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Contributions to Model-Based Clustering
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Cinzia Viroli University of Bologna Rapporteur



2



Remerciements

First of all, I would like to thank the three referees of this manuscript, Julien Chiquet, David
Hunter and Cinzia Viroli, who kindly accepted to take a large part of their time to write a report
on my past and recent work. I would also like to thank Charles Bouveyron, Valérie Monbet and
Stéphane Robin for accepting to participate in my defense as examiners. I am honored to have
all of them as members of my jury.

Je remercie toutes les personnes avec qui j’ai eu l’occasion d’échanger au cours de toutes ces
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moi un modèle de rigueur et d’implication auprès des étudiants.

Je remercie chaleureusement mes deux directeurs de thèse Christophe Biernacki et Vincent
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Chapter 1

Introduction

Contents
1.1 Summary of my contributions . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Research Interests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Outline of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Brief introduction to model-based clustering . . . . . . . . . . . . . 12

1.3.1 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Identifiability of the model parameters . . . . . . . . . . . . . . . . . . 14

1.3.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.4 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 Summary of my contributions

1.1.1 Presentation

I was appointed Assistant Professor in Statistics at ENSAI/CREST (Bruz, France) in September
2017, after holding postdoctoral fellows at Institut national de la santé et de la recherche médicale
(Villejuif, France) then at the University of McMaster (Hamilton, Ontario, Canada) then holding
an engineer position at Institut national de recherche en sciences et technologies du numérique
(Lille, France). I was awarded my PhD in October 2014 at the University of Lille.

I have been working on mathematical aspects in empirical likelihood, mathematical and
methodological aspects in clustering and applications of these methods for biostatistics. My work
has resulted in the publication/acceptance of 19 papers in international, peer-reviewed journals in
fields of mathematical statistics (The Annals of Statistics), computational and methodological
statistics (Computational Statistics & Data Analysis, Journal of Computational and Graphi-
cal Statistics, Statistics and Computing), applied statistics (The Annals of Applied Statistics)
and epidemiology (The Annals of Epidemiology). Results of my work have been presented in
many international conferences (Bernoulli-IMS One World Symposium, CMstatistics, CompStat,
EcoSta, ICML-workshop, SDSS ) and have been implemented in 8 R packages available on CRAN.
I have etablished international and national collaborations with different departments of statis-
tics (CREST, HEC Montreal, Inria, University of McMaster, Université de Lille, UPMC ) and
epidemiology (Institut Pasteur Paris, INSERM ).
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I am an Associated Editor in Computational Statistics & Data Analysis (since April 2021),
I belongs to the Scientific Program Committee of the international conference EcoSta 2022 and
I have organized different invited sessions for international conferences (EcoSta 2021, Canadian
Conference in Applied Statistics 2021, CMstatistics 2022). At a national level, I am a member of
the scientific commitee of evaluation of the French Agence of Research for the topic “mathematics,
numerical science, bioloy and health” (ANR-AAPG-2022 CES 45) and I gave lectures at the
summer school 19èmes Journées d’Étude en Statistique organized by the french statistical society
(SFDS). Finally, I have supervised 8 MSc internships and I am supervizing 1 PhD student.

1.1.2 Research Interests

My developments in clustering focus on the study of mixture models for complex data (i.e.,
categorical data (Marbac, Biernacki, and Vandewalle (2016) and Marbac, Biernacki, and Vande-
walle (2015)), mixed-type data (Marbac, Biernacki, and Vandewalle (2017)), high-dimensional
data (Marbac and Sedki (2017a) and its R package Marbac and Sedki (2016b), and Marbac and
McNicholas (2016)).

We have developed two methods for selecting the variables in clustering, by considering para-
metric mixture models. The first method allows for selecting the model without estimating
the model parameters (Marbac and Sedki (2017b)). The second method simultaneously per-
forms the selection of the relevant variables and the parameter estimation (Marbac, Sedki, and
Patin (2020)). Both of these methods are implemented in the R package VarSelLCM (Mar-
bac and Sedki (2018) and Marbac and Sedki (2020)) and have been extended to the case of
multiple partitions (Marbac and Vandewalle (2019)). Recently, in Du Roy de Chaumaray and
Marbac (2021a), we propose an approach for selecting the subset of relevant variables and the
number of components in a semi-parametric mixture model.

Some of my developments previously described have been used in epidemiology (Dumas et
al. (2021), Saldanha Gomes et al. (2020), Marbac et al. (2018)). Moreover, these collaborations
raise new methodological problems such as the use of a clustering results in a predictive model.
Such an approach is classical in epidemiology but produces biased results. Hence, in Marbac
et al. (2022) and its companion R package (Marbac et al. (2021)), we circumvent this issue by
simultanously estimating the clustering and the prediction models. Discussions with epidemi-
ologists encouraged me to develop a visualization method for the clustering output (Biernacki,
Marbac, and Vandewalle (2021) and the companion R package Biernacki, Marbac, and Vande-
walle (2019)) but also different methods to cluster data with missingness having a non-ignorable
mechanism (Biernacki et al. (2021) and Du Roy de Chaumaray and Marbac (2020) and the
compagnion R package Du Roy de Chaumaray and Marbac (2021b))

I have been involved in different projects in biostatistics that have led me to extend some
statistical methods for high-dimensional data (Marbac, Tubert-Bitter, and Sedki (2016) and the
companion R package Marbac and Sedki (2016a)) or to develop new methodologies for clustering
functional data (Cheam, Marbac, and McNicholas (2017), Du Roy de Chaumaray, Marbac, and
Navarro (2020) and Cheam et al. (2020) and their companion R packages Cheam, Marbac, and
McNicholas (2020) and Du Roy de Chaumaray, Marbac, and Navarro (2019)). Thus, I have
worked on a method, based on mixture models of hidden Markov chains, allowing data collected
by accelerometers to be analyzed without considering arbitrary thresholds (Du Roy de Chau-
maray, Marbac, and Navarro (2020)). Moreover, I was involved in a project investigating the
geographical disparities of the COVID-19 deaths. This approach analyses the daily-reports of
COVID-19 deaths using wavelet decomposition, semi-parametric regression and mixture models
(Cheam et al. (2020)). Moreover, with colleagues from the department of medicine of the Uni-
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versity of Lille, I am currently working on spatial scan statistics. We have proposed a method
for considering functional covariates in scan statistics (Frévent et al. (2021)). Moreover, we are
working on a method that allows for multiple cluster detection by avoiding the exhaustive search
for clusters detection. Finally, we are conducting research to obtain an explicit form of the
asymptotic distribution of the scan statistics. The works on scan statistics permit interactions
with other statisticians but also two Professors of Medicine.

Finally, I was interested in empirical likelihood. Thus, in Du Roy de Chaumaray, Marbac,
and Patilea (2021), we consider parameter inference for a semi-parametric regression model with
weakly dependent data (α-mixing).

1.1.3 Publications

Submitted to peer-reviewed journals

Biernacki, C. et al. (2021). Model-based Clustering with Missing Not At Random Data. url:
https://arxiv.org/abs/2112.10425.

Cheam, A.M.S. et al. (2020). “Translation-invariant functional clustering on COVID-19 deaths
adjusted on population risk factors”. url: https://arxiv.org/abs/2012.10629.

Du Roy de Chaumaray, M. and M. Marbac (2020). “Clustering Data with nonignorable Missing-
ness using Semi-Parametric Mixture Models.” url: https://arxiv.org/abs/2009.07662.

Du Roy de Chaumaray, M. and M. Marbac (2021a). “Full Model Estimation for Non-Parametric
Multivariate Finite Mixture Models”. url: https://arxiv.org/abs/2112.05684.

Book chapters

Marbac, M. (2022a). Introduction à une étude statistique avec données manquantes, sous la
direction de F. Bertrand, G. Saporta, C. Thomas-Agnan.

Marbac, M. (2022b). Méthodes basées sur la vraisemblance pour données manquantes ayant un
mécanisme ignorable, sous la direction de F. Bertrand, G. Saporta, C. Thomas-Agnan.

Marbac, M. (2022c). Méthodes de pondération pour données manquantes, sous la direction de F.
Bertrand, G. Saporta, C. Thomas-Agnan.

Peer-reviewed journals (Statistics)

Biernacki, C., M. Marbac, and V. Vandewalle (2021). “Gaussian Based Visualization of Gaussian
and Non-Gaussian Based Clustering”. Journal of Classification 38, pp. 129–157. url: https:
//link.springer.com/article/10.1007/s00357-020-09369-y.

Cheam, A.S.M., M. Marbac, and P.D. McNicholas (2017). “Model-based clustering for spa-
tiotemporal data on air quality monitoring”. Environmetrics 28(3), e2437. url: https :

//onlinelibrary.wiley.com/doi/abs/10.1002/env.2437.
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Du Roy de Chaumaray, M., M. Marbac, and F. Navarro (2020). “Mixture of hidden Markov
models for accelerometer data”. The Annals of Applied Statistics 14(4), pp. 1834–1855. url:
https://projecteuclid.org/euclid.aoas/1608346901.

Du Roy de Chaumaray, M., M. Marbac, and V. Patilea (2021). “Wilks’ theorem for semipara-
metric regressions with weakly dependent data”. The Annals of Statistics 49(6), pp. 3228
–3254. url: https://doi.org/10.1214/21-AOS2081.

Frévent, C. et al. (2021). “Detecting spatial clusters on functional data: a parametric scan
statistic approach”. Spatial Statistics 46, p. 100550. issn: 2211-6753. url: https://www.
sciencedirect.com/science/article/pii/S2211675321000609.

Marbac, M., C. Biernacki, and V. Vandewalle (2016). “Latent class model with conditional depen-
dency per modes to cluster categorical data”. Advances in Data Analysis and Classification
10(2), pp. 183–207. url: https://link.springer.com/article/10.1007/s11634-016-
0250-1.

Marbac, M., C. Biernacki, and V. Vandewalle (2015). “Model-based clustering for conditionally
correlated categorical data”. Journal of Classification 32(2), pp. 145–175. url: https://
link.springer.com/article/10.1007/s00357-015-9180-4.

Marbac, M., C. Biernacki, and V. Vandewalle (2017). “Model-based clustering of Gaussian cop-
ulas for mixed data”. Communications in Statistics-Theory and Methods 46(23), pp. 11635–
11656. url: https://www.tandfonline.com/doi/abs/10.1080/03610926.2016.1277753.

Marbac, M. and P.D. McNicholas (2016). “Dimension Reduction in Clustering”. Wiley StatsRef:
Statistics Reference Online, pp. 1–7. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/9781118445112.stat07846.

Marbac, M. and M. Sedki (2017a). “A family of block-wise one-factor distributions for modeling
high-dimensional binary data”. Computational Statistics & Data Analysis 114, pp. 130–145.
url: https://www.sciencedirect.com/science/article/abs/pii/S0167947317300932.

Marbac, M. and M. Sedki (2017b). “Variable selection for model-based clustering using the
integrated complete-data likelihood”. Statistics and Computing 27(4), pp. 1049–1063. url:
https://link.springer.com/article/10.1007/s11222-016-9670-1.

Marbac, M. and M. Sedki (2018). “VarSelLCM: an R/C++ package for variable selection in
model-based clustering of mixed-data with missing values”. Bioinformatics 35(7), pp. 1255–
1257. url: https://academic.oup.com/bioinformatics/article/35/7/1255/5091183?
login=true.

Marbac, M., M. Sedki, and E. Patin (2020). “Variable selection for mixed data clustering: Ap-
plication in human population genomics”. Journal of Classification, pp. 1–19. url: https:
//link.springer.com/article/10.1007%2Fs00357-018-9301-y.

Marbac, M., P. Tubert-Bitter, and M. Sedki (2016). “Bayesian model selection in logistic regres-
sion for the detection of adverse drug reactions”. Biometrical Journal 58(6), pp. 1376–1389.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.201500098.
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Marbac, M. and V. Vandewalle (2019). “A tractable multi-partitions clustering”. Computational
Statistics & Data Analysis 132, pp. 167–179. url: https://www.sciencedirect.com/

science/article/abs/pii/S0167947318301592.

Marbac, M. et al. (2022). “Simultaneous semi-parametric estimation of clustering and regression.”
Journal of Computational and Graphical Statistics forthcoming, pp. 1–9. url: https://doi.
org/10.1080/10618600.2021.2000872.

Peer-reviewed journals (Epidemiology)

Dumas, O. et al. (2021). “Household cleaning and poor asthma control among elderly women”.
The Journal of Allergy and Clinical Immunology: In Practice. url: https://www.sciencedirect.
com/science/article/abs/pii/S2213219821002026?via%3Dihub.

Marbac, M. et al. (2018). “Patterns of cleaning product exposures using a novel clustering ap-
proach for data with correlated variables”. The Annals of Epidemiology 28(8), pp. 563–569.
url: https://www.sciencedirect.com/science/article/abs/pii/S104727971630504X.

Saldanha Gomes, C. et al. (2020). “Clusters of diet, physical activity, television exposure and
sleep habits and their association with adiposity in preschool children: the EDEN mother-
child cohort.” International Journal of Behavioral Nutrition and Physical Activity 17(1). url:
https://ijbnpa.biomedcentral.com/articles/10.1186/s12966-020-00927-6#citeas.

R packages

Biernacki, C., M. Marbac, and V. Vandewalle (2019). ClusVis: Gaussian-Based Visualization of
Gaussian and Non-Gaussian Model-Based Clustering. R package version 1.2.0. url: https:
//CRAN.R-project.org/package=ClusVis.

Cheam, A.M.S., M. Marbac, and P.D. McNicholas (2020). SpaTimeClus: Model-Based Clustering
of Spatio-Temporal Data. R package version 1.0.1. url: https://CRAN.R-project.org/
package=SpaTimeClus.

Du Roy de Chaumaray, M. and M. Marbac (2021b). MNARclust: Clustering Data with Non-
Ignorable Missingness using Semi-Parametric Mixture Models. R package version 1.0.0. url:
https://CRAN.R-project.org/package=MNARclust.

Du Roy de Chaumaray, M., M. Marbac, and F. Navarro (2019). MHMM: Mixture of hidden
Markov models for accelerometer data. R package version 1.0. url: https://cran.rstudio.
com/web/packages/MHMM/index.html.

Marbac, M and M. Sedki (2016a). MHTrajectoryR: Bayesian Model Selection in Logistic Re-
gression for the Detection of Adverse Drug Reactions. R package version 1.0.1. url: https:
//CRAN.R-project.org/package=MHTrajectoryR.

Marbac, M and M. Sedki (2016b). MvBinary: Modelling Multivariate Binary Data with Blocks
of Specific One-Factor Distribution. R package version 1.1. url: https://CRAN.R-project.
org/package=MvBinary.
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Marbac, M and M. Sedki (2020). VarSelLCM: Variable Selection for Model-Based Clustering of
Mixed-Type Data Set with Missing Values. R package version 2.1.3.1. url: https://cran.r-
project.org/web/packages/VarSelLCM/index.html.

Marbac, M. et al. (2021). ClusPred: Simultaneous Semi-Parametric Estimation of Clustering
and Regression. R package version 1.0.0. url: https://CRAN.R-project.org/package=
ClusPred.

1.2 Outline of the manuscript

The manuscript is organized as follows. The rest of this chapter presents a brief introduction to
model-based clustering. The next five chapters describe my contributions on subjects I wish to
continue working on. Chapter 2 presents my contributions in variable selection for model-based
clustering. Chapter 3 presents my contributions to model-based clustering with missingness
under a non-ignorable mechanism. Chapter 4 details a method to consider a clustering output
in a prediction model. Chapter 5 presents two of my applications in biostatistics of functional
data clustering. Chapter 6 presents my contribution to empirical likelihood for semi-parametric
regression model with dependent data. Chapter 7 details my future research projects.

1.3 Brief introduction to model-based clustering

1.3.1 Mixture models

Clustering aims to summarize data sets composed by many subjects with few homogeneous
classes. Indeed, it assesses a partition among the subjects by grouping similar subjects into the
same class while two classes are composed of strongly different subjects. We can split the clus-
tering methods into two families: distance-based methods and model-based methods. Distance-
based methods use a distance or a similarity between subjects to define a notion of homogeneity
within class. Among the the distance-based methods, the two standard approaches are the K-
means clustering (Lloyd (1982), Arthur and Vassilvitskii (2006) and Lu and Zhou (2016)) and
the hierarchical ascendent classification (Ward (1963), Szekely and Rizzo (2005) and Gao, Bien,
and Witten (2020)). Model-based methods (McLachlan and Peel (2000), McNicholas (2016) and
Fruhwirth-Schnatter, Celeux, and Robert (2019)) do not explicitly define a distance between sub-
jects (despite the fact that they implicitly define some distances; for instance Gaussian mixture
models consider a Mahalanobis distance). Indeed, model-based methods achieve the clustering
aim by modelling the distribution of the observed variables. This manuscript focuses on model-
based clustering methods. Thus, we consider data to cluster x = (x1, . . . ,xn) that are composed
of n independent observations xi ∈ X where X depends on the type of variables. We suppose
that each observation arises from the same mixture model with K components defined by the
probability distribution function (pdf)

f(xi;m,θ) =

K∑
k=1

πkfk(xi), (1.1)

where m defines the model (i.e., the number of components, the family of the components,...),
θ ∈ Θm groups all the model parameters including the vector of proportions π = (π1, . . . , πK)>

where 0 < πk and
∑K
k=1 πk = 1, Θm being the space of the parameters of model m. Mixture
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models can be considered in a parametric framework that assumes that the component belongs
to a parametric distribution family such that we have

f(xi;m,θ) =

K∑
k=1

πkfk(xi;αk), (1.2)

where αk groups the parameters of components k, leading to θ = (π>,α>)> where α =
(α>1 , . . . ,α

>
K)> groups the parameters of the mixture components. Mixture models can also be

considered in a semiparametric framework (Lindsay and Lesperance (1995), Hunter, Richards,
and Rosenberger (2011) and Xiang, Yao, and Yang (2019)) that does not assume that the com-
ponents belong to some parametric distribution families. In this case, θ groups the finite dimen-
sional parameters π and the infinite dimensional parameters (i.e., the distribution f1, . . . , fK).

From a mixture model, clustering can be achieved by computing the posterior probabilities
of classification. Indeed, from the observed data x, clustering aims to estimate the partition
z = (z>1 , . . . ,z

>
n )> where zi = (zi1, . . . , ziK)>, zik = 1 if subject i belongs to cluster k and

zik = 0 otherwise. Thus, the posterior probabilities of classification are defined by

P(Zik = 1 | Xi = xi,m,θ) =
πkfk(xi)∑K
`=1 π`f`(xi)

. (1.3)

Note that, in this manuscript, we consider that one class groups the subjects arising from the
same component. Some extension allows some mixture components to be merged to define a
class but these approaches are beyond the scope of this manuscript (see Hennig (2010) and
Baudry et al. (2010) for some extensions and Hennig (2015) for a discussion on the definition
of the clusters). The posterior probabilities of classification permit the incertainty of the class
assignment to be taken into account. Moreover, from these probabilities, a classification rule
permits an hard assignment of the subjects into class to be obtained. Thus, it is standard to
apply the rule of the maximum a posteriori that affects a subject of the class maximizing its
posterior probability of classification.

The choice of considering a parametric or semiparametric framework does not affect the use
of mixture models for clustering because both frameworks allow for computing the posterior
probabilities of classification. Semiparametric mixtures limit the assumptions made on the data
distribution and thus the bias obtained by the parametric mixture models when their parametric
assumptions are violated. Thus, one could be surprised to see that both approaches continue to
be used but there are some technical reasons. First, one can note that some important properties
were first stated for parametric mixtures and were not (until recently) proven for semiparametric
mixtures. Among these properties we have in mind, one can cite the following properties that
we detailled below: identifiability of the parameters, implementation of an algorithm having
the monotonicity property, availability of an approach for model selection (especially for the
estimation of the number of clusters) and properties of the estimators. Note that the three first
properties are now stated for some semiparametric mixtures but there are properties of some
estimators in semiparametric mixtures (bias and variance of the estimators, ideal bandwidth, etc)
that still need to be etablished. One other argument in favour of the parametric mixture models
is their easiness for interpretation. Indeed, clusters could be described by (few) parameters while
descriptive statistics must be computed from the resulting partition when clustering is achieved
by semiparametric mixtures. For these reasons, we believe that both families are of interest
despite the fact that our recent research is more focused on semiparametric approaches. In this
manuscript, we try to compare both families with numerical experiments, when it is possible (see
Chapters 2, 3 and 4). However, these comparison consider continuous data, so are in favour of the
semiparametric mixtures because the developments of these models mainly concerns continuous
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data sets. Note that parametric mixture models have been developed to deal with different types
of variables: contiuous (Banfield and Raftery (1993), Celeux and Govaert (1995) and McNicholas
and Murphy (2008)), categorical (Goodman (1974), Celeux and Govaert (1991) and Gollini
and Murphy (2014)), mixed-type (Hunt and Jorgensen (2011), Kosmidis and Karlis (2016) and
Marbac, Biernacki, and Vandewalle (2017)), functional (Jacques and Preda (2014a), Jacques and
Preda (2014b) and Cheam and Fredette (2020)) or network data (Nowicki and Snijders (2001),
Daudin, Picard, and Robin (2008) and Tabouy, Barbillon, and Chiquet (2020)).

1.3.2 Identifiability of the model parameters

The unicity of the partition, up to a relabelling of the components, is an imperative property
of a clustering method. This property holds true for mixture model whose the parameters are
identifiable. Thus, the parameters of a fixed model m are identifiable when

∀x1 ∈ X , f(x1;m,θ) = f(x1;m, θ̃)⇔ θ = θ̃. (1.4)

Considering parametric components, the first results of identifiability for mixture models are
stated by Teicher (1963), Teicher (1967) and Yakowitz and Spragins (1968). When the data are
categorical, the usual model assumes that the variables are independent within each component.
This model, called the latent class model, does not satisfy the property of identifiability of the
parameters. Thus, a less restrictive property is to consider the generic identifiability of the
parameters that considers that the space where the parameters do not statisfy (1.4) has a null
measure. Allman, Matias, and Rhodes (2009) show that, under a mild relation between the
number of components and the number of modalities of the variables, the latent class model
for categorical data is generically identifiable. Considering the semi-parametric mixture models,
constraints on the component distributions must be made to obtain identifiability. This leads to
two important families of mixtures that are identifiable: a generalization of the latent class model
that assumes that the density of a component is defined as a product of univariate densities or
the location scale mixture models. In this manuscript, especially in Chapter 2, we focus on the
generalization of the latent class model.

1.3.3 Parameter estimation

Parametric mixture models and the EM algorithm To be able to compute the posterior
classification probabilities (1.3) associated with a parametric mixture model (1.2), the model
parameters need to be estimated from the observed sample. Independence between the subjects
implies that, the observed log-likelihood function is defined by

`(θ; x,m) =

n∑
i=1

ln f(xi;m,θ).

The maximum likelihood estimate (MLE), defined by θ̂m = arg maxθ∈Θm `(θ; x,m), cannot
be obtained directly for mixture models and thus requires the use of optimization algorithms.
The popular approach to obtain the MLE is to use the Expectation-Maximization algorithm
(EM algorithm; Dempster, A. P. and Laird, N. M. and Rubin, D. B. (1977), Wu (1983)
and McLachlan and Krishnan (2007)). The use of this algorithm is natural because the EM
algorithm is devoted to the case of inference with missing values (in clustering, the partition
is also interpreted as a missing value). The main idea of the EM algorithm is to consider a
second optimization problem defined from all the data. Thus, we can define the completed data
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log-likelihood (log-likelihood function computed over all the data, including the missing values)
by

`(θ; x, z,m) =

n∑
i=1

K∑
k=1

zik ln (πkfk(xi;αk)) .

The EM algorithm is an iterative algorithm that alternates between a step of data completion
(E-step) that consists of the computation of the conditional expectation of the complete-data

log-likelihood given the parameters defined by Q(θ;θ[s]) := E
[
`(θ;X,Z,m) |X = x,θ[s],m

]
and a step of parameter estimation (M-step) that consists of an updating of the parameters by

maximizing this conditional expectation. Thus, starting from the initial value θ[0], its iteration
s is defined by

• E-step: computation of the posterior probabilities of classification given the parameter θ[s]

tik(θ[s]) =
π

[s]
k fk(xi;α

[s]
k )∑K

`=1 π
[s]
` f`(xi;α

[s]
` )

.

• M-step: updating the parameters

θ[s+1] = arg max
θ∈Θm

n∑
i=1

K∑
k=1

tik(θ[s]) ln (πkfk(xi;αk)) .

The EM algorithm is monotonic (i.e., it increases the observe-data log-likelihood at each itera-
tion) and thus converges into a local optimum of the objective function. Moreover, this algorithm

is deterministic, meaning that the point of convergence only depends on the starting point θ[0].
Hence, this algorithm needs to be run with different starting points (generally randomly sampled)
to obtain the MLE. Note that Balakrishnan, Wainwright, and Yu (2017) developed a theoretical
framework for quantifying when and how quickly EM-type iterates converge to a small neighbor-
hood of a given global optimum of the population likelihood. Moreover, their approach allows for
a characterization of the region of convergence of EM-type iterates to a given population fixed
point, that is, the region of the parameter space over which convergence is guaranteed to a point
within a small neighborhood of the specified population fixed point.

The sucess of the EM algorithm is due to its easy implementation explained by the use
of the complete-data log-likelihood. However, for some models, the computation of Q(θ;θ[s])
can be complex thus making the implementation of the E-step harder. For other models, the
maximization of Q(θ;θ[s]) with respect to θ can lead to a problem with no closed-form thus
making the implementation of the M-step harder. For these reasons, different extensions of
the EM algorithm have been proposed. When the maximization implied by the M-step is not
easy, the Generalized Expectation-Maximization algorithm (see Dempster, A. P. and Laird, N.
M. and Rubin, D. B. (1977) and McLachlan and Krishnan (2007)) and the Expectation and
Conditional Maximization algorithm (see Meng and Rubin (1993) and Liu and Rubin (1994))

can be used. When the computation of Q(θ;θ[s]) is complex, simplifications can be obtained by
using the Monte-Carlo Expectation-Maximization algorithm (see Wei and Tanner (1990), Chan
and Ledolter (1995) and Booth and Hobert (1999)).

Parameter estimation can also be conducted in a Bayesian framework. Again, algorithms
based on data augmentation such as the Gibbs sampler are generally used (Marin, Mengersen,
and Robert (2005)).
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Semi-parametric mixture models and the MM algorithm To estimate the finite and
infinite dimensional parameters, the first approach was to use an EM-like algorithm Benaglia,
Chauveau, and Hunter (2009). Despite the fact that this algorithm is very simple, it suffers
from a lack of theoretical justification. Thus, Levine, Hunter, and Chauveau (2011) propose
using a majorization-minimization algorithm (MM algorithm; see Hunter and Lange (2004) and
Lange (2016)) to perform an estimation by maximizing the smoothed loglikelihood function
defined by

S`(θ; x,m) =

n∑
i=1

ln

(
K∑
k=1

πkN fk(xi)

)
,

where K(u) =
∏J
j=1K(uj) is defined as a product of univariate kernels, h > 0 is a bandwidth,

Kh(xi − u) = h−J
∏J
j=1K(h−1uj) is its rescale version and

N fk(xi) = exp

(∫
Kh(xi − u) ln fk(xi)du

)
.

Similarily to the EM algorithm (in fact EM algorithm is a particular type of MM algorithm),
the MM algorithm is an iterative algorithm that starts at the point θ[0] and whose iteration [s]
is defined by

• Computation of the smoothed posterior probabilities of classification given the parameter
θ[s]

tik(θ[s]) =
π

[s]
k N f

[s]
k (xi)∑K

`=1 π
[s]
` N f

[s]
` (xi; )

.

• Updating the parameters

θ[s+1] = arg max
θ∈Θm

n∑
i=1

K∑
k=1

tik(θ[s]) ln
(
πkN f [s]

k (xi)
)
.

The resulting algorithm has the monotonicity property that justifies its use.

1.3.4 Model selection

Parametric mixture models and information criteria Model selection is an important
issue in model-based clustering. This task consists of finding the best model m̂ among a set
of competing models M. To determine such a model, it is usefull to consider an information
criterion (IC) and thus we have

m̂ = arg max
m∈M

IC(m).

Among the information criteria, the Bayesian Information Criterion (BIC; Schwarz (1978)) is
generally used for model selection in mixture models. This criterion is defined by

BIC(m) = `(θ̂m; x,m)− νm
2

lnn,

where νm is the number of parameters implied by model m. Note that the BIC requires the
estimation of the MLE. The consistency of this criterion is not straightforward because of a
loss of identifiability of the parameters when the model is overfitted (e.g., overestimation of
the number of components) thus leading to an information matrix that is not invertible. To
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circumvent this issue, locally conic-parametrization can be considered (Dacunha-Castelle and
Gassiat (1997) and Dacunha-Castelle and Gassiat (1999)). The idea of this reparametrization
is that a first positive and real parameter measures the “distance” to the true model and the
second multivariate parameter defines some direction of approach to the true model. Thus, this
parametrization allows the distribution of the likelihood ratio to be stated. Based on this result
Keribin (2000) states the consistency the information criteria including the BIC.

If the consistency of the BIC is a blessing, it could also be a curse when its is used for
selecting the model of parametric mixtures on real data. Indeed, in many cases, the parametric
assumptions are not satisfied and thus, in this case, the BIC tends to overestimate the number of
components. Moreover, the BIC does not take into account the objective of clustering: to provide
homogeneous classes that are well-separated. To overcome these limitations, the integrated
complete likelihood (Biernacki, and Govaert (2000) and Biernacki, C. and Celeux, G. and
Govaert, G. (2010)) can be considered. The ICL is defined by

ICL(m) =

∫
Θm

exp(`(θ; x, ẑ,m))p(θ)dθ,

where p(θ) is the prior of θ and ẑ is the partition given by the MAP rule when the posterior
probabilities of classification are computed with the MLE. When the mixture components belong
to the exponential family and when conjugate priors are used, then ICL has a closed form.
Otherwise, one can consider the BIC-like approximation

ICLapprox(m) = `(θ̂m; x,m)− νm
2

lnn+

n∑
i=1

K∑
k=1

ẑik ln tik(θ̂m),

Semiparametric mixture models In semiparametric mixture models, the issue of model
selection is generally restricted to the estimation of the number of components. Moreover, model
selection is complex because there are no theoretical results on the estimator maximizing the
smoothed log-likelihood. However, tools are available if the component densities are defined as
a product of univariate densities (see Kasahara and Shimotsu (2014), Bonhomme, Jochmans,
and Robin (2016b), Bonhomme, Jochmans, and Robin (2016a) and Kwon and Mbakop (2020)).
Works of Kasahara and Shimotsu (2014) and Kwon and Mbakop (2020) are based on the results
of Allman, Matias, and Rhodes (2009) that state the identifiability result. Kasahara and Shi-
motsu (2014) provide an estimation of the lower bound of the number of components by consider-
ing a partition of the support of each variable (e.g., using a decomposition into bins) and by using
the identifiability of the latent class model (i.e., mixture models where each component is a prod-
uct of multinomial distributions). This discretization allows the tensor defining the probability
of each event to considered, while the rank of this tensor permits a lower bound on K to derived.
Note that previous works on non-parametric mixture models considered a bin decomposition (i.e.,
a specific discretization method) to estimate non-parametric mixture models or to study their
identifiability but not for model selection (see Hettmansperger and Thomas (2000), Cruz-Medina,
Hettmansperger, and Thomas (2004) and Elmore, Hettmansperger, and Thomas (2004)). How-
ever, Kasahara and Shimotsu (2014) do not provide a method for selecting the discretization
(i.e., number of elements, locations of those elements). Thus, their method is only consistent
for a lower bound of K (see Section 2.3 in Kwon and Mbakop (2020)). Alternatively, Kwon and
Mbakop (2020) consider an integral operator, identified from the distribution of Xi, that has a
rank equal to K. Noting that the singular values of operators are stable under perturbations
(to handle the fact that this operator is estimated from the observed sample), a thresholding
rule, allowing the number of non-zero singular values to be counted, provides a consistent esti-
mator of K. One advantage of the approach of Kwon and Mbakop (2020) is to avoid the use of
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discretization, even if some connexions can be established with the approach of Kasahara and
Shimotsu (2014) (see Section 2.3 in Kwon and Mbakop (2020)). One elegant property of the
methods of Kasahara and Shimotsu (2014) and Kwon and Mbakop (2020) is that both methods
determine an estimator of K without performing the density estimation for different numbers of
clusters and without determining ahead a maximum number of clusters (contrary to the use of
the BIC for selection the number of components of a parametric mixture that requires fixing a
maximum number of clusters in advance). Thus, those methods start with a step of model selec-
tion followed by the estimation of the parameters for the selected model. This is quite unusual.
Indeed, when model selection is conducted for a parametric mixture model via an information
criterion, parameter estimation needs to be first performed for each competing model in order
to compute the information criterion. Note that the use of the identifiability results stated by
Allman, Matias, and Rhodes (2009) is crucial for studying the rank of the objects considered
by Kasahara and Shimotsu (2014) and Kwon and Mbakop (2020). The approaches of Kasahara
and Shimotsu (2014) and Kwon and Mbakop (2020) are mainly based on the distribution of a
pair of variables. Thus, if the number of variables J is large, computational issues can arise
while considering all possible pairs of variables. It restricts the use of their methods to data
sets composed of few variables. Moreover, the nature of the approach makes a variable selection
impossible. In Chapter 2, we propose a new method for model selection that also permit variable
selection. This method also relies on a discretization step.
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Chapter 2

Feature selection in clustering
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2.1 Introduction

2.1.1 State of the art

This chapter focuses on a full model selection for parametric and non-parametric mixture models
(i.e., estimating the number of components and the subset of the relevant variables) which is a
crucial step in model-based clustering. Like any statistical method, the behavior of clustering
methods can be deteriorated in high dimensions. To circumvent this issue, the analysis can be
conducted by parsimonious approaches that add constraints on the parameter space. Inspired by
the success of variable selection methods in regression, several authors have considered variable
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selection for clustering. The main idea is to consider that only a small subset of the variables
explain the true underlying clusters. Thus, selecting variables is very challenging in clustering
because the role of a variable (relevant or irrelevant for clustering, see below for the definition of
these roles) is defined from a variable that is not observed. Thus, the selection of the variables and
the clustering need to be performed simultaneously. Note that selecting the variables in clustering
has two strong benefits. First, it facilitates the interpretation of the different components as it
only has to be done on the subset of discriminative variables. Second, it improves the accuracy
of the estimators because it reduces the number of estimators to be considered. Indeed, by
considering a n-sample arisen from a mixture of two isotropic Gaussian distributions of dimension
J , Azizyan, Singh, and Wasserman (2013) show that the minimax expected loss (worst case
expected loss for the best estimator) of the assignment function, is of order (ignoring constants
and log terms) κ−2

√
J/n where κ is the signal to noise ratio (i.e., the ratio of mean separation

to standard deviation). However, if only s variables are relevant for clustering, with s << J ,
feature selection can improve the accuracy of clustering. Indeed, if the number s is known but the
subset of the s relevant variables is estimated via principal component analysis, then Azizyan,
Singh, and Wasserman (2013) show that that the minimax expected loss is upper bounded
by κ−1(s2(ln J)/n)1/4. Thus, if s is sufficiently small, the accuracy of the estimated partition is
improved by the variable selection. Note that the mixture of two isotropic Gaussian distributions
makes variable selection easy but this is not the case for a general mixture (e.g., it is no longer
the case for a mixture of three isotropic Gaussian distributions of a mixture of two homoscedastic
Gaussian distributions). Thus, feature selection in clustering requires the development of specific
methods which achieve this aim via regularization methods or via model selection.

In model-based clustering, the issue of detection of the role of the variables has been in-
troduced by Law, Figueiredo, and Jain (2004) and Tadesse, Sha, and Vannucci (2005). These
authors consider that variables can be divided into two subsets: the relevant variables having
different distributions for the mixture components and the irrelevant variables having the same
distribution over the mixture components. In a parametric framework, a model m is defined by
the number of components, by the family of the components and by the role of the variables.
Since authors assume that irrelevant variables are independent of the relevant ones, the density
of xi is defined by

f(xi;m,θ) = φ(xWi ;γ, τ )

K∑
k=1

πkφ(xSi ;µk,Σk), (2.1)

where θ groups all the parameters, xWi corresponds to the set of irrelevant variables which
follows a multivariate Gaussian distribution with mean γ and covariance matrix τ , and where
xSi corresponds to the set of the relevant variables. Moreover, Law, Figueiredo, and Jain (2004)
assume conditional independence, so covariance matrices Σk are diagonal, while Tadesse, Sha,
and Vannucci (2005) do not impose such constraint. Considering the distribution defined by
(2.1), parameter estimation can be easily achieved by maximizing the likelihood via an EM
algorithm. However, model selection is challenging due to the large number of models. Indeed,
considering that the maximum number of clusters is Kmax, then the number of competing models
is Kmax2J .

Raftery and Dean (2006) consider this independence assumption between the relevant and
the irrelevant variables as too stringent. Thus, they introduce the notion of redundant variables
denoted by xUi . They consider that the redundant variables are conditionally independent of
the class membership given the relevant variables. More precisely, the conditional distribution
of the redundant variables follows a multivariate linear regression on all the relevant variables.
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Therefore, the model density is

f(xi;m,θ) = φ(xWi ;γ, τ )φ(xUi ; a + xSi b,Ω)

K∑
k=1

πkφ(xSi ;µk,Σk),

where vector a corresponds to the intercepts of the linear regression, b is the matrix of the coef-
ficients, and Ω is the variance matrix of the regression. Raftery and Dean (2006) proposed per-
forming model selection by optimizing the BIC via a deterministic procedure (backward-forward)
that the authors admit being sub-optimal. This method is implemented in the R package clust-
varsel (Scrucca and Raftery (2014)). Maugis, Celeux, and Martin-Magniette (2009a) note that
the previous method involves many parameters since all the relevant variables are considered as
linearly dependent of all the relevant ones. Hence, they propose detecting the predictor variables
in each linear regression during the model selection. The difficult issue of the identifiability of
such a method has been studied in Maugis, Celeux, and Martin-Magniette (2009a). The general
form of their proposal, as presented in Maugis, Celeux, and Martin-Magniette (2009b), involves
three possible roles for the variables: the relevant variables xSi , the redundant variables xUi and
the independent variables xWi . Moreover, the redundant variables xUi are only explained by a
subset xRi of the relevant variables, while the variables xWi are assumed to be independent of
the relevant variables. Therefore, the model, called SRUW, has the following density

f(xi;m,θ) = φ(xWi ;γ, τ )φ(xUi ; a + xRi b,Ω)

K∑
k=1

πkφ(xSi ;µk,Σk), (2.2)

where the covariance matrices Ω and τ can be spherical, diagonal or full. Their method improves
the results of the variable selection but again complicates the difficult challenge of model selec-
tion. Since the SRUW model collection is large, two embedded backward or forward stepwise
algorithms are used for model selection: one for the clustering and one for the linear regression.
A backward algorithm allows one to start with all variables in order to take variable dependen-
cies into account. A forward procedure, starting with an empty clustering variable set or a small
variable subset, could be preferred for numerical reasons if the number of variables is large. Thus,
the optimization procedure is deterministic and performs many model comparisons to optimize
the BIC. Therefore, it can suffer from local optima and it requires many calls of EM algorithm
that makes the model selection time consuming when J is large. This procedure is implemented
in the C++ code called SelvarClustIndep (Maugis (2009)).

Regularization methods are efficient approaches for feature selection in clustering. Pan
and Shen (2007) propose adapting the approach of the Lasso regression (Tibshirani (1996))
to the clustering. Thus, an `1 penalty is applied on the means of the Gaussian distribu-
tions. Obviously, this approach has to be applied on the centered variables x̄i = xi − x̄ where
x̄ = 1

n (
∑n
i=1 xi1, . . . ,

∑n
i=1 xiJ). Moreover, the authors propose using a parsimonious Gaussian

mixture model since they consider the homoscedastic model with diagonal covariance matrices:
Σ1 = . . . = ΣK = diag(σ2

1 , . . . , σ
2
J). For a fixed penalty λ > 0, the aim is to maximize the

objective function F (.;λ) with

F (θ;λ) =

n∑
i=1

ln

(
K∑
k=1

πkφ(xi;µk,Σ1)

)
− λ

K∑
k=1

||µk||1.

This maximization is performed by an EM algorithm for different values of λ used. For each
value of λ, one model is returned. Thus, the model selection is performed, among the models
resulting from a specific penalty value, by the BIC. However, this criterion is not computed with
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the MLE but with the estimate maximizing the objective function F (.;λ). The approach of Pan
and Shen (2007) has been extended to the heteroscedastic diagonal Gaussian mixture (Xie, Pan,
and Shen (2008)), then to the general Gaussian mixture (Zhou, Pan, and Shen (2009)). For this
general case, a penalty is also used for the covariance matrices. Thus, the objective function
implies two penalties λ1 > 0 and λ2 > 0 and is defined by

F (θ;λ1, λ2) =

n∑
i=1

ln

(
K∑
k=1

πkφ(xi;µk,Σk)

)
− λ1

K∑
k=1

||µk||1 − λ2

K∑
k=1

||Σ−1
k ||1.

Note that the penalization is applied tp the inverse of the covariance matrices to permit the
introduction of independence between variables. Meynet (2012) shows that the `1 penalty can
lead to biased estimates. Thus, she proposed to use the `1 penalty method only for setting a filter
among the competing models, since this procedure provides only few different models. Therefore,
it is doable to perform a classical MLE inference on this model. Finally, the model selection is
achieved with a BIC-like criterion where the penalty term is modified for taking the dimension
of the model space into account. The R package SelvarMix uses the same approach to carry out
the model selection when the model defined by (2.2) is considered. It performs the estimation of
the model SRUW in three steps: determination of a subset of models with the `1 based method,
maximum likelihood inference for each model retained by the previous step, selection of the best
model with BIC criterion. Among the regularization methods, the sparse K-means (Witten and
Tibshirani (2010)) is the most popular because it requires a small computational overhead and is
able to manage very high-dimensional datasets. The approach uses a lasso-type penalty to select
the set of variables which are relevant for the clustering. Thus, clustering and variable selection
are simultaneously achieved by maximizing

F (θ, z) =

J∑
j=1

wj

(
1

n

n∑
i=1

n∑
i′=1

(xij − xi′j)2 −
K∑
k=1

1

nk

n∑
i=1

n∑
i′=1

zikzi′k(xij − xi′j)2

)
,

subject to the constraints that

‖w‖2 ≤ 1, ‖w‖1 ≤ s and wj ≥ 0, ∀j.

Thus, the weights wj define the impact of each variable on the partition. Sparsity is added on
w by considering a suitable choice of the tuning parameter s. The authors proposed selecting a
suitable value of s with an extension of the gap statistics (Tibshirani, Walther, and Hastie (2001)).

2.1.2 Framework of the chapter

In this chapter, we focus on a full model selection for parametric (see Section 2.2) and non-
parametric (see Section 2.2) mixture models where no more assumption are made on the compo-
nent distribution except to be defined as a product of univariate densities (see Chauveau, Hunter,
and Levine (2015) for a review). Thus, we consider a sample composed of n independent obser-
vations X1, . . . ,Xn where Xi = (Xi1, . . . , XiJ)> ∈ X is the vector composed of the J variables
collected on subject i defined on the space X = X1 × . . .× XJ where each Xj is compact. Each
Xi is identically distributed according to the mixture of K components defined by the density

f(xi) =

K∑
k=1

πk

J∏
j=1

ηkj(xij), (2.3)

where the univariate densities ηkj are first considered to be parametric, and then are considered
to be non-parametric. Model (2.3) has been used in different fields such as statistics (Hall and
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Zhou (2003), Kasahara and Shimotsu (2014), Chauveau, Hunter, and Levine (2015), Zheng and
Wu (2020) and Kwon and Mbakop (2020)) but also in behavioral science Clogg (1995), econom-
etry (Hu, McAdams, and Shum (2013) and Compiani and Kitamura (2016)) or sociology (Ha-
genaars and McCutcheon (2002)). One standard situation where the conditional independence
assumption implied by (2.3) holds true, is in the framework of the standard repeated-measure
random-effect model, where the subject-level effect is replaced by a component-level effect. More-
over, this assumption is relevant in the context of high-dimensional data that is the situation
where the feature selection has the strongest impact. Note that redundant variables cannot
be considered for model (2.3), as it requires modeling intra-component dependencies. In this
chapter we consider only two types of variables: the relevant and the irrelevant for clustering.
The model-based framework implies that the selection of the variables falls into the scope of
model selection. Thus, variable j is said to be irrelevant for clustering if η1j = . . . = ηKj . Note
that in the case of parametric distributions, the equality between the ηkj is equivalent to the
equality of their parameters. In this context, a model m = {K,Ω} is defined by the number of
components K and the indexes of the relevant variables Ω ⊂ {1, . . . , J}. Note that in the case
of parametric components, the family of the distributions is supposed to be known. If different
families are considered (or different parsimonious constraints), then the family of the distribution
must be included in the definition of m. Therefore, considering the task of full model selection
in (2.3) implies that each Xi is identically distributed according to a non-parametric mixture of
K components defined by the density

f(xi;m,θ) =

∏
j∈Ω̄

η1j(xij)

 K∑
k=1

πk
∏
j∈Ω

ηkj(xij)

 , (2.4)

where Ω̄ = {1, . . . , J} \Ω contains the indices of the irrelevant variables for clustering, θ ∈ Θm

groups all the parameters and Θm is the parameter space implied by m. Thus, in this chapter,
we define the objective of full model selection by the double objective of estimating the number
of components K and the subset of relevant variables Ω, as well.

2.1.3 Contributions to variable selection in model-based clustering

In a parametric framework, variable selection in (2.4) can be performed via an information
criterion but it leads to computational issues because the number of competing models is of
order 2J . As a first contribution, we propose in Marbac and Sedki (2017b), to use a new
information criterion based on the integrated complete-data likelihood and named MICL. This
criterion does not require the maximum likelihood estimate and its maximization appears to be
simple and computationally efficient. The original contribution of our approach is to perform
model selection without requiring any parameter estimation. Parameter inference is then needed
only for the unique selected model. This approach is used for the variable selection of a Gaussian
mixture model with conditional independence assumed. As a second contribution, we present in
Marbac, Sedki, and Patin (2020), two approaches for performing variables selection in (2.4) for
the context of mixed-type data. The first approach optimizes the BIC with a modified version of
the standard EM algorithm that simultaneously performs a maximum likelihood estimation of
the parameters and the estimation of the subset of discriminative variables, for a fixed number of
components. The second method performs model selection without requiring parameter inference
by maximizing the MICL criterion. As a third contribution, we implemented both approaches
in the R package VarSelLCM (Marbac and Sedki (2020)) available on CRAN and described
in Marbac and Sedki (2018). This package permits a collaboration in epidemiology (Saldanha
Gomes et al. (2020)) to be established for identifying clusters of boys and girls based on diet,
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sleep and activity-related behaviors and their family environment at 2 and 5 years of age, and to
assess whether the clusters identified, varied across maternal education levels and were associated
with body fat at age 5. Finally, our last contribution, in the parametric framework, is to extend
in Marbac and Vandewalle (2019), the case of feature selection in clustering to the research of
multiple partitions. Section 2.2 is devoted to the developments in the parametric context.

Note that all existing methods of variables selection in model-based clustering are restricted
to parametric distributions. Thus, if the parametric assumptions are violated, bias can occur
for the estimator of the number of components or on the subset of discriminative variables. In
Du Roy de Chaumaray and Marbac (2021a), we address the problem of full model estimation
for non-parametric finite mixture models. Section 2.3 is devoted to the developments in the
non-parametric context.

2.2 Full model selection for parametric mixture models

This section presents our contribution in feature selection for model-based clustering in a para-
metric framework. Section 2.2.1 presents the parametric context for feature selection in cluster-
ing. Section 2.2.2 is devoted to the feature selection via the BIC presented in Marbac, Sedki,
and Patin (2020). Section 2.2.3 illustrates the relevance of the procedure with the application
in epidemiology that investigates the adiposity in preschool children and that was considered in
Saldanha Gomes et al. (2020). Section 2.2.4 is devoted to the feature selection via the MICL
presented in Marbac and Sedki (2017b). Section 2.2.5 illustrates the relevance of the procedure
with application to the human population genomic considered in Marbac, Sedki, and Patin (2020)
Section 2.2.6 presents the extension of the BIC and MICL approaches to cases of multiple parti-
tions introduced in Marbac and Vandewalle (2019). Numerical applications are performed with
the R package VarSelLCM presented in Marbac and Sedki (2018).

2.2.1 Model-based clustering for mixed-type data

Data to analyze consists of n independent observations x = (x>1 , . . . ,x
>
n )>, where each observa-

tion xi = (xi1, . . . , xiJ) is defined over the space X1 × . . . × XJ , Xj depending on the nature of
variable j. Hence, Xj = R (N, {1, . . . ,mj} respectively) if variable j is continuous (integer and
categorical with mj levels, respectively). Observations are assumed to arise independently from
the parametric mixture model defined by (2.4). Thus, each distribution ηkj is considered to have a
parametric form fkj(·;αkj). The univariate marginal distribution of variable j depends on its def-
inition space, therefore fkj(·;αkj) is considered as the pdf of a Gaussian distribution N (µkj , σ

2
kj)

(Poisson P(αkj) and multinomial M(αkj1, . . . , αkjmj )) if variable j is continuous (integer and
categorical, respectively) with αkj = (µkj , σkj) (αkj = αkj and αkj = (αkj1, . . . , αkjmj )

>, re-
spectively). The probability distribution function (pdf) for model m = {K,ω} and parameters
θ is defined by

f(xi;m,θ) =

 ∏
j∈Ωc

f1j(xij ;α1j)

 K∑
k=1

πk
∏
j∈Ω

fkj(xij ;αkj)

 , (2.5)

where θ groups all the model parameters: i.e., πk is the proportion of component k such that 0 <
πk ≤ 1 and

∑K
k=1 πk = 1, and the parameters of component k denoted by αk = (α>k1, . . . ,α

>
kJ)>.

Considering the equalities between the parameters defined bym, the observed-data log-likelihood

24



of model m is defined by

`(θ|m,x) =
∑
j∈Ωc

n∑
i=1

ln f1j(xij ;α1j) +

n∑
i=1

ln

 K∑
k=1

πk
∏
j∈Ω

fkj(xij ;αkj)

 .

The MLE of the parameters corresponding to the irrelevant variables are explicit, but not those
of the proportions and the relevant variables. Thus, it is standard to use an EM algorithm
to maximize the observed-data log-likelihood. Here, the partition among the observations is
unobserved. We denote this partition by z = (z1, . . . ,zn) with zi = (zi1, . . . , ziK), where zik = 1
if observation i arises from component k and zik = 0 otherwise. Hence, the complete-data
likelihood of model m (log-likelihood computed on the observed and unobserved variables) is
defined by

`(θ|m,x, z) =
∑
j∈Ωc

n∑
i=1

ln f1j(xij ;α1j) +

K∑
k=1

n∑
i=1

zik lnπk +
∑
j∈Ω

K∑
k=1

n∑
i=1

zik ln fkj(xij ;αkj).

The EM algorithm that gives the MLE starts from the initial value θ[0] randomly sampled and
its iteration [r] is defined by

E-step Computation of the fuzzy partition t
[r]
ik := E[Zik|xi,m,θ[r−1]], hence

t
[r]
ik :=

π
[r−1]
k

∏J
j=1 fkj(xij ;α

[r−1]
kj )∑K

`=1 π
[r−1]
`

∏J
j=1 f`j(xij ;α

[r−1]
`j )

,

M-step Maximization of the expected value of the complete-data log-likelihood over the param-
eters,

π
[r]
k =

n
[r]
k

n
and α

[r]
kj =

{
α
?[r]
jk if j ∈ Ω

α̃1j otherwise
,

where n
[r]
k =

∑n
i=1 t

[r]
ik , α̃1j = arg maxα1j

∑n
i=1 ln f1j(xij ;α1j) is the MLE for an irrelevant

variable, and α
?[r]
jk = arg maxαkj

∑n
i=1 t

[r]
ik ln fkj(xij ;αkj) is the estimate for an relevant variable.

This algorithm converges to a local optimum of the observed-data log-likelihood. Thus, the MLE
for the modelm, denoted by θ̂m, is obtained by performing many different random initializations
of θ[0] .

Model selection generally aims to find the model m̂ which maximizes a criterion among a
collection of competing models M. The number of components of the competing models is
usually bounded by a fixed value Kmax. Thus, we can define the set of the competing models by

M = {m = {K,Ω} : K ∈ {1, . . . ,Kmax} and Ω ⊆ {1, . . . , J}} .

Due to the cardinality of M, it is no possible to use an exhaustive approach for determining
the best model (i.e., computation of the information criterion for each competing model). Thus,
standard model-based approaches perform model selection according to the BIC via a determin-
istic algorithm (e.g., stepwise algorithm). In the next section, we show that, for model (2.5), a
specific EM algorithm can simultaneously perform variable selection according to the BIC and
maximum likelihood inference, thus avoiding the issues of suboptimality and computational time
of the stepwise algorithms. Then, we propose another procedure that performs variable selec-
tion without performing parameter estimation according to a criterion that considers the task of
clustering.
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2.2.2 Full model selection via BIC

In a Bayesian framework, the best model is the model having the greatest probability a posteriori.
Thus, by assuming uniformity for the prior distribution of m, a natural estimator of m is the
model m̂ defined by

m̂ = arg max
m∈M

p(x|m),

where p(x|m) is the integrated likelihood defined by

p(x|m) =

∫
Θm

p(x|m,θ)p(θ|m)dθ,

where p(x|m,θ) =
∏n
i=1 f(xi;m,θ) is the likelihood function, and p(θ|m) is the pdf of the prior

distribution of the parameters. Unfortunately, the integrated likelihood is intractable, but many
methods permit approximations to its value (Friel and Wyse (2012)). The most popular approach
consists of using the BIC, which approximates the logarithm of the integrated likelihood by a
Laplace approximation, and thus requires MLE. The BIC is defined by

BIC(m) = ln p(x|m, θ̂m)− νm
2

lnn,

where νm is the number of independent parameters required by m.
For a fixed number of components K, selecting the variables necessitates the comparison of

2J models. Therefore, an exhaustive approach approximating the integrated likelihood for each
competing model is not feasible. Instead, Raftery and Dean (2006) carry out model selection via
deterministic algorithms (like a stepwise method). However, this approach cannot ensure that the
model maximizing the BIC is obtained. Moreover, it can be computationally expensive if many
variables are observed. In Marbac and Sedki (2017b) and in Marbac, Sedki, and Patin (2020),
model selection is an easier problem, because the model assumes within-component independence.
This assumption permits the direct maximization of any penalized log-likelihood function defined
by

`pen(θ|m,x) = `(θ|m,x)− νmc,
for any constant c. This function is maximized by using a modified version of the EM algorithm
Green (1990). Hence, we introduce the penalized complete-data log-likelihood function

`pen(θ|m,x, z) = `(θ|m,x, z)− (K − 1)c− cK
∑
j∈Ω

νj − c
∑
j∈Ωc

νj ,

where νj is the number of parameters for one univariate marginal distribution of variable j (i.e.,
νj = 2 if the variable is continuous, νj = 1 if the variable is integer and νj = mj − 1 if the
variable is categorical with mj levels). This modified version of the EM algorithm finds the
model maximizing the penalized log-likelihood for a fixed number of components. It starts at
an initial point {m[0],θ[0]} randomly sampled with m[0] = {K,Ω[0]}, and its iteration [r] is
composed of two steps:
E-step Computation of the fuzzy partition

t
[r]
ik :=

π
[r−1]
k

∏
j∈Ω[s] fkj(xij ;α

[r−1]
kj )∑K

`=1 π
[r−1]
`

∏
j∈Ω[s] f`j(xij ;α

[r−1]
`j )

,

M-step Maximization of the expectation of the penalized complete-data log-likelihood over
{Ω,θ}, hence m[r] = {K,ω[r]} with

Ω[r] =
{
j : ∆

[r]
j > 0

}
, π

[r]
k =

n
[r]
k

n
and α

[r]
jk =

{
α
?[r]
kj if j ∈ Ω[r]

α̃kj otherwise
,
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where ∆j is the difference between the maximum of the expected value of the penalized complete-
data log-likelihood obtained when variable j is relevant and when it is irrelevant such that

∆j =

K∑
k=1

n∑
i=1

t
[r]
ik

(
ln fkj(xij ;α

?[r]
kj )− ln f1j(xij ; α̃1j)

)
− (K − 1)νjc,

where α
?[r]
kj and α̃1j are defined in 2.2.1. The resulting algorithm keeps the property of mono-

tonicity such that for any iteration [r]

`pen(θ[r]|m[r],x, z) ≥ `pen(θ[r−1]|m[r−1],x, z).

Note that this algorithm can be implemented because of the assumption of independence within
components. Indeed, this assumption defines the penalized log-likelihood function as a sum of
independent functions which only depend on the the partition and on a single variable. Thus,
its optimization can be achieved by J independent optimizations. In the case of categorical
variables, identifiability requires considering at least three relevant variables (the exact relation
between the maximum number of components and the number of levels of the variables is stated
in Theorem 4 in Allman, Matias, and Rhodes (2009)). This constraint can be easily considered
at the M-step to ensure that the estimated model is identifiable. Thus, in the case of categorical
variables, we suggest defining

Ω[r] =
{
j : ∆

[r]
j > 0

}
∪∆

[r]
(3),

where ∆
[r]
(3) contain the three values of j ∈ {1, . . . , J} which lead to the three greatest values

of ∆
[r]
j . To obtain the pair {Ω,θ} maximizing the penalized observed-data log-likelihood, for a

fixed number of components, many random initializations of this algorithm should be performed.
Hence, the pair {m,θ} maximizing the penalized observed-data log-likelihood is obtained by
performing this algorithm for every values of K between one and Kmax. By considering c =
(lnn)/2, this algorithm carries out the model selection according to the BIC. Moreover, other
criteria can also be considered like the AIC by setting c = 1.

2.2.3 Application to investigating adiposity in preschool children

Background: Despite the growing interest in the relation between adiposity in children and
different lifestyle clusters, few studies have used a longitudinal design to examine a large range
of behaviors in various contexts, in particular eating-related and sleep-related routines, and few
studies have examined these factors in young children. The objectives of this study were to
identify clusters of boys and girls based on diet, sleep and activity-related behaviors and their
family environment at 2 and 5 years of age, and to assess whether the clusters identified varied
across maternal education levels and were associated with body fat at age 5.

Methods: The EDEN mother-child study is a prospective cohort designed to assess prenatal
and postnatal determinants of child health and development. This cohort is composed of 2002
pregnant women (less than 24 weeks of gestation) aged 18–44 years recruited between 2003 and
2006 in two university hospitals located in Nancy and Poitiers, France. Exclusion criteria were
multiple pregnancies, history of diabetes, inability to speak or read French and any plan to move
out of the region within the next 3 years. A total of 1903 children were born alive and then
followed up periodically by postal questionnaires and clinical examinations. At age 2 and 5,
respectively 1436 and 1195 parents (usually the mother) completed a postal questionnaire, the
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data of which were used to construct the obesity-related behavior clusters of children. At 5 years
old, 1101 children had a full clinical examination including anthropometric measurements and
bioelectrical impedance analysis (BIA). Clustering is achieved with model (2.5) by considering a
full model selection is performed via the BIC according to the approach described in Section 2.2.2.
Each subject is described by 44 variables (2 continuous) related to the child’s diet, PA (physical
activity), TV use and sleep at age 2 and 40 variables (4 continuous) variables, at age 5 (see
Saldanha Gomes et al. (2020) for more details).

One analysis is performed per gender. For each gender, two independent clusterings are
performed. One clustering considers the variables measured at age 2 and the second clustering
considers the variables measured at age 5. To examine how clusters of children evolved from the
ages of 2 to 5 years, we cross-classified them according to their cluster membership at both ages
and present the proportion of children from cluster at age 2 that moved to each cluster at age
5. Based on the cross-classification, each child was assigned to a given cluster evolution path
from 2 to 5 years of age. Gender-stratified linear regression models were then used to assess
the association between body fat percentage at 5 years and cluster membership at age 2 and at
age 5 as well as the cluster evolution path. The reference in each case was the most favorable
(a priori) cluster/ evolution path. These analyses were conducted in two steps. Model 1 was
adjusted for study center, exact age at the 5-year clinical examination, and predicted BMI at
age 2 (longitudinal and cluster evolution path analyses only). Model 2 was further adjusted for
maternal education.

Results: At age 2, the selected model contains two clusters with 15 relevant variables for
boys and 17 for girls. In both genders, the most discriminant variables corresponded to intake
of energy-dense nutrient-poor (EDNP) food items such as soft drinks and processed and fast
foods (e.g., processed meat, pizzas, French fries and potato chips). Because the two clusters
were essentially characterized by opposite eating habits, cluster 1 was labeled ‘unhealthy eating’
and cluster 2 ‘healthy eating’. Among girls, the two clusters also had contrasting TV exposure
(TV watching time and TV on during meals), PA (physical activity) and sleeping habits, with
low TV/PA and regular sleeping routines clustered positively with healthy eating habits. The
probability of belonging to the assigned cluster exceeded 80% for 88% of the boys and 80% of
the girls. Children whose mothers had a lower educational level were more likely to belong to
the ‘unhealthy eating’ cluster (p-value < 10−4).

At age 5, the selected model contains 2 clusters and 14 relevant variables for the boys, and 4
clusters and only 5 relevant variables for the girls. In both genders, TV exposure variables were
the most discriminant. In boys, the two clusters differed mainly regarding their TV exposure
and eating habits (intake of EDNP food, snacking, soft drinks at mealtimes), with high TV
exposure clustered positively with unhealthy eating habits (cluster 1 was therefore labeled ‘high
TV–unhealthy eating’ and cluster 2 labeled ‘moderate TV–healthy eating’). The two clusters also
differed regarding types of PA: boys in the ‘high TV–unhealthy eating’ cluster spent more time
walking, while boys in the ‘moderate TV–healthy eating’ cluster were more likely to participate
in organized sports activities. Membership probabilities were greater than 80% for 85% of boys.
Boys whose mothers had a lower educational level were more likely to belong to the ‘high TV–
unhealthy eating’ cluster (p-value < 10−4). About girls, the four clusters that emerged were
mainly characterized by different activity (TV/PA) patterns, with TV viewing time being by
far the most discriminant variable (mean TV time across clusters ranged from 35 to 174 min).
The clustering of TV exposure and PA (outdoor playing/walking) was complex, with all possible
combinations of favorable and unfavorable behaviors observed; cluster 1 was labeled ‘low TV– low
outdoor PA’, cluster 2 ‘moderate TV–rather high outdoor PA’, cluster 3 ‘high TV–low outdoor
PA’ and cluster 4 ‘very high TV–high outdoor PA’. TV during meals and sweetened beverages

28



at mealtimes clustered positively with overall TV time. Membership probabilities exceeded 80%
for more than 60% of the girls assigned to clusters 1 to 3 and for more than 80% of those assigned
to cluster 4. Girls whose mothers had a low educational level were more likely to belong to the
‘very high TV–high outdoor PA’ cluster whereas girls with more highly educated mothers were
more likely to belong to the ‘low TV–low outdoor PA’ cluster (p-value < 10−4).

Figure 2.1 shows how children evolved from each cluster at age 2 into clusters at age 5. In
both genders, a higher proportion of mothers of children from the ‘unhealthy eating’ versus the
‘healthy eating’ age 2 cluster did not complete the 5-year-questionnaire (29% vs. 20%; p-value
< 10−4). The mothers who did not respond had a higher rate of ‘no diploma’ (31% vs. 22%;
p-value < 10−3). Although the clusters differed at age 2 and age 5, children who belonged to the
‘unhealthy eating’ age 2 cluster were more likely to move to the age 5 clusters characterized by
unhealthy eating habits and/or higher TV exposure. There was also a relatively high cross-over
between predominantly favorable and unfavorable (based on eating habits and TV) clusters.
For example, of the girls in the ‘healthy eating’ cluster at age 2, the same proportions moved
to the age 5 clusters with high and with low TV exposure. The associations between cluster
membership and body fat percentage at 5 years are presented in Saldanha Gomes et al. (2020).
The clusters at age 2 were not significantly associated with body fat percentage at 5 years
for either gender. Cross-sectional analysis at 5 years showed a significant association between
cluster membership and body fat percentage only in girls, with a trend towards increasing body
fat percentage that increases with increasing TV exposure across clusters. With the ‘moderate
TV–rather high outdoor PA’ cluster as the reference, girls belonging to the ‘very high TV–high
outdoor PA’ cluster had significantly higher body fat percentage, even after adjustment for
maternal education level (+ 1.53%). Examination of the evolution of the clusters from 2 to 5
years of age showed that, compared with the girls who moved from the ‘healthy eating habits’
cluster at age 2 to the ‘moderate TV–rather high outdoor PA’ cluster at age 5 (reference group),
those who moved from the ‘unhealthy eating habits’ cluster at age 2 to the ‘very high TV–high
outdoor PA’ cluster at age 5 had a significantly higher body fat percentage (+1.82%) at age 5
for a given BMI at age 2, and even after adjustment for maternal education level. There was no
significant association between the cluster evolution path and body fat percentage in boys.

Conclusions: At 2 years of age, two clusters emerged that were essentially characterized by
opposite eating habits. At 5 years of age, TV exposure was the most distinguishing feature, but
the numbers and types of clusters differed by gender. An association between cluster membership
and body fat was found only in girls at 5 years of age, with girls in the cluster defined by very high
TV exposure and unfavorable mealtime habits (despite high outdoor playing and walking time)
having the highest body fat. Girls whose mother had low educational attainment were more
likely to be in this high-risk cluster. Girls who were on a cluster evolution path corresponding
to the highest TV viewing time and the least favorable mealtime habits from 2 to 5 years of
age had higher body fat at 5 years of age. Efforts to decrease TV time and improve mealtime
routines may hold promise for preventing overweight in young children, especially girls growing
up in disadvantaged families. These preventive efforts should start as early in life as possible,
ideally before the age of two, and should be sustained over the preschool years.

2.2.4 Full model selection via MICL

Although the BIC has good properties of consistency, it does not focus the clustering goal
that is to provided homogeneous clusters which are well-separated. Thus, criteria based on the
complete-data likelihood have been introduced such as the integrated complete-data likelihood
(ICL; Biernacki, and Govaert (2000)). The ICL can be analyzed as the integrated likelihood
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Figure 2.1: Distribution of children in clusters at 5 years among clusters at 2 years per gender.

plus a penalty term that reflects the entropy between clusters. Such criterion does not have the
property of consistency (see Baudry (2015) to investigate the consistency of ICL and a comparison
between BIC and ICL). However, ICL performs well in practice because it generally returns less
clusters that the BIC and seems to be more robust to the misspecification of the components.
Note that the BIC involves an approximation in terms that is asymptotically negligible but that
can deteriorate the performances of BIC for a finite sample, especially when n is small or when
M is large. ICL permits this issue to be circumvented, because it is an exact criteria Biernacki,
C. and Celeux, G. and Govaert, G. (2010). The integrated complete-data likelihood is defined by

p(x, z|m) =

∫
Θm

p(x, z|m,θ)p(θ|m)dθ.

where p(x, z|m,θ) =
∏n
i=1

∏K
k=1[πkfk(xi;αk)]zik is the complete-data likelihood. When con-

jugate prior distributions are used, the integrated complete-data likelihood has a closed form.
Thus, we assume independence between the prior distributions, such that

p(θ|m) = p(τ |m)

J∏
j=1

p(α•j |m),

with

p(α•j |K,m) =

{ ∏K
k=1 p(αkj) if j ∈ Ω

p(α1j)
∏K
k=1 1{αkj=α1j} if j ∈ Ωc ,

where α•j = (α1j , . . . ,αKj). To obtain a closed-form of the integrated complete-data likelihood,
we use conjugate prior distributions. Thus, τ |m follows a Dirichlet distribution Dg(u, . . . , u).
If variable j is continuous, p(αkj) = p(σ2

kj)p(µkj |σ2
kj) where σ2

kj follows an Inverse-Gamma
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distribution IG(aj/2, b
2
j/2) and µkj |m, σ2

kj follows a Gaussian distribution N (cj , σ
2
kj/dj). If

variable j is integer, then αkj follows a Gamma distribution Ga(aj , bj) while αkj follows a
Dirichlet distribution Dmj (aj , . . . , aj) if variable j is categorical with mj levels. If there is no
information a priori on the parameters, we use the Jeffreys non-informative prior distributions
for the proportions (i.e., uk = 1/2) and for the hyper-parameters of a categorical variable (i.e.,
ajk = 1/2). Such prior distributions do not exist for the parameters of the Gaussian and Poisson
distributions, so we use flat prior distributions. The conjugate prior distributions imply the
following closed-form of the integrated complete-data likelihood

p(x, z|m) =
Γ
(
K
2

)
Γ
(

1
2

)K ∏K
k=1 Γ

(
nk + 1

2

)
Γ
(
n+ K

2

) J∏
j=1

p(x•j |K,ωj , z),

where x•j = (xij ; i = 1, . . . , n), nk =
∑n
i=1 zik and

p(x•j |K,ωj , z) =

∫
p(α•j |K,ωj)

K∏
k=1

n∏
i=1

fkj(xij ;αkj)
zikdα•j . (2.6)

The conjugate priors provide a closed-form of the integral defined by (2.6) and thus of the
integrated complete-data likelihood (see Marbac, Sedki, and Patin (2020) for details). The value
of the integrated complete-data likelihood depends whether or not j belongs to Ω. In Marbac and
Sedki (2017b), we introduce the maximum integrated complete-data likelihood criterion (MICL)
as the greatest value of the integrated complete-data likelihood among all the possible partitions.
Thus, the MICL is defined by

MICL(m) = ln p(x, z?m|m) with z?m = arg max
z

ln p(x, z|m).

Obviously, this criterion is quite similar to the ICL because it is based on the integrated complete-
data likelihood and inherits its main properties. In particular, it is less sensitive to model
misspecification than the BIC. However ICL considers the partitions given by the MAP rule
computed with the MLE while MICL considers the partition maximizing integrated complete-
data likelihood. Thus, unlike the ICL and the BIC, MICL does not require computing the MLE
for each competing model and thus avoids the multiple calls to the EM algorithm. Because Ω
does not impact the dimension of z, we can maximize the integrated complete-data likelihood
over {Ω, z}, and thus the best model according the MICL can be obtained, for a fixed number
of components by an iterative algorithm. Thus, this optimization algorithm is used for finding
the model maximizing the MICL, for a fixed number of components. Starting at the initial point
{z[0],m[0]} with m[0] = {K,Ω[0]}, the algorithm alternates between two optimizations of the
integrated complete-data likelihood: optimization over z given {x,m}, and maximization over

Ω given {x, z}. The algorithm is initialized as follows: each j belongs independently to Ω[0] with
probability 1/2 then z[0] = ẑm[0] is defined as the partition provided by a MAP rule associated

with model m[0] and with its MLE θ̂m[0] . Iteration [r] of the algorithm is written as
Partition step: find z[r] such that

ln p(x, z[r]|m[r]) ≥ ln p(x, z[r−1]|m[r]).

Model step: find m[r+1] = arg maxΩ ln p(x, z[r]|m) such that m[r+1] = {K,Ω[r+1]} with

Ω[r+1] = {j : p(x•j |K,ωj = 1, z[r]) > p(x•j |K,ωj = 0, z[r])}.

At iteration [r], the model step consists of finding the vectorm[r+1] maximizing the integrated
completed-data likelihood, for the current partition z[r]. This optimization can be performed
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independently for each variable j ∈ {1, . . . , J}, due to the within component independence
assumption. The partition step is more complex, hence z[r] is defined as a partition increasing
the value of the integrated complete-data likelihood for the current model. It is obtained by an
iterative method initialized at the partition z[r−1]. Each iteration consists of uniformly sampling
an individual which is affiliated with the component maximizing the integrated complete-data
likelihood, while the other component memberships are unchanged (details are given in Marbac
and Sedki (2017b)). Like the EM algorithm, the proposed algorithm converges to a local optimum
of ln p(x, z|m), so many different initializations should be performed. In a moderate computing
time, the algorithm can manage datasets with a large number of variables and a relatively
large number of individuals. However, the procedure of model selection is time-consuming if a
huge number of individuals is observed. Thus, we recommend using this approach for samples
composed of few observations and to use the modified EM algorithm presented previously for
the large sample size.

2.2.5 Application to human population genomics

Based on the seminal work of Menozzi, Piazza, and Cavalli-Sforza (1978), principal component
analysis (PCA) is widely used in population genetics to construct low-dimensional projections
that summarize genetic variations across populations (see Patterson, Price, and Reich (2006),
Price et al. (2006), Novembre et al. (2008) and Francois et al. (2010)). The PCA framework
provides a first formal test for the presence of genetic structure in a sample of populations.
Unfortunately, PCA does not attempt to classify individuals into populations and does not
allow the subset of markers that contain the classification information to be selected. More
importantly, PCA does not provide a satisfactory framework for estimating the true number
of populations present in a dataset. Pritchard, Stephens, and Donnelly (2000) are the first to
describe a model-based clustering method for using multi-locus genotype data to infer population
structure and assign individuals to populations where the software implementation is given in the
STRUCTURE software. Alexander, Novembre, and Lange (2009) developed the ADMIXTURE
approach, which allows the parameters of a mixture model to be estimated without using the
EM algorithm. ADMIXTURE was applied to a dataset with 13298 markers and 324 individuals
and the problem of population choice was mentioned in the discussion Alexander, Novembre,
and Lange (2009).

In this section, we study the genomic diversity of n = 1318 individuals from 35 populations
of Western Central Africa Patin et al. (2017), genotyped at 690739 genetic markers (categorical
variables having three levels). We restrict the analysis to J = 160470 independent markers
(r2 < 0.1, using PLINK 1.9 Chang et al. (2015)). Clustering is achieved by considering a full
model selection in (2.4) with a maximum number of clusters equals to 8 clusters. Because of
the data dimension, we choose to use the MICL criterion. Indeed, it is known that BIC poorly
performs when n < d (see also the results on the Golub dataset in Marbac and Sedki (2017b)).
For each possible number of populations, the algorithm optimizing the MICL was randomly
initialized at 100 starting points. Algorithm implemented in VarSelLCM is parallelized and the
calculations are performed on 48-(Intel(R) Xeon(R) CPU E7-8857 v2 @ 3.00GHz) cores. The
full model selection procedure required about five days of computation.

Two clusters of populations were selected by MICL, separating rainforest hunter-gathering
groups (RHG, derogatively called ’pygmies’) from sedentary Bantu-speaking farmers (BSP). This
partition is consistent with ADMIXTURE results (Patin et al. (2017)). A notable exception was
the Bongo, a RHG population that was clustered with BSPs by the proposed method. Note
that this group is known to be heavily admixed with farmers (Patin et al. (2017)). The method
detected 58954 discriminative markers (37% of the observed markers). Markers were ordered
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based on their discriminative power, defined as the difference between p(x•j |g, ωj , z?) considering
that the variable is relevant or irrelevant The discriminating power permits the most important
variables for the clustering results to be detected. Table 2.1 presents the ten most discriminative
markers.

Marker Power Chr. Gene Allele p̂RHG p̂BSP FST FST rank
rs2073933 117 9 ADAMTS13 C 0.219 0.023 0.281 2
rs10957505 108 8 SLCO5A1 A 0.509 0.165 0.271 4
rs1535842 107 9 SMARCA2 C 0.488 0.195 0.198 57
rs12440787 99 15 MCTP2 A 0.435 0.132 0.248 9
rs1146634 98 1 RABGGTB C 0.657 0.298 0.232 13
rs916811 97 11 CD6 A 0.095 0.011 0.129 654
rs1352380 94 6 TSG1 T 0.298 0.082 0.189 82
rs7964862 94 12 MMP17 T 0.423 0.212 0.108 1325
rs2955032 94 15 SPATA8 C 0.702 0.353 0.212 32
rs675443 91 5 CEP120 A 0.392 0.124 0.212 33

Table 2.1: The ten genetic markers with the highest discriminating power, together with their
chromosome, closest gene, their estimated allele frequency p̂ in RHG and BSP, their population
differentiation index FST and its genome-wide rank.

The power of markers to discriminate RHG from BSP was strongly correlated with FST , the
population differentiation index (r = 0.815), a classical measure in population genetics. Never-
theless, some interesting exceptions were observed, for markers whose allele frequency (i.e., the
proportion of chromosomes carrying one form of a genetic marker in the population) was system-
atically different in RHG populations relative to BSP, but the magnitude of this difference was
typically low. Such markers are of interest for forensic sciences such as the ancestry-informative
markers (Phillips (2012)) or the detection of polygenic selection between populations (Pritchard,
Pickrell, and Coop (2010)).

2.2.6 Extension to the multiple partitions

We consider the problem of multivariate clustering that extends the usual framework of clustering
to the case of multiple partitions. Classical clustering methods assume that the considered
variables explain a single partition among the observations. However, the available data could
convey more that one partition of the data. For instance, one can imagine that different blocks
of variables describing a customer (variables about work, variables about leisure, variables about
family, etc) can give different clustering/partitioning of the dataset at hand. In the absence
of prior knowledge on how to group the variables into blocks, a challenging question for the
statistician is to find these blocks of variables based on the data. Note that the application
described in Section 2.2.3 considers a clustering with multiple partitions (one based on the
variables measured at 2 years and one based on the variables measured at 5 years). However, in
this case, the repartition of the variables is known and is given by the age of the subject.

The problem of finding several partitions in the data, based on different groups of continuous
variables, has been addressed by Galimberti and Soffritti (2007) in a model-based clustering
framework. In this framework, the authors assume that the vector of variables can be partitioned
into independent sub-vectors, each one following a particular Gaussian mixture model with a full
covariance matrix. They then proposed a forward/backward search to perform model selection
based on the maximization of the BIC. More recently, Galimberti, Manisi, and Soffritti (2018)
have proposed an extension of their previous work which relaxes the independence assumption
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between sub-vectors. This extension considers three types of variables, the classifying variables,
the redundant variables with respect to the classifying variables, and the variables which are
not classifying at all. This can be seen as extension of the models proposed by Raftery and
Dean (2006) and Maugis, Celeux, and Martin-Magniette (2009a), in the framework of variable
selection in clustering (see model (2.2)). In this framework, model selection is a difficult challenge
because full Gaussian models are still considered, and many possible roles of the variables need
to be considered. This implies much computation even for the re-affectation of only one variable.
Therefore, they have to use forward/backward algorithms to maximize the BIC. However, these
algorithms are suboptimal since they only converge to a local optimum of the BIC. Moreover,
they are based on comparison of the BIC between two models. Thus, they perform many calls
of the EM algorithm. Hence, these approach only can deal with a limited number of variables.

The problem of finding several partitions in the data has also been considered by Poon et
al. (2013), in what they called facet determination. Their model is similar to Galimberti and
Soffritti (2007) but it also allows tree dependency between latent variables, and the resulting
models are called pouch latent tree models (PLTMs). The best model is then selected using the
BIC criterion by using a greedy search based on search operators such as node introduction or
node deletion for instance. This model allows for a rich interpretation of the data, however the
huge number of possibilities due to the tree structure search, makes it even more difficult to use
than previous models when the number of variables is large.

In order to deal with large numbers of variables, we proposed in Marbac and Vandewalle (2019),
a more constrained model to be able to easily perform model selection. We assume that the dis-
tribution of the observed data can be factorized into several independent blocks of variables, each
one following its own mixture distribution. The considered mixture distribution in a block is a
latent class model (i.e., each variable of a block is supposed to be independent of the others given
the cluster variable associated within this block). This model is an extension of the approaches
proposed by Marbac and Sedki (2017b) and Marbac, Sedki, and Patin (2020) in the framework of
variable selection in clustering, where only two blocks are considered, i.e. one block of classifying
variables assuming conditional independence, and one block of non-classifying variables assuming
total independence. In the Gaussian setting, our model can also be seen as a simplified version of
the model proposed by Galimberti, Manisi, and Soffritti (2018) where diagonal covariances ma-
trices are assumed. However, our model also allows us to deal with categorical data while this is
not possible in Galimberti, Manisi, and Soffritti (2018). The simplicity of the model allows us to
estimate the repartition of the variables into blocks and the mixture parameters simultaneously
as in Marbac and Sedki (2017b) and Marbac, Sedki, and Patin (2020). We present a procedure
for performing model selection (choice of the number of blocks, the number of clusters inside each
block and the repartition of variables into blocks) with the BIC or the MICL. The BIC enjoys
consistency properties and does not require prior distributions to be defined. However, in the
clustering framework, it tends to over-estimate the number of clusters, and for small sample sizes,
the asymptotic approximation on which it relies can be questionable. Thus, in the framework of
variable selection, Marbac and Sedki (2017b) have proposed the MICL criterion derived from the
ICL criterion. This criterion takes into account the classification purpose by computing the max-
imum integrated completed likelihood. Moreover, it is expected to behave well for small sample
sizes, because it avoids the asymptotic approximations of the integrated completed likelihood by
performing an exact integration over the parameter space thanks to conjugate priors. Depending
on the context, either BIC or MICL can be preferred. In the context of clustering with multiple
partitions, it is possible to simultaneously perform parameter estimation (partition estimation,
respectively) and model selection with the BIC (MICL, respectively) criterion as in Marbac and
Sedki (2017b) and Marbac, Sedki, and Patin (2020), thus avoiding running EM algorithms for
each repartition of variables into blocks. Note that the proposed model allows mixed-data to be
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dealt with as in Marbac, Sedki, and Patin (2020), and it also includes the variable selection as
a special case. Moreover, the proposed model can give an answer to the problem of clustering
mixed data in which continuous variables are often expected to dominate the clustering process.
Allowing several partitions, the categorical variables are now able, if necessary, to form their own
clustering structure.

Let us notice that the proposed framework has similarities with the biclustering framework,
and in particular the block clustering models proposed by Govaert and Nadif (2003). Block
clustering consists of clustering the rows and the columns simultaneously while our approach
makes blocks of variables, i.e. clustering of columns, and for each block of variables makes a
clustering of the individuals, i.e. clustering of rows. However instead of considering one partition
in rows as in the block clustering, our approach considers several partitions in rows. Moreover,
block clustering is limited to deal with variables of the same kind assuming a homogenous
distribution in each block while our approach allows us to deal with heterogeneous data.

The model

Data to cluster x = (x1, . . . ,xn) are composed of n observations xi = (xi1, . . . , xiJ) described
by J variables potentially of different types (i.e., each variable can be continuous, binary, count
or categorical). Observations are assumed to arise independently from a multiple partitions
model (MPM) which considers that variables are grouped into B independent blocks. The
blocks of variables are defined by Ω = {Ω1, . . . ,ΩB} where Ωb groups the indexes of variables
belonging to block b. Moreover, MPM considers that variables of block b follow a Kb-component
mixture assuming within-component independence. Thus, for a model m = {B,K,Ω} with
K = (K1, . . . ,KB), the probability distribution function (pdf) of xi is

f(xi|m,θ) =

B∏
b=1

f(xi{b}|m,θ) with f(xi{b}|m,θ) =

Kb∑
k=1

πbk
∏
j∈Ωb

f(xij |αjk), (2.7)

where , xi{b} = (xij ; j ∈ Ωb) is the vector of observed variables of block b, θ = (π>,α>)> groups

the model parameters, π = (π>1 , . . . ,π
>
B)> groups the proportions with πb = (πb1, . . . , πbGb)

>,

πbg > 0 and
∑Gb
g=1 πbg = 1, α = (α>1 , . . . ,α

>
J )> and αj = (αj1, . . . ,αjKωj )> where ωj indicates

the block of variable j such that ωj = b means that j ∈ Ωb. The univariate margin of a
component for a continuous (respectively binary, count and categorical), denoted by f(xij |αjK),
is a Gaussian (Bernoulli, Poisson and multinomial) distribution with parameters αjK . Model
(2.7) provides B partitions among the observations (one partition per block of variables). The
partition of block b is denoted by zb = (z1b, . . . ,znb) ∈ ZKb , where ZKb is the set of the partitions
of n elements in Kb clusters, and zib = (zib1, . . . , zibKb) with zibg = 1 if observation i belongs to
cluster K for block b and zibK = 0 otherwise. The multiple partitions z = (z1, . . . , zB) for model
m belong to Zm = ZK1

× . . .×ZKB .

Example 2.1. We consider J = 4 continuous variables arisen from MPM with B = 2 blocks of
two variables with Ω1 = {1, 2} and Ω2 = {3, 4} (i.e., the first two variables belong to block 1 and
the last two variables belong to block 2). Moreover, each block follows a bi-component Gaussian
mixture (i.e., K1 = K2 = 2) with equal proportions (i.e., πbK = 1/2), mean µj1 = 4, µj2 = −4
and variance σ2

j1 = σ2
j2 = 1. Figure 2.2 gives the bivariate scatter-plot of the observations.

Colors and symbols indicate the component memberships of block 1 and 2 respectively.

Standard methods of clustering consider that the observed variables explain a single partition
among the observations. However, if this assumption is violated, model (2.7) can circumvent
this limit because it considers different partitions explained by different subsets of variables.
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Figure 2.2: Sample generated from MPM where colors and symbols indicate the component
memberships of block 1 and 2 respectively.

Moreover, (2.7) generalizes approaches used for variable selection in model-based clustering.
Indeed, if B = 2 and K1 = 1 then variables belonging to block 1 are irrelevant for the clustering,
while variables belonging to block 2 are relevant. The model (2.7) is identifiable up to a switching
of the component labels and a change in the order of the blocks. Identifiability of the distribution
of each block leads to identifiability of (2.7). Identifiability holds for blocks containing at least
one continuous or integer variable (see Teicher (1963) and Teicher (1967)). Finally, identifiability
holds for blocks only composed of categorical variables under mild conditions (Allman, Matias,
and Rhodes (2009)).

Contrary to Galimberti and Soffritti (2007) who assume a full Gaussian covariance matrices,
model (2.7) assumes that variables are independent within components. This assumption is
quite standard for clustering categorical or mixed-type data (see Hand and Keming (2001) and
Moustaki and Papageorgiou (2005)), and it limits the number of parameters. Hence, model (2.7)

has νm =
∑B
b=1(Kb − 1) +

∑
j∈Ωb

νjKb parameters to be estimated, where νj = dim(Θj) and
Θj is the space of the parameters of the univariate margin of one component of variable j (e.g.,
νj = 2 if the margin is a Gaussian distribution). Finally, it provides efficient approaches for
model selection (see Sections 2.2.2 and 2.2.4).

Maximum likelihood inference

For sample x and model m, the observed-data log-likelihood is defined by

`(θ|m,x) =

B∑
b=1

n∑
i=1

ln f(xi{b};m,θ).
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The complete-data log-likelihood is

`(θ|m,x, z) =

B∑
b=1

ln p(zb|Kb,πb) +
∑
j∈Ωb

ln p(xj |Kb, zb,αj)

 ,

with

p(zb|Kb,πb) =

n∏
i=1

Kb∏
k=1

πzibkbk ,

ands

p(xj |Kb, zb,αj) =

n∏
i=1

Kb∏
k=1

p(xij ;αjk)zibk ,

where xj = (x1j , . . . , xnj)
>. The maximum likelihood estimates (MLE) can be obtained by

an EM algorithm. Independence between the B blocks of variables permits the observed-data
log-likelihood on each block to be maximized independently. However, here we present an EM
algorithm performing the maximization of the full observed-data likelihood, because we modify
later this algorithm, to simultaneously estimate Ω and θ in the spirit of the modified EM algo-
rithm used to perform feature selection according to the BIC presented in Section 2.2.2. Starting
from the initial value θ[0], the iteration [r] of the EM algorithm maximizing the observed-data
log-likelihood is composed of two steps:

E-step Computation of the fuzzy partitions t
[r]
ibk := E[Zibg|xi{b},m,θ[r−1]], hence for b =

1, . . . , B, for k = 1, . . . ,Kb, for i = 1, . . . , n

t
[r]
ibk =

π
[r−1]
bk

∏
j∈Ωb

f(xij ;α
[r−1]
jk )∑Kb

k=1 π
[r−1]
bk

∏
j∈Ωb

f(xij ;α
[r−1]
jk )

,

M-step Maximization of the expected value of the complete-data log-likelihood over θ,

π
[r]
bk =

n
[r]
bk

n
and α

[r]
jk = arg max

αjk∈Θj

Q(αjk; xj , t
[r]
ωjk

),

where Q(αjk; xj , tbk) =
∑n
i=1 tibk ln f(xij ;αjk) and n

[r]
bk =

∑n
i=1 t

[r]
ibk.

Model selection with the BIC

The model has to be assessed from the data among a set of competing models M defined by

M = {m = {B,K,Ω};
1 ≤ B ≤ Bmax, 1 ≤ Kb ≤ Kmax,∪Bb=1Ωb = {1, . . . , J},Ωb ∩Ωb′ = ∅, 1 ≤ b, b′ ≤ B, b 6= b′},

where Bmax is the maximum number of blocks and Kmax is the maximum number of components
within the block. The number of competing models is card(M) =

∑Bmax

B=1 S(J,B)KB
max where

S(J,B) denotes the Stirling number of the second kind. Model selection with the BIC consists
of maximizing this criterion with respect to m. Obviously, this is equivalent to maximizing the
penalized likelihood on the pair {m,θm}. Thus, model and parameter inference leads to the
search

{m?, θ̂m?} = arg max
{m,θm}

`pen(θm|m,x).
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Due to the number of competing models, an exhaustive approach which consists of computing
BIC for each competing models, is not doable. However, holding {B,K} fixed, model selection
with BIC and maximum likelihood inference implies maximizing the penalized likelihood with
respect to {Ω,θ}. Similarily to the approach of Section 2.2.2, maximization can be carried out
by a modified version of the EM algorithm (Green (1990)). Thus, the combinatorial problem of
the estimation of the blocks of variables can be circumvented if the maximum number of blocks is
small. Considering Bmax small (i.e., Bmax < 5) can seem restrictive. However, classical clustering
methods consider Bmax = 1. Moreover, if Bmax is wanted to be more than five, then the model
stays well defined but the proposed methods of model selection suffer from combinatorial issues.
Then, in this case, other algorithms (such as a forward/backward search) should be used for

model estimation. Indeed, {m?, θ̂m?} can be found by running this algorithm for each value

of {B,K} allowed by M. Therefore, for less than
∑Bmax

B=1 K
B
max different EM algorithms should

be used. To implement this modified EM algorithm, we introduce the penalized complete-data
likelihood

`pen(θm|m,x, z) = `(θm|m,x, z)− νm
2

log n

=

B∑
b=1

ln p(zb|πb)−
Kb − 1

2
lnn+

∑
j∈Ωb

ln p(xj ; zb,αj)−
νjKb

2
lnn

 .

Holding {B,K} fixed and starting from {Ω[0],θ[0]}, its iteration [r] is composed of two steps:

E-step Computation of the fuzzy partitions t
[r]
ibk := E[Zibk|xi,m[r−1],θ[r−1]], hence for b =

1, . . . , B, for k = 1, . . . ,Kb, for i = 1, . . . , n

t
[r]
ibk =

π
[r−1]
bk

∏
j∈Ω

[r−1]
b

f(xij ;α
[r−1]
jk )∑Kb

k=1 π
[r−1]
bk

∏
j∈Ω

[r−1]
b

f(xij ;α
[r−1]
jk )

,

M-step1 Updating the assignment of the variables to blocks

Ω
[r]
b =

j : b = arg max
b′∈{1,...,B}

Gb′∑
k=1

max
αjk∈Θj

Q(αjk|xj , t[r]
b′k)− νjGb′

2
lnn

 ,

M-step2 Updating the model parameters

π
[r]
bk =

n
[r]
bk

n
and α

[r]
jk = arg max

αjk∈Θj

Q(αjk|xj , t[r]

ω
[r]
j k

),

where ω
[r]
j = b if j ∈ Ω[r]. As for the standard EM algorithm, the objective function (i.e., the

penalized complete-data likelihood) increases at each iteration but the global optimum is not
achieved in general. Hence, different random initializations must be done. Finally, note that the
algorithm can return empty blocks. Indeed, M-step1 is done without constraining each block to

contain at least one variable. Thus, each ω
[r]
j can be obtained independently.

Integrated complete-data likelihood The integrated complete-data likelihood is defined by

p(x, z|m) =

∫
p(x, z|m,θ)p(θ|m)dθ.
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We assume independence between the prior distributions, so

p(θ|m) =

B∏
b=1

p(πb|Kb)

J∏
j=1

p(αj |K, ωj) where p(αj |K, ωj) =

Kωj∏
k=1

p(αjk),

where ωj = b if j ∈ Ωb. Thus, the integrated complete-data likelihood has the form defined by

ln p(x, z|m) =

B∑
b=1

ln p(zb|Kb) +
∑
j∈Ωb

ln p(xj |zb,Kb),

where p(zb|Kb) =
∫
S(Kb)

p(zb|Kb,πb)p(πb|Kb)dπb, S(Kb) denotes the simplex of dimension Kb

and p(xj |zb,Kb) =
∫

Θ
Kb
j

p(xj |zb,αj)p(αj |K, ωj)dαj . We use conjugate prior distributions, thus

integrals p(zb|Kb) and p(xj |zωj ,Kωj ) have closed forms (see Marbac and Vandewalle (2019) for
details). The MICL (maximum integrated complete-data likelihood) criterion corresponds to the
largest value of the integrated complete-data likelihood among all the possible partitions. Thus,
the MICL is defined by

MICL(m) = ln p(x, z?m|m) with z?m = arg max
z∈Zm

ln p(x, z|m).

Model selection with MICL consists of finding m? = arg maxm∈MMICL(m). Holding {B,K}
fixed, maximizing MICL corresponds to maximizing the integrated complete-data likelihood with
respect to the assignment of the variables into blocks Ω and to the partition z. Starting at the
initial value Ω[0] where each variable is independently assigned to each block with the same
probability 1/B, the algorithm alternates between two steps defined at iteration [r] by

Partition step: Updating the partition z
[r]
b for each block b = 1, . . . , B∑

j∈Ω
[r−1]
b

ln p(xj , z
[r]
b |Kb) ≥

∑
j∈Ω

[r−1]
b

ln p(xj , z
[r−1]
b |Kb),

Model step: Updating the assignment of the variables to blocks

Ω
[r]
b =

{
j : b = arg max

b′∈{1,...,B}
p(xj |z[r]

b′ ,Kb′)

}
.

Optimization at the Partition step is not obvious, despite the fact that it is done on each block

independently. So, the partition z
[r]
b is defined as a partition which increases the value of the

integrated complete-data likelihood for the current model for block b. It is obtained by an itera-
tive method where each iteration consists of optimizing the integrated complete-data likelihood
for block b on the class membership of a single individual while the partition among the other
observations remains (see Marbac and Vandewalle (2019) for more details). Optimization at the
Model Step can be performed independently for each variable because of the intra-component
independence assumption. The optimization algorithm converges to a local optimum of the
integrated complete-data likelihood. Thus, many different initializations should be done.

2.3 Full model selection for nonparametric mixture models

This section addresses the problem of full model estimation for non-parametric finite mixture
models. It presents an approach for selecting the number of components and the subset of
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discriminating variables (i.e., the subset of variables having different distributions among the
mixture components). The proposed approach considers a discretization of each variable into B
bins and a penalization of the resulting log-likelihood. Considering that the number of bins tends
to infinity as the sample size tends to infinite, we prove that our estimator of the model (number
of components and subset of relevant variables for clustering) is consistent under a suitable choice
of the penalty term.

2.3.1 Introduction

This section focuses on a full model selection (i.e., estimation of the number of components
and detection of the subset of the relevant variables for clustering) for non-parametric mixture
models where no assumptions are made on the component distribution except to be defined
as a product of univariate densities (see Chauveau, Hunter, and Levine (2015) for a review).
Thus, we consider a sample composed of n independent observations X1, . . . ,Xn where Xi =
(Xi1, . . . , XiJ)> ∈ X is the vector composed of the J variables collected on subject i defined
over the space X = X1 × . . .× XJ where each Xj is compact. Each Xi is identically distributed
according to the non-parametric version of (2.3). Thus, the model is a mixture of K components
defined by the density

g(xi) =

K∑
k=1

πk

J∏
j=1

ηkj(xij), (2.8)

where π = (π1, . . . , πK)> is a finite dimensional parameter belonging to the simplex of size

K, SK = {u ∈ [0, 1]K :
∑K
k=1 uk = 1} and where the univariate densities ηkj constitute

infinite dimensional parameters. Among the recent developments related to (2.8), one can cite
the papers of Hall and Zhou (2003), Hall et al. (2005) and Allman, Matias, and Rhodes (2009)
who studied the model identifiability, while Benaglia, Chauveau, and Hunter (2009), Levine,
Hunter, and Chauveau (2011) and Zheng and Wu (2020) proposed an algorithm for estimating
the parameters when the number of components K is known.

In Du Roy de Chaumaray and Marbac (2021a), we addressed the issue of full model selec-
tion (i.e., double objective of estimating the number of components K and the subset of relevant
variables Ω as well) in non-parametric mixture models defined by (2.8). To the best of our knowl-
edge, this paper presents the first method that permits a full-model selection (i.e., estimation of
K and Ω) for non-parametric multivariate mixture models. Moreover, it allows many variables
to be managed, which makes it a complementary work to Kasahara and Shimotsu (2014) and
Kwon and Mbakop (2020), even in the case where all the variables are considered to be relevant
and only the number of components needs to be estimated. As proposed by Tadesse, Sha, and
Vannucci (2005), we consider two types of variables: the relevant variables and the irrelevant
variables for clustering. Thus, variable j is said to be irrelevant for clustering if η1j = . . . = ηKj
and a model m = {K,Ω} is defined by the number of components K and the indices of the
relevant variables Ω ⊂ {1, . . . , J}. Therefore, considering the task of full model selection in
(2.8) implies that each Xi is identically distributed according to a non-parametric mixture of K
components defined by the density

gm,ψ(xi) =

∏
j∈Ω̄

η1j(xj)

 K∑
k=1

πk
∏
j∈Ω

ηkj(xj)

 , (2.9)

where Ω̄ = {1, . . . , J} \ Ω contains the indices of the irrelevant variables for clustering and
ψ ∈ Ψm groups the finite dimensional parameters π = (π1, . . . , πK)> ∈ SK and the infinite
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dimensional parameters composed of the univariate densities ηkj . To achieve the full model
selection, we use a discretization of each continuous variable into B bins. The number of bins
tends to infinite with the sample size to ensure the consistency of the approach. Indeed, if B
were fixed, the estimated model could be a sub-model of the true model (i.e., the number of
components and the subset of the discriminative variables could be underestimated). The distri-
bution of the resulting discretized variables follows a latent class model where each component
is a product of multinomial distributions (Goodman (1974)). This discretization is convenient,
because model selection can then be achieved, for the latent class model, by using the penalized
likelihood (e.g., BIC) whose consistency has been proven for mixture models (Keribin (2000)).
Moreover, in this framework, a specific EM algorithm optimizing the penalized likelihood can be
used for simultaneously detecting the subset of the relevant variables and estimating the model
parameters (see Marbac, Sedki, and Patin (2020)), for a known number of components. Thus,
by considering an upper-bound of the number of components, the full-model selection can be
achieved. Unlike in Kasahara and Shimotsu (2014), the procedure provides a consistent estima-
tion of the univariate densities of the components ηkj from the discretized data. Therefore, we
prove the consistency of the procedure for a wide range of number of bins B, at an appropriate
rate that we detail. The consistency of the procedure cannot be proven by using the consistency
of information criterion for parametric mixture models (see Keribin (2000)) because the param-
eters space depends on B and thus increases with sample size. The growth rate of B is mainly
driven to avoid underestimation of the model while the range of the penalty is mainly driven to
avoid overestimation of the model. The case of model underestimation is analyzed by extending
the proof of Keribin (2000) in order to deal with the increasing dimension of the parameters
space. In the case of model overestimation, the asymptotic distribution of the likelihood ratio
is investigated by performing a locally conic parametrization (see Dacunha-Castelle and Gas-
siat (1997) and Dacunha-Castelle and Gassiat (1999)) of the model obtained on the discretized
data. An upper bound of the likelihood ratio is obtained by controlling, on the one hand, the
deviation of the likelihood ratio from its asymptotic distribution by using results on empirical
processes stated in Chernozhukov, Chetverikov, and Kato (2014) and, on the other hand, the
supremum of the asymptotic distribution by applying deviation results on Gaussian processes
(see Dudley (2014)).

The method proposed in Du Roy de Chaumaray and Marbac (2021a) uses a discretization
that provides an estimator of the densities of the components. However, we advice to use the
proposed approach only for model estimation. When the model has been selected, we advice
to use a kernel-based method for density estimation. Indeed, the bin-density estimate that are
known to be outperformed by kernel-based estimators. Thus, for a real data analysis, we advice
to use the proposed approach for model selection then, for the selected model, to perform density
estimation with a EM-like algorithm (Benaglia, Chauveau, and Hunter (2009)) or by maximizing
the smoothed log-likelihood (Levine, Hunter, and Chauveau (2011)). The final partition is thus
computed from the model selected by the proposed methods and the densities estimated via a
kernel method.

2.3.2 Model selection by bin estimation and penalized log-likelihood

This section considers the estimation of the number of components for model (2.9), from an
n-sample X1, . . . ,Xn with Xi ∈ X with X = X1 × . . . × XJ , J being fixed. The method used
for selecting the number of components discretizes each variable into B non-overlapping bins
IBj1, . . . , IBjB such that ∪Bb=1IBjb = Xj and for any (b, b′) with b 6= b′, IBjb ∩ IBjb′ = ∅. Thus,
we consider the function σBjb with b ∈ {1, . . . , B}, such that σBjb(xij) = 1 if xij ∈ Ijb and
σBjb(xij) = 0 if xij /∈ IBjb, and we denote by lBjb the size of the bin IBjb. The discretized
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variables follow a latent class model where each component is a product of J multinomial distri-
butions each having B levels. Therefore, the pdf of the discretized subject i is

fm,B,θ(xi) =
∏
j∈Ω̄

B∏
b=1

(
αB1jb

lBjb

)σBjb(xij) K∑
k=1

πk
∏
j∈Ω

B∏
b=1

(
αBkjb
lBjb

)σBjb(xij) , (2.10)

where θ groups the component proportions πk and the probabilities αBkjb that one subject
arisen from component k takes level b for the variable j when this variable is discretized into B

bins. The parameter space is given by the simplexes SK × SK|Ω|+(J−|Ω|)
B , where |Ω| denotes the

cardinal of the set of discriminative variables Ω. Note that fm,B,θ is an approximation of gm,ψ

and that this approximation becomes more accurate when B tends to infinity.
The probabilities αBkjb are unknown and must be estimated from the observed sample. This

estimation can be achieved by maximizing the log-likelihood defined by

`n(fm,B,θ) =

n∑
i=1

ln fm,B,θ(xi).

The maximum likelihood statistics for a model with K components and B bins per variable is

Tn,m,B = sup
θ∈Θm,B,ε

`n(fm,B,θ),

where, in order to avoid numerical issues, we introduced a threshold ε such that the parameter

space becomes Θm,B,ε = SK,ε × SK|Ω|+(J−|Ω|)
B,ε , with ε > 0 being the minimal value of all the

elements defined in the simplexes, i.e. SB,ε = {u ∈ RB : ub > ε,
∑B
b=1 ub = 1}. Under the

condition that Bε tends to zero as B goes to infinity and ε to zero, the parameter space Θm,B,ε

converges to the whole parameter space. Note that, due to the growth rate of B which will be
stated by Assumption 2.4(i) in the next section, it is sufficient to set ε−1 = O(nα+1) for some
α > 0. This maximization can be achieved via an EM algorithm.

The penalized likelihood is defined by substracting from the maximum likelihood statistics
a penalty term an,m,B which takes into account the sample size and the complexity of model
(2.10). Thus, we obtain the following information criterion

Wn,m,B = Tn,m,B − an,m,B . (2.11)

Depending on the choice of an,m,B in (2.11), different well-known criteria can be considered.
Among them one can cite the Akaike criterion (AIC; Akaike (1970)) or the Bayesian Information
Criterion (BIC; Schwarz (1978)) which are obtained with an,m,B = ν and an,m,B = ν log(n)/2
respectively, where ν = (K − 1) +KJ(B − 1) is the model complexity.

To select the number of components, we consider the set of competing modelsM defined by
all the mixture models with at most Kmax components and at least three relevant variables (for
identifiability reasons), so that

M = {m = {K,Ω} : K ≤ Kmax,Ω ⊆ {1, . . . , J} and |Ω| ≥ 3}.

The estimator m̂n,B of the number of components maximizes the penalized likelihood as follows

m̂n,B = arg max
m∈M

Wn,m,B .

The study of the asymptotic properties of the estimator m̂n,B is covered by the approach of
Keribin (2000) if the number of intervals B does not increase with the sample size n. However,
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due to the discretization, the approach provides an estimator that converges to a model included
into the true model. Indeed, we only obtain a lower bound on the number of components and
a subset of the discriminative variables. By increasing the number of intervals with n, we avoid
the issues due to the loss of identifiability. However, we need to investigate the behavior of the
statistics Tn,m,B and to study the convergence of Tn,m,B/n to the minimum Kullback divergence,
which requires controlling empirical processes defined on space having increasing dimension. The
next section presents statistical guarantees of the proposed approach.

2.3.3 Convergence in probability of the estimator

This section investigates the convergence in probability of m̂n,B . It starts by presenting the
assumptions required to obtain this convergence, which is then stated.

Assumptions The consistency of the estimator is established under four sets of assumptions
described below. Assumption 2.1 and Assumption 2.2 state the constraints on the model and on
the distribution of the components respectively. Assumption 2.3 gives some conditions on the
penalty term. Finally, Assumption 2.4 gives some conditions on the discretization.

Assumption 2.1. The number of variables is at least three (i.e., 3 ≤ J) and each proportion
πk > 0 is not zero. Moreover, there exists Υ ⊆ {1, . . . , J} such that |Υ| = 3 and for any j ∈ Υ
the univariate densities ηkj are linearly independent.

Assumption 2.2. (i) There exists a function τ in L1(g0ν) such that: ∀m ∈M and ∀ψ ∈ Ψm,
| ln gm,ψ| < τ ν-a.e.

(ii) There exists a positive constant L <∞ such that ∀j ∈ {1, . . . , J} and ∀xj ∈ Xj , |η′kj(xj)| ≤
L.

(iii) Each variable j is defined on a compact space Xj and its density for each component k,
denoted by ηkj , are strictly positive except on a set of Lebesgue measure zero.

Assumption 2.3. (i) an,m,B is an increasing function of K, |Ω| and B.

(ii) For any model m, an,m,B/n tends to 0 as n tends to infinity.

(iii) For any model m, B/an,m,B tends to 0 as n tends to infinity.

(iv) For any models m and m̃ with m ⊂ m̃, an,m̃,B/an,m,B tends to infinity as n tends to
infinity.

Assumption 2.4. (i) The number of bins B tends to infinity with n in the following way
limn→∞B =∞ and limn→∞B(ln3 n)/n = 0.

(ii) The length of the each interval is not zero and satisfies, for all j ∈ {1, . . . , J} and b ∈
{1, . . . , B}, l−1

Bjb = O(B).

(iii) Let IjB be the set of the upper bounds of the B intervals, then, for any value xj ∈ Xj ,
d(xj , IjB) tends to zero as B tends to infinity.

Assumption 2.1 is derived from the conditions of identifiability for finite mixtures of non-
parametric measure products (see Theorems 8 and 9 in Allman, Matias, and Rhodes (2009)).
Because Theorems 8 and 9 in Allman, Matias, and Rhodes (2009) consider all the variables as
relevant for clustering, we need to extend their assumptions such that there are at least three
relevant variables to obtain the identifiability of the model (2.4).

43



Assumption 2.2 gives sufficient conditions on the component distributions to ensure that the
results of Dacunha-Castelle and Gassiat (1999) can be applied to the mixture model obtained
after discretization.

Assumption 2.3 presents standard conditions for penalized likelihood model selection in the
case of embedding models. It generalizes the usual conditions for selecting the number of compo-
nents (Keribin (2000) and Chambaz (2006)) to the case of feature selection for mixture models.
Conditions (i) and (iii) permit avoiding the overestimation of the model (i.e., overestimation
of the number of components or of the support of the relevant variables), while condition (ii)
permits avoiding the underestimation of the model by making the penalty term negligible with
respect to the model bias. Note that Assumption 2.3 allows the BIC penalty to be considered.

Even if Assumption 2.1 provides the identifiability of model (2.4), after the discretization,
model (2.10) could be not identifiable if the number of intervals B is fixed. As an example, one
can consider a bi-component mixture model with equal proportions defined such that the first
component follows a product of J ≥ 3 beta distributions Be(α, α) and that the second component
follows a product J ≥ 3 of beta distributions Be(2α, 2α), with α ≥ 1. This model is identifiable
but the model (2.10) defined after the discretization of each variables into two bins of equal size
(e.g., for any j, σj1(u) = 1 if 0 ≤ u ≤ 1/2, σj1(u) = 0 if 1/2 < u ≤ 1 and σj2(u) = 1−σj1) is not
identifiable (i.e., the two mixture components follows the same distribution for the discretized
data). However, if the number of bins is strictly more than two and that each interval has a
length that is not zero, then the model (2.10) becomes identifiable.

The model identifiability is obtained by Assumption 2.4 that states conditions on the dis-
cretization. In particular, the number of levels has to tend to infinity when the sample size
increases such that the size of the largest intervals tends to zero when the sample size tends to
infinity, but its growth rate is upper bounded which is a key point to control the convergence
of the estimators. Note that Assumption 2.4(iii) uses the same ideas as Lemma 17 in Allman,
Matias, and Rhodes (2009) and that this condition is not stringent. For instance the bounds of
the intervals can be determined by the quantiles 1/B, . . . , B/B. In addition, the sizes ljb can vary
from one bin to another. This is for instance the case when we consider the quantiles. However,
we cannot allow a bin to be exponentially small with n, in order to keep the asymptotic behavior
of our estimator which is stated in the next subsection. Note that Assumption 2.4 allows to
consider the rate B = n1/3 that is usual for bin-density estimation.

Finally, the assumption on the compactness of Xj can be relaxed if some densities defined on
R are wanted to be considered. In such case, the estimates of the densities are considered on the
compact [mini xij ,maxi xij ] defined from the observed sample, and the estimates of the densities
are zero outside this interval.

Convergence in probability of the estimator We state the consistency of the estimator
M̂n,B then we give its (sketch of) proof. Note that the proof of all the numbered equations are
given in Du Roy de Chaumaray and Marbac (2021a). Finally, we explain the key points of the
proof which are different from the proof of the consistency of information criteria for parametric
mixture models stated in Keribin (2000).

Theorem 2.1. Assume that independent data arise from (2.9) with the true model m0 =
{K0,Ω0}, that Assumptions 2.1, 2.2, 2.3 and 2.4 hold true, and that the set of competing models
m is defined with a known upper bound for the number of clusters Kmax. m̂n,B then converges
in probability to m0.

Proof of Theorem 2.1. The proof is divided into three parts: the case where m0 is underes-
timated (i.e., K < K0 or Ω0 6⊆ Ω), the case where the subset of the relevant variables is
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overestimated with K0 (i.e., K = K0 and Ω0  Ω) and the case where the number of compo-
nents and the subset of relevant variables are overestimated (i.e., K > K0 and Ω0 ⊆ Ω).
• Part 1: We consider the case where m0 is underestimated. Thus, we consider a model m ∈ N1

where
N1 = {m = {K,Ω} : K ≤ K0 or Ω0 6⊆ Ω}.

For any gm,ψ given by model (2.9), Assumption 2.2(i) implies that Eg0 [ln gm,ψ] is defined. The
Kullback-Leibler divergence from model m to the true distribution g0 is defined by

KL(g0,Gm) := inf
ψ∈Ψm

Eg0
[
ln

g0

gm,ψ

]
.

Using the definition of N1 and the identifiability of g0 (ensured by Assumption 2.1), for each
m ∈ N1, there exists some δm > 0 such that KL(g0,Gm) ≥ δm. In Du Roy de Chaumaray and
Marbac (2021a), we prove the following convergence in probability:

1

n
(Tn,m,B − `n(g0)) = −δm + oP(1). (2.12)

This convergence and the properties of the penalty (see Assumption 2.3) imply that for any
m ∈ N1

1

n
(Wn,m,B −Wn,m0,B) ≤ −δm + oP(1).

Therefore, noting that δm > 0 and that the cardinal of N1 is fixed and finite, we have

lim
n→∞

P(m̂n,B ∈ N1) = 0. (2.13)

Thus, the probability of underestimating the model tends to zero as n tends to infinity.
• Part 2: We consider the case where the number of components is correct but the subset of the
relevant variables is overestimated. Thus, we consider a model m ∈ N2 where

N2 = {m = {K,Ω} : K = K0 and Ω0  Ω}.

We have the following upper-bound

P(m̂ ∈ N2) ≤
∑
m∈N2

P(Wn,m,B ≥Wn,m0,B) =
∑
m∈N2

P
(
Tn,m,B − Tn,m0,B

an,m0,B
≥ an,m,B

an,m0,B
− 1

)
.

Using usual results on likelihood ratio, for a fixed value of B, 2 (Tn,m,B − Tn,m0,B) is asymptot-
ically distributed like a χ2(∆) where ∆ = (B− 1)(K− 1)(|Ω|− |Ω0|). As ∆ goes to infinity with
B, thus with n, we have the following asymptotic distribution

1√
2∆

[2 (Tn,m,B − Tn,m0,B)−∆]
d−→ N (0, 1).

We rewrite

Tn,m,B − Tn,m0,B

an,m0,B
=

1

an,m0,B

√
∆

2

(
1√
2∆

[2 (Tn,m,B − Tn,m0,B)−∆]

)
+

∆

2an,m0,B
,

and conclude, by making use of Slutsky’s lemma and Assumption 2.3 (iii), that

Tn,m,B − Tn,m0,B

an,m0,B
= oP(1).
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For any m ∈ N2, Assumption 2.3 (iv) implies that an,m,B/an,m0,B−1 > 0, thus, as the cardinal
of N2 is finite and does not depend on B, we can conclude that

P(m̂ ∈ N2) = 0. (2.14)

• Part 3: We consider the case where the number of components and the subset of the relevant
variables are overestimated. Thus, we consider a model m ∈ N3 where

N3 = {m = {K,Ω} : K > K0 and Ω0 ⊆ Ω}.

Note that N3 =M\{N1∪N2∪M0}. The probability of overestimating the model (i.e., m̂ ∈ N3)
can be upper-bounded by

P(m̂ ∈ N3) ≤
∑
m∈N3

P(Wn,m,B ≥Wn,m0,B).

Note that for any m ∈ N3, we have δm = 0 and thus the reasoning used to demonstrate that
m0 is not underestimated cannot be used. We have, for any m ∈ N3

P (Wn,m,B ≥Wn,m0,B) = P
(
Tn,m,B − Tn,m0,B

an,m0,B
≥ an,m,B

an,m0,B
− 1

)
.

Applying the locally-conic parametrization proposed by Dacunha-Castelle and Gassiat (1997)
and Dacunha-Castelle and Gassiat (1999) on model (2.10), and noting that Assumption 2.2
holds true, we can rewrite the log-likelihood ratio as in the proof of Lemma 3.3 in Keribin (2000)

Tn,m,B − `nf0B

= sup

{
sup
d∈DB

1

2
G2
n(d)1Gn(d)≥0; sup

d1∈D1B ,d2∈D2B

1

2

(
G2
n(d1) + G2

n(d2)1Gn(d2)≥0

)}
(1 + oP(1))

(2.15)

where, for each function d, Gn(d) = n−1/2
∑n
i=1 d(Xi); the considered spaces of functions as well

as the definition of f0B are detailed in Du Roy de Chaumaray and Marbac (2021a). Note that

sup
d∈DB

1

2
G2
n(d)1Gn(d)≥0 =

1

2

(
sup
d∈DB

Gn(d)

)2

.

In addition, as D1B and D2B are subspaces of DB , we have

sup
d1∈D1B ,d2∈D2B

1

2

(
G2
n(d) + G2

n(d)1Gn(d)≥0

)
≤

(
sup

d∈DB,s
Gn(d)

)2

,

where DB,s is the symmetrized space DB ∪ (−DB). Therefore, we deduce that

Tn,M,B − `nf0B ≤

(
sup

d∈DB,s
Gn(d)

)2

(1 + oP(1)).

Thus, using the fact that DB,s is a symmetric space, we obtain that, for any ε > 0, for n
sufficiently large,{

Tn,m,B − `nf0,B

an,m0,B
> 4ε

}
⊂

{∣∣∣∣∣ sup
d∈DB,s

Gn(d)

∣∣∣∣∣ > 2
√
εan,m0,B

}
.
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It implies that,

P
(
Tn,m,B − `nf0,B

an,m0,B
> ε

)
≤

P

(
sup

d∈DB,s
ξd >

√
εan,M0,B

)
+ P

(∣∣∣∣∣ sup
d∈DB,s

Gn(d)− sup
d∈DB,s

ξd

∣∣∣∣∣ > √εan,m0,B

)
,

where (ξd)d is a Gaussian process indexed by DB,s, with covariance the usual Hilbertian product
on L2. Note that under our Assumptions, for a fixed value B? of B, supd∈DB?,s Gn(d) converges

in distribution to supd∈DB?,s ξd (see Du Roy de Chaumaray and Marbac (2021a)) as n goes to
infinity. However, as in our context, B goes to infinity with n, we need to control its influence
on the deviations.

Under Assumption 2.2, we will control the first term on the right-hand side by using existing
deviation bounds for the supremum of Gaussian processes (see Du Roy de Chaumaray and
Marbac (2021a) for details), which will lead to

lim
n→∞

P

(
sup

d∈DB,s
ξd >

√
εan,m0,B

)
= 0. (2.16)

Moreover, using the results of the approximation of suprema of general empirical processes by
a sequence of suprema of Gaussian processes Chernozhukov, Chetverikov, and Kato (2014), we
obtain

lim
n→∞

P

(∣∣∣∣∣ sup
d∈DB,s

Gn(d)− sup
d∈DB,s

ξd

∣∣∣∣∣ > √εan,m0,B

)
= 0. (2.17)

Thus, we have for any ε > 0,

lim
n→∞

P
(
Tn,m,B − `nf0,B

an,m0,B
> ε

)
= 0.

Noting that for any m ∈ N3, Assumption 2.3 implies that an,m,B/an,m0,B − 1 > 0 and noting
that the cardinal of N3 is finite and fixed (it does not depend on B) then we can conclude that

P(m̂ ∈ N3) = 0. (2.18)

Combining equations (2.13), (2.14) and (2.18) leads to the convergence in probability of m̂ to
M0.

Some comments: Note that the arguments used in Keribin (2000) to prove that underes-
timation is avoided cannot be used here. Indeed, the proof of Theorem 2.1 in Keribin (2000)
considers parameters that are defined over a fixed dimensional space and thus cannot be used to
obtain (2.12). In our context, we require that B tends to infinity with n (see Assumption 2.4) to

ensure the identifiability and thus the convergence of infθ Eg0
[
ln fm0,B,θ?m0,B

− ln fm,B,θ

]
to a

quantity lower-bounded by δm where θ?M0,B
= arg maxθ∈Θm0,B

Eg0 [ln fm0,B,θ] (this convergence

is ensured by Assumption 2.2(ii), as discussed in the proof of (2.12)). Note that the existence of
θ?m0,B is ensured by the fact that Θm0,B is compact and that the Kullback-Leibler divergence is
continuous.

Note also that the arguments used in Keribin (2000) to prove that overestimation is avoided
cannot be used here either. Indeed, despite the fact that Tn,m,B? − `nf0B? converges in dis-
tribution for a fixed B? and that 1/an,m,B? tends to 0, we cannot directly conclude that
limn→∞ P ([Tn,m,B − Tn,m0,B ] /an,m,B > ε) = 0 for any ε > 0 and any m ∈ N3 because we
require that B tends to infinite with n to avoid the underestimation (see Assumption 2.4).
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2.3.4 Estimation of the best model

The estimation of m̂n,B requires an optimization over a discrete space whose cardinal is of order
2JKmax. Thus, an exhaustive approach computing Wn,m,B for each m in M is not doable in
practice. As the combinatorial issue is mainly due to the feature selection, we follow the approach
of Marbac, Sedki, and Patin (2020) that consists of simultaneously performing feature selection
and parameter estimation, with a fixed number of components, via a specific EM algorithm
optimizing the penalized likelihood. Thus, for a fixed value of K, the goal of the algorithm is to
estimate

m̂n,B,K = arg max
{m={K,Ω} with Ω⊆{1,...,J} and |Ω|≥3}

Wn,m,B .

The following EM algorithm permits the estimation of the model parameters and the detection
of the subset of relevant variables, for a fixed number of components K. Parameter estimation
is achieved by maximum likelihood and model selection is done with an information criterion
with penalty an,m,B = νK,m,Bcn where νK,m,B = (K − 1) + |Ω|K(B − 1) + (J − |Ω|)(B − 1)
is the number of model parameters. The algorithm considers a fixed number of components K
and starts at an initial point {Ω[0],θ[0]}. Its iteration [r] is composed of two steps:
E-step Computation of the fuzzy partition

t
[r]
ik :=

π
[r−1]
k

∏
j∈Ω[r−1]

∏B
b=1

(
α

[r−1]
Bkjb

)σBjb(xij)
∑K
`=1 π

[r−1]
`

∏
j∈Ω[r−1]

∏B
b=1

(
α

[r−1]
B`jb

)σBjb(xij) ,
M-step Maximization of the expectation of the penalized complete-data log-likelihood over Ω
and θ such

Ω[r] = {j : ∆
[r]
j > 0}, π[r]

k =
n

[r]
k

n
and α

[r]
Bkjb =

{
α̃

[r]
Bkjb if j ∈ Ω[r]

ᾱBkjb otherwise
,

where

∆
[r]
j =

n∑
i=1

B∑
b=1

σBjb(xij)

K∑
k=1

t
[r]
ik ln

(
α̃

[r]
Bkjb

ᾱBkjb

)
− (K − 1)(B − 1)cn

is the difference between the maximum of the expected value of the penalized complete-data
log-likelihood obtained when variable j is relevant and when it is irrelevant, with

α̃
[r]
Bkjb =

1

n
[r]
k

n∑
i=1

t
[r]
ik σjb(xij), ᾱBkjb =

1

n

n∑
i=1

σjb(xij) and n
[r]
k =

n∑
i=1

t
[r]
ik .

Note that, when less than three variables happen to have a positive value for ∆
[r]
j , the M-step

selects in Ω[r] the three variables having the largest values of ∆
[r]
j . To obtain the pair Ω and θ

maximizing the penalized observed-data log-likelihood, for a fixed number of components, many
random initializations of this algorithm should be done. Hence, the model (i.e., K and Ω) and the
parameters maximizing the penalized observed-data log-likelihood are obtained by performing
this algorithm for every values of K between 1 and Kmax. By considering cn = (lnn)/2, this
algorithm carries out the model selection according to the BIC.

From previous algorithm, we obtain an estimator of the model and of its parameters. Indeed,
α̂kjb/ljb estimates the density ηkj(u) for any u such that σjb(u) = 1. However, the bin-based
density estimators are generally outperformed by kernel-based estimators. Thus, we advice to
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use the proposed approach only for model estimation. Then, for the selected model, kernel-based
density estimates provides by the EM-like algorithm (Benaglia, Chauveau, and Hunter (2009))
or by maximizing the smoothed log-likelihood (Levine, Hunter, and Chauveau (2011)) should be
considered. However, note that establishing asymptotic properties of these kernel-based density
estimators is still an open question.

2.3.5 Benchmark data

This section illustrates our procedure on three real data sets. The first data set illustrates the
advantage of the procedure for selecting the number of components while the second data set
sheds light on the importance of variable selection. The third data set shows that the procedure
can be easily extended to the case of mixed-type data sets (a data set composed of continuous
and categorical data).

Swiss banknotes data We consider the Swiss banknotes data set (Flury and Riedwyl (1988))
containing six measurements (length of bill, width of left edge, width of right edge, bottom mar-
gin width, top margin width and length of diagonal) made on 100 genuine and 100 counterfeit
old-Swiss 1000-franc bank notes. This data set is available in the R package mclust (Scrucca
et al. (2016)). The status of the banknote (genuine or counterfeit) is also known. We perform
the clustering of the bills based on the six morphological measurements and we evaluate the re-
sulting partition with the status of the bills. Considering all the six morphological measurements
as relevant for clustering, the proposed method detects two clusters which are strongly similar to
the status of the bill (the ARI is 0.98 and only one genuine bill is assigned to the cluster grouping
all the counterfeit bills). Clustering with Gaussian mixture models provides more components
(mclust selects three components and VarSelLCM selects four components) and a partition re-
lated but different to the status of the bill (the ARI is 0.84 and 0.48 for mclust and VarSelLCM
respectively). When a full model selection (feature selection and estimation of the number of
components) is performed, the proposed method still selects two components and detects all
the variables as relevant. Thus, a full model selection approach provides the same results as a
method used for selecting the clusters by considering all the variables as relevant. Moreover,
the Gaussian mixture models obtains less relevant results because VarSelLCM considers that all
the measurements are relevant and thus obtains the same results as without performing feature
selection.

Chemical properties of coffees We consider the data set collected by Streuli (1973) that
reports on the chemical composition of coffee samples collected from around the world. A total of
43 samples were collected from 29 countries, with beans from both Arabica and Robusta species,
which is often considered as a pertinent partition. This data is available in the R package pgmm
(McNicholas et al. (2015)). We cluster the different coffees based on twelve chemical constituents.
A full Gaussian mixture clustering implemented in Mclust estimates three clusters and provided
an ARI of 0.38. The same partition is obtained when the clustering is performed by VarSelLCM
with a full model selection conducted according to the BIC (all the variables are detected as
relevant for clustering). Again, similar results are obtained by the semi-parametric mixture if
the proposed method is used to select the number of components. However, if we perform a full
model selection, only five of the twelve variables are detected as relevant for clustering and only
two components are estimated. Moreover, this simpler model provides a perfect recovery of the
species (ARI=1.00). This illustrates the importance of variable selection for clustering. Note
that McNicholas and Murphy (2008) proposed a parsimonious Gaussian mixture model that also
provides a perfect recovery of the partition.
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Cleveland data set We consider the Cleveland dataset (available at https://www.kaggle.

com/ronitf/heart-disease-uci/version/1). This data set is composed of n = 303 subjects.
Each subject is described by eight categorical variables having between two and six levels and five
continuous variables. The ”goal” field refers to the presence of heart disease in the patient (no
presence vs presence). Model (2.9) can be easily extended to the case of mixed-type data (data
set composed of continuous and categorical variables). Indeed, if variable j is categorical then ηkj
is the probability mass function of a multinomial distribution. Thus, the discretization procedure
used for model selection is applied only on the continuous variables while the number of levels for
the categorical variables is fixed (i.e., it is not defined from the sample size). When the model
is selected, the estimation of the extension of model (2.9) can be easily achieved by maximizing
the smoothed log-likelihood via an MM algorithm. The proposed approach detects the true
number of clusters (i.e., two) while the approach implemented in VarSelLCM overestimates it
since it selects six components. Moreover, by considering ten variables as relevant for clustering,
our procedure returns a more relevant partition with respect to the occurrence of heart disease
because it obtains an ARI equals to 0.37 while the procedure implemente in VarSelLCM obtain
an ARI equals to 0.12.

2.4 Numerical experiments

This section compares approaches for a full model selection (i.e., estimation of the subset of
the relevant variables and on the number of components) on simulated data. We compare
the proposed approach with a BIC applied on a Gaussian mixture model, with the sparse K-
means approach and with the non-parametric approach considering all the variables as relevant.
The results of the proposed clustering method are obtained by performing full model selection
with B levels defined by the empirical quantiles 1/B,...,B/B where B = [n1/6] and a BIC like
penalty and then by estimating the mixture components for the selected model by maximizing
the smoothed log-likelihood with a bandwidth, for variable j, equal to σ̂jn

−1/5 where σ̂j is the
empirical standard deviation of variable j. Thus, when the discretization is performed, the model
selection can be achieved via the R package VarSelLCM (Marbac and Sedki (2020)) then, when
the best model is selected, the maximization of the smoothed log-likelihood is achieved via the R
package mixtools (Benaglia et al. (2009a)). The parametric mixture model considers that all the
components are Gaussian (this approach is also implemented in the R package VarSelLCM) and
uses the BIC to perform model selection. The sparse K-means approach is implemented in the
R package sparcl (Witten and Tibshirani (2010)) and consists in the sparse K-means algorithm
initialized with the partition provided by the sparse hierchical ascendant classification with the
“average” method. Finally, the non-parametric mixture model is implemented the R package
mixtools (Benaglia et al. (2009a)) and considers the estimator maximizing the smoothed log-
likelihood with a bandwidth, for variable j, equal to σ̂jn

−1/5 where σ̂j is the empirical standard
deviation of variable j. To compare the different methods of clustering, we generate data from
a mixture with three components and equal proportions (πk = 1/3). The density of Xi given

Zi is a product of univariate densities such that Xij =
∑K
k=1 zikδkj + ξij where all the ξij are

independent and where δ11 = δ12 = δ23 = δ24 = δ35 = δ36 = τ , while all remaining δkj = 0,
which implies that only the first six variables are relevant for clustering. Three distributions are
considered for the ξij (standard Gaussian, Student with three degrees of freedom and Laplace)
and the value of τ is defined to obtain a theoretical misclassification rate of 5% (τ is equal to
1.94, 2.60 and 2.52 for the Gaussian, Student and Laplace distributions respectively). In the
Section ?? of the Supplementary Materials., all the experiments are also run with theoretical
misclassification rates equal to 10% and 15%.
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Selection of the discriminative features To investigate the performances of the competing
methods for feature selection, we first consider the situation with a known number of compo-
nents. Thus, the model selection consists in performing the feature selection. We consider the
methods which automatically provide an estimator of the relevant variables (i.e., the proposed
method, sparse K-means and VarSelLCM). Accuracy of this selection is measured by sensitivity
(probability to detect as relevant a true discriminative variable) and specificity (probability to
detect as irrelevant a true non discriminative variable). Table 2.2 and 2.3 present the sensibility
and the specificity obtained by the proposed approach and the parametric approach. They ex-
hibit an advantage of the parametric method when the distribution is well-specified, but only for
small samples (n = 100). The reason is that, for such samples, the proposed method only finds a
part of the relevant variables. However, both methods perform well for larger samples. Moreover,
the proposed method obtains similar results for the two other distributions of the components
while the results of the parametric approach are strongly deteriorated for both sensibility and
specificity, especially for heavy tailed distributions (Student distribution).

Proposed method VarSelLCM-BIC VarSelLCM-MICL Sparcl
n n n n

Component J 100 250 500 100 250 500 100 250 500 100 250 500
Gaussian 20 0.83 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 0.85 0.91 0.95

50 0.64 0.99 1.00 0.93 1.00 1.00 0.97 1.00 1.00 0.90 0.95 0.97
100 0.44 0.76 1.00 0.70 1.00 1.00 0.83 1.00 1.00 0.76 0.97 0.98

Student 20 0.81 1.00 1.00 0.35 0.41 0.49 0.27 0.39 0.44 0.74 0.80 0.81
50 0.70 1.00 1.00 0.10 0.14 0.21 0.10 0.17 0.26 0.71 0.73 0.80
100 0.54 0.87 1.00 0.09 0.15 0.16 0.08 0.14 0.19 0.60 0.75 0.78

Laplace 20 0.84 1.00 1.00 0.89 1.00 1.00 0.85 1.00 1.00 0.80 0.83 0.80
50 0.75 1.00 1.00 0.59 0.99 1.00 0.39 0.87 0.97 0.89 0.90 0.91
100 0.54 0.90 1.00 0.17 0.89 1.00 0.10 0.21 0.42 0.85 0.94 0.94

Table 2.2: Mean of the sensitivity (Sen.: card(Ω̂∩Ω)/6) for the feature selection obtained by the
proposed method (Proposed method), the parametric method with the BIC (VarSelLCM-BIC),
the parametric method with the MICL (VarSelLCM-MICL) and the sparse K-means (Sparcl) on
100 replicates for each scenario with theoretical misclassification rate of 5%, when the number
of components is known.

Proposed method VarSelLCM-BIC VarSelLCM-MICL Sparcl
n n n n

Component J 100 250 500 100 250 500 100 250 500 100 250 500
Gaussian 20 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.77 0.66 0.49

50 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.74 0.44 0.31
100 0.98 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.73 0.42 0.21

Student 20 0.97 1.00 1.00 0.70 0.57 0.46 0.61 0.42 0.27 0.75 0.59 0.60
50 0.98 1.00 1.00 0.74 0.67 0.58 0.71 0.56 0.41 0.78 0.83 0.63
100 0.98 1.00 1.00 0.75 0.69 0.63 0.77 0.66 0.55 0.86 0.87 0.79

Laplace 20 0.98 1.00 1.00 0.92 0.97 0.97 0.91 0.97 0.98 0.78 0.85 0.84
50 0.98 1.00 1.00 0.93 0.97 0.97 0.86 0.90 0.91 0.75 0.79 0.74
100 0.99 1.00 1.00 0.92 0.97 0.98 0.86 0.83 0.79 0.76 0.62 0.65

Table 2.3: Mean of the specificity (Spe.: card(Ω̂c∩Ωc)/(J−6)) for the feature selection obtained
by the proposed method (Proposed method), the parametric method with the BIC (VarSelLCM-
BIC), the parametric method with the MICL (VarSelLCM-MICL), and the sparse K-means
(Sparcl) on 100 replicates for each scenario with theoretical misclassification rate of 5%, when
the number of components is known.
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Full model selection We now compare both non-parametric and parametric approaches on
their performances for full model selection. Table 2.4 presents the statistics on the number of
components selected by both approaches. Again, when the distribution of the components is well-
specified, the parametric approach obtains better results on small samples because the proposed
approach tends to underestimate the number of components. However, when the sample size
increases, both methods perform similarly. When the distribution of the components is not
Gaussian, the parametric method performs poorly and asymptotically overestimate the number
of components with probability one. The proposed method is consistent for any number of
variables, however, it tends to underestimate the number of components for small samples.

Component J Proposed method
n = 100 n = 250 n = 500

Tr. Ov. Tr. Ov. Tr. Ov
Gaussian 20 0.43 0.00 1.00 0.00 1.00 0.00

50 0.31 0.00 0.96 0.01 1.00 0.00
100 0.02 0.00 0.64 0.02 1.00 0.00

Student 20 0.54 0.00 1.00 0.00 1.00 0.00
50 0.38 0.00 1.00 0.00 1.00 0.00
100 0.11 0.00 0.86 0.00 1.00 0.00

Laplace 20 0.56 0.00 1.00 0.00 1.00 0.00
50 0.38 0.00 1.00 0.00 1.00 0.00
100 0.18 0.00 0.89 0.01 1.00 0.00

Component J VarSelLCM-BIC VarSelLCM-MICL
n = 100 n = 250 n = 500 n = 100 n = 250 n = 500

Tr. Ov. Tr. Ov. Tr. Ov. Tr. Ov. Tr. Ov. Tr. Ov.
Gaussian 20 0.94 0.00 1.00 0.00 1.00 0.00 0.85 0.00 1.00 0.00 1.00 0.00

50 0.87 0.00 1.00 0.00 1.00 0.00 0.83 0.02 1.00 0.00 1.00 0.00
100 0.53 0.00 1.00 0.00 1.00 0.00 0.42 0.18 1.00 0.00 1.00 0.00

Student 20 0.62 0.15 0.19 0.79 0.00 1.00 0.56 0.30 0.25 0.75 0.00 1.00
50 0.78 0.16 0.40 0.60 0.02 0.98 0.44 0.54 0.07 0.93 0.00 1.00
100 0.78 0.22 0.19 0.81 0.01 0.99 0.16 0.84 0.00 1.00 0.00 1.00

Laplace 20 0.78 0.09 0.32 0.68 0.00 1.00 0.54 0.06 0.71 0.29 0.45 0.55
50 0.36 0.01 0.52 0.48 0.00 1.00 0.25 0.10 0.50 0.37 0.48 0.52
100 0.08 0.00 0.63 0.17 0.03 0.97 0.13 0.13 0.06 0.17 0.15 0.59

Table 2.4: Probability to select the true number of components (Tr.) and to overestimate it
(Ov.) obtained by the proposed method (Proposed method), the parametric method with the
BIC (VarSelLCM-BIC) and the parametric method with the MICL (VarSelLCM-MICL) on 100
replicates for each scenario with theoretical misclassification rate of 5%, by performing a selection
of the variables.

Table 2.5 presents the sensitivity and the specificity for feature selection obtained by both
approaches when the number of components is also estimated. Again, results show the benefits
of the proposed approach when the parametric assumptions are violated. In such case, the para-
metric approach overestimates the number of components and, for heavy tail distributions (e.g.,
Student distribution), this approach tends to overestimate the subset of relevant variables. More-
over, for the small samples, the sensitivity is quite low explaining the tendency of overestimating
the number of components.

Accuracy of the partition We are now interested in investigating the accuracy of the es-
timated partition. Thus, we compute the Adjusted Rand index (Hubert and Arabie (1985))
between the true partition and the estimators of the partition given by the non-parametric and
the parametric methods when K is known and then when it is estimated. Moreover, to il-
lustrate the benefit of feature selection, we also estimate the partition by considering the full
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Component J Proposed method
n = 100 n = 250 n = 500

Sen. Spe. Sen. Spe. Sen. Spe.
Gaussian 20 0.97 0.81 1.00 1.00 1.00 1.00

50 0.96 0.76 1.00 0.99 1.00 1.00
100 0.94 0.55 1.00 0.95 1.00 1.00

Student 20 0.96 0.86 1.00 1.00 1.00 1.00
50 0.96 0.79 1.00 1.00 1.00 1.00
100 0.95 0.67 1.00 0.98 1.00 1.00

Laplace 20 0.97 0.87 1.00 1.00 1.00 1.00
50 0.97 0.81 1.00 1.00 1.00 1.00
100 0.95 0.72 1.00 0.99 1.00 1.00

Component J VarSelLCM-BIC VarSelLCM-MICL
n = 100 n = 250 n = 500 n = 100 n = 250 n = 500

Sen. Spe. Sen. Spe. Sen. Spe. Sen. Spe. Sen. Spe. Sen. Spe.
Gaussian 20 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00

50 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00
100 0.99 0.86 1.00 1.00 1.00 1.00 0.99 0.88 1.00 1.00 1.00 1.00

Student 20 0.67 0.35 0.66 0.71 0.56 0.97 0.63 0.32 0.55 0.69 0.42 0.96
50 0.74 0.09 0.68 0.14 0.59 0.24 0.72 0.09 0.55 0.16 0.37 0.26
100 0.76 0.11 0.72 0.13 0.66 0.14 0.78 0.08 0.65 0.14 0.49 0.17

Laplace 20 0.92 0.90 0.96 1.00 0.90 1.00 0.90 0.81 0.95 1.00 0.92 1.00
50 0.86 0.46 0.97 1.00 0.96 1.00 0.84 0.35 0.92 0.90 0.92 1.00
100 0.84 0.17 0.96 0.82 0.98 1.00 0.85 0.10 0.82 0.21 0.85 0.69

Table 2.5: Mean of the sensitivity (Sen.: card(Ω̂ ∩ Ω)/6) and the specificity (Spe.: card(Ω̂c ∩
Ωc)/(J − 6)) for the feature selection obtained by the proposed method (Proposed method)
and the parametric method (VarSelLCM) on 100 replicates for each scenario with theoretical
misclassification rate of 5%, when the number of components also is estimated.

variables as relevant and the true number of components. Results are presented in Figure 2.3.
Thus, when the parametric assumptions are satisfied, the parametric approach outperforms the
proposed approach only on small samples (few observations with respect to the number of vari-
ables), whenever the number of components is known or not. However, when the parametric
assumptions are violated, the proposed approach strongly outperforms the parametric approach.
Note that, when the number of irrelevant variables increases, the approach considering all the
variables for clustering performs poorly (see row 100), illustrating the benefit of feature selection
for clustering.

2.5 Conclusion

This chapter addresses the issue of variable selection for mixture models under the assumption
of conditional independence between variables given the component. This assumption limits the
number of estimators to be considered and thus is relevant for analyzing data composed of many
features (which is the situation where variable selection is crucial). However, if this assumption
is violated, then the resulting estimators are biased. In a parametric framework, we propose an
optimization algorithm to circumvent the computational issues of model selection via information
criteria. We also propose a optimization algorithm for performing model selection according to
a criterion tuned for clustering (MICL). This criterion is not consistent but seems to be more
robust to the misspecification of the distribution of the components.

To avoid the need for specifying the family of the components, we address the issue of model
selection in a nonparametric framework. The proposed method is relevant even if we only want
to estimate the number of components by assuming that all the variables are relevant. Indeed,
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Figure 2.3: Boxplot of the Adjusted Rand Index (ARI) obtained on the resulting partition when
feature selection is performed with the true number of components by the proposed method
(proposed.K-known) and by the parametric method (VarSelLCM.K-known), by the sparse K-
means (Sparcl.K-known) and by the model considering all the variables as relevant components
(mixtools.K-known) and when the full model selection (feature selection and estimation of the
number of components) is achieved by the proposed approach (proposed.K-unknown) and the
parametric approach (VarSelLCM.K-unknown). Data are generated with theoretical misclassifi-
cation rate of 5%

the approach permits many variables to be considered and thus it is a complementary work to
Kasahara and Shimotsu (2014) and Kwon and Mbakop (2020), because these methods suffer
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from combinatorial issues if the number of variables is large. In the case where the parametric
assumptions are validated, the parametric methods for full model selection slightly outperforms
the nonparametric method for small sample size, but these methods obtains similar results on
large sample sizes. However, if the parametric assumptions are violated, the nonparametric
method outperforms the parametric approaches.

Because the performance of the clustering methods depends on the number of variables (with
respect to the sample size), we believe that the choice of the clustering method should consider
the dimension of the data to analyze. When few variables are considered, the independence
assumption could be too stringent, hence modeling the intra-component dependencies would
allow the accuracy of the partition to be improved. It could be done in a parametric Banfield
and Raftery (1993) or nonparametric Zhu and Hunter (2019) framework. However, in this case,
there is no tool for model selection in a nonparametric framework. Moreover, selecting the
variables in a parametric framework could be achieved via stepwise methods for optimizing an
information criterion. When the number of variables increases, the assumption of conditional
independence has the property of limiting the number of parameters to estimate. Moreover,
feature selection allows the accuracy of the estimators to be improved and the clusters to be
interpreted. The proposed methods presented in this chapter could be used in this case. If the
sample size increases again (e.g., n << d), we advise not to use the nonparametric methods or
the BIC for model selection in a parametric framework. Exact criterion like the BIC could be
considered on a parsimonious model or regularization of the K-means algorithm (Witten and
Tibshirani (2010))

The reasoning used in the proof of the Theorem can be considered for investigating the
consistency of penalized likelihood in the case of increasing parameter space or increasing model
space. This future development is explained in Section 7.1.1.
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Chapter 3

Dealing with non-ignorable
missingness in clustering
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3.1 Introduction

3.1.1 State of the art

Despite the fact that the data sets often contain missing values, as for example in social surveys,
there are only few clustering approaches that consider missingness. Thus, statistical analysis are
generally performed on a complete data set where missing values have been either removed or
imputed. Removing subjects having missing values leads to severe bias and/or losses of efficiency
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(see Molenberghs et al. (2008)). Single imputation of missing values (see Van Buuren (2018))
suffers from a lack of consistency because imputations are generally performed with a model
different from the model used to cluster and do not permit the variability of the data to be
considered. When the missingness mechanism is ignorable (i.e., the mechanism is Missing at
Random and the property of distinctness is satisfied (see for instance Molenberghs et al. (2014)
and Little and Rubin (2002)), then the distribution of the variables can be estimated by modeling
the missingness mechanism. Thus, if the parameter of the distribution of the variables is the
quantity of interest, likelihood-based methods (Schafer (1997)) or multiple imputations (Van
Buuren (2018)) can be used for the estimation. In this chapter, the quantity of interest is not
the distribution of the variables but the conditional probability of the cluster memberships given
the observed variables.

The case where the mechanism is not ignorable (e.g., the missing not at random (MNAR)
mechanism, where the missingness is allowed to depend on the missing values even conditionally
on the observed covariates) happens frequently in practice (e.g., higher-income respondents may
decline to report income data). In such cases, the joint distribution of the variables and the
indicators of responses has to be considered. Thus, weighting methods (see Rotnitzky and
Robins (1997) and Tsiatis (2007)) can be used if the target is the inference of the distribution
of the variables. However, these methods are not really suitable for clustering because they
would classify only the subjects with no missingness. Alternatively, multiple imputations could
be considered, but because many samples would be generated, it is not easy to consider the aim
of the clustering. Thus, in this chapter, we focus on the likelihood-based methods (or smoothed-
likelihood-based methods). Note that generally, assumptions should be made (e.g., parametric
assumption) on the joint distribution of the variables and the indicators of responses to obtain
the identifiability of the model but the distribution of the mechanism cannot be tested on the
observed data (see Molenberghs et al. (2008)). Identifiability of the parameter of interest is
crucial for consistency of the procedure.

In order to handle missing values in a model-based clustering framework, Hunt and Jor-
gensen (2003) have implemented the standard EM algorithm based on the observed likelihood.
More recently, Serafini, Murphy, and Scrucca (2020) also proposed an EM algorithm to estimate
Gaussian mixture models in the presence of missing values by performing multiple imputations
(with Monte Carlo methods) in the E-step. However, both works only consider M(C)AR data.
Two clustering approaches allow data subject to non-ignorable mechanism to be analyzed. Chi,
Chi, and Baraniuk (2016) introduces the K-POD algorithm that extends the K-means to the case
of missing data even if the missing mechanism is unknown. K-POD method performs the cluster
detection from the observed data via a MM algorithm. Indeed, K-POD algorithm alternates
between an imputation of the missing values given the centroids and the cluster assignments
and an estimation of the centroids and the cluster assignments based on the imputated data.
Thus, the K-POD algorithm is the combination of a formulation that is common to matrix
completion problems with a descent algorithm in the MM framework to produce clustering that
agrees with the observed data. One argument of the authors is that, by bypassing the completely
observed data formulation, K-POD retains all information in the data and avoids committing to
distributional assumptions on the missingness patterns. However, this approach suffers from the
standard drawbacks of the K-means algorithm (i.e., assumptions of spherical clusters and equal
proportions of the clusters). Alternatively, using a selection model approach (see Little (1993)
and the definition in Section 3.2), Miao, Ding, and Geng (2016) proposed specific univariate
Gaussian mixtures and univariate t-mixtures to cluster continuous data under a non-ignorable
mechanism. For such an approach, the missingness mechanism must be specified. The authors
use probit and logit distributions to model the missingness mechanisms. The authors define gen-
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eral conditions for obtaining the identifiability of the resulting distribution. Note that in Miao,
Ding, and Geng (2016), there are no details about the computation of the E-step of the EM
algorithm used to assess the MLE, despite the fact that this step involves computations of inte-
grals having no closed-form. Moreover, the parametric mixture of Miao, Ding, and Geng (2016)
is introduced to cluster univariate data and its extension to the case of multivariate data is not
trivial without the assumption of independence within components.

3.1.2 Contributions to clustering under non-ignorable missingness

In the context of missing values, we wrote three book chapters as a companion of the summer
school 19èmes Journées d’Étude en Statistique. These chapters present an introduction of statis-
tical analysis with missing values (Marbac (2022a)), a description of the likelihood-based methods
under ignorable mechanisms (Marbac (2022b)) and an introduction to the weighted methods for
missing values (Marbac (2022c)). In the framework of model-based clustering, my colleagues and
I proposed two approaches to deal with non-ignorable missingness mechanims that we detail in
this chapter. The first contribution (Biernacki et al. (2021)) considers a parametric framework
and generalizes the approach of Miao, Ding, and Geng (2016). The second approach (Du Roy de
Chaumaray and Marbac (2020)) considers a non-parametric framework and can be interpreted
as a generalization of (2.3) in the case of non-ignorable missingness. This approach has been im-
plemented in the R package MNARclust (Du Roy de Chaumaray and Marbac (2021b)) available
on CRAN.

In Biernacki et al. (2021), we presented a relevant inventory of parametric distributions for
the MNAR missingness process in the context of unsupervised classification based on parametric
mixture models that generalize the approach of Miao, Ding, and Geng (2016) in the multivariate
case. We stated the identifiability of the mixture model parameters and of the missingness
process parameters, under certain conditions (including the data type and the link functions
governing the missingness mechanism distribution). This is a real issue in the context of MNAR
data, as models often lead to unidentifiable parameters. When all variables are continuous, all
models lead to identifiable parameters. In the categorical case, only the models for which the
missingness depends on the class membership have identifiable parameters. For each model or
sub-model, an EM or Stochastic EM algorithm is proposed.

In Du Roy de Chaumaray and Marbac (2020), we proposed to perform clustering via a
mixture model that uses a pattern-mixture model approach (see Little (1993) and the definition
in Section 3.2) with non-parametric distributions. Thus, no assumptions were made on the data
distribution or on the missingness mechanism except that the variables are independent within
components and thus generalizes (2.3) to the case of missingness. Note that this is an implicit
assumption made by geometrical clustering (e.g., K-means or K-POD) when a diagonal metric
is used to compute the distances between observations. Despite the fact that this assumption
is relevant in many situations, especially if the number of variables is large with respect to the
number of observations (Hand and Keming (2001), Webb, Boughton, and Wang (2005) and
Stephens, Huerta, and Linares (2018)), it can induce a bias when violated. For each mixture
component, we estimated, for each variable, its probability to be observed together with its
conditional distribution given that the variable is observed. We emphasized that our concern is
clustering and not imputation or density estimation. Indeed, the approach presented in Du Roy
de Chaumaray and Marbac (2020) permits the conditional probability of the cluster memberships
to be estimated given the observed values. Note that, as in any approach developed for a non-
ignorable mechanism, the distribution of the variables within a component cannot be estimated
by our procedure, without additionnal assumptions. Estimation of the semi-parametric mixture
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can be done by maximizing the smoothed likelihood (Levine, Hunter, and Chauveau (2011)). In
Du Roy de Chaumaray and Marbac (2020), we extend the concept of smoothed likelihood to
mixed-type data. Indeed, the model includes continuous (the covariates) as well as binary (the
indicators of the missigness) variables. In our extension, only the distribution of the continuous
variables are smoothed. Thus, the smoothed likelihood can be maximized by an MM algorithm
implemented in the R package MNARclust.

The chapter is organized as follows. Section 3.2 introduces the semi-parametric mixture used
for clustering data with non-ignorable missingness and a definition of ignorability for clustering
that can be interpreted as an extension of the ignorability for a part of the parameters introduced
in Little, Rubin, and Zangeneh (2017). Section 3.3 presents the main elements of the work
presented in Biernacki et al. (2021). Section 3.4 presents the main elements of the work presented
Du Roy de Chaumaray and Marbac (2020). A conclusion is given in Section 3.5.

3.2 Mixture for non-ignorable missingness

3.2.1 The data

The observed sample is composed of n independent and identically distributed subjects arising
from K homogeneous subpopulations. Each subject is described by J continuous variables and
some realizations of these variables may be unobserved. The missingness mechanism is allowed
to be non-ignorable. Thus, the probability, for a variable, not to be observed is allowed to depend
on the values of the variable itself and the subpopulation membership.

Each subject i is described by a vector of three variables (X>i ,R
>
i ,Z

>
i )> where Xi = (Xi1, . . . ,

XiJ)> ∈ RJ is a set of continuous variables, Ri = (Ri1, . . . , RiJ)> ∈ {0, 1}J indicates whether
Xij is observed (Rij = 1) and Zi = (Zi1, . . . , ZiK)> indicates the subpopulation of subject i
(Zik = 1 if subject i belongs to subpopulation k and otherwise Zik = 0). Each subject belongs

to one subpopulation such that
∑K
k=1 Zik = 1. The realizations of Zi are unobserved and a part

of the realizations of Xi can be unobserved too. Therefore, the observed variables for subject
i are (Xobs>

i ,R>i )> where Xobs
i is composed by the elements of Xi such that Rij = 1 and the

unobserved variables for subject i are (Xmiss>
i ,Z>i )> where Xmiss

i is composed of the elements
of Xi for which Rij = 0.

3.2.2 General mixture model

We use mixture models for the purpose of clustering and not for density estimation. Clustering
aims to estimate the subpopulation memberships given the observed variables (i.e., the realization
of Zi given (Xobs>

i ,R>i )>) without any assumption on the missingness mechanism (i.e., no
assumption on the conditional distribution of Ri given (X>i ,Z

>
i )>). The probability distribution

function (pdf) of (X>i ,R
>
i )> for subpopulation k (i.e., Zik = 1) is denoted by fk(·). Thus, the

pdf (X>i ,R
>
i )> is defined by the pdf of a K-component mixture

f(xi, ri) =

K∑
k=1

πkfk(xi, ri), (3.1)

where πk > 0,
∑K
k=1 πk = 1 and fk(·) is pdf of component k. From (3.1), the distribution of the

observed values (Xobs>
i ,R>i )> can be defined by two approaches (see Molenberghs et al. (2014)

and Little and Rubin (2002)): the selection model and the pattern-mixture model.
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The approach named selection model defines the conditional distribution of (X>i ,R
>
i )> given

Zi as the product between the conditional distribution of Xi given Zi and the conditional dis-
tribution of Ri given (Z>i ,X

>
i )> such that

fk(xi, ri) = fk(xi)fk(ri | xi).

Thus, the distribution of the observed data is defined for each component k by

fk(xobs
i , ri) =

∫
fk(xi)fk(ri | xi)dxmiss

i .

The selection model approach is natural and has been used for many times in different contexts
(see Miao, Ding, and Geng (2016) for clustering under a MNAR scenario). When the mechanism
is ignorable, it provides an estimation of the marginal distribution of Xi without considering the
distribution of the mechanism. However, when the mechanism is non-ignorable, it requires the
missingness mechanism to be modelled, i.e. the conditional distribution of Ri given (Z>i ,X

>
i )>.

Finally, as it considers the marginal distribution of Xi, the selection model should be used when
the aim is to fit the marginal distribution of Xi.

Alternatively, the approach named pattern-mixture model (Little (1993)) defines the condi-
tional distribution of (X>i ,R

>
i )> given Zi as the product between the conditional distribution

of Ri given Zi and the conditional distribution of Xi given (Z>i ,R
>
i )>. Thus, using the pattern-

mixture model, the pdf of component k is given by

fk(xi, ri) = fk(ri)fk(xi | ri). (3.2)

The pdf of the observed variables under component k, denoted by fk(xobs
i , ri), is obtained by

integrating the pdf of component k over the missing variables Xmiss
i , which leads to

fk(xobs
i , ri) = fk(ri)fk(xobs

i | ri). (3.3)

Note that (3.3) takes into account the missingness mechanism as it involves the whole vector
Ri. Thus the missing values impact the clustering. To estimate the marginal density of Xi from
(3.3), assumptions should be made on the conditional distribution Xobs

i given Ri (because the
realizations under some distributions are never observed, e.g., Ri = 0). However, we recall that
we focus on the target of clustering that consists of assessing the posterior probabilities of the
classification given the observed values using

P(Zik = 1 | xobs
i , ri) =

πkfk(xobs
i , ri)∑K

`=1 π`f`(x
obs
i , ri)

. (3.4)

3.2.3 Weak and strong ignorability for clustering

In a likelihood-based estimation, the missingness mechanism is said to be ignorable for likelihood
inference if the missing data are missing at random and if the distinctness property is satisfied by
the parameters (see Definition 6.4 in Little and Rubin (2002)). These conditions ensure that it
is appropriate to ignore the missingness mechanism, especially for parameter estimation. These
conditions have been extended when only a subset of the parameters are of interest (Little, Rubin,
and Zangeneh (2017)). Thus, despite the fact that the missingness mechanism is MNAR, these
conditions ensure that a subset of the parameters can be consistently estimated by ignoring
the missingness mechanism. In clustering, the quantities of interest are the partition and, in
some cases, the posterior probabilities of classification. Thus, we introduce the notion of weakly
and strongly ignorable mechanisms for clustering that allows the mechanism to be neglected for
estimating the partition and the posterior probabilities of classification.
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Definition 3.1. Let gk(xobs
i ) be the marginal pdf of the observed variables under component k.

The missingness mechanism is said to be strongly ignorable for clustering if

∀xobs
i ,

πkfk(xobs
i , ri)∑K

`=1 π`f`(x
obs
i , ri)

=
πkgk(xobs

i )∑K
`=1 π`g`(x

obs
i )

.

The missingness mechanism is said to be weakly ignorable for clustering if

∀xobs
i , ζ(xobs

i ) = η(xobs
i ),

where

ζ(xobs
i ) = arg max

k=1,...,K

πkfk(xobs
i , ri)∑K

`=1 π`f`(x
obs
i , ri)

and η(xobs
i ) = arg max

k=1,...,K

πkgk(xobs
i )∑K

`=1 π`g`(x
obs
i )

.

The strong ignorability for clustering implies the weak ignorability for clustering. When
the data are MNAR, the weak ignorability can be interpreted as the condition required for a
misspecified model (e.g., the model of the missingness mechanism or the distribution of the
mixture components) to provide a consistent estimator of the partition. Note that in clustering,
consistency of the estimated partition does not mean a perfect recovery of the partition but
that the estimated partition is asymptotically equivalent to the partition obtained by using the
rule of the maximum a posteriori on the true posterior probabilities of classification. Thus, a
misspecified model can provide a consistent estimator of the partition (e.g., if the data arise
from a mixture of two univariate Student distributions with the same degrees of freedom, a
consistent estimator of the partition can be obtained by considering a mixture of two univariate
Gaussian distributions; note that in this case the probabilities of classification are not consistently
estimated). As the condition on the missingness mechanism to be weakly ignorable for clustering
is quite stringent, we need to introduce an approach based on the joint distribution of (X>i ,R

>
i )>

which allows data to be clustered under a non-ignorable scenario.

3.3 Parametric mixture for non-ignorable missingness

3.3.1 The model

In Biernacki et al. (2021), we consider that the components follow parametric distributions.
Thus, it is natural to use the selection model approach to deal with missingness. Thus, we have

f(xobs
i , ri;θ) =

K∑
k=1

πk

∫
fk(xi, ri;αk)dxmiss

i , (3.5)

with
fk(xi, ri;αk) = fk(xi; δk)fk(ri|xi;ψk), (3.6)

where θ groups all the parameters, αk = (δ>k ,ψ
>
k )> groups the parameters of component k, δk

groups the parameters related to the distribution of Xi under component k and ψk groups the
parameters related to the conditional distribution of Ri given Xi under component k. Differ-
ent kinds of distributions can be considered, depending on the types of features at hand. For
continuous data, we consider that the conditional distribution of Xi given the component is the
J-variate Gaussian distribution. Similarily, for categorical data, we consider that the conditional
distribution of Xi given the component is a product of J univariate multinomial distributions.
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For a combination of continuous and categorical data (i.e., the mixed-type case), the conditional
distribution of Xi given the component is defined as a product of univariate Gaussian and multi-
nomial distributions. In a parsimonious perspective, we assume that the elements of Ri’s are
independent conditionally on (X>i ,Z

>
i )>, leading to

fk(ri|xi;ψk) =

J∏
j=1

fk(rij |xi;ψk). (3.7)

A general MNAR mechanism for Rij can be written as follows, by giving the probability of
missingness for the variable j given the data xi and the class membership zik = 1,

fk(rij |xi;ψk) = ρ

υkj + βkjxij +
∑
j′ 6=j

γkjj′xij′

rij

×

1− ρ

υkj + βkjxij +
∑
j′ 6=j

γkjj′xij′

1−rij

, (3.8)

where ρ is the cumulative distribution function of any continuous distribution function and ψk
groups all the υkj , βkj and γkjj′ if the feature j is continuous. Note that constraints between the
parameters needs to be added for identifiability reasons when variable j is categorical (see Bier-
nacki et al. (2021) for details). This general MNAR mechanism seems to be over-parameterized.
For instance, for a binary dataset, the number of parameters is equal to 2KJ + J(J − 1) while,
for instance, the most parsimonious mixture model on xi, namely the latent class model (i.e.,
parametric version of (2.3)), has JK+K−1 parameters. Note that the missingness model (3.8)
has more parameters than the associated mixture model. Since we are expecting that the indi-
vidual data X convey more information on the partition Z that the pattern R of missing data, it
seems to be hazardous to allow the missing data modeling to be more complex than the mixture
model itself. Consequently, parsimonious versions of the general MNAR model (3.5)-(3.8) have
to be proposed (see Biernacki et al. (2021) for details). Firstly it is reasonable to assume that
γjj′ = 0 (for all j′ 6= j), which means that a given value is missing mainly because of its own
value, much more than the values of the other variables. Therefore, the most complex model
that we propose is called the MNARx[k]z[j] model

MNARx[k]z[j]: fk(rij |xi;ψk) = ρ(υkj + βkjxij)
rij (1− ρ(υkj + βkjxij))

1−rij . (3.9)

The parameters {υkj} represent the effect of missingness on the k-th class membership which
depends on the variable j (i.e. the effect is not the same for all variables). The parameters {βkj}
represent the direct effect of missingness on the variable j which depends on the class k. In
Biernacki et al. (2021), we propose different parsionious models by adding constraints between
the υkj and/or between the βkj .

3.3.2 Identifiability of the parameters

Proving the identifiability of the parameters of a mixture model containing missing values
amounts to proving that the joint distribution of (R>i ,X

>
i ,Z

>
i ) can be uniquely determined from

available information. Therefore, we prove the identifiability of the parameters of the observed
distribution defined by (3.5)-(3.7) and (3.9). Proposition 3.1 gives sufficient conditions for the
identifiability of the parameters for continuous or count data under the followning assumptions.
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Assumption 3.1. (i) The parameters of the marginal distribution of Xi defined by the density∑K
k=1 πkfk(xi; δk) are identifiable;

(ii) There exists a total ordering � of Fj × R, for j ∈ {1, . . . , J} fixed, where Fj is the
family of the distributions {f1j , . . . , fKj} and R is the family of the mechanism densities
{f1j(rij |xi;ψ1), . . . , fKj(rij |xi;ψK)}. The total ordering is such that ∀k < `, Fk � F`
(denoting Fk = ρkfkj and F` = ρ`f`j) implies

lim
u→+∞

ρ(υ`j + β`ju)f`j(u; δ`)

ρ(υkj + βkju)fkj(u; δk)
= 0;

(iii) The missing-data distribution ρ is assumed to be strictly monotone.

Assumption 3.1.(i) means that the identifiability of the parameters θ of the model defined
by (3.5)-(3.7) and (3.9) requires the identifiability of the parameters (π>, δ>) (i.e., the mixture
models has to be identifiable when there is no missingness). Many authors have already studied
the identifiability of the mixture models, when Xi is always fully observed (see Teicher (1963);
Teicher (1967) and Yakowitz and Spragins (1968)). Assumption 3.1.(ii) is the core ingredient to
prove the identifiability of the parameters and we illustrate it by considering concrete examples
in the following. Note that under Assumption 3.1.(iii) the probit and the logistic function may
be considered, which are the most widely used for MNAR specifications.

Proposition 3.1. Under Assumptions 3.1, the parameters θ of the model defined by (3.5)-(3.7) and
(3.9) are identifiable up to label swapping (as also the parsimonious models defined in Biernacki
et al. (2021)).

The proof of this proposition is detailed in Biernacki et al. (2021) and follows the reason-
ing used by Theorem 2 in Teicher (1963) which proves the identifiability of a univariate finite
mixture using a total ordering of the mixture densities. In the following, we denote by fkj , the
marginal density of the variable j under component k. Proposition 3.1 states the identifiability
of the Gaussian mixture with a probit missingness mechanism (details are given in Biernacki
et al. (2021)). Indeed, finite Gaussian mixtures are identifiable and, for any variable j, there is
a total ordering defined by σ2

kj > σ2
(k+1)j and µkj > µ(k+1)j if σ2

kj = σ2
(k+1)j , where µkj and

σ2
kj are respectively the mean and the variance of variable j under component k. The property

stated by Proposition 3.1 has been already etablished, in the case of univariate distributions, by
Miao, Ding, and Geng (2016). In particular, the identifiability conditions in Miao, Ding, and
Geng (2016) (conditions 1 and 2) imply the existence of the total ordering defined in Propo-
sition 3.1. However, these conditions exclude the case of a Gaussian mixture with a logistic
missingness mechanism, which is very much used in practice. In Proposition 3.2, we therefore
extend this result to the multivariate case with a logistic missingness mechanism. Note first that
with a logistic distribution, a total ordering cannot be defined. Indeed, for variable j, such an
ordering cannot be defined if the two univariate variances are equal (i.e., σ2

kj = σ2
(k+1)j) and

µkj −βkj −µ(k+1)j +β(k+1)j = 0. However, for the specific case of a Gaussian mixture where all
the univariate variances are different between the components, then conditions of Proposition 3.1
hold true with a logistic missing-data distribution and so does its identifiability. In addition, for
parsimonious MNAR models for which the effect on the variable j does not depend on the class
membership k (i.e. βkj = β(k+1)j), the conditions of Proposition 3.1 hold true with a logistic
missingness mechanism. Finally, as stated in Proposition 3.2 (proved in Biernacki et al. (2021)),
the condition on the covariance matrices (including the case of a homoscedastic Gaussian mix-
ture) can be relaxed to obtain the generic identifiability of the model (i.e., all not-identifiable
parameter choices lie within a proper submanifold, and thus form a set of Lebesgue zero measure;
Allman, Matias, and Rhodes (2009)).
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Proposition 3.2. Assume that
∑K
k=1 πkfk(xi; δk) is the density of a multivariate Gaussian mix-

ture, that ρ is the logistic function and that the missingness scenario is defined by (3.7) and
(3.9), then θ is generically identifiable (i.e., all not-identifiable parameter choices lie within a
proper submanifold, and thus form a set of Lebesgue zero measure) up to label swapping.

Proposition 3.2 can also be applied for variables with integer value (i.e., count data), as
shown in Biernacki et al. (2021) for the Poisson mixture with probit or logistic missing-data
distributions. When the data are categorical, the parameters of the general model defined by
(3.5)-(3.7) and (3.9) are no longer identifiable. For such data, only a parsimonious version that
allows the missingness process to only depend on the class membership is identifiable.

3.3.3 Parameter estimation

The model defined by (3.5)-(3.7) and (3.9) is not ignorable, thus it requires a specific inference
procedure for estimating θ. This section gathers the description of the EM and SEM algorithms
for Gaussian, multinomial and mixed data with MNAR models for maximum likelihood estima-
tion. Details of the algorithms are given in Biernacki et al. (2021). The observed log-likelihood
is defined as follows

`(θ; xobs, r) =

n∑
i=1

log

(
K∑
k=1

∫
πkfk(xi; δk)fk(ri|xi;ψk)dxmiss

i

)
.

Thus, the complete log-likelihood is

`(θ; r,x, z) =

n∑
i=1

K∑
k=1

log(πkfk(xi; δk)fk(ri|xi;ψk)).

We first detail the EM algorithm for the different MNAR models at hand with Gaussian,
multinomial and mixed mixture models. Initialized at the parameter θ[0], iteration s of the
algorithm is composed of the following two steps

• E-step: Computation of Q(θ;θ[s]) = E[`(θ; R,X,Z)|Xobs,R;θ[s]] which is the expected
complete log-likelihood `comp knowing the observed data and a current value of the param-
eters. This quantity can be decomposed into two parts as follows

Q(θ;θ[s]) = Qx(π, δ;θ[s]) +Qr(ψ;ψ[s]),

with

Qx(π, δ;θ[s]) =

n∑
i=1

K∑
k=1

τ
[s]
ik lnπk +

n∑
i=1

K∑
k=1

τ
[s]
ik E

[
ln fk(Xi; δk) |Xobs

i , Zik = 1,Ri;θ
[s]
]
,

and

Qr(ψ;ψ[s]) =

n∑
i=1

K∑
k=1

τ
[s]
ik E

[
ln fk(Ri|Xi;ψk) |Xobs

i , Zik = 1,Ri;θ
[s]
]
.

where τ
[s]
ik := P(Zik = 1 |Xobs

i ,Ri;θ
[s]) ∝ π

[s]
k fk(Xobs

i ; δ
[s]
k )fk(Ri|Xi;ψ

[s]
k ).

• M-step: Maximization over θ of Q(θ;θ[s]), by maximizing Qx(π, δ;θ[s]) w.r.t. (π, δ) and

Qr(ψ;ψ[s]) respectively with respect to ψ. This step leads to the parameters θ[s+1].
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Computation of Q(θ;θ[s]) requires the evaluation of integrals defined by the conditional expecta-

tions E
[
ln fk(Xi; δk) |Xobs

i , Zik = 1,Ri;θ
[s]
]

and E
[
ln fk(Ri|Xi;ψk) |Xobs

i , Zik = 1,Ri;θ
[s]
]

that depend on the MNAR model at hand. Indeed, these integrals can have a closed-form if par-
simonious constrains are considered such that the missingness process depends on Zi but not on
Xmiss
i (i.e., all the υkj are free but all the βkj equals zero in (3.9)). However, in the general case,

the integrals involved in these expectations do not have closed forms. Thus, we propose using a
stochastic EM (SEM; Celeux, Chauveau, and Diebolt (1996)) algorithm to cirumvent this issue.
By imputing missing values using a Gibbs sampler instead of integrating over them. In addition,
it has another possible advantage over the EM algorithm since it is not trapped by the first local
maximum encountered of the likelihood function (Celeux, Chauveau, and Diebolt (1996)).

The SEM algorithm consists of the following two steps for smax iterations (details of these
steps are given in Biernacki et al. (2021)):

• SE-step: Draw the missing data X
miss[s+1]
i and Z

[s+1]
i according to the conditional dis-

tribution of Xmiss
i ,Zi given Xobs

i ,Ri and the parameters θ[s]. Since it is not convenient
to simulate from this conditional distribution, we simulate instead from the following two
easier conditional probabilities using a Gibbs sampling approach:

Z
[s+1]
i ∼ Zi | X[s]

i ,Ri,θ
[s] and X

miss[s+1]
i ∼Xmiss

i |Xobs
i ,Z

[s+1]
i ,Ri,θ

[s], (3.10)

where X
[s]
i = (Xobs>

i ,X
miss[s]>
i )>. For the latter distribution, we can draw the membership

k of Z
[s+1]
i from the multinomial distribution with probabilities P(Zik = 1 | X[s]

i ,Ri;θ
[s])

for k = 1, . . . ,K.

• M-step: Maximization of the completed log-likelihood `(θ; R,X[s+1],Z) over θ, which

provides θ[s+1].

3.4 Semi-parametric mixture for non-ignorable missing-
ness

3.4.1 The model

A wide range of literature focuses on models assuming that conditionally on knowing the par-
ticular subpopulation the subject i came from, its coordinates Xi are independent (see model
defined by (2.3)). Thus, in Du Roy de Chaumaray and Marbac (2020), we extend this model for
non-ignorable missingness. The paris of variables (Xij , Rij)

> are assumed to be conditionally
independent given Zi. Thus, the distribution of Ri | Zi is a product of Bernoulli distributions
and the conditional density of Xi | Zi,Ri is defined as the product of univariate densities. Thus,
from (3.2), the pdf of component k is also defined by

fk(ri; τ k) =

J∏
j=1

τ
rij
kj (1− τkj)1−rij and fk(xi | ri) =

J∏
j=1

p
rij
kj (xij)q

1−rij
kj (xij), (3.11)

where τ k = (τk1, . . . , τkJ), τkj > 0 is the probability that Xij is observed given that subject i
belongs to subpopulation k, pkj(·) is the conditional density of Xij given Zik = 1 and Rij = 1
and qkj(·) is the conditional density of Xij given Zik = 1 and Rij = 0. Thus, clustering is
achieved by modeling, for each subpopulation, the marginal probability of missingness and the
conditional density given that the variable is observed. Integrating out the unobserved variables
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Xmiss
i (i.e., the elements of vector Xi such that Rij = 0), we obtain the following pdf for the

distribution of the observed variables

f(xobs
i , ri;θ) =

K∑
k=1

πkfk(xobs
i , ri;θ), (3.12)

where the pdf of component k is a specific version of (2.3) defined by

fk(xobs
i , ri;θ) = fk(ri; τ k)

J∏
j=1

p
rij
kj (xij), (3.13)

where θ groups all the finite parameters (πk and τ k) and all the infinite parameters pkj(·). Note
that cluster analysis does not require estimating qkj(·) because this quantity does not appear in
the posterior probabilities of classification given by (3.4). The resulting model allows custering
to take into account the missingness mechanism because the whole vector Ri is considered in
(3.13) and thus in the computation of the posterio probabilities of classification (see (3.4)). Thus,
missing values impact the posterior probabilities of classification through the parameters τkj ’s
used for modeling the binary variables Rij . Note that a subject presenting missing values for each

variable (i.e., Rij = 0 for any j) has a probability πkfk(ri; τ k)/
∑K
`=1 π`f`(ri; τ `) to belong to

cluster k that is different from the probability obtained under ignorable mechanism (i.e., in this
case the probability is πk). Note that the mechanism is strongly ignorable for clustering is also
covered by the approach, because if such a situation occurs, then the conditional distributions
of Ri given the cluster membership, are equal for each cluster (i.e., the vector of probability of
responses are equal among components: τ 1 = . . . = τK). Finally, note that the approach allows
the mechanism of missingness, for variable j, to depend on the cluster membership and/or on
the value of the variable itself. Moreover, model (3.12)-(3.13) allows the missing values to have a
wide range of influence on the posterior probabilities of classification as shown by the following
example.

Example 3.1 (Impact of the missingness mechanism on clustering). We consider a mixture model
of K components such that the distribution of (X>i ,R

>
i )> under component k is defined by

fk(xi, ri) =

J∏
j=1

gj(xij − µkj) [Ψ(γk + δjxij)]
rij [1−Ψ(γk + δjxij)]

1−rij ,

where g1, . . . , gJ are known densities and Ψ is a known function defined on [0, 1] which represents
the missingness mechanism. We show that the distribution of (X>i ,R

>
i )> under component k

can be defined from (3.11) with

τkj =

∫
gj(xij − µkj)Ψ(γk + δjxij)dxij ,

pkj(xij) =
gj(xij − µkj)

τkj
Ψ(γk + δjxij) and qkj(xij) =

gj(xij − µkj)
1− τkj

[1−Ψ(γk + δjxij)] .

Clustering is achieved by considering the distribution of the observed values (3.13). This frame-
work allows for different situations:

• The missingness mechanism can depend on the component only (i.e., δj = 0). If γ1 6=
. . . 6= γK , then the τkj are not equals if the µkj are not. In this case, τkj = Ψ(γk) and
pkj = qkj = gj . Usually when the distributions of a pattern-mixture model are equal, then
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the mechanism is ignorable (see Molenberghs et al. (2014)). However, as the component
membership is not observed, the mechanism here is non-ignorable and it can be interpreted
as a conditional MAR given the component membership.

• If the mechanism only depends on j (i.e., γ1 = . . . = γK and δ1 6= . . . 6= δJ) then τkj are
different if the µkj are. Note that the difference of the µkj is required to have different
distributions for the mixture components.

• The clustering is only explained by the mechanism if µkj = 0 and γ1 = . . . = γK .

• The mechanism is strongly ignorable for clustering (but not for density estimation) if δj = 1
and µkj = −δk for any (j, k).

Thus, one can consider the case where the partition is only explained by the missing values:
i.e., the distribution of Xi is the same in each component, but the conditional distribution of Ri

given Xi is not. In such a case, the probabilities τkj are not the same between the components
and the distributions of the observed variables per components pkj are generally not the same
either. Alternatively, a strongly ignorable missingness mechanism can be considered and this
case can be easily detected because it implies that for any Ri ∈ {0, 1}J , we have for any (k, `),
fk(ri; τk) = f`(ri; τ`).

With model (3.12)-(3.13), we are able to achieve clustering because the posterior probabilities
of classification are available, however, as qkj(·) is not estimated, we are not able to estimate
the conditional distribution of Xi given Zi or any information on this distribution (e.g, the
conditional expectation of Xij given Zi cannot be computed but only the conditional expectation
of Xij given Zi and Rij = 1). Avoiding the estimation of qkj(·) is the core of the proposed
approach. Indeed, estimating qkj(·) requires information about the missingness mechanism (that
is generally unknown) as it can only be achieved by estimating the joint distribution of (Xij , Rij).
Molenberghs et al. (2008) show that different models used for the distribution of (Xij , Rij) can
lead to the same distribution of the observed variables. Thus, supplementary information is
needed for consistently estimating qkj . As our approach only considers the marginal probabilities
of missingness (for each variable given the component), we avoid the issue of lack of identifiability
(see the following lemma) and we are able to estimate the posterior probabilities of classification
(but not the pdf of Xi for each component).

Sufficient conditions for the model identifiability are stated by Lemma 3.1. Its proof uses
some results on the identifiability of nonparametric mixtures (Theorem 8 of Allman, Matias, and
Rhodes (2009)) and is presented in Du Roy de Chaumaray and Marbac (2020).

Lemma 3.1. If J ≥ 3, πk > 0 and τkj > 0, and if the densities pkj are linearly independent, then
the model defined by (3.11)-(3.13) is identifiable, up to label swapping.

Note that the assumptions of Lemma 3.1 are not stronger than those of Theorem 8 of Allman,
Matias, and Rhodes (2009) except that we need one mild condition on the missingness process
(i.e., τkj > 0 means that the probability of observing variable j is not zero for any component
k). Indeed, the need to consider at least three variables is explained by the use of the Kruskal’s
Theorem which is at the core of the results of Allman, Matias, and Rhodes (2009). The as-
sumption of linear independence of the densities is equivalent to the linear independence of the
cumulative distribution functions and is not a stringent assumption (see Lemma 17 in Allman,
Matias, and Rhodes (2009)). The fact that identifiability holds up to label swapping is standard
in clustering, because the labels of the components of mixture models can be permuted without
changing the pdf of the model. Finally, note that the assumptions of Lemma 3.1 allow all the
τkj to be equal to one, corresponding to the case where there is no missingness. Note that if the
data to cluster are univariate or bivariate, the proposed approach cannot be used because model
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identifiability is not proven. In such cases, alternative models (semi-parametric location-scale
model or parametric models) should be considered.

3.4.2 Smoothed likelihood

To perform parameter estimation, we maximize the smoothed likelihood by extending the ap-
proach of Levine, Hunter, and Chauveau (2011) to the case of mixed-type variables. Indeed,
despite the fact that all the elements of Xi are continuous, the vector of indicator of response
Ri is binary, thus the vector of the observed variables (Xobs>

i ,R>i )> is a vector of mixed-type
variables. Note that the smoothing is only performed on the densities because these quantities
are estimated non-parametrically. Thus, smoothing is performed on the distributions of Xobs

i

for each component and there is no need to smooth the distributions of Ri for each component
because these distribution are just defined as a product of probabilities (see (3.11)).
Let S be the smoothing operator defined by

Sfk(xobs
i | ri) =

J∏
j=1

(Spkj(xij))rij ,

and

Spkj(xij) =

∫
Ωj

1

hj
K

(
xij − u
hj

)
pkj(u)du,

where K is a kernel function and hj > 0 its bandwidth. We consider the non-linear smoothing
operator defined by

N fk(xobs
i , ri;θ) = fk(ri; τ k) exp{S ln fk(xobs

i | ri)},

where fk(xobs
i | ri) =

∏J
j=1 p

rij
kj (xij). The smoothed log-likelihood function is defined by

`n(θ) =

n∑
i=1

ln

(
K∑
k=1

πkN fk(xobs
i , ri;θ)

)
.

Parameter estimation is performed by maximizing the smoothed likelihood over θ. This maxi-
mization is achieved by an MM algorithm presented in the next section.

3.4.3 Majorization-Minimization algorithm

The maximization on θ of the smoothed log-likelihood function is performed via an MM algo-
rithm. This iterative algorithm starts at the initial value of the parameters θ[0]. At iteration [s],
it performs the following two steps

• Computing the smoothed probabilities of subpopulation memberships

tik(θ[s]) =
π

[s]
k N gk(xobs

i , ri;θ
[s])∑K

`=1 π
[s]
` N g`(xobs

i , ri;θ
[s])

.

• Updating the estimators

– Updating of the proportions

π
[s+1]
k =

1

n

n∑
i=1

tik(θ[s]).
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– Updating of the parameters of the missingness mechanism

τ
[s+1]
kj =

∑n
i=1 rijtik(θ[s])∑n
i=1 tik(θ[s])

.

– Updating of the conditional distribution

p
[s+1]
kj (u) =

∑n
i=1 rijtik(θ[s]) 1

hj
K
(
xij−u
hj

)
∑n
i=1 rijtik(θ[s])

.

The monotonicity of the algorithm is stated by Lemma 3.2 whose proof is similar to the
proof of Theorem 1 in Levine, Hunter, and Chauveau (2011) and is detailled in Du Roy de
Chaumaray and Marbac (2020). This implies that the algorithm converges to a local optimum
of the smoothed log-likelihood, hence different random initializations should be performed.

Assumption 3.2. For any 1 ≤ j ≤ J , any 1 ≤ k ≤ K and any xij ∈ R, we suppose that

pkj ∈ L1(R) and that
∫
R

1
hj
K
(
xij−u
hj

)
ln pkj(u)du < +∞.

Lemma 3.2. Let the assumptions of Lemma 3.1, Assumptions 3.2 hold true and that for any
j,
∑n
i=1 rij ≥ 1. Let θ[s] and θ[s+1] be the estimators obtained at iterations [s] and [s + 1]

respectively, we have `n(θ[s]) ≤ `n(θ[s+1]).

Note that, due to the evaluation of the integrals required for the computation of the tik(θ[r]),
the MM algorithm has a larger complexity that the EM-like algorithm proposed by Benaglia,
Chauveau, and Hunter (2009) for estimating semi-parametric mixture models with no missing-
ness. However, the assumption of independence within components permits to consider inte-
grals that are only univariate. Moreover, extension of the EM-like algorithm for estimating
the proposed model is straightforward. However, as explained by Benaglia, Chauveau, and
Hunter (2009), the resulting algorithm would not have the ascendant property and the objec-
tive function would not be clearly defined. Note that the evaluation of the integrals implied
by tik(θ[r]) as a computational cost that make attractive parametric mixture models and their
maximum likelihood estimation via an EM algorithm. However, this argument does not hold
under non-ignorable missigness. Indeed, in such case, some integrals having no closed forms
appear at the E-step of the EM algorithm used to fit Gaussian mixture model with logit or
probit missingness process (see Miao, Ding, and Geng (2016)) and thus needs to be numerically
evaluated.

3.4.4 Simulated data

This section compares the different clustering methods that consider the missingness mechanism
(including the two approaches we proposed). During all the experiments we use a Gaussian kernel
with bandwidths hj = Cjn

−1/5 where Cj is the standard deviation of the observed realizations
of variable j.In these simulations, different distributions for the components and missingness
mechanisms are considered. Moreover, we investigate the influence of four quantities: the rate
of missingness, the sample size, the number of variables and the theoretical rate of misclassifi-
cation. Method comparison is done according to the Adjusted Rand index (ARI; Hubert and
Arabie (1985)) computed between the true partition and the estimated partition provided by the
competing method. Thus, the closer to one the ARI is, the closer the true and the estimated
partitions are.
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Competing methods The proposed method, implemented in the R package MNARclust, is
compared to the following three methods:

• Ignorable-GMM : Gaussian mixture assuming that the missingness mechanism is ignorable
(implemented in the R package VarSelLCM Marbac and Sedki (2018);

• K-pod : K-pod approach performed with the function kpod of the R package kpodclustr
Chi and Chi (2014);

• NPimputed : non-parametric mixture on the imputed data performed with the functions np
and imputePCA of the R packages mixtools Benaglia et al. (2009a) and missMDA Josse
and Husson (2016).

Simulation setup To compare the different methods of clustering, we generate complete data
from mixture models with three components having unequal proportions (π1 = 1/2 and π2 =
π3 = 1/4) and independence between variables within components such that

Xij = δ

3∑
k=1

λkjZik + εij ,

where all the λ11 = λ22 = λ33 = λ14 = λ25 = λ36 = 1 and the other λkj = 0 and where εij
are independent from all the variables and define the distribution within-components (Gaussian,
Student with three degrees of freedom, Laplace and Skewed Gaussian with shape equals to three).
Then, we add missing values from four scenarios:

• MCAR: P(Rij = 0 | Xij ,Zi) = (1 + exp(γ))−1;

• MNAR-logit-Z: P(Rij = 0 | Xij ,Zi) = (1 + exp(γ + 2
∑K
k=1 zik))−1;

• MNAR-logit-X: P(Rij = 0 | Xij ,Zi) = (1 + exp(γ + xij))
−1;

• MNAR-censoring-X: P(Rij = 0 | Xij ,Zi) = 1{Xij<γ}.

Thus, the parameters δ and γ allow us to set the rates of misclassification and missingness (their
values under the different scenarios are given in Du Roy de Chaumaray and Marbac (2020)).

Impact of the rate of missingness To investigate the impact of the rate of missingness,
we consider data sets composed of n = 100 observations described by J = 6 variables with a
theoretical misclassification of 10%. For each scenario, we generated 100 data sets. Figure 3.1
presents the boxplots of ARI between the true partition and the estimators of the partition
given by the methods. Overall, the proposed method outperforms the competing methods under
non-ignorable mechanims. Indeed, its results are robust to the different distributions of the com-
ponents, the missingness scenarios and the missingness rates. Moreover, when the mechanism
is ignorable, all the methods obtain good similar performances. Note that the parametric ap-
proach assuming that the missingness mechanism is ignorable yields slightly better results, when
the distribution within components is Gaussian or skewed Gaussian. However, this approach
yields poor results when the missingness mechanism is not ignorable. Under the non-ignorable
scenario, the proposed approach yields the best results. The results of the other methods stay
relevant under the logit-X scenario and Gaussian or Skewed-Gaussian components. However, in
the other scenarios, they produce poor results. Finally, note that the larger the missingness rate
is, the larger the benefit of the proposed method is. Indeed, the results of the proposed method
seems not to be impacted by the missingness rate while the results of the other methods are
deteriorated when this rate is increasing, under non-ignorable mechanisms.
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Figure 3.1: Boxplot ARI computed from 100 samples of n = 100 observations described by J = 6
variables with a misclassification rate of 10%.
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Consistency of the estimators To illustrate the consistency of the estimators, we consider
data sets composed of observations described by J = 6 variables with a theoretical misclassifica-
tion of 10% and a theoretical missing rate per variable of 30%. For each scenario, we generated
100 data sets. Figure 3.2 presents the boxplot of the ARI between the true partition and the
estimators of the partition given by the methods. Again, results show that the method outper-
forms the competing methods because it is more robust with respect to the distribution of the
components and to the missingness scenario. Moreover, despite the fact that the accuracy of the
partition is improved when the sample size increases, the results are satisfactory (compared to
the results of the parametric methods) even for small samples.

Figure 3.2: Boxplot ARI computed from 100 samples composed of d = 6 variables having a
missing rate of 30% each with a misclassification rate of 10%.

Impact of the dimension To illustrate the impact of the dimension, we consider data sets
composed of n = 100 observations generated with a theoretical misclassification of 10% and a
theoretical missing rate per variable of 30%. For each scenario, we generated 100 data sets.
Figure 3.3 presents the boxplot of the ARI between the true partition and the estimators of the
partition given by the methods. Despite the fact that the proposed method is semi-parametric,
the results show that it can manage data set with many variables. Indeed, the deterioration of
the results of the proposed method when J increases is very weak. This is due to the assumption
of conditional independence between the pairs (Xij , Rij)

> given the components membership.
Indeed, this assumption permits the impact of the curse of the dimensionality for the nonpara-
metric estimators to be limited.
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Figure 3.3: Boxplot ARI computed from 100 samples composed of n = 100 observations having
a missing rate of 30% per variable and a misclassification rate of 10%.
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Impact of the theoretical misclassification To illustrate the impact of the overlaps between
components, we consider data sets composed of n = 100 observations generated with J = 6 and
a theoretical missing rate per variable of 30%. For each scenario, we generated 100 data sets.
Figure 3.4 presents the boxplot of the ARI between the true partition and the estimators of
the partition given by the methods. Overall, all the methods perform well under the MCAR
mechanism despite the fact that the results of the proposed methods are more deteriorated
than those of the other methods when the misclassification rate is high. Howerver, under the
non-ignorable scenarios, the proposed method outperforms the competing methods.

Figure 3.4: Boxplot ARI computed from 100 samples composed of n = 100 observations described
by d = 6 variables having a missing rate of 30%.

3.4.5 Benchmark data

We consider two data sets (Swiss banknotes and Italian wines) described below, to illustrate the
behavior of the proposed method. The Swiss banknotes data set (Flury and Riedwyl (1988))
contains six measurements (length of bill, width of left edge, width of right edge, bottom margin
width, top margin width and length of diagonal) made on 100 genuine and 100 counterfeit
old-Swiss 1000-franc bank notes. This data set is available in the R package mclust Scrucca
et al. (2016). The status of the banknote (genuine or counterfeit) is also known. We perform
the clustering of the bills based on the six morphological measurements and we evaluate the
resulting partition with the status of the bills. The Italian wine data set records 27 physical and
chemical measurements on 178 Italian wines grown in the same region in Italy but derived from
three different cultivars (Barbera, Barolo and Grignolino) and five years of production (1970,
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1973, 1974, 1976 and 1979). The data set (Forina et al. (1986)) is available on the R package
MBCbook (companion R package of Bouveyron et al. (2019)). Clustering of the wines based on
the 27 physical was done and chemical measurements and we compare the resulting partition
with the three cultivars and the year of production.

The original data does not have missing values. To investigate the behavior of the proposed
method, we generate data sets from the original data by adding missing values drawn from
three different mecanisms: MCAR where the probability to unobserve each value is γ, MNARZ
where the probability to unobserve a value depends on the true class memberships (i.e., for
the Swiss banknote and the Italian wine data sets, the true class memberships are defined by
variable bill status and cultivars respectively; so this probability that a variable is unobserved
is 0.5γ and γ for the counterfeit and genuine bills respectively and 0.5γ, γ and 1.5γ for the
Barbera, Barolo and Grignolino respectively), MNARcensoring where a variable is fully observed
if its value is more than the empirical quantile of the variable at level

√
γ and observed with

probability
√
γ otherwise. For each mecanism, 100 data sets are generated from the original data.

Each generated data set is analyzed by the four competing methods: nonparametric proposed
method, Kpod algorithm, Gaussian mixture model assuming ignorability of the mecanisms and
a two-step approach that first impute data using PCA then fit a non-parametric mixture on
the complete data. Figure 3.5 presents the boxplot of the ARI obtained, by the four competing
methods, on 100 samples generated under each scenario and for different values of γ. Note that
on the original data, the semi-parametric mixture model and the Gaussian mixture model with
conditional independence are relevant for detecting the underlying partition. Moreover, the K-
means is relevant for detecting the underlying partition on the Swiss banknote data set but it is
less relevant for the wine data set. Indeed, on the Swiss banknote data set, the partitions given
by semi-parametric mixture model, K-means and Gaussian mixture model have an ARI equal
to 0.98, 1.00 and 0.96 respectively. Moreover, on the Italian wine data set, the partitions given
by semi-parametric mixture model, K-means and Gaussian mixture model have an ARI equal to
0.98, 0.41 and 0.96 respectively. Results show that increasing the rate of missigness deteriorates
the partitions. This phenomenon was expected because less discriminating information is present
in the data set. Results show that the proposed method performs well under the non-ignorable
scenarios while the results obtained by the alternative methods are strongly deteriorated in such
a case (see MNARZ and MNARcensoring).

3.4.6 Echocardiogram data set

We consider the Echocardiogram Data Set Salzberg (1988) freely available in the R package
MNARclust. This data set is composed of n = 132 subjects who suffered from heart attacks at
some point in the past. The task is generally to determine from the other variables, whether or
not the patient will survive at least one year. The data set is composed of 5 continuous variables:
age at heart attack (missing rate 4.5%), fractional shortening (a measure of contracility around
the heart, lower numbers are increasingly abnormal, missing rate 6.0%), epss (E-point septal
separation, another measure of contractility, larger numbers are increasingly abnormal, missing
rate 11.4%), lvdd (left ventricular end-diastolic dimension; this is a measure of the size of the
heart at end-diastole; large hearts tend to be sick hearts, missing rate 8.3%) and wall-motion-
score (a measure of how the segments of the left ventricle are moving, missing rate 3.0%); one
binary variable pericardial effusion (pericardial effusion is fluid around the heart, 0=no fluid,
1=fluid, missing rate 0.7%). We also have one binary variable which can be used as a partition
among the subjects: still alive (0=dead at end of survival period, 1 means still alive). This
binary variable is not used for clustering but permits the accuracy of the estimated partition
to be evaluated. Among the variables used for clustering, there are 5.7% of missing values and
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Figure 3.5: Boxplot ARI obtained 25 samples composed genrated from the original data Swiss
Banknotes (banknote) and Italian wines (wine).
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19.1% of the sujects have at least one missing value. Moreover, the variable, still alive, has only
one missing value.

Clustering is performed by extending the proposed approach to the case of mixed-type data
(data set composed of one binary and five continuous variables). This extension is easy because of
the assumption of conditional independence within components. Hence, each categorical variable
is modelled by a multinomial distribution given the component and the fact that the variable
is observed. Moreover, since non-parametric estimation is only performed for the densities,
smoothing is only done for the continuous variables.

Chosing the number of components in a semi-parametric mixture is a difficult problem (even
in the complete case). Note that methods have been developed to select this number in the case
of a continuous data set (see Kasahara and Shimotsu (2014) and Kwon and Mbakop (2020)).
However, they cannot be used directly on mixed-type data. Thus, we used the approach based
on discretization described in Section 2.3 with a number of bins B = [n1/6] for selecting the
number of components. This approach detects three clusters. This result is confirmed by the
evolution of the maximum smoothed log-likelihood with respect to the number of clusters (see
Du Roy de Chaumaray and Marbac (2020)). Figures 3.6 and 3.7 show the relation between
the missingness rates and the influence on the missingness and on the observed variables on the
partition. This quantity is measured by the empirical counterpart of E[maxk lnP(Zik | Rij)] and
E[maxk lnP(Zik | Xij)] respectively. Thus, the higher these indexes, the more discriminative the
missingness process and the observed variable. Moreover, Figures 3.6 and 3.7 show that both
the missingness process and the observed variables influence the partition but that the observed
variables are more discriminative (overall the values of E[maxk lnP(Zik | Rij)] are less than those
of E[maxk lnP(Zik | Xij)]).

Figure 3.6: Rate of missingness and empirical counterpart of E[maxk lnP(Zik | Rij)] for each
variable.

Table 3.1 presents a summary of the conditional distribution of the variables given the clusters.

The three unbalanced classes are mainly explained by two variables: epss and lvdd, which are
highly discriminative for both the missingness mechanism and the conditional densities pkj . Note
that if we would consider a full-model selection, the proposed approach based on discretization
would select three components and three relevant variables (fractional.shortening, epss and lvdd).
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Figure 3.7: Rate of missingness and empirical counterpart of E[maxk lnP(Zik | Xij) for each
variable.

age effusion shortening
τkj mean sd τkj prob. τkj mean sd

class-1 0.95 64.61 8.91 1.00 0.07 1.00 0.15 0.07
class-2 0.82 65.10 7.44 0.91 0.03 0.28 0.16 0.08
class-3 0.97 61.83 7.97 1.00 0.09 1.00 0.25 0.11

epss lvdd wall motion
τkj mean sd τkj mean sd τkj mean sd

class-1 0.97 20.01 6.97 0.97 5.56 0.64 0.98 17.36 6.28
class-2 0.28 9.68 2.07 0.10 5.30 0.08 0.82 11.99 8.05
class-3 0.93 8.88 4.53 1.00 4.43 0.62 0.99 13.50 3.12

Table 3.1: Summary of the conditional distribution of the vairables given the cluster: proba-
bility of non missing (τkj), mean and standard deviation (sd) for the continuous variables and
probability of occuring for the binary variable

Note that these three variables are the most discriminative ones for the missingness process and
for their conditional distribution within a component, given the fact that the variable is observed
(see Figures 3.6 and 3.7). The three estimated classes can be described as follows:

• class-1 (π1 = 0.27) is composed of 33 subjects. These subjects are characterized by high
values of the measurements of epss, lvdd and wall-motion-score and small of values of the
measurements of fractional shortening. This class is characterized by a very low probability
of missingness for each variables;

• class-2 (π2 = 0.08) is composed of 11 subjects. These subjects have suffered from heart
attack being older than the subjects of the other class and obtain low values for the wall-
motion-score. They are characterized by high probabilities of missingness for all the vari-
ables;

• class-3 (π3 = 0.65) is composed of 88 subjects. These subjects have suffered from heart
attacks being young and have low missingness probabilities. They take low values for epss
and lvdd and high values of shortening
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As shown by the confusion matrix presented in Table 3.2, the estimated partition permits to be
partially explained the death of the subject at the end of the survival period.

Class 1 Class 2 Class 3
dead 12 4 72

still alive 21 6 16

Table 3.2: Confusion matrix between the estimated partition and the still alive variable. The
Adjusted Rand index is 0.25

Finally, the assumption of independence within components seems to be realistic. Indeed,
we investigate this assumption by testing the significance of the correlation coefficients between
the conditional distribution of variables Xij given the cluster membership and Rij = 1. (the p-
values obtained by testing the nullity of the correlation coefficient of the conditional distribution
of pair of variables conditionally on component 1 and 3 respectively are available in Du Roy de
Chaumaray and Marbac (2020)). The high values of the p-values suggest that the assumption of
conditional independence given the component membership is suitable. Note that results related
to component 2 are not presented due a lack of subjects assigned to this class.

3.5 Conclusion

We propose two approaches for model-based clustering under a non-ignorable missingness process.
One approach uses the selection model approach in a parametric framework while the second
approach uses the pattern-mixture model approach in a nonparametric framework. For clustering,
we believe that the pattern-mixture model approach should be preferred because it turns out to
be more general as it does not require the missingness mechanism to be specified and allows this
mechanism to be non-ignorable. Note however that, this approach does not permit the marginal
distribution of Xi | Zi to be estimated without adding assumptions about the missing mechanism.
Thus, the proposed approach can be used for clustering but not for density estimation. If the
marginal distribution of Xi is sought, we advise using the selection model approach.

In the context without missingness, a drawback of the MM algorithm is the computation
of integrals having no closed form for computing the smoothed probabilities of subpopulation
memberships. However, due to the independence within components, those integrals are only
univariate. Note that the parametric mixtures (e.g., Gaussian mixtures) do not suffer from this
drawback, when the data are complete. However, when missingness occurs, even the estimation
of the parametric mixtures via the EM algorithm, leads to compute integrals having no closed
form (see Miao, Ding, and Geng (2016)). Thus, when missingness occurs, the estimation of the
proposed semiparametric mixture is not more complex than the estimation of the parametric
mixture. We believe that this is a supplementary argument in favor of the use of the pattern-
mixture model approach in a nonparametric framework.

The pattern-mixture model approach could be extended to location or location/scale semi-
parametric models. However, we believe that these models would be more suitable for modeling
the distribution of the variables than rather the conditional distribution of the variables given
that their values are not missing. Thus, these models would be more relevant for a selection model
approach but their estimation would be complex without considering parsiominious contraints
on the missingness process (e.g., the probability of missingness only depends on the component
membership).
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The proposed method allows continuous data sets with non-ignorable missingness to be clus-
tered with no more assumption than the independence within components. In some applications,
the assumption of independence within components can be too strong but it can be relaxed. This
point is discussed in Section 7.2.
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4.1 Introduction

4.1.1 State of the art

Regression models allow the relationship between some covariates and a target variable to be
investigated. These models are defined by an equation on the conditional moment of the transfor-
mation of the noise. This transformation is generally the piecewise derivative of the loss function
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that defines the type of regression: mean, robust, quantile (see Koenker and Bassett (1978),
Horowitz and Lee (2005) and Wei and Carroll (2009)), expectile (see Newey and Powell (1987),
Ehm et al. (2016) and Daouia, Girard, and Stupfler (2018)).

The regression model with a fixed group effect is central within this generic paradigm. It
considers that the intercept of the regression depends on the group from which the subject
belongs (the intercept is common for subjects belonging to the same group but different for
subjects belonging to different groups). However, in many applications, the group variable is
not observed but other variables related to this variable are observed. For instance, suppose we
want to investigate high blood pressure by considering the levels of physical activity among the
covariates. In many cohorts, the level of physical activity of a subject is generally not directly
available (because such a variable is not easily measurable) but many variables on the mean time
spent doing different activities are available. Note that the regression model with a fixed group
effect and a latent group variable is a specific mixture of regressions (see Wang et al. (1996),
Hunter and Young (2012) and Wu and Yao (2016)) where only the intercepts of the regressions are
different among the components and where the mixture weights depend on some other variables.
Moreover, the regression model with a fixed group effect and a latent group variable can be
interpreted as a regression model with specific quantization of the variables that we use to
estimate the group membership (see for instance Charlier, Paindaveine, and Saracco (2015) for
the quantization in quantile regression).

The estimation of a regression model with a fixed group effect is generally performed using
a two-step approach as for instance in epidemiology or in economics (see Auray, Klutchnikoff,
and Rouviere (2015), Ando and Bai (2016) and Zhang, Wang, and Zhu (2019)). As a first step,
a clustering on the individual based on the group-related variables is performed to obtain an
estimator of the group. As a second step, the regression model is fitted by using the estimator
of the group variable among the covariates. The second step considers a regression model with
measurement errors on the covariates. Indeed, the group variable is estimated in the clustering
step with errors. Hence, it is well-known that the resulting estimators of the parameters of
regression are biased (see for instance Carroll and Wand (1991), Nakamura (1992) and Bertrand
et al. (2017)). The bias depends on the accuracy of the clustering step. Note that, despite the
fact that the target variable contains information about the group variable (and so is relevant
for clustering), this information is not used in the two-step approach, leading to suboptimal
procedures.

Some simultaneous approaches have been considered in the framework of latent variable mod-
els, such as latent class and latent profile analysis (see Guo, Wall, and Amemiya (2006) and Kim
et al. (2016)). In this framework, the authors introduce latent class and latent factor variables
to explain the heterogeneity of observed variables. However, this approach does not focus on the
conditional distribution of particular variable given other ones, and it is limited to a parametric
framework. Another related reference is the work of Sammel, Ryan, and Legler (1997), where
the authors introduce a latent variable mixed effect model, which allows for arbitrary covariate
effects, as well as direct modeling of covariates on the latent variable. Some other relevant ref-
erences can be found in the field of concomitant variables (see Dayton and Macready (1988),
Grün and Leisch (2008) and Vaňkátová and Fǐserová (2017)), where some additional variables
are used to locally adjust the weights of the mixture of regressions. These approaches are rather
focused however, on the tasks of the mixture of regressions than on clustering data based on
concomitant variables.
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4.1.2 Contributions

In Marbac et al. (2022), we propose a new procedure (hereafter referred to as the simultaneous
approach) that simultaneously estimates the clustering and the regression models in a semi-
parametric framework (see Hunter, Richards, and Rosenberger (2011)) thus circumventing the
limits of the standard procedure (biased estimators). We demonstrate that this procedure im-
proves both the estimators of the partition and regression parameters. A full parametric setting
is also presented, however if one of the clustering or regression models is ill-specified, its bias mod-
eling could contaminate the results of the other. Thus, we focus on a semi-parametric mixture
where the component densities are defined as a product of univariate densities (see Chauveau,
Hunter, and Levine (2015), Zhu and Hunter (2016a) and Zheng and Wu (2020)). Note that, mix-
tures of symmetric distributions (see Hunter, Wang, and Hettmansperger (2007) and Butucea
and Vandekerkhove (2014)) could also be considered in a similar way. Semi-parametric inference
is achieved by a maximization of the smoothed likelihood via a MM algorithm implemented in
the R package ClusPred (Marbac et al. (2021)).

This chapter is organized as follows. Section 4.2 introduces a general context where a statis-
tical analysis requires both methods of clustering and prediction, and it presents the standard
approach that estimates the parameters in two steps. Section 4.3 shows that a procedure that
allows for a simultaneous estimation of the clustering and of the regression parameters generally
outperforms the two-step approach. This section also briefly presents the simultaneous proce-
dure on a parametric framework, then focuses on the semi-parametric frameworks. Section 4.4
presents numerical experiments on simulated data showing the benefits of the proposed ap-
proach. Section 4.5 illustrates our proposition for problems associated with high blood pressure
prevention. Section 4.6 provides a conclusion.

4.2 Embedding clustering and prediction models

4.2.1 Data presentation

Let (V>,X>, Y )> be the set of the random variables where V = (U>,Z>)> is a dV = dU +K
dimensional vector used as covariate for the prediction of the univariate variable Y ∈ R, X is a
dX -dimensional vector and Z = (Z1, . . . , ZK)> ∈ Z is a categorical variable with K levels. The
variable Z indicates the group membership such that Zk = 1 if the subject belongs to cluster k and
otherwise Zk = 0. The realizations of (U>,X>, Y )> are observed but the realizations of Z are
unobserved. Thus, X is a set of proxy variables used to estimate the realizations of Z. Considering
the high blood pressure example, Y corresponds to the diastolic blood pressure, U is the set of
observed covariates (gender, age, alcohol consumption, obesity and sleep quality), X is the set
of covariates measuring the level of physical activity and Z indicates the membership of a group
of subjects with similar physical activity behaviors. The observed data are n independent copies
of (U>,X>, Y )> denoted by u = (u>1 , . . . ,u

>
n )>, x = (x>1 , . . . ,x

>
n )> and y = (y1, . . . , yn)>

respectively. The n unobserved realizations of Z are denoted by z = (z>1 , . . . ,z
>
n )>.

4.2.2 Motivating example

We use the following example throughout the chapter, which examines the general objective of
high blood pressure prevention. Here, we focus on the detection of indicators related to the
diastolic blood pressure (Y ) (see Berney, Burnier, and Wuerzner (2018) for the interest of the
study). The indicators we wish to consider are the gender, the age, the alcohol consumption,
the obesity, the sleep quality and the level of physical activity (V). However, the level of
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physical activity (Z) of a patient is not directly measured and we only have a set of variables
which describes the physical activity (X), such as practice of that recreational activity, hours
spent watching TV, hours spent on the computer, etc. More details of the data are provided
in Section 4.5. The study of the different indicators is performed using a regression model that
explains the diastolic blood pressure with a set of covariates where one variable (the physical
activity) was not directly observed. Information about this latter variable is available from other
variables that do not appear in the regression.

4.2.3 Introducing the joint predictive clustering model

Regression model Let a loss function be L(·) and ρ(·) its piecewise derivative. The loss
function L allows the regression model of Y on V to be specified with a fixed group effect given
by

Y = V>β + ε with E[ρ(ε)|V] = 0, (4.1)

where β = (γ>, δ>)> ∈ RdV , γ ∈ RdU are the coefficients of U , δ = (δ1, . . . , δK)> ∈ RK are
the coefficients of Z (i.e., the parameters of the group effect), and ε is the noise. Note that for
reasons of identifiability, the model does not have an intercept. The choice of L allows many
models to be considered and, among them, one can cite the mean regression (with L(t) = t2

and ρ(t) = 2t), the τ -quantile regression (with L(t) = |t| + (2τ − 1)t and ρ(ε) = τ − 1{ε≤0};
Koenker and Bassett (1978)), the τ -expectile regression (with L(t) = |τ − 1{t ≤ 0}|t2 and
ρ(t) = 2t((1− τ)1{t ≤ 0}+ τ1{t > 0}); Newey and Powell (1987)), etc.

The restriction on the conditional moment of ρ(ε) given V is sufficient to define a model
and allows for parameter estimation. However, obtaining a maximum likelihood estimate (MLE)
needs specific assumptions on the noise distribution. For instance, parameters of the mean re-
gression can be consistently estimated with MLE by assuming centered Gaussian noise. Similarly,
the parameters of τ -quantile (or τ -expectile) regression can be consistently estimated with MLE
by assuming that the noise follows an asymmetric Laplace (or an asymmetric normal) distribu-
tion (see Yu and Moyeed (2001) and Xing and Qian (2017)). Hereafter, we denote the density
of the noise ε by fε.

Clustering model The distribution of X given Zk = 1 is defined by the density fk(·). There-
fore, the marginal distribution of X is a mixture model defined by the density

f(xi;ψ) =

K∑
k=1

πkfk(xi), (4.2)

whereψ = π∪{f1, . . . , fK}, π = (π1, . . . , πK)> is the vector of proportions defined on the simplex

of dimension K (i.e., πk > 0 and
∑K
k=1 πk = 1) and where fk is the density of component k.

In a parametric approach, fk is assumed to be parametric so it is denoted by fk(·;αk) where
αk are the parameters of component k. In a semi-parametric approach, some assumptions are
required to ensure model identifiability (see for instance Chauveau, Hunter, and Levine (2015)).
In the following, the semi-parametric approaches are considered with the assumption that each
fk is a product of univariate densities (see Section 4.3.3).

Joint clustering and regression model The joint model assumes that Z explains the de-
pendency between Y and X (i.e., Y and X are conditionally independent given Z) and that U
and (X>,Z>)> are independent. Moreover, the conditional distribution of W = (X>, Y )> given
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U is also a mixture model defined by the density

f(wi|ui;θ) =

K∑
k=1

πkfk(xi)fε(yi − u>i γ − δk), (4.3)

where θ = π ∪ {φ1, . . . ,φK} ∪ ςε, φk grouping the parameters specific to component k (i.e.,
the finite parameter δk and the infinite parameters fk) and ςε grouping the parameters shared
among the components (i.e., the finite parameter γ and the infinite parameter fε), we have

E[ρ(Y −U>γ − Z>δ)|V] = 0, (4.4)

Note that (4.3) is a particular mixture of regressions models where the mixture weights are
proportional to πkfk(xi) (thus depending on covariates that do not appear in the regressions)
and where only the intercepts (i.e., δ1, . . . , δK) are different among the regressions. Contrary to
Grün and Leisch (2008) who consider the density f(yi|ui,xi;θ) thus focusing on the regression
framework, here we propose considering the density f(wi|ui;θ) which balances the regression
and the clustering frameworks.

Moment condition The following lemma gives the moment equation verified on the joint
model and only consider observed variables in conditioning (see Marbac et al. (2022) for the
proof). It will be used later to justify the need for a simultaneous approach.

Lemma 4.1. Assume that the model is defined by (4.3), that the condition (4.4) holds true, that
the covariance matrix of U has full rank and finally that fkj and fε are strictly positive. Denoting

β0 as the single parameter satisfying (4.4) and rU,X,Yk (u,x, y) = πkfk(x)fε(y−u>γ−δk)∑K
`=1 π`f`(x)fε(y−u>γ−δ`)

, we

have
∀k = 1, . . . ,K, E[rU,X,Yk (U,X, Y )ρ(Y −U>γ − δk)|U,X] = 0⇐⇒ β = β0. (4.5)

4.3 Simultaneous estimation of clustering and prediction
models

4.3.1 Limits of the standard two-step approach estimation

The aim is to explain the distribution of Y given V = (U>,Z>)> from an observed sample. A
direct estimation of the model (4.1) is not doable because the realizations of Z are unobserved.
The standard approach considers the following two-steps:

1. Clustering step Perform a clustering of x to obtain an estimated hard classification rule
r̂X : RdX → Z or an estimated fuzzy classification rule r̂X : RdX → Z̃K where Z̃K is the
simplex of size K.

2. Regression step Estimation of the regression parameters given the estimator of the group

memberships β̂
r̂X

:= (γ̂ r̂
X>, δ̂

r̂X>
)> with

β̂
r̂X

= arg min
β

n∑
i=1

K∑
k=1

r̂Xk (xi)L(yi − u>i γ − δk),

where r̂Xk (xi) is the element k of vector r̂X(xi). Note that r̂Xk (xi) is an estimator of
the conditional probability that observation i belongs to cluster k given xi, if the fuzzy
classification rule is used.
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The following lemma (see Marbac et al. (2022) for the proof) states that the two-step approach
is suboptimal . Indeed, even if the optimal classification rule on X is used, its expected good-
classification rate is strictly smaller than that obtained by the best approach (see statement 1)
and the estimators of the regression parameters are asymptotically biased (see statement 2).

Lemma 4.2. Let the model be defined by (4.3)-(4.4) where fk and fε are continuous and strictly
positive where there exists (k, `) such fk and f` have no disjoint support and also δk 6= δ`, and
finally where fε is not constant. Suppose that fε defines a random variable with finite variance
and that U has a full rank covariance matrix. Then,

1. Any hard classification rule r̃X : RdX → Z is suboptimal in the sense that

E

[
K∑
k=1

r̃Xk (X)Zk

]
< E

[
K∑
k=1

rU,X,Yk (U,X, Y )Zk

]
.

2. Consider the quadratic loss, the best classification rule rX computed on X and its asso-

ciated estimator of the regression parameters β̂
rX

. The estimator γ̂r
X

is asymptotically

unbiased but the estimator δ̂
rX

is asymptotically biased with an asymptotic bias equals to∑K
`=1 δk`δ`∑K
`=1 δk`

− δk, where δk` = E[rXk (X)rX` (X)].

Thus the clustering step provides a suboptimal classification rule because the classification
neglects the information given by Y . Consequently, the regression step provides estimators
that are asymptotically biased and implies fitting the parameters of a regression model with
measurement errors in the covariates (for instance, considering the hard assignment, we have no
guarantee of obtaining a perfect recovery of the partition, i.e.,, r̂X(xi) = zi, for i = 1, . . . , n).
The measurement errors generally produce biases in the estimation. Finally, the quality of the
estimated classification rule directly influences the quality of the estimator of the regression
parameters.

4.3.2 Limits of a parametric simultaneous procedure

In this section, we consider a probabilistic approach with a parametric point-of-view. Thus, the
family of distributions of each component k is supposed to be known and parameterized by αk
and thus we have φk = (α>k , δk)>. Moreover, the distribution of the noise fε is chosen according
to the type of the regression under consideration (see the discussion in Section 4.2.3) and thus the
parameters shared among the components are restricted to ςε = γ. The aim of the simultaneous
procedure can be achieved by maximizing the log-likelihood of x,y given u with respect to θ

`(θ; x,y | u) =

n∑
i=1

ln

(
K∑
k=1

πkfk(xi;αk)fε(yi − u>i γ − δk)

)
.

Indeed, the maximum likelihood inference using `(θ; x,y | u) simultaneously allows for learning
the classification rule based on (X>, Y )> and the regression coefficients. This function cannot be
directly maximized, so we consider the complete-data log-likelihood with data x,y and z given
u defined by

`(θ; x,y, z | u) =

n∑
i=1

K∑
k=1

zik ln
(
πkfk(xi;αk)fε(yi − u>i γ − δk)

)
.

The MLE θ̂ can be obtained via an EM algorithm (see Marbac et al. (2022) for details). Moreover,
if the model defined by (4.3)-(4.4) is identifiable, then
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1. If all the parametric distributions are well-specified, then properties of the MLE imply that
the classification rule is asymptotically optimal and β̂ is asymptotically unbiased.

2. If at least one parametric distribution is misspecified, then the classification rule is generally
asymptotically suboptimal and β̂ is generally asymptotically biased.

It should be noticed that the distribution of the noise appears at the E-step and thus influences
the classification rule. Hence, the classification rule is deteriorated if the distribution of the noise
is misspecified. This is not the case when estimation is performed using the two-step approach,
since clustering is performed prior to regression, and regression can still be unbiased if the
moment condition (see Lemma 4.1) is well-specified. Thus, in the next section, we propose a
semi-parametric approach that circumvents this issue because it does not assume a specific family
of distributions for the noise and the components.

4.3.3 Advised simultaneous semi-parametric procedure

Semi-parametric model In this section, we consider the semi-parametric version of the model
defined by (4.3) where the densities of the components are assumed to be a product of univariate

densities (i.e., fk(xi) =
∏dX
j=1 fkj(xij)). Therefore the parameters specific to component k,

denoted by φk, are δk and fk1, . . . , fkdX . We have

f(wi | ui;θ) =

K∑
k=1

πkfk(wi | ui;φk, ςε) with fk(wi | ui;φk, ςε) =

dX∏
j=1

fkj(xij)fε(yi−u>i γ−δk).

A sufficient condition implying model identifiability is that the covariance matrix of U has full
rank and that the marginal distribution of X is identifiable and thus a sufficient condition is to
consider linearly independent densities fkj ’s and dX ≥ 3 Allman, Matias, and Rhodes (2009).
Thus, if dX is less than three, other semi-parametric mixture models should be considered to
achieve clustering (i.e., location-scale models; see Hunter, Wang, and Hettmansperger (2007)
and Chauveau, Hunter, and Levine (2015)).

Smoothed log-likelihood Let S be the smoothing operator defined by Sfk(w | u;φk, ςε) =∫
Kh(w − w̃)fk(w̃ | u;φk, ςε)dw̃, where Kh(a) =

∏d
j=1Kh(aj) with a ∈ Rd and with Kh(aj)

is a rescale kernel function defined by Kh(aj) = h−1K(h−1aj) where h is the bandwidth. The
estimation is achieved by maximizing the smoothed log-likelihood Levine, Hunter, and Chau-
veau (2011) defined by

`(θ) =

n∑
i=1

ln

(
K∑
k=1

πk (N fk) (wi | ui;φk, ςε)

)
,

where (N fk) (w | u;φk, ςε) = exp
{∫

Kh(w − w̃) ln fk(w̃ | u;φk, ςε)dw̃)
}

, subject to the empir-
ical counterpart of (4.5):

1

n

n∑
i=1

K∑
k=1

fk(wi | ui;φk, ςε)∑K
`=1 π`f`(wi | ui;φ`, ςε)

ρ(yi − u>i γ − δk) = 0.

Majorization-Minimization algorithm Parameter estimation is achieved via a Majorization-
Minimization algorithm. Given an initial value θ[0], this algorithm iterates between a majoriza-
tion and a minimization step. Thus, an iteration [r] is defined by
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• Majorization step:

t
[r−1]
ik =

π
[r−1]
k (N fk) (wi | ui;φ[r−1]

k , ς
[r−1]
ε )∑K

`=1 π
[r−1]
` (N f`) (wi | ui; ρ[r−1]

` , ς
[r−1]
ε )

.

• Minimization step:

π
[r]
k =

1

n

∑
i

t
[r−1]
ik ,β[r] = arg min

β

∑
i,k

t
[r−1]
ik L(yi − u>i γ − δk),

f
[r]
kj (a) =

1

nπ
[r]
k

∑
i

t
[r−1]
ik Kh(xij − a) and f [r]

ε (a) =
1

n

∑
i,k

t
[r−1]
ik Kh(yi − u>i γ[r] − δ[r]

k − a),

then set φ
[r]
k = γ

[r]
k ∪ {f

[r]
k1 , . . . , f

[r]
kdX
} and ς

[r]
ε = δ[r] ∪ f [r]

ε .

The Majorization-Minimization algorithm is monotonic for the smoothed log-likelihood. It is
a direct consequence of the monotony of the algorithm of Levine, Hunter, and Chauveau (2011)
where we use the fact that, in order to satisfy the moment condition defined in (4.5) of Lemma 4.1,

we must have β[r] = arg minβ
∑n
i=1

∑K
k=1 t

[r−1]
ik L(yi − u>i γ − δk).

As in Hunter and Young (2012), the majorization step is not explicit. However, because it only
implies univariate integrals, it can be efficiently assessed by numerical approximations. Finally,
bandwidth selection can be performed as usual for semi-parametric mixtures (see Chauveau,
Hunter, and Levine (2015)). However, as in any supervised problem, we can use the cross-
validated accuracy of the prediction of Y for bandwidth selection.

4.4 Numerical experiments

4.4.1 Simulation setup

Data are generated such that Ui ∼ N2(0, I2) and such that (Xi, Yi)
> given Ui follows a K-

component mixture with proportions πk = 1/2 if k = 1 and πk = 1/2(K − 1) otherwise. The
density of Xi given Zi is a product of univariate densities such that Xij = ξZ>i κj + ηij where
κj = (κj1, . . . , κjK)>, κjk = 1 if k = (j mod K) + 1 and κjk = 0 otherwise. Finally, we have

Yi = U>i γ + Z>i δ + εi with γ = (1, 1)> and δk = 2ξk. ηij and εi are independently drawn
from a standard Gaussian distribution or a Student distribution with 3 degrees of freedom.
The parameter ξ is tuned according to the distributions ηij and εi and allows three theoretical
misclassification rates (5%, 10% and 15%) to be considered. The approaches are compared with
respect to the Mean Square Error (MSE) of the estimator of β and the Adjusted Rand Index
(ARI) between the true and the estimated partition on 100 replicates. The semi-parametric
approach is used with a fixed bandwidth h = n−1/5. Note that a tuning of this window could be
considered as in Chauveau, Hunter, and Levine (2015).

4.4.2 Method comparison

Considering the quadratic loss, the experiment shows that the simultaneous procedure outper-
forms the standard two-step procedure, in both parametric and semi-parametric frameworks,
where the parametric approaches assume that ηij and εi are Gaussian. We consider four sce-
narios: ηij ∼ N (0, 1) for the first two scenarios and ηij ∼ T (3) for the last two scenarios, and
εi ∼ N (0, 1) for the scenarios 1 and 3 and εi ∼ T (3) for scenarios 2 and 4. Figure 4.1 presents
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the results obtained when K = 3 and d = 6. When the parametric model is well-specified (sce-
nario 1), results are equivalent to those obtained by the semi-parametric model. Moreover, if at
least one parametric assumption is violated (scenarios 2, 3 and 4), the results of the parametric
approach are deteriorated even if the moment condition of the regression model is well-specified.
Thus, we advise using the semi-parametric model if the family of the distributions is unknown
to prevent the bias in the estimation.

Figure 4.1: Boxplots of the MSE of the estimators of the regression parameters and ARI according
to the theoretical misclassification (rows), the scenario (columns) and the sample size obtained
when K = 3 and d = 6.

4.4.3 Robust regression

When the noise of a regression follows an heavy-tail distribution, robust regressions allow the
estimators of the regression coefficients to be improved compared to the ordinary least square
estimators. Despite this, with a suitable assumption on the noise distribution, the simultaneous
parametric approach could consider such regressions. The parametric assumptions made on the
noise distribution would be quite unrealistic (e.g., Laplace distribution for the median regression).
Thus, we now illustrate that the simultaneous approach can easily consider robust regressions, in
a semi-parametric framework, and that the resulting estimators are better than those obtained
with the quadratic loss. In this experiment, we consider scenario 4 (i.e., ηij and εi both follow
independent T (3)) and we consider different robust regressions (median, Huber with parameter
1 and logcosh). Figure 4.2 presents the results obtained when K = 2 and d = 4. It shows that
the simultaneous approach improves the estimators (according to the MSE and the ARI) for any
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type of regression and any sample size. Moreover, robust regressions improve the accuracy of the
estimator of the regression parameters. However, for this simulation setup, this improvement
does not affect the accuracy of the estimated partitions.

Figure 4.2: Boxplots of the MSE of the estimators of the regression parameters and ARI according
to the theoretical misclassification (rows), sample size (columns) and the type of regression
obtained when K = 2 and d = 4 for scenario 4.

4.4.4 Asymmetric losses

Expectile and quantile regressions respectively, generalize the mean and the median regression by
focusing on the tails of the distribution of the target variable given the covariates. To illustrate
the fact that the semi-parametric simultaneous method allows these regression models to be
easily managed, data are generated with K = 2 and d = 4 such that ηij ∼ N (0, 1) and εi ∼
N (−cτ , 1). The scalar cτ is defined according to the regression model. Thus, cτ is the 0.75-
expectile, 0.9-expectile, 0.75-quantile and 0.9-quantile of the standard Gaussian distribution for
the 0.75-expectile, 0.9-expectile, 0.75-quantile and 0.9-quantile regression respectively. Figure 4.3
shows that the simultaneous semi-parametric approach improves the estimators compared to
those provided by the two-step approach.

4.5 Application on the High blood pressure prevention

Problem summary We consider the problem of high blood pressure prevention where we
focus on the detection of indicators related to the diastolic blood pressure. The indicators we
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Figure 4.3: Boxplots of the MSE of the estimators of the regression parameters and ARI accord-
ing to the theoretical misclassification (rows), the type of regression (columns) and regression
obtained when K = 2 and d = 4.

want to consider are gender, age, alcohol consumption, obesity, sleep quality and level of physical
activity. However, the level of physical activity of a patient is not directly measured and we only
have a set of variables that describe the physical activity. Thus, we want to cluster the subjects
based on this set of variables to obtain patterns of similar physical activities and we want to use
these patterns in the prediction of the diastolic blood pressure.

Material and methods The data were obtained from National Health and Nutrition Ex-
amination Survey of 2011-20121. The target variable is the diastolic blood pressure in mmHg
(code BPXDI1). The seven covariates in U are gender which was equal to 1 for men et 0 for
women (code RIAGENDR), age (RIDAGEYR), alcohol which indicates whether the subjects
consume more than five drinks (for men) and four drinks (for women) of alcoholic beverages
almost daily (computed from code ALQ151 and ALQ155), obesity which indicates if the body
mass index is more than 30 (computed from code BMXBMI), sleep which indicates the num-
ber of hours of sleeping (computed from code SLD010H), smoke which indicates if the subjects
used tobacco/nicotine in the last five days (code SMQ680) and cholesterol which indicates the
total cholesterol in mg/dL (code LBXTC). All the subjects that had missing values for those
variables were removed. Seven variables are used in X to evaluate the level of physical activ-
ity. Among these variables, five variables are binary and indicate whether the subject has a
vigorous work activity (code PAQ605), whether the subject has a moderate work activity (code

1The data are freely downloadable at
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2011
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PAQ620), whether the subject usually travels on foot or by bike (code PAQ635), whether the
subject has vigorous recreational activities (code PAQ650) and whether the subject has mod-
erate recreational activities (code PAQ665). The two remaining variables in X have 7 levels
and indicate the time spent watching TV (code PAQ710) and the time spent using a computer
(code PAQ715). Finally, the studied population is composed of 2626 subjects between 18 and
60 years old. To investigate the performances of the different models, 67% of the sample (i.e.,
1760 subjects) is used for estimating the model parameters and 33% of the sample (i.e., 866
subjects) is used for investigating the performances of the models. The smoothing is performed
on the continuous variables with a Gaussian kernel and a bandwidth h = σ̂jn

−1/5 where σ̂j is
the empirical standard deviation of variable j.

Results We present the main results of the application. Details used for the results interpre-
tation are presented in Appendix 2 of the supplementary materials. We consider a proposed
approach in a semi-parametric framework with a quadratic loss. According to the evolution of
the smoothed log-likelihood with respect to the number of classes (see Figure 1 in Appendix 2
of the supplementary materials), the model is considered with K = 3 classes. To investigate the
relevance of the activity level for explaining high blood pressure, we consider three models with
a quadratic loss: the proposed approach in a semi-parametric framework (regquadUZ-K3 ), a
regression model of Y on U (regquadU ) with a selection of variables according to AIC (two vari-
ables are removed by the criterion: alchohol and smoke), a regression model of Y on (U>,X>)>

(regquadUX ) with a selection of variables according to AIC (six variables are selected by the
criterion: gender, age, obesity, sleep, cholesterol and the binary variable indicating whether the
subject usually travels on foot or by bike). Considering the activity levels seems to be relevant for
explaining high blood pressure, since the MSEs of the prediction obtained on the testing samples
are 122.34, 122.72 and 122.81 for regquadUZ-K3, regquadUX and regquadU respectively. Thus,
the approach allows the information about the physical activity to be summarized and slightly
improves the prediction accuracy. Note that a Shapiro-Wilk’s normality test performed on the
residuals of regquadUZ-K3 has a pvalue less than 10−5 for the learning sample and 0.003 for the
testing sample. Thus, the semi-parametric approach avoids the normality assumption which is
not relevant for the residuals.

To prevent the variability due to outliers, we fit the proposed approach in a semi-parametric
framework with the median loss and the logcosh loss. Again, evolution of the smoothed log-
likelihood with respect to the number of classes, leads us to consider K = 3 classes for both
losses. We now compare the results obtained by the proposed method with K = 3 classes in a
semi-parametric framework with a quadratic loss, median loss (regmedUZ-K3 ) and logcosh loss
(reglogchUZ-K3 ). The three models provided a similar partition since the ARIs between all the
couples of partitions is more than 0.83. The regression parameters are presented in Table 1 of
Appendix 2 of the supplementary materials. The signs of the coefficients are the same for the
three losses. It appears that being a woman lessens the risk of high blood pressure while age,
alcohol consumption, overweight, lack of sleeping and cholesterol increase high blood pressure.
One can be surprised that the results claim that smoking limits the risk of high blood pressure,
but this effect has already been revealed in Omvik (1996) and Li et al. (2017). Note that the
robust methods detect a more significant effect of alcohol, smoking and physical activity on
high blood pressure. Moreover, they slightly change the prediction accuracy because the MSEs
obtained on the testing sample are 122.88 and 123.00 for the median and the logcosh losses
respectively.

We now interpret the clustering results provided by the median loss. Class 1 (π1 = 0.15
and δ1 = 59.06) grouping the subjects having high physical activity is the smallest class and
contains the subjects having recreational physical activities, traveling by foot or by bike, having
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no physical activity at work and spending few hours watching screens. Class 2 (π2 = 0.44 and
δ2 = 59.29) groups the subjects having few physical activities but spending little time watching
screens. Class 3 (π3 = 0.37 and δ3 = 60.34) groups those having some physical activities but
spending a lot of time watching screens. These results show that having moderate physical
activities (recreational activities, traveling by bike or foot, not spending many hours watching
screens) lessens the risk of high blood pressure.

4.6 Conclusion and perspectives

In Marbac et al. (2022), we propose an alternative to the two-step approach that starts by
summarizing some observed variables by clustering and then fits a prediction model using the
estimator of the partition as a covariate. Our proposition consists of simultaneously performing
the clustering and the estimation of the prediction model to improve the accuracy of the partition
and of the regression parameters. This approach can be applied to a wide range of regression
models. Our proposition can be applied in a parametric and semi-parametric framework. We
advise using the semi-parametric approach to avoid bias in the estimation (due to bias in the
distribution modeling).

The quality of the prediction could be used as a tool for selecting the number of components
and bandwidth, for semi-parametric mixtures. As in any regression problem, this criterion can
also be used for selecting the variables (in the regression part but also in the clustering part).
Thus, taking the regression into account is important in model selection for semi-parametric
mixtures. Moreover, this could allow for a variable selection in clustering. The semi-parametric
approach has been presented by assuming that the components are products of univariate densi-
ties. However, the proposed approach can also be used by considering location scale symmetric
distributions (Hunter, Wang, and Hettmansperger (2007)) or by incorporating an independent
component analysis structure (Zhu and Hunter (2019)). Moreover, we can easily relax the as-
sumption that (X>,Z>) is independent of U. The crucial assumption of the model is the
conditional independence of Y and X given Z.

This approach has been introduced by considering only one latent categorical variable. How-
ever, more than one latent categorical variable explained by different sub-groups of variables of
X could be considered. This extension is straightforward if the different sub-groups of variables
of X are known. However, the cases where the sub-groups of variables are also estimated (see
the case of multiple partitions in clustering described in Section 2.2.6) could be considered in
future work.
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Chapter 5

Applications in biostatistics of
model-based clustering for
functional data
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5.1 Introduction

5.1.1 State of the art

This chapter focuses on functional data clustering (Ferraty and Vieu (2006) and Ramsay and
Silverman (2007)). Surveys of clustering techniques for functional data are given in Jacques and
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Preda (2014a) and Cheam and Fredette (2020). Model-based clustering methods are available
for functional data but require extending the notion of density probability to functional data.
Thus, this notion is extended by considering that the curves are defined by a finite number of
parameters (Delaigle and Hall (2010)). Moreover, clustering methods for functional data requires
to be able to deal with the problem of data dimension. Therefore model-based clustering ap-
proaches approximate the observed functions in some functional basis then perform clustering
on the coefficients related to the basis (see Chapter 12.1 in Bouveyron et al. (2019)). The choice
of the basis function depends on the nature of the data. For instance, James and Sugar (2003)
consider the expansion coefficients of the curves into a spline basis of functions while Bouveyron,
Côme, and Jacques (2015) proposed approximating the curves into Fourier basis expansion coef-
ficients. Both methods supposed that the coefficients follow a mixture of Gaussian distributions.
The use of a spline basis is convenient when the curves are regular, but are not appropriate for
peak-like data. Moreover, the use of a Fourier basis is relevant for data having periodicity. Alter-
natively, feature extraction could be accomplished via an orthogonal wavelet basis (Antoniadis
et al. (2013) and Giacofci et al. (2013)). An alternative have been proposed by Samé et al. (2011)
who consider a mixture model where each component follows a polynomial regression mixture in
which the logistic weights depend on the time. Each observation of a time series arises indepen-
dently from one of the polynomial regression models specific to the cluster to which it belongs.
Therefore, unlike other approaches, the observed data do not require any transformation. The
aforementioned model is only applied to a univariate temporal framework.

A further issue raised by the functional data is that of curve alignment. This has been
addressed by previous works that do not tackle clustering Kneip and Gasser (1992); Wang and
Gasser (1997); Ramsay and Li (1998). Recently, this issue has been considered for clustering with
distance-based approaches (Paparrizos and Gravano (2015)) and with model-based approaches
(Chudova et al. (2003), Gaffney and Smyth (2005) and Liu and Yang (2009)).

5.1.2 Contributions to model-based clustering of functional data

We have worked on three papers dealing with functional data clustering.

In Cheam, Marbac, and McNicholas (2017), we extend the approach of Samé et al. (2011) to
spatio-temporal data clustering. The resulting method is a mixture model where each compo-
nent is an autoregressive polynomial regression mixture in which the logistic weights depend on
the spatial and temporal dimensions. The EM algorithm is carried out to obtain the maximum
likelihood estimates of the parameters of interest. A key contribution of our work is the intro-
duction of an autoregressive component to the model proposed by Samé et al. (2011) and the
ability to model spatial dependencies for multivariate functional data.

In Du Roy de Chaumaray, Marbac, and Navarro (2020), motivated by the analysis of ac-
celerometer data, we introduce a specific finite mixture of hidden Markov models with particular
characteristics that adapt well to the specific nature of this type of data. Our model allows for
the computation of statistics that characterize the physical activity of a subject (e.g., the mean
time spent at different activity levels and the probability of the transition between two activity
levels) without specifying the activity levels in advance but by estimating them from the data. In
addition, this approach allows the heterogeneity of the population to be taken into account and
subpopulations with homogeneous physical activity behavior to be defined. We prove that, under
mild assumptions, this model implies that the probability of misclassifying a subject decreases
as an exponentially decay with the length of its measurement sequence. Model identifiability is
also investigated. We also report a comprehensive suite of numerical simulations to support our
theoretical findings. The method is motivated by and applied to the PAT study. This paper is
described in Section 5.2.
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In Cheam et al. (2020), we investigate the geographical disparities of the COVID-19 diseaseby
focusing on clustering the daily death rates reported in several regions of Europe and the United
States over eight months. Several methods have been developed to cluster such functional data.
However, these methods are not translation-invariant and thus cannot handle different times of
arrivals of the disease, nor can they consider external covariates and so are unable to adjust for
the population risk factors of each region. We propose a novel three-step clustering method to
circumvent these issues. As a first step, feature extraction is performed by translation-invariant
wavelet decomposition which allows dealing with the different onsets. As a second step, single-
index regression is used to neutralize disparities caused by population risk factors. As a third
step, a nonparametric mixture is fitted on the regression residuals to achieve the region clustering.
This paper is described in Section 5.3.

5.2 Mixture of hidden Markov models for accelerometer
data

5.2.1 Introduction

Inadequate sleep and physical inactivity affect physical and mental well-being while often exac-
erbating health problems. They are currently considered major risk factors for several health
conditions (Kimm et al. (2005) ,Taheri et al. (2004), Lee et al. (2012), Grandner et al. (2013) and
McTiernan (2008)). Therefore, appropriate assessment of activity and sleep periods is essential
in disciplines such as medicine and epidemiology. The use of accelerometers to evaluate physical
activity—by measuring the acceleration of the part of the body to which they are attached—is a
classic method that has become widespread in public health research. Indeed, since the introduc-
tion in 2003 of the first objective assessment of physical activity using accelerometers, as part of
the National Health and Nutrition Examination Survey (NHANES), the analysis of actigraphy
data has been the subject of extensive studies over the past two decades. Recently, the New
York City (NYC) Department of Health and Mental Hygiene conducted the 2010-2011 Physical
Activity and Transit (PAT) Survey1, a random survey of adult New Yorkers that tracked levels
of sedentary behavior and physical activity at work, at home, and for leisure. A subset of inter-
viewees was also invited to participate in a follow-up study to objectively measure their activity
level using an accelerometer. One of the objectives of this study is to describe measured physical
activity levels and to compare estimates of adherence to recommended physical activity levels, as
assessed by accelerometer, with those from self-reports. In contrast to NHANES accelerometer
data, PAT data still seem relatively unexplored in the statistical literature.

In Du Roy de Chaumaray and Marbac (2021a), we were interested in the analysis of the
accelerometer data worn by 133 individuals aged at least of 65 who responded to the PAT
survey. Our objective is to propose a model adapted to the specificities of these data and study
its properties. Indeed, this data set raises various challenges, such as managing the heterogeneity
of the population or missing data of different natures. In order to motivate the development of
a new model, we present an overview of the literature on accelerometer data analysis.

The pioneering approaches used for analyzing accelerometer data have focused on auto-
matic detection of the sleep and wake-up periods (Cole et al. (1992), Sadeh, Sharkey, and
Carskadon (1994), Pollak et al. (2001) and Van Hees et al. (2015)). More recent developments
are interested in the classification of different levels of activity (see Yang and Hsu (2010) for a

1NYC Department of Health and Mental Hygiene. Physical Activity and Transit Survey 2010-
2011; public use datasets accessed on May 10, 2019. The data are freely accessible on this page:
https://www1.nyc.gov/site/doh/data/data-sets/physical-activity-and-transit-survey-public-use-data.page

99



review). These methods provide summary statistics such as the mean time spent at different
activity levels. In epidemiological studies, time spent by activity level is often used as a covariate
in predictive models (see, for instance, the works of Noel et al. (2010), Palta et al. (2015) and
Innerd, Harrison, and Coulson (2018), where the links between physical activity and obesity
are investigated). These statistics can be computed using deterministic cutoff levels (Freedson,
Melanson, and Sirard (1998)). However, with such an approach, the time dependency is neglected
and the cutoff levels are pre-specified and not estimated from the data.

Accelerometer data are characterized by a time dependency between the different measure-
ments. They can be analyzed by methods developed for functional data or by Hidden Markov
Models (HMM). Methods for functional data need the observed data to be converted into a func-
tion of time (Morris et al. (2006), Xiao et al. (2014), Gruen et al. (2017)). For instance, Morris
et al. (2006) use a wavelet basis for analyzing accelerometer profiles. The use of a function basis
reduces the dimension of the data, and therefore the computing time. However, these methods do
not define levels of activity and thus cannot directly provide the time spent at different activity
levels.

When considering a discrete latent variable to model time dependence, HMM are appropri-
ate for adjusting sequence data (Scott, James, and Sugar (2005), Altman (2007) and Gassiat,
Cleynen, and Robin (2016)). Titsias, Holmes, and Yau (2016) expand the amount of information
which can be obtained from HMM including a procedure for finding a maximum a posteriori
(MAP) of the latent sequences and for computing posterior probabilities of the latent states.
HMM are used on activity data for monitoring circadian rythmicity (Huang et al. (2018b))
or directly for estimating the sequence of activity levels from accelerometer data (Witowski et
al. (2014)). For simulated data, Witowski et al. (2014) established the superiority of different
HMM models, in terms of classification error, over traditional methods based on a priori fixed
thresholds. While the simplicity of implementing threshold-based methods is an obvious advan-
tage, they have some significant disadvantages compared to the HMM methods, particularly for
real data. Indeed, the variation in counts and the resulting dispersion is large, leading to consider-
able misclassification of counts recorded in erroneous activity ranges. The approach of Witowski
et al. (2014) assumes homogeneity of the population and does not consider missingness within
the observations. However, heterogeneity in physical activity behaviors is often present (see, for
instance, Geraci (2018)) and the use of more than one HMM allows it to be taken into account
(see, e.g., Pol and Langeheine (1990)). Thus, recent methods use clustering of accelerometer
data to take into account the heterogeneity of the population. For instance, Wallace et al. (2018)
use a specific finite mixture to identify novel sleep phenotypes, Huang et al. (2018a) perform a
matrix-variate-based clustering on accelerometer data while Lim, Oh, and Cheung (2019) use
a clustering technique designed for functional data. Mixed Hidden Markov Models (MHMM)
are a combination of HMM and Generalized Linear Mixed Models (Pol and Langeheine (1990)
and Bartolucci, Farcomeni, and Pennoni (2012)). These models consider one (or more) random
effect(s) coming from either a continuous distribution (Altman (2007)) or a discrete distribution
(Bartolucci, Pennoni, and Vittadini (2011) and Maruotti (2011)). Note that an MHMM with a
single discrete random effect distribution, having a finite number of states, is a finite mixture of
HMM. Such a model allows us to estimate a partition among the population and to consider the
population heterogeneity. The impact of the random effect can be on the measurement model
or on the latent model.

In Du Roy de Chaumaray and Marbac (2021a), we focus on the analysis of PAT data with
a two-fold objective: obtaining summary statistics about physical activity of the subjects with-
out pre-specifying cutoff levels and obtaining a partition which groups subjects in homogeneous
classes. We define a class as homogeneous if its subjects have similar average times spent into the
different activity levels and similar transition probabilities between activity levels. To achieve
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this goal, we introduce a specific finite mixture of HMM for analyzing accelerometer data. This
model considers two latent variables: a categorical variable indicating each subject’s class mem-
bership and a sequence of categorical variables indicating the subject’s level of activity each
time its acceleration is measured. At time t, the measurement is independent of the class mem-
bership, conditionally on the activity level (i.e., the latent state) and follows a zero-inflated
distribution—a distribution that allows for frequent zero-valued observations. The activity level
defines the parameter of this distribution. The use of a zero-inflated distribution is quite common
for modeling accelerometer data (Ae Lee and Gill (2018) and Bai et al. (2018)), as the accel-
eration is measured every second and many observations are zero. Note that the definitions of
the activity levels are equal among the mixture components. This is an important point for the
use of summary statistics (e.g., time spent at different activity levels, probabilities of transition
between levels) in a future statistical study. The model we consider is thus a specific MHMM
with a finite-states random effect that only impacts the distribution of latent physical activity
levels. MHMMs with a finite-states random effect have few developments in the literature (see
Bartolucci, Pennoni, and Vittadini (2011) and Maruotti (2011)), especially when the random
effects only impact the latent model (and not the measurement model). We propose to theoreti-
cally study the model properties by showing that the probability of misclassifying an observation
decreases at an exponential rate. In addition, since the distribution given the latent state is itself
a bi-component mixture (due to the use of zero-inflated distributions), we investigate sufficient
conditions for model identifiability.

In practice, the data collected often include missing intervals due to non-compliance by par-
ticipants (e.g., if the accelerometer is removed). Thus, Geraci and Farcomeni (2016) propose to
identifying different profiles of physical activity behaviors using a principal component analysis
that allows for missing values. The PAT data contain three types of missing values correspond-
ing to periods when the accelerometer is removed, making statistical analysis more challenging.
First, missingness occurs at the beginning and at the end of the measurement sequences due
to the installation and the removal of the accelerometer. Second, subjects are asked to remove
the accelerometer when they sleep at night. Third, missing values appear during the day (e.g.,
due to a shower period, napping, etc). We remove missing values which occur at the beginning
and at the end of the sequence. For missingness caused by night time sleep, we consider that
the different sequences describing different days of observations of a subject, are independent
and that the starting point (e.g., first observed measurement of the accelerometer of the day) is
drawn from the stationary distribution. For missing values measured during the day, the model
and the estimation algorithm can handle these data. Moreover, we propose an approximation
to the distribution that avoids the computation of large powers of the transition matrices in
the algorithm used for parameter inference and thus reducing computation time. Theoretical
guarantees and numerical experiments show the relevance of our proposition.

The R package MHMM which implements the method introduced in this paper is available
on CRAN (Du Roy de Chaumaray, Marbac, and Navarro (2019)). It permits other accelerometer
data to be analyzed and thus it is complementary to existing packages for MHMM. Indeed, it
takes into account the specificities of accelerometer data (the class membership only impacts
the transition matrices, the emission distributions are zero-inflated gamma (ZIG) distributions).
Among the R packages implementing MHMM methods, one can cite LMest (Bartolucci, Pandolfi,
and Pennoni (2017)) and seqHMM (Helske and Helske (2019)) which focus on univariate longi-
tudinal categorical data and mHMMbayes A. (2019) which focuses on multivariate longitudinal
categorical data.

This chapter is organized as follows. Section 5.2.2 presents the PAT data and the context
of the study. Section 5.2.3 introduces our specific mixture of HMM and its justification in
the context of accelerometer data analysis. Section 5.2.4 presents the model properties (model
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identifiability, exponential decay of the probabilities of misclassification and a result for dealing
with the non-wearing periods). Section 5.2.5 discusses the maximum likelihood inference and
Section 5.2.6 illustrates the model properties on both simulated and real data. Section 5.2.7 illus-
trates the approach by analyzing a subset of the PAT accelerometer data. Proofs and technical
lemmas are not presented here but are available in Du Roy de Chaumaray and Marbac (2021a).

5.2.2 PAT data description

In Du Roy de Chaumaray and Marbac (2021a), we consider a subset of the data from the
PAT survey, the subjects who participated in the follow-up study to objectively measure their
activity level using an accelerometer. A detailed methodological description of the study and
an analysis of the data is provided in Immerwahr et al. (2012). Note that the protocols for
accelerometer data for the PAT survey and NHANES were identical. One of the objectives of the
PAT study is to investigate the relationships between self-reported physical activity and physical
activity measured by the accelerometer in order to provide best practice recommendations for
the use of self-reported data (Wyker et al. (2013)). Indeed, self-reported data may be subject
to overreporting. This is particularly the case among less active people, due in particular to a
social desirability bias or the cognitive challenge associated with estimating the frequency and
duration of daily physical activity (see, e.g., Slootmaker et al. (2009); Dyrstad et al. (2014);
Lim et al. (2015)). The results of Wyker et al. (2013) show that males tend to underreport
their physical activity, while females and older adults (65 years and older) overreported it (see
also Troiano et al. (2008) for a detailed study of the differences between self-reported physical
activity and accelerometer measurements in NHANES 2003-2004). Consequently, the study of
data measured by accelerometer for these specific populations makes it possible to determine
methods for correcting estimates from self-reported data, such as stratification by gender and/or
age when comparing groups.

In this work, we are particularly interested in the age category above 65 years old (n = 133).
We present some characteristics related to PAT data and refer to Immerwahr et al. (2012) for
a full description2. Accelerometers were worn for one week (beginning on Thursday and ending
on Wednesday) and measured the activity minute-by-minute. The trajectory associated with
each subject is therefore of length 10080. In addition, a participant’s day spans from 3am-3am
(and not a calendar day) in order to record late night activities and transit and contains missing
data sequences of variable length at the beginning and end of the measurement period (these
missing data sequences were excluded from the analysis). This length varies from one subject to
another, and the mean and minimum trajectory length for the population under consideration
(after excluding those missing at the edges) are 9474 and 5199 respectively (with a total number
of observations equal to 1259981). The model of accelerometer used was Actigraph GT3X, it
was worn on the hips (which results in the fact that certain activities, such as lifting weights or
biking, cannot be measured). In addition, participants were also asked to remove it when sleeping,
swimming or bathing, hence the data contains approximately 44% of missing values that appear
mainly in sequence, appearing at night but also during the day. Figure 5.1 gives an example of
accelerometer data measured on one subject (i.e., patcid:1200255) for one week where the three
types of missing data can be seen. The four levels of physical activity based on the classification
established by the US Department of Health and Human Services (2008) in the Physical Activity
Guidelines for Americans (PAGA) report is also shown in the Figure 5.1. Specifically, the PAT
protocol for accelerometer data has established a classification according to PAGA, characterizing

2Raw accelerometer data, covariates allowing the subset of the population to be selected, as well as providing
a detailed dictionary are freely accessible here: https://www1.nyc.gov/site/doh/data/data-sets/physical-activity-
and-transit-survey-public-use-data.page
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Figure 5.1: Accelerometer data of subject Patcid:1200255 of the PAT study measured for one
week (with a zoom on the afternoon of day 3): observed values (in gray), missing values during a
daytime period (in blue), missing values during a period of night time sleep(in red) and missing
values at the start and end of the measurement period (in black). The dashed horizontal lines
represent the four levels of physical activity based on the classification established by the US
Department of Health and Human Services (2008).

each minute of activity. Activity minutes with less than 100 activity counts were classified as
Sedentary, minutes with 100-2019 counts were classified as Light, the class Moderate corresponds
to 2020-5998 counts/minute and Vigorous 5999 counts/minute and more. A comparison between
our method and this traditional threshold-based approach is provided in Section 5.2.7.

5.2.3 Mixture of hidden Markov models for accelerometer data

In this section we present the proposed model and the application context for which it has been
defined.

The data Observed data y = (y>1 , . . . ,y
>
n )> are composed of n independent and identically

distributed sequences yi. Each sequence yi = (yi(0), . . . , yi(T ))
> which contains the values mea-

sured by the accelerometer at times t ∈ {0, 1, . . . , T} for subject i, with yi(t) ∈ R+. Throughout
this section, index i refers to the label of the subject and index (t) refers to the time of measure-
ment.

The model considers M different activity levels (which are unobserved). These levels im-
pact the distribution of the observed sequences of accelerometer data. The sequence of the
hidden states xi indicates the activity level of subject i at the different times. Thus, xi =
(x>i(0), . . . ,x

>
i(T ))

> ∈ X and the activity level (among the M possible levels) of subject i at time

t is defined by the binary vector xi(t) = (xi(t)1, . . . , xi(t)M )> where xi(t)h = 1 if subject i is at
state h at time t and xi(t)h = 0 otherwise.

The heterogeneity (in the sense of different physical activity behaviors) between the n sub-
jects, can be addressed by grouping subjects into K homogeneous classes. This is achieved by
clustering that assesses a partition z = (z>1 , . . . , z

>
n )> among the n subjects based on their ac-
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celerometer measurements. Thus, the vector zi = (zi1, . . . , ziK)> indicates the class membership
of subject i, as zik = 1 if observation i belongs to class k and zik = 0 otherwise. Throughout the
paper, index k refers to the label of a class grouping homogeneous subjects.

Each subject i is described by three random variables: one unobserved categorical variable
zi (defining the membership of the class of homogeneous physical activity behaviors for subject
i), one unobserved categorical longitudinal data xi (a univariate categorical discrete-time time
series which defines the activity level of subject i at each time) and one observed positive longi-
tudinal data yi (a univariate positive discrete-time time series which contains the values of the
accelerometer measured on subject i at each time).

Latent Xi(0) Xi(1) Xi(2)

Zi

Xi(T )

Yi(0) Yi(1) Yi(2) Yi(T )Observed

. . .. . .

Class
membership

Activity
levels

Accelerometer
measurements

Figure 5.2: Generative model of the specific mixture model of HMM used for the accelerometer
data: an arrow between two variables indicates dependency and an absence of arrow indicates
conditional independence.

Generative model The model described below considers that the observations are indepen-
dent between the subjects and identically distributed. It is defined by the following generative
model and summarized by Figure 5.2 (note that this figure is similar to Figure 6.2 of Bartolucci,
Farcomeni, and Pennoni (2012)):

1. sample class membership zi from a multinomial distribution;

2. sample the sequence of activity levels xi from a Markov model whose transition matrix
depends on class membership;

3. sample the accelerometer measurement sequence given the activity levels (each Y i(t) follows
a ZIG distribution whose parameters are defined only by xi(t)).

Finite mixture model for heterogeneity The sequence of accelerometer measurements
obtained on each subject is assumed to independently arise from a mixture of K parametric
distributions, so that the probability distribution function (pdf) of the sequence yi is

p(yi;θ) =

K∑
k=1

δk p(yi;πk,Ak,λ, ε), (5.1)
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where θ = {λ, ε}∪{δk,πk,Ak; k = 1, . . . ,K} groups the model parameters, δk is the proportion

of components k with δk > 0,
∑K
k=1 δk = 1, and p(·;πk,Ak,λ, ε) is the pdf of component k

parametrized by {πk,Ak,λ, ε} defined below. Thus, δk is the marginal probability that a subject
belongs to class k (i.e., δk = P(Zik = 1)). Moreover, p(·;πk,Ak,λ, ε) defines the distribution
of a sequence of values measured by the accelerometer on a subject belonging to class k (i.e.,
p(·;πk,Ak,λ, ε) is the pdf of yi given Zik = 1).

Hidden Markov model for activity levels The model assumes that the distribution of the
hidden state sequence depends on the class membership, and that the distribution of activity
measurements depends on the state at time t but not on the component membership given the
state (i.e., Xi 6⊥ Zi, Yi(t) 6⊥ Xi(t) and Yi(t) ⊥ Zi | Xi(t)). It is crucial that the distribution of
Yi(t) given Xi(t) is independent of Zi. Indeed, each activity level is defined by the distribution
of Yi(t) given the state. Therefore, to extract summary statistics on the whole population (as the
average time spent per level of activity) the definition of the activity levels (and the distribution
of yi(t) given the state) must be the same among the mixture components.

The pdf of yi for components k (i.e., given Zik = 1) is

p(yi;πk,Ak,λ, ε) =
∑

xi∈X
p(xi;πk,Ak) p(yi | xi;λ, ε). (5.2)

The Markov assumption implies that

p(xi;πk,Ak) =
∏̀
h=1

π
xi(0)h
kh

T∏
t=1

M∏
h=1

M∏
`=1

(Ak[h, `])xi(t−1)hxi(t)` ,

where πk = (πk1, . . . , πkM )> defines the initial probabilities so that πkh = P(Xi(1)h = 1 | Zik =
1), Ak is the transition matrix so that Ak[h, `] = P(Xi(t)` = 1 | Xi(t−1)h = 1, Zik = 1). Finally,
we have

p(yi | xi;λ, ε) =

T∏
t=0

M∏
h=1

g(yi(t);λh, εh)xi(t)h ,

where g(·;λh, εh) is the pdf of a zero-inflated distribution defined by

g(yi(t);λh, εh) = (1− εh)gc(yi(t);λh) + εh1{yi(t)=0},

where gc(·;λh) is the density of a distribution defined on a positive space and parametrized by
λh. The choice of considering zero-inflated distributions is motivated by the large number of
zeros in the accelerometer data (see Figure 5.1). For the application of Section 5.2.7, we use
a gamma distribution of gc(·;λh). However, model properties and inference are discussed for a
large family of densities gc(·;λh).

5.2.4 Model properties

In this section, we present the properties of the mixture of parametric HMMs. We start with
a discussion of three assumptions. Model identifiability is then proven. It is shown that the
probability of making an error in the partition estimation, exponentially decreases with T , when
the model parameters are known. Finally, the analysis of missing data is discussed.
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Assumptions

Assumption 5.1. For each component k, the Markov chain is irreducible. Moreover, we assume
that the sequence is observed at its stationary distribution (i.e., πk is the stationary distribution
so π>k Ak = π>k ). Therefore, there exists 0 ≤ ν < 1 such that

∀k ∈ {1, . . . ,K}, ν2(Ak) ≤ ν,

where ν2(Ak) is the second-largest eigenvalue of Ak. Denote ν̄2(Ak) = max(0, ν2(Ak)).

Assumption 5.2. The hidden states define different distributions for the observed sequence.
Therefore, for h ∈ {1, . . . ,M}, h′ ∈ {1, . . . ,M}\{h}, we have λh 6= λh′ . Moreover, the paramet-
ric family of distributions defining gc(·;λ1), . . . , gc(·;λM ) permits an ordering to be considered
such that for a fixed value ρ ∈ R+ \ {0}, we have

∀h ∈ {1, . . . ,M − 1}, lim
yi(1)→ρ

gc(yi(1);λh+1)

gc(yi(1);λh)
= 0.

Assumption 5.3. The transition probabilities are different over the mixture components and are
not zero. Therefore, for k ∈ {1, . . . ,K}, k′ ∈ {1, . . . ,K} \ {k}, we have ∀(h, `), Ak[h, `] 6=
Ak′ [h, `]. Moreover, there exists ζ > 0 such that

∀k ∈ {1, . . . ,K}, ∀k′ ∈ {1, . . . ,K} \ {k},
M∑
h=1

M∑
`=1

πkh log
Ak[h, `]

Ak′ [h, `]
> ζ.

Finally, without loss of generality, we assume that Ak[1, 1] > Ak+1[1, 1].

Assumption 5.1 states that the state at time 1 is drawn from the stationary distribution
of the component that the observation belongs to. To obtain model identifiability, we do not
need the assumption that the stationary distribution is different over the mixture components.
As a result, two components having the same stationary distribution but different transition
matrices can be considered. Assumption 5.2 and Assumption 5.3 are required to obtain model
identifiability. Assumption 5.3 can be interpreted as the Kullback-Leibler divergence between the
distribution of the states under component k and their distribution under component k′. This
constraint is required for model identifiability because it is related to the definition of the classes.
Consequently, the matrices of the transition probability must be different among components.

Identifiability Model identifiability is crucial for interpreting the estimators of the latent
variables and of the parameters. It has been studied for some mixture models (Teicher (1963),
Teicher (1967), Allman, Matias, and Rhodes (2009) and Celisse, Daudin, and Pierre (2012))
and HMM (Gassiat, Cleynen, and Robin (2016)), but not for the mixture of HMMs. Generic
identifiability (up to switching of the components and of the states) of the model defined in (5.1)
implies that

∀yi, p(yi;θ) = p(yi; θ̃)⇒ θ = θ̃.

The following theorem states this property.

Theorem 5.1. If Assumptions 5.1, 5.2 and 5.3 hold, then the model defined in (5.1) is generically
identifiable (up to switching of the components and of the states) if T > 2K.

Proof of Theorem 5.1 is given in Du Roy de Chaumaray and Marbac (2021a). The model
defined by the marginal distribution of a single yi(t) is not identifiable. Indeed, the marginal
distribution of yi(t) is a mixture of zero-inflated distributions and such a mixture is not identifiable
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(i.e., different class proportions and inflation proportions can define the same distribution). It
is therefore this dependency over time that makes the proposed mixture generically identifiable.
Note that such a statement has been made by Gassiat, Cleynen, and Robin (2016) when they
discuss the case where the emission distribution for an HMM follows a mixture model.

Probabilities of misclassification In this section, we examine the probability that an ob-
servation will be misclassified when the model parameters are known. We consider the ratio
between the probability that subject i belongs to class k given yi and the probability that this
subject belongs to its true class, and we quantify the probability of it being greater than some
positive constant a. Let θ0 be the true model parameter and P0 = P(· | Zik0 = 1, θ0) denotes the
true conditional distribution (the true label of subject i and parameters are known).

Theorem 5.2. Let a > 0, under mild assumptions detailled in Du Roy de Chaumaray and
Marbac (2021a), then for every k 6= k0

P0

[
P(Zik = 1 | yi)
P(Zik0 = 1 | yi)

> a

]
≤ O(e−cT ),

where c > 0 is a positive constant

Moreover, the exponential bounds of Theorem 5.2 allows to be used the Borel-Cantelli’s
lemma to obtain the almost sure convergence.

Corollary 5.1. Assume that Assumptions 5.1 and 5.3 hold. If yi is generated from component
k0 (i.e., Zik0 = 1), then for every k 6= k0

P(Zik = 1 | yi)
P(Zik0 = 1 | yi)

a.s.−→
T→+∞

0, P(Zik0 = 1 | yi)
a.s.−→

T→+∞
1 and P(Zik = 1 | yi)

a.s.−→
T→+∞

0.

Therefore, by considering a = 1, Theorem 5.2 and Corollary 5.1 show that the probability of
misclassifying the subject i based on the observation yi, using the maximum a posteriori rule,
tends to zero when T increases, if the model parameters are known. Proof of Theorem 5.2 and
a sufficient condition that allows us to consider a = 1 (value of interest when the partition is
given by the MAP rule) are given in Du Roy de Chaumaray and Marbac (2021a). It should
be noted that it is not so common to have an exponential rate of convergence for the ratio
of the posterior probability of classification. Similar results are obtained for network clustering
using the stochastic block model (Celisse, Daudin, and Pierre (2012)) or for co-clustering (Brault
and Mariadassou (2015)). For these two models, the marginal distribution of a single variable
provides information about the class membership. For the proposed model, this is the dependency
between the different observed variables which is the crucial point for recovering the true class
membership.

Dealing with missing values Due to the Markovian character of the states, missing values
can be handled by iterating the transition matrices. In our particular context, missing values
appear when the accelerometer is not worn (see Section 5.2.2 for explanations of the reasons of
missingness). We will not observe isolated missing values but rather wide ranges of missing values.
Let d be the number of successive missing values, we thus have to compute the matrix Ad+1

k to
obtain the distribution of the state at time t+d knowing the state at time t−1. These powers of
transition matrices should be computed many times during the algorithm used for inference (see
Section 5.2.5). Moreover, after d+1 iterations with d sufficiently large, the transition matrix can
be considered sufficiently close to stationarity (e.g., for any (h, `), Ad+1

k [h, `] ' πk`), which has
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actually been chosen as the initial distribution. Therefore, for numerical reasons, we will avoid
computing the powers of the transition matrices and we will make the following approximation.
An observation yi with Si observed sequences split with missing value sequences of size at least
d are modeled as Si independent observed sequences with no missing values, all belonging to the
same component k. Namely, for each individual i, the pdf p(yi;πk,Ak,λ, ε) of component k is
approximated by the product of the pdf of the Si observed sequences yi1,yi2, . . . ,yiSi :

p(yi;πk,Ak,λ, ε) '
Si∏
s=1

p(yis;πk,Ak,λ, ε),

where, for each s, yis is an observed sequence of length Tis + 1: yis = (yis(0), . . . , yis(Tis)) and
p(yis;πk,Ak,λ, ε) is defined as in (5.2). We note that the observation yi can thus be rewritten
as follows

yi = (yi1(0), . . . , yi1(Ti1), yi2(0), . . . , yi2(Ti2), . . . , yiSi(0), . . . , yiSi(TiSi )),

with yi2(0) = yi(Ti1+di1+1) where the di1 values yi(Ti1+1), . . . yi(Ti1+di1) correspond to the first
sequence of missing values, and more generally, for each s = 2, . . . , Si, yis(0) = yi(

∑s−1
j=1(Tij+dij+1)),

with dij being the number of missing values between the observed sequences yisj and yisj+1
.

Once the estimation of the parameters has been done, we make sure that this assumption was
justified by verifying that the width of the smallest range dmin = min {di1, . . . , di Si−1} of missing
values is sufficiently large to be greater than the mixing time of the obtained transition matrix.
To do so, we use an upper bound for the mixing time given by Levin and Peres (2017):Theorem
12.4, p. 155. For each component k, we denote by ν∗k the second maximal absolute eigenvalue of
Ak. For any positive η, if for each k

dmin ≥
1

1− ν∗k
log

1

ηminh πkh
,

then for any integer D ≥ dmin, the maximum distance in total variation satisfies

max
h
‖ADk [h, ·]− πk‖TV ≤ η.

5.2.5 Maximum likelihood inference

This section presents the methodology used to estimate the model parameters.

Inference We propose to estimate the model parameters by maximizing the log-likelihood
function where missing values are managed as in Section 5.2.4 and we recall that the log-likelihood
is also approximated for numerical reasons, to avoid computing large powers of the transition
matrices. We want to find θ̂ which maximizes the following approximated log-likelihood function

`K(θ;y) =

n∑
i=1

log

(
K∑
k=1

δk

Si∏
s=1

p(yis;πk,Ak,λ, ε)

)
.

This maximization is achieved via an EM algorithm which considers the complete-data log-
likelihood defined by

`K(θ;y, z) =

n∑
i=1

K∑
k=1

zik log δk +

n∑
i=1

K∑
k=1

zik

(
Si∑
s=1

log p(yis;πk,Ak,λ, ε)

)
.
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Conditional probabilities Let αikhs(t)(θ) be the probability of the partial sequence yis(0), . . . ,
yis(t) and ending up in state h at time t under component k. Moreover, let βikhs(t)(θ) be the
probability of the ending partial sequence yis(t+1), . . . , yis(Tis) given a start in state h at time
t under component k. These probabilities can be easily obtained by the forward/backward
algorithm (see Du Roy de Chaumaray and Marbac (2021a)). We deduce that the probability
γikhs(t)(θ) of being in state h at time t ∈ {0, . . . , Tis} for yi under component k is

γikhs(t)(θ) = P(Xis(t) = h | yis, Zik = 1;θ) =
αikhs(t)(θ)βikhs(t)(θ)∑M
`=1 αik`s(t)(θ)βik`s(t)(θ)

.

The probability ξikh`s(t)(θ) of being in state ` at time t ∈ Ωi and in state h at time t − 1 for
observation yi under component k is

ξikh`s(t)(θ) = P(Xis(t) = `,Xis(t−1) = h | yis, Zik = 1;θ)

=
αikhs(t)(θ)Ak[h, `]g(yis(t);λ`, ε`)βik`s(t)(θ)∑M

h′=1

∑M
`′=1 αikh′s(t)(θ)Ak[h′, `′]g(yis(t);λ`′ , ε`′)βik`′s(t)(θ)

.

The probability τik that one observation arises from component k is

τik(θ) = P(Zik = 1 | yi,θ) =

∏Si
s=1

∑M
h=1 αikhs(Tis)(θ)∑K

k′=1

∏Si
s=1

∑M
h=1 αik′hs(Tis)(θ)

.

The probability ηihs(t) that observation i is in state h at time t of sequence s is

ηihs(t)(θ) = P(Xis(t) = h | yi,θ) =

K∑
k=1

τik(θ)γikhs(t)(θ).

EM algorithm The EM algorithm is an iterative algorithm randomly initialized at the model
parameter θ[0]. It alternates between two steps: the Expectation step (E-step) consisting of
computing the expectation of the complete-data likelihood under the current parameters, and the
maximization step (M-step) consisting of maximizing this expectation over the model parameters.
Iteration [r] of the algorithm is defined by
E-step Conditional probability computation, updating of

τik(θ[r−1]), γikhs(t)(θ
[r−1]), ηihs(t)(θ

[r−1], and ξikh`s(t)(θ
[r−1]).

M-step Parameter updating

δ
[r]
k =

nk(θ[r−1])

n
, π

[r]
kh =

nkh(0)(θ
[r−1])

nk(θ[r−1])
, Ak[h, `][r] =

nkh`(θ
[r−1])

nkh(θ[r−1])
, ε

[r]
h =

wh(θ[r−1])

nkh(θ[r−1])
,

and λ
[r]
h = arg max

λh

n∑
i=1

Si∑
s=1

Tis∑
t=0

ηihs(t)(θ
[r−1])gc(yis(t);λh),

where

nk(θ) =

n∑
i=1

τik(θ), nkh(θ) =

n∑
i=1

Si∑
s=1

Tis∑
t=0

τik(θ)γikhs(t), nkh(0)(θ) =

n∑
i=1

Si∑
s=1

τik(θ)γikhs(0)(θ),

nkh`(θ) =

n∑
i=1

Si∑
s=1

Tis∑
t=1

τik(θ)ξikh`s(t)(θ) and wh(θ) =

n∑
i=1

Si∑
s=1

Tis∑
t=0

ηihs(t)(θ)1{yis(t)=0}.
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5.2.6 Numerical illustrations

This section aims to highlight the main properties of the model used in numerical experiments.
First, simulated data are used to illustrate the exponential decay of the probabilities of mis-
classification (given by Theorem 5.2), the convergence of estimators and the robustness of the
approach to missingness. Second, our approach is applied to the data from the PAT study. All
the experiments are conducted with the R package MHMM available on CRAN.

Simulated data All the simulations are performed according to the same model. This model
is a bi-components mixture of HMM with two states (i.e., K = M = 2) and equal proportions
(i.e., δ1 = δ2 = 1/2). The distribution of Yi(t) conditionally on the state h is a ZIG distribution.
We have

ε1 = ε2 = 0.1, a1 = 1, b1 = b2 = 1, A1 =

[
e 1− e

1− e e

]
and A2 =

[
1− e e
e 1− e

]
.

The parameter a2 > 1 controls the separation of the distribution of Yi(t) given the state. The
parameter e controls the separation of the distribution of X given the class (when e increases,
the constant c in Theorem 5.2 increases). We consider four cases: hard (e = 0.75 and a2 = 3),
medium-hard (e = 0.90 and a2 = 3), medium-easy (e = 0.75 and a2 = 5) and easy (e = 0.90 and
a2 = 5).

Theorem 5.2 states that the probabilities of misclassification decrease at an exponential rate
with T . To illustrate this property, 1000 sequences are generated for T = 1, . . . , 100 and the
four cases. For each sequence yi, we compute log(P(Zik = 1 | yi)/P(Zik0 = 1 | yi)) when k0 is
the true class, k the alternative and the true model parameters are used. Figure 3.1(a) shows
the behavior of log(P(Zik = 1 | yi)/P(Zik0 = 1 | yi)) (the median of this log ratio is plotted with
a plain line and a 90% confidence interval is plotted with a gray area). Note that this log
ratio of probabilities linearly decreases with T which illustrates the exponential decay of the
probabilities of misclassification. Moreover, Figure 5.3(b) presents the empirical probabilities of
misclassification and thus also illustrates Theorem 5.2. As expected, this shows that the decay
of the probabilities of misclassification is faster as the overlaps between class decreases.

We illustrate the convergence of the estimators (partition, latent states and parameters) when
the model parameters are estimated by maximum likelihood (see Section 5.2.5). We compute
the mean square error (MSE) between the model parameters and their estimators. Moreover, we
compute the adjusted Rand index (ARI; Hubert and Arabie (1985)) between the true partition
and the partition given by the MAP rule, and between the true state sequences and the esti-
mated state sequences given by the MAP rule (obtained with the Viterbi algorithm presented
in Viterbi (1967)). Table 5.1 shows the results obtained with two different sample sizes n and
two different lengths of sequences T , considering the medium-hard case. It can be seen that the
partition and the model parameters are well estimated. Indeed, the MLE converge to the true
parameters as T or n increases, except for the proportion of each component δk. The convergence
of the estimator of the proportions depends mainly on the sample size n. We notice that the
partition obtained by our estimation procedure corresponds to the true partition (for n and T
sufficiently large) even if we are not under the true parameters but under the MLE, which is
not an immediate consequence of Theorem 5.2. On the contrary, we do not find the true state
sequences almost surely, as the number of states to be estimated is also growing with n and
T . This result was expected because the number of latent states increases with T and n while
the number of parameters and the dimension of the partition does not increase with T . Results
obtained for the three other cases are similar and are presented in Du Roy de Chaumaray and
Marbac (2021a).
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(a) Median (in plain) and 90%-confidence region

(gray area) of log
P(Zik=1|yi)
P(Zik0=1|yi)

.

(b) Probability of misclassification.

Figure 5.3: Results obtained on 1000 observations for the hard (orange), medium-hard (green),
medium-easy (blue) and easy (purple) cases.

Table 5.1: Convergence of estimators when 1000 replicates are drawn from the medium case:
ARI between estimated and true partition, ARI between estimated and true latent states and
MSE between the MLE and the true parameters

ARI (latent variables) MSE (model parameters)
n T partition states Ak εh ah bh δk
10 100 0.995 0.621 0.021 0.001 0.088 0.024 0.047
10 500 1.000 0.632 0.007 0.000 0.020 0.005 0.048
100 100 0.996 0.630 0.004 0.000 0.011 0.003 0.005
100 500 1.000 0.634 0.003 0.000 0.005 0.002 0.005

We now investigate the robustness of the proposed method with missingness. We compare the
accuracy of the estimators (ARI for the latent variables and MSE for the parameters) obtained
on samples without missingness to the accuracy of the estimators obtained when missingness
is added to the samples. Three situations of missingness are considered: missing completely
at random-1 (MCAR-1) (i.e., one sequence of 10 missing values is added to each sequence yi,
the location of the sequence follows a uniform distribution), MCAR-2 (i.e., two sequences of 20
missing values are added for each sequence yi, the location of the sequences follows a uniform
distribution) and missing not at random (MNAR) (i.e., the probability of observing the value
yi(t) being equal to eyi(t)/(1 + eyi(t))). Note that the last situation adds many missing values
when the true value of yi(t) is close to zero, so the occurrence of missing values depends on the
latent states. Table 5.2 compares the results obtained with and without missingness, considering
the medium-hard case. It shows that estimators are robust to missingness. Results obtained for
the other three cases are similar and are reported in Du Roy de Chaumaray and Marbac (2021a).

Using the approach on classical accelerometer data We consider the accelerometer data
measured on three subjects available from Huang et al. (2018b). The accelerometer measures
the activity every five minutes for one week. Note that the first subject has 2% of missing
values. The purpose of this section is to illustrate the differences between the method of Huang
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Table 5.2: Convergence of estimators obtained over 1000 replicates with and without missing
data when data are sampled from case medium: ARI between estimated and true partition, ARI
between estimated and true latent states and MSE between the MLE and the true parameters

Adjusted Rand index Mean square error
n T missingness partition states Ak εh ah bh δk
10 100 no missingness 0.995 0.621 0.021 0.001 0.088 0.024 0.047

MCAR-1 0.991 0.613 0.024 0.001 0.102 0.028 0.047
MCAR-2 0.987 0.605 0.028 0.001 0.113 0.032 0.047
MNAR 0.934 0.497 0.051 0.003 0.398 0.050 0.050

10 500 no missingness 1.000 0.632 0.007 0.000 0.020 0.005 0.048
MCAR-1 1.000 0.631 0.007 0.000 0.020 0.005 0.048
MCAR-2 1.000 0.631 0.007 0.000 0.019 0.005 0.048
MNAR 0.999 0.516 0.021 0.003 0.233 0.028 0.048

100 100 no missingness 0.996 0.630 0.004 0.000 0.011 0.003 0.005
MCAR-1 0.994 0.624 0.004 0.000 0.013 0.003 0.005
MCAR-2 0.989 0.618 0.005 0.000 0.014 0.004 0.005
MNAR 0.951 0.512 0.014 0.002 0.200 0.026 0.005

100 500 no missingness 1.000 0.634 0.003 0.000 0.005 0.002 0.005
MCAR-1 1.000 0.633 0.002 0.000 0.006 0.002 0.005
MCAR-2 1.000 0.632 0.002 0.000 0.005 0.002 0.005
MNAR 1.000 0.520 0.011 0.002 0.198 0.026 0.005

et al. (2018b) and the method proposed in this paper.
Huang et al. (2018b) consider one HMM per subject with three latent states. This model is

used for monitoring the circadian rhythm, subject by subject. Because they fit one HMM per
sequence measured by the accelerometer of a subject, the definition of the activity level is different
for each subject (see, Huang et al. (2018b):Figure 4). This is not an issue for their study because
the analysis is done subject by subject. However, the mean time spent per activity levels cannot
be compared among the subjects. The method proposed here makes this comparison possible.
Figure 5.4 depicts the activity data of the three subjects, the expected value of Yi(t) conditionally
on the most likely state and on the most likely component and the probability of each state.
Based on the QQ-plots (see, Du Roy de Chaumaray and Marbac (2021a)), we consider M = 4
activity levels. These levels can be easily characterized with the model parameters presented in
Table 5.3. Moreover, the transition matrices also make sense. For instance, class 1 (subjects 9
and 20) has an almost tri-diagonal transition matrix (by considering an order between the states
given through the activity levels per state) and class-2 (subject 2) is composed of a subject with
low-overall activity

Â1 =


0.86 0.14 0.00 0.00
0.12 0.81 0.06 0.01
0.00 0.07 0.79 0.14
0.00 0.00 0.13 0.87

 .

5.2.7 Analysis of PAT data

In this section, we analyze the data presented in Section 5.2.2.

Experimental conditions In order to compare our approach to the cuts defined a priori in
the PAT study (see Section 5.2.2), the model was fitted with four activity levels. Note that
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Figure 5.4: State estimation for the three subjects: (top) accelerometer data where color indicates
the expected value of Yi(t) conditionally to the most likely state and to the most likely component;
(bottom) probability of each state at each time.

Table 5.3: Parameters and mean time per states for the three subjects
State name εh ah bh mean sd
intensive-level 0.00 98.94 0.65 152.76 15.36
moderate-level 0.00 11.09 0.11 99.34 29.84
low-level 0.00 2.32 0.11 20.98 13.79
sleeping 0.22 1.48 0.72 2.06 1.70

selecting the number of states in HMM remains a challenging problem (see the discussion in the
conclusion). However, approaches considering four activity levels are standard for accelerometer
data. The number of components (i.e., the number of classes) is estimated, using an information
criterion unlike the PAT study where it is arbitrarily set at 3 or 4. For each number of compo-
nents, 5000 random initializations of the EM algorithm are performed. The analysis needs about
one day of computation on a 32-Intel(R) Xeon(R) CPU E5-4627 v4 @ 2.60GHz.

Model selection To select the number of components, we use two information criteria which
are generally used in clustering:

BIC(K) = `K(θ;y)− νK
2

log(

n∑
i=1

Si∑
s=1

Tis + 1),

and

ICL(K) = BIC(K) +

n∑
i=1

K∑
k=1

ẑik(θ̂) log τik(θ̂),

where νK = (K − 1) + K(M + M2) + 3M is the number of parameters for a model with K

components and M states and ẑik(θ̂) defines the partition by the MAP rule associated to the
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MLE such that

ẑik(θ̂) =

{
1 if τik(θ̂) = argmax`=1,...,K τi`(θ̂)
0 otherwise

.

The ICL is defined according as the integrated complete-data likelihood computed with the
partition given by the MAP rule with the MLE. The values of the information criteria are given
in Table 5.4, for different number of classes. Both criteria select five components. The values of
ICL(K) are close to those of the BIC(K), implying that the entropy

∑n
i=1

∑K
k=1 ẑik log τik(θ̂) ≈ 0.

This is a consequence of Theorem 5.2 (see also numerical experiments in Section 5.2.6). In the
following, we interpret the results obtained with M = 4 activity levels and K = 5 classes.

Table 5.4: Information criteria obtained on PAT data with four levels of activity (minima are in
bold)

K 1 2 3 4 5 6 7
BIC -2953933 -2952313 -2951809 -2951705 -2951308 -2951364 -2951696
ICL -2953933 -2952313 -2951810 -2951707 -2951309 -2951364 -2951697

Description of the activity levels The parameters of the ZIG distributions are presented
in Table 5.5. The four distributions are ordered by the value of their means. The sleeping state
is characterized by a large probability of observing zero (i.e., εh is close to one). However, εh
is not equal to zero for the other states, but the more active the state is, the smaller εh is. We
also compute the marginal cutoffs (i.e., the cutoffs by considering the MAP of P(Xi(t) | Yi(t))).
These cutoffs neglect the time dependency due to the Markov structure, but can be compared
to the cutoffs proposed by the PAT study. Indeed, according to the PAT study, minutes with
< 100 counts are assigned to Sedentary activity, minutes with 100-2019 counts were classified as
Light, the Moderate class corresponds to 2020-5998 counts/minute and Vigorous 5999 and above
counts/minute. The marginal cutoff associated with the low-level state is very close to that of
the Sedentary class of the PAT. We find, however, that our marginal cutoffs are more accurate
for higher levels of activity. PAT cutoffs do not adequately characterize the activity level of the
study population. Finally, contrary to classical thresholds, our modeling approach allows us to
capture and characterize the variability associated with the different levels of activity, variability
which seems important (see Figure 5.5 and Table 5.5).

Table 5.5: Parameters describing the four activity levels for PAT data and statistics of the
distributions

Name of the activity level Parameters Statistics
εh ah bh mean marginal cutoffs

sleeping 0.988 7.470 7.470 0.012 [0, 0]
low-level 0.260 0.974 0.020 36.926 ]0, 97.7]
moderate-level 0.025 1.408 0.004 329.249 ]97.7, 614.4]
intensive-level 0.007 2.672 0.002 1696.935 ]614.4, +∞[

Description of the classes Classes can be described using their proportions and their associ-
ated parameters presented in Table 5.5. The data are composed of a majority class (δ1 = 0.518).
Three other classes are composed of more sedentary individuals (e.g., their marginal probabilities
of being in states 1 and 2 are higher). Finally, there is a small class (δ5 = 0.045) which contains
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the most active subjects (i.e., πk4 = 0.143). For three of the five classes, Figure 5.5 presents
a characteristic subject of each class and the probabilities of the activity levels (the associated
graphs for the two remaining classes are given in Du Roy de Chaumaray and Marbac (2021a)).
Classes can be interpreted from the mean time spent at different activity levels presented in
Table 5.6 and from transition matrices presented in Table 5.7 which are almost tri-diagonal.
This could be expected because it seems relevant to obtain a low probability of jumping between
the sleeping state and the intensive state. Additionally, the approximation made for efficiently
handling the missingness (see Section 5.2.4) turns out to be relevant. The minimal range of
missing values is indeed equal to dmin = 60 which leads to a distance in total variation between
the dmin-power of the transition matrices and the stationary distribution being less than 5.10−4

for any component.

Table 5.6: Mean time spent at the different activity levels for the five classes
Class sleeping low-level moderate-level intensive-level
active 0.306 0.284 0.338 0.072
sedentary 0.467 0.209 0.263 0.061
moderate 0.304 0.411 0.225 0.060
very sedentary 0.504 0.366 0.124 0.006
very active 0.189 0.351 0.316 0.143

Table 5.7: Transition matrix for the five classes
moderate class

sleeping low-level moderate-level intensive-level
sleeping 0.76 0.21 0.03 0.00
low-level 0.16 0.73 0.11 0.00
moderate-level 0.03 0.20 0.73 0.04
intensive-level 0.01 0.04 0.16 0.80

very sedentary class
sleeping low-level moderate-level intensive-level

sleeping 0.85 0.08 0.06 0.00
low-level 0.20 0.67 0.13 0.01
moderate-level 0.10 0.11 0.76 0.03
intensive-level 0.01 0.04 0.14 0.82

very active class
sleeping low-level moderate-level intensive-level

sleeping 0.80 0.14 0.05 0.01
low-level 0.08 0.74 0.17 0.01
moderate-level 0.03 0.18 0.69 0.10
intensive-level 0.01 0.05 0.21 0.74
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Figure 5.5: Examples of observations assigned to the five classes with the probabilities of the
states.
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5.3 Translation-invariant functional clustering to investi-
gate geographical disparities of COVID-19 deaths

5.3.1 Context

In March of 2020, the World Health Organization (WHO) declared pandemic status for the novel
coronavirus SARS-Cov-2, denoted COVID-19, indicating that it has reached a critical level of
spreading and severity worldwide. The global nature of the COVID-19 pandemic has resulted
in much heterogeneity of the data, aggravated further by lack of prior knowledge or coordinated
mitigation strategies which have impeded research efforts. For instance, the assumption that
the first occurrence emerged concurrently everywhere is improper. Additionally, the number of
confirmed cases depends on the number of tests that are being performed in a given region. Hence,
a region that has tested very few people can only report very few confirmed cases. Alternatively,
the number of COVID-19 deaths is more systematically recorded: countries are asked to follow the
‘cause of death’ classifications from the WHO’s International Classification of Diseases guidelines
(World Health Organization (2016)). Though each country is responsible for providing their
own guidance on how and when COVID-19 deaths should be recorded, this metric remains
more reliable. Undoubtedly, the rapid propagation of this acute infectious respiratory disease
has posed governmental challenges. Government responses to contain the virus’s spread were
multiple (social distancing, travel restrictions, lockdowns, etc.) and their efficiency needs to be
investigated. To better understand this virus, it is profoundly useful to cluster regions similarly
affected by COVID-19.

In Cheam et al. (2020), we focus on clustering regions of the European Union (EU) and the
United States of America (USA) based on the daily COVID-19 deaths recorded over seventeen
months. Previous investigations of geographical disparities of COVID-19 (Tang, Wang, and
Zhang (2020) and Chen, Yan, and Zhang (2020)) only focus on specific geographical regions (e.g.,
USA). When considering regions of Europe and North America, a difficulty arises: COVID-19
outbreaks started at different times. The misalignment of the first occurrence between regions
should not be neglected, whether between continents or within a country. Another problem to
acknowledge is that the mortality occurs at different rates under different population risk factors
(Williamson, Walker, and Bhaskaran (2020)). Hence the necessity to adjust these region-specific
risk factors is intrinsic to allow regions to be compared fairly. Furthermore, by adjusting the
population risk factors, we are able to detect regions more susceptible to COVID-19 and perhaps
identify the disparity factors between clusters. For instance, it provides for a retrospective
assessment of the effectiveness and the quality of government responses, a concurrent analysis of
the economic indicators, and a prospective perception of mental health during this unprecedented
period.

In Cheam et al. (2020), we propose a novel three-step approach that circumvents the issues
of clustering regions with respect to the COVID-19 dataset: the varying times of arrivals of
the virus and the need to incorporate the population risk factors. This approach is named
Clustering Regression residuals of Features given by Translation Invariant Wavelets (CRFTIW).
The first step of CRFTIW consists of feature extraction using a multiscale approach based on
translation-invariant (TI) wavelets (Coifman and Donoho (1995)), which allows the shifted onsets
of COVID-19 to be tackled by avoiding any pre-processing step for curve alignment (see Wang
and Gasser (1997) and the references cited in Jacques and Preda (2014a):Section 2.3). The
objective of constructing clusters that are invariant to time-shifts is somewhat different from
conventional clustering in that it allows us to answer slightly different scientific questions about
the data. Standard clustering (no time-shifts) will identify regions that peak at the same time,
while TI clustering recovers regions that behave in similar patterns that unravel across time. The
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features are defined as the logarithm of the norm of the TI wavelet coefficients at each scale. The
second step of CRFTIW integrates the population characteristics with a single-index regression of
the features on the population risk factors. This approach has the benefits of the nonparametric
regression but does not suffer from the curse of dimensionality. We show that the residuals of the
regression preserve the cluster information. As the third step of CRFTIW, clustering of the regions
is achieved by fitting a nonparametric mixture on the regression residuals. The only assumption
made at this step is to define the density of each component as a product of univariates densities.
The proposed approach has differences with the approach of Gaffney and Smyth (2005) despite
both methods considering curve translations. First, the scaling that we proposed depends on
the covariates (i.e., the risk factors). Second, we use a wavelet approach that permits a greater
reduction of the dimension. Finally, we consider a semi-parametric mixture that avoids the bias
of the parametric mixtures observed when their parametric assumptions are violated.

For this ongoing COVID-19 dataset, we consider n = 79 regions between two continents: the
27 countries within the EU plus the United Kingdom and the 50 states of the USA plus the
District of Columbia. There are differences in time of arrival of the peak death rates between
regions. This is illustrated by Figure 5.6 which shows that New Hampshire and Pennsylvania
have noticeably more delayed peaks than Austria and Italy. Our focus is on the curve Wi =

Figure 5.6: Illustration of different arrival times of the COVID-19 among the different regions.

(Wi(1), . . . ,Wi(T ))
> recording the daily rate of the number of deaths per million people in each

region i for a total of T = 512 days (between March 1st, 2020 to July 25, 2021, inclusively),
where Wi(t) denotes the death rate recorded for region i at time t. Data were extracted from
the Center for Systems Science and Engineering at the Johns Hopkins Github repository (file
Policy.rds in Badr et al. (2020)) and a 7-day moving average has been performed due to the
discrepancy of the data recorded by each region. For instance, this can account for days in the
week where data may not be available, such as weekends.

Early findings suggested that differences in COVID-19 disease prevalence and severity may be
associated with certain risk factors (Williamson, Walker, and Bhaskaran (2020)). Thus, we con-
sider two groups of risk factors. The first group contains three environmental risk factors (fine
particulate matter PM2.5 concentration, nitrogen dioxide NO2 concentration and population
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density) and the second group contains eight medical risk factors (age-adjusted percent preva-
lence of adults with diagnosed diabetes, percent of obese adults, age-adjusted percent prevalence
of adults who are current smokers, age-standardized percent prevalence of chronic obstructive pul-
monary disease, age-standardized percent prevalence of cardiovascular disease, age-standardized
percent prevalence of HIV/AIDS, percent of adults with hypertension and population proportion
over 65 years old). All the risk factors were extracted from the Center for Systems Science and
Engineering in the Johns Hopkins repository file (file COVID-19 Static.rds in Badr et al. (2020))
and have been scaled. For each group of risk factors, we perform a principal component analysis
(PCA) and, in accordance with Kaiser’s rule, we consider the first two principal components.
For each region i, we store in Xi ∈ R4 the first two principal components of both groups of risk
factors.

5.3.2 Method

Outline of the three-step method The daily COVID-19 death curves of the n regions
W1, . . . ,Wn are supposed to independently arise from L different clusters. The cluster mem-
bership of region i is defined by the latent variable Zi = (Zi1, . . . , ZiL)> where Zi` = 1 if region i
belongs to cluster ` and Zi` = 0 otherwise. The model assumes that, conditionally on the cluster
`, each Wi is defined as a product between a noisy version of δi-lagged values of an unobserved
curve u` and the effect of the population risk characteristics µ(Xi) > 0, where Xi denotes pop-
ulation risk factors of region i and where we set E[µ(Xi)] = 1, for identifiability reasons. The
deterministic functions u1, . . . ,uL do not depend on the covariates Xi. Moreover the noises εi`
and the covariates Xi are independent. Thus, given the cluster membership and the population
risk factors of region i, we have

Wi =

L∑
`=1

zi`µ(xi)(u
(δi)
` + ε

(δi)
i` ), (5.3)

where u
(δi)
` and ε

(δi)
i` are δi-lagged versions of u` and εi`, and the distribution of each εi` follows

a centered distribution having a finite variance defined by the density f` (i.e., Ef` [εi`] = 0 and
Ef` [ε2

i`] <∞). Thus, the conditional distribution of Wi given Xi = xi is defined by the density

f(wi | xi) =

L∑
`=1

π`f`

(
wi

µ(xi)
− u(δi)

`

)
, (5.4)

where π` > 0 is the proportion of cluster ` with
∑L
`=1 π` = 1.

Despite the model defined by (5.4) permitting a clustering of the regions based on the daily
COVID-19 death curves with respect to the population risk factors, the estimation the multi-
variate density f` is highly complex. Thus, in Cheam et al. (2020), we achieve the clustering
with the following three-step approach (see Section 5.3.2):

1. Performing feature extraction of the daily COVID-19 death curves Wi to obtain Yi ∈ RJ+1

using TI wavelets.

2. Fitting single-index regressions of the features Yi on the population risk factors Xi and
consider the residuals ξ̂i ∈ RJ+1.

3. Using the nonparametric mixture to cluster the regions based on the residuals ξ̂i.
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This approach is relevant since the specific feature extraction reduces the dimension, allows
us to deal with lagged values and keeps the main cluster information. Moreover, the single-
index regression keeps the cluster information of the features, allows adjustment to be made
on population risk factors, and provides meaningful parameters used for detecting protective or
compounding effects of the population characteristics and odd ratios.

Feature extraction and time misalignment A wavelet basis is a set of functions obtained
as translations and dilatations of two specific functions: a scaling function denoted by φ and a
mother wavelet denoted by ψ. For the purpose of this paper, we use Daubechies wavelets and in
particular the Symmlet family. Such wavelets are optimal in the sense that they have minimal
support for a given number of null moments. We present the essentials below; more details can
be found in Daubechies (1992) or Mallat (2008). The decomposition of the observations in a
given wavelet basis is defined by

Wi(t) = αi,0,0φ0,0(t) +

J−1∑
j=0

2j−1∑
k=0

βi,j,kψj,k(t), t ∈ [1, T ],

with J = log2(T ), φj,k(t) = 2j/2φ(2jt−k), ψj,k(t) = 2j/2ψ(2jt−k), αi,0,0 ≈
√
T
∫ T

1
Wi(t)φ0,k(t)dt

and βi,j,k ≈
√
T
∫ T

1
Wi(t)ψj,k(t)dt are the empirical wavelet coefficients of the ith individual. A

discrete wavelet transform (DWT) corresponds to the computation of these coefficients. In
practice, a fast wavelet decomposition and reconstruction algorithm can be computed using the
algorithm proposed by Mallat (1989) (in only O(T ) operations). As mentioned in the introduc-
tion, a simple shift in the observed function will potentially result in a significant change in the
DWT. Since we use the latter for feature extraction and the observed curves can start at different
times, such behavior is not suitable.

In the TI case, we consider the fast translation-invariant discrete wavelet transform (TIDWT)
developed by Coifman and Donoho (1995), in a denoising framework. This transformation has
been independently discovered, on several occasions, in different communities, and has received
several different names, including the “à trous” algorithm (Holschneider et al. (1990) and Du-
tilleux (1990)), the undecimated DWT (Lang et al. (1996)), the shift-invariant DWT (Lang et
al. (1995)) or the stationary DWT (Nason and Silverman (1995)), to name just a few (see, e.g.
Fowler (2005) for a review of some of the various different variants). There are many ways to
implement this transformation, and many ways to represent the resulting overcomplete set of
wavelet coefficients. We have chosen to focus on the TIDWT of Coifman and Donoho (1995),
which provide equivalences and a way to go from one to the other of these representations, for
example with the stationary DWT of Nason and Silverman (1995). The main difference with
the orthogonal case is that the dictionary is now a tight frame instead of an orthonormal basis
(see Mallat (2008):Chapter 5) and the number of coefficients per scale is no longer dyadic but
of length T (see Coifman and Donoho (1995) for more details). This wavelet transform is called
translation-invariant by Coifman and Donoho (1995) since the whole dictionary is invariant un-
der circular translation. More precisely, for a vector w of size T , let Sh denotes the circulant shift
by h defined by (Shw)(t) = w(t+h) modulo T . As in the traditional case, TIDWT is calculated
by a series of decimation and filtering operations, only the additional circulant shift Sh is added
and the corresponding wavelet dictionary is obtained by sampling the locations more finely (i.e.,
one location per sample point). TIDWT consists of calculating the DWT of the shifted data for
each shift h ∈ {0, . . . , T − 1}. Coifman and Donoho (1995) propose an algorithm to perform this
transformation in O(T log2 T ) operations (we used the R package rwavelet which provides an
implementation Navarro and Chesneau (2020)). The invariance property of their construction is
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formally expressed in terms of the circulant matrix containing the wavelet coefficients (see Coif-
man and Donoho (1995):eq. (3)). In other words, for a curve Wi translated by h, the wavelet
coefficients at each scale will be the same up to some permutation. Thus the norm of the latter
is preserved scale-by-scale.

The redundancy of TIDWT makes it possible to detect the presence of hidden information
such as stationary or non-stationary patterns as well as their location, making it particularly
suitable for clustering purposes. This type of invariant representation has been exploited in many
applications (such as denoising, Coifman and Donoho (1995), or texture image classification and
segmentation, Unser (1995)). In addition, the use of wavelets allows the information contained in
the time series to be compressed into a small number of wavelet coefficients. Following Antoniadis
et al. (2013), we characterize each time series by the vector of the energy contribution of their
wavelet coefficients at each scale with the difference that the coefficients are calculated by TIDWT
instead of DWT. This extension is possible because the expansion being in a tight frame, the
norm is also conserved (see Mallat (2008):Chapter 11 for more details). More precisely, using
Parseval’s identity, we have

‖Wi‖22 = 2−J
T−1∑
k=0

α2
i,0,k +

J∑
j=1

2−j
T−1∑
k=0

β2
i,j,k = 2−J‖θi0‖22 +

J∑
j=1

2−j‖θij‖22, (5.5)

where θij = (αi,0,0, . . . , αi,0,T−1, βi,j,0, . . . , βi,j,T−1)> and the factor 2−j is used to compensate
for the redundancy of this representation. Thus, denoting by yij the log total norm at scale j
for the ith individual, we have

yij = ln (‖θij‖2) , ∀j = 0, . . . , J, i = 1, . . . , n. (5.6)

Clustering will therefore be carried out on the basis of the log norm of the TI wavelet coefficients
at each scale. Thus, this criterion is not sensitive to the origin of the curves, so it seems relevant
given the nature of the data motivating this work.

Adjustment on the population risk factors In this section, we consider the regressions
of the features extracted by the wavelet decomposition on the population risk factors. The
following lemma shows that the noises of these regressions retain the cluster information given
by the daily COVID-19 death curves and permit the information of the population risk factors
to be considered in the clustering procedure. Note that the same nonparametric function is used
for the regression of each feature (i.e., j = 0, . . . , J). Thus, the lemma shows how the regression
function is estimated based on the n× (J + 1) observations.

Lemma 5.1. Let data arise from (5.4) and features are defined by (5.6). Defines the noise of the
regression ξi = (ξi1, . . . , ξiJ)> for j = 0, . . . , J as

y?ij = m(xi) + ξij , (5.7)

with
E[m(Xi)] = 0 and E[ξij ] = 0,

where xi and ξij are independent, y?ij = yij − ∆j , m(xi) = lnµ(xi) − E[lnµ(Xi)], ∆j =

E[lnµ(Xi)] +
∑L
`=1 π`E[ 1

2 ln ‖v`j + ε?i`j‖22], and v`j and ε?i`j are the features of u` and εi`, respec-
tively (their formal definition is given in the proof of the lemma presented Cheam et al. (2020)).
The vector of noises ξi then follows a mixture model with latent variable Zi defined by the
density

g(ξi) =

L∑
`=1

π`g`(ξi − λ`),
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where λ` = (λ`0, . . . , λ`J)>, λ`j = E[ 1
2 ln ‖v`j + ε?i`j‖22] − ∆j + E[lnµ(Xi)] and g1, . . . , g` are

densities of centered distributions.

We consider the single-index regression defined by

m(xi) := ν(x>i γ). (5.8)

This semiparametric approach is flexible, and avoids the assumptions of the parametric ap-
proaches that can be violated and the curse of dimensionality of the full nonparametric ap-
proaches. The parameter of the index γ permits population characteristics having a protective
or compounding effect to be detected. Moreover, considering two sets of covariates Xi and Xi′ ,
the difference ν(X>i γ)− ν(X>i′γ) can be interpreted as the logarithm of an odd ratio.

The single-index approach requires a methodology for estimating γ and m, with m being in
a function space. A common approach, that avoids a simultaneous search involving an infinite-
dimensional parameter, is the profiling (Severini and Wong (1992) and Liang et al. (2010)), which
defines ν(x>i γ) := νγ with

νγ(t) = E[Y ?ij | X
>
i γ = t], j ∈ {0, . . . , J} and t ∈ R. (5.9)

Hence, one expects that, for each xi, the true value of the parameter, denoted by γ, realizes the
minimum of

γ 7→
J∑
j=0

E[{Y ?ij − νγ(x>i γ)}2 | Xi = xi]. (5.10)

However, even if mγ is well defined for any γ ∈ Rd, the vector γ is not identifiable and only its
direction could be consistently estimated. Thus, there are two common approaches to restrict
γ for identification purposes: either fix one component equal to 1 (Ma and Zhu (2013)), or
set the norm of γ equal to 1 and fix the sign of its first component to be positive (Zhu and
Xue (2006)). The estimation of the single-index regressions is performed by considering the
empirical counterpart of (5.9) and (5.10)

γ̂ = arg min
γ

n∑
i=1

(
ŷ?ij − ν̂γ(X>i γ)

)2

,

ŷ?ij = yij −
1

n

n∑
i=1

yij , and ν̂γ(u) =

1
nh

∑n
i=1 ŷ

?
ijK

(
X>i γ−u

h

)
1
nh

∑n
i=1K

(
X>i γ−u

h

) ,

where K is a kernel and h a bandwidth. The estimation procedure is implemented in the R
package regpro Klemela (2016). The clustering of the regions is also performed on the residuals

ξ̂i = (ξ̂i0, . . . , ξ̂iJ)> defined by

ξ̂ij = ŷ?ij − ν̂γ̂(X>i γ̂).

Nonparametric clustering of the regions A wide range of literature focuses on models
assuming that, conditionally on knowing the particular cluster the subject i came from, its
features are independent. Thus, we consider that the conditional distribution of the ξ̂i given
cluster membership is defined as a product of univariate densities. Note that this assumption
imposes non-explicit constraints on the distribution of the noises εi defined in (5.3). Therefore,
the clustering of the region is performed by considering the marginal density defined by

g(ξ̂i;λ) =

L∑
`=1

π`

J∏
j=0

g`j(ξ̂ij), (5.11)
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where λ groups the mixing proportions π1, . . . , πL (where π` > 0 and
∑L
`=1 π` = 1) and the

univariate densities g`j . The model (5.11) is identifiable, up to a swapping of the cluster la-
belling, if the densities g`j are linearly independent (see Theorem 8 of Allman, Matias, and
Rhodes (2009)). Considering a multivariate kernel defined as a product of J univariate kernels

K, the maximum smoothed log-likelihood estimator λ̂L (MSLE) is obtained by maximizing the
smoothed log-likelihood `(λ), such that

λ̂L = arg max
λ

`(λ;L)

and

`(λ;L) =

n∑
i=1

ln


L∑
`=1

π`

J∏
j=1

N g`j(ξ̂ij)

 ,

where

N g`j(ξ̂ij) = exp

{∫
Ωj

1

hj
K

(
ξ̂ij − u
hj

)
ln g`j(u)du

}
,

and h1, . . . , hJ are the bandwidths (i.e., hj > 0 and hj = o(1) for j = 1, . . . , J). Consider-
ing the MSLE is more convenient than considering the maximum likelihood estimate because
the MSLE can be obtained by a Majorization-Minimization algorithm (see Levine, Hunter, and
Chauveau (2011) for details on the algorithm and Zhu and Hunter (2016b) for recent develop-
ments) implemented in the R package mixtools Benaglia et al. (2009b).

Clustering is achieved by computing the MSLE because this estimator permits a soft assign-
ment where the conditional probability that subject i belongs to cluster `, denoted by ti`(λ̂L),
can be obtained

ti`(λ̂L) =
π̂`
∏J
j=1N ĝ`j(ξ̂ij)∑L

`′=1 π̂`′
∏J
j=1N ĝ`′j(ξ̂ij)

.

Moreover, a hard assignment can be achieved by applying the maximum a posteriori rule (leading

that ẑi` = 1 if ` = arg max`′ ti`(λ̂L) and ẑi` = 0 otherwise).

5.3.3 Numerical experiments

Simulation set-up Data are independently generated from (5.3), (5.4) and (5.8) with T = 256,
K = 3 and unequal proportions such that Zi ∼M(0.5, 0.25, 0.25), a function characterizing class
k defined by

u`(t) = r`(t)1{r`(t)>0} with r`(t) = a`(t) sin

(
b`π

t

T

)
,

with a1(t) = 1, b1 = 2.5, a2(t) = (1 + ς), b2 = 2.5, a3(t) = (1 + ς1{t>128}) and b3 = 2.5− ς where
ς = 0.3. In the attempt to replicate patterns of regions, we devise the three components such
that each represents the severity level of COVID-19: moderate throughout, heavy throughout,
and moderate during the first wave but drastically more affected in the second wave. Moreover,
the lapse between the two waves of the disease is shorter for class 3. We use a heteroscedastic
noise defined by εik(1) ∼ N

(
0, 0.22

)
, where the conditional distribution of εi`(t) | Fi, with Fi the

natural filtration, is equal to the conditional distribution of εi`(t) | εi`(t−1) where

εi`(t) | εi`(t−1) ∼ N
(

0,
(

0.2 + 0.2ε2
i`(t−1)

)2
)
.
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The bivariate vector of covariates Xi = (Xi1, Xi2)> is composed of two independent standard
Gaussian random variables and µ(Xi) := ν(X>i γ) with γ = (1/

√
2 1/

√
2)>. To illustrate the

benefits of CRFTIW, we consider the following three scenarios, where the first mimics the situation
of the COVID-19 daily death curves:

• Scenario 1 (translations and covariates): there is a shift and an effect of the covariates
since we set δi = 50 with probability 0.5 and δi = 0 otherwise, and ν(a) = (1 + ς(a2 − 1)).

• Scenario 2 (only covariates): there is no shift but an effect of the covariates since we set
δi = 0 and ν(a) = (1 + ς(a2 − 1)).

• Scenario 3 (only translations): there is a shift but no effect of the covariates since we set
δi = 50 with probability 0.5 and δi = 0 otherwise, and ν(a) = 1.

For each scenario, we generate 100 replicates by considering three sample sizes: 50, 100 and 250.
All nonparametric estimations are done using a Gaussian kernel with a bandwidth Cn−1/5 where
C represents the empirical standard deviation of the variable considered by the kernel.

Method comparison Results of CRFTIW are compared to those of the following methods:

• depIntra is similar to CRFTIW but clustering is performed by a mixture considering the
within component dependencies (Zhu and Hunter (2019)). This model challenges the as-
sumption of a product decomposition of the component densities made in (5.11).

• noTI is similar to CRFTIW but the feature extraction is performed with orthogonal wavelets
commonly used for wavelet-based clustering (Antoniadis et al. (2013)). This model allows
the advantages of TI wavelets to be illustrated.

• noCov is similar to CRFTIW but considers that µ(xi) = 1. This model illustrates the impor-
tance of considering the population risk factors.

• adjustFirst fits the estimators (µ̄, γ̄) of the regression of W̄i = 1
T

∑T
t=1Wi(t) on Xi, then

uses (5.11) to cluster the features provided by Step 1 of CRFTIW applied on Wi/µ̄(x>i γ̄).
This model justifies the relevance of the order between Steps 1 and 2 of CRFTIW.

• funFEM (Bouveyron, Côme, and Jacques (2015)) is a standard approach to cluster functional
data implemented in the R package funFEM Bouveyron (2015). We use this approach
on the curves adjusted with the covariates Wi/µ̄(x>i γ̄), a decomposition into a Fourier
basis with 25 elements and the arguments of the function funFEM are model=’AkjBk’,
init=’kmeans’, lambda=0 and disp=TRUE. Thus, this model investigates the relevance of
the order between Steps 1 and 2 of CRFTIW, and the choice of a nonparametric clustering.

Clustering accuracy In all scenarios considered, clustering accuracy of the competing meth-
ods is measured using the Adjusted Rand Index (ARI, Hubert and Arabie (1985)) between the
estimated partition and the true partition shown in Figure 5.7. The results show that by consid-
ering a more complex model than (5.11) clustering is not relevant. Indeed, CRFTIW and depIntra

provide similar results for large samples but CRFTIW is more accurate for small samples. Recall
that for our COVID-19 study, the sample size is 78 regions and we can argue that the model
given by (5.11) is more suitable than a complex model. From Scenarios 1 and 3, the method noTI

reveals that it is imperative to consider a feature extraction that is invariant to time-shifts. Thus,
CRFTIW can handle remarkably well, situations with different arrival times. When considering
the case of population risk factors, such as Scenarios 1 and 2, it is essential to take into account
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Figure 5.7: Boxplot of the ARI obtained by the competing methods.

the effects of covariates to fit the partition (see the poor results of noCov under these scenarios).
Moreover, it seems to be more pertinent to estimate the covariate effects after performing the
feature extraction in presence of time-varying arrivals (i.e., CRFTIW outperforms adjustFirst

and funFEM under Scenarios 1 and 3).

Covariate effect accuracy The estimation of the covariate effects is a major issue for the
COVID-19 application. Indeed, it is essential to properly adjust the covariate effects in order
to obtain accurate clusters. Moreover, the parameters and the shape of the function µ make it
possible to assert the impact of population risk factors on the death rates. Indeed, the parame-
ters of the index facilitate the interpretation of the population characteristics by distinguishing
whether it has a protective or compounding effect. Figure 5.8(a) shows the dispersion of the
estimators of γ1 around the true value of these parameters, for Scenarios 1 and 2. These results
illustrate the consistency of the procedure. Note that, as shown by the results of adjustFirst,
the accuracy of the regression parameters is slightly better when they are obtained directly from
the original data and not from the features given by the wavelet decomposition.

Considering two sets of covariates Xi and Xi′ , the difference ν(X>i γ) − ν(X>i′γ) can be
interpreted as the logarithm of an odds ratio. To investigate the accuracy of the estimator
ν̂(x>i γ̂), we consider the quantity em̂,γ̂ defined by

eν̂,γ̂ =
1

n2

n∑
i=1

n∑
i′=1

[(
ν̂(x>i γ̂)− ν̂(x>i′ γ̂)

)
−
(
ν(x>i γ)− ν(x>i′γ)

)]2
.

Figure 5.8(b) depicts the boxplots of eν̂,γ̂ obtained from the three scenarios. Thus, the results
reflect the consistency of the approach. Moreover, when there is no effect of the covariates, the
convergence of the estimators is much faster. However, in the presence of covariate effects, the
accuracy of estimators remains the same with or without a translation. Therefore, we conclude
that the translation does not increase the difficulty of the estimation of covariates. Finally, note
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(a) scenarios with covariate effect

(b) the three scenarios

Figure 5.8: Boxplot of γ̂1 − γ1 (a) and eν̂,γ̂ (b) obtained by the competing methods.

that despite adujstFirst having slightly better parameter estimates, the effects of the covariates
(parameters and nonparametric functions) are better estimated with CRFTIW.

5.3.4 Investigating geographical disparities for COVID-19

The proposed approach allows risk factors to be taken into account. This is a major issue when
comparing regions with respect to COVID-19 daily deaths. Indeed, the adjustment on popula-
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tion risk factors enables us to confirm their role (protective or compounding; see Section 5.3.4).
Moreover, this adjustment permits similarities and disparities of the disease impacts to be de-
tected, conditional on the population characteristics (see Section 5.3.4). Finally, it allows an a
posteriori comparison of the clusters to be made with respect to different policy decisions (e.g.,
lockdown characteristics; see Section 5.3.4).

Population risk factors The estimated coefficients of the single-index regression

γ̂ = (0.433, 0.616, 0.491, 0.439)>,

and the principal component analysis allow us to compute the contribution of the risk factor to
the index. These values are given in Table 5.8 and Table 5.9.

PM2.5 NO2 population density
Contribution 0.114 0.323 0.565

Axe 1 -0.548 0.747 0.378
Axe 2 0.619 0.057 0.784

Table 5.8: Contribution of the environmental risk factors to the index of the regression and their
coordinates on the first two factorial axes (i.e., Xi1 and Xi2).

Diabetes Obesity Smoking COPD CVD HIV Hypertension Pop > 65
Contribution 0.303 0.279 0.040 0.076 0.387 0.194 0.441 0.071

Axe 1 0.464 0.431 -0.310 0.329 0.376 0.323 0.301 -0.240
Axe 2 0.056 0.048 0.496 -0.266 0.357 0.002 0.574 0.470

Table 5.9: Contribution of the medical risk factors to the index of the regression and their
coordinates on the first two factorial axes (i.e., Xi3 and Xi4)

Figure 5.9 shows the estimator of the µ̂ and the density of the index for a range covering 90%
of the observed index (this trimming, only performed for this plot, avoids over-interpretation
of the curve due to extreme points). This figure confirms that diabetes, overweight, smoking,
pulmonary disease (COPD), cardiovascular disease (CVD), HIV, hypertension and age are factors
increasing the COVID-19 mortality risk. These results are in agreement with the main mortality
risk factors identified in medical publications (see Zhou et al. (2020):Table 1 and Gupta et
al. (2020):Figure 2). Moreover, the population density and the concentrations of nitrogen dioxide
and fine particulate matter also increase the COVID-19 mortality risk. Additionally, these results
align with the findings of other works (Sy, White, and Nichols (2021), Copat et al. (2020) and
Pozzer et al. (2020)).

We now illustrate the impact of the adjustment on the population risk factors. Table 5.10
shows the population risk factors and the index of three regions: Portugal, Massachusetts and
New Jersey. For example, Portugal and Massachusetts have a population that is less at risk than
that of the New Jersey. Taking population risk factors into consideration is vital in order to
properly compare the impact of the disease on different regions. Figure 5.10 shows the COVID-
19 daily death curves without considering the population risk factors (on the left) and when
considering the population risk factors (on the right). Thus, if population characteristics were
neglected, one can claim that the first wave of the disease was stronger in New Jersey than in
Massachusetts and Portugal. However, after considering the population risk factors, the largest
peak of deaths was similar in New Jersey and Massachusetts and it was stronger in Portugal.
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Figure 5.9: Estimator of the impact of the population risk factors µ̂ (on the left) and density of
the index X>i γ̂ (on the right).

Region X>i γ̂ µ̂
Portugal -1.31 0.73

Massachusetts -0.28 0.97
New Jersey 1.58 1.26

Table 5.10: Index and effect of the population risk factors of three regions (Portugal, Mas-
sachusetts and New Jersey).

Clustering of the regions Clustering is performed by considering a number of clusters be-
tween one and ten. Selecting the number of clusters is still a difficult task in nonparametric mix-
tures. Indeed, despite recent works (Kasahara and Shimotsu (2014); Kwon and Mbakop (2020))
presenting elegant methods for selecting the number of clusters based on the constraint of linear
independence between the univariate densities required for model identifiability (Allman, Ma-
tias, and Rhodes (2009)), these methods require large samples to perform well (see Section 5
of Kwon and Mbakop (2020)). Because we only have 79 regions, we cannot use these methods
and thus select the number of clusters by looking for an elbow in the values of the smoothed
log-likelihood. These values are presented in Table 5.11; we focus on the five-clusters partition
(note that the difference of `(λ̂L;L) obtained with consecutive L is greater than 33 if L < 5,
otherwise these differences are less than 8 when L = 5 and L = 6; however seven clusters could
also be considered).

Table 5.11: Maximum smoothed log-likelihood `(λ̂L;L) with respect to the number of clusters.
L 1 2 3 4 5 6 7 8 9 10

`(λ̂L;L) -1161 -1066 -1024 -986 -953 -945 -922 -907 -906 -902

We now describe the clusters based on summary statistics presented in Table 5.12 and the
curves adjusted with the population risk factors (Wi/µ̂(X>i γ̂)). Figure 5.11 presents the cluster
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Figure 5.10: COVID-19 death curves without considering the population risk factors (left) and
by considering the population risk factors (right) for Portugal, Massachusetts and New Jersey.

memberships of each region and Figure 5.12 presents the curve for one region per cluster to
illustrate our cluster interpretation. The labels of clusters are ordered by the impact of the
COVID-19 during the studied period. Thus, we notice that cluster 1 has the smallest mean of
COVID-19 daily death rates over the studied period and cluster 5 has the highest mean. These

Table 5.12: Statistics per cluster
cluster proportion Normalized deaths Covariate effect

π` mean sd. mean sd.
1 0.15 777.83 308.08 0.83 0.24
2 0.36 1507.24 274.93 1.08 0.20
3 0.17 1593.68 253.18 1.13 0.25
4 0.13 2230.17 381.75 0.92 0.24
5 0.18 2464.88 459.54 0.91 0.24

results were expected because the distribution of µ̂(X>i γ̂) is supposed to be the same among
clusters. Clusters can be interpreted, as follows:

• Cluster 1 contains twelve regions (Cyprus, Denmark, Finland, Alaska, Florida, Hawaii,
Maine, North Carolina, Oregon, Utah, Vermont and Washington) that are mainly unaf-
fected by the disease.

• Cluster 2 contains twenty-nine regions (Austria, Germany, Estonia, Latvia, Malta, Nether-
lands, Romania, California, Delaware, District of Columbia, Georgia, Idaho, Illinois, In-
diana, Louisiana, Michigan, Minnesota, Mississippi, Missouri, Nebraska, Nevada, New
Hampshire, New Mexico, Pennsylvania, South Carolina, Tennessee, Texas, Virginia and
Wisconsin) that suffer from multiple small waves of deaths.
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Figure 5.11: Clustering results.

• Cluster 3 contains fourteen regions (Luxembourg, Alabama, Arkansas, Colorado, Iowa,
Kansas, Kentucky, Maryland, Montana, North Dakota, Oklahoma, South Dakota, West
Virginia and Wyoming) mainly affected by one major wave with steep increasing and
decreasing rates.

• Cluster 4 contains ten regions (Croatia, Czechia, Greece, Hungary, Italy, Lithuania, Ohio,
Poland, Portugal and United Kingdom) strongly impacted by the disease. These regions
suffered from at least three waves of death. Note that there is a wave of deaths which
starts before the previous wave ends.

• Cluster 5 contains fourteen regions (Arizona, Belgium, Bulgaria, Connecticut, France, Ire-
land, Massachusetts, New Jersey, New York, Rhode Island, Slovakia, Slovenia, Spain and
Sweden) that begin with a very sharp increase in mortality rate in their first peak, along
with a rapid decrease in rate. However, after the second peak, the mortality rate does not
constantly decrease and rather experiences three modes in the second wave before dying
down.

Clusters analysis example: disparities and policy decisions Amid unforeseen difficulties
related to COVID-19, policymakers have resorted to various interventions in attempts to curb the
spread of the coronavirus. As seen in Sections 5.3.4 and 5.3.4, by adjusting the risk factors, the
proposed approach allows us to detect vulnerable regions and compare them fairly. Additionally,
the homogeneity within cluster enables us to analyze the disparities in factors between clusters;
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Figure 5.12: Example of COVID-19 daily death curves adjusted with covariates adjustment
Wij/µ̂(X>i γ̂). One example per cluster: Cyprus (Cluster-1), District of Columbia (Cluster-2),
South Dakota (Cluster-3), Greece (Cluster-4) and France (Cluster-5).

for instance, in this paper, we are looking at the government responses. Note that one may
also be interested to study COVID-19’s impact on the population mental health or the economic
indicators.

Figure 5.13(a) shows the distribution of the value for each indicator, i.e., containment health,
government response and stringency, with respect to its clusters. We can observe that the indica-
tors take larger values for regions of clusters 4 and 5 (containing the most impacted regions). The
same phenomenon is observed for the specific measures adopted by the governments presented
in Figure 5.13(b).

Clusters 4 and 5, which were strongly affected by the virus in the second half of the studied
period, seem to take more stringent measures than the other regions, especially cluster 4. One
plausible explanation is that the policymakers may abruptly enforce restrictive countermeasures
in hopes to lower the increasing mortality rate, thus the observed rapid descent. Hence, the ef-
fectiveness of government response may depend on the timing of the measure’s implementation,
the duration and the stringency (Cheng et al. (2020) and Haug et al. (2020)). To further under-
stand the relationship between the mortality rate and the various policies adopted in reaction
to the COVID-19, a more precise analysis can be achieved by fitting a model for multivariate
non-stationary time series per clusters (the time series being the daily death rate and the index
mentioned above). Thus, a description of the relation between the government responses and
the COVID-19 death curve can be done using the model parameters. This can be achieved by
modelling the dependencies between the time series (Molenaar, De Gooijer, and Schmitz (1992)
and Sanderson, Fryzlewicz, and Jones (2010)) or by a multiple change-point detection (Cho and
Fryzlewicz (2015)). Moreover, a comparison of the government interventions with respect to
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(a) (b)

Figure 5.13: Boxplot of the overall indicator values for each cluster (a) and for specific measures
adopted for each cluster (b): School closing (C1), Workplace closing (C2), Cancelling of public
events (C3), Testing policy (H2) and Contact tracing (H3).

COVID-19 can be conducted by comparing the models fitted for each cluster.

5.4 Conclusion and perspectives

The two models presented in this chapter have been developed by considering specificity of the
data.

The specific mixture of HMM introduced to analyze accelerometer data, avoids the traditional
cutoff point method and provides a better characterization of activity levels for the analysis
of these data, while adapting to the population. The proposed model could be applied to a
population with different characteristics (e.g., younger) which would lead to different definitions
of activity levels. In addition, the use of several HMMs involves taking into account dependency
over time and thus improve the traditional method based on cutoff points Witowski et al. (2014).
This approach also allows us to take into account the heterogeneity of the population (in the
sense of physical activity). An interesting perspective is to consider adjusting for confusing
factors (e.g., gender or age). These confusing factors could impact the probabilities of transition
between the latent spaces (e.g., using a generalized linear model approach) and/or the definition
of the accelerometer measurement given a state (e.g., linear regression on some parameters of the
ZIG distribution). In the application, the number of activity levels was not estimated but fixed
at a common value for accelerometer data. Estimating the number of states for a mixture of
HMMs is an interesting but complex topic: for instance, the use of BIC is criticized (see, Cappé,
Moulines, and Rydén (2005):Chapter 15).

To investigate the geographical disparities of the COVID-19 deases, we introduced a new
method to cluster functional data when observations are shifted and external covariates are
allowed to have a scaling effect. CRFTIW is a three-step approach developed for the purpose of
analyzing geographical disparities of the COVID-19 impact (measured by the daily number of
deaths per million people). As a first step of CRFTIW, feature extraction is performed with TI
wavelets. While providing an adapted and compact representation of the data, it also allows us to
deal with the different times of arrivals of the disease. The main limitation of this approach lies in
the dyadic data constraint of the considered sample. This issue could be overcome, for example,
by using second generation wavelets and in particular the lifting scheme (Sweldens (1998)), but
would lose the property of translation-invariance. However, extending this construction, while
preserving both the property of translation-invariance and the property of conservation of the
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norm of the coefficients, seems to be an open question that we leave for future work. As a second
step of CRFTIW, the effect of the population risk factors on the extracted feature is estimated and
thus regions can be compared as if they have the same sensitivity of the population to the disease.
This step is crucial because we aim to investigate the impact of policy decisions. Obviously, if the
purpose is to investigate geographical disparities of the impact of the disease, then no adjustment
on the population risk factors should be considered. In such a case, CRFTIW can still be used
by considering µ(X>i γ) = 1. In the analysis of COVID-19, we consider population adjustment
according to the main factors of comorbidity. These factors are well-known to increase the risk
of COVID-19 mortality, Zhou et al. (2020); Gupta et al. (2020). However, we advise considering
factors already known to be compounded for the disease, and not to use CRFTIW to investigate
the impact of population risk factors. Indeed, CRFTIW does not perform variable selection of the
population risk factors and does not permit concluding on causality of the factors. As a third step
of CRFTIW, a nonparametric mixture is used to achieve the clustering with the assumption that the
density of the component is defined as a product of univariate densities. Numerical experiments
presented in the paper suggested that considering a more complex model deteriorated the results
when the sample size is small (as in the COVID-19 application). However, if the data to be
analyzed are composed of several observations, more advanced models could be used Mazo and
Averyanov (2019); Zhu and Hunter (2019).

Through the COVID-19 dataset, we had illustrated the importance of adjusting the popula-
tion risk factors, allowing us to compare regions with a ‘standard’ comorbidity. Thus, CRFTIW
found five clusters justified by the mortality rate and curvature. Regions within clusters are var-
ied geographically with different onsets, validating the property of translation-invariance of the
proposed method. In addition, as we illustrated, investigations on the effectiveness and agility of
government response, the consequences on economic indicators or the impact on human mental
health, could be achieved by studying disparities of the indicators between clusters. Despite the
model being translation invariant, the time between the arrivals of two waves is discriminative.
We argue that this time is important; it determines whether the health facilities have any breaks
between waves. Indeed, countries suffering for successive waves of COVID-19 have to postpone
non-emergency surgical operations or early cancer detection. Thus, using the proposed cluster-
ing, we could investigate the impact of COVID-19 on the global quality of care. Note that an
alternative clustering approach could focus only on the death peaks thus neglecting the time
between waves. In such a case, the proposed approach is not suitable and we advice using time
scaled clustering (Tang and Müller (2009)). Driven by the COVID-19 dataset, we developed this
novel approach. However, its application is not limited only to COVID-19. For instance, the
problem of time-shifts is also observed in electrocardiogram heartbeats, which Annam, Mitta-
palli, and Bapi (2011) tackle when clustering heartbeat abnormalities. Our approach could not
only handle the time-shift issue, but also allow adjusting plausible factors that may influence the
heartbeat. Further, this could extend beyond medical settings, e.g., in motion capture Li and
Prakash (2011), there is interest in categorizing types of motion. This could be used for fitness
applications to identify whether a person is running or walking, where the motions may begin
at different times on separate observed sequences showing a need for the TI property. Since
motion can come from different participants, covariate adjustment could also be beneficial for
such data.
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Chapter 6

Wilks’ theorem for
semi-parametric regressions with
weakly dependent data
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6.1 Introduction

6.1.1 State of the art

We aim modeling and doing inference for one-dimensional time series (Yi) given a vector-valued
time series (Vi) and the past values of Yi and Vi, i ∈ Z. For this purpose, in Du Roy
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de Chaumaray, Marbac, and Patilea (2021), we propose flexible semiparametric models for
conditional mean and conditional variance of Yi. Formally, let (Zi) be a strictly stationary
and strongly mixing sequence of random vectors with Zi = (V>i , εi)

> ∈ RdX+dW × R where
Vi = (X>i ,W

>
i )> ∈ RdX × RdW . Let (Fi) be its natural filtration. For any positive integer r,

we denote the r lagged values of Zi by Z
{r}
i = (V>i−1, Yi−1, . . . ,V

>
i−r, Yi−r)

>.
Let us consider the semiparametric model defined by

Yi = µ(Vi;γ,m) + εi with µ(Vi;γ,m) = l(Xi;γ1) +m(W>
i γ2), (6.1)

where
E[εi | Vi,Fi−1] = 0, (6.2)

and
E[ε2

i | Vi,Fi−1] = σ2(Vi,Z
{r}
i ;β), (6.3)

γ = (γ>1 ,γ
>
2 )>, θ = (γ>,β>)> and m(·) is an infinite dimensional parameter. Thus θ gathers the

finite dimensional parameters, and our interest will focus on this vector, while m(·) is considered
as a nuisance parameter. The value of r, as well as the real-valued functions l(·) and σ2(·),
are given. Moreover, the functions we consider for σ2(·) do not require to know the infinite
dimensional parameter m(·). Let θ0 and m0(·) denote the true values of the finite and infinite-
dimensional parameters of the model, respectively. The vector Vi may include common random
variables and/or lagged values of Yi, as well as exogenous covariates. We call a model defined
by (6.1)-(6.3) a CHPLSIM which stands for Conditional Heteroscedastic Partially Linear Single-
Index Model. The methodology we will propose in the sequel allows us to replace (6.3) by a higher
order moment equation, or to add higher order moments to (6.3). For the sake of simplicity we
keep (6.3) and we will only mention such possible extensions in the conclusion section.

CHPLSIM is related to the model proposed by Lian and Liang (2015) in the case of indepen-
dent observations following the same distribution. Our model covers a wide class of models for
weakly dependent and independent data. First, with l(Xi;γ1) = X>i γ1, CHPLSIM includes the
partially linear single-index model (PLSIM) Carroll et al. (1997) in which the errors εi are in-
dependent and identically distributed (i.i.d.) variables and Vi are independent covariates. Such
semiparametric models were originally used to overcome the curse of dimensionality inherent to
nonparametric regression on Wi by making use of a single-index W>

i γ2. The PLSIM includes
the partially linear models with a single variable in the nonparametric part. Our non-i.i.d.
framework allows for heteroscedasticity in the errors of PLSIM, with the conditional variance
of the errors possibly depending of both the covariates and the lagged errors values. For in-
stance, it allows martingale difference errors, as considered by Chen and Cui (2008) and Fan
and Liang (2010). Xia, Tong, and Li (1999) considered a model defined by (6.1) for strongly
mixing stationary time series, with identity function l(·), Xi = Wi and Wi admitting a density.
Their study focuses on the estimation of the parameters in the conditional mean function using
kernel smoothing, without investigating the conditional variance, as allows condition (6.3). In
the same type of model, using local linear smoothing, Xia and Härdle (2006) allowed for Xi not
necessarily equal to Wi and, at the price of a trimming, relaxed the condition of a density for
Wi to a density for the index W>

i γ2. More recently, using orthogonal series expansions, Dong,
Gao, and Tjøstheim (2016) extended the model defined by (6.1) to the case where Xi = Wi is
a multi-dimensional integrated process.

Model (6.1)-(6.2) is also related to and extends a large class of location-scale type models
called conditionnal heteroscedastic autoregressive nonlinear (CHARN) models Härdle, Tsybakov,
and Yang (1998); Kanai, Ogata, and Taniguchi (2010). CHARN models include many well-known
models widely used with application areas as different as foreign exchange rates Bossaerts, Hafner,
and Härdle (1996) or brain and muscular wave analysis Kato, Taniguchi, and Honda (2006). For
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general nonlinear autoregressive processes, we refer to the book of Tong (1990) for the basic
definitions as well as numerous applications on real data sets. More generally, nonparametric
techniques for nonlinear AR processes can be found in the review of Härdle, Lütkepohl, and
Chen (1997). CHPLSIM allows for a semiparametric specification of the conditional mean and
for exogenous covariates.

We are interested in inference on the finite dimensional parameter θ constituted of finite-
dimensional parameters from both the conditional mean and the conditional variance functions.
When the interest focuses on the parameters of the conditional mean, it suffices to consider
equations (6.1)-(6.2) with a fully nonparametric conditional variance σ2(·). However, in the time
series context, modeling the variance can be important, for instance for forecasting purposes.
For our inference purpose, we propose a semiparametric empirical likelihood approach with
infinite-dimensional nuisance parameters. Empirical likelihood (EL), introduced by Owen (1988);
Owen (2001), is a general inference approach for models specified by moment conditions. Under
the assumption of independence between observations, empirical likelihood has been used for
inference on finite dimensional parameters into regression models and unconditional moment
equations. See Qin and Lawless (1994); see also the review of Chen and Van Keilegom (2009).

Under i.i.d. data assumption, Wang and Jing (1999); Wang and Jing (2003) and Lu (2009)
study the conditions implying that the empirical likelihood log-ratio (ELR) still converges to a
chi-squared distribution for the partially linear model. Due to the curse of the dimensionality,
the performances of the nonparametric estimators decrease dramatically with the number of
variables. Xue and Zhu (2006) and Zhu and Xue (2006) show that, if the density of the index
is bounded away from zero, the ELR converges to a chi-squared distribution and thus permits
parameter testing, for single-index model and PLSIM respectively (see also Zhu et al. (2010)).

6.1.2 Contribution

In Du Roy de Chaumaray, Marbac, and Patilea (2021), we propose a novel general semipara-
metric regression framework for EL inference which allows for dependent data. Some related
cases have been considered in the literature. For instance, the ELR with longitudinal data has
been considered by Xue and Zhu (2007), for the partially linear model, and by Li et al. (2010),
for PLSIM. In their framework, the convergence of the ELR is guaranteed by the independence
between individuals for which a finite bounded number of repeated observations are available.
Empirical likelihood has also been used for specific models in times series (see the review of
Nordman (2014); see also Chang, Chen, and Chen (2015)). Most of the methods developed in
this context are based on a blockwise version of empirical likelihood, first introduced by Kita-
mura (1997). A large amount of generalizations have been proposed in the literature depending
on the type of dependency. We refer to Nordman (2014) for an overview of those techniques
of blocking. However, in such an approach, one has to tune additional parameters such as the
number, the length or the overlapping of the blocks, which might be a complex task.

Our contribution is the extension of the EL inference approach to the case of CHPLSIM
defined by (6.1)-(6.3), for weakly dependent data. This extension is realized without imposing the
density of the index bounded away from zero, as it is usually assumed in the literature in the case
of i.i.d. data. See, for instance, Zhu and Xue (2006), Zhu et al. (2010) and Lian and Liang (2015).
Such a very convenient, though quite stringent, condition implies a bounded support for the
index, a restriction which makes practically no sense in a general time series framework. To
obtain our results, a preliminary crucial step before using EL consists in building a fixed number
of suitable unconditional moment equations equivalent to conditional moment equations defining
the regression model. By the definition of these unconditional moment equations, our approach
will not require a blocking data technique. Then, we follow the lines of Qin and Lawless (1994),
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with the difference of the presence of infinite-dimensional nuisance parameters. We show that
the nonparametric estimation of the nuisance parameters does not affect the asymptotics and
the ELR still converges to a chi-squared distribution. The negligibility of the nonparametric
estimation effect is obtained under mild conditions on the smoothing parameter. Chang, Chen,
and Chen (2015) studied the EL inference for unconditional moment equations under strongly
mixing conditions, with the number of moment equations allowed to increase with the sample
size. Since conditional moment equations models could be approximated by models defined by a
large number of unconditional moment equations, in principle, Chang, Chen, and Chen (2015)
could also consider semiparametric models. However, the practical effectiveness of their approach
remains an uninvestigated issue.

In Section 6.2 we consider the profiling approach for the nuisance parameter m(·) and the
identification issue for the finite-dimensional parameters. Next, we establish the equivalence
between our model equations and suitable unconditional moment estimating equations for a
martingale difference sequence in Section 6.3. The number of unconditional equations is given by
the dimension of the vector of identifiable parameters in the (CH)PLSIM. Section 6.4 presents
the ELR and the Wilks’ Theorem in our context. Section 2.4 illustrates the methodology by
numerical experiments and an application using daily pollution data inspired by the study of Lian
and Liang (2015). Section 6.6 contains some additional discussion. The proofs and mathematical
details are presented in Du Roy de Chaumaray, Marbac, and Patilea (2021).

6.2 Conditional moment equations

6.2.1 The model

Let
gµ(Zi;γ,m) = Yi − µ(Vi;γ,m),

with µ(·) defined in (6.1). The partially linear single index model (PLSIM) is defined by condi-
tional moment equation

E[gµ(Zi;γ,m) | Vi,Fi−1] = 0⇐⇒ γ = γ0 and m = m0. (6.4)

In such case, the conditional variance of the residuals has to be finite but does not necessarily
have a parametric form.

The conditionally heteroscedastic partially linear single index model (CHPLSIM) is defined
by two conditional moment equations. For this case, we assume that the second-order conditional
moment of the residuals has a semiparametric form. More precisely, the model is defined by the
following conditional moment equations{

E[gµ(Zi;γ,m) | Vi,Fi−1] = 0

E[gσ(Zi,Z
{r}
i ;θ,m) | Vi,Fi−1] = 0

⇐⇒ θ = θ0 and m = m0, (6.5)

where
gσ(Zi,Z

{r}
i ;θ,m) = g2

µ(Zi;γ,m)− σ2(Vi,Z
{r}
i ;β), (6.6)

with σ2(·) defined in (6.3).

6.2.2 Profiling nuisance parameter

The model defined by (6.1)-(6.2) requires a methodology for estimating θ and m, with m being in
a function space. A common approach, that avoids a simultaneous search involving an infinite-
dimensional parameter, is the profiling Severini and Wong (1992); Liang et al. (2010), which
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defines

mγ(t) = E[Yi − l(Xi;γ1) |W>
i γ2 = t], t ∈ R.

As usually with such approach, in the following it will be assumed that

mγ0(W>
i γ0,2) = m0(W>

i γ0,2). (6.7)

Hence, one expects that, for each x,w, the value γ0 realizes the minimum of

γ 7→ E[{Yi − l(xi;γ1)−mγ(w>i γ2)}2 | Xi = xi,Wi = wi,Fi−1].

However, even if mγ(·) is well defined for any γ = (γ>1 ,γ
>
2 )> ∈ Γ ⊂ Rd1 × RdW , in general the

value γ0 could not be the unique parameter value with this minimum property. More precisely,
in general the true value of the vector γ2 is not identifiable and only its direction could be
consistently estimated. The standard remedies to this identifiability issue are detailed in the
following.

6.2.3 Identifiability of the finite-dimensional parameters

Concerning the identification of γ1 ∈ Rd1 , a minimal requirement is that as soon as l(Xi;γ1) =
l(Xi;γ

′
1) a.s., then necessarily γ1 = γ′1. For instance, when l(Xi;γ1) = X>i γ1, and thus

d1 = dX , then necessarily E(XiX
>
i ) invertible. The nonparametric part mγ(·) induces some

more constraints. It could absorb any intercept in the model equation. Thus, in particular,
when l(Xi;γ1) = X>i γ1, the vectors Xi and Wi should not contain constant components.

There are two common approaches to restrict γ2 for identification purposes: either fix one
component equal to 1 Ma and Zhu (2013), or set the norm of γ2 equal to 1 and the sign of one of
its components Zhu and Xue (2006). Without loss of generality, we choose the first component
of γ2 to impose the constraints of value or sign. When the value of the first component is fixed,

the parameter γ2 could be redefined as γ2 = (1, γ̃>2 )> where γ̃2 ∈ RdW−1. The Jacobian matrix
of this reparametrization of γ2 is the dW × (dW − 1) matrix

J2(γ2) =
∂γ2

∂γ̃2

=

(
01×(dW−1)

IdW−1

)
, (6.8)

where here 01×(dW−1) denotes the null 1×(dW−1)−matrix, while IdW−1 is the (dW−1)×(dW−1)
identity matrix. With the second identification approach mentioned above, the reparametrization
is

γ2 =
(√

1− ‖γ̃2‖2, γ̃
>

2

)>
,

where now γ̃2 ⊂ {z ∈ RdW−1 : ‖z‖ ≤ 1}. The Jacobian matrix of this reparametrization using
the normalization of γ2 is the dW × (dW − 1) matrix

J2(γ2) =
∂γ2

∂γ̃2

=

(
−{1− ‖γ̃2‖2}−1/2 γ̃ >2

IdW−1

)
. (6.9)

Hereafter, when we refer to the true value of the finite-dimensional parameter, we implicitly
assume that one of these two approaches for identifying γ2 was chosen.
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6.3 Unconditional moment estimating equations

This section presents unconditional moment equations which permit parameter inference by
using empirical likelihood. The way these equations are constructed will have two important
consequences: blocking data is unnecessary and the nonparametric estimation of the infinite-
dimensional parameter does not break the chi-squared limit of the ELR statistics. For ease
of explanation, we start by introducing an unconditional moment equation which is equivalent
to the conditional moment equation of the PLSIM defined in (6.4). Then, we introduce an
unconditional moment equation which is equivalent to the conditional moment equation of the
CHPLSIM defined in (6.5).

6.3.1 Partially linear single-index model

For the PLSIM, it is quite standard Zhu and Xue (2006) to consider the following unconditional
moment equation

E[gµ(Zi;γ,mγ)∇̃γgµ(Zi;γ,mγ)] = 0, (6.10)

where γ = (γ>1 ,γ
>
2 )> ∈ Rdγ , dγ = d1 + dW , and

∇̃γgµ(Zi;γ,mγ) = J(γ)∇γgµ(Zi;γ,mγ) ∈ Rdγ−1,

with J(γ) the (dγ − 1) × dγ Jacobian matrix of the reparametrization chosen to guarantee the
identification of the finite-dimensional parameter and ∇γ (resp. ∇γ1

) the column matrix-valued
operator of the first order partial derivatives with respect to the components of γ ∈ Rdγ (resp.
γ1 ∈ Rd1). In our context,

∇γgµ(Zi;γ,mγ) = −

[
∇γ1

l(Xi;γ1)− E[∇γ1
l(Xi;γ1) |W>

i γ2]

m′(W>
i γ2)

(
Wi − E[Wi |W>

i γ2]
) ]

and J(γ) =

(
Id1 0d1×(dW−1)

0dW×d1 J2(γ2)

)
,

with m′(·) the derivative of m(·) and J2(γ2) the Jacobian matrix of the parametrization of γ2,
that is either the matrix defined in (6.8) or the one defined in (6.9).

The following lemma proposes new unconditional moment equation by introducing a positive
weight function ω(Vi) in (6.10). Showing the equivalence between the conditional moment
equation (6.4) and our new unconditional moment equation, we deduce that the latter equation
could be used for EL inference.

Lemma 6.1. Let ω(·) be a positive function of Vi = (X>i ,W
>
i )> and Hµ(γ) be the Hessian

matrix of the map γ 7→ E[E2[gµ(Zi;γ,mγ) | Vi,Fi−1] ω(Vi)]. Assume that conditions (6.4) and
(6.7) hold true and Hµ(γ) is definite positive. Then

E[gµ(Zi;γ,mγ)∇̃γgµ(Zi;γ,mγ)ω(Vi)] = 0 ⇔ γ = γ0. (6.11)

For the PLSIM, we consider ω(Vi) = η4
γ,f (W>

i γ2) where ηγ,f (W>
i γ2) is the density of the

index W>
i γ2, which is assumed to exist. This choice of the weights ω(Vi) allows to cancel all

the terms ηγ,f (W>
i γ2) appearing in the denominators, and thus to keep them away from zero.

Thus, for the control of the small values in the denominators, it is no longer needed to assume
that the density of the index is bounded away from zero. This assumption, often imposed in the
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semiparametric literature, is quite unrealistic for bounded vectors Wi and could not even hold
when the Wi’s are unbounded. Imposing bounded Wi in a time series framework where Wi

could include lagged values of Yi would be too restrictive.
Thus, we consider that the parameters are defined by the unconditional moment equations

E[Ψ(Zi;γ, ηγ)] = 0, (6.12)

where Ψ(Zi;γ, ηγ) = gµ(Zi;γ,mγ)∇̃γgµ(Zi;γ,mγ)η4
γ,f (W>

i γ2) ∈ Rdγ−1. Thus, we have

Ψ(Zi;γ, ηγ) =
(
{Yi − l(Xi;γ1)}ηγ,f (W>

i γ2)− ηγ,m(W>
i γ2)

)
× J(γ)

η2
γ,f (W>

i γ2)
(
∇γ1

l(Xi;γ1)ηγ,f (W>
i γ2)− ηγ,X(W>

i γ2)
)

ηγ,m′(W
>
i γ2)

(
Wiηγ,f (W>

i γ2)− ηγ,W (W>
i γ2)

)  , (6.13)

where the vector ηγ = (ηγ,m, ηγ,m′ , ηγ,X , ηγ,W , ηγ,f )> groups all the non-parametric elements
and, using the stationarity of the process, is given for any t ∈ R by

ηγ,m(t) = mγ(t)ηγ,f (t) = E[Yi − l(Xi;γ1) |W>
i γ2 = t]ηγ,f (t),

ηγ,m′(t) = η2
γ,f (t)

∂

∂t
mγ(t) = η2

γ,f (t)
∂

∂t
E[Yi − l(Xi;γ1) |W>

i γ2 = t],

ηγ,X(t) = E[∇γ1
l(Xi;γ1) |W>

i γ2 = t]ηγ,f (t),

ηγ,W (t) = E[Wi |W>
i γ2 = t]ηγ,f (t).

6.3.2 Conditionally heteroscedastic partially linear single-index model

For the CHPLSIM we have to construct an unconditional moment equation to take into account
the conditional variance condition in (6.3). In this case, the finite-dimensional parameters are
θ = (γ>, β>)> ∈ Rdθ with dθ = dγ + dβ . Given the definition (6.6), we have

∇βgσ(Zi,Z
{r}
i ;θ,m) = −∇βσ2(Vi,Z

{r}
i ;β) ∈ Rdβ .

The following lemma provides the unconditional moment equations for EL inference in CH-
PLSIM. The proof is similar to the proof of Lemma 6.1 and is thus omitted.

Lemma 6.2. Let ω1(·) and ω2(·) be positive functions of Vi. Let Hµ(γ) and Hσ(β) be the Hessian
matrices of the maps

γ 7→ E[E2[gµ(Zi;γ,mγ) | Vi,Fi−1]ω1(Vi)]

and
β 7→ E[E2[gσ(Zi,Z

{r}
i ,θ,m) | Vi,Fi−1]ω2(Vi)].

Assume that conditions (6.5) and (6.7) hold true and Hµ(γ) and Hσ(β) are definite positive.
Then {

E[gµ(Zi;γ,mγ)∇̃γgµ(Zi;γ,mγ)ω1(Vi)] = 0

E[gσ(Zi,Z
{r}
i ;θ,mγ)∇βσ2(Vi,Z

{r}
i ;β)ω2(Vi)] = 0

⇔ θ = θ0.

To cancel all the denominators induced by the non-parametric estimator, we take ω1(Vi) =
η4
γ,f (W>

i γ2) and ω2(Vi) = η2
γ,f (W>

i γ2). Thus, we consider that the parameters are defined by
the unconditional moment equations

E[Ψ(Zi,Z
{r}
i ;θ, ηγ)] = 0, (6.14)
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where ηγ is defined as in section 6.3 and Ψ(Zi,Z
{r}
i ;θ, ηγ) ∈ Rdθ−1 with

Ψ(Zi,Z
{r}
i ;θ, ηγ) =

(
gµ(Zi;γ,mγ)∇̃γgµ(Zi;γ,mγ)η4

γ,f (W>
i γ2)

gσ(Zi,Z
{r}
i ;θ,mγ)∇βσ2(Vi,Z

{r}
i ;β)η2

γ,f (W>
i γ2)

)
. (6.15)

6.4 Parameter inference with weakly dependent data

6.4.1 General framework of empirical likelihood

In the sequel, for EL inference in the CHPLSIM we use condition (6.14), while for EL inference
in the PLSIM we use condition (6.12). With a slight abuse of notation, in the sequel we use

the notation Ψ(Zi,Z
{r}
i ;θ, ηγ), with some given integer r ≥ 0, for both PLSIM and CHPLSIM

conditions. By definition, the case r = 0 corresponds to the case where Ψ(Zi,Z
{r}
i ;θ, ηγ) does

not depend on the lagged values of Zi. This is the case for PLSIM, but this situation could also
occur in CHPLSIM.

By construction, we have the following important property in the context of dependent data.

Lemma 6.3. The estimating function Ψ(·, ·; ·, ·) satisfies the following property :

∀i 6= j E
[
Ψ(Zi,Z

{r}
i ;θ0, η0)Ψ(Zj ,Z

{r}
j ;θ0, η0)>

]
= 0. (6.16)

This result is a direct consequence of the fact that E
[
Ψ(Zi,Z

{r}
i ;θ0, η0) | Vi,Fi−1

]
= 0. This

property indicates that one can consistently estimate the so-called long-run covariance matrix

of the vector-valued sequence Ψ(Z1,Z
{r}
1 ;θ0, η0), . . . ,Ψ(Zn,Z

{r}
n ;θ0, η0) by the standard sample

covariance matrix, using our estimating function. Therefore, blocking data is unnecessary in our
framework, which is the one of a martingale difference sequence with respect to the filtration
σ(Vi,Fi−1). See also Kitamura (1997), page 2092, and Chang, Chen, and Chen (2015) page 287.

If ηγ is given, the empirical likelihood, obtained with the unconditional moment conditions
we propose for the (CH)PLSIM, is defined by

L(θ, ηγ) = max
π1,...,πn

n∏
i=1

πi(θ, ηγ),

where
∑n
i=1 πi(θ, ηγ)Ψ(Zi,Z

{r}
i ;θ, ηγ) = 0, πi(θ, ηγ) ≥ 0,

∑n
i=1 πi(θ, ηγ) = 1. Thus, we have

πi(θ, ηγ) =
1

n

1

1 + λ(θ, ηγ)>Ψ(Zi,Z
{r}
i ;θ, ηγ)

,

where λ(θ, ηγ) ∈ Rd1+dW−1 are the Lagrange multipliers which permit to satisfy the empirical
counterpart of the restriction (6.14), that is

n∑
i=1

πi(θ, ηγ)Ψ(Zi,Z
{r}
i ;θ, ηγ) = 0.

The empirical log-likelihood ratio is then defined by

`n(θ, ηγ) =

n∑
i=1

ln(1 + λ(θ, ηγ)>Ψ(Zi, Z
{r}
i ; θ, ηγ)).
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As the infinite-dimensional parameter ηγ is unknown, nonparametric estimation using kernel
smoothing is used instead. Thus, we propose to consider

`n(θ, η̂γ) =

n∑
i=1

ln
(

1 + λ(θ, η̂γ)>Ψ(Zi,Z
{r}
i ;θ, η̂γ)

)
, (6.17)

where
η̂γ = (η̂γ,m, η̂γ,m′ , η̂γ,X , η̂γ,W , η̂γ,f )>, (6.18)

with, for any t ∈ R,

η̂γ,f (t) =
1

nh

n∑
i=1

K

(
W>

i γ2 − t
h

)
,

η̂γ,m(t) =
1

nh

n∑
i=1

{Yi − l(Xi;γ1)}K

(
W>

i γ2 − t
h

)
,

η̂γ,X(t) =
1

nh

n∑
i=1

∇γ1
l(Xi;γ1)K

(
W>

i γ2 − t
h

)
,

η̂γ,W (t) =
1

nh

n∑
i=1

WiK

(
W>

i γ2 − t
h

)
,

and

η̂γ,m′(t) =
1

nh2

[
η̂γ,f (t)

n∑
i=1

{Yi − l(Xi;γ1)}K ′
(

W>
i γ2 − t
h

)

− η̂γ,m(t)

n∑
i=1

K ′

(
W>

i γ2 − t
h

)]
,

K ′(·) is the derivative of the univariate kernel K(·) and h is the bandwidth.

6.4.2 Assumptions

We will consider weakly dependent data which satisfy strong mixing conditions. We refer the
reader to the book of Rio (2000) and to the survey of Bradley (2005) for the basic properties as
well as the asymptotic behavior of weakly dependent processes. We will focus our attention on
α-mixing sequences. We use the following measure of dependence between two σ-fields A and B:

α(A,B) = sup
A∈A,B∈B

|P(A ∩B)− P(A)P(B)| .

We recall that a sequence (Zi)i∈Z is said to be α-mixing if αm = supj∈Z α(F j−∞,F∞j+m) goes to

zero as m tends to infinity, where for any −∞ ≤ j ≤ l ≤ ∞, F lj = σ(Zi, j ≤ i ≤ l). Let

Ui = (l(Xi;γ0,1),∇γ1
l(Xi;γ0,1)>,W>

i , εi)
>.

Assumption 6.1. (i) The process (Zi)i∈Z, Zi = (X>i ,W
>
i , εi)

> ∈ RdX × RdW × R, is strictly
stationary and strongly mixing with mixing coefficients αm satisfying

αm = O(m−ξ) with ξ > 10
s

s− 3
, (6.19)
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for some s > 6 such that
sup
‖c‖=1

E[|U>i c|s] <∞. (6.20)

(ii) The marginal density of the index ηγ0,f (·) of the index W>
i γ0,2 is such that

sup
t∈R

ηγ0,f (t) <∞,

and
sup
‖c‖=1

sup
t∈R

E[|U>i c|{|t|+ |U
>
i c|s−1} |W>

i γ0,2 = t]ηγ0,f (t) <∞. (6.21)

Moreover, there is some j? <∞ such that, for all j ≥ j?,

sup
(t,t′)∈R2

E[|U>0 Uj | |W>
0 γ0,2 = t,W>

j γ0,2 = t′]fW>
0 γ0,2,W

>
j γ0,2

(t, t′) <∞,

where fW>
0 γ0,2,W

>
j γ0,2

(·) is the joint density of W>
0 γ0,2 and W>

j γ0,2.

(iii) The second partial derivatives of E[∇γ1
l(Xi;γ1) | W>

i γ0,2 = ·], E[Wi | W>
i γ0,2 =

·]ηγ0,f (·) and ηγ0,f (·), as well as the third derivatives of m0(·), are uniformly continu-
ous and bounded. Moreover, the first derivative of m0(·) is bounded, and the vector

∇βσ2(Vi,Z
{r}
i ;β0) is also bounded.

Assumption 6.2. The matrix

Σ = E
[
Ψ(Zi,Z

{r}
i ;θ0, η0)Ψ(Zi,Z

{r}
i ;θ0, η0)>

]
is positive definite.

Assumption 6.3. The Hessian matrix Hµ(γ), defined with the weight ω1(Vi) = η4
γ,f (W>

i γ2), is
positive definite. Moreover, when the model is defined by (6.1)-(6.3), both the Hessian matri-
ces Hµ(γ) and Hσ(β) with their corresponding weights ω1(Vi) = η4

γ,f (W>
i γ2) and ω2(Vi) =

η2
γ,f (W>

i γ2) are positive definite.

Assumption 6.4. The bandwidth h used for the non-parametric part of the estimation is such
that nh3/ lnn → ∞ and nh8 → 0. The univariate kernel K is symmetric, bounded, integrable,
such that

∫
R t

2{|K(t)| + |tK ′(t)|}dt < ∞ and
∫
R t

2K(t)dt 6= 0. The Fourier Transform of K,
denoted by F [K], satisfies the condition supt∈R |t|cK |F [K](t)| <∞ for some cK > 3. Moreover,
t 7→ |t|s/2{K(t) +K ′(t)} is bounded on R, where s is defined by Assumption 6.1(i).

Assumption 6.1 guarantees suitable rates of uniform convergence for the kernel estimators of
the infinite-dimensional parameters gathered in the vector ηγ . More precisely, they imply the
conditions used in Theorem 4 of Hansen (2008), with q = d = 1. We also use the condition
on ξ to apply Davydov’s inequality and show that the effect of the nonparametric estimation is
negligible and does not alter the pivotalness of the empirical log-likelihood ratio statistic. Due
to this purpose, some conditions in Assumption 6.1 are more restrictive than in Theorem 4 of
Hansen (2008). Condition (6.19) reveals a link between the existence of some moments of order
s and the strength of the dependency given by the coefficient ξ. The more moments for Ui exist,
the stronger the time dependency can be. In particular, if Ui has finite moments of any order,
then s = ∞ and thus ξ could be larger but arbitrarily close to 10. There is a wide literature
on the mixing properties for time series. The most popular technique for proving this property
relies on rewriting the process as a Markov chain and showing the geometrically decay of the
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mixing coefficients αm. For example, ARMA processes were treated in Mokkadem (1988), while
some non-linear time series were investigated by Mokkadem (1990), Tjøstheim (1990), Masry
and Tjostheim (1995), and more recently by Lu and Jiang (2001), Liebscher (2005), Meitz and
Saikkonen (2010). See also the references therein. Another technique has been developed in
Fryzlewicz and Subba Rao (2011). They show mixing properties for time-varying ARCH and
ARCH(∞) processes by computing explicit bounds for the mixing coefficients using the density
function of the processes. Their method could possibly be applied in our context to obtain the
conditions of Assumption 6.1. Assumption 6.2 guarantees a non-degenerate limit distribution

in the CLT for the sample mean of the Ψ(Zi,Z
{r}
i ;γ0, η0)’s. Assumption 6.3 is used to prove

Lemma 6.1 and Lemma 6.2. Concerning the bandwidth conditions, one could of course use
different bandwidths for the different nonparametric estimators involved. For readability and
practical simplicity, we propose a same bandwidth h. Moreover, Assumption 6.4 allows one to
use, for instance the Gaussian kernel.

6.4.3 Wilks’ Theorem

When the infinite-dimensional parameters ηγ are given and the observations are independent,
Theorem 2 of Qin and Lawless (1994) guarantees that the empirical log-likelihood ratio (ELR)
statistic 2`n(θ0, η0) converges in distribution to a X 2

dθ−1 as n → ∞ (where dθ is the dimension
of the model parameters). The following theorem states that, under suitable conditions, the
chi-squared limit in law is preserved for the ELR defined with our moment conditions for the
(CH)PLSIM, with dependent data and estimated ηγ . Let us define the ELR statistic

W (θ0) = 2`n(θ0, η̂γ0
),

where `n and η̂γ0
are respectively given by (6.17) and (6.18). Let dθ = dγ for the PLSIM and

dθ = dγ + dβ for the CHPLSIM. In the following
d−→ denotes the convergence in distribution.

Theorem 6.1. Consider that Assumptions 6.1, 6.2, 6.3 and 6.4 hold true. Moreover, condition
(6.7) is satisfied, as well as condition (6.5) in the case of PLSIM or condition (6.4) in the case

of CHPLSIM. Then, W (θ0)
d−→ X 2

dθ−1 as n tends to infinity.

For the proof of Theorem 6.1, we use a central limit theorem for mixing processes that

implies that n−1/2
∑n
i=1 Ψ(Zi,Z

{r}
i ;θ0, η0) converges in distribution to a multivariate centered

normal distribution, to deal with the dependency between observations. Moreover, the behavior
of the Lagrange multipliers has to be carefully investigated. However, the major difficulty in
the proof is to show `n(θ0, η̂γ0

) − `n(θ0, η0) = oP(1), that is to show that the nonparametric
estimation of the nuisance infinite-dimensional parameters does not break the pivotalness of the
ELR statistic. This negligibility requirement is a well-known issue, see Remark 2.3 in Hjort,
McKeague, and Van Keilegom (2009). See also Chang, Tang, and Wu (2013); Chang, Tang,
and Wu (2016); Chang et al. (2020) for a related discussion in the context of high-dimension
empirical likelihood inference. However, this type of negligibility, obtained under mild technical
conditions, seems to be a new result in the context of semiparametric regression models with
weakly dependent data. It is obtained using arguments based on Inverse Fourier Transform
and Davydov’s inequality in Theorem A.6 of Hall and Heyde (1980). It is also worthwhile to
notice that, in order to preserve the chi-squared limit for W (θ0), we do not need to follow
the general two-step procedure proposed by Bravo, Escanciano, and Van Keilegom (2020) and
replace Ψ(·, ·; ·, ·) by some estimated influence function. The reason is given by the gradient

∇̃γgµ(Zi;γ,mγ) which has the key property E[∇̃γgµ(Zi;γ0,mγ0
) |W>

i γ0,2] = 0 a.s.
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6.5 Numerical experiments

6.5.1 Simulations

We generated data from model (6.1)-(6.3) with εi = σ(Vi,Z
{r}
i ;β)ζi and

σ2(Vi,Z
{r}
i ;β) = β1 + β2Y

2
i−1,

where the ζi are independently drawn from a distribution such that E(ζi) = 0 and Var(ζi) =
1. That means, we allow for conditional heteroscedasticity in the mean regression error term.
The covariates Xi = (Yi−1, Yi−2)> are two lagged values of the target variable Yi and the
covariates Wi = (Wi1,Wi2,Wi3)> are generated from a multivariate Gaussian distribution with
mean Wi−1/4 and covariance matrix S defined by cov(Wik,Wi`) = 0.5|k−`|. Thus, the marginal
distribution of the index W>

i γ2 is a centered Gaussian distribution with variance (16/15)γ>2 Sγ2.
We set

`(Xi;γ1) = γ11Yi−1 + γ12Yi−2 and m(u) =
3

4
sin2(uπ), (6.22)

with γ1 = (0.1, 0)>, γ2 = (1, 1, 1)> and β = (0.9, 0.1)>.
Hypothesis testing is based on Wilks’ Theorem in Section 6.4.3 (results related to this method

are named estim), along with the unfeasible EL approach that uses the true density of the index
and that previously learns the nonparametric estimators on a sample of size 104 (this case mimics
the situation where m, m′ and the conditional expectations involved in the definition of ηγ are
known; results related to this method are named ref ). The nonparametric elements are estimated
by the Nadaraya-Watson method with Gaussian kernel and bandwidth h = C−1n−1/5 where C is
the standard deviation of the index. In the experiments, we consider four sample sizes (100, 500,
2000 and 5000) and three distributions for ζi: a standard Gaussian distribution (Gaussian), an
uniform distribution on [−

√
3,
√

3] (uniform) and a mixture of Gaussian distributions (mixture)
pN(m1, v

2
1) + (1− p)N(m2, v

2
2), with p = 0.5, m2 = −m1 = 1/

√
6, v2

1 = 1/6, v2
2 = 3/2. For each

scenario, we generated 5000 data sets.
First, we want to test the order for the lagged values of Yi in the parametric function `. For

this purpose, we use the PLSIM and we consider the following tests:

• Test Lag(1) which corresponds to the true order equal to 1, and which is defined by H0 :
γ1 = (0.1, 0)> and γ2 = (1, 1, 1)>;

• Test Lag(0) which neglects the lagged values of Yi in the linear part and which is defined
by H0 : γ1 = (0, 0)> and γ2 = (1, 1, 1)>;

• Test Lag(2) which overestimates the order for the lagged values of Yi and which is defined
by H0 : γ1 = (0.1, 0.1)> and γ2 = (1, 1, 1)>.

The empirical probabilities of rejection are presented in Table 6.1 for a nominal level of 0.05. A
first, not surprising, conclusion: EL inference in such flexible nonlinear models, with dependent
data, requires sufficiently large sample sizes. The results with n = 100 are quite poor even
when m(·) is given, that is in a purely parametric setup. Next, we notice that for the three
distributions of the noise, our EL inference approach allows to identify the correct order for
the lagged values when the sample size is sufficiently large. Indeed, only Test Lag(1) has an
asymptotic empirical probability of rejection converging to the nominal level 0.05 while the
other tests have a probability of rejection converging to one. Moreover, the differences between
the unfeasible EL approach (ref. columns) and our approach (estim. columns) become quickly
negligible. This result was expected because the statistics of both methods converge to the same
chi-squared distribution.
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Table 6.1: Empirical probabilities of rejection obtained from 5000 replications using the PLSIM
for testing the order for the lagged values of Yi in the parametric part `(·;γ1) in (6.22).

Test ζi n = 100 n = 500 n = 1000 n = 2000
ref. estim. ref. estim. ref. estim. ref. estim.

Lag(1) Gaussian 0.167 0.214 0.066 0.075 0.054 0.054 0.055 0.055
uniform 0.125 0.185 0.058 0.074 0.058 0.056 0.053 0.050
mixture 0.196 0.229 0.080 0.094 0.063 0.060 0.053 0.051

Lag(0) Gaussian 0.208 0.243 0.254 0.231 0.705 0.665 0.983 0.980
uniform 0.160 0.204 0.215 0.207 0.742 0.718 0.991 0.990
mixture 0.236 0.263 0.241 0.228 0.647 0.619 0.969 0.965

Lag(2) Gaussian 0.216 0.270 0.266 0.268 0.783 0.760 0.996 0.995
uniform 0.164 0.227 0.241 0.243 0.775 0.769 0.996 0.997
mixture 0.263 0.301 0.308 0.299 0.773 0.725 0.993 0.990

We now investigate the order for the lagged values of Yi in the conditional mean and variance
of the noise. Thus, we use the CHPLSIM and we consider the following tests:

• Test Lag(1)-CH(1) which corresponds to the true values of the conditional mean and vari-
ance and which is defined by H0 : γ1 = (0.1, 0)>, γ2 = (1, 1, 1)> and β = (0.9, 0.1)>;

• Test Lag(0)-CH(1) which neglects the lagged values of Yi in the conditional mean and
which is defined by H0 : γ1 = (0, 0)>, γ2 = (1, 1, 1)> and β = (0.9, 0.1)>;

• Test Lag(2)-CH(1) which overestimates the order of the lagged values of Yi in the con-
ditional mean and which is defined by H0 : γ1 = (0.1, 0.1)>, γ2 = (1, 1, 1)> and β =
(0.9, 0.1)>;

• Test Lag(1)-CH(0) which corresponds to the true value of the conditional mean but neglects
the lagged value of Yi in the conditional variance and which is defined by H0 : γ1 =
(0.1, 0)>, γ2 = (1, 1, 1)> and β = (0.9, 0)>.

The empirical probabilities of rejection are presented in Table 6.2 for a nominal level of
0.05. Again, the true order of the lagged values is detected by the procedure and the differences
between the unfeasible EL approach and our approach become quickly negligible. As expected
given that the model is more complex, the rate of convergence to the nominal level is slower than
for the tests on the PLSIM. However, our procedure allows the conditional heteroscedasticity of
the noise to be detected, and meanwhile it identifies the correct order for the lags of Yi in the
mean equation.

6.5.2 Real data analysis

We analyze the data set containing weather (temperature, dew point temperature, relative hu-
midity) and pollution data (PM10 and ozone) for the city of Chicago in the period 1987-2000
from the National Morbidity, Mortality and Air Pollution Study. The analyzed data is freely
available in the R package dlnm Gasparrini (2011). Lian and Liang (2015) considered the same
data set under the assumption of i.i.d. observations.

We use the (CH)PLSIM with a linear function in the parametric part to predict daily mean

ozone level (õ3i). For this purpose we use previous daily values of mean ozone level and four other

predictors, that are the daily relative humidity (r̃humi), the daily mean temperature (in Celsius
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Table 6.2: Empirical probabilities of rejection obtained from 5000 replications using the CH-
PLSIM for testing the order of the lagged values of Yi in the conditional mean and variance.

Test ζi n = 100 n = 500 n = 1000 n = 2000
ref. estim. ref. estim. ref. estim. ref. estim.

Lag(1) Gaussian 0.292 0.388 0.105 0.111 0.068 0.074 0.074 0.069
CH(1) uniform 0.167 0.277 0.070 0.077 0.067 0.072 0.084 0.072

mixture 0.392 0.461 0.151 0.170 0.090 0.098 0.079 0.078
Lag(0) Gaussian 0.331 0.406 0.260 0.249 0.669 0.641 0.978 0.972
CH(1) uniform 0.197 0.291 0.198 0.190 0.684 0.675 0.986 0.983

mixture 0.446 0.493 0.333 0.327 0.653 0.637 0.963 0.958
Lag(2) Gaussian 0.337 0.426 0.277 0.287 0.743 0.727 0.993 0.992
CH(1) uniform 0.205 0.304 0.219 0.227 0.724 0.728 0.993 0.993

mixture 0.438 0.511 0.359 0.352 0.738 0.704 0.990 0.985
Lag(1) Gaussian 0.289 0.332 0.533 0.523 0.985 0.986 1.000 1.000
CH(0) uniform 0.283 0.294 0.777 0.748 1.000 1.000 1.000 1.000

mixture 0.343 0.392 0.489 0.499 0.970 0.970 1.000 1.000

degrees) t̃empi, the daily dew point temperature d̃ptpi and the daily PM10-level p̃m10i. The
first step of our analysis was to remove seasonality for each variable we considered in the models.
To remove seasonality, we used the function seasadj of the R package forecast on the data of
from year 1994 to year 1997. Thus, we obtain the series o3i, rhumi, tempi, dptpi and pm10i by

removing the seasonnality of the series õ3i, r̃humi, t̃empi, d̃ptpi and p̃m10i. Note that the series
tempi, dptpi and pm10i have been scaled to facilitate the interpretation γ12. Figures S.1-S.5
provided in the Section B.1 of the Supplementary Material of Du Roy de Chaumaray, Marbac,
and Patilea (2021) present the original series and the series obtained by removing the seasonality.
Thus, all the variables we refer hereafter in this section are deseasonalized. In this application
the observations clearly have a time dependency. We split the sample into a learning sample
(composed of the observations of years 1994 and 1995) and a testing sample (composed of the
observations of years 1996 and 1997). After removing the seasonality, the autocorrelations of
o3 for the learning and testing samples are 0.469 (p−value 0.000) and 0.450 (p−value 0.000),
respectively; Note that all the covariates have significant autocorrelations (all the p−values are
0.000, see Table S.1 in Section B.1 of the Supplementary Material of Du Roy de Chaumaray,
Marbac, and Patilea (2021)).

The covariates included in the linear part are the mean relative humidity (rhumi) and the
mean ozone level computed on the three previous days (o3i−1, o3i−2, o3i−3). The covariates
included in the nonparametric part of the conditional mean are tempi, dptpi and pm10i. The
eigenvalues of the covariance matrix computed on the three variables used in the nonparametric
part are 1.995, 0.901 and 0.168 for the data of learning sample, and 1.989, 0.758 and 0.139 for
the data of testing sample.

Thus, the equation of the PLSIM is

o3i = γ11rhumi + γ12o3i−1 + γ13o3i−2 + γ14o3i−3

+m(γ21tempi + γ22dptpi + γ23pm10i) + εi. (6.23)

We estimate the parameters of the models, on the testing sample, by minimizing the least squares
using kernel smoothing (with Gaussian kernel and bandwidth n−1/5). Hypothesis testing is
conducted on the testing sample. We begin by investigating the order H for the lagged values of
the ozone measures to be included in the linear part of the conditional mean. Using PLSIM, we
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Table 6.3: Estimators of the parameters obtained by the PLSIM, on the learning sample, with
different orders of lagged values, and p−values obtained by testing these values on the testing
sample for the ‘National morbidity and mortality air pollution study’ example.

Lag(0) Lag(1) Lag(2) Lag(3)
γ̂1 rhumi -0.122 -0.157 -0.154 -0.154

o3(i−1) 0.000 0.412 0.459 0.461
o3(i−2) 0.000 0.000 -0.102 -0.116
o3(i−3) 0.000 0.000 0.000 0.025

γ̂2 tempi 0.976 0.937 0.941 0.939
dptpi -0.215 0.343 0.332 0.336
pm10i 0.043 0.062 0.066 0.073
p−value 0.000 0.001 0.107 0.044

define different models, called Lag(H) (with H = 0, 1, 2 or 3), where only H lagged values of the
mean ozone levels are included in the linear part (meaning the coefficients related to the other
previous days is zero). The results for different orders H presented in Table 6.3 show that the
time dependency cannot be neglected for analyzing these data. It is relevant to include lagged
values of the mean ozone level variable to build its daily prediction.

The autocorrelation of the residuals, obtained with the Lag(2) setup, on the testing sample,
has a value of 0.035 (p−value 0.346). This suggests that H = 2 is a reasonable choice. Figure S.6
and Figure S.7, given in Section B.1 of the Supplementary Material of Du Roy de Chaumaray,
Marbac, and Patilea (2021), present the estimated density of the index and the estimated function
m̂(·), obtained with the Lag(2) setup.

We also calculated the autocorrelation of the squared of the residuals, obtained with the
Lag(2) setup, and we obtain the value 0.095 (p−value 0.010). This suggests to also investigate
the conditional heteroscedasticity of the noise using the CHPLSIM with the Lag(2) setup. For
the conditional variance equation we consider

E(ε2
i | rhumi, tempi, dptpi, pm10i,Fi−1) = β1 + β2 ln

(
max(o32

i−1, 1)
)
. (6.24)

To estimate the parameters of the conditional variance, we use again the learning sample.
The estimators for the CHPLSIM with conditional variance as in (6.24) are β̂1 = 1.553 and

β̂2 = 3.786. If we consider constant conditional, we obtain β̃1 = 23.816. The p−value obtained
by testing the values β1 = β̂1 and β2 = β̂2 in (6.24) on the testing sample is 0.100. Meanwhile,
the p−value obtained by testing the values β1 = β̃1 and β2 = 0 is 0.020. Thus, we conclude to a
non constant conditional variance for the error term in (6.23). This effect should be considered
to build forecast confidence intervals.

6.6 Discussion and conclusion

We propose EL inference in a semiparametric mean regression model with strongly mixing data.
Our model could include an additional condition on the second order conditional moment of
the error term. The regression function has a partially linear single-index form, while for the
conditional variance we consider a parametric function. This function could depend on the past
values of the observed variables, but it cannot depend directly on the regression error term. A
parametric function of the past error terms would break the asymptotic pivotal distribution of the
empirical log-likelihood ratio. See Hjort, McKeague, and Van Keilegom (2009) for a description
of this common phenomenon in semiparametric models.
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We prove Wilks’ Theorem under mild technical conditions, in particular without using any
trimming and allowing for unbounded series. To obtain this result, first we rewrite the regression
model under the form of a fixed number of suitable unconditional moment conditions. These mo-
ment conditions include infinite dimensional nuisance parameters estimated by kernel smoothing.
Then, we show that estimating the nuisance parameters does not break the asymptotic pivotality
of the empirical log-likelihood ratio which behaves asymptotically as if the nuisance parameters
were given. Our theoretical result opens the door of the EL inference approach to new applica-
tions in nonlinear time series models. We illustrate our result by several simulation experiments
and an application to air pollution where assuming time dependency seems reasonable, a fact
confirmed by the data.

The models proposed in this paper have several straightforward extensions. First, the variable
Yi could be allowed to be measured with some error. For instance, Yi could be a function
of the error term in a parametric model for some time series (Ri), such as an AR(1) model
Ri = ρRi−1 + ui. Taking Yi = u2

i , (6.1) could be used for inference on the conditional variance
of (ui), while (6.3) could serve to test the value of the kurtosis. This example that could be of
interest for financial series is detailed in Section B.3 of the Supplement Du Roy de Chaumaray,
Marbac, and Patilea (2021).

Another easy extension is to consider more general conditions than (6.3). Our theoretical
arguments apply with practically no change if (6.3) is replaced by one or several conditions

like E[T (εi) | Vi,Fi−1] = ν(Vi,Z
{r}
i ;β), where the T (·)’s are some given twice continuously

differentiable functions such that E[T ′(εi) | Vi,Fi−1] = 0 a.s., and ν(·, ·; ·) is given parametric
function. For instance, taking T (y) = y4, we could include a fourth order conditional moment
equation in the model, provided E[ε3

i | Vi,Fi−1] = 0 a.s. Such higher-order moment condition
could replace or could be added to (6.3).

Finally, one might want to consider some partially linear function, with possibly different
index, on the right-had side of (6.3). Lian and Liang (2015) followed a similar idea in the i.i.d.
case. While considering several series (Yi) and equations like (6.1) is a straightforward matter,
a semiparametric model for the square of the error term requires some additional effort. We
argue that our methodology could be extended to such cases, however the investigation of this
extension is left for future work.
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Chapter 7

Prospects
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7.2.3 Empirical likelihood with missing values for investigating the link be-
tween physical activity and chronic diseases . . . . . . . . . . . . . . . 157

7.1 Estimation for mixture models

7.1.1 Model selection with increasing parameter space and model col-
lection

Context: Considering a family of parametric mixture models, model selection can be per-
formed, under mild assumptions, by information criteria that penalize the log-likelihood and
thus provide a consistent estimator of the model (see Keribin (2000)). The main difficulty to
state this result is to deal with the model overestimation, due to the lack of identifiability of the
model parameters, in such case. This issue is circumvented by the locally conic parametrization
(Dacunha-Castelle and Gassiat (1999)) that permits to show the convergence in distribution of
the log-likelihood ratio, under mild assumptions. The consistency of the information criteria uses
this convergence in distribution and the fact the penalty is an increasing function of the sample
size.

Limits: The proof of the consistency of information criteria, provided in Keribin (2000), re-
quires that the parameters are defined on a compact space that is fixed according to the sample
size. This assumption can be strong. For instance, considering Gaussian mixture models, it
is reasonable to assume that the means of the components are defined on the convex hull of
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the observed sample. However, this space increases with the sample size. Moreover the set of
competing models is also supposed to be fixed according to the sample size. However, it could be
reasonable to allow the upper bound of the number of clusters to increase with the sample size.
Moreover, one can consider the case where the number of irrelevant variables increases with the
sample size (see Löffler, Wein, and Bandeira (2020)).

Main ideas to explore: In this context, we want to allow the parameter space and the model
collection to increase with sample size. To state this result, arguments similar to those used to
prove Theorem 2.1 in Section 2.3 will be used. Assumptions made on the rate of increasing of
the parameter space would allow us to control the underestimation with bracketing. Moreover,
assumptions made on the penalty would allow an upper bound of the probability of overestimating
the model to be obtained for a fixed sample size. This task will be achieved by controlling the
concentration results of the Gaussian process (Dudley (2014)) and the Gaussian approximation
of suprema of empirical processes (Chernozhukov, Chetverikov, and Kato (2014)). The case
with an increasing model collection will be treated with the same arguments, by also considering
concentration results for the case of underestimation.

7.1.2 Model selection for location scale mixture model

Context: To avoid the bias of the parametric assumptions, semi-parametric mixture models
can be considered. In this context, an important family is the family of location-scale mixture
models because it generalizes some well-known mixture models, including the Gaussian and the
Student mixtures. The mixture components are assumed to be symmetric and to come from the
same location-scale family. We refer to these mixtures as semi-parametric because no additional
assumptions other than symmetry are made regarding the parametric form of the component
distributions (see Hunter, Wang, and Hettmansperger (2007)).

Limits: The estimation of a location-scale mixture model can be achieved by maximizing the
smoothed-log-likelihood via an MM algorithm. However, there is a lack of theoretical results on
the resulting estimator (consistency, guarantee of convergence to the global optimum). Moreover,
there is no procedure for model selection (nor for selecting the number of components or the
subset of discriminative variables).

Main ideas to explore: First, we would like to obtain some guarantees of the MM algorithm
for location-scale mixture model: i.e., provide conditions that allow for a characterization of
the region of convergence of MM algorithm iterates and to define how quickly MM algorithm
iterates converge to a small neighborhood of a given global optimum. These results have been
recently stated, by Balakrishnan, Wainwright, and Yu (2017), in the case of Gaussian mixtures
by following the iterations of the EM algorithm. We would like to extend this work to the semi-
parametric mixture estimated by an MM algorithm. This would help to control the accuracy
of the kernel density estimator. Theoretical developments for obtaining such a control could
be made by obtaining an upper bound of the misclassified observations during the algorithm
iterations (similarly to Lu and Zhou (2016)). If a control of the accuracy of the density estimators
is stated, then a full model selection (selecting the number of components and the subset of
discriminative variables) could be achieved via information criteria by including the uncertainty of
the density estimators in a proof similar to Keribin (2000) or those of Theorem 2.1 in Section 2.3.

152



7.1.3 Non-asymptotic procedure for local false discovery rate estima-
tion

Context: In this work, we will consider the multiple testing problem, where the asymptotic
distribution of the test statistic is known while the distribution under the alternative is unknown.
We consider n independent test statistics X1,m, . . . , Xn,m where Xi,m is the statistic of test i
computed over a sample of sizem. Thus, under the null hypothesis, Xi,m converges in distribution
to a known distribution when m tends to infinite. The multiple testing problem can be addressed
by considering that, under the null hypothesis, the test statistic follows its asymptotic distribution
(Robin et al. (2007) and Patra and Sen (2016)). Thus, the distribution of the test statistic follows
a mixture model defined by the density

g(x) = (1− π)f0(x) + πφ(x), (7.1)

where the density f0 is known (e.g., chi-squared distribution for the likelihood ratio test), 0 < π <
1 is the proportion of test statistics drawn under the alternative hypothesis and φ is unknown.

Limits: In this work, we will consider the case where the distribution of the test statistic is
known only asymptotically. Thus, for a fixed sample size, the distribution of the test statistic is
not exactly known meaning that (7.1) is not suitable for assessing the local false discovery rate.

Main ideas to explore: To circumvent this issue, we would try to extend (7.1) by considering
that the distribution under the null hypothesis is close to the asymptotic distribution. This
proximity is measured by constraining the first moments to be close to those of the asymptotic
distribution. The distribution of the test statistics could be defined by the density

g(x) = (1− π)ψm(x) + πφ(x),

where the first rm moments between the distributions defined by ψm and f0 are such that

∀q = 1, . . . , rm, |Eψm [Xq
1,m]− Ef0 [Xq

1,m]| < εm,

where εm tends to 0 and rm tends to infinity when m tends to infinity ensuring the convergence in
distribution of Xi,m, under the null hypothesis, to the distribution defined by f0. As a first step,
we will focus on non-parametric tests (e.g., Mann-Whitney) where the first moments have a closed
form under the null hypothesis for a fixed sample size m. This setup allows us to fix εm = 0, for
any m such that the moment m has a closed form under the null hypothesis. The identifiability
of the resulting mixture model will be obtain by adding constraints on φ. The estimation of
the resulting bi-component mixture model will be achieved via an MM algorithm where the non-
parametric estimation of ψm(x) and φ will be made via kernel density estimation with constraints
on the moments (Hall and Presnell (1999) and Racine, Parmeter, and Du (2009)).

7.2 Developments for biostatistics and epidemiology

7.2.1 Model-based clustering of longitudinal data with non-ignorable
missingness

Context: In epidemiology, many cohorts are composed of n subjects described by a longitudinal
continuous variable measured at T time moments. Due to attrition of the subjects during the
study, some realizations of the longitudinal variable are unobserved. The missingness mechanism
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has a monotone pattern and is allowed to be non-ignorable. Thus, if a variable is not observed
on a subject at time t, then this variable is no longer observed for any time t′ ∈ [[t, T ]]. Moreover,
the probability, for a variable, to not be observed is allowed to depend on the values of the
variable itself and the subpopulation membership. Each subject i is described by a vector of
three variables (X>i ,R

>
i ,Z

>
i )> where Xi = (Xi(1), . . . , Xi(T ))

> ∈ RT , Xi(t) is the variable

measured on subject i at time t, Ri = (Ri(1), . . . , Ri(T ))
> ∈ {0, 1}T indicates whether Xi(t) is

observed (Ri(t) = 1) and Zi = (Zi1, . . . , ZiK)> indicates the subpopulation of subject i. The
monotone pattern of the missingness mechanisms implies that if for some t ∈ [[1, T ]], Ri(t) = 0
then Ri(t′) = 0 for any t′ ∈ [[t, T ]].

Limits: The variable Di =
∑T
t=1Ri(t) ≥ 1 indicating the number of elements that are observed

in Xi contains all the information of Ri. The nonparametric model described in Chapter 3 is
not suitable for a monotone pattern due to its assumption of conditional independence between
the elements of Ri.

Main ideas to explore: In this work, we will consider that the pair (Xi,Ri) arises from a
K-component mixture models whose pdf of component k is decomposed as follows

gk(xi, ri) = gk,1(xi(1))

T∏
t=2

gk,t(xi(t), ri(t) | xi(1:t−1), ri(1:t−1)), (7.2)

where xi(1:t) = (xi(1), . . . , xi(t))
> and ri(1:t) = (ri(1), . . . , ri(t))

>. The conditional distribution of

the observed values (Xi(t), Ri(t))
> given the past and the cluster membership of subject i can be

defined by the pattern-mixture model approach leading that

gk,t(xi(t), ri(t) | xi(t−1), ri(t−1)) = gk,t(ri(t) | xi(1:t−1), ri(1:t−1))gk,t(xi(t) | xi(1:t−1), ri(1:t)).

The monotone pattern of the missingness mechanism implies that Ri(t) = 0 if t > Di and

gk,t(ri(t) | xi(1:t−1), ri(1:t−1)) = gk,t(ri(t) | xi(1:t−1), ri(t−1)),

and

gk,t(xi(t) | xi(1:t−1), ri(1:t)) = gk,t(xi(t) | xi(1:t−1), ri(t), ri(t−1)).

Indeed, given the past and the cluster membership of subject i, Ri(t) follows a Bernoulli distri-
bution with parameter τkt(xi(1:t−1)), if t ≤ Di, where τkt is an unknown function, while Ri(t) is
no longer a random variable if Ri(t−1) = 0. Thus, the pdf of the conditional distribution of Ri(t)
given the past and the cluster membership of subject i, is defined by

gk,t(ri(t) | xi(1:t−1), ri(t−1)) =

[τk,t(xi(1:t−1))]
ri(t)ri(t−1) [1− τk,t(xi(1:t−1))]

(1−ri(t))ri(t−1) [1− ri(t)]1−ri(t−1) .

Moreover, the pdf of Xi(t) given the past and Ri(t) is defined by

gk,t(xi(t) | xi(1:t−1), ri(t), ri(t−1)) = p
ri(t)ri(t−1)

k,t (xi(t) | xi(1:t−1))×[
q
ri(t−1)

k,t (xi(t) | xi(1:t−1))q̃
1−ri(t−1)

k,t (xi(t) | xi(1:t−1))
]1−ri(t)

,
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where pk,t (qk,t and q̃k,t, respectively) are the pdf of the conditional distribution of Xi(t) given
Xi(1:t−1) and (Ri(t), Ri(t−1)) = (1, 1) ((Ri(t), Ri(t−1)) = (0, 1) and (Ri(t), Ri(t−1)) = (0, 0), re-

spectively). The pdf of the observed variables under component k, denoted by gk(xobs
i , ri), is

obtained by integrating the pdf of component k over the missing variables Xmiss
i , which leads to

g(xobs
i , ri;θ) =

K∑
k=1

πkgk(xobs
i , ri) with gk(xobs

i , ri;θ) =

∫
gk(xi, ri)dx

miss
i .

Using the fact that the missingness mechanism has monotone pattern, we have

gk(xobs
i , ri;θ) = pk,1(xi(1))

[
Di∏
t=2

τk,t(xi(1:t−1))pk,t(xi(t) | xi(1:t−1))

]ri(2)
[1− τk,Di+1(xi(1:Di))].

where θ groups the proportions π1, . . . , πK and the functions τk,t and pk,t. To facilitate the
estimation of the functions τk,t and pk,t, we assume a Markov dependence within the components
such that the conditional distribution of (Xi(t), Ri(t)) given the past and the cluster membership
of subject i, is equal to the conditional distribution of (Xi(t), Ri(t)) given (Xi(t−1), Ri(t−1),Zi).
Therefore, we have

τk,t(xi(1:t−1)) := τk,t(xi(t−1)) and pk,t(xi(t) | xi(1:t−1)) :=
fk,t,2(xi(t), xi(t−1))

fk,t−1,1(xi(t−1))
,

where fk,t,1 is the marginal pdf of Xi(t) given Ri(t) = 1 for component k and fk,t,2 is the marginal

pdf of (Xi(t), Xi(t−1))
> given Ri(t) = 1 for component k.

7.2.2 Spatial scan statistics

Context: The CoVid-19 pandemic highlighted the need for reliable and responsive public
health tools, designed to identify clusters of cases on a fine scale over large geographical areas.
In the field of spatial epidemiology, spatial scan statistics (Costa and Kulldorff (2009)) can meet
this need for identifying spatial clusters while adjusting for potential confounding factors at the
individual or ecological level. The spatial scan statistics (Kulldorff (1997) and Kulldorff (2006))
can be viewed as an extension of bi-dimensional scan statistics (Naus (1965)) to spatial data.
Originally, they permit the estimation of a single cluster (named the most likely cluster) and
the test of its significance. A cluster is defined by a group of sites where the distribution of
the target variable is different to its distribution outside this group. Thus, investigating the
significance of the most likely cluster can be viewed as an extension of the homogeneity test
with spatial constraints. The difference between the distributions inside and outside the cluster
is often summarized by a difference in the conditional mean of the target variable given the
location of the sites and potentially other covariates. Thus, different regression models can be
used depending on the nature of the target variables (Huang et al. (2009), Jung (2009), Jung,
Kulldorff, and Richard (2010), Huang, Kulldorff, and Gregorio (2007), Bhatt and Tiwari (2014)
and Zhang and Lin (2009)). The spatial constraints are defined by the assumptions made on the
cluster shapes. Irregular shapes (Assuncao et al. (2006), Duczmal, Kulldorff, and Huang (2006)
and Duczmal et al. (2007)) that are considered by considering that a cluster is a subset of con-
nected areas. Alternatively, clusters with parametric shapes can be considered. Among them,
one can cite the spherical (Kulldorff (1997)), elliptic (Kulldorff et al. (2006)) or rectangular
(Walther (2010)) clusters. Thus, by imposing shape constraints, the detection of the most likely
cluster can be performed by an exhaustive approach. Testing the significance of the most likely
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cluster is often performed by using the quasi likelihood ratio test (McCullagh (1983) and Chiou
and Müller (1999)). However, except for very specific cases (Zhang and Lin (2013) and Sharp-
nack and Arias-Castro (2016)), this statistic does not have an explicit asymptotic distribution.
The distribution of the scan statistics under the null hypothesis is also assessed by Monte-Carlo
re-sampling (Dwass (1957)). The procedure is consistent and permits detecting the alterna-
tive (i.e., existence of one single cluster with the assumptions made on its shape; see Zhang
and Lin (2017)). Moreover, it requires independence between the observations (see Loh and
Zhu (2007) for the case of dependent data).

Limits: In many applications, more than one cluster can appear. When the most-likely cluster
is significant, one can investigate the secondary clusters whose p-values of their significance tests
are also computed with an exhaustive approach for the cluster detection. However, this approach
is too conservative (Kulldorff et al. (1997)). Thus, Zhang, Assunção, and Kulldorff (2010) pro-
pose running an other cluster detection by keeping the most-likely cluster fixed. As we will show,
this approach cannot allow us to detect all the alternatives because it keeps fixed the most likely
cluster, during the detection of the secondary clusters. However, this cluster can contain two
smaller clusters and some other sites not belonging to any clusters. Note that this phenomenon
is often observed since spatial scan statistics are known to provide large clusters (that can be
difficult to use for the purpose of medical prevention). An alternative consists of estimating
simultaneously K clusters and testing the significance of the K clusters (Li et al. (2011)). How-
ever, because cluster detection is performed with an exhaustive search that has a complexity of
O(n2K), for circular clusters and n sites, this approach in not doable in practice.

Main ideas to explore: In this work, we will develop a new method for multiple spatial
cluster detection with scan statistics. We want to consider clusters with parametric shape that
includes the standard shapes of clusters (e.g., spherical, elliptic and rectangular clusters). We will
develop a non-exhaustive cluster detection that uses the parametric definition of the cluster shape
to provide a smoothing of the objective function. This would facilitate parameter estimation
and thus cluster detection. We want to show that this approximation is negligible, under mild
assumptions. The regression model could be general and includes all the generalized linear
models. The scan statistics are defined by the quasi likelihood ratio and the distribution under
the null hypothesis is assessed by a Monte-Carlo re-sampling. The approach would permit the
detection of K clusters and the investigation of the significance of all these clusters. Contrary to
Zhang, Assunção, and Kulldorff (2010), the proposed approach would allow us to detect all the
alternative hypotheses because the estimation of the K clusters does not use information from
the previously estimated K − 1 clusters.

Limits: One major concern of spatial scan statistics is investigating the significance of the
detected clusters. This aim is generally achieved by the statistical test defined by the null hy-
pothesis assuming spatial homogeneity and the alternative hypothesis claiming that there is at
least one spatial cluster. However, the test can be extended to investigate the significance of
multiple clusters (Lin, Kung, and Clayton (2016)). The test of significance of the clusters is
generally conducted by considering the likelihood-ratio test (LRT) that easily allows for the ad-
justment on covariates or the analysis of aggregated data (Huang et al. (2009)). The asymptotic
distribution of the LRT does not generally have a closed form, under the null hypothesis, except
in very specific cases (Walther (2010)). Thus, it is generally estimated by Monte Carlo genera-
tions which is a major issue for spatial scans because they dramatically increase the computation
time and thus limit the size of the data to be analyzed.
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Main ideas to explore: The main objective of this work is the development of methods leading
to explicit distribution of LRT for spatial scan statistics, in order to avoid the computational
limits due to the use of the Monte-Carlo procedure. To achieve this aim, we rewrite the problem
of scan statistics as a specific mixture model whose proportions depend on the spatial locations
with a parametric link function. Thus, when the null hypothesis holds true, there is a loss of
identifiability of the parameters of the mixture models. This phenomenon is well-known for
mixture models when the number of components is overestimated and implies that the LRT
does not asymptotically follow a chi-squared distribution under the null hypothesis. Using the
locally conic parametrization (Dacunha-Castelle and Gassiat (1999)), under mild assumption,
we can obtain the asymptotic distribution of the likelihood ratio test, under mild assumptions.
We propose extending the locally conic parametrization of mixture model to the case where the
mixture proportions depend on the spatial locations with a parametric link function. Moreover,
we propose a control of the type-1 error of the procedure, for a fixed sample size, by controlling the
concentration results of the Gaussian process (Dudley (2014)) and the Gaussian approximation
of suprema of empirical processes (Chernozhukov, Chetverikov, and Kato (2014)). Thus, the
procedure will be efficient for small samples (by controlling, in probability, the difference between
the fixed-sample size distribution and the asymptotic distribution) and for large samples (by
avoiding the multiple Monte-Carlo generations). The relevance of this procedure would depend
on the accuracy of the different upper-bounds.

7.2.3 Empirical likelihood with missing values for investigating the link
between physical activity and chronic diseases

Context: We aim to investigate the link between physical activity and chronic diseases (espe-
cially being overweight reflected by a large value of body mass index; BMI). Hence, we consider
the ELFE cohort composed of 3707 subjects. Each subject is described by different families of
variables collected during interviews: including BMI, food habits, environmental variables, sleep
quality and physical activity. Because physical activity is not subject to bias in the response,
a section of the subjects wear an accelerometer for one week. However, for technical reasons,
only 159 subjects worn the accelerometer. The challenge is to investigate the significance of the
link between physical activity and being overweight. The whole cohort should be considered and
thus the surrogate variable related to the physical activity measured over the full cohort.

Limits: To the best of our knowledge, there is no empirical likelihood method that allows
considering surrogate variables in a semi-parametric model and that provides a chi-squared dis-
tribution for the asymptotic distribution of the empirical log-likelihood ratio.

Main ideas to explore: We aim at modeling and making inference for the one-dimensional
variable Yi given the dV +dW + 1-dimensional variable Xi = (Ui, V

>
i ,W

>
i )> where Ui is a scalar

variable, Vi is a dV -dimensional variable and Wi is a dW -dimensional variable. Moreover, we
consider a dS-dimensional surrogate variable Si that provides information on Vi. We consider
the regression model defined by{

Yi = Uiα+ V >i β +m(W>i γ) + εi
Ui = S>i δ + ξi

, (7.3)

such that εi and (Ui, S
>
i )> are conditionally independent given (V >i ,W

>
i )>, ξi and (V >i ,Wi)

> are
conditionally independent given Si, ξi and εi are conditionally independent given (S>i , V

>
i ,W

>
i )>
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with the conditional first order moments

E[εi | Ui] = 0 and E[ξi | Si] = 0, (7.4)

and the conditional second order moments

E[ε2
i | Vi,Wi] = σ2(Vi,Wi; ρ), E[ξ2

i | Si] = ς2(Si; %) and E[ξiεi | Vi,Wi, Si] = 0, (7.5)

where θ = (ϑ>, ρ>, %>, δ>) groups all the model parameters, ϑ = (α, β>, γ>)> and m is an
infinite dimensional parameter. Our interest focuses on θ and m is considered as a nuisance
parameter. The model defined by (7.3)-(7.4) is a Partially Linear Single-Index Regression Model
(PLSIRM). The model defined by (7.3)-(7.5) is a Conditionnal Heteroscedastic Partially Linear
Single-Index Regression Model (CHPLSIRM) where the values of functions σ2 and ς2 are known.

Let Zi = (S>i , Ui, V
>
i ,W

>
i , Yi)

>, the PLSIRM model (7.3)-(7.4) is defined by the conditional
moment equations

E[fPLSIRM(Zi;ϑ,m, δ) | Xi, Si] = 0⇐⇒ ϑ = ϑ0, m = m0 and δ = δ0, (7.6)

where fPLSIRM(Zi;ϑ,m, δ) = (f1(Zi;ϑ,m)>, f2(Zi; δ)
>)> such that

f1(Zi;ϑ,m) = Yi − Uiα− V >i β −m(W>i γ),

and
f2(Zi; δ) = Ui − S>i δ.

Similarly, the CHPLSIRM model (7.3)-(7.5) is defined by the conditional moment equations

E[fCHPLSIRM(Zi; θ,m) | Xi, Si] = 0⇐⇒ θ = θ0 and m = m0, (7.7)

where fCHPLSIRM(Zi; θ,m) = (fPLSIRM(Zi;ϑ,m, δ)
>, f3(Zi;ϑ,m, ρ)>, f4(Zi; δ, %)>)> such that

f3(Zi;ϑ,m, ρ) = f2
1 (Zi;ϑ,m)− σ2(Vi,Wi; ρ),

and
f4(Zi; δ, %) = f2

2 (Zi; δ)− ς2(Si; %).
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Journal de la Société Française de Statistique 156(3), pp. 120–139.

Bravo, F., J.-C. Escanciano, and I. Van Keilegom (Feb. 2020). “Two-step semiparametric empir-
ical likelihood inference”. The Annals of Statistics 48(1), pp. 1–26.

Butucea, C. and P. Vandekerkhove (2014). “Semiparametric mixtures of symmetric distribu-
tions”. Scandinavian Journal of Statistics 41(1), pp. 227–239.
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Meynet, C. (2012). “Sélection de variables pour la classification non supervisée en grande dimen-
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