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Introduction

The central objects of study of this thesis are homomorphisms between topological Zd-
actions T : X × Zd → X on a compact metric space X. A homomorphism is a continuous
surjective map φ : (X,T,Zd) → (Y, T,Zd) such that for some Zd-automorphism M ∈
GL(d,Z), we have φ ◦ Tn = TMn ◦ φ for all n ∈ Zd. This notion extends the classical
dynamical one of morphism like factor, when M is the identity and conjugacy when φ is an
invertible factor. Invertible homomorphisms, which will be called isomorphisms, are then
conjugacies of Zd-actions, up to a GL(d,Z)-transformation.

For Z-actions, isomorphisms are nothing else than flip-conjugacies, i.e., homeomor-
phisms φ such that φ ◦ T is equal to T ◦ φ or T−1 ◦ φ. Factors and conjugacies are referred
to as endomorphisms and automorphisms, respectively when the dynamical systems are
the same. While endomorphisms represent a kind of internal symmetries in the system,
such as permutations, homomorphisms represent furthermore symmetries of the orbits,
such as rotations and reflections. That is why they are also sometimes called extended
symmetries (see for example [6, 10, 20, 21]). From an algebraic point of view, while the
automorphism group is the centralizer of the action group 〈T 〉 in the group Homeo(X) of
self-homeomorphisms in X, the isomorphism group is the normalizer of the action group
〈T 〉 in Homeo(X), that is, the set of self-homeomorphisms φ such that φ〈T 〉φ−1 = 〈T 〉.

The study of homomorphisms of a dynamical system (X,T,Zd) is a classical problem.
The elements in the group 〈T 〉 generated by the action are automorphisms of the system,
hence the automorphism group is always nonempty. However the existence of homomor-
phisms for a particular matrix M ∈ GL(d,Z) is generally an open problem. Classical
questions concern their dynamical and algebraic properties in relation with the dynamical
ones of (X,T,Zd). The description for these isomorphisms of their possible subgroups,
their quotients, their amenability or their action on the T -invariant measures depending
on the properties of (X,T,Zd) are natural problems. In a general context these questions
are widely open. Another classical question is the determination of topological factors of
a particular system. Their explicit description can be used to unravel the structure of the
system. For certain aspects, they carry relevant information and enable to do concrete
calculations or to study some specific structures (for example in spectral theory [37]).

The study of isomorphisms of the particular class of minimal systems where X is a
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Cantor set is motivated by algebraic reasons. Indeed, to any Z-minimal Cantor system
(X,T,Z) there is an associated countable group called the topological full group and denoted
by [[T ]]. The elements of this group are self-homeomorphisms of the spaceX that are locally
power of the transformation T . Homomorphisms of the system (X,T,Z) induce group
homomorphisms in [[T ]]. Conversely, the topological full group is a complete invariant
of flip-conjugacy [59]. It appears such full groups [[T ]] present remarkable properties. H.
Matui proved in [87] that its commutator subgroup is simple. Moreover, he also showed that
this group is finitely generated if and only if (X,T,Z) is conjugated to a minimal subshift.
Thus, these groups enable to construct finitely generated simple ones with unexpected
algebraic properties. For instance any topological full group is amenable [72], giving the
first examples of finitely generated simple groups in this class. Using isomorphisms of some
low complexity Z-subshifts (namely linearly recurrent ones with arbitrarily long palindromic
words like the substitutive Fibonacci subshift) V. Nekrashevych in [92] succeed to construct
with full groups a finitely generated simple group with intermediate growth, i.e., which is
neither of polynomial nor of exponential growth. Moreover it is of Burnside type, that is,
an infinite group where each element is periodic.

Another motivation for the study of isomorphisms comes from theoretical physics. The
discovery in 1984 by D. Schechtman et.al. [105] of a metal alloy structure similar to
ideal crystal ones deeply influenced the study of multidimensional aperiodic structure.
This alloy presented a discrete diffraction pattern, like for crystals, but had a five-fold
rotational symmetry which is forbidden for ideal crystals. The term quasicrystal was then
invented to describe these new classes of crystals with “forbidden” symmetry, although
there is little agreement on the precise definition of a quasicrystal. Roughly speaking, a
quasicrystal is a solid, which exhibits sharp bright spots (called Bragg peaks) in their X-ray
diffraction pattern but has an aperiodic structure (usually manifested by the presence of a
non-quasicrystallographic symmetry). The presence of Bragg peaks indicates the presence
of “long-range order” in the structure (see [83]). This work earned D. Schechtman the
Wolf Prize in Physics in 1999 and the Nobel Prize in Chemistry in 2011. One can assume
that (at least approximately) a quasicrystal consists of atoms located at the vertices of
an almost periodic tiling. It is possible to recover quantitative physical properties by
studying a dynamical system associated with the tiling. Such systems were first introduced
by D. Rudolph in [102]. Since then, a series of articles are devoted to their study (see
[8, 55, 100, 106] for an extensive bibliography on this subject). The diffraction pattern is
then essentially the point spectrum of the corresponding translation action [83]. Moreover
its symmetries are reflected by the isomorphisms of its dynamical system [98]. In 1982,
A. Mackay [85] published the diffraction pattern of a tiling created by R. Penrose several
years before [95], which has very similarities with the ones discovered by D. Schechtman.
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Figure 1: The quasicrystal diffraction images appearing in the original article of D. Shecht-
man et.al. [105]

Figure 2: The diffraction pattern of the Penrose tiling as it appears in the original article
of A. Mackay [85]

The Penrose tiling is then a good mathematical model of quasicrystals. It is build
with only 2 tiles, up to rotations and translations. The generation of patterns is obtained
by means of an algorithmic method so-called substitution. Roughly speaking, this process



10

consists in substituting tiles by a union of tiles and applying the same rule to this new
pattern. Such construction provides, at the limit, most of the simplest aperiodic tilings, in
the sense that they have the lowest complexity [80].

Another interesting property of the Penrose tiling, meaningful in the crystallographic
context of short range interaction, is that all the allowed tilings of the associated system
are the ones verifying a finite set of local rules. This is a geometrical analogue of one-
dimensional subshifts of finite type. However as a difference with one-dimensional subshifts
of finite type that always contains periodic points, Penrose tiling system is aperiodic. This
highlights a fundamental difference between the one and two dimensional combinatorial
properties which are linked with logic and computability. The seminal work of H. Wang
[112] already established relation between decidability of certain first-order logic formulas
and domino problems. His student R. Berger [12] showed the undecidability of the domino
problem by exhibiting a (huge) family of tiles with adjancies rules, called Wang tiles,
allowing only aperiodic tilings. Later, this example was simplified by R. Robinson [101]
with 20 Wang tiles (5 up to rotation and reflection). More recently by E. Jeandel and M.
Rao [71] provided a similar example with only 11 Wang tiles, and showed it is the optimal
bound. A powerful method to generate aperiodic Wang tiles is through the use of so-called
constant-shape substitution, where the shape of the image of tiles are the same. The result
of S. Mozes [90] illustrates this procedure giving sufficient conditions for a (constant-shape)
substitutive subshift to be a factor of a subshift of finite type. Let us also mention that both
examples of R. Robinson and Jeandel-Rao contain minimal systems that are substitutive
subshifts [56, 79].

Figure 3: The five basic Robinson tiles (up to rotation and reflection).

Motivated by all these reasons, in this thesis we will focus on the study of homomor-
phisms between some specific multidimensional subshifts: the substitutive ones, generated
by multidimensional constant-shape substitutions. Let us recall some historical results,
first in the one-dimensional context. For Z-actions, isomorphisms are closely related with
automorphisms. They are the same, or the isomorphism group is an index-2 group exten-
sion of the automorphism group. So most of the properties of isomorphisms can be deduced
by these ones. Automorphisms of symbolic systems present rigidity properties already in
the one-dimensional case. For instance, the famous Curtis-Hedlund-Lyndon theorem [65],
ensures that any factor between subshifts is a sliding block code or an cellular automata.
Actually, homomorphisms are also induced by local maps, but the center changed according
to the matrix of the homomorphism (Theorem 1.9). This shows both the automorphism
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group and the isomorphism group of a subshift are countable and discrete subgroups on
the group of self-homeomorphisms of the phase space.

The automorphism group of symbolic systems was initially studied for subshifts of
finite type by G. Hedlund in [65]. This group is infinitely generated and is very large. It
contains all the finite ones, free groups, the direct sum of a countable number of copies
of Z, any countable collection of finite groups, etc. In particular it is not an amenable
group. However, it is residually finite, so does not contain divisible groups (like Q) or
the infinite symmetric group [18, 74]. Nevertheless, there is still no general description
of the automorphism group for a given subshift nor of their generators. For example,
whether the automorphism groups of the two-letter full-shift and the three-letter full-shift
are algebraically isomorphic is still an open problem.

Large complexity is not enough to have a large automorphism group. In [19, 40] the
authors gave a family of Toeplitz subshifts with arbitrarily large positive entropy with triv-
ial automorphism group. Also, the size of the automorphism group imposes no restrictions
on the entropy as shown in [40]. A large class of infinite finitely generated abelian groups
can be realized as the automorphism group of arbitrarily large or zero entropy Toeplitz
subshift.

At the opposite, low complexity of the subshift restricts algebraic properties of the
automorphism group. In [31, 33, 39] it was proved the automorphism group is virtually Z
for minimal subshifts with non super-linear complexity, i.e., such that lim inf

n→∞
pX(n)/n <∞

where pX(n) denote the number of words of length n. This hypothesis implies the subshift
has finitely many asymptotic pairs, i.e., two different points x, y ∈ X with a common past.
The strategy in [39] is based under the property that automorphisms permutes asymptotic
pairs and non super-linear complexity subshifts have a finite number of asymptotic pairs.
For higher complexity subshifts, the growth rate of the automorphism group is bounded by
the complexity of the subshift, In particular it is amenable for a large class of zero entropy
subshift as proved in [35, 36]. Beyond quantitative properties, other algebraic restrictions
do exist for zero-entropy subshifts. For example, in [32] was provided the first examples
of countable groups that cannot embed (as the Baumslag-Solitar groups BS(1, n)) into the
automorphism group of any zero-entropy subshift. But there still some countable groups,
such as the discrete Heisenberg group, that it is not known whether they can embed into
the automorphism group of a one-dimensional subshift.

Let us recall some examples of subshifts having a non trivial isomorphism, i.e., that
is not an automorphism (see [10]): The full-shift, any palindromic subshift, such as, the
sturmian shifts, the period doubling shift and the Thue-Morse shift. The first one has a
huge automorphism group, not even amenable, whereas the automorphism group of the
second and third ones are trivial. The automorphism group of the last one is isomorphic
to Z ⊕ C2. These examples suggest that algebraic properties of the automorphism group
does not imply the existence of non trivial isomorphisms.

Few general results are known in the multidimensional context: In [67] M. Hochman
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proved that most of the one-dimensional properties of the automorphism group are pre-
served for the class of subshifts of finite type with positive entropy. Nevertheless, he
presented a remarkable example: A subshift of finite type with automorphism group iso-
morphic to Z2⊕G, where G is locally finite and factors onto a virtually simple group. This
is in contrast to the one-dimensional setting, where the group has to be residually finite.
Isomorphisms of the chair tiling has been studied in [10]. It appears its automorphism
group is trivial and its isomorphism group is a semi-direct product of Z2 by the symmetry
group of the square.

The study of automorphisms is also a classical subject in the context of ergodic theory.
In the measure-theoretic framework we consider (X,µ, T,Z), where (X,F , µ) is a standard
probability space, T represent the action generated by a measure-preserving transformation
and automorphism are defined almost everywhere and preserved the measure µ. Let us
recall some important results (we refer the reader to [52] for an overview of this theme). D.
Ornstein [93] proved that a mixing rank one dynamical system has a trivial (measurable)
automorphism group. Later, A. del Junco [38] showed that the example given by Chacon
[25], also has this property. Then, J. King and J.-P. Thouvenot [76] proved that for mixing
systems of finite rank, its measurable automorphism group is virtually Z.

In the class of substitutive subshifts, homomorphisms have presented stronger rigidity
properties than the ones mentioned above. Let us make a brief description of substitutions.
These are combinatorial objects which produce infinite sequences by an iteration process.
Their deep understanding took several decades. We refer [53, 97] for extensive bibliogra-
phies on the earlier developments of the subject. Using the shift as the action on these
infinite sequences, we obtain the substitutive subshifts, which are the simplest nontrivial
zero-entropy symbolic systems. They were introduced by W.H. Gottschalk in [60]. Their
simplicity makes them appear in many different fields of mathematics, such as, combina-
torics on words (see [13]), number theory (especially in transcendental number theory [1]),
numeration systems (see [26]), diophantine approximations (see [2]), and computer science
(especially automata theory [3]).

B. Host and F. Parreau in [69] gave a complete description of factors between sub-
shifts arising from certain constant-length substitutions like for instance the Thue-Morse
substitution defined by 0 7→ 01, 1 7→ 10. They proved that any measurable factor in-
duces a continuous one, and the automorphism group is isomorphic to a direct product
of Z with a finite group. Moreover, any finite group can be realized as a quotient group
Aut(X,S,Z)/ 〈S〉 for these subshifts as proved by M. Lemańczyk and M. K. Mentzen in
[82]. Later, I. Fagnot [51] proved that the problem of whether there exists a factor map
between two constant-length substitutions subshifts is decidable, using the first-order logic
framework of Presburger arithmetic. Some years later, F. Durand in [45] showed that
linearly recurrent subshifts (in particular substitutive subshifts) have finitely many sub-
shift factors, up to conjugacy. Also in [45] it was proved that topological Cantor factors
of substitutive subshifts are either substitutive subshifts or odometer systems. V. Salo
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and I. Törmä provided in [103] a renormalization process of the factor maps to extend
the description obtained in [69]. Next, C. Müllner and R. Yassawi [91] demonstrated that
any aperiodic symbolic factor of a constant-length substitutive subshift is conjugated via
a letter-to-letter map to a constant-length substitutive subshift. More recently, F. Durand
and J. Leroy [50] showed the decidability of the existence problem of a factor map between
two minimal substitutive subshifts.

Presentation of main results

In this thesis, we study homomorphisms between multidimensional substitutive subshifts
generated by constant-shape substitutions. In our context, L ∈ M(d,Z) is an integer ex-
pansion matrix, i.e, ‖L‖ > 1 and ‖L−1‖ < 1. A constant-shape substitution ζ is a map
A → AF , where A is a finite alphabet and F is a fundamental domain of L(Zd) in Zd. The
set F is called the support of the substitution. Constant-shape substitutions are a multi-
dimensional analogue of one-dimensional constant-length substitutions. Here the “length”
of the substitution is represented by the expansion matrix L. For every n > 0, any inter-
ation ζn of the substitutions can also be obtained by a constant-shape substitution, with
expansion matrix Ln and support Fn. At the differences with the one-dimensional case,
these substitutions may not be linearly recurrent (Example 3.6), and can have topological
Cantor factors that are neither expansive nor equicontinuous (Example 4.3). Some known
results of the one-dimensional case are still preserved for these constant-shape substitu-
tions, such as, they are finite extensions of a specific odometer system given by the data
of the substitution (Lemma 3.9) and their maximal equicontinuous factors have a similar
structure to the one-dimensional case (Proposition 3.15).

In [21] the authors studied isomorphisms, called extended symmetries, for a class of con-
stant shape substitutions, called bijective block substitutions. A constant-shape substitution
is bijective if for any index f ∈ F we have |{ζ(a)f : a ∈ A}| = |A|. Block substitutions
are constant-shape substitutions with diagonal expansion matrix and a parallelepiped sup-
port. The authors proved in [21] that the set of matrices which define isomorphisms is a
finite group. Although it is not proved in the article, it can be deduced that the group of
isomorphisms is virtually generated by the shift action.

We extend the study of homomorphisms, by describing the isomorphism group for
general constant-shape substitutions. As a difference with [21], our strategy is by describing
the set of nondeterministic directions (Theorem 5.2). The matrices defining isomorphisms
preserve the set of nondeterministic directions (Proposition 1.12). A vector v ∈ Sd−1 is said
to be nondeterministic for the subshift (X,S,Zd) if there is two different points x 6= y ∈ X
such that are equal in the half-space Hv = {t ∈ Rd : 〈t,v〉 < 0}. This is a multidimensional
analogue of asymptotic pairs [39]. Nondeterministic directions were introduced in [17] with
the notion of nonexpansive subspaces to study sub-actions of a given Zd-action, for d > 1.
This notion appears to be meaningful in symbolic dynamics: As an example let us mention
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[34] in which these objects were used to prove a weak version of Nivat’s conjecture.
We give a description of the set of nondeterministic directions for bijective constant-

shape substitutions.

Theorem A (Theorem 5.2). Let ζ be an aperiodic bijective primitive constant-shape
substitution. The set of nondeterministic directions of its substitutive subshift is the in-
tersection of Sd−1 with a nonempty union of limits of opposite normal cones of faces of the
convex hull support of ζn, for integers n > 0.

This theorem gives topological constraints on the set of nondeterministic directions
for bijective substitutions. Under geometrical conditions of the support we get stronger
properties about nondeterministic directions. A bijective constant-shape substitution is
polytope when the convex hull of the compact set defined as the limit of L−n(Fn) (called
digit tile), with respect to the Hausdorff metric (see Section 1.7), is a polytope. In this
case the set of nondeterministic directions is much more restricted: it is a finite union of
closed balls (eventually degenerated). For instance, in the two-dimensional case it cannot
be a Cantor set (Corollary 5.3). In contrast with the result of M. Boyle and D. Lind in
[17] and M. Hochman in [68], where they proved any compact set of S1 can be realized
as the set of nonexpansive directions of a subshift. The work in this thesis gives the first
descriptions of the set of nondeterministic directions for minimal Zd-actions.

When the rank of nondeterministic directions is maximal, thanks to the former descrip-
tion, we get the following constraints on the homomorphisms of substitutive subshifts.

Theorem B (Proposition 5.15 and Theorem 5.17). Let ζ be an aperiodic bijective primitive
polytope substitution. If the substitutive subshift (Xζ , S,Zd) has d linearly independent
nondeterministic directions, then:

1. Any homomorphism on the substitutive subshift (Xζ , S,Zd) is invertible.

2. The group of isomorphisms is virtually generated by the shift action.

Block substitutions are particular cases of polytope substitutions and it can be easily
to check it satisfies the hypothesis on the rank of the set of nondeterministic directions, so
Theorem B generalizes the ones in [21]. Actually we can relax the notion of bijectivity by
the one called bijective on extremities (see Chapter 5) and reducibility (see Chapter 4) and
is enough to keep the same conclusion. This hypothesis of reducibility is almost optimal
because we provide in Chapter 6 an example of a constant-shape substitutive subshift with
an infinite set of matrices defining isomorphisms.

The hypothesis on the rank of the set of nondeterministic directions is weak since we
didn’t know a substitution that does not satisfy it. We provide an algorithm to check if this
hypothesis is satisfied (Lemma 5.12). Furthermore, given the result in [63], the hypothesis
is true for a generic family of two-dimensional bijective constant-shape substitutions. In a
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private communication, P. Guillon [62] mentioned this result was already proved for higher
dimensions, but nowhere published.

To get Theorem B, we need some control on the block maps defining the isomorphisms.
For this, we follow the strategy of B. Host and F. Parreau in [69]. Moreover we also get
a strong rigidity property when the matrices commute with the expansion matrix of the
substitution. Recall that substitutive subshifts are uniquely ergodic, so any continuous
endomorphism induces a measurable one. We provide a partial converse:

Theorem C (Theorem 4.1, simplified version). Let (Xζ , S,Zd) be a subshift generated
by an aperiodic, primitive reduced constant-shape substitution. For every measurable
endomorphism φ, there exists j ∈ Zd such that Sjφ is equal to a continuous endomorphism
ψ, satisfying the following two properties:

1. The endomorphism ψ has a bounded radius given by the substitution.

2. There exist an integer n > 0 and p ∈ Zd such that, Spψζn1 = ζn2 ψ.

Theorem C implies that, under reduciblity, any measurable endomorphism induced
a continuous one. In fact, we prove the set of measurable endomorphisms is countable.
Theorem C is a multidimensional analogue of the one proved by B. Host and F. Parreau
in [69].

Counterexamples of Theorem C are provided by substitutive subshifts that are metri-
cally isomorphic to their maximal equicontinuous factors. This occurs when a substitution
has a combinatorial condition called coincidence [97] (see Example 4.3). The set of mea-
surable endomorphisms of odometer systems is then uncountable and any element of the
odometer system represent a measurable endomorphism via addition. So, as in the original
article [69], reducibility is an optimal hypothesis for Theorem C.

We then get some dynamical consequence of Theorem C. Under the reducibility con-
dition, the substitutive subshifts are coalescent (Proposition 4.7), i.e., any endomorphism
on the substitutive subshift is invertible. This was already known for linearly recurrent
subshifts, first in the one-dimensional case in [45], then in higher dimensions in [29].

The chair tiling (see [10]) and the half-hex substitutive subshifts, studied in Chapter 6,
are examples of substitutive subshifts having a coincidence. Hence their measurable endo-
morphisms form an uncountable set. Nevertheless both examples are coalescent and their
automorphism groups are virtually generated by the shift action. Outside the reducibility
condition, we do not know whether all aperiodic substitutive subshifts satisfy these last
properties.

The half-hex substitutive subshift, mentioned before, does not satisfy neither the hy-
pothesis of Theorem C nor Theorem B. Nevertheless we are able to describe its maximal
equicontinuous factor and characterize its isomorphisms. The symmetry group of a subshift
is the set of matrices M ∈ GL(d,Z) defininig an isomorphism. Thanks to this example we
get the following result.
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Theorem D (Theorem 6.3). There exists a minimal aperiodic subshift (in fact a substi-
tutive one) with an infinite symmetry group.

More precisely, the isomorphism group of the half-hex substitutive subshift is isomor-
phic to a semidirect product between Z2 and GL(2,Z), so its symmetry group is the largest
possible. Subshifts with infinite symmetry groups have been found before, as in [7], study-
ing their relation with topological entropy. But these examples are far from being minimal.

Finally, concerning the factors of substitutive subshifts we have the following charac-
terization.

Theorem E (Theorem 3.22). Let (Y, S,Zd) be an aperiodic symbolic factor of a subshift
generated by an aperiodic primitive constant-shape substitution ζ. Then, there exists an
aperiodic primitive constant-shape substitution ζ ′, with the same structure of a power of
ζ, generating a system (Xζ′ , S,Zd) conjugated to the symbolic factor (Y, S,Zd).

This is a multidimensional analogue of a result proved by C. Müllner and R. Yassawi
[91] for the one-dimensional case, which is a refinement of a result proved in [48]. This
result leaves open what can be said about other topological Cantor factors of substitutive
subshifts. Example 4.3 gives a substitutive subshift with a Cantor topological factor that
is neither expansive nor equicontinuous. Also Example 4.3 has a symbolic factor with a
non-trivial period and an infinite phase space. This is in contrast with the one-dimensional
dichotomy proved in [45].

Theorem A,Theorem B, Theorem C and Theorem E are published in [22].

Organization of this thesis

This thesis is organized as follows. The basic definitions and background to be used
throughout this thesis are introduced in Chapter 1. We recall some classical notions of
topological dynamical systems, ergodic theory and symbolic dynamics. We develop the
relation between homomorphisms and topological factors of dynamical systems. Then, we
present the example of odometer systems and Toeplitz subshifts. We obtain a characteri-
zation to define a homomorphism between odometers. We finish this chapter with a brief
survey of multidimensional constant-shape substitutions, which is where we mainly study
the homomorphisms.

In Chapter 2, we study the symmetry semigroup of two-dimensional constant-base
odometer systems given by a matrix L. In this case, we get a description of a bifurca-
tion phenomenon at the level of the symmetry semigroup with respect to arithmetical
relations of invariants of the matrix L. The main theorem (Theorem 2.2) shows in most
cases the symmetry semigroup is the centralizer of the matrix L. This will help to get a
characterization of the isomorphism semigroup of aperiodic primitive constant-shape sub-
stitutions using the relation between homomorphisms and their maximal equicontinuous
factors (Lemma 1.7).
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The main result in Chapter 3 is the characterization about aperiodic symbolic factors of
substitutive subshifts given by an aperiodic, primitive constant-shape substitution. They
are conjugate to substitutive subshifts generated by aperiodic primitive constant-shape
substitutions (Theorem E). Substitutive subshifts are not necessarily linearly repetitive
(Example 3.6). Nevertheless, we prove a polynomial growth on the repetitivity function
for constant-shape substitutions (Lemma 3.7).

Chapter 4 is devoted to prove rigidity properties about measurable factors and ho-
momorphisms between substitutive subshifts (Theorem C). Then, we deduce that these
substitutive subshifts are coalescent (Proposition 4.7) and their automorphism group is
virtually generated by the shift action (Proposition 4.8).

In Chapter 5 we describe the isomorphism group for general constant-shape substitu-
tions. We prove it is virtually generated by the shift action (Theorem B). To do this,
we relate the symmetry group with different types of supports of the substitution and
non-diagonal expansion matrices, via the nondeterministic directions. We characterize
the nondeterministic directions through the digit tile for some weaker version of bijective
substitutions (Theorem A). Moreover, these directions are computable in terms of the
combinatorics of the substitution (Corollary 5.13).

Finally, in Chapter 6 we characterize the isomorphism group for two examples of
constant-shape substitutions. The first one, called table substitution, satisfied the hy-
pothesis of the results in Chapter 4 and Chapter 5. The second example does not satisfy
the hypothesis for the previous results. Nevertheless, a description of its isomorphism
group is provided by Theorem D.
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Résumé

Cette thèse traite des homomorphismes entre des Zd-actions topologiques T : X×Zd → X
sur des espaces métriques compacts X. Un homomorphisme est une surjection continue φ :
(X,T,Zd)→ (Y, T,Zd) telle que pour un Zd-automorphisme M ∈ GL(d,Z), on ait φ◦Tn =
TMn◦φ pour tout n ∈ Zd. Cette notion étend le concept de facteur, lorsque M est l’identité
et de conjugaison lorsque φ est un facteur inversible. Les isomorphismes (homomorphismes
inversibles) sont alors des conjugaisons de Zd-actions, à une transformation de GL(d,Z)
près.

Pour les Z-actions, les isomorphismes sont des flip-conjugaisons, c’est-à-dire des
homéomorphismes φ tels que φ ◦ T est égal à T ◦ φ ou T−1 ◦ φ. Les facteurs et les
conjugaisons sont appelés respectivement endomorphismes et automorphismes lorsque les
systèmes dynamiques sont identiques. Alors que les endomorphismes représentent une sorte
de symétrie interne du système, comme les permutations, les homomorphismes représentent
en plus des symétries des orbites, comme les rotations et les réflexions. C’est pourquoi ils
sont aussi parfois appelés symétries étendues (voir par exemple [6, 10, 20, 21]). D’un point
de vue algébrique, alors que le groupe d’automorphisme est le centralisateur du groupe
d’action 〈T 〉 dans le groupe Homeo(X) des homéorphismes de X, le groupe d’isomorphisme
est le normalisateur du groupe d’action 〈T 〉 dans Homeo(X), c’est-à-dire l’ensemble des
homéorphismes φ tels que φ〈T 〉φ−1 = 〈T 〉.

L’étude des homomorphismes d’un système dynamique (X,T,Zd) est un problème clas-
sique. Les éléments du groupe 〈T 〉 engendré par l’action sont des automorphismes du
système. Le groupe d’automorphisme est donc toujours non-vide. Cependant, l’existence
d’homomorphismes pour une matrice particulière M ∈ GL(d,Z) est généralement un
problème ouvert. Les questions classiques concernent leurs propriétés dynamiques et
algébriques en relation avec la dynamique de (X,T,Zd). La description pour ces isomor-
phismes de leurs sous-groupes, de leurs quotients, de leur moyennabilité ou de leur action
sur les mesures invariantes de l’action 〈T 〉 en fonction des propriétés de (X,T,Zd) sont des
problèmes naturels. Dans un contexte général, ces questions sont largement ouvertes. Une
autre question classique est la détermination des facteurs topologiques d’un système par-
ticulier. Leur description explicite peut être utilisée pour décrire la structure du système.
Par certains aspects, ils contiennent des informations pertinentes et permettent de faire
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des calculs concrets ou d’étudier certaines structures spécifiques (par exemple en théorie
spectrale [37]).

L’étude des isomorphismes de la classe particulière des systèmes minimaux où X est un
ensemble de Cantor est motivée par des raisons algébriques. En effet, à tout système mini-
mal de Cantor (X,T,Z) il existe un groupe dénombrable associé appelé groupe topologique
plein et noté [[T ]]. Les éléments de ce groupe sont des homéomorphismes de l’espace X qui
sont localement des puissances de la transformation T . Les homomorphismes du système
(X,T,Z) induisent des homomorphismes de groupe dans [[T ]]. Réciproquement, le groupe
topologique plein est un invariant complet de flip-conjugaison [59]. Il apparâıt que de tels
groupes pleins [[T ]] présentent des propriétés remarquables. H. Matui a prouvé dans [87]
que son sous-groupe dérivé est simple. De plus, il a également montré que ce groupe est
finiment engendré si et seulement si (X,T,Z) est conjugué à un sous-shift minimal. Ainsi,
ces groupes permettent de construire des groupes simples finiment engendrés avec des pro-
priétés algébriques inattendues. Par exemple, tout groupe topologique plein est moyennable
[72], ce qui donne les premiers exemples de groupes simples finiment engendrés dans cette
classe. En utilisant les isomorphismes de certains sous-shifts de complexité faible (à savoir
les sous-shifts linéairement récurrentes avec des mots palindromiques arbitrairement longs
comme le sous-shift substitutive de Fibonacci), V. Nekrashevych dans [92] réussit à con-
struire avec les groupes pleins un groupe simple finiment engendré avec une croissance
intermédiaire, c’est-à-dire qui n’est ni de croissance polynomiale ni de croissance exponen-
tielle. De plus il est de type Burnside, c’est-à-dire un groupe infini où chaque élément est
périodique.

Une autre motivation pour l’étude des isomorphismes provient de la physique théorique.
La découverte en 1984 par D. Schechtman et.al. [105] d’une structure d’alliage métallique
similaire à celle des cristaux idéaux a profondément influencé l’étude de la structure
apériodique multidimensionnelle. Cet alliage présentait un diagramme de diffraction dis-
cret, comme les cristaux, mais avait une symétrie rotationnelle d’ordre 5, ce qui est interdit
pour les cristaux idéaux. Le terme quasi-cristal a alors été inventé pour décrire ces nouvelles
classes de cristaux avec des symétries “interdites”, s’il n’y a pas consensus sur la définition
précise d’un quasi-cristal. En substance, un quasi-cristal est un solide qui présente des
points brillants nets (appelés pics de Bragg) dans son diagramme de diffraction aux rayons
X, mais qui a une structure apériodique généralement manifestée par la présence d’une
symétrie non-quasi-cristallogique. La présence de pics de Bragg indique la présence d’un
“ordre à longue portée” dans la structure (voir [83]). Ces travaux ont valu à D. Schechtman
le prix Wolf de physique en 1999 et le prix Nobel de chimie en 2011. On peut supposer que
(au moins approximativement) un quasi-cristal est constitué d’atomes situés aux sommets
d’un pavage presque périodique. Il est possible de retrouver des propriétés physiques quan-
titatives en étudiant un système dynamique associé au pavage. De tels systèmes ont été
présentés pour la première fois par D. Rudolph dans [102]. Dès lors, une série d’articles ont
été consacrés à leur étude (voir [8, 55, 100, 106] pour une vaste bibliographie sur ce sujet).
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Le diagramme de diffraction est alors essentiellement le spectre ponctuel de l’action de
translation correspondante [83]. De plus, ses symétries sont reflétées par les isomorphismes
de son système dynamique [98]. En 1982, A. Mackay [85] a publié le schéma de diffraction
d’un pavage créé par R. Penrose quelques années plus tôt [95], qui présente de grandes
similitudes avec ceux découverts par D. Schechtman (voir figure 1 et figure 2).

Le pavage de Penrose est alors un bon modèle mathématique de quasi-cristaux. Il est
construit avec seulement 2 tuiles, aux rotations et translations près. La génération des
motifs est obtenue par une méthode algorithmique appelé substitution. Cette procédure
consiste à substituer des tuiles par une union de tuiles et appliquer la même règle à ce
nouveau motif. En itérant ce processus ad infinitum, cette construction fournit la plupart
des pavages apériodiques les plus simples, dans le sens où ils ont la plus faible complexité
possible [80].

Une autre propriété intéressante du pavage de Penrose, est que tous les pavages au-
torisés du système associé sont ceux qui vérifient un ensemble fini de règles locales. C’est
l’analogue géométrique des sous-shifts de type fini unidimensionnels. Cependant, le système
de pavage de Penrose est apériodique, à l’opposé des sous-shifts de type fini unidimension-
nelles qui contiennent toujours des points périodiques. Cela met en évidence une différence
fondamentale entre les propriétés combinatoires unidimensionnelles et bidimensionnelles
qui sont liées à la logique et à la calculabilité. Le travail fondateur de H. Wang [112] a
déjà établi une relation entre la décidabilité de certaines formules de la logique du premier
ordre et les problèmes de domino. Son étudiant R. Berger [12] a montré l’indécidabilité du
problème de domino en exposant une énorme famille de tuiles avec des règles d’adjacence,
appelées tuiles de Wang, ne permettant que des pavages apériodiques. Plus tard, cet ex-
emple a été simplifié par R. Robinson [101] avec 20 tuiles de Wang (5 à rotation près).
Plus récemment, E. Jeandel et M. Rao [71] ont fourni un exemple similaire avec seulement
11 tuiles de Wang et ont montré que c’est la borne optimale. Une méthode puissante pour
générer des tuiles de Wang apériodiques est l’utilisation de ce que l’on appelle substitution
de forme constante, où la forme de l’image des tuiles est la même. Le résultat de S. Mozes
[90] illustre cette procédure en donnant des conditions suffisantes pour qu’un sous-shift
substitutif (de forme constante) soit un facteur d’un sous-shift de type fini. Nous men-
tionnons également que les deux exemples de R. Robinson et Jeandel-Rao contiennent des
sous-shifts substitutifs minimaux [56, 79].

Motivés par toutes ces raisons, nous nous concentrerons dans cette thèse sur l’étude
des homomorphismes entre certains sous-shifts spécifiques: les substitutifs, générés par
des substitutions multidimensionnelles de forme constante. Rappelons quelques résultats
historiques dans le contexte unidimensionnel. Pour les Z-actions, les isomorphismes sont
étroitement liés aux automorphismes. Le groupe d’isomorphisme est une extension de
groupe d’indice au plus 2 du groupe d’automorphisme. Ainsi, la plupart des propriétés
des isomorphismes peuvent être déduites de celles-ci. Les automorphismes des systèmes
symboliques présentent des propriétés de rigidité déjà dans le cas unidimensionnel. Par
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exemple, le célèbre théorème de Curtis-Hedlund-Lyndon [65] assure que tout facteur entre
sous-shifts est un fonction de bloc glissant ou un automate cellulaire. En fait, les homomor-
phismes sont aussi induits par des fonctions locales, mais le centre change selon la matrice
de l’homomorphisme (théorème 1.9). Cela montre que le groupe d’automorphisme et le
groupe d’isomorphisme d’un sous-shift sont des sous-groupes dénombrables, discrets dans
le groupe des homéomorphismes de l’espace des phases.

Le groupe d’automorphisme des systèmes symboliques a été initialement étudié pour
les sous-shifts de type fini par G. Hedlund dans [65]. Ce groupe est infiniment engendré
et contient de nombreux subgroupes: n’importe quel groupe fini, les groupes libres, la
somme directe d’un nombre dénombrable de copies de Z, toute collection dénombrable de
groupes finis, etc. Cependant, il est résiduellement finie, et ne contient donc pas de groupes
divisibles (comme Q) ou le groupe symétrique infini [18, 74]. Néanmoins, il n’existe pas de
description générale du groupe d’automorphisme ni de leurs générateurs pour un sous-shift
donné. Par exemple, la question de savoir si les groupes d’automorphisme du full-shifts sur
2 et 3 lettres sont algébriquement isomorphes est un problème encore ouvert.

Une grande complexité n’est pas suffisante pour avoir un grand groupe
d’automorphisme. Dans [19, 40], les auteurs ont donné une famille de sous-shifts Toeplitz
d’entropie positive arbitrairement grande presentant un groupe d’automorphisme trivial.
De plus, la taille du groupe d’automorphisme n’impose aucune restriction sur l’entropie,
comme prouvé dans [40]. Une grande classe de groupes abéliens infinis finiment engendrés
peut être réalisée comme le groupe d’automorphisme d’un sous-shift Toeplitz d’entropie
arbitrairement grande ou nulle.

À l’inverse, la complexité faible du sous-shift restreint les propriétés algébriques du
groupe d’automorphisme. Il est prouvé dans [31, 33, 39] que le groupe d’automorphisme
est virtuellement Z pour les sous-shifts minimaux de complexité non superlinéaire, c’est-
à-dire tels que lim inf

n→∞
pX(n)/n <∞ où pX(n) correspond au nombre de mots de longueur

n. Deux suites différents x, y ∈ X sont dites asymptotiques lorsqu’elles ont le même passé.
La stratégie de [39] est basée sur la propriété que les automorphismes permutent les paires
asymptotiques et les sous-shifts de complexité non super-linéaire ont un nombre fini de
paires asymptotiques. Pour les sous-shifts de complexité plus élevée, le taux de croissance
du groupe d’automorphisme est limité par la complexité du sous-shift. En particulier, il
est moyennable pour une grande classe de sous-shifts à entropie nulle, comme prouvé dans
[35, 36]. Au-delà des propriétés quantitatives, d’autres restrictions algébriques existent
pour les sous-shifts à entropie nulle. Par exemple, dans [32] a été fourni les premiers exem-
ples de groupes dénombrables qui ne peuvent pas être des sous-groupes d’automorphisme
(comme les groupes de Baumslag-Solitar BS(1, n)) d’un sous-shift d’entropie nulle. Mais il
existe encore quelques groupes dénombrables, comme le groupe discret de Heisenberg, dont
on ne sait pas s’il peut être un sous-groupe du groupe d’automorphisme d’un sous-shift
unidimensionnel.

Rappelons quelques exemples de sous-shifts ayant un isomorphisme non trivial, c’est-à-
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dire qui n’est pas un automorphisme (voir [10]): le full-shift, tout sous-shift palindromique,
comme les shifts sturmien, le period-doubling sous-shift et le sous-shift de Thue-Morse. Le
premier a un énorme groupe d’automorphisme, même pas moyennable, alors que les groupes
d’automorphisme du deuxième et du troisième sont triviaux. Le groupe d’automorphisme
du dernier est isomorphe à Z⊕ C2. Ces exemples suggèrent que les propriétés algébriques
du groupe d’automorphisme n’impliquent pas l’existence d’isomorphismes non triviaux.

Il y a peu de résultat generaux existent dans le contexte multidimensionnel. Dans
[67] M. Hochman a prouvé que la plupart des propriétés unidimensionnelles des groupes
d’automorphisme sont préservées pour la classe des sous-shifts de type fini d’entropie pos-
itive. Cependant, il a présenté un exemple remarquable d’un sous-shift de type fini dont le
groupe d’automorphisme est isomorphe à Z2 ⊕ G, où G est localement fini et se factorise
sur un groupe virtuellement simple. Ceci diffère du cas unidimensionnel où le groupe doit
être résiduellement fini. Les isomorphismes du pavage de la chaise ont été étudié dans [10]
où il a été démontré que le groupe d’automorphisme est trivial et le groupe d’isomorphisme
est un produit semi-direct de Z2 pour le groupe de symétries du carré.

L’étude des homomorphismes est également un sujet classique dans le contexte de la
théorie ergodique. Dans le cadre de la théorie de la mesure, nous considérons le systèmes
dynamiques (X,µ, T,Z), où (X,F , µ) est un espace de probabilité standard, T est l’action
générée par une transformation préservant la mesure µ et les automorphismes sont définis
presque partout et préservent la mesure µ. Rappelons quelques résultats importants (nous
renvoyons le lecteur à [52] pour un aperçu de ce thème). D. Ornstein [93] a prouvé qu’un
système dynamique mélangeant de rang un possède un groupe d’automorphisme mesurable
trivial. Plus tard, A. del Junco [38] a montré que l’exemple donné par Chacon [25], possède
également cette propriété. Ensuite, J. King et J.-P. Thouvenot [76] ont prouvé que le groupe
d’automorphisme mesurable est virtuellement Z pour les systèmes mélangeant de rang fini.

Dans la famille des sous-shifts substitutifs, les homomorphismes présentent des pro-
priétés de rigidité plus fortes que celles mentionnées ci-dessus. Faisons une brève descrip-
tion des substitutions. Ce sont des objets combinatoires qui produisent des suites infinies
par un processus d’itération. Leur compréhension profonde a pris plusieurs décennies.
Nous renvoyons à [97, 53] pour des bibliographies complètes sur les sujet. En utilisant le
shift comme action sur ces suites infinies, nous obtenons les sous-shifts substitutifs, qui sont
les plus simples systèmes symboliques non triviaux d’entropie nulle. Ils ont été introduits
par W.H. Gottschalk dans [60]. Leur simplicité les fait apparâıtre dans de nombreux do-
maines des mathématiques, tels la combinatoire des mots (voir [13]), la théorie des nombres
(en particulier dans la théorie des nombres transcendants [1]), les systèmes de numération
(voir [26]), les approximations diophantiennes (voir [2]), et l’informatique (en particulier
la théorie des automates [3]).

B. Host et F. Parreau dans [69] ont donné une description complète des facteurs entre les
sous-shifts résultant de certaines substitutions de longueur constante, comme par exemple
la substitution de Thue-Morse définie par 0 7→ 01, 1 7→ 10. Ils ont prouvé que tout facteur
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mesurable induit un facteur continu, et que le groupe d’automorphisme est isomorphe à
un produit direct de Z avec un groupe fini. De plus, tout groupe fini peut être réalisé
comme un groupe quotient Aut(X,S,Z)/ 〈S〉 pour ces sous-shifts comme l’ont prouvé M.
Lemańczyk et M. K. Mentzen dans [82]. Plus tard, I. Fagnot [51] a prouvé que le problème
de savoir s’il existe une facteur entre deux sous-shifts substitutifs de longueur constante
est décidable, en utilisant le cadre de la logique du premier ordre de l’arithmétique de
Presburger. Quelques années plus tard, F. Durand dans [45] a montré que les sous-shifts
linéairement récurrents (en particulier les sous-shifts substitutifs) ont un nombre fini de
facteurs symboliques, à conjugaison près. De plus, dans [45], il a été prouvé que les facteurs
de Cantor topologiques des sous-shifts substitutifs sont soit des sous-shifts substitutifs, soit
des odomètres. V. Salo et I. Törmä ont fourni dans [103] un processus de renormalisation
des facteurs étandant la description obtenue dans [69]. Ensuite, C. Müllner et R. Yassawi
[91] ont démontré que tout facteur symbolique apériodique d’un sous-shift substitutif de
longueur constante est conjugué par une fonction lettre à lettre à un sous-shift substitutif de
longueur constante. Plus récemment, F. Durand et J. Leroy [50] ont montré la décidabilité
du problème d’existence d’une facteur entre deux sous-shifts substitutifs minimaux.

Présentation des principaux résultats

Dans cette thèse, nous étudions les homomorphismes entre les sous-shifts substitutifs mul-
tidimensionnells générées par les substitutions à forme constante. Dans notre contexte,
L ∈ M(d,Z) est une matrice d’expansion entière, c’est-à-dire ‖L‖ > 1 et ‖L−1‖ < 1. Une
substitution de forme constante est une fonction ζ : A → AF , où A est un alphabet fini et
F est un domaine fondamental de L(Zd) dans Zd. L’ensemble F est appelé le support de la
substitution. Les substitutions de forme constante sont les analogues multidimensionnels
des substitutions de longueur constante unidimensionnel. Ici, la “longueur” de la substi-
tution est représentée par la matrice d’expansion L. Pour chaque n > 0, toute itération
ζn des substitutions peut également être obtenue par une substitution de forme constante
de une matrice d’expansion Ln et de support Fn. À la différence du cas unidimensionnel,
ces substitutions peuvent ne pas être linéairement récurrentes (exemple 3.6) et peuvent
avoir des facteurs de Cantor non expansifs ni équicontinus (exemple 4.3). Des résultats
connus du cas unidimensionnel sont encore préservés pour ces substitutions de forme con-
stante: elles sont des extensions finies d’un odomètre spécifique donné par la substitution
(lemme 3.9) et leurs facteurs équicontinus maximaux ont une structure similaire au cas
unidimensionnel (proposition 3.15).

Dans [21], les auteurs ont étudié les isomorphismes, appelés symétries étendues, pour
une classe de substitutions de forme constante, appelée substitutions par blocs bijectifs. Une
substitution de forme constante est bijective si tout indice f ∈ F vérifie |{ζ(a)f : a ∈ A}| =
|A|. Les substitutions de blocs sont des substitutions de forme constante avec une matrice
d’expansion diagonale et un support parallélépipédique. Les auteurs ont prouvé dans [21]
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que l’ensemble des matrices qui définissent les isomorphismes est un groupe fini. Bien que
cela ne soit pas prouvé dans l’article, on peut en déduire que le groupe des isomorphismes
est virtuellement engendré par l’action du shift.

Nous étendons l’étude des homomorphismes en décrivant le groupe d’isomorphisme
pour les substitutions générales de forme constante. À la différence de [21], notre stratégie
consiste à décrire l’ensemble des directions non déterministes (théorème 5.2). Les matri-
ces définissant les isomorphismes préservent l’ensemble des directions non déterministes
(proposition 1.12). Un vecteur v ∈ Sd−1 est dit nondéterministe pour le sous-shift
(X,S,Zd) s’il existe deux points différents x 6= y ∈ X qui sont égaux dans le demi-espace
Hv = {t ∈ Rd : 〈t,v〉 < 0}. C’est un analogue multidimensionnel des paires asympto-
tiques [39]. Les directions non déterministes ont été introduites dans [17] avec la notion de
sous-espace non expansif pour étudier les sous-actions d’une action Zd donnée, pour d > 1.
Cette notion est important en dynamique symbolique. À titre d’exemple, mentionnons [34]
où ces objets ont été utilisés pour prouver une version faible de la conjecture de Nivat.

Nous donnons une description de l’ensemble des directions non déterministes pour les
substitutions bijectives de forme constante.

Théorème A (théorème 5.2). Soit ζ une substitution apériodique bijective primitive de
forme constante. L’ensemble des directions non déterministes de son sous-shift substitutif
est l’intersection de Sd−1 avec une union non vide des limites des cônes normaux des faces
de l’enveloppe convexe du support de ζn, pour les entiers n > 0.

Ce théorème donne des contraintes topologiques sur l’ensemble des directions non
déterministes pour les substitutions bijectives. Sous des conditions géométriques du sup-
port, nous obtenons des propriétés plus fortes sur les directions non déterministes. Une
substitution bijective de forme constante est polytope si l’enveloppe convexe de l’ensemble
limite de L−n(Fn) (appelé digit tile, voir la section 1.7) est un polytope. Dans ce cas,
l’ensemble des directions non déterministes est beaucoup plus restreint: c’est une union
finie de boules fermées (éventuellement dégénérées). Par exemple, dans le cas bidimension-
nel, il ne peut pas être un ensemble de Cantor (corollaire 5.3). Ceci diffère du le résultat
prouvé par M. Boyle et D. Lind [17] et M. Hochman [68]. Ils assurent que tout ensemble
compact de S1 peut être réalisé comme l’ensemble des directions non expansifs d’un sous-
shift. Le travail de cette thèse donne les premiers description de l’ensemble des directions
non déterministes pour des Zd-actions minimaux.

Lorsque le rang des directions non déterministes est maximal, grâce à la description
précédente, nous obtenons les contraintes suivantes sur les homomorphismes des sous-shifts
substitutifs.

Théorème B (proposition 5.15 et théorème 5.17). Soit ζ une substitution polytope
primitive bijective apériodique. Si le sous-shift substitutif (Xζ , S,Zd) a d directions non
déterministes linéairement indépendantes, alors:
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1. tout homomorphisme du sous-shift substitutif (Xζ , S,Zd) est inversible.

2. Le groupe d’isomorphisme est virtuellement engendré par l’action du shift.

Les substitutions de blocs sont des cas particulier des substitutions polytopes et il est
simple de vérifier qu’elles vérifient l’hypothèse sur le rang de l’ensemble des directions non
déterministes. Ainsi le théorème B généralise les résultats de [21]. En fait, nous pouvons
affaiblir la notion de bijectivité par les notions de bijectivité sur les extrémités (voir le
chapitre 5) et réductibilité (voir le chapitre 4). Cela suffit pour garder la même conclusion.
Cette hypothèse de réductibilité est presque optimale car nous fournissons dans l’exemple
6 un exemple de sous-shift substitutif de forme constante dont l’ensemble des matrices
définissant les isomorphismes est infini.

L’hypothèse sur le rang de l’ensemble des directions non déterministes est faible puisque
nous ne connaissions pas de substitution qui ne la satisfasse pas. Nous fournissons un algo-
rithme pour vérifier si cette hypothèse est satisfaite (lemme 5.12). De plus, par le résultat
dans [63], cette hypothèse est vérifiée pour une famille générique de substitutions bijectives
de forme constante bidimensionnelles. Dans une communication privée, P. Guillon [62] a
mentionné que ce résultat étant également pour les dimensions supérieures. Malheureuse-
ment la preuve n’a jamais été publié.

Pour obtenir le théorème B, nous avons besoin d’un certain contrôle sur les fonctions de
blocs définissant les isomorphismes. Pour cela, nous suivons la stratégie de B. Host et F.
Parreau dans [69]. Nous obtenons également une propriété remarquable de rigidité lorsque
les matrices commuent avec la matrice d’expansion de la substitution. Nous rappelons que
les sous-shifts substitutifs sont uniquement ergodiques, donc tout endomorphisme continu
induit un endomorphisme mesurable. Nous fournissons une réciproque partielle.

Théorème C (théorème 4.1, version simplifiée). Soit (Xζ , S,Zd) un sous-shift généré par
une substitution apériodique primitive de forme constante. Pour tout endomorphisme
mesurable φ, il existe j ∈ Zd tel que Sjφ est égal à un endomorphisme continu ψ, satis-
faisant les deux propriétés suivantes:

1. l’endomorphisme ψ a un rayon borné par la substitution.

2. Il existe des entiers n > 0 et p ∈ Zd tels que Spψζn1 = ζn2 ψ.

Le théorème C implique que pour une substitution réduite tout endomorphisme
mesurable induit un endomorphisme continu. Ainsi l’ensemble des endomorphismes
mesurés est un ensemble dénombrable. Le théorème C est un analogue multidimensionnel
de celui prouvé par B. Host et F. Parreau dans [69].

Des contre-exemples au théorème C sont fournis par des sous-shifts substitutifs qui sont
métriquement isomorphes à leur facteur équicontinu maximal. Cela se produit lorsqu’une
substitution possède une condition combinatoire appelée cöıncidence [97] (voir l’exemple
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4.3). L’ensemble des endomorphismes mesurés des odomètres est alors indénombrable et
tout élément de l’odomètre représente un endomorphisme mesurable par addition. Ainsi,
comme dans l’article original [69], la réductibilité est une hypothèse optimale pour le
théorème C.

Nous obtenons ensuite quelques conséquence dynamique du théorème C. Sous la con-
dition de réductibilité, les sous-shifts substitutifs sont coalescents (proposition 4.7), c’est-
à-dire que tout endomorphisme du sous-shift est inversible. Ceci était déjà connu pour les
sous-shifts linéairement récurrents, d’abord pour le cas unidimensionnel dans [45], puis par
les dimensions supérieures dans [29].

Le pavage de la chaise (voir [10]) et les sous-shifts substitutifs du demi-hexagone,
étudiées dans le chapitre 6, sont des exemples de sous-shifts substitutifs avec cöıncidence.
Par conséquent, leurs endomorphismes mesurés forment un ensemble indénombrable.
Néanmoins, les deux exemples sont coalescents et leurs groupes d’automorphisme sont
virtuellement engendrés par l’action de shift. Sans la condition de réductibilité, nous ne
savons pas si tous les sous-shift substitutifs apériodiques satisfont ces dernières propriétés.

Le sous-shift substitutif du demi-hexagone, mentionné précédemment, ne satisfait pas
les hypothèses des théorèmes C et B. Néanmoins, nous sommes capables de décrire son
facteur équicontinu maximal et de caractériser ses isomorphismes. Le groupe de symétrie
d’un sous-shift est l’ensemble des matrices M ∈ GL(d,Z) définissant un isomorphisme.
Grâce à cet exemple, nous obtenons le résultat suivant.

Théorème D (théorème 6.3). Il existe un sous-shift apériodique minimal (en fait un sous-
shift substitutif) avec un groupe de symétrie infini.

Plus précisément, le groupe d’isomorphisme du sous-shift substitutif du demi-hexagone
est isomorphe au produit semidirect de Z2 avec GL(2,Z). Son groupe de symétrie est donc
le plus grand possible. Des sous-shifts avec des groupes de symétrie infini ont été trouvés
auparavant, comme dans [7], en étudiant leurs relation avec l’entropie topologique. Mais
ces exemples sont loin d’être minimaux.

Enfin, concernant les facteurs de sous-shifts substitutifs, nous avons la caractérisation
suivante.

Théorème E (théorème 3.22). Soit (Y, S,Zd) un facteur symbolique apériodique d’un
sous-shift (Xζ , S,Zd) généré par une substitution ζ apériodique primitive de forme con-
stante. Alors, il existe une substitution primitive apériodique de forme constante ζ ′, de la
même structure qu’une puissance de ζ, dont le système (Xζ′ , S,Zd) est conjugué au facteur
symbolique (Y, S,Zd).

Ceci est un analogue multidimensionnel d’un résultat prouvé par C. Müllner et R.
Yassawi [91] pour le cas unidimensionnel, qui est un raffinement d’un résultat prouvé dans
[48]. En revanche, ce résultat ne dit rien sur les autres facteurs topologiques sur un Cantor
des sous-shifts substitutifs. L’exemple 4.3 donne un exemple de sous-shift substitutif avec
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un facteur topologique de Cantor qui n’est ni expansif ni équicontinu. De même, l’exemple
4.3 possède un facteur symbolique avec une période non triviale et une espace des phases
infini. Ceci est en contraste avec la dichotomie unidimensionnelle prouvée dans [45].

Les théorèmes A, B, C et E sont publiés dans [22].

Organisation de cette thèse

Cette thèse est organisée comme suit. Les définitions de base et le contexte qui seront
utilisés tout au long de cette thèse sont introduits dans le chapitre 1. Nous rappelons
quelques notions classiques de systèmes dynamiques topologiques, de théorie ergodique et
de dynamique symbolique. Nous développons la relation entre les homomorphismes et
les facteurs topologiques des systèmes dynamiques. Ensuite, nous présentons l’exemple
des odomètres et des sous-shifts de Toeplitz. Nous obtenons une caractérisation pour des
homomorphismes entre odomètres. Nous terminons ce chapitre par un bref survol des
substitutions multidimensionnelles de forme constante, dont nous étudions principalement
les homomorphismes.

Dans le chapitre 2, nous étudions le semigroupe de symétrie des odomètres bidimension-
nels de base constante donnée par une matrice L. Dans ce cas, nous obtenons une descrip-
tion d’un phénomène de bifurcation au niveau du semigroupe de symétrie par rapport aux
relations arithmétiques des invariants de la matrice L. Le théorème principal (théorème
2.2) montre que dans la plupart des cas le semigroupe de symétrie est le centralisateur de
la matrice L. Cela aidera à obtenir une caractérisation du semigroupe normalisateur des
substitutions apériodiques primitives de forme constante en utilisant la relation entre les
homomorphismes et leurs facteurs équicontinus maximaux (lemme 1.7).

Le résultat principal du chapitre 3 est la caractérisation des facteurs symboliques
apériodiques des sous-shifts substitutifs donnés par une substitution apériodique primi-
tive de forme constante. Ils sont conjugués aux sous-shifts substitutifs générés par des
substitutions apériodiques primitives de forme constante (théorème E). Les sous-shifts
substitutifs ne sont pas nécessairement linéairement répétitives (exemple 3.6). Néanmoins,
nous donnos une croissance polynomiale sur la fonction de répétitivité pour les substitutions
de forme constante (lemme 3.7).

Le chapitre 4 est consacré à la preuve de propriétés de rigidité des facteurs mesurés et
les homomorphismes entre sous-shifts substitutifs (théorème C). Ensuite, nous déduisons
que ces sous-shifts substitutifs sont coalescentes (proposition 4.7) et que leurs groupes
d’automorphisme est virtuellement engendrés par l’action de shift (proposition 4.8).

Dans le chapitre 5, nous décrivons le normalisateur des substitutions générales de forme
constante. Nous prouvons que le normalisateur est virtuellement engendré par l’action
de shift (théorème B). Pour ce faire, nous relions le normalisateur à différents types de
supports des substitutions, via les directions non-déterministes. Nous caractérisons les
directions non-déterministes par le digit tile pour une version affaiblie de substitutions
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bijectives (théorème A). De plus, ces directions sont calculables en termes de combinatoire
de la substitution (théorème 5.13).

Enfin, dans le chapitre 6, nous caractérisons le groupe normalisateur pour deux ex-
emples de substitutions de forme constante. Le premier, appelé substitution de la table,
satisfait les hypothèses des résultats des chapitres 4 et 5. Le pavage du demi-hexagone ne
satisfait pas les hypothèses des résultats précédents. Néanmoins, une description de son
groupe d’isomorphisme est fournie par le théorème D.
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Chapter 1

Definitions and background

In this chapter, we fix some notations, definitions and show some general properties to be
used throughout this thesis. We start with some notions on discrete, convex and fractal
geometry. Then we recall some classical notions of topological dynamical systems and the
ones of homomorphisms between them. In particular, we will see some relations between
homomorphisms and topological factors of dynamical systems (Lemma 1.6). We also recall
some basics of ergodic theory, symbolic dynamics, and nondeterministic directions (also
called nonexpansive half-spaces).

In Section 1.2 we define the central objects of study of this thesis, which are homomor-
phisms between topological Zd-actions T : X × Zd → X on a compact metric space X.
This types of morphisms have been studied in both one and higher dimensions actions. For
Z-actions, the isomomorphism group (the group of invertible homomorphisms) of a topo-
logical dynamical system is either the automorphism group Aut(X,T,Zd), or an index-2
extension of Aut(X,T,Zd). Therefore, the study of isomorphisms for Z-actions focuses on
the existence of an isomorphism, which are sometimes called reversors (see [6] for a brief
guide to the study of these isomorphisms). Since GL(d,Z) is an infinite group for d > 1,
the relation between automorphisms and isomorphisms becomes less clear. Isomorphisms
have been studied for particular subshifts [10] and more recently for a class of substitutive
subshifts under strong geometrical and combinatorial restrictions [20, 21]. In this thesis
we extend the study of homomorphisms by describing the isomorphism group (called the
normalizer group) for general constant-shape substitutions that are defined in this chapter.

We then describe the nondeterministic directions for a subshift. This notion was intro-
duced in [63] to the study of two-dimensional subshifts. In [34] they were used to prove
a weak version of Nivat’s conjecture. This notion is motivated by the work of M. Boyle
and D. Lind, about nonexpansive subspaces. When the space X is infinite such subspaces
always exist [17, Theorem 3.7]. In fact, they can be described only by hyperplanes [17, The-
orem 3.6], hence the term of nondeterministic directions. In this thesis, nondeterministic
directions are characterized for bijective substitutions (Theorem 5.2) and used to describe
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the isomorphisms for a big family of substitutive subshifts (Theorem 5.17).
We also present the example of odometer systems and Toeplitz sequences in Section 1.6.

Odometer systems are the most natural equicontinuous systems in the study of minimal
Cantor systems. In fact, they are the maximal equicontinuous factor for a big family of
symbolic systems, such as, some substitutions and Toeplitz sequences. Toeplitz subshifts
are symbolic sytems that are the orbit closures of the regular quasi-periodic points of
the subshift. We refer to [42, 28, 30] for the study of odometer systems for different ac-
tions. We also obtain a characterization of homomorphisms between two odometer systems
(Lemma 1.14), useful to describe isomorphisms for substitutive subshifts.

We finish this chapter with a brief survey of multidimensional constant-shape substi-
tutions. They represent the simplest nontrivial zero-entropy symbolic systems, since they
are generated by finite data. By this fact, ergodic and topological properties of substi-
tution dynamical systems have been extensively studied. They were introduced by W.H.
Gottschalk in [60] (see [53, 97] for a good bibliography on this subject). We also provide
some good finite sets useful to the structure of the sequences in substitutive subshifts. As
a corollary, we get a canonical form of symbolic factors of constant-shape substitutions.

1.1 Basics on discrete, convex and fractal geometry

1.1.1 Discrete geometry

If F ⊆ Zd is a finite set, it will be denoted by F b Zd, and we use the notation ‖F‖ =
max
n∈F
‖n‖, where ‖ · ‖ is the standard Euclidean norm of Rd. The standard Cartesian

product in Rd will be denoted by 〈·, ·〉. If L ∈ M(d,R) is a matrix, we denote ‖L‖ =
max

x∈R\{0}
‖L(x)‖/‖x‖ as the matrix norm of L. We denote GL(d,Z) as the set of d × d

matrices M with integer coefficientes such that |det(M)| = 1.
We will call a sequence of finite sets (Fn)n>0 ⊆ Zd a Følner sequence if for all n ∈ Zd

we have that

lim
n→∞

|Fn∆(n + Fn)|
|Fn|

= 0.1

For any r > 0 and F b Zd we denote F ◦r as the set of all elements f ∈ F such that
f + (B(0, r) ∩ Zd) ⊆ F , i.e.,

F ◦r = {f ∈ F : f + (B(0, r) ∩ Zd) ⊆ F}.

Note that the Følner assumption implies for any r > 0

lim
n→∞

|F ◦rn |
|Fn|

= 1. (1.1)

1In the literature, especially Group Theory, is common to also ask that the union of the sequence of sets
(Fn)n>0 is equal to Zd for a sequence to be Følner, but we will not use it in this thesis.
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1.1.2 Convex geometry

In the following we will give some basics on convex geometry that we will be used in the
rest of the thesis. We refer to [5] for a survey of results about this field.

A set C ⊆ Rd is said to be convex if for all x,y ∈ C the set [x,y] = {z ∈ Rd : z =
tx + (1 − t)y, t ∈ [0, 1]} is included in C. Recall that the image of a convex set under an
affine map is also a convex set, and the intersection of an arbitrary family of convex sets
is also a convex set. This leads to the notion of the convex hull of a set.

If A ⊆ Rd we define the convex hull of A, denoted by conv(A), as the intersection of
all convex sets containing A.

A set S ⊆ Rd is an affine set if for any x,y ∈ S the line {tx + (1 − t)y : t ∈ R} is
contained in S. For any set A ⊆ Rd we define the affine hull of A, denoted by Aff(A), as
the intersection of all affine sets containing A.

A fundamental characterization of convex sets is provided by Carathéodory’s theorem.

Theorem 1.1 (Carathéodory’s theorem). For any A ⊆ Rd, any element of conv(A) can
be represented as a convex combination of no more than (d+ 1) elements of A.

We now recall some basic topological concepts associated with convex sets. We say that
a point x ∈ A is relative interior for A, if A contains the intersection of a ball centered
at x with Aff(A), i.e., ∃r > 0, B(x, r) ∩ Aff(A) ⊆ A. The set of all relative interior
points of A is called its relative interior, and is denoted by ri(A). We can also define the
relative boundary ∂ri(A) as the set difference of the closure and the relative interior, i.e.,
∂ri(A) = cl(A) \ ri(A).

An important notion for convex sets are the supporting hyperplanes. If C ⊆ Rd is a
closed convex set, and x ∈ C is a point in the relative boundary of C, An affine hyperplane
∂H[a; c] = {y ∈ Rd : 〈a,y〉 = c}, for some a ∈ Rd \ {0} and c ∈ R is supporting to C at x,
if x ∈ ∂H[a : c] and

inf
y∈C
〈a,y〉 < 〈a,x〉 = c = sup

y∈C
〈a,y〉 .

We now recall some basic notions about cones and polyhedral sets. A nonempty set
C ⊆ Rd is said to be a cone if for every x ∈ C, the set C contains the positive ray
R+x = {tx : t > 0} spanned by x. A translation of a cone by a non zero vector is called an
affine convex cone. A cone C ⊆ Rd is said to be finitely generated if it can be written as

C =

{
p∑
i=1

tui : ui ∈ Rd, ti ≥ 0, i = 1, . . . , p

}
.

For a given nonempty set A ⊆ Rd, the smallest cone containing the set A is called the
positive hull (or conical hull) of A. It is the smallest cone containing the set A, and is
given by

coneA = {tx : x ∈ A, t > 0} ∪ {0}.
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The positive hull is also said to be the cone generated by A.
A set P ⊆ Rd is called polyhedral if it has the form

P =
{
x ∈ Rd : 〈ui,x〉 ≤ ai, i = 1, . . . , p

}
,

where ui ∈ Rd, ai ∈ R. The following is characterization of polyhedral sets.

Theorem 1.2 (Minkowski-Weyl Theorem). A cone C is polyhedral if and only if it is
finitely generated.

Convex sets can be represented, but it requires the notion of extreme points and extreme
rays.

A point x in a convex set C is called an extreme point, if can not be written as the
convex combination of two different points in C, i.e., if x is equal to tu+ (1− t)v for some
0 ≤ t ≤ 1, with u,v ∈ C, then u = v = x. We denote by Ext(C) the set of the extreme
points of a convex set C. Extreme points are special cases of faces of a convex set. A
compact convex set is called a polytope if it has a finite number of extreme points.

A convex set F ⊆ C is called a face of C if for every x ∈ F and every y, z ∈ C such
that x = ty + (1 − t)z, with 0 < t < 1, we have that y, z ∈ F . The dimension of a face
F of C is the dimension of its affine hull. The 0-dimensional faces of C are exactly the
extreme points of C, and the bounded 1-dimensional faces are called segments or edges.
An extreme ray of a convex set C is the direction of a half-line that is a face of C. A useful
result about representation of closed convex sets in Rd is the following

Theorem 1.3 (Krein-Milman theorem for unbounded convex sets). If a nonempty closed
convex set C ⊆ Rd has at least one extreme point, i.e., does not have an affine line. Then
C can be written as the sum of the convex hull of its extreme points and the cone generated
by its extreme rays.

Some useful notion for convex sets corresponds to the normal cone. Let F be a
nonempty face of a closed convex polytope C. The opposite normal cone2 N̂F (C) of C at
F is defined as

N̂F (C) = {v ∈ Rd : min
t∈C
〈v, t〉 = 〈v,p〉 , ∀p ∈ F }.

The opposite normal fan of C is the collection of all opposite normal cones of C:

N̂ (C) = {N̂F (C) : F is a proper face of C}.

The following are simple statements on the normal fan

• If F is a face of C, then dim(N̂F (C)) = d− dim(F ).

2The word opposite comes from the fact that the usual normal cone is related to the outward normal
vectors of convex sets, and in this thesis we will use the inward normal vectors.
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• If F is a face of G, which is a face of C, then N̂G(C) is a face of N̂F (C).

• The set
⋃

F face of C

N̂F (C) is equal to Rd.

Fig. 1.1 illustrate the opposite normal cones of a triangle.

Figure 1.1: Example of the opposite normal cones of a triangle, and the stratification of
the circle S1 given by them.

1.1.3 Fractal Geometry

In the following we present some definitions and some properties satisfied for some fractals
sets which are defined by iterated function systems or IFS. We refer to [77, 109, 110] for
some results that will be used throughout this thesis.

Let C(Rd) denote the collection of all nonempty compact subsets of Rd. The Hausdorff
metric H on C(Rd) is defined as follows:

H(A,B) = inf{ε : A ⊆ Bε ∧ B ⊆ Aε},

where Aε = {t ∈ Rd : ‖t−y‖ ≤ ε, for some y ∈ A}. We have that (C(Rd),H) is a complete
metric space.

A map f : Rd → Rd is said to be a contraction if there exists 0 < c < 1 such that
‖f(x)− f(y)‖ ≤ c‖x− y‖ for all x,y ∈ Rd. Let {fi}Ni=1 be a set of contraction maps on
Rd, and define the map

F : C(Rd) → C(Rd)

A 7→
N⋃
i=1

fi(A)

This map is a contraction on (C(Rd),H), so by the Banach fixed-point Theorem, there
exists a unique set T ∈ C(Rd) (called digit tile) such that

T =

N⋃
i=1

fi(T ).
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A way to approximate this set is by iterations

T = lim
n→∞

Fn(T0), (1.2)

where T0 is an arbitrary compact set in Rd and the limit is with respect to the Hausdorff
metric.

Since the convex hull of a compact set in Rd is compact, the map conv : C(Rd)→ C(Rd)
which gives for any set A ∈ C(Rd) its convex hull is well defined, and is well known to be
continuous.

1.2 Topological dynamical systems

In this section, we will present the basic definitions and some properties of topological
dynamical systems. We also define the central object of study of this thesis, which are
homomorphisms between topological dynamical systems, and present some basic results
about them. We finish this section with a survey on some results about the compatibility of
homomorphisms between topological factors of topological dynamical systems. We mention
[4] for an extensive bibliography of this area.

1.2.1 Basic definitions

A topological dynamical system is a triple (X,T,G), where (X, ρ) is a compact metric
space, G is a group of homeomorphisms of the space X into itself, and T : X ×G→ X is
a continuous map, satisfying T (x, e) = x, and T (T (x, g), h) = T (x, gh) for all x ∈ X, and
g, h ∈ G. We will denote T g to the homeomorphism T (·, g).

If (X, ρ) is a compact metric space, we denote Homeo(X) the group of all homeo-
morphisms from X to itself, and if T ∈ Homeo(X), we use (X,T,Z) to denote the topo-
logical dynamical system (X,T, {Tn : n ∈ Z}). Similarly, if T1, . . . , Td are d commuting
homeomorphisms on X, we denote (X,T,Zd) to denote the topological dynamical system
(X,T, 〈{T1, . . . , Td}〉).

For a point x ∈ X, we define its orbit as the set O(x,G) = {T g(x) : g ∈ G}. If A ⊆ X,
we say that A is G-invariant if for all x ∈ A, O(x,G) is included in A.

If (X,T,G) is a topological dynamical system, a subset K ⊆ X is called a minimal
set if K is closed, nonempty, G-invariant, and has no proper closed nonempty invariant
subsets, i.e., if N ⊆ K is closed and G-invariant, then N = ∅ or N = K. In this case, we
say that (K,T |K , G) is a minimal system, where T |K : K × G → K corresponds to the
restriction of T in K. It is easy to see that a system is minimal if and only if it it is the
closure orbit of all of its points.

An important type of topological dynamical systems are the so-called equicontinuous
systems. A topological dynamical system (X,T,Zd) is said to be equicontinuous if the
set of maps {Tn : n ∈ Zd} forms an equicontinuous family of homeomorphisms. The
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equicontinuous systems are, in some sense, the simplest dynamical systems. In fact, there
exists a complete characterization of them [4].

1.2.2 Homomorphisms between topological dynamical systems

In the following, we define the homomorphisms between topological dynamical systems,
which are the central object of study on this thesis. Homomorphisms represent internal
symmetries of a given topological dynamical system, such as rotations and reflections.
Invertible homormophisms, which will be called isomorphisms, are then conjugacies of
Zd-actions, up to a GL(d,Z)-transformation. We refer to [6] for a brief guide to homomor-
phisms both for one-dimensional systems and higher-dimensional dynamical systems.

Notation and basic properties

Definition 1.4. Let (X,T,Zd), (Y, T,Zd) be two topological dynamical systems and
M ∈ GL(d,Z). A homomorphism associated with M is a surjective continuous map
φ : X → Y such that for all n ∈ Zd we have that φ ◦Tn = TMn ◦φ. If φ is invertible, then
φ is an isomorphism.

In the following we fix the different notations that we will used throughout this thesis:

• We denote the set of all homomorphisms associated with M between (X,T,Zd) and
(Y, T,Zd) by HomM (X,Y, T,Zd).

• The set of homomorphisms between two dynamical systems, is defined as the collec-
tion of all of homomorphisms, i.e.,

Hom(X,Y, T,Zd) =
⋃

M∈GL(d,Z)

HomM (X,Y, T,Zd).

• In the special case M is the identity matrix, homomorphisms are called factors and we
denote Fac(X,Y, T,Zd) the collection of all factors between (X,T,Zd) and (Y, T,Zd).
If a factor is invertible, then it is called a conjugacy.

• In the case (X,T,Zd) = (Y, T,Zd), we simply denote these sets as NM (X,T,Zd) and
N(X,T,Zd) and we call the last one, the normalizer semigroup of (X,T,Zd). A factor
map is called an endomorphism, and a conjugacy is called an automorphism. We
denote the set of all endomorphisms and automorphisms of a topological dynamical
system as End(X,T,Zd) and Aut(X,T,Zd), respectively.

• We define the symmetry semigroup ~N(X,T,Zd) of (X,T,Zd) as the collection of all
matrices M ∈ GL(d,Z) with NM (X,T,Zd) 6= ∅.
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• A topological dynamical system (X,T,Zd) is said to be coalescent if every endomor-
phism of (X,T,Zd) is an automorphism.

Note that the symmetry semigroup of a topological dynamical system is an invariant
under conjugation.

As an example, we can define an isomorphism for the Z-action T : S1 → S1 given
by the rotation Tα(x) = x + α, α ∈ S1, by the map φ(x) = −x. Indeed, we have that
φ ◦ T = T−1 ◦ φ.

For the Z2-action on the torus T2 generated by the actions T1(x) = x+α, T2(x) = x+β,
an isomorphism is given by the map ψ : T2 → T2 defined as ψ(x) = −x.

Isomorphisms of a dynamical system has been studied before. In [6] they are called
as reversors and the normalizer group N∗(X,T,Z) (generated by isomorphisms) is called
the reversing symmetry group. Their study was inspired by the time-reversal symmetry
of many fundamental equations in physics. In this case N∗(X,T,Z) = Aut(X,T,Z) or
N∗(X,T,Z) is an index-2 extension of Aut(X,T,Z). Isomorphisms are always elements
of even or infinite order. The existence of isomorphisms have been studied for particular
subshifts. Evidence suggest that algebraic properties of the automorphism group does not
affect its existence:

• The full shift (AZ, S,Z). The automorphism group is huge (not amenable).

• Any sturmian subshift, which is always palindromic [44]. Its automorphism group is
trivial, i.e., Aut(X,S,Z) = 〈S〉.

• The period doubling shift, defined by the primitive substitution 0 7→ 01, 1 7→ 00.

• The Thue-Morse shift, defined by 0 7→ 01, 1 7→ 10.

• The square-free shift, obtained as the orbit closure of the characteristic function of
the square-free integers.

For higher-dimensional systems they are sometimes called extended symmetries (see for
example [10, 20, 21]). Since GL(d,Z) is an infinite group for d > 2, the relation between
N∗(X,T,Zd) and Aut(X,T,Zd) is less clear than in the one-dimensional case.

If φ ∈ NM1(X,T,Zd), and ψ ∈ NM2(X,T,Zd), then φψ is in NM1M2(X,T,Zd), so
the sets NM (X,T,Zd) are not semigroups (except if M is the identity matrix). Now,
even though the matrices M ∈ GL(d,Z) are invertible in Zd, the symmetry semigroup
~N(X,T,Zd) is not necessarily a group, since the existence of a homomorphism associated
with a matrix M does not necessarily imply the existence of a homomorphism associated
with M−1. Nevertheless, we get the following result when a dynamical system is coalescent.

Proposition 1.5. Let (X,T,Zd) be a coalescent system. If ~N(X,T,Zd) is a group, then
any homomorphism in N(X,T,Zd) is invertible.
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Proof. Let φ, ψ be two homomorphisms onto (X,T,Zd) associated with M , M−1, respec-
tively. Then φψ is a factor map onto (X,T,Zd). Since (X,T,Zd) is coalescent, then φψ is
invertible. We conclude that φ and ψ are invertible maps.

Equicontinuous systems are examples of coalescent systems [4]. See [94] for an example
of a non-coalescent system.

When the action generated by T is free, the normalizer group N∗(X,T,Zd) (which is
the group of isomorphisms of (X,T,Zd)) is the normalizer of 〈T 〉 in Homeo(X). This is
because g 〈T 〉 g1 = 〈T 〉, for g ∈ Homeo(X) is only possible if the generators of 〈T 〉, which
are T ei for 1 ≤ i ≤ d, are conjugated into generators of 〈T 〉. In the particular case 〈T 〉 is
not free, then normHomeo(〈T 〉) contains N∗(X,T,Zd) as a subgroup, but possibly further
elements (see [9] for some examples). Nevertheless, in this thesis we are only interested in
free actions.

The groups 〈T 〉 and Aut(X,T,Zd) are normal subgroups of N∗(X,T,Zd), and the
centers of N∗(X,T,Zd) and Aut(X,T,Zd) are the same. In fact, we have the following
short exact sequences

1→ 〈T 〉 → Aut(X,T,Zd) → Aut(X,T,Zd)/ 〈T 〉 → 1 (1.3)

1→ Aut(X,T,Zd) → N∗(X,T,Zd) → ~N∗(X,T,Zd) → 1. (1.4)

Compatibility properties of homomorphisms

If π : (X,T,Zd) → (Y, T,Zd) is a factor map between minimal systems, and there exists
y ∈ Y such that |π−1({y})| = 1, then this property is satisfied in a Gδ dense subset Y0 ⊆ Y .
In this case, we say that π is almost 1-to-1. If |π−1({y})| = K for all y in a Gδ dense subset
of Y , then we say that π is almost K-to-1. If |π−1({y})| ≤ K < ∞ for all y ∈ Y , we say
that π is finite-to-1.

For every topological dynamical system, there exists at least one equicontinuous factor,
which is the system given by one point. Furthermore, for every topological dynamical
system, there exists its maximal equicontinuous factor, i.e., a factor πeq : (X,T,Zd) →
(Xeq, Teq,Zd) such that (Xeq, Teq,Zd) is an equicontinuous system, and for every equicon-
tinuous factor π : (X,T,Zd) → (Y, T,Zd), there exists a factor map φ : (Xeq, Teq,Zd) →
(Y, T,Zd) such that π = φ ◦ πeq. In the one-dimensional case, the maximal equicontinuous
factor of a minimal system is a rotation on a compact monothetic topological group [96,
Theorem 2.11], which is a group G for which there exists an element g ∈ G such that the
subgroup generated by g is dense. Such groups are always abelian. Also, in the particu-
lar case, where π : (X,T,Zd) → (Y, T,Zd) is an almost 1-to-1 factor and (Y, T,Zd) is an
equicontinuous system, then (Y, T,Zd) is the maximal equicontinuous factor of (X,T,Zd).
For instance, odometer systems (defined in Section 1.6) are almost 1-to-1 factors of Toeplitz
systems [28, 42].
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We say a factor map π : (X,T,Zd)→ (Y, T,Zd) is compatible if for any endomorphism
φ ∈ End(X,T,Zd), and every x, y ∈ X, if π(x) is equal to π(y), then π(φ(x)) is equal to
π(φ(y)). With the same spirit, we say a factor π is compatible with homomorphisms if for
any homomorphism φ ∈ N(X,T,Zd), and every x, y ∈ X, if π(x) is equal to π(y), then
π(φ(x)) is equal to π(φ(y)).

The compatibility property allow us to study homomorphisms of some topological dy-
namical system as shown in the following result.

Lemma 1.6. Let (X,T,Zd), (Y, T,Zd) be two minimal systems, such that
π : (X,T,Zd)→ (Y, T,Zd) is a compatible factor. Then, there is a semigroup homomor-
phism π̂ : End(X,T,Zd)→ End(Y, T,Zd) such that

1. π̂(φ)(π(x)) = π(φ(x)) for all φ ∈ End(X,T,Zd) and x ∈ X.

2. π̂(Aut(X,T,Zd)) ≤ Aut(Y, T,Zd).

3. For all ψ ∈ End(Y, T,Zd), |π̂−1({ψ})| ≤ min
y∈Y
|π−1(y)|.

Moreover, if π is compatible with homomorphisms, there is an extension of
π̂ : N(X,T,Zd)→ N(Y, T,Zd) defined as in Item 1. for all φ ∈ N(X,T,Zd), such that
π̂(NM (X,T,Zd) ≤ NM (Y, T,Zd), for any M ∈ GL(d,Z).
Furthermore, if c = min

y∈Y
|π−1(y)|, then for each M ∈ GL(d,Z), the map π̂ :

NM (X,T,Zd)→ NM (Y, T,Zd) is at most c-to-1.

Proof. Set φ ∈ End(X,T,Zd). By definition, the map π̂(φ) : Y → Y given by π̂(φ)(π(x)) =
π(φ(x)) is well defined and, by minimality of (Y, T,Zd), it is a surjective map, so π̂(φ) is
an endomorphism of (Y, T,Zd). Moreover, if φ is an automorphism of (X,T,Zd), then
π̂(φ) is invertible. Indeed, π̂(φ) ◦ π̂(φ−1) ◦ π = π ◦ φ ◦ φ−1 = π, so we conclude that
π̂(φ) ◦ π̂(φ−1) = idY .

Now, set ψ ∈ End(Y, T,Zd) and suppose that min
y∈Y
|π−1({y})| = c < ∞ (if not, then

there is nothing to prove). Let x0 ∈ X and y0 ∈ Y be such that |π−1({y0})| = c, and
y0 = ψ(π(x0)). Assume there exists c + 1 endomorphisms φ0, . . . , φc of (X,T,Zd), in
π̂({ψ})−1. By the pigeonhole principle, y0 = ψ(π(x0)) = π(φ0(x0)) = · · · = π(φc(x0)). So,
there must exists two different indices 0 ≤ i, j ≤ c such that φi(x0) = φj(x0), which, by
minimality of (X,T,Zd), implies φi = φj .

Finally, note that the proof for homomorphisms use similar arguments.

We will use Lemma 1.6 to describe isomorphisms of particular examples in Chapter 6.
It is known that factor maps between equicontinuous systems are compatible [4], but as

we will see in the next section, they are not necessarily compatible with homomorphisms
(see Remark 2.7). Nevertheless, the maximal equicontinuous factor is an example of a
factor compatible with homomorphisms as proved in [10, Theorem 5 and Corollary 3]. The
next result summarizes the compatibility properties of the maximal equicontinuous factor.
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Lemma 1.7. [10, Theorem 5 and Corollary 3] For any minimal topological dynami-
cal system (X,T,Zd) such that the action of the maximal equicontinuous factor 〈Teq〉
is free, the maximal equicontinuous factor πeq : (X,T,Zd)→ (Xeq, Teq,Zd) is compat-
ible with homomorphisms. In this case, there exists a semigroup homomorphism
θ : (X,T,Zd)→ Homeo(Xeq), with θ(End(X,T,Zd)) = id such that

πeq(φ(x)) = π̂(φ) + θ(φ)(πeq(x)),

for all x ∈ X, and φ ∈ N(X,T,Zd), i.e., any homomorphism φ ∈ N(X,T,Zd) induces a
unique homomorphism in Xeq given by z 7→ π̂(φ) + θ(φ)(z).
Moreover, if c = min

z∈Xeq
|φ−1
eq ({z})| is finite, then for all n ≥ c, and φ ∈ N(X,T,Zd), we

have that

{z ∈ Xeq : |π−1
eq ({z})| = n} = θ(φ)({z ∈ Xeq : |π−1

eq ({z})| = n}) + π̂(φ),

In some cases the quantity min
y∈Y
|π−1(y)| can be computed. We refer to [31] for the class

of substitutive systems generated by constant-length substitutions. Also Lemma 3.9 is the
analogue for constant-shape substitutions.

1.3 Measure-preserving systems

In the following, we present the basics on ergodic theory. We mention [96, 111] for classical
references on this theme.

A measure-preserving system is a 4-tuple (X,µ, T,G), where (X,F , µ) is a probability
space and G is a countable group of measurable and measure-preserving transformations
acting on X (where the action is denoted by T ), i.e., ∀A ∈ F , ∀g ∈ G, µ(T g

−1
A) = µ(A).

We say that (X,µ, T,G) is ergodic if for all A ∈ F we have that[
(∀g ∈ G) µ(T g

−1
(A)∆A) = 0

]
=⇒ µ(A) = 0 ∨ µ(A) = 1.

We now recall the notions of measurable homomorphisms in the measure-theoretic
framework.

Let (X,µ, T,G) and (Y, ν, T,G) be measure-preserving systems and M ∈ GL(d,Z). A
measurable homomorphism associated with M is a measure-preserving map φ : X ′ → Y ′

where X ′, Y ′ are measurable subset of X,Y respectively, µ(X ′) = ν(Y ′) = 1 and for any
g ∈ G, T g(X ′) ⊆ X ′, T g(Y ′) ⊆ Y ′ such that for any n ∈ Zd we have that φ◦Tn = TMn ◦φ
in X ′.

If there is a measurable factor φ between X and Y , then X is said to be an extension
of Y . If φ is a bi-measurable bijection, we say that φ is a measurable conjugacy and in this
case (X,µ, T,G) and (Y, ν, T,G) are metrically isomorphic.

For Zd-actions, we always have at least one invariant probability measure for topo-
logical dynamical systems (in fact, at least one ergodic probability measure). We define
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M(X,T,Zd) the set of all invariant probability measures. This set is convex and compact
on the weak-* topology. We say that (X,T,Zd) is uniquely ergodic if |M(X,T,Zd)| = 1,
and strictly ergodic if it is minimal and uniquely ergodic.

In the special case of strictly ergodic topological dynamical systems (X,T,Zd),
(Y, T,Zd) we denote mHom(X,Y, T,Zd), mFac(X,Y, T,Zd) the collection of all measur-
able homomorphisms and factors between X and Y , respectively. We recall that a map φ is
in mHomM (X,Y, T,Zd), for a particular matrix M ∈ GL(d,Z), if φ is measure-preserving
and there exists two subsets X ′ ⊆ X, Y ′ ⊆ Y with µX(X ′) = 1, µY (Y ′) = 1 such that for
all n ∈ Zd, φ ◦ Sn = SMn ◦ φ for µX -a.e in X ′.

1.4 Symbolic Dynamics

In this section, we will present the basic definitions and some background about symbolic
dynamics that will be used in the rest of this thesis. We refer to [84] for a classical reference
in the one-dimensional case, and [24] for actions on more abstract groups.

Let A be a finite alphabet and d ≥ 1 be an integer. We define a topology on AZd

by endowing A with the discrete topology, and considering in AZd the product topology,
which is generated by cylinders. Since A is finite, AZd is a metrizable compact space. In
this space Zd acts by translations, defined for every n ∈ Zd by:

Sn(x)k = xn+k, x ∈ AZd , k ∈ Zd.

The Zd-action (AZd , S,Zd) is called the fullshift.
Let P ⊆ Zd be a finite subset. A pattern is an element p ∈ AP . We say that P is

the support of p, and we denote P = supp(p). A pattern occurs in x ∈ AZd , if there
exists n ∈ Zd such that p = x|n+P , in this case we denote it p v x, and we call this n an
occurrence in x of p.

A subshift (X,S,Zd) is given by a closed subset X ⊆ AZd which is invariant by the
Zd-action. A subshift can also be defined by its language. For P b Zd we define

LP (X) = {p ∈ AP : ∃x ∈ X, p v x}.

We define the language of a subshift X by

L(X) =
⋃
PbZd

LP (X).

Let (X,S,Zd) be a minimal subshift and x ∈ X. We say that p ∈ Zd is a period of x
if for all n ∈ Zd, xn+p = xn. We say that (X,S,Zd) is aperiodic if there are no nontrivial
periods.

Let B be other finite alphabet, and Y ⊆ BZd be a subshift. For P b Zd, we define a
P -block map as a map of the form Φ : LP (X)→ B. This map induce a factor φ : X → Y
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given by
φ(x)n = Φ(x|n+P ).

The map φ is called the sliding block code induced by Φ, and P is the support of the
map φ. In most of the cases we may assume the support of the sliding block codes is a
ball of the form B(0, r), for r ∈ N. We define the radius (and we denote by r(φ)) as the
infimum of r ∈ N such that we can define a B(0, r)-block map which induced it. The next
theorem characterizes the factor maps between two subshifts.

Theorem 1.8 (Curtis-Hedlund-Lyndon theorem). Let (X,S,Zd) and (Y, S,Zd) be two
subshifts. A map φ : (X,S,Zd)→ (Y, S,Zd) is a factor if and only if there exists a B(0, r)-
block map Φ : LB(0,r)(X) → L1(Y ), such that φ(x)n = Φ(x|n+B(0,r)), for all n ∈ Zd and
x ∈ X.

For homomorphisms we have a similar characterization, but we need to make a slight
variation of this theorem.

Theorem 1.9 (Curtis-Hedlund-Lyndon theorem for homomorphisms). Let (X,S,Zd) and
(Y, S,Zd) be two subshifts, and M ∈ GL(d,Z). A map φ : (X,S,Zd) → (Y, S,Zd)
is a homomorphism associated with M if and only if there exists a B(0, r)-block map
Φ : LB(0,r)(X)→ L1(Y ), such that φ(x)n = Φ(x|M−1n+B(0,r)), for all n ∈ Zd and x ∈ X.

Proof. Let (xn)n∈N be a convergent sequence to x ∈ X. This implies,

(∀p > 0)(∃N ∈ N)(∀n ≥ N) xn|B(0,p) = x|B(0,p).

Set m ∈ Zd. Let p(m) ∈ N be large enough such that M−1m +B(0, r) ⊆ B(0, p(m)).
Hence, for any n ≥ N(p(m)) we have that

φ(xn)m = Φ(xn|M−1m+B(0,r)) = Φ(x|M−1m+B(0,r)) = φ(x)m.

We conclude that φ is continuous.
Now, set m,n ∈ Zd. Then for all x ∈ X

φ(Snx)m = Φ((Snx)|M−1m+B(0,r)) = Φ(x|n+M−1m+B(0,r)),

and

SMnφ(x)m = φ(x)Mn+m = Φ(x|n+M−1m+B(0,r)).

We conclude that φ ◦ Sn = SM◦n ◦ φ, so φ is a homomorphism associated with M .
On the other hand, let φ : (X,S,Zd)→ (Y, S,Zd) be a homomorphism associated with

M , and let r > 0 be such that x|B(0,r) = y|B(0,r), implies φ(x)0 = φ(y)0. Then, the local
map Φ(x|B(0,r)) = φ(x)0 is well defined by the very definition of r. Finally, note that

φ(x)h = Shφ(x)0 = φ(SM
−1hx)0 = Φ(x|M−1h+B(0,r)), which proves the claim.
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This means, for any homomorphism φ we can define a radius (also denoted by r(φ)),
as the infimum of r ∈ N such that we can define a B(0, r)-block map which induced it.

An immediate consequence of Theorem 1.9 is that for any subshift (X,S,Zd), its nor-
malizer group N∗(X,S,Zd) is a countable and discrete subset in Homeo(X).

1.5 Nondeterministic directions of a topological dynamical
system

An interesting notion in the study of higher-dimensional dynamical systems, with the ob-
jective to study sub-actions of one, is the so-called nonexpansive subspaces, introduced by
M. Boyle and D. Lind in [17]. When the space X is infinite such subspaces always exist
[17, Theorem 3.7]. In fact, nonexpansive subspaces are always subsets of nonexpansive
hyperplanes [17, Theorem 3.6]. A key step on the proof of this result, was one proved by
S. Schwartzman. S. Schwartzman proved that there are no “one-sided expansive” homeo-
morphisms, except on finite spaces. Although he never published this result. A proof can
be found in [61].

We will only focus on hyperplanes in Rd, which lead to the notion of determinis-
tic/nondeterministic directions. Let Sd−1 be the unit (d − 1)-dimensional sphere. For
v ∈ Sd−1 define Hv = {x ∈ Rd : 〈x,v〉 < 0} to be the open half-space with outward unit
normal v. We identify the set Hd of all half-spaces in Rd with the sphere Sd−1 using the
parametrization v ←→ Hv.

Definition 1.10. Let (X,S,Zd) be a subshift and v be a unit vector of Rd. Then v is
deterministic for (X,T,Zd) if for all x, y ∈ X we have that

x|Hv∩Zd = y|Hv∩Zd =⇒ x = y.

If v does not satisfies this condition, we say that v is nondeterministic for (X,T,Zd).

In this thesis, we are only interested in the set of nondeterministic directions. In the
one-dimensional case, this lead to the notion of asymptotic pairs, and in the finitary version
to the notion of special words [88]. For a subshift (X,S,Zd) we denote ND(X,S,Zd) the
sets of nondeterministic directions for (X,S,Zd). In [17] it was proved an analogous result
of the following, that we mention in our context

Theorem 1.11. [17, Lemma 3.4 and Theorem 3.7] For any subshift (X,S,Zd), with an
infinite phase space X, the set of nondeterministic directions ND(X,S,Zd) is a non-empty
compact set.

The notion of direction of determinism was introduced in [63] for two-dimensional
subshifts, and in [34] they were used to prove a weak version of Nivat’s conjecture.

The following result establishes a link between nondeterministic directions and the
symmetry group of a subshift, which we will use to describe the symmetry group for a big
family of substitutive systems (Theorem 5.17).
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Proposition 1.12. Let (X,S,Zd) be a subshift. Then, for all v ∈ ND(X,S,Zd) and
M ∈ ~N(X,S,Zd), we have that (M∗)−1v/‖(M∗)−1v‖ ∈ ND(X,S,Zd).

Proof. If v is in ND(X,S,Zd), there exists x 6= y ∈ X with x|Hv∩Zd = y|Hv∩Zd . Set M ∈
~N(X,T,Zd) and φ ∈ NM (X,S,Zd). Then, we have that φ(x)|(MHv)+n = φ(y)|(MHv)+n,
where n is a vector of radius r(φ). We note that Snφ(x)|MHv = Snφ(y)|MHv , and we
conclude that (M∗)−1v/‖(M∗)−1v‖ ∈ (X,S,Zd).

1.6 Odometer systems

In the following we present the example of odometer systems and Toeplitz sequences.
Odometer systems are the most natural equicontinuous systems in the study of minimal
Cantor systems. They have been described by algebraic reasons. They present interesting
recurrence properties. The return times to clopen sets contain infinite arithmetic pro-
gressions. In fact, they are the maximal equicontinuous factor for a big family of symbolic
systems, such as, some substitutions and Toeplitz sequences. In this section we describe the
symmetry semigroup of odometer systems (Lemma 1.14) which we then use to completele
characterize it for two-dimensional constant-base odometer systems (Theorem 2.2). Note
that, in [58] there was a first attempt of studying homomorphisms between two-dimensional
odometer systems.

Toeplitz sequences have been introduced in dynamical systems by K. Jacobs and M.
Keane in [70]. Toeplitz subshifts are symbolic sytems that are the orbit closures of the
regular quasi-periodic points of the subshift. N. Markley and M. Paul characterize them
in [86] as the minimal almost 1-1 extensions of odometer systems. They have been used
to provide a series of examples with interesting dynamical properties. We refer to [42] for
the study of odometer systems and Toeplitz sequences in the one-dimensional case, [28]
for higher dimensional actions, and [30] for more abstract actions given by residually finite
groups. Here we will follow the same notation than in [28].

Let Z0 ≥ Z1 ≥ . . . ≥ Zn ≥ Zn+1 ≥ . . . be a nested sequence of finite index subgroups of
Zd such that

⋂
n≥0

Zn = {0}, and let αn : Zd/Zn+1 → Zd/Zn be the function induced by the

inclusion map. Following the notation in [30], we consider the inverse limit of these groups

←−
Zd(Zn) = lim

←n
(Zd/Zn, αn),

i.e.,
←−
Zd(Zn) is the subset of the product

∏
n≥0

Zd/Zn consisting of the elements ←−g = (gn)n≥0

such that αn(gn+1) = gn (mod Zn) for all n ≥ 0. This set is a group equipped with the
addition defined coordinate-wise, i.e.,

←−g +
←−
h = (gn + hn)n≥0.
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Every group Zd/Zn is endowed with the discrete topology, then
∏
n≥0

(Zd/Zn) is a compact

metric space, and
←−
Zd(Zn) is a compact topological group whose topology is spanned by the

cylinder sets

[a]n =

{
←−g ∈

←−
Zd(Zn) : gn = a

}
,

with a ∈ Zd/Zn, and n ≥ 0. Now, consider the group homomorphism κ(Zn) : Zd →∏
n≥0

Zd/Zn defined for n ∈ Zd by

κ(Zn)(n) = [n (mod Zn)]n≥0.

The image of Zd by κ(Zn) is dense in
←−
Zd(Zn), so the Zd-action n(←−g ) = κ(Zn)(n)+←−g , with

n ∈ Zd, ←−g ∈
←−
Zd(Zn), is well defined and (

←−
Zd(Zn),+(Zn),Zd) is a minimal equicontinuous

system as proved in [30]. We call (
←−
Zd(Zn),+(Zn),Zd) an odometer system. From now on,

we will denote the odometer system (
←−
Zd(Zn),+(Zn),Zd) just as

←−
Zd(Zn), and in the constant

base case (where Zn = Ln(Zd), for some matrix L ∈M(d,Z)), we will denote it as
←−
Zd(Ln).

Odometer systems have been extensively studied before (see [28, 30, 42]). The next result
characterizes the factor odometers systems of a fixed odometer system.

Lemma 1.13. [28, Lemma 1] Let
←−
Zd

(Zjn)
be two odometer systems (j = 1, 2). There exists

a factor map π :
←−
Zd(Z1

n) →
←−
Zd(Z2

n) if and only if for every Z2
n there exists some Z1

m such
that Z1

m ≤ Z2
n.

The proof of Lemma 1.13 can be modified to provide a characterization for the matrices

M ∈ GL(d,Z) defining a homomorphism φ :
←−
Zd(Z1

n) →
←−
Zd(Z2

n).

Lemma 1.14. Set M ∈ GL(d,Z). There exists a homomorphism associated with M from
←−
Zd(Z1

n) to
←−
Zd(Z2

n), if and only if for all n ∈ N, there exists mM (n) ∈ N such that

MZ1
mM (n) ≤ Z

2
n. (Normalizer Condition)

Proof. First we prove the necessity. Let φ :
←−
Zd(Z1

n) →
←−
Zd(Z2

n) be a homomorphism associated

with a matrix M ∈ GL(d,Z). By continuity, for any n ≥ 0 and g ∈ Zd/Z2
n, there exists

m ≥ 0 and f ∈ Zd/Z1
m such that [f ]m ⊆ φ−1([g]n). Set h ∈ Z1

m. Note that for all
←−
f ∈ [f ]m, we have that h(

←−
f ) ∈ [f ]m, which implies φ(h(

←−
f )) = Mh(

←−
f ) ∈ [g]n. Since

φ(
←−
f ) is in [a]n, then

{
m ∈ Zd : m(φ(←−g )) ∈ [a]n

}
is equal to Z2

n, which implies Mh ∈ Z2
n.

For the sufficiency, assume that M ∈ GL(d,Z) satisfies (Normalizer Condition). Since
the sequences {Zin}n>0, i = 1, 2 are decreasing, we may assume that m(n) ≤ m(n + 1)
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for all n > 0. Thus, we have a homomorphism φm(n) : Zd/Z1
mM (n) → Zd/Z2

n, given by

φm(n)(m) = Mm. To finish the proof, we remark that φ :
←−
Zd(Z1

n) →
←−
Zd(Z2

n) defined as
φ(←−g = (gm(n))n>0) = (φm(n)(gm(n)))n>0 is a homomorphism associated with M .

In [58] there was a first attempt of studying homomorphisms between two-dimensional
odometer systems. Note that for all n ≥ 0, we may assume that mM (n) is arbitrarily
large. Consider, for all n ∈ N a matrix Ln,i ∈ M(d,Z) such that Ln,i(Zd) = Zin for
i ∈ {1, 2}. This matrix is unique, up to a conjugation with a matrix in GL(d,Z). Then,
(Normalizer Condition) is equivalent to, for all n ≥ 0, there exists mM (n) ≥ 0 such that
L−1
n,2MLmM (n),1 is an endomorphism in Zd. Since det(L)L−1 = adj(L), where adj(L) is the

adjugate matrix of L, then (Normalizer Condition) is equivalent to

∀n ∈ N, ∃mM (n) ∈ N, adj(Ln,2)MLmM (n),1 ≡ 0 (mod det(Ln,2)). (NC 2)

In the constant-base case, ignoring the condition M ∈ GL(d,Z), then L satisfies (NC 2).
Moreover, the set of integer matrices M ∈M(d,Z) satisfying (NC 2) is an additive group.
In particular, any polynomial in L with integer coefficients also satisfies (NC 2).

A direct corollary of Lemma 1.14 is the following.

Corollary 1.15. The following are consequences of Lemma 4.10 easily to verified.

1. If L = pM is an integer expansion matrix, with p ∈ Z and M ∈ GL(d,Z), then the

symmetry semigroup ~N(
←−
Zd(Ln)) is GL(d,Z).

2. If L1 ∈ M(d,Z) is an integer expansion matrix and M ∈ ~N(
←−
Zd(Ln1 )), then for any

P ∈ GL(d,Z), PMP−1 is in the symmetry semigroup ~N(
←−
Zd(PLn1P

−1)).

3. If M ∈ GL(d,Z) commutes with some power of the expansion matrix L, then M is

in the symmetry semigroup ~N(
←−
Zd(Ln))

Now we define Toeplitz sequences. Let A be a finite alphabet and Z ⊆ Zd be a finite
index subgroup of Zd. For x ∈ AZd and a ∈ A we define

Per(x, Z, a) = {n ∈ Zd : x(n + m) = a, for all m ∈ Z}.

Then Per(x, Z) =
⋃
a∈A

Per(x, Z, a) for all x ∈ AZd . When Per(x,Z) is non-empty, we

say Z is a group of periods of x. We say Z ⊆ Zd is a group generated by essential periods of
x if for all finite index subgroup Z ′ ⊆ Zd, Per(x,Z) ⊆ Per(x,Z′) implies that Z ′ ⊆ Z. We
say that x is a Zd-Toeplitz sequence if for all n ∈ Zd, there exists a finite index subgroup
Z ⊆ Zd such that n ∈ Per(x, Z). The following is a characterization of Toeplitz sequences

Proposition 1.16. [28, Proposition 14] The following statements concerning x ∈ AZd are
equivalent:
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1. x is a Toeplitz sequence.

2. There exists a sequence of positive integer numbers {pn}n≥0 such that pn < pn+1, pn
divides pn+1 and J−n, . . . , nKd ⊆ Per(x, pnZd) for all n ≥ 0.

Toeplitz subshifts, which are subshifts generated by a Toeplitz sequence, are almost
1-to-1 extensions of odometer systems. In fact

Proposition 1.17. [28, Proposition 20] Let x ∈ AZd be a Toeplitz sequence. If {Zn}n≥0

is a sequence of groups generated by essential periods of x such that Zn+1 ⊆ Zn and⋃
n≥0

Per(x, Zn) = Zd, then (
←−
ZdZn ,+Zn ,Zd) is the maximal equicontinuous factor of the

subshift generated by x.

1.7 Multidimensional constant-shape substitutions

In this section we will define the main object where we study homomorphisms in this thesis,
which are multidimensional substitutive subshifts. They represent the simplest nontrivial
zero entropy symbolic systems, since they are generated by finite data. By that, ergodic
and topological properties of substitution dynamical systems have been extensively studied.
They were introduced by W.H. Gottschalk in [60] (see [97] for a good bibliography on this
subject).

Unlike the one-dimensional case, the notion of multidimensional substitutions is not
clear. In our case we extend the notion of constant-length substitutions to the multidi-
mensional framework and we call them constant-shape substitution. To do this, we use the
fact that if L ∈ M(d,Z) is an integer matrix with det(L) 6= 0 and F is a fundamental
domain of L(Zd) (with 0 ∈ F ), i.e., a set of representative classes of Zd/L(Zd), then for
any n ∈ Zd, there exists unique p ∈ Zd and f ∈ F such that n = L(p) + f . This is a
multidimensional interpretation of the Euclidean division.

In our context, L ∈M(d,Z) is an integer expansion matrix, i.e, ‖L‖ > 1 and ‖L−1‖ < 1,
such that L(Zd) ⊆ Zd. Let F be a fundamental domain of L(Zd) with 0 in F , and A be a fi-
nite alphabet. A multidimensional constant-shape substitution ζ is a mapA → AF . The set
F is called the support of the substitution. An analogue of constant-shape substitutions in
the one-dimensional case are the constant-length substitutions. Fig. 1.2 shows an example

of a constant-shape substitution with L =

(
2 0
0 2

)
and F =

{(
0

0

)
,

(
1

0

)
,

(
0

1

)
,

(
−1

−1

)}
.
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7→ 7→

7→ 7→

Figure 1.2: An example of a constant-shape substitution over a four-letter alphabet.

Every element of Zd can be expressed in a unique way as p = L(j) + f , with j ∈ Zd

and f ∈ F , so we can consider the substitution ζ as a map from AZd to itself given by

ζ(x)L(j)+k = ζ(x(j))k.

Given a substitution ζ, we will denote by Lζ to its expansion matrix and F ζ1 its support.

For any n > 0 we define the iteration of the substitution ζn : A → AF
ζ
n , where the supports

of these substitutions satisfy the recurrence F ζn+1 = F ζ1 + Lζ(F
ζ
n) for all n ≥ 1.

From now on, we may assume that the sequence of supports (F ζn)n>0 is a Følner se-
quence. Fig. 1.3 shows the first three iterations of the substitution given in Fig. 1.2.

7→ 7→

7→

Figure 1.3: First, second and third iterations of Fig. 1.2.
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For any f ∈ F ζ1 we define pf the restriction of ζ in f , i.e., for a ∈ A, we have that

pf (a) = ζ(a)f . We say the substitution is bijective if for all f ∈ F ζ1 the maps pf are
bijective. A substitution is called primitive if there exists a positive integer n > 0, such
that for every a, b ∈ A, b occurs in ζn(a). Fig. 1.2 is an example of a bijective and primitive
constant-shape substitution. The language of a substitution is the set of all patterns that
appear in ζn(a), for some n > 0, a ∈ A, i.e.,

Lζ = {p : p v ζn(a), for some n > 0, a ∈ A}.

Using the language we define the subshift Xζ associated with a substitution as the set

of all sequences x ∈ AZd such that every pattern occurring in x is in Lζ , and we denote
(Xζ , S,Zd) the substitutive subshift. If ζ is a primitive constant-shape substitution, the
existence of periodic points is well known, i.e., there exists at least one point x0 ∈ Xζ

such that ζp(x0) = x0 for some p > 0. In the primitive case, the subshift is preserved
replacing the substitution by a power of it, i.e., Xζn is equal to Xζ for all n > 0. Then,
we may assume that the substitution possess at least one fixed point, i.e., there exists a
point x ∈ Xζ such that x = ζ(x). It is well known that this subshift is uniquely ergodic (in
[81] can be found a proof for substitution tiling systems seen as substitution Delone sets
for Rd-actions that can be adapted for our context with the assumption of the supports
(F ζn)n>0 being a Følner sequence). The unique ergodic measure is characterized in terms
of the expansion matrix of ζ, and we denote this measure as µζ . For a cylinder set [p]n,
where p is a pattern in Lζ , the quantity µζ([p]) represents the frequency of the pattern p

in any sequence in Xζ .
In the literature, constant-shape substitutions with a positive diagonal expansion ma-

trix L = diag(li)i=1,...,d and support equal to the standard d-dimensional parallelepiped

F1 =
d∏
i=1

J0, li − 1K are called block substitutions.

Examples of constant-shape substitutions can be generated via constant-length sub-
stitutions as follows: Let {ζi}di=1 be d aperiodic one-dimensional constant-length sub-
stitutions with alphabet Ai and length qi for 1 ≤ i ≤ d. We define the product sub-

stitution of {ζi}di=1 as the constant-shape substitution ζ with alphabet A =
d∏
i=1
Ai,

expansion matrix given by Lζ = diag(li) and support F ζ1 =
d∏
i=1

J0, li − 1K, defined as

ζ(a1, . . . , ad)j = (ζ1(a1)j1 , . . . , ζd(ad)jd). It is straightforward to check that if {ζi}di=1 are
primitive, then the product substitution is also primitive. The same is true for bijectivity.

Since Lζ is an expansion matrix, then L−1
ζ is a contraction map in Rd. For any g ∈ F ζ1

define the map fg(·) = L−1
ζ (·+ g). As mentioned in Section 1.1.3, there exists a nonempty

compact subset Tζ (or denoted T (L,F1) when there is no substitution defined) in Rd such
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that
Lζ(Tζ) =

⋃
g∈F ζ1

Tζ + g.

As in [110] we call this set the digit tile of the substitution. Using T0 = {0} in (1.2) we
get that

Tζ = lim
n→∞

n−1∑
i=0

L−iζ (F ζ1 ) = lim
n→∞

L−nζ (F ζn), (1.5)

where the limit is with respect to the Hausdorff metric. Fig. 1.4 shows some examples of
approximations of this digit tile.

(a) (b) (c) (d)

Figure 1.4: Approximation of some digit tiles: (a) Gasket, (b) Rocket, (c) Shooter, (d)
Twin Dragon. The names of these tiles comes from [110]

The expansion matrix and fundamental domains of these examples are the following:

(a) L(a) =

(
2 0
0 2

)
, F

(a)
1 =

{(
0

0

)
,

(
1

0

)
,

(
0

1

)
,

(
−1

−1

)}
.

(b) L(b) =

(
3 0
0 3

)
, F

(b)
1 =

{(
0

0

)
,

(
1

1

)
,

(
2

2

)
,

(
−1

0

)
,

(
−2

0

)
,

(
−1

1

)
,

(
0

−1

)
,

(
0

−2

)
,

(
1

−1

)}
.

(c) L(c) =

(
3 0
0 3

)
, F

(c)
1 =

{(
0

0

)
,

(
1

0

)
,

(
2

0

)
,

(
0

1

)
,

(
0

2

)
,

(
2

2

)
,

(
4

4

)
,

(
2

1

)
,

(
1

2

)}
.

(d) L(d) =

(
1 −1
1 1

)
, F

(d)
1 =

{(
0

0

)
,

(
1

0

)}
.

As in the one-dimensional case, the following proposition shows that for any multidi-
mensional constant-shape substitution there exists a finite subset K b Zd whose iteration
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under the substitution fill the whole Zd. This set determine the fixed points of a primitive
constant-shape substitution.

Proposition 1.18. Let ζ be a multidimensional constant-shape substitution. Then, the set
Kζ =

⋃
m>0

((id−Lmζ )−1(F ζm) ∩ Zd) is finite and satisfies

⋃
n≥0

Lnζ (Kζ) + F ζn = Zd,

using the notation F ζ0 = {0}.

Proof. Set n ∈ Zd and consider the sequence (an)n≥0 ⊆ Zd given by a0 = n and for any

n ≥ 0, an+1 is defined as the unique element in Zd such that there exists an element fn ∈ F ζ1
with an = Lζ(an+1) +fn. Note that for any n ≥ 0, ‖an+1‖ ≤ ‖L−1

ζ ‖ · ‖an‖+‖L−1
ζ ‖ · ‖F

ζ
1 ‖,

which implies

‖an‖ ≤ ‖L−1
ζ ‖

n‖n‖+
‖L−1

ζ ‖‖F
ζ
1 ‖(1− 2‖L−1

ζ ‖
n)

1− ‖L−1
ζ ‖

,

hence (an)n≥0 is a bounded sequence in Zd. By the Pigeonhole Principle there exist n ≥ 0

and k > 0 such that an = an+k, i.e., an = Lkζ (an) + f , for some f ∈ F ζk . It follows the set

Kζ =
⋃
m>0

((id−Lmζ )−1(F ζm) ∩ Zd) satisfies the property. Now we prove that Kζ is finite.

Note that for any m > 0

‖(id−Lmζ )−1(F ζm)‖ =

∥∥∥∥m−1∑
i=0

(id−Lmζ )−1Li(F ζ1 )

∥∥∥∥
≤ ‖F ζ1 ‖

∥∥∥∥m−1∑
i=0

(id−Lmζ )−1Liζ

∥∥∥∥
≤ ‖F ζ1

∥∥∥(id−Lmζ )−1(id−Lmζ )(id−Lζ)−1
∥∥∥

≤ ‖F ζ1 ‖‖(id−Lζ)−1‖.

We conclude that Kζ is a finite set.

Remark 1.19. The following statements can be easily verified.

(1) In the one-dimensional case for any constant-length substitution ζ, we have that
Kζ = {−1, 0}. Moreover, for any d-dimensional block substitution, i.e., Lζ equal

to the diagonal matrix diag(l1, . . . , ld), and F ζ1 equal to the standard d-dimensional

parallelepiped support
d∏
i=1

J0, li − 1K, then Kζ = J−1, 0Kd.

(2) If Lζ is such that |det(Lζ − id)| = 1, then Kζ is equal to (id−L−1
ζ )−1(F ζ1 ).
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(3) Since Kζ is a finite set, there exists j > 0 such that Kζ =
j⋃

m=0
((id−Lmζ )−1(F ζm)∩Zd).

When the substitution ζ is primitive, up to considering a power of ζ, we may assume
that the set Kζ is of the form (id−Lζ)−1(F ζ1 ) ∩ Zd.

The argument used in the proof of Proposition 1.18 is inspired by the Euclidean Division
Algorithm. A similar idea can be used to find different sets satisfying specific statements
involving the supports (F ζn)n>0 that will be needed for some proofs.

From now on for any n ∈ Zd we denote by dn ∈ Zd and fn ∈ F ζ1 the unique elements
such that n = Lζ(dn) + fn. The following result will be useful in a series of results
throughout this thesis.

Proposition 1.20. Set A b Zd and let F b Zd be such that F ζ1 ⊆ F . Define B =
{dn}n∈F+A. Then, there exists a finite subset C of Zd satisfying the following conditions:

1. B ⊆ C.

2. C + F +A ⊆ Lζ(C) + F ζ1 .

3. ‖C‖ ≤ ‖B‖+ ‖L−1
ζ ‖

(
‖A‖+ ‖F‖+ ‖F ζ1 ‖

)
/
(

1− ‖L−1
ζ ‖
)

.

Proof. We define two sequences of finite sets of Zd, (Bn)n≥0, (Cn)n≥0, with B0 = B,
C0 = B + F + A, and for any n ≥ 0, set Bn+1 b Zd such that Bn+1 = {dn}n∈Cn , and
Cn+1 b Zd such that Cn+1 = Bn+1 + F +A. Note that

‖Bn+1‖ ≤ ‖L−1
ζ ‖

(
‖Cn‖+ ‖F ζ1 ‖

)
≤ ‖L−1

ζ ‖
(
‖Bn‖+ ‖A‖+ ‖F‖+ ‖F ζ1 ‖

)
≤ ‖L−1

ζ ‖‖Bn‖+ ‖L−1
ζ ‖

(
‖A‖+ ‖F‖+ ‖F ζ1 ‖

)
.

Hence, for any n > 0 we have that

‖Bn‖ ≤ ‖B‖‖L−1
ζ ‖

n +
1− ‖L−1

ζ ‖
n

1− ‖L−1
ζ ‖

(
‖L−1

ζ ‖
(
‖A‖+ ‖F‖+ ‖F ζ1 ‖

))
.

Since ‖L−1
ζ ‖ is strictly smaller than 1, then ‖Bn‖ ≤ ‖B‖ +

‖L−1
ζ ‖

(
‖A‖+ ‖F‖+ ‖F ζ1 ‖

)
/
(

1− ‖L−1
ζ ‖
)

. This implies there exists N ∈ N such

that
⋃
n≤N

Bn =
⋃

n≤N+1

Bn. We conclude the proof taking C =
N⋃
n=0

Bn.

Remark 1.21. The following statements will be useful on the rest of the thesis.

(1) Condition 2. implies C + A+ F ζ1 ⊆ Lζ(C) + F ζ1 , and a direct induction proves that

for all n ≥ 0, we have that Lnζ (C +A) + F ζn ⊆ Ln+1
ζ (C) + F ζn+1.
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(2) Using F = F ζ1 + F ζ1 and A = {0}, we obtain a set C b Zd such that C + F ζ1 + F ζ1 ⊆
Lζ(C) + F ζ1 . Since 0 ∈ F ζ1 , then 0 is in C, which implies F ζ1 + F ζ1 ⊆ Lζ(C) + F ζ1 .

Assume that for some n > 0 we have that F ζn + F ζn ⊆ Lnζ (C) + F ζn . Then, we obtain
that

F ζn+1 + F ζn+1 = F ζn + F ζn + Lnζ (F ζ1 ) + Lnζ (F ζ1 )

⊆ Lnζ (C) + F ζn + Lnζ (F ζ1 ) + Lnζ (F ζ1 )

⊆ Ln+1
ζ (C) + Lnζ (F ζ1 ) + F ζn

= Ln+1
ζ (C) + F ζn+1,

so, by induction we prove that for all n > 0, F ζn + F ζn ⊆ Lnζ (C) + F ζn .

The next result shows that for any aperiodic symbolic factor (Y, S,Zd) of (Xζ , S,Zd)
we can change ζ for an appropriate substitution ζ ′ with the same expansion matrix and
fundamental domain such that (Xζ′ , S,Zd) and (Xζ , S,Zd) are conjugate, and there exists
a factor π : (Xζ′ , S,Zd)→ (Y, S,Zd) induced by a 0-block map.

Lemma 1.22. Let ζ be an aperiodic primitive constant-shape substitution and
φ : (Xζ , S,Zd)→ (Y, S,Zd) be an aperiodic symbolic factor of (Xζ , S,Zd). Then, there ex-
ists a substitution ζ ′ having the same support and expansion matrix such that (Xζ′ , S,Zd)
and (Xζ , S,Zd) are conjugate and a factor map π : (Xζ′ , S,Zd) → (Y, S,Zd) induced by a
0-block map.

Proof. Suppose that φ : (Xζ , S,Zd) → (Y, S,Zd) is a factor map via a B(0, r)-block map.

Set A = B(0, r), by Proposition 1.20 there exists a set C b Zd such that B(0, r)+F ζ1 +C ⊆
Lζ(C) + F ζ1 . Set D = Lζ(C) + F ζ1 . We will define a substitution ζ(D) considering the set
LD(Xζ) as the alphabet with the same expansion matrix and support of ζ in the following

way: If p ∈ LD(Xζ), then for any j ∈ F ζ1 we set ζ(D)(p)j = ζ(p)|j+D. It is straightforward

to check that x ∈ Xζ is a fixed point of the substitution ζ, if and only if y ∈ LD(Xζ)
Zd

such that yn = x|n+D for all n ∈ Zd is a fixed point of the substitution ζ(D). With this, we
can define the following sliding block codes ψ1 : (Xζ , S,Zd) → (Xζ(D) , S,Zd) given by the

D-block map Ψ1(p) = p, and ψ2 : (Xζ(D) , S,Zd) → (Xζ , S,Zd) given by the 0-block map
Ψ2(p) = p0. These maps commute with the shift action and define a conjugacy between
Xζ and Xζ(D) . We then, define a factor map φ(D) : (Xζ(D) , S,Zd) → (Y, S,Zd) given by a
0-block map equal to ψ2φ.



Chapter 2

The symmetry semigroup of
Z2-odometers

In this chapter, we will study the symmetry semigroup of some odometer systems. In [58]
there is a first attempt to characterize this semigroup for Z2-odometers. We start with
the d-dimensional universal odometer system. This odometer is universal in the sense that
any d-dimensional odometer system is a topological factor of this one. We get that its
symmetry semigroup is the largest one and equal to GL(d,Z). Then, we will restrict on

two dimensional constant base odometer systems
←−
Z2

(Ln), where L ∈ M(2,Z) is an integer
expansion matrix. In this case, we get a description of a bifurcation phenomenon at the
level of the symmetry semigroup with respect to arithmetical relations of invariants of
the matrix. The main theorem (Theorem 2.2) shows that in most cases the symmetry
semigroup is the centralizer of the matrix L. This will help to get a characterization of the
normalizer semigroup of aperiodic primitive constant-shape substitutions using the relation
between homomorphisms and their maximal equicontinuous factors (Lemma 1.7).

2.1 The universal odometer

Let (Γn)n∈N be a enumeration of all finite index subgroups of Zd. We define the d-
dimensional universal odometer system as follows: Set Z0 = Γ0, and for any n > 1 set

Zn = Λn−1 ∩ Γn. Then, we define the d-dimensional universal odometer as
←−
Zd(Zn). This

odometer is universal in the sense that by Lemma 1.13 any odometer system is a topolog-
ical factor of the universal odometer. For instance, the 1-dimensional universal odometer

system is equal to
←−
Z (n!). With respect to its symmetry semigroup, (NC 2) implies the

following result.

Proposition 2.1. The symmetry semigroup of the universal odometer is GL(d,Z).

Proof. Consider Ln ∈ M(d,Z) such that Ln(Zd) = Λn. A matrix M ∈ GL(d,Z) is in

55
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~N(
←−
Zd(Λn)) if and only if M satisfies (NC 2). Now, for any n ∈ N we can choose m(n) ∈ N

large enough such that Λm(n) ≤ det(Ln)Zd, so adj(Ln)MLm(n) ≡ 0 (mod det(Ln)). We

then conclude that ~N(
←−
Zd(Λn)) = GL(d,Z).

2.2 Bifurcation phenomenon of the normalizer semigroup
for constant base Z2-odometer systems

To describe the different cases of the normalizer semigroup of odometer systems of the form←−
Z2

(Ln), where L ∈ M(2,Z) is an integer expansion matrix, we need some extra notations.
For any positive integer n > 0, the radical rad(n) of n is defined as the product of the
distinct prime numbers dividing n, if n < 0 we define rad(n) just as rad(−n). We define
the centralizer of a matrix L on GL(2,Z) CentGL(2,Z)(L) as the subgroup of all matrices
in GL(2,Z) commuting with L. Recall by Corollary 1.15 the centralizer CentGL(2,Z)(L) is

always a subgroup of the symmetry semigroup ~N(
←−
Zd(Ln)).

From now on, we will fix the following notation. An integer expansion matrix will be

denoted as L =

(
p q
r s

)
and its powers as Ln =

(
p(n) q(n)
r(n) s(n)

)
. We will denote a

matrix in GL(2,Z) as M =

(
m11 m12

m21 m22

)
.

The following theorem summarizes the different cases of the symmetry group ~N(
←−
Z2

(Ln))
depending on the matrix L.

Theorem 2.2. Let L ∈M(2,Z) be an integer expansion matrix.

• If rad(det(L)) divides trace(L), then ~N(
←−
Z2

(Ln)) is equal to GL(2,Z).

• Otherwise

1. If the spectrum of the matrix L is disjoint from the integers, then the symmetry

semigroup ~N(
←−
Z2

(Ln)) is the centralizer CentGL(2,Z)(L). Moreover, if the spec-

trum of L is disjoint from the real line, then ~N(
←−
Z2

(Ln)) is a finite group.

2. When the spectrum of L contains an integer value, then the matrix coefficients

of elements in ~N(
←−
Z2

(Ln(Z2))) are characterized by linear relations with respect to
the coefficients given by the one of the matrix L. In particular, under explicit

arithmetical properties of the coefficients of L, ~N(
←−
Z2

(Ln(Z2))) can be isomorphic

to Z/2Z, Z2/2Z× 2Z, or ~N(
←−
Z2

(Ln(Z2)))/(CentGL(2,Z)(L)) can be virtually to Z.

Along the proof of Theorem 2.2 we will get more precise information about the sym-
metry semigroup, when we have more restrictions on the matrix L.
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Since odometer systems are coalescent systems, then as a consequence of the proof of
Theorem 2.2 and Proposition 1.5 we get the following result.

Proposition 2.3. Let L ∈ M(2,Z) be an integer expansion matrix. Then, the symme-

try semigroup of
←−
Z2

(Ln) is a group. In particular, any homomorphism in N(
←−
Z2

(Ln)) is
invertible.

Proposition 2.3 will be proved in Section 2.5.
The following examples illustrate the different consequences of Theorem 2.2 according

to the expansion matrix L.

Example 2.4 (Different results for Theorem 2.2). (1) Consider the matrix L1 =(
2 −1
1 3

)
. We have that trace(L1) = 5, and det(L1) = 7, so by Theorem 2.2 a

matrix M ∈ GL(2,Z) is in ~N(
←−
Z2

(Ln1 )) if and only if M commutes with L1. Note that

trace(L1)2−4 det(L1) = −3, so L1 has complex eigenvalues (which are 5/2± i
√

3/2),
and CentGL(2,Z)(L1) is equal to

(
1 1
−1 0

)
,

(
−1 −1
1 0

)
,

(
0 −1
1 1

)
(

0 −1
1 −1

)
,

(
1 0
0 1

)
,

(
−1 0
0 −1

)
 .

(2) Consider the matrix L2 =

(
2 −1
1 5

)
. In this case trace(L2) = 7 and det(L2) = 11,

hence by Theorem 2.2 the matrices in ~N(
←−
Z2

(Ln2 )) are the ones commuting with L2.

Note that L2 has real eigenvalues (which are equal to 7/2±
√

5/2) and CentGL(2,Z)(L2)

is an infinite group containing

(
2 1
−1 −1

)
.

(3) Set L3 =

(
0 6
−3 9

)
. This matrix has integer eigenvalues, which are 3

and 6. We will get that a matrix M =

(
m11 m12

m21 m22

)
is in ~N(

←−
Z2

(Ln3 ))

if and only if |m11m22 − m12m21| = 1 and m12 = 4m21 + 2m22 − 2m11.

This set of matrices is conjugate, via the matrix

(
1 −1
−1 2

)
, to the set

of matrices

{(
m11 m12

0 m22

)
: |m11m22| = 1,m12 ∈ Z

}
. It is easy to see that

~N(
←−
Z2

(Ln3 ))/CentGL(2,Z)(L3) is virtually Z.
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Remark 2.5. Theorem 2.2 implies the factor map between equicontinuous systems is not
necessarily compatible with homomorphisms. Consider X as the 2-dimensional universal

odometer, and Y =
←−
Z2

(Ln1 ), where L1 =

(
2 −1
1 3

)
, so Y is an equicontinuous factor of

X. Now, by Proposition 2.1, we can define a homomorphism associated with the matrix(
2 1
1 1

)
in X, but by Theorem 2.2 and Lemma 1.6, this is not possible in Y .

2.3 The diagonal case

We will decompose the proof of Theorem 2.2 starting with the case where the expansion
matrix has integer eigenvalues. First we will study the diagonal case, i.e., q = r = 0, since
we will get more precise results about the symmetry semigroup. Note that det(L) = ps and
trace(L) = p + s, so the condition rad(det(L)) divides trace(L) is equivalent to rad(p) =
rad(s). The following result is a particular case of Theorem 2.2 for diagonal matrices.

Proposition 2.6. Let L = diag(p, s) be an expansion 2 × 2 diagonal matrix such that
rad(det(L)) does not divides trace(L). We have the following:

1. If (rad(p) does not divide s and rad(s) divides p), or (rad(p) divides s and rad(s)

does not divide p), then ~N(
←−
Z2

(Ln))/(CentGL(2,Z)(L)) is virtually Z.

2. If rad(p) does not divide s and rad(s) does not divide p, then ~N(
←−
Z2

(Ln)) is isomorphic
to Z/2Z× Z/2Z.

Proof. Let M ∈ GL(2,Z) satisfying (NC 2). Then, for any n > 0, we get the following
equations

adj(Ln)MLm(n) =

(
m11p

m(n)sn m12s
m(n)+n

m21p
m(n)+n m22s

m(n)pn

)
≡
(

0 0
0 0

)
(mod pnsn), (2.1)

Assuming m(n) > 0 is large enough, we simplify the equations in the anti-diagonal, and
we get

m12s
m(n) ≡ 0 (mod pn), (2.2)

m21p
m(n) ≡ 0 (mod sn) (2.3)

If rad(p) does not divide s, there exists a prime number t dividing p such that for all
m > 0, and all n > 0, sm is an invertible element in Z/tnZ. This implies m12 ≡ 0 (mod tn)
for all n > 0, hence m12 = 0. On the other hand, if rad(p) divides s, then for any n > 0,
there exists m(n) > 0 large enough such that pn divides sm(n). In this case any m12 ∈ Z
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is solution of (2.2). Using the same arguments we have the same conclusion for m21 with
respect to rad(s) and p.

Assuming rad(p) does not divide s and rad(s) does not divide p, we get m12 = 0
and m21 = 0, so the only matrices satisfying (NC 2) are diagonal matrices. We conclude

~N(
←−
Z2

(Ln)) is isomorphic to Z2/(2Z× 2Z).

Remark 2.7. The proof of Proposition 2.6 can be easily generalized to higher dimensions
in the following way: Suppose that L = diag(p1, . . . , pd) is an expansion d × d diagonal

matrix. If rad(pi) does not divide pj for some 1 ≤ i, j ≤ d, then for any M ∈ ~N(
←−
Zd(Ln)),

we have that mi,j = 0. In particular, if for any pair of distinct indices 1 ≤ i 6= j ≤ d,

rad(pi) does not divide pj , then by (NC 2), ~N(
←−
Zd(Ln)) is isomorphic to Zd/(2Z×· · ·× 2Z),

as can be deduced by the proof of Theorem 28 in [21].

2.4 The triangular case

We will next consider the case where the expansion matrix is a triangular matrix. We will
focus on the upper triangular case, i.e., q 6= 0 and r = 0, since the lower triangular case

can be deduce by this one via conjugation with the matrix

(
0 1
1 0

)
. For all n ∈ Z we

have that

Ln =

(
pn q(n)
0 sn

)
,

where q(n) = q(pn−sn)/(p−s) = q
n−1∑
i=0

pisn−1−i. As in the diagonal case, det(L) = ps and

trace(L) = p + s, so the condition rad(det(L)) divides trace(L) is equivalent to rad(p) =
rad(s). In this case, there is a similar result to the one obtained for the diagonal case, as
it is shown in the following proposition:

Proposition 2.8. Let L ∈ M(2,Z) be an expansion upper triangular matrix such that
rad(det(L)) does not divide trace(L). Then, we have the following:

1. If rad(p) does not divide s and rad(s) divides p, then a matrix M ∈ GL(2,Z) is in

~N(
←−
Z2

Ln) if and only if (p− s)2m12 = m21q
2 + (p− s)(m11 −m22)q. In particular, if

(p− s)|q, then ~N(
←−
Z2

Ln)/(CentGL(2,Z)(L)) is virtually Z.

2. Assume that rad(p) divides s and rad(s) does not divide p. Then

~N(
←−
Z2

(Ln))/(CentGL(2,Z)(L)) is virtually Z.

3. If rad(p) does not divide s and rad(s) does not divide p, we have two cases:

• If 2q ∈ (p− s)Z then ~N(
←−
Z2

(Ln)) is isomorphic to Z/2Z× Z/2Z.
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• Otherwise, ~N(
←−
Z2

(Ln)) is isomorphic to Z/2Z.

Proof. Let M be in ~N(
←−
Z2

(Ln)). Define the matrix M = (p − s)M − (m11 −m22)L − (p ·
m22 −m11 · s) idR2 . Then, M satisfies (Normalizer Condition). Note that M has the form

M =

(
0 m12

m21 0

)
,

where m12 = (p− s)m12 − (m11 −m22)q and m21 = (p− s)m21, with m12,m21 ∈ Z. Now,
for all n,m > 0, (NC 2) implies

(
−m21p

mq(n) m12s
n+m −m21q(m)q(n)

m21p
n+m m21pq(m)

)
≡
(

0 0
0 0

)
(mod pnsn). (2.4)

Suppose rad(s) does not divide p. Then, there exists a prime number t dividing s
such that for all n > 0 and m > 0, pm is an invertible element in Z/tnZ. Hence, m21 ≡
0 (mod tn), which implies m21 = 0, so m21 = 0. Now, by (2.4) we get that

m12s
m ≡ 0 (mod pn). (2.5)

We have two cases:

• If rad(p) does not divide s, then (2.5) implies m12 = 0. We conclude that M =(
0 0
0 0

)
, i.e., (p − s)M = (m11 −m22)L + (p ·m22 −m11 · s) idR2 . Since m21 = 0,

then M has the form

M =

(
m11 m12(m11,m22)

0 m22

)
.

where m12(m11,m11) satisfies (p− s)m12(m11,m11) = (m11 −m22)q.

– Note that m11 = m22 if and only if m12 = 0.

– If m11 6= m22, then m11 −m22 ∈ {−2, 2}, so (p − s)m12 = ±2q. Since M has
integer coefficients, this necessarily implies 2q ∈ (p − s)Z. If this condition is
satisfied, then M has the form

M =

(
m11

(m11−m22)q
p−s

0 m22

)
.

It is not difficult to see that M2 is the identity matrix. We conclude that
~N(
←−
Z2

(Ln)) is isomorphic to Z/2Z × Z/2Z. If 2q /∈ (p − s)Z, then ~N(
←−
Z2

(Ln)) is
isomorphic to Z/2Z.
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• If rad(p) divides s, then any m12 ∈ Z satisfies (2.5). Thus, any matrix M =(
m11 m12

0 m22

)
with |m11m22| = 1 satisfies (NC 2).

Finally, if rad(s) divides p, then for any n > 0, and any m large enough sn divides pm

and q(m). Let t be a prime number dividing p that does not divide s. Then, by (2.4) we
obtain

(p− s)2m12s
n+m ≡ m21q

2sn+m (mod tn). (2.6)

Since t does not divide s, then for any n,m > 0, sn+m is an invertible element in Z/tnZ,
so (2.6) is reduced to

(p− s)2m12 ≡ m22q
2 (mod tn), (2.7)

which implies (p− s)2m12 = m21q
2. Thus, we get that

(p− s)2m12 = m21q
2 + (p− s)(m11 −m22)q. (2.8)

Now, if (p− s) divides q, we write q = k(p− s) for some k ∈ Z. By (2.8), we have that

m12 = m21k
2 + k(m11 −m22).

Since | det(M)| = 1, and det(M) = (m11+m21·k)(m22−m21·k), we get that |m11+m21·k| =
1 and |m22−m21 · k| = 1. We then can parameterize the matrices in ~N(

←−
Z2

(Ln)) as follows:
(

1−m · k −mk2

m 1 +m · k

)
,

(
1−m · k 2k −mk2

m m · k − 1

)
(
−1−m · k −2k −mk2

m 1 +m · k

)
,

(
−1−m · k −mk2

m −1 +m · k

)
: m ∈ Z

 .

In this case, L is conjugate to the matrix

(
p 0
0 s

)
, via the matrix

(
1 k
0 1

)
, so by the

diagonal case (Proposition 2.6) we conclude that ~N(
←−
Z2

(Ln))/(CentGL(2,Z)(L)) is virtually
Z.

2.5 Proof of Theorem 2.2

Now we will prove Theorem 2.2. Since we already proved the triangular case, we assume
that q 6= 0 and r 6= 0.
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Proof of Theorem 2.2. Let L ∈ M(2,Z) be an integer expansion matrix. The Cayley-
Hamilton theorem implies L2 = trace(L) ·L−det(L) · idR2 . If rad(det(L)) divides trace(L),
then L2 ≡ 0 (mod rad(det(L))). Hence, for all n > 0 and any m(n) > 0 large enough, we
get that Lm(n) ≡ 0 (mod det(L)n). So any matrix in GL(2,Z) satisfies (NC 2), and we

conclude that ~N(
←−
Z2

(Ln)) = GL(2,Z).
Suppose now that rad(det(L)) does not divide trace(L). By induction, for any n > 0 we

have that Ln ≡ trace(L)n−1L (mod det(L)). Since rad(det(L)) does not divide trace(L),
there exists a prime number t dividing det(L) that does not divide p or s. Without loss

of generality (up to a conjugation with

(
0 1
1 0

)
) we may assume that t does not divide

s. Since s(n) ≡ trace(L)n−1s (mod det(L)), then, for all n > 0, and m > 0, s(m) is an
invertible element in Z/tnZ.

Let M =

(
m11 m12

m21 m22

)
be in ~N(

←−
Z2

(Ln)). Define the matrix M = rM −m21L − (r ·

m11−p ·m21) idR2 . Then, the matrix M satisfies (Normalizer Condition) and has the form

M =

(
0 m12

0 m22

)
,

where m12 = r ·m12− q ·m21, m22 = r ·m22− s ·m21− r ·m11 + p ·m21, with m12,m21 ∈ Z.
Now, for all n,m > 0

adj(Ln)MLm =

(
r(m)(m12s(n)−m22q(n)) s(m)(m12s(n)−m22q(n))
r(m)(−m12r(n) +m22p(n)) s(m)(−m12r(n) +m22p(n))

)
≡
(

0 0
0 0

)
(mod det(L)n).

(2.9)

Since s(m) is an invertible element in Z/tnZ, (2.9) implies

m12s(n)−m22q(n) ≡ 0 (mod tn), (2.10)

−m12r(n) +m22p(n) ≡ 0 (mod tn), (2.11)

which is equivalent to

adj(Ln)

(
m12

m22

)
≡
(

0

0

)
(mod tn). (2.12)

Consider the set E =

{(
m12

m22

)
∈ Z2 : satisfying (2.12) for all n > 0

}
. This set is

adj(L)-invariant, and if m22 = 0, then by (2.10), we get that m12s(n) ≡ 0 (mod tn),
which implies m12 = 0.
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Now, set

(
m12

1

m22
1

)
,

(
m12

2

m22
2

)
∈ E. Note that

m22
2

(
m12

1

m22
1

)
−m22

1

(
m12

2

m22
2

)
=

(
m22

2m12
1 −m22

1m12
1

0

)
,

hence m22
2

(
m12

1

m22
1

)
= m22

1

(
m12

2

m22
2

)
, so E is an adj(L)-invariant Z-module of rank at most

1.
If L does not have integer eigenvalues, E must have rank 0. This impliesm12 = m22 = 0.

Hence M =

(
0 0
0 0

)
and then rM (so M) commutes with L.

Since m12 = m22 = 0, we have that

r ·m12 − q ·m21 = 0
r ·m22 − s ·m21 − r ·m11 + p ·m21 = 0.

(2.13)

• Suppose p = s. In this case, (2.13) implies m11 = m22 and m21 = m11 · r/q. Note
that L has complex eigenvalues if and only if (2p)2 − 4(p2 − qr) < 0, i.e., qr < 0.
Since | det(M)| = 1, then m2

11−m2
12 · r/q = ±1, so the condition qr < 0 implies there

exists a finite number of points (m11,m12) ∈ Z2 satisfying (2.13).

• If p 6= s, then (2.13) implies m12 = q(m11−m22)/(p−s) and m21 = r(m11−m22)/(p−
s). Since M ∈ GL(2,Z), we get that

m11m22 − (m11 −m22)2 qr

(p− s)2
= ±1. (2.14)

In this case, there is a finite number of solutions if (p − s)2 − 4qr < 0, which is
equivalent to trace(L)2−4 det(L) < 0. Since trace(L)2−4 det(L) is the discriminant of
the characteristic polynomial of L, this is equivalent to L having complex eigenvalues.

Now we will prove Proposition 2.3

Proof of Proposition 2.3. First note that if M =

(
m11 m12

m21 m22

)
is in GL(2,Z), then

M−1 =



(
m22 −m12

−m21 m11

)
if det(M) = 1,

(
−m22 m12

m21 −m11

)
if det(M) = −1.

Then, we will prove that if M satisfies the arithmetical relations given by the proof
of Theorem 2.2, then M−1 also satisfies them. We will do it by cases as in the proof of
Theorem 2.2:
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• The statement is easily to verifies when L is a diagonal matrix.

• If L =

(
p q
0 s

)
is an upper triangular matrix. We only need to prove it for Item 1

in Proposition 2.8. The rest of the cases are easily to verify.

We recall that a matrix M satisfies (Normalizer Condition) in this case if and only
if (p − s)2m12 = m21q

2 + (p − s)(m11 −m22)q. We will see that either of the cases
det(M) = 1 or det(M) = −1, M−1 also satisfies this arithmetical relation. Indeed

– Assume that det(M) = 1, then

(p− s)2(−m12) = −m21q
2 + (p− s)(m22 −m11)q

(p− s)2m12 = m21q
2 + (p− s)(m11 −m22)q.

– If det(M)− 1, we have that

(p− s)2m12 = m21q
2 + (p− s)((−m22)− (−m11))q

(p− s)2m12 = m21q
2 + (p− s)(m11 −m22)q.

We conclude that the statement is true when L is an upper triangular case. We recall
the lower triangular case is deduced by this one.

• In the general case, we need to separate it in two cases:

– If L does not have integer eigenvalues, by Theorem 2.2 the symmetry semi-

group ~N(
←−
Z2

(Ln)) is exactly CentGL(2,Z)(L). Since CentGL(2,Z)(L) is a group, we
conclude the statement.

– Suppose now that L =

(
p q
r s

)
has integer eigenvalues. By the proof of Theo-

rem 2.2 we have a matrix M =

(
m11 m12

m21 m22

)
satisfies (Normalizer Condition)

if and only if the vector

(
r ·m12 − q ·m21

r ·m22 − s ·m21 − r ·m11 + p ·m21

)
is an eigenvec-

tor of adj(L) (with associated eigenvalue having a prime divisor not dividing
trace(L)). A direct computation shows that in both cases (det(M) = 1 or
det(M) = −1), if M ∈ GL(2,Z) satisfies this property, then the inverse matrix
M−1 also satisfies it.

We conclude that the statement is true for all the different cases.

Remark 2.9. 1. In the particular case gcd(trace(L),det(L)) = 1, we can sim-
plify the proof noting that (2.10), (2.11) imply the existence of two sequences
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(k1
n)n>0, (k

2
n)n>0 ⊆ Z such that det(L)nk1

n = m12s(n) − m22q(n) and det(L)nk2
n =

−m12r(n) +m22p(n), i.e.,

k1
n = m12

s(n)

det(L)n
−m22

q(n)

det(L)n

k2
n = −m12

r(n)

det(L)n
+m22

p(n)

det(L)n
.

(2.15)

Since L is an expansion matrix, then L−1 is a contraction, so we have that

lim
n→∞

p(n)

det(L)n
= lim

n→∞

q(n)

det(L)n
= lim

n→∞

r(n)

det(L)n
= lim

n→∞

s(n)

det(L)n
= 0,

this implies for all n large enough, k1
n = k2

n = 0, and we conclude that m12 = m22 = 0.
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Chapter 3

The recognizability property of
constant-shape substitutions

The recognizability property of substitutions is a combinatorial property that provides a
form of invertibility of the morphism, to uniquely decompose points in the substitutive
subshift. For Z-actions, this property has a dynamical interpretation, since it implies the
presence of refining Kakutani–Rokhlin partitions which allows encoding the dynamics in
an infinite graph [66] (called Bratteli diagrams). This coding enabled, among other results,
the study of topological orbital equivalence of minimal Cantor systems [57], to characterize
continuous and measurable eigenvalues [47] and to analyze their invariant measures [16].
It was first proved for any aperiodic primitive substitution by B. Mossé in [89], and then
in [15] for the non-primitive case. Also, V. Berthé, W. Steiner, J. M. Thuswaldner, and
R. Yassawi [14] studied a recognizability property for different types of one-dimensional
morphisms ζ : A → BZ, where A and B can be different alphabets. In the multidimensional
context, B. Solomyak showed in [107] that aperiodic translationally finite self-affine tilings
of Rd satisfy a recognizability property (called unique composition property).

In this chapter, we will get a similar result as [107], but for aperiodic symbolic factors
(Proposition 3.3). We then present several consequences on invariants of factors and ho-
momorphisms of substitutive subshifts: There exists a finite number of orbits in Xζ which
are invariant by the substitution map (Proposition 3.4). They are not necessarily linearly
repetitive (Example 3.6). Nevertheless, there is a polynomial growth of the repetitivity
function of substitutive subshifts (Lemma 3.7). We determine their maximal equicontinu-
ous factors, which is an explicit odometer system (Proposition 3.15). Thanks to these last
descriptions, we get that any aperiodic symbolic factor of a substitutive subshift is conju-
gate to a substitutive subshift via a letter-to-letter map (Theorem 3.22). This extends the
result proved in [91]. In the original article, a key part is a characterization of periodic
sequences by their complexity function. Our proof does not require this characterization,
which is known as Nivat’s conjecture in the two-dimensional case (and it is known to be
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false for higher dimensions [23]).

3.1 The recognizability property of aperiodic symbolic fac-
tors of substitutive subshifts

The substitution ζ seen as a map from Xζ to ζ(Xζ) is continuous. Moreover, when the
constant-shape substitution is aperiodic and primitive this map is actually a homeomor-
phism. This comes from the notion of recognizability of a substitution.

Definition 3.1. A constant-shape substitution ζ is said to be recognizable, if there exists
R > 0 such that for any x, y ∈ Xζ satisfying x|B(0,R)∩Zd = y|B(0,R)∩Zd , then x is in ζ(Xζ)
if and only if y is in ζ(Xζ).

This implies for every x ∈ Xζ there exist a unique x′ ∈ Xζ and a unique j ∈ F ζ1 such that

x = Sjζ(x′). With this, the set ζ(Xζ) is a clopen subset of Xζ and {Sjζ(Xζ) : j ∈ F ζ1 }
is a clopen partition of Xζ (a proof for the one-dimensional case can be found in [97],
which can be adapted to our case). This property is also satisfied for the iterations ζn,
for all n > 0. The recognizability property was first proved for any aperiodic primitive
substitution by B. Mossé in [89] for the one-dimensional case, and in the multidimensional
case by B. Solomyak in [107]. In this section we will prove it for aperiodic symbolic
factors of substitutive subshifts (Proposition 3.3). This property will allows us to determine
its maximal equicontinuous factors. The proof of Proposition 3.3 is a multidimensional
analogue of the one given by P. Kůrka in [78] with the use of the following repulsion
property for constant-shape substitutions proved in [107].

Proposition 3.2 (Repulsion Property). [107, Lemma 3.2] Let ζ be an aperiodic primitive
constant-shape substitution, and x ∈ Xζ . Then, there exists N > 0 such that, for all n > 0,
and every neighborhood V ⊆ Rd of the origin, if a pattern p v x, with (Lnζ (V ) ∩ Zd) + s ⊆
supp(p) for some s ∈ Zd, has two occurrences j1, j2 ∈ Zd such that j1 − j2 ∈ Ln−Nζ (V ),
then j1 is equal to j2.

As proved in Lemma 1.22, we may assume that an aperiodic symbolic factor of a
substitutive subshift is induced by a letter-to-letter map.

Proposition 3.3 (Recognizability property of aperiodic symbolic factors of substitutive
subshifts). Let A, B be two finite alphabets, ζ be an aperiodic primitive constant-shape
substitution from the alphabet A, and T : A → B be a map such that (τ(Xζ), S,Zd) is an
aperiodic subshift. Let x ∈ Xζ be a fixed point of ζ and y = τ(x). Then, there exists R > 0
such that if y|i+B(0,R) = y|j+B(0,R) and i ∈ Lζ(Zd), then j ∈ Lζ(Zd).

Proof. Let N given by Proposition 3.2 and V ⊆ Rd be a neighborhood of 0 such that

LNζ ([−1, 1]d) ⊆ V and let B =
d∏
i=1

Ii be a box containing (V + [−1, 1]d), where Ii is a
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finite interval of Z. Assume the contrary, then for every n > 0 there exist in ∈ Lζ(Zd),
jn /∈ Lζ(Zd) and a pattern un ∈ LB(Xζ) such that

y|in+Lnζ (B∩Zd) = τ(ζn(un)) = y|jn+Lnζ (B).

τ(ζn(un))
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

τ(ζn(un))
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

in×

jn×jn − in

Figure 3.1: Illustration of the patterns τ(ζn(un)). The pattern in in (black) comes from
the fact that x = ζ(x). We will prove that the pattern in jn (blue) also comes from this
fact.

Since x = ζ(x), there exist a finite subset C(n) b Zd, a pattern vn ∈ LC(n)(Xζ)
and an occurrence cn ∈ Lζ(Zd) of ζ(vn) with jn + (Lnζ (B) ∩ Zd) ⊆ cn + Lnζ (C(n)) ⊆⋃
(F ζn+n)∩(jn+Lnζ (B))6=∅

n∈Zd

F ζn + n. In particular, ζn(un) v ζn(vn), as illustrated in Fig. 3.2:

τ(ζn(vn))

τ(ζn(un))

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

jn×

Figure 3.2: Illustration of the patterns τ(ζn(vn)) and τ(ζn(un)) in jn.

By the Pigeonhole Principle, there are an infinite set E ⊆ N, a finite set C b Zd
and patterns u ∈ LB(Xζ), v ∈ LC(Xζ) such that for all n ∈ E, C(n) is equal to C,
un = u, and vn = v. Consider D = {n ∈ C : n + J−1, 1Kd ⊆ C}, and let w = x|kn+D

where kn ∈ Zd is such that Lnζ (kn +D) is strictly contained in jn + (Lnζ (B) ∩ Zd) and set
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an = x|(jn+Lnζ (B))\(Lnζ (kn+D)). We have that supp(an) ⊆ (∂(jn + Lnζ (B)) + Lnζ ([−1, 1]d)) as

illustrated in Fig. 3.3:

τ(ζn(v))

τ(ζn(u))τ(ζn(w))

· · ·
· · ·
· · ·
· · ·
· · ·

τ(an)Lnζ (kn)
×

jn×

Figure 3.3: Illustration of the patterns ζn(w) and an in jn.

Set m > n ∈ E. Applying ζm−n to ζn(u), we obtain the patterns ζm(an) and
ζm−n(ζn(w)) = ζm(w). If ζm−n(an) 6= am, there is two occurrences of ζm(w) in ζm(u).
Since the supports of ζm−n(an) and am are in the same set, the distance between these two
occurrences is smaller than max

t∈[−1,1]d
‖Lmζ (t)‖. If these occurrences are not the same, the

repulsion property (Proposition 3.2) gives a contradiction, so ζm−n(an) = am as illustrated
in Fig. 3.4:

τ(ζm(v))

τ(ζm(u))τ(ζm(w))

· · ·
· · ·
· · ·
· · ·
· · ·

τ(ζm−n(an)) = τ(am)Lm−nζ (kn)

Lm−nζ (jn)

×

×

Figure 3.4: Illustration of the patterns ζm−n(an) in Lm−nζ (jn).

Now, since x = ζm−n(x), y|Lm−nζ (jn+Lnζ (B)) is equal to τ(ζm(u)). Hence, we have

Lm−nζ (jn) − Lm−nζ (kn) = jm − Lmζ (km). This implies that jm ∈ Lζ(Zd) which gives a
contradiction.
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3.2 Invariant orbits of substitutive subshifts

As mentioned in the last proof, we assume that primitive constant-shape substitutions
admit at least one fixed point for the map ζ : Xζ → Xζ . The orbits of these fixed points
lead to the notion of ζ-invariant orbits. An orbit O(x,Zd) is called ζ-invariant if there
exists j ∈ Zd such that ζ(x) = Sjx, i.e., the orbit is invariant under the action of ζ in Xζ .
Since for every n ∈ Zd we have ζ ◦ Sn = SLζn ◦ ζ, the definition is independent of the
choice of the point in the Zd-orbit of x. The orbit of a fixed point of the substitution is an
example of an invariant orbit. In the following, we will prove that for aperiodic primitive
constant-shape substitutions there exist finitely many ζ-invariant orbits. This property
will be used to prove other properties about some constant-shape substitutions such as
coalescence (Proposition 4.7) and the automorphism group of some substitutive subshifts
is virtually generated by the shift action (Proposition 4.8).

Proposition 3.4. Let ζ be an aperiodic primitive constant-shape substitution. Then, there
exist finitely many ζ-invariant orbits in the substitutive subshift Xζ . The bound is explicit

and depends only on d, |A|, ‖L−1
ζ ‖, ‖F

ζ
1 ‖ and det(Lζ − id).

Proof. Let x ∈ Xζ be such that ζ(x) = Sjxx, for some jx ∈ Zd. For any m ∈ Zd, we have

ζ(Smx) = SLζmζ(x) = SLζm+jxx = S(Lζ−id)m+jxSmx,

and thus jx − jSmx ∈ (Lζ − id)Zd. Let H b Zd be a fundamental domain of (Lζ − id)(Zd)
in Zd with 0 ∈ H. We may assume that x ∈ Xζ is in a ζ-invariant orbit with jx ∈ H. Set

Kζ b Zd be from Proposition 1.18. Using −H as the set A and F = F ζ1 in Proposition 1.20

we obtain a set C b Zd such that Lnζ (−H + C) + F ζn ⊆ Ln+1
ζ (C) + F ζn+1 for all n > 0.

Define D b Zd be such that D = C+Kζ−H. Suppose that there are more than |A||D| · |H|
ζ-invariant orbits. By the Pigeonhole Principle, there exist j ∈ H and two different points
x 6= y ∈ Xζ such that x|D = y|D and ζ(x) = Sjx, ζ(y) = Sjy. Note that

ζ(x|D) = ζ(x)|
Lζ(D)+F ζ1

= x|
j+Lζ(D)+F ζ1

Hence, we have x|
j+Lζ(D)+F ζ1

= y|
j+Lζ(D)+F ζ1

. Inductively, we obtain for every n ≥ 0

x|( n∑
k=0

Lkζ j

)
+Ln+1

ζ (D)+F ζn+1

= y|( n∑
k=0

Lkζ j

)
+Ln+1

ζ (D)+F ζn+1

.

Let E0 be equal to D and for all n > 0, define En =

(
n−1∑
k=0

Lkζj

)
+Lnζ (D) +F ζn . We will

prove that
⋃
n≥0

En = Zd. This implies x = y, which is a contradiction. To do this, we will

prove that for every n ≥ 0 that Lnζ (Kζ)+F ζn ⊆ En+1 and we conclude by Proposition 1.18.
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Note that Lnζ (K) +F ζn ⊆ En+1 if and only if Lnζ (K − j) +

(
n−1∑
k=0

Lkζ (F
ζ
1 − j)

)
⊆ Ln+1

ζ (D) +

F ζn+1.

Claim 1. For every n ≥ 0 we have
n∑
k=0

Lkζ (F1 − j) ⊆ Ln+1
ζ (C) + F ζn+1.

Proof of Claim. For n = 0, note that F1−j is included in Lζ(C)+F ζ1 by Proposition 1.20.

Assume that for some n ≥ 0
n∑
k=0

Lkζ (F1 − j) ⊆ Ln+1
ζ (C) + F ζn+1. We have

n+1∑
k=0

Lkζ (F1 − j) =

(
n∑
k=0

Lkζ (F1 − j)

)
+ Ln+1

ζ (F1 − j)

⊆ Ln+1
ζ (C) + F ζn+1 + Ln+1

ζ (F1 − j)

⊆ Ln+1
ζ (C + F ζ1 − j) + F ζn+1

⊆ Ln+2
ζ (C) + Ln+1

ζ (F ζ1 ) + F ζn+1 (by Proposition 1.20)

= Ln+2
ζ (C) + F ζn+2

We conclude that for every n ≥ 0,
n∑
k=0

Lkζ (F1 − j) ⊆ Ln+1
ζ (C) + F ζn+1

By Claim 1 Lnζ (K−j)+

(
n−1∑
k=0

Lkζ (F1 − j)

)
is included in Lnζ (K−j)+Lnζ (C)+F ζn , and

Lnζ (K + C − j) is a subset of Ln+1
ζ (D) + Lnζ (F ζ1 ), so we have Lnζ (K − j) + Lnζ (C) + F ζn ⊆

Ln+1
ζ (D) + Lnζ (F ζ1 ) + F ζn = Ln+1

ζ (D) + F ζn+1 and we conclude the proof.

Remark 3.5. Let ζ be an aperiodic primitive substitution with an expansion matrix Lζ
such that | det(Lζ − idRd)| = 1. This implies (Lζ − idRd)(Zd) = Zd. Let x ∈ Xζ be a point
in a ζ-invariant orbit, i.e., there exists j ∈ Zd such that ζ(x) = Sjx and set m ∈ Zd such
that (Lζ − idRd)(m) = −j. Then ζ(Smx) = SLζm+jζ(x) = Sm+(Lζ−idRd )(m)+jx = Smx.
Hence Smx is a fixed point of ζ. We conclude that the only ζ-invariant orbits in this case
are the ones given by the fixed points of the substitution.

3.3 The repetitivity function of substitutive subshifts

Let ζ be an aperiodic primitive constant-shape substitution, and assume that x ∈ Xζ is a
fixed point of the substitution. The minimality property implies the substitutive subshift
is repetitive, i.e., for every pattern p v x there is a radius R > 0 such that for every n ∈ Zd,
the ball B(n, R) contains an occurrence of p in x. The repetitivity function is the map
MXζ : R+ → R+ defined forR > 0 as the smallest radius such that every ballB(n,MXζ (R))
contains an occurrence of every pattern with diam(supp(p)) ≤ 2R. We say the substitution
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is linearly recurrent or linearly repetitive if the repetitivity function has a linear growth,
i.e., there exists C > 0 such that MXζ (R) ≤ C · R. The notion of linearly recurrent was
introduced by F. Durand in [45], to study the relations between the substitutive dynamical
systems and the stationary dimension groups. For the multidimensional context, the same
notion appears in [80] for Delone sets of Rd. In fact, according to a result in [80, Theorem
2.3], the linear growth of the repetitivity function is the slowest possible for an aperiodic
Delone set. F. Durand proved one-dimensional substitutive subshift are linearly recurrent
[48], but in the multidimensional case this is no longer true, as we can see in Example 3.6.

Example 3.6 (A nonlinearly repetitive constant-shape substitution). Consider the sub-

stitution σ1, given by Lσ1 =

(
2 0
0 3

)
, and F σ11 = J0, 1K× J0, 2K defined by

σ1 : b c a c c b
a 7→ c b b 7→ c b c 7→ a c

a b b c c b.

For p > 1, we consider the pattern wp = σp1(a)|J0,2p−1K×{0} ∈ LJ0,2p−1K×{0}(Xζ). A direct

induction enable to prove that if wp v σp1

(
α β
γ δ

)
, for α, β, γ, δ ∈ {a, b, c, ε} (where ε

denote the empty pattern), then one of the letters must be a. Moreover, wp only appears
in the lower left corner of the pattern σp1(a). These properties imply that there is only one
occurrence of wp in σp1(wp), which is in the lower corner of σp1(wp) as seen in Fig. 3.5:

σp1(wp)

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·wp

3p

4p

σp1(a) σp1(b)

Figure 3.5: Decomposition of σp1(wp).

Then, there is a ball of radius 3p/2 in the support of σp1(wp) with no occurrences of wp.
Since this is true for any p, this implies that this substitution is not linearly recurrent.

However, the repetitivity function has at most polynomial growth, with exponent de-
pending only on the expansion map of the substitution.
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Lemma 3.7. Let ζ be an aperiodic primitive constant-shape substitution.

Then MXζ (R) is O

R− log(‖Lζ‖)

log(‖L−1
ζ
‖)

.

Proof. Using A = Kζ + Kζ , and F = F ζ1 + F ζ1 in Proposition 1.20, where Kζ is given
by Proposition 1.18, we obtain a subset C b Zd such that for all n > 0, Lnζ (Kζ + Kζ) +

F ζn + F ζn ⊆ Lnζ (C) + F ζn . The recognizability property implies for every pattern p ∈ L(Xζ)

such that its support is contained in Lnζ (Kζ) + F ζn , there exists a pattern w ∈ LC(Xζ)
with p v ζn(w). Set T = MXζ (diam(C)). By definition, any ball of radius T contains an
occurrence of every pattern in L

Lnζ (Kζ)+F ζn
(Xζ).

Set R > 0. Fix n > 0 such that Ln−1
ζ (Kζ) + F ζn−1 ⊆ B(0, R) ⊆ Lnζ (Kζ) + F ζn . By

definition of n, we get that inf
‖t‖=1

Ln−1
ζ (t) ≤ 2R, hence 1/‖L−1

ζ ‖
n−1 ≤ 2R. Thus

MXζ (R) ≤ ‖Lnζ ‖T ≤ ‖Lζ‖nT ≤ C(ζ)R−(log(‖Lζ‖))/(log(‖L−1
ζ ‖)),

for some constant C(ζ) independent of R.

Remark 3.8. The following statements can be easily verified.

(1) In the case of a symmetric expansion map for the substitution, a bound for MXζ (R) is

given by the eigenvalues of the expansion matrix: MXζ (R) = O
(
R(log(|λ1|))/(log(|λd|))

)
,

where |λ1|, |λd| are the maximum and minimum of the absolute values of the eigen-
values of Lζ , respectively.

(2) In the case of a self-similar tiling (where the expansion map satisfies ‖Lζ(t)‖ = λ‖t‖,
for some λ > 0), the norm matrix satisfies ‖Lζ‖ = (‖L−1

ζ ‖)
−1 = λ, so the repetitivity

function isO(R), i.e., has a linear growth. Hence self-similar substitutions are linearly
recurrent, as it was proved in [107].

(3) The sufficiency of the previous case is not true, there exist constant-shape substitu-
tions that are not self-similar, but are linearly recurrent.

3.4 Substitutive subshifts as extension of d-dimensional
odometers

In this section, we will describe substitutive subshifts as symbolic extensions of odometer
systems, which are given by the data of the substitution. Actually, the maximal equicon-
tinuous factor of a substitutive subshift is an explicit odometer system (Proposition 3.15).
This was first made by F. Dekking in [37] for the one-dimensional case, where he introduced
the notion of height to describe the return times of a letter which are coprime with the
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length of the substitution. Then, N. P. Frank in [54] followed the same ideas to describe the
maximal equicontinuous factor of block substitutions. Here, we follow the same ideas in
[54], using the notion of height lattice. It is a lattice of Zd containing the set of return times
of a letter, satisfying a specific property with the expansion matrix of the constant-shape
substitution. Using a characterization of the eigenvalues of a substitutive subshift proved
in [108] we characterized the maximal equicontinuous factor of substitutive subshift.

3.4.1 Substitutive subshifts as a finite-to-1 extension of a d-dimensional
odometer by the recognizability property

The recognizability property establishes a factor map from the substitutive subshift to
a d-dimensional odometer as follows. For every n > 0, let πn : Xζ → F ζn be the map
satisfying x ∈ Sπn(x)ζn(Xζ). This map is well defined (mod Lnζ (Zd)). Using basic group

theory arguments, we have πn+1(x) = πn(x) (modLnζ (Zd)).

Consider the odometer
←−
Zd(Lnζ ). The map π : (Xζ , S,Zd) → (

←−
Zd(Lnζ ),+(Lnζ ),Zd) given

by (πn(x))n>0 is a factor map between (Xζ , S,Zd) and (
←−
Zd(Lnζ ),+(Lnζ ),Zd). Moreover it

satisfies the following property.

Lemma 3.9. Let (Xζ , S,Zd) be the substitutive subshift from an aperiodic constant-shape

substitution ζ. Then, for any ←−g = (gn)n>0 in
←−
Zd(Lnζ ) two different cases occur:

K1: Assume that
⋃
n>0

(
−gn + F ζn

)
= Zd. Then, there is at most |A| elements in

|π−1({←−g })|.

K2: On the other hand, |π−1({←−g })| is no greater than |A||Kζ |, where Kζ = Kζ +C, with

C + F ζ1 + F ζ1 ⊆ Lζ(C) + F ζ1 is obtained by Proposition 1.20 using A = {0}, and

F = F ζ1 + F ζ1 , and Kζ is given by Proposition 1.18.

In particular, the factor map π : (Xζ , S,Zd)→ (
←−
Zd(Lnζ ),+(Lnζ ),Zd) is finite-to-1.

Proof. We separate the proof in these two cases.

K1: Assume that |π−1({←−g })| > |A|. Let x0, . . . , x|A| be in π−1({←−g }). For all n > 0
and all j ∈ {0, . . . , |A|}, there exist ynj ∈ Xζ such that xj = Sgnζn(ynj ). By the
Pigeonhole Principle, there exist j1 6= j2 ∈ {0, . . . , |A|} and an infinite set E ⊆ N
with ynj1

∣∣∣
0

= ynj2

∣∣∣
0
. This implies for any n ∈ E, xj1 |−gn+F ζn

= xj2 |−gn+F ζn
. To

complete the proof, note that for any n > 0, we have that gn+1− gn is in Lnζ (F ζ1 ), so

gn+1− gn +F ζn is included in F ζn +Lnζ (F ζ1 ) which is F ζn+1 by definition. This implies

−gn +F ζn ⊆ −gn+1 +F ζn+1 and we conclude that xj1 = xj2 , which is a contradiction.
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K2: Suppose that ←−g does not satisfy K1. Proceeding as in the previous case, we assure
the existence of two indices j1 6= j2 such that ynj1 |Kζ

= ynj2 |Kζ
for any n in an infinite

subset E ⊆ N. This will imply that xj1 |−gn+Lnζ (Kζ)+Fn
= xj2 |−gn+Lnζ (Kζ)+F ζn

for any

n ∈ E. Now, note that for any n ∈ N, gn+1 − gn ∈ Ln(F ζ1 ), and a direct induction

prove that −gn + Ln(Kζ) + F ζn is included in −gn+1 + Ln+1(Kζ) + F ζn+1. Since

Kζ ⊆ Kζ , we conclude that xj1 = xj2 which will be a contradiction.

Remark 3.10. Note that

(1) The set of points←−g ∈
←−
Zd(Lnζ ) satisfying K1 is a Gδ-set. Indeed, for any M > 0 define

UM =
{←−g ∈ ←−Zd(Lnζ ) : J−M,MKd ⊆ −gn + F ζn , for some n > 0

}
. Note that UM is an

open subset of
←−
Zd(Lnζ ) and

⋂
M>0

UM are exactly the points satisfying K1.

Now, for any n in Zd and M > 0 we have that UM is included in UM+|n|, hence the

set of points on the odometer satisfying K1 is invariant by the Zd-action.

(2) We will prove that the existence of a point←−g ∈
←−
Zd(Lnζ (Zd)) satisfying K1 is equivalent

to the existence of N ∈ N and f ∈ F ζN such that B(0, RLζ ) ∩ Zd ⊆ F ζN − f , with

RLζ = max

{
‖Lζ‖

2
,
‖L−1

ζ ‖
1− ‖L−1

ζ ‖

(
1 +
‖Lζ‖

2

)}
.

Which is always true by the Følner assumption. We prove the nontrivial implication.
We will show by induction that for every r ≥ RLζ there exists n ∈ N and fr ∈ F ζn such

that B(0, r)∩Zd ⊆ F ζn−fr. By hypothesis, this is true for r = RLζ . Now, assume that

for some r ≥ RLζ there exists n ∈ N and fr ∈ F ζn such that B(0, r) ∩ Zd ⊆ f ζn − fr.

Then, Lζ(B(0, r) ∩ Zd) is included in Lζ(F
ζ
n)− Lζ(fr). This implies

Lζ(B(0, r) ∩ Zd) +

(
B

(
0,
‖Lζ‖

2

)
∩ Zd

)
⊆ F ζn+N+1 − Lζ(fr)− f .

Now, we prove that B(0, r + 1) ∩ Zd ⊆ Lζ(B(0, r) ∩ Zd) +
(
B (0, ‖Lζ‖/2) ∩ Zd

)
.

Set n ∈ B(0, r + 1) ∩ Zd. Since Lζ(Zd) is ‖Lζ‖/2-relatively dense, we can write
n = m + Lζ(p), with m ∈ B (0, ‖Lζ‖/2) ∩ Zd and p ∈ Zd. We have that

‖p‖ ≤ ‖L−1
ζ ‖‖Lζ(p)‖

= ‖L−1
ζ ‖‖n−m‖

≤ ‖L−1
ζ ‖

(
r + 1 +

‖Lζ‖
2

)
.
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The last expression is smaller than r whenever r ≥ ‖(L−1
ζ ‖/(1−‖L

−1
ζ ‖))·(1 + ‖Lζ‖/2),

which implies p ∈ B(0, r) ∩ Zd. Since Lζ(fr) + f is in F ζn+N+1, we conclude that

there exist m ∈ N and f ∈ F ζm such that B(0, r + 1) ∩ Zd ⊆ F ζm − f . Finally, using

classical compactness arguments we conclude the existence of a point←−g ∈
←−
Zd(Lnζ (Zd))

such that
⋃
n>0

F ζn − gn = Zd.

(3) Let ζ be an aperiodic bijective primitive constant-shape substitution. The map p0
is a permutation of A and we consider a power of p0 such that pn0 is equal to the
identity. Since ζ is primitive, we replace it by ζn and with this we may assume that ζ
possess at least |A| fixed points. Now, let ←−g satisfying K1. For any a ∈ A, consider

a fixed point of ζ, denoted as xa, with xa(0) = a and define x
←−g
a = lim

nm→∞
Sgnmxa

for some convergent subsequence. Since the sets {Sgn [ζn(a)]}a∈A are disjoint for any

a 6= b ∈ A, x
←−g
a is different from x

←−g
b . Finally, noticing that π(x

←−g
a ) = ←−g , we have

that π−1({←−g }) ≥ |A|. By Lemma 3.9 we conclude that π−1({←−g }) = |A| for any
←−g satisfying K1, and then the factor map π : (Xζ , S,Zd) → (

←−
Zd(Lnζ ),+(Lnζ ),Zd) for

aperiodic bijective constant-shape substitutions is almost |A|-to-1.

In general, this d-dimensional odometer is not the maximal equicontinuous factor of
aperiodic constant-shape substitutions.

In some particular cases we can explicitly compute the cardinality of the fibers given
by the topological factor in Lemma 3.9, such as in the two examples studied in [99].

The following result shows other examples where we can compute the cardinality of the
fibers.

Lemma 3.11. Let L ∈ M(d,Z) be an integer expansion matrix with det(L) ≥ 3 and
F1 be a fundamental domain of L(Zd) in Zd. Let A be a finite alphabet with cardinality
|A| = |F1| − 1 and τ : F1 \ {0} → A be a bijection. We define a substitution σL as the
following:

∀a ∈ A, σ(a)f =

{
a f = 0,

τ(f) f 6= 0.

Under the hypothesis that the sequence of supports of the iterations σnL is a Følner
sequence, σL is an aperiodic primitive constant-shape substitution and the factor map π :

(XσL , S,Zd)→ (
←−
Zd(Ln),+(Ln),Zd) is almost 1-to-1.

Moreover, we have that

|π−1({←−g })| =

{
|A| ←−g ∈ O(

←−
0 ,Zd),

1 ←−g /∈ O(
←−
0 ,Zd).

Proof. Since τ is a bijection, by definition σL is a primitive substitution. Now, we prove
that σL is aperiodic. To prove this we prove σL is recognizable. We follow similar ideas of
the proof of the recognizability property in [78].
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Let x be a fixed point of σL and n,m ∈ Zd such that n ∈ L(Zd) and x|n+F1 = x|m+F1 .
We prove that m ∈ L(Zd). Indeed, since x is a fixed point of the substitution and n ∈ L(Zd)
we have that for all f ∈ F1 \ {0}, xm+f = xn+f = τ(f). Set g ∈ F \ {0} such that
m+g /∈ L(Zd) (such g ∈ F1 \ {0} exists since |F1| ≥ 3). We write m+g = L(p) +h, with
h ∈ F1. Note that h 6= 0. Hence

xm+g = xn+g = τ(g),

but x is a fixed point of σL so

xm+g = σL(xp)h = τ(h),

i.e., τ(g) = τ(h). By bijectivity of τ we have that g = h, so m = L(p). We conclude that
σL is a recognizable substitution, i.e., σL is aperiodic.

Now we study the fibers π−1({←−g }). Assume that ←−g =
←−
0 . By the proof of Lemma 3.9

we need to compute σnL(w) for patterns w ∈ LKσL
(XσL) and n > 0. Let w1, w2 be two

patterns in LKσL
(XσL). Note that, by definition of σL, the cardinality of the coordinates

where the patterns σnL(w1), σnL(w2) differ is constant on n > 0 and is at most |KσL |. Indeed,
if W = {k ∈ KσL : w1(k) 6= w2(k)}, then for any k ∈W , σnL(w1)Ln(k) 6= σnL(w2)Ln(k) and for

any a ∈ (Ln(KσL) + F σLn ) \ Ln(W ) we have that σnL(w1)a = σnL(w2)a. Since the distance
between these differences increase (exponentially on n > 0) and for any n > 0 and a ∈ A
the patterns σnL(a)|FσLn and σn+1

L (a)|FσLn are the same, we get two cases:

• If w1(0) 6= w2(0), the patterns σnL(w1), σnL(w2) converge to two points x1, x2 ∈ XσL

with x1(0) 6= x2(0) and for any n ∈ Zd, x1(n) = x2(n).

• At the opposite, if w1(0) = w2(0), the patterns σnL(w1), σnL(w2) converge to the same
point x ∈ XσL .

This implies |π−1({←−0 })| ≤ |A| and since for any letter a ∈ A we have a fixed point xa
such that xa(0) = a, then |π−1({←−0 })| ≥ |A|. We conclude that |π−1({←−0 })| = |A|. Since

this property is invariant under translation, we conclude that for any ←−g ∈ O(
←−
0 ,Zd) that

|π−1({←−g })| is equal to |A|.
For the other case, consider ←−g = (gn)n>0 /∈ O(

←−
0 ,Zd). This implies for every n > 0

exists m > n such that gm 6= 0. Set w1, w2 ∈ LKσL
(XσL) and let W = {k ∈ KσL : w1(k) 6=

w2(k)} be their set of differences. By definition of σL, for any n > 0 the coordinates where
σnL(w1) and σL(w2) differ is Ln(W ). Then, for any M > 0 we can find n > 0 such that gn +
J−M,MKd ⊆ Ln(KσL)+F σLn and gn+J−M,MKd∩Ln(Zd) = ∅. Hence σnL(w1)|gn+J−M,MKd =
σnL(w2)|gn+J−M,MKd . Moreover, a direct computation shows that for any n > 0, the patterns

σnL(w1)|gn+J−M,MKd , σ
n+1
L (w1)|gn+1+J−M,MKd are the same. This implies, taking M > 0

arbitrarily large, for any w ∈ LKσL
(XσL), the patterns σnL(w1)|gn+J−M,MKd are the same

and then converge to a unique point x ∈ XσL such that π(x) = ←−g . We conclude that
|π−1(←−g )| = 1.
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We will use this result to a study the fibers of a particular case in Chapter 6.

3.4.2 The maximal equicontinuous factor of a substitutive subshift

In this section, we will describe the maximal equicontinuous factor of substitutive subshifts
(see [54] for the case with diagonal expansion matrices and [37] for the one-dimensional
case).

A subgroup L ≤ Zd is called a lattice if it is isomorphic to Zd, i.e., it has finite index.
For a lattice L of Zd, we define the dual lattice of L, as the subgroup

L∗ = {x ∈ Rd : 〈x,n〉 ∈ Z, ∀n ∈ L}.

We have that (Zd)∗ = Zd, and for any R ∈ M(d,Z) the set R(Zd) is a lattice of Zd
with dual lattice equal to (R∗)−1(Zd), where R∗ stands for the algebraic adjoint of R. Let
L1,L2 be two lattices of Zd. We denote by L1 ∨ L2 the smallest lattice that contains L1

and L2, i.e., if a lattice L containing L1 and L2, then must contains L1 ∨ L2.
Fix x ∈ Xζ . We define the set of return times as

R(Xζ) = {j ∈ Zd : ∃k ∈ Zd, xk+j = xk}.

By minimality, this set is well-defined independently of x ∈ Xζ , and it is syndetic, i.e., there
exists a finite subset A b Zd such thatR(Xζ)+A = Zd. We define L(R(Xζ)) as the smallest
lattice containing R(Xζ). The height lattice H(Xζ) of a constant-shape substitution ζ is
the smallest lattice containing L(R(Xζ)) such that H(Xζ) ∩ Lζ(Zd) ≤ Lζ(H(Xζ)). Notice
that the last property is equivalent to H(Xζ) ∩ Lnζ (Zd) ≤ Lnζ (H(Xζ)), for any n > 0. The

height lattice is trivial whenever H(Xζ) = Zd.
In the following, we will give a description for the height lattice. For k ∈ Zd, we define

Rk(Xζ) = {j ∈ Zd : xj+k = xk}. Let L(Rk(Xζ)) be the smallest lattice containing Rk(Xζ)
and Hk(Xζ) be the smallest lattice containing L(Rk(Xζ)) such that Hk(Xζ) ∩ Lζ(Zd) ≤
Lζ(Hk(Xζ)). We adapt the proof for the one-dimensional case [37, 97] and obtain the
following result.

Lemma 3.12. Let ζ be an aperiodic primitive constant-shape substitution. Then, for any
k1,k2 ∈ Zd the sets Hk1(Xζ), Hk2(Xζ) are the same. In particular, for any k ∈ Zd,
Hk(Xζ) is equal to H(Xζ).

Proof. Let x ∈ Xζ be a fixed point of the substitution, k1,k2 ∈ Zd and N be large enough
such that xk2 v ζN (xk1). Set m such that xk2 = ζN (xk1)m. Since x = ζN (x) for any
j ∈ Rk1(Xζ), L

N
ζ (k1 + j) +m ∈ Rk2(Xζ). Hence LNζ (j) is in L(Rk2(Xζ)) and therefore in

Hk2(Xζ). By definition of Hk2(Xζ) and invertibility of LNζ , we conclude that j ∈ Hk2(Xζ).
Since it is the smallest lattice satisfying the property, Hk1(Xζ) is a subgroup of Hk2(Xζ),
and by reciprocity we have that these sets are the same. We conclude the second equality
by observing that H(Xζ) =

∑
k∈Zd

Hk(Xζ).
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As in the one-dimensional case, to study the maximal equicontinuous factor of sub-
stitutive subshifts, we study theirs eigenvalues. A vector x ∈ Rd is said to be an eigen-
value for the topological dynamical system (Xζ , S,Zd) (the measure-preserving system
(Xζ , µ, S,Zd)) if there exists a continuous function f : Xζ → C (f ∈ L2(Xζ , µζ)) such that
for every n ∈ Zd, f ◦ Sn = e2πi〈x,n〉f in Xζ (f ◦ Sn = e2πi〈x,n〉f in Xζ , µζ-a.e. in Xζ). In
[108] it was proved the following result, generalizing the characterization of eigenvalues for
the one-dimensional case [37].

Theorem 3.13. [108, Theorem 3.13] Let ζ be an aperiodic primitive tiling substitution
with expansion matrix Lζ , which has a fixed point. Then the following are equivalent for
x ∈ Rd:

1. The vector x is a continuous eigenvalue for the topological dynamical system
(Xζ , S,Rd).

2. The vector x is a measurable eigenvalue for the measure-preserving system
(Xζ , µζ , S,Rd).

3. The vector x satisfies the following condition:

lim
n→∞

e2πi〈Lnζ j,α〉 = 1, ∀ j ∈ R(Xζ).

4. The vector x satisfies the following condition:

lim
n→∞

e2πi〈Lnζ j,α〉 = 1, ∀ j ∈ H(Xζ).

Remark 3.14. We have that

(1) Condition 4. in Theorem 3.13 is not proved in [108] but it can be easily checked

noticing the set of points satisfying
〈

(L∗ζ)
Nα, j

〉
∈ Z is a lattice.

(2) The same results is satisfied for the topological dynamical system (Xζ , S,Zd) with
the same arguments given in [108].

This implies the set of continuous (and measurable) eigenvalues of (Xζ , S,Zd) corre-
sponds to the set

⋃
n≥0

(L∗ζ)
−n(H∗(Xζ)). In particular the set of eigenvalues E(Xζ , S,Zd) of

(Xζ , S,Zd) is a subset of Qd. A direct consequence of Theorem 3.13 is a description of the
maximal equicontinuous factor of (Xζ , S,Zd).

Proposition 3.15. Let ζ be an aperiodic primitive constant-shape substitution. The max-
imal equicontinuous factor of the substitutive subshift of (Xζ , S,Zd) is the odometer system

(
←−
Zd(Lnζ (H(Xζ))),+Lnζ (H(Xζ)),Zd) =

(
lim
←n

(Zd/Lnζ (H(Xζ)), αn),+(Lnζ (H(Xζ))),Zd
)
.
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For completeness, we provide another description for the maximal equicontinuous factor
in a general setting. Let (X,T,Zd) be a topological dynamical system, where X is a Cantor
set, and Γ ≤ Zd a subgroup with finite index. We say (X,T,Zd) admits a Γ-minimal
partition if there exists a closed partition

⋃
g∈Zd/Γ

Xg = X such that for all g ∈ Zd/Γ the set

of return times RT (Xg) = {n ∈ Zd : T−n(Xg)∩Xg 6= ∅} is equal to Γ and the topological
dynamical system (Xg,Γ) is a minimal system. Note that, since its a finite partition, the
sets Xg are clopen. The minimality of the induced actions implies there is at most one
Γ-minimal partition up to a permutation of the sets {Xg}g∈Zd/Γ. A Γ-minimal partition

is associated with an equicontinuous factor of (X,T,Zd). To see this we enumerate Xg

such that for all g ∈ Zd/Γ and n ∈ Zd we have that TnXg = Xg+n mod Γ. Then, the
map π : (X,T,Zd) → (Zd/Γ,+Γ,Zd), such that π(x) = g if and only if x ∈ Xg, is a
factor map onto (Zd/Γ,+Γ,Zd), where Zd acts by quotient translations onto Zd/Γ. The
following proposition shows the connection between Γ-minimal partitions and eigenvalues
of a topological dynamical system.

Proposition 3.16. Let (X,T,Zd) be a minimal topological dynamical system and Γ ≤ Zd
be a finite index subgroup. The system (X,T,Zd) admits a Γ-minimal partition, if and only
if Γ∗ ⊆ E(X,T,Zd).

Proof. Let R ∈M(d,Z) be such that Γ = R(Zd).
Let {Xg}g∈R([0,1)d)∩Zd be a Γ-minimal partition satisfying Xg = T g(X0) for all g ∈

M([0, 1)d)∩Zd. Let x be in (R∗)−1(Zd). Define f as the map f =
∑

g∈M([0,1)d)∩Zd
e2πi〈x,g〉1Xg .

Since the sets {Xg}g∈R([0,1)d)∩Zd are clopen, the map f is continuous. Let x ∈ X0, m ∈ Zd

and m1 ∈ Zd, m2 ∈ R([0, 1)d) ∩ Zd be such that m = R(m1) + m2. Note that Tmx is in
Xm2 and since x is in (R∗)−1(Zd), we have that

e2πi〈α,m〉 = e2πi〈α,R(m1)+m2〉 = e2πi(〈α,R(m1)〉+〈α,m2〉) = e2πi〈α,m2〉.

We find a continuous map such that f(Tmx) = e2πi〈x,m〉f(x) for all x ∈ X and all
m ∈ Zd. We conclude that x ∈ E(X,T,Zd).

On the other hand, let x be in X. For j ∈ {1, . . . , d} we denote xj = (R∗)−1(ei). Since
Γ∗ ⊆ E(X,T,Zd) there exists a map fj : X → C such that fj(T

mx) = e2πi〈xj ,m〉fj(x) for
all m ∈ Zd. Since the eigenspaces are one-dimensional we choose fj such that fj(x) = 1.
By the previous formula, the values of e2πi〈xj ,m〉 only depend on m ∈ R([0, 1)d)∩Zd. Now,
for any j ∈ {1, . . . , d} and m ∈ R([0, 1)d)∩Zd we denote Xj

m = f−1
j ({e2πi〈αj ,m〉}). For each

j ∈ {1, . . . , d}, the set X is equal to
⋃

m∈R([0,1)d)∩Zd
Xj

m. We define Xm =
⋂

j∈{1,...,d}
Xj

m. We

will prove that {Xm}m∈R([0,1)d)∩Zd is a Γ-minimal partition. Note that Xm is Γ-invariant.

First, assume that there exist n1,n2 ∈ R([0, 1)d)∩Zd such that n1 6= n2 and Xn1∩Xn2 6= ∅.
Using the Zd-action on X, this is equivalent to the existence of m ∈ R([0, 1)d) ∩ Zd with
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m 6= 0 and Xm ∩ X0 6= ∅. This means that for all j ∈ {1, . . . , d}, e2πi〈xj ,m〉 is equal to
1, i.e., 〈xj ,m〉 ∈ Z. Since Γ∗ = 〈{x1, . . . ,xd}〉, we have that m ∈ (Γ∗)∗ = Γ which is a
contradiction, so all of these sets are disjoint.

By minimality, we have that X =
⋃

m∈R([0,1)d)∩Zd
O(Tmx,Γ). Since O(Tmx,Γ) is

included in Xm, we conclude that {Xm}m∈R([0,1)d)∩Zd is a clopen partition of X and

O(Tmx,Γ) = Xm, so the action of Γ on Xm is minimal. A direct computation shows
that the set of return times of each Xm is Γ. Hence {Xm}m∈R([0,1)d)∩Zd is a Γ-minimal
partition.

Remark 3.17. The following statements can be easily verified.

(1) In the case of an aperiodic primitive constant-shape substitution ζ, the recognizabil-
ity property implies for all n > 0, the sets {Sjζn(Xζ)}j∈F ζn are a Lnζ (Zd)-minimal
partition.

(2) By Theorem 3.13 and Proposition 3.16 for any aperiodic primitive constant-shape
substitution there exists a H(Xζ)-minimal partition.

3.5 Aperiodic symbolic factors of substitutive subshifts are
conjugate to substitutive subshifts

In the following we will prove Theorem E. This is a multidimensional analogue of a result
proved by C. Müllner and R. Yassawi [91], which is a refinement of a result proved in [48] for
constant-length substitutions. We follow the same strategy of [91], with a slight difference.
By Proposition 3.3 aperiodic symbolic factors of substitutive subshifts are recognizable. In
the original article, this is not mentioned. They proved an odometer system (the one defined
in Section 3.4) is an equicontinuous system of aperiodic symbolic factors of substitutive
subshifts, following the ideas developed by T. Kamae [73] about minimal partitions. To
get this, they used a characterization of periodic sequences and the complexity function,
known as Morse-Hedlund theorem [88]. Until now, this characterization is not known to
be true in the two-dimensional case, and it is called as the Nivat’s conjecture. However,
in higher dimensions is known to be false [23]. Then, using the fact that we can always
assume that the factor between a substitutive subshift and an aperiodic symbolic system
is induced by a letter-to-letter map (Lemma 1.22), we define an equivalence relation on
the alphabet, calling two letters equivalent if and only if they have the same image via the
local map given by the factor map. We consider the set of equivalence classes as a new
alphabet, and we define a new constant-shape substitution on it. We finally prove that
the substitutive subshift generated by this new substitution is conjugate to the aperiodic
symbolic factor (Theorem 3.22).

Now, we proceed to the proof. First, we have the following consequence of Proposi-
tion 3.3.
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Remark 3.18. It is straightforward to check that Proposition 3.3 implies if x, x′ ∈ Xζ

are such that τ(x) = τ(x′), then π(x) is equal to π(x′), where π : (Xζ , S,Zd) →
(
←−
Zd(Lnζ ),+(Lnζ ),Zd) is the factor map.

To prove the result we will introduce some notions as in [91].
Let ζ be an aperiodic primitive constant-shape substitution. We consider a labeled

directed graph Gζ with vertex set E = A2 and there exists an edge (a, b) to (c, d) with

label f ∈ F ζ1 if ζ(a)f = c, ζ(b)f = d. Note that the diagonal ∆A = {(a, a) : a ∈ A} is a
stable set, i.e., E(∆A) = ∆A. Let P = (a0, b0)(a1, b1)(a2, b2) be a path, by definition, there
is an edge from (a0, b0) to (a1, b1) with a label f0 and an edge (a1, b1) to (a2, b2) with label
f1, i.e, ζ(a0)f0 = a1, ζ(b0)f0 = b1, and ζ(a1)f1 = a2, ζ(b1)f1 = b2. Then, we have that
ζ2(a0)Lζf0+f1 = a2, ζ2(b0)Lζf0+f1 = b2. This means, the paths indicate the simultaneous
positions of the letters in the iterates of the substitution.

Definition 3.19. Let ζ be an aperiodic primitive constant-shape substitution.

1. We say that a pair (a, b) ∈ A2 \∆A is a periodic pair if there is a cycle in Gζ which
starts and ends in (a, b). We define n(a, b) = min{|P | : P is a cycle in (a, b)} and we
denote

n(ζ) = lcm{n(a, b) : (a, b) is a periodic pair},

we call the substitution pair-aperiodic if n(ζ) = 1.

2. We call a pair (a, b) ∈ A \ ∆A an asymptotic disjoint pair if for any k > 0, there
exists a path P = (a0, b0) . . . (ak, bk) in Gζ of length k with (a0, b0) = (a, b) and
(ak, bk) /∈ ∆A.

Remark 3.20. The following statements can be easily verified

(1) As for the case of periodic points for the substitution, we can replace the substitution
ζ for an appropriate power, i.e, ζn(ζ), so we may assume that the substitution is pair-
aperiodic.

(2) If the substitution ζ is bijective, every (a, b) ∈ A2 \∆A is an asymptotic disjoint pair.

(3) Assume that ζ is pair-aperiodic. If (a, b) ∈ A2 is not an asymptotic disjoint pair, let
k be the minimum length of a path from (a, b) such that any path of length k has
an end in ∆A. If k > |A|2, there exists a cycle as a subpath in P , i.e., one of the

vertex (c, d) is a periodic pair. Since ζ is pair-aperiodic, there exists f ∈ F ζ1 such
that ζ(c)f = c 6= d = ζ(d)f . So we can create a path of length arbitrarily large from
(a, b) that not reach ∆A, which is a contradiction of not being asymptotic disjoint
pair. We then have that k ≤ |A|2, which implies ζ |A|

2
(a) = ζ |A|

2
(b).
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Definition 3.21. Let A,B be two finite alphabets, ζ be an aperiodic primitive constant-
shape substitution with alphabet A and τ : A → B. We say that a, b ∈ A with a 6= b are
indistinguishable (by (ζ, τ)) if for all n ≥ 0 we have that τ(ζn(a)) = τ(ζn(b)).

With these definitions we are ready to prove the next result which is the multidimen-
sional analogue to Theorem 22 in [91].

Theorem 3.22. Let (Y, S,Zd) be an aperiodic symbolic factor (with alphabet B) of a substi-
tutive subshift (Xζ , S,Zd), with ζ being an aperiodic primitive constant-shape substitution
with alphabet A. Then, there exists an aperiodic primitive constant-shape substitution ζ ′

with alphabet C having the same expansion matrix and support of a power of ζ and a
conjugacy τ ′ : (Xζ′ , S,Zd)→ (Y, S,Zd) via a 0-block map.

Proof. By Lemma 1.22 we can assume that the factor map τ : (Xζ , S,Zd) → (Y, S,Zd) is
induced via a 0-block map and by Remark 3.20 we can assume that ζ is a pair-aperiodic
substitution.

We define an equivalence relation a ∼ b inA, such that a ∼ b if a, b are indistinguishable.
By definition, the substitution ζ ′([a])f = [ζ(a)f ],f ∈ F ζ1 . in A/ ∼ and the map T ′ : A/∼
→ B, given by T ′([a]) = τ(a) are well defined. These maps satisfy the following property:

Every pair in A/ ∼ is distinguishable. (3.1)

It is straightforward to check that primitivity of ζ implies primitivity of ζ ′.
Assume now that ([a], [b]) is a periodic pair, i.e, there exists a cycle P1 =

([a0], [b0]) . . . ([ak], [bk]) in Gζ′ with ([a0], [b0]) = ([ak], [bk]) = ([a], [b]). We can consider
a path P2 = (c0, d0) . . . (ck, dk) in Gζ with [ci] = [ai] and [di] = [bi] for 0 ≤ i ≤ k having
the same label of edges as P1. Now, repeating this process we get a path P3 in Gζ of
length (max{|[a]|, |[b]|} + 1)k from (c, d) repeating the labels of the path P1 with a pe-
riod k. By the Pigeonhole Principle, there exist two subpaths P4 = (e0, f0) . . . (el1k, fl1k),
P5 = (g0, h0) . . . (gl1k, hl2k) of P3, having the same labels of the edges as P1 repeating
with period k, such that e0 = el1k, h0 = hl2k and [e0] = [a0], [h0] = [b0]. Now con-
sider the cycle in Gζ (u0, v0) . . . (ul1l2k2 , vl1l2k2) where ul1kj . . . ul1k(j+1) = e0, . . . , el1k and
vl2km . . . vl2k(m+1) = h0 . . . hl2k for all 0 ≤ j < l2k, 0 ≤ m < l1k. Since ζ is pair-

aperiodic, there exists f ∈ F ζ1 such that ζ(e0)f = e0, ζ(h0)f = h0. We then conclude
that ζ ′([a])f = [a], ζ ′([b])f = [b], i.e., ζ ′ is pair-aperiodic.

On the other hand, for all n > 0, we have that τ(ζn(a)) = τ ′(ζ ′([a])), hence Y has the
same language as τ ′(Xζ′), so they are equal, since subshifts are uniquely determined by
their language.

Finally, we prove that τ ′ : (Xζ′ , S,Zd) → (Y, S,Zd) is a conjugacy. Let x, x′ ∈ Xζ′ ,

with τ ′(x) = τ ′(x′). By the recognizability property of Xζ′ , we can write x = Sf1ζ2|A|2(x),

x′ = Sf2ζ2|A|2(x′). By Remark 3.18 we have that f1 = f2.
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For every n ∈ Zd, (xn, x
′
n) ∈ A2 are not asymptotic disjoint pair. Assume the contrary,

i.e., there exists n ∈ Zd such that (xn, x
′
n) is an asymptotic disjoint pair. Then we can find

a periodic pair ([a], [b]) and a path P = ([a0], [b0]) . . . ([ak], [bk]) in Gζ′ with ([a0], [b0]) =
(xn, x

′
n) and ([ak], [bk]) = ([a], [b]). with k ≤ |A|2. Since ζ ′ is pair-aperiodic, we have

that there exists f ∈ F ζ
2|A|2 such that (ζ ′)2|A|2(xn)f = [a], (ζ ′)2|A|2(x′n)f = [b]. Since

τ ′(ζ ′2|A|
2
(xn)) = ζ ′2|A|

2
(τ ′(xn)) = ζ ′2|A|

2
(τ ′(xn)) = τ ′(ζ ′2|A|

2
(x′n)), we have that τ ′(a) =

τ ′(b), then ([a], [b]) are indistinguishable, which contradicts 3.1.
Thus we have that (xn, x

′
n) is not an asymptotic disjoint pair for any n ∈ Zd. By

Remark 3.20 we have that ζ2|A|2(xn) = ζ2|A|2(x′n), i.e., x = x′.

For the one-dimensional case, F. Durand proved [45] that Cantor topological factors
of substitutive subshifts are either substitutive subshifts (when the action is expansive) or
odometer systems (when the action is equicontinuous). This dichotomy is no longer true
in the multidimensional context. Example 4.3 shows an example of substitutive subshift
with a Cantor topological factor that is neither expansive nor equicontinuous. Also the
example in Example 4.3 has a symbolic factor (in fact substitutive subshift) which has a
non-trivial period, and the phase space is still infinite.
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Chapter 4

Measurable morphisms between
substitutive subshifts

In this chapter, we study different types of homomorphisms between substitutive sub-
shifts. Note that since these subshifts are uniquely ergodic, any topological endomorphism
is also a measurable endomorphism preserving the ergodic measure. First, we will ex-
tend a result of B. Host and F. Parreau [69] to the multidimensional case (Theorem 4.1),
showing some rigidity properties: Any measurable factor between two substitutive sub-
shifts given by two aperiodic constant-shape substitutions with some combinatorial prop-
erty induces a continuous one. We follows the same strategy for the proof. It is based
on the property of these substitutive subshifts being self-induced systems, i.e., there ex-
ists non-empty clopen proper subsets (in our case ζn(Xζ), for all n > 0) such that the
induced system (ζn(Xζ), Sζn(Xζ),Zd) is conjugate to the system (Xζ , S,Zd). Here, the

action
〈
Sζn(Xζ)

〉
is given by

{
SL

n
ζ (m) : m ∈ Zd

}
. This implies, any measurable endo-

morphism φ of (Xζ , S,Zd) is associated with an induced measurable endomorphism φn
of (ζn(Xζ), Sζn(Xζ),Zd). We prove that these induced measurable endomorphisms are
stationary, i.e., there exists n 6= m > 0 such that φn = φm. Then, we prove that we
can approximate these induced measurable endomorphisms by endomorphisms of radius

‖F ζ1 ‖
(

1 + ‖L−1
ζ ‖

(
2 + 1/(1− ‖L−1

ζ ‖)
))

. The finiteness of sliding block codes of a specific

radius will let us conclude the theorem (Theorem 4.1).
The result of B. Host and F. Parreau was then extended by V. Salo and Törmä in

[103], for topological factors between constant-length substitutions and Pisot substitutions
whose associated incidence matrices have the same dominant eigenvalue. As in [69], there
exists a bound R such that any factor map is the composition of a sliding block code of
radius R with a power of the shift map. They used a renormalization process, where they
could reduce the radius of a given factor map. Then, F. Durand and J. Leroy extended
this result for any pair of aperiodic substitutions [50]. This was one of the key steps to
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prove the decidability of the isomorphism problem between substitutive subshifts.
Our result shows the decidability of the isomorphism problem between multidimensional

substitutive subshifts, when both constant-shape substitutions has the same expansion
matrix and same support, and satisfy a combinatorial condition (called reducibility). This
condition is always satisfied for bijective substitutions. Nevertheless, this result is far
from representing the complete picture about the decidability of the isomorphism problem
between multidimensional substitutive subshifts.

Then, we will deduce restrictions on endomorphisms and homomorphisms, using the
finiteness of the number of invariant orbits (Proposition 3.4). Every substitutive subshift
given by an aperiodic constant-shape substitution satisfying the combinatorial property is
coalescent (Proposition 4.7). This was already proved in the one-dimensional case in [45].
Also we proved the automorphism group of substitutive subshift is virtually generated by
the shift action (Proposition 4.8). It was already known in the one-dimensional context
by [69] and [82]. In the multidimensional framework was proved under more restrictive
geometrical and combinatorial properties [21]. We also give some conditions to get that
the automorphism group of a substitutive subshift is isomorphic to a direct product of Zd
with a finite group (Corollary 4.9). Finally, we extend Theorem 4.1 to homomorphisms as-
sociated with matrices commuting with a power of the expansion matrix of the substitution
(Theorem 4.12). This leads to the same rigidity properties about these homomorphisms
(Proposition 4.16) and for a restricted normalizer group (Proposition 4.16). Notice that in
the next chapter we will give sufficient conditions to ensure the former result is a complete
characterization of the normalizer group.

4.1 Measurable factors implies continuous ones for substi-
tutive subshifts

In this section, we will extend the result proved in [69] about measurable factors between
substitutive subshifts in the multidimensional context. As in [69], we will use the notion
of reducibility of a substitution. Let ζ be a constant-shape substitution. For any pair of
letters a, b ∈ A, and n > 0, we consider the sequence

dn(ζn(a), ζn(b)) =

∣∣∣{f ∈ F ζn : ζn(a)f 6= ζn(b)f

}∣∣∣
|F ζn |

.

This sequence is decreasing for all of the pairs a, b ∈ A. We say the constant-shape
substitution is reduced if min

n∈N
a6=b∈A

dn(ζn(a), ζn(b)) > 0. For instance, every bijective constant-

shape substitution is reduced.
As mentioned in Section 1.7, the substitutive subshift (Xζ , S,Zd) is uniquely ergodic.

Denote µζ its unique ergodic invariant measure. Using the recognizability property, as in
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the one-dimensional case [97], this unique ergodic measure satisfies

∀U ∈ FXζ , µζ(U) =
1

|F ζn |

∫
Xζ

∣∣∣{f ∈ F ζn : Sfζn(x) ∈ U
}∣∣∣ dµζ(x),

where FXζ corresponds to the Borel sets of Xζ .
The following theorem is a multidimensional analogue of Theorem 1.3 in [69]:

Theorem 4.1. Let (Xζ1 , S,Zd), (Xζ2 , S,Zd) be two substitutive subshift from two aperi-
odic primitive constant-shape substitutions ζ1, ζ2 from finite alphabets A and B, with the
same expansion matrix L and same support F1. If (Xζ2 , S,Zd) is reduced, then for every
measurable factor φ : (Xζ1 , µζ1 , S,Zd) → (Xζ2 , µζ2 , S,Zd), there exists j ∈ Zd such that
Sjφ is equal µζ1-a.e. to a continuous factor ψ : (Xζ1 , S,Zd) → (Xζ2 , S,Zd), satisfying the
following two properties:

1. ψ is a sliding block code of radius ‖F ζ1 ‖
(

1 + ‖L−1
ζ ‖

(
2 + 1/(1− ‖L−1

ζ ‖)
))

.

2. There exist an integer n > 0 and p ∈ F ζn such that, Spψζn1 = ζn2 ψ.

In Chapter 6 we present an example where Theorem 4.1 can be applied, describing the
automorphisms of it.

Remark 4.2. The following statements can be easily verified.

(1) If Lζ is a diagonal matrix, then ‖L−1
ζ ‖ ≤ 1/2, so ψ is a sliding block code of radius

3‖F ζ1 ‖.

(2) Since the set of sliding block codes of radius ‖F ζ1 ‖
(

1 + ‖L−1
ζ ‖

(
2 + 1/(1− ‖L−1

ζ ‖)
))

between Xζ1 and Xζ2 is finite, we may consider an appropriate iteration of ζ1 and ζ2

such that any factor ψ satisfying 2. in Theorem 4.1 satisfies Spψζ1 = ζ2ψ.

(3) As also mentioned in [69], we may assume that p /∈ (Lnζ − id)(Zd), because it is
equivalent to find a factor map commuting with the substitution map, i.e., ψζn =
ζnψ, with p ∈ F ζ1 .

We follows the same strategy of [69]. Substitutive subshifts are self-induced systems,
i.e., there exists non-empty clopen proper subsets (in our case ζn(Xζ), for all n > 0) such
that the induced system (ζn(Xζ), Sζn(Xζ),Zd) is conjugate to the system (Xζ , S,Zd). We

recall, the action
〈
Sζn(Xζ)

〉
is given by

{
SL

n
ζ (m) : m ∈ Zd

}
. This implies, any measurable

endomorphism φ of (Xζ , S,Zd) is associated with an induced measurable endomorphism
φn of (ζn(Xζ), Sζn(Xζ),Zd). We prove that these induced measurable endomorphisms are
stationary, i.e., there exists n 6= m > 0 such that φn = φm. Then, we prove that we
can approximate these induced measurable endomorphisms by endomorphisms of radius
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‖F ζ1 ‖
(

1 + ‖L−1
ζ ‖

(
2 + 1/(1− ‖L−1

ζ ‖)
))

. The finiteness of sliding block codes of a specific

radius will let us conclude the theorem (Theorem 4.1).
If a substitution is not reduced, we consider an equivalence relation calling two letters

a, b equivalent when dn(ζn(a), ζn(b)) → 0. If two letters a, b ∈ A are equivalent, then

(ζ(a))f ∼ (ζ(b))f for all f ∈ F ζ1 . We define a substitution ζ̃ on A/ ∼ given by (ζ̃([a]))f =

[ζ(a)f ] for f ∈ F ζ1 . This substitution is reduced. We have a natural letter-to-letter factor
map φ̃ : (Xζ , S,Zd)→ (Xζ̃ , S,Z

d), and is called the reduced substitution of ζ.
In the one-dimensional case if (Xζ , S,Z) does not have purely discrete spectrum, it can

be proved using the results in [37] that (Xζ̃ , S,Z) is aperiodic. In the multidimensional
case this is not true in general, as we can see in Example 4.3.

Example 4.3 (An aperiodic constant-shape substitution, with a periodic reduced sub-

stitution). Consider the substitution σ2 with Lσ2 =

(
2 0
0 2

)
and F σ21 = J0, 1K2, given

by
σ2 :

0 7→ 1 3
0 2

, 1 7→ 0 2
0 2

, 2 7→ 3 1
2 0

, 3 7→ 2 0
2 0

.

This substitution corresponds to the product substitution between the Thue-Morse
substitution (σ3 : 0 7→ 01, 1 7→ 10) and the doubling sequence substitution (σ4 : a 7→
ab, b 7→ aa). The substitution does not have purely discrete spectrum, since (XTM ×←−
Z (2nZ), S×+(2nZ),Z2) is a factor of (Xσ2 , S,Z2), where (XTM , S,Z) corresponds to the one-
dimensional Thue-Morse substitutive subshift. The reduced substitution for σ2 is defined
with the same expansion matrix and support, given by:

σ̃2 :

a 7→ a b
a b

, b 7→ b a
b a

,

where every element in {0} × Z is a nontrivial period of σ̃2.

However, as proved in [69] for the one-dimensional case, if the reduced substitution
system is aperiodic, then (Xζ̃ , µζ , S,Z

d) is metrically isomorphic to (Xζ , µζ̃ , S,Z
d).

Proposition 4.4. Let ζ be an aperiodic primitive constant-shape substitution. If ζ̃ is
aperiodic, the natural factor between (Xζ , S,Zd) and (Xζ̃ , S,Z

d) is a metric isomorphism.

Proof. Let π : (Xζ , S,Zd) → (
←−
Zd(Lnζ ),+(Lnζ ),Zd) defined in Section 3.4.1. By Proposi-

tion 3.3, for every n > 0, πn(x) is equal to πn(φ̃(x)). In particular, if x, y ∈ Xζ satisfies
φ̃(x) = φ̃(y), then πn(x), πn(y) are equal for any n > 0.

Set U = {x ∈ Xζ : ∃y ∈ Xζ , φ̃(x) = φ̃(y), x0 6= y0}. It is enough to prove that U is a
null-set.
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Let n > 0, f ∈ F ζn and x ∈ Xζ be such that Sfζn(x) ∈ U . Then, there exists y ∈ Xζ

with φ̃(y) = φ̃(Sfζn(x)) and y0 6= ζn(x0)f . Then πn(y) = πn(Sfζn(x)) and is equal to f .
Moreover, there exists z ∈ Xζ with y = Sfζn(z), so φ̃(x) is equal to φ̃(z). This implies

(ζnz0)j , (ζ
nx0)j are equivalent for all j ∈ F ζn . Note that (ζnz0)f = y0, so is different from

(ζnx0)f . We define the set

Gn =
⋃
a,b∈A

{
f ∈ F ζn : [(ζna)f ] = [(ζnb)f ], (ζna)f 6= (ζnb)f

}
.

We deduce from the previous paragraph that

µζ(U) =
1

|F ζn |

∫ ∣∣∣{f ∈ F ζn : Sfζn(x) ∈ U
}∣∣∣ dµ(x)

≤ |Gn|
|F ζn |

.

For any a, b ∈ A we denoteDa,bn =
{

(c, d) ∈ A2 : ∃f ∈ F ζn , (ζna)f = c, (ζnb)f = d, [c] 6= [d]
}

and Ea,bn =
{

(c, d) ∈ A2 : ∃f ∈ F ζn , (ζna)f = c, (ζnb)f = d, [c] = [d]
}

. Set ε > 0 and let

j > 0 be large enough such that for any a, b ∈ A we have that

dj(ζ
j(a), ζj(b)) ≤ lim

k→∞
dk(ζ

k(a), ζk(b)) + ε.

Fix a, b ∈ A. Note that

dn+j(ζ
n+j(a), ζn+j(b)) =

1

|F ζn+j |

∑
(c,d)∈Da,bn

|F ζj |dj(ζ
j(c), ζj(d)) +

∑
(c,d)∈Ea,bn

|F ζj |dj(ζ
j(c), ζj(d))

=
1

|F ζn |

 ∑
(c,d)∈Da,bn

dj(ζ
j(c), ζj(d)) +

∑
(c,d)∈Ea,bn

dj(ζ
j(c), ζj(d))



≤ 1

|F ζn |

 ∑
(c,d)∈Da,bn

( lim
k→∞

dk(ζ
k(c), ζk(d)) + ε) +

∑
(c,d)∈Ea,bn

ε


≤ ε(|Da,bn |+ |Ea,bn |)

|F ζn |
+

1

|F ζn |

∑
(c,d)∈Da,bn

lim
k→∞

dk(ζ
k(c), ζk(d)).
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Since this is for every ε > 0 and lim
k→∞

dk(ζ
k(c), ζk(d)) ≤ 1 we have that

dn+j(ζ
n+j(a), ζn+j(b)) ≤ |Da,bn |/|F ζn | and this is true for every j large enough, so

lim
k→∞

dk(ζ
k(a), ζk(b)) ≤ |D

a,b
n |
|F ζn |

,

hence

µζ(U) ≤
∑
a,b∈A

(
dn(ζn(a), ζn(b))− lim

k→∞
dk(ζ

k(a), ζk(b))

)
.

When n→∞, the right expression goes to zero, and we conclude µζ(U) = 0.

It is known that if the substitutive subshift has a coincidence, then it is metrically
isomorphic to its maximal equicontinuous factor [97]. A constant-length substitution has
a coincidence, if there exists n > 0 and an index j on the support of ζn such that for all
pair of letters a, b ∈ A, ζn(a)j = ζn(b)j . The doubling sequence substitutive subshift (see
Example 4.3) is an example of a substitution having a coincidence. If a substitution has a
coincidence, then cannot be reduced. In fact its reduced substitution is trivial, i.e., has an
alphabet of cardinality 1. The set of measurable endomorphisms of odometer systems is
not discrete. In fact it is uncountable and any element of the odometer system represent
a measurable endomorphism via addition. So, as in the original article [69], reducibility is
an optimal hypothesis for Theorem C.

Now, to prove Theorem 4.1, we assume that ζ2 is an aperiodic primitive reduced
constant-shape substitution. We denote by η = min

n∈N
a6=b∈B

dn(ζn2 (a), ζn2 (b)) and R the radius

from the recognizability property of Xζ2 . Recall that the recognizability property im-
plies the substitutions maps are injective. Let φ be in mFac(Xζ1 , Xζ2 , S,Zd). The map
πn(x)− πn(φx) (modLn(Zd)) is invariant under the Zd-action, so is constant µζ1-a.e. We

denote this constant by pn(φ) in F ζ1n . The set Spn(φ)φζn1 (Xζ1) is included in ζn2 (Xζ2) up
to a µζ2-null set. Since ζn1 is a homeomorphism from Xζ1 to ζn1 (Xζ1), for µζ1-almost all
x ∈ Xζ1 there exists a unique point y ∈ Xζ2 such that Spn(φ)φζn1 (x) = ζn2 (y), which we
denote φn(x). So, for every φ ∈ mFac(Xζ1 , Xζ2 , S,Zd) we consider a sequence (pn(φ))n≥0

and a sequence of maps (φn)n ∈ mFac(Xζ1 , Xζ2 , S,Zd) such that

pn(φ) ∈ F ζ1n , Spn(φ)φζn1 (x) = ζn2 (φn(x)).

It is straightforward to check that the sequence satisfies the recurrence pn+1(φ) =
pn(φ) + Lnζ1p1(φn) (mod Ln+1

ζ1
(Zd)). We also have the recurrence (φn)1 = φn+1.

Now, for φ, ψ ∈ mFac(Xζ1 , Xζ2 , S,Zd), we denote d(φ, ψ) = µζ1({x ∈ Xζ1 : (φx)0 6=
(ψx)0}). We also denote for any r > 0 the quantity C(r) = |B(0, r) ∩ Zd|.
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Lemma 4.5. If d(φ, ψ) is smaller than η/C(R), then φ, ψ are equal µζ1-a.e. in Xζ1.

Proof. For all n ≥ 0, we denote Un = {x ∈ Xζ1 : (φnx)0 6= (ψnx)0}. We will prove by
induction on n ≥ 0 that pn(φ) = pn(ψ) and µζ1(Un) < 1/C(R). By hypothesis this is
true for n = 0. Now, suppose that pn(φ) = pn(ψ) and µζ1(Un) < 1/C(R) for some n ≥ 0.
We note the map π1(φnx)− π1(ψnx) is equal to (p1(ψn)− p1(φn)) (mod Lnζ1(Zd)) for µζ1-
a.e x in Xζ1 . By the recognizability property, this map vanishes on the set {x ∈ Xζ1 :
(φnx)|B(0,R) = (ψnx)|B(0,R)} which has a positive measure by hypothesis, and we conclude
that pn+1(φ) = pn+1(ψ).

Now, let x be in Un+1. Then, there exist at least η|F ζ1n+1| indices f ∈ F ζ1n+1 such that

(ζn+1
2 φn+1(x))f 6= (ζn+1

2 ψn+1(x))f , i.e., (Spn+1(φ)φζn+1
1 (x))f 6= (Spn+1(ψ)ψζn+1

1 (x))f , so
we have that

η|F ζ1n+1|µζ1(Un+1) ≤
∫
|{g ∈ F ζ1n+1 + pn+1(φ) : Sgζn+1

1 x ∈ U0}|dµζ1(x) = |F ζ1n+1|µζ1(U0)

Hence, µζ1(Un+1) is less than 1/C(R).
Now, we will prove that φ = ψ for µζ1-a.e. x ∈ Xζ1 . Let r > 0 be an integer.

Since (F ζ1n )n>0 is Følner, we choose n > 0 large enough such that |(F ζ1n )◦r|/|{F ζ1n }| ≥
1/2. Set p = pn(φ). If x ∈ U c0 , then (Spφζn1 x)|

F
ζ1
n

= (Spψζn1 x)|
F
ζ1
n

, so we have that

(Sp+fφζn1 x)B(0,r) = (Sp+fψζn1 x)B(0,r) for f ∈ (F ζ1n )◦r. This implies

µζ1
({
x ∈ X : (φx)|B(0,r) = (ψx)B(0,r)

})
≥ |(F

ζ1
n )◦r|
|F ζ1n |

µζ1(U cn)

≥ 1

2

(
1− 1

C(R)

)
> 0.

Finally, the set {x ∈ X : φ(x) = ψ(x)} is the decreasing intersection of these sets, so
has a positive measure. By ergodicity, φ, ψ are equal µζ1-almost everywhere in Xζ1 .

Lemma 4.6. Let φ ∈ mFac(Xζ1 , Xζ2 , S,Zd). Then there exists a sequence (ψn) of sliding

block codes of radius ‖F ζ11 ‖
(

1 + ‖L−1
ζ1
‖
(

2 + 1/(1− ‖L−1
ζ1
‖)
))

such that d(φn, ψn)→ 0.

Proof. Set ε > 0. By Lusin’s theorem, there exist an integer ` > 0 and a continuous
map f : Xζ1 → B such that f(x) only depends on x|B(0,`) and the measure of the set

V = {x ∈ Xζ1 : (φx)0 6= f(x)} is less than εη/6. Since (F ζ1n )n>0 is Følner, we choose n > 0
large enough such that

|(F ζ1n )◦`|
|F ζ1n |

> 1− η

3
.

Set p = pn(φ). For every x ∈ Xζ1 , we denote J(x) = {f ∈ (F ζ1n )◦` : Sf+pζn1 x /∈ V }
and W = {x ∈ Xζ1 : |J(x)| > (1− η/2)|F ζ1n |}. Note that
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εη

6
> µζ1(V )

≥ 1

|F ζ1n |

∫
W c

|(F ζ1n )◦`| − |J(x)|)dµ(x)

≥ (1− µζ1(W ))
η

6
.

So we have that µζ1(W ) > 1− ε.
Using Proposition 1.20 with F = F ζ1 +F ζ1 and A = {0} we find a set C b Zd such that

0 ∈ C, ‖C‖ ≤ ‖F ζ1 ‖
(

1 + ‖L−1
ζ ‖

(
2 + 1/(1− ‖L−1

ζ ‖)
))

and by Remark 1.21 we have that

F ζn+F ζn ⊆ Lnζ (C)+F ζn . If x, y ∈W with x|C = y|C , then for every f ∈ (F ζ1n )◦`, we have that

(Sf+pζn1 x)|B(0,`) = (Sf+pζn1 y)|B(0,`), so f(Sf+pζn1 x) = f(Sf+pζn1 y). Moreover, we note for

f in J(x)∩J(y) that, (ζn2 φnx)f = (Spφζn1 x)f = f(Sf+pφζn1 x) = f(Sf+pφζn1 y) = (ζn2 φny)f .

Since x, y ∈W , there is strictly more than (1− η)|F ζ1n | elements in J(x) ∩ J(y), so (φnx)0
is equal to (φny)0 by definition of η. Hence, for every x in W , (φnx)0 only depends on
x|C .

Finally, to prove Theorem 4.1 we use similar arguments given in [69] that we describe
for completeness.

Proof of Theorem 4.1. For the fixed alphabets A and B, there exist a finite number of

sliding block codes of radius ‖F ζ1 ‖
(

1 + ‖L−1
ζ ‖

(
2 + 1/(1− ‖L−1

ζ ‖)
))

. By Lemma 4.6, there

exist two different integers m, k ≥ 0 such that d(φm, φm+k) < η/C(R), so by Lemma 4.5,
we have that φm = φm+k, µζ1-a.e..

Let n ≥ m be a multiple of k. We have that (φn)k = φn+k =
(φm+k)n−m = (φm)n−m = φn, µζ1-a.e. This implies for all r ∈ N, φn
is equal to (φn)rk, µζ1-a.e. Since the number of sliding block codes of radius

‖F ζ1 ‖
(

1 + ‖L−1
ζ ‖

(
2 + 1/(1− ‖L−1

ζ ‖)
))

is finite, by Lemma 4.6 φn is equal to a sliding

block code of radius ‖F ζ1 ‖
(

1 + ‖L−1
ζ ‖

(
2 + 1/(1− ‖L−1

ζ ‖)
))

, µζ1-a.e. in Xζ1 . Note that

φn is equal to φ2n, µζ1-a.e. We denote ψ = φn and p = pn(ψ). By definition of p, we have
that Spψζn1 = ζn2 ψ.

Set j = pn(φ)− p, then

Sjφζn1 = Spn(φ)−pφζn1 = S−pζn2 ψ = ψζn1 , µζ1 − a.e,

this implies that Sjφ and ψ coincides in ζn1 (Xζ1) µζ1-almost everywhere, and by ergodicity
in the whole set Xζ1 µζ1-almost everywhere.
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4.2 Applications of rigidity results on endomorphisms of
substitutive subshifts

In this section, we prove two consequences of Theorem 4.1 on endomorphisms of sub-
stitutive subshifts. First, we prove that substitutive subshifts given by aperiodic prim-
itive reduced constant-shape substitutions are coalescent. This was first proved in [45]
for one-dimensional linearly recurrent subshifts (in particular aperiodic subshifts). Lin-
early recurrent substitutive subshifts (such as the self-similar ones) are also coalescent as
a consequence of a result in [29].

Then, we deduce the automorphism group of a substitutive subshift of an aperiodic
primitive reduced constant-shape substitution is virtually generated by the shift action.
As a corollary, we get a condition for the automorphism group to be isomorphic to a
direct product of Zd (given by the shift action) and a finite group. As we will see in the
next chapter, this condition is always true for aperiodic bijective primitive constant-shape
substitutions.

From now on, during this section we will always assume, up to consider a power of the
substitution, that any factor map ψ ∈ End(Xζ , S,Zd) satisfying Property 2. in Theorem 4.1
is true for n = 1.

4.2.1 Coalescence of substitutive subshifts

In [45] it was proved that one-dimensional linearly recurrent subshifts (in particular ape-
riodic substitutions) are coalescent. In the multidimensional context, linearly recurrent
substitutive subshifts (such as the self-similar ones) are also coalescent as a consequence of
a result in [45]. Here we will use Theorem 4.1 and the finiteness on the number of invariant
orbits under the action of ζ (Proposition 3.4), to obtain that substitutive subshifts are also
coalescent, for aperiodic primitive reduced constant-shape substitutions.

Proposition 4.7. Let ζ be an aperiodic primitive reduced constant-shape substitution.
Then (Xζ , S,Zd) is coalescent.

Proof. Set φ ∈ End(Xζ , S,Zd). Theorem 4.1 ensures there exists j ∈ Zd such that Sjφ is

equal to a sliding block code ψ of fixed radius satisfying Spψζ = ζψ, for some p ∈ F ζ1 . Let
x ∈ Xζ be in a ζ-invariant orbit, i.e., there exists j ∈ Zd such that ζ(x) = Sjx. Note that

Spψζ(x) = Sp+jψx = ζψx,

so, if the orbit of x is in a ζ-invariant orbit, then ψx satisfies the same property. By
Proposition 3.4, there exist finitely many ζ-invariant orbits, hence for n large enough, we
can find x ∈ Xζ with x and ψn(x) being in the same orbit, i.e., there exists m ∈ Zd such
that Smψn(x) = x. By minimality of Xζ , ψ

n = S−m, hence ψ is invertible, which implies
φ is invertible.
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4.2.2 The automorphism group of substitutive subshifts.

Since the set of sliding block codes of radius ‖F ζ1 ‖
(

1 + ‖L−1
ζ ‖

(
2 + 1/(1− ‖L−1

ζ ‖)
))

be-

tween Xζ to itself is finite, we have the following result as a direct corollary of Theorem 4.1.

Proposition 4.8. Let (Xζ , S,Zd) be a subshift from an aperiodic primitive reduced
constant-shape substitution ζ. Then, the quotient group Aut(Xζ , S,Zd)/ 〈S〉 is finite. A
bound for |Aut(Xζ , S,Zd)/ 〈S〉 | is given by an explicit formula depending only on d, |A|,
‖L−1

ζ ‖, ‖F
ζ
1 ‖.

In the special case, where any automorphism of (Xζ , S,Zd) satisfies Property 2. of
Theorem 4.1 with p = 0, we have a more rigid result.

Corollary 4.9. Let ζ be an aperiodic primitive reduced substitution. The group generated
by the shift action and CentAut(Xζ ,S,Zd)(ζ) is isomorphic to a direct product of Zd (generated
by the shift action) with a finite group.

Proof. Note that an automorphism φ commutes with the substitution map if and only if
φ is equal to φn, for all n > 0.

Now, by Lemma 4.6, the Property 2. implies Property 1. of Theorem 4.1. So, the group
of automorphisms commuting with the substitution map is finite. To conclude we just need
to observe that the pair (jφ, ψφ) in Theorem 4.1 associated with any automorphism φ is
unique. Indeed, set φ ∈ Aut(Xζ , S,Zd) and j1, j2 ∈ Zd, ψ1, ψ2 ∈ Aut(Xζ , S,Zd) commuting
with the substitution map such that Sjiφ = ψi, for i ∈ {1, 2}. Then, Sj2−j1ψ1 = ψ2. Hence,
for any n > 0

Sj2−j1ψ1ζ
n = ζn(Sj2−j1ψ1)

= SL
n
ζ (j2−j1)ζnψ1,

which implies (id−Lnζ )(j2 − j1) = 0, so j2 = j1 and then ψ1 = ψ2.

We will show in Proposition 5.1 that for bijective substitutions, the automorphism
group is isomorphic to a direct product of the shift map and a finite group, generated by
permutation of letters.

4.3 Rigidity properties for homomorphisms between substi-
tutive subshifts and applications

This section is devoted to homomorphisms between substitutive subshifts. We recall that
for M ∈ GL(d,Z), the map φ : (X,T,Zd) → (Y, T,Zd) between two topological dynami-
cal systems is said to be a homomorphism associated with M if for all m ∈ Zd we have
that φ ◦ Sm = SMm ◦ φ. We can also define measurable homomorphisms in the measure-
theoretic setting. First, we establishes a necessary condition for the matrices M with
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mHomM (Xζ1 , Xζ2 , S,Zd) being non empty, whenever ζ1, ζ2 are two aperiodic primitive
constant-shape substitutions with the same expansion matrix and support. This condition
is similar to the one for odometer systems (Lemma 1.14), although the proof is very dif-
ferent. In this case we use a relation between measurable eigenvalues and homomorphisms
(which we will prove in the proof of Lemma 4.10). Then we conclude by the fact that
measurable eigenvalues and continuous eigenvalues are the same for substitutive subshifts
(Theorem 3.13). In some cases this condition implies the matrix M commutes with the
expansion matrix L (as shown for constant-base odometer systems in Theorem 2.2).

Then, we prove an analogue of Theorem 4.1 (Theorem 4.12) establishing that measur-
able homomorphisms induced continuous ones for homomorphisms associated with matrices
in the centralizer of some power of the expansion matrix. Finally, we give an explicit bound
on the norm of these matrices for the quotient group of a restricted normalizer semigroup
with respect to the shift action (Proposition 4.16).

Lemma 4.10. Let ζ1, ζ2 be two aperiodic primitive constant-shape substitutions having
the same expansion matrix L and same support F . If M ∈ GL(d,Z) is such that
mHomM (Xζ1 , Xζ2 , S,Zd) 6= ∅, then for all n > 0 there exists m(n) > 0 such that

MLm(n)(H(Xζ1)) ≤ Ln(H(Xζ2)). (Normalizer Condition for substitutions)

Proof. Let φ be in mHomM (Xζ1 , Xζ2 , S,Zd), and x ∈ E(Xζ2 , µζ2 , S,Zd). We will prove
that M∗x ∈ E(Xζ1 , µζ1 , S,Zd). Indeed, let f ∈ L2(Xζ2 , µζ2) be such that for all m ∈ Zd,
f ◦ Sm = e2πi〈x,m〉 · f , µζ2-a.e. in Xζ2 . Then, we have that

(f ◦ φ) ◦ Sm = (f ◦ SMm) ◦ φ = e2πi〈x,Mm〉 · f ◦ φ = e2πi〈M∗x,m〉 · f ◦ φ, µζ1-a.e. in Xζ1 .

By Theorem 3.13 and Proposition 3.16, for any n > 0, the sys-
tem (Zd/M−1Ln(H(Xζ2)),+,Zd) is a finite factor of the odometer sys-

tem (
←−
Zd(Ln(H(Xζ1 ))),+(Ln(H(Xζ1 ))),Zd), which implies the odometer system

(
←−
Zd(M−1Ln(H(Xζ2 ))),+(M−1Ln(H(Xζ1 ))),Zd) is a factor of (

←−
Zd(Ln(H(Xζ1 ))),+(Ln(H(Xζ1 ))),Zd).

By Lemma 1.13, we conclude that for any n > 0, there exists m(n) > 0 such that
Lm(n)(H(Xζ1)) ≤M−1Ln(H(Xζ2)).

A consequence of Proposition 4.7 is that a homomorphism is associated with a matrix
with finite order, then is an isomorphism.

Proposition 4.11. Let ζ be an aperiodic primitive reduced constant-shape substitution. If
M ∈ GL(d,Z) has finite order, then any homomorphism φ ∈ NM (Xζ , S,Zd) is invertible.

Proof. Since M has finite order, there exists n > 0 such that Mn = idRd . This implies
φn ∈ End(Xζ , S,Zd). By Proposition 4.7, φn is invertible, which implies φ is invertible.
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Now, we will prove an analogue of Theorem 4.1 for homomorphisms associated with
matrices commuting with a power of the expansion matrix L. As mentioned before a priori
this does not cover all the homomorphisms between substitutive subshifts.

Theorem 4.12. Let (Xζ1 , S,Zd), (Xζ2 , S,Zd) be two substitutive subshifts from two ape-
riodic primitive constant-shape substitutions ζ1, ζ2 from finite alphabets A and B, with
the same support F1 and expansion matrix L. Let M ∈ GL(d,Z) be a matrix commuting
with a power of L, i.e., there exists n > 0 such that MLn = LnM . If (Xζ2 , S,Zd) is re-
duced, then for every measurable homomorphism associated with M , φ : (Xζ1 , µζ1 , S,Zd)→
(Xζ2 , µζ2 , S,Zd), there exists j ∈ Zd such that Sjφ is equal µζ1-a.e. to a homomorphism
associated with M ψ ∈ NM (Xζ1 , Xζ2 , S,Zd), satisfying the following two properties:

1. ψ is given by a block map of radius ‖F ζ1 ‖‖L
−1
ζ1
‖ (1 + ‖M‖)

(
2− ‖L−1

ζ ‖
)
/
(

1− ‖L−1
ζ ‖
)

.

2. There exist an integer n > 0 and q ∈ F ζn such that Sqψζn1 = ζn2 ψ.

In Chapter 6 we provide an example where the hypothesis are not satisfied, so we cannot
apply Theorem 4.12. Nevertheless, we are able to describe its normalizer semigroup.

Remark 4.13. Let ψ ∈ HomM (Xζ1 , Xζ2 , S,Zd) satisfying property (2) of Theorem 4.12.
For any m in Zd, we have that Sqψ(ζn1 (Smx)) = ζn2 (ψ(Smx)), and Sqψ(ζn1 (Smx)) =

S
q+MLnζ1

m
ψ(ζn1 (x)), ζn2 (ψ(Smx)) = S

Lnζ1
Mm

ζn2 (ψ(x)), it follows, MLnζ1m = Lnζ1Mm, i.e.,
M and Lnζ1 commute, hence this hypothesis is optimal to obtain property (2). Note that if
L is an integer multiple of the identity, then any matrix M ∈ GL(d,Z) commutes with L.

The proof of Theorem 4.12 follows the same strategy as the one of Theorem 4.1, except
some small modifications. Since the substitution ζ1 is primitive, we can replace the substi-
tution by some power ζn1 , so we may assume that M commutes with the expansion matrix
of ζ1. We will replace the term pn(φ) by the map πn(x)−M−1πn(φx) (modLnζ (Zd)), with

πn(x) and M−1πn(φx) being the representative classes in F ζn . The commutation assump-
tion implies, for any n > 0 the map M defines a bijection in Zd/Ln(Zd), also denoted by
M , i.e., n = m (mod Ln(Zd)), if and only if Mn = Mm (mod Ln(Zd)). With this, the
map pn(φ) is invariant under the shift action. Since (Xζ1 , µζ1 , S,Zd) is ergodic, the map

pn(φ) ∈ F ζn is a constant map µζ1-a.e. in Xζ1 and the set SMpn(φ)φζn1 (Xζ1) is included, up
to a µζ2-null set, in ζn2 (Xζ2). We can define the map φn for µζ1-a.e. in Xζ1 as the unique
point y ∈ Xζ2 such that SMpn(φ)φζn1 x = ζn2 y, where Mpn(φ) is the representative element

in F ζn . It is straightforward to check that φn ◦ Sn = SMn ◦ φn for all n ∈ Zd, so φn is in
mNM (Xζ1 , Xζ2 , S,Zd). The sequences pn(φ) and (φn) satisfies the same recurrences given
in Section 4.1:

pn+1(φ) = pn(φ) + Lnζp1(φn), (φn)1 = φn+1.

As in Theorem 4.1 we need the following adaptations of Lemma 4.5 and Lemma 4.6 for
homomorphisms. The proof are the same, so we omit them.
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Lemma 4.14. If φ, ψ ∈ mNM (Xζ1 , Xζ2 , S,Zd) are such that d(φ, ψ) is smaller than
η/C(R), then φ, ψ are equal µζ1-a.e in Xζ1.

Lemma 4.15. Let φ ∈ mNM (Xζ1 , Xζ2 , S,Zd). Then there exists a sequence (ψn) of homo-

morphisms associated with M of radius ‖F ζ1 ‖‖L
−1
ζ1
‖ (1 + ‖M‖)

(
2− ‖L−1

ζ ‖
)
/
(

1− ‖L−1
ζ ‖
)

such that d(φn, ψn)→ 0.

To finish the proof of Theorem 4.12, we proceed exactly as in the proof of Theorem 4.1

Proof of Theorem 4.12. For the fixed alphabets A and B, there ex-
ists a finite number of homomorphisms associated with M of radius

‖F ζ1 ‖‖L
−1
ζ1
‖ (1 + ‖M‖)

(
2− ‖L−1

ζ ‖
)
/
(

1− ‖L−1
ζ ‖
)

. By Lemma 4.15, there exist two

different integers m, k ≥ 0 such that d(φm, φm+k) < η/C(R), so by Lemma 4.14, we have
that φm = φm+k, µζ1-a.e..

Let n ≥ m be a multiple of k. We have that (φn)k = φn+k = (φm+k)n−m = (φm)n−m =
φn, µζ1-a.e. This implies for all r ∈ N, φn is equal to (φn)rk, µζ1-a.e. Since the number

of sliding block codes of radius ‖F ζ1 ‖‖L
−1
ζ1
‖ (1 + ‖M‖)

(
2− ‖L−1

ζ ‖
)
/
(

1− ‖L−1
ζ ‖
)

is finite,

by Lemma 4.15 we have that φn is equal to a homomorphism associated with M of radius

‖F ζ1 ‖‖L
−1
ζ1
‖ (1 + ‖M‖)

(
2− ‖L−1

ζ ‖
)
/
(

1− ‖L−1
ζ ‖
)

, µζ1-a.e. in Xζ1 . Note that φn is equal

to φ2n, µζ1-a.e. We denote ψ = φn and p = pn(ψ). By definition of p, we have that
SMpψζn1 = ζn2 ψ.

Set j = M(pn(φ)− p), then

Sjφζn1 = SM(pn(φ)−p)φζn1 = S−Mpζn2 ψ = ψζn1 , µζ1 − a.e,

this implies that Sjφ and ψ coincides in ζn1 (Xζ1) µζ1-almost everywhere, and by ergodicity
in the whole set Xζ1 µζ1-almost everywhere.

In the case ζ1 = ζ2, we can consider a restricted normalizer group as all the invertible
homomorphisms associated with matrices commuting with a power of Lζ1

NC(Xζ1 , S,Z
d) =

⋃
M∈GL(d,Z)

MLnζ1
=Lnζ1

M, for some n

(NM (X,T,Zd) ∩Homeo(X)),

This set is a group under composition and 〈S〉, Aut(Xζ1 , S,Zd) are normal subgroups
of NC(Xζ1 , S,Zd).

Following the same proof as Proposition 4.8, we have the map φ→ (jφ, ψφ) is unique,
so we obtain the same result with respect to this restricted normalizer group.

Proposition 4.16. Let (Xζ , S,Zd) be a subshift from a reduced aperiodic primitive

constant-shape substitution ζ from a finite alphabet. If the set of matrices M ∈ ~N(Xζ , S,Zd)
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commuting with a power of the expansion matrix Lζ is finite, then the quotient group
NC(Xζ , S,Zd)/ 〈S〉 is finite. A bound for |NC(Xζ , S,Zd)/ 〈S〉 | is given by an explicit

formula depending only on d, |A|, ‖L−1
ζ ‖, ‖F

ζ
1 ‖, and sup

M∈CentGL(d,Z)(Lζ)
‖M‖.

Proof. Let ψ ∈ NC(Xζ , S,Zd), satisfying Property 2. of Theorem 4.12. Following the
proof of Proposition 4.7, ψ acts as a permutation of the ζ-invariant orbits. Since the set
of matrices M ∈ ~N(Xζ , S,Zd) commuting with a power of Lζ is finite, there exists n > 0
such that ψn is an automorphism of Xζ . By Proposition 4.8, we have that ψn has finite
order, which implies ψ has finite order.

A substitution with expansion matrix equal to L1 in Example 2.4 is an example where
Proposition 4.16 gives a complete characterization for the normalizer group.



Chapter 5

Precisions on bijective
constant-shape substitutions

Bijective substitutions are of great interest because of their mixed dynamic spectrum.
They are never extensions almost 1-to-1 of its maximal equicontinuous factor. Bijective
substitutions were studied before in [54] for block substitutions, where it was proved that
the subshift generated by a bijective constant-shape substitution, with a diagonal expansion
matrix is measurable-theoretic isomorphic to a skew product of one-dimensional odometers.
Also, in [21] it was studied the normalizer group of bijective block substitutions. We extend
the study by describing the normalizer group for general constant-shape substitutions. To
do this, we relate the symmetry group with different types of supports of the substitution
and non-diagonal expansion matrices.

First, we prove that the automorphism group of substitutive subshifts of bijective sub-
stitutions are direct products of the shift action and finite groups, given by a permutation
of letters (Proposition 5.1). This is a well known result for one-dimensional and block sub-
stitutions ([69, 82, 20, 21]). In the rest of the chapter, under some geometrical conditions
(called polytope substitutions), we prove that the normalizer group is virtually generated
by the shift action. We then describe the symmetry group of these substitutive subshifts
(Proposition 5.15 and Theorem 5.17). The strategy is to use the fact that nondeterministic
directions, viewed as asymptotic pairs in the one-dimensional context in [39], are preserved
by the symmetry group (Proposition 1.12). We determine the nondeterministic directions

of these substitutive subshifts thanks to the supporting hyperplanes to conv(F ζn) (Theo-
rem 5.2). As we see in Section 5.3, the polytope assumption imply strong constraints on
such supporting hyperplanes. Conversely, we provides a checkable combinatorial condition
to ensure a half-space to be nonexpansive for (Xζ , S,Zd). (Corollary 5.13). This is the first
characterization of nondeterministic directions for a family of minimal systems.

101
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5.1 The automorphism group of substitutive subshifts from
bijective constant-shape substitutions

Since bijective substitutions are reduced, Proposition 4.8 implies the automorphism group
of (Xζ , S,Zd) is virtually Zd. In fact, we have a more rigid result in the bijective case as
shown in the following proposition.

Proposition 5.1. Let ζ1, ζ2 be two aperiodic bijective primitive constant-shape substitu-
tions with the same expansion matrix L and support F1. Then, any factor ψ : Xζ1 → Xζ2

satisfying Property 2. in Theorem 4.1 has radius 0. In particular, the automorphism group
Aut(Xζ , S,Zd) of a substitutive subshift from an aperiodic bijective primitive constant-shape
substitution is isomorphic to the direct product of Zd, generated by the shift action, with a
finite group given by a permutation of letters.

Proof. Let ψ ∈ Fac(Xζ1 , Xζ2 , S,Zd) satisfying Property 2. in Theorem 4.1, i.e., there exists
p ∈ F1 such that Spψζ1 = ζ2ψ. Suppose that p 6= 0. Let n > 0 be large enough such that
the set F ◦Cn = {f ∈ Fn : f+C ⊆ Fn} is nonempty, where C is the set defined in Lemma 4.6.
Then for any x ∈ Xζ1 , the coordinate x0 determines the pattern ζn1 (x)|Fn , hence the pattern

(Spnψζn1 )|pn+(Fn)◦C is also completely determined by x0, where pn =
n−1∑
i=0

Li(p). Set m ∈ Zd

such that (pn + (Fn)◦C) ∩ (Ln(m) + Fn) 6= ∅. Since Spnψζn1 = ζn2 ψ and ζ2 is bijective,
we have that x0 determines ψ(x)m, which implies S−mψ is a factor map of radius 0 (or a
letter-to-letter factor map). Set φ = S−mψ, we have that

Spn+m−Ln(m)φζn1 = ζn2 φ,

and by bijectivity the coordinate x0 determined two coordinates of ψ, unless for any n ∈ N
large enough pn + m is in Lnζ (Zd), i.e., for any n large enough there exists rn ∈ Zd such
that pn + m = Ln(rn). Note that p + rn = L(rn+1), which implies

‖rn+1‖ ≤ ‖L−1‖(‖rn‖+ ‖p‖),

so (rn) is a bounded sequence. Hence there exist n > 0 and N > 1 such that rn+N = rn,
which implies pN−1 ∈ (LN − id)(Zd) which is not possible by Remark 4.2.

If pn + m /∈ Lnζ (Zd), then x0 determines two coordinates n1, n2 of ψ(x) and then

the coordinates 0 and n2 − n1 of ψ1 = S−n1ψ, since ψ1 is also induced via a 0-block
map. Note that the map Ψ1 : A → B inducing ψ1 is bijective, if not two fixed points x, y
with Ψ1(x0) = Ψ2(y0) and x0 6= y0 generate two points with the same image, which is a
contradiction. It follows that x0 determines xn2−n1 , and then xk(n2−n1) for all k ∈ Z, so x
has a nontrivial period, which is a contradiction. Finally, we conclude by Corollary 4.9.
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5.2 Nondeterministic directions of substitutive subshifts of
bijective on extremities constant-shape substitutions

In this section we give a characterization of the nondeterministic directions (defined in
Section 1.5) of a substitutive subshift (Xζ , S,Zd) in the case ζ is a bijective on extremities
constant-shape substitution. A starting remark is that for each n > 0, the set of direc-
tions Sd−1 is stratified by the opposite normal fan N (conv(F ζn)) (see Section 1.1.2). Our
description of the nondeterministic directions is given in terms of union of these fans.

We say a constant-shape substitution ζ is bijective on extremities if the restriction pf
of ζ in f is bijective for all f ∈ Ext(conv(F ζ1 )). Since Ext(conv(A+B)) ⊆ Ext(conv(A)) +
Ext(conv(B))), a substitution is bijective on extremities if and only if for any n > 0 and

f ∈ Ext(conv(F ζn) the restriction pf of ζn in f is bijective. Since (F ζn)n>0 is a Følner

sequence, there exists n > 0 such that conv(F ζn) is a nondegenerate polytope, so up to

considering a power of ζ, we may assume that conv(F ζ1 ) is a nondegenerate polytope. Using
the recognizability property of substitutions and some basic results in convex geometry we
prove the following result.

Theorem 5.2. Let ζ be an aperiodic primitive constant-shape substitution which is bi-
jective on extremities. Then, the set of nondeterministic directions ND(Xζ , S,Zd) of the
substitutive subshift is the intersection of Sd−1 with a nonempty union of limits of opposite
normal cones of the form N̂Gn(conv(F ζn)), with Gn a face of conv(F ζn), for some integer
n > 0.

This theorem gives topological constraints on the set of nondeterministic directions.
Actually, we will see when Lζ = λ idRd , that the convex hull of any digit tile is a polytope,
i.e. it has a finite number of extreme points (Theorem 5.6). In this case by Theorem 5.2, the
set of nondeterministic directions ND(Xζ , S,Zd) is a finite union of closed balls (eventually
degenerated). More explicitly, in the two-dimensional case we have the following corollary,
showing in particular, it cannot be a Cantor set. This in contrast with the result proved
by M. Boyle and D. Lind in [17], where they proved any compact set with cardinality at
least 2 can be realized as the set of nondeterministic directions of some two-dimensional
subshift.

Corollary 5.3. In the two dimensional case, under the hypothesis of Theorem 5.2, either
the set ND(Xζ , S,Z2) has nonempty interior, either it has at most 2 accumulation points.

Proof. Assume that the set of nondeterministic directions ND(Xζ , S,Z2) has empty inte-
rior. By Theorem 5.2, the elements of ND(Xζ , S,Z2) are limits of normal vectors to edges

of conv(F ζn) for some n > 0. In [109] it was proved such vectors are normalized vectors

of the form (L∗ζ)
−kuk, with uk ∈ S1 a normal vector to an edge of conv(F ζ1 ) for some

k > 0. Hence, their accumulation points are accumulation points of orbits of the projective
action L∗ζ on the circle S1. A standard analysis of this action provides the cardinality of
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the accumulation points is at most 2, when a power of one of the Lζ-eigenvalues is a real
number. Otherwise, the projective orbits of L∗ζ are dense in the circle. Since ND(Xζ , S,Z2)
is closed, it is the whole circle, which is a contradiction.

Proof of Theorem 5.2. Let v be a nondeterministic direction for (Xζ , S,Zd), and x1 6=
x2 ∈ Xζ such that x1|Hv = x2|Hv . Consider the set D = {n ∈ Zd : x1(n) 6= x2(n)}. Since
D ⊆ Rd \Hv, its convex hull is also contained in Rd \Hv. We have 2 possibilities:

1. The convex hull conv(D) has at least one extreme point. Since D is closed in Rd,
then all its extreme points of conv(D) belong to D. Now, if v ∈ Zd is an extremal
ray of conv(D), then for any extremal point n ∈ D, the map dist(n + tv, Hv) must
be increasing (if not, there exists t∗ > 0 with n+ t∗v ∈ H, which is a contradiction).
Hence the distance map to H restricted to conv(D) is minimized in the extreme
points of conv(D). Since the extreme points are in D, we can use the shift action in
x1, x2 and assume that x1(0) 6= x2(0).

2. If conv(D) does not have extreme points, then contains a line. In this case the
hyperplane ∂Hv must be parallel to this line contained in conv(D) and using the
same argument, we can assume that x1(0) 6= x2(0).

So we can assume that 0 is in a face F0 of smallest dimension of conv(D) and then
v ∈ N̂F0(conv(D)). In fact any element in N̂F0(conv(D)) ∩ Sd−1 is a nondeterministic
direction for (Xζ , S,Zd).

Now, for any k > 0 consider R(k) > 0 be the recognizability radius for ζk given by
Proposition 3.3 and R = 4R(k). Since x1 and x2 coincide in an arbitrarily large ball, they
have the same image under the maximal equicontinuous factor, hence πn(x1) = πn(x2) ∈ F ζn
for any n > 0. By Lemma 3.9, there exist n > 0 and two words w

(n)
1 , w

(n)
2 ∈ LKζ

(Xζ) such

that xi|B(0,R) v ζn(w
(n)
i ), for i ∈ {1, 2}. By the Pigeonhole Principle there exist an infinite

set E ⊆ N, w1, w2 ∈ LKζ
(Xζ) and k1,k2 ∈ Kζ such that for all n ∈ E xi|B(0,R) =

ζn(wi)|Lnζ (ki)+πn(x1)+B(0,R), i ∈ {1, 2}. The recognizability property implies the origin is in

the boundary of conv(F ζk − πk(x1)). Letting k to infinity we have that for all n > 0, the

origin is in the boundary of conv(F ζn −πn(x1)), and if Gn is the face of smallest dimension

containing πn(x1) in conv(F ζn), then N̂F0(conv(D)) is included in N̂Gn(conv(F ζn)) for all
n > 0.

We will show now the converse. We separate the proof in two cases.
Suppose that conv(D) is closed. Let F1 be a face of conv(D) containing 0 of codimension

1. We have that F1 = conv(F1 ∩D) because D is closed in Rd. Fix t ∈ F1 ∩D different

from 0. Since F ζn is a fundamental domain of Lnζ (Zd), there are hn ∈ F ζn and zn(t) ∈ Zd
such that t = hn(t) − πn(x1) + Lnζ (zn(t)) and t, being in the boundary of conv(D), lies
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in the boundary of conv(F ζn − πn(x1) + Lnζ (zn(t))). Since this last set is a translated of

conv(F ζn − πn(x1)) and are both subsets of conv(D), a basic geometrical argument ensures

for any n > 0, hn(t) and πn(x1) are in the same face of conv(F ζn). The same arguments
imply that hn(t1), hn(t2) are in the same face for any t1, t2 ∈ F1 ∩D. Furthermore, hn(t)
and πn(x1) are different for large enough n ∈ E. Indeed, assume the converse, taking
R > ‖t‖, we have that x1|t = ζn(wi)Lnζ (k3)+πn(x1), for some k3 ∈ Kζ for infinitely many

n ∈ E. Since
‖t‖ = ‖Lnζ (k1 − k3)‖, for infinitely many n ∈ E,

we have that necessarily k1 = k3, which is a contradiction.
Consider the face Hn of conv(F ζn) of smallest dimension generated by {hn(t)}t∈F1 . No-

tice that N̂F1(conv(D)) ⊆
⋂
n>0

N̂Hn(conv(F ζn)). We will prove that N̂F1(conv(D)) =⋂
n>0

N̂Hn(conv(F ζn)). By construction of x1, x2, the set zn is bounded (for all n large

enough it belong to Kζ − Kζ), so there exists t ∈ F1 and ε > 0 small enough such for
all t′ ∈ B(t, ε) ∩ F1 we have that zn(t′) = zn(t) for all n ∈ E large enough. Hence
Hn is a face of codimension 1 and an argument of dimensions let us conclude that
N̂F1(conv(D)) =

⋂
n∈E

N̂Hn(conv(Fn)ζ).

Suppose now that conv(D) is not closed. Set F1 be a face of conv(D) of codimension

1 containing 0 and w ∈ N̂F1(conv(D)). We will find a sequence of faces Hn of conv(F ζn)

such that N̂F1(conv(D)) =
⋂
n>0

N̂Hn(conv(F ζn)). By definition, we have that

∀t ∈ F1, 〈w, t〉 = inf
n∈D
〈w,n〉 = 0. (5.1)

Set t ∈ F1 and consider a sequence (tm)m>0 ⊆ conv(D) converging to t. By

Caratheodory’s Theorem for any m > 0, we can write tm =
d∑
i=0

tmi f
m
i , with ti ≥ 0,

d∑
i=0

tmi = 1 and fmi ∈ D. Then, (5.1) implies for all i, tmi 〈w,fmi 〉 −−−−→m→∞
0. The only

difficulty to get the result, concern the indices i such that lim inf
m→∞

tmi > 0. For such i, we

have that 〈w,fmi 〉 −−−−→m→∞
0. Using the recognizability property, for all n ∈ E we write

fmi = h(m, i, n)− πn(x1) +Lnζ (z(m, i, n)), with h(m, i, n) ∈ F ζn and z(m, i, n) ∈ Zd. Since

〈w,h(m, i, n)− πn(x1)〉 ≥ 0 and
〈
w, Lnζ (z(m, i, n))

〉
≥ 0, we have that for all n > 0

〈w,h(m, i, n)− πn(x1)〉 −−−−→
m→∞

0 ∧
〈
w, Lnζ (z(m, i, n))

〉
−−−−→
m→∞

0.

Since F ζn is finite, we conclude that for all n ∈ E, there exists m(n) such that for all
m ≥ m(n),

〈w,h(m, i, n)〉 = 〈w, πn(x1)〉 = 0. (5.2)
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The same argument as the former one when conv(D) is closed, gives h(m, i, n) 6= πn(x1)
and if i 6= j, h(m, i, n) 6= h(m, j, n) for all n large enough.

Now, for any n > 0, we define Hn as the face of conv(F ζn) of smallest dimension contain-

ing πn(x1) and
{
h(m, i, n) : t ∈ F1, 0 ≤ i ≤ d,m ≥ m(n) with lim inf

m→∞
tmi > 0

}
. In particu-

lar, (5.2) shows that N̂F1(conv(D)) ⊆
⋂
n>0

N̂Hn(conv(F ζn)). We claim
⋂
n>0

N̂Hn(conv(F ζn)) =

N̂F1(conv(D)). First, note that taking subsequences if its necessary, we get that for all
n ∈ E the following limits

lim
m→∞

d∑
i=1

tmi h(m, i, n) = hn(t) ∧ lim
m→∞

d∑
i=1

tmi z(m, i, n) = zn(t).

Hence hn(t) ∈Hn for all n ∈ E and zn(t) ∈ conv(Kζ−Kζ) for all n ∈ E large enough.
A geometric argument shows that there exists t ∈ F1 and ε > 0 small enough such that
for all t′ ∈ F1, we have that zn(t′) = zn(t), so Hn is a face of codimension 1 for all n ∈ E
large enough. We then conclude that

⋂
n∈E

N̂Hn(conv(F ζn)) = N̂F1(conv(D)).

Thus, the extremal rays of N̂F0(conv(D)) are equal to sets of the form⋂
n>0

N̂Hn(conv(F ζn)), with Hn being faces eventually of codimension 1 of conv(F ζn) con-

taining πn(x1).

Then, to determine the nondeterministic directions for (Xζ , S,Zd) we will study the

supporting hyperplanes to conv(F ζn). To do this we will focus on the convex hull of the
digit tile of the substitution. In general, this convex hull is not a polytope, i.e., can have
at least a countable number of extreme points, even if the expansion matrix is diagonal, as
we see in Example 5.4:

Example 5.4 (A digit tile, with a nonpolytope convex hull). Consider L =

(
2 0
0 3

)
and

F1 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 2), (1,−2)}.

x

y

Figure 5.1: The fundamental domain and an approximation of the digit tile of Example 5.4.
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A direct computation shows that for any n > 0, the extreme points of conv(Fn) is the
set {(0, 0), (0, 3n− 1), (2n− 1, 3n− 1)} ∪ {(2n− 2k, 3k − 3n) : 0 ≤ k ≤ n− 1}, which implies

Ext(conv(T (L,F1))) = {(0, 0), (0, 1), (1, 1), (1,−1)} ∪ {(1− 2−k,−1 + 3−k) : k ≥ 0}.

5.3 The polytope case

In this section, we will focus in the case when the convex hull of the digit tile is a
polytope. We will present some known results about the convex hull of the digit tile that
we will use in the rest of this thesis.

Definition 5.5. We say a substitution ζ is a polytope substitution if it is bijective on
extremities, and the convex hull of the digit tile Tζ = T (Lζ , F

ζ
1 ) is a polytope.

From now on, we will only consider polytope substitutions. As we will see, this geomet-
rical hypothesis implies several algebraic restrictions on the expansion matrix Lζ (Propo-
sition 5.10) and some dynamical consequences for (Xζ , S,Zd) (Theorem 5.17).

We recall here some results characterizing the polytope case in terms of the extreme
points of conv(F ζn) [77], and the inward unit normal vectors of the (d−1)-dimensional faces
of conv(Tζ) [109].

Theorem 5.6. Let T be the digit tile for an expansion matrix L ∈ Md(R) and a funda-
mental domain F1 ⊆ Rd. The following statements are equivalent:

1. The convex hull of the digit tile T (L,F1) is a polytope.

2. [109, Theorem 4.2] The inward unit normal vectors of the (d− 1)-dimensional faces
of conv(F1) are eigenvectors of (L∗)k for some k.

3. [77, Theorem 2.2] The cardinality of Ext(conv(Fn)) and Ext(conv(Fn+1)) are the
same for some n > 0. In such a case, for any m > n, |Ext(conv(Fm))| =
|Ext(conv(Fn))|, and then |Ext(conv(T (L,F1))| = |Ext(conv(Fn))|.

Remark 5.7. In the case L = λ idRd , with λ > 1, a direct computation shows that the
statements (2) and (3) of Theorem 5.6 are satisfied without taking any power of L.

A big family for the polytope case is when a power of L is an integer multiple of the
identity, because for any fundamental domain F of L, the convex hull of the digit tile
generated by L and F is a polytope. In particular, all the convex hull of the digit tiles of
the examples in Fig. 1.4 are polytopes. Although it is not the only case where Theorem 5.6
can be applied.
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Example 5.8. (1) (Example of a non self-similar matrix with a polytope digit tile) Con-

sider L =

(
2 0
−1 3

)
and F1 = {(0, 0), (1, 2), (−2,−1), (−2,−3), (1, 0), (−1,−1)}.

x

y

Figure 5.2: The fundamental domain and an approximation of the digit tile of a non
self-similar matrix.

We have that L∗ =

(
2 −1
0 3

)
with eigenvectors equal to {(−1, 1), (1, 0)}. A

direct computation shows that the extreme points of conv(Fn) are equal to
{(2n − 1, 2n − (3n + 1)/2), (2n − 1, (2n+1 + 3n − 3)/2), (−2(2n − 1), (3n + 3 −
2n+2)/2), (−2(2n − 1), (5 − 3n − 2n+2)/2)}, so the extreme points of conv(T (L,F1))
are {(1, 1/2), (1, 3/2), (−2,−3/2), (−2,−5/2)}.

(2) As an example where the statement (3) in Theorem 5.6 to be applied is

not necessarily satisfied in n = 1, consider L =

(
−2 0
0 −2

)
and F1 =

{(0, 0), (1, 0), (0, 1), (−1,−1)}. We have that

F2 = {(−1,−3), (0,−2), (1,−2), (−3,−1), (−1,−1), (0,−1), (−2, 0), (−1, 0),
(0, 0), (1, 0), (−2, 1), (0, 1), (1, 1), (2, 2), (3, 2), (2, 3)},

so conv(F2) has 3 extreme points, while conv(F1) has 6 extreme points as shown in
Fig. 5.3
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x

y

F1

x

y

F2

Figure 5.3: The sets F1 and F2.

In [77] it was proved the following result about the extreme points of conv(Fm) for any
m > n, where n is such that |Ext(conv(Fn))| = |Ext(conv(Fn+1))| and conv(T (L,F1)).

Proposition 5.9. [77, Theorem 4.8] If |Ext(conv(Fn))| = |Ext(conv(Fn+1))|, then all the

extreme points of conv(T (L,F1)) are of the form
∑
j>0

L−(n+1)j

(
n∑
i=0

Li(fi)

)
, with

n∑
i=0

Li(fi)

being an extreme point of conv(Fn+1).

This implies conv(T (L,F1)) is equal to (Lm − id)−1 conv(Fm) for all m > n.
Now, assume that we are under the condition |Ext(conv(F1))| = |Ext(conv(T (L,F1))|

and for all n > 0, conv(T (L,F1)) = (Ln− id)−1 conv(Fn). Let u be an inward unit normal
vector of a (d−1)-dimensional face of conv(T (L,F1)). For each n > 0, ((Ln−id)∗)−1u is an
inward normal vector of a (d− 1)-dimensional face of Fn. By Theorem 5.6 (1), there exists
k > 0 such that ((L− id)∗)−1u are eigenvectors of (L∗)k. Hence by commutation, u is an
eigenvector of (L∗)k. Since conv(T (L,F1)) is a polytope, we can take n > 0 large enough
such that any of the inward unit normal vectors of conv(F1) is an eigenvector of the same
power (L∗)n. Hence, by the same arguments, up to considering a power of L, we may assume
that any of the inward unit normal vectors of the (d− 1)-dimensional faces of conv(F1) are
eigenvector of L∗. This is equivalent to the hyperplane ∂H[u] = {t ∈ Rd : 〈t,u〉 = 0} (the
vector space of an affine hull of a face of conv(F1)) generated by u being preserved by L,
i.e., L∂H[u] = ∂H[u]. This implies the normal fan N (conv(Fn)) is the same for all n > 0
and it is equal to the one of conv(T (L,F1)).

Since for some n > 0, conv(Fn) is nondegenerate (by the Følner condition), it has d
linearly independent inward normal vectors (that has integer coordinates with no common
divisor) which are eigenvectors of L∗. The polytope condition implies then the following
algebraic restrictions on the expansion matrix L. The proof is left to the reader.

Proposition 5.10. If |Ext(conv(F ζ1 )| = |Ext(conv(T (L,F1)))|, then the eigenvalues of L
are integer numbers.
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Moreover, if u1,u2,u3 are linearly dependent inward unit normal vectors of (d − 1)-
dimensional faces of conv(T (L,F1)), then L restricted to the vector space generated by
these vectors acts as a integer multiple of the identity.

In particular, in the two-dimensional case if the digit tile has 3 or at least 5 edges, then
it follows that the expansion matrix is an integer multiple of the identity.

Finally, up to taking an appropriate power of a substitution, we may assume the fol-
lowing hypothesis

(PC 1) The expansion matrix L is diagonalizable with positive eigenvalues.

(PC 2) The convex set conv(F1) is nondegenerate and |Ext(conv(F1))| =
|Ext(conv(T (L,F1))|.

(PC 3) Any inward unit normal vector of a (d− 1)-dimensional face of conv(F1) is an eigen-
vector of L∗.

(PC 4) The set K given by Proposition 1.18 is equal to (id−L)−1(F1) ∩ Zd, i.e., for any
k ∈ K, there exists f ∈ F1 such that k = Lζ(k) + f .

5.4 Dynamical properties of substitutive subshifts of poly-
tope substitutions

In this section, we prove the normalizer group of substitutive subshifts given by polytope
substitutions is virtually generated by the shift action. We then describe the symmetry
group of these substitutive subshifts (Proposition 5.15 and Theorem 5.17). To do this,
we determine the nondeterministic directions of these substitutive subshifts thanks to the
supporting hyperplanes to conv(F ζn) (Theorem 5.2). Conversely, we provides a checkable
combinatorial condition to ensure a vector to be nondeterministic for (Xζ , S,Zd). (Corol-
lary 5.13).

As we saw in the previous section, under the hypothesis (PC 1), (PC 2), (PC 3), and
(PC 4), the normal fan is the same for all the supports of ζn (for any n > 0 large enough)
and the digit tile, so we have that the following interpretation of Theorem 5.2 in the
polytope case.

Corollary 5.11 (Nondeterministic directions in the polytope case). Let ζ be an aperiodic
primitive polytope substitution. The set of nondeterministic directions ND(Xζ , S,Zd) is
the intersection of Sd−1 with a nonempty union of opposite normal cones of the form
N̂G(conv(Tζ)), where G is a face of conv(Tζ).

Hence, in the two-dimensional case the former corollary implies strong restrictions on
the set of nondeterministic directions. For instance, the number of its connected compo-
nents is bounded by the number of edges of conv(Tζ).
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Now, as shown in the proof of Theorem 5.2, to establish which opposite normal vectors
of conv(F ζ1 ) appeared as nondeterministic directions for (Xζ , S,Zd) we will study the convex

sets conv(Lnζ (k)+F ζn) generated by the points k in Kζ , which depend on the combinatorics
of the substitution. We say a subset W ⊆ Kζ is a set of differences if there exist two
patterns w1, w2 ∈ LKζ (Xζ) such that w1(k) is equal to w2(k) if and only if k is in Kζ \W .

The next lemma gives a sufficient condition to ensure a vector v to be a nondeterministic
for (Xζ , S,Zd), seen as the converse of Theorem 5.2 in the polytope case. As in Lemma 3.9,

consider a set C b Zd such that for all n > 0, C+F ζn +F ζn ⊆ Lnζ (C)+F ζn and Kζ = Kζ+C.

Lemma 5.12. Let W ⊆ Kζ be a set of differences, k ∈ W , n > 0, a point f ∈
∂ conv(Lnζ (k) +F ζn) and v ∈ Sd−1 be such that f + ∂Hv is supporting to conv(Lnζ (k) +F ζn)
at f . Suppose that f satisfies the following conditions:

H1. f +Kζ ⊆ Lnζ (Kζ) + F ζn ,

H2. (f +Kζ) ∩ (f +Hv) ⊆ Lnζ (Kζ \W ) + F ζn .

Then v is nondeterministic for (Xζ , S,Zd).

Proof. Let w1, w2 be two patterns such that w1(k′) = w2(k′) if and only if k′ ∈ Kζ \W . Note

that Condition H1 is equivalent to for all m > 0, Lmζ (f) + Lmζ (Kζ) + F ζm ⊆ Ln+m
ζ (Kζ) +

F ζn+m. Since Kζ = Kζ + C, Remark 1.21 (2) implies for all m > 0,

Lmζ (f) + F ζm + (Lmζ (Kζ) + F ζm) ⊆ Ln+m
ζ (Kζ) + F ζn+m. (5.3)

If f is an extreme point of conv(Lnζ (k) + F ζn), there exists g ∈ Ext(conv(F ζ1 )) such

that f = Lnζ (k) +
n−1∑
i=0

Liζ(g). If f is in the relative interior of a k-dimensional face of

conv(Lnζ (k) + F ζn), (1 ≤ k ≤ d − 1), we consider g ∈ Ext(conv(F ζ1 )) such that Lnζ (k) +
n−1∑
i=0

Liζ(g) and f are in the same k-dimensional face of conv(Lnζ (k) + F ζn) as shown in

Fig. 5.4.
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f

Lnζ (k) +
n−1∑
i=0

Liζ(g)

Hv

Figure 5.4: The hyperplane ∂Hv supporting to conv(Lnζ (k) + F ζn) at f and Lnζ (k) +
n−1∑
i=0

Liζ(g).

Now, Condition H2 is equivalent to for all m > 0

Lmζ ((f +Kζ) ∩ (f +Hv)) + Fm ⊆ Ln+m
ζ (Kζ \W ) + F ζn+m. (5.4)

We will prove that for all m > 0

(Lmζ (f)+
m−1∑
i=0

Liζ(g)+Lmζ (Kζ)+F
ζ
m)∩(Lmζ (f)+

m−1∑
i=0

Liζ(g)+Hv) ⊆ (Lmζ (f)+Kζ)∩(f+Hv)+Fm.

(5.5)
We have that

〈v, g〉 = min
i∈F ζ1
〈v, i〉 . (5.6)

Fix n ∈ (Lmζ (f) +
m−1∑
i=0

Liζ(g) +Lmζ (Kζ) +F ζm)∩ (Lmζ (f) +
m−1∑
i=0

Liζ(g) +Hv), there exist

k1 ∈ Kζ , j ∈ F ζm and h ∈ Hv such that

n = Lmζ (f) +

m−1∑
i=0

Liζ(g) + Lmζ (k1) + j = Lmζ (f) +
m−1∑
i=0

Liζ(g) + h.

Then, there exist c ∈ Kζ and l ∈ F ζm such that

m−1∑
i=0

Liζ(g) + Lmζ (k1) + j = Lmζ (c) + l.
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To prove (5.4), it is enough to show that c ∈ Hv. Indeed, write l =
m−1∑
i=0

Liζ(l
(i)), with

l(i) ∈ F ζ1 for 0 ≤ i ≤ m− 1. We have that

〈v, c〉 =

〈
v, L−mζ

(
m−1∑
i=0

Liζ(g − l(i)) + h

)〉
=

1

λm

(
m−1∑
i=0

〈
v, Liζ(g − l(i))

〉)
+

1

λm
〈v,h〉

=
1

λm

(
m−1∑
i=0

λi
〈
v, g − l(i)

〉)
+

1

λm
〈v,h〉 .

Since h ∈ Hv, then 〈v,h〉 ≤ 0, and by (5.6) we have that
〈
v, g − l(i)

〉
≤ 0, for all

1 ≤ i ≤ m− 1. Since λ > 0, we conclude that 〈v, c〉 ≤ 0, which implies c ∈ Hv.
By (5.3) and Proposition 1.18, the iterations of the substitution on the patterns w1,

w2 leads to two points x1 6= x2 ∈ Xζ such that, xi is in [ζn(w1)]
−Lnζ (f)−

n−1∑
i=0

Liζ(g)
, for i ∈

{1, 2}. Finally, (5.4) implies x1|Hv = x2|Hv , and we conclude that v is nondeterministic for
(Xζ , S,Zd).

As described in Theorem 5.2, depending on the faces where the point f satisfying
Condition H1. belongs in conv(Lnζ (k)+F ζn), we may have more nondeterministic directions,
obtaining the following corollary:

Corollary 5.13. Let W ⊆ Kζ be a set of differences, k ∈ W , n > 0, and a point f ∈
∂ conv(Lnζ (k) +F ζn)∩ ∂ conv(Lnζ (W ) +F ζn) satisfying Condition H1. of Lemma 5.12. Then

any v in N̂F (conv(Lnζ (W )+F ζn))∩Sd−1 (with F being the face of smallest dimension where

f belongs in conv(Lnζ (W ) + F ζn)) is nondeterministic for (Xζ , S,Zd).

In addition to this result, the proof of Theorem 5.2 provides the opposite normal cone
N̂F (conv(Lnζ (W ) + F ζn)) is equal to an opposite normal cone N̂G(conv(F ζn)), whenever

f = Lnζ (k) +
n−1∑
i=0

Liζ(fi), with G is a face of conv(F ζn) such that
n−1∑
i=0

Liζ(fi) ∈ G.

In the following we present two examples with different behaviors given by Lemma 5.12

Example 5.14 (Different behaviors for the nondeterministic directions). (1) Consider

the 2D-Thue Morse substitution with LζTM =

(
2 0
0 2

)
, F ζTM1 = J0, 1K2, given by

the substitution
ζTM : 0 1 1 0

0 7→ 1 0 1 7→ 0 1.

In this case Kζ = J−1, 0K2, and we have that

LKζTM (XTM ) =

{
0 1
1 0

,
1 0
0 1

,
1 0
1 0

,
0 1
0 1

,
0 0
1 1

,
1 1
0 0

,
0 0
0 0

,
1 1
1 1

}
.
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The sets of differences for the 2D-Thue Morse substitution are
{{(0,−1), (0, 0)}, {(−1, 0), (0, 0)}, {(−1, 0), (0,−1)}, {(−1,−1), (0, 0)}, {(−1,−1), (−1, 0)}}.

By Lemma 5.12 it can be proved

(
1

0

)
,

(
−1

0

)
,

(
0

1

)
,

(
0

1

)
are the only nondetermin-

istic directions for (XζTM , S,Z2).

(2) Consider the substitution of the table tiling [99], with Lζt =

(
2 0
0 2

)
, F ζt1 = J0, 1K2,

given by ζt :

0 7→ 3 0
1 0

, 1 7→ 1 1
0 2

, 2 7→ 2 3
2 1

, 3 7→ 0 2
3 3

.

The set Kζt is equal to J−1, 0K2 and the sets of differences is equal to 2Kζt \
{∅,Kζt , {(−1,−1), (0, 0)}, {(0,−1), (−1, 0)}}. By Lemma 5.12, it can be proved the
set of nondeterministic directions for (Xζ , S,Z2) is the whole circle S1.

Now, we proceed to determine the normalizer semigroup N(Xζ , S,Zd) of substitutive

subshifts of polytope substitutions. Set M ∈ ~N(Xζ , S,Zd). By Proposition 1.12 if v is
a nondeterministic direction for (Xζ , S,Zd), then M∗v/‖M∗v‖ is also a nondeterministic
direction for (Xζ , S,Zd). Moreover, Theorem 5.2 ensures the matrix M acts on the opposite
normal cones of conv(Tζ) that appeared as nondeterministic directions for (Xζ , S,Zd). In
particular, the matrix M∗ permutes the hyperplanes defined by the (d − 1)-dimensional
faces of conv(Tζ) whose unit opposite normal cones are nondeterministic directions for
(Xζ , S,Zd). If there are d linearly independent nondeterministic directions for (Xζ , S,Zd),
we have the following result about the matrix M such that NM (Xζ , S,Zd) being nonempty.

Proposition 5.15. Let ζ be an aperiodic primitive polytope substitution. If the set of
nondeterministic directions for (Xζ , S,Zd) contains d linearly independent vectors, then

1. Any homomorphism φ ∈ N(Xζ , S,Zd) is invertible.

2. Any matrix M ∈ ~N(Xζ , S,Zd) has finite order.

3. The symmetry semigroup ~N(Xζ , S,Zd) is a finite group, and it is isomorphic to a
subgroup of GL(d,Z/3Z).

4. The norm of any matrix M in the symmetry group ~N(Xζ , S,Zd) is bounded by an
explicit formula only depending on the convex hull of the digit tile Tζ .

Proof. By assumption and Corollary 5.11 there are at least d inward unit normal vectors to
the (d−1)-dimensional faces of conv(Tζ) that are nondeterministic directions for (Xζ , S,Zd)
and d of them are linearly independent. Let n be the maximum of these vectors. So any
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matrix M in the symmetry group of (Xζ , S,Zd) permutes those hyperplanes defined by
these (d − 1)-dimensional faces of conv(Tζ). By condition (PC 3), the normal vectors of
these hyperplanes are invariant by a power of the expansion matrix L∗ζ . Hence M∗ permutes
n eigenspaces {Qv1, . . . ,Qvn} of some power of L∗ζ . Moreover, we can assume that these
vectors have integer coordinates not having common divisors except ±1. Note that each
vector is unique up to a sign and does not depend on M .

So, (Mn!)∗ leaves invariant these eigenspaces, i.e., (Mn!)∗vi = αivi. Since the vectors vi
have integer coordinates with no common divisor, we have that αi ∈ Z, for all 1 ≤ i ≤ n.
The same being true for (M−1)∗, we get that each αi is invertible in Z, which implies
|αi| = 1 so M2n! is equal to the identity matrix, and then M has a finite order. By
Proposition 4.11 any homomorphism of (Xζ , S,Zd) is invertible.

Furthermore, for any vi, we have that M∗vi = λivj , for some 1 ≤ i, j ≤ n and
λi ∈ Q. Since M ∈ GL(d,Z) and the coordinates of vj does not have common divisors,
we have that λi ∈ Z. Moreover, note that (M2n!)∗vi = λi · λi1 · · ·λi2n!−1

vi = vi for
some λi1 . . . λi2n!−1

∈ Z, hence |λi| = 1 for all 1 ≤ i ≤ n. Up to a change of indices,
we can assume that {v1, . . . ,vd} is a Rd-basis, so M∗ has the form M∗ = PQMP

−1,
where QM is the matrix with columns equal to the coordinates of Mvi (which for all
1 ≤ i ≤ d is equal to some vj or −vj) in the basis {v1, . . . ,vd}. We then conclude

that the symmetry group ~N(Xζ , S,Zd) is finite and by Minkowski’s theorem we have that
~N(Xζ , S,Zd) ≤ GL(d,Z/3Z).

Finally, note that ‖M‖ ≤ ‖P‖ · ‖QM‖ · ‖P−1‖, where ‖P‖, ‖P−1‖ and
sup

M∈ ~N(Xζ ,S,Zd)

‖QM‖ <∞ only depend on the convex hull of the digit tile Tζ .

Remark 5.16. In particular, it follows from the proof that if n = d each matrix QM is
a permutation matrix, so ~N(Xζ , S,Zd) is conjugate to a subgroup of the hyperoctaedral
group Wd. These recover results in [21] for block substitutions. By the realization result
[21, Theorem 35] these results obtained are optimal.

The following theorem summarizes all the properties satisfied for aperiodic primitive
reduced polytope substitutions.

Theorem 5.17. Let ζ be an aperiodic reduced primitive polytope substitution. Then

1. The system (Xζ , S,Zd) is coalescent, and any homomorphism in N(Xζ , S,Zd) is in-
vertible.

If there are d linearly independent vectors that are nondeterministic directions for
(Xζ , S,Zd), we have that

2. The normalizer group is virtually generated by the shift action.
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3. The symmetry group ~N(Xζ , S,Zd) acts as a permutation group in the set
{NG(conv(Tζ)) : NG(conv(Tζ)) ⊆ ND(Xζ , S,Zd)}. In particular, if ND(Xζ , S,Zd) =

Sd−1, then the symmetry group ~N(Xζ , S,Zd) is isomorphic to a subgroup of the au-
tomorphism group of the normal fan of conv(Tζ).

Proof. The statement 1. is true by Proposition 4.7 and Proposition 4.11.
Now, by the third isomorphism theorem we have that

N(Xζ , S,Zd)/Aut(Xζ , S,Zd)∼=
(
N(Xζ , S,Zd)/〈S〉

)
/( Aut(Xζ , S,Zd)/〈S〉).

Then, by Proposition 5.15 gives the quotient group N(Xζ , S,Zd)/Aut(Xζ , S,Zd) is
finite and Proposition 4.8 implies Aut(Xζ , S,Zd)/ 〈S〉 is also finite, so we conclude that
N(Xζ , S,Zd)/ 〈S〉 is a finite group.

Finally, statement 3. is true by Proposition 5.15.

Until now, we didn’t find an aperiodic d-dimensional primitive constant-shape substi-
tution with less than d linearly independent nondeterministic directions. In the case of
aperiodic primitive block substitutions, it can be easily proved that this hypothesis is true.
Moreover, given the result in [63] for the two-dimensional case, by Theorem 5.2, the hy-
pothesis is true for all of the cases where conv(Tζ) does not have two parallel edges. In a
private communication, P. Guillon [62] mentioned this result is already proved for higher
dimensions, but nowhere published. This implies, we only have to deal in the case conv(Tζ)
has two parallel (d− 1)-dimensional faces.

Theorem 5.17 deal only with polytope substitutions, and therefore leaves open how to
characterize the normalizer semigroup for nonpolytope substitutions, i.e., where the convex
hull of the digit tile is nonpolytope. In [109], the authors gives a description of the convex
hull of the digit tile on the nonpolytope case. This description may be useful to obtain
a characterization for the normalizer semigroup and symmetry semigroup. Nevertheless,
until now there are no good descriptions of the convex hull of the digit tile for higher
dimensions.

The work in this thesis corresponds to the first examples of realization results about the
set of nondeterministic directions for minimal actions. In [17] it was proved that for any
compact set of S1 that is not a singleton containing one line with irrational slope can be
realized as the set of nonexpansive directions of a Z2-action, and the singleton case was after
proved by M. Hochmann in [68]. If aperiodic bijective on extremities primitive constant-
shape substitutions have d linearly independent nondeterministic directions, then we cannot
obtain a unique nondeterministic direction with these substitutions, so we will need to use
other types of substitutions, or other type of subshifts (such as Toeplitz sequences) to
obtain other realization results with minimal subshifts.

In Chapter 6 we describe the normalizer group for two examples. The first one is
a bijective polytope substitution, so we may apply the results proved in Chapter 4 and
Chapter 5. The second example is a non-reduced constant-shape substitution, such that
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its reduced substitution is trivial, i.e., the subshift generated is conjugate to the one-point
system. This implies the techniques developed in Chapter 4 and Chapter 5 does not
apply. Nevertheless, we are able to characterize its maximal equicontinuous factor and its
normalizer group.
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Chapter 6

Some examples of constant-shape
substitutions

As we have seen the normalizer group is very restrictive (Theorem 5.17) under strong
combinatorial and geometric conditions on the constant-shape substitutions.

In this chapter we characterize the normalizer group for two examples of constant-shape
substitutions. The first one is called the table substitution, which is a discretization of the
table tiling. Its maximal equicontinuous factor was determined in [99]. Here, we prove that
the normalizer group of the table tiling is isomorphic to a direct product of the shift action
and the dihedral group D4, given by the symmetries of the square (Proposition 6.1), using
the techniques developed in Chapter 4 and Chapter 5.

The second example is called the half-hex substitution, which is a discretization of the
so-called half-hex tiling. This is a non-reduced constant-shape substitution, such that
its reduced substitution is trivial, i.e., the subshift generated is conjugate to the one-
point system. Then, one cannot apply the rigidity results developed in Chapter 4 and
Chapter 5 cannot be applied. Nevertheless, we characterize its maximal equicontinuous
factor. Furthermore, we prove it is a coalescent system, and its symmetry semigroup is
a group. By Proposition 1.5 we have that the normalizer semigroup is actually a group.
Moreover, we prove that its normalizer group is a semi-direct product of the shift action
and GL(2,Z) (Theorem 6.3). This is a first example of a minimal aperiodic subshift with
an infinite symmetry group.

6.1 The table substitution

The table tiling is a well known example of a rep-tile tiling (see [8, Section 4.9] for more
properties about this tiling), i.e., it is a polygon that can be tiled by a finite number of
smaller, congruent copies of itself. The tile-substitution of the table tiling is shown in
Fig. 6.1,
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1

3

0 2

1 1

3 3

0 2

0 2
1

3

0

0

2

2

1

3

Figure 6.1: Tile-substitution of the table tiling and associated two-dimensional constant-
shape substitution to discrete subaction (Xt, S,Zd).

The following is a pattern of the table tiling:

Figure 6.2: A pattern of the table tiling, using red and green rectangles.

The table tiling forms an aperiodic tiling [99]. Also in [99], it was proved that the Z2-
subaction of the table tiling is conjugate to the following constant-shape substitution (called

table substitution) ζt with expansion matrix Lt =

(
2 0
0 2

)
and support F ζt1 = J0, 1K2:

0 7→ 3 0
1 0

, 1 7→ 1 1
0 2

, 2 7→ 2 3
2 1

, 3 7→ 0 2
3 3

.

This is an aperiodic bijective primitive polytope constant-shape substitution. By Re-

mark 3.10 (3), the factor map πt : (Xt, S,Z2) → (
←−
Z2

(2nZ×2nZ),+(2nZ×2nZ),Z2) is almost

4-to-1. In fact, by [99] we have that |π−1
t ({←−g })| ∈ {4, 10, 24} for any ←−g ∈

←−
Z2

(2nZ×2nZ).

Moreover, |π−1
t (←−g )| = 24 if and only if ←−g ∈ O(

←−
0 ,Z2).

The table substitution has 24 patterns with support Kζt = J−1, 0K2, which generate
the 24 fixed points under the square of the substitution:
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1 1
2 0

,
0 3
0 1

,
2 0
2 0

,
3 2
1 2

,
2 0
0 3

,
0 2
2 0

,
2 0
3 2

,
1 1
0 2

3 1
1 2

,
3 3
1 1

,
2 0
3 3

,
1 3
3 1

,
0 1
0 3

,
3 2
1 3

,
1 3
0 1

,
1 2
3 2

3 1
1 3

,
0 1
2 0

,
1 2
0 3

,
0 1
3 2

,
1 2
2 0

,
0 2
3 3

,
2 0
0 2

,
0 3
3 1.

In Example 5.14 it was mentioned that the set of nondeterministic directions for
(Xt, S,Z2) is the whole circle S1. Since the table substitution is a polytope substi-
tution and has 2 linearly independent nondeterministic directions we can apply Theo-
rem 5.17. This implies, its symmetry group ~N(Xt, S,Z2) is isomorphic to a subgroup of〈{(

0 −1
1 0

)
,

(
1 0
0 −1

)}〉
which is isomorphic to D4. More precisely, we have the

following result:

Proposition 6.1. The normalizer group of the table substitution is isomorphic to Z2oD4.
In particular Aut(Xζt , S,Z2) is the group generated by the shift action.

Proof. First, we will prove that Aut(Xt, S,Z2) = 〈S〉. Indeed, the table substitution is
bijective. By Proposition 5.1, any automorphism φ can be written as φ = Snτ , where
n ∈ Z2 and τ is defined by a permutation map T on the alphabet {0, 1, 2, 3}. In particular,

τ acts as a permutation on the set of fixed points of ζ2
t . Now, note that

2 0
2 0

is the only

pattern of the form
i j
i j

, i, j ∈ {0, 1, 2, 3}. This implies T (0) = 0 and T (2) = 2. In the

same way,
3 3
1 1

is the only pattern of the form
i i
j j

, i, j ∈ {0, 1, 2, 3}, which implies

T (1) = 1 and T (3) = 3, i.e., T = id{0,1,2,3}. By minimality of (Xt, S,Z2), we have that τ
is the identity on Xt. We conclude that Aut(Xt, S,Z2) = 〈S〉.

Now, for homomorphisms. Set M1 =

(
0 −1
1 0

)
. Consider the permutation Φ : 0 7→ 3,

1 7→ 0, 2 7→ 1, 3 7→ 2. This permutation comes by the rotation of the rectangles defining
the table tiling. We define the map φ : Xt → φ(Xt), given by φ(x)n = Φ(xM−1

1 n) for all

x ∈ Xt, n ∈ Zd. We will prove that φ is a homomorphism on Xt. A direct computation
shows that the map S(−1,0)φ permutes the fixed points of ζ2

t . By minimality of (Xt, S,Z2)
we conclude that S(−1,0)φ(Xt) = Xt. Then φ is a homomorphism associated with M1

onto (Xt, S,Z2). Note that, also by minimality, S(−1,0)φζ2
t = ζ2

t (S(−1,0)φ), which implies
S(3,0)φζ2

t = ζ2
t φ. So φ is the homomorphism given by Theorem 4.12.

Set M2 =

(
1 0
0 −1

)
. Consider now the permutation Ψ : 0 7→ 0, 1 7→ 3, 2 7→ 2,
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3 7→ 1. This permutation is given by reflecting the rectangles defining the table tiling
by the x-axis. We now define the map ψ : Xt → ψ(Xt) as ψ(x)n = Ψ(xM−1

2 n) for all

x ∈ Xt, n ∈ Zd. A direct computation shows that S(−1,0)φ permutes the fixed points of ζ2
t .

Hence, by minimality of (Xt, S,Zd), we have that ψ(Xt) = Xt, so ψ is a homomorphism
associated with the matrix M2 of (Xt, S,Zd). We also have that S(0,3)ψζ2

t = ζ2
t ψ. So ψ

is the homomorphism associated with M2 given by Theorem 4.12. Since D4 = 〈M1,M2〉
and the homomorphisms are induced by letter-to-letter maps, the composition of arbitrary
maps in 〈{φ, ψ}〉 is a homomorphism induced by a letter-to-letter map. This implies
〈M1,M2〉 ∼= 〈φ, ψ〉. To conclude, this last statement let us define a right split on the exact
sequence (1.4), i.e., a group homomorphism from D4 to N(Xt, S,Z2). By this, we conclude
that N(Xt, S,Z2) = 〈S〉o 〈{φ, ψ}〉 ∼= Z2 oD4.

6.2 The half-hex substitution

Another well known inflation rule is the half-hex inflation shown in Fig. 6.3 (see [8, Section
6.4] for more properties about this tiling). In tiling vocabulary, it is a edge-to-edge inflation,
which means that each inflated tile is precisely dissected into copies of the tiles so the
vertices of any tile intersect only the vertices of the adjacent tiles.

Figure 6.3: Tile-substitution of the half-hex tiling.

This inflation defines an aperiodic tiling of the plane as proved in [8]. The following
shows a pattern of the half-hex tiling:
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Figure 6.4: A pattern of the half-hex tiling.

Since the largest edge of any half-hex can only meet the largest edge of the adjacents
half-hexes, two half-hexes always join to form a regular hexagon, through the largest edge.
With this procedure, the half-hex tiling can be decomposed in three types of hexagons
which are distinguished by a single diagonal line (see [8]).

Figure 6.5: The three tiles as a new alphabet for the half-hex tiling.

Using this full hexagons, we can define a pseudo inflation (using the vocabulary on [8]),
which is conjugated to the half-hex tiling as the following.

u
v

Figure 6.6: New tile-substitution conjugate to the half-hex tiling, with a discrete 2-
dimensional subaction in R2.

From this pseudo inflation, we consider an inflation with only the four shaded hexagons
in Fig. 6.6. On this tiling there is an invariant lattice (by translation of hexagons) Λ =
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〈{
(3/2,

√
3/2), (0,

√
3)
}〉

, generated by the center of these hexagons, using the vectors u
and v in Fig. 6.6. We can define a constant-shape substitution with expansion matrix
Lhh = 2 · idR2 and F hh1 = {(0, 0), (1, 0), (0, 1), (1,−1)}

0 0 0
0 7→ 0 2 1 7→ 1 2 2 7→ 2 2

1 1 1,

where, for convenience, we identify the hexagons in Fig. 6.5 with the letters {0, 1, 2}. The
associated substitutive subshift is conjugated to the Λ-subaction of the half-hex tiling.
The set Khh (defined in Section 1.7) is equal to {(0, 0), (−1, 0), (0,−1), (−1, 1)}. Since
this substitution has coincidences (the definition is given in Section 4.1) in all except one
coordinate, it has exactly three fixed points x, y, z such that x(0, 0) = 0, y(0, 0) = 1,
z(0, 0) = 2 and for all (m,n) ∈ Z2 \ {(0, 0)}, x(m,n) = y(m,n) = z(m,n). In fact, we can
characterize the maximal equicontinuous factor of the half-hex substitutive subshift.

Proposition 6.2. The half-hex substitutive subshift (Xhh, S,Z2) is a Toeplitz sub-
shift. Moreover, its maximal equicontinuous factor is the odometer system

(
←−
Z2

(2nZ×2nZ),+(2nZ×2nZ),Z2).

Proof. This is a particular case of Lemma 3.11. Since the factor map πhh : (Xhh, S,Z2)→
(
←−
Z2

(2nZ×2nZ),+(2nZ×2nZ),Z2) is almost 1-to-1, then (
←−
Z2

(2nZ×2nZ),+(2nZ×2nZ),Z2) is the
maximal equicontinuous factor of the half-hex substitutive subshift (Xhh, S,Z2) and
(Xhh, S,Z2) is a Toeplitz subshift.

In fact, by Lemma 3.11, we have that |π−1
hh ({←−g })| ∈ {1, 3} for any ←−g ∈

←−
Z2

(2nZ×2nZ),

and |π−1
hh ({←−g })| = 3 if and only if ←−g ∈ O(

←−
0 ,Z2).

We could show, using the rotational symmetries of the substitution generated by the

matrix

(
0 −1
1 1

)
that Z/6Z can embed in ~N(Xhh, S,Z2). But, as shown in Theorem 6.3

these are not the only isomorphisms this tiling presents.

Theorem 6.3. The normalizer semigroup of the half-hex substitutive subshift is a group
and it is isomorphic to Z2oGL(2,Z). Moreover, Aut(Xhh, S,Z2) is equal to the shift group
〈S〉.

Proof. First we will prove that End(Xhh, S,Z2) = 〈S〉. In fact, since the factor map

πhh : (Xhh, S,Z2) → (
←−
Z2

(2nZ×2nZ),+(2nZ×2nZ),Z2) is almost 1-to-1, then the semigroup

homomorphism π̂hh : End(Xhh, S,Z2) → End(
←−
Z2

(2nZ×2nZ),+(2nZ×2nZ),Z2) is injective
(Lemma 1.6). Now, by Lemma 1.7, for any endomorphism φ, we have that

{←−g ∈
←−
Z2

(2nZ×2nZ) : |π−1
hh ({←−g })| = 3} = {←−g ∈

←−
Z2

(2nZ×2nZ) : |π−1
hh ({←−g })| = 3}+ π̂hh(φ).
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Since {←−g ∈
←−
Z2

(2nZ×2nZ) : |π−1
hh ({←−g })| = 3} is the orbit O(

←−
0 ,Z2), we have that π̂hh(φ)

is in O(
←−
0 ,Z2). Moreover, for any n ∈ Z2, π̂hh(Sn) is equal to [n (mod2nZ×2nZ)] which is

in O(
←−
0 ,Z2). By injectivity of π̂hh we conclude that End(Xhh, S,Z2) = 〈S〉. In particular

any endomorphism of (Xhh, S,Z2) is an automorphism. Hence (Xhh, S,Z2) is a coalescent
system.

Now, for homomorphisms.

Claim 2. For any (m,n) ∈ Z2 \ 2Z2, the letter in x(m,n) (hence y(m,n) and z(m,n))
only depend on the parity of the coordinates.

Proof. Let (m,n) ∈ Z2 \ 2Z2. We can write (m,n) = 2(a, b) + (f1, f2) with (a, b) ∈ Z2 and
(f1, f2) ∈ F hh1 \ {(0, 0)}. Since ←−x is a fixed point of ζhh we have that

←−x (m,n) = ζhh(x(a, b))(f1,f2),

which only depend on (f1, f2) by the very definition of ζhh.

In particular we get that

(m,n) ≡ (1, 0) (mod 2) =⇒ x(m,n) = y(m,n) = z(m,n) = 2
(m,n) ≡ (0, 1) (mod 2) =⇒ x(m,n) = y(m,n) = z(m,n) = 0
(m,n) ≡ (1, 1) (mod 2) =⇒ x(m,n) = y(m,n) = z(m,n) = 1.

Let τ : Z2/2Z × 2Z \ {(0, 0)} → A given by above equations. It is important to note
that τ is a bijection.

Claim 3. Let (m,n) ∈ Z2 with gcd(m,n) = 1. Then for any k ∈ Z we have that
x(km, kn) = x(m,n) (and the same for y, z).

Proof of the Claim. Since the sign does not change the parity of the coordinates (m,n),
the statement is true for k = 1 and k = −1. We only need to prove the claim for k > 0.
Suppose that for any 1 ≤ k′ < k the statement is true. We separate the proof in two cases:

1. If k is even, we write k = 2j. Then x(km, kn) = x((2j)m, (2j)n) =
ζhh(x)((2jm), 2jn) = ζhh(x(jm, jn))(0,0) = x(jm, jn), where the last equality is by
the definition of the substitution. We conclude that x(km, kn) = x(m,n).

2. If k is odd, we write k = 2j + 1. Using the Euclidean division we have that

km = (2j + 1)m = 2a+ g1, m = 2a+ f1

kn = (2j + 1)n = 2b+ g2, n = 2b+ f2,

with a, b, a, b ∈ Z2 and (f1, f2), (g1, g2) ∈ F hh1 . Since this decomposition is unique,
then a = jm+ a, b = jn+ b, f1 = g1 and f2 = g2. By the definition of the substitu-
tion we conclude that x(km, kn) = ζhh(x(2a + f1, 2b + f2)) = ζhh(x(2a, 2b))(f1,f2) =
x(m,n).
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Now, note that if V = {(m,n) ∈ Z2 : gcd(m,n) = 1} and M ∈ GL(2,Z), then MV =
V . In fact, since M commutes with 2 · idR2 , the matrix M maps the 2Z2 cosets onto 2Z2

cosets. Moreover, any matrix M ∈ GL(2,Z) induces a bijection in Z/2Z × Z/2Z via one
of the following matrices in GL(2,Z/2Z):(

1 0
0 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
(

0 1
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
.

Each of these matrices define a permutation τM1 on Z2/2Z× 2Z \ {(0, 0)}. Identifying
(1,−1) in F hh1 with (1, 1) (mod 2), for any matrix M ∈ GL(2,Z), we have a unique
permutation τM2 on the alphabet A = {0, 1, 2} given by τM2 = τ ◦ τM1 ◦ τ−1. Consider the
map φM : Xhh → φ(Xhh) induced by the local map φM (x)n = τM2 (xM−1n), for any x ∈ Xhh

and n = (m,n) ∈ Z2. We prove that φM is a homomorphism on (Xhh, S,Z2) associated
with M . Indeed, by Claim 2, since τ is a bijection we have that for any (m,n) ∈ V , if
(m,n) ≡ (f1, f2) (mod 2), then

xM(m,n) = τ(M(f1, f2)) = τ ◦ τM1 (f1, f2) = τ ◦ τM1 ◦ τ−1((m,n) (mod 2)) = τM2 (x(m,n)).

Then, by Claim 3 we get that the image of a fixed point of ζhh via φM is a fixed point
of ζhh. Now, by minimality of (Xhh, S,Z2), we conclude that φM (Xhh) = Xhh for any
M ∈ GL(2,Z). So φM is a homomorphism onto (Xhh, S,Z2) associated with M . Note that
for any (m,n) ∈ Z2 we have that φM (S(m,n)) = SM(m,n)φM . If φM is the identity in Xhh,
this would imply that S(m,n) = SM(m,n) for any (m,n) ∈ Z2, i.e., M = id. This implies
φM is a nontrivial isomorphism.

Hence, any matrix M ∈ GL(2,Z) has a homomorphism φM induced by a letter-to-letter
local map. Since (Xhh, S,Z2) is a coalescent system, by Proposition 1.5 the normalizer
semigroup N(Xhh, S,Z2) is a group. Furthermore, for any M1,M2 ∈ GL(2,Z) we have
that φM1M2 = φM1 ◦ φM2 , so {φM : M ∈ GL(2,Z)} is a subgroup in N(Xhh, S,Z2). This
defines a group homomorphism fromGL(2,Z) toN(Xhh, S,Z2), so using the exact sequence
(1.4) we conclude that N(Xhh, S,Z2) ∼= Z2 oGL(2,Z).



Perspectives

We present here some perspectives that remain open after the results of this thesis.

On non-deterministic directions of multidimensional subshifts

Beyond polytope substitutions

Until now, we didn’t find an aperiodic d-dimensional primitive constant-shape substitution
with less than d linearly independent nondeterministic directions. In the case of aperiodic
primitive block substitutions, it can be easily proved that this hypothesis is true. More-
over, given the result in [63] for the two-dimensional case, by Theorem 5.2, the hypothesis
is true for all of the cases where conv(Tζ) does not have two parallel edges. In a private
communication, P. Guillon [62] mentioned this result is already proved for higher dimen-
sions, but nowhere published. This implies, we only have to deal in the case conv(Tζ) has
two parallel (d− 1)-dimensional faces.

Another open problem is the study of the normalizer semigroup for nonpolytope sub-
stitutions, i.e., where the convex hull of the digit tile is nonpolytope. Using the description
of the convex hull of the digit tile given in [109] on the two-dimensional case it may be
possible to obtain similar results for the normalizer semigroup and symmetry semigroup.
Nevertheless, until now there are no good descriptions of the convex hull of the digit tile
for higher dimensions.

Motivated by the classification of full-shifts, in [64] was introduced the notion of sta-
bilized automorphism group of a topological dynamical system, which is the group of self-
homeomorphisms commuting with a power of T . The authors could distinguished, up to
isomorphism, various stabilized automorphism groups of non-trivial mixing shift of finite
type. Moreover, in the class of fullshifts, they proved if the stabilized automorphism group
of the fullshift on n and m letters are isomorphic, then n and m have the same number
of distinct prime divisors. In [104], S. Schmieding studied the relation between topological
entropy and the stabilized automorphism group. Moreover, he introduced a certain kind
of entropy (in fact a whole family of entropies) for groups which he called local P entropy.

For Zd-actions we can define the stabilized automorphism group of a topological dy-
namical system as the following. Let M ∈ M(d,Z) be an invertible integer matrix with
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| det(M)| > 1. We define AutM (X,T,Zd) as the automorphism group of the system
(X,T |MZd ,MZd). The stabilized automorphism group Aut(∞)(X,T,Zd) is then, the col-
lection of these automorphism groups, i.e., Aut(∞)(X,T,Zd) =

⋃
M∈M(d,Z)
|det(M)|>1

AutM (X,T,Zd).

Note that if (Xζ , S,Zd) is a substitutive subshift, and M = Lζ , then, by the recognizability
property, (ζ(Xζ), S|M ,MZd) is isomorphic to (Xζ , S,Zd).

Question. 1. Does any aperiodic bijective on extremities primitive constant-shape sub-
stitutions have d linearly independent nondeterministic directions?

2. What can be said about the normalizer semigroup and the symmetry semigroup for
nonpolytope substitutions?

3. What can be said about the subgroups of GL(d,Z) that are the symmetry semigroup
of substitutive subshifts?

4. What can be said about the stabilized automorphism group of substitutive subshifts?
Moreover, substitutive subshifts can be classify by its stabilized automorphism group?

Realization results of nondeterministic directions for minimal actions

The work in this thesis corresponds to the first examples of realization results about the
set of nondeterministic directions for minimal actions. In [17] it was proved that for any
compact set of S1 that is not a singleton containing one line with irrational slope can be
realized as the set of nonexpansive directions of a Z2-action, and the singleton case was after
proved by M. Hochmann in [68]. If aperiodic bijective on extremities primitive constant-
shape substitutions have d linearly independent nondeterministic directions, then we cannot
obtain a unique nondeterministic direction with these substitutions, so we will need to use
other types of substitutions, or other type of subshifts (such as Toeplitz sequences) to
obtain other realization results with minimal subshifts.

Question. 1. Is there an aperiodic primitive constant-shape substitution with a unique
nondeterministic direction?

2. Is there an aperiodic primitive constant-shape substitution such that its set of nonde-
terministic directions is homeomorphic to a Cantor set?

Recognizability property of constant-shape substitutions

As mentioned in Section 3.1, the recognizability property is a combinatorial one, useful
to prove other properties satisfying the constant-shape substitutions. In this thesis we
proved aperiodic symbolic factors of aperiodic primitive constant-shape substitutions are
recognizable. This left open the following questions:
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Question. 1. Is there a recognizability property satisfied by periodic infinite symbolic
factors of a constant-shape substitution? B. Solomyak [107] already proved this result
for primitive constant-shape substitutions. An idea would be to see if we can extend
this proof for symbolic factors of substitutive subshifts. The answer to this question
will help to understand multidimensional substitutive subshifts and their topological
Cantor factors.

2. Do non-primitive constant-shape substitutions producing an aperiodic subshift satisfy
a recognizability property? In the one-dimensional case this property is true [15].

3. In the non-minimal case, are the constant-shape substitutions recognizable for aperi-
odic points as proved in [14] for the one-dimensional case?

To a Cobham theorem for constant-shape substitutions

An open question of this thesis is how different two substitutions producing the same
subshift but with different expanding matrix and/or different fundamental domains can
be. For example, if a substitution is defined with a diagonal matrix, but with a triangle
support, is there any square substitution (diagonal matrix and the standard square support)
producing the same shift?

In [51] it was proved that if ζ1, ζ2 are two aperiodic primitive constant-length substitu-
tions, and (Xζ2 , S,Z) is a symbolic factor of (Xζ1 , S,Z), then their lengths have a common
power (greater than 1). This is still true for multidimensional substitutions with expansion
matrix equal to a multiple of the identity and the standard d-dimensional cubic support
[46], but there is no generalized version for all constant-shape substitutions. Note that
by Theorem 3.22, if ζ1, ζ2 are two aperiodic primitive constant-shape substitutions such
that (Xζ2 , S,Zd) is a symbolic factor of (Xζ1 , S,Zd), then there is another constant-shape
substitution ζ3 with the same expansion matrix and support of ζ1 such that (Xζ2 , S,Zd)
and (Xζ3 , S,Zd) are conjugate. However, this does not imply combinatorial conditions for
ζ2. See [50, Section 8.4] for an example of a non constant-length substitution which is
conjugate to a constant-length one.

Moreover, it is known that constant-length substitutions are strongly related to auto-
matic sequences. Cobham showed [27] that automatic sequences are exactly letter-to-letter
projection of fixed points of constant-length substitutions. Automatic sequences are gener-
ated by finite automatas, which are one of the most basic models of computation and they
have a large number of interesting connections with number theory, such as transcendence
theory in positive characteristic (see for example [3]), and expansion in integer bases [1].

Question. 1. Is there a version of Cobham’s theorem for constant-shape substitutions,
regarding the shape of their supports? Since in the one-dimensional case, substitu-
tions are defined using only intervals as supports of them, there is no known version
considering also the geometry of the supports of substitutions.



130

2. Are the letter-to-letter codings of all constant-shape substitutions multidimensional
automatic sequences? In particular, are all constant-shape substitutions generated by
a DFA?

Topological factors of constant-shape substitutions

In the one-dimensional case, substitutions (and its topological factors on Cantor sets) are
included in a broader class of systems called finite rank systems. In [43] it was proved that
finite rank systems are either expansive or equicontinuous. This classification result is no
longer true in the multidimensional framework (Example 4.3 is an example of a constant-
shape substitution with a Cantor factor which neither expansive neither equicontinuous).

In [48] it was proved that expansive Cantor factors of substitutions are conjugate to
substitutions, and equicontinuous Cantor factors are conjugate to an odometer. Also, it is
shown in [48] that aperiodic substitutions have a finite number of aperiodic Cantor factors
up to conjugacy. In this thesis, it was proved that aperiodic symbolic factors of aperiodic
primitive constant-shape substitutions are conjugate to aperiodic primitive constant-shape
substitutions Theorem 3.22, extending the result proved in [91].

It can be proved using Theorem 4.1 and Theorem 3.22 that if we only consider reduced
substitutions, for a substitutive subshift which is conjugate to an aperiodic primitive re-
duced substitution, there is a finite number of aperiodic symbolic factors, which are conju-
gate to a substitutive subshift given by an aperiodic primitive reduced substitution. But
this does not cover all of the cases. Moreover, it is known the result is true for linearly
repetitive primitive constant-shape substitutions as proved in [45].

Question. 1. Substitutive subshifts have a finite number of aperiodic symbolic factors?

2. Does there is a classification theorem for topological factors of constant-shape substi-
tutions, as the one proved in [48] for one-dimensional substitutions?

3. Are all substitutive subshifts coalescent?

4. Is the automorphism group of any substitutive subshift virtually generated by the shift
action?

5. Is there a substitutive subshift with a nontrivial topological factor with a connected
phase space? Until now, even in the one-dimensional case this question is open.

Decidability problems on constant-shape substitutions

The decidability of a problem corresponds to the existence of an algorithm to give a positive
(or negative) answer to the problem. Since substitutions are defined by finite objects, it is
natural to ask about the decidability of some properties about them.
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F. Durand [49] gives a computable upper bound for the constant of recognizability
of one-dimensional primitive constant-length substitutions. In [50] the decidability of the
conjugacy problem between one-dimensional substitutions was proved, in contrast to the
undecidability of the existence of a conjugacy between two given subshifts of finite type
([113, 75]). Recently in [11] the decidability was proved of some properties of the shift
space generated by one-dimensional substitutions such as aperiodicity, recognizability, ir-
reducibility, or minimality. These results give rise to the following questions.

Question. 1. Is the aperiodicity of constant-shape substitution decidable?

2. Does there is a computable bound for the recognizability radius of constant-shape
substitutions?

3. Does there exists an algorithm to compute the symmetry semigroup of substitutive
subshifts?

4. Is it decidable the problem of, given a d-dimensional aperiodic primitive substitution,
if the set of nondeterministic directions is equal to S(d−1)?

On minimal multidimensional S-adic subshifts

All the previous problems can be expressed for multidimensional minimal S-adic subshifts.
In the one-dimensional case, this class of minimal subshifts is one of the most natural
containing minimal subshifts of sublinear complexity, but it is much broader as was shown
in [39, 41]. The class contains several well studied systems, such as substitutive subshifts,
symbolic codings of interval exchange transformations, dendric subshifts, and some Toeplitz
sequences.

In the multidimensional setting, we can consider the case where the morphisms σn :

An+1 → A
Fn1
n are given by a constant-shape morphism. In this context the following are

open questions.

Question. 1. Is there a recognizability property for minimal multidimensional constant-
shape S-adic systems?

2. Is there an analogue definition of finite rank systems in the multidimensional frame-
work?

3. What rigidity properties do homomorphisms satisfy in the context of minimal multidi-
mensional constant-shape S-adic systems? Moreover, if the morphisms are bijective,
it is possible to extend Theorem 5.17 in this context?
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[97] M. Queffélec. Substitution dynamical systems—spectral analysis, volume 1294 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, second edition, 2010.

[98] E. A. Robinson, Jr. The dynamical theory of tilings and quasicrystallography. In
Ergodic theory of Zd actions (Warwick, 1993–1994), volume 228 of London Math.
Soc. Lecture Note Ser., pages 451–473. Cambridge Univ. Press, Cambridge, 1996.

[99] E. A. Robinson, Jr. On the table and the chair. Indag. Math. (N.S.), 10(4):581–599,
1999.

[100] E. A. Robinson, Jr. Symbolic dynamics and tilings of Rd. In Symbolic dynamics
and its applications, volume 60 of Proc. Sympos. Appl. Math., pages 81–119. Amer.
Math. Soc., Providence, RI, 2004.



140

[101] R. M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Invent.
Math., 12:177–209, 1971.

[102] D. J. Rudolph. Markov tilings of Rn and representations of Rn actions. In Measure
and measurable dynamics (Rochester, NY, 1987), volume 94 of Contemp. Math.,
pages 271–290. Amer. Math. Soc., Providence, RI, 1989.
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On the study of homomorphisms between Zd-topological dy-
namical systems

We study in this thesis homomorphisms between Zd-symbolic dynamical systems gener-
ated by constant-shape substitutions. This notion extends the classical dynamical one of
morphism like factor and conjugacy. Isomorphisms are conjugacies of Zd-actions, up to
GL(d,Z)-transformations. We show the class of substitutive subshifts is stable under ape-
riodic symbolic factors. We prove any measurable factor induces a continuous one. We also
get strong restrictions on the homomorphisms of a generic family of substitutive subshifts:
they are invertible, the normalizer group is virtually generated by the shift action and its
quotient by the automorphisms is limited by the digit tile of the substitution. We prove
this by describing their set of nondeterministic directions. Finally, we show the optimality
of the hypotheses by exhibiting an example of a minimal subshift with an infinite symmetry
group.

Keywords: Symbolic dynamics, substitutive subshift, homomorphism, automorphism
group, normalizer group, symmetry group, digit tile, nonexpansive half-space.

Sur l’étude des homomorphismes entre Zd-systèmes dy-
namiques topologiques

Nous étudions les homomorphismes entre des Zd-systèmes symboliques engendré par des
substitutions de forme constante. Cette notion étend les concepts de facteur et conjugai-
son. Les isomorphismes sont alors des conjugaisons de Zd-actions, à une transformation
de GL(d,Z) près. Nous montrons que la classe de sous-shifts substitutifs est stable par
les facteur symbolique aperiodique. Nous prouvons que tout facteur mesuré induit un
facteur continu. Nous obtenons également des restrictions fortes des homomorphismes
d’une famille générique des sous-shifts substitutifs: ils son inversibles, le normalisateur est
virtuellement engendré par l’action du shift et son quotient par des automorphismes est
limité par le digit tile de la substitution. Nous prouvons ceci en décrivant leurs ensembles
des directions non déterministes. Finalement, nous prouvons que nous hypothèses sont
optimales en donnant un example d’un sous-shift substitutif avec un groupe de symétrie
infini.

Mots-clés: dynamique symbolique, sous-shift substitutif, homomorphisme, groupe de au-
tomomorphisme, normalisateur, groupe de symétrie, digit tile, demi-espace nonexpansif.


