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Abstract
The recent advances in high-resolution Earth observation satellites and the reduc-
tion in revisit times introduced by the creation of constellations of satellites has led
to the daily creation of large amounts of image data (hundreds of TeraBytes per
day). Simultaneously, the popularization of Deep Learning techniques allowed the
development of architectures capable of extracting semantic content from images.
While these algorithms usually require the use of powerful hardware, low-power AI
inference accelerators have recently been developed and have the potential to be
used in the next generations of satellites, thus opening the possibility of onboard
analysis of satellite imagery. By extracting the information of interest from satel-
lite images directly onboard, a substantial reduction in bandwidth, storage and
memory usage can be achieved. Current and future applications, such as disaster
response, precision agriculture and climate monitoring, would benefit from a lower
processing latency and even real-time alerts.

In this thesis, our goal is two-fold: On the one hand, we design efficient Deep
Learning architectures that are able to run on low-power edge devices, such as
satellites or drones, while retaining a sufficient accuracy. On the other hand, we
design our algorithms while keeping in mind the importance of having a compact
output that can be efficiently computed, stored, transmitted to the ground or other
satellites within a constellation.

First, by using depth-wise separable convolutions and convolutional recurrent
neural networks, we design efficient semantic segmentation neural networks with a
low number of parameters and a low memory usage. We apply these architectures
to cloud and forest segmentation in satellite images. We also specifically design an
architecture for cloud segmentation on the FPGA of OPS-SAT, a satellite launched
by ESA in 2019, and perform onboard experiments remotely. Second, we develop
an instance segmentation architecture for the regression of smooth contours based
on the Fourier coefficient representation, which allows detected object shapes to
be stored and transmitted efficiently. We evaluate the performance of our method
on a variety of low-power computing devices. Finally, we propose a road graph
extraction architecture based on a combination of fully convolutional and graph
neural networks. We show that our method is significantly faster than competing
methods, while retaining a good accuracy.

Keywords: Deep learning, remote sensing, satellite imagery, semantic seg-
mentation, instance segmentation, graph extraction, edge computing
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Résumé

Les progrès des satellites d’observation de la Terre à haute résolution et la réduc-
tion des temps de revisite introduite par la création de constellations de satellites
ont conduit à la création quotidienne de grandes quantités d’images (des cen-
taines de Teraoctets par jour). Simultanément, la popularisation des techniques
de Deep Learning a permis le développement d’architectures capables d’extraire
le contenu sémantique des images. Bien que ces algorithmes nécessitent générale-
ment l’utilisation de matériel puissant, des accélérateurs d’inférence IA de faible
puissance ont récemment été développés et ont le potentiel d’être utilisés dans
les prochaines générations de satellites, ouvrant ainsi la possibilité d’une analyse
embarquée des images satellite. En extrayant les informations intéressantes des
images satellite directement à bord, il est possible de réduire considérablement
l’utilisation de la bande passante, du stockage et de la mémoire. Les applications
actuelles et futures, telles que la réponse aux catastrophes, l’agriculture de préci-
sion et la surveillance du climat, bénéficieraient d’une latence de traitement plus
faible, voire d’alertes en temps réel.

Dans cette thèse, notre objectif est double : D’une part, nous concevons
des architectures de Deep Learning efficaces, capables de fonctionner sur des pé-
riphériques de faible puissance, tels que des satellites ou des drones, tout en con-
servant une précision suffisante. D’autre part, nous concevons nos algorithmes
en gardant à l’esprit l’importance d’avoir une sortie compacte qui peut être ef-
ficacement calculée, stockée, transmise au sol ou à d’autres satellites dans une
constellation.

Tout d’abord, en utilisant des convolutions séparables en profondeur et des
réseaux neuronaux récurrents convolutionnels, nous concevons des réseaux neu-
ronaux de segmentation sémantique efficaces avec un faible nombre de paramètres
et une faible utilisation de la mémoire. Nous appliquons ces architectures à la
segmentation des nuages et des forêts dans les images satellites. Nous concevons
également une architecture spécifique pour la segmentation des nuages sur le FPGA
d’OPS-SAT, un satellite lancé par l’ESA en 2019, et réalisons des expériences à
bord à distance. Deuxièmement, nous développons une architecture de segmenta-
tion d’instance pour la régression de contours lisses basée sur une représentation
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à coefficients de Fourier, qui permet de stocker et de transmettre efficacement les
formes des objets détectés. Nous évaluons la performance de notre méthode sur
une variété de dispositifs informatiques à faible puissance. Enfin, nous proposons
une architecture d’extraction de graphes routiers basée sur une combinaison de
Fully Convolutional Networks et de Graph Neural Networks. Nous montrons que
notre méthode est nettement plus rapide que les méthodes concurrentes, tout en
conservant une bonne précision.

Mots-clefs: Apprentissage profond, télédétection, imagerie satellite, segmen-
tation sémantique, segmentation d’instance, extraction de graphes, traitement à
bord
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Chapter 1

Introduction

“L’uomo verrà portato dalla sua creazione.
Come gli uccelli, verso il cielo...
Riempendo l’universo di stupore e gloria."

— Christopher Tin, Sogno di Volare

In this first chapter, we start by introducing the context and motivation behind
this thesis. We also give a general overview of state-of-the-art methods, with their
advantages, drawbacks, and challenges. Finally, we propose an outline of the
contributions of this work.

1.1 Context and motivation
Being able to easily and accurately monitor large areas of land and react to changes
in a timely manner has always been a necessity, for survival, protection, and ex-
ploration. This practice probably started millions of years ago by climbing atop
of trees to scout for food or predators. In the recent millenia, humans have built
tall buildings, towers and castles on top of hills and mountains. Similarly, the goal
was to react to possible invaders, and more generally monitor the state of the land
and act appropriately. At the beginning of the 20th century, mankind took to the
skies with the creation of the first airplanes. During the wars that followed, they
were used for aerial reconnaissance, along with balloons and zeppelins. Again, the
objective was to provide vital information with the lowest possible latency.

The launch of the first satellite in 1957 kicked off the Space Race, which led
to the creation of the first Earth Observation (EO) satellites in the 1960’s. In
just a few decades, the number of EO satellites in orbit has grown to more than
900. These satellites feature varying equipments, such as radar imagers, or multi-
spectral/hyperspectral imagers, and are thus used for different purposes, such as
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meteorology, natural disaster monitoring or defense. Most of the satellites feature
some kind of imaging system, the most common one being sun reflectance-based
imaging, where a sensor measures the light from the sun being reflected by the
Earth’s surface.

Over the years, the capabilities of imaging satellites have grown as much as their
number. Sensors got more precise and constellations of satellites have lowered the
revisit time substantially. In consequence, the sheer volume of data created by EO
satellites is hard to even comprehend. Back in 2008, we were already talking about
a total of more than 10 Terabytes of daily acquisitions [TGH08]. Today, Planet
alone produces more than 25 Terabytes of data every day with its constellations of
small satellites and in the near future, the Pléiades Neo constellation will be able
to produce 40 Terabytes of image data per day.

As launch costs keep diminishing and the number of satellites keeps growing,
these enormous quantities of data will keep growing as well, which poses a number
of challenges. The acquisition of images is only one step. These images have to be
processed onboard, transmitted to the ground, stored in data centers, and exploited
using powerful servers. This requires huge amounts of bandwidth, storage space
and processing power. Moreover, some processes are not automated yet. The
annotation of images for the creation of maps, for example, is still largely a manual
task. The analysis of images for disaster response is also done manually, which
imposes a latency bottleneck and thus lengthens reaction time.

In parallel to the development of satellites and imaging sensors, great strides
have been made in both the field of artificial intelligence and the field of edge
computing. Since the success of AlexNet in the ImageNet image classification
challenge [KSH12], Convolutional Neural Networks (CNNs) have been used for all
kinds of computer vision tasks, such as object detection and semantic segmenta-
tion, and have virtually taken the world of computer vision by storm. While the
power requirements to use these algorithms were originally huge (i.e. machines
with multiple powerful Graphics Processing Units or GPUs), they are nowadays
used on the edge in a variety of applications, including smartphones, home assis-
tants, UAVs and cars, thanks to low-power architectures and various techniques
used to port them to edge computing hardware.

With the creation of low-power hardware capable of running CNN inference,
such as the Nvidia Jetson family of devices, it is only a matter of time before future
satellites also feature AI inference accelerators. In fact, some CubeSat missions
have already taken a step in that direction. For example, PhiSat-1 launched in
September 2020 with an Intel Movidius Myriad 2 Vision Processing Unit. These
new processing capabilities will allow to intelligently process the data on-board
in order to save time, bandwidth, and storage. Indeed, not all the information
captured in satellite imagery is useful for every application, and most of it might
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not even need to be transferred back to Earth. A simple example is clouds, which
cover more than 50% of the planet’s sky at any given time, and are useless in
a lot of applications. The on-board extraction of the final useful product from
images is also a possibility, where the satellites would only transmit the required
information, such as land cover, object positions, or road networks. Finally, fast
on-board processing with machine learning algorithms could lead to real-time alerts
for natural disaster response, agricultural monitoring, or surveillance.

This is where the work presented in this thesis takes place. Our goal is two-fold:

• We design compact and efficient neural network architectures that are able
to run on the kind of low-power hardware that will be featured on-board
satellites in the future.

• We also require these architectures to generate compact outputs, in the form
of compressible images and masks, sparse graphs or representations, in order
to save bandwidth during transmission to the ground, save storage space
both on-board and on the ground, and be memory-friendly during inference.

1.1.1 Satellite imagery

In this section, we present some of the particularities of satellite imagery compared
to other types of image acquisition devices.

The invention of CCD and CMOS sensors and their use in cameras has allowed
a large number of consumer devices to gain the ability to take pictures and videos.
The capabilities of each device can vary greatly: indeed, sensor type and size,
ISO range, focal length and zoom capabilities all contribute to the creation of
widely different pictures from one camera to the other. Even using the same
camera model, two different users might take very different pictures. E.g . one
might be more of a landscape photographer, and the other more of a portrait
photographer. Exposure, orientation, and subject will also vary greatly. All of
these hardware-induced and user-induced variables create a large variety of photos,
and thus require different algorithms for each purpose.

On the contrary, satellite imagery is actually simpler in that regard. The sen-
sors onboard each satellite will never change during its lifespan, which eliminates
a large number of variables. Moreover, satellites operate at a fixed altitude and
generally look towards the ground, this means that the Ground Sampling Distance
(GSD), which is the size of one pixel on the ground, will rarely change either.
Geostationary satellites even survey a fixed area of the planet, which means posi-
tion and orientation never change in that case. Since satellites operate at a high
altitude, the effects of perspective are also reduced. These simplifications allow
the design and training of algorithms on satellite data to actually be somewhat
easier in some aspects than for more general purpose applications.



1.1. CONTEXT AND MOTIVATION 4

Figure 1.1: Acquisition of an image using a push broom sensor.

Let us go over some commonly used terminology:

Sensors: The word “sensor” refers to the actual measurement devices onboard a
satellite. In the case of optical imagery, a sensor is an array of passive radiometers
that measure the intensity of electromagnetic radiation from the Sun reflected by
the Earth surface within one or several bands. Imagery sensors come into two
categories:

• Frame sensors are arranged in a matrix, similarly to the ones present in
any regular camera. Aerial imagery from planes or Unmanned Aerial Vehi-
cles (UAVs) also generally uses frame sensors. This type of sensor is often
featured on small satellites, such as CubeSats and NanoSats. With these
sensors, the whole image is acquired at once, i.e. the two dimensions of the
image are created by the two dimensions of the sensor.

• Scanner sensors include Push broom (shown on Figure 1.1) and Whisk broom
sensors. With Push broom sensors, the detectors are arranged in a single or
multiple line array, which creates the first dimension of the image (also called
cross-track dimension). In Whisk broom sensors, on the other hand, a single
photosite is present, and the first dimension of the image is created by the
rotation of a mirror. In both cases, the second dimension of the image, also
called along-track dimension, is created by the movement of the satellite
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platform, just like a document scanner. Thus, large output images can be
generated by letting the acquisition run for a long time. The size of the
cross-track dimension projected on the ground is called the swath of the
sensor, measured in meters. Push broom sensors are the most common type
of sensors featured in high-end optical imagery satellites, such as Pléiades
and Landsat-8.

Most of the methods presented in this thesis can be applied to images from
both frame and scanner types of sensors. However, we will see in Chapter 3 that
it is possible to design neural network architectures that are specifically tailored
towards scanner sensors.

Temporal resolution, or revisit time refers to the amount of time that passes
between two revistits of a satellite over a certain location. The revisit time is
usually measured in days. For example, Landsat-8 can visit a single location once
every 16 days. By using multiple satellites, recent constellations such as Plan-
etScope allow reduced revisit times and daily coverage of the whole planet. Future
platforms such as Pléiades Neo will even allow intra-day monitoring, with a revisit
time of 12 hours. A high temporal resolution will allow the accurate monitoring of
fast evolving phenomena. However, it will also generate larger quantities of data.

Spectral bands Radiometry sensors feature one or several bands or channels.
Each band of a sensor corresponds to a specific range of wavelengths, to which it
responds. For example, Band 4 on Landsat-8 responds to wavelengths in the 0.64
to 0.67µm range, which corresponds to the color red. Most cameras featured in
consumer electronics only feature three bands, responding to Red, Green and Blue.
Earth Observation satellites, however, often feature considerably more spectral
bands, each with specific uses. For example, Sentinel-2 features 12 bands, which
can be used in different combinations to highlight vegetation, moisture or geologic
features.

A Panchromatic band (PAN), is what we would more commmonly refer to as
a “black and white” band. Such a band responds to a wide range of wavelengths
in the visible spectrum. The panchromatic band of a sensor often has a better
spatial resolution (or GSD) than other bands. This allows the creation of images
combining the details of the panchromatic band, and the colors of other bands,
through a process called pan-sharpening.

RGB sensors use three bands to produce images with natural colors, as we,
humans, would see them. They are often combined with a fourth band, called NIR,
which responds to Near InfraRed. RGBN sensors, i.e. RGB+Nir, are particularly
useful to create false color images that highlight vegetation, as shown in Figure
1.2.
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Figure 1.2: False color image of Côte d’Azur, France created with bands 8 (NIR),
4 (red) and 3 (green) of Sentinel-2, in order to highlight vegetation. Data source:
USGS.

Multispectral sensors (MS) are sensors which typically feature 3 to around 10
bands. Landsat-8 and Sentinel-2 are examples of multispectral sensors. Hyperspec-
tral sensors can feature hundreds of different bands. The radiometric resolution of
a sensor is the number of bits used to represent each pixel of each band, while the
spectral resolution corresponds to the number of different bands, and their width in
terms of wavelength. Some objects that might be hard to detect in the visible spec-
trum (e.g . some aquatic species) could be easily highlighted using multispectral or
hyperspectral sensors.

In this work, we focus primarily on RGB images, as they are the most commonly
available. However, all the architectures we developed can also be used on images
with more than three channels.

Ground Sampling Distance, or GSD is the spatial resolution of a sensor, and
is measured in meters. It corresponds to the size of one pixel projected on the
ground. Different sensors or spectral bands might have different GSDs, even on
the same satellite platform. GSDs in the range of 1 to 10 meters are very common
nowadays, with Very High Resolution (VHR) sensors reaching resolutions in the
tens of centimeters. Figure 1.3 shows the difference in details between GSD values
of some popular satellite platforms. The spatial resolution of satellites will continue
to improve in the future. As of today, it has not reached what is possible to do
with aerial imaging (i.e. planes, UAVs).

While having more resolution and thus more information at our disposal is in-
teresting for some applications, it can be unnecessary or might even be detrimental
in other applications. For example, a GSD of around 2 meters might be enough
to discern most roads in a road extraction application, and working at a higher
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(a) Landsat-8, GSD=30m (b) Sentinel-2, GSD=10m (c) Pléiades-1A, GSD=2m

Figure 1.3: Part of Cap d’Antibes, as seen by Earth Observation satellites with
differing Ground Sampling Distances (GSD). Data source: USGS, CNES.

resolution might introduce more noise in the form of unnecessary details, like cars
or pedestrians. Naturally, it is always possible to virtually reduce the resolution
of input images by resampling them, as we will see in Chapter 5.

1.1.2 On-board processing

In this section, we delve into the multiple potential benefits of onboard processing
of satellite images.

Remote sensing satellites operate in a store-and-forward fashion. Images are
acquired and stored onboard until the satellite flies over a ground station, at which
point the data is offloaded. Naturally, this transmission can only happen when
a ground station is in view. This raises three main issues: First, onboard stor-
age space is crucial, since it acts as an image buffer. While storage costs have
diminished in recent years, it is not possible to upgrade it after launch. Second,
bandwidth requirements are also important. Indeed, the data needs to be transmit-
ted in a minimum of passes over ground stations in order to avoid any down-time.
Third, the latency induced by this process is very high. Users not only have to
wait for image acquisition and transmission, but also for compute-intensive image
processing on the ground.

Storage space is not only a limitation onboard, but also on the ground. Satellite
images are stored in data centers and in most cases replicated accross multiple
machines and hard drives, which have a significant footprint, both in terms of
space and in terms of energy. As the resolution of sensors keeps increasing and
the number of satellites grows, the strain on storage and bandwidth will only grow
further. Moreover, the development of constellations comprising dozens or even
hundreds of satellites will also demand more ground stations and more bandwidth.
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(a) Single ship in image (b) Cloud-covered image (c) Forest fire

Figure 1.4: Images from (a) the Airbus Ship Detection Challenge, (b) 38-Cloud
dataset [MS19] and (c) Sentinel-2 false color image of a 2021 forest fire in the Var
region of France. The relevant information in these images can be expressed using
only a few bytes.

The latency issues have led to the creation of data relay satellites, such as the
European Data Relay Satellite System (EDRS), which can collect data from Earth
Observation satellites and transmit it to ground stations. While this is particularly
useful in time-critical services (i.e. natural disasters, rescue), such systems take
a huge effort and a long time to be put in place. They will also have a limited
bandwidth and thus will only be able to handle a limited amount of data at a
time.

Storage, bandwidth, and latency limitations are in part due to the fact that
full resolution images are used throughout the whole acquisition and transmission
process. A single Sentinel-2 scene, for example can have more than 700MB. How-
ever, the relevant information contained in images can often be expressed using
very limited quantities of data. Figure 1.4 shows three examples of that:

• The position of the ship in the first image can be summed up using two float-
ing point coordinates, and its bounding box in the image can be expressed
with four integers.

• The second image is largely occluded by clouds. If the percentage of occlusion
is too high, this image can be discarded directly and never be transmitted
to the ground. However, if this quantity of clouds is interesting, it can be
expressed with a single integer. The image can also be compressed by simply
deleting all the unwanted cloud pixels.

• In the third image, we observe that a part of the forest (in brown/black)
has already burned, while the part in red is still healthy. The percentage
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of burnt forest can be expressed with one number, whereas a precise binary
segmentation map of the fire or burnt areas encoded in Run Length Encoding
(RLE) would only be a few kiloBytes.

In all these cases and many more, it is not necessary to retrieve original full-
resolution images to make informed decisions and take action. Performing image
analysis onboard will open up the possibility of more storage and bandwidth-
efficient remote sensing. It will also facilitate the development of time-critical
applications, and even allow real-time alerts in the future.

1.2 Methods and Challenges
The following sections provide a high-level introduction to Deep Learning and its
associated vocabulary, along with a brief history of state-of-the-art methods and
their use in remote sensing applications. Each following chapter will then introduce
its own specific related works and notions. Finally, we present the objectives of
this thesis by exploring the challenges of onboard processing.

1.2.1 Image processing tasks in Remote Sensing

The various image analysis tasks that are performed on remote sensing images and
on more general images fall into a few broad categories, depicted in Figure 1.5.
They are most commonly described as follows:

• Image Classification assigns one or multiple labels to an entire image.

• Object Detection locates objects within an image using bounding boxes
and classifies them.

• Instance Segmentation is similar to object detection, but also assigns a
pixel-level mask to each object.

• Semantic Segmentation is the task of assigning a label to each pixel of
an image, without necessarily assigning it to a specific object instance. This
task is typical in Land Use/Land Cover applications. Combining Instance
and Semantic segmentation is another task called Panoptic Segmentation.

• Graph Extraction finds a set of nodes and edges in an image (e.g . road
graphs). Polygon extraction and polygonal partitioning are also forms of
graph extraction.

In this thesis, we focus on semantic segmentation, instance segmentation, and
graph extraction. These tasks are particularly challenging in the field of remote
sensing, due to the large size and fine details of satellite images.
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Classification Object detection Instance seg. Semantic seg. Graph extraction

Figure 1.5: Various computer vision tasks usually performed on satellite images.
Instance seg. image from [Ohl18], semantic seg. image from [SC19].

1.2.2 Deep Learning in Remote Sensing

When remote sensing using satellites was still in its infancy, resolutions were coarse
enough that a single pixel belonged to more than a single object. Thus, the
spectral signature of each pixel contained a summarized information about broad
underlying categories present in the images (e.g . "forest", "lake", or "road"). Se-
mantic classification of pixels (i.e. semantic segmentation) was performed using
traditional computer vision methods based on spectral statistics and texture infor-
mation [HSD73; SB91; BPS99]. Following works used traditional machine learning
techniques such as Support Vector Machines [MIO11], Random Forests [She+20]
or Multi-Layer Perceptrons (MLP) [Del+07] for image or pixel-wise classification.
In the past decade, as Deep Convolutional Neural Networks (CNNs) became pop-
ular within the computer vision community, the remote sensing community also
transitioned towards deep learning based methods [Zhu+17].

Convolutional Neural Networks were originally developed for image classifica-
tion. Most architectures use a similar set of basic functions, called layers, that are
composed in sequence to create a similar structure, shown in Figure 1.6.

• Convolutional layers apply filters corresponding to learned features in a
sliding window over the image. The resulting feature maps have high values
where the patterns in the filters are matched in the image.

• Pooling layers perform an aggregation (often the max function) in a sliding
window to create a local summary of the information in feature maps, and
reduce the dimension of the image.

• Linear layers, also called Fully Connected or Dense layers perform a learned
linear operation, and are used in the final stages of the neural network in
order to obtain the final classification.

• Activation functions, also called non-linearities follow convolutional and
linear layers and allow the neural network to approximate arbitrary functions.
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Figure 1.6: Structure of a classical Convolutional Neural Network architecture for
image classification.

While the first Convolutional Neural Networks (CNN) were developed in the
90’s [LeC+98], they only really gained in popularity when a deep CNN won the
ImageNet challenge in 2012 [KSH12], using more than 62 million parameters. In
order to train such a neural network, two important requirements needed to be
fulfilled. The first one is the availability of large amounts of labeled data to train
the neural network, which was provided by ImageNet [Jia+09]. The second one is
the availability of powerful Graphics Processing Units (GPUs) along with software
that allows to run general purpose code on them (CUDA).

Architectures that followed AlexNet [KSH12] featured more and more convo-
lutional layers and parameters, in order to obtain better benchmark scores [SZ14;
He+16]. Thus, the computing ressources and quantity of labeled data required
to train state-of-the-art CNNs have not diminished. In the case of remote sens-
ing, large training databases have been created for image classification [Lon+21],
semantic segmentation [AB20; Mag+17], instance segmentation [GL21], object
detection [Lam+18] and graph extraction [VLB18].

1.2.3 On-board image processing

Processing images onboard in order to achieve better data efficiency is actually
nothing new. Compression, in particular, has been studied since the beginnings
of satellite imagery [RW73]. We refer the reader to surveys for more informa-
tion on this subject [JTP21; DKS20; Hua11; YVS09]. Nowadays, most satellite
systems feature hardware dedicated to image compression, which takes advantage
of the high inter-channel correlation in satellite images. However, the semantic
information contained in these images is not taken into account.

While the Deep Learning techniques presented in the previous section have the
ability to extract semantic information, using them on-board is no easy feat. State-
of-the-art architectures feature millions, billions or even trillions of parameters.
They are typically trained and used on GPUs or TPUs consuming hundreds of
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Watts. The power and cooling constraints present in satellites mean that such
powerful hardware cannot be used onboard.

The progress made in chip manufacturing over the last decade have not only
allowed the creation of GPUs that are orders of magnitude faster than before,
but also the creation of devices based on efficient low-power chips with reasonable
performance, such as the Nvidia Jetson family of development kits. Now that
Deep Learning inference is possible on the edge, these low-power accelerators are
starting to make their way into satellites (e.g . ESA’s PhiSat-1). Thus, neural
network architectures need to be designed for on-board satellite image processing
and specifically tailored towards low-power AI accelerators.

1.3 Contributions and outline
In this section, we describe the contributions of each chapter of this thesis. Note
that each chapter addresses a different problem, and thus has its own introduction,
related work, methodology and conclusion sections. Nevertheless, Chapters 2 and
3 should be read in order.

Chapter 2 Semantic segmentation methods have made impressive progress with
deep learning. However, while achieving higher and higher accuracy, state-of-
the-art neural networks overlook the complexity of architectures, which typically
feature dozens of millions of trainable parameters. Consequently, these networks
require high computational ressources and are mostly not suited to perform on edge
devices with tight resource constraints, such as phones, drones, or satellites. In this
chapter, we propose two highly-compact neural network architectures for semantic
segmentation of images, which are up to 100 000 times less complex than state-of-
the-art architectures while approaching their accuracy. To decrease the complexity
of existing networks, our main ideas consist in exploiting lightweight encoders and
decoders with depth-wise separable convolutions and decreasing memory usage
with the removal of skip connections between encoder and decoder. Our architec-
tures are designed to be implemented on a basic FPGA such as the one featured
on the Intel Altera Cyclone V family of SoCs. We demonstrate the potential of our
solutions in the case of binary segmentation of remote sensing images, in particular
for extracting clouds and trees from RGB satellite images. The solutions presented
in this chapter have been tested onboard OPS-SAT, a CubeSat launched by ESA
in December 2019.

Chapter 3 Traditional Convolutional Neural Networks (CNN) for semantic seg-
mentation of images use 2D convolution operations. While the spatial inductive
bias of 2D convolutions allow CNNs to build hierarchical feature representations,
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they require that full-size feature maps are used throughout the inference, which
incurs high memory usage. This is not ideal for memory and latency-critical appli-
cations such as real-time on-board satellite image segmentation. In this chapter,
we propose a new neural network architecture for semantic segmentation, "Scan-
nerNet", based on a Recurrent 1D Convolutional architecture. Our network per-
forms a segmentation of the input image line-by-line, and thus reduces the memory
footprint and output latency. These characteristics make it ideal for on-the-fly seg-
mentation of images on-board satellites equipped with push broom sensors such
as Landsat 8, or satellites with limited computing capabilities, such as CubeSats.
We perform cloud segmentation experiments on embedded hardware and show
that our method offers a good compromise between accuracy, memory usage and
latency.

Chapter 4 While deep learning-based object detection methods traditionally
make use of pixel-level masks or bounding boxes, alternative representations such
as polygons or active contours have recently emerged. Among these, methods
based on the regression of Fourier or Chebyshev coefficients have shown high po-
tential on freeform objects. However, because such methods define object shapes
as polar functions, they are limited to star-shaped domains. We address this issue
with Smooth Contour Regression (SCR): a method that captures resolution-free
object contours as complex periodic functions. The method offers a good compro-
mise between accuracy and compactness thanks to the design of efficient geometric
shape priors. We benchmark SCR on the popular COCO 2017 instance segmenta-
tion dataset, and show its competitiveness against existing algorithms in the field.
In addition, we design a compact version of our network, which we benchmark on
embedded hardware with a wide range of power targets, achieving up to real-time
performance.

Chapter 5 Automatic road graph extraction from aerial and satellite images
is a long-standing challenge. Existing algorithms are either based on pixel-level
segmentation followed by vectorization, or on iterative graph construction using
next move prediction. Both of these strategies suffer from severe drawbacks, in
particular high computing resources and incomplete outputs. By contrast, we pro-
pose a method that directly infers the final road graph in a single pass. The key
idea consists in combining a Fully Convolutional Network in charge of locating
points of interest such as intersections, dead ends and turns, and a Graph Neural
Network which predicts links between these points. Such a strategy is more effi-
cient than iterative methods and allows us to streamline the training process by
removing the need for generation of starting locations while keeping the training
end-to-end. We evaluate our method against existing works on the popular Road-
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Tracer dataset and achieve competitive results. We also benchmark the speed of
our method and show that it outperforms existing approaches. This opens the
possibility of in-flight processing on embedded devices.

Chapter 6 In the last chapter, we conclude this thesis with some final remarks
and future directions.
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Chapter 2

On-board image segmentation with
compact networks

In this chapter, we design efficient Fully Convolutional architectures for on-board
semantic segmentation, and apply them to cloud and forest segmentation.

2.1 Introduction
Semantic segmentation of images is a long standing problem in Computer Vision.
The popularization of Convolutional Neural Networks (CNN) has led to a lot of
progress in this field. Fully Convolutional Networks (FCN) [KFS15] and related
architectures, such as the popular U-Net [RFB15], outperformed traditional meth-
ods in terms of accuracy while being easy to use.

In the quest towards accuracy, state-of-the-art neural networks often disregard
the complexity of their architectures, which typically feature millions of trainable
parameters, requiring days of training and gigabytes of hard-drive space. These
architectures also require a lot of computing power, such as GPUs consuming
hundreds of Watts. Consequently, these architectures cannot be easily used on
edge devices such as phones, drones or satellites.

Our goal is to design neural network architectures operating on low-power edge
devices with the following objectives:

• High accuracy. The architecture should deliver accurate semantic segmen-
tation results.

• Low complexity. The architecture should have a low number of parameters
to learn.

• Adaptability. The architecture should be easily implementable on low-
power devices.
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Some efficient architectures, such as ESPNet [Meh+18], and convolution mod-
ules [How+17] have been proposed for phones and autonomous vehicles. These
architectures are however too complex to be exploited on devices with lower power
budget and computational resources. For instance, this is the case of FPGA cards
embedded into system-on-chips (SoCs) on satellites, which have limited floating-
point capabilities and are restricted by their amount of hardware logic.

In this chapter, we present two highly-compact neural network architectures
for semantic segmentation, which are up to 100 000 times less complex than state-
of-the-art architectures while approaching their accuracy. We propose two fully-
convolutional neural networks, C-FCN and C-UNet, which are compact versions
of the popular FCN [KFS15] and U-Net [RFB15] architectures. To decrease the
complexity of existing networks, our main ideas consist in exploiting lightweight en-
coders and decoders with depth-wise separable convolutions and decreasing mem-
ory usage with the removal of skip connections between encoder and decoder. Our
architectures are designed to be implemented on a basic FPGA such as the one
featured on the Intel Altera Cyclone V family of SoCs. We demonstrate the poten-
tial of our solutions in the case of binary segmentation of remote sensing images, in
particular for extracting clouds and trees from RGB satellite images. Our methods
reach 95% accuracy in cloud segmentation on 38-Cloud [MKS18] and CloudPeru2
[MHT18] datasets, and 83% in forest segmentation on the EOLearn Slovenia 2017
dataset.

2.2 Related works
We first review prior work in two related aspects of our goal: neural networks for
semantic segmentation and neural network inference on edge devices.

2.2.1 Neural networks for semantic segmentation

Many deep learning methods have been proposed to improve performance of seg-
mentation networks, in terms of accuracy on popular benchmarks [Eve+10; Lin+14;
Mot+14] and speed, with the goal of real-time semantic segmentation [Sia+18].
These methods are compared in recent surveys [Guo+18; Gar+18; Sia+18] without
studying the networks from a complexity point of view.

Encoder-decoders

Most of the popular segmentation neural networks, such as U-Net [RFB15], Seg-
Net [BKC17], or DeepLabv3+ [Che+18] adopt an encoder-decoder architecture.
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The encoder part of the network, also called backbone, is typically a Deep Con-
volutional Neural Network composed of multiple stages of convolution operations,
separated by pooling operations. This allows the encoder to capture high-level
features at different scales. It is common to use an existing CNN architecture such
as ResNet-101 [He+16], VGG16 [SZ14], or MobileNet [How+17] as a backbone,
since pre-trained weights on databases such as ImageNet [Jia+09] are available
for transfer learning. However, while achieving high accuracy, these encoders are
complex and not suited for inference on edge devices. Decoders are in charge
of upsampling the result to get an output that has the same size as the original
image. Deconvolutions, also called transposed convolutions or up-convolutions,
introduced by H. Noh et al . [NHH15] in the context of semantic segmentation, are
used to learn how images should be upscaled.

Skip connections

Skip connections are often used between convolution blocks, i.e. short skips, in
architectures such as residual networks [He+16], and/or between the encoder and
the decoder, i.e. long skips, in architectures such as U-Net [RFB15]. These con-
nections are performed by concatenating feature maps from different parts of the
network in order to retain some information. In the case of segmentation net-
works, skip connections are used to keep high-frequency information (e.g. corners
of buildings, borders of objects) to obtain a more precise upscaling by the decoder.
While skip connections can yield good results in practice, they are often memory
consuming, especially the long skips, as they require feature maps to be kept in
memory for a long time. Consequently, they cannot easily be used on edge devices
with limited memory. In particular, we show in Section 2.4.6 that they are not
necessarily useful in all use cases.

2.2.2 Neural networks on edge devices

Efficient convolution modules

Several low-complexity convolution modules have been developed, with the goal
of reducing power consumption and increasing inference speed on low-end or em-
bedded devices, such as phones. This is the case of Inception [Sze+15], Xception
[Cho17], ShuffleNet [Zha+18], or ESP [Meh+18]. These modules are based on the
principle of convolution factorization and turn classical convolution operations into
multiple simpler convolutions. S. Mehta et al . provide a detailed analysis of these
modules in [Meh+18]. However, we cannot use them as they still feature too many
trainable parameters and often require to store the results of multiple convolution
operations performed in parallel or short skip connections. In contrast, we use
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Depth-wise Separable Convolutions, introduced in [Sif14] and used in MobileNets
[How+17].

Neural Network simplification

Several techniques have been developed to simplify neural networks for systems
with tight resource constraints. Training and inference using fixed-point or integer
arithmetic and quantization is an active research topic [LTA16; Jac+18; Wu+18],
since floating-point operations are costly on many embedded systems such as FP-
GAs, and trade-offs have to be made between accuracy and speed. Neural network
pruning, on the other hand, is the process of removing some weights [LDS90] or
entire convolution filters [Li+16; Mol+16] and their associated feature maps in a
neural network, in order to extract a functional "sub-network" that has a lower
computational complexity and similar accuracy. Some recent works focus on re-
source constrained Neural Architecture Search [XMS19]. A lot of work has been
done on enabling and accelerating NN inference on FPGA [Abd+18], with tools
being released to automatically generate HDL code for any neural network ar-
chitecture [Ham18], with automated use of quantization and other simplification
techniques. These approaches are orthogonal to our work as they could be applied
to any neural network.

2.3 Proposed architectures
We now detail our compact neural networks, C-UNet and C-FCN. These archi-
tectures are Fully Convolutional. Thus the number of parameters of the networks
does not depend on the size of the input images. In particular, the training steps
and the testing steps can be performed on different image sizes.

2.3.1 C-UNet

As illustrated in Figure 2.1, C-UNet is a compact version of the popular U-Net
architecture [RFB15].

To create a shallower network, three convolution stages have been removed with
respect to the original architecture. Removing stages narrows the field-of-view of
the network, but also strongly reduces the computational cost as the number of
feature maps is typically multiplied by a factor 2 at each stage. For instance,
the original U-Net [RFB15] has 1024 feature maps at the last encoder stage. A
standard 3x3 convolution at this stage uses 3× 3× 1024× 1024+ 1024 = 9438208
parameters. The number of stages to remove has been chosen after empirical
experimental validation, 3 being a good compromise between field-of-view and
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number of parameters. Indeed, we found experimentally that we could train a
neural network to classify objects such as clouds and trees in 28x28 pixel images
with good accuracy. The encoder in C-UNet has a receptive field of 50x50 pixels
and is consequently more than capable of reaching the same accuracy.

Some of the standard convolution layers have also been replaced by depth-wise
separable convolutions. Introduced in [How+17], they allow a classical convolution
to be split into a depth-wise convolution and a point-wise convolution, to use the
fact that inter-channel features are often not related to spatial features. Since the
convolution kernel is the same for all input feature maps in a depth-wise convolu-
tion, this allows us to reduce the number of learned parameters significantly. For
example, a standard 3x3 convolution with 16 input and output feature maps has
2320 trainable weights, while a depth-wise separable convolution of the same size
only has 416 trainable weights.

The number of filters per convolution has been chosen so that C-UNet has 51
113 parameters, i.e. around 500 times less than the architecture implemented in
[MKS18]. C-UNet then has 8 filters per convolution at the first stage and this
number is doubled at every stage in the encoder, and divided by two at every
stage in the decoder, as in the original U-Net architecture [RFB15].

We also propose a variant of C-UNet, called C-UNet++, with an even more
compact architecture. C-UNet++ contains 9 129 parameters, i.e. 3000 times less
parameters than the architecture implemented in [MKS18]. As illustrated in Figure
2.1, the number of convolution layers has been reduced to one per stage, and only
the first stage has standard convolutions. This gives C-UNet++ a receptive field
of 22x22 pixels.

Note that skip connections between corresponding stages in encoder and de-
coder parts could be considered. However, we show in Section 2.4.6 that they are
not necessarily useful, as adding them may not significantly increase performance
and may require a lot of memory depending on the input image size.

2.3.2 C-FCN

The second proposed architecture, called C-FCN, relies upon a lightweight CNN
encoder and a bilinear upsampler, as illustrated in Figure 2.2. The encoder has
3 stages, with a single convolution per stage. A 1x1 convolution then generates a
class heatmap which is finally upsampled by the bilinear upsampler. C-FCN uses
depthwise separable convolutions to maximize the number of convolution filters
we can use within our parameter budget, which is of 1 438 parameters for this
architecture.

We also propose a variant of C-FCN with the same depth, called C-FCN++,
which is designed to be the smallest viable architecture with only 273 parameters.
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Figure 2.1: U-Net [RFB15] compared to C-UNet and C-UNet++. Gray: input,
white: 3x3 convolution with ReLU activation, yellow: depthwise separable 3x3
convolution with ReLU activation, green: 2x2 max pooling, orange: 1x1 convolu-
tion with sigmoid activation, blue: 2x2 deconvolution, red: output, arrows: skip
connections. Numbers indicate the number of feature maps at each stage.
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Figure 2.2: C-FCN and C-FCN++ architectures. Gray: input, white: conv3x3
ReLU, green: 2x2 max pool, orange: conv1x1 sigmoid, blue: 4x4 bilinear upscaling.

Architecture F1 F2 F3 Depthwise Atrous Nparam

C-FCN 10 20 40 Yes No 1438
C-FCN++ 5 2 2 No 1stconv. 273

Table 2.1: Characteristics of C-FCN and C-FCN++. Depthwise = usage of depth-
wise separable convolutions. Fx is the number of convolution filters and feature
maps at stage x.

The first layer is an atrous convolution layer with a dilation rate of 2, which
broadens the receptive field of the network a little bit [YK15].

The number of filters of C-FCN and its variant C-FCN++ are showed in Table
2.1.

2.4 Experiments on cloud segmentation
In this section, we evaluate the performance of our architectures for cloud extrac-
tion in RGB remote sensing images.

Change detection and related topics, e.g . anomaly detection, have always been
of interest for the remote sensing community, as they are used in practical do-
mains, such as natural disaster protection, urban development analysis, deforesta-
tion monitoring, and so on. About 52% of the Earth’s surface is covered by clouds
[Dow05]. While it is useful in some fields such as meteorology, detecting cloud
movements and changes is irrelevant in many others, where images containing
clouds and their shadows are simply useless. Thus, detecting clouds and removing
them is a first step towards detecting relevant changes.

Accurate detection of clouds is not an easy task, especially when a limited num-
ber of spectral bands is available, as clouds share the same radiometric properties
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as snow, for example. Currently, commonly-used cloud segmentation methods are
either threshold-based or handcrafted, with the most popular ones being Fmask
[ZWW15] and Haze Optimized Transform [ZGC02]. These cannot be used in the
case of OPS-SAT as its sensor only features RGB channels, which means we do not
have the required spectral bands at our disposal. These methods are pixel-based
(each pixel is independant for cloud detection), whereas we need to use the con-
text of adjacent pixels (e.g. presence of a cloud shadow to differenciate cloud from
snow), which CNN are able to do, thanks to convolution and pooling operations.
Performing real-time cloud segmentation directly onboard and removing useless
cloud-covered images can allow significant bandwidth, storage and computation
time savings on the ground.

M. Hughes et al . [Hug+14] were, to our knowledge, the first to use a neural
network-based approach for cloud segmentation in Landsat-8 images. However,
convolutional neural networks were not used. A lot of recent work has been done
on cloud segmentation using CNN [MKS18; MS19; MHT18; Drö+18; Liu+19].
However, all these methods use compute-heavy architectures on hyperspectral im-
ages and are designed to be used with powerful hardware on the ground, and thus,
are not compatible with our use-case. Cloud segmentation using neural networks
has already been integrated in an ARTSU CubeSat mission by Z. Zhang et al .
[ZXS18]. S. Ghassemi et al . [Gha+19] have proposed a small strided U-Net archi-
tecture for onboard cloud segmentation. Their architectures are still too big for
our use cases and are designed to work on 4-band images (RGB + NIR). Neverthe-
less, we include a 3-band implementation of MobUNet [ZXS18], MobDeconvNet
[ZXS18] and "Plain+" strided U-Net [Gha+19] architectures in our comparison.

2.4.1 Datasets

We use publicly available cloud segmentation datasets to train and test the models.
We use the Cloud-38 dataset, introduced by S. Mohajerani et al . [MS19]. The

dataset is composed of 4-band Landsat-8 images with a 30m resolution. We only
use RGB bands. Since some of the training scenes have black borders in the original
dataset, we remove all the patches that have more than 50% of black pixels. The
resulting training and validation set is composed of 4 821 patches of size 384x384.
The testing set is composed of 9 200 patches.

We also use the CloudPeru2 dataset, introduced by G. Morales et al . [MHT18].
This dataset is composed of 4-band PERUSAT-1 images with a 3m resolution. It
features 22 400 images of size 512x512. We use 10% of these images for testing.
Test images have been chosen randomly and are the same for all of our tests.
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2.4.2 Training procedure

All models were implemented using the Keras framework using Tensorflow 1.13 as
a backend in Python 3.6.

Models are trained using a round-based scheme. Training sets are randomly
shuffled and split into training (85%), and validation (15%) sets at the beginning
of each round. Within a round, all models are then trained on the same training
and validation sets for a maximum of 150 epochs. At the end of all rounds, the best
network for each architecture is selected using the testing set. This was not ideal
in hindsight and the best netword should have been selected using the validation
set. However, since we apply the same treatment to all methods, the results are
still comparable with each other.

Data is augmented using random horizontal and vertical flips, as well as random
rotations of 5 degrees maximum. The same random seed is used for all architec-
tures. Models were trained for 4 rounds with batch-size 8 and the Adam optimizer
with a learning rate of 0.001. Binary crossentropy loss is used for all networks.
Early stopping is used with a patience of 15 and a maximum number of epochs of
150.

This training scheme takes around 10h per architecture, per round, per dataset
on an Nvidia GTX 1080 Ti graphics card, which brings our total training time to
around 1160h. Training could have been faster, as the card’s VRAM was barely
being used when training really small models, but we wanted to use the same
training parameters (batch-size) for every model, to get the fairest possible com-
parison. The largest batch-size we could use to train the biggest network (U-Net)
is 8.

2.4.3 Comparative architectures

We compare our networks to different semantic segmentation architectures from
the litterature, that we re-implemented:

• U-Net for cloud segmentation, as presented by S. Mohajerani et al . [MKS18],
which we use as a "baseline" for comparison, since U-Net, originally pre-
sented by Ronneberger et al . [RFB15] for the segmentation of medical images
is a well-known and easy to implement architecture that has proved useful
for many segmentation tasks,

• ESPNet_A, introduced by S. Mehta et al . [Meh+18], which is a state-of-
the-art segmentation network, in terms of efficiency and accuracy. We use
K = 5, α2 = 2, α3 = 5.

• MobUNet and MobDeconvNet, introduced by Z. Zhang et al . [ZXS18], are
small versions of U-Net [RFB15] and Deconv-Net [NHH15] for onboard cloud
segmentation, that use depth-wise separable convolutions [How+17],
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Input Ground Truth U-Net C-UNet C-FCN C-FCN++

Figure 2.3: Qualitative results of C-UNet, C-FCN, and C-FCN++ on 38-Cloud
dataset, compared to Ground Truth (GT) and U-Net [MKS18]. Our networks in
bold font. Our networks give good results and are not fooled by snow on the third
patch. C-FCN and C-FCN++ results appear very smooth compared to others
because the segmentation map output by the network is 4 times smaller than U-
Net’s and upsampled with a bilinear upsampling. Thus, C-UNet produces a more
refined segmentation than C-FCN.

• StridedUNet, introduced by Ghassemi et al . [Gha+19] for onboard cloud
segmentation, which uses strided convolutions for downsampling,

• LeNetFCN, an FCN variation of the well-known LeNet-5 architecture [LeC+98],
which was originally created for written number classification. We replace the
final Fully-Connected (dense) layers by a 1x1 2D Convolution with a sigmoid
activation, in order to output a segmentation map. LeNetFCN architecture
looks like the "C-FCN" architecture (see Figure 2.2) with F1 = 3, F2 = 5,
except it uses 5x5 convolutions instead of 3x3 convolutions.

We evaluate models using standard segmentation metrics: Total Accuracy,
Precision, Recall, Specificity and Jaccard Index (IoU), as defined in [MS19].

2.4.4 Qualitative results.

Figure 2.3 shows inference results of our networks on three image patches taken
from the 38-Cloud test set, compared to the ground truth and U-Net. Our net-
works provide a visually good result, even on difficult terrains such as snow. The
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(a) 38-Cloud (b) CloudPeru2

Figure 2.4: Test accuracy with respect to number of parameters on the two tested
datasets. Our networks are in green and bold font, others in blue. Number of
parameters is on a log scale. Our networks offer good accuracy at varying levels
of complexity.

segmentation masks produced appear smooth, especially for C-FCN/C-FCN++
because of the bilinear upsampling. This is not an issue to estimate cloud cover-
age as a percentage.

2.4.5 Quantitative results.

Table 2.2 shows accuracy metrics on 38-Cloud and CloudPeru2. We include the
Fmask accuracy results from S. Mohajerani et al . [MS19] for 38-Cloud, since our
test dataset and metrics are the same.

The best network under 1500 parameters is C-FCN. In particular, this net-
work matches Fmask’s accuracy (within 1%), and achieve much better precision
and IoU. This network also exceeds the performance of our implementation of
mobDeconvNet [ZXS18], using 4x less parameters. Our C-FCN++ matches the
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Model Acc. Prec. Rec. Spec. Jacc.
LeNet_FCN 91.10 86.00 84.34 94.03 74.16
C-FCN++ 93.23 91.67 85.45 96.62 79.30

mobDeconvNet [ZXS18] 93.44 92.04 85.75 96.78 79.83
C-FCN 93.91 91.23 88.39 96.31 81.47

C-UNet++ 94.85 94.18 88.48 97.63 83.89
ESPNet_A [Meh+18] 95.08 93.94 89.55 97.49 84.66
stridedUNet [Gha+19] 95.39 94.21 90.36 97.58 85.60

mobUNet [ZXS18] 95.58 95.37 89.78 98.11 86.03
U-Net [MKS18] 95.61 95.69 89.56 98.25 86.08

C-UNet 95.78 96.53 89.27 98.61 86.50
Fmask [ZWW15] 94.89 77.71 97.22 93.96 75.16

LeNet_FCN 89.23 93.11 83.27 94.52 78.44
C-FCN++ 91.37 93.50 87.76 94.58 82.71

mobDeconvNet [ZXS18] 93.40 94.98 90.78 95.73 86.63
C-FCN 94.09 95.15 92.15 95.82 88.01

C-UNet++ 94.59 96.03 92.31 96.61 88.92
U-Net [MKS18] 95.82 96.29 94.78 96.75 91.44

mobUNet [ZXS18] 95.97 97.20 94.14 97.59 91.66
C-UNet 96.42 96.54 95.83 96.94 92.65

stridedUNet [Gha+19] 96.45 96.49 95.95 96.89 92.72
ESPNet_A [Meh+18] 96.59 96.45 96.30 96.85 93.01

Table 2.2: 38-Cloud (top) and CloudPeru2 (bottom) results. Our networks in bold
font.

performance of mobDeconvNet while using only 273 parameters. Our C-UNet
matches the performance of our implementation of mobUNet [ZXS18], while using
less memory thanks to the lack of skip connections. It also exceeds the perfor-
mance of our implementation of StridedUNet [Gha+19], while being 20% smaller
in terms of number of parameters. We see similar results on CloudPeru2 as on
38-Cloud. Our networks provide good results on this high-resolution dataset (3m).
Figure 2.4 shows the relation between the number of parameters of a network and
its accuracy. Our networks match or exceed the performance or other methods
at each complexity level. There is a point of diminishing return in this task: our
C-UNet performs about the same as a 500 times bigger U-Net.
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2.4.6 Impact of skip connections.

We tried adding skip connections in C-UNet and C-UNet++, but did not find a
significant difference in performance metrics in the case of cloud segmentation, as
shown in Table 2.3. Skip connections are useful to keep high frequency information
and use it in the decoder part of the network, since the encoder part tends to
act like a low-pass filter because of successive convolutions. Clouds do not have
much high frequency information, which is maybe why skip connections were not
particularly useful in our case. This means that a significant amount of memory
can be saved during network inference by removing skip connections in use cases
where they are not useful, as shown in Table 2.4. This can allow bigger networks
to be used on systems with tight resource constraints.

C-UNet Acc. Prec. Rec. Spec. Jac.
with skips 95.90 96.22 90.01 98.46 86.93
w/o skips 95.78 96.53 89.27 98.61 86.50

C-UNet++ Acc. Prec. Rec. Spec. Jac.
with skips 94.51 92.30 89.33 96.76 83.14
w/o skips 94.85 94.18 88.48 97.63 83.89

Table 2.3: Impact of skip connections on performance of C-UNet(++) on 38-
Cloud dataset. We do not see a significant difference in accuracy when using skip
connections for this cloud segmentation task.

Architecture / Image size 384x384 2000x2000
U-Net [MKS18] 34.9 MB 236.5 MB

StridedUNet [Gha+19] 4.22 MB 114.4 MB
MobUNet [ZXS18] 1.69 MB 45.8 MB
C-UNet with skips 1.97 MB 53.4 MB

C-UNet++ with skips 1.97 MB 53.4 MB
C-UNet without skips 0 MB 0 MB

C-UNet++ without skips 0 MB 0 MB

Table 2.4: Memory footprint of skip connections for 32-bit float inference (in
Megabytes), computed for two images sizes.

2.4.7 Performance on a low-power processor

Many edge devices use ARM-based SoCs, which are known for their efficiency.
This is why we chose the Raspberry Pi, an ARM computer the size of a credit
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Architecture Nparams FLOPs Storage (MB)
C-FCN++ 273 4 654 0.047
LeNet_FCN 614 10 455 0.049

C-FCN 1 438 24 233 0.066
mobDeconvNet [ZXS18] 7 919 134 256 0.149

C-UNet++ 9 129 154 800 0.172
C-UNet 51 113 867 712 0.735

mobUNet [ZXS18] 52 657 893 882 0.724
StridedUNet [Gha+19] 79 785 1 355 704 1.0
ESPNet_A [Meh+18] 200 193 3 399 310 2.7

U-Net [MKS18] 31 094 497 528 578 588 357

Table 2.5: Network parameters, FLOPs (FLoating-point OPerationS) and storage
size. Our architectures in bold font. FLOPs computed for a 384x384 input using
Tensorflow’s profiler. We see that the number of FLOPs is correlated to the num-
ber of paramters. Storage size is the size of the Keras h5 file for each model in
MegaBytes.

card, for our testing. Our particular board is the Raspberry Pi 4 model B, which
features a Quad core Cortex-A72 CPU clocked at 1.5GHz and 2GB of LPDDR4
SDRAM. We feel that this board is representative of the kind of power a typical
low-power system could have, as this board consumes 3W when idle and 6W under
load on average. We use Tensorflow 1.13.1 with Python 3.7.3 on Raspbian 10.0 to
run our evaluation code on the board.

The number of parameters, or trainable weights, of an architecture is an impor-
tant metric, as it is not only linked to the storage space needed for these parameters
but also (albeit loosely) correlated to computation time since each weight must be
used in computation at some point. On systems such as FPGAs where networks
can be "hardcoded" into a chip, the number of parameters is also linked to the
amount of hardware logic that will be used by a network.

Table 2.5 shows the size used by the tested architectures in terms of number
of parameters and storage space, as well as the number of FLOPs (Floating Point
Operations) used for one forward pass on a 384x384 image. We can see that the
number of FLOPs is indeed correlated to the number of parameters.

Table 2.6 shows the execution time results we obtained. We can see that our
networks do not run out of memory when trying to process relatively big images
of 2048x2048 pixels at once. Even with a Python 32-bit float implementation, our
architectures allow fast processing of images. This processing could be even faster
by using Tensorflow Lite and quantized weights.

We notice a strange behaviour with stridedUNet, which performs significantly
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Model 384x384 1024x1024 2048x2048
C-FCN++ 0.130 0.773 2.663

stridedUNet [Gha+19] 0.133 0.752 2.666
C-FCN 0.148 0.903 3.017

C-UNet++ 0.204 1.242 4.295
C-UNet 0.404 2.867 10.355

mobUNet [ZXS18] 0.688 5.507 OOM
mobDeconvNet [ZXS18] 0.755 N/A N/A

ESPNet_A [Meh+18] 1.878 15.940 OOM
U-Net [MKS18] 5.035 OOM OOM

Table 2.6: Execution time on images of different sizes in seconds on Raspberry Pi
4, averaged over 20 iterations. OOM = Out of Memory, N/A = mobDeconvNet is
not an FCN and thus cannot be executed on images of different sizes than training
images.

faster than networks that require less FLOPs. We suspect that Tensorflow, or
at least the ARM version of it, was lacking some optimizations in the case of
depthwise separable and atrous convolutions.

2.4.8 Quantization

In order to analyze the effects of naive 16-bit and 8-bit quantization of a neural
network’s weights, we apply the same steps as the ones used for fixed-point conver-
sion. First we scale the weights by 28 for 16-bit or 24 for 8-bit. Then, we convert
the weights to 16-bit or 8-bit signed integers. Finally, we reverse the scaling and
convert the weights back to 32-bit float for evaluation.

Figure 2.5 shows the impact of quantization on the behavior of our networks.
We used the previously selected networks, i.e. best performing out of all rounds,
for this test. We see that 16-bit quantization has a minimal impact of 1.69% on
average, and can even bring a small boost in accuracy, although we do not have an
explanation for this phenomenon. 8-bit quantization has a much bigger impact on
performance of 10.79% on average. It should be noted that some networks simply
"stop working" when quantized in this manner. Our FCN-based networks do not
appear to suffer extensively from 8-bit quantization.

2.4.9 Adaptability to FPGA

We successfully implemented our LeNet-based FCN, on an Altera Cyclone V
5CSXC6 FPGA with a dataflow/streaming architecture and fixed-point quanti-
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Figure 2.5: Test accuracy of quantized models on the 38-Cloud dataset.

zation tool based on VGT [Ham18], which automatically generates HDL code for
a given neural network architecture. This FPGA is included onboard OPS-SAT, a
CubeSat satellite that was launched in 2019 by the European Space Agency. The
satellite features an RGB camera with a 53m ground sampling distance.

We used a network pre-trained on 38-Cloud and CloudPeru2 images, and fine-
tuned it on images captured by OPS-SAT, which were annotated manually. A
selection of images is shown on Figure 2.6. The images look very different than the
ones included in the two datasets, hence the need for fine-tuning. The network uses
92% of the Adaptive Logic Modules (ALMs), which are the basic FPGA building
blocks. The processing of a 28x28 pixel image is done in 25µs and we reach an
F-score of 0.72 with a 19-bit quantization. The power consumption measured in
orbit was 1.8W. Qualitative inference results computed in-flight in early 2021 are
shown in Figure 2.7.

2.5 Experiments on forest segmentation
To provide a comparison on another use case, we also evaluate our models on a for-
est segmentation task, which is also important in remote sensing, for applications
such as deforestation monitoring. Although vegetation detection is usually done
using dedicated spectral bands on earth observation satellites, it would be useful
to be able to perform it on devices that do not usually possess these bands, such as
drones or nanosats (e.g . OPS-SAT). Neural networks have already been used suc-
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Figure 2.6: Images captured by OPS-SAT and used for fine-tuning of the FCN.

(a) Altera FPGA featured on OPS-SAT (b) Inference done onboard in 2021

Figure 2.7: We performed in-flight cloud segmentation with an FCN using the
FPGA of OPS-SAT. Red pixels: false positives. Blue pixels: false negatives.
Other pixels: correct segmentation.
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Model Acc. Prec. Rec. Spec. Jacc.
LeNetFCN 77.10 67.93 63.57 84.22 48.89

C-FCN++ 77.40 69.52 61.28 85.87 48.31
C-FCN 78.87 68.95 70.38 83.33 53.44

mobDeconvNet [ZXS18] 80.61 71.52 72.68 84.78 56.36
C-UNet++ 80.62 72.92 69.61 86.41 55.31

stridedUNet [Gha+19] 80.67 72.52 70.70 85.92 55.77
C-UNet 83.33 76.79 73.99 88.24 60.47

U-Net [MKS18] 84.04 73.37 84.28 83.92 64.54
mobUNet [ZXS18] 84.27 75.19 81.13 85.92 63.99

Table 2.7: Slovenia 2017 forest segmentation results (10m resolution).

cessfully for land cover and vegetation segmentation [Zhu+17; KP18]. However,
to our knowledge, these tasks have never been done directly onboard.

For this experiment, we use the EOLearn Slovenia 2017 dataset [Sin], which
is composed of multiple Sentinel acquisitions of Slovenia over 2017, with pixel-
wise land cover ground truth for 10 classes, as well as cloud masks. We only
use the forest class and the RGB bands. This dataset is originally split into 293
1000x1000 patches. We remove images that have more than 10% of clouds and
split the remaining images into 500x500 pixel tiles. We use 24 patches as a test set.
This means our training/validation set has 12 629 tiles, and our test set has 3 320
tiles. We use the same training scheme and settings as in our cloud segmentation
experiments, which we detailed in 2.4.2.

In this test, the performance of our networks, as shown in Table 2.7, is compa-
rable to the other networks, which proves their adaptability to different tasks. In
particular, C-UNet matches the performance of U-Net [MKS18], and C-UNet++
matches the performance of mobDeconvNet[ZXS18].

2.6 Conclusion
In this chapter, we introduced lightweight neural network architectures for on-
board semantic segmentation, and compared them to state-of-the-art architectures
in the context of 3-band cloud and forest segmentation. We showed that our
networks match the performance of Fmask, a popular cloud segmentation method,
while only using 3 bands and at a low computational cost that allow them to be
implemented on systems with restrictive power and storage constraints. We also
match the performance of network architectures that have previously been used for
on-board cloud detection, while using less memory and FLOPs. We talked about
the usefulness of depth-wise separable convolutions for implementation of neural
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networks on edge devices and discussed the memory footprint of skip connections.
In addition, we explored the performance loss introduced by naive quantization

of neural networks for fixed-point inference. We performed experiments on a low-
power ARM-based SoC and the FPGA of a satellite. In 2021, our team was the
first to remotely upload neural network weights to the FPGA of a satellite in orbit.

Our work has some limitations which leave room for future work. We only
tested our architectures on binary image segmentation, and while this is enough
for our test cases, many applications require multi-class image segmentation.
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Chapter 3

Recurrent convolutional networks
for semantic segmentation

In this chapter, we propose a recurrent convolutional network for onboard semantic
segmentation in satellites equipped with push broom sensors. This chapter builds
on the work from Chapter 2.

3.1 Introduction
Semantic segmentation is not only crucial in remote sensing applications such as
cloud segmentation [Bah+19; Fér+21], land use/land cover estimation [Xu+19b],
or road mapping [BBL21], but also in other domains, such as medical imagery
[RFB15] and self-driving [Cor+16]. In this task, the output segmentation maps
have the same resolution as the input images. This makes semantic segmentation a
generally more demanding task in terms of computation than image classification.

As a consequence of the increasing demand for edge processing, techniques
such as distillation [HVD15] and quantization [Hub+17] have been used as a way
to port deep learning models onto low-power devices like UAVs, smartphones or
satellites. However, semantic segmentation models remain very compute intensive,
and dedicated architectures with a low number of convolution filters had to be
developed in conjunction with these techniques in order to be used on low-power
satellites, as shown in Chapter 2. Moreover, many earth observation satellites
feature push broom sensors. These sensors acquire images of varying height line-
by-line (i.e. by “scanning” the ground). In cases where the acquisition runs for a
long time, the images created in this way can become too large to be efficiently
processed in memory by traditional 2D convolutional neural networks. Finally,
since CNNs traditionally process the whole image at once, there is a significant
latency between the acquisition and the output of the result, since we have to wait
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until the whole image is acquired and processed before viewing the result.
Traditional Convolutional Neural Networks (CNN) for semantic segmentation

of images use 2D convolution operations. While the spatial inductive bias of 2D
convolutions allow CNNs to build hierarchical feature representations, they require
that full-size feature maps are used throughout the inference, which incurs high
memory usage. This is not ideal for memory and latency-critical applications such
as real-time on-board satellite image segmentation.

In this chapter, we propose a new neural network architecture for semantic seg-
mentation, “ScannerNet”, based on a one-dimensional Convolutional LSTM [HS97;
Xin+15] (ConvLSTM). Our network parses the input image line-by-line, and out-
puts the result at the same time. Thus, it only keeps the necessary information in
memory and achieves a very low latency. These characteristics make it ideal for
on-the-fly segmentation of images on-board satellites equipped with push broom
sensors such as Landsat-8, or satellites with limited computing capabilities, such
as Cubesats. We perform cloud segmentation experiments on embedded hardware
and show that our method offers a good compromise between accuracy, memory
usage and latency.

3.2 Method
In this section, we provide a description of our architecture, shown on Figure 3.1.
Our architecture is based on a two-layer 1D Convolutional LSTM (ConvLSTM),
inspired by the work of Shi et al. [Xin+15] on 2D ConvLSTM. We implement the
ConvLSTM cells without self-loops as in [HS97]:

it = σ(Conv1D([xt;ht−1],Wi) + bi)

ft = σ(Conv1D([xt;ht−1],Wf ) + bf )

ot = σ(Conv1D([xt;ht−1],Wo) + bo)

gt = tanh(Conv1D([xt;ht−1],Wg) + bg)

ct = ft ◦ ct−1 + it ◦ gt
ht = tanh(ct) ◦ ot

(3.1)

where ◦ is the Hadamard product, σ is the sigmoid function, [xt;ht−1] is the con-
catenation of the input line xt at step t and previous hidden state of the cell ht−1.
We notice that all the convolution operations in Equation 3.1 can be optimized by
combining them into a single 1D convolution with weights W = [Wi;Wf ;Wo;Wg],
b = [bi; bf ; bo; bg] and output y = [it; ft; ot; gt]. We denote as F1 and F2 the number
of feature maps of the hidden states in layer 1 and 2, respectively. The final output
line yt is generated by a 1x1 convolution that maps the F2 feature maps of the
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Figure 3.1: Our 1D Convolutional LSTM Neural Network, ScannerNet, segments
the input images line-by-line to save memory and reduce latency. We use two
1D ConvLSTM [Xin+15] layers and a single 1x1 convolution to obtain a binary
output. Our architecture allows a 280x reduction in memory usage compared to
previous works on cloud segmentation at a similar number of parameters.

Network F1 F2 Filter size Parameters
ScannerNet 4 8 9 4 521

ScannerNet Small 4 4 7 1 717

Table 3.1: Number of filters, filter size and number of parameters for each of our
two ConvLSTM networks. F1 and F2 are the number of filters in the first and
second 1D ConvLSTM layer, respectively.

hidden state of layer 2 ht,2 to a single line of the segmentation map, as shown on
Figure 3.1.

In order to obtain results for two different total numbers of parameters and
thus easily compare our networks to previous works, we create two networks with
varying F1, F2 and filter size. Table 3.1 shows the details of these two networks.

3.3 Experiments
In order to validate our design, we perform a cloud segmentation experiment. On-
board cloud segmentation is an important topic as it can be the first step in the
on-board compression of satellite images. Indeed, a large portion of the Earth is
covered by clouds at any given time, thus the removal of cloud pixels translates
to large savings in both bandwidth and storage space. We compare our results to
the lightweight networks presented in Chapter 2.
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Network IoU F1 Accuracy Precision Recall
Baseline 68.14 72.89 83.58 72.92 72.85
C-FCN 82.04 85.77 91.74 89.68 82.19

C-UNet++ 86.18 89.75 93.52 86.19 93.62
ScannerNet Small (ours) 81.86 85.51 91.71 90.86 80.75

ScannerNet (ours) 85.80 88.98 93.65 93.79 84.65

Table 3.2: Quantitative results of our architecture on the 38-Cloud dataset [MS19]
at a detection threshold of 0.5, compared to networks from the previous chapter.
Our method obtains similar metrics at similar numbers of parameters, while using
less memory and having less latency.

For this experiment, we use the 38-Cloud dataset [MS19] and implement our
architecture in the PyTorch 1.10 deep learning framework. We re-implement the
C-FCN and C-UNet++ networks in this framework, in order to ensure a fair
comparison. As done in the previous chapter, we only use the RGB bands of the
input images. As a baseline, we also implemented a non-recurrent 1D convolutional
network with a similar number of parameters as our architecture. The 38-Cloud
dataset is composed of 384x384 pixel crops from Landsat-8 scenes. We use 15% of
the training set as a validation set. Using early stopping, all networks are trained
until convergence for a maximum of 1000 epochs. We use a batch size of 64 and
the Adam optimizer for all networks. Training was done on a machine with an
AMD Ryzen 9 3900X CPU, Nvidia GeForce RTX 3090 GPU and 64GB of DDR4
RAM.

3.3.1 Quantitative results

Table 3.2 and Figure 3.3 show quantitative results using commonly used metrics
(see definitions in [MS19]). We observe that our ScannerNet Small network obtains
results similar to the ones of C-FCN, even though its memory usage is much
lower. Our bigger ScannerNet obtains slightly lower scores than C-UNet++, also
while consuming less memory for its forward pass. The baseline 1D convolutional
network (without LSTM) obtains much worse results, even though it has a similar
number of parameters as ScannerNet Small, which shows that the recurrent part
of our architecture is necessary to obtain a decent segmentation.

3.3.2 Qualitative results

Figure 3.2 shows a selection of qualitative results taken from the 38-Cloud test
set. We observe that even though it can only use one line of input at any step
to generate the output segmentation result, our network manages to generate
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Input image ScannerNet C-UNet++

Figure 3.2: Qualitative results of ScannerNet (ours, middle) against C-
UNet++ (right) on a selection of images from the 38-Cloud test set. Our ar-
chitecture performs well under a variety of scenarios, including images with snow
backgrounds, even though it only processes one line of the input image at a time.



3.3. EXPERIMENTS 39

coherent results that match the output of C-UNet++. Moreover, we can observe
some block artifacts in the output of C-UNet++ that do not exist in the output
of ScannerNet. Our intuition is that since ScannerNet performs all processing at
the same resolution as the input image, it can output a more refined segmentation
than C-UNet++.

3.3.3 Efficiency

In Table 3.3, we report the number of parameters used by our networks, and the
memory required for a single forward pass of each network, as reported by the
torchinfo module. We observe that our architecture enables some significant
memory savings compared to the already memory efficient architectures presented
in Chapter 2. Indeed, at a similar number of parameters as C-FCN, we obtain a
280x reduction in memory usage.

Next, we use a low-power edge device to measure the latency of our neural
networks. In our context, we define the latency as the delay between the start of
the processing and the output of the first pixel of the segmentation map, without
including data loading time. For our ScannerNet architecture, since the processing
is done line-by-line, the latency is thus measured on the computation of a single
line of segmentation. For other neural networks, since the processing is done on
the whole image at once, the latency is measured on the computation of the whole
segmentation.

As our test system, we use an Nvidia Jetson Nano development kit with 2GB
of memory, since it is a very popular platform for embedded systems. It features
an SoC equipped with a quad-core A57 ARM CPU and a 128-core Nvidia Maxwell
GPU, consuming up to 10W. For benchmarking, we lock the clock of the SoC to
its maximum using the jetson_clocks utility, and cool the board with a Noctua
NF-A4x20 fan running at maximum speed. We run each test 500 times in a row
with 10 warmup runs. We use the same software configuration as the one used
for training. We test each network on both the CPU and the GPU to take more
usage scenarios into account (e.g. systems without GPUs).

The results of this latency testing are shown in Table 3.4. We observe a sig-
nificant reduction in latency compared to previous works. In particular, our small
ScannerNet offers a 3.7x reduction in latency compared to C-FCN, with a similar
number of parameters. The improvement is even larger when comparing to C-
UNet++. We notice a bigger improvement when running on the CPU than on the
GPU. Our intuition is that since GPU architectures are more efficient when asked
to process a large amount of data at once, our architecture does not offer as much
benefit as on the CPU. Nevertheless, the reduction in latency is still significant.
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Network Parameters Memory usage (MB)
Baseline 1 409 0.08
C-FCN 1 471 28.62

C-UNet++ 9 129 47.19
ScannerNet Small (ours) 1 717 0.10

ScannerNet (ours) 4 521 0.15

Table 3.3: Number of parameters and memory usage (in MegaBytes) for a forward
pass of our architecture, compared to networks presented in the previous chapter.
Our networks allow significant memory savings during inference.

Figure 3.3: IoU (Intersection over Union) of segmentation output at a threshold of
0.5 with respect to memory usage (in MegaBytes, log scale), compared to previous
works. Our networks achieve IoU results similar to previous works, while having
a comparatively very low memory usage.
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Network Latency (CPU) Latency (GPU)
C-UNet++ 638.6 27.9

C-FCN 296.1 11.1
ScannerNet (ours) 91.5 4.6

ScannerNet Small (ours) 80.3 4.5

Table 3.4: Average latency (milliseconds, lower is better) of our networks, measured
on the CPU and GPU of a Jetson Nano development kit, compared to networks
from the previous chapter, on 384x384 pixel images of the 38-Cloud dataset. Our
networks provide a 3.7x reduction in latency at the same number of parameters
(i.e. when comparing ScannerNet Small to C-FCN).

3.4 Conclusion and future works
In this chapter, we have presented ScannerNet, a 1D Recurrent Convolutional
neural network architecture with very low memory usage and latency for on-board
segmentation of satellite images. We have shown that our networks obtain results
comparable to previous works in a cloud segmentation task while occupying 286
times less memory and having a lower latency at a similar number of parameters.
We have observed real-world gains on a low-power device, with a reduction of the
latency by a factor of 2.4 in the worst case.

Our approach is orthogonal to previous works on compact architectures and
quantization of neural network weights. In particular, our networks could be fur-
ther optimized by using integer or binary weights. We have also shown that 1D
convolutions can work just as well as 2D convolutions for image segmentation,
a technique that is seldom explored in the literature. We hope to pave the way
for more varied neural network architecture designs adapted to different kinds of
on-board sensors. Future work includes testing our architecture on FPGA chips
and images from push broom sensors.
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Chapter 4

Regression of compact object
contours

In this chapter, we introduce an instance segmentation method based on contour
regression using Fourier coefficients.

4.1 Introduction
Object detection is the task of finding bounding boxes of objects in images. How-
ever, an inherent flaw of bounding boxes is their rectangular shape, which will
always limit their IoU (Intersection over Union) with actual underlying objects.
This is especially true for objects with holes or multiple sharp angles (e.g . animals,
bicycles).

Instance segmentation tries to alleviate this problem by providing pixel-level
masks for each detected object. Masks, however, also have some drawbacks as
an object contour representation: they are resolution-dependent, and have to be
resized and interpolated to be used on images with different resolutions. Masks
also take up a lot of storage space and require more computational power, which is
especially problematic for embedded systems such as drones or satellites. Further-
more, Geographic Information System (GIS) applications like online mapping rely
on vector formats, and the automatic conversion of raster masks to more compact
representations such as polygons is challenging [LLM20].

A good middle ground between bounding-box regression and mask-based in-
stance segmentation seems to be the regression of object contours using shape
encoding, the goal of which is to capture the boundary of objects using a simple
parametric function. Methods such as PolarMask [Xie+20] regress the contour of
objects directly at a fixed set of sampling points revolving around the center of
objects. Some other methods use active contours or snake algorithms [Pen+20].
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Finally, methods such as ESE-Seg [Xu+19a] and FourierNet [MBZ20], make use of
Chebyshev or Fourier coefficients to explicitly regress an encoding that represents
the shape of the object. However, because such methods define object shapes as
polar functions, they are limited to the representation of star-shaped domains.

Our work proposes Smooth Contour Regression (SCR), a method that captures
resolution-free object contours as complex periodic functions using a Fourier shape
decoder. The method offers a good compromise between accuracy and compact-
ness thanks to the design of efficient geometric shape priors. SCR brings several
important improvements over previous methods: First, we present mathematical
arguments that Fourier coefficients constitute a better representation than the
Chebyshev coefficients used in [Xu+19a]. By careful design of the loss function,
we improve the visual quality of regressed contours with fewer Fourier coefficients,
while also simplifying the training process. Moving to a complex representation for
contours allows us to halve the number of calls to the Inverse Fast Fourier Trans-
form (IFFT) in the final shape decoding stage, while allowing more freedom in
shape representation by alleviating the limits of polar coordinates-based methods.
We benchmark SCR on the popular COCO 2017 instance segmentation dataset,
and show its competitiveness against existing algorithms in the field. Finally, we
propose a compact version of our SCR architecture based on a lightweight back-
bone [RF18] for use on low-power systems, typically found on board satellites and
UAVs, targeting applications such as real-time on board instance segmentation and
efficient transmission within constellations of satellites. We benchmark this com-
pact version on embedded hardware with a wide range of power targets, achieving
up to real-time performance.

4.2 Related Work
In this section, we go over some related works in object detection, instance seg-
mentation, and contour regression.

4.2.1 Detection neural networks

R-CNN [Gir+14] and its successors [Gir15; Ren+15], were the original neural
networks for object detection. They are two-stage approaches, whereby object
locations are first proposed by a Region Proposal Network (stage one) and then
classified by a subsequent CNN (stage two). Later, fully convolutional single-stage
approaches were proposed [Liu+16; Lin+17b; Red+16], which were significantly
faster than their two-stage counterparts. These methods rely on a set of "an-
chor" bounding boxes, to which the detected boxes are assigned and regressed
relatively. The simplicity and efficiency of these single-stage detectors have made
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them very popular over the years. Many improvements to this design have been
proposed, such as the Feature Pyramid Network (FPN) [Lin+17a] and subsequent
work [TL19; GLL19; Wan+19a], which aggregate features from the backbone at
different levels to create semantically rich feature maps at each level. Recently,
FCOS [Tia+19], an anchor-free detection neural network architecture, has been
developed. By leveraging the pyramid structure given by the FPN, FCOS removes
the problem of anchor box assignment, and thus streamlines the object detection
task with a one-stage, proposal-free, anchor-free framework.

4.2.2 Mask-based instance segmentation neural networks

Instance segmentation neural networks were pioneered by Mask-RCNN [He+17],
a two-stage approach based on [Gir+14]. A significant number of architectures
have been developed [Wan+20c; Wan+20b; Che+19a; Liu+18; Cao+19], each
bringing incremental improvements in popular benchmarks. Some methods save
storage space by regressing masks as low-dimensional embeddings; these are de-
coded using either a learned decoder [Jet+17; Zha+20], which complexifies the
model and its training, or fixed functions such as the Discrete Cosine Transform
[She+21], in which case the encoding dimension is still quite large. Nonetheless,
mask-based instance segmentation methods all encounter the drawbacks of pixel-
based representation, and are generally much slower than their bounding box-based
counterparts.

4.2.3 Contour regression methods

Recently, the community has explored new ways of regressing the boundaries of
objects. These methods aim to alleviate the aforementioned issues of pixel-based
mask representation while offering better IoU with detected objects than bounding
box-based architectures, which most take as a starting point.

Snake-based methods [Pen+20; Liu+21] represent shapes as polygons in pixel
coordinates and deform them iteratively using circular convolutions. While these
methods can reach good accuracy levels at reasonable speeds, they generally use
a high number of contour points, which can be costly in terms of storage on
embedded devices, especially compared to the shape encoding methods described
below.

ESE-Seg [Xu+19a] is based on the YOLOv3 detection neural network [RF18]
and regresses an explicit shape encoding for each detected object in the form of
either Chebyshev or Fourier coefficients and a center. The contour of the object
is modeled as a function ρ(θ), θ ∈ [0, 2π], revolving around this center, as shown
in the left part of Figure 4.1. Corresponding ground truth coefficients have to
be generated for each object of the training dataset. However, when used with
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Figure 4.1: Left: Polar contour representation, where the shape is decribed as a
single 2π-periodic function ρ(θ). Right: Cartesian contour representation, where
the shape of the object is described by two periodic functions: X(t) and Y (t).

Chebyshev coefficients, this representation is not well suited to periodic functions,
as we will demonstrate later. Moreover, this method is only able to fully represent
star-shaped domains and thus cannot be used to regress less regular shapes.

In PolarMask [Xie+20], the authors modify the FCOS [Tia+19] architecture
in order to regress the polar coordinates of the contour points directly, i.e. the
values of the function ρ. Again, specific ground truth labels have to be created for
each object, with a fixed number of rays cast from its center, and only star-shaped
objects can be regressed, since only one coordinate is regressed for each ray.

FourierNet [MBZ20], also based on FCOS, simplifies the contour regression
problem by using the Inverse Fast Fourier Transform (IFFT) as a differentiable
shape decoder. Thus, the neural network regresses Fourier coefficients, but the
output is directly compared to ground truth polygons. The authors use either
polar or Cartesian coordinates. In the polar case, one set of complex coefficients is
used to find ρ, and the regressed shapes have to be star-shaped. In the Cartesian
case, the contour is seen as two functions, X(t) and Y (t), as shown in Figure 4.1.
Two sets of complex coefficients are used (one for each) to model these functions.
While the authors manage to get good results in the polar case, their Cartesian
version does not perform as well quantitatively and fails to produce coherent shapes
when using a high number of Fourier coefficients.

4.3 Method
Our SCR network architecture is based on the FCOS detection neural network
[Tia+19]. Like most recent detection architectures, FCOS is composed of a back-
bone, a neck (feature pyramid), and several detection heads with shared weights,
as shown in Figure 4.2. As backbones, we use ResNet-50 [He+16], ResNeXt-101
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Figure 4.2: FCOS Architecture [Tia+19], which we use as a starting point for our
SCR method. Figure from [Tia+19].

[Xie+17], and the lightweight DarkNet-53 [RF18] to address different performance
targets. We run experiments with both the classical FPN neck from [Lin+17a],
and the more recent FPN-CARAFE [Wan+19a], which provides a small accuracy
improvement.

4.3.1 Choice of shape representation

In [MBZ20; Xu+19a; Xie+20], the shape of an object is represented as a function
ρ(θ) with θ ∈ [0, 2π], and thus revolves around a center, which is either regressed
along with the coefficients in [Xu+19a], or is the center of output "cells" from
FCOS in [MBZ20; Xie+20]. ρ is a 2π-periodic function measuring the distance
of each point of a contour to this center. By contrast, we choose to model the
shape of objects with a more generic complex periodic function of the form C(t) =
X(t) + iY (t) with t ∈ [0, 1].

4.3.2 On Chebyshev coefficients

In this section, we demonstrate why Chebyshev coefficients, as used in [Xu+19a],
are not well suited to the regression of continuous periodic functions through a
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neural network – in this case, the ρ function.
Chebyshev polynomials are obtained through the following recurrence relation:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x).

(4.1)

Let N be the number of degrees used for interpolation of ρ using the truncated
Chebyshev series. Then for x ∈ [−1, 1] we have:

ρ(x) =
N∑

n=0

αnTn(x) (4.2)

Since the contour ρ is a continuous periodic function on [−1, 1], in order to
perfectly interpolate it, the Chebyshev coefficients αi must satisfy:

N∑
n=0

αnTn(−1) =
N∑

n=0

αnTn(1) (4.3)

We also know that Chebyshev polynomials satisfy the following properties, for
all n ∈ N:

Tn(1) = 1

T2n(−1) = 1

T2n+1(−1) = −1

(4.4)

Then, we have the following:

N/2∑
k=0

α2k −
N/2∑
k=0

α2k+1 =
N∑

n=0

αn (4.5)

Thus, we have shown that in order to perfectly interpolate a continuous periodic
function, the Chebyshev coefficients must satisfy the following relationship:

N/2∑
k=0

α2k+1 = 0 (4.6)

It is unlikely that a neural network can learn this exact relationship, even if
optimized as a loss during training. Hence, discontinuities can be observed in
nearly every shape regressed in this manner. Figure 4.3 shows the discontinuities
created when this relationship is not strictly enforced, e.g. when the Chebyshev
coefficients are regressed by a neural network. They appear at θ = 2π on every
regressed shape.
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Figure 4.3: Discontinuities found in the results of [Xu+19a] when using Chebyshev
coefficients for shape regression, circled in red.

4.3.3 Contours as a complex function and Fourier series

The aforementioned drawback of Chebyshev polynomials steers us toward the
Fourier decomposition, which is inherently better suited to our purposes, since
any set of Fourier coefficients will always represent a continuous smooth periodic
function.

Our single complex function representation has several advantages over using
two real functions as in [MBZ20]: not only does it halve the number of IFFT calls
in the shape decoding stage, but it also ties these coefficients together as they
represent a single function, which might help during the training of the neural
network, as backpropagation occurs through a single IFFT call.

In order to evaluate how many complex coefficients are needed to represent
shapes accurately, we interpolate all polygons of the COCO 2017 validation set
using the scheme detailed in section 4.3.8. We then compute the FFT and its
inverse after zeroing a certain number of coefficients. Finally, we compare the result
to the original polygons using the Chamfer Distance as reconstruction error. Figure
4.4 shows the quickly diminishing returns of increasing the number of coefficients,
highlighting the fact that a small number suffices to represent a shape accurately.
We decided to run our experiments using 8 to 32 complex coefficients.
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Figure 4.4: Mean Reconstruction Error (Chamfer Distance) computed over the
COCO 2017 validation set for a varying number of complex Fourier coefficients,
showing the rapidly diminishing returns of increasing the number of Fourier coef-
ficients. The polygons are interpolated to 128 points.

4.3.4 SCR head

The SCR head, shown in Figure 4.5, is based on the FourierNet [MBZ20] head.
For both the class and contour regression branches, we use 3 deformable convolu-
tions [Zhu+19] with shared weights among feature levels. Thanks to the complex
contour representation, we only require one call to the IFFT for shape decoding.
We add two regularization losses, which we will elaborate after introducing the
loss function, below. The first one is applied directly to the regressed coefficients.
The second one is applied to the decoded point coordinates before they are scaled
according to the stride of the feature level and a learnable scaling coefficient.

4.3.5 Loss function

For training SCR, our loss function is defined as a sum of different terms:

L = LCD + Lcent + Lcls + Lperim + Lcoeff (4.7)

where LCD is a polygon regression loss based on a symmetrized Chamfer Dis-
tance (similar to [MBZ20]), Lcent is the centerness loss from FCOS [Tia+19] (bi-
nary cross-entropy), and Lcls is the Focal Loss for classification from RetinaNet
[Lin+17b]. Lperim and Lcoeff are regularization terms on the shape perimeter and
the Fourier coefficients, respectively. Both are detailed below.
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Figure 4.5: Our SCR head, which is applied to each output feature level of the
FPN. Learned operators are in orange. Fixed operators are in blue. One branch
of the head is used for the class prediction. The other branch is used for both the
centerness prediction and the Fourier coefficient regression. All weights are shared
between feature levels except the final scaling coefficient. An L1 regularization
is applied to the Fourier coefficients to direct training towards the regression of
simpler shapes. An L2 regularization is used on the perimeter of the regressed
contours to encourage the regression of shapes that circle the object only once.

Note that, in contrast to [MBZ20], we do not use a bounding box loss function
because bounding boxes can be inferred from the regressed polygons and do not
need to be learned separately.

4.3.6 L2 Perimeter regularization

Using the Chamfer distance loss as the main polygon regression loss has a major
drawback that needs to be addressed: since ground truth points are only compared
to the closest regressed point, the network does not necessarily learn to regress
contours that go around the object only once. Indeed, circling the object multiple
times is not penalized in LCD. One way to alleviate this problem, as done in
[MBZ20], is to first perform a warm-up of the shape regression with an L1 loss, so
that each output point is already tied to specific ground truth points. However,
after being trained with Chamfer loss, their network still tries to regress shapes
in an overly complex way, which creates many self-intersections in the output
polygon, as seen in our comparison in section 4.4 (Figure 4.12).

We instead choose to apply a L2 perimeter-based regularization to every output
contour, even the ones that have not been assigned to any object. In addition to
simplifying the training process, this approach encourages simpler shapes that go
around the object once and have a minimal number of self-intersections:
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Lperim = λperim

√√√√ N∑
i=0

(xi − xi+1)2 (4.8)

The λperim coefficient can be set to a relatively low number to mitigate its
influence on training. Setting it too high will result in small round-ish shapes.
It can be decayed over time or set to zero after Lperim reaches a steady state to
retrieve more complex shapes while retaining the effect of regularization, as shown
in our experimental results (Figure 4.11).

4.3.7 L1 Fourier coefficient regularization

While representing contours using Fourier coefficients is already more storage-
efficient than using masks, we may want to further reduce the storage space needs
by ignoring very small coefficients (i.e. setting them to zero after regression). Thus,
we include an option for enforcing sparsity to bring as many coefficients as possible
close to zero.

In order to favor sparsity of the Fourier coefficients Fi, we use an L1 regular-
ization term:

Lcoeff =
λcoeff

Nc

n∑
i=−n,i/∈{−1,0,1}

|Fi| (4.9)

Where λcoeff is an adjustable parameter (500.0 in our experiments). Note that
we do not apply this penalty to the -1, 0, and 1 frequency coefficients, since
these coefficients will have to be quite large in most cases. Having many Fourier
coefficients close to zero, especially high- frequency ones, also helps the network
create simpler and smoother contours, as shown in section 4.4 (Figure 4.13).

4.3.8 Polygon ground truth processing

Existing works [MBZ20; Xie+20; Xu+19a] typically convert the ground truth
polygons to polar coordinates with respect to a center. This is done by casting a
number of rays at regular angular intervals from this center to the farthest contour
point. However, this process is difficult to implement on-the-fly without slowing
the data loading pipeline. We also note that the distance between two adjacent
points created in this manner can vary greatly (e.g . in oblong objects). We believe
that having a high number of evenly spaced ground truth points is better for
the stability of the Chamfer Distance loss. Thus, our interpolation is done in
a "constant spacing" fashion for each ground truth polygon. Since the original
ground truth polygons vary in number of points, we interpolate them such that
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Figure 4.6: Example of polygon interpolation done on-the-fly during data loading.

the number of ground truth points Np matches the number of regressed points.
Our approach is easily done on the fly in the data loading pipeline and does not
incur any performance loss.

4.4 Experiments
In this section, we compare our method to state-of-the-art contour regression and
instance segmentation methods on the popular COCO 2017 dataset [Lin+14].

4.4.1 Implementation details

We implement our ResNet-50, ResNeXt-101 and DarkNet-53 based models using
the MMDetection 2.7.0 object detection toolbox [Che+19b], based on MMCV 1.2.1
for easy and fair comparison with other methods. The underlying framework is
PyTorch 1.7.0 with CUDA 10.1. We use the updated FFT package from PyTorch
1.7.0, which allows the use of complex numbers. We use the Chamfer Distance
implementation from PyTorch3D 0.3.0 [Rav+20]. The interpolation scheme de-
scribed in 4.3.8 is implemented as a module in the MMDetection data loading
pipeline using the interp module from Numpy. Notably, due to software incom-
patibilities during the conversion of our DarkNet-53 model for low-power hardware
targets, we had to simplify the architecture by removing deformable convolutions
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Name-Backbone DCNv2 CARAFE Nin Nfeat Training time
SCR-D53 No No 128 128 20h
SCR-R50 Yes Yes 256 256 40h
SCR-X101 Yes Yes 256 256 80h

Table 4.1: Characteristics of our main networks. Variations are further explored in
our ablation study. DCN refers to the use of Deformable Convolution v2 [Zhu+19]
layers in the head. CARAFE refers to the use of the FPN-CARAFE [Wan+19a]
neck. Approximate training time reported on 8 Tesla V100 GPUs.

and CARAFE. In order to evaluate our method and easily compare it to previous
works, we chose to work on the widely used COCO 2017 Instance Segmentation
dataset [Lin+14].

Our networks are trained for 38 epochs using SGD with momentum (0.9), with
an initial learning rate of 0.0003, batch-size of 16 (2 images per GPU), gradient
clipping at a maximum L2 norm of 45, and a 500-step warm-up with a ratio of
0.001 applied to the learning rate. We use the multiscale training feature found in
MMDetection to train with image heights of 640 and 800 pixels. We balanced our
loss function terms through trial-and-error, and settled on the following values:
λcls=1.0, λcent=1.0, λCD=1.0, λperim=0.01, λcoeff=500.0.

4.4.2 Qualitative results

Figure 5.1 shows a selection of results from the COCO 2017 test-dev dataset,
computed using our smallest DarkNet-53 based network. Our method properly
regresses smooth artifact-free contours in scenes with varying numbers of objects,
classes, and shapes. In particular, non-star-shaped objects can be accurately rep-
resented. Figures 4.9 and 4.8 show an extended selection of qualitative results.

Figure 4.10 shows a comparison of our method against ESE-Seg [Xie+20], which
is based on Chebyshev coefficients. We observe that our method regresses smooth
continuous shapes that properly follow the objects thanks to the Fourier represen-
tation.

4.4.3 Quantitative comparison

We compare our method to existing shape encoding methods [MBZ20; Xu+19a;
Xie+20], as well as state-of-the-art snake-based [Pen+20; Liu+21] and mask-based
methods [He+17; Liu+18; Wan+20c]. The evaluation uses three metrics:

1. mAP for accuracy (as defined in [Lin+14])
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Figure 4.7: Our Smooth Contour Regression (SCR) algorithm captures the sil-
houette of objects with a compact resolution-independent representation based on
Fourier coefficients. Contours produced by our algorithm adequately approximate
the general shape of free-form objects such as persons, animals, cars, or pots while
being defined in a simple parametric way with only a few complex Fourier coeffi-
cients, here 8. Images from COCO 2017 test-dev.

2. FPS (frames per second) reported on a single Nvidia GTX 1080Ti GPU for
speed

3. Memory usage per regressed object in bits, which we call SEC (for Shape
Encoding Complexity).

Run time and object size in memory or storage are important factors for em-
bedded hardware applications, such as real-time on-board change detection. Thus,
we propose an OES (Overall Efficiency Score), which is simply the multiplication
of these three scores and is thus defined as OES = 100×mAP ×FPS × SEC−1.
This metric represents the trade-off between having slow but accurate models out-
putting detailed shapes, and having faster models outputting simpler shapes.
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Figure 4.8: More results from our DarkNet-53 based model selected from COCO
2017 test-dev.
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Figure 4.9: More results from our DarkNet-53 based model selected from COCO
2017 test-dev.
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Figure 4.10: Our SCR-D53 result (left) compared to ESE-Seg [Xie+20] result
(right) with the same backbone on an image from the Pascal VOC2012 dataset.
The advantage of the Fourier representation is apparent, as our method regresses
a smooth continuous shape.

The comparisons against other shape encoding methods are shown in Table 4.2
for the ResNeXt-101 backbone and Table 4.3 for the DarkNet-53 backbone. We
observe that with the same backbone and at a similar number of coefficients, our
method achieves good accuracy compared to other shape encoding methods.

In Table 4.2, our method has a competitive efficiency score (OES). While
[MBZ20] is slightly faster, our method achieves better accuracy. By contrast,
PolarMask [Xie+20] can achieve higher mAP, but it does so at the cost of a higher
number of coefficients, and thus has lower overall efficiency.

Table 4.3 shows that our method is faster and more efficient than ESE-Seg
[Xu+19a]. In addition, even though its mAP score is slightly lower, our method
does not suffer from the visual drawbacks of Chebyshev coefficients detailed in
section 4.3.2.

The comparison against other types of approaches is shown in Table 4.4. Snake-
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Method Ncoeff mAP FPS SEC OES
PolarMask [Xie+20] 36 32.9 4.1 1152 11.7

FourierNet-Cartesian [MBZ20] 16 22.9 4.9 512 21.9
FourierNet [MBZ20] 16 23.3 4.9 512 22.3
Ours (SCR-RX101) 16 27.3 4.2 512 22.4

Table 4.2: COCO 2017 test-dev results compared to other shape encoding methods
based on ResNeXt-101 with an image height of 800 pixels. Ncoeff in real numbers
for shape encodings: one complex coefficient counts as two. SEC: size of a single
detected object in memory (bits). OES: Overall Efficiency Score.

Method Ncoeff mAP FPS SEC OES
ESE-Seg[Xu+19a] 20 21.6 38.5 640 130
Ours (SCR-D53) 16 21.2 39.1 512 162

Table 4.3: COCO 2017 val results for models based on DarkNet-53 with an image
height of 416 pixels. Ncoeff in real numbers for shape encodings: one complex
coefficient counts as two. SEC (Shape Encoding Complexity): size of a single
detected object in memory (bits). OES: Overall Efficiency Score.

based methods typically offer better accuracy than shape encoding methods; how-
ever, their overall efficiency suffers from a high shape encoding complexity, and
they are slower than our method when using the same processing size and back-
bone. Mask-based methods reach very high mAP scores but are also hindered by
their speed and SEC and thus generally have a lower overall efficiency.

While our method does not necessarily give the best score for each evaluation
metric, it offers a good compromise between them. In particular, the OES scores
obtained by our method are competitive compared to existing methods under the
same backbone.

4.4.4 Effect of perimeter penalty decay

As discussed in section 4.3.6, it is possible to set λperim to zero after Lperim stabilizes.
Removing the perimeter regularization after a few iterations (2000 here) yields
more complex and accurate contours while retaining the effect of regularization.
In Figure 4.11, the network learns to properly follow the neck of the giraffe (left),
which is not the case without perimeter penalty decay (right). Setting λperim = 0
right away, i.e. removing Lperim entirely, will let the network circle objects multiple
times, leading to poor results, as shown in our ablation study and in Figure 4.13(a).
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Method Ncoeff mAP FPS SEC OES
Sn

ak
e DeepSnake [Pen+20] 256 31.0 6.68* 4096 5

DANCE [Liu+21] 196 34.6 7.6 3136 8

M
as

k Mask R-CNN [He+17] 784 33.6 10.8 784 46
PANet [Liu+18] 784 38.2 4.5 784 22

SOLOv2 [Wan+20c] 64000 38.8 12.4 64000 0.75
Ours (SCR-R50) 16 24.2 10.7 512 51

Table 4.4: COCO 2017 test-dev results compared to mask and snake-based meth-
ods with a ResNet-50 backbone and an image height of 800 pixels. Ncoeff in real
numbers for shape encodings: one complex coefficient counts as two. SEC: size of
a single detected object in memory (bits). For snake-based methods, we assume
pixel coordinates are stored as 16-bit integers. For mask-based methods, we as-
sume masks are binary. OES: Overall Efficiency Score. *: Number extrapolated
from [Liu+21]

Figure 4.11: SCR-D53 result with (left) and without perimeter penalty decay
(right). The perimeter regularization loss coefficient λperim is set to zero once
Lperim reaches a steady state (2000 iterations here), which yields a more detailed
shape while retaining the effect of regularization.



4.4. EXPERIMENTS 60

Figure 4.12: Thanks to our coefficient regularization, our method (left) learns to
regress smooth shapes, whereas the cartesian version of [MBZ20] (right) regresses
erratic shapes when using a high number of coefficients (here 32).

(a) Perim. reg. disabled (b) Coeff. reg. disabled (c) Both reg. enabled

Figure 4.13: Disabling our perimeter regularization (a) lets the network circle the
object multiple times, while disabling the coefficient regularization (b) leads to
erratic shapes with many self-intersections. When both regularizers are enabled
(c), the network outputs smooth and accurate shapes with a low number of self-
intersections, here zero.
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4.4.5 Fourier coefficient regularization

The benefits of our coefficient regularization can be observed in Figure 4.12, where
our network (left) learned to regress smooth contours while the Cartesian version of
FourierNet [MBZ20] (right) regressed erratic shapes even when using high number
of coefficients. Figure 4.13(b) shows that disabling our regularization leads to the
same kind of behavior shown in [MBZ20].

4.4.6 Ablation study

We now evaluate the impact of our design choices through an ablation study. The
results are summarized in Table 4.5. Numbers in parentheses in the following
paragraph refer to corresponding lines of the Table.

• (#2,#3) We trained the ResNet-50 based model with 60 and 128 contour
points and found that for this set of hyper-parameters, there was a perfor-
mance degradation when using 128 points. We thus kept this parameter at
60, a finding consistent with the literature.

• (#1,#3) We show that the new FPN-CARAFE from [Wan+19a] improves
the scores of our method compared to the vanilla FPN, for which it is a
drop-in replacement.

• (#3,#4,#5; #6,#7; #14,#15) Increasing the number of complex coef-
ficients from 10 (20 real values) to 20 made no significant difference, while
increasing it to 32 yielded a small performance increase of 1.4 mAP. Depend-
ing on the requirements of the application, this increase in detail might be
worth the extra storage space. Note that it is still possible to regress a high
number of coefficients, and then decide to set some of them to zero after the
fact.

• (#6,#7,#8,#9) We find that the models used on smaller image resolutions
do not perform very well on small objects (APS).

• (#14,#15) Using a larger ResNeXt-101 backbone yields a small accuracy
improvement, but not to the point where we think it is worth the decrease in
FPS and the (up to) two-fold increase in training times. (#10) DarkNet-53,
on the other hand, seems to perform as well as ResNet-50 at high resolutions,
especially on larger objects.

• (#2,#11,#12,#13) Disabling the L1 coefficient penalty leads to a very
significant drop in mAP. This outcome is probably due to the erratic shapes
regressed without it, as shown in Figure 4.13. Disabling the L2 perimeter
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Exp. Back. Neck Head Ncoeff Npts H PR CR mAP AP50 AP75 APS APM APL

#1 R50 FPN DCN 20 60 800 ✓ ✓ 22.4 43.0 21.0 10.8 24.2 29.7
#2 R50 CARAFE DCN 20 128 800 ✓ ✓ 21.4 44.2 19.0 10.9 22.9 28.4
#3 20 23.8 45.0 22.4 11.6 25.6 31.9
#4 R50 CARAFE DCN 40 60 800 ✓ ✓ 23.8 46.4 21.8 11.7 25.4 32.3
#5 64 25.2 48.1 23.6 13.1 26.9 33.6
#6 R50 CARAFE DCN 20 60 360 ✓ ✓ 19.1 36.2 18.1 4.0 19.9 31.3
#7 R50 CARAFE DCN 64 60 360 ✓ ✓ 18.9 37.3 17.0 4.3 19.5 30.9
#8 320 17.6 33.8 16.4 1.5 17.0 32.1
#9 D53 FPN - 16 60 416 ✓ ✓ 21.2 39.3 20.4 3.7 22.6 35.5
#10 608 23.9 42.2 24.0 6.2 27.5 36.3
#11 ✓ ✗ 10.8 22.6 9.3 6.3 12.5 14.2
#12 R50 CARAFE DCN 20 128 800 ✗ ✓ 5.8 14.5 3.5 3.1 6.6 7.8
#13 ✗ ✗ 5.4 13.9 3.1 2.9 6.1 7.3
#14 RX101 CARAFE DCN 20 60 800 ✓ ✓ 27.2 50.3 26.4 14.0 29.4 35.4
#15 RX101 CARAFE DCN 64 60 800 ✓ ✓ 27.2 50.9 26.1 13.9 29.5 35.9

Table 4.5: Impact of different design choices on our models on COCO test-dev re-
sults. Ncoeff in real numbers (one complex coefficient counts as two). Npts = number
of contour points in ground truth and after IFFT, DCN = Deformable Convolution
v2, Back = backbone, CR = Coefficient Regularization, PR = Perimeter Regular-
ization, H = image height.

penalty also affects the scores significantly, as the contours circle the objects
multiple times and thus miss a lot of detail.

4.4.7 Limitations

Our regularization terms tend to direct the training of our network towards simple
shapes without actively preventing self-intersections. Thus, such errors might ap-
pear occasionally. In figure 4.14, for instance, we see that while the two leftmost
horse contours seem properly regressed, they each present one self-intersection.
Nevertheless, in this particular case, the masks given by these contours are still
usable. One other limitation is that by design, our method is more tailored to-
wards free-form objects than the regression of piece-wise linear shapes, for which
polygon-based methods are better suited.

4.4.8 Performance benchmarks on low-power hardware

We evaluated the speed of our fastest DarkNet-53 based SCR network on a variety
of devices, ranging from powerful discrete GPUs to low-power edge devices (Table
5.2).
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Figure 4.14: Examples of self-intersections that can occasionally appear as they
are not actively prevented. The contours still follow the shape of the animals and
are thus still somewhat usable.

Our first test platform was the Nvidia Jetson Nano, a popular, affordable,
widely available, and reasonably powerful family of development kits. Our method
runs at 9.5 FPS on these boards, which is close enough to real-time to be usable
in many applications. We also ran the same benchmarks on the more powerful
Jetson Xavier NX, featuring INT8 compute capabilities, thus yielding a significant
performance boost by bringing the throughput up to 115 FPS. It achieved 5.75
FPS/Watt, making it by far the most efficient combination. The Intel Movidius
Myriad X VPU is an ultra low-power AI accelerator with a power consumption
of only 1W. The Myriad VPUs have been used in ESA’s ϕ-sat-1 CubeSat, as
well as in smart security cameras, UAVs and industrial machine vision equipment.
We benchmarked SCR on the Myriad X using the imposed OpenVino toolkit and
achieved 2.8 FPS, which is very satisfactory for such a low-power device. As a
point of comparison with other works, we also ran SCR on an Nvidia GeForce
GTX 1080Ti GPU, which is still one of the most popular discrete GPUs. For the
sake of completeness, we also provide numbers on an Intel Xeon Silver 4114 CPU.
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Device Power Net. H Tool Prec. FPS fps/W
Lo

w
-p

ow
er

Nano 10W Ours 320 TensorRT FP32 5.4 0.54
TensorRT FP16 9.5 0.95

Nano 10W Ours 608 TensorRT FP32 1.72 0.17
TensorRT FP16 3.04 0.30
TensorRT FP32 17.2 0.57

Xavier NX 30W Ours 320 TensorRT FP16 66.7 2.22
TensorRT INT8 115 5.75

Myriad X 1.5W Ours 320 OpenVino FP16 2.8 1.87

H
ig

h-
po

w
er

Xeon 4114 85W Ours 608 OpenVino FP16 5.3 0.06
1080Ti 250W Ours 320 MMDet FP32 40.6 0.16
1080Ti 250W Ours 320 TensorRT FP32 186.6 0.74
1080Ti 250W Ours 608 MMDet FP32 32.8 0.13
1080Ti 250W Ours 608 TensorRT FP32 68.2 0.27
1080Ti 250W Ours 416 MMDet FP32 39.1 0.15
1080Ti 250W [Xu+19a] 416 PyTorch FP32 38.5 0.15
1080Ti 250W [MBZ20] 800 MMDet FP32 4.9 0.02
1080Ti 250W [MBZ20] 360 MMDet FP32 16.5 0.07

Table 4.6: Throughput of SCR with Darknet-53 backbone on a wide range of
devices with varying levels of power. H = image height.

4.4.9 Hardware configuration

This section contains details regarding the embedded hardware configuration used
for the throughput benchmarks of the previous section.

Our Nvidia Jetson Nano 2GB, Nano 4GB and Xavier NX development kits
are running JetPack 4.5, ONNXRuntime 1.4.0 and TensorRT 7.1.3. The Nano
SoC features a quad-core ARM A53 CPU and a 128 CUDA core Maxwell GPU.
In order to obtain consistent results, we lock the power consumption at 10W for
benchmarking using the jetson_clocks tool and cool the heatsink with a Noctua
A4x20 5V PWM fan using the default fan curve. We also ran our benchmarks on
a Jetson Nano 4GB model and found no performance difference with the 2 GB
model. Thus, Table 5.2 refers to both of them as "Nano". The Jetson Xavier NX
features a 6-core ARM processor, a 384 CUDA core Volta GPU and 8GB RAM,
with a power consumption of 30W and is running the same setup. We benchmark
SCR on the Intel Movidius Myriad X using OpenVino and FP16 precision. Nvidia
GeForce GTX 1080Ti (11GB VRAM, 250W) benchmarks were run using either
the same MMDetection setup used for training, or TensorRT 7.1.3. Intel Xeon
Silver 4114 CPU benchmarks were run using the Intel OpenVino toolkit.
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4.5 Conclusion
In this chapter, we proposed SCR, a method that captures object contours with
a compact, resolution-free representation based on a low number of Fourier coef-
ficients. Using a complex representation and geometric priors, we observed quali-
tative and quantitative improvements in the regressed shapes compared to those
produced by previous methods.

We also implemented a downsized version of our model, which, while retaining
competitive accuracy, is able to run on a wide range of low-power hardware at very
reasonable speeds (up to 115 FPS on a 30W device), and is, therefore, suitable
for edge computing applications such as on-board processing of UAV or satellite
images, autonomous vehicles, and robotics.

Future work will include testing and evaluating SCR on other applicative sce-
narios, such as autonomous driving and remote sensing. Matching the "shape sig-
nature" of detected objects to an on-board database is an example of how our work
might be used for embedded change detection. This work could also be extended
by adding a polygon simplification scheme that takes advantage of properties of
the Fourier decomposition, such as ease of differentiation.
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Chapter 5

Road graph extraction

In this chapter, we present a fast single-shot graph extraction architecture based
on a Fully Convolutional Network and a Graph Neural Network, which we apply
to road mapping.

5.1 Introduction
Automatic road graph extraction from aerial and satellite images is a long-standing
challenge. Vector-based maps are heavily used in Geographic Information Systems
(GIS) such as online maps and navigation systems. The extraction of roads from
overhead images has been, and mainly still is, performed by expert annotators. For
a long time, handcrafted methods have been developed with the aim of reducing
the burden of the annotators. However, they were not precise enough to replace
them. Indeed, their outputs were imperfect and had a high dependence on user-
adjustable parameters [Lia+20].

Modern road extraction methods mostly fall into two kinds of approaches, each
coming with its own drawbacks. The first kind [MLU17; ZLW18; ZZW18; Bat+19]
relies on a pixel-based segmentation which is then converted to a graph using
compute-intensive handcrafted algorithms that require a lot of manual tuning and
can often yield partial graphs. The production of raster road masks using neural
networks is a computationally expensive task in itself because of the large number
of layers required to retrieve a segmentation that has the same resolution as the
input image. Iterative graph construction methods are the second kind of deep
learning based methods for road extraction [Bas+18; LWL19; Tan+20; LH20].
These approaches explore the map from an initial starting location using successive
applications of a neural network on patches centered on the current point in order
to predict the next-move. While having the advantage of directly inferring a graph,
this is a very slow process. In addition, several starting locations may need to be
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Figure 5.1: Result of our method on an image from the RoadTracer [Bas+18]
test set. Our method regresses an entire graph without the need of pre or post-
processing. This 8192x8192 pixel image was processed in 22 seconds on a single
GPU, which is up to 91 times faster than previous approaches. The extracted
graphs have a low complexity and retain good accuracy compared to existing
works.



5.2. RELATED WORKS 68

picked in order to cover the possible multiple connected components of the final
graph.

Our approach aims to solve the aforementioned issues of current deep learning
based methods by offering a fast and convenient way to extract the final road graph
from satellite or aerial images in a single pass. Inspired by recent advances in neural
networks for object detection [Tia+19], we design a fully convolutional detection
head that learns to precisely locate multiple points of interest such as intersections,
turns, and dead ends across the whole image in a single pass. Node features
attached to these points are simultaneously regressed by this head, and fed to a
Graph Neural Network (GNN) which predicts links between these points to form
the final graph without requiring any post-processing. Both networks are jointly
trained end-to-end from ground truth road graphs, which are widely available from
sources such as OpenStreetMap. Such a strategy is more efficient than iterative
methods and allows us to streamline the training process by removing the need
for generation of starting locations. We benchmark our method against state-of-
the-art approaches on the RoadTracer [Bas+18] dataset and find that it is orders
of magnitude faster than recent competing methods while retaining competitive
accuracy. With the increasing interest in deep learning inference on embedded
hardware, such as satellites or drones [Bah+19], our method, combined with recent
advances in CNN and GNN quantization [BT19; BBZ21], opens the possibility of
on board in-flight road extraction, which could reduce ground computation and
bandwidth needs by transmitting graphs instead of images.

The main contribution of this work is threefold:

1. We propose a fast fully convolutional method for precise localisation of points
of interest.

2. We design a Graph Neural Network for road link prediction.

3. We propose a performance-oriented graph extraction architecture highly
competitive against state-of-the art approaches.

5.2 Related Works

5.2.1 Convolutional Neural Networks

In recent works, Convolutional Neural Networks (CNN) such as VGG [SZ14] or
ResNet [He+16] which were originally used for image classification, are stripped of
their final classifier and repurposed as fully convolutional feature extractors (often
called backbones) for other computer vision tasks, such as semantic segmentation
[LSD15]. Object detection methods such as YOLO [Red+16] or FCOS [Tia+19]
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have taken advantage of the fully convolutional nature of these backbones to de-
sign very fast single stage object detection neural networks, which infer bounding
boxes and classes in a single forward pass and can be trained end-to-end, as opposed
to two-stage approaches that perform these tasks separately. Single-stage archi-
tectures often follow a similar structure composed of a backbone which extracts
features, a neck outputting feature representations at different scales [Lin+17a],
and several detection heads performing the final task.

5.2.2 Road Extraction

A large number of unsupervised methods have been developed for road graphs
extraction. We refer the reader to recent extensive surveys on the subject for more
information [LH20]. In this section, we focus on recent road extraction methods
based on deep learning. Early deep learning based methods for road extraction
were patch-based applications of fully connected neural networks [MH10]. How-
ever, most recent neural network-based methods proceed differently and can be
sorted into two groups.

The first group of methods is based on pixel-level segmentation. Inspired by the
success of FCN [LSD15] and U-Net [RFB15], these methods use a backbone as an
encoder and learned upscaling as a decoder to retrieve a classification of individual
pixels of an input image. In [ZLW18], residual connections are added to a U-Net
to improve road predictions. D-LinkNet [ZZW18] adapts the LinkNet architecture
to form a U-Net-like network and achieve better connectivity. DeepRoadMapper
[MLU17] use a ResNet-based[He+16] FCN to produce a segmentation which is
then converted to a graph using thinning and an additional connection classifier.
In [Bat+19], the authors improve the connectivity of extracted networks by jointly
learning the segmentation and orientation of roads. All segmentation-based ap-
proaches have the drawback of relying on post-processing techniques to convert
the predicted road pixels to a road graph. Thus, these methods are slow and the
final graphs can lack connectivity.

The second kind of approaches iteratively construct a graph from an initial
starting point by successive applications of a neural network for next move predic-
tion around the center of an input patch. These methods are inspired by the way
human annotators iteratively create road graphs. In [Ven+18], a network predicts
which points from the border of the output patch are linked to the center point.
RoadTracer [Bas+18] uses a CNN to predict the direction of the next move with
a fixed step size. PolyMapper [LWL19] uses a Recurrent Neural Network (RNN)
guided by segmentation cues to predict the road topology and building polygons.
VecRoad [Tan+20] implements a variable step size for next move prediction in
order to achieve better alignment of intersections. DeepWindow [LH20] estimates
the road direction along a center line regressed by a CNN using a Fourier spectrum
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Figure 5.2: Our single-shot road graph extraction neural network. Features com-
puted using a ResNet [He+16] backbone are fed to three branches. The junction
prediction branch identifies cells which contain points of interest and is trained
with binary cross-entropy. The offset prediction branch regresses the precise loca-
tion of these points inside of the cells by outputting a two-dimensional vector field
and is trained with a Mean Squared Error loss. Points selected by the junction
and offset branch are paired with node features from a third branch and fed to
a Graph Neural Network which predicts the presence of edges between pairs of
points to create the final output.

analysis algorithm. While these methods have the advantage of outputting a road
graph directly, they cannot guarantee the exploration of the whole map from a
single starting location. The choice of initial starting locations is a hard problem
in itself. Moreover, the repeated application of CNNs makes these approaches very
slow.

5.2.3 Relational Inference and GNNs

Graph Neural Networks (GNNs) [Sca+09] are effective models for encoding in-
teractions, and have recently been applied to link prediction [ZC18], relational
structure discovery, such as to model the dynamics of complex systems [Kip+18],
and to the modeling of relational knowledge [Sch+18]. Kipf and Welling [KW16]
proposed a graph autoencoder using a Graph Convolutional Network (GCN) en-
coder [KW17] and a simple dot-product decoder to model undirected networks and
applied it to the link prediction task. Follow-up work [Sch+18] models different
edge types in relational data using a graph neural network encoder and a decoder



5.3. METHOD 71

based on the DistMul [Yan+14] factorization. In [Kip+18] the authors propose
a message-passing [Gil+17] encoder that alternates between the computation of
node and edge features that can later be leveraged to predict the evolution of the
system of interest several time steps in advance. The aforementioned models as-
sume the ground-truth graph is partially known, or operate on the complete graph
as an uninformative prior [Kip+18]. A parallel line of work is that of learning the
unknown graph explicitly. The Dynamic Graph CNN model [Wan+19b] proposes
to dynamically build a graph by k -NN search in the feature space after each ap-
plication of the EdgeConv operator also introduced in [Wan+19b]. The approach
has been extended in [Kaz+20], where the authors address the question of the
differentiable construction of a discrete graph using the recently proposed Gumbel
Top-k trick [KVW19] - a stochastic and differentiable relaxation of k -NN search
- and decouple the construction of the graph and the learning of graph features
amenable for downstream tasks. With the introduction of deeper architectures
[Li+19a; Gon+20] came increased interest for efficient implementations of GNNs,
an issue relevant to our work as on-board processing of satellite images, such as
for road graph extraction, is a pressing issue. [Wan+20a] applied bucket-based
quantization of matrix-matrix products to accelerate the GCN [KW17] operator.
[BBZ21] proposed a general framework for binarizing graph neural networks and
specifically introduced efficient binarized versions of the Dynamic EdgeConv op-
erator [Wan+19b] with real-world speed-ups on a low-power device.

5.3 Method
In this section, we present our method based on a fully convolutional head for
regression of points of interest and a Graph Neural Network (GNN) for link pre-
diction. An overview of our method is available in Figure 5.2.

5.3.1 General architecture

Our neural network architecture follows the trend of using a pre-trained CNN as
a feature extractor (backbone). Most detection neural networks also use a Feature
Pyramid Network (FPN) as a "neck" that aggregates features from multiple scales.
However, we chose not to use an FPN since satellite images have a fixed ground
sampling distance and consequently, models that work on them are less vulnerable
to changes in scale. Since we work at a single level of detail, we feed the output
feature maps of the feature extractor directly to a single head. These changes allow
us to save computation time and make the training process more streamlined.
Indeed, we remove all ground truth bounding box assignment complications that
arise when using multiple heads.
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Each branch of our head is composed of three convolutional layers working
on Nfeat feature maps. The first two branches are the junction-ness and offset
branch, which form the point-of-interest detection model. The third branch is a
node feature branch, which computes features that will be used to predict links
between points detected by the "point-of-interest" branch.

Let HI ,WI be the dimensions of the input RGB image I ∈ RHI×WI×3. With
the ResNet-50 [He+16] backbone used in our experiments, the height and width
H,W of the input feature maps F in ∈ RH×W×Nin are 32 times smaller than the
ones of I. This means that the final layers of our head have H ×W output cells.
In the case of an input image size of 512× 512 pixels, for example, we thus obtain
256 output cells, which can each regress the position of one point.

5.3.2 Point detection branch

Our point of interest detection branch, shown in Figure 5.2 is inspired by recent
developments in single shot detection neural networks [Tia+19; Red+16], which
regress a bounding box for each output "cell" of a detection head, even if they do
not necessarily contain an object. This allows object detection to be performed
using very fast Fully Convolutional Networks. In [Tia+19], the notion of "center-
ness" is then introduced to filter out cells that do not belong to any object. These
methods represent bounding boxes as four offsets relative to the center of the
cell. We adapt this design to the regression of points of interest by outputting
a "junction-ness" score Jj for each output cell j, as well as a two-dimensional
vector oj = [uj, vj] ∈ [−0.5; 0.5]2 representing the offset of the regressed point
with respect to the center of its cell. A point pj is detected in an output cell j if
Jj > Jthr, where Jthr is the junction-ness detection threshold. We can retrieve the
coordinates (xj, yj) of pj in the original input image:

xj =
uj +Xj + 0.5

W
·WI , yj =

vj + Yj + 0.5

H
·HI (5.1)

where (Xj, Yj) are the coordinates of the cell j in the output feature map F out.

5.3.3 Choice of input resolution

By design, our method is only able to find a single point of interest by output cell
and is directly trained on ground truth annotations. However, depending on the
dataset, and especially in very dense neighborhoods, several ground truth points
may fall into the same cell. We chose that these points would effectively be merged
into their centroid, while keeping incoming edges from outside of that cell linked to
that new point, as shown on Figure 5.3. However, this situation should be avoided
as much as possible, since it can shift intersections, and link close points that
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should not be linked (e.g. parallel roads). Images are often resized when being
forwarded through a neural network, as a compromise between speed, memory and
accuracy. In our case, the resizing ratio has to be chosen carefully according to the
ground sampling distance (GSD) of the dataset and the density of ground truth
annotations. To estimate the correct ratio for each dataset, we evaluate the average
number of points in each positive cell over the whole dataset, at a wide range of
ratios. This average should be as close to one as possible, in order to limit the
effects of point merging. Figure 5.4 shows this average for the popular RoadTracer
[Bas+18], SpaceNet3 [VLB18] and Massachussetts roads [Mni13] datasets.

Figure 5.3: Node averaging which occurs when several ground truth points belong
to the same output cell. The offset branch is thus trained to regress the centroid
of these ground truth points.

5.3.4 Edge prediction

Once junctions have been extracted from the image, our task is to predict which
ones are connected. We cast the problem as that of learning a latent graph.
Starting with an initial prior connectivity estimation - i.e. a set of edges - E0, we
aim at both inferring missing edges and discarding irrelevant ones.

Formally, let j be one of the detected junctions. We denote by Xj = F out
j

the corresponding features in the output feature map of the backbone, and pj =
(xj, yj) the 2D Cartesian coordinates of the junction in the input image, computed
from the offset vectors.

Our method computes initial node embeddings

xj = f(Xj,pj). (5.2)

We choose the function f to be either a 2D Convolutional Neural Network defining
an additional node features branch of the network - responsible for dimensionality
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Figure 5.4: Average ground truth points per positive output cell at a range of
image resizing ratios for 3 popular road extraction datasets. The ideal average is
one, to prevent the collapse of neighboring nodes as much as possible.

reduction and transformation of the raw image features - or the identity, the latter
case leaving the task of transforming the raw image features to the GNN. We
then perform several (e.g . three) message-passing iterations using the EdgeConv
operator [Wan+19b]:

e
(l)
ij = ReLU

(
θ(l)(x

(l−1)
j − x

(l−1)
i ) + ϕ(l)x

(l−1)
i

)
(5.3)

= ReLU
(
Θ(l)X̃(l−1)

)
(5.4)

x
(l)
i = max

j∈N (i)
e
(l)
ij (5.5)

followed by Batch Normalization, where X̃(l−1) =
[
x
(l−1)
i ||x(l−1)

j − x
(l−1)
i

]
, θ and

ϕ are trainable weights, and Θ their concatenation. The resulting increase in
receptive field allows for connectivity patterns to be learned based on both local
image and graph properties, and shared context across junctions.

Finally, each possible edge is scored using a simple scoring function g applied
on the final node features of the graph. While we could opt to classify the edges
based on the computed edge features eij, performing message passing on a sparse
graph (potentially built dynamically) is desirable for efficiency at both training
and inference. We note

pij = σ(g(xi,xj)) (5.6)

the inferred probability that the edge eij exists, where σ is the sigmoid function.
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In practice, we choose g to be either a single bilinear layer, i.e.

g(xi,xj) = xT
i Wgxj (5.7)

or a multi-layer MLP classifier (please refer to our ablation study in section 5.4.10
for more details and comparison with other decoders such as the dot product).

5.3.5 Connectivity estimation

Our choice of operator is motivated by the fact that the connectivity is unknown,
and therefore we may choose E0 to be the set of edges of the complete graph
(i.e. considering all possible connections between junctions), or introduce a sparse
prior by building the graph dynamically by k-NN search in feature space. We also
considered the case where the initial graph is complete, while subsequent iterations
of message passing are done on dynamically inferred connectivity. Choosing k =
4 is motivated by the observations that junctions with more than four incident
roads are rare. To verify this intuition, we trained a model using a three-layer
(2D convolutions followed by Batch Normalization and ReLU activations) node
features head and an MLP classifier for each possible edge. The model was trained
to convergence, and the four nearest neighbours graph was built on the output
of the node features branch. The resulting graph is shown in Figure 5.5, and
demonstrates that a high quality sparse initialization of the connectivity can be
obtained in this manner.

5.3.6 Loss function

To train our neural network our loss function is defined as a sum of three terms:

L = Ljun + Loff + Ledge (5.8)

where Ljun and Ledge are the binary cross-entropy loss which we use to train our
junction-ness branch and our edge prediction Graph Neural Network.

Loff is a Mean Squared Error offset loss masked with the positive junction
predictions, which we use to train our offset regression branch. We define it as:

Loff =
1∑

1Ji,j>Jthr

∑
i,j

1Ji,j>Jthr(vi,j − Vi,j)
2 (5.9)

Where V is the ground truth offset vector field. The mask is used so that the
predictions of the offset branch are not conditionned to the presence of nodes.
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Figure 5.5: k = 4-NN graph constructed in feature space on features learned by
an additional node features head combined with an MLP edge classifier.
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5.4 Experiments
In this section, we compare our method against other road extraction approaches
on the widely-used RoadTracer dataset [Bas+18], which is composed of 35 training
cities (180 images of 4096x4096 pixels) and 15 test cities of 8192x8192 pixels. The
low number of training images, low ground sampling distance, high resolution and
high annotation density of this dataset make it quite challenging.

5.4.1 Implementation details

According to the results shown in Figure 5.4, we choose a rescaling ratio of 0.5 as a
good compromise between accuracy and speed. We implement our method in the
Pytorch 1.9.1 [Pas+19] framework based on CUDA 11. We choose a ResNet-50
backbone (thus Nin = 2048) and Nfeat = 256. We perform edge classification on
the complete graph (other cases included in the ablation study 5.4.10) using a
three-layer GNN and a 2-layer MLP scoring function.

We use basic data augmentation techniques such as random flips, and train our
network on 512x512 pixel random crops for 2350 epochs, which took 24 hours on
our system with a single Nvidia RTX 3090 GPU with 24GB of VRAM, an AMD
Ryzen 9 3900X CPU and 64GB of RAM. We use the Adam [KB14] optimizer with
a learning rate of 1e−3.

We also run performance benchmarks. All numbers were obtained on a com-
puter with two Intel Cascade Lake 6248 20-core CPUs, 192GB of RAM, and four
Nvidia Tesla V100 GPU with 16GB of VRAM. 10 CPU cores, a single GPU, and
a quarter of the available memory were assigned to each run.

5.4.2 Inference on large images

In our testing, we found that the output of the link prediction branch is tied to the
original training resolution of the network. Thus, we did not obtain good results
by directly inferring on a bigger image. Instead, we apply our network on large
images using a sliding window of the same size as the training resolution, while
averaging the node positions and accumulating the detected edges.

5.4.3 Qualitative results

Figure 5.6 shows qualitative results against an iterative method and a segmentation-
based method. Our method is able to find a noticeably larger number of roads than
RoadTracer [Bas+18] and DeepRoadMapper [MLU17] in this challenging image.
We can also notice that there are a few areas with low connectivity in our result
compared to RoadTracer. Indeed, since their network "walks" through the entire
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Ours RoadTracer [Bas+18] DeepRoadMapper [MLU17]

Figure 5.6: Comparison of our method against an iterative method [Bas+18] and
a segmentation based method [MLU17] on a challenging area of the RoadTracer
dataset. The first line is the full image. The second and third line are crops of the
regions in red squares. Our method is able to find more roads, even in sections
that are completely missed by other methods.
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Method P-F1 J-F1 APLS
DeepRoadMapper [MLU17] 56.85 29.05 21.27
RoadTracer [Bas+18] 55.81 49.57 45.09
RoadCNN[Bas+18] 71.76 – –
VecRoad[Tan+20] 72.56 63.13 64.59
Ours 57.2 39.23 46.93

Table 5.1: Accuracy metrics on the RoadTracer Dataset, evaluated using open
source code from [Tan+20] and [Bas+18]. RoadCNN is a purely segmentation-
based method implemented by [Bas+18], thus it only has a P-F1 score.

regressed graph, it is inherently made of a single connected component. However,
the result of RoadTracer is missing entire portions of the city (e.g. top left) be-
cause they are separated from the starting position by a highway that the network
was not able to cross during its exploration. Our method does not suffer from such
limitations.

Figures 5.1, 5.12 and 5.13 show more qualitative results on cities from the
RoadTracer test set. Our method is able to find more roads than RoadTracer
[Bas+18] and DeepRoadMapper [MLU17]. Some roads and highways that cannot
be accessed easily by iterative approaches are found by our method. Our graphs
also seem to have a better connectivity than the ones found by the segmentation-
based method.

5.4.4 Quantitative evaluation

We follow the literature and use the three metrics defined in [Tan+20] to evaluate
the accuracy of our network. P-F1 is a pixel-based F1 score obtained by comparing
the rasterized output graph and ground truth. J-F1 is a junction-based F1 score
based on local connectivity. APLS is the Average Path Length Similarity defined
in the SpaceNet challenge [VLB18] and is based on the comparison of shortest
paths in the predicted graph and the ground truth.

The results of our testing are shown in Table 5.1. Our method achieves results
which are competitive with DeepRoadMapper [MLU17] and RoadTracer [Bas+18].
It is however outperformed by VecRoad [Tan+20]. Our intuition is that VecRoad
sort of "brute-forces" these metrics by regressing a lot more points and edges than
our method, as shown in Section 5.4.6 and Table 5.3.

5.4.5 Performance benchmarks

Run-time is seldom mentioned in the road extraction literature, but it is a very
important metric, especially as we move towards inference on edges devices. Thus,
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Method Type Single image Whole dataset
VecRoad [Tan+20] Iterative 1902.5 8873.4

RoadTracer [Bas+18] Iterative 579.4 8690.5*
DeepRoadMapper [MLU17] Seg. 1361.6 20423.4

RoadCNN [Bas+18] Seg. 58.6 878.5
Ours Graph 20.9 295.0

Table 5.2: Run-time in seconds on the RoadTracer Dataset. The single image
score is averaged over the whole test set. Our method is the fastest by a large
margin. *RoadTracer failed on some images, thus this number is extrapolated
from the average.

we benchmark the performance of our method against other recent approaches with
open source code. We remove data loading and output times from all methods
and thus only account for pre-processing, inference and post-processing steps of
each algorithm. We provide average performance numbers for a single 8192x8192
test image from the RoadTracer [Bas+18] dataset, as well as numbers for the
whole dataset (15 images), since some methods such as VecRoad [Tan+20] have
optimizations for multiple-image inference. Our method can run on the whole
dataset at once by performing the sliding window in batches, which is a bit faster.

The results of this experiment are shown in Table 5.2 and Figure 5.7. We
observe that iterative methods are much slower because of the repeated forward
passes required for next move estimation. Segmentation methods are not partic-
ularly fast as well, as the upscaling computation performed by a learned decoder
is very compute intensive, and the extra post-processing steps required for graph
conversion are slow. Our method is the fastest one by a large margin and offers
a very good compromise between accuracy and speed. Indeed, it achieves similar
APLS scores as RoadTracer [Bas+18] while running 27 times faster. Our approach
also beats the APLS scores of DeepRoadMapper [MLU17] by a large margin while
running 65 times faster. It has lower accuracy scores than VecRoad [Tan+20],
however it is 91 times faster. Our method could be made even faster by using a
smaller and more efficient backbone, such as ResNet-18 [He+16] or DarkNet-53
[Red+16], as shown in Section 5.4.7.

5.4.6 Graph complexity

Another interesting metric which is seldom mentioned in the road extraction liter-
ature is the notion of graph complexity. Graphs are a sparse representation and are
meant to use a lot less storage space than masks. Most algorithms commonly used
on graphs (e.g. shortest path algorithms) have a complexity which depends on the
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Figure 5.7: APLS metric with respect to inference time for our method, compared
to state-of-the art approaches. Our method is the fastest and offers a very good
compromise between accuracy and speed.

number of nodes and edges of the graph. Thus, offering accurate graphs with a
low number of unnecessary nodes and edges is also beneficial in terms of run-time
of subsequent applications. To evaluate the complexity of the graphs regressed by
our method and compare it to other approaches, we propose a complexity score
which is simply the total number of graph elements (nodes and edges) divided by
the APLS score (lower is better). We use the APLS because it seems to be the
most popular metric. This score represents the compromise between the accuracy
and compactness of graphs.

The results of this experiment are shown in Table 5.3. We observe that our
method obtains the lower complexity compared to VecRoad [Tan+20] and Deep-
RoadMapper [MLU17]. This is mainly due to our sparse approach to the regression
of junctions, as shown by the average number of nodes. In Figure 5.8, we show
the way our method finds an optimal representation of a neighborhood compared
to the very high number of nodes and edges found by VecRoad [Tan+20].

5.4.7 Impact of choosing a smaller backbone

Feature extractors (backbones) come in different sizes to suit different kinds of
performance targets. For example, some applications like edge computing might
accept a reduction on accuracy in favor of faster inference time and higher through-
put. In order to evaluate the impact of choosing a smaller backbone on our method,
we take the network presented above and replace the ResNet-50 backbone with
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Method Nodes Edges Total APLS Complexity
VecRoad [Tan+20] 29620 61042 90662 64.59 1404

DRM [MLU17] 6071 11963 18034 21.27 848
RoadTracer [Bas+18] 8263 17044 25306 45.09 561

Ours 4343 17273 21615 46.93 461

Table 5.3: Comparison of average graph complexity scores (Total elements divided
by APLS. Lower is better). Nodes (resp. Edges) is the average number of nodes
(resp. edges) in the output graphs over the whole RoadTracer test set. DRM =
DeepRoadMapper. Our method achieves the lowest complexity compared to other
approaches, which make it a good compromise between accuracy and compactness
of graphs.

Ours VecRoad [Tan+20]

Figure 5.8: Exemple of the low complexity of the graphs inferred by our method
(left) compared to VecRoad [Tan+20] (right). Our method finds an optimal 4-
node representation of this simple neighborhood, whereas iterative methods tend to
find overly complex representations. Having graphs with a low number of elements
will save storage and speed up the computation of algorithms performed on these
graphs, such as shortest path algorithms.
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Method APLS Single image time (s)
Ours (R18) 38.80 19.6
Ours (R50) 40.45 20.9

Table 5.4: Run-time in seconds on the RoadTracer Dataset. The single image
score is averaged over the whole test set. Using a smaller backbone (R18) is
slightly faster but causes a small drop in APLS.

ResNet-18.
The results of this experiment are presented in Table 5.4. We observe that

using a ResNet-18 backbone is slightly faster but results in a slightly lower APLS
score. This means that our method works with smaller backbones and thus can
be used on a variety of low power devices, especially ones that have a low amount
of memory, such as the Nvidia Jetson family of devices.

5.4.8 Impact of edge detection threshold

In this section, we study the impact of the edge detection threshold, which can be
freely chosen between 0 and 1. To do this, we compute the three main accuracy
metrics for a range of thresholds varying between 0 and 0.5, using our main model.
Setting a high detection threshold favors the Precision of edges, while setting a low
threshold favors the Recall. Figure 5.9 shows the results of this experiment. We
observe that the P-F1 (pixel metric) and APLS are better when detecting more
edges, while the J-F1 (junction metric) is slightly better when detecting fewer
edges. This makes sense as the J-F1 is based on having the correct number of edges
for each junction, while the APLS should benefit from more path options. The P-
F1 may be higher at low thresholds simply because we find more road pixels. This
experiment shows that finding and setting an appropriate edge threshold for each
model is important in order to obtain the best accuracy and the best compromise
between the three metrics.

5.4.9 On the J-F1 metric

As previously said in sections 5.3 and 5.5, our method is only able to find a single
point-of-interest per output cell, which can lead to merged junctions in the output
graph. In addition, as seen in section 5.4, our method will inherently find a lower
number of junctions since it is tailored towards the extraction of a sparse graph.
Since the J-F1 score is based on a matching of junctions within a certain radius,
we believe that these design choices significantly affect this metric, which leads to
our method scoring lower than some other approaches.
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Figure 5.9: J-F1, P-F1 and APLS scores for our main model, at a range of edge
detection thresholds.

5.4.10 GNN model choices and ablation study

In this section, we perform a comparative study of different design decisions for
the GNN portion of the model.

We compare the following choices for the construction of the road graph:

1. Using the complete graph as the supporting graph for each GNN layer and
treating the problem as a pure edge classification task

2. Initializing the road graph by k-NN search (k = 4) on the output of the
node feature branch (dim = 256) to which we concatenate the Cartesian
coordinates of the junctions (dim = 2)

3. Dynamic construction of the graph at each layer by k-NN search (k = 4) on
the layer’s input (i.e., as described in point 2 for the first layer, and on the
output features of the previous layer for subsequent layers)

We also compare two choices of edge scoring function:

1. A 2-layer MLP (FC(256) → FC(256) where FC(N) denotes a fully-connected
layer with N output features)

2. A 256× 256× 1 bilinear layer
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We use a three-layer graph neural network based on the EdgeConv operator
with BatchNormalization and ReLU activations. We parameterize the EdgeConv
operators each with a linear layer with 256 output features. We also report the
results of baseline models trained without graph convolutions.

Finally, we compare the 3-layer EdgeConv networks with DeepGCNs [Li+19b;
Li+20] using the Generalized Graph Convolution (GENConv) operator [Li+20],
layer normalization [BKH16] and ReLU activations. We apply the DeepGCN layers
sequentially on:

1. The raw image features produced by the backbone (DeepGCN)

2. The output of one convolutional layer in the node feature branch (1 Conv +
DeepGCN)

3. The output of 4 convolutional layers in the node feature branch (4 Conv +
DeepGCN) as for the EdgeConv-based models

In case (1) we used 7 layers of (GENConv → LayerNorm → ReLU), in case (2)
we used 6 layers, and in case (3) we used 3 layers, so as to keep model capacity
comparable with the EdgeConv models applied on the full node feature branch.
We applied the DeepGCNs on the complete graphs only.

For each of these experiments, we report the J-F1, P-F1 and APLS metrics at
the edge threshold that maximizes their sum. Table 5.5 shows the results of these
experiments. To enable faster experimentation, we initialized some of the models
using the pre-trained weights of a "Baseline MLP" model trained on the complete
graph, such models are denoted by a checkmark in the "PT" (i.e. "Pre-trained")
column of Table 5.5.

We can draw the following conclusions from the experimental results shown:

• The baseline with the bilinear classifier outperforms the baseline with a 2-
layer MLP, which is expected since it has a much larger number of parame-
ters. While the improvement is noticeable, the model loses compactness and
efficiency.

• All three constructions of the graph (complete, static k-NN and fully dy-
namic) are able to perform well and to outperform the MLP and the Bilinear
baseline. Notably, the models that combine a GNN with an MLP classifier
outperformed the ones with the same GNNs but a bilinear classifier (scoring
function). The entire GNN adds fewer parameter than changing the MLP for
a bilinear layer, and yet can bring larger performance deltas, which further
motivates our choice of using an MLP scoring function.
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• The best performing GNN with the EdgeConv operator used a fixed 4-NN
graph support for message passing (but still scored all possible edges for the
final graph). However, choosing the right value of k adds another element
to hyperparameter tuning of the model and comes at the disadvantage of
reduced robustness to cases where images have no junctions to detect (e.g .
satellite images of large bodies of water such as lakes). We therefore chose to
report the performance of the simpler model in section 5.4, while showcasing
that sparse graph priors may indeed lead to better road graph reconstruc-
tions.

• Getting rid of the node features branch reduces the number of trainable pa-
rameters but appears to be detrimental to the performance in most cases.
Experiments with deeper GNNs applied directly on the output of the back-
bone showed increased performance compared to shallower GNNs, although
the graph construction differs (l. 14, 17)

• Compared to 3-layer EdgeConv networks on the complete graphs, 3-layer
DeepGCNs applied following either a 1-layer or 4-layer node feature branch
performed better. These models also outperformed the dynamic graph mod-
els and the 3-layer EdgeConv applied on a sparse 4-NN graph (by a slimmer
margin in the latter case). The DeepGCNs applied on raw features outper-
formed some of the shallower models trained with a node feature branch, but
did not match the best performing models.

• All DeepGCNs outperformed the MLP baseline, which indicates that, keep-
ing the edge scoring function the same, replacing all (DeepGCN, l.17) or most
(1 Conv + DeepGCN, l.18) 2D convolutions with graph convolutions leads to
increased performance compared to a model that only uses 2D convolutions.

Deep Graph Convolutional Networks

We suspect the last two points are due to two effects: first, 2D convolutions can
be seen as special cases of graph convolutions applied to the 2D lattice graph
while enforcing translation equivariance; their inductive bias is well suited to the
processing of images. In contrast, we applied the GNNs (EdgeConv or DeepGCN)
on the (dynamic or complete) graphs of detected junctions, which means the GNNs
do not have access to the neighboring pixel’s context whereas the 2D Euclidean
convolutions do. We believe this contributes to the reduced performance of all
graph-convolutional models compared to models that combine 2D convolutions and
graph convolutions. Additionally, the higher performance of the graph convolution
models compared to only using 2D convolutions - especially on the APLS metric
- show the contribution of the graph-based models.
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# PT Init Graph GNN Classifier RF Wait jthr J-F1 P-F1 APLS Sum
1 ✓ Baseline ✗ Bilinear 40.33 55.93 43.95 140.21
2 Baseline ✗ Bilinear 36.03 53.87 41.64 131.54
3 Baseline ✗ Bilin small 32.24 50.4 36.11 118.75
4 ✓ Baseline ✗ MLP 36.92 53.43 41.17 131.53
5 Baseline ✗ MLP 35.46 56.03 45.35 136.84
6 ✓ Complete EdgeConv Bilinear 37.69 56.04 45.39 139.13
7* ✓ Complete EdgeConv MLP 39.23 57.2 46.93 143.36
8 ✓ Dynamic EdgeConv Bilinear 35.63 56.29 46.04 137.96
9 ✓ Dynamic EdgeConv Bilinear 0.3 37.90 55.5 43.68 137.08
10 ✓ Dynamic EdgeConv Bilinear ✓ 37.32 52.07 38.51 127.91
11 ✓ Dynamic EdgeConv Bilinear ✓ 0.3 37.92 52.37 40.27 130.55
12 ✓ Dynamic EdgeConv MLP 38.44 56.7 46.21 141.35
13 ✓ Dynamic EdgeConv MLP ✓ 34.95 53.75 41.57 130.27
14 ✓ Dynamic EdgeConv MLP ✓ 0.3 35.54 56.5 45.91 137.95
15 ✓ kNN-4 EdgeConv Bilinear 37.30 54.25 42.28 133.83
16 ✓ kNN-4 EdgeConv MLP 37.41 57.54 48.71 143.66
17 ✓ Complete DeepGCN MLP ✓ 37.17 55.43 42.59 135.19
18 ✓ Complete 1 Cv,DeepGCN MLP 38.35 57.11 47.12 142.58
19 ✓ Complete 4 Cv,DeepGCN MLP 37.89 57.71 48.84 144.44
20 Dynamic EdgeConv Bilinear 34.52 50.74 35.52 120.78
21 Dynamic EdgeConv Bilinear ✓ 30 33.23 46.26 30.71 110.20
22 Dynamic EdgeConv Bilinear 30 32.03 50.94 37.31 120.28
23 Dynamic EdgeConv Bilinear ✓ 30 0.3 36.89 49.02 32.13 118.04
24 Dynamic EdgeConv MLP 36.35 56.31 45.55 138.21
25 Dynamic EdgeConv MLP 30 36.54 55.72 43.97 136.22
26 Dynamic EdgeConv MLP 30 0.3 34.32 55.41 45.65 135.38
27 Dynamic EdgeConv MLP 10 0.3 35.36 54.96 44.44 134.76
28 Dynamic EdgeConv MLP ✓ 30 0.3 34.48 55.02 42.15 131.65
29 Dynamic EdgeConv MLP ✓ 30 35.73 54.9 41.91 132.54
30 Dynamic EdgeConv MLP ✓ 10 0.3 34.90 56.03 44.60 135.54

Table 5.5: Variations on our model. PT (Pre-trained) = use of pre-trained ResNet
and junctionness/offset branches for faster training. RF (Raw feat) = GNN applied
directly to raw ResNet features (no node feature convolutions). Wait = Number of
epochs where only the junction-ness and offset branches are trained before training
the edge branch (default: 0). jthr = junction-ness threshold used during training
(default: 0.5). Sum = J-F1 + P-F1 + APLS. Cv = Convolution. *variation
presented in section 5.3
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Regarding the relative performance of DeepGCNs compared to shallower Edge-
Conv models, the graphs extracted from the images are small: they have at most
16 × 16 = 256 nodes and (256) ∗ (256 − 1)/2 = 32640 edges. The increase in re-
ceptive field that comes with deeper models will lose effectiveness once the entire
graph is covered at a given layer. Furthermore, the experiments we report with
DeepGCNs in Table 5.5 are done using the complete graph as support. Messages
from each node reach all other nodes in a single iteration, which reduces the bene-
fits one can glean from using deeper models, and makes the GNNs more susceptible
to the smoothing problem [LHW18]. We therefore decided to report results using
shallow GNNs using the EdgeConv operator which is well suited to learning edge
features and to learning on dynamic graphs. Further work will investigate using
DeepGCNs on sparse graphs as well as on graphs built on larger images.

Junctionness threshold

In addition to the ablation study, we evaluated the impact of the junction-ness
threshold jthr used during training. Lowering this threshold seems to have a pos-
itive impact on the three metrics. Our intuition is that when the junction-ness
threshold is lower, the subsequent GNN is presented with more nodes and a larger
number of possible edges for each image, and is thus trained better and faster.

5.5 Limitations
Our method comes with some limitations. The first one, as said in previous sec-
tions, is the difficulty to work in very dense areas with lots of intersections. Since
multiple intersections might fall into the same detection cell, our network will only
be able to detect one of them, which can lead to shifted junctions. The second
limitation is the inability to be trained on mask-based datasets such as DeepGlobe
[Dem+18]. Our network can only be trained on graphs, and such data might not
always be available. Finally, some long sections of road such as highways or bridges
might lack points of interest since they do not have any junctions. Our network
can miss these sections of road in the final graph as shown in Figure 5.10 and in
some parts of Figure 5.1.

5.6 Other uses of our method
Our method is generic in the sense that it could be used for applications other
than road extraction. In fact, it could be suitable for any image to 2D graph
application. For example, our method could be used for blood vessel extraction
as done in [Ven+18]. Another example is the polygonal extraction of buildings
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Figure 5.10: Examples of long sections of road (e.g. highways, bridges) without
points of interest, which are occasionally missed by our method.

in aerial images. For this task, just like for road extraction, existing methods
either rely on an iterative process [LWL19] or on post-processing of a pixel-based
segmentation [LLM20]. Thus, for this task, our method is able to provide the
same advantages as for road extraction. Figure 5.11 shows an example of building
extraction using our method.

Figure 5.11: Our method can be used for other tasks, such as building extraction.
This example is taken from the CrowdAI Mapping Challenge dataset [Moh+20]
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5.7 Conclusion
We proposed a novel architecture for single-shot extraction of road graphs from
satellite images. Our method first predicts sparse interest points in images using a
CNN feature extractor as well as a junction detection head, and an offset regression
head, trained jointly to identify candidate road intersections in a lower-resolution
image and predict their position in the high-resolution image. We then combine
the extracted image features and regressed point coordinates with a graph neural
network to combine local and global information and infer the unknown graph
structure. Our method combines aspects of graph learning and link prediction
to score candidate connections between road junctions and infer the road graph.
We demonstrate competitive performance with state of the art methods on three
reference metrics while achieving significantly lower graph complexity and infer-
ence times (up to 91x faster than iterative models) compared to iterative and
segmentation-based methods.

Even though the experimental validation of our approach was focused on road
networks, our single-shot graph extraction framework can be applied to other types
of problems. An example would be the extraction of blood vessels in medical
images [Fra+12]. An interesting follow-up to road extraction could be to not only
decide if edges exist or not in the final graph, but also infer edge attributes like
road types, amount of traffic, or speed limits, as done in [Gha+21]. We also believe
that our method could be adapted to tackle map update problems that have been
presented in newly released datasets [BM21]. In addition, our method can further
be combined with existing model compression techniques, both from the Euclidean
and Geometric deep learning literature, to pave the way for on board single-shot
extraction of road graphs on edge devices.
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Figure 5.12: More qualitative results of our method (left) compared to RoadTracer
[Bas+18] (middle) and DeepRoadMapper [MLU17] (right), on the RoadTracer test
set.
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Figure 5.13: More qualitative results of our method (left) compared to RoadTracer
[Bas+18] (middle) and DeepRoadMapper [MLU17] (right), on the RoadTracer test
set.
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Chapter 6

Conclusion and Perspectives

In this final chapter, we summarize our contributions and discuss some perspectives
and ideas for future work.

6.1 Summary
The goal of this thesis was to develop Deep Learning architectures that enable
onboard processing of satellite images. We chose to work on two facets of this
problem. The first facet is the generally high computational requirements of state-
of-the-art deep neural networks compared to the relatively low capabilities of hard-
ware that can be included on satellites. We tackled this challenge by creating
efficient architectures based on Fully Convolutional Networks. The second facet is
the memory or storage limitation of edge devices, which we addressed by obtaining
compact, sparse or compressible outputs. We presented two types of architectures
for image segmentation, as well as a contour regression architecture, and a road
graph extraction architecture.

In chapter 2, we designed fully convolutional models with a low number of
parameters to address the use case of cloud segmentation on the small FPGA of
OPS-SAT. As any "off-the-shelf" model from the litterature would be orders of
magnitude too big for this FPGA, the main challenge was to carefully craft our
architectures such that they would have a very low footprint in terms of compu-
tation, memory and number of parameters, while also being accurate. Moreover,
we had to use simple operators such as classical 2D convolutions and depth-wise
separable convolutions that could be easily implemented in VHDL code. We suc-
cessfully trained a tiny architecture on cloud image datasets and fine-tuned it on
real images from OPS-SAT as soon as they were available. The model was then
implemented in VHDL and inference was performed in orbit by remotely updating
the weights of the network, which was a first in this field.
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Chapter 3 was dedicated to the creation of a neural network architecture that
would be specifically optimized for the on-the-fly processing of images of pushb-
room sensors, which is an idea that was seldom explored in this field. Being able
to perform semantic analysis of images directly during the acquisition will allow a
better reactivity and potentially huge storage savings, as the images would never
need to be stored onboard or transmitted to the ground. It would also allow the
acquitisions to run for a longer time, since the onboard storage would never be
filled. The architecture that we developed has very low memory footprint and
latency, and could also be used in other types of applications, such as on-the-fly
character recognition in document scanners.

Next, in chapter 4, we chose to focus on the generation of object contours using
a compact representation based on Fourier coefficients. The goal was to enable the
creation an onboard database of objects in order perform in-flight change detec-
tion, and facilitate transmission of this database within a constellation of satellites.
Notably, progressive transmission can be achieved by transmitting centroids and
low frequency coefficients first, and refining the contours with high frequency co-
efficients later. Using geometric priors on the perimeter and simplicity of shapes,
we were able to accurately represent smooth object contours with as low as 8 co-
efficients. The possibility of onboard processing using our method was evaluated
by running our architecture on a wide array of low-power devices using an efficient
backbone.

Finally, chapter 5 focused on the design of a combination of Fully Convolutional
Network and Graph Neural Network for graph extraction from images, and applied
it to road extraction from overhead images. We also showed that this architecture
can be applied to other tasks, such as polygonal building extraction. Our novel
combination of FCN and GNN allows significant computation time savings, to
the point where road extraction could be done onboard. Our method generates
graphs with a low complexity (i.e. few nodes and edges), which enables the use of
subsequent graph based algorithms and GNNs onboard.

6.2 Limitations and perspectives
In this section, we provide some perspectives for future work.

General comments

The architectures developed in this thesis were designed with satellite images in
mind. However, they could be used in other scenarios demanding efficient architec-
tures and compact outputs. In the future, as processors become more efficient and
more low-power AI accelerators are developed, the need for compact architectures
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with compact outputs will increase. However, it is also likely that new devices will
have more compute capabilities, and thus will be able to run more complex mod-
els. Nevertheless, since state-of-the-art architectures continue to grow in terms
of number of parameters, there would still be a need for "smaller" networks, and
techniques like quantization or pruning.

Satellite development cycles are usually long. As we start to learn about the
specifications of hardware (i.e. sensors, storage, processors, accelerators) that will
be included in the next generations of satellites, the development of neural networks
tailored to these satellites will start as well. This is actually similar to what
happened when we learned about the kind of hardware that would be included in
OPS-SAT, and thus started developing the architectures presented in chapter 2
before its launch.

The work presented in this thesis spans a wide array of possible applications
and use cases. However, this means that we could not go in as much depth as
we could have for some of these applications. Notably, we missed the opportunity
to develop an end-to-end pipeline for onboard change detection. While our work
could certainly take part in such a pipeline, some elements are still missing. In
particular, objects detected during a first image acquisition have to be precisely
located in a subsequent acquisition in order to perform change detection accurately,
and this is an active research topic [GCT19].

Hand-crafting of neural network architectures

With the recent advances in Neural Architecture Search (NAS) and the develop-
ment of specialized toolchains and frameworks by hardware makers, we believe
that the hand-crafting of neural network architectures (chapter 2) will soon be a
thing of the past. Just like hand-crafting of features has been rendered obsolete by
deep networks, this tedious process will not be directly done by human experts in
the future. In the case of edge computing, we believe that hardware-constrained
NAS will be able to find the most accurate architecture that fits within set com-
pute, parameter and memory budgets. Similarly, FPGA makers such as Xilinx
(now part of AMD) and Altera (now part of Intel) will develop toolchains that
allow to port any neural network to their chips, with optimal quantization and
pruning. This is also true for low-power GPUs and other accelerators. Thus, NAS
and other techniques will probably grow as research areas in the coming years.

The work we did to manually design architectures for OPS-SAT was probably
necessary in order to have the experiment ready for launch, and surely these ar-
chitectures can be re-used for other things. Nevertheless, it is time that we could
have spent developing generic NAS-based solutions that could serve other projects
as well as this one.
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Architectures for pushbroom sensors

The recurrent convolutional network presented in chapter 3 is not novel in the
sense that ConvLSTM models have existed for quite some time. However, this is,
to our knowledge, the first time that they have been used in a line-by-line segmen-
tation task. It would be interesting to know if other tasks such as classification
or object detection in images from pushbroom sensors could also be performed
on-the-fly with similar or different architectures. In particular, how could the fully
convolutional architectures used for detection or instance segmentation (e.g . chap-
ter 4) be adapted into reccurent architectures for pushbroom sensors? It may also
be that some completely different architectures could be used for these tasks.

Onboard change detection with object contours

The final goal of the contour regression architecture presented in chapter 4 was
the creation of an onboard change detection database. Thus, the next develop-
ment step would be to investigate how to actually perform change detection with
this database. In particular, it would be interesting to perform shape signature
matching in Fourier domain in order to find the objects from the database on the
next image acquisition.

Polygonal building extraction with Graph Neural Networks

We showed in chapter 5 that our FCN + GNN architecture could also be used for
polygonal building extraction. It would be interesting to investigate this task, and
possibly modify the architecture for this. For example, the CNN used for feature
extraction could be replaced by a U-Net-like architecture with upscaling in order
to obtain smaller detection cells. This would probably allow a precise localization
of building corners.

Regression of Graph properties

The method we showed in chapter 5 could be extended to regress node or edge
attributes simultaneously as the extraction of the graph, with a few modifications
to the Graph Neural Network. In the case of roads, it could be possible to regress
edge properties such as road type, speed of traffic or amount of traffic. Currently,
traffic alerts such as congestion or accidents are collected with smartphone applica-
tions such as Waze or Google Maps. Real-time onboard edge attribute regression
could allow alerts without human intervention. Better traffic predictions could
also help avoid traffic jams and their consequences.
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Improving graph extraction

In a lot of fields, it is generally acceptable to give up some accuracy to gain a
lot of processing speed, but while the method presented in chapter 5 is very fast,
potential improvements could be investigated. We could view the offset property
regressed by the offset branch of the point-of-interest detection head as a node
property to be regressed by the Graph Neural Network. Since the GNN has to
predict which pairs of nodes are linked, it is possible that it could be able to make
a more informed decision on the spatial position of the nodes than the FCN.

Our single-head design without a Feature Pyramid made the Fully Convo-
lutional part of the architecture really fast. We assumed that using an FPN
[Lin+17a] was not necessary in our case, as the scale of satellite images does not
change. We were right to some extent, since the method seems to work quite well
without one. However, we did not actually try it with an FPN, and it is possible
that using one could solve the long-range link prediction limitations we faced.

Map update

We believe that more combinations of CNN and GNN are going to be developed
in the coming years, and that they are going to be used to solve new problems. An
interesting one to solve would be the map update problem, i.e. change detection
in maps. By externally modifying the outputs of the junction-ness and offset
branches in the method presented in chapter 5, it is possible to force the existence
and position of certain nodes. Thus a satellite containing a map could predict
the addition or removal of edges using the GNN part of our method. An example
of application would be the evacuation of populations in the case of a natural
disaster (e.g . earthquake, flood). Roads that have been flooded or destroyed would
disappear from the map in real-time and GPS apps could thus make informed
decisions by knowing which routes remain available.

6.3 Publications
Papers authored during this thesis:

• Low-power Neural Networks for Semantic Segmentation of Satel-
lite Images.

Gaétan Bahl, Lionel Daniel, Matthieu Moretti, Florent Lafarge.

ICCV Workshop on Low Power Computer Vision, 2019.

• In space image processing using AI embedded on system on mod-
ule: example of OPS-SAT cloud segmentation.
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Frédéric Férésin, Erwann Kervennic, Yves Bobichon, Edgar Lemaire, Nas-
sim Abderrahmane, Gaétan Bahl, Ingrid Grenet, Matthieu Moretti, Michael
Benguigui.

2nd European Workshop on On-Board Data Processing, 2021.

• Binary Graph Neural Networks.

Mehdi Bahri, Gaétan Bahl, Stephanos Zafeiriou.

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

• Road Extraction from Overhead Images with Graph Neural Net-
works.

Gaétan Bahl, Mehdi Bahri, Florent Lafarge.

EARTHVISION 2022 CVPR Workshop.

• SCR: Smooth Contour Regression with Geometric Priors.

Gaétan Bahl, Lionel Daniel, Florent Lafarge.

arXiv preprint arXiv:2202.03784

• Scanner Neural Network for On-board Segmentation of Satellite
Images.

Gaétan Bahl, Florent Lafarge.

IGARSS 2022.

6.4 Carbon Impact Statement
While the focus of our work is to create efficient neural networks that are able
to run on very low power devices, we cannot help but notice that these networks
are still created and trained using power-hungry multi-GPU machines and wonder
about the environmental impact. During this thesis, we missed the opportunity to
track the real power consumption of our experiments, and to estimate its global
environmental footprint, but we are trying as much as we can to publish these
estimations, as recommended in [Hen+20; AKS20; LGI20].

In order to run the experiments required for this thesis, we estimate that we
have used around 15000 GPU hours on Nvidia Tesla V100, GTX 1080Ti, RTX
2080, RTX 3090 and similar GPUs, which are rated for a power consumption of
200 to 400W. This, not counting CPUs, cooling, PSU efficiency, storage of datasets
and results, amounts to 4500kWh. Since the carbon intensity of our electricity grid
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is 10 gCO2/kWh, we estimate an emission of 45000 gCO2, which is equivalent to
373.8 km traveled by car according to [AKS20].

We are lucky that the carbon intensity of the electricity grid is particularly low
in our country (France), so the carbon impact of the computations of this thesis is
probably low compared to other works. Moreover, we can notice that in our case,
there was orders of magnitude more CO2 being produced by driving to work than
from our computations, even though we have spent a lot of time working from
home these past two years.
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