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Titre : Plongements de phrases et leurs relations avec les structures de phrases

Résumé (court) : Historiquement, la modélisation du langage humain suppose que les
phrases ont une structure symbolique et que cette structure permet d’en calculer le sens par
composition. Ces dernières années, les modèles d’apprentissage profond sont parvenus à
traiter automatiquement des tâches sans s’appuyer sur une structure explicite du langage,
remettant ainsi en question cette hypothèse fondamentale. Cette thèse cherche ainsi à
mieux identifier le rôle de la structure lors de la modélisation du langage par des modèles
d’apprentissage profonds. Elle se place dans le cadre spécifique de la construction de
plongements de phrases—des représentations sémantiques basées sur des vecteurs—par
des réseaux de neurones profonds. Dans un premier temps, on étudie l’intégration de biais
linguistiques dans les architectures de réseaux neuronaux, pour contraindre leur séquence
de composition selon une structure traditionnelle, en arbres. Dans un second temps,
on relâche ces contraintes pour analyser les structures latentes induites par ces réseaux
neuronaux. Dans les deux cas, on analyse les propriétés de composition des modèles ainsi
que les propriétés sémantiques des plongements. La thèse s’ouvre sur un état de l’art
présentant les principales méthodes de représentation du sens des phrases, qu’elles soient
symboliques, ou basées sur des méthodes d’apprentissage profond. La deuxième partie
propose plusieurs expériences introduisant des biais linguistiques dans les architectures
des réseaux de neurones pour construire des plongements de phrases. Le premier chapitre
combine explicitement plusieurs structures de phrases pour construire des représentations
sémantiques. Le deuxième chapitre apprend conjointement des structures symboliques
et des représentations vectorielles. Le troisième chapitre introduit un cadre formel pour
les transformers selon une structure de graphes. Finalement, le quatrième chapitre étudie
l’impact de la structure vis-à-vis de la capacité de généralisation et de compositions des
modèles. La thèse se termine par une mise en concurrence de ces approches avec des
méthodes de passage à l’échelle. On cherche à y discuter les tendances actuelles qui
privilégient des modèles plus gros, plus facilement parallélisables et entraînés sur plus de
données, aux dépens de modélisations plus fines. Les deux chapitres de cette partie relatent
l’entraînement de larges modèles de traitement automatique du langage et comparent ces
approches avec celles développées dans la deuxième partie d’un point de vue qualitatif et
quantitatif.

Résumé (long) : Historiquement, la modélisation du langage humain suppose que
les phrases ont une structure symbolique et que cette structure permet d’en calculer
le sens par composition. Ces dernières années, les modèles d’apprentissage profond
sont parvenus à traiter automatiquement des tâches sans s’appuyer sur une structure
explicite du langage, remettant ainsi en question cette hypothèse fondamentale. Cette thèse
cherche ainsi à mieux identifier le rôle de la structure lors de la modélisation du langage



par des modèles d’apprentissage profonds. Elle se place dans le cadre spécifique de la
construction de plongements de phrases—des représentations sémantiques basées sur des
vecteurs—par des réseaux de neurones profonds. Dans un premier temps, nous étudions
l’intégration de biais linguistiques dans les architectures de réseaux neuronaux, pour
contraindre leur séquence de composition selon une structure traditionnelle, en arbres.
Dans un second temps, nous relâchons ces contraintes pour analyser les structures latentes
induites par ces réseaux neuronaux. Dans les deux cas, nous analysons les propriétés de
composition des modèles ainsi que les propriétés sémantiques des plongements. La thèse
est financée par Quantmetry—un cabinet de conseil français pionnier dans le domaine
de l’intelligence artificielle—qui travaille sur des projets d’IA de bout en bout, de la
stratégie à l’industrialisation. Ainsi, les travaux sont motivés par un désir de proposer
des contributions actionnables dans le milieu industriel et des outils efficaces pour des
applications concrètes. Une grande partie de ce travail est donc publiée sous forme d’outils
et de contributions en accès libre.

La thèse s’ouvre sur un état de l’art présentant les principales méthodes de représentation du
sens des phrases, qu’elles soient symboliques, ou basées sur des méthodes d’apprentissage
profond.

La deuxième partie propose plusieurs expériences introduisant des biais linguistiques dans
les architectures des réseaux de neurones pour construire des plongements de phrases.
Cette partie comporte quatre chapitres.

Le premier chapitre combine explicitement plusieurs structures de phrases pour construire
des représentations sémantiques. Nous supposons que la signification d’une phrase est une
fonction des aspects syntaxiques et sémantiques. À cet égard, nous proposons une méthode
auto-supervisée qui construit des plongements de phrases à partir de la combinaison de
diverses structures syntaxiques. La nouveauté consiste à proposer une approche multi-vue
qui apprend conjointement des modèles structurés en induisant une interaction explicite
entre eux pendant la phase d’apprentissage. Nous pré-entraînons plusieurs modèles en
utilisant un objectif contrastif avec un corpus de 40 millions de phrases. Nous évaluons
ensuite nos modèles sur des ressources d’évaluation des plongements de phrases et
obtenons des résultats à l’état de l’art. En particulier sur des tâches qui devraient, par
hypothèse, être plus sensibles à la structure des phrases.

Le deuxième chapitre apprend conjointement des structures symboliques et des représenta-
tions vectorielles. Nous utilisons des réseaux neuronaux structurés en arbre, qui encodent
naturellement la structure du langage. Pour chaque phrase, le réseau encode les unités de
texte en suivant un arbre syntaxique, en partant des feuilles jusqu’à la racine. Cependant,
ces modèles souffrent de contraintes pratiques qui limitent leur application. En particulier,
les modèles structurés nécessitent non seulement du texte brut en entrée mais aussi la
structure de la phrase sous la forme d’un arbre. Une telle structure nécessite des anno-
tations dans le cadre supervisé. Nous formulons un nouveau modèle structuré en arbre
qui apprend sa fonction de composition en même temps que sa structure. Le modèle
comprend deux modules, un analyseur de graphe biaffine et un Tree-LSTM. Les fonctions
d’analyse syntaxique et de composition sont explicitement connectées et, par conséquent,



apprises conjointement. La méthode diffère d’autres approches car la représentation n’est
pas calculée à partir d’une forêt entière d’arbres potentiels. De plus, l’apprentissage du
modèle ne nécessite pas de supervision directe pour la structure. Le modèle est plus
performant que les modèles à base d’arbres reposant sur des structures extrinsèques. Dans
certaines configurations, il est même compétitif avec Bert.

Le troisième chapitre introduit un cadre formel pour les transformers selon une structure
de graphes. Les architectures de transformers ont gagné en popularité au sein de la
communauté. Contrairement aux modèles basés sur des arbres, ils n’ont pas besoin de
données annotées pour être entraînés. D’autre part, comme le suggèrent de nombreux
résultats, ces nouveaux modèles acquièrent une forme de structure hiérarchique. Les
transformers transforment simultanément l’ensemble des représentations des tokens—les
unités lexicales d’une phrase—selon un nombre fixe de couches. Néanmoins, le rôle
de ces couches et la façon dont elles traitent l’information ne sont pas entièrement
compris. Nous formulons l’hypothèse que les couches ne codent pas spécifiquement des
fonctions surfaciques, syntaxiques ou sémantiques mais plutôt que de telles informations
émergent par l’application itérative des couches. Pour mieux étudier la transformation
des représentations des tokens à travers les couches, nous proposons une variante du
modèle Albert. A l’instar d’Albert, notre modèle partage ses poids entre l’ensemble des
couches mais adapte aussi dynamiquement le nombre de couches appliquées à chaque
token. Nous analysons le processus de transformation des tokens selon la profondeur du
réseau. En particulier, nous étudions comment les itérations sont distribuées en fonction
des types de dépendance des tokens. Nous montrons que les tokens ne nécessitent pas le
même nombre d’itérations et que les tokens difficiles ou cruciaux pour la tâche nécessitent
plus d’itérations.

Finalement, le quatrième chapitre étudie l’impact de la structure vis-à-vis de la capacité
de généralisation et de compositions des modèles. Bien que les transformers améliorent
les performances sur de nombreux benchmarks, ils présentent également certaines limites.
En particulier en ce qui concerne leur capacité à généraliser en dehors de leur domaine
d’entraînement et à apprendre des règles de composition élémentaires. En particulier, les
modèles d’apprentissage profond ont du mal à généraliser à des séquences plus longues
ou à des phrases présentant des niveaux de récusions plus profonds que ceux vus pendant
l’entraînement. Pour faire suite à nos travaux sur l’intégration de la structure dans les
architectures neuronales, nous cherchons à mieux caractériser le rôle de la structure
dans les propriétés compositionnelles des modèles. Ce travail est actuellement en phase
d’expérimentation. Nous construisons une méthode d’évaluation avec des expressions
arithmétiques contenant des propriétés spécifiques. Nous entraînons différents modèles
sur des sous-ensembles du jeu de données et observons comment les modèles généralisent
en dehors de leur domaine. Nous comparons des modèles intégrants divers niveaux de
contraintes structurelles : des modèles séquentiels, récursifs ou non structurés.

La thèse se termine par une mise en concurrence de ces approches avec des méthodes de
passage à l’échelle. Dans cette seconde partie, on cherche à discuter les tendances actuelles
qui privilégient des modèles plus gros, plus facilement parallélisables et entraînés sur
plus de données, aux dépens de modélisations plus fines. Les deux chapitres de cette



partie relatent l’entraînement de larges modèles de traitement automatique du langage et
comparent ces approches avec celles développées dans la deuxième partie d’un point de
vue qualitatif et quantitatif.

Le premier chapitre s’interroge sur la taille des modèles. à première vue, il semble que
le traitement actuel du langage naturel évolue vers des modèles de plus en plus gros aux
dépens des subtilités de leur architecture. Cette tendance n’a pas directement profité aux
modèles de plongements de phrases, car de nombreux encodeurs à base de transformers
affichent des performances inférieures à l’état de l’art sur les benchmarks d’évaluation. Dans
cette section, nous explorons comment nous pouvons faire évoluer les performances des
encodeurs de phrases en adaptant leur pré-entraînement et en augmentant leur taille. Nous
détaillons le développement, l’entraînement et le partage de modèles de plongements de
phrases à l’état de l’art. Nous utilisons un objectif contrastif et entraînons les modèles sur
un corpus d’un milliard de phrases.

Le second chapitre de cette partie s’intéresse à l’entrainement d’un modèle de langue
incrémental en français. Ce type de modèle peut acquérir des compétences grammaticales
très impressionnantes. Par exemple, GPT-2 génère un texte correct avec un accord au pluriel
et à distance, et ce, en dépit toute connaissance linguistique préalable. Ces accords sont
pourtant déterminés par des structures abstraites et pas seulement par l’ordre linéaire des
mots. Plus largement, les modèles peuvent apprendre de nombreux motifs linguistiques
(sujet-verbe, nom-adverbe, verbe-verbe) sans aucune information préalable sur la théorie
linguistique. Au sein de notre laboratoire, nous avons dirigé le projet d’entraînement
du premier grand modèle de langage incrémental en français. Nous avons obtenu une
subvention de calcul pour le calculateur public français Jean Zay. Le modèle, équivalent
à GPT-2 en anglais, contient plus d’un milliard de paramètres. Nous avons construit un
corpus d’entraînement dédié et parallélisé l’entraînement entre plusieurs nœuds et unités
de calcul. Nous avons publié le modèle en Open-Source pour la recherche et les applications
commerciales.

En conclusion, nous avons étudié le rôle de la structure des modèles neuronaux pour
composer les unités lexicales lors de la construction de plongements de phrases. Nos
travaux ont abordé plusieurs problèmes critiques des plongements de phrases, notamment
le manque de robustesse vis-à-vis de la généralisation hors du domaine, le manque
de propriétés de compositions, la nécessité de vastes corpus d’entraînement ou la sur
paramétrisation. Nos travaux apportent plusieurs contributions.

Tout d’abord, nous avons donné des éléments empiriques montrant que certaines structures
de réseaux neuronaux sont plus appropriées pour capturer des types d’informations
spécifiques. Nous avons ainsi observé empiriquement que la structure des modèles impacte
la nature des informations accessibles dans les plongements de phrases. Nous avons ainsi
confirmé notre hypothèse selon laquelle la combinaison de diverses structures devrait être
plus robuste pour les tâches nécessitant des opérations de compositions subtiles.

Deuxièmement, nous avons proposé des architectures originales pour apprendre conjointe-
ment la structure de la phrase et la fonction de composition sémantique. Par conséquent,
l’apprentissage du modèle ne nécessite pas la supervision d’un objectif d’analyse syntaxique.



Nous avons également étudié structures latentes apprises par les modèles transformers
et proposé un cadre d’interprétation sous forme de réseaux de graphes. Nos expériences
fournissent une nouvelle voie d’interprétation pour le rôle des couches dans les modèles
de transformers profonds. Plutôt que d’extraire des caractéristiques spécifiques à chaque
étape, les couches pourraient agir comme un processus itératif et convergent.

Troisièmement, nous avons adapté la méthode standard de pré-entraînement contrastive
pour entraîner des modèles de transformers de grande taille sur un grand ensemble
de données. Nous avons ainsi réussi à étendre leur pré-entraînement pour surpasser
les approches précédentes. Toujours dans le cadre du passage à l’échelle, nous avons
pré-entraîné une version française du modèle GPT.

Enfin, nous avons développé des ressources d’évaluation. Nous avons développé un jeu de
données pour évaluer les propriétés de composition des modèles. En s’appuyant sur des
expressions arithmétiques dont nous contrôlons les caractéristiques, nous évaluons des
propriétés qui s’appliquent également à l’étude du langage humain. Nous avons également
introduit un jeu de données d’évaluation pour les modèles de langue française.

Mots clefs : Traitement automatique des langues naturelles, plongements de phrases,
apprentissage profond, réseaux de neurones structurés.



Title: Sentence embeddings and their relation with sentence structures

Abstract: Historically, models of human language assume that sentences have a symbolic
structure and that this structure allows us to compute their meaning by composition. In
recent years, deep learning models have successfully processed tasks automatically without
relying on an explicit language structure, thus challenging this fundamental assumption.
This thesis seeks to clearly identify the role of structure in language modeling by deep
learning methods. The dissertation specifically investigates the construction of sentence
embeddings—semantic representations based on vectors—by deep neural networks. Firstly,
we study the integration of linguistic biases in neural network architectures to constrain
their composition sequence based on a traditional tree structure. Secondly, we relax these
constraints to analyze the latent structures induced by the neural networks. In both cases,
we analyze the compositional properties of the models as well as the semantic properties of
the sentence embeddings. This thesis begins with an overview of the main methods used
to represent the meaning of sentences, either symbolically or using deep learning. The
second part proposes several experiments introducing linguistic biases in neural network
architectures to build sentence embeddings. The first chapter explicitly combines numerous
sentence structures to build semantic representations. The second chapter jointly learns
symbolic structures and vector representations. The third chapter introduces a formal
framework for graph transformers. Finally, the fourth chapter studies the impact of the
structure on the generalization capacity of the models and compares their compositional
capabilities. The last part compares the models to larger-scale approaches. It seeks to
discuss current trends favoring larger models, more easily parallelized and trained on
more data, at the expense of finer modeling. The two chapters from this part report on the
training of large models of automatic language processing and compare these approaches
with those developed in the second part from a qualitative and quantitative point of view.

Keywords: Natural language processing, sentence embeddings, deep learning, structured
neural networks.
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„Language is a process of free creation; its

laws and principles are fixed, but the

manner in which the principles of

generation are used is free and infinitely

varied. Even the interpretation and use

of words involves a process of free

creation.

— Noam Chomsky

For reasons of state, 1973

Linguistic theory is founded on the hypothesis that language
has a structure. In computational linguistics, a strong premise
is that this structure is recursive (Chomsky 1956) and, in the
specific case of sentences, this structure forms a tree. These
premises are the cornerstone of linguistic theory. Recently, a
new family of methods truly changed the field of computa-
tional linguistics by modeling language with vectors. First,
word embeddings emerged (Mikolov, K. Chen, et al. 2013;
Mikolov, Sutskever, et al. 2013) and, as deep learning gained
momentum, it soon became natural to model sentences or
even longer texts with vector representations (Cho et al. 2014;
Hochreiter and Schmidhuber 1997). In this context, this dis-
sertation is about creating sentence embeddings through
the composition of lexical units. Text representation is at the
core of natural language processing (NLP), which develops
automatic methods for inferring related attributes from those
representations. Attributes can take many forms: a given
class in a classification problem, the answer to a question, a
list of documents with similar semantic content, or a sum-
mary of the input text. In recent years, the representation
methods for text have developed significantly. Contrary to
formal linguistic frameworks, which derive syntactic and
semantic properties from expert rules, these methods derive
representations by exploiting the implicit patterns within
vast corpora. These methods are grounded on two foun-
dational hypotheses: the distributional hypothesis to build
word representations given their context and the compo-
sitionality principle to combine those words into sentence
representations.
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This dissertation focuses on sentences and the methods to
encode them. Specifically, (i) how layouts identified by dis-
tributional methods from vast corpora relate to linguistic
structures and, respectively, (ii) how we can efficiently infuse
linguistic biases in neural architectures to drive the composi-
tion function learned by self-supervised sentence embedding
methods.

This section introduces the study by first discussing the ap-
plications of sentence embedding methods, the background,
and context, followed by the research problem, the research
aims, objectives and questions, the significance, and finally,
the limitations.

1.1 Background to the study

Embedding a sentence consists of assigning it to a static,
fixed-length, real-valued vector, which captures its meaning.
It is important to emphasize the distinction between sentence
embedding and any sentence vector representation, for ex-
ample, intermediate representations from neural networks.
The majority of modern NLP methods works end-to-end: the
intermediate representations and the inference of attributes
from those representations are part of a unified process. In
such a case, it is impossible to separate the representations
from the final model outputs. The representations, therefore,
depend on the attribute we seek to predict and will most likely
only capture the information relevant for this prediction. In
the context of sentence embedding, the representation of
the input text and the inference of related attributes are two
explicitly disconnected steps. Therefore, sentence embedding
should capture an exhaustive perspective of the text input
meaning as we may use them to predict a large variety of
attributes. Sentence embedding methods should be highly
generic, and their conception should be independent of their
later use.

We can divide the properties we expect from sentence em-
beddings into two categories:

▶ First, the notion of semantic distance in the original
sentence space should be reflected in the represen-
tation space. In the sentence embedding space, it is
straightforward to define a notion of mathematical
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distance over the vector space. Therefore, we can use
standard mathematical operators to compare semantic
sentence characteristics directly in the sentence embed-
ding space. Sentences with close meanings should be
mapped to close embedding vectors.

▶ Second, we expect sentence embeddings to fully cap-
ture the meaning and general characteristics—such
as the sentence length or the main verb tense—of the
original sentence. It should be possible to extract some
specific information from the embedding vector using
statistical methods.

Therefore, sentence embeddings are essential for many un-
supervised applications such as search engines, information
retrieval, text mining, and documents clustering. It is also
possible to use sentence embeddings as features for more su-
pervised models, inferring relationships such as entailment
between sentence pairs.

1.2 Research problem

Embedding sentences is an active subject of research, includ-
ing the development of self-supervised training objectives,
training datasets, evaluation benchmarks, or the release of
models as open-source contributions.

Building standalone sentence embeddings is specifically hard,
as an infinite number of valid sentences exist. Compositional
semantics state that the meaning of a phrase is determined by
combining the meanings of its sub-phrases. Models, therefore,
need to compose text units, given a syntactic structure, into
global semantic embeddings. However, many contributions
rely on standard encoder architectures and do not question
the composition mechanisms transforming text units into a
global sentence representation.

Thus, sentence embedding methods present pitfalls that
are common to many domains in NLP: lack of robustness
toward out-of-domain generalization, shallow pattern match-
ing rather than compositional knowledge, the requirement
for large training datasets, or over-parametrization.



4 1 Introduction

1.3 Research aims, objectives, and

questions

This study aims at improving sentence encoder compositional
abilities. We seek to leverage both the integration of linguistic
biases into neural network architectures as well as the scaling
of these models and their training setup. We define the
following research objectives:

1. Develop efficient methods to integrate linguistic biases
into neural networks;

2. Evaluate the effectiveness of these strategies and ap-
proaches;

3. Compare and contrast these strategies and approaches
in terms of their strengths and weaknesses.

The dissertation studies sentence embeddings and their rela-
tion with sentence structures. Below, we detail the research
questions we investigate. The three first questions focus on
the methods to efficiently induce linguistically driven in-
sights within neural network composition functions. The last
question asks about the benefits of such insights regarding
the generalization power of neural networks for automatic
language processing.

Can we efficiently introduce linguistic biases within neural

network architectures? The recursive structure of language
is a strong hypothesis in computational linguistics (Chomsky
1956). Thus, computing sentence semantic representations tra-
ditionally calls for a recursive compositional function whose
structure is tree-shaped. In contrast, recent deep learning
architectures—such as recurrent neural networks (Cho et al.
2014; Hochreiter and Schmidhuber 1997) or transformers
(Vaswani et al. 2017)—encode text without explicit hierar-
chical composition. The first research question focuses on
bridging the gap between these two paradigms: we explore
the feasibility of explicitly integrating linguistic priors within
neural architectures to compose semantic representations
with a hierarchical structure.

Does self-supervised training induce structure into neural

architecture? Our second research question has the same
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1: https://www.quantmetry.

com/

2: https://huggingface.co/

asi/gpt-fr-cased-base

objective—integrating linguistic priors within neural archi-
tectures—but different means. This time we are not focusing
on the architectures of neural networks but rather the train-
ing methods. We explore the possibility of inducing latent
structure within the function that neural networks operates
to compose lexical units into sentence representations.

Can we induce specific compositional abilities through

neural architectures? We explore the possibility of exploit-
ing the model and training dataset size to induce linguistic
structure into neural networks. While the size of the language
model in natural language processing is steadily increasing
(Brown et al. 2020; Devlin et al. 2019), we investigate how
such approaches can compensate for the lack of linguistically
based insights.

Can we balance the lack of linguistic insights with larger

models and larger training datasets? Finally, we investigate
the role of structure in building more robust neural network
architectures. By influencing the semantic composition of
neural networks, we aim to improve their compositional and
generalization abilities.

1.4 Significance

We expect this study to contribute to the body of knowledge
on sentence embeddings and neural model architectures to
encode text. The publications and the ongoing experiments
will contribute to the academic effort in building more ro-
bust statistical models by incorporating language biases and
approaches for scaling model training.

This thesis is funded by Quantmetry, a French pioneering
consulting firm working on end-to-end AI projects—from
strategy to industrialization.1 As such, this work is also
motivated by the desire of achieving industrial contributions
and ready-to-use tools available for real-world applications.
Besides empirical research, a large portion of this work
is thus released as open-source contributions. Resources
include pre-trained language models for English and French,
training and evaluation datasets, as well as associated scripts
to reproduce the results.2 Finally, we released a code for

https://www.quantmetry.com/
https://www.quantmetry.com/
https://huggingface.co/asi/gpt-fr-cased-base
https://huggingface.co/asi/gpt-fr-cased-base
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3: https://github.com/

AntoineSimoulin/pytree
recursive models under a library called PyTree.3 The library
was distinguished and listed among the winners of the
PyTorch Hackathon 2021. We hope this empirical work and
the resources will provide real-world value for organizations
in a field in which knowledge and methods are undergoing
rapid and continuous evolution.

1.5 Limitations

Our study is limited to sentences, but we hypothesize that
it may, in some cases, extend to paragraphs. However, the
major part of our work will not apply to longer chunks of
text. Although we seek to propose methods applicable to
various languages, the study focuses mainly on English and
French, and some experiments may be difficult to reproduce
in low-resource languages. Indeed, we make use of specific
training and evaluation resources.

Our study proposes efficient methods to introduce linguistic
biases into neural models and better characterize model com-
positional behavior. Such approaches appear promising to
avoid unwanted behavior for real-world applications. How-
ever, our study also underlines the long road ahead to fully
realize the promises of current language models.

1.6 Contributions and Outline

1.6.1 Jointly learning model structure and

compositional operations

First, we focus on tree-structured neural networks, which
naturally encode the structure of language. For each sentence,
the network computes text units following a syntactic tree,
starting from the leaf nodes up to the root. However, such
models suffer from practical constraints that limit their appli-
cation. In particular, tree-based models not only require raw
text as input but also the sentence structure in the form of a
parse tree. Such structure may be tedious because it requires
manual annotations and external parsers. To overcome such
limitations, we formulated a novel tree-based model that
learns its composition function together with its structure.

https://github.com/AntoineSimoulin/pytree
https://github.com/AntoineSimoulin/pytree
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The model includes two modules, a biaffine graph parser,
and a Tree-LSTM. The parsing and the composition functions
are explicitly connected and, therefore, learned jointly. The
method differs from previous work as the representation
is not computed from the whole forest of potential trees.
Moreover, training the full model directly does not require
supervision from an explicit parsing objective. The model
outperforms tree-based models relying on external parsers
on downstream tasks. In some configurations, it is even
competitive with BERT-base.

1.6.2 Studying shallow structure in transformer

models

Recent transformer architectures have gained increased pop-
ularity within the community. Their composition function
does not require hand-annotated data (like trees) to be trained,
unlike tree-based models. On the other hand, as many results
suggest, these new models acquire some sort of hierarchical
structure. Transformers update each token hidden simulta-
neously through a fixed number of layers. However, the role
of these layers and how they process information is not fully
understood. We formulate the hypothesis that the distinct
layers do not encode specific surface, syntactic nor semantic
functions but rather that such information emerges through
the iterative application of layers. To better study the transfor-
mation of token representations across layers, we propose a
variant of ALBERT (Simoulin and Crabbé 2021b). This model
implements the key specificity of weights tying across layers
but also dynamically adapts the number of layers applied
to each token. We analyze token transformation across the
network depth. In particular, we study how iterations are
distributed given the token dependency types. We show that
tokens do not require the same amount of iterations and that
difficult or crucial tokens for the task are subject to more
iterations.

1.6.3 Characterizing compositional properties of

neural architectures

While transformers show outstanding performance on many
NLP benchmarks, they also have some linguistic limitations.
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In particular regarding their ability to generalize outside
their training range and to learn elementary composition
rules. The benchmark COGS (Kim and Linzen 2020) for
example, highlights that deep learning models struggle to
generalize to longer sequences or sentences with deeper level
of recursion than seen during training. Following our work
on integrating the structure into neural architecture, we aim
at better characterizing how the model structure may affect
its degree of compositionality. This work is currently in an
experimentation phase. We are building an evaluation setup
with arithmetic expressions containing specific properties.
We train various models on specific subsets and observe
how models generalize outside their domain. Specifically, we
compare models with varying structural constraints, such as
sequential, recursive, or unstructured models.

1.6.4 Training sentence embedding models

using a discriminative objective

Inspired by linguistic insights, we assume structure is crucial
to building consistent representations. We indeed expect
sentence meaning to be a function of both syntax and se-
mantic aspects. In that regard, we propose a self-supervised
method that builds sentence embeddings from the combina-
tion of diverse explicit syntactic structures of a sentence. The
novelty consists in jointly learning structured models in a
contrastive multi-view framework that induces an explicit
interaction between models during the training phase. We
pre-train various models using a contrastive objective with a
40 million sentences corpus. We then evaluate our model on
sentence embedding benchmarks and obtain state-of-the-art
results, in particular on tasks that are expected, by hypothe-
sis, to be more sensitive to sentence structure. We relate the
development, training, and release of large, state-of-the-art,
sentence embedding models. We use a similar contrastive
objective and train models on a one billion sentences cor-
pus. We develop specific evaluation benchmarks for sentence
embeddings and obtain state-of-the-art results.
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1.6.5 Training the first large incremental

language model for French

As observed in Linzen and Baroni (2020), deep neural net-
works have exceptional grammatical competencies. For ex-
ample, GPT-2 generates correct text with plural and long-
distance agreement despite any prior linguistic knowledge.
Such agreements are determined by abstract structures and
not just the linear order of words. Surprisingly, models can
learn such specific linguistic patterns (subject-verb, noun-
adverb, verb-verb) with no prior information about linguistic
theory. Within our laboratory, we led the project to train the
first large language model in French (Simoulin and Crabbé
2021c). We obtained a dedicated computation grant for the
public French HPC computer Jean Zay. The model, equiv-
alent to GPT-2 in English, contains more than one billion
parameters. We build a dedicated training corpus and par-
allelize the training between multiple nodes and compute
units. We released the model in Open-Source for research
and business application purposes.

1.6.6 Outline of the dissertation

We organize the dissertation into three parts.

Part I provides the necessary background in meaning repre-
sentation, sentence embeddings, and neural model encoders.
Chapter 2 introduces meaning representations. Chapter 3
reviews the architecture of standard encoders to compose
words into sentence embeddings, the training objective, and
evaluation methods.

Part II aims at improving the compositional properties of
language models and their ability to generalize outside their
training domain. We aim to integrate the recursive prop-
erty of language within neural models and design archi-
tectures based on linguistic theory. Chapter 4 proposes a
self-supervised method that builds sentence embeddings
from the combination of diverse explicit syntactic structures
of a sentence. However, the tree-structured encoders require
heavily structured data to compute the semantic representa-
tions. In Chapter 5, we propose to overcome this limitation by
proposing an architecture inducing trees from raw text and
computing semantic representations along with the inferred
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4: https://github.com/

AntoineSimoulin/pytree

structure. Chapter 6 makes the parallel with transformers and
sequential or tree-structured models. We interpret transform-
ers as structured neural networks and layers as operations
on fully connected graphs. We finally compare all models
in Chapter 7 by proposing an in-depth evaluation of their
compositional properties.

Part III focuses on training and sharing models at scale.
Indeed, the preparation of massive corpora, the training, and
the use of large architectures are key for the performance of
such models. Chapter 8 presents an attempt to train state-of-
the-art sentence embedding models on a very large corpus.
Chapter 9 proposes to train the first large generative pre-
trained model in French.

1.6.7 Publications

This dissertation contains some contributions that we previ-
ously published and presented at conferences.

▶ Chapter 4 is an extended version of an article published
in EACL Student Research Workshop 2021 (Simoulin
and Crabbé 2021a). We open-sourced the code de-
veloped for recursive models under a library called
PyTree.4 The library was distinguished and listed
among the winners of the PyTorch Hackathon 2021;

▶ Chapter 5 presents work currently under submission;
▶ Chapter 6 is an extended version of an article published

in ACL Research Student Workshop 2021 (Simoulin
and Crabbé 2021b);

▶ Chapter 7 presents original unpublished work as well
as work currently under submission;

▶ Chapter 8 describes the development of state-of-the-art
sentence embedding models as part of the project Train

the Best Sentence Embedding Model Ever with 1B Training;

Pairs. This project took place during the Community week

using JAX/Flax for NLP & CV organized by Hugging
Face. Our project was among the competition winners
and received an honorable mention;

▶ Chapter 9 is an extended version of an article published
in TALN 2021 (Simoulin and Crabbé 2021c).

The code used for all experiments carried out for this disser-
tation, the pre-trained models, the evaluation and training

https://github.com/AntoineSimoulin/pytree
https://github.com/AntoineSimoulin/pytree
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datasets have been made publicly available as free software
through the following repositories:

▶ https://github.com/AntoineSimoulin/pytree

▶ https://github.com/AntoineSimoulin/gpt-fr

▶ https://huggingface.co/datasets/asi/wikitext_

fr

▶ https://huggingface.co/asi/gpt-fr-cased-base

▶ https://huggingface.co/asi/gpt-fr-cased-small

https://github.com/AntoineSimoulin/pytree
https://github.com/AntoineSimoulin/gpt-fr
https://huggingface.co/datasets/asi/wikitext_fr
https://huggingface.co/datasets/asi/wikitext_fr
https://huggingface.co/asi/gpt-fr-cased-base
https://huggingface.co/asi/gpt-fr-cased-small
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„It was six men of Indostan

To learning much inclined,

Who went to see the Elephant

(Though all of them were blind),

That each by observation

Might satisfy his mind.

The First approached the Elephant,

And happening to fall

Against his broad and sturdy side,

At once began to bawl:

"God bless me!—but the Elephant

Is very like a wall!"

The Second, feeling of the tusk,

Cried: "Ho!—what have we here

So very round and smooth and sharp?

To me ’t is mighty clear

This wonder of an Elephant

Is very like a spear!"

The Third approached the animal,

And happening to take

The squirming trunk within his hands,

Thus boldly up and spake:

"I see," quoth he, "the Elephant

Is very like a snake!"

[ . . . ]

— John Godfrey Saxe

The Blind Men and the Elephant,
1872

Language is perhaps the most distinguishing characteristic
between humans and other animals. Any individual of the
homo sapiens species can speak or write and understand
other species members who know that language. As artifi-
cial intelligence rises, the question remains as to whether
computer programs can "handle" such a unique ability.

Human beings interact through language: they encode se-
mantic information using words and sentences that others
can decode and understand. Amazingly, humans can under-
stand any new sentence and decode the semantic information
it carries. However, the latent process remains largely un-
known, and it is difficult to express the meaning of a sentence
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using a medium other than its sequence of words.

As stated in Chapter 1, this dissertation focuses on sentence
embeddings, i.e. mapping sentences to vectors, which capture
their meaning. This section outlines the general frame and the
main hypothesis that underlie our research. We accept these
premises as true throughout the remainder of the dissertation
and do not discuss them further. In Section 2.1, we first aim
to approximate or circumvent the notion of meaning and
briefly enumerate the main philosophical trends defining this
notion. Regardless of the definition we choose for meaning,
Section 2.2 examines the properties of language that semantic
representations should verify. Finally, Section 2.3 enumerates
representation methods effectively verifying such properties.
We distinguish formal representations based on rules from
distributed semantic representations.

2.1 Language and meaning

At the beginning of this section, the quote is an Indian parable
about blind men who meet an elephant for the first time
and touch it, learning and imagining what it is like as they
go. Each blind man can feel only one part of the elephant’s
body, like the side or the tusk. According to their limited
experience, they describe the elephant differently. The size
of an elephant and the body of work to define the nature
of meaning are hardly comparable notions. Nonetheless,
this section proceeds like the blind men from India and
touches the body of philosophical literature in several parts to
introduce several distinctive definitions of linguistic meaning.
The purpose of the dissertation is not to argue about these
definitions. We will simply assume that one definition holds
and that it is indeed possible to define the meaning of a given
expression or sentence.

2.1.1 Idea theory

The 17th-century empiricist John Locke is the primary de-
fender of the idea theory of meaning, relating meaning to
subjective ideas. In Locke (1847), he defines ideas as men-
tal representations as “whatsoever the mind perceives in
itself, or is the immediate object of perception, thought, or
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understanding”. Simple ideas can be derived into complex
ones by composition, comparison, and abstraction. To Locke,
"meaning" is the idea one associates with an expression in
his mind. Effective communication requires the listener to
decode the speaker’s words into their associated meanings.

2.1.2 Sense and reference

Direct reference theory Direct reference theory investigates
how language interacts with the world. It connects words
to the world by defining the meaning of an expression with
what it points out in the world. Following the 19th-century
philosopher John Stuart Mill, the 20th-century philosopher
Bertrand Russell advocates that the meaning of an expression
is not what it points out in the mind but instead in the
world.

Truth-conditional theory In the 19th century, mathemati-
cian and philosopher Gottlob Frege contends with direct
reference theory. Frege consents that words refer to some-
thing external in the world, but he argues that the meaning of
a name extends beyond its referent. In Frege’s view, the mean-
ing of an expression or a sentence consists of two elements: a
referent and what he called a "sense" (Frege 1892). The sense
of an expression is not the thing it refers to but rather how
it refers to it. We may determine a single referent by more
than one sense, though each sense determines a single refer-
ent. "Charles de Gaulle" and the "the first French president
elected under the Fifth Republic", for instance, have the same
referent but different senses. As such, the sentence "Charles
de Gaulle is Charles de Gaulle" results in a tautology, while
"Charles de Gaulle is the first French president elected under
the Fifth Republic" is truly informative. Within the continuity
of Frege’s work, the truth-conditional theory of meaning
holds sentence or expression meaning to be reducible to their
truth conditions. The truth condition is the conditions under
which we may evaluate an expression as true or false. The
approach is primarily associated with the work of Donald
Davidson to apply Alfred Tarski’s semantic theory of truth
to the semantics of natural language (Davidson 1967).
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Inferentialist theory The inferentialist theory holds that
meaning results from links between language and experience.
A set of “observation sentences” derive their meaning from
an account of experiences upon which one can validate such
sentences. The meaning of other sentences results from their
inferential relations to other expressions.

2.1.3 Usage theory

We commonly associate the use theory of language with the
20th-century philosopher Ludwig Wittgenstein. According to
his theory, we do not define words by the mental associations
they invoke in our minds nor by the objects they allude to in
our world, but by how we use them. Thus, the meaning of
the word presupposes our ability to use it. He defines: “For a
large class of cases—though not for all—in which we employ
the word "meaning" it can be defined thus: the meaning
of a word is its use in the language.” (Wittgenstein 1953).
Wittgenstein argues that the definition of a word arises from
the culture and society in which it is used, or as he puts it,
from the "forms of life". He emphasizes the intertwinement
of language and social situation and, by extension, the social
nature of cognition.

2.2 Language properties

Through the dissertation, we will use some notions that we
define here.

2.2.1 Entailment and paraphrases

We define textual entailment following Dagan et al. (2010)
as “Textual entailment recognition is the task of deciding,
given two text fragments, whether the meaning of one text
is entailed (can be inferred) from another.” The entailment
notion somehow differs from pure logic inference detailed
in Section 2.1.2 and is not bounded to a specific definition of
meaning. By extension, we define paraphrases as two sentences,
A and B, that entail each other.
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1: For example, the book Zone
(Enard 2008) is a lengthy 500
pages monologue. Proust is also
well known for its long sentences,
43 words on average. The longest
sentence from À la recherche du

temps perdu (Proust 1921) con-
tains 856 words. In les Miséarables

(Hugo 1862), Victor Hugo wrote
a sentence with 823 words.
2: We extracted this formulation
from the Stanford Encyclo-
pedia of Philosophy: https:

//plato.stanford.edu/

entries/compositionality/

#ArguForComp.

2.2.2 Compositionality principle

Natural language understanding requires to know the mean-
ing of individual words. For example, English speakers share
common concepts associated with "boy", and they know it
relates to something different than "house" or "car". Speak-
ers or writers can also combine words into a theoretically
unlimited number of valid sentences. This creative aspect of
language allows the formation of arbitrary long sentences.1

Through the entire dissertation, we will also adhere to the
compositionality principle. According to this principle, the
meaning of a linguistic expression may be recursively com-
posed of the meaning of its parts. This principle, exposed
below, is known as the compositionality principle and is
sometimes called "Frege’s Principle".2

The principle of semantic compositionality:

The meaning of a complex expression is determined by
its structure and the meanings of its constituents.

It is important to note that a particular conception of meaning
in no way binds the principle of compositionality. It is often
reported as a principle that applies to any semantic theory.

The main argument favoring compositionality is the many se-
mantic theories successfully built by linguists upon its basis.
Moreover, productivity and systematicity, which constitute
weaker versions of the principle, are accepted by a large com-
munity. Productivity is defined by Frege as: “the possibility
of our understanding sentences which we have never heard
before rests evidently on this, that we can construct the sense
of a sentence out of parts that correspond to words.” (Frege
1914). Systematicity refers to the existence of definite and
predictable patterns within the sentences we comprehend.
Or, as defined by Cummins (1996) “whenever it can process
a sentence 𝑠, it can process systematic variants of 𝑠, where
systematic variation is understood in terms of permuting
constituents or (more strongly) substituting constituents of
the same grammatical category”.

https://plato.stanford.edu/entries/compositionality/#ArguForComp
https://plato.stanford.edu/entries/compositionality/#ArguForComp
https://plato.stanford.edu/entries/compositionality/#ArguForComp
https://plato.stanford.edu/entries/compositionality/#ArguForComp
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3: More details may be found
here: https://web.stanford.

edu/~jurafsky/slp3/15.pdf.

2.3 Formal semantic representations

Computational linguistics developed formal structures aim-
ing at capturing sentence meaning. Meaning representation

languages define these structures utilizing syntactic and se-
mantic frameworks. These frameworks may extend beyond
the representation of individual sentences to incorporate
common-sense knowledge of some world. Moreover, such
representations have convenient properties and may be used
for complex natural language understanding tasks such as
question answering (Pasupat and P. Liang 2015), robot nav-
igation (Artzi and Zettlemoyer 2013) or database querying
(Zelle and Mooney 1996).

Assigning representations to linguistic inputs is known as
semantic parsing or semantic analysis. Many representation
frameworks exist for representing a text’s meaning. This
section briefly describes standard meaning representations
and outlines their main characteristics, limitations, and ap-
plications. We review logic-based, graph, and programming
languages formalisms.3

2.3.1 Logic-based formalisms

First order logic (FOL) represents an instance of a specific
object in the world being described using constants. As in
the truth-conditional theory detailed in Section 2.1.2, FOL
representations allow to evaluate a sentence as true or false. It
can also represent an unspecified object of a given type using
variables. Finally, it can describe the relationship between
objects using predicates. FOL is often described as a good
compromise between expressiveness and tractability. For
example, the simple sentence “a man is eating a tomato” can
be mapped to FOL:

∃𝑥(∃𝑦(𝑚𝑎𝑛(𝑥) ∧ 𝑒𝑎𝑡(𝑥, 𝑦) ∧ 𝑡𝑜𝑚𝑎𝑡𝑜(𝑦)) (2.1)

2.3.2 Graph-based formalisms

First-order logic is a very generic system used in mathematics,
philosophy, linguistics, and computer science. The represen-

https://web.stanford.edu/~jurafsky/slp3/15.pdf
https://web.stanford.edu/~jurafsky/slp3/15.pdf
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4: https://amr.isi.edu/

tations we enumerate below are specific to computational
linguistics.

Abstract Meaning Representations (AMR) represent sen-
tence semantics using rooted, labeled, directed, acyclic graphs
(DAGs). In this representation, nodes correspond to variables
referring to entities, events, properties, and states. Edges cor-
respond to relations between the entities. There are around
100 possible relations, including general semantic relations
(for example, direction, cause), quantities (for example, unit),
dates or lists. The graph does not necessarily follow the
syntactic sentence structure and two sentences with similar
meaning, but different wording, may be mapped to the same
AMR.

AMR have gained in popularity thanks to the tools, resources,
and documentation formatted in Banarescu et al. (2013). To-
day tools include libraries for parsing, visualization, surface
generation, and publicly available datasets. Many of these re-
sources are collected at the AMR homepage.4 It is important
to note that these resources and the framework formalism
are highly biased toward English and are not intended to
bridge the gap with other languages.

We illustrate AMR by mapping the sentence "The boy wants
to go.". This example is extracted from Banarescu et al. (2013)
with the following AMR structure. We also illustrate the
structure using an equivalent graph representation in Fig-
ure 2.1.

(w/ want-01

:ARG0(b/boy)

:ARG1(g/go-01

:ARG0 b))

Universal Conceptual Cognitive Annotation (UCCA) is
a semantic representation based on directed acyclic graphs
(Abend and Rappoport 2013). Terminal nodes can be arbi-
trary morphemes, words, or multi-word chunks. Inner nodes
consist of a single entity defined by semantic or cognitive
factors over the connected units. Edge labels represent a
child’s contribution to the semantics of the parent unit. The

https://amr.isi.edu/
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Figure 2.1: Graph visualization
of the AMR structure associated
with the sentence "The boy wants
to go.". Figure extracted from Ba-
narescu et al. (2013).

annotated text is mostly based on English Wikipedia arti-
cles with 148 annotated passages (an average length of 385
tokens).

Discourse Representation Structures (DRS) are formal
meaning representations developed as part of the Discourse
Representation Theory (DRT) (Kamp and Reyle 1993). It
aims at better-representing phenomena such as interactions
between indefinite noun phrases and (anaphoric) pronouns,
treatment of negation, modals, and quantification scope.
The specificity of DRT is to propose an interpretation of
discourses spanning over more than one sentence and not
only individual sentences. It proposes a view of language
where its interaction with its context defines the semantics
of a sentence. The framework presents similarities with
logical formalisms as it enables the evaluation of a sentence’s
truth value and performs semantic inference. Regarding
the representation structure, DRS map the discourse to a
graph where nodes are discourse referents representing
entities under discussion and edges representing information
exchanged between referents.

Semantic Dependency Parsing (SDP) is a formal meaning
representation in the form of a directed graph with arcs
between pairs of words (Oepen et al. 2015). The vertices
between words describe predicate-argument relationships.

2.3.3 Programming languages

Finally, as mentioned in the survey conducted in Kamath
and R. Das (2019), a line of work aims at translating natural
language into executable functions from general-purpose
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5: https://web.stanford.

edu/~jurafsky/slp3/6.pdf

programming languages. Such languages have an explicit
syntax and are less subject to ambiguity. Many benchmarks
exist, in particular, to convert questions into executable SQL
queries (Dahl et al. 1994; Finegan-Dollak et al. 2018).

2.4 Practical limits of symbolic

representations

The methods presented above represent meaning in the
form of dedicated structures. Such frameworks have explicit
properties which facilitate their use. For example, SQL queries
can be executed on a knowledge base to answer factual
questions. However, meaning representations are usually
supposed to label a training dataset to learn the mapping of
the sentences. Labeling such a dataset is usually complex and
requires linguistic experts. The process should be repeated
for every domain and language and is usually restricted
to generic English data. Finally, the semantic parser is not
guaranteed to produce the proper structure and may be
subject to errors.

On the other hand, distributional semantic representations
propose to represent semantic meaning in the form of a
real-value fixed-length vector (Jurafsky and J. H. Martin
2022).5 As for formal representations, many methods exist
to learn this mapping. However, the main idea is to use
self-supervised data that do not require heavy labeling effort.
In this perspective, we learn to map a sentence to a semantic
vector using only the structure and patterns within raw text.
In particular, we train such methods to verify specific sub-
properties induced by natural language understanding, such
as predicting inference or reconstructing a sentence surface
form given its embedding. In this work, we will focus on
such approaches, and we will provide an in-depth review of
such methods in Chapter 3.

https://web.stanford.edu/~jurafsky/slp3/6.pdf
https://web.stanford.edu/~jurafsky/slp3/6.pdf
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„In ancient times, before the advent of

mass-market publishing, manuals were

written on scrolls. The people believed

that kotodama—the soul or spirit of

language—resided in every word; that in

uttering a thought one gives life to it;

that words hold a spiritual power. This

belief gave the written and spoken

language a near-mystical status and

encouraged a reverence for the written

word beyond that in the West.

— Jake Adelstein

Tokyo Vice, 2009

This chapter proposes a literature review on today’s state-of-
the-art methods to train and evaluate sentence embedding
models. We first expose traditional word embeddings meth-
ods (Section 3.1). We then enumerate in Section 3.2 methods
to compose words into sentence representation. We review
the main training and evaluation setups in Section 3.3 and
Section 3.4.

3.1 Embedding words

Embeddings are today the cornerstone of every neural lan-
guage model. In mathematics, an embedding is an injective
and structure-preserving map 𝑒 from one mathematical struc-
ture 𝑋 to another 𝑌. The notion of “structure-preserving”
depends on the nature of the latter structures. In natural
language processing, we define words as a string (a sequence
of characters) and the vocabulary as a finite set of distinct
words. Embeddings 𝑒 map the vocabulary𝑉 to a vector space
𝐸 of dimension ℎ. 𝑒 is an injective function, and therefore,
each word 𝑤 from the vocabulary is mapped to precisely
one unique vector. All vectors from 𝐸 have a fixed length ℎ
and real values and are thus sometimes called continuous
vectors.

Embeddings are convenient as we can exploit all the built-in
properties from the representation space 𝐸. It thus provides
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all the mathematical tools to analyze words without relying
on their surface form. It is straightforward to define a notion
of distance over the representation vector space to character-
ize its geometry. It is less obvious on the original vocabulary
space. Embedding methods usually rely on the distributional
hypothesis: they characterize words given their distributions
of co-occurrences in a given corpus. The core idea is that
words with similar meanings tend to appear in similar con-
texts. As mentioned, embeddings preserve the structure from
the original space. Therefore, embedding methods ensure
that words with close distributions are mapped to close vec-
tors, while words with distant distributions are mapped to
distant vectors.

There exist multiple embedding frameworks. Since the 1990s,
vector space models have become a popular tool in distri-
butional semantic analysis, particularly with Latent Seman-
tic Analysis (LSA) and Latent Dirichlet Allocation (LDA).
Collobert and Weston (2008) introduced a neural network
architecture that formed the basis for many current methods
utilizing pre-trained word embeddings. Their widespread
application was enabled by word2vec (Mikolov, K. Chen, et al.
2013; Mikolov, Sutskever, et al. 2013) and GloVe (Pennington,
Socher, and Manning 2014), efficient frameworks for the
training of pre-trained embeddings. Word embeddings are
characterized by their self-supervision. They only need raw
corpora of text to be trained. It is also possible to use layers
that learn embeddings together with a given downstream
task without prior training.

3.2 Composing words into sentence

embeddings

Many modern NLP systems use word embeddings as base
features. Generalizing to embeddings for larger chunks of
text, such as sentences, remains a question to be solved.
Word embeddings operate on a finite vocabulary set, while
we may build an infinite number of valid sentences. We can,
therefore, not directly extend methods for embedding words
into sentences. Sentence embedding methods aim to exploit
the compositionality principle: they compose word vector
representations into semantic sentence representations.
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Artificial neural networks consist of connected units called
neurons. Neurons define a vector space transformation based
on linear algebra operators and nonlinear activation functions.
Neural networks typically contain a very large number of
neurons, which may be arranged into layers. Neurons—and
by extension, layers—are interconnected: they receive input
from their inner connections and send their output to their
outer connections. Each layer has its own inner structure
and connection pattern. This section presents standard NLP
architectures and defines the notations we will reuse in all
further chapters.

3.2.1 Bag-of-Words

The most straightforward method to combine word vectors
is the Bag-of-Words (BoW). We simply average all the vectors
from the sentence into one vector of the same size. This
method does not account for the order of the words in the
sentence nor any kind of sentence structure. However, as an-
alyzed in Arora, Y. Liang, and Ma (2017), this simple method
is a strong baseline for producing sentence embeddings.

3.2.2 Recurrent neural networks

Recurrent neural networks (RNN) (Cho et al. 2014; Hochreiter
and Schmidhuber 1997) take sequences 𝑋 = (𝑥1, 𝑥2 · · · 𝑥𝑇) as
input. As illustrated in Figure 3.1, they process the sequence
iteratively, starting from the first element of the sequence
to the last. The network consists of a RNN cell. For each
element of the sequence 𝑥𝑡 , the cell outputs an hidden state
ℎ𝑡 , which depends from the current element of the sequence
𝑥𝑡 and from the previous element hidden state, ℎ𝑡−1. The
cell parameters are shared between each step, and RNN can
process sequences of arbitrary length.

Figure 3.1: We illustrate the re-
cursive application of the RNN
cell.
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Basic recurrent neural networks suffer from practical limita-
tions. In particular, gradient over-flow or underflow: when
propagating the gradient error through the sequence, it
tends to become very small or very large. Gated mechanisms
can mitigate this problem, as these gates determine which
information to retain for each time step.

Gated recurrent units (GRU) include a reset and update
gate. Intuitively, the reset gate 𝑟 determines which informa-
tion from previous step to reset (Equation 3.3). The update
gate 𝑧, determines the amount of previous information that
passes along the next step (Equation 3.4).

𝑟𝑡 = 𝜎
(︂
𝑊 (𝑟)𝑥𝑡 +𝑈 (𝑟)ℎ𝑡−1 + 𝑏(𝑟)

)︂
, (3.1)

𝑧𝑡 = 𝜎
(︂
𝑊 (𝑧)𝑥𝑡 +𝑈 (𝑧)ℎ𝑡−1 + 𝑏(𝑧)

)︂
, (3.2)

ℎ̃𝑡 = tanh(𝑊 (ℎ)𝑥𝑡 +𝑈 (ℎ)(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏(ℎ) (3.3)

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡 (3.4)

Long short-term memory (LSTM) integrates three gates.
Besides the short memory vector ℎ, it adds a long-term
memory vector 𝑐 that is passed along the steps. We detail
the memory mechanism in Equation 3.5 to Equation 3.10.
Intuitively, the input gate 𝑖 determines what information to
store in long-term memory. The forget gate 𝑓 determines
which information from the long-term memory to forget.
Finally, the output gate 𝑜 computes the new short-term
memory to balance the current input, the previous short-term
memory, and the newly computed long-term memory.

𝑖𝑡 = 𝜎
(︂
𝑊((𝑖)𝑥𝑡 +𝑈 (𝑖)ℎ𝑡−1 + 𝑏(𝑖)

)︂
, (3.5)

𝑓𝑡 = 𝜎
(︂
𝑊 ( 𝑓 )𝑥𝑡 +𝑈 ( 𝑓 )ℎ𝑡−1 + 𝑏( 𝑓 )

)︂
, (3.6)

𝑜𝑡 = 𝜎
(︂
𝑊 (𝑜)𝑥𝑡 +𝑈 (𝑜)ℎ𝑡−1 + 𝑏(𝑜)

)︂
, (3.7)

𝑢𝑡 = tanh
(︂
𝑊 (𝑢)𝑥𝑡 +𝑈 (𝑢)ℎ𝑡−1 + 𝑏(𝑢)

)︂
, (3.8)

𝑐𝑡 = 𝑖𝑡 ⊙ 𝑢𝑡 + 𝑓𝑡 ⊙ 𝑐𝑡−1, (3.9)
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) (3.10)



3.2 Composing words into sentence embeddings 29

Figure 3.2: (left) The sentence is parsed in constituency and the tree is binarized. The application of the N-Ary
Tree LSTM on the obtained structure is represented. (center) The sentence is parsed in dependency and a
Child-Sum Tree LSTM model is recursively applied. This example illustrates the structural difference between
these two views. Dependency parsing is articulated around the verb "filled", which is the root node. In
constituency, subject and verb are connected through the root node. The two architectures differ as the N-Ary
Tree LSTM is structured as a binary tree and differentiates the left and right children, while the Child-Sum
Tree LSTM might have an arbitrary number of unordered nodes. (right) The sentence structure follows the
linear order of the words and is encoded using a standard sequential recurrent network.

1: https://github.com/

AntoineSimoulin/pytree

2: https://pytorch2021.

devpost.com/

3: https://nlp.stanford.

edu/sentiment/index.html

3.2.3 Tree-structured neural networks

Tree-structured neural networks generalize sequential net-
works to tree-structured topologies. We illustrate the com-
parison between various structures in Figure 3.2. They also
consist in a cell that composes a state from an input vector
𝑥 𝑗 and the hidden states of the input children, ℎ𝑘 ,∀𝑘 ∈ 𝐶(𝑗)
with 𝐶(𝑗) the children of node 𝑗. As such, a sequential RNN
is a special case of a Tree-RNN, where every node has exactly
one child. We illustrate the composition process along with
an arbitrary tree structure in Figure 3.3.

From a practical point of view, implementing tree-structured
models can be challenging. We open-sourced the code we de-
veloped for recursive models under a library called PyTree.1
The library was distinguished and listed among the winners
of the PyTorch Hackathon 2021.2

Intuitively, tree-structured networks may be a better fit for
language, which is supposed to follow a recursive struc-
ture. Figure 3.4 provides examples of the stanford sentiment
treebank, and highlights the importance of considering the
sentence structure to predict the sentiment from a complete
sentence.3 Indeed, isolated words may be negative, while the

https://github.com/AntoineSimoulin/pytree
https://github.com/AntoineSimoulin/pytree
https://pytorch2021.devpost.com/
https://pytorch2021.devpost.com/
https://nlp.stanford.edu/sentiment/index.html
https://nlp.stanford.edu/sentiment/index.html
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Figure 3.3: We illustrate the ap-
plication of the Tree LSTM on
an arbitrary branching tree. The
figure takes inspiration from Tai,
Socher, and Manning (2015).

entire sentence will be positive.

We focus on two specific frameworks describing language
structure: dependency and constituency parsing. In con-
stituent analysis, the syntactic structure of a sentence is
represented as nested multi-word constituents. The depen-
dency tree represents the relationship between individual
words. For constituent analysis, it is possible to binarize the
tree, such that every node has exactly two children. It is also
possible to differentiate the left and right children. Given
this distinction, we define two tree-structured cell operations
adapted for each framework.

Figure 3.4: We illustrate the ben-
efits of tree structure encoding.
The negation score impacts the
full sentence sentiment predic-
tion. We extract the figure from
Socher, Perelygin, et al. (2013).

Childsum Tree LSTM Tai, Socher, and Manning (2015)
compute sentence embeddings using a recursive node func-
tion derived from standard LSTM formulations but adapted
for tree inputs. Each node is assigned an embedding given
its dependents with a recursive function. The hidden state is
computed as the sum of all children’s hidden states (Equa-
tion 3.11). This model is adapted for dependency tree struc-
tures in which words are connected through dependency
edges. A word may have an arbitrary number of depen-
dents.
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ℎ̃ 𝑗 =
∑︂
𝑘∈𝐶(𝑗)

ℎ𝑘 , (3.11)

𝑖 𝑗 = 𝜎
(︂
𝑊 (𝑖)𝑥 𝑗 +𝑈 (𝑖) ℎ̃ 𝑗 + 𝑏(𝑖)

)︂
, (3.12)

𝑜 𝑗 = 𝜎
(︂
𝑊 (𝑜)𝑥 𝑗 +𝑈 (𝑜) ℎ̃ 𝑗 + 𝑏(𝑜)

)︂
, (3.13)

𝑢𝑗 = tanh
(︂
𝑊 (𝑢)𝑥 𝑗 +𝑈 (𝑢) ℎ̃ 𝑗 + 𝑏(𝑢)

)︂
, (3.14)

𝑓𝑗𝑘 = 𝜎
(︂
𝑊 ( 𝑓 )𝑥 𝑗 +𝑈 ( 𝑓 )ℎ𝑘 + 𝑏( 𝑓 )

)︂
, (3.15)

𝑐 𝑗 = 𝑖 𝑗 ⊙ 𝑢𝑗 +
∑︂
𝑘∈𝐶(𝑗)

𝑓𝑗𝑘 ⊙ 𝑐𝑘 , (3.16)

ℎ 𝑗 = 𝑜 𝑗 ⊙ tanh(𝑐 𝑗) (3.17)

With 𝐶(𝑗), the set of children of node 𝑗. In Simoulin and
Crabbé (2021a), we propose an Attentive Child-Sum Tree
LSTM and we compute ℎ̃ 𝑗 as the weighted sum of children
vectors as in Y. Zhou, C. Liu, and Pan (2016). We replace com-
putation of ℎ̃ 𝑗 in Equation 3.11 with Equation 3.18 that allows
the model to filter semantically less relevant children.

ℎ̃ 𝑗 =
∑︂
𝑘∈𝐶(𝑗)

𝛼𝑘 𝑗ℎ𝑘 (3.18)

The parameters 𝛼𝑘 𝑗 are attention weights computed using a
soft attention layer. Given a node 𝑗, we consider ℎ1, ℎ2, . . . , ℎ𝑛
the corresponding children’s hidden states. the soft attention
layer produces a weight 𝛼𝑘 for each child’s hidden state. We
did not use any external query to compute the attention but
instead use a projection from the current node embedding.
The attention equations are detailed below:

𝑞 𝑗 =𝑊
(𝑞)𝑥 𝑗 + 𝑏(𝑞); 𝑝𝑘 =𝑊

(𝑝)ℎ𝑘 + 𝑏(𝑝) (3.19)

𝑎𝑘 𝑗 =
𝑞 𝑗 · 𝑝⊤𝑘∥︁∥︁𝑞 𝑗∥︁∥︁2 · ∥𝑝𝑘 ∥2

(3.20)

𝛼𝑘 𝑗 = softmax𝑘(𝑎1𝑗 · · · 𝑎𝑛𝑗) (3.21)

N-ary Tree LSTM is also defined in Tai, Socher, and Man-
ning (2015). It is a tree-structured model designed for con-
stituency parsed inputs, which describes the sentence as a
nested multi-word structure. In this framework, words are
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grouped recursively in constituents. Only leaf nodes corre-
spond to words in the resulting tree, while internal nodes
encode word sequences recursively. It is possible to binarize
the trees to ensure that every node has exactly two depen-
dents. Again the representation is computed bottom-up, and
the embedding of the tree root node is used as sentence
embedding. The equations make the distinction between
right and left nodes.

𝑖 𝑗 = 𝜎

(︄
𝑊 (𝑖)𝑥 𝑗 +

𝑁∑︂
ℓ=1

𝑈
(𝑖)
ℓ
ℎ 𝑗ℓ + 𝑏(𝑖)

)︄
, (3.22)

𝑜 𝑗 = 𝜎

(︄
𝑊 (𝑜)𝑥 𝑗 +

𝑁∑︂
ℓ=1

𝑈
(𝑜)
ℓ
ℎ 𝑗ℓ + 𝑏(𝑜)

)︄
, (3.23)

𝑢𝑗 = tanh

(︄
𝑊 (𝑢)𝑥 𝑗 +

𝑁∑︂
ℓ=1

𝑈
(𝑢)
ℓ
ℎ 𝑗ℓ + 𝑏(𝑢)

)︄
, (3.24)

𝑓𝑗𝑘 = 𝜎

(︄
𝑊 ( 𝑓 )𝑥 𝑗 +

𝑁∑︂
ℓ=1

𝑈
( 𝑓 )
𝑘ℓ
ℎ 𝑗ℓ + 𝑏( 𝑓 )

)︄
, (3.25)

𝑐 𝑗 = 𝑖 𝑗 ⊙ 𝑢𝑗 +
𝑁∑︂
ℓ=1

𝑓𝑗ℓ ⊙ 𝑐 𝑗ℓ , (3.26)

ℎ 𝑗 = 𝑜 𝑗 ⊙ tanh(𝑐 𝑗), (3.27)

3.2.4 Transformer neural networks

Introduced in Vaswani et al. (2017), transformers originally
consisted of an encoder-decoder framework relying almost
exclusively on attention and completely discarding any recur-
rent operation. By extension, the encoder or decoder taken
separately may also be called transformers, and we focus here
on the encoder part. Transformer implementations may eas-
ily be parallelized since layers compose token contextualized
representations simultaneously. We illustrate the architecture
in Figure 3.6 with a focus on the inner layer architecture in
Figure 3.5.

As usual, the first layer (Equation 3.28) is an encoding layer
that maps each word from a sequence {𝑢1 · · · 𝑢𝑇} to a cor-
responding embedding. Additionally, the embedding layer
encodes each word position with dedicated positional em-
bedding weights.
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ℎ0
𝑡 =𝑊

(𝑒)𝑢𝑡 +𝑊 (𝑝), (3.28)

With 𝑊 (𝑒) the embedding matrix, and 𝑊 (𝑝) the positional
embedding matrix.

Transformers are composed of a series of layers. Each layer
acts as a many-to-many encoder, mapping a set of vec-
tors {ℎ𝑛𝑡 }𝑡∈⟦1,𝑇⟧ to a set of so-called contextualized vectors
{ℎ𝑛+1

𝑡 }𝑡∈⟦1,𝑇⟧. Each layer is composed of a multi-head at-
tention layer (Equation 3.29 to Equation 3.32) that maps
each input vector to a weighted average from the input
set, followed by a feed-forward network (Equation 3.33 to
Equation 3.35).

Figure 3.5: Illustration of en-
coder part of the transformer in-
ner layer architecture.

𝐻 = [ℎ𝑡 , ∀𝑡 ∈ ⟦1, 𝑇⟧] (3.29)

𝑄ℎ = 𝐻𝑊
(ℎ)
𝑄
, 𝐾ℎ = 𝐻𝑊

(ℎ)
𝐾
, 𝑉ℎ = 𝐻𝑊

(ℎ)
𝑉
, (3.30)

𝛼(ℎ)
𝑖 , 𝑗

= softmax𝑗
(︃
𝑄ℎ𝐾

⊤
ℎ√
𝑘

)︃
(3.31)

ℎ′𝑡 =
𝐻∑︂
ℎ=1

𝑊
(ℎ)
𝐶

⊤∑︂
𝑗=1

𝛼(ℎ)
𝑡 , 𝑗
𝑉ℎ (3.32)

ℎ𝑡 = LayerNorm(ℎ𝑡 + ℎ′𝑡 ; 𝛾1, 𝛽1) (3.33)
ℎ′𝑡 =𝑊

⊤
2 ReLU(𝑊⊤

1 ℎ𝑡) (3.34)
ℎ𝑡 = LayerNorm(ℎ𝑡 + ℎ′𝑡 ; 𝛾2, 𝛽2) (3.35)



34 3 Embedding sentences

With 𝑊
(ℎ)
𝑄
,𝑊

(ℎ)
𝐾
,𝑊

(ℎ)
𝑉

∈ ℝ𝑑×𝑘 , 𝑊 (ℎ)
𝐶

∈ ℝ𝑘×𝑑, 𝑊1 ∈ ℝ𝑑×𝑚 ,
𝑊2 ∈ ℝ𝑚×𝑑, and 𝛾1, 𝛽1, 𝛾2, 𝛽2 ∈ ℝ𝑑. 𝐻 denotes the number
of attention heads, 𝑑 the dimension of the model. We set
𝑘 = 𝑑

𝐻 . The notation softmax𝑗 indicates we take the softmax
(defined in Equation 3.31) over the 𝑑-dimensional vector
indexed by 𝑗. In Equation 3.29, [ ] indicates the vector
concatenation operation.

Figure 3.6: We illustrate the iter-
ative application of transformer
layers. Contrary to RNN, the
weights are usually not shared
between layers.

3.3 Training sentence embeddings

Each of the neural network architectures discussed in Sec-
tion 3.2 takes a sentence as input and composes its inner
lexical units into a vector. We can interpret them as a pa-
rameterized function 𝑓�, mapping a sentence 𝑠 to a vector
ℎ ∈ ℝ𝑑 of dimension 𝑑. However, how can we learn the
parameters � of the function 𝑓 ? In other words, how can we
learn a composition function that maps sentences to generic,
general-purpose vector representations?

A straightforward training setup would be to use the sentence
vector ℎ as input for a supervised task. After backpropagating
through the entire architecture, we can update the encoder’s
composition weights. However, such a supervised process
is insufficient to produce meaningful sentence embeddings.
Indeed, as stated in Section 1.1, sentence embeddings intend
to provide generic, general-purpose sentence representa-
tions. Since we are training the models with a supervised
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objective, the intermediate sentence representations from the
encoder are likely to capture properties related to the task.
On the contrary, we seek to obtain representations that can
be successfully applied to many different tasks.

We could imagine a supervised task that takes a sentence as
input and directly outputs its meaning. We could update the
model weights and learn a highly generic encoding function
by comparing the predicted sentence meaning with some
references. However, as discussed in Section 2.1, the notion of
meaning is somehow ineffable or ethereal. As an alternative to
predicting the sentence’s meaning directly, we may consider
predicting a related attribute that is well conceivable and
expressible. Such an attribute can be a proxy that requires
capturing the sentence meaning to be predicted.

Certainly, the nature of the proxy task is crucial to the proce-
dure. This section makes a literature review of the common
tasks used as a proxy objective to train sentence embeddings.
Most of these proxy tasks involve predicting a relationship
between two or more sentences. In theory, the model cannot
predict the relationship without fully capturing the meaning
of the considered sentences. All proxy objectives may impact
the model’s capacity to capture aspects of meaning or the
amount of data necessary to train a model. In Section 3.3.1,
we obtain the relation between the sentences by labeling data.
It is also possible to use a weaker signal in a self-supervised
setting (Section 3.3.2). It is possible to mix multiple training
paradigms in a multi-task setup (Section 3.3.3). Finally, we
review a line of work focusing on learning cross-lingual
sentence embeddings (Section 3.3.3).

3.3.1 Supervised learning

Infersent In keeping with the definition of meaning dis-
cussed in the last chapter, a model that captures the meaning
of a sentence could infer the entailment relation between
sentence pairs. Thus, training a model to predict the entail-
ment relationship between two sentences seems reasonable to
build efficient sentence embeddings. Therefore, in this setup,
the proxy task is a natural language inference task (NLI).
NLI consists of a supervised classification task. The model
takes as input a sentence pair: a premise and an hypothesis.
It should then predict whether the first entails, contradicts,



36 3 Embedding sentences

Table 3.1: SNLI examples presented in the original paper (Bowman, Angeli, et al. 2015) and extracted from
the development section of the corpus.

Premise Hypothesis label

A man inspects the uniform of a figure in
some East Asian country. The man is sleeping contradiction

An older and younger man smiling.
Two men are smiling and laughing at the cats
playing on the floor. neutral

A black race car starts up in front of a crowd
of people.

A man is driving down a lonely road. contradiction

A soccer game with multiple males playing. Some men are playing a sport. entailment

A smiling costumed woman is holding an
umbrella.

A happy woman in a fairy costume holds an
umbrella. neutral

4: The dataset includes 570k
pairs of sentences, distributed in
a 550k/10k/10k train/dev/test
split.
5: The MultiNLI includes 433k
sentence pairs. We refer to the
concatenation of the SNLI and
MultiNLI as AllNLI.

or is neutral to the second. Large datasets exist for English
like Stanford Natural Language Inference (SNLI) (Bowman,
Angeli, et al. 2015)4 and MultiNLI (Williams, Nangia, and
Bowman 2018)5 or other languages, including French with
the XNLI corpus (Conneau, Rinott, et al. 2018). We present
some examples from the SNLI task in Table 3.1.

Figure 3.7: Similarity architec-
ture to train models on the SNLI.
The encoder networks have tied
weights (siamese network struc-
ture). The figure is for illustrative
purposes only as multiple vari-
ations of the similarity module
exist.

Conneau, Kiela, et al. (2017) propose a siamese framework
to train models on NLI data, illustrated in Figure 3.7. First,
a sentence encoder separately encodes the premise ℎ𝐿 and
the hypothesis ℎ𝑅. The encoder weights are shared for the
encoding of both parts, but the two sentences are not encoded
jointly (as is the case when using cross-features or attention
architectures). Then, a dedicated architecture is used to pre-
dict the similarity distribution from the pair of sentences.
The similarity module 𝑠 takes as input a pair of sentence
vectors ℎ𝐿 and ℎ𝑅 and outputs a vector ℎ𝑠 comparing them
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6: There exists multiple varia-
tions of the similarity module
which differs given the aggrega-
tion function of ℎ𝐿 and ℎ𝑅, the
number of fully-connected lay-
ers and their hidden dimensions
(Choi, Yoo, and S. Lee 2018; Con-
neau, Kiela, et al. 2017; Reimers
and Gurevych 2019).

such that ℎ𝑠 = 𝑠(ℎ𝐿 , ℎ𝑅). In Equation 3.36, we report the
version of the similarity architecture proposed in Conneau,
Kiela, et al. (2017).6 The module takes as input the embed-
dings ℎ𝐿 and ℎ𝑅 and computes their componentwise product
ℎ𝐿 ⊙ ℎ𝑅 and their absolute difference |ℎ𝐿 − ℎ𝑅 |. Given these
features, the module computes the probability distribution
�̂�� using a three-layer perceptron network (MLP) followed
by a softmax:

ℎ× = ℎ𝐿 ⊙ ℎ𝑅 , ℎ+ = |ℎ𝐿 − ℎ𝑅 |,
ℎ𝑠 =𝑊

(1)[ℎ×, ℎ+, ℎ𝐿 , ℎ𝑅] + 𝑏(1),
ℎ𝑠 =𝑊

(2)ℎ𝑠 + 𝑏(2),
�̂�� = softmax(𝑊 (𝑝)ℎ𝑠 + 𝑏(𝑝)),

(3.36)

Conneau, Kiela, et al. (2017) propose multiple sentence en-
coders to build ℎ𝐿 and ℎ𝑅, including LSTM and GRU, BiLSTM
with mean/max pooling, Self-attentive network or Hierar-
chical ConvNet. SentenceBert later adapted the setup to
use Bert as sentence encoder (Reimers and Gurevych 2019).
Reimers and Gurevych (2019) use the same supervised train-
ing method but with a pre-trained Bert as encoder.

Table 3.2: Example pairs presented in DisSent original paper (A. Nie, Bennett, and Goodman 2019). Each
pair consist of two sentences linked with discourse relations. The training pairs are collected using a semi-
automated procedure.

S1 S2 Marker

Her eyes flew up to his face. Suddenly she realized why he looked so differ-
ent. and

The concept is simple. The execution will be incredibly dangerous. but

You used to feel pride. You defended innocent people. because

Ill tell you about it. You give me your number. if

Belter was still hard at work. Drade and barney strolled in. when

We plugged bulky headsets into the dashboard. We could hear each other when we spoke into
the microphones. so

It was mere minutes or hours. He finally fell into unconsciousness. before

And then the cloudy darkness lifted. The lifeboat did not slow down. though

DisSent A. Nie, Bennett, and Goodman (2019) propose a
weaker signal to train sentence embeddings: the discourse
relations between sentences. The task is positioned as an
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7: This model requires a train-
ing corpus of contiguous text.
The BookCorpus dataset is a
collection of 11,038 free books
written by yet unpublished au-
thors. It contains books in
16 different genres. It con-
tains 74,004,228 sentences and
984,846,357 words.

intermediary between a fully supervised and self-supervised
approach. Given two sentence embeddings, a classifier aims
to identify which discourse marker was used to link the
sentences. As with infersent, the setup can accommodate
any sentence encoder, such as sequential LSTMs or larger
pre-trained models, such as Bert. We present some examples
of the training data in Table 3.2.

The training dataset is built upon the BookCorpus dataset
(Zhu et al. 2015).7 The training pairs are collected using a
semi-automated procedure. The authors used the Stanford
CoreNLP dependency parser (Schuster and Manning 2016)
to identify discourse markers between two sentences 𝑆1 and
𝑆2. They collected a curated dataset of 4,706,292 pairs of
sentences for 15 discourse markers. The training procedure is
close to infersent. Given a sentence pair, a sentence encoder
model produces sentence embeddings (𝑠1, 𝑠2). A similarity
module 𝑠 computes a similarity vector ℎ𝑠 = 𝑠(𝑠1, 𝑠2). We
detail the similarity module used in A. Nie, Bennett, and
Goodman (2019) in Equation 3.37. The module computes pair-
wise vector operations and outputs a probability distribution
over discourse relations.

𝑠avg =
1
2
(𝑠1 + 𝑠2), 𝑠sub = 𝑠1 − 𝑠2, 𝑠mul = 𝑠1 ∗ 𝑠2

𝑆 = [𝑠1, 𝑠2, 𝑠avg, 𝑠sub, 𝑠mul]
ℎ𝑠 = ReLU(𝑊 (2)ℎ𝑠 + 𝑏(2)),
�̂�� = softmax(𝑊 (𝑝)ℎ𝑠 + 𝑏(𝑝)),

(3.37)

Mining sentence pairs It is also possible to use other sen-
tence pairs as signal to train sentence embedding models.
To only cite a few, Wieting and Gimpel (2018) produce the
PARANMT-50M, a dataset of more than 50 million English-
English sentential paraphrase pairs. The dataset was gen-
erated automatically using neural machine translation on
a parallel corpus. Yang, Cer, et al. (2020) train a multilin-
gual sentence embedding model by using training QA pairs
mined from online forums and QA websites, including Red-
dit, StackOverflow, and YahooAnswers.
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3.3.2 Self-supervised learning

Previous methods rely on annotated data or semi-automatically
constructed corpora. However, such resources may be hard
to find in languages other than English or specific domains.
In this section, we review methods that rely only on the struc-
ture of raw text, which may be trained in a self-supervised
manner.

ParagraphVector (doc2vec) Q. V. Le and Mikolov (2014)
extend the word2vec model (Mikolov, K. Chen, et al. 2013) to
learn document-level embeddings. A document is typically
understood in the broadest possible sense, encompassing
a word n-gram, a sentence, a paragraph, or a large docu-
ment. The method adds a hierarchical level to word2vec, by
segmenting the training corpus into paragraphs, themselves
tokenized into a sequence of words. The model learns a word
matrix𝑊 , mapping each word from the vocabulary to a vec-
tor 𝑤 and a paragraph matrix 𝐷, mapping each paragraph
from the training corpus to a vector 𝑑.

This Paragraph Vector model comes in two versions, the
Distributed Memory Model (PV-DM) and the Distributed
Bag of Words (PV-DBOW), extending respectively the CBOW
and Skip-Gram models. As in the original version of word2vec,
each model consists of a log-linear model trained to predict
surrounding words. doc2vec adds an additional paragraph
token as an input, which acts as a memory to store the context
and topic for each paragraph. The paragraph vector matrix
is shared between all contexts within a paragraph, but not
between paragraphs, whereas the word vector matrix W
is shared across paragraphs. In practice, the PV-DM opti-
mizes the loss function from Equation 3.38, that is, the log
probability of for each word 𝑤𝑡 of each paragraph, know-
ing the surrounding words 𝑤𝑡−𝑘 · · ·𝑤𝑡+𝑘 and the paragraph
𝑑𝑐 . The PV-DBOW optimizes the loss function from Equa-
tion 3.39, that is, the log probability of for each word 𝑤𝑡 of
each paragraph, knowing the paragraph 𝑑𝑐 .
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8: https://github.com/

ryankiros/skip-thoughts. Ba,
J. R. Kiros, and Hinton (2016)
also proposed an upgrade of
the model by adding layer
normalization.

LPV-DM =
1
𝐷

𝐷∑︂
𝑐=1

𝑇𝑐−𝑘∑︂
𝑡=𝑘

log𝑃(𝑤𝑡 |𝑤𝑡−𝑘 · · ·𝑤𝑡+𝑘 , 𝑑𝑐) (3.38)

LPV-DBOW =
1
𝐷

𝐷∑︂
𝑐=1

𝑇𝑐−𝑘∑︂
𝑡=𝑘

∑︂
−𝑘≤ 𝑗≤𝑘,𝑗≠0

log𝑃(𝑤𝑡+𝑘 |𝑑𝑐) (3.39)

With 𝐷, the number of paragraphs in the training corpus,
𝑇𝑐 the number of words for the paragraph at index 𝑐, 𝑑𝑐 the
embedding vector from the paragraph at index 𝑐.

The method is conceptually straightforward but has practical
limitations. To determine the paragraph vector for a new
paragraph, we must perform an inference step that only
updates the paragraph matrix 𝐷; the word vectors 𝑊 and
the parameters for the rest of the model are fixed.

Skip-thought (ST) R. Kiros et al. (2015) aim at translating
the skip-gram function to the sentence level. Instead of
predicting a word’s context, they predict whole sentences.
Skip-thought works as a sequence-to-sequence framework.
Given a tuple of consecutive sequences (𝑠𝑖−1, 𝑠𝑖 , 𝑠𝑖+1) as input,
it encodes the considered sentence using a sentence encoder
𝑆𝐸 in a fixed length vector ℎ𝑖 = 𝑆𝐸(𝑠𝑖). Given the sentence
vector, a sentence decoder𝐷𝐸𝑝 aims to generate the previous
sentence 𝐷𝐸𝑝(ℎ𝑖) = 𝑠𝑖−1 and the next sentence 𝐷𝐸𝑛(ℎ𝑖) =
𝑠𝑖+1.

Both the encoder and decoder are trained to maximize the
sum of the log-probabilities for the forward and backward
sentences conditioned on the encoder representation:

L=
∑︂
𝑡

log𝑃(𝑤𝑡
𝑖+1 |𝑤

<𝑡
𝑖+1, ℎ𝑖) +

∑︂
𝑡

log𝑃(𝑤𝑡
𝑖−1 |𝑤

<𝑡
𝑖−1, ℎ𝑖)

The model is trained on the BookCorpus dataset. The original
implementation uses a recurrent neural network, with Gated
Recurrent Units (Cho et al. 2014) for the encoder and decoder.
The skip-thought method has become popular as the method
is fully self-supervised and does not require any labeled data.
Moreover, the original paper trained models at scale and
released them in open-source.8

https://github.com/ryankiros/skip-thoughts
https://github.com/ryankiros/skip-thoughts
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The method suffers from practical limitations. In particular,
it is computationally costly as, in addition to the encoder,
it also requires an extra decoder that converts vectors into
sentences. Although not used during inference, the decoder
part is computationally costly as it requires decoding the
words of target sentences sequentially. Each word prediction
requires a heavy softmax operation over the entire vocabulary.
Overall, it takes two weeks to train the original model.

Sequential Denoising Autoencoder (SDAE) Hill, Cho,
and Korhonen (2016) propose a model based on denoising
autoencoders (DAEs) for text. The model uses an encoder-
decoder framework to reconstruct a corrupted version of the
current sentence. As with Skip-thought, the model has a self-
supervised objective, but does not require that the training
corpus maintains the narrative order of the sequences. The in-
put sentence 𝑠 is corrupted using a noise function𝑁(𝑠 |𝑝𝑜 , 𝑝𝑥)
which acts as follows: for each word 𝑤 ∈ 𝑠, 𝑁 deletes 𝑤 with
(independent) probability 𝑝𝑜 . Then, for each non-overlapping
bigram 𝑤𝑖𝑤𝑖+1 ∈ 𝑠 , 𝑁 swaps 𝑤𝑖 and 𝑤𝑖+1 with probability
𝑝𝑥 . The encoder-decoder architecture is based on LSTMs and
is also trained on the BookCorpus dataset to optimize the
following loss function:

L=
∑︂
𝑡

log𝑃(𝑤𝑡
𝑖+1 |𝑤

<𝑡
𝑖+1, ℎ𝑖)

FastSent The method, also introduced in Hill, Cho, and
Korhonen (2016), is an additive (log-linear) version of Skip-
thought, which aims to lower its computational expense.
Given a BoW representation of a considered sentence, the
model is trained to predict the words appearing in the context
(and optionally, the considered) sentences.

FastSent learns a source 𝑢𝑤 and target 𝑣𝑤 embeddings for
each word in the model vocabulary. Given a tuple of con-
secutive sequences (𝑠𝑖−1, 𝑠𝑖 , 𝑠𝑖+1) as input, it encodes the
considered sentence as the sum of its word embeddings
ℎ𝑖 =

∑︁
𝑤∈𝑠𝑖 𝑢𝑤 . Given the representation of the considered

sentence, it aims at predicting the words of the context
sentences.

L=
∑︂

𝑤∈𝑠𝑖−1∪𝑠𝑖+1

log𝑃(𝑤 |ℎ𝑖)



42 3 Embedding sentences

9: More broadly, the approach
relates to contrastive learning,
which is successfully applied
in a variety of domains includ-
ing audio (Oord, Y. Li, and
Vinyals 2018), image Tian, Kr-
ishnan, and Isola (2020) and
Z. Wu et al. (2018), video or
word with the negative sam-
pling methods from word2vec

(Mikolov, K. Chen, et al. 2013;
Mikolov, Sutskever, et al. 2013).
Some mathematical foundations
are detailed in Saunshi et al.
(2019)

10: https://github.com/

lajanugen/S2V

With𝑃(𝑤 |ℎ𝑖) = 𝑒 ℎ𝑖𝑢𝑤∑︁
𝑣∈𝑉 𝑒

ℎ𝑖𝑢𝑣
. A variant includes the prediction of

the words from the considered sentence in addition to those
of adjacent sentences. The objective function thus becomes:

L=
∑︂

𝑤∈𝑠𝑖−1∪𝑠𝑖∪𝑠𝑖+1

log𝑃(𝑤 |ℎ𝑖)

Quickthought (QT) Logeswaran and Honglak Lee (2018)
circumvent some practical limits of Skip-thought by directly
operating in the space of sentence embeddings. It uses a
discriminative rather than a generative objective.9 A classifier
aims at distinguishing the correct embedding of a target
sentence given a set of candidate sentences. The method thus
avoids reconstructing the surface form of the input sentence
or its neighbors.

The method takes inspiration from the distributional hy-
pothesis successfully applied for words, but this time, to
identify context sentences. Given a sentence 𝑠, a correspond-
ing context sentence 𝑠+ and a set of 𝐾 negative samples
𝑠−1 · · · 𝑠−

𝐾
, the training objective is to maximize the probability

to discriminate the correct sentence among negative sam-
ples: 𝑝(𝑠+ |𝑠, 𝑠−1 · · · 𝑠−

𝐾
). The algorithm architecture used to

estimate 𝑝 is close to word2vec. Two sentence encoders 𝑓 and
𝑔 are defined, and the conditional probability is estimated
as follows:

𝑝(𝑠+ |𝑠, 𝑠−1 · · · 𝑠−𝐾) =
𝑒 𝑓 (𝑠)

⊤𝑔(𝑠+)

𝑒 𝑓 (𝑠)⊤𝑔(𝑠+) +∑︁𝑁
𝑖=1 𝑒

𝑓 (𝑠)⊤𝑔(𝑠−
𝑖
)

The parameters from 𝑓 and 𝑔 are trained to maximize the
probability of identifying the correct context sentences for
each sentence in the training data 𝐷:

L=
∑︂
𝑠∈𝐷

log𝑃(𝑠+ |𝑠, 𝑠−1 · · · 𝑠−𝐾)

The model is also trained on the BookCorpus dataset. Each
batch is composed of contiguous sentences from the corpus.
All the sentences in the batch constitute the candidates for
classification for each sentence. The pre-trained model is also
available in open-source.10 At inference time, the sentence
representation is obtained as the concatenation of the two

https://github.com/lajanugen/S2V
https://github.com/lajanugen/S2V
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encoders 𝑓 and 𝑔 such as 𝑠 → [ 𝑓 (𝑠); 𝑔(𝑠)]. 𝑓 and 𝑔 are
chosen identical and consist of two LSTM.

3.3.3 Multi-task learning

Some frameworks propose to combine the training objective
mentioned above in a multi-task setup. We expect the model
to encode complementary properties and inductive biases
required for each sub-task. Thus, training on many weakly
related tasks is expected to improve generalization to novel
ones.

The universal sentence encoder (USE) (Cer et al. 2018) trains a
transformer and Deep Averaging Network (DAN) on a multi-
task setup: a skip-thought objective (R. Kiros et al. 2015), a
conversational response prediction, and a supervised natural
language inference classification task on the SNLI dataset
(Bowman, Angeli, et al. 2015; Conneau, Kiela, et al. 2017).

Subramanian et al. (2018) also propose a multitask learning
framework that trains a single model with multiple distinct
objectives: context sentences generation (Section 3.3.2), neu-
ral machine translation, constituency parsing and natural
language inference (Section 3.3.1).

3.3.4 Cross-lingual sentence embeddings

The majority of work presented previously focuses on En-
glish. Many approaches, in particular semi-supervised, may
be generalized to other languages. An alternative would be
to learn a one-for-all multilingual model that encompasses a
whole family of languages instead of learning separate mod-
els for each language. Languages with limited resources may
benefit from collaborative training across multiple languages.
The ability to represent sentences from different languages
within the same representational space may also facilitate the
zero-shot transfer between languages. The methods for train-
ing such cross-lingual representations are inherently close to
mono-lingual ones. We review the more recent approaches
below.
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LASER is a method for embedding sentences which covers
93 languages (Artetxe and Schwenk 2019). The method has
gone through several iterations. The first version is close to
Skip-thought (R. Kiros et al. 2015). Skip-thought will generate
the previous and next sentence when given a source sentence,
while LASER will translate it into a target language. However,
there are similarities between the training processes; an
encoder 𝑆𝐸 maps the source sentence into a fixed length
vector ℎ𝑙 = 𝑆𝐸(𝑠𝑙). Given the sentence vector, a sentence
decoder 𝐷𝐸 aims to generate the translation in a target
language 𝐷𝐸(ℎ𝑙) = 𝑠𝑘 . We discard the decoder at inference
and keep the encoder to embed sentences in any of the
training languages. We train both the encoder and decoder
to maximize the sum of the log-probabilities for the target
sentences conditioned on the encoder representation:

L=
∑︂
𝑡

log𝑃(𝑤𝑡
𝑘
|𝑤<𝑡

𝑘
, ℎ𝑙)

It is important to note that the system relies on a single en-
coder and decoder, shared for every language. Additionally,
the encoder does not receive any explicit information regard-
ing the language of the input, allowing it to learn language-
independent representations. The encoder consists of a BiL-
STM encoder with 1 to 5 layers, each 512-dimensional. Sen-
tence embeddings are obtained by applying a max-pooling
operation over the output of a BiLSTM encoder. The method
covers 93 languages in total. However, during training, the
method is limited to English and Spanish as target languages
because the vast majority of data is aligned with these lan-
guages, and considering all possible language pairs would
be intractable. The training data includes 223 million parallel
sentences from multiple sources available on the OPUS Web
site (Tiedemann 2012).

Laser was recently improved into LASER 2 & 3 (Heffernan,
Çelebi, and Schwenk 2022). With the new iteration, the au-
thors added 50 low-resource African languages and generally
improved the performance. The update moves away from the
one-for-all but instead learns multiple models for different fam-
ilies of languages. The architecture of the model also evolves
toward a 12-layer transformer. The training method relies on
the distillation approach from Reimers and Gurevych (2020),
which allows extending an existing sentence embedding
space to new languages. This supervised teacher-student
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approach compares the teacher’s sentence representation
against the student’s target language sentence representation
in order to extend the embedding space.

LaBSE is also a cross-lingual sentence embedding method
(Feng et al. 2022). Similar to LASER, it aims to translate
sentences from a source into a target language. However, it
uses a discriminative rather than a generative objective. A
translation ranking loss directly maximizes the similarity of
translation pairs in a shared embedding space. The method
uses a dual encoder, which encodes the source and target
sentences separately. Given a batch of 𝑁 sentences 𝑠 𝑖

𝑙
, and

their translations into a target language 𝑠 𝑖
𝑘
, the training

objective is to maximize the probability to associate each
sentence with its true translation over all𝑁−1 alternatives in
the same batch: 𝑝(𝑠 𝑖

𝑘
|𝑠 𝑖
𝑙
, 𝑠1
𝑘
· · · 𝑠𝑁

𝑘
). The conditional probability

is estimated as follows:

𝑝(𝑠 𝑖
𝑘
|𝑠 𝑖
𝑙
, 𝑠1
𝑘
· · · 𝑠𝑁

𝑘
) = 𝑒 𝑓 (𝑠

𝑖
𝑙
)⊤𝑔(𝑠 𝑖

𝑘
)

𝑒 𝑓 (𝑠
𝑖
𝑙
)⊤𝑔(𝑠 𝑖

𝑘
) +∑︁𝑁

𝑗=1, 𝑗≠𝑖 𝑒
𝑓 (𝑠 𝑖

𝑙
)⊤𝑔(𝑠 𝑗

𝑘
)

The parameters from the two parts of the dual encoder, 𝑓 and
𝑔 are trained to maximize the probability of identifying the
correct translation for each sentence in the training batch:

L=
∑︂

𝑖∈⟦1,𝑁⟧
log 𝑝(𝑠 𝑖

𝑘
|𝑠 𝑖
𝑙
, 𝑠1
𝑘
· · · 𝑠𝑁

𝑘
)

The approach presents similarities with Quickthought (Lo-
geswaran and Honglak Lee 2018) and Sentence-Bert (Reimers
and Gurevych 2019). The authors enhance the method by
systematically exploring the combination with the best ex-
isting methods for learning sentence embeddings. Since the
loss L is asymmetric and depends on the direction to which
the softmax is applied (over the source or the target sen-
tences), the authors use the sum of the source-to-target, L,
and target-to-source, L′, losses (Yang, Ábrego, et al. 2019):

L̄= L+L′ (3.40)
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11: https://commoncrawl.

org/

12: https://dumps.wikimedia.

org/frwiki/

The method also implements an additive margin softmax,
which introduces a margin 𝑚 around positive pairs to im-
prove the separation between translations and nearby non-
translations (Yang, Ábrego, et al. 2019). The final conditional
probability is thus estimated as follows:

𝑝(𝑠 𝑖
𝑘
|𝑠 𝑖
𝑙
, 𝑠1
𝑘
· · · 𝑠𝑁

𝑘
) = 𝑒 𝑓 (𝑠

𝑖
𝑙
)⊤𝑔(𝑠 𝑖

𝑘
)−𝑚

𝑒 𝑓 (𝑠
𝑖
𝑙
)⊤𝑔(𝑠 𝑖

𝑘
)−𝑚 +∑︁𝑁

𝑗=1, 𝑗≠𝑖 𝑒
𝑓 (𝑠 𝑖

𝑙
)⊤𝑔(𝑠 𝑗

𝑘
)

Finally, contrastive learning benefits from large training batch
sizes (T. Chen et al. 2020; Guo et al. 2018; Qu et al. 2021) and
the authors introduce a method called cross-accelerator nega-

tive sampling, which allows to better distribute the softmax
computation across multiple cores and achieve larger batch
size.

LaBSE uses transformer encoders and the l2 normalized
[CLS] token representations from the last transformer block
as sentence embedding. For the pre-training, they collected
monolingual 17B monolingual sentences from Common-
Crawl11 and Wikipedia.12 They pre-trained the model using
a masked language model (mlm) (Devlin et al. 2019) and
translation language model (tlm) (Conneau and Lample 2019)
task. They finalize the pre-training of the models using the
translation ranking task with in-batch negative sampling on
6B translation pairs from web pages.

3.4 Evaluating sentence embeddings

Evaluation of sentence embeddings is not a straightforward
process. As for the training step, we do not have access to
gold labels to evaluate our embeddings. We must therefore
rely on indirect evaluation methods. The first set of methods
in Section 3.4.1 characterizes the quality of the sentence rep-
resentations given the performance they allow on a task of
interest. The second set of methods probes for controlled and
targeted linguistic characteristics by the mean or indirect clas-
sification tasks on dedicated artificial datasets (Section 3.4.2).
Finally, we enumerate in Section 3.4.3 methods to directly
analyze the underlying dynamics and mechanisms within
the connections of model layers.

https://commoncrawl.org/
https://commoncrawl.org/
https://dumps.wikimedia.org/frwiki/
https://dumps.wikimedia.org/frwiki/
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13: Senteval is posterior to most
of the references. However, these
studies do evaluate on tasks later
included in the benchmark.

14: It is important to make the
distinction between the training
of the sentence embedding meth-
ods (detailed in Section 3.3 and
the training of the downstream
classifier which uses the sen-
tence embedding as input but
doesn’t further train them.

15: Contrary to GLUE and Su-
perGLUE benchmarks (A. Wang,
Pruksachatkun, et al. 2019; A.
Wang, Singh, et al. 2019), the sen-
tence embedding model is not
fine-tuned during the evaluation.
We specifically evaluate the infor-
mation within sentence embed-
dings and not the model used to
produce them.

3.4.1 Downstream tasks

The SentEval benchmark (Conneau and Kiela 2018) is specif-
ically designed to assess the quality of the embeddings.13
Each task is formatted as a classification task that takes sen-
tence embeddings as input features. The downstream model
usually consists of a simple multi-layer perceptron or logistic
regression. It is kept as minimal as possible to avoid the
case where uninformative embeddings are compensated by
an excellent classifier.14 Another important reason for using
simple downstream classifiers is to assess the straightforward
extractability of information from embeddings. Our goal is
to identify what information is captured in the embedding
vectors rather than assessing whether we can reconstruct the
information from the embeddings. The downstream evalu-
ation methods are completely agnostic with respect to the
sentence embedding method.15 The development set is used
for each task to choose the regularization parameters, and re-
sults are reported on the test set. The tasks include sentiment
and subjectivity analysis (MR, CR, SUBJ, MPQA), question
type classification (TREC), paraphrase identification (MRPC)
and semantic relatedness (SICK-R). We give examples for
each task in Table 3.3. The MR, CR, SUBJ, MPQA and TREC

are classification tasks, for which we report the accuracy.
For MRPC, we report the accuracy and f1 score. Finally, the
SICK-R task is a regression task. We report the Pearson (𝑟)
and Spearman (𝜌) correlations as well as the mean squared
error (mse).

We report in Table 3.4 the downstream results using the
training methods enumerated in Section 3.3. We divided the
methods into three categories based on the training objective:
self-supervised, supervised or semi-supervised, and pre-
trained. Not one of models outperforms the others across all
tasks. In addition, although Bert is the cornerstone of many
NLP applications, its application to this sentence embedding
benchmark falls below the state-of-the-art.

However, downstream tasks may suffer from empirical limi-
tations. The downstream performance may not necessarily
reflect the quality of the representations. First, the complexity
of the tasks makes it difficult to determine what information
is captured in the representations. Then, uncontrolled effects
can inflate the perception of success on downstream tasks:
certain hyper-parameters such as the embedding dimensions
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Table 3.3: Examples from the tasks of the SentEval benchmark that we will use in our experiments. 𝑁 is the
number of samples. MR, CR, SUBJ, and MPQA are binary classification tasks with labels positive or negative.
SICK-R is a Semantic Textual Similarity (STS) task for which labels are scores between 0 and 5. MRPC is a
Paraphrase Detection (PD) task for which labels are true or False. TREC is a 6-class classification problem. We
adapted this example table from Conneau and Kiela (2018).

Task N Sentence 1 Sentence 2 Label

MR 11k “Too slow for a younger crowd , too shallow for an older one.” neg

CR 4k “We tried it out christmas night and it worked great .” pos

SUBJ 10k “A movie that doesn’t aim too high , but doesn’t need to. subj

MPQA 11k “don’t want”; “would like to tell”; neg, pos

TREC 6k “What are the twin cities ?” LOC:city

SICK-R 10k “A man is singing a song and playing
the guitar”

“A man is opening a package that
contains headphones” 1.6

MRPC 5.7k
“The procedure is generally per-
formed in the second or third
trimester.”

“The technique is used during the sec-
ond and, occasionally, third trimester
of pregnancy.”

paraphrase

may impact downstream performance; models may also ex-
ploit superficial cues or structural biases from the evaluation
datasets.

In that regard, Wieting and Kiela (2019) propose a rather
disturbing study in which they test randomly initialized
encoders on downstream tasks and still obtain competitive
results. They show that many parameters impact downstream
performance above and beyond the encoder structure. In par-
ticular, the quality of the word embeddings being composed
by the encoder, or the dimension of the word and sentence
embeddings. Similarly, Adi et al. (2017) demonstrate that a
BoW composition model is 70% accurate on a binary word
orders prediction task. Since BoW model does not preserve
word order information, Ettinger et al. (2018) interpret that
the above-chance performance appears to rely on statistical
regularities of word ordering in the train and test sets.

3.4.2 Probing tasks

Probing tasks evaluate representations on a per-phenomenon
basis. They aim to determine which precise semantic, syn-
tactic, lexical, or surface information of the input sentence is
captured in its embeddings. They typically consist of simple
classification tasks contingent on a precise linguistic property,
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Table 3.4: SentEval task results using fixed sentence encoder. We divided the table into sections. The first
range of models uses self-supervised training objective. The second section present models trained on labelled
or semi-automatically labeled data. The third section reports pre-trained transformers based-models. FastSent
is reported from Hill, Cho, and Korhonen (2016). Skipthoughts results from (R. Kiros et al. 2015) Skipthoughts
+ LN which includes layer normalization method from Ba, J. R. Kiros, and Hinton (2016). We considered the
Quickthought results (Logeswaran and Honglak Lee 2018). DisSent and Infersent are reported from A. Nie,
Bennett, and Goodman (2019) and Conneau, Kiela, et al. (2017) respectively. Pre-trained transformers results
are reported from Reimers and Gurevych (2019). We report laBSE results from (Feng et al. 2022). We run
the evaluation on SentEval for LASER 1 and 2 respectively (Artetxe and Schwenk 2019; Heffernan, Çelebi,
and Schwenk 2022). The Hrs column indicates indicative training time, the Dim column corresponds to the
sentence embedding dimension. †, indicates models that we had to re-train. Best results in each section are
shown in bold, best results overall are underlined. Performance for SICK-R results are reported by convention
as 𝜌 and 𝑟 × 100.

Model Dim Hrs MR CR SUBJ MPQATREC

MRPC SICK-R

Acc F1 𝑟 𝜌 MSE

Context sentences prediction

FastSent ≤ 500 2 70.8 78.4 88.7 80.6 76.8 72.2 80.3 — — —
FastSent + AE ≤ 500 2 71.8 76.7 88.8 81.5 80.4 71.2 79.1 — — —
Skipthought 4800 336 76.5 80.1 93.6 87.1 92.2 73.0 82.0 85.8 79.2 26.9
Skipthought + LN 4800 672 79.4 83.1 93.7 89.3 — — — 85.8 78.8 27.0
Quickthought 4800 11 80.4 85.2 93.9 89.4 92.8 76.9 84.0 86.8 80.1 25.6

Sentence relations prediction

InferSent 4096 — 81.1 86.3 92.4 90.2 88.2 76.2 83.1 88.4 — —
DisSent Books 5 4096 — 80.2 85.4 93.2 90.2 91.2 76.1 — 84.5 — —
DisSent Books 8 4096 — 79.8 85.0 93.4 90.5 93.0 76.1 — 85.4 — —

Pre-trained transformers

Bert-base [CLS] 768 96 78.7 84.9 94.2 88.2 91.4 71.1 — 75.7† — —
Bert-base [NLI] 768 96 83.6 89.4 94.4 89.9 89.6 76.0 — 84.4

† — —

Multi-lingual

LASER-1† 1024 120 72.4 78.1 90.4 84.1 83.2 72.6 79.0 80.5 75.0 36.0
LASER-2† 1024 120 74.7 77.2 91.1 88.0 81.6 77.0 83.7 82.9 77.6 32.2

laBSE 768 96 79.1 86.7 93.6 89.6 92.6 74.4 — — — —

and this targeted approach simplifies interpretations. Prob-
ing and downstream evaluation follow the same protocol: the
probing classifier takes as input feature the sentence embed-
dings produced by a given encoder (as for the downstream
evaluation, the embeddings are not further tuned in that
phase). Therefore, high accuracy on the task should indicate
that the information is encoded in the input embeddings.

Probing tasks require maintaining access to the detailed
labeling of the linguistic phenomenon of interest. Given this
information, it is possible to partition the dataset and decom-
pose the model performance given this specific phenomenon.
This partition should also maintain the dataset distribution
unchanged regarding any other linguistic phenomena and
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16: For example, Bentivogli et al.
(2016) and Lai and Hockenmaier
(2014) observed structural biases
in the SICK (Marelli et al. 2014)
dataset distribution. As a con-
sequence, a simple heuristic de-
tecting negation is sufficient to
achieve high accuracy for the tex-
tual entailment task.

remove any uncontrolled bias toward this specific aspect.16
Last but not least, it should retain a variety of sentences that
will be encountered in natural-occurring text.

Probing tasks must therefore be constructed in a rigorous and
controlled manner. The dataset is usually created either by
labeling natural occurring sentences or by semi-automatically
generating sentences that follow specific properties. The
first method facilitates access to a wide variety of syntactic
structures and configurations. On the other hand, semi-
automatically sentence generation allows for the precise
control of their targeted characteristics.

Probing task is an active subject of research and has been
adapted for many linguistic properties. Conneau, Kruszewski,
et al. (2018) aggregate 10 tasks—including those introduced
in Adi et al. (2017)—in a benchmark. The tasks test for sur-
face, semantic and syntactic information. The sentence length
(SentLen) task aims at predicting the length of sentences in
terms of word number. The word content (WC) task deter-
mines the ability to recover the original words in a sentence
from the embedding. The bigram shift (BShift) tests the sen-
sitivity to original word orders. The tree depth (TreeDepth)
aims at predicting the depth from a hierarchical sentence
structure. The top constituent task (TopConst), aims at pre-
dicting the top constituents immediately below the sentence
root node. The Tense task aims at predicting the tense of
the main clause verb. The subject and object number (respec-
tively SubjNum and ObjNum) tasks focus on the number of
respectively the subject and object of the main clause. The
semantic odd man out (SOMO) task aims at identifying
sentences for which random nouns or verbs were replaced.
Finally, the coordination inversion (CoordInv) aims at identi-
fying sentences for which the order of the clauses was or not
modified.

3.4.3 Analysis of the internal dynamics

underlying NLP models

Finally, some alternative approaches propose intuitive visu-
alization techniques that allow interpreting neural network
mechanisms when processing specific examples. J. Li et al.
(2016) propose to analyze compositional model properties
with some specific plots. Using dimensionality reduction



3.4 Evaluating sentence embeddings 51

methods, they project words or phrases before and after
modifying, negating, or composing clauses. Additionally,
they display the saliency of individual tokens with respect
to their predictions. Other methods propose visualization of
neural model hidden states. Strobelt et al. (2018) represent
recurrent models hidden states. While Hoover, Strobelt, and
Gehrmann (2019) propose a similar tool for the analysis of
transformers.
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„When people say AI has “learned x”

what they usually mean is that a deep

learning model has learned a dataset

well enough to find the pattern you

asked for. It has no symbolic or logical

abstraction. It is kahnemann system 1. It

looks smart. It isn’t.

— Mark Madsen

Twitter post, 2019

We hypothesize that structure is a crucial element to perform
compositional knowledge. In particular, the heterogeneity of
performances across models and tasks makes us assume that
some structures may be better adapted for a given example
or task. Therefore, combining diverse structures should be
more robust for tasks requiring complex word composition
to derive their meaning. Hence, we aim to evaluate the
potential benefit from interactions between pairs of encoders.
In particular, we propose a training method for which distinct
encoders are learned jointly. We conjecture this association
might improve our embeddings’ power of generalization and
propose an experimental setup to test our hypothesis.

We take inspiration from multi-view learning, which is suc-
cessfully applied in a variety of domains. In such a framework,
the model learns representations by aligning separate obser-
vations of the same object. Such observations are referred to
as views. In our case, we consider a view for a given sentence
as the association of the plain sentence with several kinds of
syntactic representations.

Combining different structural views has already been proven
to be successful in many NLP applications. Kong and G. Zhou
(2011) provide a heuristic to combine dependency and con-
stituency analysis for coreference resolution. Ahmed, Samee,
and Mercer (2019) and Y. Zhou, C. Liu, and Pan (2016) com-
bine Tree LSTM and standard sequential LSTM with a cross-
attention method and observe improvements on a semantic
textual similarity task. L. Chen et al. (2017) combine CNN
and Tree LSTM using attention methods and outperform
both models taken separately on a sentiment classification
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task. Finally, Q. Chen et al. (2017) combine sequential LSTM
and Tree LSTM for natural language inference tasks.

The novelty here is to combine distinct structured models to
build standalone sentence embeddings, which has not yet
been explored. This paradigm benefits from several structural
advantages. It pairs nicely with contrastive learning, as al-
ready mentioned. It may thus be trained in a self-supervised
manner that does not require data annotation. Moreover, our
method is not specific to a certain kind of encoder architec-
ture, and it does not require, for example, the use of attention
layers or tree-structured models.

Our setup could therefore be extended with any encoding
function. Finally, our training method induces an interaction
between models during inference and, paramountly, during
the training phase.

We organize our section as follows: Section 4.1 reviews the
contrastive and multi-view training method we used. In
Section 4.2, we present our training and evaluation setup.
We then propose an in-depth analysis of our results.

4.1 Method

4.1.1 Contrastive learning

Figure 4.1: Contrastive training method. The objective is to reconstruct the storyline. Sentences are presented
in their original order. Given an anchor sentence 𝑥, the model has to identify the context sentence 𝑥+ out of
negative samples 𝑥−1 , 𝑥

−
2 . Sentences are encoded using separate views, which are composed within a pairwise

distance matrix.

We train our model using the contrastive objective from Lo-
geswaran and Honglak Lee (2018), detailed in Section 3.3.
The method takes inspiration from the distributional hypoth-
esis successfully applied for words, but this time, to identify
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context sentences. Given a sentence 𝑠, a corresponding con-
text sentence 𝑠+ and a set of 𝐾 negative samples 𝑠−1 · · · 𝑠−

𝐾
, the

training objective is to maximize the probability of predict-
ing the correct sentence among negative samples: 𝑝(𝑠+ |𝑆)
with 𝑆 = {𝑠, 𝑠+, 𝑠−1 · · · 𝑠−

𝐾
}. As illustrated in Figure 4.1, two

sentences encoders 𝑓 and 𝑔 are defined and the conditional
probability is estimated as follow:

𝑝(𝑠+ |𝑆) = 𝑒 𝑐( 𝑓 (𝑠),𝑔(𝑠
+))

𝑒 𝑐( 𝑓 (𝑠),𝑔(𝑠+)) +∑︁𝑁
𝑖=1 𝑒

𝑐( 𝑓 (𝑠),𝑔(𝑠−𝑖 ))

With 𝑐(𝑥, 𝑦) the scoring function. Logeswaran and Honglak
Lee (2018) simply use an inner product for 𝑐 such as 𝑐 (𝑥, 𝑦) =
𝑥⊤𝑦. In our case, as the encoders 𝑓 and 𝑔 have distinct archi-
tectures. To prevent the case of 𝑓 and 𝑔 having distinct norms
and the inner product resulting in irrelevant information,
we choose a bilinear function defined as 𝑐 (𝑥, 𝑦) = 𝑥⊤𝑊𝑦

(Tschannen et al. 2020a). At inference time, the sentence
representation is obtained as the concatenation of the two
encoders 𝑓 and 𝑔 such as 𝑠 → [ 𝑓 (𝑠); 𝑔(𝑠)], as illustrated in
Figure 4.2. In Logeswaran and Honglak Lee (2018), 𝑓 and 𝑔

use the same RNN encoder. However, the authors observe
that the encoders might learn redundant features. To limit
this effect, they propose to use a distinct set of embeddings
for each encoder.

We propose addressing this aspect by enhancing the method
with a multi-view framework and using a distinct structured
model for the encoders 𝑓 and 𝑔. We hypothesize that some
structures may be better adapted for a given example or task.
For example, dependency parsing usually sets the verb as
the root node. Whereas in constituency parsing, subject and
verb are often split between the left and right sub-trees from
the root node (as illustrated in Figure 3.2). Therefore, the
combination of different structures should be more robust
for tasks requiring complex word composition and be less
sensitive to lexical variations. Consequently, we propose a
training procedure that allows the model to benefit from the
interaction of various syntactic structures.
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1: We introduced this attentive
version of the Child-Sum Tree
LSTM for which details are given
in Section 3.2.3

2: https://github.com/

yzhangcs/biaffine-parser

4.1.2 Language views

Multi-view aims at learning representations from data rep-
resented by multiple independent sets of features. We gen-
eralize the notion of view for a sentence as the application
of a specific syntactic framework. For each view, we use an
ad-hoc algorithm that maps the structured sentence into an
embedding space.

We consider structures exposed in Section 3.2: Vanilla GRU
(Seq), dependency tree combined with an attentive Child-
Sum Tree LSTM (Dep), Constituency tree combined with
N-Ary Tree LSTM (Const).1 Although under some hypothe-
ses equivalences might be derived between the last two
representations schemes, we hypothesize that, in our context,
the corresponding sequence of operations might provide the
possibility of capturing rather distinct linguistic properties.
The various models may, therefore, be complementary and
their combination allows for more fine-grained analysis.

For the Dep view, the dependency tree is obtained using
the deep biaffine parser from Dozat and Manning (2017).
We used an open-source implementation of the parser and
replaced the pos-tag features with features obtained with
Bert.2 Therefore we do not need pos-tags annotations to
parse our corpus.

For the Const view, the structure is obtained using the con-
stituency neural parser from Kitaev and Klein (2018). We
binarize the trees to ensure that every node has exactly
two dependents. The binarization is performed using a left
markovization (Klein and Manning 2003) and unary produc-
tions are collapsed in a single node. Regarding the inference
speed, the constituency parser is the bottleneck and parses
around 500 sentences/second. In our case, the parsing of
the entire corpus (40M sentences) takes about a day to com-
plete.

Figure 4.2: Multi-view sentence
embedding. At inference, em-
beddings are the concatenation
from both views.

https://github.com/yzhangcs/biaffine-parser
https://github.com/yzhangcs/biaffine-parser
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3: The bookcorpus introduced
in Zhu et al. (2015) and tradi-
tionally used for sentence em-
bedding is no longer distributed
for copyright reasons. Therefore,
we prefer a corpus freely avail-
able. The impact of the training
dataset choice is analyzed in Sec-
tion 4.2.4.
4: Logeswaran and Honglak Lee
(2018) improve the average result
on SentEval from 0.7 points by
increasing the coprus size from
45M to 174M sentences.

5: https://nlp.stanford.

edu/projects/glove/

4.2 Experiments

We train our models on the UMBC dataset (Han et al. 2013).3∗
We limit our corpus to the first 40M sentences from the tok-
enized corpus. Indeed, Logeswaran and Honglak Lee (2018)
already analyzed the effect of the corpus size, and we fo-
cus here on the impact of our multi-view setting.4 For each
sample, we train the model to maximize the probability of
predicting the correct sample among negative samples. In
practice, we constitute mini-batches of consecutive sentences.
For each sentence in the mini-batch, the correct samples cor-
respond to context sentences, that is, sentences immediately
after and before the target sentence. Other sentences in the
batch are considered negative examples. We use a batch size
of 400. Therefore, for each target sentence, we consider 2
positive samples and 397 negative samples. Model hyper
parameters are fixed given literature on comparable work (Lo-
geswaran and Honglak Lee 2018; Tai, Socher, and Manning
2015). All models are trained using the Adam optimizer with
a 5𝑒−4 learning rate. Regarding the infrastructure, we use a
Nvidia GTX 1080 Ti GPU. All model weights are initialized
with a Xavier distribution and biases set to 0. We do not
apply any dropout.

For the vocabulary, we follow the setup proposed in R. Kiros
et al. (2015) and Logeswaran and Honglak Lee (2018) and
we train two models in each configuration. We train a first
model initialized with pre-trained embedding vectors and do
not update them during training. The vocabulary includes
the top 2M cased words from the 300-dimensional GloVe
vectors (Pennington, Socher, and Manning 2014).5 We train
another model limited to a 50K words vocabulary, randomly
initialized with a Xavier distribution and updated during
training. At inference, the vocabulary is expanded to 2M
words using a linear projection.

4.2.1 Evaluation on SentEval

As is usual for models aiming to build generic sentence
embeddings (Arora, Y. Liang, and Ma 2017; Conneau, Kiela,
et al. 2017; Hill, Cho, and Korhonen 2016; R. Kiros et al. 2015;

∗ https://ebiquity.umbc.edu/blogger/2013/05/01/
umbc-webbase-corpus-of-3b-english-words/

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://ebiquity.umbc.edu/blogger/2013/05/01/umbc-webbase-corpus-of-3b-english-words/
https://ebiquity.umbc.edu/blogger/2013/05/01/umbc-webbase-corpus-of-3b-english-words/
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Table 4.1: SentEval Task Results Using Fixed Sentence Encoder. We divided the table into sections. The
first range of models is directly comparable to our model as the training objective is to identify context
sentences. The second section objective is to identify the correct relationship between a pair of sentences.
The third section reports pre-trained transformer-based models. The last section reports the results from
our models. FastSent is reported from Hill, Cho, and Korhonen (2016). Skipthoughts results from R. Kiros
et al. (2015) Skipthoughts + LN which includes layer normalization method from Ba, J. R. Kiros, and Hinton
(2016). We considered the Quickthought results Logeswaran and Honglak Lee 2018 with a pre-training on
the bookcorpus dataset. DisSent and Infersent are reported from A. Nie, Bennett, and Goodman (2019) and
Conneau, Kiela, et al. (2017) respectively. Pre-trained transformers results are reported from Reimers and
Gurevych (2019). The Hrs column indicates indicative training time, the Dim column corresponds to the
sentence embedding dimension. † indicates models that we had to re-train. Best results in each section are
shown in bold, best results overall are underlined. Performance for SICK-R results are reported by convention
as 𝜌 and 𝑟 × 100. In all columns, higher scores indicate better performance, with the exception of the MSE, in
which lower results indicate better performance

Model Dim Hrs MR CR SUBJ MPQATREC

MRPC SICK-R

Acc F1 𝑟 𝜌 MSE

Context sentences prediction

FastSent ≤500 2 70.8 78.4 88.7 80.6 76.8 72.2 80.3 — — —
FastSent + AE ≤500 2 71.8 76.7 88.8 81.5 80.4 71.2 79.1 — — —
Skipthought 4,800 336 76.5 80.1 93.6 87.1 92.2 73.0 82.0 85.8 79.2 26.9

Skipthought + LN 4,800 672 79.4 83.1 93.7 89.3 — — — 85.8 78.8 27.0
Quickthought 4,800 11 80.4 85.2 93.9 89.4 92.8 76.9 84.0 86.8 80.1 25.6

Sentence relations prediction

InferSent 4,096 — 81.1 86.3 92.4 90.2 88.2 76.2 83.1 88.4 — —
DisSent Books 5 4,096 — 80.2 85.4 93.2 90.2 91.2 76.1 — 84.5 — —
DisSent Books 8 4,096 — 79.8 85.0 93.4 90.5 93.0 76.1 — 85.4 — —

Pre-trained transformers

Bert-base [CLS] 768 96 78.7 84.9 94.2 88.2 91.4 71.1 — 75.7† — —
Bert-base [NLI] 768 96 83.6 89.4 94.4 89.9 89.6 76.0 — 84.4

† — —

Our models (GloVe & Pretrained Embeddings)

Seq, Const† 4,800 41 79.8 82.9 94.6 88.5 90.4 76.4 83.7 86.1 78.9 26.3
Dep, Seq† 4,800 27 79.7 82.2 94.4 88.6 91.0 77.9 84.4 86.6 79.8 25.5

Dep, Const† 4,800 39 80.7 83.6 94.9 89.2 92.6 76.8 83.6 87.0 80.3 24.8

6: Senteval is posterior to most
of the references. However, these
studies do evaluate on tasks later
included in the benchmark.

Logeswaran and Honglak Lee 2018; A. Nie, Bennett, and
Goodman 2019), we use tasks from the SentEval benchmark
(Conneau and Kiela 2018).6 SentEval is specifically designed
to assess the quality of the embeddings themselves rather
than the quality of a model specifically targeting a down-
stream task, as is the case for the GLUE and SuperGLUE
benchmarks (A. Wang, Pruksachatkun, et al. 2019; A. Wang,
Singh, et al. 2019). Indeed, the evaluation protocol prevents
fine-tuning the model during inference and the architecture
to tackle the downstream tasks is kept minimal. Moreover,
the embedding is kept identical for all tasks, thus assessing
their properties of generalization.

Therefore, classification tasks from the SentEval benchmark
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are usually used for evaluation of sentence representations
(Conneau and Kiela 2018): the tasks (presented in Section 3.4.1)
include sentiment and subjectivity analysis (MR, CR, SUBJ,

MPQA), question type classification (TREC), paraphrase
identification (MRPC) and semantic relatedness (SICK-R).
Contrasting the results of our model on this set of tasks
will help to better understand its properties. MR, CR, SUBJ,
MPQA tasks are binary classification tasks with no pre-
defined train-test split. We therefore use a 10-fold cross
validation. For the other tasks, we use the proposed train/de-
v/test splits. We give examples for each tasks in Table 3.3. We
follow the linear evaluation protocol of R. Kiros et al. (2015),
where a logistic regression or softmax classifier is trained on
top of sentence representations. The dev set is used to choose
the regularization parameters and results are reported on
the test set.

The MR, CR, SUBJ, MPQA and TREC are classification tasks,
for which we report the accuracy. For MRPC, we report the
accuracy and f1 score. Finally, the SICK-R task is a regression
task. We report the Pearson (𝑟) and Spearman (𝜌) correlations
as well as the mean squared error (mse).

We compare the properties of distinct views combination on
downstream tasks. Results are compared with state-of-the-
art methods in Table 4.1. The first set of methods (Context

sentences prediction) are trained to reconstruct the storyline of
books. The second set of models (Sentence relations prediction)
is pre-trained on a supervised task. Infersent (Conneau, Kiela,
et al. 2017) is trained on the SNLI dataset, which proposes
to predict the entailment relation between two sentences.
DisSent (A. Nie, Bennett, and Goodman 2019) proposes a
generalization of the method and builds a corpus of sentence
pairs with more possible relations between them. Finally, we
include models relying on transformer architectures (Pre-
trained transformers) for comparison. In particular, Bert-base
and Bert-base fine-tuned on the SNLI dataset (Reimers and
Gurevych 2019). In Table 4.1, we observe that our models
expressing a combination of views such as (Dep, Seq) or
(Dep, const) give better results than the use of the same view
(seq, seq). It seems that the entanglement of views benefits
the sentence embedding properties. In particular, we obtain
state-of-the-art results for almost every metric from MRPC

and SICK-R tasks, which focus on paraphrase identification.
For the MRPC task, we gain a full point in accuracy and out-
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7: We scale all metrics as per-
centages. In particular, we use
100 - MSE for the SICK-R task.
The final score corresponds to
the average of all tasks. We aver-
age the scores for tasks with mul-
tiple metrics (MRPC and SICK-

R).

perform Bert models. We hypothesize structure is important
for achieving this task, especially as the dataset is composed
of rather long sentences. The SICK-R dataset is structurally
designed to discriminate models that rely on compositional
operations.

This also explains the score improvement on this task. Tasks
such as MR, CR or MPQA consist in sentiment or subjectivity
analysis. We hypothesize that our models are less relevant
in this case: such tasks are less sensitive to structure and
depend more on individual word or lexical variation.

4.2.2 Impact of the multi-view

We aim to measure the impact of multi-view specifically.
Table 4.2 compares all possible view pairs out of Dep, Const
and Seq views. For each multi-view model, we report the
average score from SentEval tasks.7 The first section of the
Table corresponds to single-view models, for which both
views from the pair are identical. The second section reports
multi-view models.

Multi-view models outperform those using a single view.
Given our experiment, it is advantageous to use multiple
views instead of one. It also confirms our hypothesis that
combining multiple structured models or views yields richer
sentence embeddings.

Table 4.2: Impact of the multi-
view. The first section corre-
sponds to single-view setups for
which 𝑓 and 𝑔 are the same
views. The second section re-
ports multi-view models. For
each model, we report the aver-
age score on the SentEval bench-
mark.

Model Dim Avg. SentEval Score

Single-view models

Const, Const 4,800 84.4
Dep, Dep 4,800 84.6
Seq, Seq 4,800 84.9

Multi-view models

Seq, Const 4,800 85.1
Seq, Dep 4,800 85.3
Dep, Const 4,800 86.0

4.2.3 Qualitative results

We analyze the embeddings from a qualitative perspective
and explore the sentences from the SICK-R test set. We
retrieved the closest neighbors using cosine distance. We
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Figure 4.3: Projection of the embeddings from the SUBJ task. (left) The Dep, Const model is used (right) We
train a the Quickthought model using scripts from (Logeswaran and Honglak Lee 2018) on the UMBC dataset.
Both dimension reductions are performed using the UMAP algorithm (McInnes and Healy 2018). Points in
blue correspond to sentences with the label "objective". Points in red correspond to sentences with the label
"subjective". In both cases, samples appear well separated given their labels.

compare the results with the Quickthought model. We illus-
trate in Table 4.3 a panel of examples presenting interesting
linguistic properties. Models seem somehow robust to ad-
jective expansions illustrated in the first examples. Indeed,
the closest expression from "A black bird " is "A bird , which is

black". However, the second retrieved sentence is semantically
correct for only the Const, Seq association. Quick-thought
and Dep, Const present a weakness toward word scrambling
for this specific example. We investigate passive forms in the
second example. The Const, Seq and Quickthought models
seem to attach too much weight to the sentence syntax rather
than the semantic. This time the association of Dep and Const
views retrieves corresponding active sentences. Last but not
least, we examine how models respond to the notion of scal-
ing. Interestingly, Quickthought and Dep, Const are able to
bring together "crowd" and "group" notions.

From a graphic perspective, we projected in two dimensions
the sentences from the SUBJ task, for which we obtained state-
of-the-art results. We use the UMAP (McInnes and Healy
2018) algorithm for dimensionality reduction and compare
our multi-view setup with the Quickthought model. The
projection is illustrated in Figure 4.3. While the Figure does
not reveal any critical distinction between models, samples
appear well separated in both cases.
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Table 4.3: A qualitative exploration of the sentence embedding space. We embed the sentences from the
SICK-R test set. Given a query sentence, we retrieve the closest two sentences from the dataset using cosine
distance. We compare the results of the semantic search using distinct views or single views combinations.

Encoder Query and two closest sentences Cosine distance

A black bird is sitting on a dead tree

Dep, Const A bird , which is black , is sitting on a dead tree 0.118
A dead bird is near a black man sitting on a tree 0.139

Const, Seq A bird , which is black , is sitting on a dead tree 0.118
The black bird is sitting in a leafless tree 0.143

Quickthought A bird , which is black , is sitting on a dead tree 0.172
A dead bird is near a black man sitting on a tree 0.172

Rugby is being played by some men

Dep, Const Rugby players are tackling each other 0.381
Some men are playing rugby 0.392

Const, Seq Guitar is being played by two men 0.401
Rugby players are tackling each other 0.403

Quickthought Guitar is being played by two men 0.455
Rugby players are tackling each other 0.462

A crowd of people is near the water

Dep, Const A crowd of people is far from the water 0.079
A group of people is near the ocean 0.356

Const, Seq A crowd of people is far from the water 0.063
A man is coming out of the water 0.313

Quickthought A crowd of people is far from the water 0.067
Two people are wading through the water 0.388

4.2.4 Impact of the corpus choice

We choose to make use of a distinct corpus as the BookCorpus
dataset is no longer distributed for copyright reasons. We run
QuickThought scripts (Logeswaran and Honglak Lee 2018)
using our dataset based on the UMBC corpus to compare
both setups. Results are detailed in the first section from
Table 4.4 and are rather close in both configurations. Indeed,
except for the SUBJ and MR task, the use of our dataset
penalizes the results. Regarding the dataset size and the
SentEval results, we have considered that the comparison
holds.8

4.2.5 Biases toward embedding size

As exposed in Section 3.3.1, SentEval evaluation framework
is suspected to suffers from biases toward the embedding
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Model Dim Avg. SentEval Score

Dep, Const† (our model) 4,800 86.0

Impact of the pretraining corpus on Quickthought

Quickthought (results from paper) 4,800 86.1
Quickthought (UMCB 40M)† 4,800 86.2

Impact of the embedding size

Bert-base [CLS]† 768 78.2
Bert-base [CLS] /w random projection† 4,096 80.3

Impact of pre-training

Rand† 4,096 45.3
Rand BoW† 4,096 63.7
Rand LSTM 4,096 83.4

Table 4.4: Study on SentEval task
results. We first report our av-
erage score on the benchmark
with our multi-view Dep, Const
model. We compare distinct con-
figurations with this reference
to better qualify specific param-
eters’ impact. The first section
compares the impact of the train-
ing dataset for Quickthought.
The following section focuses on
the impact of the embedding
size. To this end, hidden rep-
resentations are projected into
a larger embedding space us-
ing a random, fully connected
layer. The final section compares
an entirely random projection
and a BoW or LSTM models ran-
domly initialized with those pre-
trained on our self-supervised
task. † indicates models that we
train.

8: There are other minor distinc-
tions with the original Quick-
Tought experiment which ex-
plains the gap between the
(seq, seq) configuration in Ta-
ble 4.2 and the reproduction of
QuickThought results with the
original implementation in Ta-
ble 4.4. These distinctions in-
clude: weight decay (1e-4 with
the adam optimizer vs. no de-
cay), a bilinear critic to measure
the similarity between vectors
𝑥 and 𝑦 (i.e., 𝑥⊤𝑊𝑦 instead of
𝑥⊤𝑦), a slightly slower vocabu-
lary size (2M instead of 2.1M),
a cased sensitive vocabulary in-
stead of lowercase, a slightly dif-
ferent initialization range (uni-
form between −0.005 and 0.005
vs. uniform between −0.1 and
0.1), a different corpus (which
should be marginal as discussed
in this section), and slightly dif-
ferent evaluation scripts (differ-
ent number of layers for the clas-
sifier, batch size, tenacity, and
number of epochs).

size (Eger, Rücklé, and Gurevych 2019). In addition, some
studies suggest that random initialization of encoders may
yield surprisingly good results (Wieting and Kiela 2019). We
provide extra analysis to discuss these potential pitfalls.

Regarding the dependency on the embedding size, we run
experiments to analyze if such bias could explain Bert low
performance on SentEval since the output hidden size is
only of 768. Following the protocol from Wieting and Kiela
(2019), we project the embedding from the CLS token using
a random matrix initialized with a glorot distribution. This
setup expands Bert embedding into 4,096 dimensions. We
reported the results in Table 4.4. Using this random projection,
it appears semantic information is not lost. On the contrary,
we observe that expanding the embedding size seems to
slightly improve the results. However, the results are still
below Quickthought vectors by a large margin.

Wieting and Kiela (2019) observe that randomly initialized
encoders achieve surprisingly good results on SentEval. We
reported the average score from a randomly initialized LSTM
in Table 4.4. First, we should note that, while randomly
initialized encoders yield surprisingly good results, they are
still below the results obtained by pre-training. Nevertheless,
we have run additional experiments to better understand this
surprising outcome. We present the average scores achieved
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with random sentence embeddings and a BoW model with
word embeddings initialized randomly. The results for the
entirely random system are below chance. In contrast, the
random bag of words lies somewhere between the entirely
random and the random LSTM system. While embeddings
are randomly initialized, we interpret that BoW can make
a partial distinction between words. As a result, the model
is capable of capturing, to some degree, lexical information.
This phenomenon is likely to occur in the LSTM as well.
While the weights for the model are randomly initialized,
how the representations are computed allows the model to
capture a minimum amount of syntactic information.

4.3 Conclusion and future work

Inspired from linguistic insights and supervised learning,
we hypothesize that structure is a central element to build
sentence embeddings. The novelty here is detailed in Sec-
tion 4.1 and consists in jointly learning structured models in
a contrastive framework. In Section 4.2 we evaluate the stan-
dalone sentence embeddings and use them as a feature for
the dedicated SentEval benchmark. We obtain state-of-the-art
results on tasks which are expected, by hypothesis, to be
more sensitive to sentence structure. We show in Section 4.2.2
that multi-view embeddings yield better downstream task
results. Our result confirms our hypothesis that combining
diverse structures should be more robust for tasks requiring
to perform complex compositional knowledge.
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„Give orange me give eat orange me eat

orange give me eat orange give me you.

— Nim Chimpsky

Male chimpanzee, 1979

This chapter examines the possibility of including tree-like
structural bias in neural models while minimizing or elimi-
nating direct structure supervision.

There is this strong hypothesis in computational linguistics
that language has a recursive structure (Chomsky 1956). Thus,
computing sentence semantic representations traditionally
calls for a recursive compositional function whose structure
is tree-shaped. As illustrated in Figure 5.1, we can use a
sentence structure as support to compute semantic repre-
sentations—in this case, FOL statements, as introduced in
Section 2.3. When using vector representations, we can also
use the structure as support to encode the sentence. Follow-
ing this direction, Socher, Perelygin, et al. (2013) introduce
the Stanford sentiment treebank: a corpus with fully labeled
parse trees that can be used to analyze the compositional
effects of sentiment in language. The dataset provides fine-
grained information about lexical units carrying positive or
negative sentiment. As illustrated in Figure 5.1, a sentiment
prediction system cannot predict the sentiment of a given
sentence by simply averaging the sentiment carried by each
word. We can only infer this sentiment by analyzing the
sentence’s structure together with individual words.

Socher, Perelygin, et al. (2013) propose to combine the Stan-
ford sentiment treebank with recursive neural networks. We
already introduced such architectures in Section 3.2.3 and
successfully used them in Chapter 4. Recursive neural net-
works represent a phrase using word vectors and a parse
tree. They compute parent vectors in a bottom-up fashion
using the children as input arguments from a composition
function. The composition function is shared across all node
computations. Socher, Perelygin, et al. (2013) show that, un-
like bag of words, recursive networks can capture the scope
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Figure 5.1: (left) We illustrate a Montague-style (Montague 1973) derivation of a semantic representation for the
sentence "Every man loves a woman." We extracted the figure from https://www.coli.uni-saarland.de/
~koller/papers/sem-handbook.pdf. (right) We extracted a sentence from the Stanford sentiment treebank.
The sample provides annotation for each word contribution to the final sentence sentiment. There are
two parts in the sentence "There are slow and repetitive parts, but it has just enough spice to keep it
interesting.", respectively negative and positive. The final sentence ends up positive. We adapted the figure
from http://nlp.stanford.edu:8080/sentiment/rntnDemo.html.

of negation and sentiment change induced by contrastive
conjunctions such as "but".

However, not everyone has access to resources as rich as the
Stanford sentiment treebank. The corpus is only available
in English and requires precise annotations from experts in
linguistic. This chapter investigates the possibility of incorpo-
rating tree structural biases with minimal explicit supervision.
To this end, we propose a model that jointly parses sentences
into discrete trees and composes a semantic vector along
with these trees.

We organize our chapter as follows: Section 5.1 reviews related
models, learning the composition function together with the
sentence structure. Section 5.2 introduces our model, which
is based on well-known components and could therefore
accommodate a variety of parsing architectures such as graph
parsers or attention matrices from Bert. In Section 5.3, we
train and evaluate the full model with distant downstream
supervision on textual entailment and semantic similarity
tasks. Finally, in Section 5.4, we analyze how the initial
parser supervision impacts the learned structures and the
performance on downstream tasks.

https://www.coli.uni-saarland.de/~koller/papers/sem-handbook.pdf
https://www.coli.uni-saarland.de/~koller/papers/sem-handbook.pdf
http://nlp.stanford.edu:8080/sentiment/rntnDemo.html
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5.1 Latent tree learning

Tree-structured models rely on an explicit and discrete struc-
ture to compute semantic representations. It favors the inte-
gration of linguistic information and inductive biases. More-
over, it favors compositional analysis since it explicitly relies
on syntactic trees. However, such models require not only
raw text but also linguistic structure in the form of parse trees
to calculate the semantic representations. This prerequisite
limits their use in practice because it requires annotations in
the supervised case.

One method of overcoming this limitation is to induce trees
from raw text and computes semantic representations along
with the inferred structure. Such a method preserves ex-
plicit recursive computations and produces intelligible tree
structures. Known as latent tree learning, these methods gen-
erally consist of two components: a parser and a composition
function that uses the parses. The parser and composition
function are learned jointly and are specific to a given task
or domain.

The first set of latent tree models introduces an intermediate
objective to train the parser component. Socher, Pennington,
et al. (2011) parse the sentence by selecting and merging
adjacent nodes. The parser model is trained using an auxil-
iary reconstruction task. The Shift reduce Parser-Interpreter
Neural Network (SPINN) model from Bowman, Gauthier,
et al. (2016) obtains the structure using a shift-reduce parser.
The parser component also uses an intermediate objective
that compares parses with gold-standard trees.

Maillard, S. Clark, and Yogatama (2019) explicitly compute a
whole forest of potential binary parse trees for a sentence of
𝑁 words. All possible partial trees of a sentence are stored in
a chart data structure inspired by the CYK parser. The final
tree is constructed as a soft combination of the constituents
available in each chart cell, thus approximating discrete candi-
date selection and making the model entirely trainable using
backpropagation. However, the linear increase in candidates
with depth makes this algorithm memory intensive.

Yogatama et al. (2017) adapt the training of the SPINN model
to make it fully differentiable. As such, the model does not
require any structure supervision during training. Instead of
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providing the model with the parse of the input, the proce-
dure uses reinforcement learning (policy gradient methods)
to discover the best tree structures for the task. However,
the reinforcement learning strategy is notoriously slow and
limits the convergence speed.

Choi, Yoo, and S. Lee (2018) propose a method that is both
fully differentiable and maintains the discreteness of the pars-
ing process. Contrary to Yogatama et al. (2017), it does not
require the reinforcement learning artifice for training; con-
trary to Maillard, S. Clark, and Yogatama (2019), it computes
a single discrete tree instead of combinations from partial
trees. The methods proceed in 𝑁 − 1 iterations to build a
tree over 𝑁 words. Using the Gumbel-Softmax estimator,
two nodes are selected from the available candidates at each
iteration. During the forward pass, the estimator is used as a
discrete argmax function to select nodes to merge. During the
backward pass, The estimator relaxes the discrete sampling
operation so that it can be trained with backpropagation.

5.2 Unified parsing and compositional

model

The earlier architectures listed above have practical limita-
tions, requiring either a complex learning paradigm such as
reinforcement learning, intensive computations, or requir-
ing an external parser module. The method proposed in
Choi, Yoo, and S. Lee (2018) overcomes these limits. How-
ever, Williams, Drozdov, and Bowman (2018) investigate the
latent trees produced by Yogatama et al. (2017) and Choi,
Yoo, and S. Lee (2018) and show neither method produces
meaningful syntactic representations. The Gumbel-Softmax
estimator outputs inconsistent trees across initializations,
while reinforcement learning outputs trivial left-branching
trees. Moreover, Choi, Yoo, and S. Lee (2018) produce trees
by selecting and merging adjacent nodes. Therefore, it can-
not directly use architectures designed for standard parsing
formalisms such as dependency parsing algorithms.

In this section, we propose an original latent tree learning
method. Besides addressing all the limitations listed above,
our method relies on existing and well-known components.
It is not limited to a particular parser architecture as long as it
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is differentiable. Ultimately, our method offers the following
benefits:

▶ infers an explicit tree structure and trains recursively a
sentence embedding model within a unified architec-
ture;

▶ provides end-to-end training by back-propagating the
downstream task loss through the entire architecture;

▶ produces a discrete tree;
▶ accommodates any any graph-based dependency parser

architecture.

Our model jointly performs sentence parsing and the predic-
tion of a sentence embedding. The sentence embedding is
predicted by a TreeLSTM whose tree structure is provided
by a dependency parser.

Parsing model We use a standard dependency parsing
structure, obtained using a graph-based biaffine dependency
parser (Dozat and Manning 2017). Given an input sequence
of 𝑛 words, the parser computes a weighted matrix of size
𝑛 × 𝑛 for which each coordinate (𝑖 , 𝑗) is interpreted as a score
for the 𝑖th word to be the head of the 𝑗th word. Given the
un-normalized score matrix, the predicted tree is extracted
using the MST algorithm. However, our model is agnostic
to any graph-based parser architecture. This flexibility gives
us the freedom to explore the impact of the parser choice
(Section 5.4).

The procedure is formalized in two steps. First, in Eq. 5.2 to 5.4,
it computes a weight matrix that is interpreted as weighted
directed graph whose nodes are the sentence tokens:

Biaff(𝑥1, 𝑥2) = 𝑥𝑇1𝑈𝑥2 +𝑊 (𝑏)(𝑥1 ⊕ 𝑥2) + 𝑏(𝑏) (5.1)

𝑎
(𝑑𝑒𝑝)
𝑘

=𝑊 (𝑑𝑒𝑝)ℎ𝑘 + 𝑏(𝑑𝑒𝑝) (5.2)

𝑎
(ℎ𝑒𝑎𝑑)
𝑗

=𝑊 (ℎ𝑒𝑎𝑑)ℎ 𝑗 + 𝑏(ℎ𝑒𝑎𝑑) (5.3)

𝑠
(𝑎𝑟𝑐)
𝑘 𝑗

= Biaff(𝑎𝑘 , 𝑎 𝑗) (5.4)

The second step performs parsing by computing a maximum
spanning tree from the graph. As in Dozat and Manning
(2017), we use the Max Spanning Tree (MST) algorithm (Chu
1965; Edmonds et al. 1967) to ensure the well-formedness of
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the tree:

𝛼𝑘 𝑗 = 𝟙
𝑚𝑠𝑡(𝑠(𝑎𝑟𝑐)

𝑘 𝑗
)𝑠

(𝑎𝑟𝑐)
𝑘 𝑗

(5.5)

Where 𝛼𝑘 𝑗 is the probability of the edge linking node 𝑗 to
node 𝑘. For a given node 𝑘, there is at most one non-zero
edge leading to its governor 𝑗.

Composition function Given a predicted tree structure,
we recursively encode the sentence using a variant of the
Child Sum Tree model from Tai, Socher, and Manning (2015)
detailed below:

ℎ̃ 𝑗 =
∑︂
𝑘∈𝐶(𝑗)

𝛼𝑘 𝑗ℎ𝑘 , (5.6)

𝑖 𝑗 = 𝜎
(︂
𝑊 (𝑖)𝑥 𝑗 +𝑈 (𝑖) ℎ̃ 𝑗 + 𝑏(𝑖)

)︂
, (5.7)

𝑜 𝑗 = 𝜎
(︂
𝑊 (𝑜)𝑥 𝑗 +𝑈 (𝑜) ℎ̃ 𝑗 + 𝑏(𝑜)

)︂
, (5.8)

𝑢𝑗 = tanh
(︂
𝑊 (𝑢)𝑥 𝑗 +𝑈 (𝑢) ℎ̃ 𝑗 + 𝑏(𝑢)

)︂
, (5.9)

𝑓𝑗𝑘 = 𝜎
(︂
𝑊 ( 𝑓 )𝑥 𝑗 +𝑈 ( 𝑓 )ℎ𝑘 + 𝑏( 𝑓 )

)︂
, (5.10)

𝑐 𝑗 = 𝑖 𝑗 ⊙ 𝑢𝑗 +
∑︂
𝑘∈𝐶(𝑗)

𝑓𝑗𝑘 ⊙ 𝑐𝑘 , (5.11)

ℎ 𝑗 = 𝑜 𝑗 ⊙ tanh(𝑐 𝑗), (5.12)

Where in Eq. 5.6, 𝐶(𝑗) denotes the set of children of node 𝑗.

We use the embedding computed by the weighted TreeLSTM
at the root of the tree as the sentence embedding. The tree
shape and the edge weights are given by the best prediction
of a graph parser. The equations from the TreeLSTM are
the same than the one presented in Section 3.2.3, except
for Eq. 5.6. Crucially, in our case, Eq. 5.6 is a weighted

sum rather than a standard sum and the weights are those

𝛼𝑘 𝑗 provided by the parser. The parsing model is linked to
the TreeLSTM by the weights 𝛼𝑘 𝑗 . This architecture allows
us to update jointly the parser and the TreeLSTM weights
using only the downstream task loss. The supervision comes
only from the objective of the downstream task, and no
intermediate structure target is required.
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1: In this configuration, we ob-
serve pre-training the parser
may cause weights 𝛼 to become
too large in Eq. 5.5. This leads to
poor downstream performance.
We correct this with a multiplica-
tive parameter 𝜏 whose value
is estimated during training. It
means we replace Eq. 5.5 with:
𝛼𝑘 𝑗 = 𝜏 · 𝟙

𝑚𝑠𝑡(𝑠(𝑎𝑟𝑐)
𝑘 𝑗

)𝑠
(𝑎𝑟𝑐)
𝑘 𝑗

for the

computation of tree weights.

Our model, illustrated in Figure 5.2, is fully differentiable and
preserves the discreteness of the tree composition process.
It relies on a dependency parsing formalism and could ac-
commodate any graph-based dependency parser. Intuitively,
the model induces a direct link between the inference of
the syntactic structure and the composition of the semantic
representation. If a connection between two nodes 𝑖 and 𝑗 is
irrelevant from a semantic standpoint, then its contribution
𝛼𝑘 𝑗 into the construction of the hidden state ℎ̃ 𝑗 (Eq. 5.6)
is likely to be marginal. When training the model, if such
connection becomes too tenuous, it becomes unlikely to be
selected when selecting the maximum spanning tree from
the graph in equation 5.5.

Figure 5.2: We illustrate the ar-
chitecture detailed in Eq. 5.2
to 5.12. The Biaffine parser pro-
vides the sentence structure
from which the TreeLSTM com-
putes sentence embeddings. The
full pipeline is differentiable as
the TreeLSTM weights are given
by the parser.

5.3 Evaluation on downstream tasks

Our architecture primarily aims to produce relevant em-
beddings for downstream tasks. To this end, we compare
our setup with other models from the literature on various
tasks. For this comparison, we first pre-train the parsing
submodel on human-annotated sentences from the Penn
Tree Bank (PTB) (Marcus, Santorini, and Marcinkiewicz
1993) converted to Stanford dependencies. We then fine-tune
the parser’s parameters on the task while training the full
model.1
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5.3.1 Semantic textual similarity (STS)

We first evaluate our model on the SICK-R downstream task
(Marelli et al. 2014), which is dedicated to assessing models’
compositional properties. The dataset comprises 9,927 sen-
tence pairs, distributed in a 4,500/500/4,927 train/dev/test
split, annotated for semantic similarity on a 1 to 5 real range.
A score of 5 means that the two sentences are completely
equivalent and 1 that the two sentences are completely dis-
similar. In between, their degree of equivalence differs given
the proportion of shared topics and information between
the two sentences. The dataset includes specific examples
of variations on passive and active forms, quantifier and
modifier switches, or negations. We extensively present the
construction of the dataset in 7.2.2 and give some illustration
examples of the task in Table 5.1.

Table 5.1: SICK-R is a Semantic Textual Similarity (STS) task for which labels are scores between 1 and
5. A score of 5 means that the two sentences are completely equivalent and 1 that the two sentences are
completely dissimilar. In between, their degree of equivalence differs given the proportion of shared topics
and information between the two sentences.

Sentence A Sentence B Target

“A man is singing a song and playing the guitar” “A man is opening a package that contains head-
phones” 1.6

“Two dogs are playing by a tree” “Two dogs are playing by a plant” 4.6

“A woman is riding a horse” “A man is opening a small package that contains
headphones” 1.0

“A potato is being sliced by a woman” “A woman is slicing a carrot” 3.0

“A man is screaming” “A man is scared” 3.6

“Men are sawing logs” “Men are cutting wood” 4.5

Training configuration We use a similar training procedure
as in Tai, Socher, and Manning (2015). We transform the target
𝑦 from the SICK-R task into the distribution 𝑝 defined by:

𝑝𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑦 − ⌊𝑦⌋ , 𝑖 = ⌊𝑦⌋ + 1
⌊𝑦⌋ − 𝑦 + 1, 𝑖 = ⌊𝑦⌋
0 otherwise

We use a dedicated architecture to predict the similarity
distribution from a pair of sentences. The similarity mod-
ule takes as input a pair of sentence vectors ℎ𝐿 and ℎ𝐿 and
computes their componentwise product ℎ𝐿⊙ ℎ𝑅 and their ab-
solute difference |ℎ𝐿 − ℎ𝑅 |. Given these features, we compute
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2: https://nlp.stanford.

edu/projects/glove/

3: We trained all models on
a single 1080 Ti Nvidia GPU.
Training time for each epoch
is approximately 1 minute.
The model counts 13.7M pa-
rameters. Data can be down-
loaded using the SentEval
package https://github.com/

facebookresearch/SentEval.

the probability distribution �̂�� using a two-layer perceptron
network (MLP):

ℎ× = ℎ𝐿 ⊙ ℎ𝑅 , ℎ+ = |ℎ𝐿 − ℎ𝑅 |,
ℎ𝑠 = 𝜎(𝑊 (×)ℎ× +𝑊 (+)ℎ+ + 𝑏(ℎ)),
�̂�� = softmax(𝑊 (𝑝)ℎ𝑠 + 𝑏(𝑝)),

(5.13)

Where 𝜎 is the sigmoid function. We use the KL-divergence
between the prediction �̂�� and the ground truth 𝑝 as a/
training objective:

𝐽(�) = 1
𝑁

𝑁∑︂
𝑘=1

KL(𝑝(𝑘) | |�̂�(𝑘)� ) + �| |� | |22 (5.14)

Finally during inference, the similarity score �̂� is computed
as �̂� = 𝑟⊺ �̂�� with 𝑟⊺ = [1, . . . , 5].

Hyper-parameters We set the hyperparameters in accor-
dance with the choices made in Tai, Socher, and Manning
(2015), such that we can directly compare our results in Ta-
ble 5.2. For all experiments detailed in the current section, the
batch size is fixed to 25, weight decay to 1𝑒−4 and gradient
clipping set to 5.0. The learning rate is set to 0.025 for the
TreeLSTM parameters. When using a pre-training procedure
for the parser, we set the learning rate to 5𝑒−3 and use the
following warm-up: for the first epoch, the parser is frozen.
For the following epochs, all parameters are trained. At each
epoch, the parser learning rate is divided by a factor of two.
Without pre-training, the learning rate is set to 5𝑒−4 for the
parser. All model weights are initialized with a Xavier dis-
tribution. The hidden size of the similarity architecture is
set to 50. The TreeLSTM hidden size is set to 150. We use
the Adagrad optimizer. We do not apply any dropout. We
perform training for a maximum of 20 epochs and stop when
no improvement was observed on the development set for
3 consecutive epochs. Regarding the vocabulary, we limit
the size to 20,000 words and initialize the embeddings layer
with 300-dimensional GloVe embeddings.2 The embeddings
are not updated during training.3

Table 5.2 reports the results from the test set. As expected,
structured models perform better than models using weaker
underlying structures. We also observe that our model is
competitive with a Bert-base upper-line. It is essential to note

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval
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that Bert models are heavily pre-trained on vast corpora,
whereas our structured models are trained only on the SICK-
R and PTB data.

Table 5.2: Evaluation of the
model on the SICK-R task: we
pre-train our parsing module on
the PTB and continue to update
the full model on the SICK-R task.
We compare with Bert and mod-
els relying on sequential and tree
structures. We report Pearson
correlation on the test set, by
convention as 𝑟 × 100 (average
and standard deviation from 5
runs). † indicates models that we
trained.

Encoder 𝑟

Bow† 78,2 (1,1)

LSTM† 84.6 (0.4)

Bidirectional LSTM† 85.1 (0.4)

N-ary TreeLSTM† (Tai, Socher, and Manning 2015) 85.3 (0.7)

Childsum TreeLSTM† (Tai, Socher, and Manning 2015) 86.5 (0.4)

Bert-base (Devlin et al. 2019) 87.3 (0.9)

Our model

Unified TreeLSTM† 87.0 (0.3)

5.3.2 Textual entailment

We also test our model on the Stanford Natural Language
Inference (SNLI) task (Bowman, Angeli, et al. 2015), which
includes 570k pairs of sentences with the labels entailment,
contradiction, and neutral. It is distributed in a 550k/10k/10k
train/dev/test split. We already presented some examples
from the SNLI task in Table 3.1. We reproduce some other
examples in Table 5.3.

Table 5.3: SNLI examples presented in the original paper (Bowman, Angeli, et al. 2015) and extracted from
the development section of the corpus.

Premise Hypothesis label

Two women are embracing while holding to
go packages. Two woman are holding packages. entailment

Two men on bicycles competing in a race. People are riding bikes. entailment

Two women having drinks and smoking
cigarettes at the bar.

Three women are at a bar. contradiction

Two doctors perform surgery on patient.
Two doctors are performing surgery on a
man. neutral

A man in a black shirt is playing golf outside. A man plays on a golf course to relax. neutral

Training configuration We use a similar training procedure
as in Choi, Yoo, and S. Lee (2018). A dedicated architecture
is used to predict the similarity distribution from a pair of
sentences. The similarity module takes as input a pair of
sentence vectors ℎ𝐿 and ℎ𝐿 and computes their component-
wise product ℎ𝐿 ⊙ ℎ𝑅 and their absolute difference |ℎ𝐿 − ℎ𝑅 |.



5.3 Evaluation on downstream tasks 77

Given these features, we compute the probability distribution
�̂�� using a three-layer perceptron network (MLP):

ℎ× = ℎ𝐿 ⊙ ℎ𝑅 , ℎ+ = |ℎ𝐿 − ℎ𝑅 |,
ℎ𝑠 = ReLU(𝑊 (1)[ℎ×, ℎ+, ℎ𝐿 , ℎ𝑅] + 𝑏(1)),
ℎ𝑠 = ReLU(𝑊 (2)ℎ𝑠 + 𝑏(2)),
�̂�� = softmax(𝑊 (𝑝)ℎ𝑠 + 𝑏(𝑝)),

(5.15)

We use the cross entropy loss between the prediction �̂�� and
the ground truth 𝑝 as a/ training objective:

𝐽(�) = − 1
𝑁

𝑁∑︂
𝑘=1

𝑝(𝑘)𝑙𝑜𝑔�̂�(𝑘)� + �| |� | |22 (5.16)

Hyper-parameters We set the hyperparameters in accor-
dance with the choices made in Choi, Yoo, and S. Lee (2018),
such that we can directly compare our results in Table 5.4.
For all experiments detailed in Section 5.3.2, the batch size
is fixed to 128, weight decay to 0, and gradient clipping set
to 5.0. The learning rate is set to 1𝑒−3 for the TreeLSTM and
the parser. The hidden size of the similarity architecture is
set to 1024. The TreeLSTM hidden size is set to 600. We use
the Adam optimizer. We apply a 0.2 dropout within the sim-
ilarity architecture. We perform training for a maximum of
20 epochs and stop when no improvement was observed on
the development set for 3 consecutive epochs. Still following
Choi, Yoo, and S. Lee (2018), we limit the size of vocabulary
to 100,000 words and initialize the embeddings layer with
300-dimensional GloVe embeddings. The embeddings are
not updated during training.

Encoder Test Acc.

Spinn \w Reinforce (Yogatama et al. 2017) 80.5
CYK and TreeLSTM (Maillard, S. Clark, and Yogatama 2019) 81.6
Spinn (Bowman, Gauthier, et al. 2016) 83.2
ST-Gumbel (Choi, Yoo, and S. Lee 2018) 86.0
Structured Alignment (Yang Liu, Gardner, and Lapata 2018) 86.3
Bert-base (Z. Zhang et al. 2020) 90.7

Our model

Unified TreeLSTM 85.0 (0.2)

Table 5.4: Evaluation of the
model on the SNLI-R task: We
pre-train our parsing module on
the PTB and continue to update
the full model on the SNLI task.
We compare with Bert and latent
tree learning models. We report
the accuracy on the test set (aver-
age and standard deviation from
2 runs).

We report the results in Table 5.4. Our results are close to
Choi, Yoo, and S. Lee (2018), which also compute semantic
representations along with discrete tree structures but relies
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on a distinct syntactic formalism. The performance gap can
be attributed to the use of dependency instead of binary
parsing. However, it is also important to note that we encode
the leaf nodes using only static embeddings, while Choi, Yoo,
and S. Lee (2018) apply sequential LSTMs to the leaf nodes,
resulting in a hybrid model with dual latent structures. The
authors affirm that "the LSTM applied to leaf nodes has a
substantial gain over the basic leaf [affine transformation]".
Based on their results, this transformation of the leaf node
induces an accuracy improvement of about 1.4 points.

In models from Yang Liu, Gardner, and Lapata (2018) and
Z. Zhang et al. (2020) sentences are encoded with direct
interaction using an attention mechanism. These architec-
tures relying on cross sentences attention outperform those
without. We hypothesize that, on this textual entailment task,
the final prediction cannot be directly deduced from both
sentence embeddings. In this case, Bert and the structured
alignment model have a clear advantage since they encode
interactions between both sentences.

5.4 Impact of the parser initialization

Our framework primarily aims to be a structured sentence
encoder. Accordingly, we have demonstrated in the previous
section that our architecture is competitive with comparable
approaches and might even be competitive with Bert-based
models. We are also interested in interpreting the structures
the model actually learns and how such structures impact
downstream performance.

In the previous experimental section, we pre-trained the
parser on human-annotated data. However, the optimal
structure of a sentence may not derive from linguistic insights.
It may also depend on computational factors. For example,
the length of the the computational path from the root to
the final representation could be an important factor. Tree-
structured neural networks compute the root at the very
last step, while in sequential LSTM, the computational path
from the root to the final representation is longer. Finally, as
explored in Chapter 4 some structures may be better adapted
for a given task. For example, tree-structure may be more
adapted for sentiment analysis but not be the best structure
for a keyword extraction task.
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In this section we perform an ablation study to better un-
derstand how the initialization of the parser impacts the
resulting structures (Section 5.4.3) and the final downstream
performance (Section 5.4.4). We begin by defining the differ-
ent initialization scenarios we considered (Section 5.4.1 and
Section 5.4.2). In all scenarios, we either continue to update
the parser when fine-tuning the model on downstream tasks
or freeze the parser and only train the TreeLSTM. These
two configurations are indicated with ✓ and × symbols
respectively.

5.4.1 Adjusting the proportion of linguistic

annotations

Tree-structured models traditionally rely on linguistic struc-
tures obtained by parsers (Tai, Socher, and Manning 2015).
Linguistic resources are available for languages such as
English; it is technically possible to pre-train the parser.
However, resources such as the PTB are not available in all
languages. To better quantify the benefits of using linguistic
annotations, we propose the following configurations, using
various proportions of the PTB to initialize the parser:

▶ In the PTB-All configuration, the parser is previously
pre-trained on the PTB. This configuration is the same
as in Section 5.3.

▶ In the PTB-∅ configuration, the parser parameters are
randomly initialized

▶ We also consider an initialization with only a small
proportion of the PTB and train a parser by only using
100 randomly selected samples. This configuration is
referred as PTB-100.

5.4.2 Using unsupervised structures

We are also interested in structures emerging from large pre-
trained models. Such models present similarities with recent
graph parser architecture. Although they are not trained with
a direct parsing objective, many lines of work investigate if
attention matrices can reflect syntactic structures (K. Clark
et al. 2019; Jawahar, Sagot, and Seddah 2019; Ravishankar
et al. 2021) or, on the contrary, if it is efficient to integrate tree
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4: Ravishankar et al. (2021) de-
code dependency trees from at-
tention matrices using the Chu-
LiuEdmonds maximum span-
ning tree algorithm (Edmonds
et al. 1967) and compare them
with gold treebank using the
Undirected Unlabeled Attach-
ment Score (UUAS)—the per-
centage of undirected edges re-
covered correctly.
5: As mentionned earlier, we
only aim at proposing a proof-of-
concept here. Therefore, we do
not test all possible heads and
layers to induce trees.

structural information within transformers (J. Bai et al. 2021;
Yau-Shian Wang, Hung-yi Lee, and Y. Chen 2019).

As stated in the Introduction, our model is agnostic to any
graph-based dependency parser. It is therefore possible to
use any model or heuristic to infer sentence structure. In
particular, we can use a pre-trained model such as Bert to
infer structures based on the internal representations it learns.
We do not intend to provide an in-depth analysis of how Bert
could be used for unsupervised parsing. Therefore, we do not
extensively explore how Bert could accommodate parsing
tasks. However, we instead propose a proof-of-concept that
our model can accommodate a large variety of graph-based
parsers and show it is indeed possible to use Bert as an
unsupervised parser in our case.

Bert relies upon the self-attention mechanism. Inside each
layer, tokens are computed as a weighted combination of each
other. For each token 𝑥, a query and key vector are computed
using a linear transformation detailed in Eq 5.17. Given these
vector tuples, the attention weights 𝑠 are computed following
Eq 5.18 in which 𝑁 refers to the dimension of the query and
key vectors.

𝑞 𝑗 , 𝑘 𝑗 =𝑊
(𝑞,𝑘)𝑥 𝑗 + 𝑏(𝑞,𝑘) (5.17)

𝑠𝑘 𝑗 = softmax
(︃
𝑘𝑘 · 𝑞 𝑗√
𝑁

)︃
(5.18)

We induce a tree structure following a procedure close to
the one used in Ravishankar et al. (2021).4 The method
interprets the combination weights 𝑠 as a weighted graph
whose nodes are tokens. We then apply Eq 5.4 to induce a
maximum spanning tree from the attention matrix as detailed
in Section 5.2. We make use of the last layer and induce a
tree from the first attention head.5 Given the tree structure
induced from Bert, we apply our TreeLSTM model detailed
in Eq. 5.6 to 5.12. We stress the fact that in this configuration,
we only use Bert as an unsupervised parser to infer a sentence
structure. The semantic composition along with the structure
to produce a sentence embedding is solely computed by the
weighted TreeLSTM.
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5.4.3 Impact of the initialization on parses

In this section, we analyze to which extent the structures
generated by our model are comparable with meaningful
linguistic annotations. We compare the parses generated by
two distinct models differing by their initialization on the
development set of both tasks. Our reference is the silver
parses from the PTB-All configuration, where the parser
is previously pre-trained on the full PTB and not updated
during training.

In Table 5.5, we measure the Unlabeled Attachment Score
(UAS) between the two parsers, that is, the ratio from the
number of common arcs between two parses by the total
number of arcs.

Parser 1 Parser 2

SICK-R (dev

UAS)

SNLI (dev UAS)

Impact of parser fine-tuning

PTB-100 (✓) PTB-100 (×) 85.2 (1.5) 5.6 (1.9)

PTB-All (✓) PTB-All (×) 98.4 (0.1) 11.7 (0.9)

Impact of the PTB sample size

PTB-100 (✓) PTB-∅ (✓) 6.3 (0.0) 10.1 (10.7)

PTB-All (✓) PTB-∅ (✓) 10.1 (0.0) 15.1 (15.4)

PTB-All (✓) PTB-100 (✓) 76.9 (0.7) 0.3 (0.2)

Unsupervised parser

Bert (×) PTB-All (×) — 13.0 (4.9)

Bert (✓) PTB-All (×) — 13.7 (2.7)

Table 5.5: Impact of the parser
initialization on parses: we com-
pare the parses from the SICK-
R and SNLI development sets
using different parser initial-
izations. We obtained the PTB
parses with the graph parser ini-
tialized on a given proportion of
the PTB (Section 5.2). Regarding
Bert , we inferred the structures
from the pattern learn by the
pre-trained model (Section 5.4).
We either continue to update the
parser (✓) when fine-tuning the
model on downstream tasks or
freeze the parser (×) and only
train the TreeLSTM. UAS cor-
responds to the mean pairwise
comparison of two configura-
tions between two runs (stan-
dard deviation in parentheses).

We observe distinct behaviors given both tasks. We believe
this effect is due to the differences between training configu-
rations—detailed in Section 5.3.2 and 5.3.1. In particular, we
use the Adagrad optimizer for the SICK-R task and Adam
for the SNLI task.

For the SICK-R task, the UAS between PTB-∅ and PTB-All
are very low. This reveals that the parses obtained with
only downstream task supervision overlap very little with
with gold linguistic parses. In this regard, we share the
observation from Williams, Drozdov, and Bowman (2018)
that latent trees obtained from sole downstream supervision
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are not meaningful in syntax. However, PTB-All and PTB-100
are remarkably close; only a few PTB samples are needed to
obtain intelligible linguistic parses with our setup. Regarding
the PTB-100 configuration, we note an evolution of the parses
when fine-tuning on the downstream task. We hypothesize
that the model can adapt itself to the dataset’s specificity.

Regarding the SNLI task, fine-tuning the parser deeply im-
pacts the shape of the parses. Depending from the initializa-
tion, parses will converge to distinct structures. Indeed, the
UAS between all configurations is very low. Moreover, we
observe that when using a random initialization (PTB-∅), the
standard deviation between the UAS from various runs is
very high. This reveals that without fixed initialization, the
parses tend to show some instability.

For the initialization with an unsupervised structure, we
only evaluate our setup on the SNLI task, which has more
training samples. We compare the structures obtained with
Bert with the silver trees from the PTB-All-× configuration.
We present the mean UAS over the trees obtained for all
attention heads. The standard deviation is relatively high,
pointing underlying structures differ given the attention
head. Nonetheless, self-supervised structures do not align
well with linguistic insights. When updating Bert together
with the TreeLSTM, the UAS increases while the standard
deviation decreases. As Bert is fine-tuned, structures tend to
become more standard and present slightly more similarities
with linguistic patterns.

Visualization of the parses We illustrate the effect summa-
rized in Table 5.5 on some chosen examples. Figures from the
first column (5.3a, 5.3c and 5.3e) show the parses obtained
without updating the parser component on the downstream
task. Figures from the second column (5.3b, 5.3d and 5.3f)
show the evolution of the parses for the same initialization
but after fine-tuning the parser on the SNLI task. Figures
from the first raw (5.3a and 5.3b) are initialized using the full
PTB, the second raw (5.3c and 5.3d) is initialized using 100
PTB samples, while the one from the last raw (5.3e and 5.3f)
are initialized using unsupervised patterns.

As a result of the fine-tuning, we observe that trees evolve
into trivial structures and tend to connect every node to
an arbitrary root. We postulate that such trivial structures
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(a) Parse obtained using the the
PTB-All (×) configuration.

(b) Parse obtained using the the
PTB-All (✓) configuration.

(c) Parse obtained using the the
PTB-100 (×) configuration.

(d) Parse obtained using the the
PTB-100 (✓) configuration.

(e) Parse obtained using the atten-
tion head #1 and without updating
Bert.

(f) Parse obtained using the atten-
tion head #1 and updating Bert.

Figure 5.3: Example of parse
obtained using various config-
urations from our model. The
parser component is initialized
on PTB-All (5.3a, 5.3b), PTB-100
(5.3c, 5.3d) or Bert (5.3e, 5.3f).
We either freeze (×) or update
(✓) the parser during the fine
tuning on the SNLI. We include
the weights 𝛼 produced from the
parser. We report the accuracy
from a single run on the test set.

present advantages from a computational standpoint. Shi
et al. (2018) also observe that trivial trees without syntax
yield better results than syntax and latent trees. They postu-
late that balanced binary trees benefit from two advantages.
First, balanced trees treat all leaf nodes equally, making it
easier to select essential information from all words within a
sentence automatically. Second, balanced trees have shorter
tree depths, which induces a shorter path for propagating in-
formation from leaves to roots, thereby reducing propagation
errors.

For Bert parser initialization, we observe the fine-tuning
produces rather sequential patterns, with words connected
to direct neighbors. Some isolated groups of words also
present inner connections.

5.4.4 Impact of the initialization on downstream

tasks

We observed in previous Section 5.4.3 that the initialization
and the training configuration of the parser component
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deeply impact the resulting parses. We now study the impact
of the parser initialization on downstream performance.

Table 5.6: Impact of the parser
initialization on downstream
task performance: We pre-train
the parser module with a given
sample size from the PTB. We
either freeze (×) or update (✓)
the parser during the fine-tuning.
We report the average score test
set from 5 runs for SICK-R and 2
runs for SNLI (the score from the
development set are in parenthe-
ses). We report Pearson correla-
tion by convention as 𝑟 × 100.

PTB sample

size

Parser

fine-tuning

SICK-R (𝑟) SNLI (Acc.)

Linguistic annotations

PTB-∅ ✓ 85.6 (85.6) 84.6 (85.5)

PTB-100 × 86.4 (86.6) 84.5 (85.5)

PTB-100 ✓ 86.5 (86.9) 84.9 (85.8)

PTB-All × 86.8 (87.2) 85.0 (85.8)

PTB-All ✓ 87.0 (87.5) 85.0 (85.5)

Unsupervised parser

Bert × — 84.4 (85.3)

Bert ✓ — 84.6 (85.1)

In Table 5.6, we compare the impact of the different initial-
izations for both tasks. For each setup, we report the Pearson
correlation on the test set of the SICK-R task and the accuracy
on the test set from the SNLI task.

We either freeze the parser component or continue to up-
date it, given the downstream loss for each initialization.
Fine-tuning the parser on the task generally leads to an
improvement in the downstream results. In that regard, we
share the observation from other latent tree learning methods
(Choi, Yoo, and S. Lee 2018; Maillard, S. Clark, and Yogatama
2019); models jointly learning the parsing and composition
function outperform those with a fixed structure.

We also observe that models using the full or partial anno-
tated data outperform models relying on the sole downstream
supervision (PTB-∅). This observation is more clear on the
SICK-R task. We previously observed that fine-tuning the
parser can lead to tree structure diverging from linguistic
patterns. Nonetheless, human annotations appear to be a
good initialization for our model regarding the downstream
performance.

We can observe that models relying on linguistic-driven struc-
tures achieve better performance. Nonetheless, the difference
is thin, and we present an average score across trees obtained
from all attention heads. Therefore some attention heads
might present structures as efficient as linguistic patterns.
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5.5 Conclusion and future work

We evaluate our model on textual entailment and semantic
similarity tasks. Regarding the textual similarity task, we
show that our setup is competitive with Bert base, although
the latest is trained on datasets many orders of magnitude
larger. We explore to which extent the trees produced by our
model compare with linguistic structures and how this ini-
tialization impacts downstream performance. We empirically
observe that downstream supervision troubles producing
stable parses and preserving linguistically relevant struc-
tures. To encourage convergence towards readable linguistic
structures, we examine a number of initialization setups.
Depending on the optimization setup, the parse tree may
present instability. We also observe that our structures often
converge toward trivial branching patterns, which have lit-
tle in common with gold linguistic parses. However, with
respect to the downstream performance, linguistic insights
appear to be a relevant initialization.





A study of the shallow

structure in transformer models 6

6.1 Transformer as

graph neural

networks . . . . . . 89

6.1.1 Defining graph

neural networks . 89

6.1.2 Defining trans-

former’s message

passing functions 91

6.1.3 Tricks and limits . 92

6.1.4 Interpretation . . . 93

6.1.5 Graphs, trees,

sequences . . . . . 93

6.1.6 Are transformers

over-parametrized? 95

6.2 Dynamic trans-

former depth . . . 96

6.2.1 Related work . . . 96

6.2.2 Model architecture 97

6.2.3 Pre-training objec-

tive . . . . . . . . . . 98

6.2.4 Datum and infras-

tructure . . . . . . . 99

6.3 Experiments . . . . 99

6.3.1 Analysis of the

pre-training . . . . 100

6.3.2 Application to

downstream tasks 102

6.4 Conclusion and

future work . . . . 105

„At midnight in the month of June,

I stand beneath the mystic moon.

An opiate vapour, dewy, dim,

Exhales from out her golden rim,

And, softly dripping, drop by drop,

Upon the quiet mountain top.

Steals drowsily and musically

Into the universal valley.

[ . . . ]

— Edgar Allan Poe

The Sleeper, 1831

The previous chapters focused on tree-structured models. We
observed that such architectures have practical limitations,
including low computational efficiency due to batching diffi-
culties and the frequent requirement to infer sample structure
from annotated data. Because of their practical constraints
and limited performance increment, the community puts
the focus on alternative methods such as recurrent neural
networks (Cho et al. 2014; Hochreiter and Schmidhuber 1997)
or transformers (Vaswani et al. 2017) that have gained an in-
creasing popularity in recent years. Unlike tree-based models,
these methods do not require costly annotations.

Transformers introduce a profound paradigm shift with re-
current and recursive architectures. For the latter, the input
structure determines the computational path: recurrent net-
works process words sequentially given their order; recursive
networks process words in a bottom-up manner—starting
from the leaves up to the root. In contrast, Transformers
process all words simultaneously through a fixed number
of layers and do not appear to enforce an obvious structure.
However, as many results suggest, these new models ac-
quire some sort of structure. In particular, Linzen, Dupoux,
and Goldberg (2016) probe LSTM architecture for grammar
competencies such as subject-verb agreement. While LSTMs
do not have inherent representations of hierarchical struc-
ture, they can capture a substantial amount of grammatical
structure when explicitly supervised. Jawahar, Sagot, and
Seddah (2019) perform a series of experiments to investigate
the nature of the representations learned by different layers
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of Bert. They observe that the nature of information encoded
by Bert evolves with the layer depth: beginning with surface
features in the earlier layers and progressing to syntactic and
semantic aspects at the top. Based on their findings, Bert rep-
resentations reflect linguistic information in a compositional
manner that mimics classical tree-like structures. K. Clark
et al. (2019) analyze the patterns across Bert ’s attention heads
and probe them for linguistic phenomena. They demonstrate
that certain attention heads correlate well with linguistic
notions of syntax and coreference.

This chapter interprets transformers as graph neural net-
works. We also extend this formalism beyond transformers
to sequential and tree-structured models. We use it as a new
analysis grid for these architectures. While most recent model
analysis work for transformers focuses on probing vector
representations or attention maps, our formalism provides
a new interpretation path for such architectures. Given our
interpretation, we conjecture that layers do not act as different
feature extractors—each specialized at a given abstraction
level. But, that the number of layer applications gradually
abstracts the surface information into semantic knowledge.
Layers are thus part of an iterative process where the token
contextualized representations are progressively refined. We
can thus study how transformers process text in the light of
this iterative transformation.

We organize our argumentation as follows: Section 6.1 inter-
prets transformers as structured neural networks and layers
as operations on fully connected graphs. We then challenge
our formalism by conducting an empirical investigation of
the role of multiple layers in deep transformer models. Sec-
tion 6.2 proposes a variant of Albert (Simoulin and Crabbé
2021b) that dynamically adapts the number of layers applied
to each token. In particular, we encourage our model to be par-
simonious and limit the total number of iterations performed
on each token. In Section 6.3, we analyze token transforma-
tion across the network depth and during the pre-training
(Section 6.3.1), fine-tuning and inference (Section 6.3.2).
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6.1 Transformer as graph neural

networks

In this section, we begin by briefly introducing graph neural
networks (GNN) and reviewing a few key concepts. Next,
we formalize transformers as GNNs and discuss how this
interpretation offers new analysis methods or reflection for
architecture evolutions.

6.1.1 Defining graph neural networks

In this section, we summarize the graph neural network
framework as defined in Hamilton (2020). Graph neural
networks operate on graph-structured data. We define a
graph G by a tuple of sets G = (V, E). With V the set of
vertices and E the set of edges between the node. A graph is
a ubiquitous data structure that can describe many complex
systems. For example, molecules are a group of atoms held
together by chemical bonds. Chemical graphs are full-fledged
representations, with vertices corresponding to atoms and
edges to chemical bonds.

Figure 6.1: Illustration of a graph
neural network (GNN) applied
to an instance of a graph. The
graph neural network takes the
graph along with a set of node
features (represented as vectors
on the figure) as input and asso-
ciates each node 𝑢 ∈ V from the
graph to an embedding 𝑧𝑢 . For
the node 𝑢 (in blue), we illustrate
its neighborhood N(𝑢) as all the
nodes directly connected to 𝑢 (in
yellow).

Graph neural networks take as input a graph G along with a
set of node features 𝑋 ∈ ℝ𝑑×|V|, with 𝑑 the network hidden
size. We illustrate a graph neural network in Figure 6.1. Graph
neural networks generate a node embedding 𝑧𝑢 ,∀𝑢 ∈ V.
They iteratively update node hidden embeddings ℎ(𝑘)𝑢 using
a neural message passing process. We can decompose each it-
eration into two steps: First, an aggregation step (Equation 6.1),
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1: The aggregate function takes
a set as input and is therefore
permutation invariant by design.

that aggregate the information from all nodes directly con-
nected to 𝑢, that we define as the graph neighborhood N(𝑢).
Then an update step (Equation 6.2) that update each hidden
embedding given its neighborhood aggregated information
and its previous state. We illustrate the iterative process in
Figure 6.2.

𝑚
(𝑘)
N(𝑢) = aggregate(𝑘)

(︂
{ℎ(𝑘)𝑣 ,∀𝑣 ∈ N(𝑢)}

)︂
, (6.1)

ℎ
(𝑘+1)
𝑢 = update(𝑘)

(︂
ℎ
(𝑘)
𝑢 , 𝑚

(𝑘)
N(𝑢)

)︂
, (6.2)

Here, the aggregate and update function are differentiable
and 𝑚N(𝑢) is the message aggregated from 𝑢 neighborhood.
1

Figure 6.2: Illustration of one iteration to compute the hidden state of the node 𝑢 (in dark blue). We decompose
the iteration into two steps: the aggregation (Equation 6.1) and update (Equation 6.2) step. We illustrate two
iterations, at step 𝑘 to compute ℎ𝑘+1

𝑢 and 𝑘 − 1 to compute ℎ𝑘𝑢 . We adapted the figure from Hamilton (2020).

For simplification, we can add self-loops to the input graph
such that 𝑢 is included in its own neighborhood N(𝑢). The
message passing iteration can then be defined using a single
equation and we implicitly define the update step in the ag-

gregate step (Equation 6.3). We illustrate the iterative process
with this simplification in Figure 6.3.



6.1 Transformer as graph neural networks 91

ℎ
(𝑘+1)
𝑢 = aggregate(𝑘)

(︂
{ℎ(𝑘)𝑣 ,∀𝑣 ∈ N(𝑢) ∪ {𝑢}}

)︂
, (6.3)

Equation 6.4 defines the embedding of each node as its
hidden state after 𝐾 message passing iterations:

𝑧𝑢 = ℎ
(𝐾)
𝑢 ,∀𝑢 ∈ V, (6.4)

At each iteration, each node aggregates information from
its 𝑘-hop neighbors. Node embeddings therefore encode
structural and feature-based information.

Figure 6.3: Illustration of one iteration to compute the nodes hidden state. We include each nodes in its own
neighborhood N(𝑢) and thus implicitly define the update step in the aggregate step (Equation 6.3). We illustrate
iterations, at step 𝑘 to 𝑘 + 1.

6.1.2 Defining transformer’s message passing

functions

Transformers (Vaswani et al. 2017) may easily be defined
under the graph neural network framework. They transform
inputs through a fixed number of layers. As detailed in
Section 3.2.4, each layer is composed of a multi-head attention
(MHA) block and a feed-forward network (FFN). The self-
attention mechanism that transforms a set of vectors into what
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2: In fact, we can also formally
decompose transformer layers
by considering the MHA layer
as the aggregate function and the
FFN layer as the update function.
This interpretation may provide
a formal background to analyze
the role of the FFN.

is known as contextualized vectors. Each contextualized vector
is a weighted average of the vectors from the original set.
Since attention composes every vector from the set, we can
consider that transformers operate on fully connected graphs.
We can adapt the Equation 6.3 for transformers and compute
the contextualized representation ℎ𝑢 of given token 𝑢 in an
input text as follow:2

ℎ0
𝑢 =𝑊 (𝑒)𝑢 +𝑊 (𝑝) (6.5)

ℎ
(𝑘+1)
𝑢 = FFN(𝑘)

(︂
MHA(𝑘)

(︂
{ℎ(𝑘)𝑣 ,∀𝑣 ∈ N(𝑢)

)︂
+ ℎ(𝑘)𝑣

)︂
, (6.6)

Where Equation 6.6 is the first layer that encodes words using
𝑊 (𝑒) embedding layer summed with positional embeddings
layer 𝑊 (𝑝). The neighborhood N(𝑢) of each token 𝑢, corre-
sponds to every token in the sentence, including the token 𝑢
itself.

6.1.3 Tricks and limits

We can interpret transformers as GNNs operating on a fully
connected graph. However, in the specific case of NLP, trans-
formers should preserve the information about the sequential
order of words. In that regard, transformers borrow common
tricks and mechanisms from graph neural networks.

The transformer formalization encodes the linear order of
words in the positional embedding layer 𝑊 (𝑝) from Equa-
tion 6.5. We can interpret the non-contextualized embeddings
ℎ0
𝑢 ,∀𝑢 ∈ V as the set of initial node features 𝑋 ∈ ℝ𝑑×|V|

defined in Section 6.1.1. As a result, the message passing
iteration defined in Equation 6.6 is permutation invariant, a
standard property in traditional graph neural networks.

It is also essential to preserve the word information across the
iterations such that ℎ(𝑘)𝑢 indeed captures the contextualized
information about the token 𝑢. This issue of preserving token
identities is addressed using the skip connection: before
and after the FFN layers, we add the source to the current
hidden state. The same mechanism is also commonly used
in GNNs to avoid over-smoothing. As detailed in Hamilton
(2020), this issue happens when node-specific information
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is lost after several message passing iterations. In such a
case, the representation of every node tends to become very
similar. Commonly this issue is addressed by including the
previous hidden state together with the aggregated state in
the computation of the updated state. This skip connection
aims at explicitly preserving information from the previous
iteration during the update.

6.1.4 Interpretation

The formalization of transformers as graph neural networks
opens an original angle to interpret them. The mechanism
of transformer layers is often compared to intuitive NLP
pipelines (Tenney, D. Das, and Pavlick 2019). Starting with
the lower layers encoding surface information, middle lay-
ers encoding syntax, and higher layers encoding semantics
(Jawahar, Sagot, and Seddah 2019; Peters et al. 2018).

In the graph neural network perspective, we conjecture that
transformers progressively refine the feature through an
iterative message passing process. As described in Xin et al.
(2020). become more fine-grained at each iteration. This also
provide a new interpretation path for Albert (Lan et al. 2020).
The model is based on the transformer architecture, except
that weights are tied across layers. In out GNN interpretation,
the model uses the same message passing function at each
iteration such that, in Equation 6.6, the functions 𝐹𝐹𝑁 (𝑘) and
𝑀𝐻𝐴(𝑘) are the same for each iteration 𝑘.

6.1.5 Graphs, trees, sequences

It is also possible to extend the graph neural network formal-
ism for other NLP models. Tree-structured models operate
on trees, which are directed acyclic graphs. The Tree-LSTM
equations are detailed in Section 3.2.3. They may also be
formatted in aggregate and update functions. In this case,
the aggregate function consists of the simple sum of the
node neighborhood hidden states. A key aspect is that the
graph defined by Tree-LSTM does not contain any loop. the
message passes in a bottom-up manner, starting from the
leaf to the root. Since they have no dependant, the leaf nodes
computation will be the same after the first iteration such
that ∀𝑘 ≥ 2, ℎ(𝑘)𝑢 = ℎ

(𝑘+1)
𝑢 . Similarly, for the computation of
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the leaf node parents, the inputs will be the same starting
from the second iteration. After a number of iterations equal
to the tree-depth, the value of all node hidden states will be
determined.

Figure 6.4: Latent structure
for distinct standard NLP
architectures. Illustration on
the first line of the poem: "The
Sleeper" by Edgar Allan Poe
(published 1831). We obtain the
constituency tree for Figure 6.4c
using the Berkeley neural parser
(Kitaev and Klein 2018). For Fig-
ure 6.4d, we parse the sentence
using the dependency parser
from spaCy (https://spacy.
io/api/dependencyparser)
(Honnibal and Johnson 2015).

(a) Unidirectional RNN (b) Bidirectional RNN

(c) N-ary Tree RNN (d) Childsum Tree RNN

(e) Transformer NN

Sequential LSTM may also be considered a particular kind
of graph neural network. A sequence is indeed equivalent to
an unary directed acyclic graph. As for the Tree-LSTM, the
LSTM equations may also be separated in a aggregate and
update functions. In this case, the aggregate function is just
the identity function since each node has exactly one child.

https://spacy.io/api/dependencyparser
https://spacy.io/api/dependencyparser
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3: Concerning this, J. Zhou et
al. (2020) states that such fixed
point is uniquely defined with
the assumption that aggregate
is a contraction map in Equa-
tion 6.3. By definition a con-
traction map is a function such
that there is some non nega-
tive real number 0 ≤ 𝑘 < 1
such that for all vector 𝑥 and 𝑦,
𝑑( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝑘 𝑑(𝑥, 𝑦), with 𝑑
a distance metric over our vector
space.

As for the Tree-LSTM, after a number of iterations equal to
the sequence length, the value of all node hidden states will
be determined.

We illustrate the input structure corresponding to the differ-
ent architectures in Figure 6.4. Sequential RNN or TreeRNN
operate on sparse graph. Node and edge numbers are equiv-
alent in order of magnitude: |V| ≈ |E|. On the contrary,
transformer operate on a fully connected graph. The number
of edges equals the number of nodes squared: |E| = |V|2.

6.1.6 Are transformers over-parametrized?

It looks like the answer is included in the question. Transform-
ers are indeed admittedly over-parametrized in the literature
(D. Chen et al. 2020; Hou et al. 2020; Voita et al. 2019).
However, the role of this over-parametrization is not well
understood. Transformer layersliterature are suspected to be
highly redundant (W. Liu et al. 2020) and to cause over-fitting
(Fan, Grave, and Joulin 2020; W. Zhou et al. 2020).

In the light of our GNN analysis transformers should natu-
rally share parameters across layers. As mentioned earlier,
the Albert model (Lan et al. 2020) already implements this
key specificity by tying weights across layers. Similarly, Tree-
LSTMs or sequential LSTMs, which can be interpreted as
GNN other specific graphs, also share their parameters across
iterations.

However, the critical distinction between transformers and
trees and sequences recurrent neural networks is the proper-
ties of the latent graph structure. Trees and sequences will
converge after a finite number of message passing iterations
since they do not include any loop within their structure.
However, transformers operate on a fully connected graph.
tokens’ hidden states cannot be computed in a given hierar-
chical order since they all depend on each other.

We hypothesize that tokens’ hidden states will eventually
converge toward a fixed point.3 We also hypothesize that
some tokens require more iterations than others and that
this convergence process will depend on the word and its
context. Indeed, many studies show that the weighted graph
formed by attention weights is not homogeneous. Some
tokens contribute in large proportion to the update of another
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token, while some have a marginal or null contribution to
the attention weights.

6.2 Dynamic transformer depth

We proposed to formalize transformers as graph neural net-
works. In light of this interpretation, we justified the possibil-
ity of sharing parameters across layers. We also formulated
two hypothesis:

▶ Tokens’ hidden states will eventually converge towards
a fixed point;

▶ Some nodes require more iterations than others, and
this convergence process will depend on the token itself
and its context.

This section aims to provide empirical evidence to support
this hypothesis. We design a variant of Albert that dynami-
cally adapts the number of layers for each token of the input.
We analyze the distribution of these iterations during pre-
training, fine-tuning, and inference. We organize the section
as follows: after reviewing the related work (Section 6.2.1), we
detail the model (Section 6.2.2) and the training methodology
(Section 6.2.4 and Section 6.2.3). In particular, we encourage
our model to be parsimonious and limit the total number of
iterations performed on each token. In Section 6.3, we analyze
iterations of the model during pre-training, fine-tuning, and
inference.

6.2.1 Related work

Adapting the transformer depth is an active subject of re-
search. In particular, deep transformer models are suspected
of struggling to adapt to different difficulty levels. While
large models correctly predict difficult examples, they over-
calculate simpler inputs (W. Liu et al. 2020). This issue can be
addressed using early-exit: some samples might be sufficiently
simple to classify using intermediate features.

Some models add a classifier to each layer (W. Liu et al. 2020;
Xin et al. 2020; W. Zhou et al. 2020). After each layer, given
the classifier output, the model either immediately returns
the output or passes the sample to the next layer. Exiting
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too late may even have negative impacts due to the network
"over-thinking" the input (Kaya, Hong, and Dumitras 2019).

Ongoing research also refines the application of layers at
the token level. B. Wang and Kuo (2020) build sentence em-
beddings by combining token representations from distinct
layers. Elbayad et al. (2020) and Dehghani et al. (2019) suc-
cessfully use dynamic layers depth at the token level for
full transformers (encoder-decoder). However, to the best
of our knowledge, our attempt is the first to apply such a
mechanism to encoder only transformers and to provide an
analysis of the process.

6.2.2 Model architecture

In this section, we detail the model architecture, illustrated
in Figure 6.5, and pre-training procedure.

We use a multi-layer transformer encoder (Devlin et al.
2019) which transforms a context vector of tokens (𝑢1 · · · 𝑢𝑇)
through a stack of 𝐿 transformer encoder layers (Eq. 6.7,
6.8). We use weight tying across layers and apply the same
transformation function at each iteration (Lan et al. 2020).

ℎ0
𝑡 =𝑊

(𝑒)𝑢𝑡 +𝑊 (𝑝) (6.7)
ℎ𝑛𝑡 = layer(ℎ𝑛−1

𝑡 ) ∀𝑛 ∈ [1, 𝐿] (6.8)

For the first layer,𝑊 (𝑒) is the token embedding matrix, and
𝑊 (𝑝) the position embedding matrix.

We augment the model with a halting mechanism, which
allows the model to dynamically adjust the number of itera-
tions for each token (Eq. 6.9 to 6.14). We directly adapted this
mechanism from Graves (2016). The main distinction with
the original version is using a transformer model instead of
a recurrent state transition model. The mechanism works as
follows: at each iteration 𝑛, we add the following operations
after Eq. 6.8. We assign a probability to stop 𝑝𝑛𝑡 for each token
at index 𝑡 (Eq. 6.9).

Given this probability, we compute an updated weight �𝑛𝑡
(Eq. 6.10), which we use to compute the final state as the
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linear convex combination between the previous and current
hidden state (Eq. 6.11).

𝑝𝑛𝑡 = 𝜎
(︁
𝑊ℎℎ

𝑛
𝑡 + 𝑏𝑛

)︁
(6.9)

�𝑛𝑡 = 𝑝𝑛𝑡 if 𝑛 < 𝑁𝑡 , 𝑅𝑡 elif 𝑛 = 𝑁𝑡 , else 0 (6.10)
ℎ𝑛𝑡 = �𝑛𝑡 ℎ

𝑛
𝑡 + (1 − �𝑛𝑡 )ℎ𝑛−1

𝑡 (6.11)

With 𝜎 the sigmoid function. We define the remainder 𝑅𝑡
and the number of iterations for the token at index 𝑡, 𝑁𝑡

with:

𝑅𝑡 = 1 −
𝑁𝑡−1∑︂
𝑙=1

𝑝 𝑙𝑡 . 𝑁𝑡 = min
𝑛′

𝑛′∑︂
𝑛=1

𝑝𝑛𝑡 ≥ 1 − 𝜖 (6.12)

As soon as the sum of the probability becomes greater than
1, the update weights �𝑛𝑡 are set to 0, and the token is not
updated anymore (Eq. 6.10). A small 𝜖 factor ensures that
the network can stop after the first iteration (Eq. 6.12).

Figure 6.5: As in the Albert
model, tokens are transformed
through the iterative application
of a transformer encoder layer.
Our model’s key specificity is the
application of the halting mecha-
nism, which dynamically adjusts
the number of iterations for each
token.

6.2.3 Pre-training objective

During the pre-training phase, we train the model with the
sentence order prediction (sop) — the task introduced in Lan
et al. (2020) that classifies whether segments from the input
sequence follow the original order or were swapped — and
the masked language model task (mlm) (Devlin et al. 2019).
We also encourage the network to minimize the number of
iterations by directly adding the ponder cost into Albert



6.3 Experiments 99

4: As emphasized in
https://github.com/

google-research/bert,
longer sequences are computa-
tionally expensive. To lighten
the pre-training process, they
advise using 128 sentence length
and increasing the length to
512 only for the last 10% of the
training to train the positional
embeddings. In this work, we
only perform the first 90% steps
as we are not looking for brute
force performance.
5: https://colab.research.

google.com/

pre-training objective. Given a length 𝑇 input sequence u,
Graves (2016) defines the ponder cost P(u) as:

P(u) =
𝑇∑︂
𝑡=1

𝑁𝑡 + 𝑅𝑡 (6.13)

We define the final pre-training loss as the following sum:

L̂= L𝑠𝑜𝑝 +L𝑚𝑙𝑚 + 𝜏P (6.14)

where 𝜏 is a time penalty parameter that weights the relative
cost of computation versus error.

6.2.4 Datum and infrastructure

We follow the protocol from Albert and pre-train the model
with BookCorpus (Zhu et al. 2015) and English Wikipedia.
We reduce the maximum input length to 128 and the number
of training steps to 112,500.4 We use a lowercase vocabulary
of size 30,000 tokenized using SentencePiece. We train all
our models on a single TPU v2-8 from Google Colab Pro5

and accumulate gradients to preserve a 4,096 batch size. We
optimize the parameters using Lamb with a learning rate at
1.76e-3.

6.3 Experiments

We now analyze our iterative model properties during pre-
training (Section 6.3.1) and fine-tuning (Section 6.3.2). We
start by describing the setup for each of the subtasks.

Masked language model (mlm) task We generate masked
inputs following Albert 𝑛-gram masking. We mask 20%
of all WordPiece tokens but do not always replace masked
words with the [MASK] token to avoid discrepancy between
pre-training and fine-tuning. We effectively replace 80% of
the masked position with [MASK] ([MASK/MASK]), 10% with a
random token ([MASK/random]), and keep the original token
for the last 10% ([MASK/original]).

https://github.com/google-research/bert
https://github.com/google-research/bert
https://colab.research.google.com/
https://colab.research.google.com/
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Next sentence prediction (sop) task We format our inputs
as “[CLS] 𝑥1 [SEP] 𝑥2 [SEP]”. In 50% of the case the two
segments 𝑥1 and 𝑥2 are effectively consecutive in the text. In
the other 50%, the segments are swapped.

Ponder cost We fix the time penalty factor 𝜏 empirically
such that the ponder penalty represents around 10% of
the total loss. To estimate the ponder cost, we discard the
remainder as𝑅 ≪ 𝑁 for sufficient values of𝑁 . Given Eq. 6.13,
the ponder cost then corresponds to the total number of
iterations in the sentence, which is given by 𝑙 ×𝑇, with 𝑇 the
number of tokens in the sequence and 𝑙 the average iterations
per token. We observe that Albert base loss converges to
around 3.5. We calibrate 𝜏 such that 𝜏P ≈ 0.35 ≈ 𝜏× 𝑙×𝑇. We
train distinct models, listed in Table 6.1, which we calibrate
such that their average number of iterations per token 𝑙 is
respectively 3, 6, and 12. We refer to these models as tiny,
small and base respectively.

6.3.1 Analysis of the pre-training

Analysis of the iterations We pre-train models with var-
ious configurations and observe the model mechanisms
during the pre-training in Table 6.1.

Table 6.1: Average number of
iterations given token types dur-
ing the pre-training. For each
model, we report a mean number
of iterations on our development
set, at the end of the pre-training.

Models tiny small base

𝜏 1e-3 5e-4 2.5e-4
Max iterations 6 12 24
mlm (Acc.) 55.4 57.1 57.4
sop (Acc.) 80.9 83.9 84.3

All tokens 3.8 7.1 10.0
All unmasked tokens 3.5 6.5 9.2
[MASK/MASK] 5.8 10.9 16.0
[MASK/random] 5.8 10.9 16.0
[MASK/original] 4.0 7.4 10.5
[CLS] 6.0 12.0 22.5
[SEP] 2.5 7.6 8.4

We observe that the [CLS] token receives far more iterations
than other tokens. This observation is in line with K. Clark
et al. (2019) who analyze Bert attention and report systematic
and broad attention to special tokens. We interpret that the
[CLS] token is used as input for the sop task and aggregates
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6: During inference, the model
cannot make the distinction be-
tween [MASK/original] and un-
masked tokens. However, we ob-
serve in Table 6.1 that the two
token types have a distinct mean
number of iterations. We believe
this is due to the distribution of
the [MASK] tokens. Indeed, we
follow the procedure from Al-
bert and use n-gram masking.
Therefore, [MASK/original] to-
kens tend to appear in the con-
text of [MASK] tokens. This spe-
cific context increases the mean
number of iterations.

a representation for the entire input. On the contrary, [SEP]
token benefits from usually few iterations. Again, this backs
up the observation emerging from the analysis of attention
that interprets [SEP] as a no-op operation for attention heads
(K. Clark et al. 2019).

We also observe an interesting behavior from the [MASK]

which also benefits from more iterations than average tokens.
As for the [CLS] token, we interpret that these tokens are
crucial for the mlm task. Looking further, we observe that the
number of iterations for [MASK/random] and [MASK/MASK]

is greater than [MASK/original]. In this case, although all
tokens are targeted in the mlm task, [MASK/random] and
[MASK/MASK] are obviously more difficult to identify.6

The model seems to have an intuitive mechanism and dis-
tributes iterations for tokens that are either crucial for the
pre-training task or present a certain difficulty level. This also
appears in line with early-exit mechanisms cited in Section 6.2,
that adapts the number of iterations, for the whole example,
to better scale to each sample level of difficulty.

Natural Fixed point We now analyze how the token’s hid-
den states evolve during our model iterative transformations.
At each iteration 𝑛, the self-attentive mechanism (Vaswani
et al. 2017) computes the updated state 𝑛 + 1 as a weighted
sum of the current states. This introduces a cyclic dependency
as every token depends on each other during the iterative
process. As convergence within a loopy structure is not guar-
anteed, we encourage the model to converge towards a fixed
point (S. Bai, Kolter, and Koltun 2019).

(a) base model. (b) small model. (c) tiny model.

Figure 6.6: Evolution of the cosine distance between hidden states ℎ𝑛𝑡 and ℎ𝑛+1
𝑡 from two consecutive iterations.

We use our base, small and tiny models and measure iterations on our development set at the end of the
pre-training.
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7: https://gluebenchmark.

com/leaderboard

8: See point (12) from https://

gluebenchmark.com/faq.

We obtain this property "for free" thanks to our architec-
ture specificity. Indeed at each iteration, the hidden state is
computed as a convex combination of the previous 𝑛 and
current 𝑛 + 1 hidden state. The combination is controlled
by �𝑛𝑡 (Eq. 6.11). If �𝑛𝑡 is closed to 0, then ℎ𝑛𝑡 ≈ ℎ𝑛+1

𝑡 and by
definition (Eq. 6.10, 6.12) �𝑛𝑡 will eventually be set to 0 at a
certain iteration.

Figure 6.6 represents the evolution of the mean cosine similar-
ity between two hidden states from two consecutive iterations
ℎ𝑛𝑡 and ℎ𝑛+1

𝑡 . The network indeed reaches a fixed point for
every token. The [SEP] and tokens that are not masked con-
verge quicker than [MASK] tokens. Finally, the [CLS] token
oscillates during intermediate iterations before reaching an
equilibrium.

6.3.2 Application to downstream tasks

During the pre-training phase, the model focuses on tokens
either crucial for the pre-training task or that present a certain
level of difficulty. Now, we study our model behavior during
the fine-tuning on downstream syntactic or semantic tasks.

Control test To verify that our setup has reasonable perfor-
mance, we evaluate it on the GLUE benchmark (Yau-Shian
Wang, Hung-yi Lee, and Y. Chen 2019). Results from Ta-
ble 6.2 are scored by the evaluation server.7 As in Devlin
et al. (2019), we discard results for the WNLI task.8 For each
task, we fine-tune the model on the train set and select the
hyperparameters on the dev set using a grid search. We tune
the learning rate between 5e-5, 3e-5, and 2e-5; the batch size
between 16 and 32, and epochs between 2, 3, or 4. To better
compare our setup, we pre-train Bert and Albert model
using our configuration, infrastructure, and data.

Table 6.2: GLUE Test results,
scored by the evaluation server
but without the WNLI task. To
facilitate the comparison, we re-
produce Bert and Albert, with
our pre-training dataset, infras-
tructure and configuration de-
tailed in Section 6.2.3.

Avg. Glue score

Bert-base 76.9
Albert-base 75.6

Albert-base + Adapt. Depth 75.2
Albert-small + Adapt. Depth 74.2
Albert-tiny + Adapt. Depth 72.6

https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/faq
https://gluebenchmark.com/faq


6.3 Experiments 103

9: Since we use SentencePiece
vocabulary, we assign to each
piece the dependency tag from
the whole token.
10: However, our model does
not necessarily perform fewer
computational operations. The
halting mechanism requires
some additional operations, and
we must still perform iterations
while all tokens did not stop. In
practise, as detailed in Table 6.1,
the maximum number of itera-
tions may reach 6, 12 or 24 for
the models tiny, small and base

respectively, which may be more
than Albert. As opposed to op-
timizing the model’s computa-
tion efficiency, we are more inter-
ested in analyzing the patterns
it learns.

We present results on the test set in Table 6.2. As expected,
the average score decreases with the number of iterations.
Indeed, we limit the number of computation operations
performed by our model. Moreover, we build our model
on top of Albert, which shares parameters across layers,
thus reducing the number of parameters compared with the
original Bert architecture. However, despite these additional
constraints, results stay in a reasonable range. In particular,
Albert-base with adaptative depth is very close to the version
with a fixed depth.

Probing tasks Conneau and Kiela (2018) introduce probing
tasks, which assess whether a model encodes elementary lin-
guistic properties. Such tasks are detailed in Section 3.4.2. We
consider semantic and syntactic tasks that do not introduce
random replacements. In particular, a task that predicts the
sequence of top constituents immediately below the sentence
node (TopConst), a task that predicts the tense of the main-
clause verb (Tense), and two tasks that predict the subject
(resp. direct object) number in the main clause (SubjNum,
resp. ObjNum). We provide examples for each of these tasks
in Table 6.3.

In our setup, we fine-tune the model on the task train set and
select the hyperparameters on the dev set using a grid search.
We use a 5e-5 learning rate and fine-tune the epochs between
1 to 5; we use a batch size of 32. Finally, we compare in
Table 6.4 the number of iterations performed for each token
on the Penn Tree Bank (Marcus, Santorini, and Marcinkiewicz
1993) converted to Stanford dependencies.9

We provide an accuracy baseline, obtained with the same
setup but using Albert without the dynamic halting mech-
anism. As in the previous experiment, we observe that for
these tasks, our model achieves competitive performance
despite computing fewer total iterations per tokens.10

Although all tasks achieve significant and comparable accura-
cies, they all require a distinct global mean of iterations. The
Tense task, which can be solved from the verb only, is com-
pleted in only 5.4 iterations, while the TopConst task, which
requires inferring some sentence structure, is performed in
7.2 iterations. This suggests the model can adapt itself to
the complexity of the task and globally spare unnecessary
iterations.
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Table 6.3: Examples from the tasks of the probing tasks (Conneau, Kruszewski, et al. 2018) of the SentEval
benchmark that we use in our experiments. The top constituent task (TopConst), aims at predicting the top
constituent immediately below the sentence root node. The Tense task aims at predicting the tense of the main
clause verb. The subject and object number (respectively SubjNum and ObjNum) tasks focus on the number
of respectively the subject and object of the main clause. All sentences are extracted from the Toronto Book
Corpus (Zhu et al. 2015). The part-of-speech, constituency and dependency parsing information are provided
with the Stanford Parser (2017-06-09 version), using the pre-trained PCFG model (Klein and Manning 2003).
The top constituent task (TopConst) classifies sentences on the basis of their sequences of top constituents
immediately below the sentence node. There are 19 classes for the most frequent top constructions, and one
for all other constructions.

Sentence Label

Tense

The smell churned my stomach even faster . PAST
I lean against the post and watch her set up . PRES

Subj Num

The crows circled above me . NNS
" I imagine it ’s nothing good , but speak , " the colonel said . NN

Obj Num

I saw the ramp leading back toward the surface . NN
I could feel their stares like hot rays penetrating into me . NNS

Top Const

They obviously protect him from anything he won ’t like . S_NP_VP_.
Did it belong to the owner of the house ? VBD_NP_VP_.

Looking at the token level, as during the pre-training (Sec-
tion 6.3.1), the iterations are unevenly distributed across
tokens. The model seems to iterate more on crucial tokens for
the task. For SubjNum, the subj tokens achieve the maximum
number of iterations, while for the ObjNum task, the obj and
root token iterates more. Similarly, all tasks present many
iterations on the main verb (root) that is crucial for each
prediction.
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Tense Subj Num Obj Num Top Const

punct (121k) 5.0 4.8 5.2 6.7
prep (101k) 4.6 4.6 5.4 6.2
pobj (98k) 4.5 4.6 5.4 5.8
det (86k) 4.5 4.6 5.1 6.1
nn (81k) 5.1 5.4 5.8 6.7
nsubj (80k) 5.3 6.1 5.9 7.5

amod (66k) 4.6 4.9 5.5 6.1
dobj (49k) 4.8 5.0 5.9 6.1
root (44k) 5.9 6.1 6.2 7.9

advmod (37k) 4.8 4.8 5.3 6.8

avg. 5.4 5.4 5.8 7.2
test Acc. 87.5 93.9 96.1 91.2
baseline Acc. 87.3 94.0 96.0 91.9

Table 6.4: Distribution of the
iterations across token depen-
dency types. We fine-tune our
base model on each probing task.
We then perform inference on
the Penn Tree Bank dataset and
report the number of iterations
given token dependency types.
In parentheses, we indicate the
number of occurrences for each
dependency tag. We only display
the top 10 most frequent tags. We
indicate in bold tags for which
the number of iterations is above
avg + std. We include a baseline
accuracy which we obtain with
the Albert-base version without
an adaptative depth mechanism,
and therefore 12 iterations were
performed for each token.

6.4 Conclusion and future work

We investigated the role of the layers in deep transformers.
We designed an original model that progressively transforms
each token through a dynamic number of iterations. We
analyzed the distribution of these iterations during pre-
training and confirmed the results obtained by analyzing
the distribution of attention across Bert layers, particularly
the specific behavior played by special tokens. Moreover, we
observed that key tokens for the prediction task benefit from
more iterations. We confirmed this observation during fine-
tuning, where the tokens with a large number of iterations
are also suspected to be key for achieving the task.

Our experiments provide a new interpretation path for the
role of layers in deep transformer models. Rather than ex-
tracting some specific features at each stage, layers could be
interpreted as iterations from a convergent process. We hope
that this can help to better understand the convergence mech-
anisms for transformers models, reduce the computational
footprint or provide new regularization methods.
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„[ . . . ] how does a person answer why

something happens? For example, Aunt

Minnie is in the hospital. Why? Because

she went out, slipped on the ice, and

broke her hip. That satisfies people. It

satisfies, but it wouldn’t satisfy someone

who came from another planet and knew

nothing about why when you break your

hip do you go to the hospital. [ . . . ] when

you explain a why, you have to be in

some framework that you allow

something to be true. Otherwise, you’re

perpetually asking why. [ . . . ]

— Richard Feynman

TV program Fun to Imagine, 1983

Compositionality is thought to be a key feature of human
language. Symbolic generative theories of language indeed
imply the possibility of producing an infinite number of
grammatical phrases and sentences using only finite means
(Chomsky 1957; Hauser, Chomsky, and Fitch 2002; Montague
1970). Humans derive phrase meaning by composing syn-
tactic and semantic components using compositional rules
(Cann 1993; Dowty 2007; Partee et al. 1984).

On the other hand, language models are trained using self-
supervised objectives with no direct linguistically oriented
supervision. Nonetheless, recent large pre-trained trans-
former models have shown striking abilities to process human
language and over-perform humans on many benchmarks
(Brown et al. 2020; Devlin et al. 2019). They also exhibit strong
consistency on agreements (subject-verb, noun-adverb, verb-
verb) which are determined by abstract structures and not
just linear order of words (Gulordava et al. 2018; Linzen,
Dupoux, and Goldberg 2016; Marvin and Linzen 2018; New-
man et al. 2021). However, many studies point out that their
compositional abilities are surprisingly limited and that they
struggle to generalize to specific out-of-domain examples
(Hupkes et al. 2020; Kim and Linzen 2020; Brenden M. Lake
and Baroni 2018).
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The ability of language models to process language with-
out inducing exhaustive symbolic composition rules is not
yet fully understood. Baroni (2019) suggest neural networks
may process language using partially or different rules than
humans. They emphasize human language is not fully char-
acterized by algebraic rules. Language models might rely
on less systematic phenomena such as semi-lexicalized con-
straints in syntax or irregular inflections. Brenden M Lake
et al. (2017) explore the possibility that language models over-
come their lack of compositional abilities with an exposition
to huge amounts of data.

In the previous chapters, we integrated syntactic biases into
neural networks. We evaluated the use of syntactic informa-
tion on meta benchmarks such as SentEval (Conneau and
Kiela 2018) and GLUE (Yau-Shian Wang, Hung-yi Lee, and Y.
Chen 2019). However, as observed in Conneau, Kruszewski,
et al. (2018), such tasks imply various linguistic phenomena.
Although scores assess the model’s ability to tackle the task,
it is still unclear whether models rely on a shallow lexical
pattern matching or an effective encoding of the syntactic
structure and lexical information. Second, the use of large
datasets for training (Bowman, Angeli, et al. 2015; Williams,
Drozdov, and Bowman 2018) adds difficulty in disentangling
the contribution of the data from the model structure.

In this chapter, we aim at better characterizing how the
model structure may affect their degree of compositionality.
We first review the current methods and resources to evaluate
compositionality (Section 7.1). Such methods may present
some limitations. In particular, they may use a text-to-text
setup, which makes it difficult to disentangle the effect of the
encoding and decoding parts. Other methods are also some-
times focused on a limited range of linguistic phenomena.
We propose two contributions in which we compare distinct
structured models, including tree-shaped models and Bert.
In Section 7.2, we analyze how model structure impacts the
degree of syntactic information captured by models. Using
a natural language inference task, we compare the perfor-
mance on sets of examples with specific linguistic properties.
In Section 7.3, we intend to accurately quantify to which
extent model structure is preeminent to draw compositional
knowledge. We build an evaluation setup with arithmetic
expressions containing specific properties. We observe how
models generalize outside their domain.
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7.1 Evaluating compositionality

It is undoubtedly possible to train efficient language models
without prior or posterior compositional properties. However,
building more compositional models is an active subject of
research. Such methods seek to improve transformer models
at learning compositional rules.

The first step toward building such models is to provide
accurate methods to measure their compositional abilities,
which is notoriously hard. First—as for every other language
evaluation benchmark—creating the data is a critical step.
Labeling raw data is time-consuming, and it isn’t easy to
precisely control the examples’ property. On the other hand,
generating artificial data may lead to poor lexical or structural
diversity. Additionally, studies show that models might use
lexical biases or shallow heuristics in the data to achieve the
task (Linzen and Leonard 2018).

Many popular benchmarks use a text-to-text setup: models
take raw text as input and should map it to a semantic form:
SCAN (Brenden M. Lake and Baroni 2018), PCFG (Hupkes
et al. 2020), CFQ (Keysers et al. 2020) and COGS (Kim and
Linzen 2020). For the SCAN dataset, raw sentences should be
mapped to a sequence of instructions, CFQ maps sentences
to Sparql queries and COGS to semantic forms.

Another line of research proposes to examine models on
a natural language inference task in which the properties
of sentence pairs are specified and controlled. Bowman,
Angeli, et al. (2015) analyze model compositional abilities
by inferring logical relations between pairs of sentences.
Such sentences are artificially generated using an artificial
language based on logical statements. They compare the
impact of structured models to encode these sentences with
explicit latent recursive structures. In our work, we try here to
better characterize the effect of encoder architectures, given
the various compositional aspects. Dasgupta et al. (2018)
propose a natural language inference task to evaluate the
compositionality of sentences captured in embeddings. The
studied properties include surface, semantic and syntactic
information. McCoy, Pavlick, and Linzen (2019) propose a
specifically designed dataset (HANS) to trick models on an
NLI task. Examples are designed to exhibit biases learned
by statistical models. A. Nie, Bennett, and Goodman (2019)
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aim at distinguishing the use of structure versus lexical
information. Models are trained given an adversarial training
setup in which object, subject, or adjectives attachment are
swapped in the sentence.

Other setups exist: PAWS is a large dataset containing sen-
tences that have high lexical overlap without being para-
phrases (Y. Zhang, Baldridge, and He 2019). The dataset is
specifically designed to distinguish models which rely on
lexical heuristic to solve sematic tasks. However, they do not
present a breakdown given the linguistic properties of the
sentence pairs and work on binary paraphrase classification.
Andreas (2019) proposes a formalism to measure composi-
tionality using similarity metrics through a communication
game.

Beyond evaluating the compositional capability of models,
many works aim to improve them. Some methods propose
to integrate structural biases within the architecture: in par-
ticular Tree-LSTM (Tai, Socher, and Manning 2015) or in
transformers with structured attention (Russin et al. 2019).
Some methods also propose to adapt the pre-training or fine-
tuning procedure (Furrer et al. 2020). Finally, other methods
propose to complete models with modules dedicated to
compositional operations (W. Liu et al. 2020; Ontañón et al.
2021).

7.2 Natural language inference

This chapter describes two experiments exploring whether
models rely on explicit structure and compositional opera-
tions to capture sentence meaning. This section starts with
analyzing the degree of syntactic information captured by
structured models. We focus on a Natural Language Infer-
ence task (NLI), which aims to determine whether a given
sentence entails a second. We embed both sentences from a
pair using various structured models and link the embed-
dings using a similarity module that classifies the sentence
pairs. We analyze how the sentences’ specific syntactic and
lexical properties impact the final performance.

We hypothesize that the complexity of the task requires
a compositional aptitude to derive the general sentence
meaning. However, recent work reveals that models can be
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easily tricked by specifically designed adversarial examples.
Such examples present lexical or syntactic variations that
are easily understandable for humans but result in deep
confusion for statistical-based models. To analyze the degree
of syntactic information captured by structured models,
we propose to evaluate a set of models on NLI examples
presenting specific syntactic or lexical properties. Such an
analysis grid allows us to distinguish the performance given
models and linguistic phenomena. We use it to analyze how
various structured models perform specific compositional
operations.

Examples are selected given the SICK dataset (Marelli et al.
2014) which consists of an NLI task specifically designed to
assess model compositional properties. Samples are built to
present a rich collection of linguistic constructions. Moreover,
syntactic and lexical operations are designed to require spe-
cific compositional awareness. Each sentence pair is labeled
given the studied transformation. We propose categorizing
transformations given the induced changes on the surface
lexical form or the underlying sentence structure.

Our experiments reveal that some models are indeed better
adapted to capture some linguistic aspects. Moreover, we
witness that some specific sentence structures or lexicon
might result in severe confusion when performing inference.
In particular, the replacement of words with semantic op-
posites or the scrambling of words between the premise
and hypothesis. For the latter, we perform additional analy-
sis to better capture the inclination of models to generalize
in such complex linguistic structures. We show that, while
some cases might be addressed by carefully choosing the
model structure, for others, it seems the relation of entail-
ment can only be learned by augmenting the training set
with corresponding examples.

7.2.1 Method

We map sentences 𝑠 to embeddings ℎ𝑠 using the models
exposed in Section 3.2: Bag Of Word (Bow), sequential LSTM
(Seq), hierarchical models such as Tree LSTM for dependency
and constituency structure (Dep and Const) and Bert (Bert-
cls).



112 7 Analyzing the relation between compositional properties and neural structures

Regarding the Tree LSTM models, we obtain the dependency
structures using the deep biaffine parser from Dozat and
Manning (2017) and the constituency structures using the
constituency neural parser from Kitaev and Klein (2018).
Regarding Bert, we use the original Bert-base and the Bert-
cls token as the sentence embedding.

For each model, we consider two types of embeddings vectors.
We use either traditional GloVe embeddings (Pennington,
Socher, and Manning 2014) or, as illustrated in Figure 7.1,
contextualized vector from the Bert model (Devlin et al. 2019).
When using Bert embeddings, vectors are normalized with
the L2 norm for Bow model to facilitate the joint convergence
of the model and Bert layers. When using GloVe embed-
dings, we used 300-dimensional word vectors trained on the
common crawl dataset (840B tokens) with a vocabulary of
2.2M case-sensitive words.

Figure 7.1: Models architecture:
We use either GloVe static em-
bedding or Bert in a fine-tuning

configuration such that the final
output layer is used as input for
a structured model as detailed
in the Section 7.2.1.

7.2.1.1 Similarity architecture and training objective

We choose a similar supervised framework as in Tai, Socher,
and Manning (2015) and use the given train/dev/test split.
We illustrate the full model in Figure 7.2. Parameters are set
given results on the dev set, and results are presented on the
test set. In the experiments section, results are presented given
the transformation applied to each couple of sentences.

Regarding Bert, we do not use the similarity architecture, but
rather directly feed the sentence pair to Bert. The prediction
is based on the Bert-cls token, later processed by a linear
layer and a softmax activation function.



7.2 Natural language inference 113

For other encoders, a dedicated architecture predicts the
similarity distribution of a pair of sentences. The similarity
module takes as input a pair of sentence vectors (ℎ𝐿 , ℎ𝐿) and
computes their componentwise product ℎ𝐿 ⊙ ℎ𝑅 and their
absolute difference |ℎ𝐿 − ℎ𝑅 |. These features are then fed
to a two-layer perceptron network (MLP) to compute the
probability distribution �̂��:

ℎ× = ℎ𝐿 ⊙ ℎ𝑅 , ℎ+ = |ℎ𝐿 − ℎ𝑅 |,
ℎ𝑠 = 𝜎(𝑊 (×)ℎ× +𝑊 (+)ℎ+ + 𝑏(ℎ)),
�̂�� = softmax(𝑊 (𝑝)ℎ𝑠 + 𝑏(𝑝)),

(7.1)

The KL-divergence between the predicted distribution �̂��
and the ground truth 𝑝 is used as a training objective:

𝐽(�) = 1
𝑁

𝑁∑︂
𝑘=1

KL(𝑝(𝑘)
|︁|︁|︁|︁|︁|︁�̂�(𝑘)� ) + �

2
| |� | |22 (7.2)

The ground truth 𝑝 is a three-dimensional one-hot vector de-
fined given the relation between the two sentences in the pair
(entailment, contradiction, or neutral). During inference, the
argmax of �̂� is considered. We report the accuracy between
targets and predictions to evaluate the performance.

Figure 7.2: We embed sentences
using various structured mod-
els. The similarity architecture
uses the sentence embeddings
component-wise product and ab-
solute difference to output a
probability distribution for the
entailment label.
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1: https://zenodo.

org/record/2787612#

.Xjh2qxfjJ24

7.2.1.2 Hyper parameters setting

Parameters are fixed using the dev set. We use a batch
size of 25. We use the Bert-base-cased model (Devlin et al.
2019) distributed on Huggingface (Wolf et al. 2020) with an
embedding size of 768. For Bert layers, we use 0.10 weight
decay and fix the learning rate to 2e-5. For other layers, the
learning rate is fixed to 0.025 with a weight decay of 1e-4.
Layers are initialized using a glorot distribution (Glorot and
Bengio 2010). Biases are initially set to 0 for tree structure
models and 1 for Seq model. When applicable, the model
hidden-size is fixed to respectively 150 and 300 when using
GloVe and Bert emeddings. The hidden-size of the similarity
module is set to 50. Models are trained during a maximum of
20 epochs using the Adagrad optimizer (Duchi, Hazan, and
Singer 2011) and AdamW for Bert (Loshchilov and Hutter
2019). When no improvement is observed on the dev set for
3 consecutive epochs, the training is stopped. Results are
reported on the test set.

7.2.2 Linguistic phenomena experiment

7.2.2.1 SICK Data

The SICK dataset (Marelli et al. 2014) consists of 9,840 sen-
tence pairs which have been manually annotated to assess
whether the first entails the second. The original sentences
are sampled from the 8K Image Flickr dataset (Hodosh,
Young, and Hockenmaier 2013) and the SemEval 2012 STS
MSR Video Description dataset (Agirre et al. 2012). These
two datasets contain sentences describing the same picture
or video. The sentence pairs are then transformed through a
3-step process: normalization to remove unwanted linguis-
tic phenomena; expansion to obtain sentences with specific
characteristics; pairing expanded sentences with normalized
sentences (and pairing both normalized sentences from the
pair). The dataset is already split into train/dev/test contain-
ing respectively 4,506/505/4,979 samples. Sentence pairs
have been manually transformed to include specific syntactic
or lexical properties detailed in Table 7.1. The dataset is freely
available for research purposes.1 Moreover, some additional
indexes detail the transformation that was applied to one
of the sentences from each pair. We use this information to

https://zenodo.org/record/2787612#.Xjh2qxfjJ24
https://zenodo.org/record/2787612#.Xjh2qxfjJ24
https://zenodo.org/record/2787612#.Xjh2qxfjJ24
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Table 7.1: Sick expansion rules: Detailed transformations applied to generate the SICK dataset. Transformations
are categorized given their impact on the sentence surface form. The null transformation refers to sentence
pairs for which no expansion transformation was performed: we only pair two normalized sentences
describing the same picture in the original dataset. For every other transformation, the final sentence pair is
generated out of a single original sentence transformed with normalization and expansion operations.

Transformations Examples

Lexical transformations

null No transformation Three boys are jumping in
the leaves

Children in red shirts are
playing in the leaves

so Replace words with semantic opposites A man is rowing a boat A woman is rowing a boat

lex Replace words with synonyms A young boy is jumping
into water

A young kid is jumping
into water

det Replace quantifiers The surfer is riding a big
wave

A surfer is riding a big
wave

Syntactic clause expansion

aa Add modifiers A deer is jumping a fence A wild deer is jumping a
fence

expn Expand agentive nouns
Some people playing

rugby are tackling each
other

Rugby players are tackling
each other

expa Turn adjectives into relative clauses A cute panda is lying
down

A panda that is cute is
lying down

expc Turn compounds into relative clauses The woman is frying a
chop of breaded pork

The woman is frying a
breaded pork chop

Global transformations

od Change determiners with opposites A dog is barking There is no dog barking

inv Insert a negation The boy is playing the
piano

The boy is not playing the
piano

top Turn active sentences into passive A man is driving a car The car is being driven by
a man

ws Scramble words The turtle is following the
fish

The fish is following the
turtle

perform a detailed breakdown of the performance of various
models given the transformation. We divide the transfor-
mations into three categories, given the degree of induced
alteration on the sentence surface form.

▶ Lexical transformations The first set of transforma-
tions induces local changes. Only individual words are
modified. Given the modification, the sentence mean-
ing can be preserved or altered. We expect every model
to be robust to such changes.

▶ Syntactic clause expansion In this set of alterations,
we add, remove or modify sub-trees of the sentence
structure. Such transformation has a low impact on
the syntactic tree structure but can deeply transform
the surface form of the sentence. We expect strongly
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structured models to be more robust to such transfor-
mations.

▶ Global transformations Finally, we consider a set of
modifications that impact both the surface and syntactic
form.

We also considered the possibility of exploiting the HANS
dataset (McCoy, Pavlick, and Linzen 2019), which comprises
30,000 sentence pairs automatically generated with specific
linguistic properties. Similarly to the SICK dataset, HANS
aims at identifying models relying on shallow heuristics to
perform natural language inference and includes a larger set
of transformations. However, it does not aim to characterize
model compositional abilities, as it generates sentences based
on a set of templates that share a similar compositional
scheme. From our point of view, it is less adapted for a
fine-grained analysis of compositional knowledge.

7.2.2.2 Lexical transformations

In the following sections, we compare how structured models
behave when facing such sets of transformations. Results
for lexical transformations are reported in Table 7.2. We
observe a distinction between so and lex transformations
which replace individual words with respectively antonyms
or synonyms. For so transformations, models show diffi-
culty in propagating lexical transformation into the final
sentence embedding and adjusting the meaning of the sen-
tence. For so transformations, we also observe that the use of
contextualized embeddings seems to even lower the results
of structured models compared to the use of static GloVe
embeddings.

Models may be sensitive to lexical variations Some pairs
seem difficult to predict for Bert-cls and Bow models. For
example, the following sentence pair is almost systematically
wrongly classified on all five runs: "A little boy and a woman
wearing a yellow shirt are getting splashed by a city foun-
tain" → "A little girl and a woman wearing a yellow shirt
are getting splashed by a city fountain". For Bow, we can
extrapolate that the fact that the subject includes two people
induces some confusion in the output representation. It is
less clear for Bert-cls.
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Table 7.2: Accuracy on the test set for SICK-E task for pair samples with lexical transformations. We report a
mean over 5 runs (standard deviations in parentheses). The best results for a given embedding are in bold.
The best results overall are underlined. The null transformation consider pair obtained out of two different
original sentences. The two sentences can differ given multiple, uncontrolled lexical or syntactic phenomena.
Therefore, the performance is usually lower for this category.

No transformation

(null)

Replace words with

semantic opposites

(so)

Replace words with

synonyms (lex)

Replace quantifiers

(det)

N 2,558 461 399 118

Glove embeddings

Bow 81.6 (0.9) 49.3 (3.6) 57.3 (2.7) 82.0 (5.1)
Const 84.6 (0.2) 66.5 (2.5) 76.5 (1.6) 98.6 (0.9)
Seq 83.1 (1.2) 63.7 (6.8) 74.1 (3.9) 98.8 (0.9)
Dep 84.8 (0.5) 69.6 (1.2) 76.5 (2.4) 98.6 (0.7)

Bert embeddings

Bow 77.5 (1.2) 26.9 (6.0) 80.2(4.3) 93.6 (5.9)
Const 76.0 (2.7) 53.6 (3.5) 77.8 (3.0) 96.8 (2.4)
Seq 81.5 (1.3) 46.9 (3.3) 83.6 (2.1) 100.0 (0.0)
Dep 82.7 (0.9) 57.6 (2.0) 80.8 (1.2) 99.3 (0.6)

Bert-cls 86.1 (1.4) 68.8 (7.4) 77.4 (3.6) 98.3 (0.9)

The Dep model seems particularly sensitive to transforma-
tions operated on the sentence’s main verb. For example, the
following sentence pair is better classified by Dep and Seq
models: "A woman is applying cosmetics to her eyelid" →
"A woman is removing cosmetics from her eyelid".

7.2.2.3 Syntactic clause expansion

This set regroups transformations involving syntactic ex-
pansion. All models show a strong robustness to adding
modifiers (aa expansion). When only using GloVe embed-
dings, expanding agentive nouns (expa), turning adjectives
into relative clauses (expn) and turning compounds into rel-
ative clauses (expc) expansions seem to be better captured by
the tree-structured model. However, using Bert embeddings
reduces the gap between models, which suggests some syn-
tactic information is captured in contextualized embeddings
for such transformations. It is particularly explicit for the
Bow model as the performance using GloVe or Bert word
embedding deeply differs for all transformations.

Some idiomatic structures are only captured by pre-trained

models Some pairs benefit from the use of Bert while



118 7 Analyzing the relation between compositional properties and neural structures

Table 7.3: Accuracy on the test set for SICK-E task for pair samples with syntactic clause expansion. We report
mean over 5 runs (standard deviations in parentheses). Best results for a given embedding are in bold. Best
results overall are underlined.

Add modifiers (aa)

Expand agentive

nouns (expn)

Turn adjectives into

relative clauses

(expa)

Turn compounds

into relative clauses

(expc)

N 138 12 58 19

Glove embeddings

Bow 77.4 (4.7) 53.3 (8.5) 60.7 (8.5) 64.2 (10.7)
Const 90.4 (0.8) 71.7 (11.3) 87.2 (0.8) 86.3 (7.1)
Seq 90.0 (2.5) 66.7 (9.1) 85.2 (3.6) 86.3 (7.1)
Dep 93.8 (1.5) 48.3 (13.3) 93.8 (1.8) 89.5 (3.3)

Bert embeddings

Bow 93.6 (4.3) 63.3 (4.1) 95.2 (6.5) 100.0 (0.0)
Const 88.0 (4.5) 51.7 (14.3) 84.1 (2.5) 88.4 (6.1)
Seq 96.8 (1.3) 78.3 (6.7) 97.6 (1.8) 98.9 (2.1)
Dep 94.8 (0.5) 81.7 (6.2) 95.5 (2.3) 92.6 (2.6)

Bert-cls 97.5 (0.7) 76.7 (8.2) 94.1 (4.6) 93.7 (6.1)

structure does not help with the prediction. For example:
"Someone is feeding an animal" → "Someone is giving food
to an animal" is always mapped to the wrong label with Dep
and Const models, while Bert-cls completes a perfect predic-
tion. The Bert pre-training process can correctly match the
semantic similarity between "feeding’ and "giving food to",
while compositional operations following a given structure
do not.

7.2.2.4 Global transformations

Bert does not systematically encode structure An example
from the word scrambling (ws) transformation illustrates the
advantage of structure in shallow cases: "A surfer is leaning
the surfboard against a wall" → "A surfer is leaning on a
surfboard". Bert-cls and Bow consistently predict the wrong
label, while all other models correctly classify the pair in
almost all runs.
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Table 7.4: Accuracy on the test set for SICK-E task for pair samples with syntactic clause expansion. We report
a mean over 5 runs (standard deviations in parentheses). The best results for a given embedding are in bold.
The best results overall are underlined.

Change determiners

with opposites (od)

Insert a negation

(inv)

Turn active sentences

into passive (top)

Scramble words (ws)

N 290 172 125 157

Glove embeddings

Bow 89.0 (2.4) 83.4 (7.9) 89.4 (3.3) 55.5 (3.9)
Const 96.7 (1.5) 96.7 (1.0) 85.9 (2.7) 60.0 (3.7)
Seq 97.4 (0.3) 97.1 (1.5) 84.0 (4.9) 62.9 (3.7)
Dep 97.3 (1.0) 96.9 (0.5) 87.2 (4.3) 62.2 (3.1)

Bert embeddings

Bow 94.8 (1.6) 94.8 (1.7) 88.5 (8.2) 54.0 (5.8)
Const 94.5 (1.6) 94.3 (2.2) 82.7 (15.0) 61.8 (5.9)
Seq 97.2 (0.3) 97.4 (0.9) 93.3 (5.0) 55.8 (4.2)
Dep 96.0 (0.8) 96.7 (0.6) 94.2 (1.9) 64.6 (3.7)

Bert-cls 96.3 (1.7) 94.4 (5.5) 94.2 (2.0) 47.0 (11.4)

7.2.3 Focus on the word scrambling

transformation

As observed in Section 7.2.2, all models poorly perform when
facing complex transformations such as word scrambling.
Such category contains distinct transformations, including
switching the arguments of a transitive verb, mixing modi-
fiers, exploiting verb transitive/intransitive alternations and
exploiting homonymy and polysemy. From our hypothesis,
such transformation requires heavy compositional ability.
Therefore, we propose to investigate deeper the possibility
of addressing such model limitations from an architectural
point of view. However, to keep trackable results and analysis,
we restrict the possible spectrum of transformations and limit
ourselves to switching the arguments and mixing modifiers
operations. Moreover, we only consider GloVe word vectors
models other than Bert.

7.2.3.1 SWAP dataset

The dataset introduced in Y. Nie, Yicheng Wang, and Bansal
(2019) is an NLI dataset composed of automatically generated
sentence pairs whose logical relations cannot be extracted
from lexical information alone. We refer to the latter as the
SWAP dataset. The dataset is decomposed following two
types of adversarial data for which the semantics of the
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sentence is changed by keeping the same lexicon and only
modifying its compositional structure. The two transforma-
tions are close to the one conducted for the word scrambling
(ws) on the SICK task, in particular the switching of the
arguments and mixing modifiers operations.

SOSWAP The transformation inverses the subject and ob-
ject in the sentence. For example, the following sentence is
modified as follows: "A child is pulling a woman on a sled
in the snow." → "A woman is pulling a child on a sled in
the snow.". The obtained sentence pair is labeled as contradic-

tory. The dataset contains 971 examples generated given this
transformation.

ADDMOD The transformation changes the adjective af-
fection from the subject to the object. For example: "A cat
sits alone in dry yellow grass." → "A yellow cat sits alone in
dry grass.". The obtained sentence pair is labeled as neutral.
The dataset contains 1,783 examples generated given this
transformation.

Figure 7.3: Concatenation of the
dataset: (right) we distribute the
examples from the SWAP dataset
following a stratified train/de-
v/test split among the corre-
sponding splits of the SICK
dataset. (left) We only include
the SWAP dataset in the SICK
test set.

As the dataset size is limited, we concatenate the SICK and
SWAP datasets. We experiment with two distinct concatena-
tion strategies illustrated in Figure 7.3. We use a stratified
train/dev/test split and distribute the examples among the
corresponding split from the SICK dataset. In this configu-
ration, the model is presented with specific examples of the
transformation during training. In the second configuration,
all examples are included in the SICK test set. During train-
ing, the model is not presented with any of the considered
examples. Here, we aim to evaluate the ability of the various
models to generalize to unseen typologies of examples. Re-
garding the training setup, we keep the method detailed in
Section 7.2.1.1 as well as the hyper-parameter setting.
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7.2.3.2 Results analysis

Table 7.5: Accuracy on the test set for SICK-E and SWAP task given the two proposed aggregation strategies.
We report a mean over 5 runs (standard deviations in parentheses). The best results for a given embedding
are in bold. The best results overall are underlined.

SWAP SWAP (only SICK training examples)

ALL SOSWAP ADAMOD ALL SOSWAP ADAMOD

Test Size 6,356 485 892 7,733 971 1,783

Bow 72.5 (1.1) 40.7 (4.1) 82.6 (3.2) 53.2 (4.1) 16.0 (10.4) 16.5 (10.7)
Const 85.5 (0.3) 90.5 (2.3) 97.2 (1.2) 54.3 (1.1) 0.2 (0.2) 6.0 (3.4)
Seq 83.7 (0.9) 89.9 (3.3) 95.0 (1.2) 53.5 (0.3) 0.2 (0.3) 0.8 (0.2)
Dep 84.3 (0.7) 78.4 (5.1) 94.1 (0.7) 56.5 (0.5) 0.3 (0.4) 12.0 (2.6)

Bert 86.5 (1.6) 91.4 (5.0) 96.6 (2.1) 53.9 (0.6) 1.0 (0.5) 1.0 (0.7)

We present the accuracy scores on the test set in Table 7.5. In
the two concatenation strategies, we present the accuracy of
the entire test set and filter on the SOSWAP and ADAMOD
test pairs.

The transformations in the SWAP dataset are much more
limited than in the SICK dataset which includes additional
transformations such as verb transitive/intransitive alterna-
tions or exploiting homonymy and polysemy. Nevertheless,
when no example is included in the training set, the accuracy
scores seem in line with the one for the word scrambling (ws)

transformation for the SICK dataset in Table 7.4.

For both transformations, all models fail to predict the correct
label when not exposed to the transformation during the
training. Only the Bow model stands out but with a sub-
stantial standard variation. However, the Dep model seems
not entirely tricked by the ADAMOD transformation. Even
more remarkable, Bert is completely fooled as well. From
these specific swapping examples, we assume that despite
explicit structure assimilation in the model, they may not be
able to generalize to a specific topology of unseen examples.
This may also contribute to the lower results for the word
scrambling (ws) on the SICK task.

7.3 Arithmetic expressions evaluation

So far, we used data generated via a semi-automated pro-
cedure, which enables precise control of the property of
the examples. On the other hand, generating artificial data
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may lead to poor lexical or structural diversity. Studies show
that models might use lexical biases or shallow heuristics
in the data to achieve the task (Linzen and Leonard 2018).
Consequently, shallow lexical and structural pattern match-
ing operations may be difficult to distinguish from effective
compositional operations.

Here, we aim to examine the compositional properties of
neural architectures without being affected by lexical phe-
nomena. Therefore, we propose a setup for which neural
models compose representations for sentences that do not
include words: arithmetic expressions. Arithmetic defines a
self-contained universe which can be described using a lim-
ited set of symbols and composition rules. This makes it easy
to build specific examples with isolated properties. By exten-
sion, we may evaluate neural models’ compositional abilities.
Indeed, numerically evaluating formal expressions theoreti-
cally requires capturing the formal rules of arithmetic. We
use the work from Hupkes et al. (2020) and consider aspects
of compositionality that may also be applicable for language:
localism, substitutivity, productivity, and systematicity.

Neural networks may be properly trained to solve mathe-
matical expressions. A line of work outlines that pre-trained
language models or static word embeddings capture scales
and notions of numeracy (Naik et al. 2019; Sundararaman
et al. 2020; Thawani et al. 2021; Wallace et al. 2019; Z. Zhang
et al. 2020). Beyond representing numbers, further work also
analyzes the ability of models to perform basic mathematical
reasoning (Dua et al. 2019; Geva, Gupta, and Berant 2020;
Saxton et al. 2019) or solve mathematical expressions (Lample
and Charton 2020).

Many of these related works mix raw text and numeracy and
focus on the ability of language models to handle numeric
representations. However, our problem is different. There-
fore, we introduce CobA, a Compositionality benchmark
using Arithmetic. The dataset consists of simple arithmetic
expressions combining natural integers with addition and
multiplication operators. For example, (5+4)×2. We generate
partitions of the dataset with specific in-domain and general-
ization sets, designed to evaluate the model’s ability for each
compositional aspect: localism, substitutivity, productivity,
and systematicity.

In Section 7.3.1, we detail the data generation process and
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2: We implement specific rules
for numbers that are prime and
cannot be decomposed with mul-
tiplication. We set the probability
𝑝 to expand, by default, at 0.5.

the distinct dataset partitions. In Section 7.3.1, we present
our training and evaluation setup. We also present our main
results on the CobA generalization set. In Section 7.3.3, we
perform an in-depth study to better analyze how the choice
of hyper-parameters might benefit specific abilities and how
the complexity of expressions impacts model performance.

7.3.1 Dataset description

7.3.1.1 Generation procedure

Using an automatic procedure, we generate arithmetic ex-
pressions. First, we generate a natural integer between 1 and
100, for example, 34. We then decompose it into the addition
or multiplication of two other integers, such as 2×17. We then
recursively decompose each integer in the new expression
as the product or sum of two integers or keep it unchanged,
with a probability 𝑝.2

As in Lample and Charton (2020), we use prefix notation (also
known as normal Polish notation). The arithmetic expression
2 × (14 + 3) is represented as the sequence ×2 + 14 3. This
notation avoids the use of parenthesis and therefore leads to
shorter expressions. We assign each symbol—natural integer
or operator sign—to a given token. We distinguish between
two distinct left and right-hand sides of an operator for each
expression. For example, we make the distinction between
the expression 14 + 3 and 3 + 14. We generate over 2.5M
unique expressions with between 0 and 9 operators given
this procedure.

7.3.1.2 Partitioning the dataset

Our dataset aims at evaluating model compositional prop-
erties. We take inspiration from the procedure proposed in
SCAN (Brenden M. Lake and Baroni 2018; Loula, Baroni, and
Brenden M. Lake 2018). We carefully select expressions to
create partitions (in-domain and generalization sets) from
the dataset. We split them such that in-domain and general-
ization sets have different distributions. It is impossible to
infer generalization examples without fully capturing the
properties ruling this specific aspect in the in-domain set. We
thus compare the ability of models to perform out-of-domain
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Table 7.6: Key statistics given each partition of the dataset. We report the figures for the in-domain /
generalization set for each statistic. We express the "Expressions with odds and evens", "Swapped-expressions
in-domain" and "sub-expressions in-domain" as the proportion of expressions verifying the property for each
set. The statistics that are determinants for the aspect studied in a given partition appear in bold.

Partitions Random Systematicity Productivity Localism Substitutivity

Mean value 66.3 / 66.2 67.0 / 68.2 66.4 / 65.3 66.1 / 67.4 66.1 / 66.4
Min number of operators 0 / 0 2 / 2 0 / 4 2 / 2 2 / 2
Mean number of operators 2.8 / 2.8 2.6 / 2.5 2.8 / 6.5 2.8 / 2.7 2.8 / 2.7
Max number of operators 3 / 3 3 / 3 3 / 9 3 / 3 3 / 3

Expressions with odds and
evens (%) 85.6 / 85.4 0.0 / 100.0 85.6 / 98.3 85.7 / 85.3 85.7 / 85.1

Swapped-expressions in-
domain (%) 1.3 / 1.6 10.0 / 0.0 1.2 / 0.0 1.2 / 1.5 0.0 / 0.0

Sub-expressions in-domain
(%) 2.2 / 2.3 4.2 / 1.3 2.1 / 0.7 0.0 / 00 1.0 / 1.1

3: Hupkes et al. (2020) also enu-
merate the over-generalisation
aspect which evaluate the accom-
modation to exceptions. How-
ever, we find it complex to adapt
this property for our specific
dataset and therefore discard it
in this work.

generalization. We distinguish between the model learning
shallow heuristics such as local pattern matching and the
one learning true compositional operations.

We build partitions given the work from Hupkes et al. (2020),
which distinguishes sub-properties within compositionality:
Localism, Substitutivity, Productivity and Systematicity.3
Each of the partitions detailed below has a key statistic dis-
tribution and is designed to evaluate a model’s performance
along a given aspect. Each partition contains an in-domain
set of 24,000 expressions and a generalization set of 12,000
expressions. We present other key statistics for the partitions
in Table 7.6.

Figure 7.4: Generation of tuples
of expressions for probing substi-
tutivity and localism. For local-
ism, we can deduce expressions
from the expression seed by eval-
uating sub-components. For sub-
stitutivity, we can deduce expres-
sions from each other by swap-
ping operators’ left and right-
hand sides. For the clarity of the
illustration, we use the infix form
for the expressions.
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Random is a regular training procedure. We split the
dataset randomly without any specific control during the
selection of the expressions. While in-domain and general-
ization examples are all distinct, they share the same distri-
butions and have similar underlying characteristics.

Systematicity evaluates the recombination of known parts
to form new sequences. We build the partition using the
distinction between odd and even natural integers. The train-
ing set contains expressions with either only odd or even
numbers, for example 2 × 4 + 8. or 3 + 5 + 7. The test set
contains expressions with both even and odd numbers such
as 3 + 2 × 5 + 4.

Productivity evaluates the extrapolation to longer sequences.
We train the model on expressions with up to 3 operators.
We then evaluate the model on longer expressions with up
to 9 operators.

Substitutivity evaluates the robustness towards the intro-
duction of synonyms. In our work, we interpret this definition
as the robustness towards paraphrases and evaluate the abil-
ity of models to perceive an operator’s commutative property.
We organize our dataset as a collection of "swapped expres-
sions". Swapped expressions are tuples of expressions with
the same value and only differ by swapping each operator’s
left and right-hand sides. We illustrate this swapping or-
ganization in Figure 7.4. During training, we only expose
the model to a single expression per tuple. Therefore the
model cannot learn the commutative property from shal-
low pattern matching. During the evaluation, we evaluate
the model’s commutative ability by comparing couples of
predicted values for expressions from the same tuple.

Localism evaluates the recursive evaluation of smaller con-
stituents before larger constituents. We also organize our
dataset as a collection of "sub-expressions". Sub expressions
are tuples of expressions with the same value that only differ
by the level of decomposition of the expressions as illus-
trated in Figure 7.4. We use the same training and evaluation
protocol as for Substitutivity.
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7.3.2 Experiments

Figure 7.5: Illustration of the train and evaluation setup for assessing model compositional properties
using the CobA dataset. We train the model to evaluate in-domain expressions. We then infer expressions
from the generalization set. The dataset includes partitions for Localism, Substitutivity, Productivity, and
Systematicity.

We train the model using a classification objective. Given an
arithmetic expression, the model predicts its value among
the 100 possible integers. This setup makes it possible not to
use a complex decoder module; a simple probe is sufficient.
The architecture is decomposed as follows: first, an encoder
maps the arithmetic expression to an embedding vector.
Then, a two-layer perceptron followed by a softmax outputs
a probability distribution. We train the model by minimizing
a cross-entropy loss.

7.3.2.1 Encoder architectures

As in Section 7.2, we use BoW, sequential LSTM, N-ary tree
LSTM. We also consider transformer architectures. We derive
two simple encoders from the architectures of Bert (Devlin
et al. 2019) and Albert (Lan et al. 2020). We use the [CLS]
token’s hidden state from the last layer as the expression
embedding. We initialize our models randomly and train
them from scratch. Their architectures are light compared
with standard transformer scales: we use a hidden size of 128,
6 hidden layers, and 8 attention heads. This represents 1.2M
parameters for Bert and 300k for Albert since parameters
are tied across layers. As observed in Csordás, Irie, and
Schmidhuber (2021) and Ontañón et al. (2021), transformers’
positional encoding are particularly important for this task.
We use the method from Wallace et al. (2019) and add some
random padding at the beginning of the input so that the
encoder does not solve the task by overfitting the absolute
position of the symbols.
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4: For some runs, we observed
that the initialization of the
model weights prevented any de-
crease of the loss. In such cases,
we immediately stopped the run
and relaunched it with a new
random seed.

5: The root-mean-square error
(RMSE) between a predicted
vector �̂� and a reference 𝑦

of dimensions 𝑛 is defined as

𝑅𝑀𝑆𝐸(�̂� , 𝑦) =
√︃∑︁𝑛

𝑖=1
(�̂� 𝑖−𝑦𝑖)2

𝑛 .

7.3.2.2 Training configuration

We design all encoders comparable, with roughly the same
number of parameters (1.2M), as detailed in Table 7.7. We
also use the same hidden and embedding size range for all en-
coders: 256 for LSTM-based encoders and 128 for transformer-
based encoders. We use the same optimization procedure
for each model. We train all models using the AdamW op-
timizer (Loshchilov and Hutter 2019) with a 1𝑒−3 learning
rate, 1 epoch warm-up with polynomial decay and a batch
size of 100. For each partition, we separate the in-domain set
between a train and dev set using a random 90/10% split.
We measure the RMSE between the expression predicted
and the true value on the dev set. We stop the training when
no improvement is made for 5 consecutive epochs or after a
maximum of 100 epochs.4 We train all models on an Nvidia
2080 Ti GPU. The training time is around 10 minutes per par-
tition and model. We set parameters given the literature on
the subject and do not perform a hyper-parameter search.

Regarding the natural integer embeddings, we use the DICE
method (Sundararaman et al. 2020). The method uses a deter-
ministic approach to construct natural integer embeddings.
It obtains state-of-the-art results on evaluation benchmarks
(Wallace et al. 2019). We do not update natural integer embed-
dings during training. For operators and specific tokens such
as CLS or SEP tokens, we initialize embeddings randomly
(with the same scale) and update them during training.

7.3.2.3 Evaluation setup

We evaluate our models and report metrics from the general-
ization set. We illustrate the evaluation setup in Figure 7.5.
For the random, systematicity, and productivity partitions,
we compute an evaluation score as the mean RMSE between
each expression’s true and predicted value.5 For the localism
and substitutivity partitions, we refine the evaluation proce-
dure to take advantage of the additional paired structure of
the partition described in Section ??. We compute both an
agreement score as the mean RMSE between the predicted
values from the two expressions of each pair and an evaluation

score as the RMSE between the predicted and true value of
the expression. We report the mean between the agreement

and evaluation scores. This score reflects the consistency of
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Table 7.7: Compositionality evaluation. We report metrics from the generalization set. For the random,
systematicity and productivity partitions, we report the evaluation score, which is the RMSE between the
true and the predicted values. For the localism and substitutivity partitions, we report the mean between the
evaluation and consistency score. For each metric, we report the mean value over 4 runs (standard deviation
in parentheses).

Encoders

#

params

(×1𝑒3)
Random Localism Systematicity Productivity Substitutivity

Random — 39.5 (0.1) 40.1 (0.1) 40.0 (0.2) 39.1 (0.2) 40.0 (0.2)
BoW 68 28.7 (8.1) 20.6 (4.8) 37.0 (0.2) 38.3 (5.4) 19.0 (0.5)

LSTM (uni) 595 3.5 (0.4) 7.3 (0.8) 2.7 (0.3) 14.1 (0.4) 2.4 (0.3)
LSTM (bi) 1,186 2.2 (0.2) 8.6 (1.0) 2.5 (0.3) 13.5 (1.1) 1.3 (0.1)
LSTM (tree) 1,012 5.4 (0.1) 8.9 (0.1) 7.4 (0.6) 15.0 (0.5) 4.9 (0.3)

Transformer (Bert) 1,290 3.6 (1.1) 11.9 (0.7) 20.6 (4.9) 30.2 (1.8) 2.3 (0.8)
Transformer (Albert) 315 6.9 (1.5) 13.0 (0.9) 16.6 (6.6) 25.9 (3.1) 4.8 (1.0)

the model’s predictions between two expressions as well as
its ability to predict the true value. It, for example, discards
trivial models which always predict the same value or model
accurately evaluating one expression of the pair but failing
for the other.

7.3.2.4 Results

Table 7.7 presents the results on the generalization set. We
use two baselines: one that randomly predicts the value of
any expression and the BoW model. We use the RMSE to
compare the models. The lower it is, the better are predictions
on average.

By a small margin, BoW outperforms the random guessing
baseline. This suggests that the task requires accounting for
the expression structure. Lexical information may provide
insights for solving the task: an expression containing num-
bers such as a 56 and 43 is more likely of being equal to a
high value such as 89 than an expression containing only
a 2 and a 3. However, local information alone may not be
sufficient to solve the task since expressions with a high over-
lap may greatly differ in value. For example, the expressions
3 + 3 and 3 × 3 contain the same symbols but are not equal
since they used different mathematical operators. Models
can generalize to examples with similar distributions. On
the random partition, all the models indeed achieve low
RMSE, significantly lower than the baselines. Models are also
robust toward the introduction of paraphrases since scores
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on substitutivity and random partitions are similar. For other
partitions, results are more contrasted.

In general, encoders relying on LSTM cells outperform trans-
formers. For productivity and systematicity, sequential mod-
els strongly outperform models using fixed-length context.
Surprisingly, sequential LSTMs constantly outperform tree
LSTMs, despite having fewer structural biases.

Regarding transformers, the RMSE highly deteriorates for
productivity. We confirm their known limitation in terms
of productivity. We also observe transformers stumbling
upon systematicity. Finally, we observe the benefit of ty-
ing parameters. Albert uses the same architecture as Bert,
except that weights are tied across layers. Albert achieves
results comparable or above Bert despite using far fewer
parameters.

7.3.3 In-depth analysis

(a) (b)

Figure 7.6: Evolution of the RMSE on the productivity generalization set given the number of operators.
(a) We report the mean evolution over 4 runs for each encoder (standard deviation in light). As detailed in
Table 7.6, expressions from the in-domain set have 2.8 operators on average. (b) For the Bert-based encoder,
we expose the model to a proportion of generalization examples during training.

Since we use generated arithmetic expressions, it is easy to
control their fine-grained properties. We investigate further
the influence of parameters for each partition. As part of
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our study, we observe how the complexity of the examples
impacts compositional abilities and how we can enhance
them by modifying model hidden size or exposing models
to generalization examples during training.

7.3.3.1 Impact of the expression’s complexity

Complexity of compositional operations As observed in
Table 7.7, all models perform reasonably well on the random
partition. However, this performance might be heterogeneous
across examples. We decompose the examples according to
the type of operations involved. We consider expressions
containing at least one addition sign (Add), at least one
multiplication sign (Mul), only addition sign(s) (Only Add),
only multiplication sign(s) (Only Add) and at least one
multiplication and addition sign (Add and Mul). We present
the performance given this stratification in Figure 7.7a.

Arithmetic expressions involving at least one addition opera-
tor obtain better results. Multiplications, on the other hand,
tend to make the task harder. In expressions that involve
addition and multiplication, there may be cases where mul-
tiplication should take precedence over addition, and for
which computation order matters. Surprisingly, these expres-
sions reach performance in line with expressions containing
only one operator type.

Number of operators for productivity Productivity is no-
toriously hard (Baroni 2019; Hupkes et al. 2020; Kim and
Linzen 2020). We also observe that neural networks struggle
to generalize to longer expressions in our main results in
Table 7.7. In Figure 7.6a, we decompose the productivity
generalization set according to the number of operators per
expression and plot the evolution of the RMSE. In line with
intuition, performance declines as the number of operators
grows. This evolution is not uniform across architectures:
LSTM architectures generalize better to long sequences.

Number of swaps For substitutivity, we organize the dataset
given tuples of swapped expressions. During evaluation, we
pair each expression with an expression from the same tuple
and we compare the predicted value between the two. As
illustrated in Figure 7.4, we can rank all expression pairs
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(a) (b)

(c) (d)

Figure 7.7: Impact of the complexity of expressions and model hidden size on the compositional performance.
(a) We decompose the expressions from the random partition given the type of operators involved. (b) We
decompose the expressions from the local partition given the number of sub-expression evaluated (c) We
decompose the expressions from the substitutivity partition given the number of swaps (d) We compare the
impact of the model hidden size on the average mean generalization score for each partition. For this specific
analysis, we observe transformers might struggle to converge. We adapt the training procedure by increasing
the warm-up to 1000 steps with no decay.

given the number of swaps necessary to generate one given
the other. For example, given the expression 2 + 2 × 4 we can
generate 2+ 4× 2 with only one swap. We refer to this pair as
level-1. We need to perform two swaps to generate 4 × 2 + 2:
we refer to the pair as level-2. Figure 7.7c decomposes the
results from the substitutivity partition given these levels.
Encoders tend to reach better performance for expression
pairs with only one swap.

Complexity of local evaluations For the localism partition,
we organize the dataset given tuples of sub-expressions. As il-
lustrated in Figure 7.4, we can rank all expression pairs given
the number of evaluated intermediate operators between
the two. For example, given the expression 2 + 5 + 2 × 4, we
evaluate only the first addition operator to generate 7 + 2 × 4.
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We refer to the expression pair as level-1. If we also evaluate
the multiplication operator, we obtain 7 + 8. We then refer
to the expression pair as level-2. We compare the results on
the Localism partition by decomposing generalization exam-
ples given this level. We aim to better quantify how locally
the encoder performs composition operations. Surprisingly,
Figure 7.7b shows that level-2 expression pairs reach better
scores for all encoders. We hypothesize that expressions with
intermediate evaluated operators are shorter and therefore
reach higher evaluation scores.

7.3.3.2 Enhancing model compositional abilities

Model hidden size The number of parameters indubitably
boosts model performance. We analyze here whether the
number of parameters can also improve performance for
out-of-domain generalization. We compare embedding and
hidden sizes of 128, 256, and 512 and observe the impact
on the out-of-domain generalization performance. We plot
in Figure 7.7d the mean score for each partition given each
encoder. For all encoders, we observe that the number of pa-
rameters benefits compositional generalization. On average,
all models indeed reach the lowest RMSE on the generaliza-
tion set with 512 hidden and embedding size than 128.

Exposition during training We study how to increase out-
of-domain generalization for productivity. We consider ex-
posing the model to a small number of out-of-domain exam-
ples during training. We randomly include between 10 and
1,000 expressions from the generalization set in the training
samples. These expressions are then removed from the gen-
eralization set. In Figure 7.6b, we plot the evolution of RMSE
on the productivity extrapolation set given the number of
operators per expression for the transformer encoder.

With our dataset, only a minimal number of out-of-domain
examples exposed during training may not be sufficient to
trigger generalization during inference. Even by including a
large portion, between 500 and 1,000 expressions, we still ob-
serve a significant performance drop for expressions with a
large number of operators. With this configuration, the trans-
former falls short of the trend obtained with the sequential
LSTM.
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7.4 Conclusion and future work

This chapter examined how the model structure impacts
its degree of compositionality. We conducted experiments
on two datasets with annotations allowing us to better an-
alyze model performance: an NLI task presenting specific
syntactic or lexical properties; CobA, a dataset of arithmetic
expressions specifically designed to evaluate compositional
properties along with four aspects: localism, substitutivity,
productivity, and systematicity. We compared various struc-
tured models and outlined their strengths and weaknesses,
given the properties of interest for each task. As a result
of both experiments, we observed heterogeneity of results
across both properties and model structures, suggesting that
structure influences the way and type of information models
capture.

On the NLI task, pre-trained Bert models seem to encode in-
formation not captured by others. Indeed, models using Bert
embeddings almost systematically achieve a better score.
However, cases remain for which structured models can
improve the performance of stand-alone contextualized em-
beddings. In such cases, syntactic information may not be
fully encoded in Bert. We identified a specific transformation
that replaces words with the semantic opposite. For such
transformation, Bert contextualized embeddings lead to sur-
prisingly low performance. Finally, we identified cases for
which all models fail, particularly for the word scrambling
transformation.

Regarding CobA, models are, in general, robust toward in-
troducing paraphrases (substitutivity) and can perform a
recursive evaluation of sub-components (localism). However,
transformers struggle to generalize to longer sequences (pro-
ductivity) or combine known parts to form new sequences
(systematicity). This difficulty increases with the complexity
of the expression and structure, the number of symbols and
operator types.

In both experiments, we observe that results could be slightly
improved by balancing the training set distribution and
adapting the number of parameters or the exposition to
generalization expressions. In both cases, there is still room
for improvement in fully capturing compositional abilities
and common sense knowledge within NLP models.
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„Language is the most interesting

manifestation of intelligence. Visual

comprehension is something that many

animals also have. In some cases, it is

even better than that of humans.

Chimpanzees also understand feelings

and social contexts. But no other living

being has such a complex language as we

do. And language links all other

manifestations of intelligence, because I

can talk about what I see, feel and think

and how I act.

— Richard Socher

Interview for die Zeit, 2019

Bigger is better? At first sight it seems that current Natural
Language Processing is consistently evolving towards larger
and larger models paying less and less attention to the models
at hand. In this section, we explore how we can leverage the
performance of large sentence encoders by adapting their
pre-training and increasing their size.

The previous sections discussed the importance of neural
model structure in composing sentence representations. How-
ever, NLP trends do not primarily focus on these types of
models, instead focusing on transformers, which are easier to
scale. As a result, previous years have seen a general increase
in the size of the models and a corresponding improvement
over downstream performance. These improvements did
not directly benefit sentence embeddings, as many trans-
former encoders perform below state-of-the-art on standard
benchmarks.

This section describes the development of state-of-the-art
sentence embedding models as part of the project Train the

Best Sentence Embedding Model Ever with 1B Training Pairs.∗ This
project took place during the Community week using JAX/Flax

for NLP & CV organized by Hugging Face.† Our project was

∗ https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/
7354

† https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/
7104

https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354
https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354
https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104
https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104
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among the competition winners and received an honorable
mention. As part of this project, I contributed actively to
the construction of the dataset as well as the training and
documentation of the sentence embedding models.

We organize the section as follows: we first review the re-
lated work and the benefit of scaling in the specific case of
sentence embeddings (Section 8.1). Section 8.2 then proposes
a self-supervised pre-training approach to learn sentence
encoders. The approach addresses engineering challenges
such as data collection, framework choice, and training hyper-
parameters. Finally, we evaluate the benefit of our approach
in Section 8.3.

8.1 Transformers and scale

Pre-trained transformers resulted in a strong improvement
over standard NLP benchmarks. The Bert model indeed
claimed a 7.6% absolute improvement on the popular GLUE
benchmark, 5.6% absolute accuracy improvement on the
MultiNLI, and 1.5 F1 points on the SQuAD v1.1 question
answering test. Bert introduced many increments to im-
prove NLP tasks, including a new neural architecture, train-
ing paradigm number of parameters, and hyper-parameters
setup. It is difficult to disentangle the contributions of all
these factors, but the number of parameters is one of them.
For example, the base version of Bert with 100M parameters
achieves an average score of 79.6 on GLUE, while the large
version with 340M parameters achieves 82.1. Apart from the
number of parameters, the architecture, training procedure,
and training data remain unchanged.

Compared with tree-structured encoders, transformers en-
code sentences without making substantial structure premises.
Compared with sequential encoders, they compute each to-
ken state simultaneously using the attention mechanism,
which is easy to parallelize across computing units. From
a computing perspective, transformers are easier to scale.
Consequently, the last few years have seen a race to increase
the number of layers, parameters, hidden size, or pre-training
data size. The model Bert exists in a base and large versions,
which only differ by their hidden size and number of pa-
rameters. The same is true for the model GPT, which was
incremented into GPT-2 and 3. While the second and third
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versions have much more parameters, the architecture is
similar between all versions. As illustrated in Figure 8.1, the
number of parameters for large language models follows
what we may compare with Moore’s Law.

Figure 8.1: Evolution of the num-
ber of parameters for large lan-
guage models. The figure is ex-
tracted from Microsoft blog post.

This analysis also applies in some respects to sentence em-
beddings. As empirically observed by Conneau, Kiela, et al.
(2017), the embedding size is a key factor in downstream
performance over the SentEval benchmark. We reproduce
the figure from Conneau, Kiela, et al. (2017) in Figure 8.2.
For almost all encoders shown in the figure, performance
increases proportionally to the size of the embeddings. How-
ever, regarding specifically Bert, the comparison does not
directly extend to the embedding of sentences. Indeed, as al-
ready reported in Table 4.1. Bert performance on the SentEval
benchmark is, on average, 3 points below current state-of-
the-art methods, including Simoulin and Crabbé (2021a).

This lack of performance does not seem to be specifically re-
lated to the architecture of transformers. Indeed, Reimers and
Gurevych (2019) propose state-of-the-art sentence embed-
dings by successfully adapting the protocol from Conneau,
Kiela, et al. (2017) to transformers. The approach successfully
proposes to further fine-tune a pre-trained transformer on
natural language inference data.

https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
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Figure 8.2: Average performance
with respect to the embedding
size on the SentEval benchmark.
The figure is extracted from Con-
neau, Kiela, et al. (2017).

8.2 Method

Even though the effect of scaling is no longer a surprise,
training large models continues to be a challenging exercise.
Training large models poses engineering challenges for opti-
mization (You et al. 2020), infrastructure (Narayanan et al.
2021; Shoeybi et al. 2019) and data collection (Ortiz Suárez,
Sagot, and Romary 2019).

8.2.1 Training objective

As in Chapter 4, we use a contrastive objective to train our
sentence encoders. We collect sentence pairs (𝑎𝑖 , 𝑝𝑖) that are
somehow semantically related. The effective construction of
the dataset is detailed in Section 8.2.2. We train the model
to map pairs (𝑎𝑖 , 𝑝𝑖) to close vectors while assigning un-
matched pairs (𝑎𝑖 , 𝑝 𝑗)𝑖≠𝑗 to distant vectors in the embedding
space. This training method closely relates Quickthought
(presented in Section 3.3), contrastive unsupervised represen-
tation learning (Saunshi et al. 2019), training with in-batch
negatives (Carlsson et al. 2021), InfoNCE (Oord, Y. Li, and
Vinyals 2018) or NTXentLoss (Sohn 2016).

We illustrate the training objective in Figure 8.3. Intuitively,
the model should assign high similarity to the sentences
« How many people live in Berlin? » and « Around 3.5 million
people live in Berlin » and low similarity to other negative
answers such as « The capital of France is Paris ».

As in other contrastive methods detailed in Section 3.3.2,
we build negative pairs by considering other samples from
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Figure 8.3: Illustration of the
contrastive learning setup. The
model is trained to associate an
anchor sentence with another
one that is semantically related.
The notion of semantic relation
depends on the nature of the pair.
Our example aims to link the cor-
rect answer to a given question.
City capitals are the subject of all
these sentences, but only one is
the correct answer.

1: A set of possible critics is pre-
sented in Tschannen et al. 2020b
Most functions are either the co-
sine similarity or the dot product
operator. The cosine similarity
has the nice advantage of pre-
senting the highest similarity to
itself since 𝑐𝑜𝑠(𝑎, 𝑎) = 1. While
with the dot-product other vec-
tors can have higher similarities:
𝑑𝑜𝑡(𝑎, 𝑎) < 𝑑𝑜𝑡(𝑎, 𝑏).

the batch. Given a batch of 𝑛 training samples, the model
optimizes the following loss function:

L= − 1
𝑛

𝑛∑︂
𝑖=1

𝑒 𝑐(𝑎𝑖 .𝑝𝑖)∑︁
𝑗 𝑒
𝑐(𝑎𝑖 .𝑝 𝑗)

(8.1)

Where 𝑐 is a critic function, which measures the distance
between two sentence embeddings (𝑎, 𝑝).1

8.2.2 Construction of the dataset

The contrastive training method supposes to build a dataset
such that each sample 𝑥 is combined with another sample
𝑥+, which is somehow close and negative samples 𝑠−1 · · · 𝑠−

𝐾
,

which are not related. In Chapter 4, we constructed positive
pairs by simply associating context sentences and negative
by considering non-context sentences. Therefore, we only
needed a corpus of raw text for which the sentence order
is preserved to train our model. In this experiment, we
adopt a more refined approach. Instead of raw text, we
extract sentences from specific mediums such as internet
forums and manually labeled datasets. Indeed, as detailed
in Section 8.2.3, a better selection of negative samples may
drastically increase the results.

As with other attempts to scale model size (Brown et al.
2020; Yinhan Liu et al. 2019; Radford, J. Wu, et al. 2019),
we also aim to scale the dataset size. While we use a 40M
sentences dataset for Simoulin and Crabbé (2021a), here,
we aim to gather a dataset of 1B sentence pairs. The task
is far from trivial as we need to constitute a dataset with
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2: https://github.

com/PolyAI-LDN/

conversational-datasets/

tree/master/reddit

sentence pairs (𝑎𝑖 , 𝑝𝑖) such that sentences from the pair have
a close meaning. We constitute pairs by using medium and
documents specific structure such as (query, answer-passage),
(question, duplicate_question), (paper title, cited paper title).
We do not build new datasets but instead rely on existing
work and aggregate many existing datasets enumerated in
Table 8.1.

The majority of the datasets is built out of Reddit comments.
Reddit website aggregates news and lets users post links
and discuss through threads. We use scripts from PolyAI to
generate tuples given the first comment for each response.2
We use the same filters as Henderson, Paweł Budzianowski, et
al. (2019) and filter out samples with more than 128 characters
or fewer than 9 characters. I personally took care of this data
collection operation.

8.2.3 Construction of the mini batches

When building models. the selection of pairs forming a
batch is crucial. We present here our strategy to constitute
mini-batches and the impact it may have on the resulting
embeddings.

Batch size The Quickthought method detailed in Sec-
tion 3.3.2 uses a rather important batch size of 400. In fact,
studies show that the larger the batch, the better the per-
formance (T. Chen et al. 2020; Qu et al. 2021). This trend is
illustrated in Figure 8.4 extracted from Qu et al. (2021). How-
ever, too important batch size may decrease the results (the
same asymptotic phenomenon is observed in T. Chen et al.
(2020)). We benefited from efficient hardware infrastructure
to run the project: 7 TPUs v3-8, as well as guidance from
Google’s Flax, JAX, and Cloud team members about efficient
deep learning frameworks. We use the largest batch size that
our hardware could fit, in our case, 64.

Hard Negatives We may build batches by uniformly se-
lecting samples from the training data. However, as detailed
in Robinson et al. (2021) or Qu et al. (2021), the selection of
"good negative examples" significantly impacts the training
process. The impact of hard negative is illustrated in Fig-
ure 8.4. Hard negative examples should not correspond to

https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit
https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit
https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit
https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit
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Table 8.1: One billion sentence pairs dataset. We use already existing datasets accessible in open source or for
which the raw data and pre-processing scripts were available. For each sub-dataset, we provide the link to the
available resources (existing dataset or pre-processing scripts).

Dataset Reference

Number of

training pairs

Reddit Comments (2015-2018) Henderson, Pawel
Budzianowski, et al. (2019)

726 484 430

S2ORC citation pairs (abstracts) Lo et al. (2020) 116 288 806
WikiAnswers duplicate question pairs Fader, Zettlemoyer, and Et-

zioni (2014)
77 427 422

PAQ (question. answer) pairs P. S. H. Lewis et al. (2021) 64 371 441
S2ORC citation pairs (titles) Lo et al. (2020) 52 603 982
S2ORC (title. abstract) Lo et al. (2020) 41 769 185
Stack Exchange (title. body) pairs - 25 316 456
MS MARCO triplets Craswell et al. (2021) 9 144 553
GOOAQ Khashabi et al. (2021) 3 012 496
Yahoo Answers (title. answer) X. Zhang, Zhao, and LeCun

(2015)
1 198 260

Code Search - 1 151 414
COCO image captions T. Lin et al. (2014) 828 395
SPECTER citation triplets Cohan et al. (2020) 684 100
Yahoo Answers (question. answer) X. Zhang, Zhao, and LeCun

(2015)
681 164

Yahoo Answers (title. question) X. Zhang, Zhao, and LeCun
(2015)

659 896

SearchQA Dunn et al. (2017) 582 261
Eli5 Fan, Jernite, et al. (2019) 325 475
Flickr 30k Young et al. (2014) 317 695
Stack Exchange duplicate questions (titles) - 304 525
AllNLI (SNLI and MultiNLI) Bowman, Angeli, et al. (2015)

and Williams, Nangia, and
Bowman (2018)

277 230

Stack Exchange duplicate questions (bodies) - 250 519
Stack Exchange duplicate questions (titles and bodies) - 250 460
Sentence Compression Filippova and Altun (2013) 180 000
Wikihow Koupaee and W. Y. Wang

(2018)
128 542

Altlex Hidey and McKeown (2016) 112 696
Quora Question Triplets - 103 663
Simple Wikipedia Coster and Kauchak (2011) 102 225
Natural Questions (NQ) Kwiatkowski et al. (2019) 100 231
SQuAD2.0 Rajpurkar, Jia, and P. Liang

(2018)
87 599

TriviaQA - 73 346

Total 1 124 818 467

the anchor point but still, be difficult to distinguish from the
correct associations. In our example, it could be the pairs
« What is the capital of France? » and « What is the capital of
the US? » which have a close semantic content and require
precisely understanding the full sentence to be answered
correctly. On the contrary, the samples « What is the capital

https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit
https://github.com/allenai/s2orc
https://github.com/afader/oqa#wikianswers-corpus
https://github.com/facebookresearch/PAQ
https://github.com/allenai/s2orc
https://github.com/allenai/s2orc
https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml
https://microsoft.github.io/msmarco/
https://github.com/allenai/gooaq
https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
https://huggingface.co/datasets/code_search_net
https://cocodataset.org/#home
https://github.com/allenai/specter
https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
https://huggingface.co/datasets/search_qa
https://huggingface.co/datasets/eli5
https://shannon.cs.illinois.edu/DenotationGraph/
https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml
https://nlp.stanford.edu/projects/snli/
https://cims.nyu.edu/~sbowman/multinli/
https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml
https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml
https://github.com/google-research-datasets/sentence-compression
https://github.com/pvl/wikihow_pairs_dataset
https://github.com/chridey/altlex/
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://cs.pomona.edu/~dkauchak/simplification/
https://ai.google.com/research/NaturalQuestions
https://rajpurkar.github.io/SQuAD-explorer/
https://huggingface.co/datasets/trivia_qa
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Figure 8.4: Influence from the
batch size and selection of hard
negative on downstream evalua-
tion. The figure is extracted from
Qu et al. (2021).

3: https://github.com/

nreimers/se-benchmark

of France? » and «How many Star Wars movies are there?»
are less difficult to distinguish since they do not refer to the
same topic.

Cross dataset batches In our case, the dataset is a concate-
nation of several sub-datasets (Table 8.1). Each sub-dataset
is built on distinct topics, domains, or semantic relations
in the pair. We want to avoid the case where our model
learns disjoint embedding spaces for each sub-dataset. On
the other hand, mixing all sub-datasets in the same batch
may deteriorate the hard negative proportion as samples
issued from two sub-datasets should be easy to differentiate.
To address both requirements, we build batches from the
mix of only two sub-datasets. We aim, therefore, to learn a
global structure between topics and not only a local structure
within a topic while not deteriorating the proportion of hard
negatives.

8.2.4 Evaluation

As detailed in Section 3.4.1, sentence embeddings are tradi-
tionally evaluated on the SentEval benchmark. To compare
the embeddings with models developed in previous sections,
we therefore evaluate our encoders on SentEval. However,
as detailed in the same section, the benchmark suffers from
practical limitations or biases. For this project, we therefore
used SEB (Sentence Embedding Benchmark), a dedicated
benchmark to compare our models.3 The SEB benchmark
aggregates multiple general-purpose sentence evaluation

https://github.com/nreimers/se-benchmark
https://github.com/nreimers/se-benchmark
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4: https://languagenet.

github.io/

5: https://alt.qcri.org/

semeval2015/task1/

6: https://www.aclweb.org/

anthology/D18-1131/

7: The average precision (AP)
has values between 0 and 1
(higher is better). AP is defined
as ∑︁

𝑛(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛 with 𝑃𝑛
and 𝑅𝑛 are the precision and
recall at the nth threshold.
https://scikit-learn.org/

stable/modules/generated/

sklearn.metrics.average_

precision_score.html

8: The V-measure evaluates the
quality of a clustering given the
ground truth labels. The score
has positive values between
0 and 1, with higher values
indicating better results. The
V-measure is the harmonic
mean between homogeneity and
completeness. Homogeneity
evaluates if each cluster contains
only members of a single class.
Completeness determines if
all members of a class are
assigned to the same cluster.
https://scikit-learn.org/

stable/modules/generated/

sklearn.metrics.v_measure_

score.html

9: https://scikit-learn.

org/0.19/datasets/twenty_

newsgroups.html

10: http://nlp.cis.

unimelb.edu.au/resources/

cqadupstack/

11: https://

quoradata.quora.com/

First-Quora-Dataset-Release-Question-Pairs

tasks. The tasks, detailed below, are formatted as binary
classification, clustering, reranking, retrieval, and semantic
textual similarity (STS). All tasks use the embeddings as
features and compare them using similarity metrics. Most
importantly, they do not require the training of additional
classifiers.

Binary classification aims at predicting a binary relation
between a pair of sentences. It computes the cosine similarity
between every pair of sentences. We then classify the sen-
tence pairs by comparing their similarity score to a given
threshold. We set the threshold to ensure the best score on the
development set. The task includes identifying paraphrases
from LanguageNet, a collection of sentences from Twitter
linked through shared URLs 4 or the SemEval-2015 Task
1,5 and identifying duplicated questions.6 We measure the
performance using the average precision (AP).7

Clustering organizes documents into semantically consis-
tent groups. We use data from web forums and newsgroups,
which organizes posts given their topics. We use embeddings
as features for K-Means clustering and evaluation using the V-
measure.8 The clustering task includes the 20Newsgroups,9
and clustering threads from StackExchange and Reddit.

Retrieval aims at retrieving documents from a corpus that
match the semantic content of a given query. We use datasets
scraped from web forums and question-answering websites.
On such platforms, experienced users can flag a question as
a duplicate if it has already been answered elsewhere. We
use these annotations to associate a given question to a list
(of variable size) of semantically equivalent formulations.
Given the embedding of a query, we compute the cosine
similarity with other questions from the dataset and retrieve
the top-𝑘 most similar ones (by default, we use 𝑘 = 10). We
then compare our predicted list with the related questions
using the mean average precision (MAP@100). The task
includes CQADupStack, a dataset with duplicate question
information from StackExchange subforums10 and the Quora
Question Pairs dataset.11

https://languagenet.github.io/
https://languagenet.github.io/
https://alt.qcri.org/semeval2015/task1/
https://alt.qcri.org/semeval2015/task1/
https://www.aclweb.org/anthology/D18-1131/
https://www.aclweb.org/anthology/D18-1131/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.v_measure_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.v_measure_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.v_measure_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.v_measure_score.html
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
http://nlp.cis.unimelb.edu.au/resources/cqadupstack/
http://nlp.cis.unimelb.edu.au/resources/cqadupstack/
http://nlp.cis.unimelb.edu.au/resources/cqadupstack/
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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12: https://github.com/

taolei87/askubuntu

13: https://allenai.org/

data/scidocs

14: https://www.microsoft.

com/en-us/research/

uploads/prod/2019/03/

nl4se18LinkSO.pdf

15: http://ixa2.si.ehu.

eus/stswiki/index.php/

STSbenchmark

16: https://tabilab.cmpe.

boun.edu.tr/BIOSSES/

DataSet.html

Reranking ranks a list of documents given their semantic
similarity with a given query. In our setup, the task takes
a query and a fixed-length list of documents as input. Each
document in the list is either "similar" or "non-similar" to
the query. We compute the cosine similarity between the
embedding of the query and each document and sort them
in decreasing order. We then compare the sorted list with
the document ordered as similar first, followed by non-
similar. We also use mean average precision to measure
the quality of the ranking. As in the retrieval task, data
are collected from web forums but with a different format
and labeling process. We use a collection of questions taken
from AskUbuntu.com 2014 corpus dump.12 SciDocs, which
consider scientific papers as related based on their inter-
citations 13 and the Stack Overflow Duplicate Questions
Task.14

Semantic Textual Similarity (STS) measures the seman-
tic similarity between two sentences. Annotators assign a
similarity score for pair of sentences, ranging from 0 for no
overlap to 5 for meaning equivalence. The annotation doesn’t
require formal linguistic expertise. Performance compares
the correlation between predicted scores and human judg-
ments with Pearson correlation. The predicted scores directly
measure the cosine similarity between two sentence pairs and
compare it with human gold annotations (scaled between 0
and 1). The evaluation datasets include the STSBenchmark
which includes datasets used for the SemEval task from 2012
to 2017.15 the SICK-R task (already introduced in Section 5.3.1)
and BIOSSES which comprises 100 sentence pairs from the
biomedical field.16

8.3 Experiments

We fine-tune existing pre-trained models with our contrastive
learning objective. As a sentence representation, we take the
mean of every token hidden state from transformer models.
We applied 500 warm-up steps and use a batch size of 64 if not
explicitly specified otherwise. We create 20 general-purpose
sentence transformers models such as Mini-LM (W. Wang
et al. 2020), RoBERTa (Yinhan Liu et al. 2019), DistilRoBERTa,
a distilled version of the RoBERTa-base model following the

https://github.com/taolei87/askubuntu
https://github.com/taolei87/askubuntu
https://allenai.org/data/scidocs
https://allenai.org/data/scidocs
https://www.microsoft.com/en-us/research/uploads/prod/2019/03/nl4se18LinkSO.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/03/nl4se18LinkSO.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/03/nl4se18LinkSO.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/03/nl4se18LinkSO.pdf
http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
https://tabilab.cmpe.boun.edu.tr/BIOSSES/DataSet.html
https://tabilab.cmpe.boun.edu.tr/BIOSSES/DataSet.html
https://tabilab.cmpe.boun.edu.tr/BIOSSES/DataSet.html
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17: All models created dur-
ing the challenge are avail-
able as open-source contribu-
tions in our HuggingFace reposi-
tory https://huggingface.co/
flax-sentence-embeddings.

same training procedure as DistilBERT (Sanh et al. 2019), and
MPNet (Song et al. 2020).17 The challenge was limited in time,
and we could not extensively train all models with the same
number of steps. We train RoBertA-large and MPNet-base for
400k steps. Mini-LM-12 for 540 steps. RoBERTa-distill-base
for 920 steps and Mini-LM-6 for 1,000 steps. However, models
may therefore not be directly compared.

Analysis of the pre-training We evaluate all our models
on the Sentence Embedding Benchmark (SEB) detailed in
Section 8.2.4 and SentEval benchmark introduced in Sec-
tion 3.4.1. Table 8.2 reports the mean score for each model
on both benchmarks. For each model, we report the score
for the raw model and for the model further tuned with our
additional contrastive pre-training.

Table 8.2: Evaluation on SentEval and SEB. We report the mean score over all tasks from the benchmark. We
compare models pre-trained with and without our contrastive procedure. We report the best results for each
category in bold.

SentEval SEB

Model # parameters

w/o
contrastive
pre-training

w/
contrastive
pre-training

w/o
contrastive
pre-training

w/
contrastive
pre-training

Mini-LM-6 22.7M 80.6 83.5 42.0 68.1
Mini-LM-12 33.4M 81.7 84.8 40.7 68.6
DistilRoBERTa 82.1M 83.5 86.0 44.9 68.7
MPNet-base 109.5M 83.5 87.4 41.6 69.5
RoBERTa-large 355.4M 81.7 87.3 45.3 70.0

In general, transformer models with a higher number of
parameters reach higher scores. However, we observe asymp-
totic behavior for this trend. The RoBERTa-large model
reaches performance similar to MPNet-base despite having 3
times more parameters. Moreover, on both benchmarks, the
contrastive pre-training procedure has an important impact.
Model performance increases up to 5.6 points on SentEval
and more than 20 points on SEB. This confirms the rele-
vance of the procedure for training sentence encoders with
transformer architectures. Finally, we observe less disparity
between models on the SEB benchmarks for which all scores
are very close.

Sentence Embedding Benchmark (SEB) Table 8.3 reports
the detailed evaluation of our models on SEB. The results

https://huggingface.co/flax-sentence-embeddings
https://huggingface.co/flax-sentence-embeddings
https://huggingface.co/flax-sentence-embeddings/all_datasets_v4_MiniLM-L6
https://huggingface.co/flax-sentence-embeddings/all_datasets_v4_MiniLM-L12
https://huggingface.co/flax-sentence-embeddings/all_datasets_v3_distilroberta-base
https://huggingface.co/flax-sentence-embeddings/all_datasets_v4_mpnet-base
https://huggingface.co/flax-sentence-embeddings/all_datasets_v3_roberta-large
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are more difficult to interpret. While larger models tend in
general to perform better, no model seems to consistently
outperform others. It is also difficult to identify specific model
behavior across task classes.

Table 8.3: Detailed results on the Sentence Embeddings Benchmark (SEB). All models are further pre-trained
using our contrastive objective on our one billion sentences corpus. The best results in each section are shown
in bold. We report the mean average precision (AP) for binary prediction and retrieval tasks, the V-measure
for clustering tasks, and the Spearman rank correlation for semantic textual similarity task (STS). For each
task, we report the best score obtained with cosine, euclidean, and Manhatten distance. We report all metrics
by convention as ×100. We show the best results in bold.

Binary Classification Clustering Retrieval Re-ranking STS

Sprint Twitter SemEval

20 News

Groups

Stack Ex-

change

Reddit CQA Quora

Ask

Ubuntu

Sci Docs

Stack

Over-

flow

SICK-R STS BIOSSES

Mini-LM-6 94.6 84.7 67.9 46.2 54.4 50.2 28.6 84.9 63.5 87.1 50.8 77.2 82.0 81.6
Mini-LM-12 92.6 84.8 70.0 46.9 52.4 50.6 29.4 85.1 64.1 87.2 51.5 78.9 83.1 83.6
DistilRoBERTa 46.8 65.2 83.3 30.5 83.4 53.1 80.1 82.4 87.8 93.8 48.7 51.4 71.1 84.0
MPNet-base 90.2 85.1 73.9 49.8 52.9 54.1 31.8 84.7 65.9 88.6 52.0 80.5 83.4 80.4
RoBERTa 49.4 66.8 82.5 32.8 83.4 55.6 81.4 83.5 88.7 92.1 52.5 52.2 75.3 84.5

SentEval Finally, we aim to compare our transformer mod-
els with previously presented encoders from Chapter 4.
We present the detailed results on SentEval in Table 8.4.
We divide results given encoder architecture: LSTM and
transformer-based models.

We obtain state-of-the-art results on the benchmark, and
transformer-based models outperform other architectures.
On many tasks, we also outperform the approach proposed
in Reimers and Gurevych (2019), which fine-tune Bert on nat-
ural language inference data. However, LSTM based models
remain competitive on several tasks. Moreover, only trans-
formers with the highest number of parameters outperform
previous recurrent models. It is also important to stress that
the setup is not directly comparable as transformer models
are trained on datasets many orders of magnitude larger.

https://huggingface.co/flax-sentence-embeddings/all_datasets_v4_MiniLM-L6
https://huggingface.co/flax-sentence-embeddings/all_datasets_v4_MiniLM-L12
https://huggingface.co/flax-sentence-embeddings/all_datasets_v3_distilroberta-base
https://huggingface.co/flax-sentence-embeddings/all_datasets_v4_mpnet-base
https://huggingface.co/flax-sentence-embeddings/all_datasets_v3_roberta-large
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Table 8.4: SentEval Task Results Using Fixed Sentence Encoder. † indicates models that we had to re-train.
FastSent is reported from Hill, Cho, and Korhonen (2016). Skipthoughts results from R. Kiros et al. (2015)
Skipthoughts + LN which includes layer normalization method from Ba, J. R. Kiros, and Hinton (2016). We
considered the Quickthought results Logeswaran and Honglak Lee 2018 with a pre-training on the bookcorpus
dataset. DisSent and Infersent are reported from A. Nie, Bennett, and Goodman (2019) and Conneau, Kiela,
et al. (2017) respectively. Pre-trained transformers results are reported from Reimers and Gurevych (2019).
Best results in each section are shown in bold. best results overall are underlined. Performance for SICK-R

results are reported by convention as 𝜌 and 𝑟 × 100.

Model Dim Avg. MR CR SUBJ MPQATREC

MRPC SICK-R

Acc F1 𝑟 𝜌 MSE

Recurrent models

FastSent ≤ 500 — 70.8 78.4 88.7 80.6 76.8 72.2 80.3 — — —
Skipthought 4,800 83.8 76.5 80.1 93.6 87.1 92.2 73.0 82.0 85.8 79.2 26.9
Quickthought 4,800 86.1 80.4 85.2 93.9 89.4 92.8 76.9 84.0 86.8 80.1 25.6
InferSent 4,096 — 81.1 86.3 92.4 90.2 88.2 76.2 83.1 88.4 — —
DisSent 4,096 — 79.8 85.0 93.4 90.5 93.0 76.1 — 85.4 — —
Dep. Seq† 4,800 85.3 79.7 82.2 94.4 88.6 91.0 77.9 84.4 86.6 79.8 25.5
Dep. Const† 4,800 86.0 80.7 83.6 94.9 89.2 92.6 76.8 83.6 87.0 80.3 24.8

Transformers

Bert-base [CLS] 768 — 78.7 84.9 94.2 88.2 91.4 71.1 — 75.7† — —
Bert-base [NLI] 768 — 83.6 89.4 94.4 89.9 89.6 76.0 — 84.4† — —
Mini-LM-6† 384 83.5 76.1 82.0 92.2 87.4 90.2 72.3 80.9 86.5 79.9 25.6
Mini-LM-12† 384 84.8 77.9 84.3 92.3 88.4 91.8 73.2 82.1 87.1 80.9 24.7
DistilRoBERTa† 768 86.0 80.8 86.2 93.4 87.6 94.8 73.5 80.9 87.8 82.3 23.4
MPNet-base† 768 87.5 84.8 87.7 94.1 89.4 94.4 75.1 83.4 87.9 82.9 23.3

RoBERTa-large† 1,024 87.3 87.0 88.6 95.0 89.0 96.8 74.0 80.6 83.7 83.9 35.5

8.4 Conclusion and future work

In this section, we studied the extent to which scaling may im-
prove sentence encoder performance. We adapt the standard
contrastive pre-training method to train large transformer
models on a large dataset. We obtain state-of-the-art results
on sentence embedding benchmarks. We observe the im-
portance of contrastive pre-training to achieve competitive
results. In some proportion, it seems possible to balance
linguistic insights and the refinement of the encoder archi-
tecture by just increasing the dataset and model size.

However, it is important to stress that the setup is completely
unbalanced and the comparison rather unfair regarding the
infrastructure hardware, the data used for training, and the
model size.

Finally, bigger is not necessarily better. Indeed, while large
models outperform previous recurrent and structured ap-
proaches on average, this is not the case for every task. In par-
ticular for the MRPC task: the Microsoft Research Paraphrase

https://huggingface.co/flax-sentence-embeddings/all_datasets_v4_MiniLM-L6
https://huggingface.co/flax-sentence-embeddings/all_datasets_v4_MiniLM-L12
https://huggingface.co/flax-sentence-embeddings/all_datasets_v3_distilroberta-base
https://huggingface.co/flax-sentence-embeddings/all_datasets_v4_mpnet-base
https://huggingface.co/flax-sentence-embeddings/all_datasets_v3_roberta-large
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Corpus contains 5,801 sentence pairs, each hand-labeled
with a binary judgment as to whether the pair constitutes
a paraphrase. The sentences are mined from news clusters
and includes a wide range of lexical as well as syntactic
variations.
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„La nuit se faisait assez obscure, les étoiles

semblaient dormir de temps à autre,

cependant le peu de clarté qui me permit

de marcher la nuit dans la chambre

éveilla en moi une profonde pitié de ce

que je faisais là, et cette peur de l’avenir

me devint plus vive et plus aiguë.

— Automatic text generation

GPT 𝑓 𝑟-1B, 2021

The previous section discussed enhancing large transformer
language models using self-supervised objectives adapted for
sentence embeddings. Our procedure reached state-of-the-
art results on many downstream evaluation tasks. However,
we did not perform the initial pre-training ourselves but
instead used already pre-trained transformers for English.
This section presents a quantitative evaluation of the effort
required to pre-train such models in terms of data collection,
computing infrastructure configuration, model development,
and evaluation. To be as representative as possible of the
process, we chose a language and architecture design for
which relatively few resources were available. The section
thus describes the pre-training of the first large incremental
language model for French (Simoulin and Crabbé 2021c).

Auto-encoding models have already been developed in
French, namely CamemBERT (L. Martin et al. 2020) and
FlauBERT (H. Le et al. 2020a,b). However, to the best of our
knowledge, this contribution is the first peer-reviewed to
adapt pre-trained incremental transformers to French. In
particular, we introduced a French version from the well-
known GPT model (Brown et al. 2020; Radford, Narasimhan,
et al. 2019; Radford, J. Wu, et al. 2019). GPT, which stands
for Generative Pre-trained Transformer, is an incremental
language model developed by Open AI research laboratory.1
Bert and other models presented in the previous sections
act as encoders, taking text as input and producing vector
representations as output. On the contrary, GPT acts as a
decoder, taking text as input and producing text as output.

https://openai.com/


152 9 The first large incremental language model for French

2: https://huggingface.co/

asi/gpt-fr-cased-base

From a modeling point of view, GPT is an incremental lan-
guage model whose pre-training objective is relatively similar
to the one from a 𝑛-gram language model already used 30
years ago. But while 𝑛-gram language models typically use a
context size of 5 or fewer words, GPT extends the context size
to 1,024 tokens. From a practical point of view, pre-training
such a model is a superlative project, which is far from trivial.
First, it requires large corpora of raw text—up to billion of
tokens. Second, the analysis and evaluation of these models
require access to relevant and rigorous benchmarks. Last
but not least, pre-training also requires significant comput-
ing power. It requires distributing the training on multiple
computing units across multiple computing nodes. Typi-
cally dozens of graphics processing unit (GPUs) or tensor
processing units (TPUs) operating for several days. In that
regard, this work benefited from access to the IDRIS com-
puting facilities through the allocation of 2020-AD011011823
allocated by GENCI. Our model was among the first to be
trained on the super-computer Jean Zay, less than a year after
its inauguration in January 2020. Our contributions are the
following:

▶ We propose a corpus dedicated to the training of trans-
formers language models in French. We detail the
construction of this corpus in Section 9.2;

▶ We train two models with a large number of parame-
ters, which we release as open-source contributions.2
Hopefully, these models can be used in academic as
well as industrial settings;

▶ We replicate English evaluation benchmarks for French
language models. This evaluation setup allows for the
comparison of models and is detailed in Section 9.4.

We organize the section as follow: Section 9.1 first reviews the
main characteristic of incremental models, their originality
and main distinctions with standard encoders. Section 9.2
presents the constitution of the pre-training corpora. We then
detail the training and evaluation procedure in Section 9.3
and Section 9.4. Finally, we discuss the limits and ethical
considerations in Section 9.5.

https://huggingface.co/asi/gpt-fr-cased-base
https://huggingface.co/asi/gpt-fr-cased-base
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3: Here we tokenize the in-
put text using bytepair vocabu-
lary encoding (BPE) with 50,000
units (Sennrich, Haddow, and
Birch 2016). This procedure al-
lows for a relatively reduced vo-
cabulary size while drastically
reducing the number of tokens
out of the vocabulary.

9.1 Auto-regressive language models

As detailed in Section 3.2.4, GPT or Bert are based on trans-
former architectures. Both models take as input sequence
of tokens and encode them as the sum of a token and posi-
tional embeddings (Equation 9.1).3 Token embedding vectors
are then transformed into so-called contextualized vectors
through a series of 𝐿 transformer layers (Equation 9.2).

ℎ0
𝑡 =𝑊𝑒𝑢𝑡 +𝑊𝑝 ∀𝑡 ∈ ⟦1, 𝑇⟧ (9.1)
ℎ𝑛𝑡 = layer(ℎ𝑛−1

𝑡 ) ∀𝑛 ∈ ⟦1, 𝐿⟧ (9.2)

With {𝑢1 · · · 𝑢𝑇} the sequence of input tokens, 𝐿 the number
of layers,𝑊𝑒 the embedding matrix, and𝑊𝑝 the positional
embedding matrix.

Each layer in Equation 9.2 acts as a many-to-many encoder.
Bert and its derivatives use so-called encoder layers: it com-
putes contextualized representations given the right and left
contexts i.e. from the tokens immediately after and before
the considered position. GPT, however, relies on decoder
layers: contextualized representations only depend on the
left context, that is, tokens before the considered position.
We illustrate this key distinction in Figure 9.1.

Figure 9.1: Illustration of the self-
attention scope for encoding and
decoding layers.

This difference in design has important implications for both
architectures’ training and inference setups. We detail such
implications during the pre-training phase in Section 9.1.1
and during inference in Section 9.1.2.
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4: To simplify the notations, we
omit the document index such
that we refer to the tokens of
all documents as {𝑢1 · · · 𝑢𝑇} and
not {𝑢(𝑑)1 · · · 𝑢(𝑑)

𝑇
}.

9.1.1 Pre-training

Bert and GPT are pre-trained using a language model train-
ing objective: they associate a probability 𝑃(𝑢1 · · · 𝑢𝑇) to a
sequence of tokens. We can decompose this sequence prob-
ability as the product of conditional probabilities for each
token:

𝑃(𝑢1 · · · 𝑢𝑇) =
∏︂

𝑡∈⟦1,𝑇⟧
𝑃 (𝑢𝑡 |𝑈) (9.3)

With𝑈 the context of 𝑢𝑡 ,∀𝑡 ∈ ⟦1, 𝑇⟧. Given the contextual-
ized representations of each token from Equation 9.2, we can
compute the conditional probabilities associated with each
token given Equation 9.4.

𝑃 (𝑢𝑡 |𝑈) = softmax(ℎ𝑁𝑡 𝑊⊤
𝑒 ) (9.4)

With ℎ𝑁𝑡 the contextualized representation from the last layer
of the token at index 𝑡.

Bert relies on a bidirectional context to build representations.
Each token’s contextualized representation is conditioned
on every other token from the input, including itself, such
that 𝑃 (𝑢𝑡 |𝑈) = 𝑃 (𝑢𝑡 |𝑢1 · · · 𝑢𝑇). Since a given token contex-
tualized representation depends on the token itself, Bert
uses a trick for pre-training by replacing some tokens with
a [MASK] in the input text. Thus, such tokens are "masked"
and not used to build contextualized representations. The
model is then trained to predict the original token at masked
positions.

GPT only uses the left context to build token representa-
tions, such that 𝑃 (𝑢𝑡 |𝑈) = 𝑃 (𝑢𝑡 |𝑢1 · · · 𝑢𝑡−1). Therefore, it is
unnecessary to use such artifice. We only pre-train the model
using a standard incremental language model objective: pre-
dicting the next token given the previous ones. Assuming
the pre-training corpus 𝐷 consists of a collection of docu-
ments 𝑑 = {𝑢1 · · · 𝑢𝑇}, we optimize the GPT parameters Θ

to maximize the following log-likelihood:4

L(𝐷) =
∑︂
𝑑∈𝐷

∑︂
𝑖∈⟦1,𝑇⟧

log𝑃 (𝑢𝑖 |𝑢𝑖−𝑘 · · · 𝑢𝑖−1;Θ) (9.5)
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With 𝑘 the context-size, and𝑈 = {𝑢𝑖−𝑘 · · · 𝑢𝑖−1} the context
of the token at position 𝑖.

9.1.2 Inference

Standard fine-tuning Once the model is pre-trained, it is
possible to fine-tune it on downstream tasks. Fine-tuning
incrementally adjusts all model parameters to optimize the
loss on a specific task. In such case, we take tokenized text
as input 𝑋 = 𝑥1 · · · 𝑥𝑚 . We transform the input using our
transformer into contextualized representations ℎ𝑁1 · · · 𝑥𝑁𝑚
(Equation 9.6). We then feed representations from the se-
quence to a dense layer with parameters 𝑊 (𝑦) followed by
a softmax to predict the label �̂� (Equation 9.7). In the case
of Bert, we usually use the first token ℎ𝑁1 of the sequence
as input of the dense layer. For GPT, we usually use the last
token ℎ𝑁𝑚 . We seek to optimize a loss function comparing the
true labels 𝑦 with the predictions �̂� (Equation 9.8).

ℎ𝑚𝑁 = GPT(𝑥1 · · · 𝑥𝑚) (9.6)

�̂� = softmax(ℎ𝑚𝑁𝑊
(𝑦)) (9.7)

L=
∑︂
𝑦∈𝑌

L(�̂� , 𝑦) (9.8)

On the one hand, when encoding a fixed-length text for
downstream tasks, GPT deprives itself of half of the contex-
tualized information and thus usually reaches performance
below Bert on many downstream tasks. On the other hand,
since GPT only uses the left context to build contextualized
representations, it is a natural candidate for natural language
generation. We illustrate this configuration in Figure 9.2
(right sub-figure).

Generative tasks formatting It is also possible to formalize
the tasks to benefit from the generative characteristics of
the model. Instead of predicting a probability distribution
over the labels 𝑦, we can generate the labels 𝑦 directly in
natural language. We transform the dataset into sequences
𝑥1 · · · 𝑥𝑚[𝑆𝐸𝑃]𝑦. We formalize each task as a language gen-
eration task. We fine-tune the model to "generate" the label
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𝑦 in natural language, as the continuation of the input nat-
ural language sequence 𝑥1 · · · 𝑥𝑚[𝑆𝐸𝑃] (Equation 9.9 and
Equation 9.10). We then seek to optimize GPT parameters
Θ to maximize the cross-entropy between �̂� and 𝑦 (Equa-
tion 9.11).

ℎ𝑁𝑚+2 = GPT(𝑥1 · · · 𝑥𝑚[𝑆𝐸𝑃]) (9.9)
�̂� = softmax(ℎ𝑁𝑚+2𝑊

⊤
𝑒 ) (9.10)

L= 𝑦 log(�̂�) (9.11)

In this configuration, it is not necessary to modify the model’s
architecture or add any specific layer. We illustrate this con-
figuration in Figure 9.2 (left sub-figure).

Figure 9.2: Configurations for in-
cremental language models at
inference. (left) standard config-
uration with dense and softmax
layers (right) generative config-
uration for which the target is
directly predicted as a sequence
of words in natural language.

Few or zero-shot(s) learning Pushing the paradigm to its
limit, it is possible to solve tasks using a generative formalism
without updating the model weights. Such procedures are
referred to as few or zero-shot(s) learning. These configu-
rations also use the generative task format. However, we
will add information to the input natural language sequence:
the prompt contains directions for the model to solve the
task. Typically the prompt contains a brief description of
the task (zero-shot), supplemented by one or few examples
and their corresponding labels (one and few-shot(s)). A typ-
ical language prompt will contain the concatenation of 𝑘
examples and their corresponding labels 𝑥𝑘1 · · · 𝑥𝑘𝑚[𝑆𝐸𝑃]𝑦𝑘 ,
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followed by the example to predict 𝑥1 · · · 𝑥𝑚 without its label
(Equation 9.12 and Equation 9.13).

ℎ𝑁 = GPT(task description
𝑥1

1 · · · 𝑥1
𝑚[𝑆𝐸𝑃]𝑦1

𝑥2
1 · · · 𝑥2

𝑚[𝑆𝐸𝑃]𝑦2

𝑥1 · · · 𝑥𝑚[𝑆𝐸𝑃]) (9.12)
�̂� = softmax(ℎ𝑁𝑊⊤

𝑒 ) (9.13)

For example, if we aim at solving a question answering task,
we can format the following prompt to answer the question
"Que célèbre-t-on le 14 juillet ?":

Q : Qui est Superdupont ?
R : Superdupont un super-héros français, patriote et chauvin.
###
Q : Qui était le président de la France en 1982 ?
R : Francois Mitterrand.
###
Q : Qu’est-ce qu’un algorithme ?
R : Un algorithme est une suite finie et non ambiguë d’instructions
et d’opérations permettant de résoudre une classe de prob-
lèmes.
###
Q : Que célèbre-t-on le 14 juillet ?
R :

In this configuration, we do not fine-tune the model on the
task. We only use the prompt to control the input fed to the
model. The success of this approach seems closely related to
the model size (Brown et al. 2020).

9.2 Pre-training corpora

For pre-training, generative transformers require only raw
text. However, training such models requires large corpora
due to their large number of parameters. We need not only a
large corpus but also one with good properties. Specifically,
we expect the document length to be relatively close to the
size of the context. We plan on organizing the training by
collecting documents in batches, which means padding all
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5: https://dumps.wikimedia.

org/frwiki/

6: http://opus.nlpl.

eu/download.php?f=

OpenSubtitles/v2016/mono/

7: http://www.gutenberg.org

8: We use this sentence-level di-
vision to build our documents
to avoid pitfalls such as creat-
ing documents starting or end-
ing with only part of a sentence
or mixing two very distinct orig-
inal documents into one.
9: http://data.statmt.org/

ngrams/deduped2017/

documents to the same length—in our case, the context size.
A document that is significantly shorter than the context size
will require a lot of padding that will not contribute to the
final calculation of the loss. Consequently, such computations
will be "lost", a side-effect we want to avoid. GPT context size
is typically longer than Bert. Consequently, GPT training
requires longer documents than Bert. The majority of the
corpora used to adapt Bert in French: Camembert (L. Martin
et al. 2020) or Flaubert (H. Le et al. 2020a,b) use relatively
short documents. Since the sequential order of the documents
was not preserved, we cannot re-aggregate them directly
and build our own corpus. We instead aggregate two other
training corpora with different scales to train our models. We
summarize their main statistics in Table 9.1.

Table 9.1: Statistics of the corpora used to pre-train the models. The † denotes estimates based on the
available data. Specifically, we hypothesize that the number of tokens per document is equal to the context
size for OpenAI GPT. We estimate the OpenAI GPT-2 statistics using the open-source sample: https:
//github.com/openai/gpt-2-output-dataset.

Models OpenAI GPT OpenAI GPT-2 GPT 𝑓 𝑟-124M GPT 𝑓 𝑟-1B

# Documents (×106) 2.3† 8.0 1.7 7.4
# Tokens (×109) 1.2† 4.7† 1.60 3.1
Avg. tokens per document 512† 585† 965 422

We create a first corpus, used to train the first model GPT 𝑓 𝑟-
124M, as an aggregation of existing corpora: Wikipedia,5
OpenSubtitles(Tiedemann 2012)6 and Gutenberg.7 We divide
documents into successive sentences and concatenate them
into documents of maximum 1,024 tokens8.

We then create a second corpus to train our model with
above one billion parameters: GPT 𝑓 𝑟-1B. Our approach is
to augment the first corpus with data from the Common
Crawl9 in French. The Common Crawl data typically contains
many poorly formatted, inconsistent documents. We there-
fore apply strong filters to select a portion of the Common
Crawl, whose distribution is close to our first corpus. We
take inspiration from the procedure outlined in Brown et al.
(2020), and filter the Common Crawl data in several steps.

▶ First, we exclude all the documents too short with fewer
than 128 tokens, as done in Shoeybi et al. (2019). We
filter out 93% of the raw documents using this very
simple filter;

▶ We then filter out documents whose word distribu-
tions differ too much from the first corpus. By using

https://dumps.wikimedia.org/frwiki/
https://dumps.wikimedia.org/frwiki/
http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2016/mono/
http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2016/mono/
http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2016/mono/
http://www.gutenberg.org
http://data.statmt.org/ngrams/deduped2017/
http://data.statmt.org/ngrams/deduped2017/
https://github.com/openai/gpt-2-output-dataset
https://github.com/openai/gpt-2-output-dataset
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10: Given a sequence
𝑈 = {𝑢1 · · · 𝑢𝑇}, we define
the perplexity as: 𝑃𝑃𝐿(𝑈) =

𝑒𝑥𝑝
(︁
− 1
𝑇

∑︁𝑇
𝑡=1 log 𝑝�(𝑢𝑡 |𝑢<𝑡)

)︁
with log 𝑝�(𝑢𝑡 |𝑢<𝑡) the condi-
tional log-likelihood given our
model for the 𝑡th token given
the previous tokens 𝑢<𝑡 .
11: This selection using a pareto
distribution is directly inspired
from the procedure used in
Brown et al. (2020). The thresh-
old of 60 is calibrated empirically
so that, upon application of the
filter, the expected number of
documents are returned.

12: https://colab.research.

google.com

13: http://www.idris.fr/

jean-zay/

200,000 randomly chosen documents, we train a binary
classifier to discriminate between documents in the
first corpus and those in the Common Crawl. We ex-
clude all documents that had a probability <10% to be
extracted from the first corpus. The filter, deliberately
unselective, is designed to filter out explicitly invalid
or poorly formatted documents;

▶ Finally we apply a filter targeting the structure of
documents. We select documents with a low perplexity
according to the model GPT 𝑓 𝑟-124M.10 To preserve
documents out of the distribution, we fix a threshold
𝑔. With 𝑔 the realisation from a Pareto law 𝐺 ∼ G(𝛼).
We keep the document if its perplexity 𝑝𝑝𝑙 verifies:
𝑔 > 𝑝𝑝𝑙/𝑝𝑝𝑙𝑡ℎ . With the threshold 𝑝𝑝𝑙𝑡ℎ set to 60. 11

9.3 Pre-training

9.3.1 Architectures

We pre-trained two models, one of which has over one billion
parameters, as detailed in Table 9.2. Based on the work
from Shoeybi et al. (2019), which compares many training
configuration, we propose an architecture avoiding the use
of model parallelization. Indeed, spreading model modules
across multiple compute units is a major factor slowing down
training.

Table 9.2: Statistics of the architectures and comparison with OpenAI models (Radford, Narasimhan, et al.
2019; Radford, J. Wu, et al. 2019).

Models OpenAI GPT OpenAI GPT-2 GPT 𝑓 𝑟-124M GPT 𝑓 𝑟-1B

Context size 512 1,024 1,024 1,024
# Layers 12 48 12 24
# Attention heads 12 25 12 14
Embeddings size 768 1,600 768 1,792
# Parameters (×106) 117 1,558 124 1,017

9.3.2 Infrastructures

We pre-train the GPT 𝑓 𝑟-124M models on a TPU v2-8 using
the Google Colab interface.12 We train the GPT 𝑓 𝑟-1B on the
French super-computer Jean Zay.13 We perform a total of 140
hours of computation on Tesla V100 hardware (300W TDP).

https://colab.research.google.com
https://colab.research.google.com
http://www.idris.fr/jean-zay/
http://www.idris.fr/jean-zay/
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14: We estimate the equiva-
lent emissions using the Ma-
chine Learning Impact calcu-
lator (https://mlco2.github.
io/impact) introduced in La-
coste et al. (2019).

We distribute the training on 4 compute nodes of 8 GPUs. We
use data parallelization in order to divide each micro-batch
on the computational units. We estimate the total emissions
at 580.61 kgCO2eq.14

9.3.3 Hyper-parameters

We share the same set of hyper-parameters for the two
models. We set the learning rate to 1.5𝑒−4 with a 2,000 warm-
up steps followed by a cosine decay. We pre-train the models
for 125,000 iterations using a batch size of 128 documents
and half-precision (Micikevicius et al. 2018). We keep 6,080
documents to constitute a validation set. We can follow the
evolution of the perplexity on this validation set in Figure 9.3.
The other parameters (initialization, dropout, etc.) are set
according to Radford, Narasimhan, et al. (2019).

Figure 9.3: Evolution of perplexity during model training. The evaluation set is the same for both models.

9.4 Evaluation

9.4.1 Language generation

Language models are very effective for consistent natural
language generation. Even though the pre-training objec-
tive is relatively simple, deep neural networks may acquire
surprising grammar abilities (Linzen and Baroni 2020). For
example, the English GPT-2 generates correct text with plural
and long-distance agreements despite any prior linguistic

https://mlco2.github.io/impact
https://mlco2.github.io/impact
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15: The perplexity 𝑃𝑃 is de-
fined for a sequence of words
𝑊 = 𝑤1 · · ·𝑤𝑁 as 𝑃𝑃(𝑊) =

𝑃(𝑊)−1/𝑁 with 𝑁 the length of
the sequence and 𝑃(𝑊) the prob-
ability assigned by the model to
the sentence. Thus, the higher
the probability 𝑃(𝑊) assigned
by the model to the sentence𝑊 ,
the lower the perplexity 𝑃𝑃(𝑊).

knowledge. Such agreements are determined by abstract
structures and not just linear order of words. Surprisingly,
models can learn such specific linguistic patterns (subject-
verb, noun-adverb, verb-verb) with no prior information
about linguistic theory.

We give an example of text generation below. We give the
first sentence from À la recherche du temps perdu as input
to our model GPT 𝑓 𝑟-1B, which generates the following sen-
tences as output. As observed in Linzen and Baroni (2020),
the text is consistent with the input prompt, without ortho-
graphic or grammar mistakes. We even observe unusual
verb forms such as "habillasse". Nonetheless, we observe
some inconsistencies, such as "un homme entra, vêtu d’un
long manteau d’homme" which seems repetitive. Moreover,
while the model can generate text with up to 1,024 tokens,
generated text lack a narrative structure one would typically
expect from a human-generated story.

Longtemps je me suis couché de bonne heure. La nuit

se faisait assez obscure, les étoiles semblaient dormir

de temps à autre, cependant le peu de clarté qui me

permit de marcher la nuit dans la chambre éveilla en

moi une profonde pitié de ce que je faisais là, et

cette peur de l’avenir me devint plus vive et plus

aiguë. Je me réveillai en sursaut, comme un homme ivre

qui s’endort en repassant sa bière. Je passai rapidement

le seuil de la porte, et un homme entra, vêtu d’un

long manteau d’homme et portant un paquet à la main.

Je lui demandai la permission d’entrer. Il me répondit

qu’il viendrait demain, et qu’il ne pouvait pas attendre,

à cause des travaux de la nuit. Il était habillé simplement,

et l’homme me dit qu’il ne voulait pas me donner d’argent;

seulement, il voulait que je m’habillasse, pour aller

dans le même train [...]

WikiText-FR To better quantify our model’s abilities to
produce consistent text, we create WikiText-FR. This bench-
mark evaluates French language model generation abilities
by measuring their perplexity on reference texts. Perplexity is
a metric for evaluating language models. It does not measure
the model’s performance on a specific task like translation
or automatic summarization but gives an intrinsic measure
of its ability to generate text. It can thus be used to compare
models between them.15
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16: https://en.wikipedia.

org/wiki/Wikipedia:

Featured_articles

17: https://en.wikipedia.

org/wiki/Wikipedia:

Good_articles

18: https://huggingface.co/

datasets/asi/wikitext_fr

We want our model to assign a high probability to correct
sentences (without grammatical errors, in French, without
spelling mistakes, etc.). On the contrary, we want it to attribute
a low probability to incorrect sentences (and thus a high
perplexity in this case). To do this, we evaluate the perplexity
of the model on a test set that we know is correct. In the same
vein as the English work, we develop two corpora based on
Wikipedia to evaluate French language models. We collect
the text from article labeled as “featured articles”16 or “good
articles”.17 Such articles have been manually reviewed and
distinguished for their quality. Models are then evaluated by
measuring the perplexity on this test set. A low perplexity
indicates that the probability distribution produced by the
model is good at predicting the sample.

Since pre-processing Wikipedia articles is not straightfor-
ward, we extract the raw text directly from the Wikipedia
API. We gathered 2,246 good articles and 3,776 featured
articles, over the period of 2003 to 2020. We do not apply
any specific pre-processing. Transformer models indeed use
a dedicated tokenization with very few out-of-vocabulary
tokens. The corpora statistics are presented in Table 9.3. The
corpora are available as open-source contributions.18 We
emphasize that we specifically filter these articles out of the

pre-training corpora.

The WikiText-2-FR consists in a random train/valid/test
split of the featured articles with respectively 2,126/60/60
articles. The WikiText-72-FR share the same valid and test
set. However the training set includes the concatenation of
WikiText-35-FR training set and all good articles.

Table 9.3: Descriptive statistics for the corpora WikiText-FR. We evaluate the vocabulary size using the
MOSES tokenizer (Koehn et al. 2007). Tokens out of vocabulary correspond to those that occur fewer than
three times.

WikiText-EN WikiText-FR

Valid Test Train-2 Train-103 Valid Test Train-35 Train-72

Documents 60 60 600 28,475 60 60 2,126 5,902
Tokens (×103) 218 246 2,089 103,227 896 897 35,166 72,961
Vocabulary 33,278 267,735 137,589 205,403
Out of Vocabulary (%) 2.6 0.4 0.8 1.2

Since the pre-training and evaluation corpora are close, we
do not fine-tune the model. We directly present the perplexity
measured on the test set in Table 9.4. We point out that we
evaluate the perplexity based on the tokenization inherent to

https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
https://en.wikipedia.org/wiki/Wikipedia:Good_articles
https://en.wikipedia.org/wiki/Wikipedia:Good_articles
https://en.wikipedia.org/wiki/Wikipedia:Good_articles
https://huggingface.co/datasets/asi/wikitext_fr
https://huggingface.co/datasets/asi/wikitext_fr
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the model. The latter is the same for GPT 𝑓 𝑟-124M and 1B but
may be different for other models. The results in Table 9.4
highlight the performance of our GPT 𝑓 𝑟-1B model compared
with the GPT 𝑓 𝑟-124M version.

GPT 𝑓 𝑟-124M GPT 𝑓 𝑟-1B

WikiText-FR (ppl) 109.2 12.9

Table 9.4: Perplexity of our mod-
els. We do not update the models
on the training set and the per-
plexity is directly measured on
the test set which are identical
for two benchmarks WikiText-35-
FR and WikiText-72-FR.

We also considered a language models with 5-grams and
kneser-ney smoothing (Ney, Essen, and Kneser 1994) using
the SRILM tool (Stolcke 2002) as baseline. The results are
not directly comparable with the one from Table 9.4 because
the tokenization is different and our model is trained on a
much larger volume of data. We detail the results in Table 9.5,
which assess the distinction between the two benchmarks
WikiText-35-FR and WikiText-72-FR.

5-grams

WikiText-35-FR (ppl) 166.7
WikiText-72-FR (ppl) 99.1

Table 9.5: Perplexity of the 𝑛-
gram model. We train the 𝑛-
gram model on the respective
training set of each benchmark
WikiText-35-FR and WikiText-72-
FR. The perplexity is directly
measured on the test set which
are identical for two bench-
marks.

9.4.2 Automatic summary

We then evaluate our models on an automatic summary task,
which exploits the generative properties of the model. We use
the configuration proposed in Radford, Narasimhan, et al.
2019 which allows us to use the model without adjusting its
architecture. We simply add the pattern "Pour résumer :" after
the original text to encourage the model to generate text that
summarizes posts. For OpenAI GPT-2, the added pattern
is "TL;DR:" which stands for "Too Long; Didn’t Read." and
is used on the Reddit forum as a marker to summarize a
discussion.19 It should be noted that "TL;DR:" does not have a
real equivalent in French. Most likely, this pattern is present
in the English pre-training data for GPT-2, while it is absent
from the French data used for the pre-training of GPT 𝑓 𝑟 . In a
sense, Radford, Narasimhan, et al. 2019 take advantage of a

https://www.reddit.com/
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20: In top-𝑘 sampling, we gener-
ate words sequentially. At each
time step, we retain the K most
likely next words and normalize
their probabilities. We sample
the next word based on this prob-
ability distribution. The process
is therefore non-deterministic.

regularity in the pre-training data to benefit from a specific
behavior during inference.

Table 9.6: Comparison of the generated abstracts with the title of the article or the proposed synthesis. We use
the ROUGE score and the OrangeSum corpus (Eddine, Tixier, and Vazirgiannis 2020). Our models are used
in learning without examples and thus without updating the parameters on the training set. We indicate the
best results in bold. We report the F1-score for each ROUGE measure.

Synthesis Title

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

First sentence 22.1 7.1 15.3 18.6 7.7 15.0

GPT 𝑓 𝑟-124M 17.5 3.1 12.1 13.9 2.3 9.7
GPT 𝑓 𝑟-1B 16.6 3.4 11.5 10.2 2.6 8.4

We consider the OrangeSum dataset for the abstract sum-
mary (Eddine, Tixier, and Vazirgiannis 2020). We give some
text, summary pairs from the task in Table 9.7. We complete
the text using the top-𝑘 random sampling strategy (Fan, M.
Lewis, and Dauphin 2018) with 𝑘 = 2.20 We keep the first 3
sentences from the first 100 generated tokens. Using ROUGE
metrics (C.-Y. Lin 2004), we compare our model to the ref-
erence, which considers the first sentence of the text as a
summary. The ROUGE metrics are a collection of metrics that
allows comparing automatic summaries with a reference text
by calculating the proportion of "n-grams" that are common
between the two texts. ROUGE-1 and ROUGE-2 refers to
overlapping unigrams and bigrams between the generated
and reference summaries. ROUGE-L calculates the longest
common subsequence (LCS), that is, the longest sequence
of words shared between the generated and reference sum-
maries (not necessarily consecutive, but still in order). We
report the F1-score of the matching n-grams for each mea-
sure. Table 9.6 shows that, in this complex configuration, our
models just manage to approach the proposed reference.

We analyze some examples manually. The generated text is
correct in terms of spelling and syntax. It is also in line with
the theme and in continuity of the proposed articles. Nev-
ertheless, the generated text generally focuses on a specific
detail of the article and then expands on it by sometimes in-
venting elements. This phenomenon is known as hallucination

(Kryscinski et al. 2019). As illustrated in Table 9.7, the method
allows us to generate coherent text but does not manage to
synthesize completely the general idea of the text.
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Table 9.7: Examples extracted from the OrangeSum tasks and summaries automatically generated with
GPT 𝑓 𝑟 .

Extract of the input article: Présenté comme l’origine des explosions dévastatrices à Beyrouth qui ont fait
plus d’une centaine de morts et au moins 4.000 blessés, le nitrate d’ammonium est principalement employé
comme engrais azoté, mais peut aussi entrer dans la composition de certains explosifs à usage civil. [ . . . ]
L’association "Sauvons la baie de saint-Brieuc" a été créée en début d’année pour alerter la population sur ce
danger et mettre fin au transport de nitrate d’ammonium.
Reference: Ces cargaisons dangereuses font l’objet de mesures de sécurité très strictes et il n’y a jamais plus
de 7.500 tonnes de nitrate d’ammonium dans le port en même temps.
Generated summary: les nitrates sont dangereux pour la santé et la sécurité des personnes et des biens.

Extract of the input article: Au micro de RTL dimanche matin, la candidate à la mairie de Paris Rachida Dati
n’a pas tardé à décrypter un récent sondage qui la donne en progression pour les prochaines municipales à
Paris face à Anne Hidalgo. [ . . . ] Appelée "Paris d’Avenirs", elle consisterait en une aide de 1.200 euros par an
pendant trois ans, à l’arrivée d’un nouvel enfant. Mme Dati prévoit un coût de 20 millions d’euros par an
pour cette mesure.
Reference: Invitée sur RTL ce dimanche, la candidate à la mairie de Paris a expliqué que "les Parisiens
attendent une solution au déclin de Paris".
Generated summary: le maire de la capitale est "un homme de gauche" et "une femme de droite". PRÉSI-
DENTIELLE » Inscrivez-vous pour recevoir en temps réel les résultats de votre ville partages les opinions,
résultats par ville, profession, catégorie socioprofessionnelle, etc.

9.4.3 FLUE benchmark

Generative models extend some of the perspectives of Bert
type models. Nevertheless, this type of pre-training does
not allow to reach the same performance as models taking
into account the whole context. When we directly compare
the English models on the GLUE benchmark, we observe
an average difference of more than 4 points between Ope-
nAI GPT and Bert-base (Radford, Narasimhan, et al. 2019).
We nevertheless compared our model on the French FLUE
benchmark in Table 9.9.

We considered the following tasks, for which we present
example samples in Table 9.8:

▶ CLS is a dataset composed of reviews on Amazon to be
classified as positive or negative. It contains 3 product
categories: books, DVDs and music. Each category is
divided into 2,000 examples of training, validation and
evaluation.

▶ PAWS-X contains pairs of sentences. It is a binary classi-
fication task to identify pairs whose two sentences are
semantically equivalent. There are 49,401 examples for
training, 1,992 for validation and 1,985 for evaluation.

▶ XNLI contains pairs of sentences. The task is to predict
whether the first (premise) implies the second (hypoth-
esis). 392,702 pairs are used for training, 2,490 pairs
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Table 9.8: Examples extracted from the CLS, XNLI and PAWS-X tasks.

Examples Labels

CLS

un conte moderne des temps anciens ; une
poésie dans les images ; dépaysement et
humour garanti ...

— Positif

N’apporte strictemant rien de plus de ce qui
est connu. SANS INTERET. — Négatif

XNLI

Mon Walkman S’ est cassé alors je suis en
colère maintenant je dois juste tourner la
stéréo très fort

Je suis contrarié que mon walkman soit cassé
et maintenant je dois tourner la stéréo très
fort .

Entailment

Qu’ est-ce que tu en sais ? Tout ceci est à
nouveau leur information . Cette information leur appartient . Entailment

L’ homme aurait dû mourir sur le coup . L’ homme allait parfaitement bien . Contradiction
Et C’ est sympa de vous parler tous les deux . Je te parle tous les jours . Neutral

PAWS-X

C’est le siège du district de Zerendi dans la
région d’Akmola.

C’est le siège du district de Zerendi dans la
région d’Akmola. Positif

Elizabeth II était un ancêtre des reines
Edzard II et Beatrix des Pays-Bas.

Edzard II était un ancêtre des reines Eliza-
beth II et de la Béatrix des Pays-Bas. Négatif

Saunders a battu Dan Barrera à l’unanimité. Par décision unanime, Dan Barrera a battu
Saunders. Négatif

for validation and 5,010 pairs for evaluation.

This time the weights of our model are updated. The hyper-
parameters are set according to the recommendations of H.
Le et al. (2020a,b). As expected, the performance of the model
does not reach the one obtained with Bert-like models .

Table 9.9: Accuracy scores for the discriminative tasks of the FLUE benchmark. The symbol † denotes the
reported scores of H. Le et al. (2020a,b). We indicate the best results in each section in bold, we underline the
best results overall.

Models

CLS

PAWS-X XNLI Avg.Books DVDs Music

mBERT† (Devlin et al. 2019) 86.2 86.9 86.7 89.3 76.9 85.2
CamemBERT† (L. Martin et al. 2020) 92.3 93.0 94.9 90.1 81.2 90.3
FlauBERT-base† (H. Le et al. 2020a,b) 93.1 92.5 94.1 89.5 80.6 90.0
FlauBERT-large† (H. Le et al. 2020a,b) 95.0 94.1 95.9 89.3 83.4 91.5

GPT 𝑓 𝑟-124M 88.3 86.9 89.3 83.3 75.6 84.7
GPT 𝑓 𝑟-1B 91.6 91.4 92.6 86.3 77.9 88.0
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program/keynotes/

9.5 Limits and ethic considerations

9.5.1 Inference without fine-tuning

The GPT-3 model (Brown et al. 2020) pre-training data is
in the vast majority in English but includes around 1% of
documents in French. In a certain limit, it is therefore possible
to use it to generate text in French. GPT-3 can be adapted for
many use cases, simply by describing the instruction of the
task followed by a number of examples (zero and few shot(s)
learning). This method tries to condition the behavior of the
model by formatting the text proposed as input according to
the task to be performed. The results are surprising but the
underlying mechanisms remain to be explored. Nevertheless,
it seems that the number of parameters is one of the key
factors for the functioning of this method. Obviously it is not
directly comparable with our model in terms of number of
parameters, volume of pre-training data and additional pre-
training procedures. However, our model seems to perform
less well than GPT-3 on general culture or logic questions For
example, when we submit the following text: "Si Jérôme est
plus grand que Michel, qui est le plus petit ?" the GPT 𝑓 𝑟-1B
model generates "Michel" but we found this result difficult to
reproduce for similar experiments. If we try to generate the
following sentence, "quatre plus quatre font" the model will
generate "quatre", while GPT-3 usually gets the right answer
for similar experiments.

The possibilities exhibited by large language models are
obviously exciting. They are sometimes referred to as "foun-
dation" models (Bommasani et al. 2021). Such models exhibit
striking properties, which raises the question about the "cog-
nitive" mechanisms in place. Yet it seems at least premature
to confer strong cognitive faculties to language models. In her
closing talk from EACL 2021, Melanie Mitchell enumerates
the reason of "why AI is harder than we think" (Mitchell
2021).21 One of the reason is that we expect a continuum in
the progress toward general AI. Melanie Mitchell compares
the current progress in AI as "claiming that the first monkey
that climbed a tree was making progress towards on the
moon.".

https://2021.eacl.org/program/keynotes/
https://2021.eacl.org/program/keynotes/
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22: Authors initially did not re-
lease the model in open-source,
stating: "Due to concerns about
large language models being
used to generate deceptive,
biased, or abusive language at
scale, we are only releasing a
much smaller version of GPT-2
along with sampling code."
https://openai.com/blog/

better-language-models/.

9.5.2 Random text generation and societal biases

Large language models are pre-trained on vast corpora. As a
result, they run the risk of reproducing biases—a judgment
based on one’s perception of someone or something—or
stereotypes—an overgeneralization about a group of people
on the basis of characteristics they share—that are prevalent
in our society.

The authors of OpenAI GPT-2 were particularly cautious
about the type of societal biases that could be generated
by the model.22 Sheng et al. (2019) observe OpenAI GPT-2
generates stereotypical text when presented with certain
contexts that include racial groups, or gender types. Bender
et al. (2021) compare large language models with animals and,
more specifically, stochastic parrots, thus warning by their
tendency to reproduce the bias contained in the pre-training
data.

We reproduced a similar example by generating the fol-
lowing sequence of sentences with the GPT 𝑓 𝑟-124M model
using the top-𝑘 strategy random sampling (Fan, M. Lewis,
and Dauphin 2018) with 𝑘 = 50 and stopping at the first
punctuation element. "Mon mari/Ma femme vient d’obtenir
un nouveau poste comme ...". For the husband, the positions
generated by the GPT 𝑓 𝑟-1B model are agent immobilier, at-
taché commercial, agent de sécurité, enseignant à l’école,
enseignant à l’école primaire. For the wife, the positions
are assistante sociale, assistante de direction, assistante de
recherche, assistante du procureur, assistante du procureur
général.

Such qualitative assessment may be extended to assess more
systematically the bias capture by large pre-trained language
models. Nadeem, Bethke, and Reddy (2021) introduce Stere-
oset, a large-scale natural English dataset to measure stereo-
typical biases in four domains: gender, profession, race, and
religion. Nangia et al. (2020) introduced CrowS-Pairs, which
examines stereotypical bias via minimal pairs. Such datasets
extend the work on testing bias in static word embeddings
using association tests. They propose a new association met-
ric for pre-trained language models based on the probability
of predicting an attribute given a specific context

To our knowledge, no such dataset or tool exists for French. In
the future, we hope to contribute to the effort of developing

https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
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resources to identify and mitigate biases and stereotypes in
large French language models.

9.6 Conclusion and future work

We proposed a French version of the GPT model. While it
does not match the raw performance of Bert, its generative
properties allow it to be used in remarkably flexible con-
figurations. As illustrated in our experiments for automatic
summarization, zero-shot configuration remains very chal-
lenging for the model. Nevertheless, this configuration opens
up different perspectives than traditional learning.

This model was among the first to emerge in French and at
that time, few evaluation resources were available. We hope
that the obtained natural language generation performance
will favor its use for corresponding problematics. In particu-
lar, uses within communication systems such as chatbots, or
speech2text synthesis.
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„The heart you speak of,’ he said, ‘It might

indeed be the hardest part of Josie to

learn. It might be like a house with many

rooms. Even so, a devoted AF, given

time, could walk through each of those

rooms, studying them carefully in turn,

until they became like her own home.

— Kazuo Ishiguro

Klara and the Sun

This dissertation has addressed the topic of sentence em-
bedding and focused on neural model structure’s role in
composing words into sentence representations. Our contri-
butions addressed several critical issues in sentence embed-
dings regarding lack of robustness toward out-of-domain
generalization, shallow pattern matching rather than com-
positional knowledge, the requirement for large training
datasets, or over-parametrization. We summarize below our
key findings.

First, we highlighted that some neural network structures are
more appropriate for capturing specific types of information.
In the first part of Chapter 7, we evaluated the ability of
models to perform compositional knowledge in a natural
language inference task. By comparing distinct structured
models and their robustness patterns toward specific lin-
guistic structures, we show they capture distinct types of
information. We observed an overall superiority of Bert and
identified some of its weaknesses in replacing words with
semantic opposites or scrambling words. We take advantage
of this observation and jointly learn structured sentence en-
coders in a contrastive framework. Our results confirm our
hypothesis that combining diverse structures should be more
robust for tasks requiring performing complex compositional
knowledge.

Secondly, we propose original architectures to jointly learn
the sentence structure and the semantic composition func-
tion. In Chapter 5, we propose a model consisting of two
components: a parser and a TreeLSTM that uses those parses.
The parser and composition function are learned jointly and



172 10 Conclusion and Perspectives

are specific to a given task or domain. Hence, training the full
model does not require supervision from a parsing objective.
We show that our setup is competitive with Bert-base on a
textual similarity task. However, downstream supervision
disrupts the production of stable parses and preserving lin-
guistically relevant structures. In Chapter 6, we designed an
original transformer model that progressively transforms
each token through a dynamic number of iterations. We use
our model to analyze the role of the layers in deep transform-
ers. We observe patterns across the distribution of iterations
and confirm the specific behavior played by special tokens or
key tokens for the prediction. Our experiments provide a new
interpretation path for the role of layers in deep transformer
models. Rather than extracting specific features at each stage,
layers could act as an iterative and convergent process.

Thirdly, we complete our goal to propose state-of-the-art
sentence encoders by adapting the standard contrastive pre-
training method to train large transformer models on a large
dataset. While large transformers did not directly meet com-
petitive results on sentence embedding benchmarks, we suc-
cessfully extended their pre-training to outperform previous
approaches. In the domain of large transformer models, we
pre-trained a French version of the GPT model from scratch
and evaluated it on corresponding benchmarks. While it
does not match the raw performance of Bert, its generative
properties allow for surprisingly flexible utilization.

Finally, we developed evaluation resources. We introduce
CobA, a dataset designed to evaluate model compositional
properties. We evaluate properties (localism, substitutivity,
productivity, and systematicity) that also apply to the study
of human language. We compare encoders with distinct struc-
tures: transformers and recurrent or tree-structured models.
In general, models are robust toward introducing paraphrases
(substitutivity) and can perform the recursive evaluation of
sub-components (localism). However, transformers struggle
to generalize to longer sequences (productivity) or to com-
bine known parts to form new sequences (systematicity). We
also introduced an evaluation dataset for French language
models.

Our research could continue in several ways.

First, we could further investigate the behavior of our iter-
ative transformer model on other datasets. Such in-depth
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analysis could help us better understand the convergence
process within transformers and provide hints to enhance
their architectures.

Secondly, we could integrate other kind of biases into neural
network architectures such as symbolic or logic biases. Sym-
bolic AI typically encodes knowledge using explicit rules.
These systems may require extensive feature engineering
to describe individual elements, but they are very effective
at explaining how to compose them. By hard-integrating
composition rules, they are naturally more resilient to out-
of-domain generalization. Combining symbolic systems and
deep learning representation methods is an active subject
of research. For example, to combine object recognition and
reasoning abilities using generation of symbolic programs
or by integrating logic into neural networks. In our opinion,
such approach complements methods for intelligibility in
deep neural networks. Indeed, we do not attempt to explain
models afterward but rather try to constrain their architec-
tures to provide more explicit or readable transformation
sequences.

Finally, our work reveals distinct behaviors of LSTM and
transformer models. We proposed a unified framework using
graph neural networks. But other kinds of bridges may
be considered. For example, we could extend the memory
mechanisms to transformers to facilitate convergence across
layers.
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