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Abstract

We study new monotonicity theorems for minimal surfaces in warped geometry. Appli-
cations include renormalised versions of the isoperimetric inequality for complete min-
imal surfaces of the hyperbolic space and a vanishing result for knot/link invariants
obtained by counting these surfaces.

Keywords: minimal surface, harmonic map, hyperbolic space, renormalised area,
isoperimetric inequality, knot

7





Résumé

Nous étudions de nouveaux théorèmes de monotonicité pour les surfaces minimales
en géométrie déformée. Les applications obtenues incluent des versions renormalisées de
l’inégalité isopérimétrique pour les surfaces minimales complètes de l’espace hyperbolique
et un résultat d’annulation pour les invariants de nœuds/entrelacs obtenus en comptant
ces surfaces.

Mots clés : surface minimale, application harmonique, espace hyperbolique, aire
renormalisée, inégalité isopérimétrique, nœud
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Summary

Monotonicity theorems
The objects studied in this thesis are minimal submanifolds of a Riemannian manifold

(X, g). They are the critical points of the volume functional, and equivalently, have
vanishing mean curvature. The most important tools in the study of such submanifolds
in the Euclidean space are the Barrier Method and the Monotonicity Theorem. The
latter says that the density of a minimal submanifold is an increasing function. To
define the density, we look at the part of the submanifold inside a ball of radius r and
normalise its volume by that of the equatorial disc of the ball. Concretely, for any point
p0 ∈ Rn and minimal k-submanifold Σ, the function

Θ(r) =
vol(Σ ∩B(p0, r))

vol(Bk)rk
(0.1)

is increasing in r.
In [And82], Anderson proved that the same result holds in the hyperbolic space Hn.

A different version of the monotonicity theorem for X = Hn and X = Sn was proved
by Choe and Gulliver [CG92a]. In this version, the volume of the submanifold and of
the ball are weighted by the function cosh r (or cos r in Sn).

The first main result of this thesis is the following monotonicity theorem for minimal
k-submanifolds of Hn. We call a Minkowskian coordinate of Hn a function ξ coming
from pulling back a coordinate function of the Minknowski space Rn,1 via the embedding
of Hn as the unit hyperboloid. The restricted Lorentz group SO+(n, 1) acts on these
functions and preserves the Minkowskian norm of dξ. We say that ξ is of time/space/null
type if this norm is respectively -1, +1 or 0. Let a and t be positive real numbers, and
ξ be a Minkowskian coordinate, we define a function Q(a, t) by

Q(a, t) =
ˆ t

a
(t2 + δ)k/2−1dt+

1
ka

(a2 + δ)k/2.

This function only depends on ξ via a parameter δ, given by δ = −1, 0,+1 if ξ is of time,
null, or space type.

Theorem 0.1 (1.33). Let Σ be a minimal k-submanifold of Hn and let a be the infimum
of ξ on Σ. Suppose that a > 0, then the density

Θ(t) =
vol(Σ ∩ {a < ξ < t})

Q(a, t)

is an increasing function in t.

When ξ is of time type and a = 1, we recover the result of Anderson mentioned above.
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We obtain Theorem 0.1 with the following strategy. We first prove its weighted version,
which for a time coordinate is the aforementioned monotonicity of Choe–Gulliver. Then
we point out a comparison mechanism, which produces more monotonicity results out
of a given one.

We will see in Chapter 1 that each function whose Hessian is a multiple of the metric
yields a weighted monotonicity theorem for minimal k-submanifolds ofX. Such functions
satisfy

Hessh = U .g, U ∈ C0(X) (0.2)

and such monotonicity theorems concern the volume of the submanifold between level
sets of h, weighted by the function U . The denominator of (0.1) will be the weighted
volume of a tube formed by flowing along the gradient field of h, a (k− 1)-submanifold.
A different choice of this submanifold only changes the density Θ(r) by a constant and
so does not affect the monotonicity result. Equation (0.2) is locally equivalent to a way
to write X as a warped product. We will prove that:

Theorem 0.2 (1.8). The weighted density of a minimal submanifold is increasing in the
region U > 0 and decreasing in the region U < 0.

When X = Rn, the only functions satisfying (0.2) are the coordinates xi and the dis-
tance ρ :=

∑
x2
i . Equation (0.2) pulls back to the harmonic equation for the coordinates

function xi and therefore yields the Barrier Method. Theorem 0.2 for ρ is the classical
version.

The Euclidean coordinates of Sn and the Minkowskian coordinates of Hn also satisfy
(0.2). These coordinates are obtained by embedding Sn as the unit sphere in Rn+1 and
of Hn as the hyperboloid in Rn,1. Each point Hn (or Sn) corresponds to a unique time
coordinate (or Euclidean coordinate) that it minimises. Choe–Gulliver’s result follows
from Theorem 0.2 for these functions. Meanwhile, each totally geodesic hyperplane of
Hn defines a space-coordinate and each point on the sphere at infinity S∞ defines a
null-coordinate. Theorem 0.2 is new in these cases.

The proof of Theorem 0.2 can be adapted for weaker analogues of minimal submani-
folds such as stationary currents, varifolds or harmonic maps. We do this in the Appendix
A.

Comparison lemma

We can define the P -density of Σ by replacing U with a different function P . The
scope of Theorem 0.2 becomes significantly larger due to the following lemma:

Lemma 0.3 (1.15). There is a transitive relation ≪ among the weights such that if
P1 ≪ P2 then:

1. any submanifold Σ (not necessarily minimal) having increasing P2-density auto-
matically has increasing P1-density. Moreover, the P2-density is always greater
than the P1-density.

2. a submanifold Σ that has increasing P1-density may not have increasing P2-density.
However, its P2-density is still always greater than its P1-density.
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In the unit ball Bn, a submanifold can have five different densities, depending on the
metric of the ball (the Poincaré metric, the Euclidean metric or the half-sphere metric)
and whether we want to weight the volume or not. These densities can be compared in
the following way:

weighted hyperbolic ≫ hyperbolic ≫ Euclidean ≫ spherical ≫ weighted spherical.
(0.3)

The relation (0.3) combines with Lemma 0.3 to give unweighted monotonicity the-
orems in the hyperbolic space. They are statements on how minimal submanifolds
distribute their volume between level sets of Minkowskian coordinates (Theorem 1.33).

On the other hand, the Clifford torus of S3 is minimal but not monotone in the
unweighted density. This shows that we cannot go backwards in the last ≫ of (0.3).

Because the Monotonicity Theorem 0.2 is in itself an inequality, it still holds when
(0.2) is replaced by Hessh ≥ Ug. Such function h appears as the distance function in
Riemannian manifold with curvature bounded from above. The extension of Theorem
0.2 to this context will be presented in Appendix B. We will also see a continuous version
of the chain (0.3) there.

Isoperimetric inequalities

Each Minkowskian coordinate ξ can be used to normalise the hyperbolic metric to a
metric ξ−2g in the conformal infinity of Hn. These are round metrics on Sn−1 for time
coordinates, flat metrics on Sn−1 \ {pt} = Rn−1 for null coordinates and the doubled
hyperbolic metrics. The third kind of metric is given by putting the (n− 1)-dimensional
hyperbolic metric on the two halves of the sphere at infinity S∞ divided by the to-
tally geodesic hyperplane associated to ξ. In Chapter 2, we will give upper bounds of
Graham–Witten’s renormalised area of a minimal surface in term of the length of its
boundary under these metrics. Because a complete minimal surface of Hn has infinite
area and perimeter, this can be considered as a renormalised version of the isoperimetric
inequality.

In Proposition 0.4, the supremum in (0.4) is taken among round metrics on S∞. The
metrics g̃0, g̃1,g̃light in (0.5) are the round/ the doubled hyperbolic/ the flat metrics
associated to the time coordinate ξ0/ the space coordinate ξ1/ the null coordinate ξlight.
The estimate (0.4) was independently discovered by Jacob Bernstein [Ber21].

Proposition 0.4 (2.22, 2.23). Let Σ ⊂ Hn be a minimal surface with ideal boundary
γ ⊂ S∞ and AR(Σ) its renormalised area, then

AR(Σ) + sup
round g̃

|γ|g̃ ≤ 0. (0.4)

Moreover, if a Minkowskian coordinate ξ∗ has minimum value a > 0 on Σ, then:

AR(Σ) +


1
2

(
a+ 1

a

)
|γ|g̃0

1
2

(
a− 1

a

)
|γ|g̃1

1
2a|γ|g̃light

≤ 0 (0.5)
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Minimal surfaces and knot invariants

The counting problem for minimal surfaces bounded by a given curve was initiated
by Tomi–Tromba’s resolution of the embedded Plateau problem [TT78] and was later
studied systematically by Brian White [Whi87b]. Let Σ be a surface with boundary and

— M be the quotien space of Ck,α minimal immersions from Σ to Rn by boundary-
preserving diffeomorphisms.

— C = Ck,α(∂Σ, Rn) be the space of boundary curves.
White proved that M is a Banach manifold and that the boundary map Π : M −→ C is
Fredholm and of index 0. Moreover, when we restrict to the space of embedded minimal
surfaces in a convex body of R3, the map Π is proper and an integer-valued degree can
be given to a curve by counting with sign the number of minimal surfaces filling it.

A similar counting problem can be set up in Hn for minimal surfaces with ideal
boundary in the sphere at infinity. The case n = 3 was studied by Alexakis and Mazzeo
[AM10] where M is the space of properly embedded minimal surfaces of H3 and C is
the space of collections of circles in S2.

It is of great interest to upgrade Alexakis and Mazzeo’s result to dimension n = 4
because the degrees, depending only on the isotopy class of the boundary curve, are by
definition knot/link invariants. This direction was recently investigated by Joel Fine
[Fin21], who proves that the projection map Π : M −→ C is Fredholm and of index 0.
He also shows that the only way properness can fail is when the complex structure of
the minimal surface develops a node. The counting problem of minimal surfaces will be
discussed in Chapter 2, Appendix C and Section 2.5. The contribution of this thesis is

Theorem 0.5 (2.40). Let L := L1 ⊔L2 be a separated union of two embedded (k− 1)-
submanifolds of Sn−1. Then we can rearrange L in its isotopy class so that there is no
connected minimal k-submanifolds in Hn whose ideal boundary is L.

In particular, all Alexakis–Mazzeo degrees vanish for collections of more than 1 circle.

The proof of Theorem 0.5 is based on the observation that a minimal surface whose
ideal boundary is a curve L can only pass by points that "see" L as longer than 2π. The
volume of a submanifold of S∞ seen from an interior point of Hn is called the visual
volume by Gromov and the set of such points is called the visual hull of γ [Gro83].

On the other hand, let Ha be the Hopf link zw = a in S3 = {(z,w) ∈ C2 : |z|2 + |w|2 =
1}, a family of explicit minimal annuli Ma of H4 whose ideal boundary is Ha will be
constructed in Section 2.2.

It follows from Lemma 0.3 that the standard Hopf link H0 has no minimal filling other
than the union M0 of two totally geodesic discs. Up to SO(4), the annuli Ma provide a
2-parameter family of perturbations of M0. This suggests that links which bound nodal
minimal surfaces only occurs in codimension 2.

Visual volume, first eigenvalue of the Laplacian and free
boundary minimal surfaces

Each k-dimensional submanifold γ on the sphere Sn induces a positive function Vγ
on Hn+1 whose value at a point p is given by the volume of γ under the round metric
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associated to p. The visual hull is, in particular, an upper level set of this function.
Chapter 3 is dedicated to the study of the visual volume function Vγ .

It was proved by Li and Yau [LY82] then El Soufi and Ilyas [EI83], that the maximum
value of Vγ is an upper bound for the normalised first eigenvalue of the Laplacian on γ.
Here we equip γ with any metric g in the conformal class induced by that of Sn and
normalise the first eigenvalue by the volume of γ under g. This upper bound was the
motivation behind Li–Yau’s definition of conformal volume and was utilised by them to
verify the Willmore conjecture for certain tori. A historical account on this can be found
in Section 3.1. The new results in Chapter 3 are:

Proposition 0.6 (3.19). Let γ be a k-dimensional immersed submanifold of Sn and Vγ
be its visual volume function. Then the restriction of Vγ to any minimal submanifold of
Hn of dimension at least k+ 1 is super-harmonic.

Because the Douglas–Rado Plateau problem can be solved in Hn, it follows that:

Corollary 0.7 (3.27). When γ is in Sn, the upper level sets of Vγ are simply-connected.

It is easy to check if a point is a local maximiser of Vγ but very difficult to prove that it
is a global maximiser. This question arises in the computation of the conformal volume
[MR86; Bry15], and more recently in the work of Fraiser and Schoen on free boundary
minimal submanifolds. For such a submanifold Σ of the Euclidean unit ball, one can
check that V∂Σ is locally maximised at the centre of the ball. Whether this is a global
maximum is still an open question. I hope that Proposition 0.6 can be useful here.

The appendices
Several parts of this thesis can be safely skipped without affecting the readability of the

text as a whole. For this reason, I put them in the appendices. The goal of Appendix A
and Appendix B was explained above. Appendix C reviews of the counting problem for
minimal surfaces in the Euclidean context. In Appendix D, I define Graham–Witten’s
renormalised area and explain why it is an inherent quantity of the surface. It also
contains a criteria for a quantity of a surface to be renormalisable. In particular, I
proved that Sacks–Uhlenbeck’s α-energies [SU81] are renormalisable for a wide class of
surfaces.
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Résumé

Théorème de monotonicité à poids

Dans cette thèse, nous nous intéressons aux sous-variétés minimales, c-à-d. à courbure
moyenne nulle, d’une variété riemannienne (X, g). Dans l’espace euclidien, les outils
les plus importants dans l’étude de ces sous-variétés sont la technique de barrière et
le théorème de monotonicité. Ce dernier dit que la densité d’une telle sous-variété Σk,
obtenue en normalisant son volume dans une boule de rayon r par le volume d’un k-
disque de même rayon, c-à-d.

Θ(r) =
vol(Σ ∩B(p0, r))

vol(Bk)r2 (0.6)

est une fonction croissante en r.
Il était démontré par Anderson [And82] que le résultat est encore valable pour les

sous-variétés de l’espace hyperbolique. Une autre version du théorème de monotonicité
pour X = Hn (et X = Sn) était obtenue par Choe et Gulliver [CG92a] où l’aire (de la
sous-variété et de la boule) est pondérés par la fonction cosh r (respectivement cos r).

Le premier résultat de cette thèse est la version suivante du théorème de monotoni-
cité pour les sous-variétés minimales de l’espace hyperbolique. Soit ξ une coordonnée
minkowskienne, a et t deux nombres réels positifs, nous définissons

Q(a, t) =
ˆ t

a
(t2 + δ)k/2−1dt+

1
ka

(a2 + δ)k/2

où δ = −1, 0 ou +1 quand ξ est de genre temps, lumière ou espace.

Theorem 0.8 (1.33). Soit Σ une sous-variété minimale à dimension k dans la région
ξ > a. Alors la densité

Θ(t) =
vol(Σ ∩ {a < ξ < t})

Q(a, t)
est une fonction croissante en t.

Nous retrouvons, lorsque ξ est de genre temps et a = 1, le résultat susmentionné
d’Anderson.

Pour obtenir le Théorème 0.8, nous démontrons d’abord sa version à poids (qui pour
les coordonnées de genre temps redonne la monotonicité de Choe et Gulliver), puis nous
montrons une lemme de comparaison qui nous permet à redescendre vers la version sans
poids.

Nous allons voir dans le chapitre 1 qu’il y a un théorème de monotonicité associé à
chaque fonction h de X dont le hessien est colinéaire au tenseur de métrique g. Concrè-

23



tement, une telle fonction satisfait

Hessh = U .g, pour U ∈ C0(X) (0.7)

et le théorème associé concerne le volume pondéré par U de la sous-variété entre deux
niveaux de h. On normalise ce volume par celui d’un tube, formé par l’image d’une
sous-variété à dimension k − 1 sous le flot du gradient de h. Chaque fonction h qui
satisfait (0.7) correspond à une façon de réaliser X comme produit tordu de variétés
riemanniennes.

Theorem 0.9 (1.8). La densité à poids d’une sous-variété minimale est croissante dans
la région U > 0 et décroissante dans la région U < 0.

Dans l’espace euclidien, les seules fonctions qui satisfont (0.7) sont les coordonnées xi,
pour lesquelles (0.7) redonne la technique de barrière, et la fonction distance ρ :=

∑
x2
i

avec laquelle on retrouve la version classique du théorème de monotonicité.
Les coordonnées euclidiennes de la sphère et les coordonnées minkowskiennes de l’es-

pace hyperbolique satisfont aussi (0.7). On obtient ces coordonnées en plongeant Sn
et Hn dans Rn+1 et Rn,1 comme la sphère et l’hyperboloïde unité. Géométriquement,
chaque point de Hn correspond à une coordonnée de genre temps (qui y est minimisée),
et chaque point de la sphère Sn correspond à une coordonnée euclidienne. En appliquant
le Théorème 0.9 à ces fonctions nous retrouvons le résultat de Choe et Gulliver. D’autre
part, les coordonnées de genre espace de Hn sont caractérisées par les codimensions 1
totalement géodésiques et les coordonnées de genre lumière par les points de la sphère à
l’infini. Le Théorème 0.9 est nouveau dans ce cas.

Nous mettons en Appendice A les adaptations du Théorème 0.9 pour les sous-variétés
minimales au sens faible. Le lecteur y trouvera les versions pour les courants station-
naires, les varifolds et les applications harmoniques.

Lemme de comparaison

Nous appelons la densité à poids P la quantité obtenue en remplaçant U dans la
définition de la densité à poids par une autre fonction P . Le lemme suivant élargit le
champ d’application du Théorème 0.9.

Lemma 0.10 (1.15). Il existe une relation transitive ≪ parmi les poids avec les pro-
priétés suivantes. Soit Σ une sous-variété (non nécessairement minimale) et supposons
que P1 ≪ P2.

1. Si la densité à poids P2 de Σ est croissante, alors la densité à poids P1 l’est aussi
et de plus elle est majorée par la première.

2. Si la densité à poids P1 est croissante, nous ne pouvons rien conclure de la mono-
tonicité à poids P2. Par contre, nous avons toujours la majoration de la densité à
poids P1 par celle à poids P2.

Il y a, pour une sous-variété de la boule unité, 5 densités différente, provenant du choix
de la métrique (Poincaré/ euclidienne/ sphérique) et du poids (uniforme/ temporal/
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euclidien). Ces densités se comparent de manière suivante :

hyperbolique à poids ≫ hyperbolique ≫ euclidien ≫ sphérique ≫ sphérique à poids.
(0.8)

Cette relation nous permet de retrouver les théorèmes de monotonicité à poids uniforme
pour les sous-variétés minimales de Hn. Ils sont des contraintes sur la distribution de
volume d’une sous-variété minimale entre les niveaux d’une coordonnée minkowskienne
(voir Théorème 1.33).

Étant de nature une inégalité, le Théorème 0.9 est encore valable lorsque nous rem-
plaçons (0.7) par une inégalité de la forme Hessh ≥ Ug. Une telle fonction h apparaît
naturellement comme la fonction distance dans une variété riemannienne de courbure
majorée. Nous adaptons le Théorème 0.9 dans ce contexte en Appendice B. Le lecteur y
trouvera aussi la version continue de la chaîne (0.8).

Inégalités isopérimétriques

Chaque coordonnée minkowskienne définit une métrique dans la classe conforme à
l’infini de Hn. Elles sont des métriques rondes (de courbure +1) pour les coordonnées de
genre temps, des métriques plates sur Sn−1 \ {pt} = Rn−1 pour les coordonnées de genre
lumière et des métriques hyperboliques doublées le long du bord de la codimension 1
pour les coordonnées de genre espace. Dans le chapitre 2, nous utilisons le Théorème 0.9
pour majorer l’aire renormalisée de Graham–Witten d’une surface minimale en terme de
la longueur de son bord idéal pour ces métriques. Nous pouvons regarder ces résultats
comme des inégalités isopérimétriques pour les surfaces minimales complètes de Hn.

Dans la Proposition 0.11 ci-dessous, le supremum de (0.9) est pris parmi les métriques
rondes sur Sn−1. Les métriques g̃0, g̃1,g̃light dans (0.10) sont respectivement les métriques
rondes/ hyperboliques doublées/ plates, associées aux coordonnées de genre temps ξ0/
de genre espace ξ1/ de genre lumière ξlight. L’inégalité (0.9) était démontrée indépen-
damment par Jacob Bernstein [Ber21].

Proposition 0.11 (2.22, 2.23). Soit Σ ⊂ Hn une surface minimale dont le bord idéal
est donné par une courbe γ ⊂ Sn−1 et AR(Σ) l’aire renormalisée de Σ. Alors :

AR(Σ) + sup
round g̃

|γ|g̃ ≤ 0 (0.9)

Plus généralement, soit ξ∗ une coordonnée minkowskienne et a > 0 sa valeur minimale
sur Σ, alors :

AR(Σ) +


1
2

(
a+ 1

a

)
|γ|g̃0

1
2

(
a− 1

a

)
|γ|g̃1

1
2a|γ|g̃light

≤ 0 (0.10)

Application à la théorie de nœuds

L’idée de compter le nombre de surfaces minimales dont le bord est une courbe donnée
est due à Tomi et Tromba dans leur résolution du problème de Plateau pour les surfaces
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plongées [TT78]. Cette idée a été développée de manière systématique par Brian White
[Whi87b]. Soit Σ une surface à bord et

— M le quotient de l’espace des immersions minimales de Σ dans Rn par le sous-
groupe des difféomorphismes de Σ qui fixent ∂Σ.

— C = Ck,α(∂Σ, Rn) l’espace de courbes dans Rn.
Alors M est une variété de Banach et que l’application bord Π : M −→ C est Fredholm
et d’indice 0. De plus, Π est propres si on se restreint aux surfaces plongées (au lieu
d’immergées) dans un ensemble convexe de R3. Dans ce cas, nous pouvons associer à
chaque courbe dans C un entier, qui est le degré de l’application Π.

On peut aussi penser à compter le nombre de surfaces minimales de Hn dont le bord
idéal est une courbe donnée dans la sphère à l’infini. Ce problème était étudié dans H3

par Alexakis et Mazzeo [AM10] pour l’espace M des surfaces minimales proprement
plongées et C des collections de cercles dans S2.

Il est de grand intérêt d’étendre la théorie des degrés d’Alexakis et Mazzeo à la di-
mension 4, avec C l’espace des courbes plongées dans la sphère S3. Les degrés, qui ne
dépendent que de la classe d’isotopie du bord, sont des invariants de nœuds/entrelacs.
Cette piste de recherche était récemment explorée par Joel Fine [Fin21]. Nous allons la
discuter en détail dans l’Appendice C et la Section 2.5 du Chapitre 2.

La contribution de cette thèse dans la direction susmentionnée est le théorème suivant.

Theorem 0.12 (2.40). Soit L := L1 ⊔ L2 une union séparée de deux sous-variétés
plongées à dimension k− 1. Alors il est toujours possible de réarranger L dans sa classe
d’isotopie de manière qu’il n’existe pas de surface minimale connexe de Hn dont le bord
idéal est L.

En particulier, les degrés d’Alexakis–Mazzeo s’annulent pour toute collection qui contient
plus qu’un cercle.

Le Théorème 0.12 se découle d’une observation clé : une surface minimale de Hn

de bord idéal une courbe γ ne peut contenir que les points intérieurs qui voient γ de
longueur supérieure à 2π. L’ensemble de tels points est appelé la clôture visuelle de γ
[Gro83].

D’autre part, soit Ha l’entrelacs de Hopf donné par l’équation zw = a dans S3 =
{(z,w) ∈ C2 : |z|2 + |w|2 = 1}, on va construire dans la Section 2.2 une couronne
minimale Ma ⊂ H4 de bord idéal Ha. D’autre part, il n’y a qu’une seule surface minimale
admettant H0 comme bord idéal : l’union de deux disques totalement géodésiques.

Volume visuel, première valeur propre du Laplacien et surfaces
minimales au bord libre

Nous pouvons associer à chaque sous-variété γ à dimension k de la sphère Sn une
fonction positive Vγ sur Hn+1 dont la valeur dans un point p est donnée par la volume
de γ sous la métrique ronde associée à p. La clôture visuelle est, en particulier, un
super-niveau de Vγ . Le chapitre 3 est dédié à l’étude de cette fonction.

Il a été observé par Li et Yau [LY82], puis El Soufi et Ilyas [EI83], que le maximum
de Vγ est une borne supérieure naturelle de la première valeur propre normalisée du
laplacien de γ. Ici le laplacien provient d’une métrique g dans la classe conforme de γ
induite par celle de Sn et sa première valeur propre est normalisée par le volume de γ
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sous g. Cette observation a motivé Li et Yau à définir leur notion de volume conforme
qu’ils ont utilisée ultérieurement pour vérifier partiellement la conjecture de Willmore.
Un résumé de ce développement se trouve dans la Section 3.1. Les nouveaux résultats
du chapitre 3 sont :

Proposition 0.13 (3.19). Soit γ une sous-variété immergée à dimension k de Sn. Alors
la restriction de Vγ à une sous-variété minimale de Hn à dimension au moins k+ 1 est
super-harmonique.

Nous obtenons, par la résolution du problème de Plateau dans Hn au sens de Douglas–
Rado que

Corollary 0.14 (3.27). Pour une courbe γ dans Sn, les super-niveaux de Vγ dans Hn+1,
y inclus la clôture visuelle, sont simplement connexes.

Il est facile de vérifier si un point est maximum local de Vγ , mais très difficile de
montrer s’il est un maximum global. Cette question se pose dans les calculs du volume
conforme, et plus récemment dans le travail de Fraiser et Schoen sur les sous-variétés
minimales à bord libre. Pour une telle sous-variété Σ de la boule unité euclidienne, il est
démontré par Fraiser et Schoen que la fonction V∂Σ est localement maximisée à l’origine.
On ne sait toujours pas s’il s’agit d’un maximum global et j’espère que la Proposition
0.13 sera utile pour avancer sur cette question.

27





1 Weighted monotonicity theorems and
comparison lemma

The goal of this chapter is to prove that:
1. Each function h on a Riemannian manifold (M , g) whose Hessian is a multiple

of the metric tensor corresponds to a weighted monotonicity theorem for minimal
submanifolds of M .

2. Weighted monotonicity theorems can be compared to each other.
Such a function h corresponds to a way to write M as a warped space.

1.1 Warped spaces and examples
A metric on a Riemannian manifold M = N × [a, b] is called a warped product if it

has the form
g = dr2 + f2(r)gN (1.1)

where r ∈ [a, b] and gN is a Riemannian metric on N . It can be checked that an anti-
derivative h of the warping function f satisfies Hess(h) = f ′(r)g. On the other hand, if
such function h exists, the space can be locally written as a warped space by the level
sets of h.

Proposition 1.1 (cf. [CC96]). Let h be a C2 function on (M , g) with no critical point.
Suppose that the level sets of h are connected and

Hessh = U .g (1.2)

for a function U ∈ C0(M). Then:
1. U is a function of h, i.e. a composition of h and a function U : R −→ R. The

function V := |dh|2 ∈ C1(M) is also a function of h and we have U = 1
2V

′.
2. The metrics ga, gb induced from g on the level sets h−1(a) and h−1(b) are related

by ga

V (a) =
gb

V (b) via the inverse gradient flow of h. This defines a metric g̃ on level
sets of h under which the flow is isometric. The inverse gradient flow of h defines
a map h−1(a) × Range(h) −→ M and the metric g on M pulls back to

g =
V (h)

V (a)
ga +

dh2

V (h)
= V (h)g̃+

dh2

V (h)
(1.3)

which is a warped product after a change of variable dr = dh
V (h)1/2 .
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1.1. Warped spaces and examples

Proof. For any vector field v, we have:

v(V ) = 2g(∇v∇h, ∇h) = 2 Hess(h)(v, ∇h) = 2Ug(v, ∇h)

It follows, by first taking v to be any vector field tangent to level sets of h, then to
be the inverse gradient u := ∇h

|∇h|2 , that V is constant on the level sets, and as a
function of h, V ′ = 2U .

For the second part, let vt be the vector field of M tangent to level sets h−1(t)
given by pushing forward via the flow of u a vector field va tangent to h−1(a). By
definition of Lie bracket, [vt,u] = 0 for all t, and so

d

dt
|vt|2 = 2g(∇uvt, vt) = 2g(∇vtu, vt) =

2
|∇h|2

Hess(h)(vt, vt) =
V ′

V
|vt|2.

Here in the third equality, we used the fact that vt is orthogonal to the gradient of
h. We conclude that |vt|2

V (t) is constant along the flow and so ga

V (a) = gb

V (b) for all a, b
in the range of h.

The metric g̃ is the gN of (1.1) and it is conformal to the restriction of g on level sets
of h. We will use g̃ to denote the metric V (h)−1g on M and will call it the normalised
metric.

In applications, we will only assume that the function h satisfies (1.2) on M and it
can have critical points, as in the following examples.

Example 1.2. In the Euclidean space, it is not difficult to prove that the only functions
satisfying (1.2) are

1. the coordinates xi, i = 1, . . . ,n with U = 0,V = 1 and
2. the square of distance ρ := 1

2
∑n
i=1 x

2
i with U = 1,V = 2ρ.

Example 1.3. In the unit sphere

Sn = {(x1,x2, . . . ,xn+1) ∈ Rn+1 :
n+1∑
i=1

x2
i = 1},

the Euclidean coordinates xi satisfy (1.2) with

U = −xi, V = 1 − x2
i .

Example 1.4. In the hyperbolic space

Hn = {(ξ0, . . . , ξn) ∈ Rn,1 : ξ2
0 −

n∑
i=1

ξ2
i = 1, ξ0 > 0},

the Minkowskian coordinates ξα satisfy (1.2) with

U = ξα, V = ξ2
α − |∂ξα |2,

where |∂ξα |2 is the Minkowskian norm, which is +1 for time-like unit vectors and -1 for
space-like vectors.
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1.2. Weighted monotonicity theorems in Warped space

By Proposition 1.1, the hyperbolic space can be written as a warped product in three
distinct ways:

1. Each interior point corresponds to a unique time coordinate that it minimises.

2. Each boundary point corresponds to a half-space model, thus defines a null coordi-
nate uniquely up to a multiplicative constant.

3. Each (cooriented) totally geodesic hyperplane corresponds to a unique space coor-
dinate that vanishes on it. Note that no other level set is totally geodesic.

The normalised metrics g̃ in the case (Rn, ρ) and (Sn,xi) are the round metric on
Sn−1. In the hyperbolic space, there are 3 types of normalised metrics in the conformal
infinity of Hn. Those are round metrics for time coordinates, flat metrics for null coordi-
nates (the Euclidean metric in half-space model) and the doubled hyperbolic metrics for
space coordinates. The third metrics are obtained by glueing two (n− 1)-dimensional
hyperbolic metrics on the hemispheres along a totally geodesic hyperplane.

The three examples 1.2, 1.3, 1.4 are summarized in the following table

(M , g) h U(h) V (h) g̃

Rn Euclidean coordinate xi 0 1 flat
ρ =

∑
i x

2
i 1 2ρ round

Sn ↪→ Rn+1 Euclidean coordinate xi −xi 1 − x2
i round

time coordinate ξ0 ξ0 ξ2
0 − 1 round

Hn ↪→ R1,n null coordinate ξl ξl ξ2
l flat

space coordinate ξ1 ξ1 ξ2
1 + 1 doubled hyperbolic

1.2 Weighted monotonicity theorems in Warped space

Given a function h on a Riemannian manifold M and a submanifold Σ, we write
´

Σ,h≤t
and
´

Σ,h=t for the integration over the sub-level h−1[t,+∞) and the level set h = t in
Σ.

The gradient vector of h in M is denoted by ∇h and its projection to the tangent of
Σ by ∇Σh. The rought Laplacian of h on Σ is

∆Σh = divΣ ∇Σh

The volume of the k-dimensional unit sphere will be denoted by ωk.
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1.2. Weighted monotonicity theorems in Warped space

1.2.1 Weighted volume and density
Let h be a C2 function satisfying (1.2) on M and V = |dh|2, we will define the weighted

volume of a k-submanifold Σ to be

Ah(Σ)(t) :=
ˆ

Σ,h≤t
U . (1.4)

The weighted density is obtain by normalising the weighted volume of Σ by that of
a k-dimensional tube. Let us suppose for a moment that h is bounded from below by
hmin. Given a (k − 1)-dimensional submanifold γ in a level set of h, the h-tube Tγ(t)
is built by flowing γ along the gradient field of h among level sets hmin ≤ h ≤ t. The
weighted volume of Tγ(t) can be computed by (1.3) to be

Ah(Tγ)(t) =

ˆ
Tγ

U =

(ˆ
γ
d volk−1

g̃

)(ˆ t

hmin

V ′(h)V
k
2 −1(h)dh

)
=

|γ|
k
V (t)k/2 (1.5)

where |γ| is the g̃-volume of γ. The last equality is because V (hmin) = 0.
We define the weighted density of Σ as

ΘA
h (t) :=

Ah(Σ)(t)
ωk−1
k V k/2(t)

. (1.6)

Equation (1.5) shows that, as a function of t, the weighted volume of a tube is, up to a
factor, independent of γ. In other words, the density of a tube is constant.

When h is not bounded from below, or when the area of Σ is not finite in the region
h ≤ t, (this happens for example when h is the space and null coordinates of Hn).
We define the compensated weighted volume by counting only the volume in the region
h ≥ h0:

Bh(Σ)(h0, t) :=
ˆ

Σ,h0≤h≤t
U(h) +

1
k

ˆ
γ0

|∇Σh|. (1.7)

Here γ0 is the intersection of Σ and the level set h = h0. The compensated weighted
density is defined as

ΘB
h (t) :=

Bh(t)
ωk−1
k V k/2(t)

.

It is useful to give a name to the boundary term in (1.7).

Definition 1.5. Let T be a distribution of k-dimensional planes of M along a subman-
ifold γ of a level set of h. The T -parallel volume |γT | of γ is defined as∣∣∣γT ∣∣∣ :=

ˆ
γ

cos∠(∇h,T ) volk−1
g̃ ,

where the integral was taken with the volume form of the normalised metric g̃ and
∠(∇h,T ) is the angle between ∇h and T . When ∇h is contained in T at every point of
γ, the parallel volume is the g̃-volume.

The volume forms of g and g̃ on γ are related by volk−1
g = volk−1

g̃ V
k−1

2 and the
angle ∠(∇h,T ) satisfies cos∠(∇h,T ).V 1/2 = |∇Σh|. So the compensated volume can
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1.2. Weighted monotonicity theorems in Warped space

be rewritten as
Bh(Σ)(t) :=

ˆ
Σ,h0≤h≤t

U (h) +
|γTΣ

0 |
k

V (h0)
k/2.

The denominator of ΘB
h is again, up to constant, the compensated weighted volume

of a tube Tγ(h0, t) built by the gradient flow of a (k− 1)-submanifold γ from level h0 to
level t. This can be seen via a computation similar to (1.5):

Bh(Tγ(h0, t)) = |γ|
k
(V (t)k/2 − V (h0)

k/2) +
|γ|
k
V (h0)

k/2 =
|γ|
k
V (t)k/2. (1.8)

Recall that |γ| is the volume of γ under g̃.

1.2.2 Compensated or Uncompensated?

The condition (1.2) forces all non-degenerate critical points of h to be either local
maxima or local minima. The functions in Examples 1.2, 1.3, 1.4 fall into two types:

1. h has no other critical value than its minimum hmin and the sublevel sets {h ≤
t} are compact. This is the case of (Rn, ρ), (Sn \ {pt},xi) and (Hn, ξ0). Both
densities ΘA

h and ΘB
h are well-defined.

2. h has no critical point and the sublevel sets are no longer compact, as in the case
of Hn with the null and space coordinates. The integral in (1.4) may not be finite
and we are therefore interested in the compensated density ΘB

h .
We will see that it is useful to look at the compensated density even when the function

h is of the first type.

1.2.3 Weighted monotonicity theorem

The following lemma often appears in the literature as

divΣ X
Σ = divΣ X + g(k(Σ),X)

for a submanifold Σ and a vector field X along Σ. Here k(Σ) is the mean curvature
and XΣ is the tangent component of X. We will denote the gradient vector in M of a
function h by ∇h and its projection to Σ by ∇Σh.

Lemma 1.6 (Leibniz rule). Let f : (Σk, gΣ) −→ (Mn, g) be a map between Riemannian
manifolds and τ (f) be its tension field 1, then for any C2 function h on M . We have:

∆Σ(h ◦ f) = TrΣ f
∗ Hessh+ dh.τ (f) (1.9)

In particular, the Laplacian of h on a submanifold Σ is given by

∆Σh = TrΣ Hessh+ dh.k(Σ). (1.10)

In particular, if k(Σ) = 0 at a point p ∈ Σ or TpΣ contains the gradient of h, then
∆Σh = TrΣ Hessh at p.

1. The definition of the tension field can be found in Appendix A. It is the mean curvature field when
f is isometric.
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1.2. Weighted monotonicity theorems in Warped space

Definition 1.7. Let Σ be a k-dimensional submanifold of M whose boundary is a (k−1)-
dimensional submanifold γ (not necessarily contained in a level set of h). The h-tube
extension of Σ is the union of Σ and the image of γ under the gradient flow of h.

Theorem 1.8 (Weighted Monotonicity). Suppose that h is a C2 function on a Rie-
mannian manifold M that satisfies (1.2) with U and V = |∇h|2 being functions of h
such that U = 1

2V
′. Let Σk be a minimal submanifold in M . Assume that the integral

in (1.4) (respectively (1.7)) is finite, then the derivative of the weighted density d
dtΘ

A
h

(respectively d
dtΘ

B
h ) has the same sign as U .

Moreover, if Σ is a minimal submanifold whose boundary γ is a smooth (k − 1)-
submanifold of M , the conclusion still holds for a tube extension Σ̃ of Σ.

In both cases, d
dtΘ

A
h and d

dtΘ
B
h vanish at t = t0 if and only if the gradient of h is

tangent to Σ at level h = t0.

Proof. It follows from Lemma 1.6 that ∆Σh = kU on Σ. By Stokes’ theorem,

Ah(Σ)(t) =
ˆ

Σ,h≤t
U(h) =

1
k

ˆ
Σ,h≤t

∆Σh =
1
k

ˆ
Σ,h=t

∇Σh · n =
1
k

ˆ
Σ,h=t

|∇Σh|

(1.11)
because the outer normal of the sublevel set h ≤ t in Σ is n = ∇Σh

|∇Σh| . By the coarea
formula,

dAh(t)

dt
= U(t)

ˆ
Σ,h=t

1
|∇Σh|

.

Combining this with (1.11) and |∇Σh|2 ≤ V (h), one has 1
U
dAh
dt ≥ kAh

V , or

1
U

d

dt
(
Ah
V k/2 ) ≥ 0.

Similarly, one has Bh(t) = 1
k

´
Σ,h=t |∇Σh|, and dBh

dt = U (t)
´

Σ,h=t
1

|∇Σh| and the
same conclusion is drawn for the compensated case.

For tube extension, it suffices to rewrite equation (1.11) as

kAh(t) =

(ˆ
Σ,h≤t

+

ˆ
Tγ ,h≤t

)
∆h

=

ˆ
Σ,h=t

|∇Σh| +
ˆ
γ∩{h≤t}

|∇Σh| +
ˆ
Tγ ,h=t

|∇Mh| −
ˆ
γ∩{h≤t}

|∇Mh|

≤
ˆ

Σ,h=t
|∇Σh| +

ˆ
Tγ ,h=t

|∇Mh| =
ˆ

Σ̃,h=t
|∇Σ̃h|.

Remark 1.9. 1. If Σ contains a multiple of γ, the volume of the tube should be
counted with multiplicity.

2. We only need the "≤" sign in (1.11) and hence it suffices that ∆Σh ≥ kU (h).
Theorem 1.8 still holds if Hessh ≥ U .g, provided that U and V = |dh|2 are still
functions of h and that U = 1

2V
′. This direction is explored in Appendix B.
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1.3. Comparison lemma

Figure 1.1 – Extension by tube of a surface. The tube does not need to be built over
the intersection with a level set of h.

In practice, we are interested in the situations where Σ is contained in a region where
U is signed. The U-shape minimal surface in Figure 1.1 for example cannot happen in
the region U ≤ 0 because the function h is super-harmonic on Σ: ∆h = kU ≤ 0.

Lemma 1.10. Let Σ be a minimal submanifold of the region U ≥ 0 such that h ≤ t0 on
the boundary of Σ, then h ≤ t0 on the entire submanifold.

1.3 Comparison lemma

We will suppose in this section that the submanifold Σ is contained in the region
U ≥ 0. Theorem 1.8 says that the weighted density is an increasing function. It is useful
to weight the volume functional of (1.4) by a function P of h other than U .

The uncompensated and compensated P -volumes are defined as

AP (Σ)(t) :=
ˆ

Σ,h≤t
P (h) or BP (Σ)(t) :=

ˆ
Σ,h0≤h≤t

P (h) +
c

k
|γTΣ

0 |V (h0)
k/2 (1.12)

where c is a positive real number. The term |γTΣ
0 | here is the TΣ-parallel volume of the

intersection of Σ and the level set h = h0.
The uncompensated and compensated P -volumes of tubes are

AP (Tγ(t)) = |γ|
ˆ
h≤t

P (h)V
k
2 −1(h)dh,

BP (Tγ(h0, t)) = |γ|
(ˆ t

h=h0

P (h)V
k
2 −1(h)dh+

c

k
V (h0)

k/2
)

They are still, up to a factor, independent of the choice of γ.
We define the P -densities of a submanifold by normalising its P -volume by that of a

tube. Concretely,

ΘP (Σ)(t) :=
AP (t)

Q(t)
or BP (t)

Q(t)
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1.3. Comparison lemma

where

Q(t) :=

ωk−1
´
h≤t P (h)V

k
2 −1(h)dh, for the uncompensated volume,

ωk−1
(´ t

h=h0
P (h)V

k
2 −1(h)dh+ c

kV (h0)k/2
)

for the compensated volume
(1.13)

When P = U and c = 1, these are the weighted volume and weighted density defined
in (1.4) and (1.7). We will always assume that the weight function P is positive on Σ.

Remark 1.11. The compensated P -density of any submanifold Σ has limit

lim
t→h0

ΘP (Σ)(t) =

´
Σ,h=h0

|∇Σh|
ωk−1V (h0)k/2 =

|γTΣ
0 |

ωk−1
, (1.14)

provided Hk(Σ ∩ h−1(h0)) = 0. This is satisfied for example when Σ meets the level set
h = h0 transversely. If Σ is strictly contained in the region h > h0, then

lim
t→h0

ΘP (Σ)(t) = 0.

Therefore, the limit at t = h0 of the density ΘP does not depend on the weight function
P and the constant c.

Example 1.12. On the round sphere Sn = Rn ∪ {∞}, with the metric gS = 4
(1+r2)2 gE,

the function x := 1−r2

1+r2 is the coordinate function of Example 1.3 that is maximised
at the origin and minimised at infinity. The gE-volume functional is a P -volume with
P = (1 + x)−k.

Example 1.13. In the Poincaré ball Bn with metric gH = 4
(1−r2)2 gE, the function

ξ0 := 1+r2

1−r2 is the time coordinate minimised at the centre. The gE-volume corresponds
to P = (1 + ξ0)−k. The volume under the metric gS above corresponds to P = ξ−k

0 and
the x-weighted gS-volume corresponds to P = ξ−k−1

0 .

Definition 1.14. Given 2 weight functions P1,P2 (respectively (P1, c1), (P2, c2)) whose
tube volumes Q1,Q2 are defined by (1.13), we say that P1 is weaker than P2 (respectively
(P1, c1) is weaker than (P2, c2)) if

P1
Q1

≤ P2
Q2

, or equivalently d

dt

Q1
Q2

≤ 0.

In other words, the P2-volume of a k-dimensional tube increases faster than its P1-
volume.

Clearly, this is a transitive relation. Moreover, (P , c1) ≪ (P , c2) if and only if c1 > c2.

Lemma 1.15 (Comparison). Let Σk ⊂ Mn be a submanifold not necessarily minimal
and P1,P2 (respectively (P1, c1), (P2, c2) in the compensated case) be two positive con-
tinuous weight functions. Let Θ1, Θ2 be the corresponding densities. In the compensated
case, we suppose, in addition, that:
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1.3. Comparison lemma

(Non-tangency) Σ meets the level set h = h0 non-tangentially, i.e. the intersection
γ0 = Σ ∩ h−1(h0) is either empty or has zero Hk-volume.

1. Suppose that P1 is weaker than P2 and that Θ2 is an increasing function. Then
Θ1 ≤ Θ2 and

dΘ1
dt

≥ Q2
P2

P1
Q1

dΘ2
dt

.

In particular, the density Θ1 is also increasing.
2. On the other hand, if P2 is weaker than P1 and Θ2 is increasing, then Θ1 ≥ Θ2.

Moreover, if dΘ2
dt vanishes at a certain t0 ∈ R, then dΘ1

dt (t0) ≤ 0.

Proof. One has P−1
1

dAP1
dt = P−1

2
dAP2
dt (or P−1

1
dBP1
dt = P−1

2
dBP2
dt respectively), from

coarea formula, therefore

Q1
P1

dΘ1
dt

+ ωk−1V
k
2 −1Θ1 =

Q2
P2

dΘ2
dt

+ ωk−1V
k
2 −1Θ2 (1.15)

which can be rearranged into

P−1
1

d

dt
(Q1(Θ1 − Θ2)) =

(
Q2
P2

− Q1
P1

)
dΘ2
dt

(1.16)

Let us prove the second part of the Lemma. We see from the hypothesis that the
RHS of (1.16) is positive, and therefore the function Q1(Θ1 − Θ2) is increasing.
This function vanishes at t = hmin in the uncompensated case because of Q1, and
at t = h0 in the compensated case because of Θ1 − Θ2 (Remark 1.11). Therefore
one has Θ1 ≥ Θ2 at all time. Apply this and the fact that dQ1

dt ≥ 0 in (1.16), we see
that if dΘ2

dt (t0) = 0 then dΘ1
dt (t0) ≤ 0

For the first part, the RHS of (1.16) is negative and so, for the same reason given
above, we have Θ2 ≥ Θ1. The conclusion follows by substituting this into (1.15).

A more robust proof for rectifiable varifolds and currents can be found in Appendix B.

Remark 1.16. For minimal submanifolds, the non-tangency condition is even less re-
strictive then transversality to the level h = h0. In particular, it is automatically satisfied
if Σ is a minimal submanifold such that Σ ∩ {h ≤ h0} is a submanifold with boundary in
the level h = h0. This is because

ˆ
Σ,h=h0

|∇Σh| =
ˆ

Σ,h≤h0

kU . (1.17)

and the LHS of (1.17) is positive if Σ is in the region U > 0. Similarly, we could not have
Hk(Σ ∩ h−1(h0)) > 0 because the restriction of h to a minimal submanifold Σ cannot be
locally constant.

1.3.1 Volume comparison with tubes
Let Σ be a k-dimensional submanifold of M whose boundary γ is a submanifold of the

level set h−1(t0). Let Σ̃ be the extension of Σ by the tube Tγ(t0,T ). In the region t ≤ t0,
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1.3. Comparison lemma

the monotonicity of Σ̃ does not reveal any new information other than the monotonicity
of Σ.

The monotonicity of Σ̃ in the region t > t0 is, on the other hand, equivalent to a
comparison between the weighted volume of Σ in the region h ≤ t0 and that of a tube
(see Figure 1.2).

Lemma 1.17. Let t1 < t2 be two numbers in [t0,T ), then the following statements are
equivalent:

1. ΘA
P (Σ̃)(t1) ≤ ΘA

P (Σ̃)(t2) (respectively ΘB
P (Σ̃)(t1) ≤ ΘB

P (Σ̃)(t2)).
2. AP (Σ)(t0) ≤ AP (Tγ(hmin, t0)) (respectively BP (Σ)(t0) ≤ BP (Tγ(h0, t0)))

Here γ is the intersection of Σ and the level set h = t0

Proof. The argument is based on straightforward volume addition/subtraction and
the fact that the density of a tube is constant. Without loss of generality, we suppose
t1 = t0 and will only prove the statement for the compensated case. By definition,
ΘB
P (Σ̃)(t0) ≤ ΘB

P (Σ̃)(t2) is equivalent to

BP (Σ)(t0)
BP (Tγ)(t0)

≤ BP (Σ)(t0) +AP (Tγ)(t0, t2)
BP (Tγ)(t0) +AP (Tγ)(t0, t2)

(1.18)

where AP (Tγ)(t0, t2) =
´
Tγ ,t0≤h≤t2 P . Here we used the fact that P -volume of Tγ

is, up to a factor, independent of γ. Simplify (1.18) and we have BP (Σ)(t0) ≤
BP (Tγ)(t0).

Figure 1.2 – The weighted volume of a minimal submanifold (orange) is less than that
of a tube (blue) built upon the same intersection (red).

An immediate consequence of Lemma 1.17 is the following lower bound on the volume
of the intersection between a minimal submanifold and the level set h = t.

Proposition 1.18 (Estimates of level set). Let Σk be a tube extension of a minimal
submanifold in the region U ≥ 0. Let γt, t ≥ hmin (respectively t ≥ h0) be its intersection
with the level set h = t. Then

1. In the uncompensated case,

m
ωk−1
k

V k/2(t) ≤ Ah(Σ)(t) ≤ |γt|
k
V k/2(t),
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1.4. Weighted monotonicity in Hn and Sn

where m := limt→hmin Θh(t) is the multiplicity of Σ at h−1(hmin). In particular,

|γt| ≥ mωk−1

2. Similarly, in the compensated case:

|γTΣ
0 |

ωk−1
Q(t) ≤ Bh(Σ)(t) ≤ |γt|

ωk−1
Q(t).

In particular, |γt| ≥ |γTΣ
0 |. More generally, for any two level sets γti = Σ ∩h−1(ti),

i = 1, 2 with t1 < t2, the g̃-volume of γt2 is greater than the parallel volume of γt1.

By Lemma 1.15, we can also compare the P -volume of a minimal submanifold with
that of a tube:

Corollary 1.19. Let P be a weaker weight than U and Σ be a minimal submanifold in
the region U ≥ 0. Then

1. P -density of Σ is an increasing function
2. The P -volume of Σ in the region h ≤ t (respectively the compensated P -volume in

the region h0 ≤ h ≤ t) is less than that of the tube with the same boundary.

1.4 Weighted monotonicity theorems in the hyperbolic space
and the sphere

1.4.1 Time Monotonicity and Null Monotonicity

We will restate Theorem 1.8 when M is Hn and Sn with the function h being a
Minkowskian or Euclidean coordinate.

Given a time coordinate ξ0 of Hn, the time-weighted volume functional is defined as

Aξ0(Σ)(t) :=
ˆ

Σ,1≤ξ0≤t
ξ0.

For a totally geodesic copy H of Hk in Hn passing by the minimum point of ξ0, we have
Aξ0(H)(t) = ωk−1

k (t2 − 1)k/2.

Definition 1.20. The time-weighted density of a submanifold Σk of Hn is

ΘA
ξ0(Σ)(t) :=

Aξ0(Σ)(t)
Aξ0(H)(t)

=
Aξ0(Σ)(t)

ωk−1
k (t2 − 1)k/2 .

Theorem 1.21 (Time Monotonicity). The time-weighted density of a minimal surface
(or its extension by ξ0-tube) is increasing on (1,+∞).

Let ξl be a null coordinate and x = ξ−1
l > 0 be the corresponding half-space coordi-

nate. The null-weighted volume functional is defined as

Aξl
(Σ) :=

ˆ
Σ,ξl≤t

ξl =

ˆ
Σ,x≥ 1

t

1
x
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1.4. Weighted monotonicity in Hn and Sn

which is finite for submanifolds not containing the point at infinity ξ−1
l (0) (or equiva-

lently bounded in the corresponding half-space model). For a k-dimensional ξl-tube,

Aξl
(Tγ(0, t)) = |γ|

k
tk.

Definition 1.22. The null-weighted density of a submanifold Σk of Hn is

ΘA
ξl
(Σ)(t) :=

Aξl
(Σ)(t)

ωk−1
k tk

.

Theorem 1.23 (Null Monotonicity). The null-weighted density of a minimal submani-
fold (or its extension by ξl-tube) not containing ξ−1

l (0) is increasing on (0,+∞).

It is also useful to write down the compensated version of Theorem 1.21 and Theorem
1.23.

Definition 1.24. 1. Given any a > 1, the compensated time-weighted volume and
density are defined as

Bξ0(Σ)(t) :=
ˆ

Σ,a≤ξ0≤t
ξ0 +

|γTΣ
a |
k

(a2 − 1)k/2, ΘB
ξ0(Σ)(t) :=

Bξ0(Σ)(t)
ωk−1
k (t2 − 1)k/2 ,

where |γTΣ
a | is the parallel volume of the intersection γa = Σ ∩ ξ−1

0 (a).
2. Given any a > 0, the compensated null-weighted volume and density are defined

as
Bξl

(Σ)(t) :=
ˆ

Σ,a≤ξl≤t
ξl +

|γTΣ
a |
k

ak, ΘB
ξl
(Σ)(t) :=

Bξl
(Σ)(t)

ωk−1
k tk

,

where |γTΣ
a | is the parallel volume of the intersection γa = Σ ∩ ξ−1

l (a).

Theorem 1.25 (Compensated time and null monotonicity). Let Σk be a minimal sub-
manifold in the region ξ0 ≥ a > 1 (respectively ξl ≥ a > 0) that does not meet the a-level
set of ξ0 (respectively ξl) tangentially. Then the density ΘB

ξ0
(respectively ΘB

ξl
) of any

tube extension of Σ is increasing on (a,+∞).

1.4.2 Space Monotonicity

To state the weighted monotonicity theorem corresponding to a space coordinate ξ1,
we assume that the submanifold Σk is contained in the region ξ1 ≥ a and that its
boundary consists of a (possibly empty) part γa in ξ−1

1 (a) and a part γ∞ in the sphere
at infinity S∞, both of them are disjoint from the equator ξ−1

1 (0) ∩ S∞.
The space-weighted volume functional is

Bξ1(Σ)(t) :=
ˆ

Σ,a≤ξ1≤t
ξ1 +

|γTΣ
a |
k

(a2 + 1)k/2

and is finite for such submanifold Σ.
In particular, if γ is a (k − 1)-submanifold in the interior of ξ−1

1 (0) ∼= Hn−1 with
hyperbolic volume |γ|, the ξ1-tube Tγ(a, t) built upon γ between level sets ξ1 = a and
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1.5. Unweighted monotonicity

ξ1 = t has
Bξ1(Tγ(a, t)) = |γ|

k
(t2 + 1)k/2

Definition 1.26. The space-weighted density of a k-dimensional submanifold Σ of Hn

is defined as

Θξ1(Σ)(t) :=
Bξ1(Σ)(t)

ωk−1
k (t2 + 1)k/2

Theorem 1.27 (Space Monotonicity). The density Θξ1 of a minimal submanifold (or
its extension by ξ1-tube) is increasing on (a,+∞).

1.4.3 Weighted Monotonicity theorem in sphere
In the round sphere Sn seen as a warped space using a Euclidean coordinate x = xi,

we define the weighted volume of a submanifold Σ by:

Ax(Σ)(t) :=
ˆ

Σ,x≥t
x.

A totally geodesic k-sphere S passing by x−1(1) has Ax(S)(t) = ωk−1
k (1 − t2)k/2.

Definition 1.28. The weighted density of a submanifold Σ of Sn is

Θx(Σ)(t) :=
Ax(Σ)(t)
Ax(S)(t)

=
Ax(Σ)(t)

ωk−1
k (1 − t2)k/2 ,

Theorem 1.29 (Weighted monotonicity in Sn). The weighted density of a minimal
submanifold (or its extension by x-tube) in Sn, is decreasing on (0, 1) and increasing on
(−1, 0).

1.5 Unweighted monotonicity
The unit ball Bn can be equipped with 3 metrics gE , gS , gH as in Example 1.12 and

Example 1.13. Its submanifolds have 5 different densities: the unweighted densities
from the 3 metrics and 2 weighted densities from the time coordinate and Euclidean
coordinate associated to the origin.

The time-weighted hyperbolic volume, the hyperbolic volume, the Euclidean volume,
the spherical volume, the weighted spherical volume can be written as P -volume with
respect to the metric gS with weights given by

P1 = ξ−k−1
0 , P2 = ξ−k

0 , P3 = (1 + ξ0)
−k, P4 = 1, P5 = ξ0.

It can be checked that Pi+1 is weaker than Pi. Lemma 1.15 says that one has the
following chain of monotonicity:

time-weighted gH ≫ unweighted gH ≫ gE ≫ unweighted gS ≫ weighted gS . (1.19)

If a submanifold Σk ⊂ Bn has increasing density in one volume functional of the chain,
then
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1.5. Unweighted monotonicity

1. it automatically has increasing density in any volume functional on the right.
2. the densities of Σ are comparable, with order given by (1.19).
The chain (1.19) has three implications:
1. The first ≫ shows that Choe–Gulliver’s Monotonicity implies Anderson’s mono-

tonicity.
2. The second ≫ shows that area-minimising cones in hyperbolic space are exactly

those in Euclidean space.
3. The last ≫ recovers the volume estimate of Cheng–Li–Yau for minimal submanifold

of the sphere [CLY84]
The first point above is immediate. For organisational purpose, the statements of the

last two points are delayed until the next chapter.

Remark 1.30. While minimal surfaces of Sn are weighted-monotone, they may not be
monotone with the uniform weight. In fact, the unweighted density of the Clifford torus
in S3 is not an increasing function, even on one hemisphere. This means that the last
≫ of (1.19) is strict.

A continuous version of the chain (1.19) for minimal surfaces in manifolds with sec-
tional curvature bounded from above can be found in the Appendix B. The third impli-
cation above becomes the volume estimate of Hoffman and Spruck [HS74].

For the compensated case, we have

Lemma 1.31. Let ξ be a Minkowskian coordinate of Hn. Then in the region ξ ≥ a > 0,
the weight P1 = ξ, c1 = 1 is stronger than the weight P2 = 1, c2 = a−1.

Proof. Because

Q1
P1

(t) =
ωk−1
k

V (t)k/2

t
, Q2

P2
(t) = ωk−1

ˆ t

a
V (ξ)

k
2 −1dξ +

ωk−1
ka

V (a)k/2

and V ′(t) = 2t for the three cases of h, we have

d

dt

(
Q1
P1

)
= ωk−1

(
V

k
2 −1 − V k/2

kt2

)
≤ ωk−1V

k
2 −1 =

d

dt

(
Q2
P2

)

Therefore the function Q2
P2

− Q1
P1

is decreasing. Since it vanishes at t = a, one has
Q1
P1

≤ Q2
P2

for all t ≥ a, which means (P1, c1) is stronger than (P2, c2).

It follows from the Comparison lemma 1.15 that the (1, a−1) density of a minimal
submanifold is increasing. Therefore we have the following Theorem 1.32 and Theorem
1.33.

Theorem 1.32. Let Σ be a minimal submanifold of the hyperbolic space. We denote
by A(t) the volume of Σ inside a geodesic ball ξ0 ≤ t, given as a sublevel set of a time
coordinate ξ0. Then the quantity

A(t)

Q(t)
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1.6. Appendix A

is increasing in t. Here Q(t) is 1
ωk−1

the volume of a totally geodesic k-disc in the equator
of the ball, which is

Q(t) =

ˆ t

1
(s2 − 1)k/2−1dt+

1
k
(a2 − 1)k/2

The case a = 1 of Theorem ?? was proved by Anderson [And82].

Theorem 1.33. Let ξ be a Minkowskian coordinate of Hn and Σ be a minimal sub-
manifold in the region ξ ≥ a. Suppose that Σ has no boundary except its non-tangential
intersection γ with the level set ξ = a. We denote by B(t) the compensated volume of Σ
in the region a ≤ ξ ≤ t:

B(t) = vol(Σ ∩ {a ≤ ξ ≤ t}) + 1
ka

|γTΣ|V (a)k/2

and by Q(t) the quantity

Q(t) =

ˆ t

a
V (s)k/2−1ds+

1
ka
V (a)k/2.

Then A(t)
Q(t) is increasing in t.

Here V (s) is s2 − 1, s2 + 1, or s2 depending on the type of ξ. The statement of
Theorem 1.33 becomes cleaner in 2 situations:

1. When k = 2, the quantity Q is:

Q(t) = t− 1
2


a+ 1

a , for time coordinate
a, for null coordinate
a− 1

a , for space coordinate

2. When Σ does not intersect the level set ξ = a, B(t) is just the area of the surface
in the region a ≤ ξ ≤ t.

Recall that by Remark 1.16, the non-tangency condition is automatically satisfied if
Σ is the intersection of a minimal submanifold with the region ξ > a.

1.6 Appendix A: Weighted monotonicity and comparison
lemma for stationary currents, varifolds and harmonic
maps. Monotonicity formulae.

Theorem 1.8 also holds when Σ is a stationary rectifiable k-current. The proof can be
adapted in the same fashion as [And82] and [EWW02]. We replace the integration by
part (1.11) by the first variation formula of current, which reads

ˆ
Σ

divΣX d∥Σ∥ = 0 (1.20)

where X is any smooth vector field and d∥Σ∥ is the mass measure.
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We recover kAh− V
UA

′
h ≤ 0 by choosing X := χ(h)∇h in (1.20) where χ is a decreasing

function that approximates the characteristic function of [−∞, t]:

divΣ X = χ′|∇Σh|2 + χ∆Σh ≥ χ′V + kχU .

To define the tube extension and the compensated volume Bh, we replace the boundary
γ of Σ (and the intersection γ0 = Σ ∩ h−1(h0) respectively) by an Hk−1-rectifiable set
such that the pair (Σ, γ) is strongly stationary. This means that

ˆ
Σ

divΣX ≤
ˆ
γ

|X⊥|

for any smooth vector field X whose normal component to γ is X⊥. Equivalently there
exists an Hk−1-measurable normal vector field ν on γ with sup |ν| ≤ 1 such that

ˆ
Σ

divΣX =

ˆ
γ
g(X, ν)

The definition (1.7) should be rewritten for strongly stationary pair (Σ, γ0) as

Bh(Σ)(t) :=
ˆ

Σ
U (h) − 1

k

ˆ
γ0

g(∇h, ν0).

Here the normal derivative of h in the boundary term was replace by g(∇h, ν0)
When Σ is a stationary rectifiable k-varifold, the first variation formula reads

δΣ.X =

ˆ
T∈Gr(k,M)

divT X dΣ(T )

where the integral was taken in the Grassmannian Gr(k,M) of unoriented k-dimensional
planes in M . Because divT ∇h = TrT Hessh = kU for any T ∈ Gr(k,M), one still has,
for any perturbation X := χ(h)∇h:

divT X = χ′|∇Th|2 + χ divT ∇h ≥ χ′V + kχU ,

where χ is a decreasing function and ∇Th is the projection of the gradient of h to T .
Lemma 1.10 can be stated and proved in the same manner:

Lemma 1.34. Let Σ be a rectifiable k-varifold and γ be a (k− 1)-rectifiable set such that
the pair (Σ, γ) is strongly stationary. Suppose that γ is contained in the region h ≤ t0
and Σ is supported in the region U ≥ 0. Then Σ is supported in the region h ≤ t0.

Proof. By definition of strong stationary pair, one has for any vector field X

ˆ
Gr(k,M)

divT XdΣ(T ) ≤
ˆ
γ

|X⊥|.
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With X = f(h)∇h, one has divT X = f ′|∇Th| + fkU for any T ∈ Gr(k,M), so
ˆ
γ

|f ||∇h⊥| ≥
ˆ
Gr(k,M)

f ′|∇Th| dΣ(T ) + k

ˆ
M
fU d∥Σ∥. (1.21)

Now we choose the function f to be any non-negative, increasing function in h
with support in (t0, ∞), the LHS of (1.21) vanishes while the RHS is non-negative.
Equality in (1.21) happens only if f vanishes ∥Σ∥-almost everywhere, which is the
conclusion.

Theorem 1.8 can also be extended for harmonic maps. Given a map f : (Σ, gΣ) −→
(M , g), we define its dimension at a point p ∈ Σ to be the ratio |dfp|2

|dfp|2o
of the tensor norm

of the derivative at p (the energy density) and its operator norm. It is +∞ if dfp = 0.
Note that when dfp is non-zero and conformal, this is the dimension of Σ. The dimension
of f , defined as the smallest dimension among all points of Σ. It will play the role of k
in our argument.

The weighted Dirichlet energy of f in the region h ≤ t is defined as

Eh(t) :=
ˆ

Σ,h◦f≤t
U |df |2

or in the compensated case,

Eh(t) :=
ˆ

Σ,h0≤h◦f≤t
U |df |2 +

ˆ
Σ,h◦f=h0

|d(h ◦ f)|.

The weighted density is defined as Θh(t) := Eh(t)
V (t)k/2 where k is the dimension of f .

Theorem 1.35. Let h,U ,V be as in Theorem 1.8 and f : Σ −→ M be a harmonic map.
Then d

dtΘh(f) has the same sign as U .

Proof. By Lemma 1.6 one has ∆(h ◦ f) = U |df |2 and by integration by part,

Eh(t) =

ˆ
Σ,h◦f=t

|d(h ◦ f)|. (1.22)

One then compares Eh with its derivative obtained from coarea formula

dEh
dt

= U(t)

ˆ
Σ,h◦f=t

|df |2

|d(h ◦ f)|
.

The definition of k guarantees

|df |2

|d(h ◦ f)|
≥ k

|d(h ◦ f)|
|dh|2

and therefore U−1 dEh(t)
dt ≥ k

V Eh.

The harmonic map version of Proposition 1.18 is:
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Corollary 1.36. Let h,U ,V be as in Theorem 1.8. Let (Σ2, gΣ) be a surface with
boundary γ = ∂Σ and f : Σ −→ M be a harmonic map. Suppose that f sends γ to a
level set h = t. Then the weighted Dirichlet energy of f is bounded between:

2mπV (t) ≤ Eh(f) ≤ |f(γ)|.V (t) (1.23)

where |f(γ)| is the length of the image of γ in M and m is the multiplicity of f at
h−1(hmin).

In particular, if h is minimised at a point and m is the multiplicity of f at his point,
then |f(γ)| ≥ m.2π.

Proof. The first half of (1.23) follows from Theorem 1.35. For the second half, since
the RHS of (1.22) does not depend on the metric on γ, we have:

Eh(f)(t) ≤
ˆ
γ

|dh|g vol1f∗g = |f(γ)|V (t).

By carefully writing down all the estimate in the proof of Theorem 1.8, we obtain
monotonicity formulae for submanifolds and maps

Theorem 1.37 (Monotonicity formula for submanifolds). Let (M , g),h,U ,V be as in
Theorem 1.8 and Σ be a k-dimensional submanifold of M with mean curvature vector
H, then

ωk−1
k

[
ΘA
h (Σ)(t2) − ΘA

h (Σ)(t1)
]
=

ˆ
Σ,t1≤h≤t2

|∇h⊥|2 U

V
k
2 +1

+

ˆ t2

t=t1

U

V
k
2 +1

ˆ
Σ,h≤t

dh.H,

where ∇⊥h is the part of ∇h orthogonal to Σ.

Theorem 1.38 (Monotonicity formula for maps). Let (M , g),h,U ,V be as in Theorem
1.8 and f : Σ −→ M be a C2 map of dimension k with density e(f) and tension field
τ (f), then

Θh(f)(t2) − Θh(f)(t1) =

ˆ
Σ,t1≤h◦f≤t2

(
e(f) − |f∗dh|2

|dh|2
k

)
U

+ k

ˆ t2

t=t1

U

V
k
2 +1

(t)

ˆ
h◦f≤t

dh.τ (f)dt

The proof of the Comparison Lemma 1.15 can also be adapted for rectifiable varifolds
and currents. We will write down the details for the compensated case here. The relation
P−1

1
dBP1
dt = P−1

2
dBP2
dt , hence equation (1.15), remains true in distribution sense because

of Fubini theorem
ˆ T

t=h0

ˆ
M

1h0≤h≤t.f(h(m))φ(t)d∥Σ∥(m) dt =

ˆ
M
f(h(m))

ˆ h(m)

t=h0

φ(t)dt d∥Σ∥(m)
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for all ∀φ ∈ C∞
c (0,T ). So it follows from (1.16) that d

dt [Q1(Θ1 − Θ2)] ≥ 0 as distribu-
tion, i.e. ˆ T

t=h0

Q1(Θ1 − Θ2)φ
′dt ≤ 0 ∀φ ∈ C∞

c (h0,T ),φ ≥ 0 (1.24)

We will prove that (1.24) and the non-tangency condition ∥Σ∥(h−1(h0)) = 0 imply
that Θ1 ≥ Θ2 on [h0,T ). The monotonicity of BPi implies that BPi and Θi are contin-
uous except at countably many points. Moreover, we have

lim sup
t→a−

Θi(t) ≤ Θ(a) = lim inf
t→a+

Θi(t) ∀a ∈ (0,T ) (1.25)

Let t1 ∈ (h0,T ) be a point where both Θi are continuous, we will prove that Θ1(t1) ≥
Θ2(t1). It follows from (1.25) that Θ1 ≥ Θ2 everywhere. We choose the test function φ
in (1.24) so that φ′ is a negative bell curve of width ϵ around t1 and positive bell curve
around h0 +

ϵ
2 , as in Figure 1.3. It suffices to see now that the negative bell part of the

integral (1.24) converges to [Q1(Θ1 − Θ2)](t1) while the positive bell part converges to
0. The former is due to continuity at t1. Because Q1,Q2,P1,P2 are continuous, to prove

lim
ϵ→0

1
ϵ

ˆ ϵ

t=0
Q1(Θ1 − Θ2) = 0,

we only need:
lim
ϵ→0

1
ϵ

ˆ ϵ

t=h0

ˆ
Σ,h0≤h≤t

1 = 0,

which is true because of Fubini and Monotonic convergence:

1
ϵ

ˆ ϵ

t=0

ˆ
Σ,h0≤h≤t

1 =
1
ϵ

ˆ
Σ,h0≤h≤h0+ϵ

(h0 + ϵ−h) ≤ ∥Σ∥({h0 ≤ h ≤ h0 + ϵ}) −→ 0 as ϵ → 0.

Now substitute Θ1 ≥ Θ2 into (1.15), we have Θ′
2 ≥ 0 as distribution. By the same

choice of test function φ as before, one has Θ2(t1) ≤ Θ2(t2) for continuous points t1 < t2,
and then by (1.25) for all t1 < t2.

Figure 1.3 – The derivative of the test function used in (1.24).
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1.7 Appendix B: Monotonicity theorems and comparison
lemma in space of bounded curvature.

Fix a point O in a Riemannian manifold (Mn, g), and let rinj be the injectivity radius
at O. The Hessian of the distance function r to O is given by:

Hessp r(∂r, ·) = 0, Hessp r(v, v) =: I(v), ∀p ∈ B(O, rinj), ∀v ⊥ ∂r (1.26)

where
I(v) =

ˆ
Γ

(
|V̇ |2 −KM (γ̇,V )|V |2

)
is the index form of the Jacobi field V along the geodesic Γ between O and p that
interpolates 0 at O and v at p.

When the sectional curvature satisfies KM ≤ −a2 (respectively b2), we can check that

I(v) ≥ a coth(ar)|v|2 (respectively b cot(br)|v|2).

This gives an estimate of the Hess r on the directions orthogonal to ∂r. By a change of
variable, we can estimate the Hessian in a more isotropic way.

Proposition 1.39. Inside B(O, rinj), one has
1. Hess(a−2 cosh ar) ≥ cosh ar. g if KM ≤ −a2.
2. Hess(−b−2 cos br) ≥ cos br. g if K ≤ b2 and r ≤ π

b .

This means that the functions h = a−2 cosh ar and h = −b−2 cos br satisfy Hessh ≥
U .g. We note that the functions U ,V defined as in Proposition 1.1 are still functions of
h:

U = a2h (respectively −b2h), V = |∇h|2 = a2h2 −a−2 (respectively −b2h2 + b−2)

and one still has U = 1
2V

′.
We define the eligible interval [0, rmax) to be [0, rinj) whenKM ≤ −a2 and [0, min(rinj, π2b ))

when KM ≤ b2.

Remark 1.40. 1. When M is Hn or Sn, the function h is the time-coordinate ξ0
and the Euclidean coordinate x in Example 1.4 and Example 1.3.

2. It follows from maximum principle and Proposition 1.39 that there exists no closed
minimal submanifold in B(O, rmax). If M is Cartan–Hadamard (rmax = +∞) and
if the boundary of a minimal submanifold is contained in a geodesic ball, the entire
submanifold stays inside that ball.

1.7.1 Weighted monotonicity theorem
As explained in Remark 1.9, we can still have weighted monotonicity theorem for the

function h. The weighted volume and weighted density of a submanifold Σk are defined
as

Ā(Σ)(t) :=
ˆ

Σ,r≤t
U , Θ̄(t) :=

Ā(Σ)(t)
Q(t)

, Q(t) :=

{
ωk−1
k

sinhk at
ak , when KM ≤ −a2

ωk−1
k

sink bt
bk , when KM ≤ b2
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Note that Q is the weighted volume of a ball of radius t in the k-dimensional space-forms
of curvature −a2 or b2 and that the density converges to 1 as t decreases to 0.

Theorem 1.41. Let M be a Riemannian manifold with sectional curvature KM ≤ −a2

or KM ≤ b2 and Σk ⊂ M be an extension of a minimal submanifold by geodesic cone,
then the density Θ̄(Σ)(t) is an increasing function on the eligible interval.

We can also prove that the intersection of a minimal submanifold with a geodesic
sphere of M has bigger (k − 1)-volume than the great k-sphere of the sphere of same
radius in space-form.

Corollary 1.42. Let Σk ⊂ M be a minimal submanifold containing the point O with
multiplicity m and lt := Hk−1 (Σ ∩ r−1(t)

)
. For all t in the eligible interval, we have

Q(t) ≤ Ā(Σ)(t) ≤ lt
k
V (t)1/2

In particular,

lt ≥

mωk−1
(

sinh at
a

)k−1
, if KM ≤ −a2

mωk−1
(

sin bt
b

)k−1
, if KM ≤ b2

Proof. Instead of Lemma 1.17 (see Remark 1.47), the upper estimate of Ā follows
from (1.11):

Ā(Σ)(t) ≤ 1
k

ˆ
Σ,h=t

|∇Σh| ≤ V (t)1/2

k
lt.

1.7.2 Comparison lemma

It is more convenient see a weight P as a non-negative continuous function on r
instead of h. The P -volume is defined as AP (Σ)(t) :=

´
Σ,r≤t P (r) and the P -density is

ΘP := AP
Q . Here Q is P -volume of a ball of radius r in space-form:

Q(t) :=

ωk−1
´
r≤t P (r)

sinhk−1 ar
ak−1 dr, when KM ≤ −a2

ωk−1
´
r≤t P (r)

sink−1 br
bk−1 dr, when KM ≤ b2 (1.27)

Lemma 1.43 (Comparison). Let Σk ⊂ M be any submanifold not necessarily minimal
and P1,P2 be two non-negative, continuous weight functions. Define Q1,Q2 from P1,P2
as in (1.27).

1. If P1 is weaker than P2, i.e. P1
Q1

≤ P2
Q2

, and d
dtΘ2 ≥ 0 in the eligible interval, then

Θ1 ≤ Θ2 and
dΘ1
dt

≥ Q2
P2

P1
Q1

dΘ2
dt

≥ 0

2. If P2 is weaker than P1 and d
dtΘ2 ≥ 0 in the eligible interval, then Θ1 ≥ Θ2
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We note that it is necessary to mention a or b in order to compare two weights.
However, it can be checked that

Lemma 1.44. For any a, b ≥ 0 and u ≥ v ≥ 0,
1. P1 = cosh vr is weaker than P2 = cosh ur when KM ≤ −a2,
2. P1 = cosur is weaker than P2 = cos vr in the interval t ≤ π

2u when KM ≤ b2.

Remark 1.45. 1. It follows from Lemma 1.44 and Theorem 1.41 that for negatively
curved space KM ≤ −a2, the monotonicity theorem holds for any weight Pu =
cosh ur with u ∈ [0, a) and in particular the uniform weight P0 = 1. One recovers
the Theorem 1 of [And82].

2. When KM ≤ b2, the monotonicity theorem holds for any weight Pu = cosur with
u ∈ [b, ∞) but not for the uniform weight. However, one can still lower bound the
unweighted volume of a minimal submanifold inside a geodesic ball by the volume
of a great k-disc in space form.

Proposition 1.46. Suppose that K ≤ b2, the minimal surface Σk contains a point O
with multiplicity m and it has no boundary in the interior of B(O, t) for certain t < rmax.
Then

A(Σ ∩B(O, t)) ≥ mωk−1

ˆ t

r=0

sink−1(br)

bk−1 dr

In particular, if M is simply connected, with curvature pinched between b2

4 and b2 and
Σ ⊂ M is a closed minimal surface, then

A(Σ) ≥ 1
2ωkb

−k. (1.28)

A weaker version of inequality (1.28), with 1
2ωk replaced by the volume of the unit

k-ball, was proved in [HS74].

Remark 1.47. Lemma 1.17 does not generalise because the P -volume of a geodesic cone
in M is no longer proportional to Q.
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2 Harmonic maps and Minimal surfaces in
the hyperbolic space and the sphere

2.1 A few properties of minimal surfaces and harmonic maps in
Hn

In this section, we are interested in minimal submanifolds of the hyperbolic space that
are asymptotic to a properly embedded submanifold γ of the sphere at infinity. Those
are submanifolds-with-boundary Σ̄ of the compatification B̄n of Hn, whose boundary is
γ. We will denote the interior by Σ and call γ its ideal boundary. The Poincaré ball
model provides a C∞ compactification of Hn. This is the smooth structure we use to
talk about boundary regularity.

2.1.1 Properness, Maximum principle and Convex hull

Recall that a k-dimensional minimal submanifold Σk of Hn is minimal if and only if
the Minkowskian coordinates satisfy

∆ξα = kξα (2.1)

as functions on Σ. This is obtained by pulling back (1.2) to Σ. The same result also
holds for maps. A map f : Σk −→ Hn is harmonic if and only if

∆(ξα ◦ f) = λξα

for all Minkowskian coordinate ξα and a certain λ ≥ 0. In that case, λ is the energy
density of f .

It was observed by Anderson [And82] that if the boundary of a minimal submanifold
lies on one half of the hyperbolic space cut out by a totally geodesic hyperplane H then
the entire submanifold also lies on that side. One can see this by applying maximum
principle to the space coordinate ξ1 whose zero set is H, which satisfies (2.1). This
argument shows that a minimal submanifold of Hn is contained in the convex hull of
its boundary. This convex hull property can be proved for weaker notion of "minimal
submanifold", such as stationary currents or varifolds with the technique of Appendix
A.

Definition 2.1. Let γ be a (k − 1)-dimensional submanifold of S∞. The convex hull
of γ, denoted by ConvHull(γ), is the intersection of all half spaces of Hn containing
γ. Here a half space is a connected component of the complement of a totally geodesic
hyperplane.

Equation (2.1) also shows that the time coordinate ξ0 is sub-harmonic on a minimal
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submanifold. Therefore, a minimal submanifold of Hn is proper if it is proper near the
boundary.

Definition 2.2. Let f : Σ −→ M be a map between the interiors of manifolds with
boundary Σ and M . We say that f is proper near boundary if there exists an open
neighbourhood U at infinity of Σ, i.e. an open subset of Σ such that Σ \U is a compact,
such that f

∣∣∣
U

: U −→ M is proper.

The previous discussion on the convex hull can be stated as:

Proposition 2.3. Let Σk be a manifold with boundary γ and f : (Σk, γ) −→ (H,S∞)
be a harmonic map that is proper near boundary. Then f is proper on Σ and its image
is contained in ConvHull(γ).

It also follows from convex hull property is that minimal submanifolds of the hyperbolic
space meets the sphere at infinity at a right angle: the normal vector of S∞ in Hn is
tangent to Σ.

Using the convex hull and the unweighted monotonicity theorem, Anderson solved the
asymptotic Plateau problem in Hn.

Theorem 2.4 (Anderson cf. [And82]). Let γ be an immersed closed (k− 1)-submanifold
of S∞. There exists an area-minimising locally integral k-current of Hn asymptotic to
γ in the following sense:

supp Σ ∩ S∞ = γ.

For harmonic maps, the initial value problem was solved by Li and Tam using the
tension field flow.

Theorem 2.5 (Li–Tam [LT93]). Let f : Sk−1 −→ Sn−1 be a Cj,α map, 1 ≤ j ≤
m− 1 with nowhere vanishing energy density. Then there exists a unique Cj,α harmonic
extension F : Hk −→ Hn of f .

There is also a notion of convex hull in Lawson’s work [Law70] on minimal subman-
ifolds of Sn that could be contained in one hemisphere. This exploits the fact that
the restriction of any Euclidean coordinate of Rn+1 to a minimal submanifold is super
harmonic when it is positive, as seen by the equation ∆xi = −kxi.

2.1.2 Renormalised area
A boundary defining function is a non-negative function ρ on the compactification Hn

that vanishes exactly on S∞ and exactly to first order, that is dρ ̸= 0 at all points of S∞.
Such function is called special if |d ln ρ|gHn = 1 on a neighbourhood of the boundary.

It was proved by Graham and Witten [GW99] that:

Theorem 2.6 (Graham–Witten). Let Σ2 be a minimal surface in an asymptotically
hyperbolic manifold M that is C2 up to boundary and ρ be a special boundary defining
function. Then the area of Σ has the expansion

A(Σ ∩ {ρ ≥ ϵ}) = |γ|ḡ
ϵ

+ AR + o(1) (2.2)

where ḡ = ρ2g. Moreover, the coefficient AR, called the renormalised area of Σ, is
independent of the choice of ρ.
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Remark 2.7. The expansion (2.2) will also be valid if ρ is replace by a boundary defining
function ρ1 that is equal to ρ up to third order: ρ1 = ρ + o(ρ2) or equivalently ρ =
ρ1 + o(ρ2

1). This is because ρ2
1g and ρ2g induce the same metric on the ideal boundary

and

A(Σ ∩ {ρ1 ≥ ϵ}) = A(Σ ∩ {ρ ≥ ϵ+ o(ϵ2)})

=
|γ|ḡ

ϵ+ o(ϵ2)
+ AR + o(1) = |γ|ḡ

ϵ
+ AR + o(1).

The natural boundary defining functions coming from Minkowskian coordinates ξ0, ξ1, ξl
of the hyperbolic space are all special up to third order.

1. The function ρl = ξ−1
l is a special boundary defining function. It is the half-space

coordinate corresponding to ξl. The metric ḡ in (2.2) is the flat metric on boundary.
2. The function ρ0 = ξ−1

0 is also a boundary defining function. It is third order close
to a special boundary defining function: In the associated Poincaré model, the
function ρ = 21−r

1+r , where r is the Euclidean distance to the centre, is special. It
is related to ρ0 by

ρ0 =
ρ

1 + ρ2

4
= ρ+O(ρ3).

Graham–Witten expansion (2.2) becomes

A(Σ ∩ {ξ0 ≤ t})(t) = |γ|g̃t+ AR +O(t−1) (2.3)

where g̃ is the round metric associated to ξ0.
3. The function ρ1 = |ξ1|−1 is a boundary defining function except on the equator

where it is undefined. It is special up to third order. The function l = | arsinh ξ1|
which computes the distance to the totally geodesic hyperplane ξ−1

1 (0) satisfies
|dl| = 1, and so ρ = 2 exp(−l) is special. The functions ρ1 and ρ are related by

ρ1 =
ρ

1 − (ρ/2)2 = ρ+O(ρ3).

The Graham–Witten expansion (2.3) can be rewritten as

A(Σ ∩ {ξ1 ≤ t}) = |γ∞|g̃t+ AR +O(t−1) (2.4)

where g̃ is the doubled hyperbolic metric associated to ξ1 (see Example 1.4).
It was proved by Alexakis and Mazzeo [AM10] that the renormalised area and the

Willmore energy are, up to a constant, the same for minimal surfaces of Hn. The
Willmore energy of a surface is defined as the total integral of its trace-free second
fundamental form:

W(Σ) =
1
2

ˆ
Σ

|ÎI|2.

It is a conformal invariant of the metric in the ambient space. For this reason, it is finite
if the surface extends smoothly at infinity.

Proposition 2.8 (cf. [AM10]). Let Σ be a minimal surface of Hn that extend in a C2

way up to its ideal boundary γ. Then its renormalised area and Willmore energy are
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related by
AR(Σ) = −W(Σ) − 2πχ(Σ) (2.5)

Here χ(Σ) is the Euler characteristic.
Moreover, if we double Σ along its boundary to obtain a closed surface 2Σ of Sn, then

for any round metric gS on Sn,

2AR(Σ) = −AgS (2Σ) −
ˆ

2Σ
H2. (2.6)

Here AgS and H are the area and mean curvature of 2Σ under gS.

Proof. It follows from the Gauss–Codazzi formula in Hn that

−1 +H2 = κ+
1
2 |ÎI|2 (2.7)

where κ is the Gauss curvature of the surface Σ and H is its mean curvature. Now
we substitute H = 0, integrate (2.7) over the region Σϵ := Σ ∩ {ρ ≥ ϵ}, and apply
Gauss–Bonnet formula to obtain:

A(Σϵ) = −2πχ(Σϵ) +
ˆ
∂Σϵ

k− 1
2

ˆ
Σϵ

|ÎI|2 (2.8)

Here k is the curvature of the curve ∂Σϵ inside Σ. It follows from minimal surface
equation of Σ that

|∂Σϵ|ḡ = |∂Σ| +O(ϵ2), k = 1 +O(ϵ2)

We plug these into (2.8) and compare with Graham–Witten expansion to obtain
(2.5).

The equation (2.5) can be rewritten as AR(Σ) = −1
2W(2Σ) − 2πχ(Σ). Now the

Gauss–Codazzi formula for the surface 2Σ in Sn says

1 +H2 = κ+
1
2 |ÎI|2

Integrate this and we have

AgS (2Σ) +
ˆ

2Σ
H2 = W(2Σ) + 2πχ(2Σ) = −2AR(Σ).

2.2 Explicit minimal surfaces

2.2.1 Minimal annuli of H3

There are three families of minimal surfaces of genus 0 in H3 that fill a pair of circles,
with three different relative positions. They were documented under different names
by do Carmo–Dajczer [CD83] and then later by Krtouš–Zelnikov [KZ14]. Each of these
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three families were also separately found by Wang and Wei [BOM83], Mori [Mor81],
and recently Martin–White [MW14]. It is perhaps useful to summarise here the results
proved by these authors.

— Two disjoint circles. Up to isometry, there is a one-parameter family of an-
nuli filling this configuration. These surfaces was first discovered by Mori [Mor81].
They were called surfaces of spherical type in [CD83] and rotational symmetric
in [KZ14]. By a Möbius transform, we can assume that the boundary is a pair
of concentric circles of radius R1 < R2 on the boundary plane of the half-space.
The surfaces are rotationally symmetric and the number of solutions with a given
boundary modulus can be seen from Figure 2.1. When the two circles are suffi-
ciently far from each other, there is no minimal annulus filling them. As they get
closer, we start to see exactly one minimal annulus, which then splits into two:
one tends to the two-discs solution and one escapes to infinity. The annulus that
escapes to infinity is stable while the other has Morse index 1. This stability ques-
tion was settled by Bérard and Sa Earp [BS10], with partial results due to Mori
and do Carmo–Dajczer.

— Two circles intersecting at 2 points. The problem can be reduced further to
finding minimal discs filling two circular arcs intersecting each other non tangen-
tially (see Figure 2.3 and Figure 2.4). Up to isometry, the family is one-parameter.
These surfaces were called of parabolic type in [CD83] and translational in [KZ14].
They were first found by Wang and Wei as counter-examples for the Bernstein con-
jecture in the hyperbolic space [BOM83]. If we assume, after a Möbius transform,
that the boundary curve is the union of two rays starting at the origin of the half-
space model, then these surfaces are scale-invariant. Wang and Wei proved that
these surfaces are area-minimising. It is worth noting that although the boundary
is not C1, the minimal disc is smoothly embedded everywhere in the interior.

— Two circles tangent to each other. Up to Möbius transform, there is only one
configuration of the boundary: two parallel line of distance 1 to each other on the
boundary of the half-space model. The minimal surface filling these two lines is
invariant by translation along the lines. It was called hyperbolic type in [CD83]
and horocylic in [KZ14]. The surface was proved to be stable by do Carmo and
Dajczer and later area-minimising by Martin and White when they rediscovered
it.

The overlapping efforts and terminologies are summarised in the following table. Fig-
ure 2.3 and Figure 2.5 show a parabolic/translational surface and a hyperbolic/horocyclic
surface in different model of the hyperbolic space. The cylindrical model is obtained by
removing two points on the sphere at infinity. Each circular slice corresponds to a totally
geodesic disc.

Boundary circles Name in [CD83] Name in [KZ14] also known to
Disjoint spherical rotational Mori (1981) [Mor81]
Intersecting parabolic translational Wang–Wei (1979-1980) [BOM83]
Tangent hyperbolic horocyclic Martin–White (2014) [MW14]
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2.2. Explicit minimal surfaces

Figure 2.1 – The boundary modulus in term of the parameter of the spherical/rotational
family.

Figure 2.2 – Two spherical/rotational minimal annulus filling a same pair of circles. Im-
age from [KZ14].
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2.2. Explicit minimal surfaces

Figure 2.3 – A parabolic type/translational minimal disk viewed in (a) the Poincaré
model, (b) the cylindrical model and (c) the half-space model. Image from
[KZ14].

(a) One minimal disk filling two
half circles.

(b) Intersection of the family with
the equatorial disk.

Figure 2.4 – The parabolic type/translational minimal disks illustrated by Wang and
Wei. Image from [BOM83].
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2.2. Explicit minimal surfaces

Figure 2.5 – A hyperbolic type/horocylic minimal strip viewed in (a) the Poincaré model,
(b) the cylindrical model and (c) the half-space model. Image from [KZ14].

2.2.2 Minimal annuli filling Hopf link

We will point out an explicit one-parameter family of annuli of H4 whose boundaries
are Hopf links of S3. We see a Hopf link as a pair of orbits of the S1-action

(z1, z2) 7−→ (eiθz1, e−iθz2) (2.9)

on the 3-sphere ρ := |z|2 + |w|2 = 1 in C2. If C2 is identified with the space of quaternions
by (z,w) 7→ z + jw, this action corresponds to the multiplication on the left by eiθ.

Let φ = φ(ρ) be any radial function on R4, we will construct surfaces that are
invariant by (2.9) and minimal under the metric g = e2φgE . When φ is constant, these
surfaces are the complex curves z1z2 = a, a ∈ C. In the general case, they are obtained
by rotating a curve

z1z2 = F (ρ)

in the real plane Im z1 = Im z2 = 0. Here F is a real function on ρ. The minimal surface
equation can be rewritten as the following second order ODE of F

X ′

X
− Y ′

Y
+

1
ρ
+
φ′

2

[
8 + ρ

(
X2

Y 2 − 4
)
F ′

F

]
= 0, where X = F −F ′ρ, Y =

F ′

2

√
ρ2 − 4F 2.

This can be reduced to a first order ODE using a symmetry of the problem. Starting
from a solution curve, we can obtain more solution by rotating it in the real plane.
This second rotation corresponds to multiplying on the right of z1 + jz2 by ejα and it
commutes with the left multiplication by eiθ.

Concretely, by a change of variable F = ρ
2 sin θ(ρ) the ODE above reduces either to

the first order Bernoulli equation θ′2 = −ρ2 + C2ρ4e4φ for a parameter C > 0, or to
θ′ = 0 which corresponds to pairs of 2-planes. The profile curve can be described in
a more geometric fashion, as in Proposition 2.9. This description allows us to see that
these surfaces are the complex curves z1z2 = a when g is the Euclidean metric.

Proposition 2.9. Let MC be the surface in R4 given by rotating the following real plane

58



2.2. Explicit minimal surfaces

(a) Minimal annuli of H4. (b) A minimal annulus of S4 and its
corresponding minimal torus. The unit

circle represents the Clifford torus.

Figure 2.6 – The profile curves of a few rotational minimal surfaces in H4 and S4.

curve:
sin2 ψ = C2 e

−4φ

ρ2 , C > 0 (2.10)

Here ψ is the angle formed by the tangent of the curve at a point p and the radial direction−→
Op. Then MC is minimal under the metric g = e2φgE. Up to SO(4), the annuli MC

and the 2-planes are the only minimal surfaces obtained as orbit of a real plane curve by
the rotation (2.9).

For the hyperbolic space, eφ = 2
1−ρ . Seen from the origin, the profile curve spans an

angle θC that varies between 0 (C = +∞) and π
2 (C = 0). The profile curves are drawn

in Figure 2.6 (a).
For the round sphere, eφ = 2

1+ρ and the parameter C can only be chosen in (0, 1).
The angle θC can take any value between π

2 (C = 0) and π√
2 (C = 1). In the case C = 0,

MC is a totally geodesic S2 and in the case C = 1, MC is (part of) the Clifford torus
of the equatorial S3. In particular, if θC is a rational multiple of π in this interval, we
can close the surface by repeating the profile curve. This produces a countable family of
immersed tori in S4 that are invariant by the quaternionic rotation. The dynamical sys-
tem description of the family MC in the next section will show that the resulting tori are
smooth at the circles where the annuli are glued together. It was pointed out to the au-
thor by Benjamin Aslan that the annuli MC in the case of S4 are already known. Hsiang
and Lawson [Hsiang.H.BlaineLawson71_MinimalSubmanifoldsLow] constructed
a family τp,q,α of minimal annuli of S3 invariant by the (p, q)-rotation

(z,w) −→ (eipθz, eiqθw)

where we have identified the Euclidean space R4, where S3 is embedded as the unit
sphere, with C2. Lawson [Lawson70_CompleteMinimalSurfaces] defined a trans-
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2.2. Explicit minimal surfaces

Figure 2.7 – More minimal tori obtained by the method.

form, called bipolar transform, that turns a minimal surface in S3 into a minimal
surface in S5. This transformation is defined by wedging a conformal harmonic map
f : Σ −→ S3 ⊂ R4 with its Gauss map (valued in R4). The result is a map from Σ to
the unit sphere of Λ2R4 ∼= R6, which is conformal and harmonic. It is easy to check that
if the map f is (p, q)-invariant, then its bipolar transform is contained in a subsphere
S4 of S5 and is invariant by a (p+ q, p− q)-rotation. In case p = 0, q = 1, one obtains
the annuli MC .

2.2.3 From dynamical system point of view

In this subsection, we will write the minimal surface equation of MC as a dynamical
system. We start with the following Lemma which computes how the second fundamental
form changes under conformal transform. Recall that for a C2 map f : (Σ,h) −→ (M , g),
the second fundamental form is a 2-form on Σ with value in f∗TM given by the covariant
derivative II(f) = ∇df . Its trace τ (f) is called the tension field. Here we see df as
a section of Ω1(f∗TM) and the connection on f∗TM is obtained by the Levi-Civita
connections of M and Σ.

Lemma 2.10. Let f : (Σk,h) −→ (Mn, g) be a C2 map and denote by II(f ,h, g) its
second fundamental form. Then

1. For all function φ on M

II(f ,h, e2φg) = II(f ,h, g) + df ⊗ d(φ ◦ f) + d(φ ◦ f) ⊗ df − ∇gφf∗g

2. For all function φ on Σ

II(f , e2φh, g) = II(f ,h, g) − df ⊗ dφ− dφ⊗ df + (f∗∇hφ) ⊗ h

In particular, τ (f , e2φh) = e−2φ
[
τ (f , e2φh) + (k− 2)f∗∇hφ

]
.
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2.2. Explicit minimal surfaces

Proof. Both equations follow from Leibniz rule II(u ◦ v) = v∗ II(u) + u∗ II(v) and
the formula of the second fundamental form of the identity map ι : (M , g) −→
(M , e2φg):

II(ι) = ι⊗ dφ+ dφ⊗ ι+ ∇φ⊗ g,

where ∇φ denotes the g-gradient.

Now let us look for harmonic maps f : (S1 × R, dθ2 + ds2) −→ (R4, gφ) given by the
equation

z1 = eiqθu(s), z2 = e−ipθv(s), p, q ∈ Z (2.11)

Here u and v are complex-valued functions on R.
The Euclidean tension field of f is

τ (f) =

(
u′′

u
− q2

)
z1∂z1 +

(
ū′′

ū
− q2

)
z̄1∂z̄1 +

(
v′′

v
− p2

)
z2∂z2 +

(
v̄′′

v̄
− p2

)
z̄2∂z̄.

So f is harmonic into the Euclidean space if and only if

u = A1e
qs + Ā2e

−qs, v = B1e
ps + B̄2e

−ps, (A1,A2,B1,B2) ∈ C4 (2.12)

Among these maps, those that are conformal have

q2A1A2 + p2B1B2 = 0 (2.13)

Most of the minimal surfaces found this way are not complex curves under any complex
structure of R4 compatible with the Euclidean metric. By definition, a surface is complex
under any such complex structure if and only if one of its two Gauss lifts is constant.
Let J0 be the complex structure that gives the coordinates (z1, z2).

Proposition 2.11. The surfaces given by the equation (2.11) and (2.12) with parameters
(A1,A2,B1,B2) ∈ C4 satisfying (2.13) are minimal in the Euclidean 4-space.

1. When p = q = 1, all of these surfaces are complex curves under compatible complex
structures of R4.

2. When p ̸= q, the surfaces are complex curves under a complex structure homotopic
to J0 if and only if A1B1 = A2B2 = 0, and a complex structure not homotopic to
J0 if and only if A1B2 = A2B1 = 0.

The tension field under the metric gφ can be computed using Lemma 2.10. The map
f is gφ-harmonic if and only ifu

′′ − q2u = 2uφ′
[
q|u|2 + p|v|2 + |v′|2 − u′2ū

u − (v′v̄+ vv̄′)u
′

u

]
v′′ − p2v = 2vφ′

[
q|u|2 + p|v|2 + |u′|2 − v′2v̄

v − (u′ū+ uū′) v
′

v

] (2.14)

Here φ′ denotes dφ
dρ while all other derivatives are taken in s.

By holomorphicity of the Hopf differential, a map f given by (2.14) is conformal
everywhere if it is conformal at one value s = s0. For this reason, the conformality
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2.3. Applications of monotonicity theorems

Figure 2.8 – Approximation of the profile curve in Figure 2.8 using the system (2.14).
Initial state is described with a blue dot and arrow.

condition is an initial condition of the system. Concretely, f is conformal if and only if{
q2|u|2 + p2|v|2 = |u′|2 + |v′|2

q(uū′ − u′ū) = p(vv̄′ − v′v̄)
(2.15)

It can be checked that (2.15) holds for all s if it holds for one value s = s0.
When u, v are real-valued, the initial condition (2.15) is equivalent to H := 1

2 (u
′2 +

v′2 − q2u2 − p2v2) = 0. Under this condition, (2.14) becomes{
u′′ = q2u+ 4φ′v′(uv′ − u′v)

v′′ = p2v− 4φ′u′(uv′ − u′v)
(2.16)

It can be checked that H is a first integral.
When p = q = 1, the system (2.16) has a symmetry as described in subsection 2.2.2.

This corresponds to the first integral

C = e2φ(uv′ − u′v).

which is the parameter C in Proposition 2.9.
When p ̸= q, the system no longer has the quaternionic symmetry and I cannot solve

(2.14) explicitly. A few numerical approximations are shown in Figure 2.8 and Figure
2.9.

2.3 Applications of monotonicity theorems

In this section, we will be looking at submanifolds of the Euclidean unit ball Bn. We
denote by B(r) the closed n-ball centred at the origin with radius r ∈ (0, 1) and S(r)
its boundary sphere.
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2.3. Applications of monotonicity theorems

Figure 2.9 – A solution of the system (2.14) in S4 when (p, q) = (2, 5) that seems to be
periodic.

2.3.1 Intersection curves
Recall that Proposition 1.18 allows us to estimate the intersection of a minimal sub-

manifold with the level set h = t. One immediate consequence is:

Proposition 2.12. Let Σk be a submanifold of the unit ball Bn that contains the origin
with density m. Suppose that the intersection of Σ with B(r) has no other boundary than
its intersection γr with the sphere. If Σ is minimal, either under the Poincaré metric,
the Euclidean metric or the half sphere metric of Bn, then the radial projection of γr on
S(1) has Euclidean volume least mωk−1.

The Propositions 2.13 and 2.14 are the application of Proposition 1.18 to null and
space coordinates of Hn:

Proposition 2.13. Let Σ be a minimal k-submanifold of Hn that is bounded in the half
space model and C2 up to its ideal boundary γ∞. Let γt be the intersection of Σ and the
horizontal hyperplane ξl = t, or equivalently x = 1

t for the half space coordinate x. Then
the Euclidean volume of γ∞ is greater than the TΣ-parallel volume of γt: |γ∞| ≥ |γTΣ

t |.
More generally, the Euclidean volume of a level set γt1 = Σ ∩ {x = 1

t1
} is greater

than the parallel volume of any level set γt2 = Σ ∩ {x = 1
t2

} higher than it (that is, with
t2 < t1).

Recall that here the parallel volume of γt (see Definition 1.5) is the Euclidean volume
weighted by the angle between TΣ at the vertical direction. Proposition 2.13 is not
at all obvious when we look at a neighbourhood of the smaller boundary circle of a
Mori surface (as shown in Figure 2.10). The circumference of horizontal slices of this
collar increases as we get higher and Proposition 2.13 becomes a statement about of how
horizontal the surface has to be as it goes into the interior of Hn. In other words, it is
an estimate of the angle θ formed by the surface and the vertical direction.

We will illustrate Proposition 2.13 by computing the parallel length of the waist of
the Mori’s surfaces. Recall that in the half-space model, these are rotational annuli
bounded by a pair of concentric circles. The waist is the circle closest to the rotational
axis in hyperbolic distance. The green curve in Figure 2.11 is the parallel length of this
circle. The orange curve represents its Euclidean length, of which we have no control.
Proposition 2.13 says that the green curve has to stay below 1.

For the space coordinates, we have:
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2.3. Applications of monotonicity theorems

Figure 2.10 – A collar neighborhood of the smaller boundary circle of a Mori surface.

Figure 2.11 – The length and parallel length of the waist of Mori surfaces. We normalised
the radius of the smaller boundary circle to be 1.
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2.3. Applications of monotonicity theorems

Proposition 2.14. Let Σ be a minimal k-submanifold of Hn in the region ξ1 ≥ a > 0.
Suppose that the boundary of Σ is the union of a (k− 1)-submanifold γa of the level set
ξ1 = a and a (k− 1)-submanifold γt of ξ1 = t > a. Then the normalised volume of γt is
not less than the TΣ-parallel volume of γa.

In particular, when t = ∞ and γ∞ is a submanifold of S∞, we have |γ∞| ≥ |γTΣ
a |.

2.3.2 Lower bound of area of minimal surface in Sn

The Comparison Lemma 1.15 can be useful even when we only have monotonicity in
a weaker weight (in order words, how to go upstream in the chain (1.19)). We illustrate
this with the following result, originally proved by Cheng, Li and Yau using by their
estimate of the heat kernel of space forms.

Proposition 2.15 (Cheng–Li–Yau [CLY84]). Let Σk be a submanifold of the unit ball
that contains the origin with density m. Suppose that Σ is minimal under the metric
g that is either the Poincaré, the Euclidean or the half sphere metric of Bn. Then the
g-volume of Σ inside any ball B(r) is not less than m times the g-volume of a totally
geodesic k-disc containing the origin.

Corollary 2.16. Any k-dimensional closed minimal submanifold of the sphere has vol-
ume at least ωk. Equality happens only for totally geodesic subspheres.

Proof of Proposition 2.15. It suffices to prove that the unweighted density functional
with respect to the metric g is not less than m. When g is the Euclidean metric,
this is Proposition 1.18. When g is the hyperbolic metric, this is Corollary 1.19.
When g is the sphere metric, we know by Theorem 1.8 that the weighted density in
the half sphere is not less than m. We do not know if the unweighted density is an
increasing function, but the second half of the Comparison Lemma 1.15 says that it
is also not less than m.

Proof of Corollary 2.16. We pick any point p on the submanifold and apply Propo-
sition 2.15 to prove that the unweighted volume in the half sphere containing p is
at least ωk

2 . We do not know whether the submanifold contains the antipodal −p,
but we know that the weighted volume in the half sphere centred at −p is equal to
the weighted volume in the half sphere centred at p. This is because any Euclidean
coordinate function x of Rn+1 ⊃ Sn satisfies

ˆ
Σ
x− 1

k

ˆ
Σ

∆x = 0.

Now repeat the argument of Proposition 2.15 in the half sphere containing −p.

2.3.3 Area-minimising cone
As we claimed in Section 1.5, the second ≫ of the chain (1.19) recovers the following

result, originally due to Anderson:

Proposition 2.17 (cf. Theorem 9 of [And82]). In the unit ball Bn, minimising cones
in the Poincaré metric are exactly minimising cones in the Euclidean metric.
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2.3. Applications of monotonicity theorems

It is not difficult to see that a cone is hyperbolic minimising only if it is Euclidean
minimising. 1

Proposition 2.18. Let Cγ be a k-dimensional radial cone, constructed over a subman-
ifold γ on the sphere at infinity of the Poincaré model. If Cγ is Euclidean-minimising,
then there is no other minimal surface asymptotic to γ.

Proposition 2.18 is stronger than Proposition 2.17. Knowing that the pair of 2-planes
zw = 0 in C2 is hyperbolic-minimising only allows us to rule out minimal surfaces of H4

that agree with the planes on a neighbourhood of infinity.

Proof of Proposition 2.18. We know from the monotonicity chain (1.19) that the
Euclidean volume functional is weaker than the hyperbolic volume. Suppose by
contradiction that there is a minimal submanifold Σk of Hn filling γ. Then Σk is
Euclidean monotone and by Corollary 1.19, it has Euclidean volume strictly less
than that of Cγ . This means that Cγ was not Euclidean-minimising.

In R4, the cone whose section is the Hopf link zw = ϵ, |z|2 + |w|2 = 1 is not Euclidean-
minimising because this link bounds the complex curve zw = ϵ. This cone is therefore
not hyperbolic minimising either. This is why in Section 2.2, we were able to find another
minimal surface of H4 filling it.

2.3.4 Isoperimetric inequality for minimal surfaces in Hn. Visual volume.
In the Euclidean plane, the round disk maximises area among shapes with the same

perimeter. More precisely, a curve of length L encloses a region of area at most L2

4π . In
general, if Ω is a domain in the 2-dimensional space form of curvature K, then its area
A and perimeter L are related by:

4πA ≤ L2 +KA2 (2.17)

Equality happens if and only if the domain is a geodesic disk.
Because the space forms R2,S2, H2 can be isometrically and minimally embedded in

higher dimensional space forms, we may hope to generalise (2.17) for minimal surfaces
in Rn,Sn, Hn. Even in the Euclidean case, the history of this problem is fascinating.

— The case of minimal disk was proved by Carleman in 1921 [Car21].
From the late 50s, the restriction on the topological type of the surface was removed:
— The case of minimal surfaces with connected boundary was proved by Reid in 1959

[Rei59] and Hsiung in 1961 [Chi61].
— The case of minimal annuli was proved by Osserman–Schiffer in 1975 [OS75] and

Feinberg in 1977 [Fei77].
The late 80s saw more relaxation on the boundary curve:

— Li, Schoen and Yau [LSY84] proved in that the inequality holds for minimal sur-
faces with weakly connected boundary. This means that there is a orthogonal
coordinates system {xi} of Rn such that ∂Σ cannot be separated by any plane
xi = c. Any curve with 2 components fall into this type.

1. Suppose that it is not, then by zooming in at the tip of the cone, the hyperbolic metric looking
more and more Euclidean, we could just replace a small neighbourhood of the tip by a submanifold
having strictly smaller volume.
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2.3. Applications of monotonicity theorems

— In 1990, Choe [Cho90] proved that the inequality holds for minimal surfaces with
radially connected boundary. This means that there is a point O in the surface
such that the set {d(a,O) : a ∈ ∂Σ} of distances from O to boundary points
is a connected interval. This condition is satisfied for connected surfaces with
two boundary components (it suffices to choose O to have equal distance to each
boundary component).

— Very recently, Brendle [Bre20] proved the isoperimetric inequality for minimal
submanifolds of codimension at most 2 in Rn.

The isoperimetric inequality (2.17) for minimal surfaces in the hyperbolic space was
proved by Choe and Gulliver [CG92b] when the boundary curve is radially connected.
The crucial idea here, also featured in Choe’s work on the Euclidean case, is that:

1. the area of a minimal surface in the Poincaré ball is less than the radial cone built
upon its boundary and 2

2. the quantity 4πA−KA2 is increasing in A when K = −1 or K = 0.
Therefore, it suffices to verify the inequality (2.17) for radial cones.

Recall that each interior point of the hyperbolic space defines a round metric on the
sphere at infinity S∞ and that the volume of a submanifold of S∞ under this metric is
by definition its visual volume at O.

Lemma 2.19 (Choe–Gulliver [CG92b]). Let γ be a closed embedded, radially connected
curve in the interior of the Poincaré model. Suppose that the visual volume of γ from the
centre O of the ball is at least 2π, then the hyperbolic length L of γ and the hyperbolic
area A of the radial cone of section γ satisfy

4πA+A2 ≤ L2. (2.18)

Theorem 2.20 (Choe–Gulliver [CG92b]). Let Σ ⊂ Hn be a minimal surface whose
boundary ∂Σ is radially connected from a point of Σ. Then the area A of Σ and the
length L of its boundary also satisfy (2.18). Equality happens if and only if Σ is a
geodesic disk in a totally geodesic copy of H2.

Here the visual volume from O of a submanifold γ ⊂ Hn is the Euclidean volume of its
radial projection to S∞. When γ lies on a geodesic sphere centred at O, this is exactly
its volume under the normalised metric.

To prove Theorem 2.20 from Lemma 2.19, it suffices to choose O on Σ. Proposition
1.18 guarantees that the visual volume is at least 2π.

The visual volume was called the angle of γ by Choe and Gulliver. We adopt here the
terminology due to Gromov [Gro83], which was defined in a larger context.

Definition 2.21. Let Xn be a complete, connected, simply connected Riemannian man-
ifold without conjugate points and Y k be an immersed submanifold of X. Let p be a point
in X \ Y and Ep : X \ {p} −→ Sn−1 be the geodesic projection onto the unit sphere of
the tangent space of X at p. The visual volume Vis(Y , p) of Y from p is the Euclidean
volume of its image via Ep.

2. Note that Lemma 1.17 requires the boundary curve to stay on a sphere centred at the origin, but
we can always reduce to this case by radially extend the surface.
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2.3. Applications of monotonicity theorems

A priori, the point p has to be outside of Y , but when Y is smoothly immersed,
the function Vis(Y , ·) extends continuously to the interior of Y (except when it is +∞
everywhere). For example, if Y is a k-dimensional plane of the Euclidean space Rn, then
Vis(Y , ·) is 1

2ωk everywhere. More generally, if Y is smoothly immersed, then the visual
volume from an interior point of Y is at least 1

2ωk. We will discuss more on the visual
volume in the next Chapter.

2.3.5 Renormalised Isoperimetric inequality.
The most technical part of Choe–Gulliver’s proof of Theorem 2.20 was to show that

the area of a minimal surface is less than a cone built upon its boundary. We have
seen in the previous subsection that the comparison lemma provides a shortcut to this.
We will now use the same argument to prove a renormalised version of isoperimetric
inequality for complete minimal surfaces of Hn.

Since the area of a complete surface is infinite, we need to replace it by the Graham–
Witten’s renormalised area (see Theorem 2.6 for definition). The perimeter also needs
to be normalised. We have already seen three ways to do that: with the round metric,
the flat metric or the doubled hyperbolic metric in the conformal class at infinity.

Our first estimate of the renormalised area is a consequence of Corollary 1.19 for
a time coordinate ξ0 and the uniform weight. This corollary says that the area of a
minimal surface Σ in the region ξ0 ≤ t is less than the area of a radial cone built over
the intersection γt = Σ ∩ ξ−1

0 (t):

A(Σ ∩ {ξ0 ≤ t}) ≤ |γt|
ˆ t

1
dh = |γt|(t− 1) = |γ|t− |γ| +O(t−1) (2.19)

where |γt| and |γ| are the length under the normalised metric g̃ of the intersection γt
and the ideal boundary γ of Σ. For the last equality of (2.19), we have used

|γt| = |γ| +O(t−2) (2.20)

which is because Σ meets S∞ at right angle.
Now we replace the LHS of (2.19) by the Graham–Witten series development (2.3) to

obtain
AR(Σ) + |γ| ≤ 0.

By doing this argument for all the time coordinate functions, we have the following renor-
malised version of the isoperimetric inequality. Theorem 2.22 was also independently
proved by Jacob Bernstein [Ber21].

Theorem 2.22. Let Σ be a complete minimal surface in Hn whose ideal boundary is a
curve γ in the sphere infinity. Suppose that Σ is C2 near boundary, then

AR(Σ) + sup
round g̃

|γ|g̃ ≤ 0 (2.21)

where the supremum was taken among metrics of sectional curvature +1 in the conformal
infinity of Hn. In other words, AR(Σ) + supp∈Hn Vis(γ, p) ≤ 0.

Although the inequality (2.21) is sharp, it does not give us good estimate of the
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renormalised area of the Mori’s family or of the family MC in Proposition 2.9. Because
the boundaries of these surfaces are union of two round circles on the conformal sphere,
the boundary term in (2.21) is at most 4π, and so the best we can get is AR ≤ −4π.
The renormalised area of these families however, tends to −∞ as the surfaces “escape”
to infinity.

One way to see this without any computation of the renormalised area is by the version
of (2.19) for compensated area. Recall that for any Minkowskian coordinate ξ∗, with
∗ = 0, 1, l and any number a > 0, the uniform weight (P = 1, c = 1

a ) is weaker than the
weight (P = ξ∗, c = 1) in the region ξ ≥ a (Lemma 1.31). Let Σt be a minimal surface
in the region a < ξ∗ ≤ t with boundary γt in ξ−1

∗ (t). By Corollary 1.19, the area of Σt
is less than that of the tube built upon γt, that is

B1(Σ)(t) = A(Σ ∩ {ξ ≤ t}) ≤ B1(Tγ(a, t)) (2.22)

For a surface meeting S∞ at right angle, the expansion (2.20) also holds for null and
space coordinates. Combine this with (2.22), we have the following estimates, which
generalise Theorem 2.22.

Theorem 2.23 (Renormalised isoperimetric inequalities). Let ξ0, ξ1, ξl be Minkowskian
coordinates with the corresponding round/ double hyperbolic/ flat metrics on S∞ denoted
by g̃0, g̃1, g̃l. Let Σ be a complete minimal surface that is embedded and C2 near its ideal
boundary γ.

1. If Σ is in the region ξ0 ≥ a ≥ 1 then

AR(Σ) +
1
2 |γ|g̃0

(
a+

1
a

)
≤ 0 (2.23)

2. If Σ is in the region ξ1 ≥ a > 0 then

AR(Σ) +
1
2 |γ|g̃1

(
a− 1

a

)
≤ 0 (2.24)

3. If Σ is in the region ξl ≥ a > 0 then

AR(Σ) +
1
2 |γ|g̃l

a ≤ 0 (2.25)

Remark 2.24. 1. The null estimate (2.25) is the limit case of (2.23) and (2.24)
when the point associated to ξ0 and the codimension 1 associated to ξ1 are sent to
infinity.

2. Both the time and space estimates imply that the renormalised area of a minimal
surface is at most −2π (see Corollary 2.25 below). The null estimate (2.25) on the
other hand only implies AR ≤ −π.

Corollary 2.25. The renormalised area of a minimal surface of Hn is at most −2π.

Proof. We can choose a time coordinate associated to a point on the minimal surface,
then use (2.23) and Proposition 2.12.
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2.3. Applications of monotonicity theorems

There are two other proofs of Corollary 2.25, both use rescaling argument. The
first one uses the space estimate (2.24) and the second one uses the relation between
renormalised area and the Willmore energy (Proposition 2.8).

Alternative proof #1 of Corollary 2.25. We first note that the function y := ξ1
ξ0

foli-
ates Hn into totally geodesic codimension 1. So by a Möbius transform, we can put
the boundary of Σ, and by convexity the entire minimal surface, between level sets
y = β and y = β + ϵ,β > 0. This guarantees that ξ1 ≥ α := β√

1−β2
on the surface.

The Möbius transform can be chosen so that the normalised length of the boundary
curve is ϵ-near to that of a great circle on {y = β} ∩ S∞, which is 2π

√
1−β2

β . Apply
(2.24) and send ϵ to 0, we have

AR + 2π(1 − 1
2β2 ) ≤ 0

for all β > 0, which means AR ≤ −2π. Figure 2.12 illustrates the level sets of y = ξ1
ξ0

and those of ξ1 in the Poincaré model.

Figure 2.12 – Level sets of y (totally geodesic, in red) and those of ξ1 (in blue) in the
proof of Corollary 2.25. The (n− 1)-discs y = β and ξ1 = α touch each
other at the center.

Alternative proof #2 of Corollary 2.25. It follows from (2.6) that

AR(Σ) +
1
2 sup

g
Ag(2Σ) ≤ 0

where the supremum is taken among round metric on the sphere Sn containing the
doubled surface 2Σ. In other words:

AR(Σ) +
1
2 sup
p∈Hn+1

Vis(2Σ, p) ≤ 0 (2.26)

As p tends to a point on 2Σ, the visual area converges to 4π. The estimate (2.26)
implies that AR ≤ −2π.
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2.3. Applications of monotonicity theorems

Remarks on the time estimate (2.23) and renormalised area of the family MC

We see from the time estimate (2.23) that the renormalised area of the annuli MC

of Proposition 2.9 is unbounded as the surfaces escape to infinity (as C → +∞). This
is because the two boundary circles have Euclidean length 4π while the distance of the
annuli towards the center increases to infinity. More precisely, the minimum value of the
time coordinate (based at the origin) on MC is

a = a(C) := min
MC

ξ0 = (C + 1)1/2.

This means that the boundary term b(C) := 1
2 (a+ a−1).4π increases like 1

2C
1/2 as

the surfaces escape. The renormalised area can be computed directly to be

AR(MC) =

ˆ ∞

a

[
ξ2 − 1

(ξ2 − 1)2 −C2 − 1
]
dξ − 4πa

The comparison between these two quantities can be seen from Figure 2.13. The graph
is drawn in log scale and the two lines are asymptotically parallel. It can be proved that
−AR(MC) ≈ 1.198 b(C) as C tends to infinity.

Figure 2.13 – The boundary term (blue) and the renormalised area (orange) in the esti-
mate (2.23) apllied on the family MC .

Remarks on the null estimate (2.25) and renormalised area of Mori’s surfaces.

The null estimate (2.25) can be rewritten in the half space model as

AR(Σ) +
1
2

|γ|
xmax

≤ 0
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2.4. Appendix C

where |γ| is the Euclidean length of the boundary and xmax is the maximal height of
the surface. For totally geodesic disc, AR = −2π and 1

2
|γ|
xmax

= π and so one may think
that perhaps the constant 1

2 can be removed. We will see that if it is replaced by any
constant bigger than 0.599 then the resulting estimate fails for a Mori annulus.

Proposition 2.26. Let a be any number bigger than

a0 := E(0.5)
√

2 − K(0.5)√
2

≈ 0.59907,

where K(m) and E(m) are the complete elliptic integrals of first and second type. Then
there is a Mori surface with

AR(Σ) + a
|γ|
xmax

> 0

Proof. The renormalised area of Mori’s family was computed by Krtouš and Zelnikov
[KZ14] in term of their parameter t of the family

AR = 4π
[

t2√
1 + 2t2

K

(
1 + t2

1 + 2t2

)
−
√

1 + 2t2E
(

1 + t2

1 + 2t2

)]
.

The parameter t is related to the Mori’s parameter θ0 by t = tan θ0. (When t = 0,
the annulus degenerates to a pair of disc). The complete elliptic integrals are defined
as

K(m) :=
ˆ π/2

0

dx√
1 −m sin2 x

, E(m) :=
ˆ π/2

0

√
1 −m sin2 x.

The maximal height xmax is difficult to write down explicitly, but can be estimated
in a relatively simple way. Suppose that the Mori surface is placed so that its
boundary is a pair of concentric circles of radius 1 and R > 1. The maximal height
can be bounded between:

cos θ0 ≤ xmax ≤ R cos θ0.

Because R decreases to 1 as t → +∞, we have:

|γ|
xmax

= 4πt+ o(t) as t → +∞.

The conclusion follows from:

lim
t→∞

AR(Σt)
t

= 4π
[
K(0.5)√

2
−E(0.5)

√
2
]
= −4πa0.

2.4 Appendix C: Degree theory for minimal surfaces in Rn

The counting problem for minimal surfaces bounded by a curve was investigated in
many contexts. In the works mentioned below, the general expectation is that
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1. the space M of minimal surfaces is a Banach manifold,
2. the boundary map Π : M −→ C, which associates to a surface in M its boundary,

which lies in a certain space C of curves is Fredholm and of index 0.
If we can prove that Π is proper, then the number of surfaces bounded by a generic

curve is finite. This number defines a degree modulo 2 for each curve in C. If the index
bundle of Π is trivial, this degree can be chosen to be integer-valued.

It is important to specify the space M and C carefully. In addition to the regularity,
several details need to be given, such as whether we consider at surfaces or maps, and
in the second case, which reparametrisation we need to mod out, whether the surfaces
need to be immersed, embedded, orientable, which topological type they are etc. . .

2.4.1 Tomi–Tromba’s solution to the embedded Plateau problem
The counting problem for minimal surfaces was first considered by Tomi and Tromba

[TT78] in their resolution of the embedded Plateau problem. Let f : S1 −→ Rn be a
map with nowhere vanishing density |df | on the circle and that can be extended to the
disk D. It was proved by Douglas and Rado in the early 30s that f can be extended to a
conformal harmonic map F : D −→ Rn. The embedded Plateau problem asks whether
the extension F can be chosen to be embedded:

Theorem 2.27 (Tomi–Tromba). Let f : S1 −→ R3 be a C2 curve on the boundary of a
convex body B of R3, then there exists an embedded conformal harmonic map F : D −→
R3 such that F (S1) = f(S1).

The space of curves C in Tomi and Tromba’s context is space of H5 immersions from
S1 to R3 and the space of "surfaces" is

S := C × D

where D is the space of H2 diffeomorphisms of S1 that fixes 3 points eik
2π
3 , k = 0, 1, 2. 3

Each element (f ,φ) of S defines an H2 map f ◦φ from S1 to R3 and is identified with
its harmonic extension F to the disk. The boundary map Π : S −→ C is just the first
projection. The space M of "minimal surfaces" is defined as the set of (f ,φ) ∈ S such
that F is conformal. Because the Hopf’s quadratic differential of a harmonic map is
holomorphic, it suffices to check that F is conformal at all points on S1 and that dF
does not degenerate at any point of D. The defining equation of M in S is

q(f ,φ) = 0 on S1, dF ̸= 0 on D

Tomi and Tromba proved that
1. M is a Banach submanifold of S,
2. the boundary map Π

∣∣∣
M

: M −→ C is Fredholm and of index 0.

Even though the space M here contains immersed surfaces, the two facts above can be
used to solve the embedded Plateau problem.

3. This "three-point property" is critical to the resolution of the Plateau problem. The famous
Courant–Lebesgue Lemma says that a family of maps from D with bounded energy and the three-point
property is equicontinuous.
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Tomi and Tromba call a curve that lies on the boundary of a convex body extreme.
Any minimal surface bounded by such a curve is embedded on the boundary. In other
word, an extreme curve satisfies the following property

(P) every conformal harmonic immersion F : D −→ R3 filling γ has no branch point
on boundary and the boundary does not overlap with the interior, i.e. F (D)∩F (S1) =
∅.

It was proved in [TT78] that this property is open. On the other hand, it can be
proved by maximum principle that a limit of a family of embedded minimal surface is
automatically embedded in the interior if it is embedded on the boundary.

Lemma 2.28 (Gulliver–Spruck [GS76]). Let (Fn) be a sequence of conformal harmonic
embeddings in M that C1-converge to a limit F∞ ∈ M. Suppose that the boundary of
Fn C

2-converges to the boundary f∞ ∈ C of F∞. Then if f∞ satisfies (P) then F∞ is
embedded.

We can now prove Theorem 2.27 by the continuity method.

Proof of Theorem 2.27. Given a curve f1 on the boundary of the convex body of
R3, we can isotope it to a plane curve f0 via a path {ft} of embedded curve on ∂B.
Now if the family {ft} is already transversal to the map Π

∣∣∣
M

, we can lift it to one-
dimensional submanifold of M. Let (Ft)t∈[0,1] be its connected component contain-
ing the plane F0 = Π−1(f0). By Lemma 2.28, the set {t ∈ [0, 1] : Ft is embedding}
is both closed and open in [0, 1] and so is [0, 1]. This means that there is at least
one embedded conformal harmonic map F1 whose boundary is by f1.

If the family {ft} is not transversal to Π
∣∣∣
M

, we can perturb it by Sard–Smale
without changing the fact that the ft satisfy condition (P) (they may no longer
be extreme). The previous argument gives us embedded minimal disc bounded by
generic curves arbitrarily closed to f1. The conclusion follows from the compactness
result for maps satisfying the three-point property, then from Lemma 2.28.

2.4.2 Brian White’s integral degree

The previously results of Tomi and Tromba was generalised by White [Whi87b],
[Whi89], then Hoffman and White [HW08] to minimal immersions of a manifold with
boundary Σ into a Riemannian manifold M . The properness of Π : M −→ C is not
always guaranteed, but when this is the case, the modulo 2 degree can be lifted to an
integer-valued degree. The sign associated to each minimal surface is given by the parity
of its stability index.

The space S in this case is the quotient of the space of Cj,α maps from (Σ, ∂Σ) to
(M , ∂M), by the group of diffeomorphisms of Σ that is identity on ∂Σ. The space C of
curves is Cj,α(∂Σ, ∂M) and M ⊂ S is the space of minimal immersions.

The Jacobi operator (or stability operator) of a minimal immersion f : (Σ, ∂Σ) −→
(M , ∂M) is a self-adjoint, second-order differential operator on the normal bundle Nf
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of f given by

J : Cj,α0 (Nf) −→ Cj−2,α(Nf)

s 7−→ J(s) := ∆Ns+ TrΣ(R
N (s, ·)·) + Ã(s)

(2.27)

where ∆N is the connection Laplacian on the normal bundle, RN is the normal projection
of the Riemann curvature of M and Ã = A∗A is the Simons’ operator. This operator is
obtained by composing the second fundamental form with its adjoint. Here we see the
second fundamental form as a map A : Nf −→ TΣ∗ ⊗ TΣ.

The stability index of a minimal immersion is the number of negative eigenvalues of
J . The kernel of J is called the nullity of f and its elements are call Jacobi fields.

Theorem 2.29 (White [Whi87b]). 1. The space

M =
{f ∈ Cj,α(Σ, Rn) : f is minimal immersion}

{φ : Σ −→ Σ,Cj,α diffeomorphism, φ
∣∣∣
∂Σ

= Id}

is a smooth Banach manifold. The boundary map Π : M −→ Cj,α(∂Σ, Rn) is a
smooth Fredholm map of index 0.

2. The previous statement also holds if the numerator of M is replaced by{
f ∈ Cj,α(Σ,M ) : f is minimal immersion,

f(∂Σ) ⊂ ∂M , f(int Σ) ⊂ int M , f is nowhere tangential to ∂M

}

where M is a smooth manifold with boundary M , and Π : M −→ Cj,α(Σ, ∂M).

3. Suppose that the restriction Π
∣∣∣
M0

: M0 −→ C0 of the boundary map to an open
set M0 of M, with image in an open set C0 of C is proper. Then the following
degree is well-defined for a generic curve γ ∈ C0 and only depends on the connected
component of C0 containing γ:

d(Σ, γ) :=
∑

[f ]∈Π−1(γ)

(−1)index[f ]. (2.28)

Here index[f ] is the stability index of [f ]. It only depends on the equivalent class
of f .

It was proved by White [Whi87b] that the properness condition is satisfied when M
is a strictly convex region of R3, M0 is the space of embedded minimal surfaces and C0
is the space of embedded curve. It is based on a compactness result proved by White
[Whi87a] in a larger context.

We also note that instead of minimal surfaces, White studied immersions that are
stationary to a more general functional

AΘ(f) :=
ˆ

Σ
Θ(f(x), Im df(x)) volf∗g .

Here Θ is a function on the Grassmannian bundle of k-dimensional tangent planes in
M and is supposed to satisfy an elliptic condition. When Θ = 1, this is just the area
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functional.
Properness fails, as pointed out in [Whi89, Theorem 3], in any 3-manifold with bound-

ary M that admits a closed minimal surface, and in particular in any 3-manifold that
is not homeomorphic to a ball. In such manifold, there exists a sequence of embedded
discs with boundary in ∂M that converge to a smoothly embedded curve, but the area
of these disc remains unbounded.

On the other hand, when properness does hold (for example in a strictly convex region
of R3), the corresponding degree can be computed explicitly. It is +1 when Σ is a union
of discs. We can see this by isotoping the boundary components to flat curves, which
can only be filled by planes. The embedded Plateau problem follows directly from this.
When Σ is not a union of discs, White proved that the degree vanishes. This result can
be generalised for any weight function Θ(x,T ) on R3 ×Gr(2, 3) that is independent of
the first variable.

In general, we can think of the degree as the Euler characteristic of the fibre Π−1(γ)
in S. The volume functional defines a function on the fibre Π−1(γ) whose critical points
are elements of Π−1(γ) ∩ M. Their Morse index is, by definition, their stability index
and Morse equality says that the RHS of (2.28) is the Euler characteristic of the fibre.
This explains why the degree is independent of Θ.

The choice of sign in (2.28) is closely related to the proof that M is a Banach manifold.
One way to prove that the space of minimal immersions is a Banach manifold is to see
it as a subset of the space of Cj,α maps defined by the equation H = 0. The mean
curvature H is a section of the vector bundle B −→ S whose fibre over each map f ∈ S
is the Banach space of Cj−2,α sections of the normal bundle of f . We need to check that
H is transversal to the 0-section.

This is not how Theorem 2.29 was proved in [Whi87b]. We will instead use C as a
model to construct an atlas of M. The benefit of this is that we can relate the degree
of Π and the stability index of minimal immersion.

Let us recall a few facts about Fredholm maps between Banach manifolds. Suppose
that M, C are Banach manifolds and Π : M −→ C is a Fredholm map. If the differential
dΠ(f0) at a point f0 ∈ M is a bijection, then there exists an inversion F : C −→ M
of Π that maps diffeomorphically a neighbourhood of f0 in M onto a neighbourhood
of Π(f0) in C. If dΠ(f0) has a k-dimensional kernel K and a k′-dimensional cokernel
K ′, then we can still invert Π up to finite dimension. This means that there exists a
diffeomorphism F : C ⊕K −→ M ⊕K ′ and so the space M can be embedded into C ⊕K
as a codimension k′ submanifold given by the equation g = 0. Here g : C ⊕K −→ K ′

is the composition of F and the second projection. There are of course several ways to
choose F (and g correspondingly).

Now let M be the space of conformal harmonic maps as before (to be proved a
Banach manifold) and C = Cj,α(∂Σ, Rn). We also denote by Π : Cj,α(Σ, Rn) −→
Cj,α(∂Σ, Rn) the restriction map that induces the boundary map M −→ C. Given a
minimal immersion f0 ∈ Cj,α(Σ, Rn) with boundary γ0 : ∂Σ −→ Rn, we will construct
the "inverse" F of the previous paragraph around γ0 with the following properties:

— (F1) F : C −→ Cj,α(Σ, Rn) if the nullity of f0 is 0. The map F is C∞, well-defined
on a neighbourhood of γ0 in C and satisfies Π ◦ F = IdC and F (γ0) = f0. The
image of F are minimal immersions, and contains all minimal immersions near [f0]
in S.
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— (F2) F : C ⊕K −→ Cj,α(Σ, Rn) if the nullity of f0 is a k-dimensional vector space
K. The map F is C∞, satisfies F (γ0, 0) = f0 and Π ◦ F : C ⊕K −→ C is the
first projection. The image of F in S contains all conformal harmonic immersions
near [f0] and there exists a smooth function g : C ⊕K −→ K such that F (γ,κ)
is a minimal immersion if and only if g(γ,κ) = 0. Moreover, D2F (γ0, 0) is the
inclusion of K into Cj,α(Σ, Rn).

This automatically gives M a Banach chart around each point f0 ∈ M. Then, we
need to prove that the transition maps between overlapping charts are smooth.

The Fredholm property of Π and its vanishing index follow from the identification
of the kernel and cokernel of Π as the vector space K. This identification implies that
determinant bundle of F is trivial, and thus the preimage Π−1(γ) of a generic γ ∈ C is
orientable.

There is an extra consequence of the existence of such F . By definition, the kernel of
dΠ contains vector fields that can be integrated to a one-parameter family of minimal
immersions. The nullity, on the other hand, contains all Jacobi fields (defined as solutions
of a differential equation). Because the two are the same space K, we have

Corollary 2.30 (White [Whi87b]). Any Jacobi field along a minimal immersion f0
can be realised as the velocity of a one-parameter family 4 {ft} of conformal harmonic
immersions.

The map F : C ⊕K −→ S is constructed via the Implicit Function Theorem, and is
uniquely characterised by the condition

p(H(F (γ,κ))) ⊂ K ∀(γ,κ) near (γ0, 0)

where H(F (γ,κ)) is the mean curvature of F (γ,κ) and p is the projection of Rn onto
the normal vector space of f0. The map g will be then given by

g : C ⊕K −→ K

(γ,κ) 7−→ pH(F (γ,κ))
(2.29)

When (γ,κ) is near (γ0, 0), the condition g = 0 is equivalent to F (γ,κ) being minimal.

Proof of part 1 of Theorem 2.29. As discussed above, we will construct the coordi-
nate map F : C ×K −→ S near a minimal immersion f0 : Σ −→ Rn where K is the
nullity of f0. We will regard the normal projection p as a map from Σ to Gr(n, k)
and a section s of the normal bundle Nf0 of f0 as s : ΣRn with image s(a) ∈ Im pa.

We consider the easier case first, when the nullity K is 0. Given any map γ :
∂Σ −→ Rn near the boundary γ0 of f0, we denote by ϕ(γ) the harmonic extension
of γ to Σ. The metric used on Σ is the pullback of the Euclidean metric via f0, so
ϕ(γ0) = f0, but ϕ(γ) is not conformal in general. We define

Ψ : Cj,α(∂Σ, Rn) ×Cj,α0 (Nf0) −→ Cj−2,α(Nf0)

(γ, s) 7−→ pH(ϕ(γ) + s)
(2.30)

4. The family ft is allowed to move ∂Σ in second order or higher, so Corollary 2.30 does not contradict
the notion of "non-integrable" Jacobi field.
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Clearly Ψ(γ0, 0) = 0 and D2Ψ(γ0, 0) is the Jacobi operator, which is invertible in
this case. The Inverse Function Theorem says that we can find a neighbourhood
U ⊂ Cj,α(∂Σ, Rn) of γ0, a neighbourhood V ⊂ Cj,α(Nf0) of 0 and a map F0 :
U −→ V such that solutions of Ψ = 0 in U × V are of form (γ,F0(γ)). Then
F (γ) = F0 + ϕ(γ) satisfies (F1). Moreover, since any immersion f that is Cj,α-
close to f0 can be reparameterised as ϕ(γ0) + s, the image of F in S contains the
equivalent classes of all minimal immersions near [f0].

Now let us consider the case when the nullity of f0 is non-trivial. Let K⊥ and K⊥
0

be the L2-orthogonal complement of K in Cj−2,α(Nf0) and Cj,α0 (Nf0) respectively.
Because C0,α ↪→ L2, these are closed subspaces and the projection πK⊥ onto K⊥ is
continuous. We define

Ψ : Cj,α(∂Σ, Rn) ×K ×K⊥
0 −→ K⊥

(γ,κ, s) 7−→ πK⊥pH(ϕ(γ) + κ+ s)
(2.31)

As before, we remark that Ψ(γ0, 0, 0) = 0 and that by elliptic theory, D3Ψ(γ0, 0, 0) is
invertible. Therefore we can find an open neighbourhood U of (γ0, 0) in Cj,α(∂Σ, Rn)×
K, and V of 0 in K0 and a map F0 : U −→ V such that solutions of Ψ = 0 in U × V
are of form (γ,κ,F0(γ,κ)). The map F (γ,κ) = ϕ(γ) + κ+ F0(γ,κ) satisfies condi-
tion (F2).

Now that we have a smooth Banach chart around each minimal immersion f0
of M, the remaining of the proof is to show that the transition maps between
overlapping charts are smooth. Let Fi : C ⊕ Ki −→ Cj,α(Σ, Rn) be two over-
lapping charts centred around minimal immersions f1 and f2. This means that
each F−1

i (M) = g−1
i (0) is a smooth ki-codimensional submanifold of C ⊕Ki and

that F1(γ1,κ1) = F2(γ2,κ2) = f is a minimal immersion. The transition map
τ12 : g−1

1 (0) −→ g−1
2 (0) is well-defined on a neighbourhood of (γ1,κ1).

The trick here is construct smooth maps Ωi : Cj,α(Σ, Rn) −→ C ⊕ Rki such that
Ωi ◦ Fi is a diffeomorphism. If we can do this, then

τ12 = (F2 ◦ Ω2)
−1 ◦ Ω2 ◦ F1

is smooth. The maps are illustrated in the following diagram.

C ⊕K2
F2

&&

≃ // C ⊕ Rk2

C ⊕K1
F1
// Cj,α(Σ, Rn)

Ω2

OO

Let us construct Ω1. If k1 = dimK1 = 0, then we can just use Ω1 = Π. If not, we
will choose

Ω1(f) :=
(

Π(f),
ˆ

Σ
f∗ω1, . . . ,

ˆ
Σ
f∗ωk1

)
, f ∈ Cj,α(Σ, Rn).

where ω1, . . . ,ωk1 are differential forms of Rn with degree equal to the dimension of
Σ. It suffices to choose the form ωi so that d(Ω1 ◦ F1) is invertible at (γ1, 0) and
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then shrink the chart F1 so that Ω1 ◦F1 is invertible. Recall that D2F1(γ1, 0).κ = κ
for any Jacobi field κ of f1 and that for any perturbation {ut} of a map u0 along
a vector field X, we have d

dt

∣∣∣
t=0

´
Σ u

∗
tω =

´
Σ u

∗
0LXω. We extend any vector field

κ ∈ K along the image of F1 by d
dtF1(γ0, tκ) and use the same notation for the

extension. Then d(Ω1 ◦ F1) is invertible if and only if for a basis κ1, . . . ,κk1 of K,
the k1 × k1 matrix

(´
Σ f

∗
1 Lκjωi

)
ij

is invertible.
Since for any vector field κ ∈ K, there exists a form ω such that

ˆ
Σ
f∗

1 Lκω ̸= 0.

It suffices to apply the following linear algebra result:

Lemma 2.31. Let V and W be vector spaces over a field R and A : V ×W −→ R
be a bilinear map such that:

For any v ∈ V \ {0}, there exists w ∈ W such that A(v,w) ̸= 0.

Then for any set of linearly independent vectors v1, . . . , vn in V , there exist w1, . . . ,wn
in W such that the n× n matrix (A(vi,wj))ij is invertible.

The following formula relates the stability index of a minimal immersion in a chart
around f0 and the index of f0.

Lemma 2.32 (cf. Proposition 4 of [Whi87b]). Let F (γ,κ) be a minimal immersion
near f0 and K̃ be the k-dimensional space of normal vector fields along F (γ,κ) given by
the normal part of elements in the image of D2F (γ,κ). The Jacobi operator of F (γ,κ)
defines a symmetric bilinear form on K̃. Let d be its index (maximal dimension of a
negative definite subspace). Then the stability index of F (γ,κ) and that of f0 are related
by

indexF (γ,κ) = index f0 + d (2.32)

In particular, when the nullity of f0 is 1, then d is given by the sign of D2g(γ,κ):

d =


1, if D2g preserves orientation of K
0, if D2g = 0
−1, if D2g < 0 reverses orientation of K

Corollary 2.33. Let f0 : Σ −→ M be an immersed minimal surface of nullity k, then
any immersed minimal surface near f0 has stability index in the range [index f0, index f0 +
k].

We will prove using the relation (2.32) that the RHS of (2.28) is constant on connected
component of C, and so it can be used to defined an integer-valued degree of Π. Let
L := {γt} be a path in C connecting two generic curves γ0, γ1 and that is transversal
to Π. We can suppose that dΠ has at most 1 dimensional kernel for every surface
in L′ := Π−1(L). It suffices to give L′ an orientation that is compatible with (2.28).
Relation (2.32) proves that the following choice works:
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— For each ft ∈ Π−1(γt) where dΠ has no kernel, its neighbourhood U in L′ is
mapped diffeomorphically to a neighbourhood of γt in L. We orient U so that Π
is orientation-preserving if and only if the index of ft is even.

— If the kernel of dΠ at ft has dimension one, then a neighbourhood U of ft in L′

can be embedded as a codimension 1 of L×K, given by an equation g(t,κ) = 0
with D1g ̸= 0. We pick any orientation of K ∼= R and use the counter-clockwise
orientation of L×K ∼= [0, 1]× R. We orient U = g−1(0) as the boundary of g > 0
if and only if the index of ft is even.

Proof of Lemma 2.32. By differentiating g in (2.29), we have

D2g(γ,κ) = p.DH(F (γ,κ)).D2F (γ,κ)

We will denote by B0 and B1 the normal bundles of f0 and F (γ,κ). By choosing
(γ,κ) near (γ0, 0), we can suppose that the image of D2F (γ,κ) is k-dimensional
and that its projection to B0, the space K̃ in the statement, is also k-dimensional.

It suffices to apply the following Lemma 2.34 with J0 being the Jacobi operator of
f0, J1 = pJ(γ,κ)p

∗ where J(γ,κ) is the Jacobi operator of F (γ,κ) and K1 = p∗−1(K̃).
Here p∗ : B0 −→ B1 is the fibre-wise adjoint of projection p from B1 to B0. It is
exactly the projection to B1. Because

⟨J1u,u⟩ = ⟨J(γ,κ)p
∗u, p∗u⟩ ∀u ∈ Ck,α

0 (NF (γ,κ)),

the operators J1 and J(γ,κ) have the same index.

Lemma 2.34 (Lemma 4 of [Whi87b]). Let J0, J1 : Ch,α
0 (B0) −→ Ch−2,α(B0) be two

Schrödinger operators on a vector bundle B0 over Σ such that:
— they are ϵ-closed to each other, i.e.

∥J0 − J1∥L2 ≤ ϵ (2.33)

— there exists a k-dimensional vector space K1 ⊂ C∞
0 (B0) such that J1(K1) ⊂ K

where K = ker J0 also has dimension k.
Then for ϵ sufficiently small, one has index J1 = index J0 + d where d is the index of

J1 as a symmetric bilinear form on K.

Proof. The spectra of Ji are discrete subset of R whose intersection with any interval
(−∞, c) is a finite set. Now we decompose

Ck,α(B0) = N ⊕⊥ K ⊕⊥ P

where N is spanned by negative eigenfunctions of J0 and P is the closure of the
subspace spanned by positive eigenfunctions. We claim that

Ck,α(B0) = N ⊕K1 ⊕ P . (2.34)

For (co)dimensional reason, it suffices to check that there is no element a in K1 ∩
N ⊕ P . Such a would have J1a ∈ K and J0a ⊥ K, so J1a ⊥ J0a. But these two
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elements had to be closed to each other due to (2.33). A contradiction would happen
if ϵ is small enough so that there is no non-zero eigenvalue of J0 in (−2ϵ, 2ϵ).

Now we decompose
K1 = N ′ ⊕K ′ ⊕ P ′

using the symmetric bilinear form associated to J1: ⟨J1u,u⟩ is negative (respectively
positive) if u lies in N ′ (respectively P ′) and J1u ⊥ K1 if u ∈ K ′. This gives a finer
decomposition of Ck,α

0 (B0) as

Ck,α
0 (B0) = N ⊕N ′ ⊕K ′ ⊕ P ′ ⊕ P

We will prove that J1 is negative definite on N ⊕N ′, positive definite on P ⊕P ′ and
zero on K ′. Lemma 2.34 clearly follows from this:

index J1 = dimN + dimN ′ =: index J0 + d.

Given any a ∈ K ′, we have J1a ⊥ N ⊕P because J1a ∈ K. Also J1a ⊥ K1 by the
definition of K ′. We conclude, by (2.34), that J1a = 0. This means that J1 vanishes
on K ′.

Given n ∈ N and n′ ∈ N ′, we have

⟨J1(n+ n′),n+ n′⟩ = ⟨J1n,n⟩ + ⟨J1n
′,n′⟩ + 2⟨J1n

′,n⟩,

where the first two term of the RHS are strictly negative. The third term vanishes
because J1n

′ ∈ K1 ⊥ N . Therefore J1 is negative definite on N ⊕ N ′. Similar
argument proves that J1 is positive definite on P ⊕ P ′.

2.5 Degree theory for minimal surfaces in the hyperbolic space
In this subsection, we consider the counting problem of minimal surfaces in the hy-

perbolic space. The surfaces considered here are complete and smoothly embedded near
their ideal boundary. We also suppose that the surfaces are sufficiently smooth on a
neighbourhood of their ideal boundary.

The Fredholm part of White’s Theorem 2.29 becomes more delicate because the mini-
mal surface equation is no longer elliptic. Its symbol is positive in the interior, but tends
to 0 on the boundary. We can see this by writing down the Jacobi operator (see (2.27))

J(s) := ∆Ns− 2s+ Ã(s), s ∈ Ω0(NΣ)

Recall that here Ã = A∗A is the Simons’ operator on the normal bundle and the second
fundamental form is written as a map A : NΣ −→ End(TΣ).

It follows from Lemma 2.10 that the second fundamental form tends uniformly to 0
if the surface is C2 up to the boundary and meets the sphere at infinity orthogonally.
Concretely, in the half space model {(x, y1, . . . , yn−1) ∈ R>0 × Rn−1}, the norms of the
Euclidean second fundamental form ĨI and the hyperbolic second fundamental form II
are related by

|II|2 = x2|ĨI|2 + 2|∂x⊥|2.

Here |∂⊥
x | is the Euclidean norm of the orthogonal projection of ∂x to the normal bundle.
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Therefore, near infinity, the Jacobi operator looks like

(∆ − 2)si =
[
x2(∂2

x + ∂2
y) − 2

]
si, i = 1, 2, . . . ,n− 2 (2.35)

where (x, y) ∈ R>0 × R are the half-space coordinates of H2. Here (s1, . . . , sn−2) are
the coordinates of s in a hyperbolic frame of Hn. The operator ∆ − 2 is elliptic in the
interior, but its symbol fails to be invertible on the boundary. The Fredholm property
of such operators was studied by Mazzeo and Melrose [MM87], [Maz91].

Let (M , g) be a conformally compact 5 (n+ 1)-manifold, x be a boundary defining
function and ḡ be the normalised metric on M given by ḡ = x2g. An operator of the
form

P =
∑

i+|j|≤m
aij(x, y)(x∂x)i(y∂y)j (2.36)

where i ∈ N, j ∈ Nn, (x, y) ∈ R>0 × Rn are local coordinates in a neighbourhood of
infinity, is called a 0-differential operator of order m. It is 0-elliptic if the symbol∑

i+|j|=m
aij(x, y)tisj

is invertible for any non-zero s, t at any interior point (x, y).
The Fredholm property of such operators is studied as maps between weighted Hölder

and Sobolev spaces. The weighted Hölder space xµΛk,α(M) is defined as the vector
space of all functions f = xµu where u is a Ck,α function on M . This means that kth

derivatives of u with respect to vector fields x∂x and x∂yi are α-Hölder under the metric
g. The norm of f is defined as the Hölder norm of u and this turns xµΛk,α(M ) into a
Banach space. The letter Λ is used here to remind us that the Hölder norm was taken
in (M , g) and not (M , ḡ). In the same manner, we define the Sobolev spaces xµHk(M)
to be the Banach space of functions f = xµu with u ∈ Hk(M ). 6

The operator P can be seen as a bounded map between Hölder and Sobolev spaces:

P : xµΛk,α(M) −→ xµΛk−m,α, P : xµHk(M) −→ xµHk−m

To prove that P is Fredholm, we have to check that its normal operator is invertible.
Suppose that P is given locally by (2.36). Its normal operator Nq at point q on the
boundary of M is obtained by freezing the coordinates (x, y) of q and replacing the
derivatives x∂x,x∂yi by the derivatives t∂t and t∂si of Hn+1. For example, if q is (0, 0)
then

Nq =
∑

i+|j|≤m
aij(0, 0)(t∂t)i(t∂s)j , (t, s) ∈ R>0 × Rn.

When P is the operator between vector bundles E and F , Nq is an operator on the
trivial bundle Hn+1 ×Eq −→ Hn+1 × Fq.

5. See Appendix D for definition.
6. Here we use the g-volume form dx

x
dy1
x . . . dyn

x to define the L2 norm. Several authors use the
ḡ-volume form dxdy1 . . . dyn. The two space are equivalent, up to a shift in the weight:

tµHk(volg) = tµ− n+1
2 Hk(volḡ).
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The indicial roots of P are solutions of the equation

det(
∑
i

ai0(0, 0)Xi) = 0.

This equation is obtained by replacing t∂s by 0 and t∂t by a variable X in the formula
of Nq.

What we did in (2.35) was to compute the normal operator of the Jacobi operator.
Since

x2(∂2
x + ∂2

y) − 2 = (x∂x)
2 − x∂x + (x∂y)

2 − 2,

the indicial roots solve the equation X2 −X − 2 = 0. So they are −1 and 2.

Theorem 2.35 (Mazzeo [Maz91]). Let P be a second-order 0-elliptic operator and Nq

be its normal operator at q. Suppose that the indicial roots of P are real and con-
stant on ∂M . If there is a certain ν0 such that the maps Nq : xν0− n

2Hk(Hn+1) −→
xν0− n

2Hk−2(Hn+1) are isomorphism for all q ∈ ∂M , then:
1. The operator P : xν0− n

2Hk(M) −→ xν0− n
2Hk−2(M) is Fredholm.

2. Let (µ1,µ2) be an interval that contains no indicial root. Suppose that ν0 ∈
(µ1,µ2), then for all ν ∈ (µ1,µ2), Nq : xν− n

2Hk −→ xν− n
2Hk−2 is invertible

and the operators
P : xν− n

2Hk(M ) −→ xν− n
2Hk−m(M)

P : xνΛk,α(M) −→ xνΛk−m,α(M)

are Fredholm. Their kernels are the same vector subspace and are contained in
xµ2 Λj,α(M ) for any j.

Because the Laplacian ∆N is negative, the operator ∆N − 2 is invertible on H2 −→ L2.
It follows from Theorem 2.35 with ν0 = 1

2 ∈ (−1, 2) that the Jacobi operator

J : xµΛj,α(Nf) −→ xµΛj−2,α(Nf) (2.37)

is Fredholm for every µ ∈ (−1, 2).
There is a small subtlety here. The space S (or M) contains immersions that are Cj,α

up to the boundary while the Fredholm property (2.37) is between the weighted Hölder
spaces. These function spaces are related in the following way. On a conformally compact
manifold (M , g), we denote by Cj,α(M) the Hölder space on (M , g) and Cj,αr (M), r ≤ j
the closed subspace of functions that vanish up to order r, that is

(∂x)
jf = 0 on ∂M ∀j = 0, 1, . . . , r

We equip Cj,αr (M) with the Banach structure of Cj,α(M). It turns out that the Banach
spaces xj+αΛj,α(M) and Cj,αj (M ) are equivalent (see [Lee01]).

Now if we are to set the problem in the space of C2,α minimal immersions, the per-
turbations field s (as in (2.30) and (2.31)) should be at least x2+αΛ2,α when written
under a ḡ-frame, or in other words x1+αΛ2,α under a g-frame. So the Jacobi operator
goes between Hölder spaces of weight 1 + α, which indeed lies in the range (−1, 2).

The Fredholm part of Theorem 2.29 was establish in H4 in a recent work of Joel
Fine [Fin21]. In his work, the space of maps is modded out by all diffeomorphisms and
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not just those preserving the boundary. Also, by the Eells–Salamon’s correspondence
[ES85], he studies holomorphic curves in the twistor space instead. This means that the
minimal surfaces considered there are allowed to have branched points.

Theorem 2.36 (Fine [Fin21]). Let Σ be a compact, connected, oriented surface with c
boundary components and C be the space of C2,α oriented links of c components in S3.

The space M is defined as {(f , j)}/ ∼ where j is a complex structure on Σ and
f : (Σ, j) −→ H4 such that:

— The map f is C2,α and conformal on Σ. In the interior, f is harmonic,
— f(Σ) ⊂ H4, f meets S∞ transversally,
— f embeds the boundary ∂Σ to a C2,α link in S∞,
— The relation ∼ identifies pairs (f , j) that are related by a diffeomorphism of Σ.
The boundary map Π : M −→ C associates to each class [f , j] the link [f

∣∣∣
∂Σ
].

Then M is a smooth Banach manifold, Π is Fredholm and has index 0. Moreover,
the determinant bundle of dΠ has a distinguished trivialisation over the complement of
a codimension 2 in M.

The proof of Theorem 2.36 is more complicated than the sketch we did above. This
is due to the quotient by the full diffeomorphism group as well as the inclusion of
branched minimal surfaces in the setup. The prize to gain from this extra work lies in
the "properness part". Recall that in Theorem 2.29, properness of Π was a hypothesis.
In the hyperbolic setting, one may hope that it is a feature. The precise statement and
a sketch of proof for discs will be given in Section 2.5.1.

The determinant bundle of Π is given by top power of its kernel and cokernel bundles:

det Π = det(ker dΠ) ⊗ (det coker dΠ)∗.

So a trivialisation of det Π near a generic curve γ is a choice of volume form, therefore an
orientation, of the fibre Π−1(γ). These orientations are consistent in the sense that for
any Sard–Smale curve {γt}t∈[0,1] transversal to Π, the union Π−1(γ0) ∪ Π−1(γ1) with
the opposite orientation on Π−1(γ1) has the boundary orientation of Π−1({γt}). In
the context of Theorem 2.36, this means (with properness supposed) we can have an
integer-valued degree of Π. This integer is an invariant of each connected component of
C, and so is a knot/link invariant.

We can have more invariants by just counting minimal surfaces in a component of S, for
example those with a given Euler characteristic. There is another topological invariant
that describes how an immersed oriented surface sits in a four-dimensional space. For
closed surfaces, this is the self-intersection number, or equivalently, the Chern number
of its normal bundle. When the surface is open, any complex line bundle over it is
trivialisable but we still have an analogue of this, given by the following instruction:

1. First trivialise the normal bundle of the surface with a non-zero normal vector field
n⃗. Because the surface meets the sphere S3 orthogonally at a curve γ, n⃗ is tangent
to S3 and is a normal vector field of γ. Such choice of n⃗ is often called a framing
of γ

2. In S3, compute the number τ of turns n⃗ makes along γ. It is the linking number
between γ and its push-off γ + ϵn⃗ for a small, positive ϵ.
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The number τ is in fact independent of n⃗. To see this, take any other normal vector
field n⃗′ of the surface. This new vector field has to be the rotation of n⃗ by an angle θ in
the normal bundle. Here θ is a function on the surface with value in S1. The difference
between τ and the new linking numbers is just the degree of the map θ

∣∣∣
γ

: γ −→ S1.
Since θ extends to the surface, this degree is zero.

In H3, the properness of the boundary map Π was proved by Alexakis and Mazzeo
[AM10]. In their setup, S is the space of embedded Ck,α surfaces (k ≥ 2) and C is the
space of embedded disjoint circles in S2. This is enough to define a Z/2Z-valued degree
that counts the number of minimal surfaces of Euler characteristic χ that fill a collection
of disjoint circles.

A way to lift these degrees to Z was also proposed in [AM10] using the stability index
as White did in Theorem 2.29. It is unclear how this sign convention is well defined and
consistent. The reason is as follows. Although we can prove that certain 7 eigenspaces of
the Jacobi operator J are finite-dimensional, Lemma 2.34 needs the spectrum of J to be
discrete. On a compact manifold, this is due to the fact that any minimising sequence
of the Rayleigh quotient has a converging subsequence. This may fail in the hyperbolic
space because the inclusion H1 ↪→ L2 is no longer compact.

On the other hand, the minimal surfaces that are C2 up to their ideal boundary have
finite index in a more relaxed sense. First, the classical argument shows that any open
region Ω compactly contained in the interior of the surface has a finite stability index
dΩ. If a minimal surface of H3 has finite total curvature

ˆ
Σ

| II |2 < +∞,

it was proved by Bérard, do Carmo and Santos [BCS97] that supΩ dΩ < +∞. The
finitude of the index in this sense was first studied by Fischer-Colbrie [Fis85], who
proved that a minimal surface of R3 has finite index if and only if its total curvature is
finite. The total curvature of a minimal surface in Hn is its Willmore energy and thus
is finite if the surface is C2 up to its ideal boundary.

2.5.1 Properness of the boundary map
Fine proves that the only way the properness of Π can fail is when the complex

structures of the surface develops node.

Theorem 2.37 (Fine [Fin21]). Let fn : (Σ, jn) −→ H4 be a sequence of conformal
harmonic maps in the space M of Theorem 2.36. Suppose that the complex structures
jn converge to smooth limit j∞ and that the boundary links fn(∂Σ) converge to a C2,α

link K. Then a subsequence of fn converges to a map (f∞, j∞) ∈ M with boundary K.

We will sketch out a few ideas by proving Theorem 2.37 for the disc. By acting with
diffeomorphisms on Σ, we can assume that the jn are the same complex structure j.

The proof is divided into two pieces: in the interior piece and the collar piece. In the
interior, we will upper-bound all higher derivatives ∇kf of a conformal harmonic map
f : (Σ, j) −→ H4. Here we equip Σ with the unique hyperbolic metric in the conformal
class given by j. In the collar piece of the proof, we prove that the images of fn are

7. This is because the indicial roots of J − λ depend on λ.
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embedded as graphs uniformly over a cylinder built upon K and more importantly, in
this region, their Euclidean second fundamental form are uniformly bounded.

In the interior, to control all derivatives of a conformal harmonic map f , it suffices
to control its energy density e(f) = |∇f |2. The Bochner formula for a harmonic map
f : Σ −→ M between Riemannian manifolds Σ and M reads

∆e(f) = | II(f)|2 + ⟨Ric(Σ)∇vf , ∇vf⟩ − ⟨Riem(M)(∇vf , ∇wf)∇vf , ∇wf⟩ (2.38)

where II(f) is the second fundamental form of f , Ric(Σ) and Riem(M) are the Ricci and
Riemann curvatures of Σ and M . The subscripts u, v indicate how the trace is taken.
The Laplacian here is non-positive: ∆ = Tr ∇2. When f is conformal, M = H4 and the
metric on Σ is hyperbolic, (2.38) becomes

∆e ≥ −e+ e2

2 . (2.39)

It follows from the harmonic map equation that the energy density e(f) converge to
2 on the boundary (cf. Corollary 1.4 of [LT93]). Combine this with (2.39) and apply
Maximum Principle, we have e(f) ≤ 2 on Σ.

Now let us move to the collar piece of the proof. Let fn : (Σ, jn) −→ H4 be a sequence
of conformal harmonic maps in the space M of Theorem 2.36 and suppose that their
boundary Kn = fn(∂Σ) converges in C2 to a link K∞. We fix a half-space model of H4

where Kn are bounded and denote the coordinates by (x, y1, y2, y3).

Proposition 2.38 (Fine [Fin21]). Let fn : (Σ, jn) −→ H4 be a sequence of conformal
harmonic maps whose boundary Kn = fn(∂Σ) converges in C2,α to a link K∞. Let
Mn := fn(Σ), Mn,ϵ := Mn ∩ x−1([0, ϵ]) and Σn,ϵ = f−1

n (Mn,ϵ). Then there exists ϵ
sufficiently small such that:

1. For sufficiently large n, the maps fn are embedding in Σn,ϵ and the surfaces Mn,ϵ
are graph over a cylinder CK := [0, ϵ]×K built over a smooth link K near to K∞.
The graphing functions sn are C2,α sections of the normal bundle of CK .

2. The Euclidean second fundamental form of Mn,ϵ are uniformly bounded and after
passing to subsequence, {sn} converges in C2,α.

To prove Proposition 2.38, we assume that the conclusion is false, then try to find a
contradiction by rescaling Mn using the homotheties (x, yi) 7→ (λx,λyi), λ > 0. The
argument can be sketched as follows.

Let Q be a geometric quantity of the surfaces Mn that we want to control. Suppose
that:

1. Q is invariant by homothety, i.e. for any surface M of H4 and any point p ∈ M ,
Q(M , p) = Q(λM ,λp).

2. Q = 0 everywhere on any vertical plane H (copy of H2 in H4), and Q = 0 on each
boundary Kn of Mn.

By geometric quantity, we assume that if a family of pointed surfaces (Mn, pn) con-
verge in C∞ to (H, p∞) on an open set of p∞, then Q(Mn, pn) → Q(H, p∞) = 0.

Examples of such Q are the hyperbolic second fundamental form | II |, the product
x|ĨI| of the half space coordinate and the Euclidean second fundamental form, and the
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(Euclidean) gradient norm |∇sn| of the graphing function sn in Proposition 2.38. We
claim that for these examples, Q(Mn) converges uniformly to 0 as x → 0, i.e.

lim
ϵ→0

sup
n

sup
Mn,ϵ

Q = 0.

Suppose by contradiction that there are points pn ∈ Mn with x(pn) → 0 andQ(Mn, pn)
is bigger than, say, 1. Let bn ∈ K be the point closest to the projection (y1, y2, y3)(pn).
We translate and rotate Mn so that bn is at the origin and that the tangent of K there
is in y1-direction. Then we rescale Mn by ratio λn = 1

x(pn)
to obtain a new family of

surfaces Yn. After rescaling, the bad points pn become points qn on the level set x = 1
that converge to q∞ = (1, 0, 0, 0). The rescaled surfaces Yn converge as sets to the ver-
tical plane H = {y2 = y3 = 0}. This notion of convergence is due to White and means
that

H = {p ∈ H4 : lim sup
n→∞

d(p,Yn) = 0} = {p ∈ H4 : lim inf
n→∞

d(p,Yn) = 0}

Both of these convergences can be justified by Anderson’s convex hull and the fact that
the links Kn has the same osculating radius: there exists a number r > 0 independent
of n such that each link Kn lies outside of any 3-ball of radius r tangent to it.

Now we have Q(Yn, qn) > 1 and the pointed surfaces (Yn, qn) converge as sets to
(H, q∞) which has Q = 0. A contradiction will be produced if we can upgrade this
convergence to C2. This is where we need the following version of Allard regularity, due
to Brian White.

Theorem 2.39 (White, Theorem 5.1 of [Whi16]). Let Mn be a sequence of stationary
integral k-varifolds in a Riemannian manifold Ω. Suppose that Mn converges as set to
a subset of a connected, smoothly embedded submanifold H of Ω and that at some point
of H, there is a neighbourhood U ⊂ Ω such that Mn ∩U converge weakly to H ∩U with
multiplicity 1. Then Mn converges smoothly to M with multiplicity 1 everywhere.

As pointed out by White, the key difference between Theorem 2.39 and Allard’s Reg-
ularity Theorem is that one only needs weak convergence on a small open set.

Back to our situation, we can assume that pn are the lowest points of Mn such that
Q(Mn, pn) ≥ 1. This mean that Q(Yn, ·) ≤ 1 in the region x ≤ 1. In all three instances
of Q, this bound gives us C0,α convergence (thus weak convergence) of Yn to H in
a neighbourhood U of ( 1

2 , 0, 0, 0). Theorem 2.39 upgrades this to C∞ convergence at
q∞ and produces a contradiction. The case Q = |∇s| in particular proves part 1 of
Proposition 2.38.

For part 2 of Proposition 2.38, we need to bound the Euclidean second fundamental
form of Mn uniformly in the region Mn,ϵ for sufficiently small ϵ. To do this, we repeat
the above rescaling argument: denote by pn ∈ Mn the bad points with x(pn) → 0 and
|ĨI(Mn, pn)| → ∞, then rescale (Mn, pn) to new surfaces (Yn, qn) with |ĨI(Yn, qn)| = 1.
Since we have proved that Q = x|ĨI(Mn)| converges uniformly to 0 as x → 0, we have
limn→∞ x(qn) = 0.

Now let us show that the points pn (thus qn) can be chosen so that |ĨI(Yn, q)| ≤ 2 for
all q ∈ Yn with x(q) ≤ 1. Let us fix n. If we cannot choose such pn, there must be a
point p1

n with

x(p1
n) ≤ |ĨI(Mn, pn)|−1, |ĨI(Mn, p1

n)| ≥ 2|ĨI(Mn, pn)|
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and similarly a point p2
n with

x(p2
n) ≤ |ĨI(Mn, p1

n)|−1 ≤ 1
2 |ĨI(Mn, pn)|−1, |ĨI(Mn, p2

n)| ≥ 2|ĨI(Mn, p1
n)|

This procedure goes on and produces a sequence {pkn}k∈N ⊂ Mn with∣∣∣ĨI(Mn, pkn)
∣∣∣ ≥ 2k|ĨI(Mn, pn)|, x(pkn) ≤ 2−k|ĨI(Mn, pn)|−1

which is clearly a contradiction as k tends to infinity.
As before, White’s theorem says that the rescaled surfaces Yn converge smoothly to H

in the interior of H4. This does not immediately produce a contradiction because the
points qn where |ĨI(Yn, qn)| = 1 converge to q∞ = 0 on the boundary of H. To finish,
we need the graphing functions wn of Y n over H to C2-converge up to boundary. By
the point-picking argument above, we already have C0 control on the Euclidean second
fundamental form. We use this to upper bound the C0,α norm of the Euclidean mean
curvature k̃n of Yn in a neighbourhood of q∞. Recall that the mean curvature k̃n is an
elliptic operator Ln(wn) on the graphing function ωn. The coefficients of Ln depend on
∇ωn, but since we have arranged so that |ĨI(Yn)| is bounded in the region x ≤ 1, these
are bounded. Therefore a uniform C0,α bound on k̃n produces uniform C2,α bound on
wn and thus a contradiction.

The Euclidean mean curvature can be estimated via the Willmore equation

∆nk̃n = F̃n

Here F̃n is an algebraic expression built up from the Euclidean second fundamental form
ĨI(Yn), and so ∥F̃n∥C0 is bounded uniformly in n. The ∆n is the normal bundle Laplacian
of Yn and so its coefficients depend on first order of the surface. Because of this, the
bootstrap argument requires extra care. We refer to [Fin21] for a detailed treatment.

To prove the convergence of fn, we need to find a collar neighbourhood V of Σ such
that fn(V ) is contained in Mn,ϵ for all n. Then we apply the collar argument on V
and interior argument on its complement. The existence of such V is also a delicate
argument. One first proves that the length of ∂Σn,ϵ under the hyperbolic metric of Σ is
upper bounded by a constant l independent of n. This boils down to a uniform lower
bound on the energy density of fn along this curve, which requires another rescaling
argument. When this is done, it suffices to apply an isometry of H2 so that a point on
this curve is placed at the origin and choose V to be the complement of the geodesic
ball of radius l.

2.5.2 Minimal surfaces and splitness of their boundary

It is difficult to compute the degree of a given link γ from its definition. The only case
where this can be done is when γ is an unlinked union of c circles. When c = 1, we can
isotope γ to a round circle which, by Maximum Principle, can only be filled by a totally
geodesic disc.

When c > 1, after isotoping the components of γ into round circles, we see that there
is at least one minimal surface filling it, namely the union of totally geodesic discs.
Theorem 2.40 below says that it is the only solution.
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Theorem 2.40. Let L := L1 ⊔ L2 be a separated union of two (k − 1)-dimensional
immersed submanifolds L1,L2 in Sn−1. There is a way to rearrange L in its isotopy
class such that any minimal submanifold Σk in Hn that fills L and C1 up to boundary
is a disjoint union of minimal submanifold filling each Li.

When k = 2, the same rearrangement also rules out harmonic maps: There is no
connected, oriented surface Σ and harmonic map f : (Σ, ∂Σ) −→ (Hn,Sn−1) that is C1

up to boundary, and meets Sn−1 transversally at L.

Proof. Let us just consider the case of minimal surface (k = 2). For higher k, one
replaces 2π by ωk−1. For harmonic maps, it suffices to use Corollary 1.36 instead of
Proposition 2.12.

Recall that a minimal surface of Hn passing by the origin O of the Poincaré model
has to intersect any 3-sphere of radius r at a curve longer than 2πr (see Proposition
2.12). If the surface extends in C1 up to its ideal boundary, we can send r to 1 and
conclude that its ideal boundary has Euclidean length at least 2π.

We isotope L so that L1 (respectively L2) is contained in a small ball centred at the
North (respectively South) pole of the Poincaré ball and so that its Euclidean length
is less than π. It suffices to prove that Σ has no intersection with the equatorial
hyperplane. By convexity, such intersection is contained in a small ball centred at
the origin O. If it was non-empty, by a small Möbius transform we could suppose
that Σ contains O while keeping the Euclidean length of L less than 2π. This is a
contradiction.

Corollary 2.41. All Alexakis–Mazzeo degrees vanish, except in the case of one circle.

2.6 Appendix D: Renormalisation in Asymptotically Hyperbolic
manifold

In this Appendix, we will prove the area development (2.3) of Graham and Witten
[GW99]. In fact, we will give a criteria for a quantity Q defined on a surface Σ (not
necessarily minimal) in an asymptotically hyperbolic manifold to be renormalisable in
the sense that

Q(Σ)(ϵ) :=
ˆ
ρ≥ϵ

Q =
LQ
ϵ

+ QR +O(ϵ).

Here ρ is a special boundary defining function and QR is a constant independent of the
choice of ρ.

We will also see that under a natural hypothesis, Sack–Uhlenbeck’s α-energy of a map
can be renormalised. This hypothesis concerns the growth of the Hopf differential of the
map at infinity and is automatically satisfied if the map is conformal or harmonic.

2.6.1 Asymptotically hyperbolic manifold and Graham–Witten lemma

Definition 2.42. A Riemannian manifold (Mn+1, g) is called conformally compact if
the following two conditions are satisfied:

1. M is the interior of a compact manifold M with boundary Xn = ∂M
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2. There exists a boundary defining function ρ such that ρ > 0 in M , ρ = 0 and
dρ ̸= 0 at every point of ∂M . Moreover the metric ḡ := ρ2g extends over M .

We will always fix a compactification M in advance. The restriction of the normalised
metric ḡ to X varies in a same conformal class independent of ρ. This class is called
the conformal infinity of g. A collar neighbourhood is an open set of M containing X.

The sectional curvatures R of g and R̄ of ḡ are related by:

Rijij = ρ−2R̄ijij + ρ−1 [Hess ρ(i, i) + Hess ρ(j, j)] − |d ln ρ|2g

where the Hessian is taken with ḡ. It follows from this that:

Lemma 2.43. Sectional curvatures of a conformally compact manifold with boundary
defining function ρ converge uniformly to −|dρ|2ḡ = −|d log ρ|2g. In particular, a confor-
mally compact manifold is negatively curved near infinity.

Definition 2.44. A conformally compact manifold (M , g) is called asymptotically hy-
perbolic (AH) if the limit of all sectional curvatures at infinity is −1. In other words,
any boundary defining function ρ satisfies

|d log ρ|g = |dρ|ḡ = 1 on X.

A boundary-defining function ρ is called special if |dρ|ḡ = 1 on an open neighbourhood
of X.

Using a special boundary defining function ρ, we can rewrite the metric g in a collar
neighbourhood X × [0, ϵ)ρ as

g =
dρ2 + h(ρ)

ρ2 =
dρ2 + h0

ρ2 +
h1
ρ

+ h2 + . . . (2.40)

where h(ρ) is a path of metrics on X and h0 + ρh1 + h2ρ
2 is its Taylor expansion in

S2T ∗X.

Lemma 2.45 (Graham–Witten [GW99]). Let (Mn+1, g) be an AH manifold.
1. Let h0 be any metric in the conformal infinity of g. Then there exists a special

boundary defining function ρ such that ρ2g restricts to h0 on X. Moreover, ρ is
unique in a collar neighbourhood.

2. Let ρ1, ρ2 be two special boundary defining functions. Then

ρ2 = ρ1e
φ (2.41)

where φ is a function on the collar X × [0, ϵ) that satisfies

∂φ

∂ρi

∣∣∣∣
ρi=0

= 0.
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Proof. For the first part, we pick any boundary defining function r such that the
metric ḡ := r2g restricts to h0 on X and construct ρ of the form ρ = reφ where φ is
a function on a collar neighbourhood. The condition |d log ρ|g = 1 is equivalent to

2⟨dr, dφ⟩ḡ + r|dφ|2ḡ =
1 − |dr|2ḡ

r
(2.42)

The equation (2.42) is a first order, non-characteristic PDE of φ and can be solved
for arbitrarily prescribed boundary data.

For the second part, we can suppose that the boundary defining function r in
(2.42) is special, and so the RHS vanishes, therefore

2dφ
dr

+ r|dφ|2ḡ = 0

This means that φ = O(r2).

Fefferman and Graham proved that if the metric g is Einstein, then h is determined
up to order n− 1 by h0. This means that the tensors h1,h2, . . . ,hn−1 and the trace of hn
are completely determined by h0. Moreover, all the odd order term h2i+1 with 2i+ 1 < n
vanish. When n is even, there is an obstruction to determine the trace-free part of hn
but it can be cancelled by adding a term of order ρn log ρ in the Taylor expansion of g.

Theorem 2.46 (Fefferman–Graham [FG07]). Let (Mn+1, g) be both AH and Einstein
and ρ be a special boundary defining function. Then the metric g has the following
normal form

g =
dρ2 + h0 + h2ρ

2 + (even power) + (n− 1)th-term + hnρ
n

ρ2 . (2.43)

where the

(n− 1)th-term =

{
hn−1ρ

n−1, if n is odd
hn−1ρ

n log ρ, if n is even

We will not need the full expansion (2.43), but only the fact that h1 vanishes. So we
will only assume that g is Einstein up to first order. The proof of Theorem 2.46 is quite
simple in this case and can be seen via the following Lemma.

Lemma 2.47 (Fefferman–Graham [FG07]). Let (Mn+1, g) be an AH manifold and ρ be
a special boundary defining function. Let h0,h1 be the coefficient in the extension (2.40)
of g. Then the trace-free tensor Ricg +ng of g extends to M and is given by

(Ricg +ng)ab =


0 if ab = ir
ρ
2 Trh0 h1 + ρ2 Ricḡρρ if ab = ρρ

−ρ
2 [(n− 1)h1 + (Trh0 h1)h0] + ρ2

(
Rich(ρ)ij +Rḡρijρ

)
if ab = ij

(2.44)
Here i, j denote directions in X and a, b denote directions in X and along the gradient
of ρ. The tensor Rḡ is the Riemann curvature of ḡ.

In particular, the trace-free Ricci curvature of an AH metric extends to 0 on X.
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Note that in (2.44), we write the curvature of a metric in its orthonormal frame. This
means that Ricgij and Ricḡij are written using two different frames.

Corollary 2.48 (Fefferman–Graham [FG07]). Suppose in addition that metric g is Ein-
stein up to first order in ρ, that is, the tensor norm of Ricg +ng vanishes in first order
at infinity. Then the tensor h1 of (2.40) vanishes.

From now on, we will suppose that the metric g is Einstein up to first order and so
(2.40) becomes

g =
dρ2 + h0

ρ2 +O(1) (2.45)

for a special boundary defining function ρ.

2.6.2 Renormalisability
Let (Σ, gΣ) be a conformally compact surface. We call a boundary defining function

ρ eligible if gΣ has the expansion

gΣ =
dρ2 + h0

ρ2 +O(1). (2.46)

in other words, if there is no h1
ρ term. Here h0 is a metric on ∂Σ and O(1) denotes a

finite metric on Σ.
We note that any boundary defining function r third order close to an eligible boundary

defining function ρ in the sense that r = ρ+O(ρ3) or equivalently ρ = r +O(r3), is
also eligible.

Lemma 2.49. Let (M , g) be an AH manifold and Σ be a surface in M meeting its
boundary transversally, then the pullback of any boundary defining function of M is a
boundary defining function of Σ.

Moreover, if the surface Σ meets the boundary X of M at right angle, then the pullback
of any special boundary defining function is eligible to the induced metric on Σ.

Proof. The second statement is true because we can write the map inclusion map
Σ ↪→ M in collar neighbourhoods ∂Σ × [0, ϵ) and X × [0, ϵ) as (p, t) 7→ (pt, t). The
point pt is determined by flowing along the inverse gradient of ρ in Σ from level
ρ = 0 to ρ = t, then flowing backwards to level ρ = 0 by the inverse gradient in M .
If Σ meets X at right angle, the point pt is O(t2) close to p. This leads to (2.46).

The angle condition is necessary because the collar neighbourhoods of M and Σ
are identified X × [0, ϵ) and ∂Σ × [0, ϵ) using two different gradient fields.

The goal of this section is to study the behaviour at 0 of the function

Q(ϵ) =

ˆ
Σ∩{ρ≥ϵ}

Q volgΣ (2.47)

associated to each function Q on Σ. Theorem 2.50 gives a condition of the growth of Q
at infinity so that the integral (2.47) can be renormalised and that its renormalisation
is independent on the choice of ρ. The proof will be delayed until the next Section.
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Theorem 2.50 (Renormalisation Criteria). Let ρ be an eligible boundary defining func-
tion of Σ and Q be a function on Σ such that ∂Q

∂ρ = 0 on the boundary. Then

Q(ϵ) =
LQ
ϵ

+ QR +O(ϵ) (2.48)

where LQ =
´

Σ Qdsḡ is the boundary length of Σ under the metric ḡ = ρ2g weighted by
the function Q.

Moreover, let {ρt}t∈[0,1] be a family of eligible boundary defining functions such that
dρt

dt = O(ρ2
t ), or equivalently ρt = ρ0e

φt where φt has no first order term in ρ0. Then
the quantity QR(t) computed using ρt in (2.47) and (2.48) is independent of t.

Corollary 2.51 (Renormalised Q-area). Let (M , g) be an AH manifold that is Einstein
up to first order and Σ be a surface meeting its boundary at right angle. Let ρ be a special
boundary defining function of M and Q be a function on Σ such that ∂Q

∂ρ = 0 on ∂Σ.
Then the quantity Q(ϵ) defined by

Q(ϵ) =

ˆ
Σ,ρ≥ϵ

Q volgΣ .

has the expansion
Q(ϵ) =

LQ
ϵ

+ QR +O(ϵ).

Moreover, the quantity QR is independent of the choice of ρ.

Proof. By Lemma 2.49 the restriction of any special boundary defining function to
Σ is eligible. It is always possible to join two special boundary defining functions
ρ0, ρ1 of M by a path of special boundary defining function {ρt}t∈[0,1]. This can be
done by joining the two normalised metrics ρ2

1g and ρ2
2g in the conformal infinity by

their convex combination, then applying Lemma 2.45. The second half of Lemma
2.45 assures that the resulting family satisfies the condition of Theorem 2.50.

When Q = 1, Corollary 2.51 was proved by Graham and Witten and QR is their
renormalised area.

We can also formulate a version of Theorem 2.50 for maps between a conformally
compact surface (Σ, gΣ) and an AH manifold (M , g). We are interested in maps that
send the boundary to boundary and interior to interior. Given such a map f , the pullback
ρ ◦ f of a boundary defining function ρ of M is a boundary defining function of Σ if and
only if f meets X transversally. This latter condition means that the tangent of f on
∂Σ is not contained in X at any point.

As before, we assume that g is Einstein up to first order, ρ is special and we want the
pullback ρ ◦ f to be eligible to the metric f∗g in a collar of Σ. For this, we need f to
be immersion in a collar neighbourhood and, similar to Lemma 2.49, the tangent of f
contains the gradient of ∇ρ at all points of ∂Σ. We say that the map f meets X at right
angle if these two conditions are satisfied.

We can define a mapping version of (2.47) as follows. Let Q be a function on Σ and
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ρ be a special boundary defining function of M , then we define Q(ϵ) by

Q(ϵ) =

ˆ
Σ,ρ◦f≥ϵ

Q volgΣ =

ˆ
Σ,ρ◦f≥ϵ

Q

| detgΣ f
∗g|1/2 volf∗g (2.49)

where | detgΣ f
∗g|1/2 is the Jacobian of f . Now it follows from Theorem 2.50 that:

Proposition 2.52. Let (M , g) be AH manifold, Einstein up to first order and ρ be a
special boundary defining function. Let f : (Σ, gΣ) −→ (M , g) be a map that meets X at
right angle and Q be a function on Σ that satisfies

∂

∂ρ

(
Q

| detgΣ f
∗g|1/2

)
= 0 on X.

Then the quantity Q(ϵ) defined by (2.49) admits the following expansion

Q(ϵ) =
LQ
ϵ

+ QR +O(ϵ)

where LQ =
´
∂Σ Qdsḡ is the length of f(∂Σ) under the metric ḡ = ρ2g weighted by Q.

Moreover, the normalisation QR is independent of the choice of the special boundary
defining function ρ.

We will use Proposition 2.52 to prove, under a natural boundary condition of f , that
the Dirichlet energy and Sacks–Uhlenbeck’s α-energy can be renormalised and that their
renormalisations are independent of the choice of boundary defining function.

Recall that the energy density e(f) is defined as the tensor norm of df under the
metric g on M and gΣ on Σ

e(f) := |df |2 = TrgΣ f
∗g.

The Dirichlet energy is the total integral of e(f) over Σ and the α-energy is the total
integral of |df |α = e(f)α/2.

Definition 2.53. Given a map f between a Riemann surface and a Riemannian mani-
fold (M , g), the quadratic differential of f is the 2-tensor

q(f , g) := ⟨∂f
∂z

, ∂f
∂z

⟩gdz ⊗ dz

where z is a complex coordinate of Σ and the inner product on TM ⊗ C is complexified
to be C-linear on both factors. The map f is conformal if and only if q(f , g) vanishes.

The quadratic differential relates the energy density of a map f and its Jacobian by:

TrgΣ(f
∗g)2 − 4detgΣ(f

∗g) =
1
4 |q(f , g)|2gΣ

(2.50)

Definition 2.54. A map f : (Σ, ∂Σ) −→ (M ,X) is called renormalisable if its image
meets X at right angle and its quadratic differential vanishes on ∂Σ:

|q(f , g)|gΣ
= O(ρ) (2.51)
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It follows from (2.50) that a map f is renormalisable then TrgΣ f
∗g

| detgΣ f
∗g|1/2 = 2 +O(ρ2),

thus the energy density satisfies the condition of Proposition 2.52. Moreover, direct
computations show that:

Lemma 2.55. Let gΣ be the hyperbolic metric on Σ, g be an AH metric, Einstein up to
first order on M . Let f : (Σ, ∂Σ) −→ (M , ∂M) be a C2, renormalisable map. Then

det
gΣ
g = 1 +O(ρ2), TrgΣ f

∗g = 2 +O(ρ2), (TrgΣ f
∗g)α = 2α +O(ρ2).

Corollary 2.56 (Renormalised energies). Suppose that (M , g) is AH, Einstein up to
first order. Let f : (Σ, gΣ) −→ (M , g) be a C1, renormalisable map. Then the Dirichlet
energy of f can be renormalised and its renormalisation is independent of the choice of
the boundary defining function.

Moreover, if gΣ is the hyperbolic metric, then the same conclusion holds for the α-
energy.

We conclude this section with a remark on condition (2.51) on vanishing order of the
Hopf differential.

— It follows from just the transversality of f on the boundary that the function
|q(f , g)|gΣ extends to Σ, that is |q(f , g)|gΣ = O(1).

— If |q(f , g)|gΣ = O(ρ), we have just seen that the Dirichlet energy and Sacks–
Uhlenbeck’s α-energies can be renormalised.

— If we suppose that f is harmonic, then the condition (2.51) is satisfied automati-
cally. In fact, we even have |q(f , g)|gΣ = O(ρ2). This was proved by Li and Tam
(cf. Lemma 1.3 of [LT93]). We give here a much easier proof when the map f
extends in C3 manner to Σ: The quadratic differential q(f , g) is a holomorphic
section of the double holomorphic cotangent bundle T ∗

2,0Σ. Its singularity on ∂Σ
is of order ρ−2. It suffices to prove the following Lemma.
Lemma 2.57. Let F be a holomorphic function on the half disc {x2 + y2 < 1, y >
0} of C. Suppose that y2F extends in C2 manner over the real segment (−1, 1),
then F also extends in C0 manner over that segment.

Proof. It is because ∂
∂z̄ (y

2F ) = −1
2F .

— If f is harmonic and |q(f , g)|gΣ = o(ρ2), then f is conformal. This is because the
holomorphic section q extends to 0 on the boundary of Σ.
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The previous discussion is summarised in the following diagram.

Vanishing order
of q(f , g) Property of f

O(1) Meeting boundary
transversally

ks

O(ρ)

KS

+3 Energies are
renormalisable

O(ρ2)

KS

harmonicks

o(ρ2)

KS

+3 conformal
if harmonic

2.6.3 Proof of the Renormalisation Criteria (Theorem 2.50)

We will sketch here the proof of Theorem 2.50. It uses repeatedly the following
formulation of the co-area formula. When ρt is a linear function in t, this becomes the
standard form of the co-area formula.

Lemma 2.58. Let (Ω,h) be an open domain in a k-dimensional Riemannian manifold
and {ρt}t=0,1 be a family of functions on Ω such that dρt are nowhere-zero. Let Ωt be
subdomains cut out by the condition ρt ≥ δ. Then for any function F ∈ C0(Ω), one has

d

dt

∣∣∣∣
t=0

ˆ
Ωt

F volkh =

ˆ
∂Ω0

dρt
dt

∣∣∣∣
t=0

F

|∇ρ0|h
volk−1

h .

To simplify the notation, we will denote the metric on Σ by h. Let ρ be a h-eligible
boundary defining function, that is

h =
dρ2 + h0

ρ2 +O(1) (2.52)

and h = ρ2h be the corresponding normalised metric on Σ. Instead of proving that

Q(ϵ) =
LQ
ϵ

+ QR +O(ϵ),

we will prove that
dQ(ϵ)

dϵ
+
LQ
ϵ2

= O(1) (2.53)

By Lemma 2.58 (in fact, the standard form of the coarea formula is enough), we have

dQ(ϵ)

dϵ
= −

ˆ
Σ,ρ=ϵ

Q

|∇ρ|
dsh = −ϵ−2

ˆ
Σ,ρ=ϵ

Q

|dρ| h̄
dsh̄. (2.54)
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By identify the level set ρ = ϵ with the boundary via the gradient flow of ρ, we have
Q = Q

∣∣∣
ρ=0

+O(ϵ2) and

dsh̄

∣∣∣
ρ=ϵ

dsh̄

∣∣∣
ρ=0

= 1 +O(ϵ2), |dρ|h̄ = 1 +O(ϵ2)

by hypothesis on Q and (2.52). Plug all of these into (2.54), we have

dQ(ϵ)

dϵ
= −ϵ−2

ˆ
∂Σ
Qdsh̄ +O(1),

which is just (2.53).
Now we will prove that QR is independent of the choice of ρ. Let ρt be an eligible

family as in Theorem 2.50, that is ρt = ρ0e
φt with φt having no first order term in ρ0.

We denote by Q(ϵ, t) the corresponding functional computed in (2.47). To prove that
the renormalisation does not depend on ρt, it suffices to prove that d

dtQ(ϵ, t) has no
O(1)-term.

The derivative d
dtQ(ϵ, t) can be computed with Lemma 2.58:

d

dt

∣∣∣∣
t=0

Q(ϵ, t) = −
ˆ
ρ0=ϵ

dρt

dt

∣∣∣
t=0

|dρ0|h
Qdsh

= −ϵ−1
ˆ
ρ0=ϵ

dφt

dt

∣∣∣
t=0

|dρ0|h̄
Qdsh̄

= −ϵ−1
[ˆ

∂Σ

dφt
dt

∣∣∣∣
t=0

Qdsh̄ +O(ϵ2)

]

where in the last equality, we used the fact that dφt

dt and Q have no first-order term in
ρ0 and that ρ0 is eligible.
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3 Gromov’s Visual volume and Li–Yau’s
Conformal volume

We have seen that each point p in the interior of the ball Bn+1 correspond to a unique
round metric gp on the boundary sphere. This metric is obtained by pulling back the
standard Euclidean metric g0 via the hyperbolic homothety (or Lorentz boost) φp along
the axis Op that sends p to the centre of the ball.

Definition 3.1. 1. The visual volume VΣ(p) of a measurable subset Σ ⊂ Sn at a
point p ∈ Bn+1 is its volume under the metric gp. Given a conformal manifold
(Σ, [h]), the conformal volume of Σ is given by

Vc(Σ,n) := inf
f

sup
p
Vf (Σ)(p) (3.1)

where the infimum is taken among branched conformal immersions f : Σ −→ Sn.
2. The Möbius energy EM (f , p) at a point p ∈ Bn+1 of a map f : (Σ,h) −→ Sn

is defined as the Dirichlet energy of f under the metric gp, i.e.
´

Σ Trh[f∗gp] volh.
The Möbius energy EM (f) is defined as

EM (f) = sup
p∈Bn+1

EM (f , p) = sup
φ∈SO+(1,n+1)

E(φ ◦ f)

We have seen the role played by the visual volume (and its superlevel sets) in the
study of minimal surfaces in the hyperbolic space. The conformal volume, on the other
hand, was studied by Li and Yau [LY82] as a natural upper bound for the first eigenvalue
λ1 of M . It is an extension of a topological argument by Hersch [Her70] in case of S2

and of Yang–Yau [YY80] in case of Riemann surfaces.

3.1 Conformal volume and Willmore conjecture

3.1.1 Hersch topological argument and upper bound of λ1

We call a map f : Xk −→ Y n between Riemannian manifolds (measure-theoretically)
non-constant if the preimage of any point y ∈ Y has zero k-dimensional measure on X.

Lemma 3.2 (Hersch–Li–Yau [Her70],[LY82]). Let f : (Σk,h) −→ (Sn, g0) be a measure-
theoretically non-constant map. Then there exists a Möbius transform φ that h-balances
f , i.e. ˆ

Σ
xi ◦φ ◦ f volh = 0

for all Euclidean coordinate xi.
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3.1. Conformal volume and Willmore conjecture

Proof. We define a map F : Bn+1 −→ Bn+1 by

F (p) :=
1

V (Σ)

n+1∑
i=1

(ˆ
Σ
xi ◦φp volh

)
∂xi

where φp is the hyperbolic homothety sending p to the centre of the ball. As p
approaches a point p∞ on the boundary sphere, the map φp send Sn \ {p∞} to −p∞
and thus by Dominated Convergence theorem,

lim
p→p∞

F (p) = −p∞.

So the map F extends continuously to the antipodal map on the boundary sphere
and therefore has to be surjective.

Using Lemma 3.2, Hersch proved that

Theorem 3.3 (Hersch [Her70]). The normalised first eigenvalue of any metric h on S2

is at most 8π.

Proof. Since there is only one conformal class up to diffeomorphism on S2, we can
suppose that h is conformal to the standard metric g0. By choosing Σ = S2 in
Lemma 3.2, one has a Möbius transform φ and 3 pull-back coordinate functions
xi, i = 1, 2, 3 such that

´
S2 xi volh = 0. By the variational characterisation of λ1 one

has
λ1

ˆ
S2
x2
i volh ≤

ˆ
S2

|∇hxi|2h volh =

ˆ
S2

|∇xi|2g0 volg0 (3.2)

where the last equality is due to the conformal nature of the integrand. The RHS
sums up, for i = 1, 2, 3 to 2.4π = 8π while the LHS is the normalised first eigenvalue
of h.

Theorem 3.3 was generalised to Riemann surfaces by Yang and Yau [YY80].

Theorem 3.4 (Yang–Yau). Let (Σ,h) be a Riemannian surface of genus g and of area
V . Then

λ1V ≤ 8π(g+ 1).

Proof. It suffices to immerse the surface to S2 via holomorphic map π of degree
d ≤ g + 1, which always exists due to Riemann–Roch theorem. We then h-balance
it via a Möbius transform and rewrite (3.2) as

λ1

ˆ
Σ
x2
i volh ≤

ˆ
Σ

|∇h(xi ◦ π)|2h volh = d

ˆ
S2

|∇xi|2gstd volgstd = 8πd.
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3.1. Conformal volume and Willmore conjecture

3.1.2 Conformal volume as upper bound of λ1

With a same proof, Theorem 3.4 can be stated in a slightly different way using the
conformal volume. The case m = 2 of the following result was due to Li and Yau [LY82]
and the general case to El Soufi and Ilias [EI83].

Theorem 3.5 (Li–Yau , El Soufi–Ilias). Let (Σ,h) be a Riemannian k-manifold and n
be a sufficiently big number so that Σ admits a branched conformal immersion into Sn.
Then one has

λ1V (Σ)2/k ≤ kVc(Σ,n)2/k.

Equality happens if and only if (Σ,h) admits an homothetic minimal immersion into
Sn by first eigenfunctions.

An immersion f : (X, gX) −→ (Y , gY ) is called homothetic if f∗gY = λgX for a
constant λ. We will prove the following stronger statement.

Theorem 3.6. Let f : (Σk,h) −→ (Sn, g0) be any measure-theoretically non-constant
map. Then there exists a Möbius transform φ ∈ SO+(1,n+ 1) such that

λ1(Σ).V (Σ) ≤ E(φ ◦ f). (3.3)

In particular λ1V (Σ) is not bigger than the Möbius energy of f .
Moreover, if we define the m-energy of f by Em(f) :=

´
Σ |df |m volh, then

λ1V (Σ)2/k ≤ Ek(φ ◦ f)2/k. (3.4)

Equality in (3.4) happens if and only if equality in (3.3) happens, and it is exactly when
f is a harmonic map with constant energy density e(f) = λ1.

Proof. Let φ be the Möbius transform that balances f and x̃i = xi ◦φ ◦ f , it suffices
to sum up the following estimate for i = 1, 2, . . . ,n+ 1 to obtain (3.3).

λ1

ˆ
Σ
x̃2
i volh ≤

ˆ
Σ

|∇hx̃i|2 volh =

ˆ
Σ

Trh(dx̃i)2 volh .

When dim Σ = k > 2, (3.4) follows from Hölder inequality:

E(φ ◦ f) ≤
(ˆ

Σ
[Trh(φ ◦ f)∗g0]

k/2 volh
)2/k

V (Σ)1− 2
k = Ek(φ ◦ f)2/kV (Σ)1− 2

k

Remark 3.7. 1. The k-energy Ek only depends on the conformal class of h. When
f is (weakly) conformal it is the mapping volume, Ek(φ ◦ f) = kk/2V (φ ◦ f) . One
obtains Theorem 3.5 by taking supremum among conformal immersion f .

2. The two sides of (3.3) are not scale-invariant unless when k = 2. This is why we
could not just take the supremum directly there.
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3.1. Conformal volume and Willmore conjecture

3.1.3 Li–Yau’s approach to the Willmore conjecture
Theorem 3.5 can also be seen as a lower bound of the conformal volume in term

of the first eigenvalue. This point of view is particularly useful when we have better
understanding of the spectrum of one metric on Σ than the area of its conformal image
in the sphere. This is the case of tori, where we have know very well the spectrum of the
flat metric (by Fourier series). The conformal area, on the other hand, is a lower bound
of the Willmore energy:

Vc(Σ) ≤
ˆ
f (Σ)

volgp ≤
ˆ
f (Σ)

(1 + |Hp|2) volgp =: W(f(Σ)) (3.5)

Here f : Σ2 −→ Sn is an arbitrary conformal immersion, gp is a round metric on the
sphere and |Hp|2 is the norm of mean curvature of f(Σ) under gp. The famous Willmore
conjecture reads

Theorem 3.8 (Marques–Neves, Willmore conjecture). For every smooth immersed torus
T in S3, one has

W(T ) =

ˆ
T

|ÎI|2 =

ˆ
T
(1 + |H|2) ≥ 2π2

It follows from (3.5) that Theorem 3.8 is true when the conformal structure on T
satisfies Vc ≥ 2π2.

The spectrum of the flat metric on tori can be compute explicitly as follows. The
conformal structure of a torus Tτ is given by a lattice of C generated by 1 and a complex
number τ = a+ ib. The eigenvalues of the flat metric in this case are

λpq = 4π2
[
q2 +

(
p− qa

b

)2
]

with eigenfunctions

fpq = cos 2π
(
qx+

p− qa

b
y

)
, gpq = sin 2π

(
qx+

p− qa

b
y

)
.

It can be proved using Fourier series that:

Lemma 3.9 (cf. [MR86], [Bry15]). Let ψ : (Tτ , gflat) −→ Sn be a conformal immersion
from the flat torus Tτ into Sn such that

´
Tτ
ψ volgflat = 0, then the mapping area of ψ is

bounded from below by

V (ψ) ≥ 4π2b

1 + b2 + a2 − a

It follows from Lemma 3.2) that:

Theorem 3.10 (Bryant–Montiel–Ros [MR86], [Bry15]). If τ = a+ ib then

Vc(Tτ ,n) ≥ 4π2b

1 + b2 + a2 − a
. (3.6)

In particular, the Willmore conjecture is true for tori of modulus τ in the disk |τ −
( 1

2 + i)| < 1
2 .
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3.1. Conformal volume and Willmore conjecture

There are two difficulties when we try to compute the conformal volume from the
definition, using (3.1): Firstly, we need good test conformal immersion f to estimate for
the infimum. Then for such f , we need to compute the maximum of Vf (Σ). Related to
the first difficulty is the following open question by Li and Yau [LY82]

Question 3.11 (Li–Yau). Is the infimum in the definition of conformal volume (equation
(3.1)) attainable by a branched conformal immersion?

In the case of Tτ , a good candidate ψτ : Tτ −→ S5 was pointed out in [MR86] using
eigenfunctions f10, f01, f11, g10, g01, g11. The image of ψτ is a surface of constant mean
curvature and the immersion is not only conformal but homothetic:

ψ∗
τg0 =

4π2

1 + b2 + a2 − a
gE .

This means that the value of Vψτ (Tτ ) at O is exactly the RHS of (3.6). Moreover the
map ψτ is g0-balanced, so 1 O is a critical point this function. Equality in (3.6) will be
obtained if one can prove that O is the global maximiser of VM . It is however not true
in general, as one can check from the second variation of VM that O is local maximiser
if and only if

(a− 1
2 )

2 + b2 <
9
4 (3.7)

It was conjectured by Montiel and Ros in [MR86] and proved by Bryant [Bry15] that

Theorem 3.12 (Bryant–Montiel–Ros). Under the condition (3.7), the origin O is the
global maximiser of VM (Tτ ). Therefore, the conformal volume of Tτ is:

Vc(Tτ ,n) =
4π2b

1 + b2 + a2 − a
for all τ with |τ − 1

2 | < 3
2

3.1.4 Visual volume of minimal submanifolds

Let Σ2 be a minimal surface of (Sn, g0). The Willmore energy

W(Σ) :=
ˆ

Σ
(|H|2 + 1)

is a conformal invariant. It is bigger than the area of Σ under any round metric gp and
is exactly its area under g0. This means that the function VΣ is maximised at the origin.
This result was known to Li–Yau [LY82] and was generalised to higher dimension by El
Soufi and Ilias [EI86].

Theorem 3.13 (Li–Yau [LY82], El Soufi–Ilias [EI86]). Let Σ ↪→ (Sn, g0) be a mini-
mally immersed submanifold, then the visual volume function VΣ is decreasing in radial
directions.

In particular, we have
VΣ(0) = max

Bn+1
VΣ ≥ Vc(Σ).

1. We will verify this in Proposition 3.15 the next section.
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3.1. Conformal volume and Willmore conjecture

Moreover, if there is a point p distinct from the origin such that VM (Σ, 0) = VM (Σ, p),
then Σ is a totally geodesic subsphere of Sn.

Therefore, the normalised first eigenvalue of any metric h in the induced conformal
class on Σ satisfies

λ1(h)V (Σ,h)2/k ≤ V (Σ, g0)
2/k.

The proof of Theorem 3.13 can be described in geometric term. It relies on the
collinearity of two vector fields on Sn that one can associate to the family of Lorentz
boosts in Hn+1. The first vector field is their infinitesimal action on Sn. Each Lorentz
boost moves the standard round metric g0 of Sn inside its conformal class, and the
second vector field is the gradient of the conformal factor.

Proof. Let {pt}t∈R be the arc-length parametrisation of a geodesic line in the Poincaré
ball Bn+1 along the x1-axis, passing by the centre p0 and connecting 2 antipodal
points p±∞ = x−1

1 (±1). Denote by φt the hyperbolic homothety that sends pt to the
centre. Because the orbits of {φt} on Sn are the gradient lines of x1, the conformal
vector field vT = dφ

dt

∣∣∣
t=T

at a fixed time T ∈ (0, ∞) is of the form vT = −u1∂x1

where u1 is a positive function on Sn depending on the coordinate x1, and ∂x1 is
the gradient on Sn of the x1.

The vector vT lives in the Poincaré model centred at pT in which the surface
φT (Σ) is minimal under gp−T . The conformal factor θ ∈ C∞(Sn) given by gp−T =
φ∗

−T g0 = e2θg0, is a decreasing function in x1 and its g0-gradient is of the form
∇θ = −u2∂x1 for a positive function u2 = u2(x1). Now one has

d

dt

∣∣∣∣
t=T

VM (Σ, pt) = −
ˆ
φT (Σ)

H0.vT volg0

= −k
ˆ
φT (Σ)

(∇θ)⊥.vT volg0 = −k
ˆ
φT (Σ)

u1u2|∂⊥
x1 |2 volg0

(3.8)

Here H0 is the mean curvature of φT (Σ) under the metric g0 and is related to the
mean curvature under gp−T by:

0 = Hp−T = e−2θ
(
H0 − k(∇θ)⊥

)
.

The ⊥ sign denoting projection to the normal bundle of φT (Σ). So H0 = k(∇θ)⊥

and this explains the second equality of (3.8). We conclude that VΣ(pt) is decreasing
in t on (0,+∞).

When there is a point p ̸= O with VΣ(p) = VΣ(0), equation (3.8) assures that the
Sn-gradient of x1 at any point of Σ lies inside Σ and so all Sn-gradient lines of x1
intersecting Σ belongs to it. It follows that Σ contains p±∞ and is a totally geodesic
subsphere of Sn.

One can compute directly that in the proof of Theorem 3.13

u1 = 1, u2 =
sinhT

coshT + x1 sinhT .

This boils down to the computation of the conformal factor, which will be done in the
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3.2. Properties of the visual volume

next section.
It may be tempting to generalise Theorem 3.13 for harmonic maps, the same approach

however does not work because the conformal transform for the tension field of a map
f : (Σ,h) −→ Sn is

τ (f , e2θg0) = τ (f , g0) − |df |2g0∇g0θ+ 2f∗∇h(θ ◦ f)

It is not always true that |df |2|∇θ|2 ≥ 2g0(f∗∇h(θ ◦ f), ∇θ), unless when f is conformal
and the dimension of Σ is at least 2.

3.2 Properties of the visual volume

One simple way to compute the conformal factor corresponding to the action of a
Lorentz boost on the sphere at infinity is the following. The metric gp is given by gp =
(ξ0,p+ 1)2gH where ξ0,p is the time-coordinate minimising at p, therefore gp

g0
=
(
ξ0,O+1
ξ0,p+1

)2
.

When p lies in the x1-axis in the Poincaré model centred at O, the famous Lorentz boost
formula reads

ξ0,p = coshϕ ξ0,O − sinhϕ ξ1,O, ξ1,p = − sinhϕ ξ0,O + coshϕ ξ1,O

where ϕ is the hyperbolic distance from p to O and ξ1 is the space coordinate pointing
to the x1-direction. Therefore,

ξ0,p + 1
ξ0,O + 1 = coshϕ ξ0,O

ξ0,O + 1 − sinhϕ ξ1,O
ξ0,O + 1 +

1
ξ0,O + 1 on Bn+1

= coshϕ − sinhϕ x1 on Sn

The second equality is because ξ1,O
ξ0,O+1 = x1 on Sn and ξ0,O tends to infinity as one

approaches the boundary.
Recall that each point s ∈ Sn defines a null coordinate ξs ∈ C∞(Hn+1) uniquely up

to a multiplicative constant. The conformal factor, as function on Sn can be rewritten
as

Lemma 3.14. Let p and q be interior points of Bn+1 and s ∈ Sn is a point on its
boundary, then

gp
gq
(s) =

[
ξs(q)

ξs(p)

]2

In particular, if we choose q = O to be the centre of Bn+1 and normalise the null
coordinate ξs so that ξs(O) = 1, then

gp
g0
(s) = ξs(p)

−2.

3.2.1 Derivatives

It can be checked that the powers ξks of the null coordinate ξs associated to a boundary
point s are eigenfunctions of the hyperbolic Laplacian. By Lemma ??, the visual volume
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and the Möbius energy are just combinations of these functions and therefore are also
eigenfunctions. We will compute in this subsection the first derivative and the hyperbolic
Hessian of the visual volume function. Note that we can always assume the point where
we differentiate is the centre O of Bn+1. Let Σ be a k-dimensional submanifold of Sn.
In the following statements, the volume form vol0 is given by the Euclidean metric g0
and the light coordinates ξs are normalised so that ξs(O) = 1.

Proposition 3.15 (First derivative of visual volume). The first derivative of VΣ at O
is

dVΣ(O) = −k
ˆ
s∈Σ

d ln ξs vol0 (3.9)

In particular, if ei = 1
2
∂
∂xi

is the hyperbolic-unit vector at O in the xi direction then

dVΣ(O).ei = −k
ˆ

Σ
xi vol0

Corollary 3.16. The centre O is a critical point of the visual volume function VΣ if and
only if Σ is balanced, that is if and only if its center of mass is at the origine:

ˆ
Σ
xi vol0 = 0 ∀i = 1, ..,n+ 1.

It follows from (3.9) that:

Corollary 3.17. At any point p ∈ Hn+1,

|dVΣ(p)|gH
≤ kVΣ(p)

In particular, given any pair of points p, q of hyperbolic distance D to each other, one
has

VΣ(q)e
−kD ≤ VΣ(p) ≤ VΣ(q)e

kD (3.10)

Proposition 3.18 (Hessian of visual volume). The hyperbolic hessian of VΣ at O is

HessVΣ = −kVΣgH + k(k+ 1)
ˆ

Σ
(d ln ξs)2 vol0 (3.11)

In particular, VΣ is an eigenfunction of the hyperbolic Laplacian: ∆VΣ = −k(n− k)VΣ.

Let ei be the hyperbolic-unit vector at O pointing to the xi-direction then by (3.11),

HessVΣ(ei, ei) = −kVΣ + k(k+ 1)
ˆ

Σ
x2
i vol0 (3.12)

Two immediate consequences of this are:

Corollary 3.19. Let Σ be a k-dimensional submanifold of Sn.
1. The trace of HessVΣ on any linear subspace P of TOHn, of dimension at least

k+ 1 is non-positive, or in other words, divP ∇VΣ ≤ 0. It is zero if and only if Σ
is contained in the intersection of P and Sn.

106



3.2. Properties of the visual volume

2. The restriction of VΣ on any minimal submanifold of Hn+1 of dimension at least
k+ 1 is super-harmonic.

Corollary 3.20. Given a submanifold Σk ⊂ Sn, the Morse index of a non-degenerate
critical point of VΣ is at least n− k.

3.2.2 Boundary behavior
Recall that φp is our notation for the Lorentz boost sending p to O. Let {pt}t≥0 be a

geodesic ray from O to a boundary point p∞ which we assume to lie on a k-submanifold
Σ. Then φpt(Σ) converges on compact sets of Sn \ {−p∞} to a k-dimensional subsphere
of Sn containing p∞. If Σ is an immersed submanifold with m sheets passing by p∞, the
limit will be m copies of Sk whose tangents coincide with sheets of Σ at p∞. Therefore
we have

lim
t→∞

VΣ(pt) = mωk (3.13)

It follows from this that an immersed k-submanifold with visual volume less than 2ωk
has to be embedded.

By (3.10), we still have (3.13) for a sequence {qn} of interior points that converges to
p∞ orthogonally, i.e. the hyperbolic distance from qn to the ray {pt}t≥0 tends to 0.

Lemma 3.21. Suppose that Σ is an embedded C2 k-submanifold of Sn and M is a
minimal (k + 1)-submanifold of Hn+1 filling Σ. Then the restricted function VΣ on M
converges uniformly to ωk on the boundary.

In fact, M only needs to be in the convex hull of Σ. To see this, it suffices to prove
that

Lemma 3.22. The hyperbolic distance between a point p ∈ Hn+1 in the convex hull of a
C2 embedded submanifold Σ of Sn and the cone CO(Σ) centred at O built upon Σ tends
to zero as p goes to infinity.

In particular, the function VΣ can be extended continuously to a function on Σ ∪
ConvHull(Σ) by imposing its value to be ωk on Σ.

It is clear that if Lemma 3.22 is true for one choice of the centre O, it is true for all
choices. Moreover, if we choose a point ∞ on Sn \ Σ and denote by C∞(Σ) the vertical
cylinder Σ × R>0 in the half-space model, we only need to prove that the distance
d(p,C∞(Σ)) tends to zero as the altitude of p decreases to 0.

The C2 and embeddedness hypotheses imply the existence of an osculating radius
r0 > 0. We recall that this means Σ lies on one side of the (n− 1)-sphere of radius
r0 tangent to it. Lemma 3.23 follows from the definition of the convex hull. It proves
Lemma 3.22 and thus Lemma 3.21.

Lemma 3.23. Let p ∈ Hn+1 be a point in the convex hull of Σ, of altitude x(p) < r0
in the half-space model. Then the Euclidean distance between p and the lifted copy
Σ × {x(p)} of Σ is at most r0 −

√
r2

0 − x(p)2. Therefore the hyperbolic distance satisfies

d(p,C∞(Σ)) ≤ x(p)

r0 +
√
r2

0 − x(p)2
<
x(p)

r0
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3.2.3 Submanifolds of Sn with visual volume ωk

Let Mk+1 be a minimally immersed submanifold of Hn+1 with ideal boundary a
submanifold Σk of Sn. Corollary 3.19 and Lemma 3.21 say that the visual volume
function VΣ is super-harmonic on M with value at least ωk on the boundary. This gives
another proof of Proposition 2.12.

Moreover, if Σ is embedded and maxH VΣ = ωk, we can conclude, by Corollary 3.19,
that Σ is a totally umbilic subsphere of Sn. This result was proved by Bryant with a
different method in his chapter of [Wel88].

Proposition 3.24 (Bryant [Wel88]). Any immersed submanifold Σk ↪→ Sn, has visual
volume at least ωk. Equality happens only for totally umbilic subspheres.

Although the above proof requires a C2 minimal filling M of Σ, the maximum principle
argument can be rewritten with the first variation formula for currents. For the claim
on equality in Proposition 3.24, we only need a smooth point of M , whose existence is
due to Almgren (see for example [Mor16]).

Proposition 3.25. Let Σk be a k-dimensional C2 embedded submanifold of Sn and M
be a stationary, locally integral (k + 1)-current of Hn+1 asymptotic to Σ. Then ∥M∥-
almost everywhere, one has VM (Σ) ≥ ωk.

Proof. The statement is true when Σ is a totally umbilic subsphere of Sn. Suppose
that this is not the case, then by Corollary 3.19 divM ∇VΣ < 0 everywhere on
suppM .

For any C1 function f : [0,+∞) −→ R, one has

0 =

ˆ
M

divM [f(VΣ)∇VΣ] =

ˆ
M
f(VΣ) divM ∇VΣ +

ˆ
M
f ′(VΣ)|∇MVΣ|2 (3.14)

as long as the vector field vf := f(VΣ)∇VΣ is compactly supported in the interior.
When f is a non-negative, decreasing function fϵ supported in [0,ωk − ϵ) and is
identically 1 on [0,ωk − 2ϵ), the RHS of (3.14) is non-positive. By Lemma 3.22,
ConvHull(Σ) ∩ V −1

Σ (−∞,ωk − ϵ] lies strictly in the interior and so the vector field
vf is compactly supported. Thus (3.14) implies that VΣ ≥ ωk − 2ϵ ∥M∥-almost
everywhere, and the conclusion as we send ϵ to 0.

Bryant’s proof [Wel88] of Proposition 3.24 involves writing down the second order
development of VΣ at a point p ∈ Σ:

VΣ((1 − t)p) =

4π+ π
2 |ÎI|2t2 log 1

t +O(t2), if k = 2
ωk +

2k−1ωk−1
k2−4 |ÎI|2t2 +O(t3 log 1

t ), if k > 2
(3.15)

where |ÎI|2 is the trace-free second fundamental form of Σ at p under the Euclidean
metric.

The following question was raised by Li–Yau [LY82].

Question 3.26 (Li–Yau). Given a k-dimensional manifold with conformal volume ωk,
can we say that it is conformally a round k-sphere?
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Proposition 3.24 says that if the answer to Question 3.11 is affirmative than so is the
answer to Question 3.26.

3.2.4 Superlevel sets
There are two justifications of our interest in superlevel set of the visual volume func-

tion. Firstly, it is to understand Gromov’s visual hull, which together with Anderson’s
convex hull, are the only restriction for minimal submanifolds of the hyperbolic space
in term of their boundary. The second motivation is to understand critical points of the
visual volume function, in particular its local maximisers. We have seen in the compu-
tation of the conformal volume of tori that this is a delicate issue. One way to prove
that a function has a unique global maximiser, is to show that the superlevel sets are
eventually connected.

Theorem 3.27. If Σ1 is a closed immersed curve in Sn, then any superlevel set of VΣ
is simply-connected. In particular, the visual hull of a closed immersed curve is simply-
connected.

Proof. Let Γ be an arbitrary closed smooth curve in a superlevel set Uc := V −1
Σ [c, ∞)

. Because π1(Bn+1) = 0, the space C of locally Lipschitz maps F : B2 −→ Hn+1

that parametrise Γ monotonically on S1 is non-empty. It was proved by Lonseth
[Lon42] and Morrey [Mor48] that C contains a conformal harmonic map F (that is
in fact a minimiser for the mapping area functional) which is a smooth immersion
except at isolated branched points.

By Corollary 3.19, VΣ ◦F is a super-harmonic function on B2 with value at least
c on the boundary circle, and so it is at least c everywhere in B2. We have just
constructed a continuous map F : B2 −→ Uc filling an arbitrary closed simple curve
Γ, and thus proved π1(Uc) = 0.

In general, the visual hull of a k-submanifold Y of a Riemannian manifold X is de-
fined as the set of points p ∈ X where the visual volume Vis(Y , p) is at least ωk, cf.
Definition 2.21. It was proved by Gromov [Gro83, Theorem 8.1.B] that a curve is always
contractible in its visual hull. 2 Theorem 3.27 can be seen as a way to improve this in
the hyperbolic space.

The only reason why we could not generalise Theorem 3.27 for all dimension of Σ,
with π1 replaced by πh for any h ≥ k, is that we no longer have Douglas–Rado–Morrey
solution to the Plateau problem.

3.3 Critical metrics and minimal surfaces
We know from Theorem 3.5 that if a metric h on Σ admits an homothetic minimal

immersion then its normalised first eigenvalue is the biggest in the conformal class. It
was proved by Nadirashvili and El Soufi–Ilias that if h is critical to the normalised first
eigenvalue functional, then (Σ,h) admits a homothetic minimal immersion to Sn by its
first eigenfunctions [EI00; Nad96]. The result was later generalised for other eigenvalues
[SI08].

2. This plays a crucial role in his solution of the Gehring’s linking problem.

109



3.3. Critical metrics and minimal surfaces

Remark 3.28. The eigenvalues λk(h) is generally not differentiable in h. So to make
sense of critical points of λk, one needs to take an analytic perturbation {ht} of h, then
define left and right derivatives δ+ = d

dtλk(h)
∣∣∣
t=0+

, δ− = d
dtλk(h)

∣∣∣
t=0−

. A metric h is
called critical (or extremal) if the two derivatives has opposite sign, that is δ+δ− ≤ 0,
for all analytic perturbations.

In this section, we will present an expository version of Nadirashvili–El Soufi–Ilias’s
argument in the case of surfaces. We will differentiate the eigenvalue and eigenfunctions
as if they depend smoothly on the metric. This can be made rigorous by a projection
trick due to Fraser and Schoen [FS13], [FS16].

Theorem 3.29 (Nadirashvili [Nad96], El Soufi–Ilias [EI00; SI08]). Let Σ be a compact
surface and h0 be a critical metric with respect to λk(h)V (Σ,h). Then there exists kth

eigenfunctions u0, . . . ,un of h0 such that the map f = (u0, . . . ,un) : Σ −→ Sn is a
homothetic minimal immersion.

We will denote the kth-eigenspace of h0 by Ek(h0).

Assertion 1. The first variation of the kth eigenvalue λk is given by

λ̇k = −
ˆ

Σ
⟨(du)2 − 1

2 |∇u|2h0 +
λk
2 u2h0, ḣ⟩ volh0 (3.16)

for all u ∈ Ek(h0) with ∥u∥L2 = 1.

Proof that Assertion 1 implies Theorem 3.29. Let {ht} be a perturbation of h0 in a
direction ω ∈ S2T ∗Σ that preserves the area of Σ. This means

´
Σ⟨h0,ω⟩ volh0 = 0.

Because h0 is critical,

0 =
d

dt

∣∣∣∣
t=0

[λk(ht)V (ht)] = V (h0)
d

dt

∣∣∣∣
t=0

λk(ht)

By Assertion 1, ω is L2-orthogonal to q(u) := (du)2 − 1
2 |∇u|2h0 +

λk
2 u

2h0 in L2(S2T ∗Σ)
for all u ∈ Ek as long as it is L2-orthogonal to h0. By Hahn–Banach theorem, h0
lies in the closure of the convex hull of Q := {q(u) : u ∈ Ek(h0)}. The convex hull
of Q is already closed, because it is a finite dimensional subspace, at most generated
by the images q(ui) of a basis {ui} of Ek and the polarisations q(ui,uj). So one has

h0 =
n∑
i=0

q(ui) =
n∑
i=0

(dui)
2 −

n∑
i=0

1
2 |∇ui|2h0 +

λk
2

n∑
i=0

u2
ih0 (3.17)

for certain elements ui ∈ Ek(h0).
By taking inner product of (3.17) with h0, we have

∑
u2
i =

2
λk

. Substituting this
into (3.17), we see that h0 is conformal to

∑
(dui)2, and the conformal factor is

constant because

0 = ∆

(
n∑
i=0

u2
i

)
= 2

n∑
i=0

|∇ui|2 + 2
n∑
i=0

ui∆ui = 2
n∑
i=0

|∇ui|2 −2λk
n∑
i=0

u2
i = 2

n∑
i=0

|∇ui|2 −4.
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The theorem follows by normalising the ui.

Now it remains to prove the Assertion.

Proof that Assertion 1. Let ut be a smooth family of kth eigenfunctions of a pertur-
bation ht in direction ḣ = d

dt

∣∣∣
t=0

ht. Suppose also that ∥ut∥L2(ht) = 1 and differen-
tiate the identity

´
Σ |dut|2ht

volht = λk(ht)
´

Σ u
2
t , we get

λ̇k =

ˆ
Σ

[
−|du0|2

h−1
0 ḣh−1

0
+ 2⟨du̇, du0⟩ + 1

2 |du0|2h0⟨h0, ḣ⟩
]

volh0 (3.18)

The first term of (3.18) comes from d
dt (|du0|2ht

) and the fact that ˙(h−1) = −h−1ḣh−1.
The last term comes from d

dt volht =
1
2⟨ḣ,h0⟩ volh0 . The identity (3.16) follows from

(3.18) by substituting |du0|2
h−1

0 ḣh−1
0

= ⟨(du0)2, ḣ⟩h0 and

2
ˆ

Σ
⟨du̇, du0⟩ = −2

ˆ
Σ
u̇∆u0 = 2λk

ˆ
Σ
u0u̇ = λk

ˆ
Σ

d

dt
u2
t volh0

= λk

(
d

dt

∣∣∣∣
t=0

ˆ
u2
t volht −1

2

ˆ
Σ
u2

0⟨h0, ḣ⟩ volh0

)
= −λk

2

ˆ
u2

0⟨h0, ḣ⟩

There is a version of Theorem 3.29, also due to El Soufi and Ilias [SI08], that establishes
the same relation for metrics that are critical to the normalised eigenvalues in a given
conformal class and harmonic maps into sphere with constant energy density. These two
relations provide a motivation for the problem of maximising the normalised eigenvalues,
either among all metrics or those in a given conformal class. In the case of first eigenvalue
of surfaces, the existence and regularity problem for conformally maximal metric was
settled by Petrides [Pet13], and for maximal metric Petrides [Pet18], Mathiesen and
Siffert [MS19b], [MS19a].

3.4 Free boundary minimal submanifolds
We have seen in the previous section that Riemannian metrics on a surface Σ that

are critical to the "normalised eigenvalue" functional are pullback metrics from minimal
immersions of Σ into a sphere. The goal of this section is to present a similar relation,
discovered by Fraser and Schoen, between critical metrics of the Steklov eigenvalues and
free boundary minimal surfaces of the Euclidean unit ball.

3.4.1 Explicit examples
Definition 3.30. A submanifold (Σk, ∂Σ) ⊂ (Bn,Sn−1) is called a free boundary min-
imal submanifold if Σ is minimal with respect to the Euclidean metric, ∂Σ is contained
in the sphere Sn−1 and Σ meets the sphere orthogonally.

Example 3.31 (The critical catenoid). In R3, the catenoid x2 + y2 = cosh2 z given
by rotating the curve r = cosh z around the z-axis intersects a certain sphere of radius
R0 at right angle. The radius R0 is approximately 2.1716. To find this, we look for a
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3.4. Free boundary minimal submanifolds

point (zcrit, rcrit) on the profile curve where the its tangent passes by the origin. Such
point is given by rcrit

zcrit
= sinh zcrit and so zcrit is the only positive solution of the equation

z = coth z.
Rescale (x, y, z) coordinates and we obtain a smaller version of the catenoid, called

the critical catenoid which intersects the unit sphere at right angle.

Example 3.32 (The critical Mobius band). One can check that the following map from
the Möbius band M := R × S1/(t, θ) ∼ (−t, θ + π) with metric h = dt2 + dθ2 to the
Euclidean ball (B4, gE) is harmonic

F (t, θ) = (2 sinh t cos θ, 2 sinh t sin θ, cosh 2t cos 2θ, cosh 2t sin 2θ).

Moreover because the pull-back metric is F ∗gE = 4(cosh2 t+ sinh2 2t)h, the map F is
conformal. So its image is an (unorientable) minimal surface of R4.

Because
∑4
i=1 x

2
i = 4 sinh2 t+ cosh2 2t, the surface intersects spheres of R4 at level

sets of t. We claim that there is a certain level T0 > 0 where the surface meets the
sphere at right angle. It is exactly the value of t such that the gradient of ρ =

∑
x2
i

as a function on the surface has the same norm its gradient as a function on R4, i.e.
|d(ρ ◦F )|2h. hgE

= 4ρ. Because d(ρ ◦F ) = (4 sinh 2t+ 2 sinh 4t)dt, one finds sinh2 T0 = 1
2 .

More recent examples can be found in the survey [Li20].
The reason why such submanifolds are called "free boundary" is that they are critical

points of the volume functional under free boundary perturbations. These are pertur-
bations of Σ by a family {Σt} ⊂ Bn whose boundary ∂Σt is contained in Sn−1 at every
instance t. The infinitesimal perturbation v = d

dt

∣∣∣
t=0

Σt is a vector field along Σ that is
tangent to Sn−1 at boundary. The first variation formula reads

d

dt

∣∣∣∣
t=0

V (Σt) = −
ˆ

Σ
H · v+

ˆ
∂Σ
v · n

where H is the mean curvature vector of Σ and n is the normal vector of ∂Σ inside Σ.
It follows that Σ is critical if and only if its mean curvature vanishes and Σ meets Sn−1

orthogonally.

3.4.2 Optimisation of Steklov eigenvalues

The free boundary minimal surface equation can be rewritten with the pullback coor-
dinate functions as: {

∆xi = 0, in Σ
∂xi
∂n = xi, on ∂Σ

(3.19)

Or equivalently, xi are eigenfunctions of the Dirichlet-to-Neumann operator:

L : C∞(∂Σ) −→ C∞(∂Σ)

u 7−→ Lu =
∂ũ

∂n

Here ũ is the unique harmonic extension of u on Σ. The kth eigenvalue of L, often
denoted by σk, is called the kth Steklov eigenvalue of Σ.
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It was discovered by Fraser and Schoen [FS16] that

Theorem 3.33 (Fraser–Schoen). Let Σ be a surface with non-empty boundary and h0 be
a metric that maximises the normalised kth Steklov eigenvalue among smooth metrics,
i.e.

σk(h0)V (∂Σ,h0) = max
h

σk(h)V (∂Σ,h)

Then there exists a conformal harmonic immersion f = (u1, . . . ,un) : (Σ,h0) −→ Bn

formed by kth Steklov eigenfunctions ui. Moreover, f
∣∣∣
∂Σ

: ∂Σ −→ Sn−1 is homothetic.

The proof of Theorem 3.33, in sketch, is similar to Theorem 3.29 of Nadirashvili, El
Soufi and Ilias. We start with the first variation formula of the kth Steklov eigenvalue.

Lemma 3.34 (cf. [FS16]). If σk(h) > σk−1(h) then for any smooth perturbation of h:

σ̇k = −
ˆ

Σ
⟨q(u), ḣ⟩ − σk

2

ˆ
∂Σ
u2ḣ(T ,T ) (3.20)

for any kth Steklov eigenfunction u with ∥u∥L2(∂Σ) = 1. The vector T is the h-unit
tangent of ∂Σ and the symmetric 2-tensor q(u) is given by

q(u) := (du)2 − 1
2 |∇u|2h.

Proof that Lemma 3.34 implies Theorem 3.33. We perturb h0 in a direction ω that
preserves the boundary length of Σ. Such ω satisfies

´
∂Σ ω(T ,T ) = 0. Because h0

is critical, we have
0 =

d

dt

∣∣∣∣
t=0

[σkV (∂Σ)] = V (∂Σ)σ̇k.

So for any ω, ⟨0Σ,ω⟩L2(S2Σ)+ ⟨1∂Σ,ω(T ,T )⟩L2(∂Σ) = 0 implies that ⟨q(u),ω⟩L2(S2Σ)+〈σk
2 u

2,ω(T ,T )
〉
L2(∂Σ) = 0 for all function u in the kth-eigenspace Ek.

This means that in the Hilbert space H := L2(S2Σ) ⊕L2(∂Σ), if a vector vω :=
(ω,ω(T ,T )) is orthogonal to (0Σ, 1∂Σ), it is also orthogonal to the set Λ := {(q(u), σk

2 u
2),u ∈

Ek}. Because the space of all vectors vω, for smooth symmetric 2-tensor ω, is dense
in H, Hahn–Banach theorem says that (0Σ, 1∂Σ) lies in the closed convex hull of Λ.

The convex hull of Λ is already closed, for the same finite-dimensional reason
given in the proof of Theorem 3.29. This means that (0Σ, 1∂Σ) can be written as a
combination of (q(ui), σk

2 u
2
i ) where ui ∈ Ek, that is

n∑
i=1

(dui)
2 =

1
2

n∑
i=1

|∇ui|2h0 on Σ, σk
2
∑

u2
i = 1 on ∂Σ (3.21)

It remains to normalise the ui and the theorem follows.

The problem of existence and regularity for metrics maximising the normalised first
Steklov eigenvalue on surfaces was solved by Matthiesen and Petrides [MP20].
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3.4. Free boundary minimal submanifolds

3.4.3 Boundary volume and Interior volume. Two conjectures by Fraser and
Schoen.

We will now investigate geometric property of a free boundary minimal k-submanifold
Σ of Bn. Recall that the pullback Euclidean coordinates are harmonic functions on Σ
and there sum of square ρ =

∑
i x

2
i satisfies

∆ρ = 2k (3.22)

In particular it is sub-harmonic on Σ and so interior points of Σ lie strictly in the interior
of Bn.

By integrating (3.22) over Σ, we see that

Proposition 3.35. Given a free boundary minimal submanifold Σk in the Euclidean
ball Bn, its boundary volume and interior volume are related by

V (∂Σ) = kV (Σ)

A free boundary minimal submanifold and its boundary are balanced:

Proposition 3.36. Let Σk be a free boundary minimal surface in Bn. Then
1. The centre of mass of the ∂Σ is at the origin, i.e. for i = 1, . . . ,n

ˆ
∂Σ
xi = 0. (3.23)

2. The centre of mass of Σ is also at the origin, i.e. for i = 1, . . . ,n
ˆ

Σ
xi = 0. (3.24)

Proof. We can see that the boundary is balanced by integrating (3.19) over Σ:

0 =

ˆ
Σ

∆xi =
ˆ
∂Σ

∂xi
∂n

=

ˆ
∂Σ
xi.

To see that Σ is balanced, we use (3.22):

2k
ˆ

Σ
xi =

ˆ
Σ
xi∆ρ =

ˆ
∂Σ

(
xi
∂ρ

∂n
− ρ

∂xi
∂n

)
+

ˆ
Σ
ρ∆xi =

ˆ
∂Σ
xi +

ˆ
Σ
ρ∆xi = 0.

The last equality is due to (3.23) and harmonicity of xi.

Recall that (3.23) is the critical point equation of the visual volume (Proposition 3.15).
So O is critical to the visual volume function of a submanifold γ of Sn−1 if γ can be
realised as boundary of a free boundary minimal submanifold of Bn. Fraser and Schoen
[FS11; FS13] asked

Conjecture 3.37 (Fraser–Schoen). If a (k− 1)-dimensional submanifold ∂Σ bounds a
free boundary minimal submanifold Σ, then its visual volume is maximised at the origin
O. In other words, any Möbius transform reduces the volume of ∂Σ.
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Similarly, if we define the relative visual volume VΣ of a submanifold Σ of Bn to be
the function which associates to each point p ∈ Bn the volume of Σ under the metric gp,
then

Conjecture 3.38 (Fraser–Schoen). The relative visual volume of a free boundary mini-
mal submanifold Σ is maximised at the origin O. In other words, any Möbius transform
reduces the volume of Σ.

The relative visual volume is an upper bound of the normalised first Steklov eigenvalue.
The proof of Proposition 3.39 is similar to that of Theorem 3.5.

Proposition 3.39 (Fraser-Schoen). Let σ1 > 0 be the first Steklov eigenvalue of a Rie-
mannian manifold (Σk,h) with non-empty boundary. Then for any conformal immersion
φ : (Σ, ∂Σ) −→ (Bn,Sn−1) we have

σ1(h)V (∂Σ) ≤ k(sup
Bn

Vφ(Σ))
2/kV (Σ)1− 2

k (3.25)

In a similar way as Li–Yau’s conformal volume, Fraser and Schoen defined the nth

relative conformal volume of a conformal manifold as:

Vrc(Σ, [h],n) := inf
φ

sup
Bn

Vφ(Σ)

where the infimum is taken among branched conformal immersions from (Σ, ∂Σ) into
(Bn,Sn−1). By (3.25), we have:

σ1(h)V (∂Σ) ≤ kVrc(Σ,n)2/kV (Σ)1− 2
k .

In particular when k = 2, we have σ1(h)V (∂Σ) ≤ 2Vrc(Σ,n).
Because the visual volume V∂Σ converges to ωk on ∂Σ, one direct consequence of

Conjecture 3.37 would be the following lower bound on the volume of free boundary
minimal surfaces and their boundary. This lower bound was proved by Brendle [Bre12].

Theorem 3.40 (Brendle). Let Σk be a free boundary minimal submanifold of Bn, then

V (∂Σ) = kV (Σ) ≥ ωk−1.

The case k = 2 of Conjecture 3.37 can be checked easily. A proof using a Willmore
type argument was first given by Fraser and Schoen in [FS11]. They later provided a
different proof in [FS13] using a monotonicity-type of argument. We will present the
second proof as it is closely related to Brendle’s proof of Theorem 3.40.

Before doing so, let us rewrite the conformal factor gp

g0
in a suitable way. In Lemma

3.14, we computed it in term of space coordinates because we were working with minimal
surfaces of Hn. Now to study minimal surfaces of Rn, we will write the conformal factor
as (

gp
g0

)1/2
(q) =

( 1
|p|2

− 1
) 1

|q− p∗|2
, q ∈ Bn (3.26)

where p∗ is image of p via an inversion with pole at the origin and radius 1. Concretely,
we suppose that p lies in the x1-axis and of distance s ∈ [0, 1) to the origin, then p∗ is
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the point of coordinate s−1 on the same axis. We will write ρs = |q− p∗|2 and so (3.26)
becomes (

gp
g0

)1/2
=

( 1
s2 − 1

)
ρ−1
s .

Recall that the square-of-distance functions ρ satisfy Hess ρ = 2gE and |∇Σρ|2 ≤
|dρ|2 = 4ρ. On a minimal submanifold Σ of dimension k,

∆ρα = αρα−2
(
2kρ+ (α− 1)|∇ρ|2

)
≤ 0 ∀α ≤ 1 − k

2 ≤ 0 (3.27)

This means that ρ1− k
2 is super-harmonic on Σ.

When k = 2, we can look at the function log ρ instead:

∆ log ρ = ρ−1∆ρ− ρ−2|∇ρ|2 ≥ (2k− 4)ρ−1 ≥ 0 when k ≥ 2 (3.28)

Because ρs = ρ0 − 2x1
s + 1

s2 , ∂ρ0
∂n = 2 and ∂x1

∂n = x1 on Sn−1, one has

∂ρs
∂n

= ρs + 1 − 1
s2 on Sn−1 (3.29)

Proof of Conjecture 3.37 when k = 2, cf. [FS13]. Because of (3.26),

V (∂Σ, gp) =
( 1
s2 − 1

)ˆ
∂Σ
ρs vol0 .

Since log ρs is super-harmonic by (3.28), one has

0 ≤
ˆ

Σ
∆ log ρs =

ˆ
∂Σ

∂ log ρs
∂n

=

ˆ
∂Σ

[
1 +

(
1 − 1

s2

)
ρ−1
s

]
= V (∂Σ, g0) − V (∂Σ, gp)

Proof of Theorem 3.40. Since Conjecture 3.37 was solved when k = 2, we can sup-
pose that k > 2. It follows from (3.27) and (3.29) that for α := 1 − k

2 and s ∈ [0, 1):

0 ≥
ˆ
∂Σ

∆ραs =

ˆ
∂Σ
αρα−1

s

ρs
∂n

= 2αsk−1
ˆ
∂Σ
(s− x1)(s

2 + 1 − 2sx1)
α−1

This means that 0 ≥ α
´
∂Σ(2s− 2x1)(s2 + 1 − 2sx1)α−1 = d

dsg(s) where g(s) =´
∂Σ(s

2 + 1 − 2sx1)α, and so g is a decreasing function. One has

g(0) = V (∂Σ) ≥ lim
s→1−

g(s) =

ˆ
∂Σ
ρα1 . (3.30)

The function ρα1 is smooth on Bn except at the point p1 := (1, 0, . . . , 0) on the
boundary. In the interior of Σ, we still have ∆ρα1 ≤ 0 by (3.27). Let Bϵ be the ϵ-ball
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centred at p1, we have

0 ≤ 1
α

ˆ
Σ\Bϵ

∆ρα1 =

ˆ
∂Σ\Bϵ

ρα−1
1

∂ρ1
∂n

+

ˆ
Σ∩∂Bϵ

ρα−1
1

∂ρ1
∂ν

=: I1 + I2,

Here ν is the outward unit normal vector of Σ ∩Bϵ in Σ.
By (3.29), I1 =

´
∂Σ\Bϵ

ρα1 and so is smaller than V (∂Σ). On the other hand, the
integrand in I2 is ρα−1

1
∂ρ1
∂,ν = −ϵ2(α−1).2ϵ(1+O(ϵ)) due to boundary condition of Σ.

Therefore, one has I2 = −ωk−1(1 +O(ϵ)). We obtain the conclusion by sending ϵ
to zero.
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