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Abstract

Human-machine interaction (HMI) has recently started to benefit from the rise of neuroergonomics and
physiological computing. Indeed, these new research fields provide both a new approach and a new means
to evaluate the quality of HMI based on the assessment of the user/operator’s mental state through machine
learning applied onto physiological metrics. Although growing at a fast pace, research in this domain is
still hindered by several challenges. Amongst those, one can list reaching high detection accuracies in rea-
listic and ecological settings, finding appropriate counter-measures (i.e. system adaptation/modifications)
to increase safety and performance, but also better defining mental states of interest.

This thesis presents selected work that aim at addressing these challenges. Hence, after the first part -
part I- that details my academic resume including my educational and research activities, my communica-
tions and supervisees, the second part - part II- is dedicated to detailing two main research tracks I have
followed these last 7 years. The first track - in chapter 7- presents cognitive neuroscience contributions for
improved operator mental state assessment. This includes work on mental states’ definitions and concepts,
on characterizing user/operator engagement level depending on task demands, prolonged operation, coope-
ration and confinement setting, as well as designing countermeasures for adequate engagement.

The second track - in chapter 8- presents methodological and signal processing contributions for im-
proved physiological computing. This includes work on probes and their dedicated processing, cerebral
connectivity features, work on peripheral measures such as cardiac ones, as well as work related to actually
closing the loop and out-of-the lab progress.

This research work is of course not finite and opens new questions. Hence, chapter 9 details research
perspectives on physiological computing as a neuroergonomic tool, by focusing on projects that I recently
initiated on human-robot interaction in collaborative and mobile settings (incl. studies on electrophysiolo-
gical inputs for collaborative robotics enhancement and the impact of teleoperators’ orientation and mo-
vement for space applications) and on how to go further to cope with EEG non-stationarity (incl. open
science, exploring mathematical tools for extracting new EEG features, and large scale projects for colla-
borative work), as well as reflections on how to maneuver a research practice shift with fundamental and
clinical considerations.

Lastly, the third part - part III- is comprised of five articles that I selected to present diverse aspects
of my work : one article on passive brain-computer interface (BCI) in realistic settings, a second on a
comprehensive neuroergonomic approach to inattentional deafness, a third on physiological computing
for a hyperscanning application written with my first PhD student, a fourth on a review and perspective
of physiological computing benefits to human-robot interaction, and lastly a fifth on a recently organized
pBCI competition.
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HDR candidate
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1.1 Personal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1.1 Personal information

Name: ROY
First names: Raphaëlle, Nina
Date of birth: December 16, 1986
Nationality: French
PhD: Obtained on June 4, 2015, in Grenoble, France
Current position: Associate Professor at ISAE-SUPAERO, Univ. of Toulouse, France
Attached to Doctoral School: Ecole Doctorale Systèmes (EDSYS)
Mail: 10 av. E. Belin, 31000 Toulouse - France
Phone: +33 (0)5 61 33 87 20
Email: raphaelle.roy@isae.fr
Webpage: https://personnel.isae-supaero.fr/raphaelle-n-roy-211
Google scholar: citations = 1061, h-index=16, i10 index = 25, July 1st, 2022.
Research topics: Human-machine interaction, physiological computing, neuroergonomics, brain-computer
interfaces, electrophysiology

1.2 Diplomas

Feb. 2016 Certified lecturer in Neuroscience (National certificate - section 69).

Oct. 2011-
May 2015

Ph.D. in Cognitive Neuroscience & Signal Processing at the CEA-Leti & Gipsa-Lab,
Univ. Grenoble-Alpes, Grenoble, France.

2010-2011 Master of Research (2nd year) in Neurocognition, Univ. Grenoble-Alpes, Grenoble,
France, summa cum laude (2nd).
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2009-2010 Master of Research (1st year) in Neurocognition, Univ. of Savoy, Chambéry, summa
cum laude (4th) & Bachelor’s degree in Psychology (simultaneously), magna cum
laude.

2006-2009 Bachelor’s degree in Cognitive Science; 3rd year: University of British Columbia,
Vancouver, Canada, 86% (A); 2nd & 1st years: Univ. Lumière Lyon 2, summa cum
laude (valedictorian).

2004-2005 1st year of scientific and Biology oriented "classes préparatoires", Lycée Georges
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June 2004 Scientific and biology oriented "baccalauréat", magna cum laude, Lycée Georges
Clemenceau, Reims, France.

1.3 Research curriculum
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Associate Professor (tenured) at ISAE-SUPAERO, Neuroergonomics and Human
Factors team.
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Ministry of the Armed Forces.
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oculometry and EEG for emotion analysis. Funding: CHESS ERC of Pr C. Jutten.
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topic: Mental state electrophysiological markers: Contributions to passive brain-
computer interfaces.

2010-2011 Research assistant at the LPNC, Grenoble, France. Supervisors: Dr A. Campagne
& Dr S. Donnadieu. Research topic: Attentional blink phenomenon: Is the time
course of attentional components dependent or independent on modality? A vision
and audition EEG study.
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Chapter 2

Educational activities

Contents
2.1 Summary table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Teaching responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Teaching activities at ISAE-SUPAERO . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Teaching activities before ISAE-SUPAERO . . . . . . . . . . . . . . . . . . . . . . 11

Thanks to my supervisors and growing network, ever since my master degree I have been given the
opportunity to teach. This chapter details all my educational activities until 2022. The reported hours in
the summary table and in the subsequent sections are given in hours equivalent to tutorials as usually done
in France, for instance for the application to receive the Lectureship certificate which I obtained in 2016.
Hence, one hour of lecture is equivalent to 1.5 hour of tutorial or practical session. After the summary
table, my teaching responsibilities, teaching activities at ISAE-SUPAERO and teaching activities before
ISAE-SUPAERO are detailed in distinct sections.

2.1 Summary table

Activity type Number

Program coordinator (current) 1

Course director (current) 7

Face to face cumulated hours at ISAE-SUPAERO 312 hetd

Face to face cumulated hours before ISAE-SUPAERO 121.5 hetd

Course material created from scratch 9 out of 14

ISAE course module created from scratch 8 out of 9

Tutored students 18

Table 2.1 – Educational activities summary table (hetd: hours equivalent to tutorials)
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2.2 Teaching responsibilities

When I was recruited in sept. 2016 I was charged with creating from scratch 6 modules for the inter-
national master offer, for a volume of 168 hours. Since then I have had an increase in teaching/academic
duties, with the addition of a new module for the supaéro engineer curriculum as well as modules for con-
tinuing education. The total volume of course management I deal with is currently 226 hours on 1 academic
year. In addition to managing the curricula and the teachers, I create and correct all exams. The modules
and programs are detailed below.

Year Role Name Volume Level Language

2016-2022 Program
Coordinator

Certificate in Human
Factors & Neuroer-
gonomics for Aeronau-
tics & Transportation

100 hrs 5th year (Adv. master
TASAero)

English

2016-2022 Course Di-
rector

Understanding Human
Behavior

25 hrs 5th year (Adv. master
TASAero)

English

2016-2022 Course Di-
rector

Humans at work 25 hrs 5th year (Adv. master
TASAero)

English

2016-2022 Course Di-
rector

Advanced Techniques 25 hrs 5th year (Adv. master
TASAero)

English

2020-2022 Course Di-
rector

Experimentation, mea-
sures & brain-computer
interfaces

48 hrs 5th year (M. Eng. su-
paéro)

French

2016-2022 Course Di-
rector

Human Factors 38 hrs 4th year (M. Aerospace
Eng.)

English

2016-2022 Course Di-
rector

Instrumentation & Data
Analysis

30 hrs 4th year (M. Aerospace
Eng.)

English

2016-2018 Course Di-
rector

Human Factors 32 hrs >5th year (Exp. Flight
Test Eng. Master)

French

2020-2022 Course Di-
rector

Human Factors 10 hrs >5th year (LLM Avia-
tion Law)

English

2.3 Teaching activities at ISAE-SUPAERO

Regarding my teaching activities since I was recruited at ISAE-SUPAERO in Sept. 2016, I have given
312 hetd over six academic years (i.e. from 2016-2017 to 2021-2022). The first years were not very loaded
due to several factors: modules and course material to create entirely from scratch, maternity leave in 2018,
part-time work in 2019 and of course, the covid in 2020.

All courses are detailed in the table below. These courses are only for master students (M.Sc. or M.
Eng.) and range from tutorials, practical sessions to lecture courses. I created a vast majority of them from
scratch as indicated by the from scratch mention. In addition to the hours reported in the table, I created all
exams, even for the modules in which I did not teach, and I also corrected all reports and exams. Moreover,
educational activities at ISAE-SUPAERO include supervising students for research projects. I have tutored
18 students for these projects since 2016 (see section 5).

Year Topic Hours Type Language

2017-2022 Electroencephalography from scratch 83 Lectures & practicals English & French
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2017-2022 Brain-computer interfaces from
scratch

55 Lectures & practicals English & French

2017-2021 Physiological data analysis from
scratch

52 Tutorials English

2017-2022 Perception from scratch 51.5 Lectures & tutorials English & French

2017-2022 Central nervous system from scratch 18 Lectures English

2020-2022 Human factors from scratch 18 Lectures English
2019-2021 Neuroergonomics & BCI from

scratch
13.5 Lectures French

2017-2022 In-flight experimental work from
scratch

8 Lectures & practicals English & French

2020-2022 Introduction to experimentation 7 Tutorials French

2020-2022 EEG preprocessing from scratch 6 Lectures & tutorials French

2.4 Teaching activities before ISAE-SUPAERO

Please find below a table that details the 121.5 hours (hetd) I taught before joining ISAE-SUPAERO.
These were given at Univ. Grenoble-Alps (67.5 hetd) and Univ. Savoy Mont-Blanc (54 hetd) between 2010
and 2016. These courses range from tutorials, practical sessions to lecture courses. I created two of them
from scratch as indicated by the from scratch mention. Additionally I tutored 3 students for their projects
at INP-Grenoble (engineering school; see section 5).

Institution Topic Hours Type Level Language

Univ.
Grenoble-
Alps

Brain-Computer Inter-
faces from scratch

13.5 Lectures Master (2nd year),
Neuroscience

English

Univ.
Grenoble-
Alps

Vision 6 Tutorials Master (1st year),
Psychology

French

Univ.
Grenoble-
Alps

Neurophysiology 24 Practicals Bachelor (3rd year),
Psychology

French

Univ. Savoy
Mont-Blanc

Introduction to cognitive
science from scratch

54 Lectures Bachelor (1st year),
Applied Mathemat-
ics

French

Univ. Savoy
Mont-Blanc

Introduction to human
biology

24 Tutorials Bachelor (1st year),
Psychology

French

11
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Chapter 3

Research activities

Contents
3.1 Summary table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Research projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Expert activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Actions for the scientific community . . . . . . . . . . . . . . . . . . . . . . . . . . 17

This chapter details my research activities until 2022. First, a summary table provides some indica-
tors such as the number of projects I have led or taken a part in, but also indicators related to expertise
work, communication and editorial activities. The subsequent sections detail the research projects, expert
activities, and actions for the scientific community.

3.1 Summary table

Activity type Number

Projects as leader/co-leader 5

Projects as participant 12

PhD thesis examinator 3

Invited international talks 3

Reviewer for X funding agencies 5

Reviewer for X international journals 22

Reviewer for X international conferences 7

Organized conferences 12 (+ 1 hackathon)

Founded scientific association 1

Associate editor for X journals 1

Lead or guest Research Topic editor 4

Session chair & scientific committee member at X conferences 5

Table 3.1 – Research activities summary table
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3.2 Research projects

All research projects I have taken an active part in -since my PhD graduation- are listed below, with
their acronym, full name, years, duration, funding source, my role in these projects (e.g. leader or partner),
and the partners involved.

Acronym Full name Year(s) Duration Funding
source

Role Partners

EPIIC ElectroPhysiological
Involuntary Inputs for
Collaborative robotics
enhancement

2022-
2025

48
months
(4
years)

ANR (JCJC) Leader Co-supervision
of all supervisees
with A. Clodic
(LAAS CNRS)

ANITI Artificial and Natural
Intelligence Toulouse
Institute, chair of neu-
roadaptive technology

2019-
2022

48
months
(4
years)

Investissement
d’avenir PI3A
(chair: F.
Dehais)

Co-chair Co-supervision
of PhD student
with N. Drougard
(ISAE)

Concorde Analysis and inte-
grated design towards
the certification of
future drone systems
and their operations,
WP4 ’Interactions
& human-system
interfaces’

2019-
2025

60
months
(5
years)

Projet d’etude
amont (PEA)
Ministy of the
Armed Forces

WP
leader

Co-supervision
of post-doctoral
fellow with JP
Imbert (ENAC)
& B. Berberian
(ONERA), of
PhD with A.
Brock (ENAC)

Airtime Conception and archi-
tecture of cognitive
aerial systems

2017-
2021

60
months
(5
years)

CASAC Das-
sault Aviation
chair (leader
C. Chanel)

Partner Co-supervision
of PhD with C.
Chanel (ISAE)

TELECOG Impact of the tele-
operator’s orientation
and movement on at-
tentional and cognitive
states

2021-
2024

36
months

CNES & ESA
(OSIP)

Co-
leader

Co-supervision
of PhD with V.
Peysakhovich
(ISAE)

TELEOP A neuroergonomic
approach to cis-lunar
teleoperation

2021 12
months
(1
year)

CNES (leader
S. Lizy-
Destrez)

Partner V. Peysakhovich
& S. Lizy-
Destrez (ISAE)

ATARRI Attention deployment
to the rear space: ap-
plication to formation
flight

2020-
2023

36
months
(3
years)

AID, Min-
istry of the
Armed Forces
(leader V.
Peysakhovich)

Partner Post-doctoral
fellows super-
vision with V.
Peysakhovich
& S. Scannella
(ISAE)
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NECTAR Neuroergonomics for
Air Trafic Control

2020-
2022

36
months
(3
years)

DSNA
(French
Air naviga-
tion service;
leader F.
Dehais)

Partner Distant PhD
supervision with
F. Dehais (ISAE)
& JP Imbert
(ENAC)

Cocpit Cognitive counter-
measures for pilots

2019-
2020

24
months
(2
years)

MMT (Das-
sault Avia-
tion, Thalès
& Ministry
of the Armed
Forces; leader
F. Dehais)

Partner Distant post-
doctoral fellow
supervision with
F. Dehais (ISAE)

Per4mance Planning and flexible
work assignment to
operators in aeronau-
tic assembly lines: a
systemic approach for
addressing ergonomic
and economic risks

2018-
2021

48
months
(4
years)

ANR PRCE
(leader O.
Battaïa)

Partner Post-doctoral
fellow super-
vision with O.
Battaïa (KEDGE
Business school
Bordeaux)

Smart-
Cockpit

Smart Cockpit: On-
line monitoring of two
pilots using EEG and
fNIRS

2016-
2019

36
months
(3
years)

Ministry of
the Armed
Forces (PhD
fellowship
program;
leader F.
Dehais)

Partner PhD fellow su-
pervision with F.
Dehais (ISAE)

Hyperscan Hyperscan: coopera-
tion detection

2018-
2020

24
months
(2
years)

MMT (Das-
sault Avia-
tion, Thalès
& Ministry
of the Armed
Forces)

Partner Post-doctoral fel-
low supervision
with F. Dehais &
C. Chanel (ISAE)

MAIA Modelisation of Atten-
tion for an Adaptive
Interaction

2017-
2019

24
months
(2
years)

ISAE-
SUPAERO
& Ministry
of the Armed
Forces (leader
F. Dehais)

Partner Post-doctoral fel-
low supervision
with F. Dehais
(ISAE)

MODEX Modulation and eval-
uation of the mental
flexibility of high risk
system operators

2017-
2020

36
months
(3
years)

ANR
ASTRID
(Ministry of
the Armed
Forces)

Partner Distant collab-
oration, with S.
Scannella and Q.
Chenot (ISAE)
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NEURO-
TOOLS

Statistical methods
for neuronal feature
extraction and mental
state estimation in the
aeronautical context

2017-
2018

12
months
(1
year)

TTIL
(Toulouse
Tech Inter
Labs), ISAE-
SUPAERO-
INSA-INP

Leader Co-supervision
of graduate stu-
dents with M.
Albert (INSA)

ISCOPE Intelligent assistance
for Supervised Con-
trol in drones swarms
OPErations: providing
intelligent software
assistance in tasks and
authority allocation
among human oper-
ator and autonomous
artificial agents

2016-
2017

24
months
(2
years)

ATS IDex,
Univ.
Toulouse
(leader C.
Chanel)

Partner Collaboration
with A. Bovo &
C. Chanel (ISAE)

MAIA Modelisation of Atten-
tion for an Adaptive
Interaction

2016 8
months

ISAE-
SUPAERO
& Ministry
of the Armed
Forces (leader
F. Dehais)

Post-
doctoral
fellow

Supervised by Pr.
F. Dehais (ISAE)

CHESS Challenges in the ex-
traction and separa-
tion of sources; Multi-
modality inoculometry
and EEG for emotion
analysis

2015 4
months

ERC (leader:
C. Jutten)

Post-
doctoral
fellow

Supervised by Pr.
A. Guérin-Dugué
(Gipsa-lab)

3.3 Expert activities

PhD theses - Bastien Berthelot, Univ. Bordeaux, France, March 30, 2021, examinator.
- Aurélien Aprriou, Univ. Bordeaux, France, Dec. 17, 2020, examinator.
- Upasana Talukdar, Univ. Tezpur, India, March 2019, reviewer.

Funding agencies - MITACS, Canadian research agency, April 2022
- Scient. committee of the French Defense Medical Institute (IRBA), June 2017
- French National Research Agency: ASTRID funding, April 2019
- Swiss National Science Foundation, Dec. 2019
- Exploratory projects commission of the Univ. Grenoble-Alps, Feb. 2020.

Invited talks - DSS science lectures of TNO, Soesterberg, NL (online), March 3rd 2021. In-
vited by Dr A.-M. Brouwer.
- Workshop at INRIA Bordeaux (online), Dec. 17th 2020. Invited by Dr. F. Lotte.
- University of Fribourg (CH), Sept. 27th 2017. Invited by Dr. J.-P. Bresciani.
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Reviewer - Journals: Biological Psychology, Journal of Neural Engineering, Biomedical
Signal Processing and Control, Frontiers in Human Neuroscience, Scientific Re-
ports, Brain Research, Neurosciences and Biobehavioral Reviews, IEEE Transac-
tions on Human Machine Systems, IEEE Transactions on Affective Computing,
IEEE Transactions on Neural Systems and Rehabilitation Engineering, Computa-
tional Intelligence and Neuroscience, Sensors, Informatics in Medicine Unlocked,
Biomedical Physics & Engineering Express, Le Travail Humain, Physiological
Measurement, Brain Sciences, Journal of Neuroscience Methods, Journal of Psy-
chophysiology, the International Journal of Psychophysiology, Transportation Re-
search Part F: Psychology and Behaviour, and Human Factors.

- Conferences: IEEE SMC conference, International Neuroergonomics Confer-
ence, Neuroadaptive Technology conference, International Conference on Multi-
modal Interaction (ICMI), CHI, Cyber-Physical and Human Systems IFAC, IEEE
VR.

3.4 Actions for the scientific community

Society member Founding and steering committee member for the French BCI association
CORTICO - ’COllectif pour la Recherche Transdisciplinaire sur les Inter-
faces Cerveau-Ordinateur’- since 2017.

Hackathon organizer 3rd International Neuroergonomics Conference (2021, Munich/Online).

Conference Organizer - International Neuroergonomics Conference (Paris, 2016; Munich/Online,
2021);
-Annual Meeting of the French BCI association CORTICO (Toulouse,
2018; Lille, 2019; Online, 2020; Online 2021; Autrans, 2022);
- Journée Jeunes Chercheurs en Interface Cerveau Ordinateur et Neurofeed-
back (JJC-ICON; Toulouse, 2018; Lille, 2019; Online, 2020; Online 2021;
Autrans 2022);
- « Rendez-vous Aéro de l’innovation » on Humans & Aeronautics Systems
(Toulouse, 2017);
- Journée Jeunes Chercheurs en Interface Cerveau Ordinateur et Neurofeed-
back (JJC-ICON; Bordeaux, 2017).

Scientific committee
member

- 3rd (2022, New York, USA) and 2nd International Neuroergonomics Con-
ference (2018, Philadelphia, USA)
- All CORTICO annual meetings and young researcher days (since creation
in 2017).

Session Chair - International Neuroergonomics Conference (2021, online),
- Neuroadaptive Technology Conference (Berlin, Germany, July 2017),
- International Conference on Physiological Computing Systems (Angers,
France, Feb. 2015),
- CORTICO meetings and young researchers days.

Editorial activities - Associate Editor: Frontiers in Neuroergonomics journal, section Cogni-
tive Neuroergonomics.

17

https://www.cortico.fr/


CHAPTER 3. RESEARCH ACTIVITIES

- Lead editor: Frontiers Research Topic "The human body, brain, and be-
haviour in the context of spaceflight and extreme environments".
- Guest editor: Frontiers Research Topics "Insights from the 3rd Inter-
national Neuroergonomics Conference", "Neuroergonomics: the Brain at
Work in Everyday Settings", and "Developments in Implicit Measure-
ments".

General audience Promotion of scientific studies to secondary and high school female stu-
dents via the ’ISAElles’ program, since 2016.
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Scientific Communications
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This chapter details all my scientific communications until 2022. First, a summary table provides
some indicators as to the number of international journal articles, book chapters, patents, public databases,
proceedings and other communications without proceedings I have given these last years. Next, these
communications are listed in an extensive manner in the following sections.

4.1 Summary table

Type of communication Number

International journal articles 21 −→5 as first, 7 as last author

Book chapters 3

Patent 1

Public databases 2

International conference proceedings (full paper, peer-reviewed) 37 −→9 as first, 14 as last author

Other international communications (with no proceeding or ≤ 1 page) 38

National & local communications 19

Table 4.1 – Scientific publication summary table

19



CHAPTER 4. SCIENTIFIC COMMUNICATIONS

4.2 Journal articles

* denotes equal contribution.

[21] Roy, R. N., Hinss, M. F., Darmet, L., Ladouce, S., Jahanpour, E. S., Somon, B., ... & Lotte,
F. (2022) Retrospective on the First Passive Brain-Computer Interface Competition on Cross-
Session Workload Estimation. Front. Neuroergon., 4.

[20] Migliorini, Y., Imbert, J.-P., Roy, R. N., Lafont, A. & Dehais, F. (2022) Degraded States of
Engagement in Air Traffic Control. Safety, 8, 1.

[19] Roy, R. N., Hinss, M. F., Darmet, L., Ladouce, S., Jahanpour, E., Somon, B., Xu, X.,
Drougard, N., Dehais, F. & Lotte, F. (2022) Retrospective on the first passive brain-computer
interface competition on cross-session workload estimation. Front. Neuroergon., 3:838342.

[18] Xu, X., Drougard, N. & Roy, R. N.(2021) Topological data analysis as a new tool for EEG
processing. Front. Neurosci., 15:761703.

[17] Mimoso, D., Gil-Calle, E., Martin Estrana, V., Lizy-Destrez, S. & Roy, R. N.(2021) Towards
teleoperation performance and psychophysiological state assessment in the SIRIUS-19 ana-
log campaign. Journal of Space Safety Engineering, 8(4), 304-311.

[16] Gil-Calle, E., Mimoso, D., Pouzin, N., Lizy-Destrez, S. & Roy, R. N. (2021) Correlation
analysis of sleep quality, mood and teleoperation performance in the MDRS206 analog mis-
sion. Journal of Space Safety Engineering, 8(4), 312-316.

[15] Singh, G., Chanel, C. & Roy, R. N. (2021) Mental workload estimation based on physiologi-
cal features for pilot-UAV teaming applications. Physiological Measurements. Front. Human
Neurosci., 15:692878.

[14] K. Gramann, R. McKendrick, C. Baldwin, Roy, R. N., C. Jeunet, R.K Mehta & G. Vecchiato
(2021) Grand Field Challenges for Cognitive Neuroergonomics in the coming Decade. Front.
Neuroergon., 2:643969.

[13] M. Mailliez, Battaïa, O. & Roy, R. N. (2021) Scheduling and rescheduling operations using
decision support systems: Insights from emotional influences on decision-making. Front.
Neuroergon., 2:586532.

[12] Verdière, K. J., Albert, M., Dehais, F. & Roy, R. N. (2020) Physiological synchrony revealed
by delayed coincidence count: Application to a cooperative complex environment. IEEE
Trans. Human-Mach. Syst, 50(5), 395-404.

[11] Roy, R. N., Drougard, N., Gateau, T., Dehais, F. & Chanel, C.P.C. (2020) How Can Physio-
logical Computing Benefit Human-Robot Interaction? Robotics, 9(4), 100.

[10] Dehais, F., Lafont, A., Roy, R. N. & Fairclough, S. (2020) A neuroergonomics approach to
mental workload, engagement and human performance. Front. Human Neurosci., 14, 268.

[9] Chanel, C.P.C., Roy, R. N., Dehais, F., Drougard, N. (2020) Towards Mixed-Initiative Hu-
man–Robot Interaction: Assessment of Discriminative Physiological and Behavioral Features
for Performance Prediction. Sensors, 20, 296.

[8] Dehais, F., Roy, R. N. & Scannella, S. (2019) Inattentional deafness to auditory alarms:
inter-individual differences, electrophysiological signature and single trial classification. Be-
havioural Brain Research, 360, 51-59.
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[7] Dehais, F., Duprès, A., Blum, S., Drougard, N., Scannella, S., Roy, R. N. & Lotte, F.
(2019) Monitoring Pilot’s Mental Workload Using ERPs and Spectral Power with a Six-
Dry-Electrode EEG System in Real Flight Conditions, Sensors, 19, 1324.

[6] Guérin-Dugué, A., Roy, R. N., Kristensen, E., Rivet, B., Vercueil, L. & Tcherkassof, A.
(2018) Temporal Dynamics of Natural Emotional Facial Expressions Decoding: A study
using Event- and Eye Fixation-Related Potentials. Front. Psychol., 9:1190.

[5] Verdière, K. J., Roy, R. N. & Dehais, F. (2018) Detecting pilot’s engagement using fNIRS
connectivity features in an automated vs manual landing scenario. Front. Human Neurosci.,
12:6.

[4] Roy, R. N., Bonnet, S., Charbonnier, S. & Campagne, A. (2016) Efficient workload classi-
fication based on ignored auditory probes: A proof of concept. Frontiers in Human Neuro-
science.

[3] Roy, R. N., Charbonnier, S., Campagne, A. & Bonnet, S. (2016) Efficient mental workload
estimation using task-independent EEG features. Journal of Neural Engineering, 13, pp.
1-10.

[2] Charbonnier, S., Roy, R. N., Bonnet, S. & Campagne, A. (2016) EEG index for control op-
erators’ mental fatigue monitoring using interactions between brain regions. Expert Systems
with Applications, 52, pp. 91-98.

[1] Roy, R. N., Charbonnier, S. & Bonnet, S. (2014) Eye blink characterization from frontal EEG
electrodes using source separation and pattern recognition algorithms. Biomedical Signal
Processing and Control, 14, pp. 256-264.

4.3 Book chapters

[3] Somon, B., Roy, R. N., Simonetti, I., & Dehais, F. (2022). Ecological measures of cognitive
impairments in aeronautics: theory and application. In Current Research in Neuroadaptive
Technology, 117-138. Academic Press.

[2] Lotte, F.* & Roy, R. N.* (2019) Brain-Computer Interfaces’ Contributions to Neuroer-
gonomics. In Ayaz, H. & Dehais, F. (Eds), Neuroergonomics: The Brain at Work and in
Everyday Life, 43-48. Elsevier.

[1] Roy, R. N. & Frey, J. (2016) Neurophysiological markers for passive BCIs. In Bougrain, L,
Clerc, L. & Lotte, F. (Eds.), Brain-Computer Interfaces: Methods, applications and perspec-
tives. UK: ISTE-Wiley.

4.4 Patent

[1] Roy, R. N., Charbonnier, S. & Bonnet, S. (2013) European patent # 13 59288. Procédé,
système et programme d’ordinateur pour la détection et la caractérisation de clignements
oculaires par électro-encéphalographie.
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4.5 Public databases
[2] Hinss, M.F., Jahanpour, E.S., Somon, B., Pluchon, L., Dehais, F. & Roy, R. N. (2022).

COG-BCI database: A multi-session and multi-task EEG cognitive dataset for passive brain-
computer interfaces (Version 3) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6874129

[1] Hinss, M. F., Darmet, L., Somon, B., Jahanpour, E., Lotte, F., Ladouce, S., & Roy,
R. N. (2021). An EEG dataset for cross-session mental workload estimation: Passive
BCI competition of the Neuroergonomics Conference 2021 (V2) [Data set]. Zenodo.
http://doi.org/10.5281/zenodo.5055046

4.6 International conference proceedings (full papers;
peer-reviewed)

[37] Singh, G., Roy, R.N. & P. C. Chanel, C. (2022) MUM-T adaptive interaction control through
physiological computing. HHAI, June 2022, Amsterdam, The Netherlands.

[36] Lefebvre, M, Bolina-Rei, J., Contreras, E., Roy, R.N. & Peysakhovich, V. (2022) Body tilt
impacts operators’ perception of remote object’s orientation. Int Astronautical Congress,
Sept. 2022, Paris, France.

[35] Shashkova, E., Navarro, G., Alves Suana, F., Roy, R.N. & Paillet, A. (2022) Study and de-
velopment of an IA assistant for future Moon and Mars stations. Int Astronautical Congress,
Sept. 2022, Paris, France.

[34] Migliorini, Y., Imbert, J.-P., Baragona, V., Roy, R.N. & Dehais, F. (2021) Neuroergonomic
Evaluation of A Genuine Air Traffic Control Alert. Int. Conf. Neuroergonomics.

[33] Lafont, A., Enriquez-Geppert, S., Roy, R.N. , Leloup, V. & Dehais, F. (2021) Theta Neuro-
feedback and Pilots’ Executive Functioning. Int. Conf. Neuroergonomics.

[32] Hinss, M.F., Somon, B., Dehais; F., P. Carvalho Chanel, C. & Roy, R.N. (2021) Evaluation
of ERN and FRN robustness to cross-session variability. Int. Conf. Neuroergonomics.

[31] Jahanpour, E.S., Xu, X., Hinss, M.F., Drougard, N. & Roy, R.N. (2021) A neuroergonomic
approach to performance estimation in a psychomotor vigilance task. Int. Conf. Neuroer-
gonomics.

[30] Dehais, F., Vergotte, G. Drougard; N., Ferraro, G., Somon, B., P. Carvalho Chanel, C. & Roy,
R.N. (2021) AI can fool us humans, but not at the psycho-physiological level: a hyperscan-
ning and physiological synchrony study. IEEE SMC.

[29] Kim, E., Peysakhovich, V. & Roy, R.N. (2021) Impact of communication delay and temporal
sensitivity on perceived workload and teleoperation performance. In ACM Symposium on
Applied Perception 2021 (SAP ’21), September 16–17, 2021, Virtual Event, France. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3474451.3476233

[28] Hinss, M., Somon, B., Dehais, F. & Roy, R. N. (2021) Open EEG Datasets for Passive
Brain-Computer Interface Applications: Lacks and Perspectives. IEEE Neural Engineering
Conference.

[27] Casso, M. I., Jeunet, C. & Roy, R. N. (2021) Heading for motor imagery brain-computer
interfaces (MI-BCIs) usable out-of-the-lab: Impact of dry electrode setup on classification
accuracy. IEEE Neural Engineering Conference, 690–693.
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[26] Xu, X., Drougard, N. & Roy, R. N. (2021) Dimensionality reduction via the Laplace-Beltrami
operator: Application to EEG-based BCI. IEEE Neural Engineering Conference.

[25] Jahanpour, E., Berberian, B., Imbert, J.-P. & Roy, R. N. (2020) Cognitive fatigue assessment
in operational settings: a review and UAS implications. 3rd IFAC Conference on Cyber-
Physical & Human-Systems, Beijing, China, Dec. 2020.

[24] Mailliez, M., Hosseini, S., Battaïa, O. & Roy, R. N. (2020) Decision Support System-like
Task to Investigate Operators’ Performance in Manufacturing Environments. 3rd IFAC Con-
ference on Cyber-Physical & Human-Systems, Beijing, China, Dec. 2020.

[23] Mimoso, D., Gil-Calle, E., Martin Estrana, V., Lizy-Destrez, S. & Roy, R. N.(2020) Towards
teleoperation performance and psychophysiological state assessment in the SIRIUS-19 ana-
log campaign International Astronautical Congress, Oct. 2020, remote conference.

[22] Gil-Calle, E., Mimoso, D., Pouzin, N., Lizy-Destrez, S. & Roy, R. N. (2020) Correlation
analysis of sleep quality, mood and teleoperation performance in the MDRS206 analog mis-
sion. International Astronautical Congress, Oct. 2020, remote conference.

[21] Roy, R. N., Verdière, K. J. & Dehais, F. (2020) EEG covariance-based estimation of coop-
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colloque de la Société des Neurosciences, Lyon, France, 2013, May.

[1] Mathieu, N., Roy, R. N., Campagne, A. & Bonnet, S. (2012) Interfaces cerveau-machine
passives : Apports mutuels entre neurosciences cognitives et ingénierie. Rencontres du Pôle
Grenoble Cognition (3ème édition), Grenoble, France, 2012, May.

28



Chapter 5

Supervision

Contents
5.1 Summary table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Post-doctoral fellows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Doctoral fellows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Graduate interns (M.Sc. & M. Eng.) . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5 Additional research projects for graduate students . . . . . . . . . . . . . . . . . . 31

This chapter details my supervision activities until 2022. All the students and fellows I supervised or
am currently supervising are listed in the following sub-sections and summarized in the small summary
table. These supervisees are (and were) post-doctoral fellows, doctoral fellows, graduate interns (i.e. mas-
ter students for their end of student project or for their internship of end of 1st year), as well as additional
research projects interns (i.e. research projects performed in parallel with courses, as an initiation to re-
search). They are listed along with the project they were a part of, the years and duration of their contract,
my level of supervision and the co-supervisors involved.

5.1 Summary table

Fellow category Number

Post-doctoral fellows 8 (incl. 2 > 50% )

Doctoral fellows 6 (incl. 5 at 50% )

Graduate interns 12

Additional research project interns 20

Table 5.1 – Supervision summary table
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5.2 Post-doctoral fellows

Name Project Year(s) Duration Supervision Co-supervisors

Emilie Jahanpour Concorde 2020-2022 36 months
(3 years)

80% JP Imbert (ENAC) &
B. Berberian (ON-
ERA)

Mélody Mailliez Per4mance 2019-2020 12 months
(1 year)

80% O. Battaïa (KEDGE
Business school Bor-
deaux)

Alex Lafont COCPIT 2020-2021 24 months
(2 years)

20% F. Dehais (ISAE)

Bertille Somon MAIA 2019-2020 12 months
(1 year)

20% F. Dehais (ISAE)

Grégoire Vergotte HYPERSCAN 2019-2020 12 months
(1 year)

20% F. Dehais & C.
Chanel (ISAE)

Nicolas Drougard HYPERSCAN 2018-2019 12 months
(1 year)

20% F. Dehais & C.
Chanel (ISAE)

Alban Dupré MAIA 2018-2019 12 months
(1 year)

20% F. Dehais (ISAE)

Mehdi Senoussi MAIA 2017-2018 12 months
(1 year)

20% F. Dehais (ISAE)

5.3 Doctoral fellows

Name Project Year(s) Duration Supervision Co-supervisors

Marcel F. Hinss Concorde 2021-2024 36 months
(3 years)

50% A. Brock (ENAC)

Maëlis Lefebvre TELECOG 2021-2024 36 months
(3 years)

50% V. Peysakhovich
(ISAE)

Xiaoqi Xu ANITI 2020-2023 36 months
(3 years)

50% N. Drougard (ISAE)

Yannick
Migliorini

NECTAR 2019-2022 36 months
(3 years)

15 % F. Dehais (ISAE) &
JP Imbert (ENAC)

Gaganpreet
Singh

Airtime 2018-2021 42 months
(3,5 years)

50% C. Chanel (ISAE)

Kevin Verdière SmartCockpit 2016-2019 36 months
(3 years)

50% F. Dehais (ISAE)

5.4 Graduate interns (M.Sc. & M. Eng.)

Name Diploma Year(s) Duration Supervision Co-supervisors

Mathias Rihet M.Sc. Univ. Lor-
raine, Nancy

2022 6 months 50% A. Clodic
(LAAS, CNRS)
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Marcel F. Hinss M.Sc. Univ. Maas-
tricht, NL

2020-2021 10 months 100% F. Dehais (ISAE)

Lou Pluchon M.Sc. Univ.
Toulouse

2021 3 months 100% M. Hinss (ISAE)

Laura Tilly M.Eng. Ecole de
l’air

2021 4 months 30 % C. Chanel & G.
Singh (ISAE)

Veronica Martin
Estrana

M.Sc. ISAE-
SUPAERO

2019 6 months 50% S. Lizy-Destrez
(ISAE)

Flavio Ahuitzotl
Reyna Bibiano

M.Sc. ISAE-
SUPAERO

2018 6 months 50% K. Verdière & F.
Dehais (ISAE)

Louis Maller M.Eng. ISAE-
SUPAERO

2018 6 months 30% S. Lizy-Destrez
(ISAE)

François Bernard M.A. Univ. Toulouse 2018 4 months 100% N/A

Benjamin Winkler M.Sc. Universität
der Bundeswehr
München, DE

2017 6 months 80 % F. Dehais (ISAE),
F. Honecker &
A. Schulte (Univ.
Bundeswehr)

Amine Laouar M.Sc. Univ. Lyon,
France

2016 6 months 30% F. Dehais & S.
Scannella (ISAE)

Alexandre Moly M.Eng. INP, Greno-
ble

2016 4 months 50% F. Dehais & S.
Scannella (ISAE)

Radka Dolezalová M.Sc. Brno, CZ 2015 6 months 50% S. Charbonnier
(Gipsa-Lab,
Grenoble)

Alexis Breust M.Eng. INP EN-
SIMAG, Grenoble

2014 6 months 50% S. Bonnet (CEA)

5.5 Additional research projects for graduate students

Name Diploma Year(s) Supervision Co-supervisors

Claire Ky M. Eng. ISAE-
SUPAERO

2021 20% N. Drougard & X. Xu
(ISAE)

João Bolina-Rey M. Sc. ISAE-
SUPAERO

2021-2022 30% V. Peysakhovich (ISAE)

Elena Lopez-
Contreras-Gonzalez

M. Eng. ISAE-
SUPAERO

2021-2022 30% V. Peysakhovich (ISAE)

Maria Isabel Casso
Echalar

M. Sc. ISAE-
SUPAERO

2020-2021 80% C. Jeunet (CNRS Bor-
deaux)

Tom Lawson M.Sc. ISAE-
SUPAERO
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Chapter 6

Introduction

Unde sumus quasi nanus aliquis humeris
gigantis superpositus.
We are like dwarfs sitting on the shoulders of
giants.

Bertrand de Chartres

When comes the time to look back upon one’s work, the task can seem overwhelming, distressing,
and tedious at the same time. In our current society and particularly in our line of work, we are so much
asked to look forward and always generate new ideas, launch new projects, that it becomes unnatural -
although highly necessary- to take time for reflection on past work. However that is the challenge of the
"habilitation à diriger des recherches" (HDR). This enterprise, although a demanding one, has forced me to
realize what little I have done, and all that remains to be done. Moreover, although the HDR is a solo work,
it thankfully forces us to highlight the vital contributions of our pairs. Needless to say that none of my work,
including none of the specific studies I detail later in the document, could have been performed without the
benevolence of my supervisors and the seriousness and commitment of my supervisees to whom I dedicate
this manuscript.

6.1 Research journey

I have always been interested in knowledge -be it in the "hard" sciences or the "soft" ones, and when
after first going into biology in Reims (France) I discovered the field of cognitive science, I was delighted
to have an opportunity not to choose between those main scientific fields. I therefore delved into learn-
ing about learning, and knowing about knowing. Attracted by linguistics, I first pursued a double major
cognitive science-linguistics during my first year in Lyon. I then chose to focus exclusively on cognitive
science and went to the University of British Columbia (UBC, Vancouver, Canada) for my last year of
bachelor. During this year abroad, I was fortunate to be given the opportunity to meet great researchers
through various internships and projects, including Pr Janet Werker and Dr Henny Young who introduced
me to experimental work, and Pr Toddy Handy and Dr Marla Mickleborough who trained me in electroen-
cephalography.

I then continued my education at the University of Savoy-Montblanc and University of Grenoble-Alps
for my research master in neurocognition. During this master, my internships with Dr Aurélie Campagne,
Dr Stéphane Rousset, and Dr Sophie Donnadieu have enabled me to ascertain my taste for the study of
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human cognition using electroencephalography. Yet, I was attracted to more applied work for non-clinical
use. Therefore, when I had the luxury to choose between two PhD fundings, a national one to work on
attentional processes, and a local one provided by the CEA to work on passive brain-computer interfaces
(i.e. systems that implicitly modify the ongoing interaction between a user and a machine using cere-
bral measures; Zander 2008; George and Lécuyer 2010; a.k.a. Brain Reading Interface, Kirchner et al.
2009), without hesitation I chose the one that would help me develop engineering competencies while also
enabling me to continue working on electroencephalography-based experimental work. During this PhD
supervised by Dr Stéphane Bonnet (CEA), Dr Sylvie Charbonnier (Gipsa-lab), and Dr Aurélie Campagne
(LPNC), I discovered a highly multidisciplinary field that introduced me to a growing and thriving com-
munity of scientists from computer science, biomedical engineering, psychology, and neuroscience. I had
the chance to perform one of the first PhDs on passive brain-computer interfaces in France, and to see this
research topic grow and connect to close topics. After a short post-doctoral position under the supervision
of Pr Anne Guérin-Dugué and Dr Christian Jutten at the Gipsa-Lab (CNRS, Grenoble, France) working on
the combination of EEG and eye-tracking, I joined the ISAE-SUPAERO, Université de Toulouse, France
for a post-doctoral position under the supervision of Pr Frédéric Dehais to work on attention monitoring.
Here, thanks to Frédéric I discovered how my previous work was in fact a means to a broader research
field, that of human-machine interaction (HMI).

6.2 Neuroergonomics and physiological computing

Since my appointment as assistant professor in September 2016, I have kept working on passive brain-
computer interfaces as a means to human-machine interaction evaluation and enhancement. I have also
developed work incorporating other physiological measures in a broader physiological computing perspec-
tive (i.e. "system interaction [...] achieved by monitoring, analysing and responding to covert psychophys-
iological activity from the user in real-time"; Fairclough (2009)), and have also studied human-machine
interaction through a more classical cognitive neuroscience and cognitive ergonomics approach. Indeed,
my main line of work concerns the study of user/operator cognitive processes in risky work settings while
interacting with highly complex systems. During their task, and in a specific environment, the users/oper-
ators interact with tools (which can be defined as any implement used to increase sensorimotor abilities;
Osiurak and Heinke (2018)) to achieve a given goal (e.g. safely transport passengers). In order to evalu-
ate this interaction, common practice is to measure the user/operator’s feeling about the task, tools and/or
interaction, or to measure performance metrics such as mission success, user/operator accuracy, response
time, strategies, or other parameters linked to the task at hand, or even to a secondary task. Yet, these
are indirect measurements of the operator’s mental (affective and cognitive) state, and are -for the most
part- discontinuous (e.g. mission performance score obtained at the end) and can even be disruptive due
to the disruption in the main task needed to perform the measures (e.g. questionnaires to fill). A solu-
tion to perform direct mental state assessment, and continuous and non disruptive measurements is to use
physiological measures. Neuroergonomics is the field of study that addresses this topic of human-machine
interaction evaluation using neuroscientific tools (Parasuraman and Rizzo, 2008).

It is particularly difficult to find a precise definition of what a mental state is. The concept is vague,
and maybe not very useful in itself. However, researchers from the BCI community do use it -or close
terms- in order to talk about recordings performed during the performance of specific tasks. Recently, Pr
Moritz Grosse-Wentrup, in his talks at the online BCI un-conference and the CORTICO annual meeting
2022 (Grosse-Wentrup, 2022) has advocated for the definition of cognitive state as "a causally meaningful
abstraction of a neuronal state". I fully agree with this physicalist view of a one-to-one mapping between
brain activity patterns and said states. However, I personally prefer to use the term "mental state" which
encompasses all states of brain activity including emotional states which I strongly believe to be intricately
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linked to cognitive states. In Pr Grosse-Wentrup’s view, these states can be continuous or discrete depend-
ing on the nature of the behavioral context. Examples of well-known mental states of particular interest
for user assessment include mental workload and fatigue. These states and additional ones will be detailed
in chapter 7, as will various types of operators of the aerospace context who can directly operate a system
with varying degrees of automation settings, as well as interact with a system that is not collocated spa-
tially nor even temporally (Goodrich and Schultz, 2008). Chapter 7 is mainly composed of research work
focused on understanding and characterizing the physiological correlates of relevant operator mental states
in ecological settings.

In order to perform a general neuroergonomic assessment of a given operator, performing a given task,
in a given environment, the processing pipeline is illustrated by Fig. 6.1. Two types of analyses can there-
fore be performed, i) a neuroscientific one using a statistical approach on the various metrics extracted
from measurements performed before, during and after the experiment (e.g. subjective and objective ones -
such as behavioral and physiological metrics). Together, these measurements enable to form a comprehen-
sive user assessment through these complementary approaches and to extract recommendations for system
design and use; ii) a more engineering one using a machine learning approach by training algorithms to
detect specific user/operator mental states that can then be employed in a continuous and online manner to
provide a richer assessment, and even to enable the implementation of symbiotic systems by consequently
adapting the system to the user’s state. Regarding the first approach, extensive work has been done in the
community regarding interaction within the automobile context, however aerospace and robotics applica-
tions have their specific characteristics and the neuroergonomic perspective is still quite new in these areas,
and is yet to be thoroughly applied to specific applications such as teleoperation for instance. Regarding the
second approach, which is more recent and follows in the footsteps of my PhD, although research has been
growing in the field of physiological computing and passive BCIs, the denoising, and feature extraction
steps are still critical and do not enable detection systems to reach high accuracies yet. Chapter 8 mainly
details work on feature extraction for operator state estimation pipeline performance enhancement.

Figure 6.1 – Comprehensive user assessment through a neuroergonomic approach and physiological mon-
itoring for system adaptation
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6.3 Challenges

Several challenges lie ahead of us regarding research in cognitive neuroergonomics –concerned with the
investigation of the neural bases of those cognitive processes involved in the user’s interaction with a tech-
nical system at work or during everyday life. Together with colleagues of the field we recently explicited
these in a dedicated article for the launch of the new international journal Frontiers in Neuroergonomics
(Gramann et al., 2021):

— Challenge 1: Bridging basic, translational, and applied research in cognitive neuroergonomics. Re-
search in cognitive neuroergonomics takes place in various settings, from laboratory settings to real
life settings, spanning the entire space of protocols from fundamental to applied research (Fig. 6.2).
All three areas of research are important and eventually converge to understand the cognitive and
neural basis of human-technology interaction. The majority of studies have taken place in labo-
ratories, however with the rise of lightweight mobile amplifiers, an increasing number of studies
move out of the lab using imaging methods in real-world settings which enable studying natural
interaction.

— Challenge 2: Imaging methods for embodied cognitive neuroergonomics. In order to have increased
ecological validity, the real world becomes the laboratory, and interaction often comes with various
degrees of physical activity. Mobile imaging methods allow for characterizing cognitive processes
that occur during natural/mobile interaction, however physical activity contaminates signals with
artifacts and therefore data require careful preprocessing.

— Challenge 3: Generalizability of physiological parameters reflecting cognitive processes. In recent
years, research on operator mental state characterization has started to thrive, and has generated a
large amount of potential markers that are unfortunately not necessarily compared and connected as
well as embedded in a theoretical framework. A systematic comparison across tasks and methods
would allow for sounder predictions and therefore generalizability.

— Challenge 4: Open access to data and protocols in neuroergonomics. Data sharing is highly desir-
able for reproducibility and transparency, however it comes with constraints such as standardization
requirements.

Hence, the second part of this HDR thesis details my past work on human-machine interaction as-
sessment within the two identified approaches (i.e. the neuroscientific one, and the computing one), with
always the goal to develop physiological computing as a tool for neuroergonomics, going from fundamen-
tal research to applied research in more ecological contexts. Moreover, the four challenges listed above are
addressed within this work. Chapter 7 details selected cognitive neuroscience contributions for improved
operator mental state assessment and addresses challenges 1 and 2. Next, chapter 8 details several method-
ological contributions for improved physiological computing and addresses –at least in part– challenge 3.
Then, chapter 9 presents my research perspectives with some initiated work to either delve deeper into a
topic, or start developing a new one and addresses challenge 4. It is important to note that although I have
tried to clearly distinguish the two main approaches cited above for ease of reading, these are highly inter-
dependent and often overlap in published work and projects. Hence, some projects and supervisees actually
fall into both categories. Lastly, section 9.5 concludes on this research retrospective and perspectives and
provides an outlook for the medium-term.
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Figure 6.2 – From (Gramann et al., 2021): Experimental protocols in cognitive neuroergonomics regarding
control and ecological validity.
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Chapter 7

Cognitive neuroscience contributions to
operator mental state assessment
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This chapter summarizes selected work that I carried and supervised regarding cognitive neuroscience
for improved operator mental state assessment. After a general introduction, recent work regarding mental
states’ definitions and concepts is presented. Next, selected works on operator engagement depending on
task demands (linked to automation mode and task difficulty) are detailed. Impact of prolonged operation
on operator engagement is also evaluated, as is the impact of cooperation and confinement/isolation. Lastly,
work on designing countermeasures for adequate operator engagement level is presented. The projects I
have selected to present here are listed below, along with the supervisees (between parentheses) that were
involved and who performed most of the work.

→ Selected projects: CHESS, Concorde (E. Jahanpour, M. Hinss), Hyperscan (N. Drougard, G. Ver-
gotte), MAIA (A. Dupré, M. Senoussi, A. Laouar, B. Winkler), ISCOPE, NECTAR (Y. Migliorini), TELEOP
(V. Martin Estrana, L. Maller, F. Bernard, T. Lawson, E. Kim, E. Gil-Calle, D. Gadelha-Mimoso, F.
Vagnone, D. Berlanga Manzano, A. Ambrosio Gonzalez), SmartCockpit (K. Verdière, F. Ahuitzotl Reyna
Bibiano).
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7.1 Introduction

As stated above, this chapter is dedicated to giving a broad overview of my research activities related
to user/operator mental state assessment through a comprehensive neuroergonomic approach, i.e. a cog-
nitive neuroscience approach of humans at work based on subjective (questionnaires) as well as objective
(behavioral and physiological) measures. A specific challenge of this type of research is to elicit the men-
tal state of interest in a controlled setting while trying to reach ecological validity. Since my arrival at
ISAE-SUPAERO, I have tried to work towards this compromise and can only hope that it is well reflected
in my work. This work is mainly focused on users/operators that interact with highly complex systems in
risky settings, ranging from temporally and spatially collocated interaction settings (e.g. flying a plane) to
remote interaction with communication delay (e.g. controlling a rover from a space station). Usually, the
scientific literature is type-specific -i.e. focused either on collocated or remote operation. However, with
the rise of automation in complex systems, similar problematics have appeared in both fields. Therefore, I
chose to present my work here not under spatially and temporally collocated operation vs remote operation
categories and sections, but rather to group them by factor that was investigated, namely task demands
(incl. automation mode and task difficulty), prolonged operations, cooperation and confinement/isolation,
and counter-measures.

Hence, this chapter is structured as follows. First, I detail a rather recent reflection process that we
carried out with colleagues regarding mental states’ definitions and concepts in neuroergonomics. Next,
the various sections of this chapter address the impact of major external factors on operator engagement
level that are task demands (including automation level), time-on-task (during prolonged operation), as well
as operator collaboration and possible confinement and/or isolation. The goal of these studies is primarily
to try and characterize the impact of such factors on the user/operator and evaluate whether the elicited
state is reflected by specific markers. The last section goes a step further by providing preliminary work
and potential solutions for counteracting degraded engagement states.

7.2 Mental states’ definitions and concepts

As discussed in the introduction, definitions of what mental states are are scarce, and the concept
remains vague, although very present in the literature to discuss recordings performed during the perfor-
mance of specific tasks. Again, as mentioned earlier, I personally agree with the physicalist view of Pr
Moritz Grosse-Wentrup who advocates for the definition of a cognitive state as "a causally meaningful
abstraction of a neuronal state" (Grosse-Wentrup, 2022). In order to encompass all states of brain activity
I believe it preferable to use the term "mental state" so as not to close oneself to emotional states which
are intricately linked to cognitive states. Nevertheless, this section provides a non-exhaustive review of
relevant cognitive states of interest for operator monitoring. It does not include work on affective-related
states which are, however, also relevant to characterize and enhance human-robot interaction. Indeed, as
regards the objective of performing a comprehensive user/operator assessment, humans’ mental states are
numerous and it seems impossible -and possibly even irrelevant- to try and characterize every one of them.
For the time being I chose to focus on several cognitive ones that play a major part in error occurrence and
are therefore particularly relevant to characterize and estimate in order to improve human-system interac-
tion in a general manner. The first part of this section will focus on general definitions of said mental states
by introducing them in a categorized way. The second part will detail more recent and a different view
regarding the concepts behind these mental states, reflecting the maturation of our thinking process. The
last part will detail the main challenges that lie ahead in the cognitive neuroergonomics field.
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7.2.1 Categories of mental states related to situational awareness

Within the MAIA project (with myself as post-doctoral fellow, supervised by Pr F. Dehais), we detailed
crucial mental states for human-machine interaction along with their physiological markers as part of a
review and position article (Roy et al., 2020a). The main idea of this section is to provide state of the art
definitions of such crucial mental states, in a categorized manner that I believe helps better understand the
link between such states, as several (collateral states) are inherent to the occurrence of others (prime states).

In the Human Factors domain, a mental state that has gathered much attention since its creation in the
aeronautical context is Situation Awareness (SA), defined by Endsley as "the perception of the elements
in the environment within a volume of time and space, the comprehension of their meaning and the projec-
tion of their status in the near future" (Endsley, 1988). Therefore, lacks of SA can occur due to difficulties
in perception (low level) and/or in comprehension and projection (high level) (Jones and Endsley, 1996).
Cognitive processes such as perception, attention, memory and integration processes are necessarily in-
volved for SA to occur. Lacks of SA -due to either low and high level impairment- result in performance
deterioration, such as piloting errors, and can therefore have critical results (Endsley, 2000). Yet due to
its multifaceted nature, SA is difficult to measure at the physiological level. Therefore, researchers mainly
focus on mental states that are linked to SA and have physiological markers that are easier to detect. These
states are all dependent on resource engagement. Several researchers proposed that the existence of a finite
set of information-processing resources would explain the occurrence of performance degradation under
heavy task demands or concurrent tasks performance (Wickens et al., 1983). Therefore, over-engagement
can be seen as the fact of engaging all the resources for processing only one sub-task or one sensory canal
(e.g. vision; a.k.a. attentional tunneling), while disengagement can be seen as the reallocation of resources
to another -usually internal- task (Wickens, 2005; Cheyne et al., 2009; Gouraud et al., 2018). Since both
over-engagement and disengagement lead to performance degradation, it seems reasonable to estimate
resource engagement, and more particularly to detect resource depletion.

Prime mental states

Several factors, external and internal, can generate such a depletion of resources. Among these, one
can list the time spent on a task, also called time-on-task, and task demands.These two factors are usu-
ally main characteristics of the task at hand, they relate to a temporally global resource engagement, and
both directly generate several mental states which we will consider as prime mental states. When opera-
tors spend a growing time on their task at hand, their performance is known to fluctuate with periods of
degraded performance (i.e. increase in reaction time and decrease in accuracy) (Mackworth, 1968). This
phenomenon can be explained in terms of engaged resources and is due to the occurrence of several mental
states among which one can list mental fatigue and mind wandering.

Mental fatigue is a state that occurs when a long and tiring task that requires subjects to remain fo-
cused is performed (Lal and Craig, 2002). Mind wandering is defined as an attentionnal disengagement
from the task during episodes when thoughts are in competition with information processing for the task
at hand. This leads to a reduction of external events’ processing in a general manner (Smallwood et al.,
2008; Braboszcz and Delorme, 2011), and in a performance decrement for the task at hand. These episodes
of resource disengagement from the task occur in a non-linear fashion when time-on-task increases. Both
mental states would impact situational awareness from the first processing steps, that is to say the percep-
tual steps. Moreover, although mental fatigue seems particularly relevant to estimate during both prolonged
supervisory and direct control, mind wandering seems more likely to occur during supervisory control. An
example is the frequent occurrence of boredom during UAV monitoring tasks (Cummings et al., 2013).

As regards task demands, when operators are faced with a particularly difficult task their performance

43



CHAPTER 7. COGNITIVE NEUROSCIENCE CONTRIBUTIONS TO OPERATOR MENTAL STATE
ASSESSMENT

decreases, and it is the same when the task is too easy. Hence, the performance of an operator follows
an inverted U-shape (Mendl, 1999). In neuroscience and human factors, this modulation in task demands
or difficulty and the associated effort invested in the task is usually referred to as cognitive workload
(Cain, 2007). This very wide concept can also be understood in terms of required and engaged resources.
Cognitive workload can be modulated by varying several factors such as the load in working memory (e.g.
number of items to keep in memory), divided attention or multitasking (i.e. number of tasks to perform in
parallel), as well as stress imposed on the operator (e.g. temporal or social pressure). All these factors are
of course often overlapping in a given task.

Collateral mental states

Resource depletion can also indirectly generate other mental states that we will call collateral mental
states. These collateral mental states -e.g. automation surprise- can for instance be generated when there
is a conjunction of prime mental states -e.g. high workload- and the occurrence of specific events such
as critical system responses localized in time, that is to say feedbacks, parameter display and alarms in a
general manner. Hence, in this example an alarm will not be processed by the operator the same way when
all resources are engaged (e.g. over-engagement) compared to when the operator is in nominal state. In
this case, these system output-related mental states are linked to a temporally local resource engagement.
Examples of such system-output related mental states are the following:

— Inattentional sensory impairments, such as inattentional blindness and inattentional deafness.
These attentional phenomena consist in "missing" alarms when all attentional resources are en-
gaged in another sensory modality. Hence, for the inattentional deafness phenomenon well studied
in the aeronautical context, pilots under high workload miss auditory alarms when they are over-
engaged in the visual modality (e.g. fascinated by the runway) (Dehais et al., 2010; Macdonald and
Lavie, 2011).

— Automation surprise, in which the operator is surprised by the behavior of the automation (Sarter
et al., 1997). Although cases reported in the aeronautical domain are generally several minutes long,
a subtype of automation surprise is the confusion in response to a brief unexpected event such as a
specific alarm. In order to go back to the nominal state of the global system it is important to detect
such a state from the operator. It does not matter whether the confusion of the operator arises from
a failure of the artificial agents or the human ones. It might also be elicited by a general attentional
disengagement of the operator who is then incapable of correctly processing system-outputs and
is confused by any negative feedback. This state might in any case lead the operator to take bad
decisions and should be detected and taken into account in order to avoid system failure.

7.2.2 A neuroergonomics approach to mental workload, engagement and perfor-
mance

Within the Cocpit project (with Dr A. Lafont as post-doctoral fellow, co-supervised with Pr F. Dehais),
we worked on a review paper on the concepts of workload and engagement related to human operator per-
formance (Dehais et al., 2020). As stated in this article, one of the main issues when working on human
operators in the context of safety-critical settings is the assessment and prediction of cognitive performance.
We argue that measuring mental workload is complex as this construct remains difficult to both define and
operationalize (as also seen in the previous section). Most theories from the literature are united by a char-
acterization of the human information processing system as a finite resource with limited capacity (Kramer
and Spinks, 1991). Yet despite a plethora of research regarding its measures (subjective and objective
ones), there is no unified framework for mental workload, and the link of this construct with the limited
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resource theory is not clear. After detailing some limitations of mental resources - including that it fails
to explain some categories of performance impairment that occur under conditions of high workload (e.g.
perseveration and effort withdrawal)-, we advocate for using the neuroergonomic approach (Parasuraman
and Rizzo, 2008) by assessing the neurocognitive processes that underpin the relationship between task de-
mand, arousal, mental workload and human performance. The neuroergonomic framework emphasizes a
shift from limited cognitive resources to characterizing impaired human performance and associated states
with respect to neurobiological mechanisms (e.g. inhibitory mechanisms and prefrontal cortex modulation
through dopamine; Fig. 7.1).

Figure 7.1 – From (Dehais et al., 2020): The dopamine pathway exerts a quadratic control over the PFC.
A low or a high release of this neurochemical depresses PFC activation whereas an adequate concentration
ensures optimal executive functioning. These neurobiological considerations bring interesting highlights to
understand the mechanisms underlying the Yerkes and Dodson inverted-U law and the dynamic adaptability
theory. They also provide a relevant prospect to relate motivational aspects to behavioral responses. The
noradrenaline pathway mediates the PFC activity and executive functioning in a similar fashion.

In this article we also advocate for targeting those specific mental states that precede a reduction of
performance efficacy, i.e. performance-related mental states. A number of undesirable neurocogni-
tive states (mind wandering, effort withdrawal, perseveration, inattentional phenomena) are identified and
mapped within a two-dimensional conceptual space encompassing task engagement and arousal (Fig. 7.2)
which makes it possible to link the notion of engagement and degraded behavior in a simple way. Engage-
ment is defined as an effortful investment in the service of task/cognitive goals (Pope et al., 1995; Matthews
et al., 2002; Stephens et al., 2018), whereas arousal represents a state of physiological readiness to respond
to external contingencies (Pribram and McGuinness, 1975). The benefit of including the concept of arousal
is to make a distinction between two categories of disengagement, one that is accompanied by high arousal
(effort withdrawal) and low arousal (mind wandering) – and to link this conceptual distinction to known
neurophysiological effects.

Hence, we argue that monitoring the prefrontal cortex and its deactivation can index a generic shift from
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a nominal operational state to an impaired one where performance is likely to degrade. Neurophysiological,
physiological and behavioral markers that specifically account for these states are identified (see whole
paper for more details Dehais et al. (2020)). It is interesting to note that similar to the categorization process
seen in the previous section, mental states are again presented as directly related to engagement and task
demands, with disengagement (low task demands) reflected by mind wandering and effort withdrawal, and
over-engagement (high task demands) by perseveration, inattentional blindness and inattentional deafness.
Solutions that can be derived from this approach will be detailed in section 7.6.

Figure 7.2 – From (Dehais et al., 2020): Performance, arousal and task engagement: the green zone con-
ceptually describes the operator’s “comfort zone” where performance is optimal. The degraded mental
states are mapped across a “task engagement” axis and an ‘arousal” axis.

7.2.3 Task engagement and stressors

As previously discussed, concepts such as situational awareness and mental workload are umbrella
terms, they are not clearly defined, do not predict performance in a straightforward manner, and cannot be
measured directly. Therefore, within my work I have chosen to focus mainly on characterizing and moni-
toring mental states that are directly linked to operator performance, such as task engagement which reflects
processing depth with associated physiological correlates, as well as the effect of common stressors such as
task demands and time-on-task on this operator engagement. Hence, this work will address the question of
operator engagement characterization and neural correlates’ assessment in ecologically valid settings using
mobile measurement devices, therefore addressing challenges 1 and 2 detailed in the introduction.

This section was intended to provide the reader with a sneak peek at reflections that we had with
colleagues regarding mental states definitions and concepts, as well as challenges that we identified for
studying these states and further develop the neuroergonomics research field. The main conclusions can be
summarized in the following list:
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Definitions, concepts and challenges

— Mental states linked to situational awareness are generated by various degrees of engagement.
They can be grouped into prime and collateral mental states depending on their time scale and
order of occurrence.

— Rather than using the finite resource theory, engagement can be characterized via neuro-
biological processes (neuroergonomic approach). In conjunction with arousal, engagement
level generates several performance-related mental states that can be fully characterized using
physiological measures.

— This chapter will focus on operator engagement characterization and neural correlates’
assessment in ecologically valid settings using mobile measurement devices.

7.3 Engagement modulated by task demands

As seen in section 7.2, a modulation in task demands or difficulty and the associated effort invested
in the task by the user/operator is usually referred to as cognitive workload (Cain, 2007), that can be un-
derstood in terms of required and engaged resources, or rather in terms of neurobiological processes that
allow and reflect performance. It can be modulated by varying several factors such as the load in working
memory (e.g. number of items to keep in memory), divided attention or multitasking (i.e. number of tasks
to perform in parallel), as well as stress imposed upon the operator (e.g. temporal or social pressure), all of
which often overlap in a given task. The amount of work present in the literature regarding the characteriza-
tion of mental states elicited by such variations is considerable, however mostly based on laboratory tasks
and settings, with a view to better understand the neural mechanisms that underlie this cognitive workload
- or engagement.

When I started to investigate the matter, although some authors had started to propose studies and re-
views on operator/user engagement level characterization in more realistic settings (Borghini et al., 2014;
Ladouce et al., 2019), or using a comprehensive approach based on reports, behavioral and physiologi-
cal measures (Shaw et al., 2018), scarce were the studies that actually addressed both issues for human-
complex system interaction evaluation. More specifically, it remained to address the following: i) to con-
firm whether engagement level could indeed be modulated by task demands as reflected by measures clas-
sically reported in the literature, in particular regarding task difficulty and the specific case of automation
mode-related task difficulty; ii) to go further by assessing whether these modulations and markers would
still be present in ecological settings; iii) to evaluate whether the now increasingly famous inattentional
deafness phenomenon -defined in this section- would be elicited by an increase in engagement in a primary
task and how it would be characterized.

Hence, in this section, I detail selected works on operator engagement depending on task demands,
more specifically linked to automation mode and task difficulty, with an additional subsection on a collateral
mental state that appears under high operator load: inattentionnal deafness.

7.3.1 Engagement modulated by task difficulty

As can be gathered from the literature, a simple way of eliciting modulations in operator engagement
in both laboratory and close-to-real life settings is via task difficulty. For instance, in order to increase
task difficulty one may add or remove sub-tasks to perform in parallel, or increase the difficulty of one
(sub-)task. Increased user/operator engagement can next be analyzed per difficulty condition, with mod-
ulations in reported measures (i.e. answers to questionnaires), performance (i.e. behavioral measures), as
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well as their physiological state. The literature tells us that an increase in engagement is generally reflected
e.g. by a decrement in performance (e.g. decreased accuracy and increased response time), an increased
engagement as reported through questionnaires, an increased heart rate and decreased heart rate variability
(reflecting a higher influence of the orthosympathetic nervous system on the autonomous nervous system,
thus suggesting an increased catabolic activity to support the mobilization of cerebral resources to face
the situation), an increased oxygenation of prefrontal areas, a decreased event-related amplitude to sec-
ondary task stimuli, a decreased alpha power at posterior sites and an increased theta power at anterior
sites (Borghini et al., 2014; Heard et al., 2018; Roy et al., 2020a). In order to confirm these phenomena in
realistic settings for human-complex system interaction assessment, we worked on eliciting variations in
engagement thanks to task difficulty modulations within several projects related to the aerospace applica-
tion domain.

First, within the TELEOP project (with Eishi Kim as intern, co-supervised with Dr V. Peysakhovich)
we modulated task difficulty only via a single task parameter: communication delay, in a simulated tele-
operation task with no secondary task (Kim et al., 2021). More specifically, in this study, we assessed the
relationship between the impact of communication delay on teleoperation performance, mental workload,
and operators’ temporal sensitivity. The participants completed two tasks: a duration reproduction task in
which they were asked to reproduce the duration of previously presented visual stimuli (to evaluate their
temporal sensitivity profile), and an egocentric maze navigation task which required participants to escape a
static maze (Fig. 7.3), under a constant input latency of 0, 400, and 3000 ms to mimic delays in space rover
teleoperation applications (respectively Moon, cis-lunar orbit and Earth as source of teleoperation). Un-
fortunately, this study was run during the covid-19 pandemic and therefore we could not proceed with the
full neuroergonomic approach; we could not perform physiological data acquisition and participants per-
formed only an online study at home. In accordance with engagement modulation generated by an increase
in task difficulty, the results showed that performance was significantly deteriorated by an increase in com-
munication delay. Moreover, participants’ self-rated performance decreased with a larger communication
delay, while their reported frustration, effort, and mental demands significantly increased. Interestingly, a
possible effect of the temporal sensitivity profile on teleoperation performance - number of moves - was
found, with a reduced number of moves for sensitive participants compared to insensitive ones, following
a speed/accuracy trade-off (yet not significant) (Fig. 7.4). Hence, different operators’ strategies were un-
covered, depending on their temporal sensitivity profile, to mitigate the impact of communication delay on
the mission outcome.

Figure 7.3 – From (Kim et al., 2021): First-person maze navigation task
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Figure 7.4 – From (Kim et al., 2021): Effect of latency of performance computed as move count, error rate,
and completion time, per temporal sensitivity profile.

In another study, within the Airtime project (with G. Singh as PhD student, co-supervised with Dr
C.P.C. Chanel), we tested variations of task difficulty through changing the difficulty of several sub-tasks
during an automatic UAV control while flying in a search and rescue mission (Singh et al., 2021). During
the mission, the participants had to perform a pilot flying task using a flight simulator (displayed in the first
3 screens in Figure 7.5) while interacting with the UAVs through the U-track application (see the 4th screen
in Figure 7.6). The main mission task was composed of three sub-tasks: a detection and identification one
(UAV request pop-ups with images from the Norb database), a working memory one (ATC instructions to
memorize and recall), and a flying sub-task (using the joystick, in compliance with the ATC instructions).
Task difficulty was varied by modifying the working memory and the flying sub-tasks. Indeed, the low and
high difficulty conditions were different in: (i) the number of communication channel inputs (i.e., 1 vs. 2
randomly selected UAVs) and their value, and, (ii) the placement of the restricted zones with respect to the
plane’s path and the selected path (the sequence of ATC heading instructions) with less sharper turns in the
low difficulty condition. Two blocks of each condition were pseudorandomly presented. The main results
were in accordance with an increased engagement with difficulty. Indeed, reported workload increased,
performance (flying score and ATC recalls) decreased, HR increased and HRV decreased, the number of
fixations increased, the average fixation duration decreased, and pupil dilation increased. Moreover, there
was an increase in beta and gamma power at fronto-central and parieto-occipital sites (which may reflect
at least in part muscular activity; Figure 7.7, as well as an increase in the engagement ratio in the high
difficulty condition.

Going towards ecological settings, within the MAIA project (with Benjamin Winkler as intern, co-
supervised with Pr F. Dehais), we evaluated pilot engagement during a traffic pattern performed in our full
motion flight simulator using a model-based approach with a video-based task analysis (derived from a
hierarchical task analysis), two mental workload questionnaires (a simple report of the perceived workload
per phase and a questionnaire based on the Visual Auditory Cognitive and Psychomotor model -VACP-
(McCracken and Aldrich, 1984)), as well as electrophysiological markers (Roy et al., 2018a). Here diffi-
culty varied depending on the flight phase and corresponding flight sub-task only. This study revealed that
all metrics were modulated by flight phase (i.e. subjective reference, model-based estimation, Heart Rate
Variability -HRV, EEG theta power and Pope’s engagement ratio) reflecting an increase of engagement
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Figure 7.5 – From (Singh et al., 2021): Aerofly simulator and U-track application screens setup.

Figure 7.6 – From (Singh et al., 2021): Zoom on the UAV application U-track used by the flying pilot to
interact with UAVs.

towards the last flight phases. Some metrics were also either positively (e.g. between subjective reports
and between EEG beta power and subjective reports) or negatively correlated (e.g. HRV and engagement
ratio). Hence classical effects of task difficulty on subjective and objective measures were ascertained to
reflect operator engagement during such a piloting task with no double-task setting other than that inherent
to the flying task.

Lastly, in other studies within the MAIA project (with Alban Dupré as post-doctoral fellow, co- super-
vised with Pr F. Dehais), we varied task difficulty by having either a monitoring task or a flying task: i.e.
flying role. For instance, in a real flight experiment we had participants equipped with a dry-EEG system
perform traffic patterns either in this monitoring (i.e. low difficulty) or flying mode (i.e. high difficulty)
while performing a secondary task which was an oddball task (Dehais et al., 2019a) (Fig. 7.8). Analyses
disclosed higher P300 amplitude for the auditory target of the oddball task along with higher alpha band
power, and higher theta band power in the low difficulty condition as compared to the high difficulty one.
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Figure 7.7 – From (Singh et al., 2021): Topographic maps of the average power across subjects in θ, α, β
and γ for the high and low difficulty conditions, and their difference.

These results of reduced ERP amplitude and reduced theta and alpha power in the high difficult condition
are in accordance with a higher engagement of the participants. Hence this study clearly shows the feasi-
bility to elicit variations in operator engagement level in realistic settings as assessed through physiological
measures. However here, the variation in task difficulty is a very specific one close to actually changing
the automation mode. I further develop our work regarding engagement modulation by automation mode
in the next section.

Figure 7.8 – From (Dehais et al., 2019a): ISAE-SUPAERO DR400 aircraft at Lasbordes airfield.
Right—Experimental scenario: the pilots had to perform two traffic patterns (low and high difficulty)
along with an auditory oddball task.
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7.3.2 Engagement modulated by automation mode

In the previous section, work regarding changes in engagement depending on task difficulty was pre-
sented, including some work that used the flight role to modulate engagement. This change in flight role
is in fact akin to changing the automation mode. While both factors do in fact correspond to a change in
task difficulty, I chose to separate studies dedicated to assessing a change in engagement due to a change
in automation mode. The main reason was to be able to take the time to first define what these automation
modes are.

In our review and position article on teleoperation wrote within the scope of the MAIA and ISCOPE
projects (with myself as post-doctoral fellow, supervised by Pr F. Dehais and Dr C.P.C. Chanel) (Roy
et al., 2020a), we briefly recall that two general modes of interaction between humans and machines can
be identified: supervisory control vs. direct control. Yet, the difference is never that drastic and interaction
modes can in fact be viewed as a continuum (Goodrich et al., 2001; Huang et al., 2003; Sheridan, 2016;
Tang et al., 2016), depending on:

— the frequency of human intervention;
— the type of control (i.e. manual vs automatic);
— and the embedded capacities of the machines (i.e. to what extent they can achieve tasks au-

tonomously).
In the literature, there are differing views of what "autonomy" is. Here, we will consider a continuum that
is reflected by the various degrees or levels of system autonomy (Huang et al., 2005) ranging from what
is usually considered as true (tele-)operation, a.k.a. direct control, with no artificial support at all and the
human who does all the work, to the opposite case of no human intervention and the machine that does all
the work, a.k.a. an extreme form of supervisory control (Sheridan and Verplank, 1978). The use of such
extreme setups is scarce and usually the interaction relies on more mitigated levels of autonomy. In addi-
tion, having a fully autonomous system does not mean that humans will necessary be excluded from the
loop. Indeed, rule of engagement (Asaro, 2012), or ethical decisions (Goodrich et al., 2001; Bonnemains
et al., 2018) are, until now, preferably entrusted to a human agent decision making process.

Figure 7.9 – From (Verdière et al., 2018): Airbus A320 twin-engine simulator at ISAE-SUPAERO.

As mentioned above, variations in autonomy level can be seen as variations in task difficulty. Indeed,
direct control can imply an additional sub-task, for instance maneuvering the device in case of a vehicle, or
if not additional, at least a sub-task that requires full and continuous attention therefore reducing the avail-
ability of the operator to other stimuli. In several studies we evaluated operator engagement depending on
the type of control: automatic vs manual control. Within the SmartCockpit project (with Kevin Verdière as
PhD student), we assessed pilot engagement thanks to oxygenation measures recorded via fNIRS during
landing scenarios that were performed either in automatic and or manual mode in a full motion flight sim-
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ulator (Verdière et al., 2018). In addition to decreased oxygenation during the automatic mode condition, a
lower workload was reported by pilots using the NASA-TLX questionnaire confirming a reduced engage-
ment.

Similarly, within the Airtime project (with Dr Nicolas Drougard as post-doctoral fellow, co-supervised
with Pr F. Dehais and Dr C.P.C. Chanel) we assessed operator engagement in a simulated fire-fighter rover
task with a randomly changing level of automation (i.e. not trial-based) (Drougard et al., 2018; Chanel
et al., 2020). In this study, as expected ocular fixation patterns and cardiac measures (HR and temporal
HRV) were modulated by control mode. Yet, interestingly, subjective measures, mission score, as well as
cardiac activity depended mostly on the performance profile of the operator (e.g. figure 7.11). In the high
score group, participants exhibited higher HR and lower HRV than in low score ones. Conversely, poor
behavioral performance associated with higher HRV may reveal task disengagement, and consequently an
inability to face multitasking demands. The most important finding was that the higher level of automation
could be beneficial to low-scoring participants but detrimental to high-scoring ones, and vice versa. Lastly,
additional analyses revealed an interesting evoked cardiac activity following alarms launched during the
mission (e.g. low battery) such as an increased evoked heart rate and decreased evoked heart rate variabil-
ity which could be useful for characterizing temporally local modulations in engagement (Drougard et al.,
2019).

7.3.3 Inattentional deafness as a collateral mental state

As seen in section 7.2, inattentional deafness is an inattentional sensory impairment that consists in
"missing" stimuli, i.e. presenting a degraded processing of stimuli when all attentional resources are en-
gaged in another sensory modality. Hence, it can be seen as a disengagement from a specific sensory
channel. It can have deleterious consequences in complex real-life situations. The famous example of such
inattentional phenomena is the inattentional blindness paradigm of Simons and Levins (Simons and Levin,
1997) in which participants fail to detect a gorilla amongst ball players. Regarding the auditory modality,
a well studied example from the aeronautical context is the case of pilots missing auditory alarms when
they are over-engaged in the visual modality (e.g. fascinated by the landing track) (Dehais et al., 2010;
Macdonald and Lavie, 2011). Such a failure of auditory attention is thought to rely on top-down biasing
mechanisms at the central executive level and has been linked to high cognitive load (Raveh and Lavie,
2015). Hence it can be defined as a collateral mental state to increased engagement in a primary task,

Figure 7.10 – From (Chanel et al., 2020): Screenshot of the Graphical User Interface (GUI) during a
mission. Top left: remaining time and score. Top right: robot camera feedback. Bottom left: water stock
management task. Bottom right: robot status.
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and therefore originates from reduced engagement in other stimuli and/or tasks. In laboratory studies, it is
reported to be reflected by decreased event-related potentials component amplitude to these stimuli, in par-
ticular for both early (N100) and late (P300) components (Molloy et al., 2015), showing that inattentional
deafness to auditory alarms can take place at an early perceptual stage or processing in addition to later
attentional stages. It remained to evaluate whether inattentional deafness could be elicited in ecological
settings, with equivalent neural correlates.

Within the MAIA project (with myself, Dr Alban Dupré and Dr Imad Rida as post-doctoral fellows,
and Amine Laouar as intern, co-supervised with Pr F. Dehais and Dr S. Scannella), we worked on im-

Figure 7.11 – From (Chanel et al., 2020): Score analysis given robot automation level and performance
group.

Figure 7.12 – From (Dehais et al., 2019c): Group ERP results. a. Averaged ERPs for hit and missed
auditory targets in the difficult flying scenario at Cz (left) and Pz (right) electrodes. Black lines at the x
axis represent the significant differences between hit and miss (permutation test; p < 0.05; FDR corrected).
b. 2-D topographical views for hit and missed auditory targets at 116 ms (up, N100), 370 ms (left, P3a)
and 450 ms post-stimulus (right, P3b).
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plementing experimental conditions that would elicit this inattentional deafness phenomenon in ecological
settings, both in a full motion flight simulator and in real flight (Dehais et al., 2019a,b,c). This was done by
having participants fly and perform an oddball task (i.e. detect a target infrequent sound presented amongst
frequent distractors) in parallel, under various conditions of flight task difficulty. All three studies revealed
that inattentional deafness could indeed be elicited in ecological settings when under high task difficulty
with rates of misses significantly higher in the high difficulty condition than in the low one (e.g. 57.73% vs
0.33% in Dehais et al. (2019c)). Moreover, as in laboratory settings, missed alarms’ ERP amplitude was
reduced for both early and late components as compared to detected ones (Fig. 7.12).

These studies were followed recently by work within the NECTAR project (with Yannick Migliorini
as PhD fellow, co-supervised with Pr F. Dehais and Dr J.-P. Imbert) in which we first conducted a survey
study to evaluate in the context of en route air traffic control which degraded engagement states (as seen in
(Dehais et al., 2020)) were felt as predominantly impacting performance, safety and cooperation (Miglior-
ini et al., 2022). Task-related and task-unrelated mind wandering were the most prevalent but had the least
impact on perceived safety, however inattentional blindness and attentional entropy were less reported but
were considered a significant safety concern, while inattentional deafness was also reported to affect coop-
eration. Inattentional deafness was reportedly experienced under high task demands. Following this study,
we conducted a study to elicit inattentional deafness in a realistic en route ATC task by increasing task
demands and secondary task demands and obtained a rate of 58% of missed alarms in the more demanding
scenario (still pending publication). A reduction in alarm P300 amplitude was observed with increases in
task demands, however the number of trials per condition did not allow statistical analyses of misses vs
targets at the physiological level. Hence, although opening way to replicating studies and further work to
ascertain the results, these studies allowed to tackle inattentional deafness in another ecological context,
that of air traffic control.

Task demands

— Task difficulty modulated by (sub-)task parameters, as well as flying phase and role, elicits
variations in operator engagement as assessed through subjective and objective measures in
ecological settings.

— Automation mode changes elicit similar operator engagement marker modulations as task
difficulty changes.

— Inattentional deafness can be elicited in ecological settings under high task demands with
neural correlates validating an impact on early as well as late information processing stages.

7.4 Engagement modulated by time-on-task

As discussed in the previous section, user/operator engagement is subject to fluctuations depending -at
least in part- on task demands. In operational and ecological settings, another important factor is task du-
ration -or time-on-task. Indeed, prolonged operation is frequent in human-complex system operations for
critical tasks, such as directly flying a plane or remote vehicle in manual control, as well as supervising an
automated vehicle. An increase in time-on-task is known to elicit several mental states (as seen in section
7.2) including mental fatigue which can be defined as a state that occurs when a long and tiring task that
requires subjects to remain focused is performed (Lal and Craig, 2002). However this definition remains
vague, and in fact several states may be at play. Indeed, as we detailed in the Concorde project (with Emilie
Jahanpour as post-doctoral fellow), alertness or vigilance decreased levels are quite different from cognitive
fatigue (Jahanpour et al., 2020), yet they both negatively impact performance (slower reaction times and
lower accuracy (Lorist et al., 2005)), and can occur due to increases in time-on-task. In operational/ecolog-

55



CHAPTER 7. COGNITIVE NEUROSCIENCE CONTRIBUTIONS TO OPERATOR MENTAL STATE
ASSESSMENT

ical settings, they are also necessarily co-occurring. Alertness and vigilance are tightly linked to arousal,
and can be defined as the ability to maintain sustained attention to a stimulus for an extended period of time
(Al-Shargie et al., 2019), while cognitive fatigue can be defined as a difficulty in initiating or in sustaining
voluntary activities which would arise when the costs of the cognitive effort required to perform the activ-
ity are higher than the benefits it brings, hence linking this state to motivation (Boksem and Tops, 2008).
Moreover, some specialists advocate for a differentiation between active fatigue that occurs when task de-
mands are high, and passive fatigue that occurs when task demands are low (Desmond and Hancock, 2000).

Although definitions of both states may differ depending on fields and authors, if we use the frame-
work discussed at the beginning of the chapter, we can consider mental fatigue in a general manner as a
disengagement during a prolonged operation. In order to explore the impact of mental fatigue on opera-
tors, two types of induction can be used: a direct one and an indirect one. In the direct one participants
perform the same task for a long duration, i.e. using time-on-task (Ackerman, 2011). In the indirect one,
participants perform a highly demanding task designed to fatigue them, and then this fatigue is assessed
on a subsequent task, hence requiring the use of two tasks. The first one is easier to implement, yet the
second one is particularly interesting as it allows to study the transfer of the effects of fatigue. Most studies
involve long tasks, sometimes lasting several hours (Blain et al., 2016). The effects usually observed could,
therefore, be explained by learning factors, motivational factors, or factors related to the individual’s level
of alertness. On the other hand, recent studies have shown that cognitive fatigue can be induced in a few
minutes of intense activity (Borragán et al., 2016).

Regarding the effects of mental fatigue on operators, mental fatigue affects a multitude of cognitive
processes that are critical to the safe operation of systems, including cognitive flexibility, attention and
situational awareness (Caid et al., 2016; Chappelle et al., 2018). In addition to the aforementioned de-
crease in performance, one should mention oculomotor behavior changes (increase in blink rate and blink
duration, decrease in number of fixations, as well as questionnaires that are usually proposed to evaluate
arousal and mental fatigue through multiple scales (see our paper for more details, Jahanpour et al. (2020)).
Psychophysiological measures traditionally reported include modulations in EEG power (e.g. increase in
theta and alpha power, and decrease in beta power) as well as in EEG power ratios, but also a reduction
in event-related potentials’ amplitude and/or component latency modulations. This goes in the same direc-
tion of a general disengagement of the user/operator, which is also reflected by a decreased heart rate and
increased heart rate variability. Within the Concorde project (with Dr Emilie Jahanpour as post-doctoral
fellow), as a preliminary step towards operator mental fatigue state characterization, we confirmed time-on-
task effects on EEG and ECG activity using a well-known monotonous laboratory task, the Psychomotor
Vigilance Task (Jahanpour et al., 2021). We also uncovered performance-related correlates, with increased
alpha power and task load index (theta power at Fz over alpha power at Pz) prior to worst trials, which also
confirm vigilance fluctuations over time. Yet in this study mental fatigue can only be considered as alert-
ness/vigilance, and not as cognitive fatigue. Moreover, as we already mentioned earlier in this document,
most of these studies were laboratory ones, and these time-on-task effects on engagement still remained
to be checked in more ecological settings, for both supervisory tasks and direct manual control tasks, as
detailed below.

7.4.1 Prolonged supervision

Long monitoring tasks without regular actions, i.e. monotonous, are becoming increasingly common
from aircraft pilots to train conductors as these systems grow more automated. These task contexts are
challenging for the human operator because they require inputs at irregular and highly interspaced mo-
ments even though these actions are often critical. For instance, prolonged operations are common practice
in surveillance operations, be it for military reconnaissance purposes, but also for civilian applications of
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search and rescue missions. In this context, modern equipment allows to perform such tasks remotely
using unmanned systems and therefore operators mostly perform supervisory tasks. It should be noted
however that for military Unmanned Aerial Vehicle (UAV) operation, four operators are usually required
in the French military. Hence a team is generally composed of a remote pilot working alongside a sensor
operator (i.e. front cockpit), as well as a tactical coordinator and an picture analyst (i.e. back cockpit).
In this specific context, supervisory tasks are generally performed by the sensor operator and the picture
analyst. A characterization of UAV operators’ activity was performed remotely through interviews with
high ranked officers during the covid locked-down within the Concorde project (with Dr Emilie Jahanpour
as post-doctoral fellow and Marcel Hinss as PhD student).

Figure 7.13 – From (Roy et al., 2016b): UAV monitoring task implemented using the Atmospher software
(here with a pop-up on fuel level).

Within the ISCOPE project (with myself as post-doctoral fellow, supervised by Pr F. Dehais and
Dr C.P.C. Chanel), we started working on characterizing operator engagement level during a prolonged
monotonous UAV supervision task (Roy et al., 2016b). Indeed, although UAV operators’ fatigue state
has been extensively assessed at the behavioral and oculomotor levels (Cummings et al., 2013), to our
knowledge there was a lack of literature regarding potential cardiac and cerebral markers that would enable
proper engagement level assessment. The implemented task was a UAV monitoring task that lasted two
hours without any break and included an alarm monitoring task and a target identification task (Fig. 7.13).
The main results revealed that, in addition to a significant modulation of the alpha power, the blink rate and
the number of fixations with time-on-task, there was a significant correlation of response times with both
the cardiac Low Frequency / High Frequency ratio and the number of ocular fixations.

The data gathered during this project were also used for further analyses within the MAIA project
(with myself and Dr Mehdi Senoussi as post-doctoral fellows, co-supervised with Pr F. Dehais) in order
to evaluate whether time-on-task impacted brain connectivity (Senoussi et al., 2017). The analysis of the
interaction between distant brain regions, i.e. connectivity, had gained momentum and we thought it could
provide interesting perspectives to link brain activity and mental states. For instance, some studies had
shown that large-scale cortical interactions underlie many cognitive functions such as decision-making, top-
down visual attention or multi-sensory integration (for a review see (Siegel et al., 2012)). Previous work
had shown that connectivity between frontal and occipital electrodes might reflect top-down attentional
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orientation (Mazaheri et al., 2010). Thus, we believed that the use of neural connectivity could provide
a promising framework to improve operator mental fatigue characterization. In this study we explored to
which extent it is possible to predict an operator’s behavioural performance in a UAV monitoring task using
large-scale EEG connectivity by correlating relative coherence with reaction times (RT). We showed that
long-range EEG relative coherence, i.e. between occipital and frontal electrodes, is significantly correlated
with RT and that different frequency bands exhibit opposite effects. More specifically, we observed that
more coherence (relative magnitude squared coherence) between occipital and frontal electrode sites in
the theta band led to better performance, while more coherence in the lower alpha band led to decreased
performance (Fig. 7.14). These results are in accordance with the involvement of alpha oscillations in
inhibitory processes (Klimesch et al., 2007), and theta oscillations in cognitive control processes (Cavanagh
and Frank, 2014), hence ascertaining the impact of time-on-task on said processes.

Figure 7.14 – From (Senoussi et al., 2017): Correlation between occipito-frontal relative coherence and
Reaction Times between 1 and 30Hz. Spearman’s rank correlation between occipito-frontal relative coher-
ence of each seed occipital electrode and average of frontal electrodes exhibiting the 6Hz and 8Hz effects
for all frequencies. Shaded area around the curves represents standard error across participants.

7.4.2 Prolonged manual control

Within the MAIA project (with myself as post-doctoral fellow, supervised by Pr F. Dehais), we investi-
gated pilot mental fatigue across time during four traffic patterns. The flying task was in fully manual mode
and performed in parallel with an auditory oddball as a secondary task, in both a full motion flight simula-
tor and in real flight at the Lasbordes airfield (Dehais et al., 2018). As could be expected pilots performed
worse in the second part of the experiment (last two traffic patterns) as compared to the first part (first two
traffic patterns) with lower detection rates of auditory alarms in both settings, with also more errors in real
flight than in the simulator condition. Hence inattentional deafness (see section 7.2) was elicited here by
increasing time-on-task. To our knowledge this was the first study to reveal this phenomenon. Yet this can
be simply explained by an increase in task demands due to increasing cognitive fatigue as the pilots were
student pilots. At the physiological level, the EEG engagement ratio and fNIRS oxygenation measures
reflected this time-on-task effect and allowed to estimate it using machine learning techniques as expected
from the literature (see section 8.5). This study has therefore paved the way to cognitive fatigue character-
ization in ecological settings during prolonged manual control.

Regarding the impact of time-on-task during remote manual flight, we investigated this issue in another
project. Indeed, during the interviews that we performed on high ranked UAV operators of the French mil-
itary within the Concorde project (with Dr Emilie Jahanpour as post-doctoral fellow, co-supervised with
Dr J.-P. Imbert and Dr B. Berberian, and Marcel Hinss as PhD student co-supervised with Dr A. Brock),
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we were able to better understand the team work that is performed by the four operators (i.e. remote pilot
and sensor operator for the front cockpit; tactical coordinator and image operator for the back cockpit). We
discovered that, contrary to our naive expectations, the remote pilot did not perform a supervisory task.
Indeed, they preferred to fly in a manual mode (or at a low autonomy level) most of the time -and in par-
ticular during take-off, landing and reconnaissance phases- so as to stay engaged in the task and avoid as
much as possible disengagement due to the monotonous and remote nature of the task. This discovery has
led us to prepare a new experimental protocol for operator mental fatigue characterization in which we will
have a flying task in manual mode during all phases except the transit phase which will be performed in
fully autonomous mode. During the interviews, the main issue during long endurance missions that was
reported linked to cognitive fatigue was the difficulty to perform task switching when fatigued (Hinss et al.,
2022). Therefore, we have chosen to investigate the impact of time-on-task and cognitive fatigue generated
by highly demanding phases on cognitive flexibility.

Time-on-task

— Mental fatigue is a vague concept that can encompass several states/processes all linked to
engagement, including states of decreased arousal/alertness and vigilance, and states of cog-
nitive fatigue.

— Prolonged supervision can be characterized thanks to engagement measures which can also
predict operator performance.

— Prolonged manual flight elicits inattentional deafness and can be characterized by usual en-
gagement measures.

— Prolonged manual flight is reported to yield cognitive flexibility issues.

7.5 Engagement depending on social context

Although I do find social psychology and social neuroscience particularly fascinating, my work does
not fall into these fields. Yet, within a few projects we had some research questions that touched the topic of
the social context of operation. Indeed, for aeronautics applications we were interested in cooperation be-
tween two teammates, and for space applications we were interested in operation inside space analogs with
prolonged missions in confinement and/or isolation. This work is presented in the following subsections.

7.5.1 Cooperation and team performance

In the context of risky work settings that involve interacting with highly complex systems, cooperation
is often required between several operators, for instance between a pilot and co-pilot, and between pilots
and ground operators. A general definition of cooperation could be stated as: “a situation that contains
a manifest collective goal, in which a group of agents realize it by choosing their actions in accordance
with an equilibrium” (Paternotte, 2014). In this context, in addition to subjective measures, studies have
tried to characterize teammates’ cooperative states thanks to objective physiological measures. This field
of research known as “interpersonal physiology” or “physiological synchrony” aims at assessing temporal
similarity in teammates’ physiological responses and requires the acquisition of several data streams from
teammates such as electrodermal activity, thermal activity, respiration or cardiac activity (see (Palumbo
et al., 2017) for a systematic review). "Hyperscanning" is also often used to refer to physiological syn-
chrony using cerebral activity measurements (i.e. simultaneous measurement of brain activity (Babiloni
and Astolfi, 2014)). Physiological synchrony has been shown to predict team performance irrespective of
behavioral coordination (Henning et al., 2001), and has been thoroughly studied in video game players
in cooperative vs competitive settings (Chanel et al., 2012). Taken together, the hyperscanning and phys-
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iological synchrony approaches open promising prospects for social neuroergonomics and the design of
solutions to assess and improve human-human or human-artificial systems teaming. Yet, to our knowl-
edge, these approaches have scarcely been applied to the aeronautical context, and methodological issues
as regards elicitation of such cooperation states remains to be clarified.

Figure 7.15 – From (Verdière et al., 2020): Modified version of the MATBII. Participants were seated side
by side in front of duplicated screens represented here on the left for the pilot flying and on the right for
the pilot monitoring. The pilot flying had to perform the two upper tasks (red): monitoring and tracking.
The pilot monitoring had to perform the two lower tasks (blue): fuel management and communications.
During the cooperative condition, they both had to monitor one of each other’s tasks and help to perform
it if needed (yellow): The pilot monitoring had to monitor and help for the monitoring task and the pilot
flying the fuel management task.

Within the SmartCockpit project (with Kevin Verdière as PhD student and Flavio Ahuitzotl Reyna
Bibiano as intern, co-supervised with Pr F. Dehais), we evaluated teammates’ cooperation physiological
correlates while they performed a modified MATB task meant to simulate activities of pilot flying (PF) and
pilot monitoring (PM) roles (more details in Fig. 7.15) (Verdière et al., 2019, 2020). In the experimental
paradigm, dyads of participants sitting side by side performed the task in various difficulty (low and high)
and cooperation (coop/non coop) settings (Fig. 7.16). The protocol was validated as to the elicitation of
various levels of engagement at both the individual and the team level (Fig. 7.17), as attested by the NASA
TLX ratings (higher reported workload in the high difficulty condition), task performance (decreased team
performance in the high difficulty condition), as well as cardiac activity (higher heart rate and lower heart
rate variability - sdnn- in the high difficulty condition) and cerebral activity (alpha power decreased at all
sites for the PM in the high difficulty condition, n.s. for the PF). Moreover, task difficulty modulated the
ability to cooperate. Cooperation was checked via behavioral measures, and it was reduced under high
difficulty conditions, as could be expected. Regarding cooperative state correlates, there was an interaction
with the difficulty level for the PM. Indeed, they reported the task as more difficult when in the coopera-
tive condition, as also reflected by a slightly decreased team performance, and modulations in theta, alpha
and low beta power (incl. trend for theta power decrease in the coop condition). But most importantly,
there was a significant cardiac synchrony of teammates in the high difficulty condition in the cooperative
condition only (assessed through the delayed coincidence count metrics - see section 8.4). We believe this
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reflects a high engagement that was required in this particular setting, a form of interaction intensity as
proposed by Chanel et al. (2012). Cooperation in this specific context can therefore mostly be seen as an
increased engagement. However, our study highlights an increase in PS during cooperative and high work-
load conditions without correlation with team performance. This might reveal that the observed cardiac
synchrony could be an epiphenomenon.

Figure 7.16 – Dyad of participants performing the modified MATB.

Hence, the previous study proved efficient in eliciting various engagement and cooperative states in
teammates that performed a highly engaging piloting-like task in a cooperative setting as characterized via
individual subjective and objective measures, as well as teammates’ peripheral (i.e. cardiac) synchrony
measures. Yet, participants were collocated spatially and performed a similar task with parts -in the coop-
erative condition- that were exactly identical, meaning that they would experience temporally synchronized
stimulations to which they were both supposed to answer hence generating some analysis bias at the phys-
iological level. Moreover, synchrony analyses were only performed on cardiac activity at the time, and we
saw that task difficulty and cooperation could interact and that it was necessary to evaluate cooperative cor-
relates without modulating task difficulty. Hence, within the Hyperscan project (with Dr Nicolas Drougard
and Dr Grégoire Vergotte as post-doctoral fellows, co-supervised with Pr F. Dehais and Dr C.P.C. Chanel),
we worked on investigating the cooperation between a military ground controller (JTAC) and a Pilot in the
context of close air support with a protocol in which they would either genuinely cooperate with each other,
or cooperate with a pilot-bot or JTAC-bot (simulated using basic AI techniques) (Dehais et al., 2021). This
approach allows to compare participants’ physiological responses when interacting with another human or
an AI, but also to control for potential confounds. Indeed, the design of hyperscanning ecological protocols
remains challenging as long higher brain synchrony or physiological synchrony may account for potential
load effects as seen earlier (i.e. dyads are facing high demands at the same time) or task effects (i.e. dyads
are doing the same task thus exhibiting similar cerebral activation) rather than real social interaction per se.

In this study, the teammates were not seated side by side but at opposite parts of a room, separated using
screens, and phonically isolated using in-ear audio headsets. They had to perform missions, half of which
were in a "coop" condition (genuine cooperation), others were in a "fake coop" condition (they were not
told they were cooperating with a bot), and in a "no coop" condition (they were told they were to cooperate
with a bot; Fig. 8.18). Our findings disclosed that Human-Human dyads exhibited similar performance to
Human-Bots dyads whether the human participants were aware that they were playing with a bot or not.
Our participants declared that they did not realize they were playing with an AI in the fake cooperation
condition. These findings indicate that 1) humans can be fooled by AI, and that 2) humans can behave in
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Figure 7.17 – From (Verdière et al., 2020): Subjective NASA TLX scores (first row), average heart rate
(second row) and SDNN (third row) for the pilots flying (left graph) and the pilots monitoring (right graph).
Each one of the 8 bars represents one of the 8 scenarii. The x-axis corresponds to the scenario difficulty
for the pilot flying and the pilot monitoring (i.e. EASY-EASY / EASY-HARD / HARD-EASY / HARD-
HARD). Colors represent the cooperation condition (COOP - DON’T COOP).
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a natural way with AI. Moreover, similar performance and heart rate variability for all conditions seem to
indicate that the interaction with a human teammate or a bot induced similar levels of mental workload.
Interestingly enough, our analyses revealed that the cardiac activity (WDCC metrics see section 8.4) of
controllers and pilots was more synchronized when they were collaborating together than when they were
playing with AI (being aware or not). Similarly, EEG analyses disclosed a higher cerebral efficiency and
connectivity (incl. covariance and global efficiency metrics in alpha; see section 8.3) between the two
brains when teammates were interacting together than when cooperating with AI. Hence, this experiment
did elicit cooperation between participants with a protocol that tried to avoid common biases, and brought
to light physiological correlates that cannot be elicited merely by engagement and stimuli processing and
should therefore reflect cooperative states.

Figure 7.18 – From (Dehais et al., 2021): Hyperscan experimental setup: the Pilot (left) is flying the aircraft
and exchanges instructions via a tablet with the JTAC (right) who is in charge of supervising the aircraft
trajectory and gives instructions to the Pilot via the user interface.

7.5.2 Confinement

In the previous section, I briefly detailed work that we performed regarding teammate cooperation when
interacting with highly complex systems in an aeronautical context. Although promising, the results were
acquired using laboratory tasks with computer-based simulations. When considering operational contexts,
additional social and environmental issues can arise, with the risk of impeding operators’ professional task
performance and therefore their safety (in addition to mission success). That is the case with confined/iso-
lated settings such as the ones experienced by astronauts. Numerous studies in analogs –that is to say in
an environment replicating a spatial environment by several criteria– have allowed to highlight the impact
of a crucial stress factor which is the physical and temporal confinement (and the relative social isolation
which accompanies it). This can generate mood alterations, but with a salutary effect of the severity of the
isolation depending on the personality type (Palinkas et al., 2000). Fraser reports in his literature review a
slight impact of confinement on behavioural performance (Fraser, 1966). However, these alterations may
be due to confounding factors such as fatigue/vigilance due to sleep alterations and fluctuations in motiva-
tion. Fraser notes that others have shown both decreases and increases in performance depending on the
nature of the tasks, with routine tasks being the most negatively affected, but also that many studies report
no alteration in performance despite changes in mood or social relationships. Thus, recent literature shows
that performance is maintained for several months (Sauer et al., 1999a,b; Hockey et al., 2011). However,
this result applies only to the primary tasks, and performance is generally measured on reaction time tasks
(e.g., response time tasks to a light). The few studies with tracking tasks to assess the impact on psychomo-
tor skills do not show a net decrease in performance (Fraser, 1966). It is therefore highly probable that the
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performance degradation that is sometimes reported originates in the boredom of routine tasks or fatigue
from a very busy schedule. Given the literature, to the best of my knowledge, operator performance and
engagement had never been assessed within space analogs during teleoperation tasks using a full neuroer-
gonomic approach that encompasses using questionnaires, behavioral measures as well as psychophysical
ones.

Figure 7.19 – From http://mdrs.marssociety.org/ : Mars Desert Research Station (MDRS) in the Utah
desert, United States.

Figure 7.20 – From https://spacegeneration.org : Lunares analog station, Pila, Poland.

Figure 7.21 – From https://www.nasa.gov/analogs/nek : Ground-based Experimental Complex (NEK) at
the Institute for Biomedical Problems in Moscow, Russia.

Therefore, within the TELEOP and TELEOP+ projects (with Tom Lawson, Eric Gil Calle, Diogo
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Gadelha Mimoso, Federica Vagnone, Veronica Martin Estraña, Ana Ambrosio Gonzalez, Flavio Ahuitzotl
Reyna Bibiano, Louis Maller, and François Bernard as interns, co-supervised with Dr S. Lizy-Destrez and
Dr V. Peysakhovich), we started to evaluate the impact of confinement and isolation on operator engage-
ment during remote manual rover control tasks that would be performed from a confined cis-lunar station
(Estrana et al., 2019; Mimoso et al., 2021; Calle et al., 2021). In order to do so, we used space analogs such
as the Mars Desert Research Station (MDRS) in the Utah desert, United States (missions MDRS189 and
MDRS206), the Lunares habitat in Pila, Poland (mission ARES III), and the NEK (Ground-based Exper-
imental Complex) at the Institute for Biomedical Problems in Moscow, Russia (missions SIRIUS-19 and
SIRIUS-21).

Within these missions, the participants were confined in a given space analog for a duration specific to
the program and the type of participants involved -either professionals or students (i.e. only 3 weeks for
the MDRS missions, and 2 weeks for the Lunares one with students, and 4 and 8 months for the SIRIUS
missions with professionnals). In the first missions we used a physical rover that was built by students with
Legos and a Raspberry pi. However, for practical reasons and to increase ease of use, we switched to using
a fully implemented rover simulation in the later ones. Measurements were taken using questionnaires (for
personality, mood, confinement feeling, perceived effort and motivation), performance metrics (execution
time and accuracy), as well as cardiac activity (heart rate and heart rate variability). The protocol generally
included a training phase before the confinement, as well as a post-confinement acquisition phase. Partici-
pants performed at least one experimental session per week. The first version of the task consisted in rover
guidance along a predefined path (missions MDRS189 and ARES-III), while in the subsequent ones the
task was fully simulated (computer-based task).

In addition to limited participant numbers that are inherent to this type of experiments, we also en-
countered numerous technical issues (different ones for every mission) that both restricted data availability
(cardiac measurements), and negatively impacted our ability to properly analyze the data. Yet, we were
still able to gather some interesting results from the remaining data. The main results of the first three
missions that involved student participants demonstrated a significant correlation between motivation and
positive affect, between the feeling of confinement and negative affect, as well as between perceived effort
and motivation (Estrana et al., 2019). Regarding personality traits, the score on the neuroticism scale was
positively correlated to the feeling of confinement. However, the correlation between teleoperation perfor-
mance and other metrics was not significant in all studies.

Nevertheless, a correlation analysis of sleep quality (assessed using the Dreem EEG headband from
the night before the teleoperation session), mood and teleoperation performance in the MDRS206 analog
mission revealed that sleep duration and task completion time were positively correlated, in addition to a
positive correlation of the reported feeling of confinement with the negative affect component of the mood,
as well as between the negative affect component and several sleep quality parameters (Calle et al., 2021).
To the best of our knowledge, this link between sleep quality in confined spaces with professional task
performance had not yet been evaluated. Further, on a larger time scale, we also performed a teleoper-
ation performance and psychophysiological state assessment in the SIRIUS-19 analogue campaign with
a simulated rover guidance task performed in a ground-based complex in Moscow (Mimoso et al., 2021).
Over this four-month study, participants performed 17 teleoperation sessions that were designed to simulate
guidance but with a purpose: they had to perform rock sampling on the Lunar surface (Fig. 7.22). The main
results were a positive correlation between the reported feeling of confinement and task completion time,
and a negative correlation between the reported feeling of confinement with the positive affect component
of the mood. Next, a positive correlation between the mean heart rate during the teleoperation task and
the reported effort required from participants underlined the usefulness of such physiological measures. In
addition, a general decrease of motivation was observed along the mission with the exception of a booster
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created by a Moon landing phase (half-way through the mission). Hence, the results -although hampered
by a low number of participants-, go in the same direction as the ones from our previous analogue studies.
While requiring replication, this work paves the way towards better assessing the link between confinement
stressors and the crew’s performance to professional tasks. This work has also led us to perform an online
evaluation of the covid-19 confinement on students’ cognitive functions, which we have however not yet
been able to fully analyze.

Figure 7.22 – From (Mimoso et al., 2021): Rock sampling teleoperation task display, SIRIUS-19 analogue
mission.

Social context of operation

— Task difficulty and cooperation conditions both have an effect on operator engagement.
— Teammates’ cooperation can be characterized through individual subjective and objective

measures, as well as physiological synchrony.
— Humans can be fooled by AI in cooperative tasks, yet not at the physiological level.
— Teleoperation performance, sleep and mood are correlated in confined environments such as

space analogues.

7.6 Countermeasures for adequate engagement

In order to enhance human-complex systems interaction at the safety and performance level, counter-
measures have to be put in place, that is to say measures that will prevent the occurrence and/or mitigate
the impact of degraded human operator cognitive states -states that precede a reduction in performance ef-
ficacy and that mostly consist in inappropriate engagement level. Two main types of countermeasures can
be identified depending on which part of the interaction we focus on: i) operator screening and training; ii)
system design. Several of these measures -from both categories- rely on performing an adaptation of either
the operator or system based on physiological measures. Within the Cocpit project (with Dr Alex Lafont
as post-doctoral fellow), we proposed a typology of such neuroadaptive countermeasures to mitigate unde-
sirable cognitive states (Dehais et al., 2020). Three types of mitigating solutions to instigate a change in
behaviors were identified: (1) adaptation of the user interface, (2) adaptation of the task and of the level
automation, and the (3) “neuro-adaptation” of the end-users (See Fig. 7.23 for more details).

The implementation of such neuro-adaptive technology relies on a pipeline that consists of a signal
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acquisition step, a preprocessing step to improve the signal-to-noise ratio, a feature extraction step, a clas-
sification step to diagnose the current mental states, and lastly an adaptation step (Roy and Frey, 2016).
This last step implies the implementation of formal decisional unit that dynamically closes the loop by
triggering the most appropriate cognitive countermeasures. Work on this whole pipeline design and imple-
mentation is the core of chapter 8. In the present section I only detail countermeasures that were designed
and tested following the operator vs system categorization mentioned earlier, and which include some
neuroadaptive solutions.

Figure 7.23 – From (Dehais et al., 2020): The three types of Neuroadaptive countermeasures dedicated to
mitigate the undesirable mental states.
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7.6.1 Operator screening and training

If we focus on the user/operator, solutions to prevent inadequate engagement levels include screening
as well as training of the selected operators. Regarding operator screening, we did not much touch the
subject these past years, however in our work regarding inattentional deafness within the MAIA project
(with myself as post-doctoral fellow and Amine Laouar as intern, co-supervised with Pr F. Dehais and Dr
S. Scannella) we did work on the evaluation of working memory and visuo-auditory balance as predictors
of inattentional deafness (Dehais et al., 2019c). In this study (detailed in section 7.3.3), thanks to tasks
performed by participants before the flying task in the motion simulator (resp. an N-back task for working
memory assessment and a spatial audiovisual conflict task for the visuo-auditory balance) and to a correla-
tional analysis, we found that working memory ability did not correlate with inattentional deafness -inline
with previous studies (e.g. Kreitz et al. (2016))-, but that the visuo-auditory balance did. Indeed, only
the visual dominance index was predictive of the miss rate in the difficult scenario. Therefore, it seems
sensible to advise pilot screening procedures to take into account this visuo-auditory balance that appears
to significantly impact their ability to filter and prioritize auditory information in the cockpit.

Next, regarding operator training, one of the most promising preventive approaches relies on the im-
plementation of neurofeedback (see Enriquez-Geppert et al. (2017) for a review). The principle of this
technique is based on a biofeedback technique used for training oneself. Indeed, here real-time feedback
of their mental states is provided to the users in the form of a visual, tactile or auditory stimulus. The users
can then utilize these signals to learn to regulate their brain activity and in return improve their executive
functions, mental flexibility, and attentional abilities as well as enhance their task engagement (e.g. (Egner
and Gruzelier, 2004)). In addition, it has been shown that frontal-medial theta can improve basic executive
functions (Enriquez-Geppert et al., 2014). Hence, within the Cocpit project (with Dr Alex Lafont as post-
doctoral fellow, co-supervised with Pr F. Dehais) we aimed at assessing whether neurofeedback training
focused on theta activity in the fronto-medial cortex would help them perform better in tasks involving
executive functions: laboratory tasks, laptop-based ecological task (MATB), and a flying task in a full
motion flight simulator (Lafont et al., 2020, 2021) (Fig. 7.24). In this study, we evaluated two groups of
participants, one that received a genuine neurofeedback training (active group), and another that received a
sham training (sham group). The training consisted in eight 1,5 hour-sessions. Preliminary results revealed
that the active group exhibited higher amplitude of theta compared to the sham group. Additionally, our
findings indicated increased performance after neurofeedback training for the active group compared to
the sham group in most of the laboratory and simulator tasks with more waypoints reached by the active
group (however with more variability), and less trajectory deviation, than the sham group. Taken together,
fronto-medial NF training appears a promising solution to improve both pilot’s executive functioning and
flying performance. It should be noted that brain activity-based training can also be implemented by adap-
tively modifying the system itself, be it at the interface or task level (e.g. Yuksel et al. 2016). System
modifications for adequate operator engagement are detailed below.

7.6.2 System design

Countermeasures based on system modifications can also be implemented as curative measures for in-
adequate operator engagement. These measures can be grouped into two categories: modifications of the
interface, and modifications of the task itself (incl. automation level). Regarding interface design, solu-
tions can be for instance the removal or addition of information, the change in salience of a given piece of
information, or the change of sensory modality (see Dehais et al. (2020) for a review). Within the Nectar
project (with Yannick Migliorini as PhD student co-supervised with Pr F. Dehais and Dr J.-P. Imbert), we
evaluated several alarm modalities’ ability to reduce inattentional deafness occurrence within the ATC con-
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Figure 7.24 – From (Lafont et al., 2021): Project Cocpit – Illustration of a neurofeedback session (A),
illustration of the protocol for both the experimental groups (B) and illustration of the Multi-Attribute Task
Battery (MATB-II) (C).

text (Migliorini et al., 2021). Indeed, studies had shown that the current Short Term Conflict Alert (STCA)
- a small blinking red "ALRT" tag- could remain undetected under high load settings (Imbert et al., 2014;
Saint-Lot et al., 2020). In the visual modality, a red ambient flash was successfully implemented (Saint-
Lot et al., 2020). Yet, the usefulness of soliciting other sensory modalities remained to be assessed. In our
study we showed that implementing auditory, vibrotactile and the red ambient flash led to decreased alarm
misses compared to the French STCA (Migliorini et al., 2021).

Further, within the Cocpit project (with Dr Alex Lafont as post-doctoral fellow, co-supervised with Pr
F. Dehais), we worked on implementing neurofeedback as a curative measure too – not just a preventive
measure– by implementing a visual feedback regarding the pilot’s own fronto-medial theta activity in the
cockpit (Lafont et al., 2021). Hence, in the flying task that was included in the whole protocol, participants
had to navigate through several way-points as fast as possible and perform two secondary tasks at the same
time: 1) an active auditory oddball task; 2) managing the radio communications (i.e. auditory working
memory task). The interface included a biofeedback which participants could check during their flight
(Fig. 7.25). Unfortunately this countermeasure was not assessed alone and was in fact implemented jointly
with another countermeasure described in the next section, an adaptive assistance solution that proposed to
change the automation level of one of the two tasks (see below).

The dynamic reallocation of tasks between humans and automation is another solution to maintain
operator performance efficacy (e.g. (Parasuraman et al., 1999; Stephens et al., 2018)). The underlying con-
cept in this case is to optimize human-human or human(s)-system(s) cooperation according to criteria of
availability and skills of human and artificial agents (Gateau et al., 2016). For instance, Prinzel et al. (2000)
utilized the continuous monitoring of brain waves that could be used to drive the level of automation and
optimize the user’s level of task engagement. This is what we implemented within the Cocpit project (with
Dr Alex Lafont as post-doctoral fellow, co-supervised with Pr F. Dehais) in the last phase of the study, with
an adaptive assistance solution that proposed to change the automation level of one of the two secondary
tasks during the flight (performed in the full motion simulator) (Lafont et al., 2020, 2021). This experiment
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Figure 7.25 – From (Lafont et al., 2021): Project Cocpit – Illustration of the cockpit interface and the two
secondary tasks that pilots had to perform as well as illustration of the pilot aid.

was mostly directed at assessing the effect of the training technique described earlier, and showed trained
participant were more performing to the secondary tasks and therefore the adaptive assistance was less
often activated than for the non-trained group (sham group). Hence, these results do not constitute a proof
of the efficiency of neuroadaptive task reallocation, but rather a proof of concept of its implementation.

Figure 7.26 – From (Singh et al., 2022b): Airtime project – participant performing the flying task and
interacting with UAVs via a tactile tablet with dynamic task reallocation.
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Figure 7.27 – From (Singh et al., 2022b): Subjective workload via ISA (***: p < 0.001, **: p < 0.01, and
*: p < 0.05).

However, within the Airtime project (with Gaganpreet Singh as PhD fellow and capitaine Laura Tilly as
intern, co-supervised with Dr C.P.C. Chanel) we did successfully mitigate operator engagement thanks to
task reallocation based on physiological computing (Singh et al., 2022a,b). As physiological computing is
the core of the next chapter –chapter 8–, the details of the pipeline, as well as the task and results are given
in a dedicated section on closed-loop systems (section 8.5.3). In a nutshell, a piloting task that required
interacting with UAVs via a tactile tablet was modified in an online manner based on the current mission
parameters and a real time estimation of the pilot’s engagement level performed using machine learning on
their cardiac activity. Indeed, the goal was to enhance human performance by controlling the interaction
between agents based on an online monitoring of the operator’s task engagement and performance. This
task adaptation was compared to a non-adaptive condition. In accordance with the literature, when the
adaptive approach was used, the participants reported significantly less mental workload (as measured with
the Instantaneous Self Assessment (ISA) questionnaire; Fig. 7.27), physical and temporal demands, frus-
tration and effort (as measured using the NASA-TLX questionnaire; Fig. 7.28), and their flying score was
also significantly improved (Fig. 7.29). These findings demonstrate how such a physiology-based adaptive
interaction can improve performance while reducing operator workload (more details and figures in section
8.5.3).

Countermeasures

— Visual dominance is predictive of inattentional deafness and could be used for pilot screening.
— Fronto-medial theta neurofeedback training appears efficient in improving executive func-

tioning and flying performance.
— Interface modifications such as alarm design in various sensory modalities can mitigate the

impact of degraded operator engagement states.
— Dynamic task reallocation via physiology-based operator mental state assessment increases

operator and mission performance.
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Figure 7.28 – From (Singh et al., 2022b): Subjective workload via NASA-TLX (***: p < 0.001, **:
p < 0.01, and *: p < 0.05).
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Figure 7.29 – From (Singh et al., 2022b): Flying Score (**: p < 0.01, and *: p < 0.05).
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7.7 Chapter conclusion

This chapter was intended to provide an overview of my recent cognitive neuroscience contributions
to improved operator mental state –and more particularly engagement– assessment. A list of the main
contributions (published journal articles or full-paper proceedings) on which this chapter was based is pre-
sented below. Although I do believe that together with my colleagues we have achieved promising results
regarding the development of a neuroergonomic approach for improved operator mental state assessment,
including working towards assessment in realistic settings using mobile measurement devices (challenges
1 and 2 from the introduction), much still remains to be done. In particular, further work on operator state
assessment will be presented in the perspective chapter 9, including work on human-robot interaction in
collaborative and mobile settings.

• Definitions & concepts

[1] K. Gramann, R. McKendrick, C. Baldwin, Roy, R. N., C. Jeunet, R.K. Mehta & G. Vecchiato (2021)
Grand Field Challenges for Cognitive Neuroergonomics in the coming Decade. Front. Neuroergon.,
2:643969.

[2] Roy, R. N., Drougard, N., Gateau, T., Dehais, F. & Chanel, C.P.C. (2020) How Can Physiological
Computing Benefit Human-Robot Interaction? Robotics, 9(4), 100.

[3] Dehais, F., Lafont, A., Roy, R. N. & Fairclough, S. (2020) A neuroergonomics approach to mental
workload, engagement and human performance. Front. Human Neurosci., 14, 268.

• Task demands

[1] Migliorini, Y., Imbert, J.-P., Roy, R. N., Lafont, A. & Dehais, F. (2022) Degraded States of En-
gagement in Air Traffic Control. Safety, 8, 1.

[2] Kim, E., Peysakhovich, V. & Roy, R.N. (2021) Impact of communication delay and temporal sen-
sitivity on perceived workload and teleoperation performance. In ACM Symposium on Applied Perception
2021 (SAP ’21), September 16–17, 2021, Virtual Event, France. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3474451.3476233

[3] Chanel, C.P.C., Roy, R. N., Dehais, F., Drougard, N. (2020) Towards Mixed-Initiative Human–Robot
Interaction: Assessment of Discriminative Physiological and Behavioral Features for Performance Predic-
tion. Sensors, 20, 296.

[4] Dehais, F., Roy, R. N. & Scannella, S. (2019) Inattentional deafness to auditory alarms: inter-
individual differences, electrophysiological signature and single trial classification. Behavioural Brain
Research, 360, 51-59.

[5] Dehais, F., Duprès, A., Blum, S., Drougard, N., Scannella, S., Roy, R. N. & Lotte, F. (2019) Moni-
toring Pilot’s Mental Workload Using ERPs and Spectral Power with a Six-Dry-Electrode EEG System in
Real Flight Conditions, Sensors, 19, 1324.

[6] Dehais, F., Rida, I., Roy, R. N., Iversen, J, Mullen, T. & Callan, D. (2019) Supervised Dictionary
Learning to Predict Episodes of Inattentional Deafness to Auditory Alarms in Real Flight Condition, IEEE
SMC Conference, Bari, Italy, 2019.
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[7] Roy, R. N., Winkler, B., Honecker, F., Scannella, S., Dehais, F. & Schulte, A. (2018) Traffic Pattern
Analysis in a Flight Simulator: Subjective and Physiological Mental Workload Assessment Techniques.
2nd International Neuroergonomics Conference, Philadelphia, PA, 2018, June.

[8] Verdière, K. J., Roy, R. N. & Dehais, F. (2018) Detecting pilot’s engagement using fNIRS connec-
tivity features in an automated vs manual landing scenario. Front. Human Neurosci., 12:6.

• Prolonged operation

[1] Jahanpour, E.S., Xu, X., Hinss, M.F., Drougard, N. & Roy, R.N. (2021) A neuroergonomic ap-
proach to performance estimation in a psychomotor vigilance task. Int. Conf. Neuroergonomics.

[2] Jahanpour, E., Berberian, B., Imbert, J.-P. & Roy, R. N. (2020) Cognitive fatigue assessment in
operational settings: a review and UAS implications. 3rd IFAC Conference on Cyber-Physical & Human-
Systems, Beijing, China, Dec. 2020.

[3] Dehais, F., Duprès, A., di Flumieri, G., Verdière, K. J., Borghini, G., Babiloni, F. & Roy, R. N.
(2018) Monitoring pilot’s cognitive fatigue with engagement features in simulated and actual flight condi-
tions using an hybrid fNIRS-EEG passive BCI. Proc. IEEE SMC Conference, Miyazaki, Japan, 2018, Oct.

[4] Senoussi, M., Verdière, K. J., Bovo, A., P. Carvalho Chanel, C., Dehais, F. & Roy, R. N. (2017)
Pre-stimulus antero-posterior EEG connectivity predicts performance in a UAV monitoring task. IEEE
SMC Conference, Banff, Canada, 2017, Oct, 1167-1172.

[5] Roy, R. N., Bovo, A., Gateau, T., Dehais, F. & P. Carvalho Chanel, C. (2016) Operator engagement
during prolonged simulated UAV operation. 1st IFAC Conference on Cyber-Physical & Human-Systems,
Florianopolis, Brazil, 2016, Dec, IFAC-PapersOnline, 49 (32), 171-176.

• Cooperation & confinement/isolation

[1] Dehais, F., Vergotte, G. Drougard; N., Ferraro, G., Somon, B., P. Carvalho Chanel, C. & Roy, R.N.
(2021) AI can fool us humans, but not at the psycho-physiological level: a hyperscanning and physiological
synchrony study. IEEE SMC.
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teleoperation performance and psychophysiological state assessment in the SIRIUS-19 analog campaign.
Journal of Space Safety Engineering, 8(4), 304-311.

[3] Gil-Calle, E., Mimoso, D., Pouzin, N., Lizy-Destrez, S. & Roy, R. N. (2021) Correlation analysis
of sleep quality, mood and teleoperation performance in the MDRS206 analog mission. Journal of Space
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dyads’ workload and cooperation level estimation, IEEE SMC Conference, Bari, Italy, 2019.
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• Countermeasures

[1] Lafont, A., Enriquez-Geppert, S., Roy, R.N. , Leloup, V. & Dehais, F. (2021) Theta Neurofeedback
and Pilots’ Executive Functioning. Int. Conf. Neuroergonomics.
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Chapter 8

Methodological contributions for
improved physiological computing
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This chapter summarizes selected work that I carried and supervised regarding methodological contri-
butions for improved physiological computing. After a general introduction, the use of probes for mental
state assessment and their specific processing is detailed including spatial filtering and denoising methods.
Next, work on cerebral connectivity features extracted from both fNIRS and EEG signals is presented. An-
other part is dedicated to using peripheral measures including the investigation of synchronization metrics
that can be extracted from cardiac activity. Lastly, work on out-of-the-lab progress and closed-loop imple-
mentations and evaluations is briefly detailed. The projects I have selected to present here are listed below,
along with the supervisees (between parentheses) that were involved and who performed most of the work.

→ Selected projects: ANITI (M.-I. Casso-Echalar), Airtime (G. Singh, L. Tilly), CHESS, Cocpit,
Hyperscan (N. Drougard, G. Vergotte), MAIA (L. Chatty, A. Dupré, A. Laouar, M. Senoussi, B. Somon),
Neurotools, SmartCockpit (F. Ahuitzotl Reyna Bibiano, K. Verdière).
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8.1 Introduction

In order to perform mental state assessment for HMI quality assessment and/or closed-loop systems, an
important issue is that of data processing. To enable estimating a given state, machine learning tools such
as classifiers can be used. The basis of my current work lies in the use of processing pipelines that include
such a classification step and were originally developed for active BCI applications. Hence the goal is to
develop pipelines that apply machine learning tools onto physiological markers extracted from signals that
can be recorded in an online manner using wearables - wearable systems (Fig. 8.1 presents the general
classification principle, Fig. 8.2 presents the closed-loop approach).

Yet, as I previously showed during my PhD, only applying classifiers does not suffice to obtain ade-
quate mental state estimations. An example is the use of an active BCI pipeline that includes a channel
selection stage, then a Common Spatial Pattern filter applied onto EEG filtered in specific bands (e.g. alpha
and beta bands), and a simple classifier - a Fisher’s linear discriminant analysis, for a passive BCI purpose:
estimating mental fatigue (Roy et al., 2014). The results are 100% accuracy with this sophisticated pipeline
for the beta band. However they drop to 84% and 68% when the same data are processed with a traditional
signal processing chain where fatigue is classified by means of an FLDA classifier fed by the averaged
power, or relative power, without any spatial filtering. This example highlights the need for preprocessing
and signal conditioning: signal processing is the key.

Another issue is the choice of features. Indeed, in my earlier work I highlighted the fact that impor-
tant mental states overlapping effects do occur at the feature level, in particular when considering power
features (e.g. alpha power) for mental workload estimation in the presence of time-on-task effects (Roy
et al., 2012a), which result in degraded classification performance (Roy et al., 2012b, 2013a). Hence, in
addition to an adequate preprocessing, the choice of which features to extract is paramount. Investigating
the susceptibility of features to time-on-task, and in a general manner to overlapping effects, as well as the
potential use of new features that would lead to increased estimation performance is another important step
to evaluate the generalizability of features (challenge 3 from the introduction). This chapter focuses on a
non exhaustive list of solutions to better estimate operator mental state by working on the preprocessing
and feature extraction stage towards use in realistic and real-life settings.

Figure 8.1 – From (Roy et al., 2020a). General classification principle.
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8.2 Probes and dedicated processing

8.2.1 Probing techniques for mental state assessment

Probes are a simple and useful means to extract information regarding a user/an operator’s mental state.
Indeed, a simple probe such as a pure tone presented for only 100 ms is enough to elicit a physiological re-
sponse, e.g. an event-related potential (ERP; time-locked electrical brain response Handy (2005)), that has
been shown to be modulated by the user’s context and state (Roy, 2015; Roy et al., 2016a, 2020a). Hence,
through auditory probing - a minimally intrusive technique- operator task engagement could be estimated
by applying a dedicated signal processing and machine learning pipeline onto temporal features elicited by
the probe.

These temporal responses to a probe are usually averaged over an important number of trials, which is
unrealistic for online measurements for which we need to tend towards single-trial ERP use. What’s more,
most studies on the impact of a given mental state on ERPs (e.g. workload) have been conducted using clas-
sical oddball paradigms in which participants had to detect (and/or count) a target infrequent item amongst
distractors or novel sounds. However, for real-life applications of mental state monitoring systems, a less
intrusive and distracting probing method should be used. That is to say that the use of a secondary task
should be avoided in order to keep the operator focused on its primary task. Hence, Allison and Polich
(Allison and Polich, 2008) have introduced the single-stimulus paradigm to assess mental workload in
an immersive environment in a less distracting way. In this paradigm, there are no non-target stimuli, they
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a physiological computing pipeline.
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are replaced by silence, and only target stimuli are presented, at irregular intervals. As the authors point
out, this is a stimulation method that is operationally easy to implement. In their study, participants had
to either count or ignore these auditory stimuli while playing a video game. Here the probes were there-
fore task-independent. They showed that using ignored probes still elicited significant modulations of
auditory ERPs. Moreover, as reported early on by Mertens and Polich (1997), the ERPs elicited in a single-
stimulus paradigm by visual or auditory probes are a viable alternative to the traditional oddball procedure,
although late components’ amplitude is reduced when the stimuli are ignored compared to when they are
counted or await a motor response. The authors even report that auditory probes elicit ERPs that are more
robust to response type. That is to say that ignored auditory stimuli generate early and late components of
which amplitude is quite similar to that of stimuli awaiting an active answer. This makes them very good
candidates for the features to use in a mental state estimation procedure.

However, to the best of my knowledge, regarding the elicitation of single-trial ERPs by ignored task-
independent probes using a single-stimulus paradigm, these probes have mostly been used for characteri-
zation purposes -i.e. without estimation. At this point in time, it therefore remained to ascertain whether
a single-stimulus paradigm with ignored task-independent probes could be used for efficient mental state
assessment. In my earlier work I was able to show that indeed this type of stimulation paradigm with
task-irrelevant probes was relevant for mental state assessment, in particular for mental workload elicited
via a memorisation task during reading and programming (Roy et al., 2015d). Indeed, much of the liter-
ature at the time focused on memory tasks only with dependent probes (e.g. Brouwer et al., 2012; Mühl
et al., 2014). But we could also elicit increases in mental workload thanks to a varying number of tasks to
perform in parallel (Roy et al., 2015a, 2016a). This technique yielded very accurate estimates thanks to a
processing pipeline that encompassed a spatial filtering step with a classification accuracy above 80% for
every participant, and minimal intrusiveness thanks to the use of a single-stimulus paradigm.

As seen above, probing techniques can be used in a minimally intrusive manner and give good esti-
mates of user/operators’ mental state. However, as classically seen for power features-based estimation
(Roy et al., 2013a, 2014), these estimates can only reach high accuracies thanks to spatial filtering tech-
niques that enable to enhance the signal to noise ratio. In a nutshell, spatial filtering is a type of signal
conditioning that consist in applying weights upon channels in order to enhance the signal to noise ratio
– and hence drastically enhance the estimation accuracy–, to reduce the dimensionality of the data, and to
allow for an easier feature extraction step. In earlier work, I directly assessed this increase in estimation
accuracy (Roy et al., 2015b), and compared the available spatial filters for ERP-based estimation (orig-
inally developed or used for active BCIs), the xDAWN algorithm (Rivet et al., 2009) and the Canonical
Correlation Analysis filter (CCA) (Hotelling, 1992; Spüler et al., 2013), with a basic spatial filter - a Prin-
cipal Component Analysis (PCA), as well as with a pipeline that did not include a spatial filtering step
(Roy et al., 2015c). It so happened that xDAWN and CCA yielded the same high accuracy, with two filters
enabling to reach above 90% of accuracy with task-dependent probes.

Lastly, in order to move towards use of this probing technique in real life settings, the robustness of the
ERPs elicited by such probes to environmental effects and user-related effects must be assessed. A first step
was to determine whether these features could be robust to time-on-task. Indeed, time-on-task -be it due
to mental fatigue or impedance changes- has a strong effect on EEG power features. This enables us to esti-
mate time-on-task or mental fatigue with very high accuracies (Roy et al., 2014), however this impedes the
use of such power features for accurate mental workload estimation in realistic settings without advanced
processing. We directly compared the robustness of probe-elicited ERPs and power features to time-on-
task in a dedicated study (Roy et al., 2016c). It so appeared that no impact of TOT was observed on ERP
features elicited by task-irrelevant probes, while spectral features were significantly impacted. Moreover,
spectral feature-based estimation dropped to chance level, and ERP-based estimation was maintained to a

80



CHAPTER 8. METHODOLOGICAL CONTRIBUTIONS FOR IMPROVED PHYSIOLOGICAL
COMPUTING

a) b) c)

Figure 8.3 – From (Somon et al., 2022). a) Three-axis motion flight simulator at the ISAE-SUPAERO. b)
Localization of the cEEGrid electrodes for both ears with recording reference (blue) and DRL (green) elec-
trodes indicated. Electrodes R4a and R4b on the right grid were not recorded on our set-up. c) Localization
of the left ear grid when fitted around the ear after cleaning and preparing the skin of the participant.

high accuracy. Hence, although spectral features seem more suited to mental state monitoring purposes in
real life settings thanks to their non intrusive extraction and to the fact that they allow continuous moni-
toring (contrary to ERP features), they suffer from low performance and time-on-task instability. It stems
from this study that event-related potentials appear to be more efficient for operator engagement estimation
in a close to real life implementation than spectral markers, given that they provide better classification
accuracies and are stable in time both at the marker level and at the estimation level.

Hence, this earlier PhD work paved the way to the efficient use of ERPs for mental state monitoring in
close to real-life settings and contributed toward the development of adaptive user interfaces. In order to go
a step further towards real-life use, the feasibility to use this probing technique with less obtrusive systems
remained to be evaluated.

8.2.2 Unobtrusive systems

In order to move towards real-life and mobile settings, systems using as low a number of electrodes as
possible, and located in areas that are less cumbersome should be developed, such as in-ear electrodes or
electrodes located around the ears. Within the MAIA project (with Dr B. Somon as post-doctoral fellow,
co-supervised with Pr F. Dehais), we recently described the challenges and limits related to the use of such
systems (Somon et al., 2022), in particular, electrode locations that are not always in compliance with the
standard 10-20 system, and a reduced number of electrodes that does not allow researchers to use classical
preprocessing tools (e.g. blind source separation techniques for denoising the signal). However, apart from
these considerations, all studied unobtrusive systems allowed for ERP extraction and could therefore be
used in combination with probing techniques. Moreover, the electrode location issue could be solved by
using new localization techniques based on 3D scanning devices and applications, that would then allow
the use of preprocessing techniques that require precise electrode position.

Also, we performed a feasibility study to measure pilots’ auditory attention in a three-axis motion
flight simulator using an unobtrusive EEG system (two 10-channel cEE-Grids; TMSi, Oldenzaal, Nether-
lands; Fig. 8.3). This study aimed at measuring the cerebral activity associated with inattentional deafness
(defined in section 7.2) in an ecological context with varying degrees of task difficulty. Concomitantly
with the flying task (approach and landing, with varying weather/visibility conditions), participants had to
respond to an auditory oddball task. This experimental paradigm allowed us to successfully induce failure
of auditory attention, as well as early electrophysiological modulations in accordance with the literature,
but not the usual target-related P300 component (Fig. 8.4). This may be due to two reasons: i) our data
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a) b)

Figure 8.4 – From (Somon et al., 2022), ERP results of the oddball task during flight simulation. ERPs for
averaged L2 and R2 electrodes for a) each type of trial (hit: black- vs. miss: red vs. standard: blue), and
b) for each type of sound (odd in red vs. standard sounds in blue) and each workload level (high workload:
plain line vs. low workload: dashed line).

Figure 8.5 – From (Roy et al., 2016a): Single-stimulus paradigm using ignored and infrequent auditory
probes.

were collected in a highly ecological environment which is prone to decrease data signal to noise ratio, in
particular due to high levels of muscular activity from the participants. Movements may also affect skin
contact with the cEEGrid electrodes, leading to signal loss issue. ii) Another reason for the difficulty to
detect the P300 could be related to the location of the electrodes. Indeed, we know that the sources that
give rise to the P300 are best recorded at parietal midline sites.

In summary these results illustrate this paradox: some results observed in the literature were repro-
duced, however we faced difficulties in terms of signal processing and measure identifications. We show
that despite the lower signal-to-noise ratio observed with this kind of devices, we are able to detect event-
related potentials (ERPs) -as well as frequency features (not detailed here).

8.2.3 Preprocessing for ecological settings: Simulator studies

We have seen so far that ERP features elicited by both task-relevant and task-irrelevant -and even
ignored- auditory probes could be used to estimate participant’s mental states quite accurately -in particu-
lar their mental workload or engagement thanks to spatial filtering methods, with a particularly interesting
robustness to time-on-task. The next step to assess their usability in realistic settings is therefore to per-
form operator mental state assessment using probing, in simulator and real flight studies, and to determine
whether specific preprocessing steps need to be added/tuned for enhanced performance.

I had already evaluated the efficiency of spatially filtered ERP-features elicited by ignored task-irrelevant
auditory probes with a single-stimulus paradigm (Fig. 8.5) fused with a basic simulation of pilot activities
(Roy et al., 2016a): the Multi-Attribute Battery Task (MATB) (Comstock Jr and Arnegard, 1992) during my
PhD. The processing pipeline (Fig. 8.6) included a canonical correlation analysis filtering step and yielded
high estimation accuracies (classification accuracy above 80% for every participant). Regarding more
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Figure 8.6 – From (Roy et al., 2016a): Flow diagram of the signal processing chain applied on the EEG
data in order to estimate mental workload.

specifically the automated preprocessing to use for such studies, it included an automated ocular artifact
correction using the signal recorded from the electrooculographic electrodes (EOG) and the Second Order
Blind Identification algorithm (SOBI; Belouchrani et al. 1997). This algorithm was chosen to perform the
source decomposition because thanks to its assumption of non-correlation –and not mutual independence-
it has been shown to be more suitable for electrophysiological data by Congedo et al. (2008). In order to
get closer to a system that could be implemented on-line in a real-life setting, the two sources that were
the most correlated to the EOG activity were canceled to provide a fully automated and objective denoising.

As seen above, this specific processing chain yielded promising results with a simple simulated piloting
task. Next, still within the MAIA project (with intern A. Laouar, co-supervised with Pr F. Dehais and Dr S.
Scannella) we evaluated this probing technique and its dedicated processing in a more realistic environment
with a simulator study using a full-motion simulator (Dehais et al., 2019c). Here, a classification analysis
was performed in order to determine whether alarm misperception could be detected in a reliable fashion.
Indeed, we implemented a processing pipeline to perform single-trial classification of inattentional deaf-
ness (defined section 7.2) with the same steps and methods as used in the previous study.

The processing chain used to perform hit versus miss estimation was based on the ERPs of the target
sounds and is described hereafter. The first 500 ms of the auditory ERPs were corrected for ocular arti-
facts in an automated fashion using the SOBI algorithm and the vertical EOG (electrooculographic) signal.
The two sources that were most correlated with the EOG activity were cancelled out. Next, the cleaned
data were decimated to 100 Hz and centered on zero. Then, they were spatially filtered using a Canonical
Correlation Analysis (CCA) filtering step with two filters. Hence, the features consisted of a vector of 100
points (2 filters x 50 ERP time points). Lastly, these features were classified using a Fisher Linear Dis-
criminant Analysis with a shrinkage estimation of the covariance matrices (Blankertz et al., 2011), with a
10-fold cross-validation procedure in which an equal number of hits and misses were systematically drawn
to create the training (9 out of 10 subsets) and the testing sets (10th subset). The classification pipeline that
was used allowed us to obtain 72.2% of correct classification of the hit and missed targets in average across
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Figure 8.7 – From (Dehais et al., 2019c): ISAE-SUPAERO three axis motion flight simulator. The partici-
pants were left seated and equipped with a Biosemi 32-electrode EEG system.

participants. This is significantly higher than the adjusted chance level threshold of 59%, as computed to
take into account the number of available trials following Combrisson and Jerbi’s recommendations (2015).

The most important point here in both these studies is the ocular artifact denoising step that is fully
automated and performed on the 32 channels using a source reconstruction algorithm, as well as reference
channels. This method is highly efficient for this specific study and EEG setup but might be inefficient or
unusable in even closer to real life settings with a reduced number of electrodes for instance. Yet, this study
paves the way to the efficient use of ERPs for mental state monitoring in close to real-life settings.

8.2.4 Preprocessing for ecological settings: In-flight denoising

Data acquired in ecological settings -that is to say real life- requires extensive preprocessing to be us-
able offline, and even more so when the intended use is an online monitoring or closed-loop system. The
filtering steps proposed in the previous section are only applicable if we have numerous recording chan-
nels. However, for practicality reasons, dry electrode systems that only provide from 6 to 20 channels are
desirable.

We tested such a system with only 6 dry electrodes in real flight conditions (Dehais et al., 2019a) in
the MAIA project. We assessed the possibility of performing task engagement estimation using spectral
features and ERP features generated by an oddball task performed in parallel. In order to be able to extract
clean ERPs in this highly noisy environment without the possibility of performing spatial filtering (due to
the low number of channels), we made use of a new filtering method called Artifact Space Reconstruction
(ASR Chang et al. (2018)), and more particularly a version based on Riemannian geometry, the Riemannian
ASR (Blum et al., 2019) which is adapted for covariance matrix processing. The ASR method computes
repeated principal component analyses (PCA) on covariance matrices to detect artifacts based on their
statistical properties in the component subspace and to reconstructs the signal based on a comparison made
with a baseline window. The advantage of this method is that it can be run in real time and provides good
cleaning performance even if using only 6 channels. However, although the ERP denoising step was quite
successful (Fig. 8.8 and 8.9), the classification performance when using the ERP features was no different
from chance level, contrary to spectral features which yielded up to 71% of correct classification. These
result clearly underline the need for estimation pipeline refinement for ERP feature-based mental state
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monitoring.

Figure 8.8 – From (Dehais et al., 2019a): Example of EEG data before (up) and after (down) rASR pro-
cessing for one subject.

Figure 8.9 – From (Dehais et al., 2019a): Grand averaged waveforms of the ERPs extracted after rASR
denoising, for parietal electrodes with standard error.
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8.2.5 Reverse probing

Although being able to automatically detect targets/events that are missed by an operator is a tremen-
dous step forward, it would be even more interesting to be able to predict such misses before the actual
event has even occurred. That is the very objective of the MAIA project in-flight study in which we used 3
seconds of EEG signal before the target sound -hence performing reverse probing (Dehais et al., 2019b).

Data were acquired with a 30 electrode dry-EEG system during a challenging flight scenario with au-
ditory alarms. The behavioral results and ERP analyses were in accordance with previous results (here
36% missed alarms; N100 and P300 amplitude modulations). After filtering (0.5-30 Hz; FIR filter; order:
250), and denoising (ASR and automated ICAlabel function from EEGlab), inter-subject classification was
carried out over frequency features (delta, theta, alpha, beta and gamma power features) extracted from
3-second epochs before the alarms’ onset using a supervised dictionary learning approach (Fig. 8.10). The
methods used were sparse representation for classification (SRC), sparse and dense representation (SDR)
and more conventional approaches such as linear discriminant analysis (LDA), shrinkage LDA and nearest
neighbor (1-NN). Supervised dictionary learning consists in learning a dictionary per class and making
them dissimilar by boosting the pairwise orthogonality. This type of methods has been shown to be quite
efficient for BCI applications with good generalizability (Zhou et al., 2012; Wen et al., 2016). In the best
case (all features concatenated), SRC and SDR gave respectively a performance of 66.9% and 65.4% of
correct mean classification rate to predict the occurrence of inattentional deafness, outperforming LDA
(60.6%), sLDA (60%) and 1-NN (59.6%). These results validate the reverse probing approach to predict
target misses, and are quite promising for inter-subject applications.

Figure 8.10 – From (Dehais et al., 2019b): Reverse probing classification pipeline
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This section was intended to provide the reader with a sneak peek at ideas for extracting relevant fea-
tures for operator/user mental state assessment, such as probe- or event-elicited features, along with the
adequate preprocessing methods toward real life implementation. The main conclusions can be summa-
rized in the following list:

Probing users/operators’ mental state

— Probing techniques provide relevant EEG features for mental state estimation.
— Dedicated processing such as spatial filtering is paramount for accurate estimation.
— Both classical and reverse probing techniques can be used in ecological settings.
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8.3 Cerebral connectivity

A new type of features that can be extracted from spontaneous brain activity has recently been under the
microscope for better cognitive mechanisms evaluation: connectivity metrics (e.g. correlation, covariance,
coherence and phase synchronization; for a review for brain electrophysiological measures see Greenblatt
et al. (2012)). These metrics can be used to investigate how specific parts of the cortex are interconnected
during a given cognitive process, such as decision making for instance. For neuroergonomics applications
these metrics can be extracted from sensors worn by two operators to try and evaluate whether their activity
is synchronized during specific tasks. They can also be extracted from sensors worn by a single operator to
try and evaluate how synchronized the signal coming from different sensors is, and by extension -although
less accurate- from different brain areas. These two types of connectivity can be termed intra- and inter-
operator connectivity. One advantage of these features is that, similar to power features, they do not require
the use of probes. This lessens the requirements in terms of temporal resolution - however for intra-operator
use only. Indeed, for inter-operator connectivity analyses, perfect acquisition systems’ synchronization is
required. The following sub-sections detail work that I carried with my colleagues to evaluate fNIRS and
EEG connectivity features to perform operator mental state monitoring.

8.3.1 Benchmarking connectivity features for fNIRS-based estimation

Functional Near Infra-Red Spectroscopy (fNIRS) provides hemodynamic features that have been shown
to adequately reflect engagement states in human operators, and despite its low temporal resolution it has
also been shown to enable efficient mental state estimation in realistic settings thanks to a lesser sensi-
tivity to noise than EEG (Ayaz et al., 2012; Gateau et al., 2015). However to our knowledge the various
connectivity metrics that could be extracted on the fNIRS signal had not been benchmarked to determine
which ones would enable the most accurate operator mental state assessment, here for an intra-operator
use. Within the SmartCockpit project (with PhD fellow K. Verdière, co-supervised with Pr F. Dehais),
we therefore performed such a benchmark on data acquired during a landing task performed in a motion
simulator under two contrasted levels of engagement (manual vs. automated; Verdière et al. 2018).

Figure 8.11 – From (Verdière et al., 2018): Pilot’s engagement classification performance function of the
type of fNIRS-based feature (average across subject). Blue and red bars represents features extracted from
respectively [HbR] and [HbO] signals. Error bars represents the confidence interval at 95%. The black
lines indicate the most relevant significant effect for our research question (***p < 0.05).
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Hence, the collected data were used to benchmark the performance of classical oxygenation features
(i.e., Average, Peak, Variance, Skewness, Kurtosis, Area Under the Curve, and Slope) and connectivity
features (i.e., Covariance, Pearson’s, and Spearman’s Correlation, Spectral Coherence, and Wavelet Coher-
ence) to discriminate these two landing conditions. Preprocessing included applying a wavelet interpolation
method on epochs for artifact correction followed by a Butterworth high pass filter (cutoff: 0.01 Hz - order
3) and a low pass filter (cutoff: 0.5 Hz - order 5) were applied for the band pass filtering step. The filtered
and artifact free data were then converted to oxyhemoglobin [HbO] and deoxy-hemoglobin [HbR] con-
centration variations. Classification performance was obtained by using a shrinkage Linear Discriminant
Analysis (sLDA) and a stratified cross validation using each feature alone or by combining them.

Our findings disclosed that connectivity features performed significantly better than classical concen-
tration metrics with a higher accuracy for wavelet coherence (average: 65.3/59.9%, min: 45.3/45.0, max:
80.5/74.7 computed for HbO/HbR signals respectively 8.11). A maximum classification performance
was obtained by combining the area under the curve with wavelet coherence (average: 66.9/61.6%, min:
57.3/44.8, max: 80.0/81.3 computed for HbO/HbR signals respectively 8.12). In a general manner all
connectivity measures allowed an efficient classification when computed over HbO signals. We believe
that those results provide methodological cues for further implementation of fNIRS-based passive BCIs in
realistic settings.

Figure 8.12 – From (Verdière et al., 2018): Pilot’s engagement classification performance function of cou-
ple fNIRS-based connectivity feature used (average across subject). Blue and red bars represents features
extracted from respectively [HbR] and [HbO] signals. Error bars represents the confidence interval at 95%.

8.3.2 Intra-operator EEG connectivity features

Regarding EEG connectivity features, we first investigated whether intra-operator features (i.e. connec-
tivity computed between channels) could be of use to characterize operator mental states, and to perform
operator mental state assessment. In my previous PhD work I had already evaluated how EEG spatial co-
variance matrices could be used in reference to a baseline for detecting operator mental fatigue (Charbon-
nier et al., 2016a). An index that estimates mental fatigue from EEG signals recorded from 32 electrodes
in 6 regions of interest (ROIs) was proposed. The mean spatial covariance of the filtered signals was com-
puted per band and per ROI from a short period at the beginning of the session, which formed the initial
state (when the participant is not fatigued). For the rest of the session, the Frobenius distance between the
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initial state mean covariance and the covariance calculated on 20 s sliding epochs was transformed into a
mental fatigue index that varied between 0 and 1. This index was successfully correlated to an ocular index
as well as with subjective metrics.

Next, within the MAIA project (with post-doctoral fellow Dr M. Senoussi, co-supervised with Pr F.
Dehais) we investigated the relevance of large-scale EEG connectivity for performance prediction by cor-
relating relative coherence with reaction times (RT) to a UAV monitoring task (Senoussi et al., 2017). The
analysis pipeline consisted of the computation of the magnitude squared coherence, we then calculated
the relative coherence for each electrode, finally we correlated this relative coherence with reaction times.
This procedure yielded a matrix of correlations for each electrode pair and frequency by participant. As
for relative coherence, power spectral density was computed on the minute preceding Identification task
alarms and correlated with reaction times which yielded a matrix of correlations for each electrode at each
frequency (see Fig. 8.13). We showed that long-range EEG relative coherence, i.e. between occipital and
frontal electrodes, is significantly correlated with RT and that different frequency bands exhibit opposite
effects (Fig. 8.14). More specifically we observed that coherence between occipital and frontal electrodes
was: negatively correlated with RT at 6 Hz (θ band), more coherence leading to better performance, and
positively correlated with RT at 8 Hz (lower α band), more coherence leading to worse performance. Our
results suggest that EEG connectivity measures could be useful in predicting an operator’s mental state and
their performance in ecological settings.

Figure 8.13 – From (Senoussi et al., 2017): Experimental paradigm (top) and analysis pipeline (bottom).

The previous work did not perform a machine learning based estimation. In order to move towards
a comparison at the classification level, in my PhD I proposed a direct comparison of four connectivity
measures -covariance, cross-correlation, spectral coherence and phase locking value (PLV)- on EEG
data extracted from a working memory load experiment performed by 20 participants (Charbonnier et al.,
2016b). These features were extracted using pattern-based (using cross-correlation or PLV functions) or
vector-based methods (using the maximal cross-correlation amplitude, the covariance, the coherence mean
or maximal value, the PLV mean or maximum value), and classified using a Fisher’s Linear Discriminant
Analysis (FLDA) classifier and a 10-fold cross-validation procedure. The relevance of the connectivity
measures was assessed by statistically comparing the obtained classification accuracy. The main results
were that covariance seems to be the best connectivity measure to estimate working memory load from
EEG signals, even more so with signals filtered in the beta band (specific electrode set: FC5, FC6, P3 and
P4). Yet this highest and significantly higher estimation accuracy was only of 61%, highlighting the need
for progress in this direction.
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8.3.3 Inter-operator EEG connectivity features

Next, we investigated whether EEG connectivity features could be of use for characterizing and esti-
mating operator dyad -i.e. teammates- mental state. The scientific field of study that answers this need for
teammate mental state assessment mostly originated from social neuroscience. When approached from the
autonomous system perspective it is often called ’interpersonal physiology’ or ’physiological synchrony’
(Palumbo et al., 2017), while it is usually referred to as ’hyperscanning’ when based on cerebral measures
(Montague et al., 2002; Babiloni and Astolfi, 2014). Measures of physiological synchrony have for in-
stance been shown to be useful in characterizing group attention and engagement level (Dikker et al., 2017;
Stuldreher et al., 2021, 2022).

In the SmartCockpit and Neurotools projects (with K. Verdière as PhD student and F. Ahuitzotl Reyna
Bibiano as intern, co-supervised with Pr F. Dehais) we also worked on dyad workload and collaboration
state assessment. By using spectral features and a shrinkage LDA classifier, intra-team classification accu-
racy of team workload configuration (4-class) reached 35%, and team cooperation level (2-class) 60% of
accuracy (Verdière et al., 2019) (see Fig. 8.15 for hyperscanning experimental setup). In order to improve
upon this estimation, connectivity metrics were evaluated on the same data (Roy et al., 2020b). Hence,
covariance matrices were computed between participants’ 12 EEG channels for 3 frequency bands: θ, α

Figure 8.14 – From (Senoussi et al., 2017): Correlation between occipito-frontal relative coherence and
Reaction Times between 1 and 30Hz. Spearman’s rank correlation between occipito-frontal relative coher-
ence of each seed occipital electrode and average of frontal electrodes exhibiting the 6Hz and 8Hz effects
for all frequencies. Shaded area around the curves represents standard error across participants.

Figure 8.15 – From (Roy et al., 2020b): Hyperscanning setup with teammates equipped with a 64 electrode
EEG system that perform an adapted Multi-Attribute Test Battery (MATB) task (pilot flying and pilot
monitoring simulation).
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and low β. Classification was achieved by first projecting the matrices onto the Riemannian tangent space
and then using an LDA (Fig. 8.16). A 5-fold cross validation procedure was used. The implemented esti-
mation pipeline allowed to estimate cooperative states using covariance matrices with an average accuracy
of 66.6% using the signal filtered in the theta band, 64.5% for the alpha band and 65.3% for the low beta
band (Fig. 8.17).

We also investigated hyperscanning and cooperation states through EEG in a more recent study that
compared human-human and human-bot dyads within the Hyperscan project (with N. Drougard and G.
Vergotte as post-doctoral fellows, co-supervised with Pr F. Dehais; Fig. 8.18; Dehais et al. 2021). Here
the goal was to elicit cooperation and to clearly distinguish its markers from those that might arise from
synchronized stimulation of the operators. Indeed, the design of hyperscanning ecological protocols re-
mains challenging as long higher brain synchrony may account for potential load effects (i.e. dyads are
facing high demands at the same time) or task effects (i.e. dyads are doing the same task thus exhibiting
similar cerebral activation) rather than real social interaction per se. Apart from very interesting subjec-
tive, behavioral and cardiac results (see section 7.6), EEG analyses disclosed a higher cerebral efficiency
and connectivity between the two brains when teammates were interacting together than when cooperating
with AI (Bots). EEG analyses disclosed a higher connectivity (covariance) between the two brains at both

Figure 8.16 – From (Roy et al., 2020b): Cooperation state estimation pipeline. ASR: Artifact Subspace
Reconstruction;FIR filter: Finite Impulse Response filter; LDA: Linear Discriminant Analysis.

Figure 8.17 – From (Roy et al., 2020b): Cooperation classification results based on covariance matrices for
each frequency band (α, θ, lowβ) for each dyad. In red: adjusted chance level.
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the theta and alpha bands (Fig. 8.19), as well as a higher cerebral efficiency (global efficiency metric;
Fig. 8.20) when teammates were interacting together than when cooperating with AI. These results clearly
demonstrate that EEG connectivity metrics do measure inter-operator cooperation states which do not de-
pend on task similarity (the tasks were made clearly distinct, and a fake cooperation condition was also
implemented).

Figure 8.18 – From (Dehais et al., 2021): Experimental setup: the Pilot (left) is flying the aircraft and ex-
changes instructions via a tablet with the JTAC (right) who is in charge of supervising the aircraft trajectory
and gives instructions to the Pilot via the user interface.

Figure 8.19 – From (Dehais et al., 2021): Double 3D brain representation of the significant inter-individual
connections in the alpha frequency band between the Pilot (left) and the JTAC (right) for the 3 experimental
conditions.

93



CHAPTER 8. METHODOLOGICAL CONTRIBUTIONS FOR IMPROVED PHYSIOLOGICAL
COMPUTING

Figure 8.20 – From (Dehais et al., 2021): Boxplot of the global efficiency applied on the alpha frequency
correlation matrices.

This section was intended to provide the reader with a sneak peek at which types of connectivity fea-
tures could be used for operator mental state monitoring, for both fNIRS and EEG signals. The main
conclusions can be summarized in the following list:

Connectivity features for users/operators’ mental state assessment

— fNIRS connectivity features perform better than classical oxygenation features for operator
task engagement estimation.

— Intra-operator EEG connectivity features such as covariance matrices allow for mental state
estimation with usual classification methods.

— Inter-operator EEG connectivity features such as covariance and global efficiency can be
used for hyperscanning purposes.
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8.4 Peripheral measures

Brain activity metrics are particularly relevant for precisely characterizing users/operators’ mental
states of interest in human-machine interaction. Yet, as detailed by Fairclough (2009), these metrics -as
all physiological measures- do not present a one-to-one mapping relationship with a psychological ele-
ment. An example given by the author is that mental effort can only be thoroughly characterized by several
measures including changes in both cardiac and cerebral activity. A solution is therefore redundancy of
sensors to try and assess more accurately a given mental state, but also to prevent the absence of measure
in case of failure of one system in a real life setting implementation perspective. I started investigating
whether cardiac activity recorded through ECG could be used with very short time windows during my
PhD and showed that mental fatigue and mental effort could be assessed with extremely short time win-
dows of 5 seconds with respectively 65% and 57% (Roy et al., 2013b). The work presented below details
further investigations performed in recent years as to finding relevant cardiac metrics for cooperation states
assessment, as well as to co-registration and modality fusion.

8.4.1 Detrended cross-correlation for cardiac synchrony analysis

As seen in the previous section, within the Hyperscan project (with Dr N. Drougard and Dr G. Ver-
gotte as post-doctoral fellows, co-supervosed with Pr F. Dehais and Dr C.P.C. Chanel) we evaluated how
several physiological measures reflected pilot-ground operator (JTAC) cooperation level in a laboratory
setting (Dehais et al., 2021). Regarding cardiac activity, similarly to Haataja et al. (2018) we computed
the Detrended Cross-Correlation (DCC) at lag 0 to quantify the degree of synchronization between ECG
time-series to assess the degree of physiological synchrony between the Pilot and JTAC within each couple.
This method allows to take into account the non-stationarity of the signal and to detect long-range cross-
correlations, unlike the classical cross-correlation. It is classically used with long time windows (over 1
minute) - here the metric was computed over a whole mission (10 minutes maximum). The results were
quite promising as a significant effect of the cooperation condition was found on the DCC metric: the syn-
chronization was significantly higher when participants were actually interacting together than when they
were cooperating with the bots, or not cooperating at all (Fig. 8.21). Although promising, these results
were obtained with a metric that seems inappropriate for real time measurements. In my opinion, met-
rics that could be computed on shorter windows would be of more interest for implementation in real life
settings.

8.4.2 Coincidence detection for cardiac synchrony analysis

Within the SmartCockpit project (with K. Verdière as PhD student, co-supervised with Pr F. Dehais)
we evaluated how cardiac synchrony could be assessed thanks to a method developed originally for spike
synchrony detection in firing neuron populations: the delayed coincidence count (Grün et al., 2002). This
method is straightforward and computationally light, and has also been formally proven to be statistically
robust. Hence, we tested this method on data acquired during a cooperative MATB task as detailed in
section 7.4 (Verdière et al., 2020). We compared the method with other methods reported in the literature
(Palumbo et al., 2017): cross-correlation, coherence, and cross-recurrence. These methods require the use
of long windows (whole experimental blocks of several minutes) and are therefore not suitable for real time
assessment within a few seconds and might not be sensitive to temporally local variations. On the contrary,
delayed coincidence count technically measures the number of beats that occur at the same time -i.e. are
coincident- for two distinct ECG signals, and do so in only a few seconds (a few beats) which allows to
account for local phenomena.

In more details, the delayed coincidence count method counts the number of couples of peaks from two
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Figure 8.21 – From (Dehais et al., 2021): Physiological synchrony: the windowed detrended cross correla-
tion in the 3 cooperative conditions at lag 0.

Figure 8.22 – From (Verdière et al., 2020): Illustration of the delayed coincidence count. Two 3 seconds
ECG recording are depicted in the upper and middle graphs (Participants 1 and 2). The red and blue dots
represent the ECG R peaks for the 1st (S1) and 2nd (S2) participants respectively. On the upper graph,
the letter QRS symbolize the 1st QRS complex. The blue dash line represents the inter-beat interval (IBI)
also know as RR interval regarding the R peaks. RR interval can also been called NN interval for "normal"
beats. The red and blue ECG peaks dots are reported on the lower graph. Coincidence count for this
segment is represented here. The first red dot on the left has not blue dot within a time range of δ = 20ms

from it; The count for this first point is then C1 = 0. Conversely the second red dot has a count C2 = 1

because he was one blue point within a 20ms range; meaning that the 2 participants R peaks are coincident.
The total coincident count Ct for this segment would be Ct =

∑5
n=1 Cn.
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point processes that appear in a delay at most equal to δ (Fig. 8.23). In our study the two point processes
that were considered were the ECG signals from two participants performing the MATB task as pilot flying
and pilot monitoring. To statistically assess whether such coincidences were not due to chance, a permuta-
tion analysis was performed by computing the delayed coincidence count of artificially paired signals from
the experimental campaign. The different teams are supposed to be independent. By shuffling those teams
i.e. creating ”permutated teams”, we computed the coincidence distribution under the null hypothesis (no
synchrony; Fig. 8.24). The sum of coincidence count for real teams was compared to that of randomly
permutated teammates and we applied a false discovery rate (FDR) detection applied on the p-value. The
choice of the δ was done following recommendations (Webber Jr and Zbilut, 2005) in order to chose a
value that would minimize both the coefficient of variation and the value of δ itself. It was selected at the
group level, i.e. regarding all participant’s data.

Figure 8.23 – From (Verdière et al., 2020): Left: description of the processing pipeline. Right: 2 coinci-
dence count matrices, where lines represent pilots flying and columns pilots monitoring. On the original
matrix in the back, the diagonal represents the coincidence count for actual couples (highlighted in yellow).
CObs is the diagonal sum of this coincidence diagonal (trace). In front is represented one possible permu-
tation of the original matrix, where lines are shuffled. The diagonal represents now a random association
of couples and Cb is the trace of this matrix. Matrices are 19x19 (instead of 20x20) because one couple
was excluded for this scenario due to insufficient ECG data quality.

The results of this evaluation revealed that the delayed coincidence count method (with a coincidence
threshold δ of 20 ms) revealed a significant synchrony (p < .01) during the cooperative and high difficulty
condition only, while the other methods did not. This result highlights the relevance of this method for short
time windows based mental state assessment, but further investigation of the suitability of this method for
accurate cooperation and mental effort estimation remains to be performed.
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8.4.3 Co-registration and modality fusion

As said earlier, sensor redundancy is paramount for real life implementation. This means that co-
registration and modality fusion have to be evaluated along with all related challenges. Co-registration and
modality fusion are particularly tricky to perform due to technical implementation, including precise syn-
chronization between acquisition systems which is paramount for extracting features. This section details
work I have carried regarding co-registration for mental state characterization, as well as for mental state
estimation purposes.

Within the MAIA project (with interns Luc Chatty, Alexandre Moly and Benjamin Winkler, co-supervised
with Pr F. Dehais) we implemented several experiments in laboratory and ecological settings (respectively
operating room -OR, laboratory, and flight simulator) with co-registration of numerous modalities to
provide a broad view and finer characterization of task engagement (Omurtag et al., 2019; Roy et al.,
2018b,a). Hence, for the OR study, cerebral activity through EEG, cardiac and respiratory activities through
a wearable vest, ocular activity through eye-tracking, as well as tool handle pressure were co-registered and
proved efficient in characterizing engagement in such an ecological setting. In the same way, the second
study co-registered EEG and fNIRS but went a step further as we analyzed correlations between mea-
sures, as well as extracted connectivity features (covariance matrices) from all sensors altogether which
gave an additional measure of engagement. Lastly, the third one was performed in a flight simulator with
co-registration of ECG, EEG and eye-tracking, and revealed joint modulations of these physiological mea-
sures, as well as with subjective metrics which strengthens their reliability for engagement assessment.

Within the CHESS project (myself as post-doctoral fellow, supervised by Pr A. Guérin-Dugué and Dr
C. Jutten), co-registration of eye-tracking and EEG was used in a particular way: eye-tracking was used
to determine when participants’ gaze fall onto a particular area -in fact a face specific region- and this
timestamp was used to extract EEG markers for further analyses, namely event-related potentials. This
type of marker -EEG marker of which extraction is led by eye-tracking- is called EFRP for eye-fixation
related potential. We used these markers to characterize the impact of emotional facial expressions dur-
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Figure 8.24 – From (Verdière et al., 2020): Coincidence matrices traces for real teams (Cobs) and 100
000 permutated teams (Cb) for the 8 scenarii (δ = 20 ms). The standard deviation is represented only for
permutated teams (Cb) since only one value per scenario exists for CObs. The permutation test revealed a
significant difference (p < 0.01) for the 8th scenario (COOP-HARD-HARD).
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ing emotion perception (Kristensen et al., 2017c; Guérin-Dugué et al., 2018). Co-registration of EEG and
eye-tracking during a visual task is generally presented as an attractive experimental solution that enables
running both laboratory and more ecological protocols (i.e. enables free visual exploration). Through the
complementarity of these two modalities of high temporal resolution, it is possible to analyse the time
course of neuronal activities at the pace of ocular fixations.

Figure 8.25 – From (Guérin-Dugué et al., 2018): Eye fixation-related potentials elicited at the first fixation
onset (plain line) and at the following ranks (dotted line) estimated by regression on the right parieto-
occipital site (top), left parieto-occipital site (middle) and median occipital site (bottom), depending on
emotion, from left to right: disgust vs. neutral, surprise vs. neutral and happiness vs. neutral.

If the first studies that used this co-registration technique date back from the 50s (Gastaut, 1951), it is
only later on that this technique was used with modern devices for applications in experimental psychology
(e.g. to study parafoveal mechanisms in reading fluency (Baccino and Manunta, 2005)). Since then, the
number of publications based on this technique is however well below what could have been expected.
Indeed, despite the apparent simplicity of a coupling that only provides 4 extra channels (X and Y position
of both eyes) to the 32 or 63 EEG channels for instance, lie many difficulties and methodological questions.
In particular, the two main reasons for the difficulty to estimate EFRP are: i) the duration of the evoked
potentials is often longer than the interval between two fixations or saccades, thus resulting in temporal
overlaps between successive evoked potentials; ii) the EEG signal being extremely noisy, EFRP estima-
tion requires the replication of a high number of trials during which the selected fixations are assumed to
evoke a same potential therefore providing a restrictive hypothesis in the face of the high variability of the
oculometric pattern during task performance. The solution we worked on to address the overlaps was to
use linear models to decompose the effects of different neural activities during a same temporal window,
a methodology based on the General Linear Model (GLM) (Kristensen et al., 2017a,b). This method was
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also shown to provide an interesting solution to the second issue by enabling a more accurate estimation
while taking into account possible confounding factors linked to the oculometric data as the amplitude and
direction of saccades (Guérin-Dugué et al., 2017).

In our study, this method was applied to study the time course of natural static emotional facial expres-
sions decoding, i.e. to extract and analyse EFRPs generated while freely exploring faces that presented
genuinely produced emotions (Dynemo database Tcherkassof et al. (2013)) (Guérin-Dugué et al., 2018).
We compared the use of a simple averaging to the use of the GLM regression approach that incorporated
knowledge of the fixation rank, as well as the saccadic potentials, for both ERPs and EFRPs. Regarding
the ERP at stimulus onset, there was a significant emotion-dependent modulation of the P2–P3 complex
and LPP components’ amplitude at the left frontal site for the ERPs computed by averaging. Yet, the GLM
revealed the impact of subsequent fixations on the ERPs time-locked on stimulus onset. Results are also in
line with the valence hypothesis. The observed differences between the two estimation methods (Average
vs. GLM) suggest the predominance of the right hemisphere at the stimulus onset and the implication of the
left hemisphere in the processing of the information encoded by subsequent fixations. Concerning the first
EFRP, the Lambda response and the P2 component are modulated by the emotion of surprise compared to
the neutral emotion, suggesting an impact of high-level factors, in parieto-occipital sites (Fig. 8.25). More-
over, no difference is observed on the second and subsequent EFRP. Taken together, the results stress the
significant gain obtained in analyzing the EFRPs using the GLM method and pave the way toward efficient
ecological emotional dynamic stimuli analyses.

In all these previous studies we performed co-registration either for complementary purposes or for
feature extraction purposes (the first recording modality leading the extraction of features from the second
one). However, going a step further towards automatised user/operator assessment, within the Airtime
project (with N. Drougard as post-doctoral fellow and G. Singh as PhD student, co-supervised with Dr
C.P.C. Chanel) we performed mental state estimation using features extracted through coregistered
signals.

Hence, in a first study we estimated mission performance with a variety of measures (Chanel et al.,
2020) (Fig. 8.26). The different combinations evaluated consisted in arrangements of ECG (i.e., HR and
HRV), ET (i.e., number of fixation on each AOI), keystrokes/clicks (i.e., the number of keyboard inputs
and clicks related the external tank and robot navigation) input features, all conditioned by the automa-
tion level of the robot. Thus, the automation level of the robot constituted an additional common input
feature for all tests. Well-known classifiers, such as, k-Nearest Neighbors (kNN), Linear and Quadratic
Discriminant Analyses (LDA, QDA), Support Vector Machine (SVM), Gaussian Process (GP), Decision
Trees (DT), Random Forest (RF), Neural Network (NN), AdaBoost (ADA), and Naive Bayes (NB), from
the scikit-learn library version 0.20.3 were used. A grid search algorithm was applied for hyper-parameters
optimization using 80% of data samples for all concerned algorithms given the balanced accuracy score.
Then, each classifier was 5-fold cross-validated (CV = 5) twenty times (20 × 5-fold); based on these runs,
the average balanced accuracy and the 95% confidence interval were computed.

In addition to interesting findings regarding the impact of automation mode on operator performance
depending on their performance profile (see section 7.4), inter-subject single-trial classification results
showed that the studied behavioral and physiological features were relevant to predict mission perfor-
mance. The highest average balanced accuracy (74%) was reached using the features extracted from all
input devices, i.e. using modality fusion (Fig. 8.27). These results highlight the interest of peripheral
measures, as well as modality fusion for estimation purposes.

In a second study of the Airtime project, we performed coregistration of eye-tracking, ECG and EEG
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during a simulated pilot-UAV search and rescue interaction task (Fig. 8.28) and compared the interest of all
features for an accurate engagement estimation (Fig. 8.29), but also for an estimation that would be robust
to time-on-task effects and cross-subject effects (Singh et al., 2021). Therefore this study was designed
with two goals: (i) to characterize and estimate mental workload in a MUM-T setting based on physio-
logical signals; (ii) to assess the impact of the validation procedure on classification accuracy. Supervised
classification pipelines based on various combinations of these physiological features were benchmarked,
and two validation procedures were compared (i.e., a traditional one that does not take time into account
vs. an ecological one that does). To evaluate the impact of features grouped by the sensor used to acquire
them, 7 combinations of features were considered: EEG-only features, ECG-only features, ET-only fea-
tures, EEG and ECG features, EEG and ET features, ECG and ET features, and finally EEG, ECG, and ET
features. Well-known classifiers that can be applied on small datasets were used. Hence, we chose not to

Figure 8.26 – From (Chanel et al., 2020): Eye-tracking and ECG coregistration.

Figure 8.27 – From (Chanel et al., 2020): Average balanced accuracy for 20×5-fold cross-validations
and the 95% confidence interval. Input features were conditioned on the automation level of the robot,
which constitutes an additional common input feature for all tests. kNN: k-Nearest Neighbors; LDA:
Linear Discriminant Analyses; QDA: Quadratic Discriminant Analyses; SVM: Support Vector Machine;
GP: Gaussian Process; DT: Decision Trees; RF: Random Forest; NN: Neural Network; ADA: AdaBoost;
and NB: Naive Bayes.
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employ highly data demanding classification algorithms like deep learning, but also did not use Rieman-
nian methods that—to our knowledge—are seldom used with recording methods other than EEG. Indeed
the main focus here was to perform a multi-modal estimation.

Figure 8.28 – From (Singh et al., 2021): Aerofly simulator and U-track application screens setup.

Figure 8.29 – From (Singh et al., 2021): Pre-processing, feature extraction, and classification pipeline.

The main result as regards user/operator mental workload assessment was a higher intra-subject clas-
sification accuracy (75%) reached using ECG features alone or in combination with EEG and ET ones
with the Adaboost, Linear Discriminant Analysis or the Support Vector Machine classifiers (Fig. 8.30).
However this was only true with the traditional validation. There was a significant drop in classification
accuracy using the ecological one (in accordance with my previous work on EEG features). Interestingly,
inter-subject classification with ecological validation (59.8%) surpassed both intra-subject with ecological
and inter-subject with traditional validation. These results therefore revealed the relevance of peripheral
measures such as ECG cardiac metrics, and modality fusion, for accurate mental workload assessment,
particularly in realistic settings, i.e. with an ecological validation procedure.

This section was intended to provide the reader with a sneak peek at work that I carried out with my
colleagues on using peripheral measures to perform user/operator mental state characterization but also
automated estimation. The main conclusions can be summarized in the following list:
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Peripheral measures for users/operators’ mental state assessment

— Detrended cross-correlation applied to ECG reveals teammate cooperation.
— Delayed coincidence count applied to ECG allows for characterizing local synchronization

phenomena.
— Peripheral measures and peripheral-central measures co-registration allows thorough operator

state characterization through complimentarity, but also thanks to features extracted in one
modality guided by another.

— Modality and feature fusion allows accurate operator state estimation although time-on-task
effects need to be taken into account in validation procedures.

8.5 Leaving the lab & closing the loop

Progress in developing user/operator mental state assessment has been made and we saw in the previous
sections that our work has proposed solutions to use probes, connectivity measures as well as peripheral
measures without or fused with central measures to improve this estimation. However, most of this re-
search, same as in the literature, is performed both in laboratory settings and in an offline manner. In order
to progress towards real life implementation we need to evaluate our methods in ecological settings, e.g. in
real flight rather than on computer-based or simulator-based tasks, with dry rather than wet EEG electrodes
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Figure 8.30 – From (Singh et al., 2021): Intra-subject mental workload estimation results per features
and classifiers with the traditional validation design (average across participants). The dots represent the
average score of each feature combination and the vertical line represents the associated standard deviation.
The dashed horizontal red line represents the adjusted chance level while the blue one represents the highest
classification accuracy.
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for practicality, and we also need to finally close the loop, i.e. perform an online estimation with adaptation
of the system/task. As the first issue –that of performing studies in ecological settings– was globally ad-
dressed in section 8.2, the first subsection focuses only on another part of our work to get out of the lab: the
usefulness of a hybrid BCI for engagement estimation in real flight. The rest of the present section details
work that we performed in order to start addressing the last two issues, i.e. the choice of electrode setup
and appropriate processing pipeline, and how to close the loop.

8.5.1 Hybrid passive BCI in real flight

We have seen in previous sections that we can get out of the lab and perform studies in ecological
settings such as in real flight (e.g. section 8.2). We have also seen that coregistration and feature fusion
can enhance mental state estimation. Within the MAIA project (with Dr Alban Dupré as post-doctoral
fellow, co-supervised with Pr F. Dehais) we performed a study to evaluate the feasibility to estimate a pi-
lot’s engagement (and related mental fatigue) in real flight using the fusion of dry EEG and fNIRS features
(Dehais et al., 2018). This study’s idea came from the growing interest for implementing tools to monitor
cognitive performance in naturalistic environments and the recent technological progress that has allowed
the development of new generations of highly portable brain imaging systems such as dry electrode EEG
and fNIRS systems to investigate cortical activity in a variety of human tasks out of the laboratory. In
our study we developed a fNIRS-EEG based pBCI to monitor cognitive fatigue (that can be construed as
a degraded engagement state) using engagement related features (EEG engagement ratio and wavelet co-
herence fNIRS based metrics). The participants were asked to perform four traffic patterns along with a
secondary auditory task in a flight simulator and in an actual light aircraft. The two first traffic patterns
were considered as the low cognitive fatigue class, whereas the two last traffic patterns were considered as
the high cognitive fatigue class.

Figure 8.31 – From (Dehais et al., 2018): Experimental environment: flight simulator (left), EEG-fNIRS
cap (middle) and DR400 light aircraft (right).

Regarding implementation of this hybrid BCI, EEG data were recorded using the 32 dry-electrode Eno-
bio Neuroelectrics system positioned according to the 10-20 system with only 23 channels out of 32 (P7,
P4, Cz, Pz, P3, P8, O1, O2, F8, C4, F2, Fz, C3, FPz, F7, Oz, AF4, CP6, CP2, CP1, CP5, FC1 and AF3).
The remaining channels were removed in order to put the fNIRS sensors on the same cap and to allow
sufficient comfort for the participants (Fig. 8.31). fNIRS data were recorded the NIRSport NIRX system
using 7 sources (F3, FP1, AFz, FP2, F4, T7, T8) and 8 detectors (AF7, AF3, AF8, AF4, TP7, FT7,TP8,
FT8) which resulted in 12 channels. Both systems were synchronized using Lab Streaming Layer. De-
noising was performed thanks to ASR for EEG, and fNIRS data were converted into optical density for
detecting artifacts as high variance parts of the signal and remove them with a spline interpolation. A sim-
ple shrinkage linear discriminant analysis (sLDA) was performed, known to provide good results in a high
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dimensional feature space (Blankertz et al., 2011).

Figure 8.32 – From (Dehais et al., 2018): Classification accuracy for all subjects and mean classification
accuracy (vertical black bars represent standard deviation). Left: simulator condition. Right: real flight
condition.

As expected, the pilots missed more auditory targets in the second part than in the first part of the ex-
periment. In addition to validating the hypothesis that the participants would be more fatigued at the end
of the session, this result ascertains that the physiological modulations that might be observed would not
only be due to other time-on-task effects such as impedance variations. Classification accuracy reached
87.2% in the flight simulator condition and 87.6% in the actual flight conditions when combining the two
modalities (Fig. 8.32). Although this study needs to be replicated with a larger number of participants, it
demonstrates the usefulness of hybrid BCIs for operator mental state estimation in ecological settings.

8.5.2 Dry electrode use: adequate electrode setup and classifiers

In section 8.2 we saw that convenient systems do exist to enable extracting probe-elicited EEG fea-
tures, as well as spectral features with dry EEG systems that can cover the whole scalp for more accurate
measures of attentional and engagement states. Yet, to our knowledge no study had yet evaluated the ap-
propriate number of dry electrodes as well as the appropriate classifier to use with each setup. Within the
ANITI project (with Maria Isabel Casso Echalar as master student, co-supervised with Dr C. Jeunet), we
run an offline comparative study on motor-imagery (MI) BCI in order to start addressing this issue (Casso
et al., 2021). Indeed, as for passive BCI, a primary challenge to make active BCI technologies usable and
actually used out-of-the-lab consists of providing EEG systems that are efficient in terms of classification
accuracy- and easy to install, e.g., using a minimal number of dry electrodes. We hypothesized that the
optimal signal processing method might depend on the number of (dry) electrodes that are used. Therefore,
we compared for the first time the classification accuracy associated with different dry electrode setups, i.e.,
7 configurations from 8 to 32 channels (from 32 whole scalp coverage to 8 central electrodes above motor
areas, in accordance with the nature of the task; Fig. 8.33), and various signal processing methods, namely
(1) regularized Common Spatial Pattern (rCSP) + Linear Discriminant Analysis, (2) rCSP + Support Vector
Machine (SVM), (3) Minimum Distance to Riemannian Mean and (4) SVM in the Riemannian Tangent
Space. The task was a standard Graz-BCI paradigm (Pfurtscheller and Neuper, 2001) implemented in
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OpenVIbe (Renard et al., 2010)

[32 Electrodes] [28 Electrodes] [24 Electrodes]

[20 Electrodes] [16 Electrodes] [12 Electrodes]

[8 Electrodes]

Figure 8.33 – From (Casso et al., 2021): Electrode setups: from 32 whole scalp coverage to 8 central
electrodes above motor areas.

Our results suggest that, for all methods, MI-BCI performance drops significantly for 8 and 12 channels
(p < 0.01; Fig. 8.34). Moreover, method 3 was associated with the lowest performances (p < 0.05). Finally,
post-hoc analyses suggest that methods 1 and 2 perform best with the highest numbers of electrodes 28 and
32. For method 4 the best performance is obtained using 20 and 24 channels, which seems to be the optimal
combination (p < 0.05). These results show the importance of selecting the signal processing pipeline as a
function of the location and number of dry electrodes. This study was the first milestone and of course this
type of evaluation should also be applied to passive BCI studies.

8.5.3 Online task adaptation: planning tools

Although the literature is now ripe with mental state estimation studies based on classification, the vast
majority is performed offline, and if actually performed online it seldom closes the loop -i.e. performs sys-
tem adaptation. Given my understanding of the literature and my personal experience, I believe this issue
to be purely stemming from the amount of time and effort required for such a closed-loop implementation,
and of course from the current publish or perish pressure inherent to our academic systems.

Recently, within the Airtime project (with Gaganpreet Singh as PhD student and Laura Tilly as intern,
co-supervised with Dr C.P.C. Chanel), we have tried to close the loop in a simulated pilot-UAV search and
rescue application (Singh et al., 2022a,b) (same interaction task as in Singh et al. (2021)). In this study,
a formal framework aiming to drive the interaction between a human operator and a team of unmanned
aerial vehicles (UAVs) in a Manned-UnManned Teaming (MUM-T) mission scenario was proposed and
experimentally tested. The goal was to enhance human performance by controlling the interaction be-
tween agents based on an online monitoring of the operator’s mental workload (MW) and performance.
The proposed solution used MW estimation via a classifier applied on cardiac temporal features (Heart
Rate and Heart Rate Variability). The classifier output was introduced as a human MW state observation
variable in a Partially Observable Markov Decision Process (POMDP) which models the human-system
interaction dynamics, and aims to control the interaction to optimize the human agent’s performance (Fig.
8.35). The POMDP model including the human-system interaction dynamics was approximated based on
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Figure 8.34 – From (Casso et al., 2021): Average classification accuracy for all electrode setups and clas-
sification pipelines

data collected in our previous work (section 8.4; Singh et al. (2021)) and solved offline using the SARSOP
algorithm (Kurniawati et al., 2008). The POMDP solution is a policy indicating which action to apply in
a given belief state. Then during the mission, the POMDP policy solution controlled which task should be
suggested -or not- to the operator based on the current belief state about the operator’s MW and current
performance (online monitoring) along with the mission phase, assuming the UAVs are capable of support-
ing the human agent.

In accordance with the literature and as described in section 7.6, the subjective results revealed that
the participants felt significantly less MW when the adaptive approach was used. Similarly, mental, phys-
ical, and temporal demands, frustration and effort were significantly reduced in the adaptive condition.
Their flying score was also significantly improved in the adaptive condition. These findings demonstrate
how such a POMDP-based adaptive interaction control can improve performance while reducing operator
workload, paving the way for a more efficient and enhanced MUM-T and shows that an online closed-loop
mental state estimation system based on physiological computing is implementable efficiently with only
few measures and low constraints for the user/operator.

This section was intended to provide the reader with a sneak peek at recent work carried out to move
towards out-of-the-lab, online and closed-loop physiological computing systems. The main conclusions
can be summarized in the following list:

Addressing the challenge to leave the lab and close the loop

— Hybrid EEG-fNIRS passive BCIs can be used in ecological settings.
— Dry electrode systems allow for mental state estimation but the number of electrodes and an

adequate processing pipeline specific to the setup need to be chosen.
— Task adaptation can be performed using planning tools to close the loop with enhanced

operator performance and subjective experience.
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Figure 8.35 – From (Singh et al., 2022b), presented by Dr C.P.C.Chanel: Partially Observable Markov
Decision (POMDP) framework in order to monitor the human operator and to maximize their performance.

8.6 Chapter conclusion

This chapter was intended to provide an overview of my recent research on methodological aspects
–and in particular on feature extraction– for improved physiological computing. A list of the main contri-
butions (published journal articles or full-paper proceedings) on which this chapter was based is presented
below. Although I do believe that together with my colleagues we have achieved promising results re-
garding feature elicitation, preprocessing, fusion and classification, including working towards ecological
settings and generalizability of features (challenge 3 from the introduction), much still remains to be done.
In particular, further work on feature extraction and signal variability will be presented in the perspective
chapter 9 to address the question of estimation robustness, as well as open science.
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Academic Press.

[2] Dehais, F., Roy, R. N. & Scannella, S. (2019) Inattentional deafness to auditory alarms: inter-individual
differences, electrophysiological signature and single trial classification. Behavioural Brain Research, 360,
51-59.
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Flight Conditions, Sensors, 19, 1324.
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SMC Conference, Bari, Italy, 2019.
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• Connectivity
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Perspectives on physiological
computing as a neuroergonomic tool
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This chapter presents research perspectives that arose from the work presented in the previous sections
and that will drive my research activities for the coming years. In particular, after a short introduction,
I present further work on operator monitoring that directly stems from these past works, with a focus on
two main lines of research: i) extending the neuroergonomic approach to human-robot interaction in col-
laborative and mobile settings with projects that were recently selected for funding (EPIIC, TELECOG,
ATARRI); ii) going further to cope with EEG signal non-stationarity, including open science, with a project
recently started within the ANITI institute, as well as national and international projects submitted for fund-
ing (PROTEUS, BCI Endeavour). Eventually, in the last section I develop personal reflections regarding
fundamental and clinical considerations. The projects I have selected to present here are listed below, along
with the supervisees (between parentheses) that are currently involved –if the project has recently started.

→ Selected projects: ANITI (X. Xu, M. Hinss, L. Pluchon), ATARRI (R. Soret, C. Hamery), BCI
Endeavour (TBD), EPIIC (M. Rihet, S. Tula), PROTEUS (TBD), TELECOG (M. Lefebvre, J. Bolina-Rei,
E. Lopez-Contreras).
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Figure 9.1 – Gantt chart of my research activities for the coming years. HRI (blue): funded projects on
human-robot interaction in collaborative and mobile settings; EEG (orange): submitted projects to work
on EEG non-stationarity (deep orange already funded); Grey: ongoing projects to pursue; Green: projects
to be defined, to develop and submit for 2024 in line with fundamental and clinical perspectives.

9.1 Introduction

As stated above, this chapter presents research perspectives that arose from the work presented in the
previous sections and that will drive my research activities in physiological computing as a tool for neu-
roergonomics for the coming years. These research avenues are intended to address the lacks identified at
the end of the previous sections. The projects I presented in chapters 7 and 8, if not finished, will of course
be pursued, including students projects as well as mental fatigue characterization and online estimation for
interface adaptation (Concorde project). Here, in this chapter, I present a brief description of submitted
proposals, recently accepted projects, and –for some of them– preliminary results on these various research
issues. In particular, I present further work on operator monitoring that directly stems from past works,
with two main lines of research as detailed in the following (projects’ timeline illustrated by figure 9.1).

My first line of research will be to extend the neuroergonomic approach to human-robot interaction in
collaborative and mobile settings with projects that were recently selected for funding: The EPIIC project
for which I just received a national grant, the TELECOG project for which we received a joint CNES and
ESA funding (with Dr V. Peysakhovich), and the ATARRI project that received funding from the Ministry
of Defense (led by Dr V. Peysakhovich). Next, my second line of research will be to try and go further to
cope with EEG signal non-stationarity, including working on new types of EEG features extracted using
mathematical tools such as topological analysis (ANITI project, for which I am co-chair of the Neuroad-
aptive Technology chair led by Pr F. Dehais), as well as working on building public databases, multi-sites
projects and organizing competitions to foster cooperation between researchers, with projects funded by
ANITI, and with projects submitted to national (PROTEUS, led by Dr F. Lotte) and international funding
(BCI Endeavour, led by Dr C. Jeunet). Eventually, in the last section I develop personal reflections regard-
ing fundamental and clinical perspectives in line with ecological considerations.
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9.2 Human-robot interaction in collaborative and mobile settings

My first line of research will be to extend the neuroergonomic approach that I described in the previous
two chapters –both regarding the general neuroergonomic approach and the use of physiological computing
as a tool to assess and enhance the interaction – to human-robot interaction in collaborative and mobile
settings. This will be done thanks to projects that were recently selected for funding in order to:

— work on the use of electrophysiological markers to characterize and estimate humans’ cognitive
effort and automation surprise when interacting with robots. This work will be performed thanks to
the EPIIC project for which I recently received a national grant (French national research agency,
young researcher fellowship), in collaboration with the LAAS (CNRS; Dr Aurélie clodic, Dr Rachid
Alami).

— and to study the impact of operators’ and teleoperators’ orientation and movement. This work
will be performed thanks to the TELECOG project for which we received a joint CNES and ESA
funding (with Dr V. Peysakhovich), and the ATARRI project that received funding from the Ministry
of Defense (led by Dr V. Peysakhovich).

These projects have all recently started (i.e. 2022). They are further detailed below, along with preliminary
results.

9.2.1 Electrophysiological markers for collaborative robotics enhancement

As discussed in chapter 6, in order to enhance human-machine interaction, usual metrics include ques-
tionnaires and performance measures which do not allow for a continuous and online assessment of the
quality of interaction, nor for a direct cognitive state monitoring of the human operator. In recent years, the
development of physiological computing methods including that of brain-computer interfaces has enabled
the rise of symbiotic systems that adapt the interaction using involuntary user inputs. Yet, to our knowl-
edge, this technology has never been applied to human-robot interaction (HRI) in the context of mobile and
collaborative robotics. This might be due to several challenges that need to be overcome, including the im-
pact of user physical activity on the acquired metrics. The EPIIC (ElectroPhysiological Involuntary Inputs
for Collaborative robotics enhancement) project, funded by the French national research agency (ANR,
young researcher fellowship awarded to R. Roy) will last 4 years (48 months), and will provide the first
evaluation of the usability of electrophysiological metrics from wearable sensors for a rich, out-of-the-lab
and online quality of interaction (QoI) assessment for collaborative robotics. The main objectives will be
to: i) characterize the users’ cognitive state -i.e. cognitive effort and automation surprise- during collabora-
tive and mobile HRI using involuntary electrophysiological features elicited by two standard collaborative
robotic tasks -i.e. a joint navigation task, and an interactive manipulation task; ii) create an enriched QoI
index that takes as inputs these features processed through a mental state estimation pipeline; iii) adapt the
HRI thanks to this new QoI index; as well as iv) promote good scientific practices including data sharing.

Context and state-of-the-art

In human-machine interaction research, be it for driving, flying, gaming or medical teleoperation ap-
plications, user experience is still to this day under evaluated compared to other technical aspects, and
particularly so in the human-robot interaction field. However, part of the community is now aware that
there is a need for a richer and better evaluation of HRI, both at the metrics level and at the experimental
design level (Hoffman, 2019; Hoffman and Zhao, 2020). In the HRI community, the issue of the quality
of interaction, closely linked to what is called User eXperience in the adjacent domain of human-computer
interaction, has started to gain attention. This question of taking on the human-centered view and creating
a positive user experience is of major concern in order for technology to provide a long-term added value
to people’s lives (Dautenhahn, 2007; Lindblom and Andreasson, 2016). Quality of interaction is a wide
concept that encompasses various measures, including the users’ mental states that do not only consist in
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emotional responses but also in a range of cognitive states. In HRI research, the usual metrics to assess
the quality of interaction (QoI) are subjective ones, i.e. users’ reported feelings acquired through ques-
tionnaires (mostly focused on fluency, legibility, and acceptance, but also recently the perception of robot
high level decision abilities (Devin et al., 2018)), or – more recently – objective ones such as performance
metrics (Mayima et al., 2020). Examples of behavioral metrics that were recently used for HRI evaluation
are neglect time, human and robot idle time, concurrent activity, and functional delay (Crandall et al., 2005;
Hoffman, 2019). These metrics do not allow for a continuous and online assessment –they usually require
an interruption of the task at hand (in particular for questionnaires, making the participants reflect on their
experience a posteriori (Lindblom and Andreasson, 2016)), nor for a direct assessment of the users’ cogni-
tive state (Roy et al., 2020a). Yet, bad interaction can result in decreased performance, or even casualties
for critical work tasks and settings. In addition to a lack of continuous objective metrics of HRI quality, it
should be noted that the literature mostly focuses on supervision tasks in HRI dealing with an increase in
autonomy (Crandall et al., 2005), and not on joint action of humans and robots as partners, i.e. collaborative
robotics (Clodic et al., 2017). Moreover, in current HRI research, there is also a need for a better evaluation
of HRI at the methodological level, the experimental design level (Kulić and Croft, 2007; Lindblom and
Andreasson, 2016; Hoffman and Zhao, 2020), with a scientific rigor which is particularly wanted in the
current HRI replication crisis (Belhassein et al., 2019), and which might enable to handle and mitigate the
novelty effect that hinders current HRI research (Koay et al., 2007). Lastly, to the best of my knowledge,
no publicly available database for HRI quality assessment does exist, nor any standardized approach to
HRI evaluation, including proper employment of statistical analyses (Hoffman and Zhao, 2020).

Amongst the various cognitive mental states that are relevant for HRI (which could be used for better
user profiling and HRI adaptation; Rossi et al. 2017) and that can be assessed through neuroergonomics,
two seem particularly appropriate for mobile and collaborative HRI applications: cognitive effort (engage-
ment) and automation surprise (human operator/user surprised by the behavior of the automated system;
Sarter et al. (1997)). As with subjective and behavioral metrics, the literature on HRI evaluation through
physiological metrics mostly focuses on remote operation and supervision tasks (Roy et al., 2016b), or on
direct manual control (Memar and Esfahani, 2019), and not on local, collaborative tasks. To my knowl-
edge, the scarce literature on mobile and collaborative robotics using physiological markers has made use of
such metrics for a non-automated offline evaluation. For instance, there is existing work on the user/human
agent’s emotional response during HRI, or deceptive behaviour, as assessed through physiological metrics
(Kulić and Croft, 2007; Iacob and Tapus, 2019). Moreover, electrophysiological markers of automation
surprise in the context of collaborative robotics have recently started to be investigated, such as variations
of EDA in response to unforeseen task interruption (Agrigoroaie et al., 2018), or various levels of robot’s
action speed and legibility (Dehais et al., 2011), as well as EEG markers such as error-related potentials
elicited by semantically incorrect actions (Ehrlich and Cheng, 2019). To the best of my knowledge, only
very recently have cognitive effort and the session impact, tightly linked to the novelty effect, started to
be investigated in collaborative HRI at the physiological markers level (Agrigoroaie et al., 2018). Another
important aspect in order to move towards real life solutions is to take the impact of physical activity into
account during mobile HRI. Indeed, cognitive states of electrophysiological markers are impacted by such
activity (Jungnickel et al., 2019), and methods to take this activity into account during a posteriori analyses
as well as during online estimation have to be developed. Lastly, in addition to the lacks identified from
the literature that I previously listed, there is a growing need for open science (Foster and Deardorff, 2017)
in order to increase replicability and reproducibility in BCI and HRI research (Hinss et al., 2021b).

However, most studies are still reporting offline estimation with little to no adaptation of the interaction,
and are mainly focused on mental fatigue or cognitive effort linked to various autonomy levels and do not
consider mobile and collaborative HRI settings (Roy et al., 2020a). System adaptation based on feedback
from the user can occur at several levels, either at the interface level or at the global decisional level
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(i.e. shallow vs deep adaptation). For physical robots it mostly consists in modifications performed at the
functional or the decisional layers (Clodic et al., 2017). This crucial issue, which goes beyond that of the
technical challenge to perform the measurements in an online manner, is that of the counter-measures to
implement. The counter-measures best fitted for mitigating user cognitive effort and automation surprise
estimated through physiological measures in a mobile and collaborative HRI context still remain to be
determined. To my knowledge, no study has yet proposed counter-measures for cognitive effort mitigation
in this specific context, yet some recent studies have proposed online modifications of the robots’ gaze
pattern or task strategy during a turn-based task, as well as an online adaptation of an exoskeleton in a
teleoperation scenario based on EEG markers linked to automation surprise (i.e. event-related potentials
and in particular error potentials; Kirchner et al. 2013; Ehrlich and Cheng 2019; Kim et al. 2020), however
without characterizing the impact of physical activity, nor in a continuous context.

Figure 9.2 – EPIIC concept of an online adaptation of the robot’s behavior to the cognitive state of the
human with whom it is interacting, based only on behavioral metrics (green) or with the adjunction of
electrophysiological metrics (red) into the Quality of Interaction (QoI) index.

Scientific issues

Given this context and state-of-the-art, I hypothesize that by addressing these issues of continuous user
state characterization and artifact handling thanks to a rigorous experimental approach, we will provide
the physiological computing and HRI communities with a new means to perform quality of interaction
assessment for collaborative and mobile HRI applications that will increase interaction fluency and user
experience. In other words, I expect that enriching the QoI index and performing this evaluation in a con-
tinuous and online manner will result in an enhancement of the whole human-robot interaction (Fig. 9.2).
I have identified four main issues from the literature that remain to be addressed:

— Issue 1: The feasibility of performing electrophysiology-based MSM during collaborative and mo-
bile robotics’ tasks, particularly regarding the impact of the tasks’ characteristics in terms of phys-
ical activity and related artifacts on the acquired signals. Hypothesis 1.1: Electrophysiological
patterns elicited during collaborative and mobile HRI are significantly modulated by the level of
cognitive effort and the occurrence of automation surprise. Hypothesis 1.2: Physical activity has a
significant impact on electrophysiological markers of cognitive effort and automation surprise.

— Issue 2: The development of an enriched QoI index that can be extracted in a continuous manner.
Hypothesis 2.1: Electrophysiological markers of cognitive effort and automation surprise that are
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robust to physical activity – or made so thanks to signal conditioning methods- can be computed in
a continuous manner. Hypothesis 2.2: An enriched QoI index computed thanks to a classification
step on electrophysiological features can be used to evaluate the quality of interaction during col-
laborative and mobile HRI in conjunction with existing state-of-the-art objective metrics.

— Issue 3: An enhanced interaction through the robot’s behaviour adaptation to the user’s cognitive
state based on this QoI index. Hypothesis 3: The use of the enriched QoI index that contains
electrophysiological markers of the user’s cognitive states allows for a more efficient interaction in
terms of user experience and interaction fluency as compared to state-of-the-art QoI indices based
on subjective or objective (i.e. behavioural) metrics alone.

— Issue 4: Research in HRI and BCI still suffers from a lack of replicability and reproducibility
(despite recent changes in practice). Hypothesis 4.1: A thoroughly designed and performed ex-
perimental procedure, following ethical recommendations and the open science framework ensures
better replicability and reproducibility. Hypothesis 4.2: The use of several experimental sessions
will reveal the impact of the novelty effect that hinders HRI research replicability by its impact on
all investigated metrics.

These hypotheses will be tested thanks to dedicated work packages.

Current state of the project and next objectives

To tackle issue 1, i.e. to characterize the users’ cognitive state during collaborative and mobile HRI
using involuntary electrophysiological features, a first experimental campaign has been designed, submit-
ted to the ethical committee, and implemented thanks to the work of two interns, Mr Sridath Tula and Mr
Mathias Rihet. The acquisition phase will be performed from June to September. The robotic platform
used for this experiment is the LAAS Personal Robot 2 –PR2– robot. A joint manipulation task is to be
performed (with congruent and incongruent conditions depending on the head movement to elicit automa-
tion surprise) in parallel to a digits memorization task (added to elicit three different levels of cognitive
effort) (Fig. 9.3).

Figure 9.3 – EPIIC collaborative task with PR2 robot and participant equipped with physiological sensors
(at the LAAS ADREAM facility).

116



CHAPTER 9. PERSPECTIVES ON PHYSIOLOGICAL COMPUTING AS A NEUROERGONOMIC
TOOL

Next, the creation of an enriched QoI index will be attained by developing a signal processing and
machine learning pipeline to perform an automated estimation of the users’ mental state based on the phys-
iological features extracted thanks to the first campaign. Thanks to this enriched QoI index that includes
involuntary electrophysiological features acquired in a continuous and online manner, an adaptation of the
robot’s behavior will be performed. Comparisons in terms of interaction fluidity and user experience will
be performed between various versions of robot’s behavior thanks to a second experimental campaign. The
second campaigned planned later on during the project will address this QoI issue in a joint navigation task.
Lastly, objective 4, i.e. to abide by good scientific practices that promote replicability and reproducibility
of the results, will be pursued and attained at every step of the EPIIC project. In order to avoid common
pitfalls, in addition to rigorous scientific practices that need to be followed in experimental, and therefore
also in BCI research as described by Brouwer et al. (2015), the following measures will be taken. The
experimental campaigns will be validated by an ethical committee, the number of participants and trials
will be computed in order to attain an adequate power in the planned statistical analyses, a second session
will be performed for every participant in order to assess and tackle the novelty effect in HRI, and the data
will be formatted following the recommendations for physiological data use and made publicly available
following the recommendations of the Open Science Framework. After the current two internships, a PhD
will start in October 2022, which will be complemented by a post-doctoral position to tackle the subsequent
issues.

9.2.2 Rear space attentional deployment

In order to move towards the assessment of operators’ mental states in real life settings, mobile con-
texts have to be considered. In the previous section, a project aimed at assessing the operator’s state
during human-robot collaborative tasks was presented. Here, we aim to assess the operator’s state dur-
ing mobile human-system interaction in which the operator performs guidance of a vehicle in manual or
semi-autonomous mode (i.e. a plane, a rover or UAV). A first milestone that we identified with colleagues,
consists in characterizing the attentional deployment in the rear space, for formation flight applications
for instance. This is the goal of the ATARRI project, funded by the French military research agency (AID),
with Dr Vsevolod Peysakhovich and Dr Sébastien Scannella as project leaders, and Dr Rébaï Soret as post-
doctoral fellow. I myself am only involved as a partner in a subsection of the project as detailed later. The
main goals are further developed hereafter.

Faced with a constant stream of stimuli, our cognitive system has developed complex attentional selec-
tion mechanisms. These processes allow us to quickly and efficiently process relevant information while
ignoring distractors. Despite its efficiency, our cognitive system nevertheless presents many attentional bi-
ases, for example, the forward bias which privileges, through the direct field of view, the stimuli facing us.
Most studies of attentional orientation have focused on frontal space (e.g. Driver and Spence (1994)) and
little attention has been paid to studies of orientation to the rear space (outside the visual field and generally
behind the person), with the implicit assumption that results obtained in frontal space could be generalized
to rear space (Spence et al., 2020). Yet, the limited capacity of sensory systems in general, and specific
deficits in visuospatial attentional orientation, can be deleterious, induce spatial disorientation, and some-
times lead to catastrophic errors (e.g. more than 25% of motor vehicle accidents are rear-end collisions).
Despite a few studies, in-depth studies on the neural and behavioral mechanisms of attention deployment
in rear space, as well as the relevant influencing factors essential to better understand the mechanisms in-
volved and reduce the risk of collisions on roads and in airspace are still lacking. A major challenge is
therefore to better understand how attention is deployed at 360 degrees, especially in rear space. This is
the goal of the ATARRI project which aims at understanding and formalizing the deployment of attentional
resources in rear space (outside the operator’s visual field), with four main objectives that are to:

1. Understand the neural mechanisms of attentional orientation in rear space;
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2. Evaluate the impact of body orientation and movement on attention in rear space;

3. Assess the effectiveness of attentional training;

4. Apply the basic results to the case study under realistic formation flight conditions (i.e., tight patrol).

At the end of the ATARRI project, we will be able to characterize visuospatial attention at 360 degrees
by specifying the mechanisms of attentional orientation in rear space. From the planned experimental
campaigns, we will elaborate neural (electroencephalographic data) and ocular (oculometric data) metrics
of 360° situation awareness –this is the part of the project I will be mostly involved in. Using a motion
platform (Fig. 9.4), we will evaluate the degree to which operator body orientation and motion affect
awareness. We will also evaluate the possibility of training their attentional capacities in order to avoid
the forward bias. We will also study how to widen the visuospatial attentional span at 360 degrees and
whether it be quantified at the cerebral functional level. At the end of the project, thanks to an experimental
campaign in virtual reality on a moving platform in an environment representative of a tight patrol flight,
we will also conclude on the possible implications of human-systems interfaces to improve the attentional
representation of 360 degrees elements with a case of application of flight in training.

Figure 9.4 – Virtual reality motion platform (VRtigo, 6 dof) to be used for the ATARRI and TELECOG
projects.

9.2.3 Impact of teleoperator’s orientation and movement

Further, regarding the assessment of the operator’s state during mobile human-system interaction in
which the operator performs guidance of a vehicle in manual or semi-autonomous mode (i.e. a plane, a
rover or UAV), a specific issue arises when focusing on teleoperation: the teleoperator’s body orienta-
tion and direction of movement could impact their perception of the orientation and movement of the
teleoperated object, as well as their quality of control. The assessment of such an effect is the goal of the
TELECOG project that I lead together with Dr Vsevolod Peysakhovich, and for which we have recruited
Ms Maëlis Lefebvre as PhD student (and J. Bolina-Rei and E. Lopez-Contreras as interns). This project and
the PhD was recently selected by both ESA and CNES and therefore enjoys double funding from these spa-
tial agencies. A motion platform as well as different contexts (teleoperation from the ground, a helicopter,
a station in orbit) will be used. At the end of the thesis, guidelines for the design of human-robot interfaces
avoiding spatial disorientation will be developed. Further description of the project is given below.

Description of the project Whether it is a cosmonaut operating a robotic arm aboard the International
Space Station, a military officer flying a drone from a helicopter, or an operator in a ground control center
manipulating a rover on the Martian surface, the main role of the (tele)operator is to control the robot,
either manually or in automatic mode. If the robot is operating in automatic mode, they must, therefore,
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supervise the robot and monitor all associated parameters. When performing these tasks, the operator must
have a double situational awareness: of the place where he/she operates the robot and of the environment
where the robot is operating. In the case of remote operation from the floor with an operator sitting in front
of a control station (or computer), the orientation and position of the body are relatively constant and do
not affect the remote operation performance. On the other hand, when the operator’s body is tilted or in
motion, this may modulate the operator’s situational awareness of the robot.

Human body orientation modulates auditory performance (Macrae, 1972), visual perception (Mast
et al., 2003), and perception of moving objects (Miwa et al., 2019). Vestibular cues (e.g., in the form
of body rotation) also modulate visual attentional processing (Kaliuzhna et al., 2019). One study showed
that the presentation of a dynamic visual motion evoking a gravitational effect (a point moving at a con-
stant acceleration) affected the estimation of postural verticality (Tani et al., 2020). And even if the body
remains static and vertical, when spatially connoted verbal cues (up, down, sky, foot) are presented to the
subject, his vertical attention (Dudschig et al., 2012b) and action planning (Dudschig et al., 2012a) are
also modulated. Visuo-vestibular mismatch requires the brain to integrate sensory signals that are encoded
in different frames of reference to maintain coherent spatial perception. This multisensory integration in-
volves graviceptive signals from otoliths, visual inputs, and other sensory inputs that encode the position
of the eyes, head, and body. The conflict between vestibular and visual input can cause spatial disorien-
tation, which in turn affects visual behavior (Bałaj et al., 2019), selective attention, and working memory,
particularly in the context of piloting (Stróżak et al., 2018).

From all this knowledge on the influence of the orientation of the human body on attention and cog-
nition, it is deduced that the orientation of a teleoperator would impact the performance of the operation.
However, although work has been initiated on robot situational awareness (Yanco and Drury, 2004; Bualat
et al., 2014), and human-machine coupling in-flight scenarios (i.e. MUM-T; e.g. helicopter-UAVs; Frey
and Schulte (2019), to our knowledge, there are no studies in the literature concerning the effect of the spa-
tial orientation of the operator and their movement on the situational awareness of the remotely operated
robot. We propose to address this issue in this project which includes the realization of several fundamental
and ecological teleoperation tasks performed by an inclined and moving operator.

Program To best respond to the gaps identified in the literature, we will conduct several experiments
ranging from basic protocols to the design and conduct of an ecological teleoperation task. Thus, in this
project we will mainly address the following three research questions:

— Do the operator’s orientation (body, head) and movement affect their perception of the orientation
and movement of the tele-operated object, as well as their control performance?

— Does the type of visualization presented to the operator (e.g. egocentric vs. allocentric) mitigate
this expected negative effect of the operator’s orientation and movement on their perception and the
quality of their control of the teleoperated object?

— How can the effects of orientation and motion be taken into account in the design of a human-robot
interface to avoid spatial disorientation?

We propose to address these questions in two experimental blocks:

1. Fundamental block comprising 3 laboratory experiments under controlled conditions to evaluate
the impact of orientation (Exp I), movement (Exp II), and the interaction between orientation and
movement (Exp III). This block will address questions Q1 and Q2. The virtual reality motion
platform in Fig. 9.4 will be used for all laboratory experiments.

2. Ecological block where the operator will be studied under more realistic conditions, analyzing, in
particular, their behavior during analog space missions (Exp IV) and in situations of altered gravity
i.e. hypo- and hyper-gravity (Exp V and Exp VI). Here we will address questions Q1 and Q3. This
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block involves structures outside the host laboratory at ISAE-SUPAERO such as CNES, MEDES,
or the Institute of Biomedical Problems in Moscow. Thus, two experiments (Exp V and Exp VI)
will be carried out on the condition that additional funding is obtained (to finance the hosting of our
experimental campaigns by these structures).

Figure 9.5 – TELECOG preliminary study: trial structure illustration.

Current developments Thanks to the work of interns J. Bolina-Rei and E. Lopez-Contreras, and of PhD
student Maëlis Lefebvre, a first experiment was run on the motion platform, which gave preliminary re-
sults that will be detailed at the International Astronautical Congress in September 2022 (Lefebvre et al.,
2022). The main hypothesis of this work is that incongruencies between two reference frames generate
inter-sensory conflicts leading to degraded performance. In this experiment, participants were roll-tilted
at 3 possible angles while they were presented with a remote object, oriented at 3 possible angles. They
performed the subjective visual vertical (SVV) test to estimate the room’s vertical and then estimated the
orientation of a monitored remote object (Fig. 9.5). Results showed significant effects of both body tilt
and object orientation. Body tilt decreased participants’ confidence levels in their vertical perception and
increased their response times (SVV). Moreover, body tilt and object orientation both decreased subjects‘
confidence in their response of object orientation perception; the confidence was further decreased when
both operator and object were tilted. Independently of their orientation, subjects had a lower motor re-
sponse accuracy and increased reaction times when the object was tilted to the right. When the object
was centered, we did not observe any decrease in motor response accuracy. Overall, our results suggest
that body’s and remote object’s orientations both impact response times and confidence concerning their
own orientation and that of the monitored object. Hence, due to intersensory conflicts, body tilt impacts
operators’ confidence in their visual and somatosensorial perceptions, which, we believe, can affect their
overall situational awareness during teleoperation.

These results are only preliminary and need to be replicated. Moreover, several issues were found
regarding task implementation, including a potential bias generated by joystick use. These issues are
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currently being addressed in a second experiment with a larger pool of participants. Moreover, a step
towards studying potential interaction effects with HMI displays has also been taken: a third VR and
motion platform experiment to assess the impact of orientation and movement congruency during UAV
control is currently being implemented. In this experiment, visual degradation –which has been shown
to impact vehicle steering control (Frissen and Mars, 2014)– and reference frame type –which has been
shown to impact the perception of the vertical in head-mounted displays (Mars et al., 2004) – will also be
tested depending on the congruency conditions.

9.3 Going further to cope with EEG non-stationarity

In order to tackle EEG non-stationarity which hampers brain-computer interface (BCI) and physiologi-
cal computing use in real-life settings, jointly with colleagues of the field I have taken several actions. First,
as detailed in the first subsection below, and as part of the ANITI project (for which I am co-chair of the
Neuroadaptive technology chair, led by Pr Frédéric Dehais, with Mr Marcel Hinss as intern), we worked
on assessing the availability of passive BCI databases, as well as on creating such a database that would be
an answer to identified lacks. Next, we used this database to organize the first international competition on
cross-session mental workload estimation. Second, still as part of the ANITI project, we started exploring
new features that could be extracted from the EEG signal using mathematical tools, features that would
be robust to several factors that generate EEG non-stationarity and therefore enhance BCI performance
in real life settings (together with Dr Nicolas Drougard and with Ms Xiaoqi Xu as PhD student). Third,
we submitted a proposal to work on the training required to achieve adequate BCI performance from a
user perspective (BCI Endeavour project, led by Dr Camille Jeunet). Lastly, we submitted a proposal to
work on the data and factors that create this non-stationarity as well as on signal processing and machine
learning tools that could solve this issue (PROTEUS project, led by Dr Fabien Lotte). These projects and
preliminary actions are detailed in the following subsections.

9.3.1 Public pBCI databases & competitions

In order to move towards better research practices that promote reproducibility and repeatability (“Re-
producibility refers to instances in which the original researcher’s data and computer codes are used to
regenerate the results, while replicability refers to instances in which a researcher collects new data to
arrive at the same scientific findings as a previous study" Barba (2018)), my idea was to promote the use of
open databases in the field of passive BCIs. This would also allow researchers to join forces to tackle issues
such as EEG non-stationarity. Hence, as part of the ANITI project (for which I am co-chair of the Neu-
roadaptive technology chair, led by Pr Frédéric Dehais, with Mr Marcel Hinss as an ERASMUS intern),
we worked on assessing the availability of passive BCI databases at the time of the review (2020-2021)
(Hinss et al., 2021b). Although data-sharing has started in the community of active BCI applications (incl.
thanks to the MOABB initiative (Jayaram and Barachant, 2018)), and a few actions have been taken includ-
ing a recent fNIRS mental workload database (Huang et al., 2021), in a general manner passive BCIs have
not seen much data-sharing yet. Moreover, this work led to highlighting several lacks present in the few
available EEG pBCI databases, which fall into two groups: problems of accessibility and problems of con-
tent. Regarding accessibility, these databases mostly presented poor labeling and description. A solution
would be to follow existing guidelines for standardized formatting, e.g. the Brain Imaging Data Structure
(BIDS) issued by the Organization for Human Brain Mapping (OHBM) (Pernet et al., 2020). Regarding
the content issue, a larger number of dataset per task than task per dataset was observed which prevents
researchers to test classification pipelines that are more robust to cross-task variability.

Given the lacks identified thanks to this review of the literature and available databases, we decided to
create our own EEG pBCI database. This was started within the ANITI project (with Mr Marcel Hinss
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and Ms Lou Pluchon as interns), with a big experimental campaign run under covid-19. The protocol
included four tasks with three acquisition sessions separated by one week. Due to time and projects’ con-
straints the analyses are still undergoing. The full database publication and journal article submission are
expected in the coming weeks. Yet, we used part of the database to organize an international competi-
tion that took place as the grand challenge of the International Conference in Neuroergonomics 2021 (Roy
et al., 2022) (with the help of Dr Ludovic Darmet and Dr Simon Ladouce in addition to other partners and
supervisees of the ANITI project). This competition provided data made available on the Zenodo platform
(Hinss et al., 2021a) which was acquired from 15 volunteers who performed a MATB with three levels of
difficulty in each of the three sessions (Figures 9.6 and 9.7). The data was preprocessed so as to limit the
use of artefacts for workload estimation. Only the workload labels of the first two sessions were provided,
and the goal of the competition was to submit both the estimated labels of the third session, and an abstract
detailing the method employed by the authors. Eleven teams from 3 continents (31 participants) submit-
ted their work. The best achieving processing pipelines included a Riemannian geometry-based method.
Although better than the adjusted chance level (38% with an at 0.05 for a 3-class classification problem),
the results still remained under 60% of accuracy. These results clearly underline the real challenge that is
cross-session estimation. Moreover, they confirmed once more the robustness and effectiveness of Rieman-
nian methods for BCI. On the contrary, chance level results were obtained by one third of the methods—4
teams- based on Deep Learning. These methods have not demonstrated superior results in this contest
compared to traditional methods, which may be due to severe overfitting. Yet this competition was the
first step towards a joint effort to tackle BCI variability and to promote good research practices including
reproducibility.

9.3.2 Exploring new EEG features

The next perspective I identified in order to tackle EEG signal non-stationarity to improve physiolog-
ical computing and passive BCI, is to evaluate the usefulness of potential new EEG features. First, as

Figure 9.6 – Competition database made publicly available on Zenodo (Hinss et al., 2021a) - screenshot
from the 8th of June 2022.
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part of the Concorde project (with Dr Emilie Jahanpour as post-doctoral fellow) together with Dr Charles
Poussot-Vassal we are interested in evaluating the potential use of tools derived from the linear alge-
bra and control communities to perform EEG feature extraction. Hence, we have started to apply signal
modeling methods classically used to model air flows in aeronautics in order to model the EEG signal and
to be able to extract frequency characteristics which, to our knowledge, have not yet been explored for
applications in neuroscience and human factors (Poussot-Vassal et al., 2017). Indeed, the method used,
based on the model of Antoulas et al. (2018), has never been applied to EEG data and could be a promising
technique. Envisaged features are the dynamical model pulsation, damping and decay rates and related
residuals. The latter are easily derived from linear dynamical models and may be relevant to classify users.
Of course as a preliminary study, this remains to be clarified and more deeply explored.

Second, within the ANITI project (for which I am co-chair of the Neuroadaptive technology chair led
by Pr Frédéric Dehais) together with my colleague Dr Nicolas Drougard we are supervising Ms Xiaoqi Xu
for her PhD on the extraction of new EEG features using mathematical tools. The main idea is to assess the
usefulness of EEG features that could be extracted using i) geometrical, ii) topological and iii) analysis
tools for cross-session classification for both active and passive BCI applications using publicly available
datasets. The approach used here is to go from rigid spatial structures to flexible time-independent features.

These three main ideas are briefly detailed hereafter:

1. Spatial filtering: The first tool investigated consists in decomposing EEG signals spatially using a
Laplacian of the montage mesh and to reduce the dimension of the data by truncation. The eigen-
vectors of the Laplace-Beltrami operator form an orthonormal basis for square-integrable functions
over the scalp and capture the geometry of electrodes’ position in a hierarchical way. The signals
are decomposed into different spatial frequency components by the projection into the eigenspaces
of the Laplace-Beltrami operator. Dimensionality reduction could be done by using only the low
frequency components. This method was compared with Principal Component Analysis (PCA) fil-
tering on publicly available motor imagery BCI data and achieved comparable results while being
unsupervised, data independent and requiring 33.7% less computation time (Xu et al., 2021a).

2. Topological Data Analysis: The second envisaged tool is the application of topological data anal-
ysis (TDA) to EEG data. Indeed, TDA enables to analyse and understand data from a different
angle than traditionally used methods, being a sort of geometry without metric, as distance is
of no importance in topology, instead the whole theory is based on the notion of closeness. As
a higher dimensional analogy of graph analysis (that oversimplifies the interactions between neu-
rons by reducing them to nodes and edges), TDA can model rich interactions beyond pairwise
relations (by using higher dimensional representations called simplicial complexes; a set of points,

Figure 9.7 – From (Roy et al., 2022): a) Geographical origin of competition participants across the globe.
b) Number of submissions (and therefore teams) per country.

123



CHAPTER 9. PERSPECTIVES ON PHYSIOLOGICAL COMPUTING AS A NEUROERGONOMIC
TOOL

segments, triangles and their higher dimensional analogs). It also distinguishes different dynamics
of EEG time series. TDA remains largely unknown to the EEG processing community while we
believe it fits well the heterogeneous nature of EEG signals. A short review and information on how
to implement TDA for EEG analysis was published as a first step in this direction (Xu et al., 2021b).

3. Path signature: The third envisaged tool is path signature, thanks to a collaboration initiated by
X. Xu with Pr K. Hessel and Dr. D. Lee from EPFL. Analogous to the Fourier transform which
captures frequency information, path signature is a transformation of a time series that captures
order information. It is translation invariant which is an ideal property for EEG data that suffer
from variance between sessions and subjects. This tool therefore allows to extract features that are
flexible time-invariant measures.

Analyses are still undergoing, and only preliminary work has been achieved so far on these three tools.
Yet, we have high hopes that the assessment of new feature extraction tools could help in finding solutions
to the non-stationarity of EEG data for designing more robust BCI systems. This approach of tackling BCI
variabilities is further developed in the next section.

9.3.3 Tackling BCI variabilities

As already discussed earlier, whereas Brain-Computer Interfaces (BCI) are very promising for various
applications, e.g., brain-based wheelchair control or plane pilots’ mental state monitoring, they are not
reliable. Their reliability degrades even more when used across contexts (e.g., days, users’ states or appli-
cations used) due to various sources of variabilities. Unfortunately, such variabilities are 1) often ignored
in the literature, as most BCIs are assessed in a single context and 2) poorly understood. Thus, for BCIs to
fulfill their promises and be used outside laboratories, we need to make them robust to such variabilities. In
project PROTEUS we propose to do so by 1) Systematically measuring BCI and brain signal variabilities
across various contexts while sharing the collected databases; 2) Characterizing, understanding and mod-
elling the variability and their causes based on these new databases; and 3) Tackling these variabilities by
designing new machine learning algorithms optimally invariant to them according to our models, and using
the resulting BCIs for two practical applications affected by variabilities: tetraplegic BCI user training and
auditory attention monitoring at home or in flight.

Hence, going further to cope with EEG and BCI variabilities, together with colleagues from INRIA
Bordeaux (project leader Dr Fabien Lotte), Université PSL (Paris, partner leader Dr Florian Yger), and
a start-up called Wisear (partner leader Alain Sirois), we have submitted the PROTEUS project to the
French national funding agency (ANR; accepted to phase 2). Project PROTEUS full name is: "PROTEUS:
Measuring, understanding and tackling variabilities in Brain-Computer Interfacing". I am partner
leader for ISAE-SUPAERO (with my colleague Pr Frédéric Dehais as collaborator), and leader for one
workpackage (WP1) dedicated to creating databases to be used for assessing the impact of various factors
on EEG signal. Should this project be funded, one PhD student and one engineer will be recruited at
ISAE-SUPAERO, whom I will supervise jointly with Pr Dehais and Dr Lotte. This section briefly details
the proposal summary, the main objectives of the project, as well as the state-of-the-art regarding current
knowledge on BCI variabilities. Next, the description of my workpackage is given.

Context and objectives

It has been widely reported that BCI performances suffer from strong variabilities, both between-users
and within-users (Fairclough and Lotte, 2020). In particular, EEG signals and BCI performances have
been reported to change a lot across days (Hinss et al., 2021b,a; Benaroch et al., 2021), users’ mental
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states (e.g., due to fatigue or stress Roy et al. (2013a); Talukdar et al. (2019)) and contexts (e.g., training
environment versus application use, or between applications Benaroch et al. (2021)) as well as environ-
mental noise (Dehais et al., 2019a). Thus, existing proof-of-concept BCIs that were studied on a single
session and context, i.e., most BCI publications, would have, most likely, much reduced performances if
used across sessions, contexts or applications scenarios, if not fail altogether. In other words, it is not clear
whether such proof-of-concepts would still work if used outside the lab in daily life situations (Chavarriaga
et al., 2017). As an example, in the cross-days workload EEG classification competition we organised in
2021 (Roy et al., 2022), many competitors obtained within-day accuracies >80%, but cross-days accura-
cies <50% (for a 3-class problem) or even at chance level. Frequent BCI recalibration for each session
or context would address this problem to some extent, but is very time consuming and inconvenient for
users. Adaptive approaches - recalibrating BCIs on-the-fly with incoming EEG data, or Transfer Learning
approaches (transferring features or classifiers across sessions)(Nam et al., 2018), could also reduce some
variability effects. However, it regularly fails (Rodrigues et al., 2019), and when, how and what to adapt
or transfer is still an open question (Nam et al., 2018). Moreover, both frequent recalibration and adaptive
classifier approaches can impede BCI user learning, due to providing users with continuously changing
feedback (BCI feedback being the classifier output) which is typically confusing (Müller et al., 2017).
Overall, these variabilities are a key issue preventing BCIs from being used on a day-to-day basis, outside
laboratories, for which no satisfactory remedy is available.

We argue that, to design variability-robust BCIs, we first need to measure, understand and model the
variabilities affecting BCIs. Then, based on these new models, we should be able to design BCI machine
learning (ML) algorithms that are optimally invariant to such variabilities and/or can handle them. This is
what we propose in this project, named PROTEUS in reference to the shape-changing greek god Proteus,
representing “constant changes” which we tackle in this project. To reach these objectives, we first pro-
pose to design and run BCI experiments under various types of variabilities, i.e., across days and contexts,
while also manipulating BCI users’ states, notably their fatigue level by varying time-on-task during BCI
experiments. We will also measure other users’ states that may cause variability, such as their workload or
stress levels using questionnaires. Note that in this project, we will focus in priority on within-user vari-
abilities, as they are much less studied than between-users variabilities (Grosse-Wentrup and Schölkopf,
2013; Jeunet et al., 2016), and are one of the main reasons preventing BCIs from being used in day-to-day
life outside the lab, even with user-specific BCI designs, as indicated above.

We will run such experiments for both aBCIs and pBCIs to identify and address variabilities shared
across different BCI paradigms designed with similar ML pipelines. In particular, in this project we will
focus on two concrete BCI paradigms: 1) Mental Task (MT)-based BCI (MT-BCI) for the aBCI, a promi-
nent type of BCI typically used for assistive technology and rehabilitation for motor impaired users; and
2) auditory attention decoding from EEG for the pBCI, an emerging type of BCI, with many promising
applications, such as the real-time monitoring of plane pilots’ perception or attention-decoding at home
for work efficiency improvement. From both BCI types, we will induce and measure the same variability
factors, in order to maximise the scope of the potential knowledge gain. The resulting databases - to be
shared open access - would enable us to quantify, characterise and model variabilities, both at the BCI
performance and EEG spatio-temporal characteristics levels. We will notably explore both univariate and
multivariate models, to identify the most relevant factors, their interactions, as well as to predict and ex-
plain BCI performances and EEG patterns variability according to such factors. These variability models
will then contribute to the design of new EEG ML algorithms that are specifically robust to such variabili-
ties. We will notably focus on Riemannian classifiers, which represent EEG signals as covariance matrices
and classify them using tools from Riemannian geometry. Such classifiers indeed proved to be the current
state-of-the-art classification approaches for both aBCI and pBCI, in numerous comparative studies and
international BCI competitions (Yger et al., 2016; Jayaram and Barachant, 2018; Roy et al., 2022). We
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will thus aim at designing Riemannian EEG classifiers that can handle variabilities using a model-based
approach. Developed models also come handy to design data augmentation schemes: we will design an
algorithm that generates new, unseen covariance matrices that present variability characteristics. Such an
algorithm will be useful to artificially increase the sample size, making it easier for the classification al-
gorithm to learn sources of variabilities. We will finally validate these new algorithms for practical BCI
applications, where variabilities should be addressed. We will focus on 1) training a tetraplegic user to con-
trol aBCI applications across days and contexts, notably outside the lab and 2) on pBCI design for auditory
attention decoding at home and in a real flight, outside the lab across days as well. In short, this project
aims at understanding and tackling variabilities in BCIs, from theoretical analyses to practical applications,
through algorithmic development.

WP1: measuring BCI variabilities

I will be the partner leader for this workpackage. In order to address the lacks in the literature re-
garding EEG/BCI signal variability identified in the state-of-the-art section, this WP aims at collecting
datasets to be used by the following WPs to understand BCI variabilities and explore algorithmic solutions
to tackle them. We will notably design two experimental campaigns in order to acquire EEG/BCI data from
healthy users to study variabilities across sessions (6 sessions), within sessions (time-on-task) and due to
environment (laboratory/low stimulating setting vs simulator/highly stimulating setting); one experimental
campaign per BCI type: aBCI (mental tasks BCI) and pBCI (auditory attention monitoring). The pBCI
experimental campaign will comprise 6 sessions per participant, with half in a laboratory/low stimulation
setting (i.e. computer task in a cubicle), and the other half in a simulator/high stimulation setting (i.e.
motion flight simulator; Fig. 9.8). Each session will be composed of 6 blocks with 3 blocks of a simple
auditory attention task called ‘oddball paradigm’ that will alternate with 3 blocks of radio-communications
presented binaurally. These auditory tasks will be performed either along with a simplified flying task us-
ing the Multi-Attribute Task Battery (MATB-II) in the laboratory condition or along with a navigation task
in the ISAE-SUPAERO motion flight simulator.

Regarding the aBCI campaign, it will be based on a mental-task-based BCI (MT-BCI) that the partic-
ipants will control using 3 MTs, namely, left-hand motor imagery, mental calculation and mental rotation
of a geometric figure. As for the aBCI campaign, it will comprise 6 sessions per participant with half in

Figure 9.8 – The gradient of experiments ranging from lab, flight simulator (WP1) to real-flight settings
(WP4) to tackle passive BCI-variability related issues - The participant will perform an auditory alarm
detection task or a communication identification task along with a simulated (dynamic microworld, motion
flight simulator, WP1) and real flying task (WP4).
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a low stimulation setting, and the other half in a high stimulation setting. Each session will be composed
of 6 blocks, 2 calibration blocks, used to calibrate the BCI classifier on that session data, and 4 subsequent
training blocks in which the calibrated BCI will provide online real-time feedback. In addition, for both
campaigns, participants will have to answer questionnaires -assessing their sleepiness, mental fatigue, and
mental load. In both campaigns, each BCI session will also start by recording a 3 minutes EEG baseline
with the user at rest. Such data could indeed be used to capture session-specific neurophysiological vari-
ability. 40 participants per campaign are planned to be recruited amongst research personnel and students
via both printed and online advertisements, for a total of 480 sessions that will constitute the pBCI (240
sessions) and the aBCI (240 sessions) databases. Moreover, EEG/BCI databases capturing various variabil-
ities will be shared open-access with the BCI community (e.g. on Zenodo and MOABB) and a competition
will be organised using the acquired databases to invite the whole BCI community in partaking in this
challenge to develop BCI pipelines that are robust to the induced variabilities.

9.3.4 Tackling end-user training

Figure 9.9 – BCI Endeavour logo as submitted to the 2020 CHIST-ERA call (design by Dr Camille Jeunet).

Another important perspective is that of tackling end-user training (which is of particular interst for ac-
tive BCI applications) as a way of dealing with EEG non-stationarity arising from poor user performance,
for improving BCI performance across time. This is the goal of the BCI Endeavour project initiated and led
by Dr Camille Jeunet from CNRS Bordeaux, and for which I am a partner. The BCI Endeavour project is
a large-scale, collaborative and open user-centred endeavour to understand and improve BCI learning.
Its goal is mainly to address the issue of poor out-of-the-lab performance of current non-invasive active
Mental-Task (MT; e.g. mental calculus or motor imagery) BCI systems, thanks to end-user training (see
logo on fig. 9.9). As detailed in the submitted abstract (Jeunet et al., 2020), and the research proposal
submitted to the 2020 CHIST-ERA call (rejected), our vision for this project is to truly understand how
brain-computer interface (BCI) end-users learn to self-regulate specific brain activity patterns to control
Mental-Task based BCIs (MT-BCI). We aim to uncover the factors that cause intra- and inter-subject vari-
ability, in order to design innovative machine learning algorithms and end-user training procedures that
will overcome the so-called “BCI inefficiency” (10 to 30% of people cannot control an MT-BCI) and the
limited translation of BCIs for widespread use, which has persisted for too long.

MT-BCI progress and transfer is hindered by current research being machine-centred, performed at a
limited-scale, with small samples and limited sessions, with lacks full disclosure of the protocols that limit
data (re)usability. This project’s mission is to realise a sea-change shift of BCI research, putting end-users
at the centre of BCI development, on a very large-scale, collaborative and open approach, to understand
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MT-BCI end-user learning and design efficient and fully utilisable BCI applications. To do so we will:

1. Collectively, involving 25 labs, design and implement a unified and long-term (20 sessions) MT-BCI
training protocol that we will disseminate as an open-source software (integrated in OpenViBE);

2. Create an open and sustainable science toolkit comprising the largest and most comprehensive MT-
BCI dataset ever (2,500+ sessions, i.e., 500,000+ EEG trials and information on user profiles) and
signal processing tools that will make the dataset usable substantially beyond the funding period;

3. Exploit this database to model MT-BCI end-user learning, design novel artificial intelligence, and
particularly, machine learning algorithms and disseminate concrete recommendations for MT-BCIbased
non-clinical applications;

4. Involve patients, caregivers and health-care professionals in a participatory-design approach, assess
their needs and learning specificities in order to provide recommendations on how to adapt MT-BCI
procedures to clinical populations with a deficiency-based, trans-diagnostic approach.

Twenty-five laboratories support this project, with colleagues working in BCI from France, Switzer-
land, Poland, the Czech Republic and Spain. They will take part by collecting MT-BCI data (at least
100 sessions each) to be shared on the open database that will be hosted on a secure platform (IDRIS,
CNRS). BCI-Endeavour will have a transformational impact both on the community -by promoting end-
usercentred, open and collaborative research- and on technology and knowledge-transfer -by providing a
sustainable asset enabling the design and assessment of novel human and machine learning solutions. Al-
though disappointed by the rejection of our first proposal, we have resubmitted BCI Endeavour to a national
grant to prepare our next submission to a European Doctoral Network call in November 2022.

9.4 Maneuvering a research practice & focus shift

Although having been granted amazing supervisors and supervisees who have enabled me to work on
exciting topics, I have been growingly feeling dissatisfied as regards the usefulness of my work which up
until now has mainly focused on developing characterization tools for and with highly complex systems
with a high environmental as well as economic cost. Hence, I have given myself two main objectives for
the coming years, namely to try and maneuver: i) a change in my research practices, and ii) a change in my
research focus.

Regarding a change in research practice –in addition to personal lifestyle issues–, I am mostly plan-
ning to pursue my reducing missions’ number, means and distance, but also to reuse equipment already
available rather than contributing to the accumulation of equipment by buying new ones. The goal is to
make the most of what is available. This raises the issue of publicly available databases. Although these
databases are paramount for achieving reproducibility and repeatability in experimental research, to my
knowledge their ecological impact remains to evaluate. In particular, it reduces the need for multiple labs
to run the same experiments over and over again, yet anyone can publish such databases as they are not
peer-reviewed. Therefore, the absence of regulation on which databases to stock online seems an issue to
me. Another step would also be to try and reduce the use of sensors as much as possible for our character-
ization studies with a back to basics approach.

This leads me to the change in focus I would like to try and operate. Since my early childhood, in ad-
dition to the aerospace domain –which I have been lucky to approach thanks to ISAE-SUPAERO, funding
agencies and colleagues– I have always been fascinated by two other domains, namely anthropology and
linguistics. If given the opportunity, I would be particularly interested to work on tool use (low tech tool
use included) with a more fundamental approach, much as what has been done on the cognitive study of
human tool use and technology by Osiurak and Heinke (2018). The evaluation of the impact of uncertainty
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on tool use is of particular appeal to me as well. Moreover, I would very much like to develop my work on
BCI towards clinical applications, i.e. towards more active and communication BCI applications, includ-
ing language applications, by focusing on augmentative and alternative communication BCI systems for
individuals with disabilities (severe speech and physical impairments; Akcakaya et al. 2013).

At this stage, I am still looking for guidance and need more time to delve into the literature of these
domains. Nevertheless, I do hope that I will be able to submit projects that would be more in line with
these research practice and focus approaches in the coming years (green projects to be defined, Fig. 9.1), if
only to reduce my current cognitive dissonance state. In a less pessimistic light, I also hope to participate
at my own level in a global awareness and collective action.
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9.5 Conclusions

Une bonne HDR est une HDR écrite.
A good HDR is a written HDR.

Unknown sources

This section was intended to provide the reader with a sneak peek at research perspectives I envision
for the coming years, including recently initiated projects and submitted ones, but also blurry projects that
need to be refined by taking the time to refocus and change my activities. I hope to have clearly conveyed
how together with colleagues we have started to tackle the four challenges identified in the introduction.
Yet, it is just the beginning. Writing this thesis has been difficult in some aspects; finding the time was
the main issue. This is especially true for I would have loved to dig deeper into research reflections, in
particular for future work. Yet, as frequently heard in research laboratories: a good HDR is a written HDR.
This exercise is in fact quite an administrative one, and research questions will be addressed in the coming
years and need not be exhaustively described here. Nevertheless, I do hope that this document was not too
tedious to read, that I managed to synthesize a bit my activities, and that my work did interest you at least
in part. Again, I want to stress that none of this work would have been possible without my supervisors
who trained me, without my colleagues who support me and bear with me on a daily basis, and above all,
without my supervisees who perform most of the work.

The main conclusions of the perspective part can be summarized in the list below, followed by the list
of the few publications that arose from the preliminary work presented in this section. Lastly, the next part
of the thesis will present the 5 articles I believe best illustrate my work.

Research perspectives

— Working on operator’s engagement and performance assessment during human-robot inter-
action in collaborative and mobile settings is my first research perspective, funded thanks to
projects EPIIC, ATARRI, and TELECOG.

— EEG non-stationarity is a major issue for BCI design, and is the focus of my second main
research perspective work, funded thanks to projects ANITI, PROTEUS, and BCI Endeavour.

— Further, I plan to work on changing my research practices as well as research focus in the
next 3 years.

• Publications on preliminary work:

[1] Lefebvre, M, Bolina-Rei, J., Contreras, E., Roy, R.N. & Peysakhovich, V. (2022) Body tilt impacts
operators’ perception of remote object’s orientation. Int Astronautical Congress, Sept. 2022, Paris, France.

[2] Roy, R. N., Hinss, M. F., Darmet, L., Ladouce, S., Jahanpour, E., Somon, B., Xu, X., Drougard, N.,
Dehais, F. & Lotte, F. (2022) Retrospective on the first passive brain-computer interface competition on
cross-session workload estimation. Front. Neuroergon., 3:838342.

[3] Xu, X., Drougard, N. & Roy, R. N.(2021) Topological data analysis as a new tool for EEG processing.
Front. Neurosci., 15:761703.
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[4] Hinss, M., Somon, B., Dehais, F. & Roy, R. N. (2021) Open EEG Datasets for Passive Brain-Computer
Interface Applications: Lacks and Perspectives. IEEE Neural Engineering Conference.

[5] Hinss, M. F., Darmet, L., Somon, B., Jahanpour, E., Lotte, F., Ladouce, S., & Roy, R. N. (2021).
An EEG dataset for cross-session mental workload estimation: Passive BCI competition of the Neuroer-
gonomics Conference 2021 (V2) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.5055046

[6] Xu, X., Drougard, N. & Roy, R. N. (2021) Dimensionality reduction via the Laplace-Beltrami operator:
Application to EEG-based BCI. IEEE Neural Engineering Conference.

[7] Jeunet, C., Benaroch, C., Cabestaing, F., Chavarriaga, R., Colamarino, E., Corsi, M.-C., Coyle, D., De
Vico Fallani, F., Enriquez-Geppert, S., Figueirédo, P., Grosse-Wentrup, M., Kleih, S., Kober, S., Kübler,
A., Lotte, F., Maby, E., Mattia, D., Mattout, J., Müller-Putz, G. R., Perdikis, S., Pillette, L., Riccio, A.,
Rimbert, S., Roc, A., Roy, R. N., Scherer, R., Seguin, P., Si-Mohammed, H., Tanaka, T., Tangermann, M.,
Tonin, L., Vourvopoulos, A., Vuckovic, M., Wood, G., Wriessnegger, S. (2020) A user-centred approach
to unlock the potential of non-invasive BCIs: An unprecedented international translational effort. CHIS-
TERA, Oct. 2020.

[8] Poussot-Vassal, C.*, Roy, R. N.*, Bovo, A., Gateau, T., Dehais, F. & P. Carvalho Chanel, C. (2017)
A Loewner-based Approach for the Approximation of Engagement-related Neurophysiological Features.
IFAC Conference, Toulouse, France, 2017, July.
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Chapter 10

Article 1: Passive brain-computer
interface in realistic settings

Article that exemplifies the work I performed during my post-doctoral fellowship at ISAE-SUPAERO
on a comprehensive neuroergonomic approach to inattentional deafness and passive BCI implementation
in realistic settings.
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A B S T R A C T

Inattentional deafness can have deleterious consequences in complex real-life situations (e.g. healthcare, avia-
tion) leading to miss critical auditory signals. Such failure of auditory attention is thought to rely on top-down
biasing mechanisms at the central executive level. A complementary approach to account for this phenomenon is
to consider the existence of visual dominance over hearing that could be implemented via direct visual-to-
auditory pathways. To investigate this phenomenon, thirteen aircraft pilots, equipped with a 32-channel EEG
system, faced a low and high workload scenarii along with an auditory oddball task in a motion flight simulator.
Prior to the flying task, the pilots were screened to assess their working memory span and visual dominance
susceptibility. The behavioral results disclosed that the volunteers missed 57.7% of the auditory alarms in the
difficult condition. Among all evaluated capabilities, only the visual dominance index was predictive of the miss
rate in the difficult scenario. These findings provide behavioral evidences that other early cross-modal com-
petitive process than top down modulation process could account for inattentional deafness. The electro-
physiological analyses showed that the miss over the hit alarms led to a significant amplitude reduction of early
perceptual (N100) and late attentional (P3a and P3b) event-related potentials components. Eventually, we
implemented an EEG-based processing pipeline to perform single-trial classification of inattentional deafness.
The results indicate that this processing chain could be used in an ecological setting as it led to 72.2% mean
accuracy to discriminate missed from hit auditory alarms.

1. Introduction

Since the pioneering work of Cherry [1] on dichotic listening, sev-
eral studies have confirmed and expanded the findings that fully per-
ceptible auditory stimuli can remain undetected under perceptual and
attentional demanding settings. Echoing elegantly with the famous in-
attentional blindness paradigm of Simons and Levins [2], Dalton and
Fraenkel [3] have shown that participants might experience inatten-
tional deafness by failing to notice the sentence “I am a Gorilla” while
attending to an auditory conversation. The occurrence of this phe-
nomenon has also been demonstrated in music listening, whereby some
listeners were unable to report a salient electric guitar solo embedded in
the XIXth century “Thus Spoke Zarathustra” lyrics poem [4]. Cross-
modality interactions are also known to induce inattentional deafness
and drive some relevant research on this topic. Accordingly, there is
now a solid corpus of evidence that the detection of auditory cues may
be impaired when engaged under visually demanding settings [5–7,67].

These studies provide valuable explanations to conceptualize at-
tentional failures to auditory alarms that have been reported in complex

real-life situations [8]. This is particularly true in aviation whereby
safety analyses have reported absence of response to auditory alarms as
a causing factor to several accidents [9,10]. For instance, the co-pilot of
the ill-fated Air France flight 447 from Rio de Janeiro continued to put
the aircraft into a steep climb instead of descending, despite more than
70 audible stall warnings [11]. Some experiments conducted in realistic
flight simulators [12–14] and in actual flight conditions [15] confirmed
that inattentional deafness could indeed occur in the cockpit at an early
perceptual [16,17] or at a later attentional stage [18].

It is generally admitted that the existence of limited cognitive re-
sources at a central level may account for transient attentional im-
pairments [19–22] such as inattentional deafness [6]. Accordingly, in-
dividuals with a higher pool of central resources – as measured by
working memory span – tend to exhibit better divided and sustained
attentional abilities [23,24] and should be more likely to detect un-
expected events during highly demanding tasks. However, the authors
reported an absence of correlation between individual working memory
capacity and inattentional deafness [25]. The latter concluded that
their results appealed in favor of the attentional set theory [26] which
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stipulates that only task relevant stimuli are attended to and conse-
quently processed. One could envisage the implementation of shielding
mechanisms controlled at a central level to save the future efforts re-
quired to perform the task at hand and hence avoid resource depletion
[22,27]. These mechanisms described by Hancock and Warm [28] and
Hockey [29], may lead one to think that the brain enters a “fail-safe
mode”, limiting the access to the pool of resources to process un-
expected signals such as auditory ones.

A complementary hypothesis that has not yet been considered to
account for inattentional deafness could be linked to the existence of
visual dominance over hearing mechanisms [30–32]. Accordingly, a
recent experiment reported a superior ability to inhibit irrelevant spa-
tial auditory distractors when processing visual targets than the oppo-
site [33]. The authors argued that the existence of direct visuo-auditory
pathways [34–36] could underpin the modulation of auditory proces-
sing. Since flying mainly involves the processing of visual cues (e.g.
gauges, out of the window environment), it is more likely that pilots are
biased to rely on these latter than on auditory ones when facing critical
situations [37]. To the authors’ best knowledge, no study has yet at-
tempted to validate the hypothesis of such interactions between visual
and auditory modalities, especially in ecological settings.

Beyond the understanding of the mechanisms underpinning in-
attentional deafness, there is a need to implement online mental state
monitoring based on neurophysiological measures to detect the occur-
rence of this phenomenon. Tremendous progress has been achieved
using cerebral measures to infer cognitive state using processing pipe-
lines called passive brain-computer interfaces (pBCIs; [74]). In labora-
tory settings, EEG-based passive BCIs have enabled researchers to ac-
curately estimate various mental states of interest for transportation
applications, such as mental fatigue and cognitive workload [69].
Previous research indicated in particular that this approach successfully
led to classify auditory processing at the single trial level in an oddball
paradigm (e.g. frequent versus rare sounds; [38]) and in an absent versus
present auditory sound paradigm under flight simulator and real flight
settings [39].

In the present paper, we report the results from a study dedicated to
1) assess the visual dominance over hearing hypothesis as a predictor of
failure of auditory attention, 2) to identify electrophysiological corre-
lates of inattentional deafness and 3) to implement a passive BCI to
detect alarm misperception. To meet these goals, the volunteers were
asked for their flight experience (number of flying hours) and screened
with two cognitive tests dedicated to assess their working memory span
and their visual dominance over hearing index respectively. Pilots were
then placed in a motion flight simulator and faced low and a high
workload flying scenarii while responding to rare auditory targets
(Oddball paradigm). In the low workload scenario, the participants had
to supervise the flight trajectory controlled by the auto-flight system. In
the high workload scenario, they had to perform a critical landing with
no visibility and smoke in the cabin to simulate a fire. An expert pilot,
silently observing the participants, was also left seated in the simulator
as an additional stressor. We hypothesized that the difficult scenario,
combining high visual task demand and psychological stress, would
affect both early and late auditory processing to an extent that it would
yield to a high auditory alarm miss rate. This latter point was of im-
portance so as to conduct electrophysiological-based sound detection
analyses and to train a classifier to detect inattentional deafness.

2. Material and method

2.1. Participants

Thirteen healthy male pilots (mean age= 26.3 years, SD= 5.2;
flight experience=81.1 h, SD=43.8), all French defense staff from
Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)
campus, were recruited by local advertisement and did not receive any
payment for their participation. They all reported normal or corrected-

to-normal vision and normal audition. Typical total duration of a sub-
ject’s session (informed consent approval, practice task, and real task)
was about two hours and a half. This work was approved by the Inserm
Committee of Ethics Evaluation (Comité d’Evaluation Ethique de
l’Inserm—IRB00003888 - 18-460).

2.2. Working memory and visual dominance assessment

The subjects were asked to perform two neuropsychological tests.
These tests consisted of a working memory test (N-back task), and a
spatial audiovisual conflict test to derive a visual over hearing dom-
inance index.

2.2.1. N-back task
This test has been applied using the neuropsychological testing

battery PEBL® [75]. The stimuli were presented on a computer screen,
and consisted in the appearance of successive letters every 3 s in the
center of the screen along with the same letter pronounced in a head-
phone (see Fig. 1). The participants had to press the left "Shift" key
when the current letter was identical to the N-2 one (2-back). The
subject then had to repeat the experiment with no more letters, but a
square moving in a 3 * 3 square grid. When the square appeared twice
in the same box, the subject had to press the right "Shift" key.

2.2.2. Spatial audiovisual conflict task
The task design was adapted from Scannella et al. (2015). Stimuli

were delivered with Presentation software (Neurobehavioral system).
Auditory stimuli (i.e. 1000 Hz normalized pure tones at 78 dB SPL)
were presented using binaural headphones and visual stimuli (i.e. filled
white circles of 2-degree diameter), were presented at a constant angle
of 15 ° on the left or the right of a white central fixation cross on a MSI
17" monitor placed one meter in front of the participant. Auditory and
visual stimuli were presented simultaneously during 200ms and were
either on the same side (i.e. congruent trials), or on opposite sides (i.e.
incongruent trials; Fig. 2). The inter-trial interval was set to 2100ms
with a 500-ms jitter, while the white fixation cross remained always
visible. Behavioral responses (accuracy and reaction times) were re-
corded with a 2-button mouse (left button for left target; right button
for right target) across two blocks. In one block, participants had to
detect the presentation side of the visual stimuli while ignoring audi-
tory distractors; in the other block, they had to detect the auditory
stimuli while ignoring visual distractors. In both blocks, they had to
focus on the central fixation cross. The presentation order of the two
blocks was counterbalanced across participants. For each block, 60
congruent and 60 incongruent trials were presented resulting in two 5-
minute blocks.

Fig. 1. The N-back task – stimuli were either letters displayed in the center of
the 3*3 grid or a moving square. Here the condition is “N-1″ back.
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2.3. Flight simulator

The ISAE three-axis motion (roll, pitch, and height) flight simulator
designed by the French Flight Test Center was used to conduct the
experiment (Fig. 3). It simulates a twin-engine aircraft flight model and
the user interface is composed of a Primary Flight Display, a Navigation
Display, and an upper Electronic Central Aircraft Monitoring Display
page. The flight simulator is equipped with classical actuators such as
the sidestick, the rudder, the throttle, the flaps levers and a complete
autopilot to control the flight. Two stereophonic speakers, located
under the displays on each side of the cabin, were used to broadcast
continuous radio communications, engine sounds (77 dB SPL), and to
trigger the oddball sounds (90 dB SPL).

2.4. Flying scenarii

The participants performed one low and one high workload scenarii
along with a classical oddball paradigm with a total of 400 auditory

stimuli: 20% were targets (i.e. 80 sounds) and 80% were non-targets
(i.e. 320 sounds). Two types of sounds were used: one pure tone at
1000 Hz and one pure tone at 1100 Hz, both normalized at 90 dB SPL.
Half of the volunteers had the 1000 Hz tone as a target and the 1100 Hz
tone as a distractor whereas the other half had the opposite. Stimuli
were presented through the simulator sound system at a random time
interval of 2–5 s (mean=3.5 s) resulting in a total of two 24-minute
sessions. The volunteers had to ignore the frequent non-targets and
used the trigger of the side-stick to respond to the auditory targets only.
The order of the two scenarii was counterbalanced across participants.
The participants were expressly asked not to prioritize on a specific task
(flying or responding to alarms) and that their performance level was
calculated based on both their flying accuracy and hit rate. A former air
force pilot was right seated during the two flying conditions. He did not
perform any actions and was silently observing the participants. These
latter were told that this expert pilot’s judgement was used to evaluate
their behavior and performance. The presence of the expert pilot was
used as an additional stressor to induce social pressure [40]. Indeed, the

Fig. 2. Spatial audiovisual conflict task. Stimuli (sounds and white circles) were presented either on the same side (congruent trials) or on opposite sides (incongruent
trials).

Fig. 3. ISAE-SUPAERO three axis motion flight simulator. The participants were left seated and equipped with a Biosemi 32-electrode EEG system.
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feeling of being observed and evaluated by one’s peers is known to
increase anxiety [41,42] that in return negatively affect attentional
control [43]. It was expected that this deleterious effect on attentional
abilities would be magnified in the high workload scenario and con-
tribute to induce inattentional deafness.

2.4.1. Low workload scenario
This scenario was the reference flight. In this experimental condi-

tion, the autopilot was engaged to level off the plane at a constant
speed. The only task for the pilot was to respond to the auditory target
stimuli while supervising the flight trajectory.

2.4.2. High workload scenario
The pilot had to perform a night approach and landing on the

runway 14R at Toulouse Blagnac airport (France) while facing a cabin
fire that was simulated using a Power Lighting Fogburst 600W gen-
erator and a flashing red light. The aircraft position was initialized 20
nautical miles (nm) from the airport at an altitude of 4000 feet, a
heading of 310° and a speed of 170 knots (kts). The volunteers had to
steer 200° while descending to an altitude of 3000 feet. When reaching
a 12-nm distance from the airport, participants had to turn to the west
(heading 270°) until they intercepted the runway axis using the in-
strument landing system. Once intercepted, the pilots had to take a
heading of 144° in order to line up with the center line of the runway.
At 5 nm from the landing ground, they had to reduce speed to 130 knots
to initiate the final descent. The presence of an airplane on the runway
required the pilots to perform a go around and to circle around at an
altitude of 2500 feet to realign on the runway axis and try to land again.
The visibility was bad, causing the airport to appear and disappear
several times between the cloud layers.

2.5. Protocol

Once the participants were told about the purpose of the experiment
and signed the informed consent, they first started to complete the two
cognitive tasks (N-back task and Spatial audiovisual conflict task). The
order of these two cognitive tasks was counterbalanced across partici-
pants. The volunteers were then introduced to the flight instructor who
trained them for a 30-minute session to handle the simulator and to
perform several manual approaches and landings. The participants
were also trained to perform the oddball task for 5min. After the
training was completed, the EEG and the ECG electrodes were respec-
tively placed on the volunteers’ head and torso. The experiment was
eventually started: the simulator motion was engaged to reproduce
realistic flight sensations, and a continuous radio communication was
also broadcasted to reproduce more ecological flight conditions. The
participants had to fly the two scenarii in a random order under the
silent supervision of the flight instructor.

2.6. Data acquisition and processing

EEG data were recorded continuously with the BioSemi ActiveTwo
EEG system (BioSemi, Amsterdam) from 32 active Ag-AgCl scalp elec-
trodes positioned according to the International 10/20 system, at a
512 Hz sampling rate and with a 0–104 Hz band-pass filter. During the
experiment, electrode offsets were kept under 20mV as recommended
by the manufacturer. The data were then re-referenced offline to the
algebraic average of the left and right mastoids, down-sampled to
500 Hz, and filtered with a band-pass FIR filter of 0.1–40 Hz. An in-
dependent component analysis was performed using the RUNICA
function with EEGlab (13.4.4b version) to isolate and reject eye blinks
and movements. Data were later segmented into 1200ms epochs
starting 200ms before the onset of each sound. Then, ERPs were
computed with a baseline correction using the first 200ms (i.e. pre-
stimulus activity).

Two external EEG channels were additionally used to measure the

heart rate (EX7 placed on the left clavicle and EX8 placed on the left
ribs of the participants). The R-R intervals of the raw ECG signal were
then detected using the build-in QRS detection algorithm of Kubios
HRV software [70]. All the recordings were manually revised for missed
or false positive R peak detections. We eventually computed the
average Heart Rate (HR, in beat per minute) for each scenario and
participant.

2.7. Analyses

Electrophysiological statistical analyses were carried out using the
built-in EEGlab permutation test. P-values were adjusted using the false
discovery rate (FDR) corrections. All other statistical analyses were
carried out using Statistica (V10, StatSoft). The p-value threshold for
significance has been set to 0.05 if not otherwise mentioned. When
appropriate, post-hoc comparisons have been carried out using the
Tukey’s Honestly Significant Difference test. Correlational analyses
were conducted using Pearson correlation test.

2.8. Flight performance

Participants’ ability to succeed in landing the airplane was used as a
binary performance index. Indeed, the scenario was designed in such a
way that any deviation from the flightpath would lead the pilots not to
reach the runway threshold on time.

Visual dominance index (Vdi): This index was meant to represent
the propensity to be less distracted by auditory information when
paying attention to visual ones than the opposite [33]. It has been
calculated as the reaction time cost difference between the time to
detect an auditory target (Ainc) and the time to detect a visual target
(Vinc) in audiovisual incongruent trials: Vdi=Ainc – Vinc.

2.8.1. N-back accuracy
N-Back accuracy scores were averaged for each subject within each

difficulty level.

2.8.2. Oddball accuracy
A two-tailed t-test was carried out on the number of missed auditory

targets between the low and high workload scenarii to evaluate the
impact of scenario difficulty on the detection rate of auditory alarms.

2.8.3. Auditory miss rate correlations
A linear multiple regression analysis with the flight experience, the

visual dominance index and the working memory score within the high
load scenario was conducted to find out which of the flying experience,
the visual dominance susceptibility or the working memory ability was
the most predictive of the auditory alarm miss rate.

2.8.4. ECG
To evaluate the impact of scenario difficulty over the heart rate as

computed from the ECG signal, a two-tailed t-test was carried out on the
whole flying scenario between the low and high workload scenarii.

2.8.5. Group ERP analyses
Point-by-point permutation tests from EEGLAB (v13.4.4b) were

used to analyze Hit (i.e. correctly detected target) versus Miss (i.e. un-
detected target) ERP component amplitudes for all 32 electrodes.

2.8.6. ERP classification analyses
A classification analysis was performed in order to determine

whether alarm misperception could be detected in a reliable fashion.
The main idea is to train a learning algorithm on a portion of the data
and then test it on the remaining data. Here we focused our work on a
single-trial classification, i.e. estimating from one single ERP whether
the alarm is missed or detected by the pilot. The processing chain – that
is to say the various algorithm parts- used to perform hit versus miss
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estimation was based on the ERPs of the target sounds and is described
hereafter. Initially, the first 500ms of the auditory ERPs were corrected
for ocular artifacts in an automated fashion using the SOBI algorithm
(Second Order Blind Identification) and the vertical EOG
(Electrooculographic) signal. The two sources that were most correlated
with the EOG activity were cancelled out. Next, the cleaned data were
decimated to 100 Hz and centered on zero. Then, they were spatially
filtered using a Canonical Correlation Analysis (CCA) filtering process
that is shown to increase discriminability for ERP-based BCIs [69,71].
Two CCA filters were used. Hence the features consisted of a vector of
100 points (2 filters*50 ERP time points). Lastly, these features were
classified using a Fisher Linear Discriminant Analysis with a shrinkage
estimation of the covariance matrices [72]. This was performed using a
10-fold cross-validation procedure in which an equal number of hits
and misses were systematically drawn to create the training (9 out of 10
subsets) and the testing sets (10th subset).

3. Results

3.1. Behavioral and physiological results

Scenario effect: We found that the target sound detection accuracy
was significantly affected by the scenario load with only 0.33%
(±0.47) of missed targets in the low load scenario compared to
57.73% (± 12.63) in the high load one (t= 15.73, p < 0.001, Cohen’s
d=-6.44) (Fig. 4).

3.1.1. Flying performance
All the pilots managed to land the aircraft on the runway prior to

the end of the experiment.

3.1.2. Linear regression analysis
Among the three auditory miss predictors that were tested (Fig. 5),

the visual dominance index was the only one that significantly corre-
lated with the percentage of missed auditory targets during the high
load scenario (semi-partial r= 0.57; t= 2.60; p < 0.05). This corre-
lation showed that the more the pilots can be distracted by the visual
distractor while responding to the auditory target in the audiovisual
conflict task, the higher the number of missed auditory alarms in the
high load flying scenario. The working memory ability and the flying
experience correlated only poorly and non-significantly with the

number of missed auditory targets (semi-partial r=-0.16; t= 1.48;
p=0.47 and semi-partial r=-0.32; t= 0.75; p= 0.17 respectively).

3.1.3. ECG results
The statistical analyses disclosed a significant effect of the scenario

difficulty over the cardiac activity t= 2.68; p < 0.05, Cohen’s
d= 1.06) with a higher average HR in the high workload scenario
(mean= 89.5, SD=17.2) than in the low workload one (mean=72.8,
SD=14.3).

3.2. Electrophysiological results

In the high load flying scenario, both auditory targets and dis-
tractors have elicited event related potentials with different compo-
nents. Among them we found characteristic auditory-related exogenous
(N100/P200) and endogenous (P3a and P3b) components (see Fig. 6).
The N100 reached its maximum mean amplitude around 116ms with a
fronto-central scalp distribution. The mean hit-related N100 amplitude
was significantly larger than the miss-related one (hit: -7.92 μV, miss:
-5.49 μV; p < 0.05, Cohen’s d= 0.65). Similarly, the P3a component,
with a centro-parietal distribution was maximum at 370ms for the hit
auditory targets and larger than the miss-related ones (hit: 2.48 μV,
miss: 0.65 μV; p < 0.05, Cohen’s d=0.62). Finally, the P3b compo-
nent amplitude was also affected by the detection type and led to a
maximum amplitude 450ms after the stimulus onset in the parieto-
occipital region. Its amplitude was significantly larger for the detected
sounds (2.99 μV) than for the missed ones (-0.25 μV; p < 0.001, Co-
hen’s d=1.28).

3.2.1. Single trial inattentional deafness classification
The classification pipeline that was used allowed us to obtain 72.2%

of correct classification of the hit and missed targets in average across
participants. This is significantly higher than the adjusted chance level
threshold of 59%, as computed to take into account the number of
available trials following Combrisson and Jerbi’s recommendations
[44]. Fig. 7 displays the spatial patterns of the filters used to enhance
the discriminability between the two classes (i.e. hit and miss). As
mainly illustrated by the first filter’s patterns, the electrode sites that
enable such a high classification accuracy are located at fronto-central
sites.

Fig. 4. Scenario effect over the oddball auditory target detection. The dots represent the mean accuracy over the group, the grey box and the whiskers respectively
represent the standard deviation and the 95% confidence interval.
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Fig. 5. Oddball accuracy during the high load scenario as a function of a. the visual dominance index in the spatial audiovisual conflict task, b. the working memory
ability and c. the flight experience. Semi-partial correlations are reported.

Fig. 6. Group ERP results. a. Averaged ERPs for hit and missed auditory targets in the difficult flying scenario at Cz (left) and Pz (right) electrodes. Shapes represent
the group standard deviations. Black lines at the x axis represent the significant differences between hit and miss (permutation test; p < 0.05; FDR corrected). b. 2-D
topographical views for hit and missed auditory targets at 116ms (up, N100), 370ms (left, P3a) and 450ms post-stimulus (right, P3b).
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4. Discussions

The objective of this paper was to study the inattentional deafness
phenomenon under ecological settings in the context of flying. A first
research question was to identify individual specificities that could
reveal evidences of visual to auditory dominance as a possible com-
plementary mechanism to account for inattentional deafness. A second
research question was to identify the electrophysiological correlates of
inattentional deafness to auditory alarm in the cockpit. Eventually, a
last question was to assess the reliability of an off-line processing pi-
peline dedicated to detect alarm misperception using electro-
physiological responses.

To meet this goal, the participants had to face two contrasted flying
scenarii in terms of difficulty while responding to auditory alarms. The
high workload scenario combined several stressors such as high cog-
nitive demand (landing with no visibility and windshear), aversive
stimuli (smoke in the cabin and flashing red light) and social pressure
with the presence of an expert pilot. Accordingly, psychophysiological
results disclosed that the HR was higher during the high workload
scenario compared to the low workload one hence reflecting increased
mental demand and psychological stress [12,45]. The behavioral results
showed the efficiency of the high workload scenario to promote high
rates of auditory misses (i.e. 57%) in comparison to the low workload
one. These findings confirmed that primary task difficulty [5,17,18,46]
as well as unexpected stressful situations [14] can elicit inattentional
deafness in the cockpit. Our experimental protocol can’t allow us to
conclude which of the stressors was the most efficient to distract the
pilots from processing the auditory alarms. Indeed, as we did not ma-
nipulate them separately, it is more likely that the combination of all
these stressors had the intended deleterious effects on auditory atten-
tional abilities [43].

This high rate of inattentional deafness allowed however to conduct
correlational analyses. The objective was to determine whether in-
dividual working memory, flying experience or visual dominance index
would predict occurrence of inattentional deafness. As hypothesized,
the working memory score did not predict the propensity to remain
aware of the auditory alarms. This result is in line with previous studies
that report an absence of relation between the working memory span
and the occurrence of inattentional blindness [25,47–49] or inatten-
tional deafness [25]. Though working memory capacity—as a measure
of cognitive resources at a central level—has been shown to be related
to individuals’ sustained and divided attentional performance
[23,24,50], this construct seems not appropriated to account for in-
attentional deafness. In line with Kreitz et al. [25], our results rather
advocate in favor of the attentional set theory [26]: cognition is goal-
directed and promotes the selection and the processing of task at hand
relevant stimuli. In our experiment, the participants were told that the
two tasks (i.e. flying and responding to auditory alarms) were of equal
importance but the behavioral results suggested that the volunteers

probably prioritized the flying task as they all managed to land the
aircraft while missing at least 20% of auditory alerts in the best case.
Pilots are highly trained individuals who are taught to prioritize tasks
according to the “first aviate, then navigate and eventually commu-
nicate” rule. The application of this rule can explain why our volunteers
may have naturally put more mental efforts on the flying task. The
flying task was naturally more challenging and rewarding from a pilot’s
perspective (i.e. night landing with smoke in the cabin with an ex-
perienced flight instructor on the right seat) and had immediate con-
sequences (i.e. missing the approach and the landing) contrary to the
achievement of the auditory alarm task itself. Consequently, and in
accordance with the attentional set theory, the participants were more
likely to process visual information in the cockpit and were less inclined
to respond to auditory targets. Such behavior well as the absence of
correlation between inattentional deafness rate and working memory
abilities could be predicted by the Compensatory Control Model [29].
This model postulates the existence of a motivational control me-
chanism that dynamically modulates mental effort to shield against
performance decline and resources depletion. It includes three decisions
units that are dedicated to select and hierarchize goals according to
their utility value (the goal regulation unit), to monitor the efficiency of
the on-going strategy (performance evaluation unit) and to increase or
maintain mental effort (effort regulation unit). The effort regulation
unit involves a compensatory allocation of resources, eventually
leading to increased level of effort budget to maintain high utility goals
that are compromised to the detriment of low priority ones. Indeed,
goals with high utility, such as operating the aircraft in our task, would
remain in place but with a higher level of mental effort to process visual
flight parameters. Thus, one has to consider that such resources allo-
cation is a dynamic process that could not depend on a structural
characteristic such as working memory.

Eventually, and in line with our hypothesis, visual dominance over
hearing mechanisms could provide complementary explanations to
account for this phenomenon. Indeed, the ability to respond to auditory
targets was biased by inter-individual cross-modality susceptibility: the
“more visual dominant” volunteers exhibited a higher miss rate than
the “less visual dominant” ones in the difficult scenario. These early
mechanisms could possibly be implemented via direct visual-to-audi-
tory connections [34–36] to modulate the auditory response at the
brainstem [50], the auditory cortex [33,37] and/or the auditory in-
tegrative levels [46]. The strength and the efficiency of these visuo-
auditory interactions may vary among individuals according to their
modality preferences that are known to impact their abilities to process
auditory or visual materials [51–55].

A second motivation of this study was to identify the electro-
physiological correlates of auditory alarm misperception. The high miss
rate in the difficult scenario allowed performing a miss versus hit
contrast. In line with Callan and collaborators [16], our findings dis-
close that the N100 amplitude was significantly reduced for misses

Fig. 7. Spatial patterns of the two CCA filters used to enhance discriminability between classes.
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compared to hits. This result shows that inattentional deafness to au-
ditory alarms can take place at an early perceptual stage or processing
as this component is the electrophysiological signature of stimulus de-
tection and processing in the primary auditory cortices [73]. This is also
consistent with a previous inattentional deafness fMRI study, using a
repetitive single tone auditory stimulus, that disclosed lower auditory
cortex activation during auditory misses in comparison to auditory hits
[17]. We found, in addition, that he processing of the auditory alarms
was also consequently affected at later attentional stages during in-
attentional deafness events. Indeed, the amplitude of two sub-
components of the P300, namely the P3a and the P3b, were sig-
nificantly diminished for misses relative to hits. On the one hand, the
P3a, also known as early novelty P3, is thought to reflect automatic
orientation and engagement of attention towards unexpected stimuli
[56]. On the other hand, the P3b, also known as late novelty P3, has
been proposed to account for stimulus recognition involving working
memory mechanisms (pattern matching and updating) [56,57]. This is
akin to previous inattentional deafness findings reporting lower audi-
tory-related P300 [18], P3a [46] and P3b [7] amplitudes associated
with the impaired processing of deviant sounds while performing a
demanding visual task. However, these authors did not perform hit
versus miss contrast as the miss rate was too low in their studies and
thus solely reported the deleterious effect of visual load on the global
(i.e. hits and misses averaged) auditory-related P300, P3a and P3b. We
hence confirm previous results and reconcile the literature by showing
that both early and late auditory processing stages are affected during
inattentional deafness events. In accordance with other authors
[16,17], our assumption is that inattentional deafness is related to the
lack of detection of the warning taking place at the early perceptual
level (as attested by the N100 effects). Hence, subsequent processing at
later attentional stages could be affected by this early effect (i.e. P3a
and P3b attenuation). The attenuation of the P3a and P3b amplitudes
also reveal that inattentional deafness could result from an inability to
automatically shift attention to the alarm that has been correctly de-
tected or from an inability to process and recognize the warning.

Eventually, our last motivation was to perform classification of EEG
features that reflect the auditory alarm misperception. To that end, we
implemented a signal processing chain that had proven its efficiency for
auditory evoked-potentials classification [69,71]. Thanks to this chain,
we achieved a satisfying accuracy of 72.2% of correctly classified hit
versus missed targets, a significantly higher accuracy than the adjusted
chance level (i.e., 59%). These results indicate that this chain could be
used in a quite ecological setting (i.e. a full motion flight simulator) to
detect the inattentional deafness phenomenon.

Mental state estimation is a growing research interest and although
high performance is reached nowadays in the laboratories, studies re-
main to be carried out to determine solutions for ecological settings. To
our knowledge, this study is the first demonstration that inattentional
deafness could be estimated in such settings. The natural next step is to
achieve an online estimation, i.e. to estimate the operator’s mental state
and potential misperception of alarms during the realization of the task.
Moreover, efforts should be spent to try and perform this estimation as
early as possible, that is to say using data that precedes the occurrence
of a stimulation (e.g. one minute or one second before the alarm is
triggered), as currently studied by Senoussi and collaborators [68]. In
this case we would predict rather than detect the occurrence of in-
attentional deafness. As a consequence, one could imagine the design of
an adaptive cockpit that would take the information of stress level and
inattention to alarms into account to implicitly adapt itself with a set of
counter-measures [58].

5. Conclusion and limitation of this study

This study demonstrates the importance of conducting neuroergo-
nomics experiments in ecological settings rather than in simplified la-
boratory settings. This approach contributes to the understanding of the

brain when facing critical real-life situations [15,16,59–61] and al-
lowed us to obtain high miss rates that could not be induced in la-
boratory conditions. In addition, our study is the first to report a re-
lationship between individuals’ visual dominance over hearing
susceptibility and failure of attention. This result opens promising
perspectives for human operator selection and the development of
cognitive training solutions to improve auditory abilities. Taken to-
gether, the behavioral and electrophysiological results of this experi-
ment bring insights on subtle competitive mechanisms taking place
from the perceptual to the later attentional stages. This study thus
brings clues that conciliate diverging studies attributing the inatten-
tional deafness phenomenon to pre-attentive [16,37] or attentional
processes [7,18,62]. Eventually, the finding of ERPs as a neural sig-
nature of inattentional deafness shows that they are good candidates as
features to detect the occurrence of missed alarms using passive brain-
computer interfaces and could be used to design adaptive “alarms” (e.g.
dynamic modification of the alarm modality) and feedback to mitigate
transient attentional impairments.

This study was a first step toward the identification of potential
behavioral and neural correlates of inattentional deafness and the im-
plementation of a pBCI. To meet this goal, the design of our protocol
relied on a compromised between ecological and controlled laboratory
settings. This approach has several limitations though. For instance, the
participants faced a high number of auditory targets, contrarily to real
operational situations. The high rate of these auditory alarms was
needed for our ERP analyses and machine learning purposes. The alarm
sound was also not a real cockpit alarm but a brief and pure tone to be
consistent with classical auditory oddball paradigm so as to elicit ty-
pical ERPs in a timely manner. Moreover, these alarms were not related
to the flying task per se: missing the alarms had no consequences on the
flight performance although it was mentioned that the global flight
appreciation would take the alarm hit rate into account. As a matter of
face, these frequent and “non-relevant” alarms were more likely to be
ignored by the participants. Eventually, our flight simulator did not
allow collecting flight parameters. This prevented us from analyzing
possible shared attentional strategies between the flying and the audi-
tory alarm detection tasks throughout the flight. Further experiments
should integrate more realistic alarms relevant to the flying task and the
analysis of the flight performance that could also be used to improve
the classification algorithm to predict inattentional deafness. Finally,
other experiments should investigate the effect of time-on-task on in-
attentional deafness as previous studies have shown that it can nega-
tively impair auditory processing [63].
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The assessment and prediction of cognitive performance is a key issue for any
discipline concerned with human operators in the context of safety-critical behavior.
Most of the research has focused on the measurement of mental workload but
this construct remains difficult to operationalize despite decades of research on the
topic. Recent advances in Neuroergonomics have expanded our understanding of
neurocognitive processes across different operational domains. We provide a framework
to disentangle those neural mechanisms that underpin the relationship between task
demand, arousal, mental workload and human performance. This approach advocates
targeting those specific mental states that precede a reduction of performance efficacy.
A number of undesirable neurocognitive states (mind wandering, effort withdrawal,
perseveration, inattentional phenomena) are identified and mapped within a two-
dimensional conceptual space encompassing task engagement and arousal. We argue
that monitoring the prefrontal cortex and its deactivation can index a generic shift
from a nominal operational state to an impaired one where performance is likely to
degrade. Neurophysiological, physiological and behavioral markers that specifically
account for these states are identified. We then propose a typology of neuroadaptive
countermeasures to mitigate these undesirable mental states.

Keywords: neuroergonomics, performance prediction, degraded attentional and executive mental states, task
engagement, mental workload

INTRODUCTION

A study of mental workload is fundamental to understanding the intrinsic limitations of the human
information processing system. This area of research is also crucial for investigation of complex
teaming relationships especially when interaction with technology necessitates multitasking or a
degree of cognitive complexity.

The Growth of Mental Workload
Mental workload has a long association with human factors research into safety-critical
performance (Moray, 1979; O’Donnell and Eggemeier, 1986; Hancock and Meshkati, 1988;
Hancock and Desmond, 2001; Wickens and Tsang, 2014; Young et al., 2015). Forty years have
passed since the publication of the seminal collection edited by Moray (1979) and the study of
mental workload remains an active topic in contemporary human factors research; a keyword
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search based on Google Scholar listed more than 200,000 articles
published on the topic since 2000, see also Table 1 in Young et al.
(2015). The significance of human mental workload for those
technological trends that are forecast during the second machine
age (Brynjolfsson and McAfee, 2014) guarantees its importance
for human factors research in future decades.

The lineage of mental workload incorporates a number of
theoretical perspectives, some of which precede the formalization
of the concept itself. Early work linking physiological activation
to the prediction of performance (Yerkes and Dodson, 1908;
Duffy, 1962) was formalized into an energetical model of
attentional resources (Kahneman, 1973) that emphasized a
dynamic relationship between finite information processing
capacity and variable cognitive demands (Norman and Bobrow,
1975; Navon and Gopher, 1979; Wickens, 1980). The descriptive
quality of the early work on attentional resources was sharpened
by cognitive models of control (Broadbent, 1971; Schneider
et al., 1984; Shallice and Burgess, 1993). Hybrid frameworks
that place cognitive processes within a resource framework
have been hugely influential in the field, such as the multiple
resource model (Wickens, 1984, 2002, 2008; Wickens and
Liu, 1988) whereas others introduced agentic features, such
as dynamic self-regulation and adaptation, within models of
human performance (Hockey et al., 1986; Hockey, 1997). For
instance, Hancock and Warm (1989)’s dynamic adaptive theory
(DAT) postulates that the brain seeks resource homeostasis
and cognitive comfort. However, environmental stressors can
progressively shift individual’s adaptive abilities from stability
to instability depending on one’s cognitive and psychological
resources. The DAT is an extension of the Yerkes and Dodson
inverted-U law, in a sense that very low (hypostress) and
very high (hyperstress) task demands can both degrade the
adaptability and consequently impair performance. All these
perspectives are united by a characterization of the human
information processing system as a finite resource with limited
capacity (Kramer and Spinks, 1991).

Mental Workload Measurement
Research into the measurement of mental workload has
outstripped the development of theoretical frameworks.
Measures of mental workload can be categorized as performance-
based, or linked to the process of subjective self-assessment,
or associated with psychophysiology or neurophysiology. Each
category has specific strengths and weaknesses (O’Donnell
and Eggemeier, 1986; Wierwille and Eggemeier, 1993) and the
sensitivity of each measurement type can vary depending on
the level of workload experienced by the operator (De Waard,
1996). The development of multidimensional measures led
inevitably to an inclusive framework for mental workload. The
cost of this integration is dissociation between different measures
of mental workload, e.g., Yeh and Wickens (1988), and an
integrated workload concept that remains poorly defined from a
psychometric perspective (Matthews et al., 2015).

There are a number of reasons that explain why mental
workload is easy to quantify but difficult to operationalize. The
absence of a unified framework for human mental workload,
its antecedents, processes and measures has generated a highly

abstract concept, loosely operationalized and supported by a
growing database of inconsistent findings (Van Acker et al., 2018).
The absence of a general explanatory model is complicated by
the fact that mental workload, like stress and fatigue (Matthews,
2002), is a transactional concept representing an interaction
between the capacities of the individual and the specific demands
of a particular task. Within this transactional framework, mental
workload represents a confluence between inter-individual
sources of trait variability (e.g., skill, IQ, personality), intra-
individual variation (e.g., emotional states, motivation, fatigue),
and the specific configuration of the task under investigation (see
also Table 2 in Van Acker et al., 2018).

For the discipline of human factors, the study of mental
workload serves two primary functions: (a) to quantify the
transaction between operators and a range of task demands
or technological systems or operational protocols, and (b)
to predict the probability of performance impairment during
operational scenarios, which may be safety-critical. One challenge
facing the field is delineating a consistent relationship between
mental workload measurement and performance quality on
the basis of complex interactions between the person and the
task. The second challenge pertains to the legacy and utility of
limited capacity of resources as a framework for understanding
those interactions.

In the following sections, we detail some limitations of mental
resources and advocate the adoption of a neuroergonomic
approach (Sarter and Sarter, 2003; Parasuraman and Rizzo, 2008;
Parasuraman and Wilson, 2008; Mehta and Parasuraman,
2013; Ayaz and Dehais, 2018) for the study of mental
workload and human performance. The neuroergonomic
framework emphasizes a shift from limited cognitive resources
to characterizing impaired human performance and associated
states with respect to neurobiological mechanisms.

Toward a Limit of the Theory of Limited
Resources
The concept of resources represents a foundational challenge to
the development of a unified framework for mental workload and
prediction of human performance. The conception of a limited
capacity for information processing is an intuitive one and has
been embedded within several successful models, e.g., multiple
resources (Wickens, 2002). But this notion has always been
problematic because resources are a general-purpose metaphor
with limited explanatory powers (Navon, 1984) that incorporate
both cognitive processes (e.g., attention, memory) and energetical
constructs (e.g., mental effort) in ways that are difficult to
delineate or operationalize. The allegorical basis of resources
almost guarantees an abstract level of explanation (Van Acker
et al., 2018) that is accompanied by divergent (Matthews et al.,
2015), and sometimes contradictory operationalizations (Yeh and
Wickens, 1988; Annett, 2002).

For example, the theory of limited cognitive resources predicts
that exposure to task demands that are sustained and demanding
can impair performance due to resource depletion via self-
regulation mechanisms at the neuron-level (i.e., local-sleep state
theory, see Van Dongen et al., 2011) or compromise access to
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resources mechanisms (Borragan Pedraz and Peigneux, 2016).
However, this type of explanation fails to clarify why non-
challenging tasks, such as passive monitoring (Matthews et al.,
2002, 2010) can promote episodes of mind wandering whereby
attention drifts from task-related to task-irrelevant thoughts
(Smallwood et al., 2008; Durantin et al., 2015; Smallwood and
Schooler, 2015). Although some propositions, such as the theory
of “malleable resources” (Young and Stanton, 2002), have intuited
this paradox, this theory is at a highly descriptive level and
remains difficult to operationalize.

Similarly, the occurrence of stressful and unexpected
operational scenarios is known to impair executive functioning
and provoke perseveration, see Dehais et al. (2019) for review.
Perseveration is defined as a tendency to continue an action after
cessation of the original stimulation, which is no longer relevant
to the goal at hand (Sandson and Albert, 1984). For example,
several studies conducted on emergency evacuation situations
reported irrational and perseverative behaviors even when tasks
were simple and undemanding (Proulx, 2001; Kobes et al., 2010).
A paradigmatic situation is the one in which people fail to
escape from fire because they push the door instead of pulling
it. Perseveration can also have devastating consequences during
safety-critical tasks, such as aviation (O’Hare and Smitheram,
1995; Orasanu et al., 1998; Reynal et al., 2017) and in the
medical domain (Bromiley, 2008). This category of performance
impairment cannot be explained solely through the prism
of limited mental resources. Operators who persist with an
erroneous strategy, such as an aircrew who attempt to land their
craft at all costs despite bad weather conditions, are generally
capable of performing the required actions and tend to invest
greater effort even as their task goal becomes difficult or even
impossible to achieve (Dehais et al., 2010, 2012).

The concept of limited cognitive resources could explain
failures of attention such as inattentional blindness (Brand-
D’Abrescia and Lavie, 2008) or deafness (Raveh and Lavie,
2015). Both categories describe an inability to detect unexpected
stimuli, such as alarms from the interface (Dehais et al., 2011,
2014), and represent breakdown of selective attention due to
the presence of competing demands on the human information
processing system. It has been demonstrated that individuals
with greater information processing capacity (i.e., higher working
memory span) exhibit superior ability with respect to divided
and sustained attention (Colflesh and Conway, 2007; Unsworth
and Engle, 2007), and therefore, should be less susceptible to the
effects of inattention during the performance of demanding tasks.
However, this hypothesis is contradicted by the absence of any
correlation between individual differences in processing capacity
and the occurrence of inattentional blindness (Bredemeier and
Simons, 2012; Beanland and Chan, 2016; Kreitz et al., 2016a) or
deafness (Kreitz et al., 2016b; Dehais et al., 2019).

This research suggests that the limited resource model cannot
account for critical lapses of attention and executive functioning
that are observed under conditions of high mental workload.
Therefore, we must go beyond the limitations of the resource
concept as an explanatory model of mental workload and turn
our attention to the neural underpinnings of attention and
behavior (Parasuraman et al., 1999).

RESOURCES: A NEUROERGONOMIC
PERSPECTIVE

The last three decades have witnessed a revolution in our
understanding of neural mechanisms that are fundamental
to attention and human performance. Progress in the
field has been driven by the development of advanced and
portable neuroimaging techniques, which permit non-invasive
examination of the “brain at work.” Neuroergonomics is a
multidisciplinary field born from these technical innovations
that is broadly defined as the study of the human brain in relation
to performance at work and in everyday settings (Parasuraman
and Rizzo, 2008). The goal of this field is to integrate both
theories and principles from ergonomics, neuroscience and
human factors in order to provide insights into the relationship
between brain function and behavioral outcomes in the context
of work and everyday life (Rizzo et al., 2007; Parasuraman and
Rizzo, 2008; Parasuraman and Wilson, 2008; Lees et al., 2010;
Ayaz and Dehais, 2018).

The Multiple Biological Substrates of
Mental Resources
The incorporation of neurophysiological measures of mental
workload offers a reductive pathway to the reification of resources
and those neurobiological states associated with impaired
performance. At a fundamental level, the functioning of neurons
within the brain is a form of limited resource (Beatty, 1986),
requiring oxygen and glycose to generate cellular energy in
the form of adenosine triphosphate (ATP) while having a
very limited capacity to store these energy substrates (Saravini,
1999). The same logic holds for ions (e.g., potassium, calcium,
sodium) that play a key role in nerve impulses. It is also
reasonable to consider neural networks as resources with respect
to their supporting glial cells (e.g., astrocytes), which ensure the
processing of information (Mandrick et al., 2016). Understanding
the interactions between neurobiological resources with reference
to fundamental processes in brain physiology represents a crucial
approach within neuroergonomic analysis of mental workload
(Parasuraman and Rizzo, 2008; Ayaz and Dehais, 2018).

Brain and Inhibitory Mechanisms
The brain must be considered to be a “noisy” organ, whereby
assembly of neurons are constantly responsive to environmental
stimulations, see Pandemonium architecture as an early example,
such as Selfridge (1959). Inhibitory mechanisms are implemented
to cancel out cerebral noise by mitigating the activation of
distracting neuronal assemblies (Polich, 2007). This process may
occur at a local level via lateral inhibition, whereby groups of
neurons can attenuate the activity of their neighbors in order to
be “better heard” (Coultrip et al., 1992). The same mechanism
can also take place via top-down regulation, known as inhibitory
control, wherein high-level cortical areas (e.g., prefrontal cortex)
reduce task- or stimulus-irrelevant neural activities (Munakata
et al., 2011). However, these inhibitory mechanisms can also
curtail the capacity of the brain to consider new or alternative
information, thus leading to perseveration (Dehais et al., 2019).
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An appropriate metaphor is to consider a group led by an
authoritarian leader who is totally engaged with one specific
goal or strategy and does not listen to alternative viewpoints of
other members of the group. Within this metaphor, information
processing resources are present (i.e., group members) but are
disregarded in the presence of an overriding directive (i.e., the
leader). In other words, high mental workload leads to impaired
performance, not because of limited resources per se, but because
of those neurological mechanisms designed to prioritize a specific
goal or directive.

The Non-linear Effects of
Neuromodulation
The prefrontal cortex (PFC) is a brain structure often identified
as the neurophysiological source of limited resources (Posner and
Petersen, 1990; Parasuraman, 2003; Ramsey et al., 2004; Modi
et al., 2017). The PFC serves a control function during routine
cognitive operations, such as: action selection, retrieval/updating
in working memory, monitoring and inhibition (Ramnani and
Owen, 2004; Ridderinkhof et al., 2004). It is often activated
during high levels of cognitive demand (Ayaz et al., 2012; Herff
et al., 2014; Racz et al., 2017; Gateau et al., 2018; Fairclough
et al., 2019) and dysfunction of this structure is known to
degrade performance (Sandson and Albert, 1984; Dolcos and
McCarthy, 2006). However, the PFC is complex and its function
is subject to the quadratic influence of neuromodulation via
the influence of noradrenaline and dopamine (Arnsten, 2009;
Arnsten et al., 2012). Noradrenaline is associated with the
mediation of arousal (Chrousos, 2009) whereas dopamine is
involved in the processing of reward with regard to the ongoing
tasks (Schultz, 2002). Both catecholamines exert an inverted-U
relationship with the PFC neurons (Vijayraghavan et al., 2007;
Robbins and Arnsten, 2009), a reduction of these neurochemicals
will depress the firing rate of noradrenergic and dopaminergic
PFC neurons (see Figure 1). This mechanism may explain why
unstimulating and non-rewarding tasks (e.g., passive supervisory
control over a sustained period) can inhibit executive functioning
and induce mind wandering. Conversely, excessive levels can also
have a deleterious effect by suppressing PFC neuron firing rate
(Birnbaum et al., 1999). In addition to decreasing the activity
of the PFC, dopamine and noradrenaline activate subcortical
areas, such as basal ganglia, that trigger automated schemes
and initiate automatic responses (Wickens et al., 2007). These
automated behaviors have an advantage of speed compared
to flexible but slower behaviors generated by the prefrontal
cortex (Dolan, 2002). This neurological switch from prefrontal
to subcortical areas, is presumed to derive from the early age
of humanity to ensure survival (Arnsten, 2009). In modern
times, it manifests itself as a process of defaulting to well-learned
behaviors, which are effective for only operational situations that
are simple and familiar. This is the mechanism that promotes
perseveration (Dehais et al., 2019) in task scenarios that are
complex and novel (Staal, 2004; Ellenbogen et al., 2006) or offer
intrinsic, short-term rewards, e.g., landing at all costs after a
long transatlantic flight (Causse et al., 2013). These fundamental
neurological mechanisms illustrate that impaired operational

performance cannot be simply explained in terms of limited
resources, such as a concentration of dopamine, but must be
viewed from a neuroergonomic perspective that emphasizes the
complexity of interactions between brain areas that evolved over
thousands of years.

Attentional Dynamics and Dominance
Effects
The existence of information processing resources can also
be conceptualized as functional attentional networks in the
brain. Michael Posner was the first to pioneer a network
approach to the operationalization of resources in the early
days of neuroimaging (Posner and Tudela, 1997). His influential
analysis (Posner and Petersen, 1990; Posner and Dehaene,
1994; Petersen and Posner, 2012; Posner, 2012) described how
specific networks were dedicated to the particular functions
of attentional regulation, e.g., alerting, orientation, focus. This
conceptualization developed into the delineation of a dorsal
fronto-parietal network (e.g., intraparietal cortex, superior
frontal cortex) that supports focused attention on specific task-
relevant stimuli and a corresponding ventral fronto-parietal
network (e.g., temporo-parietal cortex, inferior frontal cortex)
in the right hemisphere, which activates in a bottom-up fashion
to reorientate attention to interruptive stimuli (Corbetta and
Shulman, 2002; Corbetta et al., 2008). Under nominal conditions,
interaction between the dorsal and the ventral pathways ensure
optimal trade-off between those attentional strategies associated
with exploitation and exploration. However, under conditions
of high task demand or stress or fatigue, this mechanism may
become biased toward dominance of the dorsal over the ventral
network, leading to attentional phenomena associated with
inflexibility (Todd et al., 2005; Durantin et al., 2017; Edworthy
et al., 2018; Dehais et al., 2019a). A similar dynamic of bias
and dominance is apparent in the relationship between the
dorsal and ventral pathways and the default mode network
(Andrews-Hanna et al., 2014), which is associated with mind-
wandering, spontaneous thoughts and disengagement from task-
related stimuli (Fox et al., 2015).

Performance Monitoring and Effort
Withdrawal
The capacity of the brain to monitor performance quality
and progress toward task goals is another important function
of the PFC during operational performance. The posterior
medial frontal cortex (pMFC) is a central hub in a wider
network devoted to performance monitoring, action selection
and adaptive behavior (Ullsperger et al., 2014; Ninomiya et al.,
2018). The pMFC is sensitive to error and failure to achieve
a task goal (Ullsperger et al., 2007); the detection of failure
represents an important cue for compensatory strategies, such
as increased investment of mental effort (Hockey, 1997). This
network is particularly important when the level of task demand
experienced by the operator is associated with a high rate of error
and increased probability of failure. The model of motivational
intensity (Richter et al., 2016) predicts that effort is withdrawn
from task performance if success likelihood is appraised to be
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FIGURE 1 | The dopamine pathway exerts a quadratic control over the PFC. A low or a high release of this neurochemical depresses PFC activation whereas an
adequate concentration ensures optimal executive functioning (Vijayraghavan et al., 2007; Robbins and Arnsten, 2009). These neurobiological considerations bring
interesting highlights to understand the mechanisms underlying the Yerkes and Dodson inverted-U law and the dynamic adaptability theory (Hancock and Warm,
1989). They also provide a relevant prospect to relate motivational aspects to behavioral responses. The noradrenaline pathway mediates the PFC activity and
executive functioning in a similar fashion (see Aston-Jones and Cohen, 2005).

very low (Hopstaken et al., 2015); similarly, models of behavioral
self-regulation (Carver and Scheier, 2000) argue that task goals
can be adjusted downward (i.e., lower levels of performance are
tolerated as acceptable) or even abandoned if goal attainment
is perceived to be impossible. There is evidence that increased
likelihood of failure is associated with deactivation of the PFC
(Durantin et al., 2014; Ewing et al., 2016; Fairclough et al.,
2019), for operational performance where failure can often
jeopardize the safety of oneself and others, increased likelihood
of failure can also provoke strong emotional responses that are
associated with stress and cognitive interference (Sarason et al.,
1990), which can function as distractors from task activity in
their own right (Dolcos and McCarthy, 2006; Qin et al., 2009;
Gärtner et al., 2014).

This neuroergonomic approach provides a biological
basis upon which to develop a concept of limited human
information processing, with respect to competing neurological
mechanisms, the influence of neuromodulation in the
prefrontal cortex and antagonist directives between different
functional networks in the brain. The prominence of inhibitory
control coupled with competition between these neural
networks delineate a different category of performance
limitations during extremes of low vs. high mental workload,

i.e., simultaneous activation of functional networks with
biases toward mutually exclusive stimuli (external vs.
internal) or contradictory directives (focal attention vs.
reorientation of attention).

UNDERSTANDING PERFORMANCE
RELATED MENTAL STATES

The previous sections have highlighted the complexity of those
brain dynamics and networks that can introduce inherent
limitations on human information processing. On the basis
of this analysis, it is reasonable to target neurophysiological
states and their associated mechanisms that account for
impaired human performance (see Prinzel, 2002). This review
has identified a number of suboptimal neurocognitive states
that are predictive of degraded performance such as: mind
wandering, effort withdrawal, perseveration, inattentional
blindness and deafness. These states may be conceptually
mapped along orthogonal dimensions of task engagement
and arousal (Figure 2). Engagement is defined as an effortful
investment in the service of task/cognitive goals (Pope et al.,
1995; Matthews et al., 2002; Stephens et al., 2018), whereas
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FIGURE 2 | Performance, arousal and task engagement: the green zone
conceptually describes the operator’s “comfort zone” where performance is
optimal. The degraded mental states are mapped across a “task engagement”
axis and an “arousal” axis. Interestingly, this point of view makes it possible to
link the notion of engagement and degraded behavior in a simple way.

arousal represents a state of physiological readiness to respond to
external contingencies (Pribram and McGuinness, 1975).

The Transactional Dimensions of
Engagement and Arousal
The rationale for considering the dimension of task engagement
is that performance is driven by goals and motivation (Bedny
and Karwowski, 2004; Fairclough et al., 2013; Leontiev, 2014).
Goal-oriented cognition theorists argue for the existence of

mechanisms dedicated to maintain engagement (Atkinson and
Cartwright, 1964), which are associated with an activation
of an executive (Baddeley and Hitch, 1974) or task-positive
network (Harrivel et al., 2013) within which the dorsolateral
prefrontal cortex (DLPFC) exerts a crucial role (Goldman-
Rakic, 1987; Curtis and D’Esposito, 2003). This structure plays
a key role in the maintenance and updating of information
that is relevant for ongoing task performance. The same
structure interacts with dorsal and ventral attentional pathways
to shift and focus attention to the most relevant stream
of task-related information (Johnson and Zatorre, 2006). It
is argued that human performance can be assessed in the
context of a continuum of task engagement, ranging from
disengagement (effort withdrawal, mind wandering) to high-
engagement (perseveration, inattentional phenomena Lee, 2014).

Arousal makes an important contribution to the conceptual
space illustrated in Figure 2 because it modulates the homeostasis
of the executive (see Arnsten, 2009 for a review) and attentional
networks (see Coull, 1998 and Aston-Jones and Cohen, 2005 for
review) via the dopaminergic and noradrenergic pathways. For
instance, both extremes of low (Harrivel et al., 2013; Durantin
et al., 2015) and high arousal can disengage the DLPFC (Goldberg
et al., 1998; Arnsten, 2009; Qin et al., 2009; Causse et al.,
2013; Durantin et al., 2014; Fairclough et al., 2019) and impair
performance (see Figure 3 for summary). Similarly, low (Dehais
et al., 2018) and high levels of arousal (Hancock and Warm,
1989; Tracy et al., 2000; Pecher et al., 2011) can alter the
interactions between the dorsal and ventral attentional networks
and indistinctly that lead either to inattentional phenomena
(Molloy et al., 2015; Todd et al., 2005) or effort withdrawal (Oei
et al., 2012; Dehais et al., 2015).

Monitoring Performance Through
Degraded Mental States
Table 1 presents a mapping between extremes of high and low
engagement and arousal, their related neurocognitive states and
how these states may be operationalized using neurophysiological

FIGURE 3 | Left part: Several types of stressors can yield to the deactivation of the DLPFC and in return drastically induce collapse of performance. Right part: An
illustration with the N-Back task: the right-DLPFC deactivates when the task demands exceed mental capacity (7-Back condition) and is associated with reduced
performance efficacy and effort withdrawal (from Fairclough et al., 2019).
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measures in the laboratory and the field. Monitoring the
activation and deactivation of the DLPFC represents a promising
generic avenue to predict impaired performance across diverse
states such as: mind wandering (Christoff et al., 2009; Harrivel
et al., 2013), effort withdrawal (Ayaz et al., 2007; Izzetoglu et al.,
2007; Durantin et al., 2014; Modi et al., 2018; Fairclough et al.,
2018, 2019) and perseveration (Dehais et al., 2019). However,
other neurological networks and sites should be considered as
part of this analysis. Mind wandering is characterized by the
concomitant activation of the default network, which includes the
median prefrontal cortex (Christoff et al., 2009; Harrivel et al.,
2013) and areas of the parietal cortex (Christoff et al., 2009).

Secondly, attentional states, such as inattentional deafness
and blindness, result from the activation of an attentional
network involving the inferior frontal gyrus, the insula and the
superior medial frontal cortex (Tombu et al., 2011; Callan et al.,
2018; Dehais et al., 2019). These regions represent potential
candidates upon which to identify attentional failures that can be
complemented by monitoring dedicated primary perceptual (see
Hutchinson, 2019, for a review) and integrative cortices (Molloy
et al., 2015), as well as performing connectivity analyses (Callan
et al., 2018). In addition, inattentional phenomena may result
from the suppression of activity in the right temporo-parietal
junction (TPJ), a part of the ventral network, which also blocks
reorientation of attention and the processing of unexpected
stimuli (Marois et al., 2004; Todd et al., 2005).

Thirdly, measures of arousal are used to characterize high
engagement and delineate distinct mental states within the
category of low task engagement (Figure 2). Heart rate (HR) and
heart rate variability (HRV) can be used to assess the activation
or co-activation of the two branches of the autonomous nervous
system (i.e., sympathetic or parasympathetic) (Fairclough, 2008;
Qin et al., 2009; Kreibig, 2010). For instance, fluctuations in HR
are commonly observed during high task engagement and high
arousal (De Rivecourt et al., 2008; Qin et al., 2009; Dehais et al.,
2011). Moreover, spectral analyses computed over the EEG signal
revealed that shifts in parietal alpha [8–12] Hz and frontal theta
[4–8] Hz are relevant markers of arousal (see Borghini et al., 2014,
for a review, Senoussi et al., 2017).

Finally, behavioral metrics such as ocular behavior can
complement the detection of low and high levels of engagement
(Table 1). Hence, eye tracking metrics (e.g., fixation and
dwell times, saccadic activity, blink rate) can be used to
characterize mind wandering (He et al., 2011; Pepin et al.,
2016), inattentional blindness (Thomas and Wickens, 2004;
Wickens, 2005), perseveration (Régis et al., 2014), focal vs.
diffused attention (Goldberg and Kotval, 1999; Regis et al., 2012;
Dehais et al., 2015), and to characterize the level of attentional
engagement in a visual task (Cowen et al., 2002; Tsai et al., 2007).

These metrics provide some relevant prospects to identify
the targeted deleterious mental states for especially for field
studies as long as portable devices are concerned. It is worth
noting that the extraction of several features (e.g., time and
frequency domains) and the use of several devices is a way
for robust diagnosis. Moreover, contextual information (e.g.,
time of the day, time on task) should be considered as well
as actions on the user interface and system parameters (e.g.,

flight parameters) if available so as to better quantify the
user’s mental state.

SOLUTIONS TO MITIGATE DEGRADED
PERFORMANCE

This review has identified some undesired mental states that
account for degraded performance (see section “Understanding
Performance Related Mental States” and “Solutions to Mitigate
Degraded Performance”). A crucial step is to design cognitive
countermeasures to prevent the occurrence of these phenomena.
The formal framework that we proposed (see Table 1) paves
the way to design neuro-adaptive technology for augmented
cognition and enhanced human-machine teaming (Peysakhovich
et al., 2018; Krol et al., 2019; Stamp et al., 2019). The
implementation of such neuro-adaptive technology relies on a
pipeline that consists of a signal acquisition step, a preprocessing
step to improve the signal-to-noise ratio, a feature extraction
step, a classification step to diagnose the current mental states,
and lastly an adaptation step (Zander and Kothe, 2011; Roy
and Frey, 2016). This last step implies the implementation of
formal decisional unit (Gateau et al., 2018) that dynamically
close the loop by triggering the most appropriate cognitive
countermeasures (May and Baldwin, 2009). There are currently
three types of mitigating solutions to instigate a change in
behaviors via: (1) adaptation of the user interface, (2) adaptation
of the task and of the level automation, and the (3) “neuro-
adaptation” of the end-users.

Adaptation of the User Interface
The first category of neuroadaptive countermeasure consists of
triggering new types of notifications via the user interface to
alert of impeding hazards. The design of these countermeasures
is generally grounded on neuroergonomics basis so that these
warning can reach awareness when other means have failed.
Following this perspective, Dehais et al. (2010, 2012), Imbert
et al. (2014) and Saint Lot et al. (2020) have demonstrated
that very brief (∼200 ms) and located information removal
was an efficient mean to mitigate perseveration by forcing
disengagement from non-relevant tasks. Souza et al. (2016)
demonstrated that digital nudging (see Weinmann et al., 2016)
could be used to mitigate poor decision making and cognitive
bias associated with perseveration. Imbert et al. (2014) designed
attention-grabbing stimuli grounded on vision research and
demonstrated that yellow chevrons pulsing at a cycle of 1 Hz
can re-orientate attention and mitigate inattentional blindness.
Jahanpour et al. (2018) has explored the design of pop-up videos
that display the gestures to be performed by exploiting the
property of mirror neurons. This visual “motor cue” approach
was tested and drastically reduced reaction time to alerts during
complex situations and appears to be a promising method to
prevent effort withdrawal (Causse et al., 2012). In a similar
fashion, Navarro et al. (2010) implemented a force-feedback
steering wheel to prime the motor response from the driver.
This device was found to optimize drivers’ behavior during
demanding driving scenario. This latter study demonstrated
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TABLE 1 | Psycho-physiological and behavioral markers of different mental states related to engagement.

Disengagement Over-Engagement

Mind wandering Effort withdrawal Perseveration Inattentional
blindness

Inattentional deafness

Brain activity

MEG ↘ N400 (area V3)
(Scholte et al., 2006)

↘ N100 in STG and
STS (Molloy et al., 2015)

fMRI ↗ MPFC and PCC
(Mason et al., 2007;
Christoff et al., 2009; Fox
et al., 2015)↗ PTPC
(Christoff et al., 2009)↗
dorsal ACC and DLPFC
(Christoff et al., 2009)↗
RPFC, DACC, insula,
TPC, SSC & LG (Fox
et al., 2015)↗ MTL (Fox
et al., 2015)

↘ DLPFC (Birnbaum
et al., 1999; Qin et al.,
2009),↗ IFG and
amygdala (Oei et al.,
2012)

↘ DLPFC (Nagahama
et al., 2005; Causse
et al., 2013)↘ ACC (Lie
et al., 2006; Causse
et al., 2013)↘ bilateral
temporo-parietal junction
(Lie et al., 2006)

↘ fronto-parietal
network (including
DLPFC) (Beck et al.,
2001; Pessoa and
Ungerleider, 2004)
temporo-parietal junction
(Marois et al., 2004;
Todd et al., 2005)↗
activation of DMN
(Weissman et al., 2006)

↗ IFG and SMFC,↘
IFG-STG connectivity
(Durantin et al., 2017)

fNIRS ↗ MPFC (Harrivel et al.,
2013; Durantin et al.,
2015)↘ DLPFC (Harrivel
et al., 2013)

↘ DLPFC (Durantin
et al., 2014; Fairclough
et al., 2019)

↘ Left PFC (Kalia et al.,
2018)

↘ occipital lobe (Kojima
and Suzuki, 2010)

EEG ↗ α power over occipital
sites (Gouraud et al.,
2018)↘ (α and (β power
(auditory stimuli)
(Braboszcz and Delorme,
2011)↗ (θ power
(auditory stimuli)
(Braboszcz and Delorme,
2011)↘ N1 (Kam et al.,
2011)↘ N4 (O’Connell
et al., 2009)↘ P1 (Kam
et al., 2011)↗ P2
(Braboszcz and Delorme,
2011)↘ P3 (Schooler
et al., 2011)

↘frontal θ power
(Gärtner et al., 2014)↘
P3 (Dierolf et al., 2017)
↘ frontal (θ power and
↘ parietal (α power
(Ewing et al., 2016;
Fairclough and Ewing,
2017)

↘ Event Related
Coherence between
midfrontal and
right-frontal electrodes
(Carrillo-De-La-Pena and
García-Larrea, 2007)

↗ (α band power
(Mathewson et al., 2009)
↘ P1 (Pourtois et al.,
2006; Mathewson et al.,
2009)↘ P2 (Mathewson
et al., 2009)↗ N170
(Pourtois et al., 2006)↘
P3 (Pourtois et al., 2006;
Mathewson et al., 2009)

↘ N1 (Callan et al.,
2018; Dehais et al.,
2019a,b)↘ P3
(Puschmann et al., 2013;
Scannella et al., 2013;
Giraudet et al., 2015b;
Dehais et al., 2019a,b)
↘ (α power in IFG
(Dehais et al., 2019a)↘
phase synchony in (α
and (θ frequencies
(Callan et al., 2018)↗
engagement ratio
(Dehais et al., 2017)

ANS activity

ECG ↗ heart rate variability
(Smith, 1981)↗ heart
rate (Smith, 1981)

↘minimum LF/HF ratio
(Durantin et al., 2014)↘
minimum pre-ejection
period (Mallat et al.,
2019)

↗ heart rate (Dehais
et al., 2011)

↗ heart rate (Dehais
et al., 2014)

Skin conductance ↘ skin conductance
(Smith, 1981)

Ocular activity

Eye-tracking ↗ number of blinks
(Uzzaman and Joordens,
2011)↘ pupil diameter
(Grandchamp et al.,
2014)↗ gaze fixity (He
et al., 2011; Pepin et al.,
2016)

↗ maximum pupil
diameter (Peavler, 1974)
↗ explore/exploit ratio
(Dehais et al., 2015)

↘ switching rate
between areas of
interest (Régis et al.,
2014)↗ fixation
duration on irrelevant
areas of interest (Régis
et al., 2014)

↘ saccades↗ fixation
duration (Cowen et al.,
2002; Tsai et al., 2007;
Regis et al., 2012)↘
fixated areas of interest
(Thomas and Wickens,
2004)

↘ pupil diameter
(Causse et al., 2016)

The blue and pink color-code respectively tags states induced by low and high task demand. RIFG, right inferior frontal gyrus; DMN, default mode network, MFG, middle
frontal gyrus; ACC, anterior cingulate cortex; LFC, lateral frontal cortex; STC, superior temporal cortex; PFC, prefrontal cortex; PCC, posterior cingulate cortex; MPFC,
medial prefrontal cortex; PTPC, posterior temporoparietal cortex; DLPFC, dorsolateral prefrontal cortex; RPFC, rostrolateral prefrontal cortex; DACC, dorsal anterior
cingulate cortex; TPC, temporopolar cortex; SSC, secondary somatosensory cortex; LG, lingual gyrus; MTL, medial temporal lobe; SMFC, superior medial frontal cortex;
IFG, inferior frontal gyrus; STS, superior temporal sulcus, STG, superior temporal gyrus.

how tactile notifications can alert human operators of impeding
hazards (Lewis et al., 2014; Russell et al., 2016), especially when
other sensory channels of information (e.g., visual stream) are

saturated (Elliott et al., 2011). However, there are potential
limits to the effectiveness of these types of notifications and
stimulation (Murphy and Dalton, 2016; Riggs and Sarter, 2019).
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Other research indicates that multimodal alerts (Giraudet et al.,
2015a; Gaspar et al., 2017) increase the likelihood of attentional
capture. In addition, Lee et al. (2018) designed a motion seat
that modifies the driver’s seat position and posture across time
to diminish the potential deleterious effect of mind wandering.
Similar concepts have been applied to aviation (Zaneboni and
Saint-Jalmes, 2016).

Task and Automation Adaptation
The second category of neuroadaptive countermeasure is the
dynamic reallocation of tasks between humans and automation
to maintain the performance efficacy of the operators (Freeman
et al., 1999; Parasuraman et al., 1999; Prinzel et al., 2000;
Scerbo, 2008; Stephens et al., 2018). The underlying concept in
this case is to optimize human-human or human(s)-system(s)
cooperation according to criteria of availability and skills of
human and artificial agents (Gateau et al., 2016). For instance,
Prinzel et al. (2000) utilized the continuous monitoring of brain
waves that could be used to drive the level of automation
and optimize the user’s level of task engagement. Similarly,
some authors managed to optimize air traffic controllers’ task
demand by triggering different levels of assistance (Aricò et al.,
2016; Di Flumeri et al., 2019). These latter studies reported
better human performance when neuro-adaptive automation
was switched on compared to other conditions. Gateau et al.
(2016) implemented an online attentional state estimator coupled
with a stochastic decision framework to dynamically adapt
authority sharing between human and robots in a search and
rescue scenario to prevent effort withdrawal on the part of
the human. In a more extreme fashion, Callan et al. (2016)
revealed that it is possible to decode user motor intention so
automation can perform on behalf of the user to drastically
reduce the response time in emergency situations (e.g., collision
with terrain). In the future, it is assumed that aircraft designers
will implement adaptive automation technology that takes over
from the pilots by either inhibiting their inputs on the flight deck
or performing automated evasive actions (e.g., automatic pull-
up) to prevent from perseveration. A complementary approach
is to modulate task difficulty to maintain the task challenging but
achievable while preventing the occurrence of task withdrawal
(Ewing et al., 2016) or mind wandering (Freeman et al., 2004;
Ewing et al., 2016). The online modulation of the tasks does
not necessarily reduce the difficulty of the task. For instance,
Verwey and colleagues demonstrated that the addition of an
entertaining task while driving improved the operator’s ability
to maintain their level of task engagement over long period of
time (Verwey and Zaidel, 1999). Similarly, it has been suggested
that switching the types of tasks presented to the user can
prevent the deleterious effect of fatigue and disengagement
(Hockey, 2011).

Neuro-Adaptation of the End-User(s)
The third and final category aims to warn the users of their
mental state and “stimulate” neurological activity in order to
augment performance. One of the most promising approach
relies on the implementation of Neurofeedback (see Gruzelier,
2014; Enriquez-Geppert et al., 2017 for reviews). The principle

of the latter technique is to provide feedback in real-time
to the users of their mental states in the form of a visual,
tactile or auditory stimulus. The users can utilize these signals
learn to regulate their brain activity and in return improve
their executive (Enriquez-Geppert et al., 2013), mental flexibility
(Enriquez-Geppert et al., 2014), and attentional abilities (Egner
and Gruzelier, 2001) as well as enhance their task engagement
(Egner and Gruzelier, 2004). However, the effects of this approach
on mind wandering remain unclear (Gonçalves et al., 2018).
Transcranial direct current stimulation (tDCS) represents a
technique of neuromodulation that can be used to boost executive
functioning (see Callan and Perrey, 2019; Cinel et al., 2019).
This portable device can be combined with EEG and fNIRS
and used in the context of real-life task performance for the
purpose of on-line neuromodulation (McKendrick et al., 2015;
Gateau et al., 2018). For example, a number of studies support
the position that neurostimulation can: enhance mental flexibility
and mitigate perseveration (Leite et al., 2011; Jeon and Han,
2012), improve visual attention (Falcone et al., 2012; Nelson
et al., 2015), improve executive functioning in multitasking
situations (Nelson et al., 2016) and increase alertness (McIntire
et al., 2014; Nelson et al., 2014). There are other types of
environmental stimulation such as vivid light exposure, especially
during night flights, which can promote an optimal level
of alertness (see Anund et al., 2015) without altering flight
crew performance (see Caldwell et al., 2009). Promising results
have also been highlighted by using light exposure in cars
(Taillard et al., 2012). The use of light exposure and tDCS
should be considered with caution as there is a need to
investigate the very long-term efficiency and potential side effects.
Alternatively, some authors proposed to use cold-air jet to
decrease hypovigilance (Reyner and Horne, 1998), but with
contradictory findings.

Synthesis of Neuro-Adaptive Solutions
The following illustration (see Figure 4) depicts the three
families of neuro-adaptive based solutions to mitigate
performance impairment.

The three types of neuroadaptive solutions offer promising
prospects to mitigate the onset and likelihood of undesirable
neurocognitive states. However, they should be delivered in a
transparent, meaningful, and timely manner (i.e., when needed)
so they are relevant and understood (Dorneich et al., 2016;
Sebok et al., 2017), otherwise these types of intervention have
the potential for undesirable consequences, such as performance
impairment and reduced trust in technology; this point is
particularly true for adaptive automation solutions that take over
from humans, especially under critical scenarios (see Dorneich
et al., 2016; Dehais et al., 2019). One solution is to combine
different families of neuroadaptive cognitive countermeasures
to maximize their efficiency. Ideally, we would argue to use
a gradient of solutions such as (1) the continuous display of
the users’ mental states via neurofeedback techniques to give
them the opportunity to regulate their brain activity; (2) using
notifications to suggest to the users to delegate some tasks
to automation in case they don’t manage to modulate their
mental states; (3) adapting the user interface (e.g., information
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FIGURE 4 | The three types of Neuroadaptive countermeasures dedicated to mitigate the undesirable mental states. Inattentional deafness and Inattentional
blindness mental states were merged into “Inattentional phenomena” as no neuroadaptive countermeasure were implemented to explicitly address failure of auditory
attention to the exception of multimodal alerts. Moreover, no adaptive automation-based solutions were designed to prevent from inattentional states. This
demonstrates the need to conduct more research in this direction.

removal, flashing yellow chevrons) in case of a critical situation
is detected and the previous solutions were inefficient; and (4)
taking over if the users do not respond to any of the previous
countermeasures.

CONCLUSION

This paper has argued that the concept of a limited resource
provides a limited explanation for the breakdown of operational
performance. Our neurophysiological analysis describes a
number of additional mechanisms, such as perseveration and
effort withdrawal, which do not represent finite resources per
se. In both cases, explanations for performance breakdown

are based upon neurological processes, such as dominance of
specific neural networks or the heightened activity of specific
mechanisms. We propose a two-dimensional framework of
engagement and arousal that captures the importance of specific
degraded mental sates associated with poor performance. The
rationale for including the transactional concept of engagement
in this scheme is to account for the goal-oriented aspect of
cognition. The benefit of including the transactional concept
of arousal is to make a distinction between two categories of
disengagement, one that is accompanied by high arousal (effort
withdrawal) and low arousal (mind wandering) – and to link this
conceptual distinction to known neurophysiological effects (see
Figure 1). Nonetheless, this approach remains at the conceptual
level and minimizes connections to the complexity of brain
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functioning. To that end, we reviewed and identified several
markers at the neurophysiological, physiological and behavioral
level of undesirable mental states linked to poor performance.

This neuroergonomic framework encompasses operationali-
zations of these undesirable states that can be monitored
continuously in an objective fashion. Such considerations
eventually lead to propose a typology of neuroadaptive
countermeasures and open promising perspectives to mitigate
the degradation of human performance. However, to the
authors’ very best knowledge, most of the neuroadaptive
experimental studies have focused on human-machine dyad
situations. We believe that recent research on hyperscanning
(Babiloni and Astolfi, 2014), physiological synchrony (Palumbo
et al., 2017) and collaborative BCIs (Cinel et al., 2019)
have opened promising prospects to improve teaming
such as human-human, human(s)-machine(s) interactions.
Future research should involve more complex teaming
scenarios and enrich the different neuroadaptive solutions.

We sincerely hope that this review will encourage research
efforts to identify additional degraded mental states and
associated neurophysiological markers as well as to implement
neuroadaptive solutions for safer and efficient human-human
and human(s)-machine(s) interactions.
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Physiological Synchrony Revealed by Delayed
Coincidence Count: Application to a Cooperative

Complex Environment
Kevin J. Verdière , Mélisande Albert, Frédéric Dehais , and Raphaëlle N. Roy

Abstract—Synchrony at the physiological level is an objective
measure that can be used to investigate cooperation between hu-
man agents. This physiological synchrony has been experimentally
observed in different dyadic contexts through measures of the
autonomous system such as cardiac measures. Various metrics are
used to characterize synchrony between participants such as cross-
correlation, weighted coherence, or cross recurrence quantification
analysis and with a wide variety of paradigms. We propose the
delayed coincidence count as a new method for assessing cardiac
synchrony. Delayed coincidence count has already been used to
characterize synchrony in firing neurons populations. While be-
ing straightforward and computationally light, this method has
already been formally proven to be statistically robust. A complex
dynamic microworld is designed with two difficulty levels and two
cooperation conditions. A total of 40 participants, i.e., 20 teams,
voluntarily has conducted the experiment. The delayed coincidence
count method (with a coincidence threshold δ of 20 ms) reveals a
significant synchrony (p < .01) during the cooperative and high
difficulty condition only, while the other methods did not. The re-
sults are interpreted in terms of interaction intensity in accordance
with recent literature.

Index Terms—Cooperation, delayed coincidence count, dyad,
electrocardiogram (ECG), physiological synchrony.

I. INTRODUCTION

COOPERATION is what allowed living organisms to evolve
from multicellular organisms to social insects to reach our

current human society [1]. Humans are now by far engaged
in the most complex systems of cooperation among living
individuals [1]. A general definition of cooperation could be
stated as: “a situation that contains a manifest collective goal,
in which a group of agents realize it by choosing their actions
in accordance with an equilibrium” [2]. While the study of
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cooperation has been for long the realm of psychosociology and
subjective measures, several studies have attempted to identify
objective correlates of teammate’s synchrony. This field of re-
search known as “interpersonal physiology” or “physiological
synchrony” (PS) aims at assessing temporal similarity in team-
mates’ physiological responses [3]. Objectively characterizing
synchrony require the acquisition of several data streams from
teammates [4] such as electrodermal activity, thermal activity,
respiration or cardiac activity [3], [5]. So far, the latter has been
the most popular technique to uncover PS in various dyadic
contexts, i.e., experiments involving a pair of participants, such
as parent-child, couples, therapist-client or teammates (see [3]
for a systematic review).

To assess PS, several methods have been applied to the
measure of concurrent cardiac signals using cross-correlation,
weighted coherence, or cross recurrence quantification analysis
(CRQA) [3]. Cross-correlation is a measure of similarity that is
computed by a sliding dot product of two different signals. The
weighted coherence, introduced by Porges et al. [6], is a measure
derived from coherence. Coherence can be seen as a correlation
coefficient in the frequency domain to characterize how much
two signals oscillate in the same frequency band. The weighted
coherence uses the frequency power of each of the two signals to
weight each frequency bins. Finally, recurrence analysis allows
to observe complex and sometimes subtle oscillatory time series
behaviors. The rationale for recurrence analysis is that any
“time series describing a high-dimensional system composed
of multiple coupled variables can be reconstructed from but a
single measured variable of that system” [7]. The method of time
delays allows us to reconstruct systems in higher dimensions.
Once the data are reconstructed in a higher dimension space via
time delay, a distance matrix between all possible points can
be computed. Each point in this matrix represents the distance
between two points of the signals. Points spaced by less than a
threshold distance will be considered recurrent. The threshold
distance matrix is the recurrence plot (basis of the recurrence
analysis). Recurrent quantification analysis (RQA) intends to
quantify this dynamics. Cross recurrence uses the same principle
to identify the complex oscillatory dynamics of two systems via
two signals and in the same way, CRQA uses the same methods
as RQA to quantify this dynamics [7].

Physiological synchrony has been shown to be predictive of
team performance (i.e., task completion time) using weighted
coherence on heart rate measures [8]. However, the authors
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pointed out that there was a “lack of a predictive relationship
between physiological synchrony and the team coordination,”
where “coordination” was measured via cross-correlation on
their physical joystick action. Similarly, Montague et al. [9]
evaluated PS with 24 teams with shared experience involving
active and passive users. Using weighted coherence on cardiac
interbeat interval (IBI), they showed that synchrony relates to
group performance after controlling for task/technology and is
also correlated with shared perceptions of trust in technology
among group members. Jarvela et al. [10] studied physiological
synchrony across 41 teams playing video games in cooperative
or competitive conditions and with or without allies. Using a
similar approach to [9], they demonstrated that physiological
synchrony correlates with reported empathy between players.
More interestingly, they show that the competitive configuration
without allies leads to more synchrony, raising the idea that dur-
ing competition without allies “the players automatically focus
more on each other which might turn the game more competitive
also experientially.” Their viewpoint is that to understand the
opposite player, players simulate their behavior and responses
within themselves, which is consequently reflected in their body
through similar reactions observable via physiological signals
synchrony.

Chanel et al. [11] studied 21 teams playing a video game
in cooperative versus competitive configurations via correlation
and weighted coherence on their IBI. Their study revealed that
PS increased with subjective players’ involvement in the social
interaction with higher PS for competitive versus cooperative
game. They theorized that PS might be an index of the intensity
of interactional behavior and could be used to measure social
presence. Elkins et al. [12] studied 10 teams of 4 during a military
building cleaning task. They showed that a higher physiological
synchrony was associated with better team performance and
concluded that PS seems to be a part of proficiency in real-world
military settings. Conversely, Strang et al. [13] did not find any
increase in physiological synchrony during cooperative behav-
ior. They used cross-correlation, cross-fuzzy entropy, and CRQA
to quantify physiological synchrony while 80 participants played
a cooperative Tetris.

Despite these studies, interpersonal autonomous synchrony is
still an underexplored research area [3]. As stated by Ekman et al.
[14] in their review, there is “a general lack of knowledge on how
structural elements of the social situation are reflected in psycho-
physiology.” Indeed, these studies rely on different measures and
protocols, thus, preventing to draw comparisons and conclusions
regarding the underlying physiological mechanisms of PS [3].
One possible approach to better understand PS is to assess it
at the heart beat level per se. Fundamental electrophysiological
studies characterize neuronal synchrony via spike coincidence
analysis [15]. Similarly, one could apply such a method to
measure how much two hearts do beat together. Technically,
this method relies on the delayed coincidence count metric [16].
The delayed coincidence count represents, in a given range of
time for two distinct electrocardiogram (ECGs), the number of
beats that occur at the same time, i.e., that are coincident. One
advantage of this method is that it allows to account for local phe-
nomena when the coherence and cross-correlation approaches

are less sensitive to temporally local variations. Moreover, its
implementation and its physiological interpretation are far more
straightforward, especially compared to CRQA.

Thus, this study proposes to evaluate the ability of a theoret-
ically robust and yet computationally simple PS method: a per-
mutation method based on a delayed coincidence count to detect
heart synchrony during cooperation using a piloting-like task,
the multiattribute task battery (MATBII) [17]. We demonstrate
its usefulness in assessing cooperation between teammates who
perform the task in various difficulties and cooperation settings.
Finally, we compare this new method with the most currently
used metrics [3], namely, the cross-correlation, the weighted
coherence, and the CRQA. Regarding the CRQA, the most used
measures are as follows: recurrence rate, determinism, entropy,
and average length [3], [7]. First in the Materials and Methods
section, the proposed cardiac synchrony metric and the most
used ones are described, as well as the experimental protocol
used to test them. Next, the subjective and behavioral results
concerning the task accomplishment are reported, followed by
the synchrony results. Finally, they are discussed with respect to
the literature.

II. MATERIALS AND METHODS

A. Participants

In total, 40 participants (i.e., 20 teams; 9 females; 27 years old
±8) voluntarily underwent this experiment. They were recruited
among the students of the ISAE-SUPAERO Engineering School,
Toulouse, France. Of 40, 38 of them were directly recruited as
dyads, the remaining 2 were arbitrarily assigned to each other.
Out of the 20 dyads, only 2 were not same-sex (i.e., 15 male-
male, 3 female-female, 2 female-male). As verified through
a questionnaire, 11 considered their teammate as a friend, 6
as an acquaintance, 1 as a family member, 1 as a stranger,
and 1 as a lover. All had normal or corrected-to-normal vision
and no history of neurological or psychiatric disorders. The
study was approved by the local ethic committee (IRB number:
IRB00011835-2019-05-28-129) and all participants gave their
informed written consent.

B. Experimental Design

1) NASA MATBII and Difficulty Level: A modified version
of the MATBII initially developed by NASA was used [17]. The
MATBII is “a computer based task designed to evaluate operator
performance and workload” [17]. The original version is freely
available on the NASA website [18].

As shown in Fig. 1, it is composed of four subtasks, a
system/alarm monitoring task (SYSMON), a tracking task
(TRACK), a fuel/resource management task (RESMAN), and
a communication task (COMM). The system monitoring task
requires the participants to respond as quickly as possible to
lights and scale fluctuations via keystrokes (F1 to F6). The
tracking task requires the participants to keep the circle as
close to the center as possible using a joystick. The resource
monitoring task requires them to keep the tank A and tank B
levels as close to 2500 as possible via managing pumps 1–8
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Fig. 1. Modified version of the MATBII. Participants were seated side by side in front of duplicated screens represented here on the left for the pilot flying and
on the right for the pilot monitoring. The pilot flying in red had to perform the two upper tasks: monitoring and tracking. The pilot monitoring in blue had to
perform the two lower tasks: fuel management and communications. During the cooperative condition, they both had to monitor one of each other’s tasks and help
to perform it if needed: The pilot monitoring had to monitor and help for the monitoring task and the pilot flying the fuel management task.

Fig. 2. (a) Graphical representation of the 23 factorial design. The three axes represent the three experimental factors. The pilot monitoring difficulty (PM), the
pilot flying difficulty (PF), and, finally, the cooperation structure. (b) Experimental timeline.

with the keyboard or the mouse. Finally, the communication
task requires the participants to answer to broadcast messages
to their call name by indicating the radio and the number heard.

Participants were seated side by side in front of duplicated
screens (figure 1). Participant 1 on the left side was called “pilot
flying” and had to perform the two upper tasks, namely, the
SYSMON and TRACK tasks. He/she had a keyboard and a
joystick to do so. Participant 2, called pilot monitoring, had to
perform the two lower tasks: RESMAN and COMM. He/she had
a keyboard and a mouse to do so. The task difficulty for the pilot
flying and pilot monitoring were modulated independently. They
were modulated only by changing the difficulty of the TRACK

and RESMAN tasks. The number of alarms (SYSMON) and
communications (COMM) during each scenario remained the
same. There were two levels of difficulty: EASY and HARD.
As the difficulty of the task was modulated independently for
each teammate, it gave rise to four different difficulty condi-
tions (EASY-EASY, EASY-HARD, HARD-EASY, and HARD-
HARD) where the left and right represent the difficulty, respec-
tively, for the pilot flying and the pilot monitoring (see Fig. 2).

2) Cooperation Level: Each participant was attributed two
subtasks, however, in order to induce cooperation between
the teammates, in half the experimental blocks, the partici-
pants had to cross-monitor their partner, i.e., COOP condition.
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Cross-monitoring means that participants had to help their part-
ner when possible without speaking. For example, when the
participants are in the COOP condition, if the pilot monitoring
who is supposed to do the RESMAN and COMM tasks sees
that an alarm is ON on the SYSMON task, he/she can respond
to it with his/her keyboard in order to improve the overall
performance. Hence, in the control condition: DONT COOP,
they did not have to cross-monitor each other, but had to do
their own two tasks: the two upper and two lower tasks for the
pilot flying and pilot monitoring, respectively. Whereas in the
COOP condition, they had to perform their own tasks and to
cross-monitor the RESMAN and SYSMON for the pilot flying
and pilot monitoring, respectively (see Fig. 1).

Moreover, a dependency between the TRACK and RESMAN
tasks was implemented in both cooperative and noncooperative
scenarios in order to make the two participants environment
dependent and, therefore, more realistic [19]. When the tracker
was outside the biggest square, it became red and all the pumps
of the RESMAN task were deactivated until the tracker came
back inside the biggest square. As the tracker was controlled by
the pilot flying, this had an influence on the pilot monitoring
which managed the RESMAN task. Conversely, when the tank
A or tank B levels were under 2000 or above 3000, the TRACK
task responsiveness decreased, making it more difficult. Hence,
pilot’s monitoring actions had an influence on the pilot flying
TRACK task.

3) Scenarii and Protocol: Combining the cooperation level
(i.e., cross-monitoring: COOP and control condition: DON’T
COOP) with the four difficulty combinations, there was a total
of eight different scenarii. Each scenario was presented once to
the participants in a 5-min block each and in a random order (see
Fig. 2).

Once arrived, participants were randomly attributed one role:
either pilot flying or pilot monitoring and were asked to seat
down. They were asked to fill an informed consent and a demo-
graphic questionnaire. Once done, they were given the written
task instructions. While they were reading, ECG electrodes were
put in place. Participants were able to ask questions regarding
the task if needed. Before starting the task, they were asked to
seat as comfortably as possible. They were seated approximately
1 m from each other, as in a cockpit. They did a short interactive
tutorial, which gave them the occasion to discover and interact
with each subtask separately. This tutorial was followed by four
training sessions of 2.5 min each. Each training was set in the
control condition (DON’T COOP) meaning they did not have to
cross-monitor their partner. The first one was an EASY-EASY
and the second one a HARD-HARD scenario. The third and
fourth were the same but they had to exchange role, the pilot
flying did the pilot monitoring job and the pilot monitoring
did the pilot flying job. This was done in order to train each
participant to do all the tasks so they could help their partner
during the cooperation condition if needed. Participants were
asked to do their best in order to achieve the best performance.
Out of the 20 teams, the best performing one won a flight in
a Vulcanair P68 twin engine aircraft in order to motivate the
students.

C. Data Acquisition and Analysis

All the analyses were done using MATLAB r2019a. Codes
to compute the delayed coincidence count and the permutation
test are freely available on github [20].

1) Subjective Assessment: After each scenario, participants
were asked to fill a commonly used workload questionnaire:
the NASA-TLX [21]. This questionnaire combines six factors,
i.e., mental demand, physical demand, temporal demand, overall
performance, frustration level, and effort.

2) Behavioral Data:
a) Performance: Performance was rated out of 400 for

each scenario (100 for each task). The SYSMON task was
evaluated using the average response time, 0 being 7 s and 100
being 0.5 s. The TRACK task was evaluated as the average
distance from the center, 0 being the border and 100 the center.
The RESMAN task was evaluated as the average distance from
2500 units, 0 being 1000 and 100 being 0. The COMM task was
evaluated as the number of good answers: 10 being 100 and 0
being 0.

b) Cooperation: Cooperation was evaluated via partici-
pants’ keystrokes. It was considered that the pilot flying co-
operated when he/she helped by modulating the activity in
the RESMAN task, i.e., activating or deactivating a pump (by
pressing a number from 1 to 8). Regarding the pilot monitoring,
it was considered that he/she helped when he/she responded to
alarms of the SYSMON task (i.e., pressing a number from F1 to
F6 when needed). A percentage was then computed representing
the number of keystroke performed by the Helper over the total
number of keystroke performed for this tasks. For example,
for the SYSMON subtasks alarms, if the pilot monitoring re-
sponded to 3 alarms out of the 30, the percentage would be
10%. The pilot flying would have then responded to the 27 other
alarms.

3) ECG Data: ECG was recorded with two BioSemi Active2
(Corp) at 512 Hz. Two electrodes were used, placed under the
right clavicle and the left mid-axillary line. The overall ECG
pipeline is detailed hereafter in Fig. 4. First raw signals were
band pass filtered between 1 and 30 Hz, using a Butterworth
filter of the fifth-order. Signals were then epoched to separate the
eight different 5 mn scenarios. Peak detection was performed au-
tomatically using the “findpeaks” MATLAB function using two
parameters. The first parameter is a minimum peak amplitude
or height. This means that to be considered as a peak, the value
must be above a threshold Vth. The default value for Vth was
set to half the signal maximum value. The second parameter
used was a minimum interpeak distance. This parameter can
be seen as a refractory period and the default value was set
to 250 ms. A visual inspection was performed to dismiss low
quality recordings. There were mainly due to movement artifact
and electrodes coming off. If needed, the two parameters were
manually adjusted. Data were then stored as a time vector con-
taining each peak appearance. From the time vector, the average
beat per minute (BPM) was computed. The standard deviation of
all NN interval (SDNN) was also computed, where NN interval
represent all the “normal” RR interval. A 2 × 2 × 2 repeated

Authorized licensed use limited to: INSA TOULOUSE. Downloaded on September 17,2020 at 07:41:27 UTC from IEEE Xplore.  Restrictions apply. 



VERDIÈRE et al.: PS REVEALED BY DELAYED COINCIDENCE COUNT: APPLICATION TO A COOPERATIVE COMPLEX ENVIRONMENT 399

Fig. 3. Illustration of the delayed coincidence count. Two 3-s ECG recording are depicted in the upper and middle graphs (Participants 1 and 2). The red and blue
dots represent the ECG R peaks for the first (S1) and second (S2) participants, respectively. On the upper graph, the letter QRS symbolize the first QRS complex.
The blue dash line represents the IBI also known as RR interval regarding the R peaks. RR interval can also been called NN interval for “normal” beats. The red
and blue ECG peak dots are reported on the lower graph. Coincidence count for this segment is represented here. The first red dot on the left has not blue dot within
a time range of δ = 20 ms from it; The count for this first point is then C1 = 0. Conversely, the second red dot has a count C2 = 1 because he was one blue point

within a 20 ms range; meaning that the two participants R peaks are coincident. The total coincident count Ct for this segment would be Ct =
∑5

n=1
Cn.

Fig. 4. Left: description of the processing pipeline. Right: two coincidence count matrices, where lines represent pilots flying and columns pilots monitoring.
On the original matrix in the back, the diagonal represents the coincidence count for actual couples (highlighted in yellow). CObs is the diagonal sum of this
coincidence diagonal (trace). In front is represented one possible permutation of the original matrix, where lines are shuffled. The diagonal represents now a
random association of couples and Cb is the trace of this matrix. Matrices are 19×19 (instead of 20×20) because one couple was excluded for this scenario due
to insufficient ECG data quality.

measures analysis of variance (ANOVA) was done for the BPM
and SDNN data with the pilot flying difficulty (EASY/HARD),
pilot monitoring difficulty (EASY/HARD), and cooperation
structure (COOP/DONT COOP) as factors.

D. Cardiac Synchrony Measures

1) Cross-Correlation, Coherence, and Cross Recurrence:
The pipeline used for cross-correlation and coherence is similar
to the one in Jrvel et al.’s [10] study. Cross-correlations at zero

lag were obtained through standard procedures. Regarding the
weighted coherence [22], it was computed for the frequency
ranging from 0.05 to 1.25 Hz using 256 point Hann windows
with 75% overlap, weighted by both participants series power
spectral values at the specified frequencies.

CRQA was done following the procedure in [23] using the
cross recurrence plot toolbox for MATLAB [24]. The four
recurrence measures [7] used here were: (a) recurrence rate: the
number of shared locations in the phase space, which represents
how often systems do synchronize. (b) determinism: quantifying
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the number of points belonging to a diagonal line and repre-
senting how much systems do stay in a synchronized state. (c)
Entropy: the diagonal lengths distributed over an histogram and
qualifying the system complexity. Finally, (d) the length: the
longest diagonal segment in the recurrence plot which describes
the chaoticity of the system (see [7] for an comprehensive
presentation).

2) Delayed Coincidence Count: In order to evaluate how
many ECG peaks were coincident between the pilot flying and
the pilot monitoring, we used the delayed coincidence count (as
defined in [25]). The delayed coincidence count between two
point processes X1 and X2 is given by

ϕcoinc
δ (X1, X2) =

∑

u∈X1

∑

v∈X2

1|u−v|≤δ. (1)

More informally, ϕcoinc
δ is the number of couples of spikes

(peaks) appearing with a delay at most equal to δ. The two
point processes studied here were the pilot flying and pilot
monitoring R peaks (XPF andXPM, respectively). We calculated
this coincidence count ϕcoinc

δ for each team and also between all
the pilot flying and pilot monitoring from other team

ai,j = ϕcoinc
δ (XPF

i , XPM
j ) (2)

for all (i,j) in {1, . . ., n}2 where XPF
i (respectively, XPM

j ) rep-
resents the pilot’s flying (respectively the pilot’s monitoring)
ECG peaks from the ith (respectively, the jth) couple, and n=20.
This means that, for example, for the pilot flying for couple 1
(XPF

1 ), we calculated the coincidence between him/her and all
the other pilots monitoring from couple 1 to 20 (XPM

j with j in
{1, . . ., 20}). As each scenario was processed independently, if
some data were missing for one pilot monitoring or pilot flying,
the whole team was excluded for the scenario. By doing so, we
obtained eight square coincidence matrices ai,j , i.e., one per
scenario (see Fig. 4).

The process to set and select δ is similar to the radius selection
for recurrence plot as described by Webber Jr. and Zbilut [7].
The δ parameter is fixed based on two notions: 1) δ has to be as
small as possible. A large value of δ would make the coincidence
count really high, since it would consider the coincidence of
each beat with all the other beats. Additionally, the meaning
of coincidence itself in the context of heart beats would not be
relevant for values above a second (heart rates close to 1/s).
2) δ should not be too small, indeed very small values of δ
would drastically reduce the coincidence count, or even zero it.
Moreover, very small δ values would also increase the standard
deviation of the coincidence count while it has to be considered
normalized by its mean. Indeed, as δ increases the coincident
count inexorably increases. The coefficient of variation (i.e., the
standard deviation divided by the mean) is used to quantify this
phenomenon. Hence, in order to select a suitable value for δ, the
coincidence count is computed for a range of δ and the optimal
value is then selected by choosing the one that minimizes both
the coefficient of variation and the value of δ itself. In this study,
the δ value was selected at the group level, i.e., regarding all
participants’ data.

a) Permutation Test: Permutation testing is a nonparametric
method to statistically test for samples differences. The idea is to

shuffle the data to estimate the sampling distribution and then to
compare it to the “real data.” Teammates that did the experiment
together, i.e., “real teams” are here the “real data.” The different
teams are supposed to be independent. By shuffling those teams,
i.e., creating “permutated teams,” we computed the coincidence
distribution under the null hypothesis (no synchrony). An ex-
ample of “real team” could be team number 3: XPF

3 and XPM
3 .

Conversely, a permuted team represents a random association of
a pilot flying and a pilot monitoring:XPF

2 andXPM
7 , for example.

This permutation method allowed to compare the number of
coincidences of “real teams” from the one of “permuted teams.”
The coincidence number Cobs for “real teams” is computed for
each scenario independently. It corresponds to the diagonal sum
also known as the trace of the coincidence matrix ai,j

Cobs =
∑

i

ai,i. (3)

The permutation step consists of drawing B independent and
identically distributed permutations

∏b
n, 1 ≤ b ≤ B and com-

puting Cb

Cb =
∑

i

ai,
∏b

n(i)
. (4)

This permutation step can be seen as a shuffling between
teams illustrated in Fig. 4. It consists of a random pilot flying
(XPF) to a random pilot monitoring (XPM) association and
then computing the coincidence sum between all those new
permuted teams. The computational way to see this permutation
is a shuffling between lines of the coincidence matrix ai,j . By
shuffling lines, a random association between a pilot flying and
a pilot monitoring (XPF and XPM) is done on the diagonal. The
trace (sum of the diagonal) of this permuted matrix equalsCb. To
statistically detect a cardiac significant, the sum of coincidence
count for the “real teams” Cobs must be significantly higher
than the one on randomly permutated teammates (which recreate
what happens under independence). To evaluate this, the p value
p is evaluated as follows:

p =
1

B + 1

(
1 +

B∑

b=1

1Cb≥Cobs

)
. (5)

As eight scenarii were evaluated, a false discovery rate (FDR)
detection was applied on the p value [26].

III. RESULTS

A. Subjective and Behavioral Data

First, in order to validate that the two implemented difficulty
conditions (EASY and HARD) were perceived as such, the
subjective ratings from the NASA TLX questionnaire were
compared (see Fig. 5). The pilots flying found the task sig-
nificantly more difficult when the condition was HARD than
when it was EASY (F (1, 19) = 68.25, p < 10−3, η2p = .78).
The pilots monitoring also found the task significantly more
difficult when the condition was HARD (F (1, 19) = 41.17,
p < 10−3, η2p = .68). Interestingly, the pilots monitoring also
found the task significantly more difficult in the COOP condition
than in the DON’T-COOP condition (F (1, 19) = 5.46, p < .05,
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Fig. 5. Subjective NASA TLX scores (first row), average heart rate (second
row), and SDNN (third row) for the pilots flying (left graph) and the pilots
monitoring (right graph). Each one of the eight bars represents one of the eight
scenarii. The x-axis corresponds to the scenario difficulty for the pilot flying and
the pilot monitoring (i.e., EASY-EASY/EASY-HARD/HARD-EASY/HARD-
HARD). Colors represent the cooperation condition (COOP–DON’T COOP).

η2p = .22). The pilots flying did not significantly found the task
more difficult in the COOP condition (F (1, 19) = 3.57,p = .07,
η2p = .16).

Next, as expected, the implemented task difficulty had an
effect on the overall performance (see Fig. 7). Note that the
performance is evaluated for the team as the whole and not
for each teammate individually. Teammates exhibited a signif-
icantly higher performance when the pilot flying was in the
EASY condition compared to when he/she was in the HARD
condition (F (1, 19) = 16.61, p < 10−3, η2p = .46). Similarly,
teammates also performed better when the pilot monitoring was
in the EASY condition (F (1, 19) = 11.84, p < .01, η2p = .38).
Interestingly, the COOP condition also had a significant effect on

performance: participants performed slightly better in the NO-
COOP condition than in the COOP condition (F (1, 19) = 9.19,
p < .01, η2p = .33).

Regarding the cooperation, the keystroke percentage was only
evaluated for the four scenarios where teammates were asked to
cooperate (COOP). This keystroke percentage represents quan-
titatively how much a teammate did help his/her partner. It cor-
responds to the number of keystrokes performed by a teammate
in the other teammate’s subtasks compared to the total number
of keystrokes performed in this subtasks. As expected, the pilots
flying cooperated less (F (1, 19) = 5.83, p < .05, and η2p = .23)
when their difficulty was HARD (M = 8.9, std = 13.2) com-
pared to when it was EASY (M = 13.7, std = 14.9). In the
same way, the pilots monitoring cooperated less (F (1, 19) =
8.71, p < .01, and η2p = .80) when their difficulty was HARD
(M = 11.6, std = 13.4) compared to when it was easy (M =
11.1, std = 15.1).

B. ECG Data

After visual inspection, some scenarii were dismissed due to
nonsufficient ECG data quality. When one portion of a scenario
had to be dismissed, instead of interpolating the missing part,
the whole scenario was dismissed for this participant. This
unfortunate loss of data is mainly due to the fact that we used
external electrodes of the Biosemi system that encountered loose
contact issues for the ground and reference electrodes. In the end,
81% and 95% of scenarii were retained, respectively, for pilots
flying and pilots monitoring.

Regarding the heartrate (HR), the average pilot flying HR was
significantly higher (F (1, 16) = 6.23, p < .05, and η2p = .28)
when their difficulty was HARD (M = 78.5, std = 10.7) com-
pared to when it was EASY (M = 76.6, std = 11.2). Neither
the pilot monitoring difficulty nor the cooperation condition
had a significant effect on the pilot flying HR. Regarding their
teammates (i.e., pilot monitoring), difficulty or the cooperation
conditions had no significant effect on the HR.

Regarding heartrate variability (HRV) measures, for the pi-
lot flying, it appears that the SDNN was significantly higher
(F (1, 16) = 9.68, p < .01, η2p = .38) when it was EASY for
him/her (M = 47.2, std = 15.1) compared to when it was
HARD (M = 43.0, std = 10.1). Surprisingly, the difficulty of
the pilot monitoring tasks had also an effect (F (1, 16) = 6.92,
p < .05, and η2p = .30). The pilot flying SDNN was signif-
icantly higher when it was EASY for the pilot monitoring
(M = 46.1, std = 13.5) compared to when it was HARD (M =
43.8, Std = 13.6). The cooperation condition did not exhibit
a significant effect on the pilot flying SDNN. Concerning the
pilot monitoring SDNN, neither their difficulty, the pilot flying
difficulty, nor the cooperation condition had a significant effect.

C. Cardiac Synchrony

1) Cross-Correlation, Weighted Coherence, and CRQA:
Cross-correlation at zero-lag and weighted coherence metrics
revealed no significant synchrony via the permutation test—p
values were above the corrected threshold. Regarding CRQA,
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Fig. 6. Coincidence matrices traces for real teams (Cobs) and 100 000
permutated teams (Cb) for the eight scenarii (δ = 20 ms). The standard
deviation is represented only for permutated teams (Cb) since only one value per
scenario exists for CObs. The permutation test revealed a significant difference
(p < 0.01) for the eighth scenario (COOP–HARD–HARD).

the data were normalized and the parameters were set following
the procedure and recommendations described in [7]. The used
parameters were: M = 4 for the embedded dimension, τ = 1
for the delay, and r = .1 for the radius. The four metrics that
were used are recurrence rate, determinism, length, and entropy.
As detailed in Section II-D, to statistically assess the synchrony,
the permutation test was done for the eight scenarii indepen-
dently. As eight tests were performed, an FDR correction was
applied on the p value. It revealed no significant synchrony
for those four metrics. All p values were above the corrected
threshold.

2) Delayed Coincidence Count: The optimal threshold limit
δ parametrized to compute the coincidence count was 20 ms.
The statistical permutation test procedure was exactly the same
as the one for cross-correlation, coherence, and CRQA. The
value for the total coincidence count, i.e., the trace of the ai,j
matrices are represented in Fig. 6. The total coincidence count
for the 100 000 permutations, i.e., the ai,j matrices with lines
shuffled are represented alongside them. Interestingly, the eighth
scenario, which corresponds to both teammates operating in a
difficult condition (i.e., HARD–HARD) and in a cooperation
condition (COOP) revealed a significant cardiac synchrony be-
tween teammates (p < .01) for a maximum time delay of 20 ms.
Note that all the other scenarii did not elicit such a cardiac
synchrony. Additionally, no significant correlation was found
between the coincidence count and the performance index across
cooperative conditions.

IV. DISCUSSION

The goal of this study was to evaluate PS during dyadic inter-
actions using a delayed coincidence detection method applied
on ECG R peaks. The main interests of this method are its ease
of implementation and its ability to account for local cardiac

Fig. 7. Team task performance. The eight bars each represent one of
the eight scenarii. The x-axis corresponds to the difficulty of the scenario
for the pilot flying—pilot monitoring. (EASY–EASY/EASY–HARD/HARD–
EASY/HARD–HARD). Colors represent the cooperation condition (COOP–
DON’T COOP). Values range from 0 to 400, 400 being a perfect score.

synchrony. The method proved efficient in characterizing phys-
iological synchrony in dyads that performed a highly engaging
piloting-like task in a cooperative setting. Thus, 20 teams had to
perform a dual multi-attribute task battery MATBII task in which
the levels of difficulty and cooperation were manipulated. This
method was then compared with the most used metrics in the
literature: cross-correlation, weighted coherence, and CRQA.

The subjective and behavioral findings confirmed the task
to be engaging and contrasted in terms of workload. Indeed,
teammates performed better and reported a lower mental effort
when facing the easy conditions than the hard ones. Moreover,
task difficulty modulated the ability to cooperate. In this task, the
cooperation condition required the pilot flying and pilot moni-
toring to crosscheck their partner’s actions and user interface and
to potentially assist them. Our behavioral and subjective results
disclosed that this was particularly challenging under demanding
settings (HARD–HARD–COOP) yielding the participants to be
more focused on handling their own task and leaving them less
time and cognitive resources to assist each other. Cooperation
also intrinsically increases the number of tasks to perform, and,
therefore, the operator’s workload. Hence, the obtained result
is consistent with previous cooperative studies indicating the
mental workload had a deleterious effect on cross-checking and
crew performance [27].

Interestingly enough, this latter demanding condition was the
only one to elicit significant PS as calculated by the delayed
coincidence count method. On the one hand, one could argue
that this effect could be explained in terms of higher HR for
the teammates induced by the HARD–HARD conditions, thus
artificially increasing the heart beat coincidence count. However,
this effect was not observed in the HARD–HARD–DON’T
COOP condition. Moreover, only pilots flying had a significant
heart rate increase during their HARD difficulty. On the other
hand, our results did not lead to observe PS in any of the other
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cooperative situations (e.g., EASY–EASY–COOP). Therefore,
we believe that our results account for both the workload and
the intensity of cooperation that occurred in the HARD–HARD–
COOP condition. The participants were particularly engaged in
performing their own task while having in mind that they had to
support each other. This conclusion is akin to that of Levenson
and Gottman [28] who made the connection with results on mari-
tal interaction, and to Chanel et al.’s study who reported a greater
physiological synchrony during conflict interaction compared to
low-conflict discussion [11]. In their study, they observed more
PS in a competitive versus a cooperative condition while playing
a video game. They described PS as a “candidate for interaction
intensity.” These results are, however, to be qualified. Indeed,
the coincidence counts were not correlated to the performance
index. This is contradictory to only part of the literature that
found that PS was predictive of team performance in some
aspect [8], [10]–[12]. Yet is not in-line either to the other studies
that report no increase in PS during cooperative behavior [13].
Our study does highlight an increase in PS during cooperative
and high workload conditions, without correlation with team
performance. This might reveal that the observed physiological
synchrony could be an epiphenomenon.

The results reported in this study, together with others [8],
[10]–[12], [23], [29]–[31], raise the issue of the mechanisms
that underlie cardiac synchronization between teammates. Re-
searchers proposed different theories regarding the source such
as “shared metabolic demand through matched activity or behav-
ior, conditional and environmental influences and synchronized
breathing” [3]. Spontaneous group synchrony has been observed
via breathing [32]. This phenomenon known as the chameleon
effect [33] was also highlighted during cooperative conver-
sation [34] or visual and verbal interaction [35]. Respiratory
coupling or more generally breathing might play a role in the
observed synchrony. Moreover, the task design itself can induce
short stress episodes linked to the dynamic and fluctuating
workload experienced by participants. Those short episodes can
be linked to breathing synchrony, which could result in cardiac
synchrony.

In addition, it should be noted that the task was designed to be
continuous, in opposition to turn-based tasks, and to engage the
two participants during both the easy and hard conditions. Keep-
ing participants active in the task was done via the continuous
nature of the tracking and resource management task. Moreover,
because of the implemented dependencies between the subtasks,
the encountered workload has been variable for each team for
an exact same difficulty. This is mainly noticeable when one
of the participants performed poorly, the strong dependency
between the tracking and resource management tasks increase
drastically the difficulty for the coparticipant. This particularly
explains why the difficulty of the pilot monitoring tasks impacted
the pilot flying’s physiological state, such as her/his SDNN. In
other words, the overall task difficulty was controlled and equal
between teams, but we only looked at the performance at the
team level opposed to the participant level.

Regarding data analysis, most of the previous studies used
correlation or cross-correlation, weighted coherence, or recur-
rence analysis, i.e., CRQA on the IBI. Coherence and correlation

metrics did not reveal any PS. This might be due first to the fact
that scenarii were too short as they lasted only 300 s (i.e., 5 min),
which might not be optimal for computing those metrics. Most
importantly, we can hypothesize that because of the task dif-
ficulty, cooperative behavior arises only sporadically. Thereby,
methods such as coherence and correlation might not be appro-
priate as they characterize an average linkage throughout time.
Hence, they could be thought of measuring temporally global
synchronies, contrary to the coincidence detection metric, which
measures temporally local synchronies.

The closest method to compare ours to seems to be CRQA.
CRQA estimates the dependencies between each point of two
signals in a reconstructed higher dimension space. The depen-
dencies are estimated via the thresholded point distances in this
reconstructed space, i.e., the recurrence plot. By doing so, it can
characterize oscillatory behavior and complex dynamics such
as nonlinear coupling and chaotic behavior. Theoretically, our
method operates really closely by computing distances between
points of two signals and counting the number of distances below
a fixed threshold. However, the two methods differ regarding the
signal used. Our method measures distances using ECG peak
appearance time values, whereas CRQA is based on the IBI
values. Moreover, CRQA uses a reconstructed dimension space
to compute distances, whereas our method directly computes
distances in time. Yet, surprisingly the CRQA metrics did not
reveal any synchrony. This might be mainly due to the fact that
CRQA uses the IBI values. As the IBI is by definition the interval
between ECG peaks, it indirectly represents participants’ HR.
A reconstructed space with time-delayed dimension would then
exhibit close points where both participants’ HR would vary
similarly. In this context, CRQA would detect synchronous HR
variations rather than synchronous heartbeats. For this reason,
CRQA might not be the most suitable method for character-
izing PS in our ecological context because of the nature of
the considered coupling itself. Prolonged cooperative behavior
might be observable in a recurrence plot based on IBI, the
short duration (5 min) of our scenarii could also explain this
result. However, we can also hypothesize that because of the
“sporadic” nature of cooperative behavior, CRQA might not
be the most suitable metric to characterize it in ecological
conditions.

To conclude, this study indicated that a highly difficult task
combined with a cooperative behavior induces a cardiac syn-
chrony, which can be assessed using a permutation test on a
delayed coincidence count. This result is interesting for two
main reasons: 1) cooperation states can be measured via cardiac
synchrony; and 2) this synchrony can be easily characterized
from computational and theoretical points of view. This study
brings a contribution to this overall objective of characterizing
the level where information appears to transfer between people
that cooperate. For the future, we believe that a systematic
experimental approach is still needed to evaluate, extract, and
isolate every possible source of synchrony between participants.
Hence, research improvements such as verifying the impact
of the location of the teammate, of the number of noncritical
subtasks and their resulting workload, as well as the impact of
breathing on cardiac synchrony should be pursued.
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Abstract: As systems grow more automatized, the human operator is all too often overlooked.
Although human-robot interaction (HRI) can be quite demanding in terms of cognitive resources,
the mental states (MS) of the operators are not yet taken into account by existing systems. As humans
are no providential agents, this lack can lead to hazardous situations. The growing number
of neurophysiology and machine learning tools now allows for efficient operators’ MS monitoring.
Sending feedback on MS in a closed-loop solution is therefore at hand. Involving a consistent
automated planning technique to handle such a process could be a significant asset. This perspective
article was meant to provide the reader with a synthesis of the significant literature with a view
to implementing systems that adapt to the operator’s MS to improve human-robot operations’
safety and performance. First of all, the need for this approach is detailed regarding remote
operation, an example of HRI. Then, several MS identified as crucial for this type of HRI are defined,
along with relevant electrophysiological markers. A focus is made on prime degraded MS linked
to time-on-task and task demands, as well as collateral MS linked to system outputs (i.e., feedback
and alarms). Lastly, the principle of symbiotic HRI is detailed and one solution is proposed to include
the operator state vector into the system using a mixed-initiative decisional framework to drive such
an interaction.

Keywords: human-robot interaction; telerobotics; teleoperation; physiological computing; mental
state monitoring; passive BCI; mixed-initiative; automated planning

1. Introduction

In recent years, user state monitoring based on psychophysiological and neuroscientific methods
has developed in various fields, such as in the gaming and transportation domains [1,2]. However,
to this day, and to our knowledge, these methods are mostly used for ex post analyses and are seldom
implemented to provide online measures and system adaptation. Yet, with the rise of increasingly
complex and autonomous systems, the state of the human agent is of crucial interest to enhance both
operation safety and performance, be it for local or remote operation. What is more, operations are
also being increasingly performed at a distance. That is why the following subsections detail the
need for human-centered research in remote human-robot interaction (HRI) and, more specifically,
a physiological feature-based approach, as well as what are the interaction modes and autonomy levels
to consider for taking into account the human agents’ state derived from these physiological features.
It should be noted that this article is not centered on safety assessment; therefore, we recommend
readers to refer to Reference [3,4] for details on HRI safety.
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1.1. A Need for Physiology-Centered Research in Remote HRI

Remote operation, or teleoperation, can be considered as a subtype of human-robot interaction
(HRI) and is defined as the operation of a system at a distance, with the robot and the human not
collocated spatially nor even temporally [5]. Remote operation has developed progressively throughout
the years to answer a need for a safer and better task performance. As Sheridan [6] has recently
stated, it is most likely that "all robots for the foreseeable future will be controlled by humans,
either as teleoperators steered by continuous manual movement or as telerobots intermittently
monitored and reprogrammed by human supervisors". Currently, telerobots perform routine tasks
under human supervisory control, for instance, in production lines, and teleoperated vehicles allow
the performance of nonroutine tasks in hazardous or inaccessible environments [6]. Examples of such
tasks are space, underwater, or nuclear sites exploration [7], as well as carrying civil and military
missions [8], including search and rescue missions [9].

Although the use of automation is increasing rapidly, humans are still deemed vital [10].
However, humans are not providential agents, and they can fail. Human errors can have dramatic and
various consequences depending on the task at hand and the interaction mode, ranging from merely
material and financial losses to human casualties. The standard approach of human factors has been
applied for decades to try and prevent such errors. As illustrated by the inverted U-shaped curve
of human performance that can be observed under varying levels of arousal and task demands [11],
as well as the absence of behavioral difference that can be found between several difficulty levels
for low task demands [12], or very high ones [13], human performance cannot reflect all the mental
phenomena that arise during operations. A new research field that focuses on the study of humans
at work through the lens of human physiology and neuroscience has emerged to tackle this human
error issue from a different perspective. It is called neuroergonomics [14,15]. However, as pointed
out by Sheridan [6], although human-automation interaction has been studied in human factors
for decades, HRI, including teleoperation, has been quite neglected by researchers of that field
up till recently. For the past few years, research has intensified in this area, yet there is still
a need for more research on remote operation from human factors, but, more particularly, from its
sub-discipline, neuroergonomics.

1.2. Interaction Modes and Autonomy Levels

Fairly intuitively, one can identify two general modes of interaction between humans and
robots/artificial agents for remote operation: supervisory control vs. direct control. However,
the difference might not be that drastic and interaction modes could in fact be viewed as a
continuum [6,16–18], depending on:

• the frequency of human intervention;
• the type of control (i.e., manual vs automatic);
• and the embedded capacities of the robots/artificial agents (i.e., to what extent they can achieve

tasks autonomously).

While automation can be seen as replacing routine manual processes, autonomy is referring
to tsomething more complex, emulating human processes rather than replacing it [19]. In the literature,
there are differing views of what "autonomy" is. Here, we will consider a continuum that is reflected
by the various degrees or levels of system autonomy [20] ranging from what is usually considered
as true teleoperation, a.k.a. direct control, with no artificial support at all and the human who does
all the work, to the opposite case of no human intervention and the artificial agent that does all the
work, a.k.a. an extreme form of supervisory control [21]. The use of such extreme setups is scarce
and usually the interaction relies on more mitigated levels of autonomy. In addition, having a fully
autonomous system does not mean that humans will necessary be excluded from the loop. Indeed,
rule of engagement [22] or ethical decisions [16,23] are, until now, preferably entrusted to a human
agent decision-making process.



Robotics 2020, 9, 100 3 of 24

New forms of adaptive or adjustable autonomy levels have been designed to take into account
the involvement of the human operator [24] and to answer a need for authority sharing while
modeling conflicts between human and artificial agents [25,26]. In a human-centered point of view,
the systems can help the operator, for instance, by means of an artificial cognitive agent during
the mission [27]. In another vein, the mixed-initiative framework proposes to the humans and
artificial agents to opportunistically seize the initiative from each other [28]. This idea has been
proposed in order to ease the control of large robotic teams by a human operator [29]. But, the open
question is how to determine when, or quantify why, a given agent should take over the other during
mission execution.

To this day engineers and researchers mostly use activity modeling and sometimes subjective [30]
and behavioral data [31] to determine these autonomy levels [32]. However, as stated above,
since human performance cannot reflect all the mental phenomena that arise during operations,
there is a need for an in-depth evaluation of operators’ mental states using physiological measures.
The offline use of physiological measures to assess professional tasks’ operation is a first step
towards increases in both performance and safety. Yet, a step further is the online adjunction of
information about the human operator directly into the system. This is known as physiological
computing [33], and such systems can be called biocybernetic [34], or, more recently, symbiotic
systems [35], passive brain-computer interfaces [36], or physiologically attentive user interfaces [37,38].
Such systems take as inputs physiological parameters from the operator and thanks to various
processing methods, which generally include a machine learning step, they can derive an estimation of
a given mental state [39]. Hence, global systems that are composed of human and artificial agents and
which take information on all involved agents would allow dynamically reallocating tasks between
humans and automation, a challenge listed by Sheridan [6].

This task reallocation, which can be roughly defined as a Mixed-Initiative Interaction (MII) [28,40,41],
is particularly interesting as it will mitigate the occurrence of critical situations. MII is a promising and
flexible framework that offers the possibility to integrate the notion of agents’ current capabilities [42].
An MII system would allow the best current agent to seize control when necessary. However, it implies
using of agent monitoring systems, potentially comprising physiological computing tools when a human
agent is considered. To better detail the current research on physiological computing and how we argue
it could successfully be applied to HRI, and, in particular, to remote operation, in the following sections,
mental states that are deemed relevant to characterize and estimate in a remote operation framework
are defined, along with their classical electrophysiological markers. Then, details are given about the
current research on how to estimate these mental states and how to integrate this information into the
whole system.

2. Mental States of Interest for Human-Robot Interaction

2.1. Situation Awareness, Resource Engagement and Associated Mental States

Humans’ mental states are numerous, and it seems impossible—and possibly even irrelevant—to try
and estimate every one of them. However, several ones play a major part in error occurrence and are
therefore particularly relevant to characterize and estimate in order to improve human-system interaction
in a general manner, including human-robot interaction, in the case of remote operation. In the Human
Factors domain, a mental state that has gathered much attention since its creation in the aeronautical
context is Situation Awareness (SA). Endsley defined SA as “the perception of the elements in the
environment within a volume of time and space, the comprehension of their meaning and the projection
of their status in the near future” [43]. Therefore, lacks of SA can occur due to difficulties in perception
(low level) and/or in comprehension and projection (high level) [44]. With the current rise in automation
development, the challenge is to design systems that provide sufficient information to the operator to
compensate for the cues that are not perceived directly (see Endsley [45] for a review). Cognitive processes,
such as perception, attention, memory, and integration processes, are necessarily involved for SA
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to occur. Lacks of SA—due to either low and high level impairment—result in performance deterioration,
such as piloting errors, and can therefore have critical results. As indicated by Endsley and collaborators
Endsley [45], up to 76% of SA errors in pilots would be due to a problem in perception either due to system
failures or cognitive issues (e.g., perceptual or attentional failures). Fatigue and attentional problems,
as well as elevated stress and workload, are several well known mental states that impact SA [45,46].

Due to its multifaceted nature, SA is difficult to directly measure at the physiological level. Therefore,
researchers mainly focus on mental states that are linked to SA and have physiological markers that are
easier to detect. These states are all dependent on resource engagement. Several researchers proposed
that the existence of a finite set of information-processing resources would explain the occurrence of
performance degradation under heavy task demands or concurrent tasks performance [47]. Therefore,
over-engagement can be seen as the fact of engaging all the resources for processing only one sub-task or
one sensory canal (e.g., vision; a.k.a. attentional tunneling), while disengagement can be seen as the fact of
reallocating the resources to another—usually internal—task [48–50]. Since both over-engagement and
disengagement lead to performance degradation, it seems reasonable to estimate resource engagement
and, more particularly, to detect resource depletion.

2.1.1. Prime Mental States

Several factors, external and internal, can generate such a depletion of resources. Among these,
one can list the time spent on a task, also called time-on-task, and task demands. These two factors
are usually main characteristics of the task at hand, they relate to a temporally global resource
engagement, and both directly generate several mental states which we will consider as prime
mental states. When operators spend a growing time on their task at hand, their performance
is known to fluctuate with periods of degraded performance (i.e., increase in reaction time
and decrease in accuracy) [51]. This phenomenon can be explained in terms of engaged resources
and is due to the occurrence of several mental states, among which one can list mental fatigue and
mind wandering.

Mental fatigue is a state that occurs when a long and tiring task that requires subjects to remain
focused is performed [52]. Mind wandering is defined as an attentionnal disengagement from the task
during episodes when thoughts are in competition with information processing for the task at hand.
This leads to a reduction of external events’ processing in a general manner [53,54] and in a performance
decrement for the task at hand. These episodes of resource disengagement from the task occur
in a non-linear fashion when time-on-task increases. Both mental states would impact situational
awareness from the first processing steps, that is to say, the perceptual steps. Moreover, although mental
fatigue seems particularly relevant to estimate during both prolonged supervisory and direct control,
mind wandering seems more likely to occur during supervisory control. An example is the frequent
occurrence of boredom during Unmanned Aerial Vehicle (UAV) monitoring tasks [55].

Regarding task demands, when operators are faced with a particularly difficult task,
their performance decreases, and it is the same when the task is too easy. Hence, the performance
of an operator follows an inverted U-shape [56]. In neuroscience and human factors, this modulation in
task demands or difficulty and the associated effort invested in the task is usually referred to as cognitive
workload [57]. This very wide concept can also be understood in terms of required and engaged resources.
Cognitive workload can be modulated by varying several factors, such as the load in working memory
(e.g., number of items to keep in memory) and divided attention or multitasking (i.e., number of tasks to
perform in parallel), as well as stress imposed on the operator (e.g., temporal or social pressure). All these
factors are, of course, often overlapping in a given task, in particular, during remote operation.

2.1.2. Collateral Mental States

A resource depletion can also indirectly generate other mental states that we will call collateral
mental states. These collateral mental states, e.g., automation surprise, can, for instance, be generated
when there is a conjunction of prime mental states, e.g., high workload, and the occurrence of specific



Robotics 2020, 9, 100 5 of 24

events, such as critical system responses localized in time, that is to say feedbacks, parameter display,
and alarms, in a general manner. Hence, in this example, an alarm will not be processed by the operator
the same way when all resources are engaged (e.g., over-engagement) compared to when the operator
is in nominal state. In this case, these system output-related mental states are linked to a temporally
local resource engagement. Examples of such system-output related mental states are the following:

• Inattentional sensory impairments, such as inattentional blindness and inattentional deafness.
These attentional phenomena consist in "missing" alarms when all attentional resources
are engaged in another sensory modality. Hence, for the inattentional deafness phenomenon well
studied in the aeronautical context, pilots under high workload miss auditory alarms when they
are over-engaged in the visual modality (e.g., fascinated by the landing track) [58,59].

• Automation surprise, in which the operator is surprised by the behavior of the automation [60].
Although cases reported in the aeronautical domain are generally several minutes long, a subtype of
automation surprise is the confusion in response to a brief unexpected event, such as a specific alarm.
In order to go back to the nominal state of the global system, it is important to detect such a state from
the operator. It does not matter whether the confusion of the operator arises from a failure of the
artificial agents or the human ones. It might also be elicited by a general attentional disengagement
of the operator, who is then incapable of correctly processing system-outputs and is confused by
any negative feedback. This state might, in any case, lead the operator to take bad decisions and
should be detected and taken into account in order to avoid system failure.

In the authors point of view, the main mental states listed above seem particularly relevant
to characterize and estimate for hazardous tasks, such as the ones performed by remote operation.
In the next section, the classical electrophysiological markers that reflect theses mental states are given.

2.2. Physiological Features

The mental states described below are directly linked to situation awareness and to the previously
defined related mental states. They can all be directly measured and assessed to a certain extent
using portable, cheap, and non-invasive recording methods, such as electrocardiography (ECG)
and electroencephalography (EEG), which, respectively, record cardiac and cerebral activities. For recent
neuroergonomic literature on eye-tracking measures (i.e., measures of ocular behavior and pupil
diameter), readers can refer to Reference [61,62]. As for literature on near infra-red spectroscopy measures
(i.e., other measure of cerebral activity), readers can refer to Reference [63–65]. For this article, we chose
to focus on electrophysiological markers since the current acquisition devices—electroencephalography
(EEG) and electrocardiography (ECG)—are particularly cheap, non-invasive, and portable means
to record physiological data and are therefore well suited for recordings in real-life settings. In theory,
any type of physiological measure can be used to perform physiological computing. Yet, in practice,
the easier to compute and the most reliable ones are of course selected. The following list of physiological
features is not a comprehensive one but merely reflects the main trends identified for research
and development in the physiological computing domain. However, amongst electrophysiological
measures, one can also list EMG (electromyography) and EDA (electrodermal activity, or galvanic skin
response). We have chosen not to focus on these ones for the following reasons: they require attaching
electrodes onto the hands and/or forearm of the human operators, which we believe could both impede
the actual performance of the teleoperation tasks, as well as generate corrupted signals, for manual
operation. Moreover, the temporal resolution of EDA is of several seconds, which is quite slow and not
adequate in critical settings. Therefore, we have chosen to focus on electrophysiological metrics of high
temporal resolution (ms) that could be worn during manual operation and that have been proven to
be efficient in allowing mental state monitoring in other fields.
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2.2.1. Temporal Features

Temporal features are frequently used to characterize mental states. A well-known time-domain
metric that can be computed from ECG is the heart rate (HR) expressed in beats per minute (bpm) and
computed as the inverse of the Inter-Beat Interval (IBI) [66,67]:

IBIn = rn − rn−1, (1)

HR =
60
IBI

, (2)

with rn as the timestamp of the nth R peak (i.e., highest positive peak), and IBI the mean interval
between two pulses (two R-R intervals). In addition, another relevant metric is the heart rate variability
(HRV), which can be computed in the time domain as the variability of the R-R interval:

HRV =

√√√√ 1
N − 1

N−1

∑
n=0

(IBIn − IBI)2. (3)

HR and HRV are both impacted by engagement. HR increases, while HRV decreases, with an increase
in engagement linked to an increase in cognitive workload [68,69]. Conversely, HR decreases and
HRV increases with a decrease in engagement linked to an increase in time-on-ask or a decrease in
workload [68–70]. The automation surprise phenomenon has been reported to increase the HR [71].

Regarding EEG features in the time domain, the main marker is what is called an event-related
potential (ERP) [72]. An ERP consists of the EEG signal starting at the occurrence of a specific
stimulation, or event, such as an alarm, for instance, and ends at a selected time, (e.g., 800 ms
post-stimulation). ERPs can be averaged across trials to better reveal slow modulations in voltage (i.e.,
positive and negative deflections), which are quite specific to the nature of the stimulation and/or
the operator’s state. This averaging increases the signal to noise ratio [67]. When only one window
of signal is used, the analysis is called ’single-trial’. The single-trial data are of course better suited
for online mental state estimation than averaged ones. The ’raw’ ERP (i.e., all the samples of EEG
signal in a given time window) can be used to estimate a given mental state. Yet, to reduce the number
of features, researchers often compute the mean amplitude or select the peak value in specific time
windows that correspond to documented deflections, called ERP components.

The amplitude of the various deflections, or components, has been repeatedly linked to resource
engagement. Hence, mental fatigue and mind wandering are known to reduce the amplitude of these
components, such as the P300 component, which is a positive deflection that occurs roughly between
300 and 500 ms post-stimulation and maximal at posterior electrode sites [53,54,73]. Task demands and
cognitive workload are reflected the same way by an attenuation of the ERP deflections [69,70,74–76]
and so are the inattentional sensory impairments with, for instance, reduced N100 and P300 amplitudes
when auditory stimuli are not consciously perceived and reported [77,78].

Regarding automation surprise, a relevant EEG temporal feature that can be extracted is an error
potential (ErrP). This type of event-related potential is specific to the detection of an unexpected
event with amplitudes proportional to the frequency of errors [39,79]. ErrPs are notably elicited
by an unexpected system output and are characterized by a negative deflection at fronto-central
electrode sites, followed by a positive component at centro-parietal sites. The latency of these
deflections depends on the type of error that elicits ErrPs (for a review on ErrPs, see Reference [80]).

2.2.2. Spectral Features

The HRV ECG feature can be computed in the time domain as seen above, but also in the frequency
domain. In practice, to do so, one first needs calculating the power spectral density of the ECG signal
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(i.e., random time signal x(t)), which can be expressed, for the Fourier transform X( f ) of the signal,
as the square of its magnitude:

xpower(t) = |X( f )|2. (4)

Next, the frequency domain HRV is computed by using the LF/HF ratio, which consists of a ratio
of the power in a low frequency band ([0.04 0.15] Hz) with the power in a high frequency band
([0.15 0.4] Hz) [66].

The power of the EEG signal in several frequency bands can also be extracted. The main bands
of interest for mental state monitoring of awake operators include the δ (1 to 4 Hz), θ (4 to 7 Hz),
α (8 to 12 Hz), and β (13 to 30 Hz) bands. Table 1 details the power modulations commonly reported
in the literature for the following mental states: mental fatigue, mind wandering and mental workload.
In addition to the potential use of a single frequency band’s power, several authors have proposed
power ratios as good indices of workload and engagement. Hence, the θ power at the Fz electrode site
over the α power at the Pz electrode site ratio is frequently used (θFz/αPz, [75]), or also, the β power
over the θ plus α powers (β/(θ + α)) at all electrode sites, as in Reference [81].

Table 1. Commonly found power modulations of electroencephalography (EEG) frequency bands for
three mental states of interest.

Frequency Band Mental Fatigue Mind Wandering Mental Workload

δ ↗ ↗ anterior sites

θ ↗ ↗ ↗ anterior sites

α ↗ ↘ ↘ posterior sites

β ↘
[70,82,83] [53,54] [69,70,75,84]

2.2.3. Spatial Features

Beyond simple temporal and spectral features one can find in the literature a variety of feature
extraction pipelines. For instance, in order to increase the discriminability of two mental states
that need estimating, one can use spatial information, that is to say the information on which
sensor is more relevant for detecting a given mental state, or information on how the different
signals are linked to one another. In order to do so, one can use sensor selection algorithms
that automatically detect the relevant ones, or spatial filtering algorithms which combine the signals
into more discriminant ones [85]. Temporal or spectral features are then usually extracted from the
new signals acquired through this signal conditioning step. For instance, after a spatial filtering step,
one can compute the log variance of a signal filtered in the α band, or extract event-related potentials,
to estimate the workload of an operator [76,86].

Furthermore, spatial features, such as connectivity matrices, can be computed. For instance,
correlation, covariance, or coherence matrices can be computed from the signals of all sensors.
Indeed, it has been shown that mental fatigue can be estimated using EEG covariance matrices [87].

3. Operator Mental State Assessment

The previous section described some noticeable mental states that encourage error occurrence
(e.g., cognitive workload), along with associated markers (e.g., Heart Rate Variability (HRV)).
These markers (also called features) and, more broadly, data streams coming from the human operators,
can be exploited to infer useful information, like mental state estimation. As physiological signals
are highly susceptible to noise, most processing pipelines include a preprocessing step before feature
extraction in order to enhance the signal to noise ratio. This preprocessing is detailed in the following
section. Next, the machine learning framework and the usual tools for estimating mental states
are the following topic of this section, while the subsequent section describes some techniques
for supervising man-machine teams based on the resulting estimates.
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3.1. Preprocessing

Electrophysiological signals have to be preprocessed before stepping into the feature extraction
stage. Indeed, this type of signal is quite impacted by electromagnetic noise present both in laboratory,
office, and ground station conditions (e.g., current, 50 or 60 Hz depending on the country), as well as
in operational settings, such as inside vehicles and aircrafts. The usual first step is to apply frequency
filters to remove signal drifts and the noise from electromagnetic external sources.

Next, one can add a denoising step that aims at removing influences from physiological sources
that are not of interest for a specific application. For instance, one can remove the impact of eye
movements on the cerebral signal. Indeed, eye movements produce noises of high amplitude
in the EEG signal. In order to remove this information when it is considered artifactual, one can
use regression or source separation methods. This is usually done using a reference signal acquired
through electrodes positioned above, below and at the outer canthi of the eyes, a method called
electro-oculography (EOG). Yet, one should note that ocular activity can in fact be quite relevant to
estimate mental states linked to time-on-task, task-demands, and system-outputs and might be rightly
conserved inside the EEG signal. Using ocular activity extracted from the EEG signal allows avoiding
the use of facial electrodes and is relevant to monitor mental fatigue in operators [88].

3.2. Learning and Classification

3.2.1. Classification Principle

A physiological marker—or, more generally, a vector of markers—is reliable for a given mental
state if the values of this marker characterize well the mental state of interest. In other words,
the underlying probabilistic distribution of such a vector is known (or supposed) to be significantly
different depending on the state of the operator. This property often provides the possibility to
generalize from examples: the aim of statistical classification here is to compute (or learn) a prediction
function from a dataset that contains vectors of feature values. This function has to associate the most
plausible mental state to any new vector, not just to those present in the dataset [89–91].

Figure 1 illustrates the classification process. The dataset used for learning purposes, i.e.,
to compute the prediction function, is called the training set. Within the framework of statistical
classification, the training set contains for each vector (of feature values), the corresponding desired
output of the prediction function.

In the case of physiological data classification, features are physiological markers and the
desired output is the condition: “human in the mental state number 1” or “number 2”. In practice,
physiological data are recorded on volunteers who have been asked to perform specific tasks,
known to make them reach particular mental states or to avoid them. The considered datasets
are therefore called labeled datasets, the labels being the desired outputs (i.e., the mental state under
which the vectors of features have been recorded). Since it uses labeled datasets, the classification
is referred to as supervised learning.

More formally, a n-sized, d-dimensional labeled dataset (X, y) ∈ Rn×d × {0, 1}n is a dataset
in which each sample (vector of features) is denoted by Xi ∈ Rd, i ∈ {1, . . . , n}, and the associated
label, or class, is yi ∈ {0, 1}, with, for instance, “1” for “high workload” and “0” for “low workload”.
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Offline

Acquisition,
preprocessing

& feature
extraction

i label Xi,1 Xi,2 . . . Xi,d
1 y1 = 0 −1.59 0.96 0.38 5.54
2 y2 = 1 3.51 −1.59 −4.95 4.69
...

...
...

...
...

...
n yn = 0 −1.57 0.32 3.57 −2.23

Training set

Classifier c

Computation of
the classifier

c : Rd → {0, 1} y = 1
y = 0

Online

Acquisition,
preprocessing

& feature
extraction

Classifier c

Prediction:
c(Xn+1) = 0

Testing set (size p)

Xn+1 = (−2.78, 0.99, . . . , 1.54)

Accuracy:

Figure 1. Principle of classification. Left part: Offline learning of the function/classifier. Right part:
Estimation of the class of new feature datasets by applying the learned classifier. Can be performed
both offline to check the performance of the classifier or online to adapt the interaction. Red circle:
classification error.

Within this formalism, a prediction function is a function c : Rd → {0, 1} predicting the label
c(Xn+1) ∈ {0, 1} of any new sample Xn+1 ∈ Rd (a sample not present in the training set). An algorithm
aiming at computing such a prediction function is called classifier. Usually, the labeled dataset is divided
into two parts: the training set used to train the classifier and the testing set used to assess the error
of the resulting prediction function. Since the testing set is not used to learn the computed prediction
function, it is an appropriate dataset to check the generalization properties of this function.

3.2.2. Classification Performance

Many classifiers are used in passive brain-computer interface research to compute more or less
powerful prediction functions, depending on the number of dimensions d, the size of the dataset
n, its values (Xi)

n
i=1 ∈ Rd and the mental states of interest (yi)

n
i=1. The usual performance metric

for a prediction function is the mean accuracy: the number of samples (of the testing set) in which
labels are well predicted divided by the size of the testing set. In Figure 2, an example of resulting
prediction functions for some popular classification methods on three datasets is given. The datasets
used are such that: ∀i ∈ {1, . . . , n}, Xi = (HR, HRV) ∈ R2

+ (as detailed in Section 2.2.2, HR: Heart rate;
HRV: Heart rate variability). Labels encode the mental states of interest: y = 1 if the human operator
performs a robot teleoperation task (blue dots), and y = 0 (red dots) if he/she is resting.

Part. A

Part. B

Part.

A & B

Figure 2. Prediction functions of some popular classifiers on three datasets computed using
scikit-learn [92]. The datasets are HR (Heart Rate) and HRV (Heart Rate Variability) values of a human
operator during a rest session (red dots, y = 0), and during a mission, described in Reference [42,93],
involving a robot teleoperation task (blue dots, y = 1). The first two rows consider two different
participants (Part. A and Part. B), while the last row is based on the union of the previous datasets
(Part. A & B). The accuracy, which ranges from 0 to 1, is indicated in black on the top right of each
graph. Data from the testing set are the more transparent points.
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Formally, given a testing set (X, y) ∈ Rn×d × {0, 1}n, the mean accuracy of c
is a(c) = #{ i | yi=c(Xi) }

n . If the testing set is unbalanced i.e., if the number of samples with label
1 (or “positive” data) P := # { i | yi = 1} is very large (or very small) compared to the number
of samples with label 0 (“negative data”) N := # { i | yi = 0}, an adjusted version of the mean
accuracy may be used instead based on the following more specific metrics. The number of
samples for which the label is l ∈ {0, 1} and the prediction is p ∈ {0, 1}, denoted by mp,l(c) :=
# { i | c(Xi) = p and yi = l }, allows a more precise evaluation of the classifier c : Rd → {0, 1}.
Using this notation, the number of true positives—respectively, false positives, true negatives, and false
negatives— is TP := m1,1(c), respectively, FP := m1,0(c), TN := m0,0(c), and FN := m0,1(c),
and these values may be summarized by a confusion matrix 2× 2 generally used as an approximation
of prediction probabilities:

[
TP/P FP/N
FN/P TN/N

]
=

[
m1,1(c)

P
m1,0(c)

N
m0,1(c)

P
m0,0(c)

N

]
≈
[

p ( p = 1 | l = 1 ) p ( p = 1 | l = 0 )
p ( p = 0 | l = 1 ) p ( p = 0 | l = 0 )

]
, (5)

with n = P+ N, and TP
P (respectively, TN

N ) often referred to as sensitivity or true positive rate (respectively,
specificity or true negative rate). The mean accuracy can be computed from these metrics a(c) = TP+TN

n ,
as well as the adjusted one ã(c) = 1

2 (
TP
P + TN

N ), for unbalanced datasets.

3.3. Some Famous Classifiers

Many classifiers have been developed on theoretical or empirical bases and have pros and cons
for each type of data. The following section details: linear and quadratic discriminant analyses
(LDA and QDA), Support Vector Machine (SVM), and k-Nearest Neighbours (KNN). LDA is surely
one of the most famous classifiers. It has been used on features extracted from ECG or EEG data to predict
quite efficiently mental fatigue (e.g., Reference [68,86,94]), mental workload (e.g., Reference [68,86,95,96]),
and inattentional deafness (e.g., Reference [97,98]). A combination of classifiers can also be used,
such as done by Singh and collaborators, who use KNN and SVM to detect periods of rest, stress,
or cognitive workload [38]. For a complete description of the state of the art of mental state classifiers
from EEG signals, please read Reference [91].

3.3.1. Linear and Quadratic Discriminant Analyses

A method derived from classical statistics, known as discriminant analysis [99], suggested
by R.A. Fisher, assumes that for each class l the data

{
Xi ∈ Rd

∣∣∣ yi = l
}

are normally distributed.
In a nutshell, by estimating the parameters of the distributions, the predicted class of a new vector
simply will be the class of the distribution for which it has the highest likelihood. While covariance
matrices of the normal distributions are supposed to be equal in Linear Discriminant Analysis
(LDA), this assumption is not taken up with Quadratic Discriminant analysis (QDA). After estimating
the parameters of these two Gaussian functions, one for each label l, the prediction is based
on the posterior probabilities of the classes. Indeed, using the Bayes rule, the decision for a new
vector is the class with the highest resulting probability.

3.3.2. Support Vector Machine

A newer algorithm, called Support Vector Machine (SVM) [100], does not assume that the data
are normally distributed. This classification algorithm takes as input a penalty parameter C > 0
and a function called kernel. The kernel function is used to map the vectors that we need to classify
from a lower dimensional space (Rd) to a higher dimensional space in which it is more easily linearly
separable, i.e., in which we can find a hyperplane that separates the two classes. Some popular kernel
functions are the linear kernel Kl(x, y) := 〈x, y〉 = ∑d

i=1 xi · yi, the polynomial kernel Kp(x, y) :=
( 〈x, y〉+ r )p (with p ∈ N), and the Gaussian radial basis function (RBF) kernel Kr(x, y) := e−γ‖x−y‖
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with ‖x‖2 = ∑n
i=1 x2

i = 〈x, x〉. The classification results using these three kernels are visible on Figure 2.
Given a kernel K : Rd ×Rd → R, and thanks to an important theoretical result called the representer
theorem [101], a solution f is computed using convex optimization. The predicted class of a vector
x ∈ Rd is given by the sign of the resulting function f . Thus, the set of all x ∈ Rd such that f (x) = 0
is a separating boundary. In the formulation of SVM optimization, the margin, that is the smallest
distance between the points x such that f (x) > 1, and those such that f (x) < −1, is maximized as is
the classification error multiplied by C: a larger value of C leads to a smaller margin, but more training
data that is correctly classified. This algorithm is considered as a state-of-the-art in classification
performance, with guaranties due to the convex optimization.

3.3.3. k-Nearest Neighbors

The k nearest neighbors classifier (k-NN) [102] is one of the simplest classification algorithms
in machine learning. It is based on a distance defined in the feature space (e.g., the Euclidean

distance d(x1, x2) =
√

∑n
i=1(x1

i − x2
i )) and defines prediction as the majority label among the nearest k

neighbors according to this distance.

3.4. Other Algorithms, Recent Advances, and Challenges

The previous list of classification algorithms is far from comprehensive for brain-computer
interface applications. Among the remaining algorithms, one can cite random forests (RF) [103]
that are based on the majority vote (ensemble learning) of decision trees. Neural networks
(NN) [104], such as the multi-layer perceptron (MLP), are also successful and have given birth to deep
learning [105], which is beginning to be used to classify EEG data when the database is large
enough [106]. They optimize the parameters of successive transformations applied to the data,
usually using gradient descent algorithms (backpropagation [107]) to minimize the classification
error. The transformations are usually composed of a linear combination of weights (e.g., convolution)
and a non-linear function (e.g., sigmoid) called activation function. The intermediate results of each
transformation, up to prediction, are called neurons. Since each step outputs several neurons, they are
often represented as successive neurons’ layers in a network. The more layers of neurons there are,
the deeper the network is considered to be. Recent improvements in deep neural networks (e.g.,
network structure, new transformations, sampling training data) have allowed deep learning methods
to reach performances comparable to the state of the art for a motor-imagery EEG data set [108].
The authors even implemented a method to visualize the features used by the resulting classifier.
However, up to now, in physiological computing, neural networks have not yet shown their supremacy
over other machine learning algorithms, as is the case in image classification. This is probably due
to the size of the physiological datasets, which do not allow them to learn enough. The presented
machine learning techniques are rather classical algorithms, and their use in BCI are presented in more
detail in the review of Reference [109].

New algorithms have been developed based on matrices and tensors as features. These matrices
and tensors can be built from connectivity features between sensors (e.g., EEG electrodes) or
sources (after a source reconstruction step; for more information on source reconstruction, see, e.g.,
Reference [110]). Examples of such measures are correlation, covariance, or coherence matrices.
The estimation of a given mental state can next be done by computing distance metrics between these
objects. This has notably been done for mental fatigue estimation using the Frobenius distance between
the covariance matrices of EEG signals [87]. The current use of the Riemannian distance has given rise
to high accuracy mental state predictions [111].

There are currently three main technical challenges:

• Finding physiological features that are robust to the acquisition environment and tasks. Indeed,
interactions between features have been found to significantly impact and decrease classification
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performance [86,95]. Therefore, one should try and find markers that are context-independent
and that could efficiently be used both in the lab and in the field.

• Developing classification pipelines that are capable of transfer-learning. Classifiers are indeed
rarely immune to performance decrements generated by a switch of task, participant, or even
session. Pipelines that are robust to inter-subject, inter-session, and inter-task variability are,
therefore, to be aimed at.

• Performing the estimation in an online fashion and closing the loop, that is to say, feeding the
mental state estimates to a decisional system that can, e.g., adapt the functioning of the whole
system accordingly (e.g., assign tasks or send alarms to the operator). This topic is addressed in
the next part.

4. Closing the Loop: Towards Flexible Symbiotic Systems

The present section considers research work that aims towards adding human operators
as measurable agents into the control loop (see Figure 3). Here, we explain how the adjunction
of computational steps (e.g., data preprocessing, features computing, classification) and their outputs
could be beneficial to drive the human-robot interaction. As stated earlier, the systems developed
following this approach are called neuroadaptative or physiological computing systems, as well as passive
Brain-Computer Interfaces (BCIs), and are likely to grow considering the increasing use of machines by
a limited and decreasing number of human agents.

Goal
(e.g. criterion for

mission achievement)

Decisional System
(e.g. planning algorithm)

Actions online

(e.g. supervision)

System

Environment

env.
laws

agents’
actions

Agents

Artificial

Human

Artificial agent’s state

(e.g. system performance)

Data acquisitio
n

(e.g
. EEG, NIRS,

ECG,

EDA, EMG,

ET, sound, video,

behavior, etc.)Preprocessing
(e.g. artefact correction,
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Feature extraction
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in the [8 12] Hz band)

Translation
(e.g. classification)
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d

sig
nal

markers

Human
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(e.g. over-engaged)
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(e.g. planning domain
learning)
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Figure 3. Principle of the adjunction of a biocybernetical loop into the supervisory control loop of a
Human-Robot System. It uses a Brain-Computer Interface pipeline to extract a state vector from the
human operator’s physiological activity. The enriched state vector can encompass highly processed
features such as estimates, but can also contain more basic ones such as denoised signal.

Particularly, Brain-Computer Interfaces (BCIs) can provide useful information about the human
operator to the automated system. A BCI is a system that performs direct information transfer
from a brain to a computer, through brain activity measurements, therefore enabling to achieve
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control of devices without the use of psycho-motor activity [112]. In this article, we are interested
in passive BCIs, i.e., BCIs in which the human operator does not try to voluntarily control his/her brain
activity: the latter is only used to improve the interaction between the operator and the automated
system [113,114]. In addition to the difference between active and passive BCIs which relates to the type
of control exerted by the user, system interventions, or counter-measures, can be explicit or implicit, i.e.,
system adaptations can be consciously registered by the user, or not [34]. The use of explicit or implicit
adaptations mostly depends on the limit one sets concerning the quantity of information the operator
should get.

In this section, first, the principle of these symbiotic systems is presented. Next, current work
on human-robot interaction driving systems exploiting some human state detection is described.
An emphasis is given on approaches based on sequential decision-making, where automated planning
models under uncertainty have been used. Note that human behavior and the events encountered
during remote operation are rarely deterministic or fully observable in our view.

4.1. Symbiotic Systems: Principle

As much as the human agent adapts his/her behavior to the feedback given by the system,
an automated system should adapt its behavior to the human state vector, either at the user interface
level—shallow adaptation—or at the global decisional level—deep adaptation. For instance, Singh and
collaborators proposed a physiologically attentive user interface to perform shallow adaptations [38],
while Prinzel and collaborators [115] developed a psychophysiological adaptive automation system
with adaptive task allocation based on the engagement index [81]. Mixed-initative systems have
also been used to produce deep adaptations, such as to decide to launch alarms [116], to decide
how to present the information to the operator depending on the task priority and mission goals [9],
or even to decide when to request an action from the human operator [117].

In order to improve the performance of remote robot operation by allowing this adaptation to
take place, a big technical challenge for these systems is the requirement to function online, or in ”real
time”. Here, the expression “real time” differs from “Real Time Computing”: it just means that the
system is reactive to data with quite small delays.

Concerning the data from the human operator, it can be classified according to the way they
are acquired:

• Proximal behavioral data: operator actions on the interface through the mouse, keyboard, buttons,
joystick, etc. [31,118].

• Distal behavioral data: obtained using remote sensors (passive operator), such as eye tracker,
audio and video streams, etc. [117,119,120].

• Physiological data obtained with sensors worn by the human operator, such as electroencephalography
(EEG), electrocardiography (ECG), electrodermal activity (EDA), near infrared spectroscopy (NIRS),
electromyogram (EMG), etc. [39].

Next, we propose a general framework we believe to be a strong candidate for such symbiotic
systems.

4.2. One Solution: Mixed-Initative Interaction Driving Systems

As discussed earlier, physiological and behavioral markers could be used to estimate the operator
state vector. As illustrated by Figure 3, this operator state vector can be exploited by a decisional system
jointly with the artificial agents’ state vectors. More precisely, a decisional framework can decide,
based on current states, which action is the most relevant to perform given the mission context
and long-term goals. Examples of such actions are to wait for an answer of the human operator,
set an artificial agent to autonomous mode, or take over the human operator’s task if he/she fails.
In the literature, this approach is known as mixed-initiative interaction [28,40,41].
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The classical mixed-initiative approach defines the role of the human and artificial agents according
to their recognized skills [40,41]. In our point of view, mixed-initiative should be considered in depth,
especially for human-robot interaction. Indeed, the agents should be allowed to take the initiative
of performing tasks that would not be necessarily defined or specified to them. This position is also
advocated by Jiang and Arkin [28], who define the mixed-initiative human-robot interaction (MI-HRI)
as: ‘A collaboration strategy for human-robot teams where humans and robots opportunistically seize (relinquish)
initiative from (to) each other as a mission is being executed, where initiative is an element of the mission that
can range from low-level motion control of the robot to high-level specification of mission goals, and the initiative
is mixed only when each member is authorized to intervene and seize control of it.’

An interesting example of such a mixed-initiative system is given in Reference [118]. This approach
relies on a statistical analysis to determine which agent (i.e., human or artificial) is the most efficient
for a given task, but not the only one capable of it. This is certainly an interesting topic concerning roles
allocation and authority sharing between the human and artificial agents. In other words, it means that the
human or the artificial agents are both able to perform the same task, and, when the agent initially
expected to perform a task fails (even the human agent), the other can take the initiative to accomplish
it. In this sense, we advocate that the human operator should not be considered as a providential agent
any more, contrary to the classical operational context which consider that the human operator will
be able to take over when sensors or automations fail [121–123].

As discussed in the first sections, degraded mental states could diminish human capabilities.
Hence, cybernetic systems should be able to compensate such a weakness while ensuring application
or mission performance. In the next section, we discuss some works from the literature that report
cybernetic (closed-loop) systems that make use of behavioral and/or physiological data to infer
the human state vector and to adapt its behavior in consequence.

4.3. Mixed-Initiative Symbiotic Interaction Systems: Existing Work

To our knowledge, the literature on interaction based on mixed-initiative symbiotic systems
is still scarce. Yet, a few studies have shown the feasibility of the approach. Some of them using
only subjective and behavioral data and closing the loop for triggering adaptations for mission
accomplishment (long-term decisions), others, using physiological data although applying reactive
human-centered strategies (short-term decisions) without taking into account the overall system
performance. The works discussed in the following section approach the main idea of such closed-loop
systems. As far as the authors know, mixed-initiative interaction driving systems searching for mission
performance maximization, and that include physiological computing to monitor the human operator,
were not yet fully implemented [42].

4.3.1. Adaptive Interaction Exploiting Subjective and Behavioral Data for Human State Estimation

- Subjective measures

Gombolay and collaborators studied a mixed-initiative human-robot teaming in which human
factors are considered by a robot in the decision-making process [30]. This latter defines tasks
to the team by taking into account subjective workload and workflow preferences from human
teammates. Interestingly, they found that human workflow could be orthogonal to the goal
of maximizing team’s overall performance. Unfortunately, in this work, subjective feedback
is considered for a priori task allocation, and no online human state estimation is performed for
tasks (re)planning.

- Actions and sequences of actions

Beyond subjective measures, which can only be performed before/after the task or in an interrupting
manner during the task, behavioral measures can be easily and unintrusively performed online.
Hence, de Souza and collaborators used a search and rescue mission in which human operators and
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artificial agents (UAVs) must collaborate to deliver first-aid kits [9]. This approach proposes to model
the human utility based on the Prospect Theory considering subjective perceived probabilities learnt
from experimental data. Based on this model, the supervisory system can predict the human operator’s
response for a given request from artificial agents in a given context. Then, it can choose how to present
the information to the operator. The approach is based on Game Theory and is designed to maximize
the chances the human operator takes an aligned decision with respect to the operational guidelines.
The results demonstrate the system can influence humans’ decision, in particular, when operators
are emotionally involved.

In Charles et al. [31], an interaction model learning approach is proposed to approximate a Markov
Decision Process (MDP) based on crowdsourcing collect data. The authors integrated the human
actions on the interface as a state variable which models the user intention dynamic. As well as,
its influence over the others state variables evolution during manual control or autonomous robot
control mode. Simulation results showed the optimized collaboration strategy (MDP policy) based on
the learned interaction model increased the overall mission performance compared to a random or
a fixed strategy.

In the same vein, Nikolaidis and collaborators proposed an elegant way to estimate different types
of human operators (safe or efficient) based on their sequence of actions in an industrial human-robot
interaction context [124]. The decisional framework, which estimates the behavioral profile of the
operator, is based on a Partially Observable Markov Decision Process (POMDP). The POMDP adapts the
behavior of the artificial agent considering the current estimation of the human operator profile. The same
decisional framework is also used by Hoey and collaborators in another operational context [120],
in which the system explores video inputs and proposes an assistance for people with dementia, such as
(i) verbal or visual prompts or (ii) through the enlistment of a human caregiver’s help.

- Vocal commands

Atrash and Pineau proposed a human-robot interaction approach also based on the POMDP
framework to drive an automatic wheelchair [119,125]. High-level user commands are inferred
by a vocal recognition system, and a feedback is given to the user via a mounted display.
In Reference [125], a method to learn the reward function of a such POMDP is presented, while,
in Reference [119], the observation function is learnt. These works demonstrate the capability
of Bayesian techniques to adjust the POMDP model from (numerous) experiences.

- Ocular behavior

Gateau and collaborators proposed an integrated system that models the non-deterministic
behavior of the human operator based on his/her time-to-answer, and his/her availability,
which is measured by means of an eye-tracker [117]. The eye-tracking device indicates the regions
of the screen the human operator might be paying attention to. Exploring these pieces of information
into the closed-loop allows to design a decision-making system that performs requests to the human
operator respecting his/her supposed availability. The approach based on a POMDP shows
that the human operator’s performance on the secondary-task increases when the system takes into
account the operator’s availability information in the closed-loop, while not decreasing the overall
system’s performance.

4.3.2. Adaptive Interaction Exploiting Physiological Data for Human State Estimation

To our knowledge, physiological measurements to estimate human (hidden mental) states
(cf. Section 2) have never been tested in order to be included into the human-robot mixed-initiative
interaction control system (e.g., high-level mission control loop). For instance, in Reference [116],
a POMDP-based approach is proposed, in which a mixed-initiative human-robot mission is modeled
considering that a degraded (partially observable) cognitive state could be estimated [126].
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However, this work did not evaluate experimentally a such system, and the study only provides
simulations results.

Yet, outside of the mixed-initiative approach, work has been done to use physiological data
in a closed-loop fashion. Indeed, some works in human-machine interaction, adaptive automation,
or active and passive BCI, in different operational contexts, have integrated physiological data to trigger
adaptation. Examples of such works are detailed hereafter.

- Active BCIs

In the active BCI literature, i.e., works that enable the voluntary control of interfaces, exoskeletons
or wheelchairs, the adjunction of physiological data in the control-loop has been studied for
a few decades (see Reference [127] for a review). However, these systems usually use the outputs
of a classification algorithm in a straightforward manner and do not use planning algorithms, nor even
consider the potential use of mixed-initiative designs. However, Ghosh and collaborators did propose
a Markov Decision Process (MDP) approach to control a wheelchair using EEG data [128]. In their
study, the planning problem is solved by reinforcement learning methods. The framework aims to
deduce users’ intentions and adapt the system’s behavior in consequence. Based on the detection
of ErrPs (see Section 2.2), the system learns the value related with an action performed in a given
state. Perspectives are proposed in the sense of using Partially Observable MDPs to handle with the
misclassification errors of user intention, and the reward in terms of cognitive load of the user during
policy learning.

- Passive BCI for active BCI

Interestingly, the work of Zander and collaborators demonstrates the interest of using a passive
BCI to detect the errors generated by an active BCI thanks to the extraction of ErrPs [114].
After detection, the system handles a correction action which speeds up user performance in
a short-term horizon. Yet, again, no automated planning technique has been used in this work
in order to plan a sequence of actions. The development of dynamic model able to mimic future
ErrPs from users in function of the context, which is a necessary step for long-term automated
action planning, was out of the scope in this reactive system. However, this work highlights the
potential of a such passive and implicit estimation of user’s hidden states (or mental states) to increase
human performance.

- Passive BCIs for mental workload management

Since the early years of passive BCIs, mental workload has been one of the most studied mental
states. For instance, Prinzel and collaborators presented a study in which adaptive automation
was performed to track performance and to decrease participants’ workload [115]. The system used
EEG-based spectral features, to decide greedily (based on a threshold) when to switch between
automatic and manual control modes during a tracking task (modified version of Multi-Attribute
Battery Task; MATB) coupled with an auditory oddball task. Their adaptive automation improved
performance while lowering workload compared to a random decision strategy. Such a state-of-the-art
work also demonstrates the possible benefits in taking into account physiological features to adapt
the system’s behavior. Note that, in this study, the decision rule was only based on an EEG-based
engagement index [81] evolution. Here, again, no long-term planning technique, potentially based
on the evolution of an engagement index, was used. In our view, a model able to predict the
evolution of such an index would favor best suited adaptations compared to reactive decision rules,
being less prone to short-term variations and triggering actions only when necessary for long-term
performance maximization.

More recently, Arico and collaborators have studied the effect of adaptive automation to
reduce mental workload in a realistic Air Traffic Management (ATM) task, in particular, during the
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high-demanding conditions [129]. Various automation schemes were defined beforehand by specialists
and were triggered when an EEG-based mental workload index was higher than a threshold, which was
user-defined during the training phase. Again, no automated planning technique that would be able
to reason by taking into account long-term mission or task goals was used.

Note that, in the existing literature, besides being seldom applied to remote operation,
the approaches are either human-centered or artificial-agent-centered: they design a system that
models the behavior of the humans and adapt itself to the type of human it interacts with
(e.g., Reference [30,114,115,119,120,124,128,129]); or a system that drives the human actions in order
to maximize the performance of the entire system (e.g., Reference [9,116,117]). However, considering the
definition of MII-HRI given by Jiang and Arkin, [28], and also advocated by us, these works are only
first steps and pave the way toward mixed-initiative collaboration strategies. Hence, the next research
steps should promote the design of systems in which the initiative is genuinely mixed, i.e., each agent
(human or artificial) can intervene and seize the control. Besides, from a human point of view, the utility
(or necessity) that such an artificial system could seize the control from us still remains to be well defined,
notably regarding ethical reasons.

4.4. Research Gaps and Future Directions

In our view, in order to advance the improvement of symbiotic systems’ safety and performance,
researchers and designers should no more consider the human operator as an unfailing agent. Indeed,
as discussed previously, the human operator’s mental states can impact their performance and even
prevent them to make efficient decisions or, should the artificial agents fail, to adequately take over.
As argued by Reference [42], the mixed-initiative framework presents a reasonable solution because
it offers the opportunity to determine a cooperation strategy defining the role of involved agents
according to their recognized skills and current capabilities. Incidentally, such a framework, if used as
an interaction driving system, requires: (i) to monitor the capabilities of all involved agents (human
and artificial agents) given the operational context, and (ii) the ability to model the evolution of agents’
individual behavior [31,130], as well as monitoring systems output performance.

Automated planning techniques are based on systems models. Note that interaction models are
not straightforward to obtain [31]. However, if enough data are available about agents actions’ effects,
and if monitoring systems performance is known, it is possible to explore planning models that could
determine the mixed-initiative policy strategy. In Reference [116,117], automated planning models (e.g.,
POMDPs) were applied to trigger actions (e.g., role assignment, implicit or explicit counter-measures
launch) for operation performance maximization while respecting safety specifications. These works
have demonstrated the interest of long-term reasoning to mitigate decrease of performance or critical
situations. It paves the way for the integration of richer monitoring systems (e.g., physiological
computing-based ones) into such mixed-initiative interaction driving models. It goes without saying
that both requirements—physiological computing for monitoring systems and long-term model-based
actions planning—still need further developments, in particular, in ecological settings.

In this article, a non-exhaustive review of relevant mental states of interest for operator monitoring
was given. It does not include work on affective-related states which are, however, also relevant
to characterize and enhance human-robot interaction. Affective computing is a well developed
field and affective states can be estimated quite efficiently using machine learning tools on a variety
of physiological markers [131]. Therefore, in addition to estimating time-on-task, task demands, and
system-related states, further research and development should also focus on incorporating affective
computing pipelines into the system. As detailed by Pongsakornsathien and collaborators, research
and engineering work also needs to focus on sensor fusion and sensor networks, by taking into
account the specificity and minimum performance requirement of each sensor to increase mental state
estimation reliability and accuracy [132].

In addition, this paper advocates the use of sensors and its specific pipelines for mental state
estimation purposes in HRI to enhance mission performance. However, to plug in the human operator
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in such a way brings out social and ethical issues. Despite the importance of those aspects, these points
are out of the scope of this article and readers should refer to studies that present formal methods for
linking ethics and automated decision-making [23], that propose a user-centered method to design,
develop, and test assistive robots [133] or that discuss the acceptability of wearable sensors [134].

Lastly, it should be noted that, although remote operation is a rising form of HRI with applications
in risky settings that justify a need for research and development to enhance both operation safety
and performance by taking into account the state of the operator, local operation of robots, such as in
the 4.0 industry or in the operating room, could also benefit from physiological computing and MII
systems [135–137].

5. Conclusions

This perspective article was meant to provide the reader with a thorough understanding of a
recent and growing field that is called physiological computing, with a focus on the benefits it could
bring to human-robot interaction developments for remote operations. It stems from the review of
the literature that there is a need for studies that would concentrate on using physiological data to
infer operators’ mental state in an online fashion to adapt the interaction, particularly in the context of
remote operation, and that would use methods, such as automated planning techniques, in order to
progress towards mixed-initiative architectures. Such developments would in our view provide safer
and more efficient human-robot interaction systems, which would be an invaluable contribution for
remote operation in risky settings.
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As is the case in several research domains, data sharing is still scarce in the field of

Brain-Computer Interfaces (BCI), and particularly in that of passive BCIs—i.e., systems

that enable implicit interaction or task adaptation based on a user’s mental state(s)

estimated from brain measures. Moreover, research in this field is currently hindered by a

major challenge, which is tackling brain signal variability such as cross-session variability.

Hence, with a view to develop good research practices in this field and to enable the

whole community to join forces in working on cross-session estimation, we created the

first passive brain-computer interface competition on cross-session workload estimation.

This competition was part of the 3rd International Neuroergonomics conference. The

data were electroencephalographic recordings acquired from 15 volunteers (6 females;

average 25 y.o.) who performed 3 sessions—separated by 7 days—of the Multi-Attribute

Task Battery-II (MATB-II) with 3 levels of difficulty per session (pseudo-randomized order).

The data -training and testing sets—were made publicly available on Zenodo along with

Matlab and Python toy code (https://doi.org/10.5281/zenodo.5055046). To this day, the

database was downloaded more than 900 times (unique downloads of all version on

the 10th of December 2021: 911). Eleven teams from 3 continents (31 participants)

submitted their work. The best achieving processing pipelines included a Riemannian

geometry-based method. Although better than the adjusted chance level (38% with an

α at 0.05 for a 3-class classification problem), the results still remained under 60%

of accuracy. These results clearly underline the real challenge that is cross-session

estimation. Moreover, they confirmed once more the robustness and effectiveness of

Riemannian methods for BCI. On the contrary, chance level results were obtained by

one third of the methods—4 teams- based on Deep Learning. These methods have not

demonstrated superior results in this contest compared to traditional methods, which

may be due to severe overfitting. Yet this competition is the first step toward a joint effort

to tackle BCI variability and to promote good research practices including reproducibility.

Keywords: benchmarking, dataset, passive brain-computer interface, workload, EEG, cross-session variability,

estimation, Riemannian geometry
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1. INTRODUCTION

Passive Brain-Computer Interfaces (BCIs) can estimate users’
states, e.g., their cognitive or affective states, from their brain
signals and use these estimations to adapt a human-computer
interaction system accordingly (Zander and Kothe, 2011). As
such, passive BCIs (pBCIs) have been used for many applications,
including the estimation of users’ mental workload (Roy and
Frey, 2016), in order to adapt education material to students’
cognitive resources (Yuksel et al., 2016) or to prevent airplane
pilots from being overloaded (Singh et al., 2021a), and thus
from missing alarms (Dehais et al., 2019a,b); or to estimate
users’ affective states, in order to design adaptive video games
maximizing users’ excitement or pleasure (Ewing et al., 2016),
among many others.

As such, pBCIs are a key element for neuroergonomics
(Dehais et al., 2020; Fairclough and Lotte, 2020a), for the
design of numerous real-life studies and applications of
neurotechnologies (Lotte and Roy, 2019). However, beyond
promising proof-of-concepts, really using pBCIs in everyday
life still requires to face numerous challenges. One of them is
the well-documented large within-subject variability affecting
brain signals such as ElectroEncephaloGraphy (EEG) signals.
Indeed, EEG signals are highly non-stationary, and can change
a lot across days, or within a day, even for the same user
(Fairclough and Lotte, 2020b). However, so far, the vast majority
of pBCI studies were conducted on a single day (a.k.a.
session), making it unclear whether the designed BCI would
still work on brain signals acquired over different days/sessions
without re-calibration.

This is equally true for other EEG-based datasets and
competitions outside the field of pBCI. Recent examples include
the public database of joint recording of EEG and fNIRS data
during cognitive tasks published by Shin et al. (2018) that enabled
the authors to evaluate the benefits of a hybrid-BCI for within-
subject and single-session mental state estimation during a word
generation task. The Clinical BCI challenge in 2020 provided data
from healthy and stroke patients, which was new and enabled
both within and cross-subject estimation, but using only one
session (consisting of 1 offline training session and 1 online
testing session; Chowdhury and Andreu-Perez, 2021). Lastly, the
NeurIPS 2021 BEETL Competition: Benchmarks for EEG Transfer
Learning (Xiaoxi et al., 2021) provided 1 sleep dataset and 5
Motor-imagery datasets (active BCI). The goal was to perform
cross-subject sleep stage estimation (impact of the age of the
participants), as well as cross-dataset MI-BCI estimation with
multiple sessions.

Hence, to our knowledge, existing public EEG datasets—and
the scarce pBCI datasets—provide brain signals recorded on a
single day/session (Hinss et al., 2021b), preventing the design
and evaluation of pBCIs that would work across days/sessions.
Ideally, a real-life pBCI, as envisioned in neuroergonomics,
would need to be effective and efficient at all time, i.e.,
across sessions, without the need for recalibration. We thus
proposed a data analysis competition at the 3rd International
Neuroergonomics conference, that aimed at addressing this
scientific challenge. We notably released the first (to the best

of our knowledge) public pBCI dataset providing EEG signals
across multiple sessions for each user, and we challenged the
competitors to come up with the best algorithm to decode mental
workload from EEG signals on a new unseen session, from
a training dataset comprising several sessions. The choice was
made to focus on a mental state frequently investigated in the
pBCI literature, namely, mental/cognitive workload. Hence, data
was acquired using a well-known task that elicits various levels of
mental/cognitive workload: the Multi-Attribute Task Battery-II
(MATB-II) developed by NASA, which enables to assess task-
switching and mental workload capacities [https://matb.larc.
nasa.gov—(Santiago-Espada et al., 2011)]. The dataset is part of
a new open EEG database currently under development, and
designed to address the need for more publicly available EEG-
based datasets to design and benchmark passive brain-computer
interface pipelines [as detailed in Hinss et al. (2021b)].

This article provides a retrospective on the competition by first
detailing the competition management, the released dataset, the
competitors and the methods employed by them as well as the
obtained results and a reflection on which methods seemmore fit
for cross-session EEG-based mental workload estimation.

2. COMPETITION & DATASET

2.1. Competition Management
The competition was organized as the grand challenge of
the 3rd International Neuorergonomics conference (https://
www.neuroergonomicsconference.um.ifi.lmu.de/) held online in
September 2021 (fromMunich, Germany). It was managed using
the conference ConfTool submission website and the Zenodo
dataset sharing website (Hinss et al., 2021a). The participation
and submission rules were the following:

• One submission per team;
• One participant may only be part of one team;
• Submissions must include: results (estimated labels for the test

set) and abstract (same format as regular paper submissions
for the conference).

The important dates of the conference competition were the
following:

• 15-Jun-2021: Official competition opening, publication of the
(training) database (2 sessions with labels);

• 01-Jul-2021: Release of dataset version 2 with the 3rd session
included as a test set (i.e., without labels);

• 31-Jul-2021: Competition closing, deadline for predictions and
abstract submission;

• 31-Aug-2021: Evaluation by the competition organizing team;
• 05-Sep-2021: Submission of presentation materials;
• 13-Sep-2021: Announcement of results at the opening

reception of the conference. Oral presentation of the winner
and poster session presentations of all competing teams.

Overall, the goal of the participants was to design and to train a 3-
class pBCI workload classifier on the first two labeled sessions—
i.e., the training sessions—in order to predict the labels of the 3rd
unlabeled session—i.e., the testing session. Participants should
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thus aim at reaching the highest classification accuracy on this
testing session.

2.2. Participants and Protocol
The project was validated by the local ethical committee of
the University of Toulouse (CER number 2021-342). Fifteen
participants (6 females; average 25 y.o.) were invited to the lab for
three independent experimental sessions, each spaced one week
apart (exactly 7 days). Participants gave their written consent and
received a monetary compensation (40 in total). Each session
involved a short training/warm up period. Following this, a
resting state (1 min with eyes open) was recorded. Participants
then completed an MATB-II task with three 5-min blocks,
each of a different difficulty level (i.e., different workload level)
presented in a pseudorandom manner. By varying the number
and complexity of the sub-tasks, 3 levels of workload were
elicited (verified through statistical analyzes of both subjective
and objective -behavioral and cardiac- data).

2.3. Task
As mentioned earlier, the dataset used for the competition
comprised epoched data acquired during the performance of a
well-known task in the human factors domain: the MATB-II
whose graphical user interface is shown in Figure 1A. In this task,
participants had to perform several sub-tasks simultaneously.
Depending on the condition, the number of sub-tasks and
their respective difficulty differed. Each condition lasted 5 min.
The order was randomized with the other tasks, meaning that
participants did not necessarily start with the easy task first.

In the easy condition (label 0), participants engaged in
the TRACKING and SYSTEM MONITORING sub-tasks. The
TRACKING task is a simulation of manual control, and the
participant has to keep a target at the center of a window.
The SYSTEMMONITORING task requires monitoring 4 gauges
and 2 warning lights. For the medium condition (label 1),
a third sub-task was added: RESOURCE MANAGEMENT. It
presents the participant with a fuel management system where
the goal is to maintain a certain fuel level by activating and
deactivating a set of pumps that allow for the allocation of fuel
to several reservoirs. Finally, for the difficult condition (label 2),
the COMMUNICATION task was added to the three previous
sub-tasks: here the participant has to respond to radio messages
by changing the frequencies of different radios. Additionally, the
TRACKING task was made more demanding in the DIFFICULT
condition by increasing the speed of target motion.

2.4. Data Acquisition
A MATLAB version of the MATB-II task was used for
the experimental campaign (developed and used by Verdiere
et al. (2019); https://github.com/VrdrKv/MATB). EEG data
acquisition was performed using a 64 active Ag-AgCl electrode
system (ActiCap, Brain Products Gmbh) and an ActiCHamp
amplifier (Brain Products, Gmbh; Figure 1B). One electrode
could not be used and one electrode was dedicated to record
cardiac activity, resulting in 62 electrodes, placed according to
the international 10-20 system. In addition, the precise electrode
location was obtained using a STRUCTURE (https://structure.io)

3D camera and the get_chanlocs plug-in developed specifically
for electrode localisation purposes (https://github.com/sccn/get_
chanlocs/wiki). The sampling frequency was set to 500 Hz.
Impedance was kept below 10k� as much as possible. Data, as
well as markers of all events occurring during the tasks, were
recorded and synchronized using LabStreamingLayer (https://
github.com/sccn/labstreaminglayer).

2.5. Data Preprocessing
Data preprocessing was done in MATLAB with the help of the
EEGLAB toolbox (Delorme and Makeig, 2004). First, the data
from the resting state as well as the tasks were extracted from
the overall recording. The electrode recording cardiac activity
was removed.

The following pre-processing pipeline was applied:

• Epoching into 2-s non-overlapping epochs;
• Referencing using right mastoid electrode;
• High-pass filter 1 Hz (FIR Filter, pop_filtnew from EEGLAB);
• Electrode rejection (average amplitude above 2 times

the standard deviation across channels) and spherical
interpolation;

• SOBI—a special case of blind source reconstruction based
on second order statistics (Belouchrani et al., 1997)—with
subsequent automated IC_Label rejection (muscle, heart, and
eye components were rejected with a 95% threshold);

• Low-pass filter 40 Hz (FIR Filter);
• Average re-referencing (CAR);
• Down-sampling to 250 Hz.

Note that these preprocessing steps were performed in order
to enhance the signal-to-noise ratio, but also to reduce biases
in the competition. For instance, data were filtered below 40
Hz, and ICA was used so as to reduce as much as possible the
risk of estimations based on motion-related ElectroOculoGraphy
(EOG) and ElectroMyoGraphy (EMG) artifacts. These artifacts
are mostly contained in the gamma band (Fatourechi et al., 2007).
Hence, we wanted the competitors to base their method as much
as possible on genuine cortical activity only. At the end of this
preprocessing stage, for each of the different conditions and for
each session there were 149 epochs extracted per participant.

2.6. Data Formatting
The data were exported as a dataset from EEGLAB under the .set
and .fdt format. The COBIDAS BIDS formatting guidelines were
followed (Pernet et al., 2020). Data were organized as follows:

• One directory per subject;
• Two sub-directories for each session;
• Inside each session directory one sub-directory for the precise

electrode locations (measured via the STRUCTURE app) and
one for the EEG data;

• 5 (.set) files per session. Each of the epoched and preprocessed
task conditions, the resting state as well as the raw file for the
resting state;

• Each epoch was marked by events to show the condition
(difficult, medium, easy, Resting State);
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FIGURE 1 | Experimental setup. (A) Screenshot of the MATB-II task performed by the participants, with four sub-tasks: namely (from the top left corner to the bottom

right corner) Monitoring, Tracking, Communications, and Fuel management. (B) Database acquisition experimental setup.

• The electrode locations were provided in a. txt file with the xyz
coordinates for each electrode.

3. RESULTS

3.1. Competitors
Eleven teams from 3 continents—Asia, Europe and North
America (Figure 2A)—and 7 countries (Figure 2B), submitted
their work, for a total of 31 participants. The biggest contributor
in terms of submissions was India with 4 teams. France and
the United Kingdom were behind with two teams (one was
affiliated to both countries). Finally, Germany, Israel, Serbia, and
the United States of America provided one submission each.
The eleventh team was disqualified due to the submission of an
incomplete results file.

3.2. Performances Obtained and Methods
Used
The methods used by the contestants are listed and ranked with
their achieved test classification accuracy in decreasing order in
Table 1.

In terms of classification accuracy, the obtained performances
ranged from 31.32 to 54.26%. Note that the chance level for this 3-
class problem is 33%, and an upper-bound of about 38% with the
adjustment that takes the number of trials per class into account,
following (Müller-Putz et al., 2008). Thus, 3 out of 10 valid
submissions performed at chance level. The winner performed
well above chance level, although with still quite a large error
rate, the proposed classifier misclassifying almost every other
epoch. This suggests that cross-session workload classification is
a feasible but difficult task, for which there is still a lot of room
for improvement.

In terms of methods, three main families of classifiers were
explored: Riemannian geometry classifiers (Yger et al., 2016;
Congedo et al., 2017) (in green in Table 1), deep learning

classifiers (Roy et al., 2019) (in red in Table 1) and Random
Forest classifiers (Breiman, 2001) applied onto classical features
(in purple in Table 1). Roughly, Riemannian classifiers top
the ranking, with the 1st, 3rd, and 4th best scores, classical
approaches with Random Forests are in the middle of it (5th and
7th places), while the 3 worst performances, below chance level,
are obtained by deep learning methods. A notable exception is
the 2nd best performing approach, which uses a Convolutional
Neural Network (CNN), i.e., a deep learning method.

Diverse standpoints on the data were exploited by these
different classifiers. The first four teams from the ranking have
taken advantage of some spatial information from the signal.
Indeed, three methods used Riemannian geometry principles on
covariance matrices extracted from the signals (Yger et al., 2016;
Congedo et al., 2017). These covariance matrices encode spatial
information. Corsi et al. (2021) have even added features from
functional connectivity metrics. Sedlar et al. (2021) have used a
specific type of CNN named spherical CNN, designed to perform
convolutions on non-planar data as the layout of electrodes
on the skull (planar data are for example 2D images). It thus
specifically exploited the topographical layout of EEG electrodes,
i.e., domain-specific prior knowledge.

The winning solution from Singh et al. (2021b) has also
taken advantage of an automatic and per-subject electrode
selection to reduce the number of electrodes from 61 to
18 − 32, in addition to a classical approach using Riemannian
geometry principles to project covariance matrices to the tangent
space and use these projections as features to feed a Support
Vector Machine (SVM) classifier. The selection was made
sequentially, by pruning channels, to find the combination that
maximises the Riemannian distance between class-conditional
covariance matrices.

In Figure 3, the discrepancy of the validation accuracy
(evaluated by the competitors using the published dataset—
sessions 1 and 2) and the test accuracy (evaluated by the
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FIGURE 2 | Teams’ and submissions’ geographical origin and number (first author). (A) Geographical origin of competition participants across the globe. (B) Number

of submissions (and therefore teams) per country.

TABLE 1 | Classification accuracy obtained, from best to worst, and methods used by the competition participants (winner score in bold).

Team Institution & Country Test accuracy

(3rd session)

Method

Singh et al. (2021b) IIT Kanpur and IIT Roorkee, India 54.26% Riemannian geometry + automatic electrodes

selection

Sedlar et al. (2021) Inria, Sophia Anitpolis, France and Univ.

Nottingham, UK

48.20% Spherical CNN with rank-1 constraint

Corsi et al. (2021) Inira, Paris, Univ. Paris-Saclay and Univ.

Paris-Dauphine, France

48.13% Riemannian geometry + functionnal connectivity

features

Narayanan (2021) Birl Institute of Technology and Science, Pilani, India 46.30% Riemannian geometry

Bolton et al. (2021) Tel Aviv University, Tel Aviv, Israel 44.67% Random Forest on classical features (300)

Madhavan et al. (2021) IIT Guwahati, Assam, India 43.79% RNN on bandpower + approximate entropy features

Sharma (2021) DFKI Saarbrcken, Germany 38.49% Random Forest on CSP features

Kartali et al. (2021) mBrainTrain LLC and Univ. of Belgrade, Serbia 33.18% 1 Dimension CNN

Kingphai and Moshfeghi (2021) Univ. Strathclyde, Glasgow, Scotland 31.89% RNN on frequency, statistical, morphological,

time-frequency, linear, and non-linear features

De Lorenzo et al. (2021) Drexel University, Philadelphia, USA 31.32% RNN and CNN

organizers using session 3) is depicted. Validation accuracy from
Sharma (2021) was missing in the report and is therefore omitted
from the graph. Teams are ordered from left to right following
the ranking of the competition. For the first five competitors,
the overfitting seems limited as the validation accuracy are
close to test accuracy. However, for the three deep learning
methods at the end of the ranking, generalization seems to have
been an issue as the methods perform very well from session
1 to 2 but at chance level on session 3. All deep learning
models, except the one from Sedlar et al. (2021), have proposed
quite large models, thus with many parameters, and have used
Recurrent Neural Network (RNN) models—except Kartali et al.
(2021) who used CNN, which may explain the generalization
issues. Indeed, it could be that there was not enough training
data to properly train such large deep learning methods, with
many parameters and little prior knowledge. This seems to
be confirmed by the performances obtained by the 2nd best
performing method, by Sedlar et al. (2021), as it also uses a deep
learning algorithm, however, with few parameters and layers (it
was actually quite a shallow neural network) and with strong
prior about EEG generation.

Interestingly, it can be noticed that none of the methods
proposed actually performed explicit inter-session transfer using,

e.g., transfer learning (Jayaram et al., 2016; Azab et al., 2018).
Indeed, the participants tried to design models with the higher
generalization power, so that by training it on session 1
and 2 it would still perform well on session 3. No statistics
or characteristics were extracted from session 3 to try to
adjust/transfer the predictions. Similarly, no information about
other subjects were used to train the classifiers for a given subject.
In other words, neither cross-session nor cross-subject transfer
was explored. Several participants have mentioned this transfer
learning approach as future work in their abstract and therefore
it seems to remain an open question.

4. CONCLUSION

Overall, in this article, we described our efforts toward moving
pBCI technologies beyond proof-of-concept studies in a single
session, to more realistic pBCI use across multiple days/sessions,
i.e., in a neuroergonomic approach. In particular, we organized
the first pBCI competition that aimed at estimating workload
levels (with three levels of workloads) across sessions, with two
sessions for training the BCI classifier, and one session for testing
it. For that competition, we collected a dedicated EEG data
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FIGURE 3 | Difference between the test accuracy (blue; from sessions 1 + 2 to 3), computed by the organizers, and the validation accuracy (orange; from sessions 1

to 2 or reverse), computed locally by competitors. A large discrepancy between the two indicates an issue with a generalization, i.e., over-fitting.

set, that we publicly shared with the community—in order to
stimulate research in that direction even beyond the competition.

The results of that competition provided several interesting
insights. First, it confirmed the effectiveness and superiority
of Riemannian geometry classifiers for BCI, whether active or
passive, as the winner used Riemannian classifiers, and 3 out
of the 4 best scores were obtained using Riemannian geometry.
However, this claim should be tempered by the fact that the
number of participating teams was only of 10 and that achieved
accuracy is quite low. Besides, we could also notice that a
classical approach here submitted by Bolton et al. (2021), with
a traditional feature extraction and a random forest as classifier
has achieved comparable results to those obtained with the other
methods of the top-5.

The overfitting of 3 out of 4 of the deep learning methods
highlights that deep learning is not a silver bullet. It requires
some careful design of an adapted architecture and training
procedure to the dataset. Here, as in all BCI research so far, the
dataset was small. Hence, overfitting due to too large networks
was a clear pitfall. A notable exception, the 2nd best results,
used a neural network method with a compact (shallow) network
and strong prior knowledge about EEG generation. Thus, deep
learning seems useful for BCI when it is not deep, and does not
fully apply end-to-end learning, but rather (manually) integrate
prior knowledge in its architecture. The difficulty of designing
an adequate deep learning method for BCI was also observed
elsewhere [see, e.g., (Lotte et al., 2018) for a review]. Moreover,
even when properly applied, the deep learning methods applied
to BCI do not offer an edge over other traditional methods,
like it has revolutionized computer vision or natural language
processing. Hence, it seems that there is no deep learning
revolution in BCI, at least so far.

Finally, the results obtained by the competitors, in terms
of classification accuracy, revealed that while cross-session
workload classification is feasible, the robustness achieved is

still rather low, and would require a lot of improvement for
being used in practical applications outside the lab. Yet, it
should be noted that the database provided for this competition
could have been larger. Indeed, at the time of the competition
opening only 15 participants had undergone the 3 acquisition
sessions, with an unbalanced database in terms of gender. This
was mainly due to participant recruitment and data acquisition
constraints in times of covid-19 pandemic, and will need to
be further addressed with the release of a more complete and
richer database.

Nevertheless, such results thereby open interesting
perspectives for future research. First, they stress the need
for more BCI studies across sessions, both to assess existing
pBCIs (usually designed on a single session) but also to design
new algorithms able to deal with cross-session variabilities.
To do so, transfer learning algorithms (across sessions or
users) seem to be promising approaches to explore, that the
competitors of that competition have not employed yet. It
should also be stressed that cross session variabilities are only
a single type of variabilities that affect BCI performances.
Many other sources of variabilities affect BCIs, such as
cross-subject, cross-context, cross-task or change in users’
mental states, among other (Roy et al., 2013; Fairclough
and Lotte, 2020b). Thus, we hope that such a competition
highlighted the need for more studies, algorithm designs,
benchmarks or data base collections to tackle variabilities in BCI
in general.
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