ under the metric g p , then Conjecture 3.38 (Fraser-Schoen). The relative visual volume of a free boundary minimal submanifold Σ is maximised at the origin O. In other words, any Möbius transform reduces the volume of Σ.

The relative visual volume is an upper bound of the normalised first Steklov eigenvalue. The proof of Proposition 3.39 is similar to that of Theorem 3.5. Proposition 3.39 (Fraser-Schoen). Let σ 1 > 0 be the first Steklov eigenvalue of a Riemannian manifold (Σ k , h) with non-empty boundary. Then for any conformal immersion φ : (Σ, ∂Σ) -→ (B n , S n-1 ) we have

σ 1 (h)V (∂Σ) ≤ k(sup B n V φ(Σ) ) 2/k V (Σ) 1-2 k (3.25)
In a similar way as Li-Yau's conformal volume, Fraser and Schoen defined the n th relative conformal volume of a conformal manifold as:

V rc (Σ, [h], n) := inf φ sup B n V φ(Σ)
where the infimum is taken among branched conformal immersions from (Σ, ∂Σ) into (B n , S n-1 ). By (3.25), we have:

σ 1 (h)V (∂Σ) ≤ kV rc (Σ, n) 2/k V (Σ) 1-2 k .
In particular when k = 2, we have σ 1 (h)V (∂Σ) ≤ 2V rc (Σ, n).

Because the visual volume V ∂Σ converges to ω k on ∂Σ, one direct consequence of Conjecture 3.37 would be the following lower bound on the volume of free boundary minimal surfaces and their boundary. This lower bound was proved by Brendle [START_REF] Brendle | A sharp bound for the area of minimal surfaces in the unit ball[END_REF].

Theorem 3.40 (Brendle). Let Σ k be a free boundary minimal submanifold of B n , then

V (∂Σ) = kV (Σ) ≥ ω k-1 .
The case k = 2 of Conjecture 3.37 can be checked easily. A proof using a Willmore type argument was first given by Fraser and Schoen in [START_REF] Fraser | The first Steklov eigenvalue, conformal geometry, and minimal surfaces[END_REF]. They later provided a different proof in [START_REF] Fraser | Minimal surfaces and eigenvalue problems[END_REF] using a monotonicity-type of argument. We will present the second proof as it is closely related to Brendle's proof of Theorem 3.40.

Before doing so, let us rewrite the conformal factor gp g 0 in a suitable way. In Lemma 3.14, we computed it in term of space coordinates because we were working with minimal surfaces of H n . Now to study minimal surfaces of R n , we will write the conformal factor as g p g 0 1/2

(q) = 1 |p| 2 -1 1 |q -p * | 2 , q ∈ B n (3.26)
where p * is image of p via an inversion with pole at the origin and radius 1. Concretely, we suppose that p lies in the x 1 -axis and of distance s ∈ [0, 1) to the origin, then p * is the point of coordinate s -1 on the same axis. We will write ρ s = |q -p * | 2 and so (3.26) becomes g p g 0 1/2 = 1 s 2 -1 ρ -1 s .

Recall that the square-of-distance functions ρ satisfy Hess ρ = 2g E and |∇ Σ ρ| 2 ≤ |dρ| 2 = 4ρ. On a minimal submanifold Σ of dimension k,

∆ρ α = αρ α-2 2kρ + (α -1)|∇ρ| 2 ≤ 0 ∀α ≤ 1 - k 2 ≤ 0 (3.27)
This means that ρ 1-k 2 is super-harmonic on Σ. When k = 2, we can look at the function log ρ instead:

∆ log ρ = ρ -1 ∆ρ -ρ -2 |∇ρ| 2 ≥ (2k -4)ρ -1 ≥ 0 when k ≥ 2 (3.28)

Because ρ s = ρ 0 -2x 1 s + 1 s 2 , ∂ρ 0 ∂n = 2 and ∂x 1 ∂n = x 1 on S n-1 , one has 

∂ρ s ∂n = ρ s + 1 - 1 s 2 on S n-1 (3.
ˆ∂Σ (s -x 1 )(s 2 + 1 -2sx 1 ) α-1
This means that 0 ≥ α ´∂Σ (2s -2x 1 )(s 2 + 1 -2sx 1 ) α-1 = d ds g(s) where g(s) = ´∂Σ (s 2 + 1 -2sx 1 ) α , and so g is a decreasing function. One has

g(0) = V (∂Σ) ≥ lim s→1 - g(s) = ˆ∂Σ ρ α 1 .
(3.30)

The function ρ α 1 is smooth on B n except at the point p 1 := (1, 0, . . . , 0) on the boundary. In the interior of Σ, we still have ∆ρ Here ν is the outward unit normal vector of Σ ∩ B ϵ in Σ. By (3.29), I 1 = ´∂Σ\Bϵ ρ α 1 and so is smaller than V (∂Σ). On the other hand, the integrand in I 2 is ρ α-1 1 ∂ρ 1 ∂,ν = -ϵ 2(α-1) .2ϵ(1 + O(ϵ)) due to boundary condition of Σ. Therefore, one has I 2 = -ω k-1 (1 + O(ϵ)). We obtain the conclusion by sending ϵ to zero.
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 0 M 0 -→ C 0 of the boundary map to an open set M 0 of M, with image in an open set C 0 of C is proper. Then the following degree is well-defined for a generic curve γ ∈ C 0 and only depends on the connected component of C 0 containing γ:

  29)Proof of Conjecture 3.37 when k = 2, cf.[START_REF] Fraser | Minimal surfaces and eigenvalue problems[END_REF]. Because of (3.26),V (∂Σ, g p ) = 1 s 2 -1 ˆ∂Σ ρ s vol 0 .Since log ρ s is super-harmonic by (3.28), one has0 ≤ ˆΣ ∆ log ρ s = ˆ∂Σ ∂ log ρ s ∂n = ˆ∂Σ 1 + 1 -1 s 2 ρ -1 s = V (∂Σ, g 0 ) -V (∂Σ, g p )Proof of Theorem 3.40. Since Conjecture 3.37 was solved when k = 2, we can suppose that k > 2. It follows from (3.27) and (3.29) that for α := 1 -k 2 and s ∈ [0,

  α 1 ≤ 0 by (3.27). Let B ϵ be the ϵ1 + I 2 ,

Participation aux conférences et écoles d'été au cours de la période de thèse : 1

  . Mois thématique, Géométrie complexe, CIRM, Marseille, 01/2019 2. Introductory workshop, Microlocal Analysis, MSRI Berkeley, 09/2019 3. Atélier, Géométrie différentielle et l'analyse globale, Montréal, 05/2021 4. École d'été, Curvature constraints and Spaces of Metrics, Institut Fourier, Gre-

noble, 06/2021 5. Conférence, Geometry and Analysis on Non-Compact Manifolds Géométrie et analyse sur les variétés non compactes, CIRM, Marseille, 03/2022

Table des matières Summary Table des figures 1

  .1 Extension by tube of a surface. The tube does not need to be built over the intersection with a level set of h. . . . . . . . . . . . . . . . . . . . . . 1.2 The weighted volume of a minimal submanifold (orange) is less than that of a tube (blue) built upon the same intersection (red). . . . . . . . . . . . 1.3 The derivative of the test function used in (1.24). . . . . . . . . . . . . . . 2.1 The boundary modulus in term of the parameter of the spherical/rotational family. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Two spherical/rotational minimal annulus filling a same pair of circles. Image from [KZ14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 A parabolic type/translational minimal disk viewed in

  Soit γ une sous-variété immergée à dimension k de S n . Alors la restriction de V γ à une sous-variété minimale de H n à dimension au moins k + 1 est super-harmonique. Nous obtenons, par la résolution du problème de Plateau dans H n au sens de Douglas-Rado que Corollary 0.14 (3.27). Pour une courbe γ dans S n , les super-niveaux de V γ dans H n+1 , y inclus la clôture visuelle, sont simplement connexes. Il est facile de vérifier si un point est maximum local de V γ , mais très difficile de montrer s'il est un maximum global. Cette question se pose dans les calculs du volume conforme, et plus récemment dans le travail de Fraiser et Schoen sur les sous-variétés minimales à bord libre. Pour une telle sous-variété Σ de la boule unité euclidienne, il est démontré par Fraiser et Schoen que la fonction V ∂Σ est localement maximisée à l'origine. On ne sait toujours pas s'il s'agit d'un maximum global et j'espère que la Proposition 0.13 sera utile pour avancer sur cette question.

	1. Les nouveaux résultats
	du chapitre 3 sont :
	Proposition 0.13 (3.19).

  contains the gradient of h, then ∆ Σ h = Tr Σ Hess h at p. Let Σ be a k-dimensional submanifold of M whose boundary is a (k -1)dimensional submanifold γ (not necessarily contained in a level set of h). The h-tube extension of Σ is the union of Σ and the image of γ under the gradient flow of h. It follows from Lemma 1.6 that ∆ Σ h = kU on Σ. By Stokes' theorem,
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	In both cases, d dt Θ A h and d dt Θ B h vanish at t = t 0 if and only if the gradient of h is
	tangent to Σ at level h = t 0 .
	Proof.

  the monotonicity theorem holds for any weight P u = cos ur with u ∈ [b, ∞) but not for the uniform weight. However, one can still lower bound the unweighted volume of a minimal submanifold inside a geodesic ball by the volume of a great k-disc in space form.

Proposition 1.46. Suppose that K ≤ b 2 , the minimal surface Σ k contains a point O with multiplicity m and it has no boundary in the interior of B(O, t) for certain t < r max . Then

  of the Mori's family or of the family M C in Proposition 2.9. Because the boundaries of these surfaces are union of two round circles on the conformal sphere, the boundary term in (2.21) is at most 4π, and so the best we can get is A R ≤ -4π.

	By doing this argument for all the time coordinate functions, we have the following renor-
	malised version of the isoperimetric inequality. Theorem 2.22 was also independently
	proved by Jacob Bernstein [Ber21].		
	Theorem 2.22. Let Σ be a complete minimal surface in H n whose ideal boundary is a
	curve γ in the sphere infinity. Suppose that Σ is C 2 near boundary, then	
	A R (Σ) + sup round	g |γ| g ≤ 0	(2.21)
	where the supremum was taken among metrics of sectional curvature +1 in the conformal
	infinity of H		

1 ) (2.19) where |γ t | and |γ| are the length under the normalised metric g of the intersection γ t and the ideal boundary γ of Σ. For the last equality of (2.19), we have used |γ t | = |γ| + O(t -2 ) (2.20) which is because Σ meets S ∞ at right angle. Now we replace the LHS of (2.19) by the Graham-Witten series development (2.3) to obtain A R (Σ) + |γ| ≤ 0. n . In other words, A R (Σ) + sup p∈H n Vis(γ, p) ≤ 0. Although the inequality (2.21) is sharp, it does not give us good estimate of the renormalised area

  ρ(i, i) + Hess ρ(j, j)] -|d ln ρ| 2 g where the Hessian is taken with ḡ. It follows from this that: A conformally compact manifold (M , g) is called asymptotically hyperbolic (AH) if the limit of all sectional curvatures at infinity is -1. In other words, any boundary defining function ρ satisfies |d log ρ| g

	Lemma 2.43. Sectional curvatures of a conformally compact manifold with boundary
	defining function ρ converge uniformly to -|dρ| 2 ḡ = -|d log ρ| 2 g . In particular, a confor-
	mally compact manifold is negatively curved near infinity.
	Definition 2.44.

  Qds ḡ is the boundary length of Σ under the metric ḡ = ρ 2 g weighted by the function Q. Moreover, let {ρ t } t∈[0,1] be a family of eligible boundary defining functions such that dρt dt = O(ρ 2 t ), or equivalently ρ t = ρ 0 e φt where φ t has no first order term in ρ 0 . Then the quantity Q R (t) computed using ρ t in (2.47) and (2.48) is independent of t. Corollary 2.51 (Renormalised Q-area). Let (M , g) be an AH manifold that is Einstein up to first order and Σ be a surface meeting its boundary at right angle. Let ρ be a special boundary defining function of M and Q be a function on Σ such that ∂Q ∂ρ = 0 on ∂Σ. Then the quantity Q(ϵ) defined by

  Möbius energy EM (f , p) at a point p ∈ B n+1 of a map f : (Σ, h) -→ S n is defined as the Dirichlet energy of f under the metric g p , i.e. ´Σ Tr h [f * g p ] vol h . The Möbius energy E M (f ) is defined as

  . The restriction of V Σ on any minimal submanifold of H n+1 of dimension at least k + 1 is super-harmonic. Given a submanifold Σ k ⊂ S n , the Morse index of a non-degenerate critical point of V Σ is at least n -k.

	Two immediate consequences of this are: Corollary 3.19. Let Σ be a k-dimensional submanifold of S n . 1. The trace of Hess V Corollary 3.20.

Σ on any linear subspace P of T O H n , of dimension at least k + 1 is non-positive, or in other words, div P ∇V Σ ≤ 0. It is zero if and only if Σ is contained in the intersection of P and S n . 2

  Assertion 1. The first variation of the k th eigenvalue λ k is given byλk = -ˆΣ⟨(du) 2 -1 2 |∇u| 2 h 0 + λ k 2 u 2 h 0 , ḣ⟩ vol h 0 (3.16) for all u ∈ E k (h 0 ) with ∥u∥ L 2 = 1.

  1 and differentiate the identity ´Σ |du t | 2 ht vol ht = λ k (h t ) ´Σ u 2 t , we get The first term of (3.18) comes from d dt (|du 0 | 2 ht ) and the fact that (h -1 ) = -h -1 ḣh -1 . The last term comes from d dt vol ht = 1 2 ⟨ ḣ, h 0 ⟩ vol h 0 . The identity (3.16) follows from (3.18) by substituting |du 0| 2 = ⟨(du 0 ) 2 , ḣ⟩ h 0 and 2 ˆΣ⟨d u, du 0 ⟩ = -2 ˆΣ u∆u 0 = 2λ k ˆΣ u 0 u = λ k , ḣ⟩ vol h 0 = -

	λk =	ˆΣ	-|du 0 | 2 h -1 0 ḣh -1 0	+ 2⟨d u, du 0 ⟩ +	1 2	|du 0 | 2 h 0 ⟨h 0 , ḣ⟩ vol h 0	(3.18)
				h -1 0 ḣh -1 0	
		= λ k	d dt t=0	ˆu2 t vol ht -	1 2	ˆΣ d dt 0 ⟨h 0 ˆΣ u 2	u 2 t vol h 0

  of B n . By integrating (3.22) over Σ, we see that Proposition 3.35. Given a free boundary minimal submanifold Σ k in the Euclidean ball B n , its boundary volume and interior volume are related by To see that Σ is balanced, we use (3.22): 2k ˆΣ x i = ˆΣ x i ∆ρ =

					ˆ∂Σ	∂x i ∂n	=	ˆ∂Σ	x i .
	ˆ∂Σ	x i	∂ρ ∂n	-ρ	∂x i ∂n

V (∂Σ) = kV (Σ)

A free boundary minimal submanifold and its boundary are balanced: Proposition 3.36. Let Σ k be a free boundary minimal surface in B n . Then 1. The centre of mass of the ∂Σ is at the origin, i.e. for i = 1, . . . , n

ˆ∂Σ x i = 0. (3.23)

2. The centre of mass of Σ is also at the origin, i.e. for i = 1, . . . , n ˆΣ x i = 0.

(3.24)

Proof. We can see that the boundary is balanced by integrating (3.19) over Σ:

0 = ˆΣ ∆x i =

The definition of the tension field can be found in Appendix A. It is the mean curvature field when f is isometric.

Suppose that it is not, then by zooming in at the tip of the cone, the hyperbolic metric looking more and more Euclidean, we could just replace a small neighbourhood of the tip by a submanifold having strictly smaller volume.

Note that Lemma 1.17 requires the boundary curve to stay on a sphere centred at the origin, but we can always reduce to this case by radially extend the surface.

This "three-point property" is critical to the resolution of the Plateau problem. The famous Courant-Lebesgue Lemma says that a family of maps from D with bounded energy and the three-point property is equicontinuous.

The family f t is allowed to move ∂Σ in second order or higher, so Corollary 2.30 does not contradict the notion of "non-integrable" Jacobi field.

This is because the indicial roots of J -λ depend on λ.

This plays a crucial role in his solution of the Gehring's linking problem.
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Theorem 2.40. Let L := L 1 ⊔ L 2 be a separated union of two (k -1)-dimensional immersed submanifolds L 1 , L 2 in S n-1 . There is a way to rearrange L in its isotopy class such that any minimal submanifold Σ k in H n that fills L and C 1 up to boundary is a disjoint union of minimal submanifold filling each L i .

When k = 2, the same rearrangement also rules out harmonic maps: There is no connected, oriented surface Σ and harmonic map f : (Σ, ∂Σ) -→ (H n , S n-1 ) that is C 1 up to boundary, and meets S n-1 transversally at L.

Proof. Let us just consider the case of minimal surface (k = 2). For higher k, one replaces 2π by ω k-1 . For harmonic maps, it suffices to use Corollary 1.36 instead of Proposition 2.12.

Recall that a minimal surface of H n passing by the origin O of the Poincaré model has to intersect any 3-sphere of radius r at a curve longer than 2πr (see Proposition 2.12). If the surface extends in C 1 up to its ideal boundary, we can send r to 1 and conclude that its ideal boundary has Euclidean length at least 2π.

We isotope L so that L 1 (respectively L 2 ) is contained in a small ball centred at the North (respectively South) pole of the Poincaré ball and so that its Euclidean length is less than π. It suffices to prove that Σ has no intersection with the equatorial hyperplane. By convexity, such intersection is contained in a small ball centred at the origin O. If it was non-empty, by a small Möbius transform we could suppose that Σ contains O while keeping the Euclidean length of L less than 2π. This is a contradiction.

Corollary 2.41. All Alexakis-Mazzeo degrees vanish, except in the case of one circle.

Appendix D: Renormalisation in Asymptotically Hyperbolic manifold

In this Appendix, we will prove the area development (2.3) of Graham and Witten [START_REF] Graham | Conformal Anomaly Of Submanifold Observables In AdS/CFT Correspondence[END_REF]. In fact, we will give a criteria for a quantity Q defined on a surface Σ (not necessarily minimal) in an asymptotically hyperbolic manifold to be renormalisable in the sense that

Here ρ is a special boundary defining function and Q R is a constant independent of the choice of ρ.

We will also see that under a natural hypothesis, Sack-Uhlenbeck's α-energy of a map can be renormalised. This hypothesis concerns the growth of the Hopf differential of the map at infinity and is automatically satisfied if the map is conformal or harmonic.

Asymptotically hyperbolic manifold and Graham-Witten lemma

Definition 2.42. A Riemannian manifold (M n+1 , g) is called conformally compact if the following two conditions are satisfied: 1. M is the interior of a compact manifold M with boundary X n = ∂M Proof. For the first part, we pick any boundary defining function r such that the metric ḡ := r 2 g restricts to h 0 on X and construct ρ of the form ρ = re φ where φ is a function on a collar neighbourhood. The condition |d log ρ| g = 1 is equivalent to

The equation (2.42) is a first order, non-characteristic PDE of φ and can be solved for arbitrarily prescribed boundary data.

For the second part, we can suppose that the boundary defining function r in (2.42) is special, and so the RHS vanishes, therefore

Fefferman and Graham proved that if the metric g is Einstein, then h is determined up to order n -1 by h 0 . This means that the tensors h 1 , h 2 , . . . , h n-1 and the trace of h n are completely determined by h 0 . Moreover, all the odd order term h 2i+1 with 2i + 1 < n vanish. When n is even, there is an obstruction to determine the trace-free part of h n but it can be cancelled by adding a term of order ρ n log ρ in the Taylor expansion of g. Theorem 2.46 ). Let (M n+1 , g) be both AH and Einstein and ρ be a special boundary defining function. Then the metric g has the following normal form

where the

We will not need the full expansion (2.43), but only the fact that h 1 vanishes. So we will only assume that g is Einstein up to first order. The proof of Theorem 2.46 is quite simple in this case and can be seen via the following Lemma.

Lemma 2.47 ). Let (M n+1 , g) be an AH manifold and ρ be a special boundary defining function. Let h 0 , h 1 be the coefficient in the extension (2.40) of g. Then the trace-free tensor Ric g +ng of g extends to M and is given by

44) Here i, j denote directions in X and a, b denote directions in X and along the gradient of ρ. The tensor R ḡ is the Riemann curvature of ḡ.

In particular, the trace-free Ricci curvature of an AH metric extends to 0 on X.

It follows from (2.50) that a map f is renormalisable then

), thus the energy density satisfies the condition of Proposition 2.52. Moreover, direct computations show that: Lemma 2.55. Let g Σ be the hyperbolic metric on Σ, g be an AH metric, Einstein up to first order on M . Let f : (Σ, ∂Σ) -→ (M , ∂M ) be a C 2 , renormalisable map. Then

Corollary 2.56 (Renormalised energies). Suppose that (M , g) is AH, Einstein up to first order. Let f : (Σ, g Σ ) -→ (M , g) be a C 1 , renormalisable map. Then the Dirichlet energy of f can be renormalised and its renormalisation is independent of the choice of the boundary defining function.

Moreover, if g Σ is the hyperbolic metric, then the same conclusion holds for the αenergy.

We conclude this section with a remark on condition (2.51) on vanishing order of the Hopf differential.

-It follows from just the transversality of f on the boundary that the function

we have just seen that the Dirichlet energy and Sacks-Uhlenbeck's α-energies can be renormalised. -If we suppose that f is harmonic, then the condition (2.51) is satisfied automatically. In fact, we even have |q(f , g)| g Σ = O(ρ 2 ). This was proved by Li and Tam (cf. Lemma 1.3 of [START_REF] Li | Uniqueness and Regularity of Proper Harmonic Maps[END_REF]). We give here a much easier proof when the map f extends in C 3 manner to Σ: The quadratic differential q(f , g) is a holomorphic section of the double holomorphic cotangent bundle T * 2,0 Σ. Its singularity on ∂Σ is of order ρ -2 . It suffices to prove the following Lemma. Lemma 2.57. Let F be a holomorphic function on the half disc {x 2 + y 2 < 1, y > 0} of C. Suppose that y 2 F extends in C 2 manner over the real segment (-1, 1), then F also extends in C 0 manner over that segment.

-If f is harmonic and |q(f , g)| g Σ = o(ρ 2 ), then f is conformal. This is because the holomorphic section q extends to 0 on the boundary of Σ.

By identify the level set ρ = ϵ with the boundary via the gradient flow of ρ, we have

by hypothesis on Q and (2.52). Plug all of these into (2.54), we have

which is just (2.53). Now we will prove that Q R is independent of the choice of ρ. Let ρ t be an eligible family as in Theorem 2.50, that is ρ t = ρ 0 e φt with φ t having no first order term in ρ 0 . We denote by Q(ϵ, t) the corresponding functional computed in (2.47). To prove that the renormalisation does not depend on ρ t , it suffices to prove that d dt Q(ϵ, t) has no O(1)-term.

The derivative d dt Q(ϵ, t) can be computed with Lemma 2.58:

where in the last equality, we used the fact that dφt dt and Q have no first-order term in ρ 0 and that ρ 0 is eligible.

There are two difficulties when we try to compute the conformal volume from the definition, using (3.1): Firstly, we need good test conformal immersion f to estimate for the infimum. Then for such f , we need to compute the maximum of V f (Σ) . Related to the first difficulty is the following open question by Li and Yau [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF] Question 3.11 (Li-Yau). Is the infimum in the definition of conformal volume (equation (3.1)) attainable by a branched conformal immersion?

In the case of T τ , a good candidate ψ τ : T τ -→ S 5 was pointed out in [START_REF] Montiel | Minimal immersions of surfaces by the first Eigenfunctions and conformal area[END_REF] using eigenfunctions f 10 , f 01 , f 11 , g 10 , g 01 , g 11 . The image of ψ τ is a surface of constant mean curvature and the immersion is not only conformal but homothetic:

This means that the value of V ψτ (Tτ ) at O is exactly the RHS of (3.6). Moreover the map ψ τ is g 0 -balanced, so 1 O is a critical point this function. Equality in (3.6) will be obtained if one can prove that O is the global maximiser of V M . It is however not true in general, as one can check from the second variation of V M that O is local maximiser if and only if

It was conjectured by Montiel and Ros in [START_REF] Montiel | Minimal immersions of surfaces by the first Eigenfunctions and conformal area[END_REF] and proved by Bryant [Bry15] that Theorem 3.12 (Bryant-Montiel-Ros). Under the condition (3.7), the origin O is the global maximiser of V M (T τ ). Therefore, the conformal volume of T τ is:

Visual volume of minimal submanifolds

Let Σ 2 be a minimal surface of (S n , g 0 ). The Willmore energy

is a conformal invariant. It is bigger than the area of Σ under any round metric g p and is exactly its area under g 0 . This means that the function V Σ is maximised at the origin. This result was known to Li-Yau [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF] and was generalised to higher dimension by El Soufi and Ilias [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF].

Theorem 3.13 , El Soufi-Ilias [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF]). Let Σ → (S n , g 0 ) be a minimally immersed submanifold, then the visual volume function V Σ is decreasing in radial directions.

In particular, we have

1. We will verify this in Proposition 3.15 the next section.

It was discovered by Fraser and Schoen [FS16] that

Theorem 3.33 (Fraser-Schoen). Let Σ be a surface with non-empty boundary and h 0 be a metric that maximises the normalised k th Steklov eigenvalue among smooth metrics, i.e.

Then there exists a conformal harmonic immersion f = (u 1 , . . .

The proof of Theorem 3.33, in sketch, is similar to Theorem 3.29 of Nadirashvili, El Soufi and Ilias. We start with the first variation formula of the k th Steklov eigenvalue. Lemma 3.34 (cf. [START_REF] Fraser | Sharp eigenvalue bounds and minimal surfaces in the ball[END_REF]). If σ k (h) > σ k-1 (h) then for any smooth perturbation of h:

for any k th Steklov eigenfunction u with ∥u∥ L 2 (∂Σ) = 1. The vector T is the h-unit tangent of ∂Σ and the symmetric 2-tensor q(u) is given by

Proof that Lemma 3.34 implies Theorem 3.33. We perturb h 0 in a direction ω that preserves the boundary length of Σ. Such ω satisfies ´∂Σ ω(T , T ) = 0. Because h 0 is critical, we have

So for any ω, ⟨0 Σ , ω⟩ L 2 (S 2 Σ) + ⟨1 ∂Σ , ω(T , T )⟩ L 2 (∂Σ) = 0 implies that ⟨q(u), ω⟩ L 2 (S 2 Σ) + σ k 2 u 2 , ω(T , T ) L 2 (∂Σ) = 0 for all function u in the k th -eigenspace E k . This means that in the Hilbert space H := L 2 (S 2 Σ) ⊕ L 2 (∂Σ), if a vector v ω := (ω, ω(T , T )) is orthogonal to (0 Σ , 1 ∂Σ ), it is also orthogonal to the set Λ := {(q(u), σ k 2 u 2 ), u ∈ E k }. Because the space of all vectors v ω , for smooth symmetric 2-tensor ω, is dense in H, Hahn-Banach theorem says that (0 Σ , 1 ∂Σ ) lies in the closed convex hull of Λ.

The convex hull of Λ is already closed, for the same finite-dimensional reason given in the proof of Theorem 3.29. This means that (0 Σ , 1 ∂Σ ) can be written as a combination of (q(u i ), σ k 2 u 2 i ) where u i ∈ E k , that is n i=1

It remains to normalise the u i and the theorem follows.

The problem of existence and regularity for metrics maximising the normalised first Steklov eigenvalue on surfaces was solved by Matthiesen and Petrides [START_REF] Matthiesen | Free boundary minimal surfaces of any topological type in Euclidean balls via shape optimization[END_REF].