N

N

Optimizing through change for cyber-physical and social
systems

Andrea Simonetto

» To cite this version:

Andrea Simonetto. Optimizing through change for cyber-physical and social systems. Optimization
and Control [math.OC]. Institut Polytechnique de Paris, 2022. tel-03775476

HAL Id: tel-03775476
https://hal.science/tel-03775476

Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/tel-03775476
https://hal.archives-ouvertes.fr

" bg o®

INSTITUT
POLYTECHNIQUE
DE PARIS

n
O
L
&)
S
O
L
O
)
o
N
)
©
S
)
D
=
A
(O
c
9
fd
]
g
Q
QY]
L
O

émoire

M

ENSTA

W2 IP PARIS

Optimizing through change for
cyber-physical and social systems

Mémoire d"Habilitation a Diriger des Recherches
de I'Institut Polytechnique de Paris

préparée a 'UMA, ENSTA Paris, Institut Polytechnique de Paris

Mémoire présentée et soutenue a Palaiseau, le 09 septembre 2022, par

ANDREA SIMONETTO

Composition du Jury :

Prof. Mikael Johansson, KTH, Sweden Rapporteur
Prof. Jérdme Malick, Université Grenoble Alpes, CNRS, France Rapporteur
Prof. Vianney Perchet, ENSAE Paris, IPP, France Rapporteur
Prof. Alexandre D’ Aspremont, ENS, CNRS, France Examinateur
Prof. Antonin Chambolle, Université Paris Dauphine - PSL, CNRS, France Examinateur
Prof. Julien Hendrickx, Université catholique Louvain, Belgium Examinateur
Prof. Colin Jones, EPFL, Switzerland Examinateur
Prof. Luca Schenato, Universita di Padova, Italy Examinateur

Contents

Introduction

1.1 Contextand Aim
12 Organization
1.3 Theoretical Background L L L o
1.4 Selected related work, contributions, applications

Information streams

21 Amotivatingexample L L Lo
2.2 Problem formulation
2.3 Assumptions and algorithms L L o oL o
24 Examples
2.5 More scrambling of hierarchies: distributed computation
2.6 Goingbeyond strong convexity L L L L L L L
2.7 Time-varying optimization vis-a-vis Learning

Structured predictions

3.1 Theneed forprediction. L
32 Predictors
33 Algorithms
34 Acloserlook
35 Examples
Non-convexities

41 A general plea for model simplicity
42 Non-convex constraints: the value of feedback
4.3 Combinatorial problems: anexample

Human preferences

51 Intermezzo: Connectingthedots
52 Problem formulation L o
53 Learningcostfunctions.
54 Optimism in the face of uncertainty
55 Anexample
Perspectives

6.1 Alookahead
6.2 Epilogue: a personal retrospective o oL

Chapter 1

Introduction

Pe’ fa’ ‘e cose bone ce vo’ tiemp” !

Cosimo Rummo, pasta maker masterchef

1.1 Context and Aim

Optimization is prevalent across many engineering and science domains. Recently, some of
these domains — and in particular infrastructures such as power, transportation and communi-
cation networks, as well as social, and personalized health platforms — are undergoing a fun-
damental transformation, driven by major technological advances across various sectors, the
information explosion propelled by online social media, the pervasive sensing and computing
capabilities, and the key presence of humans in the loop. Effectively, these infrastructures and
platforms are transforming into complex systems operating in highly dynamic environments,
with high volumes of heterogeneous information, while navigating complex human-centered
constraints. This calls for revisiting several facets of workhorse optimization tools and methods
under different lenses:

(1) Time scales: the ability to process data streams and provide decision-making capabilities
at time scales that match the dynamics of underlying physical, social, and engineered systems
using conventional optimization methods can no longer be taken for granted; in addition,

(2) Humans: the presence of humans in the loop, with their preferences and constraints, which
have to be learned by using their feedback, is not something that traditional optimization tools
can incorporate, inasmuch as the personal cost and constraints are unknown a priori and have
to be learned.

Take as an example cyber-physical and social systems [28], e.g., ride-sharing platforms, smart
grids, personalized health systems. Information streams are supplied to a decision maker,
which could be energy demand/supply, traffic conditions, health signals. These time-varying
streams define a time-varying optimization problem that has to be solved as fast as the data
arrive. In addition, parts or all of the cost and constraints depend on models for systems that
need to be learned while optimizing and could depend on the satisfaction/comfort of human
users to a particular set of actions.

The above leads naturally to an optimization problem of the form,

P(t) : minimize f(x;t), forallt >0, (1.1)
zeX (t)cR™

for properly defined cost functions, decision variables, and constraints and time ¢. Where, the
cost f and the constraint set X are both time-varying, because of external data streams. To fix the
ideas, think for example about the regularized least-squares cost f(z;t) := |z — b(t)|3 + AR(x)
with a data stream b(t), and regularization AR (z) that could be used for fast video processing in

To create something good/tasty, you need time.

medical contexts, or generally for streaming inverse problems; or think of a smart grid scenario
where one optimizes the power generation balancing highly volatile renewables and human
satisfaction (which has to be learned) in allocating time-slots for electrical vehicle charging.

This thesis presents my work in this context and in particular, in devising algorithms for Prob-
lem (1.1) in various scenarios. In general, we will be looking at online algorithms that can gen-
erate sequences of approximate optimizers for certain discrete sampling times ty, i.e., (£)ken.
These sequences will be proved to converge in some sense to some pertinent limit point, in
general to the time-varying optimizers trajectory = (¢).

In the thesis, we will care about computations: how fast and in how many computations can
the algorithms deliver the next approximate optimizer given a new data point? What is the
error associated with such approximate solution? Furthermore, we will care about theoretical
guarantees, meaning bounds on pertinent error metrics depending on the problem class and
algorithmic parameters. And finally, we will care about applications: are the algorithms usable
in practice in realistic application scenarios and do they improve current ones?

1.2 Organization

My aim in these pages is to collect most of the work” I have been doing since the end of my PhD
in late 2012, and in particular, first, I will be looking at time-varying optimization problems
of the form (1.1), for function f : R™ x R, — R, which is a convex function in & which is
parametrized in time (i.e., changes in time); and convex set X (¢), which also changes in time. In
particular, this will be the topic of Chapters 2 and 3.

Then, in Chapter 4, I will extend the framework (1.1) to include non-convexities in function f
or in set X, which are possible in cyber-physical systems. Finally, I will close with a variation
of Problem (1.1) whereby the cost function is now partly unknown. This latter case models
situations in which the cost represents human dissatisfaction to decision « at time ¢, which
might be unknown and it has to be learned via feedback.

All the embodiments of Problem (1.1), together with present and future generalizations, repre-
sent stepping stones for a solid theory of optimization in cyber-physical and social systems.

1.3 Theoretical Background

I will be trying whenever possible to keep this thesis self-contained. In general, I will try to
give meta-results and informal theorems that can capture the key ideas with basic assumptions
and a few key theoretical tools. Then, I will have some closer looks and references to sharper
and/or fine-grained analysis.

When reading this thesis, I assume a fairly good background in convex optimization. We indi-
cate with R, N the real numbers and natural numbers, respectively. We will deal with convex
functions f(x) : R” — R, and often we assume strong convexity and smoothness. A convex
function is m-strongly convex if and only if f(z) —m/2|z|? is convex, and L-smooth if and only
if L/2|x|? — f(z) is convex. Smoothness implies differentiability, strong convexity does not.
We also indicate with || - | the Euclidean norm, or a generic induced norm, depending on the
context (which we will specify). I use the standard O(-) as the big-O notation, and the PROJ{}
and PROX{-} are the usual projection and proximal operators, respectively.

We will deal with algorithms, and specifically ones that generate a sequence (x;)ken that con-
verges to some limit point . We are then interested in linearly converging algorithms, in the
sense that we can find a ¢ € (0, 1) for which ||x;+1 — &| < ollzr — Z|.

These algorithms are often called Q-linearly converging, to distinguish them from R-linearly
ones for which one is also interested in a supporting sequence (yi)ren, Which converges as
lye — gl < Bllxx — 2| with |xr41 — | < ol|zk — 2|, for any positive 8 and ¢ € (0,1). Since we
will not deal with R-linear convergence, we will not make this distinction.

2] will be leaving out a few side topics, like graph signal processing and quantum computing.

When discussing algorithms, we may leverage the very powerful machinery of operator the-
ory. In particular, solving the convex problem minge xcr~ f() is equivalent to finding zeros of
some carefully constructed operator. The interesting link is that finding zeros of operators can
be achieved via fixed point theory, and contracting operators give rise to linearly converging
algorithms. I will try to give all the necessary background when needed.

For the rest, the basic theoretical tools I will use are Taylor expansions, triangle inequality, and
some linear algebra. The interested readers can find some more background in the standard
references [8,15,63,73].

1.4 Selected related work, contributions, applications

To stress my main contributions, I report here some selected related work. For a in-depth liter-
ature survey, the reader is suggested to look into my original papers.

1.4.1 Time-varying optimization

Chapters 2-3 deal with time-varying optimization methods in the convex domains and my con-
tributions captured by the works [6,24,85, 86, 88,90-94].

Continuously varying optimization problems represent a natural extension of time-invariant
programs when the cost function and constraints may change continuously over time [26, 33,
61,73]. Recently, time-varying optimization formalisms and the accompanying online solvers
have been proposed both in continuous-time [30,75] and in discrete-time settings [88,100]. Their
main goal is to develop algorithms that can track trajectories of the optimizers of the continu-
ously varying optimization program (up to asymptotic error bounds). The resultant algorithmic
frameworks have demonstrated reliable performance in terms of convergence rates, with error
bounds that relate tracking capabilities with computational complexity; these features make
time-varying algorithms an appealing candidate to tackle dynamic optimization tasks at scale,
across many engineering and science domains. Two surveys on time-varying optimization have
appeared recently as [24,90], which I co-authored.

The first survey makes the case on how traditional optimization algorithms behave quite differ-
ently when used in time-varying settings, and standard hierarchies (e.g., heavy-ball being better
than gradient) may be reversed. In particular, we describe so-called unstructured methods (or
correction-only), which incorporate and react to new dynamic data points, but never predict
how the optimizers change in time. We also look at applications, such as video streaming and
power grids, and we make the link with online learning.

For the latter, we note that the time-varying optimization formalism of unstructured methods
is closely aligned with existing works on online learning in dynamic environments [35, 38, 42]
from a basic mathematical standpoint. However, a key conceptual difference is that the on-
line algorithms for time-varying optimization are “computation limited,” (one has only limited
computational time before a new datum arrived and they have to re-optimize) whereas online
learning is “data limited” or “information limited” (but not necessarily computation limited), see
later detailed discussion.

The second survey [90] expands on structured and unstructured methods, structured being
methods that do use optimality conditions as a way to predict the evolution of the optimizer
trajectory, and therefore they are called prediction-correction. In particular, we show how
prediction-correction methods are more performant in several metrics, even when factoring
in the increased computational complexity they require.

My main contribution here is to formalize time-varying optimization in the convex domain,
design online algorithms and discuss their theoretical properties. One of the key results is the
proposal of prediction-correction methods and their application in cyber-physical examples.

1.4.2 Non-convex aspects

Chapter 4 deals with non-convexities stemming from cyber-physical systems, notably from the
non-convex underlying physics, such as in power grid scenarios, and from a combinatorial

problem formulation as in dynamic ridesharing. Here my contributions are captured by the
works [10,22,23,29,69,95].

Non-convex power grid problems, such as optimal power flow problems, have been dealt with
a series of convex relaxations and linearizations [13,14,48], with various degrees of success. In
the time-varying setting, the approaches my co-authors and I put forward were among the first
of their kind. In particular, our proposal was to correct the relaxed problems with measurement
feedback coming from the underlying physical system. We have discussed this in a series of
works [10,22,23]. Related, concurrent, and expanding on this we can cite the works of [21,36,
37,67]. Online feedback optimization is now a very vibrant research domain.

Ridesharing is a new mode of transportation that is attracting a lot of attention. The underlying
optimization problem, especially in dynamic ridesharing when rides are assigned on-the-go, is
a large-scale combinatorial optimization problem that changes over time. Several computation-
ally efficient relaxations of the problem exist [3] with different properties. An interesting feature
of the ridesharing problem, and sequential assignment problems in general, is that they can be
simplified quite drastically without affecting the quality of the time-varying solution. This lat-
ter as long as one is able to adapt to changes quickly. We discuss this in our works [29, 69, 95],
which opened the way for urban-scale dynamic ridesharing at scale.

My main contribution here is the formalization and empirical evidence that relaxing or mod-
ifying non-convex problems in time-varying settings, such that the modified version is close
“enough” to the original problem, yet it has all the functional properties one require for fast
convergence and computations, is often enough and sometimes even better than solving the
original non-convex problem at optimality. The key aspect here is online corrections of the
modified problems, either by feedback or by fast repeated actions.

1.4.3 Personalized optimization

Chapter 5 deals with incorporating user’s satisfaction in the cost function of time-varying prob-
lems, and presents a condensed version of my works [65, 68, 87,89].

Incorporating user’s satisfaction in the decision-making process has been fairly well studied
from an economic standpoint [46]; yet, it is starting now to play a major role in emerging data-
driven optimization and control paradigms, especially within the context of cyber-physical and
social systems. This is fueled by learning tools that can incorporate feedback from the users,
learn their preferences, and then optimization and control tools that can close the loop and
determine and implement an optimal decision.

From a purely machine learning perspective, one can distinguish largely two areas of research
in this area. One, online bandits (and extensions) whereby functions are learned via user’s
feedback with pertinent algorithms to decide where to sample next (e.g., [82]); two, preference
learning, whereby one learns relationships between decisions, i.e., if the user prefers option A
to option B, via noisy feedback (e.g., [20,39]). Both areas are active research field. Here, the
notion of a user’s preference represents an absolute value (a continuous function).

User’s satisfaction and preferences have been modeled as a Gaussian process (among others);
see, e.g., [20,39]. Gaussian processes have the appeal to naturally handle noise and sparse data,
which is key in human applications. For an account of Gaussian processes we refer to [77],
while for their use in control we refer the reader to [9,55]. User’s satisfaction and comfort
have been taken into account from a control perspective in, e.g., control systems for houses and
electric vehicles [17, 66].

Often, in the cyber-physical domain, users’” functions have been modeled based on synthetic
models or they have been learned a priori (i.e., before the execution of the optimization or con-
trol algorithm). In a series of work [65,68,89], my co-authors and I incorporate learning modules
in online optimization algorithms (with the learning and the optimization tasks implemented in
a concurrent timescale) and we do not utilize synthetic models. Our proposed strategy enables
fine-grained personalization.

The techniques and ideas that I consider here are also related to inverse reinforcement learn-
ing [49] (even though in those settings one still needs to know what is a “good” action via

demonstration), and restless bandit problems [80] (even though they are typically in discrete
spaces, while we are in compact continuous spaces).

Finally, I want to mention works that use function approximators to learn dynamical systems
in reinforcement learning (RL) [25,32,72]. I have not worked on RL on my previous projects,
but it may be a good area to keep an eye on.

My main contribution here is the formulation of time-varying optimization problems with
unknown costs, that one can learn with users’ feedback. The key aspect is that we perform
learning and optimization concurrently in an online fashion, while possibly enforcing that the
learned user’s function has the functional property we require for algorithmic convergence.

1.4.4 Selected applications

Cyber-physical and social systems are ubiquitous. I have surveyed a large number of applica-
tion domains in [24,90]. For the sake of this thesis, I mention the following ones.

¢ Control systems: especially relevant for time-varying (and/or parameter-varying) algorithms
for model predictive control, which have appeared for large-scale and embedded systems,
e.g., [40,44,71].

® Power grid: time-varying problems for power systems can capture high volatility coming
from renewable energy production; it can also accommodate dynamic pricing schemes. Time-
varying problem formulations (and related online algorithms) can be utilized for tasks such
as demand response, optimal power flow (OPF), and state estimation. Examples of works
include real-time algorithms for voltage control, optimal power flow, as well as DER man-
agement for aggregators; see for example [23,37,53,54,83]. Human preferences have been
considered in [17,66,68,79].

¢ Transportation systems: time variations may arise from different factors (and at appropriate
time-scales), such as variations in the traffic, pedestrians crossing the roads, car accidents,
sports events; these factors may lead to time-dependent routing and traffic light control al-
gorithms [31], dynamic ridesharing platforms [3, 95], and routing with and without human
preferences [29,74].

* Machine learning and signal processing: time-varying problems arise when we want to ex-
tract sparse features in videos. Works that explore dynamic ¢; reconstruction are, e.g., [16,96,
98]. Other applications include contemporary approaches for sparse, kernel-based, robust,
linear regression, zeroth-order methods, and dynamic classification under concept drift. Ad-
ditional lines of work include dynamic beamforming [57], and other dynamic signal process-
ing tasks, such as maximum a posteriori estimation [43].

* Robotics: Time varying optimization problems appear in navigation [30], either for single
robots or teams of robots [101], as well as robotic manipulators [50,52,60]. Users’ preferences
are considered, e.g., in [56,59].

Chapter 2

Information streams

Abstract. In this chapter, I introduce the concept of time-varying optimization and algorithm design
for information streams. I show that standard algorithmic hierarchies do not translate verbatim into the
time-varying domain, advocating for new foundations. I provide some theoretical results in this direction,
and a few application examples. This chapter is adapted from [24,85,90,92,93].

2.1 A motivating example

As we have seen in the introduction, there are many application domains that require a revision
of the standard static optimization framework. However, we have not really discussed if a new
theoretical understanding is needed, or one can reuse standard tools (e.g., the gradient method)
in a mini-batch mode. In fact, one may think that a naive online implementation of algorithms
conceived for batch computation may just work well, with algorithms that are faster for batch
optimization still being faster in time-varying optimization. If this were the case, then a time-
varying algorithmic theory would be quite dull.

However, this is not always the case. Surprisingly, the best algorithms in the static case may
be the worst algorithms in the dynamic case, as shown in the illustrative numerical results in
Figure 2.1 from [24]. The heavy ball method (which is one of the best algorithms for static
quadratic problems) can even diverge for a simple time-varying least-squares problem.

2.2 Problem formulation

Comforted by the fact that some degree of new theoretical understanding is needed for the
time-varying optimization framework, I can now (re-)describe the problem more formally.

Let f : R xR} — R be a convex function parametrized over time, i.e., f(z;t), where x € R" is
the decision variable and ¢ > 0 is time. Let X (¢) € R" be a convex set, which may also change
over time. In the first part of this thesis, we are interested in solving:

P(t) : minimize f(x;t), forallt > 0. (2.1)
xzeX (t)

To simplify exposition, I assume (for the time being) that the cost function f is m-strongly con-
vex for all ¢ (this is nevertheless a standard assumption in most works), and that the constraint
set is never empty. With these assumptions in place, at any time ¢, Problem (2.1) has a unique
global optimizer. This translates to finding the optimal solution trajectory

x*(t) := argmin f(x;t), forallt > 0. (2.2)

xzeX (t)

Example 2.1 As in some robotics example, we are will describe later in the thesis, f(x;t) could represent
a time-varying performance metric for the tracking performance of a robot formation that is following a

Legend

c
-% 10° -A Gradient Descent
g -¥- Nesterov Acceleration ver 1
° diverges to 103 - Nesterov Acceleration ver 2
2 —@-Heavy-ball method
3 -@- Conjugate gradient
g 10°
) N
ks
=
K]
£
53 10°
Qo
>
(%}

0 1000 2000 3000 O 200 400 600 800 1000

Time index t Time index t

Figure 2.1. Example of a 50 dimensional time-varying least-squares problem, defined using a sliding
window of 50 data points, for 950 time points; two big jumps in the solution near time indices 250 and
550 (by design). Left: Convergence in the static case; Right: plot shows the performance of various
algorithms on tracking the optimal objective value. Nesterov ver. 1 does not use knowledge of strong
convexity, while ver. 2 does. The non-linear conjugate gradient exploits the quadratic objective to have
an exact line-search (usually impractical), and is the variant from [64, Eq. (5.49)].

robot leader; e.g., f(x;t) = | —b(t)|? + AR (x), where \R(x) is some pertinent regularization function
and b(t) encodes the tracking signal. On the other hand, X (t) represents some physical or hardware
constraints for the robots. At each t', the information available is {f(x;t),t < t'} and {X(t),t < t'};
based on a possibly limited computational complexity, and without any information regarding future
costs and constraints, the next decision x(t') has to be made; the objective is to produce a decision x(t")
that is as close as possible to x*(t').

If Problem (2.2) changes slowly, and sufficient computational power is available, existing batch
optimization methods may identify the optimal trajectory z*(¢); for example, if the parameter
b(t) in the above example exhibits step changes every 10 seconds, and a distributed batch al-
gorithm converges in 5 seconds, then z*(¢) can be identified (within a given accuracy). On the
other hand, in highly dynamic settings, computational and communication bottlenecks may
prevent batch methods to produce solutions in a timely manner (e.g., b(t) changes every 0.5
seconds, and a distributed batch algorithm converges in 5 seconds); the problem then becomes
related to the synthesis of computationally affordable algorithms that can produce an approxi-
mate optimizer trajectory &(¢) on the fly; accordingly, a key performance of these algorithms is
the “distance” between the approximate solution trajectory (t) and the optimal one z*(¢).

2.21 Time sampling

Problem (2.2) is continuous in time. Here, however, motivated by current digital technology,
we proceed to sample it at discrete-time steps, tuned to match computational complexities and
frequency of updates.

Consider then sampling Problem (2.2) at defined sampling times {t;, = kh, k € N}, with h the
sampling period; thus, one arrives at a sequence of time-invariant problems:

x*(ty) := argmin f(x;tg), tp = kh,keN. (2.3)
xeX

For simplicity of exposition, we drop the time dependency of the constraints and consider static
sets. As long as one can solve each (time-invariant) Problem (2.3) within an interval / using ex-
isting algorithms, then a “batch solution mode” is sufficient to identify the optimal trajectory
(z*(t), k € N). AsIalready mentioned extensively, this batch approach is, however, hardly vi-
able, except for low-dimensional problems that can be sampled with sufficiently long sampling
periods (i.e., when the problem changes sufficiently slowly). We focus here on the case where
one can afford only one or a few steps of a given algorithm within an interval / —i.e., an online
approach. This setting can then be cast as the overarching problem of synthesizing online
algorithms that can track (z*(t;), k € N), within a given performance. For the following, we
define (Zj)ken as the sequence generated by such online algorithms.

2.2.2 Performance metrics

Different performance metrics can be considered for online algorithms that generate approxi-
mate trajectories for Problem (2.2). They all capture the fact that the computation of (Zx)ren is
time-limited, computationally limited, or both, and therefore &;, is an approximate optimizer at
time t;. Here, it is more fruitful to look at the computation of , as limited by time: to compute
x; one has at most h.

An immediate performance metric is the asymptotical tracking error (ATE), defined as

ATE := limsup ||&; — ™ (t&)], (2.4)

—0

which captures how the algorithm performs in an asymptotic sense. In general, one seeks
asymptotic consistency of the algorithm, i.e., if *(¢;) is asymptotically stationary, then the ATE
should be zero. However, if x*(¢;) is time-varying, the ATE cannot be zero in general [24].

A more complex metric is the dynamic regret (DR), or with a better name: the objective tracking
error, defined as

T
DR := > f(@kite) — (2" (th); te), (2.5)
k=0

which captures how the algorithm competes with a dynamic comparator. Typically, one seeks
a sub-linearly growing dynamic regret, while, in general, in time-varying settings the best one
can achieve is a linearly growing DR, leading to a constant average regret. This is in par with
the constant ATE.

A third metric that is relevant for time-varying optimization problems is the time rate (TR),

defined as))) .
__ time required for the computation of &,

" time allowed for the computation of &,

(2.6)

Here we define as “time required,” the time needed for the computation of an approximate &y,
which delivers a predefined ATE. The TR is a key differentiator for time-varying optimization:
online algorithms need to be able to deliver an approximate &, in the allocated time. Data
streams generate decision streams with the same frequency, and the online optimization algo-
rithm needs to have a TR less than one to be implementable. The TR sets also an important
trade-off between ATE and implementability. One typically cannot expect a very low ATE and
implementable solutions.

The fourth metric is the convergence rate (CR), which can be informally defined as
CR := “how fast” an algorithm converges to the ATE. (2.7)

For discrete-time algorithms, under current modeling assumptions, it will be possible to derive
linear convergence results.

Typically, the algorithmic design will involve a trade-off between the ATE and CR; for instance,
lower levels of ATE may be achievable at the expense of a higher CR. CR is then important, not
only at the start, but also when abrupt changes happen (and then the CR captures how fast the
algorithm responds to those changes and disturbances).

2.3 Assumptions and algorithms

A key assumption for any online approach is that the difference between solutions at two con-
secutive times is bounded:

Assumption 2.1 The distance between optimizers at subsequent times is uniformly upper bounded as:

|l&* (ty) — x*(tr—1)| < K, Vk >0, K < 0.

The constant K will play a key role in the ATE, as shown shortly. Assumption 2.1 is general,
inasmuch it does not forbid the underlying trajectory «*(¢) to have finite jumps.

10

A stronger assumption, often required in time-varying optimization (and we will use it more
extensively in Chapter 3), is that the time derivative of the gradient of the cost function, i.e.,
Vizf(x;t), is bounded.

Assumption 2.2 Forall t and all x: |V f(2;1)| < Ap < o0.

Assumption 2.2, along with m-strong convexity of the cost function, guarantees that the trajec-
tory «*(t) is globally Lipschitz in time [6,27], and in particular

* (41 * AO ’
|2*(t) — 2" (@) < —[t" — 1. (2.8)

Notice that Assumption 2.2 implies Assumption 2.1 with the choice K = Ay h/m.

2.3.1 Algorithms

With the problem formulation, assumptions, and nomenclature in place, we are ready now to
look at algorithm design. In this chapter, we will look at correction-only algorithms, meaning
algorithms that react to the changes but not predict how the optimizers may change. These algo-
rithms are also called in different ways (among which catching up, running, unstructured) and
probably firstly appeared with Moreau [61]. For example, a correction-only projected gradient
to approximately solve (2.3) is given by the recursion

To=0, @, =PROJx{Zr_1—aV,f(Zr_1;tr)}, k€N, (29)

where PROJx {-} denotes the projection operator and « is a carefully chosen step size (that could
be time-varying as well). In (2.9), the projected gradient is applied one time per time step k, but
one could also apply multiple gradient steps, say C, per time step.

Notwithstanding this, in general, these correction-only algorithms achieve a high ATE. To for-
malize this result, we focus on a class of algorithms that exhibit a linear convergence. In particu-
lar, let M be an algorithm that when applied to &, at time ¢;41 for function f(x;tx+1) produces
an &1 for which,

|Zk41 — 2" (1) < 0@k — 2" (ths)], 0 € (0,1). (2.10)

This class is common in time-varying optimization (e.g., projected gradient (2.9) is linear on
a m-strongly convex, L-smooth cost function [63]). When the algorithm M is then applied C
times, we obtain: |51 — *(tks1)| < 0%||#x — x*(tx+1)|| - The following general result is in
place.

Theorem 2.1 (Informal) Let M be an optimization algorithm that converges linearly as in (2.10).
Then, under Assumption 2.1, the same algorithm M applied C' times for each time ty,, converges linearly
to the optimizer trajectory of a time-varying problem up to an error bound as

| @541 — " (t1) | < 0 (|2 — 2 (t2)] + K),
and limsup,,_, ., |[&x — *(ts)| = 0°O(K) = 220°O(h), where the last equality is valid under As-

sumption 2.2.

Proof (Sketch) At time ty, if algorithm M is applied C times, starting on &y, and ending at Ty, 41,
by linear convergence of M, we can write

|1 = 2" (trs) | < 0 (|2 — 2" (tern)) < 0 (| — 2" (t)]| + |2 (the1) — 2 (),

and by using Assumption 2.1 the first claim is established. The second claim is proved by recursively
applying the first claim, and by geometric series summation. ¢

The results of the theorem are general and assert that the sequence (&) tracks the solution tra-
jectory up to a ball of size ¢“ O(K). If C — oo, the time-invariant problem is solved exactly and

I This can be generalized for a non-smooth cost function of the form f(x; t) +g(x), as long as f(x; t) is differentiable,
e.g., ||z —t|? + |z|, see [6].

11

we are back to the batch mode (and the error is 0), i.e., the time-varying algorithm is asymptot-
ically consistent. If Assumption 2.2 holds true, then the asymptotic error is proportional to the
sampling period h (cf. Figure 3.1). In addition, for fixed o € (0,1), C < oo, and if the path-length

T
D et (t) — " (tia)

k=1
grows at least linearly in T, no correction-only method of this type can reach a zero ATE [12,51].

We close this part with the meta-algorithm whose properties are captured by Theorem 2.1.

Algorithm 2.1 Correction-only meta-algorithm

Input: Initial point: &o, a linearly converging method M, Number of correction steps
C, sampling time h
Output: A sequence (Zr)reN
1: forke N,k > 1do
2: Sample f(-;tr)
3: Correction step: apply M method for f(-;tx), C times to &x—1 to deliver &y
4: end for

2.3.2 Some notable algorithms

While Theorem 2.1 and Algorithm 3.1 are very general, one can specify them to some notable
linearly converging methods. My co-authors and I have presented extensive analysis of several
of these methods and more in [6,24, 85], for example:

* Correction-only forward-backward/proximal gradient method. If we consider the problem
mingern» f(x;t) +g(x), with f strongly convex and smooth, and g just convex, we can use the
forward-backward method on the sampled problems to obtain a linear converging method.
In particular, if f is uniformly m-strongly convex and L-smooth, then the forward-backward
method is linearly converging with p = max{|1 — am|, |1 — aL|}, and step size o < 2/L.

¢ Correction-only dual ascent method. If we consider the problem minger~ f(x;t), subject to
Ax = b, with f strongly convex and smooth, and Ax = b representing a linear equality
constraint, then under standard assumptions dual ascent can deliver a Q-linearly converging
method (in the dual variables, and R-linear in x) for the sample problems.

2.4 Examples

Example 2.2 (Subspace tracking for video streaming) Robust principal component analysis (PCA)
can be used to separate foreground from background in video, among many other applications. Time-
varying algorithms can then be used on the resulting time-varying optimization problem, see [24, Exam-
ple 1] and [1].

In time-varying optimization, regularizations (e.g., Tikhonov, smoothing) can help both conver-
gence and asymptotical error, so both CR and ATE. This could seem surprising, but having fast
converging algorithms, even if to a regularized problem, can reduce the ATE (especially if the
regularized problem is not very far from the real one). The following example illustrates this.

Example 2.3 (Time-varying capacities in communication networks) We use a multi-user com-
munication network example, whose time-invariant detailed description is given in [47] and the time-
varying version (where the cost is time-varying) is given in [93]. We use then a primal-dual method
with double regularization (in the primal space and in the dual space) to construct linearly converging
algorithms. We see in Figure 2.2 (from [93]), how for time-varying problems a regularization can help
in being more reactive to changes and thereby obtaining a lower ATE than a standard non-reqularized
method.

12

Standard Primal-Dual method (time-invariant oroblem)
—— Regularized Primal-Dual method (time-invariant problem)
- - - Standard Primal-Dual method (time-varying problem)
—— Regularized Primal-Dual method (time-varying problem)

<

Relative objective error

Time index t

Figure 2.2. Convergence results for online primal-dual algorithms in time-invariant and time-
varying problems. As one can see, in time-invariant problems the relative objective error | f(Zx; tr) —
F@™ (t); te)|/| f (2™ (tk); tr)| is eventually higher for algorithms that solve a reqularized problem, since
the latter has a different optimizer. However, we see that convergence rate is also higher. This helps in
time-varying scenarios, where solving a regularized problem may render the approach more agile and ul-
timately have a smaller ATE. Here the standard primal-dual method is a sub-linearly converging descent-
ascent gradient, and we use double smoothing for the reqularization, upon which we use a now linearly
converging descent-ascent gradient.

2.5 More scrambling of hierarchies: distributed computation

Figures 2.1 and 2.2 show how standard hierarchies may be scrambled in time-varying scenarios.
I now present a further case for it in distributed computation settings. Distributed computation
settings are especially challenging in time-varying optimization, since (i) to track a time-varying
optimizer we need to employ constant step sizes (while many distributed optimization methods
use vanishing ones); (ii) time sampling of the cost function has to be synchronized, otherwise
one minimizes a different problem.

Consider then a prototypical consensus problem:

N
minimize flx;t) := Z; fi(z;t), (2.11)
where N spatially distributed computing and communicating nodes labeled as ¢ = 1,..., N,

are equipped each one with a private L-smooth and strongly convex cost f;(x;t).

In Figure 2.3, we illustrate the average tracking error Y, |ly; » —x* (tx)|/N (Where y; i, represents
local version of &) for a time-varying problem defined over N = 20 nodes (connectivity shown
in upper left corner). We study the performance of decentralized gradient descent (DGD) with
vanishing step size («, = 1/k), DGD with constant step size, EXTRA, dual decomposition on
the adjacency matrix of the communication graph, and distributed ADMM (see [24] for details
on implementation and methods). Note that in this setting, the latter three methods have linear
convergence in the static setting. Having better performance in static setting does not clearly
predict better performance in the time-varying setting: for example, it seems that dual decom-
position does much better in the time-varying scenario, while in the static setting it is worse
than EXTRA and ADMM.

The lower left corner of Figure 2.3 illustrates the case where we introduce asynchronicity in the
sampling of the cost function. The error is higher for all the algorithms, but it seems that DGD
with constant step size is the most robust. This is striking since DGD with constant step size
is the worst performing algorithm in the static setting, and shows once more that results in a
static scenario cannot be easily translated into time-varying settings. This aspect has then been
recently expanded upon in [99].

13

Time-invariant case

Network connectivity 10° 4
=
= 10!
3
| H
2 5
1 1072
=)
s T
5 =4
2 —@— DGD with vanishing stepsize 5
§ 1073 DGD with constant stepsize)
IS —A— EXTRA =.
—¥— Dual decomposition g
o —#— ADMM =
T T T T T T T
0 50 100 150 200 250 300 J/
Time index
Time-varying asynchronous case Time-varying synchronous case .’ﬂ
ot 1014 —®— DGD with vanishing stepsize %
DGD with constant stepsize T
—A— EXTRA §
—¥— Dual decomposition // g
—— ADMM =
10° 4 10° 4 =
(o)
<

TV PR A N
DGD with vanishing stepsize
DGD with constant stepsize

—&— EXTRA

—¥— Dual decomposition

—#— ADMM

1071 4 1071 4

Tracking error: 3°, ||y; . — «f[|/N
Tracking error: -, ||y; . — =}[|/N

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time index Time index

t |

Asynchronous < Synchronous

Figure 2.3. Numerical simulations for a time-varying optimization problem solved in a distributed
way. Top left: the communication graph consisting of 20 nodes; Top right: tracking error in the time-
invariant case; Bottom right: tracking error in the time-varying synchronous case; Bottom left: track-
ing error in the time-varying asynchronous case.

2.6 Going beyond strong convexity

So far we have assumed that function f is uniformly strongly convex, so that the solution’s
trajectory is unique and Lipschitz continuous. While it is possible to extend this framework
to non-convex settings, with functions only locally strongly convex (see [26, 100]), it is another
issue to generalize it to non-strongly convex functions (either locally or globally). And in fact,
in view of the examples presented so far (e.g., Example 2.3) one may even wonder if it is needed
at all. One can regularize the original problem and converge fast to a regularized solution plus
an ATE, which could be better than using a slower converging algorithm to the exact solution,
if in this second case the ATE is larger. Notwithstanding, we look now at this latter case.

There are many reasons why going beyond strong convexity is hard in time-varying optimiza-
tion. Above all, if we lose even strict convexity, then the optimizer is in general non-unique and
one can have complex situations, like sets, bifurcations, jumps, and so forth [33]. Then, conver-
gence properties in this setting are, not just more complicated, but often quite weak to be used
in “practice”.

In [85], I have looked at generic convex problems in time-varying settings. The point of depart
is to interpret optimization algorithms as fixed-point algorithms featuring averaged operators,
and use the fixed-point iterations in a correction-only fashion. Consider (T)ren as a sequence
of averaged operators from R” — R", and assume fix Ty, # &, for all k. Let (&x)kren be the
sequence generated by the following correction-only fixed-point iteration:

o =0, Tig1 = Ti(2p). (2.12)

Let the operators T, be bounded, in the sense that we can define {2 := maxgen zier | Tr(Tr)|,
then, a meta-result is that the fixed-point residual would converge as,

. 1 < L
limsup D ITe(@n) — &]* = O(K20), (2.13)
k=1

T—o0

14

Batch Optimization Classical Online Learning Time-varying Optimization
h I I I
Data pata [T Dawm Data Data Data W N
iy g - - > 2| [Classical Batch
S| 8 2 = 5| learning optimization
| Optimization model | | Opt. model |Q>| Opt. model E>| Opt. model | P model 8 g |-
4 . Ry U T
| Batch algorithm | | Online | Online Online | i O Ronlne g ° Online Time-varying
S ‘& o learnin optimization
T T s 0 s 0 | O g0 80 g8 g P
[Decision] [Prediction]E"’E[Prediction | ! Prediction] [Decision]5“5[Decision]E"E[Decision] =3 -
L scarce Lo plentiful
time me time Data availability

Figure 2.4. Online learning and time-varying optimization are both sequential, but in online learning
data is limited in the sense that f(-;tx+1) is not available. In time-varying optimization, there is no
restriction of information, but the full problem cannot be solved within a single time step due to compu-
tational cost. The rightmost plot provides an illustrative distinction between: (i) time-varying algorithms
that have knowledge of f(-;ti+1), but are computationally limited; (ii) classical learning methods (such
as the follow-the-leader method) that do not necessarily have computational limitations [38,78]; and (iii)
online learning, where only one algorithmic step is performed per time interval (such as the online mirror
descent method [35]). In both (ii) and (iii), no knowledge of f(-; ti+1) is available.

where K > 0 represents variations on the fixed points of the operators at subsequent time steps.

One can then use the relationship between optimization and fixed-point theory to specify the
above result for standard optimization algorithms in the correction-only mode. For instance,
in [85], I give results for primal methods (proximal gradient, and others), as well as dual meth-
ods (e.g., ADMM). Even though, on the one hand, we are able to say something about these
online methods for non-strongly convex costs, on the other hand, I feel that results like this one
are a tad unsatisfactory. First, the compactness assumption and the presence of the bound 2
in the ATE bound render the asymptotic bound loose. Second, the error is in terms of average
fixed-point residual, which does not capture the nature of the problem, where one is interested
in how different we are from the optimizers set at time ¢;, rather than as an average in the past.

More research in this direction is needed and I left it for future endeavors.

2.7 Time-varying optimization vis-a-vis Learning

We close this chapter with some discussion on the relationship between time-varying optimiza-
tion and online learning.

The time-varying optimization formalism is closely aligned with existing works on “online
learning in dynamic environments” [35,38,42,78] from a basic mathematical standpoint. How-
ever, a key conceptual difference is that the online algorithms for time-varying optimization
described here are “computation limited,” whereas online learning is “data limited” or “informa-
tion limited” (but not necessarily computation limited). To understand this it is sufficient to look
at the performance metrics. The performance of online learning is evaluated relative to the best
action in hindsight (given a certain f(-;t;), we compute a prediction & for f(-;tx41) and we
measure how different we are to the case in which we knew f(;t541)). Instead, in time-varying
settings we have f(-;¢x4+1) and the performance is measured against the solution that would
have been obtained had we had the time to run an algorithm to convergence at each interval h.

In time-varying optimization, we also focus on algorithms implemented with a constant step
size; this is a natural choice for cases where the optimal solution x*(t) remains transient and
the algorithm runs indefinitely. This is another distinction relative to online learning with a
time-invariant optimizer, where the step size may depend on the time horizon or a “doubling
trick” [78, Sec. 2.3.1] is utilized (with the latter still involving changes in the algorithm based on
how many iterations have been taken).

15

Chapter 3

Structured predictions

Abstract. In this chapter, I introduce the concept of predicting the evolution of the optimizers of
time-varying optimization problems and how to design algorithms accordingly. I show that this new
framework delivers better results than the one I presented in Chapter 2, sometimes even when the compu-
tational effort is taken into account. I provide quite general theoretical results and cite a few application
examples. This chapter is adapted from [6,86,88,90,91,94].

3.1 The need for prediction

In the previous chapter, I have looked at online methods that react to changes in the cost func-
tion. Since at least Polyak [73], researchers have wondered if one could not do better by predict-
ing how the optimizers change in time, and then reacting to the change. This has led to research
in prediction-correction methods.

With this in mind, this chapter overviews key modeling and algorithmic design concepts, with
emphasis on prediciton-correction methodologies, here also called time-structured (structured
for short) time-varying algorithms for convex time-varying optimization. One can use the term
“structured” here to stress that we make use of the inherent temporal structure, meaning we
leverage prior information (such as Lipschitz continuity or smoothness) on the evolution of the
optimal trajectory to enhance convergence and tracking. In contrast, the term “unstructured”
will refer to time-varying algorithms that simply rely on current information of cost and con-
straints (which are the ones we have looked at in the previous chapter).

To further motivate structured time-varying methods, Figure 3.1 illustrates the asymptotic track-
ing error (ATE) for different sampling periods () of discrete-time algorithms, for a robot track-
ing problem (see [5] and later for the setting). The value of exploiting the temporal structure
of the problem can be appreciated. Even keeping computational time fixed, structured algo-
rithms outperform unstructured ones (here by several orders of magnitude). This motivates
our theoretical developments.

3.2 Predictors

We are now ready to focus on discrete-time algorithms that are endowed with a prediction.
Various predictors are considered, and we will call as &, ., the predicted decision variable for
time t;1 with information up to time .

e Clairvoyant oracles and expert oracles. Clairvoyant oracles offer an exact prediction: i.e., they
provide a &1, for which |2y — 2*(t)| = |®x41)x — 2 (tk41)], as if they knew the function
f(;tk+1) and its gradient at time ¢;. In this context, clairvoyant oracles completely remove
the time effect in the optimizer and the optimizer can proceed as if the cost function were not
varying in time. Clairvoyant oracles are impractical (they need to have a perfect knowledge
of the future), but they offer good performance lower bounds (since, one cannot do better
than them). A noteworthy example of when one can use a clairvoyant oracle is when the cost

16

,_.

1)
NS
.

unstructured #0

=
<
w

,_.

9
I
;

1075 4

Asymptotical tracking error

1077 4
O(h3)
sowme computational time

1072 1071 100
Sampling period [s]

Figure 3.1. Structured algorithms can outperform unstructured ones, even keeping the computational
time fixed: here for a robot tracking problem. Unstructured algorithms 0, 1, and 2 are in this case online
versions of the proximal gradient method, for which we perform 5, 7, and 9 passes of the methods, respec-
tively. Structured algorithms here employ either a first- or a second-order Taylor model (for structured
1 and 2, respectively), and 5, and 20 passes of an online version of the proximal gradient method on a
simplified quadratic problem; see later and [5] for further details.

function has a time drift, i.e., f(z;t) = f(x + at), and the oracle can estimate the drift vector
o exactly based on historical data.

Expert oracles, hints, or predictable sequences are considered, e.g., in [42,76]. In [42], one
has access to a sequence (my)ren, of gradient approximators. When m, = 0, i.e., mean-
ing no knowledge or prediction about the future, we recover an unstructured algorithm.
When my = Vgf(x;t;) at time t;, then one recovers the online algorithm of [19]. Fi-
nally, when m; = Vf(x;ty+1), one recovers a clairvoyant oracle. Based on the error
[my — Vg f(z;tr+1)], one can then derive dynamic ATE results.

® Model-based predictors. These predictors are built on a model of the variations of the cost
function, or of its parameters.

(1) Prediction based on first-order optimality conditions [6,26,86,94,100]. A large class of
predictors comes from deriving models based on first-order optimality conditions. We could
call these predictors environment-agnostic, since they are not interested in modeling how the
environment changes, but only how the optimization problem is affected. To introduce these
predictors, let us consider an unconstrained problem (easier than Problem (2.3)) as:

x* (t) = argmin f(x; tx). 3.1)

xeR"”

To derive a model for how the problem is changing from ¢; to ¢;41, we look at the first-order
optimality conditions at time ¢;, which can be framed as

Vaf(x;tr) = 0. (3.2)

To predict, how this first-order optimality condition changes in time, with information avail-
able up to ti, we use a Taylor expansion around (&;t;) as

0= sz(a:, tk+1) 3] gok(:c) = me(j?k;tk) + me(:i:k;tk)(:c — :i:k) + thf(:i:k;tk), (33)

where it is assumed that the Hessian V.4 f (&; tx) exists, as well as the time derivative of the
gradient Vg, f (£ tx), leading to the prediction model'

(pk(w2+1|k) =0 = :132_'_1“c = ﬁ:k — V;;f(ii)k, tk)[me(:i:k;tk) + thmf(:ik; tk)] (34)

IThe time derivative Vs f (2; t1,) can be obtained via first-order backward finite difference if not available otherwise,
see [6,94].

17

The prediction (3.4) represents a nonlinear discrete-time model to compute x}, 411, Note that
@i () can be interpreted as a specific choice for the gradient approximator my, in [42]- see
discussion in the oracles paragraph. Let us now consider a slightly more general setting than
Problem (2.3) as:

2*(t) = argmin f(z;44) + g(@) (35)
xeR"™
where g : R" — R u {400} is a convex closed and proper function (e.g., g(z) = |z[1).

Problem (2.3) is a special case of (3.5), when g(z) is the indicator function of the set X. Once
again, we look at the first-order optimality conditions at time ¢;, which can be framed as the
generalized equation [27]

Vaf(x;ty) + dg(x) 3 0. (3.6)

To predict how this first-order optimality condition changes in time (with information up to
tx), one can use a Taylor expansion around (&;t), leading to the prediction model

Thus the prediction step requires the solution of this approximated generalized equation with
initial condition &, which can be obtained, or approximated, cheaply with e.g., a few passes
of a proximal gradient method (cheaply since ¢}, is a convex quadratic function with the same
strong convexity and smoothness constant as f). The formulation (3.7) represents the predic-
tion model for the presented class of optimization problems (3.5), for a first-order Taylor
expansion. Other prediction models exist for other classes of optimization problems [86,94],
for higher-order Taylor expansions [26], and for more complex numerical integration meth-
ods [34,45,52].

(#3) Prediction based on first-order optimality conditions and extrapolation [6]. This is a
variation of the Taylor model (3.3), where we use extrapolation techniques to derive the ap-
proximation of V f(x; t5+1) as

I
n i— I
or(T) = Z Cif(x;tpy1-q), YxeR", l = (1)t (Z) (3.8)
i=1
The rest follows as in the Taylor expansion model discussed previously. A bit of care has only
to be put in the fact that ¢ () is now a more complicated function of x, and a non-convex
function in general. However, by assuming that the Hessian of f is time invariant, since

21'1:1 ¢; = 1, then strong convexity is ensured.

(i17) Prediction based on parameter estimation [16]. When the time dependence hides a pa-
rameter dependence, then models obtained via filtering are a viable alternative. Let b(t) € R!
be a parameter, and let the function f(x;t) = f(x;b(t)): e.g., the cost depends on the data
stream b(t) representing for example the position of a robot to track. Then b(t) at time ¢z
can be estimated via, for example, a Kalman filter based on the linear time-invariant model:

b(tk+1) = Fb(tk) +wg, Y= @b(tk) + nyg, (39)

for given matrices I' € R'*!, & € R7*!, observations y;, € RY, and noise terms wy, € R!, n;, €
RA. Then the prediction model requires the (approximate) solution of the problem

Tpe1)e ~ argmin f(a; bri1), (3.10)
xeX

with by, being the forecasted b(t;1) based on the model (3.9) via e.g., a Kalman filter.
Other models can be thought of based on non-linear models, more complicated forecasters,
and even neural networks.

3.3 Algorithms

We have presented a few predictors for discrete-time time-varying optimization algorithms.
No general result exists to encompass all the predictors. However, for a particular class of

18

predictors (the one that employs first-order optimality conditions as prediction model) some
general results can be derived. These methods have roots in non-stationary optimization [73],
parametric programming [26,27,100], and continuation methods in numerical mathematics [2].

Consider Problem (3.5) for simplicity (although arguments are generalizable). Let P be a pre-
dictor method that approximates x;_,, based on (3.7), in a linear convergent fashion: one
application of P acting on &}, delivers a &;,,);, for which

|Zx4116 — @hpapp| < 01 @k — @fyqpl, 01 €(0,1). (3.11)
E.g., P could be a proximal gradient algorithm, in which case:
Zpy1k = PROXag{Zr — aVapr(Tk)}, (3.12)

where PROX,4{-} is the proximal operator for function g and step-size o, which could be applied
one or multiple, say P, times for time step. Let now M, belonging to the same algorithm class
of (2.10), be applied to the update (correction) step after function acquisition at ¢4, for which
one application on &, 1, delivers

[Zrs1 — 2" (L 1)l < 02| ®psrjp — " (thg1)], 02 € (0,1), (3.13)
for example another proximal gradient step as
Zpr1 = PROXag{Zrr1n — aVa f(Zrg1ips trer)) (3.14)

Then, we can present the following result is in place pertaining a predictor in the form of a
Taylor expansion of the first order, like in Eq. (3.3).

Theorem 3.1 (Informal) Consider the time-varying Problem (3.5) and two methods P and M for
which (3.11)-(3.13) hold. Let the predictor P based on a first-order Taylor expansion of f (Cf. (3.3))
be applied P times during the prediction step, and the corrector M be applied C times. Consider As-
sumption 2.2 to hold and additionally, let f(x;t) be L-smooth (in addition to being m-strongly convex),
with a well-defined Hessian V zq f (2;t). Then, there exists a minimal number of prediction and correc-
tion steps P, C' for which globally (i.e., starting from any initial condition)

. A * A
limsup [T — " (t)]| = 70@100(]1)
k—0 m

In addition, if we consider the assumption that higher-order derivatives of the cost function are bounded*
as

maX{vawwf(ma t)Hv ”vt:cwf(ma t) Hv Hvttwf(m; t) H} < Alv

uniformly in time and for all x € R™, then locally (and for small h), there exists a minimal number of
prediction and correction steps P, C so that

limsup & — 2 (t)| = O(Arof h*) +O(Aoof 05 h).
k— ~ ~— ~
” prediction gain approximation error

Proof (Sketch) The proof here proceeds as follows: we first bound the error coming from the pre-
diction (e.g., (3.12)), next bound the one from the correction (e.g., (3.14)), and then combine them. For
the error coming from the prediction, two errors must be considered, one coming from the model (due
to the Taylor expansion error), the other coming from the P prediction steps. When considering exact
prediction (P — o), the leading error is the Taylor expansion error (namely the error in (3.3)), which is
O(h) in general, and O(h?) when higher-order derivatives are bounded. ¢

The results of Theorem 3.1 are fairly general and apply to different problem classes [6,86,94]. For
example, in [6], we look at a fairly good number of primal and dual methods that can be applied
in the time-varying domain, which are based on the results of Theorem 3.1 and generalizations
thereof.

2Where induced Euclidean norms are considered for tensors.

19

Theorem 3.1 indicates that tracking is not worse than correction-only methods in the worst
case. If the function has some higher degree of smoothness, and we are interested in a local
result, then a better ATE can be achieved, provided some (stricter) conditions on the number of
prediction and correction steps are verified. The ATE is composed of two terms; one which is
labeled as approximation error, which is due to the early termination of the prediction step (if
P — o0 and prediction is exact, this term goes to 0). The other, named prediction gain, is the
gain coming from using a prediction step, which brings the error down to a O(h?) dependence
on h. This depends on the first-order Taylor expansion employed; other methods can further
reduce this to O(h?) or less [26,34,45,52] (look again at Figure 3.1, where we have also employed
a Taylor model up to degree 2 for (3.3) to obtain an O(h?) error bound).

The higher degree of smoothness required for the local results imposes boundedness of the ten-
SOI Vaaa f(2;t), which is a typical assumption for second-order algorithms (notice that the pre-
dictor requires second-order information, cf. (3.4)-(3.7) and its solution is comparable to solving
a Newton step, which is locally quadratically converging). Moreover, it bounds the variability
of the Hessian of f over time, which guarantees the possibility of performing more accurate
predictions of the optimal trajectory. Theorem 3.1 depicts a key result in prediction-correction
methods: the prediction value is fully exploited with higher smoothness.

We close this part with the meta-algorithm whose properties are captured by Theorem 3.1.

Algorithm 3.1 Prediction-correction meta-algorithm

Input: Initial point: &1o, linearly converging methods P, M, Number of prediction
and correction steps P, C, sampling time h
Output: A sequence (Zr)reN
1: forke N,k > 1do
2 Sample f(-;tr)
3: Correction step: apply M method for f(-;tx), C times to &y, to deliver &y,
4 Prediction step: apply P method for an approximation of f(-; tx41), P times to
Xy, to deliver Ty, 11
5: end for

3.4 A closer look

After having presented the big lines of prediction-correction methods, I am going now to give a
closer look on the mathematical details. This will help in understanding the challenges and the
opportunities for improvement.

3.4.1 Prediction-agnostic error bound

First, let us present general convergence results which are independent of the particular predic-
tion method that is employed. This could be used then to quickly generalize to any prediction
method. Consider once again Problem (3.5) and two methods P and M for which (3.11)-(3.13)
hold. Here we assume the two methods to have the same contraction parameter o; = 91 = 0 €
(0,1), and remind that f is m-strongly convex uniformly in time. Define the two functions,

1, for ¢ =0, {0, for ¢/ =0,
C(0) = { Lo, otherwise and £(0) = { 1+ Lof, otherwise (3.15)

The main result is as follows.

Proposition 3.1 (General error bound, [6] Proposition 5.1) Consider the time-varying Problem (3.5)
and two methods P and M for which (3.11)-(3.13) hold. Let the predictor P be applied P times during
the prediction step, and the corrector M be applied C' times. Let Ky, 1y, € (0, +00) be such that for any
ke N:

™ (trs1) — ™ (te)| < K and &5, — & (tes1)]| < 7o, (3.16)

with &7, indicating the solution of the prediction problem (for any prediction).

20

Choose the number of prediction and correction steps P and C' such that ((C)((P) < 1. Then the error
incurred by a prediction-correction method that uses method M for P prediction steps and C' correction
steps, is upper bounded by:

|Zrs1 — 2" (o) | < C(C) (Q(P)Hik — " (te)| + C(P) K + €(P)Tk)a 3.17)
with functions ¢ and & defined in (3.15).
Now letting K := supen K and 7 := sup,en 7%, we have,

o
imsup 2~ (0] = 1= ey

which gives an upper bound to this asymptotic tracking error. Look now back at Theorem 3.1
and see how Eq. (3.18) highlights the same fundamental result.

(C(P)K +£(P)T) (3.18)

With Proposition 3.1 in place, one can derive bounds for different prediction strategies, which
determine different 7;,’s, as we have done in [6], and I report briefly next.

3.4.2 Taylor-based prediction

Let us consider now the prediction as in Equation (3.3) for V4 f(+; tx+1), for an arbitrary order:

Vo f(®;tpi1) ~ or(x) = Vo f(Zrstr) + Vaa f(Zritr) (T — 1) + A Via f (2 t6) +--- . (3.19)

In this case, for a I-1-th order Taylor expansion, if ¢ () is at least locally m-strongly convex,
we encounter an error of

I

1 1 . x —ipi
Tk = E ;} m”V(t)z(m)Iﬂf‘Hwk — & (tk_;,_l)HI h'. (320)

We can then use the result (3.17), and the fact that | — z* (tg41)] < |&x — z* (k)] + O(h) and
refine the findings of Theorem 3.1. In particular, under higher-order derivative smoothness and
locally (small enough | &, — *(¢)|, small enough h), one can arrive at conditions for which

limsup |, — a* (t)| = O(C(P)h) + O(&(P)AY). (3.21)

k—00

3.4.3 Extrapolation-based prediction

Let us consider now the prediction using an extrapolation as in Equation (3.8). Here, under
the additional assumption that V4 f(-; i) is time invariant (which is the case in many appli-
cations), we can obtain global results. In particular, under higher-order derivative smoothness,
and the step condition ((C){(P) < 1, one can arrive at the tracking error

limsup |, — 2* (t)] = O(C(P)h) + O(E(P)R), (3.22)

k—o0
for a I-1-th order extrapolation, for any initial condition, and sampling period h.

We see that extrapolation-based predictions seem to be more flexible and global: they do not
require one to compute high-order terms, but only to keep in memory function gradients at
previous time steps, e.g., Vaf(;tx), V. f(:;tk—1), ..., and they converge globally up to O(h!).
However, they require the time invariance of the Hessian, and, if we impose this condition, they
are (at least empirically) very similar to Taylor-based prediction methods.

3.5 Examples
Many examples have been reported in my papers, such as [5,81,88,90] stemming mainly from

power grids and robotics. Figure 3.1 reports the robotic example from [5], pertaining a leader
following problem for a group of N robots in a rigid formation.

21

Chapter 4

Non-convexities

Abstract. In this chapter, I look at time-varying non-convex problems through specific examples stem-
ming from cyber-physical systems. The aim is to show that in time-varying settings, even moderate-to-big
simplifications of the problem might be reasonable and can lead to satisfactory time-varying solutions. In
particular, I will present simplifications corrected by feedback in smart-grid settings, and simplifications
corrected by repeated actions in ridesharing platforms. This chapter is adapted from [10,22,23,29,69,95].

4.1 A general plea for model simplicity

So far, we stayed in the comfort zone of convexity, with its solid theoretical guarantees and well-
behaving algorithms. In this chapter, we take a little detour in the non-convex domain, which is
widespread in cyber-physical systems. The approach I will take hinges on the fact that we are in
time-varying settings and batch solutions are not available. So, since we cannot solve for z*(t),
and we will have always an asymptotic error, then we may as well try to modify the problem
formulation in an easier problem and solve a simplified version, faster. This is the same idea of
the regularizations in Chapter 2, Example 2.3, but transposed in the non-convex setting.

There are a few ways to formalize and implement this idea in the non-convex domain, and I
will be looking at two of them, which really stress important aspects of cyber-physical systems:
(1) an underlying physical system; (2) the possibility of integer decisions.

The reader is also invited to see the more recent [7], where with my co-authors, I formulate the
problem in a bit more generic terms as trying to find the “closest” time-varying convex problem
to a given time-varying non-convex one (under some weakly-convex assumptions — a function
[: R" - R p-weakly convex if and only if f(x) + u/2|z|? is convex).

For the more theoretical-prone reader, I remark that the results in this chapter are somewhat less
“sharp” than the ones presented in the other chapters (since in general the non-convex domain
is more theoretically challenging) but they are well supported empirically in real-life settings.

4.2 Non-convex constraints: the value of feedback

4.21 Cyber-physical systems

Cyber-physical systems are associated with a collection of systems coupled through physical in-
terdependencies, and logically connected by an information infrastructure that supports control
and optimization tasks. Examples include communication systems, power grids, and robotic
networks. In practice, one has a digital layer, where one takes decisions, and a physical layer,
where the decisions are carried out. In the power grid setting, decisions may be power or volt-
ages commands, that are then implemented and affect other physical aspects of the grid.

Here, we consider a physical system that maps an input £ € X < R" and an unknown distur-

22

bance/uncontrollable input w € W < RP” to the output y € R™ according to the map
Yy= 71'(:37’[1)), (41)

where 7 : X xW — R™ is continuously differentiable and locally Lipschitz continuous in x. We
wish to optimally manage the physical system (4.1), and, as such, we are interested in solving
an optimization problem of the form

minimize F(x,y;t), subject to y = m(x, w). 4.2)

xeX,yecR™
Problem (4.2) is a time-varying optimization problem in the form of (2.1). In particular, the cost
can model time-varying conditions and depends on the decision variable that we apply to the
system, w € W is an unknown disturbance, the convex set X represents physical limits on the
input quantities. Even when F is convex in (x,y), which will be the case for us (and in most
cases, since it is we that design it), the physics map 7 is nonlinear, making the overall problem
non-convex.

Example 4.1 As an example of 7 consider the power-flow equation, for which y represents voltages and
x and w controllable and uncontrollable powers. The relationship between voltage V' and power P is
non-linear (and from high-school physics, an upgraded version of the V- = /P/R for a resistance R).

Besides being non-convex, Problem (4.2) is hard in general since we require a precise knowl-
edge of m and of the disturbance w, which is often unavailable. However, in many real-world
applications, the system operator will have access to a linearized model of the system (4.1) of
the form

y~ Iz + I,w (4.3)

and to a forecast or guess w for the disturbance w. We can then solve the feedforward optimiza-
tion problem
minimize F(x,y;t), subject to y = Iz + I1,,W. (4.4)
zeX,yecR™
Solving (4.4) and applying its solution to the system can be seen as analogous to applying feed-
forward control to a dynamical system.

For the sake of simplicity, let us assume that F'(x,y;t) := f(x;t) + g(y;t), so we divide the de-
pendencies (this is hardly a simplification, since we can always redefine 7 to include an identity
map, and therefore regain the original problem). Assume also that f and g are smooth convex
functions of x and y respectively.

With this, we can rewrite (4.4) as

minir)r{lize Fy(xz;w;t) := f(x;t) + g(Hx + I,w;t), 4.5)
xe

we can sample it at discrete time steps ¢, and the use, e.g., a correction-only projected gradient
descent to find and track x*(¢) (since now the problem is smooth and convex, and we can also
safely assume strongly so). In practice, we can write (for a step size a > 0)

Lo =0, &), = PROJx[®r—1 — (Ve f(@r_1;tr) + [T Vyg(H &)1 + Typr_1;t)], ke Nxo.
(4.6)

Since the cost is convex in « and the set X is convex, the online projected gradient will converge
under suitable assumptions (see Chapter 2) to the optimizer trajectory. Optimizers which will
be different from the ones of the original Problem (4.2), because we have approximated 7, and
forecasted the disturbance. However, the most problematic issue here is that the optimal input-
output couple will not be feasible for the system (since y # m(x,w)), which could be very
difficult to justify to system operators, and implement in practice. In addition, we still assume
the availability of a forecast for the disturbance, which is hard to obtain in practice.

To address challenges outlined above, the idea is to suitably modify the algorithmic updates
of online optimization methods, such as (4.6), to accommodate measurement feedback — some-
thing that henceforth is referred to as online optimization with feedback. In particular, we could

23

implement the decision &) and measure the output g, = 7(&x, ws), thereby letting the underly-
ing system “solve” the non-linearities for us. As such, we consider modifying (4.6) as

Ty =0, &1, = PROUx @1 — (Ve f(Zr—1;tk) + [T Vyg(Jr-1;tk)], ke€Nso. (47)

where the measurement y;,_; replaces the model y,_1 = II&)_1+ 11, Wi—1. This simple concep-
tual modification leads to the following key advantages: (1) instead of measuring/estimating
w we rely on m measurements of the outputs y, which are easier to obtain in current cyber-
physical systems; (2) the algorithm naturally accounts for the underlying physics via the mea-
surements g, so the optimal input-output couple is feasible and implementable.

Empirical evidence on real systems goes even beyond point (2) suggesting that the so-called
sensitivity matrix /I may be even quite far from the underlying system, and the online algo-
rithm with feedback would still be performing well in practice. This makes updates like (4.7)
practically model-free, and highlights the value of feedback in non-convex time-varying set-
tings.

Remark 1 Looking at updates (4.6), one could think of using Vo m(&_1, W,—1) instead of II at every
time step. This would basically mean solving the non-convex problem (4.2), via gradient descent. This
is hardly feasible in practice, since V m is very hard to obtain for large-scale systems, as power grids,
transportation systems, etc., and gradient descent in non-convex problems could converge arbitrarily
slowly, especially if we employ line-search for the step size. See [10,21].

Remark 2 We have implicitly assumed that the underlying physical system reacts with faster time scales
than the optimization algorithm. That is, we can safely assume that g, = m (&, wy) with no delay. One
can also consider a dynamical case, but convergence is only ensured assuming time scale separation [36].

We report in Algorithm 4.1 a meta-algorithm, where one can appreciate how we use the under-
lying physical system to “solve” the optimization non-linearities for us.

Algorithm 4.1 Online optimization with feedback meta-algorithm

Input: Initial points: &, Yo, a sensitivity matrix 11, a step size o, sampling time h
Output: A sequence (£)reN
1: forke N,k > 1do
2: Sample f(-;tr), g(-;tr)
3: Correction step: apply one step of online projected gradient descent to
Tk—1,Yk—1 to deliver &y:

& = PROJx [#h—1 — (Vo f(@r—1;tk) + ' Vyg(Jr-1;tr)]

4: Feedback step: implement &, and measure Gy, = w(&y, wy).
5: end for

We remark here that only one online projected gradient descent step is run, since feedback is
obtained with the same time scale of the optimization algorithm. We could generalize this to
different time scales, but the qualitative results will not change.

4.2.2 Assumptions and convergence

Let us look now at some high-level results pertaining convergence of the proposed online feed-
back approach. Consider the original problem (4.2), and let Z(¢;) be a KKT point of it at time
ti, meaning

Vo f(®(tr)itk) + Var(®(tr), we)Vyg(y(te);te) + Nx (Z(tr)) 20, y(te) = m(@(te), w),
(4.8)
where N (-) is the normal cone operator of convex set X.

Consider now the unique optimizer of the sampled version of the convex problem (4.5), and
call it x*(tg), i.e., *(tx) = arg mingex Fy(x, wy; tr).

24

We can look at convergence of the sequence (&x)ren is two possible ways: either by using
x* (t,) or by using Algorithm 4.1 as a frame of reference, leading to similar results, under similar
assumptions.

Theorem 4.1 Assume that function Fy(x,w;t) is a L-smooth strongly convex function in x for all
t = 0. Assume also that for all k € N, we can bound

|l (t) — 2" (tr—1)| < K, [TV yg(H &gy + Muwtbr—1;te) — 11TV yg(Ge-1:tr)| < ca,,
Then the sequence (&) ken generated by Algorithm 4.1 with step size 0 < o < 2/L converges as

limsup |2 — 2" (i) = O(K) + Olea,)
k—0 ~—— ~—
Time variations Price of feasibility

Proof Immediate via triangle inequality and smooth strongly convex cost, for which projected
gradient is a linearly converging algorithm.

Define now the operator F,(x;t) := Vgf(z;t) + IITVyg(m(z;w);t). Algorithm 4.1 can be
interpreted as finding the time-varying fixed point of * = PROJx (x — aFy (x;t)). Consider for
now a time-invariant scenario. If we have that F, (x; t) is o-strongly monotone and L-Lipschitz
continuous in « for ¢ = ¢, then the solution F,(x;?) = 0 is unique and Algorithm 4.1 with step
size 0 < o < 2p/L? converges linearly to it. Let ¥ (f) be said solution. Let us do another step.

Theorem 4.2 Assume that F,,(x;t) is o-strongly monotone and L-Lipschitz continuous in x for all
t = 0 and denote with = (t) the unique solutions F,,(xz;t) = 0. Assume also that for all k € N, we can
bound

| (tr) — 2" ()| < K (I = Ver(&(ty), w))TVyg(n(@(t), w)s te)| < ca,,
Then the sequence (2,)ren generated by Algorithm 4.1 with step size 0 < o < 29/L? converges as

limsup & — &(tx)| = O(K') + Olca,) , and|2(ty) — % (t)] < ca,/o.
k—o0 ~—— ~——

Time variations Price of implementability

Proof The proof follows from monotone operator theory together with implicit function theorems,
see [21], [62, Theorem 1.14]. ¢

Let us look at the results a little closer. Theorem 4.1 uses the convex problem (4.5) as a frame
of reference, since its optimizer trajectory is well defined. We then assume boundedness of
the time variations (as done in Theorem 2.1 of Chapter 2), and a bound on the approximation
quality of the linear model and disturbance prediction. Finally, we can derive a tracking result
which showcases an asymptotic tracking error determined by the bound on the time variability
and the model error.

If the model was correct, then ca, = 0 and z*(¢) = Z(t), and we are back in the standard convex
time-varying case. Otherwise, when the model is not correct, we pay the price of feasibility
(meaning that we consider a feasible update y = w(x,w), instead of one coming from the
model).

Theorem 4.1 is a bit unsatisfactory, since the assumption on the model error c, depends on the
algorithmic sequence, and even though assuming compactness of X and W one can possibly
bound c,,, this may be quite loose. In addition, the convergence is to a point «*(¢;) which is
practically irrelevant, and the feedback, which should bring a plus to the scheme, is treated as
an error term.

To overcome these challenges, Theorem 4.2 starts with a different frame of reference: the algo-
rithm directly, seen as a fixed point. Under strong monotonicity and Lipschitz continuity, plus
assumptions on bounded time variations and model error boundedness at a KKT point, then a
tracking result is derived. The result pertains the distance of & to a KKT of the original prob-
lem, and it is bounded by time variation errors and the price we pay for implementability (i.e.,
the possibility to run the algorithm in real time, without having to determine w and V7 (x, w),
and with the knowledge that the algorithm is converging to a unique fixed point).

25

Theorem 4.2 has more reasonable assumptions than Theorem 4.1, and the only strong one is
the p-strongly monotone assumption. However, since we can design f (and tune II), as long as
F,,(z;t) is L-Lipschitz continuous, we can add a Tikonhov regularization to bring Fy,(x;t) to
be strongly monotone, which we know it is not very problematic in time-varying settings.

4.2.3 Extensions

So far we have looked at problems where only the cost was dependent on the output y. One
can extend this setting to problems with constraints that depend on y and combinations thereof.
In [10,22,23], my co-authors and I have considered this setting modifying the gradient scheme
with a primal-dual, and obtaining qualitatively the same guarantees.

We explore such an extension with a practical example in power grids.

Example 4.2 (Optimal power flow pursuit) Consider the problem of optimizing in real time the op-
eration of aggregations of distributed energy resources (DERs) located in (a portion of) a distribu-
tion system (e.g., a distribution feeder). The problem is formulated as a time-varying optimal power
flow problem (OPF) and fits the proposed framework. Particularly, we consider a distribution network
with one slack bus and N PQ-buses. We assume, without loss of generality, that a controllable re-
source is connected at every P(Q) bus i = 1,...,N. The controllable quantity of resource i is given
by x; = (P, Q:)" < R?, where P; and Q; are the net active and reactive power injections from
resource 1, respectively. The objective function for a photovoltaic (PV) system i is fi(P;, Qi;t) =
cp (P — Pi(zf))2 + ¢,Q?, where P;(t) is the maximum real power available at PV system i at time t.
We set X;(t) = {(P;, Qi) : P} + QF < S7 oy, 0 < Py < Py(t)} where S; wax is the rated apparent
power for the PV system i; similar costs and sets are considered for energy storage systems, with the
additional constraints on P; based on the current state of charge.

We consider the mapping y = w(x,w) ~ Iz + I,w € R3" as the linearized mapping from power
injections to the voltage magnitudes at each node, derived using, e.g., [4]; the vector w collects the
uncontrollable power injections at every node. We also consider engineering constraints involving the
voltage magnitudes at each node to be within an interval [0.95,1.05] p.u., thus defining the following
constraints: c(y) = ([0.951 — y]T, [y — 1.051]")T < 0.

We consider then the time-varying optimization problem

N
minimize Z fi(xi;t), subject to: x; € X;(t), c(y) <0, y=n(z,w), 4.9)

xeR2N yeR3N

which we solve via a projected primal-dual scheme on the linearized w(x,w) ~ Ix + IT, w and cor-
rected via feedback. Illustrative numerical result for the AC OPF problem are then reported in [10,22,23],
and they showcase how the discussed method enforces feasibility online and it is (by construction) imple-
mentable in real-time system, and better performance with respect to linearization alone, as well as other
traditional methods.

4.3 Combinatorial problems: an example

We look now at combinatorial problems stemming from transportation and ridesharing sys-
tems. It goes without saying that combinatorial problems are much harder than convex pro-
grams, and even more so in time-varying settings, where a plethora of behaviors could occur
(solutions’ bifurcations, jumps, discontinuities, etc.). More than that, one could actually wonder
whether the solution at time ¢; has anything to do with the solution at time ¢, if the coeffi-
cients of the problem change. In particular, we cannot expect to have Lipschitz continuous
optimizer trajectories in combinatorial problems.

Our methodology in continuous optimization settings was to approximate the sequence of so-
lutions (x* (tx))ren With another sequence (&j)ren Which was computed by computationally
frugal methods within each sampling period h. The errors at each time step were then limited
by leveraging the knowledge of past solutions and, possibly the evolution of the optimizers

26

written in the optimality conditions. One of the main results we derived was that if the sam-
pling period was sufficiently small, or the problem was changing sufficiently slow, then the
solution of the time-varying problem was eventually indistinguishable from (x* (tx))kenN-

Since the solutions at different sample times * (¢;) in combinatorial settings are almost different
entities, our continuous optimization methodology cannot be expected to work, in general.

4.3.1 Sequential assignment problems

One of the cornerstones of combinatorial problems is assignment problems, where one wants
to assign a series of goods to a series of customers, minimizing a pertinent metric. Linear as-
signment problems are a particular case of assignment problems, where the cost is linear.

Let us consider n goods to be assigned to m customers, such that no customer gets more than
one good, and all the goods are assigned. Let « € {0, 1}"*"™ be the assignment matrix (z;; = 1 if
goods i is assigned to customer j, and 0 otherwise). Then a time-varying assignment problem
1 n m n m
minimize Z Z fij(zijst), subjectto Vj: Z xy; <1, Vi: Z ziy; =1, (4.10)
j=1

nxm
ze{0,1} i=1j=1 i=1
,
where f;;’s are scalar non-negative cost functions associated with the assignment x;;.

Solving assignment problems is hard, and more so if f;;’s change and the sampling period is
small. In addition, what does it really mean to have a time-varying assignment problem? Do
customers get assigned goods and then after a time we could take them away from them? Or
just, we have new customers and the same goods that can be shared among different customers?
Or?

As we see, it is quite complicated to talk about time-varying combinatorial problems and the
meaning of their solutions.

In the following, we will put ourselves in the setting in which customers are revealed over time,
to which we assign available goods (goods are then assigned to customers for a time period and
then freed). In this setting, while finding an approximate sequence (&),en has little meaning,
it makes sense to find an approximate sequence of problems, easier to be solved exactly in the
time period h, which, however, can deliver overall good solutions in the long run.

This is a change in perspective, which is, however, not so distant from the regularization ideas
of Chapter 2 and the previous sections of this chapter. We solve an easier problem at each time
step ¢, and we look at solution quality in the long run. To make things easier to understand, let
us look at a specific problem.

4.3.2 Ridesharing problem

Let us consider a concrete problem stemming from dynamic ridesharing: we have customer
requests for trips that have to be assigned dynamically to available vehicles, and vehicles can
be shared with customers, if their trip allows it. If we were to consider the complete problem, at
each time ¢, we would need to assign vehicles to multiple customers who can share their ride.
This is the approach of [3], which requires the solution of a hard combinatorial problem, which
in turn requires high computational resources and time.

Our approach is different: let us simplify the problem and consider only one customer to ve-
hicle assignment per time step. This leads to a convex problem (!) which can be solved very
efficiently, so we can lower the computational requirements and sampling time. This makes us
also more reactive and possibly better in the long run.

Let us look at it in more details.

Formal problem formulation

Given a set M of m customer trip requests at time ¢;, and a ridesharing fleet C = {1,...,n} of
vehicles, each with capacity C;, we are interested in determining ridesharing solutions in real

27

Table 4.1. Results and comparison with [3]. SR stands for service rate, i.e., the percentage of accepted
requests that satisfy trip constraints such as waiting time and detour times of less than 7 minutes.

N. vehicles capacity h SR waiting detour comp. time
[s] [%] [min] [min] [s]
3000 4 10 99.87 3.23 2.59 7.87
Hereand [%5] 3009 4 30 9909 304 247 12.77
3] 3000 4 30 9791 2.70 2.28 51.55
3000 10 30 98.58 2.56 2.74 60.39

time. Our ridesharing service aim at providing an assignment of requests (customers) to avail-
able vehicles and their correspondent routes, according to some optimization criteria. Available
vehicles are those that can pick up customers, while complying with the time constraints asso-
ciated with the requests, and without exceeding their seat capacity.

We express the ridesharing service as an optimization engine, which is run at specific time peri-
odsty (k=0,1,2,...). Ateach such time instant ¢, the service processes the requests submitted
by customers in the time window (¢5_1, t], and find optimal vehicle-costumer assignment and
correspondent routes.

Our algorithm leverages the following feature: at each optimization run, at most one new re-
quest (customer) is assigned to a vehicle. This design choice enables us to reduce the rideshar-
ing optimization problem into a linear assignment problem (whose convex relaxation is exact),
which can be solved efficiently and in a very fast manner.

This simplifying assumption is not restrictive: vehicles will have multiple customers assigned
to them, just no more than one coming from the same time window (tx_1,?;]. We see already
that if the sampling period % is small enough, then this simplification is a small price to pay,
which unlocks fast and efficient assignment algorithms. In fact, this simplification may result
even in better solutions in the long run, since the problem is highly dynamic, so optimality at
time ¢, does not imply optimality in the long run (practically, assigning two customers to a
vehicle now, may prevent that vehicle to have better assignments later).

4.3.3 Results

While the technical details can be found in [95], we report here some interesting results consid-
ering the New York City taxi public dataset and extracting one week of data trips. The findings
presented in Table 4.1 show qualitatively similar performance and lower computational time
with the competing algorithm of [3] with solves an exact assignment problem at each sampling
period (e.g., no one customer per vehicle assumption). In particular, we achieve a similar per-
formance as [3] while our computational time is as much as 4 times lower than theirs. This is
even more impressive, since we implement our algorithm using the Python 2.7 language on a
2.7GHz Intel i5 laptop with 8GB RAM, while in [3] their algorithm is implemented in C++ on a
24 core machine.

Table 4.1 supports our idea of simplifying combinatorial problems to solve them more effi-
ciently, with “corrections” coming from their fast repeated implementation. Extending this to
other combinatorial problems could be possible, given the often very fine line between easy and
hard problems in combinatorial domains [70]. However, this is hardly a general statement and
in some cases things are more nuanced. The interested reader can have a look at [29], where
my co-authors and I showcase another combinatorial problem from transportation, where the
convexification works a bit less good than here, but we are still able to find good problem sim-
plifications to trade off fast solutions with long-term optimality.

28

Chapter 5

Human preferences

Abstract. In this chapter, I introduce the concept of human preference and satisfaction and I move from
cyber-physical systems to cyber-physical and social systems. Preferences are modeled via an unknown
cost function that has to be learned via user’s feedback, which resembles the feedback action in Chap-
ter 4. I provide general theoretical results for different learning mechanisms and an example from vehicle
platooning. This chapter is adapted from [65,68,87,89].

5.1 Intermezzo: Connecting the dots

In the previous chapter, we have studied cases in which the decisions affect the physics of a
system and change its state via a (possibly) non-linear model y = 7(z, w), see Equation (4.1).
We handle these nonlinearities with measurement feedback. The next reasonable step! is to
consider a social model measuring satisfaction or dissatisfaction of users to which we feed the
decision . In some sense, humans act as a physical system that given an input it provides a
feedback. We look at this next.

Remark 3 Here, I use the word preference in an online bandit-like (and extensions) setting, whereby
functions are learned via user’s feedback. Sometimes, preference learning in machine learning is intended
as the setting where one learns relationships between decisions, i.e., if the user prefers option A to option
B, via noisy feedback. I do not look at the latter here.

5.2 Problem formulation

I extend the setting from the previous chapters to include human preferences as a cost func-
tion to be minimized. In particular, consider again Problem (1.1), but here with the twist of a
composite structure:

P(t) : minin)}ize flx;t) =V(z;t) + U(x), fort =0, (5.1)
xe

with V(x;¢) : R" x Ry — R being strong convex and known, while U(z) : R — R unknown
and to be learned. The two functions represent the engineering objective and the users (human)
dissatisfaction to a particular decision « at time ¢. Here, I implicitly assume that the user’s
dissatisfaction function U(x) does not change in time; however, slow changes of the function
do not affect reasoning and technical approach?. Furthermore, U (z) is not necessarily a convex
function, thus rendering P(¢) a challenging problem even in the static setting. The structure of
Problem (5.1) naturally suggests that optimal decisions strike a balance between design choices

1 At least it sounded reasonable after a nice conversation with Prof. Dough Leith at Trinity College Dublin and my
former colleague Julien Monteil.

2Since we consider systems for which the changes in V have the time scale of seconds or minutes, it is unlikely
that humans change their preferences at this scale [56,72]. The case of time-varying preferences, extensions could be
envisioned by leveraging time-varying or contextual bandits.

29

(which may be time-varying, e.g., in tracking problems) and user’s preferences, which are often
slowly varying and not known beforehand.

As done in the previous chapters, consider sampling Problem (5.1) at discrete time instances ¢,
k =1,2,.... This leads to a sequence of time-invariant problems as:

Py : minir}(lize flxsty) = V(s ty) + U(x), (5.2)
xe

which we want to solve approximately within the sampling period h to generate a sequence
of approximate optimizers {xj}ren (one for each problem Pj) that eventually converges to an
optimal decision trajectory {&*(tx)}ren up to a bounded error. A key difference in the setting
proposed here with respect to the previous chapters is that we construct approximate optimiz-
ers concurrently with the learning of the (unknown) user’s function U(x). The main operating
principles of the algorithm to be explained shortly are, qualitatively, as follows: (i) at time ¢, an
approximate optimizer &, is computed based on a partial knowledge of U(x); (ii) the optimizer
is implemented, and it generates some “feedback” from the user in the form of, for example,
Jr = U(@r) + €, where ¢ is noise; and (iii) g, is collected and utilized to “refine” the knowledge
of U(x). At time t;41, the process is then repeated.

5.3 Learning cost functions

As we are going to see shortly, the main difference with standard time-varying optimization
is that one needs to learn the cost function concurrently to the implementation of approximate
optimizers. This learning procedure requires feedback from the users in terms of noisy function
evaluation and it can be done in different ways. I review four below that I have been using in
my works [65,68,87,89]. Others, such as deep neural networks could be in principle also used.

We want to estimate an unknown function U(x),x € R” from d noisy feedback points §; =
U(&;)+e;,i€[l,...,d] =: I4, with g; a zero-mean Gaussian noise term. Let us see how to do it.

5.3.1 Gaussian processes

Standard method. Gaussian processes (GPs) can be used to model the unknown user function
U(z). Such semi-parametric model is advantageous in the present setting because of (1) the
simplicity of the online updates of both mean and covariance; (2) the inherent ability to han-
dle asynchronous and intermittent updates (which is an important feature in user’s feedback
systems); and, (3) the implicit and smooth handling of measurement (i.e., feedback) noise.

For d data points, GPs can deliver approximation of the unknown function U in terms of mean
ta(z) and variance oq4(x). Different methods then would weigh the former and the latter dif-
ferently to obtain the sought approximation, e.g., we could set U(x) ~ pq(x) + Bq0q(x), with a
scalar weight (4.

If the computation of the kernel matrix is computationally efficient, the computational com-
plexity of GP regression is dominated by the inversion of the kernel matrix, yielding an O(d?)
complexity.

Shape constraints. In many cases, U(x) can be assumed to be convex or with another struc-
tural property. The convex case is common if we are interested in capturing the dissatisfaction
of the users around a working solution, or we are interested only in a general trend, rather
than extremely fine-grained characterizations. Therefore one needs to be able to impose such
constraints in the approximation procedure to facilitate learning with scarce and noisy data.

Shape-constrained GPs [97] are regression methods that do exactly that. The key intuition is
that differentiation is a linear operator, so derivatives of a GP remain a GP [77]. Imposing
convexity means impose restrictions on the Hessian of a GP, whose coefficients are GPs. When
the functions to be learned are mono-dimensional, then Hessians are also mono-dimensional
functions, and their sample-path can be restricted to be non-negative (for convexity), or upper
and lower bounded for smooth and strongly convex functions. The exact procedure is described
in [97] and in my [68]. Note that one imposes constraints only on a subset of points, both

30

for computational and theoretical reasons, therefore shape-constrained GPs guarantee that the
posterior mean function p,4(z) has practically® the imposed properties [97].

Two remarks are now in order. First, note that the procedure is still computationally viable
when the functions are mono-dimensional (i.e., € R). The same procedure for x € R", would
require describing n x n coefficients of the Hessian as a GP, and imposing, e.g., semi-definiteness
on s points, would amount at a total cost of O(sn®), and therefore a total computational com-
plexity* of O(d? + sn®).

Second, even if the posterior mean function p4(x) has the properties that we impose, the vari-
ance o4(x) does not, so the approximation for U(x) needs to be U(xz) ~ pq4(x), which obliges
one to avoid the use of more performing upper confidence bound algorithms, as we will see.

5.3.2 Parametric and nonparametric approaches

Another set of methods that one can use to learn a function from noisy evaluation are parametric
and nonparametric methods. In the former, one assumes a specific function form parametrized
via a small set of free variables that have to be learned. In the latter, we only assume the func-
tional class. In both cases, in contrast with GP regression, we can impose shape constraints
directly in the learning method by our choice of class.

Parametric methods. Parametric methods are very useful when one has prior knowledge of the
functional form. As I mentioned before, this is not such a weird thing to assume, especially if
users have sharp preferences and we only want to capture the general trend, or behavior around
the working point. In this scenario, one can as well assume a convex quadratic function of the
form

1
U(x) := §$TPZB +q'x (5.3)
with parameters (P, g, r) to be learned. For any d feedback points: §; = U(&;) + &;, i € Iy, we
can set up a constrained least-squares (LS) method as

2
1 1+, . .
iwiTPwi g @ —

subject to P € P, (54)

n
minimize
P,q,r Z

i=1

where the set P captures smooth and strong convexity assumptions, or combinations thereof
(e.g., P is the positive semidefinite cone). If then P is convex, then the whole problem is convex.

In [65], we explore a slightly different LS method, removing the constraint and using recur-
sive least-squares (RLS) instead of least-squares, which has a better computational complexity,
even though the qualitative idea is the same. For RLS the computational complexity is O(n*)
(independent of the number of data points, since recursive).

And finally, note that any linearly parametrized convex functions could lead to convex estima-
tion problems.

Nonparametric methods. If imposing a structure is too much to ask, one can also just impose
the functional class, like convex or smooth strongly convex. Doing that would require solving
the infinite dimensional problem

d

minimize 2 la(@:) — 9:i|* subjectto ¢ e F, (5.5)

a i=1

for a specific functional class F (note here that ¢ is a function). While this sounds hard to do,
it is possible to show that this is in fact a finite-dimensional convex problem at least if F is the
convex class [15]. While the case in which F convex is rather acquired, the case in which we
want to impose strong convexity and smoothness is less direct, and I have explored it in [87].
The results there are based on Adrien Taylor’s work [84].

The resulting algorithm has a computational complexity that grows at least as O(d®n?).

3With a limited number of enforcing points s, the mean has the functional properties we require up to a very (prac-
tically negligible) small error.
4This can be derived by considering that in the constraint-enforcing procedure one needs to solve n? convex prob-

lems featuring semi-definite constraints of dimension n2.

31

Table 5.1. Comparison of estimation methods and their asymptotic learning bounds. Cvx-R stands for
convex regression. The parameter r is = forn=1,2,3, 11/log(d) for n=4, and £ forn > 5.

Method Shape const. Comp. compl. U(x) Asympt. learning bound
under extra assumptions
Standard GP No O(d?) pa(x) + Baca(x) O(1/V/d), O(1/d) [77]
Shape-const. GP Yes O(d® + sn®) pa(x) O(1/V/d), O(1/d) [68]
RLS Yes O(n*) Eq. (5.3) O(1/+/d) [65]
Cvx-R Yes O(n3d®) Ba(x), see [87] O(1/d™) [58]

Comparison and asymptotic learning bounds

In Table 5.1, I report a comparison of the estimation methods we have presented, together with
their asymptotic learning bounds. The latter ones describe how the estimated function con-
verges to true one as the amount of data point increases. The reported “typical” asymptotic
learning bounds are subject to more restrictive assumptions on functional classes and data rich-
ness and they are shown indicatively to gauge the relative learning “speed” among the different
methods (sharper ones can also be found in the literature depending on the set of assumptions
and functional classes). We can see how standard GP and recursive least-squares provide a
good trade-off between computational complexity and asymptotic learning bounds. However,
the other methods may be competitive, when one has access to scarce data and the “asymptotic
regime” never kicks in.

5.4 Optimism in the face of uncertainty

Having described methods to learn the unknown users’ dissatisfaction, we are now ready to
derive an algorithm that finds and track the optimizers of Problem (5.1).

Let £ be a method that learns a cost function based on d feedback points, returning Uy(z).
Consider then function fiq(z) := V(x;t) + Uy(z) which approximate f(x;t;) at time ¢, for
d feedback points. The optimizer of f(x;t;) is still *(¢;), and we let &}, be the optimizer of
fkd(a:). Here I assume both of them to be unique (but we could generalize this).

Let now M’ a method that when applied to @;_; for function fys(z) is functionally linearly
converging, in the sense that it delivers a &, such that

Fra(@r) = fra(®@hg) < n(fra(@r-1) — fra(xia)), ne(0,1). (5.6)

Method M’ is a twist with respect to Chapters 2-3 to accommodate more functional classes, e.g.,
invex functions (note that, smooth strongly convex f’s enjoy both methods M and M’).

We are now ready for our Learning and Optimizing meta-algorithm, presented below, in Algo-
rithm 5.1. As we see, the algorithm proceeds in rounds, where we estimate the user’s function
based on d feedback points, and we sample the cost at time ¢;. When the decision at time ¢y, is
computed, it is applied and feedback is sought. If the latter is given, then the counter d is incre-
mented and at the next step the estimated Ud will be different. Otherwise, d is kept the same, as
well as U,. This is also captured in Figure 5.1. From the figure and the algorithm, one can really
see the existence and interplay of three time scales: the learning scale (how fast we are learning
U), the time-varying scale (how fast V' is changing), and the optimization scale (how fast we are
converging to the optimizer’s trajectory). These scales will play a major role in the performance
analysis next.

5.4.1 Assumptions and convergence

It is remarkable that one can say anything at all for a meta-algorithm like Algorithm 5.1. I show
here that under some blanket assumptions, we can describe the dynamic regret (see definition in
Chapter 2). We will then have a closer look for a specific learning method. We start by assuming

32

time/
2 3 4 k (optimizer counter)
| | |

L l
v v v o
vi~f1)+L1) v& iby)+Us(-) ira +0s(-) Vi-;t4)+U3(-)

—_

LN LN N7
f] =Vl no l(<>§<\(K fJZ_U(iBHEZ |
I
1 2 d (data counter)

Figure 5.1. Graphical explanation of Algorithm 5.1. At each ty, we compute an approximate &y based

on the engineering function V (-;t) and the user’s function Uy. Based on &y, we ask feedback to the

user, if given: we update Uy and increase the data counter, otherwise we keep Uq as is.
that d = k, meaning that we receive feedback at every time step. This is the worst-case scenario,
since Uy changes at every time step (see [89]). Consistently, we call fi(x) = f(x;tx) + Uk(x).

Algorithm 5.1 Learning and Optimizing meta-algorithm

Input: Initial point: &o, a linearly converging method M', Number of correction steps
C, sampling time h, learning method L, d = 0 feedback points
Output: A sequence (Z1)ren, an estimation for U(x)
1: forke N,k > 1do
2 Sample V (-; tx,)
3 Estimate Uy () via learning method L
4: Correction step: apply M’ method for fra, C times to &1 to deliver &,
5 Feedback step: ask feedback to users on &y. If given, then d — d + 1.
6: end for

Assumption 5.1 We have a method M’ that is functionally linearly convergent (see Equation (5.6)) if
fi is in some functional class F (e.g., convex, invex), and it delivers bounded &, and fi, (&), otherwise.

Assumption 5.2 We have a learning method L for which there exists a finite number of points k, such
that Uy(z), k > k, belongs to the functional class of U (z) with high probability.

For method £, we define the learning length as

T
cy = Z sup | Uy () Z (5.7)

Note that for the learning methods presented in the previous section, one can carefully leverage
their asymptotic learning bounds under extra technical assumptions to derive bounds on ¢y. In
particular, all the presented methods enjoy a sub-linear ¢y, under (un)-said assumptions.

Assumption 5.3 Time variations in the costs are bounded for all k and x, meaning

|V($,tk) — V(:E;tk_l)‘ < A < 0. (58)

We define accordingly the functional path length as

T
= Y sup V(@ t) — V(@i te1) Z Ay, (5.9)
k=1 *

and we can also derive, sup,, |V (x,tx) + Ux(x) — V(z;tp—1) — Up—1(x)| < Ap + ex + €x—1.

Assumptions are quite reasonable and they can be tightened in some special cases. Then the
following general meta-result is in place

Theorem 5.1 (Informal) Consider Problem (5.1), for which cost f belongs to functional class F, uni-
formly in time. Consider Algorithm 5.1 and Assumptions 5.1 through 5.3. Then, with high probability,
the dynamic regret goes as follows

T
Rr((@)i=g) =), f(@rte) — f(a" (tk);tr) < O(1) + Olev) + Ofew). (5.10)
k=0

33

The result of Theorem 5.1 unpacks the three time scales we discussed before thanks to the linear
converging method M’. In particular, O(1) is the initialization error, which is constant for the
convergence rate of the method M’. The term O(cy) is due to the time-varying time scale, while
the term O(cy) is due to the learning time scale. If any of the latter two is sub-linear in T, then
it will vanish in the average regret. If both are sub-linear in 7', we obtain a no-regret result. In a
time-varying scenario, however, we expect at least O(cy) to grow linearly in time.

We look now at the proof of Theorem 5.1 since quite informative.

Proof (Sketch) We work with high probability. Write the regret dividing the part in which we do
not have the functional properties we require for convergence of method M’, and the part we do. For
Assumption 5.1, the first part is finite and therefore O(1). For Assumption 5.2, the second part can be
bounded extracting fy.. Therefore

D F@nte) = fl@" (t)ith) < D f(@n,tr) — fl Z @k, te) — f (2" (tr); th) =

k=0 k=0

T
+ 3 [Ful@n) = fula* () + 26| = O(1) + Ofew) +
k=k

k(Zr) — fr(x"(tr)).

1=

k

Il
Bl

Now use optimality of &}, and therefore Fre(z*(tr)) = fk(dc;) and Assumption 5.2

Fe(@r) = fu(@* (tr)) < fu(@r) — fu(@}) <n(fe(@r1) — fu(@}).
By using Equations (5.7)-(5.9), we then have

n(fu(@r—1) — fu(@3) < nlfe1(@r_1) — fro1(@5_1)] + 20(ex + ex1 + Ap)

— N N k ;
< i @rsy) = frioa @)]+ 2) 0 e e + A)).
i=k
And finally, since
k
Z W fp ()= fra (@))] = 0(1), Z N (eiteisi+Ai) = O(cr)+0(ey).
i=k

MH

Il
Bl

k
the thesis follows’. ¢

Theorem 5.1 and its assumptions are quite general, and any of the learning methods that we
have presented above (e.g., convex regression) could fit the bill and be applied with their own
sub-linear ¢;;. However, the extra technical assumptions needed for the asymptotic learning
bounds can be tricky to enforce. Typically one needs data richness and a good trade-off between
exploration and exploitation for those asymptotic learning bounds to hold. In addition (and
because of it), using the mean for the estimation of U(«) is not a good strategy at all in static
settings (see [82]). The latter fact is not so critical in time-varying settings, where variations in
function V play the role of exploration (even if this is more empirical evidence than hard truth).

I look next at a specific technique (the upper confidence bound), that can enforce a sub-linear
cy by sampling U(x) in a special way (instead of assuming, e.g., data richness), which makes
O(cy) the leading term of the regret.

5.4.2 An upper confidence bound algorithm

We look now at a special case of learning, GPs combined with an upper confidence bound
algorithm® to determine Uy (x) = ux(z) — Br(x)ok(x) for growing positive S;’s, so to trade off
low mean and high variance, in an exploration-exploitation trade-off.

The assumptions are the same as before, with £ being a GP regression with square exponential
kernel, the class F being the set of invex functions, for which a projected gradient method

k—it+l, _ 7T k—k+1 ¢

T—
5The last inequality follows since: Zk kzl &N Di = 2k 2up—1 | M Phk—t+1 = ZZ:,; n* Zezkkfl D1 S

Zk:1 n’“O(Zkzl L) = (Zk:1 Pk)-

6Technically since we are dealing with minimization, I should call it a lower confidence bound algorithm.

34

is linearly converging, and X being a compact set (for the upper confidence bound to work).
Invex functions extend the convexity for sharp users’ preferences, but one has to pay a little
attention to them, since the invex class is not closed under addition. Then, for Algorithm 5.1,
with the above setting, we have the following result (O*(-) indicates O(-) up to poly-logarithmic
terms).

Theorem 5.2 (Regret bound) Let Assumptions 5.1-5.3 hold. Set the parameter (), as

Br = 2log(k*Cy) + 2k log(nk*Coy/log(nCs),

for k = 1, and where C, Ca, Cs are tunable parameters (see [89]). Running Algorithm 5.1 with By, for a
sample U of a GP with mean function zero and square exponential kernel, and projected gradient method
for M, we obtain a regret bound of O(1) + O* (1/nT (log T)™*1) + O(cy) with high probability.

Theorem 5.2 yields the promised result, where O(cy) = O*(\/nT (logT)*+1), which is sub-
linear in T" as desired. Similar results are presented in [65,68] with other technical assumptions.

5.5 An example

Example 5.1 (Vehicle Platooning) In [89], we consider a vehicle platooning problem, whereby vehi-
cles are controlled to maintain a given reference distance between each other and follow a leader vehicle.
We look at the problem of deciding which are the best inter-vehicle distances such that they are as close
as possible to some desired values that are dictated by road, aerodynamics considerations, and platoon’s
speed, while being comfortable fo the car riders. This problem formulation fits Problem (5.2) and we
solve it accordingly by modeling the user satisfaction as a standard GP and applying an approximate
upper confidence bound algorithm (AGP-UCB). What it is interesting here is how the approach compares
to other possible strategies. In particular, we discuss (i) a projected gradient method based on a synthetic
one-fits-all model of the user’s satisfaction function; (ii) a projected zero-order method based on the user’s
feedback at the current and previous point(s) to estimate the gradient of the user’s satisfaction function.

The synthetic model for the user’s satisfaction functions is taken as equal for both vehicles (to exactly
match the parametric model which the GP samples mimic, with a small parameter inaccuracy). We
remark that it is in general complicate to obtain good one-fits-all models for human preferences, and even
small inaccuracies can cause bias and loss of perceived fairness. The zero-order method uses the user’s
feedback to obtain an estimate of the gradient of the user’s satisfaction function. We implement both
a two-point estimate, where we use the current feedback and the previous one, as well as a four-point
estimate, where we use the current feedback and three previous ones. We remark that the implementation
of zero-order methods is in general hard with user’s feedback, since the feedback may be very noisy and
intermittent. While our GP-based method does work seamlessly with intermittent noisy feedback, a zero-
order method would not. In Figure 5.2, we see how our algorithm outperforms the others in terms of
average regret. This is reasonable, since the synthetic model has no feedback to learn the true user’s
satisfaction functions, and the zero-order model estimates a noisy gradient (and, likewise, it does not
learn the user’s functions). More results and discussions are then presented in [89].

—— AGP-UCB Algorithm

0
10 k Synthetic functions

—— Zero-order with 2 points
—— Zero-order with 4 points

\

0 250 500 750 1000 1250 1500 1750 2000
Optimization and time counter k

"
2

T
Average Regret z R7IT
d

Figure 5.2. Comparison of the different algorithms in terms of average regret.

35

Chapter 6

Perspectives

We will never again understand nature as well as Greek philosophers did.

John R. Pierce

... the joke is that
whenever you find a missing link you've created two more missing links.

Sean Carroll talking with Niel Shubin about evolution

6.1 A look ahead

The thesis has depicted the vibrant research area of optimization and learning for cyber-physical
and social systems. If I look ahead to my own research interests, my general goal is to shape
this area, where humans are an integral part of a complex, ever-changing, environment, which
nevertheless requires optimization algorithms to be able to give hard guarantees on safety, re-
liability, and performance. The ultimate aim is to change how humans experience technology
and interact with it.

In the short to medium term, my specific scientific objectives can be listed as follows.

Data-driven optimization

As we have discussed in Chapter 3, there are different ways for one to do prediction and cor-
rection of time-varying problems. If we look the optimization problem mingex f(x;¢), with a
specific dependence on a parameter b(t), i.e., P(b(t)) : mingex f(z; b(t)), we have offered meth-
ods that require the knowledge of f(-; b(t)) at some time steps and therefore the knowledge of
b(t). In the case b(t) is noisy, we converge to the noisy optimizers of P(b(t)).

Prediction is then typically based on the dynamical system that captures the evolving optimality
conditions, while correction is based on sub-optimality measures, such as the gradient.

With the growing literature in learning, it is quite natural to ask oneself how to upgrade current
prediction-correction methods by learning the underlying dynamical system from data, having
the access to some prior on b(¢), and modeling choices (such as a spatiotemporal Gaussian
process for f). Priors on b(t) do not have to be very specific: it is often the case that b(t) is
a quasi-periodic signal, such as requests in ridesharing systems, or irradiance on photovoltaic
panels, so modeling b(t) with a quasi-periodic kernel may be already enough.

This could also lead to solving the smoothed problem

minimize By ;)5 [f (23 b(1))], (6.1)

where Eyy).5(1)[] represents the expectation with respect to the noisy variable b which is
drawn from a time-varying distribution 5(t).

36

Research in this direction would entangle once more dynamical systems, optimization, and
estimation theory.

Marrying traditional statistical learning with the need of optimization

When introducing a learning component for a part of the optimization problem, for example the
cost or the constraints, one has to make sure the learned version has all the functional properties
of the original one. We have discussed this in Chapter 5. Within data-driven optimization
approaches as above and for learning users’ preferences, this is key.

An interesting research path is then to further expand shape-constrained learning for the need
of optimization: how to impose structural constraints (such as convexity, sharpness, mono-
tonicity, etc.) with minimal computational overhead and good asymptotic consistency bounds?
How to design good spatiotemporal kernels? How to learn the best regularization of a given
problem, or the best algorithm for it?

This research area is growing and (part of it) goes under the name of learning to optimize, see
for example [18] and my recent [7].

Time-varying in combinatorial domains

In Chapter 4, we have looked at combinatorial problems. These problems are tricky in time-
varying domains since Lipschitz continuity of the solution trajectory cannot be expected. Fo-
cusing on the computational aspects alone, one can, however, still derive fast algorithms that
optimize appropriate simplifications of the original problem and still retain good streaming
solutions.

The next big step is to generalize what we have seen for the ridesharing example to a larger
class of combinatorial problems. Here, one could plan to look at recent work in using neu-
ral networks to learn solutions of combinatorial problems and their sensitivity as parameters
change (see for instance [11]). The step from that to time-varying combinatorial problems could
be very useful in practice.

Given users a choice

In Chapter 5, we have talked about users’ feedback and learning from their preferences to steer
the decision-making process. There, we have discussed the idea to impose a solution to the
users and measure their reaction to it.

With the growing interest in weak control [41], one can better ask whether we could propose a
set of possible solutions and learn from it. This would give users a choice and make decisions
more democratic.

Let us look at an example. If we were to decide when to plug an electrical vehicle under various
constraints and costs, we may ask the user to plug it at exactly 08h37m36s PM, while giving
a set, we could offer between 08h and 09h PM. The latter is more natural, and it does also
make sense: at the end the actual optimizer is the child of a cost function that in more or less
arbitrarily constructed by system engineers, and we could be slightly flexible about (as long as
the constraints are satisfied).

This research direction would upgrade traditional optimization to set-based solutions and their
convergence; as a matter of fact, with the users, we are exploring an unknown (possibly time-
varying) Pareto front and eventually converging to a point on it.

6.2 Epilogue: a personal retrospective

This thesis has looked at my work in the past ten or so years, working in four different countries,
both in academia and in industry. If I even look back a little further, when I started my PhD
at Delft University of Technology in 2008, what the scientific community has achieved in the
digital space is mind-blowing. In 2008, we did not really have smart phones, and we were still
using mp3 players to listen to our favorite music. Convex optimization was starting to conquer

37

almost all application endeavors, and its distributed version, together with distributed control,
were at their infancy. Al and machine learning were there already, but much more in the fringes
of the scientific arena, and if a colleague had told you they were using artificial neural networks
for control or signal processing purposes, you would have thought they were out of their minds.
But, on the other hand, there was a lack of usable data and plenty to do in the convex realm and
no bother looking at something more complicated.

In 14 years, things have changed in an almost unrecognizable way. For starters, I am eating
pains aux raisins instead of frikandels. But also many areas have reached their peak and left the
spotlight to others. Convex optimization is now quite an established technology. With the ex-
plosion of data available paired with ever increasing computational power, machine learning
and Al have taken the central stage in many application domains. More strikingly, with the ad-
vent of smart phones and widespread use of open-source coding, the Al community is making
learning tools more democratic and accessible. This blurs the line between scientific commu-
nity, developers, and general public, ultimately making the adoption of new technology easier
and faster than ever before. Companies from many different domains, ranging from health to
agriculture, are also very agile in adopting and extremely keen in trying these new Al tools.

Distributed algorithms have yielded to federated learning; this primarily pushed by the current
widespread adoption of cloud-based technologies and current trends in the internet of things.
This also makes training of personalized models easier and more transferrable, almost as a
service.

All these developments bring the general public more on the spotlight, them being able to use
quite the latest algorithms (hidden in their phones or on the cloud), them being “used” as a
source of data, or them being “recommended” and profiled. This makes me think that as never
before, we have, as scientists, the responsibility and opportunity to incorporate the social part
in our algorithm design. The algorithms that we design today, could be adopted in a month in
a company or start-up and in two they could be on somebody’s phone. This should also change
how we educate the future generation of scientists, where ethics must play a major role.

I think as “digital” scientists, we can now make a real difference in the welfare of people, and
we should take the lead.

What's going to happen in 10-14 years? It is obviously hard to say. I think humanity has a
lot of challenges ahead of them, ranging from protecting democracy, fighting diseases, to cli-
mate change. “Digital” scientists have the right mindset to propose sound and mathematically-
grounded solutions. Learning and optimization will be key players. Scientifically, other theories
will become technology, other will take their place in the sun for a moment. As for me, even
just being a part of it will suffice.

About the author. Andrea Simonetto earned his PhD in systems and control at Delft University
of Technology, the Netherlands in 2012. He then spent 3 + 1 years as a postdoctoral researcher,
first in the signal processing group at Delft University of Technology, and then at the applied
mathematics group at Université catholique Louvain, Louvain-la-Neuve, Belgium. From Febru-
ary 2017 to August 2021, he was a research staff member at IBM Research Europe, in Dublin,
Ireland. Since September 2021, he is a professor of optimization at ENSTA Paris, Institute Poly-
technique de Paris, France.

38

Bibliography

(1]

(2]
(3]

(4]

(5]

(6]

[7

(8]

[9

[10]

[11]
[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Akhriev, J. Marececk, and A. Simonetto. Pursuit of Low-Rank Models of Time-Varying Matrices Robust to
Sparse and Measurement Noise. In Proceedings of AAAI, 2020.

E. L. Allgower and K. Georg. Numerical Continuation Methods: An Introduction. Springer-Verlag, 1990.

Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus. On-demand High-
capacity Ride-sharing via Dynamic Trip-Vehicle Assignment. PNAS, 114(3):462 — 467, 2017.

M. E. Baran and F. F. Wu. Network reconfiguration in distribution systems for loss reduction and load balancing.
IEEE Transactions on Power Delivery, 4(2):1401-1407, Apr. 1989.

N. Bastianello, A. Simonetto, and R. Carli. Prediction-Correction Splittings for Nonsmooth Time-Varying Opti-
mization. In Proceedings of the European Control Conference, Napoli, Italia, June 2019.

N. Bastianello, A. Simonetto, and R. Carli. Primal and dual prediction-correction methods for time-varying
convex optimization. arXiv:2004.11709, 2020.

N. Bastianello, A. Simonetto, and E. Dall’Anese. OpReg-Boost: Learning to accelerate online algorithms with
operator regression. In Proceedings of Learning for Dynamics & Control Conference (to appear), 2022.

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books
in Mathematics. Springer-Verlag, 2011.

E. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause. Safe learning of regions of attraction for uncertain,
nonlinear systems with Gaussian processes. In Proceedings of the 55th Conference on Decision and Control, pages
4661 — 4666, December 2016.

A. Bernstein, E. Dall’Anese, and A. Simonetto. Online primal-dual methods with measurement feedback for
time-varying convex optimization. IEEE Transactions on Signal Processing, 67(8):1978-1991, April 2019.

D. Bertsimas and B. Stellato. Online Mixed-Integer Optimization in Milliseconds. arxiv: 1907.02206, 2019.

O. Besbes, Y. Gur, and A. Zeevi. Non-stationary Stochastic Optimization. Operations research, 63(5):1227 — 1244,
2015.

S. Bolognani and F. Dorfler. Fast power system analysis via implicit linearization of the power flow manifold. In
2015 53rd Annual Allerton Conf. on Communication, Control, and Computing, pages 402—409, 2015.

S. Bolognani and S. Zampieri. On the existence and linear approximation of the power flow solution in power
distribution networks. IEEE Transactions on Power Systems, 31(1):163-172, 2016.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

A.S.Charles, A. Balavoine, and C. J. Rozell. Dynamic filtering of time-varying sparse signals via £; minimization.
IEEE Transactions on Signal Processing, 64, 2016.

P. Chatupromwong and A. Yokoyama. Optimization of charging sequence of plug-in electric vehicles in smart
grid considering user’s satisfaction. In Proceedings of the IEEE International Conference on Power System Technology,
pages 1 -6, October 2012.

T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and W. Yin. Learning to optimize: A primer and a
benchmark. arXiv:2103.12828, 2021.

C.-K. Chiang, T. Yang, C.-]. Lee, M. Mahdavi, C.-J. Lu, R Jin, and S. Zhu. Online Optimization with Gradual
Variations. In Conference on Learning Theory, 2012.

W. Chu and Z. Ghahramani. Preference learning with Gaussian processes. In Proceedings of the 22nd International
Conference on Machine Learning, pages 137 — 144, Bonn, Germany, August 2005.

M. Colombino, J. W. Simpson-Porco, and A. Bernstein. Towards robustness guarantees for feedback-based opti-
mization. In IEEE 58th Conference on Decision and Control (CDC), pages 6207-6214, 2019.

E. Dall’Anese, S. Guggilam, A. Simonetto, Yu C. Chen, and S. V. Dhople. Optimal Regulation of Virtual Power
Plants. IEEE Transactions on Power Systems, 33(2):1868 — 1881, 2018.

E. Dall’Anese and A. Simonetto. Optimal Power Flow Pursuit. IEEE Transactions on Smart Grid, 9(2):942 — 952,
2018.

E. Dall’Anese, A. Simonetto, S. Becker, and L. Madden. Optimization and Learning with Information Streams:
Time-varying Algorithms and Applications. Signal Processing Magazine, 37(3):71 — 83, May 2020.

M.P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian Processes for Data-Efficient Learning in Robotics and
Control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):408 — 423, 2015.

39

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

A. L. Dontchev, M. 1. Krastanov, R. T. Rockafellar, and V. M. Veliov. An Euler-Newton Continuation method for
Tracking Solution Trajectories of Parametric Variational Inequalities. SIAM Journal of Control and Optimization,
51(51):1823 — 1840, 2013.

A. L. Dontchev and R. T. Rockafellar. Implicit Functions and Solution Mappings. Springer, 2009.

E. Dressler. Cyber physical social systems: Towards deeply integrated hybridized systems. In Intern. Conf. on
Computing, Networking and Communications, 2018.

E. Eser, J. Monteil, and A. Simonetto. On the Tracking of Dynamical Optimal Meeting Points. In Proceedings of
the 15th IFAC Symposium on Control in Trasportation Systems, Savona, Italy, June 2018.

M. Fazlyab, S. Paternain, V.M. Preciado, and A. Ribeiro. Prediction-Correction Interior-Point Method for Time-
Varying Convex Optimization. IEEE Transactions on Automatic Control, 63(7), 2018.

M. Gendreau, G. Ghiani, and E. Guerriero. Time-dependent routing problems: A review. Computers & Op.s
Research, 64, 2015.

M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar. Bayesian Reinforcement Learning: A Survey. Foundations
and Trends(R) in Machine Learning, 8(5-6):359 — 492, 2015.

J. Guddat and F. Guerra Vazquez and H. T. Jongen. Parametric Optimization: Singularities, Pathfollowing and Jumps.
John Wiley & Sons, Chichester, UK, 1990.

D. Guo, X. Lin, Z. Su, S. Sun, and Z. Huang. Design and analysis of two discrete-time ZD algorithms for time-
varying nonlinear minimization. Numerical Algorithms, 77(1):23 — 36, 2018.

E. C. Hall and R. M. Willett. Online convex optimization in dynamic environments. IEEE Journal of Selected Topics
in Signal Processing, 9(4):647-662, 2015.

A. Hauswirth, S. Bolognani, G. Hug, and F. Dorfler. Timescale separation in autonomous optimization. IEEE
Transactions on Automatic Control, 66(2):611-624, 2021.

A. Hauswirth, A. Zanardi, S. Bolognani, Florian Dérfler, and G. Hug. Online optimization in closed loop on the
power flow manifold. In Proceedings of the IEEE PowerTech conference, Manchester, UK, June 2017.

E. Hazan. Introduction to online convex optimization. Foundations and Trends® in Optimization, 2(3-4):157-325,
2016.

N. Houlsby,].M. Herndndez-Lobato, F. Huszar, and Z. Ghahramani. Collaborative Gaussian processes for pref-
erence learning. Advances in Neural Information Processing Systems, 3:2096 — 2104, January 2012.

J.-H. Hours and C. N. Jones. A Parametric Non-Convex Decomposition Algorithm for Real-Time and Distributed
NMPC. IEEE Transactions on Automatic Control, 61(2):287 — 302, 2016.

M. Inoue and V. Gupta. “Weak” Control for Human-in-the-Loop Systems. IEEE Control Systems Letters, 3(2):440-
445, 2019.

A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan. Online Optimization: Competing with Dynamic
Comparators. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, PMLR,
number 38, pages 398 — 406, 2015.

E Y. Jakubiec and A. Ribeiro. D-MAP: Distributed Maximum a Posteriori Probability Estimation of Dynamic
Systems. IEEE Transactions on Signal Processing, 61(2):450 — 466, 2013.

J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan, and M. Morari. Embedded Online Opti-
mization for Model Predictive Control at Megahertz Rates. IEEE Transactions on Automatic Control, 59(12):3238 —
3251, 2014.

L. Jin and Y. Zhang. Continuous and discrete Zhang dynamics for real-time varying nonlinear optimization.
Numerical Algorithms, 73(1):115 — 140, 2016.

D. Kahneman and A. Tversky. Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2):263 —
291, 1979.

J. Koshal, A. Nedi¢, and U. Y. Shanbhag. Multiuser Optimization: Distributed Algorithms and Error Analysis.
SIAM Journal on Optimization, 21(3):1046 — 1081, 2011.

J. Lavaei and S.H. Low. Zero duality gap in optimal power flow problem. IEEE Transactions on Power Systems,
27(1):92-107, 2012.

S. Levine, Z. Popovic, and V. Koltun. Nonlinear Inverse Reinforcement Learning with Gaussian Processes. In
Advances in Neural Information Processing Systems 24, pages 19 — 27, 2011.

J. Li, M. Mao, F. Uhlig, and Y. Zhang. Z-type neural-dynamics for time-varying nonlinear optimization under
a linear equality constraint with robot application. Journal of Computational and Applied Mathematics, 327(1):155 —
166, 2018.

Y. Li, G. Qu, and N. Li. Using Predictions in Online Optimization with Switching Costs: A Fast Algorithm and A
Fundamental Limit. In Proceedings of the American Control Conference, 2018.

B. Liao, Y. Zhang, and L. Jin. Taylor O(h?®) Discretization of ZNN Models for Dynamic Equality-Constrained
Quadratic Programming With Application to Manipulators. IEEE Transactions on Neural Networks and Learning
Systems, 27(2):225 — 237, 2016.

H. J. Liu, W. Shi, and H. Zhu. Decentralized Dynamic Optimization for Power Network Voltage Control. IEEE
Transactions on Signal and Information Processing over Networks, 3(3):568 — 579, 2017.

J. Liu, J. Marecek, A. Simonetto, and M. Takac. A Coordinate-Descent Algorithm for Tracking Solutions in Time-
Varying Optimal Power Flows. In Proceedings of the XX Power Systems Computation Conference, Dublin, Ireland,
June 2018.

40

[55]

[56]

[57]

[58]

[59]

[60]

[67]

[68]

[69]

[70]
[71]

[72]

[73]

[74]

[75]

[76]
[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

M. Liu, G. Chowdhary, B. Castra da Silva, S. Liu, and J. P. How. Gaussian Processes for Learning and Control: A
Tutorial with Examples. IEEE Control Systems Magazine, 38(5):53 — 86, 2018.

X. Luo, Y. Zhang, and M. M. Zavlanos. Socially-Aware Robot Planning via Bandit Human Feedback. In 2020
ACMY/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS), pages 216-225, 2020.

M. Maros and J. Jalden. ADMM for Distributed Dynamic Beam-forming. IEEE Transactions on Signal and Informa-
tion Processing over Networks, 4(2):220 — 235, 2018.

R. Mazumder, A. Choudhury, G. Iyengar, and B. Sen. A Computational Framework for Multivariate Convex
Regression and Its Variants. Journal of the American Statistical Association, 114(525):318-331, 2019.

M. Menner, L. Neuner, L. Liinenburger, and M. N. Zeilinger. Using human ratings for feedback control: A
supervised learning approach with application to rehabilitation. IEEE Transactions on Robotics, 36, 2020.

P.Miao, Y. Shen, Y. Huang, and Y.-W. Wang. Solving time-varying quadratic programs based on finite-time Zhang
neural networks and their application to robot tracking. Neural Computing and Applications, 26(3):693 — 703, 2015.

J.J. Moreau. Evolution Problem Associated with a Moving Convex Set in a Hilbert Space. Journal of Differential
Equations, 26:347 — 374, 1977.

A. Nagurney. Network economics: A variational inequality approach. Springer Science & Business Media, 2013.
Y. Nesterov. Introductory Lectures on Convex Optimization. Applied Optimization. Springer, 2004.
J. Nocedal and S. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

I. Notarnicola, A. Simonetto, F. Farina, and G. Notarstefano. Distributed personalized gradient tracking with
convex parametric models. IEEE Transactions on Automatic Control (in press), 2022.

F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder, Stauch, B. Lehmann, and M. Morari. Use of
model predictive control and weather forecasts for energy efficient building climate control. Energy and Buildings,
45:15-27,2012.

L. Ortmann, A. Hauswirth, I. Caduff, F. Dorfler, and S. Bolognani. Experimental validation of feedback optimiza-
tion in power distribution grids. Electric Power Systems Research, 189:106782, 2020.

A. Ospina, A. Simonetto, and E. Dall’Anese. Time-varying optimization of networked systems with human
preferences. arXiv:2103.13470, 2021.

V. Pandey, J. Monteil, C. Gambella, and A. Simonetto. On the needs for MaaS platforms to handle competition
in ridesharing mobility. Transportation Research Part C: Emerging Technologies, 108:269-288, 2019.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Dover, 1998.

S. Paternain, M. Morari, and A. Ribeiro. A prediction-correction algorithm for real-time model predictive control.
arXiv preprint arXiv:1911.10051, 2019.

R. Pinsler, R. Akrour, T. Osa, J. Peters, and G. Neumann. Sample and Feedback Efficient Hierarchical Reinforce-
ment Learning from Human Preferences. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 596-601, 2018.

B. T. Polyak. Introduction to Optimization. Optimization Software, Inc., 1987.

D. Quercia, R. Schifanella, and L. M. Aiello. The Shortest Path to Happiness: Recommending Beautiful, Quiet,
and Happy Routes in the City. In Proceedings of Conference on Hypertext and Social Media, pages 116 — 125, Santiago,
Chile, September 2014.

S. Rahili and W. Ren. Distributed Convex Optimization for Continuous-Time Dynamics with Time-Varying Cost
Functions. IEEE Transactions on Automatic Control, 62(4):1590 — 1605, 2017.

A. Rakhlin and K. Sridharan. Online learning with predictable sequences. In COLT, PMLR, 2013.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, Cambridge, MA,
US, 2006.

S. Shalev-Shwartz. Online Learning and Online Convex Optimization. Foundations and Trends® in Machine Learn-
ing, 4(2):107 — 194, 2012.

S. Shibasaki, M. Inoue, M. Arahata, and V. Gupta. Weak control approach to consumer-preferred energy man-
agement. [FAC-Papers online, 53, 2020.

A. Slivkins and E. Upfal. Adapting to a Changing Environment: the Brownian Restless Bandits. In Proceedings of
the Conference on Learning Theory, pages 343 — 354, Helsinki, Finland, July 2008.

J. Song, E. Dall’Anese, A. Simonetto, and H. Zhu. Dynamic distribution state estimation using synchrophasor
data. IEEE Transactions on Smart Grid, 2019.

N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. Information-Theoretic Regret Bounds for Gaussian
Process Optimization in the Bandit Setting. IEEE Transactions on Information Theory, 58(5):3250 — 3265, 2012.

Y. Tang, K. Dvijotham, and S. Low. Real-Time Optimal Power Flow. IEEE Transactions on Smart Grid, 8(6):2963 —
2973, 2017.

A.B. Taylor,].M. Hendrickx, and F. Glineur. Smooth Strongly Convex Interpolation and Exact Worst-case Perfor-
mance of First-order Methods. Mathematical Programming, 2016.

A. Simonetto. Time-Varying Convex Optimization via Time-Varying Averaged Operators . arXiv: 1704.07338v1,
2017.

A. Simonetto. Dual Prediction-Correction Methods for Linearly Constrained Time-Varying Convex Programs.
IEEE Transactions on Automatic Control, 64(8):3355 — 3361, 2019.

41

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

Institut Polytechnique de Paris

91120 Palaiseau, France 40

A. Simonetto. Smooth Strongly Convex Regression. In European Signal Processing Conference, pages 2130-2134.
IEEE, 2021.

A. Simonetto and E. Dall’Anese. Prediction-Correction Algorithms for Time-Varying Constrained Optimization.
IEEE Transactions on Signal Processing, 65(20):5481 — 5494, 2017.

A. Simonetto, E. Dall’Anese,]. Monteil, and A. Bernstein. Personalized optimization with user’s feedback. Au-
tomatica, 131, 2021.

A. Simonetto, E. Dall’Anese, S. Paternain, G. Leus, and G. B. Giannakis. Time-Varying Convex Optimization:
Time-Structured Algorithms and Applications. Proceedings of the IEEE, 108(11), 2020.

A. Simonetto, A. Koppel, A. Mokhtari, G. Leus, and A. Ribeiro. Decentralized Prediction-Correction Methods
for Networked Time-Varying Convex Optimization. IEEE Transactions on Automatic Control, 62(11):5724 — 5738,
2017.

A. Simonetto and G. Leus. Distributed Asynchronous Time-Varying Constrained Optimization. In Proceedings of
the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, November 2014.

A. Simonetto and G. Leus. Double Smoothing for Time-Varying Distributed Multi-user Optimization. In Pro-
ceedings of the IEEE Global Conference on Signal and Information Processing, Atlanta, US, December 2014.

A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro. A Class of Prediction-Correction Methods for
Time-Varying Convex Optimization. IEEE Transactions on Signal Processing, 64(17):4576 — 4591, 2016.

A. Simonetto,]. Monteil, and C. Gambella. Real-time city-scale ridesharing via linear assignment problems.
Transportation Research Part C: Emerging Technologies, 101, 2019.

N. Vaswani and J. Zhan. Recursive Recovery of Sparse Signal Sequences from Compressive Measurements: A
Review. IEEE Transactions on Signal Processing, 64(13):3523 — 3549, 2016.

X. Wang and J. O. Berger. Estimating shape constrained functions using Gaussian Processes. SIAM/ASA Journal
on Uncertainty Quantification, 4(1):1-25, 2016.

Y. Yang, M. Zhang, M. Pesavento, and D. P. Palomar. An Online Parallel and Distributed Algorithm for Recursive
Estimation of Sparse Signals. IEEE Transactions on Signal and Information Processing over Networks, 2(3):290 — 305,
2016.

K. Yuan, W. Xu, and Q. Ling. Can primal methods outperform primal-dual methods in decentralized dynamic
optimization? arXiv preprint arXiv:2003.00816, 2020.

V. M. Zavala and M. Anitescu. Real-Time Nonlinear Optimization as a Generalized Equation. SIAM Journal of
Control and Optimization, 48(8):5444 — 5467, 2010.

M. M. Zavlanos, A. Ribeiro, and G. J. Pappas. Network Integrity in Mobile Robotic Networks. IEEE Transactions
on Automatic Control, 58(1):3 — 18, 2013.

YT
QO Ecy

TU
6'(\ T

" bg o®

, «°
$ 3po)

	Introduction
	Context and Aim
	Organization
	Theoretical Background
	Selected related work, contributions, applications

	Information streams
	A motivating example
	Problem formulation
	Assumptions and algorithms
	Examples
	More scrambling of hierarchies: distributed computation
	Going beyond strong convexity
	Time-varying optimization vis-à-vis Learning

	Structured predictions
	The need for prediction
	Predictors
	Algorithms
	A closer look
	Examples

	Non-convexities
	A general plea for model simplicity
	Non-convex constraints: the value of feedback
	Combinatorial problems: an example

	Human preferences
	Intermezzo: Connecting the dots
	Problem formulation
	Learning cost functions
	Optimism in the face of uncertainty
	An example

	Perspectives
	A look ahead
	Epilogue: a personal retrospective

