
HAL Id: tel-03780415
https://hal.science/tel-03780415

Submitted on 19 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data depth: computation, applications, and beyond
Pavlo Mozharovskyi

To cite this version:
Pavlo Mozharovskyi. Data depth: computation, applications, and beyond. Statistics [stat]. Institut
Polytechnique de Paris, 2022. �tel-03780415�

https://hal.science/tel-03780415
https://hal.archives-ouvertes.fr

626

Data depth: computation, applications,
and beyond

Mémoire d’habilitation à diriger des recherches de l’Institut Polytechnique de Paris
préparée à Télécom Paris

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité : Mathématiques

Mémoire présenté et soutenu à Palaiseau, le 22 juillet 2022, par

PAVLO MOZHAROVSKYI

Composition du Jury :

Gérard Biau
Professor, Sorbonne Université Examinateur

Victor-Emmanuel Brunel
Professor, ENSAE, Institut Polytechnique de Paris Rapporteur

Guillaume Lecué
Professor, ENSAE, Institut Polytechnique de Paris Examinateur

Regina Liu
Distinguished Professor, Rutgers University Présidente

Davy Paindaveine
Professor, Université Libre de Bruxelles Rapporteur

Peter Rousseeuw
Professor, Katholieke Universiteit Leuven Rapporteur

Richard J. Samworth
Professor, University of Cambridge Examinateur

Contents

Pre-word 5

Story, structure, interconnections 6

1 Computation 13

1.1 Introduction to multivariate data depth . 13

1.1.1 Definition of data depth . 13

1.1.2 Depth notions used in this manuscript 14

1.1.3 A word on computation . 16

1.1.4 Connections of the halfspace depth 18

1.2 Computation of the halfspace depth . 19

1.2.1 Theoretical guarantees . 20

1.2.2 A family of algorithms . 23

1.2.3 Numerical illustration . 26

1.3 Computation of the halfspace depth regions 29

1.3.1 Notations . 31

1.3.2 A bound on the number of facets . 32

1.3.3 Two algorithms . 34

1.3.4 Numerical illustrations and comparison 41

1.3.5 Computing Tukey median . 45

1.3.6 Further developments . 49

1.4 Approximation of projection depths . 49

1.4.1 The class of projection depths . 51

1.4.2 Simulation study . 53

1.4.3 Presentation of results . 56

1.4.4 Comments on quality of approximation 60

1.5 First theoretical guarantees on depth approximation 62

1.5.1 Approximation of the halfspace depth 63

1.5.2 Uniform convergence rates for approximation of the halfspace depth . 64

1.5.3 Non-uniform approximation . 65

Table of contents

2 Application: nonparametric imputation using data depth 67

2.1 Motivation . 68

2.2 Proposed imputation scheme . 70

2.2.1 Imputation by iterative regression . 70

2.2.2 Imputation by depth maximization 70

2.3 By-depth analysis . 72

2.3.1 Mahalanobis depth . 73

2.3.2 Zonoid depth . 74

2.3.3 Halfspace depth . 74

2.3.4 Beyond ellipticity: local depth . 75

2.3.5 Dealing with outsiders . 75

2.4 Assessing the quality of imputation . 76

2.4.1 Contaminated elliptical setting . 77

2.4.2 The MAR setting . 78

2.4.3 Skewed and non-convexly supported distributions 78

3 Novel notion: data depth for curves 80

3.1 Introduction to functional depth . 80

3.1.1 Relevant notions . 81

3.2 Necessity of a depth for unparametrized curves 83

3.3 Statistical setting . 85

3.3.1 The space of unparameterized curves 85

3.3.2 The arc-length probability measure of a curve 86

3.3.3 Describing a sample of curves . 87

3.4 Data depth for unparametrized curves . 88

3.4.1 Population and sample versions . 88

3.4.2 Properties . 90

3.5 Real-data illustration on brain imaging . 91

3.5.1 Application to the Older Australian Twins Study data 91

3.5.2 Curve registration . 93

3.5.3 A statistical comparison between MZ and DZ twins 94

4 Functional anomaly detection 96

4.1 Functional isolation forest . 97

4.1.1 Preliminaries . 97

4.1.2 The FIF algorithm . 99

4.1.3 Ability to detect variety of anomalies 102

4.1.4 Connection to data depth . 102

4.2 Geometric depth approach . 105

4.2.1 The area of the convex hull of functions 105

4.2.2 Statistical and computational properties 106

3

Table of contents

4.2.3 Choosing tuning parameters K and J 108

4.2.4 Robustness and anomaly detection 109

5 Outlook and conclusions 113

5.1 Large-scale data depth: computation and applications 113

5.2 Anomaly detection for large-scale and heterogeneous data of production lines 115

5.3 Miscellaneous . 117

5.4 Final word . 120

A A note on implementations 122

A.1 R-package ddalpha . 122

A.2 R-package TukeyRegion . 123

A.3 Stata commands for non-parametric frontier analysis and R-package npsf . . 123

A.4 R-package imputeDepth . 126

A.5 R-package curveDepth . 126

Bibliography 127

4

Pre-word

Pre-word

My research during the PhD study acomplished at the University of Cologne under super-

vision of Karl Mosler was focused on depth-based classification and preliminary studies on

computation of the halfspace depth, which is accumulated in the following work: M. (2015).

As a result of the PhD, the DDα-procedure has been developed—a fast non-parametric

supervised machine learning method based on a robust data-depth-based iterative heuris-

tic, which resulted in a series of works: Lange et al. (2014b,a), Lange and M. (2014), M.

et al. (2015), Mosler and M. (2017). Further, fast depth-calculating and -approximating

algorithms (see also the later composed report M., 2016) were proposed, with part of them,

together with the DDα-procedure, implemented in R-package ddalpha (Pokotylo et al.,

2020).

In the current manuscript, research developments following the PhD degree (Dr. rer. pol.)

which are closely related to data depth, as well as selected future projects, will be presented.

5

Story, structure, interconnections

Story, structure, interconnections

My scientific life following the PhD-equivalent degree started with a post-doctorate at the

same university. I did a year of postdoc at the University of Cologne, where still keeping

exploring the computational aspects of the data depth (Dyckerhoff and M., 2016, and later

works), I started to extend the area of research to higher-dimensional data (Pokotylo et al.,

2019) and nonparametric data envelopment analysis (Badunenko and M., 2016), as well

as likelihood estimation in spatial models for large samples (M. and Vogler, 2016). In

September 2015 I moved to Rennes for a postdoc granted by the Henri Lebesgue Center

for Mathematics. Here, under supervision of Julie Josse and François Husson, I continued

broadening my research areas by working during a year on imputation of missing data (M.

et al., 2020).

I started a tenure-track Assistant Professor position at the École National de la Statis-

tique et de l’Analyse de l’Information (Ensai) in September 2016, where I pursued the

research in the areas of machine learning and data depth. Thus, in collaboration with

Myriam Vimond and Pierre Lafaye De Micheaux, we were working on development of a

new notion of depth whose advantage is additionally invariance w.r.t. the functional ar-

gument (Lafaye De Micheaux et al., 2022). Together with Xiaohui Liu, Karl Mosler (Liu

et al., 2019) and Rainer Dyckerhoff I participated in creation of algorithms for exact and

approximate computation of depths and depth-trimmed regions. With Valentin Patilea and

Laurent Rouviere we were working on tests for stability of parametric regressions.

In September 2018 I joined Télécom Paris for the permanent Associate Professor posi-

tion, where I am currently working. A dynamic environment of the Image, Data, Signal

department allowed me to finish some of the previous projects (notably those on approxi-

mate computation of data depth: Nagy et al., 2020, Dyckerhoff et al., 2021), consolidate my

view on depth-based statistics (see the survey Mosler and M., 2022) and further broaden

my research interests in directions of machine learning. First such direction concerns func-

tional anomaly detection (Staerman et al., 2019), including depth based (Staerman et al.,

2020) methods, as well as development of higher-dimensional techniques and large-scale

industrial-data applications of those, which is submitted work with Guillaume Staerman,

my PhD student co-supervised with Florence D’Alché-Buc and Stephan Clémençon who

defended his PhD thesis on the 12th of April 2022. Collaborative work with Guillaume

further yielded results on robust estimation of Wasserstein distance (Staerman et al., 2021).

As a by-product, in collaboration with Morgane Goibert, Stephan Clémençon and Ekhine

Irurozki, a notion of data depth for ranking distributions has been proposed (Goibert et al.,

2022). As a second direction of extensions of research interests, I have started to work

with Jayneel Parekh—a PhD student co-supervised with Florence D’Alché-Buc—on ex-

plainability of machine learning, notably of the artificial neural networks. Until now, these

developments have resulted in a collaborative report Beaudouin et al. (2020a) as well as

a publications Beaudouin et al. (2020b) and Parekh et al. (2021). Further, work is also

ongoing in econometric and biological applications, with examples being Badunenko and M.

(2020) and Statzer et al. (2021), and more projects in pipeline.

6

Story, structure, interconnections

Current manuscript gathers the part of the material that addresses the notion of statis-

tical data depth function or is immediately related to this, which was developed during my

research journey. With increasing number of research areas and scientific directions, this

journey has always contained data depth as its constituent, which fascinates me until now

in its generality. The work consists of chapters, whose sections are compiled from articles

and conference proceedings in a manner described few paragraphs below. To maintain the

practical spirit, all proofs are skipped here and can be found in the corresponding articles,

their appendices, and supplementary materials. Introductory notions of the manuscript (to

be found in Sections 1.1 and 3.1, and at the beginnings of Chapters 2 and 4) are minimally

necessary for understanding of the subsequent material, and thus the reader is encouraged

to consult additional sources, perhaps starting with those cited in this manuscript.

Introduced in the second half of the twentieth century by Tukey (1975), data depth

became a universal methodology for ordering of complex data. To clearly fix the ideas and

ensure understanding of the subsequent material, the data depth is defined right below, for

multivariate data being the simplest case. Data depth is a statistical function that measures

centrality of an observation with respect to (w.r.t.) a data distribution, with an empirical

distribution (on a data set) being its most important particular case. Consider a data set in

Euclidean space consisting of n observations, say X = {x1, ...,xn} in Rd. For an arbitrary

point of the same space x ∈ Rd, data depth is the following function:

D : Rd × Rn×d → [0, 1], (x,X) 7→ D(x|X) .

This value characterizes how central x is located in X. The higher the value of the depth,

the more central is x, and vice versa low values of depth indicate apartness of x.

Chapter 1 tackles the important question of computation of data depth. Being a for-

mulated statistical notion since at least 30 years, long time data depth has rather been

known as an attractive theoretical concept with little progress on the calculation part. This

accusation was not unfounded: already in 1978 Johnson and Preparata have shown that

solving the problem equivalent to computing the halfspace depth (of a point in Euclidean

space w.r.t. a data set in that space)—one of the most celebrated depth notions—is an

NP-complete problem in (n, d); in 1992 Donoho and Gasko wrote “... One gives up hope

of exactly computing the suprema indicated at various places in the definition of one’s

estimator ...”. Only very recent years testified substantial computational advances (see Sec-

tion 1.1.3 for more details), which attracted greater audience to the notion of data depth.

With the hope that the content of Chapter 1 has made its contribution to the stream of

depth-computing literature, let us detail its sections. Sections 1.2 (based on Dyckerhoff and

M., 2016) and 1.3 (based on Liu et al., 2019) treat the task of exact computation of the

halfspace depth and its regions. Even with most efficient algorithms, exponential complexity

shows itself with growing n and d. With approximation suggesting the remedy in this case,

Section 1.4 (based on Dyckerhoff et al., 2021) proposes an algorithmic framework for this

based on zero-order methods. Next, Section 1.5 (based on Nagy et al., 2020) derives very

first theoretical guarantees for simplest (random) algorithms.

7

Story, structure, interconnections

Several notions of data depth have been implemented in R-package ddalpha, which func-

tionality is briefly described in Section A.1 (based on Pokotylo et al., 2019). The algorithms

of Section 1.3 have been implemented in R-package TukeyRegion, briefly addressed in Sec-

tion A.2. Ideas of Section 1.3 related to geometrical computation on convex polytopes

inspired development of an efficient algorithm for nonparametric frontier analysis and its

accompanying implementation, see Section A.3 (based on Badunenko and M., 2016) for more

details. Implementation of algorithms from Section 1.4 in R-package ddalpha is currently

ongoing.

Chapter 2 (based on M. et al., 2020) proposes an example of application of data depth re-

lated to missing data literature. Based on data depth, a universal framework for imputation

of missing values is introduced, which fills the gap between model-assuming parametric and

non-extrapolating nonparametric methods. It builds up naturally on the idea of imputa-

tion by iterative regression, with multiple imputation omitted from the current manuscript

(and to be found in Section 5 of the article). It is necessary to underline the importance

of material of the previous chapter, as well as preceding works on depth computation; only

they made calculation required for depth-based imputation possible, because imputing once

missing values in a data set involves computation of depth of a point w.r.t. the data set—an

already demanding operation, e.g., for halfspace depth—many times: (a) computing depth

on numerous iterations inside optimization procedure (to find maximum conditional on ex-

isting entries), (b) this maximization procedure is repeated for each point possessing missing

values, (c) the entire imputation for each such point is repeated until convergence on a data

set. The reader is additionally referred to Section A.4 for an implementation note.

Chapter 3 (based on Lafaye De Micheaux et al., 2022) introduces a novel depth notion

dedicated to statistical treatment of unparametrized curves. This work started with an

unsuccessful attempt of application of existing multivariate functional depths to brain fibers’

data stemming from the Older Australian Twins Study. Furthermore, first developments

yielded only relatively meaningful practical results, though satisfying required theoretical

properties. Only bringing the reference curve’s halfspace probability in the denominator

delivered a breakthrough in interpretation. Since such a denominator can take zero values,

this substantially complicated theoretical analysis, and consequently computation algorithm.

Section 3.5.3 provides a biological proof-of-concept (for a complete simulation and real-data

study, see Sections 5 and 6 of the article), where with a bare eye one recognizes the difference

in depth-versus-depth plots between dizygotic (non-identical, those who share 50% of genes)

and monozygotic (those who share 100% of genes and are identical) twins. The developed

curve depth has been implemented in R-package curveDepth, see Section A.5. Needless to

emphasize the role played by exact (Section 1.2) and approximate (Section 1.4) algorithms

for the halfspace depth when employing the curve depth in practice.

Chapter 4 addresses the question of anomaly detection. Anomalies are observations in

rare regions of data distribution, and thus data depth constitutes a well-suited methodology

for their identification. Two methods are proposed, in collaboration with the co-supervised

by me PhD student Guillaume Staerman. The first one, in Section 4.1 (based on Staerman

et al., 2019) extends the celebrated isolation forest (Liu et al., 2008) algorithm to the func-

8

Story, structure, interconnections

tional setting. The algorithm is very flexible due to a possibility to choose a dictionary and

a scalar product in the functional space, fast in implementation, and allows in practice to

detect a variety of anomalies. Further, in an heuristic way, it can be seen as a data depth

function (after a transformation). The second one, in Section 4.2 (based on Staerman et al.,

2020), introduces a notion of functional data depth that exploits the area of the convex

hulls of the functions’ graphs. This new depth satisfies meaningful properties imposed on

a functional depth function, provides robust estimates, and is particularly suited for detec-

tion of isolated (i.e., those appearing for a very short period of time, or another functional

argument) anomalies.

Chapter 5 provides insights about planned work. First two Sections 5.1 and 5.2 de-

tail projects to be performed as PhD studies in collaboration with a (co-)supervised PhD

student, each. Section 5.3 explains two more ideas to be realized. Section 5.4 concludes.

Appendix A gathers references to software packages developed to implement the methods

described in this manuscript.

In hope that you find the material of this manuscript interesting, I wish you fruitful and

pleasant reading.

Right below, my works are listed: publications described in this manuscript, those which

are not, and reports and works in progress.

List of publications described in this manuscript:

• Mosler, K. and Mozharovskyi, P. (2022): Choosing among notions of multivariate

depth statistics. Statistical Science, 37(3), 348–368.

• Lafaye De Micheaux, P., Mozharovskyi, P., and Vimond, M. (2021): Depth for curve

data and applications. Journal of the American Statistical Association, 116(536),

1881–1897.

• Dyckerhoff, R., Mozharovskyi, P., and Nagy, S. (2020): Approximate computation of

projection depths. Computational Statistics and Data Analysis, 157, 107166.

• Staerman, G., Mozharovskyi, P., and Clémençon, S. (2020): The area of the convex

hull of sampled curves: a robust functional statistical depth measure. In: Chiappa, S.

and Calandra, R. (eds.), Proceedings of Machine Learning Research (AISTATS 2020),

108, 570–579.

• Nagy, S., Dyckerhoff, R., and Mozharovskyi, P. (2020): Uniform convergence rates

for the approximated halfspace and projection depth. Electronic Journal of Statistics,

14(2), 3939–3975.

• Mozharovskyi, P., Josse, J., and Husson, F. (2020): Nonparametric imputation by

data depth. Journal of the American Statistical Association, 115(529), 241–253.

9

Story, structure, interconnections

• Staerman, G., Mozharovskyi, P., Clémençon, S., and D’Alché-Buc, F. (2019): Func-

tional isolation forest. In: Lee, W. S. and Suzuki, T. (eds.), Proceedings of Machine

Learning Research (ACML 2019), 101, 332–347.

• Pokotylo, O., Mozharovskyi, P., and Dyckerhoff, R. (2019): Depth and depth-based

classification with R-package ddalpha. Journal of Statistical Software, 91(5), 1–46.

• Liu, X., Mosler, K., and Mozharovskyi, P. (2019): Fast computation of Tukey trimmed

regions and median in dimension p > 2. Journal of Computational and Graphical

Statistics, 28(3), 682–697.

• Badunenko, O. and Mozharovskyi, P. (2016): Nonparametric frontier analysis using

Stata. Stata Journal, 16(3), 550–589.

• Dyckerhoff, R. and Mozharovskyi, P. (2016): Exact computation of the halfspace

depth. Computational Statistics and Data Analysis, 98, 19–30.

Other publications:

• Parekh, J., Parekh, S., Mozharovskyi, P., D’Alché-Buc, F., and Richard, G. (2022).

Listen to interpret: Post-hoc interpretability for audio networks with NMF. NeurIPS

2022, in press.

• Staerman, G., Adjakossa, E., Mozharovskyi, P., Hofer, V., Sen Gupta, J., and Clémençon,

S. (2022): Functional anomaly detection: a benchmark study. International Journal

of Data Science and Analytics, in press.

• Goibert, M., Clémençon, S., Irurozki, E., and Mozharovskyi, P. (2022): Statistical

depth functions for ranking distributions: definitions, statistical learning and appli-

cations. In: Camps-Valls, G., Ruiz, F. J. R., Valera , I. (eds.), Proceedings of The

Twenty Fifth International Conference on Artificial Intelligence and Statistics (AIS-

TATS 2022), 151, 10376–10406.

• Parekh, J., Mozharovskyi, P., and D’Alché-Buc, F. (2021): A framework to learn

with interpretation. NeurIPS 2021. In: Ranzato, M., Beygelzimer, A., Dauphin,

Y., Liang, P.S. and Wortman Vaughan, J. (eds.), Advances in Neural Information

Processing Systems 34 (NeurIPS 2021).

• Statzer, C., Jongsma, E., Liu, S. X., Dakhovnik, A., Wandrey, F., Mozharovskyi, P.,

Zülli, F., and Ewald, C. Y. (2021): Youthful and age-related matreotypes predict

drugs promoting longevity. Aging Cell, 20, e13441.

• Staerman, G., Laforgue, P., Mozharovskyi, P., and D’Alché-Buc, F. (2021): When

OT meets MoM: Robust estimation of Wasserstein distance. In: Banerjee, A. and

Fukumizu, K. (eds.), Proceedings of The 24th International Conference on Artificial

Intelligence and Statistics (AISTATS 2021), 130, 136–144.

10

Story, structure, interconnections

• Beaudoin, V., Bloch, I., Bounie, D., Clémençon, S., D’Alché-Buc, F., Eagan, J.,

Maxwell, W., Mozharovskyi, P., and Parekh, J. (2020): Identifying the “right” level

of explanation in a given situation. In: Saffiotti, A., Serafini, L., and Lukowicz,

P. (eds.), Proceedings of the First International Workshop on New Foundations for

Human-Centered AI (NeHuAI 2020 with ECAI 2020), 63–66.

• Badunenko, O. and Mozharovskyi, P. (2020): Statistical inference for the Russel mea-

sure of technical efficiency. Journal of the Operational Research Society, 71(3), 517–

527.

• Mosler, K. and Mozharovskyi, P. (2017): Fast DD-classification of functional data.

Statistical Papers, 58(4), 1055–1089.

• Mozharovskyi, P. and Vogler, J. (2016): Composite marginal likelihood estimation of

spatial autoregressive probit models feasible in very large samples. Economics Letters,

148, 87–90.

• Mozharovskyi, P., Mosler, K., and Lange, T. (2015): Classifying real-world data with

the DDα-procedure. Advances in Data Analysis and Classification, 9(3), 287–314.

• Lange, T., Mosler, K., and Mozharovskyi, P. (2014): Fast nonparametric classification

based on data depth. Statistical Papers, 55(1), 49–69.

• Lange, T., Mosler, K., and Mozharovskyi, P. (2014): DDα-classification of asymmetric

and fat-tailed data. In: Spiliopoulou, M., Schmidt-Thieme, L., and Janning, R. (eds.),

Data Analysis, Machine Learning and Knowledge Discovery, Springer, Berlin, 71–78.

• Lange, T. and Mozharovskyi, P. (2014): The alpha-procedure: a nonparametric invari-

ant method for automatic classification of multi-dimensional objects. In: Spiliopoulou,

M., Schmidt-Thieme, L., and Janning, R. (eds.), Data Analysis, Machine Learning and

Knowledge Discovery, Springer, Berlin, 79–86.

Two reports and works in progress:

• Beaudouin, V., Bloch, I., Bounie, D., Clémençon, S., D’Alché-Buc, F., Eagan, J.,

Maxwell, W., Mozharovskyi, P., and Parekh, J. (2020): Flexible and context-specific

AI explainability: A multidisciplinary approach. Scientific report. arXiv:2003.07703.

• Mozharovskyi, P. (2016): Tukey depth: linear programming and applications. Scien-

tific report. arXiv:1603.00069.

• Mozharovskyi, P.: Anomaly detection using data depth: multivariate case.

• Malinovskaya, A., Mozharovskyi, P., and Otto, P.: Statistical monitoring of models

based on artificial intelligence.

11

Story, structure, interconnections

• Fojt́ık, V., Laketa, P., Mozharovskyi, P., and Nagy, S.: On exact computation of

Turkey depth central regions.

• Staerman, G., Mozharovskyi, P., and Clémençon, S.: Affine-invariant integrated rank-

weighted depth: definition, properties and finite sample analysis.

• Staerman, G., Mozharovskyi, P., Clémençon, S., and D’Alché-Buc, F.: Depth-based

pseudo-metrics between probability distributions.

• Ivanovs, J. and Mozharovskyi, P.: Distributionally robust halfspace depth.

• Patilea, V., Rouviere, L., and Mozharovskyi, P.: Simple tests of stability for parametric

regressions.

12

Chapter 1

Computation

1.1 Introduction to multivariate data depth

1.1.1 Definition of data depth

In general, a (d-variate) depth function is a function D : (z, P) 7→ [0, 1], for z ∈ Rd and

P from some class P of d-variate probability distributions, that satisfies several postulates

regarding invariance, monotonicity, convexity and continuity. D(z|X) will be written in

place of D(z|P), where X denotes a random vector distributed as P .

An often-quoted set of such postulates has been given by Liu (1990) for simplicial depth

and by Zuo and Serfling (2000) for general depth functions. Here a slightly terser one is

used, which is due to Dyckerhoff (2002): D is a depth function if it is invariant against

Rd-transformations in some class T , null at infinity, monotone decreasing on rays from its

maximum, and upper continuous. Formally, for z ∈ Rd and P ∈ P ,

• T -Invariance: D(T (z)|T (X)) = D(z|X) for all T ∈ T ,

• Null at infinity: lim∥z∥→∞D(z|X) = 0 .

• Monotone on rays: If a point z∗ has maximal depth, that is

D(z∗|X) = maxz∈Rd D(z|X) then for any r in the unit sphere of Rd the function

γ 7→ D(z∗ + γr|X) does not increase with γ > 0 .

• Upper semicontinuous: The upper level sets Dα = {z ∈ Rd|D(z|X) ≥ α} are

closed for all α ∈ [0, 1] .

Any point z∗ that has maximum depth is called a median. The postulates imply that the

level sets (= central regions) Dα, α ∈]0, 1], are bounded. Monotonicity on rays means that

they are starshaped about z∗, hence nested. Moreover, if X is centrally symmetric about

some z∗ ∈ Rd, then any depth function yields z∗ as a median. Recall that X is centrally

symmetric about z∗ if X − z∗ has the same distribution as z∗ − X. If the level sets are

convex, D is a quasi-concave depth function. Mostly, T is specified as the class of affine

transformations of Rd, but other classes of transformations are possible and of practical

interest.

Chapter 1 Introduction to multivariate data depth

Central regions are sometimes parameterized by their probability content,

Dβ(X) =
⋂

α∈A(β)

Dα(X) , where A(β) = {α : P [Dα(X)] ≥ β} . (1.1)

If P is the empirical distribution on a set X = {x1, . . . ,xn} of data points, the depth

function is mentioned as a multivariate empirical data depth and written D(z|X). While

in Section 1.3 explicit ties-excluding assumption will be made, the rest of the manuscript

allows for tied observations. Nevertheless, throughout the subsequent material let us stick

to this unique even if somewhat abusing set-kind notation for X since no ambiguity shall

be caused throughout the manuscript.

Well-known examples of depth functions are the halfspace depth (Tukey, 1975), which

is also called Tukey or location depth, the zonoid depth (Koshevoy and Mosler, 1997), the

spatial (Serfling, 2002), projection (Liu, 1992, Zuo and Serfling, 2000), simplicial (Liu, 1990)

and simplicial volume (Oja, 1983) depths. A more recent notion is the β-skeleton depth

(Yang and Modarres, 2018), which includes the lens depth (Liu and Modarres, 2011) and

the spherical depth (Elmore et al., 2006) as special cases.

By exploiting geometry of data (Cascos, 2009), the depth function is fully non-parametric

and thus does not rely on assumptions about the data generating process and satisfies de-

sirable invariance properties (Zuo and Serfling, 2000) (see also Liu, 1990). Further, it is

robust to both outliers and heavy tailed distributions (Donoho and Gasko, 1992). By dint

of these advantages, data depth is used in a variety of tasks as a generalization of quantiles

and ranks in higher dimensions and as an alternative to the distribution function (Cher-

nozhukov et al., 2017, Hallin et al., 2021). Nowadays, these benefits make data depth vital

for many applications of data analysis (Liu et al., 1999): supervised (Lange et al., 2014b) and

unsupervised (Jörnsten, 2004) machine learning and anomaly detection (Staerman et al.,

2020), robust optimization (Bazovkin and Mosler, 2015), financial risk assessment (Cascos,

2009), statistical quality control (Liu and Singh, 1993), extreme value theory (Einmahl et al.,

2015), imputation of missing data (M. et al., 2020), to name but a few.

Below, in Section 1.1.2, notions of multivariate depths are reviewed, which are relevant

for understanding the material of the rest of this manuscript.

Definition of functional depth and it’s notions relevant for Chapters 3 and 4 are gathered

in Section 3.1.

1.1.2 Depth notions used in this manuscript

Many depth notions have been proposed in the literature. Not all of them satisfy the above

postulates. In this subsection, six notions of multivariate depth function are reviewed which

will be used in subsequent sections of this chapter and useful for deeper understanding of

the following chapters of this manuscript. For further depth notions and a general reference

on multivariate data depth, the reader is referred to Mosler and M. (2022).

Among the definitions below, halfspace depth (1.3) is the most important notion through-

out this manuscript, and especially in this chapter dedicated mainly to its computation.

14

Chapter 1 Introduction to multivariate data depth

Together with Mahalanobis (1.2) and zonoid (1.8) depths, it appears particularly important

also in Section 1.4 and Chapter 2. Projection (1.4) and asymmetric projection (1.5) depths

are referred to substantially in Section 1.4. Simplicial depth (1.6) plays an important role

for several functional depth notions (see Chapter 3).

Definition 1.1 (Mahalanobis depth)

DMah(z|X) =
(
1 + ||z − µX ||2ΣX

)−1
(1.2)

is called (moment) Mahalanobis depth (Mahalanobis, 1936). Here, µX and ΣX denote the

expectation vector and the covariance matrix of X, and ||y||2ΣX = yTΣ−1
X y is the Maha-

lanobis norm of y ∈ Rd.

Definition 1.2 (Halfspace depth)

DH(z|X) = inf{PX [X ∈ H] : H closed halfspace, z ∈ H} . (1.3)

is called halfspace (=location=Tukey) depth (Tukey, 1975, Donoho and Gasko, 1992).

Definition 1.3 (Projection depth) Projection depth (Liu, 1992, Zuo and Serfling, 2000)

is defined as:

DProj(z|X) =

(
1 + sup

u∈Sd−1

|⟨u, z⟩ −med(⟨u, X⟩)|
MAD(⟨u, X⟩)

)−1

, (1.4)

where med(Y) denotes the median of a univariate random variable Y , and MAD(Y) =

med(|Y −med(Y)|) its median absolute deviation from the median.

Definition 1.4 (Asymmetric projection depth) Asymmetric projection depth (Dyck-

erhoff, 2004) is defined as

DasProj(z|X) = min
u∈Sd−1

(
1 +

(⟨u, z⟩ −med(⟨u, X⟩))+
MAD+(⟨u, X⟩)

)−1

, (1.5)

with (a)+ = max{a, 0} being the positive part of a and MAD+ being the median of the

positive deviations from the median.

It has been introduced to compensate for the fact that projection depth is always symmetric

around its deepest point.

Definition 1.5 (Simplicial depth) Simplicial depth (Liu, 1990) is defined as follows:

DSim(z|X) = PX [z ∈ conv({X1, . . . , Xd+1})] , (1.6)

where X1, . . . , Xd+1 are i.i.d. copies of X, and conv means convex hull.

15

Chapter 1 Introduction to multivariate data depth

Definition 1.6 (Zonoid depth) For 0 < α ≤ 1, let

Dα
Zon(X) =

{
EX [X g(X)] : g : Rd → [0, 1/α] measurable and EX [g(X)] = 1

}
(1.7)

be the zonoid α-region of X. For α = 0 set D0
Zon(X) = Rd. The zonoid depth (Koshevoy

and Mosler, 1997, Mosler, 2002) is defined as

DZon(z|X) = sup{α : z ∈ Dα
Zon(X)} (1.8)

For a data set X, the zonoid depth then is calculated as

DZon(z|X) = sup
{
α : αλi ≤ 1/n, z =

n∑
i=1

λixi,

n∑
i=1

λi = 1, λi ≥ 0 ∀i
}
. (1.9)

For the rest of the depth notions, in their empirical versions, empirical measure is sub-

stituted for X.

1.1.3 A word on computation

The question of computation of data depth is important, if not crucial, for evolution of this

domain. Even having undergone substantial theoretical developments, data depth has been

long underemployed in applications, thus lacking interest of practitioners and incentives for

further theoretical results. The computational load needed for depth calculation cannot be

neglected, gaining weight with the number n of data and, even more, with dimension d.

Therefore, until recently, due to computational infeasibility the use of most depth statistics

was limited to small n and d in applications, and the choice of a proper depth statistic

in practice was restricted to very few notions. For example, first accessible algorithm for

computation of projection depth for d ≥ 3 was developed in 2014 (Liu and Zuo, 2014b) and

for halfspace depth in 2016 (Dyckerhoff and M., 2016). Depth trimmed regions for d ≥ 3

(except the trivial cases, e.g., Mahalanobis depth) were first computed in 2009 (Mosler et al.,

2009), for zonoid depth.

Fortunately, in the last few years data depths have been implemented in several existing

software packages. In particular, R-package ddalpha (Pokotylo et al., 2019, 2020) imple-

ments exact procedures for all above mentioned (and other) depth notions, except projec-

tion depth. In addition, approximate algorithms are provided for the halfspace, projection,

simplicial, and simplicial volume depths. Packages depth (Genest et al., 2019), DepthProc

(Kosiorowski and Zawadzki, 2019, Zawadzki et al., 2020), fda.usc (Febrero-Bande and

Oviedo de la Fuente, 2012), mrfDepth (Segaert et al., 2020) implement a number of depth

notions as well.

Mahalanobis depth is easily coded by hand in any programming language; ready-to-

use implementations are also found in R-packages DepthProc and fda.usc. R-package

DepthProc suggests an implementation of Lp depth. Halfspace depth can be computed ex-

actly for d ≤ 3 (and approximately) in any dimension with R-packages depth and mrfDepth,

and only approximately with R-packages DepthProc and fda.usc. Exact projection depth is

16

Chapter 1 Introduction to multivariate data depth

computed with MATLAB-package CompPD (Liu and Zuo, 2015), while approximate procedures

are included in R-packages DepthProc, fda.usc, and mrfDepth. Exact simplicial depth for

d = 2 is calculated with R-packages depth, fda.usc, and mrfDepth. Exact simplicial volume

depth is also computed using R-package depth. Spatial depth is implemented in R-package

depth.plot (Mahalanobish and Karmakar, 2015).

Existing software allows for computation of depth regions as well. Tukey regions are

calculated with R-packages modQR (Šiman and Boček, 2019) or TukeyRegion (Liu et al.,

2019, including the Tukey median) and Octave-package modQR (Boček and Šiman, 2016).

Trimmed regions and median of the projection depth are computed using the before men-

tioned MATLAB-package CompPD. The Oja median is determined using the R-package OjaNP

(Fischer et al., 2020). R-package WMTregions (Bazovkin and Mosler, 2012) computes zonoid

regions (see also Mosler et al., 2009), as well as trimmed regions for the entire family of

weighted-mean depths (Dyckerhoff and Mosler, 2011). Onion depth regions are constructed

using the QHULL implementation of the R-package geometry (Habel et al., 2019).

Obviously, this overview cannot be complete. Moreover, the packages are continuously

modified by their authors.

Following sections of this chapter present author’s contributions to computation of data

depths. First, Section 1.2 introduces the entire family of algorithms for computation of the

halfspace depth. Second, in Section 1.3 a fast algorithm (together with its fast combinato-

rial counterpart) for computation of halfspace trimmed regions is developed and applied to

fast computation of the halfspace median. Since computational time complexity of exact

algorithms for certain depth notions (including halfspace depth) grows exponentially with

space dimension, a framework for approximation for the class of projection depths (intro-

duced by Dyckerhoff, 2004) is proposed in Section 1.4. Finally, though under unrealistic

assumptions, uniform convergence rates on random approximation of halfspace depth are

derived in Section 1.5.

These developments caused further positive consequences. In particular, the ability to

efficiently compute data depth allowed for its application to imputation of missing data

(detailed in Chapter 2 of this manuscript) and creation of the novel notion of depth for

curves (described in Chapter 3). For example, when imputing missing values of a data set,

imputation of each point having missing values requires thousands of depth computations

during iterations of an optimization routine. A procedure very resembling the one for half-

space depth computation constitutes the basis for computation of the Tukey curve depth

(Chapter 3). Based on similar ideas, efficient algorithms for non-parametric frontier anal-

ysis were constructed, see Badunenko and M. (2016) for details and Section A.3 for short

information.

Procedures from Sections 1.2 and 1.3 are implemented in R-packages ddalpha and

TukeyRegion, respectively; see Sections A.1 and A.2 for more information on this software.

Implementation of algorithms from Section 1.4 in R-package ddalpha is ongoing. Both exact

and approximate computation of different depth notions is currently being implemented in

a Pyhton library, to address the machine learning community.

The following definition is useful when computing halfspace depth and its regions.

17

Chapter 1 Introduction to multivariate data depth

Definition 1.7 (General position) A data set X = {x1, ...,xn} in Rd is said to be in

general position if any affine subspace of dimension k, 1 ≤ k < d, contains at most k of the

data points x1, . . . ,xn.

Before jumping into subsequent sections, next subsection gathers interesting material on

connections of the halfspace depth to further mathematical tools.

1.1.4 Connections of the halfspace depth

Due to its indicator-loss nature, the halfspace depth (1.3) is known to be connected to a

number of problems. Although just the smallest portion of the points to be cut off by a

closed halfspace is required as an output, in many algorithms the boundary hyperplane

is found or can be restored based on the output information. For shortness, let R =

argminr∈Sd−1 #{i : x⊤
i r ≥ z⊤r, xi ∈X} be the set of directions r ⊂ Sd−1 each achieving

1
n
#{i : x⊤

i r ≥ z⊤r, xi ∈X} = DH(z|X).

Densest hemisphere. The problem of computing the halfspace depth is invariant more

than just in the affine way. Thus shifting X to get z in the origin and projecting X onto the

unit sphere Sd−1 after that (a non-affine transformation), changes neither the value of the

depth DH(z|X) nor the set of optimal normals to separating hyperplanes R, i.e. DH(z|X)

= DH(0|Y) as well as the optimal argument set with Y = { xi−z
∥xi−z∥ : i = 1, ..., n} ⊂

Sd−1. The last one corresponds to the open densest hemisphere problem shown by Johnson

and Preparata (1978) to be of non-polynomial time complexity, namely O(nd−1 log n) if

dimension d is fixed.

Classification. By a trivial modification, the task of supervised binary linear classification

can be narrowed down to finding an optimal argument r from (1.3), see also Ghosh and

Chaudhuri (2005). Indeed, regard X1 = {x1, ...,xn1} and X2 = {xn1+1, ...,xn1+n2} being
two training classes in Rd, and let Y = {xi − xj : i = 1, ..., n1, j = n1 + 1, ..., n1 + n2}.
When minimizing empirical risk of a linear classifier, one is interested in a direction r ∈ Sd−1

in projection on which possibly many differences xi − xj have the same sign, or in other

words, as many (few) as possible points from Y lie on the same side of a hyperplane through

0. The later holds for any element of R.

Regression depth. Rousseeuw and Hubert (1999) define data depth for a liner regression

model based on the notion of nonfit: Given regression input X = {x1, ...,xn} in Rd and

output y = {y1, ..., yn} in R, a fit b = (b0, b1, ..., bd) is called a nonfit if there exists an affine

hyperplane in the input space not containing any point from X such that all the points

from X lying on its same side have residuals strictly of the same sign. Regression depth of

a fit b ∈ Rd+1 is the smallest number of observations to be removed from X sufficient for b

to become a nonfit. Given a fit b ∈ Rd+1, after splitting X into two classes on the basis of

the sign of residuals (and acting as in the preceding paragraph), regression depth is given

by the empirical risk in the projection on any element of R.

Maximum feasible subsystem. Again, let Y = {yi = xi−z
∥xi−z∥ : i = 1, ..., n} ⊂ Sd−1. First

consider the case d = 2, where Y lies on the unit circle. Here yi defines an open halfcircle,

in which each point defines a closed halfspace with the origin on its boundary and never

18

Chapter 1 Computation of the halfspace depth

containing yi. Then the task of computation of the halfspace depth narrows down to finding

a point on the unit circle contained in the largest number of these halfcircles; the set of such

points coincides with R. Extending this logic to higher dimensions (Bremner et al., 2008)

leads to (two instances of) the maximum feasible subsystem problem in Rd−1. For d > 2,

in the same way, each yi defines an open halfspace in which each element (=point ∈ Rd)

is a normal to a hyperplane defining a halfspace with the origin on its boundary and not

containing yi. One is interested in a point lying in the intersection of the highest number

of these halfspaces. Let H+ = {(x1, ..., xd)⊤ : xd = 1} (H− = {(x1, ..., xd)⊤ : xd = −1})
be a positive (respectively negative) hyperplane. For each yi, intersection of such open

halfspace with H+ yields an open halfspace in H+ of dimension Rd−1; the same holds for

H−. Then, the maximum number such halfspaces either in H+ or in H− having nonempty

intersection divided through n equals the halfspace depth. The two maximum feasible

subsystem problems consist of linear inequalities x
yi,(1,...,d−1)

∥yi,(1,...,d−1)∥
≤ − tan(π

2
− arccosyi,(d)) for

H+ and or x
yi,(1,...,d−1)

∥yi,(1,...,d−1)∥
≤ tan(π

2
− arccosyi,(d)) for H−. (Note that due to the general

position assumption there is no difference between open and closed halfspaces, and the

equator {(x1, ..., xd)⊤ : xd = 0} should not be searched through because R has nonzero

volume on Sd−1.)

Quantile regression. Hallin et al. (2010) establish connection of the halfspace depth to

the linear programming via quantile regression (see also Koenker and Basset, 1978) and

exploit this to compute halfspace depth regions; for more details here, see the beginning of

Section 1.3.

1.2 Computation of the halfspace depth

In this section, a theoretical framework for computing the halfspace depth is suggested,

which yields a whole class of algorithms. For k ∈ {1, . . . , d− 1}, consider a tuple of k (out

of n) data points, which together with z span an affine subspace of dimension k. For each

such tuple, the data are projected onto the corresponding orthogonal complement, and the

halfspace depth is computed as the sum of the depth in these two orthogonal subspaces.

Further, for some fixed k, the halfspace depth is obtained as the minimum of the depths

over all such tuples. All proposed algorithms are capable of dealing with data that are not

in general position and even with ties.

In what follows, first the theoretical framework is developed in Section 1.2.1, leading to

the main result stated in Theorem 1.2, which yields the above mentioned class of algorithms.

Further, three algorithms for k = d−1, d−2, 1 are presented in Section 1.2.2. In Section 1.2.3,

implementation issues are discussed and a speed comparison of the three algorithms are

provided for data in general and non-general position.

The following notation will be used across this section. The number of elements of a

set I is denoted by #I and the complement of a set I by Ic. The linear hull of some

points x1, . . . ,xk ∈ Rd is denoted by span(x1, . . . ,xk). For a subspace U of Rd, denote the

orthogonal complement of U by U⊥.

19

Chapter 1 Computation of the halfspace depth

1.2.1 Theoretical guarantees

The halfspace depth of a point z ∈ Rd w.r.t. n data points x1, . . . ,xn ∈ Rd is defined by

DH(z |x1, . . . ,xn) =
1

n
min
p̸=0

#{i |p⊤xi ≥ p⊤z} . (1.10)

The halfspace depth of a point z is therefore simply the minimum fraction of data points

x1, . . . ,xn contained in a closed halfspace containing z. For simplicity, the shorter notation

DH(z |X) will be used.

The halfspace depth is affine invariant, in particular it is location invariant. Therefore,

DH(z |x1, . . . ,xn) = DH(0 |x1 − z, . . . ,xn − z) ,

which shows that one can restrict w.l.o.g. to the case that the halfspace depth of the origin

has to be computed. Further, it will be useful to consider the integer version of the halfspace

depth,

nDH(z |X) = n ·DH(z |X) ∈ N0 .

In this section let us assume that 0 /∈ {x1, . . . ,xn}. If some of the data points are equal to

0, then these points are removed from the data set and their number is simply added to the

(integer) halfspace depth of the origin w.r.t. the remaining points. Let us further assume

that span(x1, . . . ,xn) = Rd. If this is not the case, i.e., if the data points are contained in

some k-dimensional subspace, k < d, then the data points are mapped to Rk by a linear

transformation of rank k, and the algorithms are then applied to the transformed data

points.

Under the assumptions from above, the (integer) halfspace depth can be written as

nDH(0 |X) = min
p̸=0

#{i |p⊤xi ≥ 0} .

A vector p ̸= 0 is called optimal for the data set X if

nDH(0 |X) = #{i |p⊤xi ≥ 0} .

Let us use the following notation: If p ̸= 0, then

I+p = {i |p⊤xi > 0} , I0p = {i |p⊤xi = 0} , I−p = {i |p⊤xi < 0} ,

and the corresponding cardinalities are denoted by

n+
p = #I+p , n0

p = #I0p , n−
p = #I−p .

With this notation

nDH(0 |X) = min
p̸=0

(n+
p + n0

p) = n−max
p̸=0

n−
p .

For a subset I of indices, XI denotes the data set (xi)i∈I of all data points with indices in I.

If the data are not in general position, then the linear hull of some data points xi1 , . . . ,xik
may contain additional data points. For a set I = {i1, . . . , ik} of indices, let us denote by

I∗ = {j |xj ∈ span(xi1 , . . . ,xik)}

the set of all indices j such that xj is contained in the linear hull of xi1 , . . . ,xik . Obviously,

I ⊂ I∗. The cardinality of I∗ is denoted by nI∗ .

20

Chapter 1 Computation of the halfspace depth

Proposition 1.1 (Dyckerhoff and M., 2016) If p ̸= 0 is optimal for X, then I0p = ∅, i.e.,

no data points lie on the boundary of the closed halfspace defined by p.

The following lemma is needed.

Lemma 1.1 (Dyckerhoff and M., 2016) If p ̸= 0 and 0 ≤ dim span(XI0p
) = l < d − 1,

then there exists xi0 /∈ span(XI0p
) and a vector p̃ = p+ q ̸= 0 with q ∈ span(XI0p

,xi0) such

that

I0p̃ =
[
I0p ∪ {i0}

]∗
, I+p ⊂ I+p̃ ∪ I

0
p̃ , I−p ⊂ I−p̃ ∪ I

0
p̃ .

Further, dim span(XI0p̃
) = l + 1.

This means that if one changes p to p̃, then at least one of the data points that were

contained in one of the open halfspaces defined by p is now on the boundary hyperplane

defined by p̃, whereas no data points did change sides.

Proposition 1.2 (Dyckerhoff and M., 2016) If p ̸= 0 is optimal for X, then for every

k, 1 ≤ k < d, there are k linearly independent data points xi1 , . . . ,xik and a vector p̃ =

p+ q ̸= 0 where q ∈ span(xi1 , . . . ,xik) such that

I0p̃ = {i1, . . . , ik}∗ , I+p ⊂ I+p̃ ∪ I
0
p̃ , I−p ⊂ I−p̃ ∪ I

0
p̃ .

Proposition 1.3 (Dyckerhoff and M., 2016) Let xi1 , . . . ,xik be linearly independent and

p ̸= 0 such that I = {i1, . . . , ik} ⊂ I0p. Then,

nDH(0 |X) ≤ (n+
p + n0

p)−
(
nI∗ − nDH(0 |XI∗)

)
.

Proposition 1.4 (Dyckerhoff and M., 2016) For every k, 1 ≤ k < d, there is a set

I = {i1, . . . , ik} of indices and a vector p̃ ̸= 0 such that xi1 , . . . ,xik are linearly independent,

I0p̃ = I∗, and

nDH(0 |X) ≥ (n+
p̃ + n0

p̃)−
(
nI∗ − nDH(0 |XI∗)

)
.

For the following denote by Lk the set of all subsets I of order k of {1, . . . , n} such that

the points (xi)i∈I are linearly independent.

Theorem 1.1 (Dyckerhoff and M., 2016) For each k such that 1 ≤ k < d it holds that

nDH(0 |X) = min
I∈Lk

[(
min

p∈X⊥
I \{0}

(
n+
p + n0

p

))
−
(
nI∗ − nDH(0 |XI∗)

)]
.

Let us now show how

min
p∈X⊥

I \{0}
(n+

p + n0
p)

can be computed as the halfspace depth of a projection of the data points.

Let I be a subset of {1, . . . , n} of order k such that the data points xi, i ∈ I, are

linearly independent. Let further a1, . . . ,ad−k be a basis of the orthogonal complement

of span(xi1 , . . . ,xik) and AI the matrix whose columns are the ai. Thus, every vector

21

Chapter 1 Computation of the halfspace depth

p ∈ X⊥
I is a linear combination of a1, . . . ,ad−k, i.e., p = AI p̃ for some p̃ ∈ Rd−k, and the

map Rd−k →X⊥
I , p̃ 7→ AI p̃ =: p, is a bijection. Since

p̃⊤(A⊤
I xi) ≥ 0 ⇐⇒ (p̃⊤A⊤

I)xi ≥ 0 ⇐⇒ p⊤xi ≥ 0 ,

one can conclude

min
p∈X⊥

I \{0}
(n+

p + n0
p) = min

p∈X⊥
I \{0}

#{i |p⊤xi ≥ 0}

= min
p̃∈Rd−k\{0}

#{i | p̃⊤(A⊤
I xi) ≥ 0}

= nDH(0 |A⊤
I X) .

A further simplification arises from the fact that all points xi, i ∈ I∗, are mapped to the

origin by A⊤
I . Therefore, these points can be removed from the data set and the halfspace

depth is computed w.r.t. the data set xi, i ∈ (I∗)c. Therefore,

nDH(0 |A⊤
I X) = nDH(0 |A⊤

I X(I∗)c) + nI∗ ,

and finally

nDH(0 |X) = min
I∈Lk

[
nDH(0 |A⊤

I X)−
(
nI∗ − nDH(0 |XI∗)

)]
= min

I∈Lk

[
nDH(0 |A⊤

I X(I∗)c) + nDH(0 |XI∗)
]
.

In the same way as above it can be shown that

nDH(0 |XI∗) = nDH(0 |P⊤
I XI∗) ,

where P I = [xi1 , . . . ,xik]. Therefore, the following theorem holds.

Theorem 1.2 (Dyckerhoff and M., 2016) With the notation from above, for each 1 ≤ k < d

it holds that

nDH(0 |X) = min
I∈Lk

[
nDH(0 |A⊤

I X(I∗)c) + nDH(0 |P⊤
I XI∗)

]
.

Note that for each subset I of k linearly independent data points the data points fall in one

of two categories: The points whose projections on the orthogonal complement of span(XI)

are different from 0 and those who are equal to 0. The former points are taken into ac-

count by nDH(0 |A⊤
I X(I∗)c), whereas the latter ones are considered by nDH(0 |P⊤

I XI∗).

Usually, there will be much more points of the first category than of the second one. The

computation of nDH(0 |A⊤
I X(I∗)c) is done in dimension d− k, whereas the computation of

nDH(0 |P⊤
I XI∗) is done in dimension k. Thus, by the preceding theorem the calculation

of one depth value in d-space is reduced to calculating many depth values in (d− k)-space
(and in k-space). By choosing k it is possible to control how much the dimension is reduced

in each step. The price for a higher dimension reduction is that more subsets I have to be

considered in that step.

22

Chapter 1 Computation of the halfspace depth

An important special case of the algorithm arises when the data points x1, . . . ,xn and

0 are in general position (see Definition 1.7 of Section 1.1.3). Since in that case any linear

subspace of dimension k, 1 ≤ k < d contains at most k data points x1, . . . ,xn, if #I = k,

then I∗ = I and nI∗ = k. Further, nDH(0 |P⊤
I XI∗) = 0, which can be seen by choosing p

such that p⊤(P⊤
I xi1 − P⊤

I xij) = 0, j = 2, . . . , k. Therefore, the following corollary of the

above theorem.

Corollary 1.1 (Dyckerhoff and M., 2016) If the data points x1, . . . ,xn and 0 are in general

position, then for each 1 ≤ k < d it holds that

nDH(0 |X) = min
I∈Lk

nDH(0 |A⊤
I XIc) .

1.2.2 A family of algorithms

The result of the previous subsection gives rise to several algorithms. In these algorithms

the dimensionality of the data is reduced at different rates. When the dimension is reduced

to d = 1 or d = 2, specialized algorithms may be used. For the case d = 1 the standard

algorithm of complexity O(n) is used. For bivariate data the algorithm of Rousseeuw and

Ruts (1996) with complexity O(n log n) (or any other algorithm with this complexity) may

be used.

Combinatorial algorithm, k = d− 1

If choosing k = d− 1, this results in the so-called combinatorial algorithm (Algorithm 1.1).

In this algorithm, all hyperplanes defined by d − 1 linearly independent data points are

xi

xj

●

●

xi

xj

Figure 1.1: Illustration of the combinatorial algorithm, k = d− 1

23

Chapter 1 Computation of the halfspace depth

considered. For each such hyperplane the data are projected in the direction normal to the

hyperplane. Thus, the dimensionality is in one step reduced to dimension one. Only if there

are more than d− 1 data points in the considered hyperplane (which can only occur when

the data are not in general position), then for these data points yi = P⊤
I xi is calculated

and the procedure nDH is recursively called for the data points yj1 , . . . ,yjl . The algorithm

is illustrated in Figure 1.1.

In the case of data in general position, the algorithm will never enter the recursion.

Then, for each processed hyperplane the complexity of this algorithm is of order O(n).

Since there are
(
n
d−1

)
subsets of d− 1 data points, the overall complexity of the algorithm is(

n
d−1

)
O(n) = O(nd).

Combinatorial algorithm, k = d− 2

Another possibility is to use k = d − 2 (Algorithm 1.2). In that case, the data points

are directly projected into the 2-dimensional space. This has the advantage that for the

projected points the algorithm of Rousseeuw and Ruts (1996) for the bivariate halfspace

depth can be used. Since this algorithm has a complexity of O(n log n) and there are(
n
d−2

)
subsets of order d− 2, the complexity of this algorithm is of order

(
n
d−2

)
O(n log n) =

O(nd−1 log n). Thus, this algorithm has a better complexity than the naive combinatorial

algorithm with k = d − 1. This combinatorial algorithm has been independently proposed

by Liu (2017).

Algorithm 1.1 Combinatorial algorithm, k = d− 1

1: function nHD Comb(d,x1, . . . ,xn) ▷ Halfspace depth of 0

2: if d = 1 then return nHD1(x1, . . . ,xn)

3: nmin ← n

4: for each subset I ⊂ {1, . . . , n} of order d− 1 do

5: if (xi)i∈I linearly independent then

6: Compute pI such that p⊤
I xi = 0 for all i ∈ I

7: for all xj do

8: zj ← p⊤
I xj ▷ project data points in direction pI

9: nnew ← min
{
#{zj > 0},#{zj < 0}

}
10: if #{zj = 0} > d− 1 then

11: P I ← Matrix[(xi)i∈I]

12: for all indices j with zj = 0 do

13: yj ← P⊤
I xj

14: nnew ← nnew + nHD Comb(d− 1,yj1 , . . . ,yjl)

15: if nnew < nmin then nmin ← nnew

16: return nmin

24

Chapter 1 Computation of the halfspace depth

Algorithm 1.2 Combinatorial algorithm, k = d− 2

1: function nHD Comb2(d,x1, . . . ,xn) ▷ Halfspace depth of 0

2: if d = 1 then return nHD1(x1, . . . ,xn)

3: if d = 2 then return nHD2(x1, . . . ,xn)

4: nmin ← n

5: for each subset I ⊂ {1, . . . , n} of order d− 2 do

6: if (xi)i∈I linearly independent then

7: Compute a basis a1,a2 of the orthogonal complement of (xi)i∈I
8: AI ← Matrix[a1,a2]

9: P I ← Matrix[xi1 , . . . ,xid−2
]

10: for all xj do

11: if A⊤
I xj ̸= 0 then yj ← A⊤

I xj

12: else zj ← P⊤
I xj

13: l← #{j : A⊤
I xj ̸= 0}

14: nnew ← nHD2(yj1 , . . . ,yjl)

15: if n− l > d− 2 then

16: nnew ← nnew + nHD Comb2(d− 2, zj1 , . . . ,zjn−l)

17: if nnew < nmin then nmin ← nnew

18: return nmin

xi

a1

a2

a1

a2

xi

Figure 1.2: Illustration of the recursive algorithm, k = 1

Recursive algorithm, k = 1

The other extreme is the case, when choosing k = 1. This yields the so-called recursive

algorithm (Algorithm 1.3). In this algorithm, in the outer loop all data points xi are con-

sidered, and the data are projected on the hyperplane orthogonal to xi. For the projected

data points (with the exception of the data points that are a multiple of xi and are thus

25

Chapter 1 Computation of the halfspace depth

mapped to the origin), the algorithm is called recursively. Thus, in each step the dimension-

ality is reduced only by one. The recursion stops when d = 2, in which case the algorithm of

Rousseeuw and Ruts (1996) is applied. Note that the recursive algorithm can be viewed as

a generalization of the algorithm for the case d = 3 in Rousseeuw (1998). Figure 1.2 shows

an illustration of the recursive algorithm.

In the recursive algorithm the depth w.r.t. d-variate data is computed as the minimum

over n depths w.r.t. (d− 1)-variate data. Therefore, the complexity for d-variate data is n

times the complexity for (d− 1)-variate data. Since the recursion is stopped when d = 2, in

which case the O(n log n)-algorithm of Rousseeuw and Ruts (1996) is used, this results in

an overall complexity of nd−2O(n log n) = O(nd−1 log n). Note that this remains true even

if the data are not in general position.

1.2.3 Numerical illustration

For any k, the algorithm can be easily implemented in any programming environment. For

k = 1, ..., d − 2 the calculation of the orthogonal complement (which can easily be done,

e.g., using the Gauss-Jordan method) and the routine nHD2 by Rousseeuw and Ruts (1996)

have to be implemented. For k = d− 1 even the nHD2-routine is of no need.

The algorithms of the preceding subsection should not be called directly, but rather be

included in a wrapping function, which does the necessary preprocessing of the data. In the

preprocessing, the point z is first subtracted from the data so that the halfspace depth of

the origin has to be calculated. Second, all data points which are equal to the origin are

removed from the data. Their number is stored and later added to the result of nHD. Third,

if the data points are contained in some k-dimensional subspace, k < d, then the data points

are mapped to Rk as described in Section 1.2.1. In an optional fourth step, the data could

Algorithm 1.3 Recursive algorithm, k = 1

1: function nHD Rec(d,x1, . . . ,xn) ▷ Halfspace depth of 0

2: if d = 1 then return nHD1(x1, . . . ,xn)

3: if d = 2 then return nHD2(x1, . . . ,xn)

4: nmin ← n

5: for all xi do

6: Compute a basis a1, . . . ,ad−1 of the hyperplane with normal xi
7: AI ← Matrix[a1, . . . ,ad−1]

8: for all xj do

9: if A⊤
I xj ̸= 0 then yj ← A⊤

I xj

10: else zj ← x⊤
i xj

11: l← #{j : A⊤
I xj ̸= 0}

12: nnew ← nHD Rec(d− 1,yj1 , . . . ,yjl) + min
{
#{zj > 0},#{zj < 0}

}
13: if nnew < nmin then nmin ← nnew

14: return nmin

26

Chapter 1 Computation of the halfspace depth

Table 1.1: Execution times for data in general position, distributed as N
(
0d, Id

)
, averaged

over 10 tries, in seconds (three significant digits). Variants of the algorithm with k =

1, d− 2, d− 1 are presented in the first, second, and third rows of each cell, respectively.

n = 40 80 160 320 640 1280 2560 5120 10240 20480 40960 81920

d = 3 0.000 0.000 0.000 0.011 0.047 0.184 0.780 3.19 13.2 54.5 225 933

0.002 0.002 0.003 0.016 0.063 0.250 1.03 4.22 17.4 72.2 293 1210

0.000 0.003 0.014 0.117 0.936 7.60 61.3 519 — — — —

4 0.006 0.048 0.402 3.36 28.2 235 1960 — — — — —

0.005 0.038 0.302 2.50 20.4 166 1360 — — — — —

0.005 0.055 0.784 12.3 203 3290 — — — — — —

5 0.205 3.62 62.5 1070 — — — — — — — —

0.055 0.952 16.1 269 — — — — — — — —

0.047 1.24 35.7 1110 — — — — — — — —

6 7.32 275 — — — — — — — — — —

0.506 18.4 633 — — — — — — — — —

0.392 21.6 1250 — — — — — — — — —

7 257 — — — — — — — — — — —

3.60 278 — — — — — — — — — —

2.66 305 — — — — — — — — — —

8 — — — — — — — — — — — —

21.4 3550 — — — — — — — — — —

14.3 3470 — — — — — — — — — —

9 — — — — — — — — — — — —

107 — — — — — — — — — — —

69.8 — — — — — — — — — — —

10 — — — — — — — — — — — —

439 — — — — — — — — — — —

289 — — — — — — — — — — —

be scaled to have a norm of one. This does not change the halfspace depth, but has the

advantage that all data have the same order of magnitude, which should reduce numerical

problems.

All algorithms based on Theorem 1.2 can be further improved by exiting the main loop as

soon as nmin drops to zero, since in that case no further improvement is possible. However,

this speed-up is data dependent and occurs only if the origin is outside the convex hull of

the data. Therefore, this modification is not in incorporated into the algorithms used in the

experiments (see below) to get stable computation times.

Due to the independent repetition of similar operations, the algorithms based on Theo-

rem 1.2 (for different values of k) possess high parallelization abilities, which grow with k.

Clearly, for data in general position, the complexity of the algorithms for 1 ≤ k ≤ d − 2

is O(nd−1 log n) and is O(nd) for k = d − 1. However, the exact execution time depends

on the implementation of the single steps, routines, memory structures, etc., and can differ

in practice from the values reported in Tables 1.1 and 1.2. As it will be seen later in this

subsection, each of the considered algorithms can show the best results (compared to the

remaining two algorithms) for proper constellations of n and d. The algorithms’ perfor-

mance may differ a lot depending on whether the data are in general position or not. In

27

Chapter 1 Computation of the halfspace depth

all experiments, one kernel of the Intel Core i7-2600 (3.4 GHz) processor having enough

physical memory was used.

First, consider dataX drawn randomly from a multivariate standard normal distribution

N
(
0d, Id

)
, where the depth of the origin w.r.t. X is computed. Table 1.1 presents the

execution times of the algorithms in seconds (in each cell the upper, middle, and lower lines

correspond to k = 1, 2, d − 1 respectively), averaged over 10 tries. Such a small number of

tries is sufficient, as the execution times are extremely stable for all chosen values of n and

d and differ by a few percents only. d is varied from 3 to 10 and n = 10 · 2i is increased with

i = 2, 3, ... till the execution time exceeds one hour. As one can see, because of the recurrent

structure, for fixed n and with increasing d, the algorithm with k = 1 is outperformed by

k = d− 2, which is further outperformed by k = d− 1. On the other hand, for fixed d and

with increasing n, the algorithm with k = d − 1 is outperformed by k = 1 and k = d − 2

because of the better complexity of the latter algorithms. Comparing the algorithms with

k = 1 and with k = d− 2 the former one is superior for dimension d = 3, whereas the latter

performs better when d > 3.

Table 1.2: Execution times for data in non-general position, distributed as

U({−2,−1, 0, 1, 2}d), averaged over 10 tries, in seconds (three significant digits). Variants

of the algorithm with k = 1, d− 2, d− 1 are presented in the first, second, and third rows of

each cell, respectively. For k = d− 1 and d = 7, ..., 10 the median is reported.

n = 40 80 160 320 640 1280 2560 5120 10240 20480 40960 81920 163840

d = 3 0.000 0.002 0.002 0.009 0.036 0.139 0.530 2.11 8.33 33.1 132 530 2290

0.000 0.002 0.005 0.013 0.052 0.198 0.773 3.14 12.6 49.9 195 786 3480

0.002 0.019 0.188 2.11 26.1 384 — — — — — — —

4 0.005 0.045 0.375 3.06 24.6 196 1560 — — — — — —

0.005 0.036 0.291 2.35 18.5 141 1110 — — — — — —

0.203 5.47 235 — — — — — — — — — —

5 0.202 3.56 60.5 1020 — — — — — — — — —

0.063 1.06 17.4 283 — — — — — — — — —

4.49 869 — — — — — — — — — — —

6 7.29 272 — — — — — — — — — — —

0.570 — — — — — — — — — — — —

78.1 — — — — — — — — — — — —

7 256 — — — — — — — — — — — —

4.34 315 — — — — — — — — — — —

227 — — — — — — — — — — — —

8 — — — — — — — — — — — — —

24.2 — — — — — — — — — — — —

754 — — — — — — — — — — — —

9 — — — — — — — — — — — — —

144 — — — — — — — — — — — —

1750 — — — — — — — — — — — —

10 — — — — — — — — — — — — —

457 — — — — — — — — — — — —

1800 — — — — — — — — — — — —

28

Chapter 1 Computation of the halfspace depth regions

The designed framework allows for handling data for which the general position assump-

tion is violated. The results for X distributed uniformly on {−2,−1, 0, 1, 2}d are presented
in Table 1.2. As mentioned above (see also Corollary 1.1), for data in general position, if

k = d − 1 or k = d − 2, no recursion is involved. If k = d − 1, for data in non-general

position, the recursive calls can increase the execution time and, in general, the algorithmic

complexity. Additionally, if n is not large enough (depending on d), the computation times

depend heavily on the exact position of the points in Rd and become unstable. Therefore,

for the algorithm with k = d− 1 the median was taken instead of the mean when reporting

the execution times for d = 7, ..., 10. The same effect occurs in the case k = d − 2 as well,

but the application of the two-dimensional routine (nHD2) designed by Rousseeuw and Ruts

(1996) seems to compensate this increase in time by a quick handling of ties, especially when

n gets larger. On the other hand, if k = 1, ties are rather an advantage, and the execution

time of the algorithm decreases.

1.3 Computation of the halfspace depth regions

Computation of a halfspace κ-central region Dκ
H(X) (or further simply κ-region) of given

data {x1, . . . ,xn} appears to be a much more challenging task than computation of the

halfspace depth of a single point, as it involves a very large number of possible observa-

tional hyperplanes to be inspected. By an observational hyperplane or elemental hyperplane

a hyperplane that passes through (at least) d elements of {x1, . . . ,xn} is meant. In di-

mension two, the task has been solved by use of a circular sequence (Edelsbrunner, 1987),

which enumerates all intersections of observational hyperplanes (Ruts and Rousseeuw, 1996).

Throughout this section it is assumed that the data are in general position (see Definition 1.7

of Section 1.1.3).

According to Kong and Mizera (2012), the halfspace depth κ-regionDκ
H(X) is the infinite

intersection over all directions u ∈ Sd−1 of the inner halfspaces bordered by HKM(κ,u).

Hereafter,

HKM(κ,u) = {z ∈ Rd : u⊤z ≥ q1(κ,u)} ,

where q1(κ,u) denotes the sample κ-quantile of the projections of {x1, . . . ,xn} onto u. As a

convex polytope, a halfspace region is the intersection of a finite number of these halfspaces.

The facets of the polytope lie on the hyperplanes that border the halfspaces. Clearly, by the

definition of the empirical version of the halfspace depth (1.10), each of these hyperplanes

must be an observational hyperplane. Consequently, the halfspace depth region is completely

determined by a finite number of observational hyperplanes. Hence, to calculate it, the key

step is to identify those observational hyperplanes that actually include one of the region’s

facets. A näıve procedure consists in checking all
(
n
d

)
observational hyperplanes. For a more

efficient procedure, a strategy to identify those observational hyperplanes that contain the

facets is needed.

Hallin et al. (2010) and Paindaveine and Šiman (2011), hereafter HPS, point out a direct

connection between a halfspace depth region and multivariate regression quantiles. Each of

29

Chapter 1 Computation of the halfspace depth regions

these quantiles consists of, in general more than one, parallel hyperplanes, which may contain

a facet of the halfspace depth region. In their pioneering work, Hallin et al. (2010) show that

those directions giving the same set of hyperplanes form a polyhedral cone, and that a finite

number of these cones fills Rd. Each cone is represented by the directions generating its

edges, which, again, are finitely many. HPS propose an algorithm that calculates halfspace

depth regions in dimension d > 2 via quantile regression and parametric programming.

To guarantee all cones to be addressed, a breadth-first search is used. For details of the

implementations, see Paindaveine and Šiman (2012a,b). However, these procedures are

rather slow and insufficient in practice (see, e.g., Table 1.6 for comparison), while a handy

algorithm and a corresponding software package are needed in application.

In the sequel, two new algorithms are presented, a näıve and a more sophisticated one,

that calculate halfspace depth regions in arbitrary dimension d > 2. In building the second

algorithm, certain combinatorial properties of halfspace depth regions are derived and ex-

ploited that substantially reduce the computational load. Consequently this algorithm runs

much faster and requires much less RAM than the näıve algorithm as well as the algorithms

by HPS.

Specifically, as a first main result, an upper bound is derived on the number of non-

redundant hyperplanes of a halfspace depth region, that is, those observational hyperplanes

that contain a facet of the region. The bound is sharp and turns out to be very useful in

assessing the computational complexity and performance of the algorithms. To the best

knowledge of the literature, the bound is new.

The HPS procedures are slow for two reasons. First, it appears that both their implemen-

tations yield a great number of redundant directions, which are normal to an observational

hyperplane but provide no facet of the trimmed region. However, all these directions are

considered in HPS and used to calculate regions. Given κ, the HPS procedures actually cal-

culate d successive regions instead of one by breadth-first search; but many of these regions

have depth ̸= κ (see Paindaveine and Šiman (2011), remark after Theorem 4.2). Second,

the cone-by-cone search strategy is both RAM- and time-consuming. This is because, in

the HPS procedures, each cone is characterized by its facets and vertices, and facets are

identified by d-variate vectors. A rather large RAM is required to store these identifiers

with sufficient precision.

First, a näıve combinatorial algorithm (Algorithm 1.4) is presented. It serves as a bench-

mark for the principal fast algorithm (Algorithm 1.5). The näıve procedure, in searching for

facets’ candidates, simply passes through all combinations of d− 1 observations as the case

may be. No memory-consuming structure has to be created, and the computation time is

independent of κ. In contrast, the fast approach (Algorithm 1.5) uses a breadth-first search

strategy. However, instead of covering Rd cone-by-cone, as is done by HPS, it searches the

directions ridge-by-ridge, where a ridge corresponds to a combination of d− 1 observations

in Rd. This strategy yields only relevant hyperplanes (that cut off exactly the required

number of observations from Dκ
H(X)), and thus examines much fewer cases. Additionally,

each ridge is stored by the subscripts of its d−1 corresponding observations and use of some

novel tricks substantially saves both RAM and computation time. Obviously, Algorithm 1.4

30

Chapter 1 Computation of the halfspace depth regions

is exact. For Algorithm 1.5, no theoretical proof of its exactness is available though. But

broad numerical evidence suggests that it computes the exact region, and is expected to do

so in vast majority of the cases (except those degenerate) in practice. In all experiments

Algorithm 1.5 yielded precisely the same halfspace depth region as the exact Algorithm 1.4

does.

As they involve only simple operations and no optimization techniques, both proposed

algorithms are easy to program. They also show high numerical precision even in larger

dimension. Particularly, Algorithm 1.5, by its speed and storage efficiency, enables the use of

statistical methodology based on halfspace-region statistics. To investigate the performance

of the algorithms, a simulation study (up to dimension 9) as well as real data calculations

are provided. The proposed procedures have been implemented in C++ and interfaced and

visualized in R (R Core Team, 2022). They are available in the R-package TukeyRegion (M.

and Barber, 2021) and can be downloaded from CRAN.

The Tukey median (Tukey, 1975) is one of the most famous generalizations of the or-

dinary median to dimension d > 1. It is usually defined (Donoho, 1982) as the average

of all points in the Tukey median set. Hence its computation depends essentially on the

computation of this innermost halfspace depth region. As an extension of the approach, an

algorithm for fast computation of the Tukey median is provided.

The rest of this section is organized as follows. After necessary notations gathered

in Section 1.3.1, Section 1.3.2 presents an upper bound on the number of non-redundant

hyperplanes of a halfspace depth region, together with some results that are useful for the

proposed algorithms. Section 1.3.3 describes the two novel algorithms, the näıve as well as

the fast one. Section 1.3.4 studies its computational performance, also compared to HPS.

Section 1.3.5 suggests an algorithm for computing the Tukey median. Finally, Section 1.3.6

gathers some remarks and very recent discoveries about Algorithm 1.5.

1.3.1 Notations

Here, some notions and notations are collected for later reference in this section: Denote

mκ = ⌈nκ⌉ with ⌈·⌉ being the ceiling function. For any hyperplane Hu,α = {x ∈ Rd : u⊤x =

α}, it is said that Hu,α cuts off m observations if

min
{
#{i : u⊤xi > α},#{i : u⊤xi < α}

}
= m.

If these two numbers are different, the normal pointing to the side with less observations is

called the outer direction of a hyperplane. An observational hyperplane that cuts off exactly

mκ−1 observations is mentioned as a relevant hyperplane of the halfspace κ-region Dκ
H(X);

its inner halfspace as a relevant halfspace. Obviously, every non-redundant hyperplane (i.e.

containing a facet) is also relevant, and Dκ
H(X) is the intersection of all relevant halfspaces.

By a κ-outside ridge a (d − 2)-dimensional affine space is meant which contains d − 1

observations and is the intersection of two observational hyperplanes, each cutting off, on

its lower side, less than mκ observations. Note that these two observational hyperplanes are

31

Chapter 1 Computation of the halfspace depth regions

not unique (see Figure 1 for an illustration in dimension d = 2) and that only some of the

κ-outside ridges belong to Dκ
H(X).

1.3.2 A bound on the number of facets

In this subsection, as a first principal result, a bound on the number of facets of a halfspace

depth region is derived, that is, on the number of non-redundant halfspaces defining the

region.

Assume that the observed data set {x1,x2, · · · ,xn} ⊂ Rd, n > d ≥ 2, is in general

position (see Definition 1.7). Consequently, each facet of a halfspace depth region Dκ
H(X)

lies on an observational hyperplane containing exactly d observations.

Proposition 1.5 (Liu et al., 2019) Let Π be an observational hyperplane. If Π passes

through observations xi1 ,xi2 , · · · ,xid and cuts off at most mκ − 1 other observations, then

Π ∩Dκ
H(X) ⊂ conv(xi1 ,xi2 , · · · ,xid) .

Let V = span(xi1 ,xi2 , · · · ,xid−1
) be the (D − 2)-dimensional vector space spanned by

{xi1−xid−1
,xi2−xid−1

, · · · ,xid−2
−xid−1

}, and V⊥ be its orthogonal complement. (Observe

that V = {0} if d = 2.) Consider the projection of Dκ
H(X) onto the two-dimensional vector

spaceV⊥, which is projV⊥

(
Dκ

H(X)
)
= {x′ ∈ V⊥ : x′+x′′ ∈ Dκ

H(X) with x′′ ∈ V} . Clearly,
this projection is a polygone. Relying on Proposition 1.5, one obtains the following result,

which will be useful in constructing the fast algorithm (Algorithm 1.5 in Section 1.3.3).

Proposition 1.6 (Liu et al., 2019) Consider the vector space V⊥ as before, and the κ-

outside ridge containing the observations xi1 ,xi2 , · · · ,xid−1
. The projection of xij onto V⊥

is either a vertex or no element of projV⊥

(
Dκ

H(X)
)
, j = 1, 2, . . . , d− 1.

For κ ∈ {1/n, 2/n, · · · , κ∗} with κ∗ = supx∈Rd DH(X)), it is seen from Proposi-

tion 1.6 and the convexity of Dκ
H(X) that there exist at least two relevant hyperplanes each

containing the observations xi1 ,xi2 , · · · ,xid−1
included in this κ-outside ridge plus another

observation, which is found in the two-dimensional space V⊥. This fact will be used in

Step 2(a) of Algorithm 1.4 below.

Moreover, the intersection of the respective halfspaces contains the corresponding (d−2)-
dimensional affine space. It is easy to see that among the halfspaces bordered by them two

exist, say H1 and H2, such that Dκ
H(X) ⊂ H1 ∩ H2. Figure 1.3 illustrates this; it also

demonstrates that a relevant hyperplane can be redundant. Hence, the following result.

Proposition 1.7 (Liu et al., 2019) Consider κ ∈ {1/n, 2/n, · · · , κ∗}. If the halfspace

depth region Dκ
H(X) is not a singleton, the number of its facets (= number of its non-

redundant hyperplanes) is bounded from above by 2
(
n
d−1

)
/d.

By the convexity of the halfspace depth region, an outer direction vector yields at most

one of its facets. In this sense, Proposition 1.7 actually also provides an upper bound for

32

Chapter 1 Computation of the halfspace depth regions

H
2

H
3x

0

H
3

H
1
∩ H

2
= H

1
∩ H

2
∩ H

3

H
1

Figure 1.3: Intersection of three relevant halfspaces. Here x0 denotes the projection of

xi1 ,xi2 , · · · ,xid−1
onto V⊥. Clearly,

⋂3
k=1Hk = H1 ∩H2, and H3 is redundant.

the number of outer directions of facets. It is useful in assessing the performance of an

algorithm, and will be used in Step 4 of Algorithm 1.5

It is worth mentioning that the upper bound 2
(
n
d−1

)
dp is attainable and thus cannot be

further improved. For instance, let n = d + 1. Then the halfspace depth region at depth

κ = 1
d+1

is the convex hull of the data. It has d + 1 facets, which equals the upper bound,

2
(
d+1
d−1

)
/d = d+1. Though the bound is sharp, in many instances the number of facets comes

out to be much smaller, as will be seen from the numerical study below.

Propositions 1.6 and 1.7 reveal further important properties of κ-outside ridges, which

are useful in constructing a fast algorithm to calculate Dκ
H(X) for κ ∈ {1/n, 2/n, · · · , κ∗}:

• Every κ-outside ridge can be utilized to compute at least two directions that are

normal to relevant hyperplanes.

• The κ-outside ridges are connected with each other in the following sense: Given

a κ-outside ridge, one may consider its defining observations xi1 ,xi2 , · · · ,xid−1
and

add another observation x∗, so that the hyperplane through xi1 ,xi2 , · · · ,xid−1
,x∗ is

relevant. Then another κ-outside ridge is obtained by replacing one of the defining

observations with x∗. This can be utilized in the computation of Dκ
H(X).

• Observe that a κ-outside ridge is also a κ′-outside for all κ′ ∈ {mκ+1
n

, mκ+2
n

, · · · , κ∗}.
This is for example true for the observations projected into the darkest area of Fig-

ure 1.3. Each of them can be used in the construction of a κ′-outside ridge. Hence, if

one has to calculate more than one region, one may store all κ-outside ridges during

33

Chapter 1 Computation of the halfspace depth regions

the computation of Dκ
H(X) and recycle them when computing a more central trimmed

region Dκ′
H (X) with κ′ > κ.

1.3.3 Two algorithms

This subsection presents two new algorithms to compute a halfspace depth region of given

depth. Let us start by introducing Algorithm 1.4, which is a näıve application of Proposi-

tion 1.6. Algorithm 1.4 is simple and intuitive; it will later serve to verify the correctness

of Algorithm 1.5. After this, the fast algorithm, namely Algorithm 1.5, is described.

The näıve combinatorial algorithm

Algorithm 1.4 simply passes through all combinations {xi1 , · · · ,xid−1
} of d−1 out of n points

and searches for hyperplanes passing through d points and cutting off exactlymκ−1 observa-
tions. To do this, first for each choice of observations xi1 , · · · ,xid−1

, the (d−2)-dimensional

vector space spanned by them is calculated (Step 2a), and the sample is projected onto

its orthogonal complement, which is a two-dimensional vector space (Step 2b). Then the

search narrows down to finding two lines in this plane passing through the point to which

xi1 , · · · ,xid−1
are projected and another point from the sample and cutting off mκ − 1 ob-

servations (Step 2c). Figure 1.4 (right) visualizes the set of hyperplanes found during one

iteration in Steps 2a to 2c. Each found hyperplane is stored as a number to the basis n. This

requires ⌈d log2(n)⌉ binary digits (bits) of memory space (Step 2d). Note that, under the

assumption of general position made above, ties cannot occur, as any hyperplane contains

at most d observations. Since the number of those combinations is
(
n
d−1

)
and search in each

of them is algorithmically dominated by the angle-sorting procedure having time complexity

O
(
n log(n)

)
, the time complexity of the algorithm amounts to O

(
nd log(n)

)
. Clearly, this

presumes that the time complexity of Step 2d(iii) is not larger than that of Step 2d(i), which

can be achieved by using appropriate store-search structures such as a search tree (access

time complexity O
(
d log(n)

)
) or a binary hypermatrix (access time complexity O(1)). As

Algorithm 1.4 does not take account of any space ordering it requires very little memory and

saves computation time, which otherwise is needed for multiple access of search structures

and may grow substantially with n and d. In addition, due to the same reason its execution

time only negligibly depends on the geometry of the data cloud and the depth value κ.

Algorithm 1.4 (Näıve combinatorial algorithm)

Input: x1, · · · ,xn ∈ Rd, κ.

Step 1. Set Hκ = ∅.

Step 2. For each subset {i1, ..., id−1} = I ⊂ {1, · · · , n} do:

(a) Consider the plane normal to span(xi1 , ...,xid−1
) and find a basis of it. Let BI

denote the basis matrix, that is the (d × 2) matrix BI containing the two basis

vectors as columns.

34

Chapter 1 Computation of the halfspace depth regions

(b) Compute yi = B⊤
I xi for i = 1, ..., n.

(c) Find a subset Iκ ⊂ {1, · · · , n} \ I such that for each i0 ∈ Iκ holds #{j : u⊤yj >

u⊤yi0 , j = 1, ..., n} = mκ − 1 whenever u⊤(yi1 − yi0) = 0.

(d) For each i0 ∈ Iκ do:

i. (k1, ..., kd) = sort
(
i0, i1, ..., id−1).

ii. Compute h = k1 + k2n+ k3n
2 + ...+ kdn

d−1.

iii. If h /∈ Hκ then add h to Hκ.

Output: Hκ.

The ridge-by-ridge breadth-first search strategy

Now, the main procedure can be presented, i.e. Algorithm 1.5 that computes the halfs-

pace κ-region for given κ in a fast way. The algorithm has been implemented in function

TukeyRegion of the R-package TukeyRegion and can be downloaded from CRAN. Its out-

put depends on the user’s request. A detailed description of the algorithm with reference

to user-accessible options is given below.

To find all relevant hyperplanes of a halfspace κ-region, Algorithm 1.5 follows the breadth-

first search idea. This idea can be briefly explained as follows: push an initial set of ridges

into the queue, retrieve a ridge from the queue and push all those “neighbors” into the

queue that have not been seen before (which will be specified below in Step 4); continue

until the queue is empty (Steps 1 to 5). After this has been done, the region is constructed

as an intersection of relevant halfspaces. For this, firstly, an inner point of the region has

to be found, which is used for a dual transformation of the relevant hyperplanes (Step 6);

then the QHULL (Barber et al., 1996) algorithm is run to eliminate the redundant hy-

perplanes (Step 7). Vertices, facets and the barycenter of the halfspace depth region are

computed from the remaining (non-redundant) hyperplanes (Step 8). The input consists of

the observations, the depth level κ and a precision parameter ϵ.

Algorithm 1.5 (Algorithm for computing the halfspace depth region)

Input: x1, · · · ,xn ⊂ Rd, κ, ϵ.

Step 1. Initialization:

Set A = (falsen)
d−1, Hκ = ∅, an empty queue Q.

Step 2. Construct initial set of ridges:

(a) Find a subset {i1, ..., id−1} = I ⊂ {1, · · · , n} such that (xi1 , ...,xid−1
) define a

ridge of conv(x1, ...,xn). Set A
(
sort(I)

)
= true and push sort(I) into Q.

(b) Compute a basis matrix BI of the plane normal to span(xi1 , ...,xid−1
).

(c) Compute yi = B⊤
I xi for i = 1, ..., n.

35

Chapter 1 Computation of the halfspace depth regions

(d) Find two indices l1, l2 such that holds #{j : u⊤
k yj > u⊤

k ylk , j = 1, ..., n} =

mκ − 1 whenever u⊤
k (ylk − yi1) = 0 for k = 1, 2.

For k = 1, 2 and for each subset J ⊂ I of order d−2, set A
(
sort(J∪{lk})

)
= true

and push sort(J ∪ {lk}) into Q.

(e) For k = 1, 2 and for each l such that holds u⊤
k yl > u⊤

k ylk and for each subset

J ⊂ I of order d− 2, set A
(
sort(J ∪{l})

)
= true and push sort(J ∪{l}) into Q.

Step 3. Retrieve a ridge I = {i1, · · · , id−1} from Q.

Step 4. Spread to neighboring ridges:

(a) Compute a basis matrix BI of the plane normal to span(xi1 , ...,xid−1
).

(b) Compute yi = B⊤
I xi for i = 1, ..., n.

(c) Find a subset Iκ ⊂ {1, · · · , n} \ I such that for each i0 ∈ Iκ holds #{j : u⊤yj >

u⊤yi0 , j = 1, ..., n} = mκ − 1 whenever u⊤(yi1 − yi0) = 0.

(d) For each i0 ∈ Iκ do:

i. If (I ∪ {i0}) /∈ Hκ then add (I ∪ {i0}) to Hκ.

ii. For each subset J ⊂ Iκ of order d− 2 do:

If A
(
sort(J∪{i0})

)
= false then set A

(
sort(J∪{i0})

)
= true and push

sort(J ∪ {i0}) into Q.

Step 5. If Q is not empty then go to Step 3, else go to the following step.

(So far, all d-tuples of observations that define relevant halfspaces are stored in Hκ.

The intersection of these halfspaces is the halfspace κ-region. Details given below.)

Step 6. Find an inner point of the region:

(a) For each (i1, ..., id) ∈ Hκ (l = 1, ..., nκ = #Hκ) do:

i. Find ul ⊥ span(xi1 , ...,xid) such that #{j : u⊤
l xj > u⊤

l xi1 , j = 1, ..., n} =
mκ − 1 and ∥ul∥2 = 1.

ii. Compute bl = u⊤
l xi1.

(b) Compute x0 = argmaxx∈Rd{x⊤(1, 0, ..., 0)⊤ : u⊤
l x ≤ bl − ϵ , l = 1, ..., nκ}.

(c) If x0 cannot be found then stop.

Step 7. Eliminate redundant halfspaces:

(a) For j = 1, ..., nκ do:

wj =
1

bj−u⊤
j x0

uj.

(b) (i1, ..., invκ)
⊤ = QHULL(w1, ...,wnκ) with ij = (ij1, ..., ijd).

Step 8. Compute elements that define the region:

36

Chapter 1 Computation of the halfspace depth regions

(a) For j = 1, ..., nvκ do:

vj =
(
(uij1 , ...,uijd)

⊤)−1
(bij1 , ..., bijd)

⊤.

(b) For each i ∈ unique(i1, ..., invκ) (j = 1, ..., nfκ) do:

i. dj = ui.

ii. tj = bi.

(c) c = ave
(
conv(v1, ..., vnvκ)

)
, the barycenter of conv(v1, ..., vnvκ).

Output:

(a) Vertices: V = {v1, ..., vnvκ}.

(b) Facets’ (non-redundant) hyperplanes: F = {d1, ...,dnfκ} (outside-pointing nor-

mals) and T = {t1, ..., tnfκ} (thresholds on these normals).

(c) Barycenter: c.

In Step 1, (falsen)
d−1 is a (d−1)-dimensional logical matrix having format n×· · ·×n,

that is, in the beginning an n-dimensional vector of logical zeros, brought to power d− 1 as

a Cartesian product. (E.g., if d = 4 this is a cube of size n×n×n.) Indeed, only one upper

corner of this matrix is used, which includes those cells having strictly decreasing subscripts.

Further, a single bit of RAM suffices to store a logical value, which amounts to eight values

per byte. However, this matrix is memory demanding when n and d are large. Fortunately,

in this last case the matrix is very probable to be sparse, and thus some dynamic storing

structure may be used, e.g. a search tree. Hκ is a set for storing relevant hyperplanes as

d-tuples of integer numbers, and Q is literally a queue of ridges supporting operations of

pushing an element on one side and retrieving it from another one.

Step 2 aims at finding a set of (d − 1)-tuples defining ridges to be used as starting

points for the algorithm. First, a ridge of the convex hull of {x1, ...,xn} defined by, say,

{xj1 ,xj2 , · · · ,xjd−1
} is found (Step 2a). This is implemented in the QHULL algorithm.

Further, using the logic of Steps 2a to 2c of Algorithm 1.4, two points xl1 and xl2 are found

(Steps 2b to 2d). Thus, each of the two hyperplanes defined by {xj1 ,xj2 , · · · ,xjd−1
,xl1}

and {xj1 ,xj2 , · · · ,xjd−1
,xl2} is relevant. This is always guaranteed as long as the sample

is in general position and mκ ≤ ⌊n−(d−1)
2
⌋; here ⌊·⌋ denotes the floor function. Then, all

(d − 1)-tuples containing (d − 2) points out of {xj1 ,xj2 , · · · ,xjd−1
} and one of the points

cut off by or lying in one of these hyperplanes are chosen. Together with the ridge on the

convex hull of the data set, this gives exactly 1 + 2mκ(d − 1) initial ridges, see Figure 1.4

(left) for illustration.

Steps 3 and 5 wrap the search step procedure of Step 4 by implementing the queue.

Step 3 retrieves a ridge to be processed from the head of the queue while Step 5 returns to

Step 3 if the queue contains at least one element.

Step 4 provides the identification of neighboring ridges and, by that, controls the ridge-

by-ridge search strategy. First, a set Iκ of indices is found that defines, together with

the current ridge {xj1 ,xj2 , · · · ,xjd−1
}, a relevant hyperplane. (Here one follows the logic of

37

Chapter 1 Computation of the halfspace depth regions

xi2

xi1

xi2

xi1

Figure 1.4: Left: Step 2 of Algorithm 1.5, solid red lines indicate initial ridges. Right:

The generic Step 2 (a) – (c) of Algorithm 1.4 and Step 4 (a) – (c) of Algorithm 1.5, solid

red lines indicate new ridges added to the queue.

Steps 2a to 2c of Algorithm 1.4 as before.) The information gained by each i0 ∈ Iκ is twofold.
First, an i0 defines a relevant hyperplane determined by a d-tuple {xi1 ,xi2 , · · · ,xid−1

,xi0}.
It is checked whether this hyperplane is visited for the first time and add it toHκ if this is the

case (Step 4d(i)). Second, each such hyperplane contains d ridges defined by (d− 1)-tuples

of points. d− 1 of these ridges – those containing i0 – can potentially lead to a hyperplane

not visited before. Thus for each of these (d − 1) ridges it is checked whether it has been

visited before or not. If a ridge has not been visited, it is added to the queue Q and mark

it as visited in A (Step 4d(ii)). The set of ridges found in Step 4 of a single iteration is

visualized in Figure 1.4 (right).

As the total number of relevant hyperplanes (after the first five steps of Algorithm 1.5

have been performed) can potentially be as large as their maximum number, the complexity

of the algorithm is the same as that of Algorithm 1.4, i.e. O
(
nd log(n)

)
. On the other hand,

this worst case happens only for degenerate data sets. Thus it is reasonable to expect that in

most cases the number of relevant hyperplanes is substantially lower than the upper bound,

and this number actually defines the computation speed of the algorithm. Some empirical

insights to this question will follow in Section 1.3.4.

Steps 1 to 5 aim to compute relevant hyperplanes. This set will be used to check the

correctness of the algorithm when comparing it empirically with the output of Algorithm 1.4.

The implementation of Algorithm 1.5 in the R-package TukeyRegion performs these five first

steps always independently of the chosen options. The following steps are optional. If the

38

Chapter 1 Computation of the halfspace depth regions

algorithm is terminated after Step 5, only the relevant hyperplanes are output, each as a

d-tuple {j1, j2, · · · , jd} of indices of points from the sample.

Step 6 searches for a point strictly belonging to the interior of the halfspace depth

region. If such a point cannot be found then the algorithm stops. (See also Section 1.3.5.)

Step 6 is performed either if the interior point is explicitly requested (flag retInnerPoint

is set) or if any option for the following steps is chosen.

Each element of Hκ is a d-tuple of indices (j1, j2, · · · , jd) defining a halfspace by the

hyperplane containing {xj1 ,xj2 , · · · ,xjd}. First, for each of these hyperplanes the normal

pointing outside the halfspace depth region and the threshold defining the hyperplane’s

position are calculated (Step 6a); each of them defines a condition for the interior point.

Then, the inner point x0 of the region is searched by means of linear programming (R-

package Rglpk used here; Theussl and Hornik, 2019) as a point satisfying these conditions

(Step 4b). If the inner point is not found this means that the halfspace depth region of

depth κ has (numerically, with precision ϵ) zero volume or does not exist. In this case the

algorithm stops.

Step 7 determines non-redundant hyperplanes. It is performed either if these are re-

quested (flag retHyperplanesNR) or if any option for the following step is chosen. First,

a duality transformation is applied. It represents each halfspace by a vector wj, which is

its outer normal multiplied by the inverse distance of the hyperplane to the inner point

(Step 7a). Second, the QHULL algorithm is applied to the set of all wj’s. It returns the

convex hull of the wj’s, an nvκ × d matrix, where each row defines a facet by indices of d

points (Step 7b). Since the data is in general position, each facet of this convex hull is

defined by exactly d points.

Step 8 computes the elements of the region; it is the step that provides the practically

important output. This step depends on whether region’s vertices (flag retVertices is set),

facets (flag retFacets is set) and/or barycenter (flag retBarycenter is set) are requested

and requires the successful execution of all preceding steps. Each facet of the convex hull

of wj’s in the dual space (corresponding to a row of the matrix returned by QHULL in

Step 7b) defines a vertex of the halfspace depth region, i.e. each such vertex is computed

as an intersection of d non-redundant hyperplanes (Step 8a).

The facets of the halfspace depth region are contained in non-redundant hyperplanes

defined by pairs (dj, tj), j = 1, ..., nfκ obtained as non-repeating entries of the matrix

(i1, ..., invκ)
⊤ (Step 8b). To obtain facets as polygons one can apply QHULL to the set

of regions’ vertices {v 1, ..., vnvκ}. In addition, the barycenter of a halfspace depth region can

be computed as the weighted average of the triangulated (doable by QHULL as well) region,

where points are the means of vertices of simplices (d-dimensional triangles) and weights

are the volumes of these simplices (Step 8c).

To illustrate the output of the algorithm, Figure 1.5 exhibits1.1 D(κ) for κ = 0.025, 0.05,

0.1, 0.15, 0.2, 0.25, 0.3 for the 748 3-dimensional observations of the Blood Transfusion data

set, which is downloadable from the UCI Machine Learning Repository (Dua and Graff, 2017,

1.1Figures 1.5, 1.6, and 1.7 were generated with the QHULL software written at the Geometry Center,

University of Minnesota.

39

Chapter 1 Computation of the halfspace depth regions

The data Halfspace depth region for κ = 0.025

Halfspace depth region for κ = 0.05 Halfspace depth region for κ = 0.1

Halfspace depth region for κ = 0.15 Halfspace depth region for κ = 0.2

Halfspace depth region for κ = 0.25 Halfspace depth region for κ = 0.3

Figure 1.5: Halfspace κ-regions for the Blood Transfusion data set.

Yeh et al., 2009). The variables are “Recency – months since last donation”, “Frequency –

total number of donation”, and “Time – months since first donation” (taken from R-package

ddalpha; Pokotylo et al., 2019, 2020). (A fourth variable “Monetary – total blood donated

40

Chapter 1 Computation of the halfspace depth regions

in c.c.” has been removed as it is highly correlated with the third one; see Li et al. (2012).)

As one can see from Figure 1.5, a few contours represent the geometry of the data set (R-

package rgl used for visualization; Adler et al., 2021). Further, Table 1.3 indicates that the

Algorithm 1.5 is faster than Algorithm 1.4 due to a smaller number of processed ridges and

that most of the found relevant hyperplanes (always coinciding for the two algorithms) are

redundant, in particular for deep regions.

Table 1.3: Ratio of computation times and portion of processed ridges by Algorithm 1.5

compared to Algorithm 1.4, and ratio (nfκ/nκ) of facets of halfspace depth regions over the

number of relevant hyperplanes for the Blood Transfusion data set.

κ 0.025 0.05 0.1 0.15 0.2 0.25 0.3

Times ratio 0.034 0.1 0.27 0.45 0.61 0.76 0.87

Ridges ratio 0.034 0.098 0.26 0.43 0.59 0.74 0.85

nfκ/nκ 0.097 0.029 0.0068 0.0036 0.0022 0.0011 0.00047

1.3.4 Numerical illustrations and comparison

This subsection presents the results of a simulation study that explores computational per-

formance and algorithmic complexity. Results on execution times (Tables 1.4, 1.5, as well

as 1.6) are obtained using statistical software R on a Macbook Pro laptop possessing pro-

cessor Intel(R) Core(TM) i7-4980HQ (2.8 GHz) having 16 GB of physical memory and

macOS Sierra (Version 10.12.6) operating system. The validation experiment as well as the

comparison of computation times (Tables 1.6 and 1.7) have been conducted on the École

Nationale de la Statistique et de l’Analyse de l’Information’s computing cluster consist-

ing of the Dell Poweredge M820 servers equipped with 8-kernel processors of type Intel(R)

Xeon(R) E5-4627 v2 @ (3.3 GHz) and having 384 GB of physical memory.

To start, let us measure the time taken for the execution of Algorithm 1.5. Computation

times for several pairs (d, n) and depth levels are indicated in Table 1.4. All the calculations

are restricted to those of no more than one hour for obtaining relevant and non-redundant

hyperplanes. First, the table demonstrates the applicability of the algorithm even for a

substantial number of points (up to 5000) in dimension three (the still visualizable case)

and its capability of computing relevant hyperplanes of halfspace depth regions even in

dimension nine as well as calculating the exact shape (facets and vertices) of halfspace

depth regions up to dimension six. Nevertheless, one observes an exponential increase of

computation time, which indicates an eventual computational intractability of Algorithm 1.5

when the number of observations or the dimension of the data become even larger. Further,

one can see that in higher dimensions, while relevant hyperplanes can be found, the QHULL

algorithm fails in determining the non-redundant ones in a reasonable time. However, in all

indicated cases an interior point has been rapidly found in Step 6 of Algorithm 1.5. Note

that Algorithm 1.5 improves remarkably over Algorithm 1.4 for smaller values of κ. On the

other hand when computing deeper regions, the ridge-by-ridge strategy can be less efficient

41

Chapter 1 Computation of the halfspace depth regions

0 20 40 60

−
4

−
3

−
2

−
1

0

Ratio of facets to hyperplanes

Index

lo
g

1
0
(n

κf
n
κ
)

d = 3 d = 4 d = 5 d = 6

Figure 1.6: Logarithmized ratio of the number of facets of the halfspace depth region

to the number of relevant hyperplanes, log10
nfκ
nκ
. The index of the points is row-wise(κ

increasing)/column-wise(n increasing) for each dimension d = 3, 4, 5, 6 of Table 1.5; e.g.

sixth point stands for (n, κ) = (80, 0.1) for d = 3; lines correspond to rows of Table 1.5.

and in certain cases even harmful; cf. time for d = 6, n = 40 and κ = 0.3 (Table 2 of Liu

et al., 2019). Such a behavior can be explained by the fact that in this last case a substantial

part of A has to be explored anyway, and the ridge-by-ridge transition takes additional time

compared to Algorithm 1.4.

Next, let us take a closer look at the numbers of relevant hyperplanes and facets of a

halfspace depth region found by Algorithm 1.5. These results are summarized in Table 1.5.

One observes that in most cases the number of facets is substantially smaller than the

number of all relevant hyperplanes (see Figure 1.6); i.e. most of the computing time is still

utilized unnecessarily. (Note that this refers to the general result by Hallin et al. (2010) and

the successive algorithms by Paindaveine and Šiman (2012a,b)). Exceptions are limited to

relatively small n, and thus do not constitute a computation problem. Further, one can see

that the number of facets of the halfspace depth region is large for middle values of κ, while

it is rather small for both low and high values of the depth. An extreme example of this

phenomenon arises with the multivariate Cauchy distribution, where the outer depth regions

can be bordered by rather few facets. Also, note that the Tukey median can constitute an

arbitrarily tiny polytope having few facets as well.

The results for κ = 0.025 = 1/40, n = 40, and d = 6 attract attention as some of the

relevant hyperplanes found – though all belonging to the convex hull – are considered redun-

dant. This happens due to precision merging of the QHULL algorithm in higher dimensions.

The number of the relevant hyperplanes itself, on the other hand, shows exponential growth

in n and d, which limits the computational feasibility of the Algorithm 1.5. Further, observe

that in the experimental settings the upper bound on the facets is never achieved, ranging

from close to 0.134 (in a few rare cases) to 0.0000258.

42

Chapter 1 Computation of the halfspace depth regions

Table 1.4: Computation times (in seconds) of Algorithm 1.5, taken by finding all relevant

hyperplanes (Steps 1 to 5) and by identifying those non-redundant (Steps 6 and 7, in paren-

theses). For intractable cases, “t” indicates reaching the time limit (of one hour) and “m”

reaching the memory limit (of 16 GB).

d κ \ Computation times

40 80 160 320 640 1280 2560 5120

3 0.025 0.0009 0.0015 0.0069 0.042 0.31 2.2 18 143

(0.0005) (0.001) (0.0022) (0.0067) (0.026) (0.1) (0.9) (7)

0.1 0.0012 0.0071 0.044 0.31 2.38 19 154 1 270

(0.0009) (0.003) (0.0097) (0.041) (0.22) (1.3) (8) (62)

0.2 0.0027 0.0155 0.11 0.75 5.92 48 389 3 230

(0.0016) (0.0056) (0.023) (0.1) (0.55) (3.4) (22) (158)

0.3 0.0039 0.023 0.15 1.14 9.15 75 602 t

(0.0024) (0.0074) (0.032) (0.16) (0.86) (5.2) (33) —

4 0.025 0.001 0.008 0.084 0.9 11 162 2 440 t

(0.002) (0.014) (0.078) (0.4) (3) (18) (173) —

0.1 0.01 0.094 1.28 17 249 3 850 t —

(0.017) (0.07) (0.42) (3.6) (33) (422) — —

0.2 0.027 0.34 4.36 65 988 t — —

(0.025) (0.16) (1.29) (13) (132) — — —

0.3 0.046 0.62 8.38 121 1 880 — — —

(0.056) (0.23) (2.28) (23) (294) — — —

5 0.025 0.005 0.05 0.7 14 322 t — —

(0.02) (7.23) (28.6) (340) (1 990) — — —

0.1 0.06 1.16 26.2 695 t — — —

(1) (8.25) (81.3) (590) — — — —

0.2 0.24 5.55 149 t — — — —

(0.51) (5.87) (88.5) — — — — —

0.3 0.45 11.9 340 — — — — —

(2.39) (6.97) (154) — — — — —

6 0.025 0.02 0.3 6 201 m — — —

(1.8) (t) (t) (t) — — — —

0.1 0.3 12 497 m — — — —

(1 630) (t) (t) — — — — —

0.2 1.9 83 t — — — — —

(35) (t) — — — — — —

0.3 4.8 214 — — — — — —

(219) (1 480) — — — — — —

7 0.025 0.06 1 50 m — — — —

(t) (t) (t) — — — — —

0.1 2 101 m — — — — —

(t) (t) — — — — — —

0.2 11 1 040 — — — — — —

(t) (t) — — — — — —

8 0.025 0.2 7 m — — — — —

(t) (t) — — — — — —

0.1 6 789 — — — — — —

(t) (t) — — — — — —

0.2 55 m — — — — — —

(t) — — — — — — —

9 0.025 0.6 30 m — — — — —

(t) (t) — — — — — —

0.1 25 m — — — — — —

(t) — — — — — — —

0.2 259 — — — — — — —

(t) — — — — — — —

43

Chapter 1 Computation of the halfspace depth regions

Table 1.5: Number of relevant hyperplanes and those non-redundant (in parentheses) de-

livered by Algorithm 1.5. For intractable cases, “t” indicates reaching the time limit (of one

hour) and “m” reaching the memory limit (of 16 GB).

d κ \ Number of hyperplanes

40 80 160 320 640 1280 2560 5120

3 0.025 29 95 369 1 380 5 280 20 400 82 000 326 000

(29) (69) (160) (318) (571) (965) (1 650) (2 710)

0.1 185 753 2 890 11 500 46 000 184 000 732 000 2 930 000

(70) (143) (268) (441) (765) (1 250) (2 060) (3 350)

0.2 449 1 830 7 340 29 100 116 000 467 000 1 860 000 7 460 000

(66) (124) (227) (362) (606) (1 010) (1 650) (2 670)

0.3 677 2 720 11 200 44 700 181 000 719 000 2 880 000 t

(42) (70) (132) (234) (388) (637) (1 000) —

4 0.025 100 510 3 250 21 900 153 000 1 160 000 9 020 000 t

(100) (360) (1 180) (3 250) (7 620) (17 100) (36 000) —

0.1 1 130 8 180 61 600 482 000 3 780 000 30 100 000 t —

(343) (966) (2 250) (5 170) (11 200) (23 400) — —

0.2 3 810 30 000 236 000 1 890 000 15 100 000 t — —

(301) (700) (1 640) (3 550) (7 680) — — —

0.3 6 750 55 500 448 000 3 580 000 28 800 000 — — —

(112) (286) (705) (1 610) (3 470) — — —

5 0.025 328 2 550 24 400 272 000 3 550 000 t — —

(328) (1 570) (7 920) (29 100) (91 700) — — —

0.1 5 850 76 100 1 060 000 15 700 000 t — — —

(1 530) (5 780) (18 200) (52 800) — — — —

0.2 26 100 396 000 6 140 000 t — — — —

(1 020) (3 430) (10 600) — — — — —

0.3 52 200 863 000 13 900 000 — — — — —

(143) (758) (2 950) — — — — —

6 0.025 968 11 900 169 000 3 110 000 m — — —

(864) (t) (t) (t) — — — —

0.1 25 200 603 000 15 200 000 m — — — —

(5 650) (t) (t) — — — — —

0.2 143 000 4 320 000 t — — — — —

(2 930) (t) — — — — — —

0.3 327 000 11 000 000 — — — — — —

(85) (1 430) — — — — — —

7 0.025 2 630 48 400 1 070 000 m — — — —

(t) (t) (t) — — — — —

0.1 95 300 3 980 000 m — — — — —

(t) (t) — — — — — —

0.2 678 000 39 200 000 — — — — — —

(t) (t) — — — — — —

8 0.025 6 930 189 000 m — — — — —

(t) (t) — — — — — —

0.1 320 000 24 400 000 — — — — — —

(t) (t) — — — — — —

0.2 2 790 000 m — — — — — —

(t) — — — — — — —

9 0.025 18 800 670 000 m — — — — —

(t) (t) — — — — — —

0.1 1 040 000 m — — — — — —

(t) — — — — — — —

0.2 10 300 000 — — — — — — —

(t) — — — — — — —

44

Chapter 1 Computation of the halfspace depth regions

Time and complexity comparison

Algorithm 1.5 has time complexity O
(
nd log(n)

)
. For the algorithm developed by Paindav-

eine and Šiman (2012a), henceforth Algorithm PSa, time complexity amounts to O(nd+1).

The authors conjecture that for a random κ ∈ (0, 0.5) the average time complexity is O(nd).

The simulation study of the procedure given in Paindaveine and Šiman (2012b), henceforth

Algorithm PSb, points to a similar complexity. As Algorithm 1.5 is of a different nature

than PSa and PSb, and the complexities disregard κ, they cannot be directly compared.

To gain further insights, let us compare (average) computation times of the three al-

gorithms. Table 1.6 indicates how much faster Algorithm 1.5 is than the two competitors

(while always yielding the same relevant hyperplanes). At first sight, Algorithm 1.5 is faster

by several orders. However, the speed gain decreases with n, suggesting that Algorithm 1.5

has higher time complexity. To explain this last observation, see Table 1.7. First, the

(average) portion of ridges processed by Algorithm 1.5 compared to Algorithm 1.4 is indi-

cated, where it is constant and equal to
(
n
d−1

)
. These numbers suggest that Algorithm 1.5

can be much more efficient than Algorithm 1.4, as it normally processes fewer ridges and

this difference increases with decreasing κ. Second, the ratio of the number of the relevant

hyperplanes found by Algorithm PSa to the number of ridges processed by Algorithm 1.5

is reported. As the number of relevant hyperplanes corresponds to the number of cones

processed by Algorithm PSa, this ratio indicates that the number of the elements (ridges

for Algorithm 1.5, cones for Algorithm PSa) processed by both Algorithm 1.5 and Algo-

rithm PSa is of the same order. Nevertheless, processing one element has time complexity

O
(
n log(n)

)
in Algorithm 1.5 and O(n) in Algorithm PSa. For Algorithm PSb a similar

logic applies. On the other hand, Table 1.6 shows that Algorithm 1.5 is faster even for large

n. This is due to the simplicity of its operations and the lightness of the involved structures.

In particular, neither post-optimization nor the QHULL algorithm are used when searching

for relevant hyperplanes, and a ridge is saved as a simple combination of data points.

1.3.5 Computing Tukey median

The Tukey median is the gravity center of the Tukey median set, that is, the halfspace

depth region having maximum depth. With the above algorithms it is possible to compute

halfspace depth regions at any given depth level. However the maximum halfspace depth,

κ∗, depends on the data and has to be determined from them. For data in general position

it is known (Liu et al., 2020) that

1

n

⌈
n

d+ 1

⌉
≤ κ∗ ≤ 1

n

⌊
n− d+ 2

2

⌋
. (1.11)

In two-dimensional space, Rousseeuw and Ruts (1998) have developed an algorithm, which

has time complexity O
(
n2 log2(n)

)
. Their algorithm employs a bisection strategy that starts

with a lower and an upper bound on κ∗ and updates these bounds until they coincide. In

updating, the algorithm by Rousseeuw and Ruts (1998) calculates the mean κ of the two

active bounds and checks whether Dκ
H(X) exists. If yes, the lower bound is changed to κ; if

45

Chapter 1 Computation of the halfspace depth regions

Table 1.6: Ratios of average computation times of Algorithms PSa and PSb over that of

Algorithm 1.5. (10 repetitions, standard multivariate normal distribution, implementation

in R-package modQR (Šiman and Boček, 2019).)

d κ Algorithm \ Computation time ratios

40 80 160 320 640 1280 2560 5120

3 0.025 PSa 4 920 8 340 6 490 2 980 2 060 676 268 149

PSb 3 760 7 240 7 230 4 100 2 370 600 269 157

0.1 PSa 23 500 20 100 9 670 5 090 2 190 1 000 420 —

PSb 22 900 22 000 17 300 6 300 2 540 982 361 —

0.2 PSa 25 300 25 400 11 100 4 410 2 450 924 — —

PSb 26 100 29 200 17 800 5 950 2 080 784 — —

0.3 PSa 21 200 27 500 11 400 4 910 2 400 1 030 — —

PSb 23 400 35 500 11 900 5 050 2 240 883 — —

4 0.025 PSa 16 500 13 700 6 320 3 510 1 830 1 620 — —

PSb 7 580 11 700 9 860 2 860 1 760 843 — —

0.1 PSa 66 700 22 300 16 200 6 960 — — — —

PSb 57 500 28 300 19 600 4 850 — — — —

0.2 PSa 57 300 36 000 19 000 — — — — —

PSb 57 500 35 400 10 100 — — — — —

0.3 PSa 55 700 40 600 17 400 — — — — —

PSb 62 100 40 800 12 600 — — — — —

Table 1.7: Portion of ridges processed by Algorithm 1.5 compared to Algorithm 1.4, and

(in parentheses) the ratio of the number of relevant hyperplanes found by Algorithm PSa to

the number of ridges processed by Algorithm 1.5.

d κ Portion of processed ridges (non-redundant hyperplanes)

40 80 160 320 640 1280 2560 5120

3 0.025 0.059 0.044 0.035 0.029 0.026 0.025 0.023 0.023

(0.68) (0.92) (1.64) (2.18) (2.64) (2.9) (3.08) (3.26)

0.1 0.29 0.26 0.23 0.22 0.21 0.2 0.2 —

(1.69) (2.28) (2.68) (2.98) (3.18) (3.29) (3.38) —

0.2 0.62 0.58 0.55 0.53 0.52 0.51 — —

(2.41) (2.76) (3) (3.23) (3.3) (3.35) — —

0.3 0.87 0.84 0.81 0.79 0.78 0.77 — —

(2.77) (2.99) (3.13) (3.27) (3.35) (3.41) — —

4 0.025 0.02 0.012 0.0075 0.0055 0.0045 0.004 — —

(0.47) (0.72) (1.17) (1.89) (2.51) (2.98) — —

0.1 0.18 0.14 0.12 0.1 — — — —

(1.25) (2.01) (2.63) (3.09) — — — —

0.2 0.52 0.45 0.41 — — — — —

(2.09) (2.7) (3.2) — — — — —

0.3 0.84 0.78 0.74 — — — — —

(2.75) (3.18) (3.46) — — — — —

no, the upper bound becomes κ. The bisection approach extends easily to data of dimension

greater than 2. With the new Algorithm 1.5 at hand, it is natural to investigate its possible

use and accuracy in computing higher-dimensional Tukey medians.

46

Chapter 1 Computation of the halfspace depth regions

In searching for the maximum level of halfspace depth, a modified bisection strategy is

employed. Given a halfspace depth region Dκ
H(X) at some level κ, consider its barycenter.

If the region is nonempty, its barycenter is more central than its boundary points, and

thus may have a larger depth value. Observe that computing the depth of a single point

is computationally cheaper (i.e. has lower time complexity) than computing a trimmed

region. Hence, after having checked that at a given depth level κ the region Dκ
H(X) is

nonempty, one may further compute the barycenter of Dκ
H(X) to possibly come closer

to the depth maximum. This motivates us to construct the following algorithm. In the

algorithm, HD(x ; x1, · · · ,xn) stands for any procedure that computes the halfspace depth

of a point x ∈ Rd w.r.t. data x1, · · · ,xn ⊂ Rd, like those in the previous Section 1.2 or Liu

(2017). Further, Alg1(x ; x1, · · · ,xn;κ; ϵ) signifies a halfspace depth region resulting from

Algorithm 1.5.

Algorithm 1.6 (Algorithm for computing the Tukey median)

Input: x1, · · · ,xn ⊂ Rd, ϵ.

Step 1. Initialize bounds on κ∗:

(a) Compute x0 =
(
med(x11, · · · ,xn1),med(x12, · · · ,xn2), · · · ,med(x1d, · · · ,xnd)

)⊤
.

(b) Compute d0 = HD(x0 ; x1, · · · ,xn).

(c) Set κlow = max
{

1
n
⌈ n
d+1
⌉, d0

}
, κup =

1
n
⌊n−d+2

2
⌋+ 1

n
.

Step 2. Update bounds:

Let κ = 1
n
⌊n(κlow+κup)

2
⌋, and compute the region Dκ

H(x1, · · · ,xn) =
= Alg1(x1, · · · ,xn ; κ ; ϵ).

(a) If Dκ
H(x1, · · · ,xn) does not exist (that is, Algorithm 1.5 stops at its Step 6),

then set κup = κ.

(b) If Dκ
H(x1, · · · ,xn) exists, then calculate the barycenter c of Dκ

H(x1, · · · ,xn)
and set κlow = HD(c ; x1, · · · ,xn).

(c) If κlow < κup − 1
n
, then repeat Step 2, else stop.

Output: Alg1(x1, · · · ,xn ; κlow ; ϵ).

Step 1c initializes the lower bound either according to (1.11) or with the depth of the

coordinate-wise median, which is cheaply computed and often has a rather high depth value.

In Step 2b, the depth of the barycenter of the halfspace depth region is computed (in case

it exists) to obtain a higher value for the lower bound, which substantially contributes to

the speed of Algorithm 1.6.

Simulation study presented in Section 5 of Liu et al. (2019) illustrates that Algorithm 1.6

can be faster than using the bisection strategy as it has been done by Rousseeuw and

Ruts (1998) for bivariate data (their median-computing algorithm has time complexity

47

Chapter 1 Computation of the halfspace depth regions

Table 1.8: An artificial data set for illustrating the different location of the sample mean,

the coordinate-wise median and the Tukey median.

x1 x2 x3

1 1 0 0

2 0 1 0

3 0 0 1

4 1.5 1.5 1.5

5 0.309 0.287 0.654

6 0.733 0.04 0.316

7 0.159 0.305 0.558

8 0.056 0.19 0.913

9 0.517 0.533 0.192

10 1.012 0.059 0.099

11 0.118 0.164 0.92

12 0.175 0.919 0.222

13 0.24 0.454 0.17

14 0.906 0.056 0.12

location estimators x1 x2 x3 depth

mean 0.480 0.393 0.476 1
14

coordinate-wise median 0.275 0.239 0.269 0

Tukey median 0.454 0.27 0.413 4
14

O
(
n2 log2(n)

)
), with this tendency more expressed when considering more data and data

stemming from a skewed distribution. Therefore, the new Algorithm 1.6 is recommended

for larger sample sizes n, while the bisection approach is to be preferred for smaller n.

X1

0.0 0.5 1.0 1.5

●

●●

●

●

●

●
●

●

●

●
●

●

●

0.
0

0.
5

1.
0

1.
5

●

● ●

●

●

●

●
●

●

●

●
●

●

●

0.
0

0.
5

1.
0

1.
5

●

●

●

●

●

●

●

●

●

●
●

●

●

●

X2

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.5 1.0 1.5

●●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

X3

Figure 1.7: Data (red spheres), with mean (blue cube), coordinate-wise median (green

tetrahedron) and Tukey median (gray rhombus); see Table 1.8.

48

Chapter 1 Approximation of projection depths

The positions of the sample mean, the coordinate-wise median and the Tukey median

can be quite different. To illustrate this, let us start with a three-dimensional artificial data

set in Table 1.8, which is inspired by Chapter 7.1a of Rousseeuw and Leroy (1987). The

data is constructed in the following way: The first three points correspond to the three

canonical unit vectors. The fourth point has coordinates (1.5, 1.5, 1.5)⊤; it represents an

outlier. Further ten points have coordinates Z + U · (1√
3
, 1√

3
, 1√

3
)⊤, where Z is a random

vector having a Dirichlet distribution with parameters (1, 1, 1) and U is a random variable

uniformly distributed on [−1
4
, 1
4
]. The sample mean, the coordinate-wise median and the

Tukey median are given in Table 1.8, together with their depths in the data cloud. Table 1.8

indicates that the coordinate-wise median lies outside the convex hull of the data set, while

the sample mean – being sensitive to the outlier – lies outside the convex hull of the main data

(= data without the outlier at (1.5, 1.5, 1.5)⊤), which is visualized in Figure 1.7. Moreover,

the mean and the coordinate-wise median are found on different sides. On the other hand,

the Tukey median lies in the middle of the convex hull of the main data.

1.3.6 Further developments

Computational reasoning employed in this section appears to be useful for another task,

namely nonparametric efficiency analysis. Application of the convex hull algorithm allows

to reduce the constraints of the linear program (when this appears to be necessary), which

dramatically reduces the computational cost of the procedure. These advances are published

as Badunenko and M. (2016) and are mentioned here in Section A.3.

For completeness, it is important to mention the following developments of the few

pas months. Recent collaboration with Vı́t Fojt́ık, Petra Laketa, and Stanislav Nagy from

the Charles University in Prague has allowed to construct data samples for which Step 2

of Algorithm 1.5 is insufficient to find all relevant hyperplanes. This can happen because

Steps 3–5 of Algorithm 1.5 cover one so-called “orbit” of depth κ, and thus leave a possibility

for existence of another “orbit” not connected to the current one by the search of neighboring

ridges in Step 4. In this case, only upper bound (envelop) on the halfspace depth region

is found. For example, it can happen that d + 1 observational hyperplanes, which form a

simplex, are missed by Algorithm 1.5. Although such configurations of data points should

be artificially constructed and (as first investigations show) are rather unstable to even

small perturbations, and never appeared neither during the validation (see Section 4.1 of

Liu et al., 2019) nor during the simulation study (see Section 1.3.4), they are still possible.

The improvement can be expected when altering Step 2 of Algorithm 1.5 following the—

computationally more expensive—idea of the third bullet point at the end of Section 1.3.2.

The reader is referred to Fojt́ık et al. (2022) for more details.

1.4 Approximation of projection depths

Exact procedures have been implemented in the R-package ddalpha to calculate the following

nine data depths: Mahalanobis, L2, spatial, zonoid, lens, onion, halfspace, simplicial volume,

49

Chapter 1 Approximation of projection depths

d: 2 d: 3 d: 4 d: 5

50 100 250 500 1000 50 100 250 500 1000 50 100 250 500 1000 50 100 250 500 1000

1 ms

0.1 s

1 s

10 s

1 m

10 m

1 h

10 h

Number of points

T
im

e,
 s

ec
.

— zonoid, - - halfspace, — Mahalanobis, - - spatial, — L2,

— simplicial, - - simplicial volume, — onion, - - lens

Figure 1.8: Calculation time of various depth functions on double logarithmic scale (sample

size n and time t).

and simplicial depth. Note that for most of these depths the näıve direct calculation is not

feasible, and more sophisticated procedures of lower computational complexity have to be

used.

Figure 1.8 exhibits average computation times (when computing depth of a single point

w.r.t. a sample of size n) for each of the depths, depending on sample size n and dimension

d, where n runs up to 1000 and d = 2, 3, 4, 5. Given n and d, 30 samples have been drawn,

depth has been calculated for 25 points of each sample, and an average has been taken over

these 25 points and 30 samples.

All calculations have been performed by means of the R-package ddalpha (Pokotylo et al.,

2019) on a machine having processor Intel(R) Core(TM) i7-4980HQ (2.8 GHz) with 16 GB

of physical memory and macOS Sierra (Version 10.13.4) operating system.

As is seen from Figure 1.8, while the depth notions differ greatly in their computation

times, some of them are sharply increasing with n and d. (In each panel, times and sample

sizes are measured on a double logarithmic scale.) Table 1.9 lists the complexities of the

various algorithms, including references to the literature.

One observes a trade-off between statistical properties and computational complexity.

For example most attractive depths, i.e. those being robust and non-parametrically (not

involving estimation of the covariance matrix to achieve this property) affine invariant,

50

Chapter 1 Approximation of projection depths

Table 1.9: Time complexities for exact and approximate computation of several depths

(of a given point in Rd regarding a sample). For approximate computation, k stands for the

number of random directions for halfspace, projection and zonoid depth, resp. for the number

of considered simplices for simplicial and simplicial volume depth, resp. for the number of

considered pairs of points for β-skeleton depth.

Depth notion Exact Approximate

Mahalanobis O(n) —

Lp O(n) —

halfspace O
(
nd−1 log(n)

)
, O(nd) O(kn)

Rousseeuw (1998) Dyckerhoff (2004)

Dyckerhoff and M. (2016) M. et al. (2015)

projection O(nd), Liu and Zuo (2014b) O(kn), Dyckerhoff (2004)

simplicial O(nd+1) O(k) number-approx.

O(nd+1) portion-approx.

simplicial volume O(nd) O(k) number-approx.

O(nd) portion-approx.

zonoid Dyckerhoff et al. (1996) O(kn), Dyckerhoff (2004)

spatial O(n) —

β-skeleton O(n2) O(k)

onion O(n⌊d/2⌋/dd), Barber et al. (1996) —

like halfspace or projection depth, have their computational time complexity exponentially

increasing with the dimension d.

Clearly, if an exact procedure is available and time and memory space allow, the depth

of a point should be calculated by the exact procedure. This is the obvious “gold standard”.

However, it may be non-feasible in practice if d and/or n are too large or if the depth has

to be very often evaluated

• as in classification, bootstrap or permutation procedures, or

• when a whole central region is calculated.

1.4.1 The class of projection depths

Dyckerhoff (2004) described a class of depths which satisfy the weak projection property.

Out of the existing variety, these can be calculated in a universal way by minimizing depth

in univariate projections. For this, in each direction, only the univariate depth of n ob-

servations should be computed, which often has computational time complexity only O(n).

This class of depths constitutes the focus of the current section. Among the depths that

satisfy the projection property, Mahalanobis (Mahalanobis, 1936), zonoid (Koshevoy and

51

Chapter 1 Approximation of projection depths

Mosler, 1997), halfspace (Tukey, 1975), projection (Zuo and Serfling, 2000) and asymmetric

projection (Dyckerhoff, 2004) depths are considered here.

Several authors have already applied approximation techniques to the (sample) depth

computation, notably for the halfspace depth and projection depth. Purely random methods

seem most intuitive and have been used, e.g., by Cuesta-Albertos and Nieto-Reyes (2008) for

the halfspace depth and Liu and Zuo (2014b) for the projection depth. More sophisticated

procedures were proposed as well. Rousseeuw (1998) minimize univariate halfspace depth

after projecting data onto directions based on a random combination of sample points. Chen

et al. (2013) first project data on subspaces orthogonal to linear spans of 0 < k ≤ d points

from the sample, and then employ a brute-force approximation of the halfspace depth in

these projections. M. et al. (2015) accelerate the problem of approximation of the halfspace

depth of many points (and of the sample itself) w.r.t. a sample by preliminary sorting the

data in all projections. Dutta and Ghosh (2012) use the Nelder-Mead algorithm (Nelder

and Mead, 1965, run in Rd) for approximation of the projection depth.

The projection property is defined as follows:

Definition 1.8 (Dyckerhoff, 2004) A depth D satisfies the (weak) projection property, if

for each point y ∈ Rd and each sample X it holds:

D(y|X) = inf{D(⟨u,y⟩ | ⟨u,X⟩)|u ∈ Sd−1} ,

where ⟨u,X⟩ stands for observation-wise inner product.

If a depth satisfies the projection property, its computation is equivalent to minimization

of the (possibly non-differentiable) objective function

ϕz,X : Sd−1 → R+
0 , u 7→ D(⟨u, z⟩ | ⟨u,X⟩) .

Therefore, classical optimization methods can be used to compute the depth. Since this is a

minimization problem, clearly, the obtained depth value will be the upper bound on the true

(sample) depth. Particular attention should be paid here to the domain of the function ϕz,X

which is the the unit sphere Sd−1. Of course, the function ϕz,X could be easily extended

to a function ϕ̃z,X defined on Rd \ {0} by setting ϕ̃z,X(u) = D(⟨u, z⟩ | ⟨u,X⟩). However,

because of the affine invariance of the depth, ϕ̃z,X is constant on lines through the origin.

Therefore, it should be advantageous to use optimization methods which are adapted to the

particular domain Sd−1. This claim will be confirmed in the subsequent simulation study.

Univariate depth on the geodesic sphere

Let us take a closer look at the class of the depths described above and ask the question:

how possible a good approximation of these depths can be?

To get some insights in the behavior of the objective function ϕz,X , e.g., whether there are

local minima or not, several plots of ϕz,X are presented in the case d = 3 for different depths

and data sets in Figure 1.9. The figures suggest that (at least for common distributions and

in the case d = 3) local minima seem not to be a major problem.

52

Chapter 1 Approximation of projection depths

Zonoid depth Halfspace depth Projection depth

Trivariate normal distribution

Trivariate Cauchy distribution

Trivariate uniform distribution

Figure 1.9: The map ϕz,X for trivariate data. A total of n = 1000 data points were

simulated from a trivariate distribution. The univariate depth (of a single randomly chosen

point z) in direction u is shown on a color scale from violet (low univariate depth) to dark red

(high univariate depth). The sphere S2 is mapped on the plane using the so-called Mollweide

projection, see Snyder (1987).

A further important observation is the following. All of the above depths are bounded

above by unity. Therefore, the range of ϕz,X depends on the depth of z, i.e., ifD(z |X) = c0,

then the range of ϕz,X is a subset of [c0, 1]. The larger the depth of z, the smaller is the

variation of ϕz,X . In the extreme case that c0 = 1 the function ϕz,X is constant, ϕz,X(u) = 1

for all u ∈ Sd−1. Therefore, evaluating the univariate depth for a single direction only already

gives the exact multivariate depth. In that sense, it should be easier to compute the depth

of a point with high depth.

1.4.2 Simulation study

The projection property provides a powerful tool for depth approximation. To obtain an

efficient approximation method, 8 different (those existing in the literature adapted to the

geometry of the unit sphere and new ones) algorithms are compared in a comprehensive

simulation study comprising 9 distributions in 4 different dimensions, for 5 depth notions,

using 4 quality measures (2 ordinal and 2 cardinal ones). To assure the honest comparison,

the algorithms are first fine-tuned over predefined parameter ranges, using 6 distributions

and 2 (ordinal) measures; see Section 4.2 of Dyckerhoff et al. (2021) for details. The 3 resting

53

Chapter 1 Approximation of projection depths

distributions and 2 (cardinal) quality measures (that were not used during fine-tuning) are

included in the final comparative study only.

Distributional setting

The simulation study is based on the depth computation of a point z w.r.t. a sample X of

n i.i.d. d-variate points. The point z is taken to be the average of 10 arbitrary points of the

sample. This guarantees that it belongs to the convex hull of the data so that the depth

is always strictly positive, but also does not place it too deep in the data set to preserve

the random nature of the choice of z (since only 10 points out of 1000 are averaged). The

following nine distributions are used (due to the affine-invariance of the considered depths

no correlation structure is introduced):

• the standard normal distribution N (0d, Id);

• the spherically-symmetric Student t5 distribution;

• the spherically-symmetric Student t1 (Cauchy) distribution;

• the uniform distribution on [0, 1]d;

• the skewed normal distribution generated in the following way (Azzalini, 2013): let

U ∼ U([0, 1]), Z ∼ N (0d, Id), U and Z stochastically independent, and δ ∈ Rd be a

skewness parameter. Then the skewed normal random vector equals

X
d
=

 Z if U ≤ Φ(δ⊤Z) ,

−Z if U > Φ(δ⊤Z) ,

where Φ(·) is the c.d.f. of the standard normal distribution, δ = (5, 0, ..., 0)⊤, and
d
=

denotes equality in distribution;

• a product of d independent exponential distributions (with parameter λ = 1);

• the hemispherical shell distribution (abbreviated as “Shell”) generated as follows: let

(S1, ..., Sd−1, Sd)
⊤ d
= S ∼ U(Sd−1), U ∼ U([0.9, 1]), S and U stochastically indepen-

dent. The random vector stemming from the shell distribution equals

X
d
= U · (S1, ..., Sd−1, |Sd|)⊤ ;

• the bimodal normal mixture generated as follows: let B ∼ B(0.5), Z ∼ N (0d, Id), B

and Z stochastically independent. To model the bimodal normal mixture the following

random vector is used:

X
d
=

Z + 2e1 if B = 1 ,

Z − 2e1 if B = 0 ,

where ej is the j-th canonical unit vector;

54

Chapter 1 Approximation of projection depths

• the multimodal normal mixture generated as follows: let I ∼ U({1, ..., d}), Z ∼
N (0d, Id), I and Z stochastically independent, then the considered random vector

equals

X
d
= Z + 3eI .

Since all the considered algorithms report an upper bound on the actual depth, for

the same z and a data set one can compare them according to the obtained depth values,

because lower obtained depth is always closer to the exact value. Four quality measures are

reported:

• the average rank (AveRank) of the obtained depth approximation (among all con-

sidered algorithms) over 1000 runs (the lower the better, with 1 being the best);

• the percentage when the considered algorithm achieved the smallest depth value

(among all considered algorithms) (denoted shortly as AveRank) over 1000 runs

(the higher the better, with 100% being the best);

• mean absolute error (MAE) is calculated as the difference between the obtained depth

approximation and the exact depth, averaged over all Nsim = 1000 runs;

• mean relative error (MRE) is calculated as MAE divided by the exact depth and

averaged again over all Nsim = 1000 runs.

Note that the computation of the exact depth values is (in reasonable time) possible

only for the Mahalanobis depth and the zonoid depth. Therefore, when computing MAE

and MRE for the other depths, the exact depth value is replaced by the minimum depth

achieved by any of the algorithms to be compared.

The eight algorithms that have been employed are:

• Random search (RS);

• Grid search (GS);

• Refined random search (RRS);

• Refined grid search (RGS);

• Random simplex (RaSi);

• Simulated annealing (SA);

• Coordinate descent (CD);

• Nelder-Mead (NM);

see Section 3 of Dyckerhoff et al. (2021) for a detailed description of the algorithms.

In the simulation study, five mentioned above depth notions are considered: Maha-

lanobis, zonoid, halfspace, projection, and asymmetric projection depths. An explicit for-

mula makes it unnecessary to approximate the Mahalanobis depth, which is in addition

55

Chapter 1 Approximation of projection depths

a quadratic (and thus everywhere smooth) function. Since rather good results for opti-

mization techniques are expected, it is included for a qualitative comparison with random

algorithms. Since the zonoid depth can be computed efficiently even in higher dimensions

using the algorithm of Dyckerhoff et al. (1996), it is also included as a benchmark.

1.4.3 Presentation of results

After having fixed the parameters of the methods during fine-tuning, N ≈ 100, 1000, and

10000 projections are considered. Refined grid search (RGS) could not be used for N ≈ 100

projections since for 10 refinements (the number found optimal during the fine-tuning) only

ten projections could be used for the grid in each refinement step which is too small even

for d = 5. Here, only results for N ≈ 1000 directions are analyzed, since those for the

other numbers of directions are similar. The complete results in graphical and tabular form

can be found in Supplementary Materials, Sections 2.1 and 2.2 of Dyckerhoff et al. (2021),

respectively.

MD ZD HD PD APD

5
10

15
20

N
or

m
al

t−
D

is
t

C
au

ch
y

U
ni

fo
rm

S
ke

w
N

or
m

al
E

xp
on

en
tia

l
S

he
ll

B
im

od
al

M
ul

tim
od

al

N
or

m
al

t−
D

is
t

C
au

ch
y

U
ni

fo
rm

S
ke

w
N

or
m

al
E

xp
on

en
tia

l
S

he
ll

B
im

od
al

M
ul

tim
od

al

N
or

m
al

t−
D

is
t

C
au

ch
y

U
ni

fo
rm

S
ke

w
N

or
m

al
E

xp
on

en
tia

l
S

he
ll

B
im

od
al

M
ul

tim
od

al

N
or

m
al

t−
D

is
t

C
au

ch
y

U
ni

fo
rm

S
ke

w
N

or
m

al
E

xp
on

en
tia

l
S

he
ll

B
im

od
al

M
ul

tim
od

al

N
or

m
al

t−
D

is
t

C
au

ch
y

U
ni

fo
rm

S
ke

w
N

or
m

al
E

xp
on

en
tia

l
S

he
ll

B
im

od
al

M
ul

tim
od

al

2

4

6

8

2

4

6

8

2

4

6

8

2

4

6

8

Distribution

A
ve

ra
ge

 r
an

k

Method

RS

GS

RRS

RGS

RaSi

SA

CD

NM

Figure 1.10: AveRank statistics for the eight considered approximation methods when

using N ≈ 1000 projections.

Figure 1.10 exhibits AveRank for each of the eight considered algorithms for different

depth notions, distributions, and dimensions; see Supplementary Materials of Dyckerhoff

et al. (2021) for further statistics and values of N . Several observations can be made:

• There is a group of methods which have poor performance that further degrades

with increasing dimension: random search (RS), grid search (GS), refined grid search

(RGS), and random simplices (RaSi). Moreover, GS and RGS are not considered in

56

Chapter 1 Approximation of projection depths

dimension d > 10, because 1000 directions are not sufficient to generate even a very

sparse grid in such a high dimension.

• Refined random search (RRS), coordinate descent (CD), and Nelder-Mead (NM) show

rather good performance.

• NM shows superior behavior in this latter group, since it possesses almost always

lower AveRank compared to the two other methods for the halfspace, projection,

and asymmetric projection depths. Thus it can be seen as a general winner. However,

it is closely followed by CD.

Comparison of AveRank with PercBest, MAE and MRE statistics reveals similarity

of the results with very close overall ranking of the methods. Table 1.10 illustrates concor-

dance of the four statistics for the halfspace depth (in most of the cases). Since only RRS,

CD and NM appear as best-performing methods w.r.t. the four considered performance

statistics, only these three methods are included in the table. Tables which show the best

performing methods for the other four dephts are contained in Section 2.3 of Supplementary

Materials of Dyckerhoff et al. (2021).

To get more insights into the dynamic of the optimization process, regard the flow of

the minimal reached depth with the number of random directions. A typical behavior of

the optimization, on the example of the normal distribution in dimension 20, is indicated in

Figure 1.11. Similar figures for all nine considered distributions are gathered in Section 2.4

of Supplementary Materials of Dyckerhoff et al. (2021).

MD ZD HD PD APD

1 3 10 30 100 300 1000 1 3 10 30 100 300 1000 1 3 10 30 100 300 1000 1 3 10 30 100 300 1000 1 3 10 30 100 300 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of iterations

R
ea

ch
ed

 d
ep

th
 −

 m
in

 d
ep

th

Algorithm

RS

RaSi

RRS

SA

CD

NM

Approximation progress for Cauchy distribution (n=1000 and d=20)

Figure 1.11: Average (over 1000 runs) difference between the reached depth and the mini-

mally achieved depth (by all methods for the current triplet distribution—depth—dimension)

during the optimization process (normal distribution, dimension d = 20). (The lines of RS

and RaSi almost coincide in the graphs.)

The most important observation is a high performance of the optimization techniques

(SA, RRS, CD, and NM) compared to the random methods (RS, RaSi). The two latter ones

seem to (approximately) follow the bounds mentioned below in Section 1.5 (see Nagy et al.

57

Chapter 1 Approximation of projection depths

Table 1.10: Best performing methods in sense of AveRank (top-left square), PercBest
(top-right square), MAE (bottom-left square), and MRE (bottom-right square) for the half-
space depth (HD).

Number of projections

HD 100 1000 10000

d Distribution R
R
S

C
D

N
M

R
R
S

C
D

N
M

R
R
S

C
D

N
M

5 Normal
t-Dist
Cauchy
Uniform
SkewNormal
Exponential
Shell
Bimodal
Multimodal

10 Normal
t-Dist
Cauchy
Uniform
SkewNormal
Exponential
Shell
Bimodal
Multimodal

15 Normal
t-Dist
Cauchy
Uniform
SkewNormal
Exponential
Shell
Bimodal
Multimodal

20 Normal
t-Dist
Cauchy
Uniform
SkewNormal
Exponential
Shell
Bimodal
Multimodal

(2020) for the complete study) and are outperformed already before reaching 100 random

directions. Further inspection shows that the improvement of simulated annealing (SA) is

very weak, and minor improvement can be expected for even higher number of directions.

58

Chapter 1 Approximation of projection depths

A possible explanation would be that the parameters of SA should be tuned separately for

each setting.

Comparison with exact depth

Apart from knowing which of the discussed approximation methods gives the best approxi-

mation, it is also of interest to have information on the approximation error. To calculate

the approximation error, the exact values of the depths have to be known. From the consid-

ered depths only the Mahalanobis depth and the zonoid depth can be exactly computed in

high dimensions in reasonable time. For the halfspace depth, a family of exact algorithms

has been developed in Section 1.2 (for the complete study see Dyckerhoff and M., 2016) to

compute the depth in arbitrary dimension which possesses best complexity of O(nd−1 log n).

For the considered sample size of n = 1000 the exact computation of the halfspace depth is

(in reasonable time) only possible when d ≤ 5. Although there is an exact algorithm for the

projection depth (Liu and Zuo, 2014b), the considered sample size of n = 1000 in dimension

d = 5 is already too large to have the value of the depth computed in reasonable time. For

the asymmetric projection depth no exact algorithm exists. Therefore, a closer look at two

situations is taken. First, let us examine the approximation of the halfspace depth since

it probably is the most prominent depth. Because of the high computational cost approx-

imation errors for the halfspace depth were computed only in dimension d = 5. Second,

to get some intuition on approximation errors in high dimensions, the mean absolute error

(MAE) and the mean relative error (MRE) are analyzed, which were exactly computed for

the zonoid (and also the Mahalanobis) depth in all dimension d = 5, 10, 15, 20. The zonoid

depth was chosen since apart from the trivial case of the Mahalanobis depth, it is the only

depth considered in this study for which exact computation is possible when d = 20. The

time for computing the zonoid depth of a single point w.r.t. a sample of size n = 1000 in

dimension d = 20 is still under one second. For both setups (halfspace depth, d = 5, and

zonoid depth, d ≤ 20) the same simulated data sets were taken that were already used in

the simulation comparison. For the halfspace depth, only the first fifteen simulated data

sets were used to compute the approximation errors. The approximated depth values as well

as the exact depth values for the fifteen data sets simulated from the normal distribution

are shown for the halfspace depth in Table 1.11. The last two lines of the table show the

mean absolute error (MAE) and the mean relative error (MRE) of the considered approxi-

mation methods. The respective tables for all nine distributions and N ≈ 100, 1000, 10000

projections are given in Section 3 of Supplementary Materials of Dyckerhoff et al. (2021).

Because of its good computability, for the zonoid depth all 1000 simulated data sets were

used for each combination of dimension and distribution. In Table 1.12 the mean relative

errors (MRE) are shown for the case where 1000 projections were used. The respective

tables for both the mean relative errors (MRE) and the mean absolute errors (MAE) for

all nine distributions and N ≈ 100, 1000, 10000 projections are shown in Section 2.2.2 of

Supplementary Materials of Dyckerhoff et al. (2021).

59

Chapter 1 Approximation of projection depths

Table 1.11: Exact and approximate values of the halfspace depth for 15 points together
with the corresponding MAE and MRE: normal distribution, n = 1000, d = 5, N ≈ 1000
projections.

RS GS RRS RGS RaSi SA CD NM Exact

1 0.279 0.286 0.267 0.273 0.279 0.269 0.268 0.269 0.265
2 0.143 0.160 0.132 0.139 0.148 0.136 0.132 0.130 0.128
3 0.244 0.259 0.238 0.245 0.247 0.241 0.238 0.238 0.236
4 0.329 0.340 0.310 0.336 0.324 0.316 0.311 0.311 0.309
5 0.220 0.235 0.200 0.208 0.225 0.204 0.199 0.200 0.197
6 0.236 0.259 0.214 0.229 0.227 0.219 0.216 0.217 0.213
7 0.238 0.242 0.230 0.235 0.244 0.233 0.227 0.229 0.226
8 0.228 0.229 0.218 0.225 0.229 0.223 0.219 0.218 0.215
9 0.171 0.169 0.152 0.153 0.164 0.154 0.151 0.152 0.149
10 0.241 0.248 0.224 0.230 0.228 0.225 0.223 0.223 0.221
11 0.187 0.205 0.170 0.182 0.185 0.169 0.169 0.169 0.166
12 0.284 0.280 0.269 0.273 0.288 0.274 0.272 0.271 0.268
13 0.221 0.228 0.201 0.218 0.212 0.206 0.206 0.202 0.200
14 0.171 0.182 0.161 0.161 0.176 0.160 0.158 0.157 0.154
15 0.168 0.188 0.157 0.158 0.168 0.161 0.161 0.157 0.157

MAE 0.017 0.027 0.003 0.011 0.016 0.006 0.003 0.003 0.000
MRE 0.105 0.169 0.017 0.063 0.099 0.035 0.019 0.016 0.000

For the halfspace depth and normally distributed data in dimension d = 5, when N ≈
1000 projections are used, the best methods are NM and RRS, followed by CD, whereas the

worst methods are RS, GS and RaSi. Even though there is one case (data set 15) where RRS

and NM found the exact halfspace depth, MAE suggests that on average the best halfspace

found by RRS or NM contains three points more than the optimal halfspace. Furthermore,

relative depth approximation error remains (again on an average) below 2% of the exact

depth value.

For the zonoid depth, when the approximation was done using N ≈ 1000 projections,

RRS gets the first place (when d > 5) followed by CD, NM and SA. An important point

to note is that the very basic methods like RS and RaSi are unusable when dimension is

high with relative error rates beyond 50% (d = 15) or even beyond 100% (d = 20). It

is noteworthy that the same holds for RRS when the number of projections is low (see

Supplementary Materials of Dyckerhoff et al., 2021), which suggests that RRS needs a

substantial number of projections to work well. However, the more elaborate methods like

CD, NM and SA perform well regardless of the number of projections. With these methods,

relative errors can be kept reasonably low, even below 1.5% (except the Cauchy distribution)

of the exact value.

1.4.4 Comments on quality of approximation

It is important to provide additional insights in the quality of approximation of the dis-

cussed above methods. Mahalonobis and zonoid depths have been included for comparison

60

Chapter 1 Approximation of projection depths

Table 1.12: Mean relative error (MRE) for the approximation of the zonoid depth, n = 1000
data points, N ≈ 1000 projections.

Approximation algorithm

d Distribution RS GS RRS RGS RaSi SA CD NM

5 Normal 0.018782 0.040681 0.000002 0.002805 0.019107 0.000535 0.000004 0.000001
t-Dist 0.021093 0.047018 0.000002 0.003281 0.021418 0.000597 0.000008 0.000001
Cauchy 0.043137 0.080894 0.000465 0.016957 0.045022 0.010639 0.017534 0.000056
Uniform 0.018799 0.041453 0.000002 0.003367 0.018021 0.000537 0.000004 0.000001
SkewNormal 0.021533 0.046762 0.000002 0.005977 0.029959 0.000643 0.000005 0.000001
Exponential 0.021569 0.047682 0.000002 0.003068 0.020915 0.000653 0.000007 0.000001
Shell 0.022559 0.052451 0.000002 0.003401 0.032908 0.000665 0.000005 0.000001
Bimodal 0.023904 0.052215 0.000002 0.003452 0.037974 0.000727 0.000005 0.000001
Multimodal 0.022954 0.048468 0.000002 0.006329 0.033007 0.000691 0.000006 0.000001

10 Normal 0.217197 1.118694 0.000025 0.942766 0.219397 0.007122 0.000057 0.000094
t-Dist 0.222892 1.289776 0.000036 1.094230 0.228138 0.008009 0.000094 0.000168
Cauchy 0.303627 2.212219 0.006813 1.661869 0.307660 0.064152 0.052861 0.034096
Uniform 0.215653 1.090465 0.000023 0.937243 0.219798 0.006999 0.000054 0.000098
SkewNormal 0.218591 1.081675 0.000028 0.923719 0.237190 0.008551 0.000062 0.000228
Exponential 0.229525 1.201967 0.000037 1.001438 0.232001 0.009666 0.000090 0.000489
Shell 0.222987 1.076789 0.000028 0.916450 0.244420 0.007856 0.000122 0.000214
Bimodal 0.234134 1.111908 0.000030 0.940334 0.301895 0.008984 0.000063 0.002062
Multimodal 0.219745 1.078995 0.000027 0.906989 0.225948 0.009091 0.000072 0.000280

15 Normal 0.585529 — 0.000182 — 0.609475 0.022943 0.000392 0.001717
t-Dist 0.575809 — 0.000277 — 0.596498 0.027329 0.000737 0.002582
Cauchy 0.676690 — 0.020609 — 0.692426 0.166416 0.084469 0.097217
Uniform 0.579684 — 0.000160 — 0.588454 0.022043 0.000365 0.001557
SkewNormal 0.581892 — 0.000200 — 0.619134 0.027594 0.000437 0.003568
Exponential 0.607952 — 0.000343 — 0.622455 0.033453 0.000909 0.006960
Shell 0.581782 — 0.000186 — 0.600450 0.025505 0.000951 0.008322
Bimodal 0.600136 — 0.000206 — 0.719552 0.030843 0.000546 0.014352
Multimodal 0.576272 — 0.000180 — 0.594009 0.026946 0.000436 0.002727

20 Normal 1.143799 — 0.001079 — 1.177983 0.052060 0.002086 0.006032
t-Dist 1.024786 — 0.001421 — 1.052585 0.060773 0.003030 0.007248
Cauchy 1.110807 — 0.049412 — 1.125693 0.369281 0.158725 0.099501
Uniform 1.131364 — 0.001026 — 1.148654 0.050696 0.002042 0.005657
SkewNormal 1.141836 — 0.001293 — 1.178756 0.070894 0.002138 0.008604
Exponential 1.151532 — 0.002333 — 1.180201 0.126961 0.004631 0.014133
Shell 1.195071 — 0.001521 — 1.233843 0.076760 0.004516 0.006101
Bimodal 1.189500 — 0.001256 — 1.376561 0.119274 0.003015 0.014454
Multimodal 1.117096 — 0.001127 — 1.157293 0.066462 0.002162 0.006479

purposes and for wider representation of the class of depths satisfying the projection prop-

erty. Based on experimental data, for these two depths very good approximation quality is

expected for optimization techniques (RRS, CD, NM, SA). This can be explained by “well-

behaving” function to be minimized ϕz,X(u) while Mahalanobis and zonoid depth are not

robust. For halfspace, projection, and asymmetric projection depths, ϕz,X(u) is presumably

a non-convex functional in most of the cases and can possess multiple local minima. While

worse optimization results are expected for these three depths, exact value is achievable the-

oretically for the halfspace depth due to step-wise shape of ϕz,X(u); i.e. even purely random

61

Chapter 1 First theoretical guarantees on depth approximation

algorithms (like RS or RaSi) can “guess” exact value with positive probability thanks to

plateaus in ϕz,X(u).

Apart heuristic procedures, to ensure the significance of the results of developed al-

gorithms and gain trust of practitioners applying them, (statistical) guarantees on their

numerical convergence are desired. Following Section 1.5 delivers very first answer on this

question by providing uniform convergence rates for approximation of the halfspace depth

D(x|X) w.r.t. a random vector for the RS method, which is mainly possible due to the

independence of directions us. Obtaining the same result for a data sample, i.e. D(x|X),

does not appear to be possible uniformly, see Section 1.5.3 for an example. The situation

is even more involved when an optimization technique is in place and each subsequent di-

rection depends on the evaluation of the previous one(s). Finally, presence of multiple local

mimina further complicates the task of derivation of guarantees on approximation.

Generally speaking, depth statistics with “good” properties are computationally expen-

sive. There seems to to be a conflict between maintaining such attractive statistical proper-

ties as affine invariance (respectively affine equivariance for depth regions) and robustness

on one side and computational tractability (i.e. non-exponential complexity in (n, d)) on the

other side; see Johnson and Preparata (1978) and Bernholt (2006) for theoretical results on

this topic. Some insights on choice of practically suitable depth notion—also from computa-

tional point of view—can be found in Mosler and M. (2022). In order to smooth this search

for compromise, two ways can be considered, both (most probably) requiring substantial

theoretical developments and additional statistical assumptions. One such possibility is to

connect approximation error with computational time and/or complexity. Another possi-

bility is to clarify a trade-off between statistical properties the depth function satisfies and

its computational complexity. More on these directions can be found in the description of

ideas for future research in Section 5.1.

1.5 First theoretical guarantees on depth approxima-

tion

Since all the 8 algorithms introduced in the previous Section 1.4 are heuristics, the questions

of their reliability immediately arises. In this section, let us try to answer it by uniform

bounds on the approximation error. In view of the complexity of the algorithms, with most

efficient being optimization techniques run on a non-convex functional (over the unit sphere),

the answer demands further effort and is planned for future research; see Section 5.1. Here,

on an example of one depth (namely halfspace depth) and one algorithm (namely random

search, while being the simplest one because purely random), uniform approximation bounds

are derived. As a further simplification, these bounds are derived for computation of depth

w.r.t. the random vector X (and not data set as it is obviously desirable); impossibility of

such bounds (under most general assumptions) is discussed in Example 1 below. Denote

this quantity DH,N(·|X).

62

Chapter 1 First theoretical guarantees on depth approximation

First, in Section 1.5.1, the task is formalized and the notation is set up. Further, in

Section 1.5.2, the uniform approximation bound on the halfspace depth is derived, in two

steps. In the first step, the main result is derived, under the assumption of uniformly

Lipschitz continuous functions φx. In the second step this result is extended to the general

class of equicontinuous functions (1.14). Finally, in Section 1.5.3, the negative answer on

uniform approximation for a data set—under most general assumptions—is given.

1.5.1 Approximation of the halfspace depth

Let N = 1, 2, . . . , and consider U1, . . . , UN a random sample from the uniform distribution

on Sd−1. One is interested in the quality of the approximation of the halfspace depth (1.3)

by its randomized counterpart (which is closely related to Definition 1.8):

DH,N(x|X) = min
i=1,...,N

P [⟨Ui, X⟩ ≤ ⟨Ui,x⟩] . (1.12)

In what follows, DH,N(x|X) will be shortened to DH,N(x). It is evident that

DH,N(x) ≥ DH,N+1(x) ≥ DH(x) for all x ∈ Rd and N = 1, 2 . . . ,

and that for d = 1 the random depth DH,N with high probability reduces to the true

depth DH

P
[
sup
x∈R
|DH,N(x)−DH(x)| = 0

]
= 1− 2

(
1

2

)N

for all N = 1, 2, . . .

In the interesting case d > 1, for any x ∈ Rd the random DH,N(x) approximates DH(x).

In (Dyckerhoff, 2004, Proposition 11) it was shown that for any x ∈ Rd and P ∈ P
(
Rd

)
the convergence DH,N(x)

a.s.−−−→
N→∞

DH(x) holds true. The goal of the current section is to

establish a uniform extension of that convergence result, and to derive the corresponding

rates of convergence; for an array of applications of these results to the computation of the

depth see Section 2.3 of M. et al. (2015).

Define the halfspace function of X ∼ P , given for x ∈ Rd by

φx : Sd−1 → [0, 1] : u 7→ P [⟨u, X⟩ ≤ ⟨u,x⟩] . (1.13)

Both DH(x) and its approximation DH,N(x) can be expressed in terms of φx as

DH(x) = inf
u∈Sd−1

φx(u), and DH,N(x) = min
i=1,...,N

φx(Ui).

If the minimum value of φx is attained in a single direction in Sd−1, denote this direction

by ũ(x) ∈ Sd−1, that is DH(x) = φx (ũ(x)).

When deriving the rates of convergence of the depth approximations that are uniform on

a set C ⊂ Rd, it is necessary to assume a certain form of the equicontinuity of the halfspace

functions

{φx : x ∈ C} . (1.14)

63

Chapter 1 First theoretical guarantees on depth approximation

1.5.2 Uniform convergence rates for approximation of the halfs-

pace depth

One is interested in the rate of convergence of the random sequence

∆N(C) = sup
x∈C
|DH,N(x)−DH(x)|

as N → ∞. Let us start by two technical results that will be of great importance in the

sequel. For Γ (·) the gamma function, denote by

ad(φ) =
Γ (d/2)

Γ ((d− 1)/2)
√
π

∫ φ

0

(sin(θ))d−2 d θ, for φ ∈ [0, π]

the (d − 1)-dimensional Hausdorff measure of a cap of a polar angle1.2 φ of a sphere in Rd

with unit surface (hyper-)area. In other words, ad (φ) is the ratio of the surface area of the

spherical cap of polar angle φ in Sd−1, and the surface area of the whole (d−1)-sphere Sd−1.

The function ad takes particularly simple forms for d = 2 and d = 3

a2 (φ) =
φ

π
and a3 (φ) =

(
sin

(φ
2

))2

.

For higher dimensions d, it is a trigonometric polynomial. Note that all functions ad are

strictly increasing and continuous on their domain. Denote the inverse of ad by a
−1
d : [0, 1]→

[0, π].

Lipschitz continuous halfspace functions

Assume that the set of functions (1.14) is uniformly Lipschitz continuous with constant

L ≥ 0, i.e. that

sup
x∈C
|φx(u)− φx(v)| ≤ L ∥u− v∥g for all u,v ∈ Sd−1, (1.15)

where ∥u− v∥g = arccos (⟨u,v⟩) is the great-circle distance, i.e. the geodesic distance

between u and v. A condition similar to (1.15) was used in Burr and Fabrizio (2017) when

deriving the uniform rates of convergence for the ordinary empirical halfspace depth process.

Examples of distributions that satisfy property (1.15) are listed in Section 4 of Nagy et al.

(2020).

Theorem 1.3 (Nagy et al., 2020) Let P ∈ P
(
Rd

)
be such that (1.15) holds true for a set

C ⊂ Rd. Then

lim supN→∞
N ad (∆n(C)/L)− logN

log logN
≤ d a.s.

1.2The angle between the rays from the center of the hypersphere to the apex of the cap, and the edge of

the (d− 1)-dimensional disk that forms the base of the cap.

64

Chapter 1 First theoretical guarantees on depth approximation

General uniformly continuous projections

Now, assume that the class of functions (1.14) is uniformly equicontinuous, but not nec-

essarily uniformly Lipschitz. Consider the minimal modulus of continuity of this class of

functions

δ : [0, π]→ [0, 1] : t 7→ sup
x∈C

sup
u,v∈Sd−1, ∥u−v∥g≤t

|φx(u)− φx(v)| . (1.16)

Under the condition of uniform equicontinuity of (1.14), the function δ(t) is continuous,

non-negative and non-decreasing, with δ(0) = 0, see Chapter 2, § 6 of DeVore and Lorentz

(1993).

Theorem 1.4 (Nagy et al., 2020) Let P ∈ P
(
Rd

)
and C ⊂ Rd be such that the function

δ from (1.16) is continuous at 0 and strictly increasing with an inverse function δ−1. Then

lim supN→∞
N ad (δ

−1 (∆N(C)))− logN

log logN
≤ d a.s.

If (1.14) is uniformly Hölder continuous, i.e. for some K > 0 and α ∈ (0, 1] one may

choose δ(t) ≤ Ktα, the last formula gives

lim supN→∞

N ad

(
(∆N(C)/K)1/α

)
− logN

log logN
≤ d a.s.

1.5.3 Non-uniform approximation

If the measure P is not regular enough, uniform approximations of the halfspace depth may

not be attainable. Let us illustrate this claim on an example, where an atomic distribution

is constructed for which approximated depth fails to converge uniformly to its population

counterpart.

Example 1 If P does not admit a density, the halfspace functions φx may contain discon-

tinuities. In particular, this occurs when the depth is computed with respect to the empirical

measure of a random sample of observations, i.e. for the sample halfspace depth. In that

case, it can be inferred that the convergence of the approximations is not uniform, even on

bounded sets C.

Consider the example of P atomic, supported in a set {xi}mi=1 in Rd such that P ({xi}) =
pi with

∑m
i=1 pi = 1. Let 0 < p1 ≤ p2 ≤ · · · ≤ pm. Without loss of generality, assume that

the convex hull K ⊂ Rd of these points is d-dimensional, i.e. that K is not fully contained

in an affine subspace of Rd of dimension lower than d. Let x be a point on a facet of K, and

let xε = x+ εv for ε > 0, where v ∈ Sd−1 is the outward normal of the facet of K on which

x lies. Since xε /∈ K by definition, DH,N(xε) = 0 for any ε > 0. For its approximation

clearly DH,N(xε) ≥ p1 if and only if for some halfspace

H(xε, Ui) =
{
y ∈ Rd : ⟨Ui,y⟩ ≤ ⟨Ui,xε⟩

}

65

Chapter 1 First theoretical guarantees on depth approximation

whose boundary passes through xε with outer normal Ui ∈ Sd−1 intersects K. For ε small,

this will occur with high probability if the directions Ui are sampled uniformly on Sd−1 — as

ε → 0 from the right, the condition H(xε, Ui) ∩K = ∅ effectively reduces to Ui = −v, an
event of null probability. Thus, the convergence of the approximations cannot be uniform on

the line segment x+ εv with ε ∈ (0, 1), and

lim supN→∞ sup
ε∈(0,1)

(DH,N(xε)−DH(xε)) ≥ p1 > 0 a.s.

Further, for uniform convergence rates for the family of projection depths, the reader is

invited to consult Section 5 of Nagy et al. (2020).

66

Chapter 2

Application: nonparametric

imputation using data depth

Missing data is a ubiquitous problem in statistics. Non-responses to surveys, machines

that break and stop reporting, and data that have not been recorded, impede analysis and

threaten the validity of inference. A common strategy (Little and Rubin, 2014) for dealing

with missing values is single imputation, replacing missing entries with plausible values to

obtain a completed data set, which can then be analyzed.

There are two main families of parametric imputation methods: “joint” and “condi-

tional” modeling, see e.g., Josse and Reiter (2018) for a literature overview. Joint modeling

specifies a joint distribution for the data, the most popular being the normal multivariate

distribution. The parameters of the distribution, here the mean and the covariance ma-

trix, are then estimated from the incomplete data using an algorithm such as expectation

maximization (EM) (Dempster et al., 1977). The missing entries are then imputed with

the conditional mean, i.e., the conditional expectation of the missing values, given observed

values and the estimated parameters. An alternative is to impute missing values using a

principal component analysis (PCA) model which assumes data are generated as a low rank

structure corrupted by Gaussian noise. This method is closely connected to the literature on

matrix completion Josse and Husson (2012), Hastie et al. (2015), and has shown good im-

putation capacity due to the plausibility of the low rank assumption (Udell and Townsend,

2018). The conditional modeling approach (Van Buuren, 2012) consists in specifying one

model for each variable to be imputed, and considers the others variables as explanatory.

This procedure is iterated until predictions stabilize. Nonparametric imputation methods

have also been developed such as imputation by k-nearest neighbors (kNN) (see Troyanskaya

et al., 2001, and references therein) or random forest (Stekhoven and Bühlmann, 2012).

Most imputation methods are defined under the missing (completely) at random

(M(C)AR) assumption, which means that the probability of having missing values does

not depend on missing data (nor on observed data). Gaussian and PCA imputations are

sensitive to outliers and deviations from distributional assumptions, whereas nonparametric

methods such as kNN and random forest cannot extrapolate.

Chapter 2 Motivation

−1 0 1 2 3

−
2

0
2

4
6

MCAR assumption

X2[rowSums(is.na(X2.miss)) < 0.5,][,1]

X
2[

ro
w

S
um

s(
is

.n
a(

X
2.

m
is

s)
)

<
 0

.5
,]

[,2
]

−1 0 1 2 3

−
4

−
2

0
2

4
6

MAR assumption

X1[rowSums(is.na(X.miss1)) < 0.5,][,1]

X
1[

ro
w

S
um

s(
is

.n
a(

X
.m

is
s1

))
 <

 0
.5

,]
[,2

]

Figure 2.1: Bivariate normal distribution with 30% MCAR (left) and with MAR in the

second coordinate for values > 3.5 (right); imputation using maximum zonoid depth (filled

circles), conditional mean imputation using EM estimates (rhombi), and random forest im-

putation (triangles).

2.1 Motivation

In this chapter, a family of nonparametric imputation methods is proposed, based on the

notion of a statistical depth function (Tukey, 1975). Data depth is a data-driven multivariate

measure of centrality that describes data with respect to location, scale, and shape based on

a multivariate ordering. It has been applied in multivariate data analysis (Liu et al., 1999),

classification (Jörnsten, 2004, Lange et al., 2014b), multivariate risk measurement (Cascos

and Molchanov, 2007), and robust linear programming (Bazovkin and Mosler, 2015), but

has never been applied in the context of missing data. Depth based imputation provides

excellent predictive properties and has the advantages of both global and local imputation

methods. It imputes close to the data geometry, while still accounting for global features.

In addition, it allows robust imputation in both outliers and heavy-tailed distributions.

Figures 2.1 and 2.2 motivate the proposed depth-based imputation by contrasting it

to classical methods. First, 150 points are drawn from a bivariate normal distribution

with mean µ1 = (1, 1)⊤ and covariance S1 =
(
(1, 1)⊤, (1, 4)⊤

)
and 30% of the entries are

removed completely at random in both variables; points with one missing entry are indicated

by dotted lines while solid lines provide (oracle) imputation using distribution parameters.

The imputation assuming a joint Gaussian distribution using EM estimates is shown by

rhombi (Figure 2.1, left). Zonoid depth-based imputation, represented by filled circles,

shows that the sample is not necessarily normal, and that this uncertainty increases as one

moves to the fringes of the data cloud, where imputed points deviate from the conditional

mean towards the unconditional one. Second, the missing values are generated as follows:

the first coordinate is removed when the second coordinate > 3.5 (Figure 2.1, right). Here,

68

Chapter 2 Motivation

−1 0 1 2 3 4

−
4

−
2

0
2

4
6

MCAR assumption, outliers

X3[rowSums(is.na(X3.miss)) < 0.5,][,1]

X
3[

ro
w

S
um

s(
is

.n
a(

X
3.

m
is

s)
)

<
 0

.5
,]

[,2
]

−20 −10 0 10 20

−
40

−
20

0
20

40

MCAR assumption, heavy tails

X4[rowSums(is.na(X4.miss)) < 0.5,][,1]

X
4[

ro
w

S
um

s(
is

.n
a(

X
4.

m
is

s)
)

<
 0

.5
,]

[,2
]

Figure 2.2: Left: Mixture of normal (425 points, 15% MCAR) and Cauchy (75 points)

samples. Right: 1000 Cauchy distributed points with 15% MCAR. Imputation with halfspace

depth (filled circles) and conditional mean imputation using EM estimates (rhombi).

the depth-based imputation allows extrapolation when predicting missing values, while the

random forest imputation (triangles) gives, as expected, rather poor results.

In Figure 2.2 (left), 500 points are drawn, 425 from the same normal distribution as

above, with 15% of MCAR values and 75 outliers from the Cauchy distribution with the

same center and shape matrix and without missing values. In Figure 2.2 (right), 1000 points

are depicted drawn from Cauchy distribution with 15% MCAR. As expected, imputation

with conditional mean based on EM estimates (rhombi) is rather random. Depth-based

imputation with halfspace depth (filled circles) has robust imputed values that are close to

the (distribution’s) regression lines reflecting data geometry.

The rest of the chapter is structured as follows. In Section 2.2, the general depth-

based imputation method is proposed: stated formally in Section 2.2.2 with an algorithm

and theoretical guarantees for the elliptical family, it is preceded by iterative-regression

motivation in Section 2.2.1. Further, in Section 2.3, by-depth analysis is performed, for

Mahalanobis (Section 2.3.1), zonoid (Section 2.3.2), and halfspace (Section 2.3.3) depths.

After this, imputation of missing data for distributions with non-convex support is discussed

in Section 2.3.4, as well as the question of “outsiders”, i.e., points to be imputed lying beyond

the convex hull of the complete data (these can cause problems if data depth in these regions

systematically equals zero), which is tackled in Section 2.3.5. Finally, Section 2.4 gathers

information about simulation (and real-data) studies. Additionally, Section 5 of M. et al.

(2020) addresses the question of multiple imputation, for the family of elliptical distributions.

69

Chapter 2 Proposed imputation scheme

2.2 Proposed imputation scheme

2.2.1 Imputation by iterative regression

LetX be a random vector in Rd and denoteX = {x1, . . . ,xn} a sample. For a point xi ∈X,

denote miss(i) and obs(i) the sets of its coordinates containing missing and observed values,

|miss(i)| and |obs(i)| their corresponding cardinalities.

Let the rows xi be i.i.d. draws from N (µX ,ΣX). One of the simplest conditional

methods for imputing missing values consists in the following iterative regression impu-

tation: (1) initialize missing values arbitrary, using unconditional mean imputation; (2)

impute missing values in one variable by the values predicted by the regression model of

this variable with the remaining variables taken as explanatory ones; (3) iterate through

variables containing missing values until convergence. Here, at each step, each point xi
with missing values at a coordinate j is imputed with the univariate conditional mean

E[X|X{1,...,d}\{j} = xi,{1,...,d}\{j},µX = µX ,ΣX = ΣX] with the moment estimates µX =
1
n

∑n
i=1 xi and ΣX = 1

n−1

∑n
i=1(xi−µX)(xi−µX)⊤. After convergence, each point xi with

missing values in miss(i) is imputed with the multivariate conditional mean

E[X|Xobs(i) = xi,obs(i),µX = µX ,ΣX = ΣX] (2.1)

=µXmiss(i) +ΣXmiss(i),obs(i)Σ
−1
X obs(i),obs(i)

(
xi,obs(i) − µX obs(i)

)
.

The last expression is the closed-form solution to

min
zmiss(i)∈R|miss(i)| ,zobs(i)=xobs(i)

dMah(z,µX |ΣX)

with d2Mah(z,µX |ΣX) = (z − µX)⊤Σ−1
X (z − µX) being the squared Mahalanobis distance

from z to µX . Minimizing the Mahalanobis distance can be seen as maximizing a centrality

measure—the Mahalanobis depth:

max
zmiss(i)∈R|miss(i)| ,zobs(i)=xobs(i)

DMah(z|X)

where the Manahalobis depth of x ∈ Rd w.r.t. X is defined by (1.2) (see Definition 1.1 in

Section 1.1.2).

The Manahalobis depth is the simplest instance of a statistical depth function. Now, let

us generalize the iterative imputation algorithm to other depths.

2.2.2 Imputation by depth maximization

Let us start by strengthening the requirements on data depth necessary for its application

in imputation of missing values. In the rest of this chapter, the depth invariance will be

restricted to the class of affine transformations, i.e. T consists of translations and linear

mappings (see Section 1.1.1). Further, not just monotonicity on rays, but quasiconcavity of

the depth function (i.e., convexity of central regions) will be assumed.

70

Chapter 2 Proposed imputation scheme

A unified framework is suggested to impute missing values by depth maximization, which

extends iterative regression imputation. More precisely, consider the following iterative

scheme: (1) initialize missing values arbitrarily using unconditional mean imputation; (2)

impute a point x containing missing coordinates with the point y maximizing data depth

conditioned on observed values xobs:

y = argmax
zmiss∈R|miss| ,zobs=xobs

D(z|X) ; (2.2)

(3) iterate until convergence.

The solution of (2.2) can be non-unique (see Figure 1 in Supplementary Materials of M.

et al. (2020) for an illustration) and the depth value may become zero immediately beyond

the convex hull of the support of the distribution. To avoid these problems, imputation

by depth (ID) of an x which has missing values with y = ID
(
x, D(·|X)

)
is suggested as

follows:

ID
(
x, D(·|X)

)
= ave

(
argmin

u∈Rd ,uobs=xobs

{∥u− v∥ |v ∈ Dα∗
(X)}

)
, (2.3)

with α∗ = inf
α∈(0;1)

{
α |Dα(X) ∩ {z | z ∈ Rd , zobs = xobs} = ∅

}
,

where ave is the averaging operator. The imputation by iterative maximization of depth

is summarized in Algorithm 2.1. The complexity of Algorithm 2.1 is O
(
NϵnmissΩ(D)

)
. It

depends on the data geometry and on the missing values (through the number of outer-loop

iterations Nϵ necessary to achieve ϵ-convergence), the number of points containing missing

values nmiss, and the depth-specific complexities for solving (2.3) Ω(D).

Algorithm 2.1 Single imputation

1: function impute.depth.single(X)

2: Y ←X

3: µ← µ̂(obs)(X) ▷ Calculate mean, ignoring missing values

4: for i = 1 : n do

5: if miss(i) ̸= ∅ then

6: yi,miss(i) ← µmiss(i) ▷ Impute with unconditional mean

7: I ← 0

8: repeat ▷ Iterate until convergence or maximal iteration

9: I ← I + 1

10: Z ← Y

11: for i = 1 : n do

12: if miss(i) ̸= ∅ then

13: yi ← ID
(
yi, D(·|Z)

)
▷ Impute with maximum depth

14: until maxi∈{1,...,n},j∈{1,...,d} |yi,j − zi,j| < ϵ or I = Imax
15: return Y

71

Chapter 2 By-depth analysis

Theoretical properties for elliptical distributions

An elliptical distribution is defined as follows (see Fang et al. (1990), and Liu and Singh

(1993) in the data depth context).

Definition 2.1 A random vector X in Rd is elliptical if and only if there exists a vector

µX ∈ Rd and d× d symmetric and positive semi-definite invertible matrix SX = ΛΛ⊤ such

that for a random vector U uniformly distributed on the unit sphere Sd−1 and a non-negative

random variable R, it holds that X
d
= µX + RΛU . One writes then X ∼ Ed(µX ,SX , FR),

where FR is the cumulative distribution function of the generating variate R.

Theorem 2.1 shows that for an elliptical distribution, imputation of one point with a

quasiconcave uniformly consistent depth converges to the center of the conditional distri-

bution when conditioning on the observed values. Theorem 2.1 is illustrated in Figure 2 in

Supplementary Materials of M. et al. (2020).

Theorem 2.1 (One row consistency) (M. et al., 2020) Let X = (x1, . . . ,xn)
⊤ be a

data set in Rd drawn i.i.d. from X ∼ Ed(µX ,ΣX , FR) with d ≥ 2, FR absolutely continuous

with strictly decreasing density, and let x = (xobs,xmiss) ∈ Rd with |obs(x)| ≥ 1. Further,

let D(·|X) satisfy (P1)–(P5) and Dα(X)
a.s.−−−→
n→∞

Dα(X). Then for y = ID
(
x, D(·|X)

)
,

∣∣ymiss − µXmiss −ΣXmiss,obsΣ
−1
X obs,obs(xobs − µX obs)

∣∣ a.s.−−−→
n→∞

0 .

Theorem 2.2 states that if missing values constitute a portion of the sample but are in

a single variable, the imputed values converge to the center of the conditional distribution

when conditioning on the observed values.

Theorem 2.2 (One column consistency) (M. et al., 2020) Let X = (x1, . . . ,xn)
⊤ be a

data set in Rd drawn i.i.d. from X ∼ Ed(µX ,ΣX , FR) with d ≥ 2, FR absolutely continuous

with strictly decreasing density, and let miss(i) = {j} with probability p ∈ (0, 1) for a

fixed j ∈ {1, . . . , d}. Let D(·|Z) satisfy (P1)–(P5) and Dα(Z)
a.s.−−−→
n→∞

Dα(Z) for Z =

(1 − p)X + pZ ′ with Z ′ = µX j − ΣX j,−jΣ
−1
X −j,−j(X−j − µX −j). Further, let Y exist such

that yi = ID
(
xi, D(·|Y)

)
if miss(i) = {j} and yi = xi otherwise. Then, for all i with

miss(i) = {j} and denoting −j for {1, ..., d} \ {j},∣∣yi,j − µX j −ΣX j,−jΣ
−1
X −j,−j(xi,−j − µX −j)

∣∣ a.s.−−−→
n→∞

0 .

2.3 By-depth analysis

The generality of the proposed methodology lies in the possibility of using any notion of

depth which defines imputation properties. Let us focus here on imputation with Mana-

halobis, zonoid, and halfspace depths. These are of particular interest because they are

quasiconcave and require two, one, and zero first moments of the underlying probability

measure, respectively.

72

Chapter 2 By-depth analysis

Corollary 2.1 (M. et al., 2020) Theorems 2.1 and 2.2 hold for the halfspace depth, for

the zonoid depth if E[∥X∥] <∞, and for the Mahalanobis depth if E[∥X∥2] <∞.

In addition, the function f(zmiss) = D(z|X) subject to zobs = xobs in equation (2.2),

iteratively optimized in Algorithm 2.1, is quadratic for the Mahalanobis depth, continuous

inside conv(X) (the smallest convex set containing X) for the zonoid depth, and stepwise

discrete for the halfspace depth, which in all cases leads to efficient implementations. For

a trivariate Gaussian sample, f(zmiss) is depicted in Figure 1 in Supplementary Materials

of M. et al. (2020).

The use of a non-quasiconcave depth (e.g., simplicial or spatial depth) results in non-

convex optimization when maximizing depth, and this non-stability impedes numerical con-

vergence of the algorithm.

2.3.1 Mahalanobis depth

Imputation with the Mahalanobis depth is related to existing methods. First, let us show

the link with the minimization of the covariance determinant.

Proposition 2.1 (Covariance determinant is quadratic in a point’s missing entries)

(M. et al., 2020) Let X(y) =
(
x1, . . . , (xi,1, . . . ,xi,|obs(i)|,y

⊤)⊤, . . . ,xn
)⊤

be a n × d ma-

trix with ΣX(y) invertible for all y ∈ R|miss(i)|. Then |ΣX(y)| is quadratic and globally

minimized in y = µXmiss(i)(y) + ΣXmiss(i),obs(i)(y)Σ
−1
X obs(i),obs(i)(y)

(
(xi,1, . . . ,xi,|obs(i)|) −

µX obs(i)

)
.

From Proposition 2.1 it follows that the minimum of the covariance determinant is

unique and the determinant itself decreases at each iteration. Thus, to impute points with

missing coordinates one-by-one and iterate until convergence constitutes the block coordi-

nate descent method, which can be proved to numerically converge due to Proposition 2.7.1

from Bertsekas (1999) (as long as ΣX is invertible).

Further, Theorem 2.3 states that imputation using the maximum Mahalanobis depth,

iterative (multiple-output) regression, and regularized PCA (Josse and Husson, 2012) with

S = d− 1 dimensions, all converge to the same imputed sample.

Theorem 2.3 (M. et al., 2020) Suppose imputation of X = (Xmiss,Xobs) in Rd with

Y = (y1, ...,yn)
⊤ so that yi = argmaxzobs(i)=yobs(i)

DMah(z|Y) for each i with |miss(i)| > 0

and yi = xi otherwise. Then for each such yi, it also holds that:

• xi is imputed with the conditional mean:

yi,miss(i) = µY miss(i) +ΣY miss(i),obs(i)Σ
−1
Y obs(i),obs(i)(xobs(i) − µY obs(i))

which is equivalent to single- and multiple-output regression,

• Y is a stationary point of |SX(Xmiss)|: ∂|SX |
∂Xmiss

(Y miss) = 0, and

73

Chapter 2 By-depth analysis

• each missing coordinate j of xi is imputed with regularized PCA as in Josse &

Husson (2012) with any 0 < σ2 ≤ λd and with X −µX = UΛ
1
2V ⊤ the singular value

decomposition (SVD): yi,j =
∑d

s=1U i,s

√
λs−σ2

λs
V j,s + µY j .

The first point of the theorem sheds light on the connection between imputation by

Mahalanobis depth and the iterative regression imputation of Section 2.2.1. When the

Mahalanobis depth is used in Algorithm 2.1, each xi with missingness in miss(i) is imputed

by the multivariate conditional mean as in equation (2.1), and thus lies in the
(
d−|miss(i)|

)
-

dimensional multiple-output regression subspace of X ·,miss(i) on X ·,obs(i). This subspace is

obtained as the intersection of the single-output regression hyperplanes X ·,j on X ·,{1,...,d}\{j}

for all j ∈ miss(i) corresponding to missing coordinates. The third point strengthens the

method as imputation with regularized PCA has proved to be highly efficient in practice

due to its sticking to low-rank structure of importance and ignoring noise.

The complexity of imputing a single point with the Mahalanobis depth is O(nd2 + d3).

Despite its good properties, it is not robust to outliers. However, robust estimates for µX

and ΣX can be used, e.g., the minimum covariance determinant ones (MCD, see Rousseeuw

and Van Driessen, 1999).

2.3.2 Zonoid depth

For the recall of the definition of zonoid depth and its trimmed regions (see also empirical

version), the reader is referred to Definition 1.6 in Section 1.1.2.

Imputation of a point xi in Algorithm 1 is then performed by a slight modification of the

linear programming for computation of zonoid depth with variables γ and λ = (λ1, ..., λn)
⊤:

min γ s.t. X⊤
·,obs(i)λ = xi,obs(i) ,λ

⊤1n = 1 , γ1n − λ ≥ 0n ,λ ≥ 0n .

Here X ·,obs(i) stands for the completed n × |obs(i)| data matrix containing columns corre-

sponding only to non-missing coordinates of xi, and 1n (respectively 0n) is a vector of ones

(respectively zeros) of length n. In the implementation, the simplex method is used, which

is known for being fast despite its exponential complexity. This implies that, for each point

xi, imputation is performed by the weighted mean:

yi,miss(i) = X⊤
·,miss(i)λ ,

the average of the maximum number of equally weighted points. Additional insight on

the position of imputed points with respect to the sample can be gained by inspecting

the optimal weights λi. Zonoid imputation is related to local methods such as as kNN

imputation, as only some of the weights are positive.

2.3.3 Halfspace depth

Halfspace depth has been introduced to this manuscript in Definition 1.2 of Section 1.1.2,

with its empirical version defined by (1.10) in Section 1.2.1.

74

Chapter 2 By-depth analysis

With nonparametric imputation by halfspace depth, one can expect that after conver-

gence of Algorithm 2.1, for each point initially containing missing values, it holds that

yi = argmaxzobs=xobs
minu∈Sd−1

∣∣{k : y⊤
k u ≥ z⊤u, k ∈ {1, ..., n}

}∣∣. Thus, imputation is

performed according to the maximin principle based on criteria involving indicator func-

tions, which implies robustness of the solution. Note that as the halfspace depth is not

continuous, the searched-for maximum (2.2) may be non-unique (see Figure 1 (top right)

in Supplementary Materials of M. et al. (2020)); imputation is then performed with the

barycenter of the maximizing arguments (2.3). Due to the combinatorial nature of the half-

space depth, to speed up implementation, the Nelder-Mead downhill-simplex algorithm is

run 2d times, and the average over the solutions is taken. The imputation is illustrated in

Figure 3 in Supplementary Materials of M. et al. (2020).

The halfspace depth can be computed exactly (Dyckerhoff and M., 2016) with complex-

ity O(nd−1 log n), although to avoid computational burden its approximation with random

directions is implemented(Dyckerhoff, 2004) having complexity O(kn), with k denoting the

number of random directions. All of the experiments are performed with exactly computed

halfspace depth, unless stated otherwise.

2.3.4 Beyond ellipticity: local depth

Imputation with the so-called “global depth” may be appropriate in applications even if

the data moderately deviate from ellipticity. However, it can fail when the distribution has

non-convex support or several modes. A solution is to use the local depth in Algorithm 2.1.

Definition 2.2 (Paindaveine and Van Bever, 2013) For a depth D(·|X), the β-local depth is

defined as LDβ(·, X) : Rd → R+ : x 7→ LDβ(x, X) = D(x|Xβ,x) with Xβ,x the conditional

distribution of X conditioned on
⋂
α≥0, PY (Dα(Y))≥βD

α(Y), where Y has the distribution PY =
1
2
PX + 1

2
P2x−X .

The locality level β should be chosen in a data-driven way, for instance by cross-validation.

An important advantage of this approach is that any “global depth” (for exact set of prop-

erties the depth notion should satisfy, see Paindaveine and Van Bever, 2013) can be plugged

in to the local depth. Here, it is suggested to use the Nelder-Mead algorithm to enable

imputation with maximum local depth regardless of the chosen depth notion.

2.3.5 Dealing with outsiders

A number of depths that exploit the geometry of the data are equal to zero beyond conv(X),

including the zonoid and halfspace depths. Although (2.3) deals with this situation, for a

finite sample it means that points with missing values having the maximal value in at least

one of the observed coordinates will never move from the initial imputation because they

will become vertices of the conv(X). For the same reason, other points to be imputed and

lying exactly on the conv(X) will not move much during imputation iterations. As such

points are not numerous and would need to move quite substantially to influence imputation

75

Chapter 2 Assessing the quality of imputation

quality, they are imputed—during the initial iterations—using the spatial depth function

(Vardi and Zhang, 2000), which is everywhere non-negative. This resembles the so-called

“outsider treatment” introduced by Lange et al. (2014b). Another possibility is to extend

the depth beyond conv(X), see e.g., Einmahl et al. (2015) for the halfspace depth.

2.4 Assessing the quality of imputation

Quality measure for the single imputation is chosen using the following logic. Producing a

single data set without missing entries is crucial from application point of view. In practice,

a data analyst wishes to employ a statistical software of choice, while very little of those

incorporate the ability to accept missing values in the input arguments. Imputation can

be required due to abstention in surveys, where the institution has to provide a complete

data set. Such missing entries could also reveal identity, or were (deliberately) removed for

anonymity-preserving purposes.

Since the goal of the future statistical analysis is not clear at the imputation stage,

logically, single imputation is assessed by its ability to impute (i.e. predict the absent cells

of data points) close to the (unknown) missing values. Thus, the root mean square error

(RMSE) appears a natural measure for the quality of imputation.

In this spirit, the prediction abilities are assessed of halfspace, zonoid, and Mahalanobis

depth imputation, and the robust Mahalanobis depth imputation using MCD mean and co-

variance estimates, with the robustness parameter chosen in an optimal way due to knowl-

edge of the simulation setting. Their performance is measured against the competitors:

conditional mean imputation based on EM estimates (Dempster et al., 1977) of the mean

and covariance matrix; regularized PCA imputation with rank 1 and 2 (Josse and Husson,

2012); two nonparametric imputation methods: random forest (Stekhoven and Bühlmann,

2012, using the default implementation in the R-package missForest), and kNN imputa-

tion (Troyanskaya et al., 2001) choosing k from {1, . . . , 15} minimizing the imputation error

over 10 validation sets as in Stekhoven and Bühlmann (2012). Mean and oracle (if possible)

imputations are used to benchmark the results.

In Section 4, M. et al. (2020) (see additionally Supplementary Materials of the article)

provide an extensive simulation study that considers elliptical distributions (see Defini-

tion 2.1) with the Student-t generator and with outlier contamination, the missing at ran-

dom (MAR) mechanism, the low-rank model, contamination in higher dimensions, skewed

distribution and a distribution with non-convex support, as well as real-data study on four

data sets: Banknotes, Glass, and Blood Transfusion data downloaded from the UCI Machine

Learning Repository (Dua and Graff, 2017) and the Cow data set. Below, experiments for

the contaminated elliptical distribution (also for higher-dimensional data, see Section 2.4.1),

MAR-values (Section 2.4.2), skewed distribution and a distribution with non-convex support

(Section 2.4.3) are shown.

More precisely, each single experiment (for one method) is conducted as follows: (a) a

data set without missing values is generated (provided for real data sets); (b) missing values

76

Chapter 2 Assessing the quality of imputation

are introduced due to MCAR (or MAR where mentioned) mechanism; (c) imputation (of

all missing values) is performed; (d) RMSE is computed comparing to the original data set

from (a). For each imputation method, this sequence of actions is performed multiple times,

and medians and MADs of the corresponding RMSEs are reported (or the RMSE boxplots).

2.4.1 Contaminated elliptical setting

Here, in each run, 100 points are generated according to an elliptical distribution (Defini-

tion 2.1) with µ2 = (1, 1, 1)⊤ and the shape S2 =
(
(1, 1, 1)⊤, (1, 4, 4)⊤, (1, 4, 8)⊤

)
, where

FR is the univariate Student-t distribution ranging in number of degrees of freedom (d.f.)

from the Gaussian to the Cauchy: t = ∞, 10, 5, 3, 2, 1. Further, 15% of outliers are added

(which do not contain missing values) that stem from the Cauchy distribution with the same

parameters µ2 and S2. For each of the 1000 simulations, 25% of values are removed com-

pletely at random (MCAR), and median and MAD of RMSE of each imputation method

are computed.

Dist. DTuk Dzon DMah DMah
MCD.75 EM regPCA1 regPCA2 kNN RF mean oracle

t∞ 1.751 1.86 1.945 1.81 1.896 1.958 1.945 1.859 1.86 2.23 1.563

(0.2317) (0.3181) (0.4299) (0.239) (0.3987) (0.4495) (0.4328) (0.2602) (0.2332) (0.3304) (0.1849)

t 10 1.942 2.087 2.165 2.022 2.112 2.196 2.165 2.051 2.047 2.48 1.733

(0.2976) (0.4295) (0.5473) (0.3128) (0.5226) (0.5729) (0.5479) (0.3143) (0.3043) (0.4163) (0.2266)

t 5 2.178 2.333 2.421 2.231 2.376 2.398 2.421 2.315 2.325 2.766 1.939

(0.3556) (0.4924) (0.6026) (0.381) (0.5715) (0.6035) (0.5985) (0.3809) (0.3946) (0.528) (0.2979)

t 3 2.635 2.864 2.935 2.664 2.828 2.916 2.93 2.797 2.838 3.34 2.356

(0.6029) (0.7819) (0.8393) (0.5877) (0.7773) (0.8221) (0.8384) (0.6045) (0.6228) (0.7721) (0.4946)

t 2 3.763 4.082 4.136 3.783 4.036 4.09 4.14 3.955 4.026 4.623 3.323

(1.17) (1.535) (1.501) (1.224) (1.518) (1.585) (1.503) (1.265) (1.354) (1.561) (1.04)

t 1 17.17 20.43 20.27 16.46 19.01 19.81 20.53 18.96 19.04 21.04 14.44

(13.27) (15.99) (15.91) (12.94) (15.21) (16.15) (16.28) (14.73) (14.62) (15.56) (11.33)

Table 2.1: Median and MAD of the RMSEs of the imputation for 100 points drawn from

elliptically symmetric Student-t distributions, with µ2 and S2 contaminated with 15% of

outliers, and 25% of MCAR values on non-contaminated data, repeated 1000 times.

As expected, Table 2.1 shows that the best RMSEs are obtained by the robust depth-

based imputation methods: Tukey depth and Mahalanobis depth with MCD estimates (for

5% and 15% of missing values see Supplementary Materials of M. et al., 2020). Being

restricted to a neighborhood, nonparametric methods (only) sometimes impute based on

non-outlying points, and thus perform less well as the preceding group. The rest of the

included imputation methods cannot deal with the contaminated data and perform rather

poorly.

To check the resistance to outliers in higher dimensions, consider a simulation setting

similar to this from above, in dimension 6, with a normal multivariate distribution with µ3 =

(0, . . . , 0)⊤ and a Toeplitz covariance matrix S3 (having σi,j = 2−|i−j| as entries). The data

are contaminated with 15% of outliers and have 15% of MCAR values on non-contaminated

data. The Tukey depth is approximated using 1000 random directions. Figure 2.3 (left)

shows that the Tukey depth imputation has high predictive quality, comparable to that of

the random forest imputation even with only 1000 random directions; zonoid and robust

Mahalanobis depths follow them.

77

Chapter 2 Assessing the quality of imputation

d.Tuk d.zon d.Mah d.MahR EM rPCA1 rPCA2 kNN RF mean orcl

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Large data, n = 1000, d = 6, MCAR 0.15, k = 500

R
M

S
E

d.Tuk d.zon d.Mah d.MahR EM rPCA1 rPCA2 kNN RF mean orcl

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

t0 outl 100−3, MAR 0.25, k = 1000

R
M

S
E

Figure 2.3: Left: RMSE boxplots for different imputation methods for 1000 points drawn

from a 6-dimensional Gaussian distribution with µ3 and S3 contaminated with 15% of out-

liers, and 15% of MCAR values on non-contaminated data, over 500 repetitions. Right:

RMSE boxplots for 100 points drawn from a correlated 3-dimensional Gaussian distribution

with µ4 and S4 with MAR values, over 1000 repetitions.

2.4.2 The MAR setting

Next, highly correlated Gaussian data are generated by setting µ4 = (1, 1, 1) and the covari-

ance matrix to S4 =
(
(1, 1.75, 2)⊤, (1.75, 4, 4)⊤, (2, 4, 8)⊤

)
. Then, missing values are inserted

according to the MAR mechanism: the first and third variables are missing depending on

the value of the second variable. Figure 2.3 (right) shows the boxplots of the RMSEs. As

expected, semiparametric methods (EM, regularized PCA and Mahalanobis depth) perform

close to the oracle imputation. The good performance of the rank 1 regularized PCA can

be explained by the high correlation between variables. The zonoid depth imputes well

despite having no parametric knowledge. Nonparametric methods are unable to capture

the correlation, while robust methods “throw away” points possibly containing valuable

information.

2.4.3 Skewed and non-convexly supported distributions

First, consider only a slight deviation from ellipticity, for which (also theoretically) depth-

based imputation provides good results. Let us simulate 150 points from a skewed normal

distribution (Azzalini and Capitanio, 1999), insert 15% MCAR values, and impute them

with global (halfspace, zonoid and Mahalanobis) depths and their local versions (see Sec-

tion 2.3.4). This is shown in Figure 2.4. In this setting, both global and local imputation

perform similarly.

Further, let us consider an extreme departure from elliplicity with the moon-shaped

example from Paindaveine and Van Bever (2013). For this, 150 bivariate observations from

(X1, X2)
⊤ with X1 ∼ U(−1, 1) and X2|X1 = x1 ∼ U

(
1.5(1− x21), 2(1− x21)

)
are generated,

and 15% of MCAR values onX2 are introduced, see Figure 2.5 (left). Figure 2.5 (right) shows

boxplots of the RMSE for single imputation using local halfspace, zonoid and Mahalanobis

depths. If the depth and value of β are properly chosen (this can be achieved by cross-

78

Chapter 2 Assessing the quality of imputation

validation), the local-depth imputation considerably outperforms the classical methods as

well as the global depth.

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

0 5 10 15

−
10

−
5

0

+

++

+

+

+

+

+

++ +

+

+

+
++

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+
+

+

+ +

+

+

+

+
+

+

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

d.Tuk d.zon d.Mah d.MahR EM rPCA1 kNN RF mean ld.Tuk ld.zon ld.Mah
2.

0
2.

5
3.

0
3.

5
4.

0
4.

5

moon, MCAR 0.15, k = 100

R
M

S
E

Figure 2.4: Left: An example of halfspace depth imputation (pluses). Right: boxplots of

RMSEs of the prediction for 150 points drawn from a skewed distribution with 15% MCAR,

over 100 repetitions; ld.* stands for the local depth with β = 0.8.

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5 0.0 0.5

0.
5

1.
0

1.
5

2.
0

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+
+

+

++

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

d.Tuk d.zon d.Mah d.MahR EM rPCA1 kNN RF mean ld.Tuk ld.zon ld.Mah

0.
1

0.
2

0.
3

0.
4

0.
5

moon, MCAR 0.15, k = 100

R
M

S
E

Figure 2.5: Left: Comparison of global (crosses) and local (pluses) halfspace depth impu-

tation. Right: boxplots of RMSEs of predictions for 150 points drawn from the moon-shaped

distribution with 15% MCAR values in the second coordinate, over 100 repetitions; ld.*

stands for the local depth with β = 0.2.

79

Chapter 3

Novel notion: data depth for curves

3.1 Introduction to functional depth

For clarity, let us start with recalling the concept of statistical depth in the functional

framework. After a brief review of recent advances in this field, notions of functional depth

functions relevant for understanding the subsequent material are listed in Section 3.1.1.

Let d ≥ 1 be an integer. Let (Rd, |·|2) be the d-dimensional Euclidean space, C ([0, 1],Rd)

be the space of continuous functions defined on the interval [0, 1] and taking values in Rd.

In this chapter and the following Chapter 4 (where mostly the case d = 1 is addressed), the

random function F is considered which takes its values in C ([0, 1],Rd).

Where applicable, and without loss of generality, restrict to functions defined on [0, 1].

In practice, only a finite dimensional marginal
(
F (t1), . . . , F (tp)

)
, t1 < . . . < tp, p ≥

1 and (t1, . . . , tp) ∈ [0, 1]p can be observed, while dimension marginals of F will be

mentioned as Fj for j = 1, ..., d. Considering
(
F (t1), . . . , F (tp)

)
as a discretized curve rather

than a simple random vector of dimension p permits to take into account the dependence

structure between the measurements over the functional argument, especially when the

argument points ti are not equispaced. To come back to a function from discrete values,

interpolation procedures or approximation schemes based on appropriate dictionaries can be

used, combined with a preliminary smoothing step when the observations are noisy. From

a statistical perspective, the analysis is based on a functional data set F = {f1, . . . , fn}
composed of n ≥ 1 independent realizations of the stochastic process F . One may refer to,

e.g., Ramsay and Silverman (2005) for a deep view on functional data analysis.

Depths in a functional framework have been first considered in Fraiman and Muniz

(2001), where it is proposed to define functional depths as simple integrals over the argument

of a multivariate depth function D. Due to the averaging effect, local changes for the curve

f only induce slight modifications of the depth value. Later, alternative functional depths

have been introduced, see López-Pintado and Romo (2009, 2011) for depths based on the

geometry of the set of curves, Chakraborty and Chaudhuri (2014) for a notion of depth based

on the L2 distance or Dutta et al. (2011) for a functional version of the halfspace depth.

Since the axiomatic frameworks introduced in Zuo and Serfling (2000) or Mosler (2013) for

multivariate depths are no longer adapted to the richness of the topological structure of

Chapter 3 Introduction to functional depth

functional spaces, new sets of desirable properties were suggested in 2012 by Mosler and

Polyakova (2018) and in 2016 by Nieto-Reyes and Battey (2016) (for their refinements, see

also Gijbels and Nagy, 2017).

3.1.1 Relevant notions

Let us review the notions of functional data depth relevant for this manuscript. First, regard

the functional projection depth.

Definition 3.1 Functional projection depth (Hubert et al., 2015) of a univariate func-

tion f ∈ C ([0, 1],R) w.r.t. F : Ω → C ([0, 1],R) is defined as the integral (Fraiman and

Muniz, 2001) of the projection (Zuo and Serfling, 2000) depth:

FDProj(f |F) =
∫ 1

0

DProj

(
f(t)|F (t)

)
dt , (3.1)

where DProj(·|·) is the multivariate projection depth defined in (1.4).

Below, let us consider functional depths defined for multiple-output functions f =

(f1, ..., fd) : [0, 1]→ Rd.

Definition 3.2 Modified multivariate band depth (Ieva and Paganoni, 2013) of f ∈
C ([0, 1],Rd) w.r.t. F : Ω→ C ([0, 1],Rd) is defined as

FDJ
mMBD(f |F) =

d∑
k=1

pkFD
J
mBD(fk|Fk) , pk > 0 ∀ k = 1, ..., d,

d∑
k=1

pk = 1 , (3.2)

with Fk being the kth marginal and univariate modified band depth (López-Pintado and

Romo, 2009) defined as

FDJ
mBD(f |F) =

J∑
j=2

E[λ̃
(
E(f ;Fi1 , ..., Fij)

)
] , (3.3)

where Fi1 , ..., Fij are independent copies of the random function following the same distri-

bution as F , E(f ;Fi1 , ..., Fij) = {t ∈ [0, 1] , minr=i1,...,ij Fr(t) ≤ f(t) ≤ maxr=i1,...,ij Fr(t)},
λ̃(f) = λ

(
E(f ;Fi1 , ..., Fij)

)
/λ([0, 1]), and λ is the Lebesgue measure on [0, 1].

J is usually chosen = 2 to reduce the computational cost (see, e.g., Section 4.2.3 for

a similar evidence) and will be omitted in the sequel. pk = 1/d to avoid tuning it, other

choices are possible though.

Indeed, modified band depth corresponds to the application of the integtated depth idea

of Fraiman and Muniz (2001) to the simplicial depth (1.6) defined by Liu (1990) with d = 1,

and the modified multivariate band depth of (Ieva and Paganoni, 2013) generalizes it to d-

dimensional functional data by weighted average aggregation of dimension-marginal depths.

Another angle consists in aggregation by argument marginals, and is described right below.

81

Chapter 3 Introduction to functional depth

Definition 3.3 Simplicial band depth (López-Pintado et al., 2014) is defined as a prob-

ability that the trajectory of a function f is inside a random region in [0, 1]×Rd determined

by random simplices at each argument value t ∈ [0, 1]:

FDJ
SBD(f |F) = PF

[
f(t) ∈ simplex

(
Fi1(t), ..., Fid+1

(t)
)
,∀ t ∈ [0, 1]

]
, (3.4)

where Fi1 , ..., Fid+1
are independent copies of the random function following the distribution

of F as before, and simplex(·) designates a simplex with arguments being its vertices.

Definition 3.4 Modified simplicial band depth (López-Pintado et al., 2014) is ob-

tained from the simplicial band depth by replacing the indicator function with the Lebesgue

measure (λ as before):

FDJ
mSBD(f |F) = EF

[
λ
(
t ∈ [0, 1] : f(t) ∈ simplex(Fi1(t), ..., Fid+1

(t))
)]
. (3.5)

Definition 3.5 Multivariate functional halfspace depth (Claeskens et al., 2014) is

defined as weighted integral over the argument-marginal halfspace depth:

FDJ
MFHD(f |F) =

∫ 1

0

DH

(
f(t)|F (t)

)
· w(t)dt , (3.6)

with the weights being either constant over the functional argument or reflecting the vari-

ability with the argument:

w(t) =
vol

(
Dα

H

(
F (t))

)∫ 1

0
vol

(
Dα

H

(
F (u))

)
du

, (3.7)

i.e., proportional to the volume of the halfspace α-region at the given value of the functional

argument.

Definition 3.6 Skew-adjusted functional projection depth (Hubert et al., 2015) is

defined as follows:

FDJ
saPRJ(f |F) =

∫ 1

0

DSPD

(
f(t)|F (t)

)
dt ,

where the (multivariate) skew-adjusted projection depth of x ∈ Rd w.r.t. a random vector

X in Rd is defined as

DSPD(x|X) =
1

1 +OA(x|X)
,

while the adjusted outlyingness OA(·|·) is:

OA(x|X) = sup
u∈Sd−1


u⊤x−med(u⊤X)

w2(u⊤X)−med(u⊤X)
if u⊤X > med(u⊤X)

med(u⊤X)−u⊤x
med(u⊤X)−w1(u⊤X)

if u⊤X < med(u⊤X)

with

w1(Y) = Q1(Y)− 1.5e−4MC(Y)IRQ(Y) ,

w2(Y) = Q3(Y) + 1.5e+3MC(Y)IRQ(Y) ,

Q1 and Q3 being univariate 1st and 3rd quartiles of the random variable Y , IQR being its

interquantile range, and MC denoting the medcouple of Brys et al. (2004).

These last five multivariate functional depths will be further shortly denoted as mMBD,

SBD, mSBD, MFHD, and saPRJ, respectively.

82

Chapter 3 Necessity of a depth for unparametrized curves

3.2 Necessity of a depth for unparametrized curves

In recent years, statisticians have been facing complex types of data that they analyze using

a functional depth (Fraiman and Muniz, 2001, López-Pintado and Romo, 2009, Narisetty

and Nair, 2016) or even a multivariate functional depth approach (Claeskens et al., 2014).

These new techniques have proven to be very useful for data visualization, to estimate a

measure of location or spread, to detect outliers (see also Hubert et al., 2015), for clustering,

or to detect if two groups of functions come from the same population.

However, functional depths are sensitive to parametrization of curves. Figures 3.1 and 3.2

illustrate the impact of two different parametrizations on depths rankings of curves provided

by themultivariate functional halfspace depth (MFHD) developped by Claeskens et al. (2014)

(with weight function set to a constant) and by the modified simplicial band depth (mSBD)

developped by López-Pintado et al. (2014).

MFHD – par. A MFHD – par. B mSBD – par. A mSBD – par. B Curve Depth

−2 −1 0 1 2

−
2

−
1

0
1

2

MFHD, parametrizatin A

x1

x2

−2 −1 0 1 2

−
2

−
1

0
1

2

MFHD, parametrizatin B

x1

x2

−2 −1 0 1 2

−
2

−
1

0
1

2

MSD, parametrizatin A

x1

x2

−2 −1 0 1 2

−
2

−
1

0
1

2

MSD, parametrizatin B

x1

x2

−2 −1 0 1 2

−
2

−
1

0
1

2

TCD

x1

x2

(a) (b) (c) (d) (e)

Figure 3.1: Comparison of depth based ordering for two parametrizations A and B provided

respectively by MFHD (a)–(b), mSBD (c)–(d), and by the new depth for unparameterized

curves (e). The depth increases from yellow to red. Each deepest curve is plotted in blue.

The center of symmetry of the distribution is plotted using black dots. Source: an ensemble

of 50 simulated S letters; see Section A.1 in Supplementary Materials of Lafaye De Micheaux

et al. (2022).

In Figure 3.1 (a)-(d), it is seen that the choice of a parametrization (A or B) has a clear

impact on which curve is identified as the deepest (in blue). Moreover, unlike MFHD and

mSBD, the unparameterized approach finds a deepest curve which is very close to the center

of symmetry (the dotted curve). Also, one observes that some curves with high depth (in

red) seem to be outliers (Figure 3.1 (a) and (c), upper right) and some curves with low depth

(in yellow) are close to the deepest curve (Figure 3.1 (b) and (d)). This problem is even more

striking on Figure 3.2. There, many simulated hurricane tracks are identified as outliers (in

red, on panels (a)–(d)) by MFHD and mSBD (with two different parametrizations) even if

they are close to the center of distribution of the curves (in dark blue). This is in agreement

with (Mirzargar et al., 2014, Section 5) who note that “the time-parameterization is more

sensitive to the velocity outlier as a parameterization-dependent feature, the arc-length and

life-time percentage parameterization are more sensitive to shape and positional outliers.”

Here again the unparameterized approach correctly identifies outliers (panel (e)).

83

Chapter 3 Necessity of a depth for unparametrized curves

MFHD – par. A MFHD - par. B mSBD – par. A mSBD – par. B Curve Depth

20°N

25°N

30°N

35°N

100°W 95°W 90°W 85°W 80°W 75°W

20°N

25°N

30°N

35°N

100°W 95°W 90°W 85°W 80°W 75°W

20°N

25°N

30°N

35°N

100°W 95°W 90°W 85°W 80°W 75°W

20°N

25°N

30°N

35°N

100°W 95°W 90°W 85°W 80°W 75°W

20°N

25°N

30°N

35°N

100°W 95°W 90°W 85°W 80°W 75°W

(a) (b) (c) (d) (e)

Figure 3.2: Comparison of the depth based ordering for two parametrizations A (time) and

B (arc-length) provided respectively by MFHD (a)–(b), mSBD (c)–(d), and by the new depth

for unparameterized curves (e). Curves with low value of depth are plotted in red, the others

in blue. Each deepest curve is plotted in dark blue. Source: an ensemble of 50 simulated

hurricane tracks (Mirzargar et al., 2014).

Note that MFHD and mSBD depths are computed by comparing each point on a given

curve only to points (from the other curves) that “occur at the same time”. Curves are thus

compared pointwisely and not globally (this is a direct consequence of parametrization),

which is the cause of the aforementioned artefacts.

Of course, depending on the context, working with a proper parametrization of curves

can be relevant. For instance, if available, one could use speed of writing as a meaningful

parametrization in a handwriting recognition problem; see Section A.2 in Supplementary

Materials of Lafaye De Micheaux et al. (2022). For further discussion on the importance

and possible choices of a proper parametrization when employing functional data depth,

see, e.g., López-Pintado et al. (2014), Mirzargar et al. (2014) and references therein.

In this chapter, the aim is to define a depth which is invariant to the choice of a

parametrization of the curves. This was originally motivated by the need to analyze a

very large number of bundles of white matter fibers obtained through diffusion tensor imag-

ing (an MRI-based neuroimaging technique) among a population of elderly twins. These

neuronal fibers, also called axons, are nerve cell extensions that transmit electrical infor-

mation between different regions of the brain. The aim of the study was to investigate if

genetics plays a role in the spatial organization of these fibers.

With this motivation in mind, a new concept of depth for curves is proposed in this

chapter, that is invariant to the choice of the parametrization. It will be broadly applicable,

thanks to the freely available R/C++ package curveDepth (M. et al., 2019), to many other

similar types of data. On can mention a few examples such as textile fibers (Xu et al., 2001),

blood clot fibers (Collet et al., 2005), blood vessels centrelines (Sangalli et al., 2009), moving

objects such as birds migrating (Su et al., 2014, Yuan et al., 2017), multidimensional data

sets obtained by constructing principal curves (Hastie and Stuetzle, 1989). The results of

the study with application of the developed depth notion for curves to neuroimaging are

provided in Section 3.5, right after the theoretical exposition of the used statistical model

(Section 3.3) and the novel depth notion (Section 3.4) with its properties (Section 3.4.2).

The reader is further referred to Lafaye De Micheaux et al. (2022) for implementation details

84

Chapter 3 Statistical setting

(Section 4), simulated-data experiments (Section 5) and application of the proposed curve

depth to classification and clustering (Section 6.2).

3.3 Statistical setting

In what follows, the space of unparameterized curves is introduced and a statistical model

on it is defined. For a comprehensive reference the reader is referred to Kemppainen and

Smirnov (2017, Section 2) which borrowed material from Aizenman and Burchard (1999,

Section 2.1) and Burago et al. (2001, Section 2.5). For additional details see Section B in

Supplementary Materials of Lafaye De Micheaux et al. (2022).

3.3.1 The space of unparameterized curves

Let Γ be the set of increasing continuous functions γ : [0, 1]→ [0, 1] such that γ(0) = 0 and

γ(1) = 1. A parameterized curve β, also called a path, is an element of C ([0, 1],Rd). The

image of β, denoted as Sβ = β([0, 1]), is called the locus of β. Informally if β(t) describes

the position of a moving particle at time t, then Sβ describes the physical route taken by

this particle with no consideration being given to stops or goings backward occuring on

its trajectory. The function β : [0, 1] 7→ Rd, a parametrization of Sβ with parameter t,

provides an ordering along Sβ. Note that there might exists an infinite number of different

parametrizations describing the same locus.

Remark 3.1 The start point of Sβ is the image of 0 by β. The end point is the image of

1. The locus of a trivial curve coincides with a singleton, i.e., a single point of Rd.

Formally, unparameterized curves are usually defined via an equivalence relation on

the set of parameterized curves in Rd up to the set of monotonic functions from [0, 1] to

[0, 1]. Roughly speaking, two curves β1 and β2 are said equivalent if they share the same

locus and visit its points continuously and in the same order, possibly at a different speed.

Hereafter, let us restrict to the set of all curves equivalent to β that start at β(0) and stop

at β(1). More precisely, two parameterized curves β1 and β2 are equivalent whenever there

exist two reparametrizations γ1, γ2 ∈ Γ such that β1 ◦ γ1 = β2 ◦ γ2. Let us then define the

unparameterized curve Cβ as the set of all paths equivalent to β, that is the equivalence class

of β up to this equivalence relation. Informally, Cβ describes the trajectory from β(0) to

β(1), with no information about the location at any time. Note that in this context, it would

be possible to consider the general definition, i.e., to walk a path β from β(1) to β(0), or

the other way around. But restricting all definitions by considering the set of parameterized

curves in Rd only up to the set of reparametrizations Γ greatly simplifies exposition; see

Remark B.2 in Supplementary Materials of Lafaye De Micheaux et al. (2022). In the sequel,

an unparameterized curve will be generically denoted C. Notice that all parameterized curves

in the same equivalence class C share the same locus, which enables one to talk about the

locus of C, denoted thereafter as SC.

85

Chapter 3 Statistical setting

The space of unparameterized curves is then defined as

C = {Cβ : β ∈ C ([0, 1],Rd)}.

In other words, C is the quotient space of C ([0, 1],Rd) by the equivalence relation on the

set of parameterized curves

Following Kemppainen and Smirnov (2017), endow the space of curves C with the Fréchet

metric dC defined as

dC (C1, C2) = inf {∥β1 − β2∥∞; β1 ∈ C1, β2 ∈ C2} , C1, C2 ∈ C, (3.8)

where ∥β∥∞ = supt∈[0,1] |β(t)|2 for β ∈ C ([0, 1],Rd). The resulting metric space (C, dC) is

non linear. It inherits the properties of separability and completeness from C ([0, 1],Rd);

see Section B.2 in Supplementary Materials of Lafaye De Micheaux et al. (2022). This

guarantees the existence of non-atomic probability measures on (C, dC). Moreover, according

to Parthasarathy (1967, Theorems 1.2, 3.2 and 8.1), every probability measure defined on

C is regular and tight.

3.3.2 The arc-length probability measure of a curve

The length L(β) of a parameterized curve β ∈ C is defined as

L(β) = sup
τ
{Lτ (β); τ a partition of [0, 1]} , (3.9)

where Lτ (β) =
∑J

j=1 |β(τj)−β(τj−1)|2 is the chordal length of β associated with the parti-

tion τ = {τ0, . . . , τJ ; 0 = τ0 < · · · < τJ = 1, J ∈ N∗}. Informally L(β) is the total distance

traveled by a particle moving from β(0) to β(1) along the support Sβ of the curve β (taking

into account any backward steps). Then all parameterized curves in C have the same length.

Consequently, the length of C, denoted L(C), is defined by L(C) = L(β), for any β ∈ C. Note
that the function L : C → [0,+∞] is not continuous, but it is measurable (Lemma B.3 in

Supplementary Materials of Lafaye De Micheaux et al., 2022). In the following assume that

all unparameterized curves belong to the measurable set CL = {C ∈ C ; 0 < L(C) <∞} ⊂ C,

the subset of rectifiable (i.e., of finite length) unparameterized curves with a positive length.

According to Väisälä (2006, Theorem 2.4), each curve C ∈ CL contains a unique parametriza-

tion βC : [0, 1]→ Rd, called the arc-length parametrization, whose restrictions to the intervals

[0, t], noted βtC, satisfy L(β
t
C) = tL(C), for all t ∈ [0, 1]. Informally, with βC, the locus SC is

visited at a constant speed. Then any rectifiable curve C may be expressed as

C = {βC ◦ γ; γ ∈ Γ}.

Using the arc-length parametrization βC of an unparameterized curve C, one can thus

define the line integral of a non-negative Borel function f : Rd → R over C as∫
C
f(s)ds :=

∫ 1

0

f (βC(t))L(C)dt, (3.10)

86

Chapter 3 Statistical setting

where the integral on the right is a Riemann integral. Furthermore, define the arc-length

probability measure of C as the probability distribution µC on the Borel sets of Rd:

for any borel set A of Rd, µC(A) =
1

L(C)

∫
C
1A(s)ds , (3.11)

where the indicator function 1A(x) takes the value 1 if x ∈ A and 0 otherwise.

From (3.10) and (3.11), it immediately follows∫
C
f(s)dµC(s) =

∫ 1

0

f(βC(t))dt. (3.12)

Also, note that µC only contains information about the support SC of C and the frequency

at which its points are visited. Roughly speaking, µC(A) can be interpreted as a ratio: the

distance travelled by a particle on the subset SC ∩A divided by the total distance it travels

on SC. (Note that L(C) can be different from the length of SC.) It is somehow a normalised

measure of how much of curve C intersects with A.

3.3.3 Describing a sample of curves

Denote by P the set of all probability measures defined on the Borel σ-algebra of the Borel

sets of (C, dC) whose support is a subset of rectifiable curves of positive length (to exclude

singletons):

P =
{
P, a probability measure on (C, dC) ; P (CL) = 1

}
.

Consider a random unparameterized curve X , namely a random element taking “values” in

the space of unparameterized curves C, whose probability distribution P ∈ P is unknown.

Define the probability distribution QP as follows:

for all borel sets A of Rd, QP (A) =

∫
C

µC(A)dP (C) = EP [µX (A)], (3.13)

a measure of how much (on average) a curve generated by X intersect with A.

Remark 3.2 In Section B.3 in Supplementary Materials of Lafaye De Micheaux et al.

(2022), it is shown that for any Borel bounded function f : Rd → R, the function C ∈ CL 7→∫
C fdµC ∈ R is measurable. Consequently, QP is well-defined.

The statistical model considered in this chapter is to assume that the data to be ob-

served are n random unparameterized curves X1, . . . ,Xn, which are independent copies of

the random element X , that is to say

X1, . . . ,Xn are i.i.d. from P ∈ P . (3.14)

In the next section, a population data depth for unparameterized curves is defined, as well

as its sample version.

87

Chapter 3 Data depth for unparametrized curves

3.4 Data depth for unparametrized curves

For a pair (u,x) ∈ Sd−1×Rd, let Hu,x denote the closed halfspace {y ∈ Rd : y⊤u ≥ x⊤u}
whose frontier is orthogonal to the vector u and goes through the point x. Notice that if

d = 1, the unit-sphere is {−1, 1}.

3.4.1 Population and sample versions

Definition 3.7 (Curve depth, population version) (Lafaye De Micheaux et al., 2022)

Let C ∈ CL be an unparameterized curve and let P ∈ P be a probability measure. Define the

curve depth of C w.r.t. P , denoted D(C|P), by the mapping

D : CL × P → R

(C, P) 7→ D(C|P) =
∫
C
D(s|QP , µC)dµC(s), (3.15)

where the above line integral is computed via (3.10) using, for any d ≥ 1 and any x ∈ SC,

D(x|QP , µC)= inf
u∈Sd−1

QP (Hu,x)

µC(Hu,x)
, (3.16)

with the convention that a/0 = +∞ for all a > 0 and 0/0 = 0 in the above ratio.

The term D(x|QP , µC) aims to compare the two distributions QP and µC around x ∈ SC.

For u and x fixed, recall from (3.11) and from (3.13) that µC(Hu,x) measures (the fraction of

length of) how much the curve C delves into the halfspace Hu,x, whereas QP (Hu,x) measures

(the expected fraction of length of) how much a random curve X (with distribution P) delves

into Hu,x. Consequently, the ratio QP (Hu,x)/µC(Hu,x) is small when curves generated

according to P enter less into Hu,x than the curve C. Getting a value r > 1 (resp. r < 1)

for this ratio, indicates that X generates curves that enter into Hu,x, on average, r times

more (resp. 1/r times less) than C does; see Figure 3.3 for a visual aid.

Then, similarly to the original halfspace depth, to obtain D(x|QP , µC), consider all

possible rotations of the halfspace Hu,x around x to find the one that discriminates the

most the curve C from a curve generated according to P . Let us call D(x|QP , µC) as the

point curve depth at x ∈ SC. Then (3.15) defines the depth of C w.r.t. P as the mean of the

point curve depths at all x in its locus SC.

Notice that if there exists u ∈ Sd−1 such that QP (Hu,x) = 0, then x is an outlier

w.r.t. QP , and thus the contribution of x ∈ SC to the depth of C w.r.t. P is set to zero, that

is D(x|QP , µC) = 0.

If QP (Hu,x) > 0 for all u ∈ Sd−1, that means x lies in the convex hull of the support

of QP . The aim is to calculate the depth of x ∈ SC w.r.t. QP relatively to the measure µC,

that is why one considers the ratio QP (Hu,x)/µC(Hu,x) in the definition of D(x|QP , µC). In

this case, one can show that there exists u such that µC(Hu,x) ≥ QP (Hu,x) > 0 (Lemma C.1

in Supplementary Materials of Lafaye De Micheaux et al., 2022), so that x 7→ D(x|QP , µC) is

bounded by 1. Moreover, x 7→ D(x|QP , µC) is measurable as a limit of measurable functions

(see Lemma C.4 in Supplementary Materials of Lafaye De Micheaux et al., 2022).

88

Chapter 3 Data depth for unparametrized curves

◦ x

Hu1,x

◦ x

Hu2,x

◦ x

Hu3,x

Figure 3.3: Illustrations of the statistical model and depth calculation (3.16) for three

halfspaces with a sample of five curves generated by X in blue and the curve C in red.

Consider all halfspaces whose frontier contains the point x and pick up the smallest ratio of

the probability measures between QP and µC : (left)
QP (Hu1,x)

µC(Hu1,x)
= 9.714, (middle)

QP (Hu2,x)

µC(Hu2,x)
=

0.999, (right)
QP (Hu3,x)

µC(Hu3,x)
= 0.618

Definition 3.8 (Curve depth, sample version) (Lafaye De Micheaux et al., 2022) Let

X1, . . . ,Xn be a random sample of unparameterized curves belonging to CL a.s. and let

C ∈ CL be a rectifiable unparameterized curve. With a slight abuse of notation, and thanks

to (3.10), define the curve depth of C w.r.t. X1, . . . ,Xn by the mapping

D : CL × {CL}n → R (3.17)

(C,X1, . . . ,Xn) 7→ D(C|X1, . . . ,Xn) =
∫
C
D(s|Qn, µC)dµC(s),

where Qn = (µX1
+ · · ·+ µXn)/n and βC is the arc-length parametrization of C.

Remark 3.3 In a sense, the proposed depth may be seen as a generalization of the Tukey’s

halfspace depth in Rd. If C is a trivial curve, that is L(C) = 0 and SC = {y} for some

y ∈ Rd, define µC as the Dirac measure δy at y. Then, if X1, . . . ,Xn are also trivial curves,

that is SXi = {xi}, i = 1, . . . , n, one gets

D(C|X1, . . . ,Xn) = D(y|Qn, δy)

= inf
u∈Sd−1

1

n

n∑
i=1

1xi∈Hu,y .

Theorem 3.1 below states that the sample version of the curve depth (3.17) converges in

probability to the population version (3.15) as n→∞.

Theorem 3.1 (Lafaye De Micheaux et al., 2022) Let C ∈ CL be an unparameterized

curve such that µC is non-atomic. Let P be a probability measure in the space of unpa-

rameterized curves such that P ∈ P and QP is non-atomic. Then the sample curve depth

D(C|X1, . . . ,Xn) converges in probability to D(C|P) as n→∞.

89

Chapter 3 Data depth for unparametrized curves

3.4.2 Properties

The main aim of the proposed curve depth is to provide a meaningful statistical ordering

of the observed curve data, which is experimentally studied and illustrated on real-data

examples in Section 3.5. Theorem 3.1 states the consistency of the sample curve depth

under mild assumptions and in this section its properties are discussed.

Following the suggestion of Liu (1990) for simplicial depths, Zuo and Serfling (2000)

have defined four properties to be satisfied by a proper multivariate depth function: affine

invariance, maximality at the center of symmetry, monotonicity relative to the deepest

point and vanishing at infinity. (For a slightly different version of the postulates see also

Dyckerhoff (2004) and Mosler (2013).) For a functional depth, Nieto-Reyes and Battey

(2016) suggest that six properties need to be satisfied, but Gijbels and Nagy (2017) argue

that some of them could be demanding.

The situation appears to be even more challenging for the space of unparameterized

curves. Indeed, (loci of) unparameterized curves can be seen as subsets of Rd which are

parameterized by paths up to the same order of visit of their points. These mathematical

objects can thus be thought of as being “between” functional data and set data. Moreover,

since no canonical mandatory postulates for a functional depth have been established yet,

and since the existing postulates are mainly inherited from those for the multivariate depth

function, the following analysis is based on the latter.

Since the length is an important characteristic of an unparameterized curve, similarity

invariance, which is associated with a similarity group preserving orientation and ratio of

lengths, seems to be more appropriate than affine invariance in this context. Moreover,

the space of unparameterized curves is not a vector space. For instance the surjection

β 7→ Cβ is not linear (there is no natural way to define the addition of two unparameterized

curves and thus no line segment between two unparameterized curves, a crucial point for

the monotonicity property). It is thus not possible to extend the classical formulation of a

depth using results from Dutta et al. (2011) or Mosler and Polyakova (2018), say. Similarly,

there is no universal way to define a notion of symmetry for unparameterized curves, no

symmetry center can be defined either. The vanishing at infinity property can be directly

extended to the space of curves. Below let us state the properties satisfied by the curve

depth function and summarize them in Theorem 3.2.

Boundness. Calculating the curve depth (3.15) consists in integrating a non-negative

function bounded by one w.r.t. a probability measure. This fulfills one of the basic require-

ments of a depth function: to take values on the unit interval.

Similarity invariance. For a multivariate depth, affine invariance is required for change-

lessness w.r.t. an affine change of the coordinate system. For the space of unparameterized

curves, consider affine transformations that also preserve ratios of the lengths of curves,

i.e., similarities. (Note that the length of an unparameterized curve is a property of the

equivalence class.) A similarity f : Rd → Rd is an affine transform, f(x) = rAx + b such

90

Chapter 3 Real-data illustration on brain imaging

that A is an orthogonal matrix, r is a positive factor and b ∈ Rd is a vector. In particular,

for all x and y in Rd, one has |f(x) − f(y)|2 = r|x − y|2. Denote by Pf the distribution

of the image under f of a stochastic process having a distribution P . A map D satisfies

the property of similarity invariance if for every rectifiable curve C and every similarity map

f : Rd → Rd, it holds D(C, P) = D(f ◦ C, Pf).

Vanishing at infinity. The farther away an unparametrized curve is from a data cloud

of curves, the smaller its depth should be. To formulate the vanishing at infinity property of

the curve depthD, consider any sequence (Cn)n of curves in CL such that µCn is a non-atomic

measure for all n and limn→∞ dC(Cn, 0) =∞, where 0 denotes the set of parametrized curves

equivalent to the constant curve t 7→ β(t) = 0 for all t ∈ [0, 1]. However, such a formulation

involves sequences of curves whose length tends to infinity. To exclude these cases, assume

that there exists some ℓ > 0 such that L(Cn) < ℓ for all n. This guarantees that only the

location of these curves tends to infinity. Then one can prove that

lim
n→∞

D(Cn, P) = 0.

Theorem 3.2 (Lafaye De Micheaux et al., 2022) Under the assumptions of Theorem 3.1,

the curve depth is a depth function in CL, i.e., it takes values in [0, 1], is similarity-invariant

and is vanishing at infinity.

3.5 Real-data illustration on brain imaging

Numerical computation of the newly proposed curve depth and of the above-mentioned

distance are implemented in the R package CurveDepth (M. et al., 2019) which is available

on the CRAN (R Core Team, 2022).

3.5.1 Application to the Older Australian Twins Study data

White matter (WM) in the brain is made up of long myelinated axonal fibers generally

regarded as passive routes connecting several gray matter regions (the ones containing neu-

rons) to permit flow of information across them. In such tissue, water tends to diffuse mostly

along the direction of the fibers. The ratio of axial and radial movement is called fractional

anisotropy. Diffusion Tensor Magnetic Resonance Imaging (DTI) measures the motion of

hydrogen atoms within water in all three dimensions.

Here the use is made of access to DTI scans from the Older Australian Twins Study

(OATS), an ongoing longitudinal study investigating genetic and environmental factors and

their associations and interactions in healthy brain ageing and ageing-related neurocognitive

disorders for people aged 65+ years (Sachdev et al., 2009).

The DTI data considered in the current section were drawn from 34 twin pairs, aged

between 67.3 and 84.2 years. Eleven of the 34 pairs were dizygotic (DZ) twin pairs (i.e.,

non-identical twins sharing 50% of their genes) and 23 monozygotic (MZ) twin pairs (i.e.,

91

Chapter 3 Real-data illustration on brain imaging

identical twins sharing 100% of their genes). Using MRtrix software (Tournier et al., 2012)

to extract corticospinal fiber tracts from the DTI scans (an operation called tractography),

the resulting data sets were two bundles of around 1, 000 fibers each per subject (see Fig-

ure 3.4; left). Other pre-processing steps are described in Supplementary Materials of Lafaye

De Micheaux et al. (2022), Section H.

It is quite a challenging task to visualize brain fibers. Consequently this information is

difficult to use in a clinical environment (e.g., for surgery planning). New tools are thus

needed for efficiently representing these tractograms. An interesting approach by Mercier

et al. (2018) consists in progressively simplifying tractograms by grouping similar fibers into

a specific geometric representation.

The depth for curves developed here can also help neuroscientists to visualize a 3D bundle

of fibers. One can follow the approach adopted by Mercier et al. (2018) by grouping curves

according to their depths. It is also possible to assign a transparency value to each curve

equal or proportional to its depth value (see Figure 3.4; left) to inspect the whole bundle at

once. Similarly, one can instead assign a low transparency value to the least deep curves in

order to visualize outliers (see Figure 3.4; right). Outliers can eventually be removed before

further statistical analyses are conducted.

Figure 3.4: Illustrations of the ordering of the white matter fibers for one subject using the

curve depth. (Left) Whole brain fiber data set for one twin; see http: // biostatisticien.

eu/ DataDepthFig8 for an interactive 3D applet. (Right) Result of bundle ordering for the

right side of the brain only. Only the first 100 fibers in the data set are displayed, among

which 6 are identified as outliers and colored in red (their depth is less than 0.075).

It is demonstrated on Figure 3.5 that the curve depth approach gives better results in

terms of outlier detection than four other existing depth measures that can be applied to

three-dimensional curves. These multivariate functional depth-based competitors (with an

arc-length parametrization) are the modified multivariate band depth (mMBD), simplicial

92

http://biostatisticien.eu/DataDepthFig8
http://biostatisticien.eu/DataDepthFig8

Chapter 3 Real-data illustration on brain imaging

band depth (SBD), mSBD, skew-adjusted functional projection depth (saPRJ), and the curve

depth. Observe that the 15 fibers having the lowest depth as computed by the curve depth

are located outside of the bundle, while there are fibers with a low depth value inside this

bundle for the competitors. Furthermore the range of depth values associated to the curve

depth is the widest among the 5 methods considered here. And there is a clearer separation

between the depths of outliers and the other fibers. Notice that it is hard to distinguish

outliers using SBD and mSBD and that the bottom fiber which is clearly outside the bundle

is not detected as an outlier by SBD. Finally, mMBD and saPRJ detect fewer outliers

than the curve depth, some of them being the same as the ones detected by the proposed

approach.

mMBD SBD mSBD saPRJ Curve Depth

0.0

0.1

0.2

0.3

0.4

0 25 50 75 100
Depth−induced rank

D
ep

th
 v

al
ue

0.00

0.01

0.02

0.03

0.04

0 25 50 75 100
Depth−induced rank

D
ep

th
 v

al
ue

0.00

0.03

0.06

0.09

0 25 50 75 100
Depth−induced rank

D
ep

th
 v

al
ue

0.0

0.2

0.4

0.6

0 25 50 75 100
Depth−induced rank

D
ep

th
 v

al
ue

0.0

0.2

0.4

0.6

0 25 50 75 100
Depth−induced rank

D
ep

th
 v

al
ue

Figure 3.5: Top: Curve boxplots for a sample of 100 WM-fibers from the right side of the

brain. The set of 100 curves is partitioned into 15/35/49/1 curves: 15 with the smallest

value of depth, considered as outliers (red), 35 with a larger value of depth, considered as

outer curves (light blue), 49 with the largest value of depth, considered as the more central

curves (blue), and finally the deepest curve of all (dark blue). Depth methods are (from

left to right) mMBD, SBD, mSBD, saPRJ, and the curve depth. Bottom: Corresponding

depth-ranked histograms.

3.5.2 Curve registration

Image registration is one of the main pre-processing steps in any statistical analysis of brain

imaging data. Its aim is to geometrically match up image volumes of brain structures, for

example for structure localization or difference detection. Broadly, this consists in finding

rotation and translation parameters that will minimize a certain cost function (e.g., least

squares or mutual information) which quantifies how well aligned two images are. Image

registration is an active field of research since existing algorithms still have defects, for ex-

ample they might suffer from directionality bias (Modat et al., 2014). All standard libraries

dedicated to the analysis of fMRI, MRI and DTI brain imaging data contain an image reg-

istration procedure; see, e.g., RNiftyReg (Clayden et al., 2020) in the R software (R Core

Team, 2022).

93

Chapter 3 Real-data illustration on brain imaging

Subject 104 Subject 110 Subject 131

Figure 3.6: Illustration of the registration process. Subject 235 is the reference subject

(i.e., the subject whose deepest curve is D, the deepest of all). The red and the dark blue

curves are the deepest curves (before registration) of the given subject and of subject 235,

respectively. The red curve are brought as close as possible, in terms of distance (3.8), to

the dark blue curve. The transformed curve (i.e, after registration) is the light blue curve.

Distances from each red curve (i.e., before registration) and from each light blue curve (i.e.,

after registration) to the deepest of all are 10.271 and 3.245 (for subject 104), 4.539 and

3.395 (for subject 110), and 3.329 and 2.084 (for subject 131), respectively.

Here, the proposed approach to register the bundles at hand is to first extract one single

best representative curve for each bundle (namely the deepest one; see the dark blue fiber

in Figure 3.4) and then to match these representatives as best as possible. In the twin

DTI data set considered here, the aim was to register 68 bundles, of about 1,000 fibers

each, located in the left hemisphere say. To reach this goal, first the deepest fiber within

each bundle was computed, noted thereafter dj, j = 1, . . . , 68. Then the deepest fiber

among d1, ..., d68 was computed, which is denoted D. Finally, for each bundle j, the rigid

transformation was found (in terms of rotation, translation and centering) that minimizes

the distance (3.8) between the curves dj and D. Registration is then achieved by applying

each one of these rigid transformations to all the fibers within the corresponding bundle.

This process is illustrated in Figure 3.6.

3.5.3 A statistical comparison between MZ and DZ twins

After having performed curve registration, comparison of the empirical distributions is pos-

sible. Given two distributions P0, P1 ∈ P on the space of curves C, consider the mapping

that yields the DD-plot (Liu et al., 1999):

C→ [0, 1]2 , C 7→ (D(C|P0), D(C|P1)) . (3.18)

For two random samples of curves {X (0)
1 , . . . ,X (0)

n0 } and {X (1)
1 , . . . ,X (1)

n1 } from P0 and P1

respectively, the empirical DD-plot can be constructed as:⋃
k=0,1

{(
D(X (k)

i |X
(0)
1 , . . . ,X (0)

n0
), D(X (k)

i |X
(1)
1 , . . . ,X (1)

n1
)
)
, i = 1, . . . , nk

}
.

For six pairs of twins, DD-plots are presented in Figure 3.7, whose contribution is

twofold. First, as a proof of concept, the empirical distributions of two MZ twins are very

94

Chapter 3 Real-data illustration on brain imaging

105 vs. 205 (DZ) 120 vs. 220 (DZ) 132 vs. 232 (DZ)

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

● ●●

●

●

●

●●

● ●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●● ● ●

●

●

●

●● ●

●

●●

●

● ●

●
●●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●●

●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Depth of 105 (red) and 205 (blue)

Depth w.r.t. '105'

D
ep

th
 w

.r.
t.

'2
05

'

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●●● ●

●

●
●●●

●

●

●

●
●

●

●●
●

●

●

● ●

●●
●

●●

●●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●●● ● ●●

●

●

●

●
●

●

●
●

● ●

●
●

●
●

●

●

●

●
●

●●

● ●
●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●
●

●
●●●

●

●
● ●

●

●

●

●

●

●

●

●

● ● ●

●

●
●● ●

●●

●

●

●

●

●
●

●

●●

●

● ●

●

● ●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

●

●
●●● ●

●
●

●

● ●

●
●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
● ●●

●

●

●
● ●

●

●

●
●●

●

●●
●

●

●
●●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●
● ●

● ●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●● ●
●

● ● ●
●

●
●

●

●●

●
●

●

●
●

●●●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●●
●

●

●
●

●
● ●

● ●

●●

●

●
●

● ●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●● ● ●
●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●
●●

●
●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●● ●●

● ●
●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●●
●

●

●●
● ● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●
●

●

● ●●

●
●

●

●
●

● ●

●
●

●●

●

●●
●●

●

● ●●

●

● ●
●

●
● ●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●● ●

●

●
●

●

●

●

● ●

●
●

●

●

●●
●

●

●

● ●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●●● ●

●
●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
● ●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●●

● ●

●

●
● ●

●

●
●

● ●
●

●

●
●

● ●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Depth of 120 (red) and 220 (blue)

Depth w.r.t. '120'
D

ep
th

 w
.r.

t.
'2

20
'

●

●

●

●

●
●

●●●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●
●● ●●

●

●

●

●

●

●
●●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●
●

●

●
●

●

●●

●

●● ●

●

●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Depth of 132 (red) and 232 (blue)

Depth w.r.t. '132'

D
ep

th
 w

.r.
t.

'2
32

'

104 vs. 204 (MZ) 106 vs. 206 (MZ) 131 vs. 231 (MZ)

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

● ●
●

●●

●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●
● ●

●●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Depth of 104 (red) and 204 (blue)

Depth w.r.t. '104'

D
ep

th
 w

.r.
t.

'2
04

'

●

●

●●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●
●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Depth of 106 (red) and 206 (blue)

Depth w.r.t. '106'

D
ep

th
 w

.r.
t.

'2
06

'

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●● ●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Depth of 131 (red) and 231 (blue)

Depth w.r.t. '131'

D
ep

th
 w

.r.
t.

'2
31

'

Figure 3.7: DD-plots of six pairs of twins (red circles for 1xx; blue “+” signs for 2xx) with

associated p-values in parenthesis. (Top) three DZ, namely: 105 and 205 (1− e9), 120 and

220 (0.017), 132 and 232 (0.003). (Bottom) three MZ: namely 104 and 204 (0.733), 106 and

206 (0.366), 131 and 231 (0.366).

similar since the points are concentrated around the diagonal of the DD-plot while those of

DZ twins differ (see also Liu et al., 1999). Second, this closeness of the MZ twins underlines

the high quality of the curve registration using the the geometrical matching (Section 3.5.2)

in the sense that (each of) these two bundles of curves are meant to substantially coincide.

Recently, neuroscientists have discovered that several structures in the brain are in-

fluenced by our genetics; see, e.g., (Wen et al., 2016). This suggests a genetically-driven

spatial organisation of corticospinal brain fibers. This biological hypothesis can be statisti-

cally confirmed by applying the depth-based Wilcoxon testing procedure introduced by Liu

and Singh (1993) and further described in (López-Pintado and Romo, 2009). For each pair

of twins, 500 fibers were considered selected at random from the first twin as a reference

sample. Then 50 fibers from each twin were used (selected at random among the remaining

fibers) to calculate the test statistic value. The p-values, computed using the normal asymp-

totic null distribution given by Lehmann and D’Abrera (1975), are provided in Figure 3.7.

They are small for DZ twins and large for MZ twins, a statistical evidence in favor of this

biological hypothesis.

95

Chapter 4

Functional anomaly detection

Functional anomaly detection aims at identifying the curves that significantly differ from

the others among the data set available. Given the richness of spaces of functions, the major

difficulty lies in the huge diversity in the nature of the observed differences, which may not

only depend on the locations of the curves. Following in the footsteps of Hubert et al.

(2015), one may distinguish between three types of anomalies: shift (the observed curve has

the same shape as the majority of the sample except that it is shifted away), amplitude or

shape anomalies. All these three types of anomalies can be isolated/transient or persistent,

depending on their duration with respect to that of the observations. One may easily admit

that certain types of anomalies are harder to detect than others: for instance, an isolated

anomaly in shape compared to an isolated anomaly in amplitude.

In the context of anomaly detection, work with functional data presents two main diffi-

culties. First, functional spaces are very rich and are difficult to handle, and in particular

to identify types of anomalies not present in the training data set. The second difficulty is

that the practitioner only has access to partial observations of data. A preliminary step of

basis expansion is often used to represent data recorded at discrete times as a continuous

function and to reduce noise in data. Even more, basis expansion allows registration into a

common argument-scale if observation arguments are not the same across records. Although

functional data analysis has been the subject of much attention in recent years, very few

generic and flexible methods tailored to functional anomaly detection are documented in

the machine-learning literature except for specific types of anomalies.

Most popular approach, usually referred to as filtering, consists in bringing the anomaly

detection problem to the multivariate case by means of an adequate projection using func-

tional principal component analysis (FPCA) (Ramsay and Silverman, 2005) or a prelim-

inarily selected basis of the function space considered (e.g. Fourier, wavelets) and apply

next an anomaly detection algorithm designed for the finite-dimensional setup to the re-

sulting representation (for an overview of such methods, see Chandola et al., 2009). This

method has an obvious drawback: In FPCA, estimation of the Kahrunen-Loève basis can

be very challenging and lead to loose approximations, jeopardizing next the anomaly detec-

tion stage, while the a priori representation offered by the “atoms” of a predefined basis

or frame may unsuccessfully capture the patterns carrying the relevant information to dis-

Chapter 4 Functional isolation forest

tinguish abnormal curves from the others. Another approach is based on the notion of

minimum volume sets (MV-sets in shortened version), originally introduced in Einmahl and

Mason (1992) and that generalizes the concept of quantiles to multivariate distributions

and offers a nice nonparametric framework for anomaly detection in finite dimension, see

Scott and Nowak (2006)’s work. Given the fact that no analogue of Lebesgue measure on

an infinite-dimensional Banach space exists and since, considering a law λ of reference (e.g.

the Wiener or a Poisson measure) on the function space H of interest, the volume λ(C) of a

measurable subset C ⊂ H can be hardly computed in general, it is far from straightforward

to extend MV-set estimation to the functional setup.

The angle embraced in this chapter is quite different. The direct approach promoted

here is free from any preliminary representation stage and can be straightforwardly applied

to a functional data set. Precisely, in the subsequent Section 4.1, it is proposed to extend

the isolation forest algorithm (Liu et al., 2008) to the functional data framework, in a very

flexible way, so as to deal with a wide variety of abnormal shapes.

In statistics, although its applications are by no means restricted to anomaly detection,

the concept of functional data depth that allows to define a notion of centrality in the

path space and a center-outward ordering of the curves of the functional data set, see, e.g.,

(Cuevas et al., 2007, Claeskens et al., 2014, Hubert et al., 2015), has been used for this

purpose. However, since the vast majority of functional depth functions introduced only

describe the relative location properties of the sample curves, they generally fail to detect

other types of anomalies. In Section 4.2, a novel notion of functional depth is proposed,

which proves efficient for a wide spectrum of anomalies and particularly the isolated ones.

4.1 Functional isolation forest

In this section, the functional anomaly detection algorithm is proposed. First, in Sec-

tion 4.1.1, preliminary materials regarding multivariate anomaly detection, which are im-

portant for presentation of the further material, are recalled. Then, in Section 4.1.2, the

functional isolation forest algorithm is presented and questions of parameter tuning are

discussed. Further, Section 4.1.3 gives a brief synopsis of the simulation study. Finally,

Section 4.1.4 concludes by indicating the connection between the method and the concept

of data depth.

4.1.1 Preliminaries

Let us begin with detailing forest-based multivariate anomaly-detection approaches, which

ideas are essential for their functional extension. Thus, the isolation forest (IF) algorithm

is briefly recalled, as well as its score-predicting mechanism, and its recent data-geometry-

adapting modification called extended isolation forest.

97

Chapter 4 Functional isolation forest

Isolation forest

As a first go, let us describe the isolation forest algorithm for anomaly detection in the

multivariate context in a formalized manner for clarity’s sake, as well as its extended isolation

forest version, see (Liu et al., 2008, 2012) and (Hariri et al., 2021) respectively. These two

unsupervised algorithms can be viewed as ensemble learning methods insofar as they build

a collection of binary trees and an anomaly scoring function based on the aggregation of the

latter. Let X = {x1, . . . , xn} be a training sample composed of n independent realizations

of a generic random variable, X, that takes its values in a finite dimensional Euclidian

space, Rd say, and the upper indexing will be used to refer to its constituents (=variables)

X = (X(1), . . . , X(d))⊤.

An isolation tree (itree in abbreviated form) T of depth J ≥ 1 is a proper binary tree that

represents a nested sequence of partitions of the feature space Rd. The root node corresponds

to the whole space C0,0 = Rd, while any node of the tree, indexed by the pair (j, k) where j

denotes the depth of the node with 0 ≤ j < J and k, the node index with 0 ≤ k ≤ 2j − 1, is

associated to a subset Cj,k ⊂ Rd. A non terminal node (j, k) has two children, corresponding

to disjoint subsets Cj+1,2k and Cj+1,2k+1 such that Cj,k = Cj+1,2k ∪ Cj+1,2k+1. A node (j, k) is

said to be terminal if it has no children.

Each itree is obtained by recursively filtering a subsample of training data of size ψ in

a top-down fashion, by means of the following procedure. The data set composed of the

training observations present at a node (j, k) is denoted by Xj,k. At iteration k + 2j of the

itree growing stage, a direction m in {1, . . . , d}, or equivalently a split variable X(m), is

selected uniformly at random (and independently from the previous draws) as well as a split

value κ in the interval [minx∈Xj,k
x(m), maxx∈Xj,k

x(m)] corresponding to the range of the

projections of the points inXj,k onto them-th axis. The children subsets are then defined by

Cj+1,2k = Cj,k∩{x ∈ Rd : x(m) ≤ κ} and Cj+1,2k+1 = Cj,k∩{x ∈ Rd : x(m) > κ}, the children
training data sets being defined as Xj+1,2k = Xj,k∩Cj+1,2k and Xj+1,2k+1 = Xj,k∩Cj+1,2k+1.

An itree T is thus built by iterating this procedure until all training data points are

isolated (or the depth limit J set by the user is attained). A preliminary subsampling stage

can be performed in order to avoid swamping and masking effects, when the size of the

data set is too large. When it isolates any training data point, the itree contains exactly

ψ − 1 internal nodes and ψ terminal nodes. An itree constructed accordingly to a training

subsample allows to assign to each training datapoint xi a path length hT (xi), namely the

depth at which it is isolated from the others, i.e. the number of edges xi traverses from the

root node to the terminal node that contains the sole training data xi. More generally, it

can be used to define an anomaly score for any point x ∈ Rd.

Anomaly score prediction

As the terminal nodes of the itree T form a partition of the feature space, one may then

define the piecewise constant function hτ : Rd → N by: ∀x ∈ Rd,

hτ (x) = j if and only if x ∈ Cj,k and (j, k) is a terminal node.

98

Chapter 4 Functional isolation forest

This random path length is viewed as an indication for its degree of abnormality in a natural

manner: ideally, the more abnormal the point x, the higher the probability that the quantity

hτ (x) is small. Hence, the algorithm above can be repeated N ≥ 1 times in order to produce

a collection of itrees T1, . . . , TN , referred to as an i forest, that defines the scoring function

sn(x) = 2−
1

Nc(ψ)

∑N
l=1 hτl (x), (4.1)

where c(ψ) is the average path length of unsuccessful searches in a binary search tree, see

(Liu et al., 2008) for further details.

Extended isolation forest

Observing that the geometry of the abnormal regions of the feature space is not necessar-

ily well-described by perpendicular splits (i.e. by unions of hypercubes of the cartesian

product Rd), a more flexible variant of the procedure recalled above has been proposed in

(Hariri et al., 2021), in the purpose of bias reduction. Rather than selecting a direction in

{1, . . . , d}, one may choose a direction u ∈ Sd−1, denoting by Sd−1 the unit sphere of the

Euclidean space Rd. A node is then cut by choosing randomly and uniformly a threshold

value in the range of the projections onto this direction of the training data points lying in

the corresponding region. As the authors illustrate in their work, in certain situations (e.g.,

bi-modal distributions) this brings substantial improvement over the existing IF algorithm

when estimating the contours of normal data.

4.1.2 The FIF algorithm

Consider the problem of learning a score function s : H → R that reflects the degree of

abnormality of the elements in an infinite dimensional space H w.r.t. the random function

F . LetH be equipped with a scalar product ⟨., .⟩H. In the following, the proposed functional

isolation forest (FIF) algorithm is described in detail and its properties are discussed.

A functional isolation forest is a collection of functional isolation trees (F-itrees) built

from F = {f1, . . . , fn}, a training sample composed of independent realizations of a

functional random variable, F , that takes its values in H. Given a functional observation

f , the score returned by FIF is a monotone transformation of the empirical mean of the

path lengths hτl(f) computed by the F-itrees Tl, for l = 1, . . . , N as defined in (4.1) in the

multivariate case. While the general construction principle depicted in Section 4.1.1 remains

the same for a F-itree, dealing with functional values raises the issue of finding an adequate

feature space to represent various properties of a function. A function may be considered

as abnormal according to various criteria of location and shape, and the features should

permit to measure such properties. Therefore four ingredients have been introduced to

handle functional data in a general and flexible way: (i) a set of candidate split variables and

(ii) a scalar product both devoted to function representation, (iii) a probability distribution

to sample from this set and select a single split variable, (iv) a probability distribution to

select a split value. The entire construction procedure of a F-itree is described in detail in

Algorithm 4.1 right below.

99

Chapter 4 Functional isolation forest

Algorithm 4.1 (Construction procedure of a F-itree)

Input: A subsample {f1, . . . , fψ}, a dictionary D, a probability measure ν and a scalar

product ⟨·, ·⟩H.

1. Initialization: The root node indexed by (0, 0) is associated with the whole input

space C0,0 = H. The construction starts with the training data set F0,0 = {f1, . . . , fψ}
composed of n i.i.d. realizations of the random variable F . Go to (2.) with (j = 0, k =

0).

2. Stopping criterion: Test if the node (j, k) is terminal: a node (j, k) is declared as

terminal if the intersection between the current set Cj,k and the current training set

Fj,k is reduced to a single data point or to a set of predefined cardinal. If the node is

terminal, then stop the construction for this node, otherwise go to (3.).

3. Children node construction: A non-terminal node (j, k) is split in three steps as

follows:

(a) Choose a split variable g according to the probability distribution ν on D.

(b) Choose randomly and uniformly a split value κ in the interval[
min
f∈Fj,k

⟨f, g⟩H, max
f∈Fj,k

⟨f, g⟩H
]
.

(c) Form the children subsets

Cj+1,2k = Cj,k ∩ {f ∈ H : ⟨f, g⟩H ≤ κ},
Cj+1,2k+1 = Cj,k ∩ {f ∈ H : ⟨f, g⟩H > κ},

as well as the children training data sets

Fj+1,2k = Fj,k ∩ Cj+1,2k and Fj+1,2k+1 = Fj,k ∩ Cj+1,2k+1.

4. Recursion: Apply the building procedure starting from (2.) to nodes (j + 1, 2k) and

(j + 1, 2k + 1).

Output: (C(0,0), C(1,1), . . .).

Function representation

To define the set of candidate split variables, a direct extension of the original IF algorithm

(Liu et al., 2008) would be to randomly draw an argument value (e.g. time), and use

functional evaluations at this point to split a node, but this boils down to only rely on

instantaneous observations of functional data to capture anomalies, which in practice will

be usually interpolated. Drawing a direction on a unit sphere as in (Hariri et al., 2021)

is no longer possible due to the potentially excessive richness of H. To circumvent these

100

Chapter 4 Functional isolation forest

difficulties, the observations are projected on elements of a dictionary D ⊂ H that is chosen

to be rich enough to explore different properties of data and well appropriate to be sampled

in a representative manner. More explicitly, given a function g ∈ D, the projection of a

function f ∈ H on D, ⟨f, g⟩H defines a feature that partially describes f . When considering

all the functions of dictionary D, one gets a set of candidate split variables that provides a

rich representation of function F , depending on the nature of the dictionary. Dictionaries

have been throughly studied in the signal processing community to achieve sparse coding of

signals, see ,e.g., Mallat and Zhang (1993). They also provide a way to incorporate a priori

information about the nature of the data, a property very useful in an industrial context in

which functional data often come from the observation of a well known device and thus can

benefit from expert knowledge.

Sampling a split variable Once a dictionary is chosen, a probability distribution ν on

D is defined to draw a split variable g. Note that the choice of the sampling distribution

ν gives an additional flexibility to orientate the algorithm towards the search for specific

properties of the functions.

Sampling a split value Given a chosen split variable g and a current training data set

Fj,k, a split value is uniformly drawn in the real interval defined by the smallest and largest

values of the projections on g when considering the observations present in the node.

Choice of dictionary and scalar product

The choice of a suited dictionary plays a key role in construction of the FIF anomaly

score. The dictionary can consist of deterministic functions, incorporate stochastic ele-

ments, contain the observations from F , or be a mixture of several mentioned options.

In computational harmonic analysis, a wide variety of bases or frames, such as wavelets,

ridgelets, cosine packets, brushlets and so on, have been developed in the last decades in

order to represent efficiently/parsimoniously functions, signals or images exhibiting specific

form of singularities (e.g. located at isolated points, along hyperplanes) and may provide

massive dictionaries. The following ones will be used throughout this section: mexican hat

wavelet dictionary, Brownian motion dictionary, Brownian bridge dictionary, cosine dictio-

nary, uniform indicator dictionary, dyadic indicator dictionary, and the self-data dictionary

containing the data set itself. See Sections B and C in Supplementary Materials of Staerman

et al. (2019) for detailed definitions of these dictionaries and further discussion on them,

respectively.

Besides the dictionary, the scalar product defined on H brings additional flexibility to

detect different types of anomalies. While L2 scalar product allows for detection of location

anomalies, L2 scalar product of derivatives (or slopes) would allow to detect anomalies

regarding shape. This last type of anomalies can be challenging; e.g. Hubert et al. (2015)

mention that shape anomalies are more difficult to detect, and Mosler and M. (2017) argue

that one should consider both location and slope simultaneously for distinguishing complex

curves. Beyond these two, a wide diversity of scalar products can be used, involving a

101

Chapter 4 Functional isolation forest

variety of L2-scalar products related to derivatives of certain orders, like in the definition of

Banach spaces such as weighted Sobolev spaces, see Maz’ya (2011).

The FIF algorithm, together with all mentioned above dictionaries, has been imple-

mented as Python software which can be downloaded from the following link:

https://github.com/GuillaumeStaermanML/FIF.

4.1.3 Ability to detect variety of anomalies

As discussed above, most of the state-of-the-art methods have a focus on a certain type

of anomalies and are unable to detect various deviations from the normal behavior. The

flexibility of the FIF algorithm allows for choosing the scope of the detection by selecting

both the scalar product and the dictionary. By choosing appropriate scalar product and

dictionary, FIF is able to detect a great diversity of deviations from normal data. To account

for both location and shape anomalies, the following scalar product will be employed that

provides a compromise between the both

⟨f, g⟩ := α× ⟨f, g⟩L2

||f || ||g||
+ (1− α)× ⟨f

′, g′⟩L2

||f ′|| ||g′||
, α ∈ [0, 1] ,

with its use being illustrated right below. Thus, setting α = 1 yields the classical L2 scalar

product, α = 0 corresponds to the L2 scalar product of derivative, and α = 0.5 is the Sobolev

W1,2 scalar product. To illustrate the FIF’s ability to detect a wide variety of anomalies

at a time, let us calculate the FIF anomaly scores with the Sobolev scalar product and

the gaussian wavelets dictionary for a sample consisting of 105 curves defined as follows

(inspired by Cuevas et al., 2007, see Figure 4.1):

• 100 curves defined by f(t) = 30(1− t)qtq with q equispaced in [1, 1.4],

• 5 abnormal curves composed by one isolated anomaly x0(t) = 30(1 − t)1.2t1.2 with a

jump at t = 0.7, one magnitude anomaly x1(t) = 30(1 − t)1.6t1.6 and three kinds of

shape anomalies x2(t) = 30(1 − t)1.2t1.2 + sin(2πt), x3(t) = 30(1 − t)1.2t1.2 noised by

ε ∼ N (0, 0.32) on the interval [0.2, 0.8] and x4(t) = 30(1− t)1.2t1.2 + 1
2
sin(10πt).

One can see that the five anomalies, although very different, are all detected by FIF

which delivers a significantly differing score.

For an extensive simulation and real-data study the reader is referred to Section 4

of Staerman et al. (2019) and to it accompanying Supplementary Materials.

4.1.4 Connection to data depth

FIF can be easily extended to the multivariate functional data, i.e. when the quantity of

interest lies in Rd for each moment of time:

F : Ω −→ (H([0, 1]))⊗d

ω 7−→
(
(F1(ω))t∈[0,1], . . . , (Fd(ω))t∈[0,1]

)
102

https://github.com/GuillaumeStaermanML/FIF

Chapter 4 Functional isolation forest

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

1

2

3

4

5

6

7
x(

t)
x0
x1
x2
x3
x4

0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100
Index of sorted curves

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

x0
x1
x2
x3
x4

Figure 4.1: The simulated data set with the five introduced anomalies (left). The scored

data set (middle), the darker the color, the more the curves are considered anomalies. The

sorted anomaly score of the data set (right).

For this, the coordinate-wise sum of the d corresponding scalar products is used to project

the data onto a chosen dictionary element:

⟨f ,g⟩H⊗d :=
d∑
i=1

⟨fi, gi⟩H.

Further, a dictionary should be defined in (H([0, 1]))⊗d. This can be done, e.g., by either

componentwise application of one or several univariate dictionaries from Section 4.1.2 above

and Section B in Supplementary Materials of Staerman et al. (2019), or by construction of

special d-variate ones. For illustration purposes, regard the following example constructed

0 20 40 60 80 100
Index of sorted curves

0.40

0.45

0.50

0.55

0.60

0.65

Sc
or

e

Threshold

x
0.20.40.60.81.0

y
0.2 0.4 0.6 0.8

Time

0.0
0.2
0.4
0.6
0.8
1.0

Figure 4.2: FIF anomaly scores for a sample of 110 digits (100 “7”s and 10 “2”s). Left

plot corresponds to the sorted score of these curves. Right plot represents the digits in three

dimensions, green ones correspond to normal data, anomaly score increases from yellow to

dark blue. Bottom plot shows the fifteen detected anomalies.

103

Chapter 4 Functional isolation forest

based on the MNIST (LeCun et al., 1998) data set. First, the digits’ contours (skeletons)

are extracted using skimage Python library (Van Der Walt et al., 2014). Then, each obser-

vation is transformed into a curve in (L2([0, 1])×L2([0, 1])) (one vertical and one horizontal

coordinates) using length parametrization on [0, 1]. An anomaly detection problem is con-

structed by taking 100 curves from class “7” and adding 10 observations from class “2”. FIF

is applied with the two-dimensional sinecosine dictionary and the following scalar product:

⟨f ,g⟩(L2)⊗d =
∑d

i=1⟨fi, gi⟩L2 . sinecosine is constructed as a direct extension of cosine dictio-

nary introduced for FIF by selecting randomly cosine or sine function on each coordinates.

Figure 4.2 shows anomaly detection using the visual elbow rule to define the threshold.

Among those detected, five digits are indeed “7”s, but do not resemble them and thus are

identified as anomalies.

Regarding FIF score as an anomaly ranking yields a connection to the notion of the

statistical depth function. Letting sn(f ;F) denote FIF score of function f w.r.t. a functional

data set F , a data depth measure based on FIF score can be defined for (multivariate)

functional data as: FDFIF (f |F) = 1− sn(f ;F).
Data depth proves to be a useful tool for a low-dimensional data representation called

DD-plot. Using this property, Li et al. (2012) and Lange et al. (2014b) define a DD-

plot classifier which consists in applying a multivariate classifier to the depth-based map.

Low-dimensional representation is of particular interest for functional data and a DD-plot

classifier can be defined using the FIF-based data depth. Let Strn = S1 ∪ ... ∪ Sq be a

training set for supervised classification containing q classes, each subset Sj standing for

class j. The depth map is defined as follows:

f 7→ ξ(f) =
(
FDFIF (f |S1), ..., FDFIF (f |Sq)

)
∈ [0, 1]q .

As an illustration, let us apply the depth map to 3 digits (“1”, “5” and “7”, 100 obser-

vations per digit for training and 100 for testing) of the MNIST dataset after their transfor-

mation to bivariate functions as bove (see Figure 4.3). One observes appealing geometrical

interpretation (observe, e.g., the location of the abnormally distant—from their correspond-

ing classes—observations) and a clear separation of the classes. To illustrate separability,

Dep
th

w.r.t
.

1

0.30
0.35

0.40
0.45

0.50
0.55

0.60
Depth w.r.t. 7

0.30 0.35 0.40 0.45 0.50 0.55 0.60

Depth w.r.t.
5

0.40

0.45

0.50

0.55

0.60

Figure 4.3: Depth space embedding of the three digits (“1”, “5” and “7”) of the MNIST

dataset.

104

Chapter 4 Geometric depth approach

linear multiclass (one-against-all) SVM was applied in the depth space, which delivers the

accuracy of 99% on the test data.

4.2 Geometric depth approach

In this section, a novel notion of depth for functional data is proposed: the area-of-the-

convex-hull (ACH) depth. As seen from the simulation and real-data study of Section 4.2.4,

this notion is well suited for detection of functional anomalies, and in particular the isolated

anomalies. The rest of the section is organized as follows. In Section 4.2.1, the proposed

depth notion is directly introduced. Next, Section 4.2.2 discusses its statistical and compu-

tational properties. Further, in Section 4.2.3 the question of tuning the hyperparameters is

tackled. Finally, Section 4.2.4 benchmarks the proposed functional depth against the state-

of-the-art methods. Implementation of the ACH depth can be found under the following

link: https://github.com/GuillaumeStaermanML/ACHD.

4.2.1 The area of the convex hull of functions

The purpose here is to present at length the statistical depth function proposed for path-

valued random variables. As shall be seen below, its definition is based on very simple

geometrical ideas and various desirable properties can be easily checked from it. Statistical

and computational issues are also discussed at length. By K2 is meant the collection of all

compact subsets of R2 and λ denotes Lebesgue measure on the plane R2. Consider an i.i.d.

sample F1, . . . , Fn drawn from the same distribution as a random function F belonging to

a class of random measures P(C([0, 1])). The graph of any function f in C([0, 1]) is denoted
by

graph(f) = {(t, y) : y = f(t), t ∈ [0, 1]},

while graph({f1, . . . , fn}) denotes the set

n⋃
i=1

graph({fi})

defined by a collection of n ≥ 1 functions {f1, . . . , fn} in C([0, 1]). Now, let us give a precise

definition of the proposed statistical depth measure for random variables valued in C([0, 1]).

Definition 4.1 (Staerman et al., 2020) Let J ≥ 1 be a fixed integer. The ACH depth of

degree J is the function FDACH(J) : C([0, 1])×P(C([0, 1]))→ [0, 1] defined by: ∀f ∈ C([0, 1]),

FDACH(J)(f |F) = E
[

λ (conv (graph ({F1, . . . , FJ})))
λ (conv (graph ({F1, . . . , FJ} ∪ {f})))

]
,

where F1, . . . , FJ are i.i.d. random functions drawn as F . Its average version FDACH(J) is

defined by: ∀f ∈ C([0, 1]),

FDACH(J)(f |F) =
1

J

J∑
j=1

DACH(j)(f |F).

105

https://github.com/GuillaumeStaermanML/ACHD

Chapter 4 Geometric depth approach

The choice of J leads to various views on the random function F , the average variant

permitting to combine all of the realisations (up to degree J). When the size of the functional

sample F = {f1, . . . , fn}, n ≥ J , an unbiased statistical estimation of FDACH(J)(·|F) can be

obtained by computing the symmetric U -statistic of degree J , see Lee (1990): ∀f ∈ C([0, 1]),

FDACH(J)(f |F) =
1(
n
J

) ∑
1≤i1<...<iJ≤n

λ (conv (graph ({fi1 , . . . , fiJ})))
λ (conv (graph ({fi1 , . . . , fiJ , f})))

. (4.2)

Considering the empirical average version given by

∀f ∈ C([0, 1]), FDACH(J)(f |F) =
1

J

J∑
j=1

FDACH(j)(f |F)

brings some “stability”. However, the computational cost rapidly increasing with J , small

values of J are preferred in practice. Moreover, as illustrated in Section 4.2.3, J = 2 already

yields satisfactory results.

4.2.2 Statistical and computational properties

First, let us state the properties satisfied by the (average) ACH depth function:

• (Non-degeneracy) For any non atomic random function F belonging to P(C([0, 1])),
one has

inf
f∈C([0,1])

FD(f |F) < sup
f∈C([0,1])

FD(f |F).

• (Affine invariance) The depth FD is said to be (scalar-) affine invariant if for any

f in C([0, 1]) and all a, b in R, one has

FD(f, F) = FD(af + b|aF + b).

• (Vanishing at ∞) For any non atomic random function F belonging to P(C([0, 1])),

FD(f |F) −→
||f ||∞−→∞

inf
g∈C([0,1])

FD(g|F).

• (Continuity in f) For any non atomic random function F belonging to P(C([0, 1])),
the function f 7→ FD(f |F) is continuous w.r.t. the sup norm.

• (Continuity in F) For all f in C([0, 1]), the mapping from P(C([0, 1])) F 7→ FD(f |F)
is continuous w.r.t. the Lévy-Prohorov metric.

Proposition 4.1 (Staerman et al., 2020) For all J ≥ 1, the depth function FDACH(J)(f |F)
(resp., FDACH(J)(f |F)) fulfills the following properties: ’non-degeneracy’, ’affine invari-

ance’, ’vanishing at infinity’, ’continuity in f ’ and ’continuity in F ’.

106

Chapter 4 Geometric depth approach

In a functional space, not satisfying maximality at center is not an issue. For instance,

though the constant trajectory f(t) ≡ 0 is a center of symmetry for the Brownian motion,

it is clearly not representative of this distribution. In contrast, scalar-affine invariance is

relevant, insofar as it allows z-normalization of the functional data and continuity in P

is essential to derive the consistency of FDACH(J)(·|F) (respectively, of FDACH(J)(·|F)), as
stated below.

Theorem 4.1 (Staerman et al., 2020) Let J ≥ 1 and F1, . . . , Fn be n ≥ J independent

copies of a generic random function F belonging to P(C([0, 1])). As n → ∞, one has, for

any f ∈ C([0, 1]), with probability one,∣∣FDACH(J)(f |F)− FDACH(J)(f |F)
∣∣→ 0

and ∣∣FDACH(J)(f |F)− FDACH(J)(f |F)
∣∣→ 0.

As mentioned above, only sampled curves are available in practice. Each random curve

Fi being observed at fixed time points 0 = t
(i)
1 < t

(i)
2 < . . . < t

(i)
pi = 1 (potentially different

for each Fi) with pi ≥ 1, denote by F ′
1, . . . , F

′
n the continuous curves reconstructed from the

sampled curves (Fi(t
(i)
1), . . . , Fi(t

(i)
pi)), 1 ≤ i ≤ n, by linear interpolation. From a practical

perspective, one considers the estimator FD′
ACH(J)(f |F) of FDACH(J)(f |F) given by the

approximation of FDACH(J)(f |F) obtained when replacing the Fi’s by the F ′
i ’s in (4.2). The

(computationally feasible) estimator FD
′
ACH(J)(f |F) of FDACH(J)(f |F) is constructed in a

similar manner. The result stated below shows that this approximation stage preserves

almost-sure consistency.

Theorem 4.2 (Staerman et al., 2020) Let J ≤ n. Suppose that, as n→∞,

δ = max
1≤i≤n

max
2≤k≤pi

{
t
(i)
k+1 − t

(i)
k

}
→ 0.

As n→∞, for any f ∈ C([0, 1]), with probability one it holds∣∣FD′
ACH(J)(f |F)− FDACH(J)(f |F)

∣∣→ 0

and ∣∣∣FD′
ACH(J)(f |F)− FDACH(J)(f |F)

∣∣∣→ 0.

Given the batch of continuous and piecewise linear curves F ′
1, . . . , F

′
n, although the com-

putation cost of the area of their convex hull is of order O(p log p) with p = maxi pi, that

of the U-statistic FD′
ACH(J)(f |F) (and a fortiori that of FD

′
ACH(J)(f |F)) becomes very ex-

pensive as soon as
(
n
J

)
is large. As pointed out in López-Pintado and Romo (2009), the

choice J = 2 for statistics of this type may lead to a computationally tractable procedure,

while offering a reasonable representation of the distribution. Varying J permits to capture

much more information in general. For this reason, an incomplete version of the U -statistic

FD′
ACH(J)(f |F) is computed using a basic Monte-Carlo approximation scheme with K ≥ 1

107

Chapter 4 Geometric depth approach

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

x(
t)

x0
x1
x2
x3

0.0 0.2 0.4 0.6 0.8 1.0
−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

Figure 4.4: Data sets (a) (left) and (b) (right) containing 100 paths with four selected

observations. The colors are the same for the four selected observations of both data sets

(a) and (b).

n 2n 3n 4n 5n 10n 20n 35n 50n 75n
K

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Sc
or

e J = 2
J = 3
J = 4

n 2n 3n 4n 5n 10n 20n 35n 50n 75n
K

0.45

0.50

0.55

0.60

0.65

0.70
Sc
or
e

Figure 4.5: Boxplots of the approximations of FDACH(J)(x0|F) (left) and FDACH(J)(x3|F)
(right) over different size of K. The black crosses correspond to the exact depth measure

FDACH(J)(·|F) for each J respectively.

replications: rather than averaging over all
(
n
J

)
subsets of {1, . . . , n} with cardinality J to

compute FD′
ACH(J)(f |F), one averages over K ≥ 1 subsets drawn with replacement, form-

ing an incomplete U-statistic, see Enqvist (1978). The same approximation procedure can

be applied (in a randomized manner) to each of the U -statistics involved in the average

FD
′
ACH(J)(f |F), as described in Supplementary Materials of Staerman et al. (2020).

4.2.3 Choosing tuning parameters K and J

For the sake of simplicity, the two same simulated data sets, represented in Figure 4.4, are

used throughout this and the following subsections. The data set (a) corresponds to sample

path segments of the geometric Brownian motion with mean 2 and variance 0.5, a stochastic

process widely used in statistical modeling. The data set (b) consists of smooth curves given

by f(t) = a cos(2πt) + b sin(2πt), t ∈ [0, 1], where a and b are independently and uniformly

distributed on [0, 0.05], as proposed by Claeskens et al. (2014). Four curves
{
xi : i ∈

{0, 1, 2, 3}
}
have been incorporated to each data set: a deep curve and three atypical curves

(anomalies), with expected depth-induced ranking FDACH(J)(x3|F) < FDACH(J)(x2|F) ≈
FDACH(J)(x1|F) < FDACH(J)(x0|F).

108

Chapter 4 Geometric depth approach

Parameter K reflects the trade-off between statistical performance and computational

time. In order to investigate its impact on the stability of the method, let us compute depths

of the deepest and most atypical curves (x0 and x3) for data set (b), taking J = 2, 3, 4.

Figure 4.5 presents boxplots of the approximated ACH depth (together with the exact

values of ACH depth) over 100 repetitions. Note that, as expected, depth values grow with

J . The variance of the depth decreases taking sufficiently small values for K = 5n and

almost disappearing for K ≥ 20n, while decreasing pattern remains the same for different

values of K. For these reasons, K = 5n is kept in what follows.

The choice of J is less obvious, and clearly when describing an observation in a functional

space a substantial part of information is lost anyway. Nevertheless, one observes that

computational burden increases exponentially with J and thus smaller values are preferable.

Figure 4.6 shows the rank-rank plots of data sets (a) and (b) for small values of J = 2, 3, 4

and indicates, that depth-induced ranking does not change much with J . Thus, for saving

computational time, value J = 2 is used in all subsequent experiments.

4.2.4 Robustness and anomaly detection

Under robustness of a statistical estimator one understands its ability not to be “disturbed”

by atypical observations. Here, robustness of ACH depth is explored in the following sim-

ulation study: between the original data set and the same data set contaminated with

0 20 40 60 80 100
0

20

40

60

80

100

Ra
nk

2 vs 3

0 20 40 60 80 100
0

20

40

60

80

100

3 vs 4

0 20 40 60 80 100
0

20

40

60

80

100

2 vs 4

0 20 40 60 80 100

Rank
0

20

40

60

80

100

Ra
nk

0 20 40 60 80 100

Rank
0

20

40

60

80

100

0 20 40 60 80 100

Rank
0

20

40

60

80

100

Figure 4.6: Rank-rank plot for different values of J (2, 3 and 4). The top plots represent

the ranks over the data set (a) while the bottom plots represent those over the data set (b).

109

Chapter 4 Geometric depth approach

anomalies, (averaged over 10 random repetitions) Kendall’s τ distance is measured, of two

depth-induced rankings σ and σ′, respectively, of the original data:

dτ (σ, σ
′) =

n(n− 1)

2

∑
i<j

I{(σ(i)−σ(j))(σ′(i)−σ′(j))<0} .

In their overview work, Hubert et al. (2015) introduce taxonomy for atypical observa-

tions, focusing on location, isolated, and shape anomalies. Here, location anomalies are

added to data set (a) and isolated and shape anomalies to data set (b); other types of

anomalies for both data sets can be found in Supplementary Materials of Staerman et al.

(2020). The abnormal functions are constructed as follows. Location anomalies for data set

(a) are x̃(t) = x(t) + ax(t) with a drawn uniformly on [0, 1]. Isolated anomalies for data

set (b) are constructed by adding a peak at t0 (drawn uniformly on [0, 1]) of amplitude b

(drawn uniformly on [0.03, 0.06]) such that ỹ(t0) = y(t0) + b and ỹ(t) = y(t) for any t ̸= t0.

Shape anomalies for data set (b) are z̃(t) = z(t)+0.01× cos(2πtγ)+0.01× sin(2πtγ) with γ

drawn uniformly from {1, 2, ..., 10}. By varying the percentage of abnormal observations α,

ACH depth is compared to several of the most know in the literature depth approaches: the

functional projection depth based on Stahel-Donoho outlyingness (FSDO) (Hubert et al.,

2015) (see Definition 3.1) and the functional Tukey depth (FT) (Claeskens et al., 2014) (be-

ing univariate version of FDMFHD with constant weighting, see Definition 3.5), and also to

the functional isolation forest (FIF) algorithm (see Section 4.1 and Staerman et al., 2019)

Table 4.1: Kendall’s tau distances between the ranks returned for normal data (σ0) and

contaminated data (σα, over different portion of contamination α with location, isolated and

shape anomalies) for ACHD and three state-of-the-art methods. Bold numbers indicate best

stability of the ranks over the contaminated data sets.

dτ (σ0, σα)(×10−2)

α 0 5 10 15 25 30

ACHD

Location 0 0.6 1.3 2.2 4.3 5.2

Isolated 0 0.3 1.3 0.9 1.6 2.4

Shape 0 0.9 2 2.6 4.2 4.7

FSDO

Location 0 3.6 7.3 10 16 20

Isolated 0 0.8 3.6 3.2 7.2 9.4

Shape 0 1.6 2.9 4.2 6.6 7.4

FT

Location 0 5.1 9.5 13 20 23

Isolated 0 0.7 2.7 2.7 5.9 7.2

Shape 0 1.7 2.9 4.3 6.6 7.7

FIF

Location 0 7 8.2 7.3 7.3 8.9

Isolated 0 9.3 12 11 10 12

Shape 0 7.4 7.9 10 14 14

110

Chapter 4 Geometric depth approach

0.0 0.5 1.0 1.5 2.0 2.5 3.0

a

2

4

6

8

10

12

14

N
um

be
r

of
 a

no
m

al
ie

s
de

te
ct

ed Location Anomalies

ACHD
FSDO
FT
FIF

0 2 4 6 8 10

b

2

4

6

8

10

12

14

Isolated Anomalies

1.0 1.2 1.4 1.6 1.8 2.0

e

2

4

6

8

10

12

Shape Anomalies

Figure 4.7: Number of anomalies detected over a grid of parameters for three types of

anomalies (location, isolated, and shape) for ACHD and three further state-of-the-art meth-

ods.

which proves satisfactory anomaly detection; see Table 4.1. One can observe that ACH

depth consistently preserves depth-induced ranking despite inserted abnormal observations,

even if their fraction α reaches 30%. FSDO behaves competitively giving slightly better

results than ACH depth for shape anomalies.

Further, let us explore the ability of ACH depth to detect atypical observations. For

this, an experiment is conducted in settings similar to the one from above, while changing

degree of abnormality gradually for 15 (out of 100 curves) in data set (a). Thus, a in [0, 3]

is altered for location anomalies, b in [0, 10] for isolated anomalies, and e in [1, 2] for shape

anomalies to amplify the “spikes” of oscillations such that z̃(t) = ez(t). (For an illustration

of abnormal curves the reader is referred to Supplementary Materials of Staerman et al.,

2020). Figure 4.7 indicates number of anomalies detected by ACHD, FSDO, FT, and FIF

for different parameters of abnormality. While it is difficult to find the general winner,

ACHD behaves favorably in all the considered cases and clearly outperforms the two other

depths when the data is contaminated with isolated anomalies.

Let us conclude this section with a real-world data benchmark based on three data sets:

Octane (Esbensen et al., 2002, Rousseeuw et al., 2006), Wine (Larsen et al., 2006), and

EOG (Dau et al., 2018). The Wine data set consists of 397 measurements of proton nuclear

magnetic resonance spectra of 40 different wine samples, the Octane data set contains 39

near infrared spectra of gasoline samples with 226 measurements, while the EOG data set

Table 4.2: Portion of detected anomalies of benchmark methods for the Octane, Wine, and

EOG data sets.

ACHD FSDO FT FIF IF OC

Octane 1 0.5 0.33 1 0.5 0.5

Wine 1 0 0 1 0 1

EOG 0.73 0.55 0.48 0.43 0.63 0.6

111

Chapter 4 Geometric depth approach

represents the electrical potential between electrodes placed at points close to the eyes with

1250 measurements (graphs of the three data sets can be found in Supplementary Materials

of Staerman et al., 2020). As pointed out by Hubert et al. (2015), it is difficult to detect

anomalies in the first two data sets, while they are easily seen during the human eye in-

spection. For the EOG data set, assign smaller of the two classes to be abnormal. To the

existing state-of-the-art methods, isolation forest (IF) (Liu et al., 2008) and the one-class

SVM (OC) (Schölkopf et al., 2001) are added here—multivariate methods applied after a

proper dimension reduction (to the dimension 10) using FPCA (Ramsay and Silverman,

2002). Portions of detected anomalies (by all the considered methods), indicated in Ta-

ble 4.2, hint on very competitive performance of ACH depth in the addressed benchmark.

112

Chapter 5

Outlook and conclusions

This chapter gathers projects on which I plan to work in the years to come. Naturally, the

degree of details is the strongest for the first of them, and gradually decreases throughout

the chapter.

Section 5.1 describes the project being a fusion of methodology, computation, implemen-

tation and applications aimed to make data depth available for treatment of contemporary

large-scale data. Section 5.2 delineates the project involving an industrial collaboration

to provide anomaly detection tools for heterogenous and large-scale data measured on a

production line. Section 5.3 enumerates two more projects, challenging to different degree.

Section 5.4 concludes.

5.1 Large-scale data depth: computation and applica-

tions

In the past decades, data analysis became ubiquitous in many scientific fields, with the

notion of data depth being one of its powerful tools, which brought answers to important

contemporary questions. As such, today, it confronts challenges of big data often impaired

by curse of high dimensionality on scales unimaginable until recently, with hyperspectral

imagery, DNA microarrays, financial high-frequency series and social networks being only

a few examples. While data depth is becoming of increasing importance in applications,

practitioners are still limited by computational burden of algorithms and shortage of imple-

mentations.

Analogously with other depth notions, Chapter 1 of this manuscript suggests methods

for computation of data depth in low dimensions, with algorithms quickly becoming timely

infeasible. It is the case already, e.g., with d > 3 for projection or simplicial depth, d > 5 for

the halfspace depth, and d > 20 for zonoid depth, and this when X contains only several

thousand points. Clearly, this is far not sufficient for contemporary demand, e.g.: many

thousands of brain scans, with around n = 106 points each, for a single axonal path; many

thousands of high-resolution spectra containing (dozens) thousands (= d) of wavelengths

each. For this reason, depth applications even to moderate-size data are scarce in the lit-

Chapter 5 Large-scale data depth: computation and applications

erature with few recent references (Dutta et al., 2016, Jeong et al., 2016, Kleindessner and

Von Luxburg, 2017) only. Large-scale real-data applications of data depth are underdevel-

oped.

While axiomatics for data depth has been thoroughly investigated—in the form of re-

quired statistical properties—this literature almost entirely ignores its computational as-

pects, which are so important since being the main limitation. From this point of view,

computation of each depth function seems to be rather art than science. Furthermore,

computational properties of data depth are as good as never explicitly taken into account

during development of succeeding depth notions. It is thus planned to systematically elab-

orate on both points. By taking into consideration optimization (say in u ∈ Rk), the depth

function D(x,u,X) shall be regarded simultaneously as both depth measure (for x) and

optimization problem (with respect to u), the novel approach unknown in the preceding

literature.

Methodology

Statistical properties of D are expressed with respect to its argument x ∈ Rd. Computation

of D usually narrows down to optimization of a function u 7→ D(x,u,X), for a multivariate

u. Thus, the first and main objective is to establish connections between properties of D as

a function of x and as a function of u. This shall be accomplished using the techniques of

the sum-of-squares method of proofs, see, e.g., Hopkins (2020), Barak and Steurer (2017).

Research shall start with the class of depths that satisfy the projection property (Dyckerhoff,

2004), i.e., for which it holds D(x|X) = infu∈Sd−1 D1(x⊤u|X⊤u), with X⊤u being a short-

cut for observation-wise projection of X on u. The univariate depth D1 is a well-studied

function such as distribution function for the halfspace depth or robustified Wald statistic

for projection depth. Based on this particular case, generalizations to more complicated

depth functions shall be developed.

The second objective is to tackle the question of optimization, accompanied by statistical

guarantees in particular tractable cases. For purely stochastic search methods, uniform con-

vergence rates were derived for the population version of the halfspace depth in Section 1.5.

These suffer from the curse of dimensionality. However, a guided higher-dimensional opti-

mization setting explored in Section 1.4 has illustrated a substantially improved behavior

allowing for satisfactory approximation in as few as several hundred optimization steps. A

combination of both approaches shall be developed to enable gradient-based optimization

of stochastically smoothed u 7→ D(x,u,X).

Third, an efficient implementation as a Python freely accessible library shall be built,

with the working name data-depth. With Python being the most used programming lan-

guage in the area of machine learning and artificial intelligence, this should increase the

impact of the developed methods and algorithms, facilitate search for the tool, and reduce

the effort of the practitioners.

Fourth, attention-attracting applications shall be created based on codes of the developed

Python library, here are the two examples:

114

Chapter 5 Anomaly detection for large-scale and heterogeneous data of production lines

• Large-scale solution for disease cause investigation in the area of brain imaging based

on DTI scans of the Old Australian Twins Study (OATS) which includes the tasks

of curve registration, outlier detection, and statistical comparison of monozygotic and

dizygotic twins, for high-dimensional imaging on thousands of individuals.

• Large-scale statistical treatment of multivariate spectra of the construction materials

is aimed to provide automatized quality control of the rock mining. Outlier and novelty

detection for dozens of thousands of these curves shall increase the amount of rock

locations being tested, and reduce the cost of the elaborate procedure involving visual

inspection by an engineer and experimental testing.

These topics assemble into the project named “Large-scale data depth: computation and

applications” (acronym LS-Depth-CaP), that has been funded by the Young Researcher

Grant of the French National Research Agency (ANR AAPG JCJC 2021) and shall be

conducted together with PhD student Jérémy Guérin, who started his PhD thesis under my

supervision in April 2022.

5.2 Anomaly detection for large-scale and heteroge-

neous data of production lines

The main topic of this project is anomaly detection (Chandola et al., 2009)—a branch of

machine learning aiming at identification of abnormal, outlying events. Methods of this

rapidly developing field usually return a score, by thresholding which normal and abnormal

observations are separated. In a number of applications, the anomalies learning process is

not supervised completely (Rousseeuw and Hubert, 2018), i.e., it is either semi-supervised

or unsupervised at all; this is due to the difficulty to define an anomaly (e.g., an item passing

all production tests can still break when in field) and their normally rare occurrence in the

data.

Today, anomaly detection applied to industrial production processes faces numerous

challenges. First of them is the large scale of the acquired data which is due to rapid de-

velopment of sensors and the interconnectivity of the devices in the Industry 4.0 concept.

Second, heterogeneous data that arrive in differing numbers of measurements in an asyn-

chronous manner complicates employment of existing generic techniques. Third challenge

consists in interpretability, i.e., capacity not only to detect abnormalities but as well provide

(a hint on) the reason for their occurrence.

Industrial context

The planned project will be closely related to a group of assembly production lines owned

by the Valeo enterprise. More precisely, four production lines are considered, namely three

lines manufacturing inverter, rotor, and stator, and the fourth one assembling the mentioned

components into a single motor. Each production line consists of a number of workstations,

115

Chapter 5 Anomaly detection for large-scale and heterogeneous data of production lines

sequentially connected by workflow of passing them items being assembled, and ends with

the testing equipment (finalized with labeling and visual inspection for quality items). The

data shall be provided on the settings of the workstations, there measured parameters of the

passing items, as well as detailed testing results from all the four lines; accompanied with the

corresponding tracing time stamps and identifiers, respectively. For this ensemble of lines,

techniques of anomaly detection shall be developed to detect defects/deviations on the level

of produced items, personnel work shifts, stations’ equipment, and to analyze/establish the

cause(s) of potential problem(s).

Involved methods

Introduced several decades ago (Tukey, 1975), and having undergone theoretical formaliza-

tion (Zuo and Serfling, 2000, Mosler, 2013) and recent computational developments (Pokotylo

et al., 2019), the concept of the data depth function proves a universal methodology for

anomaly detection (Hubert et al., 2015). For any observation, it returns its measure of

centrality in a given data set, and thus observations with higher depth values are represen-

tative while those possessing low depth are considered as abnormalities. Multiple definitions

of data depth applicable not only for multivariate, but also for functional and time-series

data (Nieto-Reyes and Battey, 2016), as well as curve data (Lafaye De Micheaux et al.,

2022) (useful when treating functional observations with differing duration) transformed it

into a versatile tool particularly suitable for anomaly detection.

Another angle to anomaly detection consists in building minimum volume sets for the

empirical probability distribution. Then, data points external to these sets are detected

as anomalies. Among several minimum level sets estimation approaches, one-class support

vector machines (OC-SVM) (Schölkopf et al., 2001) have emerged as one of the most powerful

unsupervised methods as witnessed by numerous successful real-world applications during

the last decade (Shin et al., 2005). OC-SVM leverages two key ingredients, a relevant loss

function and the kernel trick. Kernel-based machine learning methodology (Schölkopf and

Smola, 2002) comes as a universal remedy to tackle in a unique framework data of various

nature. Kernels which can be thought of as similarities between data allow to handle

structured (Gärtner, 2003) or dimension-varying (Song et al., 2013) data, a key feature here

since the manufacturing is performed in phases (work shifts) and without any constant time

grid—results of input/output that varies in time and dimension.

Material of this section constitutes the project named “Anomaly detection for large-

scale and heterogenous data of production lines”, that has been funded under the Industrial

Convention of Education by Research (CIFRE) in collaboration with the global automo-

tive supplier Valeo and shall be conducted together with PhD student—co-supervised with

Florence D’Alché-Buc—Romain Valla, whos started his PhD thesis in February 2022.

116

Chapter 5 Miscellaneous

5.3 Miscellaneous

The multi-scale α-procedure

The first development of my PhD thesis was the DDα-classifier, a proper combination of

the depth transform and of the α-procedure, published in a cited also today Lange et al.

(2014b). Together with a number of depths, the DDα-classifier has been implemented in

the R-package ddalpha (Pokotylo et al., 2019). Nevertheless, caged by the data depth, the

potential of the α-procedure has not been fully explored there.

The proposal is to embed the α-procedure (Lange and M., 2014)—an iterative heuris-

tic synthesizing the space of relevant features—in a reproducing kernel Hilbert space. To

provide a finite-dimensional basis (necessary to run the α-procedure), projections on the

training sample are planed to be used (other choices are, of course, possible), which can

be orthogonalized by the Gram-Schmidt method employing the so-called kernel trick. Due

to built-in robustness (by the indicator-risk nature) and regularization (by the iterative

nature), the method proves “reserve against over-fitting”. The reverse Gram-Schmidt

process shall further allow for a simple multi-scale classification rule of the form, e.g.

c(x) = sign
∑n

i=1 αiKσi(x,xi) with x being the observation to be classified, {xi}ni=1 being

the points form the training sample, and Kσi(·, ·) being the kernel with parameter σi. (Due

to the multi-scale nature only a few coefficients should differ from zero.)

Iterative nature of the α-procedure allows to attack directly the desired risk function

not resorting to a surrogate loss. However, the kernel (parameter(s)) should be tuned. The

suggestion is thus, to incorporate tuning (e.g. by cross-validation (CV)) in each iteration

of the α-procedure, thus allowing for multi-scale training, without affecting the complexity

compared to global tuning (which is not possible in most existing methods, e.g. those based

on the support vector machine Cortes and Vapnik, 1995).

Possessing exact computational complexity of O(n3 log n) and approximate complexity

of O(n2 log n) in each step (which can be further reduced using sub-sampling), the method

becomes competitive even computationally with the state-of-the-art of the supervised clas-

sification. Different to the artificial neural networks, the solution is example-based, ex-

plainable, and is potentially inferential. Although the proposal is on an early stage and

needs both theoretical and implementation development, there exists an experimental im-

plementation and first results show encouraging performance for high-dimensional data; e.g.

delivering almost perfect separation in a non-trivial case of 100 points in dimension 100.

Theoretical challenge consists in proving convergence of the classifier, as well as deriving

probability bounds—a highly demanded question necessary to deliver reliable solution also

by industrial actors. This is planned to be done in three steps: (1) derivation of the

theoretical guarantees for the original α-procedure (Lange and M., 2014) in the Euclidean

space, a still open question; (2) extending this to the case where the CV-estimated error

during tuning is assumed to be exact; (3) development of a full argument for the proposed

methodology.

117

Chapter 5 Miscellaneous

On the probability of general position

Statistical methods usually involve computational procedures, which eventually constitute

algorithms, are programmed in software and executed on a computer. During development

of such algorithms, the question of numerical precision is rarely taken seriously into ac-

count. On the other hand, these statistical methods often depend on—even if very general—

assumptions of different nature. If these assumptions, in order, involve numerical precision

as well, and are in practice difficultly verifiable, the validity of the promised theoretical

results can be questioned.

Here, the assumption of general position (see Definition 1.7) is planned to be studied

from this point of view. While the assumption of general position guarantees the theoretical

result on outcome of several algorithms, it can be more rarely than thought satisfied in

practice, as it shall be seen right below.

For many statistical methods and algorithms, unless especially designed for such con-

ditions, clamping of points and/or their concentration in sub-spaces of Rd is troublesome.

This is usually expressed by assumptions on the results that guarantee the correctness of

the outcome, one of the main ones being that X satisfies Definition 1.7. This is espe-

cially the case for the literature on the statistical data depth function (Zuo and Serfling,

2000, Mosler, 2013)—the emerging area of numerous theoretical developments and increas-

ing practical importance. Thus, algorithms for computation of the most famous Tukey’s

halfspace depth (Tukey, 1975) rely (Liu and Zuo, 2014a, Liu, 2017) on or mention (Dyck-

erhoff and M., 2016) this assumption; it is also a necessary condition for computation of

the halfspace trimmed regions (Hallin et al., 2010, Paindaveine and Šiman, 2011, Liu et al.,

2019). Further, for the celebrated halfspace depth, this is a necessary condition for certain

theoretical results (Donoho and Gasko, 1992, Liu et al., 2020). This also refers to other

depth notions: Definition 1.7 is crucial for computation of zonoid trimmed regions (Mosler

et al., 2009) as well as the general weighted-mean trimmed regions (Bazovkin and Mosler,

2012), and the projection depth, contours, and median (Liu and Zuo, 2014b).

To proceed, let us first restate the assumption of general position more formally. Con-

sider an ensemble of the in a d-dimensional Euclidean space Rd which contains n elements

(=points or observations) Sn = (x1, ...,xn). The (...) operator is used here to insist on the

fact that subsets of identical (or indistinguishable) elements can be included in Sn, and thus

strictly speaking it does not fall in to the category of a “set”. This is nevertheless very often

the case in practice, even for continuous variables, due to the measurement or registration

precision, which is directly connected to the leitmotiv of the present task. For an arbitrary

ensemble X of points in Rd, denote AS(X) the affine subspace they engender:

AS(X) =
{ k∑
j=1

λjxj |x1,,xk ∈ X , λ1, ..., λk ∈ R ,
k∑
j=1

λj = 1
}
.

Denoting by #(A) the number of elements in the set A, one can define the general position.

Definition 5.1 (General position) An ensemble Sn is in general position if:

#
(
AS(xj1 , ...,xjk) ∩ Sn

)
= k ∀ j1, ..., jk ⊂ {1, ..., n} ∀ k = 1, ..., d .

118

Chapter 5 Miscellaneous

Algorithm 5.1 Exact algorithm for checking the ε-numerical general position

1: function IsInGeneralPosition(d,x1, . . . ,xn, ε)

2: for k ← 1 to d do

3: for each subset I ⊂ {1, . . . , n} of cardinality k do

4: if k = 1 then ▷ Special treatment for k = 1, i.e., single point

5: j ← element of I

6: for i← 1 to n do

7: if i ̸= j and ∥xi − xj∥ ≤ ε then ▷ Not the same point but too close

8: return False

9: else

10: A← [a1 . . . al] = the (column) orthogonal normal basis of AS
(
(xi)i∈I

)
11: if l < k − 1 then ▷ (xi)i∈I not linearly independent

12: return False

13: for i← 1 to n do

14: if i /∈ I and ∥xi −AA⊤xi∥ ≤ ε then ▷ Too close to I’s subspace

15: return False

16: return True

The question to be answered is the following: For a data set Sn (consisting of n obser-

vations) generated from a known (or suspected) distribution in Rd, what is the probability

that it is in ε-numerical general position?

Let us start by developing simple algorithmic foundations which allow for checking

whether a sample Sn is in general position provided precision ε, estimation of the prob-

ability of general position by a Monte Carlo simulation, and as a consequence verification

of the approximation strategies to be developed.

Basic computations are gathered in Algorithm 5.1 that tests Sn for the ε-numerical

general position based on the following idea: For each subset of I ⊂ {1, . . . , n} of cardinality
#I = k ∈ {1, . . . , d}, one compares to ε the Euclidean distance from each point (except

those ∈ (xi)i∈I) to (its projection on) AS
(
(xi)i∈I

)
. Provided an orthogonal normal basis

A of AS
(
(xi)i∈I

)
, for an arbitrary point x ∈ Rd, this distance can be calculated as ∥xi −

AA⊤xi∥ with ∥ · ∥ standing for the Euclidean norm. Clearly, to assure the correctness of

Algorithm 5.1 the numerical precision of the resting routines, such as basis computation or

matrix multiplication, should be order(s) higher than ε, with the preference for ε2.

The time complexity of Algorithm 5.1 is dominated by the number of combinations of

k points out of n and thus totals to O(d3nd+1). On the other hand, early stop criterion can

be applied as long as deviation from the ε-numerical general position is found for at least

one point and one affine subspace engendered by k points from Sn.
Algorithm 5.1 allows to gain first insights into the requested probability of the general

position assumption; see Figure 5.1.

Algorithm 5.1 is simple and is presented only for verification purposes: although it

allows for a very precise Monte Carlo estimation of this probability for any distribution

119

Chapter 5 Final word

Changing ε Student-t Correlation

10 20 50 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gaussian distribution: eps = 1e−3, 1e−4, 1e−5

Number of points in the data sample

P
ε [

ge
ne

ra
l p

os
iti

on
]

10 20 50 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gaussian, Student−t2, Cauchy

Number of points in the data sample

P
1e

−
04

 [g
en

er
al

 p
os

iti
on

]

10 20 50 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gaussian, correlation = 0.95, 0.75, 0

Number of points in the data sample

P
1e

−
04

 [g
en

er
al

 p
os

iti
on

]

(a) (b) (c)

Figure 5.1: Empirically approximated (over 1000 repetitions) probability of the ε-numerical

general position as a function of the size of the bivariate data sample Sn for n varying from

10 to 100. (a): For the standard Gaussian distribution with ε equal to 10−3 (solid line),

10−4 (dased line), and 10−5 (dotted line). (b): For Gaussian (solid line), Student-t2 (dashed

line), and Cauchy (dotted line) distributions without correlation; ε = 10−4. (c): For a

Gaussian distribution with variance 1 on both axes and correlation equal to 0.95 (solid line),

0.75 (dashed line), and without correlation (dotted line); ε = 10−4.

from which observations can be generated, such an estimation is very time consuming,

especially with increasing space dimension and/or sample size. E.g., for the trivial case

with d = 5, n = 75, ε = 10−8, single execution of Algorithm 5.1 takes (on an average)

around 12 seconds if the data are in general position and around 6 seconds if they are not,

an thus an estimation based on 1000 repetitive draws would take up to two hours (measured

on a single core of the 3.5 GHz Dual-Core Intel Core i7 processor).

Thus, to answer this question in a reasonable time, for real data sets and first examples

of distributions, either an analytical tool or a precise approximating algorithm should be

developed.

5.4 Final word

Learning from data has illustrated uncountable successes in the past decades and became a

general methodology for knowledge extraction from real-world observations. Its approaches

rely profoundly on providing a meaningful ordering of data. In unsupervised machine learn-

ing, data ordering uncovers the structure of raw, unlabeled data, e.g., by data clustering or

anomaly detection. It measures degree of adherence to a class in the supervised learning.

In data analysis, data ordering explores the geometry of data, allows for their relevant vi-

sualization, estimation of location and scatter, and statistical inference. Intrinsically based

on data ordering, cumulative distribution function, quantiles, and ranks are ubiquitous for

presentation of data or summary of analysis and crucial for definition of losses in machine

learning models.

Distinguishable from existing methods, data depth defines centrality-based order, and

therefore extends median, quantiles, ranks, and outliers to higher dimensions, and eventually

to more complex data. It is nonparametric and fully data driven, and thus does not assume

120

Chapter 5 Final word

a data generating process. It possesses attractive asymptotic and finite-sample properties

(e.g., parametric rates) and gives rise to statistical inference. Definitions of data depth

are robust, explicit and easy to interpret. By dint of these advantages, depth is used in a

variety of tasks across domains and—though on small scale—has already been applied to

contemporary challenges

For data depth in particular and in statistics in general, computational constituent plays

an important role in its sustainable development. To survive practitioner’s challenge, and be

used during a period of time, statistical methods shall be accompanied with (theoretically

or heuristically founded) computing algorithms, them implementing software packages, and

attention-attracting application examples (preferably based on the real-world data). More-

over, efficient implementation (developed with good understanding of the installed operating

system and architecture), though (usually) does not change algorithmic complexity itself,

can substantially reduce its constants, and thus push further the limits of computational

intractability. While correctness of the results of both methods and algorithms can be con-

ditional on assumptions, these should take into account—in the best case and if this is

possible—machine precision as well.

On the other hand, it becomes quickly clear that satisfying certain ensembles of statistical

requirements (e.g., nonparametricity, robustness, demanded invariance(s), fast convergence

rates, etc.) can be computationally costly: halfspace depth being one of the main topics

of this manuscript is an example. This of course does not mean that the task shall be

abandoned and compromises can be found. If the data set is not very large, and/or compu-

tational resources/time are available, computation can be still performed, with respect to

the trade-off between task importance and ecological consequences. Should one refuse using

the statistical method of choice if this is not the case? One way to nevertheless keep on is to

use approximate computation, searching for a compromise between precision and calcula-

tion time; this may affect statistical properties as well. Another way—to still stick to exact

computing—consists in weakening statistical requirements to the method. One can hope,

that providing a general-purpose framework for this aim would help statistician/practitioner

to target better the application task.

121

Appendix A

A note on implementations

All of the mentioned developed methods described in this manuscript possess implementa-

tions. Below, these are briefly mentioned, with a section per software. Section A.3 provides

information about the fast procedures implemented for nonparametric frontier analysis (in

Stata and R), which are closely connected in logic and source codes particularly to Sec-

tion 1.3. Two articles resulted from these programs: Pokotylo et al. (2019) (corresponding

to Section A.1 below) and Badunenko and M. (2016) (corresponding to Section A.3 below).

A.1 R-package ddalpha

Having undergone theoretical and computational developments, data depth is today em-

ployed in numerous applications with classification being a popular one. The R package

ddalpha (Pokotylo et al., 2020) is a software directed to fuse experience of the applicant

with recent achievements in the area of data depth and depth-based classification.

ddalpha provides an implementation for exact and approximate computation of most

known and widely applied notions of data depth. These can be further used in the depth-

based multivariate and functional classifiers implemented in the package, where the DDα-

procedure (Lange et al., 2014b, M., 2015) is in the main focus. The package is expandable

with user-defined custom depth methods and separators. The implemented functions for

depth visualization and the built-in benchmark procedures may also serve to provide insights

into the geometry of the data and the quality of pattern recognition.

Today, the R-package ddalpha contains procedures for exact and approximate computa-

tion of 11 notions of multivariate data depth function, and versatile tools for depth-based

supervised learning, including necessary visualization, diagnosis, and inference. It further

offers an extension to functional data and routines for calculating certain notions of statisti-

cal depth functions. Most of the functions of the package are programmed in C++, in order to

be fast and efficient. Moreover, 50 multivariate and 5 functional ready-to-use classification

data sets are included.

A comprehensive practical guide for the R-package ddalpha was published as Pokotylo

et al. (2019).

Appendix A R-package TukeyRegion

A.2 R-package TukeyRegion

Tukey (or halfspace) regions are polytopes in the Euclidean space, viz. upper-level sets

of the halfspace depth function on given data. Using implementation of the algorithms of

Section 1.3, in R-package TukeyRegion (M. and Barber, 2021) the bordering hyperplanes of

a Tukey region can be computed, as well as its vertices, facets, centroid, and volume. In

addition, the Tukey median set, which is the non-empty Tukey region having highest depth

level, and its barycenter (= Tukey median) are calculated. Tukey regions are visualized in

dimension two and three.

A.3 Stata commands for non-parametric frontier anal-

ysis and R-package npsf

The concept of efficiency is at the core of production economics. Beginning with the pio-

neering work by Cobb and Douglas (1928), there were many attempts to parametrize the

production process: e.g., Leontieff, constant elasticity of substitution, transcendental log-

arithmic production and cost functions. Conceptually, however, researchers looked at the

“average” input-output relationship assuming no inefficiency. Yet, it was no longer plausible

to assume that all units are homogeneous, that is, operating at the same level of efficiency.

Among the first to offer an appropriate modification was Farrell (1957), who built up on the

concept of efficiency postulated by Koopmans (1951) and Debreu (1951) and put forward

a foundation, which has become a distinct field in economics—the efficiency analysis. Färe

(1988), Färe et al. (1994), Färe and Primont (1995) provide many insights into nonpara-

metric efficiency measurement.

Data envelopment analysis (DEA), a leading analytical technique for measuring relative

efficiency, has been widely used by both academic researchers and practitioners in evalu-

ating the efficiency of decision making units in terms of converting inputs into outputs.

Researchers choose this technique because it does not impose a priori functional form and

allows for multiple output technologies.

Although the DEA method is typically considered to be deterministic, the efficiency is

still computed relatively to estimated and not true frontier. The efficiency scores obtained

from a finite sample are subject to sampling variation of the estimated frontier. Simar

and Wilson (1998, 2000, 2002) have laid out a statistical model and proposed consistent

bootstrap procedures to provide statistical inference regarding technical efficiency measures

in nonparametric frontier models.

Efficiency analysis

Implemented measures of technical efficiency for the production data points are conventional

radial Debreu-Farrell measures of efficiency loss (Debreu, 1951, Farrell, 1957). Due to the use

of several spaces, a change of notation is necessary. For each data point k (k = 1, . . . , K)

vector xk = (xk1, . . . , xkN) ∈ RN denotes N inputs, vector yk = (yk1, . . . , ykM) ∈ RM

123

Appendix A Stata commands for non-parametric frontier analysis and R-package npsf

denotes M outputs. It is assumed that under technology T the data (y,x) are such that

outputs are producible by inputs,

T = {(x,y) : y are producible by x} . (A.1)

The technology is fully characterized by its production possibility set,

P (x) ≡ {y : (x,y) ∈ T} (A.2)

or input requirement set,

L(y) ≡ {x : (x,y) ∈ T} . (A.3)

Conditions (A.2) and (A.3) imply that the available outputs and inputs are feasible.

The upper boundary of the production possibility set and lower boundary of the input

requirement set define the frontier. How far is a given data point from the frontier repre-

sents its efficiency. In output-based radial efficiency measurement, the amount of necessary

(proportional) expansion of outputs to move a data point to a boundary of the production

possibility set P (x) serves as a measure of technical efficiency. In input-based radial ef-

ficiency measurement, it is the amount of necessary (proportional) reduction of inputs to

move a data point to a boundary of the input requirement set L(y).

Empirically, technical efficiencies are estimated via activity analysis models. For K

data points, each possessing M outputs and N inputs, an estimate of the radial Debreu-

Farrell output-based measure of technical efficiency can be calculated by solving a linear

programming problem for each data point l (l = 1, . . . , K):

F̂ o
l (yl,xl,Y ,X|CRS) = max

θ,λ
θ (A.4)

s.t.
K∑
k=1

λkykm ≥ ylmθm,m = 1, · · · ,M,

K∑
k=1

λkxkn ≤ xln, n = 1, · · · , N,

λk ≥ 0.

Y is K ×M matrix of available data on outputs Y = (y1, . . . ,yK)
⊤, X is K × N matrix

of available data on inputs X = (x1, . . . ,xK)
⊤. The estimate of P (x) is the smallest

convex free-disposal hull that envelops the observed data, and upper boundary of which

is a piece-wise linear estimate of the true best-practice frontier of P (x). Equation (A.4)

defines constant returns to scale (CRS) specification. Other returns to scale are modeled

by adjusting process operating levels λk’s; for variable returns to scale (VRS) a convexity

constraint
K∑
k=1

λk = 1 is addedA.1, while for non-increasing returns to scale (NIRS),
K∑
k=1

λk ≤ 1

inequality is addedA.2 to set of restrictions of linear programming problem in equation (A.4).

A.1This equality ensures that data point l is compared only to data points of similar size; under CRS

assumption, data points of different sizes might be compared to one another.
A.2This inequality ensures that data point l is not compared to other data points that are considerably

larger, but maybe compared to smaller data points.

124

Appendix A Stata commands for non-parametric frontier analysis and R-package npsf

CRS

NIRS

VRS

(xi,yi)

(xj ,yj)

Input

Output

SEo

6

-

~

:

s
ss

s

s
s

CRS

NIRS

VRS

(xi,yi)

(xj ,yj)

Input

Output

SEi

6

-

?

s

s s s

s s s

Figure A.1: Output-based (left) and input-based (right) technical and scale efficiency.

To facilitate the discussion, Figure A.1 presents hypothetical one-input one-output pro-

duction process with three different technologies CRS, VRS and NIRS. Conceptually, in Fig-

ure A.1, left (right) the vertical (horizontal) distance from a data point (xi,yi) or (xj,yj)

to CRS/VRS/NIRS best-practice frontier stands for output-based (input-based) technical

efficiency under assumption of CRS/VRS/NIRS technology. In a multi-dimensional case,

the required distance is the radial path from a data point that is parallel to axes along which

all outputs (inputs) are measured.

For data point (yl,xl), radial measure expands (shrinks) allM outputs yl = (yl1, . . . , ylM)

(N inputs xl = (xl1, . . . , xlN)) proportionally until the frontier is reached. At the reached

frontier point, some but not all outputs (inputs) can therefore be expanded (shrinked) while

remaining feasible. Nonradial efficiency measures compensate for this by allowing outputs

(inputs) to change disproportionately, while frontier restrictions are still to be satisfied. For

more details on its difference from the radial efficiency measure, the reader is invited to

consult Section 2.2 of Badunenko and M. (2016).

In Badunenko and M. (2016), five new Stata commands are introduced, that estimate

and provide statistical inference in nonparametric frontier models. First two commands,

tenonradial and teradial, estimate data envelopment models where technical efficiency

measures are computed (Färe, 1988, Färe and Lovell, 1994, Färe et al., 1994). These are

the core Stata commands for efficiency calculation, and are used in the three following

ones. Technical efficiency measures are obtained by solving linear programming problems.

The rest of the commands, teradialbc, nptestind, and nptestrts, give tools for making

statistical inference regarding radial technical efficiency measures (Simar and Wilson, 1998,

2000, 2002). The main computational advantage is gained by employing the step of first

computing the convex hull (using the procedure by Barber et al., 1996) to reduce the con-

straints of the linear problem, when this is necessary. The article (Badunenko and M., 2016)

125

Appendix A R-package imputeDepth

provides brief overview of the nonparametric efficiency measurement (Section 2), as well as

the description of syntax and options of new commands (Sections 3 to 7). Additionally, an

example showing the capabilities of new commands is provided. Finally, a small empirical

study of productivity growth is performed (Section 8).

Further, R-package npsf (Badunenko et al., 2020) implements the same functionality in

R and is continuously developed and maintained.

Moreover, an extensive simulation study regarding inference for nonradial efficiency mea-

surement can be found in Badunenko and M. (2020).

A.4 R-package imputeDepth

The R-package imputeDepth can be found in the following GitHub repository: https:

//github.com/pavlomozharovskyi/imputeDepth. It provides implementation of the ma-

terial of Chapter 2. More precisely, imputeDepth implements functions for single imputation

of missing data using 5 notions of multivariate depth function: Mahalanobis, zonoid, half-

space, projection and spatial depth. Several outsider-treating procedures are provided as

well. Further, procedures for imputation using local depth (according to the notion by

Paindaveine and Van Bever, 2013) and multiple imputation (for elliptically-symmetric dis-

tributions), as well as those for “improper imputation” are included.

A.5 R-package curveDepth

The R-package curveDepth (M. et al., 2019) implements the developments of Chapter 3,

which are ready for practical use. The Monte-Carlo estimation procedure is implemented

using both exact and approximate versions for the point curve depth. It is noteworthy, that

these implementations owe much to Sections 1.2 and 1.4. More precisely, the Tukey curve

depth is implemented, as well as it’s two-stage version to allow for maximal control over

the estimation process. Further, implementation of the Fréchet metric used on the space

of curves is provided. Finally, the voxelization procedure as well as the “0”-“1”-“7” part of

the MNIST data set (mentioned in Sections 6.2.1 and 6.2.2 of Lafaye De Micheaux et al.,

2022) A.3 are included with an example of pre-processing. It is expected, that R-package

curveDepth provides ready-to-use tools for conducting data analysis for (unparametrized)

curve data.

A.3For a comprehensive reference on the data, see http://yann.lecun.com/exdb/mnist/.

126

https://github.com/pavlomozharovskyi/imputeDepth
https://github.com/pavlomozharovskyi/imputeDepth
http://yann.lecun.com/exdb/mnist/

Bibliography

Adler, D., D. Murdoch, et al. (2021). rgl: 3D Visualization Using OpenGL. R package

version 0.108.3, https://CRAN.R-project.org/package=rgl.

Aizenman, M. and A. Burchard (1999). Hölder regularity and dimension bounds for random

curves. Duke Mathematical Journal 99 (3), 419–453.

Azzalini, A. (2013). The Skew-Normal and Related Families. Institute of Mathematical

Statistics Monographs. Cambridge University Press.

Azzalini, A. and A. Capitanio (1999). Statistical applications of the multivariate skew

normal distribution. Journal of the Royal Statistical Society: Series B (Methodological) 61,

579–602.

Badunenko, O. and P. M. (2016). Nonparametric frontier analysis using stata. Stata Jour-

nal 16 (3), 550–589.

Badunenko, O. and P. M. (2020). Statistical inference for the russel measure of technical

efficiency. Journal of the Operational Research Society 71, 517–527.

Badunenko, O., P. M., and Y. Kolomiytseva (2020). npsf: Nonparametric and Stochastic

Efficiency and Productivity Analysis. R package version 0.8.0, https://CRAN.R-project.

org/package=npsf.

Barak, B. and D. Steurer (2017). Proofs, Beliefs and Algorithms Through the Lens of Sum of

Squares. https://www.sumofsquares.org/public/lec-definitions-general.html.

Barber, C. B., D. P. Dobkin, and H. Huhdanpaa (1996). The quickhull algorithm for convex

hulls. ACM Transactions on Mathematical Software 22 (4), 469–483.

Bazovkin, P. and K. Mosler (2012). An exact algorithm for weighted-mean trimmed regions

in any dimension. Journal of Statistical Software 47 (13), 1–29.

Bazovkin, P. and K. Mosler (2015). A general solution for robust linear programs with

distortion risk constraints. Annals of Operations Research 229 (1), 103–120.

Beaudouin, V., I. Bloch, D. Bounie, S. Clémençon, F. D’Alché-Buc, W. Eagan, J.

nad Maxwell, P. M., and J. Parekh (2020a). Flexible and context-specific ai explain-

ability: A multidisciplinary approach. arXiv:2003.07703 .

https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=npsf
https://CRAN.R-project.org/package=npsf
https://www.sumofsquares.org/public/lec-definitions-general.html

Bibliography

Beaudouin, V., I. Bloch, D. Bounie, S. Clémençon, F. D’Alché-Buc, W. Eagan, J.

nad Maxwell, P. M., and J. Parekh (2020b). Identifying the “right” level of explanation

in a given situation. In A. Saffiotti, L. Serafini, and P. Lukowicz (Eds.), Proceedings of

the First International Workshop on New Foundations for Human-Centered AI (NeHuAI

2020 with ECAI 2020), pp. 63–66.

Bernholt, T. (2006). Robust estimators are hard to compute. Technical report, Dortmund

University.

Bertsekas, P. D. (1999). Nonlinear programming. Second edition. MIT Press.

Boček, P. and M. Šiman (2016). Directional quantile regression in octave (and matlab).

Kybernetika 52 (1), 28–51.

Bremner, D., D. Chen, J. Iacono, S. Langerman, and P. Morin (2008). Output-sensitive

algorithms for Tukey depth and related problems. Statistics and Computing 18, 259–266.

Brys, G., M. Hubert, and A. Struyf (2004). A robust measure of skewness. Journal of

Computational and Graphical Statistics 13 (4), 996–1017.

Burago, D., Y. Burago, and S. Ivanov (2001). A Course in Metric Geometry, Volume 33 of

Graduate Studies in Mathematics. American Mathematical Society, Providence, RI.

Burr, M. A. and R. J. Fabrizio (2017). Uniform convergence rates for halfspace depth.

Statistics and Probability Letters 124, 33–40.

Cascos, I. (2009). Data depth: multivariate statistics and geometry. In W. S. Kendall and

I. Molchanov (Eds.), New Perspectives in Stochastic Geometry. Oxford: Oxford University

Press.

Cascos, I. and I. Molchanov (2007). Multivariate risks and depth-trimmed regions. Finance

and Stochastics 11 (3), 373–397.

Chakraborty, A. and P. Chaudhuri (2014). The spatial distribution in infinite dimensional

spaces and related quantiles and depths. The Annals of Statistics 42 (3), 1203–1231.

Chandola, V., A. Banerjee, and V. Kumar (2009). Anomaly detection: A survey. ACM

Computing Surveys 41 (3), 1–58.

Chen, D., P. Morin, and U. Wagner (2013). Absolute approximation of Tukey depth: Theory

and experiments. Computational Geometry: Theory and Applications 46, 566–573.

Chernozhukov, V., A. Galichon, M. Hallin, and M. Henry (2017). Monge–kantorovich depth,

quantiles, ranks and signs. The Annals of Statistics 45 (1), 223–256.

Claeskens, G., M. Hubert, L. Slaets, and K. Vakili (2014). Multivariate functional halfspace

depth. Journal of the American Statistical Association 109 (505), 411–423.

128

Bibliography

Clayden, J., M. Modat, B. Presles, T. Anthopoulos, and P. Daga (2020). RNiftyReg:

Image Registration Using the ’NiftyReg’ Library. R package version 2.7.0, https:

//CRAN.R-project.org/package=RNiftyReg.

Cobb, C. W. and P. H. Douglas (1928). A theory of production. American Economic

Review, Supplement 18 (1), 139–165.

Collet, J.-P., H. Shuman, R. E. Ledger, S. Lee, and J. W. Weisel (2005). The elasticity of

an individual fibrin fiber in a clot. Proceedings of the National Academy of Sciences of

the United States of America 102 (26), 9133–9137.

Cortes, C. and V. Vapnik (1995). Support vector networks. Machine Learning 20, 273–297.

Cuesta-Albertos, J. and A. Nieto-Reyes (2008). The random Tukey depth. Computational

Statistics and Data Analysis 52, 4979–4988.

Cuevas, A., M. Febrero, and R. Fraiman (2007). Robust estimation and classification for

functional data via projection-based depth notions. Computational Statistics 22 (3), 481–

496.

Dau, H. A., E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanama-

hatana, Y. Chen, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, and Hexagon-ML

(2018, October). The ucr time series classification archive. https://www.cs.ucr.edu/

~eamonn/time_series_data_2018/.

Debreu, G. (1951). The coefficient of resource utilization. Econometrica 19, 273–292.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from in-

complete data via the em algorithm. Journal of the Royal Statistical Society. Series B

(Methodological) 39 (1), 1–38.

DeVore, R. A. and G. G. Lorentz (1993). Constructive Approximation, Volume 303 of

Grundlehren der mathematischen Wissenschaften. Springer-Verlag.

Donoho, D. (1982). Breakdown Properties of Multivariate Location Estimators. Ph. D.

thesis, Harvard University.

Donoho, D. L. and M. Gasko (1992). Breakdown properties of location estimates based on

halfspace depth and projected outlyingness. The Annals of Statistics 20 (4), 1803–1827.

Dua, D. and C. Graff (2017). UCI machine learning repository. http://archive.ics.uci.

edu/ml.

Dutta, S. and A. K. Ghosh (2012). On robust classification using projection depth. Annals

of the Institute of Statistical Mathematics 64, 657–676.

Dutta, S., A. K. Ghosh, and P. Chaudhuri (2011). Some intriguing properties of Tukey’s

half-space depth. Bernoulli 17 (4), 1420–1434.

129

https://CRAN.R-project.org/package=RNiftyReg
https://CRAN.R-project.org/package=RNiftyReg
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Bibliography

Dutta, S., S. Sarkar, and A. K. Ghosh (2016). Multi-scale classification using localized

spatial depth. Journal of Machine Learning Research 17, 1–30.

Dyckerhoff, R. (2002). Datentiefe: Begriff, Berechnung, Tests. Mimeo, Fakultät für

Wirtschafts-und Sozialwissenschaften, Universität zu Köln.

Dyckerhoff, R. (2004). Data depths satisfying the projection property. Allgemeines Statis-

tisches Archiv 88 (2), 163–190.

Dyckerhoff, R., G. Koshevoy, and K. Mosler (1996). Zonoid data depth: Theory and com-

putation. In A. Prat (Ed.), COMPSTAT ’96 – Proceedings in Computational Statistics,

Heidelberg, pp. 235–240. Physica-Verlag.

Dyckerhoff, R. and P. M. (2016). Exact computation of the halfspace depth. Computational

Statistics and Data Analysis 98, 19–30.

Dyckerhoff, R., P. M., and S. Nagy (2021). Approximate computation of projection depths.

Computational Statistics and Data Analysis 157, 107166.

Dyckerhoff, R. and K. Mosler (2011). Weighted-mean trimming of multivariate data. Journal

of Multivariate Analysis, 102 (3), 405–421.

Edelsbrunner, H. (1987). Algorithms in Combinatorial Geometry. Berlin, Heidelberg:

Springer.

Einmahl, J. and D. Mason (1992). Generalized quantile process. The Annals of Statistics 20,

1062–1078.

Einmahl, J. H. J., J. Li, and R. Y. Liu (2015). Bridging centrality and extremity: Refining

empirical data depth using extreme value statistics. The Annals of Statistics 43 (6), 2738–

2765.

Elmore, R. T., T. P. Hettmansperger, and F. Xuan (2006). Spherical data depth and a

multivariate median. In R. Y. Lui, R. Serfling, and D. L. Souvaine (Eds.), Data Depth:

Robust Multivariate Anaysis, Computational Geometry and Applications, Volume 72 of

Series in Discrete Mathematics and Theoretical Computer Science (DIMACS), pp. 87–

102. Providence, Rhode Island: American Mathematical Society.

Enqvist, E. (1978). On sampling from sets of random variables with application to incomplete

U-statistics. Ph. D. thesis, Lund University.

Esbensen, K., D. Guyot, F. Westad, and L. Houmoller (2002). Multivariate Data Analysis:

In Practice : an Introduction to Multivariate Data Analysis and Experimental Design.

CAMO.

Fang, K., S. Kotz, and K. Ng (1990). Symmetric multivariate and related distributions.

Monographs on statistics and applied probability. Chapman and Hall.

130

Bibliography

Färe, R. (1988). Fundumentals of Production Theory. Berlin: Springer.

Färe, R., S. Grosskopf, and C. A. K. Lovell (1994). Production Frontiers. Cambridge, U.K.:

Cambridge University Press.

Färe, R. and C. A. K. Lovell (1994). Measuring the technical efficiency of production.

Journal of Economic Theory 19, 150–162.

Färe, R. and D. Primont (1995). Multi-Output Production and Duality, Theory and Appli-

cations. Boston: Kluwer Academic Publishers.

Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal

Statistical Society. Series A (General) 120 (3), 253–290.

Febrero-Bande, M. and M. Oviedo de la Fuente (2012). Statistical computing in functional

data analysis: The R package fda.usc. Journal of Statistical Software 51 (4), 1–28.

Fischer, D., K. Mosler, J. Möttönen, K. Nordhausen, O. Pokotylo, and D. Vogel (2020).

Computing the oja median in R: The package OjaNP. Journal of Statistical Soft-

ware 92 (8), 1–36.

Fojt́ık, V., P. Laketa, P. Mozharovskyi, and S. Nagy (2022). On exact computation of Tukey

depth central regions. arXiv:2208.04587 .

Fraiman, R. and G. Muniz (2001). Trimmed means for functional data. Test 10 (2), 419–440.

Gärtner, T. (2003). A survey of kernels for structured data. ACM SIGKDD Explorations

Newsletter 5 (1), 49–58.

Genest, M., J.-C. Masse, and J.-F. Plante (2019). depth: Nonparametric Depth Functions

for Multivariate Analysis. R package version 2.1-1.1, https://CRAN.R-project.org/

package=depth.

Ghosh, A. K. and P. Chaudhuri (2005). On data depth and distribution free discriminant

analysis using separating surfaces. Bernoulli 11, 1–27.

Gijbels, I. and S. Nagy (2017). On a general definition of depth for functional data. Statistical

Science 32 (4), 630–639.

Goibert, M., S. Clémençon, E. Irurozki, and P. M. (2022). Statistical depth functions for

ranking distributions: definitions, statistical learning and applications. In G. Camps-

Valls, F. J. R. Ruiz, and I. Valera (Eds.), Proceedings of The Twenty Fifth International

Conference on Artificial Intelligence and Statistics (AISTATS 2022), Volume 151, pp.

10376–10406.

Habel, K., R. Grasman, R. B. Gramacy, P. M., and D. C. Sterratt (2019). geometry: Mesh

Generation and Surface Tessellation. R package version 0.4.5, https://CRAN.R-project.

org/package=geometry.

131

https://CRAN.R-project.org/package=depth
https://CRAN.R-project.org/package=depth
https://CRAN.R-project.org/package=geometry
https://CRAN.R-project.org/package=geometry

Bibliography

Hallin, M., E. Del Barrio, J. Cuesta-Albertos, and C. Matrán (2021). Distribution and

quantile functions, ranks and signs in dimension d: A measure transportation approach.

The Annals of Statistics 49 (2), 1139–1165.

Hallin, M., D. Paindaveine, and M. Šiman (2010). Multivariate quantiles and multiple-

output regression quantiles: From l1 optimization to halfspace depth. The Annals of

Statistics 38 (2), 635–669.

Hariri, S., M. C. Kind, and R. J. Brunner (2021). Extended isolation forest. IEEE Trans-

actions on Knowledge and Data Engineering 33 (4), 1479–1489.

Hastie, T., R. Mazumder, D. J. Lee, and R. Zadeh (2015). Matrix completion and low-

rank svd via fast alternating least squares. Journal of Machine Learning Research 16,

3367–3402.

Hastie, T. and W. Stuetzle (1989). Principal curves. Journal of the American Statistical

Association 84 (406), 502–516.

Hopkins, S. B. (2020). Mean estimation with sub-gaussian rates in polynomial time. The

Annals of Statistics 48, 1193–1213.

Hubert, M., P. J. Rousseeuw, and P. Segaert (2015). Multivariate functional outlier detec-

tion. Statistical Methods and Applications 24 (2), 177–202.

Ieva, F. and A. Paganoni (2013). Depth measures for multivariate functional data. Com-

munications in Statistics: Theory and Methods 41, 1265–1276.

Jeong, M.-H., Y. Cai, C. J. Sullivan, and S. Wang (2016). Data depth based clustering anal-

ysis. In M. Ali, S. Newsam, S. Ravada, M. Renz, and G. Trajcevski (Eds.), SIGSPACIAL

’16: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances

in Geographic Information Systems, Volume 29, New York, pp. 1–10. Association for

Computing Machinery.

Johnson, D. S. and F. P. Preparata (1978). The densest hemisphere problem. Theoretical

Computer Science 6, 93–107.

Jörnsten, R. (2004). Clustering and classification based on the l1 data depth. Journal of

Multivariate Analysis 90 (1), 67–89.

Josse, J. and F. Husson (2012). Handling missing values in exploratory multivariate data

analysis methods. Journal de la Société Française de Statistique 153 (2), 79–99.

Josse, J. and J. P. Reiter (2018). Introduction to the special section on missing data.

Statistical Science 33 (2), 139–141.

Kemppainen, A. and S. Smirnov (2017). Random curves, scaling limits and Loewner evolu-

tions. The Annals of Probability 45 (2), 698–779.

132

Bibliography

Kleindessner, M. and U. Von Luxburg (2017). Lens depth function and k-relative neigh-

borhood graph: versatile tools for ordinal data analysis. Journal of Machine Learning

Research 18, 1889–1940.

Koenker, R. and G. Basset (1978). Regression quantiles. Econometrica 46, 33–50.

Kong, L. and I. Mizera (2012). Quantile tomography: using quantiles with multivariate

data. Statistica Sinica 22 (4), 1589–1610.

Koopmans, T. C. (1951). An analysis of production as an efficient combination of activities.

In T. C. Koopmans (Ed.), Activity Analysis of Production and Allocation. New York:

Wiley.

Koshevoy, G. and K. Mosler (1997). Zonoid trimming for multivariate distributions. The

Annals of Statistics 25, 1998–2017.

Kosiorowski, D. and Z. Zawadzki (2019). Depthproc: An R package for robust exploration

of multidimensional economic phenomena. arXiv:1408.4542 .

Lafaye De Micheaux, P., P. M., and M. Vimond (2022). Depth for curve data and applica-

tions. Journal of the American Statistical Association 116 (536), 1881–1897.

Lange, T. and P. M. (2014). The alpha-procedure: a nonparametric invariant method for

automatic classification of multi-dimensional objects. In M. Spiliopoulou, L. Schmidt-

Thieme, and R. Janning (Eds.), Data Analysis, Machine Learning and Knowledge Dis-

covery, Berlin, pp. 79–86. Springer.

Lange, T., K. Mosler, and P. M. (2014a). DDα-classification of asymmetric and fat-tailed

data. In M. Spiliopoulou, L. Schmidt-Thieme, and R. Janning (Eds.), Data Analysis,

Machine Learning and Knowledge Discovery, Berlin, pp. 71–78. Springer.

Lange, T., K. Mosler, and P. M. (2014b). Fast nonparametric classification based on data

depth. Statistical Papers 55 (1), 49–69.

Larsen, F., F. Berg, and S. Engelsen (2006). An exploratory chemometric study of h nmr

spectra of table wine. Journal of Chemometrics 20, 198–208.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE 86 (11), 2278–2324.

Lee, A. J. (1990). U-statistics: Theory and practice. New York: Marcel Dekker, Inc.

Lehmann, E. and H. D’Abrera (1975). Nonparametrics: Statistical Methods Based on Ranks.

Holden-Day series in probability and statistics. Holden-Day.

Li, J., J. A. Cuesta-Albertos, and R. Y. Liu (2012). DD-classifier: Nonparametric classifi-

cation procedure based on DD-plot. Journal of the American Statistical Association 107,

737–753.

133

Bibliography

Little, R. and D. Rubin (2014). Statistical Analysis with Missing Data (2nd Edition). Wiley.

Liu, F. T., K. M. Ting, and Z.-H. Zhou (2008). Isolation forest. In 2008 Eighth IEEE

International Conference on Data Mining, pp. 413–422.

Liu, F. T., K. M. Ting, and Z.-H. Zhou (2012). Isolation-based anomaly detection. ACM

Transactions on Knowledge Discovery from Data 6 (1), 1–39.

Liu, R. Y. (1990). On a notion of data depth based on random simplices. The Annals of

Statistics 18 (1), 405–414.

Liu, R. Y. (1992). Data depth and multivariate rank tests. In Y. Dodge (Ed.), L1-Statistics

Analysis and Related Methods, pp. 279–294. Amsterdam: North-Holland.

Liu, R. Y., J. M. Parelius, and K. Singh (1999). Multivariate analysis by data depth:

descriptive statistics, graphics and inference, (with discussion and a rejoinder by liu and

singh). The Annals of Statistics 27 (3), 783–858.

Liu, R. Y. and K. Singh (1993). A quality index based on data depth and multivariate rank

tests. Journal of the American Statistical Association 88 (401), 252–260.

Liu, X. (2017). Fast implementation of the Tukey depth. Computational Statistics 32,

1395–1410.

Liu, X., S. Luo, and Y. Zuo (2020). Some results on the computing of Tukey’s halfspace

median. Statistical Papers 61, 303–316.

Liu, X., K. Mosler, and P. M. (2019). Fast computation of Tukey trimmed regions and

median in dimension p > 2. Journal of Computational and Graphical Statistics 28 (3),

682–697.

Liu, X. and Y. Zuo (2014a). Computing halfspace depth and regression depth. Communi-

cations in Statistics - Simulation and Computation 43 (5), 969–985.

Liu, X. and Y. Zuo (2014b). Computing projection depth and its associated estimators.

Statistics and Computing 24, 51–63.

Liu, X. and Y. Zuo (2015). Comppd: A MATLAB package for computing projection depth.

Journal of Statistical Software 65 (2), 1–21.

Liu, Z. and R. Modarres (2011). Lens data depth and median. Journal of Nonparametric

Statistics 23 (4), 1063–1074.

López-Pintado, S. and J. Romo (2009). On the concept of depth for functional data. Journal

of the American Statistical Association 104 (486), 718–734.

López-Pintado, S. and J. Romo (2011). A half-region depth for functional data. Computa-

tional Statistics and Data Analysis 55 (4), 1679–1695.

134

Bibliography

López-Pintado, S., Y. Sun, J. K. Lin, and M. G. Genton (2014). Simplicial band depth for

multivariate functional data. Advances in Data Analysis and Classification 8 (3), 321–338.

M., P. (2015). Contributions to Depth-Based Classification and Computation of the Tukey

Depth. Ph. D. thesis, University of Cologne.

M., P. (2016). Tukey depth: linear programming and applications. arXiv:1603.00069 .

M., P. and C. B. Barber (2021). TukeyRegion: Tukey Region and Median. R package version

0.1.4, https://CRAN.R-project.org/package=TukeyRegion.

M., P., J. Josse, and F. Husson (2020). Nonparametric imputation by data depth. Journal

of the American Statistical Association 115 (529), 241–523.

M., P., P. Lafaye De Micheaux, and M. Vimond (2019). curveDepth: Tukey Curve Depth and

Distance in the Space of Curves. R package version 0.1.0.9, https://CRAN.R-project.

org/package=curveDepth.

M., P., K. Mosler, and T. Lange (2015). Classifying real-world data with the DDα-

procedure. Advances in Data Analysis and Classification 9, 287–314.

M., P. and J. Vogler (2016). Composite marginal likelihood estimation of spatial autore-

gressive probit models feasible in very large samples. Economics Letters .

Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the

National Institute of Sciences of India 12, 49–55.

Mahalanobish, O. and S. Karmakar (2015). depth.plot: Multivariate Analogy of Quantiles.

R package version 0.1, https://CRAN.R-project.org/package=depth.plot.

Mallat, S. and Z. Zhang (1993). Matching pursuits with time-frequency dictionaries. IEEE

Transactions on Signal Processing 41 (12), 3397–3415.

Maz’ya, V. (2011). Sobolev Spaces: with Applications to Elliptic Partial Differential Equa-

tions. Berlin Heidelberg: Springer-Verlag.

Mercier, C., P. Gori, D. Rohmer, M.-P. Cani, T. Boubekeur, J.-M. Thiery, and I. Bloch

(2018). Progressive and Efficient Multi-Resolution Representations for Brain Tractograms.

In Eurographics Workshop on Visual Computing for Biology and Medicine. The Euro-

graphics Association.

Mirzargar, M., R. T. Whitaker, and R. M. Kirby (2014). Curve boxplot: Generalization

of boxplot for ensembles of curves. IEEE Transactions on Visualization and Computer

Graphics 20 (12), 2654–2663.

Modat, M., D. Cash, P. Daga, G. Winston, J. Duncan, and S. Ourselin (2014). Global

image registration using a symmetric block-matching approach. Journal of Medical Imag-

ing 1 (2), 024003.

135

https://CRAN.R-project.org/package=TukeyRegion
https://CRAN.R-project.org/package=curveDepth
https://CRAN.R-project.org/package=curveDepth
https://CRAN.R-project.org/package=depth.plot

Bibliography

Mosler, K. (2002). Multivariate Dispersion, Central Regions, and Depth: The Lift Zonoid

Approach. Lecture Notes in Statistics. Springer New York.

Mosler, K. (2013). Depth statistics. In C. Becker, R. Fried, and S. Kuhnt (Eds.), Robust-

ness and Complex Data Structures: Festschrift in Honour of Ursula Gather, pp. 17–34.

Springer, Berlin.

Mosler, K., T. Lange, and P. Bazovkin (2009). Computing zonoid trimmed regions in

dimension d > 2. Computational Statistics and Data Analysis 53 (7), 2500–2510.

Mosler, K. and P. M. (2017). Fast DD-classification of functional data. Statistical Pa-

pers 58 (4), 1055–1089.

Mosler, K. and P. M. (2022). Choosing among notions of multivariate depth statistics.

Statistical Science 37 (3), 348–368.

Mosler, K. and Y. Polyakova (2018). General notions of depth for functional data.

arXiv:1208.1981 .

Nagy, S., R. Dyckerhoff, and P. M. (2020). Uniform convergence rates for the approximated

halfspace and projection depth. Electronic Journal of Statistics 14 (2), 3939–3975.

Narisetty, N. N. and V. N. Nair (2016). Extremal depth for functional data and applications.

Journal of the American Statistical Association 111 (516), 1705–1714.

Nelder, J. A. and R. Mead (1965). A simplex method for function minimization. The

Computer Journal 7 (4), 308–313.

Nieto-Reyes, A. and H. Battey (2016). A topologically valid definition of depth for functional

data. Statistical Science 31 (1), 61–79.

Oja, H. (1983). Descriptive statistics for multivariate distributions. Statistics and Probability

Letters 1 (6), 327–332.

Paindaveine, D. and M. Šiman (2011). On directional multiple-output quantile regression.

Journal of Multivariate Analysis 102 (2), 193–212.

Paindaveine, D. and M. Šiman (2012a). Computing multiple-output regression quantile

regions. Computational Statistics and Data Analysis 56 (4), 840–853.

Paindaveine, D. and M. Šiman (2012b). Computing multiple-output regression quantile

regions from projection quantiles. Computational Statistics 27 (1), 29–49.

Paindaveine, D. and G. Van Bever (2013). From depth to local depth: A focus on centrality.

Journal of the American Statistical Association 108 (503), 1105–1119.

Parekh, J., P. M., and F. D’Alché-Buc (2021). A framework to learn with interpretation.

In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (Eds.),

Advances in Neural Information Processing Systems 34 (NeurIPS 2021).

136

Bibliography

Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces. New York: Academic

Press.

Pokotylo, O., P. M., and R. Dyckerhoff (2019). Depth and depth-based classification with

R package ddalpha. Journal of Statistical Software 91 (5), 1–46.

Pokotylo, O., P. M., R. Dyckerhoff, and S. Nagy (2020). ddalpha: Depth-Based Classification

and Calculation of Data Depth. R package version 1.3.11, https://CRAN.R-project.

org/package=ddalpha.

R Core Team (2022). R: A Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing. https://www.R-project.org.

Ramsay, J. O. and B. W. Silverman (2002). Applied Functional Data Analysis: Methods

and Case Studies. New York: Springer-Verlag.

Ramsay, J. O. and B. W. Silverman (2005). Functional Data Analysis. New York: Springer-

Verlag.

Rousseeuw, P. J. Struyf, A. (1998). Computing location depth and regression depth in

higher dimensions. Statistics and Computing 8, 193–203.

Rousseeuw, P. J., M. Debruyne, S. Engelen, and M. Hubert (2006). Robustness and outlier

detection in chemometrics. Critical Reviews in Analytical Chemistry 36 (3–4), 221–242.

Rousseeuw, P. J. and M. Hubert (1999). Regression depth. Journal of the American Sta-

tistical Association 94, 388–433.

Rousseeuw, P. J. and M. Hubert (2018). Anomaly detection by robust statistics. WIREs

Data Mining and Knowledge Discovery 8 (2), e1236.

Rousseeuw, P. J. and A. M. Leroy (1987). Robust Regression and Outlier Detection. New

York : Wiley.

Rousseeuw, P. J. and I. Ruts (1996). Algorithm as 307: Bivariate location depth. Journal

of the Royal Statistical Society. Series C: Applied Statistics 45, 516–526.

Rousseeuw, P. J. and I. Ruts (1998). Constructing the bivariate Tukey median. Statistica

Sinica 8 (3), 827–839.

Rousseeuw, P. J. and K. Van Driessen (1999). A fast algorithm for the minimum covariance

determinant estimator. Technometrics 41 (3), 212–223.

Ruts, I. and P. J. Rousseeuw (1996). Computing depth contours of bivariate point clouds.

Computational Statistics and Data Analysis 23 (1), 153–168.

137

https://CRAN.R-project.org/package=ddalpha
https://CRAN.R-project.org/package=ddalpha
https://www.R-project.org

Bibliography

Sachdev, P., A. Lammel, J. Trollor, T. Lee, M. Wright, D. Ames, W. Wen, N. Martin,

H. Brodaty, P. Schofield, and the OATS research team (2009). A comprehensive neu-

ropsychiatric study of elderly twins: The Older Australian Twins Study. Twin Research

and Human Genetics 12 (6), 573–582.

Sangalli, L. M., P. Secchi, S. Vantini, and A. Veneziani (2009). Efficient estimation of three-

dimensional curves and their derivatives by free-knot regression splines, applied to the

analysis of inner carotid artery centrelines. Journal of the Royal Statistical Society. Series

C (Applied Statistics) 58 (3), 285–306.

Schölkopf, B., J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson (2001). Estimating

the support of a high-dimensional distribution. Neural Computation 13 (7), 1443–1471.

Schölkopf, B. and A. J. Smola (2002). Learning with kernels: Support vector machines,

regularization, optimization, and beyond. MIT press.

Scott, C. and R. Nowak (2006). Learning minimum volume sets. Journal of Machine

Learning Research 7, 665–704.

Segaert, P., M. Hubert, P. Rousseeuw, and J. Raymaekers (2020). mrfDepth: Depth Mea-

sures in Multivariate, Regression and Functional Settings. R package version 1.0.13,

https://CRAN.R-project.org/package=mrfDepth.

Serfling, R. (2002). A depth function and a scale curve based on spatial quantiles. In

Y. Dodge (Ed.), Statistical Data Analysis Based on the L1-Norm and Related Methods,

Statistics for Industry and Technology book series (SIT), Basel, pp. 25–38. Birkhäuser.

Shin, H. J., D. Eom, and S. S. Kim (2005). One-class support vector machines – an appli-

cation in machine fault detection and classification. Computers and Industrial Engineer-

ing 48 (2), 395–408.

Simar, L. and P. Wilson (1998). Sensitivity analysis of efficiency scores: How to bootstrap

in nonparametric frontier models. Management Science 44, 49–61.

Simar, L. and P. Wilson (2000). A general methodology for bootstrapping in nonparametric

frontier models. Journal of Applied Statistics 27, 779–802.

Simar, L. and P. Wilson (2002). Nonparametric tests of return to scale. European Journal

of Operational Research 139, 115–132.

Snyder, J. P. (1987). Map projections: A working manual. Professional Paper 1395, U. S.

Geological Survey, Washington D.C.

Song, L., K. Fukumizu, and A. Gretton (2013). IEEE Signal Processing Magazine 30 (4),

98–111.

138

https://CRAN.R-project.org/package=mrfDepth

Bibliography

Staerman, G., P. Laforgue, P. M., and F. D’Alché-Buc (2021). When ot meets mom: Robust

estimation of wasserstein distance. In A. Banerjee and K. Fukumizu (Eds.), Proceedings

of The Twenty Fourth International Conference on Artificial Intelligence and Statistics

(AISTATS 2021), Volume 130, pp. 136–144.

Staerman, G., P. M., and S. Clémençon (2020). The area of the convex hull of sampled

curves: a robust functional statistical depth measure. In S. Chiappa and R. Calandra

(Eds.), Proceedings of the Twenty Third International Conference on Artificial Intelligence

and Statistics (AISTATS 2020), Volume 108, pp. 570–579.

Staerman, G., P. M., S. Clémençon, and F. d’Alché Buc (2019). Functional isolation forest.

In W. S. Lee and T. Suzuki (Eds.), Proceedings of The Eleventh Asian Conference on

Machine Learning (ACML 2019), Volume 101, pp. 332–347.

Statzer, C., E. Jongsma, S. X. Liu, A. Dakhovnik, F. Wandrey, P. M., F. Zülli, and C. Y.

Ewald (2021). Youthful and age-related matreotypes predict drugs promoting longevity.

Aging Cell 20, e13441.

Stekhoven, D. J. and P. Bühlmann (2012). MissForest – non-parametric missing value

imputation for mixed-type data. Bioinformatics 28 (1), 112–118.

Su, J., S. Kurtek, E. Klassen, and A. Srivastava (2014). Statistical analysis of trajectories

on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance. The

Annals of Applied Statistics 8 (1), 530–552.

Theussl, S. and K. Hornik (2019). Rglpk: R/GNU Linear Programming Kit Interface. R

package version 0.6-4, https://CRAN.R-project.org/package=Rglpk.

Tournier, J., F. Calamante, and A. Connelly (2012). MRtrix: diffusion tractography in

crossing fiber regions. International Journal of Imaging Systems and Technology 22 (1),

53–66.

Troyanskaya, O., M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Bot-

stein, and R. B. Altman (2001). Missing value estimation methods for dna microarrays.

Bioinformatics 17 (6), 520–525.

Tukey, J. W. (1975). Mathematics and the picturing of data. In R. James (Ed.), Proceed-

ings of the International Congress of Mathematicians, Volume 2, pp. 523–531. Canadian

Mathematical Congress.

Udell, M. and A. Townsend (2018). Why are big data matrices approximately low rank?

arXiv:1705.07474 .

Väisälä, J. (2006). Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in

Mathematics. Berlin Heidelberg: Springer.

Van Buuren, S. (2012). Flexible Imputation of Missing Data. Chapman and Hall/CRC.

139

https://CRAN.R-project.org/package=Rglpk

Bibliography

Van Der Walt, S., J. Schänberger, J. Nunez-Iglesias, F. Boulogne, J. Warner, N. Yager,

E. Gouillart, T. Yu, and the scikit-image contributors (2014). scikit-image: image

processing in Python.

Vardi, Y. and C.-H. Zhang (2000). The multivariate L1-median and associated data depth.

Proceedings of the National Academy of Sciences 97 (4), 1423–1426.

Šiman, M. and P. Boček (2019). modQR: Multiple-Output Directional Quantile Regression.

R package version 0.1.2, https://CRAN.R-project.org/package=modQR.

Wen, W., A. Thalamuthu, K. A. Mather, W. Zhu, J. Jiang, P. Lafaye De Micheaux, M. J.

Wright, D. Ames, and P. S. Sachdev (2016). Distinct genetic influences on cortical and

subcortical brain structures. Scientific Reports 6, 32760.

Xu, Y., L. Cheng, L. Zhang, H. Yin, and X. Yin (2001). Mechanical properties of 3D fiber

reinforced C/SiC composites. Materials Science and Engineering: A 300 (1), 196–202.

Yang, M. and R. Modarres (2018). β-skeleton depth functions and medians. Communications

in Statistics - Theory and Methods 47 (20), 5127–5143.

Yeh, I.-C., K.-J. Yang, and T.-M. Ting (2009). Knowledge discovery on RFM model using

bernoulli sequence. Expert Systems with Applications 36 (3, Part 2), 5866–5871.

Yuan, G., P. Sun, J. Zhao, D. Li, and C. Wang (2017). A review of moving object trajectory

clustering algorithms. Artificial Intelligence Review 47 (1), 123–144.

Zawadzki, Z., D. Kosiorowski, K. Slomczynski, M. Bocian, and A. Wegrzynkiewicz (2020).

DepthProc: Statistical Depth Functions for Multivariate Analysis. R package version 2.1.3,

https://CRAN.R-project.org/package=DepthProc.

Zuo, Y. and R. Serfling (2000). General notions of statistical depth function. The Annals

of Statistics 28, 461–482.

140

https://CRAN.R-project.org/package=modQR
https://CRAN.R-project.org/package=DepthProc

	Pre-word
	Story, structure, interconnections
	Computation
	Introduction to multivariate data depth
	Definition of data depth
	Depth notions used in this manuscript
	A word on computation
	Connections of the halfspace depth

	Computation of the halfspace depth
	Theoretical guarantees
	A family of algorithms
	Numerical illustration

	Computation of the halfspace depth regions
	Notations
	A bound on the number of facets
	Two algorithms
	Numerical illustrations and comparison
	Computing Tukey median
	Further developments

	Approximation of projection depths
	The class of projection depths
	Simulation study
	Presentation of results
	Comments on quality of approximation

	First theoretical guarantees on depth approximation
	Approximation of the halfspace depth
	Uniform convergence rates for approximation of the halfspace depth
	Non-uniform approximation

	Application: nonparametric imputation using data depth
	Motivation
	Proposed imputation scheme
	Imputation by iterative regression
	Imputation by depth maximization

	By-depth analysis
	Mahalanobis depth
	Zonoid depth
	Halfspace depth
	Beyond ellipticity: local depth
	Dealing with outsiders

	Assessing the quality of imputation
	Contaminated elliptical setting
	The MAR setting
	Skewed and non-convexly supported distributions

	Novel notion: data depth for curves
	Introduction to functional depth
	Relevant notions

	Necessity of a depth for unparametrized curves
	Statistical setting
	The space of unparameterized curves
	The arc-length probability measure of a curve
	Describing a sample of curves

	Data depth for unparametrized curves
	Population and sample versions
	Properties

	Real-data illustration on brain imaging
	Application to the Older Australian Twins Study data
	Curve registration
	A statistical comparison between MZ and DZ twins

	Functional anomaly detection
	Functional isolation forest
	Preliminaries
	The FIF algorithm
	Ability to detect variety of anomalies
	Connection to data depth

	Geometric depth approach
	The area of the convex hull of functions
	Statistical and computational properties
	Choosing tuning parameters K and J
	Robustness and anomaly detection

	Outlook and conclusions
	Large-scale data depth: computation and applications
	Anomaly detection for large-scale and heterogeneous data of production lines
	Miscellaneous
	Final word

	A note on implementations
	R-package ddalpha
	R-package TukeyRegion
	Stata commands for non-parametric frontier analysis and R-package npsf
	R-package imputeDepth
	R-package curveDepth

	Bibliography

