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Abstract

Neuromorphic architectures are promising approaches to significantly reduce the en-
ergy consumption for tomorrow’s computers and the post-Moore era. The brain
function is the inspiration behind this architecture, consisting of spiking artificial
neural networks. Due to low energy consumption, deploying such architectures is
useful in many applications, especially those with energy-limited constraints. Fur-
thermore, using this architecture, we can process a large quantity of data and provide
the computation power needed for machine learning tasks.

Neuromorphic architectures consist of spiking artificial neural networks inspired
by the brain functionalities with many open questions. This situation impacts the
implementation of artificial spiking neural networks and their performance compared
to conventional neural networks. Moreover, in SNN, many questions are still debat-
able, like how the learning is happening and what learning rule is the most suitable,
memory location in such networks and how it works, and how the network encodes
the information using spikes. Such neuroscience-related questions prevent spiking
neural networks from performing like the conventional ones. Therefore, to better un-
derstand the different phenomena in SNN, we need to analyze the internal network
activity during the simulation. The network activity contains the spikes, neurons,
and synapses states activity. When simulating a large network that takes time and
resources to finish, we generate a large simulation trace that is challenging to analyze
due to its size and spatio-temporal aspect, which we can study at several scales.

This manuscript aims to study the visual analysis of spiking neural networks by
visualizing the collected trace from a simulation. The primary objective is to better
understand the different network phenomena and improve the network using visual
analysis. The first contribution is the study of the visualization techniques in SNN
simulators. This study from the technical and visualization aspect of the simulators
shed light on the diversity of the used technologies. Furthermore, this study also
shows the similarity of the visualization techniques provided by the simulators. At
the end of this study, we concluded that we need more dedicated tools to analyze
than what simulators provide for visual analysis.
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Next, we developed VS2N (Visualization tool for Spiking Neural Networks). A
web-based tool for post-mortem interactive dynamic visualization and analysis of
spiking neural networks. The novelty of VS2N compared to the existing visual anal-
ysis tools can be summarized in four points: modular nature, simulator-independent,
scalability, and dynamic analytics. In addition, VS2N provides the possibility to walk
in time with the evolution of the network during activity, which is not possible using
the existing tools. This feature is significant when the network evolution is over
hours of activity, which is the case in spiking neural networks.

Finally, we proposed a novel approach to compress a spiking neural network
based on the visual analysis conducted on SNN. This dynamic compression approach
concerns the synapses in the network by providing two formulas to calculate the
dynamic threshold, which changes based on the compression status, instead of having
a static threshold which is the case in the existing works. This approach can maintain
or improve the network accuracy compared to the non-compressed network while
compressing up to 80%.
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Résumé

Les architectures neuromorphiques sont des approches prometteuses pour réduire
significativement la consommation énergétique des ordinateurs de demain et de l’ère
post-Moore. La fonction cérébrale est l’inspiration derrière cette architecture, con-
sistant en des réseaux de neurones artificiels à impulsion. Du fait de leur faible
consommation énergétique, le déploiement de telles architectures est utile dans de
nombreuses applications, notamment celles ayant des contraintes énergétiques lim-
itées. De plus, grâce à cette architecture, nous pouvons traiter une grande quantité
de données et fournir la puissance de calcul nécessaire aux tâches d’apprentissage
automatique.

Les architectures neuromorphiques consistent en des réseaux de neurones impul-
sionnels (SNN) inspirés des fonctionnalités cérébrales avec de nombreuses questions
ouvertes. Cette situation impacte la mise en place de réseaux de neurones à im-
pulsions et leurs performances par rapport aux réseaux de neurones classiques. De
plus, dans les SNN, de nombreuses questions sont encore ouvertes, par exemple:
comment se passe l’apprentissage et quelle règle d’apprentissage est la plus appro-
priée, l’emplacement de la mémoire dans ces réseaux et comment cela fonctionne, et
comment le réseau représente les informations à l’aide d’impulsions. De telles ques-
tions liées aux neurosciences empêchent les SNN de fonctionner comme les réseaux
conventionnels. Par conséquent, pour mieux comprendre les différents phénomènes
dans les SNN, nous devons analyser l’activité interne du réseau lors de la simulation.
L’activité du réseau consiste en celle des impulsions, des neurones et des synapses.
Lors de la simulation, nous générons une trace de simulation difficile à analyser en
raison de sa taille et de son aspect spatio-temporel, que nous pouvons étudier à
plusieurs échelles.

Ce manuscrit vise à étudier l’analyse visuelle des réseaux de neurones impulsion-
nels en visualisant la trace collectée à partir d’une simulation. L’objectif principal
est de mieux comprendre les différents phénomènes du réseau et d’améliorer le réseau
à l’aide d’analyses visuelles. La première contribution est l’étude des techniques de
visualisation dans les simulateurs SNN. Cette étude du point de vue technique et
visualisation des simulateurs a mis en lumière la diversité des technologies utilisées.
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Par ailleurs, cette étude montre également la similarité des techniques de visualisa-
tion fournies par les simulateurs. À la fin de cette étude, nous avons conclu qu’il
nous faut des outils dédiés pour analyser la trace fournie par les simulateurs.

Ensuite, nous avons développé VS2N. Un outil basé sur technologie Web pour
la visualisation et l’analyse dynamiques interactives post-mortem des réseaux de
neurones à impulsions. La nouveauté de VS2N par rapport aux outils d’analyse
visuelle existants peut être résumée en quatre points : sa nature modulaire, son
indépendance par rapport au simulateur, son scalabilité et ses capacités en analyse
dynamique. De plus, VS2N offre la possibilité de fonctionner sur le réseau en cours
de simulation, ce qui n’est pas possible avec les outils existants. Cette caractéristique
est importante à noter surtout pour les longues simulations, ce qui est souvent le cas
pour les réseaux de neurones à impulsions.

Enfin, nous avons proposé une nouvelle approche pour compresser un réseau de
neurones à impulsions basée sur l’analyse visuelle menée sur les SNN. Cette ap-
proche de compression dynamique concerne les synapses du réseau en proposant
deux formules pour calculer le seuil dynamique, qui évolue en fonction de l’état de
compression précédente, au lieu d’avoir un seuil statique comme c’est le cas dans les
travaux existants. Cette approche peut maintenir ou améliorer la performance du
réseau par rapport au réseau non compressé tout en compressant jusqu’à 80%.
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Chapter 1

Introduction and motivations

The machine learning field emerged as one of the most attractive fields nowadays,
which provides algorithms to solve different tasks, such as image classification, seg-
mentation, and prediction. What makes the machine learning field this interesting
is the ability to associate it with other areas (agronomy, medicine, transportation,
etc.) and apply those algorithms to provide solutions that expand what we can
achieve using classic approaches. Neural networks are machine learning components
with convolutional neural networks and deep learning technologies. This technology
allows the processing of complex tasks, and we usually consider it the first resort in
different fields when using machine learning.

However, with the increased amount of data collected everywhere, the ability to
process and handle this massive quantity of data becomes a challenge over time.
Moreover, with the advancement in machine learning and neural networks, we have
more powerful models which require more computation power and energy to run
correctly. This need represents a challenge due to the Von Neumann architecture
limitation, and the end of Moore’s Law. As a result, the hardware progress is slowing
down and cannot keep up with the way big data and machine learning algorithms are
growing. To overcome the limitation of the existing architecture and fulfill the need
for more computation power in the machine learning field, we need an architecture
that can go beyond Von Neumann’s computing. Research highlights two candidates
based on the existing works: Quantum computing and Neuromorphic architectures;
the latter interests us in this work.

Neuromorphic architectures are promising approaches to significantly reducing
the energy consumption for tomorrow’s computers. The brain function is the in-
spiration behind this architecture and consists of Spiking Neural Networks (SNN).
Due to their low energy consumption and the use of spikes for communication, de-
ploying such architectures can be helpful in many applications, especially those with
energy-limited constraints. With the low energy consumption and the nature of
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neuromorphic architectures, we can process huge quantities of data and provide the
computation power needed for machine learning tasks. Due to the brain’s com-
plex activity, the purpose of neuromorphic computing is not to perfectly imitate the
brain’s functions. Instead, we extract the knowledge we have on the internal activity
of the brain and try to represent it on a computing system.

Neuromorphic architectures consist of spiking neural networks. Those networks
are inspired by the brain functionalities, the most powerful machine with many open
questions. This situation reflects the implementation of spiking neural networks and
their performance compared to conventional neural networks. Spiking Neural Net-
works can be suitable for many domains (like multimedia-related tasks). In contrast
to conventional neural networks, SNNs consider time during activity and process
natural signals while being robust to noise, which can be helpful such in a sound
recognition task [Wu et al., 2018], texture retrieval of images [Yang et al., 2017],
or image classification [Falez et al., 2019]. Moreover, in SNN, many questions are
still debatable, like how the learning is happening and what learning rule is the
most suitable, memory location in such networks and how it works, and how the
network encodes the information in the spikes. Such neuroscience-related questions
prevent spiking neural networks from performing like the conventional ones. There-
fore, much of today’s research focuses on providing answers and improving this tech-
nology, either in biology, electronics, or computer science. One of the main decisions
we need to make in the process of making neuromorphic hardware is implementing
neurons on hardware. There are two leading technologies to choose from, which
are: CMOS [Sourikopoulos et al., 2017], which is a mature technology used in most
of the existing hardware, and memristors [Strukov et al., 2008], which is relatively
new compared to CMOS and has the potential to reduce the hardware components
required for neuron implementation. In recent years, we saw many hardware imple-
mentations starting from 2010. However, most of them are still for research purposes
only [Schemmel et al., 2010, Benjamin et al., 2014, Furber et al., 2014, Merolla et al.,
2014, Davies et al., 2018].

1.1 Motivations

A neural network is considered a black box due to its structure and the internal
activity. Therefore, it is hard to identify the learned function from a neural network
or to guarantee that a network learns a defined function. Moreover, since the usual
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way (the unique way in most cases) to evaluate a neural network is by measuring the
accuracy, the network is exposed to potential issues such as overfitting, discrimination
issues, or any dysfunction due to biased data. In addition, due to the network
complexity, it’s time-consuming to debug a network in case of a bad performance
and pinpoint the issue, which can be the input data, the network structure, the used
parameters, or a single layer in the network.

Moreover, with the increase in complexity of neural networks comes an increase
in computation power and energy demand to satisfy the requirements of the recent
neural networks and deep learning. The Von Neumann architecture often penalizes
such hardware-dependent networks due to their limitation. They usually depend
on GPU or super calculators to provide the computation power, which raises the
issue of energy consumption and carbon footprint emissions [Dhar, 2020, Schwartz
et al., 2020], especially with the huge increase in network complexity in recent years.
In the NLP (Natural Language Processing) domain, GPT-2 was presented in 2019
and has 1.5 billion parameters, followed by GPT-3 in 2020, which has 175 billion
parameters (100x bigger than GPT-2), and still suffer from the same biases while
require much more power. However, the bio-inspired technology (SNN) represents
a promising replacement to reduce energy consumption and provide computation
power despite the lack of a more profound understanding of those networks that
affect its performance compared to the conventional neural network.

Spiking neural network provides ultra-low energy consumption via a spike-based
communication inspired by biology. SNN is a promising way to provide computation
power with low energy consumption for the next generation of neural networks. How-
ever, due to the bioinspired nature of SNN, many questions remain with no precise
answer, the questions which may concern the proper learning mechanism, neurons
type, or network architecture. In addition, all the neuroscience-related questions
involving the brain impact the SNN performance. One of the reasons why SNN
are underperforming is how the learning is done in the network, usually by using
local learning rules such as STDP [Markram et al., 1997] instead of gradient-based
global learning rules, since we cannot apply it on spikes. Some works proposed the
use of the surrogate gradient descent [Neftci et al., 2019], which allows the use of
global learning rule to train SNN using yet a considerable amount of energy. Others
tried to exploit the SNN benefits by converting a trained ANN to SNN [Chen et al.,
2018, Rueckauer et al., 2017, Xing et al., 2019] to keep the same performance at a
low-energy consumption. However, bioinspired effective training methods for SNN
are still lacking, despite the existing efforts involving local rules.
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In spiking neural networks, we don’t have a way or a technique to analyze the
network activity, making it harder to improve and understand. This limitation also
impacts the interpretation of results, this technology’s usability, and the neuromor-
phic architecture. The motivation for this work is to present a solution for this
limitation by adopting a different way of looking into neural networks using visual
analysis, to improve this type of networks. With the help of human perception and
prior knowledge about neural networks, we can explore and analyze the data we col-
lect from simulations to understand the different phenomena happening inside the
network. Using this approach, we can analyze the network differently, on-the-fly, and
without waiting until the end of the simulation, which may take many hours (even
days) to finish.

Visual analysis of spiking neural networks implies going through several inter-
active visualizations. It requires studying the existing visualization techniques for
a similar type of data and a certain degree of interactivity. We can generate mas-
sive execution traces during the simulation of large neural networks (a few hundred
thousand neurons, a few tens of millions of synapses) that last for many days. The
traces contain all the network activity during the simulation. Analyzing such data
is a challenge due to its size and the Spatio-temporal aspect that we can study at
several scales.

1.2 Outline

In this manuscript, we present in chapter 2 a background on the neural networks,
such as biological neuron presentation, neural network generations, neuron models,
and learning in neural networks. Besides that, a brief introduction on visualization in
general, human perception, and visualization in neural networks are included. Chap-
ter 3 discusses the visualization techniques used in different spiking neural network
simulators, comparing the visualizations they offer using multiple criteria and a tech-
nical review. Then, chapter 4 presents VS2N, a web-based visual analysis tool for
spiking neural networks, the different modules, and use-cases where VS2N was used
to understand or improve spiking neural networks. Next, in chapter 5 we present a
novel progressive pruning approach and dynamic weights reinforcement, applied on
single layer spiking neural networks. This approach allows the network to remove
more than half of the unnecessary synapses while learning without losing the network
accuracy, which is not the case in most pruning-related works. This approach is a
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result of an observation using VS2N. Finally, chapter 6 concludes this manuscript
by presenting a summary of the work presented in the different chapters and the
perspectives on visualization in SNN and spiking neural networks in general.



Chapter 2

Background

To work on visual analysis of spiking neural networks, we need prior knowledge in
a couple of fields, such as neuroscience: to understand how our brain works. Com-
puter science: to implement and simulate neural networks with different components.
Electronics: to better understand the process of making neuromorphic architectures
and their hardware-related challenges. It is also important to learn about visualiza-
tion, human perception, and how to extract information and insights from data. This
chapter introduces neural networks and the different generations, neuron models, and
learning rules. The second part of this chapter covers the visualization part, such as
human perception, psychological principles of visual display, and visualization used
in neural networks.

2.1 Biological neuron

A neuron is a cell in the nervous system that represents the elementary component
of a neural network. It is capable of communicating and processing large amounts
of information. There are almost 100 billion interconnected neurons in the human
nervous system. However, we can distinguish different neurons according to their
shape, behavior, and position in the brain.

A neuron generally does a simple operation that calculates the output based
on the information received as input. Having many of those simple units working
together and creating a network makes it possible to perform different tasks. It is
impressive what a couple of neurons can achieve. A C. elegans is a tiny roundworm
present on the soil. It is one of the simplest and easiest organisms to handle in
the laboratory. With 1 mm in length and 0.2 mm in diameter, C. elegans has 959
cells (in adults). From those cells, we can find almost a third (302) of them are
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neurons representing the brain (see Figure 2.1). By using those neurons, the tiny
animal can move, feed, and reproduce while consuming ultra-low energy [White et al.,
1986] [Frézal and Félix, 2015].

Figure 2.1: C. elegans nervous system

2.1.1 Neuron components

In Figure 2.2, we can break down a neuron into three principal parts, which are:

Figure 2.2: Structure of neuron

• The cell body (membrane) contains the core of the neuron and the other
molecules essential to the cell’s life, which has a few micron diameter.
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• Dendrite is a thin tubular extension located around the neuron. It has a length
of a few tens of microns. Dendrite is the element that captures and transmits
the information from outside into the neuron cell.

• Axon is the information output medium from a neuron. It is longer than the
dendrite and connects with the dendrite of other neurons. The size of an axon
can vary from a few millimeters to several meters.

• Synapse represents the region of interaction between two neurons (see Fig-
ure 2.3) for the transmission of information (between the axon of one neuron
and the dendrite of another), and there are several types of a synapse, such as
axo-dendritic, axo-somatic, and axo-axonic. The density of a synapse directly
affects the influence of a transmitter neuron on receptor neurons.

Figure 2.3: A synapse

2.1.2 Neuron functionality

A neuron is considered a polarized entity (information is transmitted in only one
direction: from dendrites to axons). Therefore, when data arrives at a neuron, a
summation will occur at the cell body level of all this information. Then, according
to an activation function, the neuron will emit a signal along the axon, representing
the result of the operation at the cell body level. When this signal arrives at the
synaptic endings (pre-synaptic), synaptic vesicles will merge with the cell membrane,
releasing neurotransmitters. These neurotransmitters Figure 2.3 represent chemical
mediators that allow the information to go from one neuron to another because of the
impossibility of having an electrical signal which passes through the synapse (in the
case of a chemical synapse). In addition, there are receptors for neurotransmitters
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on the dendritic membrane at the post-synaptic level. Therefore, the excitability of
this neuron will change depending on the type of these neurotransmitters and the
receptors. Thus propagate the information or not.

Synaptic connections are capable of adjusting their functioning according to their
repeated activation or not, which will facilitate or not the passage of information,
and this plasticity is considered the origin of learning mechanisms.

2.2 Artificial neural network

An artificial neural network is a group of artificial neurons working together, inspired
by the human brain, which consists of about 100 billion neurons linked together by
about one million billion synapses. This type of artificial network offers the possibility
of modeling the information processing and learning mechanism in the human brain.
Furthermore, this type of network is considered attractive, interesting, robust, and
fault-tolerant solutions that provide true parallelism.

2.2.1 Artificial neuron

An artificial (formal) neuron is the mathematical translation of a biological neuron
by decomposing each part to a mathematical equivalent, which performs the same
task. Like a biological neuron, an artificial neuron transmits information in one
direction from multiple entries to only one exit. An artificial neuron is composed of
several parts, which are:

• Synaptic weights: this is the equivalent of synapses in biological neurons. Each
synapse has its value, which will be used afterward and represents the strength
of the connection between two neurons.

• Transfer function: also called activation function, which is the equivalent of
the cell body, which has the role of simulating its operation and making the
decision according to the result of this function to transmit the signal received
or not.
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• Output element: which represents the equivalent of axons in the biological
neuron, it’s used to transmit signals to the recipient neuron(s).

The artificial neuron receives and adds signals before transmitting them to the
transfer function. Then, depending on its value and the result of the transfer function
(for example: greater than a defined threshold), the neuron decides to produce an
activation or not.

2.2.2 Neural network generations

We can classify the evolution of neural networks that started from the beginning of
the 20th century into three generations:

The first generation

The first generation of this type of neural network saw the proposal of simple linear
models of neural networks.

Formal model of McCulloch & Pitts

It’s the first model McCulloch & Pitts proposed in 1943 [McCulloch and Pitts, 1943]
to try and represent the neuron mathematically. This model (Figure 2.4) contains
multiple entries x1..n with weights w1..n, after summation of all the entries multiplied
by their weights, we compare this value to a fixed threshold. If this value is more
significant than the threshold, the neuron will send a signal; otherwise, nothing
happens.

Rosenblatt Perceptron

It’s a model of a neural network with a single layer and a learning rule. This model,
presented by Rosenblatt in 1957 [Rosenblatt, 1958], is considered the first artificial
system capable of learning by experience. The learning consists of calculating the
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Figure 2.4: Formal model of McCulloch & Pitts

value of a using the same rule presented in Hebb’s law (equation 2.6) and deduces the
value of x. To calculate the new value of the weight wi(t+ 1), we use the formula 2.1
which consists of the current weight value of the neuron wi(t), the expected value
xd, the error estimation xd − x,the input value ei, and a positive constant µ.

wi(t+ 1) = wi(t) + µ((xd − x)ei) (2.1)

Adaline (Adaptive Linear Neuron) of Widrow

Widrow created this single-layer model of neural network in 1960 [Widrow and Hoff,
1960], and it is similar to perceptron. However, the learning rule is different. The
learning in the perceptron model is based on examples and expected results, and
Adaline is based on the error rate of each iteration. The learning steps are the same
as the perceptron model. The only difference is the formula for calculating the new
weight wi (equation 2.2), where µ represents a positive constant, xd the expected
value, ei the input value, and x which represents the actual output. This type of
neuron converges to the least-squares error of (xd − x)2.

wi = wi + µ(xd − x)ei (2.2)

Kohonen Self-Organizing Maps (SOM)

Introduced by Kohonen in the 1980s [Kohonen, 1982], this map is deployed to rep-
resent a set of data. Each neuron represents a particular data group based on the
common points that bring them together. This card uses unsupervised learning.
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Figure 2.5: Kohonen Self-Organizing Maps

Hopfield Network

Proposed by Hopfield in 1982 [Hopfield, 1982], this network model (Figure 2.6) con-
sists of N neurons with binary states all interconnected and the total input of a
neuron i equal to the sum of all connections multiplied by its weight.

Figure 2.6: Hopfield Network

Multi-layer Perceptron

David Rumelhart presented it in 1986 [Rumelhart et al., 1986]. The notion of hav-
ing several layers of neurons makes it possible to make non-linear associations and
overcome the limitation of a single layer and linear problems. This model is based
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on the retro propagation of the error gradient, and it is similar to the perceptron.
The only difference is the way we calculate the synaptic weights.

Figure 2.7: Multi-layer Perceptron

The second generation

A convolutional neural network (CNN) represents the second generation of neural
networks. This type of neural network was introduced in the late 80s [LeCun et al.,
1989] and is known for its power and efficiency, especially in recommendation systems
and multimedia fields [LeCun et al., 1998, Avilov et al., 2020, van den Oord et al.,
2013]. This type of network represents a set of successive processing over several
layers. The group of outputs from a processing layer makes it possible to reconstitute
an intermediate image which serves as input to the next layer.

The convolution is the operation used to calculate if a characteristic is present in
a whole image, using defined filters.

Figure 2.8: Convolution
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CNN components

The network is composed of layers. Each layer has a specific function. The advantage
of having the same type of data at input and output offers the possibility to stack
several layers in the network. Thus, we can choose a suitable model according to its
efficiency and needs. The different layers are:

Convolutional layer

The first step is looking for the existing features in the whole image by using the
defined filters. It is a principal component of a convolutional neural network (CNN).
The operation behind it is called a convolution, from which convolutional neural
networks get their names. To calculate the correspondence between a feature and a
subpart of the image, we multiply each feature pixel by the image pixel. Then, we
sum the results and divide them by the total number of feature pixels. An example
is shown in Figure 2.9.

Figure 2.9: Convolution

Pooling layer

This layer is used to reduce the dimension of the received data while preserving
important information. We can achieve this by dragging a small window step by
step on all the image parts and choosing the maximum value (in the case of Max
pooling, but there are other types of pooling). This technique can reduce the needed
operations and the complexity for the following layers.
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Figure 2.10: Max Pooling

Rectified Linear Units (ReLUs)

A unit performs a simple operation on the input data by turning the negative values
from the input to zeros and keeping the positive values unchanged, which helps the
network produce better results.

Figure 2.11: Rectified Linear Unit

Fully connected layer

Called also dense layer, it is usually added at the end of the network layers as a
voting mechanism for the network output decision. Each neuron from the previous
layer is connected to every neuron from this layer, and the output will be an array
of values (votes). One of the characteristics of this type of layer is the possibility
to stack many fully connected layers to improve the network performance since the
input and output of this layer can be the same.
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The third generation

The third generation of neural networks is the Spiking Neural Network (SNN), rep-
resenting an electronic brain model. This neural network considers time in its oper-
ations and can process a significant quantity of data using a relatively small number
of spikes.

Figure 2.12: CNN (A) and SNN (B) input and output format

2.2.3 Hyperparameters

Hyperparameters represent the different parameters and variables that we need to set
appropriately for the network to perform as expected. Unfortunately, these param-
eters are usually numerous, and it takes time to define them without experimenting
with different combinations. Therefore, those parameters are set manually or by
testing. In addition, some of them are learned by the network during training (the
weights), for example:

• The number of layers and neurons to use.

• For each convolutional layer, we have the kernel size, padding, and stride value.

• For each pooling layer, we have the window size to use and the stride value.

• For each additional fully connected layer, the number of neurons.

Nowadays, we tend to have deep neural networks being used in different domains,
and those networks have many hyperparameters, which takes a lot of time and energy



28 CHAPTER 2. BACKGROUND

to be tuned. Moreover, the number of parameters changes from one layer to another,
and the global number of the hyperparameters grows while going more profound in
the network (see Table 2.1).

Model Number of layers Parameters Trainable parameters

VGG16 [Simonyan
and Zisserman, 2014] 16 138M 14.7M

VGG19 [Simonyan
and Zisserman, 2014] 19 144M 20M

ResNet50 [Zagoruyko
and Komodakis, 2016] 50 25.6M 25.5M

ResNet152 [Zagoruyko
and Komodakis, 2016] 152 60.4M 60.2M

MobileNetV2 [Sandler
et al., 2018] 53 2.25M 2.22M

GPT-3 [Brown et al.,
2020] 96 175B –

Table 2.1: Hyperparameters example in artificial neural networks

2.2.4 Training a neural network

Training a neural network is the critical phase that makes the network useful. We
train a neural network by updating the weights of the synapses that we usually
initialize randomly. Training a neural network may differ from one architecture to
another. However, the goal is always to minimize a loss function.

Backpropagation

Backpropagation represents the class of algorithms widely used to train feed-Forward
neural networks [Kelley, 1960]. This training consists of finding the proper values of
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the existing parameters to minimize an error function. The process of going down
through the loss function is called gradient descent.

2.2.5 Neural network architectures

The interconnection between the different neurons in a neural network offers a di-
versity of possible architectures and topologies [Miikkulainen, 2010]. The choice of
a suitable architecture depends on the application. Moreover, we can classify those
architectures into three general categories which are:

• Feed-Forward Neural Networks: This represents the commonly used architec-
ture nowadays applications. It is created by using layers, and each layer con-
tains neurons. There is no connection between neurons in the same layer or
between this network topology’s current and previous layers. Instead, the con-
nections are between the current layer and the following layer neurons. The
first layer is the input layer, the last one represents the output layer, and be-
tween them, we find the hidden layers. If there is more than one hidden layer,
the network is called "deep".

Figure 2.13: Feed-Forward Neural Network

• Recurrent Neural Networks: This network topology contains direct connections
and connections oriented to the previous layers and additional information for
the network. This architecture is hard to train sometimes due to its complex
dynamics. Recurrent neural networks are used to model sequential data, and
due to their hidden state, they are capable of remembering information for
a long time. Moreover, different models were derived from recurrent neural
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network such as reservoir computing [Tanaka et al., 2019], which is used for
time-series analysis.

Figure 2.14: Recurrent Neural Network

• Symmetrically Connected Neural Networks: these are similar to recurrent neu-
ral networks. The only difference is that the connections between neurons, in
this case, are symmetrical by having the same weight in both directions. This
category is more restricted than RNN in their application due to the energy
function they use. Having a symmetrically neural network with hidden units
is called "Boltzmann machine," and without hidden units is called "Hopfield
network".

Figure 2.15: Symmetrically Connected Neural Network

2.3 Spiking neural network

The third generation of the neural network is inspired by the brain’s functionality,
making it possible to achieve some of the brain’s properties on future computers,
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such as parallelism, energy efficiency, and robustness to noise.

2.3.1 Neuron models

In SNN, neurons use spikes as a means of communication. They take spikes as
input and the neuron will send a spike if its membrane potential value crosses a
specific threshold. Different neuron models were proposed, we can mention as an
example: Hodgkin-Huxley Model (HH) [Hodgkin and Huxley, 1952], Integrate and
Fire Model (IF) [Abbott, 1999], Izhikevich Model [Izhikevich, 2003], Spike Response
Model (SRM) [Gerstner et al., 1993], FitzHugh-Nagumo Model [FitzHugh, 1961],
and Morris-lecar Model [Morris and Lecar, 1981]

Among these models, the most used are:

• Hodgkin-Huxley Model (HH): the first spike neuron model, an electric
model based on ions, contains Sodium, potassium, and leakage current.

Figure 2.16: Hodgkin-Huxley model

• Integrate and Fire (IF): this model is derived from the Hodgkin-Huxley
model but with less complexity and computational cost. This model has several
variations, such as Leaky Integrate and Fire (LIF) [Abbott, 1999], one of the
most used models because of its efficiency in spiking neural networks and large-
scale network simulations.

τn
dv

dt
= −v(t) +RIsyn(t) (2.3)
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In equation 2.3, v represents the membrane potential, R the membrane resis-
tance. τn is a time constant (τn = RC), and Isyn(t) represents the global input
current.

• Izhikevich model: it’s a model that combines the computational efficiency of
the Integrate and Fire (IF) model and the biological plausibility of the Hodgkin-
Huxley (HH) model. This model can simulate many spiking neurons in real-
time. The advantages of this model are the simplicity of calculation and the
possibility to produce different spikes models and bursts.

dV (t)

dt
= 0.04V (t)2 + 5V (t) + 140− u(t) + I(t) (2.4)

du(t)

dt
= a.(b.V (t)− u(t))

if V (t) ≥ 30mV, then

{
V (t)← c

u(t)← u(t) + d

In equation 2.4, V (t) represents the membrane potential, u(t) is the membrane
recovery variable. I(t) represents the input current, a is the timescale of u(t),
and b is the sensitivity of u(t). c and d represent the reset value of the membrane
potential after a spike and u(t), respectively.

• Morris-Lecar model: this model describes the three currents like the HH
(Hodgkin-Huxley) model, but with just two dynamic variables, this model is
useful for fast-modeling spiking neurons.

C
dV

dt
= I − ICav(v)− IKv(w, V )− IL(V ) (2.5)

dw

dt
= −[w − w∞(V )]/τw(V )

In equation 2.5, ICav represents calcium current, IKv represents potassium cur-
rent, and the leak current is represented by IL. w represents the activation of
IKv.
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2.3.2 Information coding in SNN

In SNN, spikes are used as a means of communication. The processing of the spikes by
the brain is one of the questions that are still open; how information is represented
depends on the specific region of the brain, and sometimes, more than just one
encoding type is present in the same area [Thorpe et al., 2001][Brette, 2015]. Different
information encoding exists, such as:

• Frequency coding: There are two forms of this encoding: Spike count rate:
which depends on the number of spikes in a given period. Time-dependent
firing rate: depends on the average number of spikes in a small interval 4t
(Figure 2.17).

Figure 2.17: Frequency coding

• Temporal coding: This type of information encoding depends on the spike
timing, which carries information (Figure 2.18).

Figure 2.18: Temporal coding
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2.3.3 Learning in spiking neural networks

Since spiking neural networks are bio-inspired, the learning in this type of network
is also inspired by brain activity. However, spikes (discrete events) are not differ-
entiable, which prevents us from using backpropagation as it is in spiking neural
networks. Instead, local learning rules are preferred due to their energy efficiency
and performance in unsupervised learning tasks, called "Hebbian rules." However,
in recent years, the surrogate gradient descent was proposed, which allows the use
of backpropagation and global learning rules to train SNN [Neftci et al., 2019].

Hebb’s rule

Donald Hebb proposed Hebb’s rule in 1949 [Hebb, 1949], which indicates that "neu-
rons that fire together, wire together," which means that the connection weights are
updated based on the neural activity of the neurons in both ends. This rule is the
foundation of the bio-inspired learning rule in artificial neural networks, mimicking
how our brains work and neurons interact. This rule is composed of two parts:

• First, we calculate a (equation 2.6), which equals the sum of input values mul-
tiplied by their weights (e1..n) minus the threshold S. Based on the calculated
value of a we can conclude the value of x, using the following condition:

– if (a > 0) : x = +1

– else : x = −1

a =
n∑
i=1

(wi ∗ ei)− S (2.6)

• Second, we calculate the new weight value based on 2.7. wij is the old weight
value, xi and xj represent the value x calculated for the pre-synaptic neuron i
and post-synaptic neuron j, and the positive constant value µ.

wij(t+ 1) = wij(t) + µ ∗ xi ∗ xj (2.7)
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Spiking Time Dependent Plasticity (STDP)

STDP is a Hebbian learning rule [Markram et al., 1997]. It is based on the activity of
both presynaptic and postsynaptic neurons. The order of the activation is essential
for the weight update. Thus, the concept of weight update over time is called LTP
(long term potentiation) and LTD (long term depression). Different types of STDP
rules were presented, which share the same idea (Hebb’s rule) but are different when
it comes to the number of parameters and how it works, for example:

• Pair-based STDP [Babadi, Baktash and F. Abbott, L., 2016]: the synaptic
weight modification depends on the pre-synaptic and post-synaptic neuron ac-
tivity (equation 2.8).

• The triplet STDP [Pfister and Gerstner, 2006]: the synaptic weight update in
this model depends on the triplet pre-post-pre synaptic or post-pre-post neuron
activity.

• Reward-modulated STDP [Legenstein et al., 2008]: the synaptic weight update,
in this case, combines the unsupervised STDP with a reinforcement signal used
for modulating the synaptic weights, acting as a reward signal.

∆w =
n∑

pre=1

m∑
post=1

W (x)(tposti − tprej ) (2.8)

2.3.4 Winner takes all

WTA is a technique used during the training of spiking neural networks [Lazzaro
et al., 1989]. It prevents all the other neurons with lower activity to fire when the
first one with the highest activity fires. This prevention can happen between all the
neurons from one layer or between neurons that cover the same region in the input
data. To apply the WTA in a simulation or on hardware, we add inhibition neurons
that send negative current once they receive the first spike, which prevents the rest
of the neurons from spiking. Thus, WTA helps the network neurons learn different
patterns and avoid having identical neurons during and after the training.
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Homeostasis

Homeostasis is a regulation process of the neuron’s activity used during training
with a Hebbian learning rule. This process contributes to preventing long-term
perturbations of the neuron activity and helps to keep the average neuron’s activity in
the network stable. For example, we can allow different neurons to fire by preventing
any neuron from firing excessively by using homeostasis. Furthermore, in training
a neural network, using homeostasis enables the neurons to learn different patterns
without being penalized by a dominant neuron [Marder and Goaillard, 2006]. In
artificial neural networks, homeostasis can be provided by increasing or decreasing
the neuron threshold based on the neuron activity, which produces the same effect
as biology.

2.4 Spiking neural networks simulation

Simulation is a must-have in producing an efficient SNN for neuromorphic hardware.
It mainly consists of implementing a specific neuron type, learning mechanism, and
network topology and observing the network performance. Thus, there are two main
possibilities to simulate a spiking neural network: using simulators that support
SNN or by using one of the existing neuromorphic hardware. Using the software
approach is enough since we can simulate every network component most of the
time. Still, if the goal is to check any hardware-related properties of the network,
then neuromorphic hardware may be more suitable and realistic.

During simulation, we introduce a dataset to train the network, and this dataset
can be any data (image, audio, video, etc.) as presented in Figure 2.19. Thus, one
of the crucial steps before training the network is to prepare the dataset, perform
any needed pre-processing, and remove any missing data, which is very common on
real-life data.

2.4.1 Software-based simulators

Software-based simulators exist in different programming languages, and we can find
two main categories: event-driven simulators and clock-driven simulators. Event-
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Figure 2.19: MNIST (A) and Cifar-10 (B) dataset

driven simulation is more adapted to how neurons work since the calculation hap-
pens only when activity happens at a neuron. This approach can help reduce energy
consumption and time by avoiding unnecessary computation. Event-driven simula-
tion usually doesn’t depend on the hardware it is running on. We can deploy it on
multiple nodes. However, we also need to provide a synchronization mechanism for
the timing of the events. The networks with a learning rule that requires the exact
spike time perform better in this simulator. We can take as example of event-driven
simulators N2S3 [Boulet et al., 2017] and NEURON [Hines and Carnevale, 1997].
The clock-driven simulation does the synchronous update for all the neurons at ev-
ery step. Such an approach is easier to implement, especially on GPUs, to parallelize
the learning process, which helps speed up the simulation. Such an approach takes
advantage of the remarkable advancement in GPU technology. However, the choice
of the update step for a clock-driven simulation impacts the network performance. If
the selected step is big, it may lead to a loss in precision or a higher computation cost
if the selected step is small. As an example of simulators we have Nengo [Bekolay
et al., 2014] and Brian [Goodman and Brette, 2008].

In this manuscript, we use an event-driven simulator (N2S3) for shallow networks
and a clock-driven simulator (Nengo) for multi-layer networks.

2.4.2 Hardware-based simulators

The hardware-based simulation uses neuromorphic hardware, which is suitable for
this type of neural network. Usually, when working with neuromorphic hardware
(like SpiNNaker [Furber et al., 2014] or Loihi [Davies et al., 2018]), we use libraries
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explicitly made to communicate with the hardware, such as PyNN [Davison et al.,
2009], a simulator-independent language for building neuronal networks models. An-
other lower-level approach compared to the previous one using FPGA’s based boards
(like the ZedBoard using the Xilinx programmable SoC). Using this approach, we can
speed up the simulation and collect hardware-related information about the network
performance and energy consumption.

Figure 2.20: SpiNNaker (A) and Loihi (B)

2.5 Visualization

Vision is the dominant and powerful sense among the five channels we use to sense the
world, and it provides more information than all the other senses combined. Decades
ago, the potential of representing quantitative information in a way that our eye can
easily intercept was recognized by early pioneers in data visualization. Representing
numbers as text slows down our ability to process information since it has to be
processed one at a time, and we quickly become lost once we try to analyze it due
to our short memory. However, if we could accurately visualize this information, we
can understand, explore, and examine it in a previously impossible way. In 1786,
William Playfair (1759-1823) published his first early graph (Figure 2.21), which was
a demonstration of what we can achieve by visualization, and opened the door to
new ways of exploring the meanings in data that enables the perception of trends,
patterns, and exceptions.

By presenting quantitative data in a visual form, we extend the capacity of our
memory by providing in front of our eyes a quantity of data that usually cannot be
held in our minds altogether. As a result, it makes it easier to understand trends
and exceptions and present them to others. While visual perception significantly
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Figure 2.21: Playfair’s first graph in 1786

impacts how information is perceived, the correct representation of data is essential
by choosing the proper graphs and the right quantity of data to show.

We analyze data to get a precise, accurate, and better understanding, which will
help us make better decisions. One of the ways of going from analysis to conclusion
is by asking the right questions. We can divide the questions into two categories:
descriptive and predictive. We use descriptive questions to understand what is hap-
pening and what is causing this to happen; those questions help us understand what
we see. Based on the answers of the first category, we can ask the predictive ques-
tions, which concern what we want to happen and what are the actions that can lead
to such an outcome. Such questions can help us shape the result we are looking for
when doing data analysis. [Few, 2009]

To create visualizations for analysis purposes, we can use the analytical design
principles presented by Edward Tufte in his book Beautiful Evidence [Tufte, 2006].
Analytical design principles come from analytical thinking to help reflect on evidence.
In his book, Edward Tufte uses one figurative map created by Charles Minard in
1869 (Figure 2.22) to describe and present the six principles. The figurative map
represents the successive losses in men of the French army in the Russian campaign
1812-1813. Minard utilizes six variables in different visual encodings: the direction
of the army’s movement, its two-dimensional location (latitude and longitude), the
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size of the army, and temperature during the withdrawal from Moscow. The six
principals of analytical design are:

• Comparisons: show comparisons, contrasts, and differences. If the purpose
of a visualization is to assist thinking, it should make it possible to compare.
For example, in Figure 2.22, we can see Minard compares the size of the army
in the different stages of the invasion, which gives us an idea of the losses in
men.

• Causality, mechanism, structure, explanation: it is essential to show
causality in visualization for analysis purposes. We can accomplish this by
simply organizing data in a way that may provoke thoughts about cause and
effect. For instance, in Figure 2.22, having the temperature, the date, and the
name of the different locations added to the map helps explain the change in
the size of the army during the march (Berezina river, the low temperatures,
etc.).

• Multivariate analysis: the world we seek to understand is deeply multivari-
ate, yet we usually use 2D-dimensional representation. For visual analysis, it
is always better to use more than two variables or dimensions, similar to what
we have in Figure 2.22 which uses six variables in different visual encodings.

• Integration of Evidence: it is essential to integrate words, numbers, images,
and diagrams into a visualization. This integration is beneficial for exploratory
data analysis. We can provide this using layers and filtering techniques to guar-
antee a clean look and bring other information into the scene. This integration
can also be seen in Figure 2.22.

• Documentation: we need to provide a complete description of the represen-
tation, a clear title, indicate the authors, document the data sources, show full
measurement scales, and point out relevant issues. We simplify the analysis
process by providing that information, just like Minard did in the figurative
map.

• Content Counts Most of All: analytical presentations ultimately stand or
fall depending on their content’s quality, relevance, and integrity. Therefore, we
need to provide any additional information that can reinforce the presentation’s
quality or integrity.
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Figure 2.22: Figurative map of Napoleon’s march on Moscow in 1812

2.5.1 Data science

Machine learning in general and neural networks, in particular, are considered data-
driven models. Data preparation is crucial before exploiting it for training. The
quality of this step has a significant role in defining the neural network’s performance
at the end. It is commonly considered that 80% of our time working with neural
networks is spent preparing data, especially when working with real-world data. Due
to the massive quantity of data that we can acquire nowadays in different fields, the
incomplete and unstructured nature can be a huge challenge to explore it using neural
networks; that’s where data science comes in. Data science uses scientific methods,
processes, algorithms, and systems to extract insights and knowledge from data,
structured or unstructured. It helps understand the data existing correlations and
spot any missing information. As Carly Fiorina, former CEO of Hewlett-Packard,
once said: "The goal is to turn data into information, and information into insight."
1

1"Information: the currency of the digital age" Oracle OpenWorld, San Francisco, 2004
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2.5.2 Psychological principles for visual display

The way we present a visualization impacts how the recipient processes it. For
example, this recipient can be an audience in a conference or a scientist working
with data. We can apply the following psychological principles to guarantee a certain
degree of clarity while creating those visualizations. Stephen M. Kosslyn presented
those principles in his book Graph Design for the Eye and Mind [Kosslyn, 2006]. We
can adapt the principles to any visual display, and in particular for large scale data
visualization:

• Principale of relevance: communication is most effective when neither too much
nor too little information is presented. Therefore, defining the exact clear message
before designing a visualization will be essential to select what information to
include.

• Principale of appropriate knowledge: communication requires prior knowl-
edge of pertinent concepts, jargon, and symbols. Hence, visual analysis is easier to
apply if the visualization is built on top of appropriate information known to the
recipient, and it’s easier to understand a new idea if we present it as growing out
of a familiar one.

• Principale of salience: attention is drawn to significant perceptible differences,
and our focus goes first to the most prominent features of visualization. It can be a
particular color, the difference in contrast, or a shape. That’s because the superior
colliculus (for vision) in our brain is functional immediately after birth, whereas
the other parts of the brain that requires shifting voluntarily the attention become
active a couple of months after birth. This attention needs to be oriented to the
essential information.

• Principale of discriminability: two properties must differ by a large sufficient
proportion, or they will not be distinguished. This principle applies to the size,
thickness, brightness, and density of dots. A particular case of discriminability
occurs when characters must be large enough or differ in color, contrast, or weight
to stand out from the rest and therefore be noticed. Otherwise, it will be much
more challenging to see.

• Principale of perceptual organization: people automatically group elements
into units, which they then attend to and remember. We pay attention to pat-
terns registered by the same input channel, and these channels can be the object
orientation or any changes in light.

• Principale of compatibility: a message is easiest to understand if its form is
compatible with its meaning. The appearance of a pattern should be consistent
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with what it symbolizes, and this can mean different aspects, such as appearance-
meaning correspondence, cultural conventions, or perceptual distortion.

• Principale of informative changes: people expect changes in properties to
carry information. Usually, there is no new information if there is no change in
the actual pattern or visible object. However, suppose there is any additional
information. In that case, we expect to see a visible change on display, which can
be a change in color, light, object position, adding or deleting a line, etc. The same
thing when we see a change in display. We expect this change to convey a piece of
information. If not, this will be considered as a distraction instead.

• Principale of capacity limitations: people have a limited capacity to maintain
and process information and will not understand a message if too much informa-
tion must be retained or processed. One of the significant aspects of this principle
is the short-term memory limits since we can only hold in mind about four units
simultaneously. Therefore, it will be hard to understand a display if it requires
too much information in mind. Processing limits is another aspect of this prin-
ciple. It will be harder to understand if a display requires too much effort to be
processed and understood. For example, a visual display may require mental trans-
formation, comparison, or averaging operations, which requires additional effort to
understand.

2.5.3 Visualization in neural networks

Due to the immense amount of data available nowadays in different domains and the
increasing complexity of neural networks, understanding how the network reacts to
specific inputs and follows the training process is not a trivial task. Data visualization
is one possibility to understand better how the network works. By using the right
visualizations, we can expand our knowledge of the network, which takes us a step
further into having explainable neural networks.

In convolutional neural networks (CNN), visualization has proven to be very
helpful in understanding the network performance and outputs. In the multimedia
field, neural networks achieve state-of-the-art performance in most of the tasks like
segmentation, classification, and object detection [Noh et al., 2015],[Zeiler and Fer-
gus, 2014], the possibility to visualize components of the network helped validate
the network performance and explain the decisions. Visualization in neural networks
can also include neurons, synapses, input activity, and learning. However, one of
the actual challenges of neural networks is the need for a lot of data to train the
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network and usually a more complex architecture for better performance. This sit-
uation makes it challenging to perform data analysis since the massive quantity of
data requires extra attention to the selected visualizations and how much data we
present at once to avoid overwhelming the user with unnecessary data that will make
the analysis process harder [Ali et al., 2016].

2.6 Conclusion

In this chapter, we presented a background on neural networks, such as the different
generations, the network components, the existing learning rules, and neurons. We
also introduced spiking neural networks and the various information codings. In the
second part, we introduced the visualization aspect of this work, a brief introduction
on visualization in general, data science, and visualization in a neural network.

In the rest of this manuscript, we present our contributions toward better spiking
neural networks using visual analysis. First, Chapter 3 presents a group of SNN sim-
ulators and what they provide as visualization techniques. Moreover, in this chapter,
we compare the simulators in terms of their features and the quality of the visual-
izations. This comparison concludes that we need a better way to visually analyze
the network activity. Next, in chapter 4, we present VS2N, a tool for dynamic over
time analysis of spiking neural networks. Using VS2N, we can analyze, understand,
validate, and propose improvements for SNNs. Since the evolution of the network
takes place over time, it is essential to consider the time aspect during the analysis,
which is supported in VS2N by the ability to move in time, unlike other existing
tools for visual analysis. Finally, chapter 5 presents a dynamic approach to compress
a spiking neural network during training, which was proposed based on the visual
analysis conducted using VS2N. The compression is applied on synapses, depending
on the synaptic weights and a dynamic threshold. Using this approach, we can com-
press the network up to 80% and preserve similar performance to a non-compressed
network.



Chapter 3

Visualization techniques in
SNN simulators

Neural networks are the first thing that comes to mind when discussing artificial
intelligence because of their significant impact in different fields. Neural networks
have evolved since their first appearance. It was able to solve linear problems only
(first generation) than solving non-linear problems (second generation) using deep
neural networks, to finally the third generation, which is bio-inspired. However, the
near end of Moore’s law and the limitation of the Von Neumann architecture pre-
vent us from having suitable hardware for neural networks, which results in immense
energy consumption and carbon footprint. On the other hand, neuromorphic archi-
tectures are a promising way to overcome those limitations. Spiking neural networks
on neuromorphic hardware can reduce energy consumption due to the spike-based
communication, which is non-trivial to implement on a binary-based architecture
(Von Neumann).

Neuromorphic architectures implement spiking neural networks (SNNs), which
model at a precise level how our brains work. However, one of the main problems
that prevent us from getting the best of SNNs and neuromorphic architectures in
terms of performance is the lack of a clear and complete understanding of SNN
behavior, especially what makes learning efficient and how to detect any issues during
the activity. One way to answer that is by visual analysis of the activity in spiking
neural networks during the simulation. This chapter presents some of the simulators
used to train SNN and compares the visualization techniques proposed by them for
analysis purposes. This comparison aims to determine if the current visualizations
offered by the simulators are enough to analyze the network or not [Elbez et al.,
2018].

45
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3.1 SNN Simulators

Simulation is a crucial step in every experiment. Before implementing any archi-
tecture, we have to pass by the simulation to conduct the required tests. Many
simulators have been created to help researchers to test their hypotheses. In this
chapter, we are interested in simulators that offer a visualization for this type of
network: Neuron, Brian, Nengo, Neuronify, Simbrain, N2S3, and NEST. We also
mention another category of simulators that appeared in recent years, which are
based on PyTorch simulator [Paszke et al., 2017].

Standard differential equations essentially define neural network learning, but due
to the discrete nature of spikes, designing an efficient simulation of spiking neural
networks is a non-trivial problem. There are two families of simulation algorithms
used for SNN: event-based simulation and clock-based one. Synchronous or clock-
driven simulation simultaneously updates all the neurons at every tick of a clock,
which is easier to implement, especially on GPUs for efficient execution of data-
parallel learning algorithms. On the other hand, event-driven simulation behaves
more like hardware, in which conceptually concurrent components are activated by
incoming events (or spikes) [Brette et al., 2007].

Event-driven simulation is particularly suitable for untethered devices such as
neurons and synapses since the nodes go into sleep to preserve energy during the
absence of activity. Energy-aware simulation needs information about active hard-
ware units and event counters to establish the energy usage of each spike and each
component of the neural network. The event-driven execution model is independent
of the hardware architecture which is running on. So, event-driven simulators can
naturally run on a grid of computers, with the caveat of synchronization issues in
the event timings management. Furthermore, as the learning mechanisms of spiking
neural networks usually incorporate spike time, the choice of the clock period for a
clock-based simulation may lead either to imprecision or to a higher computational
cost.

Another category of simulators has emerged in recent years, a category based
on the PyTorch simulator. PyTorch is a clock-based simulator created mainly for
conventional neural networks simulation using backpropagation and deep learning.
It was adapted in academia as a first choice due to the flexibility and the ability to
implement custom components since it is based on Python. A couple of simulators
were created on top of PyTorch by adding support for SNN to take advantage of what
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PyTorch offers when working with SNNs. Applying the backpropagation requires
differentiable activation functions. However, spikes are “all-or-none” events, which
cause discontinuities, and it is impossible to use on SNN at this state. One of the
tricks to make the backpropagation algorithm work with SNN is using a sigmoid
function on the spikes to calculate derivation and the gradient, called surrogate
gradient learning [Neftci et al., 2019].

3.1.1 NEURON

NEURON is one of the oldest simulators. It was developed in 1997 by Michael
Hines et al. at Yale, and Duke university [Hines and Carnevale, 1997]. NEURON
offers the possibility to model individuals or networks of neurons. The primary
scripting language of NEURON is HOC (High Order Calculator) programming lan-
guage [Kernighan, 1984]. However, a Python interface is also available. NEURON
can be used with the possibility of loading programs from a file or written in a shell.
In addition, it supports parallelization using the MPI protocol [Forum, 1994].

We can resume the visualization that NEURON offers for the users in various
graphs as shown in Figure 3.1, graphs such as membrane potential graph and dendrite
voltage graph, and a reconstruction of the cell shape. Each visualization is presented
in a separate window. The interface did not change with the new versions of the
simulator.

Figure 3.1: Visualization examples in NEURON [Hines and Carnevale, 1997]

3.1.2 Brian

Goodman et al. first published about Brian in 2008 [Goodman and Brette, 2008].
This tool made the coding of spiking neural networks fast, easy to use, and flexible.
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In addition, Brian is written in an interpretative language, which is effective in many
situations thanks to vectorized algorithms [Brette and Goodman, 2011]. However,
the first Brian version is unsuitable for massive simulations that need significant
resources or simulating detailed biophysical models.

Brian offers many possibilities of visualization like shown in Figure 3.2, which can
automatically change the visualization depending on the size of the network. Those
visualization techniques include the membrane potential graph, spikes plot, firing
rate graph, and synapses connections representation.

Figure 3.2: Visualization examples in Brian [Goodman and Brette, 2008]

In 2019, Brian 2 was presented [Stimberg et al., 2019]. This version has im-
proved in performance and used Matplotlib library [Hunter, 2007] for visualization.
Brian2GeNN was introduced recently (2020) [Stimberg et al., 2020]. This simula-
tor version uses graphics hardware to accelerate the simulation of spiking neural
networks.

3.1.3 Nengo

Nengo is a python library used to create and simulate very large-scale neural net-
works. It can create spiking neural simulations, and other sophisticated types in a
few lines of code [Bekolay et al., 2014]. Nengo offers the possibility to define neu-
ron type and learning rules, create and execute deep neural networks and simulate
on hardware devices such as Spinnaker [Furber et al., 2014] or Loihi [Davies et al.,
2018]. Nengo offers many types of backends that we can use for simulation: Nengo,
Nengo_ocl, Nengo_mpi, Nengo_distilled. For the hardware simulators, Nengo offers
two types which are Nengo_brainstorms, Nengo_spinnaker, and Nengo_loihi.

Nengo is composed of a server written in python connected to Nengo core and
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Figure 3.3: Comparison between different versions on the same task [Stimberg et al.,
2020]

an interactive interface for users to manipulate. This interface is based on web
technologies like HTML, D3.js, and jQuery.

When it comes to user experience, Nengo provides a unique experience for users
to interact with the code directly on the interface and see the changes in real-time
with an acceptable degree of interactivity. Furthermore, Nengo offers a variety of
visualization techniques that we can use to follow the network activity (Figure 3.4),
like membrane potential graph, spikes plot, and activation patterns.

Nengo was used to build Spaun, the world’s largest functional brain model. Spaun
currently contains 6.6 million neurons and over 10 billion synapses.

3.1.4 Neuronify

Neuronify is an educative tool created to simulate neurons and neural network be-
havior. We can use it to combine neurons with different connections and see how
changes in individual neurons can lead to behavior change in big networks, it is de-
veloped in C++ and QML using the cross-platform application framework Qt by
Ovilab [Dragly et al., 2017].

In Neuronify, exploring and creating neural networks is made easy by dragging
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Figure 3.4: Visualization examples in Nengo [Bekolay et al., 2014]
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and dropping the elements on the screen. It is available to use on desktop or mobile
devices.

Neuronify offers a friendly interface and interactivity for users. For the network
visualization, Neuronify has three techniques: Spike detector plot, firing rate plot,
and the membrane potential graph. In Figure 3.5, we can see some visualization
examples.

Figure 3.5: Visualization examples in Neuronify [Dragly et al., 2017]

3.1.5 Simbrain

Simbrain is a tool for constructing artificial neural networks, written in Java and
under GNU license. This simulator concerns more biology or the medical field sci-
entists, which is why we can observe many biological representations and networks.
Simbrain incorporates the philosophy of making things easier for users. It comes
with a variety of examples and types of networks with descriptions, in an organized
way, and an easy interface to interact and work with [J, 2008].

For the visualization aspect, Simbrain provides detailed documentation. More-
over, due to the general nature of this simulator, it offers many techniques for the user
to choose from, as shown in Figure 3.6, like Spikes plot, Spike visualizer, membrane
potential variation graph, and the possibility to combine more than one technique.

In 2016, Tosi et al. [Tosi and Yoshimi, 2016] presented Simbrain 3.0, which is
an improvement version over the old version, in terms of flexibility and visualization
(see Figure 3.7).
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Figure 3.6: Visualization examples in Simbrain [J, 2008]

Figure 3.7: Visualization examples in Simbrain 3.0 [Tosi and Yoshimi, 2016]

3.1.6 N2S3

N2S3 (Neural Network Scalable Spiking Simulator) is a simulator created to simulate
neuro-inspired hardware accelerators. It is written in Scala and Akka, giving it all
the scalability and portability features Scala offers. N2S3 is an event-driven simu-
lator based on exchanging messages between concurrent actors to mimic the spikes
exchange between neurons [Wyatt, 2013]. Being flexible, extensible, and scalable
makes the integration of new models or tools easy. [Boulet et al., 2017]

N2S3 has been developed from the ground up for extensibility. As a result, N2S3
allows the modeling of various neuron types and synapse models, different network
topologies, various learning procedures, various reporting facilities, and user-friendly
with a domain-specific language to express the experiments the user wants to simu-
late. It is available online as open-source software. It comes as a library with some
classic experiments ready to use, such as handwritten digit recognition on the MNIST
dataset [LeCun et al., 1998] and the highway vehicle counting experiment [Bichler
et al., 2012].
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N2S3 allows users to observe simulation outputs through network observers, which
can vary from textual loggers to dynamic visualizations. N2S3 also offers a synaptic
weight evolution visualizer, spike activity map, and the visualization of actual input
data (see Figure 3.8).

Figure 3.8: Visualization examples in N2S3 [Boulet et al., 2017]

3.1.7 NEST

NEST is an SNN simulator coordinated by the NEST Initiative [Gewaltig and Dies-
mann, 2007]. It has a focus on the network dynamics, size, and structure rather
than the individual neurons. It is considered one of the most attractive tools for
SNN simulation due to its ability to work with any network size. NEST offers two
ways of creating simulations. First, using it as a Python library (PyNEST) that
provides many commands to access NEST’s simulation kernel and conduct a simu-
lation. Second, by using the stand-alone application (NEST). Having the simulation
kernel written in C++ provides NEST with the speed and the possibility to have
optimized simulations. The used simulation language is SLI [Eppler et al., 2009]
which is considered a stack-oriented language.

NEST does not offer a graphical interface for the user to create, edit and manage
the simulation. Instead, it’s done by either working with the command line provided
by this tool or using NEST as a Python library.

NEST offers the possibility to view the network in text form to check the net-
work structure, with the help of Python packages like Matplotlib [Hunter, 2007],
and NumPy [Harris et al., 2020]. Furthermore, NEST offers a variety of visualiza-
tion techniques mainly based on Matplotlib, as shown in Figure 3.9, like Membrane
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Figure 3.9: Visualization examples in NEST [Gewaltig and Diesmann, 2007]

potential representation, Synaptic weights representation, and neurons spikes plot.
Moreover, other tools exist based on NEST simulations to conduct a visualization,
like VisNEST [Nowke et al., 2013] which was able to visualize a network with 20
million neurons and many more synapses in the medical field.

3.1.8 PyTorch-based simulators

Since PyTorch is Python-based, the Matplotlib library is usually used for any visual
display. Therefore, we can group all the PyTorch-based simulators for visual analysis.
SpykeTorch [Mozafari et al., 2019], BindsNET [Hazan et al., 2018], and Norse [Pehle
and Pedersen, 2021] are examples of tools made on top of PyTorch, which support
gradient-based algorithms for SNN, using surrogate gradient learning.

3.2 Simulators comparison

Many visualization techniques and models exist in data science, especially with the
rise of Big Data and the need to analyze such a considerable quantity of data for a
better user analysis experience. Furthermore, a good and helpful visualization may
lead to highlighting potential models and network and architecture improvement,
so having the possibility to judge and compare a visualization technique is very
important.

From a technical point of view, the simulators presented have appealing charac-
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teristics like the used technology and support for large-scale simulations and more,
shown in Table 3.1.

Technology Type of simulation Parallelism Scalability GUI CMD

NEURON C, C++, python Event-driven + + + +

Brian Python, NeuroML, PyNN Clock-driven + - - +

Nengo Python, Numpy, HTML Clock-driven + + + +

Neuronify C++, Qt Clock-driven - - + -

Simbrain Java Clock-driven - - + -

N2S3 Scala, Akka Event-driven - + - +

NEST C++, Python, SLI Event-driven & Clock-
driven + + - +

Pytorch-
based Python Clock-driven + + - +

Table 3.1: Technical review

For the visualization aspect, we use seven criteria for comparison. Those criteria
are inspired by the work of Freitas et al. [Freitas et al., 2002], and Stephen Few [Few,
2017] and another important criterion in our case, which is the interactivity level.
We divide the criteria into three categories: Informative, Emotive, and finally the
Interactivity.

The first category, called Informative, contains five criteria. Usefulness: whether
this visualization is providing meaningful information or not. Completeness: if the
visualization includes all the required components to be easy to understand or not.
Perceptibility: whether it is straightforward to understand or not. Truthfulness: rep-
resents the degree of accuracy and validity of the visualization. Finally, Intuitiveness
represents the degree of familiarity of this visualization technique for the user. The
second category, called Emotive, contains one criterion chosen for our case, which is
Aesthetics: it concerns the design part and quality of the visualization technique.
Finally, the Interactivity: which involves the level of interactivity provided by this
visual display, includes the different operations we can do on the graph (save, scale,
zoom, etc.).
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Usefulness Completeness Perceptibility Truthfulness Intuitiveness Aesthetics Interactivity

NEURON ++ - ++ + ++ - +

Brian ++ ++ ++ + ++ + +

Nengo ++ + ++ ++ ++ ++ ++

Neuronify + - ++ + ++ ++ ++

Simbrain ++ ++ ++ ++ + + +

N2S3 ++ + ++ ++ ++ + -

NEST ++ + ++ ++ ++ + -

Pytorch-
based ++ + ++ ++ ++ + +

Good = ++ | Medium = + | Bad = -

Table 3.2: Visualization comparison

3.2.1 Discussion

From Table 3.1, we can see that various programming languages are used in the
development process. However, Python is the most dominant because it is a scripting
language easy to use and the vast libraries it offers for machine learning related
tasks. Another thing to mention is the parallelism and large-scale simulations, which
are not supported by all the simulators. This limitation may affect the simulator’s
performance and limit its usability while working with large networks and big data.
We can see also that some simulators do not provide a graphical interface (GUI),
which may affect the learning experience for the new users and makes it harder to
debug and follow the execution. However, they provide command line execution
(CMD), which may also be helpful when working with large networks since the lack
of a graphical interface may reduce the resources needed for the simulation to run.
Therefore, allowing the execution of more large networks.

From Table 3.2, we can see that all the simulators offer a good level of useful-
ness and perceptibility by providing a useful and easy-to-understand visual display.
However, for the completeness criterion, we see that NEURON and Neuronify do
not provide a visualization with the necessary components to collect and extract
useful information. The reason for that can be the old techniques provided by one
of the oldest simulators, which is NEURON. For Neuronify, it is the fact that Neu-
ronify is a simple tool for beginners to discover this kind of neural network, and it is
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not made for analysis purposes. For truthfulness and intuitiveness, we can see that
all the simulators got straightforward visualization techniques used and known by
almost everyone. Moreover, nearly all simulators had a good score for aesthetics,
except NEURON, which lacks the artistic part. Finally, for the interactivity, the
basic requirements, like zooming and moving, are included in most of the simulators
except N2S3 and NEST, since the two simulators do not provide visualization for
the analysis purpose and focus more on the simulation itself.

All the presented simulators do very well with small networks, but not all can
perform well with larger ones. As a result, the visualization techniques used for
simple networks become less valuable and compatible for large-scale analysis. The
simulation of a large network can take a massive part of the machine resources, which
affects the visual display interactivity. It may be better to separate the simulation
part from the visualization one to avoid this issue. Hence, We see the need for
interactive visualization tools to analyze spiking neural networks, tools that can offer
visualizations for analysis purposes, and the ability to analyze the network activity
over time which is crucial for SNNs and hard to provide using simulators only.

3.3 Conclusion

Analyzing spiking neural networks can lead to a better understanding of the different
phenomena. However, simulation of spiking neural networks usually requires consid-
erable resources and time. As a result, the need for better ways to run the simulations
on more suitable hardware appeared. Neuromorphic hardware like SpiNNaker, Loihi,
or FPGA-based boards give more possibilities and consume less energy. However,
the visualization provided by the tools used with the neuromorphic hardware for
simulation has the same issues. Therefore, we need to separate the simulation pro-
cess from the analysis since it requires considerable resources to do both in the same
tool.

In this chapter, we presented a couple of spiking neural network simulators and
their visualization techniques. Furthermore, we presented a technical comparison
between the simulators regarding the used technology, large-scale support, and other
features. We saw that Python is dominant as a programming language. For the
visualization comparison, the selected criteria are inspired by the work of Freitas
et al. [Freitas et al., 2002], and Stephen Few [Few, 2017] and another measure we
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added which is the level of interactivity in the visual display. Finally, we emphasized
separating the simulation process from the visualization one because both require
considerable resources, especially when dealing with large networks. Moreover, we
use the visualizations offered by the simulators for monitoring and not analysis. As a
result, there is a need for dedicated tools to provide visual analysis of the activity in
SNNs, tools that can support large-scale analysis and provide a degree of interactivity
and support for over time analysis. This topic is the subject of the next chapter in
this manuscript, where we present VS2N: a dynamic interactive tool for the analysis
of spiking neural networks.



Chapter 4

VS2N: Interactive Visualization and
Analysis tool for SNN

Bio-inspired technology has attracted attention in recent years due to its massive
parallelism and low power consumption, making it suitable for energy-constrained
applications. In addition, this technology provides neuromorphic computing by using
Spiking neural networks (SNNs). Therefore, it is considered one of the promising
alternatives to the Von Neumann architecture for ”more-than-Moore” computing.

In 2020, every human created at least 1.7 MB of data each second, which means
people generated a total of 2.5 quintillion bytes per day1. With this continued in-
crease in data, it is becoming more of a challenge to manage and explore it, especially
with data-driven models like neural networks. In academia, managing big data is an
active research field, such as proposing algorithms to manage big data [Wang et al.,
2017], frameworks to analyze big data [Gupta et al., 2017], or applications involving
media indexing, classification, or retrieval. Moreover, the use of neural networks in
different fields has provided significant progress, thanks to the different applications,
like stock market prediction [Moghar and Hamiche, 2020], cancer detection [Taher
and Sammouda, 2011], water quality prediction [Liu et al., 2019], or tasks like image
classification [Falez et al., 2019] and Content-based image retrieval [Sabahi et al.,
2016, Sezavar et al., 2019]. Spiking neural networks can be more suitable for many
tasks than classic neural networks because SNNs consider time during activity and
process natural signals while being robust to noise. In [Yang et al., 2017], the au-
thor used Spiking Cortical Model for content-based retrieval, which produces better
performance due to noise robustness and geometry invariance that it provides for
features extraction and texture retrieval of images. Another work [Wu et al., 2018]
presented an SNN framework for sound classification, which has proven to perform
robust sound recognition tasks and achieves promising performance.

1Bulao, J. (2021 May 7). How much data is created every day in 2021? TechJury.
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Due to the asynchronous nature of spiking neural networks, it is crucial to under-
stand how the network is evolving during the training phase to learn more about the
network and easily tune the network parameters to achieve better results. Moreover,
a better understanding of the spiking neural networks behavior helps close the gap
between SNNs and the traditional neural networks. In the SNN domain, several
simulators propose basic visualization of the network activity, as presented earlier.
Nevertheless, those visual displays are not suitable for analysis purposes, and an-
alyzing big data requires a lot of resources. Furthermore, this big data makes it
challenging to do the visual analysis manually without a dedicated tool to process
the data. Therefore, we present VS2N in this chapter, a web-based tool for post-
mortem interactive dynamic visualization and analysis of spiking neural networks.
In addition, VS2N provides the possibility to follow the network learning process,
move back and forth in time, and different modules for analytic purposes.

The rest of this chapter is organized as follows: Section 4.1 represents related
works concerning visualization and neural networks. Section 4.2 presents analysis
requirements in the case of spiking neural networks. Section 4.3 presents technical
aspects of VS2N and the different components. In Section 4.5, we describe use-cases
to showcase the advantage of VS2N. Section 4.6 gives a comparison between VS2N
and similar tools. Finally, we review the limitations of VS2N and the perspectives
in Section 4.7.

4.1 Related work

With the growing interest in neural networks from different fields, an increasing need
to better understand and intercept causality in this type of network has appeared,
mainly when used in critical areas. However, neural networks are broadly considered
a black box since it is often hard to interpret some decisions, and one of the ways to
overcome this issue is to use visual analytics. Noh et al. [Noh et al., 2015] presented
one of the earliest works in classic neural networks that used visualization to under-
stand the network behavior better. The author reconstructed the features learned
by the network from the last layer to the input layer to understand how the network
is reacting to input data (Figure 4.1).

Over the years, many tools were made to answer a specific question or better
understand the behavior of convolutional neural networks (CNNs), especially when
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Figure 4.1: Deconvolutional network

dealing with deep learning and deep neural networks. For example, in [Krause et al.,
2014], the authors introduce a tool for interactive features selection to understand
better how predictive features are ranked across feature selection algorithms. This
tool leads to essential insights when tested on a case study from the clinical research
field. Moreover, tools presented for deep neural networks (DNNs) [Kahng et al.,
2018, Zurowietz and Nattkemper, 2020] help the user to better explore complex
DNNs, by providing visualization approaches to convolutional neural network layers.
Besides, a similarity display can reveal how each layer perceives the input in a deep
neural network. Finally, in [Strobelt et al., 2018], a visual analysis tool is presented
for recurrent neural networks (RNNs) to understand the hidden state dynamics,
which leads to a better network.

For spiking neural networks (SNNs), analyzing large networks is challenging due
to the asynchronous nature and spikes for communication. In [Marks, 2017], the
authors present a framework for immersive and intuitive 3D visualization of the
network in virtual reality. This framework improves the user’s abilities to investigate
and examine SNNs. Another work [Kasiński et al., 2009] presents a 3D interactive
visualization tool of SNN by visualizing individual neurons and their connections.
This work focuses on the clarity of the network exploration and the implementation
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Figure 4.2: Example of CNN visual display tools

issues related to 3D network representation. Finally, another multipurpose tool is
presented in [Senk et al., 2018] to visualize the network layers in 2D and 3D, using
coordinated multiple views for massively parallel neurophysiological data.

If we analyze the presented tools, we can see that they have some points in
common, such as web-based tools, targeting a specific problem, and limited to a
defined simulator. We can summarize the novelty of VS2N in four features: 1.
Modular nature: the visualizations are grouped into modules. Each module may
target a specific question or problem. Anyone can add new modules for a particular
analysis. 2. Simulator-independent: we can use any simulator as long as the collected
data follows specific schemas, which VS2N can understand. 3. Scalability: backed by
the combination of Apache Spark and MongoDB for data processing, we can deploy
VS2N on multi-nodes or clusters for more solid performance. 4. Dynamic analytics:
VS2N provides the possibility to walk in time with the evolution of the network
during activity, which is not possible using the existing tools for data analysis. This
feature is significant when the network evolution is done over hours of activity, which
is the case in spiking neural networks.

In MongoDB, we put data in collections, and each collection contains documents
in JSON (which are similar to rows in a relational database). A document schema is
a JSON object that contains information about the shape, fields, and type of data
stored in that document. In VS2N, we use predefined schemas to read the stored
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Figure 4.3: Example of SNN visual display tools

data, and simulators need to consider it to use VS2N2.

4.2 Requirements analysis

In order to analyze spiking neural networks, we can break the network components
into three entities:

4.2.1 Input data

Neural networks are data-driven models, meaning that the quality of the input data
plays a significant role in network performance. Preparing and cleaning the input
data is a time-consuming operation. However, it can help observe any correlations
and reduce biases. The data analysis involves studying and observing the input data
during the network activity and the network reaction to it. This analysis can differ
from one type of input data to another since datasets come in a different format (see
Figure 4.5).

2https://gitlab.univ-lille.fr/bioinsp/VS2N/-/wikis
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Figure 4.4: VS2N MongoDB schema for one collection

Figure 4.5: Input data examples: A. CIFAR-10 B. Urbansound8K
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4.2.2 Neurons

Neurons are the main ingredients of the network. The neuron behavior depends
on the type of neuron and can be affected by the network activity, the information
coding, and the network architecture. Neuron analysis affects the membrane activity,
the spike frequency, and the neuron behavior to an input. By analyzing all neurons,
we can monitor the network performance and identify any possible improvements.

4.2.3 Synapses

Synapses keep the neurons attached and help spread activity across the network.
However, the number of synapses in a network is more than the number of neurons,
making it challenging to analyze their activity. We can learn more about the neuron’s
response to specific input and the learned features, which is more challenging in mul-
tilayer networks by analyzing synapses. The analysis may help reduce unnecessary
synapses while preserving good performance, which is helpful for better hardware
implementation.

Figure 4.6: The visual analysis workflow

As described in Figure 4.6, to use VS2N, the user (1) start by collecting the data
from the simulation. In our case, we used the N2S3 simulator [Boulet et al., 2017]
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and Nengo [Bekolay et al., 2014]. We can use any simulator as long as the collected
data follows the schemas from VS2N. In (2), select the simulation and the modules
on VS2N. Then in (3), launch the pre-processing by VS2N using Apache Spark.
(4) start exploring the analysis using the web interface and detect any patterns or
phenomena. (5) formulate hypotheses based on the observations. Finally, (6) apply
adjustments to the network and start the simulation and data collection again.

4.3 VS2N components

VS2N is a web-based tool based on Flask [Miguel Grinberg, 2018], a micro web
framework written in Python. The backend is composed of two main parts: Mon-
goDB1, for saving data obtained from the simulation, and Apache Spark2, for any
pre-processing on the data. Due to the nature of MongoDB and Apache Spark. This
organization makes it plausible to scale in terms of computation power and deploy
on the nodes of a distributed cluster (see Figure 4.7). In addition, VS2N uses Dash
library3 to create web interfaces and interactive visual displays using Python.

Since Python is the unified language used, we can take advantage of the dif-
ferent machine learning libraries in Python (Scikit-learn [Pedregosa et al., 2011],
PyTorch [Paszke et al., 2019], TensorFlow [Abadi et al., 2015], etc.) and combine it
with the visual displays for a better experience.

Dashboard (Flask)

MongoDB Spark

PyMongo

MongoDB Spark connector

PySpark

Figure 4.7: VS2N components

1www.mongodb.com
2www.spark.apache.org
3www.plotly.com/dash
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4.4 Visualization methodology

In this section, we present the different analysis modules in VS2N, the used visual-
izations, and the purpose of each module. The network used during the presentation
of the modules is a single dense layer network and the images dataset as input.

4.4.1 General analytics module

This module summarizes the network performance and the general information, like
the number of neurons and layers, network accuracy, and the used dataset. This
module is the first one used with every analysis. Therefore, it does not require any
preprocessing, and we can use it even while the simulation is still running. It is made
of three main parts:

1. General information: represents a summary of the network accuracy, used
topology, and dataset. We extract this information from the info collection.
This collection is filled at the start of the simulation, except for the accuracy.
Using this part, we can learn about the network structure before analysis us-
ing the information about the network components, which will affect how we
approach the visualizations during the visual examination and distinguish be-
tween the different network traces we collected using the "simulation date."

Figure 4.8: General information

2. Network activity: a general visual display of the network activity, such as
spikes, neurons potential, synapses update, and loss update during training.
This part is helpful to observe any patterns in the activity, the learning evo-
lution of the network, and any correlation between the different graphs. We
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can select the information to show the type of graph and move the focus on a
specific region of the representation using the selector at the bottom.

Figure 4.9: Network activity

3. Dataset overview: represents information on the actual input of the net-
work at that period. This visual display illustrates the number of each input
(grouped by labels if it is a labeled dataset, otherwise this visualization is not
shown), and it does not depend on the learning type (supervised or unsuper-
vised) but only on the dataset (labeled or not). This treemap representation
helps the user observe the distribution of the used dataset and all the classes
over time.
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Figure 4.10: Dataset overview

4.4.2 Neuron analytics module

This module contains a group of interactive visualizations to observe the activity of
each neuron separately or grouped. The user can analyze the behavior of the selected
neuron with the guidance of spikes and potential activity while considering the input
data that led the neuron to spike. However, to use this module, we need to wait
until the end of the recorded network activity (learning or inference) since it requires
some preprocessing using Apache Spark, which we cannot do before collecting all the
data. The different components of this module are the following:

1. Layer and neuron selector: this selector controls what information to dis-
play, which is helpful if we want to follow or compare the evolution of only
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selected neurons. Besides, by filtering what information to show, we reduce the
required computation resources and focus on the goal of the analysis. When the
user selects a neuron, more visualizations regarding this element are displayed
(4, 5, and 6).

Figure 4.11: Layer and neuron selector

2. 3D spike frequency: this component provides a 3D illustration of the spike
frequency per neuron in the output layer (neuron ID on the X-axis, spike fre-
quency on the Y-axis, and Z-axis for the respective class). In the case of
frequency-based coding, this visualization provides the user insight into the
neuron’s spike frequency compared to other neurons detecting the same class
and the other classes. Therefore, how neurons from one class are distributed
over the 3D space indicates the network performance and possible class confu-
sion due to similarities. However, this representation is only for labeled data,
and VS2N will discard it if we use non-labeled data.

Figure 4.12: 3D spike frequency
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3. Neuron spikes per class: this representation is visible only when we select
a neuron from a class in the 3D spike frequency component. This graph pro-
vides information on the number of spikes per neuron in the chosen class. It is
complementary to the previous one and offers more information to better an-
alyze the neuron activity in the same class. Using this graph, we can compare
the number of spikes in one class and check the presence of any dominating
neurons. Similar to the last component (the 3D spike frequency component),
this representation is only visible if the network uses labeled data.

Figure 4.13: Neuron spikes per class

In this module, VS2N adds three new graphs upon neuron selection by the user.
Those visualizations are added for each neuron selected by the user. The three
representations are:

4. Neuron spikes activity: this represents the neuron’s spiking activity during
the recorded period. The number of spikes is accumulated per step, defined by
the user (1s by default). This representation helps the user confirm any silent
neuron’s existence once we identify it using the previous visualizations in this
module.

5. Neuron potential activity: this represents the membrane potential activ-
ity of the neuron. VS2N displays the average of the membrane potential per
step. Using this component, we observe the internal neuron phenomena such
as voltage leakages (in the case of LIF neurons) or refractory periods after a
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Figure 4.14: Neuron spikes activity

spike. Moreover, we can test and validate any newly implemented formulas of
a neuron.

Figure 4.15: Neuron potential activity

6. Neuron class activity: represents the input class that made the selected
neuron spike. This visualization helps observe and compare the neuron activity
per class during the analysis period and how it changes over time. Moreover,
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we can see how some neurons react to a couple of classes simultaneously, classes
with similar features. However, since this representation also depends on the
input data, which needs to be labeled, it is visible only if the dataset is labeled.
Otherwise, the space on the screen is shared between the two previous graphs.

Figure 4.16: Neuron class activity

4.4.3 Synapse analytics module

This module includes a group of interactive visualizations to watch the synaptic activ-
ity of each neuron. The synaptic activity in a neural network represents the learning
process. Therefore, by analyzing it, we can learn more about this phenomenon. The
visualizations in this module provide insight into how the synapses react to input
data. Any modification on the detected class by the neuron can be seen by a slight
variation in the mean synapse weights and the heatmap. It is also helpful to follow
the activity on the synapses, especially when applying pruning, where we can see the
effect on the network. Unfortunately, this module requires preprocessing after the
end of the simulation, which prevents us from using it while the simulation is still
running. This module is composed by:

1. Layer and neuron selector: when the user selects a neuron, more visual-
izations regarding this element are displayed (3 and 4). We can choose the
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layer name and the neuron ID, and since we are dealing with synapses, we can
specify the dimensions of the heatmap shown to see the patterns correctly.

Figure 4.17: Layer and neuron selector

2. Layer heatmap: represents an overview of the selected layer heatmap at the
end of the training. This visualization is static and requires preprocessing at
the end of the simulation to generate. Therefore, it is not possible to use during
the simulation. However, this representation helps the user get a clear overview
of the features learned by the selected layer, which is helpful to evaluate the
learning process. Moreover, for a multilayer network, reconstruction is needed
to get the proper heatmap representation.

Figure 4.18: Layer heatmap

Once we select one or more neurons, VS2N adds two other components, representing
information about the activity of the selected neuron. Those components are stacked
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dynamically under the layer heatmap representation, and we can remove them easily.
Those representations are:

3. Synapses weight activity: this representation combines a vertical heatmap
and a graph. The graph illustrates the mean value of the neuron weights, and
the vertical heatmap represents the weight distribution throughout possible
values. Using this visualization, the user can observe how the distribution
of the weights evolves compared to other neurons from the same or different
classes.

Figure 4.19: A) Synapses weight activity and B) Neuron heatmap

4. Neuron heatmap: this component is complementary to the earlier visualiza-
tion. It represents the synapses heatmap of the selected neuron. The main
distinction between this representation and (2) is that this representation gets
updated over time while the layer heatmap represents the final values of synap-
tic weights. This heatmap allows the user to detect any change in what the
neuron learns during the simulation.

4.5 VS2N use-cases

This section presents two use-cases where we use VS2N to observe an activity, answer
a question, or validate a hypothesis. For the simulation, we use the N2S3 simulator,
an open-source, scalable spiking neuromorphic hardware simulator [Boulet et al.,
2017], and the Nengo simulator [Bekolay et al., 2014]. For the dataset, we use
MNIST dataset [LeCun et al., 1998], which contains handwritten digits (60k for
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training, 10k for testing). Finally, all the use-cases are applied on a network with a
single dense layer, which uses simplified STDP [Querlioz et al., 2011] as a learning
rule and LIF neurons.

4.5.1 The MNIST last 10k effect

When using the MNIST dataset, we saw an accuracy drop in the last 10k input of the
training data. This drop is observed on small to medium networks (less than 1000
neurons). However, it does not appear on large networks. Furthermore, from this
observation, we assume that the last 10k contains different images, which affects the
network learning process. As a result, by training the same network using MNIST
inverted, we see that this drop disappears from the last 10k and appears at the start
of the training, as seen in Figure 4.20.

We use Nengo for the simulation in this use-case, which is not the simulator used
to obtain the results shown in Figure 4.20.

inverted

Figure 4.20: Network accuracy using 900 neurons with MNIST (1 batch = 10k)

We use VS2N to observe the network activity during training and the last 10k
using the general analytics module. The goal is to validate the existence of this phe-
nomenon by identifying any change in activity around the period when we introduced
the 10k input.
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(A)

(B)

Figure 4.21: Network activity: (A) the first 15k input, (B) the last 10k

In Figure 4.21(A), we can see at the beginning of the training, the number of
spikes and neurons potential activity is stable. However, synaptic weights update
decreases and become stable after a couple of inputs, which is expected due to train-
ing and the nature of the MNIST dataset, which contains centered handwritten
digits. Although, after 50k of input, we can see an interesting pattern at the start
of the last 10k (Figure 4.21(B)), with a noticeable increase in the synaptic weights
update (more than 10%) that remains until the end of the simulation. Since we are
using a single dense layer in this network, this increase in synaptic weights update
means that the patterns learned by the neurons are changing, which will affect the
network performance, as reported in Figure 4.20.

4.5.2 Network compression

One technique to compress the network is by pruning one or more elements in the
network. This element can be a neuron, a synapse, or kernels in the case of a
convolutional network. In the case of synapses, we usually use a defined threshold
as a criterion of pruning. If the synapse weight value is below the threshold, we
consider the synapse as not critical, and we will remove it. The threshold selection
is usually based on experimentation, and it is interesting to watch the effect of the
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prune operation on the network.

For this use case, we use N2S3 to simulate a single-layer network. After training
using half of the MNIST dataset, we apply the prune operation on synapses (thresh-
old=0.2). Then, using VS2N, we observe the general activity of the network once
pruned and the impact of this operation on two randomly chosen neurons.

Figure 4.22: Network activity after 30k input (during the prune operation)

We can see in Figure 4.22 the activity of the network before and following the
prune operation. The spikes and neuron’s potential activity values slightly decreased
after removing more than 50% of the synapses. We expect to see a slight decrease
in activity since we removed only the weak synapses due to the MNIST dataset’s
nature of having centered handwritten digits. We can see a drop in values and a more
regular graph after pruning for the activity of the synaptic weights. Even though
the removed synapses are weak, they are still updated during training, as shown in
the graph. We can see a slight increase just after pruning for the loss graph, but
it returns to normal again. Finally, we can see in Figure 4.22 that after the prune
operation, there was a period of silence in the network. This unexpected pattern is
due to how the pruning process is implemented in the simulator. In N2S3, we had
this issue with simulation time when applying the prune operation. In Figure 4.23,
we can see that by using small networks, the simulation time decreases when prune
is used, which is what we expect. However, when the network size starts growing,
the simulation becomes slower than the none-pruned one, which is the opposite of
what we expect compressing a network since we will have fewer components and less
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computation, which should reduce the simulation time. Based on our observation
using VS2N, we can see that the issue behind the longer simulation time is, in fact,
the prune function in the simulator, which blocks the activity in the network and
causes the simulation to take longer.

Figure 4.23: Simulation time with and without pruning

In Figure 4.24, we can see the synaptic activity of two neurons using the synapse
analytics module. After 15k of input (Figure 4.24(A)), we can see the average value
of synapse weights is close for both neurons. But, the distribution of the synaptic
weights over time (left) is different because the two neurons are learning different
classes, as seen in the heatmap (right). In Figure 4.24(B), we can see the outcome
of applying the prune operation on the two visual displays. The mean synaptic
weights increased since we removed weak synapses, and we can see an update in
the distribution of the synaptic weights (left). The heatmap (right) shows that the
applied threshold (0.2) does not influence the learned class.
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Figure 4.24: Synapses activity of two neurons: (A) the first 15k input, (B) after 30k
input

4.6 VS2N compared to similar tools

Since other tools for visual analysis of neural networks exist, we grouped some of them
to compare with VS2N in terms of some criteria, such as Scalability, Interactivity,
and other criteria related to visualization. It is worth mentioning that not all those
tools support the visualization of SNNs; some are made for convolutional neural
networks.

Kahng et al. presented ActiVis [Kahng et al., 2018], which provides a visual
exploration of industry-scale deep neural network models by integrating multiple co-
ordinated views, such as an overview of the model computational architecture graph
and a neural activation view for model discovery and comparison. Zurowietz et al.
presented in 2020 IFeaLiD [Zurowietz and Nattkemper, 2020], an interactive visual-
ization for feature localization in deep neural networks. The tool interprets neural
network layers as multivariate feature maps and visualizes the similarity between
the feature vectors of individual pixels of an input image in a heat map display.
Using this tool can reveal how different network layers perceive the input image and
how the perception of one particular image region compares to the perception of
the remaining image. TensorBoard [Abadi et al., 2015] is another tool that comes
with TensorFlow. It is a web-based tool for providing the measurements and visual-
izations needed during the machine learning workflow. Using TensorBoard, we can
track experiment metrics like loss and accuracy, visualize the model graph, project
embeddings to a lower-dimensional space. It is a good way to cross-validate the
hyperparameters.

For the tools with SNN support, we have NeuVis [Marks, 2017], which provides
immersive visualization of 3-dimensional spiking neural networks in virtual reality.
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Furthermore, Kasiński et al. presented SNN3DViewer [Kasiński et al., 2009], a 3D
visualization tool for spiking neural network analysis. This tool is dedicated to sup-
porting the study of dynamical processes in large spiking neural networks. Finally,
we have VIOLA [Senk et al., 2018], a multipurpose and web-based visualization tool
for neuronal-network simulation output. It combines and adapts modern interactive
visualization paradigms, such as coordinated multiple views, for parallel neurophys-
iological data.

Features ActiVis IFeaLiD TensorBoard NeuVis SNN3DViewer VIOLA VS2N
Scalability X X X X
Interactivity X X X X X X
SNN support X X X X
Python-based X X X X
3D visualization X X X
Real-time analysis X X X
Web-based interface X X X X X
Simulator-independent X X

Table 4.1: VS2N features compared to similar tools

In Table 4.1, we can see that the most common feature between those tools is
the Interactivity, which is what we expect since we are talking about visualization
tools, and the interactivity is a must for a better analysis experience. Next, we
have Web-based interface, as we can see a lot of those tools are web-based, which
allows great portability and fewer deployment issues. Then, we have Scalability,
Python-based, and SNN support, as we can observe in Table 4.1, more than half the
tools are Python-based, which reflects the impact of Python in the field of machine
learning or visualization. Besides, most of the tools are scalable and support large
neural networks and spiking neural networks. For the 3D visualization and Real-
time analysis, we can see that few tools provide it, which may reflect the difficulty of
having 3D visual displays when dealing with large scale networks, and the same thing
for the real-time analysis. Finally, we can see that Simulator-independent feature is
not available in the majority of the tools since they usually target a specific question
or a type of network and support data generated from a particular source. The
features used in this comparison can change from one application or field to another,
affecting the evaluation of those tools.
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4.7 Conclusion

The ability to interpret the behavior of a neural network plays a crucial role in better
exploring this technology, especially in critical applications where we need to support
each decision. Another reason is the issues related to biases and discrimination
reported in some neural networks applications, which we can reduce if we can detect
them earlier.

This chapter presents VS2N, a simulator-independent tool for dynamic visual
analysis for SNNs.VS2N is a result of the lack of tools for SNN analysis since sim-
ulators do not provide visualizations for analysis purposes. VS2N offers the ability
to analyze the network activity interactively. Using VS2N, we can add new mod-
ules, which contain a group of visualizations for one question or a component in
the network. Then, we showed two use-cases with data collected from two different
simulators to validate the existence of a phenomenon in one use case and observe
the prune operation in the other one with the help of VS2N. Finally, we compared
similar visualization tools based on selected features. This version of VS2N mainly
supports the analysis of shallow networks. Furthermore, due to the complexity of
the multilayer networks, we need to add modules that suit this type of network,
like features reconstruction and 3D visualization of the activity of the hidden layer.
Moreover, the pre-processing step at the first time (using Apache Spark) takes time
due to the massive amount of data, which we can reduce by deploying VS2N on
the nodes of a distributed cluster. We will address those limitations in the future.
Finally, it is worth stating that VS2N can be used to analyze the activity during the
simulation without waiting for the simulation to finish, which can be helpful when
simulating large networks that can take considerable time. However, only the gen-
eral analytics module will be available in this case since the other modules require
pre-processing, which is impossible to do while simulating for now. Using VS2N, we
proposed a novel approach for compressing spiking neural networks dynamically by
observing the network evolution during training. We discuss this contribution in the
next chapter of the manuscript.



Chapter 5

Progressive Compression and
Weight Reinforcement for SNN

In the past, researchers presented different hardware implementations of the neuro-
morphic architectures using various hardware components [Merolla et al., 2011, Shah-
savari and Boulet, 2017]. Yet, the commonly observed characteristic when working
with SNNs is the big network size. Using large networks, we get numerous neu-
rons and synapses with the rising complexity of the hardware implementation, which
makes it also hard to analyze. For example, using the MNIST dataset [LeCun et al.,
1998], Diehl and Cook [Diehl and Cook, 2015] increased the number of neurons by
more than 60 times to enhance the performance by 12 %. Lee et al. [Lee et al., 2016]
used two hidden layers of 800 neurons each to get an average accuracy of 98.6 %
on MNIST. In the work of Diehl et al. [Diehl et al., 2015], the authors implemented
a network with two hidden layers of 1200 neurons each, and this network gave an
average accuracy of 98.64 % using the same dataset. From the given examples, we
can see that we need larger networks for better performance, which introduces the
following challenges :

• It is harder to analyze larger networks compared to small ones.

• Having large networks means more extended simulations with more computa-
tional resources, affecting energy efficiency.

• It is harder to implement larger networks in hardware using technologies like
the memristive crossbars [Strukov et al., 2008, Merolla et al., 2011], due to the
design challenges known when deploying a large network [Liu et al., 2015].

In SNN, spikes are the mean of communication. They are transmitted by the
synapses, representing the communication channel between the neurons. The number
of synapses in a network scales with the number of neurons, so having an efficient
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way to use them leads to a better energy-efficient network and decreases the cost
of production on hardware. Pruning is widely used in neural networks to reduce
network size and complexity. The evolution of the human brain motivates this tech-
nique since synaptic connections are pruned from the early stages [Huttenlocher,
1979]. Such phenomena inspired researchers to adapt this technique to get a smaller
network while preserving the same performance or with a bit of loss [Cun et al.,
1990, Hassibi et al., 1994].

This chapter presents a novel approach to reduce the network size dynami-
cally [Elbez et al., 2022]. We proposed this approach after observations were done
using VS2N on the network evolution during the learning phase. The compression
concerns the synapses in the network and is composed of two formulas: the first
defines the threshold value to use for pruning. The second reinforces the synaptic
weights to preserve the average spiking frequency. Combining these two techniques
can produce trainable compressed networks that can achieve better accuracy than
baseline when trained again. The rest of this chapter is organized as follows: Sec-
tion 5.1 presents related work to neural network compression and finishes by compar-
ing them to our approach. Section 5.2 contains background about the used network,
neuron, and synapse models, with a presentation of the STDP learning rule. Sec-
tion 5.3 illustrates the contribution in details. Finally, in Section 5.4, we present and
discuss the results.

5.1 Related work

We can classify previous works on compressing Convolutional Neural Networks (CNNs)
into four categories: 1- Parameter quantization [Wu et al., 2016], 2- Low-precision
weights [Son et al., 2018, Zhou et al., 2017], where the weights are stored with low
precision to decrease memory cost, 3- Knowledge distilling [Hinton et al., 2015, Kim
et al., 2018], which consists in training a small network to reproduce the learned
function of a larger network, instead of training the small network, 4- Pruning by
reducing the number of synapses or neurons based on a criterion.

From the literature, we organize pruning into three types: Weights pruning [Carreira-
Perpinan and Idelbayev, 2018, Han et al., 2015, Liu et al., 2018], which concerns the
removal of unnecessary synapse connections in the network, based on a static thresh-
old. Filter pruning [He et al., 2019, Huang et al., 2018, Li et al., 2017], which consists
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in removing filters instead of synapses to reduce the computation time and the size
of the network. For example, in Luo et al. [Luo et al., 2019], the authors used filter
pruning on the VGG-16 model, which produced a compressed version with 2.66 MB
in model size (instead of 528 MB) while preserving an acceptable level of accuracy.
Finally, in neuron-based pruning, we execute the prune operation on neurons, which
have a weak impact on the network. For example, in the work of Yu et al. [Yu
et al., 2018], the authors made pruning neurons based on a neuron importance score,
applied on AlexNet, and reduced computation cost by 60 % with a slight accuracy
loss.

SNNs can process natural signals. They can be implemented physically via ultra-
low-power based devices; for instance, on CMOS [Sourikopoulos et al., 2017] or mem-
ristors [Shahsavari and Boulet, 2017]. CMOS artificial neuron is a simple component
(six transistors operating in the subthreshold mode). The energy consumption is
several orders of magnitude lower than artificial neurons reported in the literature,
but also two to three orders of magnitude lower than the energy consumption of a
living neuron.

Concerning SNNs, we use similar pruning techniques. For example, Rathi et
al. [Rathi et al., 2019] combined pruning while the network is learning with a weight
quantization technique. Using a 2-layer SNN of 6400 neurons, we can achieve highly
compressed networks while preserving a good performance using a static pruning
threshold. We can apply this technique by deactivating the synapses that are deemed
unnecessary, based on their performance using the STDP learning rule [Bi and Poo,
1998]. Then, we remove the remaining non-critical synapses from the network at the
end of the learning phase. Another work by Saunders et al. [Saunders et al., 2019],
based on the locally connected Spiking Neural Network (LC-SNN), using a 2-layer
SNN of 900 neurons. They performed the prune operation just once at the end of the
learning phase, which removed 50 % of synapses and a 90 % maintained accuracy.

Shi et al. [Shi et al., 2019] used a soft-pruning method during the training process,
which prevents the unnecessary update of the network parameters. Using the MNIST
dataset, this approach maintained 90 % accuracy despite a slight accuracy loss and
75 % of synapses removed. Cho et al. [Cho et al., 2019] applied a distance-based
prune on CMOS SNN chip by eliminating connections between a group of neurons
based on the distance between them, and this resulted in a spike traffic drop by 52 %.
Finally, Chen et al. [Chen et al., 2018] presented a three-step prune, the first two
concern removing neurons with low activity; the third one is pruning weak synapses.
The prune operation in this work was a part of converting a CNN to an SNN, which
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lowers the computational operations.

We can see that the existing works in terms of pruning focus on how to treat
the pruned synapses, when to prune, or the used criteria for pruning while keeping
the same static threshold, which is selected based on experiments. In contrast, our
contribution deals with the threshold value selection and how to treat the maintained
synapses in the network. It is worth mentioning that we can use our contribution
to complement the existing prune approaches. The originality of this approach is
the use of a dynamic threshold for pruning instead of a static one by using a pro-
gressive pruning function that computes a new threshold with every batch, based
on the previous prune operation. As a result, the modified network can maintain
the same performance during every learning batch compared to the baseline with
up to 80 % smaller network. Moreover, we present a synapse reinforcement for the
essential synapses using the dynamic reinforcement function. This function helps
the network preserve an average spiking frequency close to the baseline. Combining
these two techniques can produce trainable compressed networks that can achieve
better accuracy when trained again.

5.2 Background

This section presents the used network, its components, the learning rule, and the
dataset used in our experiments.

5.2.1 Network topology

The used topology in our experiments is similar to the work of Diehl and Cook [Diehl
and Cook, 2015] on the classification of handwritten digits [LeCun et al., 1998]. We
can see in Figure 5.1 that the topology is a 2-layer spiking neural network composed
of the input layer, where every neuron represents a pixel and transforms the input
(pixel density) to a Poisson-spike train. This layer is feed-forward fully connected
to the next one using excitatory synapses. The second one is the unsupervised
layer with lateral inhibition provided using the inhibitory connections between this
layer’s neurons. The lateral inhibition creates competition between the neurons and
prevents one from taking over all the inputs. We assign excitatory neurons to classes
based on the highest response to a digit class over a subset of the training set when
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training is finished. We also use Homeostasis [Marder and Goaillard, 2006], which
is an adaptive membrane threshold technique. Furthermore, we use Homeostasis
to ensure that every excitatory neuron learns a unique feature. This technique is
achieved using equation 5.1.

Vthreshold = Vt + τ (5.1)

Vt is a constant that represents the initial threshold defined in the network. τ changes
over time. Therefore, the value of τ will increase if the neuron fires often. This neuron
will need more inputs to fire again and decays if the neuron’s activity is less often,
which guarantees a fair and balanced spiking activity between all the neurons in the
network.

Figure 5.1: We use the input layer to convert the pixel intensity to the Poisson-
spike train. The Poisson-spike trains are introduced to the unsupervised layer using
excitatory synapses. The lateral inhibition is provided by the inhibitory synapses
between neurons of the unsupervised layer.

In this work, we used the N2S3 simulator [Boulet et al., 2017]: an open-source,
scalable spiking neuromorphic hardware simulator, written in Scala and based on
the Akka actor system.
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5.2.2 The neuron model

We use the Leaky-Integrated-and-Fire (LIF) model [Burkitt, 2006] to simulate the
neuron membrane potential. LIF is one of the simplest models that include time in
its operation. Based on the input from other neurons in the network, the neuron’s
membrane potential will get updated. The membrane potential keeps increasing until
it reaches a precise threshold. Then, the neuron sends a spike and starts a refractory
period before accumulating the received spikes again. We can see the membrane
potential evolution in Figure 5.2. The LIF voltage equation is presented by:

τleak
∂v

∂t
= [v(t)− vrest] + rmz(t),

v ← vrest when v ≥ vth

(5.2)

v is the membrane voltage, and vrest is the resting potential after a spike. τleak is the
time constant of the leak with τleak = rmcm, where rm is the membrane resistance
and cm is the membrane capacitance.

tref

vth

v 
(m
v)

t (ms)

Membrane potential (v)
Incoming spikes
Outgoing spikes

Figure 5.2: Membrane voltage activity of LIF

5.2.3 The learning rule

Most of the time, spiking Neural Networks use a local unsupervised learning rule
(every synapse knows the activity of its post- and pre-synaptic neuron only). This
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rule is biologically plausible and suitable for hardware implementation since it does
not require a lot of computation. However, it is challenging to get high recognition
rates compared to global learning rules because of its locality.

In our experiments, we use the Simplified Spike Timing Dependent Plasticity
(STDP) rule, which is easier to implement with nanodevices [Querlioz et al., 2011].
This rule uses pre-synaptic and post-synaptic neuron activity to update the weight
of a synapse. When a spike occurs in post-synaptic neuron at tpost , we check the
presence of a spike in pre-synaptic (tpre) in a limited window TSTDP. If a spike from
the pre-synaptic neuron exists in this window, we boost the weight of the synapse.
Otherwise, we lower it. This simplified STDP rule is represented as:

∆w =

{
a+e

−β+
W−Wmin

Wmax−Wmin tpost − tpre < TSTDP

−a−e−β−
Wmax−W

Wmax−Wmin otherwise
(5.3)

a+ and a− represent the alpha parameters, β+ and β− are the beta parameters.
The user sets the alpha and beta parameters at the start of the simulation. W is the
current weight. Wmin and Wmax are the boundaries of the possible weight values.
We set TSTDP to 50ms in our simulations.

5.2.4 The MNIST dataset

We use the MNIST handwritten dataset [LeCun et al., 1998] for the simulation. This
dataset comprises 28x28 pixel images of handwritten digits with labels from 0 to 9.
We split training images into six batches of 10,000 for our experiments to easily
follow the network learning progress using the presented approach. The pictures
are presented to our network input layer and processed in the format of Poisson-
distributed spike trains. The input layer neuron weights are randomly initiated
based on a uniform distribution between 0 and 1.

We can see in Table 5.1 the different parameters used in the network.
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Input Stream

MinFrequency 0Hz MaxFrequency 22Hz
ExpositionDuration 350ms PauseDuration 150ms

Neuron

VoltageThreshold 35mv RestingVoltage 0mv
RefractoryPeriod 1ms InhibitionPeriod 10ms

STDP

MaxWeight 1.0 MinWeight 0.0
a+ 0.01 a− 0.005
β+ 1.5 β− 2.5

Table 5.1: Network parameters used in the experiments

5.3 Presentation of the contribution

Compressing Spiking Neural Networks (SNNs) results in a network with reduced
parameters and less complexity. In addition, compressed networks are easier to
implement in hardware using the existing technologies [Shahsavari and Boulet, 2017,
Merolla et al., 2011] and help to reduce the energy consumption of the network.

Pruning non-critical synapses is a widely used technique in ANNs and SNNs.
The recent works use two different approaches to compress the network: at the end
of the training process or during the training process. Both approaches use a static
threshold.

Our tests showed that the neurons specialize in detecting a specific class early
while learning. We can confirm this phenomenon in the network performance, which
improves early (see Figure 5.3). Therefore, we can start removing synapses at an
early stage. At the same time, the network can maintain most of its performance
based on STDP, as indicated in recent works [Rathi et al., 2019, Saunders et al., 2019].
Let’s run another training epoch on the new reduced network. We will get a network
with better performance, with the opportunity to prune based on a higher threshold,
resulting in a more compressed network with similar or better performance.

Based on this observation and the recent contributions, we propose a progressive
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pruning function to control a dynamic threshold which we calculate and use to prune
after each training batch. Additionally, we use a synaptic weight reinforcement mech-
anism to preserve the average spiking frequency of the network close to the baseline
or better, by a reinforcement of the critical maintained synapses.

Figure 5.3: Learning progress in SNN using MNIST

5.3.1 Progressive Pruning

Progressive Pruning (PP) decreases the number of excitatory synapses between two
layers. This reduction is performed after each batch during the training, using a
dynamic pruning threshold Tn, n ∈ N. We calculate this threshold using equation 5.4.

Tn+1 = Tn + α ∗ (Crn/Cn) n ∈ N (5.4)

n is the batch number, and Tn+1 represents the threshold to use for the next batch.
α is a constant representing the initial threshold, and we discuss the selection of α
in the next section (α = 0.05 in this work). Tn is the old threshold used in the
last batch (T0 = 0). Crn represents the number of remaining synapses between the
two layers at batch n. Finally, Cn represents the total number of synapses before
pruning on this batch (which equals to the remaining synapses from the last batch,
Cn = Crn−1).
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In equation 5.4, we specify the threshold based on the previous pruning perfor-
mance (if the pruning rate using Tn from the last batch is significant, ∆Tn will be
small and vice versa). Using this approach, we can prevent the network from having
a significant performance degradation while eliminating the non-critical synapses.

5.3.2 Dynamic Synaptic Weight Reinforcement

Applying Progressive Pruning on the network decreases the average spiking network
frequency, positively impacting our network’s energy consumption. However, it may
cause a frequency loss in multilayer networks, which is a known issue in Convolutional
Spiking Neural Networks (CSNN) as described in [Falez et al., 2018]. Furthermore,
the network cannot learn by having a low or no activity at all at the last layer.

Based on those observations, we propose the Dynamic Synaptic Weight Reinforce-
ment (DSWR), which concerns the critical synapses of the network. Using DSWR,
we push the neurons that did not specialize in a specific pattern or class to do so
and maintain the average spiking frequency of the network near the baseline. We
execute this procedure after each pruning operation based on equation 5.5.

Wn+1 = Wn + β ∗ Tn, n ∈ N, W ∈ [0, 1]. (5.5)

n represents the batch number, andWn+1 is the new weight of the concerned synapse.
Wn represents the current weight of that synapse. β is a defined constant determined
based on experiments, and we discuss it in the next section (in this work β= 0.1).
Tn represents the currently used threshold for pruning from equation 5.4. β ∗ Tn
represents the value of the weight reinforcement (∆w) at batch n. Using this equa-
tion, we can see that the reinforcement value depends on the compression rate from
equation 5.4.

Using the presented functions, we decide how much to increase the weight to
maintain the average spike frequency based on the network state. Furthermore, in
Figure 5.4 we can see a detailed flowchart concerning the proposed approach.

5.3.3 α and β parameters value selection

Picking the values of parameters α and β is a multiobjective optimization problem.
The two objectives are the network performance and the compression rate. We exper-
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Entraînement du réseau

Calculer le seuil

Synapse préservée

Appliquer le renforcement 
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Oui Non

Oui Non

Diviser les images
d'entraînement par lots

Initiation au réseau

Figure 5.4: Flowchart of this approach
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imented with different values and compared them for these two objectives, getting a
Pareto front of non-dominated values. We finally picked the best performance values
with a compression rate above 76 %.
(A) (B)

Figure 5.5: (A) α and β selection, (B) accuracy and compression depending on α
and β (line = Pareto front).

In Figure 5.5 (A), by trying different combinations of α and β, we can get a high
compressed network. However, a higher loss in network performance. The selection
of α and β may change from one use case to another, depending on the context of
the application. Figure 5.5 (B) contains the Pareto front of non-dominated solutions,
which includes the possibilities that respect the following conditions:

• The performance should be better than the baseline recorded in [Diehl and
Cook, 2015] (82.90 %).

• The compression rate needs to be better than 76 %.

Based on the results and these conditions, we select α = 0.05 and β = 0.1, which
delivers an accuracy of 85.10 % and a compression rate of 79.42 %, using a network
composed of 100 neurons.

5.4 Experimental validation and discussion

This part describes our experimental validation using a network composed of 100
neurons. The network has an input layer connected to the unsupervised layer by
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78400 excitatory synapses. We conducted the simulation on each case ten times
using one epoch (of 60000 samples) and reported these ten simulations’ averages.
Furthermore, we ran tests on 400, 900, and 1600 neuron networks to evaluate the
performance of our approach on different network sizes and compared it to similar
works.

5.4.1 Evaluation of PP and DSWR

Figure 5.6: (A) Accuracy, (B) Compression, and (C) Average neuron spiking fre-
quency for baseline, PP and PP & DSWR using a network of 100 neurons

This section evaluates the use of each function alone compared to the baseline, using
a network of 100 neurons. We present in Figure 5.6 the accuracy, the compression
rate, and the average spiking frequency of the network, using one training epoch
of the MNIST dataset. From Figure 5.6 (A), by using PP & DSWR, we get a
slightly better accuracy compared to the baseline and to using only PP. However,
we can see a loss in accuracy after the fifth batch in all three cases (baseline, PP,
and PP & DSWR). We relate this loss to MNIST’s nature. The last batch contains
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additional features (numbers), which the network could not learn well only in one
epoch with 100 neurons. This issue is not present when using a larger network (see
Figure 5.7 (B)). For compression rate, we can see that the compression goes up during
the learning process, thanks to the proposed approach that guarantees a dynamic
threshold. There is no visible difference between using only PP or PP & DSWR on
the network compression rate, which is possibly due to the use of shallow networks
only in our tests so far (see Figure 5.6 (B)).

Concerning the average neuron spike frequency (Figure 5.6 (C)), we see a loss in
frequency when only PP is used compared to the baseline. However, using both PP
and DSWR, we get a reasonable compression rate and accuracy while preserving a
spike frequency similar to the baseline.

5.4.2 Accuracy and compression

#
neurons Paper Learning rule Pruning approach Train after

pruning ? Epochs Accuracy
± std

Compression
± std

100

Rathi et al. (2019) Exponential STDP Static threshold No 1 79.50 75.00
Diehl and Cook (2015) Exponential STDP – – 1 82.90 –
This work (baseline) Simplified STDP – – 1 84.47 ± 1.55 –
This work Simplified STDP Static threshold No 1 79.69 ± 0.22 73.99 ± 0.05
This work Simplified STDP PP & DSWR Yes 1 85.10 ± 0.83 79.42 ± 0.06

400

Diehl and Cook (2015) Exponential STDP – – 3 87.00 –
This work (baseline) Simplified STDP – – 1 87.77 ± 0.57 –
This work Simplified STDP Static threshold No 1 79.27 ± 0.51 70.14
This work Simplified STDP PP & DSWR Yes 1 87.84 ± 0.40 79.52 ± 0.03

900
This work (baseline) Simplified STDP – – 1 88.35 ± 0.28 –
This work Simplified STDP Static threshold No 1 84.23 ± 0.24 66.77
This work Simplified STDP PP & DSWR Yes 1 89.23 ± 0.91 77.28 ± 0.69

Table 5.2: Accuracy and compression compared to the baseline and other similar
works

In Table 5.2, we compare our results to the baseline and the recent works using
similar network topology. Our approach compresses the network and gets higher
accuracy in various network sizes due to the progressive and iterative pruning and
reinforcement. For 100 neurons, the work presented by Rathi et al. [Rathi et al.,
2019] could not keep the same accuracy after pruning. Possible reasons are the weight
quantization technique, no training after pruning, or the one-time pruning approach.
Using one epoch and without training after pruning, they had an accuracy of 79.50 %,
which is less than the baseline with a 75 % compression rate. This performance is
similar to our tests using a static threshold without training after pruning.
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Using PP & DSWR with 100, 400, and 900 neuron networks, we get better
accuracy and a compression rate of 79 %. In work presented by Diehl and Cook [Diehl
and Cook, 2015], they conducted tests on a network composed of 400 neurons using
three training epochs. The accuracy was 87 % (similar to our 400 neurons network
baseline). We can see in Table 5.2 that we can compress the network up to 79.52 %
with 87.84 % accuracy using PP & DSWR with only one epoch.

We can see clear improvement using PP and DSWR compared to our baseline.
However, it is still far from state of the art on the MNIST dataset (over 98%). This
gap is due to the size of the used network in our experiments, which is relatively
smaller and contains just one trainable layer. In addition, we restrict our simulations
to only one training epoch instead of having more than just one (like in Diehl et
al. [Diehl et al., 2015]).

(B)(A)

Figure 5.7: Accuracy and Compression evaluation using PP & DSWR for (A) 100
neurons and (B) 1600 neurons

In Figure 5.7 (A), the network is compressed for more than half the initial synaptic
connections in the first batch. The compression rate increases after each batch, while
the accuracy gradually does the same.

We can see in Figure 5.8 the evolution of the threshold during training, we can
see that the threshold keeps increasing, it starts slowly at the beginning which is due
to the fact that the network is at early stage during training. After that we see a
constant increase in the threshold value until the end of the six batches.
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Figure 5.8: Threshold activity during training

#
neurons Paper Learning rule Pruning approach Train after

pruning ? Epochs Accuracy
± std

Compression
± std

1600

This work (baseline) Simplified STDP – – 1 89.07 ± 0.77 –
This work Simplified STDP Static threshold No 1 82.40 ± 0.12 43.03
This work Simplified STDP PP & DSWR Yes 1 85.31 ± 0.24 65.02 ± 0.04
Diehl and Cook (2015) Exponential STDP – – 7 91.90 –

Table 5.3: Accuracy and compression using a network of 1600 neurons
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5.4.3 Our approach on larger networks

Although the selected parameters (α and β) give good results with small to medium
networks, as shown in Table 5.3, using this approach on a larger network may have
a different impact. Therefore, in this part, we present the results we had while
preserving the same parameters (α and β) and using a network of 1600 neurons
equivalent to the one used in Diehl and Cook [Diehl and Cook, 2015].

From Figure 5.7 (B), when compared to the previous experiments, we notice that
we have a loss in accuracy (85.31 %). Besides, the network needs up to three batches
to get accuracy above 80 % compared to smaller networks where only one batch is
enough. Furthermore, for the compression rate, we can observe that the network this
time is less compressed (65.02 %) compared to smaller networks and the results of
Diehl and Cook [Diehl and Cook, 2015]. Besides, we can see that the compression
starts from a small rate (4 %) in the first batch, which is not the case with earlier
examples with smaller networks.

To investigate and explain this result when using a larger network. We suggest
two hypotheses based on our observations:

1. The initial value of α and β used with small to medium networks may not work
with a large network and need to be appropriately adjusted.

2. A larger network with more neurons requires more time to learn before pruning,
so we need to review the number of batches per epoch before pruning to give
more time for the network to learn.

To answer this question of what is happening in the network, we can check Fig-
ure 5.9. The network did not have enough time to start learning features, and the
low accuracy represents this after the first batch. This decrease in network accuracy
is due to the competition between neurons to learn. The more neurons we have,
the more time it will take to start learning. From the compression rate progress in
Figure 5.7 (B), we can discard the first hypothesis. Since the problem is not linked
to pruning using a high threshold, based on the low compression rate we had (4 %).
It is associated with the second hypothesis about the time required for the network
to start learning, which also justifies the lower compression rate.

When dealing with larger networks, it is preferable to decrease the number of
batches per epoch, delay the prune operation, and use more than one epoch for
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Figure 5.9: Accuracy for the baseline and PP & DSWR using a 1600 neuron network

Number
of neurons

Number
of epochs

Accuracy
± std

Compression
± std

1600 1 85.31 ± 0.24 65.02 ± 0.04
1600 3 89.65 ± 0.11 80.80 ± 0.43

Table 5.4: Accuracy and Compression rate using 1 and 3 training epochs
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training to give the network more time to learn. For example, in Table 5.4, using
three epochs and applying the presented approach twice each epoch, we get better
accuracy than the baseline (89.65 %) with a compression rate of 80.80 %.

5.4.4 Trainable Compressed Network

Lowering the number of synapses in a network is useful for time and energy reduction,
especially when implementing it on hardware. One feature commonly tested with
reduced networks is the possibility of having trainable networks after compression.
Unfortunately, as for now, it is not always possible to train a small neural network
and get good results.

In [Frankle and Carbin, 2019, Zhou et al., 2019], the authors present a lottery
tickets hypothesis for CNNs. This hypothesis states that a randomly initiated dense
neural network contains a subnetwork that, if isolated and trained alone, can match
the accuracy of the original network. Unfortunately, it is hard to train a pruned
network from the beginning in CNNs, which gives worse accuracy than the original
model, and it is considered not trainable. The solution was to train the pruned
network with the initial synapse weights, not randomly initiated synapse weights,
to learn well. However, we did not yet test such a hypothesis in Spiking Neural
Networks (SNNs).

Figure 5.10: Accuracy (A) and Compression rate (B) during training of a 100 neurons
network

In Figure 5.10, we test if the compressed network is trainable using a 100 neu-
ron network. We try three use-cases: using the new compressed network without
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changing synapse weights, using random initial weights, or using the initial weights
of the original network. We notice that after one batch that the network with initial
synaptic weights without training reaches more than 60 % accuracy compared to the
network with randomly initiated weights which barely reaches 50 %. This observa-
tion was also shown in [Frankle and Carbin, 2019] for CNNs. At the end of the six
training batches, we get an accuracy near 85 % for the three use-cases. For the com-
pression rate, we observe that the network is more compressed in the three use-cases
to reach a compression rate of 80 % while maintaining a better accuracy compared
to baseline. This result confirms that some observations presented in [Frankle and
Carbin, 2019] are valid in SNNs too. The trainable network gets a higher compression
rate when trained again irrespectively of the initialization strategy of the synaptic
weights that only impacts the speed of learning, not the quality.

5.4.5 Pruning batch effect on the compression

During our experiments, we used a single MNIST dataset epoch (60k input samples)
divided into six batches of 10k samples each. We study in this section the influence
of the size and number of batches on the accuracy and compression. For instance,
in Figure 5.11, we compare one batch of 60k samples, three batches of 20k samples,
and six batches of 10k samples using a 100 neurons network.

Figure 5.11: Accuracy and compression rate using 1, 3, and 6 batches for a 100
neurons network



5.5. CONCLUSION 103

We see in Figure 5.11 that the accuracy of the network did not decrease, and
there is no visible impact of the variation of the number of batches on the accuracy.
However, the compression rate increases when we increase the number of batches
because of the approach with the dynamic threshold. So, in this case, having more
than six batches will produce a better compression rate but with a possible loss
in network accuracy. Therefore, the number of the batch to use depends on the
application, similar to the α and β.

5.5 Conclusion

Recently, many studies shed light on the irrational effectiveness of Neural Networks
and our profound inability to understand causality and correlation in neural net-
works. Therefore, we can see pruning a neural network as a discriminant analysis for
dimensionality reduction. This chapter presents a novel approach to reduce spiking
neural network size while preserving a similar or better accuracy by using Progressive
Pruning (PP) with a dynamic threshold and a Dynamic Synaptic Weight Reinforce-
ment (DSWR). We proposed this approach after we analyzed the network activity
using VS2N. Besides, in this chapter, we compare our approach to related work using
a static threshold. This work presents another possibility to prune a network and
even combine it with the existing techniques. The novelty of this approach is the use
of a dynamic threshold instead of a static one, which is the case with existing works.

The proposed approach can produce a network with better accuracy than the
non-compressed network when applied to small or medium networks and only one
epoch. But when dealing with larger networks, we need more than one training
epoch with larger batches to provide sufficient time for the network to learn before
pruning. Moreover, only one epoch of training and the use of small networks are
the reason behind the lower performance than state of the art for the SNN using
MNIST dataset, which is recorded on much bigger networks with more than one
training epoch. On the other hand, the compressed networks were proven trainable
to reach even better accuracy and a better compression rate by using the weights of
the initial synapses of the original network. The idea behind it is from Frankle et
al. [Frankle and Carbin, 2019] work on convolutional neural networks. This result
implies that the Lottery Ticket Hypothesis explained in the same work may also be
true for spiking neural networks. In future work, we will test our approach using
other challenging datasets multilayer networks and study the behavior of the smaller
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network by visual analysis using VS2N to improve the proposed approach.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

SNN can provide low-power solutions with less carbon footprint through neuromor-
phic hardware. Despite not being able to compete with conventional neural networks
and deep learning due to low performance. Moreover, the black-box nature of neural
networks, in general, makes it challenging to analyze and debug; thus, it is not a
trivial task to improve them. The interpretability of neural networks in recent years
has become increasingly important since counting only on a single metric, such as the
network accuracy, is an incomplete description of most real-world tasks [Doshi-Velez
and Kim, 2017]. In this manuscript, we addressed the issue of spiking neural net-
works interpretability using the visual analysis approach. To improve the network
performance and better understand the internal phenomena. The collected infor-
mation and improvement on the network will ensure better spiking neural networks
training using software simulators and an optimized implementation on neuromor-
phic hardware later on.

The first contribution in this manuscript is the study of the visualization tech-
niques in SNN simulators (Chapter 3). This study from the technical and visual
analysis aspect of the simulators shed light on the diversity of the used programming
languages—moreover, the provided visualization techniques and their similarity [El-
bez et al., 2018]. At the end of this study, we concluded that to analyze SNNs
using visual analysis, we need to have tools that are more dedicated to analysis than
depending on what simulators provide for this task. This limitation is because the vi-
sualizations provided by the simulators are primarily for monitoring purposes rather
than analysis. Besides, a simulation usually takes most of the machine resources,
which makes it challenging to perform visual analysis using the same tool. There-
fore, we ended this study by suggesting separating the simulation process from the
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analysis one by having dedicated tools for analyzing spiking neural networks. Those
tools can support the big data generated by the large activity of the network during
training and provide enough interactivity during the analysis.

The second contribution in this work is the development and presentation of VS2N
(Visualization tool for Spiking Neural Networks) [Elbez et al., 2021]. In Chapter 4, we
described VS2N, a web-based tool for post-mortem interactive dynamic visualization
and analysis of spiking neural network simulations. The novelty of VS2N compared
to the existing visual analysis tools can be summarized in four points: 1. Modular
nature: VS2N groups the visualizations into modules. Each module may target
a specific question or problem, and anyone can add new modules for a particular
analysis. 2. Simulator-independent: we can use any simulator as long as the collected
data follows specific schemas, which VS2N can understand. 3. Scalability: backed by
the combination of Apache Spark and MongoDB for data processing, we can deploy
VS2N on multi-nodes or clusters for more solid performance. 4. Dynamic analytics:
VS2N provides the possibility to walk in time with the evolution of the network
during activity, which is not possible using the existing tools for data analysis. This
feature is significant when the network evolution is over hours of activity, which is
the case in spiking neural networks. To showcase the use of VS2N, we presented two
use-cases. The first use-case is "The MNIST last 10k effect" : when using the MNIST
dataset, we saw an accuracy drop in the last 10k input of the training data. We can
see this drop on small to medium networks (less than 1000 neurons). However, it does
not appear on large networks. Furthermore, from this observation, we assume that
the last 10k contains different images, which affects the network learning process.
As a result, by training the same network using MNIST inverted, we see that this
drop disappears from the last 10k and appears at the start of the training, as seen
in Figure 4.20. Using VS2N after 50k of input, we saw an interesting pattern at the
beginning of the last 10k (Figure 4.21(B)), with a noticeable increase in the synaptic
weights update (more than 10%) that remains until the end of the simulation. Since
we used a single dense layer in that use-case, the increase in synaptic weights update
means that the patterns learned by the neurons are changing, which will affect the
network performance and cause the effect we observed in Figure 4.20. The second
use-case is "Network Compression" : using VS2N, we observed the general activity of
the network once pruned and the impact of this operation on two randomly chosen
neurons. After the analysis, we found the expected behavior from the network’s
neurons. Moreover, an unexpected pattern appeared. After the investigations, we
found out that it is related to an issue with how the prune operation is performed
in the simulator. Therefore, using VS2N, we confirmed the existence of this issue
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that was affecting the simulation time when compressing the network. Finally, we
compared similar visualization tools based on selected features in this chapter.

The last contribution in this manuscript is the presentation of a novel approach to
compress a spiking neural network, which was proposed based on the visual analysis
conducted on SNN using VS2N [Elbez et al., 2022]. By taking a look at the stat of
the art when it comes to pruning a neural network, we can see that the existing works
in terms of pruning focus on how to treat the pruned synapses, when to prune, or
the used criteria for pruning while keeping the same static threshold. However, our
contribution deals with the threshold value selection and how to treat the maintained
synapses in the network since we observed during training that neurons’ development
is happening most in the first batches of training. Therefore, the need to apply
pruning after a couple of batches. However, since this scenario may change from
one input type to another, we need to have dynamic threshold values that adapt
to the situation during training, and that is what we present in Chapter 5 using
PP (Progressive Pruning) and DSWR (Dynamic Synaptic Weight Reinforcement).
Progressive pruning decreases the number of synapses between two layers. This
reduction is performed after each batch during the training, using a dynamic pruning
threshold Tn, n ∈ N, which we calculate using equation 5.4. Dynamic Synaptic
Weight Reinforcement (DSWR) concerns the critical synapses of the network. Using
DSWR, we maintain the average spiking frequency of the network near the baseline,
and we execute it after each pruning operation. This approach can improve accuracy
than the non-compressed network when applied to small or medium networks and
only one epoch. But when dealing with larger networks, we need more than one
training epoch with larger batches to provide sufficient time for the network to learn
before pruning.

6.2 Future work

The interest in the interpretability of neural networks, in general, appeared in recent
years due to the increased need to justify and explain the results of deployed models
in real-life applications and also to the different discrimination examples recorded.
Additional knowledge and understanding will help reduce such issues since we will
detect them before production. Visual analysis is one of the ways to interpret neural
networks in general and SNN in particular. Still, additional work is necessary to
make the visual analysis effective, especially with the increasing complexity of neural
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network models, and to study the visual analysis effect on hardware-based networks
running on neuromorphic architectures.

6.2.1 Big data in visual analysis

One of the key elements to guarantee a good visual analysis is the degree of inter-
activity. It can be challenging to achieve a high degree of interactivity when dealing
with big data, which is the case in spiking neural networks. Many works focus on
challenges and tools to manage large quantities of data [Wang et al., 2017, Maitrey
and Jha, 2015, Fu et al., 2016], and some of them focus on exploring the existing big-
data frameworks for machine learning applications [Gupta et al., 2017]. On the other
hand, big-data visualization demands more processing and requirements to manage a
large amount of data and provide a visualization with good interactivity for analysis
purposes. This can be seen in the different works on big-data visualization [Wang
et al., 2015, Ali et al., 2016, Qin et al., 2018, Li and Zhou, 2017, Sansen et al., 2017],
which proposes techniques for visual analysis and use cases.

Since they are data-driven models, neural networks require a lot of data for
training. As a result, the training may take a lot of time, and the quantity of data
collected can be huge, making visual analysis a challenging task. Moreover, in the
case of spiking neural networks, we have the asynchronous nature of the network and
use of the temporal dimension making it more challenging to analyze. Despite being
able to explore big data frameworks such as Hadoop [Ghazi and Gangodkar, 2015],
Spark [Fu et al., 2016], and MongoDB to manage and store a large quantity of data,
we still have to find a way to support pre-processing of this data which takes time
and resources when executed for the first time (which is the case in VS2N). This
support can be done by either proposing new ways to process the data effectively
or by reducing the amount of data kept from the network activity by defining the
objectives of a visual analysis from the beginning.

6.2.2 CSNN and hardware-based networks

In this manuscript, our work mainly focuses on STDP-based networks using simple
datasets. However, the visual analysis of more complex networks such as convo-
lutional spiking neural networks (CSNN) represents more challenges since deeper
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networks require more computation to analyze data flow and adapted visualizations.
Moreover, we can group the learning mechanism in SNN into two categories: local
and global learning rules. Therefore, in this manuscript, we focus on local learning
rules (STDP) and the analysis of global learning rules, such as Surrogate Gradient
Learning [Neftci et al., 2019] is a great opportunity to learn more about this learning
approach in SNN, which we did not discuss in our work. Furthermore, since CNN
performs better than SNN in different tasks, some works focused on converting a
trained CNN to a SNN [Rueckauer et al., 2017, Xing et al., 2019] to get a trained
network with high accuracy and low power consumption. This approach makes it
possible to avoid training SNN. The visual analysis of such a network should help us
learn more about the difference between the activity in this type and a trained SNN.
Moreover, the implementation of SNN in neuromorphic architectures is another ap-
proach to accelerate the learning phase and deploy prototypes. The visual analysis
of hardware-based networks is possible since we can extract the network activity and
use it the same way we did with the network activity obtained from the simulator. Fi-
nally, Since the appearance of bio-inspired sensors (like event-based cameras), other
types of datasets appeared which contain only spikes like the N-MNIST [Orchard
et al., 2015], and any data collected from those sensors. Since our experiments are
conducted mainly on images in this manuscript, the analysis of other types of input
data and the network response to it can help us better understand our data and
compare the network behavior with a similar network with static images as input.

6.2.3 Evaluation metrics of SNN

Usually, network accuracy is one of the main metrics of neural networks, sometimes
it is the only one used to evaluate a network, we can observe this in academia in
recent years (see Figure 6.1).

This type of research that seeks to improve the accuracy while disregarding the
cost (referred to also as Red AI [Schwartz et al., 2020]) also contributes to the
carbon emissions issue. Furthermore, with the increase in network complexity, the
need for more power to run, the lack of interpretability, and the discrimination
issues that appeared in some applications. Therefore, we need to revise our metrics
to evaluate a neural network, particularly SNN. In addition, other metrics such as
energy consumption, interpretability level, and accuracy can change how we assess
neural networks. For example, a network with state-of-the-art accuracy but requires
enormous energy to run or lacks a minimum level of interpretability is not better
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Figure 6.1: The proportion of papers that target accuracy, efficiency, both or other
from a random sample of 60 papers from top AI conferences [Schwartz et al., 2020].

than another network with less accuracy but requires less energy to run or a network
that we can easily interpret its results.
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