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Resumé
Titre: Gestion d’énergie optimisée des véhicules électrique et infrastructures

Resumé: Cette thèse de doctorat s’inscrit dans le cadre de la chaire Renault/Centrale Nantes
sur l’amélioration des performances des véhicules électriques (EV/HEV). Elle est dédiée à la
problématique de la gestion de la recharge des véhicules électriques, en utilisant des algorithmes
d’optimisation et des stratégies de recharge intelligentes. Dans ce cadre, plusieurs contributions
ont été proposées sur les sujets de la recharge intelligente d’une voiture électrique et la gestion
de la recharge d’une flotte de véhicules électriques, en considérant les contraintes de mobilités
(SOC désiré à la fin de la recharge et heure de départ), la température des batteries Li-ion, les
infrastructures de recharge, et le réseau électrique.

Sur le sujet de la recharge intelligente d’une voiture électrique, les contributions se sont
concentrées sur le développement des algorithmes embarqués permettant la planification du
profil de la puissance de recharge afin de réduire le coût de la recharge. Les algorithmes
proposés prennent en compte les besoins de mobilités des utilisateurs de véhicules électriques,
et l’effet de la température sur la puissance de recharge des batteries Li-ion. Sur le sujet de
la gestion de recharge de flotte de véhicules, les contributions portent essentiellement sur les
algorithmes centralisés dans les stations de recharge de véhicules électriques. Un algorithme
de recharge unidirectionnelle a été proposé afin d’évaluer le nombre optimal de véhicules
électriques à recharger avec un bon niveau de satisfaction des contraintes de mobilités et sans
aucun renforcement de l’infrastructure. Le passage à l’algorithme bidirectionnel est fait grâce à
l’exploitation de la fonctionnalité V2G qui permettra la participation des véhicules électriques
dans la régulation de fréquence.

Les contributions proposées sur le premier sujet ont l’avantage d’augmenter la précision
d’estimation de SOC final en très basse température, et d’être embarquable sur le véhicule grâce
à la légèreté des algorithmes et la rapidité d’exécution. D’autre part, les algorithmes de gestion
de recharge de flotte de véhicules permettent une intégration des véhicules électriques à grande
échelle sur le réseau et montrent le potentiel des voitures électriques dans la contribution à la
stabilité du réseau électrique.

Les algorithmes et les stratégies développées ont été testés en simulation et seront testés
sur un système de recharge de voiture électrique. Les résultats obtenus ont permis de mettre
en évidence l’avantage de la recharge intelligente sur la réduction des coûts, les bienfaits sur
le réseau et l’importance de la gestion de la recharge des flottes de véhicules électriques dans
développement des services réseaux.

Mots clés: Voiture électrique, optimisation, batteries Li-ion, effet de la température, algo-
rithmes de planification, gestion d’énergie de flotte, réseau intelligent, V2G, régulation de
fréquence.
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Abstract
Title: Optimized Energy Management for Electric Vehicles and Infrastructures

Abstract: This PhD thesis is part of the Renault/Centrale Nantes chair on improving the
performance of electric vehicles (EV/PHEV). It is dedicated to the problem of the charging
management of electric vehicles, using optimization algorithms and smart charging strategies.
In this framework, several contributions have been proposed on the topics of smart charging of
an EV and the smart energy management of an EV fleet, considering the mobility constraints
(desired SOC at the end of the charging and departure time), the temperature of the Li-ion
batteries, the charging infrastructures, and the power grid.

On the subject of smart charging of an EV, the contributions focused on the development of
embedded algorithms allowing the scheduling of the charging power profile in order to reduce the
charging cost. The proposed algorithms take into account the mobility needs of electric vehicle
users, and the effect of temperature on the charging power of Li-ion batteries. On the subject of
fleet energy management, the contributions focus on centralized algorithms in electric vehicle
charging stations. An unidirectional recharging algorithm has been proposed in order to evaluate
the optimal number of electric vehicles to be recharged with a good level of satisfaction of
mobility constraints and without any infrastructure reinforcement. The switch to the bidirectional
algorithm is due to the exploitation of the V2G functionality, which will allow the participation
of electric vehicles in frequency regulation.

The proposed contributions on the first topic have the advantage of increasing the estimation
accuracy of final SOC in very low temperature, and to be embedded on the EV due to the low
computational capacity of the algorithms and the speed of execution. On the other hand, the EV
fleet charging management algorithms allow the possibility of large-scale integration of electric
vehicles on the grid and show the potential of EVs in contributing to the stability of the power
grid by offering ancillary services such as frequency regulation.

The algorithms and strategies developed have been tested in simulation and will be tested on
an EV charging system. The results obtained have highlighted the benefits of smart charging on
cost reduction and grid benefits and the importance of electric vehicle fleet charging management
in the development of grid services.

Keywords: Electric vehicle, optimization, Li-ion battery charging, temperature effect, schedul-
ing algorithms, EV fleet energy management, smart grid, V2G, frequency regulation.
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1
General Introduction

1.1 General Objectives and Problem Statement

Climate and weather conditions are changing across the planet resulting in extreme weather
events such as long heat waves, more violent thunderstorms, rare but abundant rainfall. In the last
two centuries, the human use of fossil fuels has increased, causing the increase of CO2 emissions.
The increase of greenhouse gas emissions in the world has contributed to a rise of the average
global temperature [11].

At a critical time when global emissions are expected to decrease, emissions from transport
are increasing, resulting from a higher overall volume of travel. The transport sector emissions
also expected to grow at a faster rate than that from any other sector, representing more than 24%
of global CO2 emissions in 2017 [12].

The decarbonization of the transport sector represents a big challenge to meet the Paris
agreement and other global goals on climate change. In terms of transport’ mode, CO2 emissions
have increased in international aviation and maritime transport, but the majority of transport
greenhouse gas emissions come from road vehicles with 74% contribution [12]. Thus, the
electrification of road vehicles is an important part of the solution towards an ecological transport
model with zero-emission. Due to their low climate impact over their life cycle, electric vehicles
(EVs) can make the ecological transition faster and easier.

With the development of electric motor technology in the last century, direct current machines,
permanent magnet synchronous motors and induction motors have reached enough maturity
to meet the requirement of the EV manufacturers on the term of power efficiency, robustness,
reliability, and cost. Moreover, a highly efficient drive motor has been developed with good
efficiency and very good precision due to the technological advance in semiconductors and
transistors [13]. Allowing both accurate and robust control of the electric motor not only in
traction mode but also in breaking mode, using the electric motor as generator and enabling the
energy recovery to the battery.

The charging of the battery can be possible with the development of new chemistries allowing
the charging and discharging of the batteries [1]. In 1859, Gaston Plante invented the lead-acid
battery, the first battery that could be recharged by applying a reverse current flow through it.
This invention enabled the development of other battery technologies such as nickel-cadmium
(NiCd), and nickel metal hybride (NiMH) as shown in Figure 1.1.
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Figure 1.1 – The battery timeline [1]

In 1980, Rachid Yazami [14] was the first, to succeed in intercalating lithium into a graphite
electrode without loss of metal. This electrode made it possible to convert the lithium battery into
a rechargeable battery. At the same time, a cathode was developed by John Goodenough [15],
which enabled Akira Yoshino, five years later, to produce the first prototype of the lithium ion
(Li-ion) battery and open up the doors to world markets in 1991. This work jointly led to the
development of the first rechargeable lithium battery. Since then, Li-ion batteries have continued
to evolve in terms of their chemical composition, energy density, etc.

All technological progress in motors, controllers, and batteries have made it possible. Today,
almost all car manufacturers commercialize EVs. Several types of EVs exist in the market,
hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric
vehicles (BEVs).

The two major battery technologies used in EVs are NiMH and Li-ion. Almost, all HEVs
available in the market today use Li-ion batteries because of the maturity of Li-ion technology.
Due to the high specific energy, high power density, and cost decreasing, the adoption of Li-
ion batteries is expected to grow fast in EVs, particularly in rechargeable EVs (PHEVs and
BEVs). Moreover, classical cell systems such as lead-acid, NiCd or NiMH are based on a single
chemistry, in contrast to Li-ion batteries that could be produced by several active materials. The
combining of lithium with other type of active materials determine the internal characteristics
of the Li-ion cells in term of specific energy, power density, temperature sensitivity, internal
resistance, and nominal voltage. There are several examples of Li-ion battery chemistry: Lithium
cobalt oxide (LiCoO2), lithium iron phosphate (LiFePO4) and lithium titanate (Li4Ti5O12) [1].

In parallel of the development of EVs technology, countries are interested to convert their
internal combustion engine vehicle (ICEV) fleets to electric fleets in order to reduce their
greenhouse gas emissions. Placing the promise of an environmentally sustainable transportation
system, many countries support of the development of the EVs through conversion bonus, aids
for the purchase and subsidies. Therefore, the electric vehicle market is on the rise [2], specially
the EV market in North America, China and Europe (see Figure 1.2).

The range of EVs has increased significantly in the last five years. The range hits the mark
of 1000 km for the Tesla Roadster for a single charge, 600 km for Tesla Model S LR in WLTP
driving cycle, 515 km for Tesla Model 3 Long Range, 451 km for Kia e-Niro, 413 km for
Hyundai Kona Electric, 395 km for Renault Zoé ZE 50, and 360 km for Nissan Leaf Plus. The
fear of loosing autonomy called range anxiety was the main focus of discussions on EVs is
now in the past. Despite the incentives for the purchase of EVs, the development of the battery
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Figure 1.2 – Global electric car stock, 2010-2019 [2]

technology and the increasing range of EVs, the current big challenge for EVs is the charging
time. Nowadays, the topic of EV’s charging time is getting more attention. The charging time
depends on several parameters such as the charging power available and the capacity of the
batteries. The duration of the charging process can take 30 min for a fast charging point to many
hours in slow charging mode.

The key drivers of the prevalence of domestic charging are convenience, profitability and
various supportive policies (such as preferential tariffs, equipment incentives and discounts).
Figure 1.3 shows that in 2019, there were about 7.3 million chargers worldwide, of which about
6.5 million were slow chargers for private light vehicles in homes, multi-dwelling buildings and
workplaces [2]. The charging infrastructure for electric vehicles will continue to expand.

The home charging can make the EVs more profitable by using vehicle to grid (V2G) and
vehicle to home (V2H) features. The owners of EVs can reduce their electricity bill by using the
energy stored in the battery to supply the grid or their home in the moment of high energy tariffs
like peak hours. By doing so, EVs should schedule the charging to avoid high energy prices
periods by using the smart charging concept. With this feature, the EV can manage the charging
by shifting the charging from high demand periods (evening charging) when the energy is more
expensive to the night charging when the energy prices are more interesting. Moreover, the V2G
and V2H features can encourage the purchase of EVs by decreasing the total acquisition cost
due to the economic profit from V2G and V2H in high energy price periods.

While the EVs night charging can offer a lot of benefits to both EV owners and the power grid,
a major problem occurs especially with Li-ion batteries at night charging when the temperature
drops to subzero temperatures in certain regions. Due to the higher sensitivity of the Li-ion
battery to the temperature compared to other battery technologies, subzero temperatures decrease
the power acceptance, increase the internal resistance of the Li-ion batteries, causing the raising
of the Joules power losses, decreasing the efficiency of the charging, and affecting the State of
Health (SOH) of the Li-ion batteries [16]. On the other side, high temperatures increase power
acceptance of the battery thus facilitate high depth of discharge (DOD) of Li-ion therefore battery
lifetime decreases rapidly, causing premature ageing and leakages on the Li-ion batteries [17].
Considering the effect of temperature on the Li-ion batteries is an important topic that makes the
EVs suitable to any climate condition and can extend the batteries’ lifespan.

Over the coming decade, several challenges will emerge because of the increasing of the
penetration level of EVs (PHEV, BEV) in the power grid, and the increasing of the number of
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Figure 1.3 – Private and publicly accessible chargers by country, 2019 [2]

private and public charging points. Being able to adjust their charging power on peak hours
demand, EVs’ smart charging can provide several flexibility services to the power grid. EV fleets
can be considered as an energy storage system (ESS) that can supply the grid during high power
demand and can be charged during extra power production periods. Moreover, EVs can operate
in several timescales from milliseconds to long charging periods, due to the high power density
of Li-ion batteries and their fast dynamics. With V2G technology, EVs can provide ancillary
services to the power grid like spinning reserve, active/reactive power support, load leveling,
peak load shaving, power factor correction and voltage regulation. One of the most common
services that EV fleets can offer is the control of grid frequency [18]. The management and the
coordination of the charging is a big challenge to ensure the stability of the power grid, support
the deployment of renewable energy and guarantee the energy requirement of the EVs’ users.

In the literature various charging strategies have been proposed that could be groupped as
centralized [19–22] and decentralized [23–26]. The centralized strategies carry out the charging
from a system level viewpoint and consider EVs present on all nodes of the system collectively.
On the other hand, decentralized strategies operate locally at the nodal level. This thesis covers
the two approaches by contributing to the development of smart charging algorithms using
centralized and decentralized strategies.

Charging of EVs involves many challenges for EV users by accomplishing their mobility
energy requirement targets, minimizing the charging cost, reducing the charging time and
maximizing the battery lifetime. On the other side, the power grid is impacted by the high
penetration of EVs and aware of the potential benefits of the EVs to accomplish much more
active role in the handling of existing challenges and avoiding future environmental problems.
Charging EVs includes many nuanced considerations and subtleties to consider conflicting
objectives of satisfying both EV user’s requirement and the grid constraints.

From these perspectives, this PhD thesis, was carried out in the context of the chair between
Centrale Nantes and Renault Group at Guyancourt about EV/HEV propulsion performances,
addresses the problematic of optimized energy management of electric vehicles and infrastructure
considering unidirectional and bidirectional charging of EVs. The main objective of this thesis is
the development of EV smart charging algorithms that take into account the satisfaction of EV
users and the grid infrastructure.

Nowadays, several EVs manufacturers and power grid operators give a big interest in smart
charging strategies and the charging management of EV fleets. The optimal integration of
EVs into a smart grid becomes one of the most challenging current topics for the industry.
Nevertheless, it remains as even a virgin field which has a great potential to be developed in the
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coming years by the industrial and the academic researchers in order to reduce the gap between
the increase in the number of EVs and the available charging infrastructure.

This PhD thesis is part of the Renault Chair project for the improvement of EV/HEV storage
performances. It will focus on the development of an innovative supervision strategies of EV
charging allowing the reduction of financial cost of the EV charging using V2G technology on a
decentralized framework. A particular interest is given to centralized charging strategies that can
coordinate the charging of EV fleets on the charging stations and can provide services such as
frequency regulation or spinning reserve to different actors in the grid.

1.2 Thesis Outline and the Main Contributions
In order to address the topics previously presented, this thesis is structured according to the

following outline:
Chapter 2 presents the methodology of Li-ion battery modeling and gives an exhaustive

review of the battery model such as electrochemical models, empirical models and equivalent
circuit models. Given the importance of the thermal aspects of Li-ion batteries, some thermal
models will be discussed. A combination of an equivalent circuit model and a thermal model is
proposed. TFollowed by an proposition of an electro-thermal battery model that will be adopted
afterwards in this work. The last section describes the parameters identification method for the
used Li-ion thermal model.

Chapter 3 focuses on the development of smart charging strategies in a decentralized
framework in order to reduce the charging cost. Two charging strategies are presented, both of
them take into account the temperature of the battery and use the presented Li-ion electro-thermal
model. The first strategy proposes a smart bidirectional charging algorithm that exploits the
vehicle to grid (G2V) and V2G concepts using a constant time step. The second decentralized
smart charging strategy takes into account the energy prices, EV’s users needs, the outside air
temperature and the temperature of the battery, in order to formulate and solve a non-linear
constrained optimization problem. The second strategy is an updated version of the previous
strategy with the use of an optimized dynamic time step.

Chapter 4 addresses the management of EV fleets charging by proposing two smart charging
strategies in a centralized framework. While the first proposed strategy considers only unidirec-
tional charging and grid infrastructure constraints, the second strategy outperforms the first one
by proposing a bidirectional charging strategy with a frequency regulation service based on EVs
V2G feature.

Chapter 5 is a general conclusion summarizing the work and proposing some queues for
future research.





2
Lithium-ion Battery Modeling

2.1 Introduction
The Li-ion batteries are widely used as a storage technology in EVs (HEV, PHEV and BEV).

Several different functions are assigned to the battery management system (BMS), but the most
important one is the monitoring of battery states. In order to ensure the safety and the reliability
of the Li-ion batteries, the supervision of the batteries is mainly based on an accurate battery
modeling. The battery model is used in route planning, charging scheduling, range and SOC
estimation, etc. All these tasks can not be done using sensors or measurements, therefore the
battery modeling is a crucial topic in the design of an EV. Several battery modeling approaches
are proposed in the literature, each model is designed for a specific application. The choose of
the optimal battery model is a tradeoff between complexity and accuracy.

The next section explains the different modeling approaches of Li-ion batteries used in
the electric vehicle field. Moreover, it reviews various battery modeling approaches including
mathematical models, electrochemical models and electrical equivalent circuit models. It
discusses also the different kinds and levels of battery modeling for each application.

2.2 Approach of Li-ion Battery Modeling
Several types of modeling exist, electrochemical models are the most accurate battery model

because they describe the internal chemical behavior of the cell [27–31]. Based on the chemical
process in the electrodes and electrolyte, the electrochemical models consist of a set of coupled
partial differential equations that capture the chemical reactions taking place inside the cell [27].
In order to avoid the use of high complex model, the electrical modeling could be a good
alternative in which there is a trade off between the high accuracy and the simplicity. The
electrical models use a simplified electrical circuit to model the variables of the battery cell
such as the voltage and the current. The accuracy can be achieved by adding more circuits
that consider other internal phenomena of the battery. Significant temperature increases can
develop when lithium-ion cells are assembled for EVs applications and, as a result, current
and temperature distributions become more pronounced [29]. The thermal modeling provides
essential information of the temperature distribution that can prevent the battery from a thermal
runaway due to the heat generation. Another type of battery modeling consists of coupling
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two physical domains in the same battery model such as electro-thermal models. This type of
modeling can handle in the same model the electrical and the thermal behavior of the Li-ion
batteries [32, 33].

2.2.1 Electrochemical models
The electrochemical models are based on the chemical processes that take place in the battery.

These kind of models describe the different battery processes in great detail and considering the
electrochemical phenomena that take place in the battery, such as diffusion and polarization [34].
As a result, this type of model becomes more complex.

Figure 2.1 – Lithium cell electrochemical model [3]

There are two main types of electrochemical models used in the literature: the pseudo-two-
dimensional model (P2D) and the single particle model (SP), as shown in Figure 2.1 [35,36]. The
P2D model [37, 38] is based on the concentrated solution theory and the porous electrode theory
model. In this model the porous electrode structure increases the specific surface area, which
adequately facilitates the diffusion of ions through the electrodes. The porous structure of the
graphite and the lithium materials are able to provide sufficient contact with the electrolyte [39].
P2D models consider the active material in the electrode as spherical particles of equal size and
volume [40].

The SP model [41,42] is a simplification of the P2D model which considers the electrode as a
unique particle. If the liquid phase concentration and the electrode potential are assumed constant,
the reactions in the electrodes are assumed to be identical for different particles. Thus, the SP
model does not consider of the distribution of the Li-ions concentration inside the electrolyte
phase [43]. Compared to the P2D model, the description of the migration of Li ions inside a
solid particle is much simpler for the SP model [40].

Generally, the electrochemical model consists of different mathematical models represented
by partial differential equations difficult to solve because they require initial and boundary condi-
tions. In addition to the high number of equations, the electrochemical models require several
electrochemical parameters that are difficult to obtain directly. For this reason, optimization
methods are often used for the parameters estimation [40].

Despite the complexity of an electrochemical model, there can be little doubt that elec-
trochemical models are the most accurate among all battery models, as they explain the key
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behaviors of the battery at the microscopic scale based on the chemical reactions occurring inside
the electrodes and the electrolyte [27].

2.2.2 Empirical models
The computational cost of the electrochemical model (P2D and SP) make the integration of

this kind of model difficult in the BMS. Considering the essential nonlinear characteristics of
a battery, the empirical model avoids the coupled partial differential equations and uses only
a reduced order polynomial expressions. There are different classical empirical models in the
literature such as the Shepherd model, the Unnewehr Universal Model and the Nernst model.
The three models can predict the terminal voltage of the cell based on the SOC and the current.
These three empirical models are adapted from the reference [44].

— Shepherd model: The Equation (2.1) describes the electrochemical behavior of the battery
directly in terms of voltage, SOC and current

Ut = K0�R0IL +
K1

zs
(2.1)

— Unnewehr Universal Model: The Equation (2.2) simplifies the Shepherd model and
attempts to model the variation in resistance with respect to SOC

Ut = K0�R0IL +K2zs (2.2)

— Nernst model : The Equation (2.3) can be viewed as a modifications to the Shepherd model
and uses exponential function with respect to SOC

Ut = K0�R0IL +K3 lnzs +K4 ln(1� zs) (2.3)

— Combined model: The Equation (2.4) can be viewed as a combination of the previous
three models for better accuracy purpose

Ut = K0�R0IL +
K1

zs
+K2zs +K3 lnzs +K4 ln(1� zs) (2.4)

In these models, Ut is the terminal voltage; K0, K1, K2, K3, K4 are constant parameters of the
empirical models; IL is the current; R0 is the internal resistance; zs is the abbreviation for SOC

The parameters in the empirical models could be estimated using a system identification
procedure. These models have the advantage of being linear in term of the parameters. Using a set
of empirical data (Ut ,IL,zs), the parameters may be identified using least-squares estimation [44]
or optimization methods [45].

Many Li-ion battery models are developed for vehicle power management control purpose
and battery management system development. But it remains the most commonly used model is
the equivalent circuit (EC) models.

2.2.3 Equivalent circuit models
The complexity of the electrochemical models, the low accuracy of the empirical models and

limitations of the computers in the past, led researchers to investigate another modeling approach
called EC model. Nowadays, for many applications, it is important to strike a balance between
model complexity and accuracy so that models can be embedded in BMS microprocessors and
provide accurate results in real-time [27, 40]. The EC models are formed by resistors, capacitors,
Resistance-Capacitance (RC) networks, and voltage sources. Various EC Models such as the
Rint model, the Thevenin model and DP model are now widely used in EV applications [4, 45].
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The Rint Model

The simplest model is the internal resistance model Rint model. It consists of an ideal voltage
sources Uoc representing the open circuit voltage, and a resistance R0, as shown in Figure 2.2.
Both R0 and Uoc depend on SOC, SoH and temperature. UL is the terminal voltage, and IL is the
current. The electrical equation of Rint model is expressed by Equation (2.5).

Figure 2.2 – Internal Resistance battery Model [4]

UL =Uoc�R0IL (2.5)

The Thevenin Model

The Thevenin model adds a parallel RC network in series to the Rint model. The major added
value is the dynamic behavior of the battery which was neglected in Rint Model. As shown in
Figure 2.3, RT h is the equivalent polarization resistance and CT h is the equivalent polarization
capacitance to model the battery relaxation effect during charging and discharging; UT h is the
voltages across CT h. The electrical behaviour of the circuit can be expressed by Equation (2.6).

Figure 2.3 – Thevenin battery Model [4]

8
><

>:

U̇T h =� UT h
RT hCT h

+ IL
CT h

UL =Uoc�UT h�R0IL

(2.6)

The DP Model

The analysis of the power characteristics of Li-ion batteries at the end of charge or discharge,
shows that there is an other phenomena that can be observed, is the polarization. The Thevenin
model could simulate the polarization but in a small scale with inaccurate results. An improved
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circuit model takes in consideration the two polarization effect: concentration polarization and
electrochemical polarization, defined as dual polarization (DP) model is presented in Figure 2.4.

Figure 2.4 – DP battery Model [4]

The model connects a parallel RC network in series to the Thevenin model, in order to
consider separately the concentration polarization and the electrochemical polarization. The
consideration of the polarization characteristics may lead to more accuracy compared to Thevenin
model. The electrical behavior of the circuit can be expressed by Equation (2.7)

8
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>>>>>>:

U̇pa =�
Upa

RpaCpa
+ IL

Cpa

U̇T h =�
Upc

RpcCpc
+ IL

Cpc

UL =Uoc�Upa�Upc�R0IL

(2.7)

where Rpa the effective resistance characterizing electrochemical polarization and Rpc the effec-
tive resistance characterizing concentration polarization. the capacitances Cpa and Cpc, which
are used to characterize the transient response during transfer of power to/from the battery and to
describe the electrochemical polarization and the concentration polarization separately. Upa and
Upc are the voltages across Cpa and Cpc respectively. Ipa and Ipc are the current of Cpa and Cpc
respectively.

2.2.4 Classification of battery models

The modeling approaches discussed in this section are summarized in Figure 2.5. Despite the
difference between all proposed battery models, some essential connections remain between them.
The empirical model simplify the electrochemical model by using mathematics and experience.
Equivalent circuit model replace the chemical reaction by electric circuit components. Therefore
the electrochemical model is the basis for other models.
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The Equation (2.8) that models the heat stored inside the battery could be simplified by
assuming that the velocity of the electrolyte is almost zero [48, 54, 55], as shown in the Equation
(2.9).

rCp

✓
∂T
∂ t

+n ·—T
◆
⇡

∂ (rCpT )
∂ t

⇡ rCp
∂T
∂ t

(2.9)

The term — ·l—T in the Equation (2.10) is the three dimensional (3D) heat conduction term,
and it can be one dimensional (1D), two dimensional (2D) or 3D in Cartesian or cylindrical
coordinates. For simplification, we can assume that the air flow is a 1D conduction [48, 50].

— ·l—T =�h(T �Tout) (2.10)

where h is heat transfer coefficient, T is cell temperature, Tout is the outside temperature.
There are some commonly used expressions in the literature [47, 50, 52–54, 56] for heat

generation. All these equations are deduced from the Bernardi thermal formula [48] presented
in the Equation (2.11). The first term of the equation refers to Joule heat and the second one to
the entropy change or the reversible heat, where Uoc is the open circuit voltage, UL is the cell
voltage, IL is the cell current and T is the battery temperature.

q̇ = IL(Uoc�UL)�T IL
dUoc

dT
(2.11)

In order to get a more accurate model that take into consideration the side reaction heat
generation, a famous heat generation equation expressed by [57] in the Equation (2.12):

Q = Qr +Qp +QJ = nFT
∂Uoc

∂T
+Qp +QJ (2.12)

with Qr is the reaction heat, Qp is the polarization heat, QJ is the Joule heat, F is the Faraday’s
constant, n is the number of charge involved in the battery reaction.

Reference [57] proposes a estimation of the three terms in the previous equation using Q1 is
the heat generated from positive and negative electrode, Ri is the internal resistance, and Rp is
the polarization resistance as presented in the Equation (2.13):
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>:

Qr =�3.37⇥10�2Q1IL

Qp = 3.60RpI2
L

QJ = 3.60RiI2
L

(2.13)

A rudimentary way of describing the heat transfer between a cell and its environment is with
a 1D lumped-parameter (also known as lumped-capacitance) model. It considers the cell heat
generation Q and the convective heat transfer between the cell surface. The surroundings are
modeled with a convection resistance Rv. The rate of change of the cell temperature is represented
in the thermal model with the heat capacity of the cell Cp. The equations governing heat transfer
for the cell thermal model, can be expressed as shown in the following equation [58]:

mCp
dT
dt

= Q� T �Tout

Rv
= R0I2

L�
T �Tout

Rv
(2.14)

Heat generation is approximated as a concentrated source of Joule loss in the battery core,
computed as the product of the current IL square and the internal resistance R0. The internal
resistance R0 is considered as an unknown parameter to be identified. This simplification can lead
to cycle-dependent values for the lumped resistance R0, or even a non-constant resistance within
a single cycle, because R0 can vary with conditions, such as temperature, SOC and SOH [59].



Chapter 2. Lithium-ion Battery Modeling 27

Figure 2.8 – Schematic of the thermal model [5].

Contrary to the previous model that considers a concentration of the heat in the core of the
battery cell. The thermal model in Figure 2.8 describes the radial heat transfer dynamics of a
cylindrical battery cell from the core to the surface. The two states are the core Tc and surface Ts
temperatures are obtained Equations. (2.15) as follows [5, 59]:

Cc
dTc

dt
=

Ts�Tc

Rc
+ReI2

L

Cs
dTs

dt
=

Tout�Ts

Ru
� Ts�Tc

Rc

(2.15)

where the heat conduction resistance, the convection resistance, the internal resistance, the
ambient temperature, the core temperature, the surface temperature, the core heat capacity, and
the surface heat capacity are represented by Rc , Ru, Re, Tout , Tc, Ts, Cc, and Cs, respectively.

The heat exchange between the core and the surface is modeled by heat conduction over
a thermal resistance, Rc which is a lumped parameter aggregating the conduction and contact
thermal resistance across the compact and inhomogeneous materials [60]. The convection resis-
tance Ru is modeled between the surface and the surrounding coolant to account for convective
cooling. The value of Ru is a function of the coolant flow rate, and in some vehicle battery
systems, the coolant flow rate is adjustable to control the battery temperature. Here, it is modeled
as a constant as if the coolant flow rate is fixed to accommodate the maximum required cooling
capacity [59].

The internal resistance Re is considered as an unknown parameter to be identified. This
simplification can lead to cycle-dependent values for lumped resistance Re,or even nonconstant
resistance within a single cycle, because Re can vary with conditions, such as temperature,
and SOC [59]. The internal resistance dependence on SOC and temperature defines the Li-ion
electro-thermal model.

Figure 2.9 shows the proposed electro-thermal model, which consists of three sub-system
models: the electrical model, the SOC estimation model and the thermal model. The SOC
estimation model is related to the electrical model by the battery current, which is the input of
the SOC estimation model. The thermal model is linked to the electrical model by the generated
heat, which is the quantity R0I2

L . The output of the thermal model is the cell core temperature T
which is a input for the electrical model.
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Figure 2.11 – The OCV of Li-ion battery cell

The battery model used for the electrical subsystem is a Rint model as shown in Figure 2.12.

Figure 2.12 – The proposed Rint model

By neglecting the OCV dependency on temperature, the heat generated by the battery can be
simplified to equal the Joule heat. Thus, the thermal subsystem model will be expressed as the
Equation (2.14).

The SOC estimation subsystem calculates the ratio of the remaining capacity to the nominal
capacity of the battery known as SOC and is computed by the Equation (2.16):

SOC(t) = SOCi ±
1

C0

Z t

0
hILdt (2.16)

where SOCi is the initial value of the SOC, C0 is the nominal capacity in Ah and h is the charging
efficiency.

The state of energy (SOE) is an other method to estimate the SOC when the power is used
instead of current [67–69]. The SOE is defined in the Equation (2.17):

SOE(t) = SOEi ±
1

Q0

Z t

0
hPLdt (2.17)

where SOEi is the initial value of the SOE, Q0 is the nominal capacity in kWh and PL is the
charging power.

To sum up, the consideration of the Li-ion battery thermal behavior is carried out by adding
the thermal model to the electrical model forming the battery electro-thermal model. In the
next section, particular attention will be given to the identification of the battery thermal model
parameters.
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2.4 Identification Methodology of Battery’s Parameters
This section will help understand how the parameters of the thermal model were identified.

To identify the battery thermal parameters, the method of least squares is used [70–72]. Based on
the temperature evolution of the battery and the Joules losses, the two parameters of the thermal
model mCp and Rv will be estimated. The Equation (2.18) shows the expression of the thermal
model that will be used.

mCp
dT
dt

= R0I2
L�

T �Tout

Rv
(2.18)

By adjusting the thermal model to be useful for the estimation procedure, some simplifications
could be done as expressed in the Equation (2.19):

R0I2
L = mCp

dT
dt

+
T �Tout

Rv
(2.19)

By defining a = mCp and b = 1
Rv

the thermal model can be expressed as the Equation (2.20):

R0I2
L = a

dT
dt

+b(T �Tout) (2.20)

The parameters in the thermal model could be estimated using a system identification
procedure. This model has the advantage of being linear in terms of the parameters a and b as
shown in the Equation (2.21):

y = ax+bz (2.21)

Using a set of experimental data (x,y,z) defined in the Equation (2.22), the parameters may
be identified using least-squares estimation.
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>>>>:

x = dT
dt

y = R0I2
L

z = T �Tout

(2.22)

A discretization transformation is employed to the continuous data (x,y,z) with a sampling
time Ts to obtain a set of data of length N as presented in the Equation (2.23):

{(xi,yi,zi)/i = 1,2, ...,N} (2.23)

Given data {(x1,y1,z1), ...,(xN ,yN ,zN)}, the error associated to the saying model y = ax+bz
can be defined by the Equation (2.24):

E(a,b) =
N

Â
n=1

(yn� (axn +bzn))
2 (2.24)

The goal is to find values of a and b that minimize the error. The method of least squares
requires to find the values of (a,b) as expressed in the Equation (2.25):

∂E
∂a

= 0 ;
∂E
∂b

= 0 (2.25)

The differentiation of the error E(a,b) yields the following expressions in the Equation
(2.26):
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∂E
∂a

=
N

Â
n=1

2(�xn)(yn� (axn +bzn))

∂E
∂b

=
N

Â
n=1

2(�zn)(yn� (axn +bzn))

(2.26)

Setting ∂E
∂a = ∂E

∂b = 0 gives the two simplified expressed in the Equation (2.27):

N

Â
n=1

(yn� (axn +bzn)) · (xn) = 0

N

Â
n=1

(yn� (axn +bzn)) · (zn) = 0
(2.27)

The simplification of the previous two equations gives the linear system to solve in the
Equation (2.28):
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The linear system can be expressed in matrix form as presented in the Equation (2.29):
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The values of a and b that minimize the error can be obtained if the matrix is invertible by
the Equation (2.30):
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The solution of linear system that minimize the error is expressed in the Equation (2.31):
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Using temperature data from a charging case, the parameters of the thermal model can be
estimated using the least square method.
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mCp = a = 239555 Rv =
1
b
= 0.0750 (2.35)

The obtained values are used as setting parameter for the thermal model. The plot of the
temperature evolution curve is shown in the Figure 2.13:

Figure 2.13 – The temperature evolution mCp = 239555Rv = 0.075

The comparison between the experimental used data and the thermal model temperature
output is given in the Figure 2.14. The two curves are the same due to the large number of values
used in the estimation method.

Figure 2.14 – The temperature evolution: measured and estimated



Chapter 2. Lithium-ion Battery Modeling 33

However, by choosing more than one sampling time, the size of the data set changes. Figure
2.15 shows four data sets that will be used in the least squares estimation for parameters
identification.

Figure 2.15 – The discretization of the temperature

The results of the least square estimation method show the impact of the number of samples
on the accuracy. Using a big data set the estimated value converges to the real model value as
shown in Table 2.1.

Table 2.1 – Least square estimation results

N 40 80 199 398 Model value

mCp 173603 205171 226041 233413 239555

Rv 0.0573 0.0646 0.0703 0.0725 0.075

The Figure 2.16 presents the benchmarking between different temperature evolution curves
depending on the used number of samples. A deviation between the estimated temperature
curve and the measured temperature curve, caused by a difference in the values of the model’s
parameters. The impact of the number of samples, the sampling time and the accuracy of the
estimation do not have a significant effect on temperature evolution curves. The small difference
in the temperature curves does not influence the charging power limitation of the Li-ion battery.
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Figure 2.16 – The comparison of the temperature evolution for several used number of samples

2.5 Experimental tests on Zoé in Techenocentre of Renault
Group

Figure 2.17 – The comparison of the temperature evolution



Chapter 2. Lithium-ion Battery Modeling 35

The work carried out in the SmartEVLab of Technocentre of Renault Group consists in :

— Getting to grips with the API Metier VOA

— Using the schedule mode

— Launch of the V2G algorithm to generate the power profile

— Sending a schedule on the terminal side with Postman

— Sending schedule on EV side with Postman

— Renegotiation of the EV side with Postman

The API Metier VOA is implemented by Trialog on the V2G proto (cars of the fleet included).
Allows to send requests by being directly connected to the car via cable ethernet. The requests
can be of type :

— GET : to retrieve information from the EV (batteryCapacity, SOC, Pcharge etc ...) or from
the terminal if EV is connected (EVSE info, schedule of the terminal sent to the EV, etc
...).

— POST/PUT: to give a load instruction (Load Profile), to renegotiate the current schedule,
etc...

2.5.1 Charging Session in G2V mode only: 1 hour 45 min

Figure 2.18 – The comparison of the temperature evolution
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In this charging session, the EV will receive power from the grid (G2V mode) to reach a
90% SOC. For SOC estimation, It can be observed that the two curves of the estimated SOC
by the electro-thermal model fits the curves of the SOC calculated by the EV (Experimental
data). Concerning the temperature estimation, due to the decimal accuracy of experimental
data, the received data from the EV are truncated to decimal value, therefore the number of
digit (scale) is equal to zero. This problem affects the initial battery temperature, with the
displayed value of 15�C three cases are possible is we consider a scale equal to 2: T0 = 15�C,
15.01�C < T0 < 15.99�C T0 = 15.99�C.

Due to this problem three plots are used to estimate the evolution of the battery temperature
considering three values of initial temperature: T0 = 15�C, T0 = 15.5�C and T0 = 16�C. It can
be observed that the temperature evolution for the three estimated curves looks the same but
they are different in the final value Tf = 18.1�C, Tf = 18.5�C and Tf = 19�C for T0 = 15�C,
T0 = 15.5�C and T0 = 16�C respectively. The estimation error depends on the used value of the
initial temperature but the maximum estimation error that can be observed is 1�C.

2.5.2 Charging Session in V2G and G2V modes: 1 hour

Figure 2.19 – The comparison of the temperature evolution
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In this charging session, the EV will start by discharging the battery on the grid from 62%
of SOC and after 30 minutes the EV will draw power from the grid (G2V mode) to return to
its initial SOC value of 62%. For SOC estimation, it can be observed that the two curves of the
estimated SOC by the electro-thermal model fits the curves of the SOC calculated by the EV
(Experimental data) with a small error estimated to 1% of SOC.

Regarding the temperature estimation, it can be observed that the two curves of the estimated
temerature by the electro-thermal model fits the curves of the mesured temperature of the battery
by the EV (Experimental data)

To sum up, considering the application of the EV charging in meduim term time scale, the
battery electro-thermal model can be considered as an adequate model for EV battery estimation
with the consideration of the temperature.

The Renault SmartEVLab aims to provide a demonstration prototype of a bi-directional
AC and DC charging services system, using the ISO 15118 standard. This prototype includes
Renault Zoé modified for AC or DC support and ISO 15118, and modified EVTronic Charging
Stations. The EVCC, also called Charge Manager, is the software installed in the Renault Zoé. It
is responsible for :

— Monitoring and control of IEC 61861-1 parameters (PWM, Control Pilot, Proximity Signal,
Locking cable)

— Control of the DC-Box relays
— Collaboration with Renault Zoé’s EVC ECU through CAN communication for recharging

management
— External AC charger control for EV (if applicable)
— ISO/IEC 15118 communication control by PLC
— Provide an HTTP/REST API for remote monitoring and control of recharging

2.6 Conclusion
The main points of Li-ion battery modeling approaches have been discussed in detail in this

chapter. A particular focus on three modeling techniques: electrochemical models, empirical
models, and equivalent circuit models. The electrochemical models can offer high accuracy due
to their capacity to describe the chemical processes in the battery cell, however, they are not
suitable for most real-time embedded applications. For EV application, two modeling approaches
could be used. The first approach is the empirical models which are an approximation and a
simplification of the electrochemical model, but the difficulty to understand the effect of ageing
on the battery model parameters and their identification remain the main problems. The second
approach is through the equivalent circuit models, the choice of a model from this category
(Rint model, Thevenin model, and DP model) is a trade-off between precision and complexity.
By assuming that the thermal behavior of Li-ion is crucial, several thermal models have been
reviewed. Moreover, a thermal model has been proposed and added to the electrical model
to form a electro-thermal model of the battery. Based on the temperature evolution data set,
the parameters of the thermal model have been estimated using the least square method. The
choice of the time step for the acquisition of temperature data has an impact on the accuracy of
the estimation of the model parameters by the least-square estimation method. However, the
impact of the estimation precision of the model parameters is less significant on the temperature
evolution curves.

The electro-thermal model has been adopted for this work. In chapters 3 and 4, this model
will be used in the proposed algorithms to evaluate the SOC and the temperature of the EVs
during the scheduling of the charging.





3
Contribution to Smart Charging
Algorithms For an Electric Vehicle

3.1 Introduction

Due to the diminution of fossil fuels and the increase of greenhouse gas emissions, re-
searchers around the world are currently focused on finding an alternative, sustainable and smart
transportation systems. EVs can take a big part of this change. Thanks to their high energy and
high power density, Li-ion batteries provide enough range for the users of EVs and give the
possibility of integrating EVs into the power grid. An EV can act as an energy source to support
the grid during the peak hours using the V2G feature, and as a battery storage system at home by
using the V2H functionality if available.

Today, most part of the charging of EVs is largely done in a simplistic way. As soon as a
vehicle is connected to the grid, the battery is charged without any planning, until it reaches the
desired SOC. This type of charging, called uncontrolled charging, is still widely applied today.
This kind of strategies create high peaks of power demand when all EVs are plugged into the
power grid at the same time such as an evening charging. Moreover, the users of EVs expect to
start charging immediately, whereas in the majority of cases, the charging can be delayed. Using
electricity prices as a lever to control the charging of EVs is a possible solution in a decentralized
charging strategy. The user and the power network can directly obtain concrete benefits.

Controlling the charging of the EVs has become a particular interest to researchers in recent
years because of the increasing levels of EV penetration and the impact of EVs on the power
grid. The integration of EVs can accelerate the development of the smart grids, by enhancing the
schedule and control of the charging that help to minimize the charging bill for customers, and
at the same time, to support the power grid during the high power demand periods. Thus, the
control of EV charging has a double impact on EV’s customer daily use and a positive effect on
the quality of service on the power grid.

The improvement of charging strategies for EVs is a challenge for the next decades. In order
to maintain the EV purchase profitably, it is crucial for the EV users to properly schedule the
charging taking into account the time of use (TOU) energy prices and the constraints of Li-ion
batteries. Therefore, the EV charging scheduling strategies for the charging cost minimization is
the primary focus for this chapter.
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Figure 3.2 – Decentralized charging architecture

The result of a decentralized approach may be non-optimal, depending on the information and
methods used to determine the charging power. There is no guarantee to reach optimal charging
outcome employing decentralized approach from the system operator viewpoint. Anyhow,
depending on the electricity tariff mechanism as well as the response behaviors of the electric
vehicle owners, the total load of EVs may cover the power grid requirements [80].

The reactions of a large number of electric vehicles following a change in electricity prices
could lead to a sudden change in the power demand, and could potentially destabilize the grid
and do not respect the commitments made in the electricity market between the aggregator
and TSO. Care must be taken to decentralized strategies cannot inadvertently synchronize this
disturbance. More constraints should be added to the optimization strategies to overcome this
disturbance [74].

To overcome these problems, distributed control architectures are currently in development,
and are getting more interest from researchers and charging operators. EVs would require a
charging application and an onboard controller installed on the vehicle. The adoption of a
decentralized control strategy can be a solution to previous drawbacks of centralized strategies.
It breaks the complexity of global optimization problem to local optimization problems at the EV
level and it limits the communication between the aggregator and the EVs [75, 82]. However, a
major disadvantage of the decentralized approach, in comparison to the centralized approach, is
that the EVs on one node (of the distribution system) cannot supply energy to EVs on other nodes
using vehicle to vehicle (V2V) feature. In general, the load demand on any node is greater than
the V2G energy available from EVs on the same node. Therefore, in absence of a scenario where
the V2G energy available from EVs on one node can be used to supply load demand on other
nodes, the preferred way of implementing a charging strategy in a distribution system would be
the decentralized approach [84]. To sum up, it should be noted that due to the centralized nature
of the structure, the centralized control architectures presents several problems, such as the risk
of a possible system failure, expensive communication infrastructure, access to transport habits
of users. For all these reasons, it can be desirable to implement a decentralized control.

Different objectives have been used in charging scheduling problem [85]. Some works have
focused on maximizing the benefits on the grid side, such as reducing the financial cost of
power generation [86], optimizing grid operating costs, including the cost of renewable energies
and the cost of availability for the provision of spinning reserves [87], minimizing the load on
the distribution system variance [88], reducing losses in the distribution system [89, 90], and
maximizing the benefits of thermal and wind power plants while minimizing the risks associated
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with energy exchanges [91]. Some other work has focused on optimizing the benefits on the EV
side, such as minimizing the charging costs [23, 25, 92], minimizing both CO2 emissions and
charging costs [93], and maximizing the average SOC of electric vehicles [94]. However, another
category of work focused on optimizing the benefits on the aggregator side, such as maximizing
the benefits of the aggregator [95] and reducing imbalances resulting from the energy purchased
by the aggregator on the day-ahead market and the actual energy consumed [96]. Several works
have also attempted to jointly optimize grid side and EV side benefits [90, 97, 98].

In general, an EV charging scheduling from the customer’s point of view is almost neglected,
a few recent works studied the minimization of the EV owners charging cost [23,25,92,94,98,99].
However, most of them focused on maximizing the aggregator profit without carefully addressing
customers’ needs [19–21,24,100–102]. The main drawbacks of this type of scheduling is that the
SOC desired by the customer may not be reached at the departure time, therefore the customer
would not have the required SOC to return home. The smart charging strategies developed in
this chapter will consider EV users satisfaction as the main constraint, thus, the respect of the
desired SOC of the EV users will be achieved.

Li-ion batteries are more sensitive to the temperature than other battery technologies. High
operating temperatures increase power acceptance of the battery but rapidly decrease the battery
lifetime, causing premature ageing and leakages on the Li-ion batteries [17]. On the other hand,
subzero temperatures decrease the power acceptance, increasing the internal resistance of the
Li-ion batteries, causing the raising of the Joules power losses, decreasing the efficiency of the
charging, and affecting the State of Health (SOH) of the Li-ion batteries [16]. Controlling the
temperature of the Li-ion batteries is a big challenge to make the EVs suitable to any climate
condition and to extend the Li-ion batteries lifespan.

Despite the significant effect of temperature on the Li-ion batteries, almost all optimal
charging strategies do not take into account the temperature effect on the charging scheduling.
Due to the higher sensitivity to the temperature of the Li-ion batteries compared to other type
of battery chemistry [103], extreme outside temperatures such as 40�C and over or �20�C and
lower, accelerate the ageing capacity loss [104]. High temperatures increase power acceptance
of the battery but the battery lifetime decreases in a short time, causing premature ageing of
the Li-ion batteries [17], [105]. On the other hand, subzero temperatures decrease the power
acceptance, increasing the internal resistance of the Li-ion batteries, causing the raising of the
Joules power losses, decreasing the efficiency of the charging, and affecting the state of health
(SOH) of the Li-ion batteries [106] [16], [107]. In case of cold weather when the temperature is
not considered, the final SOC estimation maybe false and the battery does not reach the SOC
target desired by the customer [108]. Thus, charging the battery while considering temperature
is a very important issue, to get a best estimation of SOC and to conserve the lifespan of EVs
batteries. Considering the outside temperature and temperature of the Li-ion batteries is a big
challenge to make the EVs suitable to any climate condition and to extend the batteries lifespan.

3.3 Smart Charging Algorithm Considering the Temperature
The objective of this algorithm is to minimize the charging cost of the EVs by giving

the scheduled optimal power flow that satisfies the customer energy need. This contribution
corresponds to the content of my first conference paper [108] presented in the section 5. The
minimization of EV’ cost charging, takes into account the variation on the TOU price based on
the transmitted information from the TSO. Thus, the TOU prices is defined as an input of the
optimization system.

An example of TOU price is given in the Figure 3.3. The TOU price profile is a typical one,
it allows to evaluate the charging cost with the current energy market. On the one hand, the G2V
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3.3.1 Mathematical formulation of the optimization problem
The vector of decision variables can be divided in two subsets: PG2V which represents the

power from the grid to the battery and PV 2G which is the power from the battery to the grid. The
size of these vectors depends on the sampling time.

The objective function is composed of two objectives, a positive one J1 and a negative one
J2. The optimization leads to minimize J1 that refers to the EV charging cost and maximize J2
corresponding to the EV discharging remuneration or the economic profit of discharging EV’s
battery on the grid, the two objectives are expressed in Equation (3.1), and Equation (3.2):

J1 =
T

Â
t=1

DEPG2V (t) ·PG2V (t) ·Dt (3.1)

J2 =
T

Â
t=1

DEPV 2G(t) ·PV 2G(t) ·Dt (3.2)

where DEPG2V is the charging electricity price of the day, DEPV 2G is the the discharging
electricity remuneration of the day, PG2V , PV 2G is the charging and the discharging power
respectively, Dt is the sampling period, and t the time. The proposed optimization approach is
formulated to select the optimum charging power PG2V , and the discharging power PV 2G that
minimize the weighted sum of the two criteria. The proposed formulation of the objective
function to be minimized is given in Equation (3.3):

J(x) = a1J1(x)+a2J2(x) (3.3)
where a1, a2 are constant positive values, given the weight for each criterion: a1 enforces

charging operation mode, a2 leads the system to discharge the EV using the available battery
power to support the grid.

The setting of the parameters a1 and a2 depends on the choice of the customer to use the
smart charging with V2G feature or non. The definition of the value of a1 and a2 is given in the
Equation (3.4):

(
a1 = 100;a2 = 0, Smart charging algorithm without V2G (only G2V)
a1 = 100;a2 = 100, Smart charging algorithm with V2G

(3.4)

The optimization problem includes linear and nonlinear constraints resulting from EV
technical constraints and customer needs.

The charging power constraint related to the daily available power on the grid and the
discharging power constraint related to the daily required power by the grid are expressed in
Equation (3.5):

0 PG2V (t) PG2V�Max

�PV 2G�Max  PV 2G(t) 0
(3.5)

where PG2V�Max, PV 2G�Max are the maximum available power on the grid and the maximum
required power by the grid.

The maximum power that can be accepted or delivered by the battery depends on the relation
between the battery’ SOC and the battery’s temperature. This power is set by the values obtained
in the Powermap function presented in the Figure 3.5. The expression of the power limitation
constraint is presented in Equation (3.6):

PG2V (t) Powermap(SOC,T )(t)
PV 2G(t)��Powermap(SOC,T )(t)

(3.6)
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Where Powermap represents the dependence of battery acceptance on the SOC and the
temperature.

Figure 3.5 – Lithium-ion battery power map

The global constraints related to the upper and the lower bound of the SOC are expressed in
Equation (3.7):

SOC(t) SOCmaxi (3.7)

where SOCmaxi is the maximum value of the SOC expected by the user.
In order to limit the battery cycling degradation in discharging mode and to avoid customer’s

range anxiety in case of an emergency use of the EV, we add a SOC constraint presented in
Equation (3.8):

SOC(t)� SOCmini (3.8)

where SOCmini is the minimum value of the SOC expected by the user, avoiding high battery
DOD during V2G mode.

The calculation of the required energy Erequired to reach the SOC desired by the costumer is
expressed in the Equation (3.9):

Erequired = (SOC(t f )�SOC(ti))⇥E0 (3.9)

The initial and the final time labeled ti, and t f respectively. SOC(ti) is SOC of the EV in the
beginning of the charging, SOC(t f ) is the SOC desired by the customer, and E0 is the capacity
of the battery in kWh.

The constraint related to the final energy of the battery is presented in Equation (3.10) and
Equation (3.11):

E f inal = SOC(ti)⇥E0 +(PG2V +PV 2G) ·Dt (3.10)

Erequired  E f inal  E0 (3.11)

To limit the use of the battery in V2G mode for better battery lifespan, the constraint is expressed
in Equation (3.12) and Equation (3.13):

EV 2G =�PV 2G ·Dt (3.12)

EV 2G  p⇥E0 (3.13)
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where p is a parameter to specify the proportion of the battery capacity shared with the grid.
The most important constraint that does not allow to charge and discharge in the same time

slot is presented in Equation (3.14):

PG2V (t) 6= 0) PV 2G(t) = 0
PV 2G(t) 6= 0) PG2V (t) = 0

(3.14)

This nonlinear constraint can be expressed by one mathematical condition in Equation (3.15):

PG2V (t)⇥PV 2G(t) = 0 (3.15)

The battery’ SOC is estimated using the SOE as explained in Equation (2.17). The dynamic
monitoring of the battery SOC is given by the Equation (3.16):

8
<

:

SOC(t +1) = SOC(t)+ E(t)
E0

E(t) = hcharger(PG2V (t)+PV 2G(t)) ·Dt
(3.16)

where hcharger is the charger efficiency.
The temperature calculation is a first order model expressed in Equation (3.17):

mCp
dT
dt

= PJoule +Pconvective (3.17)

T (t +1) = T (t)+
Dt

mCp
· (PJoule(t)+Pconvective(t))

The convective power is modeled by the Newton law showed in Equation (3.18):

Pconvective =�
T �Tout

Rv
(3.18)

The Joule power is formulated as linear model in terms of charging and discharging power as
shown in Equation (3.19):

PJoule = k⇥P (3.19)

with P is PG2V or �PV 2G depending the charging or discharging mode, and k is a thermal factor
depending on the thermal inertia of the battery.

The modeled problem under the constraints is represented by a linear and non-linear equation.
Therefore, a generic solver that uses Non-Linear Programming (NLP) with constraints was used
to solve the optimization problem. The sampling period Dt = 10 minutes is a parameter of
the optimization problem, the choice of this value defines the trade-off between precision and
calculation time. The maximum number of the sampling time step is 144, corresponding to the
simulation of one day and the decision variables are two vectors of 144-element.

3.3.2 Results of the proposed smart charging algorithm
Below the simulation results for the proposed smart charging algorithm are presented. The

algorithm has been tested for several scenarios to validate its performance. A real French energy
price profile was chosen to illustrate the user charging case. The results present two cases, the
first case is a charging under an outside temperature of 20�C, and the second case is a charge
under an extreme outside temperature of �20�C.

In the first case, a smart charging with just G2V considered as unidirectional charging (Figure
3.8) and smart charging with V2G feature considered as bidirectional charging (Figure 3.9)
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With the uncontrolled charging presented in Figure 3.7, the EV starts the charging the
moment it plugs-in, neglecting the high energy prices, so the charging cost will be high too. The
estimated cost of charging for this first scenario is 19.95e. Without a smart charging algorithm,
the charging power is fixed to the maximum power accepted by the battery. Moreover, the
temperature increases very fast, in case of a high desired SOC, at a fast charging station and
without cooling, the battery lifespan can decrease rapidly. In case of high penetration level
of EVs in the grid, the plug and charge method leads to grid overloading, voltage drop, and
frequency deviation.

Figure 3.8 – Smart charging with G2V and without V2G, Tout = 20◦C.

However, with smart charging algorithm, the EV is plugged-in at 6 PM, but the charging
effectively starts until midnight when the electricity price is lower. The algorithm can shift the
charge to the period when the electricity price is more attractive corresponding to the less period
used on the night. Figure 3.8 shows that the temperature increases slowly, compared to the fast
temperature evolution in the uncontrolled charging case.

The desired SOC is reached before the departure time. Using the smart charging algorithm,
the power is distributed along the charging period to avoid the overload in the high EV penetration
level. The smart charging algorithm can perform the charging of a fleet of EVs with normalized
distribution of the power in the whole charging station. The estimated cost of charging for this
simulation is 4.25e. The charging bill is lower than the uncontrolled charging showed in Figure
3.7.
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Figure 3.9 – Smart charging with G2V and V2G, Tout = 20◦C.

Figure 3.9 presents the charging power, SOC, battery’s temperature evolution and energy
prices. Using the V2G feature, the smart charging algorithm, begins the discharging in the period
of high V2G remuneration to maximize the profit while the SOC decreases until it reaches the
minimal value SOCmini. At the same moment, the energy price becomes cheaper so the G2V
charge begins to realize the desired SOC. It can be observed that the smart charging algorithm
distributes power throughout the period in such a way that the battery SOC decreases and
converges to the minimal value SOCmini, as opposed to uncontrolled charging or smart charging
algorithm without V2G feature, where the battery SOC increases continuously until it reaches the
SOCtarget . With this decentralized algorithm, the estimated profit of charging for this simulation
is 2.83e. Thus the cost improvement compared to the smart charging without V2G feature is
7.08e, and 22.78e in comparison to uncontrolled charging.

Setting SOCmini to 0.05 in order to maximize the reward, may have an impact on battery
lifespan. However, setting the SOCmini at a value greater than 0.2 to extend the battery lifetime,
makes the EV’s customer miss out a significant profit. The SOCmini is a trade off between the
economical profit and battery degradation. The SOCmini value could be setup between 0.1 and
0.2 for optimal performances. Moreover, high temperatures increase significantly the internal
resistance and the capacity loss compared to medium ambient temperatures. Therefore, strong
capacity fading is usually reported for storage and/or cycling at high important temperatures,
due to the degradation of active materiel causing a reduction of Li-ion batteries lifetime.

For the second case, Tout = −20◦C, the arrival time is 12 AM and the departure time is 8
AM.
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Figure 3.10 – Smart charging with G2V and V2G considering the external and battery tempera-
ture, Tout =−20◦C.

In Figure 3.10, the algorithm begins charging immediately to exploit the period of time when
the temperature is above 0◦C, to benefit from the low G2V energy prices and to maximize the
energy stored in the battery. As the battery temperature decreases, the acceptance of battery
power also decreases. This property is directly related to the poor performance of lithium
batteries in subzero temperatures. When the price of V2G energy is more attractive, the battery
discharge begins to reach the desired SOC and minimize the total cost of charging. The estimated
charging cost is 3.62e.

Figure 3.11 presents a classical smart charging algorithm without considering temperature.
This algorithm takes advantage of the low G2V energy prices to charge the battery and benefits
from high V2G remuneration to discharge the battery while neglects the outside temperature
and the battery temperature. The estimated charging cost is 2.5e. In low temperatures, lithium
batteries limit the charging power, so the profile of the charging power in the first sub-figure
of Figure 3.11 is not realistic. Therefore, the estimated value of the final SOC of 0.7 is false.
Considering the outside and battery temperatures and the same power profile, the realistic value
of the final estimated SOC is 0.57. To achieve the desired SOC of 0.7, the battery needs to
keep on charging for a longer period of time. Consequently, the charging cost is estimated
at 4.41e. The smart charging algorithm performs the charging, reaches the desired SOC and
saves 0.79e, compared to a smart charging algorithm without considering temperature. Without
considering the outside temperature and the battery temperature, the charging power profile
could be unrealistic and the estimated value of final SOC can be false.
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Figure 3.11 – Smart charging with G2V and V2G without considering the external and battery
temperature, Tout =�20�C.

3.4 Smart Charging Algorithm with Dynamic Time Step Con-
sidering the Temperature

In addition to the studies mentioned in Section 3.2, many other optimal algorithms and
strategies are available in the literature to solve the cost minimization problem. Nevertheless,
all of them use a constant sampling period or fixed calculation step defined at the beginning or
before starting the optimization [22, 26, 100, 108, 109]. In the event of a fluctuation of energy
prices of a few seconds within a long planning optimization window, the charging scheduling
will cause an important issue with a huge number of steps.

Indeed, the calculation step is defined by the minimal duration between two changes of
energy price. Therefore, the size of the decision variable vector becomes very significant, so the
computation time and the complexity of the problem increase. The classical embedded scheduling
algorithms with constant calculation steps may not be able to carry out this optimization task
because of the large number of decision variables involved in this optimization.

To overcome this issue, a smart charging algorithm with dynamic time step is proposed.
The charging strategy uses the time step as decision variable in the optimization problem. The
sampling time Dt will be removed from the input parameters’ list (see Figure 3.12) compared
to the previous algorithm with fixed sampling period presented in Figure 3.6. The contribution
corresponds to the content of my first article presented in the section 5. The proposed strategy
consists of three steps: pre-processing, optimization, and post-processing.
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Figure 3.14 – Subdivision on time slots (case 1)

Thus, we can conclude the number of time slots corresponding to the size of the decision
vectors N = 12 and the duration of each time slot dmax shown in Figure 3.15. The subdivision
on time slots of the priceG2V , PmaxG2V , priceV 2G, and PmaxV 2G, can be observed in figures
3.14-3.15 and in Table 3.1.

For current data with a constant time step for scheduling, the maximal sampling time that can
be used with optimal charging strategies is Dt = 1 hour corresponding to the minimal duration of
dmax. Thus the size of decision vector is 24. For our strategy, the size of decision vector is 12.
The difference between these two numbers mainly depends on the minimal duration that can be
smaller than 1 hour in many real cases.

Figure 3.15 – Duration of time slot: dmax

In case of a small variation of G2V energy prices, due to an extra event such as the half-time
of important sporting events such as the Euro or the world cup. A rise in power demand at
half-time of the matches is observed at the national level due to the use of ovens and microwaves
in this period. An example of a small variation of 10 minutes between 8 PM and 8:10 PM
is shown in Figure 3.16. The maximal sampling time that can be used with optimal charging
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Table 3.1 – Subdivision results to slot scale

Slot priceG2V PmaxG2V priceV 2G PmaxV 2G dmax
1 0.16 20 0.10 8 2
2 0.12 20 0.10 8 3
3 0.12 20 0.10 12 1
4 0.12 14 0.10 12 1
5 0.16 14 0.14 12 2
6 0.16 14 0.14 6 1
7 0.16 14 0.10 6 2
8 0.16 20 0.10 6 2
9 0.12 20 0.10 6 3
10 0.16 20 0.14 14 1
11 0.16 10 0.14 14 4
12 0.16 10 0.14 8 2

strategies with constant time step is Dt = 10 minutes corresponding to a size of 144 for the
decision vector. For the proposed strategy, the size of decision vector is 14.

A single event of a few minutes duration can penalize the whole optimization problem.
To sum up, a short fluctuation of prices or maximal power can make the optimization task
very difficult and even impossible (time and memory constraints) for an embedded charging
scheduling system.

Figure 3.16 – Subdivision on time slots (case 2)

3.4.2 Optimization
This section is devoted to modeling the EV charging problem with cost minimization and

temperature consideration. The modeling is done as follows:
The time horizon vector is described by S = [1, ..., i, ...,N] and it contains N non equal
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duration time slots as defined in the previous subsection and in Figure 3.15. The charging and the
discharging of the EV can be expressed by four decision vectors as expressed in Equation (3.20).

X =
[
PG2V PV 2G dG2V dV 2G

]
(3.20)

With
PG2V =

[
PG2V 1 , ...,PG2V i , ...,PG2V N

]

PV 2G =
[
PV 2G1 , ...,PV 2Gi , ...,PV 2GN

]

dG2V =
[
dG2V 1 , ...,dG2V i , ...,dG2V N

]

dV 2G =
[
dV 2G1 , ...,dV 2Gi , ...,dV 2GN

]
(3.21)

For the ith time slot the vector Xi can be defined as shown in Equation (3.22):

Xi =
[
PG2V i PV 2Gi dG2V i dV 2Gi

]
(3.22)

This algorithm have two aims:
— Minimize the vehicle’s charging cost through optimal grid to vehicle power flow taking

into account G2V energy prices.
— To maximize the profit from selling energy from vehicle to grid considering V2G energy

prices.
The objective function is composed of two objectives, a positive one C1 and a negative one

C2. The optimization leads to minimize C1 that refers to the EV charging cost and to maximize
C2 corresponding to the EV discharging remuneration or the economic profit of discharging EV’s
battery on the grid. The two objectives are expressed in Equation (3.23), Equation (3.24):

C1 =
N

∑
i=1

priceG2V i ·PG2V i ·dG2V i (3.23)

C2 =
N

∑
i=1

priceV 2Gi ·PV 2Gi ·dV 2Gi (3.24)

Where priceG2V i is the charging electricity price of the ith time slot in e/kWh, priceV 2Gi

is the discharging electricity remuneration of the ith time slot in e/kWh, PG2V i , PV 2Gi is the
charging and the discharging power of the ith time slot in kW respectively, dG2V i , dV 2Gi are the
calculation step in hours, and i the time slot index.

The proposed optimization approach is formulated to select the optimum charging power
PG2V for the period of time dG2V , and the discharging power PV 2G for the period of time dV 2G
that minimize the weighted sum of the two criteria. The proposed formulation of the objective
function to be minimized is given as follows:

F(X) = α1C1(X)+α2C2(X) (3.25)

where X is the decision variable, α1, α2 are constant positive values, given the weight for
each criterion: α1 enforces charging operation mode, α2 leads the system to discharge the EV
using the available battery power to support the grid.

The setting of the parameters α1 and α2 depends on the choice of the customer to use the
smart charging with V2G feature or non. The definition of the value of α1 and α2 is given in the
Equation (3.4).

The optimization problem includes linear and nonlinear constraints resulting from EV
technical constraints and customer needs.
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The charging power constraint related to the daily available power on the grid and the
discharging power constraint related to the daily required power by the grid are expressed in
Equation (3.26):

0 PG2V i  PmaxG2V i i = 1, ...,N
�PmaxV 2Gi  PV 2Gi  0 i = 1, ...,N

(3.26)

where PmaxG2V i , PmaxV 2Gi are the maximum available power on the grid and the maximum
required power by the grid in the ith time slot respectively.

The maximum duration of use for charging and discharging in the ith time slot is formulated
in Equation (3.27):

0 dG2V i  dmaxi i = 1, ...,N
0 dV 2Gi  dmaxi i = 1, ...,N

(3.27)

where dmaxi is the maximum duration of the ith slot.
To allow the charging and discharging operation in the same time slot, a constraint is

expressed in Equation (3.28):

dG2V i +dV 2Gi  dmaxi i = 1, ...,N (3.28)

The maximum power that can be accepted or delivered by the battery depends on the relation
between the SOC and the battery’s temperature. This power is set by the values obtained in the
Powermap function:

PG2V i  Powermap(SOCi,Ti) i = 1, ...,N
PV 2Gi ��Powermap(SOCi,Ti) i = 1, ...,N

(3.29)

The Powermap function is the internal dependence of battery power on temperature Ti of the
ith slot and SOC of the ith slot SOCi. It provides information on the maximum power that can
be accepted by the battery or delivered to the battery. An example of Powermap is shown in
Figure 3.5.

The global constraints related to the upper and the lower bound of the SOC are expressed in
Equation (3.30) and Equation (3.31).

In order to limit the battery cycling degradation in discharging mode and to avoid customer’s
range anxiety in case of an emergency use of the EV, we add a SOC constraint expressed as
follows:

SOCi � SOCmini i = 1, ...,N (3.30)

Where SOCmini is the minimum value of the SOC expected by the user, avoiding high battery
DOD during V2G mode.

The case of overcharging is taken into account because it affects the lifetime of Li-ion
batteries. Despite the fact that EV owners tend to prefer autonomy over battery life, because of
the anxiety related to autonomy, which is considered one of the main obstacles to the large-scale
adoption of EVs.

SOCi  SOCmaxi i = 1, ...,N (3.31)

The calculation of the required energy Erequired to reach the SOC desired by the costumer is
expressed as follows:

Erequired = (SOCtarget�SOC0)⇥E0 (3.32)

SOC0 is the initial SOC of the EV, SOCtarget is the SOC desired by the customer, and E0 is the
capacity of the battery in kWh.
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Algorithm 1 Transforming data from time slot to time scale
dG2V m round(dG2V ⇥60)
dV 2Gm round(dV 2G⇥60)
dmaxm round(dmax⇥60)
tmaxm ÂN

i=1 dG2V mi +ÂN
i=1 dV 2Gmi

P(1) PG2V (1)
while t  tmaxm do

for i 1,N do
for j 1,dG2V m(i) do

P(t) PG2V (i)
t = t +1

end for
for j 1,dV 2Gm(i) do

P(t) PV 2G(i)
t = t +1

end for
R = dmaxm(i)�dG2V m(i)�dV 2Gm(i)
for j 1,R do

P(t) 0
t = t +1

end for
end for

end while

3.4.4 Results of the proposed smart charging algorithm with dynamic time
step

The purpose of this section is to demonstrate the effectiveness of the proposed strategy.
On the one hand, the results of the proposed strategy with an optimized time step have been
compared to the classical approach using a fixed time step. On the other hand, the proposed
strategy will be tested under an extreme outside temperature to show the effect of the temperature
on the power scheduling and the final SOC. Finally, the optimized time step strategy will be
tested on several daily energy price profiles to prove the effectiveness of the proposed strategy
compared to the fixed time step strategy, in term of running time, the number of decision
variables and the number of constraints. The initial conditions are SOC0 = 0.35, SOCtarget = 0.7,
SOCmini = 0.1, E0 = 60kWh, hcharger = 0.9, PG2V _Max = 7kW , and PV 2G_Max = �7kW . The
initial battery temperature is fixed to 20�C.

The simulation results for the proposed scheduling strategy are presented below. The
algorithm has been tested for several scenarios to validate its performance. A real French energy
price profile was chosen to illustrate the charging cases. The results show two cases, the first
case is the charging under an outside temperature of 20�C, and the second case is a charging
under an extreme outside temperature of �20�C.
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Figure 3.18 – Charging strategies comparison under Tout = 20◦C.

For the first case, which implies a charging of the EV at night under an outside temperature of
20◦C. The Figure 3.18 shows the comparison between several charging strategies. The SOCtarget
is achieved by all strategies, however, the charging cost is different from one strategy to another.
Using the uncontrolled charging, the charging starts at the moment of plug-in, neglecting the
high energy prices, so the charging cost will be high and it is estimated to 2.1e. Smart charging
algorithm with only G2V can shift the charging to midnight, the EV is plugged-in at 6 PM,
but the charging effectively starts until midnight when the electricity price is more attractive so
the estimated charging cost is 0.47e. Using the V2G feature, the scheduling strategy, begins
the discharging in the period of high V2G remuneration to maximize the profit while the SOC
decreases until it reaches the minimal value of 0.1 corresponding to the SOCmini. When the G2V
energy price becomes cheaper, the charging begins to reach the desired SOC. The two strategies
with optimized time step and fixed time step use the V2G feature, but with the proposed strategy
the charging profit is 0.31e and the executing time is 0.25 second se compared to 0.28e and
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Figure 3.19 – The impact of optimization algorithm

1.95 second for the classical strategy with fixed time step.
For the strategy using optimized time step, the number of decision variables is 12 and the

number of constraint is 21. However, for the classical strategy using fixed time step of 10 minutes,
the number of decision variables is 84 and the number of constraint is 420.

In brief, the classical strategy with fixed time step requires higher computing capacity because
of the high number of decision variable and constraints compared to the proposed strategy with
optimized time step that could be integrated easily to EV onboard embedded system.

Figure 3.19 illustrates the impact of optimization method on convergence to the optimal
solution. The two charging profiles reached the targeted SOC before the departure time. Although
the difference between the global methods such as genetic algorithm and the locally method
based on the gradient, the two charging power profiles are the same corresponding to the optimal
solution presented in Fig. 3.18 with the blue color. Because of the low number of decision
variables and constraints (12 decision variables and 18 constraints) the genetic algorithm and the
gradient method converge to the same optimal solution. In brief, the proposed method does not
require the use of an advanced optimization method to converge to the optimal solution. A local
optimization method may be sufficient to solve the optimization problem.

Figure 3.20 shows the impact of an extra event such as a football match. The energy prices
are directly impacted by this extra event. In order to demonstrate the advantage of the proposed
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Figure 3.20 – The impact of an extra event on power scheduling power

optimized time step strategy and the inconvenient of the use of fixed time step, a scenario of
two perturbations of 15 minutes and 45 minutes in G2V prices is used. For the fixed time step
strategy, the time step should be adapted for each use case. For fixed time step strategy, the time
step could be 15min or 5min or 1min. By decreasing the time step the execution time becomes
greater and convergence to the optimal solution is more complicated. The main reason is the
increasing of the number of decision variables from 84 for 10min to 168 for 5 minutes fixed
time step and to 840 for 1 minute fixed time step. The number of constraints has been increased
from 420 for 10min to 840 for 5 minutes fixed time step and to 4200 for 1 minute fixed time
step. However, for the optimized time step strategy the number of constraints has been increased
from 12 to 28 and the number of constraints from 21 to 49. Moreover, the execution time of
the optimization problem increases as the size and complexity of the problem increases. For
this case, it can be noted that the solving time is 72 seconds for 1 minute fixed time step, 2.4
seconds for the 5 minutes fixed time step, and 0.24 second for the optimized time step strategy.
Furthermore, the charging profit is different for each power profile, it is estimated to 0.225e
for 1 minute fixed time step strategy, to 0.24e for 5 minutes fixed time step strategy, 0.31e for
optimized time step strategy. To sum up, the optimized time step strategy ensures high speed
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convergence to optimal solution and needs low computing capacity compared to fixed time step
strategies.

Figure 3.21 – Charging strategies comparison under Tout =�20�C.

For the second case presented in Figure 3.21, the charging is done under an outside tempera-
ture of �20�C. The comparison between the fixed time step strategy and optimized time step
strategy shows the advantage of fixed time step to follow the temperature constraint. However, it
highlights the fact that the constraint evaluating process in the scheduling process is done 48
times for the fixed time step against 2 times for the optimized time step. Thus, convergence
to the optimal solution is 24 times faster with the optimized time step strategy. In the case of
significant variations of system inputs (energy prices and maximum powers) and long planning
period the most important thing is to find a sub optimal solution in the feasible area that satisfies
the constraints as quickly as possible. Therefore, the proposed strategy with optimized time step
performs perfectly this task.

By applying the two power profiles defined above to the battery model, the results show a
slight error between the final SOC and the SOC target. Despite the consideration of temperature
in the scheduling strategy, it remains important to note that the scheduling power profiles in
Figure 3.21 are distinct from the effective charging power profile in Figure 3.22. Due to the rapid
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Figure 3.22 – The simulation of battery charging with the obtained scheduling power, Tout =
�20�C.

decrease of the battery power acceptance caused by the fast drop of the battery temperatures, the
power profile is limited by the battery power restriction given by the powermap updated every
minute. It is possible to overestimate the energy requirement by 5% to 15% to overcome this
problem in extreme temperature.

Moreover, the proposed algorithm with optimized time step has been tested on five daily
energy prices profiles and the results were compared to classical algorithms with 10 minutes and
1 minute fixed time step. The comparison has been done on several levels such as the number of
the decision variables, the number of constraints, the running time and the charging cost/profit.
The results of the case study are presented in Table 3.2.

According to the results presented in Table 3.2, the algorithm with optimized time step
performs the charging scheduling by using a minimal number of decision variables and the
number of constraints. By subdividing the energy price profiles on optimal time slot the number
of decision variables is minimized compared to the classical strategies with fixed time step. For
an optimization window of 14 hours, the number of decision variables is 840, 84, for 1 minute
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Table 3.2 – The result of the case study
Profile Strategy No Var No const Running time Cost

1
1min 14x60 5x14x60 188 -0.47

10min 14x6 5x14x6 2.7 -0.41
Optimized 4x4 7x4 0.3 -0.41

2
1min 14x60 5x14x60 112 0.15

10min 14x6 5x14x6 1.6 0.26
Optimized 4x11 7x11 0.8 0.41

3
1min 14x60 5x14x60 187 -1.7

10min 14x6 5x14x6 2.5 -1.69
Optimized 4x14 7x14 1.4 -1.63

4
1min 14x60 5x14x60 138 -1.29

10min 14x6 5x14x6 1.85 -1.23
Optimized 4x5 7x5 0.37 -1.22

5
1min 14x60 5x14x60 167 0.92

10min — — — —
Optimized 4x16 7x16 0.40 1.89

Figure 3.23 – The used energy price’ profiles
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and 10 minutes fixed time step respectively. Therefore, the executing time is very small for the
proposed strategy with optimized time step compared to the strategies with fixed time step.

Moreover, the last column shows the charging cost (negative number) or the charging profit
(positive number). The charging cost/profit value gives the information about the convergence to
the optimal solution. According to Table 3.2, the strategy with optimized time step outperformed
the charging compared to other strategies. In case of many variations in the energy price profile
(profile 2 and 5) presented in Figure 3.23, the charging profit of the optimized time step strategy
is almost double compared to the classical strategies with fixed time step. In conclusion, the
optimized time step strategy converges to the optimal solution quickly and performs the charging
cost minimization despite the many variations in the energy price profile.

3.5 Conclusion

This chapter presented two smart charging algorithms for EVs in a decentralized framework.
The proposed strategies are based on the minimization of the charging cost and maximize the
customer profit from customer perspective. The two scheduling strategies takes into consideration:
the time of arrival and time departure of the EV, the TOU energy prices, the initial SOC, the final
SOC desired by the customer, the power limitations by the grid, the charging station and the
battery, the initial battery temperature and the outside air temperature.

The first smart charging strategy aim to schedule the EV charging while considering the V2G
feature and the temperature. The proposed algorithm calculates the optimal scheduling power to
reach the SOC target desired by the customer without neglecting the outside temperature and the
battery temperature. The results show that with the use of the V2G feature, the EV’s users can
earn money by charging his EV, and supporting the grid, while respecting the SOCmini limits,
thus, extending battery lifetime. The right choice of SOCmini limits the degradation of the battery
and maximizes the economic profit offsetting the degradation of the battery caused by the high
DOD as well as related to the charging.

Considering the poor performances of the lithium-ion batteries in cold weather, the estimation
of the final SOC is more accurate and the charging power profile will be achievable by the Li-ion
battery in such condition. Taking into account the outside temperature and the battery temperature
specially in cold weather can make the night charging profitable for the EVs owners and ensuring
the reaching of the desired final SOC before the morning departing time.

While the first strategy uses a constant sampling period, the second smart charging strategy
considers a optimized dynamic time step. The proposed strategy can deal with small variations
of the TOU energy prices (V2G and G2V) compared to others algorithms with fixed time step.
The time to reach the global optimum is reduced by the second smart charging strategy due to
the low number of decision variables compared to the first one with constant time step.

On one hand, the smart charging algorithm outperforms uncontrolled charging, achieves the
desired SOC by the EV customer, and supports the grid with V2G feature. On the other hand,
the smart charging algorithm performs charging at low temperatures and saves money regardless
of weather conditions. The results show the effectiveness of the smart charging algorithm in high
and low battery operating temperature. On the one hand, the V2G feature can reduce the charging
bill for the EV users due to the remuneration of the discharging of the battery into the grid.
On the other hand, the V2G operations can participate in the ageing of the Li-ion batteries and
accelerate the need for the battery replacement before the manufacturer estimated replacement
date. The V2G feature can provide an economic reward, which does not just compensate the
battery degradation but can decrease the total cost of owning if the V2G energy prices are more
attractive. To conclude, the decentralized charging strategies only require that each EV solves
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its optimization problem locally, therefore, its deployment requires a low computing capacity
compared to centralized algorithms that will be discussed in the next chapter.



4
Contribution to Electric Vehicle Fleet
Charging Management

4.1 Introduction

The increasing of the penetration level of EVs in the grid will generate an additional load
caused by the charging of the EVs. In addition to this, EV manufacturers are continuing to
increase the capacity of the batteries of BEV to overcome the social fear of range anxiety. More-
over, the uncoordinated charging of EVs may cause many problems such as power transformer
lifespan drop, power system losses and peak load increase [110].

The major constraint in public charging station is the limitation of transformer power in
EV charging stations, where the installed power is generally 1.5 to 2 times greater than the
nominal transformer power. For all these reasons, the charging station transformer power would
be insufficient, thus the charging management can perform the EV fleet charging in real-time to
avoid an important increment of grid investment.

Furthermore, the charging of EVs can help to improve the quality of power grid by participat-
ing in the ancillary services such as valley filling, reactive power compensation, voltage drop and
frequency regulation. The fast dynamic of EV batteries and high power density of the lithium
batteries and the massive integration of the V2G feature in the EVs’ chargers will make the
EVs a flexible connected energy storage system. Therefore, EVs can be suitable for frequency
control. [111].

In order to keep the power grid in a proper functioning level, the coordination of EV charging
is a major concern for the years to come. This chapter will presents the main contributions of
this thesis from the side of the EV fleet charging management. The Section 4.2 presents the state
of the art of the coordination of EVs’ charging in the unidirectional mode and the bidirectional
mode. The proposed coordinated charging strategy for a large number of EVs in unidirectional
mode pased on a priority criterion is introduced in Section 4.3. In Section 4.4, a new bidirectional
charging strategy with frequency regulation is proposed based on V2G technology with the
consideration of a variable the charger efficiency.

67
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4.2 State of the Art and Work Statement
The existing EV fleet charging management strategies is classified into two categories,

centralized approaches and decentralized ones as presented in Section 3.2 of the Chapter 3.
Moreover, the EV fleet charging management can be divided also into two types, namely time
coordinated charging (TCC) and power coordinated charging (PCC) [112]. In TCC, the number
of EVs allowed to charge at a given time is controlled to ensure that the total EV load demand is
within the total power available for EV charging. The control of the charging power is done by a
binary variable as shown in the Equation (4.1).

x j
i =

(
0, not charging
1, charging

and
N

Â
j=1

x j
i ·P

EV  Ptotal (4.1)

where x j
i is the binary control variable, Ptotal is the maximum available power, and PEV is the

rated power.
However, in PCC, the charging power of each EV is controlled to ensure that the total EV

power demand is within the total power available for EV charging as presented in Equation (4.2).

Pmin  P j
i  Pmax and

N

Â
j=1

P j
i  Ptotal (4.2)

where P j
i is the controlled charging power, and Pmin and Pmax are the maximum and minimum

power, respectively.
The study [113] uses a centralized TCC approach to achieve several optimization objectives

with different constraints considered. The charging strategy is based on an economic and
a technical objective, namely minimization of total daily cost and minimization of peak-to-
average ratio. The purpose of the study is to evaluate the impact of a high penetration level of
EVs in distribution system and to propose an adapted smart charging strategy to the existing
distribution infrastructure. In [114] a PCC strategy for EVs based on multi-objective optimization
is presented. Through electricity price signal control and two-stage optimization, the adjustment
of EV charging power is done. In decentralized strategies, each EV can update its charging
rate according to the control signal transmitted by the utility grid. In [115], decentralized PCC
strategies are performed to achieve valley-filling objective in the context of residential distribution
network. The control problem is formulated as an optimization problem subjected to local
constraints and strongly coupled linear inequality network constraints. A decentralized control
scheme allows all EVs to update their charging rates in a parallel way and no communication
network is needed among EVs.

In the one hand, various coordinated charging strategies, considering only unidirectional
charging, have been proposed in the literature [23, 24, 89, 100, 116–121]. The unidirectional
coordination charging G2V remains the first step towards a full V2G implementation because it
requires no hardware other than the standard EV charging point. The unidirectional charging
contributes to make EV a flexible load that can reduce uncertainty in power demand [91].

In the other hand, the EVs coordinated charging approaches is often based on scheduling or
EV load shifting which can discourage EV users to use smart charging. In this type of strategies,
the grid performance is considered as the priority and the customer’s constraints are neglected,
thus some EVs could be not fully charged or reach their requested SOC by the time of departure
from the charging point [122]. Moreover, when the number of EVs is large and the computation
time step has to be very small, the real-time optimization problem solving becomes too costly.
What makes the iterative coordinated charging algorithm attractive and gives more flexibility to
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quickly achieve EVs power coordination [123]. Another alternative to handle the topic of EV
fleet power management is the use of priority criteria in iterative coordinated charging algorithm.

In [124], the EVs are classified into two categories low priority (LP) EVs and high priority
EVs. Three classic priority criterion presented in the Equation (4.3) developed by [112]. The
first one a1 based only on the SOC of the EV, the second a2 one based on slack time available
for charging and the third one a3 based on time/energy already allotted for the EV.

a1 = 1�
✓

SOC
100

◆

a2 = 1�
✓

Ndep�Nreq

Ntotal

◆

a3 = 1�
✓

Ncom

Ntotal

◆
(4.3)

where Ndep is the number of half-hour time intervals from current time to departure time for
the EV. Nreq is the minimum number of half-hour time intervals required for charging the EV
up to the desired SOC. Ntotal is the equivalent number of half-hour time intervals required for
charging EV from initial to desired SOC. Slack time is the difference between the time available
before departure and time required to complete charging. With higher the value of slack time,
the feasibility of charging the EV to desired SOC is higher, thus the priority value will decrease
with increase in slack time. Ncom is the equivalent number of half-hour time intervals used for
charging the EV.

In [118], the coordinated charging of a large scale of EVs in the framework of smart grid
is carried out in order to fill the valley of the conventional power load curve. The proposed
algorithm uses a dynamic charging priority factor expressed in the Equation (4.4).

Pri =
En

(Timen ·Dt) ·Pn
Max

(4.4)

En indicates the remaining electric energy needed to be charged for the n-th EV (in kilowatt-
hours). Timen indicates the remaining time slots of the n-th EV connected to the grid. Pn

Max
indicates the maximum operating power of the n-th charger (in kilowatts). Dt indicates the length
of the time slot (in hour).

The California Institute of Technology (Caltech) has developed Adaptive Charging Network
Simulator (ACN-Sim) [125], a data-driven, open-source simulator based on their experience
building and operating real-world charging systems. ACN-Sim integrates with a larger ecosystem
of research tools for EV charging, including ACN-Data [126], an open dataset of EV charging
sessions to provide realistic simulation scenarios, and ACN-Live, a framework for field-testing
charging algorithms.

Caltech regrouped a collection of open-source tools in the Adaptive Charging Network
Research Portal (ACN-Portal) [127], to help researchers and other stakeholders understand the
challenges of large-scale EV charging and develop practical solutions to those challenges.

ACN-Sim provides researchers who do not have access to real EV charging systems a realistic
environment to evaluate their algorithms and test their assumptions. It also provides a common
platform on which algorithms can be evaluated head-to-head, allowing researchers to better
understand and articulate how their work fits into the existing literature.

ACN-Sim includes many common online charging algorithms which can be used as references
benchmarks presented in [125]:

1. Uncontrolled Charging is the most common algorithm used in charging systems today.
It allows each Electric Vehicle Supply Equipment (EVSE) to charge at its maximum
allowable rate. This algorithm does not factor in infrastructure constraints.
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Figure 4.1 – The ACN Research Portal

2. Round Robin (RR) is a simple algorithm which attempts to equally share charging capacity
among all active EVs. To do this, it first creates a queue of all active EVs then iterates over
this queue. It first checks if it is feasible to increment the rate of the current EV by one unit.
If it is, the rate is incremented and the EV is added back to the end of the queue. If not, the
charging rate of the EV is fixed, and it is not returned to the queue. This continues until
the queue of EVs is empty. In this context a feasible charging rate is one which does not
cause to an infrastructure constraint to be violated and is less than the maximum charging
rate of the EVSE.

3. Sorting Based Algorithms: There are three sorting based algorithms included in ACN-Sim:
First-Come First-Served (FCFS), Earliest-Deadline First (EDF), and Least-Laxity First
(LLF). Sorting based algorithms are commonly used in other deadline scheduling tasks
such as job scheduling in servers due to their simplicity [128]. The first algorithm FCFS
is an operating system scheduling algorithm that automatically executes queued requests
and processes in order of their arrival. The second algorithm EDF is a dynamic priority
scheduling algorithm used in real-time operating systems to place processes in a priority
queue. Whenever a scheduling event occurs (task finishes, new task released, etc.) the
queue will be searched for the process closest to its deadline. The third algorithm LST is a
scheduling algorithm that assigns priority based on the slack time of a process. Slack time
is the amount of time left after a job if the job was started now. These algorithms work by
first sorting the active EVs by the given metric then processing them in order. Each EV
is assigned its maximum feasible charging rate given that the assignments to all previous
EVs are fixed. This process continues until all EVs have been processed.

The charging priority models defined above consider the remaining charging time, the
remaining energy needed to reach the desired SOC and the maximum operating power of
the charger. However, all presented priority criterion do not take into account the effect of
temperature, the state of health of the Li-ion batteries SOH, and the charging efficiency. To
overcome these issues, the contribution in Section 4.3 proposes a new priority criteria that take
into account all neglected aspects.

One other promising solution for optimal integration of EVs into smart grids is the imple-
mentation of V2G technology for PHEVs and EVs. The objective of using V2G feature is the
provision of energy and ancillary services to the power grid from EVs. Due to the Li-ion batteries
power and energy density characteristics, Li-ion batteries fast response, and high battery capaci-
ties of EVs, several potential grid services can be provided by EVs [120, 129, 130] such as valley
filling [131–134], peak load shaving [131,135–137], voltage regulation [138,139], reactive power
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compensation [140–143], renewable energy support [144–147], spinning reserve [148–151],
frequency regulation (primary control, secondary control, tertiary control) [6, 111, 119, 152–165].
The problem of EV charging with frequency regulation service has been addressed in several
researches. [6, 154–157] deal with the problem of EV charging considering frequency regulation
using the theory of control. Others such as [111, 158–162, 166] use the optimization approach
to find the optimal charging power. Other methods have been used in [163–165] like the fuzzy
logic, deep reinforcement learning, and priority model.

To address the problem of EV charging with frequency regulation, there are several con-
siderations to take into account. The objective of maintaining the operational capacity limit
within the optimal region - where regulation up power is maximal and regulation down power is
maximal - is considered in [160, 162], whereas [159, 161] did not take into account this problem.
Moreover, [160, 161] consider a constant value of regulation up power and regulation down
power of the EV. Therefore, these papers ignore the dependence of the capacity of regulation
up and down on the battery’s SOC. Furthermore, the consideration of EV owners expectation
is a big challenge in this topic. In [159, 160, 162, 167], the EV’s users satisfaction has been
considered, whereas this point has been totally ignored in [7], [168]. Ignoring this aspect could
discourage the EV’s owners to participate in ancillary services. Many studies have also focused
on investigating the benefits and challenges involved in implementing V2G technology. In Many
studies consider a high number of EVs participating in the ancillary services. In [160], the study
has been conducted under a large number of EVs equal to 100000, [111] assumes the use of 1000
EVs in the simulation and [6] sets the total number of EVs participation in the simulation of the
frequency regulation algorithm to 500. This paper focuses on studying the possibility of offering
a frequency regulation services with a low number of EVs. Therefore, in all simulations the
maximum number of EVs is 20. Moreover, [160], [162], use a symmetrical assigned perturbation
signal, that simplify the problem of the SOC target’s achievement and the problem of maintaining
regulation’s capacity. Furthermore, [6] and [160] consider an equally likely distribution of the
number of EVs in each SOC category (low, medium, and high).

Most of the research that uses the optimization approach [160], [162], puts a hard strict
equality constraint in their optimization models. Equalities are more difficult to satisfies and
not compatible with all solvers. One modeling trick consists in reformulating each equality as
two inequalities. This increases the number of inequality constraints and therefore the size of
the problem [169]. Accordingly, the proposed optimization model will only use the inequality
constraints.

With the control theory, the perturbation is divided between the EVs in an equal way. In
case of a small disturbance and a high number of controlled EVs, each EV will participate with
small power variations in frequency regulation to maintain the SOC without considering the poor
efficiency of the charger in low power regions. However, according to [7], the charger is designed
to operate more efficiently closer to the maximum power values. In the same context, [159]
and [7] study the effect of the charger’s efficiency on the accuracy tracking of the perturbation
signal, and assume that without considering the dependence of charger’s efficiency on power the
tracking error increases.

To the best of our knowledge, none of the existing works take into account the dependence of
the charger’s efficiency on power. Almost all researches consider a constant charger’s efficiency
in the range [0.8,1]. Some of them do not use a discharging efficiency or use a perfect charger
with unit efficiency.

When managing the EV charging, the energy available provides information on the accumu-
lation of charging power for the EV. So, the energy gives a kind of future possibilities of the
power’s use, such as the maximum charging and discharging rates and the energy remaining
to reach full capacity or full discharge. However, power cannot convey long term knowledge
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Figure 4.2 – The review of frequency regulation strategies in EV fleet charging management

about the state of the EV or its history, but it gives a short term information. Combining two
heterogeneous physical quantities such as the energy and the power in the same objective func-
tion, gives a global vision on the charging management of an EV fleet both on the long term
and on the short term, in the past, in the present and in the future. The proposed bidirectional
charging strategy presented in Section 4.4 allows to solve a scheduling optimization problem as
an instantaneous problem. Thus, the scheduling problem whose resolution is heavy in computing
time and memory consumption will be replaced by an instantaneous dispatch problem whose
resolution is simple and fast. The added value in this model allows us to reduce the execution
time, thus to deal with real-time problems such as frequency regulation for coordinated EV
charging and to reduce the time step as small as the desired precision.

4.3 Centralized Electric Vehicle Fleet Unidirectional Charg-
ing Coordination Algorithm

This contribution focuses on centralized unidirectional charging strategy, in which EV charg-
ing point operator (CPO) is able to control the EV charging directly. Most of the mathematical
models are nonlinear programming for the centralized charging strategies in pervious literatures.
Their computational complexities will growth nonlinearly. It means that they have to spend
quite a long time if the input variables become large. However, it should be pointed out that
the calculating time is a key factor to schedule the charging strategy for large scale EVs [22] or
get real time solutions [31]. Therefore, it is worthwhile to put forward a new algorithm whose
computational complexity is near-linear. The contributions corresponds to the content of my
second conference paper [167] presented in the section 5, the proposed strategy are highlighted
as follows:
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calculates the priority of the EVs and performs the coordinated charging control. The above
tasks are achieved at each time step by the aggregator, so that incoming EVs are included to the
algorithm in the next time step. It is crucial to keep in mind that the EV owner is responsible
for the submitted information and it is possible to modify the departure time and the desired
SOC at any time through the EV owner’s connected phone app. In some cases, it is possible
to have unfeasible scenarios for which the final desired SOC can not be reached because of
the high value of the desired SOC or the short duration of EV plug-in time at the charging
station or the low power of the charging point. These scenarios are expressed by a priority factor
higher than 1. Unfeasible cases have an impact on the effectiveness of the coordinated charging
control algorithm, but in anyway, all charging algorithms will be affected and cannot perform
this unfeasible charging task

4.3.1 The proposed Priority Criterion and the Coordinated Charging
Approach

The proposed charging strategy is focused on charging coordination of a large EV fleet with
a limited total power of the charging station without neglecting the EV owners satisfaction. EV
user satisfaction can be characterized by reaching the final SOC before departure time. In order
to achieve this goal, a priority model is proposed to evaluate the energy requirement of each EV.
For example, if an EV has a low initial SOC coupled with a high final SOC requested and a short
period of time to complete the task, then the EV will get a higher charging priority and it should
take the utmost charging point power available. Therefore, the priority factor is expressed as
shown in Equation (4.5):

prio j
i =

(SOC j
target�SOC j

i ) ·E
j
batt ·SOH j

P j
max · (t j

departure� t j
arrival) ·h ·a(Tout)

(4.5)

where SOC j
i is the SOC of the j-th EV during the time step i, SOC j

target is the desired SOC
value by the j-th EV at the departure time, E j

batt is the initial battery capacity in kWh of the
j-th EV, SOH j is the SOH of the LiBs of the j-th EV, P j

max is the maximum power allowed by
the charging point of the j-th EV in kW , t j

departure is the departure time of the j-th EV in hour
(h), t j

arrival is the arrival time of the j-th EV in h, h is the charger efficiency, and a as the LiBs
temperature effect factor defined in Figure 4.4 with a(�40�C) = 0.02.

Figure 4.4 – Temperature effect factor of LiBs

In very cold weather Tout <�20�C, the internal resistance of the LiBs increases significantly,
so most of the charging power is dissipated as heat to warm the battery. As the temperature rises
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Tout 2]�20,20[�C, the internal resistance of the LiBs decreases, so the impact of the outside
temperature decreases. When the outdoor temperature exceeds 20�C, the internal resistance
becomes stable at its lowest nominal value, so the effect of the outdoor temperature is eliminated.
To sum up, the temperature effect factor a affects the charging time, since a appears in the
denominator of the Equation (4.9).

The priority criterion is a non-dimensional factor, that can be calculated using collected
information to: sort EVs based on their priority and to determine the feasibility of charging. To
decide on the charging power for each EV in a rational way, it is necessary to find an appropriate
approach to sort EVs from the highest to the lowest priority. The charging priority of an EV at
the charging point will be affected by several factors:

— Energy requirement: The energy that the customer wishes to acquire during his stay at
the charging station. This is the difference between the desired SOC and the initial SOC,
times the real battery capacity.

— The real battery capacity: LiBs capacity varies from one EV to another depending on the
initial capacity and battery ageing condition

— Available charging time which is the time the user wishes to spend at the station.
— The temperature effect: The power acceptance of LiBs decreases in cold temperature and

affects the charging speed.
— The maximum power of the charging point: The power available at the charging point is

not the same at any charging point. We consider fast, normal and slow charging points,
where the power available will affect the charging speed.

Some examples of charging scenarios could clarify the purpose and utility of the priority
factor. If an EV owner arrives with an EV of 60kWh LiB battery capacity at 08h00 with an initial
SOC of 30% and wants to leave the charging station at 12h00 with 80% of SOC using a power
of 7kW , then the calculation of the priority factor is presented in the Equation(4.6):

prio1
0 =

(0.8�0.3) ·60 ·1
7 · (12�8) ·0.8 ·1 = 1.34 (4.6)

With a priority value of 1.34 the desired SOC cannot be achieved before the departure time
due to the low charging speed of the charging point. Any other charging algorithm can not
accomplish this charging tasks. Whereas, if the EV owner had chosen a charging point with
higher charging speed such as P1

max = 22kW the EV would have reached the desired SOC of 0.8
before the departure time as explained in the Equation (4.7) and the Equation (4.8).

prio1
0 =

(0.8�0.3) ·60 ·1
22 · (12�8) ·0.8 ·1 = 0.43 (4.7)

8
><

>:

if prioi
j  0 ) SOC j

target has been reached
if prioi

j 2 ]0,1] ) SOC j
target will be reached

if prioi
j > 1 ) SOC j

target can not be reached
(4.8)

To summarize, there is a twofold benefit from the priority factor. The first is to make it
possible to compare EVs and distinguish which EV needs the most power at a given moment
to complete its energy requirement. The higher the "Prio" factor of an EV, the higher charging
power. The second benefit, is the information given by the obtained value, which indicates the
feasibility of the charging where a priority factor greater than 1 means that the EV will not be
able to reach the desired SOC within the time window provided. Either because of a high energy
demand, a low charging speed of the charging point or a low availability at the charging station.
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4.3.2 Charging Constraints
This section describes the physical aspects limiting the charging power that shall be taken

into consideration by the coordinated charging control algorithm.
The powermap function determines the power that the battery can accept depending on the

SOC and battery temperature overtime. This behavior is recorded in the powermap of each
battery model (see Figure 4.5). This 3D surface defines, for a given SOC and a given temperature,
the maximum power that the battery can accept.

Figure 4.5 – Lithium-ion battery power map

The maximum charging point power depends on the selected charging mode. A charging
mode refers to the power level that rates a charger and its connectors. Several charging modes
can be used, mode 1 as the slowest, mode 2 is an upgraded version of mode 1, in the middle,
mode 3 with a power level between 11kW and 55kW and mode 4 a super charging mode with
400V DC or higher as the fastest. Using the information of the power level of the charging point
given in Table 4.1, the charging time can be calculated using the Equation (4.9):

tcharg_time =
(SOC j

target�SOC j
i ) ·E

j
batt ·SOH j

P j
max ·h ·a(Tout)

(4.9)

If the priority factor has already been calculated, the charging time can be easily deduced from
the Equation (4.10):

tcharg_time = prio j
i · (t

j
departure� t j

arrival) (4.10)

Table 4.1 – Charging modes of supply equipment [8], [9]
Mode Power Power supply Voltage Max. current
Mode 1 3.7 kW Single phase 230 V AC 16 A
Mode 2 7.4 kW Single phase 230 V AC 32 A
Mode 3 11 kW Three phase 400 V AC 16 A
Mode 3 22 kW Three phase 400 V AC 32 A
Mode 3 43 kW Three phase 400 V AC 63 A
Mode 4 160 kW Direct current 400 V DC 400 A
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The coordinated charging power can be calculated by dispatching the maximum transformer’s
power for the whole EV fleet according to priority level. Once the priority factor of the EVs have
been evaluated according to their energy needs, the aim is to distribute the power in an optimized
way. The priority factor serves to intelligently distribute the power available. The weighting
factor is calculated as shown in the Equation (4.11):

w j
i =

prio j
i

ÂNi
j=1 prio j

i

8i8 j (4.11)

where Ni is the number of available EVs in the charging station in the time step i.
The coordinated charging power can be expressed as shown in the Equation (4.12):

P j
coordinated,i = w j

i ⇥S j
i ⇥P0 8i8 j (4.12)

where P j
coordinated,i is the calculated power based on priority factor of the j-th EV during the time

step i, S j
i is the charging status of the j-th EV during the time step i, and P0 is the maximum

transformer power.
The charging status of EVs can be described as presented in Equation (4.13):

S j
i =

(
0, idle
1, charging

(4.13)

The idle status, has three different interpretations: the charging has been successfully completed,
the departure time has been reached and the EV has not yet been unplugged.

The power withdrawn from the grid is calculated by finding the minimum of power in
Equation (4.14):

P j
i = min(P j

max,P
j

coordinated,i,P
j

maxBattery,i) (4.14)

where P j
max is the maximum power allowed by the charging point of the j-th EV, P j

maxBattery,i is
the battery maximum power from the powermap of the j-th EV during the time step i.

Depending on the element of the system that is limiting the maximum power (the charging
point, the coordinated charging or the battery constraints), the power absorbed by the battery can
take different values.

Depending the number of available EVs required to charge at the parking spaces, the total
power distributed for all EVs could be less than the maximum power of the transformer as a
result, top priority EVs can take advantage of this remaining power to match their requirement.

In algorithm 2, x j
i is defined as follows:

x j
i =

(
0, if P j

i 6= P j
max

1, if P j
i = P j

max
(4.15)

4.3.3 Battery monitoring
The dynamic monitoring of the battery SOC is given by the Equation (4.16):

SOC j
i+1 = SOC j

i +
hP j

i ·Dt

E j
batt ·SOH j

(4.16)

where SOC j
i is the SOC of the j-th EV during the time step i, SOC j

i+1 is the SOC of the j-th EV
during the time step i+1, P j

i is the charging power of the j-th EV at the time i in kWh, h is the
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Algorithm 2 Distributing the remaining power
if ÂN

j=1 S j
i P j

max > P0 then
P
0
0 P0

else
P
0
0 ÂN

j=1 S j
i P j

max
end if
Pused  0
while Pused 6= P

0
0 do

Pavailable P
0
0�ÂN

j=1 x j
i P j

i

W j
i  x j

i · prio j
i

W j
i  

W j
i

ÂN
j=1 W j

i

P j
new,i min(P j

max,w
j
i ·Pavailable,P

j
maxBattery,i)

Pused  ÂN
j=1 P j

new,i
end while

charger efficiency, Dt is the time step in h, E j
batt is the initial battery capacity in kWh of the j-th

EV, SOH j is the SOH of the LiB of the j-th EV.
For simplification purposes, this works considers an evenly distributed joule heat generation,

and a temperature of the battery cell uniformly distributed. Thus, the temperature estimation is a
first order model expressed as shown in Equation (3.17).

The temperature first model is linearized for each time step to get the expression given by the
Equation (4.17):

T j
i+1 = T j

i +
Dt

m jC j
p
(P j

joule,i +P j
convective,i) (4.17)

where m j is the mass of the j-th EV battery, C j
p is the specific heat coefficient of the j-th EV

battery, T j
i is the temperature of the j-th EV battery at the time i, T j

i+1 is the temperature of the
j-th EV battery in the next time step i+1, P j

joule,i is the power dissipated by joule effect of the
j-th EV battery in the time step i, P j

convective,i is the power heat transfer between the battery and
the outside.

The joule power is formulated in Equation (4.18) as a linear model in terms of charging and
discharging power:

P j
joule,i = k j⇥P j

i 8i,8 j (4.18)

where k j is a thermal factor depending on the thermal inertia of the j-th EV battery.
The convective power is modeled by the Newton law showed in Equation (4.19):

P j
convective,i =�

T j
i �Tout

R j
v

i = 1, ...,N (4.19)

where Tout is the outside temperature and R j
v is the heat convection coefficient transfer between

the j-th EV battery and the outside.

4.3.4 Control flow of coordinated charging strategy
The problem of coordinated charging is a real-time control algorithm, working during opening

hours of a commercial area. The algorithm aims to fulfill the stability requirement of distribution
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4.3.5 Simulations results

The EV charging coordination considers a time lapse of 24 hours divided in 96 time steps
of 15 minutes each. The time of arrival and time of departure of the EVs are assumed to
be generated by a random function following a Poisson distribution as shown in Figure 4.7.
The maximum power of the charging point is selected randomly from the values of the vector
[3.2,7.4,11,22,43] kW . The charging points in the charging station have the following ratios:
[30%, 25%, 20%, 15%, 10%] respectively.

Figure 4.7 – Number of EVs plugged-in per hour

Figure 4.8 shows the charging profile of the 9-th EV using the proposed method with 350
EVs per day and a transformer’s power of 300kW . It is also observed from Figure 4.8 that the EV
reached the desired SOC of 0.86 before its departure time with a maximum power allowed by
the charging point of 7.4kW . When compared to the uncoordinated or the uncontrolled charging
strategy, the 9-th EV did not reach the desired SOC. As the number of EVs plugged-in at the
charging station decreases, the EV receives more charging power to reach the requested SOC
before 8 p.m.

In Figure 4.9, it can be observed that the transformer of the charging station is fully loaded
from 8 a.m to 8 p.m because of the high number of EVs in the charging station. The EVs start
leaving the charging station at 8 p.m, therefore, the transformer load decreases.

Figure 4.9 – Charging total power

To evaluate the efficiency of the proposed approach to accomplish the charging of the EVs, a
quantitative study is done to evaluate the maximum number of EVs that can be supported by
the charging station. Considering EV users satisfaction as an important aspect, an EV users
satisfaction level indicator is suggested in the Equation (4.20):
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Figure 4.8 – 9-th EV charging profile

Slevel =
SOCf inal�SOCinitial

SOCtarget�SOCinitial
(4.20)

if SOCf inal > SOCtarget then Slevel = 1, where the SOCf inal is the value effectively reached at the
end of charging.

The average EV users satisfaction for the total EV number per day Saverage is expressed in
the Equation (4.21):

Saverage =
Ntotal

Â
j=1

S j
level⇥

N j

Ntotal
(4.21)

where S j
level is the mean value of each Slevel interval S j

level = [0.05,0.15, ...,0.85,0.95], N j is the
obtained value of each S j

level interval, and Ntotal is the total EVs treated per day.
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Table 4.2 – The EV satisfaction level
Total EVs treated per day Ntotal

350 300 250 200 150 100 50 25
Slevel Coo Unc Coo Unc Coo Unc Coo Unc Coo Unc Coo Unc Coo Unc Coo Unc

[0,0.1] 9 10 7 13 4 5 3 4 2 3 1 1 1 1 1 1
]0.1,0.2] 25 28 14 22 7 8 0 7 0 3 0 1 0 0 0 0
]0.2,0.3] 27 46 9 27 4 13 1 8 0 4 0 0 0 0 0 0
]0.3,0.4] 31 36 24 27 2 20 0 6 0 1 0 1 0 0 0 0
]0.4,0.5] 17 29 19 25 9 19 4 13 0 2 0 0 0 0 0 0
]0.5,0.6] 25 16 9 18 15 11 2 12 1 6 0 0 0 0 0 0
]0.6,0.7] 16 23 23 10 9 20 7 8 1 5 0 0 0 0 0 0
]0.7,0.8] 45 11 25 19 6 8 2 6 0 2 0 0 0 0 0 0
]0.8,0.9] 35 9 48 13 29 5 4 9 0 4 0 0 0 0 0 0
]0.9,1] 120 142 122 126 165 141 177 127 146 120 99 97 49 49 24 24

Slevel [%] 66.0 61.8 72.3 64.3 82.8 73.4 90.5 77.9 93.3 85.5 94.1 92.7 93.2 93.2 91.4 91.4
Diff. [%] 4.2 8.1 9.4 12.6 7.8 1.4 0.0 0.0

Table 4.2 compares the results obtained with the coordinated (Coo) and uncoordinated (Unc)
strategies. It summarizes the number of EVs for each satisfaction interval using a maximal
transformer power of 300kW . Table 4.2 clearly indicates that the average satisfaction level
decreases when the number of total EVs increases. However, despite the increase in the number
of EVs, the average satisfaction remains acceptable with a mean value of 85.5%. The proposed
strategy performs the charging of EVs with a good efficiency compared to the uncontrolled
charging method with an average improvement of 5.4 %.

At a low number of EVs, the transformer power remains sufficiently large, therefore the
satisfaction level is high and it is the same for both two strategies. However, when the number
of coordinated EVs per day hits the 200 mark for 300kW of transformer power, the satisfaction
level of the coordinated charging is excellent compared to the uncoordinated charging.

Exceeding 300 EVs, there are less EVs in [0.9,1] Slevel range for Coo compared to Unc. The
Coo strategy aims to improve Saverage by sacrificing by those EVs that have almost reached their
SOCtarget to charge the lowest priority EVs before the departing time.

In the end, in order to guarantee a level of satisfaction higher than 80%, the number of EVs
treated per day should not exceed an average of 250 for a transformer power of 300kW.

4.4 Centralized Electric Vehicle Fleet Bidirectional Charging
Algorithm with Frequency Regulation Service

As the EV penetration level grows and the battery capacity of EVs increases, the charging
station becomes a very big energy storage system. EVs are capable to deliver immediate power
through V2G feature and to adjust the charging power level in G2V mode. Thus, EVs are able to
offer ancillary services such as frequency regulation. EV batteries are different from conventional
energy storage systems in the sense that the EV owners energy requirement constraint should
be respected while their vehicles even participate in the frequency control. To address this
problem, an optimization problem has been defined considering both EV owner’s satisfaction
and frequency regulation performances. The idea of the proposed contribution is to keep the
total available energy stored in EVs in an optimal moving region in which EVs keep maximal
regulation up capacity and regulation down capacity. Moreover, the EVs charging power will
be maintained above a certain threshold to keep charging highest priority EVs. The problem is
expressed as a multi-objective optimization with time depending references. This section presents
a bidirectional energy management strategy for frequency regulation, describes a concept of
optimal time depending SOC for EV charging requests, and considers the EV charger’ efficiency
dependence on power.
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This contribution is an extension of the previous work presented in Section 4.3, which has
been significantly improved to take into consideration the bidirectional charging and the charger
efficiency dependence on power. It corresponds to the content of my second article presented in
the section 5. The contributions of the proposed strategy are highlighted by:

— Maximization of the regulation reserve using an EV charging algorithm based on preventive
actions by replacing a scheduling problem by one on the fly.

— Avoiding the use of hard constraints, decreasing the number of decision variables and the
number of constraints to reduce the computation time and memory use.

— Taking into account the charger’s efficiency and its dependence on power and therefore
maximizing the charging efficiency.

— Considering the dependence of the regulation capacity on the SOC and temperature and
maintaining the total regulation capacity in the optimal zone.

— Controlling the bidirectional EV charging (V2G) considering both the grid operator’s
power demand and the satisfaction of the EV’s users SOC target.

4.4.1 Optimization Problem Modeling
The problem of EV charging dispatch is divided into two sub-problems:

— (P1) Without frequency disturbance ( f = 50Hz): The scope is to keep charging the EVs
with maintaining the regulation up capacity and regulation down capacity in the optimal
region

— (P2) With frequency disturbance ( f 6= 50Hz, power request): It aims to match the grid
power demand to the charging demand

When there is no power request, the minimization problem is expressed as a quadratic
multi-objective optimization problem. The formulation of the objective function is a weighted
sum expressed in the Equation (4.22):

F1 = w1C2
1 +w2C2

2 (4.22)

The setting of the parameters w1 and w2 depends on the choice of the aggregator. For our
study, the w1 = 1 and w2 = 0.3.

Figure 4.10 – Lithium-ion battery charging and discharging capability depending on the SOC
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The idea of C1 is to maintain the total available energy stored in the EVs within the optimal
region in which the regulation up capacity and regulation down capacity are highest (see Figure
4.10), so as to maintain the total available energy charge above a certain threshold until the end
of the day. C1 quantifies the deviation from the tracking reference Ere f

i , in order to adjust the
charging power of the EV P j

i as presented in the Equation (4.23):

C1 = (Ei�1 +
NEV

Â
j=1

P j
i Dt)�Ere f

i (4.23)

The Ei is calculated by the given Equation (4.24):

Ei =
NEV

Â
j=1

SOC j
i ·E

j
batt ·SOH j (4.24)

The Ere f
i should be tracked to keep the regulation up/down capacity at the maximal value

The definition of the capacity for regulation up/down is given in Figure 4.11.

Ere f
i =

NEV

Â
j=1

SOCre f
i ·E j

batt ·SOH j (4.25)

Regarding the dependence of the charging/discharging power of lithium-ion batteries on
SOC, the optimal SOC for both maximal charging/discharging can be found between 0.4 and 0.6.
At SOC = 0.5 the charging rate is 80kW and discharging rate is -80kW for this example in the
Figure 4.10 . At this point, the EV charging/discharging capacities are both high, thus optimal to
track the power request. Giving priority to the charging of the EVs over the discharging of the
EVs, the optimal SOC can be set to 0.6.

Figure 4.11 – Definition of the capacity for regulation up and regulation down [6]

Charging the EV fleet involves many nuanced subtleties to consider conflicting objectives of
maximizing the EV’s battery SOC at the end of the day, maintaining the total available energy
within the optimal region and improving the frequency regulation response performance.

The time of the frequency deviation is unpredictable and its duration is also unknown in
advance. This is why the EV fleet must be prepared at all times to respond to these disturbances,
taking into account two contradictory objectives as shown in Figure 4.12:

— To maximize the SOC of the EV battery in order to satisfy EV user’s needs (with rather
high SOCs 0.6 - 0.9)
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Figure 4.13 – Example of a time depending references E(t)re f

The purpose of C3 defined in Equation (4.30) is to have a best response to the power request
with reducing the tracking error P�Prequest

C3 = (
NEV

Â
j=1

P j
i )�Prequest

i (4.30)

The setting of the parameters w1 and w2 depends on the choice of the aggregator. For our
study, the w3 = 1 and w4 = 0.1.

The C4 includes the dependence of the charger efficiency, the objective of Equation(4.31)
is to use the EV chargers in their maximum efficiencies. Maximizing the charger efficiency h
corresponds to minimizing the charging loses (1�h)P

C4 =
NEV

Â
j=1

P j
i (1�h(P j

i )) (4.31)

The two sub-problems (P1) and (P2) are subject to the same constraints.
The global constraints related to the upper and the lower bounds of the charging/discharging

power are expressed in Equation (4.32):

P j
i C j

i

P j
i � D j

i

(4.32)

The definition of C j
i and D j

i is given by the Equations (4.33) :

C j
i = s j

i ·a
j,ub

i ·P j,max+
i

D j
i = s j

i ·a
j,lb

i ·P j,max�
i

(4.33)

where P j,max+
i and P j,max�

i are the maximum charging power that take the limitation of the three
elements (the charger, the charging point, the battery) defined in Equation (4.34):

P j,max+
i = min(P j

chpt+,P
j

Charger+,P
j

i,Bat+)

P j,max�
i = max(P j

chpt�,P
j

Charger�,P
j

i,Bat�)
(4.34)
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s j
i , a j,ub

i , and a j,ub
i are defined in the Equations (4.35), Equations (4.36), and Equations (4.37)

as follow:

s j
i =

(
1, pluged-in
0, pluged-out

(4.35)

a j,ub
i =

(
1, SOC j

i < SOCmaxi

0, SOC j
i � SOCmaxi

(4.36)

a j,lb
i =

(
1, SOC j

i � SOCmini

0, SOC j
i < SOCmini

(4.37)

In order to prevent the transformer from any overloading power, an inequality constraint has
been expressed in Equation (4.38):

NEV

Â
j=1

P j
i  Ptotal (4.38)

The dynamic monitoring of the SOC is given by Equation (4.39):

In charging mode: P j
i � 0

SOC j
i+1 = SOC j

i +
h(P j

i )P
j

i ·Dt

E j
batt ·SOH j

In discharging mode: P j
i < 0

SOC j
i+1 = SOC j

i +
(P j

i /h(P j
i )) ·Dt

E j
batt ·SOH j

(4.39)

For simplification purposes, this works considers an evenly distributed joule heat generation,
and a temperature of the battery cell uniformly distributed. Thus, the temperature estimation is
a first order model expressed as in Equation (4.17). The joule power is formulated as a linear
model in terms of charging and discharging power defined in Equation (4.18). The convective
power is modeled by the Newton law showed in Equation (4.19).

4.4.2 Simulations and results
In order to demonstrate the effectiveness of the presented EV charging management strategy,

the results were obtained with f mincon MATLAB optimization solver, Table 4.3 shows the used
parameters in all simulations.

Table 4.3 – Simulation parameters of EVs
Parameters
Sampling time 5min
Maximum EV number 20
Battery capacity 60kWh
Initial SOC [0.1,0.6]
Desired SOC [0.3,0.9]
SOCmaxi / SOCmini 0.9/0.2
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4.4.2.1 The effect of charger efficiency

In this section the impact of the charger’s efficiency will be studied. The consideration of a
constant number of EVs in the charging station in Table 4.4, allows us to evaluate the real impact
of the proposed strategy on the tracking error. The impact of the EVs arrival and departure time
will be studied in the section 4.4.2.2.

Table 4.4 – Simulation parameters of 4.4.2.1
Parameters
EVs arrival time 8h
EVs departure time 18h

Figure 4.14 – EV charger efficiency [7]

A tracking error is observed in both VEs responses in the Figure 4.15. However, by taking
into account the variation in efficiency of the charger as a function of power presented in Figure
4.14, the tracking error was significantly reduced to the 10�3 scale, i.e. to the accuracy of the
Watt instead of the kW.

4.4.2.2 The effect of the number of the EVs on the tracking error

Table 4.5 – Simulation parameters of 4.4.2.2
Parameters
EVs arrival time N (9,0.5)
EVs departure time N (17,0.5)
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Figure 4.15 – Frequency regulation (FR) Signal, and impact of charger efficiency response error

High tracking error is observed in the Figure 4.16 in the time interval of [8h,9h] and [17h,18h],
this problem is caused by the low regulation capacity due to the low number of EVs in the
charging station. However, outside this two periods the error is near to zero with the help of the
available EVs offering high regulation reserve. As shown on the Figure 4.16, when the number
of vehicles exceeds 10, the tracking error becomes zero. In brief, the EVs arrival and departure
time affect the tracking error, so the charging station should keep a minimum number of EVs in
the charging station, otherwise include energy storage solutions to compensate this lack of EVs
in these periods.

4.4.2.3 Long period of frequency drop and the effect of the charging point maximum rate

The purpose of this simulation is to show how can EVs take a leading role in supporting
the power grid in difficult situations such as a high frequency drop caused by a power plant
shutdown or a high grid power demand in peak period.

Figure 4.17 shows that the EVs can feed power into the grid by discharging the EVs’ battery
and absorb the surplus of power from the grid to maintain the frequency. The simulation shows
the ability of EVs to withstand a special event for a remarkable period of time, approximately
3 hours for this case. Therefore, the charging station with plugged-in EVs can react as energy
storage to support the grid.

Despite the long period of disturbance and its high magnitude, almost all EVs respect the
minimum SOC limit of 0.2 as shown in Figure 4.18.

In this simulation the rated power of the charging points will be reduced from 22kW to
[3.2,7.4,11,22]kW , to study its effect on sustaining the grid support. The maximum charg-
ing/discharging power of the charging point will be selected randomly from the values of the
vector [3.2,7.4,11,22]kW . The charging points in the charging station have the following ratios:
[30%,30%,20%,20%] respectively.
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Figure 4.16 – FR Signal, response error, and EV availability

Figure 4.17 – FR Signal, response error, and EV availability

The effect of the maximum power of charging point is observed in the Figure 4.19 where
the charging slop and the discharging slop of some EVs are low compared to the Figure 4.18.
Moreover, this point affects directly the EVs considered as fast response energy storage system.
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Figure 4.18 – The SOC evolution of every EV in the charging station for full power rate 22kW

Figure 4.19 – The SOC evolution of each EV in the charging station for reduced power rate

Because of the power limitation of some charging points the charging station can not maintain the
constant power injection in the grid and their power delivery decrease due to the low discharging
rate of some charging points. The power was maintained by the EVs with high power of their
charging point 22kW until 15h45min, when approaching to the minimal SOC of 0.2 those EVs
can not longer participate in the grid support. In fact, with the constraint of the power limitation
of the rest of the charging points, the holding of the grid supply is far from perfect for the rest of
the EV fleet due to the low charging speed of the charging points.
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To summarise, as the SOC of EVs connected to the fast charging points (22kW and 11kW ) is
gradually depleted, the tracking error increases step by step as shown in Figure 4.17.

4.4.2.4 Synthesis of EV position in frequency regulation market

The two previous examples show the possibility of scaling up the participation of EVs in the
ancillary services market. However, the conditions of participation in the primary and secondary
reserve are not the same. In general the conditions may change from country to another but the
most common conditions are presented on the Table 4.6.

According to the Table 4.6 and the results of simulations, the participation of the EVs in
primary reserve can be more suitable if the charging station contains a limited number of charging
points but with high charging rate in order to reach the minimum required power of 1MW . Also
the randomly arrival time, the uncertain departure time and short availability of the EVs is not a
big constraint. The most important thing is to ensure the minimum contracted reserve. Moreover,
the maximum duration of the reserve activation in primary control is 15min, so the charging
station can interrupt the charging of EVs for this period of time and resume the charging of the
EVs after the frequency incident to fulfill the energy requirement of the EVs’ owner. Furthermore,
the discharging of the EVs for a period of time of 15min can offer an attractive profit from V2G
feature that will compensate the battery cycling caused by this operation.

Table 4.6 – Characteristics of primary and secondary reserve [10]
Primary reserve Secondary reserve

Activation dynamic 50% of the reserve
within 15s and 100%
of the reserve enabled
within 30s

100% of the reserve ac-
tivated within 5min

Activation duration The reserve must be
kept activated for 15min
maximum

The activation duration
could be unlimited dur-
ing the duration of the
contract

Minimum power 1MW 5MW
Power direction Positive AND Negative Positive OR Negative

The secondary frequency control needs a larger capacity compared to the primary reserve
and the activation of the reserve could be for a long duration. Therefore, the charging stations
with a high number of charging points, strong attendance rates, and long periods of availability
of the EVs are more appropriate to the secondary reserve. Although the geographical remoteness,
small charging stations can be grouped together to form one virtual charging station supervised
by one aggregator to participate in secondary reserve. In addition, a mix of fast charging stations
and slow charging stations with high capacity can perfectly ensure the secondary frequency
regulation requirement. Finally, the case of long frequency drop confirms the long solicitation of
EVs leading to high EV batteries DOD. Considering the high impact of DOD on EV’s Li-ion
batteries lifetime and the low economical profit from V2G operation can make the involvement
of EVs in the secondary frequency market less tolerated by the EVs owners.

4.5 Conclusion
In this chapter, a detailed state of the art about EV fleet charging algorithm was conducted.

After, two EV fleet energy management strategies has been proposed. The first strategy covers the
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unidirectional charging of large numer of EVs considering the charging infrastructure limit. The
second one deals with the bidirectional charging of EVs with frequency regulation considering
the charger efficiency dependence on power.

The section of the state of the art presents the most important studies about the charging
management of the EV fleet. Firstly, the discussion was about the coordinated charging strategy,
in which the control of the charging can be done by the number of EVs in charge in TCC strategy
and by the charging power in PCC strategy. Secondly, the discussion was turned to unidirectional
charging strategies that use a priority criterion to dispatch the available power, considered as
the first step of the full EV charging problem. Thirdly, the focus was given to the bidirectional
charging strategies, in which the EVs play the role of flexible energy sources by offering several
ancillary services to the power grid such as frequency regulation.

The first contribution of this chapter is a solution to the problem of unidirectional coordinated
charging for a high number of EVs and a limited power available at the transformer where the
charging station is connected. The charging strategy is based on the evaluation of the EV’s
priority level corresponding to the EV’s energy requirement, the duration of EV plug-in time at
the charging station and the power available at the charging point. The design of the charging
strategy allows an optimal integration of the EVs to the distribution power grid. Moreover, the
proposed strategy takes into account the distribution infrastructure constraints, the charging
system limitations and the constraints related to EV users’ satisfaction. A detailed comparative
study was conducted to demonstrate the efficiency of the coordinated charging algorithm. The
results show that with a high number of EVs per day, the power coordination algorithm can
ensure a very high level of satisfaction compared to the uncoordinated charging. Exceeding
a given threshold of a total number of EVs per day, EVs lose the possibility of being charged
before the departure time. Despite the centralized aspect of the proposed algorithm, all issues
related to high computational cost was avoided, compared to solving an optimization problem in
the same context of massive integration of EVs into the grid.

The unidirectional coordination charging strategy was the first step towards a full bidirectional
charging strategy implementation. The second step was the integration of V2G functionality in
the coordinated charging to offer more services to the power grid such as primary frequency
regulation. In the second part of this chapter, the problem of EV frequency regulation service
has been studied through EV charging with V2G feature. First, the optimization problem
modeling considers both EV’s users satisfaction and frequency regulation performance such as
tracking error and regulation capacity. Then, the problem was divided into two sub-problems
(P1) in normal day time when the frequency is 50Hz and (P2) in case of frequency deviation. A
multi-criteria optimization was used in the formulation of the two sub-problems. A numerical
analysis was carried out to demonstrate the effect of EV arrival and departure distributions on the
regulation capacity and on the tracking precision. Simulation results confirm the importance of
taking into account the dependence of the charger efficiency on power in reducing the tracking
error.





5
General Conclusion and Perspectives

General Conclusion

Global warming is driving the countries’ policies and car manufacturers to accelerate the
integration of the electric vehicles. The EVs are considered as a big step towards a sustainable
society. However, there are several challenges to be addressed, such as those related to Li-
ion battery technologies and the deployment of the charging infrastructure in a large scale.
Currently, the EV charging is considered as uncontrolled due to the low market penetration of
EVs. However, it is expected that, in the medium to long term, EVs will have a significant level
of penetration in the light-duty vehicle vehicle market. The integration of a large number of
EVs will lead to significant impacts on the power grid, such as increased energy losses and peak
power, overloading of lines and transformers, voltage drops, reduction of the life of distribution
transformers, etc., unless an action is taken. Controlling the charging of EVs is the only way to
prevent the distribution networks from suffering these problems without having a major upgrade
on the network’s infrastructure.

In addition to the ability of EVs to adjust the charging power, the EV batteries can deliver
the energy to the grid in real-time due to the V2G feature. Therefore, EVs can support the grid
in the peak hour demand, reduce the impact of intermittence in renewable power production and
provide ancillary services to the grid. In this context, the improving of the EV charging methods
can provide both technical and economical benefits. The concept of smart charging and EV fleet
management are the key to achieve this high level objective. The main conclusion of this work
can be expressed in different parts, each dedicated to the contributions of this PhD thesis.

Li-ion battery modeling and temperature consideration: This part began by presenting the
state-of-the-art of the battery modeling approaches: electrochemical models, empirical models
and equivalent circuit models. The main advantages and limitations of each modeling method in
terms of accuracy and the complexity are highlighted. The comparison of the three modeling
technique conclude that the empirical models and equivalent circuit models are the two suitable
for EV simulations. However, the choice of the optimal battery model is a tradeoff between the
desired accuracy and the complexity of parameter’ identification. In addition, the level of battery
modeling and the desired modeling time scale should be taken into consideration. Due to the
thermal issues of Li-ion batteries and the effect of temperature on Li-ion batteries performances,
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the estimation of the temperature was a crucial point to consider. Therefore, a thermal modeling
has been discussed in order to build a electro-thermal model that combine a Rint model with
a 1D lumped thermal model. Finally, a Least square estimation was carried out to identify the
thermal parameters of the Li-ion battery model. The proposed electro-thermal model will be use
in the next chapters to evaluate the temperature and evaluate the battery SOC.

Smart charging strategies by decentralized onboard controller: In order to provide an
economic benefit to EV users, a couple of charging strategies have been proposed in this work
with the objective of reducing the total charging cost for the final user. These smart charging
strategies consist of shifting the charging from the peak period to a low power demand period in
which the energy prices are more attractive. Moreover, the EVs can offer more profitable gains
when considering the V2G feature, by discharging the EV to the grid at high peak demand the
EV owner can earn money and reduce his/her charging bill. By shifting the charging from the
evening when the energy prices and power demand are the highest to the night, a major problem
occurs especially with Li-ion batteries when the temperature could drop in some regions to
subzero temperatures as revealed in the state of the art. To deal with this problem, a decentralized
smart charging strategy considering cost minimization and temperature has been proposed. The
scheduling strategy considers TOU energy prices, the initial SOC, the final SOC desired by the
EV user, the maximum power of the charging infrastructure, the power limitation the Li-ion
battery, the initial battery temperature and the outside temperature. The scheduling algorithm
calculates the optimal power profile to reach the desired SOC by the EV user’s without neglecting
the effect of temperature on the charging performances of Li-ion batteries. The results show
the impact of the temperature consideration on the SOC estimation, specially in cold weather
conditions and the choice of the value of the minimal authorized SOC is a tradeoff between the
maximization of the profit from the V2G feature and battery degradation.

When assuming the high variations in energy prices the first smart charging strategy can
not perform the scheduling due to high number of decision variables and the high number
of constraints. The added value of the second proposed smart charging algorithm is the use
of a dynamic optimized time step taken as a decision variable, contrary to the first one that
uses a constant time step as a fixed parameter. The proposed algorithm can perform the power
scheduling despite the high fluctuation of energy prices in a reduced time and low computational
capacities such as those available on an onboard controller. Taking into account the same
consideration as in the first algorithm, the second smart charging algorithm outperforms the first
one in terms of computing time and the charging cost reduction.

EV fleet charging coordination strategies in a centralized framework: The task of develop-
ing a real-time coordinated charging management algorithm of an EVs fleet has been successfully
achieved in this thesis. The topic of a massive integration of EV in distribution network has
been studied by proposing an unidirectional coordinated charging algorithm in order to manage
the charging of a large number of EVs in a charging station with limited transformer power
without any reinforcement of the grid infrastructure. To address this problem, a priority criterion
was proposed. This criterion takes into account mainly the current infrastructure of the electric
distribution network, the EV user’s satisfaction, the charging constraint and the battery power
limitation constraints. The main features of the proposed algorithm are: the optimal distribution
of the total available power, information on whether the EV has reached the requested state of
charge in the allowed time and the priority given to the EVs charged. This study is carried out
under the assumption of a large number of EVs per day, random arrivals and departures, and
a power demand considerably higher than the available transformer power. The results show
that the charging of a large number of EVs is performed in spite of a limited total available
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power. Moreover, the charging efficiency of the station and the satisfaction level of EV users
are respected while the power is limited. By preventing the transformer from overloading, the
lifespan of the transformer serving the charging station can be extended.

The concept of bidirectional charging has been considered to improve the first algorithm by
considering the potential of the V2G feature in offering ancillary services to the power grid such
as the frequency regulation. Due to the high power density and energy density of Li-ion batteries,
EVs can provide an immediate power to the grid as an energy storage system. However, EVs
have an additional constraint that should be taken into account while the EVs are participating
in grid services. The mobility energy requirement is considered as the most important short
term need. In this context, an optimization problem has been defined considering both EV
owner’s satisfaction and frequency regulation services. The purpose of the proposed strategy
is maintain the total stored energy in the EV batteries in an optimal moving region in which
both frequency regulation capacities and SOC are higher. Despite the importance of frequency
regulation request the charging power will be maintained for EVs with a higher priority. In
addition to the bidirectional power flow, this strategy considers also the EV charger’s efficiency
dependence on power. By taking into account this aspect, the accuracy of tracking the TSO
power request is enhanced. To achieve this goal, a multi-objective optimization with the concept
of optimal time depending references is introduced. The simulations conclude that there is an
impact on the reduction of the tracking error when the charger’s efficiency variation is considered.
Finally, a comparative study confirms that the participation of EVs in primary frequency control
is more appropriate for preventing the EV batteries from high DOD when considering the battery
lifespan as an important point.

Finally, it can be highlighted that the results obtained during the development of this PhD
thesis have been valorized in the form of conferences papers, articles of journals and patents:

Conference papers :
— Y. Dahmane, M. Ghanes, R. Chenouard, and M. Alvarado-Ruiz, “Decentralized control

of electric vehicle smart charging for cost minimization considering temperature and
battery health,” in 2019 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm), October 21-23, Beijing,
China, 2019.

— Y. Dahmane, R. Chenouard, M. Ghanes, and M. Alvarado-Ruiz, “Coordinated charging
of large electric vehicle fleet in a charging station with limited transformer power,” in
2020 IEEE Conference on Control Technology and Applications (CCTA), August 24-26,
Montreal, Canada, 2020

Journal papers :
— Y. Dahmane, M. Ghanes, R. Chenouard, and M. Alvarado-Ruiz, “Optimized Time Step for

Electric Vehicle Charging Optimization Considering Cost and Temperature”, ELSEVIER
Sustainable Energy, Grids and Networks (Under Review)

— Y. Dahmane, M. Ghanes, R. Chenouard, and M. Alvarado-Ruiz, “Optimal Electric Vehicle
Fleet Charging Management With Frequency Regulation Service”, IEEE Transaction on
Smart Grid (Under Review)

Patents :
— Y. Dahmane, M. Ghanes, R. Chenouard, and M. Alvarado-Ruiz : Procédé d’optimisation

de la recharge et/ou de la décharge de batteries pour un véhicule automobile électrique :
(FR1911756), 2019, application nationale (in the process of validation)
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— Y. Dahmane, M. Ghanes, R. Chenouard, and M. Alvarado-Ruiz : Procédé de gestion de
recharge avec V2G d’une flotte de véhicules électriques avec service de régulation de
fréquence (in the process of validation)

Perspectives
On the basis of the development carried out in this thesis, different research axes and horizons

have been opened for smart charging technology. Nowadays, many researchers are working on
these topics and many improvements have been made in recent years, however, much work is
still needed at the experimental level. A big challenge that should be better analyzed is the effect
of V2G technology on the degradation of Li-ion batteries, due to the large depth of discharge
and a long running time. A degradation model has not been considered in this thesis and is very
important to have a good prediction of the battery performance at the cell and pack level. Battery
performance, such as energy and power capacity and lifetime, are also strongly influenced by the
thermal behavior of the cell, its influence on the heating of neighboring cells, and the cooling
and heating strategies. In this work, these effects have not been evaluated, but thermal modeling,
especially at the pack level, can greatly improve the accuracy of performance evaluation.

The future work of this thesis should consider the exploration and development of an eco-
nomic model that describes the economic flow between the grid operators and EVs aggregators.
This will help to identify the benefits of both grid operators and EVs owners for each charging
strategy. A business model must be designed to take into account all aspects of the smart grid
ecosystem in which renewable energy producers, EVs aggregators, car manufacters, aggregators
and grid operators interact in order to evaluate the cost-benefit for each participant.
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Titre : Gestion d’énergie optimisée étendue véhicules infrastructures

Mot clés : : Voiture électrique, optimisation, batteries Li-ion, effet de la température, algorithmes de

planification, gestion d’énergie de flotte, réseau intelligent, V2G, régulation de fréquence.

Résumé :
Cette thèse de doctorat s’inscrit dans le cadre de la chaire

Renault/Centrale Nantes sur l’amélioration des performances
des véhicules électriques (EV/HEV). Elle est dédiée à la pro-
blématique de la gestion de la recharge des véhicules élec-
triques, en utilisant des algorithmes d’optimisation et des straté-
gies de recharge intelligentes. Dans ce cadre, plusieurs contri-
butions ont été proposées sur les sujets de la recharge intelli-
gente d’une voiture électrique et la gestion de la recharge d’une
flotte de véhicules électriques, en considérant les contraintes
de mobilités (SOC désiré à la fin de la recharge et heure de dé-
part), la température des batteries Li-ion, les infrastructures de
recharge, et le réseau électrique.
Sur le sujet de la recharge intelligente d’une voiture électrique,
les contributions se sont concentrées sur le développement des
algorithmes embarqués permettant la planification du profil de
la puissance de recharge afin de réduire le coût de la recharge.
Les algorithmes proposés prennent en compte les besoins de
mobilités des utilisateurs de véhicules électriques, et l’effet de la
température sur la puissance de recharge des batteries Li-ion.
Sur le sujet de la gestion de recharge de flotte de véhicules, les
contributions portent essentiellement sur les algorithmes cen-
tralisés dans les stations de recharge de véhicules électriques.

Un algorithme de recharge unidirectionnelle a été proposé afin
d’évaluer le nombre optimal de véhicules électriques à rechar-
ger avec un bon niveau de satisfaction des contraintes de mobi-
lités et sans aucun renforcement de l’infrastructure. Le passage
à l’algorithme bidirectionnel est fait grâce à l’exploitation de la
fonctionnalité V2G qui permettra la participation des véhicules
électriques dans la régulation de fréquence.
Les contributions proposées sur le premier sujet ont l’avan-
tage d’augmenter la précision d’estimation de SOC final en très
basse température, et d’être embarquable sur le véhicule grâce
à la légèreté des algorithmes et la rapidité d’exécution. D’autre
part, les algorithmes de gestion de recharge de flotte de vé-
hicules permettent une intégration des véhicules électriques à
grande échelle sur le réseau et montrent le potentiel des voi-
tures électriques dans la contribution à la stabilité du réseau
électrique.
Les algorithmes et les stratégies développées ont été testés
en simulation et seront testés sur un système de recharge de
voiture électrique. Les résultats obtenus ont permis de mettre
en évidence l’avantage de la recharge intelligente sur la réduc-
tion des coûts, les bienfaits sur le réseau et l’importance de la
gestion de la recharge des flottes de véhicules électriques dans
développement des services réseaux.

Title: Optimized Energy Management for Electric Vehicles and Infrastructures

Keywords: Electric vehicle, optimization, Li-ion battery charging, temperature effect, scheduling algo-

rithms, EV fleet energy management, smart grid, V2G, frequency regulation.

Abstract: This PhD thesis is part of the Renault/Centrale
Nantes chair on improving the performance of electric vehicles
(EV/PHEV). It is dedicated to the problem of the charging man-
agement of electric vehicles, using optimization algorithms and
smart charging strategies. In this framework, several contribu-
tions have been proposed on the topics of smart charging of
an EV and the smart energy management of an EV fleet, con-
sidering the mobility constraints (desired SOC at the end of the
charging and departure time), the temperature of the Li-ion bat-
teries, the charging infrastructures, and the power grid.
On the subject of smart charging of an EV, the contributions
focused on the development of embedded algorithms allowing
the scheduling of the charging power profile in order to reduce
the charging cost. The proposed algorithms take into account
the mobility needs of electric vehicle users, and the effect of
temperature on the charging power of Li-ion batteries. On the
subject of fleet energy management, the contributions focus on
centralized algorithms in electric vehicle charging stations. An
unidirectional recharging algorithm has been proposed in or-
der to evaluate the optimal number of electric vehicles to be

recharged with a good level of satisfaction of mobility constraints
and without any infrastructure reinforcement. The switch to the
bidirectional algorithm is due to the exploitation of the V2G func-
tionality, which will allow the participation of electric vehicles in
frequency regulation.
The proposed contributions on the first topic have the advan-
tage of increasing the estimation accuracy of final SOC in very
low temperature, and to be embedded on the EV due to the
low computational capacity of the algorithms and the speed of
execution. On the other hand, the EV fleet charging manage-
ment algorithms allow the possibility of large-scale integration
of electric vehicles on the grid and show the potential of EVs in
contributing to the stability of the power grid by offering ancillary
services such as frequency regulation.
The algorithms and strategies developed have been tested in
simulation and will be tested on an EV charging system. The
results obtained have highlighted the benefits of smart charg-
ing on cost reduction and grid benefits and the importance of
electric vehicle fleet charging management in the development
of grid services.
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