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Abstract:

The study of fractal properties in biological time series is of increasing interest. Nevertheless,
the literature highlights an ambiguity on the causal explanation of the presence of these time
series which do not make it possible to distinguish between the effective adaptation made by a
subject or his overall adaptability capacities. The aim of this dissertation is to decorrelate
these two notions, notably by linking the behavioral level to the cerebral level. Our first study
allowed to highlight that the mono-fractal properties could reflect the adaptability of the
subjects whereas the multifractal properties would be related to the effective adaptation
carried out during the task. The second study showed a correlation between the multifractal
properties and the number of brain networks implemented, reflecting the effective adaptation
to the experimental constraints imposed. The results of this work have allowed us to better
understand the functional meaning of fractal analyzes in terms of effective adaptation and

adaptability.

Key words: Adaptation, tapping, fractals, cerebral networks, functional near infrared

spectroscopy, dynamical system, connectivity.

Résumé:

L’¢tude des propriétés fractales des séries biologiques fait I’objet d’un intérét croissant.
Néanmoins, la littérature met en évidence une ambiguité quant a 1’explication causale de la
présence de ces séries temporelles ne permettant pas de distinguer entre 1’adaptation effective
réalisée par un sujet ou ses capacités d’adaptabilité globales. La présente these a pour objectif
de décorréler ces deux notions, notamment en liant le niveau comportemental au niveau
cérébral. Notre premicre étude a permis de mettre en évidence que les propriétés mono-
fractales pourraient refléter 1’adaptabilité des sujets tandis que les propriétés multifractales
seraient liées a I’adaptation effective réalisée au cours de la tache. La seconde étude a mis en
¢vidence une corrélation entre les propriétés multifractales et le nombre de réseaux cérébraux
mis en ceuvre, reflétant 1’adaptation effective aux contraintes expérimentales imposées. Les
résultats de ces travaux de thése nous ont permis de mieux comprendre la signification

fonctionnelle des analyses fractales en termes d’adaptation effective et d’adaptabilité.

Mots cles : Adaptabilité, adaptation, tapping, fractales, réseaux cérébraux, spectroscopie

dans le proche infrarouge, systeme dynamique, connectivite.



@

Chapter 1

General Introduction



1.1 A complexity theory approach

“Complexity theory is destined to be the dominant scientific trend on the 1990’s”

Lewin, R., 1992. Complexity: Life at the Edge of Chaos (Back Cover).

Complexity considered in a broad sense has common properties whatever the field of
application happens to be. In a complex system, the whole is considered as being more — and
sometimes less — than the sum of its parts. The system is composed of multiple elements that
interact in a non-simple way (Simon, 1991). Imagine or return in a simple way to our first
chemistry courses. Although at the bottom of the class the table of Mendeleiev indicates
numerous elements, these parts taken individually cannot explain some emergent properties
like the di-hydrogen combustion reaction. In the same way, the exchanges between
individuals can create in a sense some masterful discoveries like the 2017 Nobel Prize for the
discovery of gravitational waves. While this system was generally defined at the edge of the
chaos, complex system theory now generally adopts a position between two extremes, not in
the extreme at once too chaotic nor conversely too rigid. Whatever the metaphor used, a
consensus seems to have developed on the functional organization (or topology) adopted by
these systems. For Henry Atlan (1979), the complexity lies in between crystal and smoke in
being neither too rigid, nor too “random”. On the one hand, crystal is considered to have an
organization of its elements that is too rigid between the elements. In this sense, too much
disruption of the system can break the crystal. Such a system tends to fall into a too strongly
predictable and deterministic way. On the other hand smoke is considered to be a set of totally
independent elements (Figure 1A). This organization does not allow creating any kind of
structure and therefore remains completely unpredictable. According to Edgard Morin (1994),
such types of systems are between order and disorder phenomena. Kauffman (1991) proposes
to define a complex system as being between chaos (defined as a complete disorder of the
system) and anti-chaos (a strictly rigid organization). Moreover, Paul Valéry considers that
“two dangers are constantly threatening the world (complex by definition): order and
disorder”. This author does not hesitate to add that “between order and disorder reigns a
delicious moment”. Nevertheless, this positioning between two extremes leads to a dynamic
property of complex systems. It does not seem possible to imagine a third “rigid” extreme
system situated equidistant from complete order and complete disorder. Complex systems will
therefore oscillate between those two phenomena and will involve a dynamics or oscillation

between more or less order and more or less disorder.



Regular Random

Complexity

Figure 1A: Effect of topological links modification on the system. On the left: a too rigid
system in which all the elements are connected to each other in an identical manner (low cost
but low communication between elements). On the middle: two more complex systems
comprised between low connections and fully connected network organizations. On the right:
a fully connected network where all nodes are connected (high cost). Both, the left and the

right system could be eather random or rigid organization.

As the nature of complexity is hard to reveal due to the large number of applications in
multiple fields, some researchers proposed to classify the definition (or approach) of
complexity in three divisions depending on the discipline/field perspective (Mason, 2001).
First, they called “Algorithmic complexity” as a mathematical complexity and a difficulty to
describe system characteristics. The drawback of this approach is formulated as algorithmic
complexity that “may incorrectly equate data with knowledge”. Lots of real life systems lie
beyond algorithmic expressions. Second, they used the term “Deterministic complexity”
which originates from the chaos theory. These approaches posit that the system (dynamic per
se) can create a stable pattern composed of few elements and can shift (or phase-transit) to
another pattern to adapt to external or internal constraints. Nevertheless they considered this
approach as a biased concept as it is composed of only two or three variables to explain more
complex phenomena. Finally, the third class of complexity was called “Aggregated
complexity” and the interest of this approach is based on interactions between multiple
elements to create complex behavior. This class gives more importance to the links between
the multiple elements that make up the system (dynamic interaction-dominant system) rather
than to the number of elements constituting the system (component-dominant system), which
would reflect a complicated but not complex system. Combining these second (deterministic)

and third (aggregated) definitions fits well with the theoretical approach previously proposed
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by Morin and others and studies in the field of human movement science. Complexity (or
complex systems) is generally defined only in opposition to simplicity and/or predictability
(Morin, 1994). In our everyday life and current language, complexity is understood as
complication. Complication refers to the idea that the system is composed of a huge number
of components. Interactions between components are generally considered to be of second
order and therefore of less importance (if not ignored). The first main point of this dissertation
is therefore to adopt an approach that take into account the links between elements which will

prove to be a common basis whether from a theoretical or a methodological point of view.

In the (specific) field of human motor control science, this complex system approach based on
the study of the links between the elements rather than the analysis of the elements in an
isolated way has been of increasing interest for many years (Sleimen-Malkoun et al., 2014;
Delignieres & Marmelat, 2012; Diniz et al., 2011; Wijnants et al., 2009). Indeed, earlier
approaches proposed in this field (isolated component analysis), can be complemented by the
analysis of their relationships to have a more precise overview of the operation of the systems.
In this sense, researchers have generally analysed the performance produced during a task
using measures like the two first statistical moments (mean and standard deviation), thus
considering that data distributions are Gaussian throughout time or repetitions. This approach
does not make it possible to study the links (or dependencies) between the successive data
obtained. For example, for a simple finger-tapping task, the accuracy (performance) of the
participant could be investigated using the lag between the metronome (external cue) and the
finger tap (motor behavior) or the drift for a synchronization-continuation task. High
variability or deviation from the initial tempo is associated with a poor performance (Semjen

et al., 2000; Repp, 2005).

Although these standard statistical analyzes are important, such measures are not directly
related to the dynamics of the system and consider that trial-to-trial correlations are absent. In
fact, previous researches have demonstrated that serial correlations observed in several human
movement tasks contained a special kind of correlations known as 1/f noise or fractal process
(Box 1; Gilden et al., 1995; Wagenmakers et al., 2004). This process implies that the time
series are composed of so-called long-range correlations (LRC) between successive values. In
other words, if the previous values tend to increase, there is a high probability that the current
value will follow this trend (and reversely for a decrease). It has been proposed that the

ubiquitous presence of these long-range correlations in time series is the signature of systems
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in which the dynamics are dominated by a rich set of multi-scale interactions between their
elements (Kello et al., 2007). A system as complex as the human organism will therefore
produce long-range correlations in many situations. Nevertheless, although these properties
reflect a complex system that is healthy, we can ask ourselves the question of what a
pathology would entail in this organization, in a complementary way, if the presence of these
LRCs would be directly related to this specific organization and therefore present a health

marker potential.

In a relatively theoretical way, and in view of the properties of the complex systems described
above, a loss of complexity can initially be expressed through a loss of elements that compose
it. It seems relatively simple to imagine that, although the system is composed of a very large
number of elements, a significant loss of these elements will result in limited reorganization
capabilities. It is, for example, the often proposed hypothesis about the neuronal loss of
elderly people, which would then lead to lower motor and/or cognitive capacities (Morisson
& Hof, 1997). Nevertheless, complex systems, when only taking into account an approach
based on its components, are not composed of elements of equal weight. Some of these
components (as we will see for the brain especially) are defined as “hubs”, hyper-connected
and essential elements, which can be considered as the minimum basis of any system. An
“attack” on these hubs would be more damaging because occupying a larger space and more

important functions than others.

Indeed, given the above consideration, the functional properties of the system are not limited
to its components (i.e., aggregated complexity). The loss of complexity could be understood
in two ways. First, a reduction in the strength of the links between the elements and, second a

loss of elements resulting in a decrease in the number of links within the system (Figure 1B).

A) C)
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Figure 1B: Hypothesis approach of the loss of complexity. A) A complex system composed
of multiple links between elements. B) A loss of complexity due to a decrease of the strength
of links between elements. C) A loss of complexity due to the loss of elements, which results

in a smaller number of links.

Finally, since these links can be considered as exchanges of information with dynamic
properties, the loss of complexity of systems can also be due to a modification in information
exchanges that becomes too continuous (rigid) or too random (chaotic). We will see
especially at the level of the brain that the recent advances in neuroimaging make it possible
to tackle the temporal evolution of the organization of neural networks rather than taking a

single snap.

Considering humans as a complex system has led many researchers to better understand the
possible loss of complexity of the system with age or diseased. This research work, often
conducted in a clinical context, has focused on the distinction between groups of healthy
subjects versus pathological or aging population. The approach here is to consider a healthy
subject as being at an optimal level of complexity (Figure 1C). Conversely, pathology or
aging should lead to a loss of system complexity towards excessive order or disorder
depending on the level of impairment (Goldberger et al., 2002; Lipsitz, 2002; Vaillancourt &
Newell 2002).

Complexity

Disorder Order

Figure 1C: The possible continuum of the complexity evolution. X-axis represents the
evolution of the complexity from disorder (low predictability) to order (high predictability).
Y-axis represents the level of complexity. An optimal complexity is at the top of the curve.

Adapted from Stergiou & Decker (2011).



1.2 The loss of fractal properties

Due to the ubiquitous phenomenon of long-range correlations in various tasks it seems
relatively understandable that teams of researchers have been interested in the possible origin
of fractal processes within the central nervous system (Pritchard, 1992; Wink et al., 2008;
Allegrini et al., 2009). It’s not surprising then that these authors investigated the evolution of
LRC in pathological populations who develop neurological impairment. For example,
Parkinson’s disease could be a clinical model to study the importance of the basal ganglia,
which have been shown to be one of the most affected parts of the brain due to a lack of
dopamine. In addition, the basal ganglia are a potential production center for the sensorimotor
rhythm (Benoit et al., 2014). Others suggested that the cerebellum could be considered as the
“time keeper” of the brain (Ivry et al., 1988, 1997) and per se a cerebellar stroke should
decrease the presence of LRC in timing time series. Nevertheless, to the extent that these
approaches have the advantage to wanting to localize the timing processes, some limitations
could be highlighted due to the complex organization of the brain. The behavior of a system
like the brain results from multiple interactions between multiple subcomponents acting at
multiple time scales (Kello et al., 2007; van Orden et al., 2003). Studying an element in
isolation remains reductive especially since these approaches do not generally take into

account the possible temporal evolution in the series studies.

The tools and methods currently available make it possible to understand in an ever more
precise way the functioning of each element of the biological systems as well as their
interrelations. However, it seems necessary to try to find out simpler markers usable on a
daily basis to reflect the complexity of systems at a macroscopic behavioral level. A fractal
approach to complex systems has been promising for many years. This approach is based on
the assumption that time series are produced by complex systems are the result of an optimal

interaction between elements and sub-systems that constitute them (Kello et al., 2007).

The distinction between healthy and pathological subjects was highlighted in many contexts
and helped to increase hope to discovering a health marker. For example, loss of LRC in heart
rate dynamics has been shown in subjects with congestive heart failure (excessive regularity)
and cardiac arrhythmia (uncorrelated randomness) compared to healthy subjects (Peng et al.,
1995; Golderger et al., 2002). At the macro scale (closer to the current field of study), the

study of the loss of complexity was initiated by work done on the inter stride intervals when
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walking. Hausdorff et al. (1997) showed an alteration of LRC during walking in the elderly
compared to young healthy subjects and in people with Huntington’s disease compared with
disease-free controls. Following these seminal studies, many experimental proofs followed
this outcome in several diseases and many different tasks. It is the case in postural oscillations
in aging (Blaszczyk & Klonowski, 2001), gait dynamics in Parkinson’s disease (Hausdorff et
al., 2009), serial reaction time in attention deficit disorder (Gilden & Hancock, 2007), the
brain dynamics in Alzheimer's disease (Gomez et al., 2009), people suffering from depression
(Pezard et al., 2001), or epileptic subjects (Babloyantz et al., 1989). All these studies taken
together allowed to develop the “theory” of the loss of complexity with both age and disease
and thus the hope of finding a relatively simple marker of health (i.e., LRC) and likely
applicable to many pathologies.

Nevertheless, this multiple empirical evidence also points out some limitations to
acknowledge. Although these authors generally consider that fractal time series are commonly
produced by healthy subjects, this phenomenon does not allow a precise understanding of the
origins of these properties. This approach generally considers that the loss (or decrease) of
long-range correlation with pathology reflects a decrease in the adaptability potential caused
by a loss of complexity of the system. Pathology leads to a decrease in the ability to perform
tasks correctly or not. Can all the pathologies studied (e.g. Parkinson’s, Huntington’s, cardiac
arrhythmia) really have common properties? The causes of these pathologies are diverse and
do not affect the same functional subsystems. Let us take here two examples of pathologies
that mainly affect the brain. Parkinson's disease is generally presented as a dopamine
deficiency including the basal ganglia (Obeso et al., 2000). Patients with Alzheimer's disease
show a decrease in glutaminergic activity in the frontal lobe compared to healthy elderly
subjects (Smith et al., 1991). The modification of the temporal correlations in the time series
of gait produced by these two types of pathology compared to healthy subjects therefore
raises questions (e.g. Choi et al., 2011; Hausdorff et al., 2009). Although it make it possible to
discriminate against pathological populations, this approach has certain limitations
particularly in clinical settings. The hope of using this approach in clinical routine therefore
requires comparing this empirical evidence with more fundamental approaches, which could
lead to a better understanding of the underlying process of this ubiquitous character.
Furthermore, the loss of complexity with age and disease was more often studied through
subjects with so-called “central” suffering. Nevertheless, the studies presented previously

(e.g. Blaszczyk & Klonowski, 2001, Hausdorff et al., 2009 Gilden & Hancock, 2007, Gomez
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et al., 2009), have investigated either macroscopic behavioral variables or cerebral signals
without making a direct link between these two different levels of observation. The question
arises as whether the variables studied in motor/cognitive tasks reflect an overall suffering on

the entire system or a specific subsystem potentially located in the brain.

A possible confounding factor to understand the functional meaning of the loss of complexity
can be highlighted especially based on the study of Manor et al. (2010). Indeed, may consider
that for an organism presenting an age-induced deficit or pathology, the realization of a task
will require an increased control to compensate for this deficit. The subjects will
predominantly use the modalities that the pathologie has not reached. They would also pay a
careful attention to the reached modalities in order to continue the sensory information
integration, which are necessary for the task realization. The authors studied the postural sway
dynamics during quiet standing in four groups of elderly subjects: controls (no impairment),
visual impairment only, somatosensory impairment only, and combined impairments. Their
results have showed a higher complexity in the control group compared with other groups;
subjects in the combined impairments group had the lowest complexity value. Manor et al.
concluded that the degree of complexity is associated to the subject’s adaptive capacity. Low
physiological complexity may indicate a system that is less adaptive to external perturbations.
This type of approach can also be understood through locomotor tasks such as walking. Many
studies have investigated the effect of a dual task (usually cognitive) on walking parameters in
a large number of conditions, such as Parkinson’s disease (O’Shea et al., 2002), Alzheimer’s
disease (Muir et al., 2012), stroke (Yang et al., 2007; Plummer-d’Amato et al., 2008). This
was also extensively performed in healthy elderly fallers (Toulotte et al., 2006) and with
aging for example (Hollman et al.,, 2007; Beauchet et al., 2005). All these studies taken
together showed a more pronounced decrease in performance in pathological subjects than in
control suggesting a decrease in the adaptability potential for these populations. Nevertheless,
although these authors consider that they analyze the adaptability of the system as a whole,
we can ask ourselves a question about the possibility that these measures would rather reflect
the adaptation of the subject in the realization of a given task and in a given context, rather

than the system itself.

Because adaptation has a variety of meanings that are different in various fields and
disciplines, we should define what we consider as adaptation in this dissertation. Our

approach considers the adaptation of a system as: “Adaptation is the change by which
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organisms surmount the challenges to life” (Lasker, 1969). In this sense, adaptation is a
modification in either structure or function that enables an organism to survive. Adaptation
could then be seen at a particular physiological location of the human (e.g. brain area
plasticity) or at the whole individual. This definition brings us to draw a parallel with the
notion of evolvability proposed in the literature (Whitacre, 2010), which is considered as “the
capacity of the system to innovate”. Going hand in hand, we define adaptability as the ability
to maintain a state (in our dissertation a motor performance) by facing internal or external
constraints on the system. This definition refers to the robustness property of the system. The
two notions of adaptation and adaptability are closely linked and can in some sense be
conceived as antithetical. On the one hand, the system should face to external constraints
while continuing for example to perform the initial task. On the other hand, when the
constraints are too (present) important, the system must navigate between new possible
configurations to adapt and respond. A complex system is then a composition between

functional properties of robustness and evolvability (Figure 1D).

A) High Robustness B) Low Robustness C) High Robustness
Low Evolvability High Evolvability High Evolvability

. . TN

Figure 1D: Main possible configurations of a system. a) A system with high robustness but

low evolvability, b) a system with low robustness and high evolvability c¢) a complex system
composed of high robustness and high evolvability. Central node is the system. Colours
represent the strategy proposed. The same colour of system implies a strategy known to
perform the task. A different color implies that the system should innovate to respond to

constraints.

While authors generally consider a direct link between the proposed analyzes and the
complexity of the underlying system, there is still some shadow in the real meaning of the
loss of complexity, particularly with regard to the current proposed experimental paradigms.

The loss of complexity is generally evidenced concomitantly with a decrease in performance
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measures in the proposed experimental paradigms. Nevertheless, the link between the
robustness property of complex systems and/or their evolving capabilities is not directly
brought to light. Experimental evidences are therefore indirect and there is possibly a
confounding factor in the actual significance of the presence of long-range correlations (or
their loss) in healthy or pathological subjects. In particular, we can highlight the confounding
factor that we will name in our dissertation: effective adaptation. Do the variables resulting
from the experimental paradigms implemented in our laboratories reflect the totality of the
adaptive capacities of the underlying system or only certain states of effective adaptation to
perform the task at a given moment for a single experimental condition? In this sense, our
first study (Chapter 2 of this manuscript) will attempt to better understand the significance of
long-range correlations, especially in terms of robustness of the system (or its adaptability),

addressing healthy subjects.

Several teams from experimental psychology or human movement sciences have attempted to
better understand the ubiquitous presence of LRCs and their functional meanings in a large
number of experimental paradigms. The pioneering work of Gilden, Thornton and Mallon
(1995), has highlighted the presence of LRC in time series coming from the reproduction of
spatial and temporal intervals during a task. These authors thus showed that deviations from
the mean during successive repetitions of the same task has some degree of correlation and is
therefore not strictly white noise. Then, numerous experimental evidences have been reached
on the presence of LRC in simple reaction time tasks (Van Horden et al., 2003; Holden,
2005), force production (Wing et al., 2004), bimanual coordination (Torre et al., 2007),
synchronization with a metronome (Chen et al., 1997, Torre & Deligniéres, 2008), movement
times in a Fitts' task (Wijnants et al., 2009, Slifkin & Eder, 2014), pointing task (Miyazaki et
al., 2004), walking (Terrier et al., 2012, Dingwell and Cusumano, 2010), cycling (Warlop et
al., 2013) or rowing (Den Hartigh et al. 2015).

Although these studies were conducted with young and healthy participants, the authors were
able to highlight a loss of complexity (decrease in the presence of long-range correlations)
during their experiments through the time series analyzes they carried out. The modification
of the instructions or the experimental conditions for the realization of the task came to
modify the presentation of LRC. Redundantly, the increase in experimental constraints
imposed has resulted in long-range correlation changes in the time series produced. Indeed,

the completion of a task with a metronome (e.g. Torre & Delignicres, 2008), an imposed step
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rate or the addition of a visual feedback to control the performance (e.g Warlop et al., 2013)
led to worse correlated time series (occurrence of white noise). These surprising results
allowed the authors to formulate the idea that the addition of non-essential feedback to
achieve the task would force the system. In this sense, the optimal complexity (as reflected by
LRC) could therefore be considered as the natural signature of the system, whose intrinsic

fluctuations are freely expressed without major control (Kello et al., 2010).

The previous sections of this manuscript highlight some fundamental questions on the
functional significance of fractal properties. On the first hand, fractal properties used to
analyze the loss of complexity of any system revealed that the long-range correlations could
be distorted in elderly and diseased subjects compared to healthy subjects, but also in subjects
using increased feedback to perform the experimental task facing to external constraints. As a
consequence, it might be difficult to distinguish whether time series complexity reflects the
underlying system and its adaptability capacity or effective adaptations of the system to
perform a task according to the imposed external constraints. This issue will be investigated

in this dissertation.

Nevertheless, one question now results from the possible origins of the effective adaptation
and the functional significance of fractal properties at the global (macroscopic) scale of
observation (in our case the motor behavior). Two theoretical ways were developed in the
previous literature that was named the “nomothetic perspective” and the “mechanistic
perspective”. The first perspective generally considers that fractal processes are not specific
of one part of the complex system (or one scale of observation) but are rather a general
outcome from all components and all links between components (Van Orden et al., 2005).
This approach is based on the self-organizing principle of the system and the emergence
concept (Kello et al., 2010). Authors proposed that the self-organization of the system
composed of multiple degrees of freedom evolves to a minimally stable state and that the
multiplicative effect of the multiple scales leads to a power law (or 1/f noise, fractal process)
(Bak et al., 1987). For authors, factal time series is a ubiquitous phenomenon (Gilden, 2001;
Kello et al., 2008). On the other hand, the mechanistic approach driven by simulation studies
(see for example the discussion of the study of Deligniéres & Marmelat, 2012) revealed that
fractal processes could be generated by a relatively low number of components and
parameters. The second mechanistic perspective follows the idea that different mechanisms

can generate fractal time series, which depends on the behavior under study (i.e., the task or
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the scale of observation). Globally, for the first nomothetic approach, as the fractal time series
is ubiquitous, there is no reason to trying to investigate the possible functional origins of the
phenomenon and any potential links between components of the system. The second
mechanistic approach, opens a way to multiple and multimodal analyzis to highlight the
potential link between multiple scales of observation. Although these approaches were
initially proposed from a fundamental point of view and studied, thanks to computer
simulations, the development of neuroimaging tools makes it possible to investigate a new
track, in particular the link between the brain dynamics and the dynamics evaluated at the

behavioral level (See next Section 1.3).

1.3  Linking brain and behavior in neuroscience

For nearly a century, neuroscience research works have been trying to better understand the
site of the complex motor behavior generation in the brain. This fascination can be understood
from a fundamental point of view but also in the possible clinical applications for a better
understanding of multiple pathologies. The increasing development of neuroimaging methods
has shed light on the brain-behavior links in a large number of experimental paradigms. One
of the most used approaches is based on the adaptation paradigms. The concept of adaptation
is the keystone to understand the organization of the human in everyday life (and the loss of
adaptation in a pathological case). Much of the literature has used a simple sensorimotor task
combined with neuroimaging methods to better understand the performance production of a
one- or two-handed task as well as the complexity of the tasks. The initial focus of analytic
strategies in human neuroimaging was on identifying reliable task-dependent signal changes.
Such studies have used healthy volunteers to fundamentally understand the human
organization or compared healthy versus pathological participants to explain the causal link
between the changes in brain activation and the loss (or alteration) of adaptation in these
motor tasks. The brain activation profile during sensorimotor task was shown in
electroencephalography (EEG; Shibasaki et al., 1980; Sur & Sinha, 2009), positron emission
tomography (PET; Grafton et al., 1992), functional magnetic resonance imaging (fMRI; Kim
et al.,, 1993) and near-infrared spectroscopy (fNIRS; Holper et al., 2009; Leff et al., 2011)
studies. Performing a motor task modulates/influences activation profile in specific brain
areas such as the primary motor cortex (M1), supplementary motor area (SMA) and premotor
area (PMA) in healthy subjects. The difficulty of the task or the force production capability

was shown to lower the inter-hemispheric balance (Rao et al., 1993; Derosiére et al., 2014).
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Such findings were then considered as common sensorimotor markers in healthy subjects and
then compared to multiple pathologies or aging. This ushered in a new prolific era named
“brain mapping” and leads to the well-known statistical parametric map (SPM; Friston et al.,
1995) in fMRI and fNIRS studies and topographical map in MEG and EEG studies.
Nevertheless, this kind of study generally considers a priori that the variability corresponds to
white noise both at the levels of the behavior and the brain. This kind of noise being
considered as a participant error or induced by the equipment used, some filters and averaged
measurements for mass univariate analyzis of brain data are commonly employed.
Nevertheless, as previously indicated, this first basic approach leads to a loss of essential
information for a better understanding of complex adaptive systems. Similar to the behavioral
time series, brain signals extracted from EEG, fMRI and fNIRS measures were investigated
using more fine-grained methods than mean or standard deviation. Mono- and multi-fractal
analyzes were used to extract the complex time course of multi-frequency bands of EEG data
or hemodynamic responses contained in fMRI and fNIRS signals (e.g., Eke et al., 2002, 2012;
Figliola et al., 2007). In spite of efforts to link the brain and behavioral functions, approaches
used in the aforementioned studies still represent an oversimplification of the real adaptations
of the human brain and generally these empirical investigations did not attempt to make a
direct link between observations and the underlying model making it possible to generate this

kind of complex time series.

Some authors have proposed fundamental models to the functional organization of complex
systems producing fractal properties at the macroscopic scale. A first approach called “self-
organized criticality” was initially proposed by Van Orden and colleagues (Van Orden,
Holden & Turvey, 2003; Kello et al., 2007). These authors propose that the complex system
balances between numerous solutions, what they called the concept of criticality. The system
is considered metastable (Kelso et al., 1995; Kelso, 2012) which means that a small
perturbation at a given point in the system can lead to a global change in the system (Figure
1E). This property allows the system to explore new functions (or states), which will allow it
to be flexible and therefore adaptable. This “self-organized criticality” is only possible when
the system has multiple connections between its elements and between levels and therefore

assumes that the importance of connections is greater than elements constituting it.
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Figure 1E: 3D Modelling of the Metastability of a system. The yellow sphere represents the
current state in which the system is located. A slight perturbation may allow the system to
switch from one basin to another basin that modifies the state of the system. Adapted in 3D

from Kelso, 2012.

An alternative approach, close to the one developed previously, is the “cascade dynamics”
model (Ihlen & Vereijken, 2010). The key element proposed is that connections between
scales are dependent and thus reflect some dependencies. These dependences are reflected in
the exchange of information (or energy transfer) between scales. A perturbation at a small
scale will influence the state of the higher scale with a multiplicative coefficient. This specific
statistical dependence makes it possible to produce more complex time series (multifractals)

than the series produced by the model of self-organized criticality.

Although these models are interesting, a possible third candidate would explain the presence
of long-range correlations produced by complex systems. This approach was suggested by G.
Tononi, O. Sporns and G. Edelman in 1999 (Tononi et al, 1999) and was called
“Degeneracy”. The concept of degeneracy was firstly applied to the “structure” of a system
(whatever the level of observation is). Therefore, it does not refer to external events that may
occur on the system. Nevertheless, degeneracy is shown as a biological property and is
defined as follows: “A many to one relationship. Distinct elements could perform the same
function”. The above property is found at the biological level in the genetic code (DNA),
genes, synaptic connections, the connectivity of the cortical areas and the human movements

(Edelman & Gally, 2001). In order to better understand the concept of degeneracy, which is
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partially independent of that of degeneration, we can tackle it with the concept of redundancy.
The redundancy of a system is often considered as a sign of robustness (Whitacre, 2012;
Whitacre & Bender, 2010). From an engineering point of view, multiplying the
communication channels in parallel allows, in case of failure of one element, a propagation of
the signal through the redundant channels. For example, the computer on board of Curiosity
to explore Mars (boarding of two computers with the RAD750 PowerPC microprocessor but
only one being active at a time) allows, if a processor or a computer fails, to level the
problem; the second computer will take over. It is from these properties that degeneracy is
also commonly called partial redundancy. The fact of commonly pointing to degeneracy as
partial redundancy is due to these properties. Furthermore, degeneracy of systems is
considered as a prerequisite to allow for robustness and evolvability that are two essential
properties of complex adaptive systems (see Section 1.2). Taking into account the degeneracy
of the biological system, we argue that the system could use multiple functional
configurations during a task to perform the same function (functional intermittence) which is
one of the essential properties implemented both at the level of the brain but also of the
behavior (Kelso & DeGusman, 1991; Oullier & Kelso, 2006; Tognoli & Kelso, 2014).
Therefore, the long-range correlation properties of the biological series studied could be a
reflection of the degeneracy capabilities involved in the performance of a task. A decrease or
loss of complexity could be linked (at least in part) to a decrease in the degeneracy of the
system. Thus, we can hypothesize that fewer alternative functional configurations would be

available implying less adaptability to internal or external constraints.

Since the pioneer works of Santiago R.Y Cajal in the early 1900’s, the brain is generally
considered as the complex system par excellence for neuroscientists. However, a purely
regional and univariate approach does not explicitly address the possibility that
communication between distributed populations of cortical neurons contributes to cognition
and behavior. Such contributions may occur even in the absence of obvious changes in
regional brain activation profile (Misic & Sporns, 2016). Nevertheless, since two decades,
connections and interactions among brain areas (at the macroscale) are increasingly
recognized as the basis for complex cognitive and behavioral functions (Achard & Bullmore,
2007). From a theoretical point of view, the brain reflects both segregation (some parts are
dedicated for a specialized function) and integration (exchange of information between

multiple areas) (Friston, 1994; Park & Friston, 2013). Recently there has been an exponential
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development of neuroimaging tools aiming to monitor multiple brain areas with greater
precision: including the increased in the temporal and spatial resolution of fMRI and the
ability to cover the entire scalp of the brain with multiple EEG electrodes. Combined with the
development of computer sciences, researchers can study the brain as a (complex) network.
Within this context, we have to emphasize here two different approaches in brain network

studies (both are in any case highly linked and complementary).

First, the so-called “structural” connectivity tries to map the complete structure of the brain
(named the Connectome; Sporns, 2005) using for example Diffusion-weighted magnetic
resonance imaging or simulations. It is clear that the total description of the brain is not yet
possible with an organ composed of 10'' neurons and an estimation of 10° kilometres of
axonal projections forming a matrix of 10" bins (Papo et al., 2014). A widely used model to
answer fundamental questions concerning the structural organization of the brain is the
nematode Caernorhabditis Elegans composed of “only” 302 neuronal cells (Koch & Laurent,

1999).

Second, some neuroimaging methods like EEG and MEG (in the electric and magnetic
domains, respectively) as well as fMRI and fNIRS (methods based on the cerebral blood flow
changes) allow researchers to non-invasively examine the “functional connectivity”. The
functional connectivity is defined as the statistical dependency between two (bivariate) or
more (multivariate) time series extracted from these methods like frequency bands (alpha,
beta, etc. in EEG/MEG) or blood oxygen level dependent signal (BOLD in fMRI) following
the neurovascular coupling during brain activation. The statistical dependence between time
series linking cortical areas was initially achieved with what we now call a “seed based”
approach. This method requires the researcher to select an a priori region of interest (ROI)
and then quantify the similarity (e.g. correlation, coherence) between this ROI and all other
regions investigated. Nevertheless, this a priori can sometimes lead to certain limits when the
literature does not allow making strong assumptions and restricts the network topology to an
oversimplification. Today, realizing a whole brain functional connectivity analyzis is
commonly performed thanks in particular to the development of computing power and
methodological tools. These whole brain approaches allow to realize all the possible
combinations of connections (resulting in a noticeable increase of the data to be treated
statistically) and thus to extract a more realistic map of the brain networks (Figure 1F).
Although the first studies using functional connectivity tried to analyze the brain network

organization at rest and during the execution of a motor or cognitive task (e.g. Biswal et al.,
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1995), the major craze was developed for these studies during the so-called resting state

conditions.

Figure 1F: Example of the increasing level of computational complication using functional
connectivity analyzis. The number of links (grey lines) increases exponentially with the
number of areas that the researchers include. Personal data extracted from Studies 2 and 3 of

this dissertation. Spheres represent both optodes (yellow and blue) and channels (red) location

from fNIRS devices used.

Although many studies have been interested in the functional connections between different
regions of the brain and have shed new light on cerebral functioning at rest or during
cognitive/motor tasks, it is recently that first empirical evidences of the dynamics of
connections were highlighted (Chang & Glover, 2010; Hutchinson et al., 2013). As we have
seen previously, complex systems have both many connections between elements and
dynamic properties (including temporal evolution) that allow them to modify their functional
organization to meet internal and/or external constraints. It therefore seems essential, in view
of the models proposed and in particular the concept of degeneracy, to try to experimentally
understand the link between adaptations from a motor control point of view and the

dynamical organization at the level of the brain in a joint way.
1.4  Objectives of this dissertation

The literature presented in this introductory chapter highlights that two different explanations
are put forward for the loss of complexity of the systems expressed through the correlations
decrease in long-range correlations. While the loss of complexity was demonstrated in
pathological subjects compared to healthy subjects, other studies have shown changes in
LRC’s depending on the constraints imposed on participants. Although these studies are
generally dissociated in the literature, we can hypothesize a possible confounding factor

linking these two approaches. Indeed, we can think that aging participants or subjects with
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pathologies may set up an increased involvement of feedback to best accomplish the task,
potentially with an equivalent level of performance of healthy subjects. Therefore, the overall
objective of this dissertation is to highlight the functional significance of fractal analyzes
regarding the actual adaptation (effective adaptation) implemented to perform a sensorimotor

task under various external constraints.

This work is divided in three parts, which all describe components of the primary aim. The
first part of the dissertation investigates the functional significance of mono- and multi-fractal
analyzis during a finger-tapping task under various conditions (Chapter 2). In chapter 3,
concurrent changes of brain functional connectivity and motor variability are being compared
when adapting to task constraints. Chapter 4 explores the dynamics of the human brain
network revealed by time-frequency effective connectivity in fNIRS. Figure 1G represents the

links between all key words investigated or discussed throughout this dissertation.
This work addressed two main questions. These were:

- Are the long-range correlations present in a sensorimotor task reflect effective

adaptations or the adaptability of the subject?

- Is the capacity of effective adaptation of the subjects investigated at the level of behavior

related to the cerebral dynamics during the realization of the task?
It was hypothesised that:

- Mono- and multi-fractal analyzes reflect two distinct properties of the system under
study. Mono-fractal analyzes reflect the adaptability of the system while the multi- fractal
properties reflect the effective adaptation of the subject to achieve the task despite the

imposed constraints.

- Multi-fractal analyzes would reflect the dynamics of the degeneracy of brain networks

implemented as a function of the imposed constraints.
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Figure 1G: Diagram showing the links between the different keywords constituting the
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theoretical framework of this dissertation. This diagram will be the guideline between the

studies presented as well as all through the discussion.
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Box 1

Fractals

“Fractals are everywhere”

https://www.youtube.com/watch?v=Tpsu2uz9rCE

Although this statement is a bit exaggerated, it appears that fractal
properties are ubiquitous phenomena in multiple natural and biological
elements. Mandelbrot in the 70's realized that very often, Euclidean
geometry does not allow accounting for the complexity of the observed
forms. This approach was first developed in the field of mathematical
geometry and implies an essential property that is the self-similarity.
Whatever the observation scale of the object in question, it retains the same
characteristics as if we observe it at a higher or lower level. A relatively
explicit example of this phenomenon is expressed through the Von Koch

curve (or Koch snowflake, Figure 1H) (Mandelbrot, 1983).

Iteration = 1 Iteration = 4 Iteration = 8

Figure 1H: Representation of Koch snowflake for iteration 1, 4 and 8.
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Nevertheless this phenomenon is not limited to a specific case of iterative
mathematic but is also found for example in mountain peaks, torrents or
from a biological point of view in vascular branching or DNA. More
surprisingly, these fractal analyzes have also been studied in the properties
of chocolate surface (Pedreschi, Aguilera & Brown, 2002), the United
States Coastlines (Jiang & Plotnick, 1998) and Hard Disk surface (Kennedy
et al., 1999). Surprisingly, this (statistical) self-similarity property is also
commonly found in biological time series. In other words, the fluctuations
seem statisticaly the same, whether viewed at the scale of the year, the
week, the hour or the minute. This is different from a simulated sinusoidal
time series that will be identical to a single single frequency. A second
property of time series highlighted in the literature is the presence of long-
range correlations. The successive data constituting the series are more or
less correlated with each other. Their autocorrelation decreases slowly over
time. On the contrary, a series of white noise (totally random series) will
present an autocorrelation that will decrease very quickly (close to zero).
Successive data will not be related to each other over time. More simply, in
time series with long-range correlations (called fractals, 1/f noise or pink
noise), if the previous values have a tendency to increase, the current value
will be more likely to continue to increase as well (see Figure 11). This
property, which links the data between them, will therefore limit the
aberrated values (which will be very rare). As a result, the fractal series will
be composed of values according to a power law. Small events (small
disturbances) will be more numerous than major events. In other words, the

amplitude is inversely proportional to the frequency.
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Figure 11: Distinction between White noise, 1/f noise and Brownian motion.
From the White noise (left) to the Brownian motion (right), correlations in
time series increased as reflect by the auto-correlation plots (middle) and the
Log Power spectrum density (below). 1/f noise (pink noise, fractal time
series) is represented in the middle column. This figure is extracted from

Delignieres & Marmelat (2012).

Many methods have therefore been developed to account for the presence of
these long-range correlations in the time series. One of the most common
and relatively robust was proposed at first by Peng (1995) and applied to
heartbeat time series. Nevertheless, this method considers that long-range
correlations are homogeneous over time in the time series. The dynamic
properties of biological systems allow them to make the assumption that
these correlations will fluctuate between moments when the correlations
between successive data are relatively limited and others relatively long. For
this purpose, multi-fractal analyzes were developed to account for these
fluctuations, notably by Kantehlard's work in 2002 (see also Thlen, 2012 for
a comprehensive matlab tutorial). Multi-fractal detrended fluctuation
analyzis (see Chapters 2 and 3) will therefore analyze the dependence
between successive data at different time scales and will result in output by
a multitude of exhibitors. The difference between the weakest exponents
and the highest exponents will reflect the multi-fractality level of the time
series. These two analyzes (mono- and multi-fractals) will be at the heart of
the first two articles proposed in this work and in particular their meanings

when representing the underlying system.
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Chapter 2

Adaptability or adaptation:
functional meaning of fractal

properties
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Results presented in this study are preliminary.
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Abstract:

The loss of complexity in bio-behavioral variables sees two discordant approaches which
coexist: the loss of complexity with age and disease, and the loss of complexity due to
increased sensorimotor control. Thus, the loss of complexity appears as an ambivalent
phenomenon. The purpose of this study is to specify these functional meaning. Eight groups
of subjects performed a self-paced finger-tapping task under incremental feedback deprivation
(auditory and/or visual and or proprioceptive). A deafferented subject (IW) was also included.
The literature indicates that unlike visual and auditory feedback, only deprivation of
proprioception may possibly be a constraint for tapping performance. We analyzed the joint
evolution of the performance as well as the mono-fractal and multi-fractal properties of the
series of inter-tap intervals produced. Preliminary results show an identical pattern of results
for performance and the mono-fractal exponent, both being degraded for IW only. On the
other hand, the level of multi-fractality increases progressively with the number of feedbacks
deleted. Given the independent evolution of mono- and multi-fractal properties, we discuss

their respective meanings in terms of effective adaptation and adaptability of the system.

Keywords: adaptation, fractals, DFA, MFDFA, tapping, feedback
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1. Introduction

Since the advent of neuroscience,
the heart of much research has been to find
health markers in order to discriminate
pathological from healthy populations. In
this sense, a relatively recent discipline is
interested in the analysis of time series
produced at a macroscale level (e.g. motor
control output). While the first studies
multiplied the repetitions of the same
experimental condition and then extracted
the average value or variability, this
approach  has  some  shortcomings
considering that repetitions between
successive  values or events are
independent in time. However, this
assumption is more the exception rather
than the rule (Slifkin & Newell, 1998) and
a temporal dependence between successive
events were shown as a valid approach to
discriminate much pathology through a
wide range of time series analyzed. One of
the first and most understandable examples
is from works of heartbeat time series
(Peng et al., 1995). At first, these studies
show that beat-to-beat fluctuations in heart
rate intervals follow a power law and
display long-range correlation in time (or
1/f noise, pink noise, fractal process). This
was followed by the investigation of these
statistical properties into time series of
pathological subjects such as those with an

arrhythmia or congestive heart failure

(Goldberger et al., 2002). Time series from
pathological populations revealed a
decrease in these long-range correlations,
the temporal dependence on events was
less dependent on each other, close to
white noise. This has led to the search of
many clinical teams for and identification
of long-range correlations (and its
decrease) in much pathology and
experimental paradigms. These researches
have highlighted the possibility to
discriminate healthy subject to
pathological or aging population in gait
(Huntington and Parkinson disease;
Hausdorff et al., 1997), postural sway
(aging; Blaszczyk & Klonowski, 2001),
reaction time (ADHD; Gilden & Hancock,
2007) and brain activity (Alzheimer;

Gomez et al., 2009) for example.

Nevertheless, these studies do not reveal
the possible origin of the presence of these
long-range correlations in the healthy
subjects and the mechanism explaining the
tendency to produce white noise in the
pathological populations. This notion
being easily grasped at a macroscopic level
of observation, the study of the human in
the achievement of motor tasks would
therefore make it possible to apprehend the
complexity of the system by observing the
time series produced. On the basis of this
postulate, a deficient / pathological system,

conceived as suffering a loss of complexity
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due to the loss of elements or links
between these elements, should be
reflected in the fractal properties in the
tasks produced. Nevertheless, the loss of
long-range  correlations ~ was  also
highlighted in studies apart of any
pathological context. These studies
highlight a loss of long-range correlation
when changing constraints on subjects in
many tasks. Such evidence was thus
investigated in Fitt’s task (Slifkin & Eder,
2014), gait on treadmill with auditory
metronome (Terrier et al., 2012; Dingwell
& Cusumano, 2010) and cycling pattern
with visual control (Warlop et al., 2013).
As subjects included in these studies are
young healthy volunteers, long-range
correlations could then reflect the natural
signature of the healthy system performing
a task without undue constraints (Kello et
al., 2007; 2010). A tendency to produce
white noise time series would reflect
increased biomechanical or cognitive
control of the subjects, thus preventing
them from performing additional tasks (for
example in very strong double task
paradigms). This proposal is not
contradictory with the theory of the loss of
complexity with aging or pathology.
Indeed, much pathology and aging are
generally related to a loss of sensory

feedback directly due to the pathology or

with cortical reorganization in visual

and/or auditory and/or proprioception (Li

& Lindenberger, 2002).

One interesting study proposed by Manor
et al., 2010, crossed both kind of approach
proposed above that are generally
segregate in a postural control task. Aging
participants were classified in groups of
sensory impairment as control (aging
participants without impairment) and with
visual and/or somatosensory impairment
and performed a postural task with a dual
task. Authors highlight that group with a
loss of sensorial feedback product less
long-range correlation in postural control
time series and therefore postulated that
complexity analysis could reflect the

capacity to the system to adapt in tasks.

Nevertheless, there is no clear distinction
in this study as to the possible confounding
factor between the adaptive capacities of a
system that can be divided into two
subparts. On the one hand, the adaptability
of a system can be seen as being very
strongly related to robustness properties.
Depending on the internal or external
constraints imposed on the system, the
system will be reorganized from a
functional point of view to continue to
maintain the level of performance required
in the performance of the task. However, in

this study the authors do not directly
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manipulate feedback such as vision or
having deficiencies of these systems
following pathologies, the study does not
therefore make it possible to discriminate
if the loss of complexity expressed through
the fractal analyzes would reflect a
deficient system or the implication of
different feedbacks in the accomplishment

of the task.

Given the above considerations, the
purpose of the study is to directly
manipulate the feedbacks in the realization
of a motor task in healthy subjects to allow
to clearly identifying if the implication of
these feedbacks (and their decrease) will
influence the fractal properties, which
result from it. In this sense, we will use
mono- and multi-fractal analysis as the two
approaches could highlight different
properties of the system (lhlen &
Vereijken, 2013). One the first hand,
mono-fractal properties (e.g. Detrended
fluctuation analysis) reflect a global and
unique exponent considering that long-
range correlations are homogeneous in
time and reflect a general property of

complex systems. On the other hand multi-

proprioception. The subjects

fractal  analysis  (e.g.  Multi-fractal
detrended fluctuation analysis) could
reflect the effective adaptation of the
system under constraints reflecting
changes in correlation at short or long time

scales.

Following from the above, we

hypothesized  that  healthy subjects
performing a simple finger-tapping task
will therefore reflected a same mono-
fractal exponent independent of the
external constraints imposed to performed
the task. On the other hand, multi-fractality
should evolve with the external constraints
(the number of feedback deprived, namely
auditory and/or visual feedback) imposed
to perform the task. Additionally, the
suppression of the proprioception (assessed
with the help of an anesthetic block and a
deafferrented subject) should reflect a
decrease in all variables (performance,
mono-fractal and multi-fractal) compared
to other groups, as the deprivation of
proprioception was highlight as a putative

constraint in a finger-tapping task

(Aschersleben et al., 2002).
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2. Materials and methods

2.1 Participants

2.1.1 Healthy participants

Ninety-four healthy young volunteers took
part in the study (fifty-three men, fourty
one women, 24.5 + 5.2 year of age). All
participants signed a written informed
consent before participating in the study.
All participants performed the study with
their self-reported dominant hand (heighty
nine right handed and five left handed) and
reported normal hearing, normal or
corrected vision and normal
proprioception. None showed any sign of
neurological  disease, nor  reported
extensive practice in music. All procedures

complied with the Declaration of Helsinki

for human experimentation.

2.1.2 Deafferented participant

One deafferented participant (IW)
was include in the study. IW is subject of
complete loss of cutaneous touch,
kinematics and movement/position sense.
Pain and temperature sensations are
clinically spared, and there was no motor
nerve impairment due to a large sensory-
fiber peripheral neuronopathy below C3
occurred at age 19. Nevertheless, after a
clinical rehabilitation IW was able to move

by visually monitoring his movements.

2.2 Experimental design and procedure

The experimental design was an
independent-group  design  with  the
experimental factor being the numbers of
sensorial feedbacks the participants were
deprived from and at a second level the
sensorial modality. Participants were
randomized to one of the height following
conditions: (i) no feedback deprivation
(Control), (ii) deprivation of one feedback,
visual, or auditory, or proprioceptive (-1
FBa, -1 FBv, -1FBp); (iii) simultaneous
deprivation of two feedbacks, visual and
auditory, or visual and proprioceptive, or
auditory and proprioceptive (-2 FBva, -2
FBvp, -2 FBap); (iv) simultaneous
deprivation of three feedbacks, visual,
auditory and proprioceptive (-3 FB). IW
was deprived of the visual and auditory
feedback in addition to cutaneous touch
and kinematics loss due to the pathology.
Participants were deprived of visual and
auditory feedbacks using a sleeping mask
and ear defenders, respectively. The
proprioceptive feedback was prevented by
anesthetic sensory block (injection of
ropivacaine, = 7.5 mg/ml) at the three
nerves of the wrist (ulnar, medial, radial)
with a volume of 2 ml per nerve. Each
participant performed three tapping trials
in the assigned conditions. As mentioned
above, none of the visual or auditory
deprivations  should  alter

tapping
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performance (Repp & Su, 2013;
Aschersleben & Prinz, 1997, 1995)
however the loss of proprioception (with
anesthetic bloc or for IW) should alter the
performance (Aschersleben et al., 2002,

2006).

2.3 The tapping task

The experiment was conducted in a
quiet room. Participants were sitting
comfortably on an adjustable chair, with
their dominant side forearm and palm of
the hand resting on a customized plinth
(570 x 160 x 50 mm) on a table in front of
them. Subjects realized a tapping task
according to a conventional
synchronization-continuation paradigm
(Wing and Kristofferson, 1973; Vergotte et
al., 2017): during the initial
synchronization phase, the tempo was
prescribed by a PC-driven auditory
metronome delivering 20 signals at a
frequency of 1.5 Hz (0.666 s inter-tap
intervals), known as a comfortable tapping
frequency (Fraisse, 1966; Torre &
Delignieres, 2008). Once the metronome
stopped, participants had to continue
tapping by maintaining the prescribed
tempo as accurately and regularly as
possible for the whole trial duration. The

duration of each trial was set to 6 minutes

40 seconds so as to ensure a sufficient

number of inter-tap intervals to be
submitted to subsequent fractal analysis
(Eke et al., 2012; Delignicres et al., 2006).
Between each of the three trials,

participants had a 2-min rest.
2.4 Data collection

Movements of the index finger
were captured using a single-axis
accelerometer (15 x 15 mm) fixed on the
nail so as to minimize possible device-
induced sensorial feedbacks. Acceleration
data were collected using a Labjack Ul2
device and stored via its software
(LJStream v1.07). The sampling rate was
300 Hz.

2.5 Data analysis

2.5.1 Tapping performance

Raw acceleration data were first
low-pass filtered using a Butterworth zero-
phase digital filter (Frequency = 15 Hz).
Then, a MATLAB in-house script
(MATLAB 2014b, The MathWorks) for
peak detection was used to extract the
onsets of the subsequent finger taps. Series
of inter-tap intervals (ITI) were then
computed as the differences between
subsequent tap times. For each trial, the

first twenty ITI (corresponding to the
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synchronization phase) were discarded,
and series of 512 ITI in the continuation
phase were retained for further analyses.
For each ITI series, we computed the
typical performance variables used in
tapping studies (Billon et al., 1996; Repp
& Su, 2013), namely the mean, the
coefficient of variation (CV) and the linear

drift over the trial duration.

2.5.2 Fractal analysis

Fractal time series are basically
characterized by fluctuations with scale
invariant structure (i.e., obeying a power
law distribution X(ct) = ¢"'X(t), where X is
the signal, ¢ is a constant, H is the fractal
exponent) and temporal long-range
correlations (meaning the autocorrelation
function of the time series decays as a
power-law without falling to zero). To
analyze the fractal properties of ITI series,
we used the mono-fractal Detrended
fluctuation analysis (DFA, Peng et al,
1995) and the Multifractal Detrended
Fluctuation Analysis (MFDFA, Thlen,
2012; Kantelhardt et al., 2002). In short,
DFA exploits the diffusion properties of
the time series, analyzing the relationship
between the average amplitude of
fluctuations and the size of the observation
window within which these fluctuations
are measured. For fractal series, a power-

relationship characterized by the mono-

fractal exponent a € [0, 2] is expected: in

particular, for o = 0.5 the series is white
noise, for o = 1, the series is so-called //f
noise, and for 0.5 < a < 1 the series is
considered stationary and containing
persistent long-range correlations. By
yielding a single fractal exponent (o)
characterizing  the  average  fractal
properties of a time series, the DFA
assumes that the fractal properties are
homogeneous over all scales of the entire
time series.
However, instead of being
characterized by a single homogeneous
fractal exponent, time series of bio-
behavioral variables are often
characterized by an inhomogeneous
distribution of variability (intermittent
fluctuations). The fractal exponent may
vary over time scales: the series is actually
characterized by multiple fractal exponents
(Ihlen & Vereijken, 2010) and with this
viewpoint the MFDFA was developed
(Ihlen, 2012; Kantelhardt et al., 2002).
MFDFA basically uses the same steps as
DFA, but the average amplitude of the
fluctuations is calculated using ¢” order
fluctuation function, with ¢ varying from -
10 to +10 in steps of 0.5, whereas DFA
computes the amplitude of fluctuations

only for ¢ = 2. In brief, the time series x(7)

is first integrated into X(k) following Eq.1:
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X(k) = T4 [x@) — %]
(Eq.1)

The series is then divided into N, adjacent
segments of length n. Within each segment
(s =1,
subtracted from X(k). So, the amplitude of

..., Ny) the local trend is then

fluctuations is computed for each
detrended segment according to:

2

Sn

F(ns)=2 3 [X(h)-x,, k)]

N =(s-1)n+1
(Eq.2)
The variance is then averaged over all
segments to obtain the qth order fluctuation

function:

Fq(n>={Ni2"[F2<n,s>]“} (Eq.3)

n s=1

If the series x(i) presents fractal properties,
the generalized Hurst exponent A(g) is
given by:

h(q)
F, (n)e<n™

According to Kantelhardt et al. (2002), the
result of MFDFA can then be converted

into the classical multi-fractal formulation
using simple transformations, to be finally
summarized by the multi-fractal spectrum
representing F(a) as a function of a(g),
where F(a) is the fractal dimension (or
dimension of the subset of the series that is
characterized by a), and « is the Holder (or
singularity) exponent. Our variable of
interest is the width of the multi-fractal
spectrum (MF-Width), meaning the range
between the minimum and maximum
exponents oa(g) characterizing the time
series, which represents the degree of

multi-fractality.

2.5.3 Statistical analysis

After normality testing (Lilliefors
test), between-group differences were
tested using ANOVA on the three tapping
performance variables (mean, CV and drift
of ITI series), and on mono-fractal
exponent DFA (o) and multi-fractal width
(MF-Width) with Bonferroni post-hoc
correction. The comparison between -
2FBav and IW was done by a ofléds4mple
t-test.
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3. Preliminary Results

3.1 Tapping performance

3.1.1 Mean IT]

All reported results relate to control
conditions, -1FBa, -1FBv and -2FBav
conditions. Mean tapping performance was
normally distributed for 7 of our 8 mean
variables (4 conditions, 2 repetitions;
p>0.1). The ANOVA applied to the mean
didn’t showed any statistical significant
difference between the frour groups

(F(3,29)=2.38, p> 0.05) (Figure 2A left).

3.1.2 Coefficient of variation of ITI

Coefficient of variation was normally
distributed for the 8 variables (p > 0.10).
Our experimental design was thought to
impose different levels of constraints to the
subjects without inducing differences in
tapping performance. The ANOVA didn’t
show any statistical difference between the
four conditions (F(3,60) = 0.704, p > 0.05)
(Figure 2A middle).

3.1.3 ITI Drift

The linear drift was normally distributed
for 7 of our 8 variables (p > 0.1). The
ANOVA didn’t show any statistical

difference between the four conditions

(F(3,29) = 1.047, p > 0.05) (Figure 2A
right).

3.2 Mono-fractal properties of tapping

series

The mono-fractal exponent a was normally
distributed for 7 of our 8 variables
(p>0.1). The grand average o between the
4 groups was 0.70 (= 0.13). The ANOVA
didn’t show any statistical difference
between groups (F(3,29) = 0.428, p > 0.05)
(Figure 2B left).

3.3 Multi-fractal properties of tapping

series

The width of the multi-fractal analysis was
normally distributed for 6 of our 8
variables (p > 0.10). The ANOVA show a
statistical difference (F(3,29) = 5.307,
p=10.005). Post-hoc comparisons was
significant (p = 0.03) between the control
and the -2FBav group (Figure 2B right).

3.4 Deafferented participant

The t-test between — 3 FB group and IW
showed significant differences for the
mean (#(7)= -14.98, p < 0.001), the CV
(#(7) =-5.64, p <0.001), the drift

(«(7) =3.71, p < 0.01; Figure 2A), a-DFA
(#(7) = 7.06, p < 0.001) and MF-Width
(#(7)=-10.22, p < 0.001; Figure 2B).
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Figure 2A: Preliminary results of the tapping performance variables. The mean (left), the

coefficient of variation (middle) and the drift (right) are statisticaly different between IW and

group -2FBav. No statistical difference was found between groups Control (Ctrl), -1FBa, -

1FBv and -2FBav. Vertical grey lines reflect the 95% confidance interval.
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Figure 2B: Preliminary results of mono- and multi-fractal analysis. Both the mono-fractal

exponent o and the width of the multi-fractal analysis present a statistical difference between

IW and the -2Fav group. A statistical difference was highlited for the width of the MFDFA

between the control group and the -2FBav group. Vertical grey lines reflect the 95%

confidance interval.
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4. Discussion

The present study was realized to
clarify the functional significance of long-
range correlations (namely the mono- and
multi-fractal time series approach) in a
behavioral task. We hypothesized first that
mono-fractal exponent (a-DFA) should
reflect the constraint imposed to the system
and per se should co-vary with the level of
performance. Specifically, we
hypothesized a decrease of both variables
with the loss of the proprioception.
Secondly we hypothesized that the level of
multi-fractality in inter-tap time series
should evolve jointly with the number of
configurations involved to perform the
tapping task. In this sense, the MF-Width
should increase with the number of
feedback deprived from. After discussing
the suitability and the limitation of our
experimental protocol and design, we will
highlight some considerations for the
functional significance of both mono- and

multi-fractal analysis.

4.1 Suitability of the experimental design
Effective  adaptations, = which

composed in part the adaptability potential,

could be defined as the capacity as long as

possible to maintain a same level of

performance despite increased constraints.

The experimental design developed in this

study was used to induce an increased level
of constraints on the system without
deteriorating the global performance. We
used a simple synchronization-
continuation finger-tapping paradigm as
previous literature showed that the
feedback deprivation (auditory and visual)
should not alter classic motor performance
(mean, CV and drift; Aschersleben &
Prinz, 1997, 1995). Furthermore, the task
performed easily and risk free for
participants allowed us to combine a
growing number of feedback deprivation,
namely -1 FB, -2 FB and — 3FB. Has the
distinction of many other tasks, the finger
tapping enable a limited implication of
biomechanical, external or cognitive
constraints. In the present study,
preliminary statistical analysis does not
show an altered level of performance for
the mean, the CV and the drift between all
our groups of feedback deprivation
(namely -1FBa, -1FBv and -2FBav). As
previous literature generally considered
only one feedback at a time, a possibility
that presents itself quickly is that the
performance may be dependent on a
threshold of feedback number deprivation.
Nevertheless, we previously published a
study using quite similar experimental
protocol and we didn’t show any
difference for the 2 variables discussed

below (with the addition of the removal of
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tactile feedback, see the following study in
the Chapter 3 of this dissertation).

4.2 Deterioration of tapping performance

Proprioceptive feedback is essential
in most everyday life, even the simplest
motor task. In our study we additionally
included 48 participants and one
deafferented participant that allowed us to
test the suitability of our experiment as the
proprioception was showed to deteriorate
the performance in multiple motor task and
specifically in simple finger tapping task
(Aschersleben & Prinz, 1997; Repp, 2013;
Sarlegna et al., 2006; Rothwell et al.,
1982). Our preliminary results highlight a
clear distinction between IW and the —
2FBav group for our three variables of
performance. As the same metronome
frequency was proposed, IW show a clear
increase in the mean ITI, the coefficient of
variation and the drift. However we need
discuss some limitations regarding the
results obtained by this participant. To
confirm our results that the performance is
only altered with  proprioception
deprivation, the upcoming analysis of
participants ~ who  have  undergone
anesthetic block will allow us to better
understand the importance of this sensory
modality in performing a finger-tapping
task in synchronization continuation. This

approach seems interesting because it

would allow to include healthy young
participants without any kind of pathology
and matched age that is not the case for IW
compared to other groups (55 years old and

23.8 + 5.6 respectively).

4.3 Mono-fractal properties reflect system

adaptability

From the point of view of the current state
of the art and the the loss of complexity
with age or disease theory, the loss of
complexity observed for IW could at first
seem to reinforce the idea that mono-
fractal analyzes can discriminate between
variables generated by subjects with
pathology (here IW) and healthy subjects
(Goldberger et al., 2002; Lipsitz, 2002;
Vaillancourt & Newell 2002). On the other
hand, our results didn’t show any
significant differences between the 4
experimental groups. This result is not in
agreement with the hypothesis of the loss
of complexity due to the increased
involvement of feedbacks to perform a task
(e.g. Dingwell & Cusumano, 2010; Slifkin
& Eder, 2014; Terrier et al., 2012; Warlop
et al.,, 2013). According to these studies,
we should observe a significant increase in
complexity =~ with  the  progressive
deprivation of the number of feedbacks
(mono- exponant a tending towards 1, pink
noise). One possible explanation could be

seen as the experimental protocol proposed
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in our study. In this experiment, we
directly = manipulated the  sensorial
modalities (feedbacks) involved in the
tapping task (visual and/or auditory) what
was not the case in others studies which
manipulate feedback indirectly (e.g.
distance of the target task, free vs
synchronized walk). These experimental
conditions was supposed to induce an
increased feedback loop like with an
auditory metronome, therefore, contrary to
our study, these manipulations do not
make it possible to conclude in an
unambiguous way on the effect which
concerns the feedbacks involved in a task
or the constraint imposed by the
experimenter (e.g. difficulty of the task,
double task paradigm). Our results
therefore suggest that the complexity
appreciated through the monofractal
properties (DFA) of a time series accounts
for the adaptability of the system. To
confirm this result a step forward should
be the analysis of the proprioception
deprivation conditions by anesthetic block
suppressing the sensory afference without
affecting the motor control. The effect of
the constraint imposed by the loss of
proprioception should highlight that the
mono-fractal exponant reflects the high
constraint imposed to the participant and
not directly the internal pathology of a
system as [W.

4.4 Multi-fractal properties reflect the

effective adaptation of the system

We hypothesized in our study that the
multi-fractal properties (MF-Width) should
evolve with all the number of feedback
deprived from, regardless of whether they
constitute a constraint (proprioception) or
not (auditory, visual feedbacks). However,
the state of the art did not allow us to
specify the hypothesis concerning the
meaning of this evolution, namely an
increase or a decrease in the level of multi-
fractality with the number of feedbacks.
Our results showed a significant effect of
the number of feedbacks deprived (with
differences between control group and -
2FBav group and IW). Moreover Figure
2B shows, a tendency for an increase
between the suppressed numbers of
feedback conditions. This pattern of results
is therefore in line with the hypothesis that
the level of multi-fractality reflects the
possible configurations for carrying out the
task, regardless of whether or not they are
related to a constraint. Specifically our
results show that the level of multi-
fractality increases with the number of
deleted feedbacks. This increase suggests
that in response to increased deprivation of
number of feedback, the ITI series
produced have the properties of greater
intermittency. The system transiently

exploits different configurations, available
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to perform the requested task at the same
performance level (Ihlen & Vereijken,
2010). Referring to the concept of
degeneracy, this refers to the degree of
degeneracy, which can be defined as the
number of “necessary and sufficient”
configurations (Friston & Price, 2011) for
performing a given function.

Nevertheless, it may seem counterintuitive
that by depriving the system of an
increasing number of feedbacks, the
configurations / strategies used to the task
increase. This result leads us to suggest
that there is possible distinction between
the number of alternative configurations
available and the number of configurations
that are actually used to perform the task.
This distinction could be understood as the
distinction between adaptability and
effective adaptation. Adaptability refers to
the freedom or potential of a system to
adapt to changing circumstances, and
effective adaptation refers to the processes
implemented (or observed during the task),
a certain level of both being necessary for
the wviability of a complex system.
However, from the point of view of brain
connectivity approach in the literature, the
level of adaptability is directly related to
the level of connectivity of the system, the
number of possible functional interactions
between different components (or areas).
Thus, the quantitative measures of this

connectivity are supposed to reflect the

adaptability potential of the system
(Ulanowicz, 2002).

Finally, the increase in the level of multi-
fractality with the number of feedbacks
deprived leads to questioning the
conclusions of the literature more specific
to tapping tasks. Indeed, based on tapping
performance variables (accuracy,
variability), much of the literature has
converged on the idea that visual, auditory,
and tactile feedback is not involved in
synchronization continuation tapping tasks.
However, deprivation of these feedbacks
influences the level of multi-fractality of
ITI products. From this point of view, we
can consider that although a particular
feedback may not be essential for
maintaining the tapping performance, it
nevertheless appears to be involved: its
suppression seems to induce a more
intermittent dynamics of the system, with a
more transient exploitation of a larger
number of alternative configurations that
would compensate for the feedback
suppressed. Thus, the more feedbacks that
are suppressed, the more the system has to
exploit a large number of alternative
functional solutions to maintain the same

level of performance in the task.
4.5 Conclusion

The results of this study indicate that the

complexity extracted through the mono-
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fractal properties of the inter-tap intervals
in a synchronization continuation finger
tapping task reflects the adaptability of the
system,  whereas the  multi-fractal
properties reflect the structure-function
relationships of the system, such as the
more or less transitory exploitation of
different configurations or alternative
strategies available for carrying out the
task. These present results are significant
in two respects, and open the way for work
in this direction.

On the one hand, if the mono-fractal
properties reflect a level of constraint
imposed on the system, then this opens
new questions to determine the relevance
of mono-fractal properties as a marker of
the “potential” of a system in a given task
beyond their discriminating power between
groups of pathological subjects vs healthy,
young vs elderly subjects, etc. Indeed,
depending on the intrinsic resources of a
system in a particular task, the same
difficulty level of the task will represent a
different operating stress at the individual
level.

On the other hand, most of the literature,
which has simultaneously investigated

mono- and multifractal properties has so

far considered the level of multifractality

to be a more sensitive and discriminating
measure than the mono-fractal exponent
and fundamentally equivalent in terms of
functional significance, particularly in
terms of complexity and loss of
complexity, with age and disease (Dutta et
al., 2012; Ivanov et al.,, 1999; Muifoz-
Diosdado, 2005). Our study is, to our
knowledge, the first to provide a clear
demonstration that mono- and multi-fractal
properties evolve independently and refer
to distinct functional characteristics of the
system. This opens up new research
perspectives, particularly on the link
between the multi-fractal properties
observed at the level of behavioral
variables in a given task, and simultaneous
neuronal connectivity measurements with

neuroimaging methods.
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Our first study investigated the functional meaning of mono- and multi-fractal analysis in a
finger-tapping task under various conditions of feedback privation to test the effective
adaptation of the subjects (Figure 2C). As expected, our first (preliminary) results highlight a
possible distinction into the functional meaning of mono- and multi-fractal analyzes
performed during a prolonged finger-tapping task. The fact that the mono-fractal exponent
and the width of the multi-fractal spectra do not covariate according to the number of sensory
feedbacks deprived leads us to consider that the two analyzes would not reflect the same
information. On one hand, mono-fractal exponent could indicate the loss of adaptability
potential without allowing discriminating between a loss of adaptability due to the
proprioception deprivation or neurological impairment (IW, deafferented participant, 59 years
old). On the other hand, multi-fractal properties could reflect the effective adaptation to a
prolonged sensorimotor task. Such capacity could be seen as a robustness property of the
system and be part of an intermittent functioning (degenerate properties). The suppression of
feedbacks in carrying out the task would cause a temporary “disruption” of the system. To
continue to perform the task while maintaining an identical level of performance output, the
system would try to find compensatory strategies, especially in the different brain networks
available. The results obtained in this first study open up a way for future research aiming to
investigate the potential link between the degenerate properties (and intermittence property) at

the brain level with multi-fractal properties at the behavioral level.

In the following study, we decided to investigate this question using the same simple finger-
tapping task. For that purpose, dynamic functional connectivity analysis of some relevant
brain areas monitored by functional near-infrared spectroscopy (fNIRS) was undertaken (see
box 2 for an introduction of the fNIRS neuroimaging method). Then the possible links
between the multi-fractal spectrum width (MF-Width) and the degenerate properties of the
involvement of the prefrontal and motor cortices were investigated when multiple numbers of
feedbacks were deprived (-1FB, -2FB and -3FB). The study 2 tests the following hypothesis
when considering the functional significance of multi-fractal analyzes: if the width of the
spectrum actually reflects a greater intermittence of operation of the underlying system, the

number of brain networks involved in performing the sensorimotor task should covariate.
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Figure 2C: Diagram representing the different keywords investigated and discussed during the
first study (in black). A complex system approach allows for testing the effective adaptation
of healthy subjects and one deafferented subject under various sensory modalities during a
finger-tapping task. Mono-fractal and multi-fractal analysis present separated results in

healthy subjects.

43



Box 2

Near-Infrared

Spectroscopy

“On December 28, 1976 our family menu featured a grilled chuck roast, the
poor academic’s substitute for steak. This very American cut of beef still
contains part of the shoulder blade of the steer; a flat piece of bone perhaps
3 or 4 mm thick, about the same as the human skull. I asked my 14 yr old
son Paul to clean all the muscle tissue from the bone. When he had done so
we held the pink object up against the light and noticed that the shadow of a
finger could easily be noted in the diffuse red light coming through the

bone.”
(Jobsis-vander Vliet, 1999)

Let us first for the non-familiar reader/user with fNIRS to introduce briefly
this neuroimaging method. Functional Near-Infrared spectroscopy (fNIRS)
allows for investigating the brain activity in multiple cognitive or motor
tasks and with a high range of populations: from baby to pathological
subjects. NIRS is often considered to be a relatively young neuroimaging
method (which is not so true, when compared to other methods such as
fMRI or EEG for example). In fact, it was in 1831 that Bright discovered
transparency of human tissues properties. This phenomenon, discovered
thanks to a simple candle allowed highlighting what is called the
“transillumination” phenomenon. Nevertheless, it took about 150 years for

the necessary technological developments to allow Jobsis (Jobsis, 1977) to
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publish its first work on the development of a tool/device for the extraction
of cerebral hemodynamics parameters (for a review of these discovery see
Piantadosi, 2007). The first applications and publications will reach the
scientific community only a few years later in the 80's by the team of Marco
Ferrari (see Ferrari & Quaresima, 2012 for a review). It follows as often
with promising new methods a rapid development of tools and
instrumentation that are still growing up today. Currently, the most common
fNIRS device on the market is based on the so-called continuous wave
(CW) instrumentation. The physical principle and physiological
explanations of this method could be found in two previous dissertations of
our lab (Mandrick, 2013; Besson, 2017) and in multiple dedicated scientific
papers (Quaresima et al., 2012; Quaresima & Ferrari, 2016; Perrey, 2008,
2014; Scholkmann et al., 2014). Briefly as its name suggests, CW {NIRS
will emit a light source continuously, at least two (more for some devices)
separate wavelengths in the near-infrared spectral window. A receiver
placed in most cases 3 cm from the source will collect the light passing
through the biological tissues. The detected light is assumed to have reached
a depth of approximately half the interoptode (emitter-receiver) distance.
The use of two distinct wavelengths will make it possible to relatively
quantify the changes in oxygenated hemoglobin (O,Hb) and deoxygenated
hemoglobin (HHDb) (Figure 2D).
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Figure 2D: Absorption spectra for chromophores present in the human
body. The absorption spectrum of hemoglobin depends on its oxygentation
state. The near infrared optical window (in grey) of interest to monitor
O,Hb and HHb is located between wavelengths of 690 nm to 950 nm
(Strangmann et al., 2003).

One of the main limitations of fNIRS is its spatial resolution. Indeed this
technique based on the luminous emition thanks to optical fibers or
electroluminescent diodes allows only reaching the surface of the cortex and
not to the subcortical structures. Although the literature generally considers
that the photons travel a banana-shaped path through the brain, the recent
tools make it possible to simulate the spatial sensitivity of the fNIRS as
illustrated in the example plot (Figure 2E). The exponential development of
computers capabilities and so-called “open access big data” also allows for
the research field based on the fNIRS to be in perpetual evolution. Currently
when writing the present dissertation, the development of tools such as the
Atlas Viewer toolbox (Aasted et al, 2015) based on Monte-Carlo
simulations currently makes it possible to estimate the propagation of

photons relatively accurately and thus to approach more realistic cortical
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areas investigated when using fNIRS.

Figure 2E: Example of the use of the Atlas Viewer toolbox to simulate
photon propagation. Unlike some manuscripts generally considering a
unique measurement point of brain activity between emitter and receiver in
fNIRS, monte carlo simulation highlights a larger area which should be
considered in the analysis of fNIRS time series. Both O,Hb and HHb
signals are generally composed of multiple cortical areas contributions.
Colorbar reflect the sensitivity logarithmically of the brain surface
depending of optodes position (red = highly sensitive and bleu = low

sensitivity). The brain is oriented with the prefrontal cortex upwards.

In addition, the positioning of optodes relative to anatomical regions well
defined by MRI is greatly facilitated by using toolboxes such as NIRS-SPM
(Ye et al., 2009; NFRI function by Singh et al., 2005), HomER (Huppert et
al., 2009) and fNIRS Optodes’ Location Decider (Morais et al., 2018). It

allows getting the reproducibility between studies.

fNIRS studies trying to investigate brain function have based their analyzes
on previous methods developed in fMRI as both neuroimaging methods
measure indirectly the brain activation based on the neurovascular coupling
phenomenon. Furthermore, fNIRS was shown as a reliable method
(compared to fMRI) to provide relevant metrics by using multiple
paradigms in humans: for instance, evoked-activation patterns during
cognitive tasks (Cui et al., 2011), resting state functional connectivity (Duan

et al., 2012) and effective connectivity during a motor tapping task (Anwar
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et al., 2016).

To date, and in concern with our main hypothesis, the most commonly used
strategy for examining dynamic functional connectivity has been a sliding
window Pearson’s correlation approach (Chang and Glover, 2010;
Hutchison et al., 2013a, 2013b; Sakoglu et al., 2010). Although this analysis
has certain limitations (Hutchinson et al., 2013; Leonardi & Van De Ville,
2015; Hidrinks et al., 2016; Shakil et al., 2016), it is generally used
(sometimes as a first investigative analyzes) because of being both easily
understandable and computationally inexpensive. Combined with
appropriate preprocessing and classification analysis of the time series,
fNIRS could reveal interesting properties of the brain combined with
multiple motor tasks and in our case, can reflect the number of cortical brain

networks involved in a continuous motor task.
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Abstract:

In behavioral neuroscience, the adaptability of humans facing different constraints has been
addressed on one side at the brain level, where a variety of functional networks dynamically
support the same performance, and on the other side at the behavioral level, where fractal
properties in sensorimotor variables have been considered as a hallmark of adaptability. To
bridge the gap between the two levels of observation, we have jointly investigated the
changes of network connectivity in the sensorimotor cortex assessed by modularity analysis
and the properties of motor variability assessed by multi-fractal analysis during a prolonged
tapping task. Four groups of participants had to produce the same tapping performance while
being deprived from 0, 1, 2, or 3 sensory feedbacks simultaneously (auditory and/or visual
and/or tactile). Whereas tapping performance was not statistically different across groups, the
number of brain networks involved and the degree of multi-fractality of the inter-tap interval
series were significantly correlated, increasing as a function of feedback deprivation. Our
findings provide first evidence that concomitant changes in brain modularity and multi-fractal
properties characterize adaptations underlying unchanged performance. We discuss
implications of our findings with respect to the degeneracy properties of complex systems,

and the entanglement of adaptability and effective adaptation.

Keywords: adaptability, fNIRS, modularity, fractal properties, tapping
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1. Introduction

The huge ability of the brain to exploit its
inherent plasticity to adapt to intrinsic or
extrinsic constraints over different time
scales is stunning and vital (Bassett et al.,
2011; Fallani et al., 2014). Depending on
circumstances, adaptability may take the
form of robustness against changing
conditions as well as the form of
innovation and evolvability (Whitacre,
2010; Whitacre and Bender, 2010). In a
complementary way the brain allows for
preserving a given  cognitive-motor
performance in the face of tumor growth
and resection (Duffau, 2014) as well as
diversifying the repertoire of our cognitive-
motor behaviors with learning, for example
(Bassett et al., 2011; Dayan and Cohen,
2011). While some studies has focused on
the precise neuro-physiological
mechanisms sustaining the brain’s capacity
to adapt, others have provided insight into
more generic organization principles
inherent in complex systems, notably
through the assessment of brain network
connectivity (e.g., Tononi et al., 1994
MclIntosh et al., 1999; Sporns, 2012;
Tognoli and Kelso, 2014). From this latter
perspective, the brain’s  functional
organization has been conceived as a
dynamic balance between functional
segregation and integration of subparts of

the entire network (Friston, 1994; Tononi

et al., 1994; Sporns, 2013). At a given
observation scale, the brain network can
thus be assessed as a modular organization,
modules being defined as clusters that are
densely connected within but weakly
connected between them (Bullmore et al.,
2009; Bassett and Gazzaniga, 2011; Sporns
and Betzel, 2016). Moreover, complexity
is increased by the dynamic properties of
the functional connections within and
between modules, which may compose and
recompose depending on circumstances. In
particular, such connectivity scheme is
closely related to degeneracy, a key
property characterizing the structure-
function relationship in the brain (Tononi
et al., 1999; Noppeney et al., 2004).
Degeneracy refers to a many- to-one
structure-function relationship, with a
partial functional overlapping between
modules of the network: different parts
may perform the same function or
specialized functions under circumstances
(Edelman and Gally, 2001; Price and
Friston, 2002; Whitacre and Bender,
2010). Together, the modular and
degenerate  properties of  network
connectivity constitute an essential basis
for adaptability, supporting robustness and
adaptive changes facing various conditions
(Jirsa et al., 2010; Whitacre, 2010; Bassett
and Gazzaniga, 2011; Grefkes and Ward,
2014). The variety of the dynamical states

or network configurations involved to
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maintain a given function or performance,
whether at rest (Deco et al, 2011) or
during a task may thus basically reflect

adaptation to changing conditions.

Developing in parallel in a bio-behavioral
literature, a significant amount of research
focusing on the temporal dynamics of
diverse = macroscale variables (e.g.,
heartbeat intervals, Ivanov et al., 2001;
force production, Athreya et al., 2012; gait
and coordination dynamics, Hausdorff et
al., 1996; inter-tapping intervals, Torre and
Deligniéres, 2008) has considered that
fractal fluctuations are the hallmark of
underlying dynamic complexity and
system’s adaptability (Ivanov et al., 1998;
Gilden, 2001; Ashkenazy et al., 2002;
Kello et al., 2010; Manor et al., 2010;
Torre and Balasubramaniam, 2011;
Delignieres and Marmelat, 2013). Notably,
a breakdown of the fractal properties in
pathological and/or elderly compared to
young and healthy subjects has been
evidenced repeatedly, supporting the idea
that loss of fractal properties can be
considered a marker of the general loss of
adaptability coming along with aging and
disease (Goldberger, 1996; Hausdorff et
al., 1996; Peng et al., 2000; Blaszczyk and
Klonowski, 2001; Lipsitz, 2002). In
particular, in the context of neurological
disorders such as Parkinson, Huntington or

Alzheimer diseases, research programs

have been assessing the diagnostic and/or
prognostic (Mikikallio et al.,, 2001,
Goldberger et al., 2002; Hu et al., 2009)
power of fractal properties in sensorimotor
variables. Thereby studies have made
implicit but strong assumptions on a close
relationship between network alterations at
the brain level and fractal properties at the
effector level. In a complementary vein,
the fractal properties of motor variables
have been shown sensitive to experimental
restriction/augmentation of the sensorial
feedbacks available to subject’s
performance on given tasks (Slifkin and
Newell, 1999; Manor et al., 2010; Athreya
et al., 2012; Warlop et al., 2013). Finally,
the literature has evidenced that fractal
properties may be variable within a same
time series (multi-fractal series). Different
fractal scaling regimes may apply in an
intermittent way to different windows of
observation within the series, thus
reflecting variations in the system’s
underlying dynamic organization and
exploration of new solutions (e.g., Ivanov
et al.,, 2001, 2004; Nunes Amaral et al.,
2001; Hu et al., 2004; Stephen and
Anastas, 2011; Dixon et al., 2012; Dutta et
al., 2013). In fact, where comparison of the
Gaussian properties of any variable of
interest may indicate unchanged output
across groups or experimental conditions,
alterations of its fractal properties often

reflect underlying reorganizations in the
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performing system. To our knowledge,
however, the question of whether/to what
extent the multiple connectivity patterns
forming and reforming in the brain directly
spill over into the behavioral outcome
remains largely unanswered so far: When
the brain adapts facing changing conditions
to sustain steady motor-behavioral
performance, are the ad  hoc
reorganizations in network connectivity

reflected in some distinctive fractal

properties of behavioral variability?

In view of the above literature, the
degeneracy or intermittency of functional
brain networks may be reflected in the
multi-fractal properties at the behavioral
level. Imposing constraints by
manipulating the feedbacks available to
perform a motor task is likely to alter the
expression of degeneracy in the motor
output. Therefore, the purpose of the study
was to bridge levels of observation to
establish a direct relationship between
degenerate connectivity patterns enabling
adaptation at the brain level, and fractal
properties as their dynamic signature in the
sensorimotor outcome. Herein we consider
adaptability as the capacity to maintain a
given function or performance despite
changing constraints. Thus, a heuristic
experimental paradigm should allow us to
manipulate the experimental constraints

imposed to subjects in a given task without

these  manipulations  affecting their
performance, by virtue of the system’s
capacity to adapt. In this way, we should
be able to assess jointly the variety of
patterns of brain connectivity that are
involved  intermittently  during task
performance, and the dynamic fractal
properties of the task variable. Therefore,
we used the well-known finger-tapping
paradigm (Wing and Kristofferson, 1973),
where previous literature has showed that
experimental  deprivations of  visual,
auditory, or tactile feedbacks are not such

as to alter performance

tapping
(Aschersleben and Prinz, 1995, 1997;
Stenneken et al.,, 2006; Repp and Su,
2013). Following from the above, we
hypothesized that the variety and
intermittency of  brain networks
(degeneracy) involved in the task and the
dynamical fractal properties of tapping
series would evolve jointly as a function of
different  conditions  of  feedback
deprivation, while tapping performance

should stay invariant.
2. Materials and methods
Participants

Thirty-two healthy volunteers took part in
the study (9 women, 23 men, 26.9 + 6.3
years of age). All participants signed a
written  informed  consent  before

participating in the study. All participants
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were right-handed according to the
Edinburgh
(Oldfield, 1971) and reported normal

Handedness Inventory
hearing and normal or corrected vision.
None showed any sign of neurological
disease, nor reported extensive practice in
music. All procedures were approved by
the local ethics committee (IRB- EM:
1610C, Montpellier). All participants gave
written informed consent in accordance
with the Declaration of Helsinki for human

experimentation.
Experimental Design and Procedure

The experimental design was an
independent-group  design, with the
experimental factor being the numbers of
sensorial feedbacks the participants were
deprived  from.  Participants  were
randomized to one of the four following
conditions: (i) no feedback deprivation
(Control), (ii) deprivation of one feedback,
either visual, or auditory, or tactile (-1 FB);
(ii1)) simultaneous deprivation of two
feedbacks, either visual and auditory, or
visual and tactile, or auditory and tactile (-
2 FB); (iv) simultaneous deprivation of
three feedbacks, visual, auditory and tactile
(-3 FB). Participants were deprived of
visual and auditory feedbacks using a
sleeping mask and ear defenders,
respectively. The tactile feedback was
prevented by the means of a removable

striking surface at the place where the

index finger tapped (“‘air tapping” e.g.,
Aschersleben and Prinz, 1997). Each
participant performed three tapping trials
in the assigned conditions. As mentioned
above, none of the visual, auditory or
tactile deprivations should alter tapping
performance (Aschersleben and Prinz,
1995, 1997; Repp and Su, 2013), and no
study to our knowledge conveys strong
assumptions about any differential effect
of these conditions on the temporal
structure of tapping. Nevertheless, rather
than arbitrarily removing one of the three
feedbacks for each participant or for a
whole group, participants of the —1 FB
group performed one trial in each of the
visual, auditory and tactile feedback
deprivation conditions in a random order.
Likewise, participants of the —2 FB group
performed one trial in each of the visual-
auditory, visual-tactile, and auditory-
tactile deprivation conditions in a random
order. Participants of the Control and —3

FB groups performed three times the same.
The Tapping Task

The experiment was conducted in a quiet
room. Participants were sitting
comfortably on an adjustable chair, with
their dominant side forearm and palm of
the hand resting on a customized plinth
(570 x 160 x 50mm) on a table in front of
them. Subjects realized a tapping task

according to a conventional

54



synchronization-continuation paradigm
(Wing and Kristofferson, 1973; Vergotte et
al., 2017): during the initial
synchronization phase, the tempo was
prescribed by a PC- driven auditory
metronome delivering 20 signals at a
frequency of 1.5 Hz (0.666 s inter-tap
intervals), known as a comfortable tapping
frequency (Fraisse, 1966; Torre and
Delignieres, 2008). Once the metronome
stopped, participants had to continue
tapping by maintaining the prescribed
tempo as accurately and regularly as
possible for the whole trial duration. The
duration of each trial was set to 6min 40s
so as to ensure a sufficient number of inter-
tap intervals to be submitted to subsequent
fractal analysis (Delignieres et al., 2006;
Eke et al.,, 2012). Between each of the

three trials, participants had a 2-min rest.
Data Collection
Tapping Performance

Movements of the index finger were
captured using a single-axis accelerometer
(15 x 15 mm) fixed on the nail so as to
minimize possible device-induced
sensorial feedbacks. Acceleration data
were collected using a Labjack U12 device
and stored via its software (LJStream

v1.07). The sampling rate was 300 Hz.

Functional Near-Infrared Spectroscopy

Measurements

Hemodynamic changes in the cortex
during the tapping tasks were measured by
two synchronized continuous waves (CW)
multi-channel functional near infrared
spectroscopy (fNIRS) devices (Oxymon
MKIII and Octamon, Artinis Medical
Systems, The Netherlands) with a
sampling rate of 10Hz. fNIRS is an optical
method using near-infrared light to
measure relative changes of
oxyhemoglobin (02 Hb) and
deoxyhemoglobin (HHb) in the cortex
(Scholkmann et al., 2014). In the present
study, a customized cap was used to place
beside the vertex (Cz) a 16-channels array
on three regions of interest [premotor
cortex (PMC), primary motor cortex (M1)
and supplementary motor cortex (SMA)]
on both hemispheres. Another 8-channel
array was placed on the prefrontal cortex
[PFC, Nazion (Nz) was the reference
point]. Due to different sensibility of light
penetration among brain regions using
fNIRS (Brigadoi and Cooper, 2015), the
inter-probe distance was fixed at 30 mm
for M1, PMC and SMA, and 35 mm for
PFC. After positioning all we used a 3D-
digitizer (Fastrack, Polhemus, United
States) to collect the location of each probe
for each subject. NFRI function (Singh et
al., 2005) included in the NIRS-SPM
toolbox (Ye et al., 2009) was used to
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extract the Montreal Neurological Institute
coordinates (MNI). The positioning of the
24  channels (MNI coordinates and

Brodmann area correspondences) can be

Ch1

Ch2

Ch3
Ch4
Chs
Ché6

Ch7
Chs

Ch9
Ch 10

Ch11
Ch 12

Ch13
Ch 14

Ch 15
Ch 16
Ch17
Ch 18

Ch 19

Ch 20
Ch 21

Ch 22

Ch23

Ch24

seen in Figure 3A.
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Figure 3A: Localization of fNIRS probes, channels, MNI coordinates and Brodmann

correspondences. (A) Yellow: transmitters, blue: detectors and red: channels. (B) MNI

coordinates for each channel (n = 24) with x, y, and z coordinates. On the right, Brodmann

area correspondence (number, name and %) extracted from the NIRS-SPM toolbox (NFRI

function).
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Data Analysis
Motor Variability Analysis
Preprocessing of tapping data

Raw acceleration data were first low-pass
filtered using a Butterworth zero-phase
digital filter (Frequency = 15 Hz). Then, a
MATLAB in-house script (MATLAB
2014b, The MathWorks) for peak detection
was used to extract the onsets of the
subsequent finger taps. Series of inter-tap
intervals (ITT) were then computed as the
differences between subsequent tap times.
For each trial, the first twenty ITI
(corresponding to the synchronization
phase) were discarded, and series of 512
ITI in the continuation phase were retained
for further analyses. For each ITI series,
we computed the typical performance
variables used in tapping studies (Billon et
al., 1996; Repp and Su, 2013), namely the
mean, the coefficient of variation (CV) and

the linear drift over the trial duration.

Characterizing fractal properties of inter-

tap interval series

Fractal time series are basically
characterized by fluctuations with scale

invariant structure [i.e., obeying a power

law distribution X(ct) = CHX(t), where X is
the signal, ¢ is a constant, H is the fractal
exponent] and temporal long-range

correlations (meaning the autocorrelation

function of the time series decays as a
power- law without falling to zero). To
analyze the fractal properties of ITI series,
we used the Multifractal Detrended
Fluctuation Analysis (Ivanov et al., 1999;
Kantelhardt et al., 2002; MFDFA, Ihlen,
2012). MFDFA is derived from the
original Detrended Fluctuation Analysis
(DFA), which estimates the mono-fractal
properties of a time series (Peng et al.,
1995). In short, DFA exploits the diffusion
properties of the time series, analyzing the
relationship between the average amplitude
of fluctuations and the size of the
observation window within which these
fluctuations are measured. For fractal

series, a power-relationship characterized

by the mono-fractal exponent « € [0, 2] is

expected: in particular, for « = 0.5 the
series is white noise, for « = 1, the series
is so-called //f noise, and for 0.5 < o <1
the series is considered stationary and
containing  persistent  long-  range
correlations. By yielding a single fractal
exponent (« ) characterizing the average
fractal properties of a time series, the DFA
assumes that the fractal properties are
homogeneous over all scales of the entire

time series.

However, instead of being characterized by
a single homogeneous fractal exponent,

time series of bio-behavioral variables are

57



often characterized by an inhomogeneous
distribution of variability (intermittent
fluctuations). The fractal exponent may
vary over time scales: the series is actually
characterized by multiple fractal exponents
(Ihlen and Vereijken, 2010) and with this
viewpoint the MFDFA was developed
(Kantelhardt et al., 2002; Ihlen, 2012).
Since we hypothesized that the system’s
adaptations to imposed task constraints
would be expressed through the variety of
fractal properties in ITI series, we opted
for MFDFA analysis. MFDFA basically
uses the same steps as DFA, but the
average amplitude of the fluctuations is

th order fluctuation

calculated wusing ¢
function, with ¢ varying from—10 to +10 in
steps of 0.5, whereas DFA computes the
amplitude of fluctuations only for g = 2. In
brief, the time series x(7) is first integrated
into X(k), and divided into Ny adjacent
segments of length n. Within each segment
(s=1,..., Nn) the local trend is then
subtracted from X(k). So, the amplitude of

fluctuations is computed for each

detrended segment according to:

Flns)=L S[xw-x,.®)] Eq.0)

N =(s-1)n+1

The variance is then averaged over all

segments to obtain the qth order

fluctuation function:

N’I

Fq(n)={NLZ[F2<n,s)]“} (Eq.2)

n s=1

If the series x(i) presents fractal properties,
the generalized Hurst exponent h(g) is
given by:

h(q)
F, (n)e<n™" (Eq. 3)

According to Kantelhardt et al. (2002), the
result of MFDFA can then be converted
into the classical multi-fractal formulation
using simple transformations, to be finally
summarized by the multi-fractal spectrum
representing F(a) as a function of a(g),
where F(a) 1s the fractal dimension (or
dimension of the subset of the series that is
characterized by a), and a is the Holder (or
singularity) exponent (see Figure 3B). Our
variable of interest is the width of the
multi-fractal ~ spectrum  (MF-Width),
meaning the range between the minimum
and maximum exponents a(q)
characterizing the time series, which
represents the degree of multi-fractality.
Figure 3B illustrates the distinction
between mono- and multi-fractal properties

of two experimental time series as assessed

by DFA and MFDFA.

58



A)

Monofractal time series
bt 2

Il

@»n lu'*\ l“‘l|,“\“‘,‘\",“|“\r o |

20 N ARMM AL AN S, LA St e 1

g ‘l\tm.‘l‘\\“u‘]‘,n‘x‘l‘v’t‘HJI\\‘M“‘ iy lf‘h-\",u\j"w”‘"‘w" 1.8 .':' oin.

- 1.6 «®® e T e

s Multifractal time series =14 e = ¢ 5 o

£ & s 5 E 05 o 5

= 2012 ¢ : P E—

= 0 0¥ H '

< lge® =074 (2) = 0.74
0.8 0 :

1 512 1 1.5 2 2.5 0.5 0.75 1
Data points log(n) a(q)

Figure 3B: Distinction between DFA and MFDFA analysis for mono- and multi-fractal time
series. (A) Two experimental time series of 512 pts: in blue, the time series is closely mono-
fractal; in red, the time series is multi-fractal. The Y-axis displays an arbitrary unit centered to
zero. (B) Results yielded by DFA for the two time series. The plot shows the size of
fluctuations F(n) as a function of the size n of observation windows in bi-logarithmic
coordinates. The mono-fractal exponent « is given by the slope of log(F(n)) vs. log(n).
According to the plot, both time series present long-range correlations and are characterized
by the same mono-fractal exponent (o = 0.74). (C) Multi-fractal spectra for the two time
series. The right-hand side of the spectrum accounts for the influence of large-amplitude
fluctuations (g positive), and the left-hand side accounts for the influence of low amplitude
fluctuations (¢ negative). The width of the multi-fractal spectrum is then calculated by the

difference o (q@)max — o (q)yin. Comparison of plots (B, C) shows that while both time

series present globally the same mono-fractal exponent, the blue series is close to mono-

fractal whereas the red one is clearly multi-fractal.

2.5.2 Brain Connectivity Analysis uploaded in MATLAB. We first converted

intensity data to optical density (OD).

IRS preprocessing. A common approach
JNIRS prep & PP Then we applied the moving standard

as described in Huppert et al. (2009) was
used to obtain O2Hb and HHb

deviation and spline interpolation methods
(SDThresh = 20, AMPThresh = 0.5,
tMotion = 0.5 s, tMask = 2 s and p = 0.99;
Scholkmann et al., 2010), combined with

concentration changes. We extracted 6min
of raw (light intensity) data after the end of

the metronome using  the  ARTINIS wavelet artifact correction (igr = 0.1;

software (Oxysoft v3.0.95). Data were then Molavi and Dumont, 2012) as
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recommended in Cooper et al. (2012) to
remove possible head motion artifacts. To
retrieve the relative concentration changes

(expressed in z M) of O2Hb and HHb, we

applied the modified Beer-Lambert law
(Kocsis et al.,, 2006) on OD data, by
including an age-dependent constant

differential path length factor (4.99 + 0.067

X Age0'814). The presence of a strong
cardiac oscillation (frequency peak around
1 Hz) in the power spectrum of O2Hb
signal indicates a good contact between the
optical probe and the scalp (Themelis et
al., 2007). 6.25% of all channels analyzed
did not satisfy this condition and were
discarded. For subsequent analysis, a band
pass zero-phase digital filter (4th order
Butterworth, cut-off frequency [0.009
0.08]) was used to remove physiological
noise like cardiac, respiratory, Mayer
waves and very low

(Scholkmann et al., 2014). A linear

frequencies

detrending was then used to remove

possible slow drifts.

Functional connectivity analysis. In the
line of assessing functional network
connectivity free from the constraint of
neuroanatomical a-priori assumptions, the
most commonly used method is based on
the bivariate Pearson’s correlation analysis

(Biswal et al., 1995): it consists in

computing the statistical dependency
between two or more time series to explore
the influence that one region of interest
exerts on others (seed based correlation
analysis), or in computing all possible
connections at the level of the entire brain
(whole brain correlation analysis), at rest
or during a task (Medvedev, 2014).

Then an N x N adjacency matrix was
constructed, reflecting the strength of the
correlation between each time series.
However, different studies applying such
analyses have implicitly considered that
patterns of connectivity were stationary
and computed an average matrix over the
whole scanning period. Instead, to assess
the dynamic functional connectivity (dFC)
between the present 24 fNIRS channels,
we used a sliding window correlation
analysis as proposed in the literature
(Hutchinson et al., 2013). For each subject,
this method yielded a number » of matrices
depending on the window size and a shift
(in samples), summarizing the evolution of
all connections between channels over
time. As there is no consensus in the
literature we wused three widespread
window sizes (30 s, 75 s and 120 s;
Hutchinson et al., 2013) and a shift of 1
sample (100 ms). Figure 3C illustrates the

pipeline for these analyses.

60



fNIRS time
series (O,Hb)

100 200
Time

0 100

N’
<
= —
S ~
<_ 0
>

B)

Correlation
Matrix
7/

Time

Figure 3C: Illustration of the functional connectivity analysis for one representative subject.

(A) Extraction of OpHb fNIRS time series for all channels after preprocessing and band pass

filtering (cut off frequency [0.08 0.009]). (B) Sliding window Pearson’s correlation analysis

for window sizes of 30, 75, and 120 s. (C) Grand average correlation analysis between each

matrix. The upper plot shows communities detected for 360 s (3 communities in this

example). (D) Grand average matrix after putting in the order of community. Red squares

delimit each community.

Modularity analysis. Once obtained
the time evolution for all connections, one
of the main challenges in dFC analysis is
to classify the multiple networks obtained
with reliable metrics (Fallani et al., 2014).

A network is a collection of nodes

(vertices) and links (edges). All networks
are represented mathematically through
their connectivity (adjacency) matrices.
Rows and columns correspond to nodes
and entries denote links that are weighted.

Based on the graph theory analysis, one of
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the relevant methods to extract the number
of different communities involved during
the task is the modularity analysis
(Rubinov & Sporns, 2010; Newman,
2006). Modularity quantifies the degree to
which the network may be subdivided into
delineated and no overlapping groups. In
other words, modularity reflects strong
links within each community and weaker
links  between  communities.  The
Modularity (Q) for a partition in
communities m = [ml, .., mn] of a
weighted undirected graph is defined
(Rubinov & Sporns, 2010; Newman, 2006;

Watts, 2004) as:

QFr/nl,...,mn) =

) kY Kk
w 2ijeN [Wij - T]] Omimj (Eq.4)

where wj; is the weight of the edge between
node i and node j. The set of weights fits
into a matrix w that represents the graph G.
Here wy; is the correlation between the row
i and row j of functional O,Hb matrix.
Rows and columns of the square matrix G
are indexed by the nodes of G (that is the
time index of O;Hb matrix). When
connections are non-oriented (as in the
present study) this matrix G is symmetric:
weight w; = wj; and k; 1s the weight of
vertex 7 that is the sum of wy; for all

vertices j. The number /" is the total sum of

weights. Modularity optimization was
done based on the assumption that a graph
partitioning is the difference between the
number of edges within the partitions
found and the number of expected edges at
random between vertices of an equivalent
degree distribution (Newman, 2006). In
this formalism, the ratio kj"k;"/ [ gives
the null model, that is the probability that a
random edge with a random weight wy;
joins the nodes i and j (Newman, 2006).
Nodes of G are partitioned between the
sets ml,....mn. So, m; is the set of the
actual partition that contains vertex i. The
O (mi, m) (delta of Dirac) function for given
vertices i and j takes the value 1 if i and j
are in the same subset of the partition (that
is m; = m;), and 0 otherwise. Importantly,
in our study we used the modularity
analysis across all time steps and not for
each graph. We then considered that
distinct community detected should reflect
different network organization without
extract the exact topological organization.
We determined the communities in each of
these graphs by the algorithm that
maximizes the modularity (see Eq.4) from
the Brain Connectivity Toolbox (Rubinov

& Sporns, 2010).

62



2.5.3. Statistical analysis

After normality testing (Lilliefors
test),

between-group differences were
tested using one-way ANOVA on the three
tapping performance variables (mean, CV
and drift of ITI series), and on MF-Width
with respect to our main hypothesis.
Secondarily we also checked for any
between-group difference in the mono-
fractal exponent (a). We used Kruskal
Wallis analysis, as the data were not
normally distributed for the three sliding
window sizes of community detection
analysis. We used Spearman’s correlation
between the number of networks detected

for each sliding window size (30 s, 75 s

and 120 s) and MF-Width of the tapping

3. Results
3.1. Tapping performance

All  samples of the

tapping
performance variables (mean, CV and
drift) were normally distributed. Our
experimental design was thought to impose
different levels of constraints to the
subjects without inducing differences in
tapping performance. The ANOVA applied
to the performance showed no significant
difference between groups for all variables
(mean: F(3,28)= 1.519; p = 0.230;
n® = 0.136, CV: F(3, 28) = 2316;
p = 0523; = 0.045, drift:
F(3, 28) = 0.634; p = 0.594; n* = 0.022,

Figure 3D).
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Figure 3D: Dotplot of tapping performance for the four groups. Left, mean inter-tap intervals

(ITT) produced. Middle, Coefficient of variation (CV) of ITI series. Right, drift of ITI series

during the task. Error bars represent standard error.
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3.2. Multi-Fractal Properties of Tapping

Series

MF-Width  samples were normally
distributed after log-normal correction. The
one-way ANOVA revealed a significant
group effect (F(3,28) = 2.822; p = 0.044;
n® = 0.253). LSD Fisher post- hoc showed

differences between the control group and

the —1 FB and —2 FB groups (p = 0.012
and p = 0.021, respectively). Figure 3E
summarizes the results obtained for the
multi-fractal properties of tapping time
series. Mono-fractal exponents («) were
normally distributed, and the one-way
ANOVA did not show any significant
difference

between groups

(F(3,28) = 0.845; p = 0.473; 1* = 0.071).
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Figure 3E: Degree of multi-fractality of ITI series (MF-Width) for the four experimental

groups. (A) Average multi-fractal spectrum for each group. (B) Dotplot MF-Width for the

four experimental groups; gray horizontal line represent the mean. Star reflects the significant

difference at p < 0.05.
3.3. Modularity Analysis

For all considered sliding window sizes,
Kruskal Wallis test showed significant
differences between Control and —1 FB, —
2 FB and —3FB groups
(for 30 s: H(3) =18.7, p=0.003; n° = 0.561;

for 75 s: H(3) = 18.5, p = 0.001;
n’ = 0.554; for 120 s: H(3) = 18.9;
p = 0.003; n° = 0.568). All corrected
p-values for multiple comparisons are
reported in Table 1. Results for each

window size are shown in Figure 3F.
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TABLE 1 | Corrected p-values of Kruskal Wallis analysis for each sliding window size.
(Significant differences are in bold.)

Window size
30s 75s 120 s
Control / -1 FB <0.009 <0.04 <0.03
Control / -2 FB <0.003 <0.0002 <0.02
Control / -3 FB <0.006 <0.02 <0.01
-1FB/-2FB 1 1 1
-1FB/-3FB 1 1 1
-2FB/-3FB 1 1 1
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Figure 3F: Box plots with median, quartiles, and individual dots for the number of

communities detected during the task for the four groups (Control, —1FB, —2 FB, and —3 FB),

for (A) sliding window of 30 s, (B) sliding window of 75 s, and (C) sliding window of 120 s.

Stars highlight significant difference at p < 0.05.

3.4. Relationship Between Modularity in
the Brain and Fractal Properties in

Behavior

With regard to our main hypothesis, results
showed a significant correlation (Figure

3G) between MF-Width in tapping series

and the number of brain networks detected
for window sizes 30s (rho = 0.277;
p = 0.028) and 75 s (rho = 0.275;
0.038). However no

p = significant
correlation was found for window size

120 s (rho = 0.086; p = 0.526).

65




Z

Size =30s B) Size=75s C) Size=120s
.
°
" ° " < < -
Q < 2
£9 ° 9 ¢ © £
= = =
= e cee = L] ] = °
£ £ £
= ¢ ceme ¢ o ° e ¢ £ e¢ e® £ °
(=] (=] 8
o6 ¢ e ® ° o6 “e e o6 4 = 6 «e [ e o
(=) =) =]
- e [ (9 ° = < e wo ¢ 5 ew 0w ¢ o .
<
2| =" 2 2
£ C LW ¢ Ll @ = e ccc ¢ ¢ £ e <
= = =
Z 3|lewe ¢ cw S Z 3 cewe Ce ¢ Z 3 © @0 0660 oo °
e (WS (S IS
0 0.2 0.4 0.6 0 0.2 04 0.6 0 0.2 0.4 0.6
MPF-Width MPF-Width MPF-Width

Figure 3G: Scatterplots showing the correlation (Spearman’s correlation) between the multi-
fractal properties (MF-Width) and the number of communities detected with modularity
analysis, for (A) window size = 30 s, (B) window size = 75 s, and (C) window size = 120 s.
The correlation is significant for 30 and 75 s windows. Yellow = control group, light blue =

-1 FB, blue = -2 FB, and dark blue = -3 FB group.

4. Discussion deprivation than for the control group; and

(iii)) MF- Width and the number of

The present study aimed to establish a
P Y networks involved in the task were

relationship between connectivity patterns . .
correlated for sliding windows of 30 and

underlying adaptation at the brain level and
ving acap 75 s. After discussing the suitability of the

fractal properties as their dynamic ) ) )
experimental design, we consider some

signature in the behavior. We hypothesized S
8 vP notable implications of our results at the

that the number of brain networks involved . ) )
behavioral and brain levels, respectively,

in the task and the multifractal properties
PTOP before focusing more specifically on the

of the tapping series would evolve jointly, brain-behavi lationshi
rain-behavior relationship.

as a function of different conditions of
feedback deprivation. We found that (i) the 4.1. Suitability of the Experimental Design

degree of multifractality (MF- Width)

. . . We considered the general definition of
increased significantly in groups where

adaptability as the capacity to maintain a
feedbacks were suppressed as compared to

. given function or performance despite
the control group; (ii) the number of

) ) changing constraints (De Wolf and
networks involved during the task was

) ] Holvoet, 2005), also referred to as
higher for groups with feedback

robustness (Whitacre, 2010). In this line,
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the experimental paradigm was required in
order to impose different experimental
constraints while leaving the global level
of task performance substantially close: the
system was thus deemed to handle
adaptations—notably reorganization in
brain—allowing for sustained
performance. To meet these requirements,
we used a finger-tapping task. A major
advantage of such task was to allow for a
simple manipulation of the amount of
sensory feedbacks available (-1 FB, —2
FB, —3 FB), while overall tapping
performance has previously been shown
insensitive to feedback manipulations
(Aschersleben and Prinz, 1995, 1997;
Repp and Su, 2013). That is, in the present
study feedback manipulation has merely
constituted a means to constrain the system
and induce putative internal
adaptation/reorganization, without any
specific hypothesis as regards the sensory
modalities. In this respect, our results are
congruent with the literature (Aschersleben
and Prinz, 1997), as we observed no
significant differences between conditions
of feedback deprivation in any of the three
variables commonly characterizing tapping
performance (mean ITI, CV and drift;
Figure 3D). Moreover, such tapping task
has previously been shown to entail fractal
properties in the ITI series produced

(Lemoine et al., 2006; Torre &

Delignieres, 2008). Our present results on

the mono-fractal exponent « are also in
agreement with the literature in this respect
(a = 075 £ 0.13 all groups taken
together, without significant differences

between groups).

As regards the experimental design, we
opted for an independent group design
rather than repeated measures. Although
this methodological choice obviously
entailed limitations of sample sizes for
each group, we deemed it preferable given
the lengthy duration of tapping trials
required for reliable fractal analysis
(Delignieres et al., 2006; Vaz et al., 2017).
Indeed, we aimed to observe the effect of
adaptations due to feedback deprivation,
which implied avoiding as much as
possible any putative effects of weariness
and attentional fluctuations that may also
alter the fractal properties of tapping series
(Damouras et al., 2010). Finally, in
contrast to previous studies we here
investigated a motor task with adaptations
being experimentally induced by different
levels of task constraints. In return, this
approach  implied some a priori
uncertainty as regards the precise effect of
experimental constraints especially on
brain connectivity, rather than a priori
controlled variations as possible in
simulation studies for example. All in all,
the consistency of our results with previous

literature leads us to consider the
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experimental ~ design  suitable, and
following  results  with  reasonable
confidence.
4.2  Multi-fractal ~ Properties  Reflect
Adaptations ~ Underlying  Unchanged
Performance

Further gain of precision in appraising the
functional significance of fractal properties
in behavioral variables is a still-open
challenge. A significant body of literature
has converged to the general idea that
mono- and multi-fractal properties are a
hallmark of the adaptability of biological
systems (Goldberger et al., 2002; Lipsitz,
2002). However, such conclusions mostly
originate from indirect cross- sectional
observations revealing loss of fractal
properties with aging, pathology, or
different  conditions  of  functional
impairment that are generally associated
with loss of adaptability (Manor et al.,
2010; Manor and Lipsitz, 2013). Though
adaptability (or loss of adaptability) may
indeed constitute a common denominator,
several potentially confounding effects,
including effective adaptations to achieve
task performance despite functional
impairment, might actually be the cause of

altered fractal properties (Dingwell and

Cusumano, 2010).

Our present results show significant

variations of multi-fractal properties as a

function of feedback deprivation imposed
to the system (Figure 3E) without
significant functional decrement (Figure
3D), which does not appear directly
relevant to the issue of adaptability. At a
first glance, this result may appear
congruent with previous studies showing
an alteration of mono-fractal properties as
a function of the involvement of sensorial
feedbacks in task performance (Slifkin and
Eder, 2012, 2014): it has indeed been
proposed that weaker mono-fractal
properties may be due to tighter
sensorimotor control mechanism exerted
on task- relevant variables (Dingwell and
Cusumano, 2010; Warlop et al., 2013).
However, we observed that the degree of
multi-fractality in tapping series increased
in  feedback deprivation conditions
compared to the control group. Mono- and
multi-fractal properties do not capture the
same features of time series: whereas
mono-fractal properties summarize a
homogeneous scaling behavior over the
whole time series, multi-fractal analyses
assess the possibly inhomogeneous scaling
regimes present in the series, and capture
the amount of intermittent changes in the
systems/subjects functioning modes (Ihlen
and Vereijken, 2010). Thus, this result
suggests an increasing involvement of
different modes of regulation to achieve
unchanged performance despite the
constraints.

imposed experimental

68



Accordingly, we support the idea that
rather than globally reflecting the
adaptability of complex biological
systems, changes in multi-fractal properties
reflect effective adaptations underlying

invariance of functional outcome.

In this line, characterizing multi-fractal
properties in macroscale variables may
constitute a fine-grained analysis to
uncover masked adaptations underlying
goal achievement. From a broader
perspective, disentangling adaptability and
effective adaptation actually constitutes a
major challenge, as both come necessarily
together to a certain extent (Ulanowicz,
2002). Combining analysis at the task-
relevant observation level (e.g., the level of
motor performance) and an assessment of
the correlates occurring at underlying
observation levels (e.g., the level of brain

dynamics) may contribute to this end.

4.3. Changes in Brain Modularity Reflect

Functional Adaptation to Constraints

In this study, we hypothesized that the
variety and intermittency of functional
connectivity patterns would be influenced
by different conditions of privation of
sensorial feedbacks. Our results show that
dynamical reorganizations of the brain
network yielded multiple networks that
were intermittently involved during task

performance (Figure 3F), and that the

number of different networks involved
depends on the experimental group, i.e., on
the feedbacks subjects were deprived or
not. The literature studying brain networks
involved in a task has generally considered
that for a given function or performance
the functional organization of the brain is
stable over time. Accordingly, the purpose
of investigations has often been to extract
the typical network engaged in a given
task, using a number of computational
methods (Biswal et al., 1995; Witt et al.,
2008). Nevertheless, another part of the
literature studying the dynamic properties
of functional networks in resting state has
showed that the modular organization of
the brain evolves within the scanning
period (Chang & Glover, 2010; Hutchison
et al., 2013; Fallani et al., 2014) and that
such natural fluctuations are likely to
support the ability of quick adaptive
responses (Deco et al., 2011). Previous
studies using resting paradigm do not
enable to reveal the actual implementation
of such adaptability during a sensorimotor
task. These results complement previous
literature insofar as they show that the
variety of brain networks that are involved
in a single task depends on the
experimental constraints imposed to the
subjects. More precisely, the counter-
intuitive character of these results (i.e.,
increased number of networks with

decreasing feedbacks, Figure 3F) could be
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explained by the fact that, under
constraints, the brain navigates between
numerous networks to find out the solution
enabling achievement of its level of
performance (Kelso et al., 2013; Tognoli &
Kelso, 2014). Such explanation seems
consistent with previous studies showing
novel recruitment of cortical areas under
conditions of chronic sensorial deprivation
(blindness, deafness, Merabet and Pascual-
Leone, 2010), although adaptation to
transient experimental manipulations is not
directly

comparable  with  lifelong

alterations.

From a broader perspective, considering
that the brain possesses degenerate
properties (i.e., multiple networks could
perform the same function with some of
them being possibly latent, Edelman and
Gally, 2001), the networks involved in a
given function or performance can hardly
be grasped in a comprehensive way
without imposing internal and/or external
constraints so as to induce variation in
connectivity patterns (Price and Friston,
2002). This idea was initially developed in
theoretical papers, and few experimental
tasks actually allow imposing constraints
without changing the motor performance.
Electroencephalography, functional
magnetic resonance imagery and fNIRS
studies (Nedelko et al., 2010; Leff et al.,
2011; Muthuraman et al., 2012) showed

that the sensorimotor network (e.g., M1,
PMC, and PFC) is engaged in a simple
short finger- tapping task and is supposed
to reflect sensory integration, motor
initiation and production. Conversely, our
results suggest the existence of multiple
networks that allow for the carrying out of
a tapping task over time. Moreover, there
is no single network dedicated specifically
to tapping independently of the different
conditions under which tapping is to be
performed. However, these findings need
to be examined with caution due to some
methodological consideration. In this
study, we used modularity analysis (or
community detection, Newman, 2006;
Sporns, 2012 ; Sporns and Betzel, 2016) at
the macro scale level (between networks)
and not on each network. One can
hypothesize that the latter analysis would
make it possible to highlight similar
clusters of sub-networks linked in different
ways. In particular, it has recently been
shown that dynamic connectivity between
different brain regions is not only
dependent on the regions involved, but
also on the interconnections between
multiple EEG frequency bands (Liu et al.,
2015). Future investigations using EEG
combined with fNIRS would allow to
better understand the dynamic functional
organization of the brain, and the role of
multi-frequency connections in network

coupling. It has been proposed that the

70



modular organization of the brain is
subtended by a relatively rigid network
composed of nodes distributed in each sub-
module (Sporns, 2013). Nevertheless,
although the origin of temporal
fluctuations in dFC estimates remains
largely unknown, sliding window analysis
was shown as a promising method to
highlight dynamic connectivity in multiple
neuroimaging methods. As the optimal
window size to compute correlation
coefficient is still under debate (Hutchison
et al., 2013), we used three-window sizes
(30, 75, and 120s, see Figure 3F) to be
confident in the results obtained. We found
a strong statistical difference between the
control group and other  groups
independently of the window size. This
confirms our hypothesis and this allows us
to confirm that our results are not
dependent on the window size chosen (e.g.,
Hutchison et al., 2013; Hindriks et al.,
2016). An additional step of our promising
results would be to extract the
characteristics of the different networks
implemented with more fine-grained tools
like those proposed in fMRI (Bassett and
Bullmore, 2006; Bassett and Gazzaniga,
2011; Papo et al., 2014).

4.4. Bridging the Gap Between Brain and

Behavior

The literature has mostly been studying the

dynamics of cerebral networks on one

hand, and the temporal structure of
behavioral variability on the other hand,
though both communities share key
concepts coming with the complex system
approach (Bullmore et al., 2009; Werner,
2010; Whitacre and Bender, 2010;
Sleimen- Malkoun et al.,, 2014). Thus,
attempts to link these two approaches seem
valuable (Price and Friston, 2002; Friston
and Price, 2011). In the present study, we
provide novel evidence that the number of
networks involved during a motor task in
four experimental conditions significantly
correlates with the degree of multi-
fractality found in the sensorimotor
outcome. This correlation was obtained for
two of the three window sizes used (30 and
75s). Previous literature has highlighted
that the dynamics of  functional
connectivity increase with diminution of
the window size, due to the non
stationarity of Blood Oxygenation Level
Dependent or fNIRS signals for short
windows with an increase of transient
nodes that were unobserved for large
window size (Hutchison et al., 2013).
Therefore it is not surprising that fewer
networks were detected for our largest
window (120 s). As a consequence the
correlation between the number of
networks and the multi-fractal properties of
tapping series was low and not significant
for the 120 s window as compared to the

smaller windows.
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Previous theoretical and simulation
approaches had shown that degeneracy
plays a central role in the link between
complexity, adaptability, and robustness
(Whitacre, 2010) and that degeneracy may
underlie fractal properties in the outcome
variables (Delignieres and Marmelat,
2013). Our result provides experimental
support highlighting the link between
theoretically related properties across two
different scales of observation, namely
between degeneracy at the level of brain
connectivity and measures of complexity at
the level of behavior, both being
considered tightly related with systems
adaptability. As such this result may be of
particular relevance for translational
research, since a significant part of
literature has proposed to assess the
diagnostic and/or prognostic power of
fractal properties in sensorimotor variables
in neurodegenerative pathologies (e.g.,
Parkinson or  Alzheimer  diseases)
conveying the strong but so far
experimentally unproven assumption that
alterations of the brain network would
come out in the fractal properties of
behavior. Consequently, we consider that
(1) fractal properties in macroscale
variables are (at least partly) dependent on
the degenerate organization properties of
the brain, and (ii) concomitant changes in
network connectivity and multi-fractal

properties in behavioral variability reflect

(at least partly) effective adaptations
underlying invariance of functional

outcome.

Finally, the system’s ability to adapt and
effective adaptation go hand in hand
(Ulanowicz, 2002), the first being a
necessary condition for the latter, the latter
in turn affecting the first. To be able to
disentangle the brain and behavioral
correlates of adaptability and adaptation is
of importance seeing that evolution toward
pathological states or advancing age often
come along with a decreased ability to
adapt, up to functional loss (Lipsitz, 2002;
Manor et al., 2010; Stergiou et al., 2016).
The joint analysis of motor variability and
brain dynamics, as well as the use of an
experimental paradigm that allows to
gradually constraining the system so as to
induce adaptations (maintenance of
performance) up to the loss of further
capacity to adapt (decrement of
performance), may contribute to this end.
Extending the present tapping paradigm
may be appropriate in this view since, in
contrast to visual, auditory or tactile
feedbacks,  further  deprivation  of
proprioception has been shown to decrease
tapping performance (Stenneken et al.,
2006). Our present experimental design
was not conceived such as to allow for

investigation of putative differential effects

among sensory modalities (e.g., auditory
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and visual cortex), and we limited
ourselves to the  assessment of
sensorimotor and prefrontal regions.
Future studies using a larger number of
channels (whole brain) may examine in
how far the networks dynamics underlying
finger tapping are affected depending on

the sensory modality suppressed.
4.5 Conclusion

To what extent the multiple networks in
the brain restructure with some distinctive
properties of motor variability has
remained unanswered so far. Both
conceptual considerations and simulation
approaches  have  provided  strong
indications for such relationship but
experimental evidence has been lacking.
Our present work evidences a significant
correlation between the number of brain
networks and the degree of multi-fractality
in tapping. We believe that this finding
constitutes a step further toward bridging
the gap between the degenerate
connectivity patterns at the brain level and
the properties of variability at the
behavioral level. We anticipate that future

work, possibly combining simulation and

experimental methods like multimodal

neuroimaging, will provide means for
larger and/or more fine-grained ranges of
variation in the number of brain networks
involved and the fractal properties of
motor performance, so as to further

consolidate our present findings.
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The second study of the dissertation indicated a possible link between multi-fractal properties
at the macroscopic scale of observation (behavioral response) and intermittency of dynamic
functional connectivity in the brain (the number of brain networks involved, Figure 3G).
Nevertheless, some methodological limitations should be noticed and could be taken into
account in the future. As the fNIRS used was not composed of short channels regressors or
external physiological triggers, our fNIRS signals were possibly influenced by confounding
factor such as the scalp blood flow increase without evoked cerebral activation. Although we
are aware of this possible limit, we currently have no opportunity with the tools in our
possession to address this factor but we can nevertheless think that this phenomenon would
remain constant in the accomplishment of our task in particular because it’s not expensive
physiologically. Nevertheless, our study constitutes the first stone for future investigations
linking both the dynamics of the networks used in carrying out a motor task and the variables
extracted at the behavioral level. It opens up the possibility to better distinguish effective

adaptation in the achievement of a task from the adaptability potential.

Our positioning in this work concerning the distinction between the potential of adaptability
and adaptation (effective or not) leads us to consider in a complementary way in future
studies the system's evolution capacities (Figure 3H) in conjunction with its robustness as
studied in the two studies presented above (see chapter 2 and chapter 3). This distinction will
therefore be essential especially in the quest for the discovery of sensorimotor markers of
health. Moreover, from a more systematic point of view, the use of the fNIRS alone does not
allow to investigate different levels (particularly cerebral) to test the biological hypothesis of
a dynamic cascade organism or self-organized criticality. Finally the key concept at the heart
of the hypothesis of our previous study (Degeneracy, Chapter 3) questions in view of our
results. In fact, in their two original studies, Deligniéres & Marmelat (2011, 2013) proposed
that a minimal number of networks “are necessary” to produce long-range correlated series.
Although our results concerning the functional dynamics investigated by fNIRS put forward
for each of our experimental groups several networks, we can ask the question of the possible
“minimum number”. If this value (or variable) seems relevant, the tool and the method to

quantify it faithfully remain suspended.

While we are among the first team to our knowledge to compute dynamic functional
connectivity with fNIRS during a continuous motor task, it seems critical to develop more

advanced approaches to minimize certain limits when using the Pearson correlation. As

75



highlighted in some studies (Hutchinson et al., 2013; Hidrinks et al., 2016), there are possible
methodological improvements concerning the functional connectivity analysis used (Bivariate
Pearson correlation analysis). A first limitation is the choice of the window length we set a
priori to compute the correlation coefficient. While we used three window lengths (30 s; 75 s;
120 s), there is currently no consensus on the optimal window especially for an application on
biological signals that are reflected to be nonlinear. The second limitation is the possible
multiple interactions between the large number of time series obtained in a single recording at
multiple possible overlapping brain space. Like mass univariate analysis, bivariate Pearson’s
correlation could be subject to the transitivity effect (the link between signal x and signal y
could be mediated indirectly by a third signal z). Multivariate analysis seems therefore a
potential promising approach to limit the possible effect of transitivity in connectivity
analysis. Finally, maybe more important from a fundamental point of view, Pearson’s
correlation is not able to reflect the directionality of the link between time series. A high level
of correlation could be sustained by a bi-directional link between two regions of interest or a
high dependency of one region to another. Taking into account the information flow
propagation is a step forward simple description of a non-directed network and was the
purpose of multiple research teams since twenty years. Although methods commonly used in
fMRI such as dynamic causal modeling is an interesting approach, this one is based on
structural connections prerequisites to create and validate the implemented model. Another
approach, based on an autoregressive model quantifies the directionality of the link between
two (or more) time series without being dependent on knowledge of the underlying system
(model free). This approach initially proposed by Granger (1969) is the subject of a box (box
3) and will be the initial starting point of some methods proposed in the following study.
Given the above limitations of our previous approach, we decided to apply a recently
published method to highlight better the dynamic directional connectivity between brain

signals from fNIRS measurements during the finger-tapping task.
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Figure 3H: Diagram representing the key words studied in the study 2 of the dissertation. This

2" study investigated the concept of degeneracy and its intermittent properties.
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Box 3

Granger Causality

“In this paper, we analyze fundamental properties of Granger causality and
illustrate statistical and conceptual problems that make Granger causality

difficult to apply and interpret in neuroscience studies”
(Stokes & Purdon, 2017)

“However, these claims rest, respectively, on an incomplete evaluation of

the literature, and a misconception about what GGC can be said to measure”

(Barnett et al., A response to Stokes and Purdon, 2017)

When are two “structures” connected? It is by this essential question that we
introduce this box. We know today from numerous studies published since
the late 90's that cerebral functioning is organized within a network (Friston
et al., 1993, 1995, 1997; Biswal et al., 1995). Many studies (including those
presented in Chapter 3) have relied on correlation analyzes not only because
it is one of the oldest methods applied in fMRI (Biswal et al., 1995) but also
because it is relatively simple to understand and study in most
undergraduate courses. Nevertheless, this method has already been shown
for a long time to be limited and inadequate in most cases (Baccalda &
Sameshima, 2001). One of the first drawbacks encountered is the transitivity
problem indicated previously. Although two signals can be strongly

correlated, this bivariate analysis does not make it possible to reflect if this



correlation is driven by a third element unmeasured or not take into account
due to the mathematical analysis. Moreover, this approach does not make it
possible to highlight directionality in the link uniting two structures. Are
they interrelated or does one “structure” direct the other? A visual
comparison between networks extracted from correlation analysis and
multivariate granger causality analysis is presented in figure 31 for one

representative subject during two conditions (resting state and motor task).

It is one main reason that led Granger (1969) to develop a mathematical
analysis to assess directionality based on a conceptual idea proposed a little
earlier by Wiener (1956). The relatively simple idea underlying this
mathematical formalism is that (i) a cause occurs before it’s effect and (ii)
some form of causality between a time series x(n) to another series y(n) may
be at play if knowledge of x(n)’s past observation is helpful in predicting the
actual value of y(n). In fact, with this approach, we can only say that the
past observations of x(n)’s help to predict the value of y(n). This is the basis
of this mathematical approach. The term “causality” in the sense of Granger
could then be seen as a confounding with the common sense of causality.
Studies therefore proposed to use the term “G-causality” or “Granger-
Geweke Causality” (Sameshima & Baccald, 2014; Barnett & Seth, 2014;
Barnett & al., 2017).

G-Causality is a popular and powerful analysis method in neuroscience
(Seth et al., 2015) although there are debates in the literature (see for
instance an article by Stokes & Purdon in 2017) especially in the
interpretation of the results obtained with this method. These last authors
(Stokes & Purdon, 2017) first highlight the fact that Granger Causality and
how it is commonly used can be severely biased by some preprocessing
steps or of high variance (inter and intra subject variability). Second, G-
Causality does not reflect the structural and true causal mechanisms of a
system (Friston 2011). Nevertheless, following the publication of this
article, many voices rose and criticized this article in a relatively virulent
way (see for exemple Barnett et al., 2017; Faes et al., 2017). This last

reference in particular is very aggressive as evidenced by these two quotes:
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“We think that Stokes and Purdon use a formulation of G-Causality which is
outdated”

“It would be a pity if this paper, even if written in good faith, became a
wildcard against all possible applications of GC, regardless of the large
body of work recently published which aims to address faults in

methodology and interpretation.”

To conclude, analyzes such as those initially proposed by Granger suffer
from certain limitations in the same way as any analysis used whatever the
field of investigation. Nevertheless, many mathematical developments make
it possible to limit the problems posed by these approaches, in part for
example with the toolbox proposed by Barnett & Seth (2014) or dynamic
“Causality” (Anwar et al., 2013; Zanin & Papo, 2017).
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FUNCTIONAL CONNECTIVITY FUNCTIONAL CONNECTIVITY
(CORRELATION) (GRANGER CAUSALITY)

REST

TASK

Figure 3I: Comparison between undirected functional connectivity (FC) and
directed FC performing resting state condition (upper panel) and ergocycle
task (lower panel) for one representative subject. Data represented for each
condition/method was threshold at the 5% of the strongest edges. Edges are
bi-directional (non directed) on the left part of the figure (Correlation) and
bi-directional or unidirectional (directed) on the right part (Multivariate
Granger Causality analysis). Data as part of a Master study (L. Borrot,
2018).
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Abstract:

Functional near infrared spectroscopy (fNIRS) is a promising neuroimaging method for
investigating networks of cortical regions over time. We propose a directed effective
connectivity method (TPDC) allowing the capture of both time and frequency evolution of the
brain’s networks using fNIRS data acquired from healthy subjects performing a continuous
finger-tapping task. Using this method we show the directed connectivity patterns among
cortical motor regions involved in the task and their significant variations in the strength of
information flow exchanges. Intra and inter-hemispheric connections during the motor task
with their temporal evolution are also provided. Characterisation of the fluctuations in brain
connectivity opens up a new way to assess the organisation of the brain to adapt to changing

task constraints, or under pathological conditions.

83



1. Introduction

Functional near-infrared spectroscopy
(fNIRS) is a non-invasive imaging
technique that has become increasingly
popular for brain function research in
recent years (Ferrari & Quaresima, 2012;
Scholkmann et al., 2014). Based on the
exploration of hemodynamic signals, in the
same way as functional magnetic
resonance imaging (fMRI), and its blood
oxygen level dependent signal, fNIRS
provides information on the functionally
evoked changes in cortical oxyhemoglobin
(HbO) and deoxyhemoglobin (HHbD)
concentrations with relatively low spatial
resolution. However, due to several
technical advantages (high temporal
sampling rate, portability and ability to
perform long data acquisitions), fNIRS has
been extensively used to measure the
magnitude of brain activation during motor
or cognitive tasks, in both healthy and
diseased populations (Gervain et al., 2008;

Derosi¢re et al., 2014; Sato et al., 2013).

Nevertheless, as highlighted by some
authors, the brain is a complex system par
excellence characterised by the co-
existence of functional segregated parts of
the brain, and functional integration among
these parts (Sporns, 2012; Tononi et al.,
1994).  Functional specialisation, or

segregation, implies that elements of the

brain network tend to organise into
separate, statistically independent areas. It
refers to the idea that parts of the brain
may, for example, specifically cope with
the cognitive (Stoodley & Stein, 2013),
perceptual (Price, 2012) or motor (Sun et
al., 2007; Rao et al., 1996) components of
a certain task. Functional integration, on
the other hand, refers to the way these
different components are connected to
become statistically interdependent to
some degree (Sporns, 2013). For example,
an fNIRS study (Bajaj et al., 2014) in
healthy subjects showed different changes
in the link between motor cortex (Ml),
premotor cortex (PMC) and supplementary
motor area (SMA) between various finger
movement task conditions. By using fMRI,
Grefkes and Fink (2011) showed relevant
changes in intra- and inter-hemispheric
brain links within the motor network after
stroke. Therefore, a key challenge in
neuroscience, in particular for portable and
promising neuroimaging techniques such
as fNIRS, is to move beyond identification
of regional cortical activations toward the
characterisation of interactions between
brain areas (Seth et al., 2015).

Connectivity analyses of the brain have
been the object of a growing interest in
neuroimaging studies in recent years, and
applied to both electrophysiology-based
(electroencephalography (Lehmann et al.,

2012); magnetoencephalography (Stam et
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al., 2007; Muthuraman et al., 2014)) and
hemodynamics-based (fMRI (Van Den
Heuvel & Pol, 2010; Anwar et al., 2016);
fNIRS (Mesquita et al., 2010; Anwar et al.,
2013)) modalities. In this line, authors
have often used bivariate Pearson
correlation analysis in the time domain, or
its counterpart, namely coherence in the
frequency domain. While these analyses
have shown their ability to distinguish
between healthy and diseased populations
(Van Meer et al., 2010; Park et al., 2011),
they present limitations in two notable
respects: first, they do not take into
account the directionality of the link
between two regions of interest.
Furthermore, the time-series analysis of
brain activity is typically limited to only
two signals (bivariate analysis). That is,
these types of analyses are known to not
provide a comprehensive assessment of
inter-channel interactions, as they ignore
influences from other sources (Baccala, &
Sameshima, 2001).

In contrast to wundirected functional
connectivity, directed effective
connectivity (EC) describes the influence
that one region of the brain exerts on
another. The two most commonly
employed methods to analyse the directed
influences within the whole brain network
are Dynamic Causal Modelling (DCM)
(Stephan & Friston, 2010) and Granger-

Causality Modelling (GCM) (Seth et al.,

2015; Granger, 1969). DCM is based on a
statistical technique to highlight how well
a model fits the data. In similar approach,
structural equation modeling (SEM) (Zhu
& Godavarty, 2013) comports a model
where parameters are connection strengths
or path coefficients between different
variables. DCM and SEM were shown to
product the same results (Penny et al.,
2004). Because these two fixed models
containing regions of interest need to be
predefined, unknown brain areas or
connections between areas cannot be
investigated. While DCM and SEM are
methods based on

model driven

assumptions  between intrinsic  and
extrinsic linked areas, the advantage of
GCM is that it does not require any a
priori information, as it completely relies
on the multivariate
(MVAR) modelling of the recorded brain

signals (Friston, 2009). Due to their

auto-regressive

assumption-free nature, GCM  based
methods are complementary to DCM
(Friston et al., 2013). The first studies
addressing directed connectivity have
adapted Granger’s formalism (Geweke,
1982; Seth, 2010), considering that some
form of causality from a time series x(n)
onto another time series y(n) may be at
play, if knowledge of x(n)’s past behavior
proves helpful in predicting y(n). The two
derived  from

time-domain  methods

Granger causality, the conditional Granger
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causality (CGC) and partial Granger
causality (PGC) (Guo et al., 2008), are
particularly suitable for signals with very
low signal to noise ratio. However, in
biological time series, and notably in brain
analysis, need is to deal with unmeasured
latent  variables and environmental
(exogenous) inputs. For some signals, like
local field potential signals, PGC has been
proven more successful than CGC, notably
in controlling for a third time series that
could falsely cause connection between
two series of interest (Roelstracte &
Rosseel, 2012). However, CGC and PGC
provide causality information only in the
time domain (Hesse et al., 2003).

Aside from time domain causality
methods, frequency-domain  causality
methods are able to look at causality at a
particular frequency. Frequency-domain
causality measures are also tolerant of
wide ranges of noise. The directed transfer
function (DTF) can quantify causality
between different time series, but is unable
to differentiate between direct and indirect
connections (Kaminski et al., 2001) (where
the connection x to y could be mediated by
z). Therefore, two new developments of
DTF methods were proposed, namely the
directed DTF (Korzeniewska et al., 2003)
and, recently, the non-normalized DTF,
which overcomes the drawbacks of DTF

and allows discrimination between the

direct and indirect connections (Blinowska

et al., 2016). Similar to DTF, partial
directed coherence (PDC) is based on the
Fourier transformation of the MVAR
coefficient. Unlike DTF, PDC can
differentiate between direct and indirect
connections and is currently the most
widely used method in biomedical signals.
Its major shortcoming, however, is that any
additional source affects the strength of
already present sources, due to the fact that
normalisation in the equation of PDC is
done with respect to the sources
(Sameshima & Baccala, 1999). Yet, the
generalised partial directed coherence can
accommodate differences in the individual
variances of the subjected time signals
(Baccalda & Sameshima, 2007). The re-
normalised partial directed coherence
allows overcoming the limitation related to
the addition of the source without requiring
any frequency dependent significance level
(Schelter et al., 2009).

Directional information provided by the
aforementioned methods offers the
potential for mapping directed influences
between regions of the brain. However,
different studies applying such analyses to
fNIRS data (Holper et al., 2012; Zhang et
al., 2014; Medvedev, 2014) have implicitly
considered that patterns of connectivity
were stationary within the scanning period:
indeed, analysing the global (average)
connectivity pattern over a relatively long

time session conceals its temporal
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evolution during the task. Though
intermittence between functional
integration and segregation in the brain
leads to the idea that information flows
between two brain areas are highly
dynamic. Recent studies have shown that
brain connectivity also evolves over time
in a resting state, as it may do in
continuous tasks (Chang & Glover, 2010;
Hutchinson et al., 2013). Such dynamic
brain organisation is actually a key
property of any complex system that shows
high adaptive capacities (Sporns, 2012),
and time-frequency analyses can provide
insight into it.

Here, we proposed to perform EC analyses
based on a novel method applied in fNIRS,
namely time-resolved partial directed
coherence (TPDC) (Anwar et al., 2016;
Anwar et al.,, 2013). TPDC has been
developed and applied to EEG, MEG or
fMRI signals (Anwar et al., 2016). This
method is based on directed effective
connectivity to compute a time-frequency
analysis established on an MVAR model.
Allowing the application over time of
multiple PDC (Baccald & Sameshima,
2001), TPDC makes it possible to account
for the evolutions over time and frequency
bands of the information transfer directed
between multiple time series, i.e. between
regions of interest, for probing diseased
(Muthuraman et al., 2015; Choisa et al.,
2017) or healthy brain (Muthuraman et al.,

2014; Anwar et al., 2016).

To fully understand the functioning of the
brain and its adaptive capacities, we have
to take into account its dynamic
organisation through the time-frequency
evolution of connectivity patterns. The
purpose of this study was therefore (i) to
expose the TPDC method on fNIRS
signals and (ii) to reveal the ability of the
proposed method in assessing the time-
dynamics of brain connectivity during a
simple motor task performed by healthy
subjects. To this end, we first present
experimental fNIRS data collection.
Second, we develop the TPDC
computation steps. Third, we show results
of this example application of the TPDC
effective

connectivity  approach  to

experimental fNIRS data.

2. Materials and Methods

2.1 Participants

Six healthy volunteers took part in this
study (aged 28.6 + 3.8 years). All
participants gave written informed consent
before participating in the study. All
participants were right handed according to
the Edinburgh Handedness Inventory
(Oldfield, 1971) and reported normal
hearing and normal or corrected vision.
None had any sign of neurological disease,
nor reported extensive practice in music.

All procedures were approved by the local
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ethics committee and complied with the
Declaration of Helsinki for human

experimentation.

2.2 Experimental design

The experiment was conducted in a quiet
and dimly-lit room. Participants were
seated comfortably on an adjustable chair.
They were instructed to remain relaxed and
to refrain from extensive head motion.
After positioning fNIRS probes over the
head, fNIRS data recording was initiated,
with a one-minute resting state (quiet
baseline) while the subjects’ eyes were
open. It allows having the best possible
baseline condition before the experimental
task. Then, participants were asked to
perform a continuous (6 minutes and 40
seconds) tapping task, according to a
conventional synchronisation-continuation
paradigm (Wing & Kiristofferson, 1973).
During the initial synchronisation phase
(around 15 seconds), the tapping tempo
was prescribed by a PC-driven auditory
metronome delivering 20 signals at a
frequency of 1.5 Hz. Once the metronome
stopped, participants were requested to
continue tapping by maintaining the
prescribed tempo as accurately and
regularly as possible for the whole trial
duration. Data from the last 6 minutes of

each trial was submitted for analysis.

2.3 Data collection

Changes in HbO and HHb were assessed
using two continuous wave multi-channel
near infrared spectroscopy  systems
(Oxymon MKIII and Octamon, Artinis
Medical Systems, The Netherlands) at two
wavelengths (Oxymon = 763 and 855nm,
Octamon = 742 and 848nm). The sampling
rate was set at 10 Hz. In the present study,
we used 10 transmitters (pulsed laser) and
4 receivers (avalanche photodiode), which
were coupled through fiber optic cables
mounted onto a customised head cap. The
16-channel array with a transmitter-
receiver spacing of 30 mm extended on
three regions of interest: PMC, M1 and
SMA in both hemispheres. In addition, the
2" 8-channels system (Octamon, inter-
probe distance of 35 mm) covered the
dorsolateral (DLPFC) and orbitofrontal
(OFC) cortices in both hemispheres. After
positioning the head cap on the vertex
location (Cz), a 3D-digitiser (Fastrack,
Polhemus, United States) allowed the
collection of the 24 probe positions (X,y,z
space). In the present study, based on the
selected 5 regions of interest (M1, PMC,
SMA, OFC and DLPFC), 18 channels
were retained for analysis. NFRI function
(Singh et al., 2005) was used to extract the
Montreal Neurological Institute
coordinates (MNI). Localisation, MNI
coordinates and Brodmann area (Chris

rorden’s MRIcro) correspondences are

reported in Figure 4A.
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Ch MNI Coordinates BA (%)
x y z

1 -54 -17 58 4(15) -6 (85)

2 -38 -19 71 4(01) -6 (99

3 -42 -40 67 3(31)-4(64)-6(5)

4 =22 -20 77 6 (100)

5 =25 -43 75 4(41)-6(59

6 8 =22 78 6 (100)

7 13 -24 79 6 (100)

8 30 -24 75 6 (100)

9 28 -45 74 4(48)-6(52)

10 47 -24 67 409 -691)

11 44 -45 65 3(8)-4(72)-6(20)
12 60 -26 54 3(1)-4(46)-6(53)
13 45 57 14 10 (21) —45 (1) —46 (78)
14 24 65 26 9(6)-10(73) -46 (21)
15 26 69 16 10 (1)

16 =25 62 27 9(4)—10(47) - 46 (49)
17 -26 67 16 10 (90) - 46 (10)

18 -46 51 15 45 (30) - 46 (70)

Figure 4A: On the left, fNIRS probes location using BrainNet Viewer (Xia et al., 2013) with

transmitters (in red), receivers (in blue) and channels (Ch, in yellow). On the right, mean MNI

coordinates and Brodmann area (BA) correspondence for each channel.

2.4 fNIRS preprocessing

First, extracted
intensity) from the ARTINIS software
(Oxysoft v3.0.95). Data was then uploaded

using a MATLAB (The MathWorks) in-

we raw data (light

house script, and converted to optical
density (OD) (Huppert et al., 2009) defined
by:

Aes
AOD‘U(t)=Ln[cD ”(0)} (1)

where @ is the intensity, i is a source

position, j is a detector position, and 4 the

wavelength of light. Next, we applied the
moving standard deviation and spline
interpolation methods (Scholkmann et al.,
2010) (SDThresh = 20, AMPThresh = 0.5,
tMotion = 0.5s, tMask = 2s and p = 0.99),

and then wavelet artefact -correction
(Molavi &  Dumont, 2012) (with
probability threshold o = 0.1) as

recommended (Cooper et al., 2012), to
remove possible motion artefacts. To
access HbO and HHb  relative
concentration changes (Conc) (expressed

in uM) we applied the modified Beer-
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Lambert Law (Kocsis et al., 2006) to the
OD data that included an age-dependent
constant differential path length factor
(4.99+0.067%Age’*'")  (Duncan et al,
1996).

White noise signal is one of the most
harmful effects in connectivity analysis
and can create spurious links, whether false
positives or false negatives. As a
consequence, we used a simple pre-
processing step computing the power
spectra to ensure the discrimination of
noisy signals. For that purpose, we
obtained the power spectra of each HbO
time series (more sensitive to physiological
noise than HHb) for each channel:
detection of a peak value around 1Hz in
the time series reflecting the presence of
the heartbeat in the {NIRS signal
(Themelis et al., 2007), was considered to
indicate a good contact between the optode
and the scalp. By running this pre-
processing, 2 channels were removed in
our 6 subjects, leaving 106 channels (18
channels per subject, minus 2 bad
channels) to be used for the subsequent
TPDC’s analysis.

Subsequently, a linear detrending was used

to remove slow drifts of Conc data, and
time series were centered to zero mean to
satisfy the criteria of second order
stationary. Importantly, we did not use any
filtering on our Conc data before further
analysis, as it has been shown that filtering
could lead to spurious connections (Barnett

& Seth, 2011).

2.5 Time-resolved partial directed

coherence

Using time-frequency causality allows for
analysis of the temporal dynamics of the
causality at any particular frequency in
focus. The TPDC (Figure 4B) is based on
dual-extended Kalman filtering (Wan &
Nelson, 2001), and allows time-dependent
auto regressive (AR) coefficients to be
estimated. In general, the signals are
analysed with static AR coefficients,
meaning that the fitted model and the AR
coefficients remain the same for the
complete length of the signal. For non-
linear signals like fNIRS, the model should
be time varying and the coefficients need
to be estimated regularly over the course of
the time-period. Regularly estimating the
coefficients is termed as adaptive auto-

regressive process.
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l l
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Figure 4B: Flow chart of the various steps used for the TPDC analysis. The black arrows and
rectangles (left side) present the overall process using real fNIRS data. The dotted gray

arrows and rectangles (right side) display the bootstrapping process undertaken.

91



The expression for an adaptive auto-

regressive process can be given as follows:

r=p

x(©) = ) aOx(t 1) + 10

r=1

where a,(t) are the time-varying MVAR
coefficients, p is the model order of time
series x(¢#) and #(¢) is the zero-mean
Gaussian noise process. To sum up, the
extended Kalman filter used in the TPDC
analysis is a predictor-corrector algorithm
that estimates states of a process. We can
model an fNIRS time series using a

general non-linear state-space model:
x(k) = Flx(k —1),w] + Bu(k)
y(k) = Cx(k) + n(k)

where y(k) is the target time series and the
aim is to estimate x(k). Since the present
purpose is to estimate the model
parameters related to the non-linear
function F, only the process equation (2) is
considered. Both noise processes v(k) and
n(k) are white, zero mean and Gaussian. At
each time point, previous state estimates
and weight estimates are fed to both of the
Kalman filters. Both predictors are then
corrected on the basis of observed data
vy(k), such that they yield current state and
weight estimates. By using two Kalman
filters working in parallel with one another,

we can estimate both state and model

parameters of the system at each point in
the time series. After estimating the time-
dependent MVAR coefficients, the next
step is to use those coefficients for the
calculation of causality within the time
series. By calculating the time-dependent
MVAR coefficients at each time point,
PDC, based on the principle of Granger
causality can be computed. Then, the
Fourier transform of these coefficients and

PDC can be calculated using the formula:

|4, )

/2 k|4 )|

where A4;;(2) 1s the i,j — th element of A(7) .

|7Ti<—j(l)| =

Then the PDC values follow normalisation

properties such as:

0<|m;)| <1

By calculating PDC at each time point,
multiple matrices corresponding to the
time-frequency causality from two time
series are obtained. All possible
connections between channels (n = 18)
were analysed and resulted in 306
connections for each subject. In fMRI and
NIRS time series, the frequency band of
interest is [0.009-0.08] because it reflects
the neurovascular coupling frequency band

(Ferrari & Quaresima, 2012; Scholkmann

et al., 2014). We thus extracted this mean
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frequency band of interest for each

connections matrix.

2.6 Statistical analysis

The stationarity of the time series was
tested using an augmented Dickey-Fuller
test in which it is defined if the absolute
solution of the so-called characteristic
equation is greater than unity (Halim &
Bisono, 2008). Since the PDC’s measures
have a non-linear relation to the time series
data from which they are derived, testing
for significance can be difficult to perform.
To deal with this issue, after the TPDC
values had been estimated, the significance
level was calculated from the applied data
using a bootstrapping method
(Korzeniewska et al., 2003). In short, the
original time series of length (n) 1s divided
into (k) smaller non-overlapping windows
of length v (n = kv). The order of these
windows is randomly shuffled to form a
bootstrap sample of the original time
series. Then, the MVAR model is fitted to
the shuffled time series, and the TPDC
value can be estimated. The process is
repeated 1,000 times. The TPDC value for
each of these 1,000 random permutations
is estimated and the 95" percentile TPDC
value is taken as the significance level.
This process is performed separately for

each subject. The resulting value is

retained as the significance threshold value

for all connections. The significance of the
causal measures evaluated from the actual
data can be assessed on this basis. In this
study the open source Matlab package
autoregressive fit (ARFIT) (Schneider &
Neumaier, 2001), which allows for
modelling and analysing multivariate time
series, was used for estimating the AR
coefficients from the spatially filtered
source signals.

We extracted the mean and standard
deviation (std) of TPDC values during the
finger-tapping task (6 minutes) to compare
the connectivity strength and variability for
each connections. Then we calculated the
Shannon entropy (E) of the TPDC time
series (wentropy Matlab function), to
assess the diversity, or uncertainty of each
connection’s strengths.

For all variables (mean, std and E) we
checked the normality of the data using the
Shapiro-Wilk test. A one-way ANOVA
was then performed (Statistica 7.1) to
compare among connections (n=14 after
Bootstrapping) (p = 0.05). In case of a
significant difference, we performed post-

hoc Bonferroni correction.
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3. Results band of interest and averaged the matrix in
The result of the TPDC analysis is a time- the frequency space to obtain a single time

. . series reflecting the time evolution for each
frequency matrix for each connection

reflecting the strength of the information connection (Figure 4C).

exchange. We extracted our frequency
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Figure 4C: Example of time-frequency plots generated by TPDC analysis during 60 seconds
of the finger-tapping task for 2 connections (From M1y to PMCy and PMCrg to PMC;. a) Time
frequency plot for the whole frequency band (5 Hertz). X-axis represents time in seconds
Y-axis the frequency in Hertz. Color bars represent the normalised (0 to 1) coherence of the
connectivity extracted from TPDC results (blue close to zero connection and yellow close to 1
representing strong connection). b) Time frequency plot for the frequency band of interest
[0.009 to 0.08 Hz]. c) Mean of the frequency band of interest. Y-axis represents strength of
connection. This example shows higher connectivity strength from M1 to PMCy compared to

PMCk to PMC;.
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All the time series were deemed stationary,
as we did not detect any unit root. A total
of 14 connections (at the whole group
level) out of 306 survived the data-driven
surrogate (p < 0.05). The whole surviving
network with the directed connections is
shown in Figure 4D. 12 of 14 connections
were normally distributed for the mean and
13 of 14 for std and E. Of the significant
connections, four were unidirectional

connections and five were bi-directional.

The unidirectional connections, namely
M1 to PMC;, PMC. to DLPFC;, PMCy
to PFCp and SMA;| to M1, were intra-
hemispheric and located on the
contralateral side to the tapping finger
(right hand). The bi-directional
connections were all inter-hemispheric
between DLPFC, - DLPFCxg,
OFCy, - OFCr, PMCp - PMCy,

SMA| - SMAg and M1y - M1.

Figure 4D: Whole-surviving connections after bootstrapping analysis (n=14). In blue,

bi-directional connections (inter-hemispheric) and in red uni-directional connections located

only in the contralateral hemisphere.
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The ANOVA revealed significant PMC;, compared to OFC; to OFCg, and
differences in mean TPDC values between PMCrto PMCy compared to bi-directional

connections M1y to PMC; and PMCxk to OFC and PFC connections (Figure 4E).
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Figure 4E: Average of the TPDC results with Box-plot, individual values and brain
representation. Box-plot reflects median, quartile and dots of individuals values for each
subject. X-axis represents connections. Y-axis is the mean TPDC value. Stars indicated
Anova statistical significance at p = 0.05. On the left, representation of statistical significance

on brain surfaces (differences are represented between red and blue connections).

For the std and the Entropy of TPDC bi-directional OFC and PFC connections
values, the analysis showed a statistical and between M1 to M1i compare to OFCy.
difference between PMCg to PMCy, Mlgr to OFCy (Figure 4F).

to M1y and M1y to PMCL compared to
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Figure 4F: Standard deviation and entropy of the TPDC results with Box-plot, individual
values and brain representation. a) and b) Box-plot reflects median, quartile and dots of
individuals values for each subject. X-axis represents connections. Stars indicated Anova
statistical significance at p = 0.05. a) STD TPDCS. b) Entropy TPDC. c¢) Representation for
both STD and Entropy of statistical significance on brain surfaces (differences are represented

between red and blue connections).

97



4. Discussion

In the present study we focused on the
mathematical approach to a time-frequency
effective connectivity analysis applied to
experimental fNIRS signals. In contrast to
other methods currently used in the
neuroimaging literature to assess brain
network connectivity, the proposed TPDC
method provides important insight into the
dynamics of connectivity in both the time
and frequency domains. Based on an
MVAR coefficient assessed by a dual-
extended Kalman filtering, this analysis
can be used in a number of biological time
series (e.g. EEG, MEG, fMRI and fNIRS)
to assess the dynamic evolution at rest, for
experimental block design as well as
during prolonged cognitive and/or motor
task performance. Here, we applied this
method on real fNIRS data from bi-
hemispheric DLPFC, OFC, PMC, SMA
and M1 areas (18 channels) during a

simple continuous finger-tapping task.

After correcting or disregarding noisy
fNIRS signals, we applied TPDC analysis
onto the time series of HbO concentration
signals and extracted the dynamic effective
connectivity and its temporal evolution on
our frequency band of interest (i.e.,
neurovascular coupling [0.009 to 0.08 Hz]
(Ferrari & Quaresima, 2012; Scholkmann

et al., 2010). The significance testing of

our possible 306 connections was
performed at the end of the processing
using a bootstrapping method: 14
connections survived after running the
dedicated analyses. The advantage of the
TPDC compared to other connectivity
methods proposed in the literature is its
ability to assess not only the mean
connectivity during the whole time series
but also its dynamics, which is of major
interest for a better understanding of the
brain’s dynamic functional

(re)organisation.

The lagged-correlation based -effective
connectivity methods (e.g. GCM) have
been extensively used in neuroscience to
shed light on directional functional
connectivity of the brain. Being
complementary to DCM, GCM methods
are not based on pre-assumption about the
brain, hence increasing their potential
applications in many fields. Studies
addressing the problem of viability for
using GCM on fMRI data claims that this
technique is appropriate and a robust
measure for fMRI (Wen et al., 2013). This
can also be relevant to fNIRS since this
neuroimaging technique also reflects
hemodynamic changes and relies on the
neurovascular coupling in the brain

(Logothetis & Wandell, 2004).

Results from the present example
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application highlight the fluctuations of
connectivity patterns between distant
cortical areas, reflected by high std and
Entropy results for some specific
connections (Fig. 6a ¢ and 6b). First,
TPDC shows that there was higher
connection’s strength over the
sensorimotor areas than PFC regions. Then
we show high dynamics in all connection’s
during the motor task revealed by std and
E results with higher fluctuations in M1y to
PMC., PMCr to PMC., Ml. to Ml
compared to the four connections over the
PFC. We also show a higher entropy of
TPDC values in M1 to M1r compared to
OFCy to OFCgr. Within the context of the
present study, our results (std and E)
suggest that the effective connectivity

evolves dynamically in time.

The network of effective connectivity
between cortical regions of interest (ROIs),
namely sensorimotor cortex (SMC), PMC,
DLPFC, during a finger tapping task in
healthy subjects has been presented in
earlier studies using MEG or EEG source
analysis [18,70]. The GCM analysis has
also been applied to fNIRS data to
determine the effective connectivity
between cortical ROIs in animal and
human (Bajaj et al., 2014; Im et al., 2010;
Yuan, 2013) experiments. In the above-
mentioned studies, simultaneous use of one

or two neuroimaging modalities has shown

bi-directional or uni-directional
information flow patterns between the
SMC, PMC and DLPFC ROIs. Recently,
by combining fNIRS, EEG and fMRI
neuroimaging methods, the effective
connectivity of the same cortico-cortical
sensorimotor networks (SMC, PMC, and
DLPFC) during different finger movement
tasks has been revealed (Anwar et al.,
2016). However, none of the above studies
has looked into the dynamics of the

significant connections during the task,

between the three ROlIs.

Additionally, in the present study we have
also included two more important regions
involved in motor tasks, the SMA and
OFC, assessed in the literature both in
activation and connectivity studies [4,14].
We were also able to look at the dynamic
inter-hemispheric connections during a
unilateral hand movement task, whose the
importance of interhemispheric
connections by using EEG coherence is
known during such a task (Serrien, 2008).
Our study highlights a low variability (std
and entropy) of bi-directional connectivity
in the frontal cortex during a simple
prolonged motor task. The PFC being
defined as one key anatomical region
involved in cognitive processes (Dreher &
Berman, 2002) leads us to conclude that
our present task does not seem to require a

high implication at the cognitive level (low
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TPDC strength in OFC and DLPFC areas
(cf. Fig. 5)). At the sensorimotor level,
observing high bi-directional connectivity
strengths  (Fig. 5) between  both
hemispheres seems consistent with the
literature: First, it is well known that there
are  high  bi-hemispheric  functional
connections for multiple sensorimotor
areas at rest and during a motor task
(Thompson & Fransson, 2015; Biswal et
al., 1995). Second, our subjects performed
a uni-manual motor task, of which the
contralateral motor network is known to be

primarily involved (Bajaj et al., 2014).

The functional network of cortical ROIs
involved in rhythmic and sequential finger
movements in healthy subjects has been
analysed using EEG (Muthuraman et al.,
2012), MEG (Pollok et al., 2006), fMRI
(Nedelko et al., 2010) and fNIRS (Leff et
al., 2011) separately, and the SMC, PMC
and DLPFC have been found to be the
three core regions of the cortical
sensorimotor network for movement
control (Witt et al., 2008). Using TPDC
method, our present findings allow
extending a previous fNIRS study that
showed only bi-directional effective
connectivity in the contralateral
hemisphere between SMC and PMC
during performance of a hand motor task
(Bajaj et al, 2014). The directions of

information flow for rhythmic movements

in earlier studies have shown that the SMC
plays a major role in directing voluntary
motor tasks (Anwar et al, 2013).
Nevertheless in this previous study,
authors analysed only the mean of
connectivity strength and don’t take into
account the dynamic of the network during
the task. Since one of the key properties of
the brain is the continuous juggling
between functional integration and
segregation, our results emphasise dynamic

changes over short time windows (Fig. 3c)

in the configuration of brain connections.

5. Methodological considerations and

limitations
5.1 Pre-processing of fNIRS data

Movement artefact is known to be one of
the biggest causes of spurious connectivity
analysis. In this study we used a combined
artefact  deletion technique  (Spline
interpolation and wavelet). While we used
this combined pre-processing approach
with parameters proposed in the literature
(Scholkmann et al., 2010; Molavi &
Dumont, 2012; Cooper et al., 2012), the
potential effect of a few undetected
artefacts, or the effect of some signal
transformation due to the correction on
causality analysis, remain however to be
clarified. More generally, discriminating
between a ‘good’ and a ‘bad’ channel in

the analysis of fNIRS time series is still an

unsolved methodological issue. While it
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seems quite easy to discriminate between
very noisy or not noisy signals, several
other characteristics of the signal need to
be carefully taken into account to
determine which fNIRS signals are
suitable for subsequent analyses. A
comprehensive  investigation of the
different fNIRS pre-processing methods,
including use of simulated data with
multiple levels of noise and real fNIRS
data from different experiments, probe
positions and systems of data collection,
would be very valuable in the aim of

developing a unified procedure to select

physiologically relevant fNIRS signals.
5.2 Time partial directed coherence

Despite the advantages of using TPDC
over conventional causality methods, one
drawback is that the TPDC method is time-
consuming, owing to the estimation of
MVAR coefficients at each time point.
This limits its usage depending on the
available computational resources and is
not appropriated for fast diagnosis. It is
important to point out the fact that the
Granger Causality approach was used in
this study to measure the brain dynamics
inherent to a finger-tapping task, the
interplay ~ between  segregation and
integration, and not to study the underlying
mechanism involved in this particular

motor task. Our connectivity results are

dependant on the targeted cortical areas

and need to be considered within the
limitation of the spatial resolution of

fNIRS.

Due to its poor spatial resolution but
relatively high sampling frequency, fNIRS
is a promising tool to investigate the
dynamic connectivity of the cortex, but
appears a limited tool to realise a mapping
of connectivity for the whole brain.
Nevertheless, some recent studies highlight
the importance of these dynamics or
fluctuations in the brain more than the
localisation of the static connectivity
between brain areas (mapping). One of the
important developments needed to improve
the TPDC method is to investigate the
functional properties of these multiple
networks with more appropriate tools.
Furthermore, we analysed the mean of the
dynamics during the entire motor task and
do not take into account the global network
properties. A graph analysis approach
could be one way to extract the functional
properties of TPDC results combining each
connection in the same time. In addition, to
specifying which parts of the brain are
connected to others, graph analysis could
help our understanding of the functional
organisation  such as  integration,
segregation or small world network
organisation. Nevertheless, few fNIRS
studies have investigated this kind of

analysis up until now and refer to another
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level of abstraction for the comprehension

of the data (Fallani et al., 2014).

6. Conclusion

This study proposed TPDC as a new time
frequency effective connectivity analysis
to be applied to fNIRS signals over
multiple bi-hemispheric brain areas (MI,
PMC, SMA, OFC and DLPFC) to
investigate the time dynamics of the brain
network during a continuous finger-
tapping task. The present contribution
allows us to specify the direction of the
link between two regions of interest:
indeed, four connections (SMAL to M1y,
M1y to PMC., PMC. to DLPFC. and
PMCy to OFCy) have been shown to be
unidirectional and five are bi-directional
connections, information that would
typically be concealed using common
functional undirected connectivity methods
like correlation or coherence.
Characterising the dynamics of brain
network  configurations could allow

discriminating between healthy subjects

and patients showing altered brain
dynamics. TPDC could, for instance, be
used to investigate the lesion effect of one
brain area due to stroke, and the brain
plasticity phenomena associated with
functional motor recovery during the acute

phase after stroke.
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Chapter 5

General discussion and

perspectives



For more than twenty years, there has been a craze in the human movement sciences for the
analysis of biological time as diagnostic tools in different states such as disease or fatigue. In
particular, the pioneering work of Hausdorff set the stage for hope when discovering a
relatively simple tool to discriminate healthy participants from elderly or pathological
subjects. These hopes, although generally evidenced by an accumulation of empirical
approaches, find their basis in many publications investigating a large number of pathologies.
Nevertheless, developed in parallel and outside any clinical or pathological context, some
authors have also showed that such an analysis can be sensitive to the experimental conditions

set up by the researchers, especially by modifying the constraints imposed on the subjects.

Although these two approaches may seem contradictory, there is a possible
confounding factor that has not been studied until today to our knowledge. This factor is at
the centre of the reflections and works carried out during this dissertation, particularly in our
first study (see Chapter 2). Although a single study is not in itself generalizable and requires
further validation in the future, our work opens many avenues for reflections that we will
develop later in this chapter in Section 5.1. Following these first preliminary results obtained,
several ways opened and we decided to guide our work on the concept of degeneracy and in
particular the possible link between long-range correlation analyzes of motor output time
series with the cortical activations involved during the experimental sensorimotor paradigm
proposed (see Chapter 3). This second study opens promising new directions of investigation
but suffer from certain limitations that are developed in Section 5.2. These limitations
however can be relatively easily tested by specific work answering these shadows. Finally,
this work allows to propose new scientific questions, which are exposed in Section 5.3 and

which would require considerable but stimulating deepening in future works.
5.1 Functional significance of fractal properties

After a brief review of the main results obtained in the study presented in Chapter 2 of this
dissertation, we will analyze in a critical way the limits that these works highlight as well as
the future follow-up that these works allow us to hope for. The finding of two factors
inducing a loss of complexity, expressed through potentially confounding fractal analyzes in
the literature, has often led studies to voluntarily move towards one or the other possible
explanation. Nevertheless, although empirical evidence abounds in these two explanations,

which are the loss of complexity with aging or disease on the one hand, and the loss of
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complexity due to increased sensorimotor control on the other hand, no study to our
knowledge has attempted to reconcile and directly question these two types of approaches
directly. Using a relatively simple but robust experimental paradigm (finger-tapping task)
which has been the subject of many studies, we were able to control our experimental
conditions while limiting as much as possible the effect of multiple other factors that could
“add noise” in our results, such as fatigue, weariness or modification of unwanted variables in
our paradigm. We made three hypotheses regarding the effect of suppressing of different
feedbacks in performing this motor task as well as depending on the analytical method used
and the population studied. As a reminder, these assumptions were: (i) healthy subjects
performing a simple finger tapping task reflect a same mono-fractal exponent regardless of
the external constraints imposed the task performance, (ii) multi-fractality evolves with the
external constraints, auditory, visual or tactile feedback imposed to the task performance and
(ii1) the loss of the proprioception feedback (in the deafferented subject and groups deprived
of proprioception) reflects a decrease in all behavioral variables (performance, mono-fractal

and multi-fractal) as compared to other groups.

Our results are based on 94 healthy subjects and one deafferented patient (IW) shared
in eight conditions: control, -1 FB (auditory or visual or proprioception), - 2 FB (auditory and
visual, visual and proprioception or auditory and proprioception) and - 3 FB (auditory, visual
and proprioception). Our preliminary and expected results showed a decrease in the a-DFA
exponent for IW compared to the other experimental groups. In addition, the extracted multi-
fractal variable (MF-Width) increased with the number of feedbacks deprived. The results of
our first study allow differentiating the functional significance of mono- and multi-fractal
analyzes, which are generally considered to be only for the second a finer-grained analysis
than the first (Kantelhardt et al., 2002; Thlen, 2012). Indeed, the mono-fractal analysis
discriminates only groups with proprioception deprived and IW compared to other conditions
(groups). This suggests that the o exponent could indicate the constraints imposed to the
system as reflected by a reduction of the alpha exponent in conjunction with a decrease in
level of performance during the task. Long-range correlations in the inter-tap intervals remain
present until the constraint (external in our case) imposed on the subjects becomes too strong.
This was also reflected in a decrease of performance. Nevertheless these findings, question in
particular the original results proposed by Hausdorff et al. (1997) for a walking task. Indeed,
these authors have studied the evolution of long-range correlations between successive step in

healthy subjects, elderly and suffering from Huntington's disease. Although these authors
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showed a decrease in mono-fractal exponents with age and pathology compared to healthy
participants, the extracted performance variables such as step amplitude and coefficient of
variation are not statistically different between healthy young and old subjects. In contrast, the
coefficient of variation was significantly different in patients with Huntington's disease
compared to the control group. If we are interested in the mono-fractal exponent, the older
subjects had an average alpha of 0.68 while the patients had an alpha of 0.60. These results
raise the question of a possible distinction between healthy subjects on the one hand and
subjects suffering from a pathology on the other. This is particularly critical in the possible
progressive evolution of the advance in age or the worsening of the pathology. Long-range
correlations could reflect a continuum in the evolution of system degeneration to such an
extent that effective adaptation to the task would no longer be possible at all (e.g. inability to
walk for example) and would therefore be a means of predicting the evolution of systems.
Longitudinal follow-up studies on cohorts of elderly subjects or those with evolutionary

pathologies would provide a better understanding of the changes of mono-fractal properties.

On the other hand, we found thaht the width of the multi-fractal spectrum (MF-Width)
increased with the number of feedbacks removed. These results assume that multi-fractal
analyzes reflect the dynamic of multiple sub-systems involved to perform the task at multiple
time scales (Ihlen & Vereijken, 2010, 2013; Kutznetsov & Wallot, 2011; Stephen & Dixon,
2011). These fluctuations can be understood as a multiplicative cascade process that has been
suggested as the underlying property to self-organization and metastability of systems to
achieve performance (Turvey 2007, Van Orden et al., 2003). Nevertheless, our experimental
paradigm allowed us to highlight changes in multi-fractal properties based on the number of
feedback participants were deprived of but not on change in performance. We have proposed
in this dissertation that the concept of degenerecy can be the keystone of the evolution of
multi-fractal properties under different constraints. Degeneracy does not seem to be antinomic
here when approaching the multiplicative cascade dynamics. Degeneracy could be reflected at
all scales in the system and more or less intermittently, which would allow the system to
adapt to the surrounding conditions (Ihlen & Vereijken, 2013). The increase in the width of
the multi-fractal spectrum in our studies suggests that under an increasing level of
“constraints”, the subject will use more degenerate sub-networks (or sub-systems) to maintain

the performance in the task as much as possible.
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The opportunity we had to include one deafferented participant and the results obtained by
this single subject compared to other experimental groups bring many questions. Indeed, the
increase in the variability of (proven) tapping series with regard to analyzes such as the
coefficient of variation in IW and groups without proprioception are in compliance with
studies carried out on the suppression of proprioception for this kind of experimental
paradigm (Stenneken et al., 2002). The proprioceptive feedback would be the most important
sensory modality in the realization of a rhythmic task such as finger tapping to maintain a
level of performance. On the other hand, the differences obtained (Figure 2B) in the mono-
fractal DFA and multif-ractal MFDFA analyzes question even more. A decrease of
performance was expected with the suppression of the proprioception due to a lesser inability
to adapt. Nevertheless, the joint evolution of the coefficient of variation and the alpha DFA
exponent are resulting from the time series produced by IW puts questions. With this
deafferented subject, we had the opportunity to test initially the effect of the suppression of
proprioception (while waiting the ongoing results with the anesthetic block in healthy
participants). The increase in the CV seems consistent with our hypothesis that performance
should be degraded without this feedback. Nevertheless, the DFA analysis does not make it
clear that it could reflect the adaptability of the system. IW is older than other recruited
subjects and therefore, long-range correlations close to white noise could be due to this factor
(Hausdorft et al., 1997; Amoud et al., 2007). Thus, the results of the Study 1 remain on a

questioning about the meaning of the mono-fractal properties.

In addition, the multi-fractal analyzes show a gradual increase in the widths of MF-
Width spectra as a function of the number of feedbacks suppressed (Figure 2B). Although this
result could give more confidence in the expected effect of proprioception, we need to be
cautious about the interpretations of these results, particularly with regard to the literature that
has had the opportunity to study these pathological populations (IW) under many
experimental conditions. Indeed, it has been shown that such patients have at least partially
adapted to their pathology to achieve as much as possible activities of everyday life. These
compensatory strategies over time could therefore lead to a confounding factor in the effect of

proprioception for the accomplishment of our task (Bernier et al., 2006).

Following a relatively logical sequence to these questions and in the interests of
completing the study, the suppression of sensory feedback such as proprioception should be

carried out in subjects whose age corresponds to that of our deafferented participant. A first
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possibility already exploited in the literature would be to create a nerve stimulation to prevent
“correct” proprioceptive feedback (Pipereit et al., 2006). Nevertheless, such stimulation could
create a disruptive sensory feedback (noisiness), which would provide the brain with false
information and therefore would not be in direct adequacy with the mere suppression of
sensory information. A second possibility that we had initiated during this study (results in
progress) is to create a sensory anaesthetic nerve block to allow subjects to maintain motor
control without having tactile and proprioceptive sensory feedbacks. This sensory block
makes it possible to test the effect of the suppression of proprioception alone in healthy

subjects, but also the different combinations of sensory modalities and number of feedbacks.

Finally, a fundamental question arises as to the evolution over time of these fractal
properties. Indeed, no studies to our knowledge have currently studied the evolution of the
systems questioning the possibility of a continuum progressive increase or decrease in
complexity during life or a possibly abrupt transition from a complex system (adaptable) to a
system that relatively suddenly would not be (Figure 5A). This is all the more so since
previous studies generally investigate neurological or advanced age pathologies that lead to a
relatively slow decline. The advancement in age can hardly be conceived as a binary (or
bistable) approach, classifying individuals as young or old. The approach currently used in
our work suggests, especially through the concept of degeneracy, a relatively brutal transition.
In fact, theoretical work and simulations suggest a minimum number of degenerate networks
necessary to adapt a complex system (Price & Friston, 2002, Deligniéres & Marmelat, 2013).
We would then have to find out an experimental paradigm (e.g. animal model and/or
computerized simulations) allowing to suppress sensory feedbacks in a progressive way or to

study the longitudinal follow-up of relatively large cohorts.
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Complexity
Complexity

Time Time
Figure 5A: The two proposed potential time courses of the loss of complexity. Left:
continuous increase and then decrease of complexity. Right: shift at a given time between low

complexity and high complexity.

5.2 A possible link between motor variability and the dynamics of cortical networks

In a similar way to the previous part, we will recall here the results obtained in the Study 2
presented in the Chapter 3 attempting to make the link between the sensorimotor variability
and the dynamics of brain networks before highlighting the methodological limitations of this
study as well as its possible evolutions. In this second study, based on the same experimental
paradigm (finger-tapping task) as the previous one, we tried to prove the link between the
multi-fractal properties of the inter-tap interval and the distribution of cortical networks
studied by the fNIRS method. We hypothesized that the variety and intermittency of the brain
networks involved in the task and the fractal properties of tapping series evolve jointly

according to the different feedback deprivation conditions.

The main results showed a correlation between the width of the multi-fractal spectrum
and the number of networks involved during the task. Although this study has some
limitations due in particular to the methodological concerns inherent to fNIRS method, this
study is the first to our knowledge, to attempt to establish a direct (experimental) link between
the fractal properties of the motor control and the cortical networks using a promising
neuroimaging method. This study reinforces the idea that multi-fractal analyzes would reflect
the effective adaptations made during the task. The elimination of an increasing number of
feedbacks would require the involvement of more brain networks and greater intermittency to

maintain the required level of performance.
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Although our work focused here on the study of the effective adaptations of healthy
subjects in a relatively simple experimental motor paradigm (finger tapping), there is a
questioning in particular with regard to the work initiated by Whitacre (2010). Indeed,
according to this author, degeneracy is the central property allowing to connect complexity,

robustness and evolvability (Figure 5B).

Degeneracy

Robustness Evolvability

Figure 5B: The triptych between complexity, robustness and evolvability. Degeneracy is the
cornerstone between these three properties of biological systems. Degeneracy is source of
robustness, increases evolvability and is correlated with complexity (adapted from Whitacre

& Bender, 2010).
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In our previous two studies, we tied with the proposed experimental paradigm to de-
correlate the fractal properties of performance measures such as mean and coefficient of
variation. This approach made it possible to study the link between degeneracy and some
forms of robustness in the face of changing experimental conditions (the number of feedback
we are deprived of). Nevertheless, to fully study the degeneracy of a system, we should also
be able to test this evolvability capacity. Evolvability can be seen as the ability of a system to
change or create innovation to meet a demand (internal or external). In this sense, the joint
study of the fractal properties of behavior with the dynamics of the cortical networks involved
in a learning process seems relevant (since evolution in the Darwinian sense seems difficult to
achieve from an experimental point of view). Recent studies have been initiated in this
direction at the level of the motor control (e.g. Nourrit-Lucas et al., 2015). On the other hand,
the work carried out by Bassett et al. (2011) in fMRI is promising in particular to answer our
current scientific questions at the level of the brain. Indeed, these authors have analyzed the
dynamic reorganization of cortical networks using a method initially proposed by Mucha et
al. (2010) in a learning paradigm. This “multilayer” method makes it possible, unlike the one
we used in the study discussed here, to distinguish module changes from nodes over time (i.e.
before, during and after learning), as well as their dynamics. Their results show an increase in
the dynamic modular changes at the beginning of learning and a decrease at the end of
learning. In addition, this variable seems to be a good indicator of learning potential,
especially by comparing the first learning session versus the second session. These promising
results could be applied jointly to fractal behavioral analyzes as performed in our laboratory

to better understand the link between evolvability and degeneracy.

The work presented in this dissertation is relatively fundamental and may suffer from
a possible lack of direct links between the results obtained, which are certainly promising, and
their possible applications in “real life”, particularly in the field of clinical applications. The
results obtained in our first two studies as well as the possible avenues put forward above in
the context of the learning allow to open a possible field of application of the theoretical
questions initiated in this dissertation particularly in rehabilitation physical medicine, with a
focus on patients who have suffered a stroke. Stroke remains a major public health problem
today, being the leading cause of acquired disability in adults. Considering the prognosis of
functional recovery of the upper limb, only 10% of patients fully use their upper limb
(Kwakkel & Kollen, 2013). Although many clinical studies have focused on the development

of new rehabilitation methods or the validation of clinical diagnostic tools (scales), there does
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not seem to be a dominant method to date to better anticipate possible recovery after the
injury. Early detection of this recovery capacity is necessary, as most motor recovery appears
to occur during the first three months, or early in the post-stroke phase. Indeed, the best
recovery rate is achieved in 80% of patients at 1 month and 95% of patients at 11 weeks after
the stroke date (Jorgensens et al., 1995). Our results suggest that fractal analyzes of
sensorimotor tasks at the level of behavior in the early phase of stroke may guide the therapist
about the capacities (functional reserves) available to the patient. Moreover, conducting
studies on the evolution of these properties in learning paradigms could then make it possible
to follow longitudinally the effect of rehabilitation programs with a new score easily
implemented and at a lower cost. However, very few studies to our knowledge have attempted
to analyze the complexity of sensorimotor signals from this type of population and generally
remain restricted to a walking paradigm (Akay et al., 2004, Mizuike et al., 2009). These
longitudinal tracking would make it possible to answer a fundamental question especially
with regard to the loss of complexity. Indeed, although the loss of complexity can easily be
conceived, one of the most important questions is whether it is possible to restore the

complexity of a system that has been damaged.

For their part, studies in neuroimaging are relatively numerous, especially with the use
of fMRI, and have provided many responses to brain’s post-stroke organization both for
activation and functional or effective connectivity. This research works has shown that
following a stroke, there is an increase in the activation of many cortical regions to perform a
motor task of the paretic member. This is particularly the case for M1, PMC, SMA, parietal
and prefrontal cortex, in both hemispheres (Ward et al., 2003, Gerloff et al., 2006). However,
these localization studies do not explain how regional activations affect the process across the
networks. Studies using functional connectivity have shown changes in interhemispheric
connections particularly between similar areas of both hemispheres (Carter et al., 2010, Park
et al., 2011). Disturbed interhemispheric connectivity of ipsilesional M1 was also reported for
contralateral connections to PMC and posterior parietal cortex (Wang et al., 2010).
Furthermore, the main finding of effective connectivity in stroke patients showed a reduced
intrahemispheric connectivity in the ipsilesional hemisphere (Grefkes et al., 2008, 2011).
Although the analysis of connections between cortical areas provides new information about
the severity of stroke and a good prognosis of the level of recovery, the theoretical

explanation of these changes is still debated in the literature (Rehme & Grefkes, 2013).

112



More theoretically, early functional recovery following stroke could be understood as
a quick recovery from a complex organization of brain connections. This organization can be
understood as an optimal balance between a simple and totally rigid network and a totally
random and organized network with too many connections (Figure 5C). This optimal scale is
understood as a cost-efficiency ratio, one of the essential properties of healthy adaptive
subjects (Bullmore & Sporns, 2012). In this sense, there would be optimal degenerate system
when performing motor tasks, consisting of a limited number of functional configurations.
Too few available networks would not be able to perform the task properly. On the other
hand, too many networks involved would reflect high cost and low efficiency. Thus, the study
of the dynamics of the networks involved in rehabilitation protocols would reflect the state of

the system.

Lattice Complex Random

Cost

Low High
Efficiency

Figure 5C: Optimal brain network organization (adapted from Bullmore & Sporns, 2012). A
complex topology is an optimized balance between cost and efficiency. More connections

increase the cost of the network. Lower connections minimize the efficiency of the network.

5.3  Directed connectivity in fNIRS

To conclude the discussion of our research work we will move forward on the perspectives
following the Study 3 of our dissertation. One of the main limitations of our Study 2 was the
use of functional connectivity based on the Pearson correlation coefficient. There are many
limitations to the use of this analysis (Hidrinks et al., 2016, Hutchinson et al., 2013) although
it is commonly used commonly used. Our first choice was a relatively simple approach, which
could be comparable to the literature. Nevertheless, transitivity phenomena and the lack of

information on the orientation of the connection link led us to test a recently developed
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analytical method called time partial directed coherence (tPDC; Anwar et al., 2013,
Muthuraman et al., 2018). This method is particularly promising because it is based on a
multivariate auto-regressive modeling and allows the directionality of the link between the
cortical areas to be estimated. However, this method is very expensive from a computational
point of view and cannot be considered at the moment in a clinical routine or in “real time”

analyzes such as with the Brain Computer Interfaces use.

Nevertheless, we must return here to the possible follow-up to this work. Many
authors have shown that the analysis of connectivity between different brain areas provides
limited information about the functional organization of the system itself (Rubinov & Sporns,
2010, Fallani et al., 2014). The so-called Graph theory approach, one of the branches of
mathematics, was recently applied as a result of connectivity analyzes (Figure 5D). These
analyzes are generally applied to provide a better understanding of the topological
organization of a network, especially in terms of integration and segregation. Numerous
properties have thus been highlighted, such as a modular organization (Sporns & Betzel,
2016), hubs (Van Den Heuvel & Sporns, 2013) and small world networks (Bassett &
Bullmore, 2006) (See Box 4 for an introduction of these concepts). One of the key questions
is whether these analyzes are adapted to the relatively limited spatial resolution proposed with
regular fNIRS instrumentation (that is not using diffuse optical tomography). Some initial
responses reveal comparable results of effective connectivity between fNIRS, fMRI and EEG
(Anwar et al., 2013). Other authors point out that graph analyzes are relatively stable and
reproducible with the use of fNIRS (Niu & He, 2014, Geng et al., 2017). However, this
experimental evidence was not applied to dynamic directed analysis and is generally limited
to the rest paradigm (resting state). Future works using fNIRS is needed with these types of

analysis.
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Figure 5D: Schematic representation of the connectivity analysis process in neuroscience
(adapted from Fallani et al., 2014). Nodes correspond to fNIRS channels in the present
dissertation. Links could be either undirected (correlation) or directed (tPDC). Threshold
could be applied or not depending on the Graph analysis used. Metrics are implemented to
reflect global, intermediate or local properties. Finally (out of scope of the dissertation)

different statistics can be applied.

Finally, although part of the previous discussion focused on a possible use of the
research work undertaken in this dissertation for a better understanding of a pathology
(stroke), it would seem interesting to also study these types of analyzes on experimental

paradigms using non-invasive brain stimulation (e.g. transcranial direct current stimulation,
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tDCS). Indeed, tDCS can exert modulatory effects on ongoing neuronal activity and
excitability (subthreshold) and, as such, is promising when combined with conventional
rehabilitation training programs in stroke (Hummel & Cohen, 2006). Nevertheless, these
neuromodulation techniques also modify the connectivity of stimulated networks (Keeser et
al., 2011, Polania et al., 2011). The combined use of behavioral and neuroimaging analyzes
would make it possible to highlight the possible dynamics changes (intermittency) between
the networks as well as their functional properties to better understand the potential effects of

tDCS, particularly for clinical purposes.

5.4 Increase the potential of fractal approaches

The ubiquitous character of long-range correlations raises questions when it is potentially
useful, particularly as a diagnostic tool. Indeed, the observation of this phenomenon in many
fields of research and at many scales of observation of biological variables may limit its use to
a single scale. Van Orden et al. (2003, 2005) proposed that knowledge of the composition of
the underlying system is not essential for understanding the presence of long-range
correlations. On the other hand, Wagenmakers et al. (2005) considered that a better
understanding of the properties of the underlying system is necessary to allow a real use of
fractal measurements. To know all the components of a system as complex as the human
seems impossible at the moment. Especially since it is composed of many different but
interrelated elements. Nevertheless, taking into account several layers would allow a better
understanding of how the system works. In this dissertation, we first studied the ability of
individuals to adapt to a single level of observation (macroscopic) and to a single variable
(inter-tap intervals). In our second study, we then tried to establish the link between this
variable and the dynamics of brain connections using fNIRS. Nevertheless, to go further and
try to better understand the mechanisms of adaptation (or the adaptability potential) of the
systems, it is critical, as mentioned above, to couple several approaches (including
neuroimaging) at rest but also in the realization of cognitive-motor tasks. Obviously, these
different levels of analysis, studied in isolation, without taking into account the links and
dynamics that animate them both on their scale but also between scales, would remain

reductive.

Recent approaches would allow for a significant breakthrough in this direction and would

make it possible to answer theoretical questions often presented, simulated and discussed in
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the literature (Wagenmakers et al., 2005, Van Orden et al., 2005, Diniz et al. 2011). Among

the key questions that can be asked when the possible origin of long-range correlations arises:
- Are the robustness and adaptive capacity of the system driven by essential/specific nodes?

- On the contrary, is it the opposite? Smaller nodes would play a major role here in the

dynamics of system adaptation.

- How does the modification at a given level of certain nodes or edges lead to modifications to

another “upper” or “lower” level and at what limit?

- Although many different levels exhibit fractal fluctuations, do the inter-relationships

between levels also follow this communication model?

- Finally, is the degeneracy limited to one layer (e.g., neurons) or between layers that make up

the system?

These questions could therefore supplement the diagram we have initiated in this thesis
(Figure 5E). Nevertheless some of these have been answered partly in recent years years due
to the evolution of graph theory. Still considered static and used at a single scale of
observation, the topological organization of systems is now studied in the form of multilayers,
analyzing their temporal evolution and their multiscale links. This multilayered approach
should therefore not to be confused with a large network that will quantify all connections at a
single observation level. A multilayered approach will also integrate information of different
kinds between observation scales. This approach therefore makes it possible to extract more
information about the complex system under study. Despite the fact that this relatively
refreshing approach is still in full development and although it is promising, it must be the
subject of many studies regarding the possibility of using these analyzes in our field (for the
interested reader, two reference works have recently been published recently on this topic:

Bianconi, 2018; Garas, 2016).
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Box 4

Graph Theory

“By the 20th anniversary of the paper, more than 18,000 papers have cited
the model, which is now considered to be one of the benchmark network
topologies. Watts and Strogatz closed their paper by saying: “We hope that
our work will stimulate further studies of small-world networks.” Perhaps

no statement has ever been more prophetic.”

Vespignani, 2018; On the paper: Watts, D. J. & Strogatz, S. H. Nature 393,
440-442 (1998)

The Graphs theory has its origins in solving a problem concerning the
spatial organization of the city of Konigsberg. It was in 1735 that the
mathematician Léonard Euler proposed a solution to the so-called “seven
bridges” problem. This problem arises as follows: go around the city by
taking the seven bridges composing it once and only once. The solution
proposed by Euler (Figure 5F) results in an abstract visualization of the
spatial organization of the city without taking into account the “real”
geographic location. This work is considered as the beginnings of
mathematical graph theory (Bullmore & Sporns, 2009). From a
mathematical point of view, a graph G is composed of nodes (or vertices, V)
and edges (connections, E). This graph can be represented graphically (as in
the example of Euler, Figure 5F) or by an adjacency matrix or a line (or
column) represents a connection between the node X and all the other nodes
composing this matrix. For the sake of clarity we will only present examples
based on non-directed binary matrices (the connection is considered to be

reciprocal between two nodes and its weight will be 0 if the connection does
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not exist and 1 if the connection exists). For the reader who would like to go
further in these approaches and know the developments for wheigted and/or
directed graphs the following book is recommended: Fornito, Zalesky &

Bullmore of 2016 named “Fundamentals of Brain Network Analysis”.

._
B

Figure 5F: The problem of the seven bridges of the city of Konigsberg and
the resolution of the problem of Leonardo Euler.
(From: https://math.stackexchange.com/questions/1173328/eulers-solution-

of-seven-bridges-of-konigsberg-in-layman-terms)

As we have seen in the previous example of the problem of the seven
bridges, the theory of the graphs, not taking into account some variables
including location, will therefore require a higher level of extrapolation
when the meaning of the results obtained (Fallani et al., 2014). First, we can
distinguish two major sub-categories of analytical methods. On the one
hand, rather “local” measures that provide information on segregation and,
on the other hand, measures that are more of a “diffusion” that will inform
the integration of the network (Rubinov & Sporns, 2010). Of course, as we
will see in this box, it will be possible to couple these two approaches to

characterize as finely as possible the properties of the studied system.
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The most affordable and commonly used measure in the literature is the
Degree. The degree reflects for each node the number of connections it has
with the rest of the graph. The maximum value will therefore depend on the
number of nodes included in the analysis. Nodes with a high degree are
generally considered Hubs (more connections would imply a larger role in
information transfer). Van Den Heuvel & Sporns (2013) have highlighted
the essential role of these hubs in particular in the realization of cognitive
functions but also the implication of a decrease in their connections in
certain pathologies such as Schizophrenia or Alzheimer disease.
Nevertheless, some limits can be advanced here (Zalesky et al., 2010) when
characterizing a node (for example the size and location of the voxel
analyzed in fMRI) or when connected to other nodes (connections between

hubs or between smaller nodes).

The two basic measures complementary to the Degree to reflect segregation
and intergration are called the Clustering Coefficient and the Pathlength
(Figure 5G). The first (Clustering coefficient) reflects the number of
triangles formed around an individual node (Watts & Strogatz, 1998). The
more triangles there are, the greater the segregation of the network will be
(the local connections will be numerous). The Pathlength refers to the path
or number of connections that “information” (while remaining very cautious
as to the meaning of this term) will have to borrow to link a node A to a
node B. The average of all the path of graph denominates the characteristic

path length and reflects the global integration of the network.
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Figure 5G: Example of graph topologies. Degree of a node, Hubs nodes,
Clustering coefficiant between three nodes and shortest path between two

nodes (From Rubinov & Sporns, 2010).

Finally, one of the oldest formalism and commonly used to quantify both
the integration and seggregation which are the two essential properties of
the brain in particular (Tononi et al., 1994, 1998) was proposed by Watts &
Strogatz in 1998 and is called the small worlds network. These small worlds
networks are defined by a topology that is neither totally random nor totally
regular, one of the essential properties of the complex systems that we
defined at the very beginning of this dissertation in the introduction. These
networks are composed of both a high clustering and a low average path
length. A regular network will be composed of a high clustering as well as a
high path length (conversely for a random network). It is only recently (if
we refer to the original works) that these approaches to Graph theory have
developed into neuroscience in order to better understand the structural and

functional organization of the brain.
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Conclusion



The search for a marker of health is a major stake in particular to allow diagnosing the
presence of pathologies in the clinical field. Although the first studies using nonlinear
approaches proved promising, another side of the literature came to test the functional
significance of such approaches. The changes in long-range correlations thought to reflect the
complexity of the underlying system were highlighted and would be due to the increased
involvement of feedback in performing cognitive-motor tasks. The work carried out in this
disseration has allowed us to lay the foundation stone for the possible functional significance
of the approach of long-range correlations (mono- and multi-fractals) especially to the work
of the concepts of effective adaptation and adaptability. These two entangled concepts are
generally used in the literature interchangeably. Nevertheless, our theoretical positioning
allowed us to distinguish between these two concepts. Effective adaptation defines as an
implementation to perform a task, understood as a capacity already present and possibly
exploitable by the system. Adaptability is the ability to achieve this effective adaptation but
also the ability of the system to evolve, to discover new solutions that were not present at the
beginning. In order to address this fundamental distinction, we have used mono- and multi-
fractal analyzes of motor behavior as well as the study of the dynamics of brain networks
implemented concomitantly. All our results taken together seem to highlight a different
functional meaning of the underlying system between mono- and multi-fractal analyzes,
whereas the literature generally considers that this second is only a more precise method of
analysis than the first one. From a more systemic point of view, our results highlight a link
between the fluctuations of long-range correlations investigated by the multi-fractal analyzes
and the number of networks involved at the cerebral level to realize the task under different
experimental conditions. This approach linking brain and behavior constitutes a step forward
with respect to previous literature, showing a relationship between the systems organization
and its output variability across observation levels. It is promising since the number of
networks involved would also reflect the effective adaptation made by the subject and
therefore possibly a potential marker to diagnose the loss of the adaptation of a subject.
Finally this approach comes to question when the possible use of tools such as transcranial
electrical stimulation generally used continuously and at a fixed brain site, which would not
increase the dynamic of the number of available networks. Of course, other complementary
studies are necessary, notably using learning or recovery paradigms after pathology to
distinguish more clearly the functional significance of these long-range correlations and their

possible clinical diagnostic potential.
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Adaptabilité et adaptation dans une tache sensorimotrice :
de la signification fonctionnelle des propriétés fractales a la

dynamique des réseaux cérébraux

Introduction

L’un des objectifs majeurs en neurosciences est de tenter de trouver des marqueurs de santé
permettant d’aider a la détection de pathologies. Cette tiche demeure néanmoins ardue étant
donnée la composition de I’étre humain que ce soit a la fois par les éléments le constituant,
mais également par les multiples interrelations que ces éléments entretiennent entre eux.
L’étre humain peut étre considéré comme le systétme complexe par excellence. L’étude de ces
« systémes » implique 1I’emploi d’outils et de manic¢res de pensées spécifiques. Dans ces
approches, le systéme est considéré comme un tout. Les ¢léments constituant ce systéme ne
peuvent étre appréhendés de facon indépendante au risque de rester réducteur. Cela implique
des lors la prise en compte des liens entre les ¢éléments. Les systémes complexes sont
considérés comme possédant une organisation fonctionnelle optimale entre deux extrémes :
I’ordre et le désordre (ou entre le cristal et la fumée, selon Henry Atlan). Cette position
oscillant entre deux extrémes implique de fait une possible dynamique temporelle et/ou
spatiale de ces systemes avec des périodes tendant parfois vers plus d’ordre et parfois vers
plus de désordre. La complexité¢ définie précédemment doit nécessairement se distinguer du
sens communément utilisé au quotidien, ou la complexité fait généralement référence a la

complication, comme agrégation massive d’éléments ou de liens par exemple.

Dans le champ pluridisciplinaire des sciences du mouvement humain, cette approche dite
systemes complexes a fait I’objet d’un intérét croissant depuis plusieurs années. L’étude de la
dynamique des systtmes notamment au travers de variables macroscopiques
comportementales a permis de mettre en évidence certaines propriétés fonctionnelles
essentielles n’étant pas prises en compte par le passé. En ce sens, de nombreux auteurs ont
étudié ces systémes complexes a 1’aide de ’analyse des séries temporelles produites lors de
taches expérimentales cognitivo-motrices. Alors que les fluctuations, notamment de

performance dans la réalisation répétée d’une tache, sont généralement considérées comme
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suivant une distribution gaussienne et sans dépendance entre elles, ’analyse des séries
temporelles employant de nouveaux outils mathématiques a mis en évidence d’autres
propriétés statistiques complémentaires. Des fluctuations du rythme cardiaque a celles entre
les pas dans des tiches de marche, en passant par 1’auto-évaluation quotidienne de I’estime de
soi, de nombreux auteurs ont souligné la présence de corrélations dites « a long terme »
(CLT) entre les données successives étudiées. Ces corrélations a long terme sont également
appelées dans la littérature bruit rose ou bruit 1/f- Ces CLT impliquent que la valeur actuelle
dépend au moins en partie de plusieurs valeurs précédentes produites. Si la série temporelle
présente une tendance a I’accroissement, elle aura une plus grande probabilité statistique de
suivre cette tendance. Dans le présent travail, ce type de bruit 1/f est a distinguer du bruit
blanc qui se compose de données n’ayant pas de dépendances statistiques entre elles.
L’autosimilarité statistique est une seconde essentielle mise en évidence dans ce type de séries
temporelles. Cela signifie que quelle que soit 1’échelle d’observation, que ce soit sur I’année,
le mois, le jour ou I’heure, la série temporelle observée aura les mémes propriétés que celles
observées a d’autres échelles de temps. Cette autosimilarité est d’importance notamment dans
la possible découverte de marqueurs cliniques qui doivent généralement é&tre rapides a
extraire. Ces deux propriétés étudiées ensemble reflétent les caractéristiques des séries

temporelles dites fractales.

A la suite de la découverte de ces propriétés statistiques spécifiques, de nombreux chercheurs
se sont attachés a étudier un grand nombre de séries temporelles extraites a de multiples
¢chelles spatiales du comportement et chez de nombreuses populations. Il a dés lors été mis
en évidence que ces propriétés fractales tendaient a diminuer ou a disparaitre chez les sujets
souffrant d’une pathologie par rapport aux des sujets sains. Par exemple, cela est le cas dans
les battements cardiaques de sujets présentant une arythmie, dans les intervalles de pas au
cours de la marche chez des sujets atteints des maladies de Huntington, d’Alzheimer ou de
Parkinson, ou encore au niveau de la stabilité posturale chez des sujets agés. Dans ces études,
les auteurs considérent généralement que ’altération de ces propriétés fractales, tendant vers
des séries temporelles aléatoires ou a I’inverse trop prédictibles, refléterait une perte de
complexité du systeme sous-jacent. Du fait du foisonnement de preuves empiriques dans de
multiples paradigmes expérimentaux et pathologies, I’étude des séries fractales s’est révélée
prometteuse pour trouver un marqueur permettant de discriminer les sujets sains des sujets

pathologiques.
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Néanmoins, ce potentiel marqueur s’est vu éprouver par des études plus fondamentales
menées sur des populations saines dans des paradigmes expérimentaux classiquement réalisés
en laboratoire. Les auteurs de ces études ont en effet mis en évidence qu’une altération
similaire de ces propriétés fractales pouvait étre observée en fonction des conditions
expérimentales imposées aux sujets, en dehors de tout contexte pathologique. Par exemple,
dans des taches telles que le pédalage sur ergocycle, I’ajout d’un feedback visuel pour
controler la vitesse par rapport a une condition sans feedback entraine un blanchiment des
séries temporelles produites. De nombreux résultats comparables ont été observés comme
dans la production de force, dans des tiches de pointage et de Fitt’s ou encore lors de
coordinations bi-manuelles. Ces études mettent ainsi en évidence que ’ajout de feedback pour
réaliser une tache entraine une altération des propriétés fractales dans les séries produites.
L’explication avancée est que les séries fractales sont produites par des systemes complexes
¢voluant de maniére naturelle et que 1’ajout de feedback entrainerait une contrainte imposée

au systeme.

A la vue des deux approches présentées ci-dessus, il semble y avoir un possible facteur
confondant dans I’explication causale de I’altération des propriétés fractales dans les séries
temporelles produites. Cela remet donc en question leur capacité a refléter une éventuelle
diminution ou une perte de complexit¢ du systéme étudié, ainsi que leur réel pouvoir
diagnostique dans le contexte de différentes pathologies. Une explication plausible serait que
face a I’avancée en age ou au développement d’une pathologie, les sujets mettraient en place
des mécanismes de régulation accrus pour réussir a réaliser la tache. Dans une tache de
marche par exemple, une personne agée utiliserait / prendrait plus en compte les informations
sensorielles internes et externes disponibles pour maintenir son équilibre et sa vitesse de
marche. L’utilisation accrue de ces ressources entrainerait une contrainte de fonctionnement
comme le reflétent les travaux étudiant la diminution de la fractalité avec 1’ajout de feedback.
Cette hypothese supposerait donc que les séries temporelles présentant des propriétés fractales
refléteraient 1’adaptation effectivement réalisée par le sujet pour réaliser la tache demandé (en
fonction des contraintes) et non pas la complexité ou perte de complexité du systeéme (sujet)
directement. Tenter de mieux comprendre la signification fonctionnelle des propriétés
fractales permettrait donc de renforcer I’idée selon laquelle ces méthodes puissent se révéler
de potentiels bio-marqueurs de santé ou si celles-ci reflétent I’adaptation effective du sujet

pour réaliser la condition expérimentale imposée par le chercheur.
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Nous pouvons ainsi distinguer d’un point de vue plus théorique le lien entre la complexité du
systéme et sa capacité a s’adapter. Nous avons précédemment utilisé le terme d’adaptation
effective. Ce terme peut se référer a la notion de robustesse du systéme. Bien que celui-ci
puisse subir des perturbations internes et / ou externes, la capacité fonctionnelle (ex. produire
un mouvement avec un niveau de performance) restera identique. Nous pouvons voir cela
comme un réservoir de possibilités déja acquises par le passé. Dans le présent travail, la
distinction est explicitement faite avec 1’adaptation au sens évolutionniste qui sera mise en
ceuvre, par exemple, lors des situations d’apprentissage. Enfin, la notion d’adaptabilité bien
que partiellement dépendante des deux propriétés présentées par les systemes complexes
définis ci-dessus peut étre définie comme étant a la fois la capacité de robustesse du systéme

et sa capacité a évoluer.

Les notions de robustesse et de capacité a 1’évolution se retrouvent dans la littérature comme
¢tant deux propriétés essentielles des systemes complexes possiblement liées par le concept
de dégénérescence (au sens physique du terme). Contrairement a ’utilisation de ce terme au
sens commun qui se référe par exemple a I’évolution progressive d’une pathologie, la
littérature en physique ou en biologie définit ce concept comme une relation « plusieurs pour
un ». Selon ces auteurs, différentes configurations structurelles pourraient réaliser la méme
fonction. Cela impliquerait donc que la capacité de robustesse du systeme se refléte dans le
nombre de structures présentes dans le systeme. L’atteinte ou la disparition d’une seule
structure n’impliquerait pas de modification de la fonction puisque d’autres pourraient en
prendre la suite. Il y aurait dés lors un nombre minimum de structures requises pour conférer
la robustesse a un systéme. Concernant 1’évolution, la dégénérescence se verrait comme étant
la capacité du systéme a créer de nouvelles structures qui n’étaient pas existantes par le passé.
Ce concept de dégénérescence fait directement écho au phénomeéne d’intermittence. Si
plusieurs structures peuvent réaliser la méme fonction, lors de la réalisation d’essais
successifs d’une tache ou lors d’une tdche continue, différentes structures pourraient se

relayer pour maintenir le niveau de performance exigé.

Au niveau du cerveau humain, la littérature a mis en évidence que celui-ci possédait une
organisation comprise entre intégration et ségrégation. L’intégration fait référence a
I’organisation collective de plusieurs parties le constituant pour réaliser une fonction alors que
la ségrégation, quant a elle, se refléte au travers de zones spécialisées qui auront une fonction

spécifique dans la réalisation d’une tache. L’intégration et la ségrégation peuvent dés lors se
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voir comme un processus dynamique impliqué de maniére plus ou moins intermittente pour la
réalisation d’une fonction. En ce sens, étudier le phénoméne d’intermittence des réseaux

cérébraux pourrait refléter les capacités de dégénérescence au niveau cérébral.

Par conséquent, les études expérimentales présentées dans le cadre de cette thése visent a
distinguer, dans un premier temps, les capacités d’adaptation effectives du systéme de son
adaptabilité en étudiant les propriétés fractales des sujets et, dans un second temps, a tenter de
relier ces propriétés fractales au niveau du comportement a la dynamique des réseaux
cérébraux. Notre premiere étude avait pour ambition de dé-corréler au niveau de la production
motrice la signification fonctionnelle des propriétés mono- et multi-fractales en terme
d’adaptation effective et d’adaptabilité. La seconde étude visait & comprendre le lien possible
entre ces propriétés fractales du comportement en lien avec la dynamique des réseaux
cérébraux. Enfin, notre dernieére étude avait pour objectif de proposer un nouvel apport

méthodologique dans I’investigation des liens dynamiques entre les aires cérébrales.

Contributions personnelles

Etude 1 : Adaptabilité ou adaptation : Signification fonctionnelle des propriétés fractales.

La présence de propriétés fractales dans les séries temporelles a été mise en évidence dans la
littérature par un grand nombre d’études investiguant, d’une part, des conditions
expérimentales avec contraintes changeantes et, d’autre part, D'effet de différentes
pathologies. Les hypothéses présentées dans ces deux types d’approches sont potentiellement
contradictoires. Pour 1’une, I’implication accrue de feedback imposerait une contrainte au
systéme, entrainant une altération des propriétés fractales. Pour 1’autre, la perte ou diminution
de fractalité des séries temporelles serait liée a une perte de complexité du systeme sous-
jacent, notamment due a la pathologie ou ’avancée en age. Le but de cette premicre étude
était donc de mieux comprendre la signification fonctionnelle des propriétés fractales. Notre
hypothése était la suivante : les propriétés mono-fractales refléteraient ’adaptabilité du
systéme tandis que les propriétés multi-fractales refléteraient, quant a elles, 1’adaptation

effective mise en ceuvre par un systéme fonctionnant sous contrainte.

Quatre-vingt-quatorze sujets sains ainsi qu’un patient désafférenté ont pris part a cette étude.

Ces sujets ont été répartis en 8 groupes expérimentaux imbriqués : un groupe contrdle, un
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groupe avec suppression d’un feedback (visuel ou auditif ou proprioceptif), un groupe avec
suppression de deux feedback (visuel et/ou auditif et/ou proprioceptif), un groupe avec
suppression de trois feedbacks (visuel, auditif et proprioceptif). La tache motrice consistait en
un paradigme de tape de I’index en synchronisation-continuation avec un métronome d’une
durée de six minutes et quarante secondes (chaque sujet réalisant trois essais). Les intervalles
inter-tapes ont été extraits puis analysés grace aux variables suivantes: la moyenne, le
coefficient de variation, la dérive, la Detrended Fluctuation Analysis (DFA ; mono-fractale) et
la Multifractale Detrended Fluctuation Analysis (MF-DFA ; multi-fractale). Les analyses
restent a ce jour préliminaires dans le sens ou seules les conditions sans la suppression de la

proprioception ont été analysées ainsi que le participant désafférenté.

Nos résultats n’ont pas montré de différences significatives entre les conditions contrdle,
moins un et moins deux feedback pour les variables de performance que sont la moyenne, le
coefficient de variation et la dérive. En revanche, le participant désafférenté présentait une
différence significative avec le groupe moins deux feedback pour la moyenne (p < 0,001), le
coefficient de variation (p < 0,001) et la dérive (p < 0,01). Concernant 1’analyse mono-
fractale, aucune différence significative n’a ¢été montrée concernant nos groupes
expérimentaux. Néanmoins, le patient désafférenté était statistiquement différent du groupe
moins deux feedback (p < 0,001). Enfin, concernant I’analyse multifractale, une différence
significative a ¢été¢ observée entre le groupe contrdole et le groupe moins deux feedback

(p = 0,03) ainsi qu’en le groupe moins deux feedback et le patient désafférenté (p < 0,001).

En conclusion, ces résultats préliminaires considérés conjointement mettent en évidence une
diminution de la performance et une modification des propriétés fractales dans les séries
temporelles chez le sujet désafférenté. De plus, les propriétés mono- et multi-fractales
évoluent différemment. L’augmentation des propriétés multi-fractales de maniére conjointe
aux nombres de feedback supprimés pourrait refléter 1’adaptation effective mise en ceuvre
pour réaliser la tache. Les analyses mono-fractales, quant a elles, pourraient refléter

I’adaptabilité du systeme.
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Etude 2 : Changements conjoints de la connectivité fonctionnelle cérébrale et de la variabilité

motrice pour s’adapter aux contraintes de la tdche.

D’un point de vue théorique le cerveau peut étre percu comme étant dans une balance
dynamique entre intégration et ségrégation fonctionnelle. A une échelle d’observation donnée,
le cerveau s’organise de maniére modulaire, ce qui signifie que certaines parties sont
densément connectées a I’intérieur d’elles, mais faiblement connectées entre elles. De plus, la
complexité au niveau cérébral se refléte a travers ces propriétés dynamiques qui, peuvent en
fonction des contraintes internes ou externes imposées au systéme, se reconfigurer pour
réaliser une fonction. Ces propriétés font référence a la dégénérescence de son organisation
structurelle impliquée de maniere plus ou moins intermittente. Ces capacités conférent au
systéme une robustesse d’évolution qui prises ensemble reflétent 1’adaptabilité du systéme.
Au niveau du contréle moteur, cette dégénérescence du systéme se refléterait au travers des
analyses multi-fractales. Un plus grand nombre de structures impliquées entrainerait une
augmentation des propriétés multi-fractales au niveau comportemental. A la vue de notre
premicre ¢tude et de la littérature portant sur la dynamique des réseaux cérébraux, nous avons
émis 1’hypothése selon laquelle I’augmentation du niveau de multi-fractalité devait co-varier
avec le nombre de réseaux cérébraux mis en ceuvre de manic€re conjointe pour réaliser la

tache.

Trente-deux sujets ont pris part a cette étude. Ces derniers ont été répartis en quatre groupes
expérimentaux comme suit : controle, moins un feedback (réalisant chacun une condition de
suppression du feedback visuel, auditif, tactile de maniére randomisée), moins deux feedback
(visuel et auditif, auditif et tactile, tactile et visuel) et moins trois feedback (visuel, auditif et
tactile). Nous avons utilisé le méme paradigme expérimental que dans ’étude précédente,
chaque sujet réalisant une tache de tape de 1’index en synchronisation-continuation de six
minutes et quarante secondes. Les variables au niveau comportemental (performance) étaient
la moyenne, le coefficient de variation et la dérive des intervalles inter-tapes. Les propriétés
fractales étaient analysées grace a la DFA et la MF-DFA. Les réseaux cérébraux ont été
¢tudiés grace a une méthode de neuro-imagerie non invasive, la spectroscopie dans le proche
infrarouge (fNIRS). Apres avoir extrait la connectivité fonctionnelle par fenétre glissante
entre les canaux fNIRS couvrant les régions sensori-motrices, nous avons opté pour une
analyse de détection de communautés permettant d’extraire notre variable d’intérét qui était le

nombre de réseaux différents mis en ceuvre au cours de la tache.
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Nos résultats n’ont pas mis en évidence de différence significative entre les quatre groupes
expérimentaux concernant les variables de performance (moyenne, coefficient de variation et
dérive). Il en était de méme pour I’analyse mono-fractale. L’analyse multi-fractale (MF-DFA)
a mis en évidence une différence significative de performance entre le groupe contrdle et les
groupes moins un et moins deux feedback (p = 0,012 et p = 0,021, respectivement).
Concernant notre variable au niveau cérébral de nombre de réseaux mis en ceuvre, les
analyses ont révélé une différence significative entre le groupe contrdle et les trois autres
groupes expérimentaux (p = 0,003). Enfin nous avons mis en évidence une corrélation
positive significative entre la variable multi-fractale et le nombre de réseaux mis en ceuvre

(p=0,028).

En conclusion, ces résultats permettent de mettre en avant une évolution conjointe de la multi-
fractalité au niveau du comportement ainsi que du nombre de réseaux sans que cela n’entraine
de diminution de performance au niveau comportemental. Cela appuie un peu plus 1’idée
selon laquelle les analyses multi-fractales refléteraient les adaptations effectives mises en
ceuvre par les sujets pour réaliser la tiche en fonction du nombre de feedback dont les sujets
ont ¢été privés. De plus, a Dinstar de la premiere étude, les propriétés mono-fractales

refléteraient 1’adaptabilité des personnes face aux contraintes externes.

Etude 3: La dynamique des réseaux du cerveau humain révélée par [’analyse

temps/fréquence de la connectivité effective en SPIR.

La dynamique des réseaux cérébraux est maintenant reconnue comme étant une propriété
essentielle a la robustesse et la capacit¢ a s’adapter de 1’étre humain. Néanmoins, les
premiéres approches utilisées dans notre étude précédente peuvent étre complétées par
d’autres méthodes d’analyse. L’utilisation d’un coefficient de corrélation (par exemple de
Pearson) en fenétre glissante va entralner en premier lieu un choix a priori de
I’expérimentateur concernant la taille de fenétre a prendre en compte. De plus, cette méthode
bi-variée semble des lors limitée avec le nombre croissant de séries temporelles collectées de
manicre simultanée pouvant entrainer un phénomene de transitivité. Enfin celle-ci ne permet
pas de mettre en évidence la directionalité du lien pouvant s’exercer en deux aires cérébrales

distinctes.Dans cette troisieme partie, notre hypothése était la suivante : des analyses plus
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« poussées » pourraient refléter 1’influence qu’une région cérébrale exercerait sur une autre

dans une tache sensorimotrice prolongée.

Six sujets extraits du groupe controle de notre seconde étude ont été étudiés. Le paradigme
expérimental consistait, comme précédemment, & une tache de tape de I’index en
synchronisation-continuation sans suppression de feedback. Les données ont été collectées via
fNIRS. Apres avoir réalisé un prétraitement des données pour limiter la présence d’artefacts,
nous avons appliqué une méthode d’analyse récente appelée Time-Resolved Partial Directed
Coherence (tPDC). Utilisant un double filtre Kalman étendu, cette méthode permet d’extraire
un modele autorégressif multi-varié a chaque instant et pour chaque bande de fréquences
constituant le signal fNIRS. Ensuite, une analyse de cohérence partielle dirigée a été
appliquée a chacun de ces modeles autorégressifs. Les variables d’intérét pour ces séries

temporelles étaient ensuite extraites (moyenne, écart-type et entropie).

Les séries « brutes » extraites de 1’analyse ont fait I’objet d’un test de surrogate. A la suite de
cette premiere analyse, dix-huit connections sur trois cent six se sont montrées statistiquement
différentes par rapport a des séries aléatoirement générées. Concernant la moyenne, le cortex
pré-moteur droit (CPMd) vers le gauche (CPMg) était statistiquement différent des cortex pré-
frontaux dorsolatéraux bilatéraux et orbito-frontaux bilatéraux (p < 0,05). Les connexions
entre le cortex moteur gauche (CMg) vers le CPMg et du cortex moteur droit (CMd) vers le
CMg ¢étaient statistiquement différentes des connections bidirectionnelles pour le cortex
préfrontal (p < 0,05). Concernant I’écart type et ’entropie, les résultats étaient identiques aux
précédents avec de plus : une différence significative entre CMg vers CMd comparée aux
connexions préfrontales et CMd vers CMg comparée a la connexion orbito-frontale gauche

vers orbito-frontale droite.

Ces résultats d’ensemble mettent en évidence 18 connexions qui sont en concordance avec la
littérature utilisant d’autres méthodes de neuro-imagerie investiguant la réalisation d’une
tache sensorimotrice uni-manuelle simple. L utilisation d’analyses multi-variées combinées a
des surrogates permet de limiter les connexions fallacieuses et les phénomeénes de transitivité
rencontrés par les analyses couramment utilisées dans la littérature. Par ailleurs, la mise en
évidence de connexions unidirectionnelles permet d’ouvrir de nouvelles pistes d’investigation

en utilisant la fNIRS.
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Discussion générale

L’étude des systemes complexes via I’analyse en série, et plus particuliecrement la
caractérisation des propriétés fractales, s’est révélée prometteuse depuis environ deux
décennies. Néanmoins, ces études restent généralement cloisonnées a 1’étude d’une série
temporelle extraite a un seul niveau d’investigation (comportemental, cérébral,
cardiovasculaire, etc.). Avec la mise en évidence d’une diminution de la présence de ces
propriétés fractales, ces approches sont éprouvées notamment dans la quéte de la découverte
d’un marqueur de santé général et fiable. Il est dés lors nécessaire de croiser ces approches
théoriques et d’étudier de maniére conjointe différents niveaux d’observations pour tenter de
mieux comprendre la signification fonctionnelle de ces propriétés fractales présentes dans les

séries temporelles produites par 1’organisme.

Dans un premier temps, nos études ont mis en évidence que les analyses mono- et multi-
fractales n’évoluent pas de maniére conjointe. Alors que la performance restait inchangée
bien que les sujets étaient perturbés par des différentes suppressions de feedback, les analyses
multi-fractales ont mis en évidence une évolution entre le groupe controle et les autres
conditions. L’augmentation du degré de multi-fractalité permet, dans un premier temps de
faire I’hypothese que cette analyse reflete 1’adaptation effective du sujet pour réaliser la tache.
Moins le sujet dispose de feedback, plus celui-ci va explorer différents sous-systémes pour
maintenir un niveau de performance identique a celui des sujets contrdles. Ce résultat semble
se confirmer dans notre deuxieéme étude avec une augmentation du nombre de réseaux
cérébraux mis en jeu au cours de la tdche. D’autre part, les analyses mono-fractales ne
montrent pas de différence significative entre les conditions expérimentales dans les deux
premiéres études. Seul le patient désafférenté présente une diminution des propriétés mono-

fractales dans les séries temporelles produites.

Dans un second temps, les analyses multi-fractales ont mis en évidence une différence entre le
groupe contrdle dans notre seconde étude et les groupes ayant réalisé la tiche avec moins un,
deux, ou trois feedback. Corrélés avec le nombre de réseaux cérébraux obtenus dans notre
seconde étude, ces résultats suggerent que, sous contraintes, le systéme va exploiter de
manicre transitoire différents sous-systeémes pour continuer a réaliser la tiche a un méme
niveau de performance. L’exploitation transitoire de ces sous-systémes serait le reflet de la

dégénérescence du systeme, lui permettant ainsi une certaine robustesse bien que les
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contraintes soient différentes pour réaliser la tiche. Néanmoins, notre patient désafférenté
produit des séries temporelles avec un degré de multifractalité plus important que les autres
groupes expérimentaux. Si ces analyses reflétent 1’adaptation effective des sujets, nous
pouvons faire I’hypothése de I’existence d’un degré de multifractalité maximum au-dela
duquel le systéme ne serait plus capable de s’adapter et entrainerait des lors une diminution de
la performance. Pour répondre a cette hypothése, il nous faudrait pouvoir augmenter les
contraintes de manicre progressive jusqu’a atteindre le point ou la performance ne peut plus
étre maintenue. Des études de simulation ou le recours a des modeles animaux pourraient
nous aider dans ce sens. Pour nous permettre de distinguer la signification fonctionnelle des
propriétés fractales, notamment en termes d’adaptation effective, d’adaptation en termes
d’évolution et d’adaptabilité, il nous faudrait poursuivre nos travaux entre autres dans des

processus d’apprentissage, ce qui nous permettrait de tester dans un méme paradigme la

robustesse du comportement ainsi que ses capacités a évoluer.

Enfin, notre troisi¢eme étude nous a permis de proposer une nouvelle méthode d’analyse qui
refléte la directionnalité des liens entre régions cérébrales et leurs dynamiques. Nous avons
ainsi mis en évidence des fluctuations différentes dans le réseau sensorimoteur impliqué dans
la réalisation de la tiche. Appliquer cette méthode aux données extraites des quatre conditions
expérimentales utilisées dans notre seconde étude permettrait de mieux comprendre
I’intermittence de fonctionnement des réseaux et leur possible lien avec le niveau de

multifractalité au niveau du comportement.
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