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Fourth, for having put up with me on a daily basis, I would like to thank all my former and current colleagues, and in particular Fred (Pr Frédéric Dehais, a.k.a "le parrain") for mentoring me during this whole process, Caro (Dr Caroline Chanel), for urging me to prepare it in the first place, Aurélie (Dr Aurélie Clodic) for motivating me all the way till the end, Anke (Dr Anke Brock) for making me rehearse, and Maud (Ms Maud Samson) for helping me deal with earthly concerns such as -delicious-food

Thanks to my supervisors and growing network, ever since my master degree I have been given the opportunity to teach. This chapter details all my educational activities until 2022. The reported hours in the summary table and in the subsequent sections are given in hours equivalent to tutorials as usually done in France, for instance for the application to receive the Lectureship certificate which I obtained in 2016. Hence, one hour of lecture is equivalent to 1.5 hour of tutorial or practical session. After the summary table, my teaching responsibilities, teaching activities at ISAE-SUPAERO and teaching activities before ISAE-SUPAERO are detailed in distinct sections.

Summary table

Activity type Number

Program coordinator (current) 1

Course director (current) 7

Face to face cumulated hours at ISAE-SUPAERO 312 hetd

Face to face cumulated hours before ISAE-SUPAERO 121.5 hetd

Course material created from scratch 9 out of 14 ISAE course module created from scratch 8 out of 9

Tutored students 18 

Teaching responsibilities

When I was recruited in sept. 2016 I was charged with creating from scratch 6 modules for the international master offer, for a volume of 168 hours. Since then I have had an increase in teaching/academic duties, with the addition of a new module for the supaéro engineer curriculum as well as modules for continuing education. The total volume of course management I deal with is currently 226 hours on 1 academic year. In addition to managing the curricula and the teachers, I create and correct all exams. The modules and programs are detailed below. CHAPTER 

General audience

Promotion of scientific studies to secondary and high school female students via the 'ISAElles' program, since 2016.

Summary table

Type of communication Number

International journal articles 21 -→5 as first, 7 as last author

Book chapters 3

Patent 1

Public databases 2

International conference proceedings (full paper, peer-reviewed) 37 -→9 as first, 14 as last author

Other international communications (with no proceeding or ≤ 1 page) 38

National & local communications 19 This chapter details my supervision activities until 2022. All the students and fellows I supervised or am currently supervising are listed in the following sub-sections and summarized in the small summary table. These supervisees are (and were) post-doctoral fellows, doctoral fellows, graduate interns (i.e. master students for their end of student project or for their internship of end of 1st year), as well as additional research projects interns (i.e. research projects performed in parallel with courses, as an initiation to research). They are listed along with the project they were a part of, the years and duration of their contract, my level of supervision and the co-supervisors involved.

Summary table

Fellow category Number

Post-doctoral fellows 8 (incl. 2 > 50% ) Doctoral fellows 6 (incl. 5 at 50% )

Graduate interns 12

Additional research project interns 20 

Introduction

Unde sumus quasi nanus aliquis humeris gigantis superpositus. We are like dwarfs sitting on the shoulders of giants.

Bertrand de Chartres

When comes the time to look back upon one's work, the task can seem overwhelming, distressing, and tedious at the same time. In our current society and particularly in our line of work, we are so much asked to look forward and always generate new ideas, launch new projects, that it becomes unnaturalalthough highly necessary-to take time for reflection on past work. However that is the challenge of the "habilitation à diriger des recherches" (HDR). This enterprise, although a demanding one, has forced me to realize what little I have done, and all that remains to be done. Moreover, although the HDR is a solo work, it thankfully forces us to highlight the vital contributions of our pairs. Needless to say that none of my work, including none of the specific studies I detail later in the document, could have been performed without the benevolence of my supervisors and the seriousness and commitment of my supervisees to whom I dedicate this manuscript.

Research journey

I have always been interested in knowledge -be it in the "hard" sciences or the "soft" ones, and when after first going into biology in Reims (France) I discovered the field of cognitive science, I was delighted to have an opportunity not to choose between those main scientific fields. I therefore delved into learning about learning, and knowing about knowing. Attracted by linguistics, I first pursued a double major cognitive science-linguistics during my first year in Lyon. I then chose to focus exclusively on cognitive science and went to the University of British Columbia (UBC, Vancouver, Canada) for my last year of bachelor. During this year abroad, I was fortunate to be given the opportunity to meet great researchers through various internships and projects, including Pr Janet Werker and Dr Henny Young who introduced me to experimental work, and Pr Toddy Handy and Dr Marla Mickleborough who trained me in electroencephalography.

I then continued my education at the University of Savoy-Montblanc and University of Grenoble-Alps for my research master in neurocognition. During this master, my internships with Dr Aurélie Campagne, Dr Stéphane Rousset, and Dr Sophie Donnadieu have enabled me to ascertain my taste for the study of CHAPTER 6. INTRODUCTION human cognition using electroencephalography. Yet, I was attracted to more applied work for non-clinical use. Therefore, when I had the luxury to choose between two PhD fundings, a national one to work on attentional processes, and a local one provided by the CEA to work on passive brain-computer interfaces (i.e. systems that implicitly modify the ongoing interaction between a user and a machine using cerebral measures ;[START_REF] Zander | Enhancing human-machine systems with secondary input from passive braincomputer interfaces[END_REF][START_REF] George | An overview of research on" passive" brain-computer interfaces for implicit human-computer interaction[END_REF]a.k.a. Brain Reading Interface, Kirchner et al. 2009), without hesitation I chose the one that would help me develop engineering competencies while also enabling me to continue working on electroencephalography-based experimental work. During this PhD supervised by Dr Stéphane Bonnet (CEA), Dr Sylvie Charbonnier (Gipsa-lab), and Dr Aurélie Campagne (LPNC), I discovered a highly multidisciplinary field that introduced me to a growing and thriving community of scientists from computer science, biomedical engineering, psychology, and neuroscience. I had the chance to perform one of the first PhDs on passive brain-computer interfaces in France, and to see this research topic grow and connect to close topics. After a short post-doctoral position under the supervision of Pr Anne Guérin-Dugué and Dr Christian Jutten at the Gipsa-Lab (CNRS, Grenoble, France) working on the combination of EEG and eye-tracking, I joined the ISAE-SUPAERO, Université de Toulouse, France for a post-doctoral position under the supervision of Pr Frédéric Dehais to work on attention monitoring. Here, thanks to Frédéric I discovered how my previous work was in fact a means to a broader research field, that of human-machine interaction (HMI).

Neuroergonomics and physiological computing

Since my appointment as assistant professor in September 2016, I have kept working on passive braincomputer interfaces as a means to human-machine interaction evaluation and enhancement. I have also developed work incorporating other physiological measures in a broader physiological computing perspective (i.e. "system interaction [...] achieved by monitoring, analysing and responding to covert psychophysiological activity from the user in real-time"; Fairclough (2009)), and have also studied human-machine interaction through a more classical cognitive neuroscience and cognitive ergonomics approach. Indeed, my main line of work concerns the study of user/operator cognitive processes in risky work settings while interacting with highly complex systems. During their task, and in a specific environment, the users/operators interact with tools (which can be defined as any implement used to increase sensorimotor abilities; [START_REF] Osiurak | Looking for intoolligence: A unified framework for the cognitive study of human tool use and technology[END_REF]) to achieve a given goal (e.g. safely transport passengers). In order to evaluate this interaction, common practice is to measure the user/operator's feeling about the task, tools and/or interaction, or to measure performance metrics such as mission success, user/operator accuracy, response time, strategies, or other parameters linked to the task at hand, or even to a secondary task. Yet, these are indirect measurements of the operator's mental (affective and cognitive) state, and are -for the most part-discontinuous (e.g. mission performance score obtained at the end) and can even be disruptive due to the disruption in the main task needed to perform the measures (e.g. questionnaires to fill). A solution to perform direct mental state assessment, and continuous and non disruptive measurements is to use physiological measures. Neuroergonomics is the field of study that addresses this topic of human-machine interaction evaluation using neuroscientific tools (Parasuraman and Rizzo, 2008).

It is particularly difficult to find a precise definition of what a mental state is. The concept is vague, and maybe not very useful in itself. However, researchers from the BCI community do use it -or close terms-in order to talk about recordings performed during the performance of specific tasks. Recently, Pr Moritz Grosse-Wentrup, in his talks at the online BCI un-conference and the CORTICO annual meeting 2022 [START_REF] Grosse-Wentrup | Brain-artificial intelligence interfaces[END_REF] has advocated for the definition of cognitive state as "a causally meaningful abstraction of a neuronal state". I fully agree with this physicalist view of a one-to-one mapping between brain activity patterns and said states. However, I personally prefer to use the term "mental state" which encompasses all states of brain activity including emotional states which I strongly believe to be intricately linked to cognitive states. In Pr Grosse-Wentrup's view, these states can be continuous or discrete depending on the nature of the behavioral context. Examples of well-known mental states of particular interest for user assessment include mental workload and fatigue. These states and additional ones will be detailed in chapter 7, as will various types of operators of the aerospace context who can directly operate a system with varying degrees of automation settings, as well as interact with a system that is not collocated spatially nor even temporally [START_REF] Goodrich | Human-robot interaction: a survey[END_REF]. Chapter 7 is mainly composed of research work focused on understanding and characterizing the physiological correlates of relevant operator mental states in ecological settings.

In order to perform a general neuroergonomic assessment of a given operator, performing a given task, in a given environment, the processing pipeline is illustrated by Fig. 6.1. Two types of analyses can therefore be performed, i) a neuroscientific one using a statistical approach on the various metrics extracted from measurements performed before, during and after the experiment (e.g. subjective and objective onessuch as behavioral and physiological metrics). Together, these measurements enable to form a comprehensive user assessment through these complementary approaches and to extract recommendations for system design and use; ii) a more engineering one using a machine learning approach by training algorithms to detect specific user/operator mental states that can then be employed in a continuous and online manner to provide a richer assessment, and even to enable the implementation of symbiotic systems by consequently adapting the system to the user's state. Regarding the first approach, extensive work has been done in the community regarding interaction within the automobile context, however aerospace and robotics applications have their specific characteristics and the neuroergonomic perspective is still quite new in these areas, and is yet to be thoroughly applied to specific applications such as teleoperation for instance. Regarding the second approach, which is more recent and follows in the footsteps of my PhD, although research has been growing in the field of physiological computing and passive BCIs, the denoising, and feature extraction steps are still critical and do not enable detection systems to reach high accuracies yet. Chapter 8 mainly details work on feature extraction for operator state estimation pipeline performance enhancement. Figure 6.1 -Comprehensive user assessment through a neuroergonomic approach and physiological monitoring for system adaptation CHAPTER 6. INTRODUCTION

Challenges

Several challenges lie ahead of us regarding research in cognitive neuroergonomics -concerned with the investigation of the neural bases of those cognitive processes involved in the user's interaction with a technical system at work or during everyday life. Together with colleagues of the field we recently explicited these in a dedicated article for the launch of the new international journal Frontiers in Neuroergonomics [START_REF] Gramann | Grand field challenges for cognitive neuroergonomics in the coming decade[END_REF]:

-Challenge 1: Bridging basic, translational, and applied research in cognitive neuroergonomics. Research in cognitive neuroergonomics takes place in various settings, from laboratory settings to real life settings, spanning the entire space of protocols from fundamental to applied research (Fig. 6.2).

All three areas of research are important and eventually converge to understand the cognitive and neural basis of human-technology interaction. The majority of studies have taken place in laboratories, however with the rise of lightweight mobile amplifiers, an increasing number of studies move out of the lab using imaging methods in real-world settings which enable studying natural interaction.

-Challenge 2: Imaging methods for embodied cognitive neuroergonomics. In order to have increased ecological validity, the real world becomes the laboratory, and interaction often comes with various degrees of physical activity. Mobile imaging methods allow for characterizing cognitive processes that occur during natural/mobile interaction, however physical activity contaminates signals with artifacts and therefore data require careful preprocessing.

-Challenge 3: Generalizability of physiological parameters reflecting cognitive processes. In recent years, research on operator mental state characterization has started to thrive, and has generated a large amount of potential markers that are unfortunately not necessarily compared and connected as well as embedded in a theoretical framework. A systematic comparison across tasks and methods would allow for sounder predictions and therefore generalizability.

-Challenge 4: Open access to data and protocols in neuroergonomics. Data sharing is highly desirable for reproducibility and transparency, however it comes with constraints such as standardization requirements.

Hence, the second part of this HDR thesis details my past work on human-machine interaction assessment within the two identified approaches (i.e. the neuroscientific one, and the computing one), with always the goal to develop physiological computing as a tool for neuroergonomics, going from fundamental research to applied research in more ecological contexts. Moreover, the four challenges listed above are addressed within this work. Chapter 7 details selected cognitive neuroscience contributions for improved operator mental state assessment and addresses challenges 1 and 2. Next, chapter 8 details several methodological contributions for improved physiological computing and addresses -at least in part-challenge 3. Then, chapter 9 presents my research perspectives with some initiated work to either delve deeper into a topic, or start developing a new one and addresses challenge 4. It is important to note that although I have tried to clearly distinguish the two main approaches cited above for ease of reading, these are highly interdependent and often overlap in published work and projects. Hence, some projects and supervisees actually fall into both categories. Lastly, section 9.5 concludes on this research retrospective and perspectives and provides an outlook for the medium-term. This chapter summarizes selected work that I carried and supervised regarding cognitive neuroscience for improved operator mental state assessment. After a general introduction, recent work regarding mental states' definitions and concepts is presented. Next, selected works on operator engagement depending on task demands (linked to automation mode and task difficulty) are detailed. Impact of prolonged operation on operator engagement is also evaluated, as is the impact of cooperation and confinement/isolation. Lastly, work on designing countermeasures for adequate operator engagement level is presented. The projects I have selected to present here are listed below, along with the supervisees (between parentheses) that were involved and who performed most of the work.

→ Selected projects: CHESS, Concorde (E. Jahanpour, M. Hinss), Hyperscan (N. Drougard, G. Vergotte), MAIA (A. Dupré, M. Senoussi, A. Laouar, B. Winkler), ISCOPE, NECTAR (Y. Migliorini), TELEOP (V. Martin Estrana, L. Maller, F. Bernard, T. Lawson, E. Kim, E. Gil-Calle, D. Gadelha-Mimoso, F. Vagnone, D. Berlanga Manzano, A. Ambrosio Gonzalez), SmartCockpit (K. Verdière, F. Ahuitzotl Reyna Bibiano).

Introduction

As stated above, this chapter is dedicated to giving a broad overview of my research activities related to user/operator mental state assessment through a comprehensive neuroergonomic approach, i.e. a cognitive neuroscience approach of humans at work based on subjective (questionnaires) as well as objective (behavioral and physiological) measures. A specific challenge of this type of research is to elicit the mental state of interest in a controlled setting while trying to reach ecological validity. Since my arrival at ISAE-SUPAERO, I have tried to work towards this compromise and can only hope that it is well reflected in my work. This work is mainly focused on users/operators that interact with highly complex systems in risky settings, ranging from temporally and spatially collocated interaction settings (e.g. flying a plane) to remote interaction with communication delay (e.g. controlling a rover from a space station). Usually, the scientific literature is type-specific -i.e. focused either on collocated or remote operation. However, with the rise of automation in complex systems, similar problematics have appeared in both fields. Therefore, I chose to present my work here not under spatially and temporally collocated operation vs remote operation categories and sections, but rather to group them by factor that was investigated, namely task demands (incl. automation mode and task difficulty), prolonged operations, cooperation and confinement/isolation, and counter-measures.

Hence, this chapter is structured as follows. First, I detail a rather recent reflection process that we carried out with colleagues regarding mental states' definitions and concepts in neuroergonomics. Next, the various sections of this chapter address the impact of major external factors on operator engagement level that are task demands (including automation level), time-on-task (during prolonged operation), as well as operator collaboration and possible confinement and/or isolation. The goal of these studies is primarily to try and characterize the impact of such factors on the user/operator and evaluate whether the elicited state is reflected by specific markers. The last section goes a step further by providing preliminary work and potential solutions for counteracting degraded engagement states.

Mental states' definitions and concepts

As discussed in the introduction, definitions of what mental states are are scarce, and the concept remains vague, although very present in the literature to discuss recordings performed during the performance of specific tasks. Again, as mentioned earlier, I personally agree with the physicalist view of Pr Moritz Grosse-Wentrup who advocates for the definition of a cognitive state as "a causally meaningful abstraction of a neuronal state" [START_REF] Grosse-Wentrup | Brain-artificial intelligence interfaces[END_REF]. In order to encompass all states of brain activity I believe it preferable to use the term "mental state" so as not to close oneself to emotional states which are intricately linked to cognitive states. Nevertheless, this section provides a non-exhaustive review of relevant cognitive states of interest for operator monitoring. It does not include work on affective-related states which are, however, also relevant to characterize and enhance human-robot interaction. Indeed, as regards the objective of performing a comprehensive user/operator assessment, humans' mental states are numerous and it seems impossible -and possibly even irrelevant-to try and characterize every one of them. For the time being I chose to focus on several cognitive ones that play a major part in error occurrence and are therefore particularly relevant to characterize and estimate in order to improve human-system interaction in a general manner. The first part of this section will focus on general definitions of said mental states by introducing them in a categorized way. The second part will detail more recent and a different view regarding the concepts behind these mental states, reflecting the maturation of our thinking process. The last part will detail the main challenges that lie ahead in the cognitive neuroergonomics field.

Categories of mental states related to situational awareness

Within the MAIA project (with myself as post-doctoral fellow, supervised by Pr F. Dehais), we detailed crucial mental states for human-machine interaction along with their physiological markers as part of a review and position article (Roy et al., 2020a). The main idea of this section is to provide state of the art definitions of such crucial mental states, in a categorized manner that I believe helps better understand the link between such states, as several (collateral states) are inherent to the occurrence of others (prime states).

In the Human Factors domain, a mental state that has gathered much attention since its creation in the aeronautical context is Situation Awareness (SA), defined by Endsley as "the perception of the elements in the environment within a volume of time and space, the comprehension of their meaning and the projection of their status in the near future" (Endsley, 1988). Therefore, lacks of SA can occur due to difficulties in perception (low level) and/or in comprehension and projection (high level) (Jones and Endsley, 1996). Cognitive processes such as perception, attention, memory and integration processes are necessarily involved for SA to occur. Lacks of SA -due to either low and high level impairment-result in performance deterioration, such as piloting errors, and can therefore have critical results (Endsley, 2000). Yet due to its multifaceted nature, SA is difficult to measure at the physiological level. Therefore, researchers mainly focus on mental states that are linked to SA and have physiological markers that are easier to detect. These states are all dependent on resource engagement. Several researchers proposed that the existence of a finite set of information-processing resources would explain the occurrence of performance degradation under heavy task demands or concurrent tasks performance (Wickens et al., 1983). Therefore, over-engagement can be seen as the fact of engaging all the resources for processing only one sub-task or one sensory canal (e.g. vision; a.k.a. attentional tunneling), while disengagement can be seen as the reallocation of resources to another -usually internal-task (Wickens, 2005;Cheyne et al., 2009;Gouraud et al., 2018). Since both over-engagement and disengagement lead to performance degradation, it seems reasonable to estimate resource engagement, and more particularly to detect resource depletion.

Prime mental states

Several factors, external and internal, can generate such a depletion of resources. Among these, one can list the time spent on a task, also called time-on-task, and task demands.These two factors are usually main characteristics of the task at hand, they relate to a temporally global resource engagement, and both directly generate several mental states which we will consider as prime mental states. When operators spend a growing time on their task at hand, their performance is known to fluctuate with periods of degraded performance (i.e. increase in reaction time and decrease in accuracy) [START_REF] Mackworth | Vigilance, arousal, and habituation[END_REF]. This phenomenon can be explained in terms of engaged resources and is due to the occurrence of several mental states among which one can list mental fatigue and mind wandering.

Mental fatigue is a state that occurs when a long and tiring task that requires subjects to remain focused is performed (Lal and Craig, 2002). Mind wandering is defined as an attentionnal disengagement from the task during episodes when thoughts are in competition with information processing for the task at hand. This leads to a reduction of external events' processing in a general manner (Smallwood et al., 2008;Braboszcz and Delorme, 2011), and in a performance decrement for the task at hand. These episodes of resource disengagement from the task occur in a non-linear fashion when time-on-task increases. Both mental states would impact situational awareness from the first processing steps, that is to say the perceptual steps. Moreover, although mental fatigue seems particularly relevant to estimate during both prolonged supervisory and direct control, mind wandering seems more likely to occur during supervisory control. An example is the frequent occurrence of boredom during UAV monitoring tasks (Cummings et al., 2013).

As regards task demands, when operators are faced with a particularly difficult task their performance CHAPTER 7. COGNITIVE NEUROSCIENCE CONTRIBUTIONS TO OPERATOR MENTAL STATE ASSESSMENT decreases, and it is the same when the task is too easy. Hence, the performance of an operator follows an inverted U-shape (Mendl, 1999). In neuroscience and human factors, this modulation in task demands or difficulty and the associated effort invested in the task is usually referred to as cognitive workload (Cain, 2007). This very wide concept can also be understood in terms of required and engaged resources.

Cognitive workload can be modulated by varying several factors such as the load in working memory (e.g. number of items to keep in memory), divided attention or multitasking (i.e. number of tasks to perform in parallel), as well as stress imposed on the operator (e.g. temporal or social pressure). All these factors are of course often overlapping in a given task.

Collateral mental states

Resource depletion can also indirectly generate other mental states that we will call collateral mental states. These collateral mental states -e.g. automation surprise-can for instance be generated when there is a conjunction of prime mental states -e.g. high workload-and the occurrence of specific events such as critical system responses localized in time, that is to say feedbacks, parameter display and alarms in a general manner. Hence, in this example an alarm will not be processed by the operator the same way when all resources are engaged (e.g. over-engagement) compared to when the operator is in nominal state. In this case, these system output-related mental states are linked to a temporally local resource engagement. Examples of such system-output related mental states are the following:

-Inattentional sensory impairments, such as inattentional blindness and inattentional deafness.

These attentional phenomena consist in "missing" alarms when all attentional resources are engaged in another sensory modality. Hence, for the inattentional deafness phenomenon well studied in the aeronautical context, pilots under high workload miss auditory alarms when they are overengaged in the visual modality (e.g. fascinated by the runway) (Dehais et al., 2010;Macdonald and Lavie, 2011).

-Automation surprise, in which the operator is surprised by the behavior of the automation (Sarter et al., 1997). Although cases reported in the aeronautical domain are generally several minutes long, a subtype of automation surprise is the confusion in response to a brief unexpected event such as a specific alarm. In order to go back to the nominal state of the global system it is important to detect such a state from the operator. It does not matter whether the confusion of the operator arises from a failure of the artificial agents or the human ones. It might also be elicited by a general attentional disengagement of the operator who is then incapable of correctly processing system-outputs and is confused by any negative feedback. This state might in any case lead the operator to take bad decisions and should be detected and taken into account in order to avoid system failure.

A neuroergonomics approach to mental workload, engagement and performance

Within the Cocpit project (with Dr A. Lafont as post-doctoral fellow, co-supervised with Pr F. Dehais), we worked on a review paper on the concepts of workload and engagement related to human operator performance (Dehais et al., 2020). As stated in this article, one of the main issues when working on human operators in the context of safety-critical settings is the assessment and prediction of cognitive performance. We argue that measuring mental workload is complex as this construct remains difficult to both define and operationalize (as also seen in the previous section). Most theories from the literature are united by a characterization of the human information processing system as a finite resource with limited capacity (Kramer and Spinks, 1991). Yet despite a plethora of research regarding its measures (subjective and objective ones), there is no unified framework for mental workload, and the link of this construct with the limited ASSESSMENT resource theory is not clear. After detailing some limitations of mental resources -including that it fails to explain some categories of performance impairment that occur under conditions of high workload (e.g. perseveration and effort withdrawal)-, we advocate for using the neuroergonomic approach (Parasuraman and Rizzo, 2008) by assessing the neurocognitive processes that underpin the relationship between task demand, arousal, mental workload and human performance. The neuroergonomic framework emphasizes a shift from limited cognitive resources to characterizing impaired human performance and associated states with respect to neurobiological mechanisms (e.g. inhibitory mechanisms and prefrontal cortex modulation through dopamine; Fig. 7.1). Figure 7.1 -From (Dehais et al., 2020): The dopamine pathway exerts a quadratic control over the PFC. A low or a high release of this neurochemical depresses PFC activation whereas an adequate concentration ensures optimal executive functioning. These neurobiological considerations bring interesting highlights to understand the mechanisms underlying the Yerkes and Dodson inverted-U law and the dynamic adaptability theory. They also provide a relevant prospect to relate motivational aspects to behavioral responses. The noradrenaline pathway mediates the PFC activity and executive functioning in a similar fashion.

In this article we also advocate for targeting those specific mental states that precede a reduction of performance efficacy, i.e. performance-related mental states. A number of undesirable neurocognitive states (mind wandering, effort withdrawal, perseveration, inattentional phenomena) are identified and mapped within a two-dimensional conceptual space encompassing task engagement and arousal (Fig. 7.2) which makes it possible to link the notion of engagement and degraded behavior in a simple way. Engagement is defined as an effortful investment in the service of task/cognitive goals (Pope et al., 1995;Matthews et al., 2002;Stephens et al., 2018), whereas arousal represents a state of physiological readiness to respond to external contingencies (Pribram and McGuinness, 1975). The benefit of including the concept of arousal is to make a distinction between two categories of disengagement, one that is accompanied by high arousal (effort withdrawal) and low arousal (mind wandering) -and to link this conceptual distinction to known neurophysiological effects.

Hence, we argue that monitoring the prefrontal cortex and its deactivation can index a generic shift from CHAPTER 7. COGNITIVE NEUROSCIENCE CONTRIBUTIONS TO OPERATOR MENTAL STATE ASSESSMENT a nominal operational state to an impaired one where performance is likely to degrade. Neurophysiological, physiological and behavioral markers that specifically account for these states are identified (see whole paper for more details Dehais et al. (2020)). It is interesting to note that similar to the categorization process seen in the previous section, mental states are again presented as directly related to engagement and task demands, with disengagement (low task demands) reflected by mind wandering and effort withdrawal, and over-engagement (high task demands) by perseveration, inattentional blindness and inattentional deafness. Solutions that can be derived from this approach will be detailed in section 7.6.

Figure 7.2 -From (Dehais et al., 2020): Performance, arousal and task engagement: the green zone conceptually describes the operator's "comfort zone" where performance is optimal. The degraded mental states are mapped across a "task engagement" axis and an 'arousal" axis.

Task engagement and stressors

As previously discussed, concepts such as situational awareness and mental workload are umbrella terms, they are not clearly defined, do not predict performance in a straightforward manner, and cannot be measured directly. Therefore, within my work I have chosen to focus mainly on characterizing and monitoring mental states that are directly linked to operator performance, such as task engagement which reflects processing depth with associated physiological correlates, as well as the effect of common stressors such as task demands and time-on-task on this operator engagement. Hence, this work will address the question of operator engagement characterization and neural correlates' assessment in ecologically valid settings using mobile measurement devices, therefore addressing challenges 1 and 2 detailed in the introduction. This section was intended to provide the reader with a sneak peek at reflections that we had with colleagues regarding mental states definitions and concepts, as well as challenges that we identified for studying these states and further develop the neuroergonomics research field. The main conclusions can be summarized in the following list: ASSESSMENT Definitions, concepts and challenges -Mental states linked to situational awareness are generated by various degrees of engagement.

They can be grouped into prime and collateral mental states depending on their time scale and order of occurrence. -Rather than using the finite resource theory, engagement can be characterized via neurobiological processes (neuroergonomic approach). In conjunction with arousal, engagement level generates several performance-related mental states that can be fully characterized using physiological measures. -This chapter will focus on operator engagement characterization and neural correlates' assessment in ecologically valid settings using mobile measurement devices.

Engagement modulated by task demands

As seen in section 7.2, a modulation in task demands or difficulty and the associated effort invested in the task by the user/operator is usually referred to as cognitive workload (Cain, 2007), that can be understood in terms of required and engaged resources, or rather in terms of neurobiological processes that allow and reflect performance. It can be modulated by varying several factors such as the load in working memory (e.g. number of items to keep in memory), divided attention or multitasking (i.e. number of tasks to perform in parallel), as well as stress imposed upon the operator (e.g. temporal or social pressure), all of which often overlap in a given task. The amount of work present in the literature regarding the characterization of mental states elicited by such variations is considerable, however mostly based on laboratory tasks and settings, with a view to better understand the neural mechanisms that underlie this cognitive workload -or engagement.

When I started to investigate the matter, although some authors had started to propose studies and reviews on operator/user engagement level characterization in more realistic settings (Borghini et al., 2014;[START_REF] Ladouce | Mobile EEG identifies the re-allocation of attention during real-world activity[END_REF], or using a comprehensive approach based on reports, behavioral and physiological measures [START_REF] Shaw | Measurement of attentional reserve and mental effort for cognitive workload assessment under various task demands during dual-task walking[END_REF], scarce were the studies that actually addressed both issues for humancomplex system interaction evaluation. More specifically, it remained to address the following: i) to confirm whether engagement level could indeed be modulated by task demands as reflected by measures classically reported in the literature, in particular regarding task difficulty and the specific case of automation mode-related task difficulty; ii) to go further by assessing whether these modulations and markers would still be present in ecological settings; iii) to evaluate whether the now increasingly famous inattentional deafness phenomenon -defined in this section-would be elicited by an increase in engagement in a primary task and how it would be characterized. Hence, in this section, I detail selected works on operator engagement depending on task demands, more specifically linked to automation mode and task difficulty, with an additional subsection on a collateral mental state that appears under high operator load: inattentionnal deafness.

Engagement modulated by task difficulty

As can be gathered from the literature, a simple way of eliciting modulations in operator engagement in both laboratory and close-to-real life settings is via task difficulty. For instance, in order to increase task difficulty one may add or remove sub-tasks to perform in parallel, or increase the difficulty of one (sub-)task. Increased user/operator engagement can next be analyzed per difficulty condition, with modulations in reported measures (i.e. answers to questionnaires), performance (i.e. behavioral measures), as CHAPTER 7. COGNITIVE NEUROSCIENCE CONTRIBUTIONS TO OPERATOR MENTAL STATE ASSESSMENT well as their physiological state. The literature tells us that an increase in engagement is generally reflected e.g. by a decrement in performance (e.g. decreased accuracy and increased response time), an increased engagement as reported through questionnaires, an increased heart rate and decreased heart rate variability (reflecting a higher influence of the orthosympathetic nervous system on the autonomous nervous system, thus suggesting an increased catabolic activity to support the mobilization of cerebral resources to face the situation), an increased oxygenation of prefrontal areas, a decreased event-related amplitude to secondary task stimuli, a decreased alpha power at posterior sites and an increased theta power at anterior sites (Borghini et al., 2014;Heard et al., 2018;Roy et al., 2020a). In order to confirm these phenomena in realistic settings for human-complex system interaction assessment, we worked on eliciting variations in engagement thanks to task difficulty modulations within several projects related to the aerospace application domain.

First, within the TELEOP project (with Eishi Kim as intern, co-supervised with Dr V. Peysakhovich) we modulated task difficulty only via a single task parameter: communication delay, in a simulated teleoperation task with no secondary task (Kim et al., 2021). More specifically, in this study, we assessed the relationship between the impact of communication delay on teleoperation performance, mental workload, and operators' temporal sensitivity. The participants completed two tasks: a duration reproduction task in which they were asked to reproduce the duration of previously presented visual stimuli (to evaluate their temporal sensitivity profile), and an egocentric maze navigation task which required participants to escape a static maze (Fig. 7.3), under a constant input latency of 0, 400, and 3000 ms to mimic delays in space rover teleoperation applications (respectively Moon, cis-lunar orbit and Earth as source of teleoperation). Unfortunately, this study was run during the covid-19 pandemic and therefore we could not proceed with the full neuroergonomic approach; we could not perform physiological data acquisition and participants performed only an online study at home. In accordance with engagement modulation generated by an increase in task difficulty, the results showed that performance was significantly deteriorated by an increase in communication delay. Moreover, participants' self-rated performance decreased with a larger communication delay, while their reported frustration, effort, and mental demands significantly increased. Interestingly, a possible effect of the temporal sensitivity profile on teleoperation performance -number of moves -was found, with a reduced number of moves for sensitive participants compared to insensitive ones, following a speed/accuracy trade-off (yet not significant) (Fig. 7.4). Hence, different operators' strategies were uncovered, depending on their temporal sensitivity profile, to mitigate the impact of communication delay on the mission outcome. In another study, within the Airtime project (with G. Singh as PhD student, co-supervised with Dr C.P.C. Chanel), we tested variations of task difficulty through changing the difficulty of several sub-tasks during an automatic UAV control while flying in a search and rescue mission (Singh et al., 2021). During the mission, the participants had to perform a pilot flying task using a flight simulator (displayed in the first 3 screens in Figure 7.5) while interacting with the UAVs through the U-track application (see the 4th screen in Figure 7.6). The main mission task was composed of three sub-tasks: a detection and identification one (UAV request pop-ups with images from the Norb database), a working memory one (ATC instructions to memorize and recall), and a flying sub-task (using the joystick, in compliance with the ATC instructions). Task difficulty was varied by modifying the working memory and the flying sub-tasks. Indeed, the low and high difficulty conditions were different in: (i) the number of communication channel inputs (i.e., 1 vs. 2 randomly selected UAVs) and their value, and, (ii) the placement of the restricted zones with respect to the plane's path and the selected path (the sequence of ATC heading instructions) with less sharper turns in the low difficulty condition. Two blocks of each condition were pseudorandomly presented. The main results were in accordance with an increased engagement with difficulty. Indeed, reported workload increased, performance (flying score and ATC recalls) decreased, HR increased and HRV decreased, the number of fixations increased, the average fixation duration decreased, and pupil dilation increased. Moreover, there was an increase in beta and gamma power at fronto-central and parieto-occipital sites (which may reflect at least in part muscular activity; Figure 7.7, as well as an increase in the engagement ratio in the high difficulty condition.

Going towards ecological settings, within the MAIA project (with Benjamin Winkler as intern, cosupervised with Pr F. Dehais), we evaluated pilot engagement during a traffic pattern performed in our full motion flight simulator using a model-based approach with a video-based task analysis (derived from a hierarchical task analysis), two mental workload questionnaires (a simple report of the perceived workload per phase and a questionnaire based on the Visual Auditory Cognitive and Psychomotor model -VACP- [START_REF] Mccracken | Analyses of selected lhx mission functions: Implications for operator workload and system automation goals[END_REF]), as well as electrophysiological markers (Roy et al., 2018a). Here difficulty varied depending on the flight phase and corresponding flight sub-task only. This study revealed that all metrics were modulated by flight phase (i.e. subjective reference, model-based estimation, Heart Rate Variability -HRV, EEG theta power and Pope's engagement ratio) reflecting an increase of engagement ASSESSMENT Figure 7.5 -From (Singh et al., 2021): Aerofly simulator and U-track application screens setup. towards the last flight phases. Some metrics were also either positively (e.g. between subjective reports and between EEG beta power and subjective reports) or negatively correlated (e.g. HRV and engagement ratio). Hence classical effects of task difficulty on subjective and objective measures were ascertained to reflect operator engagement during such a piloting task with no double-task setting other than that inherent to the flying task.

Lastly, in other studies within the MAIA project (with Alban Dupré as post-doctoral fellow, co-supervised with Pr F. Dehais), we varied task difficulty by having either a monitoring task or a flying task: i.e. flying role. For instance, in a real flight experiment we had participants equipped with a dry-EEG system perform traffic patterns either in this monitoring (i.e. low difficulty) or flying mode (i.e. high difficulty) while performing a secondary task which was an oddball task (Dehais et al., 2019a) (Fig. 7.8). Analyses disclosed higher P300 amplitude for the auditory target of the oddball task along with higher alpha band power, and higher theta band power in the low difficulty condition as compared to the high difficulty one. ASSESSMENT Figure 7.7 -From (Singh et al., 2021): Topographic maps of the average power across subjects in θ, α, β and γ for the high and low difficulty conditions, and their difference.

These results of reduced ERP amplitude and reduced theta and alpha power in the high difficult condition are in accordance with a higher engagement of the participants. Hence this study clearly shows the feasibility to elicit variations in operator engagement level in realistic settings as assessed through physiological measures. However here, the variation in task difficulty is a very specific one close to actually changing the automation mode. I further develop our work regarding engagement modulation by automation mode in the next section. 

Engagement modulated by automation mode

In the previous section, work regarding changes in engagement depending on task difficulty was presented, including some work that used the flight role to modulate engagement. This change in flight role is in fact akin to changing the automation mode. While both factors do in fact correspond to a change in task difficulty, I chose to separate studies dedicated to assessing a change in engagement due to a change in automation mode. The main reason was to be able to take the time to first define what these automation modes are.

In our review and position article on teleoperation wrote within the scope of the MAIA and ISCOPE projects (with myself as post-doctoral fellow, supervised by Pr F. Dehais and Dr C.P.C. Chanel) (Roy et al., 2020a), we briefly recall that two general modes of interaction between humans and machines can be identified: supervisory control vs. direct control. Yet, the difference is never that drastic and interaction modes can in fact be viewed as a continuum (Goodrich et al., 2001;Huang et al., 2003;Sheridan, 2016;Tang et al., 2016), depending on:

-the frequency of human intervention; -the type of control (i.e. manual vs automatic); -and the embedded capacities of the machines (i.e. to what extent they can achieve tasks autonomously). In the literature, there are differing views of what "autonomy" is. Here, we will consider a continuum that is reflected by the various degrees or levels of system autonomy (Huang et al., 2005) ranging from what is usually considered as true (tele-)operation, a.k.a. direct control, with no artificial support at all and the human who does all the work, to the opposite case of no human intervention and the machine that does all the work, a.k.a. an extreme form of supervisory control (Sheridan and Verplank, 1978). The use of such extreme setups is scarce and usually the interaction relies on more mitigated levels of autonomy. In addition, having a fully autonomous system does not mean that humans will necessary be excluded from the loop. Indeed, rule of engagement (Asaro, 2012), or ethical decisions (Goodrich et al., 2001;Bonnemains et al., 2018) are, until now, preferably entrusted to a human agent decision making process. Figure 7.9 -From (Verdière et al., 2018): Airbus A320 twin-engine simulator at ISAE-SUPAERO.

As mentioned above, variations in autonomy level can be seen as variations in task difficulty. Indeed, direct control can imply an additional sub-task, for instance maneuvering the device in case of a vehicle, or if not additional, at least a sub-task that requires full and continuous attention therefore reducing the availability of the operator to other stimuli. In several studies we evaluated operator engagement depending on the type of control: automatic vs manual control. Within the SmartCockpit project (with Kevin Verdière as PhD student), we assessed pilot engagement thanks to oxygenation measures recorded via fNIRS during landing scenarios that were performed either in automatic and or manual mode in a full motion flight sim-CHAPTER 7. COGNITIVE NEUROSCIENCE CONTRIBUTIONS TO OPERATOR MENTAL STATE ASSESSMENT ulator (Verdière et al., 2018). In addition to decreased oxygenation during the automatic mode condition, a lower workload was reported by pilots using the NASA-TLX questionnaire confirming a reduced engagement.

Similarly, within the Airtime project (with Dr Nicolas Drougard as post-doctoral fellow, co-supervised with Pr F. Dehais and Dr C.P.C. Chanel) we assessed operator engagement in a simulated fire-fighter rover task with a randomly changing level of automation (i.e. not trial-based) (Drougard et al., 2018;Chanel et al., 2020). In this study, as expected ocular fixation patterns and cardiac measures (HR and temporal HRV) were modulated by control mode. Yet, interestingly, subjective measures, mission score, as well as cardiac activity depended mostly on the performance profile of the operator (e.g. figure 7.11). In the high score group, participants exhibited higher HR and lower HRV than in low score ones. Conversely, poor behavioral performance associated with higher HRV may reveal task disengagement, and consequently an inability to face multitasking demands. The most important finding was that the higher level of automation could be beneficial to low-scoring participants but detrimental to high-scoring ones, and vice versa. Lastly, additional analyses revealed an interesting evoked cardiac activity following alarms launched during the mission (e.g. low battery) such as an increased evoked heart rate and decreased evoked heart rate variability which could be useful for characterizing temporally local modulations in engagement (Drougard et al., 2019).

Inattentional deafness as a collateral mental state

As seen in section 7.2, inattentional deafness is an inattentional sensory impairment that consists in "missing" stimuli, i.e. presenting a degraded processing of stimuli when all attentional resources are engaged in another sensory modality. Hence, it can be seen as a disengagement from a specific sensory channel. It can have deleterious consequences in complex real-life situations. The famous example of such inattentional phenomena is the inattentional blindness paradigm of Simons and Levins [START_REF] Simons | Change blindness[END_REF] in which participants fail to detect a gorilla amongst ball players. Regarding the auditory modality, a well studied example from the aeronautical context is the case of pilots missing auditory alarms when they are over-engaged in the visual modality (e.g. fascinated by the landing track) (Dehais et al., 2010;Macdonald and Lavie, 2011). Such a failure of auditory attention is thought to rely on top-down biasing mechanisms at the central executive level and has been linked to high cognitive load (Raveh and Lavie, 2015). Hence it can be defined as a collateral mental state to increased engagement in a primary task, and therefore originates from reduced engagement in other stimuli and/or tasks. In laboratory studies, it is reported to be reflected by decreased event-related potentials component amplitude to these stimuli, in particular for both early (N100) and late (P300) components (Molloy et al., 2015), showing that inattentional deafness to auditory alarms can take place at an early perceptual stage or processing in addition to later attentional stages. It remained to evaluate whether inattentional deafness could be elicited in ecological settings, with equivalent neural correlates.

Within the MAIA project (with myself, Dr Alban Dupré and Dr Imad Rida as post-doctoral fellows, and Amine Laouar as intern, co-supervised with Pr F. Dehais and Dr S. Scannella), we worked on im-Figure 7.11 -From (Chanel et al., 2020): Score analysis given robot automation level and performance group. Figure 7.12 -From (Dehais et al., 2019c): Group ERP results. a. Averaged ERPs for hit and missed auditory targets in the difficult flying scenario at Cz (left) and Pz (right) electrodes. Black lines at the x axis represent the significant differences between hit and miss (permutation test; p < 0.05; FDR corrected). b. 2-D topographical views for hit and missed auditory targets at 116 ms (up, N100), 370 ms (left, P3a) and 450 ms post-stimulus (right, P3b). ASSESSMENT plementing experimental conditions that would elicit this inattentional deafness phenomenon in ecological settings, both in a full motion flight simulator and in real flight (Dehais et al., 2019a,b,c). This was done by having participants fly and perform an oddball task (i.e. detect a target infrequent sound presented amongst frequent distractors) in parallel, under various conditions of flight task difficulty. All three studies revealed that inattentional deafness could indeed be elicited in ecological settings when under high task difficulty with rates of misses significantly higher in the high difficulty condition than in the low one (e.g. 57.73% vs 0.33% in Dehais et al. (2019c)). Moreover, as in laboratory settings, missed alarms' ERP amplitude was reduced for both early and late components as compared to detected ones (Fig. 7.12).

These studies were followed recently by work within the NECTAR project (with Yannick Migliorini as PhD fellow, co-supervised with Pr F. Dehais and Dr J.-P. Imbert) in which we first conducted a survey study to evaluate in the context of en route air traffic control which degraded engagement states (as seen in (Dehais et al., 2020)) were felt as predominantly impacting performance, safety and cooperation (Migliorini et al., 2022). Task-related and task-unrelated mind wandering were the most prevalent but had the least impact on perceived safety, however inattentional blindness and attentional entropy were less reported but were considered a significant safety concern, while inattentional deafness was also reported to affect cooperation. Inattentional deafness was reportedly experienced under high task demands. Following this study, we conducted a study to elicit inattentional deafness in a realistic en route ATC task by increasing task demands and secondary task demands and obtained a rate of 58% of missed alarms in the more demanding scenario (still pending publication). A reduction in alarm P300 amplitude was observed with increases in task demands, however the number of trials per condition did not allow statistical analyses of misses vs targets at the physiological level. Hence, although opening way to replicating studies and further work to ascertain the results, these studies allowed to tackle inattentional deafness in another ecological context, that of air traffic control.

Task demands

-Task difficulty modulated by (sub-)task parameters, as well as flying phase and role, elicits variations in operator engagement as assessed through subjective and objective measures in ecological settings. -Automation mode changes elicit similar operator engagement marker modulations as task difficulty changes. -Inattentional deafness can be elicited in ecological settings under high task demands with neural correlates validating an impact on early as well as late information processing stages.

Engagement modulated by time-on-task

As discussed in the previous section, user/operator engagement is subject to fluctuations depending -at least in part-on task demands. In operational and ecological settings, another important factor is task duration -or time-on-task. Indeed, prolonged operation is frequent in human-complex system operations for critical tasks, such as directly flying a plane or remote vehicle in manual control, as well as supervising an automated vehicle. An increase in time-on-task is known to elicit several mental states (as seen in section 7.2) including mental fatigue which can be defined as a state that occurs when a long and tiring task that requires subjects to remain focused is performed (Lal and Craig, 2002). However this definition remains vague, and in fact several states may be at play. Indeed, as we detailed in the Concorde project (with Emilie Jahanpour as post-doctoral fellow), alertness or vigilance decreased levels are quite different from cognitive fatigue (Jahanpour et al., 2020), yet they both negatively impact performance (slower reaction times and lower accuracy [START_REF] Lorist | Impaired cognitive control and reduced cingulate activity during mental fatigue[END_REF]), and can occur due to increases in time-on-task. In operational/ecolog-CHAPTER 7. COGNITIVE NEUROSCIENCE CONTRIBUTIONS TO OPERATOR MENTAL STATE ASSESSMENT ical settings, they are also necessarily co-occurring. Alertness and vigilance are tightly linked to arousal, and can be defined as the ability to maintain sustained attention to a stimulus for an extended period of time [START_REF] Al-Shargie | Vigilance decrement and enhancement techniques: a review[END_REF], while cognitive fatigue can be defined as a difficulty in initiating or in sustaining voluntary activities which would arise when the costs of the cognitive effort required to perform the activity are higher than the benefits it brings, hence linking this state to motivation [START_REF] Boksem | Mental fatigue: costs and benefits[END_REF]. Moreover, some specialists advocate for a differentiation between active fatigue that occurs when task demands are high, and passive fatigue that occurs when task demands are low [START_REF] Desmond | Active and passive fatigue states[END_REF].

Although definitions of both states may differ depending on fields and authors, if we use the framework discussed at the beginning of the chapter, we can consider mental fatigue in a general manner as a disengagement during a prolonged operation. In order to explore the impact of mental fatigue on operators, two types of induction can be used: a direct one and an indirect one. In the direct one participants perform the same task for a long duration, i.e. using time-on-task [START_REF] Ackerman | Cognitive fatigue: Multidisciplinary perspectives on current research and future applications[END_REF]. In the indirect one, participants perform a highly demanding task designed to fatigue them, and then this fatigue is assessed on a subsequent task, hence requiring the use of two tasks. The first one is easier to implement, yet the second one is particularly interesting as it allows to study the transfer of the effects of fatigue. Most studies involve long tasks, sometimes lasting several hours [START_REF] Blain | Neural mechanisms underlying the impact of daylong cognitive work on economic decisions[END_REF]. The effects usually observed could, therefore, be explained by learning factors, motivational factors, or factors related to the individual's level of alertness. On the other hand, recent studies have shown that cognitive fatigue can be induced in a few minutes of intense activity [START_REF] Borragán | Cognitive fatigue facilitates procedural sequence learning[END_REF].

Regarding the effects of mental fatigue on operators, mental fatigue affects a multitude of cognitive processes that are critical to the safe operation of systems, including cognitive flexibility, attention and situational awareness [START_REF] Caid | Fatigue study and discourse analysis of french uninhabited aerial vehicle (uav) operators to understand operational issues[END_REF][START_REF] Chappelle | Us air force special operations command remotely piloted aircraft operator fatigue levels and compensatory strategies[END_REF]. In addition to the aforementioned decrease in performance, one should mention oculomotor behavior changes (increase in blink rate and blink duration, decrease in number of fixations, as well as questionnaires that are usually proposed to evaluate arousal and mental fatigue through multiple scales (see our paper for more details, Jahanpour et al. (2020)). Psychophysiological measures traditionally reported include modulations in EEG power (e.g. increase in theta and alpha power, and decrease in beta power) as well as in EEG power ratios, but also a reduction in event-related potentials' amplitude and/or component latency modulations. This goes in the same direction of a general disengagement of the user/operator, which is also reflected by a decreased heart rate and increased heart rate variability. Within the Concorde project (with Dr Emilie Jahanpour as post-doctoral fellow), as a preliminary step towards operator mental fatigue state characterization, we confirmed time-ontask effects on EEG and ECG activity using a well-known monotonous laboratory task, the Psychomotor Vigilance Task (Jahanpour et al., 2021). We also uncovered performance-related correlates, with increased alpha power and task load index (theta power at Fz over alpha power at Pz) prior to worst trials, which also confirm vigilance fluctuations over time. Yet in this study mental fatigue can only be considered as alertness/vigilance, and not as cognitive fatigue. Moreover, as we already mentioned earlier in this document, most of these studies were laboratory ones, and these time-on-task effects on engagement still remained to be checked in more ecological settings, for both supervisory tasks and direct manual control tasks, as detailed below.

Prolonged supervision

Long monitoring tasks without regular actions, i.e. monotonous, are becoming increasingly common from aircraft pilots to train conductors as these systems grow more automated. These task contexts are challenging for the human operator because they require inputs at irregular and highly interspaced moments even though these actions are often critical. For instance, prolonged operations are common practice in surveillance operations, be it for military reconnaissance purposes, but also for civilian applications of CHAPTER 7. COGNITIVE NEUROSCIENCE CONTRIBUTIONS TO OPERATOR MENTAL STATE ASSESSMENT search and rescue missions. In this context, modern equipment allows to perform such tasks remotely using unmanned systems and therefore operators mostly perform supervisory tasks. It should be noted however that for military Unmanned Aerial Vehicle (UAV) operation, four operators are usually required in the French military. Hence a team is generally composed of a remote pilot working alongside a sensor operator (i.e. front cockpit), as well as a tactical coordinator and an picture analyst (i.e. back cockpit).

In this specific context, supervisory tasks are generally performed by the sensor operator and the picture analyst. A characterization of UAV operators' activity was performed remotely through interviews with high ranked officers during the covid locked-down within the Concorde project (with Dr Emilie Jahanpour as post-doctoral fellow and Marcel Hinss as PhD student).

Figure 7.13 -From [START_REF] Roy | Operator engagement during prolonged simulated uav operation[END_REF]: UAV monitoring task implemented using the Atmospher software (here with a pop-up on fuel level).

Within the ISCOPE project (with myself as post-doctoral fellow, supervised by Pr F. Dehais and Dr C.P.C. Chanel), we started working on characterizing operator engagement level during a prolonged monotonous UAV supervision task [START_REF] Roy | Operator engagement during prolonged simulated uav operation[END_REF]. Indeed, although UAV operators' fatigue state has been extensively assessed at the behavioral and oculomotor levels (Cummings et al., 2013), to our knowledge there was a lack of literature regarding potential cardiac and cerebral markers that would enable proper engagement level assessment. The implemented task was a UAV monitoring task that lasted two hours without any break and included an alarm monitoring task and a target identification task (Fig. 7.13). The main results revealed that, in addition to a significant modulation of the alpha power, the blink rate and the number of fixations with time-on-task, there was a significant correlation of response times with both the cardiac Low Frequency / High Frequency ratio and the number of ocular fixations.

The data gathered during this project were also used for further analyses within the MAIA project (with myself and Dr Mehdi Senoussi as post-doctoral fellows, co-supervised with Pr F. Dehais) in order to evaluate whether time-on-task impacted brain connectivity (Senoussi et al., 2017). The analysis of the interaction between distant brain regions, i.e. connectivity, had gained momentum and we thought it could provide interesting perspectives to link brain activity and mental states. For instance, some studies had shown that large-scale cortical interactions underlie many cognitive functions such as decision-making, topdown visual attention or multi-sensory integration (for a review see [START_REF] Siegel | Spectral fingerprints of large-scale neuronal interactions[END_REF]). Previous work had shown that connectivity between frontal and occipital electrodes might reflect top-down attentional ASSESSMENT orientation [START_REF] Mazaheri | Functional disconnection of frontal cortex and visual cortex in attention-deficit/hyperactivity disorder[END_REF]. Thus, we believed that the use of neural connectivity could provide a promising framework to improve operator mental fatigue characterization. In this study we explored to which extent it is possible to predict an operator's behavioural performance in a UAV monitoring task using large-scale EEG connectivity by correlating relative coherence with reaction times (RT). We showed that long-range EEG relative coherence, i.e. between occipital and frontal electrodes, is significantly correlated with RT and that different frequency bands exhibit opposite effects. More specifically, we observed that more coherence (relative magnitude squared coherence) between occipital and frontal electrode sites in the theta band led to better performance, while more coherence in the lower alpha band led to decreased performance (Fig. 7.14). These results are in accordance with the involvement of alpha oscillations in inhibitory processes [START_REF] Klimesch | EEG alpha oscillations: the inhibition-timing hypothesis[END_REF], and theta oscillations in cognitive control processes [START_REF] Cavanagh | Frontal theta as a mechanism for cognitive control[END_REF], hence ascertaining the impact of time-on-task on said processes. Figure 7.14 -From (Senoussi et al., 2017): Correlation between occipito-frontal relative coherence and Reaction Times between 1 and 30Hz. Spearman's rank correlation between occipito-frontal relative coherence of each seed occipital electrode and average of frontal electrodes exhibiting the 6Hz and 8Hz effects for all frequencies. Shaded area around the curves represents standard error across participants.

Prolonged manual control

Within the MAIA project (with myself as post-doctoral fellow, supervised by Pr F. Dehais), we investigated pilot mental fatigue across time during four traffic patterns. The flying task was in fully manual mode and performed in parallel with an auditory oddball as a secondary task, in both a full motion flight simulator and in real flight at the Lasbordes airfield [START_REF] Dehais | Monitoring auditory attention with a 6 dry-electrode EEG system in real flight conditions[END_REF]. As could be expected pilots performed worse in the second part of the experiment (last two traffic patterns) as compared to the first part (first two traffic patterns) with lower detection rates of auditory alarms in both settings, with also more errors in real flight than in the simulator condition. Hence inattentional deafness (see section 7.2) was elicited here by increasing time-on-task. To our knowledge this was the first study to reveal this phenomenon. Yet this can be simply explained by an increase in task demands due to increasing cognitive fatigue as the pilots were student pilots. At the physiological level, the EEG engagement ratio and fNIRS oxygenation measures reflected this time-on-task effect and allowed to estimate it using machine learning techniques as expected from the literature (see section 8.5). This study has therefore paved the way to cognitive fatigue characterization in ecological settings during prolonged manual control.

Regarding the impact of time-on-task during remote manual flight, we investigated this issue in another project. Indeed, during the interviews that we performed on high ranked UAV operators of the French military within the Concorde project (with Dr Emilie Jahanpour as post-doctoral fellow, co-supervised with Dr J.-P. Imbert and Dr B. Berberian, and Marcel Hinss as PhD student co-supervised with Dr A. Brock), ASSESSMENT we were able to better understand the team work that is performed by the four operators (i.e. remote pilot and sensor operator for the front cockpit; tactical coordinator and image operator for the back cockpit). We discovered that, contrary to our naive expectations, the remote pilot did not perform a supervisory task. Indeed, they preferred to fly in a manual mode (or at a low autonomy level) most of the time -and in particular during take-off, landing and reconnaissance phases-so as to stay engaged in the task and avoid as much as possible disengagement due to the monotonous and remote nature of the task. This discovery has led us to prepare a new experimental protocol for operator mental fatigue characterization in which we will have a flying task in manual mode during all phases except the transit phase which will be performed in fully autonomous mode. During the interviews, the main issue during long endurance missions that was reported linked to cognitive fatigue was the difficulty to perform task switching when fatigued (Hinss et al., 2022). Therefore, we have chosen to investigate the impact of time-on-task and cognitive fatigue generated by highly demanding phases on cognitive flexibility.

Time-on-task

-Mental fatigue is a vague concept that can encompass several states/processes all linked to engagement, including states of decreased arousal/alertness and vigilance, and states of cognitive fatigue. -Prolonged supervision can be characterized thanks to engagement measures which can also predict operator performance. -Prolonged manual flight elicits inattentional deafness and can be characterized by usual engagement measures. -Prolonged manual flight is reported to yield cognitive flexibility issues.

Engagement depending on social context

Although I do find social psychology and social neuroscience particularly fascinating, my work does not fall into these fields. Yet, within a few projects we had some research questions that touched the topic of the social context of operation. Indeed, for aeronautics applications we were interested in cooperation between two teammates, and for space applications we were interested in operation inside space analogs with prolonged missions in confinement and/or isolation. This work is presented in the following subsections.

Cooperation and team performance

In the context of risky work settings that involve interacting with highly complex systems, cooperation is often required between several operators, for instance between a pilot and co-pilot, and between pilots and ground operators. A general definition of cooperation could be stated as: "a situation that contains a manifest collective goal, in which a group of agents realize it by choosing their actions in accordance with an equilibrium" (Paternotte, 2014). In this context, in addition to subjective measures, studies have tried to characterize teammates' cooperative states thanks to objective physiological measures. This field of research known as "interpersonal physiology" or "physiological synchrony" aims at assessing temporal similarity in teammates' physiological responses and requires the acquisition of several data streams from teammates such as electrodermal activity, thermal activity, respiration or cardiac activity (see (Palumbo et al., 2017) for a systematic review). "Hyperscanning" is also often used to refer to physiological synchrony using cerebral activity measurements (i.e. simultaneous measurement of brain activity (Babiloni and Astolfi, 2014)). Physiological synchrony has been shown to predict team performance irrespective of behavioral coordination [START_REF] Henning | Social-physiological compliance as a determinant of team performance[END_REF], and has been thoroughly studied in video game players in cooperative vs competitive settings [START_REF] Chanel | Physiological compliance for social gaming analysis: Cooperative versus competitive play[END_REF]. Taken together, the hyperscanning and phys-ASSESSMENT iological synchrony approaches open promising prospects for social neuroergonomics and the design of solutions to assess and improve human-human or human-artificial systems teaming. Yet, to our knowledge, these approaches have scarcely been applied to the aeronautical context, and methodological issues as regards elicitation of such cooperation states remains to be clarified. The pilot monitoring had to perform the two lower tasks (blue): fuel management and communications. During the cooperative condition, they both had to monitor one of each other's tasks and help to perform it if needed (yellow): The pilot monitoring had to monitor and help for the monitoring task and the pilot flying the fuel management task.

Within the SmartCockpit project (with Kevin Verdière as PhD student and Flavio Ahuitzotl Reyna Bibiano as intern, co-supervised with Pr F. Dehais), we evaluated teammates' cooperation physiological correlates while they performed a modified MATB task meant to simulate activities of pilot flying (PF) and pilot monitoring (PM) roles (more details in Fig. 7.15) (Verdière et al., 2019(Verdière et al., , 2020)). In the experimental paradigm, dyads of participants sitting side by side performed the task in various difficulty (low and high) and cooperation (coop/non coop) settings (Fig. 7.16). The protocol was validated as to the elicitation of various levels of engagement at both the individual and the team level (Fig. 7.17), as attested by the NASA TLX ratings (higher reported workload in the high difficulty condition), task performance (decreased team performance in the high difficulty condition), as well as cardiac activity (higher heart rate and lower heart rate variability -sdnn-in the high difficulty condition) and cerebral activity (alpha power decreased at all sites for the PM in the high difficulty condition, n.s. for the PF). Moreover, task difficulty modulated the ability to cooperate. Cooperation was checked via behavioral measures, and it was reduced under high difficulty conditions, as could be expected. Regarding cooperative state correlates, there was an interaction with the difficulty level for the PM. Indeed, they reported the task as more difficult when in the cooperative condition, as also reflected by a slightly decreased team performance, and modulations in theta, alpha and low beta power (incl. trend for theta power decrease in the coop condition). But most importantly, there was a significant cardiac synchrony of teammates in the high difficulty condition in the cooperative condition only (assessed through the delayed coincidence count metrics -see section 8.4). We believe this CHAPTER 7. COGNITIVE NEUROSCIENCE CONTRIBUTIONS TO OPERATOR MENTAL STATE ASSESSMENT reflects a high engagement that was required in this particular setting, a form of interaction intensity as proposed by [START_REF] Chanel | Physiological compliance for social gaming analysis: Cooperative versus competitive play[END_REF]. Cooperation in this specific context can therefore mostly be seen as an increased engagement. However, our study highlights an increase in PS during cooperative and high workload conditions without correlation with team performance. This might reveal that the observed cardiac synchrony could be an epiphenomenon. Hence, the previous study proved efficient in eliciting various engagement and cooperative states in teammates that performed a highly engaging piloting-like task in a cooperative setting as characterized via individual subjective and objective measures, as well as teammates' peripheral (i.e. cardiac) synchrony measures. Yet, participants were collocated spatially and performed a similar task with parts -in the cooperative condition-that were exactly identical, meaning that they would experience temporally synchronized stimulations to which they were both supposed to answer hence generating some analysis bias at the physiological level. Moreover, synchrony analyses were only performed on cardiac activity at the time, and we saw that task difficulty and cooperation could interact and that it was necessary to evaluate cooperative correlates without modulating task difficulty. Hence, within the Hyperscan project (with Dr Nicolas Drougard and Dr Grégoire Vergotte as post-doctoral fellows, co-supervised with Pr F. Dehais and Dr C.P.C. Chanel), we worked on investigating the cooperation between a military ground controller (JTAC) and a Pilot in the context of close air support with a protocol in which they would either genuinely cooperate with each other, or cooperate with a pilot-bot or JTAC-bot (simulated using basic AI techniques) [START_REF] Dehais | Ai can fool us humans, but not at the psycho-physiological level: a hyperscanning and physiological synchrony study[END_REF]. This approach allows to compare participants' physiological responses when interacting with another human or an AI, but also to control for potential confounds. Indeed, the design of hyperscanning ecological protocols remains challenging as long higher brain synchrony or physiological synchrony may account for potential load effects as seen earlier (i.e. dyads are facing high demands at the same time) or task effects (i.e. dyads are doing the same task thus exhibiting similar cerebral activation) rather than real social interaction per se.

In this study, the teammates were not seated side by side but at opposite parts of a room, separated using screens, and phonically isolated using in-ear audio headsets. They had to perform missions, half of which were in a "coop" condition (genuine cooperation), others were in a "fake coop" condition (they were not told they were cooperating with a bot), and in a "no coop" condition (they were told they were to cooperate with a bot; Fig. 8.18). Our findings disclosed that Human-Human dyads exhibited similar performance to Human-Bots dyads whether the human participants were aware that they were playing with a bot or not. Our participants declared that they did not realize they were playing with an AI in the fake cooperation condition. These findings indicate that 1) humans can be fooled by AI, and that 2) humans can behave in a natural way with AI. Moreover, similar performance and heart rate variability for all conditions seem to indicate that the interaction with a human teammate or a bot induced similar levels of mental workload. Interestingly enough, our analyses revealed that the cardiac activity (WDCC metrics see section 8.4) of controllers and pilots was more synchronized when they were collaborating together than when they were playing with AI (being aware or not). Similarly, EEG analyses disclosed a higher cerebral efficiency and connectivity (incl. covariance and global efficiency metrics in alpha; see section 8.3) between the two brains when teammates were interacting together than when cooperating with AI. Hence, this experiment did elicit cooperation between participants with a protocol that tried to avoid common biases, and brought to light physiological correlates that cannot be elicited merely by engagement and stimuli processing and should therefore reflect cooperative states. 

Confinement

In the previous section, I briefly detailed work that we performed regarding teammate cooperation when interacting with highly complex systems in an aeronautical context. Although promising, the results were acquired using laboratory tasks with computer-based simulations. When considering operational contexts, additional social and environmental issues can arise, with the risk of impeding operators' professional task performance and therefore their safety (in addition to mission success). That is the case with confined/isolated settings such as the ones experienced by astronauts. Numerous studies in analogs -that is to say in an environment replicating a spatial environment by several criteria-have allowed to highlight the impact of a crucial stress factor which is the physical and temporal confinement (and the relative social isolation which accompanies it). This can generate mood alterations, but with a salutary effect of the severity of the isolation depending on the personality type [START_REF] Palinkas | Predictors of behavior and performance in extreme environments: the antarctic space analogue program[END_REF]. Fraser reports in his literature review a slight impact of confinement on behavioural performance [START_REF] Fraser | The effects of confinement as a factor in manned space flight[END_REF]. However, these alterations may be due to confounding factors such as fatigue/vigilance due to sleep alterations and fluctuations in motivation. Fraser notes that others have shown both decreases and increases in performance depending on the nature of the tasks, with routine tasks being the most negatively affected, but also that many studies report no alteration in performance despite changes in mood or social relationships. Thus, recent literature shows that performance is maintained for several months (Sauer et al., 1999a,b;[START_REF] Hockey | Human performance in extended space operations[END_REF]. However, this result applies only to the primary tasks, and performance is generally measured on reaction time tasks (e.g., response time tasks to a light). The few studies with tracking tasks to assess the impact on psychomotor skills do not show a net decrease in performance [START_REF] Fraser | The effects of confinement as a factor in manned space flight[END_REF]. It is therefore highly probable that the CHAPTER 7. COGNITIVE NEUROSCIENCE CONTRIBUTIONS TO OPERATOR MENTAL STATE ASSESSMENT performance degradation that is sometimes reported originates in the boredom of routine tasks or fatigue from a very busy schedule. Given the literature, to the best of my knowledge, operator performance and engagement had never been assessed within space analogs during teleoperation tasks using a full neuroergonomic approach that encompasses using questionnaires, behavioral measures as well as psychophysical ones. Gadelha Mimoso, Federica Vagnone, Veronica Martin Estraña, Ana Ambrosio Gonzalez, Flavio Ahuitzotl Reyna Bibiano, Louis Maller, and François Bernard as interns, co-supervised with Dr S. Lizy-Destrez and Dr V. Peysakhovich), we started to evaluate the impact of confinement and isolation on operator engagement during remote manual rover control tasks that would be performed from a confined cis-lunar station [START_REF] Estrana | Teleop: Impact of confinement and isolation on crew performances during long-duration missions[END_REF]Mimoso et al., 2021;[START_REF] Calle | Correlation analysis of sleep quality, mood and teleoperation performance in the mdrs206 analog mission[END_REF]. In order to do so, we used space analogs such as the Within these missions, the participants were confined in a given space analog for a duration specific to the program and the type of participants involved -either professionals or students (i.e. only 3 weeks for the MDRS missions, and 2 weeks for the Lunares one with students, and 4 and 8 months for the SIRIUS missions with professionnals). In the first missions we used a physical rover that was built by students with Legos and a Raspberry pi. However, for practical reasons and to increase ease of use, we switched to using a fully implemented rover simulation in the later ones. Measurements were taken using questionnaires (for personality, mood, confinement feeling, perceived effort and motivation), performance metrics (execution time and accuracy), as well as cardiac activity (heart rate and heart rate variability). The protocol generally included a training phase before the confinement, as well as a post-confinement acquisition phase. Participants performed at least one experimental session per week. The first version of the task consisted in rover guidance along a predefined path (missions MDRS189 and ARES-III), while in the subsequent ones the task was fully simulated (computer-based task).

In addition to limited participant numbers that are inherent to this type of experiments, we also encountered numerous technical issues (different ones for every mission) that both restricted data availability (cardiac measurements), and negatively impacted our ability to properly analyze the data. Yet, we were still able to gather some interesting results from the remaining data. The main results of the first three missions that involved student participants demonstrated a significant correlation between motivation and positive affect, between the feeling of confinement and negative affect, as well as between perceived effort and motivation [START_REF] Estrana | Teleop: Impact of confinement and isolation on crew performances during long-duration missions[END_REF]. Regarding personality traits, the score on the neuroticism scale was positively correlated to the feeling of confinement. However, the correlation between teleoperation performance and other metrics was not significant in all studies.

Nevertheless, a correlation analysis of sleep quality (assessed using the Dreem EEG headband from the night before the teleoperation session), mood and teleoperation performance in the MDRS206 analog mission revealed that sleep duration and task completion time were positively correlated, in addition to a positive correlation of the reported feeling of confinement with the negative affect component of the mood, as well as between the negative affect component and several sleep quality parameters [START_REF] Calle | Correlation analysis of sleep quality, mood and teleoperation performance in the mdrs206 analog mission[END_REF]. To the best of our knowledge, this link between sleep quality in confined spaces with professional task performance had not yet been evaluated. Further, on a larger time scale, we also performed a teleoperation performance and psychophysiological state assessment in the SIRIUS-19 analogue campaign with a simulated rover guidance task performed in a ground-based complex in Moscow (Mimoso et al., 2021). Over this four-month study, participants performed 17 teleoperation sessions that were designed to simulate guidance but with a purpose: they had to perform rock sampling on the Lunar surface (Fig. 7.22). The main results were a positive correlation between the reported feeling of confinement and task completion time, and a negative correlation between the reported feeling of confinement with the positive affect component of the mood. Next, a positive correlation between the mean heart rate during the teleoperation task and the reported effort required from participants underlined the usefulness of such physiological measures. In addition, a general decrease of motivation was observed along the mission with the exception of a booster CHAPTER 7. COGNITIVE NEUROSCIENCE CONTRIBUTIONS TO OPERATOR MENTAL STATE ASSESSMENT created by a Moon landing phase (half-way through the mission). Hence, the results -although hampered by a low number of participants-, go in the same direction as the ones from our previous analogue studies.

While requiring replication, this work paves the way towards better assessing the link between confinement stressors and the crew's performance to professional tasks. This work has also led us to perform an online evaluation of the covid-19 confinement on students' cognitive functions, which we have however not yet been able to fully analyze. 

Social context of operation

-Task difficulty and cooperation conditions both have an effect on operator engagement.

-Teammates' cooperation can be characterized through individual subjective and objective measures, as well as physiological synchrony. -Humans can be fooled by AI in cooperative tasks, yet not at the physiological level.

-Teleoperation performance, sleep and mood are correlated in confined environments such as space analogues.

Countermeasures for adequate engagement

In order to enhance human-complex systems interaction at the safety and performance level, countermeasures have to be put in place, that is to say measures that will prevent the occurrence and/or mitigate the impact of degraded human operator cognitive states -states that precede a reduction in performance efficacy and that mostly consist in inappropriate engagement level. Two main types of countermeasures can be identified depending on which part of the interaction we focus on: i) operator screening and training; ii) system design. Several of these measures -from both categories-rely on performing an adaptation of either the operator or system based on physiological measures. Within the Cocpit project (with Dr Alex Lafont as post-doctoral fellow), we proposed a typology of such neuroadaptive countermeasures to mitigate undesirable cognitive states (Dehais et al., 2020). Three types of mitigating solutions to instigate a change in behaviors were identified: (1) adaptation of the user interface, (2) adaptation of the task and of the level automation, and the (3) "neuro-adaptation" of the end-users (See Fig. 7.23 for more details).

The implementation of such neuro-adaptive technology relies on a pipeline that consists of a signal CHAPTER 7. COGNITIVE NEUROSCIENCE CONTRIBUTIONS TO OPERATOR MENTAL STATE ASSESSMENT acquisition step, a preprocessing step to improve the signal-to-noise ratio, a feature extraction step, a classification step to diagnose the current mental states, and lastly an adaptation step (Roy and Frey, 2016). This last step implies the implementation of formal decisional unit that dynamically closes the loop by triggering the most appropriate cognitive countermeasures. Work on this whole pipeline design and implementation is the core of chapter 8. In the present section I only detail countermeasures that were designed and tested following the operator vs system categorization mentioned earlier, and which include some neuroadaptive solutions. 

Operator screening and training

If we focus on the user/operator, solutions to prevent inadequate engagement levels include screening as well as training of the selected operators. Regarding operator screening, we did not much touch the subject these past years, however in our work regarding inattentional deafness within the MAIA project (with myself as post-doctoral fellow and Amine Laouar as intern, co-supervised with Pr F. Dehais and Dr S. Scannella) we did work on the evaluation of working memory and visuo-auditory balance as predictors of inattentional deafness (Dehais et al., 2019c). In this study (detailed in section 7.3.3), thanks to tasks performed by participants before the flying task in the motion simulator (resp. an N-back task for working memory assessment and a spatial audiovisual conflict task for the visuo-auditory balance) and to a correlational analysis, we found that working memory ability did not correlate with inattentional deafness -inline with previous studies (e.g. Kreitz et al. (2016))-, but that the visuo-auditory balance did. Indeed, only the visual dominance index was predictive of the miss rate in the difficult scenario. Therefore, it seems sensible to advise pilot screening procedures to take into account this visuo-auditory balance that appears to significantly impact their ability to filter and prioritize auditory information in the cockpit.

Next, regarding operator training, one of the most promising preventive approaches relies on the implementation of neurofeedback (see Enriquez-Geppert et al. (2017) for a review). The principle of this technique is based on a biofeedback technique used for training oneself. Indeed, here real-time feedback of their mental states is provided to the users in the form of a visual, tactile or auditory stimulus. The users can then utilize these signals to learn to regulate their brain activity and in return improve their executive functions, mental flexibility, and attentional abilities as well as enhance their task engagement (e.g. (Egner and Gruzelier, 2004)). In addition, it has been shown that frontal-medial theta can improve basic executive functions (Enriquez-Geppert et al., 2014). Hence, within the Cocpit project (with Dr Alex Lafont as postdoctoral fellow, co-supervised with Pr F. Dehais) we aimed at assessing whether neurofeedback training focused on theta activity in the fronto-medial cortex would help them perform better in tasks involving executive functions: laboratory tasks, laptop-based ecological task (MATB), and a flying task in a full motion flight simulator (Lafont et al., 2020, 2021) (Fig. 7.24). In this study, we evaluated two groups of participants, one that received a genuine neurofeedback training (active group), and another that received a sham training (sham group). The training consisted in eight 1,5 hour-sessions. Preliminary results revealed that the active group exhibited higher amplitude of theta compared to the sham group. Additionally, our findings indicated increased performance after neurofeedback training for the active group compared to the sham group in most of the laboratory and simulator tasks with more waypoints reached by the active group (however with more variability), and less trajectory deviation, than the sham group. Taken together, fronto-medial NF training appears a promising solution to improve both pilot's executive functioning and flying performance. It should be noted that brain activity-based training can also be implemented by adaptively modifying the system itself, be it at the interface or task level (e.g. Yuksel et al. 2016). System modifications for adequate operator engagement are detailed below.

System design

Countermeasures based on system modifications can also be implemented as curative measures for inadequate operator engagement. These measures can be grouped into two categories: modifications of the interface, and modifications of the task itself (incl. automation level). Regarding interface design, solutions can be for instance the removal or addition of information, the change in salience of a given piece of information, or the change of sensory modality (see Dehais et al. (2020) for a review). Within the Nectar project (with Yannick Migliorini as PhD student co-supervised with Pr F. Dehais and Dr J.-P. Imbert), we evaluated several alarm modalities' ability to reduce inattentional deafness occurrence within the ATC con- text (Migliorini et al., 2021). Indeed, studies had shown that the current Short Term Conflict Alert (STCA) -a small blinking red "ALRT" tag-could remain undetected under high load settings (Imbert et al., 2014;[START_REF] Saint-Lot | Red alert: a cognitive countermeasure to mitigate attentional tunneling[END_REF]. In the visual modality, a red ambient flash was successfully implemented [START_REF] Saint-Lot | Red alert: a cognitive countermeasure to mitigate attentional tunneling[END_REF]). Yet, the usefulness of soliciting other sensory modalities remained to be assessed. In our study we showed that implementing auditory, vibrotactile and the red ambient flash led to decreased alarm misses compared to the French STCA (Migliorini et al., 2021).

Further, within the Cocpit project (with Dr Alex Lafont as post-doctoral fellow, co-supervised with Pr F. Dehais), we worked on implementing neurofeedback as a curative measure too -not just a preventive measure-by implementing a visual feedback regarding the pilot's own fronto-medial theta activity in the cockpit (Lafont et al., 2021). Hence, in the flying task that was included in the whole protocol, participants had to navigate through several way-points as fast as possible and perform two secondary tasks at the same time: 1) an active auditory oddball task; 2) managing the radio communications (i.e. auditory working memory task). The interface included a biofeedback which participants could check during their flight (Fig. 7.25). Unfortunately this countermeasure was not assessed alone and was in fact implemented jointly with another countermeasure described in the next section, an adaptive assistance solution that proposed to change the automation level of one of the two tasks (see below).

The dynamic reallocation of tasks between humans and automation is another solution to maintain operator performance efficacy (e.g. (Parasuraman et al., 1999;Stephens et al., 2018)). The underlying concept in this case is to optimize human-human or human(s)-system(s) cooperation according to criteria of availability and skills of human and artificial agents (Gateau et al., 2016). For instance, Prinzel et al. (2000) utilized the continuous monitoring of brain waves that could be used to drive the level of automation and optimize the user's level of task engagement. This is what we implemented within the Cocpit project (with Dr Alex Lafont as post-doctoral fellow, co-supervised with Pr F. Dehais) in the last phase of the study, with an adaptive assistance solution that proposed to change the automation level of one of the two secondary tasks during the flight (performed in the full motion simulator) (Lafont et al., 2020(Lafont et al., , 2021)). This experiment ASSESSMENT Figure 7.25 -From (Lafont et al., 2021): Project Cocpit -Illustration of the cockpit interface and the two secondary tasks that pilots had to perform as well as illustration of the pilot aid.

was mostly directed at assessing the effect of the training technique described earlier, and showed trained participant were more performing to the secondary tasks and therefore the adaptive assistance was less often activated than for the non-trained group (sham group). Hence, these results do not constitute a proof of the efficiency of neuroadaptive task reallocation, but rather a proof of concept of its implementation. However, within the Airtime project (with Gaganpreet Singh as PhD fellow and capitaine Laura Tilly as intern, co-supervised with Dr C.P.C. Chanel) we did successfully mitigate operator engagement thanks to task reallocation based on physiological computing (Singh et al., 2022a,b). As physiological computing is the core of the next chapter -chapter 8-, the details of the pipeline, as well as the task and results are given in a dedicated section on closed-loop systems (section 8.5.3). In a nutshell, a piloting task that required interacting with UAVs via a tactile tablet was modified in an online manner based on the current mission parameters and a real time estimation of the pilot's engagement level performed using machine learning on their cardiac activity. Indeed, the goal was to enhance human performance by controlling the interaction between agents based on an online monitoring of the operator's task engagement and performance. This task adaptation was compared to a non-adaptive condition. In accordance with the literature, when the adaptive approach was used, the participants reported significantly less mental workload (as measured with the Instantaneous Self Assessment (ISA) questionnaire; Fig. 7.27), physical and temporal demands, frustration and effort (as measured using the NASA-TLX questionnaire; Fig. 7.28), and their flying score was also significantly improved (Fig. 7.29). These findings demonstrate how such a physiology-based adaptive interaction can improve performance while reducing operator workload (more details and figures in section 8.5.3). This chapter summarizes selected work that I carried and supervised regarding methodological contributions for improved physiological computing. After a general introduction, the use of probes for mental state assessment and their specific processing is detailed including spatial filtering and denoising methods. Next, work on cerebral connectivity features extracted from both fNIRS and EEG signals is presented. Another part is dedicated to using peripheral measures including the investigation of synchronization metrics that can be extracted from cardiac activity. Lastly, work on out-of-the-lab progress and closed-loop implementations and evaluations is briefly detailed. The projects I have selected to present here are listed below, along with the supervisees (between parentheses) that were involved and who performed most of the work. 

Countermeasures

Introduction

In order to perform mental state assessment for HMI quality assessment and/or closed-loop systems, an important issue is that of data processing. To enable estimating a given state, machine learning tools such as classifiers can be used. The basis of my current work lies in the use of processing pipelines that include such a classification step and were originally developed for active BCI applications. Hence the goal is to develop pipelines that apply machine learning tools onto physiological markers extracted from signals that can be recorded in an online manner using wearables -wearable systems (Fig. 8.1 presents the general classification principle, Fig. 8.2 presents the closed-loop approach).

Yet, as I previously showed during my PhD, only applying classifiers does not suffice to obtain adequate mental state estimations. An example is the use of an active BCI pipeline that includes a channel selection stage, then a Common Spatial Pattern filter applied onto EEG filtered in specific bands (e.g. alpha and beta bands), and a simple classifier -a Fisher's linear discriminant analysis, for a passive BCI purpose: estimating mental fatigue (Roy et al., 2014). The results are 100% accuracy with this sophisticated pipeline for the beta band. However they drop to 84% and 68% when the same data are processed with a traditional signal processing chain where fatigue is classified by means of an FLDA classifier fed by the averaged power, or relative power, without any spatial filtering. This example highlights the need for preprocessing and signal conditioning: signal processing is the key.

Another issue is the choice of features. Indeed, in my earlier work I highlighted the fact that important mental states overlapping effects do occur at the feature level, in particular when considering power features (e.g. alpha power) for mental workload estimation in the presence of time-on-task effects (Roy et al., 2012a), which result in degraded classification performance [START_REF] Roy | Mental fatigue impacts workload level classification performances[END_REF](Roy et al., , 2013a)). Hence, in addition to an adequate preprocessing, the choice of which features to extract is paramount. Investigating the susceptibility of features to time-on-task, and in a general manner to overlapping effects, as well as the potential use of new features that would lead to increased estimation performance is another important step to evaluate the generalizability of features (challenge 3 from the introduction). This chapter focuses on a non exhaustive list of solutions to better estimate operator mental state by working on the preprocessing and feature extraction stage towards use in realistic and real-life settings. Figure 8.1 -From (Roy et al., 2020a Probes are a simple and useful means to extract information regarding a user/an operator's mental state. Indeed, a simple probe such as a pure tone presented for only 100 ms is enough to elicit a physiological response, e.g. an event-related potential (ERP; time-locked electrical brain response [START_REF] Handy | Event-related potentials: A methods handbook[END_REF]), that has been shown to be modulated by the user's context and state (Roy, 2015;Roy et al., 2016aRoy et al., , 2020a)). Hence, through auditory probing -a minimally intrusive technique-operator task engagement could be estimated by applying a dedicated signal processing and machine learning pipeline onto temporal features elicited by the probe.

These temporal responses to a probe are usually averaged over an important number of trials, which is unrealistic for online measurements for which we need to tend towards single-trial ERP use. What's more, most studies on the impact of a given mental state on ERPs (e.g. workload) have been conducted using classical oddball paradigms in which participants had to detect (and/or count) a target infrequent item amongst distractors or novel sounds. However, for real-life applications of mental state monitoring systems, a less intrusive and distracting probing method should be used. That is to say that the use of a secondary task should be avoided in order to keep the operator focused on its primary task. Hence, [START_REF] Allison | Workload assessment of computer gaming using a single-stimulus event-related potential paradigm[END_REF] have introduced the single-stimulus paradigm to assess mental workload in an immersive environment in a less distracting way. In this paradigm, there are no non-target stimuli, they are replaced by silence, and only target stimuli are presented, at irregular intervals. As the authors point out, this is a stimulation method that is operationally easy to implement. In their study, participants had to either count or ignore these auditory stimuli while playing a video game. Here the probes were therefore task-independent. They showed that using ignored probes still elicited significant modulations of auditory ERPs. Moreover, as reported early on by [START_REF] Mertens | P300 from a single-stimulus paradigm: passive versus active tasks and stimulus modality[END_REF], the ERPs elicited in a singlestimulus paradigm by visual or auditory probes are a viable alternative to the traditional oddball procedure, although late components' amplitude is reduced when the stimuli are ignored compared to when they are counted or await a motor response. The authors even report that auditory probes elicit ERPs that are more robust to response type. That is to say that ignored auditory stimuli generate early and late components of which amplitude is quite similar to that of stimuli awaiting an active answer. This makes them very good candidates for the features to use in a mental state estimation procedure.

Goal

However, to the best of my knowledge, regarding the elicitation of single-trial ERPs by ignored taskindependent probes using a single-stimulus paradigm, these probes have mostly been used for characterization purposes -i.e. without estimation. At this point in time, it therefore remained to ascertain whether a single-stimulus paradigm with ignored task-independent probes could be used for efficient mental state assessment. In my earlier work I was able to show that indeed this type of stimulation paradigm with task-irrelevant probes was relevant for mental state assessment, in particular for mental workload elicited via a memorisation task during reading and programming [START_REF] Roy | Influence of workload on auditory evoked potentials in a single-stimulus paradigm[END_REF]. Indeed, much of the literature at the time focused on memory tasks only with dependent probes (e.g. [START_REF] Brouwer | Estimating workload using EEG spectral power and ERPs in the n-back task[END_REF]Mühl et al., 2014). But we could also elicit increases in mental workload thanks to a varying number of tasks to perform in parallel (Roy et al., 2015a(Roy et al., , 2016a)). This technique yielded very accurate estimates thanks to a processing pipeline that encompassed a spatial filtering step with a classification accuracy above 80% for every participant, and minimal intrusiveness thanks to the use of a single-stimulus paradigm.

As seen above, probing techniques can be used in a minimally intrusive manner and give good estimates of user/operators' mental state. However, as classically seen for power features-based estimation (Roy et al., 2013a(Roy et al., , 2014)), these estimates can only reach high accuracies thanks to spatial filtering techniques that enable to enhance the signal to noise ratio. In a nutshell, spatial filtering is a type of signal conditioning that consist in applying weights upon channels in order to enhance the signal to noise ratio -and hence drastically enhance the estimation accuracy-, to reduce the dimensionality of the data, and to allow for an easier feature extraction step. In earlier work, I directly assessed this increase in estimation accuracy [START_REF] Roy | Enhancing single-trial mental workload estimation through xdawn spatial filtering[END_REF], and compared the available spatial filters for ERP-based estimation (originally developed or used for active BCIs), the xDAWN algorithm [START_REF] Rivet | xdawn algorithm to enhance evoked potentials: application to brain-computer interface[END_REF] and the Canonical Correlation Analysis filter (CCA) [START_REF] Hotelling | Relations between two sets of variates[END_REF][START_REF] Bibliography Spüler | Spatial filtering based on canonical correlation analysis for classification of evoked or event-related potentials in EEG data[END_REF], with a basic spatial filter -a Principal Component Analysis (PCA), as well as with a pipeline that did not include a spatial filtering step [START_REF] Roy | A comparison of erp spatial filtering methods for optimal mental workload estimation[END_REF]. It so happened that xDAWN and CCA yielded the same high accuracy, with two filters enabling to reach above 90% of accuracy with task-dependent probes.

Lastly, in order to move towards use of this probing technique in real life settings, the robustness of the ERPs elicited by such probes to environmental effects and user-related effects must be assessed. A first step was to determine whether these features could be robust to time-on-task. Indeed, time-on-task -be it due to mental fatigue or impedance changes-has a strong effect on EEG power features. This enables us to estimate time-on-task or mental fatigue with very high accuracies (Roy et al., 2014), however this impedes the use of such power features for accurate mental workload estimation in realistic settings without advanced processing. We directly compared the robustness of probe-elicited ERPs and power features to time-ontask in a dedicated study (Roy et al., 2016c). It so appeared that no impact of TOT was observed on ERP features elicited by task-irrelevant probes, while spectral features were significantly impacted. Moreover, spectral feature-based estimation dropped to chance level, and ERP-based estimation was maintained to a COMPUTING high accuracy. Hence, although spectral features seem more suited to mental state monitoring purposes in real life settings thanks to their non intrusive extraction and to the fact that they allow continuous monitoring (contrary to ERP features), they suffer from low performance and time-on-task instability. It stems from this study that event-related potentials appear to be more efficient for operator engagement estimation in a close to real life implementation than spectral markers, given that they provide better classification accuracies and are stable in time both at the marker level and at the estimation level.

Hence, this earlier PhD work paved the way to the efficient use of ERPs for mental state monitoring in close to real-life settings and contributed toward the development of adaptive user interfaces. In order to go a step further towards real-life use, the feasibility to use this probing technique with less obtrusive systems remained to be evaluated.

Unobtrusive systems

In order to move towards real-life and mobile settings, systems using as low a number of electrodes as possible, and located in areas that are less cumbersome should be developed, such as in-ear electrodes or electrodes located around the ears. Within the MAIA project (with Dr B. Somon as post-doctoral fellow, co-supervised with Pr F. Dehais), we recently described the challenges and limits related to the use of such systems (Somon et al., 2022), in particular, electrode locations that are not always in compliance with the standard 10-20 system, and a reduced number of electrodes that does not allow researchers to use classical preprocessing tools (e.g. blind source separation techniques for denoising the signal). However, apart from these considerations, all studied unobtrusive systems allowed for ERP extraction and could therefore be used in combination with probing techniques. Moreover, the electrode location issue could be solved by using new localization techniques based on 3D scanning devices and applications, that would then allow the use of preprocessing techniques that require precise electrode position. Also, we performed a feasibility study to measure pilots' auditory attention in a three-axis motion flight simulator using an unobtrusive EEG system (two TMSi,Oldenzaal,Netherlands;Fig. 8.3). This study aimed at measuring the cerebral activity associated with inattentional deafness (defined in section 7.2) in an ecological context with varying degrees of task difficulty. Concomitantly with the flying task (approach and landing, with varying weather/visibility conditions), participants had to respond to an auditory oddball task. This experimental paradigm allowed us to successfully induce failure of auditory attention, as well as early electrophysiological modulations in accordance with the literature, but not the usual target-related P300 component (Fig. 8.4). This may be due to two reasons: i) our data COMPUTING were collected in a highly ecological environment which is prone to decrease data signal to noise ratio, in particular due to high levels of muscular activity from the participants. Movements may also affect skin contact with the cEEGrid electrodes, leading to signal loss issue. ii) Another reason for the difficulty to detect the P300 could be related to the location of the electrodes. Indeed, we know that the sources that give rise to the P300 are best recorded at parietal midline sites.

In summary these results illustrate this paradox: some results observed in the literature were reproduced, however we faced difficulties in terms of signal processing and measure identifications. We show that despite the lower signal-to-noise ratio observed with this kind of devices, we are able to detect eventrelated potentials (ERPs) -as well as frequency features (not detailed here).

Preprocessing for ecological settings: Simulator studies

We have seen so far that ERP features elicited by both task-relevant and task-irrelevant -and even ignored-auditory probes could be used to estimate participant's mental states quite accurately -in particular their mental workload or engagement thanks to spatial filtering methods, with a particularly interesting robustness to time-on-task. The next step to assess their usability in realistic settings is therefore to perform operator mental state assessment using probing, in simulator and real flight studies, and to determine whether specific preprocessing steps need to be added/tuned for enhanced performance.

I had already evaluated the efficiency of spatially filtered ERP-features elicited by ignored task-irrelevant auditory probes with a single-stimulus paradigm (Fig. 8.5) fused with a basic simulation of pilot activities (Roy et al., 2016a): the Multi-Attribute Battery Task (MATB) [START_REF] Comstock | The multi-attribute task battery for human operator workload and strategic behavior research[END_REF] during my PhD. The processing pipeline (Fig. 8.6) included a canonical correlation analysis filtering step and yielded high estimation accuracies (classification accuracy above 80% for every participant). Regarding more COMPUTING Figure 8.6 -From (Roy et al., 2016a): Flow diagram of the signal processing chain applied on the EEG data in order to estimate mental workload.

specifically the automated preprocessing to use for such studies, it included an automated ocular artifact correction using the signal recorded from the electrooculographic electrodes (EOG) and the Second Order Blind Identification algorithm (SOBI; Belouchrani et al. 1997). This algorithm was chosen to perform the source decomposition because thanks to its assumption of non-correlation -and not mutual independenceit has been shown to be more suitable for electrophysiological data by [START_REF] Congedo | On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics[END_REF]. In order to get closer to a system that could be implemented on-line in a real-life setting, the two sources that were the most correlated to the EOG activity were canceled to provide a fully automated and objective denoising.

As seen above, this specific processing chain yielded promising results with a simple simulated piloting task. Next, still within the MAIA project (with intern A. Laouar, co-supervised with Pr F. Dehais and Dr S. Scannella) we evaluated this probing technique and its dedicated processing in a more realistic environment with a simulator study using a full-motion simulator (Dehais et al., 2019c). Here, a classification analysis was performed in order to determine whether alarm misperception could be detected in a reliable fashion. Indeed, we implemented a processing pipeline to perform single-trial classification of inattentional deafness (defined section 7.2) with the same steps and methods as used in the previous study.

The processing chain used to perform hit versus miss estimation was based on the ERPs of the target sounds and is described hereafter. The first 500 ms of the auditory ERPs were corrected for ocular artifacts in an automated fashion using the SOBI algorithm and the vertical EOG (electrooculographic) signal. The two sources that were most correlated with the EOG activity were cancelled out. Next, the cleaned data were decimated to 100 Hz and centered on zero. Then, they were spatially filtered using a Canonical Correlation Analysis (CCA) filtering step with two filters. Hence, the features consisted of a vector of 100 points (2 filters x 50 ERP time points). Lastly, these features were classified using a Fisher Linear Discriminant Analysis with a shrinkage estimation of the covariance matrices [START_REF] Blankertz | Single-trial analysis and classification of erp components-a tutorial[END_REF], with a 10-fold cross-validation procedure in which an equal number of hits and misses were systematically drawn to create the training (9 out of 10 subsets) and the testing sets (10th subset). The classification pipeline that was used allowed us to obtain 72.2% of correct classification of the hit and missed targets in average across COMPUTING Figure 8.7 -From (Dehais et al., 2019c): ISAE-SUPAERO three axis motion flight simulator. The participants were left seated and equipped with a Biosemi 32-electrode EEG system. participants. This is significantly higher than the adjusted chance level threshold of 59%, as computed to take into account the number of available trials following Combrisson and Jerbi's recommendations (2015).

The most important point here in both these studies is the ocular artifact denoising step that is fully automated and performed on the 32 channels using a source reconstruction algorithm, as well as reference channels. This method is highly efficient for this specific study and EEG setup but might be inefficient or unusable in even closer to real life settings with a reduced number of electrodes for instance. Yet, this study paves the way to the efficient use of ERPs for mental state monitoring in close to real-life settings.

Preprocessing for ecological settings: In-flight denoising

Data acquired in ecological settings -that is to say real life-requires extensive preprocessing to be usable offline, and even more so when the intended use is an online monitoring or closed-loop system. The filtering steps proposed in the previous section are only applicable if we have numerous recording channels. However, for practicality reasons, dry electrode systems that only provide from 6 to 20 channels are desirable.

We tested such a system with only 6 dry electrodes in real flight conditions (Dehais et al., 2019a) in the MAIA project. We assessed the possibility of performing task engagement estimation using spectral features and ERP features generated by an oddball task performed in parallel. In order to be able to extract clean ERPs in this highly noisy environment without the possibility of performing spatial filtering (due to the low number of channels), we made use of a new filtering method called Artifact Space Reconstruction (ASR [START_REF] Chang | Evaluation of artifact subspace reconstruction for automatic EEG artifact removal[END_REF]), and more particularly a version based on Riemannian geometry, the Riemannian ASR [START_REF] Blum | A riemannian modification of artifact subspace reconstruction for EEG artifact handling[END_REF] which is adapted for covariance matrix processing. The ASR method computes repeated principal component analyses (PCA) on covariance matrices to detect artifacts based on their statistical properties in the component subspace and to reconstructs the signal based on a comparison made with a baseline window. The advantage of this method is that it can be run in real time and provides good cleaning performance even if using only 6 channels. However, although the ERP denoising step was quite successful (Fig. 8.8 and 8.9), the classification performance when using the ERP features was no different from chance level, contrary to spectral features which yielded up to 71% of correct classification. These result clearly underline the need for estimation pipeline refinement for ERP feature-based mental state monitoring. 

Reverse probing

Although being able to automatically detect targets/events that are missed by an operator is a tremendous step forward, it would be even more interesting to be able to predict such misses before the actual event has even occurred. That is the very objective of the MAIA project in-flight study in which we used 3 seconds of EEG signal before the target sound -hence performing reverse probing [START_REF] Dehais | A pbci to predict attentional error before it happens in real flight conditions[END_REF].

Data were acquired with a 30 electrode dry-EEG system during a challenging flight scenario with auditory alarms. The behavioral results and ERP analyses were in accordance with previous results (here 36% missed alarms; N100 and P300 amplitude modulations). After filtering (0.5-30 Hz; FIR filter; order: 250), and denoising (ASR and automated ICAlabel function from EEGlab), inter-subject classification was carried out over frequency features (delta, theta, alpha, beta and gamma power features) extracted from 3-second epochs before the alarms' onset using a supervised dictionary learning approach (Fig. 8.10). The methods used were sparse representation for classification (SRC), sparse and dense representation (SDR) and more conventional approaches such as linear discriminant analysis (LDA), shrinkage LDA and nearest neighbor (1-NN). Supervised dictionary learning consists in learning a dictionary per class and making them dissimilar by boosting the pairwise orthogonality. This type of methods has been shown to be quite efficient for BCI applications with good generalizability [START_REF] Zhou | Discriminative dictionary learning for EEG signal classification in brain-computer interface[END_REF][START_REF] Wen | Review of sparse representation-based classification methods on EEG signal processing for epilepsy detection, brain-computer interface and cognitive impairment[END_REF]. In the best case (all features concatenated), SRC and SDR gave respectively a performance of 66.9% and 65.4% of correct mean classification rate to predict the occurrence of inattentional deafness, outperforming LDA (60.6%), sLDA (60%) and 1-NN (59.6%). These results validate the reverse probing approach to predict target misses, and are quite promising for inter-subject applications. This section was intended to provide the reader with a sneak peek at ideas for extracting relevant features for operator/user mental state assessment, such as probe-or event-elicited features, along with the adequate preprocessing methods toward real life implementation. The main conclusions can be summarized in the following list:

Probing users/operators' mental state -Probing techniques provide relevant EEG features for mental state estimation.

-Dedicated processing such as spatial filtering is paramount for accurate estimation.

-Both classical and reverse probing techniques can be used in ecological settings.
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Cerebral connectivity

A new type of features that can be extracted from spontaneous brain activity has recently been under the microscope for better cognitive mechanisms evaluation: connectivity metrics (e.g. correlation, covariance, coherence and phase synchronization; for a review for brain electrophysiological measures see [START_REF] Greenblatt | Connectivity measures applied to human brain electrophysiological data[END_REF]). These metrics can be used to investigate how specific parts of the cortex are interconnected during a given cognitive process, such as decision making for instance. For neuroergonomics applications these metrics can be extracted from sensors worn by two operators to try and evaluate whether their activity is synchronized during specific tasks. They can also be extracted from sensors worn by a single operator to try and evaluate how synchronized the signal coming from different sensors is, and by extension -although less accurate-from different brain areas. These two types of connectivity can be termed intra-and interoperator connectivity. One advantage of these features is that, similar to power features, they do not require the use of probes. This lessens the requirements in terms of temporal resolution -however for intra-operator use only. Indeed, for inter-operator connectivity analyses, perfect acquisition systems' synchronization is required. The following sub-sections detail work that I carried with my colleagues to evaluate fNIRS and EEG connectivity features to perform operator mental state monitoring.

Benchmarking connectivity features for fNIRS-based estimation

Functional Near Infra-Red Spectroscopy (fNIRS) provides hemodynamic features that have been shown to adequately reflect engagement states in human operators, and despite its low temporal resolution it has also been shown to enable efficient mental state estimation in realistic settings thanks to a lesser sensitivity to noise than EEG (Ayaz et al., 2012;Gateau et al., 2015). However to our knowledge the various connectivity metrics that could be extracted on the fNIRS signal had not been benchmarked to determine which ones would enable the most accurate operator mental state assessment, here for an intra-operator use. Within the SmartCockpit project (with PhD fellow K. Verdière, co-supervised with Pr F. Dehais), we therefore performed such a benchmark on data acquired during a landing task performed in a motion simulator under two contrasted levels of engagement (manual vs. automated; Verdière et al. 2018). 
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Hence, the collected data were used to benchmark the performance of classical oxygenation features (i.e., Average, Peak, Variance, Skewness, Kurtosis, Area Under the Curve, and Slope) and connectivity features (i.e., Covariance, Pearson's, and Spearman's Correlation, Spectral Coherence, and Wavelet Coherence) to discriminate these two landing conditions. Preprocessing included applying a wavelet interpolation method on epochs for artifact correction followed by a Butterworth high pass filter (cutoff: 0.01 Hz -order 3) and a low pass filter (cutoff: 0.5 Hz -order 5) were applied for the band pass filtering step. The filtered and artifact free data were then converted to oxyhemoglobin [HbO] and deoxy-hemoglobin [HbR] concentration variations. Classification performance was obtained by using a shrinkage Linear Discriminant Analysis (sLDA) and a stratified cross validation using each feature alone or by combining them.

Our findings disclosed that connectivity features performed significantly better than classical concentration metrics with a higher accuracy for wavelet coherence (average: 65.3/59.9%, min: 45.3/45.0, max: 80.5/74.7 computed for HbO/HbR signals respectively 8.11). A maximum classification performance was obtained by combining the area under the curve with wavelet coherence (average: 66.9/61.6%, min: 57.3/44.8, max: 80.0/81.3 computed for HbO/HbR signals respectively 8.12). In a general manner all connectivity measures allowed an efficient classification when computed over HbO signals. We believe that those results provide methodological cues for further implementation of fNIRS-based passive BCIs in realistic settings. 

Intra-operator EEG connectivity features

Regarding EEG connectivity features, we first investigated whether intra-operator features (i.e. connectivity computed between channels) could be of use to characterize operator mental states, and to perform operator mental state assessment. In my previous PhD work I had already evaluated how EEG spatial covariance matrices could be used in reference to a baseline for detecting operator mental fatigue (Charbonnier et al., 2016a). An index that estimates mental fatigue from EEG signals recorded from 32 electrodes in 6 regions of interest (ROIs) was proposed. The mean spatial covariance of the filtered signals was computed per band and per ROI from a short period at the beginning of the session, which formed the initial state (when the participant is not fatigued). For the rest of the session, the Frobenius distance between the COMPUTING initial state mean covariance and the covariance calculated on 20 s sliding epochs was transformed into a mental fatigue index that varied between 0 and 1. This index was successfully correlated to an ocular index as well as with subjective metrics.

Next, within the MAIA project (with post-doctoral fellow Dr M. Senoussi, co-supervised with Pr F. Dehais) we investigated the relevance of large-scale EEG connectivity for performance prediction by correlating relative coherence with reaction times (RT) to a UAV monitoring task (Senoussi et al., 2017). The analysis pipeline consisted of the computation of the magnitude squared coherence, we then calculated the relative coherence for each electrode, finally we correlated this relative coherence with reaction times. This procedure yielded a matrix of correlations for each electrode pair and frequency by participant. As for relative coherence, power spectral density was computed on the minute preceding Identification task alarms and correlated with reaction times which yielded a matrix of correlations for each electrode at each frequency (see Fig. 8.13). We showed that long-range EEG relative coherence, i.e. between occipital and frontal electrodes, is significantly correlated with RT and that different frequency bands exhibit opposite effects (Fig. 8.14). More specifically we observed that coherence between occipital and frontal electrodes was: negatively correlated with RT at 6 Hz (θ band), more coherence leading to better performance, and positively correlated with RT at 8 Hz (lower α band), more coherence leading to worse performance. Our results suggest that EEG connectivity measures could be useful in predicting an operator's mental state and their performance in ecological settings. The previous work did not perform a machine learning based estimation. In order to move towards a comparison at the classification level, in my PhD I proposed a direct comparison of four connectivity measures -covariance, cross-correlation, spectral coherence and phase locking value (PLV)-on EEG data extracted from a working memory load experiment performed by 20 participants [START_REF] Charbonnier | Estimation of working memory load using EEG connectivity measures[END_REF]. These features were extracted using pattern-based (using cross-correlation or PLV functions) or vector-based methods (using the maximal cross-correlation amplitude, the covariance, the coherence mean or maximal value, the PLV mean or maximum value), and classified using a Fisher's Linear Discriminant Analysis (FLDA) classifier and a 10-fold cross-validation procedure. The relevance of the connectivity measures was assessed by statistically comparing the obtained classification accuracy. The main results were that covariance seems to be the best connectivity measure to estimate working memory load from EEG signals, even more so with signals filtered in the beta band (specific electrode set: FC5, FC6, P3 and P4). Yet this highest and significantly higher estimation accuracy was only of 61%, highlighting the need for progress in this direction.

Inter-operator EEG connectivity features

Next, we investigated whether EEG connectivity features could be of use for characterizing and estimating operator dyad -i.e. teammates-mental state. The scientific field of study that answers this need for teammate mental state assessment mostly originated from social neuroscience. When approached from the autonomous system perspective it is often called 'interpersonal physiology' or 'physiological synchrony' (Palumbo et al., 2017), while it is usually referred to as 'hyperscanning' when based on cerebral measures [START_REF] Montague | Hyperscanning: simultaneous fmri during linked social interactions[END_REF]Babiloni and Astolfi, 2014). Measures of physiological synchrony have for instance been shown to be useful in characterizing group attention and engagement level [START_REF] Dikker | Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom[END_REF][START_REF] Stuldreher | Physiological synchrony in the classroom[END_REF][START_REF] Stuldreher | Unsupervised clustering of individuals sharing selective attentional focus using physiological synchrony[END_REF].

In the SmartCockpit and Neurotools projects (with K. Verdière as PhD student and F. Ahuitzotl Reyna Bibiano as intern, co-supervised with Pr F. Dehais) we also worked on dyad workload and collaboration state assessment. By using spectral features and a shrinkage LDA classifier, intra-team classification accuracy of team workload configuration (4-class) reached 35%, and team cooperation level (2-class) 60% of accuracy (Verdière et al., 2019) (see Fig. 8.15 for hyperscanning experimental setup). In order to improve upon this estimation, connectivity metrics were evaluated on the same data [START_REF] Roy | EEG covariance-based estimation of cooperative states in teammates[END_REF]. Hence, covariance matrices were computed between participants' 12 EEG channels for 3 frequency bands: θ, α Figure 8.14 -From (Senoussi et al., 2017): Correlation between occipito-frontal relative coherence and Reaction Times between 1 and 30Hz. Spearman's rank correlation between occipito-frontal relative coherence of each seed occipital electrode and average of frontal electrodes exhibiting the 6Hz and 8Hz effects for all frequencies. Shaded area around the curves represents standard error across participants. Figure 8.15 -From (Roy et al., 2020b): Hyperscanning setup with teammates equipped with a 64 electrode EEG system that perform an adapted Multi-Attribute Test Battery (MATB) task (pilot flying and pilot monitoring simulation).
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and low β. Classification was achieved by first projecting the matrices onto the Riemannian tangent space and then using an LDA (Fig. 8.16). A 5-fold cross validation procedure was used. The implemented estimation pipeline allowed to estimate cooperative states using covariance matrices with an average accuracy of 66.6% using the signal filtered in the theta band, 64.5% for the alpha band and 65.3% for the low beta band (Fig. 8.17).

We also investigated hyperscanning and cooperation states through EEG in a more recent study that compared human-human and human-bot dyads within the Hyperscan project (with N. Drougard and G. Vergotte as post-doctoral fellows, co-supervised with Pr F. Dehais;Fig. 8.18;[START_REF] Dehais | Ai can fool us humans, but not at the psycho-physiological level: a hyperscanning and physiological synchrony study[END_REF]). Here the goal was to elicit cooperation and to clearly distinguish its markers from those that might arise from synchronized stimulation of the operators. Indeed, the design of hyperscanning ecological protocols remains challenging as long higher brain synchrony may account for potential load effects (i.e. dyads are facing high demands at the same time) or task effects (i.e. dyads are doing the same task thus exhibiting similar cerebral activation) rather than real social interaction per se. Apart from very interesting subjective, behavioral and cardiac results (see section 7.6), EEG analyses disclosed a higher cerebral efficiency and connectivity between the two brains when teammates were interacting together than when cooperating with AI (Bots). EEG analyses disclosed a higher connectivity (covariance) between the two brains at both 8.20) when teammates were interacting together than when cooperating with AI. These results clearly demonstrate that EEG connectivity metrics do measure inter-operator cooperation states which do not depend on task similarity (the tasks were made clearly distinct, and a fake cooperation condition was also implemented). This section was intended to provide the reader with a sneak peek at which types of connectivity features could be used for operator mental state monitoring, for both fNIRS and EEG signals. The main conclusions can be summarized in the following list:

Connectivity features for users/operators' mental state assessment -fNIRS connectivity features perform better than classical oxygenation features for operator task engagement estimation. -Intra-operator EEG connectivity features such as covariance matrices allow for mental state estimation with usual classification methods. -Inter-operator EEG connectivity features such as covariance and global efficiency can be used for hyperscanning purposes.

Peripheral measures

Brain activity metrics are particularly relevant for precisely characterizing users/operators' mental states of interest in human-machine interaction. Yet, as detailed by Fairclough (2009), these metrics -as all physiological measures-do not present a one-to-one mapping relationship with a psychological element. An example given by the author is that mental effort can only be thoroughly characterized by several measures including changes in both cardiac and cerebral activity. A solution is therefore redundancy of sensors to try and assess more accurately a given mental state, but also to prevent the absence of measure in case of failure of one system in a real life setting implementation perspective. I started investigating whether cardiac activity recorded through ECG could be used with very short time windows during my PhD and showed that mental fatigue and mental effort could be assessed with extremely short time windows of 5 seconds with respectively 65% and 57% [START_REF] Roy | Probing ecg-based mental state monitoring on short time segments[END_REF]. The work presented below details further investigations performed in recent years as to finding relevant cardiac metrics for cooperation states assessment, as well as to co-registration and modality fusion.

Detrended cross-correlation for cardiac synchrony analysis

As seen in the previous section, within the Hyperscan project (with Dr N. Drougard and Dr G. Vergotte as post-doctoral fellows, co-supervosed with Pr F. Dehais and Dr C.P.C. Chanel) we evaluated how several physiological measures reflected pilot-ground operator (JTAC) cooperation level in a laboratory setting [START_REF] Dehais | Ai can fool us humans, but not at the psycho-physiological level: a hyperscanning and physiological synchrony study[END_REF]. Regarding cardiac activity, similarly to [START_REF] Haataja | Monitoring in collaborative learning: Co-occurrence of observed behavior and physiological synchrony explored[END_REF] we computed the Detrended Cross-Correlation (DCC) at lag 0 to quantify the degree of synchronization between ECG time-series to assess the degree of physiological synchrony between the Pilot and JTAC within each couple. This method allows to take into account the non-stationarity of the signal and to detect long-range crosscorrelations, unlike the classical cross-correlation. It is classically used with long time windows (over 1 minute) -here the metric was computed over a whole mission (10 minutes maximum). The results were quite promising as a significant effect of the cooperation condition was found on the DCC metric: the synchronization was significantly higher when participants were actually interacting together than when they were cooperating with the bots, or not cooperating at all (Fig. 8.21). Although promising, these results were obtained with a metric that seems inappropriate for real time measurements. In my opinion, metrics that could be computed on shorter windows would be of more interest for implementation in real life settings.

Coincidence detection for cardiac synchrony analysis

Within the SmartCockpit project (with K. Verdière as PhD student, co-supervised with Pr F. Dehais) we evaluated how cardiac synchrony could be assessed thanks to a method developed originally for spike synchrony detection in firing neuron populations: the delayed coincidence count [START_REF] Grün | Unitary events in multiple single-neuron spiking activity: I. detection and significance[END_REF]. This method is straightforward and computationally light, and has also been formally proven to be statistically robust. Hence, we tested this method on data acquired during a cooperative MATB task as detailed in section 7.4 (Verdière et al., 2020). We compared the method with other methods reported in the literature (Palumbo et al., 2017): cross-correlation, coherence, and cross-recurrence. These methods require the use of long windows (whole experimental blocks of several minutes) and are therefore not suitable for real time assessment within a few seconds and might not be sensitive to temporally local variations. On the contrary, delayed coincidence count technically measures the number of beats that occur at the same time -i.e. are coincident-for two distinct ECG signals, and do so in only a few seconds (a few beats) which allows to account for local phenomena.

In more details, the delayed coincidence count method counts the number of couples of peaks from two and2). The red and blue dots represent the ECG R peaks for the 1 st (S1) and 2 nd (S2) participants respectively. On the upper graph, the letter QRS symbolize the 1 st QRS complex. The blue dash line represents the inter-beat interval (IBI) also know as RR interval regarding the R peaks. RR interval can also been called NN interval for "normal" beats. The red and blue ECG peaks dots are reported on the lower graph. Coincidence count for this segment is represented here. The first red dot on the left has not blue dot within a time range of δ = 20ms from it; The count for this first point is then C 1 = 0. Conversely the second red dot has a count C 2 = 1 because he was one blue point within a 20ms range; meaning that the 2 participants R peaks are coincident. The total coincident count C t for this segment would be C t = COMPUTING point processes that appear in a delay at most equal to δ (Fig. 8.23). In our study the two point processes that were considered were the ECG signals from two participants performing the MATB task as pilot flying and pilot monitoring. To statistically assess whether such coincidences were not due to chance, a permutation analysis was performed by computing the delayed coincidence count of artificially paired signals from the experimental campaign. The different teams are supposed to be independent. By shuffling those teams i.e. creating "permutated teams", we computed the coincidence distribution under the null hypothesis (no synchrony; Fig. 8.24). The sum of coincidence count for real teams was compared to that of randomly permutated teammates and we applied a false discovery rate (FDR) detection applied on the p-value. The choice of the δ was done following recommendations [START_REF] Webber | Recurrence quantification analysis of nonlinear dynamical systems[END_REF] in order to chose a value that would minimize both the coefficient of variation and the value of δ itself. It was selected at the group level, i.e. regarding all participant's data. The results of this evaluation revealed that the delayed coincidence count method (with a coincidence threshold δ of 20 ms) revealed a significant synchrony (p < .01) during the cooperative and high difficulty condition only, while the other methods did not. This result highlights the relevance of this method for short time windows based mental state assessment, but further investigation of the suitability of this method for accurate cooperation and mental effort estimation remains to be performed.

Co-registration and modality fusion

As said earlier, sensor redundancy is paramount for real life implementation. This means that coregistration and modality fusion have to be evaluated along with all related challenges. Co-registration and modality fusion are particularly tricky to perform due to technical implementation, including precise synchronization between acquisition systems which is paramount for extracting features. This section details work I have carried regarding co-registration for mental state characterization, as well as for mental state estimation purposes.

Within the MAIA project (with interns Luc Chatty, Alexandre Moly and Benjamin Winkler, co-supervised with Pr F. Dehais) we implemented several experiments in laboratory and ecological settings (respectively operating room -OR, laboratory, and flight simulator) with co-registration of numerous modalities to provide a broad view and finer characterization of task engagement (Omurtag et al., 2019;Roy et al., 2018b,a). Hence, for the OR study, cerebral activity through EEG, cardiac and respiratory activities through a wearable vest, ocular activity through eye-tracking, as well as tool handle pressure were co-registered and proved efficient in characterizing engagement in such an ecological setting. In the same way, the second study co-registered EEG and fNIRS but went a step further as we analyzed correlations between measures, as well as extracted connectivity features (covariance matrices) from all sensors altogether which gave an additional measure of engagement. Lastly, the third one was performed in a flight simulator with co-registration of ECG, EEG and eye-tracking, and revealed joint modulations of these physiological measures, as well as with subjective metrics which strengthens their reliability for engagement assessment.

Within the CHESS project (myself as post-doctoral fellow, supervised by Pr A. Guérin-Dugué and Dr C. Jutten), co-registration of eye-tracking and EEG was used in a particular way: eye-tracking was used to determine when participants' gaze fall onto a particular area -in fact a face specific region-and this timestamp was used to extract EEG markers for further analyses, namely event-related potentials. This type of marker -EEG marker of which extraction is led by eye-tracking-is called EFRP for eye-fixation related potential. We used these markers to characterize the impact of emotional facial expressions dur- CHAPTER 8. METHODOLOGICAL CONTRIBUTIONS FOR IMPROVED PHYSIOLOGICAL COMPUTING ing emotion perception (Kristensen et al., 2017c;Guérin-Dugué et al., 2018). Co-registration of EEG and eye-tracking during a visual task is generally presented as an attractive experimental solution that enables running both laboratory and more ecological protocols (i.e. enables free visual exploration). Through the complementarity of these two modalities of high temporal resolution, it is possible to analyse the time course of neuronal activities at the pace of ocular fixations. If the first studies that used this co-registration technique date back from the 50s [START_REF] Gastaut | The electrical activity of the brain[END_REF], it is only later on that this technique was used with modern devices for applications in experimental psychology (e.g. to study parafoveal mechanisms in reading fluency [START_REF] Baccino | Eye-fixation-related potentials: Insight into parafoveal processing[END_REF]). Since then, the number of publications based on this technique is however well below what could have been expected. Indeed, despite the apparent simplicity of a coupling that only provides 4 extra channels (X and Y position of both eyes) to the 32 or 63 EEG channels for instance, lie many difficulties and methodological questions. In particular, the two main reasons for the difficulty to estimate EFRP are: i) the duration of the evoked potentials is often longer than the interval between two fixations or saccades, thus resulting in temporal overlaps between successive evoked potentials; ii) the EEG signal being extremely noisy, EFRP estimation requires the replication of a high number of trials during which the selected fixations are assumed to evoke a same potential therefore providing a restrictive hypothesis in the face of the high variability of the oculometric pattern during task performance. The solution we worked on to address the overlaps was to use linear models to decompose the effects of different neural activities during a same temporal window, a methodology based on the General Linear Model (GLM) (Kristensen et al., 2017a,b). This method was CHAPTER 8. METHODOLOGICAL CONTRIBUTIONS FOR IMPROVED PHYSIOLOGICAL COMPUTING also shown to provide an interesting solution to the second issue by enabling a more accurate estimation while taking into account possible confounding factors linked to the oculometric data as the amplitude and direction of saccades (Guérin-Dugué et al., 2017).

In our study, this method was applied to study the time course of natural static emotional facial expressions decoding, i.e. to extract and analyse EFRPs generated while freely exploring faces that presented genuinely produced emotions (Dynemo database Tcherkassof et al. ( 2013)) (Guérin-Dugué et al., 2018). We compared the use of a simple averaging to the use of the GLM regression approach that incorporated knowledge of the fixation rank, as well as the saccadic potentials, for both ERPs and EFRPs. Regarding the ERP at stimulus onset, there was a significant emotion-dependent modulation of the P2-P3 complex and LPP components' amplitude at the left frontal site for the ERPs computed by averaging. Yet, the GLM revealed the impact of subsequent fixations on the ERPs time-locked on stimulus onset. Results are also in line with the valence hypothesis. The observed differences between the two estimation methods (Average vs. GLM) suggest the predominance of the right hemisphere at the stimulus onset and the implication of the left hemisphere in the processing of the information encoded by subsequent fixations. Concerning the first EFRP, the Lambda response and the P2 component are modulated by the emotion of surprise compared to the neutral emotion, suggesting an impact of high-level factors, in parieto-occipital sites (Fig. 8.25). Moreover, no difference is observed on the second and subsequent EFRP. Taken together, the results stress the significant gain obtained in analyzing the EFRPs using the GLM method and pave the way toward efficient ecological emotional dynamic stimuli analyses.

In all these previous studies we performed co-registration either for complementary purposes or for feature extraction purposes (the first recording modality leading the extraction of features from the second one). However, going a step further towards automatised user/operator assessment, within the Airtime project (with N. Drougard as post-doctoral fellow and G. Singh as PhD student, co-supervised with Dr C.P.C. Chanel) we performed mental state estimation using features extracted through coregistered signals.

Hence, in a first study we estimated mission performance with a variety of measures (Chanel et al., 2020) (Fig. 8.26). The different combinations evaluated consisted in arrangements of ECG (i.e., HR and HRV), ET (i.e., number of fixation on each AOI), keystrokes/clicks (i.e., the number of keyboard inputs and clicks related the external tank and robot navigation) input features, all conditioned by the automation level of the robot. Thus, the automation level of the robot constituted an additional common input feature for all tests. Well-known classifiers, such as, k-Nearest Neighbors (kNN), Linear and Quadratic Discriminant Analyses (LDA, QDA), Support Vector Machine (SVM), Gaussian Process (GP), Decision Trees (DT), Random Forest (RF), Neural Network (NN), AdaBoost (ADA), and Naive Bayes (NB), from the scikit-learn library version 0.20.3 were used. A grid search algorithm was applied for hyper-parameters optimization using 80% of data samples for all concerned algorithms given the balanced accuracy score. Then, each classifier was 5-fold cross-validated (CV = 5) twenty times (20 × 5-fold); based on these runs, the average balanced accuracy and the 95% confidence interval were computed.

In addition to interesting findings regarding the impact of automation mode on operator performance depending on their performance profile (see section 7.4), inter-subject single-trial classification results showed that the studied behavioral and physiological features were relevant to predict mission performance. The highest average balanced accuracy (74%) was reached using the features extracted from all input devices, i.e. using modality fusion (Fig. 8.27). These results highlight the interest of peripheral measures, as well as modality fusion for estimation purposes.

In a second study of the Airtime project, we performed coregistration of eye-tracking, ECG and EEG CHAPTER 8. METHODOLOGICAL CONTRIBUTIONS FOR IMPROVED PHYSIOLOGICAL COMPUTING during a simulated pilot-UAV search and rescue interaction task (Fig. 8.28) and compared the interest of all features for an accurate engagement estimation (Fig. 8.29), but also for an estimation that would be robust to time-on-task effects and cross-subject effects (Singh et al., 2021). Therefore this study was designed with two goals: (i) to characterize and estimate mental workload in a MUM-T setting based on physiological signals; (ii) to assess the impact of the validation procedure on classification accuracy. Supervised classification pipelines based on various combinations of these physiological features were benchmarked, and two validation procedures were compared (i.e., a traditional one that does not take time into account vs. an ecological one that does). To evaluate the impact of features grouped by the sensor used to acquire them, 7 combinations of features were considered: EEG-only features, ECG-only features, ET-only features, EEG and ECG features, EEG and ET features, ECG and ET features, and finally EEG, ECG, and ET features. Well-known classifiers that can be applied on small datasets were used. Hence, we chose not to The main result as regards user/operator mental workload assessment was a higher intra-subject classification accuracy (75%) reached using ECG features alone or in combination with EEG and ET ones with the Adaboost, Linear Discriminant Analysis or the Support Vector Machine classifiers (Fig. 8.30). However this was only true with the traditional validation. There was a significant drop in classification accuracy using the ecological one (in accordance with my previous work on EEG features). Interestingly, inter-subject classification with ecological validation (59.8%) surpassed both intra-subject with ecological and inter-subject with traditional validation. These results therefore revealed the relevance of peripheral measures such as ECG cardiac metrics, and modality fusion, for accurate mental workload assessment, particularly in realistic settings, i.e. with an ecological validation procedure. This section was intended to provide the reader with a sneak peek at work that I carried out with my colleagues on using peripheral measures to perform user/operator mental state characterization but also automated estimation. The main conclusions can be summarized in the following list: COMPUTING Peripheral measures for users/operators' mental state assessment -Detrended cross-correlation applied to ECG reveals teammate cooperation.

-Delayed coincidence count applied to ECG allows for characterizing local synchronization phenomena. -Peripheral measures and peripheral-central measures co-registration allows thorough operator state characterization through complimentarity, but also thanks to features extracted in one modality guided by another. -Modality and feature fusion allows accurate operator state estimation although time-on-task effects need to be taken into account in validation procedures.

Leaving the lab & closing the loop

Progress in developing user/operator mental state assessment has been made and we saw in the previous sections that our work has proposed solutions to use probes, connectivity measures as well as peripheral measures without or fused with central measures to improve this estimation. However, most of this research, same as in the literature, is performed both in laboratory settings and in an offline manner. In order to progress towards real life implementation we need to evaluate our methods in ecological settings, e.g. in real flight rather than on computer-based or simulator-based tasks, with dry rather than wet EEG electrodes for practicality, and we also need to finally close the loop, i.e. perform an online estimation with adaptation of the system/task. As the first issue -that of performing studies in ecological settings-was globally addressed in section 8.2, the first subsection focuses only on another part of our work to get out of the lab: the usefulness of a hybrid BCI for engagement estimation in real flight. The rest of the present section details work that we performed in order to start addressing the last two issues, i.e. the choice of electrode setup and appropriate processing pipeline, and how to close the loop.

Hybrid passive BCI in real flight

We have seen in previous sections that we can get out of the lab and perform studies in ecological settings such as in real flight (e.g. section 8.2). We have also seen that coregistration and feature fusion can enhance mental state estimation. Within the MAIA project (with Dr Alban Dupré as post-doctoral fellow, co-supervised with Pr F. Dehais) we performed a study to evaluate the feasibility to estimate a pilot's engagement (and related mental fatigue) in real flight using the fusion of dry EEG and fNIRS features [START_REF] Dehais | Monitoring auditory attention with a 6 dry-electrode EEG system in real flight conditions[END_REF]. This study's idea came from the growing interest for implementing tools to monitor cognitive performance in naturalistic environments and the recent technological progress that has allowed the development of new generations of highly portable brain imaging systems such as dry electrode EEG and fNIRS systems to investigate cortical activity in a variety of human tasks out of the laboratory. In our study we developed a fNIRS-EEG based pBCI to monitor cognitive fatigue (that can be construed as a degraded engagement state) using engagement related features (EEG engagement ratio and wavelet coherence fNIRS based metrics). The participants were asked to perform four traffic patterns along with a secondary auditory task in a flight simulator and in an actual light aircraft. The two first traffic patterns were considered as the low cognitive fatigue class, whereas the two last traffic patterns were considered as the high cognitive fatigue class. Regarding implementation of this hybrid BCI, EEG data were recorded using the 32 dry-electrode Enobio Neuroelectrics system positioned according to the 10-20 system with only 23 channels out of 32 (P7, P4, Cz, Pz, P3, P8, O1, O2, F8, C4, F2, Fz, C3, FPz, F7, Oz, AF4, CP6, CP2, CP1, CP5, FC1 and AF3). The remaining channels were removed in order to put the fNIRS sensors on the same cap and to allow sufficient comfort for the participants (Fig. 8.31). fNIRS data were recorded the NIRSport NIRX system using 7 sources (F3, FP1, AFz, FP2, F4, T7, T8) and 8 detectors (AF7, AF3, AF8, AF4, TP7, FT7,TP8, FT8) which resulted in 12 channels. Both systems were synchronized using Lab Streaming Layer. Denoising was performed thanks to ASR for EEG, and fNIRS data were converted into optical density for detecting artifacts as high variance parts of the signal and remove them with a spline interpolation. A simple shrinkage linear discriminant analysis (sLDA) was performed, known to provide good results in a high COMPUTING dimensional feature space [START_REF] Blankertz | Single-trial analysis and classification of erp components-a tutorial[END_REF]. As expected, the pilots missed more auditory targets in the second part than in the first part of the experiment. In addition to validating the hypothesis that the participants would be more fatigued at the end of the session, this result ascertains that the physiological modulations that might be observed would not only be due to other time-on-task effects such as impedance variations. Classification accuracy reached 87.2% in the flight simulator condition and 87.6% in the actual flight conditions when combining the two modalities (Fig. 8.32). Although this study needs to be replicated with a larger number of participants, it demonstrates the usefulness of hybrid BCIs for operator mental state estimation in ecological settings.

Dry electrode use: adequate electrode setup and classifiers

In section 8.2 we saw that convenient systems do exist to enable extracting probe-elicited EEG features, as well as spectral features with dry EEG systems that can cover the whole scalp for more accurate measures of attentional and engagement states. Yet, to our knowledge no study had yet evaluated the appropriate number of dry electrodes as well as the appropriate classifier to use with each setup. Within the ANITI project (with Maria Isabel Casso Echalar as master student, co-supervised with Dr C. Jeunet), we run an offline comparative study on motor-imagery (MI) BCI in order to start addressing this issue (Casso et al., 2021). Indeed, as for passive BCI, a primary challenge to make active BCI technologies usable and actually used out-of-the-lab consists of providing EEG systems that are efficient in terms of classification accuracy-and easy to install, e.g., using a minimal number of dry electrodes. We hypothesized that the optimal signal processing method might depend on the number of (dry) electrodes that are used. Therefore, we compared for the first time the classification accuracy associated with different dry electrode setups, i.e., 7 configurations from 8 to 32 channels (from 32 whole scalp coverage to 8 central electrodes above motor areas, in accordance with the nature of the task; Fig. Our results suggest that, for all methods, MI-BCI performance drops significantly for 8 and 12 channels (p < 0.01; Fig. 8.34). Moreover, method 3 was associated with the lowest performances (p < 0.05). Finally, post-hoc analyses suggest that methods 1 and 2 perform best with the highest numbers of electrodes 28 and 32. For method 4 the best performance is obtained using 20 and 24 channels, which seems to be the optimal combination (p < 0.05). These results show the importance of selecting the signal processing pipeline as a function of the location and number of dry electrodes. This study was the first milestone and of course this type of evaluation should also be applied to passive BCI studies.

Online task adaptation: planning tools

Although the literature is now ripe with mental state estimation studies based on classification, the vast majority is performed offline, and if actually performed online it seldom closes the loop -i.e. performs system adaptation. Given my understanding of the literature and my personal experience, I believe this issue to be purely stemming from the amount of time and effort required for such a closed-loop implementation, and of course from the current publish or perish pressure inherent to our academic systems.

Recently, within the Airtime project (with Gaganpreet Singh as PhD student and Laura Tilly as intern, co-supervised with Dr C.P.C. Chanel), we have tried to close the loop in a simulated pilot-UAV search and rescue application (Singh et al., 2022a,b) (same interaction task as in Singh et al. (2021)). In this study, a formal framework aiming to drive the interaction between a human operator and a team of unmanned aerial vehicles (UAVs) in a Manned-UnManned Teaming (MUM-T) mission scenario was proposed and experimentally tested. The goal was to enhance human performance by controlling the interaction between agents based on an online monitoring of the operator's mental workload (MW) and performance. The proposed solution used MW estimation via a classifier applied on cardiac temporal features (Heart Rate and Heart Rate Variability). The classifier output was introduced as a human MW state observation variable in a Partially Observable Markov Decision Process (POMDP) which models the human-system interaction dynamics, and aims to control the interaction to optimize the human agent's performance (Fig. 8. 35). The POMDP model including the human-system interaction dynamics was approximated based on 2021)) and solved offline using the SARSOP algorithm [START_REF] Kurniawati | Sarsop: Efficient point-based pomdp planning by approximating optimally reachable belief spaces[END_REF]. The POMDP solution is a policy indicating which action to apply in a given belief state. Then during the mission, the POMDP policy solution controlled which task should be suggested -or not-to the operator based on the current belief state about the operator's MW and current performance (online monitoring) along with the mission phase, assuming the UAVs are capable of supporting the human agent.

In accordance with the literature and as described in section 7.6, the subjective results revealed that the participants felt significantly less MW when the adaptive approach was used. Similarly, mental, physical, and temporal demands, frustration and effort were significantly reduced in the adaptive condition. Their flying score was also significantly improved in the adaptive condition. These findings demonstrate how such a POMDP-based adaptive interaction control can improve performance while reducing operator workload, paving the way for a more efficient and enhanced MUM-T and shows that an online closed-loop mental state estimation system based on physiological computing is implementable efficiently with only few measures and low constraints for the user/operator. This section was intended to provide the reader with a sneak peek at recent work carried out to move towards out-of-the-lab, online and closed-loop physiological computing systems. The main conclusions can be summarized in the following list:

Addressing the challenge to leave the lab and close the loop -Hybrid EEG-fNIRS passive BCIs can be used in ecological settings.

-Dry electrode systems allow for mental state estimation but the number of electrodes and an adequate processing pipeline specific to the setup need to be chosen. -Task adaptation can be performed using planning tools to close the loop with enhanced operator performance and subjective experience. COMPUTING 

Chapter conclusion

This chapter was intended to provide an overview of my recent research on methodological aspects -and in particular on feature extraction-for improved physiological computing. A list of the main contributions (published journal articles or full-paper proceedings) on which this chapter was based is presented below. Although I do believe that together with my colleagues we have achieved promising results regarding feature elicitation, preprocessing, fusion and classification, including working towards ecological settings and generalizability of features (challenge 3 from the introduction), much still remains to be done. In particular, further work on feature extraction and signal variability will be presented in the perspective chapter 9 to address the question of estimation robustness, as well as open science.

• Probing Chapter 9

Perspectives on physiological computing as a neuroergonomic tool This chapter presents research perspectives that arose from the work presented in the previous sections and that will drive my research activities for the coming years. In particular, after a short introduction, I present further work on operator monitoring that directly stems from these past works, with a focus on two main lines of research: i) extending the neuroergonomic approach to human-robot interaction in collaborative and mobile settings with projects that were recently selected for funding (EPIIC, TELECOG, ATARRI); ii) going further to cope with EEG signal non-stationarity, including open science, with a project recently started within the ANITI institute, as well as national and international projects submitted for funding (PROTEUS, BCI Endeavour). Eventually, in the last section I develop personal reflections regarding fundamental and clinical considerations. The projects I have selected to present here are listed below, along with the supervisees (between parentheses) that are currently involved -if the project has recently started.

→ Selected projects: ANITI (X. Xu, M. Hinss, L. Pluchon), ATARRI (R. Soret, C. Hamery), BCI Endeavour (TBD), EPIIC (M. Rihet, S. Tula), PROTEUS (TBD), TELECOG (M. Lefebvre, J. Bolina-Rei, E. Lopez-Contreras). TOOL Figure 9.1 -Gantt chart of my research activities for the coming years. HRI (blue): funded projects on human-robot interaction in collaborative and mobile settings; EEG (orange): submitted projects to work on EEG non-stationarity (deep orange already funded); Grey: ongoing projects to pursue; Green: projects to be defined, to develop and submit for 2024 in line with fundamental and clinical perspectives.

Introduction

As stated above, this chapter presents research perspectives that arose from the work presented in the previous sections and that will drive my research activities in physiological computing as a tool for neuroergonomics for the coming years. These research avenues are intended to address the lacks identified at the end of the previous sections. The projects I presented in chapters 7 and 8, if not finished, will of course be pursued, including students projects as well as mental fatigue characterization and online estimation for interface adaptation (Concorde project). Here, in this chapter, I present a brief description of submitted proposals, recently accepted projects, and -for some of them-preliminary results on these various research issues. In particular, I present further work on operator monitoring that directly stems from past works, with two main lines of research as detailed in the following (projects' timeline illustrated by figure 9.1).

My first line of research will be to extend the neuroergonomic approach to human-robot interaction in collaborative and mobile settings with projects that were recently selected for funding: The EPIIC project for which I just received a national grant, the TELECOG project for which we received a joint CNES and ESA funding (with Dr V. Peysakhovich), and the ATARRI project that received funding from the Ministry of Defense (led by Dr V. Peysakhovich). Next, my second line of research will be to try and go further to cope with EEG signal non-stationarity, including working on new types of EEG features extracted using mathematical tools such as topological analysis (ANITI project, for which I am co-chair of the Neuroadaptive Technology chair led by Pr F. Dehais), as well as working on building public databases, multi-sites projects and organizing competitions to foster cooperation between researchers, with projects funded by ANITI, and with projects submitted to national (PROTEUS, led by Dr F. Lotte) and international funding (BCI Endeavour, led by Dr C. Jeunet). Eventually, in the last section I develop personal reflections regarding fundamental and clinical perspectives in line with ecological considerations.

Human-robot interaction in collaborative and mobile settings

My first line of research will be to extend the neuroergonomic approach that I described in the previous two chapters -both regarding the general neuroergonomic approach and the use of physiological computing as a tool to assess and enhance the interaction -to human-robot interaction in collaborative and mobile settings. This will be done thanks to projects that were recently selected for funding in order to:

-work on the use of electrophysiological markers to characterize and estimate humans' cognitive effort and automation surprise when interacting with robots. This work will be performed thanks to the EPIIC project for which I recently received a national grant (French national research agency, young researcher fellowship), in collaboration with the LAAS (CNRS; Dr Aurélie clodic, Dr Rachid Alami). -and to study the impact of operators' and teleoperators' orientation and movement. This work will be performed thanks to the TELECOG project for which we received a joint CNES and ESA funding (with Dr V. Peysakhovich), and the ATARRI project that received funding from the Ministry of Defense (led by Dr V. Peysakhovich). These projects have all recently started (i.e. 2022). They are further detailed below, along with preliminary results.

Electrophysiological markers for collaborative robotics enhancement

As discussed in chapter 6, in order to enhance human-machine interaction, usual metrics include questionnaires and performance measures which do not allow for a continuous and online assessment of the quality of interaction, nor for a direct cognitive state monitoring of the human operator. In recent years, the development of physiological computing methods including that of brain-computer interfaces has enabled the rise of symbiotic systems that adapt the interaction using involuntary user inputs. Yet, to our knowledge, this technology has never been applied to human-robot interaction (HRI) in the context of mobile and collaborative robotics. This might be due to several challenges that need to be overcome, including the impact of user physical activity on the acquired metrics. The EPIIC (ElectroPhysiological Involuntary Inputs for Collaborative robotics enhancement) project, funded by the French national research agency (ANR, young researcher fellowship awarded to R. Roy) will last 4 years (48 months), and will provide the first evaluation of the usability of electrophysiological metrics from wearable sensors for a rich, out-of-the-lab and online quality of interaction (QoI) assessment for collaborative robotics. The main objectives will be to: i) characterize the users' cognitive state -i.e. cognitive effort and automation surprise-during collaborative and mobile HRI using involuntary electrophysiological features elicited by two standard collaborative robotic tasks -i.e. a joint navigation task, and an interactive manipulation task; ii) create an enriched QoI index that takes as inputs these features processed through a mental state estimation pipeline; iii) adapt the HRI thanks to this new QoI index; as well as iv) promote good scientific practices including data sharing.

Context and state-of-the-art

In human-machine interaction research, be it for driving, flying, gaming or medical teleoperation applications, user experience is still to this day under evaluated compared to other technical aspects, and particularly so in the human-robot interaction field. However, part of the community is now aware that there is a need for a richer and better evaluation of HRI, both at the metrics level and at the experimental design level [START_REF] Hoffman | Evaluating fluency in human-robot collaboration[END_REF][START_REF] Hoffman | A primer for conducting experiments in human-robot interaction[END_REF]. In the HRI community, the issue of the quality of interaction, closely linked to what is called User eXperience in the adjacent domain of human-computer interaction, has started to gain attention. This question of taking on the human-centered view and creating a positive user experience is of major concern in order for technology to provide a long-term added value to people's lives [START_REF] Bibliography Dautenhahn | Socially intelligent robots: dimensions of human-robot interaction[END_REF][START_REF] Lindblom | Current challenges for ux evaluation of human-robot interaction[END_REF]. Quality of interaction is a wide concept that encompasses various measures, including the users' mental states that do not only consist in TOOL emotional responses but also in a range of cognitive states. In HRI research, the usual metrics to assess the quality of interaction (QoI) are subjective ones, i.e. users' reported feelings acquired through questionnaires (mostly focused on fluency, legibility, and acceptance, but also recently the perception of robot high level decision abilities [START_REF] Devin | Evaluating the pertinence of robot decisions in a human-robot joint action context: The perdita questionnaire[END_REF]), or -more recently -objective ones such as performance metrics [START_REF] Mayima | Toward a robot computing an online estimation of the quality of its interaction with its human partner[END_REF]. Examples of behavioral metrics that were recently used for HRI evaluation are neglect time, human and robot idle time, concurrent activity, and functional delay [START_REF] Crandall | Validating human-robot interaction schemes in multitasking environments[END_REF][START_REF] Hoffman | Evaluating fluency in human-robot collaboration[END_REF]. These metrics do not allow for a continuous and online assessment -they usually require an interruption of the task at hand (in particular for questionnaires, making the participants reflect on their experience a posteriori [START_REF] Lindblom | Current challenges for ux evaluation of human-robot interaction[END_REF]), nor for a direct assessment of the users' cognitive state (Roy et al., 2020a). Yet, bad interaction can result in decreased performance, or even casualties for critical work tasks and settings. In addition to a lack of continuous objective metrics of HRI quality, it should be noted that the literature mostly focuses on supervision tasks in HRI dealing with an increase in autonomy [START_REF] Crandall | Validating human-robot interaction schemes in multitasking environments[END_REF], and not on joint action of humans and robots as partners, i.e. collaborative robotics [START_REF] Clodic | Key elements for human-robot joint action[END_REF]. Moreover, in current HRI research, there is also a need for a better evaluation of HRI at the methodological level, the experimental design level [START_REF] Kulić | Physiological and subjective responses to articulated robot motion[END_REF][START_REF] Lindblom | Current challenges for ux evaluation of human-robot interaction[END_REF][START_REF] Hoffman | A primer for conducting experiments in human-robot interaction[END_REF], with a scientific rigor which is particularly wanted in the current HRI replication crisis [START_REF] Belhassein | Towards methodological principles for user studies in human-robot interaction[END_REF], and which might enable to handle and mitigate the novelty effect that hinders current HRI research [START_REF] Koay | Living with robots: Investigating the habituation effect in participants' preferences during a longitudinal human-robot interaction study[END_REF]. Lastly, to the best of my knowledge, no publicly available database for HRI quality assessment does exist, nor any standardized approach to HRI evaluation, including proper employment of statistical analyses [START_REF] Hoffman | A primer for conducting experiments in human-robot interaction[END_REF].

Amongst the various cognitive mental states that are relevant for HRI (which could be used for better user profiling and HRI adaptation; [START_REF] Rossi | User profiling and behavioral adaptation for hri: A survey[END_REF]) and that can be assessed through neuroergonomics, two seem particularly appropriate for mobile and collaborative HRI applications: cognitive effort (engagement) and automation surprise (human operator/user surprised by the behavior of the automated system; Sarter et al. (1997)). As with subjective and behavioral metrics, the literature on HRI evaluation through physiological metrics mostly focuses on remote operation and supervision tasks [START_REF] Roy | Operator engagement during prolonged simulated uav operation[END_REF], or on direct manual control (Memar and Esfahani, 2019), and not on local, collaborative tasks. To my knowledge, the scarce literature on mobile and collaborative robotics using physiological markers has made use of such metrics for a non-automated offline evaluation. For instance, there is existing work on the user/human agent's emotional response during HRI, or deceptive behaviour, as assessed through physiological metrics [START_REF] Kulić | Physiological and subjective responses to articulated robot motion[END_REF][START_REF] Iacob | Detecting deception in hri using minimally-invasive and noninvasive techniques[END_REF]. Moreover, electrophysiological markers of automation surprise in the context of collaborative robotics have recently started to be investigated, such as variations of EDA in response to unforeseen task interruption [START_REF] Agrigoroaie | Oh! I am so sorry!": Understanding user physiological variation while spoiling a game task[END_REF], or various levels of robot's action speed and legibility (Dehais et al., 2011), as well as EEG markers such as error-related potentials elicited by semantically incorrect actions [START_REF] Ehrlich | A feasibility study for validating robot actions using EEG-based error-related potentials[END_REF]. To the best of my knowledge, only very recently have cognitive effort and the session impact, tightly linked to the novelty effect, started to be investigated in collaborative HRI at the physiological markers level [START_REF] Agrigoroaie | Oh! I am so sorry!": Understanding user physiological variation while spoiling a game task[END_REF]. Another important aspect in order to move towards real life solutions is to take the impact of physical activity into account during mobile HRI. Indeed, cognitive states of electrophysiological markers are impacted by such activity [START_REF] Jungnickel | Mobi-mobile brain/body imaging[END_REF], and methods to take this activity into account during a posteriori analyses as well as during online estimation have to be developed. Lastly, in addition to the lacks identified from the literature that I previously listed, there is a growing need for open science [START_REF] Foster | Open science framework (osf)[END_REF] in order to increase replicability and reproducibility in BCI and HRI research (Hinss et al., 2021b).

However, most studies are still reporting offline estimation with little to no adaptation of the interaction, and are mainly focused on mental fatigue or cognitive effort linked to various autonomy levels and do not consider mobile and collaborative HRI settings (Roy et al., 2020a). System adaptation based on feedback from the user can occur at several levels, either at the interface level or at the global decisional level TOOL (i.e. shallow vs deep adaptation). For physical robots it mostly consists in modifications performed at the functional or the decisional layers [START_REF] Clodic | Key elements for human-robot joint action[END_REF]. This crucial issue, which goes beyond that of the technical challenge to perform the measurements in an online manner, is that of the counter-measures to implement. The counter-measures best fitted for mitigating user cognitive effort and automation surprise estimated through physiological measures in a mobile and collaborative HRI context still remain to be determined. To my knowledge, no study has yet proposed counter-measures for cognitive effort mitigation in this specific context, yet some recent studies have proposed online modifications of the robots' gaze pattern or task strategy during a turn-based task, as well as an online adaptation of an exoskeleton in a teleoperation scenario based on EEG markers linked to automation surprise (i.e. event-related potentials and in particular error potentials; [START_REF] Kirchner | On the applicability of brain reading for predictive human-machine interfaces in robotics[END_REF][START_REF] Ehrlich | A feasibility study for validating robot actions using EEG-based error-related potentials[END_REF][START_REF] Kim | Errors in human-robot interactions and their effects on robot learning[END_REF]), however without characterizing the impact of physical activity, nor in a continuous context. 

Scientific issues

Given this context and state-of-the-art, I hypothesize that by addressing these issues of continuous user state characterization and artifact handling thanks to a rigorous experimental approach, we will provide the physiological computing and HRI communities with a new means to perform quality of interaction assessment for collaborative and mobile HRI applications that will increase interaction fluency and user experience. In other words, I expect that enriching the QoI index and performing this evaluation in a continuous and online manner will result in an enhancement of the whole human-robot interaction (Fig. 9.2). I have identified four main issues from the literature that remain to be addressed:

-Issue 1: The feasibility of performing electrophysiology-based MSM during collaborative and mobile robotics' tasks, particularly regarding the impact of the tasks' characteristics in terms of physical activity and related artifacts on the acquired signals. Hypothesis 1.1: Electrophysiological patterns elicited during collaborative and mobile HRI are significantly modulated by the level of cognitive effort and the occurrence of automation surprise. Hypothesis 1.2: Physical activity has a significant impact on electrophysiological markers of cognitive effort and automation surprise.

-Issue 2: The development of an enriched QoI index that can be extracted in a continuous manner. Hypothesis 2.1: Electrophysiological markers of cognitive effort and automation surprise that are TOOL robust to physical activity -or made so thanks to signal conditioning methods-can be computed in a continuous manner. Hypothesis 2.2: An enriched QoI index computed thanks to a classification step on electrophysiological features can be used to evaluate the quality of interaction during collaborative and mobile HRI in conjunction with existing state-of-the-art objective metrics.

-Issue 3: An enhanced interaction through the robot's behaviour adaptation to the user's cognitive state based on this QoI index. Hypothesis 3: The use of the enriched QoI index that contains electrophysiological markers of the user's cognitive states allows for a more efficient interaction in terms of user experience and interaction fluency as compared to state-of-the-art QoI indices based on subjective or objective (i.e. behavioural) metrics alone.

-Issue 4: Research in HRI and BCI still suffers from a lack of replicability and reproducibility (despite recent changes in practice). Hypothesis 4.1: A thoroughly designed and performed experimental procedure, following ethical recommendations and the open science framework ensures better replicability and reproducibility. Hypothesis 4.2: The use of several experimental sessions will reveal the impact of the novelty effect that hinders HRI research replicability by its impact on all investigated metrics. These hypotheses will be tested thanks to dedicated work packages.

Current state of the project and next objectives

To tackle issue 1, i.e. to characterize the users' cognitive state during collaborative and mobile HRI using involuntary electrophysiological features, a first experimental campaign has been designed, submitted to the ethical committee, and implemented thanks to the work of two interns, Mr Sridath Tula and Mr Mathias Rihet. The acquisition phase will be performed from June to September. The robotic platform used for this experiment is the LAAS Personal Robot 2 -PR2-robot. A joint manipulation task is to be performed (with congruent and incongruent conditions depending on the head movement to elicit automation surprise) in parallel to a digits memorization task (added to elicit three different levels of cognitive effort) (Fig. 9.3).

Figure 9.3 -EPIIC collaborative task with PR2 robot and participant equipped with physiological sensors (at the LAAS ADREAM facility).

CHAPTER 9. PERSPECTIVES ON PHYSIOLOGICAL COMPUTING AS A NEUROERGONOMIC TOOL

Next, the creation of an enriched QoI index will be attained by developing a signal processing and machine learning pipeline to perform an automated estimation of the users' mental state based on the physiological features extracted thanks to the first campaign. Thanks to this enriched QoI index that includes involuntary electrophysiological features acquired in a continuous and online manner, an adaptation of the robot's behavior will be performed. Comparisons in terms of interaction fluidity and user experience will be performed between various versions of robot's behavior thanks to a second experimental campaign. The second campaigned planned later on during the project will address this QoI issue in a joint navigation task. Lastly, objective 4, i.e. to abide by good scientific practices that promote replicability and reproducibility of the results, will be pursued and attained at every step of the EPIIC project. In order to avoid common pitfalls, in addition to rigorous scientific practices that need to be followed in experimental, and therefore also in BCI research as described by [START_REF] Brouwer | Using neurophysiological signals that reflect cognitive or affective state: six recommendations to avoid common pitfalls[END_REF], the following measures will be taken. The experimental campaigns will be validated by an ethical committee, the number of participants and trials will be computed in order to attain an adequate power in the planned statistical analyses, a second session will be performed for every participant in order to assess and tackle the novelty effect in HRI, and the data will be formatted following the recommendations for physiological data use and made publicly available following the recommendations of the Open Science Framework. After the current two internships, a PhD will start in October 2022, which will be complemented by a post-doctoral position to tackle the subsequent issues.

Rear space attentional deployment

In order to move towards the assessment of operators' mental states in real life settings, mobile contexts have to be considered. In the previous section, a project aimed at assessing the operator's state during human-robot collaborative tasks was presented. Here, we aim to assess the operator's state during mobile human-system interaction in which the operator performs guidance of a vehicle in manual or semi-autonomous mode (i.e. a plane, a rover or UAV). A first milestone that we identified with colleagues, consists in characterizing the attentional deployment in the rear space, for formation flight applications for instance. This is the goal of the ATARRI project, funded by the French military research agency (AID), with Dr Vsevolod Peysakhovich and Dr Sébastien Scannella as project leaders, and Dr Rébaï Soret as postdoctoral fellow. I myself am only involved as a partner in a subsection of the project as detailed later. The main goals are further developed hereafter.

Faced with a constant stream of stimuli, our cognitive system has developed complex attentional selection mechanisms. These processes allow us to quickly and efficiently process relevant information while ignoring distractors. Despite its efficiency, our cognitive system nevertheless presents many attentional biases, for example, the forward bias which privileges, through the direct field of view, the stimuli facing us. Most studies of attentional orientation have focused on frontal space (e.g. [START_REF] Driver | 12 spatial synergies between auditory and. Attention and performance XV: Conscious and nonconscious information processing[END_REF]) and little attention has been paid to studies of orientation to the rear space (outside the visual field and generally behind the person), with the implicit assumption that results obtained in frontal space could be generalized to rear space [START_REF] Spence | Responding to sounds from unseen locations: crossmodal attentional orienting in response to sounds presented from the rear[END_REF]). Yet, the limited capacity of sensory systems in general, and specific deficits in visuospatial attentional orientation, can be deleterious, induce spatial disorientation, and sometimes lead to catastrophic errors (e.g. more than 25% of motor vehicle accidents are rear-end collisions). Despite a few studies, in-depth studies on the neural and behavioral mechanisms of attention deployment in rear space, as well as the relevant influencing factors essential to better understand the mechanisms involved and reduce the risk of collisions on roads and in airspace are still lacking. A major challenge is therefore to better understand how attention is deployed at 360 degrees, especially in rear space. This is the goal of the ATARRI project which aims at understanding and formalizing the deployment of attentional resources in rear space (outside the operator's visual field), with four main objectives that are to:

1. Understand the neural mechanisms of attentional orientation in rear space; TOOL 2. Evaluate the impact of body orientation and movement on attention in rear space; 3. Assess the effectiveness of attentional training; 4. Apply the basic results to the case study under realistic formation flight conditions (i.e., tight patrol).

At the end of the ATARRI project, we will be able to characterize visuospatial attention at 360 degrees by specifying the mechanisms of attentional orientation in rear space. From the planned experimental campaigns, we will elaborate neural (electroencephalographic data) and ocular (oculometric data) metrics of 360°situation awareness -this is the part of the project I will be mostly involved in. Using a motion platform (Fig. 9.4), we will evaluate the degree to which operator body orientation and motion affect awareness. We will also evaluate the possibility of training their attentional capacities in order to avoid the forward bias. We will also study how to widen the visuospatial attentional span at 360 degrees and whether it be quantified at the cerebral functional level. At the end of the project, thanks to an experimental campaign in virtual reality on a moving platform in an environment representative of a tight patrol flight, we will also conclude on the possible implications of human-systems interfaces to improve the attentional representation of 360 degrees elements with a case of application of flight in training. 

Impact of teleoperator's orientation and movement

Further, regarding the assessment of the operator's state during mobile human-system interaction in which the operator performs guidance of a vehicle in manual or semi-autonomous mode (i.e. a plane, a rover or UAV), a specific issue arises when focusing on teleoperation: the teleoperator's body orientation and direction of movement could impact their perception of the orientation and movement of the teleoperated object, as well as their quality of control. The assessment of such an effect is the goal of the TELECOG project that I lead together with Dr Vsevolod Peysakhovich, and for which we have recruited Ms Maëlis Lefebvre as PhD student (and J. Bolina-Rei and E. Lopez-Contreras as interns). This project and the PhD was recently selected by both ESA and CNES and therefore enjoys double funding from these spatial agencies. A motion platform as well as different contexts (teleoperation from the ground, a helicopter, a station in orbit) will be used. At the end of the thesis, guidelines for the design of human-robot interfaces avoiding spatial disorientation will be developed. Further description of the project is given below.

Description of the project Whether it is a cosmonaut operating a robotic arm aboard the International Space Station, a military officer flying a drone from a helicopter, or an operator in a ground control center manipulating a rover on the Martian surface, the main role of the (tele)operator is to control the robot, either manually or in automatic mode. If the robot is operating in automatic mode, they must, therefore, TOOL supervise the robot and monitor all associated parameters. When performing these tasks, the operator must have a double situational awareness: of the place where he/she operates the robot and of the environment where the robot is operating. In the case of remote operation from the floor with an operator sitting in front of a control station (or computer), the orientation and position of the body are relatively constant and do not affect the remote operation performance. On the other hand, when the operator's body is tilted or in motion, this may modulate the operator's situational awareness of the robot.

Human body orientation modulates auditory performance [START_REF] Macrae | Effects of body position on the auditory system[END_REF], visual perception [START_REF] Mast | Four types of visual mental imagery processing in upright and tilted observers[END_REF], and perception of moving objects [START_REF] Miwa | Effects of the gravity direction in the environment and the visual polarity and body direction on the perception of object motion[END_REF]. Vestibular cues (e.g., in the form of body rotation) also modulate visual attentional processing [START_REF] Kaliuzhna | Differential effects of vestibular processing on orienting exogenous and endogenous covert visual attention[END_REF]. One study showed that the presentation of a dynamic visual motion evoking a gravitational effect (a point moving at a constant acceleration) affected the estimation of postural verticality [START_REF] Tani | Effect of dynamic visual motion on perception of postural vertical through the modulation of prior knowledge of gravity[END_REF]. And even if the body remains static and vertical, when spatially connoted verbal cues (up, down, sky, foot) are presented to the subject, his vertical attention [START_REF] Dudschig | From top to bottom: spatial shifts of attention caused by linguistic stimuli[END_REF] and action planning (Dudschig et al., 2012a) are also modulated. Visuo-vestibular mismatch requires the brain to integrate sensory signals that are encoded in different frames of reference to maintain coherent spatial perception. This multisensory integration involves graviceptive signals from otoliths, visual inputs, and other sensory inputs that encode the position of the eyes, head, and body. The conflict between vestibular and visual input can cause spatial disorientation, which in turn affects visual behavior [START_REF] Bałaj | Spatial disorientation cue effects on gaze behaviour in pilots and non-pilots[END_REF], selective attention, and working memory, particularly in the context of piloting [START_REF] Stróżak | Selective attention and working memory under spatial disorientation in a flight simulator[END_REF].

From all this knowledge on the influence of the orientation of the human body on attention and cognition, it is deduced that the orientation of a teleoperator would impact the performance of the operation. However, although work has been initiated on robot situational awareness [START_REF] Yanco | where am i?" acquiring situation awareness using a remote robot platform[END_REF][START_REF] Bualat | Results from testing crew-controlled surface telerobotics on the international space station[END_REF], and human-machine coupling in-flight scenarios (i.e. MUM-T; e.g. helicopter-UAVs; [START_REF] Frey | Tactical situation modelling of mum-t helicopter mission scenarios using influence maps[END_REF], to our knowledge, there are no studies in the literature concerning the effect of the spatial orientation of the operator and their movement on the situational awareness of the remotely operated robot. We propose to address this issue in this project which includes the realization of several fundamental and ecological teleoperation tasks performed by an inclined and moving operator.

Program To best respond to the gaps identified in the literature, we will conduct several experiments ranging from basic protocols to the design and conduct of an ecological teleoperation task. Thus, in this project we will mainly address the following three research questions:

-Do the operator's orientation (body, head) and movement affect their perception of the orientation and movement of the tele-operated object, as well as their control performance? -Does the type of visualization presented to the operator (e.g. egocentric vs. allocentric) mitigate this expected negative effect of the operator's orientation and movement on their perception and the quality of their control of the teleoperated object? -How can the effects of orientation and motion be taken into account in the design of a human-robot interface to avoid spatial disorientation? We propose to address these questions in two experimental blocks:

1. Fundamental block comprising 3 laboratory experiments under controlled conditions to evaluate the impact of orientation (Exp I), movement (Exp II), and the interaction between orientation and movement (Exp III). This block will address questions Q1 and Q2. The virtual reality motion platform in Fig. 9.4 will be used for all laboratory experiments.

2. Ecological block where the operator will be studied under more realistic conditions, analyzing, in particular, their behavior during analog space missions (Exp IV) and in situations of altered gravity i.e. hypo-and hyper-gravity (Exp V and Exp VI). Here we will address questions Q1 and Q3. This TOOL block involves structures outside the host laboratory at ISAE-SUPAERO such as CNES, MEDES, or the Institute of Biomedical Problems in Moscow. Thus, two experiments (Exp V and Exp VI) will be carried out on the condition that additional funding is obtained (to finance the hosting of our experimental campaigns by these structures).

Figure 9.5 -TELECOG preliminary study: trial structure illustration.

Current developments Thanks to the work of interns J. Bolina-Rei and E. Lopez-Contreras, and of PhD student Maëlis Lefebvre, a first experiment was run on the motion platform, which gave preliminary results that will be detailed at the International Astronautical Congress in September 2022 (Lefebvre et al., 2022). The main hypothesis of this work is that incongruencies between two reference frames generate inter-sensory conflicts leading to degraded performance. In this experiment, participants were roll-tilted at 3 possible angles while they were presented with a remote object, oriented at 3 possible angles. They performed the subjective visual vertical (SVV) test to estimate the room's vertical and then estimated the orientation of a monitored remote object (Fig. 9.5). Results showed significant effects of both body tilt and object orientation. Body tilt decreased participants' confidence levels in their vertical perception and increased their response times (SVV). Moreover, body tilt and object orientation both decreased subjects' confidence in their response of object orientation perception; the confidence was further decreased when both operator and object were tilted. Independently of their orientation, subjects had a lower motor response accuracy and increased reaction times when the object was tilted to the right. When the object was centered, we did not observe any decrease in motor response accuracy. Overall, our results suggest that body's and remote object's orientations both impact response times and confidence concerning their own orientation and that of the monitored object. Hence, due to intersensory conflicts, body tilt impacts operators' confidence in their visual and somatosensorial perceptions, which, we believe, can affect their overall situational awareness during teleoperation.

These results are only preliminary and need to be replicated. Moreover, several issues were found regarding task implementation, including a potential bias generated by joystick use. These issues are TOOL currently being addressed in a second experiment with a larger pool of participants. Moreover, a step towards studying potential interaction effects with HMI displays has also been taken: a third VR and motion platform experiment to assess the impact of orientation and movement congruency during UAV control is currently being implemented. In this experiment, visual degradation -which has been shown to impact vehicle steering control [START_REF] Frissen | The effect of visual degradation on anticipatory and compensatory steering control[END_REF]-and reference frame type -which has been shown to impact the perception of the vertical in head-mounted displays [START_REF] Mars | Perception of the vertical with a head-mounted visual frame during head tilt[END_REF]) -will also be tested depending on the congruency conditions.

Going further to cope with EEG non-stationarity

In order to tackle EEG non-stationarity which hampers brain-computer interface (BCI) and physiological computing use in real-life settings, jointly with colleagues of the field I have taken several actions. First, as detailed in the first subsection below, and as part of the ANITI project (for which I am co-chair of the Neuroadaptive technology chair, led by Pr Frédéric Dehais, with Mr Marcel Hinss as intern), we worked on assessing the availability of passive BCI databases, as well as on creating such a database that would be an answer to identified lacks. Next, we used this database to organize the first international competition on cross-session mental workload estimation. Second, still as part of the ANITI project, we started exploring new features that could be extracted from the EEG signal using mathematical tools, features that would be robust to several factors that generate EEG non-stationarity and therefore enhance BCI performance in real life settings (together with Dr Nicolas Drougard and with Ms Xiaoqi Xu as PhD student). Third, we submitted a proposal to work on the training required to achieve adequate BCI performance from a user perspective (BCI Endeavour project, led by Dr Camille Jeunet). Lastly, we submitted a proposal to work on the data and factors that create this non-stationarity as well as on signal processing and machine learning tools that could solve this issue (PROTEUS project, led by Dr Fabien Lotte). These projects and preliminary actions are detailed in the following subsections.

Public pBCI databases & competitions

In order to move towards better research practices that promote reproducibility and repeatability ("Reproducibility refers to instances in which the original researcher's data and computer codes are used to regenerate the results, while replicability refers to instances in which a researcher collects new data to arrive at the same scientific findings as a previous study" [START_REF] Barba | Terminologies for reproducible research[END_REF]), my idea was to promote the use of open databases in the field of passive BCIs. This would also allow researchers to join forces to tackle issues such as EEG non-stationarity. Hence, as part of the ANITI project (for which I am co-chair of the Neuroadaptive technology chair, led by Pr Frédéric Dehais, with Mr Marcel Hinss as an ERASMUS intern), we worked on assessing the availability of passive BCI databases at the time of the review (2020-2021) (Hinss et al., 2021b). Although data-sharing has started in the community of active BCI applications (incl. thanks to the MOABB initiative [START_REF] Jayaram | Moabb: trustworthy algorithm benchmarking for bcis[END_REF]), and a few actions have been taken including a recent fNIRS mental workload database [START_REF] Huang | The tufts fnirs mental workload dataset & benchmark for brain-computer interfaces that generalize[END_REF], in a general manner passive BCIs have not seen much data-sharing yet. Moreover, this work led to highlighting several lacks present in the few available EEG pBCI databases, which fall into two groups: problems of accessibility and problems of content. Regarding accessibility, these databases mostly presented poor labeling and description. A solution would be to follow existing guidelines for standardized formatting, e.g. the Brain Imaging Data Structure (BIDS) issued by the Organization for Human Brain Mapping (OHBM) (Pernet et al., 2020). Regarding the content issue, a larger number of dataset per task than task per dataset was observed which prevents researchers to test classification pipelines that are more robust to cross-task variability.

Given the lacks identified thanks to this review of the literature and available databases, we decided to create our own EEG pBCI database. This was started within the ANITI project (with Mr Marcel Hinss ). The data was preprocessed so as to limit the use of artefacts for workload estimation. Only the workload labels of the first two sessions were provided, and the goal of the competition was to submit both the estimated labels of the third session, and an abstract detailing the method employed by the authors. Eleven teams from 3 continents (31 participants) submitted their work. The best achieving processing pipelines included a Riemannian geometry-based method.

Although better than the adjusted chance level (38% with an at 0.05 for a 3-class classification problem), the results still remained under 60% of accuracy. These results clearly underline the real challenge that is cross-session estimation. Moreover, they confirmed once more the robustness and effectiveness of Riemannian methods for BCI. On the contrary, chance level results were obtained by one third of the methods-4 teams-based on Deep Learning. These methods have not demonstrated superior results in this contest compared to traditional methods, which may be due to severe overfitting. Yet this competition was the first step towards a joint effort to tackle BCI variability and to promote good research practices including reproducibility.

Exploring new EEG features

The next perspective I identified in order to tackle EEG signal non-stationarity to improve physiological computing and passive BCI, is to evaluate the usefulness of potential new EEG features. First, as Poussot-Vassal we are interested in evaluating the potential use of tools derived from the linear algebra and control communities to perform EEG feature extraction. Hence, we have started to apply signal modeling methods classically used to model air flows in aeronautics in order to model the EEG signal and to be able to extract frequency characteristics which, to our knowledge, have not yet been explored for applications in neuroscience and human factors (Poussot-Vassal et al., 2017). Indeed, the method used, based on the model of [START_REF] Antoulas | A novel mathematical method for disclosing oscillations in gene transcription: A comparative study[END_REF], has never been applied to EEG data and could be a promising technique. Envisaged features are the dynamical model pulsation, damping and decay rates and related residuals. The latter are easily derived from linear dynamical models and may be relevant to classify users. Of course as a preliminary study, this remains to be clarified and more deeply explored.

Second, within the ANITI project (for which I am co-chair of the Neuroadaptive technology chair led by Pr Frédéric Dehais) together with my colleague Dr Nicolas Drougard we are supervising Ms Xiaoqi Xu for her PhD on the extraction of new EEG features using mathematical tools. The main idea is to assess the usefulness of EEG features that could be extracted using i) geometrical, ii) topological and iii) analysis tools for cross-session classification for both active and passive BCI applications using publicly available datasets. The approach used here is to go from rigid spatial structures to flexible time-independent features. These three main ideas are briefly detailed hereafter:

1. Spatial filtering: The first tool investigated consists in decomposing EEG signals spatially using a Laplacian of the montage mesh and to reduce the dimension of the data by truncation. The eigenvectors of the Laplace-Beltrami operator form an orthonormal basis for square-integrable functions over the scalp and capture the geometry of electrodes' position in a hierarchical way. The signals are decomposed into different spatial frequency components by the projection into the eigenspaces of the Laplace-Beltrami operator. Dimensionality reduction could be done by using only the low frequency components. This method was compared with Principal Component Analysis (PCA) filtering on publicly available motor imagery BCI data and achieved comparable results while being unsupervised, data independent and requiring 33.7% less computation time (Xu et al., 2021a).

Topological Data Analysis:

The second envisaged tool is the application of topological data analysis (TDA) to EEG data. Indeed, TDA enables to analyse and understand data from a different angle than traditionally used methods, being a sort of geometry without metric, as distance is of no importance in topology, instead the whole theory is based on the notion of closeness. As a higher dimensional analogy of graph analysis (that oversimplifies the interactions between neurons by reducing them to nodes and edges), TDA can model rich interactions beyond pairwise relations (by using higher dimensional representations called simplicial complexes; a set of points, segments, triangles and their higher dimensional analogs). It also distinguishes different dynamics of EEG time series. TDA remains largely unknown to the EEG processing community while we believe it fits well the heterogeneous nature of EEG signals. A short review and information on how to implement TDA for EEG analysis was published as a first step in this direction [START_REF] Xu | Topological data analysis as a new tool for EEG processing[END_REF].

3. Path signature: The third envisaged tool is path signature, thanks to a collaboration initiated by X. Xu with Pr K. Hessel and Dr. D. Lee from EPFL. Analogous to the Fourier transform which captures frequency information, path signature is a transformation of a time series that captures order information. It is translation invariant which is an ideal property for EEG data that suffer from variance between sessions and subjects. This tool therefore allows to extract features that are flexible time-invariant measures.

Analyses are still undergoing, and only preliminary work has been achieved so far on these three tools. Yet, we have high hopes that the assessment of new feature extraction tools could help in finding solutions to the non-stationarity of EEG data for designing more robust BCI systems. This approach of tackling BCI variabilities is further developed in the next section.

Tackling BCI variabilities

As already discussed earlier, whereas Brain-Computer Interfaces (BCI) are very promising for various applications, e.g., brain-based wheelchair control or plane pilots' mental state monitoring, they are not reliable. Their reliability degrades even more when used across contexts (e.g., days, users' states or applications used) due to various sources of variabilities. Unfortunately, such variabilities are 1) often ignored in the literature, as most BCIs are assessed in a single context and 2) poorly understood. Thus, for BCIs to fulfill their promises and be used outside laboratories, we need to make them robust to such variabilities. In project PROTEUS we propose to do so by 1) Systematically measuring BCI and brain signal variabilities across various contexts while sharing the collected databases; 2) Characterizing, understanding and modelling the variability and their causes based on these new databases; and 3) Tackling these variabilities by designing new machine learning algorithms optimally invariant to them according to our models, and using the resulting BCIs for two practical applications affected by variabilities: tetraplegic BCI user training and auditory attention monitoring at home or in flight.

Hence, going further to cope with EEG and BCI variabilities, together with colleagues from INRIA Bordeaux (project leader Dr Fabien Lotte), Université PSL (Paris, partner leader Dr Florian Yger), and a start-up called Wisear (partner leader Alain Sirois), we have submitted the PROTEUS project to the French national funding agency (ANR; accepted to phase 2). Project PROTEUS full name is: "PROTEUS: Measuring, understanding and tackling variabilities in Brain-Computer Interfacing". I am partner leader for ISAE-SUPAERO (with my colleague Pr Frédéric Dehais as collaborator), and leader for one workpackage (WP1) dedicated to creating databases to be used for assessing the impact of various factors on EEG signal. Should this project be funded, one PhD student and one engineer will be recruited at ISAE-SUPAERO, whom I will supervise jointly with Pr Dehais and Dr Lotte. This section briefly details the proposal summary, the main objectives of the project, as well as the state-of-the-art regarding current knowledge on BCI variabilities. Next, the description of my workpackage is given.

Context and objectives

It has been widely reported that BCI performances suffer from strong variabilities, both between-users and within-users (Fairclough and Lotte, 2020). In particular, EEG signals and BCI performances have been reported to change a lot across days (Hinss et al., 2021b,a;[START_REF] Benaroch | Long-term bci training of a tetraplegic user: Adaptive riemannian classifiers and user training[END_REF], users' mental TOOL states (e.g., due to fatigue or stress Roy et al. (2013a); [START_REF] Talukdar | Motor imagery and mental fatigue: inter-relationship and EEG based estimation[END_REF]) and contexts (e.g., training environment versus application use, or between applications Benaroch et al. ( 2021)) as well as environmental noise (Dehais et al., 2019a). Thus, existing proof-of-concept BCIs that were studied on a single session and context, i.e., most BCI publications, would have, most likely, much reduced performances if used across sessions, contexts or applications scenarios, if not fail altogether. In other words, it is not clear whether such proof-of-concepts would still work if used outside the lab in daily life situations [START_REF] Chavarriaga | Heading for new shores! overcoming pitfalls in bci design[END_REF]. As an example, in the cross-days workload EEG classification competition we organised in 2021 (Roy et al., 2022), many competitors obtained within-day accuracies >80%, but cross-days accuracies <50% (for a 3-class problem) or even at chance level. Frequent BCI recalibration for each session or context would address this problem to some extent, but is very time consuming and inconvenient for users. Adaptive approaches -recalibrating BCIs on-the-fly with incoming EEG data, or Transfer Learning approaches (transferring features or classifiers across sessions) [START_REF] Nam | Brain-computer interfaces handbook: technological and theoretical advances[END_REF], could also reduce some variability effects. However, it regularly fails [START_REF] Rodrigues | when does it work?": An exploratory analysis of transfer learning for bci[END_REF], and when, how and what to adapt or transfer is still an open question [START_REF] Nam | Brain-computer interfaces handbook: technological and theoretical advances[END_REF]. Moreover, both frequent recalibration and adaptive classifier approaches can impede BCI user learning, due to providing users with continuously changing feedback (BCI feedback being the classifier output) which is typically confusing [START_REF] Müller | A mathematical model for the two-learners problem[END_REF]. Overall, these variabilities are a key issue preventing BCIs from being used on a day-to-day basis, outside laboratories, for which no satisfactory remedy is available.

We argue that, to design variability-robust BCIs, we first need to measure, understand and model the variabilities affecting BCIs. Then, based on these new models, we should be able to design BCI machine learning (ML) algorithms that are optimally invariant to such variabilities and/or can handle them. This is what we propose in this project, named PROTEUS in reference to the shape-changing greek god Proteus, representing "constant changes" which we tackle in this project. To reach these objectives, we first propose to design and run BCI experiments under various types of variabilities, i.e., across days and contexts, while also manipulating BCI users' states, notably their fatigue level by varying time-on-task during BCI experiments. We will also measure other users' states that may cause variability, such as their workload or stress levels using questionnaires. Note that in this project, we will focus in priority on within-user variabilities, as they are much less studied than between-users variabilities (Grosse-Wentrup and Schölkopf, 2013; [START_REF] Jeunet | Advances in user-training for mental-imagery-based bci control: Psychological and cognitive factors and their neural correlates[END_REF], and are one of the main reasons preventing BCIs from being used in day-to-day life outside the lab, even with user-specific BCI designs, as indicated above.

We will run such experiments for both aBCIs and pBCIs to identify and address variabilities shared across different BCI paradigms designed with similar ML pipelines. In particular, in this project we will focus on two concrete BCI paradigms: 1) Mental Task (MT)-based BCI (MT-BCI) for the aBCI, a prominent type of BCI typically used for assistive technology and rehabilitation for motor impaired users; and 2) auditory attention decoding from EEG for the pBCI, an emerging type of BCI, with many promising applications, such as the real-time monitoring of plane pilots' perception or attention-decoding at home for work efficiency improvement. From both BCI types, we will induce and measure the same variability factors, in order to maximise the scope of the potential knowledge gain. The resulting databases -to be shared open access -would enable us to quantify, characterise and model variabilities, both at the BCI performance and EEG spatio-temporal characteristics levels. We will notably explore both univariate and multivariate models, to identify the most relevant factors, their interactions, as well as to predict and explain BCI performances and EEG patterns variability according to such factors. These variability models will then contribute to the design of new EEG ML algorithms that are specifically robust to such variabilities. We will notably focus on Riemannian classifiers, which represent EEG signals as covariance matrices and classify them using tools from Riemannian geometry. Such classifiers indeed proved to be the current state-of-the-art classification approaches for both aBCI and pBCI, in numerous comparative studies and international BCI competitions (Yger et al., 2016;[START_REF] Jayaram | Moabb: trustworthy algorithm benchmarking for bcis[END_REF]Roy et al., 2022). We CHAPTER 9. PERSPECTIVES ON PHYSIOLOGICAL COMPUTING AS A NEUROERGONOMIC TOOL will thus aim at designing Riemannian EEG classifiers that can handle variabilities using a model-based approach. Developed models also come handy to design data augmentation schemes: we will design an algorithm that generates new, unseen covariance matrices that present variability characteristics. Such an algorithm will be useful to artificially increase the sample size, making it easier for the classification algorithm to learn sources of variabilities. We will finally validate these new algorithms for practical BCI applications, where variabilities should be addressed. We will focus on 1) training a tetraplegic user to control aBCI applications across days and contexts, notably outside the lab and 2) on pBCI design for auditory attention decoding at home and in a real flight, outside the lab across days as well. In short, this project aims at understanding and tackling variabilities in BCIs, from theoretical analyses to practical applications, through algorithmic development.

WP1: measuring BCI variabilities I will be the partner leader for this workpackage. In order to address the lacks in the literature regarding EEG/BCI signal variability identified in the state-of-the-art section, this WP aims at collecting datasets to be used by the following WPs to understand BCI variabilities and explore algorithmic solutions to tackle them. We will notably design two experimental campaigns in order to acquire EEG/BCI data from healthy users to study variabilities across sessions (6 sessions), within sessions (time-on-task) and due to environment (laboratory/low stimulating setting vs simulator/highly stimulating setting); one experimental campaign per BCI type: aBCI (mental tasks BCI) and pBCI (auditory attention monitoring). The pBCI experimental campaign will comprise 6 sessions per participant, with half in a laboratory/low stimulation setting (i.e. computer task in a cubicle), and the other half in a simulator/high stimulation setting (i.e. motion flight simulator; Fig. 9.8). Each session will be composed of 6 blocks with 3 blocks of a simple auditory attention task called 'oddball paradigm' that will alternate with 3 blocks of radio-communications presented binaurally. These auditory tasks will be performed either along with a simplified flying task using the Multi-Attribute Task Battery (MATB-II) in the laboratory condition or along with a navigation task in the ISAE-SUPAERO motion flight simulator.

Regarding the aBCI campaign, it will be based on a mental-task-based BCI (MT-BCI) that the participants will control using 3 MTs, namely, left-hand motor imagery, mental calculation and mental rotation of a geometric figure. As for the aBCI campaign, it will comprise 6 sessions per participant with half in 
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a low stimulation setting, and the other half in a high stimulation setting. Each session will be composed of 6 blocks, 2 calibration blocks, used to calibrate the BCI classifier on that session data, and 4 subsequent training blocks in which the calibrated BCI will provide online real-time feedback. In addition, for both campaigns, participants will have to answer questionnaires -assessing their sleepiness, mental fatigue, and mental load. In both campaigns, each BCI session will also start by recording a 3 minutes EEG baseline with the user at rest. Such data could indeed be used to capture session-specific neurophysiological variability. 40 participants per campaign are planned to be recruited amongst research personnel and students via both printed and online advertisements, for a total of 480 sessions that will constitute the pBCI (240 sessions) and the aBCI (240 sessions) databases. Moreover, EEG/BCI databases capturing various variabilities will be shared open-access with the BCI community (e.g. on Zenodo and MOABB) and a competition will be organised using the acquired databases to invite the whole BCI community in partaking in this challenge to develop BCI pipelines that are robust to the induced variabilities. Another important perspective is that of tackling end-user training (which is of particular interst for active BCI applications) as a way of dealing with EEG non-stationarity arising from poor user performance, for improving BCI performance across time. This is the goal of the BCI Endeavour project initiated and led by Dr Camille Jeunet from CNRS Bordeaux, and for which I am a partner. The BCI Endeavour project is a large-scale, collaborative and open user-centred endeavour to understand and improve BCI learning. Its goal is mainly to address the issue of poor out-of-the-lab performance of current non-invasive active Mental-Task (MT; e.g. mental calculus or motor imagery) BCI systems, thanks to end-user training (see logo on fig. 9.9). As detailed in the submitted abstract (Jeunet et al., 2020), and the research proposal submitted to the 2020 CHIST-ERA call (rejected), our vision for this project is to truly understand how brain-computer interface (BCI) end-users learn to self-regulate specific brain activity patterns to control Mental-Task based BCIs (MT-BCI). We aim to uncover the factors that cause intra-and inter-subject variability, in order to design innovative machine learning algorithms and end-user training procedures that will overcome the so-called "BCI inefficiency" (10 to 30% of people cannot control an MT-BCI) and the limited translation of BCIs for widespread use, which has persisted for too long.

Tackling end-user training

MT-BCI progress and transfer is hindered by current research being machine-centred, performed at a limited-scale, with small samples and limited sessions, with lacks full disclosure of the protocols that limit data (re)usability. This project's mission is to realise a sea-change shift of BCI research, putting end-users at the centre of BCI development, on a very large-scale, collaborative and open approach, to understand TOOL MT-BCI end-user learning and design efficient and fully utilisable BCI applications. To do so we will:

1. Collectively, involving 25 labs, design and implement a unified and long-term (20 sessions) MT-BCI training protocol that we will disseminate as an open-source software (integrated in OpenViBE);

2. Create an open and sustainable science toolkit comprising the largest and most comprehensive MT-BCI dataset ever (2,500+ sessions, i.e., 500,000+ EEG trials and information on user profiles) and signal processing tools that will make the dataset usable substantially beyond the funding period;

3. Exploit this database to model MT-BCI end-user learning, design novel artificial intelligence, and particularly, machine learning algorithms and disseminate concrete recommendations for MT-BCIbased non-clinical applications;

4. Involve patients, caregivers and health-care professionals in a participatory-design approach, assess their needs and learning specificities in order to provide recommendations on how to adapt MT-BCI procedures to clinical populations with a deficiency-based, trans-diagnostic approach.

Twenty-five laboratories support this project, with colleagues working in BCI from France, Switzerland, Poland, the Czech Republic and Spain. They will take part by collecting MT-BCI data (at least 100 sessions each) to be shared on the open database that will be hosted on a secure platform (IDRIS, CNRS). BCI-Endeavour will have a transformational impact both on the community -by promoting endusercentred, open and collaborative research-and on technology and knowledge-transfer -by providing a sustainable asset enabling the design and assessment of novel human and machine learning solutions. Although disappointed by the rejection of our first proposal, we have resubmitted BCI Endeavour to a national grant to prepare our next submission to a European Doctoral Network call in November 2022.

Maneuvering a research practice & focus shift

Although having been granted amazing supervisors and supervisees who have enabled me to work on exciting topics, I have been growingly feeling dissatisfied as regards the usefulness of my work which up until now has mainly focused on developing characterization tools for and with highly complex systems with a high environmental as well as economic cost. Hence, I have given myself two main objectives for the coming years, namely to try and maneuver: i) a change in my research practices, and ii) a change in my research focus.

Regarding a change in research practice -in addition to personal lifestyle issues-, I am mostly planning to pursue my reducing missions' number, means and distance, but also to reuse equipment already available rather than contributing to the accumulation of equipment by buying new ones. The goal is to make the most of what is available. This raises the issue of publicly available databases. Although these databases are paramount for achieving reproducibility and repeatability in experimental research, to my knowledge their ecological impact remains to evaluate. In particular, it reduces the need for multiple labs to run the same experiments over and over again, yet anyone can publish such databases as they are not peer-reviewed. Therefore, the absence of regulation on which databases to stock online seems an issue to me. Another step would also be to try and reduce the use of sensors as much as possible for our characterization studies with a back to basics approach. This leads me to the change in focus I would like to try and operate. Since my early childhood, in addition to the aerospace domain -which I have been lucky to approach thanks to ISAE-SUPAERO, funding agencies and colleagues-I have always been fascinated by two other domains, namely anthropology and linguistics. If given the opportunity, I would be particularly interested to work on tool use (low tech tool use included) with a more fundamental approach, much as what has been done on the cognitive study of human tool use and technology by [START_REF] Osiurak | Looking for intoolligence: A unified framework for the cognitive study of human tool use and technology[END_REF]. The evaluation of the impact of uncertainty TOOL on tool use is of particular appeal to me as well. Moreover, I would very much like to develop my work on BCI towards clinical applications, i.e. towards more active and communication BCI applications, including language applications, by focusing on augmentative and alternative communication BCI systems for individuals with disabilities (severe speech and physical impairments; [START_REF] Akcakaya | Noninvasive brain-computer interfaces for augmentative and alternative communication[END_REF].

At this stage, I am still looking for guidance and need more time to delve into the literature of these domains. Nevertheless, I do hope that I will be able to submit projects that would be more in line with these research practice and focus approaches in the coming years (green projects to be defined, Fig. 9.1), if only to reduce my current cognitive dissonance state. In a less pessimistic light, I also hope to participate at my own level in a global awareness and collective action.

Conclusions

Une bonne HDR est une HDR écrite. A good HDR is a written HDR.

Unknown sources

This section was intended to provide the reader with a sneak peek at research perspectives I envision for the coming years, including recently initiated projects and submitted ones, but also blurry projects that need to be refined by taking the time to refocus and change my activities. I hope to have clearly conveyed how together with colleagues we have started to tackle the four challenges identified in the introduction. Yet, it is just the beginning. Writing this thesis has been difficult in some aspects; finding the time was the main issue. This is especially true for I would have loved to dig deeper into research reflections, in particular for future work. Yet, as frequently heard in research laboratories: a good HDR is a written HDR. This exercise is in fact quite an administrative one, and research questions will be addressed in the coming years and need not be exhaustively described here. Nevertheless, I do hope that this document was not too tedious to read, that I managed to synthesize a bit my activities, and that my work did interest you at least in part. Again, I want to stress that none of this work would have been possible without my supervisors who trained me, without my colleagues who support me and bear with me on a daily basis, and above all, without my supervisees who perform most of the work.

The main conclusions of the perspective part can be summarized in the list below, followed by the list of the few publications that arose from the preliminary work presented in this section. Lastly, the next part of the thesis will present the 5 articles I believe best illustrate my work.

Research perspectives

-Working on operator's engagement and performance assessment during human-robot interaction in collaborative and mobile settings is my first research perspective, funded thanks to projects EPIIC, ATARRI, and TELECOG. -EEG non-stationarity is a major issue for BCI design, and is the focus of my second main research perspective work, funded thanks to projects ANITI, PROTEUS, and BCI Endeavour. -Further, I plan to work on changing my research practices as well as research focus in the next 3 years.

• Publications on preliminary work: A complementary approach to account for this phenomenon is to consider the existence of visual dominance over hearing that could be implemented via direct visual-toauditory pathways. To investigate this phenomenon, thirteen aircraft pilots, equipped with a 32-channel EEG system, faced a low and high workload scenarii along with an auditory oddball task in a motion flight simulator.

Prior to the flying task, the pilots were screened to assess their working memory span and visual dominance susceptibility. The behavioral results disclosed that the volunteers missed 57.7% of the auditory alarms in the difficult condition. Among all evaluated capabilities, only the visual dominance index was predictive of the miss rate in the difficult scenario. These findings provide behavioral evidences that other early cross-modal competitive process than top down modulation process could account for inattentional deafness. The electrophysiological analyses showed that the miss over the hit alarms led to a significant amplitude reduction of early perceptual (N100) and late attentional (P3a and P3b) event-related potentials components. Eventually, we implemented an EEG-based processing pipeline to perform single-trial classification of inattentional deafness.

The results indicate that this processing chain could be used in an ecological setting as it led to 72.2% mean accuracy to discriminate missed from hit auditory alarms.

Introduction

Since the pioneering work of Cherry [1] on dichotic listening, several studies have confirmed and expanded the findings that fully perceptible auditory stimuli can remain undetected under perceptual and attentional demanding settings. Echoing elegantly with the famous inattentional blindness paradigm of Simons and Levins [2], Dalton and Fraenkel [3] have shown that participants might experience inattentional deafness by failing to notice the sentence "I am a Gorilla" while attending to an auditory conversation. The occurrence of this phenomenon has also been demonstrated in music listening, whereby some listeners were unable to report a salient electric guitar solo embedded in the XIX th century "Thus Spoke Zarathustra" lyrics poem [4]. Crossmodality interactions are also known to induce inattentional deafness and drive some relevant research on this topic. Accordingly, there is now a solid corpus of evidence that the detection of auditory cues may be impaired when engaged under visually demanding settings [5][6][7]67].

These studies provide valuable explanations to conceptualize attentional failures to auditory alarms that have been reported in complex real-life situations [8]. This is particularly true in aviation whereby safety analyses have reported absence of response to auditory alarms as a causing factor to several accidents [9,10]. For instance, the co-pilot of the ill-fated Air France flight 447 from Rio de Janeiro continued to put the aircraft into a steep climb instead of descending, despite more than 70 audible stall warnings [11]. Some experiments conducted in realistic flight simulators [12][13][14] and in actual flight conditions [15] confirmed that inattentional deafness could indeed occur in the cockpit at an early perceptual [16,17] or at a later attentional stage [18].

It is generally admitted that the existence of limited cognitive resources at a central level may account for transient attentional impairments [19][20][21][22] such as inattentional deafness [6]. Accordingly, individuals with a higher pool of central resourcesas measured by working memory spantend to exhibit better divided and sustained attentional abilities [23,24] and should be more likely to detect unexpected events during highly demanding tasks. However, the authors reported an absence of correlation between individual working memory capacity and inattentional deafness [25]. The latter concluded that their results appealed in favor of the attentional set theory [26] which stipulates that only task relevant stimuli are attended to and consequently processed. One could envisage the implementation of shielding mechanisms controlled at a central level to save the future efforts required to perform the task at hand and hence avoid resource depletion [22,27]. These mechanisms described by Hancock and Warm [28] and Hockey [29], may lead one to think that the brain enters a "fail-safe mode", limiting the access to the pool of resources to process unexpected signals such as auditory ones.

A complementary hypothesis that has not yet been considered to account for inattentional deafness could be linked to the existence of visual dominance over hearing mechanisms [30][31][32]. Accordingly, a recent experiment reported a superior ability to inhibit irrelevant spatial auditory distractors when processing visual targets than the opposite [33]. The authors argued that the existence of direct visuo-auditory pathways [34][35][36] could underpin the modulation of auditory processing. Since flying mainly involves the processing of visual cues (e.g. gauges, out of the window environment), it is more likely that pilots are biased to rely on these latter than on auditory ones when facing critical situations [37]. To the authors' best knowledge, no study has yet attempted to validate the hypothesis of such interactions between visual and auditory modalities, especially in ecological settings.

Beyond the understanding of the mechanisms underpinning inattentional deafness, there is a need to implement online mental state monitoring based on neurophysiological measures to detect the occurrence of this phenomenon. Tremendous progress has been achieved using cerebral measures to infer cognitive state using processing pipelines called passive brain-computer interfaces (pBCIs; [74]). In laboratory settings, EEG-based passive BCIs have enabled researchers to accurately estimate various mental states of interest for transportation applications, such as mental fatigue and cognitive workload [69]. Previous research indicated in particular that this approach successfully led to classify auditory processing at the single trial level in an oddball paradigm (e.g. frequent versus rare sounds; [38]) and in an absent versus present auditory sound paradigm under flight simulator and real flight settings [39].

In the present paper, we report the results from a study dedicated to 1) assess the visual dominance over hearing hypothesis as a predictor of failure of auditory attention, 2) to identify electrophysiological correlates of inattentional deafness and 3) to implement a passive BCI to detect alarm misperception. To meet these goals, the volunteers were asked for their flight experience (number of flying hours) and screened with two cognitive tests dedicated to assess their working memory span and their visual dominance over hearing index respectively. Pilots were then placed in a motion flight simulator and faced low and a high workload flying scenarii while responding to rare auditory targets (Oddball paradigm). In the low workload scenario, the participants had to supervise the flight trajectory controlled by the auto-flight system. In the high workload scenario, they had to perform a critical landing with no visibility and smoke in the cabin to simulate a fire. An expert pilot, silently observing the participants, was also left seated in the simulator as an additional stressor. We hypothesized that the difficult scenario, combining high visual task demand and psychological stress, would affect both early and late auditory processing to an extent that it would yield to a high auditory alarm miss rate. This latter point was of importance so as to conduct electrophysiological-based sound detection analyses and to train a classifier to detect inattentional deafness.

Material and method

Participants

Thirteen healthy male pilots (mean age = 26.3 years, SD = 5.2; flight experience = 81.1 h, SD = 43.8), all French defense staff from Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO) campus, were recruited by local advertisement and did not receive any payment for their participation. They all reported normal or corrected-to-normal vision and normal audition. Typical total duration of a subject's session (informed consent approval, practice task, and real task) was about two hours and a half. This work was approved by the Inserm Committee of Ethics Evaluation (Comité d'Evaluation Ethique de l'Inserm-IRB00003888 -18-460).

Working memory and visual dominance assessment

The subjects were asked to perform two neuropsychological tests. These tests consisted of a working memory test (N-back task), and a spatial audiovisual conflict test to derive a visual over hearing dominance index.

N-back task

This test has been applied using the neuropsychological testing battery PEBL® [75]. The stimuli were presented on a computer screen, and consisted in the appearance of successive letters every 3 s in the center of the screen along with the same letter pronounced in a headphone (see Fig. 1). The participants had to press the left "Shift" key when the current letter was identical to the N-2 one (2-back). The subject then had to repeat the experiment with no more letters, but a square moving in a 3 * 3 square grid. When the square appeared twice in the same box, the subject had to press the right "Shift" key.

Spatial audiovisual conflict task

The task design was adapted from Scannella et al. (2015). Stimuli were delivered with Presentation software (Neurobehavioral system). Auditory stimuli (i.e. 1000 Hz normalized pure tones at 78 dB SPL) were presented using binaural headphones and visual stimuli (i.e. filled white circles of 2-degree diameter), were presented at a constant angle of 15 °on the left or the right of a white central fixation cross on a MSI 17" monitor placed one meter in front of the participant. Auditory and visual stimuli were presented simultaneously during 200 ms and were either on the same side (i.e. congruent trials), or on opposite sides (i.e. incongruent trials; Fig. 2). The inter-trial interval was set to 2100 ms with a 500-ms jitter, while the white fixation cross remained always visible. Behavioral responses (accuracy and reaction times) were recorded with a 2-button mouse (left button for left target; right button for right target) across two blocks. In one block, participants had to detect the presentation side of the visual stimuli while ignoring auditory distractors; in the other block, they had to detect the auditory stimuli while ignoring visual distractors. In both blocks, they had to focus on the central fixation cross. The presentation order of the two blocks was counterbalanced across participants. For each block, 60 congruent and 60 incongruent trials were presented resulting in two 5minute blocks. 

Flight simulator

The ISAE three-axis motion (roll, pitch, and height) flight simulator designed by the French Flight Test Center was used to conduct the experiment (Fig. 3). It simulates a twin-engine aircraft flight model and the user interface is composed of a Primary Flight Display, a Navigation Display, and an upper Electronic Central Aircraft Monitoring Display page. The flight simulator is equipped with classical actuators such as the sidestick, the rudder, the throttle, the flaps levers and a complete autopilot to control the flight. Two stereophonic speakers, located under the displays on each side of the cabin, were used to broadcast continuous radio communications, engine sounds (77 dB SPL), and to trigger the oddball sounds (90 dB SPL).

Flying scenarii

The participants performed one low and one high workload scenarii along with a classical oddball paradigm with a total of 400 auditory stimuli: 20% were targets (i.e. 80 sounds) and 80% were non-targets (i.e. 320 sounds). Two types of sounds were used: one pure tone at 1000 Hz and one pure tone at 1100 Hz, both normalized at 90 dB SPL. Half of the volunteers had the 1000 Hz tone as a target and the 1100 Hz tone as a distractor whereas the other half had the opposite. Stimuli were presented through the simulator sound system at a random time interval of 2-5 s (mean = 3.5 s) resulting in a total of two 24-minute sessions. The volunteers had to ignore the frequent non-targets and used the trigger of the side-stick to respond to the auditory targets only. The order of the two scenarii was counterbalanced across participants. The participants were expressly asked not to prioritize on a specific task (flying or responding to alarms) and that their performance level was calculated based on both their flying accuracy and hit rate. A former air force pilot was right seated during the two flying conditions. He did not perform any actions and was silently observing the participants. These latter were told that this expert pilot's judgement was used to evaluate their behavior and performance. The presence of the expert pilot was used as an additional stressor to induce social pressure [40]. Indeed, the Fig. 2. Spatial audiovisual conflict task. Stimuli (sounds and white circles) were presented either on the same side (congruent trials) or on opposite sides (incongruent trials).

Fig. 3. ISAE-SUPAERO three axis motion flight simulator. The participants were left seated and equipped with a Biosemi 32-electrode EEG system. feeling of being observed and evaluated by one's peers is known to increase anxiety [41,42] that in return negatively affect attentional control [43]. It was expected that this deleterious effect on attentional abilities would be magnified in the high workload scenario and contribute to induce inattentional deafness.

Low workload scenario

This scenario was the reference flight. In this experimental condition, the autopilot was engaged to level off the plane at a constant speed. The only task for the pilot was to respond to the auditory target stimuli while supervising the flight trajectory.

High workload scenario

The pilot had to perform a night approach and landing on the runway 14R at Toulouse Blagnac airport (France) while facing a cabin fire that was simulated using a Power Lighting Fogburst 600 W generator and a flashing red light. The aircraft position was initialized 20 nautical miles (nm) from the airport at an altitude of 4000 feet, a heading of 310°and a speed of 170 knots (kts). The volunteers had to steer 200°while descending to an altitude of 3000 feet. When reaching a 12-nm distance from the airport, participants had to turn to the west (heading 270°) until they intercepted the runway axis using the instrument landing system. Once intercepted, the pilots had to take a heading of 144°in order to line up with the center line of the runway. At 5 nm from the landing ground, they had to reduce speed to 130 knots to initiate the final descent. The presence of an airplane on the runway required the pilots to perform a go around and to circle around at an altitude of 2500 feet to realign on the runway axis and try to land again. The visibility was bad, causing the airport to appear and disappear several times between the cloud layers.

Protocol

Once the participants were told about the purpose of the experiment and signed the informed consent, they first started to complete the two cognitive tasks (N-back task and Spatial audiovisual conflict task). The order of these two cognitive tasks was counterbalanced across participants. The volunteers were then introduced to the flight instructor who trained them for a 30-minute session to handle the simulator and to perform several manual approaches and landings. The participants were also trained to perform the oddball task for 5 min. After the training was completed, the EEG and the ECG electrodes were respectively placed on the volunteers' head and torso. The experiment was eventually started: the simulator motion was engaged to reproduce realistic flight sensations, and a continuous radio communication was also broadcasted to reproduce more ecological flight conditions. The participants had to fly the two scenarii in a random order under the silent supervision of the flight instructor.

Data acquisition and processing

EEG data were recorded continuously with the BioSemi ActiveTwo EEG system (BioSemi, Amsterdam) from 32 active Ag-AgCl scalp electrodes positioned according to the International 10/20 system, at a 512 Hz sampling rate and with a 0-104 Hz band-pass filter. During the experiment, electrode offsets were kept under 20 mV as recommended by the manufacturer. The data were then re-referenced offline to the algebraic average of the left and right mastoids, down-sampled to 500 Hz, and filtered with a band-pass FIR filter of 0.1-40 Hz. An independent component analysis was performed using the RUNICA function with EEGlab (13.4.4b version) to isolate and reject eye blinks and movements. Data were later segmented into 1200 ms epochs starting 200 ms before the onset of each sound. Then, ERPs were computed with a baseline correction using the first 200 ms (i.e. prestimulus activity).

Two external EEG channels were additionally used to measure the heart rate (EX7 placed on the left clavicle and EX8 placed on the left ribs of the participants). The R-R intervals of the raw ECG signal were then detected using the build-in QRS detection algorithm of Kubios HRV software [70]. All the recordings were manually revised for missed or false positive R peak detections. We eventually computed the average Heart Rate (HR, in beat per minute) for each scenario and participant.

Analyses

Electrophysiological statistical analyses were carried out using the built-in EEGlab permutation test. P-values were adjusted using the false discovery rate (FDR) corrections. All other statistical analyses were carried out using Statistica (V10, StatSoft). The p-value threshold for significance has been set to 0.05 if not otherwise mentioned. When appropriate, post-hoc comparisons have been carried out using the Tukey's Honestly Significant Difference test. Correlational analyses were conducted using Pearson correlation test.

Flight performance

Participants' ability to succeed in landing the airplane was used as a binary performance index. Indeed, the scenario was designed in such a way that any deviation from the flightpath would lead the pilots not to reach the runway threshold on time.

Visual dominance index (Vdi): This index was meant to represent the propensity to be less distracted by auditory information when paying attention to visual ones than the opposite [33]. It has been calculated as the reaction time cost difference between the time to detect an auditory target (A inc ) and the time to detect a visual target (V inc ) in audiovisual incongruent trials: Vdi = A inc -V inc.

N-back accuracy

N-Back accuracy scores were averaged for each subject within each difficulty level.

Oddball accuracy

A two-tailed t-test was carried out on the number of missed auditory targets between the low and high workload scenarii to evaluate the impact of scenario difficulty on the detection rate of auditory alarms.

Auditory miss rate correlations

A linear multiple regression analysis with the flight experience, the visual dominance index and the working memory score within the high load scenario was conducted to find out which of the flying experience, the visual dominance susceptibility or the working memory ability was the most predictive of the auditory alarm miss rate.

ECG

To evaluate the impact of scenario difficulty over the heart rate as computed from the ECG signal, a two-tailed t-test was carried out on the whole flying scenario between the low and high workload scenarii.

Group ERP analyses

Point-by-point permutation tests from EEGLAB (v13.4.4b) were used to analyze Hit (i.e. correctly detected target) versus Miss (i.e. undetected target) ERP component amplitudes for all 32 electrodes.

ERP classification analyses

A classification analysis was performed in order to determine whether alarm misperception could be detected in a reliable fashion. The main idea is to train a learning algorithm on a portion of the data and then test it on the remaining data. Here we focused our work on a single-trial classification, i.e. estimating from one single ERP whether the alarm is missed or detected by the pilot. The processing chainthat is to say the various algorithm parts-used to perform hit versus miss estimation was based on the ERPs of the target sounds and is described hereafter. Initially, the first 500 ms of the auditory ERPs were corrected for ocular artifacts in an automated fashion using the SOBI algorithm (Second Order Blind Identification) and the vertical EOG (Electrooculographic) signal. The two sources that were most correlated with the EOG activity were cancelled out. Next, the cleaned data were decimated to 100 Hz and centered on zero. Then, they were spatially filtered using a Canonical Correlation Analysis (CCA) filtering process that is shown to increase discriminability for ERP-based BCIs [69,71]. Two CCA filters were used. Hence the features consisted of a vector of 100 points (2 filters*50 ERP time points). Lastly, these features were classified using a Fisher Linear Discriminant Analysis with a shrinkage estimation of the covariance matrices [72]. This was performed using a 10-fold cross-validation procedure in which an equal number of hits and misses were systematically drawn to create the training (9 out of 10 subsets) and the testing sets (10 th subset).

Results

Behavioral and physiological results

Scenario effect: We found that the target sound detection accuracy was significantly affected by the scenario load with only 0.33% ( ± 0.47) of missed targets in the low load scenario compared to 57.73% ( ± 12.63) in the high load one (t = 15.73, p < 0.001, Cohen's d=-6.44) (Fig. 4).

Flying performance

All the pilots managed to land the aircraft on the runway prior to the end of the experiment.

Linear regression analysis

Among the three auditory miss predictors that were tested (Fig. 5), the visual dominance index was the only one that significantly correlated with the percentage of missed auditory targets during the high load scenario (semi-partial r = 0.57; t = 2.60; p < 0.05). This correlation showed that the more the pilots can be distracted by the visual distractor while responding to the auditory target in the audiovisual conflict task, the higher the number of missed auditory alarms in the high load flying scenario. The working memory ability and the flying experience correlated only poorly and non-significantly with the number of missed auditory targets (semi-partial r=-0.16; t = 1.48; p = 0.47 and semi-partial r=-0.32; t = 0.75; p = 0.17 respectively).

ECG results

The statistical analyses disclosed a significant effect of the scenario difficulty over the cardiac activity t = 2.68; p < 0.05, Cohen's d = 1.06) with a higher average HR in the high workload scenario (mean = 89.5, SD = 17.2) than in the low workload one (mean = 72.8, SD = 14.3).

Electrophysiological results

In the high load flying scenario, both auditory targets and distractors have elicited event related potentials with different components. Among them we found characteristic auditory-related exogenous (N100/P200) and endogenous (P3a and P3b) components (see Fig. 6). The N100 reached its maximum mean amplitude around 116 ms with a fronto-central scalp distribution. The mean hit-related N100 amplitude was significantly larger than the miss-related one (hit: -7.92 μV, miss: -5.49 μV; p < 0.05, Cohen's d = 0.65). Similarly, the P3a component, with a centro-parietal distribution was maximum at 370 ms for the hit auditory targets and larger than the miss-related ones (hit: 2.48 μV, miss: 0.65 μV; p < 0.05, Cohen's d = 0.62). Finally, the P3b component amplitude was also affected by the detection type and led to a maximum amplitude 450 ms after the stimulus onset in the parietooccipital region. Its amplitude was significantly larger for the detected sounds (2.99 μV) than for the missed ones (-0.25 μV; p < 0.001, Cohen's d = 1.28).

Single trial inattentional deafness classification

The classification pipeline that was used allowed us to obtain 72.2% of correct classification of the hit and missed targets in average across participants. This is significantly higher than the adjusted chance level threshold of 59%, as computed to take into account the number of available trials following Combrisson and Jerbi's recommendations [44]. Fig. 7 displays the spatial patterns of the filters used to enhance the discriminability between the two classes (i.e. hit and miss). As mainly illustrated by the first filter's patterns, the electrode sites that enable such a high classification accuracy are located at fronto-central sites. 

Discussions

The objective of this paper was to study the inattentional deafness phenomenon under ecological settings in the context of flying. A first research question was to identify individual specificities that could reveal evidences of visual to auditory dominance as a possible complementary mechanism to account for inattentional deafness. A second research question was to identify the electrophysiological correlates of inattentional deafness to auditory alarm in the cockpit. Eventually, a last question was to assess the reliability of an off-line processing pipeline dedicated to detect alarm misperception using electrophysiological responses.

To meet this goal, the participants had to face two contrasted flying scenarii in terms of difficulty while responding to auditory alarms. The high workload scenario combined several stressors such as high cognitive demand (landing with no visibility and windshear), aversive stimuli (smoke in the cabin and flashing red light) and social pressure with the presence of an expert pilot. Accordingly, psychophysiological results disclosed that the HR was higher during the high workload scenario compared to the low workload one hence reflecting increased mental demand and psychological stress [12,45]. The behavioral results showed the efficiency of the high workload scenario to promote high rates of auditory misses (i.e. 57%) in comparison to the low workload one. These findings confirmed that primary task difficulty [5,17,18,46] as well as unexpected stressful situations [14] can elicit inattentional deafness in the cockpit. Our experimental protocol can't allow us to conclude which of the stressors was the most efficient to distract the pilots from processing the auditory alarms. Indeed, as we did not manipulate them separately, it is more likely that the combination of all these stressors had the intended deleterious effects on auditory attentional abilities [43].

This high rate of inattentional deafness allowed however to conduct correlational analyses. The objective was to determine whether individual working memory, flying experience or visual dominance index would predict occurrence of inattentional deafness. As hypothesized, the working memory score did not predict the propensity to remain aware of the auditory alarms. This result is in line with previous studies that report an absence of relation between the working memory span and the occurrence of inattentional blindness [25,[47][48][49] or inattentional deafness [25]. Though working memory capacity-as a measure of cognitive resources at a central level-has been shown to be related to individuals' sustained and divided attentional performance [23,24,50], this construct seems not appropriated to account for inattentional deafness. In line with Kreitz et al. [25], our results rather advocate in favor of the attentional set theory [26]: cognition is goaldirected and promotes the selection and the processing of task at hand relevant stimuli. In our experiment, the participants were told that the two tasks (i.e. flying and responding to auditory alarms) were of equal importance but the behavioral results suggested that the volunteers probably prioritized the flying task as they all managed to land the aircraft while missing at least 20% of auditory alerts in the best case. Pilots are highly trained individuals who are taught to prioritize tasks according to the "first aviate, then navigate and eventually communicate" rule. The application of this rule can explain why our volunteers may have naturally put more mental efforts on the flying task. The flying task was naturally more challenging and rewarding from a pilot's perspective (i.e. night landing with smoke in the cabin with an experienced flight instructor on the right seat) and had immediate consequences (i.e. missing the approach and the landing) contrary to the achievement of the auditory alarm task itself. Consequently, and in accordance with the attentional set theory, the participants were more likely to process visual information in the cockpit and were less inclined to respond to auditory targets. Such behavior well as the absence of correlation between inattentional deafness rate and working memory abilities could be predicted by the Compensatory Control Model [29]. This model postulates the existence of a motivational control mechanism that dynamically modulates mental effort to shield against performance decline and resources depletion. It includes three decisions units that are dedicated to select and hierarchize goals according to their utility value (the goal regulation unit), to monitor the efficiency of the on-going strategy (performance evaluation unit) and to increase or maintain mental effort (effort regulation unit). The effort regulation unit involves a compensatory allocation of resources, eventually leading to increased level of effort budget to maintain high utility goals that are compromised to the detriment of low priority ones. Indeed, goals with high utility, such as operating the aircraft in our task, would remain in place but with a higher level of mental effort to process visual flight parameters. Thus, one has to consider that such resources allocation is a dynamic process that could not depend on a structural characteristic such as working memory.

Eventually, and in line with our hypothesis, visual dominance over hearing mechanisms could provide complementary explanations to account for this phenomenon. Indeed, the ability to respond to auditory targets was biased by inter-individual cross-modality susceptibility: the "more visual dominant" volunteers exhibited a higher miss rate than the "less visual dominant" ones in the difficult scenario. These early mechanisms could possibly be implemented via direct visual-to-auditory connections [34][35][36] to modulate the auditory response at the brainstem [50], the auditory cortex [33,37] and/or the auditory integrative levels [46]. The strength and the efficiency of these visuoauditory interactions may vary among individuals according to their modality preferences that are known to impact their abilities to process auditory or visual materials [51][52][53][54][55].

A second motivation of this study was to identify the electrophysiological correlates of auditory alarm misperception. The high miss rate in the difficult scenario allowed performing a miss versus hit contrast. In line with Callan and collaborators [16], our findings disclose that the N100 amplitude was significantly reduced for misses compared to hits. This result shows that inattentional deafness to auditory alarms can take place at an early perceptual stage or processing as this component is the electrophysiological signature of stimulus detection and processing in the primary auditory cortices [73]. This is also consistent with a previous inattentional deafness fMRI study, using a repetitive single tone auditory stimulus, that disclosed lower auditory cortex activation during auditory misses in comparison to auditory hits [17]. We found, in addition, that he processing of the auditory alarms was also consequently affected at later attentional stages during inattentional deafness events. Indeed, the amplitude of two subcomponents of the P300, namely the P3a and the P3b, were significantly diminished for misses relative to hits. On the one hand, the P3a, also known as early novelty P3, is thought to reflect automatic orientation and engagement of attention towards unexpected stimuli [56]. On the other hand, the P3b, also known as late novelty P3, has been proposed to account for stimulus recognition involving working memory mechanisms (pattern matching and updating) [56,57]. This is akin to previous inattentional deafness findings reporting lower auditory-related P300 [18], P3a [46] and P3b [7] amplitudes associated with the impaired processing of deviant sounds while performing a demanding visual task. However, these authors did not perform hit versus miss contrast as the miss rate was too low in their studies and thus solely reported the deleterious effect of visual load on the global (i.e. hits and misses averaged) auditory-related P300, P3a and P3b. We hence confirm previous results and reconcile the literature by showing that both early and late auditory processing stages are affected during inattentional deafness events. In accordance with other authors [16,17], our assumption is that inattentional deafness is related to the lack of detection of the warning taking place at the early perceptual level (as attested by the N100 effects). Hence, subsequent processing at later attentional stages could be affected by this early effect (i.e. P3a and P3b attenuation). The attenuation of the P3a and P3b amplitudes also reveal that inattentional deafness could result from an inability to automatically shift attention to the alarm that has been correctly detected or from an inability to process and recognize the warning.

Eventually, our last motivation was to perform classification of EEG features that reflect the auditory alarm misperception. To that end, we implemented a signal processing chain that had proven its efficiency for auditory evoked-potentials classification [69,71]. Thanks to this chain, we achieved a satisfying accuracy of 72.2% of correctly classified hit versus missed targets, a significantly higher accuracy than the adjusted chance level (i.e., 59%). These results indicate that this chain could be used in a quite ecological setting (i.e. a full motion flight simulator) to detect the inattentional deafness phenomenon.

Mental state estimation is a growing research interest and although high performance is reached nowadays in the laboratories, studies remain to be carried out to determine solutions for ecological settings. To our knowledge, this study is the first demonstration that inattentional deafness could be estimated in such settings. The natural next step is to achieve an online estimation, i.e. to estimate the operator's mental state and potential misperception of alarms during the realization of the task. Moreover, efforts should be spent to try and perform this estimation as early as possible, that is to say using data that precedes the occurrence of a stimulation (e.g. one minute or one second before the alarm is triggered), as currently studied by Senoussi and collaborators [68]. In this case we would predict rather than detect the occurrence of inattentional deafness. As a consequence, one could imagine the design of an adaptive cockpit that would take the information of stress level and inattention to alarms into account to implicitly adapt itself with a set of counter-measures [58].

Conclusion and limitation of this study

This study demonstrates the importance of conducting neuroergonomics experiments in ecological settings rather than in simplified laboratory settings. This approach contributes to the understanding of the brain when facing critical real-life situations [15,16,[59][60][61] and allowed us to obtain high miss rates that could not be induced in laboratory conditions. In addition, our study is the first to report a relationship between individuals' visual dominance over hearing susceptibility and failure of attention. This result opens promising perspectives for human operator selection and the development of cognitive training solutions to improve auditory abilities. Taken together, the behavioral and electrophysiological results of this experiment bring insights on subtle competitive mechanisms taking place from the perceptual to the later attentional stages. This study thus brings clues that conciliate diverging studies attributing the inattentional deafness phenomenon to pre-attentive [16,37] or attentional processes [7,18,62]. Eventually, the finding of ERPs as a neural signature of inattentional deafness shows that they are good candidates as features to detect the occurrence of missed alarms using passive braincomputer interfaces and could be used to design adaptive "alarms" (e.g. dynamic modification of the alarm modality) and feedback to mitigate transient attentional impairments.

This study was a first step toward the identification of potential behavioral and neural correlates of inattentional deafness and the implementation of a pBCI. To meet this goal, the design of our protocol relied on a compromised between ecological and controlled laboratory settings. This approach has several limitations though. For instance, the participants faced a high number of auditory targets, contrarily to real operational situations. The high rate of these auditory alarms was needed for our ERP analyses and machine learning purposes. The alarm sound was also not a real cockpit alarm but a brief and pure tone to be consistent with classical auditory oddball paradigm so as to elicit typical ERPs in a timely manner. Moreover, these alarms were not related to the flying task per se: missing the alarms had no consequences on the flight performance although it was mentioned that the global flight appreciation would take the alarm hit rate into account. As a matter of face, these frequent and "non-relevant" alarms were more likely to be ignored by the participants. Eventually, our flight simulator did not allow collecting flight parameters. This prevented us from analyzing possible shared attentional strategies between the flying and the auditory alarm detection tasks throughout the flight. Further experiments should integrate more realistic alarms relevant to the flying task and the analysis of the flight performance that could also be used to improve the classification algorithm to predict inattentional deafness. Finally, other experiments should investigate the effect of time-on-task on inattentional deafness as previous studies have shown that it can negatively impair auditory processing [63]. The assessment and prediction of cognitive performance is a key issue for any discipline concerned with human operators in the context of safety-critical behavior. Most of the research has focused on the measurement of mental workload but this construct remains difficult to operationalize despite decades of research on the topic. Recent advances in Neuroergonomics have expanded our understanding of neurocognitive processes across different operational domains. We provide a framework to disentangle those neural mechanisms that underpin the relationship between task demand, arousal, mental workload and human performance. This approach advocates targeting those specific mental states that precede a reduction of performance efficacy. A number of undesirable neurocognitive states (mind wandering, effort withdrawal, perseveration, inattentional phenomena) are identified and mapped within a twodimensional conceptual space encompassing task engagement and arousal. We argue that monitoring the prefrontal cortex and its deactivation can index a generic shift from a nominal operational state to an impaired one where performance is likely to degrade. Neurophysiological, physiological and behavioral markers that specifically account for these states are identified. We then propose a typology of neuroadaptive countermeasures to mitigate these undesirable mental states.

REVIEW

INTRODUCTION

A study of mental workload is fundamental to understanding the intrinsic limitations of the human information processing system. This area of research is also crucial for investigation of complex teaming relationships especially when interaction with technology necessitates multitasking or a degree of cognitive complexity.

The Growth of Mental Workload

Mental workload has a long association with human factors research into safety-critical performance [START_REF] Moray | Mental Workload: Its Theory and Measurement[END_REF][START_REF] O'donnell | Workload assessment methodology[END_REF][START_REF] Hancock | Human Mental Workload[END_REF][START_REF] Hancock | Stress, Workload, and Fatigue[END_REF][START_REF] Wickens | Workload[END_REF][START_REF] Young | State of science: mental workload in ergonomics[END_REF]. Forty years have passed since the publication of the seminal collection edited by [START_REF] Moray | Mental Workload: Its Theory and Measurement[END_REF] and the study of mental workload remains an active topic in contemporary human factors research; a keyword search based on Google Scholar listed more than 200,000 articles published on the topic since 2000, see also Table 1 in [START_REF] Young | State of science: mental workload in ergonomics[END_REF]. The significance of human mental workload for those technological trends that are forecast during the second machine age [START_REF] Brynjolfsson | The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies[END_REF] guarantees its importance for human factors research in future decades.

The lineage of mental workload incorporates a number of theoretical perspectives, some of which precede the formalization of the concept itself. Early work linking physiological activation to the prediction of performance [START_REF] Yerkes | The relation of strength of stimulus to rapidity of habit formation[END_REF][START_REF] Duffy | Activation and Behaviour[END_REF] was formalized into an energetical model of attentional resources [START_REF] Kahneman | Attention and Effort[END_REF] that emphasized a dynamic relationship between finite information processing capacity and variable cognitive demands [START_REF] Norman | On data-limited and resource-limited processes[END_REF][START_REF] Navon | On the economy of the human-processing system[END_REF][START_REF] Wickens | The structure of attentional resources[END_REF]. The descriptive quality of the early work on attentional resources was sharpened by cognitive models of control [START_REF] Broadbent | Decision and Stress[END_REF][START_REF] Schneider | Automatic and control processing and attention[END_REF][START_REF] Shallice | Supervisory control of action and thought selection[END_REF]. Hybrid frameworks that place cognitive processes within a resource framework have been hugely influential in the field, such as the multiple resource model [START_REF] Wickens | Processing resources in attention[END_REF][START_REF] Wickens | Multiple resources and performance prediction[END_REF][START_REF] Wickens | Multiple resources and mental work-load[END_REF][START_REF] Wickens | Codes and modalities in multiple resources: a success and a qualification[END_REF] whereas others introduced agentic features, such as dynamic self-regulation and adaptation, within models of human performance [START_REF] Hockey | Energetical issues in research on human information processing[END_REF]Hockey, 1997). For instance, [START_REF] Hancock | A dynamic model of stress and sustained attention[END_REF]'s dynamic adaptive theory (DAT) postulates that the brain seeks resource homeostasis and cognitive comfort. However, environmental stressors can progressively shift individual's adaptive abilities from stability to instability depending on one's cognitive and psychological resources. The DAT is an extension of the Yerkes and Dodson inverted-U law, in a sense that very low (hypostress) and very high (hyperstress) task demands can both degrade the adaptability and consequently impair performance. All these perspectives are united by a characterization of the human information processing system as a finite resource with limited capacity (Kramer and Spinks, 1991).

Mental Workload Measurement

Research into the measurement of mental workload has outstripped the development of theoretical frameworks. Measures of mental workload can be categorized as performancebased, or linked to the process of subjective self-assessment, or associated with psychophysiology or neurophysiology. Each category has specific strengths and weaknesses [START_REF] O'donnell | Workload assessment methodology[END_REF][START_REF] Wierwille | Recommendation for mental workload measurement in a test and evaluation environment[END_REF] and the sensitivity of each measurement type can vary depending on the level of workload experienced by the operator [START_REF] De Waard | The Measurement of Driver Mental Workload[END_REF]. The development of multidimensional measures led inevitably to an inclusive framework for mental workload. The cost of this integration is dissociation between different measures of mental workload, e.g., [START_REF] Yeh | Dissociation of performance and subjective measures of workload[END_REF], and an integrated workload concept that remains poorly defined from a psychometric perspective [START_REF] Matthews | The psychometrics of mental work-load: multiple measures are sensitive but divergent[END_REF].

There are a number of reasons that explain why mental workload is easy to quantify but difficult to operationalize. The absence of a unified framework for human mental workload, its antecedents, processes and measures has generated a highly abstract concept, loosely operationalized and supported by a growing database of inconsistent findings [START_REF] Van Acker | Understanding mental workload: from a clarifying concept analysis toward an implementable framework[END_REF]. The absence of a general explanatory model is complicated by the fact that mental workload, like stress and fatigue [START_REF] Matthews | Towards a transactional ergonomics for driver stress and fatigue[END_REF], is a transactional concept representing an interaction between the capacities of the individual and the specific demands of a particular task. Within this transactional framework, mental workload represents a confluence between inter-individual sources of trait variability (e.g., skill, IQ, personality), intraindividual variation (e.g., emotional states, motivation, fatigue), and the specific configuration of the task under investigation (see also Table 2 in Van Acker et al., 2018).

For the discipline of human factors, the study of mental workload serves two primary functions: (a) to quantify the transaction between operators and a range of task demands or technological systems or operational protocols, and (b) to predict the probability of performance impairment during operational scenarios, which may be safety-critical. One challenge facing the field is delineating a consistent relationship between mental workload measurement and performance quality on the basis of complex interactions between the person and the task. The second challenge pertains to the legacy and utility of limited capacity of resources as a framework for understanding those interactions.

In the following sections, we detail some limitations of mental resources and advocate the adoption of a neuroergonomic approach [START_REF] Sarter | Neuroergonomics: opportunities and challenges of merging cognitive neuroscience with cognitive ergonomics[END_REF]Parasuraman and Rizzo, 2008;[START_REF] Parasuraman | Putting the brain to work: neuroergonomics past, present, and future[END_REF][START_REF] Mehta | Neuroergonomics: a review of applications to physical and cognitive work[END_REF][START_REF] Ayaz | Neuroergonomics: The Brain at Work and in Everyday Life[END_REF] for the study of mental workload and human performance. The neuroergonomic framework emphasizes a shift from limited cognitive resources to characterizing impaired human performance and associated states with respect to neurobiological mechanisms.

Toward a Limit of the Theory of Limited Resources

The concept of resources represents a foundational challenge to the development of a unified framework for mental workload and prediction of human performance. The conception of a limited capacity for information processing is an intuitive one and has been embedded within several successful models, e.g., multiple resources [START_REF] Wickens | Multiple resources and performance prediction[END_REF]. But this notion has always been problematic because resources are a general-purpose metaphor with limited explanatory powers [START_REF] Navon | Resources -a theoretical soupstone?[END_REF] that incorporate both cognitive processes (e.g., attention, memory) and energetical constructs (e.g., mental effort) in ways that are difficult to delineate or operationalize. The allegorical basis of resources almost guarantees an abstract level of explanation [START_REF] Van Acker | Understanding mental workload: from a clarifying concept analysis toward an implementable framework[END_REF] that is accompanied by divergent [START_REF] Matthews | The psychometrics of mental work-load: multiple measures are sensitive but divergent[END_REF], and sometimes contradictory operationalizations [START_REF] Yeh | Dissociation of performance and subjective measures of workload[END_REF][START_REF] Annett | Subjective rating scales: science or art?[END_REF].

For example, the theory of limited cognitive resources predicts that exposure to task demands that are sustained and demanding can impair performance due to resource depletion via selfregulation mechanisms at the neuron-level (i.e., local-sleep state theory, see [START_REF] Van Dongen | A local, bottom-up perspective on sleep deprivation and neurobehavioral performance[END_REF] or compromise access to resources mechanisms [START_REF] Borragan Pedraz | Behavioural Bases and Functional Dynamics of Cognitive Fatigue[END_REF]. However, this type of explanation fails to clarify why nonchallenging tasks, such as passive monitoring (Matthews et al., 2002[START_REF] Matthews | Task engagement, attention, and executive control[END_REF] can promote episodes of mind wandering whereby attention drifts from task-related to task-irrelevant thoughts (Smallwood et al., 2008;Durantin et al., 2015;[START_REF] Smallwood | The science of mind wandering: empirically navigating the stream of consciousness[END_REF]. Although some propositions, such as the theory of "malleable resources" [START_REF] Young | Malleable attentional resources theory: a new explanation for the effects of mental underload on performance[END_REF], have intuited this paradox, this theory is at a highly descriptive level and remains difficult to operationalize.

Similarly, the occurrence of stressful and unexpected operational scenarios is known to impair executive functioning and provoke perseveration, see Dehais et al. (2019) for review. Perseveration is defined as a tendency to continue an action after cessation of the original stimulation, which is no longer relevant to the goal at hand [START_REF] Sandson | Varieties of perseveration[END_REF]. For example, several studies conducted on emergency evacuation situations reported irrational and perseverative behaviors even when tasks were simple and undemanding [START_REF] Proulx | Occupant behaviour and evacuation[END_REF][START_REF] Kobes | Building safety and human behaviour in fire: a literature review[END_REF]. A paradigmatic situation is the one in which people fail to escape from fire because they push the door instead of pulling it. Perseveration can also have devastating consequences during safety-critical tasks, such as aviation [START_REF] O'hare | Pressing-on into deteriorating conditions: an application of behavioral decision theory to pilot decision making[END_REF][START_REF] Orasanu | Errors in Aviation Decision Making: Bad Decisions or Bad Luck? Moffett Field[END_REF][START_REF] Reynal | Investigating pilots decision making when facing an unstabilized approach: an eye-tracking study[END_REF] and in the medical domain [START_REF] Bromiley | Have you ever made a mistake?[END_REF]. This category of performance impairment cannot be explained solely through the prism of limited mental resources. Operators who persist with an erroneous strategy, such as an aircrew who attempt to land their craft at all costs despite bad weather conditions, are generally capable of performing the required actions and tend to invest greater effort even as their task goal becomes difficult or even impossible to achieve (Dehais et al., 2010(Dehais et al., , 2012)).

The concept of limited cognitive resources could explain failures of attention such as inattentional blindness (Brand-D'Abrescia and Lavie, 2008) or deafness (Raveh and Lavie, 2015). Both categories describe an inability to detect unexpected stimuli, such as alarms from the interface (Dehais et al., 2011(Dehais et al., , 2014)), and represent breakdown of selective attention due to the presence of competing demands on the human information processing system. It has been demonstrated that individuals with greater information processing capacity (i.e., higher working memory span) exhibit superior ability with respect to divided and sustained attention [START_REF] Colflesh | Individual differences in working memory capacity and divided attention in dichotic listening[END_REF][START_REF] Unsworth | The nature of individ-ual differences in working memory capacity: active main-tenance in primary memory and controlled search from secondary memory[END_REF], and therefore, should be less susceptible to the effects of inattention during the performance of demanding tasks. However, this hypothesis is contradicted by the absence of any correlation between individual differences in processing capacity and the occurrence of inattentional blindness [START_REF] Bredemeier | Working memory and inattentional blindness[END_REF][START_REF] Beanland | The relationship between sustained inattentional blindness and working memory capacity[END_REF]Kreitz et al., 2016a) or deafness [START_REF] Kreitz | Does working memory capacity predict cross-modally induced failures of awareness?[END_REF]Dehais et al., 2019).

This research suggests that the limited resource model cannot account for critical lapses of attention and executive functioning that are observed under conditions of high mental workload. Therefore, we must go beyond the limitations of the resource concept as an explanatory model of mental workload and turn our attention to the neural underpinnings of attention and behavior (Parasuraman et al., 1999).

RESOURCES: A NEUROERGONOMIC PERSPECTIVE

The last three decades have witnessed a revolution in our understanding of neural mechanisms that are fundamental to attention and human performance. Progress in the field has been driven by the development of advanced and portable neuroimaging techniques, which permit non-invasive examination of the "brain at work." Neuroergonomics is a multidisciplinary field born from these technical innovations that is broadly defined as the study of the human brain in relation to performance at work and in everyday settings (Parasuraman and Rizzo, 2008). The goal of this field is to integrate both theories and principles from ergonomics, neuroscience and human factors in order to provide insights into the relationship between brain function and behavioral outcomes in the context of work and everyday life [START_REF] Rizzo | The brain in the wild: tracking human behavior in natural and naturalistic settings[END_REF]Parasuraman and Rizzo, 2008;[START_REF] Parasuraman | Putting the brain to work: neuroergonomics past, present, and future[END_REF][START_REF] Lees | Translating cognitive neuroscience to the driver's operational environment: a neuroergonomics approach[END_REF][START_REF] Ayaz | Neuroergonomics: The Brain at Work and in Everyday Life[END_REF].

The Multiple Biological Substrates of Mental Resources

The incorporation of neurophysiological measures of mental workload offers a reductive pathway to the reification of resources and those neurobiological states associated with impaired performance. At a fundamental level, the functioning of neurons within the brain is a form of limited resource [START_REF] Beatty | Computation, control and energetics: a biological perspective[END_REF], requiring oxygen and glycose to generate cellular energy in the form of adenosine triphosphate (ATP) while having a very limited capacity to store these energy substrates [START_REF] Saravini | Energy and the brain: facts and fantasies[END_REF]. The same logic holds for ions (e.g., potassium, calcium, sodium) that play a key role in nerve impulses. It is also reasonable to consider neural networks as resources with respect to their supporting glial cells (e.g., astrocytes), which ensure the processing of information [START_REF] Mandrick | Why a comprehensive understanding of mental workload through the measurement of neurovascular coupling is a key issue for neuroergonomics? Front[END_REF]. Understanding the interactions between neurobiological resources with reference to fundamental processes in brain physiology represents a crucial approach within neuroergonomic analysis of mental workload (Parasuraman and Rizzo, 2008;[START_REF] Ayaz | Neuroergonomics: The Brain at Work and in Everyday Life[END_REF].

Brain and Inhibitory Mechanisms

The brain must be considered to be a "noisy" organ, whereby assembly of neurons are constantly responsive to environmental stimulations, see Pandemonium architecture as an early example, such as [START_REF] Selfridge | Pandemonium: a paradigm for learning[END_REF]. Inhibitory mechanisms are implemented to cancel out cerebral noise by mitigating the activation of distracting neuronal assemblies (Polich, 2007). This process may occur at a local level via lateral inhibition, whereby groups of neurons can attenuate the activity of their neighbors in order to be "better heard" [START_REF] Coultrip | A cortical model of winner-take-all competition via lateral inhibition[END_REF]. The same mechanism can also take place via top-down regulation, known as inhibitory control, wherein high-level cortical areas (e.g., prefrontal cortex) reduce task-or stimulus-irrelevant neural activities [START_REF] Munakata | A unified framework for inhibitory control[END_REF]. However, these inhibitory mechanisms can also curtail the capacity of the brain to consider new or alternative information, thus leading to perseveration (Dehais et al., 2019).

An appropriate metaphor is to consider a group led by an authoritarian leader who is totally engaged with one specific goal or strategy and does not listen to alternative viewpoints of other members of the group. Within this metaphor, information processing resources are present (i.e., group members) but are disregarded in the presence of an overriding directive (i.e., the leader). In other words, high mental workload leads to impaired performance, not because of limited resources per se, but because of those neurological mechanisms designed to prioritize a specific goal or directive.

The Non-linear Effects of Neuromodulation

The prefrontal cortex (PFC) is a brain structure often identified as the neurophysiological source of limited resources [START_REF] Posner | The attention system of the human brain[END_REF][START_REF] Parasuraman | Neuroergonomics: research and practice[END_REF][START_REF] Ramsey | Neurophysiological factors in human information processing capacity[END_REF][START_REF] Modi | A decade of imaging surgeons' brain function (part I): terminology, techniques, and clinical translation[END_REF]. The PFC serves a control function during routine cognitive operations, such as: action selection, retrieval/updating in working memory, monitoring and inhibition [START_REF] Ramnani | Anterior prefrontal cortex: insights into function from anatomy and neuroimaging[END_REF][START_REF] Ridderinkhof | Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action se-lection, response inhibition, performance monitoring, and reward-based learning[END_REF]. It is often activated during high levels of cognitive demand (Ayaz et al., 2012;[START_REF] Herff | Mental workload during n-back task-quantified in the prefrontal cortex using fNIRS[END_REF][START_REF] Racz | Increased prefrontal cortex connectivity during cognitive challenge assessed by fNIRS imaging[END_REF][START_REF] Gateau | In silico versus over the clouds: on-thefly mental state estimation of aircraft pilots, using a functional near infrared spectroscopy based passive-BCI[END_REF][START_REF] Fairclough | Neural efficiency and mental workload: locating the red line[END_REF] and dysfunction of this structure is known to degrade performance [START_REF] Sandson | Varieties of perseveration[END_REF][START_REF] Dolcos | Brain systems mediating cognitive interference by emotional distraction[END_REF]. However, the PFC is complex and its function is subject to the quadratic influence of neuromodulation via the influence of noradrenaline and dopamine [START_REF] Arnsten | Stress signalling pathways that impair prefrontal cortex structure and function[END_REF][START_REF] Arnsten | Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses[END_REF]. Noradrenaline is associated with the mediation of arousal [START_REF] Chrousos | Stress and disorders of the stress system[END_REF] whereas dopamine is involved in the processing of reward with regard to the ongoing tasks [START_REF] Schultz | Getting formal with dopamine and reward[END_REF]. Both catecholamines exert an inverted-U relationship with the PFC neurons [START_REF] Vijayraghavan | Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory[END_REF][START_REF] Robbins | The neuropsychopharmacology of fronto-executive function: monoaminergic modulation[END_REF], a reduction of these neurochemicals will depress the firing rate of noradrenergic and dopaminergic PFC neurons (see Figure 1). This mechanism may explain why unstimulating and non-rewarding tasks (e.g., passive supervisory control over a sustained period) can inhibit executive functioning and induce mind wandering. Conversely, excessive levels can also have a deleterious effect by suppressing PFC neuron firing rate [START_REF] Birnbaum | A role for norepinephrine in stress-induced cognitive deficits: α-1-adrenoceptor mediation in the prefrontal cortex[END_REF]. In addition to decreasing the activity of the PFC, dopamine and noradrenaline activate subcortical areas, such as basal ganglia, that trigger automated schemes and initiate automatic responses [START_REF] Wickens | Dopaminergic mechanisms in actions and habits[END_REF]. These automated behaviors have an advantage of speed compared to flexible but slower behaviors generated by the prefrontal cortex [START_REF] Dolan | Emotion, cognition, and behavior[END_REF]. This neurological switch from prefrontal to subcortical areas, is presumed to derive from the early age of humanity to ensure survival [START_REF] Arnsten | Stress signalling pathways that impair prefrontal cortex structure and function[END_REF]. In modern times, it manifests itself as a process of defaulting to well-learned behaviors, which are effective for only operational situations that are simple and familiar. This is the mechanism that promotes perseveration (Dehais et al., 2019) in task scenarios that are complex and novel [START_REF] Staal | Stress, cognition, and human performance: a literature review and conceptual framework[END_REF][START_REF] Ellenbogen | Automatic and effortful emotional informa-tion processing regulates different aspects of the stress response[END_REF] or offer intrinsic, short-term rewards, e.g., landing at all costs after a long transatlantic flight [START_REF] Causse | Affective decision making under uncertainty during a plausible aviation task: an fMRI study[END_REF]. These fundamental neurological mechanisms illustrate that impaired operational performance cannot be simply explained in terms of limited resources, such as a concentration of dopamine, but must be viewed from a neuroergonomic perspective that emphasizes the complexity of interactions between brain areas that evolved over thousands of years.

Attentional Dynamics and Dominance Effects

The existence of information processing resources can also be conceptualized as functional attentional networks in the brain. Michael Posner was the first to pioneer a network approach to the operationalization of resources in the early days of neuroimaging [START_REF] Posner | Imaging resources[END_REF]. His influential analysis [START_REF] Posner | The attention system of the human brain[END_REF][START_REF] Posner | Attentional networks[END_REF][START_REF] Petersen | The attention system of the human brain: 20 years after[END_REF][START_REF] Posner | Imaging attention networks[END_REF] described how specific networks were dedicated to the particular functions of attentional regulation, e.g., alerting, orientation, focus. This conceptualization developed into the delineation of a dorsal fronto-parietal network (e.g., intraparietal cortex, superior frontal cortex) that supports focused attention on specific taskrelevant stimuli and a corresponding ventral fronto-parietal network (e.g., temporo-parietal cortex, inferior frontal cortex) in the right hemisphere, which activates in a bottom-up fashion to reorientate attention to interruptive stimuli [START_REF] Corbetta | Control of goal-directed and stimulusdriven attention in the brain[END_REF][START_REF] Corbetta | The reorienting system of the human brain: from environment to theory of mind[END_REF]. Under nominal conditions, interaction between the dorsal and the ventral pathways ensure optimal trade-off between those attentional strategies associated with exploitation and exploration. However, under conditions of high task demand or stress or fatigue, this mechanism may become biased toward dominance of the dorsal over the ventral network, leading to attentional phenomena associated with inflexibility [START_REF] Todd | Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness[END_REF]Durantin et al., 2017;[START_REF] Edworthy | The impact of workload on the ability to localize audible alarms[END_REF]Dehais et al., 2019a). A similar dynamic of bias and dominance is apparent in the relationship between the dorsal and ventral pathways and the default mode network [START_REF] Andrews-Hanna | The default network and self-generated thought: component processes, dynamic control, and clinical relevance[END_REF], which is associated with mindwandering, spontaneous thoughts and disengagement from taskrelated stimuli [START_REF] Fox | The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes[END_REF].

Performance Monitoring and Effort Withdrawal

The capacity of the brain to monitor performance quality and progress toward task goals is another important function of the PFC during operational performance. The posterior medial frontal cortex (pMFC) is a central hub in a wider network devoted to performance monitoring, action selection and adaptive behavior [START_REF] Ullsperger | Neurophysiology of performance monitoring and adaptive behavior[END_REF][START_REF] Ninomiya | Performance monitoring in the medial frontal cortex and related neural networks: from monitoring self actions to understanding others' actions[END_REF]. The pMFC is sensitive to error and failure to achieve a task goal [START_REF] Ullsperger | When goals are missed: dealing with self-generated and externally induced failure[END_REF]; the detection of failure represents an important cue for compensatory strategies, such as increased investment of mental effort (Hockey, 1997). This network is particularly important when the level of task demand experienced by the operator is associated with a high rate of error and increased probability of failure. The model of motivational intensity [START_REF] Richter | Three decades of research on motivational intensity theory: what we have learned about effort and what we still don't know[END_REF] predicts that effort is withdrawn from task performance if success likelihood is appraised to be FIGURE 1 | The dopamine pathway exerts a quadratic control over the PFC. A low or a high release of this neurochemical depresses PFC activation whereas an adequate concentration ensures optimal executive functioning [START_REF] Vijayraghavan | Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory[END_REF][START_REF] Robbins | The neuropsychopharmacology of fronto-executive function: monoaminergic modulation[END_REF]. These neurobiological considerations bring interesting highlights to understand the mechanisms underlying the Yerkes and Dodson inverted-U law and the dynamic adaptability theory [START_REF] Hancock | A dynamic model of stress and sustained attention[END_REF]. They also provide a relevant prospect to relate motivational aspects to behavioral responses. The noradrenaline pathway mediates the PFC activity and executive functioning in a similar fashion (see Aston- [START_REF] Aston-Jones | An integrative theory of locus coeruleusnorepinephrine function: adaptive gain and optimal performance[END_REF].

very low [START_REF] Hopstaken | A multifaceted investigation of the link between mental fatigue and task disengagement[END_REF]; similarly, models of behavioral self-regulation [START_REF] Carver | On the structure of behavioural selfregulation[END_REF] argue that task goals can be adjusted downward (i.e., lower levels of performance are tolerated as acceptable) or even abandoned if goal attainment is perceived to be impossible. There is evidence that increased likelihood of failure is associated with deactivation of the PFC [START_REF] Durantin | Using near infrared spectroscopy and heart rate variability to detect mental overload[END_REF]Ewing et al., 2016;[START_REF] Fairclough | Neural efficiency and mental workload: locating the red line[END_REF], for operational performance where failure can often jeopardize the safety of oneself and others, increased likelihood of failure can also provoke strong emotional responses that are associated with stress and cognitive interference [START_REF] Sarason | Anxiety, cognitive interference and performance[END_REF], which can function as distractors from task activity in their own right [START_REF] Dolcos | Brain systems mediating cognitive interference by emotional distraction[END_REF][START_REF] Qin | Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex[END_REF][START_REF] Gärtner | Working memory-related frontal theta activity is decreased under acute stress[END_REF].

This neuroergonomic approach provides a biological basis upon which to develop a concept of limited human information processing, with respect to competing neurological mechanisms, the influence of neuromodulation in the prefrontal cortex and antagonist directives between different functional networks in the brain. The prominence of inhibitory control coupled with competition between these neural networks delineate a different category of performance limitations during extremes of low vs. high mental workload, i.e., simultaneous activation of functional networks with biases toward mutually exclusive stimuli (external vs. internal) or contradictory directives (focal attention vs. reorientation of attention).

UNDERSTANDING PERFORMANCE RELATED MENTAL STATES

The previous sections have highlighted the complexity of those brain dynamics and networks that can introduce inherent limitations on human information processing. On the basis of this analysis, it is reasonable to target neurophysiological states and their associated mechanisms that account for impaired human performance (see [START_REF] Prinzel | Research on Hazardous States of Awareness and Physiological Factors in Aerospace Operations[END_REF]. This review has identified a number of suboptimal neurocognitive states that are predictive of degraded performance such as: mind wandering, effort withdrawal, perseveration, inattentional blindness and deafness. These states may be conceptually mapped along orthogonal dimensions of task engagement and arousal (Figure 2). Engagement is defined as an effortful investment in the service of task/cognitive goals (Pope et al., 1995;Matthews et al., 2002;Stephens et al., 2018), whereas FIGURE 2 | Performance, arousal and task engagement: the green zone conceptually describes the operator's "comfort zone" where performance is optimal. The degraded mental states are mapped across a "task engagement" axis and an "arousal" axis. Interestingly, this point of view makes it possible to link the notion of engagement and degraded behavior in a simple way.

arousal represents a state of physiological readiness to respond to external contingencies (Pribram and McGuinness, 1975).

The Transactional Dimensions of Engagement and Arousal

The rationale for considering the dimension of task engagement is that performance is driven by goals and motivation [START_REF] Bedny | Activity theory as a basis for the study of work[END_REF][START_REF] Fairclough | Capturing user engagement via psychophysiology: measures and mechanisms for biocybernetic adaptation[END_REF][START_REF] Leontiev | Activity and Consciousness[END_REF]. Goal-oriented cognition theorists argue for the existence of mechanisms dedicated to maintain engagement [START_REF] Atkinson | Some neglected variables in contemporary conceptions of decision and performance[END_REF], which are associated with an activation of an executive [START_REF] Baddeley | Working memory[END_REF] or task-positive network [START_REF] Harrivel | Monitoring attentional state with fnirs[END_REF] within which the dorsolateral prefrontal cortex (DLPFC) exerts a crucial role [START_REF] Goldman-Rakic | Handbook of Physiology. The Nervous System[END_REF][START_REF] Curtis | Persistent activity in the prefrontal cortex during working memory[END_REF]. This structure plays a key role in the maintenance and updating of information that is relevant for ongoing task performance. The same structure interacts with dorsal and ventral attentional pathways to shift and focus attention to the most relevant stream of task-related information [START_REF] Johnson | Neural substrates for dividing and focusing attention between simultaneous auditory and visual events[END_REF]. It is argued that human performance can be assessed in the context of a continuum of task engagement, ranging from disengagement (effort withdrawal, mind wandering) to highengagement (perseveration, inattentional phenomena [START_REF] Lee | Dynamics of driver distraction: the process of engaging and disengaging[END_REF].

Arousal makes an important contribution to the conceptual space illustrated in Figure 2 because it modulates the homeostasis of the executive (see [START_REF] Arnsten | Stress signalling pathways that impair prefrontal cortex structure and function[END_REF] for a review) and attentional networks (see Coull, 1998 and[START_REF] Aston-Jones | An integrative theory of locus coeruleusnorepinephrine function: adaptive gain and optimal performance[END_REF][START_REF] Aston-Jones | An integrative theory of locus coeruleusnorepinephrine function: adaptive gain and optimal performance[END_REF] for review) via the dopaminergic and noradrenergic pathways. For instance, both extremes of low [START_REF] Harrivel | Monitoring attentional state with fnirs[END_REF]Durantin et al., 2015) and high arousal can disengage the DLPFC [START_REF] Goldberg | Uncoupling cognitive workload and prefrontal cortical physiology: a PER rCBF study[END_REF][START_REF] Arnsten | Stress signalling pathways that impair prefrontal cortex structure and function[END_REF][START_REF] Qin | Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex[END_REF][START_REF] Causse | Affective decision making under uncertainty during a plausible aviation task: an fMRI study[END_REF][START_REF] Durantin | Using near infrared spectroscopy and heart rate variability to detect mental overload[END_REF][START_REF] Fairclough | Neural efficiency and mental workload: locating the red line[END_REF] and impair performance (see Figure 3 for summary). Similarly, low [START_REF] Dehais | Monitoring auditory attention with a 6 dry-electrode EEG system in real flight conditions[END_REF] and high levels of arousal [START_REF] Hancock | A dynamic model of stress and sustained attention[END_REF][START_REF] Tracy | The effect of autonomic arousal on attentional focus[END_REF][START_REF] Pecher | The effects of inattention on selective attention: how sad-ness and ruminations alter attention functions evaluated with the attention network test[END_REF] can alter the interactions between the dorsal and ventral attentional networks and indistinctly that lead either to inattentional phenomena (Molloy et al., 2015;[START_REF] Todd | Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness[END_REF] or effort withdrawal [START_REF] Oei | Stress shifts brain activation towards ventral 'affective'areas during emotional distraction[END_REF]Dehais et al., 2015).

Monitoring Performance Through Degraded Mental States

Table 1 presents a mapping between extremes of high and low engagement and arousal, their related neurocognitive states and how these states may be operationalized using neurophysiological measures in the laboratory and the field. Monitoring the activation and deactivation of the DLPFC represents a promising generic avenue to predict impaired performance across diverse states such as: mind wandering [START_REF] Christoff | Experience sampling during fmri reveals default network and executive system contributions to mind wandering[END_REF][START_REF] Harrivel | Monitoring attentional state with fnirs[END_REF], effort withdrawal [START_REF] Ayaz | Detecting cognitive activity related hemodynamic signal for brain computer interface using functional near infrared spectroscopy[END_REF][START_REF] Izzetoglu | Functional brain imaging using near-infrared technology[END_REF][START_REF] Durantin | Using near infrared spectroscopy and heart rate variability to detect mental overload[END_REF][START_REF] Modi | Temporal stress in the operating room: brain engagement promotes "coping" and disengagement prompts "choking[END_REF][START_REF] Fairclough | FNIRS activity in the prefrontal cortex and motivational intensity: impact of working memory load, financial reward, and correlation-based signal improvement[END_REF][START_REF] Fairclough | Neural efficiency and mental workload: locating the red line[END_REF] and perseveration (Dehais et al., 2019). However, other neurological networks and sites should be considered as part of this analysis. Mind wandering is characterized by the concomitant activation of the default network, which includes the median prefrontal cortex [START_REF] Christoff | Experience sampling during fmri reveals default network and executive system contributions to mind wandering[END_REF][START_REF] Harrivel | Monitoring attentional state with fnirs[END_REF] and areas of the parietal cortex [START_REF] Christoff | Experience sampling during fmri reveals default network and executive system contributions to mind wandering[END_REF].

Secondly, attentional states, such as inattentional deafness and blindness, result from the activation of an attentional network involving the inferior frontal gyrus, the insula and the superior medial frontal cortex [START_REF] Tombu | A unified attentional bottleneck in the human brain[END_REF][START_REF] Callan | Disruption in neural phase synchrony is related to identification of inattentional deafness in real-world setting[END_REF]Dehais et al., 2019). These regions represent potential candidates upon which to identify attentional failures that can be complemented by monitoring dedicated primary perceptual (see [START_REF] Hutchinson | Toward a theory of consciousness: a review of the neural correlates of inattentional blindness[END_REF], for a review) and integrative cortices (Molloy et al., 2015), as well as performing connectivity analyses [START_REF] Callan | Disruption in neural phase synchrony is related to identification of inattentional deafness in real-world setting[END_REF]. In addition, inattentional phenomena may result from the suppression of activity in the right temporo-parietal junction (TPJ), a part of the ventral network, which also blocks reorientation of attention and the processing of unexpected stimuli [START_REF] Marois | The neural fate of consciously perceived and missed events in the attentional blink[END_REF][START_REF] Todd | Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness[END_REF].

Thirdly, measures of arousal are used to characterize high engagement and delineate distinct mental states within the category of low task engagement (Figure 2). Heart rate (HR) and heart rate variability (HRV) can be used to assess the activation or co-activation of the two branches of the autonomous nervous system (i.e., sympathetic or parasympathetic) [START_REF] Fairclough | Fundamentals of physiological computing[END_REF][START_REF] Qin | Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex[END_REF][START_REF] Kreibig | Autonomic nervous system activity in emotion: a review[END_REF]. For instance, fluctuations in HR are commonly observed during high task engagement and high arousal [START_REF] De Rivecourt | Cardiovascular and eye activity measures as indices for momentary changes in mental effort during simulated flight[END_REF][START_REF] Qin | Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex[END_REF]Dehais et al., 2011). Moreover, spectral analyses computed over the EEG signal revealed that shifts in parietal alpha [8][9][10][11][12] Hz and frontal theta [4][5][6][7][8] Hz are relevant markers of arousal (see Borghini et al., 2014, for a review, Senoussi et al., 2017).

Finally, behavioral metrics such as ocular behavior can complement the detection of low and high levels of engagement (Table 1). Hence, eye tracking metrics (e.g., fixation and dwell times, saccadic activity, blink rate) can be used to characterize mind wandering [START_REF] He | Mind wandering behind the wheel: performance and oculomotor correlates[END_REF][START_REF] Pepin | Detection of mind-wandering in driving: contributions of cardiac measurement and eye movements[END_REF], inattentional blindness [START_REF] Thomas | Eye-tracking and individual differences in off-normal event detection when flying with a synthetic vision system display[END_REF]Wickens, 2005), perseveration [START_REF] Régis | Formal detection of atten-tional tunneling in human operator-automation interactions[END_REF], focal vs. diffused attention [START_REF] Goldberg | Computer interface evaluation using eye movements: methods and constructs[END_REF][START_REF] Regis | Human Factors: a view from an integrative perspective[END_REF]Dehais et al., 2015), and to characterize the level of attentional engagement in a visual task [START_REF] Cowen | An eye movement analysis of web page usability[END_REF][START_REF] Tsai | Task performance and eye activity: predicting be-havior relating to cognitive workload[END_REF].

These metrics provide some relevant prospects to identify the targeted deleterious mental states for especially for field studies as long as portable devices are concerned. It is worth noting that the extraction of several features (e.g., time and frequency domains) and the use of several devices is a way for robust diagnosis. Moreover, contextual information (e.g., time of the day, time on task) should be considered as well as actions on the user interface and system parameters (e.g., flight parameters) if available so as to better quantify the user's mental state.

SOLUTIONS TO MITIGATE DEGRADED PERFORMANCE

This review has identified some undesired mental states that account for degraded performance (see section "Understanding Performance Related Mental States" and "Solutions to Mitigate Degraded Performance"). A crucial step is to design cognitive countermeasures to prevent the occurrence of these phenomena. The formal framework that we proposed (see Table 1) paves the way to design neuro-adaptive technology for augmented cognition and enhanced human-machine teaming [START_REF] Peysakhovich | The neuroergonomics of aircraft cockpits: the four stages of eye-tracking integration to enhance flight safety[END_REF][START_REF] Krol | Cognitive and affective probing: a tutorial and review of active learning for neuroadaptive technology[END_REF][START_REF] Stamp | A neuroadaptive approach to analgesic gaming[END_REF]. The implementation of such neuro-adaptive technology relies on a pipeline that consists of a signal acquisition step, a preprocessing step to improve the signal-to-noise ratio, a feature extraction step, a classification step to diagnose the current mental states, and lastly an adaptation step (Zander and Kothe, 2011;Roy and Frey, 2016). This last step implies the implementation of formal decisional unit [START_REF] Gateau | In silico versus over the clouds: on-thefly mental state estimation of aircraft pilots, using a functional near infrared spectroscopy based passive-BCI[END_REF] that dynamically close the loop by triggering the most appropriate cognitive countermeasures [START_REF] May | Driver fatigue: the importance of identifying causal factors of fatigue when considering detection and countermeasure technologies[END_REF]. There are currently three types of mitigating solutions to instigate a change in behaviors via: (1) adaptation of the user interface, (2) adaptation of the task and of the level automation, and the (3) "neuroadaptation" of the end-users.

Adaptation of the User Interface

The first category of neuroadaptive countermeasure consists of triggering new types of notifications via the user interface to alert of impeding hazards. The design of these countermeasures is generally grounded on neuroergonomics basis so that these warning can reach awareness when other means have failed. Following this perspective, Dehais et al. (2010Dehais et al. ( , 2012)), Imbert et al. (2014) andSaint Lot et al. (2020) have demonstrated that very brief (∼200 ms) and located information removal was an efficient mean to mitigate perseveration by forcing disengagement from non-relevant tasks. [START_REF] Souza | Towards human-robot interaction: a framing effect experiment[END_REF] demonstrated that digital nudging (see [START_REF] Weinmann | Digital nudging[END_REF] could be used to mitigate poor decision making and cognitive bias associated with perseveration. Imbert et al. (2014) designed attention-grabbing stimuli grounded on vision research and demonstrated that yellow chevrons pulsing at a cycle of 1 Hz can re-orientate attention and mitigate inattentional blindness. [START_REF] Jahanpour | Giving a hand to pilots with animated alarms based on mirror system functioning[END_REF] has explored the design of pop-up videos that display the gestures to be performed by exploiting the property of mirror neurons. This visual "motor cue" approach was tested and drastically reduced reaction time to alerts during complex situations and appears to be a promising method to prevent effort withdrawal [START_REF] Causse | Mirror neuron based alerts for control flight into terrain avoidance[END_REF]. In a similar fashion, [START_REF] Navarro | Objective and subjective evaluation of motor priming and warning systems applied to lateral control assistance[END_REF] implemented a force-feedback steering wheel to prime the motor response from the driver. This device was found to optimize drivers' behavior during demanding driving scenario. This latter study demonstrated [START_REF] Scholte | The influence of inattention on the neural correlates of scene segmentation[END_REF] N100 in STG and STS (Molloy et al., 2015) fMRI MPFC and PCC [START_REF] Mason | Wandering minds: the default network and stimulusindependent thought[END_REF][START_REF] Christoff | Experience sampling during fmri reveals default network and executive system contributions to mind wandering[END_REF][START_REF] Fox | The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes[END_REF] PTPC [START_REF] Christoff | Experience sampling during fmri reveals default network and executive system contributions to mind wandering[END_REF] dorsal ACC and DLPFC [START_REF] Christoff | Experience sampling during fmri reveals default network and executive system contributions to mind wandering[END_REF] RPFC, DACC, insula, TPC, SSC & LG [START_REF] Fox | The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes[END_REF] MTL [START_REF] Fox | The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes[END_REF] DLPFC [START_REF] Birnbaum | A role for norepinephrine in stress-induced cognitive deficits: α-1-adrenoceptor mediation in the prefrontal cortex[END_REF][START_REF] Qin | Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex[END_REF], IFG and amygdala [START_REF] Oei | Stress shifts brain activation towards ventral 'affective'areas during emotional distraction[END_REF] DLPFC [START_REF] Nagahama | The cerebral correlates of different types of perseveration in the Wisconsin Card Sorting Test[END_REF][START_REF] Causse | Affective decision making under uncertainty during a plausible aviation task: an fMRI study[END_REF] ACC [START_REF] Lie | Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test[END_REF][START_REF] Causse | Affective decision making under uncertainty during a plausible aviation task: an fMRI study[END_REF] bilateral temporo-parietal junction [START_REF] Lie | Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test[END_REF] fronto-parietal network (including DLPFC) [START_REF] Beck | Neural correlates of change detection and change blindness[END_REF][START_REF] Pessoa | Neuroimaging studies of attention and the processing of emotion-laden stimuli[END_REF] temporo-parietal junction [START_REF] Marois | The neural fate of consciously perceived and missed events in the attentional blink[END_REF][START_REF] Todd | Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness[END_REF] activation of DMN [START_REF] Weissman | The neural bases of momentary lapses in attention[END_REF] IFG and SMFC, IFG-STG connectivity (Durantin et al., 2017) fNIRS MPFC [START_REF] Harrivel | Monitoring attentional state with fnirs[END_REF]Durantin et al., 2015) DLPFC [START_REF] Harrivel | Monitoring attentional state with fnirs[END_REF] DLPFC [START_REF] Durantin | Using near infrared spectroscopy and heart rate variability to detect mental overload[END_REF][START_REF] Fairclough | Neural efficiency and mental workload: locating the red line[END_REF] Left PFC [START_REF] Kalia | Acute stress attenuates cognitive flexibility in males only: an fNIRS examination[END_REF] occipital lobe [START_REF] Kojima | Hemodynamic change in occipital lobe during visual search: visual attention allocation measured with NIRS[END_REF] EEG α power over occipital sites (Gouraud et al., 2018) (α and (β power (auditory stimuli) (Braboszcz and Delorme, 2011) (θ power (auditory stimuli) (Braboszcz and Delorme, 2011) N1 [START_REF] Kam | Slow fluctuations in attentional control of sensory cortex[END_REF] N4 [START_REF] O'connell | Uncovering the neural signature of lapsing attention: electrophysiological signals predict errors up to 20 s before they occur[END_REF] P1 [START_REF] Kam | Slow fluctuations in attentional control of sensory cortex[END_REF] P2 (Braboszcz and Delorme, 2011) P3 [START_REF] Schooler | Meta-awareness, perceptual decoupling and the wandering mind[END_REF] frontal θ power [START_REF] Gärtner | Working memory-related frontal theta activity is decreased under acute stress[END_REF] P3 [START_REF] Dierolf | Influence of acute stress on response inhibition in healthy men: an ERP study[END_REF] frontal (θ power and parietal (α power (Ewing et al., 2016;[START_REF] Fairclough | The effect of task demand and incentive on neurophysiological and cardiovascular markers of effort[END_REF] Event Related Coherence between midfrontal and right-frontal electrodes (Carrillo-De-La-Pena and García-Larrea, 2007) (α band power [START_REF] Mathewson | To see or not to see: prestimulus α phase predicts visual awareness[END_REF] P1 [START_REF] Pourtois | Time course of brain activity during change blindness and change awareness: performance is predicted by neural events before change onset[END_REF][START_REF] Mathewson | To see or not to see: prestimulus α phase predicts visual awareness[END_REF] P2 [START_REF] Mathewson | To see or not to see: prestimulus α phase predicts visual awareness[END_REF] N170 [START_REF] Pourtois | Time course of brain activity during change blindness and change awareness: performance is predicted by neural events before change onset[END_REF] P3 [START_REF] Pourtois | Time course of brain activity during change blindness and change awareness: performance is predicted by neural events before change onset[END_REF][START_REF] Mathewson | To see or not to see: prestimulus α phase predicts visual awareness[END_REF] N1 [START_REF] Callan | Disruption in neural phase synchrony is related to identification of inattentional deafness in real-world setting[END_REF]Dehais et al., 2019a,b) P3 [START_REF] Puschmann | Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes[END_REF]Scannella et al., 2013;[START_REF] Giraudet | P300 eventrelated potential as an indicator of inat-tentional deafness?[END_REF]Dehais et al., 2019a,b) (α power in IFG (Dehais et al., 2019a) phase synchony in (α and (θ frequencies [START_REF] Callan | Disruption in neural phase synchrony is related to identification of inattentional deafness in real-world setting[END_REF] engagement ratio [START_REF] Dehais | EEG-engagement index and auditory alarm misperception: an inattentional deafness study in actual flight condition[END_REF] ANS activity ECG heart rate variability [START_REF] Smith | Boredom: a review[END_REF] heart rate [START_REF] Smith | Boredom: a review[END_REF] minimum LF/HF ratio [START_REF] Durantin | Using near infrared spectroscopy and heart rate variability to detect mental overload[END_REF] minimum pre-ejection period [START_REF] Mallat | A curvilinear effect of mental workload on mental effort and behavioral adaptability: an approach with the pre-ejection period[END_REF] heart rate (Dehais et al., 2011) heart rate (Dehais et al., 2014) Skin conductance skin conductance [START_REF] Smith | Boredom: a review[END_REF] 

Ocular activity

Eye-tracking number of blinks [START_REF] Uzzaman | The eyes know what you are thinking: eye movements as an objective measure of mind wandering[END_REF] pupil diameter [START_REF] Grandchamp | Oculometric variations during mind wandering[END_REF] gaze fixity [START_REF] He | Mind wandering behind the wheel: performance and oculomotor correlates[END_REF][START_REF] Pepin | Detection of mind-wandering in driving: contributions of cardiac measurement and eye movements[END_REF] maximum pupil diameter [START_REF] Peavler | Pupil size, information overload, and performance differences[END_REF] explore/exploit ratio (Dehais et al., 2015) switching rate between areas of interest [START_REF] Régis | Formal detection of atten-tional tunneling in human operator-automation interactions[END_REF] fixation duration on irrelevant areas of interest [START_REF] Régis | Formal detection of atten-tional tunneling in human operator-automation interactions[END_REF] saccades fixation duration [START_REF] Cowen | An eye movement analysis of web page usability[END_REF][START_REF] Tsai | Task performance and eye activity: predicting be-havior relating to cognitive workload[END_REF][START_REF] Regis | Human Factors: a view from an integrative perspective[END_REF] fixated areas of interest [START_REF] Thomas | Eye-tracking and individual differences in off-normal event detection when flying with a synthetic vision system display[END_REF] pupil diameter [START_REF] Causse | The role of cognitive and perceptual loads in inattentional deafness[END_REF] The blue and pink color-code respectively tags states induced by low and high task demand. RIFG, right inferior frontal gyrus; DMN, default mode network, MFG, middle frontal gyrus; ACC, anterior cingulate cortex; LFC, lateral frontal cortex; STC, superior temporal cortex; PFC, prefrontal cortex; PCC, posterior cingulate cortex; MPFC, medial prefrontal cortex; PTPC, posterior temporoparietal cortex; DLPFC, dorsolateral prefrontal cortex; RPFC, rostrolateral prefrontal cortex; DACC, dorsal anterior cingulate cortex; TPC, temporopolar cortex; SSC, secondary somatosensory cortex; LG, lingual gyrus; MTL, medial temporal lobe; SMFC, superior medial frontal cortex; IFG, inferior frontal gyrus; STS, superior temporal sulcus, STG, superior temporal gyrus.

how tactile notifications can alert human operators of impeding hazards [START_REF] Lewis | Effect of tactile location, pulse duration, and interpulse interval on perceived urgency[END_REF][START_REF] Russell | Pilot Cueing Synergies for Degraded Visual Environments[END_REF], especially when other sensory channels of information (e.g., visual stream) are saturated [START_REF] Elliott | Development of tactile and haptic systems for US infantry navigation and communication[END_REF]. However, there are potential limits to the effectiveness of these types of notifications and stimulation [START_REF] Murphy | Out of touch? Visual load induces inattentional numbness[END_REF][START_REF] Riggs | Tactile, visual, and crossmodal visual-tactile change blindness: the effect of transient type and task demands[END_REF].

Other research indicates that multimodal alerts (Giraudet et al., 2015a;[START_REF] Gaspar | Evaluating driver drowsiness countermeasures[END_REF] increase the likelihood of attentional capture. In addition, [START_REF] Lee | Evaluation of a motion seat system for reduction of a driver's passive task-related (tr) fatigue[END_REF] designed a motion seat that modifies the driver's seat position and posture across time to diminish the potential deleterious effect of mind wandering. Similar concepts have been applied to aviation (Zaneboni and Saint-Jalmes, 2016).

Task and Automation Adaptation

The second category of neuroadaptive countermeasure is the dynamic reallocation of tasks between humans and automation to maintain the performance efficacy of the operators [START_REF] Freeman | Evaluation of an adaptive automation system using three EEG indices with a visual tracking task[END_REF]Parasuraman et al., 1999;Prinzel et al., 2000;[START_REF] Scerbo | Adaptive automation[END_REF]Stephens et al., 2018). The underlying concept in this case is to optimize human-human or human(s)-system(s) cooperation according to criteria of availability and skills of human and artificial agents (Gateau et al., 2016). For instance, Prinzel et al. (2000) utilized the continuous monitoring of brain waves that could be used to drive the level of automation and optimize the user's level of task engagement. Similarly, some authors managed to optimize air traffic controllers' task demand by triggering different levels of assistance (Aricò et al., 2016;[START_REF] Di Flumeri | Brain-computer interface-based adaptive automation to prevent out-of-the-loop phenomenon in air traffic controllers dealing with highly automated systems[END_REF]. These latter studies reported better human performance when neuro-adaptive automation was switched on compared to other conditions. Gateau et al. (2016) implemented an online attentional state estimator coupled with a stochastic decision framework to dynamically adapt authority sharing between human and robots in a search and rescue scenario to prevent effort withdrawal on the part of the human. In a more extreme fashion, [START_REF] Callan | The brain is faster than the hand in split-second intentions to respond to an impending hazard: a simulation of neuroadaptive automation to speed recovery to perturbation in flight attitude[END_REF] revealed that it is possible to decode user motor intention so automation can perform on behalf of the user to drastically reduce the response time in emergency situations (e.g., collision with terrain). In the future, it is assumed that aircraft designers will implement adaptive automation technology that takes over from the pilots by either inhibiting their inputs on the flight deck or performing automated evasive actions (e.g., automatic pullup) to prevent from perseveration. A complementary approach is to modulate task difficulty to maintain the task challenging but achievable while preventing the occurrence of task withdrawal (Ewing et al., 2016) or mind wandering [START_REF] Freeman | An evaluation of an adaptive automation system using a cognitive vigilance task[END_REF]Ewing et al., 2016). The online modulation of the tasks does not necessarily reduce the difficulty of the task. For instance, Verwey and colleagues demonstrated that the addition of an entertaining task while driving improved the operator's ability to maintain their level of task engagement over long period of time [START_REF] Verwey | Preventing drowsiness accidents by an alertness maintenance device[END_REF]. Similarly, it has been suggested that switching the types of tasks presented to the user can prevent the deleterious effect of fatigue and disengagement [START_REF] Hockey | A motivational control theory of cognitive fatigue[END_REF].

Neuro-Adaptation of the End-User(s)

The third and final category aims to warn the users of their mental state and "stimulate" neurological activity in order to augment performance. One of the most promising approach relies on the implementation of Neurofeedback (see [START_REF] Gruzelier | EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants[END_REF]Enriquez-Geppert et al., 2017 for reviews). The principle of the latter technique is to provide feedback in real-time to the users of their mental states in the form of a visual, tactile or auditory stimulus. The users can utilize these signals learn to regulate their brain activity and in return improve their executive [START_REF] Enriquez-Geppert | Boosting brain functions: improving executive functions with behavioral training, neurostimulation, and neurofeedback[END_REF], mental flexibility (Enriquez-Geppert et al., 2014), and attentional abilities [START_REF] Egner | Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans[END_REF] as well as enhance their task engagement (Egner and Gruzelier, 2004). However, the effects of this approach on mind wandering remain unclear [START_REF] Gonçalves | Neuromodulating attention and mind-wandering processes with a single session real time EEG[END_REF]. Transcranial direct current stimulation (tDCS) represents a technique of neuromodulation that can be used to boost executive functioning (see [START_REF] Callan | The use of tDCS and rTMS methods in neuroergonomics[END_REF]Cinel et al., 2019). This portable device can be combined with EEG and fNIRS and used in the context of real-life task performance for the purpose of on-line neuromodulation [START_REF] Mckendrick | Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): expanding vistas for neurocognitive augmentation[END_REF][START_REF] Gateau | In silico versus over the clouds: on-thefly mental state estimation of aircraft pilots, using a functional near infrared spectroscopy based passive-BCI[END_REF]. For example, a number of studies support the position that neurostimulation can: enhance mental flexibility and mitigate perseveration [START_REF] Leite | Task-specific effects of tDCS-induced cortical excitability changes on cognitive and motor sequence set shifting performance[END_REF][START_REF] Jeon | Improvement of the working memory and naming by transcranial direct current stimulation[END_REF], improve visual attention [START_REF] Falcone | Transcranial direct current stimulation augments perceptual sensitivity and 24-hour retention in a complex threat detection task[END_REF][START_REF] Nelson | Augmenting visual search performance with transcranial direct current stimulation (tDCS)[END_REF], improve executive functioning in multitasking situations [START_REF] Nelson | The effects of transcranial direct current stimulation (tDCS) on multitasking throughput capacity[END_REF] and increase alertness [START_REF] Mcintire | A comparison of the effects of transcranial direct current stimulation and caffeine on vigilance and cognitive performance during extended wakefulness[END_REF][START_REF] Nelson | Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS)[END_REF]. There are other types of environmental stimulation such as vivid light exposure, especially during night flights, which can promote an optimal level of alertness (see [START_REF] Anund | Countermeasures for Fatigue in Transportation: A Review of Existing Methods for Drivers on Road, Rail, Sea And In Aviation[END_REF] without altering flight crew performance (see [START_REF] Caldwell | Fatigue countermeasures in aviation[END_REF]. Promising results have also been highlighted by using light exposure in cars [START_REF] Taillard | In-car nocturnal blue light exposure improves motorway driving: a randomized controlled trial[END_REF]. The use of light exposure and tDCS should be considered with caution as there is a need to investigate the very long-term efficiency and potential side effects. Alternatively, some authors proposed to use cold-air jet to decrease hypovigilance [START_REF] Reyner | Evaluation of 'in-car'countermeasures to sleepiness: cold air and radio[END_REF], but with contradictory findings.

Synthesis of Neuro-Adaptive Solutions

The following illustration (see Figure 4) depicts the three families of neuro-adaptive based solutions to mitigate performance impairment.

The three types of neuroadaptive solutions offer promising prospects to mitigate the onset and likelihood of undesirable neurocognitive states. However, they should be delivered in a transparent, meaningful, and timely manner (i.e., when needed) so they are relevant and understood [START_REF] Dorneich | Human performance risks and benefits of adaptive systems on the flight deck[END_REF][START_REF] Sebok | Alerts on the nextgen flight deck[END_REF], otherwise these types of intervention have the potential for undesirable consequences, such as performance impairment and reduced trust in technology; this point is particularly true for adaptive automation solutions that take over from humans, especially under critical scenarios (see [START_REF] Dorneich | Human performance risks and benefits of adaptive systems on the flight deck[END_REF]Dehais et al., 2019). One solution is to combine different families of neuroadaptive cognitive countermeasures to maximize their efficiency. Ideally, we would argue to use a gradient of solutions such as (1) the continuous display of the users' mental states via neurofeedback techniques to give them the opportunity to regulate their brain activity; (2) using notifications to suggest to the users to delegate some tasks to automation in case they don't manage to modulate their mental states; (3) adapting the user interface (e.g., information FIGURE 4 | The three types of Neuroadaptive countermeasures dedicated to mitigate the undesirable mental states. Inattentional deafness and Inattentional blindness mental states were merged into "Inattentional phenomena" as no neuroadaptive countermeasure were implemented to explicitly address failure of auditory attention to the exception of multimodal alerts. Moreover, no adaptive automation-based solutions were designed to prevent from inattentional states. This demonstrates the need to conduct more research in this direction.

removal, flashing yellow chevrons) in case of a critical situation is detected and the previous solutions were inefficient; and (4) taking over if the users do not respond to any of the previous countermeasures.

CONCLUSION

This paper has argued that the concept of a limited resource provides a limited explanation for the breakdown of operational performance. Our neurophysiological analysis describes a number of additional mechanisms, such as perseveration and effort withdrawal, which do not represent finite resources per se. In both cases, explanations for performance breakdown are based upon neurological processes, such as dominance of specific neural networks or the heightened activity of specific mechanisms. We propose a two-dimensional framework of engagement and arousal that captures the importance of specific degraded mental sates associated with poor performance. The rationale for including the transactional concept of engagement in this scheme is to account for the goal-oriented aspect of cognition. The benefit of including the transactional concept of arousal is to make a distinction between two categories of disengagement, one that is accompanied by high arousal (effort withdrawal) and low arousal (mind wandering) -and to link this conceptual distinction to known neurophysiological effects (see Figure 1). Nonetheless, this approach remains at the conceptual level and minimizes connections to the complexity of brain functioning. To that end, we reviewed and identified several markers at the neurophysiological, physiological and behavioral level of undesirable mental states linked to poor performance.

This neuroergonomic framework encompasses operationalizations of these undesirable states that can be monitored continuously in an objective fashion. Such considerations eventually lead to propose a typology of neuroadaptive countermeasures and open promising perspectives to mitigate the degradation of human performance. However, to the authors' very best knowledge, most of the neuroadaptive experimental studies have focused on human-machine dyad situations. We believe that recent research on hyperscanning (Babiloni and Astolfi, 2014), physiological synchrony (Palumbo et al., 2017) and collaborative BCIs (Cinel et al., 2019) have opened promising prospects to improve teaming such as human-human, human(s)-machine(s) interactions. Future research should involve more complex teaming scenarios and enrich the different neuroadaptive solutions.

We sincerely hope that this review will encourage research efforts to identify additional degraded mental states and associated neurophysiological markers as well as to implement neuroadaptive solutions for safer and efficient human-human and human(s)-machine(s) interactions.

Physiological Synchrony Revealed by Delayed Coincidence Count: Application to a Cooperative

Complex Environment Kevin J. Verdière , Mélisande Albert, Frédéric Dehais , and Raphaëlle N. Roy

Abstract-Synchrony at the physiological level is an objective measure that can be used to investigate cooperation between human agents. This physiological synchrony has been experimentally observed in different dyadic contexts through measures of the autonomous system such as cardiac measures. Various metrics are used to characterize synchrony between participants such as crosscorrelation, weighted coherence, or cross recurrence quantification analysis and with a wide variety of paradigms. We propose the delayed coincidence count as a new method for assessing cardiac synchrony. Delayed coincidence count has already been used to characterize synchrony in firing neurons populations. While being straightforward and computationally light, this method has already been formally proven to be statistically robust. A complex dynamic microworld is designed with two difficulty levels and two cooperation conditions. A total of 40 participants, i.e., 20 teams, voluntarily has conducted the experiment. The delayed coincidence count method (with a coincidence threshold δ of 20 ms) reveals a significant synchrony (p < .01) during the cooperative and high difficulty condition only, while the other methods did not. The results are interpreted in terms of interaction intensity in accordance with recent literature. Index Terms-Cooperation, delayed coincidence count, dyad, electrocardiogram (ECG), physiological synchrony.

I. INTRODUCTION

C OOPERATION is what allowed living organisms to evolve from multicellular organisms to social insects to reach our current human society [1]. Humans are now by far engaged in the most complex systems of cooperation among living individuals [1]. A general definition of cooperation could be stated as: "a situation that contains a manifest collective goal, in which a group of agents realize it by choosing their actions in accordance with an equilibrium" [2]. While the study of Kevin J. Verdière, Frédéric Dehais, and Raphaëlle N. Roy are with the ISAE-SUPAERO, University of Toulouse, 31062 Toulouse, France (e-mail: kevin.verdiere@isae-supaero.fr; frederic.dehais@isae.fr; raphaelle.roy@ isae.fr).
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Digital Object Identifier 10.1109/THMS.2020.2986417 cooperation has been for long the realm of psychosociology and subjective measures, several studies have attempted to identify objective correlates of teammate's synchrony. This field of research known as "interpersonal physiology" or "physiological synchrony" (PS) aims at assessing temporal similarity in teammates' physiological responses [3]. Objectively characterizing synchrony require the acquisition of several data streams from teammates [4] such as electrodermal activity, thermal activity, respiration or cardiac activity [3], [5]. So far, the latter has been the most popular technique to uncover PS in various dyadic contexts, i.e., experiments involving a pair of participants, such as parent-child, couples, therapist-client or teammates (see [3] for a systematic review).

To assess PS, several methods have been applied to the measure of concurrent cardiac signals using cross-correlation, weighted coherence, or cross recurrence quantification analysis (CRQA) [3]. Cross-correlation is a measure of similarity that is computed by a sliding dot product of two different signals. The weighted coherence, introduced by Porges et al. [6], is a measure derived from coherence. Coherence can be seen as a correlation coefficient in the frequency domain to characterize how much two signals oscillate in the same frequency band. The weighted coherence uses the frequency power of each of the two signals to weight each frequency bins. Finally, recurrence analysis allows to observe complex and sometimes subtle oscillatory time series behaviors. The rationale for recurrence analysis is that any "time series describing a high-dimensional system composed of multiple coupled variables can be reconstructed from but a single measured variable of that system" [7]. The method of time delays allows us to reconstruct systems in higher dimensions. Once the data are reconstructed in a higher dimension space via time delay, a distance matrix between all possible points can be computed. Each point in this matrix represents the distance between two points of the signals. Points spaced by less than a threshold distance will be considered recurrent. The threshold distance matrix is the recurrence plot (basis of the recurrence analysis). Recurrent quantification analysis (RQA) intends to quantify this dynamics. Cross recurrence uses the same principle to identify the complex oscillatory dynamics of two systems via two signals and in the same way, CRQA uses the same methods as RQA to quantify this dynamics [7].

Physiological synchrony has been shown to be predictive of team performance (i.e., task completion time) using weighted coherence on heart rate measures [8]. However, the authors pointed out that there was a "lack of a predictive relationship between physiological synchrony and the team coordination," where "coordination" was measured via cross-correlation on their physical joystick action. Similarly, Montague et al. [9] evaluated PS with 24 teams with shared experience involving active and passive users. Using weighted coherence on cardiac interbeat interval (IBI), they showed that synchrony relates to group performance after controlling for task/technology and is also correlated with shared perceptions of trust in technology among group members. Jarvela et al. [10] studied physiological synchrony across 41 teams playing video games in cooperative or competitive conditions and with or without allies. Using a similar approach to [9], they demonstrated that physiological synchrony correlates with reported empathy between players. More interestingly, they show that the competitive configuration without allies leads to more synchrony, raising the idea that during competition without allies "the players automatically focus more on each other which might turn the game more competitive also experientially." Their viewpoint is that to understand the opposite player, players simulate their behavior and responses within themselves, which is consequently reflected in their body through similar reactions observable via physiological signals synchrony.

Chanel et al. [11] studied 21 teams playing a video game in cooperative versus competitive configurations via correlation and weighted coherence on their IBI. Their study revealed that PS increased with subjective players' involvement in the social interaction with higher PS for competitive versus cooperative game. They theorized that PS might be an index of the intensity of interactional behavior and could be used to measure social presence. Elkins et al. [12] studied 10 teams of 4 during a military building cleaning task. They showed that a higher physiological synchrony was associated with better team performance and concluded that PS seems to be a part of proficiency in real-world military settings. Conversely, Strang et al. [13] did not find any increase in physiological synchrony during cooperative behavior. They used cross-correlation, cross-fuzzy entropy, and CRQA to quantify physiological synchrony while 80 participants played a cooperative Tetris.

Despite these studies, interpersonal autonomous synchrony is still an underexplored research area [3]. As stated by Ekman et al. [14] in their review, there is "a general lack of knowledge on how structural elements of the social situation are reflected in psychophysiology." Indeed, these studies rely on different measures and protocols, thus, preventing to draw comparisons and conclusions regarding the underlying physiological mechanisms of PS [3]. One possible approach to better understand PS is to assess it at the heart beat level per se. Fundamental electrophysiological studies characterize neuronal synchrony via spike coincidence analysis [15]. Similarly, one could apply such a method to measure how much two hearts do beat together. Technically, this method relies on the delayed coincidence count metric [16]. The delayed coincidence count represents, in a given range of time for two distinct electrocardiogram (ECGs), the number of beats that occur at the same time, i.e., that are coincident. One advantage of this method is that it allows to account for local phenomena when the coherence and cross-correlation approaches are less sensitive to temporally local variations. Moreover, its implementation and its physiological interpretation are far more straightforward, especially compared to CRQA.

Thus, this study proposes to evaluate the ability of a theoretically robust and yet computationally simple PS method: a permutation method based on a delayed coincidence count to detect heart synchrony during cooperation using a piloting-like task, the multiattribute task battery (MATBII) [17]. We demonstrate its usefulness in assessing cooperation between teammates who perform the task in various difficulties and cooperation settings. Finally, we compare this new method with the most currently used metrics [3], namely, the cross-correlation, the weighted coherence, and the CRQA. Regarding the CRQA, the most used measures are as follows: recurrence rate, determinism, entropy, and average length [3], [7]. First in the Materials and Methods section, the proposed cardiac synchrony metric and the most used ones are described, as well as the experimental protocol used to test them. Next, the subjective and behavioral results concerning the task accomplishment are reported, followed by the synchrony results. Finally, they are discussed with respect to the literature.

II. MATERIALS AND METHODS

A. Participants

In total, 40 participants (i.e., 20 teams; 9 females; 27 years old ±8) voluntarily underwent this experiment. They were recruited among the students of the ISAE-SUPAERO Engineering School, Toulouse, France. Of 40, 38 of them were directly recruited as dyads, the remaining 2 were arbitrarily assigned to each other. Out of the 20 dyads, only 2 were not same-sex (i.e., 15 malemale, 3 female-female, 2 female-male). As verified through a questionnaire, 11 considered their teammate as a friend, 6 as an acquaintance, 1 as a family member, 1 as a stranger, and 1 as a lover. All had normal or corrected-to-normal vision and no history of neurological or psychiatric disorders. The study was approved by the local ethic committee (IRB number: IRB00011835-2019-05-28-129) and all participants gave their informed written consent.

B. Experimental Design 1) NASA MATBII and Difficulty Level:

A modified version of the MATBII initially developed by NASA was used [17]. The MATBII is "a computer based task designed to evaluate operator performance and workload" [17]. The original version is freely available on the NASA website [18].

As shown in Fig. 1, it is composed of four subtasks, a system/alarm monitoring task (SYSMON), a tracking task (TRACK), a fuel/resource management task (RESMAN), and a communication task (COMM). The system monitoring task requires the participants to respond as quickly as possible to lights and scale fluctuations via keystrokes (F1 to F6). The tracking task requires the participants to keep the circle as close to the center as possible using a joystick. The resource monitoring task requires them to keep the tank A and tank B levels as close to 2500 as possible via managing pumps 1-8 with the keyboard or the mouse. Finally, the communication task requires the participants to answer to broadcast messages to their call name by indicating the radio and the number heard.

Participants were seated side by side in front of duplicated screens (figure 1). Participant 1 on the left side was called "pilot flying" and had to perform the two upper tasks, namely, the SYSMON and TRACK tasks. He/she had a keyboard and a joystick to do so. Participant 2, called pilot monitoring, had to perform the two lower tasks: RESMAN and COMM. He/she had a keyboard and a mouse to do so. The task difficulty for the pilot flying and pilot monitoring were modulated independently. They were modulated only by changing the difficulty of the TRACK and RESMAN tasks. The number of alarms (SYSMON) and communications (COMM) during each scenario remained the same. There were two levels of difficulty: EASY and HARD. As the difficulty of the task was modulated independently for each teammate, it gave rise to four different difficulty conditions (EASY-EASY, EASY-HARD, HARD-EASY, and HARD-HARD) where the left and right represent the difficulty, respectively, for the pilot flying and the pilot monitoring (see Fig. 2).

2) Cooperation Level: Each participant was attributed two subtasks, however, in order to induce cooperation between the teammates, in half the experimental blocks, the participants had to cross-monitor their partner, i.e., COOP condition.

Cross-monitoring means that participants had to help their partner when possible without speaking. For example, when the participants are in the COOP condition, if the pilot monitoring who is supposed to do the RESMAN and COMM tasks sees that an alarm is ON on the SYSMON task, he/she can respond to it with his/her keyboard in order to improve the overall performance. Hence, in the control condition: DONT COOP, they did not have to cross-monitor each other, but had to do their own two tasks: the two upper and two lower tasks for the pilot flying and pilot monitoring, respectively. Whereas in the COOP condition, they had to perform their own tasks and to cross-monitor the RESMAN and SYSMON for the pilot flying and pilot monitoring, respectively (see Fig. 1).

Moreover, a dependency between the TRACK and RESMAN tasks was implemented in both cooperative and noncooperative scenarios in order to make the two participants environment dependent and, therefore, more realistic [19]. When the tracker was outside the biggest square, it became red and all the pumps of the RESMAN task were deactivated until the tracker came back inside the biggest square. As the tracker was controlled by the pilot flying, this had an influence on the pilot monitoring which managed the RESMAN task. Conversely, when the tank A or tank B levels were under 2000 or above 3000, the TRACK task responsiveness decreased, making it more difficult. Hence, pilot's monitoring actions had an influence on the pilot flying TRACK task.

3) Scenarii and Protocol: Combining the cooperation level (i.e., cross-monitoring: COOP and control condition: DON'T COOP) with the four difficulty combinations, there was a total of eight different scenarii. Each scenario was presented once to the participants in a 5-min block each and in a random order (see Fig. 2).

Once arrived, participants were randomly attributed one role: either pilot flying or pilot monitoring and were asked to seat down. They were asked to fill an informed consent and a demographic questionnaire. Once done, they were given the written task instructions. While they were reading, ECG electrodes were put in place. Participants were able to ask questions regarding the task if needed. Before starting the task, they were asked to seat as comfortably as possible. They were seated approximately 1 m from each other, as in a cockpit. They did a short interactive tutorial, which gave them the occasion to discover and interact with each subtask separately. This tutorial was followed by four training sessions of 2.5 min each. Each training was set in the control condition (DON'T COOP) meaning they did not have to cross-monitor their partner. The first one was an EASY-EASY and the second one a HARD-HARD scenario. The third and fourth were the same but they had to exchange role, the pilot flying did the pilot monitoring job and the pilot monitoring did the pilot flying job. This was done in order to train each participant to do all the tasks so they could help their partner during the cooperation condition if needed. Participants were asked to do their best in order to achieve the best performance. Out of the 20 teams, the best performing one won a flight in a Vulcanair P68 twin engine aircraft in order to motivate the students.

C. Data Acquisition and Analysis

All the analyses were done using MATLAB r2019a. Codes to compute the delayed coincidence count and the permutation test are freely available on github [20].

1) Subjective Assessment: After each scenario, participants were asked to fill a commonly used workload questionnaire: the NASA-TLX [21]. This questionnaire combines six factors, i.e., mental demand, physical demand, temporal demand, overall performance, frustration level, and effort.

2) Behavioral Data: a) Performance: Performance was rated out of 400 for each scenario (100 for each task). The SYSMON task was evaluated using the average response time, 0 being 7 s and 100 being 0.5 s. The TRACK task was evaluated as the average distance from the center, 0 being the border and 100 the center. The RESMAN task was evaluated as the average distance from 2500 units, 0 being 1000 and 100 being 0. The COMM task was evaluated as the number of good answers: 10 being 100 and 0 being 0.

b) Cooperation: Cooperation was evaluated via participants' keystrokes. It was considered that the pilot flying cooperated when he/she helped by modulating the activity in the RESMAN task, i.e., activating or deactivating a pump (by pressing a number from 1 to 8). Regarding the pilot monitoring, it was considered that he/she helped when he/she responded to alarms of the SYSMON task (i.e., pressing a number from F1 to F6 when needed). A percentage was then computed representing the number of keystroke performed by the Helper over the total number of keystroke performed for this tasks. For example, for the SYSMON subtasks alarms, if the pilot monitoring responded to 3 alarms out of the 30, the percentage would be 10%. The pilot flying would have then responded to the 27 other alarms.

3) ECG Data: ECG was recorded with two BioSemi Active2 (Corp) at 512 Hz. Two electrodes were used, placed under the right clavicle and the left mid-axillary line. The overall ECG pipeline is detailed hereafter in Fig. 4. First raw signals were band pass filtered between 1 and 30 Hz, using a Butterworth filter of the fifth-order. Signals were then epoched to separate the eight different 5 mn scenarios. Peak detection was performed automatically using the "findpeaks" MATLAB function using two parameters. The first parameter is a minimum peak amplitude or height. This means that to be considered as a peak, the value must be above a threshold V th . The default value for V th was set to half the signal maximum value. The second parameter used was a minimum interpeak distance. This parameter can be seen as a refractory period and the default value was set to 250 ms. A visual inspection was performed to dismiss low quality recordings. There were mainly due to movement artifact and electrodes coming off. If needed, the two parameters were manually adjusted. Data were then stored as a time vector containing each peak appearance. From the time vector, the average beat per minute (BPM) was computed. The standard deviation of all NN interval (SDNN) was also computed, where NN interval represent all the "normal" RR interval. A 2 × 2 × 2 repeated and2). The red and blue dots represent the ECG R peaks for the first (S1) and second (S2) participants, respectively. On the upper graph, the letter QRS symbolize the first QRS complex. The blue dash line represents the IBI also known as RR interval regarding the R peaks. RR interval can also been called NN interval for "normal" beats. The red and blue ECG peak dots are reported on the lower graph. Coincidence count for this segment is represented here. The first red dot on the left has not blue dot within a time range of δ = 20 ms from it; The count for this first point is then C 1 = 0. Conversely, the second red dot has a count C 2 = 1 because he was one blue point within a 20 ms range; meaning that the two participants R peaks are coincident. The total coincident count C t for this segment would be C t = 

D. Cardiac Synchrony Measures 1) Cross-Correlation, Coherence, and Cross Recurrence:

The pipeline used for cross-correlation and coherence is similar to the one in Jrvel et al.'s [10] study. Cross-correlations at zero lag were obtained through standard procedures. Regarding the weighted coherence [22], it was computed for the frequency ranging from 0.05 to 1.25 Hz using 256 point Hann windows with 75% overlap, weighted by both participants series power spectral values at the specified frequencies.

CRQA was done following the procedure in [23] using the cross recurrence plot toolbox for MATLAB [24]. The four recurrence measures [7] used here were: (a) recurrence rate: the number of shared locations in the phase space, which represents how often systems do synchronize. (b) determinism: quantifying the number of points belonging to a diagonal line and representing how much systems do stay in a synchronized state. (c) Entropy: the diagonal lengths distributed over an histogram and qualifying the system complexity. Finally, (d) the length: the longest diagonal segment in the recurrence plot which describes the chaoticity of the system (see [7] for an comprehensive presentation).

2) Delayed Coincidence Count: In order to evaluate how many ECG peaks were coincident between the pilot flying and the pilot monitoring, we used the delayed coincidence count (as defined in [25]). The delayed coincidence count between two point processes X 1 and X 2 is given by

ϕ coinc δ (X 1 , X 2 ) = u∈X 1 v∈X 2 1 |u-v|≤δ . (1) 
More informally, ϕ coinc δ is the number of couples of spikes (peaks) appearing with a delay at most equal to δ. The two point processes studied here were the pilot flying and pilot monitoring R peaks (X PF and X PM , respectively). We calculated this coincidence count ϕ coinc δ for each team and also between all the pilot flying and pilot monitoring from other team

a i,j = ϕ coinc δ (X PF i , X PM j ) (2) 
for all (i,j) in {1, . . ., n} 2 where X PF i (respectively, X PM j ) represents the pilot's flying (respectively the pilot's monitoring) ECG peaks from the ith (respectively, the jth) couple, and n=20. This means that, for example, for the pilot flying for couple 1 (X PF 1 ), we calculated the coincidence between him/her and all the other pilots monitoring from couple 1 to 20 (X PM j with j in {1, . . ., 20}). As each scenario was processed independently, if some data were missing for one pilot monitoring or pilot flying, the whole team was excluded for the scenario. By doing so, we obtained eight square coincidence matrices a i,j , i.e., one per scenario (see Fig. 4).

The process to set and select δ is similar to the radius selection for recurrence plot as described by Webber Jr. and Zbilut [7]. The δ parameter is fixed based on two notions: 1) δ has to be as small as possible. A large value of δ would make the coincidence count really high, since it would consider the coincidence of each beat with all the other beats. Additionally, the meaning of coincidence itself in the context of heart beats would not be relevant for values above a second (heart rates close to 1/s). 2) δ should not be too small, indeed very small values of δ would drastically reduce the coincidence count, or even zero it. Moreover, very small δ values would also increase the standard deviation of the coincidence count while it has to be considered normalized by its mean. Indeed, as δ increases the coincident count inexorably increases. The coefficient of variation (i.e., the standard deviation divided by the mean) is used to quantify this phenomenon. Hence, in order to select a suitable value for δ, the coincidence count is computed for a range of δ and the optimal value is then selected by choosing the one that minimizes both the coefficient of variation and the value of δ itself. In this study, the δ value was selected at the group level, i.e., regarding all participants' data.

a) Permutation Test: Permutation testing is a nonparametric method to statistically test for samples differences. The idea is to shuffle the data to estimate the sampling distribution and then to compare it to the "real data." Teammates that did the experiment together, i.e., "real teams" are here the "real data." The different teams are supposed to be independent. By shuffling those teams, i.e., creating "permutated teams," we computed the coincidence distribution under the null hypothesis (no synchrony). An example of "real team" could be team number 3: X PF 3 and X PM 3 . Conversely, a permuted team represents a random association of a pilot flying and a pilot monitoring: X PF 2 and X PM 7 , for example. This permutation method allowed to compare the number of coincidences of "real teams" from the one of "permuted teams." The coincidence number C obs for "real teams" is computed for each scenario independently. It corresponds to the diagonal sum also known as the trace of the coincidence matrix a i,j

C obs = i a i,i . (3) 
The permutation step consists of drawing B independent and identically distributed permutations

b n , 1 ≤ b ≤ B and com- puting C b C b = i a i, b n (i) . (4) 
This permutation step can be seen as a shuffling between teams illustrated in Fig. 4. It consists of a random pilot flying (X PF ) to a random pilot monitoring (X PM ) association and then computing the coincidence sum between all those new permuted teams. The computational way to see this permutation is a shuffling between lines of the coincidence matrix a i,j . By shuffling lines, a random association between a pilot flying and a pilot monitoring (X PF and X PM ) is done on the diagonal. The trace (sum of the diagonal) of this permuted matrix equals C b . To statistically detect a cardiac significant, the sum of coincidence count for the "real teams" C obs must be significantly higher than the one on randomly permutated teammates (which recreate what happens under independence). To evaluate this, the p value p is evaluated as follows:

p = 1 B + 1 1 + B b=1 1 C b ≥C obs . (5) 
As eight scenarii were evaluated, a false discovery rate (FDR) detection was applied on the p value [26].

III. RESULTS

A. Subjective and Behavioral Data

First, in order to validate that the two implemented difficulty conditions (EASY and HARD) were perceived as such, the subjective ratings from the NASA TLX questionnaire were compared (see Fig. 5). The pilots flying found the task significantly more difficult when the condition was HARD than when it was EASY (F (1, 19) = 68.25, p < 10 -3 , η 2 p = .78). The pilots monitoring also found the task significantly more difficult when the condition was HARD (F (1, 19) = 41.17, p < 10 -3 , η 2 p = .68). Interestingly, the pilots monitoring also found the task significantly more difficult in the COOP condition than in the DON'T-COOP condition (F (1, 19) = 5.46, p < .05, Next, as expected, the implemented task difficulty had an effect on the overall performance (see Fig. 7). Note that the performance is evaluated for the team as the whole and not for each teammate individually. Teammates exhibited a significantly higher performance when the pilot flying was in the EASY condition compared to when he/she was in the HARD condition (F (1, 19) = 16.61, p < 10 -3 , η 2 p = .46). Similarly, teammates also performed better when the pilot monitoring was in the EASY condition (F (1, 19) = 11.84, p < .01, η 2 p = .38). Interestingly, the COOP condition also had a significant effect on performance: participants performed slightly better in the NO-COOP condition than in the COOP condition (F (1, 19) = 9.19, p < .01, η 2 p = .33). Regarding the cooperation, the keystroke percentage was only evaluated for the four scenarios where teammates were asked to cooperate (COOP). This keystroke percentage represents quantitatively how much a teammate did help his/her partner. It corresponds to the number of keystrokes performed by a teammate in the other teammate's subtasks compared to the total number of keystrokes performed in this subtasks. As expected, the pilots flying cooperated less (F (1, 19) = 5.83, p < .05, and η 2 p = .23) when their difficulty was HARD (M = 8.9, std = 13.2) compared to when it was EASY (M = 13.7, std = 14.9). In the same way, the pilots monitoring cooperated less (F (1, 19) = 8.71, p < .01, and η 2 p = .80) when their difficulty was HARD (M = 11.6, std = 13.4) compared to when it was easy (M = 11.1, std = 15.1).

B. ECG Data

After visual inspection, some scenarii were dismissed due to nonsufficient ECG data quality. When one portion of a scenario had to be dismissed, instead of interpolating the missing part, the whole scenario was dismissed for this participant. This unfortunate loss of data is mainly due to the fact that we used external electrodes of the Biosemi system that encountered loose contact issues for the ground and reference electrodes. In the end, 81% and 95% of scenarii were retained, respectively, for pilots flying and pilots monitoring.

Regarding the heartrate (HR), the average pilot flying HR was significantly higher (F (1, 16) = 6.23, p < .05, and η 2 p = .28) when their difficulty was HARD (M = 78.5, std = 10.7) compared to when it was EASY (M = 76.6, std = 11.2). Neither the pilot monitoring difficulty nor the cooperation condition had a significant effect on the pilot flying HR. Regarding their teammates (i.e., pilot monitoring), difficulty or the cooperation conditions had no significant effect on the HR.

Regarding heartrate variability (HRV) measures, for the pilot flying, it appears that the SDNN was significantly higher (F (1, 16) = 9.68, p < .01, η 2 p = .38) when it was EASY for him/her (M = 47.2, std = 15.1) compared to when it was HARD (M = 43.0, std = 10.1). Surprisingly, the difficulty of the pilot monitoring tasks had also an effect (F (1, 16) = 6.92, p < .05, and η 2 p = .30). The pilot flying SDNN was significantly higher when it was EASY for the pilot monitoring (M = 46.1, std = 13.5) compared to when it was HARD (M = 43.8,Std = 13.6). The cooperation condition did not exhibit a significant effect on the pilot flying SDNN. Concerning the pilot monitoring SDNN, neither their difficulty, the pilot flying difficulty, nor the cooperation condition had a significant effect.

C. Cardiac Synchrony 1) Cross-Correlation, Weighted Coherence, and CRQA:

Cross-correlation at zero-lag and weighted coherence metrics revealed no significant synchrony via the permutation test-p values were above the corrected threshold. Regarding CRQA, the data were normalized and the parameters were set following the procedure and recommendations described in [7]. The used parameters were: M = 4 for the embedded dimension, τ = 1 for the delay, and r = .1 for the radius. The four metrics that were used are recurrence rate, determinism, length, and entropy. As detailed in Section II-D, to statistically assess the synchrony, the permutation test was done for the eight scenarii independently. As eight tests were performed, an FDR correction was applied on the p value. It revealed no significant synchrony for those four metrics. All p values were above the corrected threshold.

2) Delayed Coincidence Count: The optimal threshold limit δ parametrized to compute the coincidence count was 20 ms. The statistical permutation test procedure was exactly the same as the one for cross-correlation, coherence, and CRQA. The value for the total coincidence count, i.e., the trace of the a i,j matrices are represented in Fig. 6. The total coincidence count for the 100 000 permutations, i.e., the a i,j matrices with lines shuffled are represented alongside them. Interestingly, the eighth scenario, which corresponds to both teammates operating in a difficult condition (i.e., HARD-HARD) and in a cooperation condition (COOP) revealed a significant cardiac synchrony between teammates (p < .01) for a maximum time delay of 20 ms. Note that all the other scenarii did not elicit such a cardiac synchrony. Additionally, no significant correlation was found between the coincidence count and the performance index across cooperative conditions.

IV. DISCUSSION

The goal of this study was to evaluate PS during dyadic interactions using a delayed coincidence detection method applied on ECG R peaks. The main interests of this method are its ease of implementation and its ability to account for local cardiac synchrony. The method proved efficient in characterizing physiological synchrony in dyads that performed a highly engaging piloting-like task in a cooperative setting. Thus, 20 teams had to perform a dual multi-attribute task battery MATBII task in which the levels of difficulty and cooperation were manipulated. This method was then compared with the most used metrics in the literature: cross-correlation, weighted coherence, and CRQA.

The subjective and behavioral findings confirmed the task to be engaging and contrasted in terms of workload. Indeed, teammates performed better and reported a lower mental effort when facing the easy conditions than the hard ones. Moreover, task difficulty modulated the ability to cooperate. In this task, the cooperation condition required the pilot flying and pilot monitoring to crosscheck their partner's actions and user interface and to potentially assist them. Our behavioral and subjective results disclosed that this was particularly challenging under demanding settings (HARD-HARD-COOP) yielding the participants to be more focused on handling their own task and leaving them less time and cognitive resources to assist each other. Cooperation also intrinsically increases the number of tasks to perform, and, therefore, the operator's workload. Hence, the obtained result is consistent with previous cooperative studies indicating the mental workload had a deleterious effect on cross-checking and crew performance [27].

Interestingly enough, this latter demanding condition was the only one to elicit significant PS as calculated by the delayed coincidence count method. On the one hand, one could argue that this effect could be explained in terms of higher HR for the teammates induced by the HARD-HARD conditions, thus artificially increasing the heart beat coincidence count. However, this effect was not observed in the HARD-HARD-DON'T COOP condition. Moreover, only pilots flying had a significant heart rate increase during their HARD difficulty. On the other hand, our results did not lead to observe PS in any of the other cooperative situations (e.g., EASY-EASY-COOP). Therefore, we believe that our results account for both the workload and the intensity of cooperation that occurred in the HARD-HARD-COOP condition. The participants were particularly engaged in performing their own task while having in mind that they had to support each other. This conclusion is akin to that of Levenson and Gottman [28] who made the connection with results on marital interaction, and to Chanel et al.'s study who reported a greater physiological synchrony during conflict interaction compared to low-conflict discussion [11]. In their study, they observed more PS in a competitive versus a cooperative condition while playing a video game. They described PS as a "candidate for interaction intensity." These results are, however, to be qualified. Indeed, the coincidence counts were not correlated to the performance index. This is contradictory to only part of the literature that found that PS was predictive of team performance in some aspect [8], [10]- [12]. Yet is not in-line either to the other studies that report no increase in PS during cooperative behavior [13].

Our study does highlight an increase in PS during cooperative and high workload conditions, without correlation with team performance. This might reveal that the observed physiological synchrony could be an epiphenomenon.

The results reported in this study, together with others [8], [10]- [12], [23], [29]- [31], raise the issue of the mechanisms that underlie cardiac synchronization between teammates. Researchers proposed different theories regarding the source such as "shared metabolic demand through matched activity or behavior, conditional and environmental influences and synchronized breathing" [3]. Spontaneous group synchrony has been observed via breathing [32]. This phenomenon known as the chameleon effect [33] was also highlighted during cooperative conversation [34] or visual and verbal interaction [35]. Respiratory coupling or more generally breathing might play a role in the observed synchrony. Moreover, the task design itself can induce short stress episodes linked to the dynamic and fluctuating workload experienced by participants. Those short episodes can be linked to breathing synchrony, which could result in cardiac synchrony.

In addition, it should be noted that the task was designed to be continuous, in opposition to turn-based tasks, and to engage the two participants during both the easy and hard conditions. Keeping participants active in the task was done via the continuous nature of the tracking and resource management task. Moreover, because of the implemented dependencies between the subtasks, the encountered workload has been variable for each team for an exact same difficulty. This is mainly noticeable when one of the participants performed poorly, the strong dependency between the tracking and resource management tasks increase drastically the difficulty for the coparticipant. This particularly explains why the difficulty of the pilot monitoring tasks impacted the pilot flying's physiological state, such as her/his SDNN. In other words, the overall task difficulty was controlled and equal between teams, but we only looked at the performance at the team level opposed to the participant level.

Regarding data analysis, most of the previous studies used correlation or cross-correlation, weighted coherence, or recurrence analysis, i.e., CRQA on the IBI. Coherence and correlation metrics did not reveal any PS. This might be due first to the fact that scenarii were too short as they lasted only 300 s (i.e., 5 min), which might not be optimal for computing those metrics. Most importantly, we can hypothesize that because of the task difficulty, cooperative behavior arises only sporadically. Thereby, methods such as coherence and correlation might not be appropriate as they characterize an average linkage throughout time. Hence, they could be thought of measuring temporally global synchronies, contrary to the coincidence detection metric, which measures temporally local synchronies.

The closest method to compare ours to seems to be CRQA. CRQA estimates the dependencies between each point of two signals in a reconstructed higher dimension space. The dependencies are estimated via the thresholded point distances in this reconstructed space, i.e., the recurrence plot. By doing so, it can characterize oscillatory behavior and complex dynamics such as nonlinear coupling and chaotic behavior. Theoretically, our method operates really closely by computing distances between points of two signals and counting the number of distances below a fixed threshold. However, the two methods differ regarding the signal used. Our method measures distances using ECG peak appearance time values, whereas CRQA is based on the IBI values. Moreover, CRQA uses a reconstructed dimension space to compute distances, whereas our method directly computes distances in time. Yet, surprisingly the CRQA metrics did not reveal any synchrony. This might be mainly due to the fact that CRQA uses the IBI values. As the IBI is by definition the interval between ECG peaks, it indirectly represents participants' HR. A reconstructed space with time-delayed dimension would then exhibit close points where both participants' HR would vary similarly. In this context, CRQA would detect synchronous HR variations rather than synchronous heartbeats. For this reason, CRQA might not be the most suitable method for characterizing PS in our ecological context because of the nature of the considered coupling itself. Prolonged cooperative behavior might be observable in a recurrence plot based on IBI, the short duration (5 min) of our scenarii could also explain this result. However, we can also hypothesize that because of the "sporadic" nature of cooperative behavior, CRQA might not be the most suitable metric to characterize it in ecological conditions.

To conclude, this study indicated that a highly difficult task combined with a cooperative behavior induces a cardiac synchrony, which can be assessed using a permutation test on a delayed coincidence count. This result is interesting for two main reasons: 1) cooperation states can be measured via cardiac synchrony; and 2) this synchrony can be easily characterized from computational and theoretical points of view. This study brings a contribution to this overall objective of characterizing the level where information appears to transfer between people that cooperate. For the future, we believe that a systematic experimental approach is still needed to evaluate, extract, and isolate every possible source of synchrony between participants. Hence, research improvements such as verifying the impact of the location of the teammate, of the number of noncritical subtasks and their resulting workload, as well as the impact of breathing on cardiac synchrony should be pursued.

Introduction

In recent years, user state monitoring based on psychophysiological and neuroscientific methods has developed in various fields, such as in the gaming and transportation domains [1,2]. However, to this day, and to our knowledge, these methods are mostly used for ex post analyses and are seldom implemented to provide online measures and system adaptation. Yet, with the rise of increasingly complex and autonomous systems, the state of the human agent is of crucial interest to enhance both operation safety and performance, be it for local or remote operation. What is more, operations are also being increasingly performed at a distance. That is why the following subsections detail the need for human-centered research in remote human-robot interaction (HRI) and, more specifically, a physiological feature-based approach, as well as what are the interaction modes and autonomy levels to consider for taking into account the human agents' state derived from these physiological features. It should be noted that this article is not centered on safety assessment; therefore, we recommend readers to refer to Reference [3,4] for details on HRI safety.

A Need for Physiology-Centered Research in Remote HRI

Remote operation, or teleoperation, can be considered as a subtype of human-robot interaction (HRI) and is defined as the operation of a system at a distance, with the robot and the human not collocated spatially nor even temporally [5]. Remote operation has developed progressively throughout the years to answer a need for a safer and better task performance. As Sheridan [6] has recently stated, it is most likely that "all robots for the foreseeable future will be controlled by humans, either as teleoperators steered by continuous manual movement or as telerobots intermittently monitored and reprogrammed by human supervisors". Currently, telerobots perform routine tasks under human supervisory control, for instance, in production lines, and teleoperated vehicles allow the performance of nonroutine tasks in hazardous or inaccessible environments [6]. Examples of such tasks are space, underwater, or nuclear sites exploration [7], as well as carrying civil and military missions [8], including search and rescue missions [9].

Although the use of automation is increasing rapidly, humans are still deemed vital [10]. However, humans are not providential agents, and they can fail. Human errors can have dramatic and various consequences depending on the task at hand and the interaction mode, ranging from merely material and financial losses to human casualties. The standard approach of human factors has been applied for decades to try and prevent such errors. As illustrated by the inverted U-shaped curve of human performance that can be observed under varying levels of arousal and task demands [11], as well as the absence of behavioral difference that can be found between several difficulty levels for low task demands [12], or very high ones [13], human performance cannot reflect all the mental phenomena that arise during operations. A new research field that focuses on the study of humans at work through the lens of human physiology and neuroscience has emerged to tackle this human error issue from a different perspective. It is called neuroergonomics [14,15]. However, as pointed out by Sheridan [6], although human-automation interaction has been studied in human factors for decades, HRI, including teleoperation, has been quite neglected by researchers of that field up till recently. For the past few years, research has intensified in this area, yet there is still a need for more research on remote operation from human factors, but, more particularly, from its sub-discipline, neuroergonomics.

Interaction Modes and Autonomy Levels

Fairly intuitively, one can identify two general modes of interaction between humans and robots/artificial agents for remote operation: supervisory control vs. direct control. However, the difference might not be that drastic and interaction modes could in fact be viewed as a continuum [6,[16][17][18], depending on:

• the frequency of human intervention;

• the type of control (i.e., manual vs automatic);

• and the embedded capacities of the robots/artificial agents (i.e., to what extent they can achieve tasks autonomously).

While automation can be seen as replacing routine manual processes, autonomy is referring to tsomething more complex, emulating human processes rather than replacing it [19]. In the literature, there are differing views of what "autonomy" is. Here, we will consider a continuum that is reflected by the various degrees or levels of system autonomy [20] ranging from what is usually considered as true teleoperation, a.k.a. direct control, with no artificial support at all and the human who does all the work, to the opposite case of no human intervention and the artificial agent that does all the work, a.k.a. an extreme form of supervisory control [21]. The use of such extreme setups is scarce and usually the interaction relies on more mitigated levels of autonomy. In addition, having a fully autonomous system does not mean that humans will necessary be excluded from the loop. Indeed, rule of engagement [22] or ethical decisions [16,23] are, until now, preferably entrusted to a human agent decision-making process.

New forms of adaptive or adjustable autonomy levels have been designed to take into account the involvement of the human operator [24] and to answer a need for authority sharing while modeling conflicts between human and artificial agents [25,26]. In a human-centered point of view, the systems can help the operator, for instance, by means of an artificial cognitive agent during the mission [27]. In another vein, the mixed-initiative framework proposes to the humans and artificial agents to opportunistically seize the initiative from each other [28]. This idea has been proposed in order to ease the control of large robotic teams by a human operator [29]. But, the open question is how to determine when, or quantify why, a given agent should take over the other during mission execution.

To this day engineers and researchers mostly use activity modeling and sometimes subjective [30] and behavioral data [31] to determine these autonomy levels [32]. However, as stated above, since human performance cannot reflect all the mental phenomena that arise during operations, there is a need for an in-depth evaluation of operators' mental states using physiological measures. The offline use of physiological measures to assess professional tasks' operation is a first step towards increases in both performance and safety. Yet, a step further is the online adjunction of information about the human operator directly into the system. This is known as physiological computing [33], and such systems can be called biocybernetic [34], or, more recently, symbiotic systems [35], passive brain-computer interfaces [36], or physiologically attentive user interfaces [37,38]. Such systems take as inputs physiological parameters from the operator and thanks to various processing methods, which generally include a machine learning step, they can derive an estimation of a given mental state [39]. Hence, global systems that are composed of human and artificial agents and which take information on all involved agents would allow dynamically reallocating tasks between humans and automation, a challenge listed by Sheridan [6].

This task reallocation, which can be roughly defined as a Mixed-Initiative Interaction (MII) [28,40,41], is particularly interesting as it will mitigate the occurrence of critical situations. MII is a promising and flexible framework that offers the possibility to integrate the notion of agents' current capabilities [42]. An MII system would allow the best current agent to seize control when necessary. However, it implies using of agent monitoring systems, potentially comprising physiological computing tools when a human agent is considered. To better detail the current research on physiological computing and how we argue it could successfully be applied to HRI, and, in particular, to remote operation, in the following sections, mental states that are deemed relevant to characterize and estimate in a remote operation framework are defined, along with their classical electrophysiological markers. Then, details are given about the current research on how to estimate these mental states and how to integrate this information into the whole system.

Mental States of Interest for Human-Robot Interaction

Situation Awareness, Resource Engagement and Associated Mental States

Humans' mental states are numerous, and it seems impossible-and possibly even irrelevant-to try and estimate every one of them. However, several ones play a major part in error occurrence and are therefore particularly relevant to characterize and estimate in order to improve human-system interaction in a general manner, including human-robot interaction, in the case of remote operation. In the Human Factors domain, a mental state that has gathered much attention since its creation in the aeronautical context is Situation Awareness (SA). Endsley defined SA as "the perception of the elements in the environment within a volume of time and space, the comprehension of their meaning and the projection of their status in the near future" [43]. Therefore, lacks of SA can occur due to difficulties in perception (low level) and/or in comprehension and projection (high level) [44]. With the current rise in automation development, the challenge is to design systems that provide sufficient information to the operator to compensate for the cues that are not perceived directly (see Endsley [45] for a review). Cognitive processes, such as perception, attention, memory, and integration processes, are necessarily involved for SA to occur. Lacks of SA-due to either low and high level impairment-result in performance deterioration, such as piloting errors, and can therefore have critical results. As indicated by Endsley and collaborators Endsley [45], up to 76% of SA errors in pilots would be due to a problem in perception either due to system failures or cognitive issues (e.g., perceptual or attentional failures). Fatigue and attentional problems, as well as elevated stress and workload, are several well known mental states that impact SA [45,46].

Due to its multifaceted nature, SA is difficult to directly measure at the physiological level. Therefore, researchers mainly focus on mental states that are linked to SA and have physiological markers that are easier to detect. These states are all dependent on resource engagement. Several researchers proposed that the existence of a finite set of information-processing resources would explain the occurrence of performance degradation under heavy task demands or concurrent tasks performance [47]. Therefore, over-engagement can be seen as the fact of engaging all the resources for processing only one sub-task or one sensory canal (e.g., vision; a.k.a. attentional tunneling), while disengagement can be seen as the fact of reallocating the resources to another-usually internal-task [48][49][50]. Since both over-engagement and disengagement lead to performance degradation, it seems reasonable to estimate resource engagement and, more particularly, to detect resource depletion.

Prime Mental States

Several factors, external and internal, can generate such a depletion of resources. Among these, one can list the time spent on a task, also called time-on-task, and task demands. These two factors are usually main characteristics of the task at hand, they relate to a temporally global resource engagement, and both directly generate several mental states which we will consider as prime mental states. When operators spend a growing time on their task at hand, their performance is known to fluctuate with periods of degraded performance (i.e., increase in reaction time and decrease in accuracy) [51]. This phenomenon can be explained in terms of engaged resources and is due to the occurrence of several mental states, among which one can list mental fatigue and mind wandering.

Mental fatigue is a state that occurs when a long and tiring task that requires subjects to remain focused is performed [52]. Mind wandering is defined as an attentionnal disengagement from the task during episodes when thoughts are in competition with information processing for the task at hand. This leads to a reduction of external events' processing in a general manner [53,54] and in a performance decrement for the task at hand. These episodes of resource disengagement from the task occur in a non-linear fashion when time-on-task increases. Both mental states would impact situational awareness from the first processing steps, that is to say, the perceptual steps. Moreover, although mental fatigue seems particularly relevant to estimate during both prolonged supervisory and direct control, mind wandering seems more likely to occur during supervisory control. An example is the frequent occurrence of boredom during Unmanned Aerial Vehicle (UAV) monitoring tasks [55].

Regarding task demands, when operators are faced with a particularly difficult task, their performance decreases, and it is the same when the task is too easy. Hence, the performance of an operator follows an inverted U-shape [56]. In neuroscience and human factors, this modulation in task demands or difficulty and the associated effort invested in the task is usually referred to as cognitive workload [57]. This very wide concept can also be understood in terms of required and engaged resources. Cognitive workload can be modulated by varying several factors, such as the load in working memory (e.g., number of items to keep in memory) and divided attention or multitasking (i.e., number of tasks to perform in parallel), as well as stress imposed on the operator (e.g., temporal or social pressure). All these factors are, of course, often overlapping in a given task, in particular, during remote operation.

Collateral Mental States

A resource depletion can also indirectly generate other mental states that we will call collateral mental states. These collateral mental states, e.g., automation surprise, can, for instance, be generated when there is a conjunction of prime mental states, e.g., high workload, and the occurrence of specific events, such as critical system responses localized in time, that is to say feedbacks, parameter display, and alarms, in a general manner. Hence, in this example, an alarm will not be processed by the operator the same way when all resources are engaged (e.g., over-engagement) compared to when the operator is in nominal state. In this case, these system output-related mental states are linked to a temporally local resource engagement. Examples of such system-output related mental states are the following:

•

Inattentional sensory impairments, such as inattentional blindness and inattentional deafness. These attentional phenomena consist in "missing" alarms when all attentional resources are engaged in another sensory modality. Hence, for the inattentional deafness phenomenon well studied in the aeronautical context, pilots under high workload miss auditory alarms when they are over-engaged in the visual modality (e.g., fascinated by the landing track) [58,59].

• Automation surprise, in which the operator is surprised by the behavior of the automation [60].

Although cases reported in the aeronautical domain are generally several minutes long, a subtype of automation surprise is the confusion in response to a brief unexpected event, such as a specific alarm.

In order to go back to the nominal state of the global system, it is important to detect such a state from the operator. It does not matter whether the confusion of the operator arises from a failure of the artificial agents or the human ones. It might also be elicited by a general attentional disengagement of the operator, who is then incapable of correctly processing system-outputs and is confused by any negative feedback. This state might, in any case, lead the operator to take bad decisions and should be detected and taken into account in order to avoid system failure.

In the authors point of view, the main mental states listed above seem particularly relevant to characterize and estimate for hazardous tasks, such as the ones performed by remote operation. In the next section, the classical electrophysiological markers that reflect theses mental states are given.

Physiological Features

The mental states described below are directly linked to situation awareness and to the previously defined related mental states. They can all be directly measured and assessed to a certain extent using portable, cheap, and non-invasive recording methods, such as electrocardiography (ECG) and electroencephalography (EEG), which, respectively, record cardiac and cerebral activities. For recent neuroergonomic literature on eye-tracking measures (i.e., measures of ocular behavior and pupil diameter), readers can refer to Reference [61,62]. As for literature on near infra-red spectroscopy measures (i.e., other measure of cerebral activity), readers can refer to Reference [63][START_REF] Durantin | Characterization of mind wandering using fNIRS[END_REF][START_REF] Gateau | Real-time state estimation in a flight simulator using fNIRS[END_REF]. For this article, we chose to focus on electrophysiological markers since the current acquisition devices-electroencephalography (EEG) and electrocardiography (ECG)-are particularly cheap, non-invasive, and portable means to record physiological data and are therefore well suited for recordings in real-life settings. In theory, any type of physiological measure can be used to perform physiological computing. Yet, in practice, the easier to compute and the most reliable ones are of course selected. The following list of physiological features is not a comprehensive one but merely reflects the main trends identified for research and development in the physiological computing domain. However, amongst electrophysiological measures, one can also list EMG (electromyography) and EDA (electrodermal activity, or galvanic skin response). We have chosen not to focus on these ones for the following reasons: they require attaching electrodes onto the hands and/or forearm of the human operators, which we believe could both impede the actual performance of the teleoperation tasks, as well as generate corrupted signals, for manual operation. Moreover, the temporal resolution of EDA is of several seconds, which is quite slow and not adequate in critical settings. Therefore, we have chosen to focus on electrophysiological metrics of high temporal resolution (ms) that could be worn during manual operation and that have been proven to be efficient in allowing mental state monitoring in other fields.

Temporal Features

Temporal features are frequently used to characterize mental states. A well-known time-domain metric that can be computed from ECG is the heart rate (HR) expressed in beats per minute (bpm) and computed as the inverse of the Inter-Beat Interval (IBI) [START_REF] Malik | Heart rate variability: Standards of measurement, physiological interpretation, and clinical use[END_REF]67]:

IBI n = r n -r n-1 , (1) 
HR = 60 IBI , (2) 
with r n as the timestamp of the nth R peak (i.e., highest positive peak), and IBI the mean interval between two pulses (two R-R intervals). In addition, another relevant metric is the heart rate variability (HRV), which can be computed in the time domain as the variability of the R-R interval:

HRV = 1 N -1 N-1 ∑ n=0 (IBI n -IBI) 2 .
(3)

HR and HRV are both impacted by engagement. HR increases, while HRV decreases, with an increase in engagement linked to an increase in cognitive workload [68,69]. Conversely, HR decreases and HRV increases with a decrease in engagement linked to an increase in time-on-ask or a decrease in workload [68][69][70]. The automation surprise phenomenon has been reported to increase the HR [71]. Regarding EEG features in the time domain, the main marker is what is called an event-related potential (ERP) [72]. An ERP consists of the EEG signal starting at the occurrence of a specific stimulation, or event, such as an alarm, for instance, and ends at a selected time, (e.g., 800 ms post-stimulation). ERPs can be averaged across trials to better reveal slow modulations in voltage (i.e., positive and negative deflections), which are quite specific to the nature of the stimulation and/or the operator's state. This averaging increases the signal to noise ratio [67]. When only one window of signal is used, the analysis is called 'single-trial'. The single-trial data are of course better suited for online mental state estimation than averaged ones. The 'raw' ERP (i.e., all the samples of EEG signal in a given time window) can be used to estimate a given mental state. Yet, to reduce the number of features, researchers often compute the mean amplitude or select the peak value in specific time windows that correspond to documented deflections, called ERP components.

The amplitude of the various deflections, or components, has been repeatedly linked to resource engagement. Hence, mental fatigue and mind wandering are known to reduce the amplitude of these components, such as the P300 component, which is a positive deflection that occurs roughly between 300 and 500 ms post-stimulation and maximal at posterior electrode sites [53,54,73]. Task demands and cognitive workload are reflected the same way by an attenuation of the ERP deflections [69,70,[74][75][START_REF] Roy | Operator Engagement During Prolonged Simulated UAV Operation[END_REF] and so are the inattentional sensory impairments with, for instance, reduced N100 and P300 amplitudes when auditory stimuli are not consciously perceived and reported [START_REF] Giraudet | P300 event-related potential as an indicator of inattentional deafness?[END_REF][START_REF] Scannella | Auditory neglect in the cockpit: Using ERPs to disentangle early from late processes in the inattentional deafness phenomenon[END_REF].

Regarding automation surprise, a relevant EEG temporal feature that can be extracted is an error potential (ErrP). This type of event-related potential is specific to the detection of an unexpected event with amplitudes proportional to the frequency of errors [39,[START_REF] Ferrez | Error-related EEG potentials generated during simulated brain-computer interaction[END_REF]. ErrPs are notably elicited by an unexpected system output and are characterized by a negative deflection at fronto-central electrode sites, followed by a positive component at centro-parietal sites. The latency of these deflections depends on the type of error that elicits ErrPs (for a review on ErrPs, see Reference [START_REF] Chavarriaga | Errare machinale est: The use of error-related potentials in brain-machine interfaces[END_REF]).

Spectral Features

The HRV ECG feature can be computed in the time domain as seen above, but also in the frequency domain. In practice, to do so, one first needs calculating the power spectral density of the ECG signal (i.e., random time signal x(t)), which can be expressed, for the Fourier transform X( f ) of the signal, as the square of its magnitude:

x

power (t) = |X( f )| 2 . (4) 
Next, the frequency domain HRV is computed by using the LF/HF ratio, which consists of a ratio of the power in a low frequency band ([0.04 0.15] Hz) with the power in a high frequency band ([0.15 0.4] Hz) [START_REF] Malik | Heart rate variability: Standards of measurement, physiological interpretation, and clinical use[END_REF].

The power of the EEG signal in several frequency bands can also be extracted. The main bands of interest for mental state monitoring of awake operators include the δ (1 to 4 Hz), θ (4 to 7 Hz), α (8 to 12 Hz), and β (13 to 30 Hz) bands. Table 1 details the power modulations commonly reported in the literature for the following mental states: mental fatigue, mind wandering and mental workload. In addition to the potential use of a single frequency band's power, several authors have proposed power ratios as good indices of workload and engagement. Hence, the θ power at the Fz electrode site over the α power at the Pz electrode site ratio is frequently used (θ Fz /α Pz , [75]), or also, the β power over the θ plus α powers (β/(θ + α)) at all electrode sites, as in Reference [START_REF] Pope | Biocybernetic system evaluates indices of operator engagement in automated task[END_REF]. 

Spatial Features

Beyond simple temporal and spectral features one can find in the literature a variety of feature extraction pipelines. For instance, in order to increase the discriminability of two mental states that need estimating, one can use spatial information, that is to say the information on which sensor is more relevant for detecting a given mental state, or information on how the different signals are linked to one another. In order to do so, one can use sensor selection algorithms that automatically detect the relevant ones, or spatial filtering algorithms which combine the signals into more discriminant ones [START_REF] Lotte | EEG feature extraction[END_REF]. Temporal or spectral features are then usually extracted from the new signals acquired through this signal conditioning step. For instance, after a spatial filtering step, one can compute the log variance of a signal filtered in the α band, or extract event-related potentials, to estimate the workload of an operator [START_REF] Roy | Operator Engagement During Prolonged Simulated UAV Operation[END_REF][START_REF] Roy | Mental fatigue and working memory load estimation: Interaction and implications for EEG-based passive BCI[END_REF].

Furthermore, spatial features, such as connectivity matrices, can be computed. For instance, correlation, covariance, or coherence matrices can be computed from the signals of all sensors. Indeed, it has been shown that mental fatigue can be estimated using EEG covariance matrices [START_REF] Charbonnier | EEG index for control operators' mental fatigue monitoring using interactions between brain regions[END_REF].

Operator Mental State Assessment

The previous section described some noticeable mental states that encourage error occurrence (e.g., cognitive workload), along with associated markers (e.g., Heart Rate Variability (HRV)). These markers (also called features) and, more broadly, data streams coming from the human operators, can be exploited to infer useful information, like mental state estimation. As physiological signals are highly susceptible to noise, most processing pipelines include a preprocessing step before feature extraction in order to enhance the signal to noise ratio. This preprocessing is detailed in the following section. Next, the machine learning framework and the usual tools for estimating mental states are the following topic of this section, while the subsequent section describes some techniques for supervising man-machine teams based on the resulting estimates.

Preprocessing

Electrophysiological signals have to be preprocessed before stepping into the feature extraction stage. Indeed, this type of signal is quite impacted by electromagnetic noise present both in laboratory, office, and ground station conditions (e.g., current, 50 or 60 Hz depending on the country), as well as in operational settings, such as inside vehicles and aircrafts. The usual first step is to apply frequency filters to remove signal drifts and the noise from electromagnetic external sources.

Next, one can add a denoising step that aims at removing influences from physiological sources that are not of interest for a specific application. For instance, one can remove the impact of eye movements on the cerebral signal. Indeed, eye movements produce noises of high amplitude in the EEG signal. In order to remove this information when it is considered artifactual, one can use regression or source separation methods. This is usually done using a reference signal acquired through electrodes positioned above, below and at the outer canthi of the eyes, a method called electro-oculography (EOG). Yet, one should note that ocular activity can in fact be quite relevant to estimate mental states linked to time-on-task, task-demands, and system-outputs and might be rightly conserved inside the EEG signal. Using ocular activity extracted from the EEG signal allows avoiding the use of facial electrodes and is relevant to monitor mental fatigue in operators [START_REF] Roy | Eye blink characterization from frontal EEG electrodes using source separation and pattern recognition algorithms[END_REF].

Learning and Classification

Classification Principle

A physiological marker-or, more generally, a vector of markers-is reliable for a given mental state if the values of this marker characterize well the mental state of interest. In other words, the underlying probabilistic distribution of such a vector is known (or supposed) to be significantly different depending on the state of the operator. This property often provides the possibility to generalize from examples: the aim of statistical classification here is to compute (or learn) a prediction function from a dataset that contains vectors of feature values. This function has to associate the most plausible mental state to any new vector, not just to those present in the dataset [START_REF] Alpaydin | Introduction to Machine Learning[END_REF][START_REF] Kotsiantis | Supervised machine learning: A review of classification techniques[END_REF][START_REF] Lotte | A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update[END_REF].

Figure 1 illustrates the classification process. The dataset used for learning purposes, i.e., to compute the prediction function, is called the training set. Within the framework of statistical classification, the training set contains for each vector (of feature values), the corresponding desired output of the prediction function.

In the case of physiological data classification, features are physiological markers and the desired output is the condition: "human in the mental state number 1" or "number 2". In practice, physiological data are recorded on volunteers who have been asked to perform specific tasks, known to make them reach particular mental states or to avoid them. The considered datasets are therefore called labeled datasets, the labels being the desired outputs (i.e., the mental state under which the vectors of features have been recorded). Since it uses labeled datasets, the classification is referred to as supervised learning.

More formally, a n-sized, d-dimensional labeled dataset (X, y) ∈ R n×d × {0, 1} n is a dataset in which each sample (vector of features) is denoted by X i ∈ R d , i ∈ {1, . . . , n}, and the associated label, or class, is y i ∈ {0, 1}, with, for instance, "1" for "high workload" and "0" for "low workload".

Formally, given a testing set (X, y) ∈ R n×d × {0, 1} n , the mean accuracy of c is a

(c) = #{ i | y i =c(X i ) } n .
If the testing set is unbalanced i.e., if the number of samples with label 1 (or "positive" data) P := # { i | y i = 1 } is very large (or very small) compared to the number of samples with label 0 ("negative data") N := # { i | y i = 0 }, an adjusted version of the mean accuracy may be used instead based on the following more specific metrics. The number of samples for which the label is l ∈ { 0, 1 } and the prediction is p ∈ { 0, 1 }, denoted by m p,l (c) := # { i | c(X i ) = p and y i = l }, allows a more precise evaluation of the classifier c : R d → { 0, 1 }. Using this notation, the number of true positives-respectively, false positives, true negatives, and false negatives-is TP := m 1,1 (c), respectively, FP := m 1,0 (c), TN := m 0,0 (c), and FN := m 0,1 (c), and these values may be summarized by a confusion matrix 2 × 2 generally used as an approximation of prediction probabilities:

TP/P FP/N FN/P TN/N = m 1,1 (c) P m 1,0 (c) N m 0,1 (c) P m 0,0 (c) N ≈ p ( p = 1 | l = 1 ) p ( p = 1 | l = 0 ) p ( p = 0 | l = 1 ) p ( p = 0 | l = 0 ) , (5) 
with n = P + N, and TP P (respectively, TN N ) often referred to as sensitivity or true positive rate (respectively, specificity or true negative rate). The mean accuracy can be computed from these metrics a(c) = TP+TN n , as well as the adjusted one ã(c) = 1 2 ( TP P + TN N ), for unbalanced datasets.

Some Famous Classifiers

Many classifiers have been developed on theoretical or empirical bases and have pros and cons for each type of data. The following section details: linear and quadratic discriminant analyses (LDA and QDA), Support Vector Machine (SVM), and k-Nearest Neighbours (KNN). LDA is surely one of the most famous classifiers. It has been used on features extracted from ECG or EEG data to predict quite efficiently mental fatigue (e.g., Reference [68,[START_REF] Roy | Mental fatigue and working memory load estimation: Interaction and implications for EEG-based passive BCI[END_REF][START_REF] Dehais | Monitoring pilot's cognitive fatigue with engagement features in simulated and actual flight conditions using an hybrid fNIRS-EEG passive BCI[END_REF]), mental workload (e.g., Reference [68,[START_REF] Roy | Mental fatigue and working memory load estimation: Interaction and implications for EEG-based passive BCI[END_REF][START_REF] Mühl | EEG-based workload estimation across affective contexts[END_REF][START_REF] Roy | Efficient workload classification based on ignored auditory probes: A proof of concept[END_REF]), and inattentional deafness (e.g., Reference [START_REF] Dehais | Inattentional deafness to auditory alarms: Inter-individual differences, electrophysiological signature and single trial classification[END_REF][START_REF] Dehais | Monitoring Pilot's Mental Workload Using ERPs and Spectral Power with a Six-Dry-Electrode EEG System in Real Flight Conditions[END_REF]). A combination of classifiers can also be used, such as done by Singh and collaborators, who use KNN and SVM to detect periods of rest, stress, or cognitive workload [38]. For a complete description of the state of the art of mental state classifiers from EEG signals, please read Reference [START_REF] Lotte | A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update[END_REF].

Linear and Quadratic Discriminant Analyses

A method derived from classical statistics, known as discriminant analysis [START_REF] Lachenbruch | Discriminant analysis[END_REF], suggested by R.A. Fisher, assumes that for each class l the data X i ∈ R d y i = l are normally distributed. In a nutshell, by estimating the parameters of the distributions, the predicted class of a new vector simply will be the class of the distribution for which it has the highest likelihood. While covariance matrices of the normal distributions are supposed to be equal in Linear Discriminant Analysis (LDA), this assumption is not taken up with Quadratic Discriminant analysis (QDA). After estimating the parameters of these two Gaussian functions, one for each label l, the prediction is based on the posterior probabilities of the classes. Indeed, using the Bayes rule, the decision for a new vector is the class with the highest resulting probability.

Support Vector Machine

A newer algorithm, called Support Vector Machine (SVM) [100], does not assume that the data are normally distributed. This classification algorithm takes as input a penalty parameter C > 0 and a function called kernel. The kernel function is used to map the vectors that we need to classify from a lower dimensional space (R d ) to a higher dimensional space in which it is more easily linearly separable, i.e., in which we can find a hyperplane that separates the two classes. Some popular kernel functions are the linear kernel K l (x, y) := x, y = ∑ d i=1 x i • y i , the polynomial kernel K p (x, y) := ( x, y + r ) p (with p ∈ N), and the Gaussian radial basis function (RBF) kernel K r (x, y) := e -γ x-y with x 2 = ∑ n i=1 x 2 i = x, x . The classification results using these three kernels are visible on Figure 2. Given a kernel K : R d × R d → R, and thanks to an important theoretical result called the representer theorem [101], a solution f is computed using convex optimization. The predicted class of a vector x ∈ R d is given by the sign of the resulting function f . Thus, the set of all x ∈ R d such that f (x) = 0 is a separating boundary. In the formulation of SVM optimization, the margin, that is the smallest distance between the points x such that f (x) > 1, and those such that f (x) < -1, is maximized as is the classification error multiplied by C: a larger value of C leads to a smaller margin, but more training data that is correctly classified. This algorithm is considered as a state-of-the-art in classification performance, with guaranties due to the convex optimization.

k-Nearest Neighbors

The k nearest neighbors classifier (k-NN) [102] is one of the simplest classification algorithms in machine learning. It is based on a distance defined in the feature space (e.g., the Euclidean

distance d(x 1 , x 2 ) = ∑ n i=1 (x 1 i -x 2 i ))
and defines prediction as the majority label among the nearest k neighbors according to this distance.

Other Algorithms, Recent Advances, and Challenges

The previous list of classification algorithms is far from comprehensive for brain-computer interface applications. Among the remaining algorithms, one can cite random forests (RF) [103] that are based on the majority vote (ensemble learning) of decision trees. Neural networks (NN) [104], such as the multi-layer perceptron (MLP), are also successful and have given birth to deep learning [105], which is beginning to be used to classify EEG data when the database is large enough [106]. They optimize the parameters of successive transformations applied to the data, usually using gradient descent algorithms (backpropagation [107]) to minimize the classification error. The transformations are usually composed of a linear combination of weights (e.g., convolution) and a non-linear function (e.g., sigmoid) called activation function. The intermediate results of each transformation, up to prediction, are called neurons. Since each step outputs several neurons, they are often represented as successive neurons' layers in a network. The more layers of neurons there are, the deeper the network is considered to be. Recent improvements in deep neural networks (e.g., network structure, new transformations, sampling training data) have allowed deep learning methods to reach performances comparable to the state of the art for a motor-imagery EEG data set [108]. The authors even implemented a method to visualize the features used by the resulting classifier. However, up to now, in physiological computing, neural networks have not yet shown their supremacy over other machine learning algorithms, as is the case in image classification. This is probably due to the size of the physiological datasets, which do not allow them to learn enough. The presented machine learning techniques are rather classical algorithms, and their use in BCI are presented in more detail in the review of Reference [109].

New algorithms have been developed based on matrices and tensors as features. These matrices and tensors can be built from connectivity features between sensors (e.g., EEG electrodes) or sources (after a source reconstruction step; for more information on source reconstruction, see, e.g., Reference [110]). Examples of such measures are correlation, covariance, or coherence matrices. The estimation of a given mental state can next be done by computing distance metrics between these objects. This has notably been done for mental fatigue estimation using the Frobenius distance between the covariance matrices of EEG signals [START_REF] Charbonnier | EEG index for control operators' mental fatigue monitoring using interactions between brain regions[END_REF]. The current use of the Riemannian distance has given rise to high accuracy mental state predictions [111].

There are currently three main technical challenges:

• Finding physiological features that are robust to the acquisition environment and tasks. Indeed, interactions between features have been found to significantly impact and decrease classification performance [START_REF] Roy | Mental fatigue and working memory load estimation: Interaction and implications for EEG-based passive BCI[END_REF][START_REF] Mühl | EEG-based workload estimation across affective contexts[END_REF]. Therefore, one should try and find markers that are context-independent and that could efficiently be used both in the lab and in the field.

• Developing classification pipelines that are capable of transfer-learning. Classifiers are indeed rarely immune to performance decrements generated by a switch of task, participant, or even session. Pipelines that are robust to inter-subject, inter-session, and inter-task variability are, therefore, to be aimed at.

• Performing the estimation in an online fashion and closing the loop, that is to say, feeding the mental state estimates to a decisional system that can, e.g., adapt the functioning of the whole system accordingly (e.g., assign tasks or send alarms to the operator). This topic is addressed in the next part.

Closing the Loop: Towards Flexible Symbiotic Systems

The present section considers research work that aims towards adding human operators as measurable agents into the control loop (see Figure 3). Here, we explain how the adjunction of computational steps (e.g., data preprocessing, features computing, classification) and their outputs could be beneficial to drive the human-robot interaction. As stated earlier, the systems developed following this approach are called neuroadaptative or physiological computing systems, as well as passive Brain-Computer Interfaces (BCIs), and are likely to grow considering the increasing use of machines by a limited and decreasing number of human agents. Particularly, Brain-Computer Interfaces (BCIs) can provide useful information about the human operator to the automated system. A BCI is a system that performs direct information transfer from a brain to a computer, through brain activity measurements, therefore enabling to achieve control of devices without the use of psycho-motor activity [112]. In this article, we are interested in passive BCIs, i.e., BCIs in which the human operator does not try to voluntarily control his/her brain activity: the latter is only used to improve the interaction between the operator and the automated system [113,114]. In addition to the difference between active and passive BCIs which relates to the type of control exerted by the user, system interventions, or counter-measures, can be explicit or implicit, i.e., system adaptations can be consciously registered by the user, or not [34]. The use of explicit or implicit adaptations mostly depends on the limit one sets concerning the quantity of information the operator should get.

Goal

In this section, first, the principle of these symbiotic systems is presented. Next, current work on human-robot interaction driving systems exploiting some human state detection is described. An emphasis is given on approaches based on sequential decision-making, where automated planning models under uncertainty have been used. Note that human behavior and the events encountered during remote operation are rarely deterministic or fully observable in our view.

Symbiotic Systems: Principle

As much as the human agent adapts his/her behavior to the feedback given by the system, an automated system should adapt its behavior to the human state vector, either at the user interface level-shallow adaptation-or at the global decisional level-deep adaptation. For instance, Singh and collaborators proposed a physiologically attentive user interface to perform shallow adaptations [38], while Prinzel and collaborators [115] developed a psychophysiological adaptive automation system with adaptive task allocation based on the engagement index [START_REF] Pope | Biocybernetic system evaluates indices of operator engagement in automated task[END_REF]. Mixed-initative systems have also been used to produce deep adaptations, such as to decide to launch alarms [116], to decide how to present the information to the operator depending on the task priority and mission goals [9], or even to decide when to request an action from the human operator [117].

In order to improve the performance of remote robot operation by allowing this adaptation to take place, a big technical challenge for these systems is the requirement to function online, or in "real time". Here, the expression "real time" differs from "Real Time Computing": it just means that the system is reactive to data with quite small delays.

Concerning the data from the human operator, it can be classified according to the way they are acquired:

•

Proximal behavioral data: operator actions on the interface through the mouse, keyboard, buttons, joystick, etc. [31,118].

• Distal behavioral data: obtained using remote sensors (passive operator), such as eye tracker, audio and video streams, etc. [117,119,120].

• Physiological data obtained with sensors worn by the human operator, such as electroencephalography (EEG), electrocardiography (ECG), electrodermal activity (EDA), near infrared spectroscopy (NIRS), electromyogram (EMG), etc. [39].

Next, we propose a general framework we believe to be a strong candidate for such symbiotic systems.

One Solution: Mixed-Initative Interaction Driving Systems

As discussed earlier, physiological and behavioral markers could be used to estimate the operator state vector. As illustrated by Figure 3, this operator state vector can be exploited by a decisional system jointly with the artificial agents' state vectors. More precisely, a decisional framework can decide, based on current states, which action is the most relevant to perform given the mission context and long-term goals. Examples of such actions are to wait for an answer of the human operator, set an artificial agent to autonomous mode, or take over the human operator's task if he/she fails. In the literature, this approach is known as mixed-initiative interaction [28,40,41].

The classical mixed-initiative approach defines the role of the human and artificial agents according to their recognized skills [40,41]. In our point of view, mixed-initiative should be considered in depth, especially for human-robot interaction. Indeed, the agents should be allowed to take the initiative of performing tasks that would not be necessarily defined or specified to them. This position is also advocated by Jiang and Arkin [28], who define the mixed-initiative human-robot interaction (MI-HRI) as: 'A collaboration strategy for human-robot teams where humans and robots opportunistically seize (relinquish) initiative from (to) each other as a mission is being executed, where initiative is an element of the mission that can range from low-level motion control of the robot to high-level specification of mission goals, and the initiative is mixed only when each member is authorized to intervene and seize control of it.'

An interesting example of such a mixed-initiative system is given in Reference [118]. This approach relies on a statistical analysis to determine which agent (i.e., human or artificial) is the most efficient for a given task, but not the only one capable of it. This is certainly an interesting topic concerning roles allocation and authority sharing between the human and artificial agents. In other words, it means that the human or the artificial agents are both able to perform the same task, and, when the agent initially expected to perform a task fails (even the human agent), the other can take the initiative to accomplish it. In this sense, we advocate that the human operator should not be considered as a providential agent any more, contrary to the classical operational context which consider that the human operator will be able to take over when sensors or automations fail [121][122][123].

As discussed in the first sections, degraded mental states could diminish human capabilities. Hence, cybernetic systems should be able to compensate such a weakness while ensuring application or mission performance. In the next section, we discuss some works from the literature that report cybernetic (closed-loop) systems that make use of behavioral and/or physiological data to infer the human state vector and to adapt its behavior in consequence.

Mixed-Initiative Symbiotic Interaction Systems: Existing Work

To our knowledge, the literature on interaction based on mixed-initiative symbiotic systems is still scarce. Yet, a few studies have shown the feasibility of the approach. Some of them using only subjective and behavioral data and closing the loop for triggering adaptations for mission accomplishment (long-term decisions), others, using physiological data although applying reactive human-centered strategies (short-term decisions) without taking into account the overall system performance. The works discussed in the following section approach the main idea of such closed-loop systems. As far as the authors know, mixed-initiative interaction driving systems searching for mission performance maximization, and that include physiological computing to monitor the human operator,

were not yet fully implemented [42]. Gombolay and collaborators studied a mixed-initiative human-robot teaming in which human factors are considered by a robot in the decision-making process [30]. This latter defines tasks to the team by taking into account subjective workload and workflow preferences from human teammates. Interestingly, they found that human workflow could be orthogonal to the goal of maximizing team's overall performance. Unfortunately, in this work, subjective feedback is considered for a priori task allocation, and no online human state estimation is performed for tasks (re)planning.

-Actions and sequences of actions

Beyond subjective measures, which can only be performed before/after the task or in an interrupting manner during the task, behavioral measures can be easily and unintrusively performed online. Hence, de Souza and collaborators used a search and rescue mission in which human operators and artificial agents (UAVs) must collaborate to deliver first-aid kits [9]. This approach proposes to model the human utility based on the Prospect Theory considering subjective perceived probabilities learnt from experimental data. Based on this model, the supervisory system can predict the human operator's response for a given request from artificial agents in a given context. Then, it can choose how to present the information to the operator. The approach is based on Game Theory and is designed to maximize the chances the human operator takes an aligned decision with respect to the operational guidelines. The results demonstrate the system can influence humans' decision, in particular, when operators are emotionally involved.

In Charles et al. [31], an interaction model learning approach is proposed to approximate a Markov Decision Process (MDP) based on crowdsourcing collect data. The authors integrated the human actions on the interface as a state variable which models the user intention dynamic. As well as, its influence over the others state variables evolution during manual control or autonomous robot control mode. Simulation results showed the optimized collaboration strategy (MDP policy) based on the learned interaction model increased the overall mission performance compared to a random or a fixed strategy.

In the same vein, Nikolaidis and collaborators proposed an elegant way to estimate different types of human operators (safe or efficient) based on their sequence of actions in an industrial human-robot interaction context [124]. The decisional framework, which estimates the behavioral profile of the operator, is based on a Partially Observable Markov Decision Process (POMDP). The POMDP adapts the behavior of the artificial agent considering the current estimation of the human operator profile. The same decisional framework is also used by Hoey and collaborators in another operational context [120], in which the system explores video inputs and proposes an assistance for people with dementia, such as (i) verbal or visual prompts or (ii) through the enlistment of a human caregiver's help.

-Vocal commands

Atrash and Pineau proposed a human-robot interaction approach also based on the POMDP framework to drive an automatic wheelchair [119,125]. High-level user commands are inferred by a vocal recognition system, and a feedback is given to the user via a mounted display. In Reference [125], a method to learn the reward function of a such POMDP is presented, while, in Reference [119], the observation function is learnt. These works demonstrate the capability of Bayesian techniques to adjust the POMDP model from (numerous) experiences.

-Ocular behavior

Gateau and collaborators proposed an integrated system that models the non-deterministic behavior of the human operator based on his/her time-to-answer, and his/her availability, which is measured by means of an eye-tracker [117]. The eye-tracking device indicates the regions of the screen the human operator might be paying attention to. Exploring these pieces of information into the closed-loop allows to design a decision-making system that performs requests to the human operator respecting his/her supposed availability. The approach based on a POMDP shows that the human operator's performance on the secondary-task increases when the system takes into account the operator's availability information in the closed-loop, while not decreasing the overall system's performance.

Adaptive Interaction Exploiting Physiological Data for Human State Estimation

To our knowledge, physiological measurements to estimate human (hidden mental) states (cf. Section 2) have never been tested in order to be included into the human-robot mixed-initiative interaction control system (e.g., high-level mission control loop). For instance, in Reference [116], a POMDP-based approach is proposed, in which a mixed-initiative human-robot mission is modeled considering that a degraded (partially observable) cognitive state could be estimated [126].

However, this work did not evaluate experimentally a such system, and the study only provides simulations results.

Yet, outside of the mixed-initiative approach, work has been done to use physiological data in a closed-loop fashion. Indeed, some works in human-machine interaction, adaptive automation, or active and passive BCI, in different operational contexts, have integrated physiological data to trigger adaptation. Examples of such works are detailed hereafter.

-Active BCIs

In the active BCI literature, i.e., works that enable the voluntary control of interfaces, exoskeletons or wheelchairs, the adjunction of physiological data in the control-loop has been studied for a few decades (see Reference [127] for a review). However, these systems usually use the outputs of a classification algorithm in a straightforward manner and do not use planning algorithms, nor even consider the potential use of mixed-initiative designs. However, Ghosh and collaborators did propose a Markov Decision Process (MDP) approach to control a wheelchair using EEG data [128]. In their study, the planning problem is solved by reinforcement learning methods. The framework aims to deduce users' intentions and adapt the system's behavior in consequence. Based on the detection of ErrPs (see Section 2.2), the system learns the value related with an action performed in a given state. Perspectives are proposed in the sense of using Partially Observable MDPs to handle with the misclassification errors of user intention, and the reward in terms of cognitive load of the user during policy learning.

-Passive BCI for active BCI Interestingly, the work of Zander and collaborators demonstrates the interest of using a passive BCI to detect the errors generated by an active BCI thanks to the extraction of ErrPs [114]. After detection, the system handles a correction action which speeds up user performance in a short-term horizon. Yet, again, no automated planning technique has been used in this work in order to plan a sequence of actions. The development of dynamic model able to mimic future ErrPs from users in function of the context, which is a necessary step for long-term automated action planning, was out of the scope in this reactive system. However, this work highlights the potential of a such passive and implicit estimation of user's hidden states (or mental states) to increase human performance.

-Passive BCIs for mental workload management Since the early years of passive BCIs, mental workload has been one of the most studied mental states. For instance, Prinzel and collaborators presented a study in which adaptive automation was performed to track performance and to decrease participants' workload [115]. The system used EEG-based spectral features, to decide greedily (based on a threshold) when to switch between automatic and manual control modes during a tracking task (modified version of Multi-Attribute Battery Task; MATB) coupled with an auditory oddball task. Their adaptive automation improved performance while lowering workload compared to a random decision strategy. Such a state-of-the-art work also demonstrates the possible benefits in taking into account physiological features to adapt the system's behavior. Note that, in this study, the decision rule was only based on an EEG-based engagement index [START_REF] Pope | Biocybernetic system evaluates indices of operator engagement in automated task[END_REF] evolution. Here, again, no long-term planning technique, potentially based on the evolution of an engagement index, was used. In our view, a model able to predict the evolution of such an index would favor best suited adaptations compared to reactive decision rules, being less prone to short-term variations and triggering actions only when necessary for long-term performance maximization.

More recently, Arico and collaborators have studied the effect of adaptive automation to reduce mental workload in a realistic Air Traffic Management (ATM) task, in particular, during the high-demanding conditions [129]. Various automation schemes were defined beforehand by specialists and were triggered when an EEG-based mental workload index was higher than a threshold, which was user-defined during the training phase. Again, no automated planning technique that would be able to reason by taking into account long-term mission or task goals was used.

Note that, in the existing literature, besides being seldom applied to remote operation, the approaches are either human-centered or artificial-agent-centered: they design a system that models the behavior of the humans and adapt itself to the type of human it interacts with (e.g., Reference [30,114,115,119,120,124,128,129]); or a system that drives the human actions in order to maximize the performance of the entire system (e.g., Reference [9,116,117]). However, considering the definition of MII-HRI given by Jiang and Arkin, [28], and also advocated by us, these works are only first steps and pave the way toward mixed-initiative collaboration strategies. Hence, the next research steps should promote the design of systems in which the initiative is genuinely mixed, i.e., each agent (human or artificial) can intervene and seize the control. Besides, from a human point of view, the utility (or necessity) that such an artificial system could seize the control from us still remains to be well defined, notably regarding ethical reasons.

Research Gaps and Future Directions

In our view, in order to advance the improvement of symbiotic systems' safety and performance, researchers and designers should no more consider the human operator as an unfailing agent. Indeed, as discussed previously, the human operator's mental states can impact their performance and even prevent them to make efficient decisions or, should the artificial agents fail, to adequately take over. As argued by Reference [42], the mixed-initiative framework presents a reasonable solution because it offers the opportunity to determine a cooperation strategy defining the role of involved agents according to their recognized skills and current capabilities. Incidentally, such a framework, if used as an interaction driving system, requires: (i) to monitor the capabilities of all involved agents (human and artificial agents) given the operational context, and (ii) the ability to model the evolution of agents' individual behavior [31,130], as well as monitoring systems output performance.

Automated planning techniques are based on systems models. Note that interaction models are not straightforward to obtain [31]. However, if enough data are available about agents actions' effects, and if monitoring systems performance is known, it is possible to explore planning models that could determine the mixed-initiative policy strategy. In Reference [116,117], automated planning models (e.g., POMDPs) were applied to trigger actions (e.g., role assignment, implicit or explicit counter-measures launch) for operation performance maximization while respecting safety specifications. These works have demonstrated the interest of long-term reasoning to mitigate decrease of performance or critical situations. It paves the way for the integration of richer monitoring systems (e.g., physiological computing-based ones) into such mixed-initiative interaction driving models. It goes without saying that both requirements-physiological computing for monitoring systems and long-term model-based actions planning-still need further developments, in particular, in ecological settings.

In this article, a non-exhaustive review of relevant mental states of interest for operator monitoring was given. It does not include work on affective-related states which are, however, also relevant to characterize and enhance human-robot interaction. Affective computing is a well developed field and affective states can be estimated quite efficiently using machine learning tools on a variety of physiological markers [131]. Therefore, in addition to estimating time-on-task, task demands, and system-related states, further research and development should also focus on incorporating affective computing pipelines into the system. As detailed by Pongsakornsathien and collaborators, research and engineering work also needs to focus on sensor fusion and sensor networks, by taking into account the specificity and minimum performance requirement of each sensor to increase mental state estimation reliability and accuracy [132].

In addition, this paper advocates the use of sensors and its specific pipelines for mental state estimation purposes in HRI to enhance mission performance. However, to plug in the human operator in such a way brings out social and ethical issues. Despite the importance of those aspects, these points are out of the scope of this article and readers should refer to studies that present formal methods for linking ethics and automated decision-making [23], that propose a user-centered method to design, develop, and test assistive robots [133] or that discuss the acceptability of wearable sensors [134].

Lastly, it should be noted that, although remote operation is a rising form of HRI with applications in risky settings that justify a need for research and development to enhance both operation safety and performance by taking into account the state of the operator, local operation of robots, such as in the 4.0 industry or in the operating room, could also benefit from physiological computing and MII systems [135][136][137].

Conclusions

This perspective article was meant to provide the reader with a thorough understanding of a recent and growing field that is called physiological computing, with a focus on the benefits it could bring to human-robot interaction developments for remote operations. It stems from the review of the literature that there is a need for studies that would concentrate on using physiological data to infer operators' mental state in an online fashion to adapt the interaction, particularly in the context of remote operation, and that would use methods, such as automated planning techniques, in order to progress towards mixed-initiative architectures. Such developments would in our view provide safer and more efficient human-robot interaction systems, which would be an invaluable contribution for remote operation in risky settings.

As is the case in several research domains, data sharing is still scarce in the field of Brain-Computer Interfaces (BCI), and particularly in that of passive BCIs-i.e., systems that enable implicit interaction or task adaptation based on a user's mental state(s) estimated from brain measures. Moreover, research in this field is currently hindered by a major challenge, which is tackling brain signal variability such as cross-session variability. Hence, with a view to develop good research practices in this field and to enable the whole community to join forces in working on cross-session estimation, we created the first passive brain-computer interface competition on cross-session workload estimation. This competition was part of the 3rd International Neuroergonomics conference. The data were electroencephalographic recordings acquired from 15 volunteers (6 females; average 25 y.o.) who performed 3 sessions-separated by 7 days-of the Multi-Attribute Task Battery-II (MATB-II) with 3 levels of difficulty per session (pseudo-randomized order). The data -training and testing sets-were made publicly available on Zenodo along with Matlab and Python toy code (https://doi.org/10.5281/zenodo.5055046). To this day, the database was downloaded more than 900 times (unique downloads of all version on the 10th of December 2021: 911). Eleven teams from 3 continents (31 participants) submitted their work. The best achieving processing pipelines included a Riemannian geometry-based method. Although better than the adjusted chance level (38% with an α at 0.05 for a 3-class classification problem), the results still remained under 60% of accuracy. These results clearly underline the real challenge that is cross-session estimation. Moreover, they confirmed once more the robustness and effectiveness of Riemannian methods for BCI. On the contrary, chance level results were obtained by one third of the methods-4 teams-based on Deep Learning. These methods have not demonstrated superior results in this contest compared to traditional methods, which may be due to severe overfitting. Yet this competition is the first step toward a joint effort to tackle BCI variability and to promote good research practices including reproducibility.

INTRODUCTION

Passive Brain-Computer Interfaces (BCIs) can estimate users' states, e.g., their cognitive or affective states, from their brain signals and use these estimations to adapt a human-computer interaction system accordingly (Zander and Kothe, 2011). As such, passive BCIs (pBCIs) have been used for many applications, including the estimation of users' mental workload (Roy and Frey, 2016), in order to adapt education material to students' cognitive resources (Yuksel et al., 2016) or to prevent airplane pilots from being overloaded (Singh et al., 2021a), and thus from missing alarms (Dehais et al., 2019a,b); or to estimate users' affective states, in order to design adaptive video games maximizing users' excitement or pleasure (Ewing et al., 2016), among many others.

As such, pBCIs are a key element for neuroergonomics (Dehais et al., 2020;Fairclough and Lotte, 2020a), for the design of numerous real-life studies and applications of neurotechnologies (Lotte and Roy, 2019). However, beyond promising proof-of-concepts, really using pBCIs in everyday life still requires to face numerous challenges. One of them is the well-documented large within-subject variability affecting brain signals such as ElectroEncephaloGraphy (EEG) signals. Indeed, EEG signals are highly non-stationary, and can change a lot across days, or within a day, even for the same user [START_REF] Fairclough | Grand challenges in neurotechnology and system neuroergonomics[END_REF]. However, so far, the vast majority of pBCI studies were conducted on a single day (a.k.a. session), making it unclear whether the designed BCI would still work on brain signals acquired over different days/sessions without re-calibration. This is equally true for other EEG-based datasets and competitions outside the field of pBCI. Recent examples include the public database of joint recording of EEG and fNIRS data during cognitive tasks published by [START_REF] Shin | Simultaneous acquisition of eeg and nirs during cognitive tasks for an open access dataset[END_REF] that enabled the authors to evaluate the benefits of a hybrid-BCI for withinsubject and single-session mental state estimation during a word generation task. The Clinical BCI challenge in 2020 provided data from healthy and stroke patients, which was new and enabled both within and cross-subject estimation, but using only one session (consisting of 1 offline training session and 1 online testing session; [START_REF] Chowdhury | Clinical brain-computer interface challenge 2020[END_REF]. Lastly, the NeurIPS 2021 BEETL Competition: Benchmarks for EEG Transfer Learning [START_REF] Xiaoxi | NeurIPS 2021 BEETL Competition: Benchmarks for EEG Transfer Learning[END_REF] provided 1 sleep dataset and 5 Motor-imagery datasets (active BCI). The goal was to perform cross-subject sleep stage estimation (impact of the age of the participants), as well as cross-dataset MI-BCI estimation with multiple sessions.

Hence, to our knowledge, existing public EEG datasets-and the scarce pBCI datasets-provide brain signals recorded on a single day/session (Hinss et al., 2021b), preventing the design and evaluation of pBCIs that would work across days/sessions. Ideally, a real-life pBCI, as envisioned in neuroergonomics, would need to be effective and efficient at all time, i.e., across sessions, without the need for recalibration. We thus proposed a data analysis competition at the 3rd International Neuroergonomics conference, that aimed at addressing this scientific challenge. We notably released the first (to the best of our knowledge) public pBCI dataset providing EEG signals across multiple sessions for each user, and we challenged the competitors to come up with the best algorithm to decode mental workload from EEG signals on a new unseen session, from a training dataset comprising several sessions. The choice was made to focus on a mental state frequently investigated in the pBCI literature, namely, mental/cognitive workload. Hence, data was acquired using a well-known task that elicits various levels of mental/cognitive workload: the Multi-Attribute Task Battery-II (MATB-II) developed by NASA, which enables to assess taskswitching and mental workload capacities [https://matb.larc. nasa.gov- [START_REF] Santiago-Espada | The multi-attribute task battery ii (matb-ii) software for human performance and workload research: a user's guide[END_REF]]. The dataset is part of a new open EEG database currently under development, and designed to address the need for more publicly available EEGbased datasets to design and benchmark passive brain-computer interface pipelines [as detailed in Hinss et al. (2021b)].

This article provides a retrospective on the competition by first detailing the competition management, the released dataset, the competitors and the methods employed by them as well as the obtained results and a reflection on which methods seem more fit for cross-session EEG-based mental workload estimation.

COMPETITION & DATASET

Competition Management

The competition was organized as the grand challenge of the 3rd International Neuorergonomics conference (https:// www.neuroergonomicsconference.um.ifi.lmu.de/) held online in September 2021 (from Munich, Germany). It was managed using the conference ConfTool submission website and the Zenodo dataset sharing website [START_REF] Hinss | An EEG dataset for cross-session mental workload estimation: passive BCI competition of the neuroergonomics conference[END_REF]. The participation and submission rules were the following:

• One submission per team;

• One participant may only be part of one team; • Submissions must include: results (estimated labels for the test set) and abstract (same format as regular paper submissions for the conference).

The important dates of the conference competition were the following:

• Overall, the goal of the participants was to design and to train a 3class pBCI workload classifier on the first two labeled sessionsi.e., the training sessions-in order to predict the labels of the 3rd unlabeled session-i.e., the testing session. Participants should • The electrode locations were provided in a. txt file with the xyz coordinates for each electrode.

RESULTS

Competitors

Eleven teams from 3 continents-Asia, Europe and North America (Figure 2A)-and 7 countries (Figure 2B), submitted their work, for a total of 31 participants. The biggest contributor in terms of submissions was India with 4 teams. France and the United Kingdom were behind with two teams (one was affiliated to both countries). Finally, Germany, Israel, Serbia, and the United States of America provided one submission each. The eleventh team was disqualified due to the submission of an incomplete results file.

Performances Obtained and Methods Used

The methods used by the contestants are listed and ranked with their achieved test classification accuracy in decreasing order in Table 1.

In terms of classification accuracy, the obtained performances ranged from 31.32 to 54.26%. Note that the chance level for this 3class problem is 33%, and an upper-bound of about 38% with the adjustment that takes the number of trials per class into account, following [START_REF] Müller-Putz | Better than random: a closer look on bci results[END_REF]. Thus, 3 out of 10 valid submissions performed at chance level. The winner performed well above chance level, although with still quite a large error rate, the proposed classifier misclassifying almost every other epoch. This suggests that cross-session workload classification is a feasible but difficult task, for which there is still a lot of room for improvement.

In terms of methods, three main families of classifiers were explored: Riemannian geometry classifiers (Yger et al., 2016;[START_REF] Congedo | Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review[END_REF] (in green in Table 1), deep learning classifiers [START_REF] Roy | EEG-based mental state monitoring: Introduction to Neuroergonomics[END_REF] (in red in Table 1) and Random Forest classifiers [START_REF] Breiman | Random forests[END_REF] applied onto classical features (in purple in Table 1). Roughly, Riemannian classifiers top the ranking, with the 1st, 3rd, and 4th best scores, classical approaches with Random Forests are in the middle of it (5th and 7th places), while the 3 worst performances, below chance level, are obtained by deep learning methods. A notable exception is the 2nd best performing approach, which uses a Convolutional Neural Network (CNN), i.e., a deep learning method.

Diverse standpoints on the data were exploited by these different classifiers. The first four teams from the ranking have taken advantage of some spatial information from the signal. Indeed, three methods used Riemannian geometry principles on covariance matrices extracted from the signals (Yger et al., 2016;[START_REF] Congedo | Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review[END_REF]. These covariance matrices encode spatial information. [START_REF] Corsi | Ensemble learning based on functional connectivity and Riemannian geometry for robust workload estimation[END_REF] have even added features from functional connectivity metrics. [START_REF] Sedlar | Rank-1 CNN for Mental Workload Classification From EEG[END_REF] have used a specific type of CNN named spherical CNN, designed to perform convolutions on non-planar data as the layout of electrodes on the skull (planar data are for example 2D images). It thus specifically exploited the topographical layout of EEG electrodes, i.e., domain-specific prior knowledge.

The winning solution from [START_REF] Singh | Inter-session subject specific mental workload multiclass classification using riemannian methods[END_REF] has also taken advantage of an automatic and per-subject electrode selection to reduce the number of electrodes from 61 to 18 -32, in addition to a classical approach using Riemannian geometry principles to project covariance matrices to the tangent space and use these projections as features to feed a Support Vector Machine (SVM) classifier. The selection was made sequentially, by pruning channels, to find the combination that maximises the Riemannian distance between class-conditional covariance matrices.

In Figure 3, the discrepancy of the validation accuracy (evaluated by the competitors using the published datasetsessions 1 and 2) and the test accuracy (evaluated by the organizers using session 3) is depicted. Validation accuracy from [START_REF] Sharma | Mental Workload Classification[END_REF] was missing in the report and is therefore omitted from the graph. Teams are ordered from left to right following the ranking of the competition. For the first five competitors, the overfitting seems limited as the validation accuracy are close to test accuracy. However, for the three deep learning methods at the end of the ranking, generalization seems to have been an issue as the methods perform very well from session 1 to 2 but at chance level on session 3. All deep learning models, except the one from [START_REF] Sedlar | Rank-1 CNN for Mental Workload Classification From EEG[END_REF], have proposed quite large models, thus with many parameters, and have used Recurrent Neural Network (RNN) models-except [START_REF] Kartali | Passive BCI Hackathon: Applying Deep Learning To Estimate Mental Workload[END_REF] who used CNN, which may explain the generalization issues. Indeed, it could be that there was not enough training data to properly train such large deep learning methods, with many parameters and little prior knowledge. This seems to be confirmed by the performances obtained by the 2nd best performing method, by [START_REF] Sedlar | Rank-1 CNN for Mental Workload Classification From EEG[END_REF], as it also uses a deep learning algorithm, however, with few parameters and layers (it was actually quite a shallow neural network) and with strong prior about EEG generation. Interestingly, it can be noticed that none of the methods proposed actually performed explicit inter-session transfer using, e.g., transfer learning [START_REF] Jayaram | Transfer learning in brain-computer interfaces[END_REF][START_REF] References Azab | A review on transfer learning approaches in brain-computer interface[END_REF]. Indeed, the participants tried to design models with the higher generalization power, so that by training it on session 1 and 2 it would still perform well on session 3. No statistics or characteristics were extracted from session 3 to try to adjust/transfer the predictions. Similarly, no information about other subjects were used to train the classifiers for a given subject. In other words, neither cross-session nor cross-subject transfer was explored. Several participants have mentioned this transfer learning approach as future work in their abstract and therefore it seems to remain an open question.

CONCLUSION

Overall, in this article, we described our efforts toward moving pBCI technologies beyond proof-of-concept studies in a single session, to more realistic pBCI use across multiple days/sessions, i.e., in a neuroergonomic approach. In particular, we organized the first pBCI competition that aimed at estimating workload levels (with three levels of workloads) across sessions, with two sessions for training the BCI classifier, and one session for testing it. For that competition, we collected a dedicated EEG data set, that we publicly shared with the community-in order to stimulate research in that direction even beyond the competition.

The results of that competition provided several interesting insights. First, it confirmed the effectiveness and superiority of Riemannian geometry classifiers for BCI, whether active or passive, as the winner used Riemannian classifiers, and 3 out of the 4 best scores were obtained using Riemannian geometry. However, this claim should be tempered by the fact that the number of participating teams was only of 10 and that achieved accuracy is quite low. Besides, we could also notice that a classical approach here submitted by [START_REF] Bolton | EEG Mental Workload Classification With Random Forest Classifier[END_REF], with a traditional feature extraction and a random forest as classifier has achieved comparable results to those obtained with the other methods of the top-5.

The overfitting of 3 out of 4 of the deep learning methods highlights that deep learning is not a silver bullet. It requires some careful design of an adapted architecture and training procedure to the dataset. Here, as in all BCI research so far, the dataset was small. Hence, overfitting due to too large networks was a clear pitfall. A notable exception, the 2nd best results, used a neural network method with a compact (shallow) network and strong prior knowledge about EEG generation. Thus, deep learning seems useful for BCI when it is not deep, and does not fully apply end-to-end learning, but rather (manually) integrate prior knowledge in its architecture. The difficulty of designing an adequate deep learning method for BCI was also observed elsewhere [see, e.g., (Lotte et al., 2018) for a review]. Moreover, even when properly applied, the deep learning methods applied to BCI do not offer an edge over other traditional methods, like it has revolutionized computer vision or natural language processing. Hence, it seems that there is no deep learning revolution in BCI, at least so far.

Finally, the results obtained by the competitors, in terms of classification accuracy, revealed that while cross-session workload classification is feasible, the robustness achieved is still rather low, and would require a lot of improvement for being used in practical applications outside the lab. Yet, it should be noted that the database provided for this competition could have been larger. Indeed, at the time of the competition opening only 15 participants had undergone the 3 acquisition sessions, with an unbalanced database in terms of gender. This was mainly due to participant recruitment and data acquisition constraints in times of covid-19 pandemic, and will need to be further addressed with the release of a more complete and richer database.

Nevertheless, such results thereby open interesting perspectives for future research. First, they stress the need for more BCI studies across sessions, both to assess existing pBCIs (usually designed on a single session) but also to design new algorithms able to deal with cross-session variabilities. To do so, transfer learning algorithms (across sessions or users) seem to be promising approaches to explore, that the competitors of that competition have not employed yet. It should also be stressed that cross session variabilities are only a single type of variabilities that affect BCI performances. Many other sources of variabilities affect BCIs, such as cross-subject, cross-context, cross-task or change in users' mental states, among other (Roy et al., 2013;[START_REF] Fairclough | Grand challenges in neurotechnology and system neuroergonomics[END_REF]. Thus, we hope that such a competition highlighted the need for more studies, algorithm designs, benchmarks or data base collections to tackle variabilities in BCI in general.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found at: https://doi.org/10.5281/zenodo.5055046.
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 62 Figure 6.2 -From (Gramann et al., 2021): Experimental protocols in cognitive neuroergonomics regarding control and ecological validity.
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 73 Figure 7.3 -From (Kim et al., 2021): First-person maze navigation task
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 76 Figure 7.6 -From (Singh et al., 2021): Zoom on the UAV application U-track used by the flying pilot to interact with UAVs.
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 78 Figure 7.8 -From (Dehais et al., 2019a): ISAE-SUPAERO DR400 aircraft at Lasbordes airfield. Right-Experimental scenario: the pilots had to perform two traffic patterns (low and high difficulty) along with an auditory oddball task.
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 7 Figure 7.10 -From (Chanel et al., 2020): Screenshot of the Graphical User Interface (GUI) during a mission. Top left: remaining time and score. Top right: robot camera feedback. Bottom left: water stock management task. Bottom right: robot status.
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 7 Figure 7.15 -From (Verdière et al., 2020): Modified version of the MATBII. Participants were seated side by side in front of duplicated screens represented here on the left for the pilot flying and on the right for the pilot monitoring. The pilot flying had to perform the two upper tasks (red): monitoring and tracking. The pilot monitoring had to perform the two lower tasks (blue): fuel management and communications.During the cooperative condition, they both had to monitor one of each other's tasks and help to perform it if needed (yellow): The pilot monitoring had to monitor and help for the monitoring task and the pilot flying the fuel management task.
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 716 Figure 7.16 -Dyad of participants performing the modified MATB.
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 7 Figure 7.17 -From (Verdière et al., 2020): Subjective NASA TLX scores (first row), average heart rate (second row) and SDNN (third row) for the pilots flying (left graph) and the pilots monitoring (right graph). Each one of the 8 bars represents one of the 8 scenarii. The x-axis corresponds to the scenario difficulty for the pilot flying and the pilot monitoring (i.e. EASY-EASY / EASY-HARD / HARD-EASY / HARD-HARD). Colors represent the cooperation condition (COOP -DON'T COOP).
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 7 Figure 7.18 -From (Dehais et al., 2021): Hyperscan experimental setup: the Pilot (left) is flying the aircraft and exchanges instructions via a tablet with the JTAC (right) who is in charge of supervising the aircraft trajectory and gives instructions to the Pilot via the user interface.
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 719 Figure 7.19 -From http://mdrs.marssociety.org/ : Mars Desert Research Station (MDRS) in the Utah desert, United States.
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 720 Figure 7.20 -From https://spacegeneration.org : Lunares analog station, Pila, Poland.

Figure 7 . 21 -

 721 Figure 7.21 -From https://www.nasa.gov/analogs/nek : Ground-based Experimental Complex (NEK) at the Institute for Biomedical Problems in Moscow, Russia.
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 7 Figure 7.22 -From (Mimoso et al., 2021): Rock sampling teleoperation task display, SIRIUS-19 analogue mission.
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 7 Figure 7.23 -From (Dehais et al., 2020): The three types of Neuroadaptive countermeasures dedicated to mitigate the undesirable mental states.
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 7 Figure 7.24 -From (Lafont et al., 2021): Project Cocpit -Illustration of a neurofeedback session (A), illustration of the protocol for both the experimental groups (B) and illustration of the Multi-Attribute Task Battery (MATB-II) (C).
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 7727 Figure 7.26 -From (Singh et al., 2022b): Airtime project -participant performing the flying task and interacting with UAVs via a tactile tablet with dynamic task reallocation.
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  Selected projects: ANITI (M.-I. Casso-Echalar), Airtime (G. Singh, L. Tilly), CHESS, Cocpit, Hyperscan (N. Drougard, G. Vergotte), MAIA (L. Chatty, A. Dupré, A. Laouar, M. Senoussi, B. Somon), Neurotools, SmartCockpit (F. Ahuitzotl Reyna Bibiano, K. Verdière).
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 82 Figure 8.2 -From (Roy et al., 2020a). General principle of a closed-loop human aware system that includes a physiological computing pipeline.
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 83 Figure 8.3 -From (Somon et al., 2022). a) Three-axis motion flight simulator at the ISAE-SUPAERO. b) Localization of the cEEGrid electrodes for both ears with recording reference (blue) and DRL (green) electrodes indicated. Electrodes R4a and R4b on the right grid were not recorded on our set-up. c) Localization of the left ear grid when fitted around the ear after cleaning and preparing the skin of the participant.
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 84 Figure 8.4 -From (Somon et al., 2022), ERP results of the oddball task during flight simulation. ERPs for averaged L2 and R2 electrodes for a) each type of trial (hit: black-vs. miss: red vs. standard: blue), and b) for each type of sound (odd in red vs. standard sounds in blue) and each workload level (high workload: plain line vs. low workload: dashed line).
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 85 Figure 8.5 -From (Roy et al., 2016a): Single-stimulus paradigm using ignored and infrequent auditory probes.
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 88 Figure 8.8 -From (Dehais et al., 2019a): Example of EEG data before (up) and after (down) rASR processing for one subject.
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 89 Figure 8.9 -From (Dehais et al., 2019a): Grand averaged waveforms of the ERPs extracted after rASR denoising, for parietal electrodes with standard error.

Figure 8 .

 8 Figure 8.10 -From (Dehais et al., 2019b): Reverse probing classification pipeline
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 8 Figure 8.11 -From (Verdière et al., 2018): Pilot's engagement classification performance function of the type of fNIRS-based feature (average across subject). Blue and red bars represents features extracted from respectively [HbR] and [HbO] signals. Error bars represents the confidence interval at 95%. The black lines indicate the most relevant significant effect for our research question (***p < 0.05).
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 8 Figure 8.12 -From (Verdière et al., 2018): Pilot's engagement classification performance function of couple fNIRS-based connectivity feature used (average across subject). Blue and red bars represents features extracted from respectively [HbR] and [HbO] signals. Error bars represents the confidence interval at 95%.

Figure 8 .

 8 Figure 8.13 -From (Senoussi et al., 2017): Experimental paradigm (top) and analysis pipeline (bottom).
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 8 Figure 8.16 -From (Roy et al., 2020b): Cooperation state estimation pipeline. ASR: Artifact Subspace Reconstruction;FIR filter: Finite Impulse Response filter; LDA: Linear Discriminant Analysis.
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 8 Figure 8.17 -From (Roy et al., 2020b): Cooperation classification results based on covariance matrices for each frequency band (α, θ, lowβ) for each dyad. In red: adjusted chance level.
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 8 Figure 8.18 -From (Dehais et al., 2021): Experimental setup: the Pilot (left) is flying the aircraft and exchanges instructions via a tablet with the JTAC (right) who is in charge of supervising the aircraft trajectory and gives instructions to the Pilot via the user interface.
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 8 Figure 8.19 -From (Dehais et al., 2021): Double 3D brain representation of the significant inter-individual connections in the alpha frequency band between the Pilot (left) and the JTAC (right) for the 3 experimental conditions.
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 8 Figure 8.20 -From (Dehais et al., 2021): Boxplot of the global efficiency applied on the alpha frequency correlation matrices.
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 8 Figure 8.21 -From (Dehais et al., 2021): Physiological synchrony: the windowed detrended cross correlation in the 3 cooperative conditions at lag 0.

Figure 8 .

 8 Figure 8.22 -From (Verdière et al., 2020): Illustration of the delayed coincidence count. Two 3 seconds ECG recording are depicted in the upper and middle graphs (Participants 1 and 2). The red and blue dots represent the ECG R peaks for the 1 st (S1) and 2 nd (S2) participants respectively. On the upper graph, the letter QRS symbolize the 1 st QRS complex. The blue dash line represents the inter-beat interval (IBI) also know as RR interval regarding the R peaks. RR interval can also been called NN interval for "normal" beats. The red and blue ECG peaks dots are reported on the lower graph. Coincidence count for this segment is represented here. The first red dot on the left has not blue dot within a time range of δ = 20ms from it; The count for this first point is then C 1 = 0. Conversely the second red dot has a count C 2 = 1 because he was one blue point within a 20ms range; meaning that the 2 participants R peaks are coincident. The total coincident count C t for this segment would be C t =

Figure 8 .

 8 Figure 8.23 -From (Verdière et al., 2020): Left: description of the processing pipeline. Right: 2 coincidence count matrices, where lines represent pilots flying and columns pilots monitoring. On the original matrix in the back, the diagonal represents the coincidence count for actual couples (highlighted in yellow). C Obs is the diagonal sum of this coincidence diagonal (trace). In front is represented one possible permutation of the original matrix, where lines are shuffled. The diagonal represents now a random association of couples and C b is the trace of this matrix. Matrices are 19x19 (instead of 20x20) because one couple was excluded for this scenario due to insufficient ECG data quality.
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 8 Figure 8.24 -From (Verdière et al., 2020): Coincidence matrices traces for real teams (C obs ) and 100 000 permutated teams (C b ) for the 8 scenarii (δ = 20 ms). The standard deviation is represented only for permutated teams (C b ) since only one value per scenario exists for C Obs . The permutation test revealed a significant difference (p < 0.01) for the 8 th scenario (COOP-HARD-HARD).
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 8 Figure 8.25 -From (Guérin-Dugué et al., 2018): Eye fixation-related potentials elicited at the first fixation onset (plain line) and at the following ranks (dotted line) estimated by regression on the right parietooccipital site (top), left parieto-occipital site (middle) and median occipital site (bottom), depending on emotion, from left to right: disgust vs. neutral, surprise vs. neutral and happiness vs. neutral.
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 8 Figure 8.26 -From (Chanel et al., 2020): Eye-tracking and ECG coregistration.
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 8 Figure 8.27 -From (Chanel et al., 2020): Average balanced accuracy for 20×5-fold cross-validations and the 95% confidence interval. Input features were conditioned on the automation level of the robot, which constitutes an additional common input feature for all tests. kNN: k-Nearest Neighbors; LDA: Linear Discriminant Analyses; QDA: Quadratic Discriminant Analyses; SVM: Support Vector Machine; GP: Gaussian Process; DT: Decision Trees; RF: Random Forest; NN: Neural Network; ADA: AdaBoost; and NB: Naive Bayes.
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 8 Figure 8.28 -From (Singh et al., 2021): Aerofly simulator and U-track application screens setup.
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 8 Figure 8.29 -From (Singh et al., 2021): Pre-processing, feature extraction, and classification pipeline.
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 8 Figure 8.30 -From (Singh et al., 2021): Intra-subject mental workload estimation results per features and classifiers with the traditional validation design (average across participants). The dots represent the average score of each feature combination and the vertical line represents the associated standard deviation. The dashed horizontal red line represents the adjusted chance level while the blue one represents the highest classification accuracy.
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 8 Figure 8.31 -From (Dehais et al., 2018): Experimental environment: flight simulator (left), EEG-fNIRS cap (middle) and DR400 light aircraft (right).
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 8 Figure 8.32 -From (Dehais et al., 2018): Classification accuracy for all subjects and mean classification accuracy (vertical black bars represent standard deviation). Left: simulator condition. Right: real flight condition.
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 8 Figure 8.33 -From (Casso et al., 2021): Electrode setups: from 32 whole scalp coverage to 8 central electrodes above motor areas.

Figure 8 .

 8 Figure 8.34 -From (Casso et al., 2021): Average classification accuracy for all electrode setups and classification pipelines

Figure 8 .

 8 Figure 8.35 -From (Singh et al., 2022b), presented by Dr C.P.C.Chanel: Partially Observable Markov Decision (POMDP) framework in order to monitor the human operator and to maximize their performance.
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Figure 9 . 2 -

 92 Figure 9.2 -EPIIC concept of an online adaptation of the robot's behavior to the cognitive state of the human with whom it is interacting, based only on behavioral metrics (green) or with the adjunction of electrophysiological metrics (red) into the Quality of Interaction (QoI) index.

Figure 9 . 4 -

 94 Figure 9.4 -Virtual reality motion platform (VRtigo, 6 dof) to be used for the ATARRI and TELECOG projects.
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 9 PERSPECTIVES ON PHYSIOLOGICAL COMPUTING AS A NEUROERGONOMIC TOOLand Ms Lou Pluchon as interns), with a big experimental campaign run under covid-19. The protocol included four tasks with three acquisition sessions separated by one week. Due to time and projects' constraints the analyses are still undergoing. The full database publication and journal article submission are expected in the coming weeks. Yet, we used part of the database to organize an international competition that took place as the grand challenge of the International Conference in Neuroergonomics 2021(Roy et al., 2022) (with the help of Dr Ludovic Darmet and Dr Simon Ladouce in addition to other partners and supervisees of the ANITI project). This competition provided data made available on the Zenodo platform[START_REF] Hinss | An EEG dataset for cross-session mental workload estimation: passive BCI competition of the neuroergonomics conference[END_REF] which was acquired from 15 volunteers who performed a MATB with three levels of difficulty in each of the three sessions(Figures 9.6 and 9.7

Figure 9 . 6 -

 96 Figure 9.6 -Competition database made publicly available on Zenodo (Hinss et al., 2021a) -screenshot from the 8th of June 2022.

Figure 9 . 7 -

 97 Figure 9.7 -From (Roy et al., 2022): a) Geographical origin of competition participants across the globe. b) Number of submissions (and therefore teams) per country.

Figure 9 . 8 -

 98 Figure 9.8 -The gradient of experiments ranging from lab, flight simulator (WP1) to real-flight settings (WP4) to tackle passive BCI-variability related issues -The participant will perform an auditory alarm detection task or a communication identification task along with a simulated (dynamic microworld, motion flight simulator, WP1) and real flying task (WP4).

Figure 9 . 9 -

 99 Figure 9.9 -BCI Endeavour logo as submitted to the 2020 CHIST-ERA call (design by Dr Camille Jeunet).
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 123 Lefebvre, M, Bolina-Rei, J., Contreras, E., Roy, R.N. & Peysakhovich, V. (2022) Body tilt impacts operators' perception of remote object's orientation. Int Astronautical Congress, Sept. 2022, Paris, France. Roy, R. N., Hinss, M. F., Darmet, L., Ladouce, S., Jahanpour, E., Somon, B., Xu, X., Drougard, N., Dehais, F. & Lotte, F. (2022) Retrospective on the first passive brain-computer interface competition on cross-session workload estimation. Front. Neuroergon., 3:838342. Xu, X., Drougard, N. & Roy, R. N.(2021) Topological data analysis as a new tool for EEG processing. Front. Neurosci., 15:761703. have deleterious consequences in complex real-life situations (e.g. healthcare, aviation) leading to miss critical auditory signals. Such failure of auditory attention is thought to rely on top-down biasing mechanisms at the central executive level.

Fig. 1 .

 1 Fig. 1. The N-back taskstimuli were either letters displayed in the center of the 3*3 grid or a moving square. Here the condition is "N-1″ back.

Fig. 4 .

 4 Fig. 4. Scenario effect over the oddball auditory target detection. The dots represent the mean accuracy over the group, the grey box and the whiskers respectively represent the standard deviation and the 95% confidence interval.

F 59 Fig. 5 .

 595 Fig. 5. Oddball accuracy during the high load scenario as a function of a. the visual dominance index in the spatial audiovisual conflict task, b. the working memory ability and c. the flight experience. Semi-partial correlations are reported.

Fig. 6 .

 6 Fig. 6. Group ERP results. a. Averaged ERPs for hit and missed auditory targets in the difficult flying scenario at Cz (left) and Pz (right) electrodes. Shapes represent the group standard deviations. Black lines at the x axis represent the significant differences between hit and miss (permutation test; p < 0.05; FDR corrected). b. 2-D topographical views for hit and missed auditory targets at 116 ms (up, N100), 370 ms (left, P3a) and 450 ms post-stimulus (right, P3b).

Fig. 7 .

 7 Fig. 7. Spatial patterns of the two CCA filters used to enhance discriminability between classes.

FIGURE 3 |

 3 FIGURE 3 | Left part: Several types of stressors can yield to the deactivation of the DLPFC and in return drastically induce collapse of performance. Right part: An illustration with the N-Back task: the right-DLPFC deactivates when the task demands exceed mental capacity (7-Back condition) and is associated with reduced performance efficacy and effort withdrawal (from Fairclough et al., 2019).
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Fig. 1 .

 1 Fig. 1. Modified version of the MATBII. Participants were seated side by side in front of duplicated screens represented here on the left for the pilot flying and on the right for the pilot monitoring. The pilot flying in red had to perform the two upper tasks: monitoring and tracking. The pilot monitoring in blue had to perform the two lower tasks: fuel management and communications. During the cooperative condition, they both had to monitor one of each other's tasks and help to perform it if needed: The pilot monitoring had to monitor and help for the monitoring task and the pilot flying the fuel management task.

Fig. 2 .

 2 Fig. 2. (a) Graphical representation of the 2 3 factorial design. The three axes represent the three experimental factors. The pilot monitoring difficulty (PM), the pilot flying difficulty (PF), and, finally, the cooperation structure. (b) Experimental timeline.

Fig. 3 .

 3 Fig. 3. Illustration of the delayed coincidence count. Two 3-s ECG recording are depicted in the upper and middle graphs (Participants 1and 2). The red and blue dots represent the ECG R peaks for the first (S1) and second (S2) participants, respectively. On the upper graph, the letter QRS symbolize the first QRS complex. The blue dash line represents the IBI also known as RR interval regarding the R peaks. RR interval can also been called NN interval for "normal" beats. The red and blue ECG peak dots are reported on the lower graph. Coincidence count for this segment is represented here. The first red dot on the left has not blue dot within a time range of δ = 20 ms from it; The count for this first point is then C 1 = 0. Conversely, the second red dot has a count C 2 = 1 because he was one blue point within a 20 ms range; meaning that the two participants R peaks are coincident. The total coincident count C t for this segment would be C t =

5 n=1

 5 C n .

Fig. 4 .

 4 Fig. 4. Left: description of the processing pipeline. Right: two coincidence count matrices, where lines represent pilots flying and columns pilots monitoring. On the original matrix in the back, the diagonal represents the coincidence count for actual couples (highlighted in yellow). C Obs is the diagonal sum of this coincidence diagonal (trace). In front is represented one possible permutation of the original matrix, where lines are shuffled. The diagonal represents now a random association of couples and C b is the trace of this matrix. Matrices are 19×19 (instead of 20×20) because one couple was excluded for this scenario due to insufficient ECG data quality.

Fig. 5 .

 5 Fig. 5. Subjective NASA TLX scores (first row), average heart rate (second row), and SDNN (third row) for the pilots flying (left graph) and the pilots monitoring (right graph). Each one of the eight bars represents one of the eight scenarii. The x-axis corresponds to the scenario difficulty for the pilot flying and the pilot monitoring (i.e., EASY-EASY/EASY-HARD/HARD-EASY/HARD-HARD). Colors represent the cooperation condition (COOP-DON'T COOP).

η 2 p

 2 = .22). The pilots flying did not significantly found the task more difficult in the COOP condition (F (1, 19) = 3.57, p = .07, η 2 p = .16).

Fig. 6 .

 6 Fig. 6. Coincidence matrices traces for real teams (C obs ) and 100 000 permutated teams (C b ) for the eight scenarii (δ = 20 ms). The standard deviation is represented only for permutated teams (C b ) since only one value per scenario exists for C Obs . The permutation test revealed a significant difference (p < 0.01) for the eighth scenario (COOP-HARD-HARD).

Fig. 7 .

 7 Fig. 7. Team task performance. The eight bars each represent one of the eight scenarii. The x-axis corresponds to the difficulty of the scenario for the pilot flying-pilot monitoring. (EASY-EASY/EASY-HARD/HARD-EASY/HARD-HARD). Colors represent the cooperation condition (COOP-DON'T COOP). Values range from 0 to 400, 400 being a perfect score.

Figure 3 .

 3 Figure 3. Principle of the adjunction of a biocybernetical loop into the supervisory control loop of a Human-Robot System. It uses a Brain-Computer Interface pipeline to extract a state vector from the human operator's physiological activity. The enriched state vector can encompass highly processed features such as estimates, but can also contain more basic ones such as denoised signal.

4. 3 . 1 .

 31 Adaptive Interaction Exploiting Subjective and Behavioral Data for Human State Estimation -Subjective measures

  15-Jun-2021: Official competition opening, publication of the (training) database (2 sessions with labels); • 01-Jul-2021: Release of dataset version 2 with the 3rd session included as a test set (i.e., without labels); • 31-Jul-2021: Competition closing, deadline for predictions and abstract submission; • 31-Aug-2021: Evaluation by the competition organizing team; • 05-Sep-2021: Submission of presentation materials; • 13-Sep-2021: Announcement of results at the opening reception of the conference. Oral presentation of the winner and poster session presentations of all competing teams.

FIGURE 1 |

 1 FIGURE 1 | Experimental setup. (A) Screenshot of the MATB-II task performed by the participants, with four sub-tasks: namely (from the top left corner to the bottom right corner) Monitoring, Tracking, Communications, and Fuel management. (B) Database acquisition experimental setup.

FIGURE 2 |

 2 FIGURE 2 | Teams' and submissions' geographical origin and number (first author). (A) Geographical origin of competition participants across the globe. (B) Number of submissions (and therefore teams) per country.

FIGURE 3 |

 3 FIGURE 3 | Difference between the test accuracy (blue; from sessions 1 + 2 to 3), computed by the organizers, and the validation accuracy (orange; from sessions 1 to 2 or reverse), computed locally by competitors. A large discrepancy between the two indicates an issue with a generalization, i.e., over-fitting.
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TABLE 1 |

 1 Psycho-physiological and behavioral markers of different mental states related to engagement.

		Disengagement		Over-Engagement	
	Mind wandering	Effort withdrawal	Perseveration	Inattentional	Inattentional deafness
				blindness	
	Brain activity				
	MEG			N400 (area V3)	

Table 1 .

 1 Commonly found power modulations of electroencephalography (EEG) frequency bands for three mental states of interest.

	Frequency

Band Mental Fatigue Mind Wandering Mental Workload

  

	δ		anterior sites
	θ		anterior sites
	α		posterior sites
	β		
	[70,82,83]	[53,54]	[69,70,75,84]

TABLE 1 |

 1 Classification accuracy obtained, from best to worst, and methods used by the competition participants (winner score in bold).

	Team	Institution & Country	Test accuracy	Method
			(3rd session)	
	Singh et al. (2021b)	IIT Kanpur and IIT Roorkee, India	54.26%	Riemannian geometry + automatic electrodes
				selection
	Sedlar et al. (2021)	Inria, Sophia Anitpolis, France and Univ.	48.20%	Spherical CNN with rank-1 constraint
		Nottingham, UK		
	Corsi et al. (2021)	Inira, Paris, Univ. Paris-Saclay and Univ.	48.13%	Riemannian geometry + functionnal connectivity
		Paris-Dauphine, France		features
	Narayanan (2021)	Birl Institute of Technology and Science, Pilani, India	46.30%	Riemannian geometry
	Bolton et al. (2021)	Tel Aviv University, Tel Aviv, Israel	44.67%	Random Forest on classical features (300)
	Madhavan et al. (2021)	IIT Guwahati, Assam, India	43.79%	RNN on bandpower + approximate entropy features
	Sharma (2021)	DFKI Saarbrcken, Germany	38.49%	Random Forest on CSP features
	Kartali et al. (2021)	mBrainTrain LLC and Univ. of Belgrade, Serbia	33.18%	1 Dimension CNN
	Kingphai and Moshfeghi (2021)	Univ. Strathclyde, Glasgow, Scotland	31.89%	RNN on frequency, statistical, morphological,
				time-frequency, linear, and non-linear features
	De Lorenzo et al. (2021)	Drexel University, Philadelphia, USA	31.32%	RNN and CNN

n=1 C n .
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Classification Performance

Many classifiers are used in passive brain-computer interface research to compute more or less powerful prediction functions, depending on the number of dimensions d, the size of the dataset n, its values (X i ) n i=1 ∈ R d and the mental states of interest (y i ) n i=1 . The usual performance metric for a prediction function is the mean accuracy: the number of samples (of the testing set) in which labels are well predicted divided by the size of the testing set. In Figure 2, an example of resulting prediction functions for some popular classification methods on three datasets is given. The datasets used are such that: ∀i ∈ {1, . . . , n}, X i = (HR, HRV) ∈ R 2 + (as detailed in Section 2.2.2, HR: Heart rate; HRV: Heart rate variability). Labels encode the mental states of interest: y = 1 if the human operator performs a robot teleoperation task (blue dots), and y = 0 (red dots) if he/she is resting. 
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Participants and Protocol

The project was validated by the local ethical committee of the University of Toulouse (CER number 2021-342). Fifteen participants (6 females; average 25 y.o.) were invited to the lab for three independent experimental sessions, each spaced one week apart (exactly 7 days). Participants gave their written consent and received a monetary compensation (40 in total). Each session involved a short training/warm up period. Following this, a resting state (1 min with eyes open) was recorded. Participants then completed an MATB-II task with three 5-min blocks, each of a different difficulty level (i.e., different workload level) presented in a pseudorandom manner. By varying the number and complexity of the sub-tasks, 3 levels of workload were elicited (verified through statistical analyzes of both subjective and objective -behavioral and cardiac-data).

Task

As mentioned earlier, the dataset used for the competition comprised epoched data acquired during the performance of a well-known task in the human factors domain: the MATB-II whose graphical user interface is shown in Figure 1A. In this task, participants had to perform several sub-tasks simultaneously. Depending on the condition, the number of sub-tasks and their respective difficulty differed. Each condition lasted 5 min. The order was randomized with the other tasks, meaning that participants did not necessarily start with the easy task first.

In the easy condition (label 0), participants engaged in the TRACKING and SYSTEM MONITORING sub-tasks. The TRACKING task is a simulation of manual control, and the participant has to keep a target at the center of a window. The SYSTEM MONITORING task requires monitoring 4 gauges and 2 warning lights. For the medium condition (label 1), a third sub-task was added: RESOURCE MANAGEMENT. It presents the participant with a fuel management system where the goal is to maintain a certain fuel level by activating and deactivating a set of pumps that allow for the allocation of fuel to several reservoirs. Finally, for the difficult condition (label 2), the COMMUNICATION task was added to the three previous sub-tasks: here the participant has to respond to radio messages by changing the frequencies of different radios. Additionally, the TRACKING task was made more demanding in the DIFFICULT condition by increasing the speed of target motion.

Data Acquisition

A MATLAB version of the MATB-II task was used for the experimental campaign (developed and used by [START_REF] Verdiere | Spectral eeg-based classification for operator dyads workload and cooperation level estimation[END_REF]; https://github.com/VrdrKv/MATB). EEG data acquisition was performed using a 64 active Ag-AgCl electrode system (ActiCap, Brain Products Gmbh) and an ActiCHamp amplifier (Brain Products, Gmbh; Figure 1B). One electrode could not be used and one electrode was dedicated to record cardiac activity, resulting in 62 electrodes, placed according to the international 10-20 system. In addition, the precise electrode location was obtained using a STRUCTURE (https://structure.io) 3D camera and the get_chanlocs plug-in developed specifically for electrode localisation purposes (https://github.com/sccn/get_ chanlocs/wiki). The sampling frequency was set to 500 Hz. Impedance was kept below 10k as much as possible. Data, as well as markers of all events occurring during the tasks, were recorded and synchronized using LabStreamingLayer (https:// github.com/sccn/labstreaminglayer).

Data Preprocessing

Data preprocessing was done in MATLAB with the help of the EEGLAB toolbox [START_REF] Delorme | EEGLAB: an open source tollbox for analysis of single-trial EEG dynamics including independent component analysis[END_REF]. First, the data from the resting state as well as the tasks were extracted from the overall recording. The electrode recording cardiac activity was removed.

The following pre-processing pipeline was applied:

• Epoching into 2-s non-overlapping epochs;

• Referencing using right mastoid electrode;

• High-pass filter 1 Hz (FIR Filter, pop_filtnew from EEGLAB);

• Electrode rejection (average amplitude above 2 times the standard deviation across channels) and spherical interpolation; • SOBI-a special case of blind source reconstruction based on second order statistics (Belouchrani et al., 1997)-with subsequent automated IC_Label rejection (muscle, heart, and eye components were rejected with a 95% threshold); • Low-pass filter 40 Hz (FIR Filter); • Average re-referencing (CAR); • Down-sampling to 250 Hz.

Note that these preprocessing steps were performed in order to enhance the signal-to-noise ratio, but also to reduce biases in the competition. For instance, data were filtered below 40 Hz, and ICA was used so as to reduce as much as possible the risk of estimations based on motion-related ElectroOculoGraphy (EOG) and ElectroMyoGraphy (EMG) artifacts. These artifacts are mostly contained in the gamma band [START_REF] Fatourechi | EMG and EOG artifacts in brain computer interface systems: a survey[END_REF]. Hence, we wanted the competitors to base their method as much as possible on genuine cortical activity only. At the end of this preprocessing stage, for each of the different conditions and for each session there were 149 epochs extracted per participant.

Data Formatting

The data were exported as a dataset from EEGLAB under the .set and .fdt format. The COBIDAS BIDS formatting guidelines were followed (Pernet et al., 2020). Data were organized as follows:

• One directory per subject; • Two sub-directories for each session; • Inside each session directory one sub-directory for the precise electrode locations (measured via the STRUCTURE app) and one for the EEG data; • 5 (.set) files per session. Each of the epoched and preprocessed task conditions, the resting state as well as the raw file for the resting state; • Each epoch was marked by events to show the condition (difficult, medium, easy, Resting State);
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